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. Introduction

Conventional wave analysers have long beeh used to
determine the harmonic content of signals by analogue methods.
These insfruﬁenfs operate by tuning to the signal component
that is to be measured. Generally, the lower limit of
fundamental frequency that can be handled is 20 Hz. For
waves that have fundamental frequencies far less than 20 Hz,
accurate tuning becomes increasingly difficult and a great
deal of time would be required to average, say, 20 periods
for each signal component that is to be measured.

Consequently, it was decided that a digita! instrument
would perhaps be more suitable for measurements of low fre-
quency waves. Samples need be taken from only one cycle of
the wave. The samples would then be manipulated to derive
information concefning the harmonic content of the signal.
Thus, the purpose of the project was to devise a low-cost,
minimum storage, digital instrument for calculating the
Fourier series of a low-frequency periodic input wave.

tf a, and b, are the coefficients of the Fourier

series, then these quantities are calculated by the following

equations:



’ T
a, = 2 f £(1) cos nw_t dt
T— Q
Q
and b = 2 /Tf(T) sin nw_t dt
—f (e}

o]

where T is The‘beriod of the signal, f(t). The equations
require +ha+ the signal, f(t), be multiplied by cosine and
sine waves and fhaf these quantities be integrated over one
period of f(f). In a digital fnsTrumenT, sinusoidal waves
are very difficult to handle. Either the waves would have
to be generated according to the fundamental frequency of f(1)
and then sampled at the same time as f(1), or each individual
value of the waves that would be used in any calculations
would have to be stored in a memory.

It was found that an array of funcTioné, called
Walsh funcTion;?)would adapt themselves to a digital instru-
ment much better than sinusoidal waves. The Walsh functions
have only two values, +I1 and -1, and hence can be represented
by logic "I"'s ahd "O"'Sf They can be used to represent a
waveform in a Walsh-Fourier series in much the same way as
sinusocidal waves are used to form a Fourier series. Once
the Walsh-Fourier series has been found, Thé method of super-
position can be used to convert the serfes into a Fourier
series.

This thesis is wriften to outline the mathematical
principles involved in obtaining a Walsh-Fourier series of
a periodic waveform and converting it into a Fourier series.
A proposed scheme for a'diéifal instrument to obtain the
Walsh-Fourier series of a periodic inpuf signal and the

construction of two portions of the instrument are also



described in Thfs thesis. The insTFQmenT can analyse wave-
forms with fundamental frequencies up to 60 Hz. There is no
theoretical lower frequency limit.

The second chapter establishes the mathematical basis
for the desjgn‘of the instrument., |+ shows how the properties
of orthogonal functions are used to derive the Fourier series
andifhe Walsh-Fourier series. Conversion of Walsh-Fourier
to Fourfer series is then explained. The following chapter
shows how Thé mathematical expressions in Chapter 11l must be
modified for use in a digital instrument.

Chapter IV describes the proposed scheme for the in-
strument with detailed descriptions of those portions of the
system that are not commercially available. A partial error
analysis providing examples of error arising from use of a
finite number of terms in the conversion from Walsh-Fourier
to Fourier series and describing the error in producing Walsh
functions is given in Chapter V. The final chapter on con-
clusions discusses the limitations of the instrument and

future work to be done on the Walsh-Fourier analyser.



Il. Mathematical Basis for Design

Conventional steady state nétwork analysis leads
directly to a representation of network performance in terms
of the response to sinusoidal signals of different frequencies.
The calculation of the output signal from such a nefwork is
therefore simplified if the input signal is expressed in these
same terms. The Fourier series representation of the input
thus reveals the signal in a form particularly well-adapted
to providing insight intfo the behaviour of networks and systems
stimulated with signals of varioﬁs Typés.

On the market there are many wave analysers which can
be used to determine the harmonic content of the waveform
which fs being tested. However, these instruments are gener-
ally analogue devices which have a low frequency response
timit of approximately 20 Hz.or higher. In the domain of
ultra-tow frequencies, digital instruments, which would sample
the waveform and process the samples, seem to be preferable
to analogue instruments, which would require circuits tuned
to these very low frequencies and would require averaging
perjiods of, say, 20 times the reciprocal of the lowest fre-
quency component.

However, in the design of a digital instrument, sinu-
soidal waves, such as are normally used to calculate and to

represent a Fourier series, present some difficulty.

4.



Calculations involving sines and cosines would require that
any particular value of the sine or cosine which is used in

the calculations be stored or génerafed in a form that can

be used in digital logic. It would be advantageous if
another set of functions, more suitable to digital logic,
could be used in place of the sinusoidal functions. It has

been found that functions, known as Walsh functions, can be
employed in place of sines and cosines in ofder to find the
Fourier series of a periodic waveform,

Both sinusoidal waves and Walsh functions are ortho-
gonal. In order to show the mathematical basis for using
Walsh functions to obtain the Fourier series, this chapter
first discusses the properties cf orthogonal functions. i
is then shown how a specific case of orthogonal functions,
sinusoidal waves, are used to represenfla periodic waveform
by a serfes of these waves, commonly known as the Fourier
series. A similar analysis is performed using Walsh functions.
The final section of this chapter shows how a representation
of a periodic waveform using Walsh functions can be converted

intfo an equivalent Fourier series,

Properties of Orthogonal Functions

A periodic signal, f(x), may be expanded into a series
of orthogonal functions. A group of functions

0 (x), 9,00, do(x), -===m- b (x)-----
are defined to be orthogona! over the interval [a, bJ] with

respect to a non-negative weighting function, r(x), if



T if n = m (2-1)

b
[ r(x)¢n(x)®m(x)dx "
a

=0 ifn#m
where Tn is a constant relating +§ the interval [a,b].
The function, f(x), may be expressed as the sum of such a
group of orthogonal functions as follows:
f(x) = a0, (x) + a,b,(x) + azd (x) + ---- (2-2)
Requiring the functions @n(x) to be orthogonal results in the

relative ease with which the coefficients a_ may be evaluated.

n
Both sides of Equation (2-2) should be multiplied by r(x)@n(x)
and integrated over the interval of orthogonality [a,b].

/b fOOr(x) 0, (x)dx = /d)[alr(x)¢l(x)¢n(x) t -
a a

+amr(x)®m(x)¢n(x)
+agr0 0200 + —--=Jdx (2-3)
By the basic definition of orthogonality as stated in Equa-
tion (2-1), all terms on the right-hand side of (2-3) vanish

except for the nth term. Therefore,

b b |
[ f(x)r(x)@n(x)dx = an}’ r%x)@ﬁ(x)dx = a,T, (2-4)
a a

Thus, the general expression for evaluating the coefficients
. for an expansion in terms of orthogonal functions is:

a_ = | [b FO)rix)d (x)dx (2-5)
n — n
T
n a

Many sefs of'orThogonal functions could be used to
approximate a periodic signal. The Fourier series, which
consists of the orthogonal functions, sines and cosines, is
the most commonly used séries in signal analysis. However,

sinusoidal waves are not as suitable to perform calculations



in a digital tnstrument as are another set of or*hogonal

‘ funcTions called Waléh functions. In the fql{owing sections,
it is shown how both sinuséidal waves and Walsh functions can
be used in a series expansion representation of a periodic

signal.

Fourier Series

Many of the signals encountered in electric networks
are periodic in time., A signal is defined as periodic if

f(t)Y = f(nT + 1) (2-6)

where: T period,

n any integer.

Therefore, it follows that 1If the signal is known in The
interval [t,, t, + TJ, it is defined for all time. (See

Figure 11=-1),

£(t)

.

o —

Figure I1-1. Periodic Function with Period T




In practical ;pplicafioné in the field of e}ecfronics, all
sighals will be reaf (rather than complex) functions of time.
To expand f(t) into a series of simple orthogonal
functions, it Qould make sense To choose functions which are
themselves periodic and simple in form. The simplest type of
periodic function which displays the required characteristics

for orthogonality is the sinuscid. That is:

/T cos. (mwof)cos(nwof)d+ = 0 for m # n (2-7)
o)

= T/2 form=n#20

= f for m = n =0

where w_ = 21T,
° 7

and m and n are positive integers.

Likewise,

IT sin (mu_t) sin (nwgt)dt = 0 for m # n (2-8)
° = T/2 form =n # 0
=0 form=n=20
T
and f cos (mwof)sin(nwof)df = 0 for all m and n. (2-9)

Q

Thus, sinusoidal signals are orthogonal over the interval, T,
with respect to a weighting function, r(t+) = 1,0. Therefore,
the general orthogonal function can be chosen as

Qn(f) = Ccos (nwof - 8,) (2-10)
The function f(t) can be expressed as follows:

f(t)

i

Cod (T + C 0, (1) + Cobp(t) + --- (2-11)

t

Z c 0,01
n=o0

The first term in the expansion, (for n=0), represents the



average vélué or zero frequency term of f(T)'and, as shch;

is somewhat unique in terms of evaluafiﬁg the coefficient Co.
I+ may be noted in Equation (2-7) that %he value of fhe
integral for m =n =20 is twice ThaT‘for m=n# 0. To

develop a general expression for the coefficient which applies

equally well to all terms, it is necessary to define
®O(T) = 1.
2
The series in Equation (2-11) can then be rewritten:
f(t) = Co + Z Cpb,(1) (2-12)
' 2 n=| _

C d
= Co + 2 Cp cos (hwgot - 8,)
2 n=|

To simplify further the evaluation of the coefficients, the

following substitution may be made;

Ch cos (nw t - 8,) = a, cos (nwgt) + bn sin(nwy™)
where Cp = /an2 + bn2
and On =

arctan (En).
an

The function f(1) may now be expressed in the alternate form

f(t) = ag + Z a, cos (nwet) + Z bsinCnw t) (2-13)
2 n=| n=1|

Thé forms shown in Equations (2-12) and (2-13) are
entirely equivalent. Equa%ion (2-12) is more compact, and
for that reason is often used as the final form for represen-
ting the function. However, since Equation (2-12) contains

two unknowns, C, and 6,, it is convenient to convert it +to

n

the form of Equation (2-13) and evaluate separately the



coefficients a_  and b,. Equations kZ—IZ) and (2-13) are
~ known as the frigonometric forms of the Fourier series.

It is. necessary to point out that there are some
types of functions which may not be expanded'successfully
into a Fourier series. However, in practice, almost every
function that is encountered may be expréssed as a Fourier
series. Functions with the following properties are Fourier
expandable:

. The function has at most a finite number of
discontinuifies in one period.

2. iT‘has a finite number of maxima and minima in
one period.

3., The integrail of the squared magnitude of f(t)

over one period is finite. That is,

{T l£(+)12 4t < oo

(o]

Following the procedure indicated in Equations (2-3)
through (2-5), the coefficients may be evaluated. To obtain
a, multiply both sides of Equation (2-13) by 0 (1) and inte-

o

grate over one period. Since ¢ () = 1,

N

T oo -
fT f(t)dt = [ ag dt + [T I { z [ancos(nwOT)
o

|
7 ). 4 o 7 " n=|

+ b sin(non)]} dt
All terms in the second integral on the right will integrate

to zero. Therefore,
T =
1 f’ fOt)dt = a T
2 ° 4

T .
and ag = g.‘/ f(H)dt (2-14)
T Q



To evaluate the remainder of the a,

coefficients,
multiply both sides of Equation (2-13) by cos(nwyt) and inte-

grate.

[T f(t)cos(nw t)dt =/T{_a_Q cos (nwgt)
/s o\ 72

oD
4
+cos(nwo.)aéltamcos(mwOT)

+b, sin(mwgt)l}dt
In accordance with Equations (2-7), (2-8), and (2-9), all
terms on the right will integrate to zero except for the pro-
Jucf of the cosine terms when n = m., Thus

T ; : B T 2 _
r f(+) cos(nw_t)dt - a, r cos“(nw_t)dt = a%T
o o

Therefore, a, = 2 [T f(t) cos (nwgyt)dt . (2-15)
T

o]

To evaluate the coefficients b,, the same procedure
as above is followed except that now both sides of Equation
(2-13) are multiplied by sin (nwgt). Upon integration, all
terms but one will again disappear, so that

b, = g[T £01) sin (nwgt) dt (2-16)
. T O

The Fourier series‘represenTaTion of the function f(1)

is now compléTe with the coefficients defined. Recapitulating,

f() = 3g 4 n’z:l [ancostnugt) + bosinCaugh)]  (2-13)

where a =2 [T £0+) dt | (2-14)
T ¢]

and a, =2 [T £(+) cos(nw t)dt (2-15)
T (o]

and o =2 [T £() sinCnw t)dt (2-16)

o]



or f(+) = ag +3 Cp coslnw t- 8,) T (2-12)
2 n=l| '

where Ch = an2 + bnz N

and 8, =

n arctan (Eﬂ)
an

Walsh-Fourier Series

| The concept of frequency in electronics is based on
the complete brThogonal sys+eﬁ of sine and cosine functions.
Other orthogonal systems may be used to describe periodic
signals, but oniy the Walsh functions, several of which are
shown in Figure 11-2 on page |3, have been found so far to
have comparably good feaTures.(B)(4) Since these functions
assume only the two values, +] and -1, it is plausible that
they may be more uéeful in digital circuitry than would sinu-
soidal funcfiéns.

Sine and cosine functions are characterized by their
frequency, which is given in terms of oscillations per second.
Walsh functions are characterized by their sequency, which ié
defined by:

(l) ‘laverage number of zero crossings per second)
2

= seqﬁency measured in zZps.
The concept of seqdency is applicable to sine and cosine
functions and is iQenTicaI-wiTh frequency in that case.

The terminology given the Walsh functions, sal (n,8)
and cal (n,8), is made sb that they can be compared easily
to the Terminoloéy of the sinusoidal functions, sin(n@) and
cos(ﬁe). For the Walsh functions, the n denotes the multiple

of sequency, whereas for the sine and cosine, n denotes the



Figure 11-2.

Walsh Functions

WAL(O,8)

SAL(1,8)

CAL(I1,8)

SAL(2,8)

CAL(2,8)

SAL(3,6)

CAL(3,8)

SAL(4,0)

CAL(4,8)

SAL(5,8)

CAL(5,8)

SAL(6,0)

CAL(6,8)

SAL(7,8)

CAL(7,8)

SAL(8,0)



14.

multiple of frequency. The Walsh functions become-funcTions'

t/T, where T is one period. For sinu-

of time by letting ©

I

soidal functions, © 2wft. Since f = I/T, 8 becomes

2mt. Occasionally, wal (n,8) is used to denote the Walsh
R _

functions in general. The function wa](O,G) has a constant
value of +1. The sinusoidal funpfibns have no comparable
ancTion. An explanation of the formation of Walsh functions
is given in Appendix A,
In order to use Walsh functions to form a series ex-
' )

pansion of asignal, it .«can be shown that they display the

required characteristics of orthogonality. That is,

fT cal (m,8) cal(n,8)dt 0 for m#n (2-17)
)

n # 0

H
il

T for m
where m and n are positive integers.

Likewise,

[T sal(m,8) sal(n,8)dt = 0 for m # n (2-18)
© =T form=n#0
and [T cal(m,8) sal(n,8)dt = 0 (2-19)
(o]
for all m and n except m = n = 0,

The sal and cal functions are not defined as such
when m or n equals zero. When m or n becomes zero, the
functions become wal(0,8), or merély I for all time, Wal(0,8)
also equals salz(n,e) or calz(n,e). Thus, each of the Equa-

tions (2-17), (2-18), and (2-19) becomes

fT wal (0,8)dt = T whenm =n =0 : (2-20)
o

Therefore, according to Equation (2-1), Walsh functions are

orthogonal over a period T, with respect to a weighting



function, r(t) = 1.0.

