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KEY TO NOTATICNS

In the notation of sections, the number of the
chapter appears first, and this is followed by the number
of the section in that chapter. If the séction contains
a sub-section, it is denoted by an additional number;

- e.g., section 8,5 is section 5 of chapter 8, while section
8.5.4 1is the fourth sub—seétion of section 8.5.

- In the notation of theorems and lemmas, the number
of thé.chapber is given first and the number of the theorem
or lemma in that section follows; e.g., Theorem 5,7 is the

seventh theorem in chapter 5.



CHAPTER I

WHAT IS CONFORMAL GEOMETRY?

1.1l. Stereographic Projection.
Consider a sphere in projective 3-space resting on
a plane p. Let N be the point on the sphere which is the

most remote from the plane p, and let P' be any other point

on the sphere (¢f. Fig. 1.1). The line NP' is extended to
meet the plane p at the point P. The mapping of the points

P! of the sphere on the plane p in this manner is called a.




stereographic projection,

1.2, The Notion of Angle.
| 1

We describe what we mean by the term angle by the
following quotation from Sommerville's "An Introduction to
the Geometry}of N Dimensions" (Methuen 1929):

"Two linear spaces which have their highest degree of
intersection determine an angle and this angle determines
 completely the shape of the figure consisting of the two
spaces. For example, two straight lines in a plane determine
a plane angle; two planes in 3-gpace determine a dihedral

angle, which éan be measured by means of a plane angle.”

1.3. The Conformal Plane.

Let us now return to a consideration of the mapping
described in section 1l.1. It is not difficult to prove (cf.

Snyder and Sisam, "Analytic Geometry of Space™, Holt 1932,

- e em e e e s e w e - W =N 4p G W Ay AR M Er eE s W @ e WD W W W W

1. This description applies to two, three, or n di- .

mensions.



pp. 59-62) that under a stereographic prgjection, ¢ircles on
the sphere which do not pass through N, map onto circlea in
the plane p, while circles on the sphere which pass through
N, map onﬁo Straight lines in p. It is also true that angles are
preserved under this mgpping.

Obviously, there is a one-to-one correapon@ence be-
tween the points of the plane aﬁd the points of the sphere,
with the exception of the point N. This point has no image
in the plane p if we think of p as the Euclidean plane,
while.it has many>iméges if p is the projective plane. In

order to preserve a l-1 correspondence throughout, we postu-

D ORI A E M S A AT ST DT

late a single point at infinity for the plane p. The point N
thén corresponds to this point at infinity; the plane p is
called the conformal plane. It is conveﬁiént now, for ob-
vious reasons, to regard straight lines in p as c¢ircles
through the point at infinity (cf. Hilbert and Cohn-Vossen,

"Geometry and the Imagination", Chelsea 1952, p 251).



It is clear from its definition that the conformal
plane is identical with the Argand plane of complex numbers
(cf. Copson, "Theory of Functions of a Complex Variable", Ox-
ford 1935, pp 8-10). Consequently, some of the concepts and
results stated in this thesis may be clarified by resorting
to Complex Variable theory.

l.4. Definition of Conformal Geometry in the Conformal Plane.

Any mapping of the form
. az + b «
(L.1) w  cz+d (a,b,c,d,z, complex, ad - bec # 0),

in the Argand plane, maps circles into circles and preserves

angles. A mapping of this form is called a M8bius Transfor-

' 1l
mation, and is a conformal representation. Certain proper-

ties, then, of circles andarcs2 will remain invariant under

1. A conformal representation is an angle-preserving
mapping. There are conformal repfesentations in which circles
are not necessarfly transformed into circles, but we do not

consider these.

2. For the definition of arc, see section 1l.11.



these transformations. Conformal geometry is the study of

the properties which remain invardant under such a confor-‘
mal mapping.

l.5. Extension to Higher Dimensions.,

The work of the previous sections may be generalized
to three or more dimensions. Although we cannot make use of
Complex Variable theory in these higher dimensions, we;have
another model which will be described presently, and which
applies to any dimension.

Conformal 3-space may be represented on the surface
of a hypersphere (or, as it is more explicitiy termed; a
3-sphere) in projective L-space; more’generally, conformal
n-space may be represented on the,surface‘of an n-sbhere in
projective (n - 1)-space. Accordingly, conformal n-space
has a single point at infinity, so that a p-flat (p= 1,2,
.+« .n-1) (cf. Sommerville "An Introduction to the Geome-
try of N Dimensions", p 8) is thought of as a p-sphere

through the point at infinity. Any transformation which takes



place in conformal n-space, transforming p-spheres into‘
p-spheres (p=1,2,...n-1), and leaving angles invariant is a

conformal representation. Conformal geometry in n-dimentions,

| then, is the study of those properties which remain invariant
undér the transformations described.

Instead of making use of Complex Variable.theory as
‘a model when studying Conformal geamétry in the conformal
plane, we could make use of the following model:

The group of the projectivities {or one-to-one
vlinear trahsformatfons of projective space) in stpace
which preserve a sphere is called the orthogonal group in
three dimensions. Such linear transformations map planes
.into planes, and hence map the intersection of a plane and
the‘sphere into another intersectiqn of a plane and the
sphere. Thus circle; on the sphere are mapped into circles,
and the orthogonalrgroup in 3-space is equivalent to the
conformal group of transformations in the conformal plane.

Similarly, the . {m+l)-dimensional orthogonal group



is equivalent to the conformal group of transformations ih
n dimensions (cf, Birkhoff and MacLane "A Survey of Modern
Algebra", Macmillan 1953, chapter 9).

Remark. Conformal geometry has been set ﬁp>axio-
matically using established geometries as a model (cf. for
example, A.J. Hoffman, "On the Foundations of Inversion
Geometry", Trans. Am. Math. Soc., Vol 71, July-Dec. 1951).
Presumably the axioms could be set up independently, using
points and circles (Spheres; (n-l)-apheres) as undefined
elements, but it seems that this has never been done.

1.6. An Investigation of Angles.

1.6.1. We can get a clearer idea of what we mean by the
term angle ih the conformal plane by resofting to Complex
Variable theory. It is not difficult to prove (c¢f. Cara-
'ﬁhéodory, "Theory of Functions of a Complex Variabie", Chelsea
1954, pp 29-30) that under a MBbius transformation, the

, cross ratio of any four complex numbers, 2z, zz; 23, 24’ is

invariant; i.e.




(1.2) (wy-w, ) (w3-w, ) - (z1-23) (33-2,)

(wp-w3) (wp=w,)  (39-25)(59-3,)
This suggests that the cross-ratio is closely related to
the notion of angle. Let 2y, z,, 23,,and 2, be respecﬁively
the complex nﬁmbers ;K (with finite coefficients), O,oo;
and l._ Then |

(1.3) - (21-22)'(z3-2,)
amp = amp A ’
(z23~23)(z2-24)

i.e. the amplitude of the cross-ratio of these four complex
numbers is equal to the angle © between the line determined
by the complex number ‘A , and the positive real axis (cf.

'Fig‘l.Z). Note that relation (1.3) is wunaltered

¥
L]

/o
, Figli 1.2

if we interchange the values zj, and zL, and zp and z3.




Suppose two circles, Cy and C, intersect (cf.
Fig 1.3). Let R and Q be their points of intersection.

Let S be a point on C; and T a point on C2(S,T# R and Q),

Co Cy

Fig 1.3

and let © be the angle at which C., and Co meet .l By

1
one or more M8bius transformations, we can let Q =00,

R=0, S=1, T=A. Then Fig 1.3 is transformed into Fig

1.2, 1.e. circles and angles are preserved. Hence

(l.4) -~ @ = amp éT-glé%tS) .

It is also true that
s ' 8= amp ES-%; iR-T; .
R S~ Q-

- L. Throughout this thesis, the symbol ,7‘_ will mean

"different from",
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We therefore have an alternative definition for an angle in
the conformal plane, viz.,

"1f two circles, Cy and C, intersect in R and Q,
and i1f S and T lie on C; and C, respectively, S,T# R and

1

Q, then the angle ™ between C, and C, is the amplitude of

1

the cross-ratio
tT—R}éQ-S; ,
-Q)(R-8)
where Q,T,R, and S are complex numbers".
If the two supplementary angles between Cl,and 02

(see footnote) are equal, we say that Cl and C, meet at right
angles, or C; is orthogonal to Cy (C, is orthogonal to C1).

- If the circles C; and C2 in the conformal plane have

only one point in common, say the point R, then the angle

between C, and 02 is zero, and we say that C; and C, touch

1. Of course there are two angles between C; and Cy, one
being the supplement of the other; the relative order of the

points Q,R,T, and S governs the choice of the angle.
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1.6.2. Proceeding to three dimensions, we let a circle C
intersect a sphere S in two points,»R and Q. By one of the
transformations describéd in section 1.5, we let Q be carried
into the point at infinity. Then C becomes a‘straight line

and 8 becomes a plane (cf. Fig 1.&);“Let 1 be any line lying

7/ Fig 1,‘5.

in S and passing through R. Then C and 1 determine a plane.

Thé’angle between C and 1 in 3-space is then the angle}

between C and § in the‘plane determined by these two lines,

If the angle between C and 1§ is the same for all &, we say

that C and S meet at right an les, or C is.orthogbnal to S.
If C meeté S at one point only, or if C lies on §,

then the angle between C and £ is zero and we say that C and

S touch.
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If two circles Cl and C, in conformal 3-space inter-
sect twice, we let one point be carried to the point at in-
finity and thus are led to a clear definition of the angle
between C; and Cz. If Cy and C, meet in one point only, énd
lie on a common’sphere, we have on the sphere a model of thé
conformal plane.  Thu§ we have reduced this case to a case
in section 1.6.1, and we see that C, and Cp touch at their
common point. If, however, C1 and C2 do not lie on a
common'sphere, they do not meet at angle zero.

Subpose that two spheres, S1 and S, meet in a
proper circle C. Let @ be any point on C, and let 83 be a
sphere through Q\such that C is orthogonal to 83. Thus
C meets 83 in another poin§,R;say. Let Q be carried to
infinity, so that S,, 82’ and S3 become planes, meeting in
R on the line‘C. The angle between Sy and S, ié equal to
the angle on SBVbetween the intersectidn’of S1 and 33 and thq

intersection of 82 and 53'

If two spheres, Sl and 82 meet in a single point, P,
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then the angle betwsen Sl~and 82 is zero, and we say that

vSl and S, touch at P,

2
1.6.3. We now consider angles in conformal n;space. As in

previous cases, p-spheres can be reduced to p-flats (p= I,

2,...n-1) by the proper transformation. The angle between

a p-sphere and a q-sphere is then the same as the angle

begween a p-flat and a gq-flat. A discussion of this can be

found in "An Introduction to the Geome;ry of n-Dimensions"

by D.M.Y, Sommerville. ‘<€?
1.6.4. It should be evident by now that by a p£oper trang-
formation, of the forﬁ descfibéd in sections 1.h and 1.5,

any propositdéon regarding angles ¢an be greatly simplified.

This method of attack will be used in some proofs.

1.7. The Closure Property of Conformal n-space.

As we have already noted, conformal n-space may be
represented on the surface of an n-sphere in projective
(n+l)-space(ns2,3,...). Hence every infinite sequence of

points in conformal n-space lies in an intérval, and thus
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possesses at least one accumulation point (cf. Hardy, "Pure

Mathematics", Cambridge 1945, pp. 30-32).

Suppose now, for instance, that we have an infinite
sequence of circles C in the conformal plane. Then there
exists a sub-sequence,l C' < C, of circles which contains an
infinite sequence of points possessing an accumulation po;nt.
Again, there is a sub-sequence C"«C' of circles which
contains a different sequence of points} possessing an
aécumulation point. Finally there is a sub-sequence C'"
< C"of circles which contains yet another sequence of points
possessing an accumulation point. Thus we have a sequence
g of cir¢lea which possegses a limiting circle, the
cindle determined by the three accumulation points. This
important result may be stated as follows:

1. The symbol = means"conﬁaiﬁed in" ("is contained in")
or "belonging to" ("belongs to"). The symbol € is reserved

to mean "is & (single)} element of". The symbol = means

"containing" ("contains"); i.e. if A < B, then BDA.
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Theorem 1.l. Every infinite sequence of circles in

the conformal plane possesses at least one limit circle.

Wé call such a limit circle an accumulation circle.

Obviously, the above result'may be generalized.
‘Thus we have the more general theorem, namely:

Theorem 1.2. Every infinite sequence of p-spheres

(p=1,2...9g—1) in conformal n-space possesses at least one

limit p-sphere (called an accumulation p-sphere).

1.8. BRegions in Conforég; n-space.

'Any proper circle, C(i.e. C is not a poidt),vdivides
the conformal plane into two.open regions,_the interidr c
of C, and the exterior ¢ of C. If we orieht the circle C,
shen the interior of C is the region iying’tq the left of the

oriented circle (ef, Fig 1.5).

-

aQ
e

(a) (b)

Fig 1.5




In general, any proper ‘(n—l)-sphere,s,‘ divides
V'édnformal n-space into two open regions, the g:nt.erio,r S
V-'-bf s , and the gxterior 8§ of8. IfP is a pdint not

1lying on 8, then the interior of S may be defined as the set

' of all points not 1lying on S and not separated fromP by S.

‘ 1.9, ‘Convergence.

, ;42;l; A Sequenée of points, Py, Pz;;;.in ghé conformal
iéléée is sald to be gdnvergéht to a éointi’, if, given any
- circle C’,with Pc’Q} , there exists a number n=n{ ) such that
B Q‘ for all Vv>n.

In the same way, convergence of circles to a point

is defined. Such a point is célled a point-circle.

A sequence of circles.lcl, Coyese in the conformal

plane 1s.said to be conve;gent to the proper circle C if,
given any two points P and Q such that PceCand QeC ,

| thére exists a munbef n=n(P,Q) such ’chat PcgC,y énd Q < Cy
for all V>n,

. 1.9.2. A sequence of points P;,Pz,... in conformal 3-space

16

s

Lo . . " R et I L R S S L e e S i e ey e D e T YT . R P I S .




17.

is said to be convergent to & point P if, given any sphere

S with APC§_, there exists a number n=n(S) such that Re= 8

for all v>n.
In the same way, convergence of cifcles and spheres

to point-cirecles and point-spheres is defined;

A sequence of circles, Cy, Cp,... in conformal

3-space is said to be convergent to the circle C if, given

any circle C', which links® with C, there exists a number
n=n{C') such that C, links with C' for all v>n.

A sequence of spheres, Sy, Sp,... in conformal

3-space is said to be convergent to the sphere S if, gifen

any two points P and Q, where P<S and Q<TS, there exists

a number n=n(P,§) such that Pc$, and Qe 5, for all V>n.

1.9.3. A sequence of points Py, P2,... in conformal n-space

is said to'be convergent to a point P, if, given any (n-l)-

sphere,S , with Pc S, there exists a number N=N(S) such that

- s En me ws A wn @ eu W G Wp G A Gy O AR Gl @ AR W b W G 4B W We W wm G

l. C' is said to link with C, if any sphere S>C cuts

any sphere 5'S5C', while C and C' have no common point{
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Fye$S for all V>N,
In the same way, convergence of m-spheresto point-
m-spheres is defined (m::l,Z,..ﬂp-l).
. | (m) g ( |
A sequence of m-spheres, Sl o Sa m),;..»is said to

be éonvegggnt_to an m-sphere S(@), if to every (n-m-1)-

‘sphére, S‘n’m‘;)

which links* with S{®)  there exists
a positive integer n::n(ﬁ(n‘m’l))}such that Sg}m) links with
s{n-m-1) ror a11 v>nl{n=1,2,...n-2).

~ Finally, a sequence of {n-1)~-spheres, 81382500

in conformal n-space is said to be cbnvergent “to an (m-l)-

sphere S; if, given any two points, P and (, where Pc:§'énd
Qc 5, there exists a number n=n(P,Q) such that P< §,, and

Qc§,, for all V>n.

1.10, Pencils of circles, spheres, and m-spheres.
In the following, section 1.10,]1 deals with the
conformal plane, .section 1.10.2 with conformal 3-space, and

section 1,10,3 with conformal n-space,

- Gr M Ep W AR s S T A s A EE R AP O W W SR AF AR EE W R NP AN e W W

1. cf. Seifert & Threlfall "Lehrbuch der Topologiel §77




19
1,10.1. The set of all circles that intersect two given cir-
cles at right angles is a linear pencil, 7 of circles. A pen-

cil 7 of the first kind possesses two fundaméntal points,

P and Q (cf. Fig. 1.6). A pencil TT of the second kind

 possesses one fundamental point, P (cf. Fig. 1.7) and is i-

dentical with the set of all circles that touch any circle

of "' at P. A pencil 7 of the third kind possesses no fun-



i

damental point; any two circles of A are disjoint (cf.Fig.1.8), -

To any pehcil 77, and to every_point G, which ig not a fun-

daméntal point of 7', there exists one and only one circle,

C(Q;M) of T through Q. In the case of a pencil TT of the
second kind, the fundamental point is regarded as a point-cir-
cle belonging to the pencil 77.

' 1l
1.10.2. The sphere through a proper circle C, and a point B

P & C will be denoted by S(P;C). we shall make use of pencils

1T, of spheres and circles, determined by certain incidence~and

~ tangency conditions. A ecircle {point) which is common to

1. The symbol ¢-means "not lying on" ("does not lis
on") or "not contained in" ("is not contained in“). The symbol

¢ means "is not an element of".
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all the spheres (circles) of a pencil is called a fundamen-

tal cirbley(fdndamental point) of the pencil. In the pencil

T of spheres thfough a fundaméntal circle C, there exists
one and only .6n'e sphere S(P;mv of 7/ through any point P
which does not>1ie on C. Similarly, in the pencil T of
spheres (cifcles) which touch a giien sphere (circle) at a
given point Q, there is one and only onersphere S{p;m) (cir-
cle,C(P;ﬂ)) of T which passes through any point P # Q. The
fundamental«pdint Q is regarded as a point-sphere (point-
circle) belonging to Tr.

: m-1 "
71.10.2. An m-sphere through an (m - 1)esphere S( );and a

(m-1) (Mfl).].

point P&£S will be denoted by S(m)[P;S
m-sphere through m + 2 points, P ,Py,...P .., not all lying
on the same mél)-spheré, will Qccasionally be denoted by

S(PO,Pl,..va+l).‘Such a set of points is said to be indé—

Bendent. We shall make use of pencils TT of'sméephsres

- 1. cf, Sommerville, "An Introduction to the Geometry

of N Dimensions", page 8. In two (contfd on p 22 (bottom))
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determined by c¢ertain incidence and tangehcy conditions. An
(m-1)-sphére which is common to all the m-spheres of a pen-

cil TT(m) is called a fundamental (m-l)-sphere of'ﬂjm). In

-1
the pencil‘ﬂim) through a fundamental {m-l)-sphere S(m ),
| | o{(m) (m)
there is one and only one m-sphere S(P;7 ') of 17 through
each point P, which does not lie on S(m“l). Similarly, in

m .
the pencil1T( ) of all the m-spheres which touch a given

m-sphere at a given point Q, there is one and only one

(m)

m-sphere S(P;ﬂ‘m ) through each point P # Q. The fundamental

point Q is regarded as & point m-gphere beldnging to‘ﬁlm).

1.11, Arcs,
An arc A in conformal n-space (n= 2,3,...) is the
continuous image of 2 real interval. The images of distinct

points of this parameter interval are considered to be dif-

dimensions, we speak of the circle C(P,Q,R) through ihe
three independent {i.e. distinct) points P,Q, and R, and in
- three dimensions we speak of the circle C(P,Q,R) and the
sphere S(P,Q,R,T), where P,Q,R, and T are independent points

(i.e. do not lie on the same circle).
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ferent points of & even thoughvthey may goincide in the
space. If a sequence of points of the‘parame;er interval
converges to a point p, we define the corresponding sequence
of image points to‘be convergent to the image of p"Thé same
small letters,_p,t.a..‘will denote both the pointskof the
parameter interval;.ané their image p&inbs’on A. The end-
(interior-) points of A are the images of the end-{interior-)
“points of the parameter inﬁerval. If p is an interior point
of A, this néighbourhood is decomposed by p into two (open) ” 

one-sided neighbourhoods.

1.12. Support and Intersection.

Let p be an interior point of an arc A in the eonfor- -

mal plane. Then we cail p a point of sugpoft iintersect;gn) : -
with respeét to a circle C, if a sufficiently amai; Qeigh- .
b@urhéod of p og A is decomposed by p-into two oﬁe«sided

neighbourhoods wh;ch lie in the same'region'(in diffefent re-.ﬁ'
gions) bounded by €. C is then called a éuggbrtigg (inter-

secting) circle of A at p, Thus C aupports"A at p if p¢ C.
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By definitioh, the point-circle p always supports A at p.
It is possible for a circle to have points different

from p in common with every neighbourhood of p on A, In this

case we say that C neither supports nor intersects A at’' p.
The above may be extended to three (n) dimensions
simply by substituting the word sphere ((n-l)-spherq)'for

the word circle (and the letter S for the letter C),




CHAPTER II

DIFFERENTIABLE POINTS OF.ARCS IN THE CONFORMAL PLANE
2.1. Introduction.

The goal of this chapter is a classification qf the
differentiable points of arcs in the Qonformal plane. The
main tools are the intersection and support properties of
families of circles through a differentiable point p of an
arc A. This chapter is the ground-work for chaﬁters 3 and L.’

2.2, Differentiability.

Let p be a fixed point of an arc A, and let t be a
variable point of A, If P, Q, énd p are distinct points,
the unique cirgle through these points will b§ denotegd by
c(p,Q,p). | |

The arc A is said to be differentiable at p if the

- following two conditions are satisfied:

Condition I: If the parameter t is sufficiently
25
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close to, but different from, the parameter p, the circle
1

- ¢(P,t,p) is uniquely defined, and converges as t—» p.

Thus the limit circle, called a tangent circle, and

denoted by C{(P;T) is independent of the way t converges to
p. The family of all such cifcles, together with the point-
circle p, will be denoted by the symbol T.

Conditién II: If the paraméter t is sufficiently
close to, but diffe?ent from the parameter p, the circle
C(t;T) is uniquely defined, and convergés as t —»p.

This unique limit circle, called the gsculating cir-

cle of A at p, will be denoted by C(p).

2.3. Structure of the Families of Circles Through p.

Theorem 2.1. Suppose that A satisfies Condition I

at_p. Then t does not coincide with p if the parameter t is

sufficiently close to, but different from, the parameter p.

Proof: Let P # p. Then by Condition I, C(P,t,p) is

" R es W B el AR M W A GP 4SS GP R EGP P YR WP em W G N G OB AR a8 B W

1. The symbol — means "converges to".
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uniquely defined when the parameter t is close to, but dif-
ferent from, the parameter p. Hence t # p.

This theorem indicates a restriction which Condition
I imposed on an arc; viz., the arc satisfying Condition I at
the point p, must have a néighbourhood of p which contains
no point coincident with p.

Theorem 2.2. Suppose that the parameter t is suf-

ficiently close to, but different from, the parameter p. If

the circle C(P,t,p) converges as t—» p (t e A), for a sin-

gle point P # p, then Condition I holds.

Rémark: Theorem 2.2 shows that Cendition I is stron-

ger than necessary, and could be replaced by the condition
laid down in the statement of this theorem.

Proof of Theorem 2.2: Let P, Q, R be three mutually

distinct points. If the point R' £ R converges to R, then

the angle between the circles C(R',R,P) and C(R',R,Q) con-

PR R SN el PRSI . < . w“ L .
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1 ' 2
verges to zero. In particular, let R=p, R'=t &€ A, Then
lim &[c(P,t,p);C(Q,t,p)] =
Hence any accumulation circle C', of the circles c(Q,t,p)
touches C(P;T) at p. Since C' also passes through the point
Q% p, it is uniquely determined. Hence C' = lim c{Q,t,p)
t—>p

= ¢(Q;T).

Theorem 2.3. The set T = T(p) of all the tangent

circles of A at p is a pencil of the second kind with fun-

~damental point p.

Proof: By Theorem 2.3, ény two tangent circles,
C{P;T) and C(Q;T)’touch at p.

Suppose‘thag a circle C touches a circle of T at p,

and let P C, P # p. Then C and C(P; 'C) also touch at p and
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1. This statement becomes trivial if we let R be carried
ninto the point at infinity by a transformation as in section
lgh} Note that the circlés themselves need not converge.

2, If C and C' are two circles, then {[C;C' means

"the angle between C and C'7
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have the point P;é;>in‘common. Hence C and C(P;T) are

identical, i.e. C& T.

Corollary 1. If C(P;T) and C(Q;T) have another point

in common, they are identical: thus there is one and only one

circle‘of T through each point P # p.
While this is an immediate corollary of Theorem 2.3,
it has a more basic proof which is worth noting, namely:
Suppose that C(P;T) and C(Q;T) have another point
R # p in common. Then before the limit is reached, C(P,t,p)
(ter,t # p, t-fp) and C(Q,t,p) must have a point R' close to‘ ‘
R in common. Since these two ¢ircles now have three points,

t,p and R' in common, they are identical. Hence in the'

1imit, C(P; T)=0C(Q; T).

Theorem 2.4. Suppose A satisfies Condition I at p.

Let 1T be a pencil of the second kind with fundamental point

p. If t—opl(t€A,t #£pl,and if T £ 7T, then

lim C{t; 7T ) = p.
t— p

Proof: If this statement were false, there would exist

A
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a circle, C, such that pcC, and a sequence of points t-»p,
te A such that C(t;TT)#C. Let C' and C" be the two circles
ofﬁwhich touch C (cf. Fig 2.1). If we orient C and

C' in such a way that C lies in the closure ofl Tragr,

then C(t;ﬂ)C(E'n C"Jup. Hence t=T'n cn.

Now let there be any sequence of points Q-»p, Qe(Ct'n C").
Let CQ be any accumulation circle of C(P,Q,p) where P&C',P#p.
If [Cq;C'_] # 0, then there is a small neighbourhood of

the point p in which t'n C" is void of any part of the circle Cq§
l. If X and Y are two classes of elements, then XNY
denotes the set of all elements in both X and Y; X UY denotes

the elements in either X or Y or both X and Y.
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Therefore, if C(P;Q,p) is very close to Cg, it doeé nbt pass
through c'n C" in ;he immediate neighbourhood of the poinﬁ
}S, and hence Q¢C'NC". This contradictién leads us to the
conclusion that [CQ,Ci} = 0. 3ince Cy and C' have the
point P # p in common, we see that Cg= C(P;Tl‘), and is
therefore unique. In particular, sihce tc:ﬁ'(1g";C(P;t;p)
>C(P;T/), i.e. C(P;T)=C(P;T). This again is a contra-
diection. Thus if 1T #T, (‘3(1:;‘77)-7})..

Theorem 2.5. Suppose A satisfies Condition 1 and

Condition II at p. Then C(p) e C.

Proof: If C(p)=p, it bélongs‘to'[ by definition.
Suppose C(p) # p. Then C(p), béing the limit of a sequence
of circles, each of which toﬁches a given circle of C,
must itself touch this circle of U at p. Hence C(p) € T.

Corollary 1. If PeC(p), P # p, then C(p)-_—.'c( P: C).

2.4. The Independehce of the Differentiability Conditions

Condition I and Condition II are independent, as is

shown by the following example. Introducing a rectangular
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Cartesian coordinate system, we let the arc A be defined
by the equations

x=t, y= {((1- ¥I-t2 )sin t-1, 0<|t}sl
0 | , t=0

id

Fig 2.2

The curve lies between the two circles x+{y %1

)2=l as shown
in Fig 2.2. We examine the point t=0 for différentiability.
Since we are only interested in values of t close to

zero,l we may expand Vl-t2 by the Binomial Theorenm,

iee. Vit = (1-t2)2 = [1-3t2 o(t3)] . Let Plxy,y,) # (0,0).

t—=>0 t ‘



x° 4 yz’ x y

2 |

x; + yf Xy Y1 =0
1t%0(83) t  oft)

- We remove the common factor t and let t— 0, obtaining

x* + y* y |
= 0

2 2

¥ + V) 1

Thus Condition I holds.

Condition II, however, does not hold. The equatioh ,

of C(t;T) when t is close to 0 is

Removing the common factor t2 and letting t—->0, we obtain

lim (xz-#y

t->0

X +Y o ¥ 1.6

1

t2 4+ o(td) &tzsin ™ +o(t3)

2)sin t’l-—2y=0.

33 2

This circle does not .converge. The fact that Condition II

does not hold can also be seen from the fact that both of the
circles xz + (y.tl)?:

neighbourhood of t =0,

l have points in common with any

Thus the sequence C(t; T) has two
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accumulation circles, namely x? + (y2t1)2= 1.

2,5. Intersection and Support Properties of the Family of

Non-Tangent Circles and the Family of Non-Osculating Tangent

‘Circles.
Let p be a differentiable interior point of the arc A.

Theorem 2.6. Every circle C # C{p) either supports

or intersects A at p.

Proof: If C neither supports nor intersects A at p,;‘-
then pc:C; and there exists a sequence of points t-»p, such
that t€ ANC and t # p. Let.Pe=C,P # p. Then C=C(P,t,p)
for each t in the sequence, and Condition I implies that
c=c(P; T).

Now Ce T and still conteins the above sequence of
points,kt. Thus Cf=C(t;t) for each t in the sequence, and
Condition II implies that C=C(p).

Theorem 2.7. Non-tangent circles through p all

intersect or all support A st p.

e———

Proof: Let C' and C" be two non-tangent circles
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through p. Suppose that C' and C" intersect each other in

two points (c¢f. Fig 2.3), and let their other point of

intersection be P. Suppose further that C' supports,

Fig 2.3 ' N

while C" intersects A at p. No generality is lost when C'
is oriented so that AcC'. Thus the region ANC' is not void. '/
Let t&eANnC'NC". Then

~

c(P,t,p)c(C'ngm) u(l'ntr)uPup.

If we allow t to approach p, we obtain in the limit,
(2.1) c(P;T)a(c'ngm)u(Cratr)vucrucn.,
Considering now a sequence of points, t'->» p, where t'eAngW1C",

we obtain symmetrically the relation - ”,f

(2.2)  C(P;T)c(E'NTMU(Eragr)uctucn,

Comparing relations (2.1) and (2.2), we are led to one of the
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contradictions, C(P;T)=C' or C{P;T)=C".
If C'NC*=p, we choose a third non-tangent circle,
Ct*, which intersects C' in two points, Then C'" also
intersects C" in two points. Applyiﬁg the above to C' and
C'", and again té Q'; and C"; we find that C', c*, and C'"

éibher alllsupport or all intersect A at p.

Theorem 2.8. If C(p) # p, every non-osculating

tangent circle supports A at p.

Proof: Let C be a non—osculaiing tangent circle of A
at b, and sﬁppose that C intersects A at p, Thgn AN ¢ and.
AnT are not void. If t€ ANg, then by Theorem 2.3,
C‘(t.;'c)Cg_Up. Herxcé, if t-p,

(2.3) C{plegvc.

Letting €'»p, t'e ANT, we obtain symmetrically,

(2.4) c(p)¢'6uc.

A comparison of relationé (2.3) and (2.4) leads to the
conclusion C{(p)=C, which is false. Therefore C supports

A'at p.
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Theorem 2,9. If C{p)=p, the non-osculating tangent

circles at p all support A at p, or they all intersect A at p.

Proof: Let C' and C" be two non osculating tangent
circles at p. For the sake of argument, we shall assume that
C' supoorts A at p while C" intersects A at p. We orient C!

and C" so that C"c:gbpand C'e Clp (cf. Fig 2.4).

Fig 2.4
Then ANC' is not void. Let t€ANC'NC", so that C(t;T) < (C'nC"up.

As t=»p, the circle C(t, T) will lie in the latter region
bounded by the two proper circles C' and C". Consequently,

C(t; T) cannot converge to p.

