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PREFACE

The first chapter of this thesis deals with kﬁown
results on probability theory, metric spaces, conditional
entropies and generalized conditional entropies.

The second chapter deals with the metrization of
sets of conditional entropies and sets of finite
sub-oc-algebras.

In the third chapter it is shown that a metric can
be defined on the set of all sub-o-algebras of a given
algebra. It is observed that C., Rajski's (19] ) theorem
on the metric space of discrete probability distribution
turns out to be particular case of this tﬁeorem. The
completeness and other properties of this metric space

are also established.
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CHAPTER I

PRELIMINARIES

1.1 Introduction

This chapter presents knowﬁ results on probability,
metric spaces and conditional entropies. Throughout the
discussion of this chapter and the ensuing chapters,
unless otherwise stated, the probability space under
considefation is denoted by (Q,R,P) where Q is the abstract
space,(® 1is the og-algebra of all subsets of Q and P is
the probability measure over® . By a finite o-algebra we
shall mean a o-algebra consisting of a finite number of
subsets of @, It is easy to verify that there is a
one=to-one correspondence between finite measurable partitions

of Q and finite subéc-algebras of X,

1.2 Metric Spaces

Definition 1.2.1l: A metric space (x,d) is a

non-empty set X of elements (which we call points) together
with a real-valued function d defined on XxX such that
for all x,y and z in X:

1) d(x,y) > 0

it
o

i1) x =y =d(x,y)
i1i) d(x,y) = 0=rx

I}
<



iv) d(x,y) < d(x,z) + d(y,z)

The function d is called a metric.

Note 1,2.1: Putting z = x in (iv), we get

d(x,y) £ d(x,x) + d(y,x) = d(y,x). ----(a)

But as x and y are arbitrary points, therefore a similar

argument gives
d(y,x) < d(x,y). ===-(b)

From (a) and (b) we have d(x,y) = d(y,x). Hence d(x,y)

is symmetric function.

Definition 1.2.2: A pair (X,d) is called a

pseudometric space if d satisfies all the conditions of

a metric except that d(x,y) = 0 need not imply x = y.

Definition 1,2.3: Let (X,d) be the given metric

space, If there ex;sts a positive number k such that
d(x,y) < k for every pair of points x and y of X, we say
that the metric.sﬁace (X,d) is a bounded metric space.

A metric space which is not bounded is said to be

| unbounded; in thaﬁ case d(x,y) takes values as large as

we please,

Definition 1,2.4: The sequence of points {xn}

in a metric space (X,d) is said to converge to a point

xeX if the distance d(xn,x) tends to zero as n->=,



that is, if for every positive value of e there exists

“an integer no;‘depending on ¢, such that

d(xn,x) < e, whenever n > n,

The point x is called the limit point of the sequence.

Definition 1.2.5: The sequence of points {xn}

in a metric space (X,d) is called a Cauchy sequence (or
" a fundamental sequence), if, for évery positive value

of ¢, there exists an integer no(e) such that

-d(xn, ) < & whenever n > no(s) and p > 0.

xn+p

It is to be noted that every convergent sequence is a
Cauchy sequence in a metric space but the converse is

'''' —not necessarily true. ¥

Definition 1,2.6: A metric space (X,d) is said

to be complete if evéry Cauchy sequence‘{xn} of points of
X converges to a point of X.

1.3 Probability

l.3.1 Conditional Probability: For any two sets

A,Be®, such that P(B) > 0, the conditional probability of

A given that B has occured is defined as:

P(ANB)

(B} and is denoted by P(A/B)

Now, we define the conditional probability of Ae®



given the sub-o-algebra® g >f® . We denote this

conditional probability by %R (A) and define it as an
‘ 0

integrable random variable which is
1. measurable w.r.t.'thé subwc=algebra6{0, and

2, satisfies the functional equation'

g %{0(A)dP = P(ANG); GeRy .

Applying the Radon—Nikodym theorem the existence

of the random variables (A) can be proved (For details,

P
®,
ef. (1), Chapter III, p. 95),

IfGEO is generated by the finité or countable

measurable partition {Bj} of 9, then %R,(A) may also be
0
defined as follows: ,
P(AﬂBj)
%QO(A) = § ‘?Tﬁmi X(Bj)s AEG%
up to édﬁivaleﬁce (X(Bj) is the éharacteristic function

of the set BJ).

