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A study of various definitions of Walsh functions is presented. 

Hardware implementation of Walsh function generators is based on 

evaluation algorithms which result from non-recursive forms of Walsh function 

definitions. A special-purpose instrument, which yields the first 64 Walsh 

series coefficients of an input signal, is described. Analysis of periodic 

signals requires two complete cycles of the input. For non-periodic 

signal s, measurement time or sample size may be preset arbitrarily. 

Decimal readouts of the coefficients are available at the end of the 

measurement time so that the instrument can be used for real-time applica-

tions . Walsh series to Fourier series conversion is discussed. A non-

recursive equation for the Fourier transforms of Halsh functions is 

obtained. 
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ABSTRACT 

Walsh functions are defined both by recursive and non-r~cursive 

equations. A synopsis is given of the properties of Walsh functions 

relevant to this thesis. Two algorithms for simple evaluation of an 

arbitrary point on a Walsh function that use only the binary codes for 

the parameters of the Walsh function result from the non-r~cursive 

definitions. Direct hardware implementation of the evaluation algorithms 

yields programmable digital Halsh function generators. One of the 

generators, which produces functions that are free of hazards or ambigious 

states, is modified to produce a parallel array of Walsh functions. 

This generator is used in a Walsh Spectral Analyzer that evaluates 

simultaneously several Walsh series coefficients of an input signal. 

Walsh series analysis and the concepts of the design of a digital 

* Walsh Spectral Analyzer are discussed. The equation that is used to 

determine a Walsh series coefficient is modified so that each portion of 

the equation can be manipulated conveniently by a digital instrument. 

Although the instrument was designed primarily to analyze periodic waves, 

extensions to the design can be made to accommodate aperiodic signals. 

Signals with frequencies from the audio range downwards can be analyzed 

by the Walsh Spectral Analyzer. 

Walsh series to Fourier series conv~rsion is dealt with. It has 

been found that the Fourier coefficients of signals that are limited 

*A photograph of t he \-Jalsh Spectral Analyzer is shot-m in Fig. AB a-1. 

(iii) 



either in frequency or in sequency can be evaluated precisely using a 

finite number of Walsh coefficients of the same signal. A dual 

relationship holds for Fourier to Walsh series conversion. The Fourier 

series coefficients of Walsh functions C~?rise part of the conversion 

relationships. The Fourier transforms of Walsh functions, from which 

the above coefficients can be obtained, are derived in non-recursive 

form. 
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Fig. AB-1 Photograph of lvalsh Spectral Analyzer 
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CHAPTER 1 

INTRODUCTION 

Waves, whi ch are fundamental phenomena in the universe, occur in 

many forms, such as mechanical vibrations or electromagnetic fluctuations. 

The concepts of frequency and Fourier spectrum have long provided a basic 

measure of wave phenomena. Historically, whenever the term frequency is 

used, reference is generally made to the sine and cosine functions. 

Since sinusoids occur frequently in nature (e.g., resonance of sound 

waves in a Kundt's tube) and since time functions used in communications 

can be represented by Fourier's superposition, sinusoids are used almost 

instinctively for waveform analysis. Sinusoids also are compatible with 

linear, time-invariant circuits. 

With the advent of pulse and switching technology, wave measurement 

techniques that were not intuitive by nature before, now become intuitive 

with r espect to the new form of the technology. With the ever-increasing 

abundance of digital logic hardware, particularly in integrated circuit 

f orm, there has been an evolution of thought towards finding a set or 
/ 

sets of functions that are more adaptable to digital hardware than are 

sinusoidal waves. Ideally, the set of functions should have but two 

values so that it is compatible '\vi th binary logic, and it should be a 

set of rnutually orthogonal functions so all signals can be represented 

by a superposition of functions in a manner analogous to a Fourier series. 

The set of hi-valued mutually or thogonal Walsh functions has been 

found to be well-suited to signal analysis. Harmuth [1] reports that 

(1) 
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probably the oldest use (circa 1900) of Walsh functions in communications 

was in the area of the transposition of conductors [2]. It was in 1923 

that J.L. Walsh [3] introduced the functions into mathematics. Walsh's 

set was the completion of the orthonormal system presented independently 

by Rademacher [4] in 1922. Extensive studies of the Walsh system and 

series expansions in terms of Walsh functions have been conducted since 

that time, notably by Kaczmarz (5], Paley [6], and Fine [7-9]. In 

recent years, Harmuth [1, 10-13] has been instrumental in promoting the 

search f~r practical applications of Walsh functions. Consequently, 

research in the area of non-sinusoidal functions in communications has 

been significantly stimulated [14,15]. 

This thesis deals principally with a digital instrument that has 

been designed to perform a Walsh series analysis of a signal in real-time. 

The salient features of this instrument are as follows: 

1) A Walsh Spectral Analyzer has been designed specifically for low 

frequency analysis (audio frequencies and under). There are no 

low frequency limitations. Since the time-base of measurement 

for periodic waves can be automatically adjusted to the funda~ental 

period of the input signal, certain error considerations during 

pe.riod determination establish the upper frequency limit. 

2) For periodic waves with a fundamer.-tal period T, the measurement 

ti~e is 2T. Since Walsh series coefficient values are then 

immediately available in sign .snd magnitude form, the instrument 

is suitable for real-time applicationse 
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3) The instrument design can be extended to analyze aperiodic wave­

for~~. Both measurement time and sample size can be preselected 

arbitrarily, in which case the measurement time is reduced toT. 

4) The outputs are in decimal code, but can be displayed in any 

other code, the only change required being in type of final 

readout counter. Maximum sample size is restricted only by the 

size of the output display. 

5) The instrument can be modified readily to determine the value of 

any specific component in the Walsh spectrum, or it can yield 

in parallel as many Walsh series coefficients as are desired. 

6) The instrument can also be modified to accept either a continuous 

signal and use its own A/D converter or to use ready-quantized 

data. 

7) Since all computations ~or a sample are complete before the next 

sample arrives, all programming and unnecessary storage facilities 

are eliminated. 

Walsh functions are defined in a number of ways in Chapter 2. 

Both recursive and non-recursive definitions are discusse.d and a synopsis 

of the properties of Walsh functions rel2vant to this thesis is given. 

Two algorithms for 8imple evaluation of an arbitrary point on a Walsh 

function and that use only the binary codes for the paTameters af the 

\~alsh functio~1. result from the non-recursive definitlonc. Di r ect hard·~ 

ware im?lementation of the evaluation algorithm::, yields programmable 
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digital Walsh function generators. One of the generators, which produces 

functions that are free of hazards or ambiguous states, is modified to 

produce a parallel array of Walsh functions. This generator is used in 

a Walsh Spectral Analyzer that evaluates simultaneously several Walsh 

series coefficients of an input signal. 

Chapter 3 deals with Walsh series analysis and the concepts 

of th.a design of a digital lolalsh Spectral Analyzer. The equation that 

is used to determine a Walsh series coefficient is modified so that each 

port i on of the equation can be manipulated conveniently by a digital 

inst r ument. 

An overzll view of a digital Walsh Spectral Analyzer is given 

in the first portion of Chapter 4. Although the instrument was designed 

primarily to analyze periodic waves, extensions to the design can be 

made to accommodate aperiodic signals. A detailed description is given 

of the design of each major section shown in the block diagram of 

the instrument. 

Walsh series to Fourier series conversion for several classifi­

cations of waveforms is discussed in Chapter 5. It has been found that 

the Fourier coefficients of signals that are either frequency-limited 

or sequency-limited [1] can be determined precisely by using the Walsh 

coefficients of the same signals. A dual relationship holds for Fourier 

series to \~alsh series conversion. The Fourier series coefficients of 

Walsh functions comprise part of the conversion relationships. The 

Fourier transforms of Walsh functions, from 'vhich the above coefficients 

can be obtained, are derived in non-recursive · fonn. A number of graph ic 
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examples of Fourier and Walsh series analysis and synthesis conclude 

Chapter 5. 

In Chapter 6, the significant aspects of the thesis are reviewed 

briefly. Possible areas for further investigation are suggested. It 

is felt that Walsh functions and the Walsh spectrum will continue to 

increase in importance in communications and other areas of information 

processing, particularly as more hardware systems using Walsh functions 

become available. 



CHAPTER 2 

WALSH FUNCTIONS i DEFINITION AND GENERATION 

,, __ 
2.0 Introduction 

Walsh functions have been paid significant attention in recent 

years. With the vast amount of research dealing with the properties and 

applications of these functions, numerous types of definitions and 

terminology have appeared. It is the intention here to establish the 

terminology for the Walsh functions that is predominant in this thesis, 

J derive non-recursive expressions to define the functions • 

. e coding algorithms for evaluation of arbitrary points on a Walsh 

~ion are developed from the non-recursive equations. Hardware 

~ lementaticn of the algorithms leads to the design of hazard-free 

nary Walsh func.tion generators, which can be incorporated into a special­

.rpose comput-er for Walsh spectral analysis. A synopsis is given of 

.os~ properti.es of the Walsh functions that are necessary to define the 

mctions, to develop a Walsh spectral analyzer, and to verify the 

·ocedure for Walsh series to Fourier series conversion. 

1 Recursive Definitions 

In his classic paper, J .L. Walsh introduced [1] a "new closed 

:t of fur1ctions { ~} nonnal and orthogonal on the interval [0 ,1]".. The 

Llsh funct i ons, i .e., the set{ $}, take only the values +1 and -1, 

:c.ept at a finite number of point s of di s continuity, where t hey ass u:ne 

.e value zero. The set {$ }, wh ich is ordered a ccording t o i ncr eas ing 

(6 ) 
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I 
I 
I 

nunber of zero-crossings, has the following recursive definition; 

+o<e> - 1, 0 < - e < 1 (2-1) 

{ 1, 
0 < e 1 <-

2 
+1<e> 

- -1, .!< e 1 < 
2 -

1, 0 < e 1 1< e 1 < 4 , < 
,<l>(e) • 

4 -
2 

.!< <1 e 4 4 

1, 0 < e <! 1 e <1 
,<2><e> • 

- 4 '2 < 4 

2 
! < 1 3 e <- '4< e < 1 
4 2 -

- - -
cfJ (k) (26) 0 e 1 

< <-
n ' - 2 

.(2k-1)(6) = n+1 
(-l)k+l <I> (k) (28-1) 

n ' 
! < 
2 e < 1 

<f>(k)(26) n , 0 < e <1 
2 

, {2k) (e) = n+l 

(-l)k <I> (k) (28-1) 
n ' 

! < 
2 8 < 1 

n-1 1 where k = 1,2,3,~ •• ,2 , n = 1,2,3, ••• ,~. With respect to 6 = 2, the 

functions <f>(Zk-1) and <f>( 2k) are even and odd, respectively. Periodic 
n+1 n+1 

functions can be developed by means of the set {<f>} if the definitions 

are Changed ate= 0 and e = 1 so that the value of ~(k)(e) is the 
11 

arithmetic mean of the limits at these points to the r ight and t o tha l eft. 

Walsh func.tions may be defi ned at a point of discontinuity to have the 
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average of the limits approached on the two sides of the discontinuity. 

Walsh used the definition of the functions ~(k) to obtain a 
n 

formula for ~~k)(e). lf e is the set in binary notation, 

y1 = 0 or 1 (2-2) 

then if in the binary expansion of e there exists y1 ~ 0 and i > n, the 

following formulas hold for ~(k): 
n 

- 1 

( y +y2 
' 1) = (-1) 1 
2 

y3+y4 
= (-1) 

yl 
- (-1) 

(2) yl+y2+y3 
'3 - (-1) 

~(2) 
4 

(2-3) 

A generalized law that is still in the form of a recursive equation 

appears from the relations in Eq. (2-3): 

(2-4) 

where ~k-l are members of the set {~} in order. The definition in the 

form of Eq. (2-3) can also be developed f r om a non-recursive equation 

of a Walsh function, as is described lc:ter in this chapter. 
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A more convenient notation for the set . {~} has evolved. The 

standard terminology adopted for this thesis uses wal(m,e), where m 

is the order of the Walsh function, and e is considered to be normalized 

time. As a comparison of ~(k)(e) with wal(m,e), m • n+k, and n equals 
n 

the number of bits in the binary expansion of m. Pichler [2] has given 

distinct notations, cal(s,e) and sal(s,e), to the even and odd Walsh 

functions, respectively. They are related to wal(m,e) by 

cal(s,e) c wal(m,e), m • 2s (2-5) 

and 

sal(s,e) • wal(m,e), m • 2s-l (2-6) 

where sis called the sequency [3]; that is, one half the average number 

of zero-crossings per second. The order m is then related to twice the 

normalized sequency for a set of sequency-ordered functions. 

Using the above terminology, Harmuth [4] has developed a 

recursive definition of Walsh functions in the form of a difference 

equation. 

wal(2i+p,e) = (-1) [i/Z]+p{wal[i,2(e+f)] 

i+p 1 + (-1) wal[i,2(6-4)]} 

where p = 0 or 1, 

i IZ 0,1,2, ••• , 

1 
1 for - 2 ~ a 1 <-

2 
wal(O, e) = 

a < 1 e > + l - 2' 2 -

1 and [i/2] means the largest integer smaller than or equal to 2 i. 

(2-7) 



10. 

1 1 Although the definition covers only the interval - 2 ~ e < 2 , periodic 

Walsh functions can be formed by ~uplicating the function over each 

successive interval. An illustration of the first 16 sequency-ordered, 

continuous Walsh functions over the interval 0 < e < 1 is given in 

Fig. 2-1. 

2.2 The Walsh Matrix 

An extremely useful representation of the Walsh functions is in 

the form . of a discrete Walsh matrix. The discrete Walsh functions are 

sampled versions of the continuous set of wal(m,e) in Fig. 2-1; the 

M M samples being taken ate = y/2 for y = 0,1,2, ••• ,2 -1, and M is the 
y 

number of binary digits in m. Henderson [5] describes the first 2M 

Walsh functions of 2M arguments as being represented collectively by a 

square Walsh matrix (W) whose rows are the successive Walsh f~ctions 

and whose columns correspond to the successive arguments for y over 

M 0 < y < 2 -1. The Walsh matrix for M=3 is shown in Table 2-1. The 

value -1 is denoted by -. Since the Walsh functions are two-valued, 

they can easily be coded into binary. A binary Walsh matrix (WB]' 

each of whose elements is 0 or 1, can be obtained from [W] by the 

in [W] (2-8) 

*This transformation is considered more convenient than that of 
Henderson f5) in which the 0 and 1 bits are interchanged. 
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wal(0,8) 1 ,..,al(0,8) 
0 

1 
wa1(1, 8) sal (1, 8) 

-1 

1 
wa1 (2, 8) I ca1(1,8) 

-1 

1 

l ttl'"''--wal (3' e) sal (2, 8) 
-1 

1 
wa1(4,8) 

-1' 
cal (2, 8) 

1 
wa1 (5, 8) sal(3,8) 

-1 

wal (6, 8) 
1 

cal(3,8) 
-1 

1 
'"al (7, 8) sal (4, 8) 

-1 

1 
wal (8, 8) 

-1 L__fl ca1(4,8) 

wal(9,8) 
1 

sal(S,e) 
-1 

1 
wa1 (10, 8) cal(5,8) 

-1 

wa1 (11, e) 
1 

sal (6, 8) 
-1 

1 
wal(l2,8) cal(6, 8) 

-1 

1 
wal (13, 8) sal (7, 6) 

-1 

wal(l4,e) 
1 

I c a.l c 7, e) 
-1 ' 

l~al (15, 8) 
.L. l_ sal(8,8) 

~1 

e I I I 

0 · 0.5 1 

Fig. 2- 1 Falsh }"'unctions 
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y = 0 1 2 3 4 5 6 7 

1 1 1 1 1 1 1 1 wal(O ,y) 

1 1 1 1 wa1(l,y) 

1 1 1 1 wal(2,y) 

1 1 1 1 wa1(3,y) 
[W] - wa1(4,y) 1 1 1 1 

1 1 1 1 wal(5,y) 

1 1 1 1 wal(6,y) 

1 1 1 1 wal(7,y) 

Table 2-1 The Walsh Matrix 

2.3 Properties of Walsh Functions 

Characteristics of the Walsh system are described in detail by 

Walsh [1], Fine [6], and Harmuth [4]. Presented here is a synopsis only 

of those properties that are relevant to a basic understanding of Walsh 

functions, to the development of non-recursive definitions of the 

functions, and to the design of a digital Walsh spectrum analyzer. 

With reference to Fig. 2-1, the Walsh functions wal(m,e) are 

considered periodfc over the half-open interval [0, 1). Although the 

1 1 period [- Z' 2) is used occasionally, we are concerned here with real-

time analysis of time functions and wi 11 consider the time origin as 0. 

The arguments m and e are the order and the normalized time, respectively. 

Each Walsh function of order m can be divided into 2M subintervals where 

1'1 is the number of bits in the binary representation of m. The value of 

a function is constant at either +1 or -1 over each subinterval. The 

latter property is useful in digital instrumentation since the Walsh 
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functions can then be represented as a sequence of ONE and ZERO logic 

levels. 

Several orderings of the Walsh functions are possible [7]. To 
~,.---

maintain an analogy with the increasing-harmonic number ordering of 

Fourier spectrum analysis, the Walsh set used in this thesis is sequency-

ordered; that is, ordered according to increasing number of zero-crossings. 

The number of discontinuities in the range (0,1) is then equivalent to m. 

The product of any two Walsh functions yields a single function 

whose order is determined by the modulo 2 sum of the orders of the 

multiplied functions [4]; thus 

wal(k,e)wal(m,e) :a wal(k e m,e) (2-9) 

where (±) stands for addition modulo 2. If k and m are both binary 

numbers, (±) represents add without carry. For example, multiplication 

of wal(6,e) by wal(12,e) results in wal(lO,e), i.e., 

0 1 1 0 6 

<±) 1100 12 

1 0 1 0 1 0 

This multiplicative property of the functions can be used to demonstrate 

one of the most important properties of the set; Walsh functions for.m a 

complete set of mutually orthogonal functions [1] over [0 ,1). Hence 

rl j
0 
~al(k,e)wal(m,S)da = 

{

0, 

1, 
(2-10) 

k :1 m 

k =- m 

Since the wal (p1, 8) are mutually orthogonal, the Walsh matrix [W] 

has some interesting properties. The rows of [W) and the columns of 

T its transpose [W] are also mutually orthogonal. The matrix of the 
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product [W] [W]T will therefore be nonzero only on its main diagonal, and 

because each element of [W] is either +1 or -1, 

where [I] is the identity matrix. It is evident from Eq. (2-11) that 
. 

the inverse of (W] is 

The matrix (W] is symmetrical (5] and hence equal to [W]T. From this 

relationship, 

wal(m,y) • wal(y,m) (2-13) 

2.4 Products of Rademacher Functions 

The complete set of Walsh functions can be obtained as direct 

products of the subclass of these functions known as Rademacher functions 

~(6) [6]. ~(6) can be associated with specific Walsh functions by 

~(6) = sal(2k,6) a wal(2k+l_l,6) (2-14) 

where k = 0,1,2,3, •••• 

According to Paley's modification [6] of the Walsh system, if 

the order m of wal(m,e) is given by the dyadic expansion 

then t he Walsh functions are given by 

vlal(O, 6) • 1 

M-1 
l-Tal{m) e) = rr ~{~(e)} 

k~o 

(2-15) 

(2-16) 
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* where ~ is a binary presence operator • The modified set defined by 

Eq. (2-16) is not sequency-ordered as in Walsh's original definition. 

