DIGITAL WALSH-FOURIER ANALYSER FOR PERIODIC WAVEFORMS

DIGITAL WALSH-FOURIER ANALYSER FOR PERIODIC WAVEFORMS

\author{
by
 ```
Karl-Hans Siemens

```
}

A Thesis
Submitted to the Faculty of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Master of Engineering ,

McMaster University
May, 1969

MASTER OF ENGINEERING (1969)
(Electrical Engineering)

MCMASTER UNIVERSITY
Hamilton, Ontario

TITLE: Digital Walsh-Fourier Analyser for Periodic Waveforms.
AUTHOR: Karl-Hans Siemens, B.E.E. (General Motors Institute)
SUPERVISOR: Professor R. Kitai
NUMBER OF PAGES: 119
SCOPE AND CONTENTS: This thesis describes a proposed design of a special-purpose digital instrument that will obtain the first 32 coefficients of the Walsh-Fourier series of a lowfundamental frequency periodic voltage. The mathematics are developed for applying Walsh functions to obtain a WalshFourier series in the same manner as sinusoidal waves are used to obtain a Fourier series of a periodic wave. \(1+\) is shown how Walsh-Fourier coefficients are employed to obtain a Fourier series. Some familiar waveforms are showr as examples. The mathematical concepts are applied to the design of the instrument, of which two major portions have been constructed using integrated circuits. The Walsh-Fourier coefficients are available at the end of the second cycle of the input. The upper fundamental frequency limit of the instrument is approximately 60 Hz . There is no lowfrequency limit.

\section*{ACKNOWLEDGMENTS}
```

I would like to thank Professor R. Kitai for his constant encouragement and assistance during the course of this work and in the preparation of this thesis.
The financial assistance provided by McKinnon Industries Limited is gratefully acknowledged.
Finally, l would like to thank Miss Olga Pawluk for typing this thesis.

```

\section*{Table of Contents}
Page
I. Introduction ..... 1.
II. Mathematical Basis for Design ..... 4.
Properties of Orthogonal Functions ..... 5.
Fourier Series ..... 7.
Walsh-Fourier Series ..... 12.
Conversion of Walsh-Fourier to Fourier Series ..... 17.
111. Concepts of Instrument Design ..... 20.
IV. Instrumentation ..... 28.
Complete System ..... 28.
A/D Conversion ..... 32.
Walsh Function Generator ..... 41.
Pulse Burst Generator ..... 54.
Sample Processing System ..... 61.
V. Partial Error Analysis ..... 67.
Errors due to Mathematical Approximation ..... 67.
Walsh Function Period Timing Error ..... 69.
Vi. Conclusions ..... 74.
Appendix ..... 76.
Appendix A. Rules for Determining Walsh ..... 77.
Functions
Appendix B. Conversion of Walsh-Fourier ..... 80.
to Fourier Series

Table of Contents (continued)
\begin{tabular}{lll} 
Appendix C. Layout of Circuit Boards & Page \\
Appendix 0. & 106. \\
& Frrors in Walsh-Fourier to & 112. \\
& Walsh-Fourier Series is Limited \\
& to sal \((32, \theta)\) and cal \((31, \theta)\)
\end{tabular}

Bibliography
119.

\section*{List of lllustrations}
\begin{tabular}{|c|c|c|}
\hline Figure No. & Title & Page \\
\hline \(11-1\) & Periodic Function with Period T & 7. \\
\hline II-2 & Walsh Functions & 13. \\
\hline |11-1 & Quantization & 22. \\
\hline |11-2 & Example of Functions Used to Calculate \(B_{3}\) & 25. \\
\hline IV-1 & System Block Diagram & 29. \\
\hline IV-2 & A 801 10-Bit \(\mathrm{A} / \mathrm{D}\) Converter & 34. \\
\hline IV-3 & A 801 A/D Converter & 35. \\
\hline \multirow[t]{2}{*}{IV-4} & State Diagram for 4-bit Successive- & 37. \\
\hline & Approximation Conversion & \\
\hline IV-5 & A/D Conversion & 40. \\
\hline IV-6 & Production of sal ( \(\left.2^{k}, \theta\right)\) & 44. \\
\hline 1v-7 & Karnaugh Maps for Walsh Function Logic & 45. \\
\hline \multirow[t]{2}{*}{IV-8} & Schematic of Walsh Function Generator & 51. \\
\hline & - Card I & \\
\hline IV-9 & Schematic of Walsh Function Generator & 52. \\
\hline & - Card 2 & \\
\hline \multirow[t]{2}{*}{IV-10} & Schematic of Walsh Function Generator & 53. \\
\hline & - Card 3 & \\
\hline \(|v-1|\) & Pulse Burst Generator & 56. \\
\hline \(1 \mathrm{~V}-12\) & Schematic of Pulse Burst Generator - Card & 158. \\
\hline . \(1 v-13\) & Schematic of Pulse Burst Generator - Card & 259. \\
\hline \multirow[t]{2}{*}{IV-14} & Logic for Producing sgn \(f(t)\) sgn wal \((n, \theta)\) & 63. \\
\hline & vi & \\
\hline
\end{tabular}
List of lllustrations (continued)
\begin{tabular}{|c|c|c|}
\hline Figure No. & Title & Page \\
\hline \(1 \mathrm{~V}-15\) & Sample Processing System & 65. \\
\hline \(v-1\) & System to Measure \(e_{+}\) & 71. \\
\hline \(v-2\) & Sample Distribution of \(e_{+}\) & 73. \\
\hline C-1 & Walsh Function Generator - Card I & 107. \\
\hline C-2 & Walsh Function Generator - Cards 2 and 3 & 108. \\
\hline C-3 & Pulse Burst Generator - Card ! & 109. \\
\hline C-4 & Pulse Burst Generator - Card 2 & 110. \\
\hline C-5 & TTL Integrated Circuits & 111. \\
\hline
\end{tabular}

\section*{List of Tables}
\begin{tabular}{|c|c|c|}
\hline Table No. & & Page \\
\hline \multirow[t]{2}{*}{IV-I} & Binary Sequence Representation of Walsh & 42. \\
\hline & Functions & \\
\hline \multirow[t]{2}{*}{\(|v-1|\)} & Logic Expressions for Walsh Function & 49. \\
\hline & Generation & \\
\hline \multirow[t]{2}{*}{\(|v-1| \mid\)} & Input Frequency Limits with Various Clock & 62. \\
\hline & Rates & \\
\hline \multirow[t]{2}{*}{\(B-1\)} & Equations of Fourier Coefficients of & 82. \\
\hline & Walsh Functions & \\
\hline B-11 & Fourier Coefficients of Walsh Functions & 86. \\
\hline B-111 & Fourier Series of Walsh Functions & 92. \\
\hline \multirow[t]{2}{*}{\(B-1 V\)} & Fourier Coefficients of \(f(t)\) for given & 99. \\
\hline & Walsh-Fourier Coefficients & \\
\hline C-1 & List. of Integrated Circuits & 106. \\
\hline D-1 & Square Wave (amplitude, 10 volts) & 112. \\
\hline D-11 & \(10 \mathrm{Volt} \mathrm{Pulse} \mathrm{(Duty} \mathrm{Cycle} \mathrm{=} \mathrm{1/3)}\) & 113. \\
\hline D-111 & \(10 \mathrm{Volt} \mathrm{Pulse} \mathrm{(Duty} \mathrm{Cycle}=1 / 5\) ) & 114. \\
\hline D-IV & 10 Volt Pulse (Duty cycle \(=1 / 8\) ) & 115. \\
\hline D-V & \(10 \sin 2 \pi f t\) & 116. \\
\hline \multirow[t]{2}{*}{D-VI} & Sum of 10 Sine Waves (First 10 Harmonics & 117. \\
\hline & of Fourier Series are Equal) & \\
\hline D-V11 & Triangular Wave (Peak Amplitude, 10 Volts) & 118. \\
\hline
\end{tabular}

\section*{List of Symbols}
\begin{tabular}{|c|c|}
\hline \(A_{n}, B_{n}\) & = Walsh-Fourier coefficients of a periodic wave \\
\hline \(a_{n}, b_{n}\) & \(=\) Fourier coefficients of a periodic wave \\
\hline \(a_{n}(\mathrm{~cm}), b_{n}(\mathrm{sm})\) & = Fourier coefficients of Walsh functions \\
\hline \(k, m, n\) & = integers \\
\hline T & = period of a wave \\
\hline \(\dagger\) & \(=\) time \\
\hline f & \(=\) frequency \\
\hline \({ }^{\text {c }} \mathrm{c}\) & = clock frequency feeding pulse burst generator \\
\hline \(f_{s}\) & = sample frequency \\
\hline \(v\) & \(=\) voltage \\
\hline Vmax & = maximum voltage \\
\hline Vcc & = integrated circuit power supply voltage \\
\hline w & \(=\) frequency (in radians) \\
\hline \(\Phi_{n}(x), \phi_{n}(t)\) & = general orthogonal function \\
\hline \(r(x), r(t)\) & = weighting function \\
\hline \(\theta\) & \(=\) phase \\
\hline zps. & \(=\) zero crossings per second \\
\hline \(r\) & = quantization level number \\
\hline p & = total number of quantization levels \\
\hline M & \(=\) total number of samples \\
\hline \(P_{n}\) & = binary weighted pulses from A/D converter \\
\hline q & = integral portion of \(T / 64\) \\
\hline \({ }^{+}{ }_{+}\) & = remainder of division, \(T / 64\) (error in walsh function timing) \\
\hline & ix \\
\hline
\end{tabular}

\section*{1. Introduction}

Conventional wave analysers have long been used to determine the harmonic content of signals by analogue methods. These instruments operate by tuning to the signal component that is to be measured. Generally, the lower limit of fundamental frequency that can be handled is 20 Hz . For waves that have fundamental frequencies far less than 20 Hz , accurate tuning becomes increasingly difficult and a great deal of time would be required to average, say, 20 periods for each signal component that is to be measured.

Consequently, it was decided that a digital instrument would perhaps be more suitable for measurements of low frequency waves. Samples need be taken from only one cycle of the wave. The samples would then be manipulated to derive information concerning the harmonic content of the signal. Thus, the purpose of the project was to devise a low-cost, minimum storage, digital instrument for calculating the Fourier series of a low-frequency periodic input wave. If \(a_{n}\) and \(b_{n}\) are the coefficients of the Fourier series, then these quantities are calculated by the following equations:
\[
\begin{aligned}
a_{n} & =\frac{2}{T} \int_{0}^{T} f(t) \cos n w_{0} t d t \\
\text { and } b_{n} & =\frac{2}{T} \int_{0}^{T} f(t) \sin n w_{0} t d t
\end{aligned}
\]
where \(T\) is the period of the signal, \(f(t)\). The equations require that the signal, \(f(t)\), be multiplied by cosine and. sine waves and that these quantities be integrated over one period of \(f(\dagger) . \quad\) In a digital instrument, sinusoidal waves are very difficult to handle. Either the waves would have to be generated according to the fundamental frequency of \(f(t)\) and then sampled at the same time as \(f(t)\), or each individual value of the waves that would be used in any calculations would have to be stored in a memory.

It was found that an array of functions, called (3)

Walsh functions, would adapt themselves to a digital instrument much better than sinusoidal waves. The Walsh functions have only two values, +1 and -1 , and hence can be represented by logic "|"'s and "O"'s. They can be used to represent a waveform in a Walsh-Fourier series in much the same way as sinusoidal waves are used to form a Fourier series. Once the Walsh-Fourier series has been found, the method of superposition can be used to convert the series into a fourier series.

This thesis is wriften to outline the mathematical principles involved in obtaining a Walsh-Fourier series of a periodic waveform and converting it into a Fourier series. A proposed scheme for a digital instrument to obtain the Walsh-Fourier series of a périodic input signal and the construction of two portions of the instrument are also
described in this thesis. The instrument can analyse waveforms with fundamental frequencies up to 60 Hz . There is no theoretical lower frequency limit.

The second chapter establishes the mathematical basis for the design of the instrument. It shows how the properties of orthogonal functions are used to derive the fourier series and the Walsh-Fourier series. Conversion of Walsh-Fourier to Fourier series is then explained. The following chapter shows how the mathematical expressions in Chapter ll must be modified for use in a digital instrument.

Chapter IV describes the proposed scheme for the instrument with detailed descriptions of those portions of the system that are not commercially available. A partial error analysis providing examples of error arising from use of a finite number of terms in the conversion from Walsh-fourier to Fourier series and describing the error in producing walsh functions is given in Chapter \(V\). The final chapter on conclusions discusses the limitations of the instrument and future work to be done on the Walsh-Fourier analyser.

\section*{II. Mathematical Basis for Design}

Conventional steady state network analysis leads directly to a representation of network performance in terms of the response to sinusoidal signals of different frequencies. The calculation of the output signal from such a network is therefore simplified if the input signal is expressed in these same terms. The Fourier series representation of the input thus reveals the signal in a form particularly well-adapted to providing insight into the behaviour of networks and systems stimulated with signals of various types.

On the market there are many wave analysers which can be used to determine the harmonic content of the waveform which is being tested. However, these instruments are generally analogue devices which have a low frequency response I imit of approximately 20 Hz . or higher. In the domain of ultra-low frequencies, digital instruments, which would sample the waveform and process the samples, seem to be preferable to analogue instruments, which would require circuits tuned to these very low frequencies and would require averaging periods of, say, 20 times the reciprocal of the lowest frequency component.

However, in the design of a digital instrument, sinusoidal waves, such as are normally used to calculate and to represent a Fourier series, present some difficulty.

Calculations involving sines and cosines would require that any particular value of the sine or cosine which is used in the calculations be stored or generated in a form that can be used in digital logic. It would be advantageous if another set of functions, more suitable to digital logic, could be used in place of the sinusoidal functions. It has been found that functions, known as Walsh functions, can be employed in place of sines and cosines in order to find the Fourier series of a periodic waveform.

Both sinusoidal waves and Walsh functions are ortho-
gonal. In order to show the mathematical basis for using Walsh functions to obtain the Fourier series, this chapter first discusses the properties of orthogonal functions. It is then shown how a specific case of orthogonal functions, sinusoidal waves, are used to represent a periodic waveform by a series of these waves, commonly known as the fourier series. A similar analysis is performed using walsh functions. The final section of this chapter shows how a representation of a periodic waveform using Walsh functions can be converted into an equivalent Fourier series.

Properties of Orthogonal Functions
A periodic signal, \(f(x)\), may be expanded into a series of orthogonal functions. A group of functions
\[
\phi_{1}(x), \phi_{2}(x), \phi_{3}(x), \cdots-\phi_{n}(x) \cdots
\]
are defined to be orthogonal over the interval [a, b] with respect to a non-negative weighting function, \(r(x)\), if
\[
\begin{align*}
\int_{a}^{b} r(x) \Phi_{n}(x) \Phi_{m}(x) d x & =T_{n} & & \text { if } n=m  \tag{2-1}\\
& =0 & & \text { if } n \neq m
\end{align*}
\]
where \(T_{n}\) is a constant relating to the interval \([a, b]\).
The function, \(f(x)\), may be expressed as the sum of such a group of orthogonal functions as follows:
\[
\begin{equation*}
f(x)=a_{1} \Phi_{1}(x)+a_{2} \Phi_{2}(x)+a_{3} \Phi_{3}(x)+\ldots \tag{2-2}
\end{equation*}
\]

Requiring the functions \(\Phi_{n}(x)\) to be orthogonal results in the relative ease with which the coefficients \(a_{n}\) may be evaluated. Both sides of Equation (2-2) should be multiplied by \(r(x) \Phi_{n}(x)\) and integrated over the interval of orthogonality \([a, b]\).
\[
\begin{aligned}
\int_{a}^{b} f(x) r(x) \phi_{n}(x) d x= & \int_{a}^{b}\left[a, r(x) \phi_{1}(x) \phi_{n}(x)+\cdots\right. \\
& +a_{m} r(x) \Phi_{m}(x) \Phi_{n}(x) \\
& \left.+a_{n} r(x) \Phi_{n}^{2}(x)+\cdots\right] d x(2-3)
\end{aligned}
\]

By the basic definition of orthogonality as stated in Equation (2-1), all terms on the right-hand side of (2-3) vanish except for the \(n\)th term. Therefore,
\[
\begin{equation*}
\int_{a}^{b} f(x) r(x) \Phi_{n}(x) d x=a_{n} \int_{a}^{b} r(x) \Phi_{n}^{2}(x) d x=a_{n} T_{n} \tag{2-4}
\end{equation*}
\]

Thus, the general expression for evaluating the coefficients for an expansion in terms of orthogonal functions is:
\[
\begin{equation*}
a_{n}=\frac{1}{T_{n}} \int_{a}^{b} f(x) r(x) \phi_{n}(x) d x \tag{2-5}
\end{equation*}
\]

Many sets of orthogonal functions could be used to approximate a periodic signal. The Fourier series, which consists of the orthogonal functions, sines and cosines, is the most commonly used series in signal analysis. However, sinusoidal waves are not as suitable to perform calculations
in a digital instrument as are another set of orthogonal functions called Walsh functions. In the following sections, it is shown how both sinusoidal waves and Walsh functions can be used in a series expansion representation of a periodic signal.

Fourier Series
Many of the signals encountered in electric networks are periodic in time. A signal is defined as periodic if
\[
\begin{equation*}
f(t)=f(n T+t) \tag{2-6}
\end{equation*}
\]
where: \(T=\) period,
\[
n=\text { any integer. }
\]

Therefore, it follows that if the signal is known in the interval \(\left[\dagger_{1}, \dagger_{1}+T\right]\), it is defined for all time. (See Figure \(11-1\) ).


Figure ll-I. Periodic Function with Period T

In practical applications in the field of electronics, all signals will be real (rather than complex) functions of time. To expand \(f(t)\) into a seiries of simple orthogonal functions, it would make sense to choose functions which are themselves periodic and simple in form. The simplest type of periodic function which displays the required characteristics for orthogonality is the sinusoid. That is:
\[
\begin{align*}
\int_{0}^{T} \cos \left(m w_{0}+\right) \cos \left(n w_{0}+\right) d t & =0 & & \text { for } m \neq n  \tag{2-7}\\
& =T / 2 & & \text { for } m=n \neq 0 \\
& =T & & \text { for } m=n=0
\end{align*}
\]
where \(w_{0}=\frac{2 \pi}{T}\),
and \(m\) and \(n\) are positive integers.
Likewise,
\[
\begin{align*}
\int_{0}^{T} \sin \left(m w_{0} t\right) \sin \left(n w_{0} t\right) d t & =0 \text { for } m \neq n  \tag{2-8}\\
& =T / 2 \text { for } m=n \neq 0 \\
& =0 \text { for } m=n=0 \tag{2-9}
\end{align*}
\]
and \(\int_{0}^{T} \cos \left(m w_{0} t\right) \sin \left(n w_{0} t\right) d t=0\) for all \(m\) and \(n\).
Thus, sinusoidal signals are orthogonal over the interval, \(T\), with respect to a weighting function, \(r(t)=1.0\). Therefore, the general orthogonal function can be chosen as
\[
\begin{equation*}
\Phi_{n}(t)=\cos \left(n w_{0} t-\theta_{n}\right) \tag{2-10}
\end{equation*}
\]

The function \(f(t)\) can be expressed as follows:
\[
\begin{align*}
f(t) & =c_{0} \Phi_{0}(t)+c_{1} \Phi_{1}(t)+c_{2} \Phi_{2}(t)+\cdots  \tag{2-11}\\
& =\sum_{n=0}^{\infty} c_{n} \Phi_{n}(t)
\end{align*}
\]

The first term in the expansion, (for \(n=0\) ), represents the
average value or zero frequency term of \(f(t)\) and, as such, is somewhat unique in terms of evaluating the coefficient \(C_{0}\). It may be noted in Equation (2-7) that the value of the integral for \(m=n=0\) is twice that for \(m=n \neq 0\). To develop a general expression for the coefficient which applies equally well to all terms, it is necessary to define
\[
\Phi_{0}(t)=\frac{1}{2} .
\]

The series in Equation (2-11) can then be rewritten:
\[
\begin{align*}
f(t) & =\frac{C_{0}}{2}+\sum_{n=1}^{\infty} c_{n} \phi_{n}(t)  \tag{2-12}\\
& =\frac{c_{0}}{2}+\sum_{n=1}^{\infty} c_{n} \cos \left(n w_{0}+-\theta_{n}\right)
\end{align*}
\]

To simplify further the evaluation of the coefficients, the following substitution may be made;
\[
c_{n} \cos \left(n w_{0}+-\theta_{n}\right)=a_{n} \cos \left(n w_{0}+\right)+b n \sin \left(n w_{0}+\right)
\]
where \(c_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}}\)
and \(\theta_{n}=\arctan \left(\frac{b_{n}}{a_{n}}\right)\).
The function \(f(t)\) may now be expressed in the alternate form
\[
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(n w_{0}+\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(n w_{0} t\right)(2-13)
\]
where \(a_{0}=C_{0}\)
The forms shown in Equations (2-12) and (2-13) are entirely equivalent. Equation (2-12) is more compact, and for that reason is often used as the final form for representing the function. However, since Equation (2-12) contains two unknowns, \(C_{n}\) and \(\theta_{n}\), it is convenient to convert it to the form of Equation (2-13) and evaluate separately the
coefficients \(\dot{a}_{n}\) and \(b_{n}\). Equations (2-12) and (2-13) are known as the trigonometric forms of the Fourier series.

