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ABSTRACT

A number of microwave measuring techniques for the meésurement
of the complex permittivity (g = € €r " J g) have been investigated
and a new method based on the replacement of the narrow wall of a
‘rectangular wave-guide by a block of semi-conductor has been developed.
This technique is shown to be suitable for fhe measurement of g when
o >> wey €, and for the measurement of ¢ and ep for o = weq g,;

An investigation has been made of the propagation characteristics
of a rectangular wave-guide containing a centrally placed slab of
semi-conductor parallel to the narrow walls of the guide. A
comparison of exact solutions for the propagation constant in such
a strucfufe with the approximate solutions normally used has shown
that the condit{ons fér the validity of thé approximate solutions
are much more stringent than hés Been reported previously. It is
further shown that under certain conditions the structure offers a
" convenient method of measuring the conductivity of é semi-conductor.
In addition, a theoret%ca] and experimental investigation of the
effects of the higher order modes excited at the interface of such
a structure with an empty wave-guide has been made. The study has
shown that under certain conditions, the effects of these modes can
be significant.

A theoretical and experimental siugy has'also been made‘of the

effects of temperature, frequency and doping on the complex permittivity

(iv) '



of lightly Hoped n-type germanium. Measurements of these‘effects
which have not been reported previously have been made over a temperature
range 100° X - 500° K at frequencies.9.25 and 34.5 GHz and confirm the

theoretical model used.
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CHAPTER 1
INTRODUCTION

In recent years an increasing interest has been shown in the
microwave properties of semi-conductors (1-8) . Due to rapid]y
advancing technology, semi-conducting devices are finding growing
application at microwave frequencies and also microwave measurement
techniques provide a convenient means of studying charge transport
phenomenon in semi-conducting materials. The electrical parameters
such as conductivity cand permittivity ¢ . may bé different at high
frequencies from those at static fields, because at sufficiently
high frequencies the inertia of the charge carriers becomes observable.

Thus at microwave frequencies o-'and'er for a one carrier semi-

conductor are given by (9)

o =q2 n*< = >=°o<

,(T) - ]o]
me 1 + w2x2 ]+w22>
= = 2 2 ‘ -
€ e/eo el/ed' q;z X :> . 1.2
. mc E, 1 + w22

q = magnitude of electronic charge
1= t(e) = relaxation time of the charge carrier as a

function of energy

concentration of the charge carriers
N )

=
H

conductivity effective mass of the carriers

w = radian frequency of the wéves



Q
[}

d.c. conductivity

<t> denotes the Maxwellian average of t(¢) .

j: ;(e) 3/ 2exp-e/KT de/J ¢3/ 2exp=c/kTde

eo
(o]

"From observations of the changes in ¢ and ep @t high frequencies
from their d.c. values, one can study the scattering phenomena.
Further, the changes in ¢ and gp at mm wave length (or even at cm '
wave lengths) may be significant. As these parameters play an |
important role in the design of semi-conducting devices,,accurate data
‘on their frequency dependence is desirable.

The use of semi-conductors at microwaves is of interest
from another point of view. The conductivity of semi-conductors
can be varied over a wide range, comparatively easily. By changing
the conductivity ahd hence the loss in a semi-conductor, one can
_vary the propagation characteristics of a given guided wave structure,
which may be uséful in the design of microwave devices (10'12).

The objects of this thesis are threleolq, as follows.

(i) Because df tﬁe wide range of conductivities possible in a semi-
conductor,different-methods‘of measufements of its electrical properties
are required. Experiments invo]ving the measurement of VSWR (5j13),
reflection cdefficient.(]4) and transmission coefficient (15? are

reported in the literature. These methods are mostly useful when the
conductivity of the semi-conductor is relatively low (< 10 mho/m).

At higher conductivities, the meaﬁurement§ are effected by the unavoidable
gap present between the semi-conductor and the broad walls of the wave-

guide when the completely filled wave-guide is used (16,17) (fig. 1.1).



For measuring high conductivities, cavity perturbation (]8’19? or

substitution methods (20)

are used. These methods are most useful for

s > 1000 mho/m. o

Thus the development of a new method that could provide accurate

‘results of e. and o in the middle range of conduct%vities, is desirable.
Such a method, based on the replacement of one . narrow wall of

a rectangular wave-guide by a semi-conductorvblock (figf 1.2) has been
developed and is described in this thesis. It is found that this method
is accurate when o=wegen. This method is free from the gap effect
discussed in the previous paragraph and it is shown to be more accurate
at high frequencies, where wave-guide dimensionsbecome small.’ The théory
of this "lossy wall" wave~guide structure is developed and exact and
approximate methods of calculations of the propagation constants are
diséussed. Finally the resﬁlts of measurements which confirm the theo}y
at 9.25GHZ are presented. |

(i) The second object of this thesis is to study the propagation
characteristic of the wave-guide structure shown in the fig 1.3. This
configuration has not only been uséd for the measurement of €. and o

(21 - 23), but is also useful for devices such as attenuators or

modulators (]0). In all of these reported measurements, the propagation
constants have been calculated using approximate tgchnique§ based on
perturbational or variational methods which are subject to errors.

A study of these methods and their errors has been made and

calculations of the propagation constant of such a system have been

carried out for t/a and o ranges of 0.001 ¢ t/a €0.25, 0.1 € o(v7/m)

'
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<10 v/m, for 10, 34.5 and 70.5 GHz with ¢, = 12 and 16. The computations
were made using the exact equations governiné wave propagation in the
structure and the results have been compared with those obtained from
the approximate techniques reported in the literature. It is shown
that there is considerable error in the approximate calculations, unless
t/a <<1. It is further shown that in certaih ranges of ¢ and t/a the
attenuation constant varies linearly with ¢ and for small t/a, the
phase constant varies very s\owiy with 0. It is proposed that these
ranges are useful for measurements of o.
~ In practical measurements the structure -shown in fig. 1.3

forms a junction'with an empty guide, in which the dominant mode TE]O
is propagating. Higher order modes are excited at such a junction and
an investigation of these modes has been carried out. It has been
shown that unless t/a s 0.08 and ¢ < 2.5-v/m, the higher order modes
are not negligible. Experiments which confirm the theory have been
performed at 9.25GHz. .

(ii1) Finally, the microwave measurement techniques have been used
to determine . the conductivity and dielectric constant of 1ightly doped
n type germanium. Benedict and Shockley (1,2) used such a technique
to determine the conductivity effective mass mc* of electrons and holes °
in germanium. However, their résults are not in gbod agreement with the
values obfained from subsequent cyclo;ron resonance experiments. This
disagreement is probably'due to experimental errors. Further work
on ntype germanium using microwave techniques has been reported by

Druesne (24). His work involved measurements on n and p type germanium



(20, 10 and 1/2 ohm-cm) at 61.3 and 92 GHz using VSHR technique. His
results are also in disagreement with~tﬁe theory. This is because the
VSKR measurement technique is probably not very accurate at these
freﬁuencies and because the gap effect seems to have been neglected in
thgse'measurements,rather than the inadequacy of the mobility theory
as he has concluded. Thus there is a need of fresh experimental and
theoretical work. |
This thesis gives the computations. of the microwave conductivity
and dielectric copstant of n type germanium as functions of doping
(Nd < lolslcmq),‘frequency (109 < f g 1012 Hz) and temperature (]OO <T
€ 500°k). This has not been reported in literature. The theoretical model
ﬁsed to compute o and €p inc]udgs the scattering by ionized imgurities and
lattice vibrations. The 1atter‘inc1uded the low energy acoustical
phonon and high energy optical phonons. Inter-valley scéttering by
acoustical and optical modes was considered but it was found that
neglecting them probably does not cause a serious error. At high o
temperatures, the holes in n type germanium are not negligible. Theif
effect on both ¢ and &p has been taken into account in the computations.
Experiments have been performed with a reflection type microwave .
bridge on n type germanium samp]es_(a = 10 and 4.5 mhos/m) between the
temperature range of about'100° - 500°K, at two frequencies 9.25 and

34.5 GHz. The measurements are compared with theory.
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CHAPTER II
GENERAL THEORY OF WAVE PROPAGATION IN A WAVE-GUIDE
CONTAINING SEMI-CONDUCTOR . e

2.1 INTRODUCTION

In th1s chapter the theory of electromagnetic waves in uniform.

rectangu]ar wave guides containing an isotropic semi-conductor with relative
permittivity er(x,y) = gr(x,y) - j af%.y) and permeabi]ity uo is
~developed. The“]oﬁgitUdina1 axis of Weof‘the‘waveguide is a]dng the
-direetion of propagefken‘which is aéehmed to be'in z-direction. The
- —-——-walls-of. the wave. guides are.assumed.to .be_perfectly. conducfing so_that
e]ectr1c and magnetic fields sat1sfy the follow1ng boundary conditions,
- 0 | |
0 . o (2.1)

n being normal to the wall,poihting outward from wall surface.

->
nxE-s=
-> &+ -
n.H-=

2.2 DERIVATION OF HERTZIAN POTENTIALS

—————The electromagnetic-fields and the -propagation-constants in the
ore bk aimedd
system under cons1derat1on[from the Maxwell's equations for the case of

13

time variation according to exp(qwt)as given below,

vXE=- Jwug R : A ' ; (2.2a)
VxH=joe g B | N (2.2b)
- ) -> , .
V.D=V.2 E=V.eg? E=0 - (2.3a)
v.B=va =0 . - -(2.3b)



eo and ug are respectively the permittivity and permeability of free
space. €,.-'is the complex dielectric constant of the semi—qonductor and
will be assumed to be a function of x and y but not z.

The solution of fields may.be obtained invteer of electric
and “magnetic Hertzianrpotentials ﬁe and ﬁh respectively. The special
case for e, = constant has been dealt in the reference 27. In the
following sections, the treatment is generalized to the case when Er

"is not a constant.

2.2.1 Magnetic Type Hertzian Potential Since from .(2.3a)

V.e. E=0
. E=0

" E may be taken as the éurl of a vector say ﬁher so that
2y E= =gV x ﬁﬁer |
and YE = -jwuo‘@;1v X ﬁh%r _'.' i h C(2.4)
where ﬁh is cal]ed'the magnetic type Hertzian ﬁotentia1'627).
Taking the curl of the preceding equation- and substituting

the result into 2.2a, one gets

EERFEC-LEPE A
. o= vx{'é;'l A" ﬁh + VEr X ﬁh],
= v;<v x T+ 7x (V].bg Rox ) (2.5)
where v ]dgﬁr = E;T v er = V°'L
¢ = log %r

Now from 2.2b,

10



n

= 2 1 ¢
| x (ko 1 &
-}
so that | H = k02 Ihep + W
where ko2 =i»2uos° and ¢ is an arbitrary function (v x v¢= 0).
Equating this to 2.5 yields
2% A % 1 1
ko& My € + V6 = V&I, + V.0 + v x (jo X nh) (2.6)

So far ¢and .ﬁ'h ar§ arbitréry functions. _.If a‘condit,io;l is imposed on
these so that |
Vo =W . T
_..or. ¢ -.-_AV.A_:ﬁh + constant
then 2.6 reduces to

L -> . . '
vzh'h.“ kozfz\r T = v x (ve x 1) (2.7)

2.2.2 Electric Type Hertzian Potentials

A similar set of equations as that in the previous section.

. - - I - . - e - 4 » . ‘
may be obtained from electric type ngtzian potential T, (27).
- ———0ne-now starts from 2.3b -and takes
> . -> ) ,
- H = Jwe v X He _ . (2.8)
- . -> .- . A E
so that vxH = Joey v xvxne = +jwegep .
and € =21 wxuxil (2.9)
E = ionh 2v< T
Now from 2.2a VXE = -JmuoH = ko xI
> - ->
This yields E = k°2 n, + 99

¢ again being an arbitrary function (VxV¢ € 0). Equating this to 2.9 gives
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ko?8e Tg + EpVe = VXVXT,

= vv.ne - vzﬁe : (2.9a)

. ~, _ N ~
Again Ve = £.Vo + ¢V€r

LIS A AN
So that erV¢ = Ve.d - ¢V§r

Substitui:ing this into 2.9a and. taking

vv.'ﬁe = VEL
or Wi, = o -+ cha*wk
yields ¢ = e;] v. n .
vile - 2 ] (véQ) V.0, + kg 2 &, ﬁ; = 0.
or v2I, - vnevo+k2 ﬁ =0 (2.10)
2.3 SPECIAL CASES
2.3.1 ¢ = Tlogg G}-= Constant - - o

In this case V¢ = 0 and the equations 2.7 and 2.10 reduce

respectively to

V2T, + koze,; T, = 0 - o (2)
v2n, +k2’$,."e=o | . (2.1b)

and from 2.4 and 2.5

-+ . . ->
E = -Jwugy v X'y,
H=vxvX -‘;h < o (2.12)

and (2 8) and (2.9) give
H = +jwe ¥ xne

E=nily xv x 1, (2.13)

The solution to these equations can be divided into two basic sets

of solutions. One such mode is TE to z or simply TE or K mode and the
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other is TM to z or TM or E mode. Thesemo;ies caﬁ respectively be
obtained from a single component of Hh or -ﬁe directed .in the z-direction
'anAd the equations 2.12 and 2.13.

The TE or H mode in the fig. 1.1 will be treated here for

reference in later applications Thus let

}fh = ;z ¥ (x,y)e'\{z : - (2.14)
= propagation constant = a+ jB8.

where Y

Substitution of 2.14 into (2.11a) gives

where Cu 2 =22+ 22 '
o a2

The solution for y and y for the structure shown in the fig. 1.1 are

given below (28). )

nAX mAy: )
“'n,m = cos =~ cosji v '

Yﬁ',m =,,(n'7‘/-a)2 + (m.w/b)2 - ko2 er

The dominant mode in the structure is when m = 0 and n=1. For the '

dominant mode, the above equations reduce to

- X
v = cos =g
2 . N
vy& = (%7a)% - k 2%y : _ . (2.15)

o
where the subscripts *= n and m have been omitted. From the form

of ¥n,m = Vps it is obvious that

f f ¥p ¥p' dx dy =épp!