However, it was found by Henderson [5] that the sequency-ordered set 

could be obtained by selecting products 1e-f --~ (e) according to bits in 

the reflected binary code. That is, if the bits gk in the Gray code 

for m are found in the usual manner from 

then 
M-1 

wal(m,e) - rr gk{~(e)} 
k•O 

(2-17) 

(2-18) 

where ~ is a presence operator similar to ~· Non-recursive definitions 

in tet~s only of the arguments m and e are derived from Eq. (2-18) to 

evaluate any arbitrary point on a Walsh function. 

2.5 A Non-recursive Definition for an Arbitrary Point on a Walsh 

Function 

Lackey and Heltzer [8] have presented a technique for solving 

Eq. (2-18) by listing sample values of those Rademacher functions that 

correspond to the ONE-bits in the Gray code for the order m. Corres-

pendi ng samples of the Rk (e) are multiplied to synthesize a discrete 

Walsh function. A simple extension [9] of this method allows evaluation 

*~ is a bir~ary operator such that ~{x} equals the. logical 

operation mk . x = m + x • Hence, 
k 

for ~= 0, ~{x} = 1 

and for ~ = 1, ~{x} = x. 
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of any arbitrary point on the mth Walsh function without listing tables 

of ~(e) and it yields a concise non-recursive definition for the point. 

Let the Rademacher values +1 and -1 be given the binary coding 

ZERO and ONE, respectively. If e has the limits 0 < e < l, the coding 

of each of the 2M intervals in a set of the first M Rademacher functions 

is equivalent to the first M bits in the binary fraction representation 

of any point e within that interval. Lesser significant bits that 

locate points within an interval can be ignored since the value of a 

Walsh function is constant over each of its sections. The ONE-bits in 

a bit-reversed Gray code for the order m enable the corresponding bits 

in the code for e to be operated on by a parity check for an even number 

of ONE's. The parity check serves -as a multiplier of the appropriate 

Rademacher functions. Since ONE's represent Rademacher values of -1, 

an even number of ONE's yields a Walsh value of +1 from the parity 

check. An odd number of ONE's yields -1. The Gray code form is bit­

reversed since the least significant bit (lsb) g0 controls Ro(e), which 

is represented by the most significant bit (msb) of e. 

An example of a Walsh function evaluation algorithm that is 

developed from the above form of coding is shown in Table 2-2. In the 

example, wal(22,8) is evaluated at a = .34429. In binary, e = .010110---. 

Thus, the point 8 is located in the twelfth of 32 intervals, and it is 

sufficient to evaluate wa1(22,8) at the beginning of the interval (i.e., 

at e = 11/32 = .01011). 



2210 = 101102 

~ 

11101 

~ 

10111 

e - • 3442910 
= 0.01011 

00011 

~ 

1 

i 

+1 

G 

K 

L 

Binary notation for wal(22,a) 

Gray code for 22 

tr----

Bit-reversed Gray code 

Binary notation for a 

Bits of K enabled by G 

17. 

Parity check for even number of 
ONE's in L. 

Value of wal(22,.34429) 

Table 2-2 Example of Algorithm for Walsh Function Evaluation 

The evaluation algorithm of Table 2-2 lends itself to several 

forms of non-recursive expressions defining wal(m,a). First express 

the position a as an integer y by 
y 

M y -= 2 e (2-19) 
y 

where 2M is the number of intervals contained in wal{m,e). Then if y is 

expressed in binary as 

M-1 k 
y - l yk 2 ' 

k=O 
yk = 0 or 1 (2-20) 

the parity check on the bits of y enabled by the bits of the Gray code G 

forms a product realization of the Walsh function as 



M-1 
wa1(m, e ) = II 

y k=O 

M-1 
= II 

k=O 

yk~-1-k 
(-1) 

Eq. (2-21) can also be written in summation form as 

M-1 

l yk~-1-k 
wa1(m,e ) = (-l)k=O 

y 

18. 

(2-21) 

(2-22) 

For a specific Walsh function, the Gray code bits in Eq. (2-22) can be 

omitted by summing only those bits yk for which 9M-l-k=l. In this manner, 

the same formulas as originally found by Walsh in Eq. (2-3) can be 

obtained from a non-recursive equation. Eq. (2-22) also turns out to 

be a simplified form of the Walsh-Kaczmarz equation [10] ; 

(2-23) 

In some of the literature on Walsh functions, wal(m,e) is considered 

1 1 periodic over the interval [- Z' z>· To use the definitions of Eqs. (2-21) 

and (2-22) for negative values of e , one uses the 2's-complement bits of 
y 

y. This is easily seen by observing that the values of a Walsh function 

at -a and at 1-e are equivalent. In binary, the 2 's complement of y y 

1-eyl equals l-ey for -1 < ey < 1. 

The coding algorithm of Table 2-2 has also proved useful in 

comput er evaluation of a Walsh function and in the design of a programmable 

Walsh function generator. A des cri.ption of the generator follm.;s. 



19. 

2.6 A Programmable Walsh Function Generator 

The definition of Eq. (2-21) evaluates only one point on a 

Walsh function. If the binary code is cycled through one period from 

M 0 to 2 -1, a complete Walsh function can be obtained. Using the codi ng 

ZERO and ONE for Rademacher values 1 and -1, respectively, the output s 

of a binary up-counter form the set of Rademacher functions. The msb of 

the counter represents R
0

(e). In the Walsh function generator design* 

shown in Fig. 2-2 the Gray code bits of the order of the desired Walsh 

function control ~~ gates that enable the appropriate coded Rademacher 

functions to pass through to a parity check for an even number of ONE 's. 

The design is thus a direct implementation of the algorithm of Table 2-2. 

The circuit in Fig. 2-2 can easily be implemented using IC 

logic. The latest available packages that can be used in the TTL line 

are given in the diagram. This generator design has the feature that 

it can be programmed by changing the input binary code for the order of 

the desired lvalsh function. The code can be changed at any time during 

the operation. The Walsh functions are always in phase with the synch r onous 

counter, regardless of changes in the input code. Wal(O,e), which is 

not a product of Rademacher functions according to Eq. {2-16), is produced 

when the input code is set to 0. 

The generator does, however, have a cl1aracteristic t hat could 

prove detriment al i n cer tain applications . Si nce the binary counter h as 

*Thi s des ign wa s i .mplement ed i ndependently several months be fore 
ident ical subsequen t d<.1s i gns were published [10 , 11] . At that tilne, 
publ i cation of the design was rejected ~ince only an example of t he 
accompanying algorithm, ra ther than a proof f) was given. 
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outputs that can change simultaneously, there is the possibility that 

the Walsh functions may contain ambiguous states, i.e., voltage spikes, 

or hazards [12]. Consequently, in the following section, another 

definition of Walsh functions is develop~~-and it results in implementation 

of a hazard-free Walsh function generator [13]. 

2.7 An Exponential Definition of Walsh Functions 

It is well known [4] that any Walsh function can be formed by 

the product of two or more Walsh functions where the order of the new 

func t ion is the modulo 2 sum of the orders of the multiplying factors 

[See Eq. (2-9)]. However, if we consider the new function wal(rn,e) to 

consist only of products of those functions in the set {wa1(2k,e)}, it 

is readily shown that the modulo 2 sum operation can be replaced by 

arithmetic addition. Since the binary representation of 2k contains only 

1 ONE in the kth position (where k • 0,1,2,3, ••• ), 

wal(l,e)wal(2,e)wal(4,e) = wal(l ® 2 ® 4 <±) ••• ,e) 

• wal(l + 2 + 4 + .•• ,e) (2-24) 

where + denotes addition. 

If ~ are bits in the binary representation of m, then it 

follows that wal(m,e) may be fanned by products of those members of the 

k . set {wal(~ 2 ,e):} for which ~ = 1. If, for example, m = 13, 

(2-25) 

= wal(lOOG + 100 + 1,6) 

= wa1(8 + 4 + 1,6) 

= wal(8,8)wal(4,S)wal(l,G) 
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Since the order of the result is the arithmetic sum of the order of 

the components, Walsh functions generated in this manner are sequency-

order ed. Then, from the above, 

M-1 k 
wal(m,e) • n ~{wal(2 ,e)} 

k•O 

M-1 
k 

• rr wal{~ 2 ,e) 
k=O 

M-1 
= wal( 2 ~ 2k,e) 

k=O 

(2-26) 

In the first row of Eq. (2-26), ~acts as a binary presence operator. 

Note also that if ~ = 0 for all k, 

M-1 
wal( 2 ~ 2k,e) = wal(O,e) • 1 

k=O 
(2-27) 

The definitions of Eq. (2-26) are, however, in recursive form 

and t hey give no direct evidence that they can lead to the design of a 

hazar d-free Walsh function generator. First, the equation must be 

modif ied by viewing the set {wal(2k,e)} as a set of hard-limited 

sinus oids; that is, 

wal(l,e) = sgn sin 2n6 (2-28) 

wal(2,6) = sgn cos 2n9 

wal(4,9) = sgn cos 4n9 

k • k 
wal(2 ,e) = sgn cos 2 ~a 

The hard-limited sinusoids are related to exponential functions by; 
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sgn sin 2n8 = exp jn <8> (2-29) 

sgn cos 2n8 = exp jn <28> 

sgn cos 4n8 = exp jn <48> 

~ 

k sgn cos 2 ne = exp jn <2k8> 

k k where <2 e> denotes the nearest integer to 2 e and e is in the range 

[0,1). Hence, each member of {wa1(2k,e)} can be represented by an 

' 
exponential expression; 

k k wal(2 ,e) = exp jn <2 8> 

where k = 0,1,2,3, ••• , 

o < e < 1. 

Simil arly, 
M-1 

wa1(m,8) • wa1( I ~ 2k,8) 
k=O 

M-1 
= exp jn[ L 

k=O 

k ' 
<m, 2 8>] 

K 

(2-30) 

(2-31) 

Evaluation of exp jn <mk 2ke> depends only on whether <~ 2k8>, 

which is an integer, is even or odd. In the binary product of m and e, 

only the digits immediately to the left and to the right of the binary 

point are needed to determine if the product is even or odd; that is, 

if the product ~ zke is of the form ---0.1--- or ---1.0--- then 

<~ 2ke> is an odd integer and exp jrr<~ 2ke> = -1. If ~ 2ke is of 

h f 0 0 1 1 · 2k ..:\ i d · 2k e > t e orm --- • --- or --- • --- tnen <~ o> s even an exp J1T<~ 

= +1. Since ~ 2k in binary always contains only 1 ONE in the kth 

position t it simply serves to shift the binary point of a to the right 

by k p laces.. Then if ~ = 1, the bi.ts around the binary point can he 
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considered as ek-l and ek. (Since e is a binary fraction, the bit 

e_
1 

for k=O is the integer portion and always e_1 = 0.) Addition of 

these two bits effectively determines the evenness or oddness of(~ 2ke). 

Consequently, 

Then 
. M-1 

wal(m,e) = exp jn[ L ~(ek-l + ek)] 
k=O 

(2-32) 

(2-33) 

The vaiue of the expression in Eq. (2-33) does not change if the addition 

of ek-l and ek is replaced by the modulo-2 sum or exclusive-OR operation. 

Hence, the following non-recursive definition* of a point on a Walsh 

function in exponential form is derived as 

M-1 
wal(m,e) = exp j1r[ I ~(ek-l ® ek)] 

k=O 
(2-34) 

If the exclusive-OR operation is performed between each pair 

of adjacent bits in binary e' that is, each pair ek-1 ® ek, the binary 

representation is changed to a Gray code. Let the Gray code bits be yk' 

where 
(2-35) 

Since the exponential in Eq. (2-35) can take only the values +1 or -1 

and since the binary bits can be replaced by a Gray code bit, the previous 

definition can be modified to 

* A summary of Walsh function definitions used in this thesis is 
given in Appendix A· 



M-1 
l ~ yk 

wal(m,e) = (-l)k=O 

• M~l (-1) ~ yk 

k=O 

25. 

(2-36) 

It can be seen that the above equation is similar in form to 

Eq. (2-22). However, whereas in Eq. (2-22), the order of the Walsh 

function was expressed in Gray code bits, the order is now expressed 

in binary; whereas the position bits were expressed in binary, they 

are now expressed in Gray code. M M Consequently, for a 2 x 2 Walsh 

matrix, Eqs. (2-22) and (2-36) may be used to show what was stated but 

not proved by Henderson [5], that the Walsh matrix is symmetrical. 

An equally important development of Eq. (2-36) is that combina-

tions of a Gray code count, which is a unit-distance code, rather than 

outputs of a binary counter, as in Fig. 2-2, can be used to generate a 

Walsh function. The functions generated in this manner are free of 

hazards. This characteristic of the Walsh function definition of 

Eq. (2-36) will become more apparent in the following description of 

the design of a hazard-free Walsh function generator (13]. 

2.8 A Hazard-free Walsh Function Generator 

The Walsh function generator of Fig. 2-2 was found to contain 

undes i red spikes due to small differences in propagation times of two 

or mor e simultaneous logic transitions through its combinational logic 

gates. Other lvalsh function generators [4,14,15] that were investigat ed 

were also found to be susceptible to hazards, while a different design 

[16], which uses differentiation, was considered to be unsuitable 
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because of its susceptibility to noise. 

Hazards in combinational irredundant circuits are particularly 

significant if memory elements (e.g., flip-flops) are to follow the 

circuit, so that a hazard could set a flip-flop into an incorrect state. 

One technique _for eliminating hazards is to introduce redundancies into 

the combinational circuits [12]. Such a technique, however, does not 

lend itself readily to most Walsh function generator designs in that 

the complexity of the gating circuit requirements becomes excessive. 

Alternative techniques are either to strobe the output or to custom-build 

compensating delay networks, but this again is wasteful. The design 

presented here uses the unit-distance property of the Gray code to 

avoid hazards. It is simple to implement, can be programmGd, and 

generates the Walsh functions in order of sequency. 

Most Walsh function generators [4,14,15,17 and Fig. 2-2) use 

the outputs of a binary counter in a form of exclusive-OR combinatorial 

system to synthesize the required functions. Fig. 2-3 shows two 

exclusive-OR formations commonly used in these systems that display 

propensity to hazards. If there are simultaneous changes on the inputs 

shown in Fig. 2-3(a), and if the input exclusive-OR gates have unequal 

propagation delays, then the output G has an undesired pulse. (It is 

assumed that gating of an exclusive-OR module cannot produce a hazard 

state within itself. A check en a number of IC gates showed this to 

be a justifiable assumption.) SimJ.larly, Fig. 2-3(b) shows an unwant ed 

ZERO-going pulse due to propagation delay of signal D, where as there is 

no delay in i nput C. If the changes on the input lines \vere not 
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simultaneous, hazards would be even more likely. In both cases shown 

in Fig. 2-3, it can be seen that if only one input at a time were 

allowed to change, only one transition would propagate through the 

system and no extra pulses could occur. 

The Walsh function definition of Eq. (2-36) indicates that ;my 

point on wal(m,6) may be evaluated using a parity check for an even 

number of ONE's in the Gray code number for the position 6 that have 

been e~abled by the binary bits of m. From this definition, a coding 

algorithm comparable to Table 2-2 can be devised (see Table 2-3). 

Direct implementation of the algorithm of Table 2-3 is a Walsh function 

generator design (shown in Fig. 2-4) in which outputs of a Gray code 

count er, rather than outputs of a binary counter, are enabled by AND 

gates that are controlled by bits ~ in the binary code for m to pass 

to a parity check, which consists of exclusive-OR configurations of the 

type shown in Fig. 2-3. Due to the unit-distance property of a Gray 

code, only one bit of the code changes with each count and only one 

transition at a time can propagate through the parity check system, 

resulting in hazard-free operation. Note that the most-significant 

bit (msb) of the Gray code is enabled by the least significant bit (lsb) 

of the binary code; the lsb of the Gray code is . enabled by the msb 

of the binary code. 

A more graphical visualization of the hazard-fre~ charact~:::-istic 

of using a combination of Gray code bits can be made by recallin2; that 

Eq. (2-36) was derived from a product of members of the set {wal(i:k , ~~)}, 
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wal(m,e) where m = 2210 = 101102 

e • .3442910 = 0.010110 2 

e_l eo el e 
/ r - 2 e3 e4 

0 0 1 0 1 1 

~ I ~l~J~l~l ® 

' Gray code for e 0 1 1 1 0 

AND 

Binary m m =1 0 m =0 1 m =1 2 m =1 3 m =0 J 4 

~ yk 0 0 1 1 0 

Even ONE's parity check 1 

w(-1)~ yk 
t 

= +1 = wal (22,. 34429) 

Table 2-3 Evaluation of wal(22,6) for 8 = .34429. 

as determined by the bits~ [see Eq. (2-26)]. A result of the derivation 

k is that sampled values of the set {wal(2 ,e)}, using the coding ZERO for 

+1 and ONE for -1, fnrm a cycle of a k-bit Gray code. Conversely, the 

k outputs of the Gray code counter in Fig. 2-4 comprise the set {wal(2 ,8)}. 

Fig. 2-5 illustrates the first four members of {wal(2k, 8)} and Table 2-4 

shows the coded samples of this set forming a Gray code. 

The absence of simultaneous level transitions ~eng members cf 

k {wal(2 ,e)} is evident from Fig. 2-5$ The first functi.on of the &et is 

t he odd functipn sal (1, 6) whi<.~h is a square wave with trans:t.tions at 
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sampled sampled sampled sampled 

2M e g3 - wal(l,e) g2 = wa1(2,e) gl = wal(4' e) go - wal( ~ ,e) 
y 

0 0 0 0 0 
1 0 0 0 1 
2 0 0 1 1 
3 " 0 0 tf"."-- 1 0 
4 0 1 1 0 
5 0 1 1 1 
6 0 1 0 1 
7 0 1 0 0 
8 1 1 0 0 
9 1 1 0 1 

10 1 1 1 1 
11 1 1 1 0 
12 1 0 1 0 
13 1 0 1 1 
14 1 0 0 1 
15 1 0 0 0 

Table 2-4 Coded Samples of k {wa1(2 ,e)} which Form a Grai Code. 

e=O and 6=.5. The remainder of the set comprises the even functions . 

k-1 cal(2 ,e). Since this latter set consists of evenly-symmetric square 

k-1 k-1 waves having 2 segments within the interval 0 ~ e < 1, cal(2 ,e) 

has transitions at S = [(1+2m)/2k+l]. If the transitions for any other 
m 

x-1 cal function within the above set, say cal(2 ,e), are at 

ey = [(1+2y)/2x+l], i t is shown below that the transitions of the latter 

do not coincide with those of the former; that is, 

where k =/: x and k,m,x, and y are positive integers. Eq. (2-37) can be 

rewri t t en 

(2-38) 



Let 
2k+l z 
--= 2 
2
x+l 
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(2-39) 

where z = k-x. Since k ~ x, z ; 0. Both (1+2m) and (1+2y) are odd 

z integers, and since 2 is always an even integer with no odd factors, 

(2-40) 

Hence each cal function in the set has a unique set of level transition 
. 

positions. Furthermore, these positions do not match those of sa1(1,6) 

since [(1+2m)/2k+l] cannot equal 0 or 0.5. No simultaneous state changes 

occur among different me111hers of {wal(2k ,e)}. In Fig. 2-4 then, the 

outputs of the Gray code counter, which constitute the coded set of 

{wa1(2k,e)}, allow at most one transition at each clock pulse to pass 

through the AND system and the parity check. 