It is necessary to point out that there are some types of functions which may not be expanded successfully into a Fourier series. However, in practice, almost every function that is encountered may be expressed as a Fourier series. Functions with the following properties are Fourier expandable:
1. The function has at most a finite number of discontinuities in one period.
2. It has a finite number of maxima and minima in one period.
3. The integral of the squared magnitude of \(f(t)\) over one period is finite. That is,
\[
\int_{0}^{T}|f(t)|^{2} d t<\infty
\]

Following the procedure indicated in Equations (2-3) through (2-5), the coefficients may be evaluated. To obtain a multiply both sides of Equation (2-13) by \(\Phi_{0}(t)\) and integrate over one period. Since \(\phi_{0}(t)=\frac{1}{2}\),
\[
\begin{aligned}
\frac{1}{2} \int_{0}^{T} f(t) d t= & \int_{0}^{T} \frac{a_{0}}{4} d t+\int_{0}^{T} \frac{1}{2}\left\{\sum _ { n = 1 } ^ { \infty } \left[a_{n} \cos \left(n w_{0} t\right)\right.\right. \\
& \left.\left.+b_{n} \sin \left(n w_{0} t\right)\right]\right\} d t
\end{aligned}
\]

All terms in the second integral on the right will integrate to zero. Therefore,
\[
\frac{1}{2} \int_{0}^{T} f(t) d t=\frac{a_{0} T}{4}
\]
and
\[
\begin{equation*}
a_{0}=\frac{2}{T} \int_{0}^{T} f(t) d t \tag{2-1.4}
\end{equation*}
\]

To evaluate the remainder of the \(a_{n}\) coefficients, multiply both sides of Equation (2-13) by \(\cos \left(n w_{0}+\right.\) ) and integrate.
\[
\begin{aligned}
\int_{0}^{T} f(t) \cos \left(n w_{0} t\right) d t= & \int_{0}^{T}\left\{\frac{a_{0}}{2} \cos \left(n w_{0} t\right)\right. \\
& +\cos \left(n w_{0}+\right) \sum_{m=1}^{\infty}\left[a_{m} \cos \left(m w_{0} t\right)\right. \\
& \left.\left.+b_{m} \sin \left(m w_{0}+\right)\right]\right\} d t
\end{aligned}
\]

In accordance with Equations (2-7), (2-8), and (2-9), all terms on the right will integrate to zero except for the product of the cosine terms when \(n=m\). Thus
\[
\begin{equation*}
\int_{0}^{T} f(t) \cos \left(n w_{0} t\right) d t=a_{n} \int_{0}^{T} \cos ^{2}\left(n w_{0} t\right) d t=\frac{a_{n} T}{2} \tag{2-15}
\end{equation*}
\]

Therefore, \(a_{n}=\frac{2}{T} \int_{0}^{T} f(t) \cos \left(n w_{0} t\right) d t\)
To evaluate the coefficients \(b_{n}\), the same procedure as above is followed except that now both sides of Equation (2-13) are multiplied by sin ( \(n w_{o}+\) ). Upon integration, all terms but one will again disappear, so that
\[
\begin{equation*}
b_{n}=\frac{2}{T} \int_{0}^{T} f(t) \sin \left(n w_{0} t\right) d t \tag{2-16}
\end{equation*}
\]

The Fourier series representation of the function \(f(t)\) is now complete with the coefficients defined. Recapitulating,
\[
\begin{equation*}
f(t)=\frac{a_{n}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(n w_{0}+\right)+b_{n} \sin \left(n w_{0}+\right)\right] \tag{2-13}
\end{equation*}
\]
where \(a_{0}=\frac{2}{T} \int_{0}^{T} f(t) d t\)
\[
\begin{array}{ll}
\text { or } & f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} c_{n} \cos \left(n w_{0} t-\theta_{n}\right)  \tag{2-12}\\
\text { where } & c_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}} \\
\text { and } & \theta_{n}=\arctan \left(\frac{b_{n}}{a_{n}}\right) .
\end{array}
\]

\section*{Walsh-Fourier Series}

The concept of frequency in electronics is based on the complete orthogonal system of sine and cosine functions. Other orthogonal systems may be used to describe periodic signals, but only the walsh functions, several of which are shown in figure 11-2 on page 13, have been found so far to have comparably good features. (3)(4) Since these functions assume only the two values, +1 and -1 , it is plausible that they may be more useful in digital circuitry than would sinussoidal functions.

Sine and cosine functions are characterized by their frequency, which is given in terms of oscillations per second. Walsh functions are characterized by their sequency, which is defined by:
\(\left(\frac{1}{2}\right)\) (average number of zero crossings per second)
= sequency measured in zips.
The concept of sequency is applicable to sine and cosine functions and is identical with frequency in that case.

The terminology given the Walsh functions, sal ( \(n, \theta\) ) and cal \((n, \theta)\), is made so that they can be compared easily to the terminology of the sinusoidal functions, \(\sin (n \theta)\) and \(\cos (n \theta)\). For the Walsh functions, the \(n\) denotes the multiple of sequency, whereas for the sine and cosine, \(n\) denotes the

Figure 11-2. Walsh Functions

multiple of frequency. The Walsh functions become functions of time by letting \(\theta=+/ T\), where \(T\) is one pèriod. For sinusoidal functions, \(\theta=2 \pi f+\). Since \(f=1 / \top, \theta\) becomes \(\frac{2 \pi+}{T}\). Occasionally, wal \((n, \theta)\) is used to denote the walsh
functions in general. The function wal \((0, \theta)\) has a constant value of +1 . The sinusoidal functions have no comparable function. An explanation of the formation of Walsh functions is given in Appendix A.

In order to use Walsh functions to form a series ex(5)
pansion of a signal, it can be shown that they display the required characteristics of orthogonality. That is,
\[
\begin{align*}
\int_{0}^{T} \operatorname{cal}(m, \theta) \operatorname{cal}(n, \theta) d t & =0 \text { for } m \neq n  \tag{2-17}\\
& =T \text { for } m=n \neq 0
\end{align*}
\]
where \(m\) and \(n\) are positive integers.
Likewise,
\[
\begin{align*}
\int_{0}^{T} \text { sal }(m, \theta) \operatorname{sal}(n, \theta) d t & =0 \text { for } m \neq n  \tag{2-18}\\
& =T \text { for } m=n \neq 0 \tag{2-19}
\end{align*}
\]
and \(\quad \int_{0}^{T} \operatorname{cal}(m, \theta) \operatorname{sal}(n, \theta) d t=0\)
for all \(m\) and \(n\) except \(m=n=0\).
The sal and cal functions are not defined as such
when \(m\) or \(n\) equals zero. When \(m\) or \(n\) becomes zero, the functions become wal \((0, \theta)\), or merely 1 for all time. Wal \((0, \theta)\) also equals sal \({ }^{2}(n, \theta)\) or \(\operatorname{cal}^{2}(n, \theta)\). Thus, each of the Equations \((2-17),(2-18)\), and \((2-19)\) becomes
\[
\begin{equation*}
\int_{0}^{T} \text { wal }(0, \theta) d t=T \text { when } m=n=0 \tag{2-20}
\end{equation*}
\]

Therefore, according to Equation (2-1), Walsh functions are orthogonal over a period \(T\), with respect to a weighting
function, \(r(t)=1.0\).
Consequently, as in Equation (2-13) for the Fourier series, the function \(f(t)\) may be expanded into a sum of mutually orthogonal series as follows:
\[
f(t)=A_{0}+\sum_{n=1}^{\infty} A_{n} \operatorname{cal}(n, \theta)+\sum_{n=1}^{\infty} B_{n} \operatorname{sal}(n, \theta) \quad(2-21)
\]
\(A_{o}\) is the average value of \(f(t)\). The convention which has been adopted in this thesis is that capital letters, \(A\) and \(B\), are used for all coefficients of the Walsh-Fourier series, whereas the lower case letters, a and b, apply to the Fourier series coefficients.

In the expression in Equation (2-11), the general orthogonal function, \(\Phi_{n}(t)\), for the Fourier series, consists of a function which contains both sine and cosine terms. When \(n=0\), the sine portion is zero leaving cos 0 equal to 1 . Therefore \(\phi_{0}(t)\) should be 1 for the Fourier series. However, so that the general expression for the coefficient would apply equally well to all terms, \(\phi_{0}(t)\) was arbitrarily set at \(1 / 2\). For the Walsh-Fourier series, when \(n=0, \Phi_{0}(+)\) becomes wal \((0, \theta)\). Wal \((0, \theta)\) can be used directly to find the coefficient \(A_{0}\) and no arbitrary value need by assigned to \(\phi_{0}(t)\).

Again, following the procedure of Equations (2-3) through (2-5), the coefficients of the Walsh-Fourier series may be obtained. To evaluate \(A_{0}\), multiply both sides of Equation (2-2!) by \(\Phi_{0}(t)\), or wal \((0, \theta)\), and integrate over one period. Since wal \((0, \theta)=1\) for allt,
\[
\begin{aligned}
\int_{0}^{T} f(t) d t= & \int_{0}^{T} A_{0} d t+\int_{0}^{T}\left(\sum _ { n = 1 } ^ { \infty } \left[A_{n} c a l(n, \theta)\right.\right. \\
& \left.\left.+B_{n} \operatorname{sal}(n, \theta)\right]\right) d t
\end{aligned}
\]

All terms in the second integral on the right side integrate to zero. Therefore,
\[
\int_{0}^{T} f(t) d t=\int_{0}^{T} A_{0} d t=A_{0} T
\]
and
\[
\begin{equation*}
A_{0}=\frac{1}{T} \int_{0}^{T} f(t) d t \tag{2-22}
\end{equation*}
\]

To evaluate the remainder of the \(A_{n}\) coefficients, multiply both sides of Equation (2-21) by cal \((n, \theta)\) and integrate.
\[
\begin{aligned}
\int_{0}^{T} f(t) \operatorname{cal}(n, \theta) d t= & \int_{0}^{T}\left\{A_{0} \operatorname{cal}(n, \theta)\right. \\
& +\operatorname{cal}(n, \theta) \sum_{m=1}^{\infty}\left[A_{m} \operatorname{cal}(m, \theta)\right. \\
& \left.\left.+B_{m} \operatorname{sal}(m, \theta)\right]\right\} d t
\end{aligned}
\]

According to Equations (2-17), (2-18), and (2-19), a!! terms on the right will integrate to zero except for the product of the cal terms when \(n=m\). Then,
\[
\begin{equation*}
\int_{0}^{T} f(t) \operatorname{cal}(n, \theta) d t=A_{n} \int_{0}^{T} \operatorname{cal}^{2}(n, \theta) d t=A_{n} T \tag{2-23}
\end{equation*}
\]

Therefore, \(\quad A_{n}=\frac{1}{T} \int_{0}^{T}(t) \operatorname{cal}(n, \theta) d t\)
To evaluate the \(B_{n}\) coefficients, the same procedure as above is followed except that now both sides of Equation (2-21) are multiplied by sal (n, \(\theta\) ). Upon integration, all terms but the sal \({ }^{2}(n, \theta)\) term will disappear, so that
\[
\begin{equation*}
B_{n}=\frac{1}{T} \int_{0}^{T} f(t) \operatorname{sal}(n, \theta) d t \tag{2-24}
\end{equation*}
\]

The Walsh-Fourier series expansion of \(f(t)\) is now complete with the coefficients defined. As a summary,
\[
\begin{equation*}
f(t)=A_{0}+\sum_{n=1}^{\infty} A_{n} \operatorname{cal}(n, \theta)+\sum_{n=1}^{\infty} B_{n} \operatorname{sa!}(n, \theta) \tag{2-21}
\end{equation*}
\]
where
\[
\begin{equation*}
A_{0}=\frac{1}{T} \int_{0}^{T} f(t) d t \tag{2-22}
\end{equation*}
\]
\[
\begin{equation*}
A_{n}=\frac{1}{T} \int_{0}^{T} f(t) \operatorname{cal}(n, \theta) d t \tag{2-23}
\end{equation*}
\]
and
\[
\begin{equation*}
B_{n}=\frac{1}{T} \int_{0}^{T} f(t) \operatorname{sal}(n, \theta) d t \tag{2-24}
\end{equation*}
\]

Conversion of Walsh-Fourier to Fourier Series
In order to make use of Walsh functions in an instrument that is designed to calculate the fourier series of a waveform which is being sampled, it must be possible to convert a Walsh-Fourier series representation of the wave into an equivalent Fourier series. This is accomplished by using the principle of superposition. Each term of the Walsh-Fourier series has its own Fourier series. When these series are added together, and the like terms are grouped; then the Fourier series of the waveform being analysed is the result.

The Walsh-Fourier series representation of a periodic
wave is
\[
\begin{equation*}
f(t)=A_{0}+\sum_{m=1}^{\infty} A_{m} \operatorname{cal}(m, \theta)+\sum_{m=1}^{\infty} B_{m} \operatorname{sal}(m, \theta) \tag{2-21}
\end{equation*}
\]

The Fourier series of the same wave is
\[
\begin{equation*}
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n \theta+\sum_{n=1}^{\infty} b_{n} \sin n \theta \tag{2-13}
\end{equation*}
\]

Since Equation (2-21) equals (2-13) for the same wave,
\[
A_{0}=a_{0} / 2
\]
and
\[
\begin{align*}
\sum_{m=1}^{\infty} A_{m} \operatorname{cal}(m, \theta)+\sum_{m=1}^{\infty} B_{m} \operatorname{sal}(m, \theta)= & \sum_{n=1}^{\infty} a_{n} \cos n \theta \\
& +\sum_{n=1}^{\infty} b_{n} \sin n \theta \tag{2-25}
\end{align*}
\]

The Fourier series of cal \((m, \theta)\) and \(\operatorname{sal}(m, \theta)\), respectively, are
\[
\begin{align*}
& \operatorname{cal}(m, \theta)=\sum_{n=1}^{\infty} a_{n}(c m) \cos \cdot n \theta  \tag{2-26}\\
& \operatorname{sal}(m, \theta)=\sum_{n=1}^{\infty} b_{n}(s m) \sin n \theta \tag{2-27}
\end{align*}
\]
where \(a_{n}(c m)\) and \(b_{n}(s m)\) denote the \(n\)th coefficient of the Fourier series of cal \((m, \theta)\) and sal \((m, \theta)\), respectively.

Substituting Equations (2-26) and (2-27) into Equation (2-25), one obtains
\[
\begin{align*}
& \sum_{m=1}^{\infty} A_{m} \sum_{n=1}^{\infty} a_{n}(c m) \cos n \theta+\sum_{m=1}^{\infty} B_{m} \sum_{n=1}^{\infty} b_{n}(\operatorname{sm}) \sin n \theta \\
= & \sum_{n=1}^{\infty} a_{n} \cos n \theta+\sum_{n=1}^{\infty} b_{n} \sin n \theta \tag{2-28}
\end{align*}
\]

In Equation (2-28), let \(n\) have a particular value \(N\). Then the equation becomes,
\[
\begin{align*}
& \sum_{m=1}^{\infty} A_{m} a_{N}(c m) \cos N \theta+\sum_{m=1}^{\infty} B_{m} b_{N}(s m) \sin N e \\
= & a_{N} \cos N \theta+b_{N} \sin N \theta \tag{2-29}
\end{align*}
\]

Coefficients of the \(\cos N \theta\) and \(\sin N \theta\) terms, respectively, can then be equated.
\[
\begin{align*}
& a_{N}=\sum_{m=1}^{\infty} A_{m} a_{N}(c m)  \tag{2-30}\\
& b_{N}=\sum_{m=1}^{\infty} B_{m} b_{N}(s m) \tag{2-31}
\end{align*}
\]

Therefore, the Fourier series of \(f(t)\), in terms of Walsh-Fourier series coefficients, is:
\(f(t)=A_{0}+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty}\left(A_{m} a_{n}(c m) \cos n \theta+B_{m} b_{n}(\operatorname{sm}) \sin n \theta\right)\)
Appendix \(B\) contains calculations for numerical values of the Fourier series of several walsh functions and shows how these
values are applied to a conversion from a Walsh-Fourier to a Fourier series.

\section*{111. Concepts of Instrument Design}

The apparatus to be designed must be capable of providing information leading readily to the values of the Walsh-Fourier coefficients, \(A_{o}, A_{n}\), and \(B_{n}\), for a periodic input signal which has a low fundamental frequency, say, under 60 Hz . It must be able to collect all the necessary data in as few cycles of the input signal as possible. This chapter is devoted to a description of how information on the input signal is manipulated in order to yield the desired output information.

The Walsh-Fourier coefficients of a periodic wave are calculated by using the following equations;
\[
\begin{align*}
& A_{0}=\frac{1}{T} \int_{0}^{T} f(t) d t  \tag{2-22}\\
& A_{n}=\frac{1}{T} \int_{0}^{T} f(t) \operatorname{cal}(n, \theta) d t  \tag{2-23}\\
& B_{n}=\frac{1}{T} \int_{0}^{T} f(t) \operatorname{sal}(n, \theta) d t \tag{2-24}
\end{align*}
\]
where \(T\) is the period of the input signal, \(f(t)\).
The instrument is digital, so that data from a wave is in the form of quantized samples. Since discrete samples are used to describe \(f(t)\), a true integration as indicated by Equations \((2-22)\) to \((2-24)\) is impossible. These equations must be changed into a summation. If there are \(M\) samples of \(f(t)\) during the period T,
\[
\begin{equation*}
d t=\frac{T}{M} \tag{3-1}
\end{equation*}
\]
and the equations (2-22) to (2-24) may be rewritten as
\[
\begin{equation*}
A_{0}=\frac{1}{M} \sum_{m=1}^{M} f(t)_{m} \tag{3-2}
\end{equation*}
\]
\[
\begin{equation*}
A_{n}=\frac{1}{M} \sum_{m=1}^{M} f(t)_{m} \operatorname{cal}(n, \theta)_{m} \tag{3-3}
\end{equation*}
\]
\[
\begin{equation*}
B_{n}=\frac{1}{M} \sum_{m=1}^{M} f(t)_{m} \operatorname{sal}(n, \theta)_{m} \tag{3-4}
\end{equation*}
\]
where \(f(t)_{m}\), cal \((n, \theta)_{m}\), and sal \((n, \theta)_{m}\) are the values of the respective functions at the time of the mth sample.

The most obvious way to process a continuous wave, \(f(t)\), for use in a digital instrument, is to use an analogue-to-digital converter. It is the nature of this device to sample \(f(t)\), to quantize the samples into various levels, and to use a straight binary code for level designation. The A/D converter uses a binary number of levels. Quantization of the waveform means that all of the samples within the range of voltages specified for any given level are given the same value. For example, in Figure lll-1 on page 22 , if the A/D converter has a range of 0 to \(+V m a x\) volts and has \(p\) quantization levels, then the signal, \(f(t)\), is considered to have the quantized value vmax \(\left(\frac{2 r-1}{2 p}\right)\) volts when \(f(t)\) is between the levels \(r-1\) and \(r\). Figure lll-l shows that \(f(t)\) lies within this range during the time \(t_{1}\) to \(t_{2}\). However, since the \(A / D\) converter gives only a binary-coded signal for each sample, any sample of the wave, \(f(t)_{m}\), which is taken during the time \(t_{1}\) to \(t_{2}\), is represented by the binary value


Figure lll-I. Quantization
of \(r-1\). Let this value be designated by \(f(t)_{q m}\). To change the coded value back into a voltage value, it must be multiplied by \(\frac{\text { Vmax. }}{P}\). Thus
\[
\begin{equation*}
f(t)_{m}=\frac{V_{m a x}}{P} f(t)_{q m} \tag{3-5}
\end{equation*}
\]

The analogue-to-digital converter which is being used can accept waveforms which have voltage extremes of zero to +10 volts. An \(A C\) input signal, limited to \(\pm 5\) volts, would need to be given a +5 volt DC shift in order to be processed by the \(A / D\) converter. Alternatively, the \(A C\) signal could be rectified, in which case a \(\pm 10\) volt signal could be handled without requiring a DC shift. Without rectification, the number of quantization levels would have to be doubled to provide the same degree of accuracy as in the rectified case. This would necessitate handing an additional binary bit and would consequently slow down the sample processing. Further difficulties would be encountered in changing the binarycoded output of the \(A / D\) converter so that the codes given to equivalent levels above and below the zero level would be identical. Therefore, it is preferable to rectify the input signal. In this way, samples with the same absolute value are automatically given the same coding. However, an additional signal is necessary to indicate the sign of f(t). A logic "I" is used to represent the positive portion of the signal and a logic "O" is used for the negative portion. Now \(f(t)_{m}\) can be rewritten as
\[
\begin{equation*}
f(t)_{m}=\frac{V m a x}{P}\left|f(t)_{q m}\right| \operatorname{sgn} f(t)_{m} \tag{3-6}
\end{equation*}
\]

In addition to changing the input into a series of binary-coded samples, the instrument must provide an array of Walsh functions of the sequencies necessary to calculate all the desired Walsh-Fourier coefficients. The Walsh functions must have the same period and be. in phase with the periodic input wave. The first cycle of the input can be used to determine the period. This information is required so that the Walsh functions can be generated correctly during the second cycle. Logic ''s and \(^{\prime}\) 's are used to represent the positive and negative portions, respectively, of the Walsh functions.

Sampling of the input starts at the beginning of the second period. Figure \(111-2\) on page 25 , illustrates an example of a periodic signal, \(f(t)\), and the signais which are required to find the Walsh-Fourier coefficient \(B_{3}\) of \(f(t)\). Part (a) of the Figure contains two cycles of the waveform to be analyzed. This input is broken down into two portions, \(|f(t)|\) and \(s g n f(t)\), illustrated in part \((b)\). The function sal \((3, \theta)\) is the Walsh function by which \(f(t)\) must be multiplied to obtain \(B_{3}\). The actual function and its representative signal, as produced in the instrument, \(\operatorname{sgn} \operatorname{sal}(3, \theta)\), are shown in parts (c) and (d), respectively. The Walsh functions are not produced until the second cycle of \(f(t)\), since the first cycle is required to determine the period of the input.

A combinational logic circuit is needed to produce the signal \(\operatorname{sgn} f(t) \operatorname{sgn} \operatorname{sal}(n, \theta)\). The proper signal for the example in Figure ll|-2 is shown in part (e). Thus, the


Figure III-2. Example of Functions Used to Calculate \(\mathrm{B}_{3}\)
samples, \(\left|f(t)_{q m}\right|\), taken from the wave \(|f(t)|\), are added to or subtracted from an accumulation of previous samples, the addition or subtraction being dependent on the value of the signal \(\operatorname{sgn} f(t) \operatorname{sgn} \operatorname{sal}(n, \theta)\) at the time the samples are taken. The instrument has to be able to accumulate a summation for each of the Walsh-Fourler coefficients that is desired. The number of samples that are made during one period must also. be counted.

The final forms in which the Equations (2-22) to (2-24) are written so that they can be processed by the digital instrument are;
\[
\begin{aligned}
& A_{0}=\frac{V m a x}{p M} \sum_{m=1}^{M}\left|f(t)_{q m}\right| \operatorname{sgn} f(t)_{m} \\
& A_{n}=\frac{V m a x}{p M} \sum_{m=1}^{M}\left|f(t)_{q m}\right| \operatorname{sgn} f(t)_{m} \operatorname{sgn} \operatorname{cal}(n, \theta)_{m}(3-8) \\
& B_{n}=\frac{V m a x}{p M} \sum_{m=1}^{M}\left|f(t)_{q m}\right| \operatorname{sgn} f(t)_{m} \operatorname{sgn} \operatorname{sal}(n, \theta)_{m}(3-9)
\end{aligned}
\]

Since \(p\) is a binary number and the summations are performed in binary, the instrument can easily perform the division by p by ignoring the number of least significant binary bits of the summation as are used to represent \(p\) in the binary system. Therefore, in the instrument that is described in this thesis, only the factor \(\frac{V m a x}{M}\) is not incorporated into the calculations.

However, if the readout for each of the Walsh-Fourier coefficients is in decimal code, each value need only be divided by \(M\) and the decimal point of the answer shifted one place to the right, since \(\operatorname{Vmax}=10\), in order to obtain the proper values of the Walsh-Fourier coefficients. The following
```

chapter discusses in detail the actual instrumentation which
has been designed to realize Equations (3-7) to (3-9).

