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CHAPTER 1 

INTRODUCTION 

The correlation of the mechanical properties of materials and 

the detailed microstructure is the basis of many metallurgically 

important_ problems. This problem is essentially the calculation of the 

resistance of internal stresses to the motion of dislocations. The 

internal stress field can be due to dislocation debris or second phase 

particles or both. Theoretical estimates of the flow stress have been 

based on the sum of the internal stres~es acting on a single dislocation. 

However, experimental observations shm'l that large numbers of disloca

tions move on slip bands. Thus the calculation of flow stress should 

consider the resistance of internal stress fields to the movement of 

large numbers of dislocations rather than single dislocations. 

to describe a slip band it is mathematically preferable to 

describe a slip band as a continuous distribution of dislocations of 

infinitesimal Burgers vector instead of a band of discrete dislocations. 

Considering only a single dislocation overestimates the flow stress and 

thus the objective of the present analysis, is a comparison of the 

mobility of single dislocations and pile-ups. A few idealized barriers 

to dislocation motion were considered. 

The type of obstacles considered \'/as chosen to exemplify the 

use of the method to a variety of metallurgically important problems. 

A periodic internal stress field was chosen to test the numerical 

solutions against the analytical method developed by Smith {1967}. 
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Also such distributions of internal stress may result from accumulation 

of dislocations in work hardening, although it is unlikely that the 

idealized sinusoidal model discussed here is itself of any 'direct 

physical significance. 

The motion of groups of dislocations through simple tilt 

boundaries was chosen because of the importance of simple tilt sub

structures in determining the yield characteristics of hot \'Jorked and 

thermal mechanically processed materials. 

The model of the interphase interface dislocation network was 

chosen to show the value of the method in regard to two phase materials. 

It is recognized that the interface dtslocations do not necessarily 

represent the most significant con'tribution to the flo\'/ stress of 

such materials. 

To relate the theoretical concepts developed concerning the 

propagation of slip bands in bto phase solids an experimental program 

was undertaken. The objective of this program was to determine the 

interphase interfaces developed in a directionally solidified two 

phase material and the mechanism of p 1 as tic defonmati on. 



CHAPTER 2 

LITERATURE REV! El~ 

The investigation of the motion of groups of glide dislocations 

in two phase materia 1 s necessitates a revi e\'t of the mathemati ca 1 methods 

of dealing \'lith large numbers of like dislocations and the nature of 

the barriers resisting dislocation motion. Thus the literature revie\'1 

is divided into two sections which consider each of these aspects 

separately. 

2.1 The Nature of Interphase Interfaces 

In genera 1 any interface between two phases must cant a in bto 

energy terms, structural and chemical. The energy due to the internal 

stress produced by the second phase is covered in the structural term. 

The energy due to the broken chemical bonds across the interface is 

coverep by the chemical term. 

In discussing the interaction of glide dislocations with second 

-phase particles it must be recognized that in general a number of types 

of long and short range interactions are possible. Firstly for coherent 

particles, if the average atomic volume of the two phasesis different, 

long range elastic stresses can be established in the matrix as discussed 

by Matt and Nabarro (1948). They identify the flow stress with a simple 

arithmetic mean of the internal stress produced by the coherent preci

pitates and they obtain the following equation for the flow stress, 

a = 2~ £ f 2.1 

£ = 3Ko/[3K + 2E/{l+v)J, where K is the bulk modulus. 
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where~ is the shear modulus, f is the volume fraction of the precipitate, 

and E and v are Young•s modulus and Poisson•s ration of the matrix. 

The atomic volume of the precipitate is (1 + o) 3 where the atomic 

volume of the matrix is unity. 

Since the elastic moduli of the precipitate and matrix may be 

different, this also may produce a long range force on approaching 

dislocations as suggested by Fleischer (1960). 

Second phase particles can have short range forces on disloca~ 

tions other than those due to the stress field of the particles. If 

a dislocation cuts a particle, then the dislocation must do work to 

create the extra particle-matrix interface of the cut particle. If 

the particle is ordered, then, if the Burgers vector of the matrix is 

not equal to the repeat distance of the ordered matrix of the particles, 

then work must be done by the dislocation to create the disordered 

interface across the slip plane. These short and long range forces 

of particles on dislocations are reviewed in detail by Kelly and Nicholson 
~ 

(1963). 

For large particles, the misfit between the lattices of the 

matrix and the particles can be accommodated by a network of disloca

tions. If the misfit is completely accommodated by interface disloca

tions, then the short and long range elastic stresses produced by the 

second phase particle can be attributed to the interface dislocations. 

Frank and Van Oer Merwe (1949) were the first to suggest 

that the misfit between the two lattices of crystals grovm epitaxially 

on one another, is accommodated by a grid of dislocations in the 

interface of the two crystals. Because these dislocations accommodate 



misfit, the stress field of these dislocations is less than a 

dislocation of the same Burgers vector produced by defonmation. 

Van Der t1erwe (1950) calculated the energy and stress of a set of 

dislocations \'lhich accommodate the misfit between two semi-infinite 

crystals which have a misfit in only one direction. The equations 

are linear, and thus solutions can be superimposed to obtain stress 

fields of more complicated misfit dislocation networks. 

When the misfit is completely accounted by dislocations, the 

spacing of the dislocations is (Brooks 1952) 

2.2 

where lbl is the magnitude of the Burgers vector and d1 and d2 are the 

spacings of lattice planes for the bto crystals. 