6pp' =0 ifp#p' p'-+ n',m.
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2.3.2 & =& (x)

This case is applicable to the structures shown 1n the figs.
1.2 and 1.3. The solutions to the wave equations can again be divided
into two basic sets, TE to X and TM to X. Here only TE to X will be
considered. The‘soiution to this mode can be obtained from equations
2.4, 2.5 and 2.7 with a single component of ﬁh = 3} Mpye If it is
assume that ‘ | .
L= vxay)E (2.16)
then 2.7 reduces to ‘
V2 + (2 + ko2 By = 0 '+ (2.17)
The solution for y and y may be obta1ned for a particular arrangement.
In a rectangular wave-guide, it is found that am infinite nwlor of
solutions for v and ¢ are possible. It will be shown here that these
solutions are orthogona] to each other. Let v and wj be two different

solutions with propagation constants 71 and Y; respectively. Then

2

T2+ g2+ k280, = 0

Vt2¢j+(72+k2e)w |
Multiplying the first by wj and the second by vy and subtracting one
obtains

2 2 (sz

wjvt w,---{»ivt %-* ‘Yiz) ¥i ¥j

integrating this over the cross section of thé wave guide, applying

Green's second theorem and the boundary condition 2.1, yields

g v ] vy ] A "i)“s'
s 5 | '



v - : v .
_§ (¥ 99 = ¥, 91
[o .
= 0

because of the boundary condition 2.1

CRo$s
where s denotes the surface of the/ -section of the wave guide and ¢

is the contour enclosing it. Thus if Yy # yj

H w].wjds=o‘

s
v's may be normalized so that -
. i=3
i v; dS =845 = . (2.18)
IJS 17 3 Lifj |
2.3.3 €. =2,.()

The solution for fields and proeagation constants can be
obtained for TM to y mode from‘equations 2.8 through 2.10 by taking
single componeﬁt of il along y direction. If

o= By ylxyle¥® . (2.19)

‘then 2.10 reduces to

1) 3w+k2 L+ y2 -=o‘ 2.20
iy T3 e ) v (2.20)
‘ ,2
or ' ——"’- a“’-.ﬁia“""(k +72)¢.=0
2 3y oy oy ~
1

multiplying throughout by e”? = 2; » gives

2
A B+ e w8 v =0

or 220+ et 2 (82ay) + (k2 +2) v = 0
ax2 3y 2y
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Again in a wave-guide, there are an infinite possible values of y amd
v and again it can be shown that different y's are orthogonal to each
other. However, the Orthogonangrelationship ;is now

e A S )



CHAPTER III
WAVE PRQPAGATION-IN RECTANGULAR WAVE-GUIDE WITH A SEMI-CONDUCTOR WALL

3.1 INTRODUCTION
‘ When a perfectly conducting wall of a wave guide is replaced by

a semi-conducting one, a tangential electric field can be supported aqd
losses occur in that guide. From measurements of the changes in tﬁe’
propagation constant in a guide when one of its wall is replaced by a
semi-conductor, it is possible to deduce the properties of the semi-
conducting material. This principle has been used to measure highly
conducting semi-conductors from tﬁe observation of the changes in the
resonant frequency and the Q-factor of a microwave cavity (]9). This
method has been successful for conductivities greater ihan 1000 mhos/m
approximately. |

~ For mate;ials of lower conductivity the method of measurement
described in this chapter has been investigated and developed. An
analysis has been made of the wave propagation of a rectangular guide
with one of its narrow wallSreplaced by a thick semi-conducting slab

aé shown in the fig. 3.10. Coﬁputations of the dominant hode propagation
constant have been made for 1 < o ¢ 1000 mhos/m, 0 € €. € 16 at three
different frequencies of 9.25, 34.5.and 70.5 GHz. Exact and approximate

methods of computations are discussed and exper iments which confirm the
theory at 9.25 6Hz, have been made. '

,

17
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3.2 THEORY
The ahrangement)i]]ustrated ih the fig. 3.1 will be consfdered.

Thg region (1) is empty and the region (2) consists of a semi-conducting
material which is homogeneous and isotropic with complex permittivity
o =ee, wzsv. It will be assumed that the thickness of the semi-
conductor is much larger than the skin depth in the material so that
the fields vanish at x = d.

~ Because of the non-uniformity in the x-direction, in general
a hybrid mode (a combination of E and H modes) will be propagating. One
such set is an LSE mode with no electric field perpendicular to the air
semi-conductor interface (29). The fields and the propagation constants
may be obtained from the solution of equations 2.4, 2.5 and 2.7. When

& is a function of x alone and variation in z-direction as e™YZ is

assumed,2.7 reduces td

vtznx + (kglep + v2) my = 53- (ny 23 ) + 2 (n, ¥ )
y axX °Z 3)(
VY + (kolep + o2 my = - L (Ty 26 ) (3.1)
X X

vt2n2+(k02 +Y)Hz"'—a- (II —i)
X Zax .

For an L.S.E. only one component of E'is required. This is obtained

by taking ny = nz = 0 so that the above équation for nx = p(x,y)e"Y2

reduces to )
3_252.-1-92 + (k "+ 2)
Y )y =0
ax ;;ﬁé ° !

1 0<x5a (3.2)
where ¢ (x) =

'J‘“—'afxfd



Eiectric and magnetic field components are then obtained from 2.4 and

2.5 as follows

Ex = 0
' Yz o
Ey = + JusY¥&;Hx = il (ZEZ -2y ).
: jw% 2y oz
Ez = +.jw/16'?_ﬁ’ e-YZ Hya't.._l_(g.Ei)
Dy jwwa DX

Hz = ) ?El
Jwik ox (3.3)

The boundary cond1t1ons on Ey and Ez at x = 0 d, and y = 0,b
require that ~ be of the form
VY = A sin k]xcos-—gl 0

cx e (3.4)
=B e kX cos MY agxgd .
b ‘

where A and B are constants. k] and k2 are wave vectors in the
transverse direction (x direction) and-m is the wave number in y
direction. m =0, 15 2, 35 seees k, and k, satisfy the following
equations ’ '
Y2 = R]Z - koz + (mx,b)z
=ky? = k 2+ (mayb)? -
r .
Y is the same in both the regions of fig. 3.1 so as to satisfy the
boundary conditions for all values of z.
Now the continuity of Ez and Hy at x = a gives the following

conditions

20
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- (BT) A sin k; a sin L = - () g 7k22 sin IV
b b b b

k; A cos ky a cos my = . k, B e-k2? os DOY
b | b

so-that k] cot kja = - k2 | (3.6)

Equations 3.5 and 3.6 give the eigenvaluesYn doubly

. My
infinite values. However, if m = Q, the structure can support only
Hno modes. For Hno modes, Ez and Hy vanish and the fields and the

propagation constants are as given below

Ex = 0 \ Hx = o3y 2y e Y2
Ey = jwam Yy e~ ¥z "« f1 2By (3.7)
o : jwss 22
Ez = 0 Hz = —- 2EY
. jw% oX
R N
V2= il kg kP - k%, (3.8)

The lowest solution of 3.6 and 3.8 gives the dominant mode in the
system and is H]O’ . ‘

| It may be seen from 3.6 and 3.8 that a complex transcendental
equation must be solved to obtainY¥. This is often.a laborious task.
~ Therefore, an approximate expression for“yz is desirable which can
adequately give the value of Y. Methods based on perturbationa] and
variaiiona] techniques are available for this purpose (30).

However, a simpler technique can Bg used in this case under

certain assumptions. If it is assumed that the conductivity is sufficiently

high so that the field distribution in the region 0 <X a is approximately

L]



22

the same as in an ideal empty guide of broad dimension a, then the wave
véctor k] will not be much different from its va'lue of (nn/é) in the
ideal case. Under this condition the eduat_ion 3.6 can be expanded in
Taylor's series about K]O = nmv/a. Thus

f(k]) = ky +kytan kja = f (km) + (k kw) by (3.8)
17 k]o ‘

If it is further assumed that \Yz) <<\k 2& l then- the approximate

1

expression for k, and Y are as fo'l’lows

L . o |
= (nv/a) [1 - j/ﬂﬁr] | (3.9)
-v ) 2. ' .
and y2 = (n/a)? {1 + _‘sz“} -k 2 , (3.10)
| fize | o

3.3 THEORETICAL RESULTS

The equations3.6 and 3.8 were -numerica]'l_y sollved. for 0 se, <16
and 1 ¢ ¢ < 1000 mho/m with the help of a 7040 IBM computer using
the Newton-Raphson technique. The computations were made for three
different frequencies, namely, 9.25, 34.5 and 70.5GHz. The results in
the form of ‘51 - Yo, \{o being the propagation constant’in an ideal
empty wave-gu‘ic_le of broad dimension a, are shown in the figs. 3.2
through 3.4. The abscissa represents the change in attenuation constédt
S§X= K- X, = X, (as °k.o = 0) nep/m and the ordinate represents the change
in. the phase constantés = B] - Bo Yad/m. The-er and log g are taken és |
parameters. . , ‘

In all the three figures, it may be observed that) in the
range of dconsidered)as ﬁhe conduct'ivity is'decreased (resistivity of

the semi-conducting sample is increased)v, the attenuation constant
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" rincreases monotohica]]_y. The change in the phase vconstant, however,
| fir;st increz;ses \;n'th ©. , attains a maximum and then decreases. Thfs
observation is tf'ue for ér 3. However, for ér< 1, fhe t.hings |
r‘everse and « attains a maxima an_d 13 increases monotOnically as the
resistivity is increased. It is further observed that maxima occur
neaf, though not quite at ¢ = weoe;‘.__ The locus of this condition is
also plotted in the figures 3.2 to 3.4.
It may also be noted t‘hat at the higher end of the conductfvity

range considered, the curves fbr various values 'qfér.are créw.ded and
ultimately merge into each other. This is because as s increases,

Slugy >> ér and gr-} =JS”, independent of €.

W

The changes in fhe propagation consfant Y were also computed
"~ "from the expression 3.10. = The results of computations are compared
to those from exact equations in the f-'ig.’. 3.5 for ér = 16 and ér =1
and f = 9.ZSGH.Z; The solid and dotted lines give the values of « and
Sp respectively as obtained from the exact equations as a function of
s~ The circles and crosses give the cbrresponding values from equat:ion
- TT7773.100 It may be observed that ".fo" r hi g"h“Vﬁ“l}ues""df € r‘","“the" equation 3.10
. .is adequate to give o and §f within & 3% for the whole range of o '

considered. Howéver, as &€, decreases the errors %ncreaée for 6£ 4.0
____ mho/m. For 6 > 4 mho/m, errors are 'ne.gligible.

_For semi-conductors, the value of dielectric constant is given

A
e :

- -by the contributions fromﬂattice'and the free carriers. If it is
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assumed that there is only one type of carrier? say electrons, the
condu;tivity and dielectric constant at frequency w are given by the
equations 1.1 and 1.2. If, for the moment, it is assumed that t =
constant, i.e. does not changé with energy, and further assumed that

w is such that (wr)2<<] then these expressions reduce-to

o = qzn-r/m: = a, . : (3.11)
er = /e, = egle, = c:l(,'r/,-,o (3.12)
El/EO = 16.0

A plot of € with ¢ for various values of ¢ is given in the
fig. 3.6. The propagatiop constant at f = 9.25GHz for 0 ¢ 109 0 <3.0
(1.0<0< 1000-w/m) and for values of t and ¢, (given by 3.12)is shown in
the fig. 3.7. |

The values of k; and k, for-various values of o and t = 3.0 x 10']3
(approximate va]ué for n typg<3c.qt room temperature) are plotted in
the fig. 3.8a and b. It may be‘observed that magnitude of k] is not
very different from that for empty guide over the whole range of ¢
considered and that its angle does not vary more than a few degrees.

The magnitude of the electric field in y;direction as a function

of x/a is plotted in the fig. 3.9.for 2¢og= mho/m.’

3.4 MEASURING TECHNIQUE

For the measurement of the propagation constant a section of a
wave-guide was milled as shown in the fig. 3.10. Into this milled out

section could be clamped either a polished Brass block or the semi-
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conductor block. This section of the wave guide was placed in one am
of a transmission bridge described by Montgomery (3]). The second arm
o% the bridge contained a precision attenuator and a phase shifter.
The zero balance of the bridge was first carried out with &
brass block - = g%hto the milled section. A secénd balance was
obtained when the brass block was replaced by a semi-conductor block.

Both the readings were taken when the bridge balance was independent of

34

the clamping pressure. If Ao and<P0 are the readings of the atten-uator

and'the phase shiftgr in dbs and degrees'respective]y with brass
block and A] and<P] are corresponding readings with semi-conductor
block, then neglecting the internal reflections and reflections at the
interfaces at z = 0 and z = £, the propagation constant in the lossy
wall guide is given by
a=(A - Ag)/(8.6862)  nep/m
. 8= (67 = ¢g)/57.2961  rad/m

where ¥ = length of the samp]e»inwﬁeters.

The neglecting of the internal reflections and those at
z =0and z =1 was justified because these reflections were observed
to be small (< .03). Theoretically if Z0 and Z are wave impedances
in the empty guide and the guide containg the semi-conductor, the
reflection coefficient at z = 1 is given by

R =. Z.:ZQ
242,

It is assumed here that in the empty guide section (z > 1) there is no

reflected wave travelling and ihat the higher order modes which may be

.
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excited at the junction are negligible. .Now for TE, . wave

10
39_= Jwio vy _Yy (a]+j8]) - (1 -5 .9
Z Yo jwug Y, - i8, By
as ~B] = 30 |
IR| = 4% |
»for q] <<B0

At 9.25 GHz, for ¢ = 2v/m and €p = 16, this evaluates to 0.03 approximately
to give VSWR = 1.05. This agreed well with the experiment.

3.5 EXPERIMENTAL RESULTS AND DISCUSSION

The measurements were carried out at 9.25 Gﬁz on 6 samples, one
‘of intrinsic germanium (0 = 2 mho/m) and five of n type germanium having
d.c. conductivities ranging from about 4 mho/m to 400 mho/m.‘ The
results of measurements ere given in the table, 3.1.

Inspection of the results shows that over.the resistivity range
5 <fs 25Acm(20 3 o > 4 v/m) both €p and ¢ can be measured accurately.
The microwave measurement of ¢ agreed well with the d.c. measurements
and it was found that the measurements were repeatable with the 11m1ts of
3% For p < 5.a-cm (o > 20 mho/m, loga > 1.3) agreement between microwave

-
and d.c. values of p is also very good but accurate measurement\ of €p

is not possible. This is becavse as ¢ increases'e, < < Wl and the
contribution of e, to the propagation constant becomes small as compared

to that due to o. From fig. 3.2 it may be observed that the



TABLE 3.1

. MEASURED VALUES OF e, AND o

37

SAMPLE SAMPLE | ATTENUATION PHASE | MEASURED MICROWAVE
RESISTIVITY | LENGTH CHANGE CHANGE | py(d.c.) | MEASUREMENTS
(nominal) 2(cms) A];Ao(dB) .é]-¢o(o) (n-cm) p(n-cm) ep
50 4.27 2.85 3.35 50.7 99.4 16.1
25 2.79 1.66 4.00 24.2 23.8 15.9
10 5.10 2.47 9.10 1.4 11.8 15.3
5 2.79 0.890 4.54 ~ 5.00 5.00 15.7
1 5.10 0.632 4.82 0.99 | 1.01 -19.0
0.25 1.29 0.258 | 0.244  -67.0

2.79

0.]76
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curves of a and B8 for various values of ;r merge into each other for
g > 50 mho/m. An'extremely accurate method indeed would be required to
measure e, at high conductivities at'x-bandisuch a method is unknown
at the present time. However, fig. 3.3 and 3.4 suggest that at higher
frequencies it may be poss{ble to measure ef at higher values of g.
This assumes, of course that at high frequencies- apparatus of the same
accuracy as at X-band is available. ‘

At higher end of resistivity range (25-50 p-cm) measured values
of €. are in good agreement with the theoretical values (fig. 3.6)
but there is a large discrepancy between d.c. and microwave mea#urements .
of §. This can be attributed to two reasons. Firstly, the measurement
accuracy is small. It is found that errors of + 0.5% and t_3%vin the
measurement of (A] - AO)-and (¢] - ¢O) respectively caused an error of
~414% in § andt0.7% in €pe Secondly as the resistivity goes higher
the perturbations in field distribution in the system become greater
and the highér order modes excited at the junctions at z = 0 and 1

may not be negligible.