1.4 Entropy

Notation 1.4.,1: If KRu: aeh} is a family of

sub-o-algebras of® , then, Voza'denotes the sub~-o-algebra
cel

of ® generated bﬁ,\JG{a and AG%a denotes the largest
cel ael

sub-o-algebra of ® contained in each of the sub-o-algebra



o

®, (In the finite case we also write iZfRi =R, VR V.. VR

n
gnd iigti = 0111\6121\. ..A@n).

Definition 1,4,1: Let ® CR be the finite

o-algebra whose atoms are Ay,A,,...,A . The entropy H«Eo)

-of the finite o—algebra(ko is defined as

HRy) = - p, log, p,, where p, = P(A,);

[ e

k=1

k = 1,2,..0,40n,

Definition 1.4,2: Let Ry, Ry be two finite

sub-0 -algebras of & whose atoms are Ai(l <1ic< )

“““and*A&(i“Eﬂk’f*ﬁﬂ?“respectively; ‘We define

P(ANAL) i1f B(A;) > 0
PZAiS
Pix
1 (say) if P(A,) =
! +

“and P(i) (p l,p 2,...,13 l)

The conditional entropy HGR'4R°) of the finite sub-c-algebra

Gld Ww.r.t. the finite sub-o—algebra(R0 is defined as:

HR /o) = 2- H(P(i)) where H(P(l)) - ?* lo
0o’ = ;2.P1 ’ k=1 1k 772 PLKS



Remark 1.4.1: HQ®, /p,) is not changed if we

replaced{o,@é by equivalent finite sub-c-algebras of® .

Definition 1,4.3: Let S be the system of all

finite sub-o-algebras of any given o-algebradzoggél.
The entropy H«RO) of the o—algebra620 is defined as

H({R,) = Sup H(C).
CeS

Definition 1.4.4: Let S and S' be the systems of

all finite sub-o-algebras ofﬁ{og;dl and® § & ®

respectively; then the conditional entropy H(&ééﬁo) of

0{6 w.r.t.@{o is defined as

HR) /R o) =C§zg' égg H(C'/C).

Note 1.4,.1: Letoao,azl,ogé,azi be arbitrary

o-algebras <@® ; then, we have the following (cf. ),
p. 260, Theorem 4).
A. Equalities
Yy =
1) H@RGVRY) = H@R,) + HALG )

i1) HRyWifko) = HRYR o) + HR{ R VR, -
iii) H@RYR ) = HRYVRiy) ifRic®,-
iv) 'Hkaéﬁo) =0 ifa{é C®y W to equivalence.

B. Inegualities

V) HR) < HR,) ifR (&R;.




vi) H@Y/go) < H@]/fpg) 1fR 5 SR,

vii) H@Y/o)

iv

H@E/p1) 1T /4.
viii) 0 > H(RYy/n,) = H@Y) > H@®@ /o) - H@Y)
| CifR ) €@) and H®R)) < =.
ix) H@}) - H®Y) < H@if,) - K@Y,
if H@Y) <= anc;‘@véc,;(]?_i‘. |
H@ /) = HOY/rg) 2 K@1/gy) = B@Y/py)
| iqu((Ki/a_o) <= and®{ c®isRo SR-
x) H@,VR,) < H@,) + H(@®,) with equality if
ﬂb and.GLl are independent,'i.e,,iif
P(ENF) = P(E).P(F) | (EeQys FeR,).
If H«ROVal) < =, then equality implies independence.

x1) H@IVRI/po) < H@J/g,) + HRIfR,).

1.4.5 Generalized Conditional Entropies

A few generalized conditional entropies are given
by M. Behara and P. Nath for finite measurable partitions
(see [11) from which Renyi's conditioﬁal entropy and
Shannon's conditional entropy can be deduced as a
particular case., Here, we define some of these generalized
entropies.

