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I Introduction

In recent years, resistors which exhibit nonlinear electric
properties by virtue of a change in resistance with applied power, have
found many new uses., QOne application lies in exercising control over
the amplitude of a sinuscidal waveform without introducing the
customary nonlinearity associated with most simple nonlinear limiters.
Although many devices exhibit this property to some extent, we will
primarily concern ourselves with two; the incandescent lamp, and the
solid state thermistor. Although the electriéal chiaracteristics
are extremely different for the two, they have in common the key to
their ability to control without distortion; their associated time
constant due to thermal inertia,

Although the thermal properties of the incandescent lamp
had been qualitstively understood for a considerable time, Meacham(l)
was probably the first to analyse and employ its dynamic characteristics
to stabilize the amplitude of a Meachan Oscillator in 1938. His work
aroused considerable interest at that time in the nonlinear aspects
of the lamps and Glynne(z) and others(3)’<4)’(5>’(6) followed by
studying the dynamic behaviour of the lamps.

By the middle of the century, thermistors were also being
analysed and employed for this control problem. Bollman and Kreer(7)
were two of the first tc realize the potential wvalue of these solid
state devices and to set up the differential equation for their
dynamic behaviour. Patchett(8) employed a directly heated type of
thermistor in a bridge circuit and showed that it had a figure of

merit, which he defined as the change in output voltage for a change in



input voltage, of about fifty. Typically the figure of merit for the
lamp bridge is less than unity. Thus the use of the thermistor would
seem to indicate a more sensitive amplitude control for oscillator
amplitude stabilization.

Theoretical work concerning the amplitude stability of
harmonic oscillators had attracted considerable interest in the years
prior to the thermal amplitude control. With its introduction some re-~
newed interest was brought to bear on the subject.

Edson(9) examined the amplitude stability in a lamp
stabilized oscillator by examining the changes in amplitude and phase
of the modulation vector when a lightly modulated wave passed
through the open loop feedback circuit, For the modulated wave to
persist the open loop gain and phase shift of the input signal were
required to be zero., An increase in gain would indicate instability
or growth, while a decrease would indicate attenuation of the modulation.,
In his analysis the low frequency component is not considered and the
feedback factor must be symmetrical about the centre frequency for a
bandwidth of at least twice the highest modulating frequency used
to insure that the output will be independent of phase medulation.

Gladwin examined the problem of amplitude stability in
valve oscillators(ll). For the class of oscillators known as separable
oscillators he examined the stability of the system from the viewpoint
of its characteristic equation{12), 1n nis analysis the oscillator
is initially oscillating in the steady state with a sinusoidal output
of constant amplitude and frequency. The stability is examined
by subjecting the output to a small variation by changing some parameter

or introducing an input perturbation. This perturbation gives rise



to oscillations at certain complex frequencies which are character-
istic of the feedback loop. If these terms are then considered to
modulate the output, the oscillator output will consist of an infinite

number of waves of the form;

+ . -
(S+jnw,iT
Vout © Z Xn €
Ns =~

where we is the unperturbed oscillator frequency and s =% +jwmis the
complex frequency of the distu;bance or modulation. If the oscillating
circuit has a reasonably high cuality factor the above series can be
approximated, with a good degree of accuracy, to terms of the fund-
amental component and tﬁe limits of the series reduce to -1 to +l.
Vie are thus‘left with three components of a small perturbation.

These components can be introduced into the network equations,
and giverise to three linearized equations which when solved in a
matrix analysis yield the matrix determinant equal to zero. This
matrix determinant is referred to as the characteristic equation
of the system's stability.

For stable oscillation all of the roots of the characteristic
equation must have negative real parts to insure that the amplitude
of any transient will decrease with time. Although the characteristic
equation cannot always be factored for complex systems, the stability
can be determined by the Routh-Hurwitz criterion for certain steady state
conditions,

| For oscillators where the feedback factor is symmetrical about

the oscillator centre frequency for & range greater than twice the

highest modulating frequency, the characteristic equation can be factored(12)

to yield independent criteria for the amplitude and frequency stability.

The Wien Bridge Oscillator with & thermal amplitude compensator



can exhibit a very poor transient response during tuning or switching
of the oscillator frequency control. Several investigations have
been aimed at predicting its peculiar oscillatory transient response.
Cooper(lo) analysed a lamp stabilized Wien Bridge type of oscillator
assuming a linear operational amplifier and a simple time constant
for the lamp bridge circuit. The result was applied to an amplitude
modulated waveform and the value of the nétural modulation frequency
was obtained which was in close agreement with his experimental data.
The analysis did not howe&er, predict the amplitude of the transient
modulation or the time constant to any satifactory degree. Oliver(1l4)
pointed out that a slight nonlinearity of the operational amplifier
could explain these discrepancies in his analysis of the problem.

The Wien Bridge oscillator was thus analysed for both a linear
amplifier and an amplifier containing a small amount of cubic non-
linearity using the general approach of Gladwin(12> (13). The findings
are compared with experimental results to check the approximations

made in the analysis.,



II SIMPLE FEEDBACK OSCILLATORS

(1) Conditions for Oscillation

The concept of feedback plays an important role in almost
every branch of engineering and physics. Although the word feedback is
in commoﬁ use it is surprisingly difficult to find a precise definition,
In many physical systems it is extremely hard to identify a feedback loop.
From a general point of view however, we can iden tify feedback as a
closed series of cause and effect relationships. When feedback is
introduced intentionally for a desired purpose, its definition
becomes considerably simpler and can usually be expressed in a
mathematical form.

Figure (1) shows in block diagram form the circuit for a

simple feedback oscillator

iy O—{+X Yt Ve [A\ O v,

o

<

Figure (1)
Here A is defined as the gain of the operational amplifier and 8 is the
so called feedback factor or feedback fundion., In figure (1) the
closed loop or feedback loop is easily identified and the system is
defined mathematically by the equations
Vo=(vin*ve)A
and L VeE Ve B
from which we can write the closed loop gain A' for the system as;

At = L2 o e —
Vin ..‘."A/g (l)

If we consider the amplifier gain A to be real and positive, then the



feedback function & will be real and positive at some complex fre-
quency s for the case of the oscillator., Here v;, would be zero
while v+ 1s finite., For the case of a sinusoidal oscillator,
equation(l) must have & pair of imaginary poles at s = +juw, and
s = -jw, which means that the feedback network will contain at least
two energy storage elements, If we write the feedback function
as some function of the complex frequency s =X+jwwe can equatle
the denominator of equation (1) to zero to obtain the conditions
for oscillation as;

AB(s) =1
For the steady state s = jw and the above reduces to the familiar
form for steady state oscillation often referred to as the Barkhausen
criterion for oscillation or the characteristic equation,

AB(jw) =1 | —(2)
This concept impiies-unity'loop gain as the criterion for osciliation,
however unity loop gain at a single frequency is a necessary but
not a sufficient condition for self-sustained oscillation. Clearly
if the B network provides zero net phase shift at more than one
frequency, the criteria for steady oscillation is further complicated.

For simple oscillators however, where ecuation (2) is suff=-

icient, the complex equation will yield two independent criterion for
oscillation.

In(8) = 0 —(34)
which will determine the steady state frequency of oscillation and,

KR _(8) = 1 —(38)
which stipﬁlates the necessary gain requirement for steady state

oscillation to exist. Here I (8) and Re(8) stand for the imaginary



part of B and real part of /3 respectively.,
(2) Selectivity

Any practical oscillator will need a value for the amplifier
‘gain somewhat larger than that predicted by equation (3B). Consequently
its output will increase until the amplifier limits the output
resulting in distortion of the steady state output. Each of the
harmonics present at the amplifier output will be affected similar to
additional signals injected into the feedback loop and will be reduced
or enhanced by the factor;

F(aw,) = —(4)

—_—l
1-488(nuw,)

where B (nwg) is the feedback factor evaluated at the various harmonic
frequencies (nwp); n = 2,3,4e.e.., Equation (4) can be considered

as a measure of the system's selectivity. For a properly designed
oscillator the feedback should change from positive to negative

in the frequency range Wy to 2w, ensuring that all harmonics will be
small, For this condition equation (4) would be small provided
CAB(nw,)I» 1. To insure that the feedback at the frequency nu

is negative,the factor AB(nw,) must of course be negative.

(3) Phase - Frequency Stability

Oscillators are also susceptible to frequency changes
caused by variation of circuit elements in other than the beta net-
work. ©Since the natural frequency of oscillation is identical to
the frequency of zero net phase shift around the closed loop, changes
in the resistive loading or phase shift in the amplifier can alter
the natural frequency from the condition of equation (3A). To ensure

a constant frequency of oscillation, the beta network should thus



exhibit as rapid a change of phase with frequency about wgy as possihle.
We can define a measure of phase-frequency stability for the oscillator
as; |

G = |22

A —(5)

which is the change in phase A for a relative change in frequency w
about w, for the beta network. Equation (5) would increase for increasing
frequency stability with respect to variations in amplifier or load
which would effect the overall phase shift. For the limiting case
where G —# oo the natural frequency of oscillation W, would be entirely

due to the phase-frequency chacteristic of the beta network.



III  BETA NETWORKS FOR R-C OSCILLATORS

(1) R-C Oscillators

At frequencies below one kilocycle per second it becomes
impractical to use L-C circuits for frequency determining networks
due to their large size and associated low quality factors. The
large size associated with these circuits can be greatly reduced by
the use of resistor capacitor networks (R-C networks) at the expense
of increasing the amplifier gain and the number of parameters which
must be varied to alter the oscillator frequency. There are two basic
groups of R-C networks which can be employed for oscillator use, the
phase shift networks, and the null type networks., Examples of each

type are treated in this chapter with regard to their general merits.

(2) The "R-C Oscillator Network"
One of the simplest types of beta networks required for

a feedback oscillator is shown in figure (2).

O—

N
Vo +
%R\::C v
+ ’e)

Figure (2)

O

Here k is a constant and C and Rl are capacitors and resistors
respectively.

This network is characterized by the feedback function;

B (s) =Lt = KGRy —(6)
Vo s202R§+(k+2)sch+1
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which for the steady state where s = jw reduces to;

; Lk )
B (jw) = (k+2) 1+ (w _uﬂ —(7)
(k...z) W, W
where Wy = Ell{;_ (8)

The imaginary portion of & will vanish for the frequency

W =w, given by equation (8) at which frequency beta reduces to,

The necessary amplifier gain for the circuit of figure (1) wonld be

A = L)
k
forthreshold of oscillation,
The transient response of this network can also be obtained
from the roots of the equation 1 - AB(s) for this oscillator.

Writing the equation for 1 - AA(s) = O we obtain

82 + 8w, (k+2-Ak)+W,= = O —(9)
or

(s-sx)(susy) =

This eguation has two roots s Sy which for the particular

x?

case of k = 1 will describe the locus shown in figure (3).

o5y = - 220A) £ Ba gy (acs)

2



& Imagmary
A=3 | Ax/s

e/ AnlS

A=3 Figure (3)

We see that as the gain A increases from zero, the two roots will
coalesce for A = 1 and then separate at =w, on the negative real axis

as shown. When the roots reach Ijw, on the imaginary axis corresponding
to a gain of A = 3, we have the condition corresponding to the threshold
of oseillation; the location of the imaginary roots giving the frequency
of oscillation. In the region 1K A<C5 the transient response can be

obtained from equation (9) and will be of the general form,
ot
v(t) = Ke 3" cos(wt + ¢) --(10)

where w =y‘X§ +lU§ and @ is the phase shift. The two roots are

located atezZ/jw, . For 1¢AC3, dé will be negative and the transient
will damp out with the time constant given by equation (10). For
3<A<5 the output will increase until the amplifier limits slightly
making the average gain over one cycle equal to 3.

