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CHAPTER 1 

INTRODUCTION 

1.1 DESCRIPTION OF SH[.L\R ~JALL STRUCTURES 

In recent years, there has been a rapid increase in the number of 

ta 11 bui 1 dings built fot' co:nmeri ca 1 and res i denti a 1 purposes. This 

increase has necessJtated the need for a greater understanding of the 

behaviour of such structures under service conditions. 

As a building increases in height, it is most important that 

sufficient lateral stiffness exists in the building to resist the effects 

of wind loading, seismic action and blasts. Sufficient stiffness in 

tall buildings can he effected in the case of framed structures by 

bracing members, hy increasing the joint rigidity or by i nfi 11 i ng the 

frame vJith sheat' resisting panels. This leads to the use of a shear 

wall element to assist in providing additional stiffness in a tall 

building. 

A shear wall is used as a structural element in a tall building 

to provide stability against vlind, earth tremors and blasts. Deriving 

its stiffness from its structural fonn, the shear wall is extremely 

stiff and shear resistant in its own plane. The shear wall element cvn 

consist of a plane wall, a curved wall, a closed loop, or of a rectangular 

box of a system of concentric or eccentric cores. 

Parallel shear \'lalls are connected by floor slabs to forr:1 one type 

of shear wall building. The box-core is another type of shear wall 

building in Hhich tVJo channel shaped shear \'falls are aligned so that 

they form a box-like system connected by floor slabs. 

Architecturally, the shear wall building with floor slabs pernits 
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maximum flexibility of internal layouts and eliminates the obstructions 

associated with internal beams and columns. This type of building 

provides inherent accoustic insulation and also is extremely fire 

resistant. From the viewpoint of construction, the building can be 

erected quickly and economically following a logical sequence of 

operations using a repetitiye form of construction. 

The floor slabs act as diaphragms which distribute the horizontal 

loads to the stiff shear vtalls. The shear walls trans;nit the loads to 

the foundation which in turn distributes them over a sufficient area 

to prevent a soil failure. Further, the floor slabs \·;hich are extremely 

stiff in their ovm planes, increase the lateral stiffness of the 

building by their complex interaction Hith the \·.ralls. 

The shear walls can contain openings for doors, windows and corridors 

at regular intervals throughout t!1e !leight of the building. Hhen the 

stiffness of the shear Hall element is determined, account must be 

taken of the locations and sizes of the wall openin~s. 

It can be readily seen that the three dimensional behaviour of a 

tall building comprised nf perforated shear walls, floor slabs and 

service cores is extremely complex. Aporoximate design methods can 

be used to proportion the elements, but these analyses do not take 

account of this three-dimensional interaction. Clearly, more 

sophisticated analysis techniques are required. 

The general purpose of research on shear wall structures is to 

first provide more information on their behaviour and secondly, to 

develop more realistic design criteria. 



3 

1. 2 SHEAR \lf\.LL PROJECT 

The Canada Emergency r1easures Ot~ganization is currently sponsoring 

an extensive program of experimental investigations into the behaviour 

of shear wall buildings. The project is being conducted in the 

Department of Civil Engineering and Engineedng riechanics at ~1d1aster 
' 

University, Ha~ilto~, Ontario. It consists of building small-scale 

shear \·Jall buildinss and studying their responses to static and 

dynamic lateral loadings. 

Experimental investigations are being conducted on monolithic 

assemblies of shear \·Jalls v1hich take the form of small-scale shear 

wall buildings. The basic small-scale shear wall building was 

design~d so that it vJas geometrically sin1ilar to actual tall buildings. 

It would also allow floor slabs and wall openings to be introduced. 

This procedure Hould penlit a basic continuity of test structures 

during the various phases of the project. 

The basic structure as sho~m in Figure 1 was E shape in 

cross-section and stood eigi1t feet in height. A non-reinforced 

micro-concrete was designed and used as the structural material of 

the huil dings. 

In the first p!1t1se of the project, Afsar (1) studied the 

behaviour of the basic building without transverse slabs or wall 

openings, subject to a transverse static loading. The second phase 

of the experinental ~wagram \·!as the investigation by Qureshi (2) into 

the behaviour of tre buildin:; vdth tv;o vertical rO\·!S of circular 

openings in the back wall. Modifications to the design of the concrete 

material, the construction procedure and the testing of the buildings 
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\'/ere initiated in this phase of the pr·ogram. 

The present study, phase three, is an investigation into the 

beh·aviour of the building "JitiJ rigid floor slabs, but ~'lithout lf!a1l 

openings. The rnodifi cations introduced by Qureshi \'Jere incorporated 

into this study. 

The next phase~ of the.shear wall project will include the 

application of dynamic loads to the basic building V!hich has neither 

wall openings nor floor slabs. Future investigations will also include 

the dynamic response of the s1~1all scale s~1ear \!/all building with floor 

slabs. 
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l. 3 A~V\L YSIS OF SHE/'.R UALL BUILDI!lGS 

Coull and Smith (3) have canpiled a comprehensive sumrt~ary of the 

published l~terature concerning the analysis of shear wall buildings. 

In general, a shear wall building can be comprised of interconnected 

shear walls and floor slabs. T~e walls do not act as independent 

cantilevers due to the coupling action of the floor slabs. Further 

complications in the behaviour of the building are introduced when the 

walls have openings. 

Afsar (1) has outlined various analytical and experimental 

approaches used in the stu~' of shear wall structures. 

Qureshi (2) has compiled a detailed survey of the literature 

dealing with the behaviour of shear wall structures comprised of 

shear walls with rows of openings. A popular method of analysis of· 

this type of structure is the frame analogy lilethod. The shear v.ralls 

vlith rm·Js of openings are idealized as interconnections of colu:~ms 

and beams. Extensions of this method \·:ere used by Beck (4) 

Eriksson (5) and Rosman (6) who treated the ro\·IS of beams connecting 

shear vtalls as a continuous mec!iun in pure shear. 

Another pQpular approach is the method of panel el~nents. The 

shear \•/all is considered to be a system of elements whose behaviour 

v1hen assembled is similar to that of the continuous structure. This 

approach is characterized by the finite ele:11ent method used by ~kleod (7). 

Vlasov (S) in his book, "Thin-~·lalled Elastic Beams" proposes an 

analysis which can be applied to the small-scale shear wall building. 

Analyses based on Vlasov's theory can be used to predict the 
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behaviour of various thin-v1alle-d beams subjected to a variety of 

boundary and loading conditions. The important feature of this method 

is the consideration given to the longitudinal extension of the beams 

resulting fro~ torsional loads. 

Qureshi (2) conducted an experimental investigation into the 
• 

behaviour of a micro-concrete shear \·!all building \·tith tv10 symmetrical 

rm1s of openings in the back wall. He found that Rosman's theory can 

be used to predict the behaviour and r;laximum deflection of such small 

scale shear wall buildings. The area of the rectangular openings in 

the theoretical model should be set equal to the area of the circular 

openings in the experimental buildin~. The strain distributions predicted 

using Rosman's theory agreed \lith the experimental distributions. 

Qureshi (2) concluded that Vl asov' s t:1eory could not be used 

to predict the behaviour of the small scale shear wall building with 

circular wall openings. 

Afsar (1) studied the behaviour of the basic small-scale shear 

wall building •t~ithout \·!all openings or floor slabs. A comparison of 

the experimental results of a lateral loading of the building was 

made with results predicted by Vlasov's theory and qualitative 

agreer;,ent was reported. It 1·:as suC)gested t~at Vl asov • s theory could be 

a~plicable to the description of the behaviour of the building with 

floor slabs. 
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1. 4 INVESTIG/HIONS INTO THE f3EH/\VIOUR OF SHEAR H/\LL BUILDINGS C01·1P!USED 

OF SHEf~R \U'~.LLS /\''1!1 FLOOR SU\BS 

An investigation into the behaviour of one and b1o storey 

reinforced concrete shea\~ vJall assernblies \·tas conducted by Benjamin 

and Hilliams (9). The one-quarter scale buildings studied had parallel 

shear walls connected by a reinforced conct~ete c!i aphragrn. The 

buildings vtere loadc:d in torsion at the diaphragm level. The authors 

concluded that if s~earing distortion predominated in ~he walls of a 

tall building, the structure could be analyzed using single-storey 

theory. This reco:7Hnendation \:as not verified. 

Taranath and :1orice (10) used the virtual vtork method to detern1ine 

the elastic defonnations of an open-box bea:n system. The authors 

reported agreement bet~een the stress patterns found theoretically 

and experimentally usinJ perspex models. 

The stiffness method appl~oach was used by several investigators. 

Tezcan (11) analyzed a shear 1r1all structure comprised of interconnected 

shear \'talls and frames. Using a method suggested by Khan and 

Sbarounis (12), th.e floor slabs \-Jere considered as beams bebveen 

adjacent columns. In Tezcan's analysis, the shear walls were considered 

as uni-dinensional me:~1bers. Greater accuracy could have been achieved 

by idealizing the shear v;all as a grid frane1·mrk of two-di:nensional 

plate units. Clough (13) and Tezcan (14) have given the stiffness 

matrices of t~o-dimensional plate ele~ents. The assembly of columns, 

shear \':alls and franes of a tall building iJas then analyzed follovling 

a standard sti~fness analysis. The shear distribution obtained 
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compared \-Jell vlith that distribution found using the method outlined 

by Khan and Sbarounis {12). 

Jenkins and Harrison (15) used the stiffness matrix method to 

analyse tall buildings vrith shear Halls. Tv!O types of shear wall 

structures were examined and the results were compared with the results 

of experiments perfon11ed ort perspex models. The use of the stiffness 

matrix method pennitted the introduction of the finite element 

technique to deten;1ine the stiffness of the floor slabs. It \'/as found 

that the stiffness matrix approach provided a suitable method for the 

analysis of tall structures containing shear walls. 

Rosman (6) and Beck (4) each offered an analysis of sheer walls 

interconnected by beams of rectanot~lar cross-section. Barnard and 

Sch\·:aighefer (lG) deterr:1ined the Hidth of the strip of slab \•ihich 

acted as the coupling media betv•,een the walls. Then, the analysis of 

Rosman (16) and neck (4) was applied to a slab-shear wall building. 

Tests l''ere conducted on nodels constructed fror.1 1/4 inch epoxy sheets. 

It was concluded first that the entire slab width was to be considered 

as the connecting r:1edium bet1·1een adjacent shear walls and secondly; 

that Rosman's theory predicted the stress distribution in the \'falls. 

A simplification of Rosr1an's theory \'Jas also proposed. 

Coull (17) investigated the effective Hidth of floor slabs 

acting in conjunction with a pair of in-line shear v1alls. Tests were 

conducted on a rerspex model of a tv1er.ty-five storey shear \'tall 

building consisting entirely of walls and floor slabs. The author 

r.10dified the: analysis of Chitty (18) ~,,;,ich replaced the discrete set of 

connections by an equivalent continuous 11edium. The modifications 
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took into account the finite depth and shear deflections of the walls. 

The behaviour of the building was somev1here betv:een the h-10 limiting 

cases of i nd~pendent vm 11 action and canti 1 ever action of the 

building. 

Coull {17) concluded that the building behaved as a set of 
' 

coupled shear walls· in which the coupling action of the floor slabs 

induced considerable axial force in the v1alls. On the basis of his 

investigations, the author suggested that the continuum technique was 

not capa~le of describin'] accurately the behaviour of such cor.1plex, 

three-dimensional structures. It was also suggested that further 

research in this fi el cl \'lc.s necessary. 

From the literature reviewed, it can be seen that there is an 

abundance of analytical approaches focused on the problem of the 

behaviour of planar shear v_,all buildings. However, the r.~ajority of 

the experioental investigations have been conducted on perspex models, 

using a Hide variety of buildin0 and testing proct:dures. The problem 

of the thre,~·-dirlensional shear v:all building has been simplifiEd to 

essentially a plan~ stress problen in these investi~1ations. 