If @) and®R, are two finite sub-o-algebras of R



whose atoms are Ai(l < k <¢) and Ai(l <i<y)

respectively, then we know that the conditional probability
of A givenolo is defined up to equivalence by
w P(ANA;) '
I&O(A) = P(ARR,) = 1oy P x(A;); ARl

.. and the

where x(Ai) is the .characteristic function qf”Ai

conditional entropy of(R6 w.r.t.(Ro is defined as

1
o /
Ia(aa/ﬁo) = kil J‘Za(P(Akégo))dP
()
Bt . £e(0,17, ac[0,%)
1“2;_(! ] 5 .s L)

where 2 (t) =" /1 t =0, a=0

0 t = 0, GS(O,“’).

we

Another conditional entropy is defined as

Q" |
040 = I X'P““l(@(,) Z,(PALA o)) dP.
. Q

An equivalent form of this definition is

N
IR, = £ P*(Ay) I_(RY/A;)
where
%! '
I (®RY/A;) = kil z (P(AL/A D).

1 " i -
If 0?_0, (R.O and (RO be the finite sub-o-algebras



of &, then the following properties hold; (ef. [1], p. 34=37).
i) @6 g.:@o up'to_._édui.valencé & Ia(d.{(')/(go) =0; a> 0.
, : " .
1) RyS®Rp = 1,000 /R8) g I,@/R%);s o 2 1.
111) I (RIVAS/Ro) = I,@4/Ro) + I, @%/moVRE)s © 2 O-

iv) _Ia(G{OVG{(‘,) = I, @) + I (®)@g)s o 2 0.

v) I:t‘Olog@(!’9 then Ia(@(')/gg_o) - Ia((R(')) - Ia((RO); o > 0.
vi) IfRY Cwbs then I @RRy) < I, @R5/Rg)5 @ > O.

A few more generalized conditional entropies are also

discussed in [1].



CHAPTER II

METRIC SPACES OF CONDITTONAL ENTROPIES

AND FINITE SUB-0-ALGEBRAS

2,1 Metric Space of Conditional Entropiles

Definition 2.1.1l: Let ® and G be finite

sub-o=-algebras of ® generated by the measurable partitions
3 and {c "

(B }
i=1 I 3=1

1 respectively. LetGZO be a

sub-o~algebra of ® . Then the function %R (B/z) is
0

almost everywhere defined by

H @) (x) m _— )( | n . %ﬁo(Bian)(X) :

. .7 ;

Ro 0 T glh wo T 4 TRy )
where Z(x) = - x log, x, 0 < x <1

and Z(b) = 0,

In particular, for ©= {¢, 2} the function 5R (B) is
0
almost everywhere defined by

n
H B)(x) =-Z. P
0 i=1 &

& (Bi)(x) log, %%o(Bi)(x)°

0

Remark 2.l.1l: The following properties hold;

(ef. [8], Proposition 2.1).

a) %K.(@Aﬁ) is a(Ro~measurable function on Q.
O .

b) For almost every xeQ we conclude by the

10
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definition of P_ that the mapping P. : A—>P_ (A)(x)
@ R0 Ro

is a measﬁre on.@lV61 and it follows that for any pair
of finite sub=-o-algebras® 14 and G, of® ; ;D@ and

Cfl:)zj s %{ (@/@), (@ /@l) and H(R (81/5) are conditional

)

entropies w.r.t. the measure space (2,3 VCE,

Rg

and the following result is true:

}?ao(@/‘?l) < Ho,G/e) s H @/ ae.

) H vy) = j H (8/-)dp.
c) HB/[RLVD ) RS

Remark 2,1.2: From (a) of Remark 2.1l.1, we know

that

-%K B/z)(x) is a® j-measurable function

0 v

= %P (B/g)(x) 1is a(} -measurable function
L0

= %R (B/2)(x) is a random variable,

0

Theorem 2.1,1: If Z is the space of all

equivalence classes of functions %Rv«B/G)(X); whereﬁ{o
‘ 0

is a fixed sub-o-algebra of ® and @ and G are any two

finite sub-o-algebras of(} then (Z’%R ) is a metric
0

space, where

% oo B17t1)s By (Bolep)) = |13 |H @ /gl) = H @ /@2)|
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and@l,ﬁl,@ 23 62 are finite sub-o-algebras of ®.

