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PREFACE 

The first chapter of this thesis deals with known 

results on probability theory, metric spaces, conditional 

entropies and generalized conditional entropies. 

The second chapter deals with the metrization of 

sets of conditional entropies and sets of finite 

sub-a-algebras. 

In the third chapter it is shown that a metric .can 

be defined on the set of all sub-a-algebras of a given 

algebrae It is observed that c. Rajski's ( ~]) theorem 

on the metric space of discrete probability distribution 

turns out to be particular case of this theorem. The 

completeness and other properties of this metric space 

are also established. 
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PRELIMINARIES 

1.1 Introduction 

This chapter presents known resu~ts on probability, 

metric spaces and conditional entropies. Throughout the 

discussion of this chapter~ and the. ensuing chapters, 

unless otherwise stat~d, the probability space under 

consideration is denoted by (O,~,P) where n is the abstract 

space,~ is the a-algebra of all subsets of Q and P is 

the probability measure overrK.. By a finite a-algebra we 

shall mean a a-algebra consisting of a finite number of 

subsets ·or n. It is easy to verify that there is a 

one-to-one correspondence between finite measurable partitions 

of n and finite sub-a-algebras of CR.. 

1.2 Metric Spaces 

Definition 1.2.1: A metric space (x,d) is a 

non-empty set X of elements (which we call points) together 

with a real-valued function d defined on XxX such that 

for all x,y and z in X: 

i) d(x,y) > 0 -
ii) x = y ~d(x,y) = 0 

iii) d(x,y) = O~x = y 
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iv) d(x,y) ! d(x,z) + d(y,z) 

The function d is ·called a metri~. 

Note 1.2.1: Putting z = x in (iv), we get 

d ( X , y ) _! d (X , X ) + d ( y t X ) = d ( y, X.) • ---·- (a) 
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But as x and y are arbitrary points, therefore a similar 

argument gives 

d(y,x) .! d(x,y). ----(b) 

From (a) and (b) we have d(x,y) = d(y,x). Hence d(x,y) 

is symmetric function. 

Definition 1.2.2: A pair (X,d) is called a 

pseudometric space if d satisfies all the conditions of 

a metric except that d(x,y) = 0 need not imply x = y. 

Definition 1.2.3: Let (X,d) be the given metric 

space. If there exists a positive number k such that 

d(x,y) ! k for every pair of points x and y of X, we say 

that the metric space (X,d) is a bounded metric space. 

A metric space which is not bounded is said to be 

unbounded; in that. case d(x ,y) takes values as large as 

we please. 

Definition 1.2.4: The sequence of points {xn} 

in a metric space (X,d) is said to converge to a point 

XEX if the distance d(xn,x) tends to zero as n-~~, 



that is~ if for every positive value of e there exists 

an ·lnteger n
0

; -depending on £, su-ch- that 

The point x is called the limit point of the sequence. 

Definition 1.2~5: The sequence of points {xn} 

in a metric space (X,d) is called a· cauchy sequence (or 

a fundamental sequence), if, for every positive value 

of £, there exists an integer n 0 (e) such that . 
d(x ~x + ) < e whenever n > n0 (e) and p > OG 

n n p -

It is to be noted that every convergent sequence is a 

Cauchy sequence in a metric space but the converse· is 

------not- necessarily true e 
... 

Definition le2.6~ A metric space (X,d) is said 
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to be complete if every Cauchy sequence .{xn} of points of 

X converges to a point of X~ 

1.3 Probability 

1.3.1 Conditional Probability: For any two sets 

A,B£~, such that P(B) > o, the conditional probability of 

A given that B has occured is defined as: 

P(AOB) and is denoted by P(A/B) 
P(B) 

Now, we define the conditional probability of A£~ 



given the sub-a-algebra 6(. 0 ")fa?. • We denote this 

conditional proba"bility by PCR. (A) and define it as an 
0 

integrable random variable which is 

1. measurable w.r.t. the sub-=o-algebraCR. 0 , and 

2o satisfies the functional equation 

J P (A)dP = P(AOG); G£~, 
a <Ro 
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Applying the Radon-Nikodym theorem the existence 

of the random variables ~1 (A) can be proved (For details, 
0 

cf. (~), Chapter III 9 p. 95)~ 

If cR
0 

is generated by the finite or countable 

measurable partition {Bj} of n, then ~b(A) may also be 

defined as follows: 

. . . 
up to equivalence (x(Bj) is the characteristic function 

of the set Bj). 