It is evident that both analytical ancl expednental investigations 

into the behaviour of tall, three-dimensional shear wall buildings are 

necessary. The experimental investigation reported in this study ceals 

with the behaviour of such a structure. 
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1.5 PRESENT INVESTIGATIO~ 

The purpose of this experirr1ental investi9ation is to study the 

overall effect of the rigidly connected floor slabs on the behaviour 

of the basic small-scale shear wall building subject to a transverse 

static loading. For purposes of providing continuity between the 

various phases of t~e sheaP wall project, the sha~e and dimensions of 

the basic structure developed by P,fsar (1) Here used in this 

investigation. Qureshi (2) also maintained this policy of continuity 

betvteen various phases of the program although certain modifications 

to the micro-concrete ~ix, the lo~dinJ system and casting technique 

were initiated. These ~odifications were incorporated in this 

investigation so that the only difference between phases II and III 

of the project was the introduction of the circular wall openings in 

the second phase and floor slabs in the third. In this v~ay, a direct 

compariso:1 of the individual effects of circular wall openings and floor 

slabs on the behaviour of the small-scale shear wall building is possible. 
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CHAPTER 2 

. CONSTRUCTION OF BUILDINGS 

2.1 CGriSTRUCTIO:l TECH:JIQUE ~\1'!0 r·iATERI.l\L 

In the first phase of the shear wall project, Afsar (1) developed 

a technique of castjng small-scale shear wall buildings. The 

buildin9s \'!ere cast in a 3(4 11 plyvmod form1-10rk using a micro-concrete 

material. The basic sr.1all-scale shear \'!all building is shovm 

schematically in Figure 1. 

Qureshi (2) made minor alterations to a second set of plywood 

forms and cast small-scale buildings \•lith t\·to vertical rm·Js of circular 

openings in the back wall. Prior to the actual construction of the 

.buildings in phase tv:o of the project, the follmting major modifications 

were made in the construction procedure: 

(a) The design mix of the micro-concrete material was changed to 

effect a lo\'Jer shrinkage strain. The redesigned mix used 

was the following: 

Portland Cement 

Fine Otta~a Silica Sand 

1/8 11 Dolor:1itic Limestone 

Hater (~0 by weight of 
Portland cement) 

28.6% * 

35.7% 

35.7% 

47.5% 

(*percentage by weight) 

(b) The buildings were cast without the attached aluminum base 

plate in order to elininate a possible cause cf hairline 

cracks which appeared in the buildinos before testing. 
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{c) The buildings were not attached to the test-bed until shortly 

before the static loading was applied. This was done in an 

attempt to further reduce the possibility of the appearance 

of hairline cracks before testing. 

The present experimental investigation deals vlith the study of the 

behaviour of the small-scale shear wall building with floor slabs, as 
' 

shown in Figure 2 .. The major modifications mentioned above were 

incorporated into this third phase of the shear wall project. Phases 

bro and three v:ere concurrent investigations. 

Using the casting procedures documented by Qureshi {2), two basic 

buildings were cast without wall openings. The precast floor slabs 

were installed in each building at a later date. 

A senior undergraduate student studied the material properties of 

the micro-concrete used in each building. Static tests were conducted 

on 2" cubes and standard 6" diameter cylinders. Dynamic modulus tests 

were conducted on 4'' x 3" x lE" prisimatic beams. The buildings and the 

test specimens were cured under similar conditions. The specimens 

were tested after various durations of curing. 

The modulus of elasticity of the concrete materials determined by 

compression tests on standard 6" diameter cylinders ranged from 3.5 x 106 psi 

for Building I to 4.0 x 106 psi for Building II. 

Table 1 illustrates the variations of compressive strengths as 

determined by tests on 2" cubes of the concrete material of Buildings 

I and II. 
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TABLE 1 

C011PJ'l.RISON OF co:,:PRESSIVE STRENGTHS OF 211 CUBES 

[ CURING Tli-1E I COf1PRESSI VE STRE!'lGTHS (psi) 

BUILDir!G I BUILDING II 

24 hours ' 1800 2230 
' 

7 days 3930 4310 

14 days 5330 5250 

23 days 6850 5930 
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2.2 BUILDINGS WITH FLOOR SLABS 

As can be seen in Figure 2, there are seven floor slabs at one foot 

centres in each bay of the two bay building. Hhile the basic buildings 

were cast as previously described, the floor slabs were cast in a 

separate operation., A 3/411 plyvmod forr.1vwrk v.ras designed \'Jhich \'Jould 

permit the casting .of seven'floor slubs at a time. T\'lo such casting 

operations produced the required fourteen floor slabs. The sl~bs were 

19 l/4 11 x 15 l/2 11 by l/211 thick. They were made of the same micro-concrete 

material used in the casting of the buildinJs. 

The method of installation of the floor slabs is seen in Plate 1. 

In this photograph, it can be se2n that one slab in each bay is 

supported by a ply\'JOOd false\·Jork \·Jhile the bondin9 compound, Colma Our 

Gel, (manufactured by Sika Cher:1icals Co., Nev1 Jersey, U.S.A.) effected 

the bond between three edges of the floor slab and the building. After 

the bonding agent had cured sufficiently, the false\·Jork v1as removed frorn 

under the installed floor slabs. The frane•,vork Has then placed on top 

of the installed floor slab to support the installation at the next floor 

level. This procedure was continued from floor level to floor level 

until the last slabs 'flere installed at a level 7' fro:n the bottom of the 

building. The photograph shows the installation at this level. 
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2.3 QUALITY OF THE BUILDINGS 

The technique of casting the basic buildings produces structures 

\·!hich are free of hairline cracks. These shrinkage cracks \•lhich plagued 

Afsar ( l) \':ere e 1 imi nated through sever a 1 modifications i ntrocluced by 

Qureshi (2). 

. ' Hov;ever, ment1on must be made of the non-uniform wall thicknesses 

which occurred in b6th buildings. The walls constituting the buildings 

were designed to be 0.5 11 thick. Table 2 shm:s the variations in wall 

thickness at various levels of the two buildings. There is no pattern 

to the recorded variations in ~all thicknesses. 

Qureshi (2) encountered similar difficulties and recorded higher 

variations in the vtall thicknesses. In his recommendations, he has 

suggested various possible causes for these thickness variations and 

suggestions for 1:1i nimi zing their effects. However, the modifications 

required could not be implemented in this investigation. 

Since there is no pattern to the thickness variations along the 

buildings, the effect of these variations on the behaviour of the 

buildings cannot be assessed. 



HEIGHT 

(inches) 

18 

30 

42 

54 

66 

78 

90 

/ 

a 

TABLE 2 

VARIATIONS IN W\LL THICKNESS 

(1/100~ of an inch) 

BUILDir!G I 

' b a c 

652 500 594 

.703 582 .649 

669 532 593 

705 620 617 

632 557 567 

620 654 626 

614 626 601 

a 

662 

658 

6Lt3 

661 

603 

651 

575 

LOCATIONS OF THICKNESS i1EASURH1ENTS 

16 

. 
BUILDinG II 

b c 

576 653 

581 712 

582 702 

590 662 

574 659 

694 65n 

619 649 

c 



CHAPTER 3 

EXPERIMENTAL SET-UP 

3.1 DESCRIPTION OF THE LOADING SYSTEM_ 

17 

In the first phase of the shear wall project, the aluminum loading 

cap described by Afsar (l) did not give a well-defined line of action 

of the applied load. This system was redesigned by Qureshi (2) to 

provide a well-defined line of loading along the back wall of the 

building. Further, the red~signed system maintained the E-shaped 

cross-section at the top of the building. 

The aluminum plate capping systern used in this investigation was 

similar to that used in the second phase of the project. As seen in 

Plate 2, it consisted of two parts. The narrow plate provided the line 

of loading and the wider plate maintained the shape of cross-section at 

the top of the building. Both parts of the system v:ere comprised of 

two-inch aluminum angles bolted through slotted holes to a 1/411 thick 

aluminum plate. 

In attaching the capping system to the top of the building, the 

angles were first loosely attached to the plates. This permitted 

adjust'Tlents to be made \'Jhile aligning the angles \·lith the walls of the 

building. After the two plates had been positioned on the top of the 

building, the angles \•Jere bonded to the walls using 11 Colma Our Gel 11
• 

(section 2.2) The nuts and bolts holding the angles to the plates were 

then tightened dovm and the bonding agent \·las allo1•1ed to cure. 

The application of the transverse static loading along the top edge of 

the back wall was facilitated by using a manua1
7

screw-type jack. A gear 



system \'/as installed Hhich permitted th2 load to be applied in very 

sma 11 increments. The 1 oad \·Jas t ransrni tted to the capping system on 

the building through a calibrated load cell (1,2) and connecting 

devices. Plate 3 shous the loading system and the aluminum plate 

capping systerr1 in position for the testing of a building. 

18 
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3. 2 FIXING THE 8.1\SE OF HIE BUILDING 

Difficulty \·Jas encountered by Afsar (1) in his investigation, 'r'Jhen 

several of the buildings cracked before testing. The problem of the 

cracked buildings was partially attributed to the method of fixing the 

base of the building. The technique used to fix the base of the 
' 

building in the first phase of the project was to encase the bottom 

six inches of the building in a concrete pad. The concrete pad, poured 

in place around the base of the building, v1as anchored to the aluminum 

base plate. The plate was bolted to the floor. 

To avoid the prob 1 e111s associ a ted v:ith the concrete base pad, a 

method of achieving a fixed base using slotted, two inch steel angles 

was developed. The building was not fixed to the base until after the 

building had been fully instrumented \·Jith dial and strain gauges. 

Shortly before testing was to begin, the angles were loosely 

bolted to the base plate and adjusted so that close alignment was made 

bet\'.Jeen the angles and the \'lalls of the building. The angles \•!ere bonded 

to the building and bolted to the base plate in a procedure similar to 

that described in Section 3.1. 



3. 3 IllSTRU~1ENTATIOtJ 

The positions and numbering sequence of the dial gauges used to 

measure the experimental deflections of the building are shown in 

20 

Figures 3 and 4-. These instruments vrere mounted on a steel tube frame\l;ork. 

In the testing of Buildin:J I, thirty-nine dial gauges ~tlere used. 

' Forty-eight gauges \·tere used in the testing of the second building. In 

tests on the second buil~ing, three gauges were introduced at the tip 

of each flange at 1 eve 1 s z = 2.S"; z = 52 11 and z = 88" •. The purpose of 

these gauges was to measure deflections perpendicular to the line of 

loading. 

Figure 5 shov1s the locations and nUinbering sequence of t:le str-uin 

gauges used to measure the longitudinal strains ~eveloped in the 

buildings. In addition to the strain gauges shown, there was a total 

of six gauges mounted on varicus floor slabs. At the floor levels chosen, 

one gauge \las mounted parallel to the line of the loading at the middle 

of the floor slab. Slabs at the first, fourth and seventh floor levels 

were instrunente~ with a strain gauge. A total of 36 strain gauges 

was used in both Building I and II. 

It Has recommended !::y Qureshi (2) that the installation of the 

strain gauges at the level z = 83'1 was unnecessary due to the extremely 

small values of the strain readings. Since this investigation, and that 

rerorted by Qureshi (2) Here conducted concurrently, this modification 

to the instrunentation of the buildings could not be implemented. The 

recommendation was found to be valid. 

Building II, shm,m in Plate t,., is fully instrumented and ready for 

testing. 
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CHAPTER 4 

. Af!AL YSIS 

4.1 VLASOV 1 S THEORY 

The theory used in the analysis aspect of ti:is invc:sti~Jation is 

taken fror:1 2 book by Vlasov entitled, 11Thin-t:allcd Elastic Beams"(3). 

' It is assu';1cd t!1at the ti1eory c~ocu:nented in papers hy f,fsar (1) and 

Qureshi (2) is sufficient to describe the basic ideas anC: ter;ninology 

of Vlasov•s theory. Therefore, the description of theory in this 

study \·:ill concentrate on the a~plication of ti1at basic theory to the 

small-scale shear ~all buildin~ with floor slabs. 

Long prismatic shells, characterized by the fact that their three 

dimensions are all of different orders of ma9nitude,are called 

thin-\Jalled beams. 

The salient feature of thin-\·,alled beams, according to Vlasov, 

is that they can uncergo longitudinal extensions as a result of torsion. 

