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ABSTRACT 

A. number of microwave measuring techniques for the measurement 

of the complex permittivity {£ = e er - j ~) have been investigated 
0 w 

and a new method based on the replacem~nt of the narrow wall of a 

·rectangular wave-guide by a block of semi-conductor has been developed. 

This technique is shown to be suitable for the measurement of a when 

a >> we0 tr and for the measurement of a and tr for a ~ we0 er· 

An investigation has been made of the propagation characteristics 

of a rectangu)ar wave-guide containing a centrally placed slab of 
. 

semi-conductor parallel to the narrow walls of the guide. A 

comparison of exact solutions for the propagation constant in such 

a structure with the approximate solutions normally used has shown 

that the conditions for the validity of the approximate solutions 

are much more stringent than has been reported previously. It is 

further shown that under certain conditions the structure offers a 

convenient method of measuring the conductivity of a semi-conductqr. 

In addition, a theoretical and experimental investigation of the 

effects of the higher order modes excited at the interfa-ce of such 

a structure with an empty wave-guide has been made. The study has . . 
shown that under certain conditions, the effects of these modes can 

be significant. 

A theoretical and experimental study has also been made of the 
. . 

effects of temperature, frequency a.nd doping on the complex permittivity 

( iv) 



of 1 ightly ·doped n-type gennanium. Measurements of these effects 

which h.ave not been reported p.reviously have been made over a temperature 

range 100°K- 500°K at frequencies.9.25 and 34.5 GHz and confirm the . . 

theoretical model used. 

. . 
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CHAPTER 1 

INTRODUCTION 

In recent years an increasing interest has been shown in the 

microwave properties of semi-conductors (1-8) • Due to rapidly 

advancing technology, semi-conducting devices are finding growing 

application at micrO\tave frequencies and also m1crowave measurement 

techniques provide a convenient mearis of studying charge transport 

phenomenon in semi-conducting materials. The electrical parameters 

such as conductivity a and perm)ttivity t .. may be different at high 

frequencies from those at static fields, because at sufficiently 

high frequencies the inertia of the charge carriers becomes observable. 

Thus at microwave frequencies a -and·£r for a one carrier semi­

conductor are given by (9) 

£""" = t/ = tR./t- -g2n 
• to o * 

me ~. 

q = magnitude of electronic charge 

t = t(t) = relaxation time of the charge carrier as a 

function of energy 

n = concentration of ~he charge carriers 

_ me* = conductivity effective mass Df the carriers 

w • radian frequency of the waves 

1 

- 1.1 

- 1.2 



a = d.c. conductivity 
0 

<T> denotes the Maxwellian average of T(t) 

= J: ~(t) t3/2exp-t/KT dt/ J: t3,12exp-tfkTdt 

2 

From observations of the changes in a and tr at high frequencies 

from their d.c. values, one can study the scattering phenomena. 

Further, the changes in a and tr at mm wave length (or even at em 

wave lengths) may be significant. As these parameters play an 

important role in the design of semi-conducting devices, accurate data 

on their frequency d~pendence is desirable. 

The u~e of semi-conductors at microwaves is of interest 

from another point of view. The conductivity of semi-conductors 

can be varied over a wide range, comparatively easily. By changing 

the conductivity and hence the loss in a semi-conductor, ·one can 

vary .the propagation characteristics of a given guided wave structure, 

which·may be us.eful in the design of microwave devices {'lO-i2). 

The objects of this thesis are three-fol~, as follows. 

(i) Because of the wide range of conductivities possible in a semi­

conductor,mfferent methods of measurements of its electrical properties 

are required. Experiments involving the measurement of VSWR ( 5 .•.13 ~, 
reflection coefficient.<14) and transmission coefficient (15 ~ are 

r:-eported in the literature. These methods are mostly useful when the 

"' conductivity of the semi-conductor is relatively low (< 10 mho/m). 

At higher conductivities, the measurement~ are effected by the unavoidable 

gap present between the semi-conductor and the broad walls of the wave­

guide when the completely filled wave-guide is used (16,17} (fig. 1.1 ). 



For measuring high conductivities, cavity perturbation (lS,19! or 

substitution methods (lO) are used. These methods are most useful for 

"' a > 1000 mho/m. 

3 

Thus the development of a new method that could provide accurate 

·results of 7 and a in the middle range of conductivities, is desirable. 

Such a method, based on the replacement of one . narrow wa 11 of 

a rectangular wave-guide by a semi-conductor block (fig. 1.2) has been 
• developed and is described in this thesis. It is found that this method 

is accurate when a~w£O£r· This method is free from the gap effect 

discussed in the previous paragraph and it is shown to be more accurate 

at high frequencies, where wave-guide dimension~become small.· The theory 

of this "lossy wall" wave-guide structure is developed and exact and 

approximate methods of calculations of the propagation constants are 

discussed. Finally the results of measurements which confinm the theory 

at 9.25GHZ are presented. 

(ii) 
I 

.The second object of this thesis is to study the propagation _. 

characteristic of the wave~guide structure shown in the fig 1.3. This 

configuration has not only been used for the measurement of tr and a 

(21 - 23 ) but is also useful for devices such as attenuators or 

modulators (lO) In all of these reported measurements, the propagation 

constants have been calculated using approximate techniques based on . 
perturbational or variational methods which are subject to errors. 

A study of these methods and their errors has been made and 

calculations of the propagation constant of such a system have been 

carried out for t/a and a ranges of 0.001 ~ t/a ~0.25, 0.1 ~ a(""i'm) 
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~10\r/m, for 10, 34.5 and 70.5 GHz with £r = 12 and 16. The computations 

were made using the exact equations governing wave propagation in the 

structure and the results have been compared with'those obtained from 

the approximate techniques reported in the literature. It is .shown 

that there is considerable error in the approximate calculations, unless 

t/a < < 1. It is further shown that 'in certain ranges of a and t/a the· 

attenuation constant varies linearly with a and for small t/a, the 

phase constant varies very slowly with a. It is proposed that these 

ranges are useful for measurements of a. 

In practical measurements the structure ·shown in fig. 1.3 

forms a junction with an empty guide, in which the dominant mode TE10 

is propagating. Higher order modes are excited at such a junction and 

an investigation of these modes has been carried out. It has been 

shown that unless t/a ~ 0.08 and a ~ 2.5~m, the higher order modes 

are not negligible. Experiments which. confirm the theory have been 

performed at 9.25GHz. 

(iii) Finally, the microwave measurement techniques have been used 

to determine. the conductivity and dielectric constant of lightly doped 

n type germanium. Benedic,t and Shockley (l ,2} used such a technique 

to determine the conductivity effective mass me* of electrons and holes· 

in germanium. However, their results are not in good agreement with the 

values obtained from subsequent cyclotron resonance experiments. This 

dis agreement is probably due to experimental errors. Further work 

on ntype germanium using microwave techniques has been reported by 

Druesne (24 ). His work involved measur~ents on 'n and p type germanium 



5 

(20, 10 and l/2 ohm-em) at 61.3 and 92 GHz using VSWR technique. His 

results are also in disagreement with the theory. This is because. the 

VSWR measurement technique is probably not very ac;curate at these 

frequencies and because the gap effect seems to have been neglected in 

these.measurements,rather than the inadequacy of the mobility theory 

as he has concluded. Thus there is a need of fresh experimental and 

theoretical work. 

This thesis gives the computations.of the microwave conductivity 

and dielectric co~stant of n type germanium as functions of doping 

(Nd ~ 1ol 61 ':)).frequency (lo9 ~ f ~ 101Z Hz) and temperature (100 ~ T 
Cm"l 

~ 500°k). This has not been reported in literature. The theoretical model 

used to compute a and £r includes the scattering by ionized im~urities and 

lattice vfbrations. The latter included the.low energy acoustical 

phonon and' high energy optical phonons. Inter-valley scattering by 

acoustical and optical modes was considered but it was found that 

neglecting them probably does not cause a serious error. At high 

temperatures, the holes inn type· germanium are not negligible. Their 

effect on both a and ~ has been taken into account in the computations. r . 

Experiments have been performed with a reflection type microwave. 

bridge on n type germanium samples (a = 10 and 4.5 mhos/m) between the 

temperature range of about 100° - 500°K, at two frequencies 9.25 and 

34.5 GHz. The measurements are compared with theory. 
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CHAPTER II 

GENERAL THEORY OF ~~AVE PROPAGATION IN A WAVE-GUIDE 

CON-TAINING SENI-CONDUCTOR 

2.1 INTRODUCTION 

In this chapter the t.hepry of electromagnetic \'taves in uniform .. 

rectangular wave guides containing an isotropic semi-conductor with relative 

permittivity ~(x,y) = tr(x,y) - j a(x,y) and permeability ~ 0 is 

-:developed. The-longitudinal axis -of Wto ·-the· waveguide is al~ng the 

direction of propagation \'Jhich is assumed to be in z-direct-ion. The 

- -------walls-of- the \'lave. guides are.assumed __ to .be_perfectly __ conducti_ng so that 

electric and magnetic fields satisfy the following boundary conditions, 
-~ .. 
n X E = 0 
.. -+· 
n • H = 0 (2.1) 

n being normal to the wall7pointing outward from wall surface. 

2.2 . DERIVATION OF HERTZIAN POTENTIALS 

·-------The ·electromagnetic· fields and the -propagation-constants in the 
o.Jl.(_ McWv..eet . 

system under consideration/!rom the f·1axwe11' s equations for the case of 

time variation according to exp(j~t)a~ given below, 
-;to • .. 

V X t:. = - J~o H 

v x H = j c.v t 0 £r t .. .. .. 
V D = V.! E = V.t0~r E = 0 

· v • ~ = v. ~0H' = 0 · 

9 

(2.2a) 

(2.2b) 

(2.3a) 

.(2.3b) 



£0 and. 'IJo ~re respectively the permi.ttivity and permeability of free 

space. £r·is the complex dielectric constant of the semi-~onductor and 

will be assumed to be a function of x and y but not z. 

The solution of fields may be obtained in terms of electric 
• 

and magnetic Hertzian potentials ne and nh respectively. The special 

case for Er =constant has been dealt in the reference 27. In the 

follovting sections, the treatment is generalized to the case \'lhen £r 

· is not a constant. 

2.2·.1 Magnetic Type Hertzian Potential ·since from .(2~3a) 

~ ~~ 
Er E may be taken as the curl of a vector say nh£r so that 

~r E = -jW'IJoV X nh1r 

and ~ 1 ~ 
E = -jw'IJ0 ~~ v x nh£r (2.4) 

where tth is called the magnetic type Hertzian ~otential' f27}. 

Taking the curl of the preceding equation·and substituting 

the result into 2.2a, one gets 

.. H = V X (~~ 1 V X nh £r) 

where v log~ = £-l v '£ = vt · r r r 

Novt from 2. 2b, 
~ ~. 

v X H = jW£0 £ E . r 

(2.5) 

10 
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so that 

whe,re k 2 =w2
ll £ and~ is ;n arbitrary function (v xv~= 0). 0 0 0 

Equating this to 2.5 yields 

..... 
So far ~and ~h are arbitrary functions. If a condition is imposed on 

the·se so that 

..... 
_____ or --~ = __ v_~_Jih t __ constant 

then 2.6 reduces to 

. . 2.... + k 2" ..... - ( ..... ) . 
v llh o £r llh - v x v~ x nh (2.7) 

2.2.2 Electric Type Hertzian Potentials 

A similar set of equations as that-in the previous section: 

may be obtain.ed from electric type Herfzfan potentiallfe (27). 

----One· no\·1 starts from 2.3b -and takes 

(2.8) 

so that 

and (2.9) 

Nov1 from 2. 2a 
..... 

VxE = 
..... ..... 

- j [,.)JJ H = k 2 V X ll o o e 
k 2 i1 + V4l 
o e This yields 

..... 
E = 

9 again being an arbitrary function (VxV4l a 0). Equating this to 2.9 gives 



(2.9a) 

I' /' A 

Again v e:r 9 = cr v ~ + ~Ve: r 
" v A ·A 

So that £ ~ = v~~- 4>Ve:r r . 

Substituting this into 2.9a and taking 

~ 

or v. IIe = 

(2.10) 

2.3 SPECIAL CASES 

2.3.1 
A 

t =loge £r·= Constant 

In this case Vt = 0 and the equations 2.7 and 2.10 reduce 

respectively to · 

v2ii + k 2" · n • o h o £r h 

v2~e + ko 2~r iie • 0 

and from 2.4 and 2.5 

~ . ~ 
H = V X V X IIh 

and (2.8) and {2.9) give 
~ ~ 

H = +j~A>t V XII o e 
E ="";.-lv xv x ii ""r e 

(2.1la) 

(2.1lb) 

(2.12) 

(2.13) 

The solution to these equations can be divided into two basic sets 

of solutions. One such mode is TE to z or simply TE or H mode and· the 

12 
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other is TM to z or TM or E mode. 'l'OOse modes can respectively be 
.... .... . 

obtained from a single component of nh or ne directed in the z-direction 

and the equations 2.12 and 2.13. 

The TE or H mode in the fig. 1.1 will be treated here for 

reference in later applications Thus let 
.... .... -'k nh = a 1/J ( x ,y) e 

z 
(2.14) 

where y = propagation constant • u+ j B. 

Substitution of 2.14 into (2.lla) gives 

v t 2 1/J + (y 2 + ko 2 ~ r:> 1/J • 0 

where V.t2.a2 + a2 a;z ay2 

7 . The solution for 1/J andy for the.structure shown in the fi'g. ·1.1 are 

given below (28). 

1/J n ,m = cos 
-

ni\x 
a 

1\ cos !J!fiL 

The dominant mode in the structure is when m • 0 and n • 1. For the 

dominant mode, the above equations reduce to 

1/J = cos n:X. . a 
2 . 

y = (~/a) 2 - k 2 ~r . (2.15) 
0 

where the subscripts ~~~ n and m have been omitted. From the fo~ 

ofljl·n,m •ljlp' it is obvious that 

J J ljlp lll P • dx dy • 6 PP 1 

I 

6 PP • 0 l f P f. PI PI + n I ,m I • 



2.3.2 tr = ~r {x) 

This case is app11cable to the structures shown in the figs. 

1.2 and 1.3. The solutions to the wave equations can again be divided 

into two basic sets, TE to X and TM to X. Here onl.Y TE to X will be 

considered. The s.olution to this mode can be obtained from equations 

2.4, 2.5 a'nd 2.7 with a singl_e component of nh • ax nhx· If it is 

assume that 
· · · · -Yz 

nhx = ljl(x,y)e (2.16) 

then 2.7 reduces to 

vt2ljl + (y2 + ko2 ~)ljl = 0 ' (2.17) 

The solution for y and ljl may be obtained for a particular arrangement. 

14 

In a rectangular wave-guide, it is found that ~·infinite ~Ru-t. fiJf 

solutions for y and ljl are possible. It will be shown here that these 

solutions are orthogonal to each other.~ Let ljli and ljlj be two di~ferent 

solutions with propagation constants Yi and Yj .respectively. Then 

' 1\ 
v t 2 ljl j + ( Y j 2 + ko 2 e r )ljl j = 0 

Multiplying the first by ljl. and the second by •i and subtracting one 
. J 

obtains 

2 2 ( 2 2) ljl j v t ljl i - ~ i v t ljl j = y j . - y i .. i ljl j 

integrating this over the cross section of the wave guide, applying 

Green's second theorem and the boundary conGition 2.1, yields · 



= f (!pi V!pj - !pj V!pi )d1 
c 

= 0 

because of the boundary condition 2.1 
GR010S 

where s denotes the surface of theL -section of the wave guide and c 

is the contour enclosing it. Thus if Y; 1 yj. 

· II !pi 111j ds = o 
s 

t~~'s'may be normalized so that 

II 111; !pj ds = 6ij • 
s 

r i • j 

~ i 1 j 
(2.18) 

The solution for fields and propagation constants can be 

obtained for TM toy mode from·equations 2.8 through 2.10 by taking 

single component of fie along y direc~ion. If 

Ue·= ay !p(X,Y)e-yZ 

then 2.10 reduces to 

or 6_ + a2 111 _ a~ '.!! + (k 2~ + y2) 111 • 0 
a 2 ay2 ay ay 0 

. 

multiplying .throughout by e-~ = ~;1 • gives 

or 

(2.19) 

(2.20) 

15 
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Again in a wave-guide, there are an infinite possible values of y QNI""'­

IP and again it can be shown that different 1/I'S are orthogonal to each 

.other. However, the ort~ogon~l·~elationship is now 

~ 
i=j 

If e-~1/I.~J~.dS = JJd~-l 1/1·1/1· • 6 .. = 
s 1 J s r 1 J lJ 0 iFj 

(2.21) 



CHAPTER III 

WAVE PROPAGATION IN RECTANGULAR WAVE-GUIDE WITH A SEMI-CONDUCTOR WALL 

3. 1 H~TRODUCT ION 

When a perfectly conducting wall of a wave guide is replaced by 

a semi-conducting one, a tangential electric field can be supported and 
f 

losses occur in that guide. From measurements of the changes in the 

propagation constant in a guide when one of its wall is replaced by a 

semi-conductor, it is possible to deduce the properties of the semi­

conducting material. This principle has been used to measure highly 

conducting semi-conductors from the observation of the changes in the 

resonant frequency and the Q-factor of a microwave cavity (l 9). This 

method has been successful' for conductivities greater than 1000 mhos/m 

approximately. 
. 