CHAPTER IV

WAVE PROPAGATION IN A RECTANGULAR WAVE-GUIDE CONTAINING A
CENTRALLY PLACED SEMI-CONDUCTOR

4.1 INTRODUCTION

The wave-guide system shown in- the fig. 4.1 has been used by a
number of workers to determine the semi-conductors properties such as

(32), magneto-resistance (33), hot electron effect (23). It has also

o and e
been proposed fbruse as a microwave modulator (]0)}

The theory of the fields present and the propagation constants
in such a system méy be obtained. from the solution of the equations 2.4,
2.5 and 2.17. It is shown in section 4.2 that the propagation constant is

given by the simultaneous solution of the equations

1 0 2 o =¥
. (4.1)
k2 tan-kzt/Z_— k] cot k]d
where 'k] and k2 are the transverse wave numbers in the regions (1)

and (2) respectively

& + j8 = propagation constant

Y=
a = attenuation constant B = phase constant

2 _ 2 - ‘ R
ko w ey €= e — complex permittivity

0

-

.

’The»solution of these equations for the case when the dispIace-

ment current is negligjble (we << ¢) with t/a of the order of 10'5 and

"39
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/

for the lossless case {g = 0) have been reported in literature33:34,

The so]utibn in both of these cases is comparativé]y easily obtained.
However, for the case when the value of é lies in the semiconducting

range and the displacement and conduction currents are comparable, the
computations of the propagation conétant from equations 4.1 become vefy
laborious. Because of this, in a]moét all of the measurements referred

to above, recourse has been made to some sort of approximation. In
particular, Nag et a132 and Lilja and Stubb35 used the following expression
for y: |

¥2 = (n/a)2 = k2 - k2 (&= 1)(t/a + Lsin 2h) (4.2)

2 _ 2
where k0 = wu e,

This equation can be obtained either by variational theory using
the Rayleigh-Ritz technique with single mode approximation(36’37) or
by the first order perturbation theory(35’38’39). For o = 0 it was
first obtained by Berk36 and was found to give the propagation constant
with an accuracy of a few percent for €. = 2.45. For complex permittivity
values applicable to Semiconductors, however, doubts have been expressed
about the validity ‘of (42) unless t/a is negligibly sﬁa11(40’4]).

The computationsof the propagation consfant in the configuration
shown in Figure(4.1)i3?scussed in this chapter. Numerical solutions of
equation 4.1 are §iven for.dielectric constant, conductivity and t/a
ranges of 12 ¢ €. € 16, 0.1 € ¢ £ 10 mhos/m and .001 < t/a § 0.25
fespectively. for the three frequencies 10.0, 34.5 and 70.5 GHz. These

results are compared with the apbroximate values obtained from equation



< Y

(4.2) and also with those obtained using the two mode approximation in
the Rayleigh-Ritz technique. |

Further for practical measurements, the structure shown. in the
fig. 1.3 forﬁs a junction with an empty guide supporting HIO mode. In
all earlier measurements, the effect of the higher order modes at the
junction has been assumed to be negligible. However, it is shown that
this assumption may not be Qa]id in view of the high values of dielectric
constant and conductivity applicable to semiconductors. An analysis of
these higher order modes hés been carried out and the computa;ions show
that unless t/a < .08 and 6.3 2.5 mho/m, the effectAof the higher order
modes is not negligible. '

Experiments have been performed for three values of t/a at

9.25 GHz and ‘the results of the measurements verify the above observations.

4.2 THEORETICAL CONSIDERATIONS

4.2.1 Exact Solution

The solutions to the Maxwell's equations in the system shown
in the fig. 1.3 may be divided into two basic sets, TE to x and TM to x.
The.dominant mode in the system for lossless case (o = 0) is given by
" TE to x mode. For the lossy case it will be the same and only this mode
will, therefore, be conside(ed. ‘ |

The solution for the TE to.x modes-may be obtained from equations

2.4, 2.5 and 2.17 by taking a single component of ﬁh‘ Thus if

M, =30 (x.y) e E (4.3)
so that vtdy +'(k02 n(x) + v =0 - &-4)
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er-j-—o-(dSXGd"'t)
Wep

where e, (x)
=] (0 ¢ x ¢d; d+t sxsd)

then in order to satisfy the boundary conditions 2.1 at x = 0, a; y = 0,

band x =d, d+t must be of the form

sin k]x O<xsgd
v = A cos mry < sin kid [:sin kz(x-d) = sin k, (x-t-d:]. (4.5)
b sin kot :
2
sin k](a-x) ~ dexecd +t
&ft 5X<;a
where A = constant
m = 0’ ], 2’ 3, CICN N
k] and k2 are wave vectofs in x-direction in regions (1),
(3) and (2) respectively and .satisfy the following equations

o2 2 2
v o= kS (M) - kS

(4.6)

o
kp? + (V)% - k2 &y

y is the same in the three regions so that the bbunaary conditions are
satisfied for all z.

A further condition on k] and k2 may be obtained from the
transverse resonance condition. Thus for symmetrical modes it is fequired‘
that theretf'agpen circuit at x = a/2. This condition gives the following
relétion '

]

ky cot k.d = k, tan kpty,!" . o (47)

1
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The equation 4.7 gives infinite possible values of kand L?
and hence there are doubly infinite possible values of y. va,Thowever,
m = 0, these reduce to singly infinite values. When m = 05 the TE to x
modes reduce to TEn0 modes. The dominant mode_propagation constant is
given by the lowest order so]ution of 4.7 and is designated with n = 1,

Thus far TE,, modes,

2 . 2 2
Yn ~ k'ln - k0
= 2 2 . )
- kzn - ko Er A (4’8)
and K1n cot klnd = k2n tan k2nt/2.

For given values of w, t/a and § the values of the propagation
constants may be obtained by solving 4.8 numerically. In the present
work, this was done by using the Newton-RaphsOn iteration techﬁique42.
in which the (M+1) th iteration of the unknown root of a transcendental
equation f(x) = 0 is given by: |

. m f(xm)

X —— s
mtl - m ’
f (xm)

The convergence of the method is good provided f' = %g.is not too small
and the initial guess of the root X, is not too far off. Equation 4.8

was accordingly put into the form:

kot
f(k;) = k; cot kid = ky tan .%_- 0

2 5 .2 2 -
with k2 k.l +k° (Er 1)
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and the value of k] determined accurate]y; which then enabled k2 and y

" to be calculated. The functions involved ére peribdic in nature and
hence an infinite number of roots of the equation exist. The particular
root obtained depends on the initial guess. ’In the present case, the
initial value of the root was obtained from an approximate.method,.for
example, the two mode approximation in the Rayleigh-Ritz technique

discussed in the next section.

4.2.2 Approximate Solution

There are twb approximate methods of solution that are
commonly used, namely, variational and pertqrbational methods. The

former method has been used for determin;gﬂg ¥ in a wave-guide system
36

containing pure dielectrics and ferrites”™ and is known to give good

results.  Perturbational techniques have also been developed for such ‘
calculations38239, It is found that the first order perturbational
technique gives the same formula for y as obtained from the variational
method using a single mode approximatioq35. For higher accuracy either

a two or higher mode approximation or a second or higher order perturbation
theory may be employed. It should berpointed out, however, that unless

t/a is negligibly small, the high value of complex permittivity of semi-
conduétors alters a system so much that the perturbations are too large

to be consistent with the accuracy requirement of the perturbation theory.
In view of tﬁis, the use of two mode approximations with the Rayleigh-

Ritz technique was preferred for these calculations.

The application of the Rayieigh-Ritz theory to inhomogeneously .

filled wave-guides has been discussed by'Collinzg, and the salient steps
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in the present analysis are as follows:

The one dimensional Helmholtz equation

d2y |72 2, ~
—i— +t_Y + kO. er(x)]¢ =0
dx :
. where Ee(x) =1 O0<xsd; d+texsa (4.9)

ér dsxsd+t

can be obtained from equation 4.4 by taking m = 0 so that ¥(x,y) = B(x)
The function @ is to satisfy the condition that 8 = 0 at x = 0 and '
X = a, to make the tangential comppnenf of Fhe'electric field Ey vanish
.at the waQe-guide walls.

| ‘The variational integral is obtained by multiplying 4.9 by
@ and integrating with respect to x from x =0tox=a. The resulting
expression is: | .

v2 zﬁzdx= Tl‘

J
- o —

2
[idﬂ;] - ko2 é,(x)wz:l dx (4.10)
X L

The next step consists of expanding @ as a Fourier series and terminating
the series at a finite number of terms. Thus one may obtain for the

nth eigen-function:

)

B, = s aey Ta(%) | (4.11)
where fr(x) = %-sin Igﬁ- (eigen-functions for the empty guide). The

symmetry of the system permits only odd values of r. The function Gn may

be normalized to give:

a
J P 2dx = 1 = ? a 2
o 0 r=1,3 '
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and substitution of -equation 4.11 into 4.10 gives:

N N

2 .
Y Z Z a a $
n r=1 s=] rn sn rs

N a _df, df ' :
L= } ? 3pnlsn J —r_s- kO2 &(x) f.fg] dx
r=1,3 s=1,3. 0 dx dx ’

‘ O r#s
where srs =+: is the Kronecker delta function
1 r=s ' .

Now it is required that:

N N .

2 = : .
rgl sZIar“ %sn (Trs " 6rs) a Stat‘?"ary quantity
a df df 2
where Trs = j | L —s._g élx) frf;] dx =

o L7ox ax o (4.11a)

T
sr
For this equation to represent a stationary value ofy 2. the

partial derivatives > for i =1 to N must vanish. When this is done

da;
. in
the following set of N homogeneous equations is obtained.

N ‘ ..
X] a (Trs - Ynz Grs) =0 s=1toN S (4.12)
e , )

Recalling that the modes being considered ére symmetrical about the
point x = a/2, the indices r and s should take only odd values, that is
1.3, 5+« 4+ » N (0dd)
1,3,55 ¢+« . 5 N (odd)

r

s
For a non-trivial solution of (12), the determinant of the
coefficients must vanish. Therefore, for the single mode approximation

(N=1) one has:
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le =T, . " ' o (4.13)

For the two mode approximation, N = 3, and 712

of:

is given by the solution

Integration of equation (4.11a) over the wave-guide cross-
section shown in the Figure (4.1) gives )

Ter =‘(rn/a)2 - k02 - koz (ey- 1) (t/a + llrw.sin rv t/a) (4.15)

rs

Tes = Tgp = k°2 (8- 1) [:(-])P Sinpgnt[a + (-1)9 sinq%wféa:] rés

]

where p =

In the present study, the dominant mode propagation constanf was computed
from both equati@ns (4.13) and (4.14) and the results compared with those
obtained from (4.8). '

4.2.3 DISCUSSION ON EXACT AND APPROXIMATE SOLUTION
The dominant mode propagation constant y = a + jg was computed

from equations 4.8 as a function of t/a and ¢ at three different

frequencies.of 10.0) 34.5 and 70.5 GHz for ¢, = 12 and 16. The variations

of t/a and o were over the ranges 0.001 < t/a

A

< 0.25 and 0.1 s 0 5 10
mho/m, respectively and the results of the ca]cu]étions are presented in
the form of curves shown in Figures 4.2 through 4.4. |

It may be observed from these figureé that the phase constant g
varies very slowly with conductivity ¢ for small values of t/a ahd o. In
fact the variations in the phase constan; g are practically negligible

for t/a < 0.1 and 10g o = 0.50 (o = 3.16 mhos/m) at 10 GHz. This also
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applies for all the values of t/a and o considered at the higher frequencies
34.5, 70 GHz. At 10 GHz, the variations in g with ¢ for log ¢ > 0.5 '
and log t/a > - 1.8 (t/a = .0158) become significant as can be seen
from Figure (4.2a).
It may be observed from Figures (4.3) and (4.4) that for the
ranges of o and t/a chosen, the re]ationéhip between log a and log o is
a linear one. In these ranges, one may write: -
"log a =log M+ nlogo ' : (4.16)
where n is the slope of thé curves and M is.the intercept with log o = 0.
This relationship is more clearly shown in Figures (4.5a) and (@.Sb), and
. examination of the curves shows that n = 1.00 which means that the
attenuation constant a varies 1inear}y with g, i.e.
a = Mo ' (4;17)
At 10 GHz (see Figure 4.2a) the relationship (4.17 )also hole for t/a
< 0.05 and 0.1 < ¢ < 10 mhos/m. For higher values of t/a, the value of
n departs from unity. At t/a = 0.05 its value is 1.01 and fncfeases
as t/a is increased. At this frequency, equation (4.17) holds over the:
whole range of t/a considered but only up tb o = 1.0 mhos/m. For
higher values of t/a, the slope of the 109 o m'Tog t/a curve changes and
equation (4.17) no longer holds. For values of t/a = 0.25 the slope is
very small and practically equals that for t/a = 1. That is, the
attenuation is very close to that of a completely filled guide. .
‘ It is interestin§ to note that a similar relationship between
a and ¢ holds for very thin films of considerably higher conductivity

than has been considered in the present work. Gunn44 has carried out

L3
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-computations for thin films of semi-conduéting materials, and found that
theoretically and experimentally the-relation (4.17) holds for R=1/at?4opa/
square. However in the present work it is found that equation{17) is
(6 ¢ 1.0 v/m, t/a < 0.25)

valid for R ¥ 1759/squarg<3t 9.25 GHz and to-at least 55q/square and
130p/square at 34.5 and 70 GHz respectively (¢ < 10 v/m; t/a ¢ 0.25).

To the extent that the phase constant g is nearly independent
of ¢, the propagation constant as a function of conductivity ¢ may be

written as:

v(o) = ¥(0) + o %§-|o= 0 (4.18)
where 2X. = M is evaluated from equations (1) and (2) with ¢ = 0, and is:
d¢g : . . .
M= —]" r Jw%/z . p—
Y,
0 . 2 -
- k20 Ko d cosec (klod) cot (klod)
k10 kot
-5 secA (kzot/z) - tan(kzot/Z)
. . l

where the subécript 0 denotes that quantities are evaluated with o = 0.

Equation (4.18) for v( o) reduces much o% the computation work
as the numerical solution of (1) and (2) with o = 0 is much. easier and as
a matter of fact may be done with a desk calculator. The calculation of
M is then straightforward. This linear relationship between a and o '
may prove useful in the measurement of magneto-conductivity,high field
carrier mobility, the temperature dependence of conductivity, eté., of
the semi-conductor bulk matérial.

The propagation constant was compu;ed for two values only of

dielectric constant (er)’ namely 12, and 16. It may be observed from

Figures 4.2 to 4.3 that the variations in a and 8 with €. are significant.
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only at the higher end of ranges of t/a aﬁd g cdnsidered. For. Tower
values of g and t/a, the changes in'er do not cause appreciable changes
in either 4 or g.