Consequently, longitudinal nomal stresses, propm·tional to these 

strains are created. The longitudinal nornal stresses arisin~ as the 

result of the re 1 ati ve vmrpi n:-1 of the section are not exa:·1i ned in the 

theory of ?ure torsion. They can attain vel'Y large values in thin-':Jalled 

beams with open (rigid or flexible) cross-sections and also in be~ns 

vJith closed flexible cross-sections. 

Vlasov• s theory is based on bto geo:'ietrical hypotheses: 

(a) a thin-\Iulled b~anrof open section can be considered as a 

shell of rigid (undeformal,l2) cross-section. 

(b) the shearing defon~ations of the middle surface (characterizing 
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the changes in the angle bet\'Jeen the co-ordinate lines) can 

be assumed to vanish. 

Based on the first hypothesis, the deformation of a section of a 

thin-v1alled beam v!ill consist of a rigid body rotation about the shea.r 

centre of the section and translations with resrect to the shear centre. 

The defo~nation of a' section is illustrated in Appendix 1. 

If· v and,,., represent tl1e displacer1ents in the OX and OY directions 

respectively of a point lyi n~ on an arhitrary cross-section of the bear01, 

the following relations are obtained: 

v ( z ,.y) = d z) (y ay) e ( z) (4.1.1) 

V!(z,x) = n(z) (x a ) e (z) (4.1.2) 
X 

In these expressions, x, y and z are co-ordinates of a point on the 

X, Y and Z axes. Z is the longitudinal axis of the beam. The X and Y 

axes are the principal axes, forming with Z a left-handed ortho']onal 

co-ordinate syster.1 Hith its origin at the centroid of the section, 

point 0. 

~ and n are the displacements of the shear centre in the direction 

of the co-ordinate axes OX and OY resnectively. e is the angle 

through which the section rotates as a rigid body about the shear 

centre. 

Fro11 the second assu:1ption concerning the absence of shearing 

strain in the i:liddle surface, th2 longitudinal displace·-:~ent at a section 

z = constant can be written as: 

U ( Z , S) = d Z) - ~ 1 
( 2) X ( S) - l) 

1 
( Z) Y ( S) - 8 1 

( Z) w( S) (t:.1.3) 
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In this expression, s(x,y) is thP. co-ordinate along .the contour llne S 

of the section with respect to a conveniently chosen origin on the 

contour. 

The longitudinal displacements given by the sum of the first three 

terms of equation (4. 1.3) are the results of combined extension and 

bending in the OXZ and OYZ planes. dz) is the axial deformation. The 

bending defomatioti is represented by the functions dz) and n(z) v1hich 

describe the flexure of an arbitrary axis of the bear;, in the longitudinal 

planes OXZ and OYZ. The fourth term represents that part of the total 

displacei;,c:nt \·J;1ich arises as the result of torsion. Vlasov defines this 

as the sectorial \'larping of the section and it ·is described by the 

generalized co-ordinate w(s), called the sectorial area. The sectorial 

area concert is described in Appendix A. 

Knm!inj the lonjituclinal dis;Jlacer;:er.ts u(z,s) of the; points of 

the middle surface, the longitudinal strain e: can be determined by 

taking the derivative of u(z,s) v:it'1 respoct to z. 

£ = ~ = l; 1 
( Z) - t; 11 

( Z) X ( S) - T)
11 

( Z) Y ( S) - 6 !I ( Z) W ( S) az (4.1.4) 

Equation (4.1.4) sho~s that the relative longitudinal extensions 

e:(z,s), at the section z =constant, are made up of extensions linear 

in the co-or~inates x(s) and y(s) of the point on the section, and 

extensions ~rorortional to the sectorial area which arise as the 

result of the ~arping of th2 section. 

The (!isplace-,1ents arJd longitudinal strains at any point of the 

niddlc surfac2 of a t~1in-,::al12d bc:a~1 can be: deter:1ir.ed usH:J equations 

(~.1.1), (4.1.2) anc: (/l.l.t~) if the functi0ns dz), dz), n(z) and 
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e(z) are knov:n. 

These functions are deten;1ined using the linearly uncou:;led 

differeqtial equations deriveC: fror.1 equilibriu;n conditions and given by 

VlD.sov (8). 3.J introducing the conditions of an eccentric, transverse 

load at the top edJP. of the huilding, these equations can be sir:1plified 

to the follmling: 

EAz; 11 = 0 

Eiyt.: lV = 0 

Eixn lV = o 

EiwelV- Gid 8
11 = 0 

In these expressions, .~~ is the cl·oss-sectional area. 

(4.1.5) 

are the moments of inertia \':ith r2s~ect to t;:e Y and X ax2s rc::srectiv2ly. 

r 

Iw = I w2dA (4.1.6) 
• .,. A 

sec ton a 1 nor:1ent of inertia and is deten~li ned by the shape of is the 

the cross-section. 

\·/hen:: a = 1 (4.1.7) 

is called the torsional rigidity of the section. E at~d G are the 

modulii of elasticity and shear nspcctivcly. 

With a line of action along the bac~ wall of the building in the 

negative Y direction, the loading creates an eccentr-icity e \'lith respect 

to the shear centre. The effect of this load with respect to the line 

of shear centres is bendi~g due to the flexural load P and torsion due 

to a counter-clockwise torsional nonert
1 

>1 = Pe (4.1.8) 



It is ass~JeJ that the compressive stresses due to self-weight 

are SL1a 11 enough to be negl c:cted. 

25 
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4. 2 SOLUTIO:! OF DIFFERE!:TI/\L EQUPJIONS 

In the loading system used in the experimental investigation, 

there were no externally applied loads in the OZ and OX directions. 

Consequently, the functions r; and~ are both eqtJal to zero. It is then 
' necessJry to solve the follm~:ins differential equations: 

Eixn~v = o (4.2.1) 

E I e 1 v - G I e II = o 
w d (4.2.2) 

Afsar (1) gave a detailed solution to equation (4.2.1) which is 

used in this investigation as an approximation to the bending component 

of the total defornation. The solution to equation (4.2. 1) is given 

by: 
D 

n(z) = -+-- {3£z 2 - z3} r. .. I ,_ .... X 
(4.2.3) 

Consequently, differentiatin0 twice, 

II ( ) p n z = -c-- U - z} 
Lix 

(4.2.4) 

Equation (4.2.2.) can be rewritten in the fo~1 

lV k2 e 6
11 = o (4.2.5) 

Q,2 

{JGI;"} \vhere k = J rr: ~ 

and £ is the span length of the bearn along the generator 

!ila!:ing k a dir.1ensionless quantity. 

The genel~al solution to equation (4.2.5) as derived in detail by 



Afsar (1) is given by 

e(z) = c1 + c2z + c3 sinh : z + c4 cosh~ z 

The general integrals for the warping, 

e ' = .2_Q_ 
dz 

and the generalized internal force factors B and H can also be 

determined. 
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(4.2.6) 

(4.2.7) 

The bimo~ent C, is one of four generalized, longitudirial forces 

describin'] the longitudinal displacer.1ent of a section. They are 

obtained by integrating over the area of the section, each of the 

products formed by multi~lyins the ele:nentary longituclinv.l force cidl'\ 

with the functions 1, x, y and w. 

The first three quantities detenTiine the longitudinal force and the 

bending mwent about the X and Y axes respectively. The fourth tenn 

B, the bimom,::nt, corresponds to V1e sectorial warping of the section. 

It has units of pound-inch2. 

The bimo'Tlent is a generalized balanced force syste;n statically 

equivalent to zero. It is deten~ined, as descrited earlier, by 

B "J crwdA {4.2.8) 
A 

\·:hel~e cr, from Hookes lm·;, is given by 

cr = E{z;;' - ~"x - n"Y - e"w} (4.2.9) 

Since 1, x, y and w arc the principal, oeneralized co-ordirates which 

satisfy t 1H? conditions of ortiwgonality, 

C = -EI 0 11 

w 
(~-.2.10) 
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Similarly, threR generalized transverse forces, describing the 

tr~nsverse displacelcnts of the section z = constant, can be 

determined. The first two are transverse forces while the third is 

H , a fle~ural-torsional monent about the principal pole. It is found w 

by using the shear force T 8 Nhi ch acts a 1 ong the tangent to the 

contour of the section. 

Further, due to the nonunifonn distributions of the tangential 

stresses ever the thickness of the wall, a torsional moment Hk must be 

taken into account. Therefore, by vectm· a deli ti on, fl, the genera 1 i zed 

external force factor in the transverse direction, is given hy 

H = -EI· e 111 + sr e 1 

w ~ d 

Nm·t, fror.1 equations (C:.2.f), (4.2.10) and (-~.2.11), t!1e total 

general solution to the hoi.loc;cneo 1JS differential equation of' tors·ion 

can be Hritten 

e
2 

= c1 + c22 + c3 sinh (f z) + c4 cosh ~f z) 

~ I. ~ ~ 

e'
2 

= c2 + c3 ; cosh (~ z) + c4 ~ sinh (f z) 
(4.2.12) 

8
2 

= -Gid{C3 sinh (* z) + c4 cosh (f z)} 

I .t.• • 1 • • (k ) ..J I (k ) .f.. • 1 n ~..nese equat1ons, , z, s1n:1 i z anu cosn i z are rar~o1cu ar, 

linearly in~ependent solutions of equation (4.2.5). cl' c2' c3 and c4 

are arbitl~ary constants. 

This systs1 of equations (A.2.12) applies in general to a thin-

vmlled beun subjected to a transverse load v:hicl: dor:s not pass through tf-:e 

shear centre. 
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~.3 t1ETflOD OF I:HTii\L PI\RA:iETERS 

The constants of integration of t:'1e system of equations ('~.2.12) 

are determined by using tr1e iiWthod of initial para1;1eters as described 

by Vlasov (3). 

In t~is method, the origin of the co-ordinate Z is placed at 

some arLitrary section of the bear:1. The geometrical and statical 

factors involved irr the description of the torsion of t~e bea~ by the 

law of sectorial areas have prescribed values for this section. 

External forces arc:; not considered in the determination o-F these factors. 

That is, the beam is subjected to the action of t!1e initial parameters 

only. 

Setting 7 = L. 

and 

8 for this section and denoting the para1eters as 0
20

, 

!l /Gid' tile follmvinJ expressions are obtcdned 
zo 

the set of equations (!',2.12): 

ez = cl + c4 
·o 

e•zo = c2 + ~ c3 

Solving for the constants of integration, 

c - e + 1 - zo 

~? = 
t-

l 
GI r 

G 

1 
GI 

d 

C._= (~) e•z 
.) h 0 

1 
t-r . a 

!-l 
''z 

0 

(4.3.1) 

(~.3.2) 



Substituting for c1, c2, c3 and c4 in the system of equations 

(4.2.12), the g2neral equations for t~e method of initial parameters 

become: 

8 = z 

e • 
z = 

9.. k 1 1/ 
8 . + -k e' '{sinh C' z)} - r,--1 B {cosh(~ z)- 1} z0 , z

0 
:<. .1 d z

0 
9.. 

(k z) 
,, 1 (f z)} e, cosh " B {sinh --

Gid zo ·£ 9.. zo 

1 11 { 1 cosh (~ z)} +G! -
d zo 

+ B
2 

cosh (~ z) + ~ H
2 

{sinh (t z)} 
0 0 

30 

The set of equations (t.3.3) defines a set of linear transformations 

(4.3.3) 

of the known flexural-torsional factors of the initial section; e
2 

, e'
2 

, 
0 0 

8 /GI. and H /GI, at z =(),designated by z, into the flexural-torsiona.l z
0 

a z
0 

a . o 

factors o , e• , D /Gid and H /GI, at the section z = z, where z is the z z z z Q 

lon~itudinal co-ordinate of the ssction. The coefficients of this set 
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of equations are given in tabular form in Table 3. 

The initial paraneters e , e' , B /Gid and Hz /Gid are determined 
2o zo zo 0 

in general by imposing the particular boundary conditions of the beam 

being investigated to either the set of equations (4.3.3) or the 

tabular re~resentation of these equations, Table 3. 