For materials of lower conductivity the method of measurement 

described in this chapter has been investigated and developed. An 

analysis has been made of the wave propagation of a rectangular guide 

with one of its narrow wall5replaced by a thick semi-conducting slab 

as shown in the fig. 3.10. Computations of the dominant mode propa~ation 

constant have been made for 1 ' a ' 1000 mhos/m, 0 ~ er ~ 16 at three 

dif:t"erent frequencies of 9.25, 34.5.and 70.5 GHz. Exact and ·approximate 

methods of computations are discussed and exper i~nts which confirm the 

theory at 9.25 GHz, have been made. 

17 
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Figure 3.1 Wave-Guide System Analysed Theoret.ica11Y 
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3.2 THEORY 

The arrangement illustrated in the fig. 3.1 will be considered. 

The region (1) is empty and the reg,ion (2) consists of a semi-conducting 

material which is homogeneous and isotropic with complex permittivity 

~.A- .=t.£r-j -E.£v. It will be assumed. that the thickness of the semi-
W£o 

conductor is much larger than the skin depth in the material so that 

the fields vanish at x = d. 

Because of the non-uniformity in the x-direction, in general 

a hybriQ mode (a combination of E and H modes) will be propagating. One 

such set is an LSE mode with no electric field perpendicular to the air 

semi-conductor interface <29). The fields and the propagation constants 

may be obtained from the solution of equations 2.4, 2.5 and 2.7 •. When 

~ is a function of x alone and variation in z-direction as e-vz is 

assumed,2.7 reduces to 

v t 2ny + (ko2£r +y2) ny = - ..1.. (ny !i ) 
ax ax 

(3.1) 

vt2nz + (ko 2cr + y2) nz = -....a.. (n:z U.) 
ax ax . 

+ 
For an L.S.E. only one component of n·is required. This is obtained 

by taking ny = nz = 0 SO that the above equation for nx • ~(x,y)e·YZ 

reduces to 

~ + ~ + (k 2~- +y2) •• 0 
ax ;yz o T 

A {1 0 '< X < a 
where c (x) • ' ' 

r c -j_.a_a<x<d r ' c 
WE:o 

(3.2) 



. . 

Elect~ic and magnetic field components are then obtained from 2.4 and 

2.5 as follows 

Ex = 0 
, -Yz 

Ey = + jwMoY"''e.; Hx =: .+1 (DEZ - e>Ey ). 
· JW.~ 7JY C>z 

E . C}fil -Yz 
z = + ·JW~ -- e o?Jy 

Hy ~ _L eEz ) 
jw~ ~x 

Hz=_:]_ ~ 
jw~ DX (3.3) 

1he boundary conditions on £y and Ez at x • 0, d, and y • O,b 

require that ...., be of the form 

til = A sin k1x cos mp 
'f = B e-k2x cos J:!!!!Y 

b 

. . 

where A and B are constants. k1 and k
2 

are wave vectors in the 

transverse direct.ion (x direction) and· m is the wave number in y 

(3.4) 

direction. m=O,l;2,3, .... , k1 and k2 satisfy the following 

equations 

~2 = k12 - k 2 + (m~/b)2 
. 0 

(3.5) 

Y is the same in both the regions of fig. 3.1 so as to satisfy the 

boundary conditions for all values of z. 

Now the continuity of Ez and Hy at x • a gives the following 

conditions .. 
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so that (3.6) 

Equations 3.5 and 3.6 give the eigenvalues Y n,m~.? doubly 

infinite values. However, if m = Q, the structure can support only 

Hno modes. For Hno modes, Ez and Hy vanish and the fields and.the 

propagation constants are as given below 

Ex = 0 Hx· = .:. , ~~1~ y 2,.y e -iz 

Ey = jWA; Vny e-Yz • _i!_ ~ (3.7) 
0 jwfAo oz 

Ez = 0 Hz • ...::.L ~ 
jw~ C>x 

~2 = k 2 - k 2 =-k 2 - k 2; 
1 • o 2 o r (3.8) 

The lowest solution of 3.6 and 3.8 gives the dominant mode in the 

system and is H10• 

It may be seen from 3.6 and 3.8 that a complex transcendental 

equation must be solved to obtainY. This is often. a laborious task. 

Therefore, an approximate e.xpression fo~ "/ 2 is ,desirable which can 

adequately give the value ofY. Methods based on perturbational and 

variational techniques are available for this purpose (30). 

However, a simpler technique can be used in this case·under 

21 

certain assumptions. If it is assum~d that the conductivity is sufficiently 

high so that the field distribution in the region 0 ~'X~ a is approximate1Y 



the same as in an ideal empty guide of broad dimension a, then the wave 

vector k1 will not be much different from its value of (n~/a) in the 

ideal case. Under this condition the equation 3.6 can ·be expanded in 

Taylor's series about K10 = n~/a. Thus 

22 

f( k1) = k1 + k2 tan k1 a = f (k1 0) + (k.1-k10) of (3.8) 
~kl k1=k10 

If it is further assumed that \~ 2 \ <<\k0 
2 &'rl , then· the approximate 

expression for k
1 

and ~are as follows _, 
k1 . (n~a) [1 ~ jt./ho2 zrJ 

and 'i2 =- (n~/a) 2 {1 + · ),\ ~-} 
a ko ~r 

3.3 THEORETICAL RESULTS 

-k 2 
0 

(3.9) 

1(3.10)' 

The equations3.6 and 3.8 were numerically solved. for 0 ~ Er ~ 16 

and 1 ~ a ~ 1000 mho/m \'lith the help of a 7040 IBM computer using 

the Newton-Raphson technique. The computations were made for three 

different frequencies, namely, 9.25, 34.5 and 70.5GH~ The results in 

the form of "6'1 - '/0 , '/ being the propagation constant· in an· ideal 
. 0 

empty wave-guide of broad dimension a, are shown in the. figs. 3.2 

through 3.4. The abscissa represents the change in attenuation constant 

So<.= o<.~- 0(
0 

= o<, (as o<_
0 

= 0) nep/m and the ordinate represents the change 

in the phase constant o8 = ~ - 8
0 

-lad/m. The £r and log a are taken as 

parameters. 

In all the three figures, it may be observed thatJ in the 
. . . 

range of a considered) as ~he conductivity is decreased (resistivity of 

the semi-conducting sample is increased), the attenuation constant 
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-·~ncreases monotonically. The change in the phase constant, however, 

first increases with ,o. , attains a maxfmum and theQ decreases. This 

observation is true for tr ;- l. However, forE r < 1, the things 

reverse and ~attains a maxima and ~ increases monotonically as the 

resistivity is increased. It is fur.ther observed that maxima occur 

near, though not quite at o = wE E-. the 1 ocus of this condition is o r. 
also plotted in the figures 3.2 to 3.4. 
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It may also be noted that at the higher end of the conductivity 

range considered, the curves for various- values of~ are crowded and . r . 
ultimately merge into each other. This is.because as c>increases, 

O'/w~0 )) E and E -7 -j 6"", independent of E"=r" · 
r r w~ 

0 

The changes in the propagation constant Y were also compu~ed 

-----from the expression 3.10. The results of computations are compared 

to those frot:n exact equations in the fig·: 3.5 for E-r ·= 16 and ~r = 1 
. . 

and f = 9.25GH~. The solid and dotted lines give the values of~ and 

&~ respectively as obtained from the exact equations as a function of 

~- The circles and crosses give the corresponding values from equation 

· _ ..... ------3-:lo:-·-It-ma.f-beooserv-ea-thaf-for high-values···o-rE r-~the-equation· ·3.-10 

_____ is adequate to give 0( and b"~_within ~ 3% for the w~ole range of ($'" 

considered. However, as ~r decreases the errors increase foro~ 4.0 

___ m~o/_m. For o ;:- 4 mho/m, .. ~rrors are ·negligible • 

. For semi-conductors, the value of dielectric constant is given 
-lltc-

. -~y the contributions from~lattice and the free carriers. If it is 

. . 
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assumed that there is only one type of carrier, say electrons, the 

conductivity and dielectric constant at frequency w are given by the 

equati~ns l.l and 1.2. If, for the moment, it is assumed that i = 
constant, i.e. does not change wit.h energy, and further assumed that 

w is such that (wr) 2<<l then these expressions reduce.to 

(3.11) 

(3.12) 

ttl £O = 16.0 

A plot of £ with a for various values of T is given in the r 
fig. 3.6. The propagation constant at f = 9.25GHz for 0 ~ log a <3.0 

(l.O<a< lOOO'V/m) and for values of T and tr (given by 3.12)is shown in 

·the fig. 3.7. 

?II 

The values of k1 and k2 for~arious values of a and T = 3.0 x lp-13 

(approximate value for n type Gc.at room temperature) are plotted in 
. . . 

the fig. 3.8a and b. It may be. observed that magnitude of k1 is not 

very different from that for empty guide over the whole range of a 

considered and that its angle does not vary more than a few degrees. 

The magnitude of the electric field in y-direction as a function 

of x/a is plotted in the fig. 3.9-for 2'a~· mho/m.· 

3.4 MEASURING TECHNIQUE 

For the measurement of the propagation constant a section of a 

wave-guide was milled as shown in the fig. j.lo. Into this milled out 

section could be clamped either a polished brass block.~r the semi-
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conductor block. This section of the wave guide was placed. in one ann 

of a transmission bridge described by Montgomery (3l)_ The second arm 

of the bridge contained a precision attenuator and a phase shifter. 

The zero balance of the bridge was first carried out with ~ 

brass block ~~nto the milled section. A second balance was 

obtained when the brass block was replaced by a sem-i-conductor block. 

Both the readings were taken when the bridge balance was· independent of 

34 

the clamping pressure. If A and<P are the readings of the atten-Uator 
. 0 0 

and the phase shifter in dbs and degrees respectively with brass . . 

block and A1 and~l are corresponding readings with semi-conductor 

block, then neglecting the internal reflections and reflect.ions at the 

interfaces at z = 0 and z = ~. the propagation constant in the lossy 

wall guide is given by 

a = (A
1 

- A0)'/(8.686"2) nep/m 

B = (~1 w ~0)(57.296! rad/m 

where ~ = length of the sample in,meters. 

The ,neglecting of the internal reflections and those at 

z = 0 a.nd z. = 1 was justified because these reflections· were observed 

to be small (< .03). Theoretically if z0 and z. are wave impedances 

in the empty guide and the guide containg the semi-conductor, the 

re·fiection coefficient at z 11 1 is given by 

R = u~~~ J 
It is assumed here that in the empty guide section (z ~ 1) there is no 

reflected wave travelling and that the higher order modes which m~ be 
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excited at the junction are negligible. Now for.TE10 wave 

as ·S = s l 0 

·a /s 
IRI = J 1 0 

2+j'i/ s0 

for a
1 

<<B . 0 
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At 9.25 GHz, for a = 2vim and tr = 16, this evaluates to 0.03 approximately 

to give VSWR = 1.05. This agreed well with the experiment.-

. . 
3.5 EXPERIMENTAL RESULTS AND DISCUSSION 

The measurements were carried out at 9.25 GHz on 6 samples, one 

of intrinsic germanium (a = 2 mho/m) and five of n type germanium having 
·• .. 

d.c. conductivities ranging from about 4 mho/~ to 400 mho/m. The 

results of measurements are given in the table, 3.1. 

Inspection of the results shows that over the resistivity range 

5 ~f~ 25Acm(20 ~ a ~ 4 "'f/m) both tr and a can be measured acc-urately. 

The microwave measurement of~ agreed well with the d.c. measurements 

and it was found that the measurements were repeatable with the limits of 

3%. For f < 5 .n.-cm (a > 20 mho/m, 1 oga > 1.3) agreement between microwave 
l. . 

and d.c. values of i is also very good but accurate measurement\ of er 

is not possible. This is bec~use as a increases·er < < _Q_w and the 
•• £0 

contribution of er to the propagation constant becomes small as compared 

to that d~e to a. From fig. 3.2 it may be observed that the 



TABLE 3.1 

MEASURED VALUES OF tr AND p 

SM1PLE SAI1PLE ATIENUATION PHASE MEASURED MICROWAVE 
RESISTIVITY LENGTH CHANGE CHANGE Po(d.c.) MEASUREMENTS 

(nominal) t(cms) A1-A
0

(dB) t61-t6o(o) (o-cm) p(o-cm) cr 

50 4.27 . 2.85 3.35 50.7 99.4 16.1 

25 2.79 1.66 4.00 24.2 23.8 15.9 

10 5.10 2.47 9.10 11.4 11.8 15.3 

5 2.79 0.890 4.54 5.00 5.00 15.7 . 

1 5.10 0.632 4.82 0.9.9 1.01 -19.0 

0.25 2.79 0.176 1.29 0.258 0.244 -67.0 

.: 

.. 

. . 



curves of a and s for various values of £r merge into each other for 
"' . . a > 50 mho/m. An extremely accurate method indeed would be required to 

measure £r at high conductivities at· X-band;such a method is unknown 

at the present time. However, fig. 3.3 and 3.4 suggest that at higher 

frequencies it may be possible to measure Er at· higher values of a. 

This assumes, of course that at high frequencies· apparatus of the same 

accuracy_as at X-band is available. 

38 

At higher end of resistivity range (25-50 o-cm) measured values 

of £r are in good agreement with the theoretical values (fig. 3.6) 

but there is a large discrepancy between d.c. and microwave measurements 

of f. This can be attributed to two reasons. Firstly, the measurement 

accuracy is small. It is found that errors of± ~.5% and± 3% in the 

measurement of (A1 - A0) -and (~1 - ~0 ) respectively caused an err9r of 

"-±14% "inS andt0.7% in £r· Secondly as the resistivity goes higher 

the perturbation~. in field distribution in .the system become greater 

and the higher order modes excited at the junctions at z • 0 and 1 

may not be negligible. 

f 
. ' 



CHAPTER IV 

HAVE PROPAGATION IN A RECTANGULAR WAVE-GUIDE CONTAINING A 

CENTRALLY PLACED SEMI-CONDUCTOR 

4.1 INTRODUCTION 

The wave-guide system shown in· the fig. 4.1 has been used by a 

number of workers to determine the se~i-con~uctors properties such as 

a and e:r (32 ), magneto-resistance (33 ), h~t electron effect (23 ). It has ~lso 

bee.n proposed f~ruse as a microwave m'odulator (l 0>-. . . 

The theory of the fields present a~d the propagation constants 

in such a system may be obtained fr~m the solution of the equations 2.4, 

2.5 and 2.17. It is sho\·m in section 4.2 that the propagation constant is 

given by the simultaneous solution of the equations ... 

y2 = k 2 - k 2 = k 2 - k 2 £~ 
1 0 2 0 ' 

(4.1) 

where k1 and k2 are the transver.se wave numbers in the regions (1) 

and (2) respectively 

y = a + jB = prdpagation constant 

a = attenuation constant B = phase constant 

£ = e:r - j ~ = complex permittivity 
'(' W£0 

The solution of these equations for the case.when.the displace­

ment current is negligible (we:<< a) with t/a of the order of lo-6 and 

"39 
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for the lossless case (a= 0) have been reported in literature33 ,34. 

The solution in both of these cases is comparatively easily obtained. 

However, for the case when the value of a lies in the semiconducting 

range and the displacement and conduction currents are comparable, the 

computations of the propagation constant from equations 4.1 become very 

laborious. Because of this, in almost all of the measurements referred 

41 

to above, recourse has been_ made to some sort of approximation. In 

particular, Nag et a132 and Lilja and Stubb35 used the following expression 

for y: 

. y2 = (tr/a)2- k 2- k 2 c~-- l)(t/a + l sin trt) o o ~ ,.. . a 
(4.2) . 

where k 2 = w2~ t 
0 0 0 

This equation can be obtained either by variational theory using 

the Rayleigh-Ritz technique with single ~ode approximation(JG,J]) or 

by the first order. perturbation theory(35,38,39). ,For a • 0 it was 

first obtained by Berk36 and was found to give the propagation constant 

with an accuracy of a few percent for tr • 2.45. For complex permittivity 

values applicable to semiconductors, however, doubts have been expressed 

about the validity ·of (4.2) unless t/a is negligibly small <40 •41). 