For A>5 the output will no longer be oscillatory, but will
approach the action of the multivibrator,

This simple beta circuit would thus seem to have a poor
amplitude stability due to the dependence on A. The network also

exhibits very poor selectivity. For example equation (4) would yield

for the second harmonic where A = 3;



F(2w ) = 2,237

This unfortunately means that any second harmonic term present in the
output would be increased in amplitude rather than reduced, This
beta network would thus not seem to be very useful for osciliator
use,

(3) The "Phase Shift Network"

A second simple way of achieving the required beta network
for an oscillator is the familiar "phase shift network" shown below

in figure (4)

o

[ éié‘ ]
Vo R, ?FZ. R, Ve
N A A

Figure (4)

This circuit is a simple R-C ladder type filter with a transfer

characteristic N

SAC e 5(_1__)2 Ly —(

sCRl sCRl sCRl

For the steady state s = jw and the above reduces toj

B,(3w) = —g——= —(12)
1+3wCR1' " w22 - jw7]é3ﬁ31

The ladder network could also contain more than three sections. A
simple solution for a more complex ladder network can be found by

the use of Pascalls triangle(lé), but this increases the number of
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parameters which must be changed to alter the oscillator frequency.
From equation (12) we see that the odd power terms in w contri-
bute to the imaginary part ofAﬂlQﬂ). Hence for the imaginary part to

vanish

oo " e - O

or

1
W, = --(13)
° ¥Ve CR,

Solving for &4, at w= Wy yields,

1
Bylw) =-% —(1)

which defines the threshold gain for the oscillator of figure (1)
to be A = =29, Although the amplitude is dependent on gain variations
for this oscillator, the selectivity is considerably better than
for the previous oscillator of section III-2, Froﬁ equation (4)

for second harmonic terms
F (2w)) = 0.368

and the second harmonic terms are actually reduced in the closed loop.
We conclude that this oscillator is superior to the first,
although variation of the oscillator frequency requires that three
component s be tracked simultaneously rather than two for the first os-
cillator. This factor alone probably confines its use to a fixed

frequency oscillator,



(4) The Wien Bridge Network

Although the oscillator of section III-(2) seemed at first
glance to be extremely poor, we can comnvert the circuit into a type of
bridge circuit such that we can exchange loop gain for added selectivity,.

A common circuit; the Wien Bridge, is shown in figure (5).
o S
_LKC

‘ K

(] V‘P

Ro

il
}
o

R,

O ) Figure (5)

Here the additional arm of the bridge is composed of ordinary carbon

resistors R. and R
2 O,

The transfer characteristicx?2 of the above network is
simply

Ea(30) =h(jw) = 2= ~(15)
o 2

where B (jw) has been given by equation (7). For an oscillator
employing this beta network we find for W = u%, the condition for

threshold of oscillation is;

k R 1
— D - -(16)
k+2 R +R A

o 2

For given values of the amplifier gain A, resistance RQ’ and parameter
k, equation (16) defines the unique value of Ro necessary for oscillation

to exist. It is obvious that the higher the degree of balance of the
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bridge, the higher the gain must be for the operational amplifier.
The marked improvement of the selectivity of the bridge
circuit over that of section III-(2) can be easily found as the
oscillator of section III=(2) corresponds to the completely unbal=-
anced bridge where A = (k+2)/k. The ratio of equation (4) for each

oscillator is thus,

1
Fz(nwo) i A }-{-%5 -4 (uu)) _ k+2

-—(17)

F (nwo) 1

kA
e )

where Fz(nwo) is for the Wien Bridge Oscillator. We see from equation

(17) that the selectivity will be a maximum for the Wien Bridge Oscill-

ator for a maximum value of amplifier gain A or high degree of bridge balance.
Up to this point the value of k has been left arbitrary.

In the network of figure (5) however, its choice should be made to

yield the maximum amplitude and frequency selectivity for the bridge cir-

cuit. From equation (16) we see that

R .k 1
R+R, k+2 A -—(18)

which means that the bridge is never fully balanced for finite amplifier

gain A, The bridge output voltage in the steady state can be found asj

k/(k+2) k Vo
(k+2)
where
g = |M o We

We w
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For frequencies close tow = W_s z<« 1l and the equation for the oute

put voltage can be approximated for AX 1 as;

V. zk
vo - (k+;§2 ""(19)

W=we

This should be a maximum for maximum frequency sensitivity. Differ-
entiating equation (19) with respect to k and setting the result equal

to zero yields

(k+2)™

from which we find that maximum frequency sensitivity occurs for,
k=2 —(20)

This result would require that Rg!RZ for a very high gain amplifier
and this is also the value for Ro and k for maximum amplitude sen—
sitivity for the bridge c¢ircuit.

(5) The "Twin T" Network

Practically any three terminal null network may be used
for a frequency determining branch in a bridge type oscillator. A
common type of null network which could be employed is shown in

figure (6). This network is commonly referred to as the "Twin TV

network. &<, 2,
0 TLGHN - 0
SRR T
v, £ ! v,
| |
: L

= © Figure (6)
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The transfer function for the twin T network of figure (6)

can be found as;

. 1
Ba(jw) =
3 1 - 3 2(°+) [ _ ] —(21)
n (&=
where wo = edim
nCR

The network thus exhibits a reciprocal type of response to the net-
work of section III-(2), Asw-»w,the beta function goes towards
zero and hence the name of "null network" is applicable., For use as
an oscillator the network can be incorporated in a bridge circuit

as shown in figure (7)

O
i
Ve ,
\'A X O— Twin 7
v Vo
]
O

% Figure (7)

The complete feedback function for the oseillator of figure (1) is then

given by

. R
B (Jw) = ﬁ-ﬁ; - B3(3w) —(22)

For the resonant frequency w = W, we obtain the condition for threshold

oscillation asj
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R 1
& _gy(w) = =

R +R A
o 2

and since A?B(u%) = 0 this reduces to

Ro+R:
A= =2 2

Ro

If the network is examined with regard to selectivity,
we find as for the case of the Wien Bridge that selectivity is a maxe
imum for A approaching infinity,

(6) Phase-Frequency Characteristic of Bridge Networks

It was pointed out in Chapter II that the phase-frequency
characteristic of the beta network can be used as a measure of the
frequency stability of the oscillator with respect to component phase
shifts,in components other than the beta network itself., The Wien
Bridge Oscillator can be examined with regard to equation (5). When
examined the phase shift of the beta network can be found from the app-

roximate value for phase shift clese to resonance {§,

422 § -3y (8- ] —(24)

1 kKA [w w

# =2 tan” W [E): - -Jc‘] —(25)

Equation (5) can now be found close to resonance as app=

roximately,

KA [l + i’iz]
Q= wo_d_é ~ (k+2¥ w2
dw

|+ [(EK»%)Z]Z oWy

—(26)
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which at w =W, reduces to;

G(w,) ¥ (k—i}é‘%'z —(27)

For the above to be a maximum the parameter k will have the value
k = 2 which is in agreement with the section III-(4), For k = 2

the result reduces to,
A
Gwy) = 3 —~(28)

and the effect of a high gain amplifier is seen to make the oscillator
almostentirely dependent on the beta network as the frequency deter-
mining element. This oscillator would thus seem to behave suitably
if some means could be found with which to maintain the amplifier

gain constant.

(7) The Nonlinear Bridge Compensator

Any compensation which could be carried out in the oscillator
circuit for changes in amplifier gain would involve the use of a
network with a nonlinear voltage characteristic, Compensation can be
achieved if a passive nonlinear element is included in the feedback
network at a point where it will change the magnitude of the feed=
back without affecting the steady state frequency, This is commonly
called feedback limiting. For the bridge type oscillator, the bridge
balance can be controlled by the thermal characteristics of a tungsten
lamp or a thermistor,

As an example of the effectiveness of this type of amplitude
compensation, we can analyse the oscillator circuit shown in figure(8).

For the analysis we will assume that the thermal time constant of the
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lamps R is much greater than the period of the steady state frequency

of oscillation.

W
Pt <
Ve
. e I .
= g L//f by,
2, ]
—AMW—y </ 2C 'J;fo

»__ji__w - | Figure (8)

Here we have introduced two lamps in series represented by R for the

variable resistor Ro shown in figure (5)., In the steady state the
nonlinear characteristic of the lamps R can be represented to a first

approximation by the experimentally determined expression,
R = 900 + 170E -—(29)

where R will be in ohms and Ey is the R.M.S. lamp voltage in volts,
For an oscillator output of Vo = 8.0 volts R.M.5. and an amplifier

 gain of Ay = LOO we find for threshold of oscillation;

B =1_ .1 =4.975 x 10°L —(30)

R+R2 2 400

which means that the portion of the output voltage across the lamp is,
E = 4.975 x 1071 x 8.0 = 3.980 volts RM.S. —=(31)

Substituting this value of EL back into equation (29) to obtain

the steady state lamp resistance yields,

R = 15770
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and from equation (31) we obtain,
R2 = 1591

which will be a constant for the oscillator,

If the amplifier gain changes over a period of time due
to component deterioration to some new value A2 = 200 we can calculate
the change in R; AR and hence the new output condition to be res-

pectively,

R + AR = 1560 1L

v, +Avo = 7,76 volts R.M.S. -—(32)

Hence we see that for a 50% change in amplifier gain, the
oscillator output is only changed by 3%. This method of amplitude
limiting would thus seem to be quite effective in maintaining a constant
steady state output voltage. In the next chapter we will examine
the dynamic behavior of several thermal devices with a view towards

predicting their transient effect on the oscillator,
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IV TEMPERATURE DEPENDENT RESISTORS

(1) Incandescent Lamps

Although considerable literature on lamps has been written
concerning their use in illumination, comparatively little work has
ever been published with regard to their dynamic behaviour, An
extensive bibliography found in Patchetti'!s work(B) contains the
majority of the early literature.

Patchett(B) examined a wide variety of incandescent lamps
or filaments with regard to their suitability for bridge circuits
which could be used as feedback limiters. His work mentioned many
of the undesirable characteristics associated with lamps when used
for control elements. Intermittent bridge misbalance was claimed
to be one of their greatest drawbacks, He found that lamps were
extremely susceptible to vibrations which in turn caused random
variations in the bridge output voltage. This effect was especially
pronounced for the coiled filament type of lamp, Presence of gas
in the lamp envelope was also found to alter the characteristic
of the lamp, as added conduction terms alter the heat transfer equations
especially at certain temperatures where the gas ionizes,

Patchett(B) derived an approximate solution for the thermal
response time of the vacuum lamp, but the result involved a knowledge
of the physical mass of the filament which makes its use somewhat
limited. The thermal response time was also developed by Glynne, but
the temperature coefficlent of resistance used in his formula referred
to the lamp's operating temperature 90. This coefficient would thus

vary over a range of about two to one in the normal operating region
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that he used,

(2) Lamp Dynamic Behaviour

In the steady state, the exact mechanism of the heat
transfer is of little concern to us, but from experimental data it

has been found that,

g
[

K, 6%  ==(33)

and

A
R =K -=(34)

holds fairly well apart from a small region close to the ambient or
room temperature, Here P is the power radiated in watts, R is the
resistance of the lamp filament in ohms at some temperature 0 in
degrees Kelvin, and Kl,Kz,a and b are constants, Strictly speaking
"a" varies somewhat with temperature, but equation (33) is a good
approximation for the restricted temperature range of the compensator
used., For an effective lamp,of the two lamps used in series in the
experimental section,typical values for "a" and "b" would be a = 5,3
and b = 1,2 .