1.4 Entropy 

Notation 1.~.1: If {~ : aEA} is a family of 
. a 

sub-a-algebras of(R. , then, V cR, ·denotes the sub-a-algebra 
aEA a 

of CR. generated by. U Qt and 
a£A a 

A <R denotes the largest a a£A 

sub-a-algebra of~ contained in each ·of the sub-a-algebra 



02. (In the finite case we also write 
a 

n 
and A at . = ct1AriL A ••• Aaln). 

i=l ~ "'2 

Definition 1.4.1: Let(1
0

c{R be the finite 

-of the finite a-algebra CR.. a is defined as 

n 
~ pk log2 pk' where pk = P(Ak); 

k=l 

k = 1,2, ••• ,n. 

Definition 1.4.2: Letm.
0

,m.0 be two finite 

sub-a -algebras of 6?. who.se atoms are A1 ( 1 ! 1 < ~ ) 

P (A1rlAk) 
P(A1 ) 

1 
1 

( say ) 1 f P (A 
1 

) = o 
'lL 

. and P ( 
1 

) ·= ( P 11 'Pi 2 ' • • • 'P il"fl) • 
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The conditional entrop~ H(~0 ;~0 ) of the finite sub-a-algebra 

Ol' 0 
W .r. t.o the finite sub-a-algebra <R. 0 is defined as: 

~ p.H(P(i)),where H(P(i)) ~· 
H (CR. a I<R..o ) = = - I pik log

2 pike 
1=1 ].. k=l 



Remark 1.4.1: H0(~/~0 ) is not changed if we 

replace <Ro ,tR0 by equi vale~t finite sub-a-algebras of CR. • 

Definition 1.4.3: Let S be the system of all 

finite sub-a-algebras of any given o-atgebra CR.
0

c:CR. 

The entropy H(~0 ) of the a-algebra~0 is defined as 

Sup H(C). 
CES 
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Definition 1.4.4: Let S and S' be the systems of 

all finite sub-a-algebras or6{ 0c:6(. and6( 0 c (}(. 

respectively; then the conditional entropy H(~0{R 0 ) of 

ot 0 w.r.t.<R_ 0 is defined as 

H(~'/~ ) = Sup Inf H(C'/C). 
O O C1 ES 1 Ce:S 

Note 1. 4.1: Let <R.o, (R1 , 6?..o, CRi be arbitrary 

a-algebras c;;CR. ; then, we have the following ( cf. (51 , 

p. 260, Theorem 4). 

A. Equalities 

1) H(<1(0vCRQ> = H~0 > + H(1(0~ 0 >. 

ii) H {0(0 V()( i ~O) = H (ot0{R_ O) + H (CRi kxo V&0 ). 

iii) H<CR.o~o> - H<q-t 0vcRi10{ 0 > if<?'-i s;cR 0 • 

iv) ·H(<.Rc)/lR. 0 ) = 0 ifa:t.c) c:CR_o up to equivalence. 

B. Inequalities 



vi) H (CK(,I(Jlo) ~ H(tR ilcR 0 ) if OL 0 cot. i. 

vii) H(Cll(,loto> ! H(Ul.0/0l1 ) ifot 0 c;:C)l 1 e 

viii) 0 > H(&0;~ 0 ) = H(~0 ) ~ H(~l~O) = H(~l) 

. ifOl. 0 £ali .and H(~i) < co. 

ix) H (Oll) -= H (6t0) ~ H (6l]_fol0 ) - H (6{ 01uto) 

if H (Ol i) < co and dl 0 ~at_ i. 

H(6tl/6l0) = H(ctc)/cR.Q) ~ H(6?.i/~l) = H({Rofctll) 
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i r H ~ i I uta ) < co and 6L ~ <; <Jl]. , U{. 0 c CR. 1 o 

x) H(~ov~l) < H(~o) + H(~l) with equality if 

Olo and <1Ll are independent, . ieee , -~_if 

P(EnF) =·P(E).P(F) : 

If H(~0V~1 ) < co, then equality implies independence. 

xi) H(~0v~l/~) ! H(~0/~0 ) + H(~l/~0 ). 

