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A study of various definitions of Walsh functions is présented.
Hardware implementation of Walsh function generators is based on
evaluation algorithms which result from non-recursive forms of Walsh function
definitions. A special-purpose instrument, which yields the first 64 Walsh
series coefficients of an input signal, is described. Analysis of periodic
signals requires two complete cycles of the input. For non-periodic
signals, measurement time or sample size may be preset arbitrarily.
Decimal readouts of the coefficients are available at the end of the
measurement time so that the instrument can be used for real-time applica-
tions. Walsh series to Fourier series ccnversion is discussed. A non-
recursive equation for the Fourier transforms of Walsh functions is

obtained.
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ABSTRACT

Walsh functions are defined both by recursive and non-racursive
equations. A synopsis is given of the properties of Walsh functions
relevant to this thesis. Two algorithms for simple evaluation of an
arbitrary point on a Walsh function that use only the binary codes for
the parameters of the Walsh function result from the non-recursive
definitions. Direct hardware implementation of the evaluation algorithms
yields programmable digital Walsh function generators. One of the
generators, which produces functions that are free of hazards or ambigious
states, is modified to produce a parallel array of Walsh functions.
This generator is used in a Walsh Spectral Analyzer that evaluates
simultaneously several Walsh series coefficients of an input signal.

Walsh series analysis and the concepts of the design of a digital
Walsh Spectral Analyzer* are discussed. The equation that is used to
determine a Walsh series coefficient is modified so that each portion of
the equation can be manipulated conveniently by a digital instrument.
Although the instrument was designed primarily to analyze periodic waves,
extensions to the design can be made to accommodate aperiodic signals.
Signals with frequencies from the audio range downwards can be analyzed
by the Walsh Spectral Analyzer.

Walsh series to Fourier series conversion is dealt with. It has

been found that the Fourier coefficients of signals that are limited

2k photograph of the Walsh Spectral Analyzer is shown in Fig. AB~1.
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either in frequency or in sequency can be evaluated precisely using a
finite number of Walsh coefficients of the same signal. A dual
relationship holds for Fourier to Walsh series conversion. The Fourier
series coefficients of Walsh functions cemprise part of the conversion
relationships. The Fourier transforms of Walsh functions, from which
the above coefficients can be obtained, are derived in non-recursive

form.
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CHAPTER 1

INTRODUCTION

——

Waves, which are fundamental phenomena in the universe, occur in
many forms, such as mechanical vibrations or electromagnetic fluctuations.
The concepts of frequency and Fourier spectrum have long provided a basic
measure of wave phenomena. Historically, whenever the term frequency is
used, reference is generally made to the sine and cosine functioms.

Since sinusoids occur frequently in nature (e.g., resonance of sound
waves in a Kundt's tube) and since time functions used in communications
can be represented by Fourier's superposition, sinusoids are used almost
instinctively for waveform analysis. Sinusoids also are compatible with
linear, time-invariant circuits.

With the advent of pulse and switching technology, wave measurement
techniques that were not intuitive by nature before, now become intuitive
with respect to the new form of the technology. With the ever-increasing
abundance of digital logic hardware, particularly in integrated circuit
rform, there has been an evolution of thought towards finding a set or
sets of functions that are more adaptable to digital hardware fhan are
sinusoidal waves. Ideally, the set of functions should have but two
values so that it is compatible with binary logic, and it should be a
set of mutually orthogonal functions so all signals can be represented
by a superposition of functions in a manner analogous to a Fourier series.

The set of bi-valued mutually orthogonal Walsh functions has been

found to be welli-suited to signal analysis. Harmuth [1] reports that
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probably the oldest use (circa 1900) of Walsh functions in communications
was in the area of the transposition of conductors [2]. It was in 1923
that J.L. Walsh [3] introduced the functions into mathematics. Walsh's
set was the completion of the orthonormal system presented independently
by Rademacher [4] in 1922. Extensive studies of the Walsh system and
series expansions in terms of Walsh functions have been conducted since
that time, notably by Kaczmarz [5], Paley [6], and Fine [7-9]. 1In
recent years, Hamuth [1, 10-13] has been instrumental in promoting the
search for practical applications of Walsh functions. Consequently,
research in the area of non-sinusoidal functions in communications has
been significantly stimulated [14,15].

This thesis deals principally with a digital instrument that has
been designed to perform a Walsh series analysis of a signal in real-time.

The salient features of this instrument are as follows:

1) A Walsh Spectral Analyzer has been designed specifically for low
frequency analysis (audio frequencies and under). There are no
low frequency limitations. Since the time-base of measurement
for periodic waves can be automatically adjusted to the fundamental
period of the input signal, certain error considerations during

period determination establish the upper frequency limit.

Z) For periodic waves with a fundamental period T, the measurement
time is 2T. Since Walsh series coefficient values are then
immediately available in sign and magnitude form, the instrument

is suitable for real-time applications.



3) The instrument design can be extended to analyze aperiodic wave-
forms. Both measurement time and sample size can be preselected

arbitrarily, in which case the measurement time is reduced to T.

4) The outputs are in decimal code, but can be displayed in any
other code, the only change required being in type of final
readout counter. Maximum sample size is restricted only by the

size of the output display.

5) The instrument can be modified readily to determine the value of
any specific component in the Walsh spectrum, or it can yield

in parallel as many Walsh series coefficients as are desired.

6) The instrument can also be modified to accept either a continuous
signal and use its own A/D converter or to use ready-quantized

data.

7) Since all computations for a sample are complete before the next
sample arrives, all programming and unnecessary storage facilities

are eliminated.

Walsh functions are defined in a number of ways in Chapter 2.
Both recursive and non-recursive definitions are discussed and a synopsis
of the properties of Walsh functions relevant to this thesis is given.
Two algorithms for simple evaluation of an arbitrary point on a Walsh
function and that use only the binary codes for the parameters of the
Walsh function result from the non-recursive definitions. Direct hard-

ware implementation of the evaluation algerithms yields programmable



digital Walsh function generators. One of the generators, which produces
functions that are free of hazards or ambiguous states, is modified to
produce a parallel array of Walsh functions. This generator is used in

a Walsh Spectral Analyzer that evaluates simultaneously several Walsh
series coefficients of an input signal.

Chapter 3 deals with Walsh series analysis and the concepts
of the design of a digital Walsh Spectral Analyzer. The equation that
is used to determine a Walsh series coefficient is modified so that each
portion of the equation can be manipulated conveniently by a digital
instrument.

An oversll view of a digital Walsh Spectral Analyzer is given
in the first portion of Chapter 4. Although the instrument was designed
primarily to analyze periodic waves, extensions to the design can be
made to accommodate aperiodic signals. A detailed description is given
of the design of each major section shown in the block diagram of
the instrument.

Walsh series to Fourier series conversion for several classifi-
cations of waveforms is discussed in Chapter 5. It has been found that
the Fourier coefficients of signals that are either frequency-limited
or sequency-limited [1] can be determined precisely by using the Walsh
coefficients of the same signals. A dual relationship holds for Fcurier
series to Walsh series conversion. The Fourier series coefficients of
Walsh functions comprise part of the conversion relationships. The
Fourier transforms of Walsh functions, from which the above coefficients

can be obtained, are derived in non-recursive form. A number of graphic



examples of Fourier and Walsh series analysis and synthesis conclude
Chapter 5.

In Chapter 6, the significant aspects of the thesis are reviewed
briefly. Possible areas for further investigation are suggested. It
is felt that W§lsh functions and the Walsh spectrum will continue to
increase in importance in communications and other areas of information
processing, particularly as more hardware systems using Walsh functions

become available.



CHAPTER 2

WALSH FUNCTIONS; DEFINITION AND GENERATION

o —

2.0 Introduction

Walsh functions have been paid significant attention in recent
years. With the vast amount of research dealing with the properties and
applications of these functions, numerous types of definitions and
terminology have appeared. It is the intention here to establish the
terminology for the Walsh functions that is predominant in this thesis,

» derive non-recursive expressions to define the functions.

. coding algorithms for evaluation of arbitrary points on a Walsh

¢ion are developed from the non-recursive equations. Hardware
slementaticn of the algorithms leads to the design of hazard-free
nary Walsh function generators, which can be incorporated into a special~
rpose computzr for Walsh spectral analysis. A synopsis is given of
ose properties of the Walsh functions that are necessary to define the
mctions, to develop a Walsh spectral analyzer, and to verify the

‘ocedure for Walsh series to Fourier series conversion.

1 Recursive Definitions

In his classic paper, J.L. Walsh introduced [1] a "new closed
't of functions {¢} normal and orthogonal on the interval [0,1]". The
ilsh functions, i.e., the set {¢}, take only the values +1 and -1,
.cept at a finite number of points of discontinuity, where they assume

e value zero. The set {¢}, which is ordered zccording to increasing

(6)



number of zero-crossings, has the following recursive definition;

¢0(e)»- p 0<6c<1 (2-1)
1, 0<o<3
*Ls 2 <8 <1
3, R T s |
oD 3 e
(e) =
1 3
s rEdpe
y I 0 <0 < l-, l-< 0 <~é
() =
-1, -11;-<9<%,-,3:<651
( (k) 1
¢n (ze)) 0 : 3] <-2—
(2k l) b
n+1 L <
\(—1)k+l ¢§k)(26-1), -% el
(q’t(lk)(ze), S < G
(260 s '
¢n+l (®) <
Raiia s iy ot N
n-1 1
where k = 1,2,3,...,2 ,n=1,2,3,...,°. With respect to 6 = 5 the
functions ¢(2k'1) and ¢(2k) are even and odd, respectively. Periodic

n+l
functions can be developed by means of the set {¢} if the definiticns

are changed at 6 = 0 and 6 = 1 so that the value of ¢ék)(e) is the
arithmetic mean of the limits at these points to the right and to the left.

Walsh functions may be defined at a point of discontinuity to have the



average of the limits approached on the two sides of the discontinuity.
(k)

n

Walsh used the definition of the functions ¢ to obtain a

formula for ¢§k)(e). If 6 is the set in binary notation,

¥ s Y
e.._i+-%+—§—+... y; =0or 1l (2-2)
2 2 2

then if in the binary expansion of 6 there exists Y4 # 0 and i > n, the

following formulas hold for ¢§k):
Y1
¢ = 1 ¢; = (-1) (2-3)
vty y
¢§1) = -1}t 2 ¢§2) -1) 2
y Yty ty
¢§1) = (-1) g3 ¢§2) 1! 273
vty y
053 = (T iyt
vty Yty ty
¢21) B IS ¢£2) LGt A

A generalized law that is still in the form of a recursive equation
appears from the relations in Eq. (2-3):

yn—i+yn

o) = D (2-4)

(k) ¢¥
¢'n " ¢k—l cbn

where ¢k—1 are members of the set {¢} in order. The definition in the
form of Eq. (2-3) can also be developed from a non-recursive equation

of a Walsh function, as is described later in this chapter.



A more convenient notation for the set {¢} has evolved. The
standard terminology adopted for this thesis uses wal(m,8), where m
is the order of the Walsh function, and 6 is considered to be normalized
time. As a comparison of ¢§k)(e) with wal(m,6), m = n+k, and n equals
the number of bits in the binary expansion of m. Pichler [2] has given
distinct notations, cal(s,6) and sal(s,0), to the even and odd Walsh
functions, respectively. They are related to wal(m,6) by
cal(s,8) = wal(m,8), m= 2s (2-5)
and
sal(s,0) = wal(m,9), m = 2s-1 (2-6)
wﬁete s is called the sequency [3]; that is, one half the average number
of zero-crossings per second. The order m is then related to twice the
normalized sequency for a set of sequency-ordered functiocnms.
Using the above terminology, Harmuth [4] has developed a
recursive definition of Walsh functions in the form of a difference

equation.

wal(2i+p,0) = (-1) [i/2]+p{wal[i,2(e+zl-)]

% (—1)i+pwa1[i,2(e—%) 1} (2-7)
where p =0 or 1, ‘
i -~ 0’1’2,00.,

1 it
1 for - 2 <9 < 5
wal(0,6) =

1 1
0 for 9<-2,9>+‘2'

~and [i/2] means the largest integer smaller than or equal to-% 1.
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Although the definition covers only the interval --% G %-, periodic
Walsh functions can be formed by duplicating the function over each
successive interval. An illustration of the first 16 sequency-ordered,

continuous Walsh functions over the interval 0 < 6 < 1 is given in

Fig- 2-15

2.2 The Walsh Matrix

An extremely useful representation of the Walsh functions is in
the form of a discrete Walsh matrix. The discrete Walsh functions are
sampled versions of the continuous set of wal(m,6) in Fig. 2-1; the
samples being taken atey = y/2M for y = 0,1,2,...,2“41, and M is the
number of binary digits in m. Henderson [5] describes the first oM
Walsh functions of ZM arguments as being represented collectively by a
square Walsh matrix [W] whose rows are the successive Walsh functions
and whose columns correspond to the successive arguments for y over
0 €lyi< 2“—1. The Walsh matrix for M=3 is shown in Table 2-1. The
value -1 is denoted by -. Since the Walsh functions are two-valued,
they can easily be coded into binary. A binary Walsh matrix [WB],

each of whose elements is 0 or 1, can be obtained from [W] by the

transformation* ’
J il 1
in [W] < in [W_ ] (2-8)
[—J 0 .

*This transformation is considered more convenient than that of
Henderson [5] in which the 0 and 1 bits are interchanged.



wal(0,6)

wal(1,6)

wal(2,86)

wal(3,0)

wal(4,0)

wal(5,6)

wal(6,6)

wal(7,0)

wal(8,0)

wal(9,0)

wal(10,06)

wal(ll,e)

wal(12,8)

wal(13,6)

wal(l4,6)

wal(15,9)

1

IR ERD AR

it AL e Pl el
6' Lobicai kg o g dugie 5. 4 4
0. 0.5 1

Fig.

2-1

Walsh Functions

wal(0,8)

sal(l,6)
cali(1,90)
sal(2,6)
cal(2,6)
gali(350)
cal(3,0)
sa1(4,8)‘
cal(4,9)
sal(5,6)
cal(5,0)
sal(6,6)
cal(6,6)
sal(7,6)
cal(7,8)

sal(8,8)
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y = 0 1 2 3 &. 5 . 7
& 1 1 1 1 1| wattd o)
1 1 1 1 - - - - wal(l,y)
1 i - - - - 1 1 wal(2,y)
1 1 A - 1 1 - - | wal@3,y)
w] = 1 8 - 1 1 = - 1 wal(4,y)
1 - - 1 - ) 1 - wal(5,y)
1 - - - 1 - wal(6,y)
_-1 - 1 - 15 - 1 - wal(7,y)

Table 2-1 The Walsh Matrix

2.3 Properties of Walsh Functions

Characteristics of the Walsh system are described in detail by
Walsh [1], Fine [6], and Harmuth [4]. Presented here is a synopsis only
of those properties that are relevant to a basic understanding of Walsh
functions, to the development of non-recursive definitions of the
functions, and to the design of a digital Walsh spectrum analyzer.

With reference to Fig. 2-1, the Walsh functions wal(m,8) are
considered periodic over the half-open interval [0,1). Although the
period [- %3 %) is used occasionally, we are concerned here with real-
time analysis of time functions and will consider the time origin as O.
The arguments m and 6 are the order and the normalized time, respectively.
Each Walsh function of order m can be divided into 2M subintervals where
M is the number of bits in the binary representation of m. The value of
a function is coanstant at either +1 or ~1 over each subinterval. The

latter property is useful in digital instrumentation since the Walsh
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functions can then be represented as a sequence of ONE and ZERO logic
levels.

Several orderings of the Walsh functions are possible [7]. To
maintain an analogy with the increasing:ﬁ;fmonic number ordering of
Fourier spectrum analysis, the Walsh set used in this thesis is sequency-
ordered; that is, ordered according to increasing number of zero-crossings.
The number of discontinuities in the range (0,1) is then equivalent to m.

The product of any two Walsh functions yields a single function
whose order is determined by the modulo 2 sum of the orders of the

multiplied functions [4]; thus
wal(k,8)wal(m,08) = wal(k ® m,8) (2-9)

where (:) stands for addition modulo 2. If k and m are both binary
numbers, (:) represents add without carry. For example, multiplication

of wal(6,6) by wal(l2,6) results in wal(10,6), i.e.,

0110 6
@ 11490 12
1010 10

This multiplicative property of the functions can be used to demonstrate
one of the most important properties of the set; Walsh functions form a

complete set of mutually orthogonal functions [1] over [0,1). Hence

wal(k,8)wal(m,6)dd = (2-10)

Il 0, k#m
0 1, k=mnm

Since the wal(m,8) are mutually orthogonal, the Walsh matrix [W]
has some interesting properties. The rows of [W] and the columns of

its transpose [W]'r are also mutually orthogonal. The matrix of the
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product [W][W]T will therefore be nonzero only on its main diagonal, and

because each element of [W] is either +1 or -1,

w1t = 2" (2-11)

where [I] is the identity matrix. It is evident from Eq. (2-11) that

the inverse of‘[w] is

=1 T

w1t = 2w (2-12)

The matrix [W] is symmetrical [5] and hence equal to [W]T. From this
relationship,

wal(m,y) = wal(y,m) (2-13)

2.4 Products of Rademacher Functions

The complete set of Walsh functions can be obtained as direct
- products of the subclass of these functions known as Rademacher functions

Rk(e) [6]1. Rk(e) can be associated with specific Walsh functions by
R (8) = sal(2",0) = wal(2"1-1,0) (2-14)

where k = 0,1,2,3,... «
According to Paley's modification [6] of the Walsh system, if

the order m of wal{(m,8) is given by the dyadic expansion

m = Mil m 2% (2-15)
k=0
then the Walsh functions are given by
wal(0,9) = 1 (2-16)

M-1 .
wal(m,0) = 1 {R, (&)}
e
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where m is a binary presence operator*. The modified set defined by
Eq. (2-16) is not sequency-ordered as in Walsh's original definition.
However, it was found by Henderson [5] that the sequency-ordered set
could be obtained by selecting products¢9£~Rk(e) according to bits in
the reflected binary code. That is, if the bits 8y in the Gray code

for m are found in the usual manner from

B = ey @ M @5
then '
M-1
wal(m,8) = I gk{Rk(B)} (2-18)
k=0

where B is a presence operator similar to m . Non-recursive definitions
in terms only of the arguments m and 6 are derived from Eq. (2-18) to

evaluate any arbitrary point on a Walsh function.