If we define W(t) as the instantaneous power supplied
to the lamp and CT as the thermal heat capacity of the filament,

we can write the power balance equation for the lamp
w(t) = d_(Ce) + P(t)
dt

o~ CT dg + P(t)
dt —(35)

Here CT has been assumed constant over the temperature range of operation.
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The first term on the R.H.S. of equation (35) will be the stored
energy per second and P(t) will be the instantaneous power radiated
by the filament. Combining equations (33) and (34) to elliminate

temperature and substituting the result in equation (35) yields,
% a
wW(t) =cC, d_|B{L)|P + K b -
(t) T 4% [ X 1 E&%‘)' (36)

For the case of the feedback limiter, the lamp R will be in series

with the fixed resistor R, as shown in figure (9)

i

<
fas

}
I R v
|
© © Figure (9)
The power supplied to the lamp would thus be;
W(t) = v2(t) Bl —(37)

(R(+) + Ry)

Combining equations (36) and (37) yields upon simplification,

< ic2 3 5
dt[R(t)]% Pk ROE - (flng)z CZK;()_E% —(38)

This is the approximate nonlinear differential equation for the
dynamic behaviour of the lamp bridge arm shown in figure (9) and is
not of any apparent standard form, A solution could be obtained
by recourse to numerical or graphical methods, but the perturbation

method will yield a solution about a steady state value in an analytical
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form,

Let us then consider the system of figure (9) for small
changes about some specified steady state temperature 90 and
resistance Ro‘ The power supplied to the lamp has been given
by equation (37) and if the steady state voltage varies as v +4v,
then the temperature will vary as 90(l+x) where §v and X are small

time varying parameters, From equation (34) we see that,

R =K eb (1+x)b
20
¥R (1+bx) --(39)

where R =K Gb and x«1
o 2 (o]

Similarily from equation (33) we obtain,
PP (l+ax) --(40)

where Po = K 92‘ is the steady state radiated power by definition.

1
If we write the variation of the supplied power as Wo(l+S)
then equation (37) becomes,

W (1+8) = _izﬁxﬁﬁgﬁibz
(+]

(Ry(1#bx) + R,)

~ W [1 + 28y + bx - 2Robx ]
- 2 — - Y —
v (R0+R2) (Ll)
for x«1
R,-R
Defining p = R§¢R§ to simplify the notation the above
reducesto;

d = 28Y - bex —(42)
v
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From the power balance equation for small changes we find that;

CrO  dx P
To "~ -1+5- -8 (1+ax) —(43)
Wo dt WO

In the steady state the supplied power 'WO is equal to the radiated

power Po and the above becomes,

D
*90
&

= § - ax

=

For the value of § found in equation (42) the final result is;

GOCT dx 23v b
—— -t QX = — - X
W dt I ==(4)

o

which is a linear differential equation with a solution;

_ (a+belW, % )

- Cp6 1
b K3€ T o + T(atan —(45)

Thus the system would appear to have a simple time constant

given by equation (46).

_ _C76g |
(v bW, —(46)

For the particular case of the Wien Bridge Oscillator employing a

high gain amplifier Ro'ﬁ R2 and thuspo 0, For this case equation (16)

reduces to the simple form;

T - %1% |
—(L46A)

aWo
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Although "a" and CT are not strictly speaking constant, equation
(L6) or (L6A) should yield't to a goocd approximation for small values
of the perturbation §v. The steady state temperature 6, should also
be kept well above the temperature of the lamp's surroundings.

A useful expression for variations of the lamp resistance
in terms of power can be obtained by further manipulation of equaﬁions
(33) and (34). If we take the logarithms of both equations and combine

the two resultants to eliminate the temperature, we can obtain;

+ log X5 - g log Ky —{(47)

-~
1

= 2 gz P
log Ro % log I

which is the equation of a straight line with slope

Ly = g » —(48)
and y intercept

= b
Yo = 1log K, - = log X4 —(49)

The actual characteristic will of course deviate from this
predicted result at low power inputs where the temperature or resis-
tance of the filament would bhe dependent on room temperature, The
actual characteristic would thus be log R squals a constant value for
low values of applied power and then gradually experience a transition
where the room temperature becomes decreasingly important until
equation (47) is satisfied.

For useful power inputs in the region of operation, the
slope of the characteristic should obey equation (47). For typical
values of M"a' and "b" for the lamps used in the experimental portion

the slope will be;
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We have seen that the lamp bridge shown in figure (9) is
characterized by a simple time constant T . This time constant will
set a lower frequency limit cn the use of the bridge as a control
element; If the frequency is reduced for the oscillator output we
would eventually reach a point where the lamp resistance would follow
the oscillator output and fluxuate at twice the frequency of the
osciliator. This would produce an output which would be entirely
unsuitable as a control signal.

(3) Low Frequency Response

To obtain an idea of the output from the lamp bridge at

low frequencies, let us examine the circuit shown in figure (10).

* 2, %’ez
V) O o2

Figure (10)

Let the input to the bridge be a sinuscidal voltage v = ¥2'E sin w,t
where E is the R.M.8, voltage and w, is the frequency in radians
per second. At low frequencies as the lamp follows the sinusoid,
let the resistance vary slightly about the mean value Ro so that

R = R (1+y) —(50)
where y is assumed to be a smell time varying parameter. If the
bridge arms are adjusted so that R2 = RO then the bricdge output will

be;
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A RN R

O
v k )
- -=(51
) Yy (5

The instantaneous current "i" through the lamp arm of the bridge is,

v

i= = A’
B+R_ R_(2+y) —(52)

and the instantaneous power supplied to the lamp is;

" V2R, (1+y) _ VR, (1+y)
R, (1+9)+R ]° 4R *(1+)°
2
~ Y __
LLRO

--(53)

where terms in y2 have been neglected., Corresponding to the variation

in resistance, let the temperature of the filament vary about some
mean value 6, such that,

6 = 6_(1+x) —(54)

where x is a small time varying parameter, The actual radiated

power P is in general some nonlinear function of this temperature
say P = f(6) and this can be expressed as a few terms of a Taylor

Series for small nonlinearity as,

P=£(8) % 8xE(8) + ¢vverrrenennns

~ PO + GOXGT —(55)
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where GT has been defined as the differential thermal conductance
of the filament at a temperature 80 ie (GT = f'(eo)). If we again
write CT as the thermal heat capacity of the filament, the power
balance for the lamp arm of the bridge can be written as;

d(Cr) =y - p --(56)

dt

Noting that the steady state radiated power is P_ = 2/L;RO we

can evaluate equation (56) as;

C [a __g}_( + G 8 X = - -ﬁf cos2u,t --(57)
Tog T® LR |
fa)

This is a simple linear differential equation with a sclution;

2 .
CpBox = _EL[__ng__z cos 2uLt + ZZui% sin2u)oé]
w
ARG hwo +u& hwo * T
--(58)

where Wy = GT/CT

If we define ¥ as the temperature ccefficient of resistivity for
variations about a termperature 80, we can write y = XGQX. Upon
substitution in equaticn (51) along with the value of QOX from
equation (58) we can obtain the bridge output voltage as;

EBX W g
3T T c Ly S+
TRo fw, ™+ Up

. . Z2Wa
sinw.t - sin3w.t% - - cosw.t
{ o o) } Za;::j'zi o

- Cos 3w,t }_J —(59)

In the above form the result is somewhat cumbersome, however at
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practical low frequencies 2“6 is still much larger thanWg for the
tungsten lamps of the type used, For 2“62””T equation (59) can be
approximated further to yield;

g2 ¥

‘V'N

{?osBuht - cosu%t}‘ —-(60)

This result means that at the bridge balance point where
we would normally expect zero output voltage, we still have an out-
put given by equation (60). This output consists of two components
of equal amplitude and ninety degrees out of phase with the bridge
input voltage. The first of these ccmponents is a third harmonic
of v(t) while the second is at the same frequency as v(t). The
components should decrease quite rapidly with frequency as is seen

by equation (60). In the oscillator these components would be

further reduced by the factor liAA? in the feedback loop. As
long as the feedback loop is quite selective the unwanted output
from the bridge can be tolerated for even very low frequencies,
however, the lamp bridge will cease to maintain the amplitude constant,
(L) Thermistors

Thermistors are basically electronic devices which utilize
the change in resistivity of a semiconductor with a change in temperature
or applied voltage. The devices can be either directly heated by
the current flow through the semiconductor or indirectly heated
by heaters depending on the type and application, The active portion
of the devices is composed of complex metallic=oxide compounds

using such typical oxides as manganese, nickel, copper, and cobalt,



The important factor in their application is the region of negative temperature
coefficient of resistance; the resistance decreases approximately exponentially
with the inverse of the absolute temperature.

Figure (11) shows a typical characteristic curve for a directly
heated bead thermistor which would be suitable for the feedback compensator

of the oscillator used in the experimental section.
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Figure (11)

Bollman and Kreer(7) have developed an expression for the dynamic
behaviour of the thermistor in the form of a nonlinear differential equation,
Although the equation is highly nonlinear it can be shown that the device
can be characterized by a simple time constant to a good approximation.

- The design of the thermistor bridge arm can be shown quite easily

via figure (12).

32
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i f= Combined (@r+ 7)
4 P

—
\
\

17X1 L‘ag’e

Figure (12)

Figure (12) shows three curves, the thermistor T,, the series resistor
R , and the combined characteristic of the two in series. Resistor
R  and thermistor T_ could form one arm of a bridge circuit as shown

in figure (13). Let T0 be the steady state resistance of T.

(@,
i Ry
v -0
}
T Vout
o 4

Figure (13)

For a proper choice of RT and thermistor Tl’ the steady state input
voltage vy will be such that RT = To for the bridge balance, and
corresponding to this condition the combined characteristic (Tl +RT)
should have dv/di very close to zero., Under these conditions any change
in the steady state voltage v from v0 would create a large change in
current i and a large change in the output voltage Vout which would

unbalance the bridge considerably. This would thus seem to be a



34

very sensitive source of an error voltage if used as a feedback
compensator,

For use in the oscillator of section III-(7) figure (8),
the thermistor Tl would take the place of the resistor R2 and the
resistor RT would take the place of the lamps R. For additional
sensitivity the lamps R could remain, replacing resistor RT’
although this would further complicate the selection of the lampsR
and thermistor Tl.

One additional benefit which could be obtained from the
use of a thermistor for the compensator is the independence of the

device with respect to vibrations and their associated bridge

misbalance,



35

V  WIEN BRIDGE OSCILLATOR WITH AMPLITUDE COMPENSATOR

(1) Sensitivity of Wien Bridge Circuit

In Chapter IIT it was found that the optimum choice for
the parameter k in figure (5) was k = 2 for maximum frequency sen=—
sitivity. For Ro’ a passive linear resistor, this is also the criterion
for maximum amplitude sensitivity for the bridge.

When a nonlinear resistor R is substituted for the resistor
Ro as in figure (14), the situation is further complicated and the
parameter k will have a new optimum value for maximum bridge amplitude

sensitivity.
O -
L e

/
%R-/K Ra

Vo Qe \fp —
Vi f Vz

Ll :

Figure (14)

If the voltage input to the bridge is given in the steady

state by,

v, = Elcosugt -(61)

and the mean value of R is Ro at some mean temperature 90, we can
examine the effect of small voltage amplitude changes on the bridge

balance. Let the input to the bridge vary in amplitude as (E;+{E;)coswgt

and the temperature of the lamp's filament vary as (Go+89). If ¥ is

defined as the temperature coefficient of resistivity for the filament,
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then the lamp resistance will vary as R0(1+869).