Figures 4.6 and 4.7 show the percentage differences between
the exact values of the dominant mode propagation constant as obtained
from equation 4.8 and those obtained from the single mode and two mode
approximations given by equations 4.13 and 4.14 respectively. The
errors shown are for ¢ = 10 mhos/m and f = 10.0 and 70.5 GHz. For
lower values of ¢ in the range 0.1 ¢ ¢ ¢ 10 mhos/m, the errors are not
very different from the ones shown, for example in the range 0.03 ¢ t/a
< 0.1, this difference is not more than 3%. The errors in y at 34.5 GHz
are not shown here as these are found to-be of the same nature and ofder'
as those at 70.5 GHz.

It may be observed from Figure 4.6 that the single mode
approximation gives errors in « that are greater than 5% when t/a is as
small as 0.0025. For t/a > 0.0025, the -errors increase rapidly and then
decrease at t/a % 0.06 but are not less than 339 at t/a = 0.25. The
“two mode approximation gives better results, but the errors in q are
significant unless t/a < 0.003 when these are about 5%. The error in
a is reduced with a decrease in the dielectric constant.

Figure 4.7 shows that,the.approximate methods, both.single mode
and two mode, appear to give better results for g than for a. It may be
seen that the errors are less than 5% for t/a < 0.015._ For higher
values of t/a, the errors become large but the maximum error in g is:

“about one half of that in «a. As t/a is increased beyond 0.1, the
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‘errors reduce. This is because as t/a is’incre§sed. the condition
approaches that of a completely filled guide in which case the errors

should vanish.

4.2.4 Calculation of Junction ‘Impedance

In this section the expression foé the input impedance Zin
at z = 0 of the system shown in the fig. 4.1 which has a short circuit
at z = 1 will be derived.
| In the analysis, it will be assumed that the input guide is
supporting an H,, mode while in the output guide (0¢zs< 1) Hy
modes are present. If ¢; and v, are the functions.representing the Hno th
mode in the input and output guides respectively and T and Y, are
their respective propagation constants, then the electric field Ey
and the magnetic field Hx are given by the following expressions(43).
For z< 0 | '

Ey = a;(eT1Z+ R ef1Z) g7 + 1  a, ¢ €2
) n=3,5

Tz r r
Hx = -ayyg(e 12-Rel?) +Ja, on Yon € ™

For0¢zgl

Ey= ) b, v, sinhy_ (1-z)
m=1,3, m m’ m
Hx = I- b Yy vy cosh¥  (1-2)

where a's and b's are constants

R = reflection coefficient of the dominant mode in the input

guide e
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—L_:: ._._.n = 3 " 3
Yon = Zon jwuo wave admittance for Hno modes in the
| - empty guide
- l__n _ . ) .
Yn = 7;- jwuo wave admittance for Hno modes in the output
guide

Now at z = 0 Ey and Hx must beicontinuous and these boundary

conditions give
Ey = a(14R)eq + g aey = L b sinh(y Thm
e n=3,5 o

- Hx = 'a](7-R)YO]¢] * n=§,5'an Yontn™ - m-§,3 br¥m ¥ COSh(Ym])

These two equations can be solved either simultaneously or by
the use of variational techniques. The latter method is easier and has

(43)

been discussed by Collin Foi]owing his arguments, one obtains

the expression for the iﬁput'impedance Zip = (1+R)/(1-R) as follows:

ra ' a T 2
Z. = -—-JI G(x;x')Hx(x) Hx(x‘)dxdx'/ [I Hx(x)¢]d€]

1
in o Zyy My 0

~ where G(xix') = n=§,5 Zonn(x)e,(x*)

+ L v (x) v _(x')tanhy_1
m=1,3,52’",""' me oM



Now assuming that
N

Hx(x) - ; an ¢n(x)
N=1,0,

and substituting this into 4.12, one gets

Zin Zo7 a]2 - Z Z ap A5 G = 0
Y

where 9o = L Lo 8pe 6 ) tanhy 1P _P
7rs n=3,5 on °nr ns m=1,3, 5Zm | m" "rm osm
s 1 n=m
where . =
nm 0 n#m

a
anQ'an = Jo¢n(x) ¥ (X )dx

a 4 . nx M : m N 4
2/ 3 Np sin _E.l-( a)‘sm 5. Sin klgd ,
koo = Kiem

[oae oot ]

- At
- k]m cos 2a'cos k]mﬁ]

-2 sin kqy d cos k sin? k: _
Np == |4 - lmm. n’ + — In (1 = cos kyt)
\ 1 -sin k2mt
' sin k, t .
Tx (t 4 ——2n ) } .

Now equating the partial derivatives w.r.t. as‘to zero so as
to render'zin a stationary quantity, one gets the sets of eguations'

Z, 71,37 -") a.91.=0.
in “01°1 73;,3 r Jr .

66
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N . . o
2] 3.9, =0 S=3,57...
r= ,

whose determinant must be zero for non-vanishing values of a's.

Therefore,
: I Y913 - 9N '
Zig == : \ (4.19)
Zq | & , . A
0 91 N3 cc - 9NN
933 935 93N
In3 « o+ 9NN

4.2.5 Calculation of'Reflection Cogfficient

The computations of the.junction impédance were done with the
help of a 7040 IBM computer, the equation 4.19 being solved for different
values of t/a, ¢ and N ai 9.25‘GHz. The results are p]htted for N = 7%
vin fig. 4.8 1in the forﬁ of the reflection coefficient R,

R =(Z;, -1)/(zin‘+.1)
which is a directly measuréb]e quantity. The length of the sample was
assumed to be one quarter wave 1ength (=x/2p) at each point. The
figure indicates'the extent to which the reflection coefficient may vary.

In fig. 4.9 the magnitude of the reflection coefficient is
plotted as a function of ¢, for various values of t/a and N. It may
be observed that as ¢ increases, tﬁe highe# modes which are excited
considerably change the reflection coefficient at .z = 0. It may
further be observed from the computational results that unless t/a
* The reason fo} the'chéice of N=7 %n the fig. 4.8 is that in the range

considered, this value gives good agreement wi?h the eXperiménta]resu]ts.

This agreement may be better with N=9 but the numerical -computations
are then too cumbersome to handle.
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< 0.08 and o ¥ 2.5 v/m, the effect of the higher order modes is not

negligible.

4.3  MEASUREMENT OF REFLECTION COEFFICIENT

The reflection coefficient at the junction of an empty guide and
the semi-conductor loaded guide as showh in the fig. 4.1, was measured
by means of the reflection bridge ?s Hescribed in the Appen&ix A.

This bridge directly measures the reflection coefficient R = [Rlej?

The short circuited wave-guide section containing the semi-
conductor sample formed part of one of the side armsof thé bridge and
placed in a Delta Design oven. The arrangement is shown in the fig. 4.10
The zero balance of the bridge was carried out at each temperature with
and without sample.

For practical convenience a slot of desired t and 1 was milled
in the centre of the broad wall of a wave-guide Seciibn to assist in
centrally locating the sample. At z = 1, the guide was terminated with
a solid sﬁort circuit plate. The samples used were of intrinéic}
germanium - whose conductivity was varied with temperature which was

yaried from about 80°F. to 300°F.

4.4 RESULTS AND DISCUSSION

The experimental verification of equation 4.1:9 was carried out
on three samples of intrinsic germanium with t/a ratios of .0133,
" .026 and .0515, at 9.25 GHz. The condﬁctivity.of the sample was
varied from about 2 mho/m to over 100 mho/q by the variation of the

temperature of the sémple.



Figure 4.10 The photograph showing the microwave reflection bridge.
The sample is in the Delta Design oven on the right hand side.
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The theoretical value of condhcfi#jtyat the temperature T°k was
calculated from the following re]aﬁionships(45)
o(T) = ny(T)a Gu(T) + 3 (T))
where g = electronic charge = (1.6 x 10712 coul)
ni(T) = intrinsic carrier density = 1.76 x 1022¢-4550/T Tﬁviﬁ"“s
uy (T)

up(T)

mobility of electrons = .38 (300/T)+1'65-m2/901t-sec

mobility of holes = 0.18 (300/T)""2'33 m2/volt-sec

In the compbtationé, it was assumed that over the temperature
.range used in these’exper%menté, the dielectric constant remained
constant. |

The.resultS'of the measureménts are shown in the figs. 4.11a
and b. The solid curves show the qdantity éomputed from 4.19 with
_g=7 and the dotted ones with N=1. The crosses are.experimehtgl points.
: It may be observed that for o > 10 mho/m (logs = 1.0), the
results agree well with N=7 curve. As the conductivity decreases, the
solid curves and dotted curve approach each other and remain close to
each‘other.exﬁept in the case of t/a.= .0515. - In‘the,latter case, the
experimental points are close to the solid curve but 1lie above it. At
the lower end of the conductivity range, the experimental points do not

1ie on these curves and there appears to be a small discrepancy between

the theoretical curves and the experimental points.
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This discrepancy may be attributéd to fhe effect of the slot
in the broad walls of the guide._ In the computations the effect of the
slot was no? taken into account. The slot may have two-fold effect,
i) The assumed boundary condition at y = 0 and b is not satisfied for
dg¢xg-d+ t,énd ii) Radiatfon may take place through the small
unavgoidable air.gaps present betweeﬁ'the sample and the wave-guide wall.-
It was shown that this discrepancy was due to the slot by applying silver
. paint 'to the top and the bottom of the sample and air gap was also
filled with silver paint. The:resultfng points are shown by circles
on the f{g. 4.11a and lie nearer the theorefica] curve. |
| gig; 4.12 gives the computations of £ = 1/¢ from these measure-
ments, together with the theoretical curve and the measurements made
with t/a = 1.0 (i.e. completely filled guide). For a partially filled
guide, &, was computed by using the approximate relationship 4.2 and
assuming N=1. It may be observed that the results are différent
from either the theoretical values or the practical meésurements for
the complietely filled guide. At,higher~end of T.and hence g, the
discrepancy is due to two reasons, i) use of approxiﬁate expression
for Y for the deduction of o and 1) neglect of higher order modes.
At lower end of o,vthe d{sagreement may also be due to the slot for

reasons similar to those discussed above.-
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CHAPTER V
* THE CONDUCTIVITY AND DIELECTRIC CONSTANT OF GERMANIUM AT
MICROWAVE FREQUENC IES

5.1 INTRODUCTION

A general treatment of the fréquency dependence of the high

frequenC{ t;ansport properties of cubic crystals has -been reborted by
46

Champlin and the high frequency dielectric constant of germanium
is given in the references 1, 2 and 7. However, some gross simplifica-
tions have been made in these investigations. For example;»in the
references (1) and (2) relaxation time of charge carriers has been
assuned constant and in the reference (7) only scattering by acoustic
mode has been considered. These aséumptions are not justified. .The
'fre]axation time o% carriefé’varies‘with"their energy. Also the
cons1derat1on of only .acoustical phonon scatter1ng leads to the g, c.
mob1]1ty of carriers varying with temperature as T 3/2 (47) | Thxs is
mxn contrad1ct1on with the exper1menta11y observed variations of T'] 66

for electrons and T-2-33 for holes in german1um(48)

‘A number of theoret1cal ‘models have been suggested to

-~interpret this observatlon. These include 1ntra-va11ey»opt1ca] phonon

(26,48)

scattering s interval]ey scattering by acoustical and optical

___modes (2 ) _and_the varuat1on_gf*the effective_mass w1th _temperature (46).
In this chapter, calculations have been made of the microwave
“mobility and d1e1ectr1c constant of 11ght1y doped n-type germanxum

using the fo]]ow1ng scattering ‘mechanisms.

81



82

For electrons

1 - Ionized impurity
2 ~ Intra-valley ac-oustical and optical phonons

3 - Inter-valley

For holes
1 - Ionized impurity

2 - Acoustical and optical phonons’

The computations have been made for 100° ¢ T < 500°K, 1019 < Nd ¢ 1025/m3
and 109 ¢ f < 102 Hz. The effective masses have been assumed constant

and scattering by neutral impurities has: been neglected.
\ .

5.2 THEORETICAL CONSIDERATIONS

5.2.1 Microwave Mobility and Dielectric Constant

The expression for microwave mobility is the same as that

) : : 42)
for d.c. mobility except that <t> in the latter is replaced by <—1— S

~ “T+jut
for the applied electric field varying as exp(jut). Thus:

T+juwr . .
where mcf = conductivity effective mass. The conductivity ¢ is then a-
function of frequency |
olw) =q2n T 5 /m* - (5.2)
N ‘ ]+jWT , . .
n = charge carrier density‘

’ .
and the relaxation time average <t> is given by (50)
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<> = fm e3/21(e)exp'7dee/J €3/2éxp:$dc : (5.3)
, k :

[} o
To evaluate <t>, one needs to know the variation of v with energy and that
depends on the scattering mechanism. These aspects are considered later.

If in a system both é]ectrons and holes are present, o{w)

assumes the following form

o(w) = q2 {n <—J¥L—o /m:n +p ¢—J?L—¢ /m:p } (5.4)
]+Jwtn ]+Jw1p'

" where n and p are respectively electron and hole concentrqtions

T and T, are their respective relaxation times

n p
mzn and mép are their respe&tive conductivity effective masses

Now the current density with alternating fields is given by

— ->
J = eo‘er 3E-+ oE
ot

= (jw €

>
o & * O)E

->
= jue € E

or
where &, = e. - j-Z
r mgo

O ezleo lattice contribution to the dielectric constant

Substituting o from 5.4, gives

2 2

n T "4 P Tpé
I;n* <]+w21’ 2 > m* <]+m2‘r ZE]

cn n p

cp

o™

€p = el/eo -

cont'd
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2 T '
. q n n T
- - + —_—
we m 2.2 * ———g———
° l: T+ c <1+m Tp2>]
= e () - ] —o(w)
weo
. 2 2 : 2
l = ..9_ n Tn . +
em(w) e"/eo e - 4 ” > 2) P* < ’T’g 2> (5.5).
' Men wTh Mep H“’Tp
2| o+ P “p
ofw) = q <: > < >
e szTn? | mes ],,mztpz | (5.6)

Once the'form of t(e) is known, the equations 5.5 and 5.6 are readily
evaluated. '

The relaxation time t(e) may be calculated from the scattering
or transition probability for a given scattering mechanism. Thus if *
H' is the perturbing potential and causes a charge carrier to make a
@ransition from state k to k', then the scattering probability per
unit time S(k,k') is préportionaI to the transition matrix element

M(k,k') given by(S]) '

. - '
 M(k,k') = Jg.k’.‘ H' g, dY | (5.7)
o and ¥ are thé wave functions of the charge carriers in

the state k' and k respectively. Then

, 2. ' -
s(k,k') = 28 |M(k,k') | N(e) (5.8)
! = .
"where N(¢) = density of final states ’

o M2
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If ¢ is the angle between k and k', then t(k) can be written, using

- Maxwellian statistics, as

(k)T = J(]-cose) S(k,k*)dk'

Now if it is assumed that the scattéring processes conserve
energy, or nearly-so, then the above equatjon'can be reduced to simpler
form. Thus if k' lies on the same energy surface as k and 6 is the

angle between k and k', then
- / : S . ‘
(k)7 = [(1-cos0) s(k.K) an | (5.9)

df= 27 sinede
For isotropic scattering S(k,k') is independent of o.
Thus the evaluation of t(k) (= T(Ikl) = t(e)) reduces to the
evalvation of M(k,k'). The expressionsfor this will be given for

various scattering processes in the following sections.