1.4.5 Generalized Conditional Entropies 

A few generalized conditional entropies are given 

by M. Behara and P. Nath for finite measurable partitions 

(see ~1) from which Renyi's conditional entropy and 

Shannon's conditional entropy can be deduced as a 

particular case. Here, we define some of these generalized 

entropies. 

If (Rc) and 01 O are two finite sub-a-algebras of tQ 
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whose at oms are Ak ( 1 ,:: k ! "h.! ) and A1 ( 1 ,:: i ,::en ) 

respectively, then we know that the conditional probability 

of A givenlJt 
0 

is defined up to equivalence by 

lh.. P(AOA1 ) 
~ 0 (A) = p ( A/£1l 0) = i! 1 p ( Ai) X ( Ai) ; Ae:&O • 

.where x (Ai) is the -characteristic function 9f"Ai· and the 

.. 
conditional entropy of CR,0 w. r. t. <R.

0 
is defined as 

'h.' s E z (P(Ak/~0 ))dP k=l a 
l1 

. 
' 

where z (t) = 
a 

. 
' 

t = 0, a = 0 

; t = 0, ae:(O,m). 

Another conditional.entropy is defined as 

en.' r 
I a (0'1.(/& 0) = k!l J pa-l <t'Uo) ~a (P ( Ak:-{ll. 0)) dP • 

. fa 

An equivalent form of this definition is 

where 

I (Ol,0• /A.) = 
a ~ 

~· ' I Z (P(Ak-/A.)). 
k=l a ~ 

If <Ro, cR.0 and dll) be the finite sub-a.-algebras 
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of 6t, then the following properties hold; ( cf. -[1] ,- p. 34.;:37) a 

i) CX.0 ~62.0 up to _equi_valence -~ I a (()(0!6(0 ) = 0; a > 0 • 

iii) I (tR I VOL{) lot ) = I (62 I lot. ) + I (at" ltR V(R_ I ) • a 0 0 a 0 0 a 0 0 0 ' a > 0. 

iv) I ((Jt VdiQ) = a 0 
1a<~o> + 1a<~o1~o>; a ~ Oo 

v) rrot 0 c~0 l) then I a <cRoltR.o) =·· I a (&0 ) = I a ( <l?o ) ; a > 

vi) If 6{ o COlo, then I a (Olaf&. 0) < I <~"Joe >. 01. > o .• 
= a 0 0 ' = 

A few more generalized conditional entropies are also 

discussed in [1]. 

o. 



CHAPTER .II 

METRIC SPACES OF CONDITIONAL ENTROPIES 

AND FINITE.SUB-a-ALGEBRAS 

2.1 Metric Space of Conditional Entropies 

Definition 2 .1.1: Let cB and u be finite 

sub-a-algebras of@~ generated by the measurable partitions 

{B }n and {Cj}m respectively. 
i 1=1 j=l. 

Let& 0 be a 

sub-a-algebra of cR.. Then the function H (~/~) is 
~0 

almost everywhere defined by 

-H (03/t;) (x) = 
cRo 

m n 
I P ( Cj) (X) I 

j=l <R.o 1=1 
z (

P (B.nc.) (x) ) · 
02o ~ J 

P
10 

(C.)(x) 
Vl..O J 

where Z(x) = - x log2 x, 0 < x < 1 

and Z(O) = o. 

In particular, for~= {~, g} the function H (~) is 
CR.o 

· almost everywhere defined by 

n· 
H {6) ) (X) = - L P (B. ) (X ) 1 og2 P (B. ) (X ) • 
<Ro i=l dLo ~ CR.o ~ 

Remark 2.1.1: The following properties hold; 

(cf. [8], Proposition 2ol). 

a) H (ffi/~) is a~0-measurable function on g. aco . 
b) For almost every xen we conclude by the 

10 
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definition of· P<Ro that the mapping ~ 
0 

A---=J> bto (A) (x) 

is a measure on ~1vC1 and it follows that for any pair 

of finite sub-a-algebrasCB 1 and r; 1 ofd( ; (81 :::> <8 and 

C1=>C, H (63/,o), H (63 1 /-e1 ) and H (03 1/e) are conditional 
~0 ~ ~0 ~0 . 

entropies w.r.t. the measure space (n,m 1vCI, 1Ro) 

and the following result is true: 

that 

H (03;)0
1

) < H (!B
1
/e

1
) <· H (& 1/~) a.e. 