Consequently, as in Equation (2-13) for the Fourier
series, the function f(t) may bg expanded info a sum of mu-
halry orthogonal series as follows:

f(1) = A, + zl A, cal(n,8) + zl B, sal(n,8) (2-21)
n= n=

A, I's the average value ofif(T). The convention which has
been adopted in this thesis is that capital letters, A and B,
are used for all coefficients of the Walsh-Fourier series,
whereas the lower case letters, a and b, apply to the Fourier'
series coefficients.

In the expression in Equation (2-11}, the general
orthogonal function, ®n(+), for the Fourier éeries, consists
ofra function which contains both sine ana cosine terms,

When n = 0, the sine portion is zero leaving cos 0 equal to I.
Therefore @o(f) should be I‘fof the Fourier series. However,
so that the general expression for the coefficient would

apply equally well to all ferms; b, () was arbitrarily set

at 1/2. For the Walsh-Fourier series, when n = 0, 0 (1)
becomes wal (0,0). Wal(0,8) can be used directly to find

the coefficient Ay and no arbitrary va!ue‘need by assigned

to ().

Again, following the procedure of Equations (2-3)
through (2-5), the coefficients of the Walsh-Fourier series
may be obtained. To evaluate Aj, multiply both sides of
Equation (2-21) by ®O(T), or wal(0,8), and integrate over ocne

period. Since wal(0,8) =1 for all *t,



o
T f(t)dt = fT Aodt +IT(£ [A,cal(n,8)
° o n=1

(@]

+ anal(n,e)]) dt
All terms in the second integral on the right side integrate

to zero. Therefore,

/T £01) dt = JT Aodt = AgT
O o]

and Ao = | /T fFO+)dt (2-22)
T (e}

To evaluate the remainder of the A, coefficients,
multiply both sides of Equation (2-21) by cal(n,8) and
integrate. |

/Tf(f)ca|(n,9)df = IT{AOcal(n,Q)

o 0
+cal(n,0) £ [A,cal(m,8)
m=|
+Bmsal(m,9)]}d+
According to Equations (2-17), (2:I8), and (2-19), al!l terms
on the right will integrate to zero except for the product
of the cal terms when n = m, Then,

[Tf(f)cal(n,G)dT = AnITcalz(n,Q)df = ALT
Q 0]
Therefore, A_ = Lfo(T)cal(n,Q)dT (2-23)
T
(e}

To evaluate the Bn coefficients, the same procedure
as above is followed excepf that now both sides of Equation

(2-21) are multiplied by sal(n,8). Upon integration, all

terms but the salz(n,G) term will disappear, so that
B, = I( f(t)sal(n,8)dt (2-24)
T)o .

The Walsh-Fourier series expansion of f(t) is now complete

with the coefficients defined. As a summary,



fOt) = A+ g Ajcal(n,8) + % ana](n,G) (2-21)
n=| n=i )

where A_ = _l_[Tf(T)dT | | (2-22)
T/, - ,

and An = _l_/Tf(T)caI(n,e)d’r | | (2-23)
T (o] . '

and B, = _I_/Tf('l‘)sal(n,e)d‘r : (2-24)
T (o]

Conversion of Walsh=-Fourier to Fourier Series

In order to make use of Wa!sﬁ functions in an instru-
ment that is designed to calculate the Fourier series of a
waveform which is being sampled, it must be possible o éon-
-verT a Walsh-Fourief series representation of the wave into
an equivalent Fourier series. This is accomplished by using
the principle of superposition. Each term of the Walsh-Fourier
series has its own Fourier series. When these series are
added together, and the Ilike terms are grouped; then the
Fourier series of the waveform being analysed is the result.
The Wailsh-Fourier series representation of a periodic

wave s

o0 on
f(1) = Aj + g| Apcal(m,8) + Z B sal(m,8) (2-21)
m=

m=|

The Fourier series of the same wave is

M3

(1)

+ a.cosng + ;i bnsin no (2-13)

n
] n=|

Im
Nlo

n

Since Equation (2-2!) equals (2-13) for the same wave,

AO = ao/2
oo - o
and £ Apcal(m,8) + Z Bpsal(m,9) = = a_cos n8
m=1 m= | n=1 " -
O .
+Z b,sin n8 (2-25)

pus |
fl



The Fourier séries of cal (m,8) and sal(m,8), respectively,

are
cal(m,8) = X a (cm)cos,'né ‘ ©(2-26)
n=1 . '
sal(m,8) = E bn(sml)sin no ‘ (2-27)
n=1

where an(cm) and b, (sm) denote +he ﬁTh coefficient of the

Fourier series of cal(m,8) and sal(m,98), respecfively.
Substituting Equations (2-26) and (2-27) into Equation

(2-25), one.obfains |

2 Am 2 a,(cm)cos n@ +‘2 Bmz bn(sm)sin ne
m=l n=| m=1 n=|

= Z a,cos né + £ b,sin n8 , (2-28)
n=i n=1 '

In Equation (2-28), let n have a particular value N. Then
the equafion becomes,

;wAmaN(cm)cos NEe + E}meN(sm)sin Ne
m= m=

=aycos N8 + bysin N8 (2-29)
Coefficients of the cos N8 and sin N@ terms, respectively,

can then be equated.

ay = £ Apay(cm) | (2-30)
m= |

by = E Bpby(sm) (2-31)
m=|

Therefore, the Fourier series of f(t), in terms of
Walsh-Fourier series coefficients, is:

oo 4 ‘
fOt) = A + 2} ﬁél(Aman(cm)cosnG + Bpb, (sm)sinng) (2-32)
n = =

Appendix B contains calculations for numerical values of the

Fourier series of several Walsh functions and shows how these



values are applied to a conversion from a Walsh-Fourier to a

Fourier series.



It1. Concepts of Instrument Design

The apparatus to be designed must be capable of pro-
viding information leading readily to the values of the
A

Walsh-Fourier coefficients, A and B, for a periocdic

o’ "'n’
‘input signal which has a low fundamental frequency, say,
under 60 Hz. I+ must be able'Tb collect al!l the necessary
data in as few cycles of the input signal as possible. This
chapter is devoted to a descriptfion of how-information on

the input signal is manipulated in order to yield the desired
output information.

The Walsh-Fourier coefficients of a periodic wave are

calcultated by using the following equations;

Ay = _l_fT fCt)dt (2-22)
T (]

An = _l_fT f(t)cal(n,8)dt (2-23)
T o

B = _I_/T £(t)sal(n,0)dt (2-24)
T (o]

where T is the period of the input signal, f(T).

The instrument is digital, so that data from a wave is in the
form of quantized samples. Since discrete samples are used

to describe f(t), a true integration as indicated by Equations
(2-22) to (2-24) is impossible. These equations must be changed
into a summation. |f there are M samples of f(t) during the
pericd T,

20.
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dt = T (3-1)
M
and the equations (2-22) to (2-24) may be rewritten as
A =1 2 f(H | | (3-2)
o) = m
M m=l| ,
- | M '
Ap = 1 = f(T)mcal(n,Q)m _ (3-3)
’ M m=]| :
8 =1 % () sal(n,o) (3-4)
A nsalin,®) , -
M m=| )

where f(T)m, cal(n,@%, and sal(n,e)m-are the va!ues of the
respective functions at the time of the mth sample.

The most obvious way to process a continuous wave,
f(t), for use in a digital instrument, is *to use an analogue-
to-digital converter. It is the nature of fthis device to
sample f(1), to quantize the samples info various levels, and
to use a straight binary code for level designation. The
A/D converter uses a binary number of levels. Quanfizafion
of the waveform means that all of the samples within the
range of voltages specified for any given level are given the
same value. For example, in Figure I11-1 on page 22, if the
A/D converter has a range of 0 to + Vmax volts and has p

quantization levels, then the signal, f(+), is considered

to have the quantized value Vmax(Zr-l) volts when f(t) is

Zp
between the levels r-| and r. Figure Ill~! shows that f(1)
lies within this range during the Tfme t, to t,. However,
since the A/D converter gives only a binary-coded signal for

each sample, any sample of the wave, f(T)m, which is taken

during the time *, to t,, is represented by the binaryvvalue
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of r-I. Let this value be designated by f(T)qm. To cﬁangé
the coded value back into a voltage valué, it must be multi-

plied by Vmax. Thus
-

f(T)m = Vﬁax f(T)qm ' (3-5)

The analogue-to-digital converter which.is'SePng used
can aécep? waveforms which have voltage extfremes of zero to
+10 volts., An AC input signal, limifted to +5 volts, would
need to be given a +5 volt DC shift in order to be processed
by the A/D converter., Alternatively, the AC signal could be
rectified, in which case a +10 volt sigﬁal could be handled
without requiring a DC shift. Without rectification, the
number of quantization levels would have tc be doubled +o
provide the same degree of accuracy as in fthe rectified case.
This would necessitate handling an additional binary bit and
would consequently siow down the sample processing. Further
difficulties would be encountered in changing the binary-
coded output of the A/D converter so that the codes given to
equivalent levels above and below the zero level would be
‘identical. Therefore, it is preferable to rectify the input
signél. In this way, samples with the same absolute value
are aufomafically-given the same coding. However, an addition-
al signal is necessary to indicate the sign of f(t). A logic
"I" is used to represent The‘posifive portion of the signal
and a logic "0" is used for the negative portion. Now fOT)
can be rewritten as

() = Vmax ‘f(T)
P

qml sgn f(t), (3-6)
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In addifion to changing the input info a series of
binary-coded samples, the instrument must provide an array
of Walsh functions of the sequencies necessary to calculate
éll the desired Walsh-Fourier coéff?cienTs. The Walsh func-
tions must have the same period and:be.in phase with the per-
fodic input wave. The first cycle of the input can Ee used
to determine the period. This information is required so
that the Walsh functions can be generated cofrecfly during
the second cycle. Logic I's and O's are used to represent
the positive and negative portions, respectively, of the
Walsh functions.

‘Samp|ing of the input starts at the beginning of the
second period. Figure 111-2 on page 25, illustrates an
example of a periodic signal, f(t), and the signais which are
required to find the Walsh-Fourier coefficient é3 of f(1).
Part (a) of the Figure contains two cycles of Tﬁe waveform
to be analyzed. This input Is broken down into fTwo portions,
lf(T)l and sgn f(t), illustrated in part (b)., The function
sal(3,8) is the Walsh function by which f(t) must be mul+ti-
plied to obtain Bz. The actual function and its representa-
tive signal, as produced in the instrument, sgn sal(3,80),
are shown in parts (c) and (d), respectively. The Walsh
functions are not produced until the second cycle of f(T);
since the first cycle is required to determine the period of
the input.

A combinational logic circuit is needed to produce
the sigﬁal sgn f(t+) sgn sal(n,8). The propef signal for the

example in Figure I11-2 is shown in part (e). Thus, the
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samples, 'f(T)gm ’ +aken.from the wave lf(Tsl, are added to
or sSubtracted from an accumulation of previous samples, the
addition or subtraction being dependent on the value of the
signal sgn f(f) sgn sal(n,8) at the time the samples are
taken. The instrument has to be able to accumulate a summa-
tion for each of the Walsh-Fourier coefficients that is
desired., The number of samples that are made during one per-
iod must also. be counted.

The final forms in which Thé Equations &2-22) To (2-24)
are written so that they can be processed by the digital in-
strument are;

Ao = ¥max 2 |fCH .| san f(ty (3-7)

o
pM m=|

M
Ap = ¥max 5 |f(figm| san f(1) _sgn cal(n,8) (3-8)
=1

pM m=
B, = Vm;x 21 |#(t)gn| sgn () _sgn sal(n,8), (3-9)
N pl m=

Since p is a binary number and the summations are performed

in binary, the instrument can easily perform the division by

p by ignoring the number of least significant binary bits of
the summation as are used to represent p in the binary system.
Therefore, in the instrument that is described in this thesis,

only the factor Vmax is not incorporated into the calculations.
M

However, if the readout tor each of the Walsh-Fourier coef-
ficients is in decimal code, each value need only be divided
by M and the décimal point of the answer shifted one place to
the right, since Vmax = 10, in order to obtain the proper

values of the Walsh-Fourier coefficients. The following
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chapter discusses in detail the actual instrumentation which

has been designed to realize Equations (3-7) fo (3-9).



IV. lInstrumentation

In +the preceeding two chapters, the mathematics and the
concepts of applying those mathematics to the development of
an instrument which provides the Walsh—Four{er coefficients
of a periodic signal have been formufafed. This chapter
describes the proposed design of the instrument and the
construction of two portions, the Walsh function generator
and the pulse burst generator, both of which have been com-
pleted and tested. The majority of the logic systems described
in this chapter, whether or not they have been constructed Iin
final form, have been simulated on a Digital Equipment Cor-
poration Computer Lab. Sections of this chapter are devoted to
each of the following topics;

(a) Complete System,

(5) A/D Conversion,

(c) Walsh Function Generator,

(d) Pulse Burst Generator,

(e) Sample Processing System.

Certain portions of the instrument, such as a precision rec-
tifier and a Schmitt trigger, are not described in detail,

since these are commercially available items.

Complete System

The block diagram of the complete syé+em is shown in
Figure 1V-1 on page 29. Cue %o the type of A/D converter

28.
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which is being used, the input signal, f(1), is limited to
the range‘of +10 volts. The input is directed along two
paths. One of fhese leads to the conversion of the input
info a.series of qhanTized, binary-coded samples. The other
path leads to controls, which use informaTioﬁ concerning Thé
period of the input, and process the binary-coded samples
from the first path.

The first path consiéfs only of +w§ major items, a
'recfifier, and an A/D converter. Rectification is positive
so that the input to the A/D converter is restricted to 0 to
+10 volts., The output of the rectifier, |f(f)|, is sampled
by the converter. The samples, |f(+)m[, are quantized and
given a binary coding. Each binary digit of the coding
appears on a separate output lead. Since the first cycle of
the input signal is used only to determine the period of the
fundamental frequency, the output logic of the A/D converter
is designed to provide sample information during the second
cycle only. <A counter is used to total the number of samples.

Concurrently, in the second input path, the input
signal passes through a Schmitt trigger which detects zero
voltage crossings. This information is necessary because all
of fthe system operations are to begin with the first positive-
going zero crossing of The'inpuf. The output of the Schmitt
trigger is a logic "I" when f(t) is positive, and a logic "O"
when f(+) is negaT}ve, thus representing the function sgn f(%1).

Two parts of the system are controlled by sgn f(T).

First, there is a pulse burst generator. It uses the signal
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from the Séhm[TT trigger to calculate the period‘of one cyclé
of the input, measured between succeésive poéffive—going'zero
crossings, and uses that in%ormafion to produce a series of
pulses which feed into the Walsh function generafor; This
generator, which operaTes‘on!y during the second cycle of the
input, produces an array.of Walsh functions, from wal(0,8) to
sal(32,8) and cal (31,8), which have the same period and phase
as the incomihg signal. Since logié units are used, the
outputs of the Walsh function genera%or are'reafly representa-
tions of the sign of the Wélsh»funcfions, or sgn wal(n,8),.

