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SCOPE AND CONTENTS::

In this work the direct, kinematic, small-displace-
ment theory has been deVeloped for the analysis of thin,
elastic members which are curved and twisted in their natural
configurations. Principles of continuum mechanics have been
used to derive the equations of equilibrium. Throughout this
investigation the three-dimensional aspect of the problem
is preserved. Local kinematic compatibility of the displace-
ment field has been investigated by the formal Saint-Venant's
method. This development serves to substantiate the validity
of the kinematic tridimensional approach. By the judicious
neglection of small terms of higher order throughout this
analysis, the basic system of equations arrived at by the
author admit favourable comparison with the existing equations

by other authors.
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second area moment tensor
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vector normal to external surface of body
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auxiliary tensor
components of vector R referred to En and
binormal Eb axes of the Euler mobile directed base
position vectors of centroid of cross section
referred to fixed directed base in deformed
and undeformed configurations respectively
position vectors of arbitrary point in member-
space referred to fixed directed base in
deformed and undeformed configurations res-
pectively
position vectors of arbitrary point in member
space referred to directed mobile Euler
'base in deforﬁed and undeformed states

respectively
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parametric arc-lengths in deformed and un-
deformed configurations respectively
Saint-Venant compatibility tensor

subscript for component referred to E, vector;

t
time parameter
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torsion vector in un-deformed state
displacement vector for centroid of cross
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displacement vector for arbitrary point in
member‘space

differential volume of slender member

total volume of slender member

variational operator

strain tensor
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CHARPTER 1

INTRODUCTION
§(1.1) General

The subject of this study is the deformation of elas-
tic members whose longitudinal axes represent general curves
in space. The direct method of tensor analysis has been used
throughout the analysis as the most appropriate mathematical
tool. in this investigation Euler's kinematical concept is
used to establish the state of strain in the slender ﬁembers.
In order to prove the compatibility of the assumed displace-
ment field Saint Venant's method has been pursued in its
direct form. The geometric space occupied by the slender
menber has been treated as a finite portion of an elastic con-
tinuum to which the Cauchy Axioms of Motion are applicable.
Finally, the generalised Bernoulli-Euler Equation for the
slender elastic members is obtained through suitable simpli-
fications. The entire analysis is carried out within the
limitations of the small-displacement theory. The present
investigation pursues a systematic mathematical procedure
which yields readily to a conceptual interpretation of
deformation-phenomena of slender elastic members. This

method of analysis is considerably different from conventional



procedures and facilitates a more descriptive appreciation
of the deformation process as a tridimensional phenomenon.
An aﬁtempt has been made for consistency in neglecting small
terms of higher order in all expressions. The class of
problems of slender members discussed in this thesis is re-
stricted to those cases in which shear deformations and the

centre-line stretching are considered to be negligibly small.

‘§(l.2) A Historical Introduction:

The first rational enquiry of the phenomena of resis-
tance of slender member was made by Galileo Galilei (1564 -1642).
In the course of his investigation he treated solids as inelastic
material subject to brittle rupture, not being in possession
of any constitutive law connecting displacement with the
force that produces them. Galilei attempted to determine the
limiting strength of a beam in rupture without deformation whose
one end was fixed into a wall and subjected to its own weight
or applied weight. The celebrated constitutive elastic law
was enunciated by Robert Hooke (1635-1703) in 1678. Later on
the tridimensional constitutive equations for molecular iso-
tropic elastic solids were given by Claude-Louis-Marie-Henri
Navier (1785-1836) in 1821.

In 1685 Gottfried Wilhelm Leibniz gave the first mathe-
matical analysis of the tension in the interior fibres of a

loaded beam based on the assumption that this tension varies



linearly across the cross—sectiop. He concluded, in a special
case, that the bending moment is proportional to the second
area moment of the cross-section of the beam. The second area
moment appears for the first time in Leibniz's work, which
contains the first apélication of infinitesimal calculus to
mechanics of solids.

Jacob Bernoulli (1655-1705) in 1691 to 1705 investiga-
ted problems concerning the resistance of bent rods. He was
inspired by Leibniz's paper of 1685 which initiated the modern
mathematical theory of elasticity by connecting the consti-
tutive Hooke's law to the stretching of the fibres in the
cross-section of the beam in the Galilei's problem of the
cantilever beam. Bernoulli assumed, like Hooke and Huygens
before him, that the resistance of a bent rod was due to the
extension and contraction of its longitudinal filaments. In.
the course of these researches Bernoulli saw that a relation
giving the ratio (force)/(area) or mean stress, as a function
of strain characterizes a material rather than a particular ‘
specimen of material. This was in 1704 and marked the
earliest occurrence of a true stress-strain relation and
a material property of a deformable medium. It is interesting
to note that only Bernoulli's reluctance to put any faith
in the Hooke's law, which contradicted his experiments on guts,
kept him from introducing the so-called glastic modulus E.

The investigations of Jacob Bernoulli were taken.up

by Antoine Parent (1666-1716), an unusual scientist by being



a capable theoretician and a talented experimenter. Parent
tackled the original Leibniz's pfoblem in 1713 and demonstrated,
for the first time, the existence of the interior shear stresses.
He balanced the internal stress resultants apart from balancing
the applied moments ahd internal stress couples in the analyéis
of the loaded beam and correctly located the neutral line by
this equilibrium criterion. According to Truesdell(l)t Parent's
excellent work, which really foreshadows the stress principle,
was published obscurely, drew no attention, and consequently
had no influence on the development of the theory of beams.
Leonhard Euler (1707-1783) in his treatment of the
problems of efastica, from 1735 to 1774, evolved the concept
of the undeformable longitudinal fiber which resists bending
(the most common method of present day analysis). In 1728
both Euler and Daniel Bernoulli (1700-1782), nephew of Jacob
Bernoulli, independently established a unified theory of

elastica:

M =

Biw

where B denotes the modulus of bending or flexural rigidity

and r is the radius of curvature of the bent beam. Daniel
Bernoulli was the first to linearize and integrate'this equation
in 1735. 1In 1727, in an earlier unpublished work on bells
considered as a cluster of curved beam segments,Euler was

the first to deduce the Jacob Bernoulli equation of bending

- from the Hooke's law for extension of the beam fibres,

* -
Numbers in parantheses refer to the References on page 86.



assuming like Jacob Bernoulli the inextensible neutral fibre
or elastica to be on the concave side of the curved beam.
However, this error which was present in all of Euler's
researches did not have any effect on his results concerning
elastica and stability,because Euler never specialized suf-
ficiently to have any need of using it. 1In this work Euler
became the first scientist to define modulus o4 extensdion,E,
as the material property of beam. (Yoﬁng,who studied Euler's
work, missed Euler's point and erroneously gave‘his modulus,
Awhich was not a material property, but depended upon the size
of the specimen). Again it was Euler in 1774 who gave his
famous study of skew elastica in space and established the

kimematic fLexural formula

ol

o
QJ!QJ
W0l

M =B v(.—-——-— X
as?

involving the osculating plane and the concept of binormal B;

M|t

B

yet another paper on a more extensive study of the spatial
threads presented in 1782 (published posthumously in 1786) con-
tained many general results of differential geometry of spatial
curves including the mobile Euler directed base {t,n,b}.
Gaspard Monge (1764-1818) was the first to differentiate
between the two types of curvatures, i.e. the curvature and torsion.
Jean-Joseph Fourier (1768-1830) also differentiated
between the two curvatures for the curve, and communicated it to
Michel-Ange Lancret (1774-1807). Lancret published a memoir

in 1805 in which he establishes differential expressions for the
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two curvatures which were called angle de fonsion and angle

dg courbunre by Louis-Légér Vallée (1784-1864) in 1825. Their
finite forms of expression were established by Augustin-Louis
Cauchy (1789-1857) in 1826 where the premidre courbure is %
and the seconde courbure is %.
The study of helical curves in terms of spatial coordinates
was initiated as early as in 1724 by Henri Pitot (1695~1771), who

introduced the term courbe a double courbure for these curves.

Alexis-Claude Clairaut (1713-1765) studies special
space curves as intersections of surfaces, but not as
independént enfities, in his famous monograph in 1731, His
work inspired the investigations of Euler and Monge.

Johann Christian Martin Bartels (1769-1836), of the
University of Dorpat in Estonia,resumed Euler's investigations
of the spatial curves in 1824, Bartels employed the mobile
Euler directed base and even went further than Euler by employing
a modified form of the convected local directed base.

Bartels was successful in establishing the complete
elementary theory of space curves expressed in extrinsic co-

ordinates in the Baatels Fundamental Formulas gfor Space Curves

|

l t.db = -b.dt

-t+dn = |dt| =« ds

)
il

-d

S

-n-db T ds

|ab |

(o]
Sl
I
i

«d

A fully equivalent set of formulas to Bartels' formulas was
independently discovered by Jean-Frédéric Frenet (1816-1888)
in his doctoral dissertation of 1847. Frenet formulas ex-

pressed the arc rate of changes of the vectors in the mobile

Euler directed base.
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Since Bartels' pioneering work remained unknown in
Western Europe, these fundamental equations completing the
elementary theory of space curves are known as the Frenet-Formulas.
Even Frenet's work remained unknown in France until Joseph
Alfred Serret (1819-1885) found them independently in 1851.
Therefore, sometimes the Bartels Formulas are also called the
Frenet-Serret Formulas. The researches of Frenet and Serret
on space curves were stimulated by an investigation of Adhemar-
Jean-Claude Barré de Saint-Venant (1797-1886) on spatial
curves in connection with his studies of spatial elastic bars
in 1845.

Jean-Gaston Darboux (1842-1917) introduced explicitly
the kinematical method of space curves in 1866 and extensively
employed it in his lectures of 1887-1896.

Ernesto Cesaro (1859-1906) studied the intrinsic geo-
metry of spatial curves by direct methods in his monograph of
1896.

In 1776 Charles-Augustin de Coulomb (1736-1806) contri-
buted significantly for the theory of stress in the flexure of
beams of constant cross sections. He wrote down all conditions
of_equilibrium for the forces acting upon the cross-section of
a loaded beam and proved that shear stress was not only possible
but necessanry. Coulomb neglected deformation and restricted
his attention to statics of beams. He was the first to carry
out extensive experiments for torsional behaviour of thin wires
in 1777-1784 and found that the torque was proportional to small
twist. However, he made no attempt at a mathematical theory

of torsion.



Cauchy was the first to givé a general theory of the
stress tensor principle independent of the material constitution
" of the continuum in his memoirs of 1823 and 1827. It is
interesting to note that the basic results of the stress tensor
principle were already present in an unpublished memoir on
the double refraction of light in elastic translucent media by
Augustin-Jean Fresnel (1788-1827) written in 1822, which was
known to Cauchy. Already in 1766 Euier, in a treatise on the
mechanics of perfect fluids, introduced and interpreted the
.components of the rate of deformation tensor for the fluid
continuum.

While all the basic ideas necessary for the general theory
of stress had been proposed by 1773, there was no sign of
that other necessary ingredient of a full theory of elasticity,
namely, the theory of strain . Barré de Saint-Venant was the
first to derive the local kdinematic compatibilfity condition
for elastic isotropic material as a function of the state of
strain in 1860*. In 1892 Eugenio Beltrami (1835-1900) obtained
the compatibility condition in the absence of body forces £=0,
for fLineaxrly elastic isotropic materials as a function of the state
of stress expressed by the components of the stress tensor

= 0., E.E, . The compatibility condition in terms of stresses

and the body forces was obtained by Luigi Donati (1846-1932)

Qall

* ) ) ’ . . - . .
"Elasticité des Solides" Bulletin, Socdiete Philomatdique de
Panis, [Extrait de precesverbos seances pendent 1l'annee

(1860)1, pp. 77-80



in 1894 as an extremal of the Potential Energy Functional

of the linearly elastic solid expressed in terms of the Beltrami
stress functions. He also obtained strain tensor components

as anextremal ©f the Potential Energy Functional.

(2} (1863-1940) in his cele-

Augustus Edward Hough Love
brated book studied the problem of slender members by the use
of classical methods. He made the approximatioh that the
elastica remains unstretched in its displaced configuration.
‘The concept of principal flexo-torsional axes was introduced
by Love for defining the orientation of cross-sections relative
to the space curves.

(3)

DiPrima and Hahdelman employed vector methods to
derive the equations of vibration of twisted beams under the
assumptioh that strains due to shear stresses could be neglected.
They obtained the natural frequency of a cantilever twisted beam
and pointed out some analogy in the analysis of twisted and

(4)

untwisted beams. Massoud in a short note on the equation
of motion for any twisted and curved beams also used vector
methods and gave simple methods for the derivationlof the
equation of motion of incomplete elastic rings.

The problem of curved and twisted rods was also analysed
by Tso(s). His equations of motion are based on the Newton
Second Axiom of Motion in their application to linear continuum
in a configuration of a space curve. The couplings between the
three types of motion i.e., extensional, flexural and torsional

were shown explicitly by him in the spatial case of space curve

possessing the form of a circular helix.