Proof:
a) %Eo(Hdlo(agl/rjl)’ %?0(632/62)) > 0,

E — -H =
b) H By/ep) B Gyley) = i) Gy/ep) - By B/

5 Br/e) - B @y/ep)l

— - a.e.
1T+ [H@O(Gﬁl/él) - %IL (3 /t27|

H @y/5) - 8, @ /2]
= ) TF |%0(‘31/131) = o Gleo T &

a (H H -

Iﬂao(@i/fl) - H@ @,/e,)|
= | TF B @) - B © S7eT

- VIHaO.wzl/Cl) - %2 @,/e,) |
> %0(@1/&1) - (oz /gz)l a-€.
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@ ﬂ}&o(@l/@l)n }3{0(6))2/(:2)‘ g‘o ‘aceo

=1 Gi/e) BB Byl

d) For almost every xeQ, we have

: Wao(@l/@l) - %0(632/52)[; I}{o{o@l/fl) - 1520(@3/(;3)1

(1)
10
and - |
1, B170) - 1 @3/ey)l B, @3/C3) = B (B/ep)

. + iy -
Pl Br/ey) - B Balegdl - L ¥ Ey Byleg) = By /el

B, 8a/e) i By/e] , 1Hy By/ep) - 0 @)
THE @) - B @y/e)l, (B @/ey) - B @y/e))]

v

1
1/ (1 ¥ T @e) - B Gy/eT + T8 (637ey) - r&o(@g/@z)l)

v

l .
1./ (l ' lﬁﬂoaﬂl/gl) - %ﬁ0«32/€2)| ) {u81ng (1))

!%{0(@1/61) - Hmo(fsz/zfz)l

S IF [%10(‘31/5’1) - 1320(@2/@2?]

Thus for a.e. xeQ, we have
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| % B17e0) - H@ ®,/e,) | . 5 Br/e) - B G3/c3)l
1 +~[%R0(al/fl) - (ﬁa/gz)l 1 + l%ﬂo&B 1/€1) = %20(83/@321_

1, B37e3) - 1y @o/p)l

=1 - {H (csl/c"l) = g, (@2/(:2)1

j I%{o@l/cl) - }&0(633/53”

+

dp

j Ir&o(@3/53) " @ /€50 |
+
1F 1%20(@3/(;3) - }&a @ /ca)l

— %io Bre)s B @p/ep))s & (L By/ey)s By (@/c3))

Hence the triangular inequality is also satisfied.

Corollary 2.1l.1l: Let the metric %R on the set
0

Z of Theorem 2.1.1 be defined as:

d  (H H = H - H ap
6&0(010(@1/51)’ 6{0(632/62)) ]lao@l/gl), @0(?2/62)'I

then (Z, %R ) is a metric space.
0 _
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2.2 Metric Spaces of Finlte Sub-o-Algebras

Theorem 2.,2.1: Letd{o be any given sub-oc-algebra
of2 . If Z is the set of all equivalence classes of
finite sub-¢-algebras of ® and if ®,,C,)eZxZ and

(B,,C,)eZx%Z, then (ZxZ, d_ ) is a pseudo-metric space,
2%2 Ry

where, for almost every xeQ, %R is defined as follows:
0 .

Proof: For almost every xeQ, we have

a) %?O{(@lgfl)g (@2,té)} > 0.
(8

' b) (@lstl‘) = (@2982) "'%(Bl 2@2 and fl g C’é
= H(Ro(ﬁl/t,’l) = Hﬁo(ﬁz/ez) a.,e:e/[H(RO(GSl/@l) - %{0(552/62”" 0 a.
= 4 @10, B0} =0 aee.

‘C) dG{O{(O}l,le), (0323t2)} = 0 aoe.iz—?; %0(81/61) = Hm_o(@2/€2) a2.€

% (@l’tl) = (032962)0

d) Let «33,53)¢sz° For almost every xef, we have
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tA

|Ha0(031/‘c'1) - %{0(@2/(;2)1’ "Hao‘al/fl) - %0(633/@).1

+ .

-1%10(@3/63) - 5‘1{0}(.@2/52”

1A

—_ %0{(631,2;’1)‘, (632,2:2)} @ao{(csl,t:l), (053,_1?3)}

+

Thus it is proved that (ZxZ, d@ ) is pseudometric space.
0

Corollary 2.2.1: (ZxZ, %R ) is a bounded
.. 0 :

pseudometric space, if %t is defined for almost every
0 ;
XeQ, as: ,
H @./g,) - 5 B,/c)]
lﬁto /%1 Rp 2 c)|
1+ ‘H(RO(«'BI/EI) - H 0(<82/@2)1 ‘

%30{(031s§l), (@2’82)} = T

Corollary 2.2.2: Putting’Cﬁ =0 = {9, ¢} in

the metric of Theorem 2.2.1, we find that (Z, %R ) is a
‘ 0

pseudometric space where d is defined for almost every

XeQl as:

RCITLPY IIgRO(@l) - }320«32)1 or

4 B.8,) = :
®o 1% T TF T @ = i@,
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Other Examples of Pseudometric Spaces

Letd{o and Z be as defined in Theorem 2.2.1.

