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" CHAPTER 1
INTRODUCTION

The correlation of the mechanical properties of méteria]s and
the detailed microstructure is the basis of many metallurgically
important problems. This problem is essentially the calculation of the
resistance of internal stresses to the motion of dislocations. The
internal étress field can be due to dislocation debris or second phase
particles or both, Theoretical estimates of the flow stress have been
based on the sum of the internal stresses acting on a single dislocation.
However, experimental observatiohs show that large numbers of disloca-
tions move on slip bands. Thus the calculation of flow stress should
consider‘the resistance of internal stress fields to the movement of
large numbers of dislocations rather th;n single dislocations.

To describe a slip band it is mathematically preferable to
describe a s1ip band as a continuous distribution of dislocations of
infinitesimal Burgers vector'instead of a band of discrete dislocations.
Considering only a single dislocation overestimates the flow stress and
thus the objective of the present analysis, is a comparison of the
mobility of single dislocations and pile-ups. A few idealized barriers
to dislocation motion were considered.

The type of obstacles considered was éhosen to exemplify the
use of fhe mefhod to a variéty of metallurgically important problems.

A periodic internal stress field was chosen to test the numerical

_solutions against the analytical method developed by Smith (1967).
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Alsd such distributions of internal stress may result from accumulation
of dislocations in work hardening, although it is unlikely that the
idea]ized.sinusoidal model discussed here is itself of any direct
physical significance. |

The motion of groups of dislocations through simple tilt
boundaries was chosen because of the impoftance of simple tilt sub-
‘structures in determining the yield characteristics of hot worked and
thermal mechanically processed materials.

The model of the interphase interféce dislocation network was
chosen to show the value of the method in regard to two phase materials.
; It is recognized that the interface dislocations do not necessarily
represent the most significant cdntribution to the flow stress of
such materials.

To relate the theoretical concepts developed concerning the
propagation of slip bands in two phase solids an experimental program
was uﬁdertaken. The objective of this program was to determine the
“interphase interfaces developed in a directionally solidified two

phase material and the mechanism of plastic deformation.



CHAPTER 2
LITERATURE REVIEW

The investigation of the motion of groups of glide dislocations
in two phase materials necessitates a review of the mathematical methods
of dealing with large numbers of like dislocations and the nature of
the barriers kesisting dislocation motion. Thus the literature review
is divided into two sections which consider each of these aspects

separately.

2.1 The Nature of Interphase Interfaces

In genéra] any interface between two phases must contain two
energy terms, structural and chemfcal. The energy due to the internal
stress produced by the seconq phase is covered in the structural term.
The energy due to the broken chemical bonds across the interface is
covered by the chemical term.

w In discussing the interaction of glide dislocations with second
-phase partic]és ft must be recognized that in general a number of types
of 1¢ng and short range interactions are possible. Firstly for coherent
particles, if the average atomic volume of the two phasesis different,
longrrahge elastic stresses can be established in the matrix as discussed
by Mott and Nabarro (1948). They identify the flow stress with a simple
arithmetic mean of the internal stress produced by tﬁe coherent‘preci-

pitates and they obtain the following equation for the flow stress,

o=2ue f 2.1
e = 3K§/[3K + 2E/(1+v)], where K is the bulk modulus.
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where p is the shear modulus, f is the volume fraction of the precipitéte,
and E and v are Young's modulus and Poisson's ration of the matrix.

The atomic vb]ume of the precipitate is (1 + 6)3 where the atomic
volume of the mafrix is unity.

.’ Since the elastic moduli of the precipitate and matrix may be
different, this also may produce a long range force on approaching
dislocations as suggested by Fleischer (1960).

Second phase particles can have short range forces on disloca-
tions other than those due to the stress field of the particles. If
a dislocation cuts a particle, then the dislocation must do work to
créate the extra particle-matrix interface of the cut particle. If
the particle is ordefed, then, if the Burgers vector of the matrix is
ndt equal to the repeat distance 6f the ordered matrix of the particles,
then work must be done by the dislocation to create the disordered
interface across the slip plane. These short and long range forces
of partic}es on dislqcatiohs are reviewed in detail by Kelly and Nicholson
(1963). '

For large particles, the misfit between the lattices of the
matrik and the particles can be accommodated by a network of dfs]oca-
tions. 1If the misfft is completely accommodated by interface disloca-
tions, then the short and long range elastic stresses produced by the
second phase particle cah be attributed to the interface dislocations.

Frank and Van Der Merwe (1949) were the first to suggest
that the misfit between the two lattices of crystals grown epitaxially
on one another, is accommodated by a grid of dislocations in the

interface of the two crystals. Because these dislocations accommodate



“misfit, the stress field of these dislocations is less thaﬁ a
dislocation of the same Burgers vector produced by deformation.
Van Der Merwe (1950) calculated the energy and stress of a set of
dislocations wﬁich ac;ommodate the misfit between two semi-infinite
crystals which have a misfit in only one direction. The equations
are linear,vand thus solutions can be superimposed to obtain stress
fields of more complicated misfit dislocation networks.

When the misfit is completely accounted by dislocations, the

spacing of the dislocations is (Brooks 1952)

(d] + d,)

d = |b] ETEG_777£;T : 2.2
whére [b| is the magnitude of the Burgers vgctor and d] and d2 are the
spacings of lattice planes for the two crystals.

Mathews (1961) observed the first misfit dislocation network
in the interface between a thin film of PbSe deposited epitaxially
on a fhin film of PbS. The dislocation network was a square grid of
edge dislocations with Burgers vectors of the a/2 [110] type: The
disiocation spacing agreed with the misfit between the two lattices.