The method of initial para~eters is now extended to cover the 

.integration of the homogeneous equation resulting from various concentrated 

force factors arbitrarily placed along the beam. 

Consider a beam \'Jith initial parar.1eters e , a' , B /Gid and 
zo zo zo 

H /Gid at z = z , and concentrated factors e
2 

, e' , 8 /Gid and H /Gid 
zo o t zt zt zt 

acting on the beam at z = zt. For a section z1 ~ zt, the total factors 

ezr' e•zr' GzT/Gid and Hz
1

/Gld at that level are determined by the 

superposition of two contributions. 

The first contribution; e , e' ., B /Gld a'nd H /Gld' is determined 
zl zl zl zl 

by using the initial parameters e , e' , B /Gid and H /Gid and the 
zo zo zo zo 

transformation coefficients of Tab 1 e 3 with the arguement z1• 

The second contribution is conprised of the factors ez -t' e'z -t' 
1 - 1 

Bz -t/Gld anc Hz -t/Gld' which are the result of the action of the 
1 1 

concentrated factors e , e' , B /Gld and Hz /Gld' In this second 
zt zt zt t 

case, the contri but i n9 factors are com~uted by using the concentrated 

factors: e , e'
2 

, B /Gld and H /Gid and the transformation 
zt t 2 t 2 t 

coefficients of Table 3 ~tlith the arguenent (z1 - t). 



eo 

ez 1 

e' 0 z 

Bz/Gid 0 

Hz'Gid 0 

* by V1asov's Theo~y 

TABLE 3 

BASIC TRANSFORMATION COEFFICIENTS* 

e' 
0 B0/Gid H0/Gid 

f sinh (~ z) 1 - cosh (~ z) z - ~ sinh (~ z) 

cosh (~ z) - l sinh (!. z) 
R. R. 1 - cosh (~ z) 

- ~ sinh (~ z) cosh (~ z) !. sinh (!. z) k R. 

0 0 1 

- - - -------- ---
I 

w 
N 



Fer that part of the bear:1 where z < zt; say z2 where z2 < zt, the 

factors e , e• , B /Gld and H /Gid are found by using the initial z z z . z . 

parameters e , e• , 8 /Gld and H /Gid and the coefficients of 
zo zo zo zo 

Table 3 with the arguement z2. 

' This superposition of the effects of the t6ncentrated factors 

at the section z = zt on the level z = z1 is shov:n by expanding 

Table 3 to fonn Table 4. 

Using th~ la\"/ of superposition \Jhich follO\·Is from the linearity of 

the transfor::1ation illustrated by the coefficients of Table 3, the 

form of Tab 1 e 4 can be gen~l~a 1 i ze•J to more comp 1 i cated cases of 1 cadi ng 

applied at various sections of the bea~. Th2se applied loads can be in 

the form of concentrate;:! 1 oads at a point of the section or 1 oads 

continuously clistribute·j over part of t:1e length of t:12 bea;~l. 
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TABLE 4 

GENERALIZED TRANSFORMATION COEFFICIENTS * 

ez e• Bz /Gid Hz /Gid ez e • B1 /Gid Hz /Gid 
0 zo 0 0 t Zt t t 

ZT 1 ~ sinh(~ z1) 1 - cosh(~ z1) z - ~ sinh (~ z1) 1 ~ sinh {~(z 1 - t)} k 1 - cosh{ r(z1 - t)} z - ~ sinh{ ~z1 - t~ 

I 

ZT 
0 

. k 
cosh (I z1) -*sinh(~ z1) 1 - cosh(~ z1) 0 cosh{~(z 1 - t)} - ~ sinh{~z 1 - t)} k 1 - cosh{I(z1 - t)} 

ZT 0 R. . k ' - k sinh(I z1, k cosh(I z1) ~sinh(~ z1) 0 - ~ sinh{~(z 1 - t)} cosh{~z 1 - t)} ~ sinh{~(z1 - t)} 
r d 

~ 

ZT 0 0 0 1 0 0 0 1 
r d 

~ 

* by Vlasov•s theory 

. 

w 
..j:::o 



35 

4.4 MATHEt~ATICAL REPRESENTATION OF THE EFFECT OF THE FLOOR SLABS ON THE 

BUILDING 

Vlasov (8) found that the effect of a transverse plat~ situated 

at a section z = zk of a thin-\'/alled beam on the behaviour of that beam 

was a concentrated, longitudinal bimoment. 
' This bimoment, given by_ 

B - Eh3n e• 
- 1 2 ( 1 +-;r z k (4.4.1) 

represents the effect of a floor slab on the behaviour of the small-scale 

shear wall building. In this expression, E is the modulus of elasticity 

of the floor slab material and ~ is Poisson•s ratio. The geometrical 

properties of the floor slabs are given by h , the thickness, and n, 

which is twice the area of the plate. 

the level of the floor slabs. 

e• is the warping of the beam at 
zk 

Based on the system of analysis established in this study, the 

superposition of the effect of a floor slab on the building can be 

given in the tabu1ar form of Table 5. In these expressions, zk is the 

level of the floor slab in the building and Bz is the bimoment at that 
k 

section, representing the effect of a floor slab on the building. 

Using Table 5 and knowing the initial parameters ez , e~ , Bz /Gid 
0 0 0 

and H /Gid at 
zo 

functions ez , 
1 

z = z and the orooerties of the floor slabs; the 0 . 

be e• , B /Gid and H /Gid at a section z = z1 can 
zl zl zl 

determined. A typical floor slab is situated at z = zk' \'/here 

z
0 

< zk < z1• The equations relating the initial section z = z
0 

and the 

final section z = z1, including the effect of the floor at z = zk are 



TABLE 5 
TRANSFORMATION COEFFICIENTS INCLUDING EFFECT OF FLOOR SLAB * 

ez e• Bz /Gid Hz /Gid 
0 zo 0 0 

ez 1 !.sinh (~z) k R. 1 - cosh (~ z) z - ~ sinh (~ z) 

e • z 0 cosh (~ z) - ~sinh (~ z) 
R. R. 1 - cosh (~ z) 

_ Bz/Gid 0 - ~ sinh (~ z) cosh {~ z) !. sinh cl z) k R. 

Hz/Gid 0 0 0 1 

-- ------ --- ·- ------- ------ ------- - -------- - -------

* by Vlasov's Theory 

Bz /Gid 
k 

k 1 - cosh {I (z - zk)l 

-~sinh {~ {z - zk)l 
R. R. 

cosh {~ (z - zk)l 

0 

~-----

i 

w 
0) 



the· fo 11 owing: 

e = e + ~ e• sinh (~ z1) z1 z
0 

k z
0 

~ 

e 1 = e 1 cosh ( ~ z 1 ) zl zo ~ 

H = H = Pe z z 1 0 

B'z 
Note that Gik = 

d 

k 1 B sinh (~z 1 ) 
1 Gid z

0 
~ 

Eh 3 
and that k has been substituted for ~l + ~) 
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(4.4.2) 
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4.5 ANALYSIS OF THE BUILDING WITH FLOOR SLABS 

The boundary conditions of the vertical cantilever building 

with floor slabs are the follo1tling: 

at z = 0, a = 0 

e' = o (4.5.1) 
at z = t B = 0 

H = Pe 

Using Table ~· and the 'stated boundary conditions, the initial 

parameters can be determined. At z = 0, a(O) = 0 and e'(O) = 0. 

Therefore, from Table 5 

It can 

e + o + o + o + o = o 
zo 

o + e' + o + 0 + o = o 
zo \ 

be seen that a
2 

= a' = 0. 
0 

2o 

(4.5.2) 

(4.5.3) 

When applying the boundary condition that B(~) = 0, it is 

necessary to take into account the effect of the concrete floor 

slabs on the building. That isi it is not possible to relate 

the initial parameters a , a' , B /Gid and H /Gid at z 
zo zo zo zo 

to the functions at z = z~, where B(~) = 0, without taking 

= z 
0 

into 

account the fact that each floor of the building has an effect 

on the relationship. 

To illustrate this point, consider a building with a single 

floor slab which is located at the top of the building. Referring 

to Table 5, the equations relating the in·itial par·ameters at 

z = z0 to those at z = z1 can be written. 



Therefore, 

B {cosh (k)} + {t sinh (k)} Pe + Bz {cosh (k)l = 0 
zo 1 

Solving for B 
zo 

since Bz 
1 

B = -({!.sinh {k)} Pe + B ·{cosh z
0 

k z
1 

and substituting for Bz in equation {4.5.5) 
. 1 
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(4.5.4) 

{4.5.5) 

_ ( t . ( ) • E h 3n .\ ~ ( ) B
20

- - {k s1nh k J Pe + e 
21 12(1 + ") {cosh (k)JJf{cosh k J 

For this simplified case, Bz can be found by solving the three 
0 

simultaneous equations represented by Table 5, for the three unknowns 

This simple solution is not possible in the building with seven 

floor slabs since the effect of each floor slab must be considered 

in sequence going from the bottom of the building to the top. The 

condition that B = 0 at z = z
1 

cannot be applied until the last floor 

at z = z
1 

is encountered in the progr·ession from bottom to top. 

It is, therefore, necessary to determine B subject to the 
zo 

influence of each of the seven concrete floor slabs and the aluminum 

capping plate. The procedure used in determing B will now be 
zo 

outlined. 
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Using Table 5, the relationship beb1een the initial parameters 

at z = z and the functions a , a • , and B /Gid at the level of 
0 zl zl zl 

the first floor z = z1 can be established. H is a constant value 

throughout the total height of the building and is equal to Pe, where 

P is the applied load and e is the eccentricity of the applied load with 

respect to the shear centre of the section. Then, us'ing the functions 

ez , a•z and Bz /Gid as the initial parameters for the second storey, 
1 1 1 

the functions az , a• and B /Gld, at the second floor level z = z2, 
2 z2 z2 

can be established as functions of a , a• and B /Gid. 
zl zl zl 

This step-by-step procedure is continued from floor level to 

floor level until the last floor level, the aluminum capping system 

at z = z8 , is encountered. At this level, the functions a , e• and 
Zg Zg 

B /Gld will be written as functions of az , e•z and B /Gld. 
z8 7 7 z7 

In general, for the building being considered, there are three 

unknown functions; a, a• and B/Gid' at each floor level, including the 

base and the aluminum plates at the top. Also, there are three 

equations which relate any two successive floor levels of the building. 

This results in a system of twenty-four equations in t\·:enty-seven 

unknol'ms. 

Introducing the boundary conditions az = 0, a•z = 0 and B /Gid = 0, 
0 · 0 Zg 

the system of equations reduces to twenty-four equations in t\'lenty-four 

unknowns. Therefore, the value of the initial parameter, B at z = z
0

, 
zo 



41 

can be determined for each increment of the applied transverse load. 

The four initial parameters at z = z
0 

are now established. 

Incorporating the expressions of Table 5, it is now possible to determine 

implicit values for the functions e, e' and B/Gid at any level of the 

building. 

In·the present analysis, the step-by-step procedw~e described 

previously is used to determine the functions at the half-way point 

between successive floors. The co-ordinates of the points being 

examined are introduced and using equations (4.1.4), (4.1. 1) and (4. 1.2), 

the theoretical strains and displacements can be detennined. 
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CHAPTER 5 

EXPERHlENTAL OGSERVATIOilS Arm COi1P~~RIS0iiS \HTH THEORETICAL ANll.LYSIS 

5.1 CRACf(P~G PATTERNS 

The two small-scale shear wall buildings studied in this 

investigation both failed suddenly, without any visible signs of the 
' 

impending failure. 

Building I failed in tension at a load of 660 pounds in corner c 

of the building. (Figure 2!:-) The cracking patterns for Building I 

are shmm in Plates 5, G and 7. The first t\'m of the photographs shov1 

the pattern in flange 3. (Figure 24) As can be seen, the failure surface 

penetrated the wall. Plate 7 shows the extension of the failure surface 

alon9 the back wall of the building. The crack appeared along the bottom 

of the building, adjacent to the 2" angle. In this photograph the 

arrow indicates t~e end of the visible crack. 