L]

5.2.2 Ionized Impurity Scattering (52,53)

When a semi-conductor is doped, the doping atoms become ionized
either by giving up an electron or taking an e]ectron._ These charged

particles produée coulomb fields and a perturbing potential.

v = ___ZE& exp(_qr)

€€ U
or

effective charge of the impurity atom -

where - ze =
G dielectric constant
r = distance from the centre of the atom

’

yq = screening length
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2 2 o :
1/ =L N (2-519) (mks units)
&SKT Nd :

Nd = jonized donors and acceptors c*uw545

This leads from (5.7) to

2 '
2
2R e .
S(k,k') = = 5
d é,evq k'k.lz + q'>
and to impurity relaxation time ]
' 2 T - '
L =4 [l0g, (142b) - . (5.10)

. 2
2
_ Nd ze =3/ -1/2
Arw ) (%) e

[> <}

m* &

2b =

e

C2 € )
]+CZ€

or 1. ¢ 32, “°9é (T+cye) -
w(e) . .

<y and Cy being constants, independént of energy

5.2.3 Lattice Scattering(47’52)

Due. to thermal energy, the atoms in a sd]id vibrate about
their mean position and produce a local variat%on of potential. This
periodic potential causes the electrons (and holes) to make transition;
from one state to another state. In the process the electrons eithef

gain or lose energy and momentum to the crystal lattice. If the

electrons lose energy, a phonon of eduiva1bnt energy is emitted and if

it gains energy, a phonon is absorbed. Thus if k and k' are initial and
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final wave vectors of an electron and Q is the wave vector of the

phonon involved, then the following relations hold.

: E-TU =$Q +6 - | (5.11)
(k) - 03 R |
Qhere + on the R.H.S. of both equa@ions is for phoﬁon emission and.
-ve for phonon'absorptibn.»ﬁw is the energy of the phonon and E is
~any reciproca] lattice vector. If E = 0, the scattering process is
i normal and if non-zero, then the process is an Umklapp one.

-From equation 5.11, it appears that the energy of the
carriers is no longer conserved in the'scattering process. However,
if the fields are‘small, (which is the case treated here), it may.be
shown that |

B << ¢
and thus e(k') = (k)

The phoBon involved in the scattering process maj be of
different types. Foé example, it may be of low energy and low
momentum - (‘acoustical scattering) or it may'be ;f lTow momentum and
‘high energy (optical scatteriﬁg). Further; if the semi-conductor has
different eéuivé]ent conduction band minima (as germanium has), the
- electrons may be scattering from one valley to the other (intervalley
" scattering). Again the phonons involved may be acoustical or optical,
but momentum and energy now depend on the value of Q involved which in
turn depends on the position of the energx;minima; These processes will

now be considered in a Tittle more detail.
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5.2.4 Intra-valley Acoustical Scattering

This has been best treated by Bardeen and Shoék]ey using the
' cbncept of deformation potential. The elastic displacements u(¥) of
the atoms would produce changes in the position of energy band minima
and maxima. If Em = energy of minimum or maximum with g(;ﬁ and

&G is the equilibrium value, then it is shown that (52)

Se, = é’mo e, = E-I w(®)

(E] is being a constant)may be treated effectively as the perturbing
potential of the charge carriers near the minimum or maximum. By

expanding v.u(¥) in a Fourier Series, it is shown then that the matrix

element M(k,k') is given by(53) o

2 k(N 1) L, 2
IM(k,k')| = —2— [0 5
| .25
E‘c = Sém/ ‘A ; A= A2 V = volume of the crystal

vV
§= dens1ty of mater1a1

xp—ﬂ-l} . : 4 (5.12)
if th<<kT, then (2NQ+1)—ZE;b
Then assuming isotropic scattering, equation 5.9 gives

T = lattice scattering time constant

T = temperature in %k

The constant is independent of temperature and energy of the carrier

(assuming constant effective masses). R

constant xe™¥/T ' - (5.3) . _
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5.2.5 Intprva]ley Scattering
It is now known that germanium has a conduction band minimum in
(111) direction of k~space. Thus there are eight equivalent minima.
These different minima are called valleys and an electron in ith valley
->
with wave vector ki may make a transition to another valley j with final
wave vector kj. In the process the electron either absorbs or emits a
phonon. Tﬁe probability'of this process is given by the matrix element
M(k,k') which is as follows(25)
N ' ' absorbed

2 'y . , !
e b x Gkak) g (k) - e(K') £ hag|

Nq 1. wQ emitted
M \ .
where C(k,k')|independent of Q and ¢ or T,NQ is given by equation 5.12

M(k,k')

and * hw, is the energy of the phonon absorbed (+sign) or the phonon

Q
emitted (-ve sign). Then the relaxation time due to such scattering

is obtained from 5.9 as

. I (e + ho )]/2 (e - ho )]/2 ,
(t1v) 1. e, [ 1 + 1 " or zero]
i

1+ exp hwy 1 - exp - huj
kT ' kT
‘ . - (5.14)

where i varies over different phonons possiblé
hw; = energy of ith phononl ' |
C; = "coupling constarts' of ith phonon expressing the; scattering
strength
The second term on the R.H.S. is zero if ¢ < hw; because in that case

no phonon can be emitted.
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5.2.6 Intravalley Qptical Mode Scattering .

The electrons or holes may be s;attered by optical phohons
(electrons remaining in the same valley after scattering). For
germanium, which is a nonpolar crystal, the matrix element is essentially
the~saMe as for intervalley scattering as kok' (25) and hence opt is of

the same form as 5.14.

5.2.7 Energy Bands and Lattice Vibrations in Germanium

Before one can proceed to compute the mobility, a knowledge of
the conduction and valence bands and the lattice vibrational spectrum -
is necessary for two réasons.
| " (i) The form of the energy baﬁdsvgives information

about the effective massés and enables the computations
of carrier concentrations gnd the evaluation of fhe
- relaxation time integrals.
(ii) The location of the energy bands and the lattice
vibrational spectrum give the information on the
phonons involved in the scattering and their energiés."

It is known that germanium has two'valence bands degenerate
'gt E=0. The form of these energy bands hay be approxiﬁatea near I = 0
“as follows (53), |
¢=-f2 {A k2 3_[[;2#‘ +c® (kx? ky? + ky2 k22 + kz? kxz;l ”2}

am, : . -
A=13.1, B=83andC =125 o (5-15)

mo = free electron mass



‘The holes with + sign in 5.15 are referred to as light mass holes and
with - sign as heavy mass holes. These masses are given respectively

by the following equations

m;]/mo = 1 = 0044
| A + (B%4c%/g)1/2
. |
m,, /m_ = 1 = 0.30
hh' "0 1/2

A - (824¢2/g)

The conduction band in'germaniUm has 8 equivalent minima in

the direction (111) located at the zone boundary. Near the minimum the

.e~k relationship has the.form (54)

. 2'
22 | k2 .k k
E=1_3__<1+2+3

2 mg mt'> mt
my = 1.64m°h

-m, 0.819m0

The phonons involved in the intervalley scattering are given in
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the table 5.1. It may be observed that all the non-zero phonons involved

are in (100) plane and have maximum values in the (100) direction.

The energies of the phonons are given by the lattice vibrational

spectrum. This has been determined by Brockhouse (55) from neutron

diffraction. experiments. In the lattice spectrum, there are six

branches, three‘srfoustical and ‘three optical. énergies of the various

phonons Eelative to the‘present work.are given inlthe'table 5.2.



VARIOUS. PHONONS INVOLVED IN THE INTERVALLEY SCATTERiNG

TABLE 5.1

IN N-TYPE GERMANIUM

Gt - %0
K; = f&. (1,1,1)
; g |G
' 27‘/a X 27\/a X 27\/a X
(1) (002) (002)-
(1T '~ (020) (020)
SUDS (020) (200)
) (022) . (200)
(@) (202) (620)
(111) (220) (002)
(110) (222) (000)
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TABLE 5.2

DIFFERENT PHONONS AND THEIR ENERGIES FOR GERMANIUM
’ AT ZONE EDGE

, Phondn

Frequency = (€/h) x 10-122»

Transverse Optical TO[100]
Longitudinal . L[100]

Transverse Acoustic TA[100]

Optical "o [Q=0]

8.25 + 0.3
6.9 + 0.4
2.45 + 0.15
9.0 + 0.30

* Table II of reference (55)
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Although the intervalley scatterihg could involve phonons
corresponding to all the branches of the lattice vibrational spectrum,
it is shown by Herrig and Vogt(54) that the contribution due to two |
lowest branches (Transverse acoustic) is very sma]} and can be
neglected. This leaves five phonons (1 Tongitudinal ‘| acoustical, 3
optical at Q = [001] and 1 ;t Q = 0. that is.thé intravalley optical)
which can take part in the scattering of electrons.

For holes there is no - intervalley scattering and the only
phonons involved are optical and longitudinal acoustical ones.
However, for holes, interband transition\can*take place but these
transitions have not been observed in Hayhes-Shockley expefiments and

are assumed to be very rapid;

5.2.8 Variation of e]

The lattice contribution élleo to the dielectric constant
has been observed to vary with temperature by Cardona et al (56):and
have given the following formula. | '

%_(_1_% = 6.7 x 10°%/%

0.

where

n=yerle
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The tciuxation Limes given earlier ‘can now be ‘combined to give
the total relaxation time constant v as follows,
S R B

t(e)  y(e) ‘l’L)(E) Tp~h(e)

where Toh " relaxation time due to phonon scattering other than low

energy acoustical scattering. ' '

Thus _ 3/2
-1 1, ed (T
()] = [xy(e)] {( )(;T—;) +lep 5
.(E/hmi"f‘])]IZ. (;/hwi '])]/2 or zero | (5.]5“—)
Teexp N9 J-exp ~h@i '
KT P,

The first term on the righ£ hand side of the above equation
represents thé coqtribution due to ionized impurity scattering and is
given by 5.10. 'Tﬁe ffrst term in the curly bracket represents iﬁtra-
valley acoustical scattering relaxation time obtained from 5.13. The
terms in the summation are contributions due to intravalley optical
and intervalley scattering.by phonon of enekgy ﬁmi. The constants c;

measure the strengths of éoupling relative to acoustic phonons. T,
is the reference temperature which will be taken as 300°K. The constant
C fixes the absolute value of mobility at 300°k.

The values of ci‘s are not knownbut these can be left in as

adjustable parameters. These can be varied so that the relaxation time

obeys the same variation with temperature as has been observed in the
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experiments, ie. 7-1-66 £or electrons and T°2’33 for holes. These

two cases will be treated separately in the following sections.

5.3.1 Electrons Mobility in Germanium

It has been mentioned in art. 5.2.7 that there are five phonons
wh%ch can take part in the scattering and hence five adjustable constantsA
Cj. It is quite laborious to handle this situation. However, if it
is observed that the three phoﬁons (2 opti;al at\Q = 100 and 1 optical
at Q = 05 have nearly equal energies-pnd*the other two have same energy,
then these phonohs could be grouped together in two groups without |
»making'any serious. error. This leaves two constants ¢, and Co to be
'adjusted which is comparatively an easy task. The values of ¢y and.c, were
varied and v was computed as a function of temperature (betweén 100°
to 300°k): Each time c was adjusted to give

uzg0 = -3800 = q<r>/mg
The results of cdhputafion are plotted in fig. 5.1. The absciésa in
the figure represents < and the ordinate -n, the exponent of T. CZ"
was taken as a parameter. .

It may be observed that there are different sets of ¢, and oy

1
which can give the cor}ect value of n = 1,66; No unique combination is
possible using only the d.c. mobility data.

Because of this it is convenient to neglect  all the scattering
by all the intervalley phonons and assume that the scattering is only
by optical mode scattering of frequency.Q X ]OIZ-Hz, (or that all

phonons are grouped together having one energy). If this is done and 1
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is varied over values fro& zero to 1, it may be seen from the figufes

5.2a and b that the value of ¢, = 0.273S)t0 give n = -1.66. This means

1
that 27.4% of the lattice scattering is due to optical and or inter-

valley scattering.
The linearity of the Tog u ~ log T relatioﬁship in the ranges

of ¢y and ¢ considered, was checked and is shown in the fig. 5.3.

2 .
With these values of é] and w, one is able to compute <t> and
<t/1+jut> and hence o{w). In the actual computations, the use of.m: was
avoided by using | '
[IRXCER I B
cn 1+wan <1n>

>

= Qing(T) n¢——> /<r > | (5.16)
1+jwtn :
where uno(T) = d.c. mobility of electrons
= 0.3800 (7/300)"7+66 mZ/volt sec.

n = electron concentration / ms

For temperatures greater than bout 100°k, almost all donors
are ionized. Then for'T?100°k. the carrier concentrations were obtained
as follows.

The charge neutrality condition gives

n=-p= N
also np = n12 .
whence n = % |1+, ‘/wmi /Ng® | (5.17)
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N . ,.
_d 2, 2 .
P ,{"‘ ¢ fran ] - (5.18)

For germanium n].2 = 3.1 x 1044T§;p(-9100/T)/m3.'
The value of Nd'can be computed from the Enown conductivity and mobilities
of carriers at a particular temperature. Thus if a sample has oovd.c.
conductivity at 300°k, then |

g =9a (n v P up)

.38 m2/vo]t-sec.

Hn

¥p .18 m2/volt-sec. '
Substituting n and p from 5.17 and 5.18 into the above equation yields
a quadratic equation in Ng which is easily solved. Once Nd is known,
values of n and p as a function of temperature could be evaluated. In
the limiting cases, 5.17 and 5.18 reduce to

(1) when ng << Ny |

| N= Ngs p= “12/Na-
(ii) when ng >> Na
n=n;=p

The condition (i) is valid at Tow temperatures and (ii) at high temperatures.

5.3.2 Hole Mobility in Germanium

“In the case of holes, there is no intervalley scattering so that
there is only one phonon (i.e. optical one) which can take part in the
'scattering and hence only one adjustable parameter. The computations.
were carried out in the same manner as for electrons. The values of
exponent;m;"?‘:z plotted in the fig. 5.4 for vé}ious values of Cq. It is

found that fdr ns= - 2,33 ¢, * 1.89. 'This means that relatively large'
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- amount of scattering is due to optical mdde scéttering. This has

.also been the conclusion of Conwe11(26) | With values of ¢ _=1.89

1
and xa/ix= 9 x 10]2 Hz, one can again compute
=qu (T)pl B ' .2
' op(w) q upo( ) p< T Jur 7 /<1p> (5.20)
-2.33 '
Mpo © .18 (T/200)

= hole concentration /-m3 o

p can be calculated from the equation 5.18

5.3.3 Microwave Conductivity and Permittivity of Germanium
| The computations of o{w)/e(0) and em fOr n type germanium
were carried out with the help of.a 7040 IBM computer using equations
5.16 and 5.20 as a function of frequency, doping and temperature.
The results of the computations are plotted in figures 5.5 through 5.7.
The fig. 5.5.give; o{w)/a(0) as a function of température and
f and doping as pgrame;er. The temperature»was varied between 100°k to
- 500°k and the frequency from 107 Hz to 10]2 Hz. The computations were
made with two values of donor densities Ny so as to give the room
temperature_conductivities of 10 and 100 mhos/m
It may be seen that for all values of T and!Nd considered, the
microwave conductivity is essentially'equal to d.c. conductivity for
frequencies less than about 10 GHz. The effect of increasing frequency
becomes evident above aboht 10 GHz and the effect increases at lower
temperatures because of the increase in t and hence wt. As thé

frequency. goes higher, o(w)/c{0) decreases even at room temperature.
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The effect of the doping is seen to be hére siénificant at lTower temperatures.
The effect of frequency oﬁ the dielectric constant of germanium
is shown in + fig. 5.6, in which the abscissa represenfs the log f, the
ordinate the €rm® with T as a'parameter. The doping was kept low so

that the doping efféct on e is negligible. - It may be observed that

10

again  the effect of the frequency becomes significant for f > 10~ Hz for

T ¢ 200%. For‘high temperatures, the dielectric constant begins to

10 H

change at higher frequencies than 10 z. This is to be expected

because both T, and o decrease with temperature. It may be further

observed that at higher frequencies, the values of ¢

m for all values

of T ¢ 200°k approach a limiting value.
This condition applies when wt >> 1 so that
12 ]
Tee2> ;F?