As in epitaxially grown speéimens, coherent precipitates can
~ become semi-coherent at large sizes and contain a dislocation network
to accoomodate the misfit. This was first observed by Merrick and
Nicholson (1962). They observed misfit dislocations on plate like
precipitates of Ni3Ti in a Ni-20% Cr - 6% Ti alloy. Phillips (1966)
observed misfit dislocations for spherical, cobalt rich precipitates

in a Cu - 3.12% Co alloy. Weatherly and Nicholson (1967) observed a



hexagonal network of diélocations with Burgers vectbrs of a/2 [110]

type in spherical precipitates of Ni3 (Ti, A1) in a Nimonic 80A{alloy.
They also observed a square grid of dislocations with a [100] type
Burgers vector for disc-shaped precipitates in Al-Cu alloy and also

they observed akrays of loops with Burgers vector of the type a/2[110]
spaced along the length of lath shaped precipitates in a Al1-Cu-Mg alloy.
Weatherly and Nicholson found that‘the spacing of the misfit dislocations
agreed with the Brooks formula (equation 2.2). |

Laird and Aaronson‘(1967) investigated Widmanstatten vy plates
in an A1-15% Ag alloy and found that the hisfit between the plates and
the matrix was accommodated by a hexagonal network of dislocations with
Burgers vectors of the type a/6 [112] or a network of two sets of
para]lel‘diélocations with Burgérs vectors of the type a/6[112].

In addition to the direct interaction of dislocations with the
particles which occurs if the particle is sheared, indirect interaction
may occur fn the case of hard particles which don't deform. The matrix
must produce large numbers of dislocations in the vibinity of these
hard particles to keep the material continuous. This causes localized
work-hardening of the matrix. The theory for this localized work-

hardening has been developed by Ashby (1968).

2 2 D1s]ocat1on Pile-Ups

If the procss of p1ast1c yielding is cons1dered as the motion
of single dislocations, the applied stress required for dislocations to
overcome an obstacle gives a maximum applied stress. If a pile-up of

dislocations against the barrier is considered, the required applied stress



for the leading dislocation to overcome thelobstacTeis lower since the
other dislocations in the pile-up create a stress concentrate at the
head of the pile-up aiding the leading dislocation to overcome the
obstacle. \

Cottrelf (1949) made the first calculation of the stress concen-
tration at the head of a pile-up, where the obstacle had only a very
short range stress field. That is the stress field of the obstacle
acts only on’the leading dislocation of the bi]e—up. By means of a
virtual work argument, he calculated the stress at the head of a pile-
up to be no, where n is the number of dislocations in the pile-up and
. g is the applied stress.

Suppose fhere are n parallel infinitely long dislocations on
the s1ip plane y = 0 which are piled up agafnst some obstacle. Let
the axis of these disiocations be parallel to the z-axis and there be
dislocations at points x = Xy Let P(x) be the stress acting on these
dislocations due to the applied stress and due to the stress field of
the obstacle. For these dislocations to be in equilibrium the following
equation must be satisfiéd, |

: —E— 4p(x) =0 51,2, on 2.3

i=1 x. - X,
jej 31

where A = %%- for screw dislocations and A =‘?5%$:37 for edge dislocations.
Here p is the shear modulus, b 1is the Burgers vector of the dislocations,
and v is Poisson's ratio. In equation 2.3, P(x) is the appfopriate cdm-

ponent of shear stress, xy component for edge dislocations and yz



component for screw dislocations. Eshelby, Frank and Nabarro (1951)
developed a general method of solving this equation for the positions
taken up by the dislocations in the pile-up and solved for the case
of n-1 dis]ocafions piled up against a locked dislocation. They also
found that the stress concentfation at the head of the pile-up to be
no where o is the apnlied stress. If the length of the pile-up 1is

L, the number of dislocations, n, can be expressed as:

_ Lo
n= 2 2.4
.Thus the stress at the head of the pile-up is
2 .
lo
75 2.5

Although the method of Eshelby, Frank and Nabarro is exact, it is very
difficuft to'put into practice and thus is rarely used.

Head and Louat (1955) considered the pile-up to be a group of
smeared out dislocations of infinitesimal Burgers vector instead of
discrete dislocations. This ehab1es equation 2.3 to be approximated

with the integral equation,

AS%%'dX+P(Xi)=O | 26
D .

where A and P(x) are as defined previously, and f(x) is the dislocation
density in the pile-up af point x. This integral is taken over

region D which contains all dis]océtions in the pile-up. Head and
Louat developed a general method of solving for f(x) which is simplier

than the exact method of Eshelby, Frank and Nabarro. Head and Louat's



results agree with those of the exact method when a large number of
dislocations are in the pile-up.

Smith (1967) extended the method of Head and Louat to consider
the mobility of groups of dislocations in a variety of internal stress
fields. Suppose a pile-up extends from A to B, then equation 2.6

becomes
B

A § flx) dx + P(x;) =0 2.7

X.i-x
If there are no singularities in P(x) and thus in f(x), there is a
solution for f(x) only if the fo]]owiﬁg equation is satisfied (Head and

Louat, 1955).