The computations.of the propagation constant in the configuration 
-~ 

shown in Figure(4.1)~discussed in thiS. chapter. Numerical solutions of 

equation 4.1 are given for dielectric constant, conductivity and t/a 

ranges of 12 ~ £ ~ 16, 0.1 'a~ 10 mhos/m and .001 't/a ~ 0.25 r 
respectively, for t~e three frequencies.lo.o; 34.5 and 70.5 GH·z. These 

results are compared with the approximate values obtained from equation 



(4.2) and also with those obtained u~ing the two mode approximation in 

the Rayleigh-Ritz technique. 
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Further for practical measurements, the structure shown. in the 

f1g. 1.3 forms a junction with an empty guide supporting H10 mode. In 

all earlier measurements, the effect of the higher order modes at the 

junction has been assumed to be negligible. However, it is shown that 

this assumption may not be valid in view of the high values of d1electric 

constant and conductivity applicable to semiconductors. An analysis of 

these higher order modes has been carried out and the computations show 

that unless t/a < .08 and d ~ 2.5 mho/m, the effect of the higher order 

modes is not negligible. 

Experiments have been performed for three values of t/a at 

9.25 GHz and the results ·of the measurements verify the above observations. 

4.2 THEORETICAL CONSIDERATIONS 

4.2.1 Exact Solution 

The solutions to the Maxwell's equations in the system shown 

in the fig. 1.3 may be divided into two basic sets, TE to x and TM to x. 

The dominant mode in the system for lossless case (a = 0) is given by 

TE to x mode. For the lossy case it will be the sam~ and only this mode 

will, therefore, be considered. 

The solution for the TE to· x mod_es· may be obtained from equations 

2.4, 2.5 and 2.17 by taking a single component of nh. Thus if 

flh • aX~ (x,y) e·yZ 

so that vt2~ + ·(k
0
2 lr(x) + r 2), • 0 

(4.3) 

{4·4) 
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where er (x} = £r -j ~ (d ' x ' d + t) 
w£o 

then in. o~der to satisfy the boundary conditions 2.1 at x = 0, a; y = 0, 

band x = d, d + t must be of the form 

sin k1 x 0 ' X ~ d 

tP = A cos mry 
b 

sin k1d [sin k2(x-d) - sin k2 (x-t-d~J. 
sin k2t 
sin k1(a-x) + t 

where A = constant 

m = 0, 1, 2, 3, .... 
k1 and k

2 
are wave vectors in x-direction in·regions (1), 

(3) and (2) respectively and.satisfy the following equations 

~ = k 2 + (ffl1(/ )2 - k 2 
y 1 b 0 . (4.6) .. 

_ k 2 + (m/x )2 k 2 A 

- 2 b - o £r 

(,4.5) 

y is the same in the three regions so that the b'oundary conditions are 

satisfied for all z. 

A further condition on ~l and k2 may be obtained from the 

transverse resonance condition. Thus for symmetrical modes it is required. 
L..t.,CNY\ 

that there~ open circuit at~= af2· This condition gives the following 

relation 

(4.7) 
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and hence there are doubly infinite ·possible values of y. If, however, 

m = 0, these reduce to singly infinite values. When m = 0; the TE to x 

modes reduce to TE~0 modes. The dominant mode.propagation constant is . 

given by the lowest order solution of 4.7 and is designated with n. 1. 

Thus for TEn0 modes, 

2 - k 2 k 2 y - 1 -n n o 

- k 2 - 2n (4.8) 

For given values ofw, t/a and~ the values of the propagation 

constants may be obtained ,by solving 4.8 numerically. In the pres'ent 

work, this was done by using the Newton-Raphson iteration technique42, 

in which the (M+l) th iteration of the unknown root of a transcendental 

equation f(x) = cf is given by: 

The convergence of the method is good provided f' • ~ is not too small 

and the initial guess of the root x0 is not ,too far off. Equation 4.8 

was accordingly put into the form: 
. k t 

f ( k1 ) = k1 cot k1 d • k2 tan + • 0 

with k 2 • k 2 + k 2 (t - 1) 
2 1 o r 

' '. 
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and the value of k1 determined accurately, which then enabled k2 and y 

to be calculated. The functions involved are periodic in nature and 

hence an infinite number of roots of. the equation exist. The particular 

root obtained depends on the initial guess. In the present case, the 

initial value of the root was obtained from an approximate.method,.for 

example, the two mode approximation in the·Rayleigh-Ritz t~ch~ique 

discussed in the next section. 

4.2.2 Approximate Solution 

There are two approximate methods of solution that are. 

commonly used, namely, variational and perturbational methods. The 

former method has been used for determin~:_:_. y in a wave-guide system 

containing pure dielectrics and ferrites36 and is known to give good 

results.· Perturbational techniques have also been developed for such 

calculations38 ,39 • It is found that the first order perturbational 

technique gives the same formula for y as obtained from the variational 

method using a single mode approximatio~35. For higher accuracy either 

a two or higher mode approximation or a second or higher order perturbation 

theory may be ~played. It should be pointed out; however, that unless 

t/a is negligibly small, the high value of complex permittivity of semi­

conductors alters a ·system so much that the perturbations are too large 

to be consistent with the accuracy requirement of the perturbation theo~y. 

In view of this, the use of two mode approximations with the Rayleigh­

Ritz technique was preferred for these calculations. , 

The ap~lication of the Rayleigh-Ritz theory to inhomogeneously 

filled wave-guides has been discussed by .Collin29 , and the salient steps 
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in the present analysis are as follows: 

The one dimensional Helmholtz equation 

2 ~2 2 u , ~ + y + k & (x) ' = 0 
2 o. r 

dx · 

where &r(x) = 1 0 < x ' d; d + t ' x ~ a 

· = &r d ~ X ' 'd + t 

(4.9) 

can be obtained from equation 4.4 by taking m = 0 so that ~(x,y) = ~(x) 
The function 0 is to satisfy the condition that 0 = 0 at x = 0 and 

x • a, to make the ·tangential component of t_he ·electric field .Ey vanish 

at the wave-guide walls. 

The variational integral is obtained _by multiplying 4.9 by 

0 and integrating with respect to x from x • 0 to x • a. The resulting 

expression is: 

(4.10) 

The next step consists of expanding 0 as a Fourier series and terminating 

the series at a finite number of terms. Thus one may obtain for the 

nth eigen-function: 

r . 
0n = arn f (x) 

r=l,3 r 
( 4.11) 

where fr(x) = 1 i sin ~x (eigen-functions for the empty guide). The 

s~mmetry of the system penmits only odd values of r. The function ~ may 
n 

be nonnal ized to give: , 

f
a 0 2 dx • 1 • ~ a 2 
o n r•1,3 rn 

' . 
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and substitution of equation 4.11 into 4.10 gives: 

N 
I 

r=l 

. 
~ ua df df 2 a a J (_!.-2..- k 2 &(x) frfJ 

s=l ,3 rn sn ·o dx dx 0 

{

0 r 1 s 
where ~rs = 

1 
is the Kronecker delta function 

r = s 

Now it is required that: 

N N 
l L a a (T - y 

2 6 ) = a stationary quantity 
r=l s=l rn sn rs n rs 

= Ja·[~~- 2 where Trs 
0 

dx dx k0 &Jx) frfs] dx = Tsr . (4.11a) 

For this equation to repr~sent a stationary value oft 2, the 
-

partial derivatives _!__ for i = 1 to N must vanish. When this is done 
~ aain 

the following set of N homogeneous equations is obtained. 

N 
L arn (Trs - Yn2 c5rs> = 0 s = 1 to N 

r=l 
(4.12) 

RecallinQ that the modes ·being considered are synmetrical about the 

point x = a/2, the indices r and s should take only odd values, that ts 

r = 1, 3, 5, •• 

s = 1, 3, 5, •• 

. . . 
• • • 

, N (odd) 

, N (odd) 

For a non-tri.vial solution of '(12), the detenninant of the 

coefficients must vanish. Therefore, for the single mode approximation . 
(N=l) one has: 
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(4.13) 

~or the two mode approximation, N = 3, a~d y1
2 is given by the solution 

of: 

(4.14) 

Integration of equation (4.11 a) over the wave-guide cross­

section shown in the Figure (4.1) gives 

T = (r1r/a)2 - k 2 - k 2 (£1 - 1) (t/a + 1/rw sin rw t/aJ (4.15) rr o o 

T = T = k 2 (£...- 1). [(-l)P sin pnt/a + (-l)q sin gwtt.aJ rt-s rs sr o -T · pw qw . 

where p = r + s , q = r - s 
2 2 

In the present study, the dominant mode propagation constant was computed 

from both equations (4.13) and (4.14) and the results compared with those 

obtained from (4.8). 

4.2.3 DISCUSSION ON EXACT AND APPROXIMATE SOLUTION 

The dominant mode propagation constant y = a.+ ja was computed 

from equations 4.8 as a function of t/a and a at three different 

frequencies of 1o.o, 34.5 and 70.5 GHz for £r = 12 and 16. The variations 

oft/a and a were over the ranges 0.001 ~ t/a ~ 0.25 and 0.1 ~a~ 10 

mho/m, respectively and the results of the calculations are presented in 

the form of curves shown in Figures 4.2 through 4.4. 

It may be observed from these figures that the phase constant 8 

varies very slowly with conductivity a for small values of t/a and a. In 

fact the variations in the phase constant 8 are practically negligible 

fort/a< 0.1 and log a • 0.50 (a • 3.16 mhos/m) at 10 GHz. This also 
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applies for all the values of tfa and a considered at the higher frequencies 

34.5, 70 GHz. At 10 GHz, the variations i~ B with a for log a ~ 0.5 

and log t/a ~- 1.8 {t/a = .0158) become significant as can be seen 

from Figure (4.2a). 

It may be observed from Figures ( 4.3) and (4 .• 4) that for the 

ranges of a and t/a chosen, the relationship between log a and log a is 

a linear one. In these ranges, one may write: 

log a = log M + n log a (4. 16) 

where n is the slope of the curves and M is.the intercept with log a • a.­

This relationship is more clearly shown in Figures (4.5a) and (4.5b), and 

. examination of the curves shows that n = 1.00 which means that the 

attenuation constant a varies linearly with a, i.e. 

a= Ma (4.17) 

At 10 GHz (see Figure 4.2a) the relationship (4.17 )also holds for t/a 

< 0.05 and 0.1 <a< 10 mhos/m. For higher values oft/a, the value of 
' ' ' 
n departs from unity.· At t/a • 0.05 its value is 1.01 and increases 

as t/a ·is increased. At this frequency, equation (4.17) holds over the· 

whole range of t/a considered but only up to a ~ 1.0 mhos/m. For 

higher values oft/a, the slope of the log a ~·log t/a curve changes and 

equation (4.17) no longer holds. For values of.t/a • 0.25 the slope is 

very small and practically equals that fort/a =. 1. That is, the 

attenuation is very close to that of a completely filled guide. 

It is interesting to note that a similar relationship between 

a and a holds for very thin films of considerably higher conductivity 

than has been considered in the present work. Gunn44 has carried out 
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·computations for thin films of semi-conducting m~terials, and found that 

theoretically and experimentally the·re1ation (4.17) holds for R=l/at~40.0n/ 

square. However in the present work it is found that equation~l7) is 

(a~ 1.0 v/m, t/a ~ 0.25) 

valid for R ~ 175n/square~at 9.25 GHz and to·at least 55n/square and 

130n/square at 34.5 and 70 GHz respectively (a ~ 10 v/m, t/a ~ 0.25). 

To the extent that the phase constant 8 is nearly independent 

of a, the propagation constant as a function of conductivity a may be 

written as: 

y(a) = y(O) + a ay Ia= 0 
a a 

(4.18) 

where~= M is evaluated from equations (1) and (2) with. a • 0, and is: 
a a 

..... 

jwll 2 
·0/ 

k10 d cosec2(k
10

d) - cot (k
10

d) 
-

-
where the subscript 0 denotes that quantities are evaluated w.ith a= 0. 

. . 
Equation (4.18) for y(a) reduces much of the computation work 

as the numerical solution of (1) and (2) with a= 0 is much. easier and as 

a matter of fact may be done with a desk calcula.tor. The calculation of 

M is then straightforward. This linear relationship between a and a 

may prove useful in the measurement of magneto-conductivity,high field 

carrier mobility, the temperature dependence o~ conductivity, etc., of 

the semi-conductor bulk material. 

The propagation constant was computed for two values only of 

dielectri.c constant (&r), namely 12, and 16. It may be observed from 

Figures 4.2 to 4.3 that the variations in a and 8 with £ are significant 
r 



only at the higher end of ranges of t/a and a considered. For. lower 

values of a and t/a; the changes in £r do not cause appreciable changes 

in either a or B· 

Figures 4.6 and 4.7 show the percent~ge differences between 

the exact values of the dominant mode propagation constant as obtained 

from equation 4.8 and those obtained from the single mode and two mode 

approximations given by equations A.l3 and. 4.14 respectively. The 

errors shown are for a = 10 mhos/m and f = 10.0 and 70.5 GHz. For 
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lower values' of a in the range 0.1 , a, 10 mhos/m, the errors are not 

very different from the ones shown, for example in the range 0.03 ~ t/a 

~ 0.1, this difference is not more than 3%. The errors in y at 34.5 GHz 

are not shown here as these are found to·be of the same nature and order 

as those at 70.5 GHz. 

It may be observed from Figure 4.6 that the single mode 

approximation giv~s errors in a that are greater than 5% when t/a is as 

small as 0.0025. Fort/a > 0.0025, the ·errors increase rapidly and then 

decrease at t/a ~ 0.06 but are not less than 33% at t/a • 0.25. The 

·two mode approximation gives better results, but the errors in u are 

significant unless t/a < 0.003 when these are about 5%. The error in 

a is reduced with a decrease in'the dielectric constant. 

Figure 4.·7 shows that the approximate methods, both single mode 

and two mode, appear to give better results for s than for «• It may be 

seen that the errors are less than 5% for t/a < 0.015 •. For higher 

values of t/a, the errors become large but the maximum error in s is· 

about one half of that in u. As t/a is incre~sed beyond 0.1, the 
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errors reduce. This is because as t/a is increased, the condition 

approaches that of a completely filled guide in which case the errors 

should vanish. 

4.2.4 Calculation of Junction 'Impedance 

In this section the expression for the input impedance Zin 

at z = 0 of the system shown in the fig. 4.1 which has a short circuit 

at z = 1 will be derived. 

In the analysis, it will be assumed that the input guide is 

supporting _an H10 mode while in the output guide (O' z' 1) Hno 
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modes are present. If ~nand ~n are the functions-representing the Hno th 

mode in the input and outp~t guides respectively and rn and Yn are 

their respective propagation constants, then the electric field EY 

and the magnetic field Hx are given by the following expressions(43). 

For z < 0 .. 
Ey __ = al·(e-rlz·+ R erlz) +l + L an +nernz 

n=3,5 

. Hx • ~alYol(e-rlz- R erlz) +ran +n Y~n ernz 

For 0 ~ z ~ 1 

Ey = L bm ~m sinh '1m (1-z) 
m=1,3,· 

Hx ;. r- bm Ym ~m cosh"tm (1-z) 

where a's and b's are constants 

R • reflection coefficient of the dominant mode in the input 

guide 



' 1 n Y
0
n = -2 = J.W'IJ = wave admittance for H 

0 
modes in the 

on · o n 
empty guide 

Yn = iL ~~=~ave admittance· for H modes in the output 
n JW o no 

guide 

Now at z =·o Ey and Hx must be.continuous and these boundary 

condit.ions give 

Ey = a1(1+R)41 1 + l a~ = l bm sinh(yml)pm. 
n=3,5 n n m=l,3 
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These two equations can be solved either simultaneously or by 

the use of variational techniques. The latter method is easier and has 

been discussed by Collin<43 l. Foilowing his arguments, one obtains 
. . 

the expression for the input i~pedance Zin = (l+R)/(1-R) as follows: 

a · a · 2 
zin = i- If G(x;x' )Hx(x) Hx(x' )dxdx'/ riJ Hx(x)~ldJ 

Ol 0 ~0 J 



Now assuming that 
N 

Hx(x) = ) an ~n(x) 
n=l,3,5 

and substituting this into 4.12, one gets 

NN" 
zin Zol a12 - ~ ~ ar as grs = 0 

... ... 
grs = L 2on cSnr cSns + }: · Zm tanhym l p nl sm 

n=3,5 m=1,3,5 
where 

where 
{ 

1 n=m 
6 = 

rvn 0 nlm 

Now equat.ing the partial deri·vatives w.r.t. as to zero so as , . , . 
to render·zin a stationary quantity, one gets the sets of equation~· 

N 
2in 2olal - Y ar glr • 0. 

y•f,J .. 
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s = 3,5,7 ••• 

whose determinant must be zero for non-vanishing valu~s of a's, 

Therefore; 

gll g13 glN 

67 

z. =-l-
1n z 

ol 
(4.19) 

. gN] gN3 . ' . . · gNN 

g33 g35 g3N 

gN3 . . . gNN 

4.2.5 Calculation of Reflection Coefficient 

The computations of the junction impedance were done with the 

help of a 7040 IBM computer, the equation 4.19 being solved for different 

values of t/a, cr and N at 9.25 GHz. The results are plotted for N = 7* 

in fig. 4.8 in the form of the refJection coefficient R, . . ' 

R =(Zin -l}/(Zin·+.l) 

which is a directly measurable quantity. The length of the sample was 

assumed to be one quarter wave length (=}l;/2e) at each point. The 

figure indicates the extent to which the reflection coefficient may vary. 

