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I Introducri:,ion 

In recent years~ resistors which exhibit nonlinear electric 

properties by virtue of a change in resistance with applied power, have 

found many new uses. One application lies in exercising control over 

the amplitude of a sinusoidal wavefonn without introducing the 

customary nonlinearity associated with most simple nonlinear limiters. 

Although many devices exhibit this property to some extent, we will 

primarily concern ourselves with two; the incandescent lamp, and the 

solid state thermistor. Although the electrical characteristics 

are extremely different for the two, they have in common the key to 

their ability to control without distortion; their associated time 

constant due to thermal inertia. 

Although the thermal properties of the incandescent lamp 

had been quali.htively understood for a considerable time, Meacham(l) 

was probably the first to analyse and employ its dynamic characteristics 

to stabilize the amplitude of a Meachan Oscillator in 1938. His work 

aroused considerable interest at that time in the nonlinear aspects 

of the l&~ps and Glynne(2) and othersC3),(4),(5),(6) followed by 

studying the dynamic behaviour of the lamps. 

By the middle of the century, thermistors were also being 

analysed and employed for this control problem. Bollman and KreerC7) 

were two of the first to realize the potential value of these solid 

state devices and to set up the differential equation for their 

dynamic behaviour. PatchettC8) employed a directly heated type of 

therrrastor in a bridge circuit and showed that it had a figure of 

merit, which he defined as the change in output voltage for a change in 
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input voltage, of about fifty. Typically the figure of merit for the 

lamp bridge is less than unity. Thus the use of the thermistor would 

seem to indicate a more sensitive amplitude control for oscillator 

amplitude stabilization. 

Theoretical work concerning the amplitude stability of 

harmonic oscillators had attracted considerable interest in the years 

prior to the thermal amplitude control. With its introduction some re­

newed interest was brought to bear on the subject. 

Edson(9) examined the amplitude stability in a lamp 

stabilized oscillator by examining the changes in amplitude and phase 

of the modulation vector when a lightly modulated wave passed 

through the open loop feedback circuit. For the modulated wave to 

persist the open loop gain and phase shift of the input signal were 

required to be zero. An increase in gain would indicate instability 

or growth, while a decrease would indicate attenuation of the modulation. 

In his analysis the low frequency component is not considered and the 

feedback factor must be symmetrical about the centre frequency for a 

bandwidth of at least twice the highest modulating frequency used 

to insure that the output will be independent of phase ~odulation. 

Gladwin examined the problem of amplitude stability in 

valve oscillators(ll). For the class of oscillators known ~separable 

oscillators he examined the stability pf the system from. the viewpoint 

of its characteristic equation(l2). In his analysis the oscillator 

is initially oscillating in the steady state with a sinusoidal output 

of constant amplitude and frequency. The stability is examined 

by subjecting the output to a small variation by changing some parameter 

or introducing an input perturbation. This perturbation gives rise 
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to osGillations at certain complex frequencies which are character-

istic of the feedback loop. If these terms are then considered to 

modulate the output, the oscillator output will consist of an infinite 

number of waves of the form; 

where W 0 is the unperturbed oscillator frequency and s ="' + jw.., is the 

complex frequency of the disturbance or modulation. If the oscillating 

circuit has a reasonably high quality factor the above series can be 

approximated, with a goqd degree of accuracy, to terms of the fund-

amental component and the limits of the series reduce to -1 to +1. 

vie are thus left with three components of a small perturbation. 

These components can be introduced into the network equations, 

and give rtse to three linearized equations which when solved in a 

oatrix analysis yield the matrix determinant equal to zero. This 

matrix determinant is referred to as the characteristic equation 

of the system's stability. 

For stable oscillation all of the roots of the characteristic 

equation must have negative real parts to insure that the amplitude 

of any transient will decrease with time. Although the characteristic 

equation cannot always be factored for complex systems, the stability 

can be determined by the Routh-Hurwitz criterion for certain steady state 

conditions. 

For oscillators where the feedback factor is symmetrical about 

the oscillator centre frequency for a range greater than twice the 

highest rr.odulating frequency, the characteristic equation can be factorectC12) 

to yield independent criteria for the amplitude and frequency stability. 

The Wien Bridge Oscillator with a thermal amplitude compensator 
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can exhibit a very poor transient response during tuning or switching 

of the oscillator frequency control. Several investigations have 

been aimed at predicting its peculiar oscillatory transient response. 

Cooper(lO) analysed a lamp stabilized Wien Bridge type of oscillator 

assuming a linear operational amplifier and a simple time constant 

for the lamp bridge circuit. The result was applied to an amplitude 

modulated waveform and the value of the natural modulation frequency 

was obtained which was in close agreement with his experimental data. 

The analysis did not however, predict the amplitude of the transient 

modulation or the time constant to any satifactory degree. Oliver(14) 

pointed out that a slight nonlinearity of the operational amplifier 

could explain these discrepancies in his analysis of the problem. 

The Wien Bridge oscillator was thus analysed for both a linear 

amplifier and an amplifier containing a small amount of cubic non­

linearity using the general approach of Gladwin(l2) (13). The findings 

are compared with experimental results to check the approximations 

made in the analysis. 
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II SIMPLE FEEDBACK OSCILLATORS 

(1) Conditions for Oscillation 

The concept of feedback plays an important role in almost 

every branch of engineering and physics. Although the word feedback is 

in common use it is surprisingly difficult to find a precise definition. 

In many physical systems it is extremely hard to identify a feedback loop. 

From a general point of view however, we can iden tify feedback as a 

closed series of cause and effect relationships. When feedback is 

introduced intentionally for a desired purpose, its definition 

becomes considerably simpler and can usually be expressed in a 

mathematical form. 

Figure (1) shows in block diagram form the circuit for a 

simple feedback oscillator 

Figure (1) 

Here A is defined as the gain of the operational amplifier andS is the 

so called feedback factor or feedback fundj_on. In figure (1) the 

closed loop or feedback loop is easily identified and the system is 

defined mathematically by the equations 

and vf= v 0 f3 

from which we can write the cJ..osed loop gain A1 for the system as; 

A t = Y:.Q = ·~'~­
Vin j_ -A,.8 

--(1) 

If we consider the amplifier gain A to be real and positive, then the 



feedback function~ will be real and positive at some complex fre-

quency s for the case of the oscillator. Here vin would be zero 

•~hi::..e v out is finite. For the case of a sinusoidal oscillator, 

equation(l) must have a pair of imaginary poles at s = +j~ and 

6 

s = -jW0 which means that the feedback network will contain at least 

two energ-.r storage elements. If we Hrite the feedback function 

as some function of the complex frequency s =OC +jw we can equate 

the denominator of equation (l) to zero to obtain the conditions 

for oscillation as; 

AS(s) = 1 

For the steady states= jwand the above reduces to the familiar 

form for steady state oscillation often referred to as the Barkhausen 

criterion for oscillation or the characteristic equation, 

AS (jw) = 1 --(2) 

This concept implies ·Unity loop gain as the criterion for oscillation, 

however unity l.oop gain at a single frequency is a necessary but 

not a sufficient condition for self-sustained oscillation. Clearly 

if the 8 network provides zero net phase shift at more than one 

frequency, the criteria. for steady oscillation is further complicated. 

For simple oscillators hov:ever, where equation (2) is suff-

icient, the complex equation will yield two independent criterion for 

oscillation. 

--(3A) 

which will determine the steady state frequency uf oscillation and, 

AR (8) = 1 e --(3B) 

which stipulates the necessa~ gain requirement for steady state 

oscillation to exist. Here Im(G) and Re(,8) stand for the imaginary 
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part of ,(J and real part of /3 respectively. 

(2) Selectivity 

Any practical oscillator will need a value for the amplifier 

gain somewhat larger than that predicted by equation (JB). Consequent~ 

its output will increase until the amplifier limits the output 

resulting in distortion of the steady state output. Each of the 

harmonics present at the amplifier output will be affected similar to 

additional signals injected into the feedback loop and will be reduced 

or enhanced by the factor; 

1 --(4) 

where I.S(nw0 ) is the feedback factor evaluated at the various harmonic 

frequencies (nw0 ); n = 2,3,4 •••••• Equation (4) can be considered 

as a measure of the system's selectivity. For a properly designed 

oscillator the feedback should change from positive to negative 

in the frequency range w0 to 2W0 ensuring that all harmonics will be 

small. For this condition equation (4) would be small provided 

C: A f3 (nu.b) J >> 1. To insure that the feedback at the frequency nu.'o 

is negative,the factor A8(nw0 ) must of course be negative. 

(3) Phase - Freguency Stability 

Oscillators are also susceptible to frequency changes 

caused by variation of circuit elements in other than the beta net-

work. Since the natural frequency of oscillation is identical to 

the frequency of zero net phase shift around the closed loop, changes 

in the resistive loading or phase shift in the amplifier can alter 

the natural frequency from the condition of equation (JA). To ensure 

a constant frequency of oscillation, the beta network should thus 
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exhibit as rapid a change of phase with frequency about W 0 as possible. 

We can define a measure of phase-frequency stability for the oscillator 

as; 

G :: 
--(5) 

which is the change in phase A¢ for a relative change in frequency W 

aboutw0 for the beta network. Equation (5) would increase for increasing 

frequency stability with respect to variations in amplifier or load 

which would effect the overall phase shift. For the limiting case 

where G __. co the natural frequency of oscillation w0 would be entirely 

due to the phase-frequency chacteristic of the beta network. 
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III BETA NETWORKS FOR R-C OSCILLATORS 

(1) R-C Oscillators 

At frequencies below one kilocycle per second it becomes 

impractical to use L-C circuits for frequency determining networks 

due to their large size and associated low quality factors. The 

large size associated with these circuits can be greatly reduced by 

the use of resistor capacitor networks (R-C networks) at the expense 

of increasing the amplifier gain and the number of parameters which 

must be varied to alter the oscillator frequency. There are two basic 

groups of R-C networks which can be employed for oscillator use, the 

phase shift networks, and the null type networks. Examples of each 

type are treated in this chapter with regard to their general merits. 

(2) The 11 R-C Oscillator Network" 

One of the simplest types of beta networks required for 

a feedback oscillator is shown in figure (2). 

1 
c 

Figure (2) 

Here k is a constant and C and R1 are capacitors and resistors 

respectively. 

This network is characterized by the feedback function; 

ksCR1 
-(6) 



which for the steady state where s = jw reduces to; 

where 

,8 (jw) "' ---L.. 
(k+2) 

1 

1+...--J_r:w ~ 
(k+2)lWo WJ 

--(7) 

--(8) 

The imaginary portion of -8 wiLL vanish for the frequency 

W = ~0 given by equati.on (8) at which frequency beta reduces to, 

The necessary amplifier gain for the circuit of figure (1) would be 

for th:re:>hold of o scillationo 

10 

The transient response of this network can also be obtained 

from the roots of the equation l - A/3(s) for this oscillator. 

Writing the equation for 1 - A.8(s) = 0 we obtain 

-(9) 

or 

This equation has two roots sx, sy which for the particular 

case of k "" 1 will describe the locus shown in figure (3). 



Jma~;m1r .y 
A=.3 /hd5 

A=S 

Q.//lxJs 

Figure (3) 

We see that as the gain A increases from zero, the two roots will 
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coalesce for A == 1 and then separate at -w
0 

on the negative real axis 

as shown. When the roots reach !jw0 on the imaginary axis corresponding 

to a gain of A = 3, we have the condition corresponding to the threshold 

of oscillation; the location of the imaginary roots giving the frequency 

of oscillation. In the region l<A<5 the transient response can be 

obtained from equation (9) and will be of the general form, 

v(t) = Ke~t cos(Wit + ¢) --(10) 

where w
0 

=f c:;{1 + wf and ¢ is the phase shift. The two roots are 

located ato<3 tjw, • For l<A<3, oC
3 

will be negative and the transient 

will damp out with the time constant given by equation (10). For 

3<A<5 the output will increase until the amplifier limits slightly 

making the average gain o~er one cycle equal to 3. 