1+t

The changes in €p with temperature are due to two.reasons

(i) The value of <t> and hence <t/]+w?12) changes with
temperature

(i1) At high temperature, the carrier concentration also changes.

The effect of doping on e, is shown in the fig. 5.7. The

r
frequency in these computations was taken to be 9.25 GHz so as to minimize
the frequency effect. The effect:of doping is seen to be more pro-

nounced at lower temperatures.
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5.4 THE MEASUREMENT OF ¢(w) and €pm

The meaéurément of the microwavg conductivity and dielectric
constant was Earried out on ;amp]eS«of n type Ge of resistivities of
22q-cm and 10 qcm at 9.25 and 34.5 GHz. The wave-guide:configuration
used for these measurements is shown in fig. 1.1. This c&nfiguration
has the advantage that the material properties can be expresged
explicitly in terms of propagation constants and no transcendental
equation has to be solved after.thelpropagation constant has been
computed.

If vy is the propagation constant in the section of the wave-
guide filled with semf-conductor in fig. 1.3and r is the‘propagation

constant in the empty guide, then €. is given by

. r
/E -1= Yz_rz = 12-1‘2
m k 2 wzu €
0 00
SN2, 2 .2 '
so that e - 1 B =B, = (5.21a)
2
w HEq
o= 208 o (5.21b)
W ' ‘ '
atjs =y
JBg ° T

~For a given system y was computed from fhe measured value of the
reflection coefficient at the interface 6f_an empty quide and the semi-

conductor loaded guide at z = o with a short at z =  (fig. 5.8).
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Figure 5.8 Completely Filled Wave-Guide Configuration dsé’d in
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The propagation constant y in terms of reflection coefficient R at z=o

is given by the solution of the following equation

tanhYQ, 1+
- =z /B L = 1. _*R
Y& JBOR. 1-

From this equation y can be computed numerically or graphically
using the graphs of Von Hippe1(57). In the present work, however,
numerical solution was preferred to obtain a higher accuracy.
The reflection coefficient R was measured by meaps of the
“reflection bridge described in the'appendik A. For 0ptimuﬁ accuracy,
the sémple length £ was chosen to be a quarter wave length approximately.
The measurement of the'reflection coefficient at different
temperatures was carried out by placing the section of the wave-guide
containing the semi-conductor sample in a "Delta Design Chamber" (fig. 4.10)
in which the temperature could be caried from -360°F to +600°F by the
application of liquid nitrogen or electric heaters. The measurements
were carried out between the temperatures of about 100%to 500°k

and the temperature was measured w1th a copper constantan thermo-coup]e

and an H.p. meter, type 425A, giving an accuracy of about +2°K

5.5 EXPERIMENTAL RESULTS AND DISCUSSION

The results of measurement of micrdwave_conductivity and
‘dielectric constant at 9.25 and 34.5 GHz are presented in the figures
| 5.9 thrpugh 5.12. The solid lines represent the theoretical curves of
o and érm as computed frop equations given in previous sections* The

crosses or the circles represent the experimental points. The probable ==~

* The behaviour of o with temperature as shown in figures 5.9 and 5.10
may be explained as followed. As the temperature is decreased from the/co NTD

»
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errors were computed from the estimated errors in the reflection coefficient
and the uncertainty in the b dimension of the sample.
To interpret the data, the'gap effect was taken into account.
This was necessary because the sample diménsions were not exactly
equal to the waveguide diﬁensions. The gap between the sample and the
broad walls has been found to have a considerable effect on the measure-

ment Of-;r (16,17)

. In the presenf work, the following two equations.
were considered,l

e (m) = (2,-1) b'/b o 22

e, (n) ér/t“'(ér'”%]'- - - (5.23)

where & is the actual permittivity, er(m) the measu red value of

permittivity and b' is the actual narrow dimensién of the sample.
| While applying the correction for the gap effecf;it was %ound

that for low values of conductivities, equation (5.22) gives adequate
results. The eqﬁation (5.23) however, was found to be valid only at
higher cdnductivities, say gréater than about 25 mhos/m. At lover
values of conductivities, (5.23) was found to overcorrect the measure d
values. For example,  at room tempe}ature, and %of 9&9;.= 1/160 and

" measured values °fver = 15.7 and £ = 10.4 ohms-cm, the equation (5.22)
“and (5.23) gave the values of € = ]5t8' $£=10.3 and € = 14.4

£= 8.6 ohm-cm respectively. The former values are closer to the

theoretigal values.

room temperature, the mobili{ty of the carriers increases while the number of
carriers in a doped material remains practically constant - about 100%K.
Thus the conductivity increases with the decrease in temperature. The rise
in the conductivity above room temperature is due to the rapid increase in
the numbers of intrinsic carriers. ‘
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It may Se seen from figures 5.9 ;hrougﬁ 5.12 that the agreement
between the measured values and theoretical values of o is quite good.
There seem; to be some discrepancy between the measured values of ¢ and
the theorética] curve at 9.25 GHz at higher end of the temperatures.
This is possibly due to the gap effect. The equation 5.23 which is
pbtained from the first order perturbation theory (16) probably fails
at high values of 5%6— that occur at higher temperatures. |

There is seen to be a fair agreement of € between theory and
experiment. The discrepancy at lower end of temperature is again
. attributed to the gap effect. At higher end of‘temperature, it is
found that it is not possiblé to get accurate values of €. even
after applying the correction due to the gap effect. The reason for
this is that as T and hence o goes high, the contribution of €p to
Kthe propagation constant becomés negligible, s -J ;%; and a+8.

When this happens, it may be seen from the equation (5.21a) that even
a small mgasuring error of o or 8 would cause a large error in the

~measurement of .. A very high accuracy, indeed, would be required

" to measure €p in this situation.



CHAPTER VI

CONCLUSIONS

6.1  GENERAL

A variety of microwave measuring techniques are required to measure
the complex permittivity (& = €ofp " jfb of semi-conductors becausevof,
large possible variation in the conductivity. The accuracy of measurement
depends on the choice of a particular technique for a given conductivity
value. A number of methods of measurement have been investigated to
defermine the range of conductivities to which they are best suited.

Particular attention has been given to systems which involve the
measurement of the reflection coefficient.Afully filled wave-guide
configuration has beeh used to investigate the dependence of the complex
permittivity of n type germanium on tempefature, frequency and doping.
An investigation‘;f the e;act and the approximate expressions used for
computations of the dominant‘mode propagation constant in a partially filled
wave-guide configuraﬁion has beeﬁ carried out together with the effects of
the higher order modes which are excited at.the junction of such a guidé and
an empty one. During the investigations a new method of heasurement
involving the reb]acement of one narrow wall of a rectangular wave-guide
was néveloped. This method has been termed the “Tossy wall méasuring

technique". - | : ‘ '

117
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6.2 LOSSY WALL MEASURING TECHNIQUE

The theory of the wave propagation in such A system and the exact
and the approximate expressions for the propagation constants of Hno
modes are developed in the Chapter III. Numerical computations of
the  dominant mode propagation constant are presenféd for 1 ¢ o ¢
1000 mhos/m and 0 ¢ ¢, ¢ 16. The calculations were done for three
frequencies 9.25, 34.5 and 70.5 GHz. Experiments to confirm the theory
were performed at 9.25 GHz with germénium samples of conductivity in '
the range 2 < ¢ < 400 mhos/m and the measurements were made with a
microwave transmission bridge. |

The computations show ihat the approximate expressions for the
propagation constant give adequate results at the higher end of the
range of ¢p cénsidered and over the whole range of conductivity
considered. The computations fur;her show that this method of measure-
ment is most useful when oz=uweqye, and becomes more accurate with the
increasing frequency.

The experimental results at 9.25 GHz give accurate results for
both ¢p and ¢ in the conductivity range 4 ¢4 ?~20‘mhos/m. However,
for lower values of ¢, the conductivity measurement is not accurate
- but thé dielectric constant term is in good agreement with the expected
value. This disagreement is attributed to errors in the measurement of
the small phase change produced{in such a System and the inadequacy of
the theoretical model which assumes only the TElolmode propagating in
the system. Also, the experimental results Show that for o ¥ 20

mhos/m the measurement of €, is not accurate. This is attributed to
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the fact that in this range of ¢, small errors in the measurement of the
transmission coéfficientAcan cause large errors in the calculated values
of _er.
6.3 PARTIALLY FILLED WAVE-GUIDE

6.3.1 Exact and Approximate Solution of the Dominant Mode Propagation

Constant
A wave-guide configuration commonly used in the measurement of
'various_electrical properties of semi-conductors is the one shown in
the fig. 1.3. In the measurements previously reportéd in literature,
the propagation constant has been computed from approximate expressions,
the accuracy ‘of which ﬁas been doubtful. Computafions of the dominant
mode propagation constant for 0.1 g o < 10 mhos/m, .001 ¢ t/a < 0.25
and ¢, = 16, 12 have been carried out at three different frequencies
10, 34.5 and 70.5 GHz using the exact and approximate expre#sions. The
computations show that for 'all values of ¢ and t/a considered at 34.5
' at 10GHz
and 70.5 GHz and t/a < .05 and o < 10 mhos/m{ the attenuation constant
varies linearly with ¢ so that o = constant x g. The variationé of v
with ep are found to be significant only. at higher end of thé ranges of
f/a and ¢.
The comparison of the exact a;d the approximate values of the
propagation constant shows that unless t/a is very small (<.0025), the
approximate expressions do not give adequate ;-' ¥ results for the

ranges of t/a, ¢ and €p considered. .

These calculations, which have not been previously reported, show
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that approximate methods of solution for the propagation constant of a
wave-guide partially filled with a seminonductor should be used with

due caution.

6.3.2 Higher Order Modes Effect

In a practical experimental arrangement, this partially filled
structure forms a junction with an empty guide. At such a junction
higher order modes are excited. The effect of'Hnb higher order modes has
been studied and the expression for'@he input impedance at the junction
(z=0) is obtained for such a structure terminated with a short circuit.
Calculationsof the reflection coefficient at the junction z = o are
obtained for 1 ¢ o < 10 mhos/m; 0.01<t/a < 0.25 and € = 16, at 9.25 GHz.
The mode number n was varied from 1 to 5 (1,'3, 5, 7). The calculations
show thgt yn]ess t/a ¥ 08 and ¢ € 2.5 mhos/m, the effect of the higher
order modes becomes significant.

Experiments were also performed to measure the reflection
coefficient at such-a junttion at 9.25 GHz for t/a values of .0133, .026
and .0515 and 2 < o ? 100 mhos/m.. The measurement results were found
to confirm the above observations about the higher order modes. The
best fit between»theory and experiment is obtained with N=7 (the order
the higher mode) for higher values. of ¢ and t/a.

This wave-guide system with semi-conductor has possible app]icatioﬁ |
to microwave modu]ating'devices and this study was uhdertaken to determine

characteristics of such a structure which have not been previously reported.
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6.4 EFFECT OF FREQUENCY, DOPING AND TEMPERATURE ON THE COMPLEX
PERMITTIVITY OF N-TYPE GERMANIUM
Theoretical computationslhaQe been made of microwave dielectric
constant and conductivity of n type germanium as a function of temperature
(100° ¢ T ¢ 500°K), frequency (109 ¢ g 1012 Hz) and &oping (10]9 < Nd

1022/m3). The theoretical model used to evaluate the average relaxation

time constant inc]udes'the scattering by ionized impurities, aéoustica]
| and optical mode scattering.of charge carriers,

These calculations show that the effect of the frequency for
f 2 ]0]0 Hz on both ¢ and er'is negligible. ‘At higher frequencies
- the conductivity decreases and the die]ectfic constant increases'from its
Tow frequency value.. The effect is more pronounced at lower temperatures
due to the increase‘in <t> and hence <m212>.‘ The effect of the doping is
also found to be significaht at high impurity contentration and low
temperature. )

The effect of temperature is such that at a given frequency, the
dielectric constant decreases and conductivity increases with a decrease
in temperature. This is due to the increase in the value of <t>.. Above
room temperature and with light doping, the thermally excited carriers
have a considerable effect on the dielectric cbnstant.

The associated experiments for measuring.the dielectric constant
and the conductivity of n type germanium samples of ¢ = 9 and 4.7 mhos/m
at 9.25 %nd 34.5 GHz were carried out with the microwave reflection bridge.

The completely filled wave-guide configuration was used and the temperature

range was 100° T g spo°x. Such measurements for n type germanium
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have not been reported previously.

It was found necessary to apply a correction factor for the
effect of the unavoidable air gap between the sample and the wave-guide
walls. The investigations showed that the first order perturbation
theory was valid for o/wey < 4. With such corrections good agreement
between theory and experiment was found between 100° ¢ T < 400°K.at
9.25 GHz and 100° ¢ T ¥ 450°K at 34.5 GHz and the validity of the

theoretical model was confirmed.



APPENDIX A
MICROWAVE REFLECTION BRIDGE

Al BRIDGE DESCRIPTION

The schematic diagram of the reflection bridge used for the
experiments described in the chapters 4 and 5 is biven in the fig. Al.
The mfcrowave power. source feeds the‘H-arm of a magic tee. Arm I.of
the tee has coupled to it a reflection coefficient reference which
consists of a precision type variable calibrated attenuator followed
by a precision type variable short circuit. The second arm is coupled
to the network under test and a matched detector is connected to
the E-arm. K '

The measurement of the reflection coefficient under test is
Carriedbut in two steps, as follows. .

(a) First a fiied short is coupled to the arm II of the tee and the
.attenuator and the short in arm'l afe varied to obtain

minimum power output in the detector in the E-arm. Let Ao(nep)

and 10(meters) pe the readings of the attenuator and the short

respectively; for this condition. '
(b) Now the test assembly with a reflection coefficient R is placed

~in arm II, at the same plane as thé shori in the step I.

Again the attenuator and short in the arm I are varied to

obtain minimum output in the E-arm. Let these readings be
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A1 neps and 21 meters respectively. Then, as shown later,Ris given by

R= - exp = 2(A+js) | R (A1)

where A

A]-AO nepers
¢ = Bo(z]-lo) radians

B, = Pphase constant in the variable short

A2 SCATTERING MATRIX OF TEE -

Equation A] may be proved by considering the scattering matrix

of a hybrid tee. This is as follows for the tee shown in the fig. A2.