2.6. A Classification of the Differentiable Points
The preceding section yields a classification of the

differentiable points of plane curves (cf. Table 2.1). The



38
first four and last four examples refer to the curves
x=th y=t ’
while the middle two examples refer to the curves
tn*igin ¢~ o< el <1
Xstn, y: .
0 , £t=0
In each case we examine the differentiability
properties of the point t=0. By the method used in section
2.4, we find that the point t=0 is differentiable in each 1
case. This method also gives us the pencil T, and tells
us whether or not C(p) is a point-circle. Support and

intersection properties can be determined in many cases

simply by a consideration of symmetry.

We introduce the cheracteristic (ay,a1,a2;i), with

the following properties:

i=1 or 2,
a,= 1 or 2.
a = 1l or 2.

aZ:qu, or oQ,
i=11if C(p) #p; 1i=2 if C(p)=p.

a, 1s even or odd, according as the non-tangent circles
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support or intersect.

a, + aj is even or odd, according as the non-
osculating tangent circles support or intersect.

a, + ay + a, is even if C(p) supports and odd if
C(p) intersects, while a£=°0 if C(p) neither supports nor
intersects.

Theorem 2.8 imposes a restriction on the characteristic,
namely; if i=1, a, + aj is e%en. Tﬁe convention that the
,point-circle‘p always suppofts‘yields a2 further restriction,
" that ig; if i=2, tﬁen'ao + a; + &, is even.

- With the above restrictions in mind, we see that
: Qhen i=1 we have two choices for ao, one choice for a1y
and three choices for az, a total of six different choiceé
for the characteristic. If i=2, we have two choices for

" a,, two for aj, and one choice for a,, four choices in all.

Thus we have ten different types of differentiable points.
All congruences in Table 2.1 are mod 2.

It is interesting £o note that all the tangent
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circles (including C{p) ) support if and only if ap=2.

Curves containing the various typesqof differ-

entiable points are illustrated in Figs. 2.5 to 2.10

inclusive. The curves are identified by the characteristic

of the point (0,0) through which they'pass; The relationship -
of each arc to a tangent circle is.depicted by . super-

imposing a non-osculating tangent circle upon each diagram.




Character- | Tangent Restriction Examples
1 dstic circles c(p) ~ on
' # C(p) , characteristic Frangent Cc(p)
cirecles
; n=1
(1,1,1;1) intersects =0
. n s m
(1,1,2;1) supports . =1
, n=20
(2,2,1;1) intersects m=1
support | #p : agta; =0 [o<n<m x-axis
' , - n = m | touch
(2,2,2;1) supports =0
x-axis
(1,1,00;1) neither n=1
supports
nor
(2,2,0051) intersects n=0
» n=m
(1,1,2;2) support =1
. n=1
(1,2,1;2) | intersect m=0 x=0
: =p | supports | ajta;+a; =0 |n>m>0
~ ' ' n=0 y=0
1(2,1,1;2) | intersect m=1
n=m
(2,2,2;2) support =0

Table 2.1

™




Fig. 2. Pig., 2.8

Fig. 2.9 Fig. 2,10



CHAPTER III '

CHARACfERISTIC AND ORDER.OFVDIF?ERENTIABLE?POIﬁTS IN THE
| © CONFORMAL PLANE
3.1, Introducﬁibg. :

In this ;hapter,»various ﬁheorems‘dealing‘with the
cyéiic ordersfof points and arcs‘wili,he diScuésed;‘ The
¢lose connection bétween ths charéetariatic of a differ~
entiable point and the order of'that\point will be bfought
oﬁt. It Qill»thén become evidént why the particglar fcrm,l '
(ao,al,az;ij,ffa: fhe characberisti¢ ﬁés chosen.

3.2 Arcs of Finite and Bounded Cyclic Order

Anzare A is said to ba:of fiﬁite gzg;ig order if
1t has only a finite number of points in common with any
circle. If some circle meets A n timés and no circle
meets A more than n times, where n is some specific integer,

43
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then A is said to be of bounded cyclic order,!

.and n is
called the (cyclic) order of A. If p is any point on A,
the order of p is the minimum of the;orders of all the

neighbourhoods of p on A.

Lemma 3.1. Let A be an arc of finite order, and

let a circle CA;nterSe?t'A at a point p., Then any circle

C', sufficiently close to C, also intersects A, and does =0

in an odd number of points closé'to’p.

Proof: Since C intersects A atfp, the end-points of
a sufficiently small neighbourhood M, of p, lie in opposite’

regions with respect to C.  Hence they lie on opposite sides

n---t--ﬁ-ﬂ-.-‘-ﬁnﬁ- .......... -

1. It should be noted that there is a difference between
anrgrc of bguﬁded'cyclic order and one of only finite cyclic‘
order. It is possible, in the case of an arc of finite
cycliec order, to find for each circletthrough a finite number
of points on the arc, another circle through a still
greater, but finite, number of points. An arc with such

& proparty would not be of bounded order.
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of C'. Since C' meets M a finite number of times,.it must

intersect M an odd number of tinmes,

3.3. Characteristic and Order.

The following theorem illustrates in part the
reason for choosing the characteristic in the form given in
Chapter II. Theorem 3.5 will sharpen this theorem and

complete the investigation of characteristic and order. 45§

Theorem 3.1. Let p be a differentiable interior

~ point of an arc A, Suppose that p has the characteristic

{8,,8 s8p;1). Then the order of p is not lese than a, + a 482,

Th;s theorem is triviallyirqé if.agééo (cr,<§2.6),"32ilf
for‘then everytneighboﬁrﬁood of P on A pas,ap’iﬁfinite
number of poinps in‘co&ﬁ;n'with-C(p). ‘FOr'ﬁhig reaéon we
confine our.eﬁsuing}prQOf to the case aé(cXQ. The préof
follows after the diécussion in section 3.3.1. l

3.3.1, Let772='f'beﬁtha pencil of'tangeht'cifcles through

p, where C{p; IT5)= C(p). Let 771‘be a pencil of the first

kind with p as one of its fundamental points, and let
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C(p;My), which is a member of T, be different from C(p).
Finally, let ﬁ; be a pencil of the first kind where
C(p;ﬂ;) & T. Then p is not one of the fundamental points

Fanl

ofllo.

Lemma 3.2. The pencil ﬂ} (j =0,1,2) contains cir-

cles arbitrarily close to, but different from, Cj+i:C(p;ﬁ3), o

which meet a neighbourhood M of p in not less than aj points

outside p. If the order of p is fin;te; and if M is small

enough, © can be chogen so that the number of intersections

of M with C exceeds aj by & non-negative even integer.

P‘roof: Let DJ e Tfj, DJ #C,jq-‘l‘ If j = 2 and C(p)y: P,
we make the convention that ga does not exist, and that 33
is the whole pléne with the exception of the point p itself.

We now define the regions

(3.1) §3 = (_0_34.1 n-ﬁj) U (_C'j*lﬂ QJ),
and |
(3.2)‘ | Ej = (€341 0 Dy) u_;_(é‘j*ln ﬁj)
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(cf. Fig. 3.1).

Let Ty (T,) denote the set of those circles of Ty '
that pass through Ey (ﬁj). Then every circle of 7‘;3, with

e

(¢) §=1 o (d) j=0
. : v Fi‘i 30’]5 . :
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the exception of Cj+1 and DJ, belongs either to 1y qr to ﬂ}.

If we intersect ﬂb with an ortogon&l circle, we establish a

- 1-1 correspondence between the circles ofﬁﬂb and the points
of the orthogonal circlé, and thus we'can»speak»of a "be-
tweenness" relation 1n‘E5 (fgi.,-'

The néighbourhqod M of p is decomposgd by p into two

one-sided neighbourhoods N and N'. We can choose our M 8o
small that neither of the neighbourhoods N and K' have
points in common with Gj+1 or with Dj‘ Thus N (N') lies

entirely in one of the two regions E, and ﬁj. ‘Let t and t!

denote the points of N and N' respectively. Thus all the

cireles C(t;ﬂ}) belongvto'ﬂb or else to TG. We lose no

generality in supposing that N < 63 LN ’ﬁjc. EJ. Then

C(tifl},)e TIB for every t.

Let @ be thé_end—point of N distinct from p; Then
C(e;ﬁa) is the end-circle of a\éne-sided neighbourhood V of

Cj+1 in ﬁs. If t moves from e to p, then C(t;ﬂ}) moves cone-
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tinuously‘in'ﬁs f?om C(a;ﬂs) ﬁo Cj*l;'hen;e every circle pf
V meets N. | |
Let C be soéo fixeﬁ ¢irele bélonging\tg V. Then,
;f.t is éuffieienﬁlﬁlcloée‘tO”p,,G{t;ﬂBf is;sé’élo;§'£o

CJ+1 that € 11Qa,batueén'6(t;ﬁ3) and G(Q;IS).. Thus the

‘points t and e are aéparatad by c,?andﬂsincefﬁha sub-arc N

is of finite order,’cfmuat intersset;ﬁ’atvleast once. By

~ Lemma 3.1, C intersects A an 6dd numbar'of,times»

| Similartly, if t'fﬁ N', the circles C(t';ﬂB) com-

'.priae a one-sidedufémily'gf,circles vi*iboundad'by Cj*1 and

G(e;ﬂb),.wheré P ang gHare the'endfpoiéts of H’¢'\There~is

a circle C'e v whichfinteraectsiN’lancdd number 5f1£imes.x. '
R§w if ay = l,\@ne pf the'éiﬁc#éaicj*ihand Di sug-.

ports A at p; whilg thg‘other one inﬁefueéta A at b (cf.§2.6)}!‘i;

hené§ Nt € Ey. Thus G does not vm‘e‘aty 'H'_’,,a‘n‘d' mééta‘_ﬁ anko’ddl .

number o£ ﬁimes;_ Oﬁvthé‘éthet bgnd; iif;j # 2,,bo§ﬁw§f‘th§*ﬁ '?;;

circles C44) and Dy intersect Agét‘p,for sheY{both support §Q 
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A at p; hence N'e Ejf Thus if C is auffigientl—y close ‘to
Cyppr 4t will méet both N and N', an odd number of times
each. This_éompletas the proof of Lemna 3.2,
;;2;34 We ate’how in»a-position/bo pfﬁve Theorem 3.1. Wé‘
proéepd by first approximating c(p)'by’another tangent cir-
cle, ﬁhan the latéar leé nop-tangent‘circle through p, and
finally that circle‘by one ﬁhich doga'not coﬁtéin Pe

Let H2<: M be a neighbourhood éf»p on A, By Lemma
3.2, there exists avpon~oaculating tangent circle C, which
is‘close'tolc(p) and intersects Mz.at least a, times éutside
‘p. Now let ¥ < Mzibe a neighbourhood éfmp thch contains
none of ;he pointsnof:interaection of Cz with M, (except p,
if it 1s a.péint of intersection). Again by Lémma 3.2, there
‘exists a non;tangént’eircle C, which-#ntersects My in at least
, ay poiﬁt# outside p. Finélly,.let Mgc: M, be a neighbour-
hood ofipiﬁhich céntains,none~cf the ?bints of ipgtersection

of Cy with M; (except p, if it is a point of intersection).




Using Lemma 3.2 once more, we find that there exists a cir- };ﬁ{é

A Pl

cle Go,'hot’pasaing through p, which intersgcts‘ﬂb in at
least a, points.' Altogether, C, meets M at least ag, + ay+ay ,?i
times.

As a consequence of the proof of Theorem 3.1, we have

Corollary 1, If the order of the differentiable

point p is bounded, then there exiétg'ﬁo'evéry~neigpbour~

hood of p a g;rglgf;rb;ﬁrarglyvc;oaeﬁgo C(g),ﬁhich does not

not less than a + 8; -+t &, points.

3.4. Two Lemmas Qn Arcs of Pinite Cyclic Order:

- Lemma 3.3;>Lethvbe an arglof'ginite.czélic order.

if the parameter;gé tends to}éne of the eﬁd—gointe of the

paramater'interva;;’nhen thg_saquenga»ég geints tn conveggés,_'fig
‘Proof‘ Let &iﬁ” toy = p and %iﬁn'”2V+l q be any

two accumulation points of the sequence t,. We méy assume

that ﬁn*l lies be#wegn tniand'tn*é.foriall‘n.v If p£aq,
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let C be a circle separating these two points. Thus there
is a number N= N(C) such that t,,, and t,,,1 are separated
for all V>N, But this implies that the arc A meets C an

infinite number of times, which is not true. Hence p = q.

Lemma 3.4, Let p be an end-point of an arc A of fi-

nite eyeclic order. "Then'the arc A is differentiable at p.

Proof: Suppose Condition I of section 2.2 is not

satisf;ad,vaet tyy and t,, 4 be two sequences of points

cqnierging'to p such that G(P,tzv,p)4ﬁﬁcb and C(P,t5,,1,P)

=>Cy #C, (P#p). We may ‘as.sn@e thaft; t,,1 lies between
t, and tn+2 on A, Let C!' and C" be two circles through P
and p which separate Go and C; (cf. Fig. 3.2). Then, for

each n sufficiently large, C' and C" separate C(P,t,,p) and

C(P,tn+l,p).v Hence at least one of‘the circles C!' and C"
ﬁeets the arc A an.infinite number of times, contrary to
our hypothesis. Thus Condition I holds.

Now let us suppose that Condition II of saétion 2.2

‘&oes not hold. Let ty, and tj,,; be two sequencea of points -
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Fig, 3.2

converging to p such that Cltgy,;T)—>C, and Clt,, +13TPC1#C .

As beforé, we éssgmevthat tn#i lies b;twgeh,tﬁ and'tn+2 én
A. Bbthvpf the cifcies co andicl, beiﬁg th;nlimit ofksa;
guences of tangénp qirglés; aré;themg§ly§§ tangégtyéircleai
an&‘By}Théorem 2.3,_thé§it§uch ét[p;

 Suppose first of all;'that'cd,and C1 are both pro-
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per circles (cf. Fig. 3.3). We may orient Co and C; in such
~a way that C; < Gy U p and C < C; U p. Consider & circle
cel (c< (g, NT,) U p) oriented so that C; © C U p and

90 < C U p. Then, for sufficiently large ¥V, C(tay,;;T)<Cup,

and c(tzv,"c) cCTu p. Here again the arc A crosses C an in-

) finite number of times, which is impossible, |
If now, Cy for instance is the point-circle p, consider
two ci.rcles of T, c and C' (CcaC,up, C'c Eo v p), orien-

ted in such a way that ,0.0 c (C AC') U p (cf. Fig. 3.4).

Fig' 2.5

Then for sufficiently large V, C(t,y;T) C (Cn C') vp,

while C(tz,jﬂ;t) cCgu C' U p. Since these two regions are
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separated by C and G'; ohe or both of these.ciréles will
@eet’A an ;nfinité number ofvtimes és‘v-acp. Since this
too is impossible by’ouf=hypothesis,‘Condition II holds,

~ and thevpoint-p.is'differentiable.

'-ZAEL Arcs~of‘0rdgr Thfee. ’

vSince any three distinct'poinps define(a éircle, the
cyclic order of any arc is at least tﬁrée.4 fhe remainder
~of this chépter~is direétly'concérned with arcskqf'qéder
three. We shaii'denote such an arc by.thé symbolAs; The
two lemmas of §he bfgvioﬁsyéection are true in ﬁafticular

6f arcs of order three.

3.6, General,TangentGircleé.

Let A3 be ahia£c of ofder €hree with égd-poinﬁ P,
and iet‘»q_e A3 U’p', ’ ?Ie‘ call a circle € a g}en‘eravl tahgent;
g;gg;g‘é§ the pdiﬁt‘q;"ifitherevéxiéﬁs»a sééuence of ;fi-
plets of‘mutuallyvdistinct points,~qv, q;? Qs such;that q,
and é; convqrge-éﬁ Ajito‘ﬁ, and that

lim C(quwq;‘) = _C‘._“ o i
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If, in addition, Q, converges on A3 to q, then we

call C a general osculating circle at q. If we let the se-

quence q/ be the single point q, and 1e§ Qy be a single
point,» Q # q, Gis fthen an ordiﬁary tangent ciréle of A at q.
Hence an ordinary tangent‘circle is a general tangént circle.
Let Q,~>Q # q, and let g, and 9}, = q., Choose any neigh-
bgurhood'of}qvon Ay. Then if Clq,,q}, Qv)-—ic, 2 non-oscu-
lating general tangent‘eifcle of’AB‘ét 9, and if q, and q],
are sufficientl& close to.q, the end-points of the above
neighbou;hbod'wiil¢1%e in the same region with respect to
clqy,95,Q,), and hence will lie in the same region with re-
spect to C; Hence C supports A3 at q. By similar reasoning,

we find that a general osculating circle intersects A3 at q.

3.7. An Important Property of Arcs of Order Three.

We now introduce multiplicities; that is, we count

the end-point p of Ay three times on C(p) and twice on any

other tangent cirecle at p; while we count a point q € A3L1p .
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three times on a general osculating circle at q and twice on .

a non-osculating general tangent circle at q. We wish to

prove the following theorem:

Theorem_3.2. No circle meets A3 u'g more than three

times; i.e., the inclusion of p_and thé introduction of mul-

tiplicities does not alter the order of Aj.
The proof of Theorem 3.2_reau1ts‘from the lemmas

| proved in_thé_remainder_cf section 3.7,

3.7.1, Lemma 3.5. If a circle © meets>h3fin two points,

then at leagbiéne'of'thege'ﬁointg_ih*anﬁinteraection.
g_g_g Let c meet A3 in él and qe; agﬁlet My aﬁd
‘Mg be small neighbourhooda of ql and qz respectively. ir
gy (; =1,2) is a‘poinu of support, then therg is a circle
¢lbse'tp C»§£ich'mae£§ My 1b_twn pbinﬁb., Now if Ml-and M,
#re bqth}in g; Qay,}théa there ié a cirCIé C'e ¢ so c1ose
to C that 1£ intersects Ml and M, twice each. This is im-

poesible since A3 is of arder three.

On the other hand, :[f Ml < G and Mz c T, then since
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A3 has points on either side of C, it must intersect C in

some point q3. Let C' be a circle through onme point of M,

and two points of Mz, where C' is close to C (éf. Fig. 3.5).

Fig. 3.5

Now the end-points of a small neighbourhood M3 of q4 (M3 is

so small that it has no points in common with Ml or with MZ)

lie in opposite regions with respect to C. By section 1.991,
théy also lie in opposite regions with;resbect to C' when
Cf'ié sufficientlyﬁclose po C. Hence C! intersects MB'

Thus we’have another contradiction, since C' can only‘meet
A three times at most.

 Lemma 3.6. A cikcle C through three points of Aj




gggg‘not gggpqrt Ag at anylef,thesevégintg.; '

gggggz Lemmg 3;5 impligs that:ABI" € has a§~moat
dng péint &f‘gupqu€;  If C'suppgrtsAABnat qﬁé_ppint of
contagt, an@ 1ntefsgct§‘A3‘intﬁp oﬁher péi#ts;jﬁhen there
15.g~¢1;clewgioseﬂt§'digﬁic§ ﬁéet81A3:iﬁ at_iéasﬁ’fouf
points, ihich‘cannot bé~tfué;
341;2; Supposo‘thét a;girel§¥G‘tbrough.p ﬁé;%;ﬁﬂ3 in three"
pointa, ql;:qz,land g35N'§j~Lg@ma 346 §&0§ §fe‘a;l,intene
se¢t1¢ns.' ¢héos§ dieJoiptineighbdurhéodsiﬁjbf,p°and M of

q; on A.' If t;‘;p, t e,n,' then c(n,qz,qB),—sc; By section

1. 9 1, c(t,qz,QB) saparates the end-points ef M if & is  »f_;;*;,

snfficiently cloae to p. Thus C(t,qz,qB) meata.A3 again 1n jg*

the neighbourhood of ql This contradiction yields

' Lemma 3 Ts GN@ c;rgle meeta A, v -3 ;g gg ggintg.
Now supposefthat'a:circle thrqugh:p meets A3‘1n two i
points, Q1 énd 9 and,#&ppdaa'rgrther ﬁhat‘qé is a point»of“.a

‘support. By Lemma 3.5, q1 iS a point of in;drégation. Let
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M, and M, be small neighbourhoods of q; and g, respectively.

Let C' be a ci;cle'through p and two points of M Then if

2.
C' is sufficiently close to C, it will intersect Ml, thus -
meeting A3 V p in four points. This again is not true.

Combining this result with Lemma 3.6, we generalize the

latter lemma, obtaining

Lemma 3.8, A circle through three points of A3 Vp

does not'support.A3 at‘any of these poingg.

M'Suppose that a circle ¢ € T meets A3 in two points,
q; and qp. By Lemma 3.8 thege é@ints_are both’intersections.
Let N and M be disjoint neighboqrhoods of p and q) respec-
’ti_vely. Let t,é N, t =>p. Thefz C' = C(_qz,t,p), when it is
close enough to C, megﬁs M in #'point near qq . ‘Thus ct

- meets A3 Qé'at least fouf times, cont?ary}to Lemma 3.7,

This yields

Lemma 3.9, No circle of T meets A3‘in two points.

at q. Then

‘Suppose a circle C of’t'eupports A3




. éln.m

Then there is a ciiclﬁ otft él§as_td S.ﬁhich tpﬁer£eét8 43"

in at 1eaa§ twbvpointq.»gfﬁis coptradiéts Laé§é'3;§, andw§i 
.L g‘vm' .3.10; Ig a lgg‘rclg.lof‘i E 52'( g; tgaa,ig vgbeg B8O

in a gt  _in ;" f’ ‘v;;" Lo |

3.7k Sﬁppose'ﬁha#iegf),ﬁ§;§a<A3at a'ééigif;; Bf Théorém '”

2.5 and Lemma 3.10, q'ig,a~point Qf inﬁ§r35¢tioﬁ. Let N

and M beYdisjoint naigh5oﬁrhooda of p gnd‘q“fgspectivaly,
and lot t € N, t »p. Then C(t;T), when it is close to C(p), -

will meet M, contradicting Lemsa 3.9. Thus we have R

Lemma 3;1;. cip) daés-not-meaﬁ_AB.Q

- 3.7.5. Méltigliégtiés;ﬁg;gtive to~Geh§rﬁ1 zggggnt'01rc;¢g;

| In thé followiﬁglwe.shall nétvconaid§r ganeralntan-
gent and osculating circiea at p, the'anﬁfpoint of’AB, ainceiu
-we Shali later discefeﬁlihat they arehidéﬁxieél withvthe X
ordinary tanéent aqdlasculating'circlé&vél£eagy discussed;;

Lemma 3,12. Let C be a general non-osculating tan-
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gent circle of A3 at g. Then C meetg_gaigrp elsewhere in

at _most one point and that point is not a goiﬁt of support.

Proof: By éectioﬁ 3.6, Gasupportg A3 at q. Hence,
by Lemma 3.8, C meeté;A3‘J p at most once outgido q. By
Lemma 3.5, this‘point’is an intgrsection_ifvit is on A3.
If the point 18 p itself,‘Lemmas}B;lo and 3.11 prohibit

multiplicitihﬁ at p.

Lemma 3,13, Let C be a general osculating circle of

Ay at g. Then C-Qoeg;pot_meqt'Ag U _p elsewhere.
ggggg;,seigg a"ggnarallosculating cir¢1e, c
= lim C(q,,qg,qg), where q,, q), and ngcenverge on AB to
‘q. Suppose C meeté A3 vp in another point r £ q. Then
G(qv,qL,qa);intersécts the orthogonal‘c;rcle»to C through q
and r in a}point r, converging to r (cf; Fié. 3.6). Thus
Cla,,q,q8) = G(q,.q,f,.r,,).
Let Ql’ Q, S, T be va?iable p§ints, and let Q; and

Q; converge to the same point Q; Ql:#'Qg. Suppose there is
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a circle separating Q from both S and T. Then
11m €[0(a;,95,5)36(Q;,Q2,T)] = ©

whether the circles C(Ql,Qz,S) and €(Qy,Q,,T) themselves

Clay,q),a))

1

converge or not. In particnlar,

11@ X k‘»QV!‘Ibar‘v)‘ic(QV’QLQTF)] = 0,
and since any apcumulatiodwgircle‘of C(q,,q),r) contains the
point r in~eommon with C = iim,c(qu,qﬁ;ry),

1im C(qy,q%,r) = C..

1. This becomes evidgnﬁ'if we let the point S or the
point T be the point at infinity. This, of course, makes
that point no longer a variable point, but the generality

is sufficient for our needs.
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But C(q,,q},r), if it is sufficiently close to C, does not
separate the end-points of any small neighbourhood of q.
This follows from the fact that AB has order three. Thus in
the limit, C supports A3 at q, contradicting the last sen~

| tence of section 3.6. Hence C does not meet A3 v b outside q.

3.8. Strong Differentiability.

An arc A is said to be strongly differentiable at a

point ﬁ, if the following two condipions are satisfied:
| Condition I': Let R #p, R' > R. If the two distinct

poiﬁis u ahd v converge on A ﬁorp; then the circle C(R',u,v)
always converges.v

Condition II': If the three distinct points u; v,
and w converge on A to p, then the circle C{u,v,w) always
converges.

Suppose that R'= R, u = p, ?hen C(R',u,v) becomes
C(R,v,p), which converges to C(R;T)f Since thg limit cir-

cle G(R',u,v) does not depend on the choice of the sequences
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u,v, and R', wefSeenthat
lim C(R',u v) = G(l I).
Similarily, we find that lim -c(u,v;u)-;-:.__‘c(p); since
cip) = 1im C(v;1) = 1im im c(u,v,p).,
: ¥Y-3p- ; u - p V'?p ;
‘Thus strong diff_er’e'ntiability implies o.rdinary-_diffsrant‘ia-

.bility.

We now prove another-iuportanb,theoreu;]namély

Tﬁeorem‘},}, et p be the | df»pint-qr an _open a c_ _.»'w

53 of order,ghrea.‘_fheﬁ'AB Y g'gs agggnglz’differentié§;e
i - o _ ,

| gggggz Accoréing to LemﬁaVB.L; géru p i§ di£feren- 
tiable at p. :Le§~B:§¢ a,subfarc of ABiSoundéq by p‘and é,  ”
and let p,t,u,v,d,e,f liekon A3!J}p ;nighe 1nd1§at§d §rd§r;,f
We orient all eircles C, where £ ;é:c,. in éuch a ﬁéy»ghat
fc c.

The abowe conditions_indiéate‘thét

(i)' , avcvg(p,t,e) N Cl{t,d,s)

(ef. Fig. 3.7). Consequently,
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(3.3) ¢(t,u,8)c [clp,t,e) n Blt,d,e))

u[ﬁ(p,t,e) n g_(t,d,e)] Utuve.

/// \\\\C(t,d,e)

C(t,u,e)

Let I denote the region in relation (3.3). From (3.3) we

obtain‘
(3.4) lim C(t,u,e) < |Cle;T) n'é'(p,vd,ﬂe)]
t,u-p o
[E(e;t)tﬂhg(p,d,eﬂ V C(e;T) V C(p,d,e).

By II, we shall mean the limit of I as t = p. Let C be any

accumulation circle of C(t,u,e). As a point r runs con-

tinuously on B from d to p, C(p,r,e) runs continuously

through the region II from C(p,d,e) to O(e;T). Conversely,
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every circle through II and the points p and e meets B,

HencAe if C passés through 1I v C(p,d,e), it interéects B at
some point r, where r=d if C = C.(p,d,af). vBuﬁ then /C(t,u,e).‘v
when‘ it is close_ to C, intefsect‘s B again near r, cont‘rary
tvo Theorem 3.2. v'lr‘hus C = G"(e};t).v | |
Now ‘lét P Se any point '# P, arid iét C' be any ac~
cumulatitm. circlé of ‘.G(VP',_t_*f ,u). *As in ’t_l'ze;prod‘f‘ of’Lenﬁia 3.’13," .
lim ‘”{ [C(P,t,,u) ;d‘(n,g;e')].‘ = @,
that is, |
{E:';é(’é;tﬂ? 0.

Thus, by Theorem 2.3,

C'= C(P;T).
- We now prove simulténeously that C(p,u,v) > C{(p),

and assumi-_ng this, that C{(t,u,v) = C(p). Proceeding as we

did previously, we note
(11) - | ve C(u;T) N Glp,u,e) |

(1i") v c Cip,t,u) N C(t,u,e).
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Reiations (ii) and (ii') yield
(3.5)  clpuv)c [l cip,u,e)]
[Q_(u;t) N E(p,'u,e)] VU puUu,
and
| "(3.5') Clt,u,v) [ﬁ‘(p‘.t,u)ﬂ g_(t,_u;e)_., |
U[g(p,t,u) n ﬁ(t,u,e)] Ut Vu
respactively.' Let III denote either‘the region in relation
{(3.5), or that in (3.5'). Relations (3.5) and (3.5') yield
(3.6)  1lim C.(.p,u,v)Ac': [5(})) (\_g(e;t)]
| | U‘[Q_(p')n 5(9;,13;} U C(p) V C(e;T)
-and
(3.6") lim »c.:(t,u,v)‘c [E(p)vn _C_(égt:)] |
| | u[_c_(p)‘n"c':(e;‘cﬂ U clp) U Cle;T)
réépectively. By IV we shall mean the limit of III as u-»p
(as tyu,~>pl. Lét C be any accumulaiiéﬁ circle of C{p,u,v)
(of C(t,u,v)). S8ince C is the limit of a sequence of tan-

- gent circles of AB at p, we see that C &€ T. As a point r
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runs continuouslyuon B from & to p, C(;;f) runs continuous-
ly through the région iv ffom C(e}t) to C(p). G§nversely,
every tangent circle.tbrongh_IV‘meets B. Henca if C passes _:
through Ivu C(eft), it iht@raagts B e at sqmg‘ppint r,
where r % e if C = c(e;;),. But‘tﬁen C(p,u,v) (C(t,u,v)), |
when it is.closeuto,C; igﬁeraacts B again.nearvr; gontrary‘
to Theorem 3.2. Thus C =G(p§; |

Coro;;arrjl. Let two distinct points u and v con-

verge on As W p to p, and let R'—» R, R#£ p. Let C; (C,)

be a_ general tangént Circle~b£ A U pat u through R'

(through v]. Let Gf be a general osculating circle of A,

at u, Then

(3.7)  lim G = C(RiT)
(3.8) 1im c2,= 1im qéyﬁ'cggz.

Proof: We may assﬁme that aach_bfitha above seqnenQ
ces of cireles possesses an"éccumulation circles C, can be

replaced by a circle C(R',ul,ﬁ2)>¢16se to,Ci such that up
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and u, are distinct and converge with u to p. Thus by The-
orem 3.3,

1im C; = 1im C(R',uy,uy) = G(R;T).

Similarily, C, and Cé gan be replaced by circles
C(v,u;,u,) and C(“l’“z’u3) close to C; and C, respectivély,.
sugh that uy, u,, and us aré distinct and converge‘with u
to p. Hence, by Théarem.B.B,

lim €y = 1im C(uy,up,us)

3.9, Differentiability Properties of Interior Points of AB.

‘Theegemizzg. Lst u be a point of an open arc A3 of

order three. Then

(3.9) The two one-sided tangent circles of u through a

fixed point R # u coincide, This implies that the points

of A, all satisfy Condition I of section 2.2.

3

(3.10) The set of general tangent circles of u coincides

with the pencil of tangént circles of u. The set of general 35?
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cil of all the tagggntf éircles of 3, ,bounggd by the two

non-dwgpnerate ong-sgdgg oaculgting circlag of Ay at u.