For A) 5 the output will no longer be oscillatory, but will 

approach the action of the multivibrator. 

This simple beta circuit would thus seem to have a poor 

amplitude stability due to the dependence on A. The network also 

exhibits very poor selectivity. For example equation (4) would yield 

for the second harmonic where A = 3; 
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This unfortunately means that any second ha~onic term present in the 

output would be increased in amplitude rather than reduced. This 

beta network would thus not seem to be very useful for oscillator 

use. 

(3) The "Phase Shift Network" 

A second simple way of achieving the required beta network 

for an oscillator is the familiar 11 phase shift network" shown below 

in figure (4) 

r~~---bT 
~ R, ~ 

I 
Figure (4) 

This circuit is a simple R-C ladder type filter with a transfer 

characteristic • 

,8, ( s) 1 -(11) = 1+ 6 +~)~+( 1 )3 
sCR1 1scR1 sCR1 

For the steady state s = jw and the above reduces to; 

--(12) 

The ladder network could also contain more than three sections. A 

simple solution for a more complex ladder network can be found by 

the use of Pascal's triangle(l6), but this increases the number of 
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parameters which must be changed to alter the oscillator frequency. 

From equation (12) we see that the odd power terms in w contri-

bute to the imaginary part of .8 1 (w). Hence for the imaginary part to 

vanish 

or 

UJ = 1 
0 f6' CR 

1 

Solving for ,s1 at w = w
0 

yields, 

,8 (w) = -.1.. 
1 0 29 

-(13) 

-(14) 

which defines the threshold gain for the oscillator of figure (l) 

to be A = -29. Although the amplitude is dependent on gain variations 

for this oscillator, the selectivity is considerably better than 

for the previous oscillator of section III-2. From equation (4) 

for second harmonic terms 

and the second harmonic terms are actually reduced in the closed loop. 

We conclude that this oscillator is superior to the first, 

although variation of the oscillator frequency requires that three 

components be tracked simultaneously rather than two for the first os-

cillator. This factor alone probably confines its use to a fixed 

frequency oscillator. 
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(4) The Wien Bridge Network 

Although the oscillator of section III-(2) seemed at first 

glance to be extremely poor, we can convert the circuit into a type of 

bridge circuit such that we can exchange loop gain for added selectivity. 

A common circuit; the Wien Bridge, is shown in figure {5). 

0--------~-------------------

t 
KC 

R.. 
K 

'----.() -+- t"\-------11. 

Vf 

-c 

Figure (5) 

Here the additional arm of the bridge is composed of ordinary carbon 

resistors R
2 

and R o. 

The transfer characteristic~ 2 of the above network is 

simply 

where /3 (jw) has been given by equation (7). For an oscillator 

employing this beta network we find for W = w 1 the condition for 
0 

threshold of oscillation is; 

k R 
--__a_ 
k+2 R +R 

1 
A 

-(16) =-

0 2 

For given values of the amplifier gain A, resistance R 1 and parameter 
2 

k, equation (16) defines the unique value of R necessary for oscillation 
0 

to exist. It is obvious that the higher the degree of balance of the 
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bridge, the higher the gain must be for the operational amplifier. 

The marked improvement of the selectivity of the bridge 

circuit over that of section III-(2) can be easily found as the 

oscillator of section III-(2) corresponds to the completely unbal­

anced bridge where A = (k+2)/k. The ratio of equation (4) for each 

oscillator is thus, 

l 
k+2 

------------- = ---
1 

ill/ i -~ (w)\ 
k \ k+2 ') 

kA 
-(17) 

where F
2

(nw
0

) is for the Wien Bridge Oscillator. We see from equation 

(17) that the selectivity will be a maximum for the Wien Bridge Oscill-

ator for a maximum value of amplifier gain A or high degree of bridge balance. 

Up to this point the value of k has been left arbitrary. 

In the network of figure (5) however, its choice should be made to 

yield the maximum amplitude and frequency selectivity for the bridge cir-

cuit. From equation (16) we see that 

~ 
R +R 

0 2 

k: 1 

k+2 A -(18) 

which means that the bridge is never fully balanced for finite amplifier 

gain A. The bridge output voltage in the steady state can be found as; 

v = v [ k/ (k + 2) -J - v k + !2 
f o l + j--L- o~ A 

(k+2) 

where 

z = [ .!.U. - ~] w., U) 
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For frequencies close tow "" UJ , z« l and the equation for the out­
o 

put voltage can be approximated for A>> 1 as; 

v 
0 

zk 
-::-:-2 
(k+2). -(19) 

This should be a maximum for ma:x.im·um frequency sensitivity. Differ-

entiating equation (19) with respect to k and setting the result equal 

to zero yields 

[
(k+2/ - 2(k+2~kl- 0 z -~~· -

(k+2)"~- ...J 

from which we find that maximum frequency sensitivity occur5 for, 

k = 2 -(20) 

This result would require that R ~ R for a very high gain amplifier 
0 2 

and this is also the value for R
0 

and k for maximum amplitude sen-

si ti vity for the bridge circuit. 

(5) The 11Twi.n T11 Network 

Practically any three terminal null network may be used 

for a frequency determining branch in a bridge type oscillator. A 

common type of null network which could be employed is shown in 

figure (6). This network is commonly referred to as the 11Twin T11 

v, 

I 
Figure (6) 
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The transfer function for the twin T network of figure (6) 

can be found as; 

1 2 .. 
1 _ j 2(n +1) [ 1 J 

n (.!eo _ ~o) 
uJo W 

-(21) 

where 

The network thus exhibits a reciprocal type of response to the net-

work of section III-(2). As w....,wo the beta function goes towards 

zero and hence the name of "null network" is applicable. For use as 

an oscillator the network can be incorporated in a bridge circuit 

as shown in figure (7) 

Figure (7) 

The complete feedback function for the oscillator of figure (1) is then 

given by 

--(22) 

For the resonant frequencyw = w0 we obtain the condition for threshold 

oscillation as; 
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l 
=-

A 

and since J3 
3

(w
0

) = 0 this reduces to 

If the network is examined with regard to selectivity, 

we find as for the case of the Wien Bridge that selectivity is a max-

imum for A approaching infinity. 

(6) Phase-Freguency Characteristic of Bridge Networks 

It was pointed out in Chapter II that the phase-frequency 

characteristic of the beta network can be used as a measure of the 

frequency stability of the oscillator with respect to component phase 

shifts,in components other than the beta network itself. The Wien 

Bridge Oscillator can be examined with regard to equation (5). When 

examined the phase shift of the beta network can be found from the app-

roximate value for phase shift close to resonance ¢, 

-(24) 

-(25) 

Equation (5) can now be found close to resonance as app-

roximately, 

k A [ 1 + WWo
2
2. J 

(k+2.'1z 

-(26) 



which at UJ = uJ 
0 

reduces to; 

( ) "' 2kA 
G Wo - (k+2)2 -(27) 

For the above to be a maximum the parameter k will have the value 

k = 2 which is in agreement with the section III-(4). For k = 2 

the result reduces to, 

A 
G(UJ ) = -

0 4 --(:2.8) 
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and the effect of a high gain amplifier is seen to make the oscillator 

almostentirely dependent on the beta network as the frequency deter-

mining element. This oscillator would thus seem to behave suitably 

if some means could be found with which to maintain the amplifier 

gain constant. 

(7) The Nonlinear Bridge Compensator 

Any compensation which could be carried out in the oscillator 

circuit for changes in amplifier gain would involve the use of a 

network with a nonlinear voltage characteristic. Compensation can be 

achieved if a passive nonlinear element is included in the feedback 

network at a point where it will change the magnitude of the feed-

back without affecting the steady state frequency. This is commonly 

called feedback limiting. For the bridge type oscillator, the bridge 

balance can be controlled by the thermal characteristics of a tungsten 

lamp or a thermistor. 

As an example of the effectiveness of this type of amplitude 

compensation, we can analyse the oscillator circuit shown in figure(S). 

For the analysis we will assume that the thermal time constant of the 
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lamps R is much greater than the period of the steady state frequency 

of oscillation. 

Rz 

Vz 
V.; 

v, 
fvo 

r ~k 2C -

Figure (8) 

Here we have introduced two lamps in series represented by R for the 

variable resistor R shown in figure (5). In the steady state the 
0 

nonlinear characteristic of the lamps R can be represented to a first 

approximation by the experimentally determined expression, 

R = 900 + l70E 
L 

--(29) 

where R will be in ohms and Et is the R.M.S. lamp voltage in volts. 

For an oscillator output of v0 = 8.0 volts R.M.S. and an amplifier 

gain of A1 = 400 we find for threshold of oscillation; 

-R__ = l - _l_ = 4.975 X 1o-l 
R+R2 2 400 

-(30) 

which means that the portion of the output voltage across the lamp is, 

E1 = 4.975 x 10-l x 8.0 = 3.980 volts R.M.S. --(31) 

Substituting this value of EL back into equation (29) to obtain 

the steady state lamp resistance yields, 

R = 1577 1l. 
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and from equation (31) we obtain, 

which will be a constant for the oscillator. 

If the amplifier gain changes over a period of time due 

to component deterioration to some new value A2 = 200 we can calculate 

the change in R; AR and hence the new output condition to be res-

peetively, 

R + A R = 1560 Jl. 

v + IJ v = 7. 76 volts R.M.S. 
0 0 

-(32) 

Hence we see that for a 50% change in amplifier gain, the 

oscillator output is only changed by 3%. This method of amplitude 

limiting would thus seem to be quite effective in maintaining a constant 

steady state output voltage. In the next chapter we will examine 

the dynamic behavior of several thermal devices with a view towards 

predicting their transient effect on the oscillator. 
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IV TEMPERATURE DEPENDENT RESISTORS 

(1) Incandescent Lamps 

Although considerable literature on lamps has been written 

concerning their use in illumination, comparatively little work has 

ever been published with regard to their dynamic behaviour. An 

extensive bibliography found in Patchett's work(3) contains the 

majority of the early literature. 

Patchett(3) examined a wide variety of incandescent lamps 

or filaments with regard to their suitability for bridge circuits 

which could be used as feedback limiters. His work mentioned many 

of the undesirable characteristics associated with lamps when used 

for control elements. Intermittent bridge misbalance was claimed 

to be one of their greatest drawbacks. He found that lamps were 

extremely susceptible to vibrations which in turn caused random 

variations in the bridge output voltage. This effect was especially 

pronounced for the coiled filament type of lamp. Presence of gas 

in the lamp envelope was also found to alter the characteristic 

of the lamp, as added conduction terms alter the heat transfer equations 

especially at certain temperatures where the gas ionizes. 

Patchett(3) derived an approximate solution for the thermal 

response time of the vacuum lamp, but the result involved a knowledge 

of the physical mass of the filament which makes its use somewhat 

limited. The thermal response time was also developed by Glynne, but 

the temperature coefficLent of resistance used in his formula referred 

to the lamp's operating temperature Q0 • This coefficient would thus 

vary over a range of about two to one in the normal operating region 
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that he used. 