Consider the following functions on ZxZ.

1. %0{(oslszf1'), (@2’62)}1}'}{@6(@1/81) - H@eo(@z /e,)|dp.

4B, 6,,8) J T Pa/c) - G2/ |
2. a4 { } = . - —— dP.
ot Pt Gon B SRR P

For each of the functions %R given above (ZxZ, %ﬂ ) is
0 0

a pseudometric space,

Now consider the following functions on Z.

~

il

. a4 @,e H @) - H (&)] dp.
3 2o ) IO?-O(? 0?0( )|

= |H0,{o<os) - Hmoctf)l
1+ |[H @) -H (
Vldtog %0 )|

apP.

Y, 4 (@.,¢)
) 58

For each %R given by 3 and 4 (Z, %R ) is a pseudometric
0 0

Space.

Theorem 2.,2,2: If® and & are finite sub-c-algebras

of f} ; then we have the following results:

1. H @®Vve) =H @) +H (C) a.e.
Qo ®Ro 0 *

2, _Hao@v%gl) = H@O(@/@'l) + %20(2%3‘181) a.e.

where(Bl is also a finite sub-o-algebra ofQ® .
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Proof: For almost every xe, we know by the.

definition of that the mapping P : A»——eI:R (A)(x);

P
&o R
ABVE is a measure on®VE (cf. [8], Proposition 2.1).

Therefore %{ (AVE) is the entropy w.r.t. the measure
0

space (92,8 VG, %& ).
0

Hence H (@®VvZ) = H @) + H (f/ ) a.e,
QR0 ao 0 ¢

Similarly P : A—P (A)(x); Ae@VEVB, is a measure on
®o ®o

(BVCV@l. Therefore I-&o(@VC"/(Bl) is the conditional entropy

w.r.t. the measure space (Q,@VCV@I, ).

®,

Hence H @BVE/z-) = H @/p,) + HE (C/aVe,) a.e.
@0 @B1 Ao (4] Q0 BV,

Note 2.2.1: IfQ® ,tj,GLl,Cl are finite.

sub=g-algebras of} , then the foliowing results can be

similarly proved.

3. H(RO((B/&) %)O(G%V(Bl/c) a.e if(BlL:_ C.

t

0 a.e if(RCup to equivalence ,

, H (B/
(Ro( c)

5. HCRO((B) 5.}(13%0(2;’) a.e if ®C (.

@/e)

1A

v
QT Q&

%{0 (CBl/@) a.e if@;@l.

@) > @/y) a.e if CCG.

H
Ro
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Note 2.2.2: If Z is the set of equivalence classes

of sub-o-algebras of(} , then (Z, d) is a metric space

where d is given by

d®,t) = HB/) + H(C[); B,Cel
(er. [5], Theorem 7, P;<265).

Note 2.2.3: For almost every xef, a metric on

the Set Z of equivalence ciasses of finite sub=0-algebras
of (! may be defined as follows:

1 1 |
=d =H B/e) +H (CL); @,cZ.
d(ﬂ0 (RO(@,E) O%0( c) o L) ®sle

We know that if d is a metric defined on some set, then,

I%E is also a metric on the same set. Thus another

‘metric on the set Z for almost every xefl is given by

H @/-) +H (C4)
a2 (@,2) = &o ‘ *0 ¢ ;3 ®B,Cel
Ro 1 1+ H(RO(WC) + Hao(f/@) > ’