P(X) dx =0 ‘ 2.8

V(x-A)(x-8)

But P(x) = P](x) - o where P](x) is the internal stress acting on the
pile-up and o is the applied stress. Thus if the stress P](x) is known
(the stress field of some obstacle) then o the applied stress to propa-
gate a pile-up with a source ét A to B in the internal stress P](x),
can be ca1cuiated from equation 2.8. This method can be app]ied to
any sftuation where the analytical form of the internal stress field
is khown; but it will be most accurate when the internal stresses are
not rapidiy varying functjons in the region AB. '
Very recently Smith (1968) developed a method where he leaves
‘the leading dislocation discrete and smears out the remaining disloca-

~tions in the pile-up. This should be strictly a more accurate épproach
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in the case of rapidly varying internal stresses. However in the
present work the smeared out pile-up has been used in an effort to
contrast the behaviour of single dislocations and groups of disloca-

tions with respect to a variety of obstacles.



CHAPTER 3
MOBILITY OF SINGLE DISLOCATIONS AND PILE-UPS

3.1 Theory on the Mobility of Pile-Ups

' To treat the problem of a pile-up of dislocations in a general
internal stress field, the method of Smith (1967) was adopted. Thus
it is necessary to review in detail the solution of eqﬁation 2.6 as

. developed by Head and Louat (1955).

Equation 2.6 becomes on rearrangement:

S (") dx - P(x;) = 0 3.1

” D
Suppose P(x) is a known function and f(x) an unknown function and that
D consists of p finite segments of the x-axis (a],b]), (az,bz) ———
(ap,bp). Sgppose that at q of the end points of the segments, denoted
by C], C2 ---, C_, f(x) is to remain bounded, and that at the remaining

q

2p-q end points, denoted by Cq.+ 1° C

q+2 T C2p’ f(x) may be

unbounded. Let

q 2
- k=1 . k=q+1
Then if p-q > 0, solutions to equation 3 1, bounded at C], C2 --- Cp,

always exist and are g1ven by

- ]R(x) S Ry(x) Plx)
f(x,) = dx +
! Rz(x ) (x) X=X,

n

R](xij

Qp-q-](xi) 3.2

Ry (x;
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where QP-Q-T(xi) is an arbitrary polynomial of degree not greater than
p-g-1 (it is zero for p=q).
If p-g < 0, a unique solution, bounded at C], CZ’ ---, Cq, exists

if and only if P(x) satisfies the conditions

- \Sﬁ RZ(X) n |
< ﬁ;T§7' x P(x) dx =0 forn=0,1, ---, (q-p-1) - 3.3

and if this is so the solution is given by equation 3.2, with Qp-q-](xi) =0,
Smith (1967) continued this development. Consider a pile-up

extending from A to B, in a stress field P(x) = P](x) - g, where P](x)‘

is the internal stress field, and o is the applied stress. If P](x)

~ has no sihgularities, then f{x) will be bounded in the region AB, and

thus iﬁ order that f(x) have a solution equation 3.3 must be satisfied.

Thus, _
B

g -~ P(x) dx =0 . 3‘4
) Jxm Bx)

Since P(x) = P](x) - o, then, the applied stress, o, necessary to keep
a pile-up extending from A to B, in an internal stress field P](x),
in equilibrium can be calculated. On substitution of P{x) = P](x) - o,

equation 3.4 becomes

B

1 ~S' P](x) dx
o=l 1 =9 3.5
- Vix-p) (B-x) -

Thus if this ihtegration can be performed, o can be calculated. This

integration is usually very difficult to perform analytically for most
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internal stress fields, P](x), except relatively simple analytical forms
of P](x). .

With a’change of variable,

equation 3.5 becomes

1
P,(X) dx
o= %-\S:—l~—-—- . 3.6
Vi - X2 4 ‘
This equation can be converted to a summation plus a remainder (Kelly,

1967) which is

Px) ¢ el £20) () 3.7

1
°=_
n 2°" (2n):

n
z
k=1

where X, = cos [gl—%ﬁll—fd, i=1,2, --—-, n,and -1 <e <1. The
last term in equation 3.7 approaches zero for large n and thus equation
3.7 becomes for large n,

n
1
= ¥
Gn=

IRy | | 3.8
‘Equation 3.8 was tested for a suitable value of nl It was

found on trying different values of n, that the results for equation 3.8,

changed very little for n > 6. Thus a value of n = 14 was used for

the remaining calculations.

A11 numerical calculations of o were performed with the aid

of the 7040 IBM computer.
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»

Using equation 3.8, the applied stress reduired to propagate
a pile-up to various points in an internal stress field P](x) can
be calculated by changing values of A and B. As a further test of
equation 3.8, the results of o for an internal stress field
P](x) =0yt gﬂ (1 - cos (%&)] were calculated and compared with those
“of Smith (1967) who calculated o for this internal stress field
analytically. As can be seen in Fig. 3.1 the results agrée very well
with those of Smith.‘ Further examination of Fig. 3.1 indicates that
the required applied stress for a pile-up to pfopagate through this

internal stress field, is less than that for a single dislocation.

3.2 Slip Propagation Through a Sihp1e Tilt Wall

-

Simple tilt walls are formed during polygonization and creep
deformation and it is thus of value to examfne the role of such
substructural barriers in resisting the propagation of slip bands.

The stress fields of a simple tilt wall have been developed by Cottrell
(1952) and Li (1961). In all the following calculations on simple tilt
walls, it is assumed that the dis]ocations of the tilt wall are pinned
‘and thus can not move on being approached by either a single dislocation
or a pilé-up.

Let the tilt wall be in the x = 0 plane, the dislocations be -
parallel to the z-axis and the Burgers vectors of the dislocations be
parallel to the x—axfs. Let the spacing'between the dislocations in the
tilt wall be h, and one of these dislocations pass through the origin.

