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NOTATION

wall thickness of the building

cross-sectional area

centroid of section

shear centre of section

co-ordinates of shear centre

modulus of é]astici@y of concrete material

modulus 0f1é1asticity in shear

Poisson's ratio

longitudinal displacement in Z direction

transverse displacenent directed along the tangent

of the profile line of the cross-section

transverse normal displacement h

longitudinal strain

length of the building

principal sectorial area

moments of inertia of plane area with respect to X and Y axes
displacements of the shear centre in the X and Y directions
respectively

rotation of the section about the shear centre

external statfc'loading

eccentricity with respect to the shear centre

sectorial moment of inertia

torsional rigidity

bimoment, a generalized balanced force system statically

equivalent to zero



H torsional moment, the generalized force factor in the transverse
direction |

ay distance of the shear centre from middle surface of the back
vall,along the 0X axis

h thickness of the floor slabs

Q twice the ?reé of the floor slab

X,Y,Z principal axes of the cross-section

X1



CHAPTER 1
INTRODUCTION
1.1 DESCRIPTION OF SHEAR UALL STRUCTURES

In recent years, there has been a rapid increase in the number of
tall buildings built for commerical and residential purposes. This
increase has necessitated the need for a greater understanding of the
behaviour of such'Structures under service conditions.

As a building increases in height, it is most important that
sufficient lateral stiffness exists in the building to resist the effects
of wind loading, seismic action and blasts. Sufficient stiffness in
tall buildings can be effected in the case of framed structures by
bracing members, by increasing the joint rigidity or by infilling the
frame with shear resisting panels. This leads to the use of a shear
wall element to assist in providing additional stiffness in a tall
building.

A shear wall is used as a structural element in a tall building
to provide stability against wind, earth tremors and blasts. Deriving
its stiffness from its structural forin, the shear wall is extremely
stiff and shear resistant in its own plane. The shear wall element can
consist of a plane wall, a curved wall, a closed loop, or of a rectangular
box of a system of concentric or eccentric cores.

Parallel shear walls are connected by floor slabs to form one type
of shear wall building. The box-core is another type of shear wall
building in which two channel shaped shear walls are aligned so that
they form a box-like system connected by floor slabs.

Architecturally, the shear wall building with floor slabs permits



maxinum flexibility of internal Tayouts and eliminates the obstructions
associated with internal beams and columns. This type of building
_provides inherent accoustfc insulation and also is extremely fire
resistant. From the viewpoint of construction, the building can be
erected quickly and economically following a logical sequence of
operations using a~;epetitiye form of construction.

The floor s]aﬁs act és diaphragms which distribute the horizontal
loads to the stiff shear walls. The shear walls transmit the loads to
the foundation which in turn distributes them over a sufficient area
to prevent a soil failure. Further, the floor slabs which are extremely
stiff in their own planes, increase the lateral stiffness of the
building by their complex interaction with the walls.

The shear walls can contain openings for doors, windows and corridors
at regular intervals throughcut the height of the buiiding. Yhen the
stiffness of the shear wall element is determined, account must be
taken of the locations and sizes of the wall openings.

It can be readily seen tHat the three dimensional behaviour of a
tall buildirg comprised of perforated shear walls, floor slabs and
service cores is extremely complex. Approximate design methods can
be used to proportibn the elements, but these analyses do not take
account of this three-dimensional interacticn. Clearly, more
sophisticated analysis techniques are required.

The general purpose of research on shear wall structures is to
first provide mors information on the%r behaviour and secondly, to

develop more realistic design criteria.



1.2 SHEA? WUALL PROJECT

The Canada Emergency Measures Organization is currently sponsoring
an extensive program of experimental investigations into the behaviour
of shear wall buildings. The project is being conducted in the
Department of Civil‘Engineering and Engineering Mechanics at McMaster
University, Hami]tqh, Ontario. It consists of building small-scale
shear wall buildings and studying their responses to static and
dynamic lateral loadings. |

Experimental investigations are being conducted on monolithic
assemblies of shear walls which take the form of smallwscale shear
wall buildings. The basic small-scale shear wall building was
designad so that it was geometrically similar to actual tall buildings.
It would also allow floor s]abé and wall openings to be introduced.
Thjs procedure would permit a basic continuity of test structures
during the various phases of the project.

The basic structure as shown in Figure 1 was £ shape in
cross-saction and stood eignt feet in height. A non-reinforcad
micro-concrete was designed and used as the structural material of
the buildings.

In the first phase of the project, Afsar (1) studied the
behaviour of the basic building without transverse slabs or wall
openings, subject to a transverse static loading. The second phasc
of the experimental nrogram was the investigation by Qureshi (2) into
the behaviour of the building with two vertical rows of circular
openings in the back wall. HModificaticns to the design cf the concrete

material, the construction procecdure and the testing of the buildings



vere initiated in this phase of the program.

The present study, phase three, is an investigation into the
behaviour of the building with rigid floor slabs, but without wall
openings. The modifications introduced by Qureshi were incorporated
into this study. ‘

The next nhases of the.shear wall project will include the
application of dynémic loads to the basic building which has neither
wall openings nor floor slabs. Future investigaticns will also include

the dynamic response of the small scale shear wall building with floor

slabs.



1.3 ANALYSIS Of SHEAR YALL BUILDINGS

Coull and Smith (3) have compiled a comprehensive summary of the
published 1ﬁteréture'concerning the analysis of shear wall buildings.

In general, a shear wall building can be comprised of interconnected
shear walls and f]qor slabs. The walls do not act as independent
cantilevers due to:the éoup]ing action of the floor slabs. Further
conplications in the behaviour of the building are introduced when the
walls have openings.

Afsar (1) has outlined various analytical and experimental
approaches used in the study of shear wall structures.

Qureshi (2) has compiled a detailed survey of the liferature
dealing with the behaviour of shazar wall structures comprised of
shear walls with rows of openings. A popular method of analysis of"
this type of structure is the frame analogy method. The shear walls
with rows of openings are idealized as interconnactions of colusins
and beams. Extensions of this method were used by Beck (4)

Eriksson (5) and Rosman (6) who treated the rows of beams connecting
shear walls as a continuous medium in pure shear.

Another nopular approach is the method of panel elenents. The
shear wall is considered to he a system of elements whose behavicur
when assembled is similar to that of the continuous structure. This
approach is characterized by the finite element method used by Mcleod (7).

Vliasov (8) in his book, "Thin-Halled Elastic Beams" proposes an
analysis which can be applied to the small-scale shear wa11 building.

Analyses based on VYlasov's theory can be used to predict the



behaviour of various thin-walled beams subjected to a variéty of
boundary and loading conditions. The important feature of this method
is the consideration given to the longitudinal extension of the beams
resulting from torsional Toads.

Qureshi (2) conducted an experimental investigation into the
behaviour of a mic;o—concrqte shear wall building with two symmetrical
rows of openihgs fﬁ the back wall. He found that Rosman's theory can
be used to precict the behaviour and maximum deflection of such small
scale shezar wall buildings. The area of the rectangular openings in
the theoretical model should be set equal to the area of the circular
openings in the experimental building. The strain distributions predicted
using Rosman's theory agreed with the experimenta]'distributions.

Qureshi (2) concluded that V]asoQ's theory could not be used
to predict the behaviour of the small scalz shear wall building with
circular wall openings.

Afsar (1) studied the behaviour of the basic small-scale shear
wall building without wall openings or floor slabs. A comparison of
the experimental results of a lateral loadirg of the building was

‘made with results predicted by Vlasov's theory and qualitative
agreement was reported. It was suggested that Vlasov's theory could be
anplicable to the description of the behaviour of the building with

floor slabs.



1.4 INVESTIGATIONS INTO THE BEHAVIOUR OF SHEAR MWALL BUILDINGS COMPRISED
OF SHEAR WALLS AND FLOOR SLARBS

An investigation into the hehaviour of cne and two storey
reinforced concrete shear wall assemblies was conducted by Benjamin
and Williams (9). The one-quarter scale buildings studied had parallel
shear walls cannectéd by a reinforced concrete diaphragm. The
buildings were 1oaaed in torsion at the diaphragm level. The authors
concluded that if shearing distortion predominated in the walls of a
tall building, the strdcture cdu]d be analyzed using single-storey
theory. This recoamendaticn was not verified.

Taranath and Horice (10) used the virtual work method to determine
the elastic deformations of an open-hox bean system. The authors
reported agreement between the stress patterns found theoretically
and experimentally using perspex models.

The stiffness method anproach was used by several investigators.
Tezcan (11) analyzed a shear wall structure comprised of interconnected
shear walls and frames. Using a method suggested by Khan and
Sbarounis (12), the floor slabs were considered as beams between
adjacent colunns. In Tezcan's analysis, the shear walls were considered
as uni-dinensional menbers. Greater accuracy could have been achieved
by idealizing the shear wall as a grid framework of two-dimensional
plate units. Clough (13) and Tezcan (12) have given the stiffness
matrices of two-dimensional plate elements. The éssemb]y of columns,
shear walls and frames of a tall building was then analyzed following

a standard stiffness analysis. The shear distribution obtained



conpared well with that distribution found using the method outlined
by Khan and Sbarounis (12). |

Jenkins and Harrison (15) used the stiffness matrix method to
analyse tall buildings with shear walls. Two types of shear wall
structures were examined and the results were compared with the results
of experiments performed on perspex models. The use of the stiffness
matrix method penﬁitted the introduction of the finite elenent
technique to determine the stiffness of the floor slabs. It was found
that the stiffness matrix approach provided a suitable method for the
analysis of tall structures containing shear walls.

Rosman (£) and Beck (4) each offered an analysis of shear walls
interconnected by beams of rectangular cross-section. Barnard and
Schwaighefer (1€) determined the width of the strip of slab which
acted as the coupling media between the Wal]s. Then, the analysis of
Rosman (1€) and Beck (4) was applied to a slab-shear Qa]] building.
Tests were conductéd‘on models constructed from 1/4 inch epoxy sheets.
It was conc]uded first that the entirevs1ab width was to be considered
as the connecting medium between adjacent shear walls and secondly,
that Rosman's theory predicted the stress distribution in the walls.

A simplification of Rosman's theory was also proposed.

Coull (17) investigated the effective width of floor slabs
acting in conjunctioh with a pafr of in-line shear walls. Tests wefe
conducted on a perspex model of a twenty-five storay shear wall
building consisting entirely of walls and floor slabs. The author
nodified the analysis of Chitty (12) which replaced the discrete set of

connections by an equivalent continuous medium. The modifications



took into account the finite depth and shear deflections of the walls.
The behaviour of the building was scmewhere between the two limiting
cases of independent wall action and cantilever action of the
building.

Coull (17) con§1uded that the building behaved as a set of
coupled shear wa]]s'in waich the coupling action of the floor slabs
induced considerable axial force in the walls. On the basis of his
investigations, the author suggested that the continuum technique was
not capable of descrihing accurately the behavfour of such compiex,
three-dimensional structures. It was also suggested that further
research in this field was necessary.

From the 1iterature rcviewed, it can be seen that there is an
abundance of analytical approaches focused on the problem of the
behaviour of planar shear wall buildings. However, the majority of
the experimental investigations have been conducted on perspex models,
using a wide variety of building and testing procedures. The problem
of the threa-dinensional shear wall building has been simplified to
essentially a plan2 stress problen in these investigations.