Mathews {1961) observed the first misfit dislocation network 

in the interface between a thin film of PbSe deposited epitaxiall.Y 

on a thin f~lm of PbS. The dislocation network was a square grid of 

edge dislocations with Burgers vectors of the a/2 [110] type. The 

dislocation spacing agreed with the misfit between the two lattices. 

As in epitaxially grown specimens, coherent precipitates can 

become semi-coherent at large sizes and contain a dislocation network 

to accommodate the misfit. This was first observed by Merrick and 

Nicholson (1962). They observed misfit dislocations on plate like 

precipitates of Ni 3Ti in a Ni-20% Cr- 6% Ti alloy. Phillips (1966) 

observed misfit dislocations for spherical, cobalt rich precipitates 

in a Cu- 3.12% Co alloy. Ueatherly and Nicholson (1967) observed a 
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hexagonal network of dislocations \'lith Burgers vectors of a/2 [110] 

type in spherical precipitates of Ni 3 (Ti, Al) in a Nimonic 80A alloy. 

They also observed a square grid of dislocations with a [100] type 

Burgers vector for disc-shaped precipitates in Al-Cu alloy and also 

they observed arrays of loops with Burgers vector of the type a/2[110] 

spaced along the length of lath shaped precipitates in a Al-Cu-Mg alloy. 

Weatherly and Nicholson found that the spacing of the misfit dislocations 

agreed with the Brooks formula (equation 2.2). 

laird and Aaronson (1967) investigated Widmanstatten y plates 

in an Al-15% Ag alloy and found that the misfit between the plates and 

the matrix was accommodated by a hexagonal network of dislocations with 

Burgers vectors of the type a/6 [ 112] or a network of bto sets of 

parallel dislocations with Burgers vectors of the type a/6[112]. 

In addition to the direct interaction of dislocations with the 

particles which occurs if ~he particle is sheared, indirect interaction 

may occur in the case of hard particles Nhich don't deform. The matrix 

must produce large numbers of dislocations in the vicinity of these 

hard particles to keep the material continuous. This causes localized 

work-hardening of the matrix. The theory for this localized work

hardening has been developed by Ashby (1968). 

2.2 Dislocation Pile-Ups 

If the procss of plastic yielding is considered as the motion 

of single dislocations, the applied stress required for dislocations to 

overcome an obstacle gives a maximum applied stress. If a pile-up of 

dislo~ations against the barrier is considered, the required applied stress 
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for the leading dislocation to overcome the obstacleis lower since the 

other dislocations in the pile-up create a stress concentrate at the 

head of the pile-up aiding the leading dislocation to overcome the 

obstacle. 

Cottrell (1949) made the first calculation of the stress concen

tration at the head of a pile-up, where the obstacle had only a very 

short range stress field. That is the stress field of the obstacle 

acts only on the leading dislocation of the pile-up. By means of a 

vi rtua 1 \'/Ork argument, he ca 1 cul a ted the stress at the head of a pile

up to be ncr, where n is the number of dislocations in the pile-up and 

a is the applied stress. 

Suppose there are n parallel infinitely long dislocations on 

the slip plane y = 0 which are piled up against some obstacle. let 

the axis of these dislocations be parallel to the z-axis and there be 

dislocations at points x = x1. let P(x) be the stress acting on these 

dislocations due to the applied stress and due to the stress field of 

the obstacle. For these dislocations to be in equilibrium the following 

equation must be satisfied, 

A 

X. - X. J , 

+ P{x.) = 0 j = 1, 2, ---n 
J 

2.3 

where A=~ for screw dislocations and A= 2n(~-v) for edge dislocations. 

Here ~ is the shear modulus, b is the Burgers vector of the dislocations, 

and v is Poisson's ratio. In equation 2.3, P(x) is the appropriate com

ponent of shear stress, xy component for edge dislocations and yz 



component for screw dislocations. Eshelby, Frank and Nabarro (1951} 

developed a general method of solving this equation for the positions 

taken up by the dislocations in the pile-up and solved for the case 

of n-1 dislocations piled up against a locked dislocation. They also 

found that the stress concentration at the head of the pile-up to be 

na where a is the apolied stress. If the length of the pile-up is 

L, the number of dislocations, n, can be expressed as: 

La 
n = 2A 

Thus the stress at the head of the pile-up is 

2.4 

2.5 
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Although the method of Eshelby, Frank and Nabarro is exact, it is very 

difficult to put into practice and thus is rarely used. 

Head and Louat (1955) considered the pile-up to be a group of 

smeared out dislocatfons of infinitesimal Burgers vector instead of 

discrete dislocations. This enables equation 2.3 to be approximated 

with the integral equation, 

5 f(x) ( A -- dx + P x · ) = 0 x .-x . 1 , 2.6 

0 

where A and P(x} are as def1ned previously, and f(x) is the dislocation 

density in the pile-up at point x. This integral· is taken over 

region D which contains all dislocations in the pile-up. Head and 

Louat developed a general method of solving for f(x) which is simplier 

than the exact method of Eshelby, Frank and Nabarro. Head and Louat•s 



results agree with those of the exact method when a large number of 

dislocations are in the pile-up. 