The second place that sgn f(t) is used is in conjunc-
tion with each of the Walsh funchons. By means of simple
combinational logic, an array of signals are produced to
represent

'sgn f(t) sgn wal(n,8)
as required by Equations (3-7) to (3-9).

The final stage of the instrument contains counters,
one for each of the Walsh-Fourier coefficients. For any
' paf?iculaf coefficient, addition or subtraction of the samples
from the A/D converter is determined by the signal sgn f(t)
sgn wal(n,8). Each counter is designed to divide the accumu-
lation of sample values by the number of quantization levels.
Thus, the final stages of the counters hold the quantities
determined by each of the following equations:

A =

. Y| tCHgn|sgn fety, (4-1)

!

I

1
pm

>
n

gl £t gm [sgn cal(n,8), (4-2)
m= ’

o) —
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B =

M : ) ‘
N z[f(f)qm' sgn sal(n,8) , (4-3)
=

il
Pm
The above equations differ from Equations (3-7) to (3-9) only

by the factor Vmax. Vmax = 0, and M is supplied by a sepa-
M

rate counter. It is left to the operator of the instrument

tfo multiply Equations (4-1) and (4-3) by 10. M is also used
M

to determine the fundamental frequency of the input. 1f the

sample frequehcy is f then the ftime befween samples is I/fg.

s
The fime for M samples is M/f, = T. Therefore, fthe fundamen-
tal frequency of the input f; = f_ /M.

The instrument was designed to the point where the
Walsh-Fourier coefficients of a IoQ—frequency periodic input
wave could be obtained readily. I'n order to obtain the

Fourier series of the input, the equations derived in Appendix

B can be used.

A/D Conversion

AfTer‘recfificaTion of the input has been per%ormed,
the waveform being analyseq musf be sampled and quantized.
The samples are to be given é binary code, with each bit of
the code appearing on a separate lead. Several methods of
analogue~to~digital conversion have been made realizable on
modules produced by Digital Equipment Corporation (D.E.C.).
These modules are described in the D.E.C. "Digital Logic
Handbook". In ail cases, the methods involve formation of
quantized analogue voltages corresponding To the digital

states, and comparison of these with *the incoming analogue
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signal. The principal types of A/D-conversion are;

(a) Simultaneous conversion,

(b) Counter convefsionh

(c) Continuous coﬁvefsion,

(d) Successive approximation conversion.

Considering speed, accuracy, and cost, it has been
decided to use 6-bifT successive-approximation conversion,
D.E.C. supplies a éompleTe |0-bit successive approximation,
A/D converfer‘wifh a built-in reference supply (Model number
A801). The circuit is arranged so that any number of bits,
up to 10, may be used. The complete converter is contained
on one D.E.C. double logic module.. The block diagram of the
A/D converter is shown in Figure IV-2 on page 34. The actual
circuit diagram is illustrated in Figure 1V-3 on page 35.

Conversion by successive approximation is realized by
a series of deciéions on approximations that converge rapidly
6n the correct digital state. Since an example of A/D con-
version with 6 bifs becomes rather lengthy, only a i6-level,
or 4-bit, case is described. The first approximation would
be the eight level, that is, state |000. The analogue conver-
sion of this state is compared with the input, and if it
exceeds the inpuT; the eight-weighted bit is reset to "O",.
| f the approximation is too small, the bit remains a "i",.

The first 4 bits of the register, shown in Figure V-3 by

the flip-flops E!4 and EI3, now contain either 1000 or 0000,
Next, the four-weighted bit is set to "I", giving an approxi-
mation of either 4 (0100) or 12(1100), depending on the first

decision. A second decision, similar to the first is then
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performed on this approximation. Thfs cyclegis repeated for
a number of decisions equal to the desired number of bifg,
for this example, 4. Figure V-4 on page 37 shows the state
diagram for a 4-bit successive aﬁproximafion conversion. The
numbers in the circles are states which represent the levels
about which the decisions are made, and the numbers ovef The
leaders show the final states of the binaries involved.

The determinaticon of each bi¥ occurs sérially in time,
the value of the most signifigant bit being defefmined first.
Normally, the entire A/D conversion is completed before any
output from the converter is used. However, with reference
to the sample processing method which is described in a later
section of this chapter, it is advantageous to process each
bit serially in time as well. A minor addiftion to the A/D
éonverTer circuit in Figure V-3 is needed to ogfain the
desired outputs.

After the start pulse is applied To input AH, it Is
propagated through the circuit so that after each decision,
the pulse sets the flip-flop which is fo hold the result of
that decision and also presets the flip-flop involved in the
next decision, Extra outputs can be added to tap this pulse
at the appropriate points, as indicated by Equations (4-4)
to (4-9), and use them for control purposes, thus yielding
information on each digit of the A/D converter output veryb
shortly after it is available,

For example, with the required 6-bif conversion, when

the pulse reaches lead 5 of the logic module E6 (let this
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point be cal led £E6-5), in the circuit in Fngre lv=3, it is
used to set the flip-flop which determines the most signifi-
gant bit (let this bitT be called P3s2). The pulse also presets
the next flip-flop and is then péssed Throughia delay circuit,
containing delay elements C9 and R9, while the next decision
is being made. After the pulse has passed through the delay
circuit to set the next flip-flop, all operations concerning
‘The first bit have been completed so that at that time the
pulse can be combined with the output of the first flip-flop
(AE at the outfput of EIl4) to yield P3zp. The logic required

is simply an AND gate. A/D converter output terminals which
are used to obtain the information on each of the bits serially

in time are then

(AE) (E5-14) for Ps. (4-4)
(AD) (E5-5) for Pg ‘ (4-5)
(AN (E4-14) for Pg  (4-6)
(AM) (E4-5) for P, ‘ (4-7)
(BL) (E3-14) for Po ' (4-8)
(BR) (E3-5) for P, | (4-9)

as labelled in the circuit diagram in Figure V-3, At the
" end of each complete A/D conversion, a pulse from terminal
E3-5 is fed into a counter which records the number of samples,
M, that have been taken,

The A80! A/D converter must be triggered by a pulse
which has a width between 100 and 500 nsec. The complefe
I0-bit conversion requires 10 psec. With 6-bit conversion

requiring approximately 6 psec., and allowing roughly
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another | psec. to complete the sample processing, the maximﬁm
sampling rate is about 140 kHz. For’The anaiysis of extremely
long-period waves, a sampliag rate as low aé, say, | Hz., may
be used. Since the first cycle of the input .is used to deter-
mine the period, samples must start only at the beginning of
the second cycle and stop at the end of that cycle.

A scheme for the complete system of controls for the
sampling rafe; the A/D converter with its output logic, and
the sample counter is shown in Figu%e V-5 on page 40. An
M40!| variable clock, suppiied by D.E.C., supplies the pulses
to start the A/D conversion. Depending on the connection
between N2 and S2, T2, or P2, the clock rate can be varied
from 175 kHz, down to |75 Hz, Each of three ranges can be
set to certain rates, say, 100 kHz, 10 kHz, and | kHz, respec-
tively. To obtain lower sampling rates, let the output be
set to the lAkHz,posiTion. Three decade counférs can be added
in series to the output, D2. The outputs of each of the 3
counters can be tapped to produce pulses at rates of (00, |0,
and | Hngrespecfjvely. ‘The rotary switch that is used to
obtain each of the pulse rates is shown in Figure V-5,

The leads, FFI, FFI, and FF2, to the input and output
logic of the counter come from the pulse burst generator
described in a later section. This logic allows the first
A/D conversion "start" pulse to arrive just after the second
cycle of the input has begun. The "sample start" pulses end
when the second cycle is over.

One small modification is necessary with the above

system of providing A/D start pulses. Whereas the start
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pulses must hape a widTh‘of 100 to 500nsec., the maximum pulse
width from an M40l clock is 80 nsec. Consequently, the clock
pulse width must be increased. The pulse stretching circuit
in Figure 1V-5 uses a NAND gate with an open collector so

that a 2.2 K& resistor and a 680 pf. capacitor can be attached
+o increase the rise Time Qf the inverted pulse. The second
NAND gate re-inverts and sharpens the pulse. This circuit

has been found to maintain The pulse width at approximately

350 nsec., in the range from | Hz. to over |00 kHz.

Walsh Function Generator

While samples of the secbnd cycle of the periodic in-
put wave are being taken, a Walsh function for each Walsh-
Fourier coefficient that is to be determined is produced with
the same‘phase and period as the incoming wave. The circuit-
ry to produce the Walsh functions up to sal(32,8) and cal(31,8)
has been designed..: Ho;ever, only that portion of the genera-
tor which provides up to sal(24,8) and cal(23,08) has as yet
been‘consfrucfed.

Since Walsh functions are bipolar, sequencesof logic
"i"'s and "0"'s can be used to represent the positive and
negative portions, respectively, of the functions. For the
sake of simplicity in determining the logic required to pro-
duce the Walsh functions, calculations are shown only for
functions up to and including sal(8,8). In this section of
the thesis only, a letfer designation is given to each of the

Walsh functions.

Table V-1 on page 42 shows the binary sequences used
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Letter Walsh Binary Sequence

Designation Func%ion
a sal(1,8) 1i11111100000000
b cal(l,8) [111000000001 111
c sal(2,0) 111100001 1110000
d cal(2,0) [ 1000011100001
e sal(3,8) | 1000011001 11100
f cal(3,6) 1100110000110011
g sal(4,0) [100110011001100
h cal(4,8) 0011001 10011001
i sal(5,8) 1001 100101100110
J cal(5,8) [001011001101001
k sal(6,0) footoirtoroolotie
I cal(6,0) 1010010110100101
m sal(7,0) 1010010101011010
n cal(7,8) 1010101001010101
o sal(8,8) 010101010101010

Table V-1, Binary Sequence Representation of Walsh Functions
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to represent sal(l,8) to sal(8,8). Since sal(l,@),'sal(Z,Q),

sal(4,8), -~=-=~

sal(Zk,e) are rectangular waves having unity

mark/space ratio, they can easily be produced by the outputs

of a binary down counter.

Figure IV-6 on page 44 shows the.

circuit and its input and outputs for the functions a, ¢, g,

and o, which are sal(],8), sal(2,8), sal(4,8) and sal(8,8),

respectively. The pulse input comes from the pulse burst gen-

erator that is described in the next section of this chapter.

All

is achieved by

Walsh functions begin

in the positive state. This

initially clearing each of the flip-flops and

using the "0O" outputs of the flip-flops to represent the

positive functions a,

negative Walsh functions.

are initially

in the

and o, The "I" outputs produce
Since all the positive functions
state, the first pulse from the pulse

burst generator should arrive not at the beginning of the

second cycle,

Once the basic sal(27,8)

produced, all

but T/16 seconds after the cycle has started.

functions, (k= 1,2,3-~-=), are

the other Walsh functions can be constructed

by combinational

The Karraugh maps fbr the
produce Walsh functions,

in Figure |IV-7 on page 45.

logic

involving

derived from Table

From these maps,

sions for functions a to o are as follows;

a:

b =

a

ac

C

cg

k!

+

+

[e]]
(9]

cg

combinational

V-1,

the

these basic functions.

logic to

are shown

logic expres-

(4-10)
(4-11)
(4-12)
(4-13)
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Generator
+
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v 1 Pulse Input
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o ' sal(8,8)
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6 2

Figure IV-6. Production of sal(2K, @)
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e = acg + acg + écé + acg = ad + ad (4-14)
f = ag + 33 | (4-15)
9 =9 ' (4-16)
h = go + go (4-17)
i = ago + ago + ago + ago = ah + ah (4-18)"
j = acgo + acgo + acgo + acgo + acgo + 3c95

+ acgo + acgo = ci + ci : (4-19)
k = cgo + cgo + cgo + cgo = ch + ch (4-20)
| = co + co , (4-21)
m = aco + aco + aco + aco = al + al (4-22)
n = ao + ao ~ (4-23)
o = o . : A (4-24)
It becomes readily apparent that all the Walsh func-

tions, except the sal(Zke) functions, can be produced by
coincidence logic gates. For example, function b consists

of terms involving functions a and ¢. Therefore, b is pro-
duced by the coincidence of a and ¢, that is ac + ac. (This
is the complement of a & c¢c). Similarly, functions d and f
are produced by cg + cg and ag + ag, respectively. Each of
the above 3 functions consist of ferms involving only 2 other
functions. The function e, however, has terms containing a,
c, and g. ]T can easily be shown that e could be produced by
the coineidence of any one of a, ¢, or g and the Walsh func-
tion which contains all of the remaining functions., That is,
e could be produced by ad + ad, cf + cf, or gb + gb. It is
apparent that when 3 or more basic sal(Zk,Q) functions are

contained in the expressions for a Walsh function, several
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coincidence gates could be uséd to produce the samé function.
In such cases, in determining which coincidence gate to use
to form a particular Walsh function, it was decided to invo]ve
a sal(Zk,G) function and an appropriate Walsh function which
has a sequency lower than the desired function. Table IV-11
on pages 49 and 50 lists the Walsh functions, their letter
designations, the functions involved in the logic expressions
for the Walsh functions, and the most desirable coincidence
expression for each function. (Only the function T, of the
functions whose terms contain 3 or more letters, contains an
expression involving a higher sequency function. This was
resorted to only in order fo correct an error in the coﬁsTruc-
tion of the Walsh function generafor.)v

The informaticn in Table IV-!l has been used to con-
struct a circuit which generates all the Walsh functions from
a fo U, that is, sal(l1,8) to sal(24,8). Texas Instruments
TTL integrated circuits were used throughout the circuit.
They were mounted on 3 Avnet H5937 circuit boafds, each of
which can hold up to 20 ld-pin dual-in-line integrated circuits
and has 22 input-output terminals on each side.

Schematic diagrams of Tﬁe Walsh function generator
are shown in Figures 1V-8 Tp V=10 on pages 51 to 53 . Each
éf the Figures displays the circuif.confained on one board.
Therefore, tThe laBels on each diagram pertain only to the
input-output terminals and +the integrated circuits positions
on the corresponding becard. The input-output terminals are

labelled with the appropriate number or tletter ernclosed in



49.