It is evident that both analytical and experimental investigations
into the behaviour of tall, three-dimensional shear wall buildings are
necessary. The experimental investigation reported in this study deals

with the behaviour of such a structure.
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1.5 PRESENT INVESTIGATION

The purpose of this experimental investigation is to study the
overall effect of the rigidly connected floor slabs on the behaviour
of the bhasic sma]]»éca]e shear wall building sﬁbject to a transverse
“static loading. qu purposes of providing continuity between the
various phases of‘the shear wall project, the shane and dimensions of
the basic structure developed by Afsar (1) were used in this
jnvestigation. Qureshi (2) also maintained this policy of continuity
between various phases of the program although certain moditications
to the micro-concrete mix, the lodding system and casting technique
were initiated. These modifications were incorporated in this
investigation so that the only difference between phases II and III
of the project was the introduction of the circular wall openings in
the second phase and floor slabs in the third. In this way, a direct
comparison of the individual effects of circular wall openings and floor

slabs on the behaviour of the small--scale shear wall building is possible.
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CHAPTER 2

CONSTRUCTION OF BUILDINGS

2.1 CONSTRUCTIOH TECHHIQUE AMD MATERIAL

In the first phase of the shear wall project, Afsar (1) developed
a technique of casting small-scale shear wall buildings. The
buildings were casf in a 3/4" plywood formwork using a micro-concrete
material. The basic small-scale shear wall building is shown
schematically in Figure 1. .

Qureshi (2) made minor alterations to a second set of plywood
forms and cast small-scale buildings with two vertical rows of circular
openings in the back wall. Prior to the actual construction of the
.buildings in phase two of the project, the fo]]owfng major medifications
were made in the construction procedure: |

(a) The design mix of the micro-concrete material was changed to

effect a lower shrinkage strain. The redesigned mix used

was the following:

Portland Cement 28.6% *
Fine Ottawa Silica Sand 35.7%
1/8" Dolomitic Limestone 35.7%

Water (% by weight of
Portland cement) 47.5%

(*percentage by weight)
(b) The buildings were cast without the attached aluminum base
plate in order to eliminate a possible cause cf hairline

cracks which appeared in the buildings before testing.
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(c) The buildings were no; attached to the test-bed until shortly
before the static loading was applied. This was done in an
attempt to furthe? reduce the possibility of the appearance
of hairline cracks before testing.

The present experimental investigation deals with the study of the
behaviour of the small-scale shear wall building with floor slabs, as
shown in Figure 2._.The major modifications mentioned above were
incorporated into this third phase of the shear wall project. Phases
two and three were concurrent investigations.

Using the casting procedures documented by Qureshi (2), two basic
buildings were cast without wall openings. The precast floor slabs
were installed in each building at a later date.

A senior undergraduate student studied the material properties of
the micro-concrete used in each building. Static tests were conducted
on 2" cubes and standard 6" diameter cylinders. Dynamic modulus tests
vere conducted on 4" x 3" x 1€" prisimatic beams. The buildings and the
test specimens were cured under similar conditions. The specimens
viere tested after various durations of curing.

The modulus of elasticity of the concrete materials determined by

6

compression tests on standard 6" diameter cylinders ranged from 3.5 x 107 psi

for Building I to 4.0 x 10°

nsi for Building II.
Table 1 1i]ustrates the variations of compressive strengths as
determined by tests on 2" cubes of the concrete material of Buildings

I and II.



TABLE 1

COMPARISON OF COMPRESSIVE STREMGTHS OF 2" CUBES

13

CURING TIME

COMPRESSIVE STRENGTHS (psi)

BUILDING I

BUILDING II

24 hours
7 days
14 days
23 days

1800
3930
5330
6850

2230
4310
5250
5930
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2.2 BUILDINGS WITH FLOOR SLABS

As can be seen in Figure 2, there are seven floor slabs at one foot
centres in each bay of the fwo bay buf]ding. Yhile the basic’bﬁi]dings
were cast as previously described, the floor slabs were cast in a
‘separate operation., A 3/4" plywood formwork was designed which would
permit the casting_bf seven floor slabs at a time. Two such casting
operations produced the required fourteen floor slabs. The slabs were
19 1/4" x 15 1/2" by 1/2" thick. They were made of the same micro-concrete
material used in the casting of the buildings.

The method of installation of the floor slabs is seen in Plate 1.
In this photograph, it can be sean that one slab in each bay is
supported by a plywood falsework while the bonding compound, Colma Dur
Gel, (manufactured by Sika Chemicals Co., Mew Jersey, U.S.A.) effected
the bond between three edges of the floor slab and the building. After
the bonding agent had cured sufficiently, the falsework was removed from
under the installed floor slahs. The framework was thenvplaced on top
of the installed floor slab to support the installation at the next floor
level. This procedure was continued from floor Tavel to floor level
until the last slahks were installed at a level 7' from the bottem of the

building. The photogranh shows the installation at this level.
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2.3 QUALITY OF THE BUILDINGS

The technique of casting the basfc buildings produées structures
vhich are free of hairline cracks. These shrinkage cracks which plagued
Afsar (1) were eliminated through several modifications introduced by
Qureshi (2).

However, mention must be made of the non-uniform wall thicknesses
which occurred in both buildings. The walls constituting the buildings
vere designed to be 0.5" thick. Table 2 shows the variations in wall
thickness at various levels of the two buildings. There is no pattern
to the recorded variations in wall thicknesses.

Qureshi (2) encountered similar difficulties and recorded higher
variations in the wall thicknesses. In his reccmmendations, he has
suggested various possible causes for these thickness variations and
suggestions for minimizing their effects. However, the modifications
required could not be implemented in this investigation.

Since there is no pattern to the thickness variations along the
buildings, the effect of these variations on the behaviour of the

buildings cannot be assessed.



TABLE 2

VARIATIONS IN WALL THICKNESS _
(171000 of an inch)

16

HE IGHT BUILDING I BUILDING II

(inches) < b . 3 b .
18 652 500 594 662 576 653
30 703 582 649 658 531 712
42 669 532 593 643 532 702
54 705 620 617 661 590 662
66 632 557 567 €09 574 659
78 620 654 626 651 €94 65N
90 614 626 601 575 619 649

—i —i i

LOCATIONS OF THICKNESS MEASUREMENTS
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CHAPTER 3
EXPERIMENTAL SET-UP
3.1 DESCRIPTION OF THE LOADING SYSTEM.

In the first phase of the shear wall project, the aluminum loading
- cap described by Afsar (1) did not give a well-defined 1ine of action
of the app]fed load. This system was redesignad by Qureshi (2) to
provide a well-defined 1ine of loading along the back wall of the
building. Further,fthe redesigned system maintained the E-shaped
cross-section at thé top of the building.

The aluminum plate capping system used in this investigation was
similar to that used in the second phase of the project. As seen in
Plate 2, it consisted of two parts. The narrow plate provided the line
of loading and the wider plate maintained the shape of cross-section at
the top of the building. Both parts of the system,were comprised of
two-inch aluminum angles bolted through slotted holes to a 1/4" thick
aluminun plate.

In attaching the capping system to the top of the building, the
angles were first loosely attached to the plates. This permitted
»édjustments to be made while aligning the angles with the walls of the
building. After the two plates had been positioned on the top of the
building, the angles were bonded to the wa]]é using "Colma Dur Gel".
(section 2.2) The nuts and bolts holding the angles to the plates were
then tightened down and the bonding agent was allowed to cure.

The application of the transverse static loading along tHe top edge of

the back wall was facilitated by using a manuaT7screw—type Jack. A gear
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system was installed which permitted fhe load to be applied in very
small increments. The load was transmitted to the capping system on
the building through a calibrated load cell (1,2) and connecting
‘devices. Plate 3 shows the loading system and the aluminum plate

capping system in position for the testing of a building.
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3.2 FIXING THE BASE OF THE BUILDING

Difficulty was encountered by Afsar (1) in his investigation, when
several of the buildings cracked before testing. The problem of the
cracked bﬁi]dings was partfa]]y attributed to the method of fixing the
base of the bui1d1ng: The technique used to fix the base of the
building in the first phase of the project was to encase the bottom
six inches of the bﬁi]ding in a concrete pad. The concrete pad, poured
in place around the base of the building, was anchored to the aluminum
base plate. The plate was bolted to the floor.

To avoid the problems associated with the concrete base pad, a
mefhod of achieving a fixed base using slotted, two inch steel angles
was developed. The building was not fixed to the base until after the
building had been fully instrumented with dial and strain gauges.

Shortly before testing was to beagin, the angles were loosely
bolted te the base plate and adjusted so that close alignment was made
between the angles and the waf]s of the building. The angles were bonded
to the building and bolted to the base plate in a procedure sjmi]ar to

that described in Section 3.1.
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3.3 INSTRUMENTATION

The positions and numbering sequeﬁce of the dial gauges used to
measure the experimental deflections of the building are shown in
Figures 3 and 4, These instruments were mounted on a steel tube framevork.
In the testing of Building I, thirty-nine dial gauges were used.
Forty-eight gauges were used,in the testing of the second building. In

tests on the second building, three gauges were introduced at the tip

of each flange at levels z = 28"; z = 52" and z = 83". The purpose of
these gauges was to measure deflections perpendicular to the line of
loading.

Figure 5 shows the locaticns and numbering seguence of thie strain
gauges used to measure the longitudinal strains develoned in the
bui]dingﬁ. In addition teo the strain gauges shown, there was a total
of six gauges mounted on Varicus floor slabs.. At the floor levels chosen,
ohe gauge was mounted narallel to the line of the loadina at the middle
of the floor slab. Slabs at the 7irst, fourth and saventh floor levels
were instrumented witn a strain gauge. A total of 3¢ strain gauges
was used in both Building I and II..

It was recommended by Qureshi (2) that the installation of the
strain gauges at the level z = 838" was unnecessary dug to the extremely
small values of the strain readings. Since this investigation, and that
reported by Qureshi (2) were conducted concurrently, this modification
to the instrunentation of the buildings could not be implemented. The
recormendation was found to be valid.

Building II, shown in Plate 4, is fully instrumented and ready for

testing.
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CHAPTER 4
ATIALYSTS

4.1 VLASOV'S THEORY

The theory uscd in the analysis aspect of tnis investigation is
" taken from a book by Vlasov entitled, "Thin-lalled Elastic Bean “(a).
It is assumed that the theory documented in papers hy Afsar (1) and
Qureshi (2) is sufficient to describe the basic ideas and terminology
of Vlasov's theory. Tharefore, the description of theory in this
study will concentrate on the anplication of that basic theory to the
small-scale shear wall building with floor slabs.

Long prismatic shells, characterized by the fact that their three
dimensions are all of different orders of magnitude,are called
thin-walled beams.

The salient feature of thin-valled heams, according to Vlasov,

s that they can undergo longitudinal extensions as a result of torsion.

—d o

Consequently, longitudinal normal stresses, nroportional to these
strains are created. The longitudinal normal stresses arising as the
result of the relative warnping of the section are not examined in the
theory of nure torsion. They can attain very large values in thin-walled
beans with open (rigid or flexible) cross-secctions and also in beans
with closed flexible cross-sections.