The system of Fig. 2-4 was implemented using TTL integrated 

circuits. Attention needs to be paid to the Gray code counter since 

some designs are not hazard-free. For example, a system comprising a 

binary counter feeding a binary-to-Gray code aonverter would likely 

not provide hazard-free. operation. A particularly elegant design is of 

the iterative type (18] in which the clock is gated to only one of the 

flip-flops at each count. The design from [18] that was modified for 

use in the Walsh Function generator is discussed in more detail in 

section 2.10. The AND gates used in the generator are type SN7408 

and the parity check is SN74180. At the highest a vailable clock 

frequency, 10 HHz, the ~Ialsh waves were stable, were free of hazards, 

and had clean r i sing and falling edges ,. The s e l e ction of t he tva l s h 
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funct ion wal(m,e) to be generated is made simply by providing a binary-

coded input for m. 

2.9 An Array Walsh Function Generator 

Each of the Walsh function generators previously described 

produces a single, programmed function. In some applications, such as 

spectral analysis or multiplexing, several Walsh functions may be 

required simultaneously. Previous Walsh function array generators 

[4,19] display hazards. A simple extension of the design method of 

Fig. 2-4 yields a parallel array of Walsh functions that are free of 

hazards (see Fig. 2-6). Each of the Walsh functions is hardware-

programmed as a binary combination of outputs of a Gray code counter. 

For any given function wal(m, 8), one combines, using exclusive-OR gates, 

k those functions of the set {wal(~ 2 ,8)} for which nk = 1. Since the 

output of an exclusive-OR system is ONE if there are an odd number of 

ONE's at the input, each output of an exclusive-OR network is complemented 

by an inverter to produce a binary Walsh function in which +1 is coded 

as ONE and -1 is coded as ZERO. 

Gating for certain Walsh functions may be simplified by us i ng 

the outputs of exclusive-OR gates that are already engaged i n forming 

othe r Walsh functions. For example, wal(7,8) is the complemen~ of 

wal(l , 8) (±) wal(2,8) (±) wal(4 ,6), as shcv."tl in Fig. 2-6. Hm~ever , 

wal(l , O) (±) wa1(2, 8) ovras used already in forming wal(3, 0). Thus, one 

can use wa1(3,8) (±) wal(4,6) to form wal(7 ,e). In this rr. anner, one 

needs a t most, one addi tional exclus i ve-OR g3. t e f or each new Walsh 

function. In this simplifica tion p~ocejure , care mus t be taken that 
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redundant functions are not used in generating a new function. 

k According to Eq. (2-26), only a binary combination of {wal(2 ,e)} will 

give hazard-free operation. To illustrate, let us generate wal(5,e). 

With reference to Fig. 2-6 and Eq. (2-26), wal(S,e)must be formed using 

wal(l,e) and wal(4,e). Wal(3,e) and wal(2,6) will not produce wal(S,e) 

since wal(3,e) already contains the elements wal(l,e) and wal(2,6). 

Wal(2,e) can not be used again with this combination. Not only may 

hazards occur but according to Eq. (2-9), the wrong Walsh function will 

result • .. 

2.10 A Hazard-free Gray Code Counter 

Both the programmable Walsh function generator of Fig. 2-4 and 

the array generator of Fig. 2-6 are stipulated to be hazard-free. 

Although it has been established that a combination of Gray code bits 

accomplishes the hazard-free requirement of the generators, such 

discussion is useless unless the outputs of the Gray code counter portion 

of each generator are themselves free of irregularities. 

A Gray code counter that is a modified ve.rsion of a design by 

Majithia [18] can have only one of its outputs change with any clock 

pulse, since the clock input of only one of the J-K flip-flops that 

yield a Gray code bit is enabled at any stepe Hence, this counter, 

\-Thich is of the iterative type shown in Fig. 2-7, cannot be the source 

of any hazard states. 

Majithia's design [18] uses an auxiliary flip-flop A (see Fig. 

2-7) to complement the lsb of the Gray codet g0 , at every alternate 
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count. The g
0 

flip-flop in the counter is to be complemented when A is 

in state 1 und a count pulse is presented. From the 4-bit Gray code 

count sequence shown in Table 2-5 it is seen that the A flip-flop must 

be initially preset to ONE. Hence, A m~--be a presettable flip-flop. 

Simple T-type or J-K flip-flops suffice to generate the Gray code bits. 

Decimal Count Gray Code 

g3 g2 gl go A 
I 

0 0 0 0 0 1 
1 0 0 0 1 0 
2 0 0 1 1 1 
3 0 0 1 0 0 
4 0 1 1 0 1 
5 0 1 1 1 0 
6 0 1 0 1 1 
7 0 1 0 0 0 
8 1 1 0 0 1 
9 1 1 0 1 0 

10 1 1 · 1 1 1 
11 1 1 1 0 0 
12 1 0 1 0 1 
13 1 0 1 1 0 
14 1 0 0 1 1 
15 1 0 0 0 0 ____ .., ______ 

~-------------------------------------- -------
0 0 0 0 0 1 

Table 2-5 4-bit Gray Code Count Sequence 

The flip-flop g 
1 

is to be complemented when g
0 

is at 1, A at zero, and 

a clock pulse (c.p.) arrives .. Similarl y, g
2 

is 1:0 be complemented when 

g
1 

is at 1, all lesser significant s t ages are at 0, and a c. p. is 

present . If t his argument is extended to the kth flip-flop, one obtains 

the foll~1i~g conditions : 
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Use a c.p. to complement gk if 

-g· A • 1 
0 

(2-40) 

for k ~ 0. If k • 0, complement for A • 1. 

Examination of the above conditions for complementing the kth 

flip-flop and of Table 2-6 indicates that at the end of one Gray code 

count cycle, the msb of the Gray code is ONE and all other flip-flops 

are in state 0. The next count pulse would leave the msb of the Gray 

code as a ONE and merely complement flip-flop A. This, in effect, 

initiates a reverse Gray code count. Consequently, Majithia's design 

has been slightly modified in Fig. 2-7 to use the count pulse that would 

normally complement the (k+l) flip-flop to reset the kth flip-flop. 

Fig. 2-7 shows the entire counter being reset by this condition, but 

this is done to simpli fy the incorporation of an external reset. One 

necessary condition for the count pulse arises due to the modification. 

Since changes in the g outputs may occur at rising or falling edges of 

the count pulse, this pulse must be kept as short as possible. 

It can be seen that the design of the counter prevents hazard 

states in the g outputs. From the complement conditions of Eq. (2-40), 

only one g flip-flop nay be complemented at any count. The final 

count in a cycle resets only the msb of the Gray code. Consequently, 

this design of a Gray code counter in conjunction with the comb inational 

logic of Fig. 2-4 or Fig. 2-6 is used for generation of hazard- : ... ree 

binary Wal~h functions. 
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2.11 Conclusion 

The definitions of the Walsh functions have been developed from 

Walsh's original recursive equations to several forms of non-recursive 

expressions. With the variety of relationships available, one must 

take care before selecting which to use in specifying the ordering of 

1 1 the Walsh functions ['7], in defining the period ( [- 2' 2>, [0 ,1), etc.), 

or in defining the position (binary fraction over 0 ~ e < 1, or integral 

M interval number y = e2 ). Properties of the various definitions should 

be considered before use. For instance, the definition [Eq. (2-36)] in 

which the Gray code bits for the position and the binary bits for the 

order are used has been utilized to design a Walsh function generator 

that is free of hazards. On the other hand, a definition that is 

similar [Eq. (2-21)] but uses binary bits for the position and a Gray 

code for the order does not le~d to hazard-free operation. For 

convenience, all the equations that are mentioned in this chapter with 

regard to sequency-ordered Walsh functions are summarized in Appendix B. 

Software programming for evaluating Walsh functions is 

simpli fied using the coding algorithms described in this chapter. 

The orthogonal property of the Walsh functions, which are also 

convaniently two-valued, makes this set of functions particularly 

attractive in the design of a digital instrument for spectral analysis 

of signals. The functions can be used to represent a waveform in a 

Walsh seri~s in much t he same way as sinusoidal waves are used to form 

a Fourier series. walsh series analysis is discussed in greater detail 
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in t he following chapter. Based on this analysis, a digital instrument 

that determines the coefficients of the Walsh series of a waveform in 

real- time has been designed. The hazard-free Walsh function generators 

of Fi g. 2-4 and Fig. 2-6 play an integral role in the development of 

such an instrument~ 



3.0 Introduction 

CHAPTER 3 

WALSH SERIES ru~ALYSIS 

Characterization of signals and systems by the frequency domain 

has been well established. The · concepts of frequency analysis and 

spectrum can be more generally perceived by observing other complete 

orthogonal sets. One set of functions that is well-suited for this 

purpose is the set of Walsh functions. Using this set of functions for 

the description of time-dependent functions in the sequency domain is as 

meaningful as the description of the same signal in the frequency domain 

since both series expansions converge to the signal in the least mean 

squares fit [1]. This chapter concerns itself initially with signal 

analysis by means of expansion into a Walsh series. Emphasis is then 

placed on speci fications for a digital special-purpose instrument that 

will determine the Walsh series coefficients of a function in real-time 

using samples of the input waveform. The basic equations of the Walsh 

series coefficients are modifi.ed into operating equations that can be 

handled by the digital instrument. Instrumentation requiremer.ts to 

process each portion of the operating equation are then discussed. 

3.1 The Walsh Series 

A function f(6) uhich is of period 1 and Lebesgue integra91e on 

(0,1) may be expanded into a Walsh series [2], viz. 

(42) 
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(3-1) 

where e is the not~alized time and where A0 , A , B and W are the s s s 

coefficients of the terms of the series. The set of Walsh series 

coefficients for~s the Walsh spectrum [1-13]. According to Theorem II 

of Walsh [1], if f(6) is continuous in the interval (0,1), the series 

express.ed in Eq. (3-1) converges uniformly to the value f ( 6) if the 

terms are grouped so that each group contains all the 2M-l terms· of a 

set {wal(m,S)}, where M is the number of binary bits in m. Walsh's 

Theorem II can be extended to include discontinuous functions f(8) if 

f(8) is integrable in the sense of Lebesgue. 

The objective now is to derive relations whith will yield the 

Walsh series coefficients of an unknown signal. According to the 

standard procedure for determining the equation for the coefficients of 

an orthogonal series [14], both sides of the series expansion of Eq. 

(3-1) are multiplied by wal(k,e) and then integrated over one period T. 

Thus, 

J: f(O) wal(k,O)de = I: m!O wm wal(m,e) l<al(k,e)de (3-2) 

Since Walsh functions form a mutually orthogonal set [see Eq. (2-10)] , 

all terms on the right side of Eq. (3-2) will integrate to zero e.x~ept 

for the product of the UaJ sh functions for lvhich k = rc . Then 
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W wal(m,e) wal(k,S)de 
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J
T . 

Wk = t 
0 

f(e) wal(k,6)d6 
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(T 2 
= Jo wk wal (k,e)de = (3-3) 

(3-4) 

Similarly, fo.r the average value Au and for the coefficients of the 

even and odd components, A and B , respectively, 
s s 

1 JT . A0 = T 
0 

f(e)de 

-- _Tl JTO A f(8) cal(s,e)de 
s 

B =! JT f(e} sal(s,e)de 
s T O 

(3-5) 

The amplitude spectrum of the ordinary Fourier transform is 

defined as the square root of · the power spectrum. This definition is 

based on the relation 

1 

af cos 2nf8 + bf sin 2nfe = (a~+ b~) 2 
cos(2nfe - arctan(bf/af)] 

Such a relationship does not hold for the \olalsh spectrum (15]. 

Consequently, there is no simple relationship bet't..reen W , A and B • 
m s s 
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A and B are commonly interpreted individually as Walsh amplitude 
s s 

.·spectra of the symmetric and the skew symmetric parts of f(8). 

3.2 · Concepts of a Digital Walsh Spec~rum Analyzer Design 

A special-purpose instrument is to be designed that meets the 

following general specifications: 

a) the ·instrument should yield the Walsh spectral coefficients of 

a waveform at audio frequencies and· lower, 

b) · the process should be carried out in real-time, 

c) the instrument should use as few cycles of the input (if it is 

periodic) as possible to complete the measurement, and 

d) the system should have as little memory as possible. 

Primarily, there is a choice between designing a digital or an analog 

instrument. A digita~ design was selected since digital logic is 

obviously compatible with Walsh functions, which have only two states, 

and can be coded easily using binary logic. A d:Lgital i.nstrument adapts 

itself more readily to low frequency analysis (say under 1 Hz) than does 

an analog device. Ari t hmetic operations, storage, and numerical readouts 

are facilitated using digital hardware. At this ti.me cost considerations 

generally give digital components an additional advantage over analog 

components. 

Secondly, the spectral analyzer design can employ the s t r ai ght-

forward approach of sampling the input wavefo rm and processing t he 
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samples using the coefficients equation of Eq. (3-5), or one can 

implement the Fast Walsh Transform (FWT) [16,17] which is comparable 

to the FFT (Fast Fourier Transform). The direct approach was selected 

since it is felt to have certain advantages over a Fast Walsh Transformer. 

A machine that processes each sample of a waveform before the next 

sample arrives and which calculates in parallel as many Walsh coefficients 

as desired can be made more versatile and can operate faster than a Fast 

Walsh Transform device. 

The digital Wals~ Spectrum Analyzer that i.s described in detail 

in Chapter 4 has various modes of operation: 

1) for periodic waveforms; there is automatic period detection 

using successive positive-going zero crossings of the input. 

Calculations are time-locked to the waveform period, and 

measurement is complete at the end of the second cycle of the 

input wave. 

2) for periodic waveforms with more than two zero crossings per 

cycle; there is automatic period detection using successive 

positive-going crossings of an arbitrarily set reference voltage. 

Again the processes are time-locked to the signal and there is 

two-cycle operation. 

3) for any waveform; a second input control makes provision for a 

square \·lave or a set of marker pulses to be used to start the 

calculations and to set the period of measurement arbitrarily. 

This period i.s automatically measured within the instru11ent 
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and calculations are made similar to modes 1 and 2. 

Several additional modes of operation could be built into a Walsh 

spectral analyzer as described in 4) - 6) below. However, the minor 

changes that would be required in the control system to accommodate 

them have not been included in . the design of Chapter 4: 

4) the period of measurement could be selected arbitrarily by 

presetting the period detector. This operation would enable 

single cycle measurement of the coefficients. 

5) M a pre-selected number of samples (say 2 ) could be used for 

the measurement. The period of the signal to be analyzed is 

determined by the sample size and the sampling interval. Again, 

single cycle operation is enabled. 

6} a set of digi t al samples coul d be analyzed by bypassing the 

A/D converter that would normally be used to sample t he analog 

input~ 

A Walsh spectral analyzer that can operate in any o f the ab ove 

modes is a more versat ile ma ch i ne t han a Fas t Walsh Trans forme r. Whe reas 

an FWT requi res a predetermined nt~ber of samp l es to be s tored before 

cny pr ocess ing is done on the s amples, the Walsh Spe ct ral Analyzer (here-

a fter denoted WSA) can p r ocess each of an indeterminate number of 

sample s !Je fore t he next s ample i s taken. Thus, the WSA comple tes 

proces sing by the time t.:le r~'T begins its s ample processing . I f desired , 

t he WSA can cperate i n a si~ilar way to the fviT by preselect i ng the 
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number of samples (see mode 5) but again calculations are complete 

immediately after the arrival of the last sample. Consequently, the 

WSA is closer to a real-time instrument than the FWT. 

It is not generally possible for the FWT to operate in modes 

1) to 4). The F~ would be difficult to synchronize with a periodic 

wave or the time window of an arbitrarily set period. The only storage 

requi rement of the WSA is the final readout storage for each of the 

Walsh ~eries coefficients, whereas the FWT must provide storage for a 

comp l ete .set of data samples. 

3.3 Operating Equation for Walsh Spectral Analyzer 

The Walsh Spectral Anslyzer that has been implemented is a 

digital instrument, so that data from a signal is in the form of 

quantized samples. Since discrete samples are used to describe f(8), 

integration in Eq. (3-5) is replaced by summation. If there are H 

samples of f(8) during the period T, where T is normalized to 1, then 

d6 = 1 
H 

and t he equations in Eq. (3-5) can be rewritten as 

H 
1 \ 

AO = H L f(6)h 
h=l 

B 
s 

1 H 
= L f(8) h sal(s,e)h 

H h=l 

(3-7) 

(3-8) 
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where _f(6)h' cal(s,6)h an~ sal(s,6)h are the values of the respective 

functions at the time~ of the hth sample. 

The samples of the continuous wave f(S) are processed by a 

binary-coded analog-to-digital (A/D) converter. Quantization of the 

waveform during the coding process means that all of the samples within 

the range of voltages specified for any given level are represented by 

the same value. For example, in Fig. 3-1, if the A/D converter has a 

range ~f 0 to Vmax volts and has p quantization levels, then the signal 

f(6) is considered to have the quantized value [V (2r+l)/2p] volts max 

when f(S) lies between the levels r and r+l. Fig. 3-1 shows f(6) lying 

in this range ?etween the normalized times 62 ~~d e
3

• 

However, since the A/D converter yields only a binary-coded signal, 

each sample of the wave f(6)h, which is taken between times 62 and 63 
1 is represented by the binary-coded value of r + z• Let this binary 

number be designated Qh. To change the coded value back into a voltage 

value, a conversion factor (C.F.) is introduced. 

where 

Hence 

and 

V (2r + 1) 
max 

f(6)h = ---:----2p 

1 2r + 1 
Qh = I' + 2 = 2 

(C.F.) = 
v max 

p 

v 
=~Q 

p h 

= (C. F .. )Qh (3-9) 

(3-10) 

(3-11) 

(3-12) 
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The A/D converter used can accept waveforms in the range 0 to 

+10 volts. An AC input signal is rectified before it is sampled by the 

A/D converter. In this way, samples with the same absolute value are 

given the same coding, and -an additional signal is used to indicate 

the sign of f(6). A logic ONE level is used to represent the positive 

portion of the signal and a logic ZERO level is used to indicate that 

f(6) is negative. Now f(6)h can be rewritten as 

v 
£<6> = ~ ·1Q 1 f(6) h p h sgn · h (3-13) 

Consequently, the operating equations that can be handled by a digital 

Walsh Spectral Analyzer to perform Eq. (3-5) have the final form 

v H 
A = __EtaX l 

0 . pH h=l 
!Qhjsgn f(6)h (3-14) 

v H 
A max l IQhlsgn f(O)h cal(s,6)h =--

s pH h=l 

v H 
B 

max I jQhjsgn f(6)h sal(s,6)h =--
s pH h=l 

3.4 Signal Processing in the Walsh Spectral Ana!Y-zer 

The stages of signal processing in the WSA are determined by the 

operating equations Eq. (3-14). With reference to the example in Fig. 