In particular, thoro is one and cnly one general tangent
circle of u through '},a.ch po,im: R‘#‘ U v('l“_hi,s inplie'a"that
thg poinps'of A3 all:satiafy_condipion1l'_Of‘SQctidp 3.8.
Proof of (2.2‘}: Ve f_irst ‘co:r;xéider‘ ghe'case R e'AB.
Let B = Bg_ vuv 32 be a sub-arc of A3} bounded by R = e and

f. Let Ci: lim C(ti,u,e), tis B (cf. Fig. 3. 8) be dis-
ti-wu ) :

Figz z 0‘8_

tinct one-sided tangent circles of u through e (cf. Lemma

3.4). By section 3.6 and Lemma 3.5, rC'i aupporta A; at u,
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intersects A3 .at e, and has no other point in common with
A3. Hence we may assume that Bl v Bz'cgln Cr. Let C bo’
any circle through u and e ﬁhich passes through the region
gy n 52) v (51 n' Cy). Thus C supports‘_B at u. ’Let T be
the pencil of the sécond kind of ﬁhe circles which touch C
at u. By Theorem‘z;&, applied‘to By

C1lim C(t,;7) = u t; € By
ti->u 1 i 1

Conversely, everyfsufficientlyfsmall circle of T which meets
‘ Bl,meets th _a’nd'dées not separate Q‘and f. Hence this cir-
- cle méets va_o‘nA one handv three times, and on the other hand,
‘wit.’h an even‘: mult;l_.pnlicii;y, ife,, it meets B c. A3 at least
four timeé; c.on'trary;tb Theérem_'B..zf Thus the two one-si-
ded tangent;, _cii‘cles coincide in the cifclé, C(e;'C).» Let‘;»
C'}(R;'C) and "C"(R;'C) be 'the twoz one-gided tangent circles of
A3 at u through a point R & Ay, Since

B C'(R;t);C(e;r)] = 0,
and

afem ;0500050 = o,
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 (R;T) ;G"(_R;;_E;)] = 0,
and since thesénatﬁd;eix"clea have the peint R # u in common,

. they_x_:tpin_g‘idé.' This completes the' proof of relation (3.9).

Proof gi’ 53.10[. Let Cy = 1lim C(ti,‘l’), tie By, be
_ 'bi")u

at u. Since C(ti ‘L‘)

‘the two one-sided osculating circles of A3

supports A, at u, _‘intersec._ts &3 at tyy and does not mest Ay
elsewhers, C; intersects A3”a‘c u. Thus.'ci #F u,
We may aamme that Bl u YBZ lies in‘g(e;‘t), By -

| Theorem 3.2, Cl, considered as 1a,v general osculating circle . .« -

of B at u,"has no point in common with A3 except u. Thus -
Clc g('e;"C) UV u, and we my'assui:a that-c(e;t} c 51 VR HE
thus Bl wd El N g_(e‘;'t). : Svin_ce- °1 intersects A37at‘ u,

Bzc G, (ef, Fig. 3. 9) Since C(f';'t)' _suppcrts’ A3 at..>‘u,,y

Bl v ByC C(f;t) Hence 02- lim C(tg;t), tze 82, lies
to>u R v , »

in the closure of 5(1‘ 'C) Nnge,. Since-”gfz{does not meet Ay

butside u, it either coincides with Cj, vor iv lﬁj in

f .f(g_z_\,}%*mf;t)) U u. The eircles of the family T fall into
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Fig., 3.9

oqé of two classes: (i) Those tangent circles through a
point R © 61 U C, (together with ﬁhe point-circle u) which
support AB at u, and qre therefore non~oscu1atiné general
tangent circles of u; (ii) Thoae tangent circles through a
point R (glnwz, R # u, which int.eraect A at u, and are
therefore general osculating circles.

Conversely, every non-osculating general tangent
c¢ircle (every general oscﬁlating circle) of u is an ordi-

nary tangent circle of u lying in El ViU (1n C; » '52)
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tfcl v Cz). We prove this statement as follows:
First, let C be any non-osculating general tangent
circle of u, and suppose that C & T. We know that C sup-

ports A3 at u. Hence ﬁe may assume that a sufficiently

sMAll neighbourhood M of u on A3 lies in ¢, and even in

T(£;T) 0 Cle;T) N C (ef. Pig. 3.10). Let 7 be the pencil

T‘ (e;T)

Fig, 3,10

of the second kind of the circles which touch C at u. Since
1im C{t.;?) = u t; € B
ty»u  * ’ 1T

every amall circle of T in C meets both By and Bz and does

not saparate the end-pointsvof M. Hence such a circle meets
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M at least three times‘and with an even multiplicity, i.e.,
it meets M at least four times. This again contradicts
}Theorem 3.2. Thus every non-osSculating general tangent cir-

cle of u is an ordinary tangent circle of u. By (i), such

a circle lies in El Vegs v
Next, let C be a general osculating circle of u,
Let ¢ = 1im C', where C' = C(ul,v',u )y U,V € By,
ul,vy s upu : 1r72 1
up; € BZ, Obviously, C cannot be the point-circle u, since

C intersects A; at u. Let Re C, R # u, and suppose that

C' intersects the orthogonal éircle of C through u and R at

R'. Thus C'= C(u;,v,,R') and

C = 1lim C{ v, ,R') = C(R;T).
ul,vl-au ul' 1 . ’
R'>=>R

From (ii), R < (_Ql N 52) U Cy V C,. Thus every general os-
culating circle is a (non-degenerate) tangent circle of u

lying in the closure of g1/1 82.

Corollary l. If an interior point of an arc of order

three is differentiable, it is strongly differentiable.
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Proof: By Theorem 3.4, Condition I' is satisfied
for all interior points of A3r
If the point u € Ay is differentiable, the two one-

sided osculating circle.coincide. Thus Theorem 3.4 implies

that Condition II' also, holde for the point u.

3.10, More Properties of Arcs of Order Three.

In this section we collect additional material on

arcs of order threg,;needeé-for‘the proof’of'thevfinal the-
orem in this chaﬁtar.; Letsp be an endepointfof‘AB.r The

arc B and the points t,u;v,e,f, are the same as in section 3.8. -
3.10.1, We first extend‘£0rmniaa (3.5)‘and (3;5')Jto cer-

tain limit éases in uﬁigh soﬁe ofgthe péinta ihvol%ed co-

incide. The circle.d(t,ufv) separates the regions

(3.11) C(pyt,v) O Git,v,0)
and
(3.12) C{p,t,v) N C(t,v,e)

(cf. relation (3.5')).
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Suppose that the distinct points t,,v,,e lie on
B U e In the indicated order. Let C, be the general tan-
gent circle of B at t, through v,. Then C, can be obtained
- as the limit of circles C(t,u,v), if the triplets t,u,v
converge to to,to;vo.< Since C{t,u,v) and the regions of
(3;5‘) depend continuously on t,u, and v, (3.5') implies
that C, lies in the closure of the region
R= [_C_(p,to,vo) N E(to,vo,e)] |
| v [E(p,to.,vo) n Q_(to,vo,e)] .
As C méétsrC(p,tQ,va) and C(tqy,vy,e) only at t, and v, -
this implies that C, YC R Ve, v v;.’ Replgcing t, .again by
t, and vy by v, we thus h#ve: tﬁe relation (3.5') remains
valid fof u=tif ¢c(t,t,v) 18 interpreted to mean the tan-
gent circle of B at t through v.
Similartly, (3.5) and (3.5') remain valid for u=v,
with the corresponding interpretation of C(t,v,v). Finally,

these formulas remain valid for v=e if C(t,e,e) and C(p,e,e)
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stand for the tangent circleé of»AB at e through t and p
respectively (,cf. §‘.3.9).

Let v, € B, ané let C, denote any general oscula-
ting circle of B at vy. Thus C; will be the limit of
C{t,u,v) if t,u,v converge to vy ine auitable fashion. By
section 3.9, thé circlos:C(p;t,vj and C(t,v,e) aré also con-
vergent to the tangent citclés C, and C3 of B at v; through
p and e reapeébive‘ly. “ Furtﬁsrmore, pcCyand e c T, be-
cause of‘our‘orientationconvention. Thi# 1mp11es

Cael3uvy

and
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From (3.5'), C; lies in the closure of
(€2 N T3) V (Cyn C3)
(ef. Fig. 3.11). Since g_2 N T, is empty, and Cy # C,,Cy,
this implies
(3.13) = (Cangl v,
~ 8ince each C(t,u,v) separates the regions (3.11) and (3.12),
Cy will separate Cp N1 C3 = Qz and C, a C3 = C;. Replacing
vy by v, we obt&in: relation (3;5') remains valid, and
G(it‘,u,v) separates the regions (3.11) and (3.12) ‘for t=u=v,
if C(v,v,v) ié interpreted to mean any general oscqlating .
circle of B at v, provided C(p,v,v) and C(v,v,e) stand for
the tangent circles of B at v through é and e respectively.
3,10.2. Considering again relation (3.5') we observe that
one of the regions (3.11) and (3.12) Qill lie in C(t,u,v),
the other one in C(t,u,v). Since
'y c"C'(p,t,v) n C(t,v,e) n Clt,u,v),

this relation_implies
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(ﬁ.lu) Clp,t,v) N C(t,v,e) < C(t,u,v),
and therefore
(3.15) | c(p,t,v) N Cc(t,v,e) = C(t,u,v).

Specializing by letting t = p, we obtain

(3.14') C(v;T) N C(p,v,e) = Clp,u,v),
and
(3.15') clv;T) N clp,v,e) < Clp,u,v).

Applying the case v=e of (3.14') and (3.15'), and repla-

cing u by v afterwards, we obtain,

(3.16) Cle;T) nE(p,e,e‘)‘CE(p,v,e),
and
(3.17) C(e;T) n Cip,e,e) < Clp,v,e).

Now C(e;T) < T(v;T), since e < C(v;T). Therefore, applying
relations (3.16) and (3.14'), we have
(3.13) ~ C(e;T) N C(p,e,e) © Clv;T) N [5(9;‘6) n E(p,e,e)]

| < C(v;T) n Tlp,v,e)

< C(p,u,v).
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Similardly, C(t;T) ¢ C(v;T) when t is close to p. Thereforé,
in ﬁhe limif,, Cip) = C(v;T). Also, g(p)C‘ ,Q(}e;'c). ' Hence,
applying relations (3.17) and (3.15'), we hafe
(3-19,) cip) N Q(p,.e.e) c ¢(v;T) N Cle;T) A Cip,e,e)

< Clv;T)N Clp,v,e)

C_C_(p,u,.v). ‘
3.10.3. Assume for the momént. that p,t,u,v, are mutually
distinct. The region
(3.20) im0 g(;;,u,v)*‘
ig Eounded by two arcs of the circles C(p,t,u) and C(p,u,v)‘

with the common end-points p and u. Since v < C(p,t,u) and
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t < C(p,u,v) (cf. Fig. 3.12), these arcs db not contain v
or t.. Hence they meet C(t,u,v) only at u, and the region
{3.20) is contained in ope af the two regions bounded by
C(;,u,v). Since thé,boundary'point, p of the region (3.20)
lies in C(t,u,v), this implieg
(3.21) clp,t,u) f’ Q_(P,u‘,v) < C{t,u,v).
The arguménts'of section 3.10.1 now sbow that relation
(3.21) remains valid if C(t,u,v) isvany general tangent
circle, provided C(p,ﬁ,u) then stands for the tangént circle
at u through p.

By relations (3.15), (3.21), and (3.15'),

Cl{t,u,v)2 Q(p,t,v)ng(t,v,a)
58(p,t,v) N [C(p,t,v)n C(p,v,6)]
=Clp,t,v) N Clp;v,e) |
ofciv; T)nclp,v,e)] NCip,v,e)
’=Q(v;“€) N Cip,v,e).

In particular, the above yields -

(3.22) clt,u,v)>C{v; T)ncip,v,v).

3,10.4. Let © denote the pencil of the oft.hogonal circles of T.
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O§ account of Theorem 3.3, B can be chosen so small that
no circle of © meets Bue more than once (otherwise this
circle would épproach a circle of T). By Théorenm 2.4,-
(3.23) C({p;8) = lim C(t;e):.b.

| , t —sp
Thus, making B small enough, we may alsd assume that
C{f;68) does not meet B.

Since C(v; T) meets the circle ﬁoz C(t,u,v)) the
pencil U contains & circle lying in g(v‘; T)vucC(v; T) and
touching Co from within, say at R. Thus
(3.24) C(rR; T)NC =R C(R; T)cConClv; T),

The circle C(R;®) can be characteriied as the unique

circle of © normal to C, (cf. Fig 3.13). We wish to prove

the following

Lemma 3,14, C(R;8) intersects B.
Proof: O#r-pﬁoof‘derives from relation (3.23) and
the fact that
(3.25) Rc Clv;8)

Proof of (3.25): If the point t moves on Bup




: "f‘r'om p.to v}, C(p,t.:,.v)} }movesn from TC'(v;v'[), to C(‘p,iv,v) and

: _pésseai‘ thf;ough the‘closuxu'e of g(ﬁ tlh C(v;e). Hence
C{p,t,v) does not pass i:.hxfogghg_{-v; tki‘nﬁ(v,_;e).’ Siﬁce
_ Q‘(v;_t)' containg ;his’region,.' sov"doecs g(p,t,v») and .Q(P,v,vv).'
Hence, bjr relation {3.22), | o o

Ol6,u,9)38(r; TIAL(Rv,Y)
28(v;T) Nfglv; TINTv;e))
=¢(v; T)nT(v;e).
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Thus if R# v, R does not lfe in the ,abo%re region. However,
R < C(v;T) in this case, an& 80
R<glv;T)n 2(9;6):

which proves relatibn (3.25). If R=v, B can ‘be made
small enough to ensure thmj:. C{R;6) = C{v;6) intersects A3 at v.

1f t=.v, Co is a gene.ral ésculéting circle of B at
: ﬁhis~point. Approximatiﬂg'cg by cireles through three dis-
tinet points, and &aking[ uge. of the above, we observe that
re_létiop (3.25) iemaina valid unle'z;s t=u=zv=R. Bﬁt in that
éase,kd(v;t) touéhéé Co at v and therefore is a tangent cir- e
vcle of B at v, since Co‘is’a tangent éircle at'%. This is
excludéd by Theorem 3.2.
3.10.2. Any point Q induées an ori_enﬁation of all 1;he cir-

cles C with Q ¢ C, if C is defined through Q < C.

Let Q € C(p), R ¥ C(p), and let C (C) denote the
orientation induced by Q (R). Suppose that C(p) = 'E(p).

Thus Q < 'E(p), and R < C(p)., We vary G continuously, star-
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ting-f;om C(p); As long.ast,does hﬁt pﬁss’through Q or R,
c and [ will depend contiﬁuoﬁsly on C Thﬁs we‘ shall still
havé E. T.

By Theorem 3.3}‘,; a circle C uﬁich_ meets A; three
t‘in,zers inpuBUe liés ,cllésé‘v‘to Ci{p) if B i}s-»suffic‘iently .
'émall. Heriéev 5 =T for e#é?‘yj .8'L,Elck'x C. | ’

R We sp,ecial:_lze,‘ Alett‘in'g | Q:.-. fe ‘AB' S;‘Lrlxc_e( f é B Qe,'
the formulas“gf secticn ’3'.'.)3.;0 hold t.i'ue. "vThu’s.the‘y femin
vaii-d wi.tﬁ respe‘-ct:Hii‘:o»‘ii‘;}tié""éfi.)elnt:at:i.on -in‘_duéedn’ by R, Hprovi- .
ded B i_s s‘xixall‘ enoughg.f- Since }f.’c, ¢ (p) ia 'e_quvivalem; to
‘A'B Ca(p) this yielda t.h§ folloning

1.12. mggg g gg int R ¢G(g) induces an

‘orientat;gn.'witg_&a < C'(’Q). 'l‘ggn t.ho form g_.'g s of gection

3.10 remain valid for t.h;g ariant.at.icn 11‘ B is small enog_gl_x-
If AB < ¢ p) for“t\h,e ariantation 1nduced, by R, t‘hen
. the above argument As‘h"éws: 'vreﬁlace each C bnd 'c' 1n”these

fbrniul.as; b-y ‘C'“_and g re,;apéctiyely. _Theh’ the r.esulting-for-




88

mulas hold true if B is small enough.

3.11, Conformally Elementary Points.

- A point p of an arc A is said to be a conformally

elementary point if thére exists a neighbourhood of pon A
whichiis decomposed byié\inté twé one-sided neighbourhoods
}of order-three.‘ By‘Theerem 3.3 their closures afe strongly"
différentiabie at p. The following thgorem sharpens Theorem

3.1 in the case of-conformally elementafy points.

Theorem 3.5. Let p be a _differentiable conformally

elementary point of an arc A, and let (a,,87,8,31) be the

characteristic of p. Then p has Cyclic‘order aé + 8; 4 as.

This theorem remains valid if a point q # p is
cbuntéd twice (tﬁree times) on any genefal tangent {oscu-~
lating) éircle of q, and if p itsélf is counted a, (a°-+ ay;
a, + aj +-a2) times on any circle through‘p (on any tangent
circle ot p; on C(p)).

We may assume that A itself is decomposed by p into




89
ﬁwo‘open arcs, A and A3’ of Qrder §hree. Hehce thg order
af‘A, and thereforé that‘pf.p,’ia n§t gr§atef thén six.
3:11.1. Leﬁ,M-bé‘a neighbourhoad oflpibn A. For.aﬁ§ circle
‘n', let M(D) :ﬁm,_muam; the multiplicity witm;mch D

‘ meets‘M.

Lemma 3.16,‘Su2293é'bhe ¢ircle € does not_pass

through the end-points of K. ‘ThAQ

(3.26) | /4(9):;,4‘1(0) (mod 2)

for every D sufficienglx close to 0.

~ Proof: Suppose G megts.ufat the;poigts t with the
multiplicities 61t)'and houhere eiaé,f_Thu; |
M) = Ze(t).

Construct disjoint neighbéurﬁoods M, in M about the
peints t. The end-points of M, lie on the same side or on
opposite sides of C dependiﬁg oﬁ whether @’(t) is even or
odd.' If D is sufficiently close tb C, then D will not pass

through ihe end-points ofkﬁt, and these end-pbints will lie
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bn the same side of D if and only if they lie on the same
s;defof C. On the other hand, D will meet Mt with an even
or odd multiplicity according as its end-points lie §n the
same side or on oppqsite sides of D. Thus D will meet Mt
 with a ‘multiplicipy e(t)so’(t) (mod 2) if D lies sufficient-.-jr
:.iy dloae to C.

.,if!each Mt is‘omitted from the closu?e of M, we ob-
tain a closed set’which has no points in common with C.
Hencgrif D is suffiéiently cibae‘to'C this set does not meet
D, and we have | |

/u((D) = Z;e(r.) E th(ﬁ) #/4(6') /}(mod 2).

2.11.2'. We continue the discussion of section 3.11.l.

Lemma 3.17. Let C #C(p). Then

(3.27) " M(D) S M(C

for every circle D sufficiently close to C, unless a =a) =1, |

cal, and p D,

Proof: Let t FRL M; t % p. Suppose that there is
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a sequence of circles Dy co,nvergi:‘n\gv to C, and}a ‘éeqﬁence of
neighbourhoods My of-;.'conqurgipg. “t,.o t{auc.h't}hat each' DA
ﬁeets M) at least @) times (9} Syj);' Then each D can be
replaced by another cicle whiéh'meebys‘. M,\‘ in not les:. than
o‘;\ diétinct pointa, and -auéﬁ that:tha."-se‘qﬁencé of the new ‘
circles ’aj.so converé,@ to €. 'Il’h‘us’ C} wil‘].‘ meet M at least %
times at t; i.e., O; so“(t»).‘.‘;‘Hgﬁ.c‘e- we} have jt‘he»r,e ,e:xists a

- neighbourhood of t on M"w‘hicvhi. 1&379@::. not more ti:a,xi ‘o'(t;v) timés g
| by every D sufficientiy close to‘é. h |

| Let pe C, C ¢;T, Then C mgét’s"}}d at p wit;h,,g.mul-
tiplicity = a, (mod 2). “Onv the other hand, by Thgoffem 3.3,

, there exists a neighbqurhobd‘ of "pl,vihidh is‘met nctiﬁ. more A

~ than twice by any circle sufficivantlyvcloaey to C. But peC;

'henc‘e‘ 0<M(C) < 2, and therefore M(C) = a,. Thus, by Lem-

mé 3.16, any circle D which is sufficiently close to C meets

a neighbourhood of p'with a multiplicity an (mod 2).

Hence this multiplicity is S a

o» and we have relation (3.27)
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in this case.

Now let C € l_; C #C(p), and let Mo= Noupu NY
be a sufficiently small néighbourhood of p. Let D be suf-
ficiently close to C. If pe D, D¢ L, then D will meet N,
and‘Né not more than once each. Hence D meets M, with a
- multiplicity € a, + 2 and gla; + a; (mod 2). Thus this
'multiplicity is € a,+ a;, and again we have relation (3.27).

Suppose now phat P & D.‘ Then D_\will meet N_ and N"’f
ﬁot more than twice each., Hence D meets Mo with a multi-

“plicity S 4 and = a, + ai {mod 2). This again yields re-

lation (3.27) unless ap = 'al'.-.: 1.

3.11.3. Lemma 3.18. Let A = A3 Up U AL, _There exists a

neighbourhood M3 = NB Vpu N:"’"LEB < AB""Eé < Aé)___quch that

every tangent eircle of p which meet\;g___N_B v N§ meets A3 v Aé

exactly a, times. In particular, no tangent circle of p

meets M3 more than ap times outsidek

Proof: A.é¢ircle of T meets A3 or A} not more than
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once each. Thus’ it meets AB U-Ai not morg than twice. By
Lemma 3.16, a circie will‘meetf Aywith a multiplicity = a,
. v+ ?l + az.(mod 2) if it is ’a,ufficiantly" ciose to C(p)‘.
Hence C{t;L) will me:et A3 IJ Aé wit’,vh a inultiplicitj = a, ikf

t is c:_Los'e enough to p. Such a eircle ﬂwil'l therefore meet

A3 U A} exactly a, times.

3.10.4. Lemma 3.19. There exists a neighbourhood M, € M,

which is met at most a2, "",31'* va'é times by ewfery. circlev‘

through p.

Proof: On account of Lemma 3.13; it suffices to
consider non-tangent cirqles thrpugh:p; Hence it suffices
5 of p such

‘that any circle D through p that meets }{é twice will meet

to construct a one-sided’ neighbourhood N} < N

M3 at most a, -+ al - a2 t.irges.

By Lemma 3,16, Né can bé‘choseh so small that any

such eircle D = C{u{,u},p) (ui_-,u:,3 € N\‘!a) is 80 close to C(p)

that it meets M, with a multiplicity s"‘ao +a; +a, (mod 2).
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Since D meets N3 and Né not more than twice each, it will

meet M3 at most a, + 4 times. This ylelds our statement

if al+ a2>2.

Let‘al‘+ a

) = 2, 1.e., a; = a, = 1. Let e denote

the end-point of N3, and suppose that the points u,v,e lie

on NB U e in the indicated order. Making Né still smaller,

we may assume that it does not meet C(p,e,e) (cf.§3.10)-.

Obviously Né has no points in common with C(p) and C(e;T).

We have
Ny Clp) N cle;T) N Tip,e,e)

f{ef. Fig. 3.14). Since al = a5 = 1, it’follo'ws that
V(p;ese)i
AU |
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Ny < .0.(;5) N cip,e,e),
or else

N < Tle;T) N Tp,ee).

Hence relations (3.19) and (3.18) implylth&tvﬂé lies aither,l".1 

in C(p,u,v) or in E(p,u;v);’iThus‘Né doeainbt meet C(p,u,v).

Any circle D thréugh'paq& two paintéﬂpfjﬂé meets
M3 with a'multiplicity_zs‘ao + 141 (mod 2};‘1.9., it meets
1&3 v N} an even ngmbpr o# tim§§. Ip»ﬁﬁcta'N5 exact1y twice.
From the abové, D Cthgﬁzﬁiét,ﬁg‘ﬁwicg; VHencé b and N, are
disjéiﬁt ahd ﬁ’maeggﬁéiwith theviotal mﬁltip};ciﬁf ag + 2
= a_+ al"+’a2. A. |
3.11.5, w§ éan now preva:fﬁeofem 3.5 if ao-}'§1-+ ay > Af I£~
suffices to show thaﬁth?re ig a one-sided neighhqurhood Ni
< N4 of p such that no Circle-D throﬁgh thgeé’points of
Ni U p meets MB more ﬁhén a°-+:a11+‘az timgs; On account

of Lemma 3.19, we need only consider cifcles D which do not

pass through P.
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By Theorem 3.3 and Lemma 3.16, Ni can be chosen

such that any circle D meets Mj with a multiplicity = a

a; + 8, (mod 2). Since p & D, and since D meets Ny and
H; at most three times each, it iill meet MB at most six

times. This yields our assertion.

3.11.6. The case a t a

a8 = Lia = 1, Let~mlc.M be
' 0 S 2

1

so small that the material in sections 3.10.4 and 3.10.5

i - 3 ' = " ;
gan be applied to Ql Ml}j NZ and Nl Mlt1 Né. Thus some

circle of © does not meet N

| = " -
1 9 Nl" Since a, 1, this cir

cle will intersect Ml at p. Hence né circle;bf © can meet
both N, and NI. Thus if ﬁhe circle C, meets N, in three
po;nts, the circle C{(R;0) intersﬁcta Ny (ef. Lem&a 3.14).
However, C(R;8) does not meet’Ni aﬁd hence Le@ma 3.14 im-
plies that Co does not meet N] three times. Taking section.
3.10.5 into acéounp, we éan staté}'no circle meéts Ml more

than five times.

By Theorem 3.3 and Lemma 3.16, a neighbourhood
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MQc: Ml,of p exists such that every circle through three

=M ' t.:_.-__ 1 ‘ .
points of N = M A N, or of NI Hbrw Nl mest s M, with an
even multiplidity i.e. four times. By Lemma 3.19, any cir-
cle through more than four pointsﬂof'M° does not go through

P, and hence meets either No or Né threé times. Hence, by

the above result, M, has the order four.

3‘ Qlcho The case (2.1,|l"'2'-.10 Let e < Nz, e!' < Né- Let Me

denote the heighbourhaod of p with the end-points e and e'{ ~”fff

e

(b(e';T)) meets ﬁ

2 exactly three times at p, exactly once

at e (e'), and nowhere else, Thus, by Theorem 3.3 and Lem-

mas 3,16 and 3.17, there is a one-sided neighbourhood Ny

such that every circleAthrough e (é‘) and two points of Nl _

l. It may berthat a short proof for this caée; of the
nature of the probf for thé case a, + a‘l + a, = ?::xists. |
This proof, however, hasivalua‘in itself, for it is an ex-
ampie of a topologicai proof,rather tban a géometrical one.“

We shall see more prooraan’this ;ype.iﬁ Chapter 8.

No= M_ NN, N! = M, Nl. By Lemas 3.18 and 3.19, Cle;T) ,ff?

oy
e
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meets M.2 exactly three timas outside e (e'). - Since these
ﬁhree points converge to p with Nl, Nl may be chosen such
that all these circlea meet Me exactly three times eéch.

Now let u € Ky, u' € N} be arbit?ary, and let T de-

note the pencil of circles through u and u' (éf. Fig. 3.15).

By iemma 3.19, C(p{ﬂ) meets M, only fouf times. Thus C(p;7?)
meeté‘Me exactly twicé at é, once each at u.énd u', and ho-
where eise. If t lies on Nl and ié suffiéiently:close to
p, then C(t;T) continues to meet He exacily four timee (Lem-
mas 3.16 and 3.17). Sincg cip;™) & T, the fourth point t!

lies on Né (Lemma 3,18 and Theorem 3.3). From the above,




:‘59‘,;_
C(t:;N) passes néither through e nbr through e'. Tﬁus
¢ = C(t;M) has the following properties:

(1) p,e’,e' lie on &he samev side oi‘ c;

(1i) C meets Ki~exactiy twice.

Thé,dircles C(ﬁ;ﬂj;aﬁd c(;!;ﬂ) &gcbﬁpﬁke?ﬁ'into two
open intervals., Le; ﬁ}~deh6té that inﬁervéliwhich‘containa.
the above cirél§s G(t;T). -We_&riéntTTi‘in E§e d?rection from ; ?
c(p-;ﬂj to c(s'.;'m. The circle C saéisfiefs' (1) va’x’zvd (11) 1f

it lies in'ﬂ‘ sufficienbly close to G(p,n)., ?ﬁt;the ciréla , €
~D equal to C(e"ﬂ) if (i) and (ii) hold true f@r every cir-
_cle of ”1’ othernise; let D denote ﬁhe grsateat lawar bound
of the set cf all the eirclea of?“ for uﬁich ag least one

éf these conditions is not‘g#;iaﬁ;ed.  ThuS D1#?9(P;”)-  Let’iv
ﬂ} denéte the éub~inﬁervai;of;ﬁa Sonndgd_bf‘C(p{ﬁ) and D.

Every circle G € TT, satisfies (i)’fand (11). Thus ¢
meets Ng (Né)lin exactly one méré}poini t‘(tf), and ¢t lies

in Nl. The point t (t?') depends bontinuausly qnfcg For
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t £u (' # u'), the correspondence C -t (C -9-1:.') is 1-1.
Hence it is strictly monotonic, even for t = u (t'= u')
(cf. Theorem 3.4). Thus the limits r = lim t and r'
. C—-=>D '

= 1lim t' exist®. The point r (r') lies on the intersec-
€D ~ |

tion of D with the closure of N; (N;).» It is different

from p.

If .-.-‘ e', the points t" cover thé whole of N;.

In particular., ]7‘2 contains all the circies c(t';?), in-
“cludi»ng the case ¢! =. u'. Thus every circle through u and
u' that meets Nl at least twice, meets N; and Ny - and even
, Ne - exactly twice each.

Let r' # e'. Thus r'e N!. From the aﬁove, e D
and e' & D. Henc; D lies in 17, and still satisfies con;
dition (i). Hence, (i) will remain valid for all éircles
of TTl sufficiently close ﬁo D. In particular, these circles

will meet Ng exactly twice. Thus r ¢ Ny, by the definition

of D, and r will be the end-point of Nj different from P
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Thus the points t will cover the whole of Nl. Rebeating
the argument of the preceedihg_péragraph, we~obtain: every

circle through u and u' that meets N, at least twice, meets

‘1
N, and N} éxactlyvtwice each.

The last two'paragraphs,iﬁply:}any cirﬁle:ﬁhét meets
Hl and-N;_at least twice aééh, meeta.Né én@ N;‘eﬁactly twice
each. Hence such a circlevmse’tsﬂa eXactly'fQur times out-
side p. COmbining thisirésnlt'with.tgmma 3.i9, wgégind

that the neighbourhood Hl‘u p LlK;’has the‘orﬂer four.

3.11.8, The case a -+ alf+>a:»§53Q'SQppoa¢ tpatvthe poigts
p,t,u,v lie on Nz V p in the ih&iéated or@ar.‘ Tﬁe pbints»
t,u,v need not Se mutuallyndistinct; ByaLemma.3.19; the
circles.C(p,t,u) and C(p;u;v) doinbt méét Ni. Tb;j'inter-
sect M3 at each of these points; Hence"‘

(3.28) - vN§ c g(p‘,t,u)_ﬂ‘ g(p,n‘.v)

(ef. Fig; 3.16). Hence relation (3.21) implies that

N§ c c(t,u,v). Ip particular,;C(t,u.v),dOea not meet Ni.
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Fig. 3.16

Symmeﬁrically, any circle through three points of‘Né does
not meet N,.

Let ¢ € Ny, e’ € N). Let M_ denote the neighbourhood
of p bquﬁded by e and e'. Let M; be a neighbourhood of p
ﬁhose end-po;nts lie in M.. By Lemma 3,18, C(e';T) meets Ml
exactly twice at p, and nowhgre else. Tﬁus; by Theorem 3.3
and Lemma 3.16, there is a one—sided@néighbourhood,Noc: N,
(N} = M1r1 NZ) of p, suéh that évery circle throﬁgh e' and

two points of N, meets M; with an evénlmultiplicity.