<Jlo '-' - at o - at 0 L· 

c) H(.(il/iRo V~) ,: J H (63/c;)dP, 
<R.o n 

Remark 2.1.2: From.(a). of Remark 2.1.1, we know 

H (lB/e) (x) is a(}(_ 0-measurable function 
6lo . 

-==t H (ffi/-e)(x)·is aOL-measurable function 
Olo 

-:?JH (63/r;)(x) is a random variable. 
<P'-o . 

Theorem 2.1.1: If Z is the s~ace of all 

equivalence classes of functions H (03/-c;) (x); where<R. 0 dlo 

is a fixed sub-a-algebra of(}( and Q3 and 'G are any two 

finite sub-a-algebras of(j( then ( Z ,drO ) is a metric 
VL0 

space, where 
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and03
1
,-e 1 ,CB 2 , 0 2 are finite sub-a-algebras ofCR-. 

Proof: 

c ) d ( H (lB 1lc 1 ) , H (0] 2 I e, 2 ) ) = 0 
oto oto (}(o 

~J 
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d) For almost every X£Q, we have 

and 

> I ~o <lBl/t;l > - ~o ((B/t::3> I + I H&o {(j\ / t;>3 > - H<Ro (<l/2/r:2 > I 
- 1 + JH<Ro (<Bl/cl) -= ~o (CB37e3) I + l~o (ca3/-e3) - HeRo (G32/e2)T 

Thus for a.e. X£0, we have 
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l\0 ~1/t:1>- ~0 <CB2/L2>1 < 1~0 <!81/·el)- ~ 0 <a33/~3>l 
1 + ·IH<Ro (031le1) - HOlo(lB2/~2) I 1 +·I HeRo {631/e1) - HtRo CC8/<:;~JT 

I H · (03 31 e 3) - HeR <m 2/ e2 > I 
+ . <flo . o 

1 + 1~ 
0 

<63 37~3 > - ~a <& 27c2 > 1 

-~ -1 

· Hence the triangular inequality is als~ satisfiede 

Corollary 2.1.1: Let the metric d on the set 
cil.o 

Z of Theorem 2.1.1 be defined as: 

9o (H <<131/~1), HJ'O (U32/e2>> = J IH (031/e1>- ~ (0321~2>l dP 
UlQ 6!. o V\...Q &..o . \/"La 

... 

then (Z, d ) is a metric·space. 
<Ro 
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2e2 Metric Spaces of Finite Sub-a-Algebras 

Theorem 2 I) 2 e 1: Let Ol. 0 be any given sub-a-algebra 

oflll. If Z is the set of all equivalence c_lasses of 

finite sub-=o-=algebras of 6t a~d if (l.B 1 1)'C'
1

)£ZxZ and 

(&2 ,e2)eZxZ, then (ZxZ, d~ ) is a pseudo-metric space, 
Ul.Q 

where~ for almost every xen~ d is defined as follows: 
<Ro 

d&o {(Slllcl>' (OJ2~t:2)l =. IH6lo (aJl/el> - ~o (632/e2> I. 

Proof: For almost every xen~ we have 

~ H (031/el> = H (632le2 > a., e } I H (63 1/e1 ) H (63 2 I e 2 ) I = 
<Ro ~0 <Jto oto 

~ d { (631 , t:1 ) , <CB2, e2 > l = 0 a.e. 
<K.o 

c) ~ o { (031 ''Cl) , (032 ;c2 >} = 0 aee.~ H (63 1 /e1 ) = Hoto (ffi2/e2 > ot.o 

~ (631 't:l) = (U32,'C2). 

d) Let (~ 3 ,c3 )eZxZ~ For almost every xeo, we have 

0 a. 