3-2, which sho~rs a signal [Fig. 3-2 ( a) ] that is to be. an.al.yzed accordi~lg 

t o mode 1 , the first step is to r e tify f( 6) [Fi g . 3-2(b)] and provide 
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a logic signal that indicates the sign of the input [Fig. 3-2(c)]. In 

·mode 1), the first cycle of the periodic wave is used to determine a 

measure of the time of one period. During the second cycle the Walsh 

coefficients are calculated. Eq. (3-14) requires that the input wave be 

multiplied by a Walsh function corresponding to the coefficient to be 

evaluated and the function must be correctly timed and have the same 

period as the analyzed signal. Consequently, Fig. 3-2(d) shows a 

Walsh £unction [in this case, sal(3,6)] generated during the second 

cycle of the input. The binary equivalent of sal(3,6) is shown in 

Fig. 3-2(e). The summation of samples of f(e) according to Eq. (3-14) 

is best handled by adding or subtracting the binary samples of lf(6) I, 
where the addition or subtraction is dependent on the product of the 

signals sgn f(6) and sal(3,6), as indicated by Fig. 3-2(f). The latter 

signal enables the Walsh coefficient B3,to be determined. 

The other modes of operation follow the same basic structure of 

the processes outlined by Fig. 3-2. In mode 2), if the signal has more 

than two zero-crossings per cycle, a reference level is adjusted 

positively or negatively to a point where there are only two crossings 

of the reference level per cycle. The steps of Fig. 3-2 then begin 

with the firgt positive-going crossing of the reference level. In 

mode 3), marker pulses on a control input channel, rather than the 

analog signal to be pr~cessed, initiate the period measurement and 

analysis. 

Preselection of the period of measurement according to modes 4) 

&~d 5) enables the operation to begin immediately at a point equivalent 



54. 

to the beginning of the s~cond cycle shown in Fig. 3-2. Successive 

time windows of a function could be used to evaluate a time-varying 

Walsh spectrum by operating in modes 4) and 5}. A digital Walsh 

Spectral Analyzer that is designed to operate in any of the first 

three modes is discussed in detail in the following chapter. 



CHAPTER 4 

DESIGN OF A DIGITAL WALSH SPECTRAL &~ALYZER 

4.0 Introduction 

The operating equation (3-14) provides the basis for the design 

of a digital Walsh Spectral Analyzer. A special-purpose instrument has 

been designed ·and constructed to operate in the first three modes of 

operation as outlined in Chapter 3. A detailed description of each 

section of this analyzer follows an overall vie'tv of the system. 

4.1 Complete System 

The block diagram corresponding to the complete Walsh Spectral 

Analyzer is shown in Fig. 4-1. Portions of the operating equation of 

Eq. (3-14) which rela t e to the various blocks are indicated on the 

diagram. 

After being interfaced by a high input impedance voltage 

follower, the analog input is directed along three paths: the first 

leads to the conversion of the input f(8) into a series of quantized, 

binary-coded samples. The second path is us ed simply to determine t he 

sign of the input signal. The t hird path leads to controls v1hich use 

information concerning the period of the input i n order to process t he 

binary-coded s amples from the first path. Vlhen the switch S\-11 of Fig . 

4-1 is connec ted to the mode (3) cont rol , the analog input is led on ly 

to t he first two pat hs so that ex terna l i nfo rmat ion must be provided to 

determine t he period of measur ement. The i nput to t he mode ( 3) control 

(55) 
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should be a sequence of pulses or a . rectangular wave with a period 

equivalent to the desired period of measurement. 

The first path contains two major components, a rectifier and 

an A/D converter. Rec~ification is positive so that the input to the 

A/D converter is restricted to the range 0 to +10 volts. The output 

of the rectifier !f(O) I is sampled by the converter. The samples jQhj 

are quantized and given a binary coding. The digits of the coding 

appear on parallel output leads. Since the first cycle of the input 

signal or the mode (3) control signal is used only to determine the 

period _of measurement, controls-permit the A/D converter to operate 

only during the second cycle. A counter is used to total the number 

of samples. Since the input has been rectified, the second path 

contains a sign detector which provides a binary signal sgnf(8). 

Concurrently , in the third path, f(S) passes to a period 

detector, which detects crossings of a r ·eference level either by the 

analog input or by the mode (3) control input signal. This information 

is ne cessary since all system operations are to begin with the first 

posit ive-going voltage reference level crossing and Halsh functions are 

to be generated with a time-base equal to the measurement period. The 

period detector provides signals that indicate whether the system is 

in t he first or second cycle of operation and whether all calculations 

are complete ~ These signals are sent to pa~el light indicators and to 

a pul se generator tha t produces correctly-timed pulses for the Wa lsh 

func t ion generator (W.F.G . ). The W.F.G . pulse genera tor trans mi ts pulses 

that enable .:he \·Jalsh function ge.ne rator to produce a paral l e l array of 
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functions with the correct time-base during the second cycle of operation, 

as shown in the example in Fig. 3-2. If the clock system controlling the 

generator is not operating at a rate sufficient to calculate the measuring 

period within certain error limits, the system stops and panel lights 

indicate 'tvhether the clock rate should be increased or decreased. 

Each Halsh function generator output ties into the follmving 

blocks; an accumulator control, an accumulator, and a coefficient 

readout. Since the analyzer that was constructed was a prototype, 

facilities were provided to calculate only two Walsh series coefficients 

at a t~me out of a possible 64. · The two coefficients to be measur8d are 

selected before operation by rotary switches. The accumulator control 

has an output signal sgnf(8) wal(m,e). This signal determines vlhether 

the samples of lf(8) I from the A/D converter should be added tc or 

subtracted from the previous total in the accumulator. Each of the 

accumulators is designed to divide the accumulation of sample values hy 

the number of quanti2:ation levels pas required by Eq. (3-14). Thns, 

the final stage is a bank of counters that count the overflow from each 

accumulator. Each of these last stages hold a count equivalent to 

H 
L IQhl sgnf(8)h wal(m,e). 

h=l 

Numerical indicators can be used to display the counter contents. The 

final count value differs from Eq. (3-14) by the factor V /H. max 

V = lOJ and H is supplied by a separate counter. In using the proto-max 

type instrument, it is left to the operator to multiply the coefficient 

readout by 10/H. Howeve r, the Walsh coefficient equation is sometimes 

derived (i~e., [1]) without the factor 1/H. In this ease, simple 
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multiplication by 10 suffices. 

H is also used to determine the frequency of the fundamental 

component of the series. If the sample frequency is f , then the time 
s 

between samples is ·1/ f • 
s 

The time for H samples is H/f = T, and the 
s 

fundamental frequency or sequency is f /H. 
s 

In addition to the main blocks of the instrument, some peripheral 

controls are required. There is a master clock whose frequency can be 

reduced in decade steps to determine the s~~ple rate of the A/D 

converter and the W.F.G. pulse generator. Start, stop and clear controlst 

which regulate several portions · of the analyzer, complete the design of 

the digital Walsh Spectral Analyzer. Detailed descriptions of each 

section of the instrument follow. Due to continually changing availability 

of components, reference to commercial devices used in the construction of 

a prototype instrument are limited to a fe\~ specific cases. 

4.2 Precision Rectifier 

A precision rectifier [2] with negligible distortion in the 

range D.C. to 5 KHz was built using high slew-rate operational amplifiers 

(250 V/~sec) and stable precision resistors. The rectifier circuit is 

shown in Fig. 4-2. 

When the input VIN to the rectifier is negative, the voltage 

v01 from~ first operational ~plifier ie essentially zero and the 

second operational amplifier acts as an inverter with unity gain so that 

the output is given by 

(4- 1) 
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When t he input VIN is positive, the diode Dl conducts making v01 = -VIN' 

_since the gain of the first inverting amplifier is also unity. The 

second amplifier now acts as a summing and inverting amplifier with an 

output given by 

(4-2) 

The precision resistors were matched to maintain accurate ratios 

on the summing inputs of the amplifiers. Measurements of the rectifier 

that was constructed indicated that there was a maximum error of 6.8 mv. 

on the output for an input in the range ±25 mv. to ±10 V. Propagation 

delay through the rectifier is less than 1 ~sec. 

4.3 A/D Converter 

After rectification, the waveform being analyzed is sampled and 

quantized. The samples are given a binary coding, with each bit of the 

code appearing on a separate lead. An 8-bit successive approximation 

A/D converter with a built-in reference supply is used [3]. A diagram 

of the A/D converter is shown in Fig. 4-3. 8-bit quantization, in which 

case the quantization steps are approximately 39 mv. wide, yie lds an 

amplitude error which is a tolerable .4%. 

The sample accmnulation system which is described later requires 

the bits in the coding from the A/D converter to be processed serially 

in time. The A/D start pulse ripples t h rough a time delay network, and 

the delayed pulses can be tapped to enable successively each bit of t' e 

coding, beginning wi ti.1 the ill . s. b.. The outputs Ph of the enabling ne-cwon< 
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are indicated in Fig. 4-3. The subscript of the bits Ph gives the binary 

count value represented by each pulse. There are 9 points in the 

converter from which the delayed pulses may be tapped. Eight of them 

are -used to produce the coded pulses equi-valent to level r. The ninth 

1 . d f 1 . d b" 1 . 1 pu se 1s use or samp e count1ng an to represent a 1nary 2 s1gna 

which ent~rs into the sample accumulation regardless of the coding. 

The i- bit addition with each sample is a requirement of Eq. (3-10). 

Test measurements on the converter showed that the conversion 

is complete within 9 llSec. Thus, a maximum sampling rate of 100 KHz ,, 

allows ·1 llSec. settling time between the end of conversion and the 

beginning of t~e next start pulse. Controls to determine sampling rate 

and duration of sampling, and to generate the A/D start pulses are 

descri bed in the following section. 

4.4 A/D Converter Controls 

The ~ontrol system of Fig. 4-4(a) sends constant width pulses at 

a preselected rate to the start pulse input of the A/D converte~. The 

pulse rate :from the 1 HHz master clock in the Walsh Spectral Analyzer is 

reduced through 6 decace counters. A rotary switch is used to select 

sampling rates from 100 KHz down to 1 Hz. Three control signals enable 

the timing pulses to ~ass to the constant width pulse generator. The 

sampling rate signal i s enabled only '"'hen the \v G S .A . system enable 

signal and the FF2 signal (a control signal from the period detector that 

permits sampling to take place only during the second cycle of oper ation) 

are at logic O&E levels. 
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According to the A/~ converter specifications (3], the start 

pulse must have a width between 100 nsec. and 500 nsec. The constant 

width pulse generator allows a pulse with a width in the specified range 

to be produced on a change from logic 1 ···• .. :-o --0 of the sampling rate signal, 

as shown in Fig. 4-4(b). On the constructed system, the pulse was found 

to maintain a width of approximately 300 nsec. The A/D start pulse serves 

a dual func~ion; it is also used as the timing control for the digital 

sample and hold within the accumulator control, which is described in a 

later section. 

4.5 Sign Detector 

Since the input is rectified for use in the A/D converter, a 

binary signal sgn f(8) representing the sign of the input is needed. 

The detector, shown in Fig. 4-S(a) uses a National Semiconductor voltage 

comparator LM311, which has a response time of approximately 200 nsec. 

Several other voltage comparators were tried, but no other types could 

provide as noise-free mvitching on the output signal for input waveforms 

of very low frequency (i.e., under 0.1 Hz.). One type of comparator 

could not tolerate use of hysteresis at a zero-reference level. Hysteresis 

is the difference in the reference level voltage that determines the 

comparator S\llitching point, where the level depends on the output state 

of the comparator. It is necessary in order to eliminate erratic S'\vitch­

ing of the comparator due to additive noise in the signal. 

The U1311 has an open-collector output so that its output can be 

made compatib l e with t he TTL circuits that are used throughout t he 'SA. 



0:--JE 

ZERO 

· Offset 
balancing 

3K 

T4700pf 

(j) LH311 Comparator 

v 
out 

-1 

F.i g . 4- 5 

(a) 

I 

.. 

+27 

(b) 

Sign etector System 

... 

V. ( :nv) 
l ll 

66 . 

s gn f ( S) 



67 .• 

Fig. 4~5(a) shows the output tied through a resistor to a logic level ONE, 

so that the high output is also a logic ONE level. 

The detector should be adjusted so that sign changes on f(8) 

are detected within one quantization int&'rval either side of OV. Since 

the first level ranges from 0 mv. to 39 mv., the hysteresis was adjusted 

by a voltage divider in the feedback loop tied to the inverting input so 

that t he output switches on a rising signal above 27 mv. and on a 

decreasing voltage below -1 mv. An inverter in the feedback loop provides 

a constant reference voltage to determine the amount of hysteresis. The 

switching characteristic of the sign detector is given in Fig. 4-S(b). 

The low-value resistance on the non-inverting input is used t o 

match input resistances on both inputs. The pair of inverters on the 

output provide better fanout characteristics for the detector and allow 

a capacitor to filter out possible high-frequency noise on the edges of 

logic-level transitions . without loading the comparator. 

4.6 Period Detector 

In each of the modes in which the instrument is to function, all 

operations are to begin with the first positive-going reference crossing 

of either f(e) or a marker signal. If these inputs were always periodic 

with only two zero-crossings per cycle (as in mode (1) operation) then 

the sign d~tector signal would suffice to detennine the measuring 

periods. However, in modes (2) and (3), the slgnals used to determine 

the period Illay have more than two zero-crossings per cycle or they may 

not cross zero at all. Hence, a reference level is shifted positively 
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or negat.ively over a range -10 V to +10 V to a point where the signal 

crosses the reference only twice in each cycle. The period detector 

· must indicate whether the instrument is operating in the first or second 

cycle of the input, s i nce a measure of t he oeriod is taken during the lf_" __ ..-14 

first cycle and coeffi cients are calculated during the second cycle. 

Operations cease at the end of the second cycle. The period detector 

is shown in Fig. 4-6. It consists of two parts; a reference crossing 

detec t or, i.e., a Schmitt trigger, and a pair of flip-flops whose output 

i nformation determines whether the instrument is functioning in the 

first or second complete cycle of the input. 

In conventional Schmitt trigger circuits, the hysteresis may 

cause switching at a level that is not precisely the programmed reference 

level, or the hysteresis may vary depending on the output loading. 

Furthermore, some Schmi tt triggers have a very restricted range for 

reference level inputs . The reference level must often be unipolar. 

The first part of the period de t ector in Fig. 4-6 is a Schmitt trigger 

c i rcui t whose output i s compatible with TTL circuits and which has a 

pr edete rmined, fixed amount of hysteresis. The reference level can be 

varied from -lOV to +lOV and the transition(logic 1 to 0 ) which triggers 

the per iod numbering ci rcui t , occurs very close to the point a t which 

t he input has a positive-going crossing of the input reference level. 

The operation of the circuit is explained by r efer r ing to the 

wavefo rms s t uwu i n Fig ~ 4-7. The input waveform is VI. With t he 

reference l c7el s e t at V0 , the output swi t ches from high t o l ow a t points 
1:\. 

A a.r~d B. The r eve. r se wi l l occur when the inp ut falls to a value be low 

VR, as de t ermined by t h e! hyste r esis. The ~A7 41 ope rat i onal ampli fie r 
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of Fig. 4-6 is used as a subtracter with the output e
1 

given by 

R2 
e

1 
= -- (V - V ) R1 R I 

(4--3) 

as shown in Fig. 4-7 (b). If both VI an&~v; have limits of +lOV and 

. -lOV then R2/R1 = 0. 5 to r estrict e1 to ±lOV. This causes the overa 1 

hysteresis to be double that of the comparator circuit alone. The 

comparator LM311 has one input e 1 and the other determined by the feed­

back loop. Since the LM311 comparator has two output states, logic ZERO 

and logic ONE: e 2 in Fig. 4-6 also has two states. The comparator 

hysteresis is then gi ven by 

(4-·4) 

Thus, if R
3 

and R
4 

are fixed, the hysteresis of the comparator is fixed 

by the logic inverter output e
2

• The inverter is included in the feed-

back loop to make the hysteresis eH independent of variations in the 

output. voltage due to loading and to ensure the p·roper di rection of 

switching of t he hysteresis voltage eH for stable operation. 

Generally R4 >> R3 so that eH . is effectively zero. As seen 
m1n 

in Fi gs. 4-7 (b) and (c), when e1 is high, then eH. ~ 0 volts and t e 
nun 

comp arator w.lll switch at points A and B. As soon as the comparator 
3 • .SR3 

switches to logic Z2RO, eH rises to approximately 
R3+R4 

= e~ax volt s , 

since ez = 3. 5~1 . The i nput e
1 

mus t rise above this l evel (at poi .ts 
max 

A' and B' ) before t he comparat or switches to it s previous s tate. 

Consequen tly , t he hyste resis vo l tage e1 determines t he minimum peak- t o-

peak amplitu de of the input voltage that ~vill caus e the Schn:itt t r i gger 



72. 

to be able to detect a complete cycle. Since the overall hysteresis of 

the system is 2eH, the latter voltage is the required minimum for the 

input. 

Measurement of eH . for the constructed system was approximately 
m1n 

7.5 mv. Sincew the switching voltage at points A and B on Fig. 4-7(a) 

is VR - 2eH . , the output will first trigger the cycle numbering system 
m1n 

when the input ris~s to within 15 mv. below the reference level. This 

level is acceptable since it is well within one quantization interval. 

The tota~ hysteresis measurements show that the .minimtnn peak-to-peak 

input signal that can be handled by the \-!SA is approximately 275 mv. 

The Schmitt trigger output is enabled by the system operate 

("start" signal) to control a pair of flip-flops \olhich are connected 

as a 2-bit binary counter. Since clean trigger edges are essential to 

prevent erratic responses by the flip-flops, a decoupling capacitor is 

placed on the Schmitt trigger output to eliminate noise at the time of 

switching. The first flip-flop FFl is in state 1 during the first cy cle, 

while FF2 is in state 1 during the second cycle. These signals control 

various portions of the i~strument that are to operate only during 

specified cycles of the input. 

A panel light is ON when the calculations-in-progress signal is 

a ONE (See Fig. 4-6). At the beginning of the third cycle of the inp~t, 

all inputs to the gate '\o7hich determines the latter signal become logic 

ONE and the calculations-in-progress signal switches to logic ZERO. 

Not only docs the pane l light turn off, but the ZERO signal causes al l 

operations in the ~~a lsh spectrum a.l'lalyzer to stop. 
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4.7 W.F.G. Pulse Generator 

The Walsh spectrum analyzer has been designed to calculate the 

first 64 Walsh series coefficients of an input waveform. According t o 

the steps outlined in Chapter 3 the WalsH __ {~nctions wal(O,e) to wal(63,e) 

are generated simultaneously and they have a time-base equivalent to the 

fundamental period of the input. From the definitions and properties 

of the Walsh functions, a generator producing 64 functions requires 64 

uniformly-spaced clock input pulses during one cycle. The W.F.G. (\ialsh 

function generator) pulse generator here described forms a measure of 

the duration of the fundamental period and uses that measure to generate 

the 64 uniformly-spaced pulses during the second cycle of operation. 

The system diagram of the generator is shown in Fig. 4-8. 

Referring to Fig. 4-8, at the start of the first complete 

measuring cycle, the first binary up-counter in the pulse generator is 

enabled to count clock pulses. This counter, which contains 20 bits, 

accumulates the pulses throughout the first cycle of the input. At the 

end of. the cycle the counter stops and it now contains a number, in 

terms of its binary state, representing the period T of the first cycle. 

I t is required to generate pulses every 1/64 of that period throughout 

the s econd cycle. A number which represents very nearly 1/64 of the period 

i s simply the number stored in the 14 most c:ignificant bits of the 20-·bit 

counte r. This is so because binary division by 64, or 1000000 in binar y , 

merely me ans shifting the binary poin t 6 places to the left. 