Table IV-1}. Logic Expressions for Walsh Function Generation

Letter Walsh Basic Functions Involved Logic Expression

Designation Function in Walsh Function Logic for Walsh Functions
Terms

a c g 0 E X

a sal(1,8) a » a

b cal(l1,8) a c ac + 3ac
c sal(2,8) c c

d cal(2,8) c g cg + €3
e sal(3,8) a c g ad + ad
f cal(3,8) a g ag + &g
g sal(4,8) g g

h " cal(4,0) g o go + @O
i sal(5,8) a g o ah + ah
J cal(5,8) a c g o ci + ¢i
k sal(6,0) c g o ch + ¢h
! cal (6,8) c o] co + CO
m sal(7,8) a c o al + aTl
n cal(7,8) a o) ao + &0
o] sal(8,8) o] o

p cal(8,8) o E oF + oF
q sal(9,8) a o) E ap + &p
r cal(9,8) a c o E cq + TG
s sal(10,8) c o E cp + TP
1 cal(l10,0) c g o] E gs + 3s
u sal(l1,8) 2 ¢ g o E at + at
v ~cal(!l,8) a g o) E gq + 44
W sal(12,8) g o] E gp + Gp
X cal(12,0) g E gt + gt
y sal(13,8) a g E ax + &x
z cal(13,8) a C g E cy + CF
A sal(14,0) c g E cx + €X
B cal(14,8) c E cE + cE
C sal(l15,8) a c E aB + aB
D cal(15,8) a E atE + aE
E sal(16,8) E E

F cal(16,8) E X EX + EX
G sal(l7,8) a E X afF + afF
H cal(17,8) a c E X cG + cG
I sal(18,8) c E X cF + cF
J cal(18,8) c g E X gl + gT
K sal(19,9) a c g E X al + al
L cal(19,8) a g E X gG + gG
M sal (20,6) g E X gF + gF
N cal(20,8) g e} E X oM + oM
0 sal(21,8) a g o E X aN + aN
P cal(21,8) a c g o E X cO + c0
Q sal(22,0) c g o E X cN + ¢N
R cal(22,9) c o E X ol + ol
S sal(23,8) a ¢ o E X aR + aR
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Table IV-il. (cont'd) o
Logic Expressions for Walsh Function Generation

Letter Walsh Basic Functions Involved Logic Expression
Desigrnation Function in Walsh Function Logic for Walsh Functions
Terms
a c g 0 E X

T cal(23,0) a o E X al + al
u sal (24,0) e} E X oF + OoF
v cal(24,8) o X oX + oX
W sal(25,0) a o X aV + av
Y _cal(25,8) a c o X cW + cW
Z sal(26,6) c o X cV + ¢V
u cal(26,08) c ol o X gZ + g<Z
B sal(27,8) a c g o) X ax + IX
P cal(27,8) a g o X gW + gW
§ sal(28,0) g o X gV + gV
3 cal(28,8) g X gX + gX
? sal(29,8) a g X ee + 3JE
n cal(29,8) a c g X c? + c3
] sal(30,8) c g X ce + CTE
)Y cal(30,0) c X cX + ¢cX
H sal(31,8) a c X aX + ax
] cal(31,08) a X aX + ax
X sal(32,86) X X
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a circle. The logic functions are labelled wiTh‘IeTTers
enclosed in squares which are used to show Tﬁé focation on
the circuit board of the integrated circuiT.chip housing

the logic functions. The lay0u+s of the integrated circuits
6n each of the boards are shown in the appendix in Figures
C-1 and C-2 on pages 107 and 108. The iﬁpuf—oufpuf terminal
locations for each board are identical, and . hence, are shown
only in Figure C-1.

The pulse inputs to the Walsh function generator
must be proQided at the proper times fto form the Walsh func-
tions during the second complete cycle of the periodic input
wave. The circuit which has been designed to provide the

pulses is described in the following section.

Pulse Burst Generator

The highest sequency function that is precduced by
the Walsh function generator is sal(32,6). |t is this func-
tion, which is the oufpuf of "0" of the first fiip-flop in
Figure 1V-8, which determines the pulse input requirements
of the Walsh function generator. Thus, 64 regularly-spaced
pulses must be provided during the second period of the input
signal. Since all Walsh functions are initially in the "I"
condition, and this state is produced naturally by the initial
"reset" state of all flip-flops in Figure 1V-8, the first
input pulse is to be produced T/64 seconds after the beginhing
of the second cycle. (T is the period of one cycle, and
should not be confuéed with T used in Table IV=-11). Starting

at that time, a burst of 64 pulses, each spaced T/64 seconds
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apart, is required. The.lasT pulse should’éome at the end of
The'sepond cycle.

| Figure IV-11 on page 56 shows the block diagram of
the system that has been designed to give the 64-pulse burst.
The output of a Schmitt trigger and an inverter controls +he
system., The Schmitt trigger should be one which accurately
detects posifive;going zero voltage crossings of the inpuft.
It has a logic "I" output when the input }s positive, and "O"
when the input is negative. This signal is fed info a series
of 3 flip-flops that are used to control the rest of the puise
burst generator.

Just after the first positive-going zero crossing of
the input, the output of FFl in Figure I1V-1| enables the
first counter, which contains 20 bits, to admit pulses from
a cleck. The counter accumulates the pulses throughout the
first cycle of the input, A+ the end of the cycle the counter
stops and it now contains a number, in ferms of its binary
state, representing the period of the first cycle. |t is
desired to send out pulses every |/64 of that period through-
out the second cycle. A number which represents 1/64 of the
period is sfmply the number stored in the !4 most significant
bits of the 20-bit counter. This is so because binary divi=-
sion by 64, or 1000000 in‘binary, merely means ignoring the
6 least significant bifts of the counter,

Thus, a second counter confé?ning 14 bits is enabled
during the second cycle of the input. During this cycle,

the 7th to 20th bits of the first counter are compared to the
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st to 14th bi+s, respectively, of the second coﬁnfér. When
the number in the second counter coincides w%?h that in the
last 14 bits of the first counter (this firéf happens at T/64
seconds after the beginning of the second cycle) the cohpara—
tor output changes from logic "O"bTo "I", This signal, which
is‘fhe output of the pulse burst geheréfor, also feeds back
a "clear" signal to the second counter, thereby iﬁvalidaTing
the comparfson. The output of the cqmparafdr switches back
to "0", thereby converting the output into a pulse and enabl-
ing the "cleér" Ieads of the secbnd counter so that it may
resume counting. The width of the output pulses is de%ermined
by ThevpropagaTion delay through the second counter reset
logic, the counter itself, and the comparator. In the system
which has been built, the pulse width is typically 75 nsec.
This is sufficient to switch the flip-flops in the Walsh func-
tTion generator. The procedure of counting, comparison, and
resetting takes place 64 ftimes throughout the second cycle.
The schematic diagrams of the pulse burst generator,

which has been constructed on 2 circuit boards, are shown in
Figures IV-12 and IV-13 on pages 58 and 59, respectively.
The locations of the integrated circuits on the boards are
showﬁ in the appendix in Figures C~3 and C-4 on pageleé and
10, respectively.

ldeally, the 64th pulse should be generated exactly
at the end of the second cycle of the input. However, this
requires that the number stored in the first counter at the

end of the first cycle be divisible exactly by 64, This is
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seldom the case. The rémaindef of the divisfon is held in
the first 6 flip-flops of The counter. Let this remainder be
called e pu(ses.V | f the integral portion of T/64 in terms
of number of puises is called g, then the length of the first
period is |

TI = 649 + ey pulses (4-25)
The period of the Walsh functions generated by the pulses from
the pulse burst generator during the second period would be

T, = 649 pulses ' (4-26)
Therefore, the error in timing of the period of the Walsh
functions is e; pulses. Theré is, of course, another smell
error in timing that amounts to | pulse or less due fo a lack
of synchronization between the counting pulses and the input
signal. This error is quite small and is ignored at present.

Since the timing error is represented by The 6 least
significant binary bits in the counter, it is obvious that
the maximum error would be 63 pulses. This fact can be used
to determine the minimum number of flip-flops that are required
“in the first counter for a maximum error of, say, .4%. The
minimum count for this éccuracy is calculated by

63(100) = .4% (4-27)
7o

whence T, = 15,750. ' » . (4-28)
The number of flip-flops needed to guarantee at least that
large a number is I5. To provide a sufficient range of oper-
ation, a 20-bit counter was used. To insure that the count
representing fhé period of the cycle reaches at least the’

i

I5+h flip-flop, logic gates are used (see Figure [V-12) to
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check that at the beginning of the second C?CIG, there is at
least one " in the {5th to 20th flip-flops. [f there is
not, then a light indicates that the rate at which the clock
is feeding the pul!se burst generator Is too low.

On the other hand, if the clock rate is too high, the
counter may overflow. A 2lst flip-flop is added so that when
the canT reaches this flip~-flop, a light will indicate that
the clock rate is too fast. In either case when the I|ights
go on, the entire instrument ceases calculations.

It is apparent that the clock rate feeding the pulse
burst generator controls the upper limit of the fundamental
frequency of a periodic wave that can be analysed by the
system. Table IV-111l on page 62, gives a list of recommended
clock rates and the maximum and minimum fundamental inpuf
frequencies of waves that can be‘analysed using them.

An upper limit+ on clock rate of | MHz. is recommended,
unless very short leads are used in construction, since higher
frequencies may result in errors due to radiation and inter-
.ference with the rest of the system. This means that the
max imum fundamental input frequency is 60 Hz. Since the clock
rate can be reduced, there is no theoretical lcwer frequency
limit for The system and the upper limit is sufficient to over-

lap the frequency range of conventional wave analysers.

Sample Processing System

There are two steps inveclved in the sample processing.
Up to this point, the system for producing binary-coded samples

of the input, f(T)qm!, and the Walsh functions has been



Table 1V=111.

Input Frequency LImits with Varlous Clock Rates

Clock Rate (Hz.) Maximum Frequency (Hz.,) Minimum Frequency (Hz.). Period
10,000,000 600 (4] .00167
1,000,000 60 I .0167

100,000 6 .| 167 -
10,000 .6 .01 1.67 -

1,000 .06 .00 .278 =
100 .006 .0001 2.78 -
10 .0006 .0000! 462 -

| .00006 .00000! 192 -

- .1 sec.
1.0 sec.
10 sec.
100 sec;
16.7 min.
67 min.
27.7 hrs.

1.6 days

*Z9
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described. The step following the production of‘Wafsh func-
tions is to obtain signals representing .sgn %(f) sgn wal(n,8).
This signal determines whether the binary—céded samples are
to be added or subtracted. A coincidence gate involving the
output of the Schmitt trigger, which provides sgn f(1), and
~The outfput of the Walsh function geheréTor, which provides

sgn wal(n,e),.is all that is necessary. The logic is shown

in Figure IV-14 below

Schmitt Triggef

Up Enable

L]
walsh Function Down Enable

Generator

Figure IV-14., Logic for Producing sgn f(t) sgn-wal(n,d)

The "up enable”™ output is a logic "I" when sgn f(t1)
égn wal(n,8) is positive, and the "down enable" is "I" when
sgn f(t) sgn wal(n,8) is negative. The inverter shown exter-
nal to the Walsh function generator in Figure IV-14 is shown
only for illustrative purposes since the generator produces
both positive and negative Walsh functions. One of the logic
systems in Figure 1V-14 is needed for each of the Walsh func-
tions.

The final stage in the system is the accumuiation of
the samples from the A/D converter. For each of the Walsh-
Fourier coefficients, the binarv-coded samples of the input

are either added to or subtracted from (depending on sgn f(t)
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sgn wal(n,8),) an accumulation of previous samples. There
are, several possible methods of performing these calculations.
Onty one of the methods which have been investigated is shown
heré; The circuit of the entire sample processing system for
one of the Walsh-Fourier coefficients is shown in Figure IV=-15
on page 65.

The sample accumulation stage consists mainly of 2
6-bit binary counters with parallel feeds. The upper counter
in Figure IV-15 records the samples when it isrenabled by the
positive sgn f(t) sgn wal(n,8) lead. Except for fhe first
flip—fldp, the clock inputs of each J—Kiflip-flop are controlled
by an exclusive OR of the parallel pulse input or Theiprevious
flip-flop. Since the pulse inputs arrive serially in time
from the A/D converter, the most significant bit arriving first,
there is never any confiict between a pﬁlse input and a level
change from a less significant bit., The same procedure is
fol lowed in.The lower counter, which accumulates samples
whenever sgn f(t) sgn wai(n,e) is negative.

As pulses are accumulated in each of the counters,
there will be overflows frém the 6th bits. These overflows
feed into an A-B mode reversible counter, the A input being
the overflow from the positive sample counter, and the B input
being the overflow from the negative sample counter. Since
each of the counters must reach a count of 64 before they
overflow, the number which appears in the reversible counter
fs 1/64 of the total sample value. But 64 is the number of
quantization leveis, p, Tha% have been used in the A/D conver-

ter. Consequently tThe number stored in the reversible counter
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corresponds, except for a possible small remaindér fn the fwo
counters feeding the reversible counter, to %He desired
expressions given in Equations (4-1) to (4—3). At present,

a Hewlett-Packard 5280A Reversible Counter is used as the

A-B mode reversible counter.

The only remaining opérafioh is a manual one. The
numbers in +h§ reversible counters must each be multiplied
'py 0 and divided by the number confafned in the sample coun;
ter in Figure IV=-5. Thus, the values of the Walsh-Fourier

coefficients of the periodic input wave are determined.



V. Partial Error Analysis

The main pufpose of this thesis is to show the appli-
cation of the mathematics for Walsh—FouriervanaIysis of a
low fundamental frequency periodic wave to a digital instru-
ment. Thus, ﬁnly a sméll portion of the error analysis has
been performed. Only ftwo errors are considered here. The
first is the mathematical error involved in the conversion of
Wélsh—Fourier to Fourier series due to the use of a finite
number of terms in an infinite series. The second is a tim-~
ing error in the Walsh function generator. Since the oniy
completed sections of the instrument are the Walsh function
generator and the pulse burst generator, i+ is the timing
error involved in producing Walsh functions of fThe correct
period that is discussed. Other system errors, such as guan-
Tizafion errors, finite sampling rate errors, level inaccura-
cies, and effect of finiTe.aper+ure time have not been inves-

tigated.

Errors due to Mathematical Approximation

The‘equaTion for each Fourier coefficient involves an
infinite series of terms containing Walsh-Fourier coefficients.
However, the instrument that ha§ been desigﬁed is capable of
providing only 32 coefficients. Consequently, the equations

for the Fourier coefficients, as shown in Table B8~1V in the
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appendix, must be terminated éT the terms involving A32 and
Bzo. Therefore, even if the Walsh-Fourier coefficients, Aj
and B,, could be determined precisely, errors would still
result in calculating the Fourier coefficients, a, and b.

A general expression for the mathematical errors is
not developed. Rather, a number of waveforms, with various
ampIiTudé probability diéfribufions,‘are used as examples.
The waveforms that a%e used are a square wave, pulses with
various duty cycles, a sine wave, a sum_of several sine waves
with equal amplitude, and finally, a trangular wave. Each
wave is considered to start with Thé first positive-going zero
voltage crossing. A computer was used to perform all calcu~
lations. For each of the waves, +he computer calculated the
true Fourier coefficients, the Fourier coefficients according
to the equations in Table B-1V in the appendix, the actual
error, and the per cent error. Several sets of calcﬁlafions
were made for eéch wave. Each set used a different number of
Walsh-Fourier coefficients, beginning with 4 and increasing
by a factor of 2 for each set until all 32 coefficients were
used in the calculations. Several examples of Walsh-Fourier
to Fourier series conversion using 32 coefficients are given
in appendix D in Tables D-1 Tb D-VII on pages [|121to l18. Since
it was found that for several waveforms calculations of
harmonics beycnd the 10th, even using all 32 Walsh-Fourier
coefficients, became somewhat inacéurafe, only values for [0
coefficients are listed in appendix D.

Not all of the waveforms that were investigated are
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listed in appéndix D. However, the ones thatl are shown are

representative of all the waveforms that were examined.

Observations of the calculations show that;

)

(2)

(3)

(4)

(5)

A square wave is To‘The Walsh—Ferier series what
a sine wave is to the Fourier series; i.e. The
Walsh-Fourier series of a square wave consists
only of B sal(l,8) where B, Is the amplitude of

the square wave,

. The Walsh-Fourier series of a sine wave contains

many terms, whereas the Fourier series has only

the one term, b,sins.