Vlasov's theory is based on two gecmztrical hypothases:

(a) a thin-walled beam of open section can be considered as a

shell of ricid (undeforinahle) cross-section.

(b) the shearing deformations of the middle surface (characterizing
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the changes in the angle between the co-ordinate lines) can
be assumed to vanish. |
Based on the first hypothesis, the deformation of a section of a
thin-walled beam will consist of a rigid body rotation about the shear
centre of the section and translations with respect to the shear centre.
The deformation of 2'section is illustrated in Appendix 1.
If v and w rep?esent_thé displacenents in the OX and 0Y directions
respactively of a pbint lying on an arbitrary cross-section.of the beam,

the following relations are obtained:
v(z,y) = £(z) - {y - ay) o(z2) (4.1.1)

w(z,x) = n(z) - (x - a ) 6(z) ‘ (4.1.2)

£

In these expressions, x, y and z are co-ordinates of a point on the
X, Y and 7Z axes. 7 is the longitudinal axis of the beam. The X and Y
axes are the principal axes, forming with Z a left-handed orthogonal
co-ordinate system with its origin at the centroid of the section,
point 0.

¢ and n are the displacenents of the shear centre in the direction
of the co-ordinate axes 0X and 0Y resnectively. 'e is the angle
through which the section rotates as a rigid body about the shear
centre. |

From the second assuantion concerning the absence of shearing
strain in the niddle surface, the longitudinal displacement at a section
z = constant can bhe written as:

u(z,s) = z(z) - £'(z)x(s) =~ n'(2)y(s) - o' (z)uls) (4.1.3)
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In this expression, s(x,y) is the co-ordinate along the contour line S
of the section with respect to a convénient1y chosen origin on the
contour.

The longitudinal displacements given by the sun of the first three
terins of equation (4.1.3) are the results of combined extension and
bending in the OXZ &nd 0YZ planes. z(z) is the axjal deformation. The
bending deformation is représented by the functions £(z) and n(z) which
describe the f]exufe of an arbitrary axis of the bean in the longitudinal
planes 0XZ and 0YZ. The fourth term represents that part of the total
displacement waich arises as the fesu]t of torsion. Vlasov defines this

vas the sectorial warping of the saction and it is described by the
generalized co-ordinate w(s), cailed the sectorial area. The sectorial
area concept is described in Appendix A,

Knouwing the longitudinal disnlacements u(z,s) of the points of

the middle surface, the longitudinal strain e can be determined by

taking the derivative of u(z,s) with respect to z.

e =55 = (@) - £ (2)x(s) - a"(2)y(s) - oM (@)als)  (4.1.4)

Pz
Equation (4.1.4) shows that the relative longitudinal extensions

e(z,s), at the section z = constant, are made up of extensions lincar
in the co-ordinates x(s) and y(s) of the point on the section, and
extensions nroportional to the sectorial area which arise as the
result of the warning of tha section.

The disnlacenants and longitudinal strains at any point of t

niddle surface of a thin-walled beam can be deterwined using eguations

(4.1.1), (4.1.2) and (A.1.4) if the functions z(z), £(z), n(z) and
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6(z) are known.

These functions are determined uéing the lirearly uncounled
differential equations derived from equilibrium conditions and given by
Viasov (3). 3y introducing the conditions of an eccentric, transverse
load at the top edge of the building, these equations can be simplified
to the following:

EAg" = 0’

Yglv
EIXn

El o'V - GI, 8" =0
W

El

1]
<O

W (4.1.5)

t
o

In these expressions, A is the cross-sectional arca. IY and Iy
\

are the moments of inertia with resnect to the Y and X axes respectivaly.

,
I = i w2 (4.1.6)

W

. e e A . . s . ,
is the sectorial moment of inertia and is determined by the shape of

the cross-scction.

I, = %-z ds3 where o = 1 (4.1.7)

d
is called the torsional rigidity of the secticn. E and G are the
“modulii of elasticity and shear respectively.

Hith a line of action aleng the back wall of the building in the
negative Y direction, the 1oading creates an eccentricity e with respect
to the shear centre. The effect of this load with respect to the line

[}

of shear centres is bending due to the flexural load P and torsion due
to a counter-clochwise torsional momeﬂtw

1= Pe (4.1.8)



It is assunsd that the compressive stresses due to self-weig

are small enough to be neglected.

at

25
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4.2 SOLUTION OF DIFFERENTIAL EQUATIONS

In the loading system used in the experimental investigation,
there were no externally anplied loads in the 07 and 0X directions.
Consequently, the Tunctions ¢ and ¢ are both equal to zero. It is then

1
necessary to solve tie following differential equations:

ELn'Y =0 | (4.2.1)
W |
El o' - Gle" =0 (4.2.2)

Afsar (1) gave a detailed solution to equation (4.2.1) which is
used in this investigation as an approximation to the bending component
of the total deformation. The solution to equation (4.2.1) 1is given
by:

p 2 3 a
n(z) = w5 (3222 - 23} (4.2.3)
B
Conseguently, differentiating twice,

()]

n"(Z) (;gl {2 - 2z} (4.2.4)

Equaticn (4.2.2.) can be rewritten in the form

.2
W h;~ " =0 (4.2.5)
2
51
h 20/ d
where k T 2

and £ is the span length of the heam along the generator
~making k a dimensionless quantity.

The general solution to ecuation (4.2.5) as derived in detail by
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Afsar (1) is given by

k

- Lo K .
o(z) = Cq + Coz + Cq sinh czt Cy cosh . Z (4.2.6)
The general integrals for the warping,
v 4o
0" = o3 . | (4.2.7)

,

and the generalized-internal force factors B and H can also be
determined.

The bimoment B, is one of four generalized, Tongitudinal forces
describing the longitudinal displacement of a section. They are
obtained by integrating over ths arsa of the section, each of the
products formed by multinlying the elementary longitudinal force odA
with the functions 1, x, ¥y and w.

Th

[$]

first three quantities determine the lonzitudinal force and the
bending moinent ahout the X and Y axes respectively. he fourth term
B, the bimoment, corresponds to thas sectorial warping'of the section.
It has units of pound—inchz. ’

The bimcment is a generalized balanced force system statically

equivalent to zero. It is aetermmined, as described earlier, by
B = | cwdA (4.2.8)

vhere o, from Yookes law, is given by

o = E{g' - £"%x - n"y - 8"w} (4.2.9)
Since 1, X, Yy and w are the princinal, qeneralized co-ordirates which
satisfy the conditions of orthogonality,

= o u N ny -
R Elwe (4.2.19)
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Similarly, three generalized transverse forces, describing the
transverse displacenants of the section Z = constant, can be
determined. The first two are transverse forces while the third is
H,» a flexural-torsional moment about the principal pole. It is found
by using the shear force 16 which acts along the targent to the
cowtour of the section. ,

Further, due to the nconuniforim distributions of the tangential
stresses cver the thickness of the wall, a torsicnal moment Hk must be
taken into account. Thérefore, by vector additicn, H, the generalized

external force factor in the transverse directicn, is given hy

H= -EL,0'" + GI (4.2.11)

1

de
Now, from eauations (4.2.46), (4.2.19) and (4.2.11), the total

general solution to the hanogenecus differential equation of torsion

can be written

. k
6, = Cy + Loz + €y sinh (E'Z) + C, cosh (+ z)
6' = C,+ C. < cosh (5-7) + ¢, & sinm (E-z)
Y 4 2 3 L > L V4 2 " 2 (4.2.]2)
B, GI ,{C, sinh (= 2z) + C, cosh (=2z)}
HZ = GIdC2

K
%
pendent soluticns of ecuation (4.2.5). 61, Cpr Cq and C,

T L2 > 1 k ] .
In these equations, 1, z, sinh (E'Z) and cosh (= z) are particular,

linearly inde
are arbitrary constants.
This systen of eguations (4.2.12) applies in general to a thin-

walled beam subjected to a transverse leoad which does not pass through the

shear centra,
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£.3 METHOD OF IMITIAL PARAMETERS

The constants of integration of the system of equations (4.2.12)
are determinad by using the method of initial paraneters as described
by Vlasov (3). |

In this method, the origin of the co-ordinate Z is placed at

some arbitrary section of the beam. The geometrical and statical
factors involved 1nfthe desgripticn of the torsion of the beam by the
law of sectorial a%eas have prescribed values Tor this section.
External forces are not considered in the determindtion of these factors.
That is, the heam is suhjected to the action of the initial paremeters
only. ' v

Setting z = 93 for this section and denoting the paraneters as 0, »
_ 0

[

Id’ the Tollowing expressions are obtained from

o]

=5
f
~
12

the set of equaticns (4.2.12):

Zo 1

o' =c,+ L - ‘
z, 2 273 ‘ , (4.3.1)

B C,GI

z, 47°d

H = C,G1

z0 2°°d

1
C; =06, + B
1 Z, GId z
Cr) = r\-I H (ﬂ3 ?)
4 i;:Id ZO Fe .l
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c, = - _...l__ B

4 GI

-
“

d 0
Substituting for C], CZ’ Cq and C4 in the system of equations

(2.2.12), tha general equations for the method of initial paraneters

become:
R . k 1 k
6, = 0_,.++0 {sinh (= z)} - B_ {cosh (= z) - 1}
z zQ k Z, 2 GId z, 2
1 L s k
+ - H {z - 7 sinh (= 2z)}
GId zO k )
(4.3.3)
e'z = e'z cosh (%-z) - ; r} B, {sinh (%—z)}
0 *d e
+ e {1 - cosh (% 2))
d 0
= .& ' Inh ..’._(_-1
B, =- 6l e 2 {sinh (Q z)}

n k + X : k
+ B ) cosh (2 z) + > Hzo{s1nh (2 z)}

jm
1
o

The set of equations (£.3.3) defines a set of linear transformations

of the known flexural-torsional factors of the initial section; e_ , e'z s

Z0 0

BZ /GId and HZ /GId at z = N, designatec by Z,» into the Tlexural-torsional
0 0 ‘

factors OZ, o' L /GId and !-!Z/G.Id at the section z = z, where z is the

z° Yz
Tongitudinal co-ordinate of the ssction. The coefficients cf this set



of equations are given in tabular form in Table 3.

The initial parameters o_ , 6'_ , B_ /GI, and H_ /GI, are determined
z, o Zo d zo d

in general by imposing the particular boundary conditions of the beam
being investigated to either the set of equations (4.3.3) or the
tabular renresentation of these equations, Table 3.

The method of initial parameters is now extended to cover the
.integration of the homogeneous equation resulting from various concentrated
force factors arbitrarily placed along the beam.

Consider a beam with initial paraweters 6_ , 8'_ , B_ /GI, and
Z, z,” "z, d

0 Zy t %t

acting on the heam at z = Zyo For a section 27 2 245 the total factors

™ — 1
Hz /uId at z = Z s and concentrated factors 6_ , o - Bz /GId and Hzt/GId

6. ,08'_ , B
s SRS S T

superposition of two contributions.