CHAPTER 2

DIFFERENTIAL GEOMETRY OF THE ELASTICA

§(2.1) Definition

Elastica is defined to be a longitudinal fibre em-
bedded in the slender member which passes through the cen-
troid of the cross-section and remains 4{nvardlanit in length

in the process of deformation.

§(2.2) Kinematics of Elastica

.The undeformed configuration of the slender members is
assigned to possess both curvature and torsion, i.e., the
elastica (or, the centre-line) being a space curve of general
nature.

With reference to figure (2.1) let P be any generic.
point on the elastica with radius vector ﬁo referred to the
inertial frame of reference {éx’éy’éz}' S denotes the arc-
length parameter of the space curve in undeformed configura-
tion.

On applying the fundamental concepts of differential
geometry to the undeformed configuration of elastica the
following equations for the unit base vectors are obtained:

the unit tangent vector -

. -
_dR

E. = 35

10



undeformed configuration

e

—+— deformed
configuration

Figure (2.1)

11
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the unit normal vector - d

e
|

and the unit binormal vector (by Euler's definition)
E =E, x E

The set of unit base vectors {Et,ﬁn,ﬁb} constitute a dextral set

of local vector triad known as the Mobile Euler Directed Base.

The Darboux-vector is defined by

13=TEt+KEb='I1+iE
where
T = Torsion of space curve at the generic point P
K = Curvature.of space curve at the generic pointP
T = Tﬁt — Torsion vector
K = KEb - Curvature vector

Let the generic point P, measured by the position

-0
vector R after the deformation be the point p , measured by

(]

position vector r . In general, the unit vectors of the direc-
ted Euler base embedded in the slender member do not remain
orthogonal to each other. However, in a deformation process

a system of orthonormal vectors {e ’éb} can be constructed

t'gn
for the deformed configuration by a similar method to the

(-]

.0 _o
undeformed configuration. Let U = r -R be the displace-



13

ment vector of the generic point P of elastica and s, the
parametric arc-length of the space curve in its deformed

configuration. Hence, for the defoamed configuration:

the tangent vector

é ’ df
t ds
the normal vector
2-0° b
é — d%r / ld r
D s as2

and the binormal vector (by Euler's definition)

°b T € * ©n

The unit vectors {ét,én,éb} constitute a dextral set of a local vector

triad known as the Mobile Euler Directed Base.

The Darboux-vector, in this case, is

= 4+ K =_ c
d TeL ey T + K
where A
T - torsion of space curve at the generic point p
K - Curvature of space curve at the generic point p

1,K - torsion and curvature vectors respectively.

§(2.3) Kinematics of Deformation

In order to specify the directed base {ét’én’éb} in

terms of the parameters of the undeformed configuration and

to prove within the limitations of the definition of elastica
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that the vectors éi are orthonormal, a number of fundamental

relations can be established.

: : e
The arc-length measured along the undeformed elastica R is

prescribed by the fundamental form

2

as® = dR +dR.

-
Similarly, the arc-~length along the deformed elastica r is

prescribed by the fundamental form

_o )
c'{/32 = dr +dr

Again, with reference to figure (2.1)

-0 - -
r =R 4+ U
Thus,
2 .0 o o _o -0 _o
d4” = dr <dr = d(R +U )+d(R +U )
-0 -© -0 -© .0 -0
= dR *dR + 24R +dU + du -d4du
2 -0 .0 -0 )
= dS” + 2dR +dU + AU +dU
or
aR a0 , a0 a0
dsy2 _ . .
as) = lt2z5 gw T

If it is assumed that the displacements are small, confirming

_o
the linear theory, then the non-linear terms in U are neglec-

ted. Hence, the above equation assumes the form

o o d_o
- U )
= . = 2
1+ 2 Et 33 1 + €tt

joF
pr B
o}
i

-0 _©
ar -dr _ ds,2
—_c -0
dR +dR

|
2
[6p!
lle
l_-l
+
N
O
n
0,
€]
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o

tt
the tangent vector E

where, ¢ is the strain of the elastica in the direction of

£ According to the basic definition of

the invariant length of elastica [see §(2.1)],e,, is zero

©
tt
for mathematical analysis. This is justified in the sense

that i.e. the longitudinal strain, is a very small quantity

(]
Cre
in the small-displacement theory in comparison with unity, and,
therefore, it can be neglected.

Hence,the Hypothesis of the Invariant'Length of Elas-

tica implies
- . 2
déz = 485

or
o

—° .—o [ ] —-° —

dr +<dr = dR +dR

It should be noted that the above result has led to the defi-
hition of the elastica.

Therefore,

— - - ©
- dr = dr _ d ° dRrR du
e, =35 “as “a R =gzt 3@
or
ag:
etzEt+a—é— LI I I (2.1)
It can now be shown that vector ét is a unit vector to
the same degree of approximation.
-0 -0
- - = av ., = au
ecte = By + g5 (B + 35~

) _o _o
= = - ab au  du
- Et Et + 2Et ds + ds ds
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[+]

=1+ 2 e
-0 o
if the non-11i term (ggé-ég—) is neglected Sinc b
- near r s '3e g . ince, by
definition €rp T 0, then
et-et = 1

and the vector ét is a unit tangent vector.

The curvature vector of the deformed elastica

2-° —o
- .- _a*% _a @&, _a =z :+4a =
k=ke = 2 ds (dA ) = 3 %t T as Gt
ds
Substituting for ét from equation (2.1)
a ag. ag’
- = U - - U
k=gg Bt gs?) =P B+ 55
dE _
Since g5 = D X Et = KE (see Appendix A)
2_0
K=KE + ST =ke =« .... (2.2)
n n .
. ds
HHence
a%g° a%g’
kKeK = 2 = (XKE_ + 5—) (KE_ + g )
ds ds
2-0 20 2_9°
= x*(E E) +2xE S0+ 40 40T
non N as as as
2_0 2_0 2_
= K2 + 2 KE 4 g » |neglecting (d U_.d g
D gs as“ as
or
2 2 2 ag
<= kAL + £ (E S
ds
or
2 a’g . 2
_ 2 = L
K K[l + 7 (En 5 )]
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Using the Binomial Theorem for the expansion of the
terms in the bracket, and neglecting higher order terms the

following result is obtained

K =K+ E_ cee.(2.3)

-0 .
The displacement vector U can be referred to the

Euler directed mobile base {E,,E ,E, }

t" n""b
-0 o o o _
U = Ut Et + Un En + Ub Eb Ceees(2.4)

Differentiating equation (2.4) with respect to S and
using Frenet-Serret formulas for derivatives of mobile base

vectors {ﬁi} (see Appéndix A)

(] o

=° dau du
du t o= n ° ° =
" —-(dS KUn)Et + 3 + KUt TUb) En
dUb o _
+ (Eé‘" +T Un)Eb 0000(2.5)
The following new quantities are defined:
° au. )
¢ == dﬁ ’0- = t - °
t = 3B T gs KU,
-0 o
au du ° o
= —F = —2 4+ KU, -TU (2.6)
¢y = 33 n ds t b{ °°°° :
and _o °
. _du B = dUb + 7 U°
¢y = g5 "Fp T 33

Kinematically, the quantities ¢t'¢n'¢b admit physical

interpretation as the projections of the directional displace-
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o

ment derivative au_ on the Euler mobile base vectors E, ,E_,E

ds t’ " n’b

respectively.

By definition, the elastica remains unextended, i.e.

©

¢t =€y = 0. Thus, the condition of unextended centre-line is
expressed as o
_dUt o .
¢t: a—«é—w "'K[]n:O -o-.(2.7)

Using this condition, equation (2.5) can be written as

)
at _ = .
as on En t 9y Eb

Substituting the above in equation (2.1) yields

e, = E  + ¢ E_ + ¢ E cee.(2.8)
From equation (2.3)
a’s’ a_ an
= U = U
k= K+ E_-* = K + B oo (55—)
n d82 n ds 'ds
=k +E 3 (¢ E + ¢ E)
n ds n b b
_de _ _ o as
= K + En.[dS En + ¢n(—KEt + ’I‘Eb) + g5 Eb
or s
K = K + a—g—-" Tqbb ..--(2.9)

where the kinematic Frenet-Serret Formulas have been used

(see Appendix A). Again, from equation (2.2)
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4 2=°
k = <&, = Kﬁn + @ g
ds
Sr 1, = d(I)n = = = d¢b = =
e = ?[KEn t g5 B+ ¢n(—KEt + TE ) + g5 By t (—TEn)¢b]
1 - d¢, . a9y -
=T [0-Ko NE + (K+ gg= ~ TO )E + (3= + T¢ )E, ]
Since
a¢

k= K + agﬂ-— T¢, (see equation 2.9)
- K = .= .1 %
K

e ="'~-¢E + E + (d—"é——‘*‘T(bn)Eb

It can be written in a more simplified form as

e, = En + mlEt + szb ceas (2.10)
where
- - K
mo= K ¢n
d¢
1 b
my, = % lgg~ *+ T¢,]

It will now be shown that the vectors ét'én are

orthogonal. From equations (2.1) and (2.2)

-0 2.0
- = _ = av , 1, = d"u
ecten = By * gg ) KEy + T )
ds
Taking the dot productsand neglecting the small term
(dﬁ %01
dS  gs? "«
yields 5_o _o
- - 1 .= 4d7u du =
e¢tey T ¢ Byt Y g KE]
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_ 1.4 = .40
= % lgg Bprgg!
=z [d.——S (Ett)] 0

| Hence, vectors ét and én are orthogonal to each other

to the order of approximation employed. The third vector
éb of the Euler Triad is defined by the dextral rule as

eb=et><en

Substituting for vectors e, and én from equations

t
(2.8) and (2.10) respectively gives

+ ¢_E +¢bﬁn)x (mlﬁt+ﬁn+mﬁ

€p T (Et n n 2 b)

b

Using the distributive law of cross product and neglecting
products of two small quantities like mlén, ml®b, m2®n,m2@b, the

approximate expression for ey is as follows:

ey = “PpEL - m,E + By eeee(2.11)
Finally, the torsional component of space curve in
undeformed and deformed configurations can be related. From

the fundamental concepts of differential geometry in deformed

configuration

—2 = - Tén (See Appendix A)

Post dot-multiplying it with én yields
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Substituting expressions for vectors én and éb from

equations (2.10) and (2.11) respectively gives

T = - %E [—¢bﬁt - mzﬁn + ﬁb]-[mlﬁt + En + mzﬁb]

or
d¢b dm2 5
T (35* - mzK)ml + ( ¢bK t g5 t T) + (m2) T
. . 2 4oy,
Neglecting terms like mym, K, (m2) T , my g5/
this torsional relation appears approximately as
. dm2
T =T + ag—-+ K¢b eee(2.12)

From the results of this chapter it is seen that
kinematical guantities in the deformed configuration can be
represented in terms of the corresponding quantities in the
undeformed configuration augmented by their first variation.

In symbolic form

e, = E. + éEi (for i = t,n,b)
K = K + 6K
and T =T 4 67T

The variational guantities from equations (2.8), (2.10), (2.11),

(2.9) and (2.12) are given as follows:



sK

8T

OnBn t 0By
mE + myE
¢bﬁt - m.E
Zin T Ty
T2 4w,

22

cee.(2.13)



CHAPTER 3

STRAIN TENSOR

§(3.1) Introduction

In the last chapter geometric properties of the
elastica have been investigated in detail. It was concluded
therein that each of the kinematicai quantities in the de-
formed configuration can be represented as the same kinematical
quantity in the undeforméd configuration plus its first varia-
tion. By considering a characteristic fibre in the gebmetric
space occupied by the slender member, the state of strain

for the continuum shall be established.

§(3.2) Definition

A characteristic parallel fibre is defined as a fibre
which is always a constant distance from the elastica. This
distance of the characteristic fibre shall be denoted by po-
sition vector R in the normal plane (En,ﬁb) of the Euler Triad.

(see figure 3.1). Thus the parallel fibre is located by the

o

position vector R = R + R in the undeformed member.

§(3.3) Assumption

It is assumed that the normal cross-section of the

slender members retains its shape after deformation, i.e. there

23
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Figure (3.1)

el
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Figure (3.2)
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is no stretching in the plane of the cross-section.

§(3.4) Deformation of the_Characteristic Parallel Fibre

With reference to figure (3.1) {Et'ﬁn’ﬁb} represent
the undeformed Euler Triad and R denotes the position vector

of the characteristic parallel fibre at point Q. It should be

noted that the vector R = R E + R E, is referred to the

RpFp

undeformed normal plane containing En,Eb as axes, Position

vector to the generic point in the normal cross-section referred

to the inertial base {éx'éy'éz} is R. After the deforma-

tion, the vector R is transformed into vector n and the
corresponding position vector referred to the inertial base

(o]

{ex,ey,ez} of the point g is r = r + x.