9 

Smith (1967) extended the method of Head and louat to consider 

the mobility of groups of dislocations in a variety of internal stress 

fields. Suppose a pile-up extends from A to B, then equation 2.6 

becomes 

dx + P(x1) = 0 2.7 

If there are no singularities in P(x) and thus in f(x), there- is a 

solution for f(x) only if the following equation is satisfied (Head and 

louat, 1955} • 

P(x) dx 

/(x-A)(x-B) 
= 0 2.8 

But P(x) = P1(x) - o where ~ 1 (x) is the internal stress acting on the 

pile-up and o is the applied stress. Thus if the stress P1(x) is known 

(the stress field of some obstacle) then o the applied stress to propa

~ate a pile-up with a source at A to B in the internal stress P1(x), 

can be calculated from equation 2.8. This method can be applied to 

any situation where the analytical form of the internal stress field 

h known, but it wi 11 be most accurate when the internal stresses are 

not rapidly varying functions in the region AB. 

Very recently Smith (1968) developed a method where he leaves 

the leading dislocation discrete and smears out the remaining disloca

tions in the pile-up. This should be strictly a more accurate approach 
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in the case of rapidly varying internal stresses. However in the 

present work the smeared out pile-up has been used in an effort to 

contrast the 9ehaviour of single dislocations and groups of disloca

tions with respect to a variety of obstacles. 

10 
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CHAPTER 3 

MOBILITY OF SINGLE DISLOCATIONS AND PILE-UPS 

3.1 Theory on the Mobility of Pile-Ups 

To treat the problem of a pile-up of dislocations in a general 

internal stress field, the method of Smith (1967) was adopted. Thus 

it is necessary to revie\'1 in detail the solution of equation 2.6 as 

developed by Head and louat (1955). 

Equation 2.6 becomes on rearrangement: 

A 5 f(x} dx - P(x.} = 0 x-x. 1 
0 1 

3.1 

Suppose P(x) is a knm·m function and f(x) an unknown function and that 

D consists of p finite segments of the x-axis ca,,b,), (a2,b2} ---, 

(ap,bp). Suppose that at q of the end points of the segments, denoted 

by c1, c2 ---, Cq' f(x} is to remain bounded, and that at the remaining 

2p-q end points, denoted by cq + 1' cq + 2' ---, c2p' f(x) may be 

unbounded. let 

Then if p-q ~0, solutions to equation 3.1, bounded at c1, c2 ---, CP, 

always exist and are given by 

. -1 
f(x.} = ,.,--

1 tr~A s 
D 

R2(x} P(x) 

R1 (x} x-x1 

11 

dx + 
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where Qp-q-l{xi) is an arbitrary polynomial of degree not greater than 

p-q-1 {it is zero for p=q). 

If p-q.< 0, a unique solution, bounded at c1, c2, 

if and only if P(x) satisfies the conditions 

. · 5~2(x) n 
R (x} x P(x) dx = 0 for n = 0, 1, ---, (q-p-1) 

0 1 . 

cq, exists 

3.3 

and if this is so the solution is given by equation 3.2, with Qp-q-l(xi) =0. 

Smith (1967) continued this development. Consider a pile-up 

extending from A to B, in a stress field P{x) = P1(x} - a, where P1(x} 

is the internal stress field, and a is the applied stress. If P
1

(x) 

has no singularities, then f(x) will be bounded in the region AB, and 

thus in order that f(x) have a solution equation 3.3 must be satisfied. 

Thus, 

P{x} dx = 0 . 3.4 
J<x-A} (B-x} 

Since P(x} = P1(x) -a, then, the applied stress, a, necessary to keep 

a pile-up extending from A to B, in an internal stress field P1(x), 

in equilibrium can be calculated. On substitution of P(x} = P1(x) - a, 

equation 3.4 becomes 

1 a=
.n 

s P1(x) dx 

A Jcx-A) (B-x) 

= 0 3.5 

Thus if this integration can be performed, a can be calculated. This 

integration is usually very difficult to perform analytically for most 
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internal stress fields, P1(x), except relatively simple analytical forms 

of P1(x). 

With a change of variable, 

x = (BlA) X + (~) , 

equation 3.5 becomes 
1 

a = .l 5 p 1 (X ) dX 
1T y 2 

_
1 

1 - X 

3.6 

' This equation can be converted to a summation plus a remainder (Kelly, 

1967) which is 

1 
a=n 

+ __ 2_ f(2n) (e:) 
22n (2n)! 

3.7 

where X.= cos [2i; l) 1TJ, ~ = 1, 2, ---, n, and -1 < e: < 1. The 
1 n 

last term in equation 3.7 approaches zero for large n and thus equation 

3.7' becomes for large n, 

1 n 
a=- r P1(Xi) 3.8 

n k=l 

Equation 3.8 was tested for a suitable value of n. It was 

found on trying different values of n, that the results for equation 3.8, 

changed very little for n > 6. Thus a value of n = 14 was used for 

the remaining calculations. 

All numerical calculations of a were performed with the aid 

of the 7040 IBM computer. 
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Using equation 3.8,"the applied stress required to propagate 

a pile-up to various points in an internal stress field P1(x) can 

be calculated by changing values of A and B. As a further test of 

equation 3.8, the results of a for an internal stress field 

14 

a 
P1(x) = a1 + ~ [1 - cos <:x)J were calculated and compared with those 

·of Smith (1967} who calculated a for this internal stress field 

analytically. As can be seen in Fig. 3.1 the results agree very well 

with those of Smith. Further examination of Fig. 3.1 indicates that 

the required applied stress for a pile-up to propagate through this 

internal stress field, is less than that for a single dislocation. 