In fig. 4.9 the magnitude of the reflection coefficient is 

plotted as a funct1on of cr~ for various values' of t/a and N. It. may 

be observed that as cr increases, the higher modes which are excited 

considerably change the reflection coefficient at.z = 0. It may 

further be observed from the computational results that unless t/a 

* The reason for t~e choice of N=7 in the fig. 4.8 is that in the range 

considered, this value gives good agreement with the experimentalresults • 
• 

This agreement may be better with N=9 but the numerical ·computations 
are then too cumbersome to handle. 
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~ 0.08 and a ~ 2.5 v/m, the effect of the higher order modes is not 

negligible. 

4.3 MEASUREMENT OF REFLECTION COEFFICIENT 

70 

The reflection coefficient at the junction of an empty guide and 

the semi-conductor loaded guide as shown in the fig. 4.1, was measured 

by means of the reflection bridge as described in the Appendix A. 

This bridge directly measures the reflection coefficient R = rRiej~ 
The short circuited wave-guide section containing the semi­

conductor sample formed part of one of the side armsof the bridge and 

placed in a Delta Design oven. The arrangement is shown in the fig. 4.'10 · 

The zero balance of the bridge was carried out at each temperature with 

and without sample. 

For practical convenience· a -slot of desired t and 1 was milled 

in the centre of the broad wall of a wave-guide section to assist in 

centrally locating the sample. At z = 1, the guide was terminated with 

a solid short circuit plate. The samples used were of intrinsic 

germanium whose conductivity was varied with temperature which was 

varied from about 80°F. to 300°F. 

4.4 RESULTS AND DISCUSSION 

The experimental verification of equation 4.19was carried out 

on three samples of intrinsic germanium with t/a ratios of ·.0133, 

.026 and .0515, at 9.25 GHz. The conductivity.of the sample was 

varied from about 2 mho/m to over 100 mho/m by the variation of the 
. t 

temperature of the sample. 



Fi gure 4.10 The photograph showing the microwave reflection bridge. 
The sample is in the Delta Design oven on the right hand side. 
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The theoretical value of conductivi~at ~he temperature T0 k was 
. . (45) 

calculated from the following relationships 

a(T) = n.(T)q {~ (T) + ~ (T)} 
1 n p 

where q =electronic charge= (1.6 x lo-19 coul} 
. 3j~l ~ 

n.(T) =intrinsic carrier density= 1.76 x lo22e-4550/T T 1~ 
1 

~n(T} =mobility of electrons = .38 (300/T)+l.66 m2tvolt-sec 

Pp(T) =mobility of holes= 0.18 (300/T)+2.33 m2/volt-sec 

In the computations, it was assumed that over the temperature 

range used in these· experiments, the dielectric constant'remained 

constant. 

The results of the measurements are shown in the figs. 4.11a 

and b. The solid curves show the quantity ~omputed from 4.19 with 

.N=7 and the dotted ones with N=l. The crosses are experimental points. 
. . . 

~ . 
~t may be observed that for a> 10 mho/m (loga = l.O),'the 

results agree well with N=7 curve. As the c~nductivity decreases, the 

solid curves and dotted curve approach each other and remain close to 

each other except in the case of t/a = .0515. In the. latter case, ·the 

experimental points are close to the solid curve but lie above it. At 

the lower end of the conductivity range, the experimental points do not 

lie on these curves and there appears to be a small discrepancy between 

the theoretical curves and the experimental points. 
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This discrepancy may be attributed to the effect of the slot 

in the broad walls of the guide. In the' computations the effect of the 

slot was not taken into account. The slot may have two-fold effect, 

i} The assumed boundary condition at y = 0 and ,b is not satisfied for 

d-~ x =.; ·d + t,and ii} Radiation may take place through the small 

unavoidable air.gaps present between' the sample and the wave-guide wall.· 

It \'las shovm that this discrepancy \'las due to the slot by applying silver 

. paint ·to the top and the bottom of the sample and air gap was also . 

filled with silver paint. The .resulting points are shown by ~ircles 

on the fig. 4.1la and lie nearer the th~oretical curve. 

Fig. 4.12 gives the computations of f. • l/a from these measure­

ments, together with the theoretical curve and the measurements made 

with t/a = 1.0 (i.e. completely filled guide). For a partially fill~d 

guide, cr was computed by using the approximate relationship 4.2 and 

assuming N=l. I~ may be observed that the results are different 

from either the theoretical values or the practical measurements for 

the completely filled guide. At.higher end ofT and hence a, the 

discrepancy is due to two reasons, i) use of approximate expression 

for Y for the deduction of a and ii) neglect of higher order modes. 

At lower end of a, the disagreement may also be due to the slot for 

yeasons similar to those discussed above.· 

' . 
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CHAPTER V 

· THE CONDUCTIVITY AND DIELECTRIC CONSTANT OF GERMANIUf1 AT 

MICR9WAVE FREQUENCIES 

5.1 INTRODUCTIOrl 

A general treatment of the frequency dependence of the high 

frequency transport properties of cubic crystals has been reported by 
__ .· _______ (46) --- -------. . ------ . --

Champlin and the high frequency dielectric constant of germanium 

is given in the references· l, 2 and 7. However, some gross simplifica­

tions have been made in these investigations. For example, -in the 

references (l) and (2) relaxatio~ time of charge carriers has been 

assumed constant and in the reference (7) only scattering by acoustic · 
. -- .. -· - - ·---- - ---· --~----- ··-··---- - ----· ---- -

mode has been considered. Th~se assumptions are not justified. The 

·--·relax·ation time of carriers varies· with. their energy. ··Also· the . . 
. . . 
consideration of only .acoystical phonon scattering leads to the-~ c; 

mobility. of ~arriers varying. with temperature as T-312 . (47) •. Tnis is 

in contradiction with the experimen~ally observed variations of T-1· 66 
---- - .. 

for electrons and T-2.33 for holes ·;n.germanium(48 >. 

A number of theoretical models have been suggested to 

-interpret this observation. These include intra-valley-optical phonon 

scattering (26 ,48 )_, intervalley scattering b~ acoustical and optical 

modes .(~!L~n.d_the __ v~riation_Q..Lthe. ef_fectiVELmass _wi_th _temperature ( 46 ). 

In this chapter, calculations have beery made of the micro\'lave 

·mobility and dielectric constant of 1·ightly doped n-type germanium 

using the following scattering.mechani~ms. 
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For electrons 

1 - Ionized impurity 

2 - Intra-valley ac~oustical and optical phonons 

3 - Inter-valley 

For holes 

1 - Ionized impurity 

2- AC.oustical and optical phonons· 
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' 

The computations have been made for 100° , T ' 500°K, 1019 ~ Nd ~ lo25/m3 

and 109.: f ~ 1ol2 Hz. The effective masses.have been assumed constant 

and scattering by neutral impurities has· been neglected. 
\ 

5.2 THEORETICAL CONSIDERATIONS 

5.2.1 Microwave Mobility and Dielectric Constant 

The expression for microwave mobility is the same as that 

for d.c. mobility~ except that<~> in the latter is replaced by <. ~ 
'l+jw~ 

for the applied electr~c field varying as. exp(jwt). Thus· 

~ I * ~ac = q < > m 
l+jw~ . C 

(5.1) 

where me~= conductivity"effective mass. The conductivity a is then a· 

function of frequency 

a(w) = q2 n < T 
l+j...,~ 

/ m * > c 

n • charge carrier density 

and the relaxation time average <~> is give~ by (~O) 

(5.2) . 

(19) 
> 
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(5.3) 

To evaluate <t>, one needs to know the variation of t with energy and that 

depends on the scattering mechanism.' These aspects are considered later. 

' If in a system both electrons and holes are present, a(w) 

assumes the following form 

a(w) = q2 {n < t~ > /m* + p < t~ > /m* } 
l+jwt en l+jwtn · cp 
. n ' 

(5.4) 

where n and p are respectively electron and hole concentrations 

Tn and tp ~re their respective ~elaxation times 

m~n and m~p are their respective conductivity e:fective masses 

Now the current density with alternating fields is given by 

- a£ + J • £ · £ - + aE 
o r at . 

+ 

= (jw £ 0 £r + a)t 

+ 

= jw £0 £r E 

where £r = £r - j~ 
~ 

£r = £ 1/£
0 

lattice contribution to the dielectric constant· 

Substituting a from 5.4, gives 

cont'd 

.. 



- j -;/- [m n * ( ;n 2 ) 
o en 1+1.1) ~n 

+ _P_ 

* mcp 
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{5.5) 

(5.6) 

Once t~e.form of T(r.) is known, the equations 5.5 and 5.6 are readily 

evaluated. 

The relaxation time T(r.) may be calculated from the scattering 

or transition probability for a given scattering mechanism. Thus. if • 

H' is the perturbing potential and causes a charge carrier to make a 

transition from state k to k', then the scattering probabi·lity per 

unit time S(k,k') is proportional to the transition matrix element 

M(k,k') given by{5l) 

M(k,k') ·= J~k~ H' ljlk d-:; 
. 

ljlk, and ljlk are the wave functions of the charge ca.rriers in 

~he state k' and k respectively. Then 

2· 
S(k,k') = £l! IM(k,k') I N(r.) 

1\ ' 

·where N(r.) =density of final states 

~ £1/2 

I 

(5.7) 

{5.8) 
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If e is the angle between k and k', then. T(k) can be written, using 

·Maxwellian statistics, as 

T(k)-1 = J(l-cose) S(k,k')dk' 

Now if it is assumed that the scattering proces$es conserve 

energy, or nearly so, then the above equation'can be reduced to simpler . . 
fonm. Thus if k' lies on the same energy surface as k and e is the 

angle between k and k', then 

T(k)-1 ~ J(l-cose) S(k,{) ~..n..· 

cUL= 2i\ sinede 

For isotropic scattering S(k,k') is independent of e. 

(5.9) 

Thus the evaluation of T(k) (= T(lkl) = T(&)) red~ce~ to the 

,• evaluation of M(k,k'). The expressionsfor this will be given for 

various scattering processes in the following sections. 

5.2.2 Ionized !~purity Scattering <52 ,53 ) 

When a semi-conductor is doped, the doping atoms become ionized 

either by giving up an electron or taking an electron.. These charged 

particles produce coulomb fields and a perturbing potential • 

. V = ze/4')(. exp( -q,r) 
£o£r r . 

where · ze = effective charge of the impurity atom 

£r = dielectric constant 

r· • distance from the centre of the atom , 
y~ = screening length 



'l 2.. = L Nd (2~) (mks units) 
V E.,~.kT_ Nd 

Nd = ionized donors and acceptors al~s~ 

This leads from (5.7) 

S(k,k') 2.7\ 
=-.r; 

and to imp~rity relaxation time 'I 

. 
2b = Sm*E-

q_~2 

or 

c1 and c2 being constants, independent of energy 

5.2.3 Lattice Scattering(4l,S2) 

Due. to thermal .energy, the atoms in a solid vibrate about 
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(5.10) 

their mean position and produce a l~cal variation of potential. This 

periodic potential causes the electrons (and holes) to make transitions 

from one state to another state. In the process the electrons either 

gain or lose energy and momentum to the crystal lattice. If the 

electrons lose energy, a phonon of equival~nt energy is emitted and if 

it gains energy• a phonon is absorbed. Thus if k and k' are initial and 



final wave vectors of an electron and Q is the wave vector of the 

phonon involved, then the following relations hold. 
~ ~ ~ ~ 

87 

K - K' = ±Q + G ( 5. }1) 

where + on the R.H.S. o·+ both equa~ions is for phonon emission and. 

-ve for phonon. absorption. A1w is the energy of the phonon and G is 
~ 

any reciprocal lattice vector. If G = 0, the scattering process is 

normal and if no~-zero, then the process is an Umklapp one. 

·From equation 5.11, it ~ppears tha·t the energy of the 

carriers is no longer conserved in the scattering process. However, 

if the fields are small, (which is ~he case treated here), it may be 

shown that 

.flw « e: 

and thus e:(k') = e:(k) 

The phonon involved in the scattering process may be of 

different types. For example, it may be of low energy and low 

momentum - (<1t.·oustical scattering) or it may be of low momentum and 

high energy (optical scattering). Further, if the semi-conductor has 

different equivalent conduction band minima (as germanium has), the 

electrons may be scattering from one valley to the other (intervalley 

scattering). Again the. phonons involved may be acoustical or.optical, 

but momentum and energy now depend on the value of Q involved which in 

turn depends on the position of the energy minima. ·These processes will 
' 

now be considered in a little more detail. 



5.2.4 Intra-valley Acoustical Scattering 
I 

This has been best treated by Bardeen and Shockley using the 

concept of deformation potential. The elastic displacements ~f-r) of 

the atoms would produce changes in the position of.energy band minima 

and maxima. If E. = energy of minimum or maximum with lJ.W) and m . • . 

£ . is the equilibrium value, then it is shown that (S2) mo 

o£ = 1:, - £ = E1 l11J (Y) m mo m 
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(E1 is being a constant)may be treated effectively as the perturbing 

potential of the charge carriers near the minimum or maximum. By 

expanding v.;(y) in a Fourier Series, it is shown then that the matrix 
• 

element M(k,k') is given by(SJ) 

2 ~(2N +1) 
IM(k,k')l = Q 

. 2 f 
E,~ = !€:'(1\/!:. ; ll = llV 

.. v 
J = density of material· 

V = .volume of the crystal 

. ~ ~. ]-1 NQ = exp -1 
kT . 

if hwQ<<kT, then (2N +1)~2kT 
Q hwQ 

Then assuming isotropic scattering, equation 5.9 gives 

tL = lattice scatt~ring time constant 
-!.: = constant X£ 

2/T 

T = temperatu're in °k 

(5.12) 

. (5.13) 

The constant is independent of temperature and energy of the carrier . 
' 

~ssuming constant effective masses). 



5.2.5 Intervalley Scattering . 
It is now known that germanium has a conduction band minimum in 

(111) direction of k-space. Thus there are eight equivalent minima. 

These different minima are called valleys and an electron in ith valley 
..... 
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with wave vector ki may make a transition to another valley j with final 
..... 

wa.ve vector kj. In the process the electron either absorbs· or emits a 

phonon. The probability'of this process is given bY the matrix element 

M(k,k') which is as· follows(25) 

~~(k,k')i2= NQ X C,k,k') ·6 
. NQ +1. WQ 
~ ' 

t · ~ absorbed· 
(k) - &(k') ±. hwo 

emitted 

where C(k,k')~independent of Q and & or T~NQ is given by equ~tion 5.12 

and .±. hwQ is the energy of the phonon absorbed (+sign) or the phonon 

emitted (-ve sign). Then the relaxation time due to such scattering 

is obtained from 5.9 as 

-1 \ ·[(& + hw;)l/2 
(Tiv> = t. c. + 

i 1 1+ exp hw; 
kT 

(&- hwi)l/2 

1 - exp - hwi 
Kr 

or zero J 
. ' 

where i varies over different phonons possible 

hw; = energy of ith phonon 

(5~14) 

Ci = "coupling constar;ts'' of ith phonon expressing the scattering 

strength 

The second tenn on the R.H.·s. is zero if c < hw1 because in that case 

no phonon can be ernitt.ed. 
.. 
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5.2.6 Intravalley Optical Mode Scattering. 

The electrons or holes may be sca·ttered by optical phonons 

(electrons remaining in the same valley after scattering). For 

germanium, which is a nonpolar crystal, the matrix 'element is essentially 

the same as for intervalley scattering as k~k' (25) and hence ~opt' is of 

the same form as 5.14. 

5.2.7 Energy Bands and Lattice Vibrations in Germanium 

Before one can proceed to compute the mobility, a knowledge of 

the conduction and valence bands and 'the lattice vibrational spectrum 

is necessary for two reasons. 

(i) The form of the energy bands gives information 

about the effective masses and enables the computations 

of carrier concentrations and the evaluation of the 

relaxation time integrals. 

(ii) The location of the energy bands and the lattice 

vibrational spectrum give the information on the 

phonons involved in the scattering and their energies.· 

It is known t.hat gennanium has two valence bands degenerate 
. ~ ' + 

at k=O. The form of these energy bands may be approximated near k • 0 

as f o 11 ows (53) • 

{ - - 1/2} 
(; • - ~2 A k2 .:!:. [s2k4 + c2 (kx2 ky2 + ky2 kz2 + kz2 kx2) J 

2m
0 

. _ 

. 
A•13.1, B•8.3andC•l2.5 (5.1.5") 

m0 • free e 1 ectron mass · 



• 

The holes with+ sign in 5.15 are referred to as light~ holes and 

with - sign as heavy mass holes. These masses are given respectively 

by the following equations 

__ ....;l ____ = .044 

m;h/m
0 

= __ ___...;1~--- .. 0.30 

A_ {B2+C2/G)l/2 

The conduction band in germanium has 8 equivalent minima· in 

the direction (111) located at the zone boundary. Near the minimum the 

. £-k relationship has the.form <54) 

{
. 2 2} ·= ~2 k12 . k2 ~3 

£ - -+-+-
2 m~ mt . mt 

m1 = 1.64m
0 

.. 

mt = 0.819m0 
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The phonons involved in the intervalley scattering are given in 

the table 5.1. It may be observed that all the non-zero phonons involved 

are in (100) plane and have maximum values in the (100) direction~ 

· The energies of the phonons are given by the lattice vibrational 

spectrum. This has been determined by Brockhouse (55) from neutron 

diffraction.experiments. In the lattice spectrum, there are six· 

branches. three. ;~7·oustical and three· optical. Energies of. the various 

phonons relative to the present work.are given in the table 5.2 • . 