When the Walsh-Fourier series of a wave contains
only a finite number of terms, such as with a
square wave or square pulses with duty cycles

of /2, 1/4, /8, /16, ...., the eonversion to
Fourier series can be performed with very small
error.

The probability of error in conversion is greater
when the Walsh-Fourier series contains a large
number of terms.

The per cent error in conversion generally in-~

creases for calculations of higher harmonics.,

Walsh Function Period Timing Error

At the end of the first cycle of the input, the binary

state of the first counter in the pulse burst generator records

the period of the cycle in terms of clock pulses. The count

is not necessarily precise, for the cycle may start or stop
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between the time pulses arrive from'fhe clock., A similar
error may occur during the second cycle whén the Walsh Func-
Tioﬁs-are generated, However, these errors are negligible
if a'very high clock rate is useé and they are very difficult
to measure. Hence, they are ignored in this thesis.

The only main source of timing error is e;, which is
desc}ibed in Chapter IV. It results from the remainder in
the division by 64 of the binary state of the first counfer

in the pulse burst generator. ey is the error measured as a

pulse count. If f. is the cock frequency, then the error
measured in seconds is ey/f.. It is by this amount that the
period of the Walsh functions will be less than the period of

the input wave, as determined by Tﬁe first cycle.

The error, ey, can be measured quite easily by using
the circuit shown in Figure V-1 on page 71. An A-B mode
reversible counter is used, the A ianT recording the number
of pulses which are used to measure the first period, and the
B input recording the period of the Walsh functions. The
‘number which remains in the counter at the end of fwo periods
is e+. |t has been verified that this number corresponds to
the remainder in the divisicn by comparing it to the number
representing the binary sTaTesvof,The 6 flip-flops which
contain the 6 least significant binary digits in the first
counter of the pulse burst genérafor.

A D.E.C. Computer Lab was used to supply the clock
pulses and logic units, as shown in Figure V-1, The input
from the Schmitt Trigger to the pulse burst generator was

simulated by using manually controlled switches.



ClL
cLocK ™ —D° Do CL.FF4
T FFI Count from
oy FRa =0 of Card || 0 to T
J |
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Kew ® of Cardl | +
Clear > ‘}(Dof Card l]

Schmitt oo Do
.f
Trigger Do Cardd

Figure V-1,

System to Measure e.
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Since the maximum value of e+ Is 63,;and the pulse
burst generator is set fto stop the system if the count at The
end of the first cycle has not reached the I5th flip-flop of
the first counter, the maximum Tfming error ié 63/16,384, or
.384%. However, assuming that the period of the input is ran-
dom for many tests, then the probabiliTybdisTribuTion of ey
would be uniform, with all values for e, from 0 to 63 being
equally likely. Since the maximum‘error would only occur
when the [15th ffip—flop has barely been reached and ey = 63,
the average error is far less than .384%,

By psing the system in Figure V-1, 500 samples of e
were taken. The distribution of the samples is shcwn in The
histogram in Figuré V-2 on page 73. The samples were placed
into 16 groups of 4. The average value of e. was found to be
31.642, whereas the TheoreTical value is 31.5. .The theore-
tical sample distribution and average value for ey are also

shown in Figure V-2.
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VI. Conclusions

The design of the Walsh-Fourier analyser which is
proposed in this thesis requires that the waveforms to be
analyzed be.resfricfed in émplifude to +10 volts. The input
controls to Tﬁe pulse burst generator are designed to inves-
tigate only those signals which have two zero-voltage cross-
ings per cycle. The upper limit of fundamental freguency
that can be handled is approximately 60 Hz. This frequency,
which is determined by the clock feeding the pulse burst
generator, is sufficient to overlap the lower frequency limift
of convenTiQnal wave analysers. The Wa}sh-Fourier analyser
has no theoretical lower frequency limit.

It has been concluded that, for many commonly-used
waveforms, 32 Walsh-Fourier coefficients can be used to de -
fermine |10 Fourier coefficients to a reasonable degree of ac-
curacy. An advantage of the Walsh~Fourier analyser is that
the coefficients of both cosine and sine tferms of the fFourier
series can be determined. Conventional wave analysers can
supply only the coefficients of the complex Fourier series,

- /. 2 2
n,where Cn = apnc * bpc .

Several problems on the Walsh-Fourier analyser remain

C

to be solved. Construction of the proposed design should be
completed. Modifications may be made to allow the instrument

to analyse waveforms with more than two zero-crossings per

74,
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cycle, and possibly to analyse.noise.’ An addifionél circuilt
may be designed which performs the Walsh-Fourier to Fourief
series conversion élecTronicaIIy. Finally, a complete error
analysis of the system szT be performed to provide a more

adequate comparison with currently avaiféble wave analysers,

and to establish better design criteria.
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Appendix A, Rules for Determining Walsh Functions

One period of a Walsh function is T seconds. In the
general Walsh function, wal(n,8), 6 = t/T, where t is in the
range 0 < + < T so that 8 is in the rangé 0<#8 <1t. Sal(l,8)
is a function (see Figure 11-2 on page |3) defined as:

sal(l,8)

+1 0 <8 <.5 ‘ (A-1)
= =] 5 <8 < |

Beginningwith this initial function, all other Walsh fuﬁc-

tions can be deTerhined by the following rules;

(1) Let the general terms for the sal and cal func-
tions be represented by;

sal[(2N+|)2k, 0]

call(2n+1)2K, o]

Cwith N =0, |, 2, 3, ==-=n=

and k = 0, |, 2, 3, ====-

k and N are both finite.

(2) Any fUn§+ion which has a sequency 2k times that
of a‘funcfion with a particular value of n has exactly the
same form as that function.

(3) In order to determine the cal function from the
corresponding sal function of the same sequency, the follow-
ing rules apply. |

(a) If N is even, and for a particular value of

k, the sal function is shifted 5?;7 to the left (or

77.
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in the negative direction) fto produce the cal function.
(b) 1¥f N s odd, then the sal function is shifted

T to the right (or in the positive direction) to
7R¥Z ‘

produce the cal function.
(4) For any given cal function, the sal function with
a sequency which is one greater than the cal function may be

produced as follows:

sal[(2N+1)2%41,07 = +call(2N+1)2%, 0] 0<0<.5  (A-2)
sal[(2N+1)2%1,6] = -call(2N+1)2%, 6] .5<6<I  (A-3)
Examples (Reference should be made to Figure |11-2 on page |[3)

Rule(2)~ Given sal[(2N+1)25,67 with N=0 and k=0, 1, 2, 3, --==
the following functions may be produced: sal(l,8), sal(2,0),
sal(4,08), sal(8,8), ==--- . Thus, sal(8,8) for example, is
identical in form to sal(l,8), but has 8 times the sequency.
Similarly, if Ne«} and k=0, I, 2, 3, ---, sal(3,0),
sal(6,08), sal(l12,8), sal(24,8), --- are produced. Sal(24,8)
has 8 times The‘sequency as sal(3,8), but they are identical
in form,
Rule(3)~- Given sal[(2N+1)2K,07, find cal[(2N+1)2%,07 where
N and k are the same for the sal and cal functions,
(a) Let N=0 and k=0, |, 2, 3, --=-

Function Shift required to produce cal functions

L

0 sal(l,8) -T/4

| sal(2,0) -T/8 )
2 sal(4,0) -T/16

3 sal(8,8) -T/32

4 sal(16,8) -T/64



| x

3

4

Rule(4)- Given cal(5,8),

(b) Let N=|
Function
sal(3,0)
sal(6,0)
sal(12,8)
sal(24,8)

sal(48,80)

+ | —
cal(5,8) ¢

and k

Shift

719.

required to produce cal functions

+T/4

+T/8
+T/16
+T/32

+T/64

find sal(6,0).

sal(6,8) g

o5

i
fdentical to cal(5#6 Inverse of cal(5,8)



Appendix B. Conversion of Walsh-Fourier to Fourier Serijes

The Walsh-Fourier series representation of a periodic

wave f(1) is

o . o0 )
f(t) = Ay + Z Apcal(n,8) + % Bpsal(n,8) (2-21)
: n=1 n=|
As stated in Chapter IIl, the Fourier series of each of the

Walsh functions must be known to convert Equation (2-21) into
an equivalent Fourier series. In this Appendix, the Fourier
coefficients for a number of Walsh functions are derived
and used to find equations of the coefficients of the Fourier
series cf f(t). Only odd sequency multiples of sal(l,8) and
cél(l,e) need be processed, since the other Walsh functions,
and hence their Fourier series can be derived easily from
these functions. Subscripts for the coefficients of the
Fourier series of the Walsh functions are the same as those
defined in Chapter |1,

Using Equations (2-14) to (2-16), Fourier coefficients

of cal(l,8) are found as follows;

ao(gl) 0 (B-1)

2T
a,(cl) / cal(1,8)cosndéde

Tr

-

o
v[ fﬂ72 cosn6de - }3ﬂ72 cosnBdo
o m/ 2

+ }'Zﬂ' cosnBds ]
3/ 2

80.
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= 2 [sin nm - sin 3nm ]
n 2 2

Jooaplcl) = 4 sin nm (B-2)
n 2
bo(ct) = | {zncal(l,e) sin nede
T o _
C T/2 sin node - JBﬁ/Z sin node
f T2

2A—

+ 12”'.sin n6do
30/2

e b,(ct) =0 (B-3)
Only the a (cm) coefficients, with n#0, of the Fourier
series of all cal (m,8) functions are non-zero.

Fourier coefficients of sal(l,8) are found as follows:

ag(sl) = (8-4)
an(S]) = l 2m sal(l1,8) cos n8d8
m
= I C j cos néde - fzvcos nede ]
™
Soap(sl) =0 (B-5)
by(si) = 1| f2“5a1<1 8) sin nede
T
2T
=1 [ /’ sin n6do - j sin nede ]
T ™
O b (sl) = 2 [1I - cos nm] (B-6)
mTn

Only the bn(sm)-coefficienfs of the Fourier series of all
sal{m,8) functions are non-zero.

Similarly, Fourier coefficients of other Walsh func-
tions may be calculated. The equations of several of the
coefficients are listed in Table B-| on pages 82 to 84,

A computer program was used to calculate the numerical value



Table B-l. Equations of Fourier Coefficients of Walsh Functions

an(c|) =4 sin nuw
mwn 2
by(sl) = 2 [~ cos nm ]
mn
a (c3) = 4 cos nmsin nr [l -2cos nm ]
mhn 2 4
b (s3) = 2 Ll-cos nt+d4cos nrsin nf sin EE]
rn 2 4
an(€5) = 4 cos nfsin ny [4sin nw sin nyw - 1]
wn 2 4 8
b,(s5) = 2 [t - cos nr+ 8 cos nfrsin nw cos nr sin nr i
Tn 2 4 8
an(c7) = 4 cos nw sin nwr [ + 2 cos nw (| - 2 cos nm)]
Tn 2 4 8
b (s7) = 2_ [l - cos nv + 4 cos n sin ntr sin nw (2 cos mr =1)]
™n 2 4 E
an(c9) = i_ cos nm sin nmw £8 sin nT cos nm sin nw - 1]
i 7 4 8 6
ba(s9) = 2 [! - cos nm + 16 cos nm sin nT cos nT cos nr sin nf ]4
Tn 2 4 8 16
a,(cll) = 4 cos nm sin nw [l = 2cos no (! - 4 sin nr sin ng )]
mn 2 4 8 16

*Z8



brstt)
a,(cl3)
b, (s13)
an(cl5)
bp(s15)
ap(cl7)
b,(st7)
a,(cl9)
bp,(s19)
a,(c2l!)

bn(SZI)

Table B=1, (Continued)

=?|4>.. =7'1\) 4!# ﬂlr\)
s 5 > o)

ll\)

3
3

EXEN
>

3|

3

S|

:gll\) glb

Equations of Fourler Coefflclents of Walsh Funcfions

[l - cos nr + 4 cos nm sin nr sin nm (Il - 4 sin nw slin nmw )]
2 4 8 |
cos nw sin nvt [4 sin nt sin nr (2 cos ne - 1) -1]
Vi 4 8 T6
[l - cos nw + 8 cos nw sin no cos nw sin nw (2 cos nw -1)]
2 4 8 T6
cos nm sin nm Cl + 2 cos n {l + 2 cos nm (I - 2 cos ﬁg):]}
2 4 8 16
[! - cos nr + 4 cos nr sin nr sin ﬂﬁ.{z cos nt (2 cos n —I)—l} ]
2 4 ' 8 T6
cos nm sin nr [16 sin nTr cos nr cos nr sin nm -1 ]
7 7 g T6 32
LI = cos nr + 32 cos nr sin n™ cos nw cos nmw cos nr sin nw ]
2 4 8 T6 32
cos nt sin no [I + 2 cos nr (8 sin nmr cos nw sin nT - 1)]
7 4 8 16 32
[1 = cos nr + 4 cos nr sin nrosin n (1l - 8 sin nr cos nw sin nfr )]
. 2 4 8 T6 32
cos nr sin ny [4 sin nw sin nw (I - 4 sin nr sin nr) -1]
2 4 8 : T6 37
[V -~ cos nr + 8 cos nr sin nfr cos nw sin nr (l- 4 sin nr sin nw)]
2 4 8 T6 37

"¢8



a (c23)
n
bn(823)
a (c25)
n
bn(525)
an(c27)
bn(527)
a (c29)
n
b (s529)
n
an(c3!)

by(s31)

3"

2N
>

= =1|» ﬂlw ﬁl& ‘-‘?lr\) =?|4>
> > > =] =] =)

3=

] I

(Continued)
Equations of Fourier Coefficients of

Walsh Functions

cos nT sin nw [l + 2 cos nm (I - 2 cos QE{ | - 4 sin nm sin EE})]
2 4 8 I 6 32
i[l - cos nr + 4 cos nv sin nr sin nm (2 cos Eﬁ{l -~ 4 sin nm sin EE} -]
2 4 8 |1 6 2 .
cos ntr sin nw [8 sin nm cos nm sin nr (2 cos nm -1) -1]
2 4 8 | 6 32
[! = cos nr + 16 cos nm sin nT cos nw cos nm sin nw (2 cos nw -1)]
’ 2 4 8 | 6 32
cos nw sin‘Q£ C1 + 2 cos nw {sin nr sin nr (2cos nm -1) -I} ]
2 4 8 16 32
[l = cos nr + 4 cos nmw sin nr osin nmw (1 - 4sin nm sin QE{ 2cos nfr —I})]
2 4 8 16 32
cos nw sin nm [4sih nr sin nm (2cos Eﬂ{ 2cos nm -0 -1) =17
2 4 8 16 32
[l - cos nr + 8cos nw sin nr cos nmw sin nv (2cos EE‘{Zcos nm -I} -1
2 4 8 | 6 32
cos nm sin nm [l +2cos nm {I + 2cos nm (I + 2cos nr 1 - 2cos 31])}]
2 4 8 | 6 32
[t - cos nr + 4cos nw sin nr osin nr (2cos EE{ 2cos nw [2cos nr ~I]-I} -]
2 4 8 |6 32

‘P8
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of the first 50 harmonicé of the Walsh fuanions by using
The'eqyafions listed in Table B~1. The values of the coef-
ficients are shown in Table B-11 on pages & to 91. By using
these values, the Fourier series of sal(l1,8) and cal(l1,8) to
sal(32,8) and cal(32,8) may be calculated. The Fourier series
of these functions are listed in Table B-Ill on pages 92 to 98.
The final step in the conversion from Walsh-Fourier
to Fourier series involves the derivation of the formulae of
the Fourier coefficienfs of the signal, f(t), in terms of the
Walsh-Fourier coefficients. The Fourier coefficients, a, and

b are calculated by Equations (2-30) and (2-31), where

n?
aplem)and b, (sm) are constants as determined by the equations

in Table B-11l. The formulae for the Fourier coefficients

are listed in Table B~V on pages 99 to 105.
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Table B-11. Fourier Coefficients of Walsh Functions
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Table B-11l. (continued) Fourier Coefficients of Walsh Functions
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Tablé B-11. (continued) mOCﬁmmﬁ Coefficients of Walsh Functions
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Table B-11l, (continued) Fourier Coefficients of Walsh Functions
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Table B=-11. (continued) Fourier Coeftficients of Walsh Functions
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Table B-11. (confinued) Fourier Coefficients of Walsh Functions
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Table

cal(1,8)

cal(2,8)

cal(3,8)

cal(4,8)

cal(5,8)

cal(6,8)

cal(7,8)

cal(8,8)

cal(9,8)

H

B-t11.