a.e 



+ I H C!b31-e.3 > - Ii . (_CB 2 le2 > I 
- Olo lRo 

~ ~0 { (<31,~>' (U32,-c2> l .! dcR.o { (CBl,t:l>' (lB3' -c3) l 

Thus it is proved that (ZxZ, d ) is pseudometric space. 
m.o 

Corollary 2.2.1: (zxz, d~ 0 ) is a bounded 

pseudometric space, if d is defined for almost every 
Oto 

xen, as: 

Corollary 2.2.2: Putting Ll = ·c2 = {o, ~} in 

the metric of Theorem 2.2.1, we find that (Z, d ) is a 
ate 

pseudometric space where d is defined for almost every 

X£0 as: 
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Other Examples of Pseudometric Spaces 

LetQ,L 0 and Z be as defined in Theorem 2.2.1. 

Consider the following functions on ZxZe 

'ko{(a>,l"r;l)• (tB2,~2n .. J IHIRQ (~El/el) - Halo (<32 le2> ldP. 

J I HeR. o (031/e 1 > .- ~ o ~ 2/ ~ 2 I 
'ko < (&>1, L'l) S> (032, ~2> 1 = 1 + IH (<B

1
7t:

1
) - H (en 

2
le

2
) I dP. 

ato & 0 

For each of the functions d given above (ZxZ, d~ ) is 
~0 VlQ 

a pseudometric space" 

3. 

4. 

Now consider the following functions on Za 

d (03 ''e ) ~ J I H (~ ) - H ('e) I dP. ao ~o . ~o 

For each d given by 3 and 4 (Z, d ) is a pseudometric 
~0 ~0 

space. 

Theorem 2., 2. 2: If <B and G are finite s ub...,o-=algebras 

of(J(., then we have the following results: 

1 ., H (cP., V t:) = H ( CB ) + H (C/cB ) a " e • 
oto d{o o 

where (B 1 is also a finite sub~a-algebra ofO{ e 



Proof: For almost ~very X£0, we know by the. 

definition of P/0 that the mapping P
10 

: A --7P (A) (x); 
ULO . VLO ~0 

AF!EV"G is a measure oncl>V'C (cf. (8], Proposition 2.1). 

Therefore H Cmv~) is the entropy w.r.t. the measure 
oto 

space ( n, 63 VC, IO?. 
0
). 

Hence H (CB Vt:) = H (03 ) + H ( ~ ) a. e. 
<Ro a o o 

Similarly P : A -PP (A) (x); AE(BVCVcB1, is a measure on 
6?o OLo 
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Therefore H (~ve;~ 1 ) is the conditional entropy 
ffio 

w.r.t. the measure . space (n, 03 VCVQ31 , IOta). 

Note 2. 2.1: I feB , 'L. , G) 1 , r: 1 are finite 

sub-a-algebras of(J2 , then the following results can be 

similarly proved. 

3. H (63/e) = H (CP>V63 1/e ) a.e if(B 1 c z:. 
<Ro m.o " 

4. H (CB/G) = 0 a.e ifffic:Cup to equivalence • 
6to 

5. H (13) < H ('C) a.e if Q3C C e 
lRo - <Ro . 

6. \a (63/c; > < H <<B1/e > a.e if ffiC{8l e - ffio 

7. H c&;c > > H (03/el > aee if c~c1• 
cRo - uta 
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Note 2.2.2: If Z is the set of equivalence classes 

of sub-a-algeb.ras orO(, then (Z, d) is a metric space 

where d is given by 

d (!B, t > = H (ffi lc > + H c e ~ > ; t13 ,e E z 
(cr. [5], Theorem 7, P •. 265). 