Now each of these metrics generates one more metric given by

3 -
a> (@,e) = \[E. @B4) + H (¥4)) aP; @,pele
Gio(EE SLO{o & Glo( @ ] @t

H Bf) +H (Cg)
and a® @,e) =J ®Ro ' © g s @.rel
&o VHE @)+ H () 7 B
0 0



CHAPTER III

A COMPLETE METRIC SPACE OF SUB-0-ALGEBRAS

3.1 Metric Space of Sub-o0-Algebras

C. Rajski proved that the functional

_ I(x,y) where H(x,y) 0 and
(1) dlx,y) =1 - H(x,y) I(x,y) = H(x)++ H(y) - H(x,y)

is a distance in the set X of all discrete probability
distributions (cf. [9], Theorem p. 372). It is a
consequenée of this theorem, that in Information Theory
the dependence between the transmitted and the received
discrete signalé may be expressed as a distance.
Replacing x byR,c® and y beo{(')goa in (1), we

prove in Theorem 3.1l.1 that,

IRgsp)
d(®yoRy) = 1 - mfwg , H@y) + 0

is a metric in the set of all equivalence classes of
sub-g-algebras of R . |

It is observed that the theorem given by
C. Rajski ([9]) is a particular case of Theorem 3.1.1 and
the proof is by comparison concise. In order to show

this, we need the following lemma.

Lemma 3.1.1: If (2,3,u) is a probability space

where @ = {w: 0 < w < 1}, 3 is the o-algebra consisting

of all Borel subsets of Q and u is Lebesgue measure,

20
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then corresponding to every iliscrete probability distribution
there ex1sts a subwomalgebra of F.

Proof: A dlscrete probability distribution is
the collection of various values of a random variable which
correspond to the atoms of a finite or countable measuréble
parﬁition'as the case may be together with the probability
measure of these atoms,

To prove the lemma, we consider the following
discrete probability distribution: |

Prob(X = xi) =Dp;3 1= 1,2,0..3 gpi = 1,

Lot the atoms corresponding to the values xl,xe,x3,...
of random variables be as follows:

{x: 0<x<pl}9 {x: p1<x<pl%p2}, {x: pl+p2<x<p1+p2+p3},...
The above subsets of {2, obviously forms a finite or
countable measurable partition of Q = {0,11 and hence

there exists a sub-c-algebra of "7 corresponding to this

oountable measurable partition.

Theorem 3.1.1: If Z is the set of equivalence

classes of sub-v-algebras of @ with finite entropy then

the functional

IRy sRy)
ARy = 1 - ey H®VRY) 1o

is a distance in the set Z.
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Proof:

@ WY - BE ) + (HRRY) - HRY))
@, V)

=H@0@6)+HW6@0) o
A@INCRY =

b) ARy.RY) = 0 =DH@YM,) + HR/RY) = 0

= Ry CRo UP to equivalence and

020 C_lﬁl(') up to equivalence
:ﬁ?CRO =6{6 up to equivalence.
c) Lét(RO =0{6 up to equivalence,

therefore HQRO4R6) = 0 and H«Rbéﬁo) =0

HR R L) + HR Y o)
H(G Vi)

=0 = a®y,®) = 0.

a) .Now we establish the triangle ihgduality. .Wefhave
oy 11 o 7/ ) o
HRGWRY) < HRGRGWRG) 5 R sRY R e?
HOVRY) - H(RY) ) H@®,RyVRE) - HR )
1 - ; (i
Hlmovao) HGROWRévmo)
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HR Y — HR WMWY - H@Y)

=BG, ®Y S @ vozévaz )
Heoryrg) - HRLVRE) + H@RJVRY) - HRY)
H@, 0 g Vitg) -
H®/R4VRp) H@RmE) H(GZO/(R(')VQB) HQR R Q)

BB CATIN TN H(Gzovaova :H@ v%vmg) Y ERIGEY

HRoRd) _ BRofroVRo) | B /ﬁo

Hence

H@Wg) = F@oWRsRe) — BQS o) )
HRom oVRg) H@y/4e) [
Now, we prove that H(aiov‘ﬁ(')v}{g)_ < GO (2)
We have H(®,VRYVRY) = H(@OV&S) + HWL(‘)/QOVIKS)
1 1 1" H(G%O/a‘{éva?a)
= HQRWRYVEY) 2 B@GVBE) =) (G, VR VA
H(S{O/(R(‘)Vtﬂ"\
z H(R,VRp )
MO RYEY) ARG )
(P vozg')’ S (IO
Thus (2) is proved.
Now from (1) and (2) we have
H(’Ro/{}{o HR R o H({Rg{gé)
Ragg) < MW * Ry

Interchanging the roles ofao andé?,('), we obtain



24

H((Ro/(ﬂo HR4R0 H@Rp/00) ()
zézovaoj - (@ .V@O“ j H@ VO?,") .