1.27324
-.18189
+.09794
~-,06701
+.05093
-.04107

1.27324
-.18189
+.09794

.52739
-.07534
~-.23645
+.16178
+.02110
-.01701

[.27324

-. 10491
-.37877
-.15799
+.10810
+.10606
+.00338

52739
-.07534
-.23645

.25326
+,91443
-.06544
+.04478
-.25604
-.00817

[.27324

-.024984
+.,75045
+.21574
-.14761
-.21013
+.00081

Fouriler Series of Walsh

92,

Functions

cos O - .42441 cos 36 + ,25465 cos 56
cos 786 + 14147 cos 98 - .11575 cos 116
cosi36 - .08488 coslI58 + .07490 cos 1786
cosl98 + .06063 cos2!8 - ,05536 cos 238
cos258 - ,04716 cos2786 + .04391 cos 296
cos3i8 ==---

cos 28 - ,42441 cos 66 + .25465 cos 106
cos 148 + ,14147 cos 188 - .11575 cos 228
cos 268 - ,08488 cos 308 -----

cos © + 1.02462 cos 38 - .61477 cos 58
cos 78 + .05860 cos 98 + .27944 cos 118
cos 138 - .03516 <cos 158 + ,03102 cos 178
cos 198 - ,14638 cos 218 - ,02293 cos 239
cos 2568 + .11385 cos 278 - 10600 cos 2986
cos 318 ~-—---

cos 48 - 42441 cos 286 + 25465 cos 208
cos 286 + -—=----

cos € + .68463 cos 36 + .92008 cos %8
cos 786 + .29460 cos 96 - .41822 cos 118
cos 136 + .00699 cos |58 - ,00617 cos 178
cos 198 + ,21907 cos 218 - .11528 cos 238
cos 258 - .17038 cos 276 - ,07082 cos 298
cos 318 --==--
cos 28 + {.02462 cos 68 - .61477 cos 1086
cos 148 + ,05860 cos 186 + .27944 cos 229
cos 268 - ,03516 cos 306 + -----
cos 8 + .28358 ccs 38 + ,38l11 cos 56
cos 78 - 71122 cos 96 =~ ,i7323 cos |18
cos 13@ -~ .01688 cos 156 + .01490 cos 178
cos 196 + ,09074 cos 218 + ,2783] cos 238
cos 256 - .07058 cos 278 - .02934 cos 296
cos 318 -----

cos 86 - ,42441 cos 248 + ----

cos @ + .08602 cos 38 - .,20371 cos 58
cos 78 + .86663 cos 98 = .32409 cos 118
cos 1386 - 17143 cos 1568 + .15126 cos 178
cos 198 + .,16976 cos 216 - .33912 cos 238
cos 2568 + ,03772 cos 276 - .00890 cos 298
cos 318 -=-=--



Tatle B=-111.

cal(10,8)

cal(11,8)

cal(lz,8)

cal(13,8)

cal(l14,8)

.cal(l5,08)

cal(16,8)

cal(17,8)

cal(18,8)

cal(l19,8)

i}

-.1049]
-.37877
-.15799

-.01033
+.31085
-.52083
+.35638
-.08704
+.00033

.52739 cos 46
-.07534 cos 286

-.05194
-.06183
+.77948
-.53333
+.01731
+.00168

.25326
+.914453
-.06544

. 12540
+.14927
+.32287
-.22091
~-.04180

—000405

H

I

1.27324

-.00616
+.05341
-.23948
-.29786
+.11681
-.08234

-.02494
+.75045

+.21574

-.00255
+.02212
+.57810
+.71911
+.04839
-.03411

(cont'd)

surier Series of Walsh Functions

28
140
268

cCs
cos
CcoOs

o
790
130
196
258
3186

cos
COs
cos
cOS
cos
cos

cos ©

cos 78
cos |30
cos 196-
cos 250-

cos 318

+

cos
CcoOs
COS

Ccos
cOSs
COS
CcOs
cos
cos

Ccos

cos
COs
CcOs
cos
Ccos
COS

Ccos
cos
CcOs

COs
cos
CoOs
COSs
cos
cos

29
148
2680

8
79
|38
198
256
318

168

8
70
138
f9e
258
318

28
{48
266

&
98
258

9
78
13

+

+
+

.29460

.2076
.3589
.0710
.4098
.0910

+

|.02462

cos

8
-

CO
CO

| cos

4
7

co
Cco

- COs

cOs
CcOos
cos
CcOSs
CcOos

COs
cos
cos

coOs
cos
COs
cOSs
COs

cos
Ccos
COs
CcOs
CcOs

COs
Cos
cos

cos
COs
Ccos
Ccos
CCs

.68463 cos 686

186

38
96
15
21
27

S
S

S
S

120

38
96
158
218
278

606
86
308

38
96
1586
218
278

30
96
156
218
278

66
186
306

36
99
158

216

278

+
+.
8 +
8]
6 +

.49179
.78243
.06265
. 14047
.02148

+ +

+ i

i

.92008 cos
.41822 ‘cos 2286
.00699 cos 306 —==--

co
co
co
CO
ce

CcOSs
CcOs
cos
cOs
Ccos

CcosS
CcOSs

coSs
Ccos
Ccos
CCs
cos

Ccos
Ccos
cos
CcOos
cOs

cos
cos

cos
COs
cos
COos
cos

93'

1086

50

e
176
238
296

S
S
S
S
S

61477 cos 208

58

1o
1780
238
298

i06
229

58

1o
178
238
299

58

lie
176
238
298

106
229

56

11e
1786
238
296



94.

Table B-111l. (cont'd) Fourier Series of Walsh Functions
cal(20,8) = -,1049! cos 48 + ,68463 cos 128 + ,92008 cos 206
-.37877 cos 288 + ----- '
cal(21,8) = .0005! cos © - .0308! cos 38 -~ 12319 cos 58
. +,11122 cos 786 - .16978 cos 99 + ,46897 cos 118
+.38627 cos |38 - ,06436 cos 158 - ,06913 cos 178
+.48049 cos 198 + .68378 cos 218 - .29699 cos 238
+,24325 cos 258 - .36358 cos 279 - .14484 cos 298
'+.00678 cos 318 —-—-—--- :
cal(22,8) = -,01033 cos 286 - .20768 cos 668 + .,49179 cos 108
+.31085 cos 1468 + ,35897 cos 180 + ,78243 cos 228
-.52083 cos 268 - .0710l cos 308 +----
cal(23,8) = -.00123 cos © - 01276 cos 36 - .05103 cos 58
-.26852 cos 78 + ,40988 cos 90 + .19425 cos |18
+.16000 cos 138 + ,i5537 cos 158 + .16689 cos 1789
+.,19903 cos 196 + ,28323 cos 210 + .71700 cos 239
-.58727 cos 256 - .15060 cos 278 - .05999 cos 298
-.01638 cos 318 -—-=--- '
cal (24,8 = .52739 cos 86 + |.02462 cos 248 - ---
cal(25,8) = -.01244 cos @ + .,04207 cos 386 -~ .09546 cos 58
+.32719 cos 76 + .33638 cos 968 - .10383 cos |18
+.04854 cos 3¢ - ,01530 cos 1568 - .01644 cos 178
+.06037 cos 1968 - .15139 cos 218 + .55843 cos 238
+.71559 cos 2568 - .28175 cos 278 + 19777 cos 298
-.16630 cos 316 + -—-—---
cal(26,8) = -,05194 cos 28 + .31082 ccs €66 + .,32860 cos 108
-.06183 cos 1486 - .07140 cos 1808 + .52280 cos 226
+,.77948 cos 2686 - .35698 cos 308 + -----
cal(27,8) = -,00515 cos @ - 10156 cos 306 + .23047 cos 58
+.13553 cos 76 + .13934 cos 96 + .25067 cos |16
- 11718 cos 138 - ,00634 cos (586 - ,C0681 cos 178
-.14576 cos 198 + .36549 cos 218 + .24373 cos 238
+,29641 cos 258 + .6802) cos 2786 - .,47748 cos 298
-.06888 cos 318 -----
cal(28,8) = .,25326 cos 46 + .,28358 cos 128 + .38!11 cos 206
+,91443 cos 280 --—---
cal(29,8) = -,02591 cos 8 + 15199 cos 38 + .15399 cos 58
' -.02696 cos 78 - .,02772 cos 98 + .16749 cos 118
+.17537 cos 136 - ,03187 cos |56 - ,03423 cos |78
+.21814 cos 199 + ,2447] cos 2186 - .04848 cos 238
-.05896 cos 258 + .45450 cos 279 + .71456 cos 298
~-.34630 cos 316§ -—----



Table B-111.

cal(30,86)

cal(31,8)

cal(32,8)

sal(l,8)

sal(2,0)

sal(3,8)

sal(4,8)

sal(5,8)

sal(6,8)

sal(7,0)

1]

ti

H

(cont!'d)

. 12540
+.14927
+.32287

COs
cOos
coOs

.06255
+.06508
+.07264
+.09036
+,14234
+.83605

Ccos
CcO5
cOs
CcOS
cos
COs

1.27324 si
+.18189 si
+.09794 si
+.06701 si
+.05093 si
+.04107 si

5D 3 3 33 3

1 .27324
+.18189
+.09764

sin
sin
sin

sin
sin
si
si
si

S|

-.52739
-.07534
+.23645
+.16178
-.02110
-.01701

33 33

1.27324
+.18189

si
si

33

-. 1049
+.37877
-. 15799
-.10810 si
+.10606 si
-.00338 si

si
si
si

3 33 333

sin
sin
si

-.52739
-.07534
+.23645

3

-.25326
+.91443
+.,0€6544
+.04478
+.,25604
~-,00817

si
s
si
s i
si

sin

3 3 3 3 3

95.

Fourier Series of Walsh Functions

138

20

28
140
269

+

+ +

2]
78
130
9o
258
319

+ + + + +

1.27324 cos 328

79

t96
2580
319

+ 4+ + + + +

+

28
149
2680

+ +

+

78
30
198
256
318

+

49
2886

+ +

78

138
196
2580
316

o4+ + 1+ 1

+

148
260

. 12874
17238
.86183

.06296
-.06691
.07693
.10116

4244
14147
.08488
.06063
.04716

L4244
14147
.08488

1.02462

.05860"

.03516
. 14638
11385

.68463
.29460
.00699
21907
17038

| .02462
.05860
.03516

.28358
L1122
.0l1688
.09074
.07058

68
188
308

CcOs
CcoOSs
Ccos

30
96
158
218
276

cos
COSs
Ccos
Ccos
CcCOs

30
98
[58
218
278

sin
sin
sin
sin
sin

+ + + + +

66
188
308

+

sin
sin
sin

+

30
98
-'58
218
276

sin
sin
sin
sin
5in

sin 129 +

38
98
158
218
278

sin
sin
sin
sin
sin

1+ 1+ 4

sin 68
sin 1886
sin 308

sin 30
sin 98
sin 150
sin 2186
sin 278

“+

i

+
+

13611
.21655

108
226

CcOs
COS

58

RS
176
236
298

.06379
.06938
.08264
.11705
.29598

COSs
COs
cos
cQos
CcoOs

.25465
L1575
.07490
.05536
.04391

56

118
1786
238
299

sin
sin
sin
sin

sin

.25465 sin 109
11575 sin

56

e
170
238
2906

61477 si
.27944 si
.03102 si
.02293 si
. 106090

o e

3

si

>

.25465 sin 206

59

Iie
178
238
298

.92008
41822
.00617
11528
.07082

sin
sin
sin
sin
sin

61477 sin 108
.27944 sin 228

38111
17323
.01490
.27831
.02934

58

tie
178
239
298

sin
sin
sin
sin
sin



Table B-111., (cont!

it

sal(8,8) |.27324
-.02494
~-.75045
+.21574
+.14761
~-.21013
-.0008]I

1

sal(9,0)

n

sal(10,8) = -.1049]
+.37877
-. 15799
sal(l11,8) = .01033
+.31085
" 4.52083
+.35638
+.08704
+.00033

.52739

sal(12,8) =
: .07534

sal(13,8) = -.05194
+.06183
+.77948
+.53333
+.01731
.00168

sal(14,8) = -.,25326
+.91443

+.06544

sal(15,8) = -.12540

+.14927

. 32287
.22091
+.04180
.00405

sal(16,0) = 1.27324

.00616
.0534|
-.23948
+.29786
+,11681
+.0823%4

sal(17,8) =

1

sal(18,8) = -.02494
-.75045
+.21574

d)

Fourier Series of Walsh Functions

sin
sin
sin
sin
sin
sin
sin
sin
si

3

si
si
s i
si
si
si

033 33 3

n u
33

0
33 3 333

[92]
3

wn
o]

3 33 333

nununu v onn

sin
sin

80

9
79
130
196
258

26
140
2680

79
130
196

258

3186

49
289

79

136
196
2586
3180

20
1486
268

76
138
199
258
318

1686

79

138
190
258
318
29

{48
268

+ .

I+ + + 1

+

+

+

+ 1+

+ +

4+ 4+ 1+ !