Therefore, in the undeformed state

R = RnEn + RbEb : e (3.1)

Let § = eﬁt, be the rotation of R to the generic point Q of the
normal cross-section when it passes from undeformed to de-
formed equilibrium state. It is to be noted here that 6 is
the independent rotation vector of the normal cross-section.
It does not represent the natural rotation of the Euler
Triad because of the presence of natural torsion in the
slender members.
From figure (3.2), vector equation

o -

R+0=0 +
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or o

Now, imposing the condition of nondeforming cross-section
in its own plahe and adding the rotation vector in the above
equation, displacement vector U for a generic point (like Q)
is given by

- —e

_ = = = = 30 =
U=1U + R SE + R SE + OxR + (g + STIYE, ....(3.2)

where (%% + ST)wEt denotes the terminal displacement of R
in the tangential direction,y = w(Rn,Rb) is an unprescribed
function of the cross-section called the warping functions.

| Substituting for R from equation (3.1), equation (3.2)
can be written as |

= _ =° = = = _ .= 96 =
U=0U0 + Rn(éEn + eEb) + Rb(aEb ehn) + (5§-+ 6T)¢Et e (3.3)

§(3.5) Directed Derivative —% for the Slender Member in
dR

Geometric Space

The total differential of the displacement vector U can

be written - - -
= _ 23U U U R
U =ggd* - Rt Ll
n
where Rn = R'En ’ Rb =>R.Eb
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And the differential of vector R

aR = aR + a(R_E_+R E,)
= aR’ + ar_E_ + R AE_ + dR E_ +R dF,
= asE_ + aR E_ + R, (- KE_ + TE_)dS + aR_E
+ Ry (-Tfln)ds
or , . _
dRr = (1—KRn)dsEt + (an—TRbds)En + (AR +TR dsS)E_
| .' ... (3.5)
‘Since the total differential of U may also be written
as |
ai = aR.2" ... (3.6)
3R

Then the semi-direct form of the directed derivative —% can
' 3R
be evaluated by equating the two differentials.

The directed derivative —% is assumed in the following
oR
general form as an unprescribed vectorial operator

EtDt( )+ EnDn( ) + EbDb( ) e (3.7)

s
wifo

where Dt'Dn'Db represent undefined scalar operators.

Therefore, from equations (3.5), (3.6) and (3.7)
au = [(1-KR )dSE_ + (AR -TR dS)E +(dR +TR dS)E ]

“[ED, ( )+E_D_()+E. D, ()] (D)....(3.8)

Equating equations (3.4) and (3.8)
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d _ - - _ -
é—R—r: an oA de = [(1 KRn)ds E_ + (an TRde)En+

(de+TRndS)Eb]-[EtDt(6) + E 0 (D)
+ E Dy (0)]
A.simplification of the right hand side by carrying out the
dot product results in the following equation

9U U . 30 i - - ~

+ Dh(U) an + Db(U) de

On transposition

5 (U) - - — 30 ~
[ T (l—KRn)Dt(U) + TRbDn(U)—TRnDb(U)]dS + [5§; - Dn(U)]an
30 — B
+ [gig —Db(U)]de = 0

Since the scalar variables 4§, an, de are independent, then
this solution must be valid if only ds, an and de in succession
are assumed to be nonvanishing. This condition implies vanishing

of all coefficients

@
oy}

|

- (l—KRn)ﬁt(U) + TRbDn(U) - TRnDb(U) = 0

@
19p}

30 =
3. Dn(U) =0
n
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90

= - D _(U) = 0.

IRy, b

From the above equations the unknown derivative operators

can be specified in terms of the parameters of the member-space

-1 "3 3 3
Dt() :—(ﬁ—i;l-)—['a‘é'()+TRb’é—R-r:()-TRna—R—£]
- 9
%500 = )
)

Hence the directed derivative operator for the undeformed

member space emerges in the form

Doso Tt 3y par 2 () - R 2 ()] 4B 2 ()
SR Zl~KRn5 0S b aRn n BRb n BRn

cees (3.9)

§(3.6) Strain Tensor

The linear strain tensor €& for a continuum

is given by

T = % (22.+ Q% (see Appendix B)
oR IR

In order to evaluate €, the displacement gradient ig is
oR

required. Allowing the directed derivative —% from equation
oR

(3.9) to operate on displacement function U
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3U £ 53U 23U 53U - 30
% = [&= + TR 2% - TR 9% ) 4+ § °U
SR (1 KRn) 58S b BRn n aRb n aRn
+ Eb 5?;‘ ....(‘3.10)

where U is given by eqguation (3.3).

Evaluating the first term

a _8 -0 — - —_'— 36 buond
=5 =5z [0+ Rn(6En+6Eb)+Rb(6Eb eEn)+(§§-+ GT)wEt]

Substituting the values of variational quantities éﬁn and 6Eb

from equation (2.13)

55 = 35 T Rplygg (mEgtmoE) + =5 (0E.)]
9 m B ) - 2 (aF
+ Rb R ( ¢bEt m2En) 08 (eEn)]
39 20 =

95

Using the kinematical Frenet-Serret formulas for
OE,
i

derivatives of the base vectors of the Euler Triad 55 = BXﬁi

and collecting terms of independent base vectors Ei

= am 8¢b

oU _ 1 _ 9 26 —~
vs =IR (5g™) + Ry K4KO - 5==) + o= (3= + $T)]E,
om, 4
+[¢n+Rn (le—Tmz—TG) - Rb(K¢b+ 5—-5— + —BE)
om
50 - My se
+ogg t STIKD E 4+ Do + R (55~ + 37)

- Rb(sz + GT)]Eb
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The second term

85 _ 8 =o 5+ o E - oR 29 5
5?; = gﬁ; [U + R_(SE_+ BE )+R_(8E_ - 0E ) + (55 + 6TIYE,]

Substituting the values of variational quantities

dﬁn, éﬁb from equation (2.13) in the equation above and

carrying out partial derivatives

30 - - = 56 3Y =
= = (mlEt + myE + eEb) + (§§ + &T) T Et
n : n
oxr
o _ 20 Y = =
Y [ml + (§§ + .87T) §E~]ht + (m2+6)Eb .
n n :
The third term %ﬁ“ is obtained in a similar manner.
b
U _ L 50 . my OV 4 om L =
57— = L7 0 + (55t OT) gl By - (mp+8)E )
b b
30 3T 30

g’ aRn ' §§;~1n egquation

(3.10) and collecting coefficients of independent dyads

Substituting these expressions for

EiEj the following expression for the displacement gradient ig
oR
is obtained

- E om
U _ t 1 _ 96
(l—KRn) [R {as Tq’b T(as

oY
+ &T) }
R ok,

Q

¢
: _ _b 90 v
+ Rb {m2K + BK st Tmy T (aS + §T) aRn }
520
asz

. 3 -
+ { + omE (ST)}w]Et + [¢n + Rn{le}
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2 98 20
Rb(K¢b togg— t 5—) + (as + aT)wK]E
om
2 a6 =
*olop + Ry Gggm t gl By
= L] -'aw
+ B {[ml + (55 + 4T) ]E + [ (m, +0)1E 1
= _ 96 Bw _ =
+ B [[ o * g5 * 0T GrdF - Limyre)IE
ee . (3.11)
Symbolically, the displacement gradient.ig can be
R
written
= 30 [ == S .
U =22 = ;
R R i W= ey

s +
+Unt EnEt + Unn EnEn Unb EnEb

T e BpPe T Ypn Bofn T Ypp By |

The conjugate displacement gradient tensor

0o . @29,
3R 9R
hence )
U =§%'= Upp ByEy + Uy BIE + Uy BB,
+ nt _tﬁn + nn EnTn + nb 1:';‘b—n
+ Upe EpBy ¥ Upy Bl + Upy BBy




and the linear strain tensor

-

- = 1 - - =
o Uee BBtz UentUng) By Bty (Utb Up) BBy
=1 30U, U3 1 = = = =
==t =|+=(U__+U,_ )E_E_+ E E_ += ‘
¢ 2[a§ 3R ] +2( nt tn) nt Unnn"n +Z(Unb+Ubn)EnEb
+ (U VE E +1(U LU JE E_+ U,, EE
pt Vtn! EpBe T3 nb‘ b n bb b b
Or, symbolically
St BeBe t fpn BeFn Y S BBy
€ = +€nt EnEt + enn EnEn + enb EnEn
__+€bt EbEt + gbn EbEb + Ebb EbEb_“

where the components

of the strain tensor %j

33

are specified

by equation (3.11). The strain components appear as follows:
om ' )
. 1 1 _ m¢90 oY
et = TImRRy R 155~ * Ty ~ Tlgg + 0T) 57—
n b
94y, . 3y
+ Rb {m2K + 8K - 55 + Tm 1+T(w—A6T) BRn}
+y G5 G2+ sm))
am
_ 1 - _2 , 98
Cen = 3 AT KR plo, + Ry myK)-R (Ko + 5== + 2
20 06 oY
+ (gg + STYYK} + {ml+ (gg + &T) gﬁ;}]
a1
1 1 : 2 90
: 096 Y
+ {- oy (as + 8T) SR, =511
ot = ®¢n
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e =20
nn
1, L o
€b = 5[{(m2+e)}+{ (m2+6)J = Q0 = ebn}
bt T Fto

eee0(3.12)

The final strain tensor emerges as follows

et BePe T Cn Befn t S Bl
€ = +€nt EnEt + 0 + 0
.jgbt EbEt + Q + 0 B

The absence of the strain tensor components € __, € ., €
. nn nb bn

and €5b is justified because of the assumption involved in
§(3.3), which implied that the (normal) cross-section does not
deform in its own plane. Therefore, the strain components

corresponding to such strains are absent in the strain tensor.

§(3.7) Approximate Measures of Strains

When 'warping' is neglected, then the function Y=0,

and the corresponding strain components are denoted 'simplified'

strains. They are as follows:
. 1 Bml 8¢b
dm
_ 1 ' 1 _ . 2 do
1%tn = %nt T 3 [ml + Tl-KRn5 {¢n * Rn(le) Rb(M’b“Lds + ds)}]
dm
_ 1 1 2 do
€t¢b = fpt — 7 L7 9 * (l—KRn5 {¢b Ry (dS * ggil]

eee. (3.13)
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Above equations can be further simplified algebraically.

Re-writing,

€en T 2 1My (T-KR)

_ dm2 - ds
{¢n + Rn(le) - Rb(K¢b + a§~'+ ag)}]

1 ,dm2 del

Substituting for m; from page (19)

1 K dm
TORR) L TR fn T 0 T R * g5

~ 1 §K
" Z(I-RR) [Z= ¢p = Rp Koy + g3 as

Neglecting g§-¢n as a small guantity compared with the

terms retained yields

R dm
o % ) 2 de
€en = (I=KRT Koy, + g5~ + 35
Similarly
1 1 dm,  3g

€ep =3 b= 0y (1—KRn) {oy, + R, Gt 55)}]

dm
2 . ao
[ = ¢y + RKop + oy + Ry(35= * 35

or R dm

_ n 2 de
“to T ITI-RR) (Ko, + g5~ + 55

iTe

Since KRn << 1, the approximation l—KRn 1 is
appropriate in the equations given above, which reduce them

to the following form:
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dm do T

_ 1 _ 9y

ett = Rn (d-—-_—S + T¢b) + Rb(mZK + 6K gs t Tml)
R dm

LR M L4 :

Sen = Ene = T 3 KOt g5t g
R dm o

R amy L ae

b = St =7 Mp T st as J

cee.(3.14)



CHAPTER 4

THE SAINT VENANT KINEMATIC COMPATIBILITY EQUATIONS

§(4.1) Introduction

A unique strain tensor t(U) = e(R) for U = U(R) is
defined for a prescribed, single valued and sufficiently smooth

displacement field U(R) by the relationship

o
9:)
. 9R

(see Appendix B) ce..(4.1)

il

1
N} =
it

+

As long as the prescribed U(R) is a continuous,single valued
vector point function (apart from arbitrary rigid body dis-
placement) and possesses the single valued, continuous deriva-
tives indicated, the strain tensor E(G) is a unique, con-
tinuous tensor field function.

In the reverse case, however, when the strain tensor
€ (R) is prescribed and a single valued displacement function
U(R) satisfying the definition above is sought :as the unknown,
then, the strain tensor € must satisfy a certain condition
in order that it might have been produced from a single
valued, continuous displacement field U (R) according to
the definition above.

A prescribed, single valued U(R) thus defines a
unigue E, but the converse is not necessarily true. Obviously,

the condition which must be satisfied by the prescribed € in

37
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order that it is a unique tensor function of U according

to the definition above must result from equation (4.1),

yet such relation should be independent of the unprescribed
displacement function U. Such a criterion on € can be easily
obtained by a formal method of eliminating U. This consists
of taking the double curl on both sides of equation (4.1).

Therefore,

3 1 .30 = U3 3

3r><? L= 2 x 5 (Dt —/—) x —= 0
aR OR 3R 3R 9R 53R
for all 5, as
00 & . 2, 30 _ 3
oR dR dR oR
Thus, the equation
2 xEx 2% e (4.2)
9R oR

prescribes the relation which must be satisfied by € in order
that € is described by a continuous, single valued, displace-
ment field ﬁ(i) in accordance with the definition of the
strain tensor as a function of U.