M S12 513 Su
So1 S22 S23 Sp4

14

(A2)
531 332 S33 S3;

541 S42 S43 Sag

e -l

If the system is lossless and isotropic, then the reciprocity theorem
gives | ‘
S'ij = Sji itd

Now if it is assumed that the tee has been tuned* so that ‘

533 = 0= 544 -
534 =0 = 543_
then the scattering matrix reduces to
St S12 Si3 Sie ]
S12 S22 53 Su
S= | Sy3 S,3 0 0 (A3)
[ S14 54 0 0 1
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(31)

The scattering méfrix is a unitary- one and the following theorem
applies. |
"The sum of the squares of the absolute magnitudes of elements

in any row (or column) is unity". This theorem gives from equation (A3)

ls]llz * 151212 + 1513|2 +.|5"4|2 =1 (Ada)
15121 + 15517 + 155312 + Ispql? =1 . (Adb)
151317+ 15551 =1 | (Adc)
15151 + I5541% = 1 " (A4d)

Adding (A4a) and (A4b) and using (Ad4c) and (A4d) gives
2 2 2 .
IS11% + 155 12+ 215,17 = 0
oSy =S =80
Thus (A3) reduces to ’
00 83 Syg

s= |0 0 Sz Sy o (A5)

-

S13 523 0 0

LS14 S40 0
Now if a; is the incident waves at the port i and bi is the reflected
‘wave at that port, . then a |

by = a3 513 + a4 514

bz = a3 Sz3 * a4 S

b3 = ay $13 + ap Sp3

by = a3 S14 + 32 S24
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Assuming that the detector, which is coupled to arm 3 is matched
so that ay = 0, the above equations give

S

by Sp4

If 2] and Rz are the reflection.coefficients at the arms I and
IT respectively so that

a;’= R, b, and a, =R, by

i 514 r' | . '

2 23 2
B -
= p, R, 2A3>" 45 R (A6)
24
Now if
(a) RZ = -1 (short circuit plate), and R, = R, so that b, = 0,

3

(balanced condition), then :

S13 514 & 4 |
S24

10

23

and (b) K, = R (under test) and R] =Rj; so that again
b3 = 0, then ‘

Ry ilé_fl&..-i?sza
| S24 3

The above two equations give

14 .
R =11 : A7
R0y (A7)
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A3 REFLECTION COEFFICIENT OF THE REFERENCE ARM

The reference arm consists of a precision variable oSk e nakoy
and-a precision variable short connected in'cascade as shown in fig. A3.

The scattering matrix of the attenuator is for an isotropic system

SURY.
.S = ._
N2 Sz |
and the incident and reflected waves at the ports are given by
by 511 52 a
b Sz Sz | | %2

When a calibrated sliding short is connected at the port 2, then

a, = - [exp (-Zjﬂdr)]bz
where 8 = phase constant. in the sliding short system
x = distance of the short from the reféfente._ plane
. b =é ‘aq = S, e 238X
°° 1 11 91 12 © 2
- - s a-23BoX
b, = Sy a7 = Spp &7V b,
'Zj X =
or bz{l + 522 e"<JBo } 512 a4
24 S, a
o Be = Suu @y = Sq1n @ zJaox 12 1
17511 %1 7 %2 7T
1 522 e ™ .
b] — S.' 2 e-ZJgox
or —— 3 S]] - 2

If Sﬁ and 522 are small as compared to unity,the above equation
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reduces to ' _ - 13N

b ‘ .
| _ 2 -ZJBOX
— - S]Z e _

a] .

Now if the wave suffers an attenuation of y nepers while travelling in

the attenuator, then

. R0 | -2(hi-Ag)-2iBo(2-15)

. o io) S (a8)

A4 TUNING OF A HYBRID TEE

In the above analysis it is assumed that 533 = = S,,=0

44 34
and in a commercia1~grade tee it is seldom so. In order to meet this
condition.it is ﬁécessary to place lossless ‘tunérs in the E and H
arms and make the VSWR looking into these arms unity with arms I and II
teminated withmatched Toads. In practice it is very difficult to get a
VSWR less than 1.02 to 1.03. After this adjustment 534 is checked by
measuring the output in the E-arm while feeding the H-arm with terminaéions
placed on arms I and II. If 534 is not zero, it can be reduced to a
minimum by placing a tuneﬁ in one of the side arms. This adjustment will
usually disturb the tuﬁing of E- and H- arms so these must again be

tuned and the process repeated till the effect the side arm tuner on



132

E and H arms tuning becomes negligible. 'ff the.tee is of good quality
S44 Will normally be very small and need only very small amount of

tuning to make 834 negligible.



APPENDIX B’

COMPUTER PROGRAMMES
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GAMLE = GANMA

AKI = CSQRT{(GAME*CAME + XX)
Y =—ALI®AKT = XX®{(CP -~ 1)
AKJ = CSQRT( Y) :
Y = AKI¥*A

Y¥ = CSTIN(Y)/CCOSTY)

EC = AKI + AKJRYY

DFK = 1o + AKJ¥AR(1e+YYRYY) + AKI*YY/AKJ
OK = =FK/DFK

AKI = AKI+ DX

GAMA = CSQRTIAKI®AKI =XX)

P = ABSIREALIGAME - GAMAY)

Q = ABSIAIMAGIGAME — GAMA)) _
IF (PoelTeleE~6eANDeQelLToleE=8) GO TO 1
N o= N+ 1
GO TO 2
3 WRITE (&s4)
4 FORTAT (26H NO CONVERGENCE IN THE SUB)
1 D3 = AIMAG(GAMA) = BETAO
RETURN
END
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5UCE udBSUSbHEIKH 015

SIi2Job DacCK

SIRFTC .

C SOLUTICN FOR CEMNTRALLY LOADED WAVEGUIDE n//
COMPLEX Ts CPs TIs TJs GASs GA s GAP> GA49 AKI s AKJ 055
CCHMPLEX FKs DFKs Us VsTAAs COs RF OoTT

TCOMPLEX TAAIB T YYL(9) oUUT
DIMENSION AKI(9)s AKJ(9) s GA(9) 9T(9s9) ovv
DIMENSION VF(5)s VX(5)s VER(5)y VSI(5) owWw

DIMENSION AKIAB(G)s AKJAB(9)s AKIAR(9)s AKJARI(9) 0XX

10 anD(psl) FRs ER1s As CODEs AL oYy

1 FORMAT (5F10e5) . 022
“—“——’““““I.E 552 T ERYER TS A AL 0r7

2 T‘u.\.\.rxl (~r.‘1 :R'—,c_r O qQF:LO 2 FlZoS/)

READ (5362) (VF(I)s I=193)s(VX{I)s I=193)s (VSI(I)s I=1s3) 055

62 FORMAT (3F20410) . 044

F o= VF(1) 044

SI = VSI(1) 055

XK= VX{1I) 077

65 A = A¥2e454 077

Pl = 341415928 css8

S = PI/A 099

68 WRITE (692C0) F 0SS

XX = ¢043929%F*F 055

— T3 WRITE (652041 ST 022
CP = CMPLX{ ER» ~1800.,%SI/F) 066

205 YWRITE (6+206) X : ) 077

69 Y = PI#X 055

TS = A#X 066

> = (A - TSy/2, 077

— SETO = SQRTAXX—=5%5F 099
DC 2 N=1s792 099

00 3 M=1s792 oTT

AN = FLOATI(N) 044

IF (NeNEeM) CO TC 4 066

TiNsM)= ANFAN®SH#S = XX#ER1 = XX#(CP=- ER1)*(X+SIN(AN*Y)/(AN*PI)) 033

&O-T0—3 044

4 L o= (M + MY/2 g 077

L= (N -« ) /2 066

ALL= FLOATI(L) 077

AK = FLOATI(K) ==

T RaNYy= XX#(CP =ER1)/PI#(SIN(Y®*ALL)/ZALL*¥((=14)%%L) ==

— —1— ST Y AKHAAG =T e+ 3 ouY

3 CONTINUE 044
AA(S) = CMPLX(149040) - 077
AA(L)Y = =T(131l) = T(3943) = T(595) = T(7s7) 044
AALZ) = T{1e1)#(T(393) 4+ T(5s5) + T(7+s7)) + T(3+3)( 044
1 T(555) + ' T(7s7)) + T(595)#T(797) = T(3s1)%#T(153) = T(1’5)*T(5’1) 077

= T T T T 3y S TSy 3 T Sy P T I =T Sy T e R S 0P
Al (2) = =T{1ls1)%(T(33)%(T(595) "+ T(T77)) + T(545)%T(7s7)) 077

1 ~T(3:3)%#T{595)%T(7+7) . G
2 4+ T{1s1)%(T(395)12T(5s3) + T{3s7)%T(7s3) + T (Be7)%T(745)) O
3 +T(393)%(T(145)%T(591) + T(1s7)%#T(T791) 4+ T(5s7)%T(795)) NadVAY

4 + T(s,,)x(T(3a7)*T(7,3) + T(193)%T(391) + T(LeT7)%T(Ts1)): 055
6=T(193)5%T(3+5)#T(551) = T(193)#T(3s7)#T(7s1)=T(1s5)%T(553)%T(351) 077
T=T(195)%T(597)%T{Ts1)=T(197)8T{T795)%T(5s1)=T(197)%#T(793)%T(391) 077
=T 2+s7)%#T(7s5)}%T(543) = TISsT7)#T(793)%T(345) 055

A(l 077

= T(1e1)#(T(353)%T(595)%T(T97) + T(395)%#T(597)%#T(793) +
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1 TE3s7)5T(T7953¥#T(5+3)) + 077
2 T{2s2)%(T(1s8)2T(547)%T{701) + T(197)3T(7e5)%T(5s71)) C
3 0+ T(5s5)# (T (1e3)%T(3s7)%T(791) + TL1e7)%#T(793)%T(3s1 ) Q1
G o+ TU7s71%(T{193)%T(3s5)% T(5s1) + T(195)%T(593)%T(351) )+ oyl
5. 7{195)#T {591 )%T(7e3)%T(3e7) + TlLe7)¥T(T7e1)%T{35)%T(5+3) = 077
[ (1(191)'&1(3,3 FTTD{7T“TT7—ST___TT5_5T¥TT7~3)*I(3977 + 066
7 T{797)%T(3+5)%T{(592) )+ 066
§ T(393)4{T 55 4T 71 )1%T(1s7) + T{T7e7)1#T(195)%T(5s1)) 077
9+ T(5s5)uT(1e3)5T(3s1)%T(7s7)+T(193)%T(395)%T(5s7)%T(791) ) 077
AALL) = AA(LY = (T{1s3) 2T (3s7)%T(T7+5)%T(5s1) + T(1e5)%T(5:7)% 077
1 T(793)3%T(3s1) + Tl1s7)%T(75)%T(593)%T(391) + T(395)%T(5911)% 066
T2 T TIET (T 30 TR TS R Ty I T Iy S e Tt 53 ) 077
3 04 T(1e3)%T{3511%T(5:7)%T(T35) ==
TI = T(1s2)0%T(353) =TU(3s1)%T{1s3) ==
Td = (T{1sl) +T(342))/2, OXX
YY{(1) = Td - CSQRTUTUxTy =TI) 077
YY(3) = TJ + CSQRT(TU*TY =TI) 077
“CALL SPOLY&TARASYY - o077
CONMPLEX ZOs Zs Gs Ps TNe NFs CSs CC 077
DIMENSION Z0(9)s 2(9)s G(999)s P(99s9)s DEL(999)sTNI(9) 077
DO 5 N=1s792 : T077
AKIIN)= CSQRTLYY(N)#YY(N) + XX*¥ER1) 77
AKJINY = CSQRTIYY(INI®YY(N) + XX#CP ) 1
DO ST MET I T 2 o+t
IF (NeNEWeM) GO TO 8 0YY
ODELINSN)= 1. 088
GC TO 5 099
8 DEL(MNsMY= 040 O==
5 CCNTINUE Q-
—C UM ON—AAR EAAK A KT r—Dr—TFS+—XX0—CPy—GA —ER1 O-t-4
CfL‘ EXACTG ==
CALL GSORTI(GA)
In(LOuCoGToUoO) GO TO 202 ot
CO 207 M = 19792 . ; 088
AXIABI(M) = CABS{AKI(M)) 099
—————— A KA S CAB S AKH M 022
AKIAR(M) = ATAN2(AIMAGIAKI(MI)s REAL(AKIIM)))I%57,296 099
AKJAR(M) = ATAN2(AIMAGIAKJI(M)) s REAL(AKJIIM)))%574296 099
2C7 WRITE (65208) AKIAB(M)s AKIAR(M) s AKJAB(M)s AKJAR(M)s GA(M) ==
GC TC 2C1 ' R Qe
202 UGS = 44%PI¥*1eE=-9 Q!
CMG e P59 O==
TI = CMPLX({0e0s140)%0OMGxUO ' ! ot!
DO 9 N=1s7s2 e : ’ e 099
AN = FLOAT -(N) 099
ZIiNYy= TI/GAIN) L 100
TJ = CSQRT{CMPLX(AN¥AN*S%*S ~ XXs 0,0)) 17/
ZONT="T1773 1SS
IF(AL«GTW0eC) GO TO 11 17T
AL = PI/2./AIMAG(GA(1)) *CODE 1uu
11 U = GA{(N)ZAL 10U
Vo= CEXP(U) . 1vv
TN(N): (V =~ 1e/VI/{V 4+ 1/7V) 1Ww
T rE RN Z N - XX
S ConTiNUE 1YY
SO 14 d=leT el 122
ALT ) = CSQRTIGAMINGAIM) + XX#ER1) 1//
ARG (M) = CSGRTIGAIM)#GALIM) + XX*CP) 111




[ RTINS B GATIEN RS

U = AKI(M)*D 185

V = AKJIM)I*TS 144

CO = CCOS(V) Tah
TAA = CSIN(UY 165

CS = CSIN(V) . . , . 177
T CC = CCosyy T 177
NF = 1./CSQQT(D- TAAXCC/AKI (M) + TAA%TAA/(CS#CS)#(1e=CO)# 163

1 (TS + CS/ZAKJL My )) 109
GAP = AKJ(M)*AKJ(M) 185
GAM= AKI(M)*AKI(M) 185

DO 14 N=197s2 122
AN= FLOATTND 156
ANT = AN#TS#%S/2. 177
P(NsM)= SQRT(24/A)%¥NF#2,#SINIAN®PI /24 )% (AN®SHSINCANT ) XTAA 177

1 =~ AKI{M)*CC*COS(ANT ) ) 165

2 {GAP =~ GAM)/(GAP - AN*AN#S#S)/(GAM ~ AN¥AN®S*S) 164
14 CONTINUE 177
U0 1D I=19s79s< 109

DO 15 J=1+7s2 109
GllsJ)= CMPLX(0405040) : ITT

DO 16 M=19792 . 140

16 GlIsd)= G(IsJ) + ZO(MI¥DEL(MeI)%®DEL(MsJ) + TNIMI®P(IeM)¥P{JsM) 166
CGlIsd) = G(IseJd) = 20(1) #DEL(Is1)%*DEL(Js1) 122
IS5 CONTIRUE - e
_COMPLEX ZNs RECy DETs DETT, DET37 ' 17
DIMENSION ZN(9)s REC(9)s RECAB(9)s RECAR(9) 1%
ZN(1) = TN(1)/20(1) 17
ZIN(2)= G(ls1)/20(1) " 1=
IN(3)= (Gl191)%#G(393) - G(193)%G(3+1))/G(3s3)/201(1) 1=

