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ABSTRACT 

It is known that when two subspaces of a Hilbert space 

are in some sense close to each other, then there exists a 

unitary operator which is called the direct rotation. This oper

ator maps one of the subspaces onto the other while being as 

close to identity as possible. In this thesisu we study such a 

pair of subspaces, and the application of the angles between 

them to the invariant subspace -perturbation theory~ We also 

develop an efficient algorithm for computing the direct rota= 

tion for pairs of subspaces of relatively small dimension. 
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INTRODUCTION 

Pairs of linear subspaces of a real n-dimensional 

inner product space of equal dimensions have been studied 

since 1875 [21]. Since then, it is known that this pair of 

subspaces has a number of angles equal to the dimension of 

each of them as unitary invariants. A treatment of the subject 

in somewhat modern style is in [16]. The subject was devel= 

oped by S.N. Afriat [ 1] and others. The extension to the case 

of Hilbert space was completely analysed by C. Davis [8 ]. 

In chapter one, we study such a pair of subspaces of a 

Hilbert space. We define the direct rotation which maps one 

of the subspaces onto the other. This direct rotation was 

introduced by CG Davis [8] and To Kato[~4],§§1.4.6, 1.6o8]. 

The study of the direct rotation is greatly simplified 

using the idea of a source space, and the operator angle e. 

Following [11], we present a detailed study of the direct ro

tation and a complete set of unitary invariants of a pair of 

subspaces. We conclude this chapter by studying the extremal 

properties of the direct rotation. 

In chapter 2, we study the operator equation BX - XA = Q 

in different settings. We show that under certain conditions, 

the equation has a unique solution. Also we give an explicit 

formula for the solution in special cases. This equation will 

be of later use in chapters 3 and 4. 

Chapter 3 is devoted to the case when a pair of sub

spaces consists of reducing subspaces of A and A+H where A 
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and H are Hermitian operators and H is small in a sense spec

ified in the text. Through this, we can shed some light on 

the behaviour of eigenvectors under perturbation. In the 

finite dimensional case, we give bounds on the difference be

tween eigenvectors of a Hermitian matrix and those of a Hermi

tian perturbed matrix. In the infinite dimensional case, a 

Hermitian operator may not have eigenvalues, but still has 

reducing subspaces; in this case, we give bounds on the differ

ence between corresponding reducing subspaces of A and A+H in 

terms of the operator angle e. 

Chapter 4 is mainly concerned with the generalization 

of chapter 3 to the case where A is a closed (possibly nonself

adjoint) . linear operator and the generalization is done from 

a different point of view. 

Chapter 5 is devoted to algorithms for computing the 

direct rotation and the angles between subspaces~ We define 

the angle bisector and prove some of its properties. We dis

cuss and compare different methods for computing the direct 

rotation and introduce an algorithm, which is efficient for 

subspaces of low dimensions. 

For the convenience of the reader, we include two 

appendices which contain the background necessary throughout 

the thesis. In appendix A, the polar representation of a 

bounded linear.operator is presented. 

2 

In appendix B, we give some known results about the 

singular values of a completely continuous operator and the 

relation between unitary invariant norms and the singular values. 



CHAPTER 1 

The Separ·ation of Two Subspaces 

§1.1 The Aperture of Two Linear Manifolds. 

The concept of the aperture of two linear manifolds 

was introduced by B. Nagy [38], and independently of him, 

by M.G. Krein and M.A. Krasnoselskii [27]. 

Let :Pf be a Hilbert space, and lE~t M and N be two 

linear manifolds inJ¥ • 

Definition 1.1.1 

The aperture of two li.ne.ar man·i.fo lds in J1 is defined 

as the norm of the difference of the operators which project 

J.( on the closures of these two linear manifolds. This aper

ture is denoted by o(M~N): 

(1.1.1) 

where P and Q are the operators of projection onto M and N. 
2 * i.e. P = P and P = P~ range P = M~ similarly for Q. 

From this definition, it follows that 

( 1) 0 (MIN) = 0 ( M I N) = 0 (~ GM I J:¥ GN ) 

(2) o(M,N) ~ 1, and equality holds if there exists a 

nonzero element of one of these manifolds, which is orthogonal 

to the other. This property follows from ii(P-Q)hll 2 = IIPCI-Q)h

(I-P)Qh!l 2 = IIP(I-Q)hll 2 +II (I-P)Qh!l 2 ~II (I-Q)hll 2 + lfQhll 2 = !lh!l 2
• 

Now, given any two subspaces of a Hilbert space, or 
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equivalently two projectors P and Q, we have the following 

Theorem l.l.2 {[24], p. 56) 

Two orthogonal projections P and Q sueh that 

IIP-Qll<1 are unitarily equivalent3 that is~ there is a unitary 

' -1 
operator U with the property Q = UPU • 

Proof 

Let R = (P-Q) 2 , then R commutes with P and Q. Sim-

ilarly (I-P-Q) 2 commutes with P and Oo since I-P is a pro

jector. We define U = [QP + (I-Q) (I-P) ]. (I-R) -l/ 2 = 

= (I-R) -l/2 [QP + (I-Q) (I-P)]. 

U is well defined since II P-Q II < 1 so that (I-R) -l/2 is obtain-

ableu say, by Maclaurin series. It is easy to show that U*U = 

UU* = I and UP = QU, since R commutes with P and Q. From 

(I-Q)UP = 0 it follows that UP:P(c QJ¥ .. Similarly (I-P)U*Q = 0 

implies ·that U*Q'J:{c P'J1, so that UPJ.:;' = Q;c(, i.e o U is a 

unitary operator, taking PJi onto QJ.f and (I-P)Jy onto (I-Q)J:( D 

Remark 1 

A sufficient but not necessary condition for the exis-

tence of such an opera tor U is II P-Oll < 1. A necessary condition 

is dim PJ¥ = dim QJ{a This condition is sufficient in the 

finite dimensional case, but it is far from being sufficient 

in infinite dimensional Jf o See ( 1. 3. 2) below .. 

An equivalent definition of the aperture of two linear 

manifolds is given in [2] as follows: 



Definition 1.1.3 

o (M, N) = max {sup II ( I-P) £11 , sup II ( I-Q) gJJ } 

ge:M 

lfgfJ = 1 

where II ( I-P) f II= d ( f, M) , the distance between the point f 

and Mo The importance of this formula is that it can be 

used to define the aperture of two linear manifolds in a 

Banach spaceD 

Remark 2 

5 

Other measures of the difference between the subspaces 

P :}.:4 and Q Jy are : 

(1) For a unit vector x = Px, to find how large 

Qx-x is, Davis [9] estimates the following: 

sup{fjQx-xll; lfxll = 1, x = Px}, and 

(2) sup {in£ [jjy-xJI, !JyJJ = 1; y = Qy], JlxJI = 1, x = Px} 

A much stronger result than theorem 1.1.2 was given 

by K a to ( [ 2 4 ] ', p . 5 7 ) ~ 

Theorem 1.1.3 

Let P and Q be two orthogonal projections~ with 

M = R ( P) , and N = R ( Q) , s u c h t h at IJ (I- Q) Pjj = 8 < 1 • 

Then there are the following alternatives: Either 

(i) Q maps M onto N one-to-one and bicontinuously and 

I!P-QIJ = II ( I-P) Qil = II ( I-QJPJI = 8; or (ii) Q maps M onto a 

proper subspace N0 cN one-to-one~ and bicontinuousZy~ if Q
0 

is the orthogonal projection on N0 . Thus 
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II P-Q0 11 = II < I-P) o0 !I = 

= II ( I-Q 0 ) p II = II ( I-Q) p II = 8 

II P-all = II (I-P) Qll = 1 .. 

§1.2 The idea of a source space 

Throughout,~( will denote a separable Hilbert space. 

It is known that bounded operators on~ admit matrix repre-

sentationsu completely analogous to the well known matrix 

representations of operators on finite dimensional spaces. 

We will specify subspaces of~~ by their projectors. Having 

a fixed subspace P ~ of Jc::l , where p denotes the operator of 

projection on P~1 , we will study operators on~~ in terms of . r 

the orthogonal decomposition of Jt into P :fy and ( I-P) J;:f. To 

facilitate this idea, we define. E
0 

K(E 0 ) +J¥ and 

E1 : K(E1 ) +Jo/, where E0 and E
1 

are isometric mappings of 

some new Hilbert spaces into~, having ranges R(E 0 ) = P~ 

and R(E1 ) = (I-P)Ji. Here K( ) stands for the source space 

of an isometry, R( ) for the range and N( ) for the null 

spaceo 

Now E* 0E0 = I, E0E0* = P, R(Eo*) = K(EO). Since N(Eo*} = 

R(E 0 ) i = (I-P}~, one has E0*E1 = Oc Similarly E
1

*E
1 

=I, 

E1E1 * = I-P, R(E 1*) = K(El) and E1 *Eo = 0. Now every x~ J~ 

can be written as x = Px + (I-P)x. If we can write x
0 

= E
0

*x 

and x1 = E1 *x, then 
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(1. 2. 1) X = 

But X = X for any xc::N 

arid 

[::] = [::] 

Thus 

The corresponding notation for operators is 

(1. 2. 2) 

This equation defines the new operators appearing in it, 

i.e. Aoo = E * A Eo is an operator from K (EO) to K{E 0 ) and 
0 

All = El * A El is an operator from K(E
1

) to K (El) ; 

similarly AOl = E * A El from K (E
1

) to K (E
0

) and 
0 

AlO = El * A Eo from K ( EO) to K ( E l ) . 

If we agree that the sign ::: is to be read as "is 

represented by", we can rewrite equations (1.2.1) and (1.2.2) 

as follows. 
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X Z [::] 

I A 

I-P 
= [~ ~) 

The usual rules of matrix multiplication are appli-

cable here. However, the notion of representing operators on 

J. .. :y by 2x2 block matrices becomes treacherous, because there 

is more than one way to represent them. 

§1.3 Unitary Application of One Subspace Onto Another. 

To say that two subspaces are close, we must see how 

one can be changed to the other by a unitary transformation. 

The unitaries V in question, will then be those such that 

(1.3.1) VP = QV, 

consequently V(I-P) = (I-Q)V. 

Thus the dimensions agree: 

(

dim P.1f = dim Q')y, 

(1.3.2) 
dim (I-P)~ = dim (I-Q)~. 