```

\section*{IV. Instrumentation}

In the preceeding two chapters; the mathematics and the concepts of applying those mathematics to the development of an instrument which provides the Walsh-Fourier coefficients of a periodic signal have been formulated. This chapter describes the proposed design of the instrument and the construction of two portions, the walsh function generator and the pulse burst generator, both of which have been completed and tested. The majority of the logic systems described in this chapter, whether or not they have been constructed in final form, have been simulated on a Digital Equipment Corporation Computer Lab. Sections of this chapter are devoted to each of the following topics;
(a) Complete System,
(b) \(A / D\) Conversion,
(c) Walsh Function Generator,
(d) Pulse Burst Generator,
(e) Sample Processing System.

Certain portions of the instrument, such as a precision rectifier and a Schmitt trigger, are not described in detail, since these are commercially available items.

Complete System

The block diagram of the complete system is shown in Figure \(I V-1\) on page 29. Due to the type of \(A / D\) converter


Figure IV-1. System Block Diagram
which is being used, the input signal, \(f(t)\), is limited to the range of \(\pm 10\) volts. The input is directed along two paths. One of these leads to the conversion of the input into a series of quantized, binary-coded samples. The other path leads to controls, which use information concerning the period of the input, and process the binary-coded samples from the first path.

The first path consists only of two major items, a rectifier, and an \(A / D\) converter. Rectification is positive so that the input to the \(A / D\) converter is restricted to 0 to +10 volts. The output of the rectifier, \(|f(t)|\), is sampled by the converter. The samples, \(\left|f(t)_{m}\right|\), are quantized and given a binary coding. Each binary digit of the coding appears on a separate output lead. Since the first cycle of the input signal is used only to determine the period of the fundamental frequency, the output logic of the \(A / D\) converter is designed to provide sample information during the second cycle only. A counter is used to total the number of samples. Concurrently, in the second input path, the input signal passes through a Schmitt trigger which detects zero voltage crossings. This information is necessary because all of the system operations are to begin with the first positivegoing zero crossing of the input. The output of the schmitt trigger is a logic "l" when \(f(t)\) is positive, and a logic "0" when \(f(t)\) is negative, thus representing the function sgn \(f(t)\).

Two parts of the system are controlled by sgn \(f(t)\).
First, there is a pulse burst generator. It uses the signal
from the schmitt trigger to calculate the period of one cycle of the input, measured between successive positive-going zero crossings, and uses that information to produce a series of pulses which feed into the Walsh function generator. This generator, which operates only during the second cycle of the input, produces an array of Walsh functions, from wal \((0, \theta)\) to sal \((32, \theta)\) and cal ( \(31, \theta\) ), which have the same period and phase as the incoming signal. Since logic units are used, the outputs of the Walsh function generator are really representations of the sign of the Walsh functions, or sgn wal \((n, \theta)\).

The second place that \(\operatorname{sgn} f(t)\) is used is in conjunction with each of the Walsh functions. By means of simple combinational logic, an array of signals are produced to represent
\(\operatorname{sgn} f(t) \operatorname{sgn}\) wal \((n, \theta)\)
as required by Equations (3-7) to (3-9).
The final stage of the instrument contains counters, one for each of the Walsh-Fourier coefficients. For any particular coefficient, addition or subtraction of the samples from the \(A / D\) converter is determined by the signal sgn \(f(t)\) sgn wal \((n, \theta)\). Each counter is designed to divide the accumuIation of sample values by the number of quantization levels. Thus, the final stages of the counters hold the quantities determined by each of the following equations:
\[
\begin{align*}
& A_{0}=\frac{1}{p} \sum_{m=1}^{M}\left|f(t)_{q m}\right| \operatorname{sgn} f(t)_{m}  \tag{4-1}\\
& A_{n}=\frac{1}{p} \sum_{m=1}^{M}\left|f(t)_{q m}\right| \operatorname{sgn} \operatorname{cal}(n, \theta)_{m} \tag{4-2}
\end{align*}
\]
\[
\begin{equation*}
B_{n}=\frac{1}{p} \sum_{m=1}^{M}\left|f(t)_{q m}\right| \operatorname{sgn} \operatorname{sal}(n, \theta)_{m} \tag{4-3}
\end{equation*}
\]

The above equations differ from Equations (3-7) to (3-9) only by the factor \(\frac{V m a x}{M}\). \(V m a x=10\), and \(M\) is supplied by a separate counter. It is left to the operator of the instrument to multiply Equations \((4-1)\) and \((4-3)\) by \(\frac{10}{M}\). \(M\) is also used to determine the fundamental frequency of the input. If the sample frequency is \(f_{s}\), then the time between samples is \(1 / f_{s}\). The time for \(M\) samples is \(M / f_{s}=T\). Therefore, the fundamental frequency of the input \(f_{1}=f_{s} / M\).

The instrument was designed to the point where the Walsh-Fourier coefficients of a low-frequency periodic input wave could be obtained readily. In order to obtain the Fourier series of the input, the equations derived in Appendix \(B\) can be used.

\section*{A/D Conversion}

After rectification of the input has been performed, the waveform being analysed must be sampled and quantized. The samples are to be given a binary code, with each bit of the code appearing on a separate lead. Several methods of analogue-to-digital conversion have been made realizable on modules produced by Digital Equipment Corporation (D.E.C.). These modules are described in the D.E.C. "Digital Logic Handbook". In all cases, the methods involve formation of quantized analogue voltages corresponding to the digital states, and comparison of these with the incoming analogue
signal. The principal types of \(A / D\) conversion are;
(a) Simultaneous conversion,
(b) Counter conversion,
(c) Continuous conversion,
(d) Successive approximation conversion.

Considering speed, accuracy, and cost, it has been decided to use 6-bit successive-approximation conversion. D.E.C. supplies a complete lo-bit successive approximation, A/D converter with a built-in reference supply (Model number A8OI). The circuit is arranged so that any number of bits, up to 10 , may be used. The complete converter is contained on one D.E.C. double logic module. The block diagram of the A/D converter is shown in Figure \(I V-2\) on page 34 . The actual circuit diagram is illustrated in Figure \(1 V-3\) on page 35. Conversion by successive approximation is realized by a series of decisions on approximations that converge rapidly on the correct digital state. Since an example of \(A / D\) conversion with 5 bits becomes rather lengthy, only a i6-level, or 4-bit, case is described. The first approximation would be the eight level, that is, state l000. The analogue conversion of this state is compared with the input, and if it exceeds the input, the eight-weighted bit is reset to "0". If the approximation is too small, the bit remains a "।". The first 4 bits of the register, shown in Figure IV-3 by the flip-flops El4 and El3, now contain either 1000 or 0000. Next, the four-weighted bit is set to "।", giving an approximation of either \(4(0100)\) or \(12(1100)\), depending on the first decision. A second decision, similar to the first is then


Figure \(1 V-2\). A801 10-Bit Analogue-to-Digital Converter.

performed on this approximation. This cycle.i.s repeated for a number of decisions equal to the desired number of bits, for this example, 4. Figure \(1 V-4\) on page 37 shows the state diagram for a 4-bit successive approximation conversion. The numbers in the circles are states which represent the levels about which the decisions are made, and the numbers over the leaders show the final states of the binaries involved.

The determination of each bit occurs serially in time, the value of the most signifigant bit being determined first. Normally, the entire \(A / D\) conversion is completed before any output from the converter is used. However, with reference to the sample processing method which is described in a later section of this chapter, it is advantageous to process each bit serially in time as well. A minor addition to the \(A / D\) converter circuit in Figure \(\operatorname{IV}-3\) is needed to obtain the desired outputs.

After the start pulse is applied to input AH, it is propagated through the circuit so that after each decision, the pulse sets the flip-flop which is to hold the result of that decision and also presets the flip-flop involved in the next decision. Extra outputs can be added to tap this pulse at the appropriate points, as indicated by Equations (4-4) to (4-9), and use them for control purposes, thus yielding information on each digit of the \(A / D\) converter output very shortly after it is available.

For example, with the required 6-bit conversion, when the pulse reaches lead 5 of the logic module E6 (let this


Figure 1 V-4. State Diagram for 4-Bit
Successive-Approximation Conversion
point be called E6-5), in the circuit in figure \(1 V-3\), it is used to set the flip-flop which determines the most signifigant bit (let this bit be called P32). The pulse also presets the next flip-flop and is then passed through a delay circuit, containing delay elements \(C_{9}\) and \(R_{9}\), while the next decision is being made. After the pulse has passed through the delay circuit to set the next flip-flop, alloperations concerning the first bit have been completed so.that at that time the pulse can be combined with the output of the first flip-flop (AE at the output of El4) to yield P32. The logic required is simply an AND gate. A/D converter output terminals which are used to obtain the information on each of the bits serially in time are then
\begin{tabular}{lll}
\((A E)(E 5-14)\) & for \(P_{32}\) & \((4-4)\) \\
\((A D)(E 5-5)\) & for \(P_{16}\) & \((4-5)\) \\
\((A N)(E 4-14)\) & for \(P_{8}\) & \((4-6)\) \\
\((A M)(E 4-5)\) & for \(P_{4}\) & \((4-7)\) \\
\((B L)(E 3-14)\) & for \(P_{2}\) & \((4-8)\) \\
\((B R)(E 3-5)\) & for \(P_{1}\) & \((4-9)\)
\end{tabular}
as labelled in the circuit diagram in Figure \(1 V-3\). At the end of each complete \(A / D\) conversion, a pulse from terminal E3-5 is fed into a counter which records the number of samples, \(M\), that have been taken.

The A801 A/D converter must be triggered by a pulse which has a width between 100 and 500 nsec . The complere 10-bit conversion requires \(10 \mu s e c\). With 6-bit conversion requiring approximately \(6 \mu s e c .\), and allowing roughly
another l \(\mu s e c\). to complete the sample processing, the maximum sampling rate is about 140 kHz . For the analysis of extremely long-period waves, a sampling rate as low as, say, 1 Hz . may be used. Since the first cycle of the input is used to determine the period, samples must start only at the beginning of the second cycle and stop at the end of that cycle.

A scheme for the complete system of controls for the sampling rate, the \(A / D\) converter with its output logic, and the sample counter is shown in Figure \(1 V-5\) on page 40. An M401 variable clock, supplied by D.E.C., supplies the pulses to start the \(A / D\) conversion. Depending on the connection between \(N 2\) and \(S 2, T 2\), or \(P 2\), the clock rate can be varied from 175 kHz . down to 175 Hz . Each of three ranges can be set to certain rates, say, \(100 \mathrm{kHz}, 10 \mathrm{kHz}\), and ! kHz. respectively. To obtain lower sampling rates, let the output be set to the 1 kHz, position. Three decade counters can be added in series to the output, D2. The outputs of each of the 3 counters can be tapped to produce pulses at rates of 100,10 , and 1 Hz., respectively. The rotary switch that is used to obtain each of the pulse rates is shown in figure IV-5.

The leads, FFI, \(\overline{\mathrm{FF}}\), and FF2, to the input and output logic of the counter come from the pulse burst generator described in a later section. This logic allows the first A/D conversion "start" pulse to arrive just after the second cycle of the input has begun. The "sample start" pulses end when the second cycle is over.

One small modification is necessary with the above system of providing \(A / D\) start pulses. Whereas the start


Figure \(\mathrm{IV}-5\). A/D Conversion
pulses must have a width of 100 to 500 nsec., the maximum pulse width from an M401 clock is 80 nsec. Consequently, the clock pulse width must be increased. The pulse stretching circuit in Figure \(1 V-5\) uses a NAND gate with an open collector so that a \(2.2 \mathrm{~K} \Omega\) resistor and a 680 pf . capacitor can be attached to increase the rise time of the inverted pulse. The second NAND gate re-inverts and sharpens the pulse. This circuit has been found to maintain the pulse width at approximately 350 nsec. in the range from 1 Hz . to over 100 kHz .

\section*{Walsh Function Generator}

While samples of the second cycle of the periodic input wave are being taken, a Walsh function for each WalshFourier coefficient that is to be determined is produced with the same phase and period as the incoming wave. The circuitry to produce the Walsh functions up to sal( \(32, \theta\) ) and \(\operatorname{cal}(31, \theta)\) has been designed.. However, only that portion of the generator which provides up to sal \((24, \theta)\) and \(c a l(23, \theta)\) has as yet been constructed.

Since Walsh functions are bipolar, sequences of logic "I"'s and "0"'s can be used to represent the positive and negative portions, respectively, of the functions. For the sake of simplicity in determining the logic required to produce the Walsh functions, calculations are shown only for functions up to and including sal \((8, \theta)\). In this section of the thesis only, a letter designation is given to each of the Walsh functions.

Table \(\mid V-1\) on page 42 shows the binary sequences used
\begin{tabular}{cll} 
Letter & Walsh & Binary Sequence \\
Designation & Function & sal \((1, \theta)\) \\
b & cal \((1, \theta)\) & 1111111100000000 \\
c & sal \((2, \theta)\) & 1111000000001111 \\
d & cal \((2, \theta)\) & 1111000011110000 \\
e & sal \((3, \theta)\) & 1100001111000011 \\
f & cal \((3, \theta)\) & 1100001100111100 \\
h & cal \((4, \theta)\) & 1100110000110011 \\
i & sal \((5, \theta)\) & 1100110011001100 \\
j & cal \((5, \theta)\) & 1001100110011001 \\
k & sal \((6, \theta)\) & 1001011001101001 \\
l & sal \((6, \theta)\) & 1001011010010110 \\
m & cal \(7, \theta)\) & 1010010110100101 \\
n & sal \((8, \theta)\) & 1010010101011010 \\
o & & 1010101010101010
\end{tabular}

Table IV-I. Binary Sequence Representation of Walsh Functions
to represent sal \((1, \theta)\) to sal \((8, \theta)\). Since sal( \(1, \theta)\), sal \((2, \theta)\), sal \(\left.(4, \theta), \ldots-\operatorname{sal}^{k}, \theta\right)\) are rectangular waves having unity mark/space ratio, they can easily be produced by the outputs of a binary down counter. Figure IV-6 on page 44 shows the circuit and its input and outputs for the functions a, \(c, g\), and 0 , which are \(\operatorname{sal}(1, \theta), \operatorname{sal}(2, \theta), \operatorname{sal}(4, \theta)\) and \(\operatorname{sal}(8, \theta)\), respectively. The pulse input comes from the pulse burst generator that is described in the next section of this chapter.

All Walsh functions begin in the positive state. This is achieved by initially clearing each of the flip-flops and using the "O" outputs of the flip-flops to represent the positive functions \(a, c, g\), and o. The "|" outputs produce negative Walsh functions. Since all the positive functions are initially in the "|" state, the first pulse from the pulse burst generator should arrive not at the beginning of the second cycle, but \(T / 16\) seconds after the cycle has started. Once the basic sal \(\left(2^{k}, \theta\right)\) functions, \((k=1,2,3-\cdots-)\), are produced, all the other Walsh functions can be constructed by combinational logic involving these basic functions.

The Karraugh maps for the combinational logic to produce Walsh functions, derived from Table \(1 V-1\), are shown in Figure lV-7 on page 45. From these maps, the logic expressions for functions a to o are as follows;
\[
\begin{align*}
& a=a  \tag{4-10}\\
& b=a c+\bar{a} \bar{c}  \tag{4-11}\\
& c=c  \tag{4-12}\\
& d=c g+\bar{c} \bar{g} \tag{4-13}
\end{align*}
\]



Figure \(1 \mathrm{~V}-6\). Production of \(\operatorname{sal}\left(2^{k}, \theta\right)\)
\begin{tabular}{|llllllllllllllll|}
\hline \(1 n p u t s\) & 0 & \(u\) & \(p\) & \(u\) & \(f\) & & & & & & & \\
\hline\(a\) & \(c\) & \(g\) & 0 & \(b\) & \(d\) & \(e\) & \(f\) & \(h\) & \(i\) & \(j\) & \(k\) & 1 & \(m\) & \(n\) \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline
\end{tabular}


Figure IV-7. Karnaugh Maps for Walsh Function Logic


Figure \(1 \mathrm{~V}-7\). (continued) Karnaugh Maps for Walsh Function Logic
\[
\begin{align*}
& e=a c g+\bar{a} \bar{c} g+\bar{a} c \bar{g}+a \bar{c} \bar{g}=a d+\bar{a} \bar{d}  \tag{4-14}\\
& f=a g+\overline{a g}  \tag{4-15}\\
& g=g  \tag{4-16}\\
& h=g o+\bar{g} \bar{o}  \tag{4-17}\\
& \text { (4-17) } \\
& i=a g o+a \bar{g} \bar{o}+\bar{a} \bar{g} \rho+\overline{a g} \bar{o}=a h+\bar{a} \bar{h}  \tag{4-18}\\
& j=a c g o+a \bar{c} g \bar{o}+a \bar{c} \bar{g} o+a c \bar{g} \bar{o}+\bar{a} c \bar{g} o+\bar{a} c g \bar{o} \\
& +\overline{\mathrm{a}} \overline{\mathrm{cg}} \mathrm{o}+\overline{\mathrm{a}} \overline{\mathrm{cg}} \bar{o}=c i+\bar{c} \bar{i}  \tag{4-19}\\
& k=c g o+\overline{c g o} o+\overline{c g o}+c \bar{g} \bar{o}=c h+\overline{c h}  \tag{4-20}\\
& 1=c o+\bar{c} \bar{o}  \tag{4-21}\\
& m=a c o+a \bar{c} \overline{0}+\bar{a} c \bar{o}+\bar{a} \bar{c} o=a l+\bar{a} \bar{l}  \tag{4-22}\\
& n=a o+\bar{a} \bar{o}  \tag{4-23}\\
& 0=0 \tag{4-24}
\end{align*}
\]

It becomes readily apparent that all the Walsh functions, except the sal \(\left(2^{k} \theta\right)\) functions, can be produced by coincidence logic gates. For example, function b consists of terms involving functions a and \(c\). Therefore, b is produced by the coincidence of and \(c\), that is ac \(+\bar{a} \bar{c}\). (This is the complement of \(a \in c\) ). Similarly, functions \(d\) and \(f\) are produced by \(c g+\bar{c} \bar{g}\) and ag \(+\bar{a} \bar{g}\), respectively. Each of the above 3 functions consist of terms involving only 2 other functions. The function e, however, has terms containing a, c, and g. It can easily be shown that e could be produced by the coincidence of any one of \(a, c\), or \(g\) and the Walsh function which contains all of the remaining functions. That is, e could be produced by ad \(+\bar{a} \bar{d}, c f+\bar{c} \bar{f}\), or \(g b+\bar{g} \bar{b}\). \(1+\) is apparent that when 3 or more basic sal( \(\left.2^{k}, \theta\right)\) functions are contained in the expressions for a Walsh function, several
coincidence gates could be used to produce the same function. In such cases, in determining which coincidence gate to use to form a particular Walsh function, it was decided to involve a sal \(\left(2^{k}, \theta\right)\) function and an appropriate Walsh function which has a sequency lower than the desired function. Table |V-|| on pages 49 and 50 lists the Walsh functions, their letter designations, the functions involved in the logic expressions for the Walsh functions, and the most desirable coincidence expression for each function. (Only the function T, of the functions whose terms contain 3 or more letters, contains an expression involving a higher sequency function. This was resorted to only in order to correct an error in the construction of the Walsh function generator.)

The information in Table \(|V-1|\) has been used to construct a circuit which generates all the walsh functions from a to \(U\), that is, sal \((1, \theta)\) to \(\operatorname{sal}(24, \theta)\). Texas Instruments TTL integrated circuits were used throughout the circuit. They were mounted on 3 Avnet \(H 5937\) circuit boards, each of which can hold up to 20 l4-pin dual-in-line integrated circuits and has 22 input-output terminals on each side.

Schematic diagrams of the Walsh function generator are shown in figures \(1 V-8\) to \(\mid V-10\) on pages 51 to 53 . Each of the figures displays the circuit contained on one board. Therefore, the labels on each diagram pertain only to the input-output terminals and the integrated circuits positions on the corresponding board. The input-output terminals are labelled with the appropriate number or letter enclosed in

Table |V-I|. Logic Expressions for Walsh Function Generation
\begin{tabular}{lll} 
Letter & Walsh & Basic Functions Involved Logic Expression \\
Designation Function in Walsh Function Logic for Walsh Functions
\end{tabular}

\footnotetext{
Terms
}

```

Table |V-1|. (cont'd)
Logic Expressions for Walsh Function Generation

```
Letter Walsh Basic Functions Involved Logic Expression
Designation Function in Walsh Function Logic for Walsh Functions
Terms
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & a & \(c\) & 9 & 0 & E & \(X\) & & \\
\hline T & \(\operatorname{cal}(23, \theta)\) & a & & & 0 & E & \(x\) & \(a U+\bar{a} \bar{U}\) & \\
\hline U & sal ( \(24, \theta\) ) & & & & 0 & E & \(x\) & \(O F+\bar{O} \bar{F}\) & \\
\hline V & \(\operatorname{cal}(24, \theta)\) & & & & 0 & & \(X\) & \(O X+\bar{O} \bar{X}\) & \\
\hline W & \(\operatorname{sal}(25, \theta)\) & \(a\) & & & 0 & & \(x\) & \(a V+\bar{a} \bar{V}\) & \\
\hline \(Y\) & cal \((25, \theta)\) & a & C & & 0 & & \(X\) & \(c W+\bar{c} \bar{W}\) & \\
\hline Z & sal \((26, \theta)\) & & C & & \(\bigcirc\) & & \(X\) & \(c V+\bar{c} \bar{V}\) & \\
\hline \(\alpha\) & \(\operatorname{cal}(26, \theta)\) & & C & 9 & \(\bigcirc\) & & \(X\) & \(g Z+\overline{g Z}\) & \\
\hline \(\beta\) & sal ( \(27, \theta\) ) & a & C & g & \(\bigcirc\) & & \(x\) & \(a \boldsymbol{\alpha}+\bar{a} \bar{\alpha}\) & \\
\hline \(\gamma\) & cal \((27, \theta)\) & a & & g & \(\bigcirc\) & & \(X\) & \(g W+\bar{g} \underline{W}\) & \\
\hline 6 & sal ( \(28, \theta\) ) & & & \(g\) & 0 & & \(x\) & \(g V+\underline{g} V\) & \\
\hline \(\varepsilon\) & \(\operatorname{cal}(28, \theta)\) & & & 9 & & & \(x\) & \(g X+\bar{g} \bar{X}\) & \\
\hline 3 & \(\operatorname{sal}(29, \theta)\) & \(a\) & & g & & & \(X\) & \(e \varepsilon+\overline{\mathrm{a}} \overline{\underline{\varepsilon}}\) & \\
\hline \(n\) & \(\operatorname{cal}(29, \theta)\) & a & C & g & & & \(X\) & \(c\}+\bar{c} \overline{3}\) & \\
\hline \(\theta\) & \(\operatorname{sal}(30, \theta)\) & & \(c\) & g & & & \(X\) & \(c \varepsilon+\bar{c} \bar{\varepsilon}\) & \\
\hline \(\lambda\) & cal \((30, \theta)\) & & c & & & & \(X\) & \(c X+\bar{c} \bar{X}\) & \\
\hline \(\mu\) & sal ( \(31, \theta\) ) & \(a\) & c & & & & \(x\) & \(a \lambda+\bar{a} \bar{\lambda}\) & \\
\hline ¢ & cal \((31, \theta)\) & a & & & & & \(x\) & \(a x+\bar{a} \bar{x}\) & \\
\hline \(X\) & sal ( \(32, \theta\) ) & & & & & & \(X\) & \(x\) & \\
\hline
\end{tabular}


Figure IV-8. Schematic of Walsh Function Generator - Card 1.