CAtt—DPEF—t6+DET e e TR

- IN(4) = DET/Z0(1)/(G(393)#G(595) = G(3+5) #G(553)) 144
CALL DET7(Gs DETTs DET37) 177
ZN(5) = DETT/20(1)/DET37 let

DO 17 N= 15 _ 477
RECINY= (ZNIN) = 14)/(ZNIN) + 1la) 177

— RECAB-N=—CABRSHRECHN ) 177
17 RECAR(N)= ATAN2 (ATMAGIRECI(N) )s REAL(RECIN)))%57,296 1t
" WRITE (6518) (RECAB(I)s I= 1s5)s (RECAR(J)s J= 1:5) 1

201 IF(VX(2)eLEe0s0)GO TO 71 ‘ vy
2Z = ALOG10(X) 155

22 = 22 + VXI(2) 185
K= O gt Z 2 177

IF (X<LUE.VX(3)) GO TO 205 ' 177

X = VXI(1) ' 155

71 IF( VSI(2)elLEeGe0) GO TO 72 177
25 = ALOG10(SI) 177

25 = 25 + VSI(2) 110

SI—=—102¢*Z5 = e -

IF (SIeLECVSI(3)) GO TO 203 W

SI =VSI(1) 177

72 IF(VF{2)4LEe0e0) GO TQ 74 165
F = F + VF(2) 186
IF(FeLEWVF(3)) GO TO 58 1565

F—CONTINUE ' - 1T

WEITE (4951) i

128 FCUUAT (31Xs 5512e4/31Xy 5FE12e4%) S

21 FCrVAT (1HZ) 177

200 FCRMAT (1Xs F1043) 1==

t

{

i



(11X E£10,4)

AAsYYs FFs DFFs RFs YXs BBs YYUs YYUNS

206 CEQRMAT l1==
205 FOUMAT (21Xs £1044) 1XX
2C28 FORUMAT (31Xy 6E12e4) 177
209 FCRVAT (FiOets Fl0.2) 177
210 FCRMAT (F1043) 177
ZITI  FORMAT TEITU 3] 177 "
212 FORMAT (3E1%5453) 177
GC TO 10 177
1z STOP 177
END 110
$IBFTC EXACTG
TSUBRQUTINE EXACTG Yy ——
COMPLEX  AXIs AKRJs CPs GAs Us Ve CO» TAAs FKs DFKs RFs GAS 188
DIMENSION GA(9) s AKI(9) s AKJ(9) a 199
CCOMMON ZANE/Z AKIs AKJs Ds TSse XXs CPy» GA s ER1 ==
DO 5C M=1s7s2
60 GA(M)= CSQRTIAKI(M)*AKI (M) = XX#ER1) 1t
CO 36 M="13732 ==
M= l==
GO TO 31 11!
32 AXKJ(M)Y= CSART(AKI(MI®AKI(M) 4+ XX%®(CP =~ER1)) 188
31 U = AKI(M)#*D . ! 199
Vo= AKJIMINTS/2. 122
TAA=CSTN 7 ECOStHS) 199
CO = CCOS(V)I/CSIN(V)
FK = AKJIM)I*TAA- AKI(M)*CO :
DFK = AKI(M)Y/ZAKJI(MI*®(TAA+ AKI(M)*TS/Z.*(l. + CO*CO)) +
1 AKJ(MI#D*(1e + TAA¥TAA) = CO ' '
RF = =FK/DFK
AKAA M =AM RF
GAS = CSGRTH A(I(I)*AKI(M) - XX#ER1l)
PP = ABS(REAL(GAS-GA(M)))
Q = ABSIAIMAGUGAS=GA(M)))
IF (%eGT&15)GO TO 33
IF(PPelLToleE~6eANDsQelTaleE=-6) GO TO 54
N = RF 1
GAG) = CSQRT(AKI (M)#AKI(M) = XX*ER1)
GO TO 32
54 GA(M)= CS“RT(AKI(M)WAKI(M) - XX#ER1)
AKJ (M) = CJQQT(AKI(M)*AKI(M) + XX¥(CP =ER1))
- GO TO 36
STHRITEASv34)
36 FCOREAT (15H NO CONVERGENCE)
36 CLNTINUE :
RE J RER
END
SIBFTC CIT3
B JHOUILWB DETZ—1Gy DETY™
CCHPLEX G» DET )
DIMZNSION G(9:9) - S ’
DET = GU1s1)%¥(G(3s3)%G(595) = Gl395)%G(593))
~Cl193)%(C(391)%G(595) =~ G(395)%G{5+1)) '
+ Gl1l95)%(G(3+1)%G(593) = G(3+3)%#G(591))
RETURN
ErD
SICFTC SPCLYS
SUBRCUTIME SproLYal AA9YY)
JCMPLEX CCsDY 2T 999)




[4e

DIMENSION AA(G)s YY(9)s BB(G6)s CClEYsYX{9)s DI(9)s YXRIO)sYXI(9)
D0 1 M = 19242 ,
N o= O

5 IF{NNGTS15) GO TO 2
YYU = CSQRTIYY(N) )
TETETCHMPLX (090
DFF = CMPLX(O.’O.)
D0 3 M=195
MoE M= 1
LL o= M = 2 ,
FE = FF + AALIMYRYYIN )¥*seMM

_“‘“"”‘AM’=‘FEOﬂTHﬁ’ """ B

DFF = DFF + AMBAAIMIRYY (N ) %3%LL

32 CCONTINUE
RF = ~FF/OFF
YY{nN) = YY(N)Y 4+ R
YYUn= CSQRTIYY(M))

oY YYU = YYUN
ABS{REALI(DY))
QG = ABS(AIMAG(DY))
IF (PP. LT.lOE-6OANDOQQQLT010E“6) GO TO l
NN = NN + 1
GO TC 5
Z WRlITeloebl
6 FORMAT(25H NO CONVERGENCE IN SPOLY4)
1 CONTINUE

)]
J
non

5 -
14
H

CClz) = AA(4) + YY(1) + YY(3) ,

CCl1) = AA(3) = YY(1)*YY(3) + (YY(1l) + YY(3))#CC(2)
YY{5) = ~CC(2)/2e¢ = CSQRT(CC(2}%CCL2)/4e = CC{1))
TNl T T E =CCt T/ 2. FOCSQRTAICCt 2 CCt 2 74 = CCt1)
DO 4 M = 55752 . '

Y30 = CSRRTIYY (M)

& YRR = REALIYY{M))
IF {YXR({5)eLTeYXR(7)) YYI(5) YX(5)
IF (YXRIB)eLT&YXR(T)) YY(T) YX(7)

e Y X RS S G T R AT Y S =)

IF (YAR(5)eGTYXR(T)) YY(T) YX(5)
2C 9 N= 1932 ‘

S OYY{xn)= CSQRTIYY(N))

T T A
ol \JRH’

m

)

T

TS ISFTCDITT

Jot

SUSROUTIMNE DET7(Gs DETT,s DET37)

CCMPLEX G(959)s DETTs DET37 '

DETT = G(1s1)%(G(353)%(G(5+5)%#G(T7s7) = G(597)#G(795) )~ |
595)%(G(5+3)%G(7s7) = G(733)%#G(597))+G(397)%(G(593)%G(T795)~ ,
595)%G(793))) =~G(1e3)%(G(351)%¥(G{595)1#G{TsP)=G{5+7)%#G(T795))~

3y ST GtS s TGty =G tsy ety ose 3y rtetsy et s =
5s5)1%G(7s1))) 4+ G(195)%(G(3s1)%(G(503)%G(T797)=G(5+7)%G(T93)) =~

1
l
ri

(
5
S
{
{393)%(GI591)#GITsT)=GI557)%G(To1)) + G(3s7)%(G(591)%G(793)~
5059305 G(751)))=61157)%(G(351)#(G(553)#G(725)~G(555)%G(793) )~

5 (3:3)5(G0591)%GIT795)=~G(555)%G(T91))+ G(3s5)#(G(591)%G(7r3)~
C:(,99) G791 ))
»17""u{‘TﬁﬁafGf5T5**G+7T7#“€ﬁ5T?+*6+7T5*+=6+3T5?**fﬁ513+*“——“““__"-_“_°
[271=CGi5571%G(753))+ 6(39/)*(6(5,3)*6(7’5) G(595)1#G(7+3))

-

oonr\ AN

O

‘c:»qo\mpu?r\)r-‘

|
1
{

L

[
S

I4

\

$

t

IHD
SIZFTC CSCRT

i
.
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SURRQUTINE GSORT (GA)

SIMENSION DA (9)y GAR(9)s GAI(9)
COMPLEX GAL9)s GAX(9)

oe l u—197’7

GAX(M)= GAIM)

Uh\(\) = hLAL(bATM)i
1 GAI{M) = AIMAG(GA(M))
GANMX = Al ﬁ\l(CAI(l)a GAI(3)s GAI(S)s GAT(T))

uo 2 ’1 19

2- AL = GAY \ - GAI UM
&-((//‘\( )ou._\'oo O) CO TO 3
TFt oAt T ECCe 0 GO TO 4
IT(2A(7)«E2.0.0) GO TO 5
GALLlY = GAX(1)
GAIM = AMINL (GAR{(3)s GAR(5)y GAR(T))
DO 6 M=345792

53A(;)"‘ GAMM ~ GARI(M)
lf‘(ur\‘{}oCL\r.U.u} GO IU { »
IF(DA(5)eEQe0e0) GO TO 8
GA(3) = GAX(2)
IF (GAR(5)eLT«GAR(7)) GAIS) = GAX(5)
IF (GAR(3)«LTeGAR(IT)I) GALT) = GAX(T)
IF (GAR(5)4GT«GAR(T)) GA(5) = GAX(T7)

T IFTCARTS IS G TR GART T GA T = GAXt S
GO TO 9
8 GA(3) = GAXI(5)

IF (GAR(3)«LT«GAR(7)) GAL(5) GAX(3)

IF (GAR{(3)1eLT«GARI(T7)) GA(T) = GAX(T)
IF (GAR(3)1«GT4GAR(IT7)) GA(5) = GAX(T)

IF A GART I IVG T GARTT T GATTT GAX3)

GC TO 9

7 GA(3)Y = GAXI(T)
IF (GAR(3)LT«GARI5)) GA(5) = GAX(3)
IF (GAR(3).LT.GAR(B)) GA(T7) = GAX(5)
IF (GAR(3)eGTaGAR(5)) GA(5) = GAX(5)
IF”TGAR(B/.G-.GAR(5)) GAUT) = GAAT3)

GO TC 9

3 CA(l) = GAXI(3) :
GRMM = AMINLI(GAR(1l)s GAR(B)s GAR(T7))
CC 10 M= 19792 v

10 DALMY, = GRMM —=GAR(M)
A AT TG+ 09 —60—T0—11
IF(DA(D ) eEQeQel) GO TO 12
GA (3) = GAX{(1)
IF (GAR(5)eLTeGAR(T7)) GA(ﬁ) = GAX(5)
IF {GARIS)«LT«GARIT)) GALT) = GAX(T)
IF (GARIB)aGTGARIT) ) GA(B) = GAX(7)
T7 (GARTS TeGT«CARITI T GATT7I = GAXTS)
GC TO 3

11 SA(3) = GAXI(T)
IF (GAR(1)eLTWGARIS)) GA(5) = GAXI(I)
IF (GAR(1)7eLT«GARI(B)) GALT) = GAX(5)
IF (GAR(1)GT«CARIB)) GAL(SE) = GAXI(5H)
IF (GARTIV.CTSGARTET T GATTT = GAXTT)
GZ 70 9

12 ’\(J) = GAX(D)
IF {GAR{1) «LTWSGAR(T)) GAtT) =

GAX(T)




4=

IF (CGAR(1)«GTeGARITY) GA(S) = GAX(T)
17 (GAR(1)eCT«GARIT)) GALT) = GAXI1)
GO TC 9
4 GAL1) = GAX(S5) B
COGRM = AMINL(GAR(1)s GAR(3)s GARI(TY)
TTTTTTTTTOO 13 M= 1.7 2
12 DALMY = GRMM = GAR(M)
:F(uA(B)oguoO O) GO TO 14
:F( A(7).hdoOou) GO TO 15
CA(3) = GAX{L)
IF (CARI3YLLTCGARIT)Y)Y GAL(S)Y = GAX(3)
IF IGAR I WL T GARTTIT GAtTT = GAXTTY
I (GAR(3)eCT«GARITY) GA(S) = GAX(T)
IF (GAR{3)«CGTeGARI(T7)) GA(T)Y = GAXI(5)
GO TO 9
14 GA(3) = GAXI(3)
I7 (GARI{1)eLT«GARIT)) GA(B) = GAX(1)
I+ (GARTI T <LT«GARUT /T GAUT7Y)Y = GAX(T]
IF (GAR(1)eGTeGARIT)) GA(S)Y = GAX(T)
IF (GAR(1)eGT«GARIT)) GA(T) = GAX(1)
GO TC 9 '
15 GA(3) = GAX(T) :
IF (GAR(1)eLTW.GAR(3)) GA(5) = GAX(1)
T {GARTI Ve LT+ GARTI3 T T GA 7T = GAXt3)
IF (GAR(1)eGT4GAR(3)) GA(S) = GAX(3)
IF (GAR{1)eGT«GAR{31) GA(T) = GAX(1)
GO TO ¢ .
5 GAL1) = GAXI(T) .
GREM = AMINI(GAR{1)s GAR(3)s GARI(S5})
DO 16 W=7 2
16 DAY = GRMM -~ GAR(M)
IF(UA(B).EQ.0.0) GO TO 17
IFIZCA(S)eC3e0s0) GO TO 18
GALZ) = GAX(1) .
IF (GAR(3)eLT«GARI(B)) GA(5) = GAX(3)
P GARES e E T GARES HGA T —=—GAXS
IF (CGAR(3)4CGT.GAR(5)) GA(5) = GAX(5)
i (GAQ(B).uT GARI(B)) GAlT) = GAX(3)
CC 70 @9
17 GA(3) = GAX(3) :
IF (GAR({1)«LTeGARI(B)) GAIlB) = GAX(1)
[FtOART T GARTE H—GA T —=G6AXt5)
IF {GAR(1)«GT«GARI(B)) GA(5) = GAX(5)
IF (GAR{1).GTe«GARISBS)) GA(T) = GAX(1)
GO TO 9 '
13 GA(3) = GAX(5) '
IF (GAR(1)eLT«GAR(3)) GA(B) GAX(1)
Sy \VAR\J.J.LI.Q/-\.\xjfﬁUH(17““ GAXAS)
I7 (GAR(1L)eGTeGARIB) ) GA(S) = GAX(3)
IF (GCAR(1)«GT«GARI3)) GA(T) = GAX(1)"
S CCMTINUE
SETURN
N
wEA T RY
1< le S
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