3.2 Slip Propqgation Through a Simple Tilt Wall 

Simple tilt walls are formed during polygonization and creep 

deformation and it is thus of value to examine the role of such 

sub~tructural barriers in resisting the propagation of slip bands. 

The stress fields of a simple tilt wall have been developed by Cottrell 

(1952} and Li {1961}. In all the following calculations on simple tilt 

walls, it is assumed that the dislocations of the tilt \'tall are pinned 

and thus can not move on being approached by either a single dislocation 

or a pile-up. 

Let the tilt wall be in the x = 0 plane, the dislocations be 

parallel to the z-axis and the Burgers vectors of the dislocations be 

parallel _to the x-axis. Let the spacing between the dislocations in the 

tilt wa~l be h, and one of these dislocations pass through the origin. 

Let a pile-up of like edge dislocations on they = h/2 slip plane, with 

their axis parallel to the z-axis, and their Burgers parallel to the 
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x-axis, approach this tilt \'tall. For this edge dislocation pile-up, 

P1(x) is the xy component of shear stress for the tilt wall and thus 
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. b 2 
P1(x) = h{l:v) [cosh (2«) cos (2A) -lJ/[cosh (2«) - cos (2A)] 3.9 

. . 
where ~ is the shear modulus, b is the Burgers vector of the tilt wall 

dislocations, v is Poissons ratio, « = ~and A = ~ . Using equation 

3.8, with A = - lOh, the applied stress required to propagate a pile

up with a source at -lOh, to various positions with respect to the 

tilt wa 11 were ca 1 cul a ted by varying. the va 1 ue of B. These results 

are plotted in Fig. 3.2. Also in Fig. 3.2 are plotted the required 

applied stres~ to propagate a single edge dislocation with the same 

plane, same Burgers vector and same axis, to different positions with 

respect to the simple tilt wall. It is seen that the pile-up requires 

a lower applied stress to overcome this barrier. 

If the pile-up length in the preceding discussion is increased, 

the passing stress, which is the applied str~ss required for a pile-

up to overcome a barrier, will decrease. Calculations similar to 

. those of the previous paragraph were carried out for various pile

up lengths. The passing stress versus pile-up length is plotted in 

Fig. 3.3. It is seen as the pile-up length is increased that the 

passing stress decreases when the pile-up length is less than SOh. 

For pile-up lengths greater than SOh, the passing stress decreases 

very little with an increase in pile-up length because the dislocations 

at the end of the pile-up have very little affect on the leading 

dislocation, for pile-up lengths greater than SOh. 
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In addition to the effect of substructural barriers the 

resistance to deformation of a crystal may be increased by an overall 

increase in the friction stress. This situation may arise in inter

stitual or substitutional solid solutions. If a pile-up against a 

si~ple tilt wall is considered for ~hich each of the dislocations in 

the pile-up must overcome a friction stress, of' due to solute atoms 

in the matrix, equation 3.9 will have another term and becomes 

ub« ~ Pl(x) =of+ n\1-v) [cosh {2«) cos {2A)-1J/[cosh{2«)-cos{2A)] 3.10 

where the variables are as defined for equation 3.9. Fig. 3.4 shows 

the required stress to propagate a pile-up with a source at x = -lOh, 

to various positions with respect to the tilt wall. Comparing Fig. 3.2 

and Fig. 3.4 we see that the required applied stress to propagate a 

pile-up in the presence of a friction stress to any position is simply 

the sum of the stress required in the absence of a friction stress plus 

the value of the friction stress. Thus a pile-up of dislocations does 

not aid dislocations in overcoming a friction stress, or any stress 

that does not vary in magnitude with position along the pile-up because 

this stress acts equally on all dislocations. 

3.3 Slip Propagation Through a Network of r~isfit Dislocations in a 

Two Phase Material 

The total resistance to the propagation of a slip band in a 

·two phase material is determined by a number of factors including chemical 

composition and elastic constants of the second phase particles and the 

nature of the interphase interface. In regard to the role of the 
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interface it is of value to examine the role of misfit dislocations 

in resisting the propagation of a slip band. In order to examine this 

problem two approaches have been taken. An experimental investigation 

has been undertaken of a simple binary nickel based system containing 

particles of Ni 3Ge and is described in Chapter 4. In addition the 

effect of an idealized network of misfit dislocations on the mobility 

of a dislocation pile-up was examined using the numerical method outlined 

previous 1 y. 

The interface model used, assumes an infinite network of edge 

dislocations \'lhich form a square grid on the (001) plane. The 

Burgers vectors of these dislocations are a [100] and a [010]. To 

calculate the stress field of this idealized model of misfit disloca-

tions, the stress fields of the two sets of parallel dislocations were 

calculated separately (Van der Men1e, 1950) and the total stress field 

was obtained by summing these two stress fields. The coordinate system 

used for this calculation is: x-axis parallel to [100], y =axis 

parallel to [010] and the z-axis parallel to [001]. The components 

of stress for this idealized model of misfit dislocations for z ~ 0 are: 

P = -Q {Z[(l + c2 e2z)cos X 2CezJ + 2 R2 (cos x·- Cez)} 
XX 

PYY = -Q
1
{Z[(l + c2e2z) cos Y 2CezJ + 2 R2 (cos Y - Cez)} 

Pzz = QZ{(l + c2e2z)cos X - 2 Cez} 

2 2Z Z 
+ Q1Z{(l + C e ) cos Y - 2 Ce } 

p = 0 xy 
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P yz = - Q1 sin Y n2 
+ z ( 1 - c2 e 2z) } 

Pxz = - Q sin X {R2 
+ Z (1 - c2e

22
)} 

where X = 2~x , Y = ~, Z = ~' C = (1 + e2 )~ - 8, 

· · 2 2 2Z Z B = n/82 (1-v), R = 1 + C e - 2Ce cos X, 
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Q1 = pCeZ/[82 (1-v) T2J, ~ is the shear modulus and vis Poisson's 

ration. For the above calculations the shear stress and Poisson's ratio 

were assumed to be equal for both phases. 