Figure IV -9. Schematic of Walsh Function Generator - Card 2


Figure IV-10. Schematic of Walsh Function Generator - Card 3
a circle. The logic functions are labelled with letters enclosed in squares which are used to show the location on the circuit board of the integrated circuit chip housing the logic functions. The layouts of the integrated circuits on each of the boards are shown in the appendix in Figures \(\mathrm{C}-1\) and \(\mathrm{C}-2\) on pages 107 and 108. The input-output terminal locations for each board are identical, and hence, are shown only in Figure C-I.

The pulse inputs to the Walsh function generator must be provided at the proper times to form the Walsh functions during the second complete cycle of the periodic input wave. The circuit which has been designed to provide the pulses is described in the following section.

\section*{Pulse Burst Generator}

The highest sequency function that is produced by the Walsh function generator is sal \((32, \theta)\). It is this function, which is the output of "0" of the first fiip-flop in Figure \(1 \mathrm{~V}-8\), which determines the pulse input requirements of the walsh function generator. Thus, 64 regularly-spaced pulses must be provided during the second period of the input signal. Since all Walsh functions are initially in the "।" condition, and this state is produced naturally by the initial "reset" state of all flip-flops in Figure IV-8, the first input pulse is to be produced \(T / 64\) seconds after the beginning of the second cycle. ( \(T\) is the period of one cycle, and should not be confused with \(T\) used in Table |V-|1). Starting at that time, a burst of 64 pulses, each spaced T/64 seconds
apart, is required. The last pulse should come at the end of the second cycle.

Figure \(|V-I|\) on page 56 shows the block diagram of the system that has been designed to give the 64-pulse burst. The output of a Schmitt trigger and an inverter controls the system. The Schmitt trigger should be one which accurately detects positive-going zero voltage crossings of the input. It has a logic "l" output when the input is positive, and "0" when the input is negative. This signal is fed into a series of 3 flip-flops that are used to control the rest of the pulse burst generator.

Just after the first positive-going zero crossing of the input, the output of FFI in Figure IV-II enables the first counter, which contains 20 bits, to admit pulses from a clock. The counter accumulates the pulses throughout the first cycle of the input. At the end of the cycle the counter stops and it now contains a number, in terms of its binary state, representing the period of the first cycle. \(1+\) is desired to send out pulses every \(1 / 64\) of that period throughout the second cycle. A number which represents 1/64 of the period is simply the number stored in the 14 most significant bits of the 20-bit counter. This is so because binary division by 64, or 1000000 in•binary, merely means ignoring the 6 least significant bits of the counter.

Thus, a second counter containing 14 bits is enabled during the second cycle of the input. During this cycle, the 7 th to 20 th bits of the first counter are compared to the


Figure |V-I|. Pulse Burst Generator

Ist to 14 th bits, respectively, of the second counter. When the number in the second counter coincides with that in the last 14 bits of the first counter (this first happens at T/64 seconds after the beginning of the second cycle) the comparator output changes from logic "0" to "l". This signal, which is the output of the pulse burst generator, also feeds back a "clear" signal to the second counter, thereby invalidating the comparison. The output of the comparator switches back to " 0 ", thereby converting the output into a pulse and enabling the "clear" leads of the second counter so that it may resume counting. The width of the output pulses is determined by the propagation delay through the second counter reset logic, the counter itself, and the comparator. In the system which has been built, the pulse width is typically 75 nsec. This is sufficient to switch the flip-flops in the Walsh function generator. The procedure of counting, comparison, and resetting takes place 64 times throughout the second cycle.

The schematic diagrams of the pulse burst generator, which has been constructed on 2 circuit boards, are shown in Figures \(\mathrm{IV}-12\) and \(\mathrm{IV}-13\) on pages 58 and 59 , respectively. The locations of the integrated circuits on the boards are shown in the appendix in Figures \(C-3\) and \(C-4\) on pages 109 and 110, respectively.

Ideally, the 64 th pulse should be generated exactly. at the end of the second cycle of the input. However, this requires that the number stored in the first counter at the end of the first cycle be divisible exactly by 64. This is


Figure IV-12. Schematic of Pulse Burst Generator - Card 1

seldom the case. The remainder of the division is held in the first 6 flip-flops of the counter. Let this remainder be called \(e_{+}\)pulses. If the integral portion of \(T / 64\) in terms of number of pulses is called \(q\), then the length of the first period is
\[
\begin{equation*}
T_{1}=64 q+e_{+} p u l s e s \tag{4-25}
\end{equation*}
\]

The period of the walsh functions generated by the pulses from the pulse burst generator during the second period would be
\[
\begin{equation*}
T_{2}=64 q \text { pulses } \tag{4-26}
\end{equation*}
\]

Therefore, the error in timing of the period of the Walsh functions is \(e_{t}\) pulses. There is, of course, another small error in timing that amounts to l pulse or less due to a lack of synchronization between the counting pulses and the input signal. This error is quite small and is ignored at present. Since the timing error is represented by the 6 least significant binary bits in the counter, it is obvious that the maximum error would be 63 pulses. This fact can be used to determine the minimum number of fiip-flops that are required in the first counter for a maximum error of, say, . 4\%. The minimum count for this accuracy is calculated by
\[
\begin{equation*}
\frac{63(100)}{T_{2}}=.4 \% \tag{4-27}
\end{equation*}
\]
whence \(T_{2}=15,750\).
The number of flip-flops needed to guarantee at least that large a number is 15 . To provide a sufficient range of operation, a 20-bit counter was used. To insure that the count representing the period of the cycle reaches at least the I5th flip-flop, logic gates are used (see figure \((V-12)\) to
check that at the beginning of the second cycle, there is at least one "1" in the 15 th to 20 th flip-flops. If there is not, then a light indicates that the rate at which the clock is feeding the pulse burst generator is too low.

On the other hand, if the clock rate is too high, the counter may overflow. A 21 st flip-flop is added so that when the count reaches this flip-flop, a lightwill indicate that the clock rate is too fast. In either case when the lights go on, the entire instrument ceases calculations.

It is apparent that the clock rate feeding the pulse burst generator controls the upper limit of the fundamental frequency of a periodic wave that can be analysed by the system. Table \(|V-|| |\) on page 62 , gives a list of recommended clock rates and the maximum and minimum fundamental input frequencies of waves that can be analysed using them.

An upper limit on clock rate of 1 MHz . is recommended, unless very short leads are used in construction, since higher frequencies may result in errors due to radiation and interference with the rest of the system. This means that the maximum fundamental input frequency is 60 Hz . Since the clock rate can be reduced, there is no theoretical lower frequency limit for the system and the upper limit is sufficient to overlap the frequency range of conventional wave analysers.

\section*{Sample Processing System}

There are two steps involved in the sample processing. Up to this point, the system for producing binary-coded samples of the input, \(\left|f(t)_{q m}\right|\), and the Walsh functions has been

Table |V-|||. Input Frequency Limits with Varlous Clock Rates
\begin{tabular}{|c|c|c|c|}
\hline Clock Rate (Hz.) & Maximum Frequency ( Hz.\()\) & Minimum Frequency ( Hz.\()\) & Period \\
\hline 10,000,000 & 600 & 10 & .00167-.1 sec. \\
\hline 1,000,000 & 60 & 1 & . 0167 - 1.0 sec . \\
\hline 100,000 & 6 & . 1 & . 167-10 sec. \\
\hline 10,000 & . 6 & .01 & 1.67-100 sec. \\
\hline 1,000 & . 06 & . 001 & . 278 - 16.7 min . \\
\hline 100 & . 006 & . 0001 & \(2.78-167 \mathrm{~min}\). \\
\hline 10 & . 0006 & . 00001 & . 462 - 27.7 hrs. \\
\hline 1 & . 00006 & . 000001 & . 192 - 11.6 days \\
\hline
\end{tabular}
described. The step following the production of Walsh functions is to obtain signals representing sgn \(f(t) \operatorname{sgn}\) wal \((n, \theta)\). This signal determines whether the binary-coded samples are to be added or subtracted. A coincidence gate involving the output of the Schmitt trigger, which provides sgn \(f(t)\), and the output of the Walsh function generator, which provides sgn wal \((n, \theta)\), is all that is necessary. The logic is shown in Figure IV-I4 below


Figure IV-14. Logic for Producing \(\operatorname{sgn} f(t) \operatorname{sgn}\) wal \((n, \theta)\)

The "up enable" output is a logic "।" when sgn f(t) sgn wal \((n, \theta)\) is positive, and the "down enable" is "!" when sgn \(f(t)\) sgn wal \((n, \theta)\) is negative. The inverter shown external to the Walsh function generator in Figure \(1 V-14\) is shown only for illustrative purposes since the generator produces both positive and negative Walsh functions. One of the logic systems in Figure \(1 V-14\) is needed for each of the Walsh functions.

The final stage in the system is the accumuiation of the samples from the \(A / D\) converter. For each of the WalshFourier coefficients, the binary-coded samples of the input are either added to or subtracted from (depending on sgn \(f(t)\)
sgn wal \((n, \theta)\), ) an accumulation of previous samples. There are. several possible methods of performing these calculations. Only one of the methods which have been investigated is shown here. The circuit of the entire sample processing system for one of the Walsh-Fourier coefficients is shown in Figure IV-I5 on page 65.

The sample accumulation stage consists mainly of 2 6-bit binary counters with parallel feeds. The upper counter in Figure \(1 V-15\) records the samples when it is enabled by the positive sgn \(f(t)\) sgn wal \((n, \theta)\) lead. Except for the first flip-flop, the clock inputs of each J-K flip-flop are controlled by an exclusive \(O R\) of the parallel pulse input or the previous flip-flop. Since the pulse inputs arrive serially in time from the \(A / D\) converter, the most significant bit arriving first, there is never any confiict between a pulse input and a level change from a less significant bit. The same procedure is followed in the lower counter, which accumulates samples whenever \(\operatorname{sgn} f(t) \operatorname{sgn}\) wal \((n, \theta)\) is negative.

As pulses are accumulated in each of the counters, there will be overflows from the 6th bits. These overflows feed into an \(A-B\) mode reversible counter, the \(A\) input being the overflow from the positive sample counter, and the B iriput being the overflow from the negative sample counter. Since each of the counters must reach a count of 64 before they overflow, the number which appears in the reversible counter is \(1 / 64\) of the total sample value. But 64 is the number of quantization levels, \(P\), that have been used in the \(A / D\) converter. Consequently the number stored in the reversible counter


Figure \(\mid V-15\). Sample Processing System
corresponds, except for a possible small remainder in the two counters feeding the reversible counter, to the desired expressions given in Equations (4-1) to (4-3). At present, a Hewlett-Packard 5280A Reversible Counter is used as the \(A-B\) mode reversible counter.

The only remaining operation is a manual one. The numbers in the reversible counters must each be multiplied by 10 and divided by the number contained in the sample counter in Figure IV-5. Thus, the values of the Walsh-Fourier coefficients of the periodic input wave are determined.

\section*{V. Partial Error Analysis}

The main purpose of this thesis is to show the application of the mathematics for Walsh-Fourier analysis of a low fundamental frequency periodic wave to a digital instrument. Thus, only a small portion of the error analysis has been performed. Only two errors are considered here. The first is the mathematical error involved in the conversion of Walsh-fourier to Fourier series due to the use of a finite number of terms in an infinite series. The second is a timing error in the walsh function generator. Since the only completed sections of the instrument are the Walsh function generator and the pulse burst generator, it is the timing error involved in producing Walsh functions of the correct period that is discussed. Other system errors, such as quan†ization errors, finite sampling rate errors, level inaccuracies, and effect of finite aperture time have not been investigated.

Errors due to Mathematical Approximation
The equation for each Fourier coefficient involves an infinite series of terms containing Walsh-Fourier coefficients. However, the instrument that has been designed is capable of providing only 32 coefficients. Consequently, the equations for the Fourier coefficients, as shown in Table B-IV in the
appendix, must be terminated at the terms involving \(A_{32}\) and B32. Therefore, even if the walsh-Fourier coefficients, \(A_{n}\) and \(B_{n}\), could be determined precisely, errors would still result in calculating the Fourier coefficients, an and \(b_{n}\). A general expression for the mathematical errors is not developed. Rather, a number of waveforms, with various amplitude probability distributions, are used as examples. The waveforms that are used are a square wave, pulses with various duty cycles, a sine wave, a sum of several sine waves with equal amplitude, and finally, a triangular wave. Each wave is considered to start with the first positive-going zero voltage crossing. A computer was used to perform all calcuIations. For each of the waves, the computer calculated the true Fourier coefficients, the Fourier coefficients according to the equations in Table \(B-I V\) in the appendix, the actual error, and the per cent error. Several sets of calculations were made for each wave. Each set used a different number of Walsh-Fourier coefficients, beginning with 4 and increasing by a factor of 2 for each. set until all 32 coefficients were used in the calculations. Several examples of Walsh-Fourier to Fourier series conversion using 32 coefficients are given in appendix \(D\) in Tables \(D-1\) to \(D-V I l\) on pages 112 to 118 . Since it was found that for several waveforms calculations of harmonics beyond the loth, even using all 32 Walsh-Fourier coefficients, became somewhat inaccurate, only values for 10 coefficients are listed in appendix 0 .

Not all of the waveforms that were investigated are

Iisted in appendix D. However, the ones that are shown are representative of all the waveforms that were examined. Observations of the calculations show that;
(1) A square wave is to the Walsh-Fourier series what a sine wave is to the Fourier series; i.e. the Walsh-Fourier series of a square wave consists only of \(B_{1}\) sal \((1, \theta)\) where \(B_{1}\) is the amplitude of the square wave.
(2) The Walsh-fourier series of a sine wave contains many terms, whereas the Fourier series has only the one term, \(b, \sin \theta\).
(3) When the Walsh-Fourier series of a wave contains only a finite number of terms, such as with a square wave or square pulses with duty cycles of \(1 / 2,1 / 4,1 / 8,1 / 16, \ldots\). the conversion to Fourier series can be performed with very small error.
(4) The probability of error in conversion is greater when the Walsh-Fourier series contains a large number of terms.
(5) The per cent error in conversion generally increases for calculations of higher harmonics.

Walsh Function Period Timing Error
At the end of the first cycle of the input, the binary state of the first counter in the pulse burst generator records the period of the cycle in terms of clock pulses. The count is not necessarily precise, for the cycle may start or stop
between the time pulses arrive from the clock. A similar error may occur during the second cycle when the Walsh functions are generated. However, these errors are negligible if a very high clock rate is used and they are very difficult to measure. Hence, they are ignored in this thesis.

The only main source of timing error is \(e_{t}\), which is described in Chapter \(I V . \quad I t\) results from the remainder in the division by 64 of the binary state of the first counter in the pulse burst generator. \(e_{\dagger}\) is the error measured as a pulse count. If \(f_{c}\) is the clock frequency, then the error measured in seconds is \(e_{f} / f_{c}\). It is by this amount that the period of the Walsh functions will be less than the period of the input wave, as determined by the first cycle.

The error, \(e_{t}\), can be measured quite easily by using the circuit shown in figure \(V-1\) on page 71 . An \(A-B\) mode reversible counter is used, the \(A\) input recording the number of pulses which are used to measure the first period, and the B input recording the period of the Walsh functions. The number which remains in the counter at the end of two periods is et. It has been verified that this number corresponds to the remainder in the division by comparing it to the number representing the binary states of the 6 flip-flops which contain the 6 least significant binary digits in the first counter of the pulse burst generator.

A D.E.C. Computer Lab was used to supply the clock pulses and logic units, as shown in figure \(v-1\). The input from the Schmitt trigger to the pulse burst generator was simulated by using manually controlled switches.


Figure \(V-1\). System to Measure \(e_{t}\)

Since the maximum value of et is 63 , and the pulse burst generator is set to stop the system if the count at the end of the first cycle has not reached the 15 th flip-flop of the first counter, the maximum timing error is \(63 / 16,384\), or . \(384 \%\). However, assuming that the period of the input is random for many tests, then the probability distribution of \(e_{+}\) would be uniform, with all values for \(e_{t}\) from 0 to 63 being equally likely. Since the maximum error would only occur when the 15 th flip-flop has barely been reached and \(e_{+}=63\), the average error is far less than \(.384 \%\).

By using the system in figure \(V-1,500\) samples of \(e_{f}\) were taken. The distribution of the samples is shown in the histogram in Figure \(V-2\) on page 73. The samples were placed into 16 groups of 4. The average value of \(e_{\dagger}\) was found to be 31.642, whereas the theoretical value is 31.5. The theoretical sample distribution and average value for \(e_{\dagger}\) are also shown in Figure V-2.


Figure \(v-2 . \quad\) Sample Distribution of \(e_{+}\)

\section*{VI. Conclusions}

The design of the Walsh-fourier analyser which is proposed in this thesis requires that the waveforms to be analyzed be restricted in amplitude to \(\pm 10\) volts. The input controls to the pulse burst generator are designed to investigate only those signals which have two zero-voltage crossings per cycle. The upper limit of fundamental frequency that can be handled is approximately 60 Hz . This frequency, which is determined by the clock feeding the pulse burst generator, is sufficient to overlap the lower frequency limit of conventional wave analysers. The Walsh-fourier analyser has no theoretical lower frequency limit.

It has been concluded that, for many commonly-used waveforms, 32 Walsh-Fourier coefficients can be used to de termine 10 Fourier coefficients to a reasonable degree of accuracy. An advantage of the Walsh-Fourier analyser is that the coefficients of both cosine and sine terms of the Fourier series can be determined. Conventional wave analysers can supply only the coefficients of the complex Fourier series, \(c_{n}\), where \(c_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}}\).

Several problems on the Walsh-Fourier analyser remain to be solved. Construction of the proposed design should be completed. Modifications may be made to allow the instrument to analyse waveforms with more than two zero-crossings per
cycle, and possibly to analyse noise. An additional circuit may be designed which performs the Walsh-Fourier to Fourier series conversion electronically. Finally, a complete error analysis of the system must be performed to provide a more adequate comparison with currently available wave analysers, and to estabilsh better design criteria.

APPENDIX

\section*{Appendix A. Rules for Determining Walsh Functions}

One period of a Walsh function is \(T\) seconds. In the general Walsh function, wal \((n, \theta), \theta=+/ T\), where \(t\) is in the range \(0 \leq t \leq T\) so that \(\theta\) is in the range \(0 \leq \theta \leq 1 . \operatorname{Sal}(1, \theta)\). is a function (see Figure l|-2 on page 13 ) defined as:
\[
\begin{align*}
\operatorname{sal}(1, \theta) & =+1 & & 0 \leq \theta<.5  \tag{A-1}\\
& =-1 & & .5 \leq \theta<1
\end{align*}
\]

Beginning with this initial function, all other Walsh functions can be determined by the following rules;
(1) Let the general terms for the sal and cal functions be represented by;
\[
\begin{array}{ll}
\operatorname{sal}\left[(2 N+1) 2^{k},\right. & \theta] \\
\operatorname{cal}\left[(2 N+1) 2^{k},\right. & \theta]
\end{array}
\]
\[
\text { with } N=0,1,2,3, \ldots \ldots
\]
\[
\text { and } k=0,1,2,3, \ldots-\ldots
\]
\(k\) and \(N\) are both finite.
(2) Any function which has a sequency \(2^{k}\) times that of a function with a particular value of \(n\) has exactly the same form as that function.
(3) In order to determine the cal function from the corresponding sal function of the same sequency, the following rules apply.
(a) If \(N\) is even, and for a particular value of \(k\), the sal function is shifted \(\frac{T}{2^{k+2}}\) to the left (or
in the negative direction) to produce the cal function. (b) If \(N\) is odd, then the sal function is shifted \(\frac{T}{2^{k+Z}}\) to the right (or in the positive direction) to produce the cal function.
(4) For any given cal function, the sal function with a sequency which is one greater than the cal function may be produced as follows:
\(\operatorname{sal}\left[(2 N+1) 2^{k}+1, \theta\right]=+\operatorname{cal}\left[(2 N+1) 2^{k}, \theta\right] 0 \leq \theta<.5 \quad(A-2)\) \(\operatorname{sal}\left[(2 N+1) 2^{k}+1, \theta\right]=-\operatorname{cal}\left[(2 N+1) 2^{k}, \theta\right] .5 \leq \theta<1 \quad(A-3)\)

Examples (Reference should be made to Figure 11-2 on page 13) Rule(2)- Given sal \(\left[(2 N+1) 2^{k}, \theta\right]\) with \(N=0\) and \(k=0,1,2,3, \ldots\) the following functions may be produced: sal(l, \(\theta\) ), sal( \(2, \theta\) ), sal \((4, \theta)\), sal \((8, \theta)\), ----. Thus, sal \((8, \theta)\) for example, is identical in form to sal( \(1, \theta\) ), but has 8 times the sequency. Similarly, if \(N=1\) and \(k=0,1,2,3,---\), sal( \(3, \theta)\), sal \((6, \theta)\), sal \((\mid 2, \theta)\), sal \((24, \theta), \ldots\) are produced. Sal \((24, \theta)\) has 8 times the sequency as sal \((3, \theta)\), but they are identical in form.