Adding (3) and (4) we obtain

HRRY) + H@YRy)  H@olp) + B@k,)  HAYRY) *+ BRIk )

H(@, V&) : NG VR H(aova )

=) a@ Ry < A@y,8E) + ARLRY) .. —— (5)

Note 3.1.1: Lemma 3.l.1 shows that the set

of sub-o-algebras, each corresponding to a discrete
probability distribution, is a subset of all possible

sub~-o-algebras of F.

Thus if the probability space under consideration
is (9,%,u) as defined in Lemma 3.1.1, then the proof
of C. Rajski's Theorem ([9]) on a metric space of discrete

probability distributions follows immediately.

Note 3.1,2: Replacingaag by m%vmb we obtain

O H@RE) *+ H(oz"/ao H@AR Ve + H@RVRYA o)

H@R )R o)
- HR, RS

HRo )
TR °

Similarly d@®}.qy) = (7)

Adding (6) and (7), we obtain
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HR/RY) *+ @A) e
dRos0p) = H(R VA ) = d@yRg) + ARg,0)-

Thus the inequality in (5) becomes equality if@®j is

~replaced by ®,VR). ' .

Corollary 3.1l.1:

HR L) + BRYRo) //. H@mY *+ BR/AR,)
" (G Vi g) . AR VA

HRoRY) + HRY o)
ARV ) + B ) + BRy/Rg)

then (Z,d) is also a bounded metric space.

Definition 3.1.1l: A metric space (X,d) is

convex if for any two distinect elements x,yeX, there
exists an element z different from both x and y and such
that _

a(x,y) = d(x,z) + d(y,z)

Theorem 3.1.2: If eris the sub-space of

sub-o-algebras of ! which are such that for any two

sub-o-~algebras one is not contained in the other, then

(Zfd) is a convex metric space.

Proof: The proof immediately follows from

Theorem 3.1.1, Neote 3.1l.2 and the pefinition 3.1.1.
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3.2 Completeness of the Metric Space of Theorem 3.1.1

Theorem 3.2.1: The metric space (Z,d)

of Theorem 3.1.,1 is a complete metric space.

Proof: We are to show that any fundamental

sequence (R ;R,s..+ converges in Z. It is sufficient to

) < iﬁ (p >.0); for from

2
any fundamental sequence we can select a subsequence

consider the case d®,,®R .,

satisfying this condition and a fundamental sequence
that contains a convergent subsequence is convergent.,

We put

®R = A vV ® .
1=1 k=p ¥
and show that ®eZ and dﬁiﬂﬂn)——>0.
We prove this theorem under the assumption that HQRO) < k

(a fixed non-zero and positive constantf%d{oaz.

We have

VR ) +al VR &), — (1)

W@ ) 2 AW 7 k=n

HR / V@.) + H( V& /o)
0" k= K k=nk®n

4

a®,, V&) =
k=n H( VR )

k=n

H(;(fi/) H(;;IR/')
K=n k@.n‘ T ken+l k‘Rn (2)

HOVR,)  H( VL)
k=n k k=n k



27

NOW, _ 0 )
H®/ VG, ) + ( VR, /5 )
© ~ k=nLk k=n k'R
al VR ;>R ) = - — —
k=n H( VR V&)
k=n
but R ?@k.
. k=n
Therefore )
H( VR, /4) H( V®,) - H@®)
o =y . _ken K& .k;?k'
d( Votk,@) = © - P
=n H( VR,) H( V&)
' k=n ¥ x=n ¥
-1 - SHED (3)
H( VR )
k=n k A

From (1), (2) and (3) we have

H( :; O?'ké?,n) o :

AR, @) < —=2Ek P e : {3 R (n)
HOVR,) HO VR

k=n k=n

Now for Lsn

(VR /Qal ) - m e/ Ty s uC 'bdz o)
H( .V V@) = u(lles v +H(V / VO,
x=f X kﬁ k krfr?? kK k=g K 1,<-=r?2 k

' © ) ‘ ,Q.ml ® Q'-al o © 13 .
E HVR / VR = & H(@/ VR,)+ £ H V&R . /VR,)
= L=n#1 k=f ¥ ken ©  fL=n#1 I;=i?2k Len+1l k=R+1 ¥ k=n K

o : - 9-1 o .
= HVR )= uluve,) <« ¢ uleyp )