The power radiated P can be found from equation (55) as,
P = P_+§6G, —(62)

where GT is again the differential themmal conductance and P, is
the steady state radiated power.
The power supplied to the lamp W is,

Ro(1+350)(Eq+SE) 2

W= 2z
2(r +B_(1+350)

--(63)

which for small perturbations SEl where \8Eﬂ<<l and 1§01« 1 reduces

to;
We W 1+2.£_E.1+X58(l—-2i{9——)
o R 4R —~(64)
1
L 1 o 2
where WO = Z—ElEQ;E is the steady state power supplied and hence
R _+R.
o 2

radiated, die (P =W )
Q (%}

On the average the power supplied and radiated must be

equal., Thus we can equate equations (é4) and (62) to obtain;

[1 + 280 ys0(1 - EEQ—-—)] -1 23 -=(65)
E R +R2

1 Po

If we recall the constant m_ from section IV-(2) we can obtain

SR Ry¥46

o = logR Ry, _ Ry _ ¥ Po

°  TogP &P §6Gy Gy --(66)
P P
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and note from equation (16) that for an oscillator employing a high

gain amplifier,

then we can reduce equation (65) to;

8E] o

The output voltage Ve cf figure (14) can thus be written and approx-

imated as;

R (1+¥59) ]
E, § kK .2
= (E.+ E ) cosw tﬂwz F (8,

and

§vy = ~28E, 2k 1
f ke ~-(68)
er2) g -]

For maximum amplitude sensitivityl 5%/SE,| should yield a maximum, For

this condition for real values of k we find

.L*‘”mo __( 6 9 )

We note that the value of k for maximum sensitivity has been altered
1--

by the factor Lo,

from the case of the linear resistor. Since
we have seen that the expected value of m, is small for the tungsten
lamp, a value of k = 2 will not greatly alter the amplitude sensitivity

and yet it will allow the oscillator to be desjgned for maximum frequency

sensitivity,
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(2) Oscillator Stability

Stability for the oscillator is extremely important as
the oscillator output should not experience any violent changes
for finite changes in the circuit. We say that a linear circuit
is stable when all transients decay in a finite time leaving a pre-
dominent steady state. It is thus essential to study a system's
transient response when investigating the system stability.

For an oscillator, we must know the transient response
to small perturbations about each of the possible "steady states",
The "steady state" is where the output is a wave of constant amplitude
and frequency. The equilibrium point or steady state point is then
investigated by perturbing the system and examining the resultant
transient. If the particular steady state is sta£le, the transient
disturbance must decrease with time, and if unstable the transient
will be enhanced. In some systems a large perturbation can cause a
change in the steady state while a small perturbation will not. The
time constant with which a disturbance decreases may also be of suff-
icient duration to be annoying. For these reasons some qualification
must be imposed on the meaning of stability for a system depending
on its application,

If we perturb an oscillator which is initially oscillating
with a sinusoidal output, the perturbations will give rise to a
modulation of the output(lz) at some complex frequency s =oc+juﬁ
which can be obtained by solving the network equations for the per-
turbation., The transient response can then be evaluated with regard

to stability.
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(3) Transient Response of Wien Bridge Oscillator

In this section we will examine the transient response
of the Wien Bridge Oscillator for small perturbations of the lamp

resistance R for the circuit shown in figure (15).

AW
<
S/E.
C
‘-j__ —Q
= 4V8
Sw Lo
ER, j;

Figure (15)

The amplifier A is assumed to be linear with gain A[0°. The lamp R
is perturbed by introducing or removing the resistoréI%)via the
switch Sw,

During the steady state oscillation the switch Sw is

closed and the output voltage v will be given by;
v, = Elcos(wot + @) -=(70)

where UJO = l/CRl is the steady state frequency. For oscillator
frequencies above the lower frequency limit of the lamp bridge,

the output amplitude and frequency are constant in the steady state
and the lamp resistance will be a steady state value RO. If the

amplifier has a high gain such that A1, the resistor R2 will also

have the approximate value Rzﬁ!Ro.

If the resistarice € Ro is introduced into the circuit at time t=0
via the switch Sw, the output must change correspondingly by a time

varying parameter &V, such that,
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v, + sV, = (El+5El)co§(wot+¢) —(71)

The change in the output voltage will be a function of the amplitude

only as shown in equaticn (71) if the response characteristic of the

feedback network is symmetrical about the oscillation frequency(ll).

For any other condition the changes in amplitude would be accompanied
by changes in the osecillation frequency. We are justified in making

this approximation here at least for small perturbations,

Equation (71) can be written in the exponential form

using the exponential identity for the cosine term to yield,

(s+jwt+jd (s-jw)t - j¢
v, = Ed]e +e —(72)
where the relative change in El has been written as
st
& . de -=(73)

EI
where S = o€ + juﬁ is the ceomplex frequency of the modulation,
The change in the output is seen from equation {72) to be com-
posed of two terms at the complex frequencies 5 tjué.
In the steady state the output vy from the frequency sel=-

ective arm of the bridge of the circuit, figure (15) was,

]

v

177 -
54 A[u.,z. - E’n] —(74)
2100 w

The change in vl for the change in v, will thus be
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for each of the two complex frequencies of the output &V, given

in equation (72). The output from the frequency selective arm év

1
is thus;
(s+jwdt +jd (s-on)'t -j¢
5Vl = Ed | &
2 s b
(J+ 2+- i+ )
Wo J‘f"s/w W 5+ S/wo

Fortunately for the oscillator parameters involved we can make
the assumption |s|<« |w,|which greatly reduces this equation. For

the above approximation we obtainj

(s+jwa)t +j ¢ +e (s-jWdt = ¢

6\5 ~ E[d
4 )
(1 +é_&)°)
or
SV s _S_VL__, "-(75)
to(2+8)

If the transfer function for changes in the envelope is defined

as Fl(s) for the frequency selective arm we can writes

Fi(s) =50 = 1
S e g ~(76)

where gV, is the amplitude of Svl and §E. is the amplitude of § Ve

1L
If the Laplace transforms ofSV:L ard § El are Ll(s) and L(s) respectively
we can write,

y(s) - HsL —(77)

Weo

In order to evaluate L(s) in terms of the circuit constants



we must obtain a relationsnip for the ampiitude sensitive arm of

the bridge of figure (15) which cénsists of the lampe R and resistor
R2. Irn the steédy state for the high gain amplifier, the lamp R

had a resistance Ro and R2 was approximately Rzu Ro, The power

supplied and hence radiated in the steady state was thus;

W =P = sl _...(':]8)

where El is the peak voltage given in equation (70), Upon perturbavi ..
the lamp temperature will vary by & small amount,

9 = 90(l+x)
where X is the small time varying parameter. Similarily the lamp
resistance will vary as;

= T4+ )

R =R _(1+y)

where y is a small time varying parameter. I{ the perturbtation in R
occurs from switching the resistance éRo into the circait at time t=0,
we can write the time function for the change in R as;

§R = éRoh(t)

where h(t) is the unit step function. Upon perturbation the power

supplied to the lamp, W becomes;

W=W, +W = (E1V+SE1)2{ Ro(l+y)}

N
2(R,*sReR_(1+7)° (79)

Assuming a small perturbation such that € K1 this can be approximated

by the birnomial expansion as;

§W W [%ﬁl -¢ h(t)] —(80)

b
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The power radiated by the lamp was given in equation (55) as;
P= Po+eoxGT
where GT was the differential thermal conductance and Po is the

steady state radiated power. The variation in the radiated power

is thus;

P = XGOGT -(81)

The thermal heat capacity of the filament has been defined previously

as C so that we can write the power balance equation for the lamp as;
T

%E[CTGO(J.-PX)] = §W - &P —(82)

which can be evaluated by substitution from equation (80) and (81)

to obtain,

QQ(_- = EP_Q - ¢ 3
GTGOdt + GTQOX E aEl Poe h{t) —(83)

If the Laplace transforms of 8 x and 8E, are Lx(s) and L(s) respectively

the transform equation for (83) is

Lx(s){CTS + Gpb | ?-;-9 L(s) - E.gf w=(81)

The temperature ccefficient of resistivity for the filament material

has been defined as ¥, and it was shown in equation (66) that

m =% —(66)

Substituting equation (66) in (84) and letting We = GT/CT we obtain,



L (s) = ﬁ%‘f Ls) - £}
T

-=(85)

The voltage output from the thermal arm of the bridge is

v, in the steady state and will change in response to Svo to;

- (Vo*gvo)[Ro(l"'Y) + SR]

- --(86
2 Ry + Ro\l+y) + &R (86)

+ &v

V2
For small perturbations and noting that R24¥ Ro this can be approximated
as;

~ L 1
v, E[Svo + Evo(y + Eh(t)i] —(87)

Noting that y = Xeox by definition, and writing 8V2 as the change

in the envelope of 8v2, we obtain,

sV, 2 12{ L+ lE~(XGx+€h(t))]

from which we can write the transform equation if we write Lz(s)

as the transform of 8V2.
. B
L.(s) = &‘:L(s) + 2L (s) + .6,)} (88
2 2 2 X s (88)

In the above L(s) is the transform of §E, and Lx(s) the transform
of Gox.
From the circuit of figure (15) we see that before perturbation,
v, = A(vl - v2)

and after perturbation this would become

Vg * Svo = A(v1 + Svl -Vy - 8v2)



L5

from which the variation term is;

Since A» 1 we see that Svl’—“ Sv2 or SVl‘: §V,. Thus the transforms
will be approximately equal.

Ll(s) & Lz(s) --(89)
Solving equations (89),(88),(85) and (77) for L(s) we obtain the

transform of the output disturbance for the perturbation €R0h(t) as;

L(S)C‘-’ - ELE I’Sj + Siwv};fl—mo) + 2“)0} + 2UJOUJT(l—mO_>‘[ __(90)
2s Ls< + SMJT(L+mO) + 2w wom J

Equation (90) is seen to have three poles which are located at the

roots of the denominatcr. s = 0 and s = sy,8, Wwhere,

2 4
51,8, = — Llf;!g)ﬁ'.’l X 31/2“0%"‘0 - _(—]i%h)_%& —-(91)

or abbreviating

Sys8, = o< I Jup,
_ (.1_+m0)wT

|

where < =
2 ‘ --(92)
2. 2
1+m_ )W
and w = V;ww m e -(—-—I‘io—)——-!-r—a
m o T o L

The existance of a negative o« means that the poles of L(s)
will all lie in the left hand half of the s plane., This will ensure
absclute stability in that the transient will die out in a finite
time., Formal stability in terms of the pole locations is often
benificial as a pair of poles which are located close to the jw axis

in the left half plang, correspond to a lightly damped sinusoid
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which may be inadmissible wnere the amplitude is sufficient to seriously
alter the steady state ouuput, From equation (92) we see that since
mo is émall,<x will be correspondingly small with an expected poor
transient response. For actual "squegging® to exist for small per-
turbations, the constant m, must have a value approaching m, = -1
which of course is not possible for devices which exhibit a positive
temperature coefficient of resistence.

The transient response cen te found by taking the inverse
transform of equation (90). Using the method of residues(l5) at the
three poles s = O,sl, and s,, the time function can be obtained as;

«t
ge, = ~E€e (-'—mo-—-'— Yt 2w, Sin Wyt
! —L——Zwm %2. 2mg 3)

—(93)

_ E.€0-ma hit)
2me

+(27 5 )WmCos W 4:]

In the analysis we have already assumed thatcuo>)uﬁ. Employing this

restriction to equation (93) we obtain the approximation

—E.€w, ot ) Ei€ (1-m,)
§Ey .t)mo € sinyt- ——]2‘--——-I-I-—1(;—9 h(t) —{(94)

For normal oscillator frequencies the constant term of equation (94)
can be ignored because of its relative magnitude. The variable

part of equation (94) extrapolated back to t=0 would be

oz, - L

t=0

anc would take the form of & damped sinusoid with the frequencytum,

. . . 1 .
dying out with the time constant7ﬁ=/é:where < andtum are given by

equations (92).
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The transfer function Fz(s) for changes in the output
envelope with relative changes in the lamp resistance 8R/R, can

be written from equation (90) as;

L(s) E, [s2 + swq(l-m)) + 2w )+ 2w wr(1-m )
Fp(s) = === =~ ——[

Ls(s) 2 "'"( 95 )

s< + S“T(l+mo) + 2uwem,
where L3(s) is the Laplace transform of the relative change in R. The
"enhancement factor" which is defined in most literature as the
relative change in the output for relative changes of the input can

be found for sinusoidal variations of the resistor R by writing s = jw

in (95) as;
SE) /By _ __}[fz - jwlwn(l-m ) + 2w} - 2“bwT(l‘mo%] —(96)
SR/RO 2wl _ jwil + mofwT - 2w wom

The maximum enhancement will occur for the real frequency corres=

ponding to the poles of equation (96) which is;

2. ~ 2
u = 2ma”d“T - uﬁ

Upon substitution of this value in equation (96) we may write the

approximate "enhancement factor" as

5E /E w

el o _—

SR/R0 W(1+m ) (97)
W=z w

m

Actually we could expect that the true magnitude of the enhancement
would be somewhat less than this value due to neglected dissipation
in the capacitors and other components and the fact that the gain

of the amplifier is not really infinite. The enhancement would
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however be expected to be unusually large at high oscillator frequencies,
Although extremely linear amplifiers do cause the oscillator to be-

have poorly with respect to its transient response, the enhancement

at high oscillator frequencies is always much better than is pre-

dicted by this theory. In fact, the transient response usually

improves with increasing oscillator frequency wo rather than become
worse as is predicted by the theory.