Rule(3)- Given sal \(\left[(2 N+1) 2^{k}, \theta\right]\), find cal \(\left[(2 N+1) 2^{k}, \theta\right]\) where \(N\) and \(k\) are the same for the sal and cal functions. (a) Let \(N=0\) and \(k=0,1,2,3, \ldots\)
\(k\) Function Shift required to produce cal functions
0
1
2
3
sal( \(1, \theta\) )
\(-T / 4\)
sal \((2, \theta)\)
-T/8
sal \((4, \theta)\)
\(-T / 16\)
sal \((8, \theta)\)
-T/32
4
sal \((16, \theta)\)
(b) L'et \(N=1\) and \(k=0,1,2,3, \ldots\)


Appendix B. Conversion of Walsh-Fourier to Fourier Series

The Walsh-Fourier series representation of a periodic wave \(f(t)\) is
\[
\begin{equation*}
f(t)=A_{0}+\sum_{n=1}^{\infty} A_{n} \operatorname{cal}(n, \theta)+\sum_{n=1}^{\infty} B_{n} \operatorname{sal}(n, \theta) \tag{2-21}
\end{equation*}
\]

As stated in Chapter II, the Fourier series of each of the Walsh functions must be known to convert Equation (2-21) into an equivalent Fourier series. In this Appendix, the Fourier coefficients for a number of Walsh functions are derived and used to find equations of the coefficients of the Fourier series of \(f(+)\). Only odd sequency multiples of sal(1, \(\theta\) ) and cal \((1, \theta)\) need be processed, since the other Walsh functions, and hence their Fourier series can be derived easily from these functions. Subscripts for the coefficients of the Fourier series of the walsh functions are the same as those defined in Chapter 11.
\[
\text { Using Equations }(2-14) \text { to }(2-16) \text {, Fourier coefficients }
\]
of cal \((1, \theta)\) are found as follows;
\[
\begin{align*}
a_{0}(c l)= & 0  \tag{B-1}\\
a_{n}(c l)= & \frac{1}{\pi} \int_{0}^{2 \pi} \operatorname{cal}(1, \theta) \cos n \theta d \theta \\
= & \frac{1}{\pi}\left[\int_{0}^{\pi / 2} \cos n \theta d \theta-\int_{\pi / 2}^{3 \pi / 2} \cos n \theta d \theta\right. \\
& \left.+\int_{3 \pi / 2}^{2 \pi} \cos n \theta d \theta\right]
\end{align*}
\]
\[
=\frac{2}{\pi n}\left[\sin \frac{n \pi}{2}-\sin \frac{3 n \pi}{2}\right]
\]
\[
\begin{align*}
\therefore a_{n}(c \mid)= & \frac{4 \pi}{n} \sin \frac{n \pi}{2}  \tag{B-2}\\
b_{n}(c \mid)= & \frac{1}{\pi} \int_{0}^{2 \pi} \operatorname{cal}(1, \theta) \sin n \theta d \theta \\
= & \frac{1}{\pi}\left[\int_{0}^{\pi / 2} \sin n \theta d \theta-\int_{\pi / 2}^{3 \pi / 2} \sin n \theta d \theta\right. \\
& \left.+\int_{3 \pi / 2}^{2 \pi} \sin n \theta d \theta\right] \tag{B-3}
\end{align*}
\]
\(\therefore b_{n}(c \mid)=0\)
Only the \(a_{n}(c m)\) coefficients, with \(n \neq 0\), of the Fourier series of all cal ( \(m, \theta\) ) functions are non-zero.

Fourier coefficients of sal(l, \(\theta\) ) are found as follows:
\[
\begin{align*}
a_{0}(s \mid) & =0  \tag{B-4}\\
a_{n}(s \mid) & =\frac{1}{\pi} \int_{0}^{2 \pi} \operatorname{sal}(1, \theta) \cos n \theta d \theta \\
& =\frac{1}{\pi}\left[\int_{0}^{\pi} \cos n \theta d \theta-\int_{\pi}^{2 \pi} \cos n \theta d \theta\right] \tag{B-5}
\end{align*}
\]

Only the \(b_{n}(s m)\) coefficients of the fourier series of all sal(m, \(\theta\) ) functions are non-zero.

Similarly, Fourier coefficients of other Walsh functions may be calculated. The equations of several of the coefficients are listed in Table \(B-1\) on pages 82 to 84. A computer program was used to calculate the numerical value

Table B-1. Equations of Fourier Coefficients of Walsh Functions
\[
\begin{aligned}
& a_{n}(c \mid)=\frac{4}{\pi n} \sin \frac{n \pi}{2} \\
& b_{n}(s 1)=\frac{2}{\pi n}[1-\cos n \pi] \\
& a_{n}(c 3)=\frac{4}{\pi n} \cos n \pi \sin \frac{n \pi}{2}\left[1-2 \cos \frac{n \pi}{4}\right] \\
& b_{n}(\sin )=\frac{2}{\pi n}\left[1-\cos n \pi+4 \cos n \pi \sin \frac{n \pi}{2} \sin \frac{n \pi}{4}\right] \\
& a_{n}(c 5)=\frac{4}{\pi n} \cos n \pi \sin \frac{n \pi}{2}\left[4 \sin \frac{n \pi}{4} \sin \frac{n \pi}{8}-1\right] \\
& b_{n}(s 5)=\frac{2}{\pi n}\left[1-\cos n \pi+8 \cos n \pi \sin \frac{n \pi}{2} \cos \frac{n \pi}{4} \sin \frac{n \pi}{8}\right] \\
& a_{n}(c 7)=\frac{4}{\pi n} \cos n \pi \sin \frac{n \pi}{2}\left[1+2 \cos \frac{n \pi}{4}\left(1-2 \cos \frac{n \pi}{8}\right)\right] \\
& b_{n}(s 7)=\frac{2}{\pi n}\left[1-\cos n \pi+4 \cos n \pi \sin \frac{n \pi}{2} \sin \frac{n \pi}{4}\left(2 \cos \frac{n \pi}{8}-12\right]\right. \\
& a_{n}(c 9)=\frac{4}{\pi n} \cos n \pi \sin \frac{n \pi}{2}\left[8 \sin \frac{n \pi}{4} \cos \frac{n \pi}{8} \sin \frac{n \pi}{16}-1\right] \\
& b_{n}(s 9)=\frac{2}{\pi n}\left[1-\cos n \pi+16 \cos n \pi \sin \frac{n \pi}{2} \cos \frac{n \pi}{4} \cos \frac{n \pi}{8} \sin \frac{n \pi}{16}\right] \\
& a_{n}(c 11)=\frac{4}{\pi n} \cos n \pi \sin \frac{n \pi}{2}\left[1-2 \cos \frac{n \pi}{4}\left(1-4 \sin \frac{n \pi}{8} \sin \frac{n \pi}{16}\right)\right]
\end{aligned}
\]

Table B-1. (Continued)
Equations of Fourler Coefficients of Walsh Functions
\[
\begin{aligned}
& b_{n}(\operatorname{sil})=\frac{2}{\pi n}\left[1-\cos n \pi+4 \cos n \pi \sin \frac{n \pi}{2} \sin \frac{n \pi}{4}\left(1-4 \sin \frac{n \pi}{8} \sin \frac{n \pi}{16}\right)\right] \\
& a_{n}(c \mid 3)=\frac{4}{\pi n} \cos n \pi \sin \frac{n \pi}{2}\left[4 \sin \frac{n \pi}{4} \sin \frac{n \pi}{8}\left(2 \cos \frac{n \pi}{16}-1\right)-1\right] \\
& b_{n}(\sin )=\frac{2}{\pi n}\left[1-\cos n \pi+8 \cos n \pi \sin \frac{n \pi}{2} \cos \frac{n \pi}{4} \sin \frac{n \pi}{8}\left(2 \cos \frac{n \pi}{16}-1\right)\right] \\
& a_{n}(\operatorname{c|5})=\frac{4}{\pi n} \cos n \pi \sin \frac{n \pi}{2}\left[1+2 \cos \frac{n \pi}{4}\left\{1+2 \cos \frac{n \pi}{8}\left(1-2 \cos \frac{n \pi}{16}\right)\right]\right\} \\
& b_{n}(\sin )=\frac{2}{\pi n}\left[1-\cos n \pi+4 \cos n \pi \sin \frac{n \pi}{2} \sin \frac{n \pi}{4}\left\{2 \cos \frac{n \pi}{8}\left(2 \cos \frac{n \pi}{16}-1\right)-1\right\}\right] \\
& a_{n}(c \mid 7)=\frac{4}{\pi n} \cos n \pi \sin \frac{n \pi}{2}\left[16 \sin \frac{n \pi}{4} \cos \frac{n \pi}{8} \cos \frac{n \pi}{16} \sin \frac{n \pi}{32}-1\right] \\
& b_{n}(\sin )=\frac{2}{\pi n}\left[1-\cos n \pi+32 \cos n \pi \sin \frac{n \pi}{2} \cos \frac{n \pi}{4} \cos \frac{n \pi}{8} \cos \frac{n \pi}{16} \sin \frac{n \pi}{32}\right] \\
& a_{n}(c \mid 9)=\frac{4}{\pi n} \cos n \pi \sin \frac{n \pi}{2}\left[1+2 \cos \frac{n \pi}{4}\left(8 \sin \frac{n \pi}{8} \cos \frac{n \pi}{16} \sin \frac{n \pi}{32}-1\right)\right] \\
& b_{n}(\operatorname{sig})=\frac{2}{\pi n}\left[1-\cos n \pi+4 \cos n \pi \sin \frac{n \pi}{2} \sin \frac{n \pi}{4}\left(1-8 \sin \frac{n \pi}{8} \cos \frac{n \pi}{16} \sin \frac{n \pi}{32}\right)\right] \\
& a_{n}(c 2 \mid)=\frac{4}{\pi n} \cos n \pi \sin \frac{n \pi}{2}\left[4 \sin \frac{n \pi}{4} \sin \frac{n \pi}{8}\left(1 \frac{n}{4} \sin \frac{n \pi}{16} \sin \frac{n \pi}{32}-1\right]\right. \\
& b_{n}(\sin )=\frac{2}{\pi n}\left[1-\cos n \pi+8 \cos n \pi \sin \frac{n \pi}{2} \cos \frac{n \pi}{4} \sin \frac{n \pi}{8}\left(1-4 \sin \frac{n \pi}{16} \sin \frac{n \pi}{32}\right]\right.
\end{aligned}
\]

Table B-1. (Continued)
Equations of Fourier Coefficients of Walsh Functions
\[
\begin{aligned}
& a_{n}(c 23)=\frac{4}{\pi n} \cos n \pi \sin \frac{n \pi}{2}\left[1+2 \cos \frac{n \pi}{4}\left(1-2 \cos \frac{n \pi}{8}\left\{1-4 \sin \frac{n \pi}{16} \sin \frac{n \pi}{32}\right\}\right)\right] \\
& b_{n}(\operatorname{s23})=\frac{2}{\pi n}\left[1-\cos n \pi+4 \cos n \pi \sin \frac{n \pi}{2} \sin \frac{n \pi}{4}\left(2 \cos \frac{n \pi}{8}\left\{1-4 \sin \frac{n \pi}{16} \sin \frac{n \pi}{32}\right\}-1\right)\right] \\
& a_{n}(c 25)=\frac{4}{\pi n} \cos n \pi \sin \frac{n \pi}{2}\left[8 \sin \frac{n \pi}{4} \cos \frac{n \pi}{8} \sin \frac{n \pi}{16}\left(2 \cos \frac{n \pi}{32}-1\right)-1\right] \\
& b_{n}(\sin )=\frac{2}{\pi n}\left[1-\cos n \pi+16 \cos n \pi \sin \frac{n \pi}{2} \cos \frac{n \pi}{4} \cos \frac{n \pi}{8} \sin \frac{n \pi}{16}\left(2 \cos \frac{n \pi}{32}-1\right)\right] \\
& a_{n}(c 27)=\frac{4}{\pi n} \cos n \pi \sin \frac{n \pi}{2}\left[1+2 \cos \frac{n \pi}{4}\left\{\sin \frac{n \pi}{8} \sin \frac{n \pi}{16}\left(2 \cos \frac{n \pi}{32}-1\right)-1\right\}\right] \\
& b_{n}(\operatorname{s27})=\frac{2}{\pi n}\left[1-\cos n \pi+4 \cos n \pi \sin \frac{n \pi}{2} \sin \frac{n \pi}{4}\left(1-4 \sin \frac{n \pi}{8} \sin \frac{n \pi}{16}\left\{2 \cos \frac{n \pi}{32}-1\right\}\right)\right] \\
& a_{n}(c 29)=\frac{4}{\pi n} \cos n \pi \sin \frac{n \pi}{2}\left[4 \sin \frac{n \pi}{4} \sin \frac{n \pi}{8}\left(2 \cos \frac{n \pi}{16}\left\{2 \cos \frac{n \pi}{32}-1\right\}-1\right)-1\right] \\
& b_{n}(s 29)=\frac{2}{\pi n}\left[1-\cos n \pi+8 \cos n \pi \sin \frac{n \pi}{2} \cos \frac{n \pi}{4} \sin \frac{n \pi}{8}\left(2 \cos \frac{n \pi}{16}\left\{2 \cos \frac{n \pi}{32}-1\right\}-1\right)\right] \\
& a_{n}(c 31)=\frac{4}{\pi n} \cos n \pi \sin \frac{n \pi}{2}\left[1+2 \cos \frac{n \pi}{4}\left\{1+2 \cos \frac{n \pi}{8}\left(1+2 \cos \frac{n \pi}{16}\left[1-2 \cos \frac{n \pi}{32}\right]\right)\right]\right. \\
& b_{n}(s 31)=\frac{2}{\pi n}\left[1-\cos n \pi+4 \cos n \pi \sin \frac{n \pi}{2} \sin \frac{n \pi}{4}\left(2 \cos \frac{n \pi}{8}\left\{2 \cos \frac{n \pi}{16}\left[2 \cos \frac{n \pi}{32}-1\right]-1\right\}-1\right)\right]
\end{aligned}
\]
of the first 50 harmonics of the Walsh functions by using the equations listed in Table B-l. The values of the coefficients are shown in Table E-llon pages 86 to 91 . By using these values, the Fourier series of \(\operatorname{sal}(1, \theta)\) and \(\operatorname{cal}(1, \theta)\) to sal \((32, \theta)\) and cal \((32, \theta)\) may be calculated. The Fourier series of these functions are listed in Table B-lll on pages 92 to 98.

The final step in the conversion from Walsh-Fourier to Fourier series involves the derivation of the formulae of the Fourier coefficients of the signal, \(f(t)\), in terms of the Walsh-fourier coefficients. The Fourier coefficients, \(a_{n}\) and \(b_{n}\), are calculated by Equations \((2-30)\) and \((2-31)\), where \(a_{n}(\mathrm{~cm})\) and \(b_{m}(s m)\) are constants as determined by the equations in Table B-lll. The formulae for the Fourier coefficients are listed in Table B-IV on pages 99 to 105.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline N & ANC 7 & ENS7 & ANC9 & BNS 9 & ANC 11 & BNS 11 & \(\stackrel{-1}{\square}\) \\
\hline & 0.253263 & -0.253263 & -0.024944 & -0.024944 & -0.010332 & 0.010332 & \(\underline{\square}\) \\
\hline 2 & 0.600000 & O.COOCCC & 0.000000 & 0.000000 & 0.00000 & -0.000000 & \(\bar{\square}\) \\
\hline 3 & C. 283584 & 0.283584 & 0.086024 & -0.086024 & -0.207681 & -0.207681 & \(\infty\) \\
\hline 4 & C. 000060 & 0.00cocc & \(C .000000\)
-0.203706 & 0.000000
-0.203706 & 0. 0.491790 & 0.000000
-0.491790 & 1 \\
\hline ? & O. 3800008 & -0.380600 & -0.2000000 & -6.003000
0.0000 & 0.000000 & - 0.400000 & \\
\hline 7 & 0.914430 & 0.914430 & 0.750453 & -0.752453 & 0.310848 & 0.310848 & - \\
\hline \(\stackrel{8}{9}\) & -0.000000 & -0.coccco & 0.000000 & 0.080000 & 0.000000 & -0.000000 & - \\
\hline . 9 & -0.711223 & 0.711283 & 0.866628 & 0.866628 & 0.358969 & -0.358969 & ก \\
\hline 10 & C. 600000
-6.17331 & \[
\begin{aligned}
& -0.000000 \\
& -0.17321
\end{aligned}
\] & \[
\begin{aligned}
& -0.000000 \\
& -0.324092
\end{aligned}
\] & \[
\begin{array}{r}
-0.000000 \\
0.324092
\end{array}
\] & \[
\begin{array}{r}
000000 \\
0.782427
\end{array}
\] & \[
\begin{aligned}
& 0.000000 \\
& 0.782427
\end{aligned}
\] & 3 \\
\hline \(1 \frac{1}{2}\) & -6.000000 & -0.ccococ & -0.000600 & -0.060000 & -0.000000 & -0.000000 & \(\pm\) \\
\hline 13 & -6.065442 & 0.065442 & 0.215735 & 0.215735 & -0.520830 & 0.520830 & コ \\
\hline & -3.000000 & -0.000000 & -0.000000 & -0.000000 & - 0.000000 & -0.0.00000 & \\
\hline 15 & -C.C16884 & -0.019384 & -0.111428
0.00000
0.151 & 0.171428
-0.0000 & -0.071008
0.00000 & -0.071008
0.000000 & \(\stackrel{\circ}{\circ}\) \\
\hline 17 & C.014898 & -0.014898 & 0.151260 & -0.151260 & 0.062654 & -0.062654 & \\
\hline 18 & c. 600000 & 0.000000 & -0.000000 & -0.000000 & 0.000000 & 0.000000 & \(\square\) \\
\hline 19 & C. 044776 & 0.044776 & -0.147608 & 0.147608 & 0.356357 & 0.356357 & \(\bigcirc\) \\
\hline 20 & C. 000000 & 0.600000 & 0.000000 & -0.000000 & -0.000000 & -0.000000 & \\
\hline 21 & 0.040740 & -0.090740 & 0.169762 & 0.169762 & -0.409843 & 0.409843 & \(\underline{1}\) \\
\hline 22 & C. 606000 & 0.900000 & -0.000000 & O.000000 & 0.000000
-0.140466 & -0.000000
-0.140466 & \({ }_{7}^{1}\) \\
\hline 24 & - 0.000000 & -0.000000 & -0.000000 & -0.000000 & 0.000000 & 0.000000 & \\
\hline 25 & -0.256c40 & 0.256040 & -0.210127 & -0.210127 & -0.087037 & 0.087037 & \(\bigcirc\) \\
\hline 26 & -0.c00000 & -0.cccoce & C.000000 & 0.000000 & 0.000000 & -0.000000 & \({ }_{0}\) \\
\hline 27 & -C.070575 & -0.070575 & 0.037723 & -0.037723 & -0.091012 & -0.091072 & \(\stackrel{+}{+}\) \\
\hline 28 & \(C . C 00000\)
-0.0336 & Q.000000 & 0.000000
-0.00889 & 0.000000
-0.00899 & 0.000000 & 0.000000
-0.021484 & \(\pm\) \\
\hline 30 & O.cccoco & -0.000cco & 0.000000 & -0.000000 & 0.000000 & 0.000000 & \(\bigcirc\) \\
\hline 31 & -0.008170 & -0.008170 & 0.000805 & -0.000805 & 0.000333 & 0.000333 & (1) \\
\hline 32 & 0.000000 & 0.000000 & c.000000 & \[
0.000000
\] & 0.000000 & 0.000000 & \(\stackrel{+}{3}+\) \\
\hline 33 & 0.007675 & -0.007675 & -0.000756 & \[
-0.000156
\] & -0.000313 & -0.000313 & or \\
\hline \(\begin{array}{r}34 \\ 35 \\ \hline\end{array}\) & C. 000000 & 0.600000 & 0.000000 & 0.090000
-0.0274 & 0.000000
-0.017801 & -0.00c000 & \\
\hline 35 & O. 0.643600 & 0.924 .007 & C.006000 & -0.0.06004 & -0.000000 & -0.017800 & \(\xrightarrow{-}\) \\
\hline 37 & 0.051501 & -0.05150 & -0.027528 & -0.027528 & 0.066458 & -0.066458 & \(\Sigma\) \\
\hline 38 & C.coocoo & 0.000000 & -.000000 & 0.000000 & 0.000000 & 0.000000 & \(\stackrel{\square}{\sim}\) \\
\hline 39 & 0.164128 & 0.164128 & 0.134697 & -0.134697 & 0.055793 & 0.055793 & \(\bar{\sim}\) \\
\hline 40 & - 0.000000 & -0.00060c & \[
0.000000
\] & C.0ccooo & \[
0.000000
\] & -0.000000 & \(\stackrel{\sim}{3}\) \\
\hline \(4{ }_{4} 4\) & \[
\begin{array}{r}
-.156122 \\
0.000000
\end{array}
\] & 0.156122
-0.00000 & \[
\begin{array}{r}
0.190235 \\
-0.000000
\end{array}
\] & \[
\begin{array}{r}
0.190235 \\
-0.00000
\end{array}
\] & \[
\begin{aligned}
& 0.078798 \\
& 0.000000
\end{aligned}
\] & -0.078798
0.000000 & \\
\hline 43 & -0.044315 & -0.044315 & - 0.082907 & 0.082907 & 0.200156 & 0.200156 & \(\bigcirc\) \\
\hline 44 & c. 00000 & \(0.0000 c \mathrm{c}\) & 0.000000 & -0.000000 & -0.000060 & -0.000000 & \(\cdots\) \\
\hline 45 & -0.019906 & 0.018906 & 0.062323 & 0.062323 & -0.150462 & -0.150462 & \(+\) \\
\hline 46 & -0.000000 & -0.000000 & -0.009000 & -0.060090 & -0.020006 & -0.000062 & \\
\hline 48 & - Cocccoco & -0.00cco & -0.000000 & -0.000000 & -0.000000 & -0.000000 & 3 \\
\hline 49 & c. 005169 & -0.005169 & 0.052478 & 0.052473 & 0.021737 & -0.021737 & in \\
\hline 50 & 0.000000 & 0.000000 & -0.000000 & -0.000000 & 0.000000 & 0.000000 & \\
\hline
\end{tabular}




\begin{tabular}{|c|c|}
\hline BNS 31 & ANC 33 \\
\hline -0.062550 & -0.001535 \\
\hline 0.00000 & 0.000000 \\
\hline 0.062956 & 0.004644 \\
\hline 0.000000 & 0.000000 \\
\hline -0.063786 & -0.007867 \\
\hline 0.60000 & 0.000000 \\
\hline 2.065082 & 0.011293 \\
\hline - 0 coco & C.000000 \\
\hline -0.066911 & -0.015025 \\
\hline C.OCccos & 0.000000 \\
\hline 0.069377 & 0.019199 \\
\hline -.0900co & 0.000000 \\
\hline -0.072638 & -C.023996 \\
\hline 0.000000 & 0.000000 \\
\hline 0.076933 & 0.029676 \\
\hline -. COCOOC & 0.000000 \\
\hline -0.082635 & -0.036630 \\
\hline 0.000000 & 0.000000 \\
\hline 0.090356 & C. 045481 \\
\hline 0.00 CCO & 0.000000 \\
\hline -0.101156 & -0.057304 \\
\hline 0.00coco & 0.000000 \\
\hline 0.117045 & 0.074118 \\
\hline 0.000000 & 0.000000 \\
\hline -0.142339 & -0.100246 \\
\hline 0.00 ccco & 0.000000 \\
\hline 0.188261 & 0.146921 \\
\hline -.coccco & 0.000000 \\
\hline -0.295982 & -C.255316 \\
\hline O.coccco & 0.000000 \\
\hline 0.836045 & 0.795981 \\
\hline -0.000000 & 0.000000 \\
\hline 0.785375 & C. 824905 \\
\hline -0.0060cc & -0.000600 \\
\hline -0.245243 & -0.284304 \\
\hline 0.000000 & C.000000 \\
\hline 0.137380 & 0.176036 \\
\hline \(-\mathrm{Cococco}\) & -0.000000 \\
\hline -0.39124.3 & -0.129555 \\
\hline .0.0000co & 0.000000 \\
\hline 0.065659 & 0.103688 \\
\hline -0.000000 & -0.000000 \\
\hline -0.049402 & -0.087205 \\
\hline . 0000 & 0.000000 \\
\hline .038150 & 0.075792 \\
\hline -0.cococo & -0.000000 \\
\hline -0.020349 & -0.067429 \\
\hline \(0 . \operatorname{CCCCO}\) & 0.000000 \\
\hline 0.023551 & 0.061054 \\
\hline \(-0.000000\) & -0.000000 \\
\hline
\end{tabular}