Let t,u, € N,. As we have seen, C(t,u,e) does not
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meep Ni = Ml N Né. Hence
(3.29) e ¢ Clt,u,u')
for every t,ue N, , u' & Ni. F_:iéthermcre, C(t,u;e) meets
Mlvan even number of timeé. - By the above, this circle
‘maets N2 and Né,nﬁt more thén twiée sach. Hence it meets
le exactly twice. By Lemma 3;19 it does not pass through
p. Thus}it meets Ni with aﬁ eveg éultiblicity. Siﬁce
e'e N3, e éN]'_, this multiplicity is less than two. Hence
C{t,u,e') does not meet N{, and ﬁe have
(3.30) | e' & Clt,u,u’)
for every t,u € N'o, u.' = Ni. :
Let u€ N, ix’e Hi vBy Lemmak3.19, C(p,u,}u') meets
M, exactlyvtkree‘times. Tﬁus it separates e and e'. If t |
moves on N betwéen p and u, the éircle C(t,u,u’) depends
continuously on t. By relations £3.29) and (3.30), it ne-

ver passes through e or e'. Thus every such ciréle C{t,u,u')

also separates e and e'. Hence it meets Me an odd number of
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times. The baginning‘of this sub-seétién implies that it
meets.M2 lesé than five.tiées. Hence it meets M, exactly
three times. Thus aﬁy cirplévthrough two points‘of Né and
a point of Ni meeté No u'éiu Ni howhefa else.

: Combiningrthe abgiéreéults with Lemmah3.19, we see
that &o V p U N! has order three. This completes the proof

1

of Theorem 3.5.
3.12. Remark,

Let peA deéompose A‘J into ﬁwo gfgs c_).f“:o-rder" three.
Then

:(i) p‘satisfies ConﬁﬁtiéhiI' if and only if p éétis-
fies‘Cond;tioh 1 andkaO::v;;

‘(ii) A is 5trongl§ différentiéble a; P if and only

if p is differentiable and‘aoa al£=1.’

Proof: (i) Let p Satisfy Condition I'. Then p
satisfies Condition I, andiao’is defined. If a =2, every

non-tangent circle through p supports A at p.‘ Thus there
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are sequences of circleé through two points of A converging
to p, whose limit circles are not tangent circles. Since

this contradicts Condition I', a_ must be 1.

0

Let p‘satisfy Condition 1 ahd suppose‘ao:= 1. Any
circle which converges to a non-tangent circle through
p meets a small neighbourhood M= NvpvN' with an odd
"multiplicity, énd does not meet Nup or N'u p more than
‘once each. Thgs it meéts M exéctly once. Hence any limit
‘circle of a seéuence thréugh ﬁwb‘points of A‘convérging to
p is a tangenﬁrcircle bfvp. .Thﬁs A satisfies Condition
I' at p.

(ii) Suppose A is strongly differentiable at p.
Then A is‘also differentiable at pQ By (i), a0==1. If
a; =2, section 3.3.2 i&plies that tﬁere are circles which
meet an arbitrarily small neighbourhood of p three times,
and which converge to a>non~osculatiﬁg-tangent circle.

Since every circle through three points converging to p

converges to C(p), a; must be 1.,
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Next, suppose A is differentiable at p and ag= al:zl.v"

From (i) A satisfies Condition I'.. Thus we must show that
any circle through thrae points of A converging to p
converges to C(p).

2::1,'section 3.11}8 implies that there is a

If a
small neighbourhqod of p which is'met‘ét mastvthgee times
by any circle. ‘Thus thé.limit_qi;cléﬂcf a séquence}through
three points of A converging to ﬁﬁisqn‘intergeétingtangent

circle, and ié therefore-C(p); o

If a,=2, p has the'charaéteristic (1,1,2;1).

‘where 1=1 or 2. Let .Mz.-': Ngupu Né b‘e»b so ‘small th;t no

circle meets M, more than four times ‘(cf.§3.ll.6).' Let

Mj< M, be so small that if é,e Ni, Cle; T) meets Né',,

‘Now choose M,C M; so smalllthat'C(e,t,t') meets! N} - NI,

W WR W W W AR @ W Mm ER G = @ W A W s WR s G PN e e W e W ® @ - -

v 1. Given two sets of élémehts, X and Y, where Yex,
the set X-Y is made up of all the elements of X except

thosgse that are in the set Y.
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Thus C(e,t,t') does not meet M, outside t and t'.
C{t,t',p) is close to a tangent circle of p, and
meets M) with an even multiplicity. Thus C(t,t',p) meets
Nlu p or NiL)p three times, gnd hence C(t,t',p) converges
to C(p) with t and t'.
‘Let D be any circle through four points t,u,eN,,

~t',u',e N} converging to p. Now u and u'c Cle,t,t').

Since u and u' & C(t,t*,p), at legét one (and hence both)

of the points u and u' lies in the region,
g(e,t,t')h Tlt,t',p)

Thus'- |
C(Ii.t,t’ )< {Q(::;v,t',t' )N a(t,t;'p)]ulé-(e,t,t’ )ngle,t! ,pﬂu'c, vt
as t,t'-»p, any limit‘circle of C(u,t,t') will be a tangent
circle of p.ﬁ

Co=1lim C(u,t,t')

c[_@_(e;t) f‘lﬁ(p)],u [5(e;t_)ﬂ}_0_(p)] V C(e;T)UC(p)
| ::[g(e;l') n'ﬁ(p)]V Cle;TIVC(p).

Since D cannot meet M, more than four times, Co cannot
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intersect A outside p. Hence
Co & [.C.(e; C)ﬂEK'P)]__ U Cle;T),

and therefore Cqy = C(p).




CHAPTER IV

VERTICES OF CLOSED CURVES IN THE CONFORMAL PLANE

L.l. Introduction.

A clogsed curve in the conformal plane is one for

which the two points whdse’parameters are end-points of
the parameter interval, céincide.

One of the reasons for the gubéequent investigation
is to obtain a strictly conformal ﬁroof of the Four Vertex
Theorem.1~fThis goal has nqt yet been reached; the purpose
of this chapter is only ﬁo indicate some of the steps

likely to lead to a proof of this theorem.

4.2, T -vertices.

Let p be a differentiable point of a closed curve

1. For a statement and proof of this theorem, see
Blaschke,."Vorlesungen ﬁber Differential Geometrie™,
Dover 1945, page 31.

109
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‘A, and let p have the characteristic (ao,al,az;i). We

shall assume that p is not a multiple point of A. Let

T be the pencil of tangent circles of A at p. Suppose that
A has finite U-order, i.e, every circle of T meets A

in a finite number of points. We call a point u # p

a T-vertex ‘1f Cluy T) supports A at u., We call p a

T -vertex if every tangent circle of p supports A at p.l

Lol Prg;iminary Material.

The following remérks will be useful in our discussion.
4.3.1. Suppose that a ;ircle C meets A in a finite number
of points, and that C intersects A at u. Then the end-
points e and f of a suitablé neighbourhood M of t on A lie
in opposite regions with respect to the circle C. Hence
the complement M"of M in the arc A~ha§-its end-points e and

f in opposite regions with respect to the circle C. But

C meets A in only a finite number of points, and therefore

W E e G @ GP W ar G s R Gp E3 Gr WS B B WE M W W @ 4 Ve W W B W W =

1. In this case, az=2., (cf.§216)
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every éircle C’intersects A an even number of times.
A 23.2. "'Suppose the t‘ahgent circle C supports Aatt # p.
Then C # p, and there is a neighbourhoo¢d M of t on A whose

closure lies in Cuvt,say. In particular, the end-points of

M will lie on the same side of C. Let C' be a tangent

circle in Cup, and let it be close enough to C that these

end-points will still lie oh the'same side of C' (cf. Fig A.l).f7?f

Since C' separates them from t, C' will intersect M in two
points., On the other hand, a‘tangent pirclg in Cup will
not meet M.

beld.3., If all phe tangent circles support A at p, then

ay=2, and for every circle CEL there is a neighbourhood
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M of p and two one-sided neighbourhoods of C in U such that

each circle of one of them intersects M twice, while each
circle of the other one does ﬁot mee§ M outside p.

L.3.4. If the circle C of U intersects A at t, there is a
neighbourhood M of t on A whose end-points lie on opposite
sides of C, Let C' be a tangent circle close enough to C
that these end-points are separated by C'. Then C' inter-
"sects M in at least one point.

Lboh, GCurves With a Finite Number of T -vertices.

Theorem 4.1l. If the number of T-vertices of A is

finite, it is even.

Proof: Let C_ # p be an arbitrary circle orthogonal
to T. (Thus peCyl. 'If t ¥ p, then C(t;T) intersects
C, at exactly one point P(t) % p. ‘if t:;p, then define
C{p;T) totbe C(p). If C(p):;ﬂ define P(p) to be p; if
C(p);f;h défine P(p) to be the iﬁterséctién # p of C,
with C(p). Then C({t;T ) and P(t) depend continuously on

t over the whole of A.
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If t runs through A, then the point P{(t) changes its

‘direction if and only if t passes throughva'f-Vertéx. This

follqws for t ¥ p from the definition (§ L,2) of T-vertices

and‘ffom sectién h.}.z;“fbr t=p, iﬁ follows from section

b.2’and section 4.3.3. Thus P(t) changes its.eanse only a

- finite number of timeé. The mapping P(t) of A‘on CO being

iperipdical, this numbe?‘must be even.

Theorem 4.2. A hes no T-vertices if and only if

every proper circle of”r meets A gxactlz onee outside p.
Proof': Supposevﬁhat every proper circle of T meets
A exactly once outside p. If CelfsupportSvA at a point
u # p, then there’exist circles §f't close ﬁo C which
intersect A in'ét least two points close to u. Hence
there‘are no'T;verticeg at.points u # p. Sinée C inter-
sectS”A exactly once oﬁtside P, itvmust intersect A at p.
Thus p itseif is not a C-vertex.
On the other hand,'suppose that A has no l-vertices.

If the point t runs through A gg in the proof of Theorem 4.1,



the point P(t) does not change its direction.on Co. Hence
P(t) makes at least one complete circuit of Co; in particular,
P(t) passes through p. This happens only when t=p and
C(p)=p. Thus P(t) makes exactly one cirecuit of C,, and
hence every proper circle of TUis met by A exactly once

outside p.

Corollary 1. If A has no U-vertices, then C(p)=p.

Corollary 2. If every proper circle of T meets A

exactly once outside p, then C{p)= p.

Corellary 3. If a cirecle C ofT (C #p if C(p)=1p)

does not meet A outside p, then A has at least two T-vertices.

Corollary 4. 1f a circle C ofT (C # p if C(p)=B)

supports A at p, then A has at least two T-vertices.

‘Proof: If C does not meet A outside p, then A
has at least two C-vertices. If C intersects A outside
Py it intersects A once more (c¢f.§ 4.3.1), and again A has
at 1eéSt two U-vertices. If C supports A outside p, A has

one, and hence at least two, T-vertices.
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L.4,1. By definition, A has T-order n if no circle meets
A outside p in more than n points, and some circle meets A
n times outside p.

Suppose that A has T-order n, and let C be a circle
of T which meets A in n points # p. If CN(A-p) is
composed of m poihts of support which have neighbourhoods
lying in E, k points of support which have neighbourhoods
lying in C, and r points of intersection, then meker = n.
Consider two circles, C' and C", of T. If C'cCup is
sufficiently close to C, it meets A in exactly 2m¢r points
(cf.§L4.3.2), while if C"C up is sufficiently close to C,
it meets A in exactlyl2k+r poihts. Since A has T-order n,
'we see that

2MEr § N 2 meker
and

2ker$ n = miker,
whence msks$nm,
Thus m= k., Since 2me¢r =2k+r=n, we see in addition that

r=zn{mod 2).




Lobe2. if‘ A bas T-order 2n¢l, then a circ}.e cel, which
Meets A in 2n+l points outside p must intersect A at p
(cf.Qhoby.l and§l+.3.l). Again by section 4.4.1, there is
a ciréle C' of T sufficiently close to é which intersects |
A in exactly 2n+1‘points outside p. Hence the non-oscu-
lating circles of T intersect A at p and tberefore C{pl=p
(ef.§ 2.6). These remarks enable us to extend Theorem 4.2,
Coroligry 2 ﬁo

lcdrol;ary 5, If A hag T-order 2n+l, then C(p)= h,

and the non-osculating circles of T intersect A at p.

b,4.3. Theorem 4.3. Suppose that a tangent circle, C
of A at p meets A in exactly n points # p. Then A has at
least n-1 T-vértices. If, in addition,l the non-osculating
tangent circles support A at p, then A has at least

o 2
n'Cgvertlces.

l. This condition is, of course, automatically sa-
tisfied if C(p) # p. |

2. Sections k4.4.1 and 4.3.1, together with Theorem 4.2
Corollary 5, imply the (coﬁtfd on Page 117 (bdttom))

s,

L
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ggggg:.The points # p of A N C decompose A into n
closed arcs B such that né interior point s p of an arc B
lies on C. Let B  denote that arc B which contains p. It
is sufficient to prove |
(1) Each BI-7£' Bo contains at least one interior
r-vertex;(
and, under our additional assumption,
- (ii) Bo also conta;ns an interiorﬁf-vertex.‘
 For each B we Aefine the s.ubSet“ V=Y(B) of T as
follows: if B-¢~B°, then V shall be the set of those circles |
‘'of T that meet B; if B = B, then ¥ is the ﬁnion'of c(p)
witﬁ the set of all the tangent circles which meet B outside p.vff
In either case, VY will be a connected, closed sub-

set of L. If B# By, or if B = B_ and C{p) # p, then V does

- en am W G W SR Sh WR AP AN WS EE TP WS E G WE R G WF WR M B s We W G R e

following remark: If n is positive and even, then the num-
ber of intersections of C with A cutside p is even. Hence
C supports A at p and the additional assumption is automa-

tically satisfied. On the other hand, if n is odd, thgs

condition cannot hold.
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not contain the point-circle P If B=B_ and ¢ipl = p,
then, from our additional assumption, all the tangent cir-
, 1
cles support, and some tanggnt circles near p will not be-
~ long to V. Hence ¥ is a proper subset (i.e. a closed sub-
interval) of T. At least one of the end-circles of V, say
C', is different from C. Thus C' N B does ndt contain the
end-points of B. | Sihce C'ey, this circle actually has at
least‘one poinﬁ in common}witb B. If C' intersects B out-
side p, every circie of T close to C' also intersects B.
Thus any point # p of C' N B is a point of support, i.e.,
aff—vertex. .Suppose'thab Cff\ B < p. Then B=B,. 1In
th)is case, ¥V = C{p) 'vac(t;'C), where t € B, t # p, and
since C'e YV, it follows ﬁhat C'= C{(p). Hence C(p) = C!
supborts_Bo at p. By our additional assumptioh, p is a
T-vertex.
We can write the proof of Theorem 4.3 in a different

1. By definition, p is a T-~vertex iy this case.
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way, using the orthogonal circle Co of Theorem 4.1.
The circle C €'t, which meets A in n points outside

p, again divides A into n closed sub-arcs B; B, is that

sub-arc B which contains p.

If t moves through B # B,, P(t) moves on C,, and
returns to its initial position without passing through p.
Thus P(t) must reverse its direction on C,, and B must
therefore );afre an interior T-vertex.v' S8ince P(t) ¥ p when

C(p) # p, this even holds true when B = B,, provided C(p) # p.

I1f CG{p) = p, pris a T-vertex by definition provided the

other circles of T support A at p.

If, in this theorem,vc N A contains m points of
support different from p, our proof shows that we have at
least m+ n - 1 T-vértices, and at least m 4+ n under the ' ?%
additional assumption.

From Theorem 4.1, we obtain

Corollary 1. If a circle of T meets A in 2n points
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different from p, then A has at least 2n T.vertices,

Thedrem L.4. Suppese that there is a circle of T

(different from p if C(p)= p) which meets A only at p.

Then A has exactly two T-vertices if and only if no circle

of 'C:meei;s A in more than two points different from p.
Proof: Our assumption. implies that the non-oscula-

ting circles of T support A at p (cf.$ 4.3.1 and Theorem

2v.8). Suppose there gxiats a gir_-ele C of T which meets A
at mox’f«e than two points # p. By Theoxfem 4.3, A has at
least three T-vertices.

Now suppose that no circle of ‘E‘ meets‘ A in more than

two points s p. Let V be the closed interval consisting of

C(p) and all those circles of T which meet A outside p. By
- our assumptions, V is a closed, connected, proper sub-inter-

val of C. As t moves over A, P(t) moves over a proper sub-

arc of C, (cf. Theorem L.1l), and returns to its starting

point. Hence every interior circle of V) meets A at least
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twice outside p. If A had another T-vertex, P(t) would co-

ver an arc of Co at least three times, and then some circle
of T would meet A at least three times. Thus A has exact-

1y two U-vertices, which belong to‘the'end-circles of V,

where P(t) reverses its direction.

Theorem 4,5, Suppose that there is.a circle of T

(different from p if G(p) = p) which supports A at p. If A

has exactly four T-vertices, then A has'florder four.

Proof: Our first assumption implies that the non-
osculating circles of T support, gndvhence thére exist cir-
cles of T which do not meet A outside p.

If A has exactly four U-vertices, Theorem 4.3 im-
pliés that the l-order of A does not exceed 4. By Theorem
Lok, the U-order is at least 3. Section 4.4.2 implies that
A has T-order 4.
beh.k. The following are examples of cufves with no CT-verti-

ces, two't—verteces,'and four [-vertices respectively. The

e
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first three examples refer to L-vertices relative to the
origin as fundamental point of the pencil T.

3 5 .
(a) x=t7, yst’. The non-osculating tangent circles at
the origin intersect. They therefore intersect at their
only other point of contact with the arc, and we have no
T-vertices.

}(b)‘x:t, y= t2. The non-osculating tangent circles at the

origin all support. ‘l‘he‘} x-'axis,meets the arc only at the

- origin and at o0, and since it aupports at the origin, it

must also support at o, Thus we have a T-vertex at 0o,
The osculating circle also supports at the origin. Hence

‘we have a T-vertex at the origin. The non-gsculating tan-

gent"éiz;rcle's which do not g0 t:hfough o0 intersect the are
in tw§ points outside p and do not meet the arc elsewh:érve
except at the origin. _Thug we have only two Civertices.
(é) r= h:._,tan 8 sec 6, 0% é.<'77/h, /L, s e ’<TT;

r = a cosec O, T, < e < 31/,
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All the circles of T support at the ofigin, and hence give
rise to a {-vertex there. fhe circle r=%2a sin @ of T
suppérts the arc at r:gVié, e =T, aﬁd.at r afﬁh, e = 304,
Our ifinal T-vertex is foundr at rsa, 6= /2, fof the cir-
cle r = a sin © supports the arc there.
(d) This example again illustrares an arc with noitlverticeg. |
Its particular’interest lies in the fact’that the same arc
was used as an example of an arc having two T-vertices,
where the fundamental point ofxt was the origin.

Let A be the parabola x=t, y= t2. The tangent
circles of A at t==0¢ are strﬁight'lines barallel to the
y;axis.\ Each of them intersects the parabolé exactly once
for:a finite value of t, and therefore muét intersect A a-

gain at t= od.

5.5.‘ﬂ:verticeg=_

Let p and s be differentiable points of a closed

curve A, and let p (s) have the characteristic (ao,al,az;i).



124
We shall assume that P apd s ére not muitiple points of A.
Let ﬁbe the pencil of circles through the fundamental points
p and .s. Suépose‘t,hat A hés ‘finite }T-order,( i.e., every cir-
c,ies o»:tv'lT/‘ meets A ’in a finite numbe‘r_‘ of‘ points. We call the
point t # p,s, a 1Zf-vg. rtex if C(v;7) supporta Aat t. We
call ,I‘) '(s)(_,a" .F;veggex"if the non-tangent cifcles of‘fl“ at P ‘
(s)-‘support A‘L»at,v.p (s) whenﬁ(é;l;) (C(p;fs)) supports, or ,

, | , | | 1
intersect A at p (s) when C(‘s;Tp) (C(p;ts)) intersects .

4.6. Remarks Useful in the Development of the Theory of

ﬂ-vert;ces.
: g___é_;_l;_ Suppose that the ‘circlé_C(t;Wj supports A at t # p,s.
'l;hen there is a neighbourhqod M of t on A whose closure lies
| in C(t5M) v }t. s,‘a'y‘. In ,partinc‘ular, the 'end;pointe of M will
lie in C(t; M. Lei; ct iie in the region

B [etesmn FJuleemanclupus,

- 1. The Symbol C(R;Iq) means ¥the tangent circle of A
at q through R¥, for all points q € A, and R # q.,
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say, where C is any fixed circle of'ﬁ'sgch that
Mc[_ﬂ_(ﬁ;ﬂ) n%Ju t.:

Suppose that C' is close enough to C(t;7) that the end-
points of M will lie on the same side of C'. Since C' se-
parates them from t, C'vwill intersect M in two points. On

the other hand, a circle of 77" in the region -

| [g_(t;t?) n 9_] ) [5(t;77) n ”6] Upus

will not meet M,

k.6.2. If the circle C of‘n;intersects A at t, there is a
neighﬁourhood M of t on A whose end-points lie on opposite
sides‘of C. Let}C' be a circle of T close enough to C that
these end-points aré separatéd by C'. Then C' intersects M
in at least one pqint.

4,6.3. Suppose that C(s;Tp) supports (intersects) A at p.
Then the end-points of a sufficiently small neighbourhood
M=B VpuUB, of p oﬁ A will lie in the same region (in

different regions) with respect to C(s;Tp).
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Suppose that the non-tangent circles through P sup-

port (intersect) A at p., Let C' be the orthogonal circle

to C(s;Tb) through p and Sf(éf. Fig. 4.2). Since C' sup=-

Fig. 4.2

ports. (intersects) A at p, Bl and:Bz_must,lia in the same
region (in different regions) with-reqpoct tp'ct. We lose
no generality in assuming that Bltl Bz lies in the region

-en .qtsstp> | ([0' G‘Mpﬂ v [ern st ’D

Now let Qo be anytcircle which isforthogonal to the family

T, and let R be any point of Co which lies in the region

t'n ¢(s;T,). Thus
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e e [Bn ois;Tl v [ern TssT)] v pus,
ahd therefore C(R; ) meets M only at p. Hence this circle
(which can be as close to C(s;lb)‘as we please) does not
meet M outside p.

On the other hand, if the.non-tangent circles of #

at p intersect (support) A at p, then BlIJ B2 lies in the

region

[ernctsty) vfErnctsit)] ([erncts;zy)) v [ernTie; p)]), |

say. Let ty € By (i =1,2). Then

city;Me fern Q(s';tpﬂ i [5' a 5(8;tp>] Upus,

say, while

C(i.t;'zgﬂ) C‘[E' n Q(s;tp)] v fg' n E(s;l‘p)] V p Us.
Hence all circles of T close to C(s;t%) meet M at least
ane'outside P.
. Obviously, the above ig also true when we inter-
change the roles of p and s,

L.7. Curves with a Finite Number of M-vertices.
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Theorem L.6., If the number of Tl-vertices of A

is finite.iit is even,

Proof: Let Co C3 p,s, be an arbitrary circle

orthogonai to 1T, ‘C(t;77)'int§rsects Co in éxactly two
points, P(t), and P'(t). Thus P(t),?f(t) and C(t;77)
depend ébntinuously on‘t over the whole of A.}

‘If t runs through A,‘then the points P(t) and
P'(t)'chang9~their direction if and only if t passes through o
a 7faveftex. .ThiSufoliowé for t ¥ p,s frdm:the definition
(3 h.#) of TT-vértices? and'gections 4.6.1 and L.6.2; for
t=por s, it follows frpm séctian h;jyand‘seetion 46,3,
Thus P(t) aﬁd‘P'(t) change their direction only a finite
number of ﬁi@es. Sincé]ghe diréctionléfmoticn of P(t)
and P'(t) on Co must be the same when»g”circuit df A is
‘completed aslwhen it~began, the number of ﬁhanges of

&

direction must be even.

Theorem L4.7. If every circle of Il except QLg;E;)
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and C(p;Ts) meets A exactly once outside p and s, then

(i) A has no ﬂ‘-vert;ees outside p and s,

(1i) C_(s;l‘,f,_} and C{g; fs) do not meet A outside

p_and s,

(iii) A has no W-vertices, | E ﬁ

{iv) C(s;Tp) # C(p;%al.

Proof: (i) Suppose that C(u;T) supports A at a
point u # p,s. Then there exist circles of 77 close to

C{u; ) which intersect A in at least two points close to

‘u, contrary to our assumption. Hence there are no I7-ver-
tices at points u # p,s.

(11) 1f C(s,-tp)(C-(p,Fs)) meets A at a point

u # p,s, then by (i) and section 4.6.2, there are circles
of T close to c(s,rp_)(c(p,' Zg)) which meet A in at least

two points ¥ p and s, one Seing near u, and the other near
p-{#). Hence C(s;l'p) and C{p; Tg) do not meet A outside

p and 8.

(111) In view of (i), we need only consider the
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points p and s. If C(s;tp) supports {intersects) A at p,
then by (iij gnd section 4.3.1, it supports'(intersecté)
A at s. We have a Tl -vertex at p if and only if the non-
tangent circles at p also support (intersect) A at p. If
this is the case, C{u; ), u #'p,é, will intersecp A at u by
(1); by section 4.3.1 and our assumption it will inter-
sect { support) A ét s. But since C(p,Tg) supporﬁs (inter-
sects) A at s, s is ﬁot a Tl-vertex. Thus we have only one
T -vertex on 4, which contradicts Theorem 4.6. kHeﬁce A
has no TT-Verticeé,

(ivk)4 Ir C(sl;‘t.g,):C(P;tsk):G, then a éircle C' of 7
close to C will meet A at least twice outside p and s,
once near p,.and once near_s. This.follows'from (i14).

Hence C(s;Tp) # Cr(p;t's).'

‘4.8. The Relation Between 7T-vertices and U-vertices.
If we allow the point s& A approach p&A along

A, then the pencilT through p end s becomes the pencil T

through p. We obtained a TT-vertex at p if the non-tangent
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circles Qf17vsupportéd (intersected) A at p wﬁen{C(s;Z ) 
supported (intersected) A at p; #e’now get a U-vertex at

p if the non-osculating circles of T support A at p‘when

C{p) supports A at p (it isziﬁéassible‘fqr al} the circles
"of T to intersect A at pl. A 77;-§ertex at a poir;tv ue A,

u # p when p gnd s coincide is éimply'aff-vertex at tha;
point. Therefore, if gppropfiéte.minor changes are‘madg,
any theorem that is_tfug»for.TT-verticeé is also true for -

T-vertices. The converse of this statement is not true;

the study of T -vertices is more écmplex,‘as-can be seen from

the small part of that theory which has been presented here. =

Ve e



CHAPTER V

- DIFFERENTIABLE POINTS OF ARCS IN CONFORMAL 3-SPACE

5.1, Introduction.

~ We now begin én inveatigagion:in conformal 3-space
whiéh_parallels the ﬁbrk in‘twowdimehsions. - The change
from two’to-three dimensiﬁns is of considerable Aote, chief-
| ly because ofyﬁhp»fact that 1nstead of dealing with one con-
tinuous entity (the circle) and the discrete point-pair, we
now must consider two épntinuous éntities, thécircle and
| the sphere.
5.2, Differentiability.

Let p be a fixed point of an arc A, and let t be a

variable point of A, If P,-Q; and p are mutually distinct

points, the unique circle through these points will be de-
noted by C(P,Q;¥,). The symbol.xg itself will denote the

132
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family of all circles through p, including the point-circle
5.

A is called once-differentiable at p if the follow-

ing condition Iy is satisfied:

I}: If the parameter t is sufficiently close to,
but different from, the pafameter b, the circle C(P,t;B;)
is uniquely defined, and converges if t tends to p.

Thus the limit circle, which will be denoted by
C(P;)i),:is indepéndent of the wﬁy.t converges to p. The
family of all such circles, together with the point-circle

p, will be denoted by the symbol ¥;.

A is called twice-differentiable at p if, in addi-
tion to the condition Ij, the foliowing conditioﬁ is‘also
satisfied:

| I»: If the parameter t is sufficiently close to,
but different from, the parameter p,'the circle é(t;x ) is

uniquely defined, and converges if t tends to p.
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The limit circle of the séquence C(t; ;) will be
denoted by C(¥,) the osculating gi;glg of A at p, and oc-
casionally by the symbol ¥, alone.

5.3. Structure of the Families of CirclesThrough p.

In this’section, relations among the families of

circles Yo, Xl’ Y., are discussed.

2

Theorem 5.1, Suppose A satisfies condition I3 at p.

Then t does not coincide with p ;§ the parameter t is suf-

ficiently close to, but different from, the parameter p.
Proof: Let P be'anj‘point different from p. By

condition Iy, C(P,t; ) is defined when the parameter t is

close to, but different from, the parameter p. Thus t # p.

-~

Theorem 5.2. Suppose that A satisfies condition Ij

at p. Then the angle at p between any two circles of le}s 0.
Proof: Let P,Q,Ry,R,, be variable points, and let
Ry and R, converge to the same point R. Suppose there is a

sphere separating R from both P and Q. Then
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(5.1) 1im &[c(P,Ry,R);C(Q,R,Rz)] = O,
1

whether or not the circles themsglves converge. In par-

ticular, the angle between C(P;X¥;) and C(Q;Xi) is equal to O.

Corollary 1. If C(P;¥ ) and C(Q;¥)) have another

point in common, they are identical; thus there is one and

only one circle of Xl through each point P # p.

Corollary 2. l& consists of those circles C which

meet a given circle of Xa at p at the angle O,

Proof: Let Pc C, P # p. Suppose that C meets some
circle of Xi at angle O at p. Then C and C(P;X&) also meet
at angle 0 at p and have the point P in common. Hence they

are identical.

‘Corollary 3. If I3 halds for a single point P # p,

then it holds for all such points.

Proof: If Q # p, by relation (3.1),

1. This becomes obvious if we let P or Q be the fixed
point at infinity.
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lim [C(Q,t;b’o) ;C(P,t;)’o):"-: 0.
Hence C(Q,t;¥,) converges to the unique cirele through

Q which touches C(P;Yi) at p.

Theorem 5.3. Suppose A satisfies the conditions

Iy and I% at p. Then

202428,

Proof; It is clear that Y o If cd)=p, it
belongs to‘Xl by definition; Suppose C(Xé)-# p. Then
' C(Xé), being the limit of a sequence of circles C(t;Xi)
each of which.touches'a given circle C(P;Xi) of ¥, must

itself touch C(P;¥;) at p., Thus C(Xz)EEXi.

Corollary 1, If PCC(¥5),P # p, then C(Z(g)zc(P;D’I)_.

The conditions Ii and IE are independent, Consider

for example, the arc
1- A1- tz-t )sin t 1, o<itl €3,
X=t, y= t s 2

] t-0

-
Considering the vector ==x +Yj+zk we let © be the angle

between t &nd the x-axis. The vector t represents the
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circle of X; through the point at infinity and the point t.

As t—0,
- -
i.t €
cos 9= 54—

\Tl\%l—m‘w [t2/2 (1+t2)+o(t3 )]zsinzt"l

1

Vl+t2+o(t) '

-1 , as t=0,
Thus Condition I} holds at t=0 for the point o4, and
therefore by Theorem 5.2 Corollary 3, it holds for all points
P # p.

However, condition I} is not satisfied at t=0. The
plane through the x-axis (whiéh by the‘abovesxl) and the
point x(t),y(t),z(t) contains circles which pass through
t and which touch the x-axis; i.e., it contains the circles
C(t;¥y). This is also true of the sphere through t which
touches the xy-plane. Thus C(t;Xi) is the }ntersection of
the for@ef plane and the éphere. But as t-»0, neither thé

'sphere nor the plane, nor the intersection of the sphere
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and the plane, converges. (The method of determining this is

similar to that used in‘§2.h)"Hence I; does not hold.

$.4. Differentiable Points of Arcs

In addipion to the conditioné T and Ih, three more
conditions, involving spheres, are introduced. Suppose
P;Q, and R are'any,three fixed points such that P,Q,R, and
p~do}nop all lie on thévsame circle. It will be conven-

ient to denote the unique sphere through p and the points

P,Q, and R, by the symbol s(P,Q,R;o-O). o,

2 will denote the

family of all spheres through p, inc¢luding the point-

sphere p.