A pile:up of edge dislocations having Burgers vectors a/2 [TOlJ 

which are on the slip plane (111), in the stress field of the tilt 

wall will be considered in the stress field of the network of misfit 

dislocations. For this pile-up the appropriate component of the 

stress field, P1(x,y,z) acting on these edge dislocations is: 

P1(x,y,z) = - 0.408 P + 0.408 P - .408 P 
XX ZZ yz 

The interfac~ is divided into squares by the misfit dislocations. The 

stress field of the misfit dislocations is periodic with respect 

to these squares. Thus the applied stresses required to propagate 

pile-ups and single dislocations toward this network, \'iere calculated 

with respect to various positions in one square. This is illustrated 

schematically in Fig. 3.5. The positions chosen were those along line 

EF, and these positions will be denoted by the y coordinate of the point. 

For example the middle of the square is y = 0.5. The distance of the 
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Figure 3-5. Schematic diagram of the dislocation pile-up considered, 
approaching a misfit dislocation network. 
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approaching dislocation from the misfit boundary will be denoted by 0, 

and this distance will be measured in the [lOTJ direction from the 

point on line EF which is being considered. Figs. 3.6 and 3.7 are graphs 

for applied shear stress required to propagate pile-ups with a source 

at ·nth = -10, and single dislocations versus D, for points y = 0.5 and 

y = 0.3, on line EF, respectively. It is seen from these figures that 

the passing stress for a pile-up for this internal stress field is lower 

than for a single dislocation. 
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CHAPTER 4 

EXPERIMENTAL PROCEDURE AND RESULTS 

A nickel-germanium binary alloy was selected because the Ni 

rich solid solution and the ordered intermetallic compound Ni 3Ge have 

the same lattice (f.c.c.) with a misfit of about 1%. Thus if the 

interphase interface is semi-coherent there should be a network of 

misfit dislocations to accommodate the misfit at the interface of the 

large Ni 3Ge particles. These misfit dislocations were observed and 

characterized by transmission electron microscopy as described in this 

chapter. 

4.1 Experimental Procedure 

Nickel has an f.c.c. lattice with a lattice parameter~ a = 3.512~ 

(Pearson, 1958) and Ni 3Ge is an ordered alloy of the L1 2 type with a 

lattice parameter, a= 3.560~ (Pearson, 1958). The phase diagram of 

Ni-Ge (Hanson, 1958) is given in Fig. 4.1. 

An alloy of Ni - 20 weight percent Ge was used since this alloy 

will contain about 50% Ni 3Ge. Samples of this alloy, \'teighing 35 grams 

were melted several times in the argon arc furnace and then cast in 

ingot form. These samples were then directionally solidified to produce 

large particles of Ni 3Ge. To directionally solidify the samples, they 

were melted in an inert atmosphere of argon by a Toccotron unit, and 

then the sample \'tas lowered through the coil at a rate of 0.5 11 per hour. 

The apparatus for directionally solidifying the samples is shown 

20 
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schematically in Fig. 4.2. The inner diameter of the crucible is 0.5" 

and the diameter of the graphite susceptor is 1.0". 

Thin films of the directionally solidified alloy were prepared 

in order to examine the detailed nature of the interphase interface 

in.the electron microscope. Transverse sections about 0.050" thick 

were cut from the directionally solidified sample with a cut-off wheel. 

These samples were then mechanically polished to a thickness of approx

imately 0.003". The edges of these samples were then masked with 

microstop, and then the samples were electropolished in a solution of 

ethanol-10% perchloric acid (volume} at a potential of 24 volts using 

the window technique. A stainless steel cathode was used. The best 

results were obtained with the polishing solution at a temperature between 

-20°C and -30°C. The thin films were examined in a Siemens Elmskop I 

electron microscope using a double tilt stage. The Burgers vectors 

of the misfit dislocations.were determined by observing the dislocation 

arrays under various contrast conditions. The theory of electron 

diffraction contrast is described comprehensively by Hirsch, Howie, 

Nicholson, Pashly, Whelan (1965}. 

A compression sample was machined from the directionally solidified 

sample. This compression sample was 0.5" long, and had a diameter of 

0.25". A flat, 0.1" wide was ground along the length of the sample to 

facilitate the observation of surface slip lines. To remove the damage 

due to machining, the compression sample was electropolished, using the 

solution and potential described in the previous paragraph, reducing the 

diameter by 0.002••. The flat of the s~ecimen was lightly etched with 



' 

a solution of ethanol-10% bromine {volume). This sample was then 

tested in compression using the Instron TTC-L , removing the load 

periodically during the test to observe the slip lines. The slip 

lines were examined directly on the flat of the compression sample. 