Building II failed at 720 pounds. Plate 8 shows the cracking 

pattern on the inside of corner c·. The pattern is visible along the 

inside of flange 3 and partway along the back wall. Plate 9 shows 

the cracking pattern along the bac~ wall in corner c . The cracking 

pattern along flange 3 is seen in Plate 10. 

Since both buildings failed suddenly, the progression of the 

failure surface was not observed. 
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5.2 LOJ\0-STR.AIN REU\TIO!lSHIPS 

Figure 6 shO\'IS the relationship bebJP.en the applied load and the 

resulting longiturlinal strain for a typical strain gauge location. The 

theoretical curve, found using Vlasov's theory, is also shovm. 

Typical strain distributions for applied lauds of 250 and 500 

pounds are given in 'Figures 5, 6, 7 and 8. The distributions are given 

at levels z = 411 and z = 52 11 of Guildings I and II. The expel'imental 

values ~easured during the tests are supcri~posed on those distributions 

predicted by Vlasov's theory. 

Reasonab 1 e ugreement can be seen bet,deen the experir·1enta 1 strain 

distributions for similar loads on Buildings I and II. The ex~erinertal 

strain distributions are displace~ towards the tension (+) side of the 

theoretical distributions. 1:0\·'evc:r, the shifts observed are not 

uniform in magnitude over the sections shm-m. 

Co;:1parinJ the observed distributions at z = 4" shov:n in FiCJures 7 

and 3, there is no obvious relationship beb1een the tension shifts v:hen 

the applied load is doubled. Similarly, Figures 9 and 10 illustrate 

the same fact for the level z = 52 11
• There is a qualitative a.greer.1ent 

in the apparent tension shifts of the strain distributions in th~ t~·Jo 

buildings tested. Fi~ures 11 (a) and 11 (b) sum~nu.rize the apparent 

tension shifts observed in the figures presented. In these figures, 

the datun used in each case was the theoretical strain distribution. 

The tension shift vtas chosen as the pas iti ve quar.tity. 

In sur;Y:lary, the comparison of experi'nental ar~d theorc:tical strain 

distributions sho\·f little agree:1e.nt. H:erc is, hm·Ievcr, qualitative 
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agreenent between the strain distributions measured experimentally in the 

tvw buildings. 
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5. 3 LOi'\D-DEFLECTI•)fl RELI\TIO:·JSI!IPS 

Typical exrerimental deflection patterns along the height of 

Buildings I and II are shown in Figures 12 and 13. These figures 

illustrate the relationship betv1een height and deflection ·as a function 

of the applied load. 

Figures 14 and 15 compare the measured experi~ental deflections 
' 

with those deflections predicted by Vlasov' s theory. Co;nparisons a1·e 

made at 250 and 500 pounds. 

The deflection behaviour of the interior points on each of the 

three flanges of both buildings is shown in Figures 16 and 17. The 

theoretical deflection patterns for loads of 250 and 500 pounds, as 

seen in Figures 1 G and 17, shmv that each flange should behave exactly 

the sane. It can be seen that the flanges do have a very shlilar 

deflection pattern. 

This same com~arison for the exterior points on the flanges is 

shown in Figure 18. 

Figure 19 compares the deflections in the direction perpendicular 

to the line of loading in corners a and c of each building. At a 

load of 250 pounds, it can be seen that corner a deflects more than 

corner c . Figures 20 and 21, shmririg the rotated positions of the 

buildings, verify this observation. Vlasov's theory predicts that 

these deflections in the X-direction should be equal in magnitude and 

opposite in direction. 

In Figures 22 and 23 the t~eoretical deflections due to bending 

and torsion are shown. It can be seen that the torsion co~oonent is 

considerably larger than the bending component. Shear deflection is 
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· insignificant. 

These height-deflection curves point out that there is little 

relationship bet~een the deflections measured experimentally and those 

deflections predicted using Vlasov•s theory. In each case, the 

experimental deflections far exceed the predicted deflections. 
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5. 4 GENERA.L GEHiWIOUR ()F TI-lE BUILDHJGS 

The height-deflection curves of the small-scale shear wall building 

with floor slabs are generally linear in form. The extended curves pass 

through the origin. This deflection pattern is totally unlike the 

cantilever-type deflection pattern predicted using Vlasov's theory. 

The theoretical curves beco,ne tangent to the height axis and have zero 

slope at the origin·. ~!hen the linear, experimental curves are extended 

tm'lards the ori~in, they intersect the axis at finite angles. 

It is generally observed that for a given load, Building I 

deflected more than Cuilding II. Referring to Section 2.2, the modulus 

of elasticity of Buildin~ I 1·1as less than that of Cuilding II. 

On the basis of Figures lG, 17 and 18, it can be observed that the 

three flanges of each building deflected in the same manner and to the 

sar.1e degree. The monolithic assembly of shear \-:alls v!ith rigidly 

installed floor slabs hehaves as a unit, with all flanges deflecting 

uni fon:1ly. 

Figures 20 and 21, showing the rotated positions of the buildings, 

verify that the tv1o b~ildings behaved in a similar manne\~ '!lilen loaded 

identically. Further, considering the fact that the material of 

Building I had a loHGr modulus of elasticity than that of Building II, 

it can be said that the two buildings responded exactly the same to 

the external loading. 

As i 11 us trated by the 1 ack of agreement betvJeen the exreri:nenta 1 

and theoretical curves, the experimental buildinas nnd theoretical 

::wdel did no·t r-~:spcnc' si•~ilarly to the aflplied loadinj. 
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5.5 DISCUSSION_OF RESULTS 

FroPl the previous discussions regarding the comparisons bet· .. :een 

the tileon~tical and experh1ental curves, it is obvious thatthere is 

An apparent tension shift is seen in all experimental strain 
\ 

distributions. Vlas'ov's theory predicts t11at there is zero st1·ain in 

the rni ddl e flange. · ~!ov;ever, the recorded experi:Jenta 1 strain 

distributions shovm in Figures 7, 8, 9 and 10 clearly shm·J that a strain 

distribution does exist in this flange. Further, it follov;s the same 

trend as in the outer flanges, naf'lely a tension shift. The tension 

shift is in each flange of the building at both load levels. 

An atter.1pt v-:as made to account for this tension shift on the 

basis of a vertical component of the applied load. However, the 

verti ca 1 pull necessary to produce o. uniform tension shift of the 

magnitude indicated was much in excess of the total applied load. 

The appearance of such a strain distribution in the middle flange 

could be accounted for by a shift of the shear center from the axis of 

symmetry. Qureshi (2) suggested that a non-uniform \'!all thickness 

caused a shift in the shear center. This shift of the sheur center 

resulted in unequal deflections of the corners of the tuildings in the 

X-direction. (Figure 24) Unequal deflections of the corners in the 

direction perperidicular to the line of loading were observed in this 

invest-igation. (Figw·e 19) 

The theoretical and experimental deflection-height curves show 

little aqreerient. (Figures 14- 19) Shear deformation ~,;as consir~ered 

as a possible adcition to the theoretical rleflections caused by 
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bending and torsion. Assuming that the shear is carried primarily by 

the back \'Jall, the shear deformation was found to be negligible. 

Vlasov (3) defines a thin-vialled beam by the physical characteristic 

that their three dimensions are all of different orders of magnitude. 

Denoting the thickness of the wa 11 by o ; the width of a beam by 

d ; and the length of a beam by R. , Vlasov requires that: 

{1) Md < o. 1 

( 2) d/ R. < 0 • 1 

The purpose of these general requirements is to ensure that the beam 

being investigated is flexible in the longitudinal direction. When the 

beam is flexible in the longitudinal direction, there is very little 

deformation of the cross-section. If these requirements are met, the 

thin-\'Jalled elastic beam theory is applicable. 

The building studied in this investigation had the following 

ratios: 

(1) 6/d ; 0.01 

(2) d/t ;, 0. 4 

There are t\'/o factors \'!hich would influence the longitudinal 

flexibility of the building with floor slabs. First, the ratio, 

d/1, of the buildings is approximately equal to 0.4. This fact would 

indicate that the building did not have the required flexibility in 

the longitudinal direction. Secondly, the introduction of the rigidly 

connected floor slabs at one foot centres along the height of the 

building would tend to make the building stiffer than a building 

without the floor slabs. It is suggested that the combination of these 

two stiffening factors definitely affected the behaviour of the 
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buildinCJ by reducing the lonCJituclinal flexibility. The reduced, 

longitudinal flexibility could account for the lack of agreenent bet\'Jeen 

theoretic a 1 and experir1enta 1 curves. 

The usc of the concrete t;licro-mix material for the builrlinas tested 

introduces a number of uncertainties. 

The extensive ~ibrating and working of the material, ~~ich is 

necessary in the casting of the building, induces segregation of the 

aggregates in the concrete mortar. It has been observed that the 

flange tips of the building are void of the concrete paste while the 

outside surface of the back \·.Jall is generally flaked from the excess of 

the hat·c!ened pJste. Recalling that the \'Ialls are only 1/~" thick, it 

follows that a unifor111 modulus of elasticity does not exist in the 

building. 

8uilding I was cycled, loa~ed and unloaded, four times to a 

maxirlL!m of 250 pounds. Loadi r.g to failure \'Jas carried out in t:1e 

fifth cycle. 3uildir.g II \·:as cycled t\1ice to a maximum of 250 pounds 

before being failed in the third cycle. 

It is suggested that the co:nbination of cyclic loadin;< and the 

characteristic inelastic Lehavicur of the concrete material affected 

the values of the modulus of elasticity durino the testing of the 

buildings. The theoretical analysis of the building is not greatly 

sensitive to cr1an·;~es in the elastic modulus. HO\·Jever, the effect on 

the experimental results of sue~ changes is not known. 

The dmi nant feature to be cons i c:erec! in t:1e co;npari son of 

experimental and t~enretical results is that the buildings stu~ied 

do not co1:1pletely satisfy the longitudinal flexibility require•1;:2nts of 
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Vlasov's thin-v1alled elastic beam theory. The rigid floor slabs 

reduced the already insufficient longitudinal flexibility of the 

buildings. It is suggested that these factors are the major reason 

for lack of agreement behJeen the theoretical and experimenta 1 results. 

' The cross-sections of the buildings do retain their :E -shape as 

required by Vlasov's theory. 
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5. 6 CO>lP!\RISO:·l OF THE BEHAVIOUR OF DUILDHlGS HITH i'/.c\LL OPENPIGS AND 

GUILDHlGS HITH FLOOR SUI.BS 

In phase II of the shear wall project, Qureshi (2) tested t\·10 

buildings with two vertical rows of circular openings in the back wall. 

Building I failed at a load of 85~ pounds and Building II failed at 

9()0 pounds. Cuilding II had b1o openings at z = 6". 

In the investigation reported here, Buildings I and II failed at 
~ 

650 and 720 pounds, respectively. 

The tv1o types of buildinJS had similar failure patterns Hith the 

failure surface generally along the bas8 in corner c (Figure 24). 

The deflection-height patterns recorded by Qureshi (2) had the 

same 1 i near characteristics as those curves recorded in this investigation. 

For illustrative purposes, a quantitative comparison of deflections 

is made for a dial gauge located one inch from the tip of flange 3 at 

level z = 33". At a load of 250 pounds the first Building investigated 

by Qureshi recordec: a deflection 43;s greater than his second Building. 

The deflection of the second Building was approximately equal to the 

deflection of the first Building of this investigation and vas 31% 

greater than the second Duilding. 

At 500 pounds, Qureshi's first Building deflected 55% more than 

the second. !lis second Building recorded deflections \·:hich were 9% 

and 41% greater than deflection of Buildings I and II, respectively, 

of this investigation. 

The t1·1o types of buildings tested in phases II and III of the 

project ha~ qualitative agreement in the shapes of the strain distributions. 
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The first Cuilding investigated by Qureshi had strain distributions Hhich 

agreEd \'lith those distributions predicted by Vlasov's theory. Building 

II produced only qualitative agreement with the theoretical distribution. 

In this phase of the project, little agreement betl-reen theoretical 
• and experimental strain distributions was apparent. 