/GId and HZ /GId at that level are determined by the

. s . \ . . .
The fxrst contribution; 6, 5 8,5 BZ_l/GId and Hz]/GId’ is determined

1 1
by using the initial parameters o, , 8'_ , BZ /GId and HZ /GId and the

Z0 ZO o 0

transformation coefficients of Table 3 with the arguement Zy-

The second contribution is comprised of the factors o » 0' .,
Z-|jt Z; t
Bz]-t/GId and Hz}-t/GId’ which are the result of tha action of the

) ! n .
concentrated factors ezt, ] Zt’ th/GId and Hzt/old, In this second

- case, the contributing factors are comnuted by using the concentrated

. ' |12 Y i
factors: ezt, ) Zt’ th/GId and Hzt/GId and the transformation

coefficients of Table 3 with the arguemnent (z] - t).



TABLE 3
BASIC TRANSFORMATION COEFFICIENTS *

% % B,/61 /61,
0, 1 %-sinh (%-z) 1 - cosh (%—z) z - %-sinh (%—z)
e; 0 cosh (%-z) —-% sinh (%-z) 1 - cosh (%-z)
BZ/GId 0 - &k' sinh (12- z) ~ cosh (—E— z) i’lz- sinh (% 2)
H, /G, 0 0 0 1

* by Vlasov's Theory

4
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For that part of the beanm where z <z , the

; say 2z, where z, < 7
g2 S Zp 2 < %t
a

N ' . e au e . . Ciosaes
factors 9,5 0 5 BZ/MId and HZ/CId are found by using the initial

narameters 6, » e'z > BZ /GId and HZ /GId and the coefficients of

0 0 0 o
» 3 with the arguement z,.
Table 3 with the arg t 5
1
This superposition of tha effects of the éoncentrated factors
at the section z = z, on the level z = Z3 is shown by expanding

“t
Table 3 to form Table 4.

Using the taw of superposition which follows from the linearity of
the transformation illustrated by the coefficients of Table 3, the
form of Takle 4 can be generalized to more complicated cases of Toading
applied at various sections of tha heant. Thase applied loads can be in
the ferm of concentrated loads at a point of the section or loads

continuously distributed over part of the lendth of tha beam.



TABLE 4

GENERALIZED TRANSFORMATION COEFFICIENTS *

! B_ /GI
z0 d

H_ /GI
z, d

9
Zt

el
Zy

B. /GI
zy d

‘H_ /GI
zy d

———

0 | cosh (%z]) - =

0o |- %sinh(:"f— z,) cosh(% 2,)

1 T’i—sinh(-t— 21) 1 - cosh(l;- z])

sinh(-z- z])

L k
z -5 sinh (I 21)

1 - cosh(% 21)

%sinh(% 21)

L
U

1 %sinh {—,‘2—(21 - t)}

0 cosh{%—(z] - t)}

sinh{—::-(z1 - t)}

1 - cosh{ Xz, - t)

k

. k
-2 s1nh{z(z.' - t)}

cc:zsh{%(z1 - t)}

L . k
z - ¢ sinh{ E(Z] - th

1 - cosh{%(z] - t)}

-ﬁ—sinh{%—(z] - t)}

* by Vlasov's theory

123
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4.4 MATHEMATICAL REPRESENTATION OF THE EFFECT OF THE FLOOR SLABS ON THE
BUILDING

Viasov (8) found that the effect of a transverse plate situated
at a section z = zZ, of a thin-walled beam on the behéviour of that beam
was a concentrated, longitudinal bimoment.

This bimoment,véiven by

B = s o, | (4.4.1)
represents the effect of a floor slab on fhe behavﬁour of the small-scale
shear wall building. In this expression, E is the modulus of elasticity
of the floor slab material and p is Poisson's ratio. The gecmetrical
properties of the floor slabs are given by h , the thickness, and @,
which is twice the area of the plate. eék is the warping of the beam at
the level of the floor slabs.

Based on the system of analysis established in this study, the
superposition of the effect of a floor slab on the building can be
given in the tabular form of Table 5. In these expressions, Z, is the
level of the floor slab in the building and 8, 15 the binament at that

section, representing the effect of a floor slab on the building.

Using Table 5 and knowing the initial parameters 8, > e; s BZ /GId

0 0 0
and HZ /GId at z = Z and the properties of the floor slabs; the
o
functions ez], eZ], Bz]/GId and Hz]/GId at a section z = Z; can be

determined. A typical floor slab is situated at z = Zy s where

Zo <2y < Zy. The equations relating the initial section z = z, and the

final section z = z;, including the effect of the floor at z = z, are



TRANSFORMATION COEFFICIENTS INCLUDING EFFECT OF FLOOR SLAB *

TABLE 5

]

o

B. /GI
z, d

H. /GI
zo d

T ————
——————

°;

'
eZ

B,/61,

HZ/GId

[ k

T(- sinh (z‘ Z)
cosh (—E— z)

- -ii sinh (% z)

0

1 - cosh (% z)

k . k
- 7 sinh (I z)

cosh (% z)

0

———

—

L . k
z - ¢ sinh (357')

1 - cosh (% z)
2

X sinh (% z)

.

B_ /GI
z, d

-

1 - cosh ry (z - zk)}
k . k

- 7 sinh {7 (z - zk)}

cosh {% (z - zk)}

0

* by Vlasov's Theory

9¢



the following:

) . k
0. =6_. ++06'_ sinh (- z,)
z, z, k Z, 2 1
1. k
+ ==~ B_ {1 - cosh (= z4)}
GId z, g “1

+“§}—- H {z] -{—sinh_(% z])}
+ o tk ¢! Y {1 - cosh [E (z4 - 2,)]}
GI zZ, 2 ] k

e! =9' cosh (Ez]) -1;- -G-—}—-— B. sinh (% z])

Z] ZO v 2 d ZO
1 k
+ = H. {1 - cosh (+ z,)}
GId z, ¢ 1
-l;. G']I" (k eé } {sinh [% (z] - zk)]}
d k ,
B. =Gl o' {-%sinh (K20}
zy d 'z k 2 1
0
- L . k
+ Bzo cosh (1- z]) + HZO{ ¥ sinh (Ti z])}
t k
+ (k ezk} {cosh [-,;: ( zq - Zk)]}
H, =H = Pe
% Zo
_ B el
Note that k. _Eh'a k

GId 12(1 + ) GId

3
and that k has been substituted for —]—2—(%—*‘7—;;

37

(4.4.2)
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4.5 ‘ANALYSIS OF THE BUILDING WITH FLOOR SLABS
The boundary conditions of the vertical cantilever building

with floor slabs are the following:

at z =0, 6 = 0
6 =0 (4.5.1)

at z = 2 B=20

‘ ' H = Pe

Using Table 5 and the ‘stated boundary conditions, the initial
parameters can be determined. At z = 0, 6(0) = 0 and 6'(0) = 0.

Therefore, from Table 5

ez+0+0+0+0=0 (4.5.2)
0
0O+6'. +0+0+0=0 - (4.5.3)
Z, .
It can be seen that 6. =90o'_ = 0.
%5 2

When applying the boundary condition that B(2) = 0, it is
necessary to take into account the effect of the concrete floor
slabs on the building. That is,y it is not p0$sib1é to relate

the initial parameters ezo, ) zo’ BZO/GId and HZO/GId at z = z,

to the functions at z = z, » where B(2) = 0, without taking into
account the fact that each floor of the building has an effect
on the relationship.

To illustrate this point, consider a building with a single
floor slab which is located at the top of the building. Reférring
to Table 5, the equations relating the initial parameters at

z=2z to those at z = z, can be written.
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Therefore,

Bz {cosh (k)} +'{%-sinh (k)} Pe + B, {cosh (K)} =0 (4.5.4)

0 [

Solving for B
z
‘o

B, = -({-’fE sinh (k)} Pe + B, {cosh (k)}|fcosh (k)} (4.5.5)
o L '
. _ Eh3n '
since B, = 35777 s I

2 L

and substituting for B,  in equation (4.5.5)
: L

R S . Eh3n
Bzo = -({k sinh (k)} Pe + o z, 20+ 3) {cosh (k)}]/{cosh (k)31

For this simplified case, Bz can be found by solving the three
0

simultaneous equations represented by Table 5, for the three unknowns

B. , 6. and s’ .
o %y )

This simple solution is not'possib]e in the building with seven
floor slabs since the effect of each floor slab must be considered
in sequence going from the bottom of the building to the top. The

condition that B = 0 at z = z, cannot be applied until the last floor

at z = z, is encountered in the progression from bottom to top.

It is, therefore, necessary to determine Bz subject to the
o
influence of each of the seven concrete floor slabs and the aluminum

capping plate. The procedure used in determing BZ will now be
. Tz,
outlined.
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Using Table 5, the relationship between the initial parameters

at z = z_ and the functions s_ , &'
0 z z

, and B
1 ] z

/GId at the level of
1

the first floor z = z4 can be established. H is a constant value
throughout the total height of the building and is equal to Pe, where

P is the applied load and e,is the eccentricity of the applied load with
respect to the shear centre of the section. Then, using the functions

6, s e'z and BZ /GId as the initial parameters for the second storey,
1 1 1

the functions e_ , o' and B_ /GI,, at the second floor level z = z,,
z, z, 22 d 2

can be established as functions of ¢_ , 6'_. and B /GI,.
Z-l Z-l z] d
This step-by-step procedure is continued from floor level to
floor level until the last floor level, the aluminum capping system
at z = zg, is encountered. At this level, the functions ¢_ , 6'_ and
o

o . '3 1)
BZ /GId vwill be written as functions of eZ s B . and Bz7/GId.

8 7 7
In general, for the building being considered, there are three
unknown functions; e, 6' and B/GId, at each floor level, including the
base and the aluminum plates at the top. Also, there are three
equations which relate any two successive floor levels of the building.
This results in a system of twenty-four equations in twenty-seven
unknowns.,

Introducing the boundary'conditions 6, =0,6', =0andB_ /GI,k6 =0,
z, z, zg " d

the system of equations reduces to twenty-four equations in twenty-four

unknowns. Therefore, the value of the initial parameter, BZ at z = Zgs
)
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can be determined for each increment of the applied transverse load.

The four initial parameters at z = z, are now established.
Incorporating the expressions of Table 5, it is now'possib]e to determine
implicit values for the functions ¢, 6' and B/GId at any level of the
building. .

In-the present'analysis, the step-by-step procedure described
previously is used to determine the functions at the half-way point
between successive floors. The co-ordinates of the points being
examined are iﬁtroduced and using equations (4.1.4), (4.1.1) and (4.1.2),

the theoretical strains and displacements can be determined.



CHAPTER 5
EXPERIMENTAL OBSERVATIONS AND- COIPARISONS WITH THEORETICAL ANALYSIS

5.1 CRACKING PATTERNS

The two small-scale shear wall buildings studied in this
investigation both failed suddenly, without any visible signs of the
impending failure.

Building I failed in tension at a load of €60 pounds in corner ¢
of the building. (Figure 24) The cracking patterns for Building I
are shown in Plates 5, 6 and 7. The first two of the photographs show
the pattern in flange 3. (Figure 24) As can he seen, the failure surface
penetrated the wall. Plate 7 shows the extension of the failure surface
along the back wall of the building. The crack appeared along the bottom
_of tﬁe building, adjacent to the 2" angle. In this photograph the
arrow indicates the end of the visible crack.