{2) Lamp Dynamic Behaviour 

In the steady state, the exact mechanism of the heat 

transfer is of little concern to us, but from experimental data it 

has been found that, 

--{33) 

and 

--{34) 

holds fairly well apart from a small region close to the ambient or 

room temperature. Here P is the power radiated in watts, R is the 

resistance of the lamp filament in ohms at some temperature 9 in 

degrees Kelvin, and K1,K2 ,a and b are constants. Strictly speaking 

"a" varies somewhat with temperature, but equation (33) is a good 

approximation for the restricted temperature range of the compensator 

used. For an effective lamp,of the two lamps used in series in the 

experimental section, typical values for 11 a 11 and 11b 11 would be a = 5.3 

and b = 1.2 • 

If we define W(t) as the instantaneous power supplied 

to the lamp and CT as the thermal heat capacity of the filament, 

we can write the power balance equation for the lamp 

W(t) = g_(~) + P(t) 
dt 

':)L CT !i.(Z + P(t) 
dt --(35) 

Here CT has been assumed constant over the temperature range of operation. 
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The first term on the R~H.So of equation (35) will be the stored 

energy per second and P(t) will be the instantaneous power radiated 

by the filament. Combining equations (33) and (34) to elliminate 

temperature and substituting the result in equation (35) yields, 

--(36) 

For the case of the feedback limiter, the lamp R will be in series 

with the fixed resistor R2 as shown in figure (9) 

t 
V(t) 1--------..,o 

~ 
Vz(-1:.) 

I 
Figure (9) 

The power supplied to the lamp would thus be; 

-(37) 

Combining equations (36) and (37) yields upon simplification, 

-(38) 

This is the approximate nonlinear differential equation for the 

dynamic behaviour of the lamp bridge arm shown in figure (9) and is 

not of any apparent standard form. A solution could be obtained 

by recourse to numerical or graphical methods, but the perturbation 

method will yield a solution about a steady state value in an analytical 
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form. 

Let us then consider the system of figure (9) for small 

changes about some specified steady state temperature 9
0 

and 

resistance R
0

• The power supplied to the lamp has been given 

by equation (37) and if the steady state voltage varies as v + J v, 

then the temperature will vary as 9
0

(l+x) where &v and x are small 

time varying parameters. From equation (34) we see that, 

where 

R = K eb (l+x)b 
2 0 

~ R (l+bx) 
0 

R • K eb 
0 2 0 

and x<.<l 

Similarity from equation (33) we obtain, 

P .!f! P (l+ax) 
0 

--(39) 

--(40) 

where P
0 

= K1e: is the steady state radiated power by definition. 

If we write the variation of the supplied power as W
0

(1+&) 

then equation (37) becomes, 

--(41) 

for x«l 

Tho-~ Defining ;> = 
0 

+ to simplify the notation the above 

reduces to; 

--(42) 
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From the power balance equation for small changes we find that; 

-(43) 

In the steady state the supplied power W
0 

is equal to the radiated 

power P and the above becomes, 
0 

For the value of d found in equation (42) the final result is; 

6v 
ax= 2- -,cbx 

v --(44) 

which is a linear differential equation with a solution; 

_ (a+be)W0 t 
CT9o 2~v 

+ ------v(a+_,.ob) --(45) 

Thus the system would appear to have a simple time constant 

given by equation (46). 

-(46) 

For the particular case of the Wien Bridge Oscillator employing a 

high gain amplifier R
0 
~ R2 and thus_.P ==- o. For this case equation (46) 

reduces to the simple form; 

-(46A) 
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Although 11 a 11 and CT are not strictly speaking constant, equation 

(46) or (46A) should yield T to a good approximation for small values 

of the perturbation &v. The steady state temperature e.,. should also 

be kept well above the temperature of the lamp 1 s surroundings. 

A useful expression for variations of the. lamp resistance 

in terms of power can be obtained oy further manipulation of equations 

(33) and. (34). If we take the logarithms of both equations and combine 

the two resultants to elirni~ate the temperature, we can obtain; 

log R ~ ~ log P~ + lo0~ K2 -~log K1 
0 0. . v "' 

-(47) 

which is the equation of a straight line with slope 

-(48) 

and y intercept 

-(49) 

The actual characteristic will of course deviate from this 

predicted result at low power inputs where the temperature or resis-

tance of the filament would be dependent on room temperature. The 

actual characteristic would thus be log R equals a constant value for 

lo\1 values of applied power and then gradually experience a transition 

where the room temperature becomes decreasingly important until 

equation (47) is satisfied. 

For useful power inputs in the region of operation, the 

slope of the characteristic should obey equation (47). For typical 

values of 11 a.l' and 11 b11 for the la1nps used in the experimental portion 

the slope will be; 



m 
0 

= b 
a 
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0.23 

'V-Ie have seen that the la.>np bridge shown in figure ( 9) is 

characterized by a simple t~ue constant L • This time constant will 

set a lower frequency lim:i.t on the use of the bridge as a control 

element. If the frequency is reduced for the oscillator output we 

would eventually reach a point where the lamp resistance would follow 

the oscillator output and fluxuate at twice the frequency of the 

oscillator. This would produce a~ output which would be entirely 

unsuitable as a control signal. 

(3) Low Frequency Respons~ 

To obtain an idea of the output from the lamp bridge at 

lovJ frequencies, let us exantine the circuit shown in figure (10). 

t 
V({) 

Figure (10) 

Let the input to the bridge be a sin.us oidal voltage v = fZ E sin U)0 t 

where E is the R.M.S. voltage and UJ 0 is the frequency in radians 

per second. At low frequencies as the lamp follows the sinusoid, 

let the resistance vary slightly about the mean value R
0 

so that 

-(50) 

1..rhere y is assumed to be a small time varying parameter. If the 

bridge arms are adjusted so that R.1 = R then the bridge output will 
"'- 0 

be; 
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-(51) 

The instantaneous current 11 1 11 through the lamp arm of the bridge is, 

i = R:R --(52) 
0 

and the instantaneous power supplied to the lamp is; 

2 
IVV 

- 4Ro -(53) 

where terms in y2 have been neglected. Corresponding to the variation 

in resistance, let the temperature of the filament vary about some 

mean value 90 such that, 

e = e (l+x) --(54) 
0 

where x is a small time varying parameter. The actual radiated 

power P is in general some nonlinear function of this temperature 

say P = f(9) and this can be expressed as a few terms of a Taylor 

Series for small nonlinearity as, 

p = f( e ) + e xf' ( 9
0

) + •••••••••••••• 
0 0 

~ Po+ eoxGT --(55) 
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where G has been defined as the differential thermal conductance 
T 

of the filament at a temperature 8 ie (GT = f 1 (9 )). If we again 
0 0 

write C as the thermal heat capacity of the filament, the power 
T 

balance for the lamp arm of the bridge can be written as; 

q__(_C'1'8) = W _ p 
dt 

--(56) 

Noting that the steady state radiated power is P
0 

= E2/4R
0 

we 

can evaluate equation (56) as; 

--(57) 

This is a simple linear differential equation with a solution; 

--(58) 

If we define ¥ as the temperature coefficient of resistivity for 

variations about a termperahlre e . we can write y = ¥ S x. Upon 
. 0' 0 

substitution in equat::cn. (51) along with the value of 9
0
x from 

equation (58) we can obtain the bridge output voltage as; 

In the above form the result is somewhat cumbersome, however at 



practical low frequencies 2w
0 

is still much larger thanWT for the 

tungsten lamps of the type used. For 2ll"o>>UJT equation (59) can be 

approximated further to yield; 

-(60) 

This result means that at the bridge balance point where 
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we would normally expect zero output voltage, we still have an out-

put given by equation (60). This output consists of two components 

of equal amplitude and ninety degrees out of phase with the bridge 

input voltage. The first of these ccmponents is a third harmonic 

of v(t) while the second is at the same frequency as v(t). The 

components should decrease quite rapidly with frequency as is seen 

by equation (60). In the oscillator these components would be 

1 
further reduced by the factor l-Aft in the feedback loop. As 

long as the feedback loop is quite selective the unwanted output 

from the bridge can be tolerated for even very low frequencies, 

however, the lamp bridge will cease to maintain the amplitude constant. 

(4) Thermistors 

Thermistors are basically electronic devices which utilize 

the change in resistivity of a semiconductor with a change in temperature 

or applied voltage. The devices can be either directly heated by 

the current flow through the semiconductor or indirectly heated 

by heaters depending on the type and application. The active portion 

of the devices is composed of complex metallic-oxide compounds 

using such typical oxides as manganese, nickel, copper, and cobalt. 
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The important factor in their application is the region of negative temperature 

coefficient of resistance; the resistance decreases approximately exponentially 

with the inverse of the absolute temperature. 

Figure (11) shows a typical characteristic curve for a directly 

heated bead thermistor which would be suitable for the feedback compensator 

of the oscillator used in the experimental section. 

100 -
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Figure (11) 

Bollman and Kreer(?) have developed an expression for the Qynamic 

behaviour of the thermistor in the form of a nonlinear differential equation. 

Although the equation is highly nonlinear it can be shown that the device 

can be characterized by a simple time constant to a good approximation. 

The design of the thermistor bridge arm can be shown quite easily 

via figure ( 12) • 
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Figure (12) 

Figure (12) shows three curves, the thermistor T1, the series resistor 

R , and the combined characteristic of the two in series. Resistor 
T 

R and thermistor T could form one arm of a bridge circuit as shown 
T 1 

in figure ( 13) • LetT be the steady state resistance ofT,. 
0 ~ 

j 
v 

f 
Voot 

I 
o------------~~------------n 

Figure (13) 

For a proper choice of ~ and thermistor T1, the steady state input 

voltage v will be such that R- = T for the bridge balance, and 
0 -~ 0 

corresponding to this condition the combined characteristic (T
1 

+RT) 

should have dv/di very close to zero. Under these conditions any change 

in the steady state voltage v from v would create a large change in 
0 

current i and a large change in the output voltage v t which would ou 

unbalance the bridge considerably. This would thus seem to be a 
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very sensitive source of an error voltage if used as a feedback 

compensator. 

For use in the oscillator of section III-(7) figure (8), 

the thermistor T
1 

would take the place of the resistor R2 and the 

resistor ~ would take the place of the lamps R. For additional 

sensitivity the lamps R co~ld remain, replacing resistor RT' 

although this would further complicate the selection of the lamps R 

and thermistor T • 
l 

One additional benefit which could be obtained from the 

use of a thermistor for the compensator is the independence of the 

device with respect to vibrations and their associated bridge 

misbalance. 
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V WIEN BRIDGE OSCILLATOR WITH AMPLITUDE COMPENSATOR 

(1) Sensitivity of Wien Bridge Circuit 

In Chapter III it was found that the optimum choice for 

the parameter k in figure (5) was k = 2 for maximum frequency sen-

sitivity. For R
0

, a passive linear resistor, this is also the criterion 

for maximum amplitude sensitivity for the bridge. 

When a nonlinear resistor R is substituted for the resistor 

R as in figure (14), the situation is further complicated and the 
0 

parameter k will have a new optimum value for maximum bridge amplitude 

sensitivity. 

0------~----------------------~ 

j 
Vo 

v, 

c R 

Figure (14) 

If the voltage input to the bridge is given in the steady 

state by, 

v = E COSU) t 
0 l 0 --(61) 

and the mean value of R is R
0 

at some mean temperature 9
0

, we can 

examine the effect of small voltage amplitude changes on the bridge 

balance. Let the input to the bridge vary in amplitude as (E1+cfE1 )cosw
0
t 

and the temperature of the lamp's filament vary as (9
0

+&9). If ~ is 

defined as the temperature coefficient of resistivity for the filament, 



then the lamp resistance will vary as R0 (l+~ag). 

The power radiated P can be found from equation (55) as, 

-(62) 

where GT is again the differential thermal conductance and P
0 

is 

the steady state radiated power. 