In §1.2 we gave a representation of operators in terms 

of the decomposition by Eo and E
1

. Similarly, when decomposing 

;q according to Q)/ and (I-Q)J.[ I we can define Fa= K(F
0

) +~ 

Fl: K(F 
1

) +)i. These are isometric mappings of the new 

Hilbert spaces into~ , with ranges R(F
0

) = Q.Jf and R(F
1

) = 
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(I-Q)lj . Here F F * = Q and F F * = I-Q. 
0 0 1 1 

Henceforth, all 

operators will be represented in terms of the decomposition 

by E0 and E
1

, but never in terms of FO and F
1

: 

p = (Eo El) [~ ~) [:~ :) , 

i.e. p z [~ ~J 
I 

Q = FoFo* = (Eo El) ro*QEO EO *QEl) [:: :) El*QEO El*QEl 

Thus 

(1.3.3) Q ~ 

ro* 
Fo F * Eo E * Fa F * El) 0 0 0 

E * Fa F * Eo E * Fo F * El 1 0 1 0 

Assuming that the dimension conditions ( 1.:3. 2) are 

satisfied, we conclude that there exists a unitary solution 

of (1.3.1). Actually, (1.3.2) implies the existence of two 

isometrics W., j = 0,1 from K(E.) onto K(F.), i.e. W.W.* = W.*W .. 
J J J JJ J J 

We then define v = F
0 

w
0 

Eo*+ F
1 

w
1 

E
1

*. v satisfies {1.3.1) 

and W. =F.* V E., j = 0,1. 
J J J 

Now it follows that any two unitary operators taking 

P :;~ onto Q )4 will differ only by a unitary transformation 

within the coordinate subspaces. 
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Let us name the entries of a unitary solution V of 

(1.3.1): 

v """ 

ro 
-

so 

where 

ro 
so 

-S1 ] 

c1 

On the other hand, 

ro*Fo 
El*Fo 

E0 *F1 ) [W0 

E1 *Fl 0 

Thus 

(1.3.4) 

-s1 ) 

c1 

= 

[:::] v CE0 

~~:) 
= [E0* v 

E * v 
1 

E1) . 

Eo E * v Ell 0 

Eo E * v El 1 

E1) = [Eo*Fo 

E1*Fo 

Since V is unitary, the relations between the entries are 

(1.3.5) V*V 
(. 

+ so*so -c *S + So*Cl1 [~ :] 
:::: ~co*co = 

0 1 

S1*Co + C1*So S1*S1 + C1*C1j 

(1.3.6) VV* ::: ( c
0
c

0 
* + S1S1* coso* - slcl*j = (1 

:] l soco* - c s * soso* + c1c1* [o 1 1 

Note that c. = E. * F. l\1 . , j = 0 11 • 
J J J J 

Thus c.c. * = E. * F. w. W. * F. * E. = E. * F. F. * E. 
J J J J J J J J J J J J 

and c. * c. = w. * F. * E. E. * F. w .• 
J J J J J J J J 
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So as W. varies, C.C.* does not change, while C.*C. changes 
J J J ' J J 

by a unitary transformation. Similarly, as W. varies, S.S.* 
J J J 

does not change while Sj*Sj changes by a unitary transformation. 

This means that, as W. varies, the singular values of C. and 
J J 

S. do not (Appendix B) . 
J 

We now define 

(1.3.7) e. =arc cos (C.C.*)l/2 ~ 0, j = 0,1, 
J J J 

and we define an operator 8 ~ 0 upon~ by 

{1.3.8) 

We take various norms of trigonometric functions of 

8 or 8. as measures of separation between subspaces P ~ and 
J 

QJy. Note, from the previous discussion, that 8. is dependent 
J 

only on P and Q, and independent of the choice of vectors 

within the subspaces. 

Definition 1. 3.1 [1]] 

A unitary solution -S 1J1 of the equation 

cl 

VP = QV is called a "direct rotation" from P~ to Q~ _, if 

it satisfies the following additional conditions: 

> 0 and C 2: 0 
1 

s * 0 
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Definition 1. 3. 2 [1]] 

The subspaces P ~ and Q 'J:4 are said to be in the 

"acute case"~ if 

P J~l n (I- Q) .):( = (I- P) Jqt n Q ~~ = { 0 } • 

Throughout, we will assume that relation (1.3.2) is satisfied. 

Theorem 1.3.3 [11] 

In the acute case~ the dire~t rotation exists and is 

unique. 

Proof: 

From (1.3.2) it follows that there existis6metries 

W
0

: K(E
0

) + K(F0 ) and W
1

: K(El) + K(Fl). Setting 

V = F
0 

w
0 

E
0
* + F

1 
w

1 
E

1
*, v will be unitary and VP = QV. For 

the operator c
0

: K(E
0

) + K(E
0
), the polar representation 

(Appendix A) is 

co= zo cc * c >1/2 = cc c *)1/2 z 
0 0 0 0 0 

where z
0 

is a partial isometry uniquely determined from 

R(C0*) onto R(C 0). We now show tha·t z
0 

is in fact unitary, 

i.e. N(C
0

) and N(c
0

*) should be 

[

xQ )EP Jf satisfies VxEQ :kj 

0 On the other hand, 

zero. 

, si::l.ce 

Let x
0

EN(C
0
), thus 

VP = QV. 
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But (I-P)lf a 

Thus Vxs (I-P) ~ n Q :A[ = { 0} 

This means that the equation Vx = 0 implies x = 0 and hence 

P :J;{ and 

Thus x = VV*x s ( I-Q) J;{ , since V ( I-P) = ( I-Q) V, and 

x s P JJ..r n ( I-Q) Jy = { 0}. 

This implies that N(c
0

*) = {O}, and z
0 

is unitary. Similarly, 

by considering the polar representation of c
1

, we get 

c
1 

= z (C *C ) 1/ 2 = (C C* ) 112 z where z
1 

is an isometry 1 1 l 1 1 1 

from R(c
1

*) onto R(C1 ), which is in fact unitary, since both 

N(C1 ) and N(C
1

*) are {0}. 

Let U = vz- 1 , where 

z ::: 1 z -1 

It is clear that 

(1) U is unitary, since it is the product of two unitaries, 

(2) P reduces z-1 i.e. PZ-l = z- 1P, 

(3) UP = QU, since 

UP = VZ-lP = VPZ-l = QVZ-l = QU. 

So U ~ -s ] rz * 1 1 o 
cl l o 

-s z *I 

1 1 J 
clzl* 



= (C C *) 1/ 2 .2: 0 
0 0 

= {C C *) 1 / 2 ~ 0 
1 1 

14 

Thus~ starting from an arbitrary V, we construct U .. 

The uniqueness of U follows from the uniqueness of the polar 

representation of c0 and c1 {Appendix A) . To show that 

s1 = s0*, we put v = u, 

i .. e. c. ~ 0, z. = 1, j = 0,1 
] ] 

From equations (1.3.5) and (1.3.6), we get s0*c
1 

= c0*s
1

, 

and this implies that s 0*c
1 

= c0s
1

. Similarly, we get 

coso* = sl cl. Eliminating so* frorr. the last two equations I 

we get 

N c 4 s c 2 2 s - c 2 
C' c 2 

- s c 4 Th o_w 0 1 = 0 C 0 1 - 0 '""'1 1 - 1 1 " us 

f{c 0
2 >s1 = s1 f(c 1

2 ) where f is any polynomial, hence it is 

true for any continuous real function f on [0,1] .. Thus it 

is true for the square root function, 

This implies that s
1
c

1 
= s 0*c1 , which means that s

1 
and s0* agree on the range of c1 . Since R(C

1
) is dense in 

K(E 1 ) in the acute case, we finally get s
1 

= s
0
*. 

Theorem 1 .. 3. 4 [11] 

In the non-acute case~ a d~:rect rotation exists~ if 

and only if 



15 

( 1 • 3 • 9 ) dim P ~ n (I- Q J '-~f = dim (I- P J ~ n Q j;:J • 

In this case.:~ the existing ro tatior~ is not unt.que. 

Proof: 

Suppose that ( 1. 3. 9) is sa t:isfied, the proof goes 

similarly to that of the acute case, starting with a unitary 

-s1 ] , which is a solution of VP = 

cl 

QV. 

The polar representation of c0 ; c0 = z0 (c 0*c0 >
11 2 , where z0 

is a partial isometry from R(c 0*) to R(C
0
}. ·That is, z0 is 

determined except for N(C
0
). 

We claim that N(C
0
)represents v-1 ((1-P)J¥ n Q'J.if'} in 

the sense described in §1.2. For t.hat, suppose x
0

£N(C
0
), 

"' X - so xt.P:kf , and Vx = VPx = QVx, which implies that 

VxEQY{; further 

so that Vxs ( I-P) :J:/ • 
-1 

Thus VxE (Q~ n (I-P)Jy') and xt.V (Q ~ n (I-P))~'). 

On the other hand, suppose that xc.V-l ( ( I-P)7q"' n Q J:i) , 

so Vxs{I-P)4' n Q..,1:f. 

This means that VxEQJ¥, i.e. x£V-
1QJ;t or XEP...,¥. Thus 

Vx 
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which implies that c0x 0 = O, since xs(I-P)~ o Thus N(C 0 ) 

-1 represents V ( ( I-P) J.¥ n Qr..~) • Similarly N (Cn *) represents 

PJ:/ n (I-Q)~~, N(C
1

) represents v~1 (PJ:j n (I-Q)~/) and N(C 1 *) 

represents ( I-P) Jf n Q~. But, by our assumption, 

dim ( { I-P) Jt n Q Ff) = dim (P)il n ( I-Q)J\{ ) , 

so that z
0 

can be extended to a unitary, and it will take 

N(C
0

) onto N(C 0 *). This extension is not uniqueo 

By the same argument, the polar representation of c
1 

is c 1 = z1 (c
1

*C
1

) 1 / 2 , where z
1

: R(C
1

*} + R(C
1

) is a partial 

isometry, determined except on N(c
1
). Since dim N(C

1
) = 

dim N(c
1
*), we can extend z

1 
to unitary, in such a way that 

the second requirement of the direct rotation will be satis-

-1 
fied. Now, since N(C 0 ) represents V ( {I-P)jQ' n QJr) and 

N (c
1 

*) represents ( I-P) J¥ n Q 21 and s
0

: K (E 0 ) -+ K (E1 ) where 

s 0 = E
1

*VE 0 , we have that s
0 

maps N(C 0 ) isometrically onto 

N(C1 *). Similarly, we can show that s
1 

takes N(C
1

) isometri

cally onto N(c 0*). Thus, we extend z
1 

by defining it to be 

-1 -1 s 0 z0 s
1 

on N(C
1
), and we claim that s

0
z

0 
s

1 
maps N(C

1
) 

isometrically onto N(C
1
*). Since s

1 
maps N(C

1
} isometrically 

-1 onto N(C 0 *) and z
0 

takes N(C
0

*) isometrically onto N(c
0
), 

and s 0 takes N(c0 ) isometrically onto N(C
1

*}, the claim is 

justifiedo · 

As in t~e previous theorem, let 
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z = 
[:a :J , and let u = vz-1 . 