A is called thrice-differentiable at p if the
following thfee cénditions are satisfied:

:Ei: If the parameter t ig sufficiently close to,
but different froﬁ, the paraﬁetér;p, the sphere S(P,Q,t;oa)

is uniquely defined, and converges as t-»p to a limit sphere

which will be denoted by S(P,Q;di).
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:E;: If the parameter t ié sufficiently close to,
but different from, the parameter p, the sphere S(P,t;o7)
is uniquely defined, and converges as t-»p to a limit
sphere which will be denoted by 5(P;63).

:5;: If the parameter t is sufficiently close to,
but different from, the parameter p,'the sphere S(t;6%) is
uniquely defined,‘and converges as t-»p to a limit sphere
which will be denoted by 5(&3).

The family of all the spheres S(P,Q;di), tégether
with the point srhere p, will be @enoted by the symbol
67. The family of all the spheres S(P;6%) will be denot;d

by the symbol 62; if C(X}):p, this family will also include

the point-sphere, p. The members of & and 0, will some-

times be called gingly tangent (or l-tangent) and doubly

tangent (or 2-tangent) spheres, respectively.' The unique

osculating sphere,S(63) will occasionally be denoted by

the symbol 63 alone.

The point p is called a differentiable point of A
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if A is thrice-differentiable at p.

S.S‘Stgucture of the Families of Spheres Through p.
Although the ccnditions_xz‘and ‘g are independent,
" not all the conditions ﬂ,%, Il' L, and 23 are inde-

pendent. In addition, the families of spheres &3,0;

465

and &3 are closely connected with the families of circles
'YOoxlt and ixz' |

Theorem 5.4 ‘Suggoge A satisfies condition 551

at p. let C be any c;rclg, Then t & C if the parameter

t i§_su££;¢ieﬁtly cgpse to; but different from the parameter p.
Proof: The'aééértion'§a clearly true if p & C.
Sﬁppoaa pt:C,‘andule;}P;Q;p be mﬁtﬁally‘distinct points on
R By condition-:E;, S(P,Q,t;da) is defined when t is
3ufficie'ntl'y‘ eloge tlo‘i;‘:». Thus t & C‘(P,Q,p)# C.
The:folloﬁ;ng_example.bh9w§ that i; does not
‘imply :E; ingenera? (éf., however, Theofem §.5). Consider

the arc
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t2cos t~1, 0¢/ti<1 t2sin t-1, o<it|]€1
x=t, vy 2=
0 , t=0 0 , t=0

in the neighbourhood of t = 0, If P=zoo, Q=(1,0,0), and
p=(0,0,0), the sphere 5(P,Q,t;0y) does not converge, while
for example, C(P,t;Yo) converges to the x-axis; by Theorem

5.2, Corollary 3, q is satisfied.

Theorem 5.5. If A satisfies Zl at p, then [I holds

there, and

(5.2) | cgg-,)g)_-_-yl 8(P,Q;07).

Conversely, let A _satisfy f;_ at p, Then 21 holds

at p for all vupai-rs P,Q, such that Pq‘:C(Q;b’l); then

s(r,0:61) = slpiclgin .
Proof: Suppose that }:l holds at p. If Q #p,

lim C(Q,t;¥,) = lim ]ISPQt -)
t—»p t—»p

= HS(P,VQ;Q).
P
1. Given a family, [l , of spheres (or m-spheres in

higher dimensions), by the symbol ]}S(P;‘IT) we mean the common
intersection of all the spheres belonging t_o 7.
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Hence C(Q,t;X‘)) converges, and
oa; %) = Ts(r,a;09).

Conversely, suppose that I holds. If P ¢C(Q’;)’l),
then P ¢ C(Q,tv;fc’) when t is sufficiently close to p, and
(5.3) s[psca;a, ) = un s[pice,es2)]

= lim S(P,Q,t;g;).
| t—>p
~ Thus for all pairs of points P and Q such that P& C(Q;¥)),
S(P,Q,t;@o) converges, Zl is satisfied, and S(P,Q;O'i) is the
sphere through P and C(Q;Yl);

Corollary 1. There is only one sphere of o7 which

—tu—

contains two points not on the same circle of Xl'

Remark: Condition T} is still satisfied when X is
replaced by a weaker assumption, namely:

Suppose S{ = S(pl'Ql't;%)‘)Sl' 83 = S(P,,Qy,t;50, »S;,
and suppose further that S; N S, = C # p. Then I holds at p.

Proof: Let 8! N 52.?‘ C'.. Then C'>C, and C'> p

and t. As in relation (5.1),
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lim {[G(Pl,t;kg);cf = 0.
Thus, G(Pl,t;X;) converges to the unique circle through Py
which touches é at p. By Theorem 5.2, Corollary 3, Iy holds
at p.
If, however, 3111 82 = p,:Ii need not hold; for ex-
‘ample, take Py =00, Q = (1,0,0}, P, = (o,o,z). Qy = (1,0,1),

‘p = (0, O ,0), and let A be the arc
t sin t=1, 0< )t <1
X = 3 y::tv’ z:to

0 y t= 0

Si converges to the xy-plane, Sé,éonverges to the sphere

x2‘+ y2-+ 22'_ 2z = Q,‘but Ii does not hold.

Theorem 5.6. Suppose that :51 holds at p. Choose

ceY., ctp, _Then d'i__g._g the set of all spheres which

touch £ at b.

Proof: Suppoée that a sﬁhere S(P,Q;di) of 0] meets
C in a point R# p. If R =C(Q;¥), then by Theorem 5.5
and Theorem 5.2, Corollary 1,

S(P,Q;07) > C(Q;¥y) = ¢
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while 1f R C(Q;2)),
8(P,qs07) = s[Rsc(@;%)] = S(R,Q509)
SfQ;C(R;Xl)] = 5(Q;C)> ¢C.
Convers?ly; suppose that a sphere S touches C at p.
If § ©C, then S& 03 (Theorem 5.5). If 8 NC = p, choose
a point Q. &8, Q?‘: Pe i{et C, = 8(Q;C) N's. Then C, touches
6 atvp. - By Thgc{rem 5‘.‘2,' Corolla?rj" 2, C,LE 'Yl"' | Since 32 C,

and 'Céé _31, it 'followa from Theorem 5.5 that S € U'i

ThecreniS.’]. If A satisfies 2. and 2.,, at /p. then
L. and D will a;go hold there. and eguations (5.2) and

(5.4) ' _L:‘.).___ll.ﬁ.i_hz

will be s‘atisfiﬁgvd there. Conve’rgely._let’ A satisfy I3 and

_lfé at p, and let c(¥>) ﬁ p. If P C(¥,), then 22 will

hold at p for P, and S(P;c7) will be the sphere through P

and and C(X,).
Proof: Suppose that ZL and Zz hold at p. In view

~ of Theorem 5.5, we have only to show that 2_2 implies I3,
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and that relation (5.4) holds. By relation (5.2},
lim C(t;)’l):: lim HS(P,t;O'i)
t—=>p t—=>p P
= IPIs(P;o-é).
Hence C(t;Xi) converges, and C(X2)== ]I:S(P;oa); Thus :E;
D :
implies I> and relation (5.4) holds.
Conversely, suppose that Ii and T} hold and that

c(¥,) # p. If P¢c(¥2), then P & C(t;¥,) when t is suf-

ficiently close to p, and by Theorem 5.5,

s[P;cwg)]:tgm’p S[P;C'(t;xl)]

= lim S(P,t;ci).
t—2p

Hence S(P,t;67) exists and converges. Thus S(P;d’h:S[f;C(Xzﬂ.

Corollary 1. If A satisfies Ezi (:E; and :E;) at_p,

then A is once- (twice-) differentiable there.
In particular, this implies

Corollary 2. If p is a differentiable point of A,

then Ii and I hold there.

Corollary 3. S(UE)ZD C(xélg
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Proof: By relation (5k.L.),‘f
S(t;aé)DIP[s(P;%)
= C('z).
Hence S(o3) 2 C(¥,).
| This implies

Corollary 4. If S(OB);z p, then C(J%) = p.

Corollary 5, Z_I_f___gﬁzl % p, g5_consists of the
spheres th;gugh Csle&

The conditions I3 and\IE by themselves do not impiy
;Eil in general, whether or not G()%):: p. Consider, for

example, the arc

- t3 sin t-1, ocltlsy (&3 cos t-}, o<lti<
Xx=%t, y= . ' s 2= :

, 0 y t=0 0 , t=O0
which satisfiesinland I% at =0, C(X}) being the x-axis.

’

When P= 00, ¢ = (1,0,0), the sphere s(P,Q,t;0;) is a plane
through the x-axis, and this plane does not converge when
t->0. Thus Zl is not satisfied.

Condition :Ei is a very Strong;one, for it implies
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not only Ij, but, as the following theorems show, :E; and

T, as well, and even ZE; in the case C(¥,) # p.

Theorem 5.8. Suppose that A satisfies :E; at p.

Then A also satisfies :E; at p.

Proof: Let P be any pbint # p. Theorem 5.4 implies
that t does not lie on C(P;3&) if t is close to p. Hence by
Theorem 5.5, S(P,t;o*l_)= S[t;C(P;Xi)} . Let Q< C(P;Xl),
,YQ:¢'P,p. Then C(P;Xl):r C(P,Q;);). Thus

S(P,t;Qi)== S[};C(P,Q;*BS}
= s8(P,Q,t;3),
and <-7 now implies that
(5.5) lim S(P,t;67) S(P,Q;0%).

t—>p
Since S(P;6%) exists for each point P#p, :E; is satisfied.

Corollary 1. If A satisfies :El at p, it also satis-

fies Ié there.

Proof: By Theorem 5.7, condition :Eé implies I}.

Corollary 2. If A satisfies :Ei at p, then p is a
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¢ differentiable point of A if and only ;gﬁs(t;céz converges
as t—> p.
Relation (5.5) implies

Corollary 3. S(P;0»)€ o3.

Theoreﬁt 5.2‘.- Suppose that A satisfies Zl (and hence

| .Eo, I3, and I3) at p, and suppose that C(¥,) # p. Then A

also satisfies 53 _at p.

o Proof: If t is»vclose to, but d_i‘"fferent froﬁx, P,
S(t;03) ié defined. By Theorem FS.A, t & C(yzf), and by The- |
orem 5;7, S(t;0%) = S[t;c()’z)]. Let P= C(¥5), P# p. Then
by Theorem 5.3, Corollary 1, C(YZ) = Q(f;)’l) and hence

stesop)= sfeieriny)]
= 8(P,t;01). |
--6ond1tion 22 now 1mp1}ies that
(5.6) lim 8(t;05)= lim S(P,t;0y)
| t— p t—>p
= 8(P;03).

Thus S(t;6%) converges, and 23 holds,
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Corollary 1. If A satisfies condition 21 at p, and

if C(UB)i#fpi then p is & differentiable point of A,

The following example shows that p need not be a
differentiable point of A when‘jgi is satisfied and C(E%)::p.’

Consider the arc defined by

” th sin t-1, o¢lt)s1
x=t"%, y=t3, zZ= ' .
0 y t=0

It can readily be verified that A satisfies-ggfi at t=0,
and that the spheres of 6} touéh the xy-plane at the origin.
Thus C(Zé) is a point circle. However, as t—>0, 5(t;03)

2 4 Y2 + 52_ * 2= 0 are two accumulation

oscillates, and x
spheres of the sequence S(t;o3). Thus :E3 does not hold
at t=0.

Theorem 5.10. Let-zsl hold at p, and let C()%)::g.

Then o7 is the set of spheres which touch a given proper

sphere of g5 at p.

Proof: Let P and Q be variable points, and let C be

a variable circle converging to a fixed point. Suppose there
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is a sphere which separates this point from P and Q. Then
lim {[S(P;C);S(Qt‘f,lc_)] =0

whether or not'thé-apherea S{P;C) and S(Q;C) themselves
. ,

converge. In particular, let P and Q be fixed points # p,

and let C = C(t;b’l)_—-_—)p, as t—>p, t € A, t # p. Then
(5.7) {[S(P;o-z)‘;S(Q:O'g)]: lim {.[S(P.t;o“l);s(Q,t;O’l)]
: o , t—op ,
= 0.
Hence any two spheres of a3 touch at p.
Conversely, let S be a sphere which touches S(P;Gé).
Choose a point QC S, Q# p. Then 5(Q;03) also touches

S(P;03) at p, and 8{(Q;63) = S. Thus S € 65.

CGorollary 1., d5» is the family of spheres, the inter-

section of any two of which is c(¥,) (cf. Theorem 5.7, Cor. 5).

Corollary 2. There is one and only one sphere of

- @p through each point < C(¥,); i.6., if Q< S(P;05),

1, This statement becomes obvious}if we let P or Q

be the fixed‘point at infinity.
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QL C(¥), then S(P;o5) = S(Q503).

Theorem 5.11. If p is a differentiable point of A,

then

(5.8) 0G2.9.2.0 :>o~§

Proof: Evidently &g > 07. Theorem 5.8, Corollary 3
shows that 0] 2 03. This can also be seen as follows: let
- P #p. By Theorem 5.6, any sphere S(P;03) of 03 is the li-
mit of a sequence of spheres S{P,t;oj), each of which touch-
es a proper circle C-GEXEYat p. Thus S(P;Gé) also touches
C at p, and S(P;GE)EE o7 .

Let C(););ﬁxu By Theorem 5.7, 05 is the set of
all the spheres through C();). Hence S(o% ), being the 11-
mii of a sequence of spheres through,C(xa), is itself a
sphere throﬁgh C(U%), and thus a sphere of 0,. Relation
(5.6) also implies that 6, D 63 when c(¥X;) # p. kSuppose
C(Xé):: p. By Theorem 5.10, 03 is the set of all the spheres

which touch a given sphere # p of 05 at p. Hence S(03),
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being the limit of a sequence of such tangent spheres, is
itself a sphere of 03%.

This section can be summarized by the following re-
mark: let p be a differentiable‘point of an arc A. Let.
P £ p. Ip addition, if ,S(og)#:vp, let PCS(O§). Let

_{C(Yz) if C(¥o) £ p S__{j(ag) if s(o3) # p
c(P;¥%) if c(¥p)=p"  (8(Pj03) if S{oyd=p’

Then C< S, and the structures of )/, 0y, and 03 are

completely determined by C and S.

5.6 Intersection and Support Properties of the Families

_Q'Q-Gi.G’-Oé.andO?)-Oa;
Let p be a differentiable interior point of A.

Theorem‘5.12. Every sphere S-#:S(o§) either supports

st

or intersects A at p.

Proof: If S niether supports nor intersects A at p,
then pc S, and there exists a sequence of points t—>p,
t€ ANS, t # p. We may assume that conditionszl, 2.2‘7?,

and :E; hold for this sequence since they hold for any
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séquence t-—)p,‘te A, t#p. GChoose points’P and Q on S
such that P,Q, and p are mutually distinet. Then condition
251 implies that S=5(B,Q,t;0y) for each t, and hence
S:S(P,Q,oi)..
By Theorem 5.5, S= S(P,Q;o‘z)DC(P;Yl). By Theorem
5.&;'bqt:C(P;Xi),land again by Theorem 5.5,
s = S[t;C(P;Xl)] = S(P,t;61).
Condition :Eé now implies that S=S8(P;63%).
Finally, by Theorem 5.7, S::C(Xé), and by Theorem
5.4, t¢'C(X2). If C(b/z) # p, Theorem 5.7 implies that
‘s = s[z;c(b’zﬂ = s(t;03),
while if C(Ké):-p,'Theorem 5.10 implies that 3=38(t;03).
Applying the condition':EB, we are led to the contra-
diction S= S(G‘S).

Theorem 5.13. _If S(63)=p, then the spheres of

6,-03_all intersect A at p, or they all support.
Proof: Let S' and 5" be two distinct spheres of

o’z-d'i. Since S(G’B) p, Theorem 5.7, Corollary 4 implies
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that S' and S" touch at p. Thus ye may assume that
S“c:(p uSt) and S’c:(pu.s_"»). Supposé now, for ‘example,
that‘S'}supports A ét p while S" intersects (cf. Fig 5.1).

Then ANS® is not void, and hence‘Ac(p US'). Let t»p

in A h§_"; thus tc8"NS'. Hence

s(t;os)c (s"n3') up.
Consequently S(t;0%) cénnot-converge to S(63)=p as t—> p.
Thus S' and 3" must both support or both intersect A at p.

Theorem 5.14. If 8(o;) £ p and C(¥)=p, then every

sphere of 05-03 supports A at p.
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Proof: Suppose that C(¥,)=p, so that the spheres

of 0% all touch at p {(Theorem 5.10).. Let SEG‘Z,S¢‘S(0~§),

8 # p. If a sequence of points t exists such that t&€ AN 5%

t->p, then each 5(t;6%) lies in the closu;e of S. Hence

S(cg) will lie in the same domain, and therefore even in puS.

Similarly, the existence of a sequence t'€ ANS, t'»p,

implies that S(GE)CpU_S‘_». Thus if S intersects A at p,

- 8(63)c (puS)N (puUS)=p; in other words, S(o;)=p.

3

Theorem 5.15. All the spheres of g7 =91 (g7=0%3

g,-03) support A at p, or they all intersect.

Proof: Let S' and S" be two distinct spheres of
6,-01 (07-0%; 02-03). Suppose for the moment that the
intersection S'N S" is a proper circle C, = C(P,G; )
(Ci=C(P;¥1); C,= C(b’z)). Suppose, for example that S!
intersects while S" supports A at p. With no loss in
generality, we may assume that Akc:§"u p. Thus ANS' and

ANS' are not void (cf Fig 5.2). If t&€ANS' by Theorems

5.4, 5.5, and 5.7, S(P,Q,t;0;)=5(t;C,) (s(P,t;c-i)=s(t;cl);
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S(t;Gi)::S(t;C )) lies in the closure of | f%
(s'n3E") v(B'n s").

Letting t-»p on A, we conclude that S(P,Q;ci) (S(P;G‘Q);S(d-é)) -)

lies in the same:closed doﬁain. By letting t' converge to
p thrbugh S'tn A, we obtaih symmétrically that S(P,Q;ai)
’(S(P;cﬁ); Sgcg))falso lies in the closure of
(8'n s")u (5'n 7).
Hence S(P,Q;ai)(S(P;cg);Skd§)) lies in the‘intersection
S'v S", of these.two aomains, i.eQ, S(P,Q;501) (S(P;cé);s(oé))
is eithef S* or 3", contrary to our assu&ptions. Thus S
and S" both support or they both intersect in this case.

_ Suppose‘nqw that 8'N S"=p. In view of Theorems
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5.13 and 5.14, there remain to be considered only the

cases where S' and S" both belong to 65-01, or both belong
to 63-05. By Theorem 5.6, any sphere S through p, which
does not touch a circle C of X', belongs to 0,-075 by
Theorem 5.6, Theorem 5.7, Corollary 5, and Theorem 5.10,
any sphere S which touches a circle C of V& but does not
contain C('Xz) im case C(Xz) # p, or does pot touch a
proper éphere of OE in case C(K})% p, belongs to 6)-05.
Hence there exists a sphere S of 65-03 (Gi-cb) which
interéects S' ands" respectively in a proper circle.

From the above, S and Sf, and alsébs and S",fboth support
or’both intersect A at p. Thus S' and Sﬁ both support or

both intersect A at p.

Theorem 5.16, If C(K;) % p, every sphere of d1=92

supports A at_p.

Proof: Suppose S& 0’1-6'2 intersects A at p. Let
t—p, t€ANnS, t ¥ p. By Theorem 5.6, C(t;a'l) touches S

at p and hence C(t;li)c:§t1p. Since C(t;li)—)ﬂ(l}), it
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follows that C(U;)czgtJS. If t' converges to p through
ANS, it follows symmetrically that C(XZ)CEU S. Thus
‘C()’Z)C S. Since S & o, however, Theorém 5.7 implies that

C(XZ)::P.

5,7 A Classification of the Differentiable Points,
The characteristic, (ao,ai,ag,aB;i), of a diff-
erentiable point p of an arc A is defined as follows:

1i=1,2, or 3.

?O: l or 2.
‘v‘alz l or 2.’

.a2= l or 2.

aB=l,2, orod,
| i=11f C(¥}) #p; i=2 ir C(J_é): P, S(03) # p;
i=3 1if S(G'§):p.} | |
ao;is even or odd,accor&igg a§ the spheres of o -0y
support or intersgct.
a tay is even or odd accordiﬁg‘as the spheres’ofv
03~03 aupport}or intersect.

ad+a1+a2 is even or odd according as the spheres
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of dé-oa support or intersect.

ad+a1+a2+a3 is even if S(d}) supports, odd if
S(63) intersects, while az=00 if S(oé) neither supports
nor intersects.

Theorems 5.16, 5.14, and the convention that s(e3)
supports when it is the point-sphere, lead to the following
restricﬁions on the characteristic:

If 1i=1, then a,+a; must be even;

if i= 2, then éd+ar+a2 must be even;

if i=3, then ao+ai+a2+a3 must be even.
As a result of these resﬁrictions, there are just 32 types
of differentiable points; there afe 12 when i=1, 12 when
'1=2, and 8 when i= 3.

' Examples of esach of the 32 types are given by the curvesi:?

(1) x:tm,y;t?,zatr,

for the cases az3=1 or 2, and

r -1 <
(II) x=t’m’ Y‘-‘tn, Z:{t sin t ’ if 0<‘tv‘\ 1
0 , t=0
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for the cases ajzbo, all relative to the point t=0.
The indices m,n, and r are positive integers and m<n<r.
The different types are determinéd byithe parities of the
indices ﬁ,n, and r, and the relative magnitudes of m,n,r,
and 2m.. In each of these examples the circles of X& and
the‘spheres of 63 touch the x—a#is at the origin. 1In the
case i=1, 07 is the family of plaﬁes through the x-axis,
while in each of the cases i=2 or 3, 6% is the family of
spheres which teuch the xy-plane at‘bhe origin (cf. remark
at the end of $ 5.5).

Table S.i'lists éxamples of all the ﬁypes of
differentiable pqihts, tegether with their characteristics;
table 5.2 summarizes prdpertieé pf thése types. Congrueneés
are modiz. Figures 5.3 to 5.14 inclusive illustraﬁe the
*vafious types of curves, differengiable at the origin,

/ ,

1)

having the indicated characteristics at this point.




tion i=1 m<2m<n<r i=2 m<n<2m<r i‘ =3 m<'n<r<.2m
(1,1,1,1;1) r=0 {(1,1,2,1;2) r=1 (1,1,1',1;3) =1 |
n=1 n=0 n=0 '
(1,1,1,2;1) r=11{(1,1,2,2;2) r=0{(1,1,2,2;3)
m=1 hi‘l ‘
(1,1,2,1;1) r=11(1,2,1,1;2) r=1 [(1,2,2,1;3)
: n=0 : n=1
; (1,1,2,2;1) r=01{(1,2,1,2;2) y r=0 |(1,2,1,2;3)
(2,2,1,1;1) r=0((2,1,1,1;2) r=1{(2,1,1,2;3)
n=1 n=1
(2,2,1,2;1) r=1{(2,1,1,2;2) r=0((2,1,2,1;3)
m=0 m=0
(2,2,2,1;1) r=11(2,2,2,1;2) r=11(2,2,1,1;3)
n=0 n=0
(2,2,2,2;1) r=01{(2,2,2,2;2) r=0{{2,2,2,2;3)
(1,1,1,0;1) n=1 (1,1,2,00;2) n=0
m=1 » m=1
{(1,1,2,00;1) n=0 (1,2,1,032) n=1
I :
(2,2,1,0;1) n=1 (2,1,1,:; 2) n=1
m=0 . m=
(2,2,2,m0;1) n=0 (2,2,2,m;2) n=0
Table 5.1

191




_ Bo.
o Characteristic | ' : Examples: (I) or (II)
1| clyy S(0'°3) - Restrictions of
(35,81,85,8531) () 8(03) | 1ypes
(aooal:azsa3;l) | ,
1l #*Pp ':.\‘.‘p | - 1-0'2 sup- ao + alz-:() m<2men<r x-axis | xy-plane |
S ports -
‘(ao,al,aziqo;l) : | ' | II
(aoralaaZsag;z) '
aI=1 or 2 e _ I
2 =p £P =03 sup- | ata;+a, =0 .| m<n<2m<r x=y=2=0 | xy-plane
orts |
(agy,a7,82,00;2) P ] | II
(aoralv32’33;3)
3 p p : 03 sup- a°+al+az+3330 m<n<r<2m | I | x=y=2=0 | x=y=2=0| 8
33:1 or 2 ports :
Table 5.2

29T
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CHAPTER VI

: N , ,
'CHARACTERISTIC AND ORDER OF DIFFERENTIABLE POINTS IN

CONFORMAL 3-SPACE

- 6.1. Introduction.

The goal of this chapter is the proof of the fol-

lowing theorem, which is analogous to Theorem'B.lf

Theorem 6.1. Let p be a differegtiabié‘goint of an

arc.A';n‘conférmalii-space; Suppose that p has characteris- DR

tie ‘aa¢§l4§2L§3;i). Then the conformal order of p is not

[
-~

‘less than a. + &, +a. + a
0 1 2 3
This theorem implies

 Coro;;ary 1, If the'order of p is bounded, then to

every heighbourhood of p there corresponds a_sphere arbi-

trarily close to-SLgi) which does not pass through p, and

which intersects that neighbdurhoodvin not less than a  + a,
| o 166
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t+ap 4 a3 points.

6.2, Arcs of Finite and Bounded Spherical Order,

An arc A is said to be of finite spherical order if

it'has only a finite number of points in common with any

sphere. If some sphere meets A n times, and no sphere meets
A more than n times, where n is some specific integer, then

A is said to be of bounded spherical order,and n is called

the~(spherica1) order of A.. If p is any point on A, the
order of p is the minimum of the orders of all the neigh-
bourhoods of p on A.-

Lemma 6.1. Let B be an arc of finite'crger, If a

‘sphere S intersects B at t, then every sphere sufficiently

close to S intersects B in at least one point.
R Proof: The end-points of séme naighbourhoddez: B of
t lie in different regions with respect to S. Hencé théy
also lie in different regions with respect to any sphere S!

sufficiently close to S. Since M and S' have only a finite
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number of points in common, one of them must be én inter-
section,

It is clear that S' will intersect M in an odd num-
ber of points.

6.3. Proof of Theorem 6.1.

The ensuing discussion simplifies the proof of The-

orem 6.1. As in section 5.4, T35 03, O

1 and o will de-

note the families éf tangent spheres 8(63), s(P;63),
S(P;Q;Gi), and S(P,Q,R;GE) respectively. Now suppose that
P, Q, and R are fixed points such that p¢& C(P,Q,R). The
symbolﬂﬂlrwill denote S(63); ﬂg(t), ﬂ;(t), and 7§(t) will
dénote the linear families of spheres S(t;63), S(P,t;di),
and S(P,Q,t;6,) respectively. 77;(t) will denote the linear
famiiy of spheres S(P,Q,R,t).

6.3.1. Let M be any neighbourhood of p on A. We wish to

show that to every sphkere sr-le ﬁr-l there corresponds a

sphere of’ﬂ} arbitrarily close to, but different from, Sr-l’
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which meets M outside p in not less than a, points. If p

has finite order, and if M is small enough, we can even say
that there are spheres of 77r close to S__, which meet M out-

's8ide p in a

re2n Points, n30 (r=0,1,2,3; we assume that

a3<od when r=3).
6.3.2, Let T, be a sphere of the family 77;- ﬁ;i-l’ r=0,1,

2,3. If r=3 and C(¥,) = p, let.'EB = 5(c3) when S(e3) # p,

but let Ey = T3 when S(o;) = p. If r<3, or if r=3 and

C(YZ) # p, Er will not be defined. 1In any case, we define

1 S8
the regions O

g = [0 s)u 505,

and -
Er = {Tr n Sr+l] v [lr n g’-r-l]
(Cfo Figc 6.1).

Let T (T[,) denote the set of those spheres of T/,

1. If Spy) is the point-sphere p, S,,1 is void, and
§}+l is the whole plane with the exception of the point p.
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=1t

(¢) r=3, C(¥p) = p, S(o3) = p
Fig. 6.1
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that pass through E. (ﬁ}). Then every sphere of77;.except

T. and S

r rel belongs either‘to'ﬂ; or to ﬂ;. By intersecting

T, with an orthogonal circle C_, we can construct a 1l-1 cor-
respondence between the spheres of E} (ﬁi) and the points
of C,, and hence an ordéring of the spheres in I (ﬁ;).

We can choose our neighbourhood M so small that T,
and Spy] have no points in common with the two one-sided
neighbourhoods N énd‘N' into which M is decomposed by p.
This folléws for § = S(Ggi from our assumption a;<od, and
forvthé other spheres it follows from Theorem 5.12. Thus N
(N') lies intirely in the region E. ér’else entirely in the
regiqn E}. Let t and t' denote the points of N and N' re-
spectively; thus either all the spheres of‘ﬂﬂit) belong to
'E} or all of them are in:ﬁ;. Without réstriction of genera-
lity, let NC [Tr n —f‘;r’,l]c_ _E-r' Then ﬂ;,(n) belongs to ﬁr
for every t. Let e&N. Then T/;(e) is the end-sphere of a
one-sided neighbourhood 8 of Spel in77;. If t moves from e

to p, then ﬁr(t) ‘moves inﬁr from ﬂ;(e) to S Hence the

r+l°
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spheres n}it) omit none of the spherés df‘éz i.e., every
sphere of & meots N. Let Sed. Thus S lies between /T (e)

~and Sp,1 = lim T.(t). If t is sufficiently close to P,

t—p ,

then t does not belong to S, and S will also lie between
ﬁr(e) and T/;.(t),. Since e & S, and since the points t and e

lie 1n'T}'n Srels they.wiil also be sebarated by S.

Let the order of p be finite. Theh we may assume

that M is also df finiﬁe order. In addition, S will meet N
in a finite number'of points only;.and #tlieast one of them
will be an intersection. Replacing N by the §ne—sided
neighbourhood of p with en¢-point e, we can even state that
S wiil intersect N in an odd‘nuﬁber of'pbinﬁs.
Similarly, there exists aane-éided neighbourhood
5!.b£ Spel in'ﬁ; such thgt each of 1ts spheres méets N', '7 $

If p has finite order, and if N' is sufficiently'amall, then

&' can be chosen such that each sphere of §' intersects N'

vin an odd number of points.
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6.3 :3. If ap=1, then one of the spheres T, and Sp1 inter-

sects, while the other orie supporte M at p; therefore N'€ E...

If ap=2, then T. and Sri-l either both intersect or botb

éupport; hence N!' € 'ﬁr. Thus thé spheres 771..(1;' ) belong to

Z_Tr or to Tl'r., according as a,=1 or 2, This holds true, in
particular, of the spheres of the neighbourhoods § and &'.
Since J&ffr, it follows that § and &' lie on opposite sides

=1 or

of 85;1 or on the same side,’depénding‘on whether a,

a,= 2. This implies our statements in section 6'.3.‘1.‘
6.3.4 .. The proof of Theorem 6.1 now folldws reédily. Ob- -
" v’iouysly; we may assume that the order of p is finit.‘e, and

~in particular, that a3< 0.