The power supplied to the lamp W is, 

w R0(l+Me)(El+&E~) 2 

2(R
2 

+R 
0 
(l+~E 9)) --(63) 
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which for small perturbations & E
1 

where IS E
1
1« 1 and lo 91 « 1 reduces 

to; 

W:::- W f1 + 2&E.1 + '668(1- ~)] 
Oj E, R +R2 
~ ~ 0 

--(64) 

is the steady state power supplied and hence 

radiated. ie (P = W ) 
0 0 

On the average the power supplied and radiated must be 

equal. Thus we can equate equations (64) and (62) to obtain; 

--(65) 

If we recall the constant m from section IV-(2) we can obtain 
0 

~R Ro.~oe 

mo =: 
logR Ro = Rg =~ logP = 6P oeGr GT --(66) 

Po Po 
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and note from equation (16) that for an oscillator employing a high 

gain amplifier, 

then we can reduce equation (65) to; 

--(67) 

The output voltage vf of figure (14) can thus be written and approx­

imated as; 

and 

~ vf ~ -~2b'El 2k __ ,.1 __ _ 

(k+2)""[l -1+ 2k 1 m - fk+2)j 
0 

--(68) 

For maximum amplitude sensitivity I S'f/oE,j should yield a maximum. For 

this condition for ~eal values of k we find 

k = 2jl;:!Eo' 
1-<--m 

0 --(69) 

We note that the value of k for maxinrum sensitivity has been altered 

by the factor ~ from the case of the linear resistor. Since 

we have seen that the expected value of m
0 

is small for the tungsten 

lamp, a value of k = 2 will not greatly alter the amplitude sensitivity 

and yet it will allow the oscillator to be designed for maximum frequency 

sensitivity. 
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(2) Oscillator Stability 

Stability for the oscillator is extremely important as 

the oscillator output should not experience any violent changes 

for finite changes in the circuit. We say that a linear circuit 

is stable when all transients decay in a finite time leaving a pre-

dominant steady state. It is thus essential to study a system's 

transient response when investigating the system stability. 

For an oscillator, we must know the transient response 

to small perturbations about each of the possible 11 steady states". 

The "steady state 11 is where the output is a wave of constant amplitude 

and frequency. The equilibrium point or steady state point is then 

investigated by perturbing the system and examining the resultant 

transient. If the particular steady state is stable, the transient 

disturbance must decrease with time, and if unstable the transient 

will be enhanced. In some systems a large perturbation can cause a 

change in the steady state while a small perturbation will not. The 

time constant with which a disturbance decreases may also be of suff-

icient duration to be annoying. For these reasons some qualification 

must be imposed on the meaning of stability for a system depending 

on its application. 

If we perturb an oscillator which is initially oscillating 

with a sinusoidal output, the perturbations will give rise to a 

modulation of the output (l2) at some complex frequency s = oC+ jw 
m 

which can be obtained by solving the network equations for the per-

turbation. The transient response can then be evaluated with regard 

to stability. 
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(3) Transient Response of Wien Bridge Oscillator 

In this section we will examine the transient response 

of the Wien Bridge Oscillator for small perturbations of the lamp 

resistance R for the circuit shown in figure (15). 

c 

Figure (15) 

The amplifier A is assumed to be linear with gain A [Qo. The lamp R 

is perturbed by introducing or removing the resistor E R via the 
0 

switch Sw. 

During the steady state oscillation the switch Sw is 

closed and the output voltage v will be given by; 
0 

-(70) 

where w 
0 

= l/CR
1 

is the steady state frequency. For oscillator 

frequencies above the lower frequency limit of the lamp bridge, 

the output amplitude and frequency are constant in the steady state 

and the lamp resistance will be a steady state value R • If the 
0 

amplifier has a high gain such that A>>l, the resistor R will also 
2 

have the approximate value R2 ~ R0
• 

If the resistance E R is introduced into the circuit at time t=O 
0 

via the switch Sw, the output must change correspondingly by a time 

varying parameter 6Yo such that. 
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--(71) 

The change in the output voltage will be a function of the amplitude 

only as shown in equation (71) if the response characteristic of the 

feedback network is symmetrical about the oscillation frequency(ll)• 

For any other condition the changes in amplitude would be accompanied 

by changes in the oscillation frequency. We are justified in making 

this approximation here at least for small perturbations. 

Equation (71) can be written in the exponential form 

using the exponential identity for the cosine term to yield, 

--(72) 

where the relative change in E
1 

has been written as 

--(73) 

where S = ~+ jwm is the complex frequency of the modulation. 

The change in the output is seen from equation (72) to be com­

posed of two terms at the complex frequencies 5 !j W. 
0 

In the steady state the output v
1 

from the frequency sel-

ective arm of the bridge of the circuit, figure (15) was, 

-(74) 

The change in v
1 

for the change in v
0 

will thus be 
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for each of the two complex frequencies of the output bV0 given 

in equation (72). The output from the frequency selective arm ~ v
1 

is thus; 

[ 

(5+jWo)t +jc:\> (s-jWo)t -jcp J e + _e __________ __ 
Z+J.(•tS + -'-) Z+l.(-j+.§. +_I- \ 

Z. J Wo j+S/w
0 

Z Wo -j+S/wol 

r-...r E,d 
ovl. = e. 

Fortunately for the oscillator parameters involved we can make 

the assumption lsi<< lw
0

lwhich greatly reduces this equation. For 

the above approximation we obtain; 

[ 

(5+jwoH+jcP (s-jWoH -j<P 
6v:. rv E,d e +e 
1-

4 (1+..§..) 
2Wo J 

or 

--(75) 

If the transfer function for changes in the envelope is defined 

as F (s) for the frequency selective arm we can write; 
l 

-(76) 

wherebv1 is the amplitude of~v1 andSE
1 

is the amplitude ofbv
0

• 

If the Laplace transforms of b" V 
1 
and~ E

1 
are L

1 
( s) and L(s) respectively 

we can write, 

L(s) 
2 + JL 

l.Uo 
--(77) 

In order to evaluate L(s) in terms of the circuit constants 



we must obtain a relat..ionsnip for the aiJpl itude sen£itiV1; arm of 

the bridge <.)l figure (15) which consists of tn0 laiJ.fjS R <J.nd resistor 

R • Ir. the steady state for the high gain amplifier, the lamp ~ 
2 

had a resistance R and R-1 was approximately R
2

';;1 R • The power 
0 ~ 0 

supplied and hence radiated in the steady sta+.:.e was thu.s; 

w 
0 

= p 
0 

E 2 
= ::::1_ 

8R 
0 

--(?8) 

where E is the peak voltage given in equation (70), Upon perturo~~~, ~ 
1 

the lamp temperature will vary by a small amount, 

where x is the small time varying para~eter. Similarily the lamp 

resistance will vary as; 

R = R (l+y) 
0 

where y is a small time varying parameter. If c,he perturbation in R 

occurs from switching t.he resistance ER into the .::~rr.;·-lit. at tim<:: t:O, 
0 

we can write the time function for the change in R as; 

where h(t) is the unit step .function. Upor. perturbation the power 

supplied to the lamp, vJ b·ecomes; 

--(79) 

Assuming a small perturbation such that E « 1 this can be approximated 

by the binomial expansion as; 

¢W ~ w [ 2~E.l- Eh(t)J o E, 
..... 

-(80) 



The power radiated by the lamp was given in equation (55) as; 

P = P +9 xGT 
0 0 

where GT was the differential thermal conductance and P
0 

is the 

steady state radiated power. The variation in the radiated power 

is thus; 

-(81) 
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The thermal heat capacity of the filament has been defined previously 

as C so that we can write the power balance equation for the lamp as; 
T 

-(82) 

which can be evaluated by substitution from equation (80) and (81) 

to obtain, 

C 9 ~· + G 9 x = 2p 0 S E - P E h ( t) 
! Odt T o E l o 

l 
---(83) 

If the Laplace transforms of 8
0

x and bE1 are L)s) and L(s) respectively 

the transform equation for (83) is 

--(84) 

The temperature coefficient of resistivity for the filament material 

has been defined as ((, and it was shown in equation (66) that 

-(66) 

Substituting equation (66) in (84) and letting wT 
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Lx(s) = w,.mo L~ L(s) - ~} 
¥ ( s+uJ ) (E s --(85) 

T 1 

The voltage output from the thermal arm of the bridge is 

v
2 

in the steady state and will change in response to ~v0 to; 

--(86) 

For small perturbations and noting that R2 ~ R
0 

this can be approximated 

as; 

~ v ':::! b [6v + l.v (y + E h( t) jl 
2 2 0 .20 ~ ~(87) 

Noting that y = 'b' 9
0
x by definition, and writing b V 2 as the change 

in the envelope of ~v2 , we obtain, 

from which we can write the transform equation if we write L2(s) 

as the transform of o V 
2

• 

--(88) 

In the above L(s) is the transform of SE1 and Lx(s) the transform 

of e x. 
0 

From the circuit of figure (15) we see that before perturbation, 

and after perturbation this would become 



from which the variation term is; 

Since A»l we see that 6v1 ':::: ~v2 or Sv1 ~ ~ v2• Thus the transforms 

will be approximately equal. 

--(89) 

Solving equations (89),(88),(85) and (77) for L(s) we obtain the 
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transform of the output disturbance for the perturbation E R
0

h( t) as; 

Equation (90) is seen to have three poles which are located at the 

roots of the denominator. s = 0 and s = s1,s2 where, 

--(91) 

or abbreviating 

and J 
--(92) 

where 

The existance of a negative oc means that the poles of L(s) 

will all lie in the left hand half of the s plane. This will ensure 

absolute stability in that the transient will die out in a finite 

time. Formal stability in terms of the pole locations is often 

benificial as a pair of poles which are located close to the jw axis 

in the left half plane,correspond to a lightly damped sinusoid 
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i<~hic:-, rr.ay be inacL'U.issible ·whe:·e the amplitude is sufficient to seriously 

alter the steady state ou-.:.:·:mt. From equation ( 92) we see that since 

m is small, oC will be correspondingly small '1-Jith an expected poor 
0 

transient response. For actual 11 squegging11 to exist for small per-

turbations, the constant 1:1
0 

must have a value approaching m
0 

= -1 

vlhich of course is not possible for devices which exhibit a positive 

temperature coefficient of resistance .. 

The transient response can be found by taking the inverse 

transform of equation (90). Using the method of residues(l5) at the 

three poles s = O,s1 , and s2 , the time function can be obtained as; 

In the analysis we have already assumed thatw0>>~r· Employing this 

restriction to equation ( 93) vJe obtain the approximation 

-(94) 

For normal oscillator frequencies the constant term of equation (94) 

can be ignored because of its relative magnitude. The variable 

part of equation ( 94) extrapolated back to t=O would be 

and would take the form of c;, damped sinusoid with the frequency w , 
m 

dying out >-.rith the time constant 1:>· 1/oc where oC and wm are given by 

equations ( 92). 



The transfer function F2 (s) for changes in the output 

envelope with relative changes in the lamp resistance ~R/R0 can 

be written from equation (90) as; 

where L3(s) is the Laplace transform of the relative change in R. 

"enhancement factor" which is defined in most literature as the 
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--(95) 

The 

relative change in the output for relative changes of the input can 

be found for sinusoidal variations of the resistor R by writing s = jW 

in (95) as; 

-(96) 

The maximum enhancement will occur for the real frequency corres-

pending to the poles of equation (96) which is; 

UJ2 ""- 2m 2 w WT ~ l.l) o o m 

Upon substitution of this value in equation (96) we may write the 

approximate 11 enhancement factor" as 

--(97) 

Actually we could expect that the true magnitude of the enhancement 

would be somewhat less than this value due to neglected dissipation 

in the capacitors and other components and the fact that the gain 

of the amplifier is not really infinite. The enhancement would 
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however be expected to be unusually large at high oscillator frequencies. 

Although extremely linear amplifiers do ca~se the oscillator to be-

have poorly with respect to its transient response, the enhancement 

at high oscillator frequencies is always much better than is pre-

dieted by this theory. In fact, the transient response usually 

improves with increasing oscillator frequency w rather than become 
0 

worse as is predicted by the theory. 