The tensor
3

9R

™
X

E: X

@
=

is called the local kinematic Saint-Venant compatibility

tensor.
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§(4.2) Compatibility Equations

The directed derivative in the geometric space of
slender member has already been obtained in chapter 3, equation

(3.9). If 'warping' is neglected, the 'simplified' strain

tensor components Sij = e: E,E,

7

Taking the curl of € as a prefactorn and evaluating

are given by equations (3.13)

the derivatives of the Euler Triad by the kinematic Frenet-
Serret formulas (see Appendix A), an auxiliary tensor P will

result

o

I
0

2ol

Taking a curl of P as a posdfactorn yields the local

Saint-Venant kinematic compatibility condition

ol

x93 _ (ax _g
3R 3 3R

S = ) x =0

el B RUEL

A typical calculation with the first component of

the strain tensor € is shown in detail:
E
3 - = t 9 - - 3 —
— X ey BB = aogry b X (Bpe BeBp) TRy g X (B ELEL)
oR n n
TR S x(e . BE.E )] 4+ E ex(c . BE)
~ n SR, et et n 3R ‘Tet Pttt



It is noted that 40

Ei # Ei(Rj) where 1 = t,n,b

j = t,n
Therefore, _ - 5
E de ok E
d R t Vet = = t = - t
— K = U e
R e Befe (I-KR_) [=5~ BeBe * %t 35 Be * e B 38
o€ oE
tt = = tt 5 =
+ TRy, = EeBy - TR e BeBid
n b
o€ oE
- tt = = - tt = =
+ E_ X e EE, + B x aRb E B,

Using the kinematical Serret-Frenet formulas (Appendix
A) and then carrying out the cross products yields the fol-

lowing result:

A
e BB - ot g _ kEgpg o, Cttyg
tt Tttt (l—KRn) bt aﬁn bt Rb n t

X

¥
ol
@

Performing similar operations with the remaining
components of the tensor € and accumulating the coefficients

of the tensor dyads Eiﬁ. reveals the tensor P as follows:

j -

T Pee BB 4 B EE P, EE

P = |+ Py Enﬁt + B Enﬁn + Py Enﬁb
- Ppe BB + Ppp BB, Py BE
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where
. _ Bebt _ Bent
tt = T OR oR
n b
Ptn = Q
P, =0 :
tb
o€ - ac ~ae de
Pnt = BRtt - (l—iR ) [T “nt + Bgt t TRb BRbt - TRn 5?23]
b n n b
P %Ctn Koy
4 "nn aRb (l—KRn)
. aetb
nb Bﬁb
o€ o€ o€ o€
1 nt nt nt _ __tt
Pot T TWoRRY [K e, + —55 * TRy iR _ Ry 3R, Tepel =37
o€
_ 1 _ tn
Pon = T=rR) 2K €end — g
n n
5 _ Ketb _ aetb
bb (L-KR ) oR
n n
s « e s 0 (4'3)
Taking the 'curl' of the tensor P as a POsZ-facton,i e,,
P x é,and again working symbolically on E, the tensor S is
OR '
obtained.

A typical calculation with the first component of tensor

P is shown

- = ) = = 0 0 J .=
p. EE x = (P, EE) x [x%+ TR =5— - TR ——IFE
tt Tttt T om tt Tttt 35S b R n 3Rt
+ (p,, E,E ) x E v (P, E.F) x B o
tt Tttt n 3R tt TE ot b IR

Since the scalar operators can commute with the cross product
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and
E. # El(R ) for i = t,n,b
J n,b
3P dE 3E
- = 5 tt = = £ = - £ =
Pre BpBy X 3 [—55= EeBp * Pep 55 Ep * Puy By g lxEg
9P 5P
tt = = - tt = = -
* 7R _ B * Byt IR, E By X By

Kinematic Frenet-Serret Formulas (Appendix-A) lead to the

following results:

= 3

‘KP oP oP
- et
E x 2

9R

- - Lt 5 & tt
T TRR) BBy + 5k “t'b T IR, E By

Ptt tTt

Carrying out similar operations on all the remaining

components of tensor P and collecting the components of

dyads Eiﬁj' the tensor S appears in the form:

E:—%XEX»—?—:
SR 5R
E.E I EE + S EE + S E E .
= 555 BiBs T See EeBe *f Sen BePn T Sw By
B = = = =
#Sop B E s BE 45y BE
+Spe BB T Spn BpFn T Spp Eplp

E.Ej:§ appear as functions of

where the components of Si'

1
ol

ici .. = E.E.:
the coefficients of Plj iy



tt

tb

nt

nn
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bb

tn
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0
_ aPtt _ K Pnb
IRy (l—KRn)
_ . 3P
1 it
[K Pnn - K PttJ (1L-KR: ) * oR
n n
BPnn aPnb
oR, 3R
op 3P oP
b nb nb 1
[T P+ —22 + TR - TR =22 . 1p.
nn 55 b 9R n BRb bb ,(l-KRn)
_ PPne
3R,
BPnn BPnn 8Pnn 1
[T Py TPy —KEPpp = 33 Ry 57—+ TRy s 1ok T
, ] n n n
3P,
Y
n
8P, ) 8P,
BRb an
3P 5P 3P
bb bb _ . bb 1
[T Py * T Py + 55 + TRy 337 ™ 57 TRRY
n b n
Poe
SRb
oP oP oP
_ _ _ bn bn bn 1
[T Py = T Py — K Py 55~ TRy 3+ TR, s mRR
n b n
. ot
aR
n

cev. (4.4)

It is important to observe that the kinematic Saint-Venant

compatibility tensor S

Since tensor

S (i.e. 8., =

S:E.E
1

nit

wnil
th
(o]
o
ol
i
™ it

is symmetric, as §c = o

is a zero tensor, and since the tensor

are unique, then each of the coefficients of

.) must vanish separately. Theoretically,

J
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nine scalar equations will result from the nine components
of tensor S; but as tensor § is symmetric only six of its
scalar components are unique.

In order to evaluate components of §, i.e. S the

ij’
following procedure is adopted: First, tensor components

Pi' are evaluated by substituting the values of eij from
(3.13) in equations for Pij' i.e. equations (4.3). The

values of Pi' thus calculated are substituted in the eqguations
for Sij’ equations (4.4). Finally it is observed that each

of the components of § (i.e., Sij = E:Eiﬁj) vanishes
identically (see Appendix-E). Thus, it is concluded that
'compatibility' is rigorously satisfied and the displacement
function U exists and is unigue within any rigid body dis-

placement. It should be noted that 'warping' has

been neglected in the definition of strain components Eij'



CHAPTER 5

THE CAUCHY AXIOMS OF MOTION

§(5.1) Introduction

General equations specifying translational and ro-
tational states of an arbitrary body as a continuum of volume
v and bounded by an external surface L are given by the Cauchy

~ Axioms of Motion (see Appendix C):

= - 2=
Jdﬁ = J 3:2 dv + J (-p é—%)dv + J fdv =0
v oR dt v
ce..(5.1)
- = 3+G a%g =
aMm = R x —— dv+| R X (-p 5 yav + Rx £fdv =0
oR at
v v v o v
.0--(5.1)
where,
G - stress tensor resulting from the stresses applied
to the motion of the continuous body
p = g$~— mass density.
4t =
— - material acceleration of the generic point R in the
dt

geometric space
f - body force per unit volume

v - total volume of the continuous body

45
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§(5.2) Static Case

If the apparent force created by the motion of the
aj
t

and (5.2) will reduce to the equilibrium equations

body is absent, i.e., = constant vector, equations (5.1)

Jd;?:Ja_;fl‘varJEdv:o ceea(5.3)
- 9R
v v v
and
Jdﬁ=JR ?—:-g—dv+JR><fdv=0
3R
v v

"0..(5.4)

Figure (5.1) shows an infinitesimal free bodyvéf the
slender member of length dS and volume dv. A characteristic
parallel fibre of the slender member of length dS* has been
located by the position vector R with respect to axes En’ﬁb
of the Euler Triad. The characteristic infinitesimal volume
dv is given by

dv = ds* an de
where,

ds* - Length of the characteristic parallel fibre

an - Infinitesimal length along the axis En

dR, - Infinitesimal length along the axis E

b b
As usual, in the theory of elasticity the body-force ¥ is con-
sidered as an externally applied boundary stress (or neglec-

ting it altogether as being small compared to the external



47

ds* -

Figure (5.1)
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applied forces).

Therefore, equation (5.3) can be further reduced to

: 9R
Ry R, S*

Substituting for the arc-length

das* = (1 - KRn)dS

where the change in the value of torsion has been neglected

over the infinitesimal distance dsS.

J [J J —~§ (1 - KR ) dR dR ]ds = 0

OR
S Rb Rn

Since the limits for Rn and Rb are definite, and the
limit of integration over S is indefinite, above equation is

satisfied for all S if,

90 B
J J =2 (1 - KR ) aR_dR_ = 0
Rb Rn
oxr
J 3:0 KR ) dA = 0 ... (5.5)
J eR

where, an de = dA = infinitesimal normal cross-sectional area.

By advancing similar arguments, the equation of

moment equilibrium can be written as
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J R ><'{a"5 (1.—Kkn)}dA =0 ee..(5.6)

§(5.3) Force Egquilibrium Egquation
Equation of force equilibrium, as given in the last

article, appear as

‘.

J — (1-KR 1dA = 0
5 OR

Qb
Qall

where A ~ normal cross-sectional area of the slender member.

The directed derivative —%~has already been calculated in
oR

§(3o2).

Introducing the stress tensor

all

= E,o_ +EO0 + Eo

and taking cognizance of the directed derivative operator

from equation (3.9)

() = 0 ) ) E)

(L-KR ) — = E_ (55 + TR =5— = TR =n—) + E_(1-KR ) =0

n’ .= t '9S b BRn n aRb SRn

+ E (1-KR_) =3
b n BPb
the integrand becomes
3 .= _ % .9 9 9 _ ]
(1-KR_) — 0 = [Et(aS + TR 3 TR, sp—) + E (1-XR ) Y
oR n b
a [ — - _— -
+ Eb(l~KRn) 3?_]'(Etot t E o+ Ebcb)
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Since the scalar operators can commute with dot products

3°0 _ = 35 == = = 9 mo= = o= = =
(1 KRn) = = Et {as(Et0t+En0n+EbOb)+TRb 5—;{Et0t+Encn+Ebcb
a [ - - -
- TRn oR, (tht T B0, T Ebab)]

_‘a - - - -_ -
+ (l—KRn)Eb'BRb (Etdt f Eo + E o

- It should be noted here that Ei # Ei(Rj) for i=t,n,b

and j=n,b

Carrying out the indicated operations the following results

are obtained:

= 30 30 30 90
9-*0 _ t _ .= t t _ n
(1-KR ) —= = [as Ko+ TRy, EY TR, 55— * (1 KRn) Py an
aR n . b n
30
b
+ (1—KRn) gﬁ“]
b
Hence equation (5.5) takes the following form
= 90 90 30
90 _ t t _ t d - _ -
J (1-KR ) “—— dA = J [55= + TRy 5= = TR g~ * s~ {(1-KR )o_}
oR n b n
A A
g _ ~

The equation above requires a closer examination in order to put

it in a more useful form. Assuming —g-to be a modified
R
directed derivative restricted to the plane {En,Eb} of the
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Euler Triad, it can be specified as

E  x xE, = 9 -5 O £ 9
£ = TFe = = +
SR og  n 9R_ " b IR
and
8 {(1-KR )3} = =2 {(1-KR )5.} + ~2— {(1-KR_)5.}
N n : BRn n" n BRb n’ b

Using the planar form of the Gauss-Divergence Theorem (as a
special case of the general theorem) an integral over an area
can be converted into an integral around the periphery of the

planar surface:

J -2+ ( )1da = % [n+( )1an
A oR Q
where
7 - unit vector in the cross-section normal to the
boundary of the cross-section
() - any admissible function

dQ - infinitesimal arc length [see figure (5.2]

,:)\

Figure (5.2)
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Thus
j [~§5{(1—KR )0 }1dA ='$ [ne{(1-KR )G}]dn
R n J n
Q
and _
"t a2 (5 an=2F (o)
P = 55 t = 38 e\
A A

where ﬁt(c) is the stress resultant on the surface whose normal

is Et and _ _ _
30 e} - 90

TR, 5?3'“ TR 5.2.: (RxT) »—5
n b oR

From the conversions above, equation (5.7) can finally be

written
30, _ _
1da + % [n-{(l—KRn)O}]dQ = Q

+ J [ (RXT)»
A IR 2

BFt(O)
98

This equation represents the force equilibrium equation for
the unidimensional field of the slender member.