As before, 

(1) u is unitary, 

(2) p reduces -1 z Q 

( 3) u satisfies UP = QU. 

In additiong we have 

(4) For XEP~tf n (I-Q)jQI or XE (I-P)J"/ 
2 n QJ~, we have U x = -x. 

To prove that 1 let XEP .U. n ( I-Q)J.i , which represents 

S. 2 ( z-1>2 1nce U x = V Xu 

we get 

( -1 2 -1 -1 
(COZO ) xO - SlZl SOZO xO 

sozo-1 cozo-1 xo + clzl-lsozo-1 xo 

-1 -1 
Since z

0 
x 0 E N(C

0
)1 then c0 z0 x 0 = 0 and 

-1 -1 -1 s
0

z0 c
0
z0 x

0 
= 0 and s

0
z

0 
x 0 s N(C

1
*) implies that 

-1 -1 -1 c
1

z
1 

s
0
z

0 
x

0 
= Oe Now since z

1 
maps N(C

1
*) onto N(C

1
), 

-1 -1 
and s0 z0 x

0 
E N(C

1
*) I and since z

1 
= s

0
z

0 
s

1 
on N(C

1
), we 

get z1-l = s1* z0 s 0* on N(c1*), and -1 -1 
slzl sozo X = 

0 



s
1

s
1

*z
0

s
0

*s
0

z
0
-l x

0
. From equation(l.3.5), we know that 

s
0

*s
0 

=I on N(c
0
), and s 1 s

1
* =I on N(C 0*), so 

-1 -1 s
1

z
1 

s
0

z
0 

x 0 = x 0 , and 

i.e. -x 

Similarly, for xt:(I-P)'Jq' n Q~"tf., we get the same result. 

18 

It is clear that u = vz-l satisfies the first condition 

of the direct rotation. To prove that it satisfies the second 

condition, we reformulate the question as follows. If V 

satisfies (4) and c0 ~ 0 and c
1 

~ 0, then s0* = s
1

. In other 

words: 

Let V -s I 

c~J 
~ 0 

2 
and let v x = -x for any xt:PJ¥ n ( I-Q)Jt , or xE ( I-P)Jr;[ n Q Jr. 
Since V is unitary, we have c

0
s1 = s0*c

1 
and c

0
s 0* = s1c

0
, 

by the previous arguments as in the acute case. 

We have s1c1 = s0*c1 which shows that s
1 

and s0 * 

agree on R(C1 ). Since R(Cl) = N(C 1 )iand K(E1 } = R(C1 )ffiN(C1 ), 

the proof is complete if we show that s1 = s
0
* on N(C

1
). 

x c: ( I- P ) J>i n Q l.f . 

2 
Thus V x = -x, 
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i.e. and 

V*x 

Thus, for any x
1 

E N(C
1
), we have s1x 1 = s 0*x1 , and 

this means that s 1 = s 0* on N(c1 >. 

To prove the converse, suppose that, there exists a 

direct rotation U -s j) , where co ~ 0, cl ~ 0 

c~ 
and s

0
* = s1 . It is required to show that (1.3.9) is satis

fied. We have to show that, to every x E P);/ n ( I-Q)~ , 

Ux E ( I-P) Jt n Q J;:f, and that for each Uy E P :}J n ( I-Q)Ji , 

y E (I-P) ~~ n QJt. To do that, let X E P ~ n (I-Q)J¥ • 

i.e. 

Now, since N(C
0

) represents u-1 ( (I-P)N n QJ;f), it follows that 

Ux E: ( I-P) Jq/ n QJ{ • Let Uy E: ( I-P) J:t n Q Jrt , thus Uy ::: 

But y = 

BUt SO* X l E N (CO* ) , thus y E P ~ n ( I -Q) Jq' • 
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Now, unless otherwise stated, we will assume that 

(1.3.9) is satisfied. Thus the direct rotation will always 

exist, and rather than with the more general V, we will deal 

with its direct special case 

u ~ Q I -s *) .. c. ~ 0 
] 

j = 0,1.1' 

cl 

Since UP = QU; we get Q = UPU*, 

By direct computation, we have 

( 2Q- I) (2P-I) :::: r2c 2-1 2c0s0* ) [~ l2s:c0 2S S *-1 0 0 

= [2C 
2
-1 -2C S * ) 

2S:CO 
0 0 

l-2S S * 
0 0 

On the other hand, 

u2 = rc 2 - so*so -c s * - s *c l 
[s:c0 + 

0 0 0 1 

clsO -soso* + cl2 

= r2c 2 - 1 -2C S * l 
!2S:CO 

0 0 

1-28 s * 0 0 

This follows from (lo3.5) and (1.3.6). 

_:] 
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Thus 

(1. 3.] 0) u2 
= ( 2 Q - I) ( 2 P - I) 

We remark that any direct rotation of P :):t to Q ~ is 

a principal square root of (2Q-I} (2P-I} 

i.e. a unitary square root, with spectrum in the right half 

plane. This is because our constructed direct rotation of 

P ~ to Q $[ sa tis fie s ( 1 . 3 • 10) 

Since U 
) I 

which gives 

u + ~ o. 

This implies that A + X ~ 0 for any A in the spectrum 

of u. But the spectrum of U lies on the unit circle, and this 

implies that it lies in the right half plane, (in general, 

the spectrum of a unitary lies in the right half plane if and 

only if U + U* ~ 0). So, if P and Q are given, then u2 is very 

easy to compute by the above given constructive definition of U. 

We now relate the operator angle G given by (1.3.8) to the 

direct rotation, 

i.e. 8 . = arc cos C . , 
J J 

j = 0,1. 
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From (1.3.5) and (1.3.6), it follows that s0 *s 0 = 

1- c0
2 and s 0s0* = 1- c1

2
• Since s 0*s 0 and s 0s 0* are iso

metrically equivalent if restricted to the orthogonal comple

ment of their null spaces (Appendix B) , it follows that ·c. 2 
J 

must be isometrically equivalent except for their eigenspaces 

belonging to the eigenvalue 1. Since C. =cos e., then the 
J ] 

two operators e., j = 0,1 must be isometrically equivalent 
J 

except perhaps for different dimensionalities of their null 

spaces. Let 81 ~ 82 ~ ... be the singular values of e
0

, then 

the nonzero singular values of 8 are the same, but each 

occuring twice. 

i • e • 81 1 e1 I 8 2 I 62 I • • <> 

The polar representation of s 0 : K(E 0) + K(E
1

) is 

1/2 2 2 s 0 = J 0 (S 0*s0 ) (where s
0

*s0 = 1 - c 0 = 1 - cos e
0 

= 

sin
2 e0 ), so that s

0 
= J

0 
sin 8

0
, 

here J 0 is a partial isometry from 

i.e. From R(S 0 *) to R(S
0
). 

R ( ( S *S ) l/2 
0 0 onto 

Since N(s 0*s 0 ) = N{G
0
), one has R{s

0
*) = R(G

0
). 

Similarly, R(S
0

) = R(e
1
). 

Now s = {S s *) 1/ 2 
J

0
. 

0 0 0 (Appendix A), and we may write 

S * J * (S S *)l/2 
0 0 0 0 

= J 0* sin 8 1 
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where Jo* is a partial isometry from R(01 ) to R(0 0). 

If we put 

J = [:0 

then J is defined uniquely on R(0), and we put J = 0 on N(G) o 

Since 

u ~ lc:s e0 

= ro: eo 
cos 

-J0 sin e1 ] 

cos 81 

+[J: sin e:J8 s~n ell 

:lr[ :0 -:0 *) lsi: eo 

So U = cos 8 + J sin Go Now, it follows that 

2 
8 2 * + c 2 * while cos = EOCO EO El 1 El ' 

from (1.3.10) we have 

2 
8 PQP + { I-P) ( I-Q) (I-P) cos = 

sin 
2 

8 P(I-Q)P + (I-P)Q(I-P) = 

= (P-Q) 2. 

So, given P and Q, we know how to construct 0 .. 
J 

§1.4 Unitary Invariants For a Pair of Subspaces 

It has been known for many years that two m-dimen-

sional subspaces of real n-dimensional inner product space 

have rn angles as a complete set of unitary invariants [16]. 
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By unitary invariants we mean a set of objects to be assigned 

to any pair of subs paces P Ji and Q jt;f , and such that P ;tj 

and Q :kj_ can be carried to (PJt) ' and (Q ~ ) ' by an isometry 

of~[ , if and only if the same set of objects was assigned 

to (PJ;f ) ' and (QJ.:j) ' as to P li_ and Q:kj. 

We shall give a complete set of invariants for the 

subspaces PJ~' and Q~ in terms of the eigenvalues of e0 

and 01 (multiplicity counted). 

Theorem 1.4.1 [11] 

Consider a pair of subspaces P.J\1 and QJ::( subject to 

dim P ~ = dim QJ:i ~ and 

dim [P :kj n ( I-Q J:t( = dim [ (I -P) ~ n Q ~~ 

and such that P(I-Q)P is compact. A complete system of 

invariants under isometric equivalence is afforded by the 

eigenvalues of G
0 

and G
1 

(multiplicity is counted). The 

eigenvalues ei~ i = 1~2~··. of G0 are an arbitrary sequence~ 

satisfying~~ e
1 

> e
2 

?· ... and approaching zero~ together 

with a possible eigenvalue 0. The eigenvalues of G1 must be 

the same~ except perhaps for the multiplicity of 0. 