(4) Effect on Transient Response for Nonlinear Amplifier 

It was noted in the preceeding section that transient 

disturbances die out much more rapidly than is predicted by the 

linear amplifier theory especially at higher oscillator frequencies. 

It is known that small amounts of nonlinearity will prevent the os-

cillation amplitude from building up indefinitely by effectively 

altering the gain and thus creating a new steady state operating 

point. The analysis is thus repeated including the effect of a small 

nonlinearity present in the operational amplifier. 

In practice the highly stabilized amplifier used is char-

acterized by a range which is relatively free from distortion followed 

by a critical level often referred to as the power point of the amp-

lifier. After this critical level is reached the output is highly 

nonlinear and usually almost independent of input voltage increases. 

Below the power point however, the nonlinearity increases very slowly 

and can be closely approximated by a few terms of a power series such as; 

Av - a v + a v 2 + a v 3 + in- 1 o 2 o 3 o •••••••••••• 

where A is the amplifier gain, vin is the amplifier input voltage, 

and v 
0 

is the amplifier output voltage. The constants a
1
,a

2
,a

3 
••••••• 



will vary depending on the a:nount and t:r. ·):: nor:l:_r:o:arit.:r. In the 

closed loop operation, the output voltage ',.;ill contain distortion 

terms and will be of the form; 

where o
2
,o

3
, •••••. are the fractional distortions at the various 

harmonic frequencies of the oscillator natural frequencyw • Even 
0 

power nonlinearities in the amplifier will contribute a d.c. ~erm 

and even harmonics to the output, while odd poHer nonlinearity 

will contribute a term at the fundamental freq~e;iCY plus od.d har-

49 

monies.. Since we are concerned with terms which will limit the amp-

litude of the output, we will deal only Hith an odd power nonlinearity 

and in its simplest form-- the cubic. Let us assume then that the 

amplifier can be represented by the apprcximaticn 

Av. ~ v + bv 3 
~n o o --(98) 

and for the steady state the output voltage from the oscillator 

will contain a third harmonic term 

--(99) 

where D3 is the fractional distortion of the output voltage at the 

frequency 3w0 • The oscillator natural frequency is altered somewhat 

by this additional term, but as long as o
3
« 1 the change will be 

insignificant. The approximate amplifier input can be evaluated ~s; 

bE 3 
+ * cos(3~ht+3¢) 

-(100) 

The Wien Bridge circuit must in effect adjust slightly for th~s new 

condition. We can account for this change b;v allowing k to vary 
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slightly froma previous value of k = 2, to a new value k = 2( l + 2 ~l) 

where 2 o1 « 1. 

The steady state transfer function T1(jw) for the Wien 

Bridge for the new value of k is simply 

l + 01 

j(..!!L- ~) 
lA) UJ 

0 

For the term at the fundamental frequencyw
0 

this reduces to, 

T (w ) ~ ol 
1 0 2 

while for the term at the third harmonic frequency, 

ejo<2 
T1 (3w0)~ - & 

where oe
2 

= tan-1(~) 

--(101) 

-(102) 

-(103) 

Since the input to the bridge is given by equation (99) 

we can find a second value for v. which is the bridge output, 
1n 

1 IbE, 
v. = -o1K cos(w t + ¢) + .::.2.::;1;. cos(3w t + ¢2 + ot:2 ) 

1n 2 -.l o flj' o --(104) 

Equating equations (104) and (100) to evaluate the unknown par-

ameters we find; 

(a) 

or 

6,E, E1( 
~=-1+ 

2 A 

2 
& = ~(l + 3bE1 ) 

l A 4 --(105) 



For the case of the high gain amplifier where A>> 1 the above can be 

apprmd.mated as 

which when combined with equation (105) yields; 

~ ~ ~ 1 /{13' 

--(106) 

--(106A) 

If the oscillator is again subjected to a perturbation in 

the lamp resistance as for the previous ana~sis, the oscillator 
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output will again be modulated. The third harmonic term in the out-

put will also be modulated in a similar manner. 

If the output varies about the steady state by an amount 

~v the output will thus be; 
0 

where hE1 is again a function of time as defined in equation (73). 

The amplifier input of figure (15) and hence the bridge 

output voltage, is given from equation (98) as; 

v .. Vo + ~ v 3 
in A A o --(98) 

For the term involving the fundamental frequency w in equation (107) 
0 

this is approximately; 

bn + Ovi~ • El : al~ + 3: (E1_ + &El)j cos(wot + (6) 
W:.w 0 
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and hence 

--(108) 

where SV in is the change in the envelope of~ vin defined as 

& v. = & V. cos(w t + ¢). Substituting the value of 11b 11 from equation J.n J.n o 

(106) in (108) yields; 

sv. 
1 

~ ~Em 
J.n 1 13 

OJ= Wo 

--(109) 

A second value for b V in is seen from figure ( 15) to be 

--(110) 

The steady state transfer function T(jw) for the frequency selective 

arm of the bridge which is needed to evaluate ~v1 is simply the 

first term of equation (101). Thus 

1 
'2(1 + bl) 

T ( jw) = -1-~( 1..;..-_,&,_1,...) [..::jo;..w_Lll_o_] 
+ -+-

4 UJ juJ 
0 

-(111) 

Again for the complex frequencies jw = (s:!:. jw0 ) associated with 

the oscillator output, this becomes 

~(1 + b1) 
T ( s + jw) + T ( s - jw) = -1-+~(1""':1~-~6,....1~) '='j.s-+--:j=wo-, -.-~w~o-"=''1 

4 L wo s + jUJO 

-(112) 



where it has been assumed that ISt«lwol • 

The transfer function F3(s) for changes in the envelope 

through the frequency selective arm is thus defined as, 

--(113) 
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If we again define L(s) as the Laplace transform of oE1 , then L
4
(s), 

the Laplace transform of o V 1 , is given by; 

-(114) 

The output from the amplitude sensitive arm of the bridge 

is again defined by equation (88) and (85) as; 

--(88) 

where; 

~m0 [L(s) E] Lx(s) = --
t(s+w) E s 

T l 
-(85) 

If we now define L5(s) as the Laplace Transform of oVin we can write 

from equation (109) and (110); 

--(115) 

and we can solve equations (115),(85),(88),(114) and (113) for L(s) 

to yield, 

~[ 1 - moWT J 
L( 

8
) = __ 2_s~ _ _..;;;.s_+turr_..._ _____ _ 

l + bl ~ 
l + (1-Jil)s - 1- 3bl - s+Ulr 

2W 
0 

-(116) 
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Neglecting terms in b1
2 and higher this can be written as the ratio 

of two polynomials in s. 

Since D is small ~ is also small and will only have a significant 
3 l 

influence on the coefficient of s in the denominator. Hence the 

above can be approximated as; 

-(117) 

where 

Equation (117) has three poles, s=O,s=s3 and s=s4 given 

by the roots of the denominator of equation (117). Thus; 

S S :::o("!:. JI.U 
3' 4 1 1nl 

where C(l and wrnl are defined as; 

and 

2 
I.;J ~ ru. 

--(118) 

--(119) 

--(120) 

r,or normal ::>scill<-,t·:n' fri:O:f4llenci~s 1•lhere w
0
)>w

1
, this reduces to ap­

proximately the same 1ralue as for t.he linear amplifier. 

2 
wml ~ 2wwTm = W 2 o . o m -(121) 

We should note however, that. for increased nonlinearity and hence in­
(IZO) 

creased b1 , the second term of equationAwould become more important 
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and the modulation frequency would be decreased. 

Since ~l is negative for real values of the parameters 

m0,~,o1 and w
0

, the transient will decrease with time. Furthermore 

sincel~1 1is increased by the term 2w
0
S1, the time constant with 

which the transient decreases will be much shorter especially for 

the higher oscillator frequencies. The actual transient S E1 can 

again be obtained from the inverse transform of equation (117) as; 

oEl = - El E (l-mO)h(t )- € El e o(,t [ (2w + { ~ - m - ..J._z ?wT) sinwinlt 
2 m ew 0 0 mo) 

0 inl 1 J + ( 2- rnj wml cos OfuJ_ t __ ( 122) 

which is identical to the result obtained for the linear amplifier 

except thatoC has been replaced with oe1 and wm has been replaced with 

wml. The approximate transient for w
0

>> wT can again be written. 

-(123) 

The time constant with which the transient dies out is the reciprocal 

of oe
1 

and is thus; 

"t, '::! 2 
(l+m

0
)wT + 4W

0
S1 

--(124) 

The value of .4. E
1 

which is the magnitude of 6E1 extrapolated 

back to t=O will be unchanged from the case of the linear amplifier. 

However, since the time constant will be much shorter for the nonlinear 

amplifier, the associated first peak of the sinusoid will be much 

smaller than for the linear amplifier. In figure (16) the oscillator 

output response is shown for SR = -ER
0
h(t) which is the negative of 
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the result obtained in equation (122) and was caused by closing the 

switch in figure (15) at time t=O. 

t: 

Figure (16) 

where the variable part of oE1 is given by; 

--(125) 

The variable part will thus reach a value 6E
1 

peak shown in figure(l6) 

at some time t = t
1

• For this condition we can solve for t
1 

by 

differentiating equation (125) and setting the result equal zero to 

yield; 

thus -(126) 

The value for 6E
1 

peak can also be calculated for the value of t
1 

as; 

I = EIE Ulo eoe,i:, 
&El peak AI 1 

·y Z rrt0W0 Ll.lr 
--(127) 
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where t 1 is given by equation (126). 

Since the time constant will be larger for the linear case, 

the value of 6 E
1 

peak will be greater than for the case of the non­

linear amplifier. In addition if the first peak is large, the non-

linearity will tend to limit the increasing amplitude peak. The 

most important result of the nonlinearity is that the time constant 

will decrease to an extremely low value at the higher oscillator 

frequencies as is shown by equation (124). For increased nonlinearity 

the frequency w would also become lower and the time t
1 

given by 
ml 

equation (126) would increase while the time constant 1:1 decreased. 

The net result would also decrease the amplitude of the first peak. 

The response of the system to sinsusoidal variations in 

the lamp resistance can be found in the same manner as for the linear 

lif . F . ("R E Jwt amp 1er. or a variat1on _o = 
0
e we obtain; 

Ro 

--(128) 

For a range of oscillator frequencies where w
0
)) wT the enhancement 

will be a maximum at the frequency, 

an.d the "enhancement factor" will thus be; 

--(129) 

The enhancement for the nonlinear amplifier case is thus tmproved 

by the factor 4~1~0 in the denominator as can be seen by comparison 

of equations (129) and (97). 
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The analysis presented has been entirely for perturbations of 

the lamp resistance b R. The analysis can be extended to variations 

in any of the closed loop parameters through the use of the basic oscillator 

equation (16) 

k R0 1 
-- = -(16) 

and the chain rule. For example if the transfer function for changes 

in output for relative changes in the lamp resistance is F2(s), 

then an expression for the output voltage envelope corresponding 

to a variation in the amplifier gain 5A/A would be 

The enhancement of variations of amplifier gain would thus be reduced 

by the factor 4/A which is ir. agreement with the general concept of 

the use of the bridge circuit. Since the value of b decreases 
1 

proportional to A the enhancement of variations of amplifier gain 

should be independent of A for high frequencies and the condition 

that A:>> 1. 
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VI THE EXPERIMENTAL CIRCUIT 

(1) The Basic Oscillator 

In order to evaluate the theory presented in the preceeding 

sections, an oscillator was constructed from which the transients 

could be measured. To keep the transients as large as possible, 

the amplifier used was constructed as linear as was possible. The 

basic oscillator described in the theory can be drawn in a block 

diagram form such as that of figure (17) 

v,-vz. 