: Let\a‘bi1efup of 1ike edge dislocations on the y = h/2 slip p]ahe, with

théir axis parallel to the'z-axis, and their Burgers parallel to the
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Figure 3-1. Applied shear stress required to propagate the leading dislocations
of a pile—up to x, (full curve). Source of pile-up isatx=0.
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x-axis, approach this tilt wall. For this edge dislocation pile-up,

P](x) is the xy component of shear stress for the tilt wall and thus

P (x) = -11:37- [cosh (2=) cos (2n) -11/Ccosh (2=) - cos (ZA)]Z 3.9

where u is the shear modulus, b is the Burgers vector of the tilt wall
dislocations, v is Poissons ratio, « = Iﬁ-and A= 3%-. Using equation
3.8, with A = - 10h, the applied stress required to propagate a pile-
up with a.source at -10h, to various positions with respect to the
tilt wall were calculated by varying the value of B. These results
are plotted in Fig. 3.2. Also in ?ig. 3.2 are plotted the required

- applied stress to propagate a single edge dislocation with the same
p]ané; same Burgers vector and same axis, @o different positions with
respect to the simple tilt wall. It is seen that the pile-up requires
a lower applied stress to overcome this barrier.

If the pile-up length in the preceding discussion is increased,
the passing stress, which is the applied stress required for a pile-
up to overcome a barrier,_wil] decrease. Calculations similar to
" those of the previous paragraph were carried out for various pile-
up'lengths. The passing stress versus pile-up 1eﬁgth is plotted in
Fig. 3.3. It is seen as the pile-up length is increased that the
passing stresé decreases when the pile-up length is less than 50h.

For pile-up lengths greater than 50h, the passing stress decreases

very 1ittle with an increase in pile-up length because the dislocations
at the end of the pile-up have very little affect on the leading
dislocation, for pile-up lengths greater than 50h.
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"In addition to the effect of substructural barriers the
résistance to deformation of a crystal may be increased by an overall
increase in the friction stress. This situation hay arise in inter-
stitual or substitutional solid solutions. If a pile-up against a
simple tilt wall is cbnsidered for which each of the dislocations in
the pile-up must overcome a friction stress,'of, due to solute atoms

in the matrix, equation 3.9 will have another term and becomes

Pl(x) =0 ﬁr¥g§T .[cosh (2=) cos (2A)-1]/[cosh(Z«)-cos(Zx)Jz 3.10

£t
where the variables are as defined for equation 3.9. Fig. 3.4 shows
the required stress to propagate a pile-up with a source at x = -10h,
to various positions with respect to the tilt wall. Comparing Fig. 3.2
and Fig. 3.4 we see that the required applied stress to propagate a
pile-up in the presence of a friction stress to any position is simply
the sum of the stress required in the absence of a friction stress plus
the value of the friction stress. Thus a pile-up of dislocations does
not aid dislocations in overcoming a friction stress, or any stress

that does not vary in magnitdde with position along the pile-up because

this stress acts equally on all dislocations.

| 3.3 Slip Propagation Through a Network of Misfit Dislocations in a

Two Phase Material

The total resistance to the propagation of a slip band in a
two phase material is determined by a number of factors including chemical
composition and elastic constants of the second phase particles and the

nature of the interphase interface. In regard to the role of the
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interface it is of value to examine the role of misfit dis]dcations
in resisting the propagation of a slip band. In order to examine this
problem two approaches have been takeh. An experimental investigation
Ahas been undertaken of a simple binary nickel based system containing
particles of Ni3Ge and is described in Chapter 4. In addition the
effect of an idealized network of misfit dislocations on the mobility
of a dislocation pile-up was examined using the numerical method outlined
previously.

The interface model used, assumes an infinite network of edge
dislocations which form a square grid on the (001) plane. The
Burgers vectors of these dislocations are a [100] and a [010]. To
calculate the stress field of this idealized model of misfit disloca-
tions, the stress fields of the two sets of parallel dislocations were
calculated separately (Van der Merwe, 1950) and the total stress field
was obtained by summing these two stress fields. The coordinate system
used for this calculation is: x-axis parallel to [100], y = axis
parallel to [010] and the z-axis parallel to [001]. The components

of stress for this idealized model of misfit dislocations for z < 0 are:

Pxx ;,'Q (zZr(1 + c2 ezz)cos X - 2CeZ] + 2 R2 (cos X - Cez)}
Pyy = —Q]{Z[(l + Czezz) cos Y - 2Cef1 + 2 RZ (cbs Yy - Cez)}
P, = QZ{() + %y cos X - 2 cel

+ Q]Z{(l + Czezz) cos Y -2 Cez}
P =0

Xy



18

2 2 27
Py = - Oy sin ¥ (12 42 (1 - %))
P_=-0QsinX (R2+2 (1 - ce?l)y
XZ
o 2mx 2 2ny o _ 21z - 2\%

where X = R Y = “F Y4 - C (1 +8°)7% -8,

8 = /82 (1-v), R% = 1 + €%e?L - 2ce® cos X,

T2 = 1+ %% - 2ce” cos ¥, Q= ucel/r82 (1-v) R%7 ,

Q] = uCez/[82 (1-v) TZJ, p is the shear modulus and v is Poisson's

ration. For the above calculations the shear stress and Poisson's ratio -
were assumed to be equal for both phases.