Table B-III. Fourier Series of Walsh Functions


Table B-lll. (cont'd) Fourier Series of Walsh Functions


Table B-Ill. (cont'd) Fourier Series of Walsh Functions
\[
\begin{aligned}
\operatorname{cal}(20, \theta)= & -.10491 \cos 4 \theta+. .68463 \cos 12 \theta+.92008 \cos 20 \theta \\
& -.37877 \cos 28 \theta+\ldots-. \\
\operatorname{cal}(21, \theta)= & .00051 \cos \theta-.03081 \cos 3 \theta-.12319 \cos 5 \theta \\
& +.11122 \cos 7 \theta-.16978 \cos 9 \theta+.46897 \cos 11 \theta \\
& +.38627 \cos 13 \theta-.06435 \cos 15 \theta-.06913 \cos 17 \theta \\
& +.48049 \cos 19 \theta+.68378 \cos 21 \theta-.29699 \cos 23 \theta \\
& +.24325 \cos 25 \theta-.36358 \cos 27 \theta-.14484 \cos 29 \theta \\
& +.00678 \cos 31 \theta-\ldots-
\end{aligned}
\]
\begin{tabular}{rl}
\(\operatorname{cal}(22, \theta)=\) & \(-.01033 \cos 2 \theta-.20768 \cos 6 \theta+.49179 \cos 10 \theta\) \\
& \(+.31085 \cos 14 \theta+.35897 \cos 18 \theta+.78243 \cos 22 \theta\) \\
& \(-.52083 \cos 26 \theta-.07101 \cos 30 \theta+\ldots--\) \\
\(\operatorname{cal}(23, \theta)=\) & \(-.00123 \cos \theta-.01276 \cos 3 \theta-.05103 \cos 5 \theta\) \\
& \(-.26852 \cos 7 \theta+.40988 \cos 9 \theta+.19425 \cos 11 \theta\) \\
& \(+.16000 \cos 13 \theta+. .15537 \cos 15 \theta+.16689 \cos 17 \theta\) \\
& \(+.19903 \cos 19 \theta+.28323 \cos 21 \theta+.71700 \cos 23 \theta\) \\
& \(-.58727 \cos 25 \theta-. .15050 \cos 27 \theta-.05999 \cos 29 \theta\) \\
& \(-.01638 \cos 31 \theta-\ldots-\)
\end{tabular}
\(\operatorname{cal}(24, \theta)=.52739 \cos 8 \theta+1.02462 \cos 24 \theta \ldots \ldots\)
\(\operatorname{cal}(25, \theta)=-.01244 \cos \theta+.04207 \cos 3 \theta-.09546 \cos 5 \theta\)
    \(+.32719 \cos 7 \theta+.33638 \cos 9 \theta-.10383 \cos 11 \theta\)
    \(+.04854 \cos 13 \theta-.01530 \cos 15 \theta-.01644 \cos 17 \theta\)
    \(+.06037 \cos 19 \theta-.15139 \cos 21 \theta+.55843 \cos 23 \theta\)
    \(+.71559 \cos 25 \theta-.28175 \cos 27 \theta+.19777 \cos 29 \theta\)
    .. \(16630 \cos 31 \theta+\ldots .-\)
\begin{tabular}{rl}
\(\operatorname{cal}(26, \theta)=\) & \(-.05194 \cos 2 \theta+.31082 \cos 6 \theta+.32860 \cos 10 \theta\) \\
& \(-.06183 \cos 14 \theta-.07140 \cos 18 \theta+.52280 \cos 22 \theta\) \\
& \(+.77948 \cos 26 \theta-.35698 \cos 30 \theta+.---\) \\
\(\operatorname{cal}(27, \theta)=\) & \(-.00515 \cos \theta-.10156 \cos 3 \theta+.23047 \cos 5 \theta\) \\
& \(+.13553 \cos 7 \theta+.13934 \cos 9 \theta+.25057 \cos 11 \theta\) \\
& \(-.11718 \cos 13 \theta-.00634 \cos 15 \theta-.00681 \cos 17 \theta\) \\
& \(-.14576 \cos 19 \theta+.36549 \cos 21 \theta+.24373 \cos 23 \theta\) \\
& \(+.29641 \cos 25 \theta+.68021 \cos 27 \theta-.47748 \cos 29 \theta\) \\
& \(-.06888 \cos 31 \theta---\)
\end{tabular}
\(\operatorname{cal}(28, \theta)=.25326 \cos 4 \theta+.28358 \cos 12 \theta+.38111 \cos 20 \theta\) \(+.91443 \cos 28 \theta \ldots .-\)
cal \((29, \theta)=-.02591 \cos \theta+.15199 \cos 3 \theta+.15399 \cos 5 \theta\)
\[
-.02696 \cos 7 \theta-.02772 \cos 9 \theta+.16749 \cos 11 \theta
\]
\[
+.17537 \cos 13 \theta-.03187 \cos 15 \theta-.03423 \cos 17 \theta
\]
\[
+.21814 \cos 19 \theta+.24421 \cos 21 \theta-.04848 \cos 23 \theta
\]
\[
-.05896 \cos 25 \theta+.45450 \cos 27 \theta+.71456 \cos 29 \theta
\]
\[
\ldots .34630 \cos 31 \theta \ldots
\]

Table B-lll. (cont'd) Fourier Series of Walsh Functions
\begin{tabular}{rl}
\(\operatorname{cal}(30, \theta)=\) & \(.12540 \cos 2 \theta+.12874 \cos 6 \theta+.13611 \cos 10 \theta\) \\
& \(+.14927 \cos 14 \theta+.17238 \cos 18 \theta+.21655 \cos 22 \theta\) \\
& \(+.32287 \cos 26 \theta+.86183 \cos 30 \theta+\ldots\) \\
\(\operatorname{cal}(31, \theta)=\) & \(.06255 \cos \theta+.06296 \cos 3 \theta+.06379 \cos 5 \theta\) \\
& \(+.06508 \cos 7 \theta+.06691 \cos 9 \theta+.06938 \cos 11 \theta\) \\
& \(+.07264 \cos 13 \theta+.07693 \cos 15 \theta+.08264 \cos 17 \theta\) \\
& \(+.09036 \cos 19 \theta+.10116 \cos 21 \theta+.11705 \cos 23 \theta\) \\
& \(+.14234 \cos 25 \theta+.18826 \cos 27 \theta+.29598 \cos 29 \theta\)
\end{tabular}
\(\operatorname{cal}(32, \theta)=1.27324 \cos 32 \theta\)
\begin{tabular}{rl}
\(\operatorname{sal}(1, \theta)=\) & \(1.27324 \sin \theta+.42441 \sin 3 \theta+.25465 \sin 5 \theta\) \\
& \(+.18189 \sin 7 \theta+.14147 \sin 9 \theta+.11575 \sin 11 \theta\) \\
& \(+.09794 \sin 13 \theta+.08488 \sin 15 \theta+.07490 \sin 17 \theta\) \\
& \(+.06701 \sin 19 \theta+.06063 \sin 21 \theta+.05536 \sin 23 \theta\) \\
& \(+.05093 \sin 25 \theta+.04716 \sin 27 \theta+.04391 \sin 29 \theta\)
\end{tabular}
\(\operatorname{sal}(2, \theta)=1.27324 \sin 2 \theta+.42441 \sin 6 \theta+.25465 \sin 10 \theta\) \(+.18189 \sin 14 \theta+.14147 \sin 18 \theta+.11575 \sin 22 \theta\) \(+.09794 \sin 268+.08488 \sin 306+\ldots--\)
\begin{tabular}{rl}
\(\operatorname{sal}(3, \theta)=\) & \(-.52739 \sin \theta+1.02462 \sin 3 \theta-.61477 \sin 5 \theta\) \\
& \(-.07534 \sin 7 \theta-.05860 \sin 9 \theta+.27944 \sin 11 \theta\) \\
& \(+.23645 \sin 13 \theta-.03516 \sin 15 \theta-.03102 \sin 17 \theta\) \\
& \(+.16178 \sin 19 \theta+.14638 \sin 21 \theta-.02293 \sin 23 \theta\) \\
& \(-.02110 \sin 25 \theta+.11385 \sin 27 \theta+.10600 \sin 29 \theta\)
\end{tabular}
\(\operatorname{sal}(4, \theta)=1.27324 \sin 4 \theta+.42441 \sin 12 \theta+.25465 \sin 20 \theta\)
\(+.18189 \sin 28 \theta+-\cdots--\)
\(\operatorname{sal}(5, \theta)=-.10491 \sin \theta-.68463 \sin 3 \theta+.92008 \sin 5 \theta\)
\(+.37877 \sin 7 \theta+.29460 \sin 9 \theta+.41822 \sin 11 \theta\)
\(-.15799 \sin 13 \theta-.00699 \sin 15 \theta-.00617 \sin 17 \theta\)
\(-.10810 \sin 19 \theta+.21907 \sin 21 \theta+.11528 \sin 23 \theta\)
\(+.10605 \sin 25 \theta+.17038 \sin 27 \theta-.07082 \sin 29 \theta\)
-. \(00338 \sin 31 \theta\) - .-.--
\(\operatorname{sal}(6, \theta)=-.52739 \sin 2 \theta+1.02462 \sin 6 \theta+.61477 \sin 10 \theta\)
\(-.07534 \sin 14 \theta-.05860 \sin 18 \theta+.27944 \sin 22 \theta\)
\(+.23645 \sin 26 \theta-.03516 \sin 30 \theta \ldots \ldots\)
\(\operatorname{sal}(7, \theta)=-.25326 \sin 2 \theta+.28358 \sin 3 \theta-.3811 i \sin 5 \theta\)
\(+.91443 \sin 7 \theta+.71122 \sin 9 \theta-.17323 \sin 11 \theta\)
\(+.06544 \sin 13 \theta-.01688 \sin 15 \theta-.01490 \sin 17 \theta\)
\(+.04478 \sin 19 \theta-.09074 \sin 21 \theta+.27831 \sin 23 \theta\)
\(+.25604 \sin 25 \theta-.07058 \sin 27 \theta+.02934 \sin 29 \theta\)
\(-.00817 \sin 31 \theta-\ldots-\)

Table B-Ill. (cont'd) Fourier Series of Walsh Functions
\begin{tabular}{rl}
\(\operatorname{sal}(8, \theta)=\) & \(1.27324 \sin 8 \theta+.42441 \sin 24 \theta+\ldots-\ldots\) \\
\(\operatorname{sal}(9, \theta)=\) & \(-.02494 \sin \theta-.08602 \sin 3 \theta-.20371 \sin 5 \theta\) \\
& \(-.75045 \sin 7 \theta+.86663 \sin 9 \theta+.32409 \sin 11 \theta\) \\
& \(+.21574 \sin 13 \theta+.17143 \sin 15 \theta+.15126 \sin 17 \theta\) \\
& \(+.14761 \sin 19 \theta+.16976 \sin 21 \theta+.33912 \sin 23 \theta\) \\
& \(-.21013 \sin 25 \theta-.03772 \sin 27 \theta-.00890 \sin 29 \theta\)
\end{tabular}
\(\operatorname{sal}(10, \theta)=-.10491 \sin 2 \theta-.68463 \sin 6 \theta+.92008 \sin 10 \theta\)
\(+.37877 \sin 14 \theta+.29460 \sin 18 \theta+.41822 \sin 22 \theta\)
\(-.15799 \sin 26 \theta-.00699 . \sin 30 \theta-\)----
\(\begin{aligned} \operatorname{sal}(11, \theta)= & .01033 \sin \theta-.20768 \sin 3 \theta-.49179 \sin 5 \theta \\ & +.31085 \sin 7 \theta-.35897 \sin 9 \theta+.78243 \sin 11 \theta \\ & +.52083 \sin 13 \theta-.07101 \sin 15 \theta-.06265 \sin 17 \theta \\ & +.35638 \sin 19 \theta+.40984 \sin 21 \theta-.14047 \sin 23 \theta \\ & +.08704 \sin 25 \theta-.09107 \sin 27 \theta-.02148 \sin 29 \theta\end{aligned}\)
\(\operatorname{sal}(12, \theta)=-.52739 \sin 4 \theta+1.02462 \sin 12 \theta+.61477 \sin 20 \theta\) \(-.07534 \sin 28 \theta\)
\begin{tabular}{rl}
\(\operatorname{sal}(13, \theta)=\) & \(-.05194 \sin \theta-.31082 \sin 3 \theta+.32860 \sin 5 \theta\) \\
& \(+.06183 \sin 7 \theta-.07140 \sin 9 \theta-.52280 \sin 11 \theta\) \\
& \(+.77948 \sin 13 \theta+.35698 \sin 15 \theta+.31498 \sin 17 \theta\) \\
& \(+.53333 \sin 19 \theta-.27385 \sin 21 \theta-.02794 \sin 23 \theta\) \\
& \(+.01731 \sin 25 \theta+.06085 \sin 27 \theta-.03215 \sin 29 \theta\)
\end{tabular}
\(\operatorname{sal}(14, \theta)=-.25326 \sin 2 \theta+.28358 \sin 6 \theta-.38111 \sin 10 \theta\) \(+.91443 \sin 14 \theta+.71122 \sin 18 \theta-.17323 \sin 22 \theta\) \(+.06544 \sin 26 \theta-.01688 \sin 30 \theta-\ldots--\)
\(\operatorname{sal}(15, \theta)=-.12540 \sin \theta+.12874 \sin 3 \theta-.13611 \sin 5 \theta\)
\(+.14927 \sin 7 \theta-.17238 \sin 9 \theta+.21655 \sin 11 \theta\)
\(-.32287 \sin 13 \theta+.86183 \sin 15 \theta+.76044 \sin 17 \theta\)
\(-.22091 \sin 19 \theta+.11343 \sin 21 \theta-.06745 \sin 23 \theta\)
\(+.04180 \sin 25 \theta-.02521 \sin 27 \theta+.01332 \sin 29 \theta\)
-.00405 sin \(31 \theta\) - ---.
\(\operatorname{sal}(16, \theta)=1.27324 \sin 16 \theta+\ldots---\)
\(\operatorname{sal}(17, \theta)=-.00616 \sin \theta-.01910 \sin 3 \theta-.03409 \sin 5 \theta\) \(-.05341 \sin 7 \theta-.08153 \sin 9 \theta-.12980 \sin 11 \theta\) \(-.23948 \sin 13 \theta-.78112 \sin 15 \theta+.83901 \sin 17 \theta\) \(+.29786 \sin 19 \theta+.18925 \sin 21 \theta+.14252 \sin 23 \theta\) \(+.11681 \sin 25 \theta+.10063 \sin 27 \theta+.08979 \sin 29 \theta\) \(+.08234 \sin 31 \theta+\ldots-\ldots\)
\(\operatorname{sal}(18, \theta)=-.02494 \sin 2 \theta-.08602 \sin 6 \theta-.20371 \sin 10 \theta\) \(-.75045 \sin 14 \theta+.86663 \sin 18 \theta+.32409 \sin 22 \theta\) \(+.21574 \sin 26 \theta+.17143 \sin 30 \theta+\ldots--\)

Table B-lll. (cont'd) Fourier Series of Walsh Functions
\begin{tabular}{rl}
\(\operatorname{sal}(19, \theta)=\) & \(.00255 \sin \theta-.04611 \sin 3 \theta-.08231 \sin 5 \theta\) \\
& \(+.02212 \sin 7 \theta+.03377 \sin 9 \theta-.31336 \sin 11 \theta\) \\
& \(-.57810 \sin 13 \theta+.32355 \sin 15 \theta-.34753 \sin 17 \theta\) \\
& \(+.71911 \sin 19 \theta+.45589 \sin 21 \theta-.05908 \sin 23 \theta\) \\
& \(-.04839 \sin 25 \theta+.24294 \sin 27 \theta+.21676 \sin 29 \theta\)
\end{tabular}
\(\operatorname{sal}(20, \theta)=-.10491 \sin 4 \theta-.68463 \sin 12 \theta+.92008 \sin 20 \theta\) \(+.37877 \sin 28 \theta+\ldots--\)
\begin{tabular}{rl}
\(\operatorname{sal}(21, \theta)=\) & \(.00051 \sin \theta+.03081 \sin 3 \theta-.12319 \sin 5 \theta\) \\
& \(-.11122 \sin 7 \theta-. .16978 \sin 9 \theta-.46897 \sin 11 \theta\) \\
& \(+.38627 \sin 13 \theta+.06436 \sin 15 \theta-.06913 \sin 17 \theta\) \\
& \(-.48049 \sin 19 \theta+.68378 \sin 21 \theta+.29699 \sin 23 \theta\) \\
& \(+.24325 \sin 25 \theta+.36358 \sin 27 \theta-.14484 \sin 29 \theta\) \\
\(\operatorname{sal}(22, \theta)=\) & \(+.01033 \sin 2 \theta-.20768 \sin 6 \theta-.49179 \sin 10 \theta\) \\
& \(+.31085 \sin 14 \theta-.35897 \sin 18 \theta+. .78243 \sin 22 \theta\) \\
& \(+.52083 \sin 26 \theta-.07101 \sin 30 \theta-.-\ldots-\) \\
\(\operatorname{sal}(23, \theta)=\) & \(.00123 \sin \theta-.01276 \sin 3 \theta+.05103 \sin 5 \theta\) \\
& \(-.26852 \sin 7 \theta-.40988 \sin 9 \theta+.19425 \sin 11 \theta\) \\
& \(-.16000 \sin 13 \theta+.15537 \sin 15 \theta-.16689 \sin 17 \theta\) \\
& \(+.19903 \sin 19 \theta-.28323 \sin 21 \theta+.71700 \sin 23 \theta\) \\
& \(+.58727 \sin 25 \theta-.15060 \sin 27 \theta+.0599 \theta \sin 29 \theta\)
\end{tabular}
\(\operatorname{sal}(24, \theta)=-.52739 \sin 8 \theta+1.02462 \sin 24 \theta\)
\(\operatorname{sal}(25, \theta)=-.01244 \sin \theta-.04207 \sin 3 \theta-.09546 \sin 5 \theta\)
\(-.32719 \sin 7 \theta+.33638 \sin 9 \theta+.10383 \sin 11 \theta\)
\(+.04854 \sin 13 \theta+.01530 \sin 15 \theta-.01644 \sin 17 \theta\)
\(-.05037 \sin 19 \theta-.15139 \sin 21 \theta-.55843 \sin 23 \theta\)
\(+.71559 \sin 25 \theta+.28175 \sin 27 \theta+.19777 \sin 29 \theta\)
\(+.16630 \sin 31 \theta+\ldots--\)
\(\operatorname{sal}(26, \theta)=-.05194 \sin 2 \theta-.31082 \sin 6 \theta+.32860 \sin 10 \theta\) \(+.06183 \sin 14 \theta-.07140 \sin 18 \theta-.52280 \sin 22 \theta\)
\(+.77948 \sin 26 \theta+.35698 \sin 30 \theta+\cdots---\)
\(\operatorname{sal}(27, \theta)=.00515 \sin \theta-.10156 \sin 3 \theta-.23047 \sin 5 \theta\) \(+.13553 \sin 7 \theta-.13934 \sin 9 \theta+.25067 \sin 11 \theta\) \(+.11718 \sin 13 \theta-.00634 \sin 15 \theta+.00681 \sin 17 \theta\) \(-.14576 \sin 19 \theta-.36549 \sin 21 \theta+.24373 \sin 23 \theta\) \(-.29641 \sin 25 \theta+.68021 \sin 27 \theta+.47748 \sin 29 \theta\) \(-.06888 \sin 31 \theta\)
\(\operatorname{sal}(28, \theta)=-.25326 \sin 4 \theta+.28358 \sin 12 \theta-.38111 \sin 20 \theta\) \(+.91443 \sin 28 \theta+\ldots-\)

Table B-lll. (cont'd) Fourier Series of Walsh Functions
\begin{tabular}{rl}
\(\operatorname{sal}(29, \theta)=\) & \(-.02591 \sin \theta-.15199 \sin 3 \theta+.15399 \sin 5 \theta\) \\
& \(+.02696 \sin 7 \theta-.02772 \sin 9 \theta-.16749 \sin 11 \theta\) \\
& \(+.17537 \sin 13 \theta+.03187 \sin 15 \theta-.03423 \sin 17 \theta\) \\
& \(-.21814 \sin 19 \theta+.24421 \sin 21 \theta+.04848 \sin 23 \theta\) \\
& \(-.05896 \sin 25 \theta-.45450 \sin 27 \theta+.71456 \sin 29 \theta\) \\
& \(+.34630 \sin 31 \theta+\ldots--\). \\
\(\operatorname{sal}(30, \theta)=\) & \(-.12540 \sin 2 \theta+.12874 \sin 6 \theta-.13611 \sin 10 \theta\) \\
& \(+.14927 \sin 14 \theta-.17238 \sin 18 \theta+.21655 \sin 22 \theta\) \\
& \(-.32287 \sin 26 \theta+.86183 \sin 30 \theta+----\) \\
\(\operatorname{sal}(31, \theta)=\) & \(-.06255 \sin \theta+.06296 \sin 3 \theta-.06379 \sin 5 \theta\) \\
& \(+.06508 \sin 7 \theta-.06691 \sin 9 \theta+.06938 \sin 11 \theta\) \\
& \(-.07264 \sin 13 \theta+.07693 \sin 15 \theta-.08264 \sin 17 \theta\) \\
& \(+.09036 \sin 19 \theta-.10116 \sin 21 \theta+.11705 \sin 23 \theta\) \\
& \(-.14324 \sin 25 \theta+.18826 \sin 27 \theta-.29598 \sin 29 \theta\)
\end{tabular}
\(\operatorname{saf}(32, \theta)=1.27324 \sin 32 \theta+----\)