Note 2.2.3: For almost every X£~, a metric on 

the set Z of equivalence classes of finite sub-a-algebras 

of~ may be defined as follows: 

We know that if d is a metric defined on some set, then, 

l~d is also.a metric on the same set. Thus another 

·metric on the set Z for almost every x£n is given by 

H (~/c) + H (L'{D ) 
6Lo O?.o = • 

1 + H (a3 I c ) + H ( 't'·4 ) ' 
<Ko (i{.o 

Now each of these metrics generates one more metric given· by 

and 



CHAPTER III 

A COMPLETE METRIC SPACE OF SUB-a-ALGEBRAS 

3.1 Metric Space of Sub-a-Algebras 

c. Raj ski proved that the functional 

(1} d(x,y) = 1 -
I(x 1y} 
H(~,y) 

where H(x,y) + 0 and 
I(x,y) : H(x) + H(y) - H(x,y) 

is a distance in the set X of all discrete probability 

distributions (cf. [9J Theorem p. 372). It is a 

consequence of this theorem, that in Information Theory 

the dependence between the transmitted and the received 

discrete signals may be expressed as a distance • 

. Replacing x bYoto£6t andy be(Jl0c6C_ in (1), we 

prove in Theorem 3.1.1 that, 

r CeRa '1to > 
d(~o'~o> = l - H{~ov~-y' n<~ov~o> + o 

is a metric in the set of all equivalence classes of 

sub-a-algebras of(}(. 

It is observed that the theorem given by 

c. Rajski ([91) is a particular case of Theorem 3.1.1 and 

the proof is by comparison concise. In order to show 

this, we need the following lemma: 

Lemma 3.1.1: If (~,j,ll) is· a probability space 

where n = {w: 0,::: w,::: 1}, d-is the a-algebra consisting 

of all Borel subsets of n and ~ is Lebesgue measure, 

20 
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then corresponding to every :jiscrete probability distribution 

there exists a sub-cr~algebra of~. 
Proof: A discrete probability distribution is 

the collection of various values of a random variable which 

correspond to the atoms of a finite or countable measurable 

partition as the case-may be together with the probability 

measure of these atoms. 

To prove the lemma, we consider the following 

discrete probability distribution: 

Prob(X; x1 ) = p1 ; i = 1,2~oee; Ep1 = 1. 
i 

Let the atoms corresponding to the values x1 ,x2 ,x
3

, ••• 

of random variables be as follows~ 

The above subsets of n, obviously forms a finite or 

-countable measurable partition of n = [O,l} and hence 

there exists a sub-=O«=algebra of~ ·corres.ponding to this 

countable measurable partition. 

Theorem 3ul.l: If Z is the set of equivalence 

classes of sub-r-algebras of(R_ with finite entropy then 

the functional 

is a distance in the set z .• 
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Proof: 

a) 
H(~0 ) + H(~0 ) - H(~V~0 ) 

= 1 - H<~ov&a> 

= 
{ H G1( O VfX. O ) - H (&_ O ) } + { H (Ol O Vt1l0 ) - H ((R O ) } 

H(020 V~0 ) 

9 cR.o <;;uta up to equivalence and 

<Ro c;;CR 0 up to equivalence 

7 <R 0 =CR. 0 up to equivalence. 

c) Let (R0 = ot0 up to equivalence • 

. d) Now we establish the triangle in~quality •. We have 

H <Olo vo>~ > ! H <cR0 vtR0 vot0 >.; qt a ,dl0 ,6?.0 £ z 

< -
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= 
H{at0 Val(, Vat 0) - H0? O Vot0). + H([X O V&(}) - H(6t0) 

H <m0 vcR0 val8 J 

H((fl /ro'V!i> 11 ) H(t0 11 /;n') 0 UlO UlQ + __ l..t.Q U'-Q 

= H ((]{0 V(R0 V&.~) H (CR 0 VcQ0 V&.8) 
H (!R 0!& O V6{0) H (r}( ()ldtc)) 

! H (62 0 V& 0 V(R8-J + H {(R o 'i£8) • 

Hence 
H<&o1R.o > 
H(d(O VO( 0) 

H (6(01tR.o Vd?.o) H (6(0~ O) 
< H{(j[O V&6 Vd(o) + H<Cfio '&o) • 

Now, we prove that 
H <eRa~ a v 6la > 

H(ozo v&o '-rih'1 
H ((jl !f.l") 0 UlQ 

= H <6?. vfR_n) + H <& '/(.) v;o II) 
. Q 0 0 UL O U'l0 

H <&oltKo' V&.o" > 
> H (100Vflo") !:') ~~~~~ - ~ ~ / H(&0V& 0V~~) 