.éfe profe our thegrmr by first app-roiimaéing 8, = S(og);
, ’:W&vby a sphere S3 gf TT , 33 by a isphere: 8, §f 772, 32 by a |
sﬂph.erei 51 of 771, énd }final_ly‘ we approximate S; by a _aphere

which does not contain p. |

~ Let M3 be a neighbourhood of ,fmite order of»p on A.
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From section 6.3.1, there exists a sphere SBE?T3 closé to,
but’different from, 8(63) which inﬁersects M3 in not less
than a; points tj outside p.
In MB we construct mutu&lly disjoint neighbourhoods
' By of the ty and M, of p. Chbose-a point P on 53, P& C(Bé).
' Then 83 = S(P;o3). Let TT, be the pencil of spheres of o3
‘through P; thds ﬁg(t) = S(P,t;dii and.839= lim 77;(t). By
| ‘ t—=p ° :
| sectign 6.3.1, there gxists a sphere sz‘e 772 close to, but
different from,}sj, which intersects lein not less than a,
points ?2 outgide p,vand‘which intersects each BB'
In My, we canStrucb mutually disjoint neighbourhoods
By of the tz,vand M; of p. Choose a point Q on 82; Q<¢C(P;Xi). ;li
Then 32-5 S(P,Q;dii. Let771 bevthe pencil of spheres of 61
through P and Q. Thus ﬁi(t)if S(P,Q,tﬁca), and 3, |
= lim 'nz}t)s By sectiﬁn 6.3.1, there exists a sphere S;
t—>p ~

of77i close to, but different from, Sy, which intersects Mi

in not less than a; points ty outside p, and which intersects
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“each of the a, + a3 arcs B, and BB'
In;Ml, we construct'muzuallj,disjoint_neighbourboods
,B’i@f‘}tvl and M, of p. Choosle a point RC S,VR¢;}C(I’~’,Q;%). |

Let TTO be the pencil of spheres through P,Q, and R, and let

T(t) = S(P,Q,R,t). Then Sy = lim IT,(t). By section 6.3.1,

t—-p

there exists a ‘sphere So of ,To close to, but different f‘rom,'vi
-8y, which »inte}rse’lc.ts‘ M, in not.v ?levss‘ than a, poigts t, out-

~ side p, and which inte'rsectslea.éh of the a; + ap + aj arcs,
By, By, and Bj. Altogether, S, will be close to S(cré) and

, ~will‘inters‘ect MB in not less than"ao + 3y + az + a, points,

3

all of which‘are‘ different from pe




' CHAPTER VII

'ARGS OF SPHERIGAL ORDER FOUR IN CONFORMAL 3-SPACE

7.1, Introduction.

This chapter extends td threegdimeﬁaions the work
V‘of‘secﬁions’B;h ﬁq}3.8 inclusive. Tha fact_air§ady noted
' in section é.i, #hat we are now deaii§g ﬁi£h~£wQ continuous
' §ntit1es, thg circle and the aphere,,vill}mgke/this work
| ;cqhsiderabiy mére délicate thanvthaﬁf$f 6ﬁa§th¥III. &a
o We dgvno'.oev‘zan. are ofvérder_ fp;;'f"”‘k(cf.f§-_ 6_.2) by the

 symbol A,.

7.2, wa/Lemmaa,on Arcs of Finite Sthgicalvcrder.

Lemma 7.1. A point of an agc Avof fihite}order

converges if its parameter tends to one of the end-points

' of the parameter interval,
In particular, this is true of an arc of order four,

176
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Proof: Let tZi and t21+1

(1=20,1,2,...) be two se-

quences of points whose parameters tend to the same end-

point of the parameter interval. SuppdSe that lim t,;=p,
: i—»00

and lim ¢t,..,=q, where p and q are accumulation points,
100 21+l .

and p# q. We may assume that Yosl lies between t and ¢, o "

on the arc.

Let § be a sphere which‘separates p énd q. Then

for sufficiently large n, S separates-tn and t Thus S

n+l*
meets ‘A in an infinite number of points, contrary to our

assumption.

By the above lemma, we see that A, has two well-de-

fined end-points.

Lemma 7.2. An end-point of an arc A of finite or-

der is automatically differentiable (in the sense of’sec-
tion 5.4).
Proof: Obviously, A has only a finite number of

points in common with any circle C(P,Q,p) through mutually
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distinct points P,A,‘and P. 'Thus, when t€ A is sufficiently
close to p, ﬁhe sphere’S(P,Q,t;aa) ;s»éefined.

Suppose that there are two Qequences 6f points, t,,

and t21+1, different from Ps convérgipg on A to p such that

the spheres Szi=}S(P,Q,t21;65) and 321+1='S(E'Q’t21+1;65)

converge to different limit spheres, So and 81 respectively.
We may assume that tp,) lies between p and t . If i is
1arge,.$21 (821+1)‘will be c¢lose to So (Sl). Letrs and
8! be two spheres through 5 N S; which separate S, and Sl'

; [ ‘ k
Then S and S ‘wi;l separate Sn gnd Sn+1’ andAtherefore tn
-and tnfl for'every large n. Hence the 5ubarc.o£ A bounded
byity and‘tnfl will meet SUS'. Thus A will meet SUS' an
infinite number of times. This is‘impbssible. Hence

conditioniii holds at P.

The above discussion shows that;E; and :E; also are

satisfied at p (cf. Theorems 5.8 and 5.9), where in the 1atter';_i2

case, C(¥5) #p.
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If C(Xé):-p, then by Theorem 5.10, the spheres of

0, all touch at p. Let t_ . and t,y,1 be two sequences of

21

points converging to p in such a way that S(t i§05) and

2
S(t24,130%) approaéh two different ;iﬁit spheres, S  and
' 8; respectively. Each of these limit spheres, being the
limit of a sequence of spheres that touch any sphere of
¢, at p, also touches any sphere of o} at p.
Suppgqe, to begin, that So and Sl are‘both proper

- spheres. }Suppose further, that slc S, p and Soc §1u P.
Consider avgpyhere S€ 0, SC(§on§1)Up. Then S separates
Sovand 81 except ét the point p, i.e., 8;C S=p and ‘
SOC:ELIé, say. Hence, for sufficienbly large i, S(t21+l;o§)
CSup and S(tZi;Gé)c§Up. Here again, the arc A crésses
C an infinite number of times, which by‘our hypothesis is
impossible. |

If now, 5, for instance, is the point-sphere p,

consider two proper spheres of oY) S and S', where SC3,Up,

S'Cgoup, and S, gn S8'V p. Then for sufficiently large i,




- - of a seqﬁence of gpheres S' through the t

‘130

fS(tzi;%)'c(§n§’)Up, while S:(t.é“l;cé‘)\cf:_ué"‘u;). Since
thgsa two'regions are separatedrﬁy Syst, one br both of
these ppheres #11& meet A #niinfinite numbér of tiﬁes.
Since this agsain is_impossibléby oufihybothesis,‘condition

2 holds, and the point p is differentiable.

2.3 ~Mu1ﬁ§;‘plici;;_§_§5_

Z;ﬁ;l; lWe‘ééll a.sphere_s g gen§ralrfr-ll-taggenthgggggg
Qf~order;of éontéct r-1 fr  2;3;0: §}¥at a<point t §f an
yérg'A 1fﬁthere exiéts a séqdeﬁ#e‘éf‘r%gﬂéles,_tg,tz,,.,té,

- of points which.converge cn A tQ t'éﬁph;that é is ;hq limit
| iA.. _V‘Let te Ah'_ Any
aphere thrqugh‘t wili_inﬁerséct:or sﬁ?pdrtlkh théia.‘ A
generalv(f-l}-t#ngent»spher; intersectsfkh‘aﬁ't,if r’is odd,
and supports A

h’ét t if r ié'evén; o

We usually call a general 3-tahgent sphere &

general osculating sphere.
. Let p be an end-point of‘Ah. ‘As in sedtion 3.7,

we introduce multiplicities and count p r-times on any




sphere of d};l-d} (r=2,3), and_fouf times on s(c§); A
point &€ Ahulpjis counted by timesioﬂ_a-general (r-l)-
tangenﬁ sphere (r=2,3,4). We wish to prove the following

theorem:

‘Theorem 7.1, sphere meets A U p more than four

times; i.e,, the inclusion of p and the introduction of

multiplicities does not alter the order of A .
The proof of’Theorem»7.1‘resuits‘from the discus-

sion in the remainder of section 7.3.

7.3.2. _Lemma 7.3. 1If a sphere 8 ﬁéeﬁs Aa ;Q;thggé poingg,_,

then at least two of these pointg;afe intersections,

.Proof&f Let‘S meet A in ql,qz,.and 93, and let

L
Ami be,sﬁfficieﬂﬁly”small neigthUrBooas of_ﬁi (i=?l,2,3).
It qy is a poiﬁt é: sﬁpport, pheﬁ‘ﬁh;re:18‘a sphere_close
t§ S which meets M, in two points.

Sﬁppose'tbat qi?qz;'and Qé arekali péihts'of,

support. If Mj,Mp, and M; all lie in S, say, then there
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exists a sphere close to S which willlmeet Ah at least six
times. On the other hand, if M;,M,c S and M3c:§,then S
mugt intersect.Aé in a‘fourth point Q3 hénce there is a
‘8phere‘¢1083 to S which meets»AL at least five times
(cf. Lemma 6.1). Both of these cases are impossible since
AA is of order four.

We.note that by the latter argument, if M;< 3 and
M3c:§; then S intgrsects Ah at some po;nt.

Suppose that q; and éz-are points of support,
while S is a point of ihtersectioﬁ. _If Ml,Mzczg, then,
as before, some spherevclose to S will intersect.Ah five
‘times. If Mlc;g and MpCS, then let‘r be the neéessary
point of'interséction on Ahr\s, and let S0 ba 8 éphere
which separates q; and qz.v Hénce'sor18:= C is a proper
circle. Without loss of genarality, we may assume that “
’Mlc:(_s,_n:s_o)uql a/nd Mgc(§ﬂ§o)Uq2. .Then a sphere |

-y

V( ﬂSO)C/C, which is sufficiently close to

S'c (8 ns,)

S, will meet M; and M, twice each. Since r is a point of
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intersection, §' ﬁill also meet A, near r {cf. Lemma 6.1).
This again is a contradiction.

Lemma 7.3 implies

Lemma 7.4, A sphere S through four pqings of A,

does not support Ahnat gpy of these points.

Proof: By Lemma 7.3,AALI\S~ha§ at mo§t §ne‘point
of suppér@. If.Ahfisé=qi;q2,q3 énd~qh, gﬁére q), is a point
of support, then ﬂhereis a sphere close to Svﬁhich meeﬁs
Ah five‘times,- oncé7ea§h‘near.ql,q2, and qB,*and twice
near qL. This.is impossibié.
2;2;2; Suppose thét’a sphere S thrdugh’p @eéts Ah in=four
,points,gql,qz,q3,‘and q . ‘By Lemma 7., they are all
intefsectiohs.A Choqse'&isjoint neighboufhoédé N.df p and
M of q which do noﬁ contaxn qz’q3’ or qh If t convergas}”

to p in N, then S' S(qz,qB,qh,t) convergea to S. By

Lemma 6.1, S’,will intersectsn‘if t is,sufficiently close to

p. Hence this Sphére’meeﬁs Ab in no fewer than five pbin@s,

‘contrary to the dgfinitibh’gflkk. This yieldéi
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Lemma 7.5. No sphere meets AhiJ p in five points.

Lemmas 7.3, 7.4, and 7.5 imply

Lemma 7.6. A sphere S through four points of Aahlp‘

does not support AL at any-of these points.

Proof: By Lemma 7.3, Ahfls has at most one point of

support. If there is one point of support, Lemma 7.4 im-

plies that S goes through p. Hence .a suitable sphere

through p which is close to S, will meet Abtlp‘five times,
contrary to Lemma 7.5.

Note that Lemma 7.6 is a generélization of Lemma 7.4.
7.3.4. Suppose that a sphére S of a0y meets Ah in three

points q3,q2, and qs. By Lemma 7.6, they are all intersec-

tions. Choose disjoint neighbourhoods’N of p and M of q;,
which do not contain Q2 6? 3. If t converges to p in N,
then S' = S(q2,§3,t,oa)lconverges tO'S. éy,Lemma 6.1, s
will intersect M if t is sufficiently close to p. Hence

this sphere meets Ahblp in no fewer than five points, coné
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trary to Lemma 7.5. This yields

Lemma 2.7. No sphere of]qi meets A4 in three points.

L at-q, Then

Suppose a sphere S of 07 supports A
some_sphere‘of Gi’clee to S will intersect a neighbourhood

of q in two points. This, with Lemma 7.7 yields

" Lemma 7.8, If a_sphere of 0j supﬁortakka at_some

p01ggl‘th§n;it‘doea.net éget Aa_gggiﬁ;

Z;l;i;vsﬁépqsé that;a‘qfhére 8 bf ngméets Ahnin two points
§1 and gé.f;By(Lémga'7.8, both pints‘are intersections.
 Choose diéJOint‘ngighbourhoods N of b gnd Mof q which do
“not céntaiﬁiqz. If ¢ con&ergea?ﬁévp ig N, then S‘=S(q2,t;ai)
é@nvergés tp'S."Bj ﬂemma 6.1,.8'}w111 inﬁersé¢t M if t is
'sufficien;l§ cla§e‘tq p. Hence ihiéiéphere meets Ab in no

feier than three points, conﬁrarykto Lémma 7.7. This ylelds

Lemma 7.9, No sphere of o, meets A _in two pointsg.
Suppose that a sphere S of o, supports A, at q, and

- let M be a small neighbourhood of.q on A, . We consider two
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cases:
(1) C(b’z) # p. In this case, the spheres of o5 all
contain C(xz). However, qc;z‘.?C(Xz),' for if it did, we could
find Spheres of 67, through two points of ‘AL, -contrary to

Lemma 7.9. ’Let SO#S be a sphere of o7, and let Mc s,N §_l. .
Then there i_.é a sphere S'€ ¢, passing tfzrough (§_°‘ né)‘ ,

- U(5, n'§f.U-C(8§), which is 8o close to S that it inter-
‘sects M in two pointa;

(11) C()%) = p.‘ In this case, the sphe:esvof o3
all touch at p. Let Mc 8. Then there is a sphere S'cSup,
s'e 05, which is so close ﬁo S5 that it intersects M in two
pbints.

- Thus in either case, we have a sphere of 65 which

)

meets A, in at least two points, contrary to Lemma 7.9.
Hence we have

Lemma 7.10. No sphere of 05 through a point g€ A.,+

supports at that point.
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7:3.6, Suppose that S{63) meets A, in one point q. By

Lemma 7.10, it is an intersection. - Choose disjoint neigh-
bourhoods N of p and M of q. If t converges to p in N, then
S'=-S(t;c§) converges to 8(03). By Lemma 6.1, S' will in-
tersect M if t is sufficiently close to p. Hence this
sphere meets Ah in no fewer than two points, contrary to

Lemma 7.9. This yields

Lemma 7.11. Sjaé) does not mest 4.

7.3.7. Multiplicities Relative to General Tangent Spheres.
In the following we shall not‘conaider géneral tan-
‘gent spheres at the point p, since we shall learn in section

7.4 that such spheres are members of the families Gi’cé’ or

03, depending on their order of contact.

Lemma 7.12. Let 97,3, —>q on Ah, and let LA, |

t # g. Let C(t,g1&32)~écé.' Then C, does n&t meet A, VD

outside g and t.

Proof: Suppose that C,>u, ~u6'AhU P, u¥ t,q. Let
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veAl‘Up, v & Coe Ther} S(v;Co)::‘lim S[v;C(t,ql,qzﬂ
::ll«im S(§,t,q1,q2) does not meet Abu‘p,elsewhére. Hence
the eﬁd-poinﬁs of a smgll»neighboufhood of q én Ah are not
separated by q; and q,. Thus S(v-;.Cé) = linm S[v;c(t,u,q)]
::jlim S(v,t,,u,q) intersects Ak‘at q. Thus we have tﬁe

- proof by contradiction.

. Lemma"Z.,lB. Let 914952032 Q.‘ : gn A, _such that

9131,_324331'-? S,z Thgp G, does not meet A,[»u‘ p outside g.
Proof: Suppose that t& Cor $EAV py, t ¥ q. Thus
Gy F q. Choose a point u€h, Up, udkCy, and let S=5(u;C ). :

Then 'S,(u,ql’,qz,.qs) = 3[““‘“1»‘12”3):}9%" Since

S,(u,ql,qz,qB) does not me;ethz‘_-up elsewhere, the end-points

of a small neighbourhood of 'gq on A, are égpérated by this

sphere; hence its ;imit sphere S must intefsect Ah at q. Sincqv
| <X[C(t,q1.q2);G(ql.qz,q3)]_e90,-  

‘any accumulation ciréle;'cl, of C(t;ql;qz)baSSea_tﬁrough t

and touches C, at q, Thus Cl-.:co, and the sphere S(u,t,ql,qz)' -
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:SE:;C(t,.ql,qz)]—-)S(u;Co) = S. Since S(u,‘c,ql,qz) does
not meet Ahtzp elsewhere, the end-points of a small neigh-
bourhood of q on Ah are not separated by this sphere, hence

the limit sphere S must support A, at q, and we have a con-

4
~tradiction.
A general l-tangent sphere at a point g€ A, that is

not a general 2-tangent sphere, supports Ah at q. By Lemma

7.6 it does not meet AAL'p in three other points.

Lemma 7.1k. A géneral 2etangent sphere'of'Aa at a

‘point g does not meet A Up at two other points. It does

not support A, at any of these points of contact.

Proof: Let S be the limit sphere of a sequence of

spheres ' through three mutually distinct points, a1,d,,43)

which converge on A, to q. Let uand t lieon 3, u #Ft#£q
# u. Let S" = S(t,ql,qz,qB), let C, be any limip cirele
of C(ql,qz,qB), and let 8 be any limit sphere of S". 1If

Co=P, then S and S, touch at q, and if C_# p, 8,N8=C,.



iéb b
Sinﬁe in addition, S(and S, have the;péint t in(éommon (tqﬁcé'
‘by,Lemﬁa 7.13), it‘fdllowS'thét S::so. .Since S" does not
meeﬁ,ékxfp again, So intefsécta Au‘aﬁ qs (

| - Let sﬂtz.s(ﬁ,u,ql,qz),,gnd lgt Cl‘be any limit cir- |
cle ,off ,C(‘t»,ql,qz).- By Lemmé ‘7.12‘, .u 9.‘:"'61,. and since any

limit sphere S, of 5" contains u and 01; the fact that

Sozzlim*sﬂ'also contains u and’Cl implies that SI='86=.S.

Since S"':;S(t,u,ql,qz) does not ﬁeeﬁ AaLlp elsawherb, S

supports A, at q. S

S,, however, intersects A at q. Thus

I

S does ‘not meet AAUp at two pointg #4q. If t¥%#p, S" in-

tersebts A, at t. Hence the end-points of a small neighfv
bourhood of t lie on opposite sides of S", and thus they

. alac'lié bn oppositefsides,of 3. '?hus_no general 2-tangent

| sphere of A, at q supports,AA'gt'another point.

Lemma 7.15. A general 3-tangent sphere of A, does

not meet Akilp,again;

- Proof: Let S be a general 3-tangent sphere of Ak at
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q,: and suppose that S meets Aku p again at t. Suppo'se that

S is the limit of a sequence.of spheres S'= S(ql’qZ’QB’qL)’ f

where the qi are mutually’distinctfpoints converging'cn‘Ah

‘t,.o q. Thu‘sfs supports AI; at q;f ‘Let S":‘S(t,ql,qz,qj).‘

Then any limit sphere S, of S"™ contains t and intersects Ah' L
at q.

Let Go be any accumulatibnr- circle of YC(ql,q'z,‘qB).'

Then SN S D Co. If C =gq, then S and S, touch at q and

have the point t # q in common. If C, # q, then_coqs.t'by

Lemma 7.12, and hence SN8,D Cou t. In either céée,-)we
have the contradiction Sy= S.
z.z.'s. Theorem 7.1 yields several interesting results con-

- cerning the families of circles Yo,ag',, and Xz.

Lemma"].s implies.

Corollary 1. No circ;té meets A‘,*\in }Lﬁ. more than -

three points.

Corollary 2. No eircle of 3/1 meets A, more than once.
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Proof: Let u€A, N C(t.;’Yl), and let VEA , Vv ﬁéC(t;Yl).‘_
Then S[v;C(t;Xl):) = ”S(v,'t;o‘i) meets Ah in three distinct
points, contrary to Lemma 7.7.

Corollary 3. C(J>) does no§ meet Aaé

Proof: We are only concerned with the case C(?%);&p.

Let u€A n’C()’?_), and let vEAb, v;&_C(b’z). Then SE:;C(Xz)]

4

= 8(v;03) meets A4 in two distinct points, contrary to

Lemma 7.9.

Z.4. Strong Differentiability,

We call an arc A strongly differentiable at a point

'p if the arc is differentiable at that point and if, in ad-

dition, the following three conditions hold:

}Ei: Let P,Q,p be mutually distinct points, where

P¢'C(Q;)’1) and le‘t P'> P, Q'-Q. If thev two wdiatinct points

t and u converge on A to p, then S(P;Q; t,u) aiways converges. -
fé: Let P& C(Xz), P> P, If the three mutually

distinct points t,u,v, éonverge on A to p, then S(Pit,u,v)
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converges.

ZE%: S(t,u,v,w) converges if the four mutually dis-
tincet points t,u,v,w, converge on A to p.

7.4.1. It is clear that the limit of the spheres S(P}Qlt,u)

depehds only on P,Q, and'p, and not on the choice of the
sequences u and v. In particudar, if P'= P, Q':.i Q, and
u=p, we see that Zi implies Zl’ except where P« C(Q;Xl), and

lim S(P}Q}t,u) = S(P,Q;07).

Similarly, the limit of the spheres S(P!t,u,v) de-
pends only on P and p. Since

S{P;63) = lim S(P,v;oy) = lim lim S(P,u,v;o,),
v—>p u—>»p v—>p o

we see that lim S(Pt,u,v) = 5(P;03), if P¢& C(Y).
Finally, the limit of the spheres S(t,u,v,w) depends
only on p. Since

S(O§)== lim S(w;aé)v lim  lim S(v,w;07)
W—>p V—>p W—P

lim  1lim 1lim S{u,v,w;og),
u—>p v—>»p w—>3p

we verify that lim S(t,u,v,w) = S(o§). ‘Thus‘éfé implies ;E%.




,,geheralizés Lemﬁaj7.2:
Ay _of orderffdur;:'Then ALUp is strongly differentiable atAg.A:f}
ting corollary, which asserts that Thaorem 7.2rextends,it-
self automatically to include the cases whereVZSQ,Zfé, and

, 255 are weakened{so as'to;permit'multiblicities as‘defined'

" in section 7.3.

_are mumally\ di,stin'ct; and where'lP»gt; C_(»Q;)’l) and 'Pq&d@’zl;
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Z:4.2. We now prove the following important theorem, which

Theorem 7.2. Let p be an end-point of an open arc )f%

Before verifying Theorem 7.2, we prove an interes- |

corOIlari'l.v Let three diStinct*poiggg t.u, gnd~v"

converge on Aéilp to p, and let Pl—SP;gQLﬁ{g,lwheré E“énd Q ff{f

Let 5, (s 2__31_3) be a general 1-tangent sphere of A,Eigrat

t through Pt and Q! (P' and uju and v, & point of sgpport uj .

Let S} (sg) be ._a §enera1 2-’;;%‘5:1& ‘spheré at t t_‘.hroggh P! (u).

Finally, let Sg' be a general osculatiwg gphere at t. Then

(7.1) lim S-,_S(P Q,cr;)
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(7.2) lim S,= 1lim Sé:S(P;d‘é)_.

(7.3) lim 8. = lim S;:: lim S;‘:lim gnt=8(o3).

3 3

Proof of the Corollary: We may assume that each of

the above sequences of.Spheres possesseg an accumulation
sphere. S; can be replaced by a sphere S(P;Q;tl,tz) close
to S; and such that t, and t, are distinct, and converge
with t to p. Thus

| 1im §;= lim S(PJQjty,t,) = S(P,Q;07).

Similarly, S, and Sé can bevreplaced by spheres
S(Pfu,tl,té), and S(P;tl’tZ’tB) reséectively, close to S,
and 8} such that tl,ﬁé, and t, #re distinct, and converge
with t2 to p. Again |

lim S, =1im S(P;u,tl,ﬁz) = 5(P;05).
lim 85=1im S(P}ty,t,,t5)

Finally, 53’ 3!

3 Sg, and Sg' can be replaced by

spheres S(u,v,t;,t5), S(ul,uz,tl,tz), S(u,tl,tz,tB), and

S(tl,tz,t3,t4) respectively. Hence
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lim 83 = lim S{u,v,ty,%,)

- 1im S';: l;m S(ul,uz,tl,tz)
lim 5§ = lim S(u,tl,tz,tz)
lim 53'= 1im S(ty,tp,t,,t,)
Thus Theorem 7.2 implies our’corollary.
zégézL We-prove Theorem‘7.2 in the remaining sub-sections
of section 7.4. We shall let B be an open sﬁb-arc of AL
5ounded by p and an interior point f éf Ah" Let g be‘any

point of Ab outside B f. We orient those spheres S for

~ which gf;t_': S so that g=S§. 1In pgrtiéular, the set of such
spheres contains all the spheres whiéh meet Bup vf four
times. Their orientation is continuous. The points t,u,v,
w,d,e,f are assumed to be mutually distinct, and tb lie on
BVf in the indicated order.

Lehohs It is therefore evident that

(1) ucg(p,t,e:,f) a s(t,d,e,f).

Consequently,
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(7.4) S(t,u,e,f) C '4[§(~p,t,e,f).ﬂ _S_(t,d,e,fﬂ
| U[ﬁ(p,t,e},f) h"é'(t,d,e,f)] [V C(t,‘e,‘f).
Let I denote the fegibn in (7.4). From {7.4) we obtain |

(7.5)  lim S(t,u,e,f) < [Sle,f03) N 8(p,d ,e,f)]
| u,t—»p

U[ste,£561)nS(p,d,e,0)]US(e,f507) US(p,d,e,0).

By II we shall mean the limit.ofiI as t=>p. Lét S be any
limit sphere of s(t,u,e,f). 4s a poiﬁ;ﬁr rung contiﬁuously
on’B from d to p,»S(p,r,e,f) rﬁﬁs céntiﬁuously through the
region II from S(b,d,e;fiyto S(é;fzai);f‘é;n#er;ely,,evgry
Spﬁere through II and c(ﬁ,e,f),meets B;?iﬂgnca, if 8 passes‘.
through'IItJ S(p;d,e,f);}itjintérsecﬁsé aﬁ some point r,
where r=d if S=8(p,d,e,f) (Otherwise r lies betweeﬁ p.ahd
d). But then S(t,u,e,f), when it is close to.S, intersects
B again near r, éontrary.tO'Theorem 7.1. Thus S==S(e,f;61).

‘Corollary 2.  Lim C(t, u,e)- Cje 11~

t,u~>p ,
Proof: Lim ~C(t,u,e).= lim ]:[ S(t,u,e,f)

= Hs(e £03)




.

::C(e;b’l). |
M_j__ We néw pfove simultaneously that S(p‘,u,v,f)-)s(f;aé),
‘and;ssuming‘ this, that S(t,u,v,f)-»5(f;03). We first noﬂe
that | |
(11) | u¢‘§(v,f,;6‘1) a slp,v,e,f),
'and_cprrespondinély,k
(ii') - .u < -S-(p‘,kt,v,f) ﬂ _S_(t',v;e,f).
Relatzons (11) and (ii? ) yield
(7.6) S(p,u v, f) c [S(v f;0q)n S(p,v, e f)] ‘

b _U[ﬁ(v‘,f;o‘l) nS(‘p,v,g,fﬁ Uc(p,v,f)
and | | |
(.’7.6") S(t,u,v,f)C [S(p,t v,f)N S(b,v e f)]

u[s(p,t v, f)ns(t v, e f)] VeC(t,v f)

) reaﬁéétvizv‘el‘y. 'Let; II’I deng’te e:l..ther; the r‘egion in (7.3) or »-
,#heﬁ ?x?egion' fn (7.3').  From (7.3) ve obtatn

(7.1) lim S(p,.u v f)c: [S(f oz)nS(e f,G'l)]

U, Vv—>p «
U[s(r crg)ns(e £; o-l)u S(f,d"z)US(e £i01),
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while (7.3") yields
(7.4)  Um  s(t,u,v,2)C [5(g50,n S(e rie)]
t,u,v—>»p
U[_S_(f;a'z n S(e.fsa‘l)] UsS{fion)u S(e,f;c‘l).
By IV we shall mean the limit of III as v-p {(as t,v-p).

Let S bé any limit sphere of 5(p,u,v,f) (S(t,u,v,f)). Since

S>1im C(p,v,f) (lim C(t,v,f)) = C(f;xl), we see that S€ 0y .

As a point r runs cdntinuo.usly on B from e to P, S‘(r,f;d‘i)
runs cohtinuousiy through the region IV from S(e,f;o‘i) to

5(f;05). Conversely, every sphere through IV and C(f;b’)

meets B. Hence if S passes through IV US(e,f;cf ), it inter-

sects B at some point r, where r=e if §= S(e f; 61) (other-
wise r lies between p and e). But then S(p,u,v,f) (é(t u,v fi)
'ﬁhen it is cloge tovS,‘intersects B again near r, contrary

to Theorem 7.1, Thus S=8(f;05).

Corollary 3. Lim C{t,u,v} = lim C{p,u,v)
t,u,v—=>p u,v—>p
= C!Xz)_:_ '
Proof: Lim C{t,u,v) =1lim ]I S(t,u,v,f)

t,u,v=>p feh,



200

=US-(f;o§) = C(YZ)'. '

Lim C(p,u,v) = 1lim I[ S(p,u,v,f)
u,v—>p fEAb :
= [Is(e;03) = a(¥)).
Tehs6. Heré we prove, again simultaneously, that: S(us,».y;oi)
—98(03), S(p,t,u,v)—)s(o's), and S(t,u,v,w)-)S(oB), eachi. L

proposition being assumed to prove the following one. Pro-

ceeding in the previous manner, we note

(111) ~u< 8{vioy)n B(v,fi09)
(1417) - uc 8(t,v;63) N B(p,t,v,f)
(1i4m) uc §(p,t,v,w) N S(t,v,w,f).

Relations (1i1), (i4i'), and (11i") yield
(7.8) S(u,v';d'i) C [_S_;(v;c"z)n.'é'(v‘,f;o;lﬂ
U[B(viop) A8ty £507)] U clvi ),
(7.8') S(p,t,'u,j)c- [§_(t,”v;‘c'l)n§(p,t,v,f)}
'U[§(t,v;&l)n'§(P,t»V.fﬂ'UC(P,t,v)_s
and
(7.8"') - 8(t,u,v,w) C [§_(p,t,v,w)ﬂ‘§(t,v‘,w,f)] |

U[g(p,t,v,w)n §(t‘,v’,w,,f)] UcC(t,v,w),

23
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respectively. Let V denote either the region of (7.8); or
~ that of (7.8'), or that of (7.8"}. Relations (7.8), (7.8');
ankd (7.8™") yield |
(7.9) | lin sluviey)e [s(o-)ns(r 5] |
Ufs'(a-)ng_(f o]V slay) usie; o-z).
(7.91) ‘t’u’%gp S(p,t,u,v)C [S(G‘B)GS(f 0'2]
u[’é(@)n_&(f;q‘é)]US(ag)Us(f;o'z), ‘
and » |
| ,(7.9") C lim S(t,u,v,w)cbf.@.(d?)03(1‘;6‘2)]
T,u,V,Wwdp . | ; : ‘
| - UfStepn sieseu st usisiay),
respectively. By VI, we shall méan the limitl ovf V as v-p
(as t,i-)p; as t,v-,w'—}p).}} Lét S bé ‘any limit, sphere of
é(u,v;d'l) .(S('p,t‘,,u,v})’; ,S(t,'u,v,iw'))‘.’ Since S contains
1im C(v;)’i) (lim C(p,t,v); ‘lim ~:C.(j.t,v‘-,w)):; C(Y-); wé‘ see
that S&o, unless C(X2)~p.‘ If G(Xz).-p, ,S( ) and S(f’ 6‘2)
touc’h *a; P3 hen‘c‘e S C'].__‘S(O";)nﬁ(f;o'z)]u 8(03) (v S(f;?"z), ‘and

since 32>p, it must touch S('f;o‘,‘z) at p; henc‘ve Seo‘z. " As a

R
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point r runs continuously on B from f to D, S(r;dé) runs

~continuously through the region VI from S(f;dé) to 8(63).
Conversely,every sphere through VI and C(Z%) meets B. Hence

if S passes through VIUS(f;063), it intersects BUf at r,

‘whsre r=f if S:fs(f;oa). But then S(u,v;&y) (é(p,t,u,v);
S(t;u,v;w)), when it is close to S, intersects B again near
| r; contrary to Theorem 7.1. Thus S:S(d‘é). If c(¥7) # p,
‘thgre;is no diffi;ulty in séeing that 8= 8(03). The same
1s true if 6(6'3):: p. Suppose C(¥3)=p énd S(O"3) # p. |

By a consideration of the method in which S(u,v,6%1)

(S(p,t,u,v); S(t,u,v;w) converges to S through the region

V, we find that S must be a propér sphere of Gé; hence
S = 8(03)._
74,7, We new generalize section 7.L.4. Let Pd:c(e;a’l),

and let P'-> P, P # p. Th'en; by Corollary 2 (§7.b;..4)

lim S(P',t,u,e) = 1lim § [}',C(t,u,ei]
t,usp '
PP

s[P;c(e;b’l)] = ‘S(‘P,e;d'l).