Thus, clock puls es to a s econd counter containing 14 bits are 

enabled by t he period number i ng s i gnal FF2 dcri ng the second cycle o f 

ope r ation. The bi t 3 of t h is counter are compared continual ly wi th the 
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corresponding 14 most significant bits of the first counter. When the 

two numbers under comparison are equal, a pulse appears at the comparator 

output. The first pulse occurs at T/64 seconds after the beginning of 

the second cycle. Thi s pulse, which is approximately 50 nsec. in duration, 

feeds back to reset the second counter. The process of counting, comparing, 

and resetting takes place 64 times. In this way, a pulse at the digital 

comparator output is generated every 1/64 of a cycle during the second 

cycle. 

Overflow from the 20th counter binary in the first counter is 

detec t ed by a 21st flip-flop ~~d is used to indicate too fast a clock 

rate f or the input pulses. The last six stages of this counter are 

used t o indicate too slow a clock rate. An output from either of these 

indicators is shown on panel light indicators and it also stops the 

measur ement. Observation of the panel light signals allows the operator 

of the instrument to increase or decrease the input clock rate in 

decade steps. 

In the system described, there will generally be a remainder i n 

the first six binaries of the larger counter, representing a timing error 

of 63 pulses maximum. T~1is maximum possible error is halved by a small 

modification in the reset of the counter, prior to measurement. The 

sixth binary of the first counter is preset to state ONE while the 

remaining 19 are prese t to state ZERO. By adding this count of 32 to 

the period measurement, the timing error now has a range +32 to -31 clock 

pulses. In the system shown in Fig. 4-8, the first counter cortcnt must 

reach at least the 15th binaty by the time the second cycle beginse Hence , 

the maximum frequency error in genera.t:i.ng the Walsh functions i.& 
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32/214 ~ .2%. Also, if the highest clock rate allowable is 1 MHz, then 

the time for the c.onnt to reach the 15th binary is 16,384 l-!Sec., 

corresponding to a fundamental frequency of nearly 61 Hz. Clearly, using 

this process, the maximum possible timin.g·- errors may be reduced by 

extending the number of bi naries, but with a given input clock rate, this 

is done at the expense of the shortest time-base that can be used in the 

analysis . The inclusion of five additional binary stages allows a range 

of s i gnal frequencies of 64:1 to be accommodated. The recommended clock 

rate is 1 }ffiz. for signals with fundamental frequencies in the range 1 

to 60 Hz , and 100 KHz for signals in the range .1 to 6 Hz, etc. With a 

1 sec. clock rate, the designed system can analyze waves with a funda­

mental frequency as low as one cycle in 11.6 days. By decreasing the 

input clock rate, the lower limit of fundamental frequency of signals 

that can be analyzed can be extended indefinitely. 

4. 8 \valsh Function Generator 

An array of 64 Walsh functions are generated simultaneously 

during the second cycle using a hazard-free generator of the type shown 

in Fig. 2-6. The generator is clocked by the 64 pulses sent from the 

pulse generator described in the previous section. Each of the Walsh 

functions feeds a system comprising an accumulator control, a sample 

accumulator, and a final readout system. The block diagram of Fig. 4-1 

shows this Rystem f0r cnly one Halsh function output. 
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4.9 Sample Accumulator Control 

The sample accumulator control in Fig. 4-9 generates the signal 

sgn £(6) wal(m,e). This signal determines whether the samples !Qhl from 

the A/D converter are to be added to or subtracted from the sample 

accumulation. Since both the sgn f(6) signal and wal(m,e) a r e coded as 

logic ONE for +1 and logic ZERO for -1, a comparison gate pe r forms the 

sgn f(B) wal(m,e) logic, i.e., sgn f(S) (±) wal(m,a) or sgn f( 8) G) wal(m,6). 

If the sgn f ( 6) <±) wal (m, 6) form is used, then the bank of inverters in 

the array Walsh functi on generator of Fig. 2-6 can be eliminated. 

wal (m, 8) 

sgn f (6) 

A/D sta_:r_t~~--------------~Cl 
pulse 

Q 

-
Q 

._____.;..,...._ s amp 1 e 

acc umulat or 
control 

[sgn f( 6) wal(m, B) ] 

Fig . 4-9 Sample Accumulator Con tro l 

There is a poss ibility that the sign of the input f w1ction could 

change during a sample con ve r sion . The D- type flip-fl op in the accumulator 

control acts as a digi tal sample and hold . The A/D start pulse is used to 
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clock the flip-flop to prevent control line S\"itching on the sample 

accumulator during the sampling interval. 

4.10 Sample Acctnnulator 

Several possible systems could be devised to accumulate sample 

values. The bits comprising the binary coded samples of f(8) appear 

on 9 parallel lines from the A/D converter. Hence, a synchronous parallel 

adder/subtracter with a buffer register could be used. With such a 

system, timing pulses and a binary to 2's-complement converter for the 

subtraction process would be required. Since the accumulation results 

in long word lengths, the 2's-complement numbers and the adder/subtracter 

would have to be correspondingly large. If a serial adder/subtracter 

were employed, both a parallel to serial converter and a binary to 

2's-cornplement converter would be needed. Again, extra timing pulses 

are required. In each of the above cases, it requires additional hard\¥are 

to provide for a decimal digit display readout. 

The accumulator design shown in Fig. 4-10 is a parallel processor 

that operates asynchronously and requires no additional timing pulses. 

The amount of hardware is minimal and decimal digit readout is facilitated. 

The accumulator consists mainly of two 9-bit binary counters with parallel 

feeds. The upper coanter in Fig. 4-10 processes the samples Y. .. hen it is 

enabled by a signal tvh ich indicates that sgn f(8) wal(m,e) is positive. 

Except for the first f lip-flop, the clock input of each J-K flip-flop is 

controlled by an exclusive-OR gate . The exclusive-OR gates are used to 

permit flip-flop clocking from either the:: pulse input or. a level change 

from a lesser significant bi t§ Since the pulse inputs arrive serially 
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in time from the A/D converter, with the msb arriving first, there is 

no conflict or race condition between the two triggering sources. The 

sampl e and hold unit in the accumulator control of Fig. 4-9 prevents 

changes on the counter enable control during the time that pulse inputs 

from the A/D converter are being processed. Thus, erroneous counts are 

impeded if the J-K inputs (counter enable signal) should switch from 

ONE to ZERO. A similar procedure is followed by the lower counter, 

which accumulates samples whenever sgn f(6) wal(m,e) is negative. 

As pulses are accumulated in each of the counters, there will 

be overflows from the 9th bits. These overflows feed a reversible counter 

that .can operate in any code that is desired. The overflm.;s take place 

before a sampling inte rval is complete so that the counter enable control 

of the accumulator can also control the direction of counting in the 

output counter, which is used to display final coefficient values. The 

overflows from each counter generate pulses using the pulse-forming circuits 

shown in Fig. 4-10. The pulses are gated by OR logic to the clock of t he 

readout count er. 

Sample values are accumulated according to the values of the nine 

input pulses P1 to P128 , where P1 represents a value ~' P
1 

represents 
~ - ~ 

a value 1, etc. A fu l l accumulator count represents 255.5. A sample 

accumulation of 256 causes an overflow, so that the number whi ch appears 

tn the fi na l readout counter is 1/256 of the total sample value count . 

Howeve r, 256 is t he ntm1ber of quantizat ion levels p that have been used 

in the A/D converter. Thus the n umber stored in the output coun ter 

corres ponds , except for a poss i b le small ~emainder i n the two acc tm1ulator 

count e rs, to t he e~pression 
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(4-5) 

The Walsh coefficient Wm may then be obtained by multiplying the readout 

value by V /H, where V = 10. max max 

4.11 Coefficient Readout Counter 

The final readout should permit a decimal digit display. To this 

end, the overflow from the sample accumulator feeds a BCD (binary-coded 

decimal) .synchronous up/down counter consisting of Signetics' 8285 

counters [4]. Light emitting diode nuoerical displays with BCD decoders 

included are ideal for the readout. Since the coefficient values can be 

either positive or negative, it is desirable to produce the absoluce 

value of a number and its sign. Without a decoding system to provide 

t hese features, an up/down counter would normally yield l's or 2's-

complement representations for negative numbers. The magnitude and sign 

capab i lity of the con f iguration shown in Fig. 4-ll(b) simplifies the 

decodi ng of negative numbers for a counter made with the Signetics 8285 

(Fig. 4-l l (a)]. 

As shown in Fig. 4-ll(b), gates 1 to 4 form aD-type latch. 

The U/ D input, which is the sgn f(8) wal(m,S) signal, is transferred to 

the point P (gate 3) when the combined carry-out (C • Ci) goes to a "1 11 

e 

level. The function generated at the output U/D
0 

i s 

u;i50 = s. . p + s. p (4-6) 
l. ]. 

Y.7here p = "1!1 (P = uO") then N > 0 

p = "0" <r Ill") then N < 0 
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N = number of counts 

si = "1", count positive 

Si = "011
, count negative. 

The latch (P) is enabled "i.vhen carry-in (Ce • C.) goes to "1". This occurs 
l. 

. 
at all zero crossings. Table 4-1 shows the count sequences generated for 

a single 8285 BCD decade counter with the magnitude and sign generator 

connected. 

s~ Carry-Out p U/D N Binary Decimal 
l. Ce • ci Clock 

0 0 1 0 0 0 0 1 1 +3 

0 0 1 0 1 0 0 1 0 +2 

0 0 1 0 2 0 0 0 1 +1 

0 0 1 0 3 0 0 0 0 -0 

0 1/0 0 1 4 0 0 0 1 -1 

0 0 0 1 5 0 0 1 0 -2 

0 0 0 1 6 0 0 1 1 -3 

1 0 0 0 7 0 0 1 0 -2 

1 0 0 0 8 0 0 0 1 -1 

1 0 0 0 9 0 0 0 0 +0 

1 1/0 1 1 10 0 0 0 1 +1 

1 0 1 1 11 0 0 1 0 +2 

0 0 1 0 12 0 0 0 1 +1 

0 0 1 0 13 0 0 0 0 -0 

0 1/0 0 1 14 0 0 0 1 -1 

* si 11 111 + Count Up S. = "0 11 + Count Down = 
l. 

TablE:: 4-J. Count Seque!'lce Using Hagnitude and Sign Detector 
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In a Walsh Spectral Analyzer in which several Halsh series 

coefficients are calculated in parallel, there is a readout counter of 

the type in Fig. 4-11 for each coefficient. These counters and the 

counters in the sample accumulator constitute the only memory in the 

system. Outputs from the f inal counter stages would be multiplexed to 

the numerical displays so that say two coefficient values would be 

displayed visually at a time. The outputs could also be recorded on a 

typed printout or, by using D/A (digital to analog) converters, the 

spectrum could be displayed on an oscilloscope. 

4.12 System Controls 

Three manually-operated switches control the start, stop, and clear 

or reset operations in the WSA. A pair of NAND gates, shown in Fig. 4-12, 

form an R-S flip-flop which prevents contact bounce on the sv1itches from 

affecting the rest of the instrument. The reset signal not only clears 

all memory elements (flip-flops) in the system but also stops all further 

operations. The start signal is further gated by an AND operation with 

ind~cators that determine whether the clock rate into the W.F.~ pulse 

generator has been too fast or too slow or if the calculations are complete, 

i.e., the input waveform is going into its third cycle. 

Two additional controls are available to the operator of the 

instrument. The switch s·wl in Fig. 4-1 places the WSA in mode (3) 

operation, in which the period of measurement is set arbitrarily by the 

function on the control input channel. For mode (2) operation, the 

reference level input to the reriod de t ector can be varied continuously 

f r om -lOV to +lOV. 
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4.13 Conclusions 

An instrument based on the design described in this chapter was 

constructed and was found to operate satisfactorily in determining the 

first 64 coefficients of the Walsh series of a signal. Frequency 

limitations o~ a signal tha~ can be analyzed are governed by the maximum 

sampling rate capability of the A/D converter and by the clock rate 

feeding the W.F.G. pulse generator. An analog sample and hold in 

conjunction with a faster A/D converter is recommended to increase the 

sampling . rate. A higher clock rate to t .he \v. F. G. pulse generator would 

enable the time-base of measurement to be shortened while maintaining 

the specified accuracy in time-base measure. 

An additional feature that could be designed into the machine is 

preselection of a time-base (mode (4) operation) by presetting the 14 

most significant bits in the first counter of the pulse generator in 

Fig. 4-8. This feature enables the frequency of the fundamental 

component in an analyzed signal to rise to a maximum of 1/64 of the clock 

rate (assuming that 64 \.Jalsh functions are to be generated). There are 

no err or bits to consider in the 6 least significant bits of the counter 

so that the minimum count beyond these bits is 1. There is no need to 

fill the counter to the 15th binary to maintain accuracy as outlined in 

section 4.7. Compari s on of this minimum count with the second counte r 

content could cause an output pulse with each clock pulse i nput, thereby 

creating a min·imum measuring time-base of 64 clock pulses in duration. 

Foreknowledge of the i n put clock rate allm.-;s precise presetting of the 

tiMe-base. I ;1 t his mode of ope ration , the instrument controls r equire 

modification to allmv s ingl e cycle opera tion. In accordance wi t h the 
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sampling theorem, care must be taken to ensure a minimum sampling rate 

of 64 samples per cycle. 

If a preselected number of samples (mode (5) operation) is used 

for the analysis, the Walsh function time-base is adjusted to the sampling 

rate. Preferably the number of samples will be an integral power of two, 

say 2x. Then, if 64 Walsh coefficients are to be calculated, the first counter 

in the W.F.G. pulse generator would be preset to 2x. The clock rate to 

the pulse generator and the sampling rate would be identical so that a 

x x-6 pulse would be sent to the Walsh function generator every 2 /64 = 2 

sampl es (where x ~ 6). Again single cycle operation is used in this mode. 

Mode(~ operation is the analysis of previously digitized samples. 

In t h is mode, the A/D converter in the system is bypassed. Depending on 

the information that is known about the samples (e.g., sample size; are 

the samples from a periodic signal, etc.) the system could operate in 

a manner similar to t he other modes. However, additional equipment such 

as a digital period detector may be required. 

A system that could perfonn the Fast Walsh Transform generally 

requires a fixed numbe r of samples, storage of all the s amples before 

calculation, and is not generally ad aptable to an arbitrary time-base of 

measurement. The dig1.tal \Valsh Spectral Analyzer described in this 

chapter can operate in the various modes t hat have been discussed and 

all calculations are complete within one clock pulse period after the 

last s ample has been taken . Hence the WSA is considered to be more 

versat ile than an FWT system. 



CHAPTER 5 

WALSH SERIES TO FOURIER SERIES CONVERSION 

5.0 Introduction 

Sinusoidal functions have long held a dominant position in 

conununications and other branches of science. This dominance is related 

to the availability of linear, time invariant circuit components in 

practical form. The arrival of semiconductor technology has led to 

more intense investigation of non-sinusoidal functions, primarily Walsh 

functions. In an effort to make better use of the new technology 

instruments such as the Walsh Spectral Analyzer of Chapter 4, that are 

simpler and faster than Fourier analyzers, have been developed to yield 

a finite nllTI'be r of Wa.l s h series coefficients of a signal (1-3]. In 

many instances the Walsh s pectrum of a signal is as meaningful as the 

Fourier spectrum, and 3ometirnes it is preferable. Nevertheless, because 

of bandwidth restrictions of transmission channels, the Fourier spectrum 

c~rresponding to a given Walsh spectrum may often be required. A brief 

comparison of some examples of Walsh and Fourier spectrum analysis and 

synthesis is given in the latter section of this chapter. 

Given the Walsh coeff icients o f a signal, the correspondin~ Fourier 

coefficients may be evaluated by either a general-purpose or a special­

purpose computer, using conversion f ormu l a e derived he re. In practica l 

convers i on sys t ems, t wo f orms of trunca tion e r ror may aris e. Firs t, the 

word l engt hs i n t he sys t em hardware may he i nadeq ua t e: Such roundoff 

e r ro r s are here cons idered t o be negl igible. Since , in general, t he 

(88 ) 
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conversion equation for each Fourier coefficient is an infinite sum of 

products of constants and the given Walsh coefficients, a second and more 

imp~rtant source of error is truncation of the infinite series because 

the number of \-lalsh coefficients will always be finite. 

Signals fall into four spectral categories; 

1. infinite Walsh series with infinite Fourier series, 

2. f inite Walsh series with finite Fourier series, 

3. f inite Walsh series with infinite Fourier series, 

4. i nfinite Walsh series with finite Fourier series. 

The l ast category is of particular interest. It is shown below that if a 

band-limited signal with a highest normalized frequency component 

(harmonic) F is applied to a t.Talsh analyzer whose highest normalized 

sequen cy component readout is S, then all F Fourier harmonics of the 

signal can be determined without error, provided that S : F. Thus, 

instruments that yield a finite number of Walsh coefficients can be used 

for the precise evaluation of the Fourier coefficients of band-limited 

signals. Furthermore, a substantial easing of hardware requirements 

in a special-purpose Walsh to Fourier series converter (or of software 

requirements in a general-purpose computer conversion) is achieved if 

one put s S H··l 
'T , wlv.! re 11 is an integer related to the number of binary 

bits i n S. 

5 . 1 Series Conversi on 

Let a function f(S) be represented by a sequency-ordered Walsh 

series ; 



00 

f(e) = A0 + L [As cal(s,e) + Bs sal(s,6)] 
s=l 

The coefficients As and Bs of the even and odd Walsh components, 

90. 

(5-1) 

respectively, are defined by Eq. (3-5). 1r£L6) has the corresponding 

Fourier series 

f(6) 
00 

L [af cos 2nf6 + bf sin 2nf6] 
f==l 

(5-2) 

It is desired to use the Walsh coefficients A and B in order to derive 
s s 

the Fourier coefficients af and bf. We first consider signals in 

category 1; i.e., that: have both infinite \-Ialsh spectra and infinite 

Fourier spectra. 

The coefficients af of the even terms of the Fourier series of a 

signal are functions only of the coefficients A of the corresponding 
s 

even t erms of the Walsh series. Similarly, bf terms depend only on the 

B te r ms. Primarily, the coefficients of the odd terms are considered 
s 

below . 

The Walsh to Fourier series conversion relation is derived by 

equating the terms of each series 

00 

I b sin 21Tf8 
f=l f 

I 
s=l 

B sal(s ,e) 
s 

Using superposition, the sal functions are expanded into seta of 

(5-3) 

equivalent Fourier series expressions t·;hose terms have coe fficients bf , 
,s 

'.¥here 

b f,s 
rl 

= 2 Jo sa_ (s,B) sin 2nf8d8 (5-4) 
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is the fth Fourier coefficient of sal(s,e). A non-recursive equation for 

the Fourier transform of a Walsh function, from which the coefficients 

b can be calculated, is derived in a later section of this chapter. 
f,s 

T 
The sxf matrix of the set {b f, s} is deno~,2-d -- Fb. In the expansion on the 

r ight-hand side of Eq. (5-4), terms containing sin 2nf8 are grouped, 

yielding bf values given by 

l. 
S·-=1 

b B 
f,s s 

(5-5) 

S:i.milarly, f or the coe ffici ents af' 

co 

I 
s=O 

a A f,s s 
(5-6) 

where af is the fth Fourier coefficient of the series for cal(s, e). ,s 

If~ represents t he f x l matrix of the set {bflf=l,2, ••• ,oo}, and B 

represents the sx l matrix of the set {B ls=l,2, ••• ,oo}, then 
s 

b = (5-7) 

Hmve.ver, if only a finite number s of the Halsh coefficients a r e known, 
,._ 

t hen b f can only be approxi ma ted as b f' v1her e 

s 
bf = 'i b B (5-8) 

t>= l 
f , s s 

The coeffi cien ts bf can be cons idered as the Four ier coefficients of a 

sequency-lirnited func t i on . The mean--s quared er r or int rodu ced by t he 

t runcat i on of the serie.s in Eq . (5- 5) is 
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()() 

= I I I 
s=S+l 

b B 112 > 0 
f,s s (5-9) 

Since the bf factors are constants, approximation errors in the conversion 
,s 

are dependent on the Walsh series coefficients of the signal. As S 

increases, errors tend to decrease, but not necessarily monotonically. 