TABLE 5.1 

VARIOUS. PHONONS INVOLVED IN THE INTERVALLEY SCATTERING 

IN N-TYPE GERMANIUM 

(lli) 

{lTl) 

. ('ill) 

(lH} 

(ili) 

(ill} 

(iii) 

+ + + .. 
Q = K. - K·- G . 

1 J 

+ 2-
K. = ~ 

1 a 

+. + 
K. - K • 
. 1 J 

27'-/a x 

(002) 

(020) 

(020) 

(022) . 

(202) 

(220) 

(222) 

(1,1,1) 

+ 
.Q 

(002). 

(020) 

(200) 

(200) 

(020) 

(002) 

(000) 
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TABLE 5.2 

DIFFERENT PHONON$ AND THEIR ENERGIES FOR GERMANIUM 
AT ZONE EOG& 

Phonon 

Transverse Optical 

Longi tudi na 1 . 

TO[lOO] 

L[lOO] 

Transverse Ac·oustic TA[lOO], 

Optical ',· [Q=O] 

* Table II of reference (55) 

Frequency • (~/h) x 1o-12Hz* 

8.25 :!:. 0.3 

6.9 :!:. 0.4 

2.45:!:. 0.15 

9.0 :!:.. 0.30 

, 

I I 
I 



Although the intervalley scattering could involve phonons 

corresponding to all the branches of the lattice vibrational spectrum, 

it is shown by Herrig and Vogt(54) that the contribution due to two 

lowest branches (Transverse acoustic) is very small and can be 

neglected. This leaves five phonons (1 longitudinal 'I acoustical, 3 

optical at Q ~ [001] and 1 at Q = 0. that is. the intravalley optical) 

which can take part in the scattering of electrons., 

For holes there is no· intervalley scatter1ng and the only 

phonons involved, are optical and longitudinal acoustical ones. 
-

However, for holes, interband transition can'take place but these 

transitions have not been observed in Haynes-Shockley experiments and 

are assumed to be very rapid. 

5.2.8 Variation of t
1 

The latti.~e contribution £1/.t0 
to the dielectric constant. 

has been observed to vary with temperature by Cardona et al (56_l and 

have given the following formula. 

l dn - 6 7 1 o·Sj9 n dT - • X c 

where 

n • /£~ 
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the total relaxation time constant T as follows, 

_1_:.:...1 __ + , + _....;1;...._ 

T · (t) 
ph 

where t h = relaxation time due to phonon scattering other than low . p 

energy acoustical scattering. 

[ 

1/2 . 1/2 ].} x (dhwi·+l) +. (e:/hwi -1) or zero 
hw· · 

l+exp --l l-exp -hw; 
kT ~ 

(5.15q,) 

The first term on the right hand side of the above equation 

represents tne contribution due to ionized impurity scattering and is 

given by 5.10. The first term in the curly bracket represents intra­

valley ~coustical scattering relaxation time obtained from 5.13. The 

terms in the summation are contributions due to intravalley optical 

and intervalley scattering .by phonon of energy ~Wi• The constaQtS ci 

measure the strengths of coupling relative to acoustic phonons. T0 

is the reference temperature which will be taken as 300°K. The constant 

C fixes the absolute value of mobility at 300°k. 

The values of ci•s are not know~but these can be left in as 

adjustable parameters. These can be varied ~o that the relaxation time 

obeys the same variation with temperature as has been. observed in the 



experiments, ie. T-1•66 for electrons and. T-2•33 for holes. These 

two cases will be treated separately in the following sections. 

5.3. 1 Electrons Mobility in Germanium 

It has been mentioned in art. 5.2.7 that there are five phonons 
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which can take part in the scattering and hence five adjustable constants 

ci. It is qaite laborious to handle this situation. However, if it 
' 

is observed that the three phonons (2 optical at Q • 100 and 1 optical 

at Q = 0) have nearly equal energies· .and- the other two have same energy, 

then these phonons could be grouped together in two groups without 

making.any serious error. This leaves two constants c1 and c2 to be 

adjusted which is ~omparatively an easy task. The values of c1 and.c2 were 

varied and T was computed as a function of temperature (between 1oo• 
to 300°k)~ Each time c was adjusted to give 

llJOO = • 3800 = Q<T>/m~ . 
The resu 1 ts of co~puta'ti on are p 1 otted in fig. 5.1 • The abscissa in 

the figure represents c1 and the ordinate -n, the exponent ofT. c2 
was taken as a parameter. 

It may be obse~ved that there are different sets of c1 and c2 
which can give the correct value of n = 1.66. No unique combination is 

possible using only the d.c. mobility data. 

Because of this it is convenient to neglect all the scattering 

by all the intervalley phonons and assume that the scatteri.ng is only 

by optical mode scattering of frequency 9 x 1012 Hz. (or that all . 
phonons.are grouped together having one energy). If this is done and c1 
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is varied over values from zero to 1, it may be seen from ~he figures 

5.2a and b that the value of c1 = 0.2735jto give n = -1.66. This means 

that 27.4% of the lattice scattering is due to optical and or inter­

valley scattering. 

The linearity of the log P ~ log T relationship in the ranges 

of c1 and c2 considered, was checked and is shown i.n the fig. 5.3. 

With these values of c1 and w, one is able to compute <t> and 

* <t/l+jwt> and hence a(w). In the actual computations, the use of me was 

avoided by using 

• QPno(T) n < tn > l<tn> 
l+jwt n 

where Pn
0

(T) = d.c. mobility of electrons 

= 0.3800 (T/300)·1•66 m2/volt sec. 

n • electron concentration 1 m3 

(5.16) 

For temperatures greater than ~ut l00°k, almost all donors 
~ . 

are ionized·. Then for T>100°k, the carrier concentrations were obtained 

as follows. 

The charge neutrality condition gives 

n - p = Nd 

also np • n1
2 

whence n • ~ [1+. }+4n12tNi ] (5.17) 

·' 
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Nd [ I 2 2 ] .• 
p = ~ . -1 + 1+·4ni /Nd (5.18) 

For germanium ni2 = 3.1 x lo44r:xp(-9100/T)/m~. · 
The val u.e of Nd can be computed from the known conductivity and mobilities 

of. carriers at a particular temperature. Thus if a sample has 00 d.c. 

conductivity at 300°k, then 

ao = q (n ~n-+ p ~p) 

~n = .38 m2/volt-sec. 

~P = .18m2/volt-sec. 

Substituting n and p from 5.17 and 5.18 into the above equation yields 

a quadratic equation in Nd which is easily solved. Once Nd is known, 

values of n and p as a function of temperature could be evaluated. In 

the limiting'cases, 5.17 and 5.18 reduce to 

( i) when ni <<· Nd 

.. n = ~; P • ni2/Nd 

(ii) when n; >> Nd 

n = ni = p 

The condition (i) ~s valid at low temperatures and (ii) at high temperatures. 

5.3.2 Hole Mobility in Germanium 

·In the case of holes, there is no intervalley scattering so that 

there is only one phonon (i.e. optical one) which can take part in the 

scattering and hence only one adjustable parameter. The computati~n~, 

were carried out in the same manner as for electrons. The values ~~ 
'YI ~ •• 

exponent t.. ~- plotted in the fig. 5.4 for various values of c1• It 1s 

found that for. n • - 2·.33 c1 • 1.89. This means that relatively large 
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amount of scattering is due to optical mode scattering. This has 

.also b'een the conclusion of Conwe11(26). With values of c
1
•1.89 

12 . 
and .~/2."".= 9 x 10 Hz, one can again compu~e 

ap(w) = q )A (T) ·p < Tp_ )' /cT > (5.20) 
po l'j(l)t P 

p 
-2.33 

~po = .18 (T/200) 

p :: hale concentration /m 3 , 

p can be calculated from the equation 5.18 

5.3.3 Microwave Conductivity and Permittivity of Germanium 

The computations of a((l))/a(o) and trm for n type germanium 

were carried out with the help of.a 7040 IBM computer using equations 

5.16 and 5.20 as a function of frequency, doping and temperature. 
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The results of the computations are plotted in figures 5.5 through 5.7. 

The fig. 5.5.gives a((l))/a(o) as a function of temperature and 

f. and doping as p~rame_ter. The temperature _was varied between 100°k to 

500°k and the frequency from 109 Hz to 1012 Hz. The computations were 

made with two values of donor densities Nd so as to· give the room 

temperature conductivities of 10 and 100 mhos/m 

It may be seen that for all values of T and Nd c_onsidered, the 

microwave conductivity is essentially equal to d.c. conductivity for 

frequencies less than about 10 GHz •. The effect of increasin~ frequency 

becomes evident above about 10 GHz and the.effect increases at lower 
' temperatures because of the increase. in t and hence (l)t. As the 

frequency goes higher. a((l))/a(o) decreases even at room temperature. 
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The effect of the doping is seen to be more significant at lower temperatures. 

The effect of frequency on the dielectric constant of germanium 

is shown in ·fig. 5.6, in which the abscissa represents the log f, the 

ordinate the erm' with T as ~ parameter. The doping was kept low so 

that the doping effect on erm is negligible. It may be observed that 

again· the effect of the frequency becomes significant for f ~1o10 Hz for 

T ~ 200°k. For high temperatures, the dielectric constant begins to 

change at higher frequencies than 1010 Hz. This is to be expected 

because both Tn and TP decrease with temperature. It may be further 

observed that at higher frequencies, the values of £~ for all values 

ofT~ 200°k approach a limiting value. 

This condition applies when ~T >> 1 so that 

T 
2 1 

The changes in £r with temperature are due to two,reasons 

(i) The value of <T> and hence <T/l+~~T 2) changes with 

temperature 

(ii) At high temperature, the carrier concentration also changes. 

The effect of doping ~n £r is shown in the fig. 5.7. The 

frequency in these computations was taken to be 9.25 GHz so as to minimize 

the frequency effect. The effect·of doping is seen to be more pro­

nounced at lower temperatures. 
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5.4 THE MEASUREMENT OF o(w) and erm 

The measurement of the microwave conductivity and dielectric 

constant was carried out on samples -of n type Ge of resistivities of 

22n-cm and 10 ncm at 9.25 and 34.5 GHz. The wave-guide configuration 

used for these measurements is shown in fig. 1.1. This configuration 

has the advantage that the material properties can be expressed 

explicitly in terms of propagation constants and no transcendental 

equation has to be solved after the propagation constant has been 

computed. 

If y is the propagation constant in the section of the wave­

guide filled with semi-conductor in fig. l.land r is the propagation 

constant in the empty guide, then ~r is given by 

__ y2-r2 
~ - 1 -
~ k 2 

0 

2 2 . = x -r 
2 

w lloto 
•. 2 2 2 
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so that er.· 1 = S -80 -a (5.21a) 
2 

w lloto 

a = (5.2lb) 

a+ja = y 

jB
0 

= r 

·For a given system y was computed from the measured value of the 

reflection coefficient at the interface of an empty quide and the semi- . .. 
conductor loaded guide at z • o with a short at z • , ,(fig. 5.8). 
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Figure 5.8 Completely Filled Wave-Guide Configuration used in 
the Experiments on n type Germanium 
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The propagation constant y in terms of reflection coefficient R at z=o 

is given by the solution of the follm·ling equation 

tanhy.t 
-- = z I js .t = - 1-

n o ·a t 
J 0 yR. 

li-R 

1- R 

From this equation y can be computed numerically or graphically 

using the graphs of Von Hippel (El). In the present work, ho\'rever, 

numerical solution \·las preferred to obtain a higher accuracy. 

The reflection coefficient R \'/as measured by means of the 
. . 

reflection bridge described in the appendix A. For optimum accuracy, 

the sample length R. was chosen to be a quarter wave length approximately. 

The measurement of the reflection coefficient at different 

temperatures \•Jas carried out by placing the. section of the \'lave-guide 

containing the semi-conductor saMple in a "Delta Design· Chamber" (fig. 4.10) 
' 

in which the temperature could be caried from -300°F to +600°F by the 
. . 

application of liquid nitrogen or electric heaters. The measurements 

were carried out bet\-1een the tempe·ratures of about lOQOkto 500°k 

and the temperature was measured with a copper constantan thenno-cou.pl e 
~ ~ . 

and an H.P. meter, type 425A, giving an accuracy of about +2°K~ 

5.5 EXPERIMENTAL RESULTS ~NO DISCUSSION 

The results of measurement of mi.crO\'Jave. conductivity and 

dielectric constant at 9.25 and 34.5 GHz are presented in the figures 

5.9 through 5.12. The solid lines represent the theoretical curves of 

a and £nn as computed from equations given 'in previous sections!' The 

crosses or the circle.~ represent the experimental points. The probable 

* ~he behaviour of a \'tith temperature_ as shown in figures 5.9 and 5.10 

may f>e explained as followed. As the temperature is decreased from the/co NTD 
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errors were computed from the estimated errors in the reflection coefficient 

and the uncertainty in the b djmeris ion of the samp 1 e. 

To interpret the data, the gap effect was taken into account. 

This was necessary because the sample dimensions were not exactly 

equal to the waveguide dimensions. The gap bebteen the sa1nple and the 

broad \'Ja 1l s has been found to have a considerab-1 e effect on the measure-
. 

ment of e: . r 
(16, 17} In the present \-Jork; the following two equations. 

were considered, 

£r~~) =. (€r-1) b'/b (5.22) 

€ (m) = € /[ .. 1+(€ -1) b-b'] r r r · b ' 
(5.23) 

where £r is the actual permittivity, €r(m) the measured value of . 
permittivity and b' is the actual narrow dimension of the sample • 

.. 
~Jhile applying the correction for the gap effect,it was found 

that for low values of conductivities, equation (5.22) gives adequate 

results. Tbe equation (5.23) hm·tever, was found to be valid only at 

higher conductivities, say greater than about 25 mhos/m. At lower 

values of conductivities, (5.23) \'tas found to over~orrect the measured . . 

values. For example, at room temperat~re, and for bbb' = l/160 and 

measured values of e:r = 15.7 and f = 10.4 ohms-em, the equat·ion (5~22) 

, and (5.23) gave the values of e:r = 15~8, f= 10.3 and e:r = 14.4 
. . 

~= 8.6 Qhm-cm respectively. The former values are closer to' the 

theoretiGal values. 

room temperature, the mobility of tne carriers increases while the number of 
carriers in a doped.material remains practically constant - about 100°K. 
Thus the conductivity increases with the decrease in temperature. The rise · 

' . . 
in the conductivity above room temperature is due to the rapid increase in 
the numbers of intrinsic carriers. 
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It may be seen from figures 5.9 through 5.12 that the aqreement 

between the measured values and theoretical values of a is quite good. 

There seems to be some discrepancy between the measured values' of a and 

the theoretical curve at 9.25 GHz at higher end of the temperatures. 

This is possibly due to the gap effect. The equation 5.23 which is 

obtained from the first order perturbation theory {l.6) probably fails 

at high values of w~ that occur at higher-temperatures. 
0 

There is seen to be a fair agreement of £r between theory and 

experiment. The discrepancy at loNer end of temperature is. again 

attributed to the gap effect. At higher end of. temperature, it is 

found that it is not possible to get accurate values of £r even 

after applying the correction due to the gap effect. The reason for 

this is that as T and hence a ?oes high, the contribution of £r to 

the propagation constant becomes negligible; &r+ -j _Q_ and a+B. 
W£0 

When this happens, it may be seen from the equation (5.2la) that even 

a small measuring error of a or B would cause a large error in the 

measurement of £r· A very high accuracy, indeed, wouid be required 

to measure £r in this situation. . 

.. 



CHAPTER VI 

CONCLUSIONS 
. 

6.1 GENERAL 

A variety of microwave measuring techniques are required to measure 

the complex permittivity(£= £o£r- j:) of semi-conductors because o~. 

large possible variation in the conductivity. The accuracy of measurement 

depends on the choice of a particular technique for a given .conductivity 

vaiue. A number of methods of measurement have been investigated to 

determine the range of conductivities to which they are best suited. 

Particular attention has been given to systems which involve the 

measurement of the reflection coefficient.A+·ully filled wave-guide 

configuration has been used to investigate the dependence of the complex 

permittivity of n type germanium on temperature, frequency and doping. 