The term § [54{(1—KRD)§}]dQ represents the applied

Y/
loading function P(S) per unit length of elastica. Thus,

the final direct form of the force equilibrium equation
emerges in the form

aFt(c) act

—_ 4 j [ (RxT)s—=]dA + P(S) = 0 «...(5.8)
A

where P(S) is defined by
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o ) P(S) = % [n-{(l—KRn)c}]dQ = % cn(l—KRn)dQ
gs n+*oc =0 . Q : Q

Equation (5.8) is a field equation of unidimensional
continuum. For linearly isotropic elasticity, the constitutive

equation can be expressed as follows:
g = 2p§ + 2 DT (see Appendix D)

where urA ~ Cauchy-Lamé first and second constants respectively
1l - Identity tensor (referred to the geometric space
in which o is evaluated).
e - Strain tensor
(E:T) - First scalar invariant of the strain tensor.
From the coﬁstitutive equation above the stress
vector can be obtained by
o, = Et-§

or,after taking the dot-product

Op = (2u+)\)€tt Et + 2u €in En + 2y €eb Eb vee.{5.9)
Therefore,
a‘c;t = ) = ) = =
— = [E 5 t By 5?—4[(2u+A) €eg B T 20 e E o+ 2pe E]
oR n b
9€ o€ J€
tt = = tn = = th = =
= (2wt g B f 20 gr— By 2 gr— Bofy
o€ o€ o€
tt = = tn = 3 tbh = =
t2uFA) g BB+ 20 g BB 4 20— BBy



54

The cross product

(RxT) = (RnEn + RbEb)x(TEt)

= TRbEn - TRnEb
and, therefore,
20 o€
BxT) ot = Foo- oy n) -ttt BB
(RxT) = (TR E TR E,) [ (2p+X) 5% nFt
o€ 0E, 1
tn = = th = =
20 o BByt 2w g BB
¢ J€ €
tt = tn = = th = =
+ (2u+)) §?--EbEt + 2y 57 EbEn + ZUBR Eb b]
b b b
o€ 0E
_ tt tty 5
n b
o€ ae ot
tn tn, ;= tb
oIl Ry ap— = Ry s B FI2UT Ry
n b n
aetb)]ﬁ
- R
n aRb b
The stress resultant ft(G) can be referred to the mobile Eulerx
directed base {Et,En,Eb}
Ft(o) = Ftt(a) E, + Ftn(o) En + Ftb(c) Eb
Therefore,
OF, (o) OF . . (o) 3F. (o)
t _ tt _ = tn _ =
5SS = [—=g K F,  (0E + [—57 + K F  (0)-T F, (0)]E_
3F,, (o)
th =
e T T P IR,

Also, P(S), the external applied force can be referred to the
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Euler directed base {Et,En,Eb}
P(S) = P _(S)E_ + Pn(S)En +_€b(S)Eb )
- oF, (o) - . 90,
Substituting expressions for —z—— , [(RxT) .—Z]
oR

and P(S) in equation (5.8) and grouping the coefficients of the

E,, E ﬁb, the following equation is obtained:

base vectqrs Et’ n’
0 (o) . Q€. 3e
tt _ } tt _ __tt
A
or, (o) de ' o€
tn : tn tn
+[—= 55 +K Ftt(o) T Ftb(0)+2pT J (Rb E—R';” Rn BR )dA+P (S)]E
A
oF (0) ' de d¢
tb tb tb = _
+(—-—~—§—S——-—-— + T Ftn (o) + 2uT J (Rb 'g—ﬁz—— - Rn ﬁ'];—)dA + Pb (S)]Eb~0
A

Since the vectors {Et,ﬁn,ﬁb} of the mobile Euler direc-
ted base constitute an independent vector set, each of the
three coefficients must vanish separately in order to satisfy

this equation. Thus, the following force equilibrium equations

result:
oF, (o) d¢ o€
tt tt tt
55 - K Ftn(o) + (2u+A)T ] (Rb SR Rn BR ——=)dA + P (s)=0
A
dp, (o) de de
tn _ tn _ tn
—§§—-—-+ K Ftt(o) T Ftb(o)+2pT J (Rb Py Rn ST )dA+P (S)=0
A n b
oF,, (o) o€ de
th tb tb _
—Rg + T Ftn(o)+2pT j (Rb gﬁg— Rn SR ~——)dA + P (s)=0

A
... (5.10)
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These equations represent Force Equilibrium Equations applicable

to all linearly elastic slender members. Since this investigation
is concerned with linear, small—displécement theory, equations

(5.10) are evaluated with reference to equations (3.14). It

is important to observe that equations (3.14) are 'simplified'
expressions for strain tensor components sij where 'warping' has been
assumed to be negligibly small and consequeﬁtly'was set equal

to zerxo.

Substitution for the partial derivatives of gij from

equation (3.14) and intégration result into the following

Force Equilibrium equations:

( aFtt(o) ~ dml
d¢b
-A(Rb) (8K+Km2—a—S—+Tml)] +Pt(S) = 0
AP, (o) dm
tn _ de 2 _
—s5— * K Ftt(o) T Ftb(0)+uT A(Rb) (a§+K¢b+(TS——)+ Pn(s)—o
oF,, (0) dm
tb ds 2 _
—ssg— * T Ftn(c)+uT A(Rn) (a-s— + chb gt Pb(S)—O eeeo(5.11)
where
Ay T ij A By T JRn da
A A
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§(5.4) Moment Equilibrium Equation

Equations of moment equilibrium as given in §(5.2)

appear as

J R x 2°9 (1-KR )dA = 0
- n
2 9R

With reference to figure (3.1)

Q

R=R +R

Substituting for R

J (R + R) x 2% (1-KR_)da = 0
R n
A
orxr
R x J 9'0 (1-KR )dA + J R x 229 (1-Kg )da = 0
= n - n
7 oR i oR

-0 _o '
‘where R # R (A) denotes the position vector to the centroid
of the cross-section.

The equation of force equilibrium (5.5) requires

J éég (1-KR )dA to vanish. Moreover, the term (1-Kpr.) 8:0
5 9R o SR
has already been evaluated on page (50). Therefore, the
Equation of Moment Equilibrium takes the form
90 3 90
= t _ o (Pen = t _ = t
J [R x Y K(Rxon) + TRb R x 5P TRn R x 57
n b
A — —
- 90 _ acb
+ (l—KRn) R x BRn + (l—KRn) R x —a.-é;;] = 0

eoe (5.12)
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In order to carry out integration of equation (5.12) over the

cross~-sectional area A the following identities are estab-

lished:
_ Q0. s _ -
R x 55 = ~3S (Rxct) - [Rn(—KEt+TEb) + Rb(—TEt)Jxot
_ a5, _ .
TRR % 5= = g~ (TR Rx0) - TRy By xo,
n n
90, ] _ -
- = (TR Rxo,) - TR E _xo
TRnRx aRb aRb n t b "t
_ 30, 80, _ o
(l—KRn)R X 5% + (l—RRn)Rx §~;~= KRX@t - (l~KRn)(Enxon+becb)
0

o (1-KR_)oxR]
oR n

Substituting these results in the equation (5.12) and re-

arranging the terms yields

Jd ,5.-= = = 9 = - p) - -
J lyg (Rxop) + Egxop + gp— (TR, RxG.) - gp= (TR, Rxc, )
n b

A

- - - - - - 3. _ = = B
+ (l-—KRn)(Etxct + E x0_ + becb)]dA + J (=) —g% [ (1 KRn)oxR]dA_o

A
Expression
[EtXGt + Enxcn + beob) = 1lxg

represents the vector invariant of the symmetric stress tensor

o, i.e. Ec = ¢ and thus

il
X
all
Ii
o
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Using the Planar form of the Gauss Divergence Theorem as

outlined in §(5.3)

J i '[(l-KRn) oxRlda = [n* (1-KR ) Exﬁ]dﬂ
AR ‘ . n
A

OO

This conversion leads the equation of moment equi-

librium to the form

8 [ 5. - = ~ ? 5 - 9 p  Ho=
55 J Rxo, dA + Etxj o, da + J (57— (TR, Rxo )=z%— (TR Rxo.)1dA
A a n b
_ - A
= 0

- % n -{(l—KRn) oxR Jaq
Q

The Eguation of Moment Equilibrium contains the couple
of the applied boundary loads in the integral arocound the
boundary. This applied couple per unit length of elastica is
defined by

M(S) = j—[ﬁ.(l—KRn) oxR1de
9

The stress couple acting in the cross-section with

the normal vector E, is

E «M{c) = M, (c) = J Rxo  daa cee.(5.13)

and the stress resultant for the same cross-section is

Et-ﬁ(c) = Et(o) = J Et da
A



60

Employing these results in the moment equilibrium
equation yields
aﬁt(c) _ _ ,
+ E thm)+ J[ﬁq-@R

39S t b t )

The integrand of this expression can be written as

2 (Rx3,)
aR

(RXT) ¢

Hence the final direct form of the Moment Equilibrium Equation

emerges as

oM, (o)  _ _ o 5 - - _
Tg“_ + EtXFt(O) + j [(RXT)‘ —-—8'—_'R_- (RXUt)]dA + M(S) = 0
A

ce.a(5.14)

In the manner similar to §(5.3), this equation can be

resolved into its component form:

oM, , (o) oe i
tt ) tb _ __tn
=5 - KM (o) + 2pT J [Rp(eyy * Ry 3% Ry 3% )
n n
A
+b tn _
—Rn(Rn N - e - Ry S?E_QJdA + M (8) = 0
oM, (o) EE——
o _ _ 2 tt, |
—55 + K Mtt(o) TMtb(O) Fo (o) + (2P+X)TJ[Rb (aRn )
A
o€
Tttt =
_Rn (Ett + Rb -é—ﬁ-};—)]dA + Mn'(S). 0
oM, , (o) ii~—
tb =
— sru (o) +F, (0) - (@ue0T J Ry (Ere + Rugr )
A
Je
2 tt -

- R (§§;~o]dA + M (8) =0 J

«v..(5.15)
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These equations represent Moment Equilibrium Equations applicable to
all linearly elastic slender members., In conformity with the
arguments mentioned on page (56), equations (5.15) are

evaluated for strain tensor components given by equations

(3.14). They are as follows:

oM, , (o)
— kM, (0) + M_(S) =0
3 tn t
S
aMtn(o) dmi
TS B KMtt(O) - 'I‘Mtb(c) - F (o) + (2p+)\)T[(a—§—+ T ) (I -Ty)
+ 2 Wy
Ibn(eK + sz - 35 + Tml)] + Mn(s) =
aMtb(c) ‘ dml ]
T + TMtn(O) + Ftn(O) + (2u+)\)T [2Inb (a—s——* 4+ Tq)b)
- (8K + sz - EE—'+ Tml)(Inn - Ibb)]+Mb(S) = 0
ceee(5.16)
where the
I P 2 2
Inn = J Rb da ; Ibb J Rn dA
A A
Inb = J - Ran da = Ibn
A

represent the components of the Second Area Moment Tensor

[l

- J (R:R T - RR)aa
A
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§(5.5) Dynamic Case

Equations (5.1) and (5.2) of §(5.1) are general
equations of motion valid for any body in space.

As mentioned in the static case, the body force f is
considered to be added to the externally applied loads (or
neglected.altogethér as being small compared to the external
applied loading ). Therefore,

L 42=

J?i%dv+J (-0 Lav = o

R dt
v v '

and : | = _ 2=
J R x 9 E dv + J R x (~-p g——g-)dv = 0
v oR dt

In the manner similar to that of §(5.2), these two

equdtions can be written in the form

= 2=
(22 (1-xR ) - p SJ1aA = 0 ....(5.17)
R dt
A .
= dg _a%g
and J [R x ~ (l—KRn) - p R X 2]dA = 0
dR dt
A
oo (5.18)
Referred to figure (3.1)
R=R +R
Substituting for R in equation (5.18)
= 2
-0 - . -0 -
'J[(R + R) x 9—%(1—KRn)—p(R + R) X g—%]dA=o
R dt

or



63

_o .= P 1 - .=;
Rox|12% (1-xR) - p £ Y%aa + | IR x &9 (1-kr )
OR n ‘at? 3R n
A ‘ A
L 42=
- o R x$Jjan = 0
dat
~o -0 -
because R 1is independent of A i.e., R # R(A). Furthermore,
equation (5.17) requires
) = ‘2_.
J (28 (1-kR) - o d01aa = o
oR dt

A

. Hence the Equation of Moment Equilibrium assumes the form

i

~ 3.5 N i
J [R X ——— (l"KRn) - p R x 1da = 0
A daR dt

N

«ees(5.19)
The expression for displacement vector U of an

arbitrary point in the geometric space of the slender member
when it moves from the undeformed reference configuration
to an arbitrary deformed configuration, has been obtained in
§(3.4), equation (3.3). Since it is assumed that the ensuing
displacement will be small, the linear acceleration of the
arbitrary point of the elastica can be assumed to be the same
throughout the cross-section. Hence, acceleration of arbi-

trary point in the cross-section can be represented by that

of the centroid. Thus

- It should be noted that "warping effect" has beem assumed to

be negligible: and the rotation 6§ = eﬁt
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Therefore,

5 (6xR)
at dt dt

For the case of small displacements, the material derivatives of
the Euler Triad can be assumed to be very small, and taken to

be zero i.e.