Figure (17) 

The oscillator consists of the lamp Bridge Arm N(E ), the Frequency 
1 

Selective Arm /.3 (w), and the Amplifier A which contains a small 

amount of third harmonic distortion. The summing amplifier shown 

can be a part of the amplifier A and has unity gain. 

(2) The Frequency Selective Network 

The frequency selective network shown in figure (18) was dis-

cussed in sections III and V. 

0 

lzc l R(z 

Vo 
~ 

R. c v. 
I 

Figure (18) 
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The values of the components R1 and C are to a large extent governed 

by the input and output impedances of the amplifier. The value of R1 

for the low frequency end of the tuning range must be much smaller 

than the input impeda~ce of the amplifier. Similarily, at the high 

end of the tuning range, the value of C must be much larger than the 

input capacitance of the amplifier. The total imped·ance of the 

frequency selective network must also be high enough not to severely 

load the amplifier. In particular the network impedanee should be 

much larger than the amplifier output impedance for the analysis given. 

These effects can be reduced by using cathode follower inputs and 

output for the amplifier, but should not be ignored in the design. 

(3) The Thermal Bridge Arm 

The thermal bridge arm contained two tungsten lamps as 

shown in figure (19). 

I 
! 

Vz. 

I 
Figure (19) 

By the inclusion of R
5
, the resistor R

2 
can be adjusted 

exact~ to R2 = R
0 

and still maintain the slight bridge misbalance 

necessary for oscillation. The value of R should however, be much 
5 

larger than R2 or R
0

• The two lamps used for the variable resistance 

R should have sufficiently high resistance not to load the amplifier 

output and yet still have a characteristic which would enable them 
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to be used above their transition region for low oscillator output 

voltages. The switch 5w and resistor E R
0 

\-;ere included as a source 

of the p3:;:-turbation ~R"" -ERa h(t) ., 

(4) Th0 L:_near Ar.mEtier 

The high gain amplifier must consist of at least t>.,ro stages 

in order to achieve the zero net phase shift required by the analysis. 

As mentioned earlier the outpL<·:. impedance of the amplifier must be 

very low in order that the \t.Jien Bridge circuit does not overload the amp-

lifier.. This can be easily accomplished by using a heavy duty 

cathode follO\'ler for the output stage. The high gain and zero net 

phase shift can be obtained from any simple two stage preamplifier. 

The frequency response of the entire amplifier should be flat from 

very low frequencies to frequencies well above those used in the 

tests. The net phase shift of the amplifier should be kept close 

to zero degrees although a small phase shift will not greatly alter 

~te oscillation frequency. In order to minimize the harmonic 

distortion and decrease the &~plifier output impedance, the amplifier 

employed approximately 20db of overall negative voltage feedback, 

and operation was confined to a region of about one quarter of its 

designed maximum output level. 

(5) The Differential knplifier 

The summing amplifier used should be as free from com~on 

~ode effect as possible. Several different types of differential 

amplifie::- circuits are discus seC. in the literature (17), (18). The 

circuit selected, and designed consisted of a double triode T 
1 

with 

a cow$~n cathode consisting of a triode T?and i~s cathode resistor R • 
- K. 
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The combination of triode T2 and resistor RK provided an effective A.C. 

comrr.on cathode resistance of rp2 -1- (IYJz.) Rr<: for the double triode T • 
l 

Hare Y'pz. is the plate resiste.nce of 'l'~ and .-'uz is mhu of T2 • This 

provided a minumum common mode voltage a.nd a maximum input impedance 

for the differential amplifier. A double triode should be used for 

the t c.;_be T 
1 

to minmnize diffe~'ences in characteristics between the 

two inputs. This amplifier via~> constructed as a part of the total 

high gain amplifier A. 

(6) The Envelope Det~ 

Although this piece of equipment was not a part of the 

actual oscillator, it was used wherever the time constant pe!na~ted 

to detect the modulation frequency of the transient and amplify the 

envelope to a level suitable to drive a Beckr.lan Counter. The block 

diagram of the detector is shown in figure (20). 

Figure (20) 

The circuit used consisted of an indium bonded diode type l.NlOO 

follovved by a low pass non-tapered R-C filter 'tJhich comprised the 

actual detector. The detected envelope v<as then amplified by the 

amplifier A
4 

and clipped at approximately t"-'JO volts to supply the 

desired amplitude for the count(~r. The lo•·J pass filter was a non-

tapered four section R-C filter designed to eliminate any carrier 

frequency above 190 cps. The b.rr:iter consisted of a pair of reverse 

biased diodes which were adjusted to clip at two volts peak to peak. 
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VII EXPERIMENTAL OUTLINE 

(1) General Outline 

The experimental portion of the thesis was carried out to 

evaluate the various parameters and to verify the ~heoretical results 

obtained in the analysis. The oscillator circuit was designed and 

constructed to meet the requirements indicated in the previous chapter. 

The transient waveform of the oscillator was then measured for a 

perturbation of the lamp resistance at various oscillator frequencies 

and amplitudes. 

The static characteristics of the lamp bridge used in the os­

cillator were measured and the experimental values were compared 

with those predicted by the theor,v. The time constant due to the 

thermal inertia of the lamp was measured and the result was used 

in calculating the expected transient response for the oscillator. 

A study of the low frequency response of the lamp bridge 

was also made. The results obtained were used to check the result 

of equation (60) with regard to the unwanted output at the bridge bal­

ance point, and the variation of the unwanted output with bridge 

·input voltage and frequency. 

(2) Measurement of Static Lamp Characteristics 

The static current-voltage characteristic was measured 

for the two Westinghouse ten watt 250 volt lamps connected in series. 

The voltage supply used was a John Fluke Stabilized Power Supply model 

407 and the voltage was measured witb a John Fluke Digital Voltmete~. 

A standard 0.5% laborator.y d•C• milliameter was used to measure the 

current through the lamps. The power supplied to the lamps and hence 
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radiated in the steady state and the resistance of the lamps were then 

calculated for the various lamp voltages. These results are tab-

ulated in table (l) and are shown plotted in graphs number (1),(2), and (3). 

The static current-voltage relationship is shown on graph 

number one for the two lamps connected in series. The characteristic 

is seen to be composed of a linear region, a transition region, and 

an almost straight line region. A graphical analysis of this 

characteristic in the region of oscillator operation yields an 

approximate curve given by, 

1.64 
E:::: 0.884 I 

where E and I are the d.co voltage and current supplied to the lamp 

in volts d.c. and m.a.d.c. 

Graph number two is a plot of the lamp resistance R as 

a function of the lamp voltage E which can be approximated by the 

straight line relationship 

R ~ 900 + l70E 

in the region of oscillator operation. 

The third graph, graph (3), shows the relationship between 

the lamp resistance R and power supplied or radiated in the steady 

state. As mentioned in the theory we would expect a straight line 

relationship between log R and log W excepting the low power inputs 

where the supplied power has little effect on the lamp temperature. 

Graph (3) shows this straight line region quite clear~ with a slope 

m
0 

= 0.226 

We also see from graph (3) that there is a linear region for very low 

power inputs which corresponds to the region in which the lamp temp­

erature is completely governed by the ambient temperature. The 
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TABLE (1) 

Lamp Voltage Lamp Current Lamp Resistance Power Supplied 

in Volts d.c. in m.a. d.c. in Ohms to Lamps 

in m. Watts 

0.3110 0.3504 884.8 0.1086 

0.6330 0.6768 935.3 0.4284 

1.331 1.233 1079 1.642 

2.088 1.682 1242 3.512 

2.883 2.060 1400 5.939 

3.699 2.399 1542 8.874 

4.531 2.709 1673 12.27 

5.372 3.002 1789 16.13 

6.215 3.292 1888 20.46 

7.069 3.561 1985 25.17 

7.927 3.823 2074 30.30 
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curved region which follows is simply the transition region in which 

the effect of the room temperature plays a decreasing role with increasing 

power in est.ablishing the filament temperature. Operation below 

a lamp voltage of two volts would be inadvisable due to these am-

bient temperature effects on the lamp performance. 

It should be noted that since the lamps used were designed 

and manufactured for illumination purposes, variations between the 

static characteristics of two identical lamps often exceeds 10%. The 

characteristics shown apply to the two lamps used in the oscillator 

and should be accurate within one half of one percent, but will only 

be typical values for lamps of their general rating and species. 

(3) Measurement of Thermal Time Constant 

The thermal time constant of the lamps can be measured by 

connecting the lamp bridge to aconstant voltage supply and subjecting 

the lamp bridge to a small change in operating voltage. The circuit 

used is shown in figure (21) and enabled the measurement of the var-

iable term on the oscilloscope. 

Oscillosco,oe 
(/.C'. in,ovl 

Figure (21) 

At normal oscillator frequencies the lamp will behave in the 

same manner as it would to a direct current voltage. We can thus re-

place the alternating constant voltage supply for the regulated d.c. 
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power supply shown in figure (21). Resistors R
7 

and R
8 

are part 

of a low resistance potentiometer included to facilitate the change in 

voltage and to improve the regulation of the power supply. Resistor 

R
8 

was adjusted for each bridge voltage to yield approximately a 

ten percent change in input voltage when switch Sw was closed. 

Resistors R6 were a matched pair of resistors much higher than 

the mean lamp resistance and yet much smaller than the oscilloscope 

input impedance. A value of R
6 

= lOK was used. The bridge was 

initially balanced with switch sw closed which brings the oscilloscope 

into the circuit along with the increased voltage. For this condition 

the oscilloscope trace was along the zero voltage axis. The switch sw 

was then opened and after the lamp had reached its new steady state, 

switch sw was again closed and the transient noted. 

If we let the input voltage to the bridge vary due to a 

step change ~V0 to V
0

(l+E) at time t=O the resistance R will vary as 

R
0
(l+y) as the filament temperature varies as 9

0
(l+x). It can be 

shown that the bridge output voltage v = (v
1 

- v
2

) is given by; 
out 

where y ~ 2E.m
0 

[ l - e-Wr-Jh( t) 

which reduces to the form 

which is a constant term plus a variable tenn. When the variable 

term is separated and measured as in figure (21) we can find the thermal 

time constant for the lamp bridge "T= ~by noting the amplitudes 

of the trace at two instants in time. If the amplitude of the trace 
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is V at time t and V at time t then the time constant would be; 
1 1 2 2 

1 (tl - t2) 
--(130) 1: -:: -: 

WT ln ~ 1 

The time constant can thus be evaluated by obtaining the difference 

in time between where the trace crosses two successive or particular 

graticule lines on the oscilloscope face. The values should be 

measured close to the steady state where the lamp voltage is close 

to half the bridge input voltage. 

The values for the time constant were found for ten lamp 

voltages given in table (2). These values are the average values 

of a successive number of trials. A d.c. amplifier not shown in 

figure (21) was constructed and used in conjunction with the oscilloscope 

to provide additional gain especially for low lamp voltages. The 

oscilloscope was used on d.c. input because of the time constant 

associated with the coupling capacitors of the oscilloscope on A.C. 

input. 

The time constant due to the thermal inertia of the lamp 

is plotted as a function of lamp voltage E on graph number four. 

Figure (22) shows a typical oscillogram taken from the oscilloscope 

of figure (21) for a lamp voltage at balance of E = 10 volts D.C. 

The values are used later in predicting the expected transient for 

the oscillator. 

(4) Low Frequencl Lamp Respon~ 

The circuit of figure (23) was constructed using the lamps 

employed in the oscillator limiter and the bridge output was measured 
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TABLE (2) 

Lamp Voltage Lamp Resistance Measured Time 

in Volts de. in Ohms Constant 

In Seconds 

1.00 1024 16.3 

2.00 1223 10.9 

3.00 1400 7.60 

4.00 1575 5.70 

5.00 1745 4.60 

6.00 1873 3.90 

7 .. 00 2076 3.40 

s.oo 2070 3.00 

9.00 2135 2.60 

10.00 2200 2.40 

at balance for low frequencies using a Muirhead Wave Analyser type D 

729-B. 