Table B-IV. Fourier Coefficients of \(f(t)\) for Given Walsh-

\section*{Fourier Coefficients}
\[
\begin{aligned}
& a_{0}=2 A_{0} \\
& \begin{aligned}
a_{1}= & 1.27324 A_{1}+.52739 A_{3}-.10491 A_{5}+.25326 A_{7} \\
& -.02494 A_{9}-.01033 A_{11}-.05194 A_{13}+.12540 A_{15} \\
& -.00616 A_{17}-.00255 A_{19}+.00051 A_{21}-.00123 A_{23} \\
& =.01244 A_{25}-.00515 A_{27}-.02591 A_{29}+.06255 A_{31}
\end{aligned} \\
& \begin{aligned}
a_{2}= & 1.27324 A_{2}+.52739 A_{6}-.10491 A_{10}+.25326 A_{14} \\
& =.02494 A_{18}-.01033 A_{22}-.05194 A_{26}+.12540 A_{30}
\end{aligned} \\
& \begin{aligned}
a_{3}= & -.42441 A_{1}+1.02462 A_{3}+.68463 A_{5}+.28358 A_{7} \\
& +.08602 A_{9}-.20768 A_{11}+.31082 A_{13}+.12874 A_{15}
\end{aligned} \\
& +.01910 A_{17}-.04611 A_{19}-.03081 A_{21}-.01276 A_{23} \\
& \pm .04207 A_{25}-.10156 A_{27}+.15199 A_{29}+.06296 A_{31} \\
& a_{4}=\underline{1.27324 A_{4}+.52739 A_{12}-.10491 A_{20}+.25326 A_{28}} \\
& \begin{aligned}
a_{5}= & .25465 A_{1}-.61477 A_{3}+.92008 A_{5}+.38111 A_{7} \\
& -.20371 A_{9}+.49179 A_{11}+.32860 A_{13}+.13611 A_{15} \\
& -.03409 A_{17}+.08231 A_{19}-.12319 A_{21}-.05103 A_{23} \\
& -.09546 A_{25}+.23047 A_{27}+.15399 A_{29}+.06379 A_{3} 1 .
\end{aligned} \\
& \begin{aligned}
a_{6}= & -.42441 A_{2}+. .02462 A_{6}+.68463 A_{10}+.28358 A_{14} \\
& +.08602 A_{18}-.20768 A_{22}+.31082 A_{26}+.12874 A_{30}
\end{aligned} \\
& \begin{aligned}
a_{7}= & -.18189 A_{1}-.07534 A_{3}-.37877 A_{5}+.91443 A_{7} \\
& +.75045 A_{9}+.31085 A_{11}-.06183 A_{13}+.14927 A_{15} \\
& +.05341 A_{17}+.02212 A_{19}+.11122 A_{21}-.26852 A_{23} \\
& +.32719 A_{25}+.13553 A_{27}-.02696 A_{29}+.06508 A_{31}
\end{aligned} \\
& a_{8}=1.27324 A_{8}+.52739 A_{24} \ldots-{ }^{-} \\
& \begin{aligned}
\mathrm{a}_{9}= & .14147 \mathrm{~A}_{1}+.05860 A_{3}+.29460 A_{5}-.71122 A_{7} \\
& +.86663 A_{9}+.35897 A_{11}-.07140 A_{13}+.17238 A_{15} \\
& -.08153 A_{17}-.03377 A_{19}-.16978 A_{21}+.40988 A_{23} \\
& +.33638 A_{25}+.13934 A_{27}-.02772 A_{29}+.06691 A_{3} 1
\end{aligned}
\end{aligned}
\]

Table B-IV. (cont'd) Fourier Coefficients of \(f(t)\) for given

\section*{Walsh-Fourier Coefficients}
```

$$
\begin{aligned}
a_{10}= & .25465 A_{2}-.61477 A_{6}+.92008 A_{10}+.38111 A_{14} \\
& -.20371 A_{18}+.49179 A_{22}+.32860 A_{26}+.13611 A_{30}
\end{aligned}
$$

$$
\begin{aligned}
a_{11}= & -.11575 A_{1}+.27944 A_{3}-.41822 A_{5}-.17323 A_{7} \\
& -.32409 A_{9}+.78243 A_{11}+.52280 A_{13}+.21655 A_{15} \\
& +.12980 A_{17}-.31336 A_{19}+.46897 A_{21}+.19425 A_{23} \\
& -.10383 A_{25}+.25067 A_{27}+.16749 A_{29}+.06938 A_{31}
\end{aligned}
$$

$$
a_{12}=-.42441 A_{4}+1.02462 A_{12}+.68463 A_{20}+.28358 A_{28}
$$

$$
\begin{aligned}
a_{13}= & +.09794 A_{1}-.23645 A_{3}-.15799 A_{5}-.06544 A_{7} \\
& +.21574 A_{9}-.52083 A_{11}+.77948 A_{13}+.32287 A_{15} \\
& -.23948 A_{17}+.57810 A_{19}+.38627 A_{21}+.16000 A_{2} \\
& +.04854 A_{25}-.11718 A_{27}+.17537 A_{29}+.07264 A_{3}
\end{aligned}
$$

$$
\begin{aligned}
a_{14}= & -.18189 A_{2}-.07534 A_{6}-.37877 A_{10}+.91443 A_{14} \\
& +.75045 A_{18}+.31085 A_{22}-.06183 A_{26}+.14927 A_{30}
\end{aligned}
$$

$$
a_{15}=-.08488 A_{1}-.03516 A_{3}+.00699 A_{5}-.01688 A_{7}
$$

$$
-.17143 A_{9}-.07101 A_{11}-.35698 A_{13}+.86183 A_{15}
$$

$$
+.78112 A_{17}+.32355 A_{19}-.06436 A_{21}+.15537 A_{23}
$$

$$
-.01530 A_{25}-.00634 A_{27}-.03187 A_{29}+.07693 A_{31}
$$

```
\[
a_{16}=1.27324 A_{16}+\cdots-
\]
\[
\begin{aligned}
\mathrm{a} 17= & .07490 \mathrm{~A}_{1}+.03102 \mathrm{~A}_{3}-.00617 \mathrm{~A}_{5}+.01490 \mathrm{~A}_{7} \\
& +.15126 \mathrm{~A}_{9}+.06265 \mathrm{~A}_{11}+.31498 \mathrm{~A}_{13}-.76044 \mathrm{~A}_{15} \\
& +.83901 \mathrm{~A}_{17}+.34753 \mathrm{~A}_{19}-.06913 \mathrm{~A}_{21}+.16689 \mathrm{~A}_{23} \\
& -.01644 \mathrm{~A}_{25}+.00681 \mathrm{~A}_{27}-.03423 \mathrm{~A}_{29}+.08264 \mathrm{~A}_{31}
\end{aligned}
\]
\[
\begin{aligned}
a_{18}= & .14147 A_{2}+.05860 A_{6}+.29460 A_{10}-.71122 A_{14} \\
& +.86663 A_{18}+.35897 A_{22}-.07140 A_{26}+.17238 A_{30}
\end{aligned}
\]
\[
\begin{aligned}
a_{19}= & -.06701 A_{1}+. .16178 A_{3}+.10810 A_{5}+.04478 A_{7} \\
& -.14761 A_{9}+.35638 A_{11}-.53333 A_{13}-.22091 A_{15} \\
& -.29786 A_{17}+. .71911 A_{19}+.48049 A_{21}+.19903 A_{23} \\
& +.06037 A_{25}-.14576 A_{27}+.21814 A_{29}+.09036 A_{31}
\end{aligned}
\]
\[
a_{20}=.25465 A_{4}-.61477 A_{12}+.92008 A_{20}+.38111 A_{28}
\]

Table B-IV. (cont'd) Fourier Coefficients of \(f(t)\) for given
Walsh-Fourier Coefficients
\[
\begin{aligned}
& \begin{aligned}
a_{21}= & .06063 A_{1}-.14638 A_{3}+.21907 A_{5}+.09074 A_{7} \\
& +.16976 A_{9}-.40984 A_{11}-.27385 A_{13}-.11343 A_{15} \\
& +.18925 A_{17}-.45689 A_{19}+.68378 A_{21}+.28323 A_{29} \\
& -.15139 A_{25}+.36549 A_{27}+.24421 A_{29}+.10116 A_{31}
\end{aligned} \\
& \begin{aligned}
a_{22}= & -.11575 A_{2}+.27944 A_{6}-.41822 A_{10}-.17323 A_{14} \\
& -.32409 A_{18}+.78243 A_{22}+.52280 A_{26}+.21655 A_{30}
\end{aligned} \\
& \begin{aligned}
a_{23}= & -.05536 A_{1}-.02293 A_{3}-.11528 A_{5}+.27831 A_{7} \\
& -.33912 A_{9}-.14047 A_{11}+.02794 A_{13}-.06745 A_{1}
\end{aligned} \\
& -.33912 A_{9}-.14047 A_{11}+.02794 A_{13}-.06745 A_{15} \\
& -.14262 A_{17}-.05908 A_{19}-.29699 A_{21}+.71700 A_{23} \\
& +.55843 A_{25}+.24373 A_{27}-.04848 A_{29}+.11705 A_{31} \\
& \text {----- } \\
& a_{24}=-.42441 A_{8}+1.02462 A_{24}+\ldots-- \\
& \begin{aligned}
\mathrm{a}_{25}= & +.05093 A_{1}+.02110 A_{3}+.10606 A_{5}-.25604 A_{7} \\
& -.21013 A_{9}-.08704 A_{11}+.01731 A_{13}-.04180 A_{15} \\
& +.11683 A_{17}+.04839 A_{19}+.24325 A_{21}-.58727 A_{23} \\
& +.71559 A_{25}+.29641 A_{27}-.05896 A_{29}+.14234 A_{31}
\end{aligned} \\
& \begin{aligned}
a_{26}= & .09794 A_{2}-.23645 A_{6}-.15799 A_{10}-.06544 A_{14} \\
& +.21574 A_{18}-.52083 A_{22}+.77948 A_{26}+.32287 A_{30}
\end{aligned} \\
& \begin{aligned}
a_{27}= & -.04716 A_{1}+.11385 A_{3}-.17038 A_{5}-.07058 A_{7} \\
& +.03772 A_{9}-.09107 A_{11}-.06085 A_{13}-.02521 A_{15} \\
& -.10063 A_{17}+.24294 A_{19}-.36358 A_{21}-.15060 A_{23} \\
& -.28175 A_{25}+.68021 A_{27}+.45450 A_{29}+.18826 A_{31}
\end{aligned} \\
& a_{28}=-.18189 A_{4}-.07534 A_{12}-.37877 A_{20}+.91443 A_{28} \\
& a_{29}=\begin{aligned}
.04391 & A_{1}-.10600 A_{3}-.07082 A_{9}-.02934 A_{7} \\
& -.00890 A_{9}+.02148 A_{11}-.03215 A_{13}-.01332 A_{15}
\end{aligned} \\
& +.08979 A_{17}-.21676 A_{19}-.14484 A_{21}-.05999 A_{23} \\
& +.19777 A_{25}-.47748 A_{27}+.71456 A_{29}+.29598 . A_{31} \\
& \begin{aligned}
a_{30}= & -.08488 A_{2}-.03516 A_{5}+.00699 A_{10}-.01688 A_{14} \\
& -.17143 A_{18}-.07101 A_{22}-.35698 A_{26}+.86183 A_{30}
\end{aligned}
\end{aligned}
\]

Table B-IV. (cont'd) Fourier Coefficients of \(f(t)\) for given Walsh-Fourier Coefficients
\[
\begin{aligned}
\mathrm{b}_{1}= & 1.27324 \mathrm{~B}_{1}-.52739 \mathrm{~B}_{3}-.10491 \mathrm{~B}_{5}-.25326 \mathrm{~B}_{7} \\
& -.02494 \mathrm{~B}_{9}+.01033 \mathrm{~B}_{1}-.05194 \mathrm{~B}_{13}-.12540 \mathrm{~B}_{15} \\
& -.00616 \mathrm{~B}_{17}+.00255 \mathrm{~B}_{19}+.00051 \mathrm{~B}_{21}+.00123 \mathrm{~B}_{23} \\
& -.01244 \mathrm{~B}_{25}+.00515 \mathrm{~B}_{27}-.02591 \mathrm{~B}_{29}-.06255 \mathrm{~B}_{31}
\end{aligned}
\]
\[
\begin{aligned}
\mathrm{b}_{2}= & 1.27324 \mathrm{~B}_{2}-.52739 \mathrm{~B}_{6}-.10491 \mathrm{~B}_{10}-.25325 \mathrm{~B}_{14} \\
& -.02494 \mathrm{~B}_{18}+.01033 \mathrm{~B}_{22}-.05194 \mathrm{~B}_{26}-. .12540 \mathrm{~B}_{3}
\end{aligned}
\]
\[
\begin{aligned}
\mathrm{b}_{3}= & .42441 \mathrm{~B}_{1}+. .02462 \mathrm{~B}_{3}-.68463 \mathrm{~B}_{5}+.28358 \mathrm{~B}_{7} \\
& -.08602 \mathrm{~B}_{9}-.20768 \mathrm{~B}_{11}-.31082 \mathrm{~B}_{13}+.12874 \mathrm{~B}_{15} \\
& -.01910 \mathrm{~B}_{17}-. .04611 \mathrm{~B}_{19}+.03081 \mathrm{~B}_{21}-.01276 \mathrm{~B}_{23} \\
& -.04207 \mathrm{~B}_{25}-. .10156 \mathrm{~B}_{27}-. .15199 \mathrm{~B}_{29}+.06296 \mathrm{~B}_{31}
\end{aligned}
\]
\[
b_{4}=1.27324 B_{4}-.52739 B_{12}-.10491 B_{20}-.25326 \mathrm{~B}_{28}
\]
\[
\begin{aligned}
\mathrm{b}_{5}= & .25465 \mathrm{~B}_{1}+.61477 \mathrm{~B}_{3}+.92008 \mathrm{~B}_{5}-.38111 \mathrm{~B}_{7} \\
& -.20371 \mathrm{~B}_{9}-.49179 \mathrm{~B}_{11}+.32860 \mathrm{~B}_{13}-. .13611 \mathrm{~B}_{15} \\
& -.03409 \mathrm{~B}_{17}-.08231 \mathrm{~B}_{19}-.12319 \mathrm{~B}_{21}+.05103 \mathrm{~B}_{23} \\
& -.09546 \mathrm{~B}_{25}-.23047 \mathrm{~B}_{27}+.15399 \mathrm{~B}_{29}-.05379 \mathrm{~B}_{31}
\end{aligned}
\]
\[
\begin{aligned}
\mathrm{b}_{6}= & .42441 \mathrm{~B}_{2}+1.02462 \mathrm{~B}_{6}-.68463 \mathrm{~B}_{10}+.28358 \mathrm{~B}_{14} \\
& . .08602 \mathrm{~B}_{18}-.20768 \mathrm{~B}_{22}-.31082 \mathrm{~B}_{26}+.12874 \mathrm{~B}_{30}
\end{aligned}
\]
\[
\begin{aligned}
\mathrm{b}_{7}= & .18189 \mathrm{~B}_{1}-.07534 \mathrm{~B}_{3}+.37877 \mathrm{~B}_{5}+.91443 \mathrm{~B}_{7} \\
& -.75045 \mathrm{~B}_{1}+.31085 \mathrm{~B}_{11}+.06183 \mathrm{~B}_{13}+. .14927 \mathrm{~B}_{15} \\
& -.05341 \mathrm{~B}_{17}+.02212 \mathrm{~B}_{19}-.11122 \mathrm{~B}_{21}-.26852 \mathrm{~B}_{23} \\
& -.32719 \mathrm{~B}_{25}+.13553 \mathrm{~B}_{27}+. .02696 \mathrm{~B}_{29}+.05508 \mathrm{~B}_{31}
\end{aligned}
\]
\[
b_{8}=1.27324 B_{8}-.52739 B_{24} \ldots \ldots
\]
\[
\begin{aligned}
\mathrm{b}_{9}= & .14147 \mathrm{~B}_{1}-.05860 \mathrm{~B}_{3}+.29460 \mathrm{~B}_{5}+.71122 \mathrm{~B}_{7} \\
& +.86663 \mathrm{~B}_{9}-.35897 \mathrm{~B}_{11}-.07140 \mathrm{~B}_{13}-.17238 \mathrm{~B}_{15} \\
& -.08153 \mathrm{~B}_{17}+.03377 \mathrm{~B}_{19}-.16978 \mathrm{~B}_{21}-.40988 \mathrm{~B}_{23} \\
& +.33638 \mathrm{~B}_{25}-.13934 \mathrm{~B}_{27}-.02772 \mathrm{~B}_{29}-.06691 \mathrm{~B}_{31}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{aligned}
a_{31}= & -.04107 A_{1}-.01701 A_{3}+.00338 A_{5}-.00817 A_{7} \\
& +.00081 A_{9}+.00033 A_{11}+.00168 A_{13}-.00405 A_{15} \\
& -.08234 A_{17}-.03411 A_{19}+.00678 A_{21}-.01638 A_{23} \\
& -.06630 A_{25}-.06888 A_{27}-.34630 A_{2}+.83605 A_{31}
\end{aligned} \\
& a_{32}=1.27324 A_{32}
\end{aligned}
\]

Table B-IV. (cont'd) Fourier Coefficients of \(f(t)\) for given Walsh-Fourier Coefficients
\(\begin{aligned} \mathrm{b}_{10} & =.25465 \mathrm{~B}_{2}+.61477 \mathrm{~B}_{6}+. .92008 \mathrm{~B}_{10}-.38111 \mathrm{~B}_{14} \\ & -.20371 \mathrm{~B}_{18}-. .49179 \mathrm{~B}_{22}+.32860 \mathrm{~B}_{26}-.13611 \mathrm{~B}_{30}\end{aligned}\)
\(\mathrm{b}_{11}=.11575 \mathrm{~B}_{1}+.27944 \mathrm{~B}_{3}+.41822 \mathrm{~B}_{5}-.17323 \mathrm{~B}_{7}\) \(+.32409 \mathrm{~B}_{9}+.78243 \mathrm{~B}_{11}-.52280 \mathrm{~B}_{13}+.21655 \mathrm{~B}_{15}\) \(-.12980 \mathrm{~B}_{17}-.31336 \mathrm{~B}_{19}-.46897 \mathrm{~B}_{21}+.19425 \mathrm{~B}_{23}\) \(+.10383 \mathrm{~B}_{25}+.25067 \mathrm{~B}_{27}-.16749 \mathrm{~B}_{29}+.06938 \mathrm{~B}_{31}\) -----
\(\mathrm{b}_{12}=.42441 \mathrm{~B}_{4}+1.02462 \mathrm{~B}_{12}-.68463 \mathrm{~B}_{20}+.28358 \mathrm{~B}_{28}\) \(\begin{aligned} \mathrm{b}_{13}= & .09794 \mathrm{~B}_{1}+.23645 \mathrm{~B}_{3}-.15799 \mathrm{~B}_{5}+.06544 \mathrm{~B}_{7} \\ & +.21574 \mathrm{~B}_{1}+.52083 \mathrm{~B}_{1}+.77948 \mathrm{~B}_{13}-.32287 \mathrm{~B}_{15} \\ & -.23948 \mathrm{~B}_{17}-.57810 \mathrm{~B}_{19}+.38627 \mathrm{~B}_{21}-.16000 \mathrm{~B}_{23} \\ & +.04854 \mathrm{~B}_{25}+.11718 \mathrm{~B}_{27}+.17537 \mathrm{~B}_{29}-.07264 \mathrm{~B}_{31}\end{aligned}\)
\(\mathrm{b}_{14}=\underset{-.75189 \mathrm{~B}_{2}-.07534 \mathrm{~B}_{6}+.37877 \mathrm{~B}_{10}+.91443 \mathrm{~B}_{14}}{ }\)
\(\begin{aligned} \mathrm{b}_{15}= & .08488 \mathrm{~B}_{1}-.03516 \mathrm{~B}_{3}-.00699 \mathrm{~B}_{5}-.01688 \mathrm{~B}_{7} \\ & +.17143 \mathrm{~B}_{1}-.07101 \mathrm{~B}_{11}+.35698 \mathrm{~B}_{13}+.86183 \mathrm{~B}_{15} \\ & -.78112 \mathrm{~B}_{17}+.32355 \mathrm{~B}_{19}+.06436 \mathrm{~B}_{21}+.15537 \mathrm{~B}_{2} 3 \\ & +.01530 \mathrm{~B}_{25}-.00634 \mathrm{~B}_{27}+.03187 \mathrm{~B}_{29}+.07693 \mathrm{~B}_{31}\end{aligned}\)
\(\mathrm{b}_{16}=1.27324 \mathrm{~B} 16 \ldots-\)
\(\begin{aligned} \mathrm{b}_{17}= & .07490 \mathrm{~B}_{1}-.03102 \mathrm{~B}_{3}-.00617 \mathrm{~B}_{5}-.01490 \mathrm{~B}_{7} \\ & +.15126 \mathrm{~B}_{9}-.06265 \mathrm{~B}_{11}+.31498 \mathrm{~B}_{13}+.76044 \mathrm{~B}_{15} \\ & +.83901 \mathrm{~B}_{17}-.34753 \mathrm{~B}_{19}-.06913 \mathrm{~B}_{21}-.16689 \mathrm{~B}_{23} \\ & -.01644 \mathrm{~B}_{25}+.00681 \mathrm{~B}_{27}-.03423 \mathrm{~B}_{29}-.08254 \mathrm{~B}_{31} \\ & -.+- \\ \mathrm{b}_{18}= & .14147 \mathrm{~B}_{2}-.05860 \mathrm{~B}_{6}+.29460 \mathrm{~B}_{10}+.71122 \mathrm{~B}_{14} \\ & +.86663 \mathrm{~B}_{18}-.35897 \mathrm{~B}_{22}-.07140 \mathrm{~B}_{26}-.17238 \mathrm{~B}_{30}\end{aligned}\)
\(\begin{aligned} \mathrm{B}_{19}= & .06701 \mathrm{~B}_{1}+.16178 \mathrm{~B}_{3}-.10810 \mathrm{~B}_{5}+.04478 \mathrm{~B}_{7} \\ & +.14761 \mathrm{~B}_{9}+.35638 \mathrm{~B}_{11}+.53333 \mathrm{~B}_{13}-.22091 \mathrm{~B}_{15} \\ & +.29786 \mathrm{~B}_{17}+.71911 \mathrm{~B}_{19}-.48049 \mathrm{~B}_{21}+.19903 \mathrm{~B}_{23} \\ & -.06037 \mathrm{~B}_{25}-.14576 \mathrm{~B}_{27}-.21814 \mathrm{~B}_{29}+.09036 \mathrm{~B}_{31}\end{aligned}\)
\(\mathrm{b}_{20}=.25465 \mathrm{~B}_{4}+.61477 \mathrm{~B}_{12}+.92008 \mathrm{~B}_{20}-.38111 \mathrm{~B}_{28}\)