Building II failed at 720 pounds. Plate 8 shows the cracking
pattern on the inside of corner ¢ . The pattérn is visible along the
inside of flange 3 and partway along the back wall. Plate 9 shows
the cracking pattern along the back wall in corner ¢ . The crackihg
pattern along flange 3 1is seen in Plate 10.

Since both buildings failed suddenly, the progression of the

failure surface wvas not observed.



5.2 LOAD-STRAIM RELATIOHSHIPS

Figure & shows the relationship between the applied load and the
resulting longitudinal strain for a typical strain gauge location. The
theoretical curve, found using VYasbv's theory, is also shown.

Typical strain distributions for applied loads of 250 and 509
pounds are given in Figures 5, 6, 7 and 8. The distributions are given
at levels z = 4" and z = 52" of Buildings I and II. The experimental
values neasured dufing the tests are supcrinposed on those distributions
predicted by VYlasov's theory.

Reasonable agreement can be seen between the experimental strain
distributions for similar loads con Buildings I and II. The éxnerimenta]
strain distributions are displaced towards the tension (+) side of the
theoretical distributions. lHovever, the shifts observed are not
uniform in magnitude over the sections shown. |

Coaparing the observed distributions at z = 4% shown in Figures 7
and 8, there is no obviocus relationship between the tension shifts when
the applied load is doub{ed. Similarly, Figures 9 and 12 illustrate
the same fact for the level z = 52". There is a qualitative agreenent

nnarent tension shifts of the strain distributions in the two

e
=
L
=35
(€]
2

“buildings tested. Figures 11 (a) and 11 (b) summnarize the apparent
tension shifts obsarved in the figures presented. In these figures,
the datun used in each case was the theoretical strain distribution.
The tension shift was chosen as the positive quantity.

In summary, the comparison of cexperimental and theorctical strain

distributions show 1ittle agreement. There is, however, qualitative



agreenent between the strain distributions measured experimentally in the

two buildings.
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5.3 LOAD-DEFLECTION RELATIONSHIPS

Typical exparinental deflection patterns a]ong thé height of
Buildings I and II are shown in Figures 12 and 13. These figures
i]]ustrafe the ré]ationship between height and deflection -as a function
of the applied load. |

Figures 14 and 15 compare the measured experimental deflections
with those def]ectibns predicted by Vlasov's theory. Comparisons are
made at 250 and 509 pounds.

The deflection behaviocur of the interior points on each of the
three flanges of both buildings is shown in Figures 16 and 17. The
theoretical deflection patterns for loads of 257 and 529 pounds, as
seen in Figures 16 and 17, show that each flange should behave exactly
the same. It can be seen that the flanges do have a very similar
deflection pattern.

This same coﬁparison_for the exterior points on the flanges is
shown in Figure 13,

Figure 19 compares the deflections in the direction perpendicular
to the 1ine of loading in corners a and ¢ of each building. At a
1oad df 250 pounds, it can be seen that corner a deflects more than
corner ¢ . Figures 20 and 21, showing the rotated pesitions of the
buildings, verify this observation. ~Vlasov's theofy predicts that
these deflections in the X-direction should be equal in magnitude and
obposite in direction. |

In Figures 22 and 23 the theoretical deflections due to bending
and torsion are shovm. It can be secn that the torsion component is

considerably larger than the bending component. Shear deflection is
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~insignificant. | |
These height-deflection curves pofnt out that there is little

relationship between the deflections measured experimenta]}y and those

deflections predicted using Vlasov's theory. In each case, the

experimental deflections far exceed the predicted deflections.

1
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5.4 GENERAL BEHAVIOUR OF THE BUILDINGS

The height-deflection curves of tﬁe small-scale shear wall building
with floor slabs are generally linear in form. The extended curves pass
through the origin. This deflection pattern is totally unlike the
cantilever-tyne deflection nattern predicted using Vlasov's theory.

The theoretical curves become tangent to the height axis and have zero
slope at the origin. ‘lhen f%e linear, experimental curves are extended
towards the origin,.they intersect the axis at finite angles.

It is generally obsarved that for a given load, Building I
deflected more than Bui]djng IT. Referring to Section 2.2, the modulus
of elasticity of Building I was less than that of Duilding II.

On the basis of Fiqures 15, 17 and 18, it can be observed that the
three flanges of each building daflected in the same manner and to the
sane degree. The monolithic assembly of shear walls with rigidly
installed floor slabs behaves as a unit, with all flanges deflecting
uniforaly.

Figures 27 and 21, showing the rotated positions of the buildings,
verify that the two buildings behaved in a similar manner when loaded
identically. Further, considering the fact that the material of
Building I had a lower modulus of elasticity than that of Building IT,
it can be said that the two buildings responded exactly the same to
the external loading. |

As illustrated by the lack of agreement between the experimental
and theoretical curves, the exparimental buildings and theoretical

nodel did not respond sinilarly to the annlied loading.
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5.5 DISCUSSION OF RESULTS

From the previocus discussions regérding the commerisons between
the theoretical and experimental curves, it is obvious that there is
little agreament.

An apparent tension shift is seen jn all experimental strain
distributions. Vlasbv's theory predicts that there is zero strain in
the middle f]ange.-'However,,the recorded experimental strain
distributions shownvin Figures 7, 8, 9 and 10 clearly show that a strain
distribution does exist in this flange. Further, it follows the same
trend as in the outer flanges, nanely a tension shift. The tension
shift is in each f]angg of the building at hoth Tload levels.

An attempt was made to account for this tension shift on the
basis of a vertical component of the applied load. However, the
vertical pull necessary to produce a uniform tension shift of the
magnitude indicated was much in excess of the total applied load.

The appearance of such a strain distribtution in the middle flange
could be accounted for by a shift of the shear center from the axis of
symnetry. GQureshi (2) suggested that a non-uniform wall thickness
caused a shift in the shear center. This shift of the shear center
resulted in unequal deflections of the corners of thé Euildings in the
X-direction. (Figure 24) Unequal ceflections of the corners in the
direction perpendicular to the line of loading were observed in this
investigation. (Figure 192)

The thecretical and experinental deflection-height curves show
little agrecnent. (Figures 14 - 12) Shear deformation was considered

as a possible adcition to the theoretical deflections caused by
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bending and torsion. Assuming that the shear is carried primaki]y by
the back wall, the shear deformation was found to be negligible.

Vlasov (8) defines a thin-walled beam by the physical charactefistic
that their three dimensions are all of different orders of magnitude.
Denotfng the thickness of the wall by & ; the width of a beam by

d 3 and the length of a beam by ¢ , V]asovArequires that:

(1) &/d < 0.1

(2) d/g < 0.1
| The purpose of these general requirements is to ensure that the beanm
being investigated is flexible in the longitudinal direction. Uhen the
beam is flexible in the longitudinal direction, there is very little
deformation of the cross-section. If these requirements are met, the
thin-walled elastic beam theory is anplicable.

The building studied in this investigation had the following
ratios:

0.01

Ife

(1) s/d
(2) d/e

There are two factors which would influence the longitudinal

0.4

flexibility of the building with floor slabs. First, the ratio,

d/2, of the buildings is approximately equal to 0.4. This fact would
indicate that the building did not have the required flexibility in

the Tongitudinal direction. Secondly, the introduction of the rigidly
connected floor slabs at one fodt centres along the héight of the
building would tend to make the building stiffer than a bui]ding
without the floor slabs. It is suggested that the combination of these

two stiffening factors definitely affected the behaviour of the
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building by reducing the longitudinal flexibility. The reduced,
longitudinal flexibility could account for the lack of agreement between
theoretical and ex ental curves.

The use of the concrete micro-mix material for the buildings tested

introduces a number of uncertzinties.

‘

The extensive vibrating and working cof the material, which is
necessary in the casting Qf’the building, induces segregaticn of the
aggregates in the concrete mortar. It has been observed that the
flange tips of the building are void bf the concrete paste while the
outside surface of the back wall is generally flaked from the excess of
the hardened paste. Recalling that the wvalls are only 1/2" thick, it
follows that a uniform modulus of elasticity does not exist in the
building.

Building I was cycled, Toaced and unloaded, four times to a
maximum of 250 pounds. Loading to failure was carried out in the
fifth cvele. Building II was cycled twice to a maximum of 250 pounds
before being failed in the third cycle.

It is suggested that the combination of cyclic 1oad1 7 and the
characteristic inelastic hehaviocur of the concrete material affected

of tha

v

the values of the modulus of elasticity during the testing

(.L_

bui]dings. The theoretical analysis of the building is not greatly
sensitive to changes in the elastic modulus. However, the effect on
the experinental results of such chzanges is not known.

The doninant feature To be considered in the comparison of
experimental and theoretical rL>u1 ts is that the buildings stu"a

do not completely satisfy the longitudinal flexihility requiremants of
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V]asov's thin-walled elastic beam theory. The rigid floor slabs
reducad the already insufficient longitudinal flexibility of the
buildings. It is suggested that these factors are the major reason
for Tack of agreecment betwsen the theoretical and experimental results.
The cross—sect{ons of the buildings do retain their _E -shape as

required by V1asovf§ theory.
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5.6 COMPARISON OF THE BEHAVIOUR OF BUILDINGS WITH WALL OPENINGS AND
BUILDINGS MITH FLOOR SLABS

In phase II of the shear wall project, Qureshi (2) tested two
buildings with two vertical rows of circular openings in the back wall.
Building I fai]ed at a 1oad of 859 pounds and Building II failed at
900 peunds. Building IT had two openings at z = 6".

In the investigation réported here, Buildings I and Il failed at
650 and 720 pounds; resnectively.

The two types of buildings had similar failure patterns with the
failure surface generally along the base in corner ‘¢ (Figure 24).

The deflection-height patterns recorded by Qureshi (2) had tha
same linear characteristics as those curves recorded in this investigation.

For illustrative purposes, a quantitative comparison of deflections
is made for a dial gauge located one inch from the tip of flange 3 at
level z = 38", At a load of 250 pounds‘the first Buildine investigated
by Qureshi récorded a deflection 43% greater than his second Building.
The deflection of the second Building was approximately equal to the
deflection of the first Building of this investigation and was 31%
greater than the second Building.

At 520 pounds, Oureshi's first Building deflected 55% more than
the second. Hfs second Building recorded deflections which were 9%
and 41% greater than deflection of Buildings I and II, respectively,
of this investigation.

The two types of buildings tested in phases II and III of the

project had qualitative agreement in the shapes of the strain distributions.
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The first Building investigated by Qufeshi had strain distributions which
agreed with those distributions predicted by Vlasov's theory. Building
II produced only qualitative agreement with the theoretical distribution,

In this phase of the project, 1ittle agrzement between theoretical
and experimental strain dis?ributions was anparent.

A genera],nwnérica] comparison hetween the strain distributions
recorded in these two phases of the project is difficult because of
expérimenta] scatter and non-uniform strain patterns. However, an
indication of the differences in strain distribution can be seen by
comparing strains at a strain gauge located 2" from corner c¢ ,

(Figure 24)7a10ng flange 3 at level z = 4".