A pile-up of edge dislocations having Burgers vectors a/2 [T01]
which are on the slip plane (1T1), in the stress field of the tilt
wall will be considered in the stress field of the network of misfit
dislocations. For this pile-hp the appropriate component of the

stress field, P](x,y,z) acting on these edge dislocations is:

Pl(x,y,z) = - 0.408 Pxx +‘O.408 PZZ - .408 Pyz

}he intérface is divided into squares by the misfit dislocations. The
stress field of the misfit dislocations is periodic with respect

to these squares. Thus the app1ied stresses required to propagate
pile-ups and single dislocations toward this network, were calculated
with respect to various positions in one square. This is illustrated
schematically in ng. 3.5. The positions chosen were those along line
EF,'and these positions will be denoted by the y coordinate of the point.

For example the middle of the square is y = 0.5. The distance of the
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approaching dislocation from the misfit boundary will be denoted by D,
and this distance will be measured in the [10T] direction from the
point on line EF which is being considered. Figs. 3.6 and 3.7 are graphs

for applied shear stress required to propagate pile-ups with a source

at D/h = -10, and single dislocations versus D, for boints y = 0.5 and
y = 0.3, on line EF, respectively. It is seen from these figures that
the passing stress for a pile-up for this internal stress field is 1ower

than for a single dislocation.



CHAPTER 4
EXPERIMENTAL PROCEDURE AND RESULTS

A nitkel-germanium binary alloy was selected because the Ni
rich solid solution and the ordered intermetallic compound Ni3Ge have
the same lattice (f.c.c.) with a misfit of about 1%. Thus if the
interphase4interface is semi-coherent there should be a network of
misfit dislocations to acconmodate the misfit at the interface of the

large Ni3Ge particles. These misfit dislocations were observed and

', characterized by transmission electron microscopy as described in this

chapter.

4.1 Experimental Procedure

>Nicke1 has an f.c.c. lattice with a lattice parameter, a = 3.512R
(Pearson, 1958) and NijGe is an ordered alloy of the L1, type with a
lattice parameter, a = 3.560% (Pearson, 1958). The phase diagram of
Ni-Ge (Hanson, 1958) is given in Fig. 4.1.
| An alloy of Ni - 20 weight percent Ge was used since this alloy
will contain about 50% Ni3Ge. Samples of this alloy, weighing 35‘grams
were melted several times in the argon arc furnace and then cast in
ingot form. These samples were then directionally solidified to produce
Targe particles of Ni3Ge; To directionally solidify the samples, they
were melted in an inert atmosphere of argon by a Toccdtrdn unit, and
then the sample was lowered through the coil at a rate of 0.5" per hour.

The apparatus for directionally solidifying the samples is shown

20



.~ ---Weight Percent . Germanium
lo 20 -30 40 50 60 70 80 90

i i l
25 ! 30 35 ap
T T T T T
1200} =
l° ’,
iet ya
1150} N\jigs® 135 -
R A/
- (A / ! -
100 1V Moot Tl
} ‘\ }8: 'n
1050} { \‘ ! :' E € 4
1500 B R .
1453° oool | iy Y] i .
' N i l,_L_;" 70°:
. 1400~ b BER
‘9 . \ ® 950} ! l \ -]
- \ 9, Voo \
® 1300 v 2 b \
2 \ \ < 900 5 11 l2|5 1 3[0 1] 3
2 1200 h \ ' lz,oog At.-%Ge
-4 wei® 7\ L
£ PR Iy,.{ \
o \ ! \ & N
i Y
=il
1000 ol B':*J'l 1 v -
{1 i ! 936°
900 AERR I | 4 |
b 1,850 L
! I,l——.- /
800 i e s
4 v 2
- ! i (%)
700 + +
] ] H
1 I bl
] I ] i
600 1 1 1 i
o O 20 30 40 50 60 70 80 90 I00
Ni ‘ Atomic Percent Germanium Ge

Figure 4-1. Phase diagram of Nickel—-Germanium.



To vacuum pump
and argon supply

- Alumina Insulation
crucible .
Sample —— ——Graphite susceptor

; - Quartz

M/ Toccotron coil
\tube
Water cooled_/

copper support

q@«,

Brass cap/

«———Water in
————Water out

00

(}JU

Il

To mechanical
drive

X

Figure 4-2. Direéﬁonol solidification apparatus.



21

schematica]]y in Fig. 4.2. The inner diameter of the crucib}e is 0.5"
and the diameter of the graphite susceptor is 1.0".

Thin films of the directionally solidified alloy were preparéd
in order to examine the detailed nature of the interphase interface
in.the electron microscope. Transverse sections about 0.050" thick
were cut from the directfona]]y solidified sample with a cut-off wheel.
These samples were then mechanically polished to a thickness of approx-
imately 0.003". The'edges of these samples were then masked with |
microstop, and then the samples were electropolished in a solution of
ethanol-]O%.perch1oric acid (volume) at a potential of 24 volts using
the window technique. A‘stain1ess steel cathode was used. The best

.results were obtained with the polishing solution at a temperature between
-20%C and -30°C. The thin films were examined in a Siemens Elmskop I
electroﬁ microscope using a double tilt stage. The Burgers vectors
of the misfit dislocations were determined by observing the dislocation
arrays under various contrast conditions. The theory of electron
diffraction contrast is described comprehensively by Hirsch, Howie,
Nicholson, Pashly, Whelan (1965). | )

A compression samp1e was machined from the directionally solidified
sample. This compression sample was 0.5" long; and had a diameter of
0.25", A flat, 0.1" wide was ground along the Iength of the.sample to
facilitate the observation of surface slip lines. To remove the damage
due to machining, the compression sample was electropofished, using the

solution and potential described in the previous paragraph, reducing the

diameter by 0.002". The flat of the specimen was lightly etched with
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a solution of ethano1-10% bromine (volume). This sample was then
- tested in compression using the Instron TTC-L , removing the load
periodically during the test to observe the slip lines. The slip

lines were examined directly on the flat of the compression sample.