(4) Effect on Transient Response for Nonlinear Amplifier

It was noted in the preceeding section that transient
disturbances die out much more rapidly than is predicted by the
linear amplifier theory especially at higher oscillator frequencies,
It is known that small amounts of nonlinearity will prevent the os-
cillation amplitude from building up indefinitely by effectively
altering the gain and thus creating a new steady state operating
point. The analysis is thus repeated including the effect of a small
nonlinearity present in the operational amplifier,

In practice the highly stabilized amplifier used is char-
acterized by a range which is relatively free from distortion followed
by a critical level often referred to as the power point of the amp-
lifier, After this critical level is reached the output‘is‘highly
nonlinear and usually almost indebendent of input voltage increases.
Below the power point however, the nonlinearity increases very slowly
and can be closely approximated by a few terms of a power series such as;

- 2 3
s - + + + cee se oo e
Avln a|vy + ayv, asv, . cas

where A is the amplifier gain, v,

in is the amplifier input voltage,

and v, is the amplifier output voltage. The constants al,az,as.......
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will vary depending on the amount and ty,+ o0 norlirnsarity. In the
closed loop operation, the output voltage will contain distortion
terms and will be of the form;

v, = E cos(wot + @) + D,E; cos(2u6t + ¢l) + DBEi cos(jwot + ¢2} t veees
where D2’D3"""' are the fractional distortions at the various
harmonic freguencies of the oscillator natural frequencyauo. Even
power nonlinearities in the amplifier will contribute a d.c. term
and even harmonics to the output, while odd power nonlinearity
will contribute a term at the fundamental freguency plus odd har-
monics., Since we are concerned with terms which will limit the amp-
litude of the output, we will deal only with an odd power nonlinearity
and in‘its simplest form -=- the cubic. Let us assume then that the

'amplifier can be represented by the apprcximaticn
Avinu AN bvo3 --(98)

and for the steady state the output voltage from the oscillator

will contain a third harmonic term

v, = E; cos(w t + #) - DBy cos(3ut + £,) --(99)

where D3 is the fractional distortion of the output voltagéiéi the
frequency Bwb. The oscillator natural frequency is altered somewhat
oy this additional term, but as long as DB«:l the change will be

insignificant. The approximate amplifier input can be evaluated as;

. 2 , ‘ =3

E, (1+3bE.<) _ DoE b

Vin Kl I 1 cos(wyt + @) - -z—l cos(3w,t + §5) * —%i-— cos(3w,t+3%)
—(100)

The Wien Bridge circuit must in effect adjust slightly for this new

condition., We can account for this change by allowing k tc vary
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slightly fromiprevious value of k = 2, to a new value k = 2(1 + 281)
where 281« 1.

The steady state transfer function Tl(jW) for the Wien

Bridge for the new value of k is simply

1y 1
T = 2 ——
1(jw) L(k+2) + .:.L.j[i&. - % 2
2 wo w
~ 2 18 -1 (101)
2|1+ 328) 5w _ Woy -
L yoow

For the term at the fundamental frequency W this reduces to,

Tl(uJo) ~ _%— --(102)

while for the term at the third harmonic frequency,

o
j*2
7, (3w)x - €. = : —(103)

413

= tan~t(3
where o, tan (2)

Since the input to the bridge is given by equation (99)

we can find a second value for Vin which is the bridge output,

1 E
v, =25E coswt + @) + BEL cos(3mt + g, + o) —(104)
in lEl o N13' (o} 2 2

Equating equations (104) and (100) to evaluate the unknown par-

ameters we find;

2
§1E - E 3bEy
(a) 3. 0. 2

2 3bE, 2 |
or 81 K(l + —l:l-) --(105)
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3
DR E ‘ DLE bE
(b) i%;} cos(Bth + ¢2 +oL2) = - -i—l cos(3uw,t + ¢2) + cos(3wyt + 38)

1
LA
For the case of the high gain amplifier where A1 the above can be
approximated as

2
o o DB E

3% Toa and (@, +,) > 3¢ | -—(106)

which when combined with equation (105) yields;

6D
61 ~ )7,1}3.‘ --(106A)

If the oscillator is again subjected to a perturbation in
the lamp resistance as for the previous analysis, the oscillator
output will again be modulated. The third harmonic term in the out-
put will also be modulated in a similar manner,

If the output varies about the steady state by an amount

dv, the output will thus be;

v, *bv = (El + 5El) cos(ubt + @) - (D3 + 8D3)(El + 8E1) 9os(3ubt + ¢2) --(107)

where 5El is again a function of time as defined in equation (73).
The amplifier input of figure (15) and hence the bridge

output voltage, is given from equation (98) as;

Yin T3 3 Yo —~(98)

For the term involving the fundamental frequency wo in equation (107)
this is approximately;
[Fin * 67y ...__A___.[l = (B, + SEl)] cos(w t + f)

W=w,
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and hence
o SEj 9% 5 —-(108)
Win| = _Al[l Y El:l
UJ:(.L)°

where Svin is the change in the envelope of Svin defined as
Svin = SVin cos(uJot + @), Substituting the value of "b" from equation

(106) in (108) yields;

9D
v o -
6V, SEng\ (109)
w=w,
A second value for Svin is seen from figure (15) to be
= - --(110
§V, =8V, -8V, (110)

The steady state transfer function T(jw) for the frequency selective .
arm of the bridge which is needed to evaluate SVl is simply the

first term of equation (101), Thus

2(30) = 20 51 |
1+ (1-81)[_33;+ 99_] —(111)
bolwo W

Again for the complex frequencies jw = (s jwo) associated with

the oscillator output, this becomes

1
: : (1 + §)
T T(s - = - :
(s + jw) + T(s - jw) 1. (l—Sl)[S v Jug . wg_]
I w s + jw
(#] o
. 21+ §y)
1 4 A=S1)res Jwy o wg
b4 W, 8=jw,
1
1, =T

2 w,
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where it has been assumed that Isi«|w,| o
The transfer function FB(S) for changes in the envelope

through the frequency selective arm is thus defined as,

1
3\® = (1=31)
SEl 1+ Al=0l) 8

2 W, —-(113)

If we again define L(s) as the Laplace transform of éEl, then Lh(s),

the Laplace transform of SVl, is given by;
L,(s) = L(s) F4(s) —(114)

The output from the amplitude sensitive arm of the bridge

is again defined by equation (88) and (85) as;

L2(s) = %[L(s) + %El(XLX(s) +%£] ~—(88)
where;
W m 2L(s) ¢
Ly(s) = - _
X8 ¥ (s+w )[_ El s (85)

If we now define LS(S) as the Laplace Transform of §V, we can write

from equation (109) and (110);
Lg(s) = L(s)2§) = L, (s) = Ly(s) --(115)

and we can solve equations (115),(85),(88),(114) and (113) for L(s)

to yield,
15[ - Zour]
Ls) = 1 fsg =1 --(116)
—rbys - 1 26, - 2t
]_+_._l_... 1 S'H‘JI‘
2W

[o]
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Neglecting terms in 812 and higher this can be written as the ratio

of two polynomials in s,

N
Les)= Z's

(1-36)15% S [~ w_+2(+8)we] + 21+ §)M1-mo) wew- §

2+ 5[(+m(1=38)Wr + 4w, §, ] +Zw°wrim,(u-zs,)+28,§_]
Since D3 is small 31 is also small and will only have a significant
influence on the coefficient of s in the denominator., Hence the

above can be approximated as;

L(s) ~ Ej€ 52 + s{(1-mo)wp + 2w} + 2(l-mo)u)owr-|
T T 25 | 2 . -(117)
+ s i(l*-mo )wT + hwogl% + 2m w U)T J

where 51 <<|‘Uol .

Equation (117) has three poles, s=0,s=s3 and s=s; given

by the roots of the denominator of equation (117). Thus;

- +

5305, =% Jin —(118)

where c*C:L and w ; are defined asj

1+m ) + 4w

) - - (I+m Jwp * b by —(119)

2

and

2., itmgywp + Lupsi]? v
Wml. = 2WL, Q -=(120)

1
L 2
For normal oscillator frequencizs where wo)yw,l, this reduces to ap-

proximately the same valus as for the linear amplifier,
o Zwwem, =W <2 —(121)
ml o T e

We should note however, that for increased nonlinearity and hence in-

(120}
creased 61, the second term of eguationawould become more important
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and the modulation frequency would be decreased,

Since OCl is negative for real values of the parameters
m W Sl and wo, the transient will decrease with time., Furthermore
sincelocliis increased by the term 2w8,, the time constant with
which the transient decreases will be much shorter especially for
the higher oscillator frequencies. The actual transient SEl can

again be obtained from the inverse transform of equation (117) as;

: ot
§E, = — %.6. S.E:E&Zh(t)—;.;l e [(2(4)0 + {% -m, - Zin-l—ang)sinw t

) ml ml
+ (2- fl'-lo)wml cosu)ml’ti‘ -—(122)

1

which is identical to the result obtained for the linear amplifier

except thato has been replaced with oCl and wm has been replaced with

we The approximate transient for w» wyp can again be written,
E€ ot Ei€ (1~
6B, v — S ety sing, t - S Amody v —(123)
1 Wey o 2 m, '

The time constant with which the transient dies out is the reciprocal

of oCl and is thus;

T 2 --(124
(Long oy + bis, —

The value of AEl which is the magnitude of éEl extrapolated
back to t=0 will be unchanged from the case of the linear amplifier.
However, since the time constant will be much shorter for the nonlinear
amplifier, the associated first peak of the sinusoid will be much

smaller than for the linear amplifier. In figure (16) the oscillator

output response is shown for SR = -GRoh(t) which is the negative of
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the result obtained in equation (122) and was caused by closing the

switch in figure (15) at time t=0.

% - Figure (16)

t
W, sinup it -—(125)

The variable part will thus reach a value 6E1 peak shown in figure(16)
at some time t = tl. For this condition we can solve for tl by

differentiating equation (125) and setting the result equal zero to

yield; + s
) T, 4
5= 0= G St m e s umt
~JIW
thus ty = w—i-]-_- tanl[-_-_-o—ém-]l-:] —-(126)

’

The value for SEl peak can also be calculated for the value of tl as;

t
SEl/ E.€ [TV PN eocl !

peak 1]2_§[m°w°%

--(127)
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where t, is given by equation (126).

Since the time constant will be larger for the linear case,
the value of SEl peak will be greater than for the case of the none-
linear amplifier, In addition if the first peak is large, the non-
linearity will tend to limit the increasing amplitude peak. The
most important result of the nonlinearity is that the time constant
will decrease to an extremely low value at the higher oseillator
frequencies as is shown by equation (124). For increased nonlinearity
the frequency wml would also become lower and the time tl given by
equation (126) would increase while the time constant'[l decreased.,
The net result would also decrease the amplitude of the first peak.