A general nu:1erical comparison het\·Jeen the strain distributions 

recorded in these two phases of the project is difficult because of 

experimental scatter and non-uniform strain patterns. f!m·revel~, an 

indication of the differences in strain distribution can be seen by 

conparing strains at a strain gauge located 2" fror.l corner c ., 

(Figure 2~-) 1 along flar.ge 3 at level z = llr''. 

The second of Gureshi's Buildings had a strain level 33% greater 

than his first Building. His second 3uilding also recorded strain 

levels 7% greater than the first Guilding tested in this investigation. 

Buildin~ II of this investigation recorded a strain level 50% 

greater than the second Building investi!]ated hy Qureshi. 
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CH.!\PTE R G 

COfiCLUSIO:!S .1\i!D r:ECOr1>1DlD.!\TIOt!S 

6.1 CO:·lCLUSI~Y!S 

It can be concluded, based on the experimental investigation 

reported here
1

that the cross-section of the building with floor slabs 

does not change shap2 eluting loaci:l~. ,~basic assm1ption of Vlasov's 

theory, which v•as used as the theoretical P.loc!el in this investi0ation, 

~~·as t'1ut the cross-section of the thin-~;alled elastic t:ear;J retain its 

shape during loading. Th2 experi8ental building and theoretical 

model b2haved similarly in this respect. 

The height-c'eflection cu!'ves, ·.1hich represent the resrcnse of th~ 

expe1·i:ner.tal building to the static loading, lttere line<1r in forr.1. If 

extended to~!mrds the origin, these curves intersected the crigin nt 

finite anglc::s. 

The shape of these curv2s \'IOul d indi cc::te that the cantil ever-type 

deflection patterns, predicted by the r:1athe:natical model, do not 

predict the tehaviour of the experimental tuildings. 

Qualitative aJrecm~nt was observed bet'.!een the strain distritJutions 

detennined experioentally for Cuildings I and II. There was, however, 

little agreement between the experimental strain distributions and 

those distributions oredicted by Vlasov's theory. 

It is concluded that the experimental buildings resronded similarly 

to the static loading. It is further concluded that the experi~ental 

and theoretical models did nat respond in a similar manner to the 

static loading. 
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6. 2 l\SSESS:·1DH OF COr;STRUCTIOi: /\flO TESTiilG TEC!it:IQUES 

The technique of casting and construction of the buildings with 

floor s 1 abs produces sound structures. llm·tever, s i nee h'ood for;m·;ork 

is used in the casting phase, there are certain unaviodable faults with 

the basic buil di n:J. The ~o.Ja 11 s of the building are not uniform in 

thickness and the flanges suffer a se~regation of the aggregates. The 

recomr1endations made by Qureshi (2) r2garding the overhauling of the 

for:~l\JOrk \vere not impler:1ented. It is suggested that they be adopted in 

an attenpt to minimize t~e faults in the buildings. 

Based on the findings of the present investigation, certain 

r.10difications in the instrunentation of the buildings can be su~gested. 

The top rm·1 of strain gauges at V1e level z = 38" should be abandoned. 

r·1ore strain gauges should be installed at the levels z =~~~and z =52" 

in order to obtain a more detailed record of strain distributions. 

Since the three walls of the building respond siillilarly to the 

static loading, it is not necessary to instru:nent all u~ree 1t1alls v:ith 

dial gauges. Two vertical lines of gauges on one wall will record the 

lateral rlisplacements of the building. A vertical row of gauges at 

each outside corner of the building would give the deflection patterns 

in a direction perpendicular to the line of loading. Several horizontal 

rows of dial·gauges would indicate the rotated position of the building. 

In order to rninimize the effects of the inelasticity of the 

concrete ~aterial on the experim2ntal infon~ation, it is recom~ended 

that only t\-;o cycles of load be arrlied. The first cylce, to a lm·1 

lev2l of loading, v.JOuld suffice to vedfy the instrumer:tation. Then, 
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the building would be loaded in increments to failure. 
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It is reconrnended t:1at the finite eler:~ent method be considered 

as a method of analyzin~ the com~lex, three-dimensional behaviour of 

the small-scale shear \'!all building \'lith floor slabs. Six defomations 

at each corner of each ele~ent can be accounted for in the stiffness 

matrix of the building. Part, or all of these deformations could be 

used to describe the co:~1plex behaviour of the s:-1al1-scale shear \'!all 

buildings with floor slabs. 

Some considerations are necessary in selectin2 the unit ele:nent, 

althoug~ the fonn of the tuilding would suggest the use of rectangular 

elements. 

A concurrent investigation is beir:g conducted in Hhich the finite 

eler:1ent a:Jpl~oach is being usee to predict the cyna::1ic resronse of a 

T section. The section being tested consists of h!o 1/2" thick 

plates cast monolithically using the micro-concrete material used in 

the smull-scale shear \·:all buildings. This ·T section is in effect 

a basic unit of the small-scale shear wall building. It can be seen 

that the results of this concurrent investiaation could be a~plied to 

the present proble~. 
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PLATE 1 INSTALLATION OF THE LAST LEVEL OF FLOOR SLABS IN 
BUILDING 1 
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PLATE 2 ALUMINUM CAPPING SYSTEM IN POSITION ON BUILDING 11 
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PLATE 3 LOADING APPARATUS IN POSITION FOR THE TESTING OF 
BUILDING 11 
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PLATE 4 FULLY INSTRUMENTED BUILDING 11 READY FOR TESTING 
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PLATE ¢ CRACKING PATTERN ALONG FLANGE 3 OF BUILDING 1 

00 
00 
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PLATE 8 CRACKING PATTERN ON THE INSIDE OF CORNER C OF BUILDING 11 

\0 
0 
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PLATE 9 CRACKING PATTERN ON THE OUTSIDE OF CORNER C OF BUILDING 11 
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PLATE 10 CRACKING PATTERN ALONG FLANGE 3 OF BUILDING 11 
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APPENDIX P. 

GE01':1ETRIC PROPERTIES OF THE BUILDING CROSS-SECTION 

A comprehensive summary of the geometric properties of the 

cross-section of the' basic small-scale shear wall building has been 

cqmpiled_by Afsar (1). In this Appendix, a description of the major 

geometric pl~opertics '\·rill be given. All expressions discussed in this 
/ 

Appendix are defined by Vlasov (8). 

(1) CO-ORDINATES OF THE SHEAR CENTRE 
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FIGURE 25 CO-OROiri/\TES OF Tf!E SHE/\R CE~HRE 
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(y) 

The shear centre, S, with co-ordinates aX' ay lies on the axis of 

symmetry, OX. Point 0 is the centroid of the cross-section and is the 

origin of the left-handed orthogonal co-ordinate system. The sectorial 



0/J _, t 

zero point at the intersection of the axis of symmetry and the profile 

line serves as the auxiliary pole, B. The co-ordinates of point B are 

bx and by· 

The diagrams of the sectorial area wb' with respect to the 

auxiliary pole, B, and the ordinates yare shown in Figure 25. 

If aX represents the di~tance of the shear centre from the point 

B, then 

ay = 0 
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(2) SECTORIAL AREA 
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y 

FIGURE 26 SECTORIAL AREA 

The sec tori a 1 area for any point t1 on the profile 1 i ne is twice 

the area of the sector enclosed bet~een the arc M1M of the profile line 

and the tv10 1 ines Ar1 1 and J\~1. These tvto 1 ines join the ends of the segment 

with point A. Point A is called the pole of the sectorial areas and point 

N1 is the sectorial origin. The line Ai1 connecting the pole A with the 

movable point M is the mobile radius vector. The sectorial area for the 

point r1 is positive if the mobile radius vector, AJ'·1, moves clockwise 

when sv1eepi ng out the sector; if observed from the negative Z di'rect ion. 



(3} PRINCIPAL SECTORIAL AREA (w) 

FIGURE 27 PRii!CIP!\L SECTORI .A.L JI.RE/\ 

The determination of the principal sectorial area for the 

cross-section considered is given in detail by Afsar (1). The shear 

centre, S, is the pole for the principal sectorial areas. Point B, at 

the point of intersection of the axis of symmetry, OX, and the profile 

line; serves as the origin of the areas. The diagram of the principal 

sectorial areas as seen in Figure 27, is ske\-J-symmetric with respect to 

the OX axis. The sectorial areas for the points on the web below the OX 

axis will be positive since these areas are swept out in the clockwise 

sense by the radius vectot. The absolute value of the sectorial areas 

for the flanges of the section decreases as the distance from the web 

increases. At a point on the flange, at a distance from the centre of 

the web equal to the distance of the shear centre from the centre of the 

96 
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web, the principal sectorial area vanishes. Beyond this point the principal 

sectorial area increases in the negative value for the bottom flange and 

increases in the positive value for the top flange. 



(4) DISPLACH1ENT OF THE CROSS-SECTION UNDER FLEXURAL-TORSIONAL LOADING 
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FIGURE 28 DISPLACEHEtH OF THE CROSS-SECTION UNDER FLEXURAL-TORSIOi'lAL 
LOADING 
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On the basis of Vlasov's first hypothesis, the deformation of a 

section of a thin-\·lalled beam in its own plane shall consist of a rigid 

body translation and rotation. 
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In Figure 28, point 0 is the centroid of the cross-section and point 

S, the shear centre, is a distance aX from the middle of the web on the 

OX axis. 

In this figure, t and n are the displacements of the shear centre, S, 

in the OX and OY directions respectively. The section rotates through 

an angle e as a rigid body about the shear centre. If v and w are 

respectively the displacements of a point on the cross-section in the 

OX and OY directions then, 

v(z ,y) = dz) (y ay) e ( z) 

w(z,x) = n(z) - (x - aX) e(z) 
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TABLE 6(a) 

DEFLECTIONS IN INCHES RECORDED DURING THE SECOND TEST CYCLE OF BUILDING I (LOADING) 

Di a1 LOADING (pounds) 
Gauge 25 60 I 100 .125 165 190 230 250 
Number 
1 .0004 .0012 .0020 .0026 .0034 .0041 .0053 .0059 
2 .0008 .0021 .0034 .0044 .0057 .0068 .0084 .0095 
3 .0015 .0035 .0060 .0075 .0095 .0115 .0145 . 0160 
4 .002 .006 .009 .011 .015 .017 • 021 .024 
5 • 001 .004 .007 .008 .011 .013 .016 . 018 
6 .003 • 007 .011 .014 .018 .022 .027 .030 
7 .003 .008 .013 .017 .023 .027 .033 .037 
8 .003 .009 ' .016 .020 .026 • 031 .038 .044 
9 .003 .008 .012 

' 
.015 .019 .023 .028 .032 

10 .004 • 011 .019 .023 .030 .036 .044 .050 
11 .0002 .0010 • 0017 .0023 .0030 .0036 .0047 ·.0054 
12 .0007 .0019 .0033 .0042 .0054 .0065 .0082 .0092 
13 • 001 .003 .006 .007 .009 .011 • 014 .016 
14 .002 .005 .008 .010 .014 .016 .020 .022 
15 • 002 .003 .006 .003 .010 .012 • 015 . 017 
16 .003 .007 . 011 .014 .018 • 021 .026 .030 
17 .003 .009 .014 .017 .023 .027 .033 .03.7 
18 .004 .010 . 016 .020 . 026 . 031 .039 .043 
19 .002 .007 .012 .015 • 020 .023 .028 .032 
20 .004 . 011 .018 .023 .030 .036 .045 .049 
21 .007 .020 .034 .044 .056 .067 .084 .096 
22 .0002 . 0011 .0019 .0026 .0035 . 0041 .0052 .0058 
23 • 0001 • 0021 .0047 .0066 .0089 .0107 .0134 .0153 
24 .0015 .0040 .0075 .0105 .0140 .0160 .0200 .0225 
25 .002 .007 . 011 .014 .018 .021 . 026 .030 
26 • 001 .004 .007 .009 .011 . 031 .016 .018 
27 .004 .009 .014 .018 .023 .028 .034 .038 
28 .003 .009 . 016 .020 .026 . 031 .039 .044 
29 .005 .012 .019 .024 . 031 .036 .045 • 051 
30 .003 • 007 .011 .014 .019 .023 .028 .032 
31 .0005 .0015 .0026 .0033 .0042 .0050 .0061 .0067 
32 .0001 .0004 .0008 .0010 .0013 .0014 .0016 .0018 
33(-) • 0001 .0003 .0006 .0008 .0010 .0012 .0015 .0018 
34 .003 .007 . 011 .014 .017 .020 .024 .027 
35 .001 .002 .003 .004 .005 .005 .006 .006 
36(-) • 001 • 001 .002 .005 .006 .007 .009 .010 
37 .006 .010 .016 .020 .026 .030 .036 .040 
38 • 001 .004 .007 .009 . 011 .012 .014 .015 
39(-) • 001 .004 .006 .007 • 0·1 0 . 012 .015 .018 