4.2 Experimental Results 

Some areas of the directionally solidified alloy contain a 

22 

high volume fraction of large Ni 3Ge particles which have a fibrous 

nature,while other grains contain a relatively low volume fraction of 

large Ni 3Ge particles. This inhomoge·nity is illustrated in the optical 

photographs, plates 4.7, 4.8 and 4.9 which also contain slip lines. 

Plate 4.1 which is a composite of a region with many large Ni 3Ge 

particles, shows the interconnecting particles and also their inter

connecting network of misfit dislocations. Plate 4.2 is also of a 

similar region at a lower magnification. Plate 4.2 shows the fibrous 

nature of this region. 
-. 

To detennine the Burgers vectors of dislocations the criterion 

that a dislocation will be out of contrast when~. S = 0 was used 

{Hirsch, Howie, Nicholson, Pashley, Whelan, 1965). In this equation 

g is the reciprocal lattice vector of the operating reflection, and o 
is the Burgers vector of the dislocation. In region A, of plate 4.3, 

there is a square grid of misfit dislocations. All the misfit disloca

tions are in contrast because there are many operating reflections which 

are [200], [020] and [220]. In the same region A, in plate 4.4, only 

one set of dislocations are in contrast and the others set are out of 

contrast. The operating reflection for this plate is [200]. In plate 



Plate 4.1 

Composite of a region of a high volume fraction 

of incoherent Ni 3Ge particles. 
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Plate 4.2 

Fibrous nature of incoherent Ni 3Ge particles in a 

region of high volume fraction of Ni 3Ge particles. 



/k{ 
7 



' 
Plate 4.3 

Region A shows a square grid of misfit dislocations. 

There are many operating reflections. 





' 
Plate 4.4 

Region A shows one set of misfit dislocations out 

of contrast. Operating reflection is [200]. 





' 
Plate 4.5 

Region A shows the other set of misfit dislocations 

out of contrast. Ooerating reflection is [020]. 
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4.5, with an operating reflection of [020], the second set of disloca

tions is in contrast and the first set extinguished. There are two 

types of possible Burgers vectors: ! a/2 [011], ! a/2 [OlTJ and 

+ a/2 [101],+~[10TJ or+ a [100] and+ a [010]. The normal to the foil 

surface is close to the [001] direction. If the set of dislocations have 

Burgers vectors of the type a/2 [110], then the interface plane would 

be of the ( 111) type and thus \'/Oul d make an angle of about 54° with the 

surface of the foil. This region was near the edge of the foil and thus 

a maximum possible thickness is 2000~. If the interface foil was a 

plane of the (111} type, the thickness of the foil would have to be 

about 2.0 x tan (54) x 108/40,000 = 7000~. This is an impossible foil 

thickness. Thus the interfacial plane must be (001). Thus the Burgers 

vectors of the two sets of misfit dislocations appear to be + a [100] 

and! a [010]. This is discussed in detail in a later chapter. 

Other regions of the foil have a hexagonal network as is sho\'m 

in Plate 6. The Burgers vectors for this plate have not been calculated. 

There are different misfit dislocation arrangements, because the Ni 3Ge 

particles are irregular, and thus the misfit must be accommodated on 

different types of interfacial planes producing different arrangements 

of misfit dislocations. 

Misfit dislocations have a smaller stress field than an edge 

dislocatioR of the same Burgers vector produced by deformation {Van der 

Mer\'le, 1950}. As further evidence, it was found that to bring misfit 

dislocations into contrast, the misfit dislocations had to be much 

closer to the Bragg contours than for ordinary glide dislocations. 



Plate 4.6 

Illustrates the hexagonal misfit dislocation 

.network sometimes observed at the interface of 

the Ni 3Ge particles. 
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A stress-strain curve for this directionally solidified Ni-20 

weight percent Ge alloy tested in compression is given in Fig. 4.2. 

This alloy had a high yield stress of about 79s000 p.s.i .. Also 

the work hardening rate was about G/150, where G is the shear modulus 

for pure nickel. This value is high compared to the usual values of 

between G/200 to G/300s where G in this case is the shear modulus of 

the metal concerned. 

The load was removed at points 1, 2, and 3 shown in Fig. 4.2 
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and the slip lines were studied. Plate 4.7 is taken at point 1. In 

this plate the large particles are Ni 3Ge and there is a relatively lo\'1 

volume fraction of Ni 3Ge particles as compared to the volume fraction 

~f Ni 3Ge particles in Plate 9. Slip lines can be seen in Plate 7, 

but extremely fe\'1 slip lines cut the Ni 3Ge particles. Plates 8 and 9 

are taken after the specimen had been strained to point 2. The slip 

lines are more numerous, but in plate 8, very few of the Ni 3Ge particles 

are cut. In plate 9s the particles have a fibrous nature and thus it 

is very difficult to tell if the Ni 3Ge particles are cut because of 

the close spacing of the particles. It is difficult to tell whether 

the slip lines are continuous or consist of numerous small segments. 

At point 3 the slip line configuration was similar to that at point 2 

except the slip lines are more numerous. 



Plate 4.7 

Slip lines when the compression sample has been 

strained to point 1. This region contains a low 

volume fraction of Ni 3Ge particles. 





Plate 4.8 

Slip lines when the compression sample has been 

strained to point 2. This region contains a low 

volume fraction of Ui 3Ge particles. 
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Plate 4.9 

Slip lines when the compression sample has been 

strained to point 2. This region contains a high 

volume fraction of Ni 3Ge particles. 