The response of the system to sinsusoidal variations in
the lamp resistance can be found in the same manner as for the linear

. jwt
amplifier, For a variation %§=€°ewu we obtain;

—(128)

§E= - E.E‘,e‘jw_t wZ=jw-MIwe + 20,3 -2 (1- M) we we
2 wajwfﬂ+mowr+4gm%§_Zn%u%wr

For a range of oscillator frequencies where(uo)>(“T the enhancement

will be a maximum at the frequency,
20
W ‘%V@T

and the "enhancement factor™ will thus be;

w
§EY/E) o 2 --(129)
SR/Ro b (1+m Jwp + L §qw,

The enhancement for the nonlinear amplifier case is thus improved

by the factor hslwo in the denominatoer as can be seen by comparison

of equations (129) and (97).
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The analysis presented has heen entirely for perturbations of
the lamp resistance §R. The analysis can be extended to variations
in any of the closed loop parameters through the use of the basic oscillator

equation (16)

k R,

k+2 R°+R

1
- = —(16)
2
and the chain rule., For example if the transfer function for changes
in output for relative changes in the lamp resistance is Fz(s),
then an expression for the output voltage envelope corresponding

to a variation in the amplifier gain §A/A would be

%A ORo A
SE. & 22 _.

~8A 4
“Z'(s).KFz(s)

The enhancement of variations of amplifier gain would thus be reduced
by the factor L/A which is in agreement with the general concept of
the use of the bridge circuit., ©&ince the value of 31 decreases
proportional to A the enhancement of variations of amplifier gain
should be independent of A for high frequencies and the condition

that A)} 10
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VI THE EXPERIMENTAL CIRCUIT

(1) The Basic Oscillator

In order to evaluate the theory presented in the preceeding
sections, an oscillator was constructed from which the transients
could be measured. To keep the transients as large as possible,
the amplifier used was constructéd as linear as was possible. The
basic oscillator described in the theory can be drawn in a block

diagram form such as that of figure (17)

A (w)

AR -0 Vo

Figure (17)

The oscillator consists of the lamp Bridge Arm N(El), the Frequency
Selective Arm & (w), and the Amplifier A which contains a small
amount of third harmonic distortion, The summing amplifier shown
can be a part of the amplifier A and has unity gain.

(2) The Frequency Selective Network

The frequency selective network shown in figure (18) was dis-

cussed in sections III and V.

amt )

I

R| T C V.
a | d

Figure (18)
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The values of the components Rl and C are to a large extent governed
by the input and output impedances of the amplifier., The value of Rl
for the low frequency end of the tuning range must be much smaller
than the input impedance of the amplifier. Similarily, at the high
end of the tuning range, the value of C must be much larger than the
input capacitance of the amplifier. The total impedance of the
frequency selective network must also be high enough not to severely
load the amplifier, In particular the network impedance should be
much larger than the amplifier output impedance for the analysis given.,
These effects can be reduced by using cathode follower inputs and
output for the amplifier, but should.not be ignored in the design.

(3) The Thermal Bridge Arm

The thermal bridge arm contained two tungsten lamps as

shown in figure (19).

F
| .
Vo
R Qs l
S
W\I €R, Vlz
O— ‘ . —0

Figure (19)

By the inclusion of R5’ the resistor R2 can be adjusted
exactly to R2 = R.Q and still maintain the slight bridge misbalance
necessary for oscillation. The value of R5 should however, be much
larger than R2 or Ro‘ The two lamps used for the variable resistance

R should have sufficiently high resistance not to load the amplifier

ocoutput and yet still have a characteristic which would enable them
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to be used sbove their transition region for low oscillator output
voltages, The switch Swand resistor«ERo were included as a socurce
of the perturbation &R=-€&R hbd),

(L) The Linear Amplifier

The high gein amplifier must consisi of at least two stages
in order to achieve the zero net phase shift required by the analysis,
As mentioned earlier the output impedance of the amplifier must be
very low in order that the Wien Bridge circuit does not overload the amp-
lifier. This can be easily accomplished by using a heavy duty
cathode follower fof the output stage. The high gain and zero net
phase shift can be obtained from any simple two stage preamplifier,
The: frequency response of the entire amplifier should be flat from
very low frequencies to frequencies well above those used in the
tests, The net phase shift of the amplilier should be kept close
to zero degrees although a small phase shift will not greatly alter
the oscillation frequency. In corder to minimize the harmonic
distortion and decrease the amplifier output impedance, the amplifier
employed approximately 20db of overall negative voltage feedback,
and operation was confined to a region of about one quarter of its
designed maximum output level,

(5) The Differential Amplifier

The summing amplifier used should be as free from common
mode effect as possible, Several different types of differential
amplifier circuits are discussed in the literature (17),(18). The
circuilt selected, and designed consisted of a double triode Tl with

& common cathode consisting of a triode Toand its cathode resistor RK.
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The combination of tricde ‘1‘2 and resistor RK provided an effective A.C.
common cathode resistance of rp, + (1tu; YRy for the double triode Tl.
Here ry, is the plate resistance of T, and u, is mhu of T2, This
provided a minumum comwmnon mode volltage and a maximum input impedance
for the difrerential emplifier. A& double triode should be used for
the tube Tl to minumize differences in characteristics between the

two inputs. This amplifier was constructed as a part of the total
high gain amplifier A.

(6) The Envelope Detector

Although this plece of equipment was not a part of the
actual oscillator, it was used wherever the time constant permitted
to detect the modulation frequency of the transient and amplify the
envelope to a level suitable to drive a Beckman Counter. The block

diagram of the detector is shown in figure (20),

70 Couvnrer
Limidem % O

From 5 I\I Lowus Pass !A\
7 [ an W 4
Ourjpu? Diodla !

Figure (20)

The circuit used consisted of an indium bonded diode type 1N100
followed by a low pass non-tapered R-C filter which comprised the
actual detector. The detected envelcpe was then amplified by the
amplifier Ah and clipped at approximately two volts to supply the
desired amplitude for the counter. The low pass filter was a non-
tapered lour section R-C filter designed to eliminate any carrier
frequency above 190 cps. The limiter consisted of a pair of reverse

biased diodes which were adjusted to clip at two volts peak to peak.
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VII  EXPERIMENTAL OUTLINE

(1) Gereral Outline

The experimental portion of the thesis was carried out 1o
evaluate the various parameters and to verify the theoretical results
obtained in the analysis. The oscillator circuit was designed and
constructed to meet the requirements indicated in the previous chapter,
The transient waveform of the oscillator was then measufed for a
perturbation of the lamp resistance at various oscillator frequencies
and amplitudes,

The static characteristics of the lamp bridge used in the os-
cillator were measured and the exXperimental values were compared
with those predicted by the theory. The time constant due to the
thermal inertia of the lamp was measured and the result was used
in calculating the expected transient response for the oscillator,

A study of the low frequency response of the lamp bridge
was also made., The resulis obtained were used to check the result
of equation (60) with regard to the unwanted output at the bridge bal-
ance point, and the variation of the unwanted output with bridge
input voltage and frequency.

(2) Measurement of Static Lamp Characteristics

The static current-voltage characteristic was measured
for the two Westinghouse ten watt 250 volt lamps connected in series,
The voltage supply used was a John Fluke Stabilized Power Supply model
4LO7 and the voltage was measured witb a John Fluke Digital Voltmetep.
A standard 0,5% laboratory d.c. milliameter was used to measure the

current through the lamps, The power supplied to the lamps and hence
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radiated in the steady state and the resistance of the lamps were then
calculated for the various lamp voltages, These results are tab-
ulated in table (1) and are shown plotted in graphs number (1),(2), and (3).

The static current-voltage relationship is shown on graph
number one for the two lamps connected in series. The characteristic
is seen to be composed of a linear region, a transition region, and
an almost straight line region. A graphical analysis of this
characteristic in the region of oscillator operation yields an
approximate curve given by,

E= 0.884 11‘61‘
where E and I are the d.c, voltage and current supplied to the lamp
in volts d.c, and m.a.d.c.

Graph number two is a plot of the lamp resistance R as
a function of the lamp voltage E which can be approximated by the
straight line relationship

R=~ 900 + 170E
in the region of oscillator operation,

The third graph, graph (3), shows the relationship between
the lamp resistance R and power supplied or radiated in the steady
state, As mentioned in the theory we would expect a straight line
relationship between log R and log W excepting the low power inputs
where the supplied power has little effect on the lamp temperature,
Graph (3) shows this straight line region quite clearly with a slope

m, = 0,226

We also see from graph (3) that there is a linear region for very low
power inputs which corresponds to the region in which the lamp temp-

erature is completely governed by the ambient temperature. The
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Lamp Voltage

Lamp Current

Lamp Resistance

Power Supplied

in Volts d.c. in m.a, d.c. in Ohms to Lamps
in m, Watts

0,3110 0.3504 88L4.8 0,1086
0.6330 0.6768 935.3 0.4284
1.331 1,233 1079 1,642
2.088 1.682 1242 3.512
2.883 2,060 1400 5.939
3.699 2.399 1542 8.874
L.531 2.709 1673 12,27
54372 3.002 1789 16,13
6.215 3.292 1888 20,46
7.069 3.561 1985 25,17
7927 3.823 2074 30.30
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curved region which follows is simply the transition region in which

the effect of the room temperature plays a decreasing role with increasing
power in esbablishing the filament temperature, Operation below

a lamp voltage of two volts would be inadvisable due to these am-

bient temperature effects on the lamp performance,

It should be noted that since the lamps used were designed
and manufactured for illumination purposes, variations between the
static characteristics of two identical lamps often exceeds 10%., The
characteristics shown apply to the two lamps used in the oscillator
and should be accurate within one half of one percent, but will only
be typical values for lamps of their general rating and species,

(3) Measurement of Thermal Time Constant

The thermal time constant of the lamps can be measured by
connecting the lamp bridge to aconstant voltage supply and subjecting
the lamp bridge to a small change in operating voltage., The circuit
used is shown in figure (21) and enabled the measurement of the var-

iable term cn the oscilloscope.
Fsow 1

Ry
<i> %ERb R [<:> Osq%ésigpe
> T d.C. 7
Gl e Ve e
Sy B Re R2

Figure (21)

At normal oscillator frequencies the lamp will behave in the
same marmnmer as it weuld to a direct current voltage. We can thus re-

place the alternatiang constant voltage supply for the regulated d.c.
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power supply shown in figure (21). Resistors R7 and R8 are part

of a low resistance potentiometer included to facilitate the change in
voltage and to improve the regulation of the power supply. Resistor
R8 was adjusted for each bridge voltage to yield approximately a

ten percent change in input voltage when switch sw was closed,

Resistors R, were a matched pair of resistors much higher than

6
the mean lamp resistance and yet much smaller than the oscilloscope
input impedence. A value of R6 = 10K was used, The bridge was

initially balanced with switch sw closed which brings the oscilldsc0pe
into the circuit along with the increased voltage. For this condition
the oscilloscope trace was along the zero voltage axis, The switch sw
was then opened and after the lamp had reached its new steady state,
switch sw was again closed and the transient noted.

If we let the input voltage to the bridge vary due to a
step change §V_ to V0(1+E) at time t=0 the resistance R will vary as
Ro(l+y) as the filament temperature varies as ©_(1+x). It can be

shown that the bridge output voltage v

ot = (vl - v2) is given by;

R
Vout™ Vo(l'“‘-h(t))[% - R_ +R:(l+y)]

-wyt
where y = 2&m_ [l -e erh(t)

which reduces to the form

v
out

V°€m [1 & }(he)n(t)

which is a constant term plus a variable tem. When the variable
term is separated and measured as in figure (21) we can find the thermal
time constant for the lamp bridge'f=«l—by noting the amplitudes

Wp
of the trace at two instants in time., If the amplitude of the trace
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is Vl at time tl and V2 at time t2 then the time constant would be;

1 ty =t
T = u_)_. = _(_..1-__\7..2..). __,(130)
T 1n
v

The time constant can thus be evaluated by obtaining the difference
in time between where the trace crosses two successive or particular
graticule lines on the oscilloscope face, The values should be
measured close to the steady state where the lamp voltage is close
to half the bridge input voltage.