TABLE 6(b) 

DEFLECTIONS IN INCHES RECORDED DURING THE SECOND TEST CYCLE OF BUILDING I 

{UNLOADING) 

Dial UNLOADING 
Gauge 180 125 60 0 
Number 

1 I .0058 .0041 .0029 0 0012 
2 0 0083 o0060 o0038 o0012 
3 0 0140 • o0100 o0065 o0020 
4 I o021 o015 o009 o003 
5 0 015 oOlO o006 -.001 
6 I • 026 o018 o·Oll .003 
7 o032 .023 .014 o004 
8 

I 
.037 .026 o016 .004 

9 .027 .020 .012 .004 
10 I .043 0 031 o019 • 006 
11 I .0052 .0039 .0025 .0010 
12 I .0081 o0058 o0037 .0012 
13 .014 .010 o006 o002 
14 

I 
.019 .013 .008 .002 

15 .014 .011 .006 • 001 
16 ! • 025 .018 oOll .003 
17 .032 .023 .014 o004 
18 .037 • 027 .017 .005 
19 .028 • 021 • 013 o004 
20 .043 .030 0 019 o006 
21 o0083 o0059 o0037 0 0011 
22 o0055 o0040 o0025 o0010 
23 0 0130 o0096 o0078 o0016 
24 o0195 o0140 o0085 o0020 
25 0 025 o018 o011 o003 
26 0 016 o011 o007 0 001 
27 o033 o024 o015 o005 
28 o038 • 028 o0l7 o004 
29 o048 0 031 o020 o006 
30 o027 o020 • 012 .003 
31 • 0060 o0043 o0025 o0004 
32 o0017 .0011 o0005 -o0002 
33(-) o0016 o0013 oOOll o0007 
34 o023 o016 .010 0 001 
35 0 003 • 003 0 001 -. 001 
36(-) o009 o007 o005 .003 
37 o035 o025 o0l5 o002 
38 o013 o009 .005 -. 001 
39(-) .016 o012 .009 .004 
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TABLE 7 

DEFLECTIONS IN INCHES RECORDED DURING THE FAILURE CYCLE OF BUILDING I 

Dial LOADING {pounds) 
Gauge 75 140 200 250 I 340 400 
Number 

1 .0017 .0034 .0050 .0066 .0082 .0097 
2 .0030 .0054 .0080 .0104 .0127 .0150 
3 .0050 .0095 • 0140 .0180 .0220 • 0260 
4 .008 .014 .020 .026 .032 .038 
5 .006 .Oll .016 . 020 .025 .030 
6 .010 • 018 .025 .032 .040 .047 
7 .011 .022 ' .031 .040 .048 .057 
8 .013 .. • 026 • 03.7 .048 .058 • 069 
9 .009 .018 .026 .034 .042 • 050 

10 .015 • 030 .042 .055 .067 ~079 
11 .0016 .0036 .0047 .0063 .0077 .0092 
12 .0028 .0056 .0076 .0101 .0124 .0147 
13 .005 .009 .013 .017 .021 . 025 
14 .007 .013 .019 .024 .030 .035 
15 .006 .011 .016 • 020 .024 .030 
16 .004 .017 .025 .033 .040 .047 
17 • 011 • 021 • 031 .040 .049 • 058 
18 .014 .025 .037 .048 .058 .069 
19 .010 .018 .027 .035 .043 • 051 
20 . 015 .028 . 041 .054 .066 .079 
21 .0030 .0054 .0078 .0102 .0125 .0149 
22 .0019 .0034 .0049 .0066 .0078 .0095 
23 .0050 .0104 .0136 .0175 .0213 .0249 
24 .0070 .0135 .0190 .0245 .0300 .0355 
25 .009 .018 • 025 .032 .039 .047 
26 .006 .011 .016 .020 .025 .030 
27 .012 .022 .031 .040 .049 .059 
28 .014 .027 .037 .048 .058 .070 
29 .015 .029 • 041 .054 .066 .079 
30 .011 .019 • 027 .035 .043 .052 
31 .0022 .0040 .0055 .0072 .0084 .0095 
32 .0007 • 0011 .0016 .0019 .0020 . 0021 
33(-) .0005 .0012 .0014 . 0021 .0028 .0037 
34 .009 .015 • 021 .027 .033 .038 
35 .002 .004 .005 .006 .006 .007 
36{-) .003 .005 .007 .010 .013 .017 
37 .013 .024 .033 .042 .049 .057 
38 .005 .008 .010 .012 .015 .018 
39(-) .004 .010 .015 .020 .026 . 031 

·-
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TABLE 7 (continued) 

Dial LOADING (pounds) 
Gauge 450 500 550 600 630 660 
Number 

1 I .0113 .0129 • 0145 • 0161 .0176 • 0191 
2 .0174 .0198 • 0221 .0247 .0270 • 0271 
3 I .0305 .0340 .0380 .0420 .0460 .0470 
4 I .043 .049 .054 .060 • 066 .067 
5 

I .034 .039 .043 .048 .053 .064 I 6 .054 .061 .068 .076 .083 .084 
7 .067 .076 / .084 .094 • 103 • 104 
8 .080 .090 • 100 • 111 0122 • 122 
9 .058 .066 .074 .082 .090 • 106 

10 .092 • 104 .115 • 128 • 139 • 141 
11 .0106 .0122 0 0136 • 0152 .0166 .0209 
12 .0172 • 0195 • 0217 • 0241 .0263 .0279 
13 .029 .033 .037 .041 .045 .047 
14 .041 .047 .052 .058 .064 .065 
15 .034 .038 .043 .048 .053 .063 
16 .054 .062 .068 .076 .083 .085 
17 .067 .076 .085 .094 • 103 • 105 
18 .080 • 091 • 101 .112 • 122 • 124 
19 .059 .066 . 075 .083 .091 . 108 
20 • 091 • 103 .114 • 126 0138 • 140 
21 .0173 .0196 .0220 .0245 .0267 .0279 
22 .0111 .0127 o0142 .0157 .0170 .0207 
23 .0291 .0333 .0370 .0413 .0413 .0460 
24 .0420 . .0475 .0530 .0590 .0645 • 0655 
25 .054 .062 • 068 .076 • 083 .085 
26 .035 .039 .044 .049 .053 .064 
27 .068 .077 .085 .095 • 103 • 104 
28 .080 .091 • 101 .112 • 123 • 124 
29 • 091 • 1 Oll .115 • 128 • 140 • 141 
30 .061 • 169 .077 .087 .095 • 109 
31 .0107 .0119 • 0129 .0140 • 0151 • 0219 
32 .0022 .0022 .0022 .0022 .0022 .0001 
33(-) .0043 .0049 • 0057 .'0064 .0072 .0076 
34 .043 .048 o053 .057 .061 .038 
35 .009 .009 .010 o010 • 011 .004 
36(-) .020 .024 .027 .031 .034 .029 
37 .065 .072 .078 .085 • 091 .057 
38 • 021 • 021 .022 .023 .023 .006 
39(-) • 037 .044 • 051 .057 .064 .055 
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TABLE 8 

DEFLECTIONS IN INCHES RECORDED DURING THE SECOND TEST CYCLE OF BUILDING II 

Dial LOADING {pounds) UNLOADING {pounds) Gauge 
Number 60 125 190 250 190 125 60 0 

1 .0009 • 0019 .0032 .0041 .0029 .0015 .0003 -.0008 
2 .0014 .0030 .0050 .0063 .0053 .0036 .0018 .0000 
3 .002 .003 .006 .008 .008 .007 .003 • 001 
4 .0040 .0073 .0-120 .0160 .0130 .0090 .0050 .0005 
5 .003 .007 .011 .014 .011 .007 .004 .000 
6 .005 .010 .016 .021 .017 .012 .007 .001 
7 .006 .012 • .020 .026 • 021 . 015 . 008 • 001 
8 .007 .014 .024 / .031 .026 .018 .010 • 001 
9 .006 I .012 .019 .025 .020 .014 .002 . 001 

lO .008 .022 .032 . 041 .. 034 .025 .016 .006 
11 I .001 .002 .003 .004 .004 .003 .002 .001 
12 .002 .003 .005 .007 .006 .004 .003 .001 
13 .003 .005 .009 • 011 .010 . 007 .004 • 001 
14 .0035 

I 
• 0071 . 0119 .0160 .0134 .0096 .0054 .0009 

15 .003 I .007 . 01'2 • 015 .013 • 010 .006 • 001 
16 .005 .010 • 017 .021 .018 . 013 .007 .001 
17 .006 I .012 .020 .026 .022 .015 .009 .001 
18 .008 .015 .024 .038 .026 .018 .010 .002 
19 .006 .012 .020 .026 .022 . 015 .009 • 002 
20 .009 . 017 .028 .037 . 030 . 021 .012 .002 
21 . 001 .003 .005 .007 .006 .004 .003 .001 
22 . 001 .001 .003 .004 .004 .003 .002 .001 
23 .0020 .0048 .0083 .0108 .0095 .0066 • 0036 .0006 
24 .004 .008 • 013 .017. .014 .010 .006 • 001 
25 .005 . 010 .016 • 021 .018 .012 .007 • 001 
26 .003 .008 .013 .014 .012 .008 .004 .000 
27 .006 .013 .020 .027 .022 • 016 . 009 • 002 
28 .005 .015 • 024 .032 .026 .018 .010 . 002 
29 .009 .017 .028 .035 .030 • 021 • 012 .002 
30 .006 .011 .019 • 025 . 021 .014 .008 • 001 
31 .0010 .0020 .0033 • 0044 .0043 .0034 .0023 .0011 
32 .0003 .0007 .0010 .0013 .0013 .0009 .0006 .0003 
33{-) .0005 . 0010 • 0017 .0023 .0019 .0013 .0009 .0004 
34 .004 .007 .012 .016 .013 .009 .005 .000 
35 .001 .002 .003 .004 .004 .003 • 001 .000 
36{-) . 001 .003 .005 .007 .006 .004 .003 .001 
37 • 007 .013 .020 .026 .022 .016 .008 .000 
38 .002 .004 .006 .007 .006 .004 .002 -. 001 
39{-) .002 .004 .007 .009 .008 .005 .003 • 001 
40 • 0011 .0019 .0030 .0040 .0035 .0028 . 0021 .0013 
41 .0015 .0030 • 0051 .0067 .0056 . 0041 .0027 .0013 
42 .0036 .0069 . 0115 .0138 .0127 .0092 .0060 . 0021 
43 .0013 • 0015 • 0017 .0024 .0024 .0022 .0018 .0014 
44 .0010 .0020 .0030 .0040 .0035 .0025 .0015 .0000 
45 . 002 .003 .005 .006 .005 .004 .002 -.001 

u .0012 .0020 . 0031 .0032 .0025 .0014 .0010 .0000 
47 • 003 .006 .010 .013 . 011 .007 .003 -.001 
48 .007 .012 .. 019 .025 • 021 .015 .007 .000 ....__ 
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TABLE 9 

DEFLECTIONS IN INCHES RECORDED DURING THE FAILURE CYCLE OF BUILDING II 

Di a1 . LOADING {pounds) . 
Gauge 125 250 390 465 565 650 685 720 
Number 

1 .0019 .0047 .0076 .. 0097 .0122 .0138 .0148 .0161 
2 .0028 .0064 .0102 .0133 ;0173 .0190 .0214 .0216 
3 • 0011,5 .0105 • 0172 .0225 .0294 .0330 .0369 .0373 
4 .0080 • 0160 .0250 .0325 .0420 .0470 .0525 .0525 
5 .007 .014 .022 .028 .036 • 041 .046 .053 
6 .009 • 020 • 031 .045 .053 .059 .066 .067 
7 .012 .025 .039 • 051 .066 .074 .083 .083 
8 .014 .029 ' • 046 .059 .077 .088 .098 .098 
9 .011 .023 .037 / .048 .063 .072 .080 .095 