CHAPTER 5 

DISCUSSION OF RESULTS 

For clarity the discussion is divided into separate sections 

dealing with the experimental observations and numerical computations. 

5.1 Burgers Vectors of Misfit Dislocations 

The misfit dislocations at the interface of the large Ni 3Ge 

particles should accommodate the lattice misfit between the Ni 3Ge 

lattice and the matrix. If the lattices of Ni 3Ge and the Ni matrix 

are aligned such that the (hkl) planes of the particle are parallel to 

those of the matrix then the accommodating strain will be pure dilation, 

and this type of strain can be accommodated completely by edge disloca

tions. The diffraction pattern in plate 5.1 is of the region seen 

in plates 4.3, 4.4, and 4.5. It can be seen that the ordered spots 

(mixed indices) are oriented such that the lattices of the two structures 

are simply aligned and (hkl)matrix is parallel to (hkl)particle· Thus 

the misfit between the matrix and the Ni 3Ge particles can be accommodated 

by a set of edge dislocations, which accommodates the misfit in t\'10 

perpendicular directions on the interface with the Burgers vectors of 

the misfit dislocations in the plane of the interface. 

The square grid of misfit dislocations in section A of plates 

4.3, 4.4, and 4.5, are edge dislocations since the operating reflection 

as can be seen in plates 4.4 and 4.5 are parallel to the dislocations 

that are out of contrast, and since g.o = 0 for these dislocations, o, 
the B~rgers vector, is perpendicular to the line length. The only set 
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Plate 5.1 

Diffraction .Pattern sho~tling the alignment of 

(hkl)particle with (hkl)matrix· The ordered 

spots (mixed indices) are due to the ordered 

Ni 3Ge particles. 





of simple Burgers vectors that are consistent with plates 4.3, 4.4 and 

4.5 are+ a[lOOJ and ~ a[OlOJ which lie in the (001) plane. The normal 

to the foil in section A, is close to the [001] direction and the 

width of the interface seen in plates 4.3, 4.4 and 4.5 is consistent 

with the interface being the {001) plane. 
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This square grid of edge dislocations can accommodate the misfit 

but the dislocation spacing should be 293ft, using the lattice parameters 

of pure Ni and pure Ni 3Ge. The measured spacing is about sooft. The 

matrix is a solid solution of Ni-Ge and the particles may differ from 

stoichiometry, and thus the lattice parameters of the matrix and the 

particles may differ from those pure Ni and Ni 3Ge. This could account 

for the difference in the measured and calculated misfit dislocation 

spacing. A difference of 0.02ft, \'/Ould cause an error of 100% in the 

dislocation spacing. Thus the spacing of dislocations on the interphase 

interface is extremely sensitive to the exact lattice parameter of the 

solid solution. To date no data on the lattice parameter of nickel

germanium solid solution have been reported and thus no direct compari-

son can be made with the experimental results. However the observations 

described above indicate that the interphase interface in as grown 

Ni-Ni 3Ge consists of a simple Vander t·1erwe net of a[lOOJ dislocations. 

This is at variance with the interface structures reported in Ni-Ni 3{Al, 

Ti) by ~leatherly and Nicholson {1968) for particles in which coherency 
-

was lost at long aging times. These differences may reflect the mechanism 

of formation of the interface array in the two cases because interfaces 

occurring at long aging times may arise from the presence of glide 

dislocations in the matrix. 
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5.2 Cutting of Incoherent Ni 3Ge Particles 

If a large Ni 3Ge particle is cut, then either the glide dis

location must cut the misfit dislocations at the interface or the glide 

dislocation can be bowed out bebJeen the misfit dislocations in the 

same manner as a Frank-Read source operates. These two possibilities 

are now considered. 

The required applied stress to propagate a single dislocation 

up to a misfit disloiation is about 0.25~ or 2,800,000 p.s.i. Since 

this stress acts only on the leading dislocation, the exact method of 

Eshelby, Frank and Nabarro (1951) was used to estimate the required 

· applied stress to propagate the leading dislocation of a pile-up of 

length lOh to the misfit dislocation. This stress is 130,000 p.s.i. 

If the glide dislocation is blocked by the misfit dislocations, 

the glide dislocation may be able to extend between the misfit disloca

tions as occurs with a Frank-Read source. The applied stress required 

to extend a single glide dislocation between the misfit dislocations, 

not considering the antiphase boundary formed is 

' 2 b 
o=-1.1-. 

h 
Thus using the shear modulus of Ni and a value of 500~ for h, the 

misfit dislocation spacing, then 

6 

0 = 2 X 11.5 X 2.46 X 10 = llO,OOO p.s.i. 
500 

This stress could be reduced somewhat if the glide dislocations were 

dissociated into partial dislocations of smaller Burgers vector. 

Because the Ni 3Ge partitles are ordered, a single dislocation 

passing through the particle creates an antiphase boundary. The 
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dislocation must do work to form this antiphase boundary. The work done 

per unit length by a dislocation in moving a distance l is abl. If 

this dislocation is in an ordered particle, it will create an antiphase 

boundary with an area L per unit length of the dislocation. Thus if 

the antiphase boundary energy density is p, then abl = pl and a = p/b. 