For proof see [11~ 

It is known [35] that, given two 2-dimensional subspaces 

P J::/ and Q J;f of 4-dimensional space .. ).-:,·· , intersecting in a 

single point 0, then there exist 2-dimensional perpendicular 

subspaces M1 and M2 , intersecting at 0, each intersecting PJt 
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and Q ~ perpendicularly in a line. The angles e. ( 0<8. <rr/2) I 
l .:L 

between M. n P~ and M. n Q J:J (i=l,2) may have any values 
l l 

independently. These two numbers are determined uniquely, by 

the Figure of P ']~ and Q \.'F/ ·• This determination is up to a 

con grue nee . 

The previous theorem shows how this behaviour gener-

alizes to higher dimensions. But in the general case, we 

have to modify it by the fact that 0 may have a continuous 

spectrum. (Note that for any normal operator, the residual 

spectrum is void). Other obvious properties are given by the 

following theorem, where by Q(•), we denote the spectral resol-

ution of e, as defined in [33]. 

Theorem 1 . 4 . 2 . [ 11] 

8 commutes with P~ with Q~ with J and with U described 

in Section 1.3. For every eigenvalue e of 8~ the eigen-

vector x satisfies*(x~Ux) = e. In the acute case~ for every 

eigenvalue e~ the eigenspace nr{e})~ is the unique maximal 

subspace~ with the following properties: 

(a) It reduces P and Q. 

(b) For every nonzero vector xsPJ.(~ lying in nr{e}J:J:I~i(x~Qx) 8. 

(c) For every nonzero vect0113 X of (I-P)}{ ~ lying in nr{e}).}q ~ 

i(x_, (I-Q)x) = e. 

Proof. OJ If J = 

01 
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then J commutes with 0, if and only if 

But s
0 

= J
0 

sin 0 0 = sin e
1 

J 0 , where J 0 takes R(G 0 } onto 

R(G
1

) 

By an argument similar to that given in the proof of theorem 

To show that e commutes with P, we have 

GP = (EOGOEO * + ElGlEl*} EaEo * 

= EOGOEO * I 

PG = EOEO * (EOGOEO * + El GlEl *) = EOGOEO * 

. 8 J . 8 d . h 3 J S1nce U =cos - + s1n -, an not1ng tat J =- , 

J
2e = -8, and J commutes with 8 we even can write U = exp JGo 

Now that U commutes with 8 follows since J commutes 

with e. 

Q = UPU*, and both U and P commute with 8, thus Q 

also commutes with 8. 

Suppose now that we are in the acute case. Let 8 be 

an eigenvalue of 8, and x a corresponding eigenvector. 

i.e. 8x = 8x. Now 80 and 0 1 have the same nonzero eigenvalues, 

SO 8 is an eigenvalue of 8 0 as Well as Of 01 , and X =r:~) Where 
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x
0 

and x
1 

are the eigenvectors of e0 and e1 corresponding 

Re(x*Ux) [x*(U+U*)x] 
to 8. Thus ·{ (x 1 Ux) = arc cos ~ xll II Uxll = arc cos 2 11 x]lz = 

llxll z 

arc cos xo*Coxn. + xl*Clxl = arc cos (cos 8) = 8. 

llxll
2 

Let n(.) be the spectral resolution of e. Since P 

and Q commute with 8 1 each member of the spectral resolution 

of 8 commutes with P and Ql and in particular n({S}) commutes 

with P and Q. This proves part (a). 

(b) If x =I= 01 xc.P~f n &1({8});\f 1 then 

Hence (cos e0 ) x 0 = (cos 8) x
0 

i.e. c0 x0 = (cos 8) x
0 

From Q 

we have 

llaxll 2 = x*Qx :::::;: *C 2 xo 0 xo 

= X * cos 2 8 x = cos 2 

0 0 

i.e. i!Qxl] = cos 8 II xll, and finally 

i(x,Qx) x* Qx = arc cos 
llx/1 II axil 

= arc cos 

8 II xll 2 
1 

~ l = 8 • 
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{c) For x =f OQ xs{I-P)Ji n r2({8}}~ (we have 

X :;;: 

Similarly as in proving (b) , we can show here that 

i (X, (I -Q) X) = 8 o 

To prove that h ( {8}) is a maximal subspace satis-

fying the properties (a), {b) and (c) 11 we assume that x is 

a subspace of J:f o which is not included in n ( { 8}) Jq , and x 
satisfies (a)o We will show that x satisfies neither (b) 

nor (c). Since x f rt({8})\~, then there exists xsx, having 

a nonzero component in (rt({S})Jq )~~ Since x reduces P and Q, 

and cos 2 8 = PQP + (I-P) (I-Q) (I-P), then x will reduce 

cos 2 8, and thus reduce every spectral projector rt(.) of 0; 

in particular it reduces rt({8}) and by our choice of x, we 

have X - n({S})xsxo 

The assumption about x implies that there exist ¢
1 

and ¢2 , where ¢
1 

s ¢2 < 8 or 8 < ¢
1 

~ ¢
2

, and such that 

0 + rt([¢1 ,¢2 ])x = ysxe Now not both Py and (I-P)y are zero, 

and both are in X· Since n(.) commutes with P, we can assume 

that there exists a unit vector z = n ( [ ¢
1

, cp 
2

] ) zsP ~};( n x . 

Therefore 

Q u z 
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and it follows that Qz = (cos 8) (Uz) , 

]I Qz.ll 2 = (Uz) * cos 2 8 Uz = z* U* cos 2 8 Uz 

= z* cos 2 8 z E [ co.s 2 

4>2' cos 2 
4>1] 

z*Qz ~~f 
cos 2 

<t>l 
Now cos <(( z, Qz) = > = 

lfQzl cos 2 ¢2 I z 

This is true for any <t> 1 S ¢2 <~ e, such that Q([<f> 1 ,¢ 2 ])x f 0. 

We can choose, a fixed <f>; ¢1 < ¢ ~ ¢2 , with ¢2 - ¢1 arbitrar

cosz ¢ 
ily small, such that 2 >cos e. 

cos 2 ¢1 

The property (b) is then violated. Similarly, pro-

perty (c) may be shown violated. This proves the theorem. 

Remark. 

If the roles of P and Q are interchanged, then the 

relation 

cos 2 8 = (I-P-Q) 2 shows that 8 remains the same, 

while U* (P,Q) = U (Q,P). 

So J(P,Q) = -J(Q,P). 
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§ l .. 5 Extremal ~roperties of the Dire·ct Rotation 

In this section, we will study the properties of the 

direct rotation as introduced in definition lo3ol. We will 

assume the hypothesis of theorem 1.4.1 to be satisfied, so 

that for any unitary, taking Pjt onto OJ¥ , the eigenvalues 

8i of 8 0 and 81 (where.e 1 ~ e2 ~ ... ) will be invarianto We 

have already shown that 

U = cos 8 + J sin 8 

u2 = ( 2 Q - I) ( 2 P - I) 

The first of these equations, gives the relation between 8 and 

the direct rotation, while the second one tells us how to 

construct U given P and Qo We should mention that [31,§105], a 

partial isometry also denoted U, was defined which maps P~ 

onto Q~. In fact, it coincides with the direct rotation on 

PJ~. We refer the reader to [31, §136 ] for the application 

of using U in perturbation theoryo From theorem 1.3.3 we 

have (back in our notation) 

u ~ [co -so*) v uz' z I'V 

r:o z:) ' = - . 
so cl 

Remark 1: We have 

(1.5.1) v I'V [cozo -so* zl) -
sozo cl zl 

Thus I - V ~ r -cozo So*Zll 
-sozo I - cl~l 
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and (I-v)P .:: r I ~ cozo 

l = sozo 

hence 

-z *S *] 0 0 

0 

So, the singular values of (I - V) j PU = (1 - V)Pjp~ 

are the nonnegative square roots of the eigenvalues of 

[(I-V}P]*[(I-V}P] ~ 0 0 

[

I - Z *C 0 0 0 0 -z *S*] [ I-C Z 

0 o -s 0z0 

i.eo the eigenvalues of (l-z 0*c
0

) (l-c0z0 ) + z0*s 0*s 0z 0 on 

K(E
0

)o Since c
0

2 + s 0*s
0 

=I on K(E
0

}, the singular values 

of (I-V)IP~are the nonnegative square roots of the eigen

values of 2 r-c 0z
0

- z0*c
0 

on K(E 0 )e 

Remark 2. Since t P(V + V*)P is a Hermitian operator on 

PO~, it has a complete set of eigenvectors. Call them 

vl' v2' 

Since 1:_ P (V+V*) P = ~ E0 (E 0 *V Eo + E *V*E ) Eo * 2 0 0 

1 + zo*co> Eo * = 2 EO(COZO , 

1 the operator j(c0 z 0 + z
0
•c

0
) has a complete set of eigen-

vectors v 01 , v
02

, ... on K{E
0
), such that 
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Since for any unit vector xEP~, x = [:oJ , 

and since cos 1 i (x,Vx} = Re x*Vx = 
2

x*P(V+V*}Px 

= 1x* (E E *) (V+V*} (E E *}x 2 0 0 0 0 

= ~ (E
0

*x} * cc
0
z0 + z

0
*c

0
> (E 0*x} 

1 1 = 2 xo* (COZO + 2 o*Co)x0 = xo* 2(COZO + 2 o*Co)x0, 

the vectors v 0k are the eigenvectors belonging to the eigen

values cos ¢1 ~cos ¢ 2 ~ c~· of ~(c 0 z 0 + z0*c0}, 

where ¢k = i (vk, Vvk)o 

Now, if u = V then z0 = I and ¢k = ek and v 0k will 

be orthonormal eigenvectors u 0k of c
0

Q Now, the eigenvalues 

1 of 2I- c 0 z0 - z0 *c 0 = 2 [1 - 2 cc
0
z

0 
+ z

0
*c0 }] are 2 (1-cos ¢k) 

(Spectral mapping theorem [12])o 

Thus, by remark 1, the singular values A.
1 

~ A.
2 

~ 

of (I-V} I PJ~ are related to ¢k by 

that is, 

Also, if V = u, then A.k = 2 sin 

Using the above remarks, we can prove the following theorem. 
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Theorem 1.5.1 [11]. Given any unitary transformation~ which 

maps P~y onto QJ~~ then there exists an orthonormal basis 

v 1 ~ v 2 ~ ••• of P~ ~ such that for all k~ i (vk~ Vvk) "2:.8k. 