Since a nwnber of constants b f are shown below to be zero, 
,s 

special cases arise for functions with infinite Walsh spectra and infinite 

Fourier spectra in which there is no error due to truncation of Eq. (5-5), 

provided that s > f. One such case i.s sawtooth wave which is periodic 

over the interval [0,1); it has Walsh series coefficients that are non-

zero only for s an integral pm.Jer of 2, so the conversion equation for 

each bf has only one non-zero term. (The pattern of non-zero terms in 

the Fb matrix is discussed later.) 

5~2 Sequency-Limited Functions 

Signals with spectra in categories 2 and 3 are sequency-limited, 

\>lith \-lalsh to Fourier series conversion equations of the form of Eq. (5-5). 

If B = 0 for s > S 1 'the mean-squared conversion error of Eq. (5-9) is 
s 

zero provi ded that all S Walsh coefficients are used to evaluate bf. 

5.3 Frequency-Limi t ed Functions 

Functions, othe r than constants, which have finite Fourier spectra, 

necessarily have infini te Walsh spectra. If a function £(8) is band-

limited to become f(8) with a limited number of harmonics F, and if f(S) 

is applied to a Halsh Spectral Analyzer 'see Fig. 5-l) to yield the first 
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" S Wal sh coefficients, then the F Fourier coefficients of f(8) can be 

dete rmined precisely from the S measured Walsh coefficients, provided 

that S > F. 

Writing 

F 
f(8) = L bf sin 2nf8 

f=l 

" 

lr---

then the Walsh coefficients B of the band-limited function are 
s 

or 

B = J
1 

f(e) sal(s,8)d8 
s 0 

F 

rJ~ = I sin 2nf8 sa1(s,8)d8]bf 
f=l 

F ,., 
B = I B bf s 

f=l s , f 

(5-10) 

(5-11) 

(5-12) 

where bf = 0 for f > F and where Bs,f is the sth Walsh coefficient of 

sin 211f8 . In matrix form, Eq. (5-12) .can be \-lritten 

Since 

" B = \-l b 

B _ = l[2f1 
s in 21f f6 sal(s, 6)d6] 

s,t 2 10 

... 
One can s ol ve f o r b i n t e rms of B as £ollo-v1s : 

(5-13) 

(5-14) 

(5-15) 
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B = .!_ FT b 
2 _Q - (5-16) 

,.. 1 FT 
Fb B = 2~ b ~ b say, 

_Q (5-17) 

so t hat 

-1 ,.. 
b = ~ Fb B (5-18) 

if ~ is non-singular. One can solve for the set {bf} by a system of F 

linearly independent equations. Thus, S must equal or exceed F. It is 

M-1 shown in a later section that, in particular, for S = 2 > F, ~ is 

indeed non-singular, where M is the number of binary bits in 2S-l. Thus, 

the first F Fourier coefficients can be recovered with no truncation 

error. As s -+ ~, ~ becomes the identity matrix and Eq. (5-18) reduces 

to Eq. (5-7). 

5.4 Dual Relationship 

A dual relationship permits the determination of Walsh coefficients 

in terras of Fourier coefficients. Firstly, Eq. (5-16) can be used to find 

the Walsh coefficients of a band-limited function. There are no errors 

in conversion if all non-zero Fourier coefficients are used. Secondly, 

the S \.Jalsh coefficier ts of a sequency-limited function are derived from 

t he first F Fourier harmonics, provided that F > s. From Eq. (5-7), 

FT 'T' 

b FL 
Fb B 

_Q _Q 
(5-19) 

So 

[FT -1 'G'T b - -1 T 
B = Fb] 2 kh fh _Q ... b -
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T . 
if [Fb Fb] is non-singular. For F = S; i.e., for a square matrix Fb 

that can be inverted, 

B = .!_ FT K.-l b 
2 _Q ~ -

(5-21) 

It is seen that the above equation is similar to Eq. (5-16) for the band-

limited case. 
-1 

As F ~ oo, ~ becomes an identity matrix. Conversion 

equati ons similar to each of the above apply for the even coefficients 

5.5 Instrumentation 

Digital hardware requirements for a special-purpose Fourier to 

Walsh or Walsh to Fourier converter (or software requirements for 

computers to achieve these ends) are eased by using an important property 

of the matrix ~. It is shmo~n in the following section that if S is an 

integral power of 2, ~ diagonalizes with diagonal ele~ents 

(5-22a) 

It has also been established that 

( sine 
2 tf/2M) f < 2 

M-1 

Kf,f ·- J 
\ 

l2 2 (f/2M) M-1 sine , f = 2 

(5-22b) 

The diagonalizing property is developed by sho·wing that t he rows of Fb are 

mutually orthogonal i.f S is an integral pm-1e.r of 2 that is equal to or 

greater than F. 
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The matrices Fb and ~ recur in each of the conversion equations 

(5-7 ) , (5-16), (5-18) and (5-21) for band-limited or sequency-limited 

functions. By taking advantage of the diagonalizing property of ~, 

a minimum set of constants can be stored in read-only memories (ROH) of 

d . . 1 . f F S -- 2M-l a 1g1ta converter 1 = . Only the non-zero elements of a 

H-1 H-1 . M-1 -1 
2 x 2 matr1x Fb and the 2 diagonal elements of ~ need be stored. 

Each element of a matrix F consisting of the set {af } is 
a ,s 

identical in absolute value with corresponding elements in the matrix 

Fb. Hmvever, the signs of the constants may differ. To reduce further 

the s t orage requirements of a digital conversion lnstrument, one read-

only memory (ROM) can be used to store the absolute values of the elements 

in Fa or Fb, while a smaller R0,:1 stores the corresponding sign bits. 

Since the elements of the diagonalized ~ matrix are squared terms, the 

same matrix applies to the conversion equations for both af and bf. 

Consequently, this matrix is henceforth denoted simply ~· Peripherals 

about the ROM's in the instrument are used to program each of the convers i on 

equations. Thus, one digital processor can perform the Walsh to Fourier, 

or the Fourier to Walsh series conversion. 

As a general procedure for Walsh series and Fourie r series analysis 

using a \~al sh Spectral Analyzer, the foll ov1ing procedure is adopted. I f 

the first F Fourier coefficients of a signal are to be evaluated; 

a) · The signal is passed through a lm-1-pass filt e r to obtain a fun ct ion 

with at leas t F harmonics, i.e., t he set b. 

b) The fun ction i.s an a l yzed us ing a vJal sh s pectral analyzer to ob t a i n 

H-1 " ~'1-1 t he f i rst 2 Wals h coe f ficients , i. e ., the set ~ , where 2 is 
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equal to or greater than the number of harmonics contained in the 

filtered signal .. 
A 

c) The set B is used in a converter that is programmed to solve Eq. 

(5-18) to evaluate b. If only the J,!a-:lsh coefficients of the original 

signal are to be measured, the lowpass filter is by-passed. 

Similarly, a Fouri er spectrum analyzer in conjunction with a 

series converter can be used for the precise evaluation of Walsh coefficients, 

provi ded the signal is sequency filtered before analysis. 

5.6 Diagonalization af the K Matrix 

Calculation procedures for the conversion equations described 

above are simplified and ROM storage requirements in a digital instrument 

that affects the conversion processes are minimized if the K matrix can 

be diagonalized. From Eq. (5-17), K is defined as 

(5-23) 

It is shown that ~ diagonalizes if the dimensions of Fb are FxS such that 

s is an integral power of 2 and that s > F. -
Since K is a product of Fb and its transpose, K becomes a diagonal - -

matrix if the rows of Fb are mutually orthogonal. That is, if the elements 

of one row in Fb are bf ,s and the elements of another row are bR, s' then 

it must be shmvn t hat 1.-1i th the a f ore:r.entioned conditions K contains 

eleme nts Kf R s uch that 
' 

= f 0 ' 1 
s f :1: R 

Kf ,R ·- " L b b 
.:.. f,s R, s s=l ! Kf f' f = R 

\ ' 

(5-2 4) 
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Mult i plication constants do not affect orthogonality and are deleted from 

each stage of the derivation to follow. 

Sal(s,8) can be divided into 2M uniformly-spaced interYals, where 

M is the number of bits in the binary representation of 2s-l, i.e., the 

order of wal(m,e) corresponding to sal(s,e) [see Eq. (2-6)]. Let the 

value of the Walsh function in each interval be designated W , where 
s,y 

M 
y= 0 ' 1 , 2 , • • • , 2 -1 • In each interval, W has a value +1 or -1. Eq. (5-4), 

s,y 

which determines bf , is modified to form a summation of integrals over ,s 

·each section of the sal function; 

y+l 

21-1-1 2M 
b = 2 I w J sin 2nf8de 
f,s y=O s,y 

_y 

(5-25) 

2M 
Let y+l 

,2M 

sf ,y = J sin 2nf8d8 
y_ 

(5-26) 

2H 

Then 

2M-l 
b = 2 I .J s 

f,s y=O s,y f,y 
(5-27) 

Ignoring constants ., b is proporti.onal to the surnmation in Eq. (5-27), f,s 

i.e., 

b f,s 
w 
s,y 

In matrix notation, then, 

(5-28) 
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(b f ,s] 0: (W 0 Ti[ ... w ... ] sf o (5-29) 
s, s,l s,y , 

sf 1 , 

J:r - - -

s 
f,y 

The matrix Fb which has dimensions FxS is then expanded as 

F a: 
_E \.J2 sl (5-30) 

The rows of Fb are mutually orthogonal if it can be shown that the 

element by element product of any t\vO rmo~s, say f and R, is zero unless 

f = R. That is, 

+ Hs Sf Ws SR + + us sf ws sR ---- ----
fa f ~ R 

= i constant £ R 
'-

Since ~v8 Sf represents a s~alar quantity [Eq. (5-29)], 

~T ·r 
'"'t- w _.2 

(5-31) 

(5-32) 
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Therefore, Eq. (5-31) can be factored as 

+ ... + .•. (5-33) 

lr-.--- S 
Some properties of the matrix form of L WT W are nmv investiga­

s=l __§ 2 

ted. Firstly, WT W is expanded as 
_§ ~ 

= w s,O 

H 1 s, 

l
,., s, y j 
I} l! 

s ,2 -1 

(W 0 W 1 s, s' 
w 
s,y w ] 

s 2M-1 , 
(5-34) 

A convenient form for representing the expanded product on the right 

side of Eq. (5-34) is 

= 

I 

H W s,O s,O 

H W s,1 s,1 

,;, ' s' 

\v ,,r 
s,O s,y-1 

H W s, y-1 s,y-1 

w w 
s,y s,y-1 

'~ 1w 2}L2 s, s, 

w w 
s,y-1 s,y 

\.J w 
s,y s,y 

l
. H c zH- z\" 1 

~ •M_lh' 0 • • • • " • • • • • • • • • • • • • • • s , L ey, 

(5-35) 

w o"-l zM , s' s, - .. 

\v 211-, \</ z·l{_l s ' . .J. s' 
...l 
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s 
The matrix for I \~T W is identical in form with Eq. (5-35) except that 

s=l 2 _§ 

each term involves a summation over s where s has the range 1 to s. The 
s 

diagonal terms of this matrix are I Since W can hav~ only the 
s,y 

values +1 or -1, \.f
2 = 1 and 
s,y 

s=O 

s 
I = s 

s=l 

The cross-diagonal terms have the form 

s 
I w 

s=l M s,2 -1-y 
w 
s,y 

(5-36) 

The t· . .,o components of the product in the above expression represent 

intervals on the sal function that are on opposite sides of and equidistant 

from the midpoint of the time-base of the Walsh function (i.e., 8=.5). 

Since a sal function is oddly symmetric about 8=.5, 

Hence, 

w = -tv 
?M l s ,y s,- - · -y 

s 
2 

s=l 2M 
s, -1-y 

w 
s,y = -s 

s 

(5-37) 

(5-38) 

s 
All othe;r elements of I vl w 

s=l 2 2 
can be considered as I w vl , 

s=l s,y s,z 

where :/: and :/: 
}...f 

It is s h0\-111 ti1at the minimum value of s for z y ,... 2·'~1-y. 

s M-1 2H-l which I l·i H = 0 is s = 2 , provided that ym8.x = and the 
s=l s,y s,z 

above condit..:.ons for z and y are not violated. w can represent both s,y 

the vcdue of the yth interval of sal (s, 8) and the yt.h sample of discrete 

sal(s,y). Hence , 



s 
I 

s=l 
w 
s,y 

l-l 
s,z 

s 
= I sal(s,y)sal(s,z) 

s=l 

s 
= l wal(2s-l,y)wal(2s-l,z) 

s=l 

103. 

(5-39) 

2M-l Since y has a limit of , the smallest Walsh matrix W that can contain 

all the discrete \valsh functions of Eq. (5-39) is a 2Mx2H matrix (see 

Table 5-l). The sal f unctions comprise the odd-numbered rows of the 

matrix. Since the Wal sh matrix is its own transpose, the columns also 

comprise the set of discrete Halsh functions. 

Now consider the left half of the Walsh matrix~ The elements 

W of this matrix W say, where m 
m,y ~ 

M H-1 
= 0,1,2, ... ,2 -1 andy= 0,1,2, ... ,2 -1, 

have t he property [1] that for even values of m, 

w 
m,y 

= W {my =even 
rn+l,y . o 1 zH-1 1 ' ' ... ' -

(5-40) 

Thus, each pair of rows rn and m+l (m even) in W is identical. Since 
(l 

each column y in \.-1 represents a discrete Walsh function and since the 
(l 

components in the pairs of elements in each column are identical, [Eq. 

(5-40)], the columns in a matrix comprising only the odd-numbered rows 

of W, W ,, say, also form complete discrete Walsh functions. The latter 
a. (l 

}.1 1 11-1 
functions are comprised of i- bits, since 2 rm>Ts ware selected. 

Hence, the minimum value of s that can be used t.o form complete Walsh 

functions using odd-numbered bits in each column y f0r y 

M-1 
is S = 2 • 

H-1 
= 0,1, .•• , 2 -1 



s m y -+ 0 

... ... 

0 1 

1 1 1 

y 1 

, M-2 
"" 

2M-1_1 1 

2H-l 
1 

M 2 -1-y 1 
. . . . . . 

2M-2 1 

2 
M-1 2M-1 1 

211- 1-1 
I 

2M-1 .• • • 2M-l-y •• • 2H_2 1 ... y ••• I 

1 1 1 
I 

1 1 1 ... . . . 
I 

. . . . .. 
1 1 1 I -1 -1 -1 

1 1 -1 -1 1 1 

1 -1 1 -1 1 -1 

-1 -1 -1 -1 -1 -1 

-1 1 1 I -1 -1 1 

I . . . 
I 

-1 1 -1 I -1 
, 

-1 ..&. 

-1 1 -1 I 1 -1 1 

Table 5-1 Set of 2M Discrete Walsh Functions 

.... 
1 
j 
\ 

2M-1 

1 

-1 

1 

-1 

1 

-1 

1 

-1 

...... 
0 
~ . 
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The matrix w
8

, say, that forms the right half of ~ cont&ins 

elements \-1 , where m 
m~y 

M M-1 H-1 M = 0,1,2, ... ,2 -1 andy= 2 ,2 +1, ... ,2 -1. 

In this case, the pairs of elements in the columns have the property [1]; 

(5-41) 

By reasoning similar to that for the matrix W , the matrix comprising the 
(l 

M-1 
2 odd-numbered rows of tv

8
, \~8 , ,say, has columns which are negative 

·discrete Walsh functions. Again, the minimum value for s is S = 2M-l . 

Due to odd symmetry of the sal functions, the columns of H
6

, are 

the negatives of the columns of W , taken in reverse order. That is, 
a. 

or 

sal(s,y) = -sal(s,2M-l-y) 

ltl 
s,y = -w M 

s,2 -1-y 

M 
y = 0,1, ••• ,2 -1 (5-42) 

(5-37) 

Let a nevT mat r ix \~K be formed by the concatenation of matrices 

w 
a.' 

and i-18' • The product of any two columns y and z in \.JK is 

2M-l 

~ \V \.J 
s=l s,y s,z 

Since the co1Ut11I1S comprise discrete Walsh functions, which form a mu tually 

orthogonal set; 

w 
s,y 

\.J 
s,z = 0 

11 
z # y, z ~ 2 ·y-1 (5-43) 
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where 

M 
y = 0,1,2, ••• ,2 -1, 

M 
z = 0,1,2, ••• ,2 -1. 

Althou&h y = 2M intervals have been used in the derivation to this 

M+i 1 0 2 d b d point, y = 2 interva s, where i = ,1, , ••• , coul e use • Thus, S 

can have the values 

S = 2H+i-l {5-44) 

As a result of the above derivations and Eqs. (5-36), (5-38) and (5-44), 
s 

the elements L W W of the matrix of Eq. (5-35) have the values 
s=l s,y s,z 

2M+i-l 

I w w = 
s=l s,y s,z 

0 y :F 
M+i 

z, y :f 2 -1-z 

H+i-1 
2 y = z 

_
2
M+i-l 

where i = 0,1,2, .•. , 

Y = 0 1 ? ?M-1 ' ,._, ... ,... ' 

and z = 0,1,2, ••• , 2M-1. 

Therefore, the matrix 
s 
\ WT v becomes 
/..1 _§ 2 s= 

M' • .,r 
= 2 ,-~-· -'-1 1 0 

1 -1 

I 0 

I -1· 

l-1 
. 1 

0 

0 

1 

(5-45) 

(5-46) 
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The above is a 2M+ix2M+i ma~rix. ~ id d1 1 i S 2M-1+i ~ 10 avo nee ess comp ex ty, = 

where i = 0 is used in the r emainder of the derivation. 

Eq. (5-33) can now be expanded to 

Kf R 
a: 2H-1[S 8f 1 s ••• 8£,2M...1] 1 0 -1 SR 0 , f,O 

' 
f,y , 

1 -1 
SR 1 

' 
0 1 -1 0 

-1 1 s R,y 

-1 1 . 
-1 0 1 5~,2M-- 1 J 

= 2H-l [ (S S ) (S S ) 
f, o - f, zM--1 ' f, 1 - f, zH-2 ' · · • ' 

(sf,y- 8 £,2M-1-y), ••• ,(sf,2H-l- 8£,0)] 

Expanding fur ther and ignoring mul t iplicat ion cvnstant s, one ob tains 

Kf,R .x [SR O( Sf 0- Sf zM-1) + SR 1 (Sf 1 - Sf 2~L2) + . •. , ' ' , , , 

(5- 4 8) 

NoH , S rep r esents the i ntegral ove r the interval y of s in 21rf 8 ,. ~Jhere f, y 

0 < 9 < 1. Since sin 2~ f e in t h i s interval i s oddly symmetric about 0= . 5, 



then for each of the 2M integrals contained in the interval 

Hence , Eq. (5-48) simplifies to 

s s 
R,y f ,y 

(y = 0,1,2, ••. ,2M-1) 
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(5-49) 

(5-50) 

where f and R are equal to or less than the number of Fourier terms F 

contained in the signal. 