H <6to 1 cKo v tR 8 > 
H ((1(

0 
V0(0) < -

Thus (2) is proved~ 

Now from (1)· and (2) we have 

H Wo.loto > 

H <<Ro vcR.o > 

H((j(ol{j( o) H({R()~ o) 
~ H (0{

0 
VO( O ) + H (0(0 VO{(;T • ( 3) 

Interchanging the roles of~ 0 and 6{0, we obtain 

(1) 

(2) 



24 

H((R(,I01o) H{&(,l&o) H(1l()l&o) 
H (6(

0 
V0{0) ! H ((R O V(i0'f + H 0i O VOl_~ • -- ( 4 ) 

Adding (3) and (4) we obtain 

H(6( 0~ 0) + H((i(c)/6?_ 0) 

H<dlo VeRa) 

H(&0 laz 0) + H(R0@ 0 ) H G1l ' Ito " ) + H ((R "lo ' ) 0 lAQ Q U\. Q 
~ H(~OV~3) + H (<R r v;o II ) 

0 U\.0 

Note 3.1.1: Lemma 3.1.1 shows that the set 

of sub-a-algebras, each corresponding to a discrete 

probability distribution, is a subset of all possible 

sub-a-algebras of g... 

Thus if the probability space under consideration 

is (n,~,p) as defined in Lemma 3.1.1,' then the proof 

of c. Rajski's Theorem ([9]) on a metric space of discrete 

probability distributions follows immediately. 

H {6l /cR_ " ) + H (0{" I(R ) 
d (10

0 
,tJo" > = o o o o 

Ut Ill H ((j( 0 Vat~) 

H(~o1R o > 
Similarly d (6( 0" ,!fl..o' ) = • -- ( 7) 

H(~ovdlo> 

Adding (6) and (7), we obtain 
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Thus the inequality in (5) becomes equality if6to is 

replaced by 0( 0 V6(0• 

Corollary 3.1.1: 

d = H(61.o~O> + H(RQI&o> /(- H(O{olota.> + HC~c)lcxo>) 
H((){0 V()i'Q) /ll + H(01 O VatQ) 

H<liloltRo> + H(<Rb1Ro> 
= ~~~~~~~~~~~~~--~ 

H<cx0v6l0> + H(ot0~lo> + H(6(07<Ro> 

then (Z,d) is also a bounded metric space. 

Definition 3.1.1: A metric space (X,d) is 

convex if for any two distinct elements x,yEX, there 

exists an element z different from both x and y and such 

that 

d(x,y) = d(x,i) + d(y,z) 

Theorem 3.1.2: If z1 is the sub-space of 

sub-a-algebras of lR_ which are such that for any two 

sub-a-algebras one is not contained in the other, then 

(Zrd) is a convex metric ·space. 

Proot: The proof immediately follows from 

Theorem 3.1.1, Note 3.1.2 and the Definition 3.1.1. 



3.2 Completeness of the l\1etric Space of Theorem 3.1.1 

Theorem 3.2.1: The metric _space (Z,d) 

of Theorem 3.1.1 is a complete metric space. 
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Proof: We are to show that any fundamental 

sequence~1 ,~2 , ••• converges _in z. It is sufficient to 

consider the case d(&n,Ol.n+p) < -L (p > :0); for from 
2n 

any fundamental sequence we can select a subsequence 

satisfying this condition and a fundamental sequence 

that contains a conve~gent subsequence is convergent. 

We put 
00 00 ' 

t:R= A V (J(.k 
{=1 k=~ 

We prove this theorem under the assumption that H(~0 ) ! k 

(a fixed non-zero and positive constant)~6lo£Z. 

We have 

00 co 

d_ (O(n , (1? ) ! d (6ln , V (Q k) + d ( V 6l k ,<R.. ) • - ( 1) 
k=n k=n 

CIO 00. 

H((ll I V6{ k) + H( V6Ck4Jt~) 
n k=n k=n 

co 

00 CIO 

= = • (2) 
CIO 



Now, 

cO 

but (f( c: V Q?k. 
k=n 

Therefore 

= 

From (1), (2) and (3) 

Now for ..t > n 

CIO 

H( V tR_ k/Ol ) 
k=n+l n 
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0) 

H ( v (j( k) CD H <&.) 
k=n · 

= -----===--

1 _, H (6l.) 
- (3) 

0) • 
H( vCR.k) 

k=n 

we have 

+ 1 = 
H (CX.) 