2.5 A Non-recursive Definition for an Arbitrary Point on a Walsh

Function

Lackey and Meltzer [8] have presented a technique for solving
Eq. (2-18) by listing sample values of those Rademacher functions that
correspond to the ONE-bits in the Gray code for the order m. Corres-
ponding samples of the Rk(e) are multiplied to synthesize a discrete

Walsh function. A simple extension [9] of this method allows evaluation

*mk is a birary operator such that m {x] equals the logical

operation L X = m + x. Hence,

l = { o
for m 0, mk;x} 1

~

and for m =1, mk{x} = X,
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of any arbitrary point on the mth Walsh function without listing tables
of Rk(e) and it yields a concise non-recursive definition for the point.

Let the Rademacher values +1 and -1 be given the binary coding
ZERO and ONE, respectively. If 6 has the limits 0 < 6 < 1, the coding
of each of the ZM intervals in a set of the first M Rademacher functions
is equivalent to the first M bits in the binary fraction representation
of any point 6 within that interval. Lesser significant bits that
locate points within an interval can be ignored since the value of a
Walsh function is constant over each of its sections. The ONE-bigs in
a bit-reversed Gray code for the order m enable the corresponding bits
in the code for 6 to be operated on by a parity check for an even number
of ONE's. The parity check serves as a multiplier of the appropriate
Rademacher functions. Since ONE's represent Rademacher values of -1,
an even number of ONE's yields a Walsh value of +1 from the parity
check. An odd number of ONE's yields -1. The Gray code for m is bit-
reversed since the least significant bit (1sb) g controls RO(G), which
is represented by the most significant bit (msb) of 6.

An example of a Walsh function evaluation algorithm that is
developed from the above form of coding is shown in Table 2-2. 1In the
example, wal(22,6) is evaluated at 6 = .34429., In binary, 6 = .010110---.
Thus, the point 8 is located in the twelfth of 32 intervals, and it is
sufficient to evaluate wal(22,6) at the beginning of the interval (i.e.,

at 6 = 11,/32 = ,01011).
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2210 = 101102 Binary notation for wal(22,6)

{

11101 Gray code for 22
} e

10111 G Bit-reversed Gray code

6 = .3442910 = 0.01011 . K Binary notation for ©

00011 L Bits of K enabled by G
{
1 Parity check for even number of

ONE's in L.

!

+1 Value of wal(22,.34429)

Table 2-2 Example of Algorithm for Walsh Function Evaluation

The evaluation algorithm of Table 2-2 lends itself to several
forms of non-recursive expressions defining wal(m,8). First express

the position ey as an integer y by

y = 2" 0, (2-19)

where 2M is the number of intervals contained in wal{m,8). Then if y is
expressed in binary as
M-1 Kk
y-zykz ; y =0 orl (2-20)
k=0
the parity check on the bits of y enabled by the bits of the Gray code G

forms a product realization of the Walsh function as
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M-1
wal(m,8 ) = I (
Y k=0

Yk &M-1-
o k&M-1-k (2-21)

M-1 ,
I e KRk

k=0
Eq. (2-21) can also be written in summation form as
M-1
L oYl 1k

k=0

wal(m,ey) = (-1) (2-22)

For a specific Walsh function, the Gray code bits in Eq. (2-22) can be
omitted by summing only those bits Yi for which ngl-k=l' In this manner,
the same formulas as originally found by Walsh in Eq. (2-3) can be
obtained from a non-recursive equation. Eg. (2-22) also turns out to

be a simplified form of the Walsh-Kaczmarz equation [10];
M-1
val(m,8y) = expin[y m, (:)kga Ve, @ my i )] (2-23)

In some of the literature on Walsh functions, wal(m,6) is considered
periodic over the interval [--l,-%). To use the definitions of Eqs. (2-21)
and (2-22) for negative values of ey, one uses the 2's-complement bits of
y. This is easily seen by observing that the values of a Walsh function
at -ey and at 1-0y are equivalent. In binary, the 2's complement of
I-Byl equals 1-6y for ~1|% Gy o 1

The coding algorithm of Table 2-2 has also proved useful in
computer evaluation of a Walsh function and in the design of a programmable

Walsh function generator. A description of the generator follows.
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2.6 A Programmable Walsh Function Generator

The definition of Eq. (2-21) evaluates only one point on a
Walsh function. If the binary code is cycled through one period from
0 to ZM-l, a complete Walsh function can be obtained. Using the coding
ZERO and ONE for Rademacher values 1 and -1, respectively, the outputs
of a binary up-counter form the set of Rademacher functions. The msb of
the counter represents Ro(e). In the Walsh function generator design*
shown in Fig. 2-2 the Gray code bits of the order of the desired Walsh
function control AND gates that enable the appropriate coded Rademacher
functions to pass through to a parity check for an even number of ONE's.
The design is thus a direct implementation of the algorithm of Table 2-2.
The circuit in Fig. 2-2 can easily be implemented using IC
logic. The latest available packages that can be used in the TTL line
are given in the diagram. This generator design has the feature that
it can be programmed by changing the input binary code for the order of
the desired Walsh function. The code can be changed at any time during
the operation. The Walsh functions are always in phase with the synchronous
counter, regardless of changes in the input code. Wal(0,6), which is
not a product of Rademacher functions according to Eq. (2-16), is produced
when the input code is set to O.
The generator does, however, have a characteristic that could

prove detrimental in certain applications. Since the binary counter has

is design was implemented independently several months before
identical subsequent designs were published [10,11]. At that time,
publication of the design was rejected since only an example of the
accompanying algorithm, rather than a proof, was given.
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outputs that can change simultaneously, there is the possibility that

the Walsh functions may contain ambiguous states, i.e., voltage spikes,

or hazards [12]. Consequently, in the following section, another
definition of Walsh functions is develop&d and it results in implementation

of a hazard-free Walsh function generator [13].

2.7 An Exponential Definition of Walsh Functions

It is well known [4] that any Walsh function can be formed by
the product of two or more Walsh functions where the order of the new
function is the modulo 2 sum of the orders of the multiplying factors
[See Eq. (2-9)]. However, if we consider the new function wal(m,8) to
consist only of products of those functions in the set {wal(Zk,e)}, it
is readily shown that the modulo 2 sum operation can be replaced by
arithmetic addition. Since the binary representation of 2k contains only
1 ONE in the kth position (where k = 0,1,2,3,...),

wal(1,08)wal(2,6)wal(4,6) ... =wal(l ® 2 @ 4 @...,0)

=wal(l+ 2+ 4+ ...,60) (2-24)
where + denotes addition.

If m  are bits in the binary representation of m, then it
follows that wal(m,8) may be formed by products of those members of the

set {wal(mk zk,e)} for which m, = 1. If, for example, m = 13,

wal(13,,,8) = wal(llOlz,G) (2-25)

10’

wal (100G + 100 + 1,6)

wal(8 + 4 + 1,6)

wal(8,6)wal(4,8)wal(l,t)
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Since the order of the result is the arithmetic sum of the order of
the components, Walsh functions generated in this manner are sequency-
ordered. Then, from the above,
M-1 Kk
wal(m,8) = I mk{wal(z ,0)1} (2-26)
k=0
M-1 5
= I wal(mk 2.,0)
k=0
Mil k
= wal( 2:5:0)
k=0 "k
In the first row of Eq. (2-26), m acts as a binary presence operator.
Note also that if mo = 0 for all k,
M-1 "
wal( ] m 27,0) = wal(0,6) =1 (2-27)
k=0
The definitions of Eq. (2-26) are, however, in recursive form
and they give no direct evidence that they can lead to the design of a
hazard-free Walsh function generator. First, the equation must be

modified by viewing the set {wal(Zk,B)} as a set of hard-limited

sinusoids; that is,

wal(1l,8) = sgn sin 276 (2-28)
wal(2,6) = sgn cos 276

wal(4,0) = sgn cos 4nod
wal(Zk,e) = sgn cos ane

The hard-limited sinusoids are related to exponential functions by;
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sgn sin 276 = exp jm <6> (2-29)
sgn cos 2m0 = exp jm <26>
sgn cos 4m6 = exp jm <46>

> S

sgn cos ane = exp jm <2k6>

where <2k6> denotes the nearest integer to 2k6 and 6 is in the range
[0,1). Hence, each member of {wal(Zk,e)} can be represented by an

exponential expression;

val(2¥.8) = exp 47 <2¥e> (2-30)
where k = 0,1,2,3,...,
0 <6 <1.
Similarly,
M-1 x
wal(m,6) = wal( ] m_ 2",6) (2-31)
k=0
Mil k
= exp jv[ <m, 2 6>]
k=0 "

Evaluation of exp jm <m 2kg> depends only on whether <m, 2k6>,

k
which is an integer, is even or odd. In the binary product of m and 6,
only the digits immediately to the left and to the right of the binary
point are needed to determine if the product is even or odd; that is,

if the product m 2ke is of the form ---0.1--- or ---1.0--- then

<my 2k9> is an odd integer and exp jn<mk 2k6> = =1, If m 2k9 is of

the form ---0.0--- or =--1.,l1--- then <m, 2k8> is even and exp jn<mk 2k6>
= +1., Since o Zk in binary always contains only 1 ONE in the kth

position, it simply serves to shift the binary point of 6 to the right

by k places. Then if m = 1, the bits around the binary point can be
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considered as ek_l and ek. (Since € is a binary fraction, the bit

8_, for k=0 is the integer portion and always 6_, = 0.) Addition of

=7 1

these two bits effectively determines the evenness or oddness of(mk 2k6>.
Consequently,
exp jm<m 2k0> = exp jv mk(ek__1 + Gk) (2-32)
Then
M-1
wal(m,0) = exp jn[kzo m (8, _; + 6] (2-33)

The value of the expression in Eq. (2-33) does not change if the addition

ek_l and ek is replaced by the modulo-2 sum or exclusive-OR operation.

Hence, the following non-recursive definition™ of a point on a Walsh

of

function in exponential form is derived as
M-1
wal(m,8) = exp jn[ } mk(ek_1 ® 6,)] (2-34)
k=0
If the exclusive-OR operation is performed between each pair
of adjacent bits in binary 6, that is, each pair 6, @ 6,» the binary
representation is changed to a Gray code. Let the Gray code bits be Yy
where ;
Yo B A B e
Since the exponential in Eq. (2-35) can take only the values +1 or -1

and since the binary bits can be replaced by a Gray cecde bit, the previous

definition can be modified to

%
A summary of Walsh function definitions used in this thesis is
given in Appendix 4.



M-1

Y
A e Yk

wal(m,8) = (-1) (2-36)

M-1 Y
PR (_1)mk k

k=0

It can be seen that the above equation is similar in form to
Eq. (2-22). However, whereas in Eq. (2-22), the order of the Walsh
function was expressed in Gray code bits, the order is now expressed
in binary; whereas the position bits were expressed in binary, they
are now expressed in Gray code. Consequently, for a 2M X 2M Walsh
matrix, Eqs. (2-22) and (2-36) may be used to show what was stated but
not proved by Henderson [5], that the Walsh matrix is symmetrical.

An equally important development of Eq. (2-36) is that combina-
tions of a Gray code count, which is a unit-distance code, rather than
outputs of a binary counter, as in Fig. 2-2, can be used to generate a
Walsh function. The functions generated in this manner are free of
hazards. This characteristic of the Walsh function definition of
Eq. (2-36) will become more apparent in the following description of

the design of a hazard-free Walsh function generator [13].

2.8 A Hazard-free Walsh Function Generator

The Walsh function generator of Fig. 2-2 was found to contain
undesired spikes due to small differences in propagation times of two
or more simultaneous logic transitions through its combinational logic
gates. Other Walsh function generators [4,14,15] that were investigated
were also found to be susceptible to hazards, while a different design

[16], which uses differentiation, was considered to be unsuitable
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because of its susceptibility to noise.

Hazards in combinational irredundant circuits are particularly
significant if memory elements (e.g., flip-flops) are to follow the
circuit, so that a hazard could set a flip-flop into an incorrect state.
~ One technique for eliminating hazards is to introduce redundancies into
the combinational circuits [12]. Such a technique, however, does not
lend itself readily to most Walsh function generator designs in that
the complexity of the gating circuit requirements becomes excessive.
Alternative techniques are either to strobe the output or to custom-build
compensating delay networks, but this again is wasteful. The design
presented here uses the unit-distance property of the Gray code to
avoid hazards. It is simple to implement, can be programmed, and
generates the Walsh functions in order of sequency.

Most Walsh function generators [4,14,15,17 and Fig. 2-2] use
the outputs of a binary counter in a form of exclusive-OR combinatorial
system to synthesize the required functions. Fig. 2-3 shows two
exclusive-OR formations commonly used in these systems that display
propensity to hazards. If there are simultaneous changes on the inputs
shown in Fig. 2-3(a), and if the input exclusive-OR gates have unequal
propagation delays, then the output G has an undesired pulse. (It is
assumed that gating of an exclusive-OR module cannot produce a hazard
state within itself. A check cn a number of IC gates showed this to
be a justifiable assumption.) Similarly, Fig. 2-3(b) shows an unwanted
ZERO~going pulse due to propagation delay of signal D, whereas there is

no delay in input C. f the changes on the input lines were not
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simultaneous, hazards would be even more likely. In both cases shown
in Fig. 2-3, it can be seen that if only one input at a time were
allowed to change, only one transition would propagate through the
system and no extra pulses could occur.

The Walsh function definition of Eq. (2-36) indicates that any
point on wal(m,68) may be evaluated using a parity check for an even
number of ONE's in the Gray code number for the position 6 that have
been enabled by the binary bits of m. From this definition, a coding
algorithm comparable to Table 2-2 can be devised (see Table 2-3).

Direct implementation of the algorithm of Table 2-3 is a Walsh function
generator design (shown in Fig. 2-4) in which outputs of a Gray code
counter, rather than outputs of a binary counter, are enabled by AND
gates that are controlled by bits m in the binary code for m to pass
to a parity check, which consists of exclusive-OR configurations of the
type shown in Fig. 2-3. Due to the unit-distance property of a Gray
code, only one bit of the code changes with each count and only one
transition at a time can propagate through the parity check system,
resulting in hazard-free operation. Note that the most-significant

bit (msb) of the Gray code is enabled by the least significant bit (1sb)
of the binary code; the lsb of the Gray code is enabled by the msb

of the binary code. !

A more graphical visualization of the hazard-free characteristic
of using a combination of Gray code bits can be made by recalliny that

Eq. (2-36) was derived from a product of members of the set {wal(zk,a)},
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wal(m,0) where m = 22. = 10110

10 2
6 = .3442910 = 0.010110 ~--- 2
fa1 i Plob Sl g e
| S ) 1 0 1 1
Gray code for 6 0 1 1 3 0
: AND
Binary m mo=1 m1=0 m2=1 m3=1 m4=0 J
L 0 0 1 1 0
s T =
B
Even ONE's parity check ' |
o
pe BT L o war(22,.36429)

Table 2-3 Evaluation of wal(22,6) for 6 = .34429.

as determined by the bits m, [see Eq. (2-26)]. A result of the derivation
is that sampled values of the set {wal(zk,e)}, using the coding ZERO for
+1 and ONE for -1, form a cycle of a k-bit Gray code. Conversely, the
outputs of the Gray code counter in Fig. 2-4 comprise the set {wal(Zk,e)}.
Fig. 2-5 illustrates the first four members of {wal(Zk,B)} and Table 2-4
shows the coded samples of this set forming a Gray code.

The absence of simultaneous level transitions among members cf
{wal(Zk,e)} is evident from Fig. 2-5. The first function of the set is

the odd function sal(l,8) which is a square wave with transitions at
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+1
sal(1l,08)=wal(1,0)
-1
+1
cal(l,8)=wal(2,9)
-1
+1  — e
cal(2,8)=-wal(4,8)
-1
+1
cal(4,6)=-wal(8,8)
-1
+1
cal(8,8)=wal(16,60) l I l l I l l l l I l I l g | '
-1
LT T T L W R e I N N T O
0 oD 1

Fig. 2-53 Set of Walsh Functions {wal(Zk,a)}
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sampled sampled sampled sampled

2M ?X, 8y = wal(1,6) g, = wal(2,60) 8, = wal(4,6) g9 = wal(g,9)
0 0 0 0 0
1 0 0 0 1
2 0 0 1 1
3 0 0 R 1 0
4 0 1 1 0
5 0 1 1 1
6 0 1 0 1
7 0 1l 0 0
8 1 1 0 0
9 1 1 0 1
10 1 1 1 1
11 1 1 1 0
12 1 0 1 0
13 1 0 1 1
14 i 0 0 At
15 1 0 0 0

Table 2-4 Coded Samples of {wal(2k,6)} which Form a Gray Code.