M-1 It is now shown that the condition S ~ F, where S = 2 , is a 

sufficient condition to ensure orthogonality of the surr~ation in Eq. 

(5-50 ) . Thus, the K matrix would become diagonal for the conditions 

S = 2M-l > F > f > 1 

By Eq. 

s st? f ,y ... ,y = 

= 

(5-26), 

y+l 
2M-l 2:'1 

\ ( . 
L. 1 s1n 

y=O , J_ 

2H 

2n fed e 

2i'i_l -1 
\ { [ 2n f (v~11) L 2nf cos l. 

y=O 2 
- cos 

-l [cos 2nR(Y~11 ) 
2nR 

2
r 

l\1 
2~ -1 

2nR6d8 

- cos 21rR(~) 1 

2 

1 T"' • [ 2 lT f ( 2 y+ 1) • 7T f] r , 7T R ( 2 y+ 1) = - 2-- 'L 1. - sin }.(- s1n ~ L-2s 1.n ll 
4 n fR y=O 2d. 2 2 

... M 1 

[ 
1 . nf . 1rR] L\-- . nf(2y+1 ) , nR(2y+l) 

= -- s~n- s1n- L s1n --N s1n- 1 
7i

2fR i 1 
2M y=O 2 2 

(5-51) 

(5-52) 

nR]. 
S ir• - ~ - ~ M ) 

2 
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When f #- R, (5-53) 

When f = R, (5-54) 

If ! is to be a non-singular diagonal matrix that can be inverted for use 

in t he conversion equations listed in section 5.5, an element Kf f (i.e., , 
f = R) on the diagonal may not have the value zero. · With 1 < f < 2M-l 

according to the conditions specified by Eq. (5~51), the expression in 

Eq. (5-54) is indeed great er than zero. Hence, -t-- sin n~ sin n~ can be 
TI fR 2 2 

considered as a constant that does not affect the orthogonality of the 

summation expression in the last line of Eq. (5-52). 

2!1-1 
« t (sin nf(2My+l) nR(2y+l)] 

Kf,R L sin 
y=O 2 2H 

If R = f, Eq. (5-55) becomes 

Thus, 

(5-55) 

As previously explained, Kf,f may not equal zero. This condition is 

satisfied if at least one terr.t of the sununati.on in Eq. (5-56) does not 

equal zero. Since 1 ~ f _:: 2H-l [Eq. (5-51)] and y = H 0,1,2, • • • ,2 - 1, the 

nf argument of the sine for at least one term must be ---;;.- whe re 
2 l'L 

nf nf n 
- < - < 
2M - 2M - 2 

and f is an integer. Hence, 

M-1 
[1 < f < F < 2 = S] ( 5- .:j 7) 
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If f ~ R, it ls yet to be shown that the conditions of Eq. (5-51) 

are sufficient tc ensure that Kf,R = 0. 

to 

First, let Eq. (5-55) be expanded 

2JT ( f-R) (2y+ 1) 

2
M+1 

2M-1 
\ lt-.···-2n ( f+R) (2y+ 1)} 
L cos M+1 

y=O 2 

From the above, 

2n(f-R)(2y+l) 

2
H+1 

2M-l . 
R {.!_ \ ( (2] TT (f-R) (2y+1)) 

e 2 L exp H+1 
y=O 2 

( 2 j n ( R- f J [ 2 y+ 1] ) ] } 
+ exp M+1 

2 

1 ~nff-R] = Re{[- exp(~ )] 
2 

2
H 

2M-l 
\ (jn[f-R]2y) 
L exp J.1 

y=O 2 

2M-1 
+ [.!. (jn[R-f])] \ (jn[R-f]2y)} 

2 exp H , L exp H 
2 y=O 2 

(5-58) 

(5-59) 

where j = l=f . Each of the summations in the latter portion of Eq. (5-59) 

can be represented as a geometric series if the summation is modified 

to become 

2H-1 . 
\ (~1!l_f-R] 2y) 
t.. exp M 

y=O 2 

M 
2 -1 . '> [f R] 

= I ( [ exp (~) ] ~ - ) Y 
y=O 2 

(5-60) 

The right side of Eq . (5-60) is a geometric ser::.es whose form and sum are 

--; .J 
qL -1 ( .. ) 
q ~ 1 ~.rhere q -:/ 1 (5-61) 



Consequently, 

exp[j2r.(f-R)]-l 
i 1T 

exp(2(~(f-R)]-l M 
2 n- · 

Since f and Rare integers, 

exp[j2n(f-R)] = (-1) 2 (f-R) = 1 

Hence, 

. M 
2 -1 .; ...,. r f=f.-R 1 ??u 

\' (.J2I .. J...~.::.:~.L::.t.) o l exp M = 
y=O 2 

if exp[2(f-R)(~Mn)] # 1 
2 1 
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(5-62) 

(5-63) 

(5-64) 

Similar expansions of each summation in Eq. (5-58) lead to the following 

result; 

Kf R = 0 if f :!- R (5-65) , 

·z 
and exp [:t ( f-R) <Y)] # 1 

1" 
2 

and j_2n 
:/: 1 . exp[±(f+R)( ,1)] 

2[ 

Since exp(jni) = 1 if i is an integer, the following conditio~s are 

required to ensure that the exponential functions in the requirem~nts 

to satisfy Eq. (5-65) do not equal unity; 

I ± ( f-R) I :;. 2M (5-66) 

I ± ( f+ R) ! :/- 2H f :# R 

From Eq. (5-51), if S > F and S M-1 
2 ' 

(5-6 7) 
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2M > 2F > 2F-l (5-68) 

Since f # Rand beth f and Rare equal to or less than F, the largest 

value of f+R is 2F-l. Hence, 

2M > f+R = I± (f+R) I (5-69) 

for t he conditions in Eq. (5-51). Similarly, the largest value of 

j±(f-R) I is F-1, so that 

2M> 2F > F-1 > l±(f-R)j (5-70) 

Thus , Eq . (5-66) is verified. Consequently, it has beeu shown that t he 

K matrix diagonalizes when the dimensions of the Fb matrix are FxS where 

S = 2M-l > F and M is the number of bits in the binary representation 

of 2S-l. 

A similar derivation demonstrates the diagonalization of the ~ 

matrix for use in conversion equations for the coefficients af and As of 

the even .terms in the Fourier and Walsh series, respectively. However, 

some small changes in the derivation are required. In order for the 

T 
matrix involving a summation of terms H W [comparable to Eq. (5-35)] 

__§__§ 

to have a form similar to Eq . (5-46), s must be in the ranges 0 1 2H-l ., 
' , ••• , -J. 

This is easily seen by following a derivation similar to that using the 

matrices W
0
,, WS' ,and WK for the bf and Bs coefficients but using the 

even-numbered rm-1s of the set of discrete Halsh functions in Table 5- l. 

M-1 2 rovrs of this tr.atrix, beginning with row 0, must be used to obtain a 

2M-l_l -
matrix for L -1! W

8 
coxr.parab le to Eq ~ (5-46). However, this new matrix 

s=O-
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M+i-1 H+i-1 has cross-diagonal elements which are each +2 rather than -2 • 

Consequently, this portion of the derivation indicates that the F matrix 
~ 

used in the definition of ~' i.e., K = .!.. F FT should have the form [cfo 
2 ~ ~ 

Eq. (5-30)] ; 

where cf 

F a: 
~ 

is a 

c = f,y 

matrix 

y+l 

f 2M 

J_ 
}1 

2 

whose elements c f,y 

cos 21Tf8d8 (y 

l 

. w 1 c 1 2M- -1 2M- -1 

are 

= 0,1,2, ••• ,2M-l) 

(5-71) 

(5-72) 

As indicated previously, the Fourier coefficients of the Walsh . 

functions, bf and af ' which are proportional tow sf and wscf, 
,s ,s ~-

respectively, have the same ma gnitude, with t~e possibility of a difference 

in sign. For the instrument described in section 5.5 it is desirable to 

store a single matrix F which contains only the magnitudes of bf or · 
,s 

a~ and which could be used in the conversion of coefficients A and B 
~ ,s s s 

to af a!ld bf, respectively. Accordingly, one ROl-f containing t he diagonal 

elements of K '!;-/ould suffice for bot h conversions • . 
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If the first row and column of F in Eq. (5-71) could be deleted 
a 

and if a new row and column containing elements w
1 

c2H-l to WzM-1 c2H-l 

and w2M-l c1 to w
2
M-l c2M-l, respectively, could be concatenated with Fa 

without changing the mutual orthogonal! ty of the rov1S, then the Fa and Fb 

would be identical in form (only the signs of the elements would differ). 

The pattern of non-zero elements of the Fourier coefficients of Walsh 

functions (see section 5.9) is such that w
0 

c
0 

is the only element in 

both the first row and first column of the matrix in Eq. (5-71) which is 

non-zero. Thus, deletion of the row and column does not affect the 

mutual orthogonality of the remaining rows. Similarly, \.JzH-1 c 2H-l is 

the only non-zero element in the row and column to be concatenated with 

F • Again, there is no change in the mutual orthogonal! ty of the rmvs. 
a 

Deletion of the first row ru1d column of F affects the conversion 
a 

only of a
0 

and A
0

, that is, the average value of each series. Although 

the average value of the Fourier series was defined as a
0
/2, this is only 

for convenience in obtaining a consistent definition for af. The average 

value component of a Walsh series equals the average value component in 

a Fourier series of the same signal. Thus, no conversion process is 

required if the average value component in either series is knmvn. I n 

addition, this component does not affect the conversion of any other 

coefficients, so again it may be i gnored in any conversion procedures . 

Numerical values of the elements af!ils or bf,s in the~~ or Fb 

matrices, respectively, can be evaluated from equations for the Fourier 

transforms of the corresponding Walsh functions . In the following section~ 

a non--recursi-ve equation that is used to obtain the Fourier transform of 

any \.Jalsh function is derived. 
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5.7 A Non-recursive Eauation for the Fourier Transform 

of a Walsh Function 

The Fourier transforms of Walsh functions are needed to evaluate 

the constants in the equations used to C0Hvert the Walsh series of a 

signal to a Fourier series representation. Partial listings of the 

transforms are available [1,4]. Beyond this range, unlisted transforms 

may be obtained using a recursive equation [4], which can be tedious, or 

by using an expression due to Blachman [5] for the Walsh transform of 

sinusoids, which can be modified to yield the Fourier transform of a 

Walsh function. In the latter process, sine or cosine terms in the 

transform are selected accordingly as the sum of adjacent bits in the 

binary representation of the order is odd or even. An alternative 

expression for -the Fourier transform of a Walsh function is developed 

below, which differs from previous expressions in that it incorporat;s 

the G.ray code representation of the order of the function. The expre~;sion 

is non-recursive and it is also unified in the sense that no sine or 

cosine factor selection process is involved in conjunction with it. 

This expression leads to an algorithm v.~hereby the transform may be obtained 

simply from inspection of the bits in the Gray code representation. 

Let the two-s).ded Fourier transform of a Walsh function, wal (m, e) 

be defined by 
1 

F[wal(m,e)] = r wal(m,e)ej 2nfe de 

1 
2 

where m is the order of t he function and 9 is the nonnalized time. 

{5-73) 



Ca1(s,8) and sal(s,e), respectively, have the Fourier transforms 

F[cal(s,e)] 

1 
,? 

a(f,s) = J-~al(s,e)c0s2rrfede 

2 
tr-----

1 

F[sa1(s,e)] = jb(f,s) j J: sal(s,e)sin2rrfede 

-z-

1.16. 

(5-74) 

(5-75) 

Since the Walsh functions are discontinuous, evaluation of Eqs. (5-73) to 

(5-75) would normally involve a summation of integrals. 

It is convenient to view a continuous Walsh function as a 

convolution of the sequence of unit impulses at points corresponding to 

1 i d . w 1 h f · h i 1 1 e 1 · h samp es n a 1screte a s unct1on over t e nterva - 2 ~ < 2 w1t 

a rectangular pulse of unit magnitude and of width l/2H equal to the 

spacing of the unit impulses. The Fourier transform of the continuous 

Walsh function is then the product of the transforms of the dis c rete 

Walsh function and the rectangular pulse. This is shown to be 

gO H-l nf H 
F[wal(m,e)] = (-1) (-j)a[ IT cos( k+l- gk I)]sinc(f/2 ) 

k=O 2 
(5-76) 

where j = r-1 

g. is a bit in tte Gray code representation of m, as in Eq. (2-17), 
.K 

a i s the numb er of Gray code bits of value ONE, and 

H sin (nf/2 ) 

Tif/i 1 
(5-77) 
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To derive Eq. (5-76), we begin by defining the discrete Walsh 

func t ion unit pulse sequence over one period. Referring to the example 

in Fig. 5-2(a), a discrete wal(m,e) in the range 0 ~ e < 1 consists 

of a sequence of 2M positi ve and negative unit impulses, where o(e-e ) 
y 

deno t es an impulse at 6 = y/2M_, y = 0,1,2, ••• ,2M-1. Each impulse can 
y 

also be described in terms of an operator dY, where 

(5-78) 

The delay operator has the property 

(5-79) 

The sign of an impulse at 8 
y 

H y/2 can be obtained from a parity check 

for an even number of ONE's in the Gray code form that are enabled by 

the bits yM-l-k of binary y. That is 

wal (m, e ) = 
y 

M-1 g y 
IT (-l) k M-1-k 

k=O 

where gk are the bits of the Gray code (Eq. (2-17)]. 

(2-21) 

In Eq. (2-21) it suffices to consider only those terms for which 

y = 1. For example, if 8 = 6/8, y = 6 = 1102 , M = 3 and 
M-1-k y 

g0y2 g y g2y 
(-1) (-1) 1 1(-1) 0 = 

go g 
(-1) (-1) 1 (5-80) 

The value of the discrete Walsh function at 0 = 6/3 can then be writ ten 
y 

(5-81) 
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~ ~ ~ ~ 

(a) discrete sa1(3,6) 0 l I _l _j_ _t 

0 

~ , ' f r 

sal(3,e6) 

(b) 
1 

0 sa1(3, -2) 

I 
0 

(c) 1 
0 D I U(e)-U(6 --) 

8 0 .125 

1 

(d) sa1(3 ,e) 0 

-1 

y -4 ~ 
+4 

_l I 
e -.5 0 .5 1 

Fig. 5-2 Convolution Quantities to Form sal(3t 8) 
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If now m = 5, wa1(5,e6) = sa1(3,e6); then m = 1012 = 111 Gray. So 

g
0 

= g
1 

= 1 and sal(3,e6) = +1 d6a(e) [see Fig. 5-2(a)]. Similarly, 

0 
wal(m,e

0
) = d a(e) (5-82) 

The summation of unit impulses, each of the form of Eq. (5-81), that define 

a discrete Walsh function over the interval 0 < e < 1 may be factored to 

yield 

M-1 g 11-1-k 
discrete wal(m,e) = IT [d

0 + (-1) kd
2 ]a(e) (5-83) 

k=O 

Convolution of a delta function having the same sign as the 

corresponding continuous Walsh function at 6 = 1 . h -- W1t 
2 Eq. (5-83) 

achieves a shift in the range of the discrete Walsh function from 0 < e -
1 

to - 2 =: e 1 
< -;;- • 

L 
The sign of this a-function is negative for functions 

of odd sequency and positive for functions of even sequency. Since the 

Gray code bit g0 = 1 iff the sequency is odd, the required a- function at 

6 = - i can be represented as 

1 
discrete wal(8, - 2) 

g M-1 
= (-1) 0 d-2 a(e) (5-84) 

The same r epres entation is achieved if the 2's-complement representation 

for negative values of y are used in Eq. (2-21) (as expla ined in chap t e r 

2) and then t he form of Eq. (5-81) is applied. 

The final convolving quan tity is a unit amplitude puls;:; of wi. ~ th 

H 
If U(0-8Y) defines a unit step at ey = y/2 , then the r £quired 

pulse is 

(5-85) 

< 1 
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Hence, 
M-1 g M-1-k 

wal(m,8) = IT [d0 + (-1) k d2 ]6(8) (5-86) 
k=O 

g
0 

M-1 
* (-1) d-

2 6(8) 

* [U(8) - U(8-81)] 

1 
where - 2 : e 1 < ~ 

2 
Examples of the three convolving quantities are shown 

i n Figs. 5-2(a) to 5-2(c), resulting in the continuous Walsh function 

sal (3 , 8) shmvn in Fig. 5-2 (d). 

The Fourier transform of wal(m,S) is the product of the transforms 

of Eqs . (5-83) to (5-85). Each unit impulse that comprises the discrete 

Halsh function has the Fourier transform 

H- 1 g y 
F[ IT (-1) k M-1-k dy 6(8)] M-l gkyM-1-k J1 

= [ IT (-1) ] 6(8-8 )exp(j2nf8)d8 
k=O 0 y k=O 

M-1 g y 
= [ IT (-1) k M-1-k]exp(jllfy/2M-l) (5-87) 

k=O 

The only change, then, in the summation of i mpulses that form di s cr et e 

l~al(m ,8) and in its transform is that exp (j n!y/2M-l) replaces dy6 (8). 

Hen ce , t he S tiDl of the Fourier t:-ansforms of the unit impulses of disc. re te 

wal (m, 8) can be f actored i.n a manner similar to Eq. (5-83). Replacing 

d0o ( 8) and d2M-·l··ka ( G) by their Four ier transforms , 1 and exp(j n·f/ 2k), 

respecti ve ly, 

H-1 
F[di s cre te wal (m , e) ] = r 

k=O 

gk k 
[ 1 + ( -1) exp (j 1r f /2 · ) 1 ( 5- 88) 
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Each factor in Eq. (5-88) can be rew·ritten as a sine or cosine, depending 

on the value of the Gray code bit. If gk = 1, 

[1- exp(jnf/2k)] = 2jexp(jnf/2k+1)sin(nf/2k+l) (5-89) 

If gk = 0, 

(5-90) 

The ONE bits in the Gray code number G = g0g1g2 .•. gk··· for the order m 

correspond to the sine factors of the transform [Eq. (5-89)]. If there 

are a ONE's in G, then the sinusoidal form of Eq. (5-88) is 

F[discrete wal(m,e)] (5-91) 

1 M-l . nf n 
+ ~) IT cos( k+l - gk i) 

2 k=O 2 

H 1 M-l TTf TT 
= 2 (-j)aexpjnf(l- -) TI cos(--- gk -2-) 2M k=O 2k+l 

where 

· nf 1· f 1 = s1n k+1 gk = • 
2 

The Fourier transforms of Eqs. (5-84) and (5-85), respectively, are 

g zH-1 go 
F[(-1) 0 d- o(e)] = (-1) exp(-jnf) 

F[U(e) - U(e-a1)] = ~A exp(jnf/2M)sinc(f/2M) 
l .. 

(5-92) 

(5-9 3) 

The product of Eqs. (5-91), (5-92) and (5-93) is the non-recursive Fourier 

transform equation (5-76). 
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5.8 Algorithm to Determine Fourier Transform of Wal(m,e) 

Using Eq. (5-76), a simple algorithm is now developed for the 

Fourier transform of a Walsh function. It uses only the bits in the Gray 

code number G that represents the order m. In Eq. (5-76) it is seen that 

each factor depends on G; thus g0 and gk are bits in G, a is the number 

of bits that equal ONE, and M is the number of bits in G. 