0 -=-- (4) 
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00 00 

H( V 6l k/6?_ ) E H (6?~ l&.t _1) 

~ 
k=n+l n 

< 
l=n+l. 

co - 00/ 

H( VO[.k) 
k=n 

H( V(J(k) 
k=n 

00 

H( V <l( k~ln) H(a(n+16n) H(~+21fln+l) --> . k=n+1 
< + + • • • co - co 00 

H( V(]{_k) 
k=n 

H( V(j(k) 
k=n 

H( v6L k) 
k=n 

00 

H( V ·61 , l&n) 
k=n+l K + e€le 

00 

• it • 

1 

= 
2n 

= ·-·1 ---r 2n.,.l Cl 

1-2 
(5) 

Now from (4) oand (5) we obtain 

1 
d((}ln,"Q{) ! 2n-1 + 1 = H(Ol) 

00 

H( va{k) 
k=n 



Hence 

limit d~n'~) ! limit 
n --Jt CD n -7 CD 

1 

2n-l + 1 - limit 
n--)CD 

-
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H(m_) 

limit d(Ci(n,6l) < 0 + 1 - ~ (see [10], 5.8 - P. 16) 
n -7 co - H "'([ ' 

limit d(<Jln'~) ! 0 9 limit d(Cl1n,6t) = 0. 
n -7 co n-:> co 

Now we prove that H~:R.) is finite. 

we have 

Since limit d (Qt,<Qn) = 0 
n-7 co 

d(~,&n) < ~ (say) for some n 

H (& ,f;tn) + H <1?nf& ) 
H (at. V<Rn) 

1 
< -2 

1 
< -2 

H (01 VJ? ) - H (6( ) 
~ n n < 1 

-- H (Ol V(J( ) 2 
n 

~ H(ai) is a finite constant. 

Note 3.2.1: Let Z be the set of equivalence 

classes of finite sub-a-algebras of6{. Let (8 ,(;cZ 



and H (03VC') ~ 0, then, as in Note 2. 2. 3, · 
0'~.-o 

for almost every x£0 metrics on the set Z may be 

defined as follows: 

H (63/c;) + H ce~ > 
d5. d5 <03,eo> cRo Olo 

= = (a, VC) H • 
&o &a lRO 

H ((])I c ) + H ( L'4B ) 
lRo ·· Ulo 
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d6 d6 <<B ,e > = = H (<BVC) + H (03/e 5 + H (CkB ) 6to oto <Ro <Ro a o 

The other two metrics on the set Z are: 

j H (<13/e) + H (CtB) 
oto 6?.o 

= H (63V e) 
~0 

dP. 

H (63/c > + H ,c~ > 

• 

S 
<Ro a?o 

= H (03V&) + H (03/~) + H ( L.'1E, ) dP • 
lR.o <Ro lR.o 

3.3 Families of Metrics on the Set of Finite Sub-a-Algebras 

From Section 1.4.5, we know that. 

the generalized conditional entropy I a {{Rc)l&.o) for the 

finite sub-a-algebras Q? 0 andd(0 of 0( satisfies the properties 

(i) to (vi). Properties (iii) to (vi) are true for a! 0 

and (i) and (ii) are valid for a > 0 and a ! 1 respectively. 

Now we define two new entropies on the set Z . 

of all finite sub-a-algebras of CP~,... as follows: 



It can be easily verified that (Z,d1 ) is a complete 
a 

metric space for all a > 

for all a ~ 1. 

Note 3.3.1: For a = 1, Ia(~0;~ 0 ) reduces to 
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Shannon's conditional entropy. Thus if Z is the set of 

equivalence classes of finite sub-a-algebras of(J{, _then· 

two families of rnetrics on Z such that the metric given 

d = H(£0~ 0 )· + H(& 0;~ 0 ) belongs to J?l and the metric 

given by d = 
HGJ1o~o> + H<oza4.o> 

H(cRo voce) 
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