C'ons-h.thl R" 
N 

Vol/q9 e 
Sou,-.ce - Vovt 
S'cps 

R~:. -1-o 
4-o cps 

Figure (23) 

The resistors R
6 

were much larger than R and were a matched pair. 

Resistor R2 was adjusted for each bridge input voltage to make the 
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bridge output a minumum. The constant voltage source consisted of 

a Hewlett Packard model 200-CD Wide Range Oscillator operating at 

a low output and feeding a high power low output impedance amplifier. 

The output from the bridge was also fed through an amplifier to an 

oscilloscope. An oscillogram figure (24) was taken from the oscillo-

scope for a bridge driving frequency of five cycles per second. The 

output is seen from figure (24) to be composed of two frequency com-

ponents of equal amplitude and opposite phase. The first is at the 

fundamental frequency of the bridge input voltage and the second 

is at the third harmonic; both are shifted by ninety degrees from 

the bridge input voltage. 

A plot of one of these two frequency components ins hown in 

graph (5) and the results are tabulated for the two in table (3). The 

input voltage was measured with a thennal milliameter and series 

resistor which had been calibrated to read in volts R.M.S. 

The theoretical value for the bridge output voltage can 

be found from section IV-(3) equation (60) if we note that "t::I'TloGr/Po 

and P 
0 

= E2/4R
0 

where wT= Gr/~. The bridge output would thus be 

v t "" ? lcos3w t - cosw tl 
OU 8 2W [ 0 0 J 

0 

The plots of graph (5) vary quite closely as the reciprocal of the 

driving frequencyw as is indicated by the theory. As a further 
0 

check the equation can be evaluated at some bridge voltage say E=lO 

volts RMS, m
0 

= 0.226 and wT can be evaluated from table (2) at a 

lamp voltage of 5 volts RMS asUJT = (1/4.6) sec-l • For these 

values the output is; 
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TABLE (3) 

Driving Driving Amplitude of Amplitude of 
Voltage Voltage Fundamental 3rd Harmonie 

Frequency Across Frequencies at Balance 
in c.p.s. Bridge at Balance mv. R.M.S. 

f V. R.M.S. lnV. R.M.S. 
0 

5.0 10.0 8.90 X 10-l 8.90 X 10-l 

10.0 4.24 4.25 

15.0 2.76 2.76 

20.0 2.10 2.10 

30.0 1.60 1.60 

40.0 1.10 1.10 

5.0 8.00 5.60 X 10-1 5.60 X 10-1 

10.0 2.70 2.70 

15.0 1.75 1.76 

20.0 1.25 1.27 

30.0 1.00 1.00 

5.0 6.00 3.25 X 10-l 3.20 X 10-l 

10.0 1.52 1.52 

15.0 0.90 0.90 

20.0 0.70 0.70 

30.0 0.60 0.60 

5.0 5.00 2.30 X 10-l 2.25 X 10-1 

10.0 1.00 1.00 

15.0 0.64 0.65 

20.0 0.45 0.45 

30.0 0.37 0.37 
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vout at 5 cps = 0.977 m. volts R.M.S. 

v at 30 cps = 0.163 m. volts R.M.S. 
out 

which agrees quite closely to 0.89 m. volts and 0.16 m. volts 

measured and recorded in table (3). 

The magnitude of the unwanted component should thus not 
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be objectionable for oscillator frequencies of five cycles or higher 

for even extremely high gain amplifiers used in the Wien Bridge Oscillator 

circuit. Below five cycles per second the unwanted components in-

crease quite rapidly and hence sets a lower limit on the usefulness 

of the thermal compensator as a control unit. 

(5) Transient Oscillator Response 

The oscillator circuit was constructed with the value of k 

in figure (14) chosen as k=2. This choice of k=2 allows the Wien 

Bridge circuit to operate at the condition of maximum frequency 

sensitivity. The capacitors 2C and C were of a fixed value mica type 

and were matched for the two to one ratio. These remained constant 

during all of the tests. 

The resistors R1 and R1/2 were of the deposited carbon type 

and were mounted in shielded plug in units to allow changes in os-

cillator frequency. The values of all the components were adjusted 

to form balanced pairs. To allow a continual frequency variation, 

a dual potentiometer was mounted in a shielded plug in unit. Al-

though the tracking was not particularly good on this device it was 

suitable to obtain the frequencies where hum enhancement occurred. 

The values of the circuit frequency determining elements are listed 

with the expected oscillator frequencies. 
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c = 24140 p.f. 

Resistance Unit Expected Freguenc;t 

R l = 
l 28420 ohms 232.0 c.p.s. 

R 2 = 
l 19120 ohms 344.8 c.p.s. 

R 3 = 
1 ' 15520 ohms 424.8 c.p.s. 

I 

4 
Rl = 14180 ohms 464.9 c.p.s. 

R~ 5 = 10870 ohms 606.5 c.p.s • 
.L 

6 
9447 ohms 697.9 Rl = c.p.s. 

7 7613 ohms 866.0 Rl ::;: c.p.s. 

The dual potentiometer had a value of 0 - 50K, 0 - 25K ohm~ 

and would thus tune the above range of frequencies, 

The transient was introduced by shorting the small resis-

tance ER
0 

in series with the two lamps at a time t = O. The result 

obtained was a damped osc:illatory transient as shown in figure (25). 

These transients were produced and measured for various oscillator 

frequencies and oscillator output levels. 

The observed transient waveform can be easily correlated 

with the theory with the aid of figure (26). 

Here the various terms are defined by 

E1 "" oscillator steady s~ate peak amplitude in peak volts. 

4E1 = magnitude of transient extrapolated back to t = 0 in peak volts. 

&E1 = magnitude of first peak of transient in peak volts. 
peak. 

fm = modulation frequency in c.p.s. = ---­
t2 - tl 

T 1 = time constant of transient wave form in sec. 

From equation (93) these terms can be approXimated for the linear theory as 
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--(131) 

and 

fm ~ -l1f2mw wT 1 

2Tr~ 0 0 
--(132) 

--(133) 

Similarily where the nonlinearity of the amplifier is accounted for, 

the terms become, 

-(134) 

--(135) 

2 

(l+m )w + 4w S 
o T o 1 

--(136) 

The presence of even a minute amount of cubic nonlinearity should 

have a profound effect on the transient time constant T, as is seen 

in equation number (136) while the modulation frequency of the os-

cillator will remain practically unchanged for small nonlinearities such 

that D<.Ol ie (1%). 

The experimental values for the peak amplitude ~E1/peak , 

the time constant t"1, and the modulation frequency f' were measured 
m 

from the transient waveform displayed on a Tecktronic Oscilloscope 

model 536. The oscillator frequency and the modulation frequency 

were measured on a Beckman Eput and Timer model 7370 wherever the 

transient time constant would permit its use. The oscillation level 
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was estabilished by the use of a thermal voltmeter which was con-

structed from a thermal milliameter and calibrated to read R.M.S. 

voltages. The results which are shown tabulated in table (4) are for 

a step function of resistance oR =-2.018 h(t) which was introduced 

by shorting the 2.018 ohm resistor with a switch at time t = 0. The 

value of R
2 

which was a carbon potentiometer was adjusted for each 

oscillator voltage on a resistance bridge so that R2 = R
0

• The 

potentiometer R
5 

of figure (19) was then adjusted to provide the small 

misbalance needed to obtain the exact oscillator output voltage. The 

time constant was evaluated from the time base of the oscilloscope 

which was checked at low sweep rates with a stop watch and higher 

sweep rates with the counter and a known frequency signal. The measured 

values for these readings are shown in graphs numbers (6), (7) and (8). 

In graph ( 6) the peak amplitude ~ E1/ k is plot ted as a function pea 

of the square root of the oscillator frequency. In graph (7) the 

modulation frequency is shown as a function of the square root of 

the oscillator frequency, and in graph (8) the transient time con-

stant is shown as a function of the oscillator frequency. 

The theoretical results for the oscillator with a linear 

high gain amplifier were next calculated from equations (131), 

(132), and (133) and are listed in table (5). The values for fo 

are taken from the expected value of ~for the constants used in 

each of the plug in frequency determining units. The values of E 

and uJT are for a resistance change of 2.018Jl. and the time constant 

given on graph (4). The values for the steady state lamp resistances 

are given on graph (2) or table (2). The theoretical curves are 



81 

TABLE (4) EXPERIMENTAL RESULTS 

El £0 tiEl/peak fro 1"1 E dR Ro 
vRMS in cps peak volts in cps in sec no-3 in ohms in Kfi 

5.00 237 0.83 1.32 5.00 1.570 2.018 1.285 

351 0.97 1.62 3.75 

432 1.06 1.79 3.20 

469 1.10 1.87 3.00 

613 1.24 2.15 2.40 

704 1.31 2.30 2.20 

870 1.44 2.56 1.75 

6.00 237 0.76 1.45 3.75 1.435 2.018 1.405 

351 0.89 1. 75 2.80 

432 0.98 1.96 2.35 

469 1.01 2.05 2.20 

613 1.14 2.35 1.80 

703 1.20 2.50 1.60 

870 1.30 2.80 1.35 

7.00 237 0.71 1.54 2.80 1.344 2.018 1.500 

351 0.83 1.87 2.08 

432 0.90 2.10 1. 75 

469 0.93 2.19 1.65 

613 1.05 2.53 1.31 

703 1.10 2.73 1.13 

870 1.20 3.02 0.95 
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TABLE (4) EXPERIMENTAL RESULTS (CONTINUED) 

El Io ~El/peak fm "[1 € dR Ro 
v. RMS in cps peak volts in cps in sec Xlo-3 in ohms in Kn. 

8.00 237 0.67 1.70 2.22 1.276 2.018 1.580 

351 0.77 2.07 1.60 

432 0.85 2.32 1.30 

469 0.88 2.40 1.20 

613 0.98 2.75 0.90 

703 1.03 2.95 0.80 

870 1.12 3.30 0.65 

9.00 237 0.64 1.85 1.75 1.210 2.018 1.665 

351 0.74 2.25 1.25 

432 0.81 2.50 1.05 

469 0.84 2.60 1.00 

613 0.93 3.00 0.75 

703 1.00 3.20 0.63 

870 1.06 3.56 0.50 

10.00 237 0.620 1.96 1.40 1.160 2.018 1.738 

351 0.71 2.35 1.00 

432 0.79 2.65 0.85 

469 0.81 2.73 0.80 

613 0.91 3.15 0.60 

703 0.95 3.39 0.50 

870 1.02 3.78 0.37 
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Graph (7) 
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Graph (8) 
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plotted in graphs (9) and (10) for the modulation frequencytm 

as a function of the square root of the oscillator frequency and the 

amplitude of the peak versus the square root of the oscillator 

frequency. Clearly the linear theory does not predict the decrease 

in the time constant for increasing oscillator frequency and the 

transient peak is larger than is measured. The linear theory does 

however, predict the modulation frequency with a reasonable degree of 

accuracy. 

From graph (8) we see that the measured time constant is 

much shorter than is predicted by equation (133) and decreases 

quite rapidly with increasing oscillator frequency. The peak value 

of the transient apart from being smaller than is expected from the 

linear theor,y, decreases slightly from the straight line predicted 

for graph (10) for increasing oscillator frequency. 