6=0 and 6=.5. The remainder of the set comprises the even functions
ca1(2k-1,6). Since this latter set consists of evenly-symmetric square

waves having 25 ! segments within the interval 0 £, ca1(2¥71,0)

k+1

has transitions at Bm = [(142m)/2™ 7]. 1If the transitions for any other

cal function within the above set, say cal(Zx-l,e), are at

x+1

ey = [(1#+2y)/27" "], it is shown below that the transitions of the latter

do not coincide with those of the former; that is,

1+2m 1+2y N
D) 3 ,*F (2-37)

vhere k # x and k,m,x, and y are positive integers. Eq. (2-37) can be

rewritten

2k+1

2x+l

1+2m
1+2y

( )( ) R (2-38)
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Let

2k+1 s

= 2
2x+l

(2-39)

where z = k-x. Since k # x, z # 0. Both (1+2m) and (1+2y) are odd

By

integers, and since 2% is always an even integer with no odd factors,

14+2m 4 > 55

1+2y 92 (2-40)

Hence each cal function in the set has a unique set of level tramsition
positioﬁs. Furthermore, these positions do not match those of sal(l,8)
since [(1+2m)/2k+1] cannot equal 0 or 0.5. No simultaneous state changes
occur among different mewbers of {wal(zk,e)}. In Fig. 2-4 then, the
outputs of the Gray code counter, which constitute the coded set of
{wal(zk,e)}, allow at most one transition at each clock pulse to pass
through the AND system and the parity check.

The system of Fig. 2-4 was implemented using TTL integrated
circuits. Attention needs to be paid to the Gray code counter since
some designs are not hazard-free. For example, a system comprising a
binary counter feeding a binary-to-Gray code converter would likely
not provide hazard-free operation. A particularly elegant design is of
the iterative type [18] in which the clock is gated to only one of the
flip-flops at each count. The design from [18] that was modified for
use in the Walsh Function generator is discussed in more detail in
section 2.10. The AND gates used in the generator are type SN7408
and the parity check is SN74180. At the highest available clock
frequency, 10 MHz, the Walsh waves were stable, were free of hazards,

and had clean rising and falling edges. The selection of the Walsh
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function wal(m,8) to be generated is made simply by providing a binary-

coded input for m.

2.9 An Array Walsh Function Generator

Each of the Walsh function generators previously described
produces a single, programmed function. In some applications, such as
spectral analysis or multiplexing, several Walsh functions may be
required simultaneously. Previous Walsh function array generators
[4,19] display hazards. A simple extension of the design method of
Fig. 2-4 yields a parallel array of Walsh functions that are free of
hazards (see Fig. 2-6). Each of the Walsh functions is hardware-
programmed as a binary combination of outputs of a Gray code counter.
For any given function wal(m,6), one combines, using exclusive-OR gates,
those functions of the set {wal(mk zk,e)} for which mo= 1. Since the
output of an exclusive-OR system is ONE if there are an odd number of
ONE's at the input, each output of an exclusive-OR network is complemented
by an inverter to produce a binary Walsh function in which +1 is codad
as ONE and -1 is coded as ZERO.

Gating for certain Walsh functions may be simplified by using
the outputs of exclusive-OR gates that are already engaged in forming

other Walsh functions. For example, wal(7,6) is the complement of

wal(l,6) & wal(2,8) ) wal(4,6), as shcwn in Fig. 2-6. However,

wal(1,8) QE) wal(2,6) was used already in forming wal(3,0). Thus, cne

can use wal(3,8) () wal(4,6) to form wal(7,6). In this manner, cne
needs at most, one additional exclusive-OR gate for each new Walsh

function. In this simplification procedure, care must be taken that
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Fig. 2-6 A Walsh Function Array Generator
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redundant functions are not used in generating a new function.
According to Eq. (2-26), only a binary combination of {wal(Zk,e)} will
give hazard-free operation. To illustrate, let us generate wal(5,6).
With reference to Fig. 2-6 and Eq. (2-26), wal(5,9)must be formed using
wal(l,6) and wal(4,6). Wal(3,68) and wal(2,6) will not produce wal(5,6)
since wal(3,6) already contains the elements wal(l,6) and wal(2,6).
Wal(2,6) can not be used again with this combination. Not only may
hazards occur but according to Eq. (2-9), the wrong Walsh function will

result.

2.10 A Hazard-free Gray Code Counter

Both the programmable Walsh function generator of Fig. 2-4 and
the array generator of Fig. 2-6 are stipulated to be hazard-free.
Although it has been established fhat a combination of Gray code bits
accomplishes the hazard-free requirement of the generators, such
discussion is useless unless the outputs of the Gray code counter portion
of each generator are themselves free of irregularities.

A Gray code counter that is a modified version of a design by
Majithia [18] can have only one of its outputs change with any clock
pulse, since the clock input of only one of the J-K flip-flops that
yield a Gray code bit is enabled at any step. Hence, this counter,
which is of the iterative type shown in Fig. 2-7, cannot be the source
of any hazard states.

Majithia's design [18] uses an auxiliary flip-flop A (see Fig.

2-7) to complement the lsb of the Gray code, &y at every alternate
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count. The g9 flip-flop in the counter is to be complemented when A is
in state 1 and a count pulse is presented. From the 4-bit Gray code
count sequence shown in Table 2-5 it is seen that the A flip-flop must
be initially preset to ONE. Hence, A muSt be a presettable flip~flop.

Simple T-type or J-K flip-flops suffice to generate the Gray code bits.

Decimal Count Gray Code

g4 g, g, g A

0 0 0 0 0 1
1 0 0 0 i 5 0
2 0 0 | ! 1
3 0 0 3% 0 0
4 0 4 1 0 1
5 0 1 1 1 0
6 0 1 0 1 1
7 0 1 0 0 0
8 1 1 0 0 1
9 1 1 0 2 | 0
10 | i 1 1 1
11 1 1 1 0 0
12 1 0 1 0 1
13 i 0 1 1 0
14 1 0 0 1 1
15 1 0 0 0 0
0 0 0 0 0 1

Table 2-5 4-bit Gray Code Count Sequence

The flip-flop g, is to be complemented when 80 is at 1, A at zero, and
a clock pulse (c.p.) arrives. Similarly, g, is to be complemented when
81 is at 1, all lesser significant stages are at 0, and a c.p. is

present. If this argument is extended to the kth flip-flop, one obtains

the follcwing conditions:
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Use a c.p. to complement if

8k

for k # 0. If k = 0, complement for A = 1.

Examination of the above conditions for complementing the kth
flip-flop and of Table 2-6 indicates that at the end of one Gray code
count cycle, the msb of the Gray code is ONE and all other flip-flops
are in state 0. The next count pulse would leave the msb of the Gray
code as a ONE and merely complement flip-flop A. This, in effect,
initiates a reverse Gray code count. Consequently, Majithia's design
has been slightly modified in Fig. 2-7 to use the count pulse that would
hormally complement the (k+1) flip-flop to reset the kth flip-flop.
VFig. 2-7 shows the entire counter being reset by this condition, but
this is done to simplify the incorperation of an external reset. One
necessary condition for the count pulse arises due to the modification.
Since changes in the g outputs may occur at rising or falling edges of
the count pulse, this pulse must be kept as short as possible.

It can be seen that the design of the counter prevents hazard
states in the g outputs. From the complement conditions of Eq. (2-40),
only one g £flip-flop may be complemented at any count. The final
count in a cycle resets only the msb of the Gray code. Comnsequently,
this design of a Gray code counter in conjunction with the combinational
logic of Fig. 2-4 or Fig. 2-6 is used for generation of hazard-free

binary Walsh functions.
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2.11  Conclusion

The definitions of the Walsh functions have been developed from
Walsh's original recursive equations to several forms of non-recursive
expressions. With the variety of relationships available, one must
take care before selecting which to use in specifying the ordering of
the Walsh functions [7], in defining the period ([- %3 %), [0,1), etc.),
or in defining the position (binary fraction over 0 < 8 < 1, or integral
intervgl number y = GZM). Properties of the various definitions should
be considered before use. For instance, the definition [Eq. (2-36)] in
which the Gray code bits for the position and the binary bits for the
order are used has been utilized to design a Walsh functior generator
‘that is free of hazards. On the other hand, a definition that is
similar [Eq. (2-21)] but uses binary bits for the position and a Gray
code for the order does not lead to hazard-free operation. For
convenience, all the equations that are mentioned in this chapter with
regard to sequency-ordered Walsh functions are summarized in Appendix B.

Software programming for evaluating Walsh functions is

simplified using the coding algorithms described in this chapter,

The orthogonal property of the Walsh functions, which are also
conveniently two-valued, makes this set of functions particularly
attractive in the design of a digital instrument for spectral analysis
of signals. The functions can be used to represent a waveform in a
Walsh series in much the same way as sinusoidal waves are used to form

a Fourier series. Walsh series analysis is discussed in greater detail
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in the following chapter. Based on this analysis, a digital instrument
that determines the coefficients of the Walsh series of a waveform in
real-time has been designed. The hazard-free Walsh function generators
of Fig. 2-4 and Fig. 2-6 play an integral role in the development of

such an instrument.



CHAPTER 3

WALSH SERIES ANALYSIS

3.0 Introduction

Charackerization of signals and systems by the frequency domain
has been well established. The concepts of frequency analysis and
spectrum can be more generally perceived by observing other complete
orthogénal sets. One set of functions that is well-suited for this
purpose is the set of Walsh functions. Using this set of functions for
the description of time-dependent functions in the sequency domain is as
meaningful as the description of the same signal in the frequency domain
since both series expansions‘converge to the signal in the least mean
squares fit [1]. This chapter concerns itself initially with signal
analysis by means of expansion into a Walsh series. Emphasis is then
placed on specifications for a digital special-purpose instrument that
will determine the Walsh series coefficients of a function in real-time
using samples of the input waveform. The basic equations of the Walsh
series coefficients are modified into operating equations that can be
handled by the digital instrument. Instrumentation requiremerts to

process each portion of the operating equation are then discussed.

3.1 The Walsh Series

A function £(€) which is of period 1 and Lebesgue integrable on

(0,1) may be expanded into a Walsh series (2] ;0 viEs

(42)
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£(0) = )} W_wal(m,6) (3-1)
m =0

© ©
= Ay + Y Al cal(s,0) + Z”MBS sal(s,0)
s=1 s=1

where 6 is the normalized time and where AO’ As’ Bs and Ws are the
coefficients of the terms of the series. The set of Walsh series
coeffigients forms the Walsh spectrum [1-13]. According to Theorem II
of Walsh [1], if £(6) 1s‘continuous in the interval (0,1), the series
expressed in Eq. (3-1) converges uniformly to the value f£(6) if the
terms are grouped so that each group contains all the ZM-l terms of a
éet {wal(m,0)}, where M is the number of binary bits in m. Walsh's
Theorem II can be extended to include discontinuous functions f(8) if
f(6) is integrable in the sense of Lebesgue.

The objective noﬁ is to derive relations which will yield the
Walsh series coefficients of an unknown signal. According to the
standard procedure for determining the equation for the coefficients of
an orthogonal series [14], both sides of the series expansion of Eq.
(3-1) are multiplied by wal(k,8) and then integrated over one period T.
Thus,
T

z Wm wal(m,0) wal(k,0)de (3~2)

T
J £(0) wal(k,6)dd = J
0 m=0

0

Since Walsh functions form a mutually orthcgonal set [see Eq. (2-10)],
all terms on the right side of Eq. (3~2) will integrate to zero except

for the product of the Walsh functicns for which k = m. Then
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[ z Wm wal(m,0) wal(k,8)de =

0 m=0

therefore

f(8) wal(k,6)ds

b4,

& 2
Wk wal“(k,0)de = W
0

KX (3-3)

D

(3-4)

Similarly, for the average value A0 and for the coefficients of the

even and odd components, As and BS

1 T
.A0 = —'J f(e)de
b
0
1 T
A = —-J £(8) cal(s,8)ds
s T
0
3 |
B = —-[ f(0) sal(s,0)do6
s i 0

The amplitude spectrum of
defined as the square root of the

based on the relation

a_ cos 2rvf6 + b_ sin 27nfe6

f f

Such a relationship does not hold

, respectively,

(3-5)

the ordinary Fourier transform is

power spectrum. This definition is

1
2o
& ; % - avind
(af + bf) cos[2nfe arctan\bf/af)]
=cg cos[2nfB - arctan(bf/af)] (3-6)

for the Walsh spectrum [15].

Consequently, there is no simple relationship between Wm, A and BS.
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As and BS are commonly interpreted individually as Walsh amplitude

spectra of the symmetric and the skew symmetric parts of £(6).

3.2 Concepts of a Digital Walsh Spectrum Analyzer Design

A special-purpose instrument is to be designed that meets the

following general specifications:

a) the instrument should yield the Walsh spectral coefficients of

a waveform at audio frequencies and lower,
b) - the process should be carried out in real-time,

c) the instrument should use as few cycles of the input (if it is

periodic) as possible to complete the measurement, and
d) the system should have as little memory as possible.

Primarily, there is a choice between designing a digital or an analog
instrument. A digital design was selected since digital logic is
obviously compatible with Walsh functions, which have only two states,
and can be coded easily using binary logic. A digital instrument adapts
itself more readily to low frequency analysis (say under 1 Hz) than does
an analog device. Arithmetic operations, storage, and numerical readouts
are facilitated using digital hardware. At this time cost considerations
generally give digital components an additional advantage over analog
components.

Secondly, the spectral analyzer design can employ the straight-

forward approach of sampling the input waveform and processing the
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samples using the coefficients equation of Eq. (3-5), or one can
implement the Fast Walsh Transform (FWT) [16,17] which is comparable
to the FFT (Fast Fourier Transform). The direct approach was selected
since it is felt to have certain advantages over a Fast Walsh Transformer.
A machine that processes each sample of a waveform before the next
sample a;rives and which calculates in parallel as many Walsh coefficients
as desired can be made more versatile and can operate faster than a Fast
Walsh Transform device.

The digital Walsh Spectrum Analyzerlthat is described in detail

in Chapter 4 has various modes of operation:

1) fﬁr periodic waveforms; there is automatic period detection
using successive positive-going zero crossings of the input.
Calculations are time-locked to the waveform period, and
measurement is complete at the end of the second cycle of the

input wave.

2) for periodic waveforms with more than two zero crossings per
cycle; there is automatic period detection using successive
positive-going crossings of an arbitrarily set reference voltage.
Again the processes are time-locked to the signal and there is

two-cycle operation.

3) for any waveform; a second input control makes provision for a
square wave or a set of marker pulses to be used to start the
calculations and to set the period of measurement arbitrarily.

This period is automatlically measured within the instruuent
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and calculations are made similar to modes 1 and 2.

Several additional modes of operation could be built into a Walsh
spectral analyzer as described in 4) - 6) below. However, the minor
changes that would be required in the control system to accommodate

them have not been included in the design of Chapter 4:

4) the period of measurement could be selected arbitrarily by
presetting the period detector. This operation would enable

single cycle measurement of the coefficients.

5) a pre-selected number of samples (say ZM) could be used for
the measurement. The period of the signal to be analyzed is
determined by the sample size and the sampling interval. Again,

single cycle operation is enabled.

6) a set of digital samples could be analyzed by bypassing the
A/D converter that would normally be used to sample the analog

input.

A Walsh spectral analyzer that can operate in any of the above
modes is a more versatile machine than a Fast Walsh Transformer. Whereas
an FWT requires a predetermined number of samples to be stored before
any processing is done on the samples, the Walsh Spectral Analyzer (here-
after denoted WSA) can process each of an indeterminate number of
samples before the next sample is taken. Thus, the WSA completes
processing by the time the FWT begins its sample processing. If desired,

2

the WSA can cperate in a similar way to the IWT by preselecting th
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number of samples (see mode 5) but again calculations are complete
immediately after the arrival of the last sample. Consequently, the
WSA is closer to a real-time instrument than the FWT.

It is not generally possible for the FWT to operate in modes
1) to 4). The FWT would be difficult to synchronize with a periodic
wave or the time window of an arbitrarily set period. The only storage
requirement.pf the WSA is the final readout storage for each of the
Walsh series coefficients, whereas the FWT must provide storage for a

complete set of data samples.

3.3 Operating Equation for Walsh Spectral Analyzer

The Walsh Spectral Anslyzer that has been implemented is a
digital instrument, so that data from a signal is in the form of
quantized samples. Since discrete samples are used to describe £(8),
integration in Eq. (3-5) is replaced by summation. If there are H

samples of f(6) during the period T, where T is normalized to 1, then

1
de = i (3-7)

and the equations in Eq. (3-5) can be rewritten as

1 lz{
A, = = £(8) (3-8)
0 H hel h
l ‘E%
As = E-hil f(e)h cal(s,e)h

H
hzl f(e),n sal(s,e)h
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where f(e)h, cal(s,e)h and sal(s,e)h are the values of the respective
functions at the time of the hth sample.