dE
aEi~= 0 for i = t,n,b T s (5.20)
Since,
2= 2-° 2z > 25
P S T
dt dt at dt
and B 3
- dE dE
drR _ d = = _ n b
at = gt RaEn T RREY) =Ryt Ry @
. a? _ a®r
In consequence of equation (5.20), — = —= = 0
dt dt
Therefore,
-— -0 —
dzU dzU d26 =
7= 3+t =3 %R
dt dt dt
or
2= 2=0 2=
j €% an =3 j an + &2« J R aa
a dt dt A dt A
or
2= 2=° 2=
J (—io——g-dAzdg A+§—g><j R A ....(5.21)
2 dt dt dt a

And
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I = a%e" | - &% -
Jpr—7dA=pJ R x40 7% L Ran
A dt 2 at”. dt
2=° 2= 2=
= p J & xR+ L2 ®RR) - E3R)R1aa
dt dt dt
A
,2=° 2= 2=
-4 J R da + Q—%.J (R-Ryan - L3 -J RR da]
dt dt dt
A A A
o 4250 2~
= o &0« J Ran - 1., L3 e..(5.22)
dt T dt
A
where
I,, = (R-R)da = (% + ®%)aa
tt n b
A A
a2s ==
and -J RR dA vanishes
ac?
A
§(5.6) Force Axiom of Motion
The integral j EL% (l—KRn)dA has been investigated
oR

A
in detail in the static case §{5.2). This yields equation

(5.8). Therefore, equation (5.17) in conjunction with equation

(5.21) can be written in the direct form

9F, (0) _ _ da¢ 2=° 2z | . _
e J [(RxT)»—Elan - p [a 9 4+ 47 x| R anl+B (s)=0
R dt dt A
A
cee(5.23)
In order to refer (5.23) to the mobile directed base only

a%s’ | a%s 5
plA + 5 X J R dal
t A

at? d
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is required to be referred to the directed base, as the

residual quantity has already been referred to the directed

base (see §5.,2). If
) o_ o _ o
U UtEt .+ UnEn + UbEb
then
, 2=° 2 52 o_ o o
ota £+ 42 XJRdAJ=p[A(—i—~2—(UtEt+U + U E)]
dt at A at nn
42 _ _ _
+ — (eEt) P J (RnEn + RbEb)dA]
dt
A
2 2.°
a”“u 2.° a“u
t = d”"Un = b =
= p[a( E_ + E_+ E )]
at? b gg?2 m g2 b
+d29§x'{A F o+ A, (B}
wl t (Ry) “n (R_)"D
upon the use of equation (5.20)
Hence, 5 o 5 o
2=° 2= d"u d"u
o1n S04 9 o [ ranl = A 5 B v (a0 -ag
dt dt dt dt n
i (]
av 2. -
+ {A - + A —=} E. ]
dt2 (Rb) dt2 b

For an independent base vector set {Ei}(i=t,n,b) all

the components of equation (5.23) vanish.

Therefore, from equation (5.10) and the equation above

the following set of equations result:
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oF, , (a) o€ \
tt tt
-——5-5——"" - K (O) + (2U+>\)T J (_Rb BR n -é—-]—z-l;-—)dA
2 [+
-p A 2t t Py (s) =0
oF, (o) _3e
tn _ tn
.—_é.s—)-———- 4+ K Ftt(O) - T Ftb(O) + 2uT j (Rb BR Rn ——-——aRb Yda
A
2 [~]
d 2
n a®e
-p A — A ]+P (8)=0 ¢}
-dt2 (R ) dt2
3F, . (o) d€e de
tb tb tb
95 2 o n b
',d2U° | a2e
-p [A A —=1+P, (8)=0
dt (Rb) dt
J
ee..(5.24)

These equations represent the Force Axiom of Motion applica-

ble to all linearly elastic slender members. As mentioned on page (56

equations (5.24) are

evaluated with reference to equations

(3.14). They are as follows:
aFtt(o) dml d¢b
—sg—— ~ K Ftn(c) + (2p+X)T[A(R ) (35— + T¢n)—A(R )(6K+Km2 g5 +Tmy )]
2..° n b
d Ut
- p A 5 + P, (s) =0
dat
oF, (o) . dm
tn ao 2
55 + K Ftt(o) - T Ftb(o) + uT A(Rb) (a—s— + Ko + g3 )
[~}
d2Un d26
-p [A —— - A(R ) 2] + P (s) =0
dt n® dt
oF,, (o) dm
tb do 2)
55 + T Ftn(c) + uT A(Rn) (ag + Koy + 35—
d2U dze
-pla + A + P (8) = 0 ee.. (5.25)
at? (Rp) ae?
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Moment Axiom of Motion

§(5.7)
The term J R x B.S (1
aR

A

in detail in connection with the static case §(5.2).

yields equation (5.14).

—KRn)dA has been investigated

This

Therefore, equation (5.18) in con-

junction with (5.22) can be written in the direct form as

follows:
oM. (o) o o _
L E XF. (0) + | [(RxT) -2 (Rx5g)idr
0S t *t 8?
A
2_0 2_
vp 180 x[ Raa - 1, &9 +ii(s) = o
dat at
A
.t-.(5u26)

Referring equation (5

i

is required to be referred to

only ﬁhe term
2‘_'0
p I X
a?

(L = t,n,b). Assuming the same
- ©
U as in §(5.6) and employing
mation yields
ag’ - a%s
o[> XJ Ran - 1., —l
dt dt
A
‘a’u, _ a’u. _ a%u.
= t = n b =
= [( E, +—-= BE_+ E, )
at®  tge? Mg P

.26) to the directed base {Ei}

2

@

d
dt

|

tt

[\

the Euler directed base {ﬁi}
form for displacement vector

equation (5.20) for approxi-
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2..° o o
v _ d%u, _ a%y, _ d%u]
= pl—st-a, B - —2a B - AL B+ A .=
w2 e T Pt T T Aeph t 7 ProE,
2
ae -
-1, —=E, I
et .2 Tt
[+] ] [+]
{dzUn a*u, a2 - a’u, _
= p[{—2 A - P -1, L598 g A, | }E
2 PR T Ry T oter 120 T T Aoy
o)
afu, _
bt }E ]
at?  (R)Tp

Since the directed base vectors E. represent an
independent set of vectors, then all the components of Vectorial
equation (5.26)  have to vanish. Therefore, from equations

(5.15) and the equation above

M, , (o) d¢e d¢e \
t tb tn
s T K Mg () 2T J Ry Cepthn 57— R 50
n n
A
Betb ae d2U;
- R (R - - R Zylaa + pl A
n n BRb tn b aRb dt2 (Rn)
2 o
d~u 2
b d”=e
- A - I,, =—=] + M, (8) =0
dt2 (Rb) tt a 2 t
oM, (o) de
tn 2 tt
v kM (o) - TN, (0) - F (0) +(2u+A)TJ 1%} (=5)
A
Be dzuz
- R (e,, +R )]dApA + M (S) =0
n tt b BR (Rn) dt2
oM, (o) de
tb tt
58S + TMtn(O) + Ftn(Q) . (2u+A) T J [Rb(ett + Rn Y
/ n
A
[}
Sett dzUt
—R (— )]dA+p A(R)—~2—~ +Mb(s)=0
b’ dt

... (5.27)
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These equations represent the Moment Axiom of motion
applicable to all lineaxly elastic slender members.

on page (56) equations (5.27) are evaluated with reference to

equations (3.14). They are as follows:

2 o] 2 o
oM, , (g) - 4d"u . d°u 2e
—5— ~ KM (0) *elAp ) 5 - A 2 - 1 5
| n' dt b’ dt at
+ Mt(S) =0
aMtn(c)
-—-—g—s-—'_—_'l’ K Mtt(O) - TMtb(O) - Ftb(c)
. am, ‘ d¢b
+(2“+>‘)T[(a_s’" + Tcpb) (Inn—Ibb) + 2 Ibn(eK + sz - + Tml)]
2 [e]
a“u
- pA(Rn) 2t +M_(S) = 0
dat
oM, . (o)
tb
g5t M (0 F Fiy (0)
_ dml d¢b
+ (2u+X)[2Inb (ag—»+ T¢b) - (Inn_Ibb)(eK+Km2'E§_ +Tml)
dzU;
+ pA + M, (S) = 0
(Rb) at 2 b

«ese(5.28)

As mentioned



" CHAPTER 6

GENERALISED BERNOULLI-EULER EQUATION AND SPECIAL CASES

§(6.1) Bernoulli Euler Eguation

| | The stress couple acting on the characteris-
tic cross-section of érea A of the slender member has been
established on page (59), equation (5.13); -Re-writing

the equation

M. (g) = J Rxo, dA . .n (5.13)

Through the stress-strain relations as given in equation
(5.9) the above equation can be converted into generalised

Bernoulli-Euler equation of bending. The stress vector Et

from equation (5.9) is

a, = (2utA) E¢g B En + 2u € Eb

£ + 2n €

t tn

where  A,U are defined on page (53).
Substituting the yvalues of strain tensor

components € € €ip from equation (3.14) yields

tt’ “tn'
- - amy 3¢, -
o = QuAALIR, GGg=tTop) + Ry (K + 0K- ===+ Tm) 11E

-R ain o R am.

vt b o, ‘ 2 dfdy.m T n 2 7 dbyqm
v Koy o+ ggm + gellE, * 2ulg ReptggT + ge)lE,

71
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Now, in order to integrate equation (5.13) over the cross-
sectional area A, let 5; = §TxR. Hence variational vector

&m appears as

Cdml - as.

6T = u (K¢ + d-si + %g—zﬁt + (2u+A) (MK + 6K - Eb‘ + Tm))E_
dm_
- (2ptA) (ggh + T, )E,
and representé a function of S only.
Therefore, (5:13) can be written as
M_(0) = f R x (87 x R) da
A
- [ ®ReREF - ReR-sT1am
A
= J [(R*R)I+87 - RR-¢7wlaa
A
- [ 1@ - RR1aa-s7
A
= 1+&T
where = - = -
| I= J (R+R}1 - RR14A

is a tensor entirely a function of the cross-sectional proper-
ties of the slender member. Tensor I is called the

Second Arnea Moment Tenson.
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and - Te§m = 4T
Identity tensor 1= Eiﬁi_for i = t,n,b.
Hence the Bernoulli-Euler equation in the generalised form

appears as,

E, .M(c) = ﬁt(g1 = T+4T ee..(6.1)

The second area moment tensor can be referred to the mobile

Euler directed base{Ei}

_—

E,_ +
+

il
Il
o

TeePeBe

+ 0
+ 0 +

Ihn EnEn nb
+ 0] + I Ln + I

L -

1

bn Tb

where
2 2
(Rn + Rb)dA

)
|

tt

bb ~

A
_ 2
I, = J RY dA, I
A

and

Inb =*Ibn ;.l - Ran da

Itt’ Inn’ Ibb are called the Second Area Moments about

Et’En’Eb axes respectively. I, 18 called the Second Area Product

about En and E, axes. It should be noted that I, is commonly

b t

known as the Polar Second Area Moment and often denoted by I
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The tensorial form of the Bernoulli-Euler Equation (6.1) can

be expressed in the semidirect form:

M, (0) = T-8T
- N dm
1, ,E E_ + 0 + 0 ‘] [u (Ko, + ---2— + QQ_)E +
tt ot HARp ™ g5 as’ "t
E E_ +I_,E Wb E
= 4 InnEnEb nbFnp -(2u+k)(m2K+6K—a§— +Tml)En
N — - dml -~
+ + IbnEbEn + IbbEbEb = (2u+A) (d—-~—~S + chb)Eb]
L. Aon
By carrying out the dot product and noting that Ei.ﬁj
= éij’ where 6ij denotes the Kronecker Delta yields
dm
~ _ 2 do, =
Melod = w I (K0 + g5~ *+ 38! B
d¢b dml _
+ (2u+)) [Irln (m2K+6K - g5 + Tml) ~ Inb (Ei's_” + T<1>b)]En
das dml _
+ (2u+A) [Ibn (m2K+6K “ g5t Tml) - Ibb (a-s—- + T¢b)]$b
Therefore, components of the stress couple are as follows:
M (o) = I (K + él_n..g_ + g@_ ) )
e 0 = 0 Ly (KO + 55 as
d¢b dml
Mtn(c) = (2u+X) [Inn(mzK+8K - I + Tml) - Inb (a-s—— + Tq>b)] S
d¢b dml

ce..(6.2)




75

§(6.2) Special Cases

Case (a): Equations (6.2) are the generalised Euler-Bernoulli

force displacement relationships for £he elastic, slender
members of arbitrary spatial elastica (ie. the centre-line)
and cross-sectional configuration. If the cross-section of
the slender member is assumed circular, then, the warping is
zero. Also,