-
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HOV @opn) 2 B@fpy )

= ke < -
- H(VR,) H( )
ok ALY

ol Kl | Wiy |

= < - :
H( VR ) H( VR®,) H( V@ )
k=n ¥ k=n ¥ k=n X
HV R /o) |
- k=n+1 € Bn < H(G?n-!»l/@\n) + H(’Kn+2/o2n+l) +
— . - H@ V&L ,.) H@ .,V )
H( V(Rk) n n+l n+l Rn+2»
k=n )
: .H( ; R /)
Y Y~ kMn
= k—n+i < d@n’ﬁn-}l) + d(&n-%-l’dz n+2) ¥ eoe
H( VG{k) ‘ '
k=n :
1, 1 1
< ngf ¥ 2n+l + -2n+2 Toees
_J_.”'
21 1
= = © (5)
1.3 2t

Now from (4).and (5) we obtain

R | -
d@,sR) < on-l + 1 - Hi@) .
H( v@k)

k=n
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‘Hence

limit d@®, &) < limit on=I + 1 - limit _ H(®)

h— e n— = : n— ©

H(Vﬁk)
k=n
- HR) £

= %§§32 d®,s®) <0 + 1 - =y (see [10], 5.8 - P. 16)
= limit d@ &) 2 0 = limit 4@ ®R) = 0.
T n-—ye n’ ._>n——-)°° n

Now we prove that H@®) is finite.

Since limit d@ﬁ;ﬁn) =0

n—y « g
we have
A&, < % (say) for some n
HRR,) + HR )
= H@ Vi) <7

HR /) HRVR,) - H®R,)
— H@Vi, ) <y = ~~HQRWgn7 <7

HR ) HR,)

n 1 1
= 1- &R, = 2 = 3 HG&VR_)

J

HRWR,)) < 2H@®,) = HR) < HRVR) < 2H®,)

J

H(®) is a finite constant,

Note 3.2.1: Let Z be the set of equivalence

classes of finite sub-c-algebras of®. Let® ,reZ
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and %? @VE) % 0, then, as in Note 2.2.3,
-0
for almost every xeQ metrics on the set Z.may be

defined as follows:
H @B/-) + H (Ch)
R0 C) oo e

5 5
d -~ = d 3 = ] .

H (B/-) + H (Th)
6 = _ Ro " @y

6
d’ (B,¢) = .
ko o H o(czvc) + %Zooﬁ/c) + H 0(?:/,55)

1

The other two metrics on the set Z are:

, H (B/-) + H (CL)
T T _ R T
d = g QB,@) = dP.
| H (B/0) + H (Cp)
Ro = o™ " JH (mf?)) +i (as/m)) +6H ey 45
®o ®o RO ®o © Ro &

3.3 Families of Metrics on the Set of Finite Sub-o-Algebras

From Section 1,4.5, we know that

t '
the generalized conditional entropy IQQRO4R0) for the
finite submo-algebrasgeo and@é of ® satisfies the properties

(1) to (vi). Properties (iii) to (vi) are true for a > 0

and (i) and (ii) are valid for o > 0 and o > 1 respectively.

Now we define two new entropies on the set 7 .

of all finite sub-c-algebras of ® as follows:
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1_ .1 g
d = a (@;,)) = I,RyRY) + I, @R 05 Rps®HEE>
2 Ty ®Ro/rg) + I, ®Ro/eq)

o
|

2 1y = . '
o = 9510 sR0) N GCINEN) 3 RosRpeZ
o 00
[ ]
Ia@ovao} $ 0.
It can be easily verified that (Z,di) is a complete
metric space for all o > 0 and (Z,di) is a metric space

for all o > 1.

Note 3.3.1: For o ='l, Ia(ﬁéégo) reduces to

Shannon's conditional entropy. Thus if Z is the set of

equivalénce classes of finite sub-g-—-algebras of® , then-
—4 l. 3 2. "
D, = {d 5 ac(0,=)} and D, = {d_; ae[l,=)} represent

two families of metriecs on Z such that the metric given

d = H(@oéké)'+ H@Réégo) belongs to D, and tye metric

1

H((ROV(R(')

belongs to D

éiven by 4 = 2
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