]
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Corollary 4. lim C(P?.t,u):C(P;Yl_L.
: t,u»p ‘ R o
P'—>P

Proof: lim C(P','t',u):i lim.]I S(P? ity u e).
ﬁu—)p e€A) ,

=[Is(p,e;03)=c(ps¥%). -
With this corollary in mind, let Q¢ C(P;¥]), and

let Q*'—) Q, Q# p. Then

lim S(P',Q' t,u) = lim s[q* C(P‘,t u)]
t,u-»p
P> P,QtsQ = S[Q C(P,Yl)]

= 5(p,0507).

fg»}émggk:‘ if QéC(P;Xi),‘ -lekt s b§ 'ﬁany’ a‘céumli,xlation
sphe‘re of S(P",Q',t,‘u); ‘S'inee \,s":::.lmnc'('j"v,t',{x‘); C(P;)’l),
se6. | |
Z.4.8., Finally, we ’gehefali‘ze'se‘étiq;’i 7‘.1+;'5.,7Let, P & C‘(B’Z),
let ‘C(Xg) # p, and let Py P. ’I‘h»en’ bY',. C‘orpllarjy 3 (§ Tebe5),

lim  S{P',t,u,v) = lim S[P';C*(t,‘u,v)]
t,u,vap ' ' o o I
p'-> P ' ' : e

| = 'S[P;C(Yg)]z,s_(P;G'é).

If C(¥3)=p, then

lim ‘[S(P',t,u,v) n s{n.,u,v,f)]
= lim c{t,u,v)=p, | P #p,



i;e. any accumuiation Sphgré,>s;ofis(f',t,u;§) touches
l.’YLm_S(t,vu,v,-f)Gd'z at p‘.‘ Hence Sé 0"2 ‘Sinc‘ev S touches
any sphere of ‘0‘2 at p and gées through,é point P 7 Py
s =‘s(P;o-2).‘:‘ |

_gg_mz It Pcclb’g) and C{Y,) #p, ;lEt S be ‘a'r‘xy
acé‘umulati‘on '}:sphex;'e)of S(P',t,u,v). ~Since S‘blim C(t,"u,vﬁ)
C=cl%), se@

All the results in section 7.4.8 also hold if t=p.




CHAPTER VIII

kCONFORMILLY ELEMENTARY POINTS OF ARCS IN CONFORMAL 3-SPACE

8.1, Introduyction.

A point p of an arc A is said to be ccnférmally'gig-
mentary if there exiéts a neighbourhood of p on A‘thch is
decomposé& by § into two one-sided néighbourhocds of ééhéri-‘
cal order four. As a result of Theorem 7.2, these two one-
aided neighbpurhoods are strongly differentiable at p.

I conjecﬁﬁre that thé statement in Théoreﬁ 8.1 is
universally true; the discussion in Chapter & is a paftial
proof of this theorem, proving twelveAqut of the twenty-
four cases.

Theorem 8.1, Let p be a differentiable conformally

elementary point of an arc A, and let (@gzﬂ12321335i)

be the characteristic of p. Then p has the spherical order

205
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8og-8)$8o4a3.
This theorem remains valid if p is counted a, timas;
on any sphere of 6,, as+a) times on any sphere of o3,
agtata, times on ahy spheretqf‘sb, and finally,'ad+a1+a2+a3
times onls(d§);The‘the6rem alse-remains'valid if a point
uel is counted twice on any sphere which supports A at u,

three times on any general 2-tangent sphere, and four

times on any general 3-tangent sphere at u. There is no loséA _vfi

in generality if we”assume that A itse;f is decomposed by p
into two open arcs A, ahd'AL of order four. Thus the order
~of A, and therefore that Of;p, is not greatef than 8.

8,2, Some Necegsary Formulas.

Beforebeginning the prﬁof of The§rem 8.1, we pro&a
,séieral helpful rélétions involving'regioné; As in seétion
- Tk, we.let A4 be ap arc of order fp&r;a¢d 1§t § be én
end-point of Aa.}-Wé.asaumq;that tge poinﬁs p,t,u,v,d,e,f,g
}lie én Ava in the indicated order. If‘én& sphefe's doés

not contain the point g, then gcS. We consider spheres
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ﬁhrough the point p, which by Theorem 7.2 is sprongly
differentiable. |

To begin, we observe that
vc§(e;6‘2)n§(e,f;6'i).
Hence
S(v,e;cl)cfé(e;o-zm'S'(e,f;oj)]uff?(e;o-z)n §(e,f;'¢l):‘uc(e;xl). '
Thereforg S(v,e;6]) separates the regions

.S..(eic.z)n §_(e,f;di)

and - -
S{e;0,) N S(e,f;07).

Since - — —
gc.‘.S(e;G'é) N s(e,f;07)N S(v,e;07),

we find that
(8.1) §(v,e;61):{§(e;6§)rl§(e,f;61)
and consequently,

(8.2) ;§(v,e;di):>§(e;d§)f\§je,£;61).

In exactly the same manner, we verify that

(8.3)  S(w,v;03)25(v;03)n Blv,e;07)
"and o |
(8.4) §(u,v;61):>§(v;aé)/\§(v,e;61)

and again,

(8.5) 8(v;62)>5(03)NS(e;632)
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and

(8.6) - 8lviey)25(03)N S(e;03)

Results (8.4), (8.6), and (8.2) yield

(8.7) Slu,v;67)28(v;62) A S(v,e501)

fato3)n steso)] nfs(esopin se, 50 )
= _S_(Gg)n_S_(e;d"z)ﬂ_S_(e,f;d'j_). |
while _fesults (8.3), ‘(8'.-.5), and (8.1) yi'el»d}
(8.8) ‘ §(u,'v;olb):‘>§(0‘j,)n'é-(.e;d"g)‘n'é_(e‘,*f;d’l)‘.
Using the sama‘»niethods,‘ wé can pr“;:\'rve’the folloﬁing ‘ |

two relations

(8.9)  S(t,u,v50,)28(u,v,d305) 1 8(u,v307) |
:&(v,d,‘a;%)ﬂ_S_(v.d;o"i)]n[§(v,d;oi)n§(v;a-2)]:
’=§(v;d,'e;c-§),n_s_(§,d;§-1)n_s_(v;crz)
:[g»_(d,e,f;o;,)n§(d,e;a~l)]n[s_(d,e;cl)n_s'_(d';o-zﬂf :
‘ n[5ld;03) n s(03)]
=§(vd,‘e,f;d~o)ng(d,a;o'i)n'g_(d;d'é)n_S_(O':'g).
(8.10) :‘s‘(t;u,~§;¢;),:§.§(d,e,r;o-;,")né‘(d,e;q)

NS(d;o)n 5(a3).
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8.3. Multiplicities on the arc A= Az,UDUAi'

8.3.1. Lemma 8.1, Let M be a neighbourhood of p on A, Let

MS)=M(S,M) denote the multiplicity with which a2 sphere

S meets M. OSuppose that 5 does not pass through the end-

points of M. Then for every sphere S' sufficiently close to S, ji

M) = M(8) (mod 2).

Proof: Suppeee that S meets M at the points t with

the multiplicities @(t), and nowhere else. Then

M(8) =§t._€(t).
Construct disjoint neighbourhoods B in M about the points

t. The end-points of B lie on the same side or on opposite

sides of S according as e%t) is even or odd. If S' is

sufficiently close to S, then S8' will not pass through thé
end-points of B, and they will lie on the same side of 3% if
and only if they lie on the same side of S. The multiplicity
with which S' meets B, however, will also be ev;n or odd,
depending on whether the end-points of B lie on the same side

or on opposite sides of S'. Thus S' will meet B with a
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multiplicity e ("t»_)v_-.= Q(t) (mod 2) | if v'S' is ‘sufficient‘_lvy
close to}S.v If each B.is omitted,from the‘clqsure of ﬁ,
,théfe»ié*left é.cloSeévseb, whichfhas,no1p§iﬁts inLcommon
Qiﬁh S. If SQii§ Sufficient1yclea§2t6 s,.£$i§'set does
not meet S' either, and therefore f'

'/‘4(8') =% e‘(t)“Ze(t)(md 2)-—/4(8).
: 8.3.2, Let S be any sphere, and let t € SﬂM, t #p.
| Let p be the multip;icity witb which's meets M, Suppose there :‘t
ig a sequence offspheréé St cdnvergiﬁg;to S,,hnd a corr-
esponding sequence of neighbourhoods'85 Qf,t converging to
 §'such tha;‘each'S' meets B at least p* timeé;ﬁwheré
‘els L Thén.éach 8' can be replace¢}by anéﬁﬁér spﬁéré sm

which meets B' in not less thang distinct points, and such

.that the sequence 5" also cgnvérgés to S. Hence S will meet ,}fEﬁ

M at least o' times at t; therefore'e'sp; ‘This proves

Lemma 8.2, If §' is‘sufficiantly close to S, and

teM, t#p, and finally, if S has multiplicity O(t) at

L, thére is a neighbourhood of t on M which is met not
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more than O(t) times by S!',
Y

8.4. Multiplicities of the Families 6:)_—_&1&7,_0_‘].:_(1‘2, and

8.4.1. We now consider a sphere S of 0,01 By section 5.7,
S meets M at p with a mﬁlt_iplicitys a, ‘v(mocl 2). Let S'-»8,
and suppose that each S' meets M= N.up\.fN' in more than
two point.é converging with 8' to p. Then S',meets Nvp, say,
in at least two points t and u which’ converge with S' to p.
Let e€N. Then bj} 'l;hecrem 7.2, Corollary 2, C{e,t,u)
-*C(e;Yl). Suppbae C'>C #p, C'e 8", C'>§,u. Then

iim{ [C' ;C(e,t,u)) = 0,
and by Theorem 5.6, S‘é o1 . Thus there exist..s a neighbour-
hood‘of p which is met: not mc;re than twice by any vsphere S
close to S, This leads to

Lemma 8.3. BEvery sphere of 6, -0y meets M at p

with the multiplicity a;, Thus if S'-» S €o,~-03, there

is a neighbourhfod M, of p which is met by every S'

o S not more an..a nes.




212

8:4.2. Let 5€0y-03. Let S' be close to S, S' & i, and
1et l‘fil:. N}l VpVUN] be a small rieighbourhood of p.

By Theorem 7.2, Cor :3, C}(u,t,b)“’C(Yz) ‘as u,t->p.
Thus if S'ﬁC(u,t,p), then S€ g, Hence 1f psSt, then
S' will ﬁxeet leﬁi) npt more thgn o'nce‘.v Thﬁj% S' meets
f‘ii with a mgltiplicitys ao+él (m.ovd 2), and it also meets Ml
with a mul£i_piicity Saoﬂ-z., Heﬁée ‘the ‘l_nult.ipli,city’ wi’th ,, |
which S' " méets by 18 € ao-t-al:.‘. |

Next suppoée that p & 5', | Then .S' will m‘eet f’il(Ni)
at most twi'ce.' Hence S' meéts‘ﬁl with a multiplicity |
€Y% and = aoq-al(mod 2’. | Thué we have

‘L‘emma 8.4. Every gghgg.gl _gf'"o"-,__-;__ meets & émai;

~ neighbourhood My O_f p with a a:qggigli.c-itz S ata; unless
ac =81 = le

8.4.3. Let S€0y-0;. Let 5'>5, S' ¢ 63, Let My=NupuN}
be a smalllheighbourhoodvof Pe
Case (i). If S'e 03, and agra; ¥ 2, S' does not

‘meet N2(N}) more than once. Therefore S' meets M, with a
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multiplicity asta,+2 and 5%’*&1"*32 (mod 2). :Hence
| St meets MQ' with a multiplicity §aé+al+a‘2. '

}Case (11). If S'>p, S',é'q,_than é' meets Nz(Né)‘
at most twice.. Th‘e’n X meets M2 with ; mult.‘iplicitys ao-g-l,
‘and = ‘éof_al+a2 (mod 2). Thus St meabs-sz with & multiplicity
< a°+a1;|-aé unless a;= a,= l‘. | |

"Case (ii1). If pq&S"}, then 5' meets N,(Nj) at
| most three times. "Thus $' meets M2 wilth g multiplicity <6
and ..=_ a raj+a, (niod 2). Thu‘é st "me:et.s MZ_ wi}t-h é multiplici‘ty
| $ao+al+a.2 ki..m'léss a°+al+52$l+-.

Thus we have

Lemma 8.5. Let S€03,~0, and let S'-»S, S' ¢ o3, If

(1) 8,3y # 2 and 8'e 0ls

or if

{ii) aitay #2 and S'op, 8' & o1

or finally, if

iii) a a8, 2k, §3 -75 'a_._

then there exists a neighbourhgod M, of p which is met by




214

' .
S! at most a rajed, times.

8.5. Propeeties of the Familieg_gé‘géigi, and_on.

t
Lm;A=AAUvab.
8.5.1, By Theorem 7.1, S(G}) does not meet A outside p.

Thus we can assign to p the multiplicity a, ta +a tay

on 8(03).

8.5.2., Lemma 8,6. There exists a neighbourhood M= N,upul]

such that every sphere of g which meets NQLINL, meet s

A UAL exactly a; times.

~In particular, no sphere of o, meets Mh more than

a,q times.

.gggggz ’By Theorem 7.2, a sphere of o, meets AQ(AL)
at most once. Thus it meets AAL,Ai at most twice. By
Lemma 8.1, every sphere close to S(d})'will meet A with a
multiplicity&;ad+ai+a2+a3 (mod 2). Hence S(t;cé) will meet
AAL’AL with a multiplicity 5§a3 if t is sufficiently close

4

to p. Such a sphere will therefore meet AALJA' exactly

as times., Thus we can assign to p the multiplicity
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agtajta, with respectvto any circle of 0p-03.

8.5.,3, Lemma 8.7. There exists a neighbourhood:M3 of MA

which is met at&mos;-a;#aB times outside p by avery sphere

of 615,

Proof: Becauserf Lemma 8.6, we have only to consider
the sphéres of 6)~-0,. If suffices to construct a one-sided

neighbourhood Néc:NL of p such,that any sphere Of'si'dé that

meets‘Néktwice will meet Mh at most ay+a, times outside p.

By Lemma8.1l, Ng can be chosen so small that a sphere $

of =% through two points of N; is close to S(G}) and

meets ML with a multiplicity E’ad+ai+aé+a3 (mod 2). 8ince

S meets}Nh and N!' not more than twice each,‘it will meet

4

M

" outside p at most four times. Since S meets Mh.at p with

a multiplicity Sfad+al‘(mod 2), it meets Mh outSide,p}with
a multiplicity = aytay (mod 2). Hence Lemma 8,7 holds

Let a2+a3= 2 80 that &,= a3--l. Let [ denote the

end~-point of N#‘ Suppose the points u,v,e,f, lie on Nhnlf
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in the indicsted order. Choose a small neighbourhood

Néc:NL so that Né has no points in common with S(cé);

S(e;cb), or S(e,f;oi). We then have, as in section 8.2,

3S S(e3)n _S_(e;O‘Z)ﬂg(e,f,di).

- N
Now a,= a3=l. }v Thus if S‘(o;) intersects A at p, then
'S(e;dé) supports and S(e,f;ci) intersects, while if 8(05)
sugports, then S(e;oé) intersects and S(e,f;oi) supports.
Hence

'Ng c§(o‘3)n §(e;c§),n Sle,f;07),

or o o o
Njc Slog) N S(e;0,) NE(e,f307).

By relations (8.7) and (8.8), Nﬁ lies either in'g(u,v;ai)

or in ﬁlu,v;di). Thus N} does not meet s{u,v;o3). By

Lemma 8.1, ahy sphere § of 61~6§'through two points of Né

meets Mb with a multiplicity E;adbax+l+l (mod:2), Thus it

meets NAL/NL an even number of times, It meets Nz exactly
twice. From the above, S then cannot meet Nk.twice. Hence

S and NA are disjoint, and S meets Mh with thé total:

multiplicity_ad+al+2==ad+ai+a2+a3.
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8.5.4, Lenma 8.8. There exists a neighbourhood M2 of MB

which is met at most artgthBFtimes outside p by every

sphere of o unless al+a2+a3= b, 8,= 2.

Proof: In view of Lemma 8.7, we have only to consider
the spheres of 0o-03

(i) By Lemma 8.1, Nz can be chosen so small that a

sphere S through p and three points of N2 is close to S(d})

and meets M with a multiplicity = a+a

3

I+a2+a3 (mod Z)f

Since S meets Nz and Né not more than three times each, it

will meet MB outside p at most six times, Since S meets
M3 at p with a multiplicityhsao,'it meets MB outside p with

a multiplicity Eal+a-2+83 (mod 2). Thus Lemma 8.8 holds

if a +a +33>£4..

(ii) Let a,tae az=3, so that al..a = a}._l.

Suppose that M, is so small that it has no points outside

3
p in common with $(63}, S(d;o3), S(d,e;07) and S(d,e,f;0,).
Then

Ny< §(o~3)n_s_(d,o~2) nS(d,e;o7)n s(d,e,f;07)

Jiokaiden
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while Né lies either in
§(a'3)n'§(d;o'2)n é‘(d,e;c-l)n S(d,e,f;07),

or else in

slo3)n sld;on)ngld,e;07) N 5(d,e,f507),

according as a_ =1 or 2. By relation (8.9) and (&8.10),
Ni lies either in §(t,u,v;d;) or in §(t,u,v;o_ ). Thus

N2 ).

3

does not meet S(t,u,v;oo

(i1') To complete case (ii) we show that M, may be

chosen so that a sphere of 0~ through two points u and t of
- o

N5, and a point u' of Né does not meet NZLINé elsewhere.'
Let hENB’ hte Né. Let Mh denote the heighbourhood of p
bounded by h and h', Let M, be a neighbourhood qf p whose
end-points lie in Mh. By the above, S(t;u,h;da) does not |
meet Né. Thus h ¢& S(u,u',t;o;).

S(h';03) intersects M, at p, gnd does not meet M,
elsewhere (cf. Lemma 8.6). Hence there iévé neighbourhood

Ny Ny such that S{h',u,t;o7) meets N20 N} with an even

multiplicity when u and t&€N,. By (ii), S(h*,u,t;c;) cannot
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meet NZL/Né four times, hence it meets'Mz only at u and t

outside p, and intersedts M, at these points. Thus

2

S(h',u,t;07) does not meet Ni. Hence if u'e N}, h' ¢ S(u’,u,t;g)

By‘sect‘ionv (8.5.3‘), S(u,u‘;a-i) intersécts MB at u and u', and

-

does not meet MB

elSewhef'e outside p, Hence S(u,d'r;o*j_)
separates or does not separate h and H? according as a = 2or.
1. If t is close to p, the same holds for S’(u,u",t;cz)_.

But S(u,u',t;d;)_does nét,passrthrough h or h' for

any u,t€ Hl, u'e Né."- Then as 't m_’oves' in Ni, S{u,u’ ,t;'O;')

meets Ny UN) an odd number of times. By (11) it meets Ny

and Nl'] at moét twice each, hence it ’must meet:Mh exactly

three times outsidé'.p. Thus any sphere of Oy through two

points of Nl and a point of N) meets NiapUNé nowhere else.

The fifteen céseys for which 'a1+"a2+a3,=# 4 are now
'dispéséd?éf. Thexfe- fgmain the six caz;es for which él+az+a3= L,
‘azx #= ~2.

(1i4) The;cés’es a;= 2, a'2=é3=1. '-Let; e,e'e M,,

eglN;, e eb_lé. By Lemma 8.5, theré is a heighbour‘hood
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'Mzc:MB»Of p such that no sphere of‘az‘through e orre' meet s
Nztlﬂé in four poihts. We shall prove that a sphere S of
o, through two points v and u of NZ,.and two points v!

| and u' of Né does not meet M2 elsewhere.v By Lemma 8.7,

S{v,v?;07) does not meet M elsewhere. It intersects N,

3

at v (Né at v') and meets Mz at p with a multiplicity=ag.

- ] . dit
Let Ml-Nlu pUNchxz be sq small‘that

(a) no sphere of o=

) through four points of NlLJNi

passes through v or v';

(b) no sphere of 6y through two points of N,

'or'Ni passes through both v and ¥'.

- {ef. Lemaa 8.5 and Theorem 7.2). Thus v and v! do not lie
in Ml' By Lemma 8.1, there exists a neighbourhood MC:Ml

of p such that S(v,v’,t;oz) meets M, with a multiplicity

1

sao if t€ M, From the above, S(v,v',t;o;) meets NlU Ni

with an even multiplicity, and it meets N, and N{ at most

once each. Thus S(v,v',t;0") intersects N, only at t,ﬁ
o}

1

and intersects N] at one point t' only. Let t move
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on‘N2 towards.u. Then‘s(v,v',t;as} doesynot pass through
e or e',‘tf daeshqt converge to p,‘an& S(v,v',i;a;)
conpinues to‘meet Ne and Névwith an even mulﬁiplicity'}

, ife,, exactly twi?e‘égch‘ Thus whgn t;=u or t'=u',
S(v,v';t}o;) coincide§~with.8.

‘ (j.v) ’I‘he" ce‘t‘se_s a1= a,=1, 33=' 2; ’;Choosevg,'f,
,,ege',f',gﬁ on thlﬂ§ ia£he iﬁdicateé'bfder S§ that no
spheré'of o0 through any two of,thesev§61n§s’is a sphere.
of‘d%; Given g and#g'; we can cho¢se~f én& f' so that S(f3655 :iﬁf
| '» ($(£foé)) meets Néf(ﬁg). Now chooag}éife') between p and. o
£ (£') such thatvS(f;oé) (é(f';dé))does!not Qeet N;tlef~(Neue).lwkt

| By sectioﬁ‘8y652, there is é neighbourhood‘MZC:Me ,
of'p such_that a spherg tﬁrough p and,any;twp of the points

! at most once, Let 7&N2, vie Né

g,f,e,e!,f,g" meets N2LJN2

g0 that the sphere S(f,v';oi) converges to S(f;ﬁé) if +!
converges to p.
If t is sufficiently close to p, S(f,v’,t;aa) is

close to S(f,v';ai),_whiéh.in turn is close»;o S(f;6§).
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Thus by section 8.4.2, S(f,v’,t;d;) meets Ng and Né twice
each, and meets N! only once. From the above, S(f,v',t;a;)
cannot pass thrdugh g,8', or e’. Let Mlc:M2 be a neighe-
bourhood of p which does not contain t. By Lemma 8.7, there
exists a still smaller.neighbourﬁood MoC:Mi such that
S(f,v',t;ub) meets M, at p only. Thus é(f?v‘,t;o;) meets
Ng-NO and Ni-N! exactly twice each, aﬁd it meets Né-No

exactly once, As t moves in Mz, S(f,v',t;oa) meets N -N,

€

;;d Né‘N;o with an evenvmultiplicity, i.e. exactly twice
‘each, and it meets Né-Ni with an odd multiplicity €2,
i.e., exactly once.

Hence S(f,v',t;oa) ﬁeets N2 and'Né exactly once each.

2 and N3 exactly once each.

'Similarly S(f‘,v,t;o;) meets N

Consider a small neighbourhood Mc:Mf of p, and any

sphere of 61 which meets NUN' twice. This sphere is close

to‘a sphere of &,, and meets some neighbourhood of p in Mf
with a multiplicity 5a0+1+1. But a sphére of o‘i meets Mf

at p with a multiplicity ssad+l; hence it meets some
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neighbourhood’of p outside p with an odd m&ltiplicity, i.e.,
at least three times. Thus there exists a neighbourhood

| Mc:Mf such that any sphere of o that meets NUN' twice

1

| meets Mf

at least three times outside p. By Lemmsa 8.7, it
does not mest Mf outside p more than three timgs.

Thus S(v,v';6;) meets M, in exactly one more point

exactly

say u's If t is close to p,'S(v,v',t;cs) meets M,

a, times at p, once each at v,v',t and near u' and ‘no-
where‘e15e.~ By Lemma 8.7, there is a small neighbourhood

M& My of p which does not contain t, and which is not met

by S{v,¥',t;0;) outside p. As t moves in Nz,‘s(v,v',t;ca)
meets N -Noc and N1-Nj each with an even multiplicity, i.e.

twice each. Thus no sphers of g meets M, more than four

times outside Do

8.6. Proof of Theorem 8.1 When a +ajta ¢ a.3‘>‘6.
If is sufficient to shbw that‘there is a one-
aided neighbourhood Néc:Né of p such that no sbbere S

through four points of Nl vp meets Mk more than a°+aI+a2+a3
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times. On account of Lemma 8.8, we need only consider |
{

spheres S which do not pass through p. By Lemma 8,1, Né can

be chosen such that any S close to 8(03) meet s Ml+ with a

multiplicity = ao+al+a2+a3 (mod 2). Since p¢ S, and since

S meets Nu (NL) at most four times, it will meet Mh at most

eight times, This yields Theorem 8.1 in this case.

8.7. The case ad*aliﬁthBELAL

On‘acéOUnp of Lemma 8.8, we need oniy consider the
spheres which do not contain P
8.7.1. A small neighbourhood N; pf éi does not meet S(d,e,f,g).’ i
Let the points p,t,u,v,w,d,e,f,g,h, Lkie on Ahu p (Ah is a
one-gided neighbourhood of A ana is of order four) in the

indicated order. For any sphere 8 with h¢f S, we make the

<Ny,

convention that h<S, Hence; if Ny

Nlc'f‘s’(d,e,f..g)ngg(d,e,f;_o—)n g(d,e;O'i)hﬁ(d;d%)n 5(my),
0

and since a,= 8;= &8=a, = 1,

3

Néc'é(d,e,f,g)f\'§(d,e,,f;o;)r\ S(d,e;o5) N §(d;o~2)n's'(c§).

Let t,u,v,w lie on Nj. By & method similar to that
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employed in section 8.2, we find that
—Sf(t,u,v;w)jfﬁ(u,v,w,d)f\§(p,u,v,w)
:?fé'(v,w,d,e)ng(p,v,w,d)]nﬁ(p,v,w,d)n §(v,v};d’i)]
, .f)[§(w,d,e,f)ng(p,w,d,e)]ﬂ[g(p,w d. e)ﬂ§(w,d;01)]
ﬂ[S(w 4;07) Nw;03)]
D[§(d e f.g)ns(p,d e f]n[é(d e,f; o-)n S(d,e; c'l)]
afa,8507) nSid;0 ] n[Bee; )ns(o'j)]
| :S(d,e,f,g)n S(d,e,f;"%)‘n's'(d,e;oi)n'f‘?(d;crz)n'é'(%).
Thus a aphqre through four péints of ﬂi does not meet Né.
Symmétrically, there is a nsighbéurhood Né such that a sphefe
througﬁ four points of Ni'doés not ﬁeeﬁ Né.
- 8.7.2, Let M= NoupuNé. Let h,k,leﬁo,h';k',ﬂ.'e L
. By Lemmge 8.2, 8;3; and 8.8, there is a,néighbourhood
Mc;Mbqpf p sucﬁ thatja sphere through any three of the poinﬁsijgf
h,k,ﬁ,h',k',l"and a point of M doés hot mgé; Mo eleewhere.
T’husy if u,t,eN“arrxd u'},t'evlﬁ', the s-phere's"s(k,h,u',t'), |
S(k,h',u',t), S(k',h,u,t') and S(’k" ,h',u,t) do not pass

- through & or &'. By section 8.7.1, theme spheres do not
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support Mb aﬁ any~other point and; by Lemma 8.8, they do’not |
pass through p- Since S(k,h,u*,p), S(k',h,u;p) ahd
S{(k',h',u,p) do not meet M, élsewhe:e, there is a neigh;
bourhood M= Nguv pv N} of p, MM sﬁch that S(k,h,u',t'),
S(k‘,h,u,t'); S(k,h',u',t)~and S(k',h‘,ﬁ,t)-do not meet
M, elsewhere if t€ Ny , and t'g N.,'( Thus each of these
spherés meets ﬁl'(ﬁi) exactly twice. rLetting t #nd t! méve
on H,and N’ﬁreépectiﬁelﬁ, we find thats(k,h,u',t'),
S(k',h,u,8'), S(k,h!,u’ ;.t,)_ and S(k',h',u,t) -él:o meet 'NQ‘ and
N{ with an even multiplieity, i.e. exactly twiée each, :Thusv
the spherea S(h,u,ﬁi,ﬁi) and_é(h',u,u?,t) do not pags through
k,k', or p when u,tejﬁ,‘ and u',t'e N', .Since S(h',u,u",p)
,ané;s(h!u;u',p)»do not meet Mb’elsewhere, there 1is a small
| neigbbourh0§d>Mp= Npu pclﬁé R M@C:Mo, suchrtbat S(h',u,u',t)
and S(h,yu,u'},t') do not meet ;Movagain_‘,ifu t;e N@ and t.'e» Né
Thus k,p, andlk' lie on thé same side of ﬁhese spheres.

As ¢ and t' range on ﬁ>aﬁd'N"respectively,

S{h,u,u’,t') and's(h',u,u',t) do not pass thrpugh p and
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continue to meet Nk and Nﬂ with an even multiplicity,i.e.,

exactly four times. Thus S(u,u',t,t') does not pass
through h or h' if u,t,€ N, 4',t'e€ N'. Since S(u,u',t,p)
does not meet M elsewhere, the same holds for S{u,ut,t,t')

if t' is sufficiently close to p, t'€ N'., Thus S(u,u',t,t')

does not separate h,p, or h'. As t' moves on N', S(u,u',t,t')
does not pass through h,h', or p, and by section 8.7.1 it

does not support M at any point. Thus S(u,u',t,t') does

not meet Mh elsewhere if u,t,€N and u',t'e N',

8,8, The Cases, {2,2,1,1;1) and (2,2,1,1;3).

Let d and d' belong to the neighbourhood M of Lemma
8.8 (iii). On account of Lemma 8.8, we need only consider

spheres,wh;ch do not pass through p. By Lemma 8.5, we can

choose in M a neighbourhoéd M°=‘N°L1thN5;of p such that

no spherg through six points of Mo passes through d or dt.
We shall prove that‘any sphere which passes through three
points w,v,u, of N, andvthrée pointsvw',v‘,ﬁ*, of Né, does

not meet M_ again. By Lemma 8.7, S(w,w';61) does not meet
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M outside p,w, and w'. It intersects M at w and w', and

supports M at p. By Lemma 8.6 there is a neighbourhood
Mo = NyupUN% of p such that S(w,w',t;%) meets N, (N! )
at most once. There is a neighbourhood Mgc My of p such

that S(w,w;t;o;) meets My with an even multiplicity if te N(p,

Since S(w,w;t;%')"supporbs M, at p; it meets N, U N! with

‘an even mult‘iplicijcy, i.e., it meets Ny once at t and N}

once at some point t'. Let My be a neighbourhood of p which
does not contain t, Then there is a neighbourhood M{: with
end-points & and g', such that S{w,w}t;oy) does not pass
through NS””:; if teNo - Re. As t moves on No - K¢,

S{w,w! t;%) does not pass through d, d', & or g'. Thus
S{w,wit;oy) meets Ny - NS (Né - Ng’) with én». even multiplicityi,

f.e. twice. Suppose that t reaches v while t' meets N! between S

s' and v'. Thus S{w,wjv;oy) meets N! at a point t' between.