The samples of the continuous wave f(6) are processed by a
binary-coded analog-to-digital (A/D) converter. Quantization of the
waveform during the coding process means that all of the samples within
the range of voltages specified for any given level are represented by
the same value. For example, in Fig. 3-1, if the A/D converter has a
range gf 0 to Vmax volts and has p quantization levels, then the signal
f(8) is considered to have the quantized value [Vmax(2r+l)/2p] volts
when £(6) lies between the levels r and r+l. Fig. 3-1 shows f(6) lying
and 6,.

2 3

However, since the A/D converter yields only a binary-coded signal,

in this range between the normalized times 6

each sample of the wave f(@)h, which is taken between times 62 and 63

is represented by the binary-coded value of r + %u Let this binary
number be designated Qh' To change the coded value back into a voltage

value, a conversion factor (C.F.) is introduced.

Vmax(Zr + 1)
f(e)h = ) = (C.F.)Qh (3-9)
where
Qh = r + %-: gEEi—L (3-10)
Hence
Vmax
(C.F.) = p (3-11)
and

\
£(8), = TR Q, (3-12)
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The A/D converter used can accept waveforms in the range 0 to
+10 volts. An AC input signal is rectified before it is sampled by the
A/D converter. In this way, samples with the same absolute value are
given the same coding, and an additional signal is used to indicate
the sign of £(8). A logic ONE level is used to represent the positive
portion of the signal and a logic ZERO level is used to indicate that

£(6) is negative. Now f(e)h can be rewritten as

\')
max

£(0), = 1th sgn £(0), (3-13)

Consequently, the operating equations that can be handled by a digital

Walsh Spectral Analyzer to perform Eq. (3-5) have the final form

Ay = X;‘ﬁ-'i hgl o, | sgn £(0), (3-14)
A = ::x L lo, |sen £(0), cal(s,6),
B = g;x L lo, [sen £(0), sal(s,e),

3.4 Signal Processing in the Walsh Spectral Analyzer

The stages of signal processing in the WSA are determined by the
operating equations Eq. (3-14). With reference to the example in Fig.
3-2, which shows a signal [Fig. 3-2(a2)] that is to be analyzed according

to mode 1 , the first step is to rectify £(8) [Fig. 3-2(b)] and provide
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a logic signal that indicates the sign of the input [Fig. 3-2(c)]. 1In
mode 1), the first cycle of the periodic wave is used to determine a
measure of the time of one period. During the second cycle the Walsh
coefficients are calculated. Eq. (3-14) requires that the input wave be
multiplied by a Walsh function corresponding to the coefficient to be
evaluated and the function mustvbe correctl§ timed and have the same
period as the analyzed signal. Consequently, Fig. 3-2(d) shows a
Walsh function [in this case, sal(3,6)] generated during the second
cycle of the input. The binary equivalent of sal(3,6) is shown in

Fig. 3-2(e). The summation of samples of f(6) according to Eq. (3-14)
is best handled by adding or subtracting the binary samples of |f(6)|,
where the addition or subtraction is dependent on the product of the
signals sgn f£(6) and sal(3,8), as indicated by Fig. 3-2(f). The latter
signal enables the Walsh coefficient B3,to be determined.

The other modes of operation follow the same basic structure of
the processes outlined by Fig. 3-2. In mode 2), if the signal has more
than two zero4crossings per cycle; a reference level is adjusted
positively or negatively to a point where there are only two crossings
of the reference level per cycle. The steps of Fig. 3-2 then begin
with the first positive-going crossing of the reference level. In
mode 3), marker pulses on a control input channel, rather than the
analog signal to be processed, initiate the period measurement and
analysis.

Preselection of the period of measurement according to modes &)

and 5) enables the operation to begin immediately at a point equivalent
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to the beginning of the second cycle shown in Fig. 3-2. Successive
time windows of a function could be used to evaluate a time-varying
Walsh spectrum by operating in modes 4) and 5). A digital Walsh
Spectral Analyzer that is designed to operate in any of the first

three modes is discussed in detail in the following chapter.



CHAPTER 4

DESIGN OF A DIGITAL WALSH SPECTRAL ANALYZER

p—

4.0 Introduction

The operating équatibn‘(B—lk) provides the basis for the design
of a digital Walsh Spectral Analyzer. A special-purpose instrument has
been designed and constructed to operate in the first three modes of
operation as outlined in Chapter 3. A detailed description of each

section of this analyzer follows an overall view of the system.

4,1 Complete System

The block diagram corresponding to the complete Walsh Spectral
Analyzer is shown in Fig. 4-1. Portions of the operating equation of
Eq. (3-14) which relate to the various blocks are indicated on the
diagram.

After being interfaced by a high input impedance voltage
follower, the anaiog input is directed along three paths: the first
leads to the conversion of the input £(6) into a series of quantized,
binary-coded samples. The second path is used simply to determine the
sign of the input signal. The third path leads to controls which use
information concerning the period of the input in order to process the
binary-coded samples from the first path. When the switch SW1 of Fig.
4-1 is connected to the mode (3) control , the analog input is led only
to the first two paths so that external information must be provided to

determine the period of measurement. The input to the mode (3) control

(55)
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should be a sequence of pulses or a rectangular wave with a period
equivalent to the desired period of measurement.

The first path contains two major components, a rectifier and
an A/D converter. Rectification is positive so that the input to the
A/D converter is restricted to the range 0 to +10 volts. The output
of the rectifier |f(6)| is sampled by the converter. The samples |th
are quantized and given a binary coding. The digits of the coding
appear on p;rallel output leads. Since the first cycle of the input
signal or the mode (3) control signal is used only to determine the
period of measurement, controls'permit the A/D converter to operate
only during the second cycle. A counter is used to total the number
of samples. Since :the input has been rectified, the second path
contains a sign detector which provides a binary signal sgnf(6).

Concurrently, in the third path, f(8) passes to a period
detector, which detects crossings of a reference level either by the
analog input or by the ﬁode (3) control input signal. This information
is necessary since all system operations are to begin with the first
positive-going voltage reference level crossing and Walsh functions are
to be generated with a time-base equal to the measurement pericd. The
period detector provides signals that indicate whether the system is
in the first or second cycle of operation and whether all calculations
are complete. These signals are sent to paanel light indicators and to
a pulse generator that produces correctly-timed pulses for the Walsh
function generator (W.¥.G.). The W.F.G. pulse generator transmits pulses

that enable :he Walsh function generator to produce a parallel array of
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functions with the correct time-base during the second cycle of operation,
as shown in the example in Fig. 3-2. If the clock system controlling the
generator is not operating at a rate sufficient to calculate the measuring
period within certain error limits, the system stops and panel lights
indicate whether the clock rate should be increased or decreased.

Each Qalsh function generator output ties into the following
blocks; an accumulator control, an accumulator, and a coefficient
readout. Siﬁce the analyzer that was constructed was a prototype,
facilities were provided to calculate only two Walsh series coefficients
at a time out of a possible 64. The two coefficients to be measured are
selected before operation by rotary switches. The accumulator control
has an output.signal sgnf(6) wal(m,8). This signal determines whether
the samples of |f(8)| from the A/D converter should be added toc or
subtracted from the previous total in the accumulator. Each of the
accumulators is designed to divide the accumulation of sample values by
the number of quantization levels p as required by Eq. (3-14). Thus,
the final stage is a bank of counters that count the overflow from each
accumulator. Each of these last stages hold a count equivalent to

1 H
) I lo,| senf(e), wal(m,8).
h=1
Numerical indicators can be used to display the counter contents. The
final count value differs from Eq. (3-14) by the factor Vmay/H.

S

vﬁax = 10, and H is supplied by a separate counter. In using the proto-
type instrument, it is left to the operator to multiply the coefficient

readout by 10/d. However, the Walsh coefficient equation is sometimes

derived (i.e., [1]) without the factor 1/H. 1In this case, simple
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multiplication by 10 suffices.

H is also used to determine the frequency of the fundamental
component of the series. If the sample frequency is fs’ then the time
between samples is 1/fs. The time for H samples is H/fs = T, and the
fundamental frequency or sequency is fs/H.

In addition to the main blocks of the instrument, some peripheral
controls are required. There is a master clock whose frequency can be
reduced in éecade steps to determine the sample rate of the A/D
conve;ter and the W.F.G. pulse generator. Start, stop and clear controls,
which regulate several portions of the analyzer, complete the design of
the digital Walsh Spectral Analyzer. Detailed descriptions of each
section of thé instrument follow. Due to continually changing availability
of components, reference to commercial devices used in the construction of

a prototype instrument are limited to a few specific cases.

b2 Precision Rectifier

A precision rectifier [2] with negligible distortion in the
range D.C. to 5 KHz was built using high slew-rate operational amplifiers
(250 V/usec) and stable precision resistors. The rectifier circuit is
shown in Fig. 4-2.

When the input VIN to the rectifier is negative, the voltage

V., fromthe first operational amplifier ic essentially zero and the

01

second operational amplifier acts as an inverter with unity gain so that

the output is given by

Vg = oV (4-1)
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-

When the input VIN is positive, the diode D1 conducts making V -V

01 -
‘since the gain of the first inverting amplifier is also unity. The

IN?

second amplifier now acts as a summing and inverting amplifier with an

output given by

e, 2V, (4-2)

: The precision resistors were matched to maintain accurate ratios
on the summing inputs of the amplifiers. Measurements of the rectifier
that was constructed indicated that there was a maximum error of 6.8 mv.
on the output for an input in the range £25 mv. to *10 V. Propagation

delay through the rectifier is less than 1 usec.

4.3 A/D Converter

After rectification, the waveform being analyzed is sampled and
quantized. The samples are given a binary coding, with each bit of the
code appearing on a separate lead. An 8-bit successive approximation
A/D converter with a built-in reference supply is used [3]. A diagram
of the A/D converter is shown in Fig. 4-3. 8-bit quantization, in which
case the quantization steps are approximately 39 mv. wide, yields an
amplitude error which is a tolerable ,4%.

The sample accumulation system which is described later requires
the bits in the coding from the A/D converter to be processed serially
in time. The A/D start pulse ripples through a time delay network, and
the delayed pulses can be tapped to enable successively each bit of the

ceding, beginning witi the m.s.b.. The outputs Py of the enabling network
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are indicated in Fig. 4-3. The subscript of the bits P, gives the binary
count value represented by each pulse. There are 9 points in the
converter from which the delayed pulses may be tapped. Eight of them
are used tg produce'the coded pulses equivalent to level r. The ninth
pulse is used for sample counting and to represent a binary %-signal
which enters into the sample accumulation regardless of the coding.
The‘% - bit addition with each sample is a requirement of Eq. (3-10).

Test measurements on the converter showed that the conversion
is complete within 9 usec. Thus, a maximum sampling rate of 100 KHz.
allows ‘1 psec. settling time beéween the end of conversion and the
beginning of the next start pulse. Controls to determine sampling rate
and duration of sampling, and to generate the A/D start pulses are

described in the following section.

4.4 A/D Converter Controls

The corntrol system of Fig. 4-4(a) sends constant width pulses at
a preselected rate to the start pulse input of the A/D converter. The
pulse rate from the 1 MHz master clock in the Walsh Spectral Analyzer is
reduced through 6 decade counters. A rotary switch is used to select
sampling rates from 100 KHz down to 1 Hz. Three control signals enable
the timing pulses to pnass to the constant width pulse generator. The
sampling rate signal is enabled only when the W.S.A. system enable
signal and the FF2 signal (a control signal from the period detector that
permits sampling to take place only during the second cycle of operaticn)

are at logic ONE levels.,



€4.

b Hile L 15§ P Ry I T * 10 210 THET
clock
sampling rate signal
WSA
R A
system ‘
enable 220pf
FF2 A/D Start
B e Tm
control .
signal to
enable second 1KQ Toc sample
cycle sampling and hold in
only. i accunulator
control.
constant pulse generator
(a)
1
5 .
0 : sampling rate signal
i ;
0 A/D start pulse
R B —
300 nsec
(b)

Fig.

b=l A/D Converter Controls



65.

Aécording to the A/D converter specifications [3], the start
pulse must have a width between 100 nsec. and 500 nsec. The constant
width pulse generator allows a pulse with a width in the specified range
to be prodﬁced on a change from logic 1o 0 of the sampling rate signal,
as shown in Fig. 4-4(b). On the constructed system, the pulse was found
to maintain a width of approximately 300 nsec. The A/D start pulse serves
a dual function; it is also used as the timing control for the digital
sample and hold within the accumulator control, which is described in a

later section.

&5 Sign Detector

Since the input is rectified for use in the A/D converter, a
binary signal sgn f(6) representing the sign of the input is needed.
The detector, shown in Fig. 4-5(a) uses a National Semiconductor voltage
comparator LM311l, which has a response time of approximately 200 nsec.
Several other voltage comparators were tried, but no other types could
provide as noise-free switching on the output signal for input waveforms
of very low frequency (i.e., under 0.1 Hz.). One type of comparator
could not tolerate use of hysteresis at a zero-reference level. Hysteresis
is fhe difference in the reference level voltage that determines the
comparator switching point, where the level depends on the cutput state
of the comparator. It is necessary in order to eliminate erratic switch-
ing of the comparator due to additive noise in the signal.

The LM311 has an open—~collector output so that its output can be

made compatible with the TTL circuits that are used throughout the WSA.
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Fig. 4—5(a5 shows the output tied through a resistor to a logic level ONE,
so fhat the high output is also a logic ONE level.

The detector should be adjusted so that sign changes on £(6)
are detected within one quantization intérval either side of 0V. Since
the first level ranges from O mv. to 39 mv., the hysteresis was adjusted
by a voltage divider in the feedback loop tied to the inverting input so
that the output switches on a rising signal above 27 mv. and on a
decreasing voltage below -1 mv. An inverter in the feedback lcop provides
a constant reference voltage to determine the amount of hysteresis. The
switching characteristic of the sign detector is given in Fig. 4-5(b).

The low-value resistance on the non-inverting input is used to
match input resistances on both inputs. The pair of inverters on the
output provide better fanout characteristics for the detector and allow
a capacitor to filter out possible high-frequency noise on the edges of

logic-level transitions . without loading the comparator.

4.6 Period Detector

In each of the modes in which the instrument is to function, all
operations are to begin with the first positive-going reference crossing
of either f(8) or a marker signal. If these inputs were always periodic
with only two zero-crossings per cycle (as in mode (1) operation) then
the sign detector signal would suffice to determine the measuring
periods. However, in modes (2) and (3), the signals used to determine
the period may have more than two zero-crossings per cycle or they may

not cross zero at all. Hence, a reference level is shifted positively
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or negatively over a range -10 V to +10 V to a point where the signal
crosses the reference only twice in each cycle. The period detector
‘must indicate whether the instrument is operating in the first or second
cycle of the input, since a measure of tggmperiod is taken during the
first cycle and coefficients are calculated during the second cycle.
Operations cease at the end of the second cycle. The period detector

is shown in Fig. 4-6. It consists of two parts; a reference crossing
detector, i.e., a Schmitt trigger, and a pair of flip-flops whose output
information determines whether the instrument is functioning in the
first or second complete cycle of the input.

In conventional Schmitt trigger circuits, the hysteresis may
cause switching at a level that is not precisely the programmed reference
level, or the hysteresis may vary depending on the output loading.
Furthermore, some Schmitt triggers have a very restricted range for
reference level inputs. The reference level must often be unipolar.

The first part of the period detector in Fig. 4-6 is a Schmitt trigger
circuit whose output is compatible with TTL circuits and which has a
predetermined, fixed amount of hysteresis. The reference level can be
varied from -10V to +10V and the transition (logic 1 to 0) which triggers
the period numbering circuit, occurs very close to the point at which
the input has a positive-going crossing of the input reference level.

The operation of the circuit is explained by referring to the

’

waveforms shown in Fig. 4-7. The input waveform is V With the

Io

reference level set at V,, the output switches from high to low at points

I

A and B. The reverse will occur when the input falls to a value below

VR’ as deternined by the hysteresis. The pA741 operational amplifier
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of Fig. 4-6 is used as a subtractor with the output ey given by

Rz
e, = 2 (Vy = V) (4-3)
|
as shown in Fig. 4-7(b). If both VI and“Vk have limits of +10V and
=10V then R2/Rl = 0.5 to restrict e, to +10V. This causes the overall

hysteresis to be double that of the comparator circuit alone. The
comparator LM311 has one input e, and the other determined by the feed-
back loop. Since the LM31ll comparator has two output states, logic ZERO
and logic ONE, e, in Fig. 4-6 also has two states. The comparator

hysteresis is then given by

___QL_,Q (4-4)

Thus, 1if R3 and R4 are fixed, the hysteresis of the comparator is fixed
by the logic inverter output eye The inverter is included in the feed-
back loop to make the hysteresis ey independent of variations in the
output voltage due to loading and to ensure the proper direction of
switching of the hysteresis voltage ey for stable operation.