Inb = Ibn =0

Ion = Top = 1

and
A

(Rn) (Rb) =0
Substituting for the kinematic parameters (ml,m2,¢i)

from page (l17) in equations (6.2) results in
du? dm

S b ° ae 2
M (00 = W Iy X (g + TU) + 55+ 557
or o
du dm
_ ae - b ° 2
Mtt(g) = M Itt [ag + K ag*— + KTUn + d—s—'-—] ....(6.3.a)
where,
d¢b
ay _a las F T
ds ~ ds K + §K
2 d¢
_d 1o, _ SK, 8KZ _ b
g kB ot &) e igg b e
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Similarly, | o
. 4 .dUb o
[+ [+
or | ‘dzub . av) ... (6.3.b)
Mtn(c) = (2u+A) I [8K - Eg—_ - 35U, - T Tt (Km2 + Tml)]
[+ [+
where " dzUb R dUn
(Km) + Tmy) = = [—=+ 35 Uy * T g5}
as
and
M, (0) = = (2u+h) L, (3% (- 2 ¢ ) + 19, ]
tb bb ‘ds K 'n’ b
dé
_ d K K n _
= (2u+A) I [55 () ¢ (=) g5 f¢b]
: du
_ a (K K, d n ° _ °
= (2u+x) I [“d“é‘ (E) ¢n + (—K—) 3s (a—s— + KUt TUb)
(o2
au, o
- T(5§_ + TUn)]v
or, 2.0 °
d“u du
_ d K K n dR _.° t
Mep (01 = (2uth) Tlgg @ o+ Q@ {5+ g5 U * K g5
' o
du
ar _° b 2.0
- 35 Up - 2T g5~ - T Un}]
...0(6.3-0)

Now, if it is assumed that'§ is approximately unity,

which is very nearly true in the case of small-displacement field,

2

K_ K _ . _ 6K SK,

= %5 = 1 < + ( K) ... = 1 for 8K<<K
equations 6.3(a), (b), (¢) reduce to the following form:

ae avy, o  dm,
Mtt(c) =G I, [a§ + K gz~ + KTU  + a§~] oo (6.4.a)
where,
30 do 20
T2 1 [d by a’r U. o+ 3 ar “'n 27T ke W 2 1r 9Ty
dsS T K 3 2 n ds ds 2 dsS b

ds ds



[+
du.
dK _.° 2 b aT _.°
*TFE Ve T g8 tKgg U+
v 2_°
-1 dK [d b + 2Lyt 2T o
K2 a8 ‘12 ds “n s
M, (o) = EI[6K]
dzU; dK ..° dUZ ar o

It is consistent with the Bernoulli Hypothesis

mation
2V _ 2(1-v). (1-v)
(2u+d) = 2u + 1-2v" =~ (a-2w* (1-2v) (I+v) E
E
where U-‘:G:m.

Under the assumption of circular cross-

equations of motion can be further reduced.

Static Case:

From (5.11) the Force Equilibrium equations are:

dF, . (o)

tt -

NS - K Ftn(c) + Pt(s) = 0
aFtn(O) '

Y + K Ftt(o) - T Ftb(c) + Pn(S
oF,, (o)

tb _
—s—— + T Ftn(o) + Pb(S) = 0

From (5.16) the Moment Equilibrium equations ar

oM, , (o)

tt -

55 - KMtn(o) + Mt(S) = 0
aMtn(o) ’

% + KMtt(o) - TMtb(c) - Ftb(c) + Mn(S
aMtb(o)

NS + TMtn(c) + Ftn(c) + Mb(S) = 0

du
t
KT ag“"]
[¢]
n ° 2.°
35+ TRU, - T°U.]
LI I (6'4'b
d -]
U
b 2..°
= - T Un]'f"(6'4'C)

77

to use the approxi-

Ile

section the

) P ... (6.5)

e

) 0t ....(6.6)
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" Dynamic Case: .

From equation (5.25) the Force Equilibrium Equations of Motion are:

[+]
3F,_, (o) . d2Ut )
—=— - K Ftn(o) - pA o + Pt(S) =0
at
.2°
BFtn(c) . d Un
——Eg-—-+ K Ftt(G) - T Ftb(O) - pA 5 + Pn(S) =0 + ....(6.7)
dt
20
aFtb(o) a“u
—5g—— * T F  (9) - oA 527* + P (S) = 0
J

From (5.28) the Moment Equations of Motion are:

M, . (o) 2 )
tt _ _ a”e _
o KM (o) PIyp —3 + M (S) =0
dt
BMtn(c)
oM,y (o)
NS + T Mtn(c) + Ftn(c) + Mb(s) = 0 J
Case (b): 1In this section equations of motion for an

elastica in the form of a circular helix are deduced by
further neglecting a few terms from equations obtained in

case (a) above.
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Dynamic-Kinematic Relations: Considering cases where

dm

agg- and m2K are small quantities compared to the terms re-

tained in equations (6.3.a) and (6.3.b) respectively and making

le

the same approximation as in case (a) above, i.e.g 1, the
dynamic-kinematic relations for a linearly elastic member

appear as follows:

M,, (o) = GI [gg + K by KTUO] . (6.9)
tt tt 'as Js n voo
a%u’ auv.
~ b _dT . ° _ n o 2 o
M,_(o)= EI[6K — & U, - 2T —2— - TKU, + T°U_]....(6.10)
a%y° av. auv.
U
~ n aK ..° t _dT ° _ b ,2.°
Mip (o) = EI[dsz t 3 Y " Rgs " ag % T T g8 T°U,]
cee.(6.11)

The longitudinal strain equation (2.7) is no longer

zero but serves to establish the longitudinal stress resul-
[}

tant GttA = E EttA = E¢tA

or o

au,_ .

designated the presence of longitudinal motion.

Equation of Motion of a Circular Helix: For the case of
circular helix the curvature K and the torsion T of the
elastica are constant with respect to the arc-length parameter

S. Therefore,

dK

a_S_;.—.O “0 u-..(6o13)

~e

Q-A!QJ
w0
|
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From the Moment Equations of Motion as given in

equations (6.8), the two transverse shear stress-resultants

aMtn(o)
Ftb(o) = —=g— + KMtt(o) - TMtb(c) + Mn(S) cee. (6.14)

and
aMtb(o)

Ftn(G) = - ———'—a'g——— - TMtn(G) - Mb(S) ...._(6.15)

can be established.

Substituting (6.14) and (6.15) into the Force Equations

of Motion (6.7) the following equations results:

2..° '
a“u 3F . (o) oM, . (o) .
t tt tb
pA 2 = sg— t K —g— + KTMtn(o) + KM (S) + P, (8S)
cv..(6.16)
a%u. 3M__ (o)
o
n _ _ _ tn _ 4ar 2
pA dt2 = KFtt(o) TKMtt(o) 2T —5g 35 Mtn(c) + T Mtb(o)
. v
9 Mtb(c) BMn(S)
- '—'—‘—'—i'———" TMn(S) - ——-5*8———-+ Pn(S) ....(6.17)
9S
a?u. 3M, , (o) %M, (0) aM, . (o)
Ph > = K —pg— * g Mo (o) + —S5— - v (@) - 27—
dt 3S
- M, . (o) + E%Eﬁil - T™™, (S) + P, (S) (6.18)
3S "tb 3S b b Tttt *

Substituting equations (6.9) to (6.12) into equations
(6.16), (6.17), (6.18) and the first equation of eqguations
(6.8), four equations of motion in terms of the four displace-
ment variables are obtained. The equations of motion for the

free vibrations of a helical rod are obtained from these



" equations by setting the applied loading functions P =P =P, =0.

The final equations are as follows:

2.0 2.°
"0, 2. 40 2 2°
pA —»— = E[(A + IK") —= - IK°T“U]
at ds
R 3 [+ [
a’u_ 5, au,
das ;
2 [}
2.0 d 0, 2
+ EIKT[T“U, - 3 —5—=] + EIK“T(8) ....(6.19)
as
[« ] (o]
d2Un o QU d3Ut
dt ds
4 [} 2 [+]
a‘u acu o
+ E[- I 4n + 6IT? 2“ - ak%+x%7? € 1. +17hHug
as as E tt n
a3u, au,
U
b G 2 2 b
+ ET[4I 3 (F U K + 4IT7) =
+ EKT[- (21 + % I,) g-g. ... (6.20)
[+] o
dzUb 5 o d2Ub
pA —— = 3IKT[TU, - 3 —~]
2 ds
dt
(] 3 [+
+ ET[(417° + & 1. k%) EEE- 41 e Un]
E "tt ds 3
as
4.0 2.°
a*u a‘u .
+ E[- I ""ZE'+ (% I, k% + 6IT?) ——59 - IT4Ub]
as as :
G ae 2
+ EK[(§~Itt + I) =— - IT (6)]....(6.21)

ds
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o

2 dau
a“e _ 2 ° G n
2 -]
+ EK[ (S 1,, + I) T % - 178U ]
E "tt 2 b
ds
G dze 2
+ Elz I —s = IK"(8)] eeee (6.22)
E "tt dS2

Equations (6.19) to (6.22) are the same as those
v (5)

obtained by Tso . Hence these equations can be solved

by the method given in his manuscript.



CHAPTER 7

CONCLUSIONS

}A fundamental approach for the analysis of thin,
elastic members, which are curved and twisted in their
natural configurations, has been presented by the diréct
kinematic method. Although, the analysis is restricted
to the small-displacement theory, éome of £he results are
for general applications.

The Force and Moment Equilibrium equatibns obtained
by the author, viz. (6.5), (6.6) are in agreement with that

(2)

given by Love . The author has not taken cognizance of

the orientation of the cross-sections of the slender member
with respect to the elastica. It is tacitly assumed that

the principal axes of the cross-section coincide with the
normal and binormal axes of the mobile Euler base otherwise,
the pristine orientation of the cross-section has to be
prescribed as a function of the undeformed arc-length
parameter S. For this reason the curvature vector has not been
referred to the directions of the principal axes of the cross-

(2)

section and, consequently, the component Kk of Love vanishes

when comparing the two works.
There is a point of disagreement with thevanalysis of
(2)

Love over the Bernoulli-Euler force-displacement relation-

83
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ship. The present author obtained equations (6.4) which
differ from those given by Love(z). It is important to

point out that the discrepancy in these equations has resulted
from the manner of making approximations. The force-displace-

(2)

ment relationships as obtained by Love could have been
obtained in this work if the author had neglected some of
the quantities as small, but this would have made the analysis
inconsistent by the present method of investigation.
The direct form of the force and moment equilibrium
equations as given by DiPrima and Handelman(3) and later on
by Massoud(4) are contained in the author's équations (5.8) and
(5.14). The additional terms in these equations are the by-
products of the tridimensional approach of analysis. It
should be remembered that other degenerate cases of slender
members, viz.circular helices, planar curved beams and linear
members represent special cases of the present analysis.
Tso(s) in an independent investigation obtained the
equations of motion similar to that obtained by the author
in his equations (6.7) and (6.8).
The author recommends an extensive investigation of
the case when the centre-line of the slender member no longer
remains invariant in length in the process of deformation.

This case is of interest when the slender members undergo

large displacements. It would also be interesting to attempt



to determine more precisely the limits of the slenderness

of the members for the applications of above results.
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APPENDIX-A
KINEMATIC SERRET-FRENET FORMULAS FOR SPACE CURVES
With reference to fig. (A-l),a space curve is complete-
ly defined by the position vector R(S), where R(S) is a

function of the arc length parameter 'S' of the curve.

Figure A-1

The Frenet-Serret formulas of differential geometry

6
applied to the reference state's centroidal curve are( )
daE,  _  _ _
a—————=DXEt=KEn ees (AL
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ae . _ _ _
5 "D X E =-KE +TE e... (AL2)
aE_ - _ _
m———— — X =—T * e s 0 .
ds P Eb o En (4.3)
where the Darboux-Vector D =-Tﬁt + Kﬁb

Et — unit tangent vector

En — unit normal vector

Eb — unit binormal vector

K - curvature of the elasticaat the generic

point
T -~ Torsion of the elastica at the generic

point.
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APPENDIX-B

LINEAR THEORY OF STRAIN

Assuming the deformation of the continuous medium to
be homogeneous i.e. infinitesimal vectors dR, deform into in-
finitesimal vectors dr, but not to infinitesimal curves. Fig-
ure (B-1l) depicts the geometric relations of this type of

deformation field.

(AR*E) and (dR*$) are components of

du, parallel and perpendicular to dr and 4R
respectively.

Figure B-1
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AB = dR is a linear element in the contihuum, R being
the position vector to point A. After the deformation ab =dr
is the new linear element. Displacement at the point A is
U(R), and at an infinitesimal distance away at point B, it
is U(R+dR). The line element AB is subjected to the most
general linear displacement field which imparts rotation and
stfetching to AB = dR .

Expanding U (R+dR) by Taylor's Series Expansion

aR--2
T (R+aR) = R §(®R)
= [1 + dii-—%+ %dﬁdﬁ:—%—f+ .+ . JU(R)
3R : 3R 3R

Assuming first order approximations to be sufficiently

accurate yields .
3

(R + dR) = G(R) + ar-2¥ = T(R) + aD(R)
' dR
ox
dU(R) = G(R + dR) - U(R)
= g2 = aR.§
oR
where — 7
§ =2
OR

is called the displacement gradient.