The second of Qureshi's Buildings had a strain level 33% greafer
than his first Building. His second Building also recorded strain
levels 7% greater than the first‘Bui]ding tested in this investigation.
Building II of this investigation recorded a strain level 50%

greater than the second Building investigated hy Qureshi.
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CHAPTER 6
CONCLUSIONS AND RECOMAENDATICHNS

€.1 CONCLUSIONS

It can be concluded, based on the experimental investigation

reporied here]tna+ the cross-section of the building with floor slabs
does not change sh a;A during loadiug. A hasic assuaption of Vlasov's
theory, which was used as the theo oretical medel in this investigation,
was that the cross-section of the thin-ualled elastic beam retain its
shape during loading. The experimental building and theoretical

model bahaved similarly in this respect.

The height-deflection curves, which represent the respense of the
experimental building to the static Toading, were linear in form., If
extended towards the origin, these curves intersected the crigin at
finite angles.

The shape of these curvas would indicate that the cantilever-tyne
deflection patterns, Dre dicted by the mathenatical model, do not
praedict the Eehaviour of the experimental buildings.

Qualitative agreement was observed batween the strain distributions
detennined experinentally for Zuildings I and II. There was, however,
little agreament between the experimental strain distributions and
those distributions predicted by VYiasov's theory.

It is concluded t|at the experimental buildings responded similarly
.to the static loading. It is further concluded that the experimental
“and theoretical modals did not resnond in a similar manner to the

static Toading.
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6.2 ASSESSYMENT CF CONSTRUCTION AMND TESTING TECHNIQUES

. The technique of casting and construction of the buildings with
floor slabs produces sound structures. However, since wood formiork
is used in the casting phase, there are certain unavicdable faults with
the basic building. The walls of the building are not uniform in
thickness and the flanges suffer a segregation of the aggregates. The
recomiendations madé by Qureshi (2) regarding the overhauyling of the
formsork were not implemented. It is suggested that they be adopted in
an attempt to minimize the faults in the buildings.

Based on the findings of the present investigétion, certain
modifications in the instrumentation of the buildings can be suggested.
The top row of strain gauges at the level z = 32" should be abandoned.
More strain gauges should be installed at the levels z = 4" and z =52"
in order to obtain a more detailed record of strain distributions.

_ Since the three walls of the building respond similarly to the
static loading, it is not necessary to instrument all three walls with
dial gauges. Two vertical lines of gauges on one wall will record the
1a£era1 displacements of the bui]ding. A vertical row of gauges at
each outside corner of the building would give the def]ection natterns
in a direction perpendicu]arvto the line of loading. Several horizontal
rows of dial-gauges would indicate the rotated position of the building.

In order to minimize the éffects of the inelasticity of the
concrete material on the experimental information, ft is recommencad
that only two cycles of load be apnlied. The first cylce, to a low

level of leading, would suffice toc verify the instrumentation. Then,



the building would be 1oaded'in increments to failure.
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6.3, RECOITMENDAT IO _

It is reconmended that the finite element method be considered
as a method of-analyzing the comnlex, three-dimensicnal behaviour of
the small-scale shear wall building with floor slabs. Six deformations
at each corner of each element can be accounted for in the stiffness
“matrix of the building. Part, or all of these deformations could bhe
used to describe the comp]ei behaviour of the small-scale shear wall
buildings with floor slabs.

.Some considerations are necessary in selecting the unit element,
although the form of the building would suggest the use of rectangular
elements.

A concurrent investigation is beirg conducted in which the finite
element anproach is being used to predict the dynanic response of a

T section. The section being tested consists of two 1/2" thick
plates cast monolithically using the micro-concrete material used in
the small-scale shear wall buildings. This T section is in effect
a basic unit of the small-scale shear wall bui]ding? It can be seen
that the results of this concurrent investigation could be applied to

the present problem.
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PLATE 1 INSTALLATION OF THE LAST LEVEL OF FLOOR SLABS IN
BUILDING 1



PLATE 2 ALUMINUM CAPPING SYSTEM IN POSITION ON BUILDING 11
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PLATE 3 LOADING APPARATUS IN POSITION FOR THE TESTING OF
BUILDING 11
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PLATE 4 FULLY INSTRUMENTED BUILDING 11 READY FOR TESTING
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PLATE ¢ CRACKING PATTERN ALONG FLANGE 3 OF BUILDING 1
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PLATE 8 CRACKING PATTERN ON THE INSIDE OF CORNER C OF BUILDING 11



PLATE 9 CRACKING PATTERN ON THE OUTSIDE OF CORNER C OF BUILDING 11



PLATE 10
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APPENDIX A
GEOMETRIC PROPERTIES OF THE BUILDING CROSS-SECTIOM

A comprehensive summary of the geometric properties of the
cross~-section of the basic small-scale shear wall building has been
compiled by Afsar (1). In this Appendix, a description of the major
geometric propertiQwaill be given. All expressioﬁs discussed in this
Appendix are defined by Vlasov (8).

(1) CO-ORDINATES OF THE SHEAR CENTRE
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FIGURE 25 CO-ORDINATES OF THE SHEAR CENTRE

The shear centre, S, with co-ordinates ays Ay Ties on the axis of
symmetry, OX. Point 0 is tha centroid of the cross-section and is the

origin of the left-handed orthogonal co-ordinate system. The sectorial



zero point at the intersection of the axis of symmetry and the profile
line serves as the auxiliary pole, B. The co-ordinates of point B are

bx and by .

The diagrams of the sectorial area “b’ with respect to the

auxiliary pole, B, and the ordinates y are shown in Figure 25.

Y

If oy represents the distance of the shear centre from the point

B, then
ay = ay - by
= %—- wg ¥ dA
X
A d
1 d d J{ |
=24+ 346 | yex
I, 2 2
0
2
_  dysdy
iy
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(2) SECTORIAL AREA

FIGURE 26 SECTORIAL AREA

The sectorial area for any point M on the.profile‘line is twice
the area of the sector enclosed between the arch]M of the profile line
and the two lines AM] and AM. These two lines join the ends of the segment
with point A. Point A is called the pole of the sectorial areas and point
M] is the sectorial origin. The line A1 connecting the pole A with the
movable point M is the mobile radius vector. The sectorial area for the
point M is positive if the mobile radius vector, AM, moves clockwise

when sweeping out the sector; 1if observed from the negative Z direction.
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(3) PRINCIPAL SECTORIAL AREA (w)

Lty

l(axf\
\ ]

e

FIGURE 27 PRINCIPAL SECTORIAL AREA

The determinatijon of the principal sectorial area for the
cross-section consideréd is given in detail by Afsar (]); The shear
centre, S, is the poTe for the principal sectoria] areas. Point B, at
the point of intersection of the axfs of symmetry, 0X, and the profile
line; serves as the origin of the areas. The diagram of the principal
sectorial areas as seen in Figure 27, is skew-symmetric with respect to
the 0X axis. The sectorial areas for the points on tﬁe web below the 0X
axis will be positive gince these areas are swept out in the clockwise
sense by the Fadius vector. The absolute value of the sectorial areas
for the flanges of the section decreases as the distance from the web
increases. At a point on the flange, at a distance from the centre of

the web equal to the distance of the shear centre from the. centre of the
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web, the principal sectorial area vanishes. Beyond this point the principal
sectorial area increases in the negatiVe value for the bottom flange and

increases in the positive value for the top flange.
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(4) DISPLACEMENT OF THE CROSS-SECTION UNDER FLEXURAL-TORSIONAL LOADING
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FIGURE 28 DISPLACEMENT OF THE CROSS-SECTION UNDER FLEXURAL-TORSIONAL
LOADING

On the basfs of Vlasov's first hypothesis, the deformation of a

section of a thin-walled beam in its own plane shall consist of a rigid

body translation and rotation.
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In Figure 28, point 0 is the centroid of the cross-section and point
S, the shear centre, is a distance oy %rom the middle of the web on the
0X axis.

In this figure, £ and n are the displacements of the shear centre, S,
in the 0X and OY directions respectively. The section rotates through
an angle o as a rigid body about the shear centre. If v and w are
respectively the diép]aéements of a point on the cross-section in the

0X and 0Y directions then,

e(z) - (y - ay) e(z)

v(z,y)

w(z,x) = n(z) - (x - ay) e(z)
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APPENDIX B
EXPERIMENTAL DATA

McMASTER UNIVERSITY. LIBRARY
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. TABLE 6(a)
DEFLECTIONS IN INCHES RECORDED DURING THE SECOND TEST CYCLE OF BUILDING I (LOADING)

Dial LOADING (pounds) .
Gauge 25 60 , 100 125 165 190 230 250
Numben : :
1 .0004 0012 .0020 .0026 .0034 .0041 .0053 .0059
2 .0008 .0021 .0034 .0044 .0057 .0068 .0084 .0095
3 .0015 .0035 . 0060 .0075 .0095 .0115 .0145 .0160
4 .002 .006 .009 .011 .015 017 .021 .024
5 . 001 .004 .007 .008 011 .013 .016 018
6 .003 . 007 01 014 .018 .022 .027 .030
7 .003 .008 013 017 1 .023 .027 .033 .037
8 .003 .009 J .016 .020 .026 .031 .038 .044
9 .003 .008 1 .012 .015 .019 .023 .028 .032
10 .004 011 - L0719 .023 .030 .036 .044 .050
11 .0002 - | .0010 .0017 . 0023 .0030 .0036 0047 . 0054
12 . 0007 .0019 .0033 .0042 .0054 .0065 .0082 .0092
13 .001 .003 .006 007 009 1 .011 .014 .016
14 .002 .005 .008 .010 .014 .016 .020 .022
15 .002 .003 .006. .008 .010 012 .015 .017
16 .003 . 007 01N 014 .018 .021 .026 .030
17 .003 .009 .014 .017 .023 .027 .033 .037
18 .004 .010 .016 .020 .026 .031 .039 .043
19 .002 .007 .012 .015 .020 .023 .028 .032
20 .004 .01 .018 .023 .030 .036 .045 .049
21 . 007 .020 .034 044 .056 067 .084 .096
22 . 0002 001 .0019 .0026 .0035 . 0041 .0052 . 0058
23 . 0001 .0021 .0047 .0066 .0089 .0107 .0134 - .0153
24 .0015 .0040 .0075 .0105 .0140 .0160 .0200 .0225
25 .002 .007 .011 014 .018 .021 .026 .030
26 . 001 .004 .007 .009 011 .031 .016 .018
27 004 .009 .014 .018 .023 .028 .034 .038
28 .003 .009 .016 .020 .026 031 .039 044
29 .005 012 .019 .024 .031 .036 .045 .051
30 .003 .007 0N 014 .019 .023 .028 .032
31 . 0005 .0015 . 0026 .0033 .0042 .0050 . 0061 . 0067
32 .0001 .0004 .0008 .0010 .0013 .0014 .0016 .0018
33(-) . 0001 .0003 .0006 .0008 .0010 L0012 .0015 .0018
34 .003 .007 0N .014 017 .020 .024 .027
35 .001 .002 .003 .004 .005 .005 006 .006
36(-) .001 .001 .002 .005 . 006 .007 .009 .010
37 . 006 .010 016 .020 .026 .030 .036 .040
38 .001 .004 .007 .009 .01 012 .014 .015
39(-) . 001 .004 .006 .007 .010 012 .015 .018