10 .016 .034 .050 .063 .084 .096 • 112 .113 
11 ~ 001 .003 .005 .008 • 010 .• 011 .013 .016 
12 .003 .007 .010 .013 .017 .019 • 021 .022 
13 .004 .010 • 016 .021 .028 • 031 .035 .035 
14 .0066 • 0148 .0232 .0306 .0299 .0347 .0399 • 0405 
15 .007 .014 .023 .028 .037 .042 • 046 .053 
16 • 010 • 021 .031 • 041 .053 .060 .066 .067 
17 • 011 .024 .038 .050 .064 .073 .081 .082 
18 .014 .030 .046 .059 ,1077 .087 .097 .097 
19 .010 .023 .037 .048 • 062 .070 .078 .090 
20 . 015 • 03/f .053 .069 .089 .1'00 • 113 • 113 
21 .002 .006 .009 .013 .017 .019 • 021 • 021 
22 • 001 .003 .005 .007 .010 .012 .013 .016 
23 .0045 .0104 .0168 .0225 .0295 .0330 .0359 .0358 
24 .007 .015 .024 .033 .042 .047 .053 .052 
25 .010 • 020 .032 • 041 .054 .059 .066 .067 
26 .006 .014 .022 .029 .033 .040 .046 .053 
27 .012 .026 • 040 .052 .067 .0075 ,085 .085 
28 .013 .029 .046 .• 060 .078 • 088 .098 .098 
29 .016 .034 .052 .068 .088 • 100 .111 • 112 
30 . 011 • 024 .037 .048 .064 .073 • 081 • 092 
31 .0008 • 0032 .0055 .0074 .0095 .0104 • 0111 .1006 
32 .0003 .0010 .0015 • 0018 .0019 .0020 .0020 .0043 
33(-) .0007 .0019 .0035 .0049 .0069 .0080 .0092 .0026 
34 .008 . 0116 .024 .030 • 036 .040 .042 .038 
35 .002 .004 .005 .005 .006 .007 .006 .011 
36(-) .002 .005 .009 • 013 .018 .021 .025 .009 
37 • 012 .025 .038 .047 . 057 .062 .067 .061 
38 .005 .008 .010 .012 .014 .015 .014 .022 
39(-) .004 .009 .015 .019 .026 .030 .037 .012 
40 • 0011 .0027 .0048 .0067 .0091 .0108 .0122 .0193 
41 .0022 .0054 .0096 .0139 .0193 .0228 .0268 .0099 
42 .0055 .0123 .0207 • 0271 .0360 .0416 .0483 .0228 
43 .0003 .0008 .0008 .0009 .0009 .0012 .0008 .0038 
44 • 0015 .0035 .0045 .0055 .0065 . .0065 .0060 • 0115 
45 .004 • 007 .008 .009 .009 .006 .004 .012 
46 • 0016 .0034 .0051 .0067 .0087 • 0101 .0107 .0097 
47 .006 .013 .020 .026 • 032 .035 .037 • 032 
48 .012 .024 .034 .042 .052 .057 .062 .053 
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TABLE 10 

STRAINS IN JJ 11
/" RECORDED DURING THE SECOND TEST CYCLE OF BUILDING I 

--
Strain LOADING {pounds) UNLOADING (pounds) 

Gauge 25 60 100 125 165 190 230 250 180 125 60 I 0 I 

Number 

1 2 3 5 6 7 7 9 11 11 12 12 13 
2 3 3 4 6 7 7 8 9 10 10 11 11 
3 1 2 3 4 4 7 6 8 10 10 10 9 
4 4 4 5 6 6 8 7 8 10 11 11 13 
5 3 4 5 6 7 6 8 ._8 10 10 13 13 
6 3 3 8 ' 7 10 11 13 17 14 13 12 8 
7 6 8 10 12 l4 12 15 I 19 18 16 15 13 
8 2 5 6 6 7 8 9 12 11 12 12 12 
9 2 0 -1 -1 -4 -5 -6 -7 -1 4 9 13 

10 6 9 14 15 18 20 23 27 25 20 16 14 
11 5 8 10 13 16 18 19 23 20 18 15 10 
12 3 3 4 4 5 6 6 8 8 12 11 9 
13 1 2 0 2 1 1 -1 1 2 5 6 8 
14 3 4 5 6 6 7 7 8 8 9 10 10 
15 2 4 3 7 5 7 6 10 9 9 10 10 
16 0 0 -6 -6 -4 -4 -4 -5 -1 0 5 7 
17 0 -2 -4 -5 -7 -9 -11 -11 -6 -2 3 8 
18 3 7 10 12 15 18 21 24 22 19 15 11 
19 3 6 5 6 7 9 12 13 13 11 10 12 
20 3 2 1 3 1 2 3 3 4 6 9 10 
21 -2 1 1 1 1 -1 1 2 3 6 7 9 
22 2 3 3 3 4 5 5 5 6 7 8 10 
23 3 3 4 5 5 5 6 8 8 10 10 11 
24 3 4 4 6 6 5 5 9 8 11 12 13 
25 2 4 5 5 6 8 8 9 10 10 11 10 
26 1 3 4 4 5 5 6 8 8 8 9 10 
27 1 2 3 4 4 5 6 ,8 9 9 9 8 
28 2 3 4 5 4 6 6 8 8 9 10 10 
29 2 2 4 4 4 5 5 7 6 7 8 8 
30 1 3 5 5 6 7 7 9 9 9 9 9 



108 

TABLE 11 

STRAINS IN ll"f" RECORDED DURING THE FAILURE CYCLE OF BUILDING I 
! 
· Strain LOADING )pounds) 
. Gauge 75 140 200 250 340 400 450 500 550 600 630 660 
Number 

1 8 7 8 8 9 9 11 11 13 12 12 14 
2 8. 10 9 9 10 10 12 12 12 11 13 15 
3 7 11 6 8 12 9 11 11 13 12 12 9 
4 7 5 8 9 9 10 10 10 10 9 11 11 
5 4 6 5 4 4 6 8 8 5 4 7 10 
6 7 12 12• 15 16 21 21 20 25 28 28 13 
7 7 10 11 14 / 15 20 20 22 23 26 26 17 
8 7 7 7 9 10 12 10 12 13 13 14 12 
9 0 -4 -7 -10 -14 -17 -20 -24 -28 -31 -35 57 

10 12 18 23 28 31 34 39 43 48 52 56 -2 
11 8 14 17 22 24 28 29 34 36 39 42 14 
12 6 5 6 6 6 6 6 6 6 6 7 57 
13 1 -1 -4 -4 -5 -7 -9 -9 -10 -14 -15 -13 
14 5 ,5 6 6 5 6 5 6 5 5 5 20 
15 5 3 7 6 6 8 8 8 9 9 10 14 
16 2 -1 -3 -6 -10 -11 -15 -14 -18 -17 -20 -9 
17 2 -2 -6 -10 -15 -19 -23 -25 -29 -33 -37 -22 
18 2 17 21 25 29 32 37 41 43 48 51 34 
19 5 5 7 7 9 9 9 10 12 12 11 7 
20 3 1 0 -1 -2 -3 -4 -5 -6 -7 -7 2 
21 4 1 1 0 -2 -2 -3 -4 -5 -7 -6 4 
22 4 5 5 A 4 3 2 3 2 2 1 7 
23 5 4 5 4 4 5 5 4 5 3 4 6 
24 6 5 7 6 6 6 10 9 8 8 9 15 
25 4 6 6 7 5 5 6 8 7 6 8 10 
26 5 4 5 5 5 6 6 6 6 6 6 6 
27 5 4 6 6 7 7 7 7 :a 8 7 9 
28 3 4 4 4 4 4 4 3 3 3 5 6 
29 4 4 4 4 4 4 4 3 4 2 3 6 
30 2 2 3 4 3 4 5 6 6 6 6 6 

- ,.___. 
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TABLE 12 
STRAINS IN 11"1" RECORDED DURING THE SECOND TEST CYCLE OF BUILDING II 

Strain LOADING (pounds) UNLOADING (pounds) 
Gauge 60 125 190 250 190 125 60 0 Number 

1 0 -6 -6 -1 2 6 9 0 
2 -4 -8 -10 -6 -7 1 2 -5 
3 I -5 -11 -11 -7 -5 -1 0 -7 
4 -13 -51 -26 -14 -9 -40 -5 -48 

' 5 -5 -8 -6 -3 -7 4 5 -4 
6 1 0 -3 / 3 -2 4 6 -5 
7 -2 -4 -1 3 -1 4 7 -2 
8 -5 -8 -8 -7 -9 -5 0 -7 
9 -12 -19 -26 I -26 -22 -12 -3 -6 

10 4 4 10 18 11 12 10 -5 
I 11 0 -2 0 7 2 5 8 -2 

12 -2 -9 -10 -3 -8 -2 2 -5 I 
13 -5 -12 -13 -12 -11 -3 3 3 ! 
14 -6 -10 -13 -8 -10 -3 2 -5 
15 6 -3 -5 1 0 6 10 0 
16 -4 -11 -16 -14 -13 -4 3 -4 
17 -5 -14 -25 -20 -22 -10 4 -4 
18 1 1 4 10 5 10 10 -2 
19 -5 -8 -11 -6 -7 -2 3 -5 
20 -6 -7 -8 -7 -7 -5 -2 -5 
21 -2 -10 -14 -10 -10 -6 0 -6 
22 -6 -9 -11 -9 -9 -2 3 -5 
23 -7 -11 -11 -5 -10 -4 1 -7 
24 -3 -7 -7 -7 -5 0 5 -4 
25 -4 -8 -9 -7 -7 -1 4 -4 
26 -3 -8 -8 -6 -7 -1 4 -4 
27 -4 -8 -8 -7 -6 -1 4 -3 
28 -4 -9 -9 -6 ,.,] 1 4 -4 
29 -7 -11 -12 -10 -10 -5 1 -7 
30 1 -2 -3 -1 -7 0 3 -4 
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TABLE 13 

STRAINS IN ll 11 t' RECORDED DURING THE FAILURE CYCLE OF BUILDING II 
. 

Strain LOADING (pounds) 
Gauge 125 250 390 465 565 650 685 720 
Number 

l 4 16 5 5 9 5 19 12 
2 6 17 6 6 12 8 24 16 
3 6 16 7 5 15 12 26 18 
4 3 16 5 4 9 8 23 17 
5 3 9 2 2 6 1 18 12 
6 12 17 • 13 15 25 22 38 24 
7 9 21 17 ' 16 20 19 38 26 
8 3 13 7 7 9 7 24 29 
9 -2 -2 -20 -20 -12 -17 -5 25 

I 10 18 39 41 49 67 72 98 224 
11 15 29 26 32 47 43 73 6 I 
12 8 15 4 6 6 2 15 41 I 
13 2 9 6 3 -2 10 7 7 ! 
14 9 17 10 3 9 5 18 16 I 
15 5 15 6 3 8 6 20 14 

I 
16 1 3 -10 -20 -16 -21 -8 -6 
17 -5 -7 -22 -35 -37 -48 -36 -30 
18 11 27 21 29 44 42 63 46 
19 4 12 4 3 7 5 20 14 
20 4 10 2 3 5 7 18 16 
21 1 6 3 2 9 10 11 6 
22 3 11 4 0 5 2 18 12 
23 5 14 5 3 7 5 21 14 
24 5 13 6 3 8 5 20 15 
25 4 14 4 2 .8 6 ]8 13 
26 4 14 5 4 10 7 22 13 
27 5 14 6 4 10 4 22 15 
28 6 14 4 2 7 5 18 13 
29 4 13 3 1 6 4 17 13 
30 1 16 9 2 6 7 24 20 
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