An investigation of the exact and the approximate expressions used for 

computations of the dominant mode propagation constant in a partially filled . 
wave-guide configuration has been carried out together with the effects of . 

the higher order modes which a~e excited at,the junction of such a guide and 

an empty one. During the investigations a new method of measurement 

involving the replacement of one narrow wall of a rectangular wave-guide 

was peveloped. This· method has been· termed the "lossy wall measuring 

technique". 

117 
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6.2 LOSSY WALL MEASURING TECHNIQUE 

The theory of the wave propagation in such a system and the exact 

and the approximate expressions for the propa~ation constants of Hno 

modes are developed in the Chapter III. Numerical computations of 
• the·dominant mode propagation constant are presented for 1 ~ a~ 

1000 mhos/m and 0 ~ £r ~ 16. The calculations were done for three 

frequencies 9.25, 34.5 and 70.5 GHz. Experiments to confirm the theory 

were performed at 9.25 GHz with germanium samples of conductivity in 

the range 2 .; a .; 400 mhos/m and the measurements were made with a· 

microwave transmission bridge. 

The computations show that the approximate expressions for the 

propagation constant give adequate results at th~ higher end of the 

range of £r considered and over the whole range of conductivity 

considered. The computations further show that this method of measure­

ment is most useful when a~ w£o£r and becomes . more accurate with the 

increasing frequency. " 
. 

The experimental results a~ 9.25 GHz give accurate results fo~ 

both £rand a in the conductivity range 4 ~a ~-20,mhos/m. However, 

for lo_wer values of a, the conductivity measurement is not accurat~ 

but the dielectric constant term is in good agreement with the expected 

value. This disagreement is attributed to errors in the measurement of 

the small phase change produced in such a system and the inadequacy of 

the theor~tical model which assumes only the TE10 mode propagating in 

the system. Also, the experimental r~sults show that for a ~ 20 

mhos/m the measurement of & is not accurate. This is attributed to 
r 
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the fact that in this range of a, small errors in the measurement of the 

transmission coefficient .can cause large errors in the calculated values 

of e: . ·r 

6.~ PARTIALLY FILLED WAVE-GUIDE . 

6.3.1 Exact and Approximate Solution of the Dominant Mode ·Propagation 

Constant 

A wave-guide configuration commonly used in the measurement of 

various electrical properties of semi-conductors is the one shown in 

the fig. 1.3. In·the measurements.previously reported in literature, 

the propagation constant has been computed from approximate expressions, 

the accuracy ·o_f which has been doubtful. Computations of the dOfllinant 

mode propagation constant for 0.1 $a~ 10 mhos/m, .001 ~ t/a ~ 0.25 

and e:r = 16, 12 have been carried out at three different frequencies 

10, 34.5 and 70.5 .. GHz using the exact and approximate expressions. The 

computations show that for'all values of a and t/a considered at 34.5 
. at lO Gliz. 

and 70.5 GHz and t/a < .05 and a ~ 10 mhos/rnA the attenuation constant , 
varies linearly with a so·that a= constqnt x a· The variations of y 

with e:r are found to be significant only.at higher end of the ranges of 

t/a and a. 

The comparison of the exact and the approximate values of the 

propagation constant shows that unless t/a is very small (<.0025), the 

approximate expressions do not give adequate : · i· · re$ults for the 

ranges of t/a, a and e:r considered. ... 

These calculations, which have not been previously reported, show 
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that approximate methods of solution for the propagation constant of a 
. 

wave-guide partially fil1ed with a semi-conductor should be used with 

due caution. 

6.3.2 Higher Order Modes Effect 

In a practical experimental arrangement, this partially filled 

structure fo~s a junction with an empty guide. At such a junction 

higher order modes are excited •. The effect of Hno higher order modes has 

been studied and the expression for'the input impedance at the junction 

(z=o) is obtained for such a structure terminated with a short circuit. 

calculationsof the reflection coefficient at the junction z = o are 

obtained for 1 ~ a ~ 10 mhos/m, 0.01 ~ t/a ~ 0.25 and £r = 16, at 9.25 GHz. 

The mode number n was varied from 1 to 7 (1, 3, 5, 7). The calculations 
~ ~ show that unless t/a <DB and a < 2.5 mhos/m, the effect of the higher . 

order modes becomes significant. 

Experiments were also performed to measure the reflection 

coefficient at such a junction at 9.25 GHz for t/a values of .0133~ .026 

and .0515 and 2 ~ a ~ 100 mhos/m. The measurement results were found 

to confirm the above observations about the higher order modes. The 

best fit between theory and experiment is obtained with N=7 (the order 

the higher mode) for higher values. of a and t/a. 

This wave-guide system with semi-conductor has possible application 

to microwave modulating devices and this study was undertaken to determine 

characteristics of such a structure which have not been previously reported. 



6.4 EFFECT OF FREQUENCY, DOPING AND TEMPERATURE ON THE COMPLEX 

PERMITTIVITY OF N-TYPE GERMANIUM 
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Theoretical computations have been made of microwave dielectric 

constant and conductivity of n type germanium as a function of temperature 

(100° ~ T ~ 500°~), frequency (109 ~ f ~1012 Hz) and doping (1019 ~.Nd 
~ lo22;m3). The theoretical model used to evaluate the average relaxation 

time constant includes the scattering by ionized impurities, acoustical 

and optical mode scattering of charge carriers. . . 
These calculations show that the effect of the frequency for, 

f ~ 1010 Hz on both a and Er is negligible. At. higher frequencies 

·the conductivity decreases and the dielectric constant increases from its 

low frequency vaJue •. The effect is more pronounced at lower temperatures 
I . 

due to the increase in <T> and hence <w
2

T
2
>., The effect of the doping is 

also found·to be significant at high impurity contentratio~ and lo~ 

temperature. 

The effect of temperature is such that at a given frequency, the 

dielectric constant decreases and conductivity increases with a decrease 

in temperature •. This is due to the increase in the value of <T>.· Above 

room temperature and with light doping, the thermally excited carriers 

have a considerable effect on the dielectric co~stant. 

The associated experiments for measuring.the dielectric constant 

and the conductivity of n type germanium samples of a ~ 9 and 4.7 mhos/~ 

at 9.25 and 34.5 GHz were carried out with the microwave reflection bridge. 

The completely filled wave-guide configuration was used and the temperature 

range was 100° ~ T ~ 500°K. Such measurements for n type germanium 
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have not been reported previously. 

It was found necessary to apply a correction factor for the 

effect of the unavoidable air gap between the sample and the wave-guide 

walls. The investigations showed that the first order perturbation 

theory was valid for a/w£
0 
~ 4. With such corrections good agreement 

between theory and experiment was found between 100° ~ T ~ 400°Kat 

9.25 GHz and 100° ~ T ~ 450°~at 34.5 GHz and the vaHdi:ty of the 

theoretical model was confirmed. 

.• 
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APPENDIX A 

MICROWAVE REFLECTION BRIDGE 

Al BRIDGE DESCRIPTION 

The schematic diagram of the reflection bridge used for the . 
experiments described in the chapters 4 and 5 is given in the fig. Al. 

The microwave power. source feeds the H-arm of a magic tee. Arm I of 

the tee has coupled to it a reflection coefficient reference which 

consists of a precision type variable calibrated ·attenuator followed· 

by a precision type variable short circuit. The second arm is coupled 

to the network under test and a matcned detector is connected to 

the E-arm. 

The measurement of the reflection coefficient under test is 

carried out in two steps, as follows. 

(a) First a fixed short is coupled to the arm II of the tee and the 

.attenuator and the short in arm·I are varied to obtain 

minimum power output in the detector in the E~arm. Let Ao(nep) 

and lo(meters) be the readings of the attenuator and the short 

respectively~- for this condition. 

(b) Now the test assembly with a reflection coefficient R is placed 

in arm II, at the same plane as the short in the st·ep· I. 

Again the attenuator. and short in the ann I are varied to 

obtain minimum output in the E-ann. Let these readings be .. 
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A1 neps and r.1 meters resp.ectively. Then·, as shown later, Ris given by 

R = - exp - 2(A+j$) (Al) 

where A = A1-A0 nepers 

$ = s0 (t1-l
0

) radians 

so = phase constant in the variable short 

A2 SCATTERING MATRIX OF TEE 

Equation A1 may be proved by considering the scattering matrix 

of a hybrid tee. This is· as follows for the tee shown in th~ fig. A2. 

sn 512 513 514 

S= 
521 522 523 524 

(A2) 531 532 533 534 
5 ,41 542 543 544 

If the system is lossless and isotropic, then the reciprocity theorem 

gives 

5· · = 5· · ilj lJ J 1 . 
Now if it is assumed that the tee has been tuned·-:. so that 

533 = 0 = 544 

534 = 0 = 543 

then the scattering matrix reduces to 

511 512 513 ~14 
512 522 523 524 

S• 513 523 o· 0 (A3) 

514 524 0 0 

'· 
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The scattering matrix is a unitary· one{3l)and the following theorem 

applies. . 
"The sum of the squares of the absolute magnit~des of elements 

in any row ·(or column) is unity". This theorem gives from equation (A3) 

l511 1
2 

+ l512l
2 

+ IS13l
2 

+ 15141
2 

a 1 
2 2 2 2 

IS121 + IS221 + IS231 + 15241 • 1 
2 2 

IS131 + IS231 = 1 
2 2 

IS141 + 15241 = 1 

Adding (A4a) and (A4b) and using (A4c) a_nd (A4d) gives 

1Sl11 2 + 1522 12 + 215121 2 • 0 
., 

.: 511 = 522 = 512 = 0 

Thus (A3) reduces to 

-0 0 513 514 

S= 0 0 523 524 .. 
513 5

23 ° 0 

514 s24 o 0 

(A4a) 

. (A4b) 

(A4c) 

(A4d) 

(~5) 

Now if ai is the incident waves at the port i and b1 is the reflected 

wave at that port, . then 

bl = .a3 S13 + a4 S14 

b2 = a3 S23 + a4 S24 

b3 = a1 S13 ~ a2 523 

b4 • a1 514 + -a2 524 
:.. 
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Assuming that the detector, which is coupled to arm 3 is matched 

so that a~ = 0, the above equations ~ive 

bl 514 . 
-= 

If~ 1 and R2 are the reflection·. coefficients at the arms· I and 

II respectively so that 

·a
1
· = R1 b

1 
and a2 = R 2 b2 , 

then b3 c R 1 513 b1 + ~ 2 523 b2 

Now if 

II Rl sl3 514 b2 + ~2 S.23 b2 
524 

• b R' sl3 514 + s R 
2 1 

524 
23 · 2 

(A6) 

(a) R2 = -1 (short circuit plate), and R1 •. ~lO so that b
3 

• 0, 
.. 

(balanced condition), then 

513 514 • +'s 
10 23 

524 

and (b) R 2 = R (under test) and R
1 

• R11 so that again 

b3 = 0, then 

The above two equations give .. 
R II !u 

R1o r-

(A7) 
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A3 REFLECTION COEFFICIENT OF THE REFERENCE ARM 

The reference arm consists of a precision variable oJX&-~ . . 
and· a precision variable short connected in ·cascade as shown in fig. A3. 

The scattering matrix of the attenuator is for an isotropic system 

. s • 1511 512 

~12 $22 

and the incident and reflected waves at the ports are given by . . 

where 

. . . 

• . . 

or 

or 

[::} 
rsll 
~12 

When a calibrated sliding sh~rt is connected at the port 2. then 

a2 = - [exp ( -2j8ac )]b2 

~ =phase constant:in the sliding short system ro . . . 
x = distance of the short from the reference plane 

[ 

S 2 e -2j s0x J 
$11 - __ 1_2 __ _ 

l+S -2jsox 
22 

If s1l and s22 are smal_l as compared to unifiy, the above equation' 
. 
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• .. 

Now if the wave suffers an attenuation of y nepers while travelling in 

the attenuator, then 

. . . 
sl2 = e-Y 

~ E - e-2(y+j Box) 

al 
D 0 

• ~10 = _ e -2(Al-Ao)-2jBo{l·r-R.o) 
• • R 11 . . 

= -e{l\+j~) 

A4 TUNING OF A HYBRID TEE 

(AS) 

In the above analysis it is assumed that 533 = 5
44 

• 534 = 0 

and in a commercial grade tee it is sel.dom so. In order to meet this 

condition.it is necessary to place lossless ·tuners in theE and H 

arms and make the VSWR looking into these arms unity with arms I and II 
. 

tenni nated with matched 1 oads. In practice it is very difficult to get a 

VSWR less than 1.02 to 1.03. After this adjustment 534 is checked by 
Q 

measuring the output in the E-arm while feeding the H-arm with te~inations 

placed on arms I and II. If 534 is not zero, it can be reduced to a 

mi.nimum by placing a tuner in one of the side arms. This adjustment will 

usually disturb the tuning of E- and H-arms so these must again be 

tuned and the process repeated till the effe~t the side arm tuner on 
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E and H arms tuning becomes negligible. If the ~ee is of good quality 

s34 will normally be very small and 'need only very small amount of 

tuning to make ~34 negligible. 

l 
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1 T (·3, 7 l -1:- T (7, 5 l -:~ T ( 5, 3) ) + 
2 T(3,3l*(i(l,5l*T(5,7l*T(7,1l + TC1t7l*TC7t5l*T<5•ll l 
3 + Tl5,5l*(T(l,3l*T(3,7)*T(7•1l + T<1•7>*TC7t3l*T<3•1 l I 

4 + T I 7 '7 l -::-IT ( 1' 3 l .;:. T ( 3' 5 l -:c· I ( 5' 1 l +. T ( 1 '5 L* T C 5 '3 l * T C 3 '1 l l + 

137 

077 
0 I I 

0 I I 

0'.•":! 
S Tll,5l*T(5,1l*T(7,3l*T(3,7l + TC1,7l*TC7tll*TC3t5)*TC5t3l 077 

·~-----61Tn-,1T>rtT\·'3·-,-Tl1Fil5-,rn~ T < 7' 5 l + T ( 5 '5 l"* T ( 7 '3T*IG,-I·~...-+----- 0·6 ~- .. 
7 i I 7, 7 H:- T ( :·h 5 I -r, T I 5 f3 l J + 0 66 
S T ( 3' 3 H· ( T C S '5 )-l:- T I 7 d I* T I 1 '7 J + T C 7 '7 H~ T C 1' 5 l * T ( 5' 1) r 0 77 
9+ Tl5•5l*T<l•3l*T<3,ll*TC7,7l+TC1t3l*TC3t5l*TC5t7l*T(7,1l l 077 

AAill = AA(l) - CTC1,3l*TC3,7l*TC7,5l*TC5tll + TC1t5l•T·C5,7l* 077 
1 T!7,3)*T(3,ll + T(1,7l*T(7,5l*TC5t3l*TC3t1l + TC3t5l*TC5tll* 066 
2 -r-q ~ Tl-::,-T ( 7, 3 l -+ T-( 3mf/'h:-T·{·7·,-l-t"-!(·T C 1 '5-T-*-r-t-5 t 3 ) ) 07?---
3 + T(l,3l*TIJ,ll*T(5,7l*T17,5l 0== 

T I = T' ( l , 1 l ~~- T ( 3 , 3 l - T ( 3 , 1 l ·:: T I 1 ' 3 ) 0 = = 
TJ = (i{l,1l +T(3,3l)/2. OXX 
YYill = TJ - CSORTCTJ*TJ -Til 077 
YYI3l = TJ + CSQRT(TJ*TJ -Til 077 
CA [ L- "SPUT_l'-41-.rrA-,-y 7 7 
COi·'~PLEX zo, z, Gt p, TNt NF' cs, cc 077 
DI~ENSION Z0(9), ZC9lt G(9,9lt P(9,9)t DELC9~9ltTN(9) 077 
DO 5 N=1,7•2 '077 
Al~IL\!l= CSORTIYYINl*YYCNl + XX*ERl) 877 
AKJ(Nl = CSQRTCYY<Nl*YYCNl + XX*CP ) '' 

o--s r< = 1 , f., _ o·-t-t---
IF CN.NE.Ml GO TO 8 ·OYY 
DEL(N,Nl= 1. 088 
GG TO 5 099 

8 DELINtMI= 0.0 0== 
5 CCi\:T H,lUE . OH-

-----c o;..::;·..;oi,~+! E-1-A*i-r-A* J.r~· -----t:rD-r, -t-T~s~,_,x,.;r.,x,..,,~c;fpl;,~G~AIIr---9-• -Et::-RR-l-1-----...,...------{0}-t-• L' --

CALL EXACTG 0== 
CALL GSORT<GAI 
IFICODE.GT.O.Ol GO TO 202 0'' 
DO 207M = 1t7t2 . 088 
AKIAB(Ml = CABSCAKICMll 099 

-----<';-K~f.\S+M+-=--€-A£-S--AK-di'--t-~.., f+----------------------41Zl;F---
AKIAR<Ml = ATAN2(AIMAGCAKICMllt REAL(AKICM)ll*57e296 099 
A i<.J A::.; Ul: > . = AT AN 2 ( A HM G ( A K J C M l l ' REAL C A K J ( M ) ) l *57 • 2 9 6 0 9 9 