4.2 Experimental Results

Some areas of the directionally solidified alloy contain a
high volume fraction of large N13Ge particles which have a fibrous
nature,while other grains contain a relatively low volume fraction of
large Ni3Ge pérticles. This inhomogenity is illustrated in the optical
photographs, plates 4.7, 4.8 and 4.9 which also contain slip lines.
Plate 4.1 which is a composite of a region with many large Ni3Ge
particles, shows the interconnecting particles and also their inter-
connecting network of misfit dislocations. Plate 4.2 is also of a
similar region at a lower magnification. Plate 4.2 shows the fibrous
nature of this region. n |

To detennine‘the Bu#éeré vectors of dislocations the criterion
that a dislocation will be out of cdntrast when g. b = 0 was used
-(Hirsch} Howie, Nicholson, Pash]éy, Whelan, 1965). In this equation
.§'is'the reciprocal lattice vector of the operating ref]ectidn, and b
is the Burgers vector of the dislocation. In region A, of_plate 4.3,
there is a square grid of misfitrdislocations. A1l the misfit disloca-
tions are in contrast because there are many operating reflections which
are [200], [020] éhd [220]. In the same region A, in plate 4.4, only
one set of dislocations are in contrast and the others set are out of

contrast. The operating reflectidn for this plate is [200]. 1In plate



Plate 4.1

Composite of a region of a high volume fraction

of incoherent Ni3Ge particles.






Plate 4.2

Fibrous nature of incoherent Ni3Ge particles in a

region of high volume fréction of Ni3Ge particles.






Plate 4.3

Region A shows a square grid of misfit dislocations.

There are many operating reflections.






Plate 4.4

Region A shows one set of misfit dislocations out

~ of contrast. Operating reflection is [200].






Plate 4.5

Region A shows the other set of misfit dislocations

out of contrast. Operating reflection is [020].
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4.5, with an operating reflection of [020], the second set of disloca-
tions is in contrast and the first set extinguished.‘ There are two
tybes of possible Burgers vectors: + a/2 [011], + a/2 [017] and

+ a/2 [101],1;%{10Tj or + a [100] and + a [010]. The normal to the foil
surface is close to tHe [001] direction. If the set of dislocations have
Burgers vectors of the type a/2 [110], then the interface plane would

be of the (111) typé and thus would make an angle of about 54% with the
surface of the foil. This region was near the edge of the foil and thus
a maximum possible thickness is 20008, If the interface foil was a
plane of the (11i) type, the thickness of the foil would have to be
about 2.0 x tan (54) x 108/40,000 = 70008. This is an impossible foil
thickness. Thus the interfacial plane must be (001). Thus the Burgers
vectors of the two sets of misfit dislocations appear to be + a [100]
and + a [010]. This is discussed in detail in a later chapter.

Other regions-of the foil have a hexagonal network as is shown
in Plate 6. The Burgers vectors for this plate have not been calculated.
There are different misfit dislocation arrangements, because the Ni3Gé
particles are irregular, and thus the misfit must be accommodated on
different types of interfacial planes producing different arrangements
of mfsfit dislocations.

Misfit dislocations have a smaller stress field than an edge
dislocation of the same Burgers vector produced by deformation (Van der
Merwe, 1950). As furthef evidgnce, it was found that to bring misfit
dislocations into contrast, the misfit dislocations had tb be much

closer to the Bragg contours than for ordinary glide dislocations.



Plate 4.6

I1lustrates the hexagonal misfit dislocation
,nétwork sometimes observed at the interface of

the Ni3Ge particles.
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A stress-strain curve for this directionally solidified Ni-20
weight percent Ge alloy tested in compression is given in Fig., 4.2,
This alloy had a high yield stress of about 79,000 p.s.i.. Also
the work hardening rate was about G/150, where G is the shear modulus
for pure nickel. Thié value is high compared to the usual values of
between 6/200 to G/300, where G in this case is the shear modulus of
the metal concerned.

The load was removed at points 1, 2, and 3 shown in Fig. 4.2
and the slip lines were studied. Plate 4.7 is taken at point 1. 1In
this plate the 1$rge particles are Ni3Ge and there is a relatively low
volume fraction of Ni3Ge particles as compared to the volume fraction
gf Ni3Ge particles in Plate 9. Slip lines can be seen in Plate 7,
but extremely few slip lines cut the Ni3Ge particles. Plates 8 and 9
are taken after the specimen had been strained to point 2. The slip
lines are more numeroUs, but in plate 8, very few of the Ni3Ge barticles

are cut. In plate 9, the particles have a fibrous nature and thus‘it
is very difficult to tell if the Ni3Ge particleslare cut becau;e of
thevc10$e spacing of the particles. It is difficult to tell whether.
the slip lines are continuous or consist of numerous small segments.
At point 3 the slip line configuration was similar to that at point 2

except the s1ip lines are more numerous.



Plate 4.7

Slip 1ines‘when the compression sample has been

strained to point 1. This region contains a low

volume fraction of NijGe particles.






Plate 4.8

Stip lines when the compression sample has been
strained to point 2. This region contains a low

~ volume fraction of Ni3Ge particies.