Proof. By the minimax principle 

(1.5.3) Inf 
X 

sup II (I-V) xll~ 
X 

where the inf is taken over the (k-1}-dimensional subspace 

x of P~ 1 and the sup is taken over unit vectors xEP~ 9 x 
i.e. those elements of P~ which are orthogonal to X. 

Fixing x for which the minimum is attained (this 

is guaranteed under the hypothesis of Theorem 1.4.1)1 

there is at least one unit vector XEPJ:(. e X I which is a 

linear combination of the first k eigenvectors 

,.., 

[u~l J 
,.., [u~2), ... ,uk ,.., lu ~k) , of PUP I PJQ. ul - I u - -

2 

1 Note that 2 P(U+U*)P =PUP since U* = (2P-I)U(2P-I). 

Since Ak is related to ~k by equation (1.5.2) 1 one has 

(1.5.4) cpk "2:. i: (X, Vx} , X --

~ (x, Vx) . 

k 
\ a. ·U .• .L 1 1 

1=1 

Now, it is enough to show that i (x, Vx} ::::: ek = ): (u k, Uuk} 
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Suppose Qx f 0 (otherwise x will be orthogonal to QJ¥o 

iceo x is orthogonal on Vx, and ~ (x,Vx) = n/2,· and by 

Theorem 1.4.1 it follows that 0 < ek $ I' which gives 

~ (x,Vx) $ 8k). From (1.5.2), it follows that ¢k will be 

minimized if A.k is minimized D i .. e. if II x-yll is minimized 

where y E: Q J~, II Yll = 1 o But since inf II x=yll is 

yt:Q~ 

IIYII = 1 

attained at y = Qx/IIQxjj, it follows that 

llx - Vxll ~ llx - f~xllll.. This implies that 

(1.5.5) ~ (x,Vx) ~ ~ (x,Qx) 

We now relate the right hand side of the above inequality 

to 8k; this will depend upon our particular choice of x: 

cos ~ (x, Qx) = 
x*Qx 

Re I!Qxll 
x*Qx = llQxl = (x*Qx)l/2. 

Since x e:: PJ.Y , then x = E
0

x
0

, and cos i (x, Qx) = 
1/2 

<xo*Eo*Q Eoxo> . 

But 

Thus 

Q -

- * 2 1/2 cos f (x,Qx) - (xo co xo> 

Since u1 , ... , '\ are the eigenvectors of PuP I PJ4 , corres

ponding to the eigenvalues cos 81 ~ .... $cos ek' and 
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since x E [u
1

,u
2

, ... ,uk], thus x 0 E [u
01

,u02 , •.. ,u
0
k] where 

u 01 , ... ,u0k are the eigenvectors of c0 corresponding to 

the eigenvalues cos e1 ~cos e 2 ~ ... ~cos ek. Since 
k k 

x = I ~ . u 0 . , where I I ~ . J 
2 = II x 11 2 = 1 , then 

0 j=O J J j=l J 0 

cos 1: (x, Qx) 

= cos ek. 

k 
= < I 

j=l 

Combining (1.5.4) and (1.5.5) with the last inequality, 

we get ¢k ~ ek for any k, and this means that there exists 

an orthonormal system which is efficiently moved by u, or 

equivalently the singular values of (I-V)jp~ are minimized 

when V = U, or by observing from (1.5.3) that Ak is the 

minimax value of the distance a unit vector in P~ is moved 

by v. This distance is minimized when V = U. 

Corollary. For evePy unitaPy invaPiant norm_, ·II (I-VJPII 

is minimized when V = U. 

Proof. Since for every unitary invariant norm, Jl (I-V) Pll 

is a monotone function of the nonzero singular values of 

(I-V)P, and by the previous theorem, the singular value 

Ak of (I-V)P is minimized when V = U. The corollary follows. 
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Theorem 1.5.2. Given any unitary operator v which maps 

PJ:i onto Q Oct and given any orthonormal basis 

{vl" v2" ... } of p~t, we have 

00 00 

( 1. 5. 6) 
krl sin .2 

1- (Vk:; VvkJ ~ kll sin 2 
ek 

Proof. 

Now, since lvok* cozovok!
2 ~ I lvok* cozovo£1

2 
it follows 

5L 

that I sin 
2 i ( v k, Vv k) ~ I [ 1 - I / v 0 k * C 0 Z 0 v 0£ I 2 ] • 

k . k ~ 

But I/v0k* c0 z0v 0 £!
2 = 1Jz 0 *c0v 0k!l

2 = 1Jc 0v 0kl/
2

, thus 
£ 

L sin
2 i (vk,vvk) ~ I [l-v0k *c 0 

2
v 0kJ = L [v0k * (l-c0 

2
>v0kl. 

k k k 

= I (eigenvalues of s0 *s
0

) = I (singular values 
k k 

f . 0 )2 \' . 2 
0 S1n J = L S1n 8k. 

k 
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We observe that in case V = U (so that Z = I) we obtain 

equality in (1.5.6) by choosing the orthonormal basis 

u1 ,u2 , ... of PJ:./ to be the eigenvectors of e I P.J.~ corres-

pending to the eigenvalues el ~ 82 ~ 

~ (uk,U uk) = 8k by Theorem (1.4.2). 

. . . . , in this case, . 

Remark. In theorem 1.5~1, we explained that, if u 0k are 

the orthonormal eigenvectors of eo, then uk = 

the eigenvectors of (I-U*) (I-U) I P~ , corresponding to the 

eigenvalues Aj = 2 sin~ 8j. But from theorem 1.4.2, 

we know that J commutes with e, that J 0 e0 = e
1

J 0 , and 

that e1 has the same nonzero eigenvalues as e0 . Since 

G0u01 = e1u 01 ,then J 000u 01 = 81J 0u 01 , and thus e
1

J 0u
01 

J 0u 01 is the eigenvector of e1 

Ju .:: [ 0 -J
0 

0 * l [u 0 1J = [ 0 l , 
Jo 0 Jouol 

corresponding to 8
1

. But 

1 so, the eigenvalues of (I-U*) (I-U) will be 2 sin 2 8
1

, 

2 · 1 e 2 · 1 e 2 · 1 e s1n 2 1 , s1n 2 2
, s1n 2 2

, and the correspon-

ding eigenvectors are u
1

, Ju
1

, u
2

, Ju
2

, 

Theorem 1.5.3 [11]. For every unitary invariant norm
3 

II (I-V* J (I-V J II is minimized when V = U. 

Proof. It is enough to show that 

II (I-V*) (I-V) lly ~II (I-U*) (I-U) llv; v = 1,2, ... (Appendix B) 

For the compact operator A, we have equivalently 
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Where n is the projector onto the v-dimensiona1 

subspace of~, or 

(1.5 .. 8) II All = sup II QKTII 
v n,T v 

Where n and T are projectors onto v-dimensiona1 

subspaces i.e~ ove~ pair of v-projectors~ 

Thus 
v/2 

(II (I-V*) (I-V) II v ~ I II nk (I-V*) (I-V) nkll 2 ; v even 
I k=1 

(1. s. 9 'L~ 
[v/2] , 

II cr-v* > (I-V) II v ~ ki
1 

II nk (I-V*> (I-V) nkl1 2 + 

llnv+l (I-V*) (I-V)nv+1 11 1 ; v odd., 
-2- -2-

Here Q '):i = [xl, x 2 , ..• , XV] where x 1 and x 2 lie in n1 ~~ , 

x 3 and X 4 lie in n2 J~-, . • • where QkJ:{ = [ukJuk] " Thus, it 

is sufficient to prove that II nk (I-V*) (I-V) nkll 2 and 

II nv+l (I-V*) (I-V) nv+ll/ 1 are minimized when v = u., Let 
--2- ~ 

n = nk, 8 = 8 and u = u k . k. Since u 0k is the eigenvector of 

e0 corresponding to Sk, JuOk will be the eigenvector of e1 

corresponding to the eigenvalue ek~ 

-Thus Uu = (cos e + J sin e ) u = cos e u + J sin 8 u = 

cos e u + sin e Ju, 

And UJu = {cos 8 + J sin 8) Ju = -sin 8 u + cos e Ju, 

since J commutes with 8 and J2 8 = -8. 
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Since Vu E QJq, V = (UZU-l) u and uzu-l maps QJ:/ into Q~ 

and (I-Q)JQ1 into (I-Q)Jq'. Thus we can write 

Vu = a 0 uu + b 0w; wE QJ,j9 [Uu], flwll = 1, 

2 . 2 la 0 1 + lb0 1 = 1. 

VJ.U = a
1

UJu + b
1
x; X£ (I-Q),lj' 8 [JUu], j[xjj = 1 

2 2 Ja1 1 + lb1 l = 1. 

Since n commutes with Q, then nw = nx = Oo 

We consider operators, reduced by the 2-dirnensional 

subspace nJ.t, and which are zero on the orthonormal com

plement. We represent the part of such an operator in 

n~"J:f by its 2x2 matrix relative to the basis (u, Ju). 

So nvn ={aij}, where a11 = (S1VS1u, u) = (Vu, u) 

and vu = ao cos 8 u + ao sin 8 Ju + bow. 

Thus all = ao cos 8 

and a12 = (S1VS1JU ,u) = -a sin 8 , 
1 

ct 21 = (nvnu, Ju) = ao sin 8 1 

ct22 = cnvnJu, Ju) = al cos e .. 

In matrix representation 

nvn: cos e 

sin 8 

The eigenvalues of S1(I-V*) (I-V)S1 are ~i and ~;, 
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where ~l and ~ 2 are the singular values of (I-V)rl. Hence, 

1 1 2 1 2 the eigenvalues of 2n(V+V*)rl are 1- 2 ~ 1 .and 1- 2 ~ 2 
(since Q (I-V*) (I-V) rl = rl (2I-V* - V) rl). 

1 Thus "2 rl(V+V*)rl: 

( 

(Re ao) cos e 
= 

1 
(ao al> sin e 2 

sin 8] 
(Re a 1 ) cos 8 

1 The calculated eigenvalues of 2 rl(V+V*)rl, from the above 

matrix are 

(1.5.10) 
1 2 

1 - - ~ = c cos 2 2 sin 8 

where c,d,e and f are real constants, defined by 

ao + al = 2c + 2ie, ao - al = 2d - 2if. 