207 ~·.'::\ITE (6,208 l AKIABCM>, AKIARC~n, AKJAB(M), AKJAR(t-1), GA(M) 0== 
GC TO 201 O•• 

202 UC = 4.*PI*l·E-9 0' 1 

·----{};'v'!{j--·.:·2-e~I "' " ~ 0-,,..;:-r----
T! = CMPLXCO.Ot1.0l*OMG*UO Ott 
DO 9 ~=1,7,2 099 

-.. ~N = FLOAT ·(Nl 099 
Z(~)= TI/GA(N) . 100 
TJ = CSQRTICtv:PLX(AN1:-AN*S*S- XX, O.Ol) '1// 
Z:"c;(-;-~y::-T-r-; 1-Sc«S;----
IF<AL.GT.O.Ol GO TO 11 lTT 
AL = PI/2./AIMAG(GA(lll *CODE lUU 

11 U = .GA ( ~n -::·AL lUU 
V = L~XP(UJ lVV 
T,':<i<l= CV- 1./VJ/CV + le/Vl 1Wh' 

-----r-;-.j l ~: r=-Trrt-:--:-y:-:.z· t7n ____________ _.._ _____________ txx-------

~0 14 >!==lt7,·2 
,~<I( ... :) = CSQRT(Gt\(:w,~)·X.GACt-1) + XX*ERl) 
~~J(~J = CS~RT<GA(Ml*GACMl + XX*CP) 

'" "'" "'" .. ·····---

1YY 
lZZ 
111 
111 



!38 ----------------------------------------------

U = AKICM>*D 
V = AKJ(IJ.l*TS 
CO = CCOSCV) 
TAA = CSINCU) 
CS = CSINCVl ---cc--=-cccrsrUl'-_ ------------ ------------- -----·-·· · 
NF= 1e/CSQRTCD- TAA*CC/AKICMl + TAA*TAA/CCS*CSl*(1.-COl* 

1 CTS + CS/AKJ( Mll) 
GAP = AKJ(Ml*AKJ(M) 
GAM= AKICMl*AKICMl 
DO 14 N=1t7,2 
AN = FLOAT< N) 
ANT = AN*TS*S/2• 
PCNtM)= SQRTC2.1Al*NF*2e*SIN(AN*PI/2.l*(AN*S*SIN(ANTl*TAA 

1 - AKI(Ml*CC*COSCANT ll* 

155 

l t~/~ 

177 
177 
lE3 
1S"9 
!. ss 
1 r:: ~ 
,;.....,./_./ 

l 66 ~· 

177 
177 
:!.55 

2 (GAP - GAM)/CGAP - AN*AN*S*Sl/(GAM - AN*AN*S*S) 
14 CONTINUE 

DO 15 I-I,7t2 
DO 15 J=1t7t2 

l66 
177 

-------- 199 

GCitJl= CMPLXCOeOtOeOl 
DO 16 lv1=1t7t2 

16 GCitJl= GCltJl + ZO(Ml*DELCMtll*DEL(M,Jl + TNCM)*P(I,Ml*P(J,~l 
G(I,Jl = G(l,J) - ZOCll *DELCitll*DEL(J,1l 

--l"t-5~C""'0'"T1Ni 

COMPLEX ZNt REC, DET, DETT, DET37 
DIMENSION ZNC9lt RECCgl, RECAB(g), RECAR(9) 
ZNC1) = TNC1l/Z0(1) 
ZN ( 2 l = G ( 1 '1 l I ZO C 1 l . 
ZNC3l= CGClt1l*GC3t3) - GClt3l*GC3tlll/GC3t3l/ZOC1) 

----TC~Att DET3 (G, DETl 
ZNC4) = DETIZOC1)/CGC3t3l*G<5•5l - G(3,5l *G(5,3ll 
CALL DET7CGt DETTt DET37l 
ZNC5l = DETT/ZOC1l/DET37 
DO 17 N= lt5 
RECCNl=. CZNCNl - 1el/CZNCNl + 1.1 

---~R~E~S~H(R~E~C~(H~~~)~)~-----------------------~-

17 RECAR(Nl= ATAN2CAIMAGCREC(N)lt REALCRECCNl)l*57e296 
WRiTE (6,18) <RECABCilt I= lt5), CRECAR(J), J= 1,5) 

201 IFCVXC2l.LE.O.OlGO TO 71 
ZZ = ALOG10CXl 
ZZ = ZZ + VX(2) 

------x~-----+l~~z~~.---------------------------
IF CX.CE.VXC3)) GO TO 205 
X = VXC1l 

71 IFC VSIC2l·LE.~.Ol GO To 72 
ZS = ALOGlOCSil 
ZS = ZS + VSIC2l 

199 
l TT 

166 , ~ ') 

.!.. ---

. - -··l f.~~ 
177 
1 SG 
177 
1 ----
1-­
... --
~ : , ~ I 
....,.• ... v 

l 77 
1'"-'~ 
477 
177 
l 77 
1 I I 

1 I I ... 
:vv 
155 
1~5 

--l 77 
177 

177 
~- 77 
l I t 

---~I - 10·"**·-T-5~-------------------~-------------· ______ ,.I---
IF CSI.LE.VSI<3ll GO TO 203 
SI =VSICll 

72 IFCVFC2l.LE.O.O) GO TO 74 
F = F + VF(Z) 
IFCF.LE.VFC3)) GO TO 68 

-~7n4~C~T~~~--------~--~---------------------------
·,.; -;_ : T E ( 6 ' 51.1 

;1 FC~···AT (:l.H~·) 

?.00 r:c;;;:,\ T < 1>:, Fl 0. 3 l 

2.77 
l6S 
lE-6 

~ == 



' --------------------·----------· . _____ " _____ ------~ ------·-·-
:._·':.!.: ·~OR~~,\ T 
2 C 0 F C '~' ~ ~' T 
2CS FJ.~:~,\T 
2 C 9 != 8 :< '-', ,~. T 
21C ;=c~.·<,~T 

( ll x., E 1 0 • 4 l 1 = = 
(21Xt E10.4l lXX 
(3lX, 6El2.4l -177 
(FlO$~' Fl6.2l 177 
<F10.3l 177 

----zrr?:JF; :Ar-rE .L o-.-:;---,----------------------------- rrr- ------
212 r=-c·~:·,'\r <3El5.5l 177 

GO io 10 177 
13 STOP 

c: ·'~ c 
$I GFTC EX!,CTG 

177 
1 t t 

-- ·SU8~J0TI"NE~XACTG · ------~-------------- tvv--
cc:·<PLEX AKI' AKJ, CP, GAt u, Vt COt TAA• FKt DFKt RFt GAS 
Jl>l:::,,:S·IOI-i Gt\(9), AKI(9), AKJ(9) 
co::.':01\J /?.i"!E/ AKI, AKJ, D• TS, XX, CPt GA , ERl 
DO SO ~1=1'7'2 

60 GA(~)= CSQRTCAKI<Ml*AKICMl - XX*ERl) 

188 
199 
1== 

1 t I 

~-6~~~~~-----------------------~~~--·r==-----

~! - " 
" - v 

GO TO 31 
32 AKJ(~l= CSORT<AKI<Ml*AKI(M) + XX*CCP -ERl)) 
31 U = AKI <rviJoi-D 

V = AkJ(Ml*TS/2. 

1== 
1 t t 

' 188 
199 
lZZ 

----rA~~!N~~-e~o~Sn(+U~l-------------------------~~---

co = CCOS<Vl/CSINCVl 
FK = AKJ(~l*TAA- AKICMl*CO 
DFK = AKI(M)/AKJ(Ml*<TAA+ AKI(Ml*TS/2•*<1• + CO*CO)l + 

1 AKJCMI*D*(l. + TAA*TAAl - CO 
?\F = -FIUDFK 

----A.K-I-{-ivi-)-=-A-1'-2-I-<+i \---~----cR-F-----------------------------
GAS = CSQRT < AK I ( f~ l -~AK I ( M j - XX*ERll 
PP = ABS<REAL(GAS-GACM) )) 
Q = ABSCAIMAG<GAS-GA(Mlll 
IF (~.GT.15lGO TO 33 
IF<PP.LT.l.E-6.AND.Q.LT.l.E-6l ~0 TO 54 

----------,.~ 

'' 'l • 

GAC,il = CSQRT<AKI (fv.)i:·AKI CMl - XX*ERl) 
GO TO 32 

54 GAIMI= CSQRTCAKICMl*AKICMl - XX*ERl) 
AKJ(Ml= CSORTCAKICMl*AKICMl + XX*CCP -ERll) 

· GO TO 36 
~t!Ri-T t.'-----tQ-,~r+---------------------------------

34 rCI~>~AT ( 15H NO CONVERGENCE) 
36 CCNTINU[ 

f~ ETU~\N 

SI3FTC DCT3 
------sv"J;;vJT1llr2lJ1:4'-?J--t-f';~-f"li:~r--------------------------­

cc:·iPLEX G, DC:T 
D I.". : ;.: .S I 0 r~ G < 9 , 9 l 
DET = G(l,ll*{G(3,3l*GC5t5l - GC3t5l*GC5t3l) 

1 -Gil,3l*IG{3,ll*G(5,5l- G(3,5)*G(5,lll. 
2 + Gll,5l*(G{3,1l*G(5,3l - G(3,3l*GC5tlll 

------------~cru~: .. ~--------------------------------
[f.: r) 

~ Sl:.:FTC SPC~Y4 

S:.JSROUT I ~!E SPOL Y 4 ( AA 'YY l 
(C~PLEX AA,YY, FF' OFF, RF, YX, BSt YYUt YYUN, CCtOYtTC9t9l 

------.. ----·---------------------------------------------



---------- ----·-------------------------------- -------------------------------------------------------

C' D 1 1\l = 1 ' 3 ' 2 

5 IFINN.GT.15l GO TO 2 
YYU = CSQRTIYY(Nl l 

-------·-r-::-- = --n'.PIX ro·-;--,-o-;·1 
DFF = CMPLXCO.,O.l 
JO 3 1-'l=lt5 
:·. ~ ;~-'; = {v; - 1 
L L = 

FF + AA(Ml*YYIN l**MM ' 
~ = 

-------;.,:>~- = FDJ1\T( 1'~7-~r------- ----------------------
DFF ~ JFF + A~*AA(~l*YYCN l**LL 

RF ...:: -FF/::FF 
YYINl = YYCN) + ~F 
YYU~= CSQ~TIYYCNll 

-----D1~-~~,------------------------------------

PP = A3SIREALCDYI l 
QQ:: ASSCAir-iAGIDYll 
IF IPP. LT·1·E-6.AND.QQ.LT.1.E-6l GO TO 1 
NN = ~\N + 1 

GO TO 5 
---~·m1TE\oT0.---------------------------------------

6 FORi<AT I 25H NO CONVERGENCE IN SPOL Y.4) 
1 CONT Ii'·lUE 

CCC2l = AAC4l + YY(l) + YYC3l . 
CCill = /\t\13)- YYC1H~YY(3) + CYY(l) + YY(3ll*CC(2) 
YYI51 = -CCI21/2•- CSQRTICCC2l*CCC2l/4•- CCClll 

---t'.' nr-= - CC.\7T I 2 • + C S Q R T\-t'("T("-1(~2,_..)n*r:-tC"""~C""-~-( 27---t-) ,~· 4-r.-=-• ----;;;;;----("-(-f"(-t-(--t-1--t)--t)--------------
D C t, :·i = 5 , 7 , 2 
y;:c··.i = CSQRTIYYU-"ll 

4 YX;-;(i~l = REF.LIYYI1·1l l 
IF CYXRI5l·LT.YXRI7ll YYC5) 
IF IYXRC5).LT.YXR(7)) YYC7l 

= YXC5) 
= YXC7) 

YXC7) --------IF- { -Y-X;'{-t-;--t-.--Grl'T--=.4'f~X~-ERH(c-=:7'-')t-')1--''.Pt''rf r<( 5;;..-r) -=-¥*+~---'-------------------
I,:.· (YXRI5l;GT.YXRC7ll YYC7l 
:::c S N= 1,3,2 

9 YY\:~1= CSQRTCYYCNll 

Ei::: 

= YX(5) 

---:s I :JFTC -:>=:T?-------------------------------------
SUoROUTHlE DC:T71Gt DETT, DET37l 
CO~PLEX G(9,9l, DETT, DET37 
DETT = G(l,ll*(G(3,3l*(G(5,5l*G(7,7l- GC5t7l*G(7,5)l-

l Gl3,5l*IG(5,3l*G(7,7l - Gl7t3l*G(5,7ll+G(3,7l*CGC5t3l*G<7•5l-
2 G{5,5l*G(7,3lll -GC1,3l*CGC3,ll*CGC5,5l*GC7t7l-GC5t7l*GC7t5ll-

----:;--G { 3 ,~5~""G+-5 'l Ht·G ( 7 '7) -G ( :n;) ~G ( 7 '1) ) +G ( 3' 7) ~H G { 5 t 1 H}G { 7 '5 l -
4 G(5,5l*G(7,llll + G(l,5l*CG(3,1l*(G(5t3l*GC7t7l-GC5t7l*GC7t3ll-
5 G:3,3l~(G(5tll*GC7t71-G(S,7l*GC7,lll + GC3t7l*CGC5tll*GC7t3l-
6 GIS,3l* Gl7,11 ll-G(l,7l*(G(3,ll*CGC5t3l*G(7,5l-G(5,5l*G(7t3)l-
7 013~3l*IGI5,ll*G(7,5l-G(5,5l*GC7tlll+ GC3t5l*(GC5tll*GC7t3l-
8 (: ( ::J ' 3 I -:: G ( 7 , 1 l l ) 

--------- ;;::_T ::n---=---G·{-n""3+-\('+6-<--s-' 5 > :~6 C 7'? l -G ( 5 '7 H~G f7 '5 l ) -G ( 3 '5 H( f G ( 5' 5) ll 
1 G(J,7l-G(5,7l*G(7,3ll+ G(3•7l*CGC5t3l*GC7t5l-GC5t5l*GC7t3)l -·f.- \1 I 

\...:., I ·_) '\, l 

:..--I8F"T( CSC?T .. 



------~ -· ~ -- ---~---------~--------~--~~ ·- ---~-------------~ -~--- - ----- ~--~ J4-' 

su::~OUT I f\!E GSORT (GAl 
~I~E~SION QA (9}, GAR(9), GAI(9l 
CC:.i?L:. EX G!, ( 9 l , G.L\X ( 9 l 
DC 1 :':=1'7'2 
G;~,x < rvi l = G/\ < r~ l 

---~u~n~T~= 1\[ALIGA'~l.~l ~---------------------------------------------------

1 G A I ( r< l = .fl. Ht,\ G ( G A (iv\ l ) 
G/\i/X =J\1·1..-'\Xl(Gt'\I(l), G/\!(3), GAIC5lt GA!(7)) 

2~ D.~ t;.; J = GA::x - G/\I U·1 J 
IF(DA(3l.EQ.O.OJ GO TO 3 

----rrts .. :-li-s~e:::c-•r.(;)-Go-r'r'r~---------------------'-------------
r=l:~<7l.Eoeo.ol. GO To 5 
G~(l) ·= G.!.\X(l) 
GA:::: = ;:,:~It'!l <GAR(3l, Gr\R(5), GAR(7l) 

6 DA(~l=· GA~M - GAR(MJ 
--------rr~~\liiee~'-.fCMJ-f.G~Or4T~0~7~--------------------~--------------

IF(DA(5J.EQ.O.Ol GO TO 8 
G.i'd 3 l = GAX ( 3 l 
IF (GAR(5l.LT.GAR(7ll GA(5J = GAXC5) 
IF (GA.~ ( 5 l • L T • GAR ( 7 l l GA ( 7) = GAX ( 7 l 
IF (GAR(5l.GT.GAR(7l) GA(5) = GAXC7) 

---~rp-\GAR(5l.GT.GAR<7>l G~7~l~-~G~,AHX~(H5~;-------------------------------

GO TO 9 
8 G~, ( 3 I = GAX ( 5 l 

IF CGAR(3leLT.GAR(7ll GAC5l = GAX(3) 
IF (GAR(3l .• LT.GAR(7J) GA(7J = GAX(7) 
IF (GAR(3l.GT.GAR(7ll GA(5J = GAX(7) 

-----r-F--t Gtrttt-:3 l • Gi'.-GAAT7--H-Gf.\i/'1')--:----nG-trA*X+C "'!t3+) ------------------
GO TO 9 

7 Gf--.(Jl = GM~(7) 
IF (GAR(3l.LT.GAR(5Jl 
IF (GAR(3l.LT.GAR(5)J 
I r (GAR ( 3 l • G T. GAR ( 5 l l 

----rF-TGAR ( 3). G1. GAR ( 5 l) 
GO TO 9 

3 Cf.\(11 = G/..,:\(3) 
G2~~ = AMINl(GARClJ, 
DO lG ~··:= 1,7,2 

10 DA(~l. = GR~~ -GAR(Ml 

G1\ ( 5 l = GAX(3) 
GAC7) = GAX(5) 
GA(5l = GAXC5l 
GA ( 7) = GAX(3) 