The values for the time constant were found for ten lamp
voltages given in table (2). These values are the average values
of a successive number of trials., A d.c. amplifier not shown in
figure (21) was constructed and used in conjunction with the oscilloscope
to provide additional gain especially for low lamp voltages. The
oscilloscope was used on d.c. input because of the time constant
assoclated with the coupling capacitors of the oscilloscope on A.C.
input.

The time constant due to the thermal inertia of the lamp
is plotted as a function of lamp voltage E on graph number four.
Figure (22) shows a typical oscillogram taken from the oscilloscope
of figure (21) for a lamp voltage at balance of E = 10 volts D,C.
The values are used later in predicting the expected transient for
the oscillator,

(4) Low Frequency Lamp Response

The circuit of figure (23) was constructed using the lamps

employed in the oscillator limiter and the bridge output was measured
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TABLE (2
Lamp Voltage Lamp Resistance Measured Time
in Volts dc. in Ohms Constant
In Seconds
1.00 1024 16.3
2,00 1223 10.9
3.00 1400 7.60
4,00 1575 5.70
5,00 1745 L.60
6.00 1873 3.90
7.00 2076 3440
8.00 2070 3.00
9.00 2135 2,60
10.00 2200 2,40

at balance for low frequencies using a Muirhead Wave Analyser type D

729-B,

QY

Constan?

Vo //838
Sovrce

Seps
40 cps

out >

Figure (23)

The resistors R6 were much larger than R and were a matched pair,

Resistor R2 was adjusted for each bridge input voltage to make the
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bridge output a minumum, The constant voltage source consisted of

a Hewlett Packard model 200-CD Wide Range Oscillator operating at

a low output and feeding a high power low output impedence amplifier.
The output from the bridge was also fed through an amplifier to an
oscilloscope. An oscillogram figure (24) was taken from the oscillo=-
scope for a bridge driving frequency of five cycles per second. The
output is seen from figure (24) to be composed of two frequency com~
ponents of equal amplitude and opposite phase., The first is at the
fundamental frequency of the bridge input voltage and the second

is at the third harmonic; both are shifted by ninety degrees from
the bridge input voltage.

A plot of one of these two frequency components in shown in
graph (5) and the results are tabulated for the two in table (3). The
input voltage was measured with a themmal milliameter and series
resistor which had been calibrated to read in volts R.M.S.

The theoretical value for the bridge output voltage can
be found from section IV-(3) equation (60) if we note thabY:*"oGr/¢3

and P_ = Ez/m.—zo where wy= Gp/Cp. The bridge output would thus be

- QW -
vout 8f_‘ cosBu)t cosu)t

The plots of graph (5) vary quite closely as the reciprocal of the
driving frequency(uo as is indicated by the theory. As a further
check the equation can be evaluated at some bridge voltage say E=10
volts RMS, m = 0,226 and(vT can be evaluated from table (2) at a
lamp voltage of 5 volts RMS aswg = (1/L.6) sec™ . For these

values the output is;
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Driving Driving Amplitude of Amplitude of
Voltage Voltage Fundamental 3rd Harmonic
Frequency Across Frequencies at Balance
in c.p.s. Bridge at Balance mv, R.M.S,
f V. R.M.S. mv. R.M.S.
)
-1 -1
5.0 10.0 8.90 X 10 8.90 X 10
10,0 L2k Le25
15,0 2.76 2,76
20,0 2.10 2,10
30.0 1.60 1.60
40,0 1.10 1.10
-1 -1
5.0 8.00 5,60 X 10 5,60 X 10
10,0 2,70 2,70
15.0 1.75 1.76
20,0 1.25 1.27
30.0 1.00 1,00
-1 -1
5.0 6.00 3.25 X 10 3.20 X 10
10,0 1.52 1.52
15.0 0.90 0,90
20.0 0.70 0.70
30.0 0.60 0.60
-1 -1
5.0 5.00 2,30 X 10 2,25 X 10
10,0 1.00 1.00
15,0 0.64 0.65
20,0 045 0.45
30.0 0.37 0.37
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FIGURE 24
Unwanted Bridge Output at a

frequency of 5 c.p.s.
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v at 5 eps = 0,977 m. volts R.M,S,

out

= [ ] L ] * .S.
Vout at 30 cps = 0.163 m. volts R.M

which agrees quite closely to 0.89 m. volts and 0.16 m. volts
measured and recorded in table (3).
The magnitude of the unwanted component should thus not
be objectionable for oscillator frequencies of five cycles or higher
for even extremely high gain amplifiers used in the Wien Bridge Oscillator
circuit. Below five cycles per second the unwanted components in-
crease quite rapidly and hence setsa lower limit on the usefulness
of the thermal compensator as a control unit.

(5) Transient Oscillator Response

The oscillator circuit was constructed with the value of k
in figure (14) chosen as k=2, This choice of k=2 allows the Wien
Bridge circuit to operate at the condition of maximum frequency
sensitivity. The capacitors 2C and C were of a fixed value mica type
and were matched for the two to one ratio., These remained constant
during all of the tests,

The resistors Rl and Rl/2 were of the deposited carbon type
and were mounted in shielded plug in units to allow changes in os-
cillator frequency. The values of all the components were adjusted
to form balanced pairs. To allow a continual frequency variation,

a dual potentiometer was mounted in a shielded plug in unit. Al-
though the tracking was not particularly good on this device it was
suitable to obtain the frequencies where hum enhancement occurred.
The values of the circuit frequency determining elements are listed

with the expected oscillator frequencies,
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C = 24,140 p.f.

Resistance Unit Expected Frequency
Rll = 28420 ohms 232.0 c.p.s.
R,® = 19120 ohms | 344.8 c.p.s.
R13 = 15520 ohms L4248 c.pes.
Rli‘L = 14180 ohms ' | 46L.9 c.p.s.
R15 = 10870 ohms 606.5 CopeSe
Rl6 = 9447 ohns 697.9 c.p.S.
Rl7 = 7613 ohms , 866.0 c.p.s.

The dual potentiometer had a value of O - 50K, O = 25K ohms
and would thus tune the above range of frequencies,

The transient was introduced by shorting the small resis-
tance €R0 in series with the two lamps at a time t = O, The result
obtained was a damped oscillatory transient as shown in figure (25),
These transients were produced and measured for various oscillator
frequencies and oscillator ocutput levels,

The observed transient waveform can be easily correlated
with the theory with the aid of figure (26).

Here the various terms are defined by

oscillator steady state peak amplitude in peak volts.

l=
AE, = magnitude of transient extrapolated back to t = O in peak volts.
6E1F;kmagnitude of first peak of transient in peak volts.
fm = modulation frequency in c.p.s. = S
t2 - tl

-tl = time constant of transient wave form in sec.

From equation (93) these terms can be approximated for the linear theory as
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FIGURE 25
Oscillator Transient caused by

a typical switching disturbance
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B €w
n - J—-—Q .
SE /peak AR o (131)

fm = -jr‘v2mowowT --(132)

and

~ 2
T m —(133)
mb T

Similarily where the nonlinearity of the amplifier is accounted for,

the terms become,

-1
EJGLOQ e"f%;,;'f‘an (t|wm\

§E1/ oarc” o —(134)
. 1 -
fo E%Vm%y&%' (135)
~ 2
Rk ~—(236)

(l+mo)uJT + hwogl

The presence of even a minute amount of cubic nonlinearity should

have a profound effect on the transient time constant T, as is seen

in equation number (136) while the modulation frequency of the os-
cillator will remain practically unchanged for small nonlinearities such
that D<,0l ie (1%).

The experimental values for the peak amplitude SEl/peak R
the time constant T,, and the modulation frequency'fm were measured
from the transient waveform displayed on a Teckironic Oscilloscope
model 536. The oscillator frequency and the modulation frequency

were measured on a Beckman Eput and Timer model 7370 wherever the

transient time constant would permit its use. The oscillation level
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was estabilished by the use of a thermal voltmeter which was con-
structed from a thermal milliameter and calibrated to read R.M.S.
voltages. The results which are shown tabulated in table (4) are for
a step function of resistance 8R =-2,018 h(t) which was introduced

by shorting the 2,018 ohm resistor with a switch at time t = O. The
value of R2 which was a carbon potentiometer was adjusted for each
oscillator voltage on a resistance bridge so that R2 = Ro' The
potentiometer R5 of figure (19) was then adjusted to provide the small
misbalance needed to obtain the exact oscillator output voltage. The
time constant was evaluated from the time base of the oscilloscope
which was checked at low sweep rates with a stop watch and higher
sweep rates with the counter and a known frequency signal. The measured
values for these readings are shown in graphs numbers (6), (7) and (8).

In graph (6) the peak amplitude SEl/ is plotted as a function

peak
of the square root of the oscillator frequency. In graph (7) the
modulation frequency is shown as a function of the square root of
the oscillator frequency, and in graph (8) the transient time con~
stant is shown as a function of the oscillator frequency.

The theoretical results for the oscillator with a linear
high gain amplifier were next calculated from equations (131),
(132), and (133) and are listed in table (5)., The values for f,
are taken from the expected value of f, for the constants used in
each of the plug in frequency determining units. The values of €
andtuT are for a resistance change of 2,018 and the time constant

given on graph (4). The values for the steady state lamp resistances

are given on graph (2) or table (2). The theoretical curves are



TABLE (4) EXPERIMENTAL RESULTS
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By £ §E)/peak fn 151 € 5 | E By
v RMS | in cps peak volts| in cps| in sec | X10 in ohms | in Kl
5.00 237 0.83 1.32 5.00 1.570 2,018 1.285
351 0.97 1.62 3.75
432 1,06 1.79 3.20
L69 1.10 1.87 3.00
613 1.24 2.15 2.40
704 1.31 2.30 2.20
870 lo44 2.56 1.75
6.00 237 0.76 L.45 3.75 1.435 2,018 1.405
351 0.89 1.75 2.80
432 0.98 1.96 2.35
469 1.01 2.05 2,20
613 1.14 2.35 1.80
703 1.20 2.50 1.60
870 1.30 2.80 1.35
7.00 237 0.71 1.54 2.80 1.344 2,018 1.500
351 0.83 1.87 2.08
432 0.90 2,10 1.75
469 0.93 2.19 1.65
613 1.05 2.53 1.31
703 1.10 2.73 1.13
870 1.20 3.02 0.95




TABLE (4) EXPERIMENTAL RESULTS (CONTINUED)

82

E) 5 §E1/peak fm T, € dR R,
v. RMS | in cps | peak volts| in cps| in sec X103 | in ohms| in KQ
8.00 237 0.67 1.70 2,22 |1.276 | 2,018 | 1.580
351 0.77 2.07 1.60
432 0.85 2.32 1.30
469 0.88 2.40 1.20
613 0.98 2.75 0.90
703 1.03 2.95 0,80
870 1.12 3.30 0.65
9.00 237 0.6k - 1.85 1.75 |1.210 | 2,018 | 1.665
351 0.74 2.25 1.25
432 0.81 2.50 1.05
469 0.84 2,60 1,00
613 0.93 3.00 0.75
703 1.00 3.20 0.63
870 1.06 3.56 0.50
10,00 237 0.620 1.96 1.0 [1,160 | 2,018 {1,738
351 0.71 2.35 1.00
432 0.79 2.65 0.85
469 0.81 2.73 0.80
613 0.91 3.15 0,60
703 0.95 3.39 0.50
870 1.02 3.78 0.37
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Graph (8)
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plotted in graphs (9) and (10) for the modulation frequency f

as a function of the square root of the oscillator frequency and the
amplitude of the peak versus the square root of the oscillator
frequency. Clearly the linear theory does not predict the decrease

in the time constant for increasing oscillator frequency and the
transient peak is larger than is measured, The linear theory does
however, predict the modulation frequency with a reascnable degree of
accuracy.