Generally R4 >> R3 so that ®Hpin is effectively zero. As seen

in Figs. 4-7(b) and (c), when e, is high, then ®Hoin % 0 volts and the

1

comparator will switch at points A and B. As soon as the comparator

3.5R3
. rises to approximately R3+R, L . volts,

switches to logic ZLRO, ey

since 02 i 3.5Y. The input e, must rise above this level (at points

1
A' and B') before the comparator switches to its previous state.

Consequently, the hysteresis voltage ej determines the minimum peak-to-

peak amplitude of the input voltage that will cause the Schmitt trigger
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to be able to detect a complete cycle. Since the overall hysteresis of
the system is 2ey, the latter voltage is the required minimum for the
input.

Measurement of ®Hpin for the constructed system was approximately
7.5 mv. Since the switching voltage at points A and B on Fig. 4-7(a)
is VR - ZeHmin’ the output will first trigger the cycle numbering system
when the input rises to within 15 mv. below the reference level. This
level is acceptable since it is well within one quantization interval.
The total hysteresis measurements show that the minimum peak-to-peak
input signal that can be handled by the WSA is approximately 275 mv.

The Schmitt trigger output is enabled by the system operate
("start" signal) to control a pair of flip-flops which are connected
as a 2-bit binary counter. Since clean trigger edges are essential to
prevent erratic responses by the flip-flops, a decoupling capacitor is
placed on the Schmitt trigger output to eliminate noise at the time of
switching. The first flip-flop FFl is in state 1 during the first cycle,
while FF2 is in state 1 during the second cycle. These signals control
various portions of the instrument that are to operate only during
specified cycles of the input.

A panel light is ON when the calculations-in-progress signal is
a ONE (See Fig. 4-6). At the beginning of the third cycle of the input,
all inputs to the gate which determines the latter signal become logic
ONE and the calculations-in-progress signal switches to logic ZERO.
Not only does the panel light turn off, but the ZERO signal causes all

operations in the Walsh spectrum analyzer to stop.
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4,7 W.F.G. Pulse Generator

The Walsh spectrum analyzer has been designed to calculate the
first 64 Walsh series coefficients of an input waveform. According to
the steps outlined in Chapter 3 the Walsf functions wal(0,8) to wal(63,6)
are generated simultaneously and they have a time-base equivalent to the
fundamental period of the input. From the definitions and properties
of the Walsh functions, a generator producing 64 functions requires 64
uniformly-spaced clock input pulses during one cycle. The W.F.G. (Walsh
function generator) pulse generator here described forms a measure of
the duration of the fundamental period and uses that measure to generate
the 64 uniformly-spaced pulses during the second cycle of operation.

The system diagram of the generator is shown in Fig. 4-8.

Referring to Fig. 4-8, at the start of the first complete
measuring cycle, the first binary up-counter in the pulse generator is
enabled to count clock pulses. This counter, which contains 20 bits,
accunulates the pulses throughout the first cycle of the input. At the
end of the cycle the counter stops and it now contains a number, in
terms of its binary state, representing the period T of the first cycle.
It is required to generate pulses every 1/64 of that period throughout
the second cycle. A number which represents very nearly 1/64 of the period
is simply the number stored in the 14 most significant bits of the 20-bit
counter. This is so because binary division by 64, or 1000000 in binary,
merely means shifting the binary point 6 places to the left,

Thus, clock pulses to a second counter containing 14 bits are
enabled by the period numbering signal FF2 during the second cycle of

operation. The bits of this counter are compared continually with the
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corresponding 14 most significant bits of the first counter. When the

two numbers under comparison are equal, a pulse appears at the comparator
output. The first pulse occurs at T/64 seconds after the beginning of

the second cycle. This pulse, which is approximately 50 nsec. in duration,
feeds back to reset the second counter. The process of counting, comparing,
and resetting takes place 64 times. In this way, a pulse at the digital
comparator output is generated every 1/64 of a cycle during the second
cycle.

Overflow from the 20th counter binary in the first counter is
detected by a 21st flip-flop and is used to indicate too fast a clock
rate for the input pulses. The last six stages of this counter are
used to indicate too slow a clock rate. An output from either of these
indicators is shown on panel light indicators and it also stops the
measurement. Observation of the panel light signals allows the operator
of the instrument to increase or decrease the input clock rate in
decade steps.

In the system described, there will generally be a remainder in
the first six binaries of the larger counter, representing a timing error
of 63 pulses maximum. This maximum possible error is halved by a small
modification in the reset of the counter, prior to measurement. The
sixth binary of the first counter is preset to state ONE while the
remaining 19 are preset to state ZERO. By adding this count of 32 to
the period measurement, the timing error now has a range +32 to -31 clock
pulses. In the system shown in Fig. 4-8, the first counter content must
reach at least the 15th binary by the time the second cycle begins. Hence,

the maximum frequency error in generating the Walsh functions is
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32/214 N «2%. Also, if the highest clock rate allowable is 1 MHz, then
the time for the count to reach the 15th binary is 16,384 usec.,
corresponding to a fundamental frequency of nearly 61 Hz. Clearly, using
this process, the maximum possible timing-errors may be reduced by
extending the number of binaries, but with a given input clock rate, this
is done at the expense of the shortest time-base that can be used in the
analysis. The inclusion of five additional binary stages allows a range
of signal frequencies of 64:1 to be accommodated. The recommended clock
rate is 1 MHz. for signals with fundamental frequencies in the range 1

to 60 Hz, and 100 KHz for signals in the range .l to 6 Hz, etc. With a

1 sec. clock rate, the designed system can analyze waves with a funda-
mental frequency as low as one cycle in 11.6 days. By decreasing the
input clock rate, the lower limit of fundamental frequency of signals

that can be analyzed can be extended indefinitely.

4.8 Walsh Function Generator

An array of 64 Walsh functions are generated simultaneously
during the second cycle using a hazard-free generator of the type shown
in Fig. 2-6. The generator is clocked by the 64 pulses sent from the
pulse generator described in the previous section. Each of the Walsh
functions feeds a system comprising an accumulator control, a sample
accumulator, and a final readout system. The block diagram of Fig. 4-~1

shows this system for cnly one Walsh function output.
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4.9 Sample Accumulator Control

The sample accumulator control in Fig. 4~9 generates the signal
sgn £(0) wal(m,8). This signal determines whether the samples !th from
the A/D converter are to be added to or subtracted from the sample
accumulation. Since both the sgn f(6) signal and wal(m,9) are coded as

logic ONE for +1 and logic ZERO for =1, a comparison gate performs the

sgn f(6) wal(m,0) logic, i.e., sgn £(6) @ wal(m,0) or sgn £(0) @ wal(m,6).
If the sgn f(6) @ wal(m,6) form is used, then the bank of inverters in

the array Walsh function generator of Fig. 2-6 can be eliminated.

1(m,6 -
wal(m,8) A—'\ .

sgn f(8) —=

Q —p— sample

accumulator
- control
A/D start c1 Q| i
pulse [sgn £(8) wal(m,0) ]

Fig. 4-9 Sample Accumulator Control

There is a possibility that the sign of the input function could
change during a sample conversion. The D-type flip-flop in the accumulator

control acts as a digital sample and hold. The A/D start pulse is used to
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clock the flip-flop to prevent control line switching on the sample

accumulator during the sampling interval.

4,10 Sample Accumulator o

Several possible systems could be devised to accumulate sample
values. The bits comprising the binary coded samples of f(8) appear
on 9 parallel lines from the A/D converter. Hence, a synchronous parallel
adder/subtractor with a buffer register could be used. With such a
system, timing pulses and a binary to 2's-complement converter for the
subtraction process would be required. Since the accumulation results
in long word lengths, the 2's-complement numbers and the adder/subtractor
would have to be correspondingly large. If a serial adder/subtractor
were employed, both a parallel to serial converter and a binary to
2's-complement converter would be needed. Again, extra timing pulses
are required. In each of the above cases, it requires additional hardware
to provide for a decimal digit display readout.

The accumulator design shown in Fig. 4-10 is a parallel processor
that operates asynchvoncusly and requires no additional timing pulses.
The amount of hardware is minimal and decimal digit readout is facilitated.
The accumulator consists mainly of two 9-bit binary counters with parallel
feeds. The upper counter in Fig. 4-10 processes the samples when it is
enabled by a signal which indicates that sgn £(0) wal(m,8) is positive.
Except for the first flip-flop, the clock input of each J-K flip-flop is
controlled by an exclusive-OR gate. The exclusive-OR gates are used to
permit flip-flop clocking from either the pulse input or a level change

from a lesser significant bit. Since the pulse inputs arrive serially
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in time from the A/D converter, with the msb arriving first, there is
no conflict or race condition between the two triggering sources. The
sample and hold unit in the accumulator control of Fig. 4-9 prevents
changes on the counter enable control during the time that pulse inputs
from the A/D converter are being processed. Thus, erroneous counts are
impeded if the J-K inputs (counter enable signal) should switch from
ONE to ZERO. A similar procedure is followed by the lower counter,
which accumulates samples whenever sgn f(6) wal(m,0) is negative.

As pulses are accumulated in each of the counters, there will
be overflows from the 9th bits. These overflows feed a reversible counter
that can operate in any code that is desired. The overflows take place
before a sampling interval is complete so that the counter enable control
of the accumulator can also control the direction of counting in the
output counter, which is used to display final coefficient values. The
overflows from each counter generate pulses using the pulse-forming circuits
shown in Fig. 4-10. The pulses are gated by OR logic to the clock of the
readout counter.

Sample values are accumulated according to the values of the nine
input pulses Pl/2 to P128’ where P1/2 represents a value s, Pl represents
a value 1, etc. A full accumulator count represents 255.5. A sample
accumulation of 256 causes an overflow, so that the number which appears
in the final readout counter is 1/256 of the total sample value count.
However, 256 is the number of quantization levels p that have been used
in the A/D converter. Thus the number stored in the output counter

corresponds, except for a possible small remainder in the two accumulator

counters, to the expression
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H v
wm(vH ) ='% z Ith sgn f(B)h wal(m,e)h (4-5)
max h=1

The Walsh coefficient W may then be obtained by multiplying the readout

value by V___/H, where V = 10.
max max

4,11 Coefficient Readout Counter

The final readout should permit a decimal digit display. To this
end, the overflow from the sample accumulator feeds a BCD (binary-coded
decimal) synchronous up/down counter consisting of Signetics' 8285
counters [4]. Light emitting diode numerical displays with BCD decoders
included are ideal for the readout. Since the coefficient values can be
either positive or negative, it is desirable to produce the absclute
value of a number and its sign. Without a decoding system to provide
these features, an up/down counter would normally yield 1's or 2's-
complement representations for negative numbers. The magnitude and sign
capability of the configuration shown in Fig. 4-11(b) simplifies the
decoding of negative numbers for a counter made with the Signetics 8285
[Fig. 4-11(a)].

As shown in Fig. 4-11(b), gates 1 to 4 form a D-type latch.

The U/D input, which is the sgn £(8) wal(m,6) signal, is transferred to
the point P (gate 3) when the combined carry-out (Ce « C{) goes to a "1"

level. The function generated at the output U/I-j0 is

U/DO = 8y B RIP (4-6)

v
(o]

where P="1" (P

"0") then N >

P="0" (P="1") then N <

A
o
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N = number of counts
S; = "1", count positive

= "0", count negative.

w
[
i

The latch (P) is enabled when carry-in (Ce - Ci) goes to "1". This occurs
at all zero crbssings. Table 4-1 shows the count sequences generated for

a single 8285 BCD decade counter with the magnitude and sign generator

connected.
s* ngrf-g;t P u/b N,  Binary  Decimal
0 0 1 0 0 020N 1 +3
0 0 1 0 il 0:0“1.0 +2
0 0 1 0 2 0-0.0-1 +1
0 0 1 0 3 0000 -0
0 1/0 0 1 4 0: 0501 -1
0 0 0 5 5 00 L0 -2
0 0 0 1 6 050 1. 4 -3
il 0 0 0 7 020 10 -2
1 0 0 0 8 0 001 -1
1! 0 0 0] 9 0000 +0
3 1/0 1 AL 10 0100 T +1
i 1 1 13 0:0.1.0 +2
0 1 0 i2 0400 1 +1
0 36 0 43 0000 -0
0 1/0 0 ik 14 0001 =1
. Sy = "1" » Count Up §; = "0" + Count Down

Table 4-1  Count Sequence Using Magnitude and Sign Detector
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In a Walsh Spectral Analyzer in which several Walsh series
coefficients are calculated in parallel, there is a readout counter of
the type in Fig. 4-11 for each coefficient. These counters and the
counters in the sample accumulator constitute the only memory in the
system. Outputs from the final counter stages would be multiplexed to
the numerical displays so that say two coefficient values would be
displayed visually at a time. The outputs could also be recorded on a
typed printout or, by using D/A (digital to analog) converters, the

spectrum could be displayed on an oscilloscope.

4,12 System Controls

Three manually-operated switches control the start, stop, and clear
or reset operations in the WSA. A pair of NAND gates, shown in Fig. 4-12,
form an R-S flip-flop which prevents contact bounce on the switches from
affecting the rest of the instrument. The reset signal not only clears
all memory elements (flip-flops) in the system but also stops all further
operations. The start signal is further gated by an AND operation with
. indicators that determine whether the clock rate into the W.F.G, pulse
generator has been too fast or too slow or if the calculations are complete,
i.e., the input waveform is going into its third cycle.

Two additional controls are available to the operator of the
instrument. The switch SW1l in Fig. 4-1 places the WSA in mode (3)
operation, in which the period of measurement is set arbitrarily by the
function on the control input channel. For mode (2) operation, the
reference level input to the period detector can be varied continuously

from ~10V to +10V.
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4,13 Conclusions

An instrument based on the design described in this chapter was
coustructed and was found to operate satisfactorily in determining the
first 64 coefficients of the Walsh series of a signal. Frequency
limitations on a signal that can be analyzed are governed by the maximum
sampling rate capability of the A/D converter and by the clock rate
feeding the W.F.G. pulse generator. An analog sample and hold in
conjunction with a faster A/D converter is recommended to increase the
sampling rate. A higher clock rate to the W.F.G. pulse generator would
enable the time-base of measurement to be shortened while maintaining
the specified accuracy in time-base measure.

An additional feature that could be designed into the machine is
preselection of a time-base (mode (4) operation) by presetting the 14
most significant bits in the first counter of the pulse generator in
Fig. 4-8. This feature enables the frequency of the fundamental
component in an analyzed signal to rise to a maximum of 1/64 of the clock
rate (assuming that 64 Walsh functions are to be generated). There are
no error bits to consider in the 6 least significant bits of the counter
so that the minimum count beyond these bits is 1. There is no need to
fill the counter to the 15th binary to maintain accuracy as outlined in
section 4.7. Comparison of this minimum count with the second counter
content could cause an output pulse with each clock pulse input, thereby
creating a minimum measuring time-base of 64 clock pulses in duration.
Foreknowledge of the input clock rate allows precise presetting of the
time-base. 1In this mode cf operation, the instrument controls require

modification to allow single cycle operation. In accecrdance with the
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sampling theorem, care must be takén to ensure a minimum sampling rate
of 64 samples per cycle.

If a preselected number of samples (mode (5) operation) is used
for the analysis, the Walsh function time-base is adjusted to the sampling
rate. Preferably the number of samples will be an integral power of two,
say 2% Then, if 64 Walsh coefficients are to be calculated, the first counter
in the W.F.G. pulse generator would be preset to 2%, The clock rate to
the pulse generator and the sampling rate would be identical so that a
pulse would be sent to the Walsh function generator every 2%/64 = ZX-'6
samples (where x > 6). Again single cycle operation is used in this mode.

Mode (f) operation is the analysis of previously digitized samples.
In this mode, the A/D converter in the system is bypassed. Depending on
the information that is known about the samples (e.g., sample size; are
the samples from a periodic signal, etc.) the system could operate in
a manner similar to the other modes. However, additional equipment such
as a digital period detector may be required.

A system that could perform the Fast Walsh Transform generally
requires a fixed number of samples, storage of all the samples before
calculation, and is not generally adaptable to an arbitrary time-base of
measurement. The digital Walsh Spectral Analyzer described in this
chapter can operate in the various modes that have been discussed and
all calculations are complete within one clock pulse period after the

last sample has been taken. Hence the WSA is considered to be more

versatile than an FWT system.



CHAPTER 5

WALSH SERIES TO FOURIER SERIES CONVERSION

ap——

5.0 Introduction

Sinusoidal functions have long held a dominant position in
communications and other branches of science. This dominance is related
to the availability of linear, time invariant circuit components in
practical form. The arrival of semiconductor technology has led to
more intense investigation of non-sinusoidal functions, primarily Walsh
functions. In an effort to make better use of the new technology
instruments such as the Walsh Spectral Analyzer of Chapter 4, that are
simpler and faster than Fourier analyzers, have been developed to yield
a finite number of Wzlsh series coefficients of a signal [1-3]. 1In
many instances the Walsh spectrum of a signal is as meaningful as the
Fourier spectrum, and sometimes it is preferable., Nevertheless, because
of bandwidth restrictions of transmission channels, the Fourier spectrum
corresponding to a given Walsh spectrum may often be required. A brief
comparison of some examples of Walsh and Fourier spectrum analysis and
synthesis is given in the latter secticn of this chapter.