GARC5), GAR ( 7) ) 

r--F+C-ft+7 l • ~ e--:;;--1. vf'r.:-. r::r-t---F-cl'T--'f-fi-~T-----------------------'-----------

IF ( C;;l( 5 ) • [Q • 0. 0) GO TO 12 
c; ( 3) = GA:<Cll 
~ ,.... 
i. r (GAR(5l.LT.GARC7ll GA(5) = GAX!5) 
IF (GAR(5l.LT.GAR(7l) GA (7) = GAX(7l 
I F IGAR(5l.GT.GAR(7ll GAC5l = GAX(7l 
• I CGAi"{ ( 5 l .l.J T. GAR ( 7l ) GA ( I) - uAX(5) 
(j() TO 9 

ll G;; ( 3 l = GAX(7) 
rr· (GARill.LT.GARI5l) GA(5l = GAXC 1"> 
IF IGA~(ll.LT.GAR(Sll GAI7l = GAXCS) 
IF IGARill.GT.GAR(Sl) GA(5l = GAX(Sl 
r:=-TGfi."RTJT;-GT~-G7"R ( 5 l l GA(7J = GAX 
~ ~ TO 9 ~-...~~ . .., ::; . \ ( :. ) = G;\X (::;) .l.C.. 

l i= IGAR(ll.~T.GAR(7l l GA(5l = GAX(ll 
T ;: . ' ( G.;R I 1 l • LT. GAR ( 7 l l GAC7l = GAXC7l 

----· ----· ----·~--



142-
·------------,----~"- -· 

IF ( Gi\R ( ll. G T. GAR ( 7 l l G.'\ ( S l = GAX ( 7 l 
IF IGARI1l.CT.GAR(7l) GA(7) = GAX(l) 
GO TO 9 

~ G~(ll = GAXI5l 
G:~:.:;.; = A:\1 I f'.j1 (GAR ( 1 l ' GAR ( 3 l t GAR ( 7) ) 

--------D·o-rT:v·.=-1-,,;-2·--- ------------------------
l3 OAL<l ::: G!-(fvi:': - GAR(,~·il 

I~(8A(3l.CQ.O.Ol GO TO 14 
:FIDAI7l.[J.O.Ol GO TO 15 
G r-'- ( 3 l = G ;\ X ( l l 
I~ {G~RI3l.LT.GAR(7l l GA(5) = GAXC3) 

--- 1 r \ ~"f'I~ITl~T;G·,t,;:<tTl""IGA-('7')--;;;;=;-r:G~A~X'-f(1/>;)---------------­
I~ IGAR(jJ.GT.GARI71l GAI5l = GAXI7) 
IF IGAR(3J.GT.G/I.RI7ll GAI7) = GAX(5l 
GO TO 9 

14 GAI3l = GAX(3l 
l F I GAR I 1 l • LT. GAR ( 7 l l G.'\ ( 5 l = GAX ( 1) 
I;- (GAR< 1 J. [T;-t;11."K( 7 I l GA { /J = GAX { 7) 
IF IGAR(lloGT.GAR(?ll GA(5) = GAX(?) 

·IF (GAR(ll.GT.GAR(?l l GA(7) = GAX(ll 
GO TO 9 

15 GAI3l = GAX(7) 
IF IGARI1l.LT.GAR13ll GA(5) = GAX(ll 

GAXC3l ----n:--IG"fiR\TJ.l_-r-;-G"t\JTITI,----c;-:rAI( '7'} ----:::-r::~--t-":1:-r------------------
IF (GAR(lloGT.GAR(31 l GA(5) 
IF IGAR(1l.GT.GAR(3l l GA(?l 
GO TO 9 

5 G!'.l1l:: GAXI71 
GR~~ = AMIN~(GARI1), GAR(3), 

-------oo-16 1'1= 1--,-1; · 
16 D.4. { ij l = Gr~;,1f.1• - GAR ( t-1 l 

IFIDAI3l.EQ.O.O) GO TO 17 
IFIDAI5l.EQ.O.Ol GO TO 18 
G,C,, ( 3 l = GAX ( 1) 

= GAX(3) 
= GAX(ll 

GAR(5)) 

IF IGAR(3l.LT.GARI5l) GA<5l = GAX(3l 
---- I·f--1-G-A-R-f-3 l • LT. GA~P~, P( 5T+-l t--l --iGSi;.~\ t-'( 71+) _,_,....._,G~A~Xx-, t-():;-~ -1-) --------------,--------

1 F ( U1R ( 3 l • G T. GAf~ ( 5 l l GA ( 5 l = GAX ( 5) 
lF {GAR(3l.GT.GAR(5l) GA(7l = GAX(3) 
G:J TO 9 

17 GAI3l = GAXI3l 
IF IGAR(ll.LT.GARI5ll GA(5l = GAX(l) 
IF-tu·A-R(l).tT.GAR(5ll G/d7l- GAX(5) 
IF (GAR(ll.GT.G,\R(5) l GA(5) = GAX(5) 
IF IGAR(ll.GT.GAR(S}l GA(7l = GAX(l) 
GO TO 9 

13 G/,(3) = G;\X(5) 
I r ( G:\R I 1 l • LT. G.~R ( 3 l l GAX ( 1 l GA ( 5 l = 

----~--n~~R(llotT.G~~(~3~)~)-f.~~~~6~AMXH(~3H)~------------------------------------GA(7) 
IF IGAR(1l.GT.GAR(5l) GAX(3) GA(Sl = 
IF IGAR(ll.GT.GAR(3l) GAX(ll GA(7l = 

'i CC.'!T I ;\iUE 

-- ;:-;-;T;:~y-------------------------------------------------------· , 
.1. • .9 
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C , ii Ci :cY.I;\V[ ·~·Ji :tAJC. T l V ITY or:- GUd·~/\i\11 Ui~ 
REAL ~L' ~T, MC' ~D' MCH• MDH• Ml• M2• MISt MISHt ND 
DI.'<ENSION VNDI3h VTC3lt VCI(3)t VCJC3hVROC3lt VF(3l 

FE(~ = 9.108E-31 
:;T = .0819 
~',L = 1.64 
EPSO = 8.S5L,E-12 
3:< = l• 3802SE-23 

----~~ _- 6-~-6-2'J7~1 t.- 34.---, -----------------------------

\..! = - H I 2 • I ? I 
:::vc'< =· SKIQ 
;'"lj_ = • 35 
:<2 = .044 
~C = 3.*FEM/C2.1~T + 1.1Mll 

· , -~;:>--.::~i*lTT1:1B~ t'"ll ) ~Hi" ( l • T:r.J 
~CH = 1~1**1.5 + M2**le5)/CM1**•5 + M2**e5)*FEM 
''DH = CH1->H1.5 + t~2**1.5l**(2.13.)*FEt~ 
f·i!S = 3.111./SQRTIMLl + 2.1CSQRTCMT))) 

1 -::-sc;;.;H <FE!'~ l 
>q S!-l== U-':1 *-;~. 5 + ~12**. 5 l *SORT ( FEM l 

---------'.-Jr.::. TTlTb'Zl l MC' MD' MISt MCH t ~~DR' M ISH 
VI = 9.El2 
CI = .2735 
CIH = leS9 
/,; : 0 S ( T l = • 3 8 5 -:< C 3 0 0 • I T ) ·lH~ 1 • 6 6 
A~O~~CTTl = .18*(300./TTl**2•33 

--- --,.c_-~;r I TTl = (I. 7 6El6 l -:;-( TT** 1. 5*EXP ( -2275 .ITT l ) /EXP ( 2275 e/TT) 
·.·: = .2123El3 
'. ~~ ·= .8Lt30El2 
:;·s = 16.->:-EPSO 

13 CG~<TI:'iUE 
~~AD C5t6l NCODE 

-----~;-~ l:'. r\ D-rs , 2"'.-l ---.( "V.,...F_,.t...,.I'>-,~I..-:==--1.---, .,..3') _______ .....:;_ ________________ _ 

F = VF(l) 
REA) C5,15l CVND(Ilt I= 1,3) 
?EA~ (5,2) (VROCIJ, I= 1,3) 
IF (VND(ll.GT.O.Ol GO TO 1 
~0 = VRO(l) 

---l-9- '•i~-r T c:-r-6-,"'3/.___,.r,~--------------------------------

SIO = 1./R.O 
t.-._':J':-J.f·. = 6 • 8LrE6 
.~ :: T = 2 0 0 0 • ~~ S I 0 I Q 

GA:-~:~ = 5.6~<5.6E6~~ANI (300. H~ANI (300.) - (S!O/Q)**2 
X = 8ET 12.1ALPHA 

----~~-[)-- ~--S::STITir-;-;.:-_,*"'2.-------.G"""A .. M,.iA....-r/-.-A-=-L""P-.-R,.,.A_,)-----,x~----------------------

:: ) = t'!D -li·l • E 6 
SC TO 5 

l CC~. i I I·!UE 
~~D = W:D ( 1 l 

S C).\ T HlUE 
----- -- :'\ E'.l :::;·--r,' 2 l (VI ( I l' I= 1 '3) 

T =- Vi(ll. 

··.:::rrc C6,3l rm 
, • CC:':T!:iUE 



TL = ~.L:JG:;.0:T) 

CD:= NDI2•*( 1. + SQRT(1• + XXll 
CDh = ND/2.*(-1. + SQRT(1, + XXll 

----£';1 ~ :...: M~l ( T l -;:-r. c.o 
Ii= Ci•iCODE.i::Q.ll CDH = 0, 
1;= CNCODE.EQ.2J CDE = O. 
IF CRQ.GC:.SO .. l CDE ~ llr'HI 
IF CG.·O.GE.SC.l CDH = i\r"<I! 

':. ;:; :: I::: C 6 , 7 l ;\ :1 I I , CD E: , · CD 11 , T , T L 

~- ::: T /-. I = l • I t3 C: T ·"'· 
DN = ~.*SO~TCPili4.*8ETA**2a5 
XI = VI-:<H/SKIT 
DII = EXPCXIl- 1. 
DIJ = 1. - EXPC-XI> 

AA = CTI3CO.liSQRT(300,*EVBKJ 
CS = CXI/300.IEV3Kl**1•5 
TAL1(EJ = AA*SORT(El + CI*BS*SQRTCE/XI + le>IDII 
TALZ{EJ = TALl(El + CI*BB*SQRTCE/XI -l.J/DIJ 
T~LHliEl = AA*SCRTCEJ + CIH*BB*SORTCE/XI + 1,>/DII 

----.:-;- ,;-LJ-:2 ( E l =-'ff·tH1.-<--E-r-+--e-I-H*frB*S-"OR-=tT,C-TE;.,,M' )(1{-f{----1•.....--Tl••-l)-i/LfDrti=-:-Jt--------------
FFC~l = EXPC-E/8ETAl*<E**1.5l 
A =CB.*SORTC2.l/ND*EPSIO*EPS/Ql*CMIS/QJ/Q *2e*PI*O**le5 
AH=<8.*SORT(2.l/ND*EPSIQ*EPS/Ql*CMISH/Q)/0*2•*PI*O**l•5 
S = (B•*MDIHSl*(EPS/HGl*CBK/Q)*(T/CDE/Ql*O 

. SH= ( 8 .-:cMD/HC l -~- ( EPS/HB l * C BK/Q) * C T /CDH/Q) *0 
----i;'d-1-El = U\L-o-6+1-.o-1-8 ~~El -B. :.•E/(1• + B ME) l/A /EK1tle5 

T:d:-:C~l = {!,LQGC1.+8H·:<-El- OH*E/(1, + BH*E))/AHIE**l•5 
T i\ i ( E l = 1. I ( ':! -l:· TAL 1 < E) + T A I C E l ) 
T . ·, 2 \ C: l = 1 • I C \"! ~- T /\ L 2 C E l + T A I C E l J 
T /, H 1 C E l = 1 • I C\·' H -:} T A L H 1 C E l + T A I H C E ) ) 
L',Hz <El = 1.1C\'Ji-i-l~T/\LH2CEl + TAIH(E)) 

FF2(El = T~2(~l*E**1.5 
t:?=i:j_CEJ = TliHl(E)-l:FFCEl 
;= ::= :-; -~ < E J = T M-: 2 ( ~ l -l~ E.;~ -x- 1 • 5 
T~L = CFINT14<FF1,0.0,XIJ + FLIN14(FF2,XI,BETAI))/DN 
-;- • I~ I I ::;: ( F H: T 1 4 { F F H 1 ' 0 • 0 ' X I ) + F L I N 14 ( F F H 2 ' X I ' BET A I ) ) I D N 
C'. ~ c: =--Q*-(·":D-E--!;7\MOB C T) or CDH M-AfvtOBH ( Tl ) 

:::.:·~;_j,'\ = 2.::+09~~PP}F 
:.' :~GS = c;·iEGI\*Ol'·~EG,\ 
T:.:-'l(Zl = 'T.\l(EJ/(1. + m1EGS*TA1(El**2J 

... -- 7 .' ... 2 ( t:-r-:-r-:Q-\2) I i 1 • + 01"1 EG s-:;tri'-~~A,...2rl(~E~)Hi~d!!:'~ ..,..2-t-)-------------------
;,'::. ;-:~it:l- T;'\H1CEl/Cl. + Oi'v1EGS*TAHl(E)**2l 
7;:·;.2U::l = T!.H2(EJI(l• + Oi'v1EGS*TAH2(E)**2) 
·: ·. . . ' : i E l = T.U C E l -::· T Mq ( E l -lf F F C E ) 
-·.·~ ·.~ iEl = TA2tEJ->-:·TAii.2(E){fE**1•5 
7 ;. . . , ; l( C: l = T /il-11 ( c l >t· T/\1··1 H 1 C E ) * F F C E ) 
.,. • .... :· :2 i c i--:.:---TAH2~-:::-l-*"r;'\1\if'l.-,2-t(-1:EM)M~~-1:._~~~--------------------
::-:·.•l(:J = Ti,:.il<EP·FFCEl 
:-";:-··.~:::l .: r·,:.:2CEP·E~H~·1·5 

~- .--: · ; ~ ( ~ l = T f\;-: .-! 1 < E l ,'( .. F F C E l 
::-~:· ::U:l ;.; T:,:.::-J2(EJ.J:·E~·*1•5 



Tr\;.· = IFii'\T14{FFtv;1,0.0,XIl + FLIN14CFFM2 ,xi,BETAI1l/DN 
T A; ·. :--1 = ( F I :·: T 14 I F F 1•~ i-11 , 0 • 0 , X I l + F L I N 14 ( F F M H 2 ' X I ' BET A I> l I D N 
TAl<:.;= (FHlTlLdTAr,i~H•O•O'XIl + FLIN141TM1fv12•XI,BETAill/DN 
TAi•i:-i:-l = (FINT14(TA,~1HHl•O.O,XIl + FliN14CT,AMMH2,XI,BETAill/DN 
,\ C: = T J\1.1/ L\ L . 

---------·· \H-=----r-A"RR /TfiTH. 

SI = O*ICDE*A~OBITl*RE + CDH*AMOBHCT)*RHl 
I~.S = SI/SIO 
DE~ = G*ICDE*AI~OB(Tl*TAMMITAL + CDH*AMOBH(Tl*TAMMH/TALH)/EPSO 
~R = 16.*EXP(l.34E-04*1T-300.J) - DER 
R~ = TAMM/TAL/TAL 

·-----,-,-:,.._r·IH-=-r-A'>1i~H1 T At:FrtT"Arf, 
\'if\IT2: (6,8) RE, RH; SI, RS, ER,RM,.RMH 
ZF = ALOGlO!Pl 
ZF = ZF + VF(2J 
F == lO • .;H~·ZF 
IFIF.LE.VF(3) l GO TO 4 ---··---- r---=·--vnJ:T 
T = T + VT!2) 
IF (T.LE.VT(3J l GO TO 11 
T = VTI1) 
IF IVNDill.GT.O.Ol GO TO 10 
RO = RO + VROI2) 

---- ----TF { RO~TI: ~V?JJ'( '>3') ') -r::G~"'~O;---rT'7"0.....,.1-r9~--------------------'------

20 = VRO ( 1l 
GO TO 12 

10 ZN = ALOG101ND) 
Zi·~ = ZN + VND(2l 
fW = 10.-~H<·ZN 

------- IF { NDiit-E-•Vi\tV-~:A--'H'~t--------------------------
2 Fo::;··.r_,r <3F10·5> 
3 F 0;.; ·: t.. T · ( 1 X ' E 1 2 • 4 ) 
6 F 0 ::; '; ;.. T ( I 1 l 

15 FCR~AT 13El0.5l 
7 F C R ::AT ( 1 X ' 5 E 1 2 • 4 l 

------6--FOR·'·~A-"f-{-:t-X• 39Xr-f-E:t-z:~H---------------------------
21 FC;~~·.,:,r llX, 3El2e4) 
12 CO:H I NUE . 

GO TO 13 
14 STOP 

END 

-~---------------·---~--------------'----------------

·----- -~------------
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