Table B-IV. (cont'd) Fourier Coefficients of \(f(t)\) for given Walsh-Fourier Coefficients
\(\begin{aligned} \mathrm{b}_{21}= & .06063 \mathrm{~B}_{1}+.14638 \mathrm{~B}_{3}+.21907 \mathrm{~B}_{5}-.09074 \mathrm{~B}_{7} \\ & +.16976 \mathrm{~B}_{9}+.40984 \mathrm{~B}_{11}-.27385 \mathrm{~B}_{13}+.11343 \mathrm{~B}_{15} \\ & +.18925 \mathrm{~B}_{17}+.45689 \mathrm{~B}_{19}+.68378 \mathrm{~B}_{21}-.28323 \mathrm{~B}_{23} \\ & -.15139 \mathrm{~B}_{25}-.36549 \mathrm{~B}_{27}+.24421 \mathrm{~B}_{29}-.10116 \mathrm{~B}_{31}\end{aligned}\)
\(\begin{aligned} \mathrm{b}_{22}= & .11575 \mathrm{~B}_{2}+.27944 \mathrm{~B}_{6}+.41822 \mathrm{~B}_{10}-.17323 \mathrm{~B}_{14} \\ & +.32409 \mathrm{~B}_{18}+. .78243 \mathrm{~B}_{22}-.52280 \mathrm{~B}_{26}+.21655 \mathrm{~B}_{30}\end{aligned}\)
\(\begin{aligned} \mathrm{b}_{23}= & .05536 \mathrm{~B}_{1}-.02293 \mathrm{~B}_{3}+.11528 \mathrm{~B}_{5}+.27831 \mathrm{~B}_{7} \\ & +.33912 \mathrm{~B}_{9}-.14047 \mathrm{~B}_{11}-.02794 \mathrm{~B}_{13}-.05745 \mathrm{~B}_{15} \\ & +.14262 \mathrm{~B}_{17}-.05908 \mathrm{~B}_{19}+.29699 \mathrm{~B}_{21}+.71700 \mathrm{~B}_{23} \\ & -.55843 \mathrm{~B}_{25}+.24373 \mathrm{~B}_{27}+.04848 \mathrm{~B}_{29}+.11705 \mathrm{~B}_{31}\end{aligned}\)
\(\mathrm{b}_{24}=.42441 \mathrm{~B}_{8}+1.02462 \mathrm{~B}_{24} \ldots-{ }^{2}\)
\(\begin{aligned} \mathrm{b}_{25}= & .05093 \mathrm{~B}_{1}-.02110 \mathrm{~B}_{3}+.10606 \mathrm{~B}_{5}+.25604 \mathrm{~B}_{7} \\ & -.21013 \mathrm{~B}_{9}+.08704 \mathrm{~B}_{11}+.01731 \mathrm{~B}_{13}+.04180 \mathrm{~B}_{15} \\ & +.11683 \mathrm{~B}_{17}-.04839 \mathrm{~B}_{19}+.24325 \mathrm{~B}_{21}+.58727 \mathrm{~B}_{23} \\ & +.71559 \mathrm{~B}_{25}-.29641 \mathrm{~B}_{27}-.05896 \mathrm{~B}_{29}-.14234 \mathrm{~B}_{31}\end{aligned}\)
\(\begin{aligned} \mathrm{b}_{26}= & .09794 \mathrm{~B}_{2}+.23645 \mathrm{~B}_{6}-.15799 \mathrm{~B}_{10}+.06544 \mathrm{~B}_{14} \\ & +.21574 \mathrm{~B}_{18}+.52083 \mathrm{~B}_{22}+. .77948 \mathrm{~B}_{26}-.32287 \mathrm{~B}_{30}\end{aligned}\)
\(\begin{aligned} \mathrm{b}_{27}= & .04716 \mathrm{~B}_{1}+.11385 \mathrm{~B}_{3}+.17038 \mathrm{~B}_{5}-.07058 \mathrm{~B}_{7} \\ & -.03772 \mathrm{~B}_{9}-.09107 \mathrm{~B}_{11}+.06085 \mathrm{~B}_{13}-.02521 \mathrm{~B}_{15} \\ & +.10063 \mathrm{~B}_{17}+.24294 \mathrm{~B}_{19}+.36358 \mathrm{~B}_{21}-.15060 \mathrm{~B}_{23} \\ & +.28175 \mathrm{~B}_{25}+.68021 \mathrm{~B}_{27}-.45450 \mathrm{~B}_{29}+. .18825 \mathrm{~B}_{31}\end{aligned}\)
\(b_{28}=.18189 B_{4}-.07534 B_{12}+.37877 \mathrm{~B}_{20}+.91443 \mathrm{~B}_{28}\)
\(\begin{aligned} \mathrm{b}_{29}= & .04391 \mathrm{~B}_{1}+.10600 \mathrm{~B}_{3}-.07082 \mathrm{~B}_{5}+.02934 \mathrm{~B}_{7} \\ & -.00890 \mathrm{~B}_{9}-.02148 \mathrm{~B}_{11}-.03215 \mathrm{~B}_{13}+.01332 \mathrm{~B}_{15} \\ & +.08979 \mathrm{~B}_{17}+.21676 \mathrm{~B}_{19}-.14484 \mathrm{~B}_{21}+.05999 \mathrm{~B}_{23} \\ & +.19777 \mathrm{~B}_{25}+.47748 \mathrm{~B}_{27}+.71456 \mathrm{~B}_{29}-.29598 \mathrm{~B}_{31}\end{aligned}\)
\(\begin{aligned} \mathrm{b}_{30}= & .08488 \mathrm{~B}_{2}-.03516 \mathrm{~B}_{6}-.00699 \mathrm{~B}_{10}-.01688 \mathrm{~B}_{14} \\ & +.17143 \mathrm{~B}_{18}-.01701 \mathrm{~B}_{22}+. .35698 \mathrm{~B}_{26}+.86183 \mathrm{~B}_{30}\end{aligned}\)

Table B-IV. (cont'd) Fourier Coefficients of \(f(t)\) for given
Walsh Fourier Coefficients
\(\begin{aligned} \mathrm{b}_{31}= & .04107 \mathrm{~B}_{1}-.01701 \mathrm{~B}_{3}-.00338 \mathrm{~B}_{5}-.00817 \mathrm{~B}_{7} \\ & -.00081 \mathrm{~B}_{1}+.00033 \mathrm{~B}_{11}-.00168 \mathrm{~B}_{13}-.00405 \mathrm{~B}_{15} \\ & +.08234 \mathrm{~B}_{17}-.03411 \mathrm{~B}_{19}-.00678 \mathrm{~B}_{21}-.01638 \mathrm{~B}_{2} 3 \\ & +.16630 \mathrm{~B}_{25}-.06888 \mathrm{~B}_{27}+.04630 \mathrm{~B}_{29}+.03605 \mathrm{~B}_{31}\end{aligned}\)
\(b_{32}=1.27324 B_{32} \ldots-{ }^{-\cdots}\)

\section*{Appendix C. Layout of Circuit Boards}

The following diagrams show the layout of the integrated circuit chips on the 3 boards of the Walsh function Generator and the 2 boards of the Pulse Burst Generator. Each of the integrated circuits is labelled with the type number and a letter designation. Only figure \(C-1\) shows the input-outputterminals. On all boards, terminal (A) is Vcc and (7) is ground. Table \(C-1\) below \(l\) ists each of the integrated circuits that are used on the boards.

Table C-I. List of Integrated Circuits

Type No.
SNT400N Quadruple 2-input positive NAND gate
SN7401N Quad 2-input NAND gate w/open collector output

8-input positive NAND gate
Dual 4-input positive NAND "power" gate
Dual AND-OR-invert gate
Dual master/slave J-K.FIip-flop

Type number \(S N 7473 N\) has \(v c c\) on pin 4 and ground on pin ll. All other chips have \(V c c\) on pin 14 and ground on pin 7. Fan-out for \(S N 7440 N\) is 30 units. All other chips have a fan-out of 10. All input leads have a fan-in of 1 . Schematic diagrams of each integrated circuit listed in Table C-I are shown in figure \(C-5\) on page ill.

Figure C-1. Walsh Function Generator - Card I


Note: Only integrated circuit \(A\) shows pin locations.

Figure C-2. Walsh Function Generator - Cards 2 and 3


Cards 2 and 3 of the Walsh Function Generator are identical in layout.

Figure \(\mathrm{C}-3\). Pulse Burst Generator - Card 1


Figure C-4. Pulse Burst Generator - Card 2



Figure C -5. TTL integrated Circuits
```

Appendix.D. Errors in Walsh-Fourier to Fourier Series
Conversion when Walsh-Fourier Series is
Limited to sal(32,0) and cal(31,0)

```

Table D-1. Square Wave (Amplitude, 10 Volts)
\begin{tabular}{rlrll}
\(N\) & \(A_{n}\) & \(B_{n}\) & \(a_{n}\) & \multicolumn{1}{l}{\(b_{n}\)} \\
- & 0.0 & 10.0 & 0.0 & 12.732 \\
1 & 0.0 & 0.0 & 0.0 & 0.000 \\
2 & 0.0 & 0.0 & 0.0 & 4.244 \\
3 & 0.0 & 0.0 & 0.0 & 0.000 \\
5 & 0.0 & 0.0 & 0.0 & 2.547 \\
6 & 0.0 & 0.0 & 0.0 & 0.000 \\
7 & 0.0 & 0.0 & 0.0 & 1.819 \\
8 & 0.0 & 0.0 & 0.0 & 0.000 \\
9 & 0.0 & 0.0 & 0.0 & 1.415 \\
10 & 0.0 & 0.0 & 0.0 & 0.000
\end{tabular}

True values of coefficients
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(N\) & \(a_{n}\) & Error & \% Error & \(\mathrm{b}_{\mathrm{n}}\) & Error & \% Error \\
\hline 1 & 0.0 & 0.0 & undefined & 12.732 & 0.0 & 0.0 \\
\hline 2 & 0.0 & 0.0 & " & 0.000 & 0.0 & undefined \\
\hline 3 & 0.0 & 0.0 & " & 4.244 & 0.0 & 0.0 \\
\hline 4 & 0.0 & 0.0 & " & 0.000 & 0.0 & undefined \\
\hline 5 & 0.0 & 0.0 & " & 2.547 & 0.0 & 0.0 \\
\hline 6 & 0.0 & 0.0 & " & 0.000 & 0.0 & undefined \\
\hline 7 & 0.0 & 0.0 & " & 1.819 & 0.0 & 0.0 \\
\hline 8 & 0.0 & 0.0 & " & 0.000 & 0.0 & undefined \\
\hline 9 & 0.0 & 0.0 & " & 1.415 & 0.0 & 0.0 \\
\hline 10 & 0.0 & 0.0 & " & 0.000 & 0.0 & undefined \\
\hline
\end{tabular}

Calculated values of \(a_{n}\) and \(b_{n}\) using Walsh-Fourier Coefficients

Table D-11. 10 Volt Pulse (Duty cycle \(=1 / 3\) )
\begin{tabular}{lrrrr}
N & \multicolumn{1}{l}{\(\mathrm{A}_{n}\)} & \(\mathrm{~B}_{\mathrm{n}}\) & \(\mathrm{a}_{\mathrm{n}}\) & \multicolumn{1}{l}{\(\mathrm{b}_{n}\)} \\
\hline 1 & 1.667 & 3.333 & 2.756 & 4.775 \\
2 & -.833 & 1.667 & -1.378 & 2.387 \\
3 & .833 & -.833 & 0.0 & 0.0 \\
4 & .417 & .833 & .689 & 1.194 \\
5 & -.417 & .417 & -.551 & .955 \\
6 & -.417 & -.417 & 0.0 & 0.0 \\
7 & .417 & -.417 & .394 & .682 \\
8 & -.208 & .417 & -.345 & .597 \\
9 & .208 & -.208 & 0.0 & 0.0 \\
10 & .208 & .208 & .276 & .477
\end{tabular}

True values of coefficients
\begin{tabular}{lrrllll}
\(N\) & \(a_{n}\) & Error & \% Error & \(b_{n}\) & Error & \% Error \\
\hline 1 & 2.754 & .003 & .106 & 4.773 & .002 & .036 \\
2 & -1.372 & -.006 & .433 & 2.384 & .003 & .137 \\
3 & .000 & .000 & undefined & .010 & .010 & undefined \\
4 & .678 & .011 & 1.663 & 1.186 & .007 & .512 \\
5 & -.536 & -.015 & 2.744 & .947 & .008 & .801 \\
6 & -.001 & -.001 & undefined & .020 & .020 & undefined \\
7 & .374 & .019 & 4.950 & .669 & .013 & 1.955 \\
8 & -.320 & -.024 & 7.077 & .585 & .011 & 1.906 \\
9 & -.003 & -.003 & undefined & .030 & .030 & undefined \\
10 & .249 & .027 & 9.771 & .458 & .020 & 4.131
\end{tabular}

Calculated Values of \(a_{n}\) and \(b_{n}\) using Walsh-Fourier Coefficients

Table D-111. 10 Volt Pulse (Duty cycle \(=1 / 5\) )
\begin{tabular}{ccccc}
\(N\) & \(A_{n}\) & \(B_{n}\) & \(a_{n}\) & \(b_{n}\) \\
\hline 1 & 2.0 & 2.0 & 3.027 & 2.199 \\
2 & .5 & 2.0 & .935 & 2.879 \\
3 & .5 & .5 & -.624 & 1.919 \\
4 & -.5 & .5 & -.757 & .550 \\
5 & -.5 & -.5 & 0.0 & 0.0 \\
6 & .5 & -.5 & .505 & .367 \\
7 & .5 & .5 & .267 & .823 \\
8 & -.125 & .5 & -.234 & .720 \\
9 & -.125 & -.125 & -.336 & .244 \\
10 & .125 & -.125 & 0.0 & 0.0
\end{tabular}

True values of coefficients
\begin{tabular}{rrrlrlr}
\(N\) & \(a_{n}\) & Error & \(\%\) Error & \(b_{n}\) & Error & \% Error \\
\hline 1 & 3.025 & .002 & .077 & 2.200 & -.001 & -.037 \\
2 &. .932 & .003 & .325 & 2.875 & .004 & .133 \\
3 & -.620 & -.004 & .636 & 1.913 & .006 & .322 \\
4 & -.747 & -.010 & 1.257 & .552 & -.002 & -.416 \\
5 & .001 & .001 & undefined & .012 & .012 & undefined \\
6 &. .491 & .013 & 2.637 & .373 & -.006 & -1.657 \\
7 & .256 & .012 & 4.403 & .810 & .012 & 1.489 \\
8 & -.225 & -.009 & 3.7 .60 & .703 & .017 & 2.395 \\
9 & -.315 & -.021 & 6.387 & .247 & -.003 & -1.219 \\
10 & .005 & .005 & undefined & .024 & .024 & undefined
\end{tabular}

Calculated values of \(a_{n}\) and \(b_{n}\) using Walsh-Fourier Coefficients

Table D-IV. 10 Volt Pulse (Duty cycle \(=1 / 8\) )
\begin{tabular}{lllll}
\(N\) & \(A_{n}\) & \(B_{n}\) & \(a_{n}\) & \(b_{n}\) \\
\hline 1 & 1.25 & 1.25 & 2.251 & .932 \\
2 & 1.25 & 1.25 & 1.592 & 1.592 \\
3 & 1.25 & 1.25 &. .750 & 1.811 \\
4 & 0.0 & 1.25 & 0.000 & 1.592 \\
5 & 0.0 & 0.0 & -.450 & 1.087 \\
6 & 0.0 & 0.0 & -.531 & .531 \\
7 & 0.0 & 0.0 & -.322 & .133 \\
8 & 0.0 & 0.0 & 0.000 & 0.000 \\
9 & 0.0 & 0.0 & .250 & .104 \\
10 & 0.0 & 0.0 & .318 & .318 \\
& & & &
\end{tabular}
\begin{tabular}{lllllll}
\(N\) & \(a_{n}\) & Error & \% Error & \(b_{n}\) & Error & \% Error \\
\hline 1 & 2.251 & 0.0 & 0.0 & .932 & 0.0 & 0.0 \\
2 & 1.592 & 0.0 & 0.0 & 1.592 & 0.0 & 0.0 \\
3 & .750 & 0.0 & 0.0 & 1.811 & 0.0 & 0.0 \\
4 & 0.000 & 0.0 & undefined & 1.592 & 0.0 & 0.0 \\
5 & -.450 & 0.0 & 0.0 & 1.087 & 0.0 & 0.0 \\
6 & -.531 & 0.0 & 0.0 & .531 & 0.0 & 0.0 \\
7 & -.322 & 0.0 & 0.0 & .133 & 0.0 & 0.0 \\
8 & 0.000 & 0.0 & undefined & 0.000 & 0.0 & undefined \\
9 & .250 & 0.0 & 0.0 & .104 & 0.0 & 0.0 \\
10 & .318 & 0.0 & 0.0 & .318 & 0.0 & 0.0
\end{tabular}

Calculated values of \(a_{n}\) and \(b_{n}\) using Walsh-Fourier Coefficients

Table D-V. \(10 \sin 2 \pi f t\)
\begin{tabular}{rrrrr}
\(N\) & \(A_{n}\) & \multicolumn{1}{c}{\(B_{n}\)} & \multicolumn{1}{l}{\(a_{n}\)} & \multicolumn{1}{c}{\(b_{n}\)} \\
\hline 1 & 0.0 & 6.356 & 0.0 & 10.0 \\
2 & 0.0 & 0.000 & 0.0 & 0.0 \\
3 & 0.0 & -2.637 & 0.0 & 0.0 \\
4 & 0.0 & 0.000 & 0.0 & 0.0 \\
5 & 0.0 & -.525 & 0.0 & 0.0 \\
6 & 0.0 & 0.000 & 0.0 & 0.0 \\
7 & 0.0 & -1.266 & 0.0 & 0.0 \\
8 & 0.0 & 0.000 & 0.0 & 0.0 \\
9 & 0.0 & -.125 & 0.0 & 0.0 \\
10 & 0.0 & 0.000 & 0.0 & 0.0 \\
& & True values of coefficients &
\end{tabular}
\begin{tabular}{lllllll}
\(N\) & \(a_{n}\) & Error & \% Error & \(b_{n}\) & Error & \% Error \\
\hline 1 & 0.0 & 0.0 & undefined & 9.992 & .008 & .080 \\
2 & 0.0 & 0.0 & \("\) & 0.0 & 0.0 & undefined \\
3 & 0.0 & 0.0 & \("\) & 0.0 & 0.0 & \("\) \\
4 & 0.0 & 0.0 & \("\) & 0.0 & 0.0 & \("\) \\
5 & 0.0 & 0.0 & \("\) & 0.0 & 0.0 & \("\) \\
6 & 0.0 & 0.0 & \("\) & 0.0 & 0.0 & \("\) \\
7 & 0.0 & 0.0 & \("\) & 0.0 & 0.0 & \("\) \\
8 & 0.0 & 0.0 & \("\) & 0.0 & 0.0 & \("\) \\
9 & 0.0 & 0.0 & \("\) & 0.0 & 0.0 & \("\) \\
10 & 0.0 & 0.0 & 0.0 & 0.0 & \("\)
\end{tabular}

Calculated values of \(a_{n}\) and \(b_{n}\) using Walsh-fourier Coefficients

Table D-VI. Sum of 10 Sines Waves (First 10 Harmonics of
Fourier Series are Equal)
\begin{tabular}{ccccc}
\(N\) & \(A_{n}\) & \(B_{n}\) & \(a_{n}\) & \(b_{n}\) \\
\hline 1 & 0.0 & 1.138 & 0.0 & 1.0 \\
2 & 0.0 & .976 & 0.0 & 1.0 \\
3 & 0.0 & .489 & 0.0 & 1.0 \\
4 & 0.0 & .637 & 0.0 & 1.0 \\
5 & 0.0 & .402 & 0.0 & 1.0 \\
6 & 0.0 & .556 & 0.0 & 1.0 \\
7 & 0.0 & .637 & 0.0 & 1.0 \\
8 & 0.0 & .637 & 0.0 & 1.0 \\
9 & 0.0 & -.099 & 0.0 & 1.0 \\
10 & 0.0 & -.065 & 0.0 & 1.0
\end{tabular}

True values of coefficients
\begin{tabular}{lllllll}
\(N\) & \(a_{n}\) & Error & \% Error & b \(_{n}\) & Error & \% Error \\
\hline 1 & 0.0 & 0.0 & undefined & .999 & .001 & .080 \\
2 & 0.0 & 0.0 & \("\) & .997 & .003 & .321 \\
3 & 0.0 & 0.0 & \("\) & .992 & .007 & .721 \\
4 & 0.0 & 0.0 & \("\) & .987 & .013 & 1.279 \\
5 & 0.0 & 0.0 & \("\) & .980 & .020 & 1.992 \\
6 & 0.0 & 0.0 & \("\) & .971 & .029 & 2.854 \\
7 & 0.0 & 0.0 & \(" 1\) & .961 & .039 & 3.874 \\
8 & 0.0 & 0.0 & \("\) & .950 & .050 & 5.036 \\
9 & 0.0 & 0.0 & \("\) & .937 & .064 & 5.339 \\
10 & 0.0 & 0.0 & & .922 & .078 & 7.778
\end{tabular}

Calculated values of \(a_{n}\) and \(b_{n}\) using Walsh-Fourier coefficients

Table D-VII. Triangular Wave (Peak Amplitude, 10 Volts)
\begin{tabular}{ccccr}
\(N\) & \(A_{n}\) & \multicolumn{1}{c}{\(B_{n}\)} & \(a_{n}\) & \(b_{n}\) \\
\hline 1 & 0.0 & 5.0 & 0.0 & 8.106 \\
2 & 0.0 & 0.0 & 0.0 & .000 \\
3 & 0.0 & -2.5 & 0.0 & -.901 \\
4 & 0.0 & 0.0 & 0.0 & .000 \\
5 & 0.0 & 0.0 & 0.0 & .324 \\
6 & 0.0 & 0.0 & 0.0 & .000 \\
7 & 0.0 & -1.25 & 0.0 & -.165 \\
8 & 0.0 & 0.0 & 0.0 & .000 \\
9 & 0.0 & 0.0 & 0.0 & .100 \\
10 & 0.0 & 0.0 & 0.0 & .000
\end{tabular}

True values of coefficients


\section*{Bibliography}
1. William S. Burdic, "Radar Signal Analysis", PrenticeHall, Inc., Englewood Cliffs, N.Y., 1968.
2. "Digital Logic Handbook", Digital Equipment Corporation, Maynard, Mass., 1968.
3. Henning F. Harmuth, "Sequency Multiplex Systems for Telephony and Data Transmission", Interna†ional Electronics Conference, I.E.E.E., Toronto, Sept. 1967.
4. \(\qquad\) "A Generalized Concept of Frequency and Some Applications", I.E.E.E. Transactions on Information Theory, Vol. IT-14, No. 3, May 1968.
5. G. W. Morgenthaler, "On Walsh-Fourler Series", Trans. Am. Math. Soc., Vol. 65, 1949.
6. "TTL Integrated Circuits from Texas instruments", 1968 Catalogue.```