Since 2 (c+d) 2 2 
Ia · I :::; 1, we have + (e-f) :::; 1 and 

J 
2 +(e+f) 2 2 + d2 2 + f2 (c-d) $ 1, so that c + e $ 1 

- ') 
ao sin ej 
a

1 
cos 8 

But II n < I-v* > < I-v) n 11 1 = l-1 f ~ 2 - 2 c cos 8 ;:: 2 - 2 cos 8 , 

(c:::; 1) and since II (I-V) nil~= llrl(I-V*) (I-V)rtll
1 

= lJi ~ 2-

2 
2 cos e = 11 (I-D) njj 1 , then 

II n <I-v*) c I-v) n 11 1 ~ II n < r-u* > c I-u > n !1 1 

II cr-v) nll 1 ;:: II cr-u) n11 1 

But !I rl (I-V*) (I-V) s-211
2 
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2 2 
And from (l.Sa 9) u ]Jl + ]J 2 = 4 (1 - c cos 8) a 

The right hand side will be minimized when c = 1 1 

ioea e = d = f = 0, which reads in original terms V = u. 

So II (I-V*) (I-V) II ~ II ( I-U*) ( I-U) II for any v e Thus v. v 

II (I-V*} (I-V) II is minimized when V = U o 

From the proof~ we also get II (I~V) 11
1 

~ II ( I-U) II 
1 

u 

since II (I-V*} (I-V) !1 1 = II (I-V) 11
2

1 , and II ( I-U*) ( I-U) 11 1 = 

II I-vjj
2

1 ., This conclusion is true for the bound norm~ and 

for the square norm, but is not valid for other v-norms andwe 

will provide an example for the last casea 

For the square norm 

II I-VjJ
2 

= tr [ (I-V*) (I-V)] = tr [P (I-V*) (I-V) P] sq 

+ tr [ (I;... P) (I-V*) (I-V) ( I-P) ] 

From the corollary to theorem (1.5.1}, the right 

hand side will be minimized when V = U, thus 

Example. 

Take V = rcos 8 

sin 8 

sin 

8

8 J 
-cos 

as the unitary operator, taking PJ:I to QJ;i The eigen-

values of V are l and -1. So the singular value of (I-V) 



are 2 and 0. 

U = [cos 8 

sin 8 

-sin eJ 
cos 8 
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The singular values of (I-U), are the positive 

square roots of the eigenvalues of (I-U*) (I-U) = 2 - u - U*, 

i.e. the square roots of 2- 2 cos 8 and 2- 2 cos 8. Thus 

the singular values of (I-U) are 2 sin ~ and 2 sin ~-

llr-ull
2 

= 4 sin 8/2, llr-vjj 2 = 2 

So II I-Vll 2 ~ II I-UI1 2 if and only if 8 ~ 7T/3. 

We conclude this chapter by quoting a positive result in 

this direction. We refer the reader to [11] for the proof. 

Theorem 1. 5.4 [lJ.]. Assume V is a unitary operator~ taking 

PJ:( onto QJ.i in a real spaceJ.¥ . Assume also that 8 ~ TI/3. 

Then II I- vii is minimized~ for every unitary invariant 1.Uhen 

v = u. 

The previous example shows that if 8 > I' then the 

conclusion of the theorem fails. 



CHAPTER 2 

The Operator Equation BX - XA = Q 

We consider a Banach algebra (8 , with two particular 

elements A and B • T is an operator on~ , such that T(X) = 

BX - XA for every X in (£ • 

§2.1 The Matrix Equation BX-XA = Q in the Banach Algebra 

of nxn Matrices ··:f'' 

Definition 2.1.1. If A= (a .. ) is an mxn matrix and B is an 
1-J 

sxt matrix~ the msxnt Kroneeker produet A8B is defined as the 

bZoek matrix 

A8B = (a •. B). 
1-J 

One of the most important properties of this product 

is that it enables us to convert matrices into column vectors. 

Definition 2ol.2. If A. denotes the jth eoZumn of an mxn 
J 

matrix A3 the mn veetor vee A is then defined as 

A 
n 

Theorem 2.la3 [30]. Let A be an mxn matrix~ and B be an nxp 

matrix3 then 

vee AB = (I p 
8 A) vee B 

w.he:rae .. B'_ is the transpose of B. 

= (B' 8 I ) vee A m 

We now state the standard properties of Kronecker 

products. The proofs of these properties are given in [3 ]. 
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1. 

2. 

3. 

4 .. 

(A 0 B) (C 0 D) = (AC) ® (ED) , 

(A ® B)-1 -1 
® 

-1 = A B , 

(A+ B) ® (C+D) = A ® c + A ® D + B ® C + B 0 D. 

If A has eigenvalues a., 
~ 

i = 1,2, ••• ,m and B has eigen-

values Sj' j = 1,2, •.• ,s, then A 0 B has eigenvalues 

aiaj. Further, Is® A+ B ® Im has eigenvalues ai + Sj. 
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The matrices involved here have the appropriate orders. 

In Property 4, it is assumed that A and B are square matrices 

of orders m and s respectively. 

Theorem 2.1.4. Let A~B~X and Q be square matrices of order n. 

Then a necessary and sufficient condition for the equation 

BX - XA = Q to have a unique solution is that the eigenvalues 

of A are distinct from the eigenvalues of B. 

Proof. BX - XA = Q can be written as follows: 

vee BX - vee XA = vee Q. 

Using theorem 2.1.3 we get 

(I ® B)vee X - (A' ® I )vee X = vee Q, 
n n 

that is, 

[(In~ B) - (A' ~In)] vee X= vee Q. 

This equation has the unique solution 

vee X = [(I ®B) - (A' 0 I )]-l vee Q n n 
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if and only if the matrix (I ® B) - (A' ® I ) is nonsingular. 
n . n 

Using property 4. of the Kronecker products, we conclude tpat 

s. -a. t 0 is a necessary and sufficient condition for the 
J l. . 

equation BX - XA = Q to have a unique solution. 

Remarks. 

1. Definition 2.1.2 and Theorem 2.1.3 can be applied to a 

more general class of linear matrix equation [30]. 

2. The theorem may be restated as follows: For the operator 

Ton~ defined by T(X) = BX- XA, this operator is inver-

tible if and only if the eigenvalues of A and B are dis-

tinct. The solution X may be derived using definition 

2.1.2; note that cr(T) = cr(B) - cr(A). This follows from 

property 4. of Kronecker products. 

3. The equation BX - XA = 0 has a non-zero solution if and 

only if a. -
l. 

B. = 0 for some i and j. 
J 

§2.2 The operator equation BX- XA = Q wherere is the space 

of bounded operators on a Hilbert space. 

Theorem 2.2.1. [20]. If thePe exist PeaZ numbePs a and b such 

-1 that a>b~ B+B* ~ b and A+A* ~a~ then the opePator T exists 

as a bounded opePatoP and has the PepPesentation 

(2.2.1) 

By p(A) we denote the resolvent set of an element A of 

the Banach algebra~' i.e. the set of all complex numbers z 

such that (zi- A}-l is inffi, while a(A), the complement of 
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p(A) is the spectrum of A. 

Definition 2.·2.2. A set D in the complex plane is said to be 

a Cauchy domain~ if the following conditions are satisfied. 

1. D is bounded and open 

2. D has a finite number of components 3 the closures of any 

two of which are disjoint. 

3. The boundary of D is composed of a finite number of closed 

rectifiable jordan curves~ no two of which intersect. We 

denote the positively oriented boundary of D by b(D). 

Theorem 2.2.3 [39]. Let F be closed~ and G a bounded open 

subset of the complex plane~ such that FcG. Then there exists 

a Cauchy domain D such that FeD and DcG. 

Definition 2.2.4 [39]. Let f be a complex valued function~ 

holomorphic in a bounded region G which includes a(T) 3 the 

spectrum of the operator T. The function f(T) of the operator 

T is defined by 

(2. 2. 2) -1 
f {T) = --

27ri J 
-1 f ( W) ( T - WI) d W ~ 

b (D ') 

where D' is a Cauchy domain, such that a(T)cD'cG. 

Theorem 2.2.5. [32]. If w ~ a(B) - a(A)_, then 

( 1) W£ p(T), 

(2) There exists a Cauchy domain D such that a(A}cD and 

cr ( B- WI) n D = ¢ _, 



(3) For any Cauchy domain D~ which satisfies (2)~ 

(T-WIJ- 1 Q == 
1 

2'ITi I 
b (D) 

-1 -1 (B-wi - zi) Q {zi - A) dz. 

Proof. Since w ¢ cr(B) - cr(A), then cr(B) - w n cr(A) = ~

Since cr(B) - w = cr(B-wi), then cr(B-wi) n cr(A) = ~. 
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But A and B are bounded operators, thus cr(B-wi) and cr(A) are 

compact disjoint sets 

i.e. there exists a bounded open set G containing cr(A} 

and disjoint from cr(B-wi). 

From theorem 2.2.3, it follows that there exists a 

Cauchy domain D, such that cr(A) c D, and DcG. Thus cr(B-wi)nD = ~. 

Now suppose X is a solution of the operator equation 

(T-wi)X = BX-XA - wX = Q. 

If zcb(D), then zcp(A) since cr(A)cD. Also zcp(B-wi) since 

cr(B-wi) n D = ¢. Next, zcb(D) implies that zcP(A)np(B-wi), and 

i.e. 1 
27ri 

1 
27ri 

(T-wi)X = (B-wi-zi)X + X(zi-a) = Q. 

Since (zi-A)-l and (B-wi-zi)-l exist, then 

X(zi-A)-l -1 + (B-wi-zi) X = {B-wi-zi)-l Q (zi-A)-1 

I 
b {D) 

-1 1 
X{zi-A) dz + 21ri I 

b {D) 
{B-WI-z I) -lX dz = 

I -1 -1 (B-WI-zi) Q (zi-A) dz. 
b(D) 



Now, from equation (2.2.2), it follows that 

1 
27Ti 

I X(zi-A)-1 dz =X 
b (D) 

1 
21Ti I (zi-A)-

1 
dzl =X. 

b (D) 
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Since p(B-wi) => 5 and (B-WI-zi) -l is an analytic vector 

valued function on p(B-wi), then 

1 
[27Ti I (B-WI-ZI)-1 dZ]X = o. 

b(D) 

By Cauchy's theorem [32], it follows that 

X = 1 
2rri I 

b(D) 
(B-WI-ZI)-l Q (ZI-A)-l dZ, 

and the proof is complete. 

In an analogous way, we can obtain the following. 