The relative terminal displacement of dR is then given by
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@
ci

=(s) . .= (a)
aR+ Y L)

+ -

- ]
3R 3R

@
i

il

- 6 '~8 1 U U - E
aRery G2+ By w2 A% - Uy1o aR. (543
R oR R 9R

where the first term in the above is cailed the Strain

Tenson, €; and the second term is célled the Mean Rotation

Tensor ¢, i.e.

€ =>% (32 + 93) (symmetric part)
3R OR
and . = -
¢ = % (Eg - H—a~) (Antisymmetric part)
R oR
Hence
aR- (€+$) = dR+e + AR+§ (see Figure B-1)
= aR-E + 3 T x 4R

[ob)
Wt
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APPENDIX-C

CAUCHY'S FIRST AXIOM OF MOTION

If the surface stress En is represented in terms

of the Cauchy Stress Tensor Principle as En = neg then the

first axiom of motion (i.e. vanishing of all the forces in
the inertial frame of reference) for a finite body of

volume 'v' and bounding surface I assumes the form:

o dA
, 2= _
= | I -op g———g—]dv + J dA heg
J
v dt A
f _ dz_ - =
= [f - P -—-2— ]dV + [ dAsg = 0. .'..(C.l)
J dt : J
v A

where, dA = da n — directed differential surface element

U - displacement of the arbitrary point R



93

f - body force intensity per unit volume
a’o |
- — e - apparent force created by motion per unit volume

dt

ao =

—5 - material acceleration of the generic point R in

dr ' '
the body

En —~ stress applied at the external boundary point ﬁn of
the moving body
dm .

Y = 5; - mass density.

The surface integral can be converted into corres-

ponding volume integral by means of the Gauss Divergence Theorem

as
9 -
j — ( av = j aan ( )
v oR b
where ( ) denotes any admissible function.
Thus,

Substituting this conversion into egs. (¢.l), yields the

field equatién

- - 25
J dF = J [f + 9.5 - 0 Q—EJ dv = 0 «e.. (C-2)

The Second Axiom of Motion requires the vanishing of the

moments of all the forces, including the apparent forces
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brought about by the motion, acting on the body with respect
to the inertial frame of reference.
Hence, in the case of the finite body

the second axiom of motion assumes the form,

am = | Mgy = Rx fdv + | R x (-p g-—p—-)dv
dav ‘ dt2
v v v v
+ J R x(Z%ayv = o el (C=3)
v R .

where R is the position vector in the inertial frame to the

generic point in the body.
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APPENDIX-D

CONSTITUTIVE EQUATION FOR ISOTROPIC ELASTICITY

For the case of isotropié, homogeneous elastic body, the

strain-stress relations are

a a
e = XX _ oy XY v 22
XX E E E

where E - Young's modulus for the material
V - Poisson's ratio

or, in terms of the first stress invariant

g
XX XX _ vV
txx = E TV E E (Oxx Oyy+ 22
_ %X _ Vv ==
= --E—" (l+\)) E (O.l)
Similarly,
' = _YY -V (2.9
eyy = (1+v) B (0:1)
o}
_ _Z—_Z_ _ }). =.=
€., = & (1+v) & (o:1)
The shear strain-stress relation
o a
e = XY - XX
Xy 2 2G
where u = G is called the Cauchy-Lamé first elastic
coefficient.
g. .
£,. = S (D-1)
ij 2y

where i#j, i=x,y,z
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and for the principal components

:1)  (-2)

Qall

g.. - -
€. . = —gium -2

Y
11 E

and

‘B

R Y GF=TY (D-3)

Thus, equations (D-1) and (D-2) can be united through the use

of equation (D-3). The result obtained is

€ = ‘8.;.._ - Y (5.3 T (D—4)
3 P 5 (c:1)71 ;
where
I- Identity tensor
(ng) — First scalar invariant of the stress tensor o
Equation (D-4) can be inverted into stress-strain
relation

o =2u¢€ + A(e:1)1 (D-5)
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APPENDIX E

In this appendix detailed calculations for the com-
ponents of tensor E(i.e., Sij) are carried out. For simplicity
(l-KRn) shall be written as yx = x(S,Rn).

From equation (4.4)

o _ aPtt _.K Pnb
tn ORy X
Substituting for Ptt’ Pnb from equation (4.3) ..
5 _ 3 (aebt ) aent) ~ E,aetb
tn aRb BRn aRb X BRb

€ from equation (3.13)

Again,substituting for strains ebt=€tb’ nt

2 dm

Stn -7 %'5?i§gg'[% {¢b * Rn(a§£ +‘%%)}— ¢b]
+ %-ﬂi—z—z- [%{q;n + R mK - R (K§, + gr—;i+' 20+ m ]
b
-§ a—a—b [%{¢b+nn (g-:—z-Jrg%)} - 4]
5!%5%1; [1;2 {9, + R, (2—23+g—6§)} + L (gg?-+g_g)]

=04+ 0 + 0 = 0 (Since variables inside the brackets are

not functions of Rb)
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The component Syp from (4.4) is given by

b
. . 9P . . 9P
_ 1 tt _ o L K tt
Sgp = (K Py = K Pyl XA < ®nn Ptt)x * IR,
n
Spbstltutlng for Pnn’ Ptt from (4.3)
. ) [Betn _ K €nt _ asbt N aent] K . - Iaebt —.BEnt]
tb 3R, M 3R, 3%, © X | 3R, ‘3R 3R,

Again substituting for strain components from (3.13) and noting

that € =€ 7 €™ %t
K1 5 -1 dm, 3¢
Stb =2->Z 5 5 b [)? {q>n + anlK - Rb(K¢b tgg a-S-)}+ ml]
dm
(K21 1 2 . de
ST 5 I Loy + R (g5 ge)d - 9]
am
K1 5 .1 2 . de
IEWRLY [T Uy Ry G F a)) - 9p!
2 dm
1 3 1 2 . de
troz s Ry (gem sl 4]
2 dm
1 9 1 2 . ae
2 SRR, % to, + RymK = R (Ko, + g5~ + gg! H+ my]
2 dm 2 dm
X K 2 ., de, _ K- 2 ae
=- 3% " 5 @Gg ta "3l TR, Gt FE)!
X X X
K’ o  x L9IM g0 K2 dm, 4
+ 2 5.2 (G5~ *tas) * 3 1 * R, G5~ g8}
X 2%
dm dm
K 2 . ae K 2 . de
rrlEs e oz Mt E e



The Component S
nn

29

from equation (4.4) is given by

oP oP oP 3P
_ nb nb _ nb _ 1 _ ""nt
San = [TPnn * 55t IRy aRn TRn 9Ry prb]X IRy
Substituting from equation (4.3) for Pon Pnb’ Pbb’.Pnt
o€ Ke de de
v 1 tn bt 3 tb ) tb
S = = [T( - ) + (=—) + TR, =o— ( )
nn X Ry X s oR, b 3R 3R,
e 2 (b T(Ketb _ aetb)]
B
n aRb BRb X oR
d€e o€ J€ o€
3 tt 1 bt bt bt
- 2 - = (Te , + ==—— + TR x5— - TR =5—)]
IRy §Rb X nt 98 b aRn n 3R,
2 2
_L,T “ftn TR +3€tt+2_T(3€tb_ S
T X SR 2 "pt T T, 2 "x ‘5R n 3R 2
X Rb n b
o€ J€ 326 828
f L3ty 3 (TTbty, T ° Ttb bt
X aRb 5Rb 35S X b BRnaRb ORy IR

Again substituting for

and carrying out the derivatives yields

nn

I

2
X

=3
=

——m——p

>

dm2
ds

(K¢b + =t

{op + Ry

d

o

dm2

as

S
S

)
ds

TK
)“;3"{¢b+Rn(
dm
T 2
p e L2
X2 ds

strains e, .,
1]

dm

ds

+

from equation (3.13)

2 dae TK :

ds,
ds
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From equétion (4.4) the component

BPnn aPnn SPnn 1
Snp = TPap * TPpn = KPpe = 35 ~ TRy ap_ ¥ TRa s 'Y
, Pnt
R
n

Substituting for Pij from (4.3) and carrying out some

simplification results into

9€in 2K R4T

AN K tt
S ,= —-—/ + € + —— R, € - =
nb X aRn X2 tn X3 b "bt X aRb
JE e 1 3 %feny 1 pr1 KR
2 s 35 3R, X '35 x T 12 bt
2 2. 2
, kT . Sebt _ T, d €y N 0 €re 1 3 €pt
X2 b 3R X b R 9R_ 9R_oRy ¥ OR 95
, :
I e
X bog2g
n

Again substituting for the strain components eij from
equation (3.13) and carrying out indicated derivatives give

the following results:

_ TK b _ T '}‘_IS _ TK
Spp = T3 8yt 3 &y - MK+ =4 - = Ry 2,
X X X X X
K2TR
KT b K K d
+ KT p g by _K 5, 4 K d
7 Rp %5 3 % T "7 %y T as s
2) 2 X X
S TS PO ks W N S R SR B
28 Wiy e ) 2t 7 2

... (contd.)
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or

1 3K
(=8) 2. - =5 ==
2X3 35’ “s5 2X2 ;
_____RnKa_Kq) + K _a(z
2 3S b 2X3 35
2
TKRbZ +TK ] (Bm
2x4 5 2X3 b ‘38
fn @, , . 1 3K
4 '35’ “s 3 35
X 2x
K 9 1 3
— S (Z.) - e =2
2)(3 35 ‘\“s5 2X2 3
am
TK 2 36
=3 Ry 3= * 3¢
X
Sp = 0

where for simplicity

zl = {¢n + Rn(le)}
7. = (ifl + Té, )
3 oS b

8m2
2g = {6y + R, Gg=

101

9K
% * 77135 %
) + B ody z - x_ %%
5 Z 35 5 2 38
2X
TKR
2+§9-) + 1§22+K—2-z4
2X X
‘ om
z - <23 Ly (=2 + 239
5 2x 95 X' '8s _ §S
2 s 28y T g
3S -9 4 b 5
X
om
3 2, 36
; = Koy + 557 *+ 55
3¢b
36
§§)}
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Similarly S n from equation (4.4) is

_ (oo N aPnb apnb oP
nn as b aRn

aPnt

BRb

nb 1
n 3R, TPoplx

S + TR - TR

bb

P P from (4.3)

Substituting for Pn nb’ Pnb’ Pbb' nt

nl

and some simplification leads to

o - 2kr 21 % 2r PCen 2k %Ctt
bb ~ 02 b T X 3R X 3%, X OR_
o€ o€
- 24k _2Kp 9K . _ 2K _tn 1 9 _ tn,
X2 S tn X2v n 9S "tn X2 0S X 98 BRn
2 o€ 82
_ 27K _ 2TK 5 tn . 2T .
3~ "pfen 2 *p 3R < R 7 ©nt
X X n oR
2TKR 3¢ TR 9% Se
+ n ( tn) n tn + l 2 ( nt)
T2 3R, X 9R_3R x ok 88
2
_ TRy (8€nt) B R
X aRn BRb Ban

Again substituting for the strain components €ij from
equation (3.13) and carrying out indicated derivatives gives
the following result:

_ KT KT _ TK _
Sbb-x*izs'—i% z

... (contd)



or

Since

and

thus all s, .
1]
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b ok , - MMRa ek Fnoak
35 “2 37 38 Z 38 ‘1
X X X
FRRp 8K, _K_ 3y 4 S 3, J KT
7~ 35 ‘2 3 58 ‘1 3 58 ‘42 2 38
X X X X
1 9K, _ 1 3K, o, L Rnak, _ FRaRpoax
3 35 "1 3 39S "b “2 4 95 “1 4 38 “2
2 2 X X
R m_.K
K 3 K 5 nm1t oK 109
—_— = (Z.) R (z.) + 2= 4+ == — (m_K)
2,3 88 1 5.3 b 55 ‘2 R 2 55
2. 2
R TN | . | w? L, RS L2,
) 2 7 "pl1 37 “pMy - “p1 2 "p
X X X X g X
2
2TK%R 2
TK b 2TK 2 2TK
3 M RR 7 %1 T T3 Ry %y + 3T mRRy
X X X X
TKR
TK n 1 9K 1 9K
R+ g o+ 12Xy gz - L1 2K,
3 m2 T3 f2 T3 1 2,3 95 b2
KR KR
RRh oK n 9K K 9 K 5
K, mdRp s B0y 4 Eor 2z
Y Z 58 ‘b2 3358 ‘%1 3 "p 385 ‘“2
X . X 2x 2% 9
..__l_._a_(mK)+ mRa_IS-{-E.IS._RZ —-2-—I£-RZ
22 98 1IN 55 " 5.3 27 3 "n"3
2K 2K
=3 Ry 24 - 3 %,
X X
Spp = O
S = 8,.E.E. is symmetric
ijTi™y :
S.. =8,.
ij i

vanish.