A typical value of antiphase boundary energy density for an L1
2 

ordered 

alloy is about 150 ergs/cm2• Thus the required applied stress to 

propagate the dislocation is about 

(1 = ___ l_5_0~ = 6.1 x 109 dynes/cm2 = 88,000 p.s.i. 
2.46 X 10-B 

The stress field of a square grid of misfit dislocations doesn't 

offer much resistance to dislocation motion except at the misfit disloca

tions. From Figs. 3.6 and 3.7 it is seen that the required applied stress 

to propagate a single dislocation and pile-up to the interphase (away 

from a misfit dislocation) is about 0.002~ and 0.0002~ respectively. 

Using the shear modulus for Ni, this gives values of 23,000 p.s.i. and 

2,300 p.s.i. for single dislocations and pile-ups respectively. 

The applied stress required to bow a glide dislocation between 

the misfit dislocations is an order of magnitude lower than that required 

to cut the misfit dislocations. Thus if the Ni 3Ge particles are sheared 

it appears probable that this will involve the bm>~ing of glide dislocations 

between the misfit dislocations at_ the interface. 

In regions- of low volume fractions of Ni 3Ge particles, few Ni 3Ge 

particles seem to be cut as seen in plates 4.7 and 4.8.Although the slip 

lines stop at the particles the process of deformation can not be 



ascertained from these observations. The discontinuities in the slip 

lines may arise because the slip line heights in the particles 

are beyond the resolution of the optical microscope. In order to 

clearly delineate the role of the Ni 3Ge particles further X-ray and 

electron microscopy observations are needed. 

5.3 Single Dislocations and Pile-Ups 
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The numerical method used to calculate applied stresses required 

to propagate pile-ups is a very general method and can be used for 

any internal stress field that does not have singularities. This 

·method is only accurate for slowly varying stress fields, that is the 

,internal stress does not vary significantly between the first and second 

dislocations in the pile-up. It is realized that this method is not 

strictly accurate for the internal stress fields considered but the 

method illustrates some significant differences between the mobility 

of a single dislocation and a pile-up, and some important properties 

of a pile-up. 

Using a single dislocation to calculate a passing stress over

estimates the strength of barriers. Also when considering a pile-up, 

the maximum required applied stress does not occur when the head of 

the pile-up is at the maximum internal stress, but after the head of 

the pile-up has passed the maximum internal stress, if this maximum 

internal stress is not a singularity in the internal stress field. 

Also as. the length 'of the pile-up is increased the passing stress 

decreases, until a point is reached when a further increase in pile-up 

length doesn't decrease the passing stress. When this occurs, the 



dislocations at the end of a pile-up have very little effect on the 

head of the pile-up. 
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Basinski (1959) had already suggested that the flo\'/ stress · 

calculated from the resistance to motion of a single dislocation in an 

internally stress solid gives an upper limit for the flow stress. He 

suggested that plastic flow proceeds by dislocation source operation in 

favourably stressed regions, followed by slip band propagation through 

an internally stressed solid. 



CHAPTER 6 

CONCLUSIONS 

The numerical method developed to calculate the applied stress 

required to propagate a pile-up in an internal stress field is very 

general, and can easily be applied to any internal stress field which 

has no singularities. The required applied stresses calculated using 

this numerical method are accurate for slowly varying internal stress 

fields. 

The method has been used to calculate the stress necessary to 
' propagate a dislocation pile-up through a sinusoidal internal stress 

field, a simple tilt boundary, and a Van der t4erwe net of interface 

dislocations. These examples were chosen to show the relevance of the 

method to a variety of problems in crystal plasticity including work 

hardened, recovered, and two phase materials. In all cases the flow 

stress calculated for the propagation of a pile-up of dislocations is 

)ower than the flow stress required to propagate a single dislocation 

for the same internal stress field. The maximum applied stress required 

{passing stress} to propagate a pile-up through an internal stress field 

does not occur when the head of the pile-up is at the maximum internal 

stress, but \'then the head of the pile-up has passed the position of the 

maximum internal stress. The passing stress of a pile-up decreases with 

an increase in pile-up length until a pile-up length is reached for which 

the dislocations at the end of the pile-up have little affect on the 

head of the pile-up, and at this point increases in pile-up length do not 

31 
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decrease the passing stress significantly. 

The misfit dislocations at the interface of Ni 3Ge in a matrix 

of Ni-Ge solid solution, have a variety of different types of nebJOrks 

to accommodate the misfit at the interphase interface depending on the 

orientation of the interface. A common type of network observed, for 

which the dislocations were characterized, is a square grid of edge 

dislocations with Burgers vectors of the a[lOOJ type on a cube plane. 

This observed arrangement is in good agreement with the theoretical 

network necessary to form a Van der r4er'\'te net. The misfit dislocations 

offer little resistance to glide 'dislocation motion, except in the 

localized region of the misfit dislocations. If the incoherent Ni3Ge 

particles are sheared by glide dislocations of the matrix the most probable 

mechanism is by the bowing of glide dislocations between the misfit 

dislocations. To date deformation by this mechanism has not been proven 

experimentally. 

Experimental work should be carried out on single crystals with 

incoherent second phase particles, or single crystals with some type of 

barrier with a known stress field, to test the numerical calculations 

of flow stress for pile-ups. In these single crystals the appropriate 

component of applied stress on the various slip systems would be known, 

and thus the experimental results could be compared directly with the 

calculated results. 

More electron microscopy and X-ray work should be performed on 

the deformed alloy of Ni-Ge to determine the role of the incoherent Ni 3Ge 

particles in the deformation process. Such investigations may provide 

direct experimental evidence concerning the interaction of glide 
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dislocations and interphase interfaces. 
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