Theorem 2.2.6 [ 3 2] . If w ~ a(B) - a( A), then 

(T-wiJ- 1 Q 
1 I (B-zi)-l Q (A+tJI-ZI)- 1 dz = 27Ti 

b(D
1

J 

For any Cauchy domain D
1

, such that a(B) c D
1

, a(A+wi) n v
1 

= ¢. 

Corollary 2.2.7. 

(1) a(TJ c a(B) - a(A) 

( ) ( ) ( ) h -l . b d 2 If a B n a A = ¢, t en T ex~sts as a ounde operator, 

and this generalizes the results of §2.1. 
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Proof. 

(1) Follows from theorem 2.2.5. 

(2) Follows from theorem 2.2.5, part (3) by putting w = 0. 

G. Lurner and M. Rosenblum [27]proved the following unpub-

lished theorem of D.C. Kleinceke, and generalized it. 

Theorem 2.2.8. Given A and B from~~ where is the Banach 

algebra of all bounded operators on (E • Let T be defined on~~ 

by T(X) = BX - XA~ then 

a(T) = a(B) - a(A) 

We now present an operational calculus tor T in terms of 

elements· of~ . For this we need the tollowing lemma. 

Lemma 2. 2. 9 · [32] . Let G be a bounded open set containing 

a(B) - a{A). Then there exist Cauchy domains D and D'~ such 

that a(B) - a(A) c D' and a(A) c D. Furthermore: 

(1) If w£b(D'J~ then w~a(B)-a(AJ~ and a(B-wi)nD = ~. 

(2) If z£b{D)~ then a(B-zi)cD'. 

Theorem 2.2.10. [32]. If f(z) is a complex valued function, 

holomorphic, in a region which include a(B) - a(A), ~hen 

(2.2.3)f(T)Q = 1 
2rri I 

b(D) 

-1 f(B-zi) Q (zi-A) dz 

where Dis as in lemma 2.2.9. 

Proof. Since cr(T) = cr(B) - cr(A} c D', where D' is defined as 

in lemma 2.2.9, then using equation (2.2.2}, we get 



-1 
f(T)Q = 

By 

I 
b (D I) 

theorem 
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-1 f(w) (T-wi) Q dw. 

2.2.5, we have 

f(T)Q 
-1 I f (W') [2!i I -1 

-1 l = 2rri (B-wi-z I) Q (z I-A) dz dw 
b (D'} b(D) 

Interchanging the order of integration, we get 

f(T}Q 
-1 I 1 I f (w) -1 = 2rri [ 2rr i {B-w I-z I) dw] Q (zi-A} 

b(D) b (D I) 

Now, from lemma 2.2.9, it follows that cr(B-zi) c D' 

for zsb(D), and thus 

and 

1 
2rri I f(w) (B-WI-ziJ-1 dw = -f(B-zi) 

b (D I) 

f(T)Q = 1 
2rri I -1 

f(B-zi) Q (zi-A) dz. 
b(D) 

This proves the theorem. 

-1 dz 

We can similarly prove that if f(z) is a complex-valued function, 

holomorphic in a region G that includes cr(B) - o(A), then 

f(T)Q = 1 
2Tri I 

b (D') 

-1 
(z I-B) Q f (z I-A) dz, 

where D' is a certain Cauchy domain that contains cr(B). 

Theorem 2.2.11. [20].. Let (8"' A, B3 a, b 3 be as in theorem 

2.2.1. Then T- 1 exists, and is defined everywhere in~ 3 and 



Proof. Let 

f (T) (Q) 

But 

f(z) 

= e 

f"" etT (Q) dt 
0 

= = 

tz in theorem = e 

tT 
(Q) 

"1 I = 

J
oo 

eBt Q e-At dt. 

0 

2.2.10, thus 

e t (B-Z I) 
Q (zi-A)-1 

27fi b (D) 

1 Bt 
Q I -zt -1 = 27Ti 

e e ( ZI-A) dz 
b(D) 

-At 1 I -zt (zi-A)-1 dz. e = 27ri e 
b (D) 
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dz = 

1 1 Let B1 = 2 CB+B*) and B2 = 2i_(B-B*) 0 B1 and B2 are hermitian 

operators and B 

Using B I + e = 

= 

00 

I 
k=l 

Bl + 

Bk 
kT 

iB2 . 1 Since B+B* $ b, we have B
1 

$ 2b. 

we conclude that there exists a 

number m>O such that for every positive integer n, 

= J/f + 1
CB1 +iB2 )f + ~(B1+iB2 ) 2 f + ... J/ 2 

n 2n 

b m 
$ (f,f) + n(f,f) + 2 cf,f) 

n 

Taking the limits as n -+ oo, ~~e get J/ eBJ/ $ eb/2 .. 
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Now II e tT (Q) II = II eBt Q e -A til ~ II eBtll II Qll II e -A til 

~ e-t(a-b)/2 IIQII for t ~ 0. 

Also, f7 etT (Q) dt -- Joo eBt Q e-At dt, and these integrals 
0 0 

are absolutely convergent, we then get r l!etT CQJI! dt = r l!eBt Q e-At dtl!<:[ r e-t(a-bl/2 dl]IIQII 

(2.2.4) 

"2 
= -- IIQI! , for any Q, which finally gives a-b 

We now complete the proof, by showing that 

f' etT dt = T-1 
0 

Actually, -T Joo etT dt = 
0 

r 
0 

tT T dt e 

Thus T 

i.e. 

X, and 

= r~t etT dt = 
0 

lim 
t-+oo 

tT + I e 

=I (This follows from relation (2.2.4)). 

-1 r tT dt, = e 
0 

T-l(Q) r tT 
(Q) dt r Bt 

Q 
-At = e = e e 

0 0 
dt. 

Thus, the operator equation BX - XA = Q, has solution 
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11x11 

§ 2. 3 The· opera tor Equa t·ion BX - XA = Q in a More General 

Setting 

Theorem 2. 3.1 [11]. Let 'X and~ be Banaah spaaes, Zet the operators 

A on% and Bon~ , satisfy IIA11 1. ~a and IIB-1
11 1 ~ (a.+oJ-

1
, 

for some a. "2{) and o>O. 11·11
1 

denotes the bound norms on the 

respeative spaaes. For any tPansformation from ')G to~ , we may 

use any norm aompatibZe with the bound norms (See App. B). 

Assume BX - XA = Q, then II Qjl . ~ oil xll . 

Proof. Compatibility implies that 

IIXAII ~ llxll IIAII 1 $; a.llxll, and llxll = IIB-1Bxll 

$; IBx~ ~B- 1 11 1 ~ (a.+o) -l llBxll, 

i . e • II BX II ~ (a+ o ) II X II 

From BX - XA = Q, it follows that 

This result is similar to theorem 2.2.11, but the separation 

of the spectrum of A and B• cr(A) n a(B) = ~ does not give as 

sharp a result as theorem 2 .3 .1 or theorem 2. 2 .11. 

Further generalizations of theorem 2.3.1 for unbounded 

operators A and B may be found in [11]. 



Theorem 2 .. 3 .. 2. Let~ and "j be Hi lbePt spaces, let B 

on ('\J and A on ~· be semi-bounded self adjoint operatoPs, 

satisfying 

B ;:::: y+o ;:::: y ;:::: A 
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for some scalars y and o. Assuming BX-XA = C, where X and 

c aPe bounded operators from ~- to 21 then II ell ;:::: oil XII for 

every unitary-invariant norm. 



CHAPTER 3 

Rotation of Eigenvectors by a Perturbation 

§3.1 Rotation of Eigenvectors by a Perturbation in a Finite 

Dimensional Space. 

We discuss here how the eigenvalues and the eigen-

vectors (or eigenprojections) change with the change of the 

operator, in particular when the operator depends analytically 

on a parameter. The discussion of the finite-dimensional 

case is analogous to that of the general case when the 

eigenvalues are isolated. However it is easy to treat the 

finite dimensional case separately, without being bothered 

by complications arising from the infinite dimensionality of 

the underlying space. Another reason for treating the finite 

dimensional case separately is that the finite dimensional 

theory has its direct applications for example, in connection 

with the numerical analysis of matrices. The method used is 

based on a function-theoretic study of the resolvent, in par-

ticular on the expression of eigenprojections as contour 

integrals of the resolvent. 

Let X be a finite dimensional normed space, and let 

T£~(X) be an operator having eigenvalues Ah; h = 1,2, ... ,s 

with multiplicities mh; h ~ 1,2, ... ,s. It is known that T has 

the canonical form 

(3.1.1) T = 5 Ah ph + Dh where I 

(3.1.2) ph 
1 I -1 

~ 

27ri (zi-T) dz. 
rh 
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Here each rh, h = l, .•. ,s is a positively oriented small 

circle enclosing Ah and lying outside other such circles. 

Finally, Dh and Ph' h = 1,2, ... ,s satisfy 

56 

Ph is called the eigenprojection, and Dh is the eigennilpotent, 

and Mh = PhX is called the algebraic eigenspace of the eigen

value Ah of T, where dim Mh = mh is the algebraic multipli

city of Ahe T is called diagonable if and only if all Dh = 0, 

h = 1,2, .. o,s, and simple if mh = 1 for h = 1,2, ... ,s. Now 

T = S+D; S = EA P ; D = EDh h h 

S is the diagonable operator, D is the nilpotentv S commutes 

with D since PhDh = DhPh = Dh' h = 1,2, ... ,s, Ph~ = 0 

h f k. Equation(].l.4)is called the spectral representation 

of T. This representation is unique, in the sense that if T 

is the sum of S and D where S is diagonable and D is nilpotent, 

and S and D commute, then S and D would be given by (3ol.4) 

To see the effect of a perturbation on a linear oper-

ator T, we consider a family of operators of the form 

T(X) = T + xT' 

T(O) = T is the unperturbed operator, and xT' is the 

perturbation. Now, if we can express the eigenvalues and 



57 

the eigenvectors of T(x) as power series in x, then they 

will be of at least the same order of magnitude as the 

perturbation xTn for small lxl. This is not always the case. 

More details are given in [.24]. 