+ 4+ 11

+

+

42441 sin 246 +

.08602 sin
.86663 sin
17143 sin
16976 sin
.03772 sin

.684€3 si
+29460 si
.00699 .si

.20768 si
.35897 si
07101 si
.40984 si
.09107 si

.31082 si
.07140 si
.35698 si
.27385 si
.06085 si

01910 si
.08153 si
78112 si
. 18925 si
.10063 si

.08602 si
.86663 si
17143 si

3 S

33 3 33

5D D3 3 335

N

3 3 335

38 - .20371 sin
98 + .32409 sin
156 + 15126 sin
218 + .33912 sin
278 - .00890 sin
€0 + .92008 si
186 + .41822 si
308 - -=-=—--
38 -~ 49179 si
96 + .78243 si
56 - .06265 si
218 - | 4047 si
278 - .02148 si
n 128 + .61477 s
36 + .32860 si
98 -~ ,52280 si
[56 + .31498 si
218 - ,02794 si
278 - .03215 si
68 - 38111 si
186 - 17323 si
308 - —--=---
38 - 13611 si
99 + ,21655 si
158 + .76044 si
218 - .06745 si
278 + ,01332 si
306 - .03409 si
88 - ,12980 si
1586 + .83901 si
218 + ,14262 si
2768 + .08979 si
66 - 20371 si
88 + .32409 <
208 + ——-—-

33 3 33 33 - 33 3 353 3 3

3 3 3 3

333 33

in

96,

58

Fie
|78
236
298

f06
229

50

I1e
170
239
299

n 208

50
116
176
238
296

108
228

58

119
170
238
298

50

18
1786
2390
2980

108
229



Table B-111. (cont'd)

of Walsh Functions

38
96
{50
218
278

126 +

30
98
I5e
218
278

-+

18 +

38
96
150
218
278

2489

39
98
158
218
276

66
(806
308

38
96
156
218
278

1286

+
+

+ +

+

+

+

1

O S +

Fourier Series
sal(l19,8) = .00255 sin 8 - .04611 sin
+.,02212 sin 76 + ,03377 sin
-.57810 sin 138 + .,32355 sin
+,71911 sin 196 + ,45689 sin
-.04839 sin 250 + .24294 sin
-.0341! sin 318 = —=-==---
sal(20,8) = -,1049] sin 48 - .68463 sin
+.,37877 sin 288 4+ —-~----
sal(21,8) = ,0005) sin © + ,0308! sin
-.11122 sin 786 - .16978 sin
+.38627 sin 138 + ,06436 sin
-.48049 sin 198 + .68378 sin
+.,24325 sin 2568 + ,36358 sin
-.00678 sin 318 -~ —----
sal(22,8) = +.,01033 sin 28 - .,20768 sin 68
+.31085 sin (46 - .,35897 sin
+.52083 sin 268 - .07101 sin 306 -
sal(23,8) = ,00123 sin 9 - 01276 sin
~-.26852 sin 78 - ,40988 sin
-.16000 sin 138 + .15537 sin
+.19903 sin 198 - ,28323 sin
+.,58727 sin 258 - 15060 sin
-.01638 sin 318 -----
sal(24,8) =-.52739 sin 80 + 1.02462 sin
sal(25,8) = -,01244 sin © - .04207 sin
-.32719 sin 78 + .33638 sin
+.04854 sin 136 + ,01530 sin
-.06037 sin 196 - 15139 sin
+.71559 sin 250 + ,28175 sin
+.,16630 sin 318 + —~-—--~
sal(26,8) = -,05194 sin 286 - .31082 sin
+.06183 sin 1486 - ,07140 sin
+,77948 sin 2686 + ,35698 sin
sat(27,8) = ,00515 sin @ - .10156 sin
+.13553 sin 78 - .13934 sin
+.11718 sin 138 - ,00634 sin
-.14576 sin 196 - .36549 sin
-.29641 sin 250 + .6802| sin
-.06888 sin 318 —-----
sal(28,08) = -,25326 sin 48 + ,28358 sin
+.91443 sin 288 4+ ----- '

.08231
31336
34753
.05908
21676

si
si
s i
si
si

.92008 s

12319
.46897
06913
.29699
.14484

S i
si
S i
si
si

.49176 s
.78243 s

.05103
. 18425
. 16689
.71700
.0589¢9

si
s i
s
o i

si

[

S

.0954¢6
.10383
01644
.55843
19777

S
S

.32860
. 52280

S
S

. 23047
.25067
.0068/1
.24373
47748

S
S
S
S
S

38111

.

n
n
n
n
n

33 333

33 3305 3

.
.

n

n
n

3 33 3 O

3 =

s B

3 33

97.

56

18
178
230
298

208

58

118
176
238
2990

toe
229

580

18
178
238
299

56

e
179
238
2998

£

N —
Ny O
o D

118
178
238
298

208



Walsh

Table B-111, (cont'd) Fourier Series of Functions

sal(29,8) = -,02591 sin © - .15199 s5in 36 + .,15399 sin
+,02696 sin 78 - ,02772 sin 98 16749 sin
+.17537 sin 138 + ,03187 sin 158 - .03423 sin
-.21814 sin 198 + ,2442| sin 216 + .04848 sin
~-,05896 sin 258 - .45450 sin 278 + .71456 sin
+,.34630 sin 318 4+ —=w--

sal(30,8) = -,12540 sin 206 + .12874 sin 66 -~ .I1361l sin
+.14927 sin 146 - ,17238 sin 188 + ,21655% sin
-.32287 sin 2680 + .86183 sin 3080 + —=---

sal(31,8) = -,06255 sin © + .06296 sin 38 =~ .06379 sin
+.06508 sin 786 - = .0669] sin 96 + .06938 sin
-.07264 sin 36 + .07693 sin 150 - .08264 sin
+.,09036 sin 1908 - 10116 sin 2186 + 11705 sin
-.14324 sin 256 + .18826 sin 278 - .29598 sin
+,83605 sin 318 —-—--

sal(32,0) 1.27324 sin 320 + ———-=

98.

58

Ie
178
230
290

108
228

56

119
178
239
2990



99.

Table B-1V, Fourier Ccefficients of f(t) for Given Walsh=-

Fourier Coefficients

(o] e}

a; = 1.27324 A + .52739 Az - ,10491 Ag + .25326 A7
-.02494 Ag - .01033 Ay - .05194 Ayz + .12540 A5
-.00616 Ajy - .00255 Ajg + .00051 Ap| - .00123 Azsz
=.01244 Aps - 00515 Ap7 - .02591 Agg + .06255 Az

ap = 1.27324 Ap + .52739 Ag - 10491 Ajpg + .25326 Ajy
-.02494 Ajg - .01033 App - .05194 Apg + 12540 A3z

agz = -.42441 A+ 1.02462 A5 + .68463 A + .28358 Ay
+.08602 Ag - .20768 Ay + .31082 Az + .12874 Als
+.01910 A7 - .04611 Ajg - .03081 Ap; - .01276 A23
+.04207 Apg - 10156 Apy + 15199 Agg + .06296 Az,
ag = 1.27324 Ag + .52739 A2 - 10491 Agg + .25326 Ajpg
as = .25465 A} - .61477 Az + ,92008 Ag' + .38111 Ay
-.20371 Ag + 49179 Ay + .32860 Ajz + 13611 Ays
-.03409 A7 + .08231 Ajg - 12319 Ay - .05103 Aps
=.09546 Ayg + .23047 Ap7 + .15399 Apg + .06379 Az
ag = -.42441 Ap + 1.02462 Ag + .68463 Ayg + .28358 Ajg
+.08602 Ajg - .20768 App + .31082 Azg + .12874 Azg

a; = -.18189 A} - .07534 Az - .37877 Ag + .91443 Ay
+.,75045 Ag + .31085 Ay - .06183 A3 + .14927 A5
+.05341 Aj7 + .02212 Ajg + 11122 Ap) - .26852 A23
+.32719 Aps + 13553 Apy - .02696 Agg + .06508 Az

ag = 1.27324 Ag + .52739 Apq -----

ag = .14147 A} + .05860 Az + ,29460 Ag - .71122 Ay

+.86663 Ag + .35897 Ay - 07140 Ayz + 17238 A5
-.08153 Ay - .03377 Ajg - .16978 Ap| + .40988 Aoz
+.33638 Ay + 13934 Apy - 02772 Apg + .06691 Az,



Fourier Coefficients of f(t)

100,

for given‘

Walsh=Fourier Ccefficients

Ag

+

L49179 Ay +

Az

Al
Ajg
Az7

+ + 4+

.92008 AIO
.32860 Agg

41822
.52280
.46897
16749

As

ALz
Az
A29

+
+

v

38111
L3611

Alg
A3Q

17323
21655
. 19425
.06938

Ay
Als
A23
Az

+ o+ ok

1.02462 Ay, + .68463 Apg + .28358 Agg

Table B-1V. (cont'd)
ajg = 25465 Ay - .61477
-.20371 Ajg +
aj; = -.11575 A} + .27944
-.32409 Ag + .78243
+.12980 Aj7 - .31336
-.10383 Aps + .25067
ajp = -.42441 Ag 4
aj3 = +.09794 A; - .23645
+.21574 Ag - .52083
-.23948 A|7 + .57810
+.04854 Apg - 11718
ajg = -.18189 Ay - .,07534
+.75045 Ajg + .31085
als = -.08488 A; - .03516
-.17143 Ag - .0710I
+.78112 Aj7 + .32355
-.01530 Aps - .00634
a1 = 1.27324 Ajg + -----
a7 = .07490 A| + .03102
+.15126 Ag + .06265
+.83901 Al7 + .34753
-.01644 Ays + .0068I
ajg = -14147 Ay + .05860
+.86663 Ajg + .35897
ajg = -.06701 A + .16178
-.14761 Ag + .35638
~.29786 A7 + .71911
+.06037 Ag5 - 14576

- .61477 Ajp + .92008 Ajg +

A3

Al
Alg
A27

Ag
A22

A3

Al
A9
A27

Az

Al
Aig
Az

Ag
A22

A3

Al
Aig
A27

+

+ + + 1

+

+ + 1+

. 15799
. 77948
.38627
17537

As

Alz
A2
A29

.37877
.061853

Ao
A26

.00699
.35698
.06436
.03187

As

Als
Aoy
A29

.00617
.31498
.06913
.03423

As

Az
Az
Azg

.29460
.07140

Ao
A26

. 10810 Ag

.53333 A3
.48049 Ay
.21814 Apg

+ 4+ 1+

.06544
.32287
. 16000
.07264

A7

Als
A23
Az

+ 4+ + 1

.914453
. 14927

Alg
A3z0

+ +

,01688
LB85183
15537
.076953

A 7

+ + o+
-

NS -
U N ==

.01490
.76044
. 16689
.08264

71122
17238

+

.04478
.22091
.19903
.09036

A
7
Als
Aoz
Az

+ +

38111 Azg

McMASTER UNIVERSITY. Lisitaifl



Table B-1V, (éonT'd)

azi

a2

Az

azs

426

o827

azs

829

@30

101,

Fourier Coefficients of f(t) for given

Walsh-Fourier Coefficients

+ 4+ 1+ +

+ 1

|

+

+

= ,06063 A} - .14638 Az + .21907 Ag +
+.16976 Ag - .40984 A]| - .27385 A|z -
+.18925 A7 - .45689 Ajg + .68378 Ay, +
-.15139 Aps + .36549 Apy + .24421 Apg +

= -.11575 Ay + .27944 Ag - .41822 Ajg,

~.32409 Ayg + .78243 Ay, + .52280 A26
= -.05536 A} - .02293 Az =~ .11528 Ajg

-.33912 Ag =~ .14047 Ay + .02794 A3

-. 14262 A7 - .05908 Ajg - .29699 Ay

+.55843 Apg + .24373 Apy - .04848 Ajpg
= ~-,42441 Ag + 1.02462 Apy + -----

= +.,05093 A} + .02110 Az + .10606 Ag

-.21013 Ag - .08704 Aj| + 01731 Ayz
+.11683 Ay + .04839 Ajg + .24325 Ap
+.71559 A25 + .29641 Apy - .05896 A29
= .09794 A, - .23645 Ag - .15799 Ajp -
+.21574 Ajg - .52083 A22 + .77948 Azg *+
= -.04716 Ay + .11385 A3z =~ .17038 Ag
+.03772 Ag =~ 09107 Ay .06085 Ayz
-.10063 Ay + .24294 Ajg - .36358 Apj
-.28175 Agg + .68021 Apy + .45450 Apg
= -.18189 Ay, - .07534 A, - .37877 Ay
b o

= ,04391 A} - .10600 A3 - .07082 Ag -
-.00890 Ag + .02148 A} - .03215 A}z -
+.08979 Ay7 - 21676 Ajg - .14484 Apy -
+.19777 Ags - 47748 Apy + .T1456 Ang +

= -.08488 A, - .03516 A, + .00699 Alo -

—017!43 Al - .O7IOI Azz"‘

.09074 A5

L1343 Ags
.28323 Aggq
10116 As,

17323 Ay
.21655 ABO

.27831 Ay

06745 A
.71700 Apz
L1705 Az

.25604 Ay

.04180 Ays
58727 Az
L4234 Az

.06544 Ajg
.32287 Az

.07058 A

.02521 Ays
.15060 Apz
. 18826 A3

91443 Ayg

.02934 Aq
.01332 A5
05999 Apsz
.29598 A%z

01688 Ajg

35698 Ayg + .86183 Aszg
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Table B-1V, (cont'd) Fourier Coefficients of f(t) for given

Walsh—-Fourier Coefficients

az| = -.04107 A - 01701 A3 + .00338 Ag - .00817 Ay
+.00081 Ag + .00033 A7| + .00168 Ajz - .00405 A5
-.08234 Aj7 - .03411 Ajg + .00678 Ap| - .01638 Ap3
-.16630 Aps - .06888 Ap7 - .34630 A29 + .83605 Az
832 = |,27324 A32 L
bl = 1.27324 BI - 52739 Bz - .10491 Bs - .25326 By
-.02494 Bg + .01033 Bj| - .05194 Bz - .12540 B5
-.00616 Bj7 + .00255 Bjg + .00051 Bp| + .00123 B3
-.01244 Bys + .00515 By7 - .02591 Bpg - .06255 Bz
bp = 1.27324 B, - .52739 Bg - .10491 Bjgo - 25326 B4
-.02494 Big + .01033 Bpp - .05194 Bpg - .12540 B3g
bs = .42441 B, + 1.02462 B3z =~ .68463 Bg + .28358 By
-.08602 Bg - .20768 B}, - .31082 Bj3 + .12874 B |5
-.01910 Bj7 -~ .04611 B;g + .03081 By; - .01276 Bp3
~.04207 Bys - - .10156 B27 - .15199 Byg + .06296 B3z
by, = 1.27324 By =~ .52739 By, - .10491 Byy - .25326 Bjg
bs = .25465 B; + .61477 B3 + .92008 Bs - .38111 B,
-.20371 Bg - .49179 B]| + .32860 B3 - .[361! B3
-.03409 B, - .08231 Bjg - .12319 By + .05103 B23
-.09546 Bp5 - .23047 By + .15399 Byg - .06379 By
b6 = 42441 82 + 1.02462 B - .68463 BIO + .28358 Biag
-.08602 B|g - .20768 822 - .31082 826 + .12874 830
b7 = .!8l89'B| - .07534 By + .37877 85 + .91443 By
-.75045 Bg + .31085 B]| + .06183 B]3 + .14927 B5
-.05341 By7 + .02212 Byg - .11122 B,] - .26852 B3
-.32719 Byg + .13553 Bp7 + .02696 B,g + .06508 B3
bg = 1.27324 BS - .52739 824 —————
bg = .14147 B, - .05860 83 + .29460 85 + ,71122 B~
+.86663 Bg - .35897 B - .07140 B]3 - .17238 B5
-.08153 Byy + .03377 Bi9 - .16978 82| - .40988 823
+.33638 Bpg - 13934 827 - .02772 Bog9 - ,0669] Bz
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" Table B-1V., (cont'd) Fourier Coefficients of f(1) for given