Given the Walsh coefficients of a signal, the corresponding Fourier
coefficients may be evaluated by either a general-purpose or a special-
purpose computer, using conversion formulae derived here. 1In practicél
conversion systems, two forms of truncation error may arise. First, the
word lengths in the'system hardware may be inadequate: Such roundoff

errors are here considered to be negligible. Since, in general, the

(88)
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conversion equation for each Fourier coefficient is an infinite sum of
products of constants and the given Walsh coefficients, a second and more
important source of error is truncation of the infinite series because
the number of Walsh coefficients will always be finite.

Signals fall into four spectral categories;
1. infinite Walsh series with infinite Fourier series,
2 finite Walsh series with finite Fourier series,
3. finite Walsh series with infinite Fourier series,

4, infinite Walsh series with finite Fourier series.

The last category is of particular interest. It is shown below that if a
band-limited signal with a highest normalized frequency component
(harmonic) F is applied to a Walsh analyzer whose highest normalized
sequency component readout is S, then all F Fourier harmonics of the
signal can be determined without error, provided that S > F. Thus,
instruments that yield a finite number of Walsh coefficients can be used
for the precisé evaluation of the Fourier coefficients of band-limited
signals. Furthermore, a substantial easing of hardware requirements

in a special-purpose Walsh to Fourier series converter (or of software

requirements in a general-purpose computer conversion) is achieved if

M--1 .
one puts S = 2 » where M is an integer related to the number of binary

bits An'iS.

Siil Series Conversion

Let a function f(8) be represented by a sequency-ordered Walsh

series;
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£(0) = A + szl [A, cal(s,8) + B, sal(s,8)] (5-1)

The coefficients Ag and Bs of the even and odd Walsh components,
respectively, are defined by Eq. (3-5). ,f(86) has the corresponding

Fourier series

20
f(o) = E—-+ sin 2nf0] (5-2)

[af cos 2nf6 + b
£

1 f

i c~38

It is desired to use the Walsh coefficients AS and BS in order to derive
the Fourier coefficients ag and bf. We first consider signals in
category 1l; i.e., that have both infinite Walsh spectra and infinite
Fourier spectra.

The coefficients ag of the even terms of the Fourier series of a
signal are functions only of the coefficients As of the corresponding
even terms of the Walsh series. Similarly, bf terms depend only on the
BS terms. Primarily, the coefficients of the odd terms are considered
below.

The Walsh to Fourier series conversion relation is derived by

equating the terms of each series

! b, sin2nfe = ] B_ sal(s,0) (5-3)
f=1 s=1

Using superpcsition, the sal functions are expanded into sets of

equivalent Fourier series expressions whose terms have coefficients bf o8
3 ’

where
rl

b = 2 | sal(s,8) sin 2nf8d9o (5-4)
£,8 }O
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is the fth Fourier coefficient of sal(s,6). A non-recursive equation for
the Fourier transform of a Walsh function, from which the coefficients

bf g can be calculated, is derived in a later section of this chapter.
’

The sxf matrix of the set {bf s} is denotedng. In the expansion on the

s

right-hand side of Eq. (5-4), terms containing sin 2mf6 are grouped,

yielding b_ values given by

f

W (5-5)
Similarly, for the coefficients g,
A ) @ A (5-6)

where ag o is the fth Fourier coefficient of the series for cal(s,6).
bl

If b represents the fxl matrix of the set {bf|f=1,2,...,w}, and B

represents the sx1 matrix of the set {Bs[s=l,2,...,W}, then
b=F B (5-7)

However, if only a finite number S of the Walsh coefficients are known,

~

then bf can only be approximated as bf, where

; S
AL T VR (5-8)

>

The coefficients bf can be considered as the Fourier coefficients of a

sequency-limited function. The mean~squared error introduced by the

truncation of the series in Eq. (5-5) is
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©
= 2 2
[ bl | 7w | Tt ot 20 (5-9)
s f s=S+1 o
Since the b factors are constants, approximation errors in the conversion

£.8

are dependent on the Walsh series coefficients of the signal. As S
increases, errors tend to decrease, but not necessarily monotonically.
Since a number of constants bf,s are shown below to be zero,
special cases arise for functions with infinite Walsh spectra and infinite
Fourier spectra in which there is no error due to truncation of Eq. (5-5),
brovided that s > f. One such case is sawtooth wave which is periodic
over the interval [0,1); it has Walsh series coefficients that are non-
zero only for s an integral power of 2, so the conversion equation for

each bf has only one non-zero term. (The pattern of non-zero terms in

the Fb matrix is discussed later.)

3.2 Sequency~-Limited Functions

Signals with spectra in categories 2 and 3 are sequency-limited,
with Walsh to Fourier series conversion equations of the form of Eq. (5-5).
If Bs = 0 for s > S, the mean-squared conversion error of Eq. (5-9) is

zero provided that all S Walsh coefficients are used to evaluate bf.

339 Frequency-Limited Functions

Functions, other than constants, which have finite Fourier spectra,
necessarily have infinite Walsh spectra. If a function £(6) is band-
limited to become £(8) with a limited number of harmonics ¥, and-df £(6)

is applied to a Walsh Spectral Analyzer {see Fig. 5-1) to yield the first



o
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S Walsh coefficients, then the F Fourier coefficients of E(e) can be

determined precisely from the S measured Walsh coefficients, provided
that § > F.

Writing o

F
£(6) = ] b, sin 2mf0 (5-10)
f=1

then the Walsh coefficients ﬁs of the band-limited function are

11,
B = J f(€) sal(s,08)do

F 1
= z [J sin 2nf6 sal(s,08)d6]b (5-11)
f
f=1 0
or
;. F
B = B b 5-12
s §=l g, £ ( )
where bf = 0 for £ > F and where Bs £ is the sth Walsh coefficient of
’

sin 27f6. In matrix form, Eq. (5-12) can be written

B=Wh (5-13)
Since
1 ' i
B =-—[2{ sin 27£f6 sal(s,8)d6] = = b (5-14)
8, f 7 )0 2 5kns
W=3F (5-15)

Cne can solve fov b in terms of B as follows:
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A_!_—T
B=g F b (5-16)
PoREREAT F ek b (5-17)
i P SR e R

so that
e tr B (5-18)
sy i |

if §h is non-singular. One can solve for the set {bf} by a system of F
linearly independent equations. Thus, S must equal or exceed F. It is
shown in é later section that, in particular, for S = ZM-l > F, Kb is
indeed non-singular, where M is the number of binary bits in 2S-1. Thus,
the first F Fourier coefficients can be recovered with no truncation
error. As S > o« Kb becomes the identity matrix and Eq. (5-18) reduces

5.4 Dual Relationship

A dual relationship permits the determination of Walsh coefficients
in terms of Fourier coefficients. Firstly, Eq. (5-16) can be used to find
the Walsh coefficients of a band-limited function. There are no errors
in conversion if all non-zero Fourier coefficients are used. Secondly,
the S Walsh coefficients of a sequency-limited function are derived from

the first F Fourier harmonics, prcvided that F > S. From Eq. (5-7),

T
P, b=F F B (5-19)

T?T ¥ .
B =B Kb (520
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it [Fg Fb] is non-singular. For F = S; i.e., for a square matrix Fb

that can be inverted,

ReRg (5-21)

e

1
N

lo s

It is seen that the above equation is similar to Eq. (5-16) for the band-
limited case. As F =+ o K;l becomes an identity matrix. Conversion
equations similar to each of the above apply for the even coefficients

ag and Ag.

B Instrumentation

Digital hardware requirements for a special-purpose Fourier to
Walsh or Walsh to Fourier converter (or software requirements for
computers to achieve these ends) are eased by using an important property
of the matrix Kb. It is shown in the following section that if S is an

integral power of 2, Kb diagonalizes with diagonal elements

—l
=] 2
= b 5-22
ook E Z (be ) (5-22a)
It has also been established that
[ sincs ibEPED . T fre PR
K (5-22b)

3k, ¢

Lz TR 10 L

The diagonalizing proverty is developed by showing that the rows of Fb are

mutually orthogonal if $ is an integral power of 2 that is equal to or

greater than F,
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The matrices Fb and Kb recur in each of the conversion equations

(5-7), (5-16), (5-18) and (5-21) for band-limited or sequency-limited

functions. By taking advantage of the diagonalizing property of gb’

a minimum set of constants can be stored in read-only memories (ROM) of

2M—l

a digital converter if F = § = . Only the non-zero elements of a

ZM—l b2 ZM-l matrix Fb and the ZM_l diagonal elements of Kbl need be stored.

Each element of a matrix E, consisting of the set {af s} is
3

identical in absolute value with corresponding elements in the matrix

Fb. However, the signs of the constants may differ. To reduce further

the storage requirements of a digital conversion instrument, one read-

only memory (ROM) can be used to store the absolute values of the elements
in Fa or Fb’ while a smaller ROM stores the corresponding sign bits.

Since the elements of the diagonalized Kb matrix are squared terms, the

same matrix applies to the conversion equations for both ag and bf.
Consequently, this matrix is henceforth denoted simply K. Peripherals

about the ROM's in the instrument are used to program each of the conversion
equations. Thus, one digital processor can perform the Walsh to Fourier,

or the Fourier to Walsh series conversion.

As a general procedure for Walsh series and Fourier series analysis
using a Walsh Spectral Analyzer, the following procedure is adopted. If
the first ¥ Fourier coefficients of a signal are to be evaluated;

a) The signal is passed through a low-pass filter to obtain a function
with at least F harmonics, i.e., the set b.
b) The function is analyzed using a Walsh spectral analyzer to obtain

M- A M-
the first 2i » Walsh coefficients, i.e., the set B, where 2I & is
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equal to or greater than the number of harmonics contained in the
filtered signal.

¢) The set ﬁ is used in a converter that is programmed to solve Eq.
(5-18) to evaluate b. If only the jlalsh coefficients of the original

signal are to be measured, the lowpass filter is by-passed.

Similarly, a Fourier spectrum analyzer in conjunction with a
series converter can be used for the precise evaluation of Walsh coefficients,

provided the signal is sequency filtered before analysis.

D416 Diagonalization of the K Matrix

Calculation procedures for the conversion equations described
above are simplified and ROM storage requirements in a digital instrument
that affects the conversion processes are minimized if the K matrix can

be diagonalized. From Eq. (5-17), K is defined as

-Lp & i
£ =3 E E (5-23)

It is shown that K diagonalizes if the dimensions of Fb are FxS such that

S is an integral power of 2 and that S > F.

Since K is a product of Fb and its transpose, K becomes a diagonal

matrix if the rows of Fb are mutually orthogonal. That is, if the elements

of one row in Fb are bf . and the elements of another row are bR o’ then
— b

it must be shown that with the aforementioned conditions K contains

H

ents K g ‘ha
elements kf,R such that

S
3 i e e
Z bf’ by s (5-24)
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Multiplication constants do not affect orthogonality and are deleted from
each stage of the derivation to follow.

Sal(s,6) can be divided into ZM uniformly-spaced intervals, where
M is the number of bits in the binary representation of 2s-1, i.e., the
order of wal(m,8) corresponding to sal(s,8) [see Eq. (2-6)]. Let the

value of the Walsh function in each interval be designated WS * where
b

y=0,1,2,...,2M—1. In each interval, WS & has a value +1 or -1. Eq. (5-4),

which determines b , is modified to form a summation of integrals over

f,s

each section of the sal functionj;

y+l
2y 5
B % 3 ) W J sin 2nf6de (5-25)
’ =0 ’
. it
M
Let ! 1
IZM
Sy = J sin 2n£ede (5-26)
]
g
oM
Then
gty
bf,s =2 yZO ws’y sf,y (5-27)

Ignoring constants, b is proportional to the summation in Eq. (5-27),

f,s
i.e.,
bfss g zo wS:Y Sfﬁy (5_28)

In matrix notaticn, then,
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[bf’s] « [ws’o ws,l e w loo] S 1 (5-29)

o

o
h

The matrix Fb which has dimensions FxS is then expanded as

AALCRRARE o
, . .
& e .
W, S W, 'S
PSR il b s W i

The rows of Fb are mutually orthogonal if it can be shown that the

element by element product of any two rows, say f and R, is zero unless

flo= R, .That is,

Q ; !- T 3
S TH A RS AR
(o £ 4R
- (5-31)
constant f=R
Since Ws Sf represents a scalar quantity [Eq. (5-29)],
Woss= v s ] wei e (5-32)
o e W, Sl W, g
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Therefore, Eq. (5-31) can be factored as

T o T T T
Kf,R Ef[Y} Hl o R Y§ Y§ A e ok Y§ Y§]§3 (5-33)

- S
Some properties of the matrix form of z W: WS are now investiga-
s=l. 7% =
ted. Firstly, W: Ws is expanded as
W W omi W E T, RN A L ] (5-34)
S _S s,0 8,0 “s,1 S,y M
o s,2 -1
ws,l
W
S,y
W
s, ZM—l

A convenient form for representing the expanded product on the right

side of Eq. (5-34) is

 # -
. W Ma¥, W, aMo%s oMy .

=,

J "
s 4 Z}I-l‘\b: . O o e el el R e e e e e e e e e s ‘JS ’ 2}{_ l‘ds : Zi\Ll

.~ -
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S
The matrix for ) w: W, is identical in form with Eq. (5-35) except that
g=] ==
each term involves a summation over s where s has the range 1 to S. The

S
diagonal terms of this matrix are Z Wi . Since ws v can have only the
s=0 °° 3
:

values +1 or -1, W = 1 and
5,y

YoM m'g (5-36)

The cross-diagonal terms have the form

Q
) W W
s=1 s,ZM-l—y s

The two components of the product in the above expression represent
intervals on the sal function that are on opposite sides of and equidistant
from the midpoint of the time-base of the Walsh function (i.e., 0=.5).
Since a sal function is oddly symmetric about 6=.5,

WS’ZM-I_y = "ws,y (5-37)
Hence,

W W = =S (5-38)
1 s,ZM—l-y g 4

Il e~

s

S

All other elements of Z NZ WS can be considered as
el =
where z # y and z # ZM"l—y. It is shown that the minimum value of S for

¥

S
L Wy ¥
gm] S»¥Y 8,z

S \
which z W 1Y =01is S = 2 l, provided that y = 2A~l and the
ga1 S 82 max

above conditions for z and y are not violated. Ws o can represent both
$

the value of the yth interval of sal(s,8) and the yth sample of discrete

sal(s,y). Hence,
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S

S
szl Wi W Zl sal(s,y)sal(s,z) (5-39)

S
= z wal(2s-1,y)wal(2s-1,2z)
s=1

M-1

Since y has a limit of 2° ~, the smallest Walsh matrix W that can contain

all the discrete Walsh functions of Eq. (5-39) is a ZMxZM matrix (see
Table 5-1). The sal functions comprise the odd-numbered rows of the
matrix. Since the Walsh matrix is its own transpose, the columns also
Comprise the set of discrete Walsh functions.

Now consider the left half of the Walsh matrix. The elements

W of this matrix Wa say, where m = 0,1,2,...,2M—1 and y = 0,1,2,...,2M-l-1,

sy

have the property [1] that for even values of m,

m even

W = (5-40)

w N
m,y mtl,y e 0’1”..,2d 1_1

Thus, each pair of rows m and m+l (m even) in wa is identical. Since

each column y in Wu represents a discrete Walsh function and since the

components in the pairs of elements in each column are identical, [Eq.
(5-40)1, the columns in a matrix comprising only the odd-numbered rows

of Wa, wa., say, also form complete discrete Walsh functions. The latter
i g . M-1 : M-1
functions are comprised of 2 bits, since 2 rows were selected.

Hence, the minimum value of s that can be used tc form complete Walsh

M=
functions using odd-numbered bits in each column y for y = 0,1,...,2d l-l

s 4 L



Table 5-1

b=

(= ' i o
e e e 2Il l—l l ZM 10'9 ZM 1 y e e 0 2}1-2 ZM-l
|
o S : T SR 1
1 | -1 -1 -1 -1
l :
‘ .
-1 | -1 1 it 1
| x
1l | -1 1 -1 -1
l
-1 | -1 -1 -1 1
I ¢
| S
1 | -1 -1 1 -1
| :
|
-1 [ -1 3 -1 1
-1 : . -1 . -1
Set of ZM Discrete Walsh Functions

*%0T
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The matrix W,, say, that forms the right half of W contains

=8
elements Wm v’ where m = 0,1,2,...,2M-1 and y = ZM_l,ZM-1+l,...,2M—1.

5

In this case, the pairs of elements in the columns have the property [1];
S~

m even
W = -W (5-41)

m,y m+l,y e ZM-l,ZM_1+1,...,2M-l

By reasoning similar to that for the matrix Wa, the matrix comprising the

ZM_l odd-numbered rows of WB, WB,,say, has columns which are negative

discrete Walsh functions. Again, the minimum value for s is S = ZM-l.