DEFLECTIONS IN INCHES RECORDED DURING THE SECOND TEST CYCLE OF BUILDING I

TABLE 6(b)
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- (UNLOADING)
Dial UNLOADING
Gauge 180 125 60 0 -
Nunber ‘
1 .0058 0041 .0029 .0012
2 .0083 .0060 .0038 .0012
3 .0140 .0100 .0065 .0020
4 .021 .015 .009 .003
5 .015 .010 .006 -.001
6 .026 .018 011 .003
7 .032 .023 014 .004
8 .037 .026 .016 .004
9 .027 .020 .012 .004
10 .043 .031 .019 .006
11 .0052 .0039 . 0025 .0010
12 . 0081 .0058 .0037 .0012
13 014 .010 .006 .002
14 .019 .013 .008 .002
15 014 01 .006 .001
16 .025 .018 011 .003
17 .032 .023 014 .004
18 -.037 .027 .017 . 005
19 .028 .021 .013 .004
20 .043 .030 .019 .006
21 . 0083 .0059 .0037 00N
22 .0055 .0040 .0025 .0010
23 .0130 .0096 .0078 .0016
24 .0195 .0140 .0085 .0020
25 . 025 .018 011 .003
26 016 0N . 007 .001
27 .033 024 015 .005
28 .038 .N28 017 .004
29 .048 .031 .020 . 006
30 .027 .020 012 .003
31 . 0060 .0043 .0025 .0004
32 0017 .0011 .0005 -.0002
33(-) .0016 .0013 L0011 .0007
34 .023 .016 .010 .001
35 . 003 .003 .001 -.001
36(-) .009 .007 .005 .003
37 .035 .025 .015 .002
38 .013 .009 .005 -.001
39(-) 016 012 .009 .004




TABLE 7
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DEFLECTIONS IN INCHES RECORDED DURING THE FAILURE CYCLE OF BUILDING I

Dial

'LOADING (pounds)
Gauge 75 140 200 250 340 400
Number
1 .0017 .0034 .0050 .0066 .0082 .0097
2 .0030 .0054 .0080 .0104 .0127 .0150
3 .0050 .0095 .0140 .0180 .0220 .0260
4 .003 .014 .020 .026 .032 .038
5 .006 .01 .016 .020 .025 .030
6 .010 .018 .025 .032 .040 .047
7 .01 .022 .031 .040 .048 .057
8 .013 .026 .037 .048 .058 . 069
9 .009 .018 .026 .034 .042 .050
10 .015 .030 .042 .055 .067 .079
1 .0016 .0036 .0047 .0063 .0077 .0092
12 .0028 .0056 .0076 .0101 0124 .0147
13 .005 .009 .013 .017 .021 .025
14 .007 .013 .019 .024 .030 .035
15 .006 .011 .016 .020 .024 .030
16 .004 .017 .025 .033 .040 .047
17 .01 .021 .031 .040 .049 .058
18 .014 .025 .037 .048 .058 .069
19 .010 .018 .027 .035 .043 .051
20 .015 .028 .041 .054 .066 .079
21 .0030 .0054 .0078 .0102 .0125 .0149
22 .0019 .0034 .0049 .0066 .0078 .0095
23 .0050 .0104 .0136 .0175 .0213 .0249
24 .0070 .0135 .0190 .0245 .0300 .0355
25 .009 .018 .025 .032 .039 .047
26 .006 .011 .016 .N20 .025 .030
27 .012 .022 .031 .040 .049 .059
28 .014 .027 .037 .048 .058 .070
29 .015 .029 .041 .054 .066 .079
30 011 .019 .027 .035 .043 .052
31 .0022 .0040 .0055 .0072 .0084 .0095
32 .0007 .0011 .0016 .0019 .0020 .0021
33(-) || .0005 .0012 .0014 .0021 .0028 .0037
34 .009 .015 .021 .027 .033 .038
35 .002 .004 .005 . 006 .006 .007
36(-) {| .003 .005 .007 .010 .013 .017
37 .013 .024 .033 .042 .049 .057
38 .005 .008 .010 .012 .015 .018
39(-) || .004 .010 .015 .020 .026 .031




TABLE 7 (continued)
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Dial LOADING (pounds)
Gauge 450 500 550 ' 600 630 660
Number
1 .0113 .0129 .0145 .0161 .0176 .0191
2 .0174 .0193 .0221 .0247 .0270 0271
3 .0305 .0340 .0380 .0420 .0460 .0470
4 .043 .049 .054 .060 .066 067
5 .034 .039 .043 .048 .053 .064
6 .054 .061 .068 .076 .083 .084
7 .067 .076 .084 .094 .103 .104
8 . 080 .090 . 100 1 122 .122
9 . 058 .066 .074 -.082 .090 . 106
10 .092 .104 115 .128 139 141
11 .0106 .0122 0136 .0152 .0166 .0209
12 0172 .0195 L0217 .0241 .0263 .0279
13 .029 .033 .037 041 .045 .047
14 .04 .047 .052 .058 .064 .065
15 .034 .038 .043 .048 .053 .063
16 .054 .062 .068 .076 .083 .085
17 . 067 .076 .085 .094 .103 105
18 .080 .091 01 12 .122 124
19 .059 .066 .075 .083 .091 .108
20 .091 .103 114 126 .138 140
21 0173 .0196 .0220 .0245 .0267 .0279
22 01 0127 0142 .0157 L0170 . .0207
23 L0291 .0333 .0370 0413 .0413 .0460
24 .0420 .0475 .0530 .05690 .0645 . 0655
25 .054 062 .068 076 .083 .08
26 .035 .03¢9 044 .049 053" 064
27 .068 077 .035 .095 .103 .104
28 .080 .091 107 12 123 124
29 .091 . 104 115 .128 140 141
30 .061 .169 077 .087 .095 109
31 .0107 L0119 .0129 L0140 .0151 .0219
3?2 .0022 .0022 .0022 .0022 .0022 . 0001
33(-) .0043 .0049 . 0057 0064 .0072 .0076 .
34 .043 ,048 .053 .057 .061 .038
35 .009 .009 .010 .010 01 .004
36(-) .020 .024 .027 .031 .034 .029
37 . 065 072 .078 .085 .091 .057
38 021 .021 .022 .023 .023 .006
39(-) .037 044 .05] 057 .064 . 055




DEFLECTIONS IN INCHES RECORDED DURING THE SECOND TEST CYCLE OF BUILDING II

TABLE 8

glﬁ;e LOADING (pounds) UNLOADING (pounds)
vauge 1l 60 125 190 250 190 125 1 60 p 0
1 0009 | .0019 | .0032 | .0041 || .0029 | .0015 |.0003 | -.0008
2 .0014 | .0030 | .0050 | .0063 || .0053 | .0036 | .0018 0000
3 -002 -003 .006 .008 008 | .007 | .003 -001
4 .0040 | .0073 | .0120 | .o160 || .0130 | .0090 | .0050 0005
5 .003 .007 .01 .014 011 | .007 | .o002 -000
6 .005 .010 .016 .021 017 | .o12 | .007 .001
7 .006 012 9 .020 .026 021 | .015 | .008 -001
8 .007 .014 .024 .031 026 | .o13 | .010 .00
9 -006 .012 .019 .025 020 | .014 | .002 .001
10 -008 .022 .032 08 |l .03 | .o25 | .06 .006
1 .001 .002 -003 -004 .004 | .003 | .002 .001
12 .002 .003 .005 .007 .006 | .004 | .003 -001
13 .003 .005 .009 .om 010 | .007 | .004 -001
14 .0035 | .0071 | .0119 | .0160 || .0134 | .0006 | .0054 .0009
15 -003 -007 -012 .015 013 | .010 | .006 -001
16 .005 .010 .017 .021 018 | .013 | .007 .001
17 -006 .012 .020 .026 022 | .015 | .009 -001
18 .008 .015 .024 .038 026 | .018 | .00 -002
19 .006 .012 .020 .026 022 | .0o15 | .009 -002
20 .009 .017 .028 .037 030 | .021 | .012 .002
21 -001 .003 -005 -007 006 | .004 | .003 -001
22 .001 | .007 .003 .004 004 | .003 | .002 .001
23 .0020 | .0048 | .0083 | .0108 || .0095 | .0066 | .0036 .0006
24 .004 .008 .013 .017 014 | .o10 | .006 .001
25 .005 .010 .016 .021 018 | .o12 | .o007 .001
26 .003 .008 .013 .014 012 | .008 | .004 .000
27 .006 .013 020 .027 022 | .016 | .009 -002
28 005 .015 .024 .032 026 | .018 | .010 002
29 .009 .017 .028 035 030 | .021 |.012 -002
30 -006 .01 .019 .025 021 | .014 | .008 .001
31 .0010 | .0020 | 0033 | .0044 || .0043 | .0034 | .0023 .0011
32 .0003 | .0007 | .00l0 | .0013 || .0013 | .0009 | .0006 -0003
33(-)|| .0005 | .0010 | .0017 | .0023 || .0019 | .0013 | .0009 -0004
34 .004 .007 .012 .016 013 | .009 | .005 .000
35 -001 -002 .003 .004 004 | .003 | .00 -000
36(-J|| .001 .003 .005 .007 .006 | .004 | .003 -001
37 -007 .013 -020 .026 022 | .06 | .008 -000
38 .002 .004 -006 .007 .006 | .004 | .002 -.001
39(-)|| .002 -004 .007 .009 008 | .005 | .003 .001
40 0011 | .0019 | .0030 | .o0040 || .0035 | .0028 | .0021 .0013
4 0015 | .0030 | .0051 | .0067 || .0056 | .0041 | .0027 .0013
42 .0036 | .0069 | .o115 | .0138 || .0127 | .0092 | .0060 -0021
43 0013 | .0015 | .0017 | .0024 || .0024 | .0022 | .0018 .0014
44 .0010 | .0020 | .0030 | .o040 || .0035 | .0025 | .0015 -0000
| 45 .002 .003 .005 .006 .005 | .004 | .002 -.001
46 .0012 | .0020 | .0031 | .0032 || .0025 | .0014 | .0010 -0000
47 .003 .006 | .010 .013 011 | .007 | .003 -.001
48 .007 .012 .019 .025 021 | .015 | .007 .000