The small amount of cubic nonlinearity present in the 

operational amplifier of the Wien Bridge Oscillator was next measured 

for the steady state with the General Radio Wave Analyser. Readings 

for low voltage oscillator outputs were inconclusive but for a voltage 

output of 10.0 volts R.M.S. it was found that the third harmonic fractional 

distortion was approximately n3 ~ 1.1 X lo-4. Values for n
3 

for 

lower voltages were calculated using this result and the relationship 

given by equation (106). The value for bl can be found from equation 

(l06A) and equations (134), (135) and (136) can be evaluated in the 

same manner as for the linear theory. Equation (134) may be further 

approximated for computations as; 
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TABLE (5) LINEAR AMPLIFIER 

El fo LlE £m 1:1 UJT € 

v. RMS in cps in peak volts in cps in sec no-1 no-3 

5.00 232.0 1.91 1.35 14.85 1.10 1.570 

344.8 2.32 1.65 

424.8 2.57 1.83 

464.9 2.79 1.91 

606.5 3.08 2.19 

697.9 3.30 2.35 

866.0 3.68 2.62 

6.00 232.0 1.92 1.47 12.56 1.30 1.435 

344.8 2.34 1.79 

424.8 2.60 1.99 

464.9 2.72 2.08 

606.5 3.11 2.38 

697.9 3.33 2.55 

866.0 3.71 2.84 

7.00 232.0 1.93 1.60 10.67 1.53 1.344 

344.8 2.37 1.95 

424.8 2.62 2.16 

464.9 2.73 2.26 

606.5 3.12 2.58 

697.9 3.35 2.77 

866.0 3.74 3.08 



ss 

TABLE (5) LINEAR AMPLIFIER (CONTINUEDl 

El fo L1E fm Tl uJT E 

v.RMS in cps in peak volts in cps in sec :no-1 Xlo-3 

8.00 232.0 I J.O~ 1.71 9.33 1.75 1.276 

341;..8 2.37 2.08 

424.8 2.64 2.31 

464.9 2.76 2.41 

606.5 3.16 2.76 

697.9 3.38 2.96 

866.0 3.77 3.30 

9.00 232.0 1.97 1.81 8.32 1.96 1.210 

344.8 2.40 2.21 

424.8 2.67 2.4.5 

464.9 2.79 2.56 

606.5 3.19 2.93 

697.9 3.42 3.14 

866.0 3.82 3.50 

10.00 232.0 2.01 1.90 7.55 2.16 1.160 

341;..8 2.1~4 2.31 

424.8 2.71 2.57 

464.9 2.84 2.68 

606.5 3.25 3.07 

697.9 3.48 3.29 

866.0 3.88 3.67 
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for small nonlinearity such that (T1wm) 2» 1 • The results are 

tabulated in table (6) and are plotted in graphs (ll) and (12). 

From graph (ll) we see that the peak amplitude of the 

transient is somewhat larger than was measured, but it experiences 

the deviation from the straight line for increasing oscillator 
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frequencies as is found in practice. The deviation of the experimental 

from the theoretical can perhaps be attributed to two things, first 

the switching time of the perturbation may not be infinitesimally 

small as assumed in the analysis, and second the larger peaks will 

be reduced by the increasing nonlinearity. This mechanism seems 

to be present in figure (25) for the large transient caused by 

switching frequencies. All of the increasing peaks are flattened 

while all of the decreasing peaks are lengthened by the cubic 

nonlinearity. If these two things were included the result would 

be a smaller value of oE1 peak which would be in accordance with 

the experimental results. 

From graph (12) the transient time constant 11_ is seen to 

be markedly changed by the inclusion of the small cubic nonlinearity. 

In most practical problems this nonlinearity would most certainly 

be neglected in the first approximation and yet in this case it has 

a profound effect on the transient response. The experimental values 

of the time constant are seen to agree quite closely with equation (136) 

or graph (12). 

( 6) Hum Enhancement 

The oscillator constructed was extremely poor with respect 
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TABLE (6) CUBIC NONLINEARITY 

E1 fo &E1/peak fm 1"1 WT E D3 
v. RMS peak volts cps sec x1o-1 X1o-3 x1o-5 

5.00 232.0 1.83 1.35 4.98 1.10 1.570 2.75 

344.8 2.24 1.65 3.77 

424.8 2.50 1.83 3.22 

464.9 2.60 1.91 2.99 

606.5 2.97 2.19 2.40 

697.9 3.17 2.35 2.13 

866.0 3.50 2.62 1.77 

6.00 232.0 1.83 1.47 3.68 1.30 1.435 3.96 

344.8 2.22 1.79 2.74 

424.8 2.47 1.99 2.32 

464.9 2.58 2.08 2.16 

606.5 2.94 2.38 1.73 

697.9 3.14 2.55 1.53 

866.0 3.46 2.84 1.26 

7.00 232.0 1.83 1.60 2.81 1.53 1.344 5.40 

344.8 2.22 1.95 2.07 

424.8 2.46 2.16 1.74 

464.9 2.57 2.26 1.62 

606.5 2.91 2.58 1.28 

697.9 3 .. 11 2.77 1.13 

866.0 3.44 3.08 0.930 
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TABLE (6) CUBIC NONLINEARITY (CONTINUEDl 

El fo bEl/peak fm 1:1 UJT E 
D3 

v. RMS in cps peak volts in cps in sec no-1 Xlo-3 Xlo-5 

8.00 232.0 1.83 1.71 2.23 1.75 1.276 7.04 

344.8 2.21 2.08 1.63 

424.8 2.45 2.31 1.36 

464.9 2.55 2.41 1.26 

606.5 2.90 2.76 1.00 

697.9 309 2.96 0.883 I i 
i 

866.0 3.41 .3.30 0.723 I 
I 

9.00 232.0 1.82 1.81 1.81 1.96 I 1.210 8.90 I 

344.8 2.21 2 .• 21 1.32 I 
424.8 2.44 2.45 1.10 

464.9 2.54 2.56 1.01 

606.5 2.89 2.93 0.800 

697.9 3.08 3.14 0.705 

866.0 3.40 3.50 0.578 

10.00 232.0 1.82 1.90 1.50 2.16 1.160 11.0 

344.8 2.20 2.31 1.08 

424.8 2.43 2.57 0.902 

464.9 2.54 2.68 0.832 

606.5 2.88 3.07 0.655 

697.9 3.07 3.29 0.575 

866.0 3.38 3.67 0.470 
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Graph (11) 
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Graph (1 2) 
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to d::.sturbancss in the output. The c:1c..ssi0 was 1tle1l t::rounded and 

the lamp assembly was shock mounted and screened to minimize random 

variations from being originated from outside the oscillator. Even 

with these precautions random variations due to internal noise and. 

pov.rer hum were present to a small extent for 101-J oscillator output 

levels where the amplifier nonlinearity was a minumum. 

Random noise and power hili~ could be regarded as a variation 

of the amplifier gain as the two are probably introduced in the amplifier 

thro~gh resistor and tube noise and A.C. power frequencies in the 

d.c. power supply. For the case of the c.mplifier used two harmonics 

of the power frequency were found to cause a continuous modulation 

VJhere they provided one of the two components necessary in the output. 

for continuous modulation. For the two frequencies 180 cps and 300 cps 

corresponding to the third and fii'th harmonics of the power frequency, 

four oscillator frequencies were found \vhere continuous modulation at 

t-he frequency f occurred. The oscillator frequencies were of course 
m 

f = (180 :': f ) and f = (300 :::. f ) where £ is the expected modulation o m o m m 

frequency at the oscillator i'reauency £ ., 
• 0 

It was shown in the theoretical section that sinusoidal 

variations of the ~~plifier gain would be reduced by the factor 4/A 

from the case of sinusoidal variations in the lamp resistance R or 

for that matter sinusoidal va::-iations in the parameter k of the 

frequency selective arm. From equation (106) we have seen that the 

distortion is proportional to the reciprocal of the amplifier gain. 

Hence the enhancement of variations in the amplifier gain will be 

approximately independent of the gain A so long as A)) l. 
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The most sensitive portion of the oscillator to variations 

is of course the two feedback loops. Electrical radiation or 

mechanical vibration could cause a severe disturbance in the out­

put. For this reason these components were particularily well 

shielded and shock mounted. 
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Although \<Je have shown that the simple lamp bridge is 

an effective long time control for the oscillator amplitude with 

respect to variations in the amplifier gain, the thermal inertia of the 

lamp gives the system a poor transient response for any changes in 

the closed loop. In addition the oscillator's operating region 

is confined to frequencies above a lower limit indicated in section 

IV-(3). Below this lov1er limit, the lamp resistance will vary 

over ~he individual cycle and hence distort the output. The latter 

difficulty is inherent in this type of automatic level control, 

but the former can be improved by the presence of odd power non-

linearity in the operational amplifier. The presence of this nonlinearity 

is extremely effective and unless the amplifier contains a third 

harmonic distortion greater than lOOdb down, it would be impossible 

to obtain a steady state output as noise and radiation would cause 

the output to be swamped by transients. 

In general this type of automatic level control is in-

expensive and quite simple to build. The time constant for the thermal 

briage should be kept as s'hort as possible consistent with the con-

dition that it is long with respect to the period of the oscillation 

frequency. The transient response can be improved by increasing 
1 
I 

the value of the constant m~ which would mean choosing a d:Lfferent 
0 

type of lamp or thermal device. For the thermistor of figure (11) a 

sliailar experimental value for m would be m ~ -2.56 and if this device 
0 0 

was used in its appropriate bridge, the transient output would be 

improved. From equations (134), (135), and (136) we see that for 
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t:ne peak 6IC, is 
.L 

smaller, the frequency £ m is higher, 

c:.'1d the tirr:.e constant of tn•::; transient 1 1 is shorter at the lm-1er 

osci::.lator frequencies f where the transient was the most pronounced. 
0 

The oscillator transient response can also be improved 

by ehoosing a high gain amp:_ifier with a high degree of linearity 

and inserting a pair of zec-::r diodes back to back across the amplifier 

output as shown in fig~re (27). 

Figure (27) 

'I'he resistor R
9 

is in series vlith the device and the amplifi'::!r A. 

The Zener voltage is chose!:l equal to the peak voltage of the oscillator 

output in the steady state. The resistor R
9 

should be a much 

higher resistance than the dynamic resi.stance of the zener above 

the peak voltage E1 , and at the same time must be m!.!ch smaller than 

the feedback ::.oop load.. For an;y trili'1Sient within the time response 

cf' the zener diode, the z,-:;[:::.r pair will limit the positive peaks 

creating components at the tarmo::ic frequencies Jw
0

, )w
0

, 7<.u
0 

•••• 

as well .as harmonics and products of tU with w • For small perturb-
m o 

ations the amplitude of the fundamental frequency component w will be 
0 

reduced by the presence of harmor~cs in the tra~sient state and ~he 

transient time constant and first peak &E, peal< >-Ji::.l be reduced in the 
J. 

same manner as sec·~l· ~n u (' \ ...., v.:. v- t.\·l• The important thing is that for an 



ideal zener diode pair, the nonlinearity in the steady state will 

be determined by the nonlinearity of the amplifier. 

100 

A double diode combination was constructed from two standard 

diodes and batteries to provide the same type of limiter characteristic 

as the zener diodes. The batteries were adjusted to give the proper level 

of limiting and the oscillator output was obsened to contain only 

a negligible amount of additional distortion in the steady state. 

The transient response however, was greatly reduced especial]~ with 

regard to the transient time constant. With the diode limiter ad-

justed properly, a steady state harmonic distortion of lOOdb down 

should be allowable without serious transient disturbances. 

A somewhat more subtle use of this method can also be 

accomplished by adjusting the amplifier to an operating point 

just below its power point. An amplifier such as the single ended 

push-pull circuit provides an almost linear characteristic up to 

the power point and would be suitable for this application. Both 

of these methods would allow operation with a minumum amount of 

steady state distortion and still reduce the transient response 

to an acceptable level for oscillator use. 
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