——

Due to odd symmetry of the sal functions, the columns of WB. are

the negatives of the columns of Wa. taken in reverse order. That is,

N

sal(s,y) = -sal(s,2-1-y) y = 0,1,...,2"-1 (5-42)
or

W = =l (5—37)

Sy s,ZM—l-y

Let a new matrix WK be formed by the concatenation of matrices
Wa. and WS,. The product of any two columns y and z in WK is

oM-1

WS WS B -
o= SsY S»

Since the columns comprise discrete Walsh functions, which form a mutually

orthogonal set;

P w W =0 2 ¢y, z¢ 2yl (5-43)
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where

o R
CARGRTARL

Although y = 2M intervals have been used in the derivation to this
point, y = 2M+l intervals, where i = 0,1,2,..., could be used. Thus, S

can have the values
S = 2M+i'-l (5-44)

As a result of the above derivations and Eqs. (5-36), (5-38) and (5-44),

S
the elements Z W W of the matrix of Eq. (5-35) have the values
s=1 S,y S,2

2M+i—1
M+i
) I s Y4 2Z,y# 2 =l-z (5-45)
8,Y 8,2
s=1
ZL'H-i"l ; s
M-l o ik
where 1 = 0,1,2,...,
M
VEEIDL] 2,0 wny 2 =k
M
and Z = 0,1,2,0--, 2 -10
- 2l
Therefore, the matrix ) W, W becomes
gied = ‘=
2M+i—1 e g
: M-l
YW= 2 3 0 -1 (5~46)
s _s
gE LA —
1 -1
.1 -1'
0 =3 1 0
—l. . 1
-1 0 1




The above is a 2

M+ix2

M+i

matrix.

where i = 0 is used in the remainder of the derivation.

EqG. (5-33) can now be expanded to

- M1

[5¢ 0 5¢.1

oo e Sf,y o e Sf,2M—~l]

[$8¢ o = Sg ot} 465 378 By mesdd S 5

Be v = 5S¢ atoqigkerrss(Sp G, #3800

-1
-1
0
1
1
R,0
R,1
R,y
R,2M-1

107.

M-1+i

To avoid needless complexity, S = 2

-«
L“R,2M~1_

(5-47)

Expanding further and ignoring multiplication constants, one obtains

Ken "

+ S

Now, S
f,y

059<1.

[Sg,05¢,0 = S¢, 2001

S -8
R,y( f,y £

) +8

il ey
R, 15,1 = S onn) *

. 5 PRI - 1
LIl id veertiBy S, Tty = 800

(5~48)

represents the integral over the interval y of sin 2wfe, where

Since sin 2nf6 in this interval is oddly symmetric about 6=.5,
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then for each of the ZM integrals contained in the interval

B - M_ e
Se.y = g oMy v = 0;1,2,...,2%1) (5-49)
Hence, Eq. (5-48) simplifies to
Ke g = 2 Z Sk,y S,y (5-50)

where f and R are equal to or less than the number of Fourier terms F
contained in the signal.

It is now shown that the condition S > F, where S = ZM-l, is a
sufficient condition to ensure orthogonality of the summation in Eq.

(5-50). Thus, the K matrix would become diagonal for the conditions

s=2Tl>p>enl (5-51)

By Eq. (5-26),

¥l b
21 g ( ot oM
z Sf 5 SQ - = z l sin 2w fede6 J sin 2wROd6 (5-52)
o i y=l oy R 4

M M

= z {an [cos an( ) - cos 2nf(z‘9]
2

» 2 [cos ZnR(z—lﬁ - cos 2wR(%)}
R 21 M

2
L1
= ; z {[-2sin Iii%Xill sin E&][ -2sin ——igﬁfl) sin E%'}
47 fR y=0 v 2 2 2
1
2y+] ;
Soipadag Sa8 w_fi_ b 1:_13[} o s m£( {;-m) A nR(gyMH)
w“fR . 2" y=0 2 2
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ik nf TR

When f #R, | gint—= din.~= > 0 (5-53)
S NN T,

When f =R, | ; sin Eﬁ sin E%- = é 2[sin 1&]2 >0 (5-54)
m fR 2 2 n f 2

If K is to be a non-singular diagonal matrix that can be inverted for use

(d.es;

S
f = R) on the diagonal may not have the value zero. With 1 < f < ZM“1

in the conversion equations listed in section 5.5, an element K

according to the conditions specified by Eq. (5-51), the expression in

Eq. (5-54) is indeed greater than zero. Hence, —%—— sin Eif?sin Eﬁ- can be
m<fR 2 2

considered as a constant that does not affect the orthogonality of the

summation expression in the last line of Eq. (5-52). Thus,
M

2°-1
. =0 2 2
If R = f, Eq. (5-55) becomes
Moy
R ke b [aee EAEEELL 2 (5-56)
E uf .5 M -
y=0 2
As previously explained, Kf g may not equal zero. This condition is
b
satisfied if at least one term of the summation in Eq. (5-56) does not

M- ;
equal zero. Since 1 < f < 2"+ [Eq. (5-51)] and y = 0,1,2,...,2"-1, the

= mf
argument of the sine for at least one term must be — where

oM
2 2
and f is an integer. Hence,
g M-1 T~
K # 0 168 <« <2 = S} (5-537



110.

If £ # R, it is yet to be shown that the conditions of Eq. (5-51)

are sufficient tec ensure that Kf R 0. First, let Eq. (5-55) be expanded
5
to
My P
3 . 2m(f~R) (2y+1) _ o2 (£4+R) (2y+1) _
Kf,R «={ ) cos YR ] } cos K} } (5-58)
y=0 2 y=0 2

From the above,

M M

2 -1 2 -1
) cos Zn(fgfi(2y+l) = Re{%- ) [exp(ZJ"[fM§1[2y+ll? (5-59)
y=0 2 y=0 2
JHIR f!|22+ll
2M+l )]}
S
= Re{[—-exp(jﬂli—gl?] Z eXp(i£l§:51229
y=0 2
M
[_.exp(iﬁlg;flq] X exp(lziﬁ_ﬁlzz
y=0

where j = ¥-1 . Each of the summations in the latter portion of Eq. (5-59)
can be represented as a geometric series if the summation is modified

to become

M M
2 - -1 :

s (l—L—'ﬂ—% i (A2 2LER]yy (5-60)
2

y=0 y=0
The right side of Eq. (5-60) is a geometric series whose form and sum are

M
2;1_ 1 2\I

) (@)Y =
2

where q # 1 (5-61)
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Consequently,
201 ym, 2[£-R] o [427CE=R) ]-1
P (lexp(ip] )Y = SRS (5-62)
y=0 2 exp[z(lﬁ)(f-R)}-l
2 ek
Since f and R are integers,
exp[j2n(£-R)] = (-2(ER) o4 (5-63)
Hence,
ZM-l j'n’lf—R 2 T
20 exp ( ZM—]—X“ ) =0 if exp[2(£-R) cjz—ﬁn $1 (5-64)

Similar expansions of each summation in Eq. (5-58) lead to the folliowing

result;
K =0 if f#R (5-65)
and exp[i(f-R)(iéﬂo] # 1
2

ad exp[i(f+R)(jéE9] TR
2

Since exp(jni) = 1 if i is an integer, the following conditions are
required to ensure that the exponential functions in the requirements

to satisfy Eq. (5-65) do not equal unity;
le(e-R) | # 2" (5-66)
M
|t(£+R) | # 27 , f#R
M-1

From Eq. (5-51), if S > F and S = 2 5

M1 (5-67)
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M > 27 > 2p-1 _ (5-68)

Since f # R and both f and R are equal to or less than F, the largest

value of f+R is 2F-1. Hence,

M. f4R = | £ (£+R) | . (5-69)

for the conditions in Eq. (5-51). Similarly, the largest value of

|£(£-R) | is F-1, so that

M

2" > 2F > F-1 > |[+(f-R) | (5-70)

Thus, Eq. (5-66) is verified. Consequently, it has been shown that the

K matrix diagonalizes when the dimensions of the Fb matrix are FxS where
S = ZM-l > F and M is the number of bits in the binary representation
of 2S-1.

A similar derivation demonstrates the diagonalization of the K
matrix for use in conversion equations for the coefficients ag and AS of
the even terms in the Fourier and Walsh series, respectively. However,

some small changes in the derivation are required. In order for the

matrix involving a summation of terms W: WS [comparable to Eq. (5-35)]

to have a form similar to Eq. (5-46), s must be in the range s = 0,1,...,2M-1-1

This is easily seen by following a derivation similar to that using the

matrices wa,, wﬂ.,and W, for the b

K £ and Bs coefficients but using the

even-numbered rows of the set of discrete Walsh functions in Table 5-1.

2 rows of this matrix, beginning with row 0, must be used to obtain a

gl

z W W_ comparable to Eq. (5-46). However, this new matrix
T

3

matrix for

ke
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=1 M+i-1

. . -
has cross-diagonal elements which are each +2M % rather than -2

Consequently, this portion of the derivation indicates that the Fa matrix

used in the definition of K, i.e., K = %-Fa FE should have the form [cf.
Eq. (5-30)];
Eé = YQ EQ H; gg o itle E§ S WZM'l—l EQ (5-71)
Yob gty :
W, Cone . SRR SRR C
_Q ._Zi_l.-_l ZM—l-l 2M-l"l
where Cf is a matrix whose elements Cf 5 are
— ’
y+l
2M M
e = cos 27nf6do (= 0,152,.6:,2 =1) (5-72)
£,y
=Y
M
2

As indicated previously, the Fourier coefficients of the Walsh

functions, bf,s and af,s’ which are proportional to WSSf and WSCf,

respectively, have the same magnitude, with the possibility of a difference
in sign. For the instrument described in section 5.5 it is desirable to

store a single matrix F which contains only the magnitudes of bf g OF
b

a and which could be used in the conversion of coefficients As and Bs

f,s

to ag and bf, respectively. Accordingly, one ROM containing the diagonal

elements of K would suffice for both conversions.
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If the first row and column of Fa in Eq. (5-71) could be deleted

and if a new row and column containing elements Wl CZM—l to WZM-l CZM-l

and WoM-1 El to Wo-1 CoM-15 respectively, could be concatenated with e

without changing the mutual orthogonality of the rows, then the Fa and Fb

would be identical in form (only the signs of the elements would differ).

The pattern of non-zero elements of the Fourier coefficients of Walsh

functions (see section 5.9) is such that WO C0 is the only element in

both the first row and first column of the matrix in Eq. (5-71) which is
non-zero. Thus, deletion of the row and column does not affect the

mutual orthogonality of the remaining rows. Similarly, wz}_l CzM-l is

the only non-zero element in the row and column to be concatenated with
Fa. Again, there is no change in the mutual orthogonality of the rows.

Deletion of the first row and column of Fa affects the conversion
only of a, and AO’ that is, the average value of each series. Althcugh
the average value of the Fourier series was defined as a0/2, this is only
for convenience in obtaining a consistent definition for ac. The average
value component of a Walsh series equals the average value component in
a Fourier series of the same signal. Thus, no conversion process is
required if the average value component in either series is known. 1In
addition, this component does not affect the conversion of any other
coefficients, so again it may be ignored in any conversion procedures.

Numerical values of the elements af,s or bf,s in the Fa or Fb

matrices, respectively, can be evaluated from equations for the Fourier

transforms of the corresponding Walsh functions. In the following section,
a non-recursive equation that is used to obtain the Fourier transform of

any Walsh function is derived.
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e A Non-recursive Equation for the Fourier Transform

of a Walsh Function

The Fourier transforms of Walsh functions are needed to evaluate
the constants in the equations used to cenvert the Walsh series of a
signal to a Fourier series representation. Partial listings of the
transforms are available [1,4]. Beyond this range, unlisted transforms
may be obtained using a recursive equation [4], which can be tedious, or
by using an expression due to Blachman [5] for the Walsh transform of
sinusoids, which can be modified to yield the Fourier transform of a
Walsh function. In the latter process, sine or cosine terms in the
transform are selected accordingly as the sum of adjacent bits in the
binary representation of the order is odd or even. An alternative
expression for .the Fourier transform of a Walsh function is developed
below, which differs from previous expressions in that it incorporatzs
the Gray code representation of the order of the function. The expression
is non-recursive and it is also unified in the sense that no sine or
cosine factor selection process is involved in conjunction with it.
This expression leads to an algeorithm whereby the transform may be obtained
simply from inspection of the bits in the Gray code representation.

Let the two-sided Fourier transform of a Walsh function, wal(m,8)

be defined by
il

= j2nfe |
Fiwal(m,8)] = J wal(m,0)ed“" " de (5-73)

-1
2

where m is the order of the function and 8 is the normalized time.
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Cal(s,9) and sal(s,6), respectively, have the Fourier transforms

L
2
Flcal(s,6)] = a(f,s) = J cal(s,B)cos2nfod6 (5-74)
1
-2- —
1
Z
F[sal(s,08)] = jb(£f,s) = j f sal(s,0)sin2n£6d6 (5-75)
1
5

Since the Walsh functions are discontinuous, evaluation of Eqs. (5-73) to
(5-75) would normally involve a summation of integrals.

It is convenient to view a continucus Walsh function as a
convolution of the sequence of unit impulses at points corresponding to
samples in a discrete Walsh function over the interval - %-5 B < %- with
a rectangular pulse of unit magnitude and of width 1/2M equal to the
spacing of the unit impulses. The Fourier transform of the continuous
Walsh function is then the product of the transforms of the discrete
Walsh function and the rectangular pulse. This is shown to be

M-1

i
Flwal(m,8)] = (- l) [ i cos(—l—— =
k=0 2k+l

g, P lsine(£/2") (5-76)
where j = /-1 .
is a bit in the Gray code representation of m, as in Eq. (2-17),

a is the number of Gray code bits of value ONE, and

M
. sin(nf/2 )

M
sinc(£/2) =
wE/2

(5-77)
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To derive Eq. (5-76), we begin by defining the discrete Walsh
function unit pulse sequence over one period. Referring to the example
in Fig. 5-2(a), a discrete wal(m,6) in the range 0 < 6 < 1 consists
of a sequence of ZM positive and negative unit impulses, where 6(8-6y)
denotes an impulse at ey = y/ZM, y = 0,1,2,...,2M~1. Eacih impulse can

also be described in terms of an operator dy, where
avs(e) = 6(0-0.) (5-78)

The delay operator has the property

zZ

4% = ¥tz (5-79)

b
The sign of an impulse at Gy = y/2LI can be obtained from a parity check
for an even number of ONE's in the Gray code for m that are enabled by
the bits Yi-1-k of binary y. That is
ol L ity

wal(m,8 ) = 1T (-1) (2-21)
Y k=0

where g  are the bits of the Gray code [Eq. (2-17)].
In Eq. (2-21) it suffices to consider only those terms for which

Yapm1ok = 1. For example, if ey =6/8, y=6=110,, M = 3 and

8Y2,  B1Y1, 8% _ 89

(=1) (=1} (-1) (5-80)

The value of the discrete Walsh function at Gy = 6/8 can then be written

g g
wal(m,6,) = (-1) Oce1y T 4% s¢o) (5-81)
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(a) discrete sal(3,8) 0 |» W e O | , ]
0
sal(3,86)
1 1 0l
(b) sal(3, _29 O L pimtheind i é R e | S A I
- -.;-1'— =23 L 1 1 i i 1 1 L 1 1
(e) U(8)-u(s -3) 0 Lol
1 BN g«
(d)-sal(3,0) 0 =l ! 1 b il i o)
Wl e
L) +4
? f | g q 1 TEETNNRY | i i ! |
6 =-.5 0 5 1

Fig. 5-2 Convolution Quantities to Form sal(3,8)

l250<1_.

over the Range - *5e
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If nowm =5, wal(5,0, ) = sal(3,66); then m = 101, = 111 Gray. So

8y = 81 = 1 and sa1(3,96) = +1 d66(6) [see Fig. 5-2(a)]. Similarly,
0 :
wal(m,eo) = d 6(0) (5-82)

The summation of unit impulses, each of the form of Eq. (5-81), that define
a discrete Walsh function over the interval 0 < 6 < 1 may be factored to
yield

M-1 8 2M-1—k

dlheviibe valln, B0 k| B 14 & Bk 0 15(8) (5-83)
k=0

Convolution of a delta function having the same sign as the

corresponding continuous Walsh function at 6 = = L vitn Eq. (5-83)

2
achieves a shift in the range of the discrete Walsh function from 0 < 6 < 1
to - %-5 e <-% . The sign of this d-function is negative for functions

of odd sequency and positive for functions of even sequency. Since the
Gray code bit 89 = 1 iff the sequency is odd, the required &-function at
6 = ~ %-can be represented as
1 LIRR o

discrete wal(e, - 30 = (-1) d §(8) (5-84)
The same representation is achieved if the 2's-complement representation
for negative values of y are used in Eq. (2-21) (as explained in chapter
2) and then the form of Eq. (5-81) is applied.

The final convolving quantity is a unit amplitude pulsc of width

]

1/2M. Ef U(G—Sy} defines a unit step at ey y/ZM, then the required

pulse is

P(Bl) = U{8) - U(6-0 (5-85)

1)
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Hence,
M-1 0 g, 2M-l—-k
wal(m,0) = I [d + (-1) " d 18 (6) (5-386)
k=0
g M-1
s AT e
x [U(B) - U(6-8,)]

where - %-5 8 < %‘. Examples of the three convolving quantities are shown
in Figs. 5-2(a) to 5-2(c), resulting in the continuous Walsh function
sal(3,08) shown in Fig. 5-2(d).