DEFLECTIONS IN INCHES RECORDED DURING THE FAILURE CYCLE OF BUILDING II

TABLE 9
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Dial LOADING (pounds)
Gauge {| 125 250 390 465 565 650 685 720
Number :
1 .0019 .0047 L0076 0097 .0122 .0138 .0148 0161
2 0028 . 0064 .0102 .0133 20173 .0190 0214 .0216
3 . 0045 .0105 0172 .0225 .0294 .0330 .0369 .0373
4 .0080 .0160 .0250 .0325 .0420 .0470 .0525 .0525
5 .007 014 .022 .028 .036 .041 .046 .053
6 .009 .020 031 .045 .0563 .059 .066 .067
7 .012 .025 .039 .051 .066 .074 .083 .083
8 014 .029 . 046 .059 .077 .088 .098 .098
9 0N .023 .037 . .048 .063 072 .080 .095
10 016 .034 .050 .063 .084 .096 12 113
n . 001 .003 .005 .008 .010 .01 .013 .016
12 .003 .007 .010 .013 017 .019 .021 .022
13 .004 .010 .016 021 .028 .031 .035 .035
14 . 0066 .0148 .0232 .0306 .0299 .0347 .0399 . 0405
15 .007 .014 .023 .028 .037 042 .046 .053
16 .010 021 .031 .041 .053 .060 .066 .067
17 011 .024 .038 . 050 . 064 .073 .081 .082
18 014 .030 .046 .059 077 .087 .097 .097
19 .010 .023 ,037 .048 .062 .070 .078 .090
20 .015 .034 .053 .069 .089 . 100 .113 113
21 .002 006 .009 .013 017 .019 .021 .021
22 .001 .003 .005 . 007 .010 012 .013 .016
23 . 0045 .0104 .0168 L0225 .0295 .0330 .0359 .0358
24 .007 .015 .024 .033 .042 .047 .053 .052
25 .010 .020 .032 oM .054 .059 .066 .067
26 .006 014 .022 .029 .033 .040 .046 .053
27 012 .026 . 040 .052 .067 .0075 ,085 .085
28 .013 .029 .046 .N60 .078 . 088 .098 .098
29 .016 .034 .052 . 068 .088 100 11 12
30 0N .024 .037 .048 .064 073 . 081 .09?
31 .0008 .0032 .0055 0074 .0095 .0104 NN . 1006
32 .0003 .0010 .0015 .0018 .0019 . 0020 .0020 .0043
33(-) . 0007 ,0019 .0035 . 0049 .0069 .0080 .0092 .0026
34 .008 016 .024 .030 .036 .040 .042 .038
35 . 002 ,004 .005 .005 .006 .007 .006 011
36(-) .002 .005 .009 .013 .018 021 .025 .009
37 012 .025 .038 .047 .057 .062 .067 .061
38 .005 .008 .010 .012 014 .015 .014 .022
39(-) .004 .009 .015 .019 026 .030 .037 ,012
40 L0011 .0027 .0048 . 0067 . 0091 .0108 .0122 .0193
4 .0022 .0054 .0096 .0139 .0193 .0228 .0268 .0099
42 .0055 .0123 .0207 .0271 .0360 .0416 .0483 .0228
43 .0003 .0008 .0008 .0009 . 0009 L0012 .0008 .0038
44 .0015 .0035 .0045 .0055 .00565 . .0065 .0060 .0115
45 .004 .007 .008 .009 .009 .006 .004 .012
46 . 0016 .0034 L0051 D067 .0087 0101 L0107 .0097
47 .006 .013 .020 .026 .032 .035 .037 .032
48 012 024 .034 .042 .052 .057 .062 .053




TABLE 10
STRAINS IN u"/" RECORDED DURING THE SECOND TEST CYCLE OF BUILDING I
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LOADING (pounds)

Strain - UNLOADING (pounds)
Gauge 25 | 60 | 100] 125] 165 190| 230| 250 | 180 | 125 60 | 0
Number
1 2 3 5 6 7 7 9 1 11 12 12 13
2 3 3 4 6 7 7 8 9 10 10 11 11
3 1 2 3 4 4 7 6 8 10 10 10 9
4 4 4 5 6 6 8 7 8 10 N 11 13
5 3 4 5 6 7 6 8 .8 10 10 13 13
6 3 3 8 |« 7 10 n 13 17 14 13 12 8
7 6 8 10 | 12 14 12 15 19 18 16 15 13
8 2 5 6 - 6 7 8 9 12 11 12 12 12
9 2 0 -1 -1 -4 -5 | -6 -7 -1 4 9 13
10 6 9 14 15 18 20 23 27 25 20 16 14
11 5 8 10 13 16 18 19 23 20 18 15 10
12 3 3 4 4 5 6 6 8 8 12 1" 9
13 1 2 0 2 1 1 -1 1 2 5 6 8
14 3 4 5 6 6 7 7 8 8 9 10 10
15 2 4 3 7 5 7 6 10 9 9 10 10
16 0 0 -6 -6 -4 -4 -4 -5 -1 0 5 7
17 0 -2 -4 -5 -7 -9 | -1 -N -6 -2 3 8
18 3 7 10 12 15 18 21 24 22 19 15 N
19 3 6 5 6 7 9 12 13 13 11 10 12
20 3 2 1 3 1 2 3 3 4 6 9 10
21 -2 1 1 1 1 -1 1 2 3 6 7 9
22 2 3 3 3 4 5 5 5 6 7 8 10
23 3 3 4 5 5 5 6 8 8 10 10 1
24 3 4 4 6 6 5 5 9 8 11 12 13
25 2 4 5 5 6 8 8 9 10 10 11 10
26 1 3 4 4 5 5 6 8 8 8 9 10
27 1 2 3 4 4 5 1 6 8 9 9 9 3
28 2 3 4 5 4 6 6 8 8 9 10 10
29 2 2 4 4 4 5 5 7 6 7 8 8
30 1 3 5 5 6 7 7 9 9 9 9 9
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TABLE 11
STRAINS IN y"/" RECORDED DURING THE FAILURE CYCLE OF BUILDING I

Strain LOADING )pounds)

‘Gauge \lyo | qa0| 200| 250] 340 | 400 . 450 | 500 | 550 | 600 | 630! 660

Number
1 8 7 8 8 9 9 1 11 13 12 12 | 14
2 8 |10 9 9 | 10 10 12 12 12 1 13 | 15
3 7 | 1 6 8 | 12 9 1 1 13 12 12 9
4 7 5 8 9 9 10 10 10 10 9 1 n
5 4 6 5 4 4 6 8 8 5 4 71 10
6 7 |12} 12e] 15 16 21 21 20 25 28 28 | 13
7 7 {10104 ]5 20 20 22 23 26 26 | 17
8 7 7 7 9 | 10 12 10 12 13 13 14 ] 12
9 0 | -4 | -7 |-10|-14 |17 }(-20 |-24 |-28 |-31 |-35 | 57
10 12 18| 23| 28 | 31 34 39 43 48 52 56 | -2
1 8 14| 17| 22| 24 28 29 34 36 39 22 | 14
12 6 5 6 6 6 6 6 6 6 6 7 | 57
13 1 | -1 | -4 | -4 ] -5 -7 -9 -9 |-10 |-14 | -15 |-13
14 5 | 5 6 6 5 6 5 6 5 5 5 | 20
15 5 3 7 6 6 8 8 8 9 9 10 | 14
16 2 | -1 | -3]-61}-10 |-11 |-15 |-14 |-18 [-17 |-20 | -9
17 2 | -2 | -6 ]-10 {-15 |-19 |-23 |-25 |-29 |-33 | -37 |-22
18 2 |17 | 21| 25 | 29 32 37 41 43 48 51 | 34
19 5 5 7 7 9 9 9 10 12 12 1 7
20 3 1 0| -1 ] -2 -3 -4 -5 -6 -7 -7 2
21 4 1 1 0| -2 -2 -3 -4 -5 -7 -6 4
22 4 5 5 | 4 4 3 2 3 2 2 1 7
23 5 4 5 4 4 5 5 4 5 3 4 6
24 6 5 7 6 6 6 10 9 8 8 9 | 15
25 4 6 6 7 5 5 6 8 7 6 8 | 10
26 5 4 5 5 5 6 6 6 6 6 6 6
27 5 4 6 6 7 7 7 7 8 8 7 9
28 3 4 4. 4 4 4 4 3 3 3 5 6
29 4 4 4 4 4 4 4 3 4 2 3 6
30 2 2 3 4 3 4 5 6 6 6 6 6
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TABLE 12
STRAINS IN p"/" RECORDED DURING THE SECOMD TEST CYCLE OF BUILDING II

Strain LOADING (pounds) UNLOADING (pounds)
Gauge

Number 60 125 190 250 190 125 60 0
1 0 -6 -6 -1 2 6 9 0
2 -4 -8 -10 -6 -7 1 2 -5
3 -5 -1 -11 -7 -5 -1 0 -7
4 -13 -51 -26 -14 -9 40 -5 48
5 -5 -8 -6 -3 -7 4 5 -4
6 1 0 -3 3 -2 4 6 -5
7 -2 -4 -1 3 -1 4 7 -2
8 -5 -8 -8 -7 -9 -5 0 -7
9 -12 -19 ~-26 -26 -22 12 -3 -6
10 4 4 10 18 11 12 10 -5
11 0 -2 0 7 2 5 8 -2
12 -2 -9 -10 -3 -8 -2 2 -5
13 -5 -12 -13 -12 -1 -3 3 3
14 -6 -10 -13 -8 -10 -3 2 -5
15 6 -3 -5 1 0 6 10 0
16 -4 -11 -16 -14 -13 -4 3 -4
17 -5 -14 -25 -20 -22 10 4 -4
18 1 1 4 10 5 10 10 -2
19 -5 -8 -1 -6 -7 -2 3 -5
20 -6 -7 -8 -7 -7 -5 -2 -5
21 -2 -10 -14 -10 -10 -6 0 -6
22 -6 -9 -11 -9 -9 -2 3 -5
23 -7 -11 -11 -5 -10 -4 1 -7
24 -3 -7 -7 -7 -5 0 5 -4
25 -4 -8 -9 -7 -7 -1 4 -4
26 -3 -8 -8 -6 -7 -1 4 -4
27 -4 -8 -8 -7 -6 -1 4 -3
28 -4 -9 -9 -6 =7 1 4 -4
29 -7 -11 -12 -10 -10 -5 1 -7
30 1 -2 -3 -1 -7 0 3 -4




TABLE 13

STRAINS IN u"/" RECORDED DURING THE FAILURE CYCLE OF BUILDING II
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Strain LOADING (pounds)
Gauge || 125 250 390 465 565 | 650 685 720
Number

1 4 16 5 5 9 5 19 12
2 6 17 6 6 12 8 24 16
3 6 16 7 5 15 12 26 18
4 3 16 5 4 9 8 23 17
5 3 9 2 2 6 1 18 12
6 12 17 13 15 25 22 38 24
7 9 21 17 - 16 20 19 38 26
8 3 13 7 7 9 7 24 29
9 -2 -2 -20 -20 -12 -17 -5 25
10 18 39 41 49 67 72 98 224
1 15 29 26 32 47 43 73 6
12 8 15 4 6 6 -2 15 41
13 2 9 6 3 -2 10 7 7
14 9 17 10 3 9 5 18 16
15 5 15 6 3 8 6 20 14
16 1 3 -10 -20 -16 =21 -8 -6
17 -5 -7 -22 -35 -37 -48 -36 -30
18 11 27 21 29 44 42 63 46
19 4 12 4 3 7 5 20 14
20 4 10 2 3 5 7 18 16
21 1 6 3 2 9 10 11 6
22 3 11 4 0 5 2 18 12
23 5 14 5 3 7 5 21 14
24 5 13 6 3 8 5 20 15
25 4 14 4 2 .8 6 18 13
26 4 14 5 4 10 7 22 13
27 5 14 6 4 10 4 22 15
28 6 14 4 2 7 5 18 13
29 4 13 3 1 6 4 17 13
30 1 16 9 2 6 7 24 20
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