The first step of the algorithm is to write Gas g0g1g2 ••• gk ••• gH_
1

• 

k+l 
\~enever gk = 0, substitute cos(nf/2 ) and where gk = 1, substitute 

sin(nf/2k+l) to yield an expression in the form of a product of cosine 

and sine terms. There are as many terms (i.e., M) in the product expression 

as there are bits in G. The next step is to multiply the expression 

M M M obtained thu3 far oy sinc(f/2) = (sin(nf/2 )]/(nf/2 ). 

The sign of the transform is given by (-1) 80 (-j)a. A simple 

counting procedure is convenient. Form 

6 = a + <a/2> + g0 (5-94) 

where <a/2> denotes the integer part of a/2. If S is odd, the sign of 

the transform is negative. If o./2 is not an integer, multiply the 

transform by j = 1-=1 • An example to illustrate the algorithm follov1s. 

Let us find, say, the Fourier transform of sal(5,8). Sal(S, 8) = 

wal(9,8), so the order m = 9 = 10012 . The corresponding Gray code number 

nf nf nf . nf 
sin 2 cos 4 sin 8 s1n 16 

The above expression is multiplied by [sin(nf/16)]/(nf/16). 
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To obtain the sign, there are three ONE's in G so a = 3. Also, 

g0 = 1. Hence, 

e = 3 + <3/2> + 1 5 (5-95) 

which is odd, so the sign is negative. Since a is odd, multiply by j. 

Consequently, the Fourier transform of wal(9,8) is 

jb(f,5) nf = -jsin 2 
nf . nf sin

2
(nf/16) 

cos ~ s1n 8 nf/l6 (5-96) 

To obtain the Fourier series coefficients of a periodic Walsh 

furiction, the transform expression is evaluated for integral values of 

the normalized frequency f. Since the t!quation (5-76) applies to the two-

sided transform, the coefficients obtained using values of f = 1,2, .•• 

are doubled to obtain the coefficients of the one-sided series, that is, 

the coefficients af and b f • The magnitudes of the coefficients ,s ,s 

a f,s 
and b 

f,s form the K matrix, the elements of which are to be stored 

in a ROH in a digital instrument that performs the Halsh series to 

Fourier series conversion. To minimize the number of stored constants, 

it i s required to use only the non-zero components. A discussion of the 

patte rn of non-zero elements, i.e. , the coefficients I af I or I b f I , ,s ,s 

in t he ! matrix, is given in the following section. 

5.9 Pattern of Non-zero Elements in the F Matrix 

The elements lbf I of the F mat rix are derived f1 om ,s 

b f,s 
(
1 

- 2 sal(s, 6)sin2nf 8d8 
Jo 
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where f = 1,2,3, ••• If s is odd, the sal function is oddly symmetric 

about the centre of its fundamental period 0 ~ 8 < 1. Thus, these functions 

have non-ze~o Fourier coefficients only for the odd-numbered harmonics; 

that is, b1 ,b 3 ,b5 , .•• ,b2Q-l , ••. are non-zero (Q = 1,2,3, ••• ). ,s ,s ,s ,s 

If s is doubled, sal(2s,6) can _be considered as a wave sal(s,e) with a 

time-base that has been halved. Consequently, sal(2s,e) has non-zero 

coefficients whose harmonic numbers are double those of sal(s,e); that is, 

b2 , 28 , b6 , 2s,blO,Zs'•••,bz(ZQ-l),Zs'""" are non-zero. By induction, 

sal(2xs,e) has t he non-zero coefficients h 2x,zxs' h2x(J),ZXs' b2x(s},zx
8 

, 

• • .·' g2X(2Q-1) ,2Xs' • • • However, s in each of these cases is an odd 

number, say, 2X-l, where X= 1,2,3, ••• Hence, all coefficients and only 

those coefficien t s of the form 

bf,s = b2X(2Q-1),2X(2X-1) (5-97) 

are non-zero. In a row f in E., the column numbers containing non-zero 

elements are 2x(2X-l), where X= 1,2,3, ••• , and xis determined by f. 

X Any integer f can be represented by 2 (2Q-l) where the binary representa-

tion of f is a binary number 2Q- l followed by x ZEROS. Say, for example, 

one wishes to de termine the Fourier coefficient b6 using only the non-ze ro 

terms of Eq. (5-8). The coefficient number 6 can be represented as (21)(3) 

or 1102• One ze r o follows binary 3 or 112 . Thus, x ~ 1. Consequently, 

from Eqs. (5-8 ) and (5-97); 

(5-98) 

w·hcre x = 1 w.1 d X = 1 , 2 , 3 ,... Similar ly, i f x is de t ermined for any gi ven 
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Fourier coefficient number, this information can be used to select 

coefficients from a ROM in a digital Walsh to Fourier series converter, 

and match the coefficients with the appropriate l.Valsh coefficients to 

In this manner, only the terms lbf l or laf I which are ,s ,s 

non-zero need be stored in the ROM. 

For the F matrix [see Eq. (5-71)], it has been indicated that 
a 

11-1 M-1 
the row f = 2 and column s = 2 could be concatenated with F 

a 

without affecting the mutual orthogonality of the rows in the matrix. 

This property holds true only if the coefficient a
2
H-l,

2
M-l is the only 

non-zero element in either the concatenated row or column. For 

M-1 x M-1 
f = 2 = 2 (2Q-l), x = M-1. The first non-zero element in row 2 

X H-1 -is then 2 (2X-l) = 2 , where X = 1. Similarly, the first non-zero 

H-1 . 
element in columns = 2 1.s a

2
H-l 

2
M_1 • Thus, mutual orthugonality 

' of the rmvs in F is preserved despite concatenation of the new row 
a 

and column. 

5.10 Comparison of Walsh and Fourier Series Analysis and Synthesis 

A number of studies have been made of the usefulness of the 

Walsh and related spectra in compariso1 with the more commonly used 

Fourier spectrum (5-8]. The Walsh spectrum appears to be better suited 

for analyzing discontinuous functions than is the Fourier spectrum. For 

ex~mple, a sq'lare 'tv ave has but one Walsh corr.ponent whereas the Fourier 

spectrum of the same function. is infinite. Conversely, however, the 

Fourier spe=trum dis plays an obvious advantage in analyzing a sinusoidal 

wave. Ti1is section of the thesis gives only a few graphic examples of 

?.vavE!forms wi.th r:heir cc;rresponding Fourier and ~1a.lsh line s pectra . The 
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waveforms are then synthesized in both the Fourier and Walsh sense, 

using an increasing number of spectral components for each representation. 

The figures are intended to provide only a feel of waveform synthesis in 

each domain. A brief, subjective analysis is given for each example. 

Fig. 5-3(a) sho,.;s one cycle of a rectangular pulse \-lave with 

duty cycle of 0.1. All ,.,aveforms in the following examples have normal­

ized fundamental periods T over the range [0,1). The first 64 even and 

odd components of the Fourier spectrum of the pulse wave are shown as 

l ine spec~ra in Figs. 5-3(b) and 5-3(c), respectively. If the waves 

have a normalized period of T seconds, the spectral lines have a spaci ng 

of 1/T. The corresponding Walsh line spectra are given in Figs. 5-3(d) 

and 5-3(e). An arbitrary &~plitude scale is used for all illustrations, 

each of which is plotted by computer. It is readily seen in Fig. 5-3 

that both Fourier anci Walsh spectra oscillate, although the \valsh 

components appear to diminish in amplitude more rapidly. This effect is 

displayed to a certain extent in the Fourier series and Walsh series 

synthesis of the rectangular wave shown in Fig. 5-4. Since each series 

t ends to ccnverge in the least squares sense, the series which diminishes 

in spec tral content ~ore rapidly tends to converge more rapidly when t he 

wavefor m is synthesized. 

Figs. 5-4(a) to 5-4(f) show the synthesis of the Fourier series 

o f the rectangular pulse using 2, 4, 8, 16, 32 and 64 components, 

r espectively. Figs. 5-4(g) to 5-4(!) illustrate t he build-up of t he 

corresponding Walsh series, again with double the number of components 

in each s ucceedi ng figure. In this case, Walsh synthes is, which generates 

a step-function as opposed to a cont i nuous funct i on for Fourie r ser ies 
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synthesis, appears to yield a function which more closely approximates 

the original function than does the Fourier synthesis, if the same 

number of components are used. 

Fig. 5-S(a) illustrates a ramp function with its corresponding 

Fourier and Walsh line spectra in Figs. 5-S(b) and 5-S(c), respectively. 

Each series contains only odd terms. Although components in each series 

tend to diminish in amplitude at a similar rate, the Walsh spectrum has 

many zero-valued components whereas there are none in the Fourier spectrum. 

Consequently, a greater percentage of the power is concentrated in the 

first few non-zero Walsh components than in the Fourier domain. Thus, 

the synthesis of each series using an increasing number of components as 

shown in Fig. 5-6 again tends to display more rapid convergenc~ to the 

waveform using the Walsh synthesis. 

The third exrunple of Fig. 5-7 shows a triangular waveform in 

which the Walsh components are more widely distributed than is the Fourier 

spectrum. The more rapid convergence of the Fourier series synthesis in 

this case is readily apparent in Fig. 5-8. 

A final example illustrates synthesis of a waveform using 

experimental data taken from the Walsh spectrum instrument described in 

Chapter 4. The signal input \vas a slightly skewed sinusoidal wave which 

had a negative zero-crossing at e ~ .52. Table 5-2 lists the value of 

the Walsh coefficients provided by the digital analyzer. The table also 

lists the Fourier coefficients that were derived from the Walsh coefficients 

according to Eqs. (5-5) and (5-6). The last colu1m1 on Table 5-2 is the 

total harmonic vc.lue cf of t:te \tJave, where. 
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18 
19 
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21 
22 
23 
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26 
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28 
29 
3D 
31 
32 

Walsh Coefficients 

A 
s 

-. 18Rt52 
.0? 6Q8 7 

-. 073043 
-.0 04R91 

. 0138C 4 

. 011RL.8 
-. Q~lt783 

. 000435 

.005435 
-. 001848 
-. 000109 
-. 003478 

.0 104:.<? 

. nnt+89 1 
-.01869F, 

. 00152? 

. oooq78 
-. 000761 

fl000109 
. 000'543 
. COOS713 
.O Ll130 4 

-. 00:1.19F: 
-. OOOS43 

. 002826 
-. 0011.96 

. 0007h1 
-. 000652 

. O!Jit:30 

. 003370 
-. 0075(0 
O.OOOQG fJ 

MEAN VALUE= 

B 
s 

5~G't8696 
.314 130 

-2. 0611g 6 
-.o1g5 G5 
-. 4l~2 8? 6 
-.j 2Sg 78 
-. q9?06 5 
-. 0D l196 
-.1 (1282 6 
-. 02<)239 

. o3q pq1 

. 009565 
-.c :!.RSf\7 
-. Of)?1?4 
-.4 9065 2 
-. f101h30 
-.0?:?'913 
-. OC5870 

. 0121 74 
o. oocoon 

.003?n1 

.o o1g 57 

. 00521 7 

.OC1522 
- • 0 518£• 8 
-. 014565 

. nzc g?s 

. 0055'-+ 3 
-. 110435 
-.0~':(130 4 
-. ?44Rq 1 
0.000000 

.250870 

Fourier Coefficients 
(obtained by conversion) 

af bf 

-.291918 7.90l<-J39 
.D41386 .490065 
. 005 742 .059299 

.,.,.0 08 284 -.031360 
-. 0 G 42 4 5 -.016169 

.00 091 6 .0 0 7224 

. 00428 0 .0021~1 

.000267 -.002325 
-. 0016 20 -. 005503 

. 000386 -. 0 009 5 3 

.0 0114 9 .001131 
-. 00130 1 .0030 69 

. 002070 -. 003756 
-,.U 0005 4 -.0 0 18 61 
-. 001666 -.00 01 51 

. 00 1 938 -. 002076 

. OlJ1232 -.0 00792 

. 00083 7 -. 00036 4 
-.0 01794 .0022 8 4 

. 00114 4 -. 00 1215 
-. 00066 2 .ooo2n 8 

. OG158 8 .000164 

.0 0005 7 -.0 01036 
-. 00074 1 .001052 

. 001219 -.001044 
-. 00096 2 .000036 
-. GG04 86 .002 0 17 
.000~50 .000790 

-.0 01556 .. 002 912 
. 000 799 -. 0008 71 
. OC1983 -. 00 108 0 

o.oooooo o.oooooo 

Table 5-2 Halsh Series Coefficients of Experimental \.Javeform and 

Fourier Seri~s Coefficients Obtained by Walsh to 

Fourier Series Conversion 

Harmonic Value 

cf 

7.913325 
.491810 
II 0.59576 
.u32436 
.u16717 
. C0 7282 
.U 0450 4 
'! LG2340 
. G05736 
e 001028 
. U016 13 
.00 3333 
.G 0 42 89 
• 001861 
.L D167 2 
.002840 
.0 01 464 
. G00912 
. 002904 
. 00166 9 
.0 00 714 
. uu1S9 7 
a G01G38 
.0 01 2 8 7 
.001605 
. G0096 3 
. LG20 74 
.G 0086 4 
.0 03 3 0 1 
. 00 1182 
.D02258 

o.o oo ooo 
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w ...... 
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(5-99) 

The waveform that was synthesized using the Walsh series coefficients 

given in Table 5-2 is shown in Fig. 5-9 !~-The corresponding waveform 

synthesized using the Fourier coefficients is given in Fig. 5-10. 

5.11 Conclusion -------
The feasibility of using Walsh series coefficients to derive 

the Fourier series of the same function has been demonstrated. Since 

an i deal low-pass filter [see Fig. 5-l] is required for precise 

eva l uation of coefficients for frequency-limited functions, further studies 

should be made to investigate the effects of using practical low-pass 

filters. 

The algorithm to determine the Fourier transform of a Walsh 

function s hould find application in computer evaluation of either the 

Fourier transform or the Fourier series coefficients of a Walsh function. 

Similarly, information regarding the pattern of non-zero elements in 

the Walsh to Fourier series conversion matrices aids in reducing 

computation time of the conversion processes. 
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The use of non-recursive definitions of Walsh functions results 

in simple coding algorithms for evaluating an arbitrary point on a Walsh 

function. The algorithms have been used to design and construct compact 

digital Walsh function generators whose outputs are free of hazards. 

Tests conducted on the generators show that they operate satisfactorily 

at input clock rates of over 10 MHz. 

A generator that produces 64 Walsh functions simultaneously on 

parallel output lines has been incorporated into the design of a digital 

Walsh spectral analyzer. For periodic signals, the analyzer obtains a 

measure of the fundamental period of the signal to be analyzed and yields 

the first 64 coefficients of the sequency-ordered Walsh series at the 

end of the second complete cycle of the input waveform. Since 

coefficient values are available at that time, the analyzer can be 

considered as a real-time instrument. A sample is processed completely 

before the next input sample is taken so that fast processing is enabled 

without storage of the samples. 

Further development of the spectral analyzer should entail a 

more flexible de3ign of the controls that would enable the instrument 

to operat~ in any of the 6 ~odes of operation outlined in Chap t,~ r 3. 

The instrument would then become more versatile: Beth periodic and 

non-periodic waveforms could be analyzed. The time-base of measuremer:t 

rr1ay be timE:-locked to tr e fundamental pe r iod of a period~~c wave, or tt 
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may be preset arbitrarily. The sample size may be left indefinite or it 

may be preselected. Both analog signals and ready-quantized data may be 

anal yzed. \vith appropriately high master-clock rate and a sufficiently 

fas t A/D converter, the Walsh Spectral Analyzer can be extended easily 

to analyze signals in the entire audio range. There is no lower frequency 

limi t. However, a complete error analysis of the instrument is yet 

required to establish more precise error characteristics. 

The complexity of the instrument increases approximately in a 

· linear m~nner for an increasing number of \.Jalsh series coefficients. 

Since a sample accumulator and readout counter are required for each 

coe f ficient that is to be determined, these portions represent the bulk 

of the instrument. If a commercial Walsh Spectral Analyzer were developed, 

it \vould be advisable to manufacture LSI (large scale integration) 

circuits for each accumulator and counter. Several other sections of the 

anal yzer could also be produced in LSI form, e.g., the Walsh function 

generator .or the generator that produces pulses to clock the W.F.G. 

A 16-pin IC package could be used to contain a programmable W. F .G. that 

can generate 1024 Walsh functions. 

Another project that is being undertaken is the development of 

a s pecial-purpose instrument that will perform the 'Ylalsh series to 

Fourier series conversion and vice versa. A minimum number of constants 

are stored in tlte ROM of the conversion il!strument if the number of 

coefficients to be used in the conversion is -an integral po\-Ier of t\o~o. 

A pa rticularly useful study following the design of such an instrument 

would be an extensive study of the cost and versatility of a Fourier 

processor (possibly an FFT system) in ~omparison with the analyzer 
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described in this thesis in conjunction with a Walsh to Fourier series 

converter. Since sample storage and multiplication circuits are no t 

required in the ~.Jalsh series analyzer, it is felt that this process leads 

to f aster and less-expensive instrlli~entation than a Fourier series 

ana l yzer. The WSA not only yields the Walsh series coefficients, but in 

conj unction with the conversion instrument, may provide a less costly 

method obtaining the Fourier series coefficients. However, complexi ty 

of i nstrumentation for increasing numbers of coefficients to be determined 

may not increase at the same rate for the Walsh analysis with the 

conversion process as it does for the Fourier process. In light of this, 

further studies are required to reveal '\-lhether or not there is a range 

of operation for which instrumentation for one process is advantageous 

over the other. 
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(a) 

(b) 

(c) 

(d) 

APPENDIX A 

Summary of Walsh Function Definitions Derived in Chapter 2 

wal(O,e) = 1 

H-1 
w a1 (m, e) = rr ~ {I); (e) } 

k=O 

where ~ is a binary presence operator (see P. 

mk are bits in the binary representation 

H is the number of binary bits in m, 

Rk(e) are Rademacher functions of order 

M-1 
wa1(m,e) = rr gk{PK(e)} 

k=O 

15)' 

of m, 

k. 

where gk is a Gray code presence operator (seeP. 15). 

gk are bits in the Gray code for m. 

M-1 
(-1)Yk8M-1-k wal(m, e ) = IT 

y k=O 

M-1 gky~1-l-k 
= II (-1) 

k=O 

where yk are bits in the binary representation of y 

M-1 

I ykg:i-1-k 
wal(m,e ) = (-l)k=O 

y 
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(2-16) 

(2-18) 

(2-21) 

(2-22) 



(e) 

(f) 

(g) 

(h) 

(i) 

wa1(m,G) 

M-1 k 
= IT ~{wa1(2 ,8)} 

k=O 

H-1 k 
= n wal(~2 ,e) 

k=O 

M-1 w-----

= \val( I m. 2k,8) 
k=O k 

M-1 
= exp jn[ L 

k=O 

k 
<m, 2 8>] 

K 

where <x> denotes nearest integer to x. 

\val (m, 8) 

wal(m,e) 

wal (m, e) 

M-1 
= exp jn [ L ~(ek_1 + 8k)J 

k=O 

M-1 
= exp jn[ L ~(8k-l (±)e.)] 

k=O K 

11-1 m. y 
- n (-1) k k 

k=O 

where yk are bits in the Gray code representation of e. 
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(2-26) 

(2-31) 

(2-33) 

(2-34) 

(2-36) 
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