Walsh~Fourier Coefficients

bjo = .25465 B, + .61477 B + 92008 B g - .38111 B,
-.20371 Byg - .49179 Bpy + .32860 Bpg - .13611 Bzg
by, = .11575 B} + .27944 Bz + .41822 Bs =~ .|7323 By
+.32409 Bg + .78243 B[, - .52280 B3 + .21655 B3
' -.12980 B|y - .31336 B|g - .46897 B, + .19425 By
+.10383 Bps + .25067 Bpy - .16749 Bog + .06938 B3|
by = -42441 By + 1.02462 By - .68463 By + .28358 Byg
b s = .09794 B, + .23645 By - .15799 Bs + .06544 By
+.21574 Bg + .52083 B], + .77948 B3 - .32287 B|5
-.23948 B|y - .57810 B;g + .38627 Bp| - .16000 Boz
+.04854 Bps + 11718 Bpy + .17537 Byg - .07264 B3]
bjg = .18189 B, - .07534 By + .37877 Bjg + .91443 By
-.75045 Blg + .31085 By, + .06183 Bpg + .14927 Bsg
bjs = .08488 B; =~ .03516 Bs - .00699 Bs - .01688 By
+.17143 Bg =~ .07101 B} + .35698 B|x + .86183 B5
-.78112 By7 + .32355 Byg + .06436 By| + .15537 Bps
+.01530 By - .00634 Bp7 + .03187 Bpg + .07693 By
big = 1.27324 B|g ——---
b7 = .07490 B; =~ .03102 B3 ~- .00617 B - .01490 By
+.15126 Bg =~ .06265 B|| + .31498 8|3 + .76044 B|5
+.83901 B}y - .34753 B g - .06913 By| - .16689 Bysz
-.01644 B,5 + .00681 By; = .03423 B, - .08264 Bs
bjg = -14147 B, - .05860 Bg + .29460 B,; + .71122 B,
+.86663 Blg - .35897 B,, - .07140 Byg =~ .17238 Bs
bg = .06701 By + .16178 By ~- .10810 By + .04478 By
+.14761 Bg + .35638 B} + .53333 Bjz - .22091 Bs
+.29786 B + .71911 Bjg - .48049 By] + .19903 B3
-.06037 Bps - .14576 Byp7 - .21814 Bpg + .09036 By
boo = .25465 B, + .61477 B, + .92008 Byy - .38111 Bpg
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Table B-I1V. (cont'd) Fourier Coefficients of f(t) for given

Waish-Fourier Coefficients

bp; = .06063 B+ .14638 By + .21907 Bg -~ .09074 By
+.18925 B ;7 + .45689 Bg + .68378 B,| - .28323 B3
~.15139 Byg - .36549 Byy + .24421 Bog - 10116 B3]
by, = 11575 B, + .27944 Bg + .41822 B o - .17323 B,
+.32409 Byg + .78243 By, - .52280 Bpg + .21655 Bz
bps = -05536 B, - .02293 By + .11528 B5 + .27831 By
+.33912 Bg - .14047 By - .02794 Bjz - .06745 B5
+#.14262 B - .05908 Bjg + .29699 B, + .71700 B3
-.55843 By + 24373 Bpg + .04848 Bog + .11705 B3
b,y = .42441 Bg + 1.02462 By, -----
bos = .05093 B, - ,02110 By + .10606 Bg + .25604 By
-.21013 Bg + .08704 B}, + .01731 Bys + .04180 By5
+.11683 Bjy - .04839 B g + .24325 B,| + .58727 Bjg
+.71559 Byg - .29641 Bpy - .05896 Bog - 14234 B3
bog = .09794 B, + .23645 Bg - .15799 B g + .06544 By
+.21574 Big + .52083 Boy, + .77948 Byg - .32287 Bz
byy = .04716 B, + .11385 By + .17038 By - .07058 B4
-.03772 By -..09107 B}, + .06085 B}z - .0252| B3
+.10063 Biy + .24294 B|g + .36358 By| - .15060 B,z
+.28175 Byg + .68021 By - .45450 B,g + .18826 B
bog = 18189 B, =~ .07534 B, + .37877 Byg + .91443 Bjg
brg = .04391 B, + .10600 By - ,07082 By + .02934 By
-.00890 B, - .02148 By - .03215 Bjz + .01332 B3
+.08979 B|; + .21676 B|g - .14484 B,| + .05999 B,z
+.19777 Byg + 47748 Byy + 71456 Bog - .29598 B3|
bz, = .08488 B, - .03516 Bg - .0069% B;g - .01688 B,
+.17143 Big - .01701 Bgp + .35698 Byg + .86183 Bs



Table B-IV. {(cont'd) ‘Fourier Coefficients of f(t) for given

Walsh Fourier Coefficients

by, = .04107 B - .0170! By - .00338 By - .00817 By
-.00081 By + .00033 By, - .00168 Byz - .00405 B
+.08234 B{; - .03411 B|g ~ .00678 By| - .01638 B33
+.16630 Bys - .06888 Bpg + .34630 Bhg + .83605 By
bgp = 1.27324 By, =----



Appendix C. Layout of Circuit Boards

The following diagrams.show Tﬁe layout of the inte-
grated circuit chips on the 3 boards of the Walsh Function
Generator and the 2 boards of the Pulse Burst Generator.

Each of the integrated circuits is labelled with the type
number and a letter designafioﬁ. Only Figure C-1 shows the
input-output ferminals. On all boards, terminal ® is Vece

and () is ground. Table C-1 below lists each of the integrated

circuits that are used on the boards.

Table C-1. List of Integrated Circuits

Type No. Circuit Function

SN7400N Quadruple 2-input positive NAND gate

SN7401IN Quad 2-input NAND gate w/open collector
output

SN7430N 8-input positive NAND gate

SN7440N Dual 4-input positive NAND "power" gate

SN7451N Dual AND-OR-invert gate

SN7473N Dual master/slave J=-K Flip=-flop

Type number SN7473N- has Vcc on pin 4 and ground on
pin Il. All other chips have Vcc on pin |4 and ground on
pin 7. Fan-out for SN744CN is 30 units. All other chips
have a fan-out of 10. All input leads have a fan-in of 1.
Schematic diagrams of each integrated circuit [isted in Table
C-1 are shown in Figure C-5 on page II1l.

106.
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Figure C-1. Walsh Function Generator - Card |
® | O
@ 14131211109 8
© 116G IRNENEN
0 o]
% (45) SN7400N SN74 73N SN7473N SN7473N
O1Q T
H
Q2 E
65 (% SN745IN SN74060N SN7451N SN7449N
[ O
OR@)
® {(2
® 103 |
C(R% % SN745¢tN SN7400N SN745IN SN7440N
S) I\
® (9
@ (7
0] iy B © @
g% SN745IN SN7400N SN7451N SN7440HN
X
O)
@

DO

Input-output
Terminals

Note:

Card Surface Showing Number and Lccation
Intfegrated Circuits

of

Only integrated circuit [A] shows pin locations.



Figure C-2. Walsh Function Generator - Cards 2 and 3
[C]
SN745IN SN7400N SNTASIN
(D) (]
SN745IN SN7400N SN7451 N
SN745IN SN7400N SNT451N

K

SN7451N

SN7400N

M

SN74SIN

108.

Cards 2 and 3 of the Walsh Function Generator are identical

in

tayout.



Figure C-3. Pulse Burst Generator - Card |
[B] [0
SN7440N SNT7473N SN7473N SN7473N
SN7440N SN7473N SN7413N SN7473K
[
SN 7430N SN74738 SNT473N SNT473N

SN7400N

SN7473N

[

SNT7473N

&

SM74734
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Figure C-4. Pulse Burst Generator - Card 2
B

SN7430N [| sn74sIN SNTAGIN SNT4SIN || sN7451N

SN7440N SN7473N SN7473N SN7473N S§7473N

SN7400N

[

SN 7430N

m

[

@

SN7451IN SNT745IN S48
sH7400N SN7473N SNT4T3N SNT4T3IN
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- SN7400N SN7401IN
Quadruple 2-input NAND Quadruple Open Collector
2-input NAND

¢
% % i 'r—"" )
s[5 He flowf

SN7430N SN744CN
8-input NAND Dual 4-input NAND Buffer

SN745IN SN7473N
Dua! AND-OR-Invert Dual J-K Flip=Flop

Figure C-5. TTL Infegrated Circuits
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Appendix. D. Errors in Walsh-Fourier to Fourier Series

Conversion when Walsh-Fourier Series is

Limited to sal(32,8) and cal(31,0)

Table D-t, Square Wave (Amplifude, 10 Volts)

N An Bn anp bn

0.0 10.0 0.0 12.732

0.0 0.0 0.0 0.000

0.0 0.0 0.0 4,244

0.0 0.0 0.0 0.000

0.0 0.0 0.0 2.547

0.0 0.0 0.0 -0.000

0.0 0.0 0.0 1.819

0.0 0.0 0.0 0.000

0.0 c.0 0.0 |.415

0.0 0.0 0.0 0.000

True values of coefficients
N an Error ¢ Error bn Error % Error
| 0.0 0.0 undefined 12.732 0.0 0.0
2 0.0 0.0 " 0.000 0.0 undefined
3 0.0 0.0 " 4,244 0.0 0.0
4 0.0 0.0 " 0.C000 0.0 undefined
5 0.0 0.0 " 2.547 0.0 0.0
6 0.0 0.0 " 0.000 0.0 undefined
7 0.0 0.0 " 1.819 0.0 0.0
8 0.0 0.0 " 0.000 0.0 undefined
9 0.0 0.0 " |.415 0.0 0.0
0 0.0 0.0 " 0.000 0.0 undefined

Calculated values of a_ and b_ using Walsh-Fourier
. n n
Coefficients

2.



Table D-11. 10 Volt Pulse (Dutfy cycle = 1/3)

An - B ap bn
| I.667 3.333 2.756 4.775
2 -.833 | .667 -1.378 2.387
3 .833 -.833 0.0 0.0
4 417 .833 .689 l.194
5 -.417 417 -.551 .955
6 -.417 -.417 0.0 0.0
7 JA17 -.417 . 394 .682
8 -.208 417 ~.345 .597
9 .208 -.208 0.0 0.0
0 .208 .208 .276 477

True values of coefficients

N an Error %2 Error bn Error % Error

| 2.754 .003 . 106 4,773 .002 .036

2 -1.372 -.006 ,433 2.384 L0053 137

3 .000 .000 undefined 010 .010 undefined
4 .678 L0101 |.663 |.186 .007 .512

5 -.536 -.015 2.744 .947 .008 L2801

6 -.00! -.00}{ undefined .020 .020 undefined
7 . 374 .019 4,950 .669 013 [.955

8 -.,320 -.024 7.077 .585 Ol | .906

9 -.003 -.003 undefined -~ .030 .030 undefined
0 .249 .027 9.771 : .458 .020 4,131

Calculated Values of a, and b, using Walsh-Fourier
Coefficients
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Table D=111. 10 Volt Pulse (Duty cycle = 1/5)
An B, ap, by

I 2.0 2.0 3.027 2.199
2 .5 2.0 .935 2.879
3 .5 .5 -.624 1.919
4 -.5 .5 ~.757 .550
5 -.5 -.5 0.0 0.0

6 .5 -.5 .505 . .367
7 .5 .5 . 267 .823
8 ~.125 .5 -.234 . 720
9 -.125 -.125 -.336 244
0

125 -. 125 0.0 0.0

True values of coefficients

an Error % Error bn Error 4 Error
| 3,025 .002 LO77 2.200 -.001 -.037
2 .932 .003 .325 2.875 .004 . 133
3 -.620 -.004 .636 1.913 .006 .322
4 -.747 -.010 | .257 .552 -.002 -.416
5 .00 .001 undefined 012 012 undefinec
6 .491 LOt3 2.637 373 -.,006 -1.657
7 .256 012 4,403 . 810 012 |.489
8 -.225 -.,009 3.760 .703 LOV7 2.395
9 -.315 =,021 6.387 .247 -.003 -1.219
0 .005 .005 undefined .024 .024 undefined

Cailculated values of a, and b, using Walsh-Fourier
Coefficients ‘
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Table D=1V, 10 Volt Pulse (Duty cycle = 1/8)

N An B anp bn

| .25 .25 2.25| .932
2 .25 i .25 }.592 }.592
3 1.25 .25 .750 1.811
4 0.0 | .25 0.000 |.592
5 0.0 0.0 -.450 | .087
6 0.0 0.0 -.53] .31
7 0.0 0.0 -,322 . 133
8 0.0 0.0 0.000 0.000
9 0.0 0.0 .250 . 104
0 0.0 0.0 .318 .318

True values of coefficients

a, Error % Error b, Error % Error
| 2.25} 0.0 0.0 .932 0.0 0.C
2 i.592 0.0 0.0 |.562 0.0 0.0
3 .750 0.0 0.0 .81l 0.0 0.0
4 0.000 0.0 undefined |.592 0.0 0.0
5 -.450 0.0 0.0 1.087 0.0 0.0
6 -.531 0.0 0.0 . 531 0.0 0.0
7 -.322 0.0 0.0 .133 0.0 0.0
8 0.000 0.0 undefined 0.000 0©.C undefined
9 .250 0.0 0.0 .104 0.0 0.0
0 .38 0.0 0.0 .318 0.0 0.0

Calculated values of ay, and b, using Walsh-Fourier
Coefficients
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|0 sin 2#ft

Table D-V.
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6.366
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-2.637
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Table D-VI, Sum of |0 Sines Waves (First 10 Harmonics of

Fourier Series are Equal)

N An Bn anp bn

| 0.0 1.138 0.0 1.0

2 0.0 .976 0.0 1.0

3 0.0 .489 0.0 .0

4 0.0 .637 0.0 .0

5 0.0 .402 0.0 1.0

6 0.0 . 556 0.0 1.0

7 0.0 .637 0.0 .0

8 0.0 .637 0.0 I.0

9 0.0 -.099 0.0 1.0
10 0.0 -.065 0.0 1.0

True values of coefficients

N an Error 4 Error bn Error % Error
| 0.0 0.0 undefined .999 .00 .080
2 0.0 0.0 " .997 .003 .32
3 0.0 c.0 " .992 .007 721
4 0.0 0.0 " .987 013 1 .279
5 0.0 0.0 " .980 .020 [.992
6 0.0 0.0 " .971 .C29 2.854
7 0.0 0.0 " .96 .039 3.874
8 0.0 0.0 " .950 .050 5.036
9 0.0 0.0 " .937 .064 65.339
IO 0.0 0.0 " .922 .078 7.778

Calculated values of a, and b, using Walsh-Fourier
cecefficlients



Table D=-VIIlI, Triangular Wave (Peak Amplitude, 10 Volts)
N A B, a, b,
| 0.0 5.0 0.0 8.106
2 0.0 0.0 0.0 .000
3 0.0 -2.5 0.0 -.901
4 0.0 0.0 0.0 .000
5 0.0 0.0 0.0 .324
6 0.0 0.0 0.0 .000
7 0.0 -1.25 0.0 -.165
8 0.0 0.0 0.0 .000
9 0.0 0.0 0.0 . 100
10 0.0 0.0 0.0 .000
True values of coefficients
N an, Error % Error b Error 4 Error
| 0.0 0.0 undefined 8.099 .007 .080
2 0.0 0.0 n ..000 .0CO undefined
3 0.0 0.0 " -.894 .007 . 724
4 0.0 0.0 n .000 .000 undefined
5 0.0 0.0 " .318 .007 2.009
16} 0.0 6.0 " .000 .000 undefined
7 0.0 0.0 " -.159 .007 3.962
8 0.0 0.0 " .000 .0600 undefined
9 0.0 0.0 " .093  ,007 6.594
10 0.0 0.0 " .000 .000 undefined

Calculated values of ap and b, using Walsh-Fourier
coefficients
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