The Fourier transform of wal(m,6) is the product of the transforms

of Eqs. (5-83) to (5-85). Each unit impulse that comprises the discrete

Walsh function has the Fourier transform

i o | Sy M-1 R |
P ndcay SRy Sl e Pl k]f §(6-6_)exp(j2n£6)de
k=0 k=0 0 y
M-1 B Voriod o i
R D P T e W C 7))
k=0

The only change, then, in the summation of impulses that form discrete
wal(m,8) and in its transform is that exp(jnfy/ZM-l) replaces dyé(e).
Hence, the sum of the Fourier transforms of the unit impulses of discrete

wal(m,8) can be factored in a manner similar to Eq. (5-83). Replacing

0 oM=-1-k : ; 3 o,
d 6(8) and d< $(6) by their Fourier transforms, 1 and exp(jnf/27),
respectively,
M~-1 8y %
F{discrete wal(m,8)] = 1 [1 + (-1) exp(jnf/27)} (5-883)
k=0
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Each factor in Eq. (5-88) can be rewritten as a sine or cosine, depending

on the value of the Gray code bit. If 8, = 1

I

[1 - exp(§ne/25)] = 24exp(ine/2 ) sta(rer2ch (5-89)

1f gL 0,

k+1

1+ exp(jnf/Zk)] 2exp(jnf/2k+1)cos(ﬂf/2 ) (5-90)

The ONE bits in the Gray code number G = 8818y By for the order m
correspond to the sine factors of the transform [Eq. (5-89)]. 1If there

are a ONE's in G, then the sinusoidal form of Eq. (5-88) is

F[discrete wal(m,9)] (5-91)
1 M=l m
= 2 (-3) exp;nf(~'+-— + ... + —~0 I cos(——=—-¢g, %)
4 ¥, 2k+1 k 2
M-1 5
= 2 -3) eprnf(l - ——0 I cos(——=—~g. =)
2 k=0 2k+l k 2
where
T vl mf %
cos(2k+l 3 59 = sin 2k+l 1f 9 15

The Fourier transforms of Eqs. (5-84) and (5-85), respectively, are

go _ZM—l go
§(8)] = (1) = exp(-jrf) (5-92)

F[(-1)
FIU(e) - U(o-0,)] = == exp(§r£/2 D) stne(er2h (5-93)
i

The product of Eqs. (5-91), (5-92) and (5-93) is the ncn-recursive Fourier

transform equation (5-76).
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5.8 Algorithm to Determine Fourier Transform of Wal(m,6)

Using Eq. (5-76), a simple algorithm is now developed for the
Fourier transform of a Walsh function. It uses only the bits in the Gray
code number G that represents the order m. In Eq. (5-76) it is seen that
each factor depends on G; thus 8o and 8, are bits in G, o is the number
of bits that equal ONE, and M is the number of bits in G.

The first step of the algorithm is to write G as BoB18p By By _q°
Whenever 8, = 0, substitute cos(nf/2k+l) and where i 1, substitute

sin(ﬂf/2k+1

) to yield an expression in the form of a product of cosine
and sine terms. There are as many terms (i.e., M) in the product expression
as there are bits in G. The next step is to multiply the expression
obtained thus far by sinc(f/ZM) = [sin(nf/ZM)]/(nf/ZM).

The sign of the transform is given by (-l)go(-j)a. A simple

counting procedure is convenient. Form
B = a+ <af/2> + 80 (5-94)

where <a/2> denotes the integer part of a/2. If B is odd, the sign of
the transform is negative. If a/2 is not an integer, multiply the
transform by j = /-1 . An example to illustrate the algorithm follows.
Let us find, say, the Fourier transform of sal(5,6). Sal(5,0) =
wal(9,0), so the orderm = 9 = 10012. The corresponding Gray code number

is G = 1101 = g.g.g,8,. Substituting sines and cosines for g, > g. yields
3827170 0 3

sin il o op AE oon WEC Ll S
o gongs R 16

The above expression is multiplied by [sin(wnf/16)]/(wf/16).



To obtain the sign, there are three ONE's in G so a = 3. Also,
gy = 1. Hence,

B=3+<3/2>+1=35 (5-95)

2

which is odd, so the sign is negative. Since a is odd, multiply by j.

Consequently, the Fourier transform of wal(9,6) is

nf . nf sin(n£/16)

4 mf
jb(£,5) = -jsin 7~ cos 7= sin g3 T6/16 (5-96)

To obtain the Fourier series coefficients of a periodic Walsh
function, the transform expression is evaluated for integral values of
the normalized frequency f. Since the equation (5-76) applies to the two-
sided transform, the coefficients obtained using values of f = 1,2,...
are douvbled to obtain the coefficients of the one~sided series, that is,
the coefficients a and b

f,s £.8°

ag o and bf A form the F matrix, the elements of which are to be stored
2 s

in a ROM in a digital instrument that performs the Walsh series to

The magnitudes of the coefficients

Fourier series conversion. To minimize the number of stored constants,
it is required toc use only the non-zero components. A discussion of the
pattern cf non-zero elements, i.e., the coefficients Iaf sl or |bf sl‘

? ?

in the F matrix, is given in the following section.

5.9 Pattern of Non-zero Elements in the F Matrix

The elements lbf s[ of the F matrix are derived fiom
’

1
b =2 ( sal(s,8)sin2rfedo (54}
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where f = 1,2,3,... If s is odd, the sal function is oddly symmetric

about the centre of its fundamental period 0 < 6 < 1. Thus, these functions
have non-zero Fourier coefficients only for the odd-numbered harmonics;

that is, bl,s’b3,s’b5,s""’bZQ-l,s""

If s is doubled, sal(2s,6) can be considered as a wave sal(s,8) with a

are non-zero (Q = 1,2,3,...).

time-base that has been halved. Consequently, sal(2s,8) has non-zero
coefficients whose harmonic numbers are double those of sal(s,6); that is,
b2,Zs’ b6,2$’b10,25"'"b2(2Q-l),25"" are non—-zero. By induction,
X h e & :
sal(2¥s,8) has the non-zero coefficients bzx’zxs, bZX(3),2Xs’ bZX(S),ZXs .
Lhivs gZX(ZQ-l) 2XgIT e However, s in each of these cases is an odd
s

number, say, 2X-1, where X = 1,2,3,... Hence, all coefficients and only

those coefficients of the form

b (5-97)

£,s = Pax(20-1),2%(2%-1)

are non-zero. In a row f in F, the column numbers containing non-zero
elements are 2¥(2X-1), where X = 1,2,3,..., and x is determined by £

Any integer f can be represented by 2%(2Q-1) where the binary representa-
tion of f is a binary number 2Q-1 followed by x ZEROS. Say, for example,
one wishes to determine the Fourier coefficient b6 using only the non-zero
terms of Eq. (5~-8). The coefficient number 6 can be represented as (21)(3)
or 110,. One zero follows binary 3 or 11,. Thus, x = 1. Consequently,

from Egs. (5-8) and (5-97);

b, =b Bt b B+ b

BIT o Bt b (B + Pt

5 Ryt 5798)

where x = 1 and X = 1,2,3,... Similarly, if x is determined for any given
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Fourier coefficient number, this information can be used to select
coefficients from a ROM in a digital Walsh to Fourier series converter,
and match the coefficients with the appropriate Walsh coefficients to
evaluate bf. In this manner, only the terms !bf,sl or Iaf’sl which are
non-zero need be stored in the ROM.

For the Fa matrix [see Eq. (5-71)], it has been indicated that

the row £ = 2"1-1 and column s = ZM-l could be concatenated with Fa

without affecting the mutual orthogonality of the rows in the matrix.

This property holds true only if the coefficient a is the only

2M—l,2M-l
non-zero element in either the concatenated row or column. For

f = ZM-l = 2x(2Q—l), x = M~1. The first non-zero element in row ZM-

1

1

is then ZX(ZX-l) = ZM- , where X = 1. Similarly, the first non-zero

M~-1.

element in column s = 2 is Thus, mutual orthogonality

a h-— I .
ZAI 1,2M 3k

of the rows in Fa is preserved despite concatenation of the new row

and column.

510 Comparison of Walsh and Fourier Series Analysis and Synthesis

A number of studies have been made of the usefulness of the
Walsh and related spectra in comparison with the more commonly used
Fourier spectrum [5-8]. The Walsh spectrum appears to be better suited
for analyzing discontinuous functions than is the Fourier spectrum. For
example, a square wave has but one Walsh ccemponent whereas the Fourier
spectrum of the same function is infinite. Conversely, however, the
Fourier spectrum displays an obvious advantage in analyzing a sinusoidal
wave. Tuis section of the thesis gives only a few graphic examples of

waveforms with their corresponding Fourier and Walsh line spectra. The
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waveforms are then synthesized in both the Fourier and Walsh sense,

using an increasing number of spectral components for each representation.
The figures are intended to provide only a feel of waveform synthesis in
each domain. A brief, subjective analysis is given for each example.

Fig. 5-3(a) shows one cycle of a rectangular pulse wave with
duty cycle of 0.1. All waveforms in the following examples have normal-
ized fundamental periods T over fhe range [0,1). The first 64 even and
odd components of the Fourier spectrum of the pulse wave are shown as
line spectra in Figs. 5-3(b) and 5-3(c), respectively. If the waves
have a normalized period of T seconds, the spectral lines have a spacing
of 1/T. The corresponding Walsh line spectra are given in Figs. 5-3(d)
and 5-3(e). An arbitrary amplitude scale is used for all illustrationms,
each of which is plotted by computer. It is readily seen in Fig. 5-3
that both Fourier and Walsh spectra oscillate, although the Walsh
components appear to diminish in amplitude more rapidly. This effect is
displayed to a certain extent in the Fourier series and Walsh series
synthesis of the rectangular wave shown in Fig. 5-4. Since each series
tends to converge in the least squares sense, the series which diminishes
in spectral content more rapidly tends to converge more rapidly when the
waveform is synthesized.

Figs. 5-4(a) to 5-4(f) show the synthesis of the Fourier series
of the rectangular pulse using 2, 4, 8, 16, 32 and 64 components,
respectively. Figs. 5-4(g) to 5-4(£) illustrate the build-up of the
corresponding Walsh series, again with double the number of compcnents
in each succeeding figure. In this case, Walsh synthesis, which generates

:

a step—-function as opposed to a continuous function for Fourier series
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Fig. 5-3 Spectra of Rectangular Pulse {Duty Cycle = 0.1)
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Rectangular Pulse (Duty Cycle = 0.1)
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synthesis, appears to yield a function which more closely approximates
the original function than does the Fourier synthesis, if the same
number of components are used.

Fig. 5-5(a) illustrates a ramp function with its corresponding
Fourier and Walsh line spectra in Figs. 5-5(b) and 5-5(c), respectiQely.
Each series contains only odd terms. Although ccmponents in each series
tend to diminish in amplitude at a similar rate, the Walsh spectrum has
many zero-valued components whereas there are none in the Fourier spectrum.
Consequently, a greater percentage of the power is concentrated in the
first few non-zero Walsh components than in the Fourier domain. Thus,
the synthesis of each series using an increasing number of components as
shown in Fig. 5-6 again tends to display more rapid convergence to the
waveform using the Walsh synthesis.

The third example of Fig. 5-7 shows a triangular waveform in
which the Walsh components are more widely distributed than is the Fourier
spectrum. The more rapid convergence of the Fourier series synthesis in
this case is readily apparent in Fig. 5-8.

A final example illustrates svnthesis of a waveform using
experimental data taken from the Walsh spectrum instrument described in
Chapter 4. The signal input was a slightly skewed sinusoidal wave which
had a negative zero-crossing at 6 & .52. Table 5-2 lists the value of
the Walsh coefficients provided by the digital analvzer. The table also
lists the Fourier coefficients that were derived from the Walsh coefficients
according to Egqs. (5-5) and (5-6). The last column on Table 5-2 is the

total harmonic value c. of the wave, where
3 3
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Fig. 5-5 Spectra of a Ramp Function
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Walsh Series Coefficients of Experimental Waveform and

Table 5-2

Fourier Series Coefficients Obtained by Walsh to

Fourier Series Conversion
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(5-99)

o

The waveform that was synthesized using the Walsh series coefficients
S

given in Table 5-2 is shown in Fig. 5-9." The cofresponding waveform

synthesized using the Fourier coefficients is given in Fig. 5-10.

5.11 Conclusion

The feasibility of using Walsh series coefficients to derive

the Fourier series of the same function has been demonstrated. Since

an ideal low-pass filter [see Fig. 5-1] is required for precise
evaluation of coefficients for frequency-limited functions, further studies
should be made to investigate the effects of using practical low-pass
filters.

The algorithm to determine the Fourier transform of a Walsh
function shiculd find application in computer evaluation of either the
Fourier transform or the Fourier series coefficients of a Walsh function.
Similafly, information regarding the pattern of non-zero elements in
the Walsh to Fourier series conversion matrices aids in reducing

computation time of the conversion processes.
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Fig. 5-10 Synthesis of Experimental Waveform using Fourier Series
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CHAPTER 6

CONCLUSIONS

The use of non-recursive definitions of Walsh functions results
in simple coding algorithms for evaluating an arbitrary point on a Walsh
function. The algorithms have been used to design and construct compact
digital Walsh function generators whose outputs are free of hazards.
Tests conducted on the generators show that they operate satisfactorily
at input.clock rates of over 10 MHz.

A generator that produces 64 Walsh functions simultaneously on
parallel output lines has been incorporated into the design of a digital
Walsh spectral analyzer. For periodic signals, the analyzer obtains a
measure of the fundamental period of the signal to be analyzed and yields
the first 64 coefficients of the sequency-ordered Walsh series at the
end of the second complete cycle of the input waveform. Since
coefficient values are available at that time, the analyzer can be
considered as a real-~time instrument. A sample is processed completely
before the next input sample is taken so that fast processing is enabled
without storage of the samples.

Further development of the spectral analyzer should entail a
more flexible design of the controls that would enable the instrument
to operate in any of the 6 modes of operation outlined in Chapter 3.

The instrument would then become more versatile: Beth periodic and
non-periodic waveforms could be analvzed. The time-base of measurement

may be time-locked to the fundamental period of a periodic wave, or it
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may be preset arbitrarily. The sample size may be left indefinite or it
may be preselected. Both analog signals and ready-quantized data may be
analyzed. With apprbpriately high master-clock rate and a sufficiently
fast A/D converter, the Walsh Spectral Analyzer can be extended easily
to analyze signals in the entire audio range. There is no lower frequency
limit. However, a complete error analysis of the instrument is yet
required to establish more precise error characteristics.

The complexity of the instrument increases approximately in a
" linear manner for an increasing number of Walsh series coefficients.
Since a sample accumulator and readout counter are required for each
coefficient that is to be determined, these portions represent the bulk
of the instrument. If a commercial Walsh Spectral Analyzer were developed,
it would be advisable to manufacture LSI (large scale integration)
circuits for each accumulator and counter. Several other sections of the
analyzer could also be produced in LSI form, e.g., the Walsh function
generator or the generator that produces pulses to clock the W.F.G.
A 16-pin IC package could be used to contain a programmable W.F.G. that
can generate 1024 Walsh functions.

Another project that is being undertaken is the development of
a special-purpose instrument that will perform the Walsh series to
Fourier series conversion and vice versa. A minimum number of constants
are stored in the ROM of the conversion instrument if the number of
coefficients to be used in the conversion is-an integral power of two.
A particularly useful study following the design of such an instrument
would be an extensive study of the cost and versatility of a Fourier

processor (possibly an FFT system) in comparison with the analyzer
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described in this thesis in conjunction with a Walsh to Fourier series
converter. Since sample storage and multiplication circults are not
required in the Walsh series analvzer, it is felt that this process leads
to faster and less-expensive instrumentation than a Fourier series
analyzer. The WSA not only yields the Walsh series coefficients, but in
conjunction with the conversion instrument, may provide a less costly
method obtaining the Fourier series coefficients. However, complexity

of instrumentation for increasing numbers of coefficients to be determined
may not increase at the same rate for the Walsh analysis with the
conversion process as it does for the Fourier process. In light of this,
further studies are required to reveal whether or not there is a range

of operation for which instrumentation for one process is advantageous

over the other.
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Summary of Walsh Function Definitions Derived in Chapter 2

(a) wal(0,86) 1 T (2~16)

M~-1

T m (R (6)}
e

wal (m,6)

where m is a binary presence operator (see P. 15),
m, are bits in the binary representation of m,
M is the number of binary bits in m,
R, (8) are Rademacher functions of order k.
M-1
(b) wal(m,8) = k1=10 gk{Rk(B)} (2-18)

where 8 is a Gray code presence operator (see P. 15).

g, are bits in the Gray code for m.
, M-1 B P
0l | wal(n,0 ) 5.0 @) © " s (2-21)
Y k=0
M-1 & Vor 4.
- T (=1 k' M-1-k
k=0

where y, are bits in the binary representation of y = 2M6y.

M-1
L Vi

(d) wal(m,ey) - $oii : (2-22)
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(e)

(£)

(g)

(h)

(1)

wal(m,8)

wal(m,0)

M-1 K
il mk{wal(Z ,0)}
k=0

M~1 Kk
=P wal(mkz +6)
k=0

Mil Kk e
= wal( 2y
k=0 "k

Mgl Kk
exp jnl <m, 2°6>]
k=0 mk

where <x> denotes nearest integer to X.

wal(m,0)

wal(m,0)

wal(m,8)

where Yy

Mil
= exp jnl (e +8. 74
R b T

Ml
exp jl ZO m (6,_; @ &)]
k=

M-1

kzokak

il

(=1}

M-1 Y
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W

are bits in the Gray code representation of 6.
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