From graph (8) we see that the measured time constant is
much shorter than is predicted by equation (133) and decreases
quite rapidly with increasing oscillator frequency. The peak value
of the transient apart from being smaller than is expected from the
linear theory, decreases slightly from the straight line predicted
for graph (10) for increasing oscillator frequency.

The small amount of cubic nonlinearity present in the
operational amplifier of the Wien Bridge Oscillator was next measured
for the steady state with the General Radio Wave Analyser. Readings
for low voltage oscillator outputs were inconclusive but for a voltage
output of 10,0 volts R.M.S., it was found that the third harmonic fractional
distortion was approximately D3<! 1.1 X lO'h, Values for D3 for
lower voltages were calculated using this result and the relationship
given by equation (106). The value for Sl can be found from equation
(1064) and equations (134), (135) and (136) can be evaluated in the
same manner as for the linear theory, Equation (134) may be further

approximated for computations as;
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TABLE (5) LINEAR AMPLIFIER
By to AE fm 51 W €
v. RMS in cps in peak volts in cps in sec |[X10-1 x10~2
5,00 232,0 1.91 1.35 14.85 | 1.10 1.570
344.8 2.32 1.65
424.8 2.57 1.83
464.9 2.79 1.91
606.5 3.08 2.19
697.9 3.30 2.35
866.0 3.68 2,62
6.00 232,0 1.92 1.47 12,56 | 1.30 1.435
344.8 2.34 1.79
424,.8 2,60 1.99
4649 2.72 2,08
606.5 3.11 2.38
697.9 3.33 2455
866.0 3.71 2.8
7.00 232.0 1.93 1.60 10,67 | 1.53 1.344
344.8 2,37 1.95
L2L.8 2.62 2,16
L6L.9 2.73 2.26
606.5 3.12 2.58
697.9 3.35 2.717
866,0 3.7 3.08
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TABLE (5)  LINEAR AMPLIFIER (CONTINUED)
E, ?0 AR fm Ty wT N € ,
v.RMS in cps in peak volts in cps in sec X10 X10™
8.00 232,0 | , 1.9% 1.71 9.33 1.75 1.276
344.8 2.37 2,08
L42L,.8 2.64 2,31
4L64.9 2,76 .41
606.5 3.16 2.76
697.9 3.38 2.96
866.0 3.77 3.30
9.00 232.0 1.97 i.81 8,32 1.96 1,210
344.8 2440 2,21
424,.8 2.67 2.45
L6L.9 2.79 2.56
606.5 3.19 2.93
697.9 3e42 3.14
866,0 3.82 3.50
10,00 232.,0 2,01 1.90 755 2,16 1.160
344.8 2edly 2.31
424.8 2.71 257
L6L.9 2.8l 2,68
606.5 3625 3.07
697.9 3e48 3.29
866.,0 3.88 3.67
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for small nonlinearity such that (leh)z»rl « The results are
tabulated in table (6) and are plotted in graphs (11) and (12).

From graph (11) we see that the peak amplitude of the
transient is somewhat larger than was measured, but it experiences
the deviation from the straight line for increasing oscillator
frequencies as is found in practice. The deviation of the experimental
from the theoretical can perhaps be attributed to two things, first
the switching time of the perturbation may not be infinitesimally
small as assumed in the analysis, and second the larger peaks will
be reduced by the increasing nonlinearity. This mechanism seems
to be present in figure (25) for the large transient caused by
switching frequengies. All of the increasing peaks are flattened
while all of the decreasing‘peaks are lengthened by the cubic
nonlinearity. If these two things were included the result would
be a smaller value of SEl peak which would be in accordance with
the experimental resuits.

From graph (12) the transient time constant Ilis seen to
be markedly changed by the inclusion of the small cubic nonlinearity.
In most practical problems this nonlinearity would most certainly
be neglected in the first approximation and yet in this case it has
a profound effect on the transient response. The experimental values
of the time constant are seen to agree quite closely with equation (136)
or graph (12).

(6) Hum Enhancement

The oscillator constructed was extremely poor with respect
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TABLE (6)  CUBIC NONLINEARITY
By fo  |®1/peak | fn | T1 | € D
v. RMS peak volts | cps | sec | X101 | x103 | X105
5,00 232.0| 1.83 1.35 | 4.98 | 1.10 1.570 | 2.75
3hk .8 2.24 1.65 | 3.77
424.8] 2.50 1.83 | 3.22
464.9 2.60 1.91 ] 2.99
606.5| 2,97 2.19 | 2,40
697.9| 3.17 2.35 | 2,13
866.0 3.50 2,62 | 1,77
6.00 232,0| 1.83 1.47 | 3.68 | 1.30 1.435 | 3.96
344.8| 2,22 1.79 | 2.74
L2h.8| 2,47 1.99 | 2.32
L6L.G|  2.58 2.08 | 2,16
606.5 2.94 2.38 | 1.73
697.9| 3.1k 2.55 | 1,53
866.0| 3.46 2.84 | 1.26
7.00 232.0] 1.83 1.60 | 2.81 | 1.53 1.344 | 5.40
34k .8 2,22 1,95 | 2,07
424.8 .46 2,16 | 1.74
L6L.9| 2,57 2.26 | 1,62
606,5| 2,91 2.58 | 1,28
697.9| 3.11 2.77 | 1.13
866.0|  3.44 3,08 | 0.930
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TABLE (6)  CUBIC NONLINEARITY (CONTINUED)
By £ 3By feak £ 4 Wep € D
v, RMS in cps peak volts in cps in sec xio~t x10™3 X%O'5
8.00 232,0 1.83 1.71 2.23 1.75 | 1.276 | 7.04
344.8 2.21 2,08 1.63
LR2h.8 2,45 2,31 1.36
464L.9 2.55 2,41 1.26
606.5 2,90 2,76 1,00
697.9 309 2,96 0.883
866.,0 3.41 2.30 0.723
9,00 232.0 1.82 1.81 1.81 1.96 | 1.210 | 8.90
344.8 2.21 2,21 1.32
421.8 2.k, 2,45 1.10
464.9 2,54 2,56 1.01
606.5 2.89 2.93 0.800
697.9 2,08 3.14 0,705
866,0 3,40 3.50 0.578
10,00 232,0 1.82 1,90 1,50 2,16 | 1.160 | 11.0
344.8 2.20 2,31 1.08
L24.8 243 2.57 0.902
46L4.9 2,54 2,68 0.832
606,5 2,88 3.07 0.655
697.9 3.07 3.29 0.575
866,0 3.38 3,67 0.470
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Graph (12)
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to disturbances in the cutput. The chassis was well grounded and

the lamp asserbly was shock mounted and screened to minimize random
variations from being originated from outside the oscillator. Even
with these precautions random variations due to internal noise and
power hum were present to a small extent for low oscillator output
levels where the amplifier rionlinearity was a minumum,

Random noise and power hum could be regarded es a variation
of the amplifier gain as the two are probably introduced in the amplifier
through resistor and tube rnoise and A.C., power frequencies in the
d.c., power supply. For the case of the amplifier used two hnarmonics
of the power frequency were found to cause a continuous mocdulation
where they provided one of the two components necessary in the output
for continuous modulation., For the two frequencies 180 cps and 300 cps
corresponding to the third and fifth h cs‘of the power frequency,
four oscillator frequencies were found where continuous modulation at
the {r quenvy'f occurred, The oscillator frequencies were of course
£ =(180%Lf )and £ = (300 Y ) where f_ is the expected modulation

o} m o m il
frequency at the oscillator frequency fo .

Jt was shown in the theoretical section that sinuscidal
variations of the amplifier gain would be reduced by the factor L/A
from the case of sinusoidal variations in the lamp resistance R or
{or that matlter sinuscidal variations in the parameter k of the
frequency selective arm., From equation (106) we have seen that the
distortion is proportional to the reciprocal of the amplifier gain.
Hence the enhancement of variations in the amplifier gain will be

1

approximately independent of <the gain 4 so long as AD 1,
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The most sensitive portion of the oscillator to variations
is of course the two feedback loops. ZElectrical radiation or
mechanical vibration could cause a severe disturbance in the out-
put. For this reason these components were particularily well

shielded and shock mounted,
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VIII CONCLUSION AND SUGGESTIONS

Llthough we have shown that the simple lamp bridge is
an effective long time control for the oscillator amplitqde with
respect to variations in the amplifier gain, the thermal inertia of the
lamp gives the system a poor transient response for any changes in
the closed lcop. In addition the oscillatorils operating region
is confined to frequencies above a lower limit indicated in section
IV-(3). Below this lower limit, the lamp resistance will vary
over the individual cycle and hence distort the output. The latter
difficulty is inherent in this type of automatic level control,
but the former can be improved by the presence of odd power non-
linearity in the operational amplifier. The presence of this nonlinearity
is extremely effective and unless the amplifier contains a third
harmonic distortion greater than 100db down, it wogld be impossible
to obtain a steady state cutput as noise and radiation would cause
the output to be swamped by itransients.

In general this type of automatic level contrcl is in-
expensive and quite simple to build, The time constant for the thermal
bridge should be kept as short as pcssible consistent with the con-
dition that it is long with respect to the period of the oscillation
freqﬁency. The trapsient response can be improved by increasing

|
the value of the constant m. which would mean choosing a different
type of lamp or thermal device. For the thermistor of figure (11) a
similar experimental value for m would be m -2.56 and if this device
was used in its appropriate bridge, the transient output wouid be’

improved. From equations (134), (135), and (136) we see that for
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a larger m_, the peak 85, i1s smaller, the frequency‘fm_is higher,

1

end the time constant of ths transient'fl is shorter at the lower

cscillator fregquencies fo where the transient was the mest pronounced.
The osciliator transient response can also be improved

by choosing a high gain amplifier with a high degree of linearity

and inserting a pair of zener dicdes back to back across the amplifier

output as shown in figure (27).

O Voot

Mr o

s

I
!

Figure (27)

[8]

The resistor R9 is in series with the device and the amplifier A.

The zener voltage is chosen equal to the peak volﬁage of the oscillator
output in the steady state. The resistor R9 should be a much

higher resistance than the dynamic resistance of the zener above

the peak vcltage El’ and at the same time must be much smaller than

the feedback loop load. For any transient within the time response

cf the zener diode, the zener pair will limit the positive peaks

creating components a2t the harmonic frequencies 3“6’ Swy s 7&5....

as well .as harmonics and products ofcurq
Yy

withtuO. For small perturb-
ations the amplitude of the fundamental frequency componentwO will be
reduced by the presence of harmonics in the transient state and the
transient time constant and first peak SEl peak will be reduced in the

[

same manner as section V-{4). The important thing is that for an
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ideal zener diode pair, the nonlinearity in the steady state will
be determined by the nonlinearity of the amplifier,

A double diode combination was constructed from two standard
diodes and batteries to provide the same type of limiter characteristic
as the zener diodes. The batteries were adjusted to give the proper level
of limiting and the oscillator output was observed to contain only
a negligible amount of additional distortion in the steady state.

The transient response however, was greatly reduced espec¢ially with
regard to the transient time constant. With the diode limiter ad-
justed properly, a steady state harmonic distortion of 100db down
should be allowable without serious transient disturbances.,

A somewhat more subtle use of this method can also be
accomplished by adjusting the amplifier to an operating point
Jjust below iis power point., An amplifier such as the single ended
push-pull circuit provides an almost linear characteristic up to
the power point and would be suitable for this application. Both
of these methods would allow operation with a minumum amount of
steady state distortion and still reduce the transient response

to an acceptable level for oscillator use,
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