8' and v! and does not meet d elsewhere. It intersects M
at w,w',v, and supports M at p.

Thus S(w,wlv,t') supports M at p and does not meset




vM-elsewhere. Let t move in N towardé v'. Then at_first,'v
S(w,w;v,t'} meets a small neighbourhogd of p exactly twice,
doés not'pass through p, and does ﬁot~me§t thig,neighbour-
hood twice on one side of p; ige;,fit‘mgets.tgis neighbour#
boéd once on e#ch side of p.v Thué.s(w,w;v,t') meets N (N')
iith an(odd.multiplicity. ‘As t! moves on N towardsvv',’
S(w,w;v,tf) dées ﬁqt pass thtough d,d', or p, hence it does
, hat when t!:kv§, énd S(w,w;v,t') meetalny(ﬂ') wiﬁh an odd

multiplicity;_i.é.,’three times each.v

8.9. The Cases 12,1;1;2;2) ahd‘(2.1,1,2;31fﬁ
| By Lemma 8.8, we need onlyvconsider spheres which
do not c&nﬁaihlp. Aside from"p=an& the neighbourhood Mé of
Lemﬁa'8.8}(iv), the‘points ahd neiéhbourhoods déscribed in
tbis section do not refer to thoéa ﬁreviously mentionedf
Choose e,f;g,e',f',g‘ qniM2 $uch that any sphére of
Gi through two of these points doés‘not belong to Oae By

Lemma 8.4 there is a neig‘h’}bourhch Ml= NlUpU Ni of p such
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that every sphere through two of the pointé g, f,g', 0 meetg
AMi at most three times., For a giveﬁ g and g', choose f (f')‘
such that S(f;o3) (é(f';oé)) mests N (Ng). Next choose
e (e') between p and f (f') such that S(f;o03) (S(f';oz))
does not meet e'uN; (euNev). |

If u' is close to p, u' € N}, 8(f,ulej) is close to

s(f£;6») and meets N

g at f only, N; at u' only, and Hévonce

outside N;. Ifkt is sufficiently close to p, S(f,u;t;ca)
n will meét Ng and Hé twice eéch,’but N; only onée. By Lemma

8.4, as t moves in Nl,’S(f,u;t;oa) reméins close to S(r;aé) E
and continues to meet N'.outside Né. Thus S(f,a{t;da)_meeta

e
Ngv(Né)-exactly twice. By Lemmas 8.1 and 8.4, there is a.
neighbourhood M§ such that S(f,ult,r) meets M, with an even
“ multiplicity & 3, i.e., twice. Since S(f,vitjo,) &0y,
S(f,u;t,r) musp meet N (Hg)vonce each. Thus S(f,ult,r)

mests Ng and Né three times each. From the above, if r

moves in N;, S(f,u}t,r) does not pass through p,g,g', or e',
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and p and g (g') will lie on opposite sides while’p and e!
will lie on the same side of S(f,ult,r). Thus S(f,ult,r)
will méet Ng (Né) exactly three times and N; aniaven number
.of times, i.e., exactly twice. Hence S(f,ult,r) will meet
Nl and Ni oply tw;ce each, i;e;, it will meetlnl only four
ti@es. Similarly, S(fiult,r) meets Ei only.four times.
Thus any sphere through five pqints}of Ml does‘hot paas_
through f or'f'.
| We shall prove thaﬂ a‘sphére through three points
w,v,u, of Ny, and,three points of Ni does not meet Mf elae-
whefa.
Startihg with 3(t;0%), we note that it @eets'N} a=-
gain if t is sufficiéntly ¢close to p. Letting t mevé in N
.,toward§~w, we cén assumé‘that wa;ﬁé) meets‘Ni‘éﬁya‘point
t! between p and w'. If t is close to P, S{w,t;ai) meéts

Hi at t' and does not meet M2 elsewhere. Let M be a small

neighbourhood of p which does not contain t. There is a

S

1
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still smaller neighbourhoodN,cM.gsuch that N@u N} is not
met by S(w,t;oi). Thus as t moves on Nl - Ng towards v,

«S(w,t;di).meets Ny - Ng at W and t only, and meets Ni,- Né

once. Eventually we get either (i) S(ﬁ,v;oi) meeting NJ - Né

between p and w', or (ii) S(w,w';ai) meeting N1,between p

and v.

Case (i): If r' is close to p, S(w,v,r';o;)‘meets
My exactly four tihas outsidé pe Let Ma—be-a<small neigh-
bourhood of p not including r'. Thus as r' moves towards

! an even number of times, i.e.,

w!, Slw,v,r';o;) meets Ny

‘twice. Thus we obtain S(w,v,w';oa) when a point reaches w)}

’and this spheré meets N!:again ét a point t'vbetwéen p and w',
Case (ii): If r' is close to~p,‘S(w,w;r’;a;) meets

M2 again only at one other pointlof Hi between}p and v. As

above, as r' moves towards v', there is a neighbourhood of

p which is not met outside p by S(w,wir';oy). Thus, as a-

bove, we can obtain S(w,wiv';oy) meeting N, between p and v,
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or S(w,w;v;oa) meeting Ni between p and v'.

" Let r' move towards v'. Then S(w,v,w!r') does not
pass through p if r'a# r, and it does not pass through f or

f' as long as it contains more than four points of M It

1.
meets Ml near p with an even multiplicity and it cannot meet
Nl (Ni) twice arbitrarily close to p. Thus it meets N, (Ni)
ohce. When r' reaches v, we get S{w,v,w}v') which meets Nf

(Né) an odd number of times ;?2, i.e.,, three times.

8.10. Conjecture.

Let p decompose A inggvtwd arcs of order four. Then

p is strongly differentiable if and only if p-is a differen-

tiable point, and a = a1=8,= 1.
. (® ~




CHAPTER IX

DIFFERENTIABLE POINTS OF ARCS IN CONFORMAL N-SPACE

9.1 Introduction,
In this‘chapter we generglize to n dimensions the

work of Chapters 2 and 5. The change from three to n di-
mensions is not as pronounced as the chahgé from two to
three dimensions, although the necessarily complicated no-
tation, and the absence of any visual aid, make it appear.
quite difficult.

9.2. Differentiability.

Let p be a fixed point of an arc A, and let t be a
-variable point of A. Let l$m<n. If p,Pl,...,Pm+l do not

lie on the same (m-l)-sphere, then there exists a unique

(m)_ S(m)

m-sphere So

(Pl”"’Pm+1;té) tbrough these points.

We call A (m+l)-~times Qifferentiable at p if the following

sequence of conditions is satisfied:

234
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I;(m): If the parameter t is sufficiently close to,

but different from, the parameter p, then the m-sphere
S(m)(P P " ,t;0 ) is uniquely defined. It converges
17 Pmelarr¥itpo] queLy y 8

if t tends to p. Thus the limit sphere

(m)_ o(m)
Sy =8 (P yeee,Pyiy pily)

will be indepéndent of the way t converges to p (r==l,2,

«+s,m¥¢l; condition Ia+l(m) reads: S(m)(t;tm) exists and con-

verges to Sr(nT]).a S(m)(Tm+l)>.

(o)

o to denote

It is convenient to use the symbols S

(o)

pairs of points P,p, and S1

to denote the point pair p,p
(i.e., the point p).

1
We call A once-differentiable at p if Ii( ) is sa-

tisfied. The point p is called a differentiable point of A

if A is n-times differentiable at p.

(m)

]
r 8., Thus

Iet'tim) denote the family of all the S

T (m) (m)

me] COnSists only of Sm+1’ the osculating m-sphere of A at p.

9.3, The Structure of the Families't§m) of m-gspheres through p.
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\ (m)
Theorem 9.1, Suppose A satisfies condition Ii at

(m-1)

p. Let S be any {(m-~l)-sphere., Then there is a neigh-

bourhood N of p on A such that if te N, t % p, then t & s 81,

(m=l,2,...1n-11.

Proof: The assertion is evidently true if p¢.S(m'l).

(m-1) o (m=1)
Suppose p<S . Choose points Pl,...,Pm on S such

that p,Pl,...Pm are independent. If the barameter t is suf-

ficiently close to, but different from, the parameter p,

m .
condition Ii( ) implies that S(m)(Pl,...,Pm,t;Ts) is unique-

ly defined. Thus t ¢ S(m'l)(pl,,“,pm;to): S(m"l).

Corollary 1. If A satisfies condition Ii(m) at p,

and S is any k-sphere, then ts‘:s(_k) when the parameter

t is sufficiently close to, but different from, the parame-

ter p (k=0,1,0,,,m=1).

In particular, this holds when m=zn-l.

Theorjem 9.2, Let 1€m<n; lsk<sm, If A satisfies

(m) {m-1) (m-1)

_I:i ,...,R(m) at_p, then I3 peee gl will hold
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there and

(m=1) . - (m) .
(9.1) 8 (pl,...pm_r,tr)-gs (PyyeeesPy_WP3T.).
Conversely, let A satisfy Ii(m-l)...LJI%(m'l)at p, and let

(m-1) ' (m-1) :
S, #Fpif kzm, IfP &S (PyseoonP 5T ),
(m)

then I: will hold for the points Pl,...,P and

M-r4l —

(9.2) S(m)(Pl,...,Pm__”l;tr)zs(m)[Pm_r*l;s(m"l)(Pl,...,Pm_r;tr;}-

(r=1,...k).

-1) -
Remark: In general, Ii(m ),...,I}(m 1)

ply Ii(m),..f,Ik(m) (cef. e.g., § 5.5).

do not im-

Proof: (by induction with respect to k): Shppose

1{:1;_l<1n<rn Let,Ii(m) hold. If Pl,...,Pm_l,P,p are in-

- dependent. points, S(m)(Pl,...,Pm_l,P,t;Tg)_exists when t is

sufficiently close to p, t ¥ p, t€ A. Thus PyyeeesPp 15P,
. o (m-1) T

t,p, are also independent, S (Pl,...,Pm_l,t; o) exists,

and

-1 '
sim )(Pl,...,Pm_l,t;to):Igs(m)(l’l,...,Pm-l,P,t;TO).

If t-p, S(m)(Pl,...,Pm_l,P,t;Tb) converges, and hence
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S(m‘l)(Pl,..., Ppo1:%s 'C ) also converges, I']‘_r(m-l)is satis-

fied, and

sy, py Ty :];[s(m)“’l'“' Pua1aPily)e

Next, suppose that I‘i(m‘l) is satisfied, and

(m=1)

Pm¢'S(m-l)(Pl’...’Pﬁ—l;tl). Than Pm¢s (Pl,oo‘,Pm_l,t;to)

when t is sufficiently close to p, t€A, t ¥ p, and
m -
S( )(Pl,...,Pm,t;'[o)ss(m) [Pm;s(m l)(Pl,..., Py 1,t.,t )}

exists. Hence when t-p, S(m)(Pl,...,Pm,t.;l'o) converges,

(m)

I; is satisfied relative to the points Pl,..,Pm, and
(m) | g(m) (m-1)
S (Pl,...,Pm;T.'l =S I-P ;S (PyyeeesPp 13T )]0

Thus Theorem 9.2 is true when k=1.

Assume that Theorem 9.2 holds when k is replaced by

1’2’.0.,}1’ Wh&re l$h<k$m.

(m) (m) o |
Let T ,eeesThyy holde Then 8™,y 1 PaiTy)

exists when t is sufficiently close to p, t ¥ p, t€A. Now

Ii(m),---,l';l(m) imply Ti(m'l),...,l;l(m'l). If h=m-1,

I?l(m-l)z 1‘;1_(_?'1) im‘pli‘es that S}(\m'l) (m'l)(t l) exists,
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(m=1) I\(m-l) imply Ii(m-Z)’

if t ¥ p. 1If h<m-1, I yeresIp

- (m=2) (m-2) . :
eees I . Thus S (pl""’Pm-h-l;tﬁ) exists. Fur-

thermore, Ii(m'l) and Theorem 9.1 imply that

(m= 2) . .
t &S l,...,Pm_h l,T ). But then Theorem 9.2, with

k replaced by h, implies that

(m-1) ' T )=g(m-1 [ (m~2) :
s@L(p oyt T lesm D e (2 p e T ]
exists, By Theorem 9.2 again, with k replaced by h,

(m-1) T oy (m) .
S ,(Pl,...,Pm_h_l,t,IhF;[S (P yeeesPy b 0Pyt T )0

(m)
When t=¥p, S (Pl""’Pm-h-l’P’t;IL) converges, hence

(m=1) . -1
S (Pl,...,Pm_h_l,t;T') also converges, Iﬁil ) is sa-

tisfied, and

(m-l) . - (m) .
s (pl,...,pm“h_l,tm)-ﬂ- (PyyeresPyp1oPilp,y)-

Next suppose Ii(m-l),...,Iai?-l) hold, and let

(m- l)
m_hqts Plyees ,Pm_.h_l,l'h )+ Then P,

qﬁs(m_l)(Pl,...;P t;z%) if t is sufficiently close to

M=-he-l’?

p, t€A, t 3 p. But Theorem 9.2, with k replaced by h, then

implies that
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(m) (m) m-l)
8 Py e Py 1 Pupti G =S [}m 35 (Plyeufy L 1ot Th]

exists. Hence when t-»p, S(m)(Pi”"’Pm-h’t;Ih) converges,
IELT) is satisfied for Py,...,P pr and

(m) g(m) g{m-1)
S (P, e 3G ) S E’m__h, (PJ_""'Pm-h-&l;rn'bl‘)]'

Corollary 1, Let 1Sm<n, If A is (msl)-times

differentiable at pvwthen it is m-times differentiable there.

Corollary 2. If A satisfies I‘in'l)....Ia*{n:El_

at P, then it is{m4l)-times differentiable there (0 m<n).

L 1

Corollary 3.

{m=1)

' g(m)

m$l

Proof: By relation (9.1)

s (5,7, ol st (p;)

I
wn
B

Hence Séu-{ o S(m'l)

The last rémark implies

Corollary 4. Let lsmgn., If S(m =p, then S(r)
m+ r+l

=p (r:O,l,...Lm—l).

(r

Thus there is an index i, where 1$iS$n such that Sp+{~
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(r

) ,
r+l #p if r>1i.

for r=0,1,..., i-1, but S

Corollary 5. Let l¥§m<n; 1Srsgm. Then

(m-1) X |
(Pl,.oc ’Pm+l‘r’tr-l).

m .
S( )(Pl"."Pmﬁ-l-r;.q'):s
Proof:

S(m) (Pl, s e ,Pm+l_r;tr) =t];i;np S(m) (Pl, PP ’Pm'l'l-r’t;tr-l)

{m-1) .
: S (Pl;'°"Pm+1—l‘"tr‘-1)'
Form Corollary 5, we get

Corollary 6. Let 1§m<n; 1$rsm, If Po.» .

(m) g (m-1)
=8 (P,eeey Py 3Te) aRd Po  GE S (P)sees

Pm+l-r;

rr-l) then
S99 (e Py ) =8 (P Py Ty )

Theorem 9.,3. Let 1<« rgm<n, Suppose ﬁ(m)....l

p 1(-m) are satisfied at p.

(r-1

(1) If s,

) .
* p;cl(_m) consists of all the m-spheres

(r-1)
through sr .

(i1) Let Sr(.r'l)—_- p. Choose any Sf.r)et(r). Then

I
(r)
r at p.

‘L'l(.m) is the set of all the m-spheres which touch S
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Proof of {1): By Theorem 9.2, equation (9.l),

(m-l)(

S‘m){Pl,--°meqinr;t}):as Pl;c--’Pm-r3t})

‘r) -1
:vo‘ DS* (Pl;tr)‘:’sz(‘-r )o

(r-1)

Let S(m) be any m-sphere through S « By Theorem 9.2, if

Plcs( , Py 5, (r-1)

s(r)(Pl;sx(f'”h s(")(Pl;tr)cs(m).

(m) (k) .
Praz-rCS s Pyio n @& 8 (P, eea Py 5T). Then by

| Theorem 9.2

'k+1
S( )(Pl,ooa'Pk+2-r;tr)
_ alk+l) okl , (m)
=5 }_’Pk*_z_r,s: (Pl,...,pk+l_r,7:rﬂcs .
For k=m-1, this yields 5™ (p P T)=s'" Thus

1" mel-r’r

s(meim),

Proof of {ii): Suppose Sﬁr“llz-p. As above, we have

(m)_ S(fn)

(Pl,.IO,P .tr)DOCQDS(r)(pl;rr).

mel-r?

(r)(q.
Let §'F (Q;T.) be any Sér%?tﬁr), By Theorem 9,2, equation(9.3),

s' 65080, 65T o s T gyt )

r-l1’°

Let P and Q be variable points and let S(r'l) be a variable
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(r-1)-sphere converging to a fixed point. Suppose there is
an {n-l)-sphere which separates this point from P and (. Then
1im<[s(r)(P;s(r'l)); S(r‘)(Q;S(r-l))]z‘O
whether or not the sphgres S(r)(P;S(r-U)and S(r)(Q;S(r'l))
themselves converge.

In particular,

(9.3) t%_i;np ) 3 S(r)(P,t;tr_l),s(r)(Q,t;tr_l)]:,o.

Thus S(r)(P;IE) touches S(r)(Q;T;) at p. Furthermore,
L f S(r)(P' (r) . .
i ,T}) and .S (Q,Z;) have a point ¥ p in common, they

coincide. Thus'tir) consists of the family of r-spheres

which touch S(r)(Q;I;) at p.

(m)  _(m)

Suppose r<m and an m-sphere Sr =S (Pl,...;

|
Pogl-ri T.) of'tim has a point R # p in common with S(r)(Q;Zi).

From the above, S(r)(R;tr)=S(r)(Q;Tr).If Rcs(r)(Pi;Tr) we have

(m)oolr) o st p. Ty =s(r) g,
28 (P TY=s (R T ) =8 T (Q;TL)

y

S

while if RS\ T

S(m)aS(r-tl.)l}{;s(r)(pl;tr)]

r
(r)

Pl;T;), we have by Theorem 9.2

:s(r+l)(Pl,R;Tr)=S(r+l)[Pl;S (R;TrJDS(r)(Rirr) ~g(r) (Q;t;.):.



241,

On the other hand, suppose an m-sphere S(m) touches

S(r)z.s(r)(Q;T;) at p. If S E:Eﬂzq it follows, as in the

r
« Suppose S(m;18£

{

r

(m)E. rr('m)

proof of part (i), that S l; p.

Choose an S(rt: S(m) such that S(r) touches S r)(Q;‘ZI'I’_) at p.

Thus s""etf,"! It again follows that S(mé 'Cr(.m).

(r-1)

Corollary 1. Let I‘l ,;..,I“£r'1) hold and let

S(r'l) p. Suppose 1im s{r)(p, t't l) exists for a single
T—>p

point P # p. Then I:ﬁr’ holds at p (l<r<n).

Proof: This follows from equation (9.3).

m)

Corollary 2. 'There is only one§£ of the pencil

tim) which contains (m¥l-r) points which do not lie on the

same S(m’l).

(r)

Proof: Such an §." " can be uniquely constructed as

in the proof of (i), Theorem 9.3.

(m-1)

Corollary 3. If two Sim)'s intersect in an S

then this S(m’l)ETim"l).

Proof: The Sﬁm)'s, and hence also S(m'l), contain

Sx(.r'l). In case Sr(.r"l)z p, let Pcs(m'l), P # p.
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Then the S#m)'sfand hence also S(m'l) contains S(r)(P;Z;).

COrol;arY 4.

I‘ém)a 'Cﬁ‘m):) . ._a‘l',gﬁ.

Proof: When k<m, or when k=m and Sém'l) # p,

Theorem 9.3 implies that’fém) is the set of all the m-spheres

k=-1)
through Si 1’ Hence Sﬁgi, being the limit of a sequence

of such m-spheres, must itself contain S(k°l), and by Theorem

k

9.3, Séﬁlefém). Suppose k=m and Slslmf'l)zp. By Theorem 9.3,
tém) is the set of all the m-spheres which touch a given

m-gphere Slgm) #* p'oftém) at p. Hence Szf:ﬂ , being the

limit of a sequence of such m-spheres, must itself touch

g(m) (m)

at p, and, again by Theorem 9.3, Sm*lel'ém).

Theorem%,, Let l<m<n; lsSkgm, and suppose that

Sém'l) # p if k=m., If the conditions pim)“,ul‘ém)_ﬁp_]_._c_!_

(m) .
at p, then I", . _8&lso holds there.

Proof: By Theorem 9.2, I‘lm'l) holdsat p. Hence if

m-1 .
pfrl"f"Pm—k are independent points S( )(Pl""'Pm-k’Ik)

- is defined. Furthermore, by Theorem 9.1, we can assume
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(m-.-l)(P

that t & S 1""’Pm-k3tk) and by Theorem 9.2 again,

S(m)(Pl,...,Pm_k, 3 L) m)[t s(m"l)(Pl,..., P k,tk)]
Thus S(m)(Pl,...,Pm_k,t;Tk) exists when t is close to p,

(m-l)(P

t€A, t #p. Choose a point Py ) ©S 1o Pooks G )

m=2 N
Pm*l_k¢5( )(Pl,o..,.pmék;rk_l)o
Then Theorem 9.2, Corollary 6 implies that

S‘(m'l)(Pl»'--:Pm-k;T )=S(m-l)(

k Pl,.-o,Prﬂ+l_k;tk_l)’

when kgm, or k=m, and Séﬁiz)qé-p; if k=m and Séﬁiz): o

this equation follows from Theorem 9.3, Corollary 4. Hence

2im st™

t—p

=11im. sk, s(m‘l)(P
t-’p

(Pl’ ooo,ﬁm_k,t;tk)

1"7"Pm,+14kirk-&1)] )

A
W

=1im S““(B]_:"'! m+l-k’t Ik 1)
t—p

:S(m)(Pl,..o’Pm+l-k;Tk)'
(m)
Thus Pk+l holds at p and

CHSIE-LLINT I S SO Y- 1L 0 N Tetit,

Corollary 1. 1If I"l(m) holds at p, then I"§.m) holds

there, r=1,2,,.., m, Furthermore, if Sém"l) #* p, A is



247

m+l times differentiable at p.

Corollary 2. If I‘{n’l) holds at p, then p is a

differentiable point of A if and only if 1lim 5(2:£li£i1;-1)
t—>p

exists and converges if t tends to p.

Corollary 3. If I‘{n‘l) holds at p, and Séfzz) =

then p is a differentiable point of A,

Cordllary L. If I‘{m)

holds at p, all the conditions .

Pl((r‘), except I"é::%, automatically hold at p (1S ksrel <mel).
Let p be a differentiable point of A. We define the
index i of p as in Theorem 9.2, Corollary 4. Let Pczsgii,
P# p. Let ngm)___, S(.m)(P;Tl#). m=0,l,..., m=1, Then the set;
ofz}(m)'s is completely determined by the sequence
(o) . (1) 1)_ (i (1+1) _o(n-
Its structure is determined by the single index i.

(n-1)

Qalis Support.and Intersection Properties of Eﬁn'l)-'tr+l 2.

Let p be a differentiable interior point of A.
Our classification of the diffemntiable points p of A will

be based on the index i of p, and on the support and
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-1) n-1)
intersection properties of Sén ) and the families'fi
(n-1)
-'[H_l , r=0,1,...,n-1. We shall omit the superscript

=1 n-1
(n=1) of'[in ) when there is no ambiguity; thus Ir=.ti ).

o -1
Theorem 9.5. Every (n-l)-sphere ;#’S(n ) either

EeY
11

supports or intersects A at p.

Proof: If an (n-l)-sphere S neither supports notr
intersects A at p, then pc S and there exists a sequence of

points t->p, t€ANS, t # p. Suppose P,Py,...,P are inde-

pendent points on S. Suppose that for 0 rgn-l,

S::S(n-l)(Pl,...,P T}). By equation (G.1),

Nn-r’

S(n-l)

n-2
(Pl,oco,pn_r;tr)=s( )(pl,...’Pn-r-l;

T.).

By Theorem 9.1, t <& S(n-Z)(Pl,...,P ;Ir) and by equationr(Q.Z), |

n-r-1

5= ;s (e, py st)=s P ey ey e T

-1
for each t. Condition I"(n )

4l now implies that

s=gln-1)(p p

12°°°» n-r-1;[r+1)'

Thus we get, in this way,

s=s® M T ).
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(n-2) (n-2)
By Theorem 9.2, S®S, ; , and by Theorem 9.1, t & Sp-1

when the parameter t is close to, but different from, the

(n-2) )
parameter p. If S ; Fp, equation (9.2) implies that

n-2) _

g(n- l)[; S(n-ZU (n-l)(t iT,.1)» while if S( .1 =P

Theorem 9.3 implies that S::S(n-l)(t{t ‘Applying con-

n-l)°

(n-1) (n- l)
dition I} , we are led to the conclusion S = Sp

s(é -1)

~ Theorem 9.6. If = p, then the (n-l)-spheres

-1 -T all intersect A at p, or they all support.
1% Saad Il

_of'f

Proof: Let S' and S" be two distinct (n-l)-spheres

e T | . (n-1)

of 1 - T . Since s ‘= p, Theorem 9.2, Corollary 4

n- n n
(n=-2) o

implies that S .1 =P and Theorem 9.3 implies that S' and
S"™ touch at p. Thus we may assume that S"c= (pU3') and
S'c (puUs"). Suppose now, for example, that S' supports A
at p while S" intersects. Then ANS" is not void and
AC(pU@).ImttapinAﬂS. Hmweshln(mf l)

< (8"NnS')up. Consequently, S(t;fn_l) cannot converge to

{n-1)

Sn = p, as t tends to p. Thus S' and S" must both support,
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or both intersect A at p.

(r-1)_

Theorem 9.7, If S(r) #* p while S = p, then

every (n-1)-sphere of T supports A at p {1€r<n-l).

Proof: Supposé Sir-l)

= p, so that by Theorem 9.3,
(r) 8

the r-spheres of'Cr all touch any (n-1)-sphere of 'Cr. Let

S % p. If a sequence of points t exists such

r
that t€ ANS, t-p, then each S( )(t;'L"r) lies in the closure

setr ru(-l’

of 5. Hence S(r) will also lie in the same closed domain.

r+l
Since S :_:3)_ I(r),. either Sx(-:i?' p, or it touches S at p.
(r) 3 rd L
Since S & L s)'! must lie in pvS. Similarly, the exis-

rel’? Tl
' . r
tence of a sequence t'€ $NA, t'->p, implies that Sf.+])_cpu§.

r) -
Thus if S intersects A at p, S;lc(pus)n(pug):p; i.e.,

(r)
rel= P

Theorem 9.8. All the (n-l)-spheres of tr - L1+1____

support A at p,‘ or thex all intersect:; r=0,1,...,0=-1.

Proof: Let S' and S" be two distinct (n-l)-spheres

of Ir' Suppoge, for the moment, that the intersection S'N S"
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(n-2) (p

is a proper (n-2)-sphere S ee,P f}). Suppose

l’ d n-r_l;

for example that S' intersects, while S" supports A at p.
Thus ANS' and ANS' are not void.  With no loss in genera-

l1ity, we may assume that AcS"y p. If t is close to p,

(n-z)(P

t # p, Theorem 9.1 implies that t & S P

n-r-l’

Lreees T,

and equation (9.2) implies that

-1 - -
stm=1fe;stn2p,p, T s D e T,

{n-1): :
If te AnS', then S (Pl""’Pn-r-l’t;t}) lies in the

closure of
(stnsm)yuv(S'nsm.
4 (n-l) ' .
Letting t tend to p, we conclude that S (Pl"’ﬂfn-r-l’1;+l

lies in the same closed domain. By letting t converge to p

through 3'N A, we obtain symmetrically that -

{n-1)
S (Pl""’Pn-r-l;t;+1) also lies in the closure of
(8*ns")u(s'n g").
(n-1) . ’
Hence S (Pl""’Pn-r-lfcrfl) lies in the intersection
1 " (n=1) _—
S'U S" of these two domains, i.,e., S (P p [ )

1Y n-r-1°"rp1
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is either S' or S". In other words, one of the (n-1)-spheres |

Thus if S' and S" belong to

(n-2)

S' and S" belongs to-[r+l'

L.-T,,, and have a proper 8

r r+l in common, they both

support or both intersect A at p.

Suppose now that 3'N S"=p, Theorem 9.3 implies

(r-1)

that Sr = p. In view of Theorems 9.6 and 9.7, there re-

maln to be considered only the cases where r< n-l, and in-

deed, when r<n-2, we have only to consider those cases for

hich 5 50 =
WRLCH Opy1= P

. - 1 .
By Theorem 9.3, any S(n ) which touches an Sir),

(rel)

but which does not touch an‘Sr+1

belongs to I; - Lr+1

Hence there exists an (n-l)—sphefe S of'['r -‘tr*l which in-
tersects S' and S" respectively in a proper (5-2)-aphere.
From the above, S and S', and also S and S" both support or
both intersect A at p. Thus S' and S" both support or both
intersact A at p in this case also.

9.5. Characteristics and a Classification of the Differen-
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tiable Points,

The characteristic, (a,,2y,...,2,;1) of a differen-

tiable point p of an arc A is defined as follows:

érﬁl or 2 when r<nj a,=1,2, or oof The index
i=1,2,...,n.

a, % o0 Fay is even or odd according as every

(n-1) - .
Sr of T; '-rr+l supports or intersects 4 at p;r=0,1,...n-1.

ag + -+. +a_ is even if'Sén'l) supports, odd if
Sin-l) intersects, while an='001f’sin-1) neither supports

nor intersects. A at p.
Finally the characteristic of p has index i if and

i (1)
only if sii-1)2 p, while CHET

Theorem 9.7, and the convention that Sén'l) supports
(n-1)
A at p when Sn = p, lead to the following restriction on
the characteristic (aO,al,...,an;i):
i
= 2,=0 (mod 2).
k=0 '

As a result of this restriction, the number of types
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of differentiable points corresponding to each value of i<n

is 3(2)n-1, and there are 2" types when i=n. Thus there

are (3n - 1)2“’l types altogether.

If we introduce a rectangular Cartesian coordinate
system into the conformal n-space, examples of each of the

(3n - 1)2n-1 types are given by the curves

m
=t B

m m
(I) Xl':.'t l, x2:t2’ veey Xn

in the cases a 1l or 2, and
t™n sin t~1, o<|tlsl

m m
(11) 'xl=t l, x2=t 2,..., xn:{

0 sy t=0

for the cases in which a =00, all relative to the point

t=0. The m,. are positive integers, and m, < m2< coe<m.

The different types are determined by‘the parities of the

my, and by the relative magnitudesfof the m, gnd 2m1. In
. ' (m) ~

each of these examples, the Sl touch the x)-axis at the

origin; m=1,2,...,n-1.

1% Ti410

When m; < 2m the point t=0 has a charac-

teristic of the form (ao,al,...,an;i) where a, can be 1,
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2, or uo; and i< n.
o When m, <2m,, the point t =0 has a characteristic
of the form (ao,al,...,an}n) where a  is either 1 or 2,
Table 9.1 lists some of the properties of a differentiable

point p having the characteristic (ao,al;...,an;i).



In- Osculating Supporting
an Restriction Example
dex family
(i-1)-sphere |i-sphere
an=1 or 2 I
i s‘”# »1‘ 1 EIZ 20 (mod 2) 2
<n i+l 7 P | Y740 == &R0 fmo MyXem)<li,1
- (i-1)
an—°O S. = II
n
i=n |a =1 or 2 tn Z a,=0 (mod 2) | I my < 2m,
r<s0
Table 9.1

‘9§Z
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