Plate 4.9

S1ip lines when the compression sample has been
strained to point 2. This region contains a high

volume fraction of Ni3Ge particles.






CHAPTER 5
DISCUSSION OF RESULTS

For clarity the discussion is divided into separate sections

dealing with the experimental observations and numerical computations.

5.1 Burgers Vectors of Misfit Dislocations

The misfit dislocations at the interface of the large Ni Ge

3

particles should accommodate the lattice misfit between the Ni_Ge

3
Tattice and the matrix. If the lattices of Ni_Ge and the Ni matrix

3
are aligned such that the (hk1l) b]anes of the particle are parallel to
those of the matrix then the accommodating strain will be pure dilation,
and this type of strain can be accommodated completely by edge disloca-
tions. The diffraction pattern in plate 5.1 is of the region seen
in plates 4.3, 4.4, and 4.5. It can be seen that the ordered spots
(mixed indices) are Qrientéd such that the lattices of‘the two structures

are simply aligned and (hkl) _. is parallel to (hk1) Thus

matrix particle’

the misfit between the matrix and the N13Ge particles can be accommodated
by a set of edge dislocations, which accommodates the misfit in two
~perpendicular directions on the interface with fﬁe Burgers vectors of
the misfit dislocations in the plane of tﬁe interface.

| | The square grid of misfit dislocations in section A of plates
4.3, 4.4, and 4.5, are edge dislocations since the operating reflection
as can be seen in plates 4.4 and‘4.5 are parallel to the dislocations
that are out of contrast, and since §}5'= 0 for these dislocations, b,

the Burgers vector, is perpendicular to the line length. The only set

25 . MCMASTER UNIVERSILY. LIBRARYL



Plate 5.1

Diffraction pattern showing the alignment of

(hk1) The ordered

particle with (hk])matrix’

spots (mixed indices) are due to the ordered

Ni3Ge paktic]es.
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of simple Burgers vectors that are cbnsistent’with plate§ 4.3, 4.4 and
4.5 are + a[100] and + a(010] which lie in the (001) plane. The normal
to the foil in section A, is close to the [001] direction and the
width of the interface seen in plates 4.3, 4.4 and 4.5 is consistent
with the interface being the (001) plane.

| This square grid of edge dislocations can accommodate the misfit
but the dislocation spacing should be 2933, using the lattice parameters
of pure Ni and pure Ni3Ge. The measured spacing is about 500R. The
matrix'is a‘solid solution of Ni-Ge and the particles may differ from
Astoichiometry, and thus the lattice parameters of the matrix and the
particles may differ from those pure Ni and Ni3Ge. This could account
for the difference in the measured and calculated misfit dislocation
spacing. A difference of 0.023, would cause an efror of 100% in the
dislocétion spacing. :Thus the spacing of dislocations on the interphase
interface is extremely sensitive to the exact lattice parameter of the
solid solution. To date no data on the lattice parameter of nickel-
Qermanium solid solution have been reported and thus no dfrett compari-
son can be made with the expérimenta1 results. However fhe observations
described above indicate that the interphase interface in aé grovn
Ni-Ni3Ge consists of a simple Van der Merwe net of 'aEIOO] dislocations.
'Thié is at variahce with the interface structures reported in Ni-Ni3(A1,‘
Ti) by Weatherly and Nicholson (1968) for particles in which coherency
was lost at long ag%ng times. These differences may reflect the mechanism
of formation of the interface'array in the two cases because interfaces
occurring at long aging times may arise from the presence of glide

dislocations in the matrix.
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5.2 Cutting of Incohereﬁt Ni.Ge Particles

If a large Ni3Ge partic]é is cut, then either the glide dis-
location must cut the misfit dislocations at the interface or the glide
dislocation can be bowed out between the misfit dis]oéations in the
same manner as a Frank-Read source operates. These two possibilities
are now considered. |

The required applied stress to propagate a single dislocation
up to a misfit dislocation is about 0.25u or 2,800,000 p.s.i. Since
this stress acts on1y on the 1eaaing dislocation, the exact method ofA
Eshelby, Frénk and Nabarro (1951) was used to estimate the required

- applied stress to propagate fhe leading dislocation of a pile-up of
1ength 10h to the misfit dislocation. This stress is 130,000 p.s.i.'

~ If the glide dislocation fs blocked by the misfit dis]ocatfons,
the glide dis]ocation_may be able to extend between the misfit disloca-
tions as occurs with a Frank-Read source. The applied stress required
to extend a single glide dislocation between the misfit dis]ocations,

not considering the antiphase boundary formed is

h
Thus using the shear modulus of Ni and a value of 5008 for h, the

misfit dislocation spacing, then

6

g = 2x11.5x2.46 x 10 110,000 p.s.i.
500 ' '

This stress could be reduced somewhat if the glide dislocations were

dissociated into partial dislocations of smaller Burgers vector.
Because the Ni3Ge partic1es are ordered, a single dislocation

passing through the particle creates an antiphase boundary. The
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dislocation must do work to form this antiphase boundary. The work done
per unit length by a dislocatioh in moving a distance L is obL. If

thfs dislocation is in an ordered particle, it will create an antiphase
boundary wjth an area L per unit length of the dislocation. Thus if

the antiphase boundary energy density is p, then obl = pL and o = p/b.

A typical value of antiphase boundary energy density for an L]Z ordered
alloy is about 150 ergs/cmz. Thus the required applied stress to

propagate the dislocation is about

150 9 2 .
6= —————g = 6.1 x 107 dynes/cm™ = 88,000 p.s.i.
- 2.46 x 107 -

; The stress field of a square grid of misfit dislocations doesn't
offer much resistance to dislocation motion gxcept at the misfit disloca-
tions. From Figs. 3.6 and 3.7 it is seen that thé required applied stress
to propagate a single dislocation and pile-up to the interphase (away
from a misfit dislocation) is about 0.002y and 0.0002u respectively.

Using the shear modulus for Ni, this gives values of 23,000 p.s.i. and
2,300 p;s.i. for single dislocations and pile-ups respectively.

' The applied stress required to bow a glide djslocation between

the misfit dislocations is an order of magnitude lower than that required

to cut the misfit dislocations. Thus if the Ni,Ge particles are sheared

3
it appéars probable that this(wil]‘invo]vevthe bowing of glide dislocations
between the misfit dislocations at the interface.

In regions of low volume fhactions of NijGe particles, few NijGe
particles seem to be cut as seen in plates 4.7 and 4.8 Although the slip

lines stop at the particles the process of deformation can not be
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ascertained from these observations. The discontinuities in the slip
lines may arise because the slip line heights in the particles

are beyond the resolution of the optical microscope. In order to
clearly delineate the role of the Ni3Ge particles further X-ray.and

electron microscopy observations are needed.

5.3 Single Dislocations and Pile-Ups

The numerical method used to ca]cuiafe applied stresses required
to propagate pile-ups is a very general method and can be used for
any internal stress field that does not have singularities. This
-method is only accurate for slowly varying stress fields, that is the
-internal stress does not vary significant]y between the first and second
dis]océtions in the pile-up. It is realized that this method is not
.strictiy accurate for the internal stress fields considered but the
methdd illustrates some significant differences between the mobility
of a single dislocation and a pile-up, and some important properties
of a pi]e-up.' | |

Using a sinQ]e dislocation to}caiculate a passing stress over-
éstimates the strength of barrie;s. Also when considering a pile-up,
the maximum required applied stress does not occur when the head of
the pile-up is at the maximum internal stress, but after the head of
the pile-up has passed the maximum internal stress, if this maximum
internal stress is not a singularity in the internal stress field.
Also as the length 'of the pile-up is increased the passing stress
decreases, until a point is reached when a further increase in pile-up

length doesn't decrease the passing stress. When this occurs, the
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dislocations at the end of a pile-up have very little effect on the
head of the pile-up. | N )

| Basinski (1959) had already suggested that the flow stress -
calculated from the resistance to motion of a.sing}e dislocation in an
internally stress solid gives an upper limit for the flow stress. He
suggested that plastic flow proceeds by dislocation source operation in
favourably stressed regions, followed by s1ip band propagation through

an internally stressed solid.



CHAPTER 6
CONCLUSIONS

The numerical method developed to calculate the applied stress
. required to propagate a pile-up in an internal stress field is very
general, and can easily be applied to any iﬁterna] stress field which
has no singularities. The required épp1ied’stresses calculated using
this numerical method are accurate for slowly varying internal stress
fields.

The method has been used to calculate the stress necessary to
bropagate a dislocation pile-up through a sinusoidal internal stress
field, a simple tilt boundary, and a Van der Merwe net of interface
dislocations. These examples were chosen to show the relevance of the
method to a variety of prob]ems in crystal plasticity including work
hardened, recovered, and two phase materials. In all cases the flow
stress calculated for the propagation of a pile-up of dislocations is
}ower than the flow stress reﬁuired to propagate a single dis]ocat%on
for the same-interna1 stress field. The maximum applied stress required
(passing stress) to propagate a pile-up through an internal stress field
" does not occur when the head of the pile-up is at the maximﬁm internal
stress, but when the head of the pile-up has passed the position of the
“maximum internal stress.‘ The passing stress of a pile-up decreases with
"an increase in pile-up length until a pile-up length is reached for which
the dislocations at the end of the pile-up have little affect on the

head of the pile-up, and at this point increases in pile-up length do not

31
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decrease the passing stress significantly.

The misfit dislocations at the interface of NijGe in a matrix
of Ni-Ge solid solution, have avvariety of different types of networks
to accommodate the misfit at the interphase interface depending on the
orientation of the interface. A common type of network observed, for
which the disiocations were characterized, is a square grid of edge
" dislocations with Burgers vectors of the a[100] type on a cube plane.
This observed arrangemen§ is in good agreement with the theoretical
network necessary to form a Van der Merwe net. The misfit dislocations
offer little resistance to g1ide‘dis]6cation motion, except in the
Joca1ized region of the misfit dislocations. If the incoherent‘Nf3Ge

particles are éheared by glide dislocations of the matrix the most probable
mechanism is by the bowing of glide dislocations between the misfit
dislocations. To date defonn;tion by this mechanism has not been prdven
experimentally. |
Experimental work should be carried out on single crystals with

’incbherent second phase partiples, or single crystals with some type of
barrier-with'a known stress field, to test the numerical calculations

of flow stress for pile-ups. In these single crystals the appropriate
component of applied stress on the various slip systems woﬁ]d be known,
and thué the experimental results could be compared directly with the
calculated results. |

More e1ectrdn hicroscopy and X-ray work should be perfonned on

the deformed alloy of Ni-Ge to determine the role of the incoherent Ni3Ge
particles in the deformation process. Such investigations may provide

direct experimental evidence concerning the interaction of glide



dislocations and interphase interfaces.
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