If T(X.)E~(X) is a family., holomorphic in a domain n0 

of the complex x-plane. By representing T(X) as a matrix 

with respect to a basis of X, then the eigenvalues of T(X) 

satisfy the characteristic equation 

det (T (X) - A (X) ) = 0 

This is an algebric function in A(X) with coefficients 

holomorphic in x. It is known [25] that the roots of this 

equation are branches of analytic functions of X with only 

algebraic singularities in n0 ;such points are called excep

tional points. So at an exceptional point there is always 

splitting of the eigenvalues. As an illustration, consider 

the two-dimensional example where T(X) is represented by a 

matrix with respect to a basis T(X) = (~ -l)· The eigen

values of T(X) are A±(X) = ± (l+x
2

>
1/ 2 The exceptional points 

are X = ±i, T(±i) have only the eigenvalue 0. Now the number 

s of eigenvalues of T(x) is constant if x is not one of the 

exceptional points, of which there are only a finite number 

in each compact subset of n0 . In each simple subdomain (simply 

connected subdomain containing no exceptional points) D of D0 , 

the eigenvalues of T(X) can be expressed as s holomorphic 



functions ~h(xl, h = 1,2, •• ,so The eigenvalue_ ~h(X) has 

constant multiplicity mh0 The eigenprojections Ph(X) and 
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the eigennilpotents Dh(x) for the eigenvalues Ah(x) of T(x) 

are also holomorphic in each simple subdomain Do In this 

case there is exactly one eigenvalue A(X) of T(X) in the 

neighbourhood of ~~ and P{X) is itself the eigenprojection 

for this eigenvalue X{X). Note that dim Ph(X) =dim Ph= mh, 

the multiplicity of the eigenvalue Ah(X}o Most of the results 

in error estimates are much simplified when X is a unitary 

space and T is normal. We have the following 

Theorem 3.lel ([24] p. 95) 

Let X be a unitary space, let T(X) = T+XT(l)~ and let 

T be normal. Then 3 the power series for P(X) and A(X) are 

convergent if the magnitude of the perturbation ~XT(l)~ is 

smaller than half the isolation distance of the eigenvalues 

A of T. 

So far, we speak about eigenprojections. Since the 

eigenvectors are not uniquely determined, there are no defin~ 

ite formulas for the eigenvectors of T(X) as functions of Xe 

However, they vary analytically under analytic perturbations. 

In some situations, we may need sharp bounds on the distance 

between eigenvectors, and those approximating them. We will 

discuss this case for Hermitian matrices, or equivalently for 

Hermitian operators. Let A and A+H be Hermitian operators, 
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acting on n-dirnensional complex (or real) Hilbert space ~ 

We denote the eigenvalues of A by A. i = 1,2, •.. ,n where 
. l. 

~ A and let the corresponding normalized eigen
n 

vectors be x. i = l, ... ,nG By A'.; i = l, ••• ,n we denote the 
l. l. 

eigenvalues of A+H where. A' 1 ~ A' 2 ~ •.• ~A' , and let the 
n 

corresponding normalized eigenvectors be x' ., i = 1,2, .•. ,n. 
l. 

Sometimes we will speak about the spectral projectors E(I) 

and E'(I) the argument I of which is a subset of the real line. 

Now given a specified perturbation H, how much may x. be 
l. 

rotated to become x'.? For that, suppose the spectrum of A is 
l. 

confined to m intervals of length ::; 2(3, with gaps ~ y > O, so 

that we can write 

P. = 
J 

0 :::;; 

E([v., 
J 

11 . ] ) 
J 

ll· - \), :::;; 
J J 

\), - }.lj+l J 

I: P. = I 
J 

2(3 

:;::: 

j = 1,2, ..• ,m 

y 

Let IIHII = c5 < y/2, then P'. = E' ([v. - o, ll· + o]) is 
J J J 

of the same dimensionality as the corresponding P .. General
] 

izing what has been done in §1.3, we try to find a unitary W 

which for all j satisfies WP. = P' .W. 
J J 

[Note that W will not 

necessarily take eigenvectors to eigenvectors] . Every vector 

x in P.D~ is nearly an eigenvector, in the sense that 
J 



IIAx- ~()Jj + "j>xll ,; a llxll. To see this, let Ajl' Aj2' 

..• , A. be the eigenvalues of A in [v., ~.] and xEP.~ • 
JS S ] J J 
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Then x = I a. e .. , e .. being the eigenvectors of A corres
i=l ~ ]~ ]~ 

pending to A .. , and 
Jl. 

s 
= II I 

i=l 
a.. A .. e .. ]. Jl. ]~ 

~ m~x I A •• - 12 ( ~ J. + v . ) I II x II • 
~ Jl. J 

Consequently, 

e .. 11 
]1 

The method of constructing a canonical unitary map, 

which carries P.Ji toP' .J~, is carried over from the special 
J J 

case. Let B = ~ P.P' .• It is easy to check that B is normal. 
J J J 

Let C = B B* then C ~ 0 and 

c = (E p .PI.) (E p u .P.) = l: P .P 1 .P. 
j J J j J J j J J J 

= (E pI .P.) (E p .P' . ) = E P'.P.P'. 
J J j J J j J J J 

From the definition of c, it follows that 

CP. = P.P' .P. = P.C for all j, 
J J J J J 

CP 1 
• = P 1 

• P . P' . = P' . C for all j • 
J J J J J 
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Define U ( { P j } , {PI . } ) = (E p. p' . p.) -1/2 (E p' .P.) 
J j J J J j J J 

= (E p' .P.) (E p • p 1 'p ' ) -1/2 I 
j J J j J J J 

It follows that U U* = U* u = I, as well as 

U({P.},. {P' .})* = U ({P' .}, {P.}), 
J J J J 

UP. = o: p . p ' . p . ) -1/2 pI .P. = p' . ( L:P . P. I p.) -1/2 P. 
J j J J J J J J J - J J J 

= P' .P. o:: p . p' . p . ) -1/2 = pI • u, in short, 
J J J J J J 

UP. = P 1 
• U = P • . (P .P • .P.} -l/2 P. for all j where 

J J J J JJ J 

(P.P' .P.}-l/2 is the pseudo inverse. 
J J J 

A sufficient condition for the existence of such U is 

/IP. - p• ·II < 1 for all j, or equivalently x = P. x + 0 implies 
J J J 

P'. x + 0 for all j. (See theorem 1.1.2 and recall that we 
J 

are in a finite-dimensional space}. This condition will be 

satisfied if P. and P 1
• arise from A and A+H as described 

J J 

above. One can get results similar to those in [ 8]. For 

this, let P
1

,P
2

, •.• ,Pm be a complete orthogonal set of projec

tors (one may take them to be the spectral projectors of A). 

We define the pinching of B by P. as 
J 

L: P. B P .• 
j J J 

t has the following properties: 
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In the reaZ Hilbert space of Hermitian operato~s on 

~under the Frobenius norm~ € is a projecto~~ and it is 

trace preserving. 

Proof. 

Let F denote the real Hilbert space of the Hermitian 

operators on ~ under the Frob~nius norm II!"F'and let 

~~ F + F be defined by 

i.e. 

L: P. B P. 
j J ] 

t2B = €;.( f:B) = 

f then we have 

L P. (1.: P. B P.) P. = 
j J j J J J 

2 t B = (:. B for any BsF; 

( e B u A) = tr ( @_B) A = l: tr P. B P. A 
J J j 

= tr B ~ A = (B, € A) 

L: P. B P. 
j J J 

= L: tr B(Pj A Pj) 
j 

i.e .. ( e B, A) = (B, @.A) for any A and BsF. 

Thus f = e.*, and t is a projector. Let the or tho-
('/ G ~ 

genal cornplemen t of f:', be denoted· by €, , so B = C. B + f; B, 

and hence 

2 2 ~ 2 
,, B[i F = II e Bll F + II E B~ F, \<lhere II •!IF denotes the 

Frobenius norm. 



We now prove that t is trace preserving: 

tr t B = 

n 

2: tr P. B P. 
j J J 

= l: tr B P .• 
j J 
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Let {xj}j=l be a complete orthonormal set of vectors adapted 

to the decomposition of~ by.{P.} 
J 

tr C, B = 
m 
l 

j=l 
tr B. P. = 

J 

m 

m 
I 

j=l 
(B p. 

J 

where in. = dim p.' I m. = n = dimJ;i 
J J J j=l 

m 
t~ n 

tr eB = I (B X •' X.)) = l (B 
j=l i=l l. l. i=l 

So e is trace preserving, as claimed. 

Theorem 3.1.3 9]. 

X.' 
l. 

X.' l. 

X.)) 
l. 

X.) 
l. 

= tr B. 

Let P1,P2, ... ,Pm and P' 1,P' 2, ... ,P'm be two complete sets of 

orthogonal projectors, such that x = P.x + 0 implies that 
J 

P' .x =f 0. Let U = U({P .}_, {P' .}J be defined as before. Let 
J J J 

W be any unitary, such that WP. = P' .W. Then 
J J 

11 t r r I- w * ) r I- w) ) 11 cp ~ 11 e r r I- u * ) r I- u) ) 11 ¢., 

for any unitary invariant norm. 

Corollary 3.1.4. 

Under the hypothesis of theorem 3.1.3_, we have 



Proof: Note that 

2 
~I-W~ F = tr (I-W)*(I-W) = 

n 
l 

i=l 
( (I-W*) (I-W) Y. , y,) 

1. 1. 
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where the sum is taken over orthonormal y . . The right hand 
1. 

side is equal to the sum of the eigenvalues of (I-W*) (I-W); 

we will denote it by 

We know that 11·11 1 is unitary invariant, and hence we can apply 

the previous theorem: 

"e c cr-u*> cr-u> > 11 1 ~ 11 e c cr-w*> cr-w> > 11 1 . 

But I e ( (I-W*) (I-W)) Ill = tr @.< (I-W*) (I-W)) 

= tr (I-W*) (I-W) • 

This implies that II e (I-W*} (I-W)) II 1 = II I-wll 2 
F 

From this, the result follows. 

We now get a bound for the rotation of a single spectral 

subspace. Let P = P. = E([v., ~.]) of A, where ~.-v. ~ 28, 8~0, 
J J J J J 

and the intervals <v· - y,v.) and (~.,~.+y) contain no eigen-
J J J J 

values of A. For a unit vector x, x = Px, we estimate now how 

large x-P'x is. where P' = P'. is the corresponding spectral 
l J 

projector of A+H. Without loss of generality, one can take 
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Theorem 3 .1. 5 [ 9 ] 

II rI-P' J Pll s; r a+o J 1 r S+y- o J 

Proof. 

P = E ( [-f3, f3]), and the intervals (-f3-y,-f3) _and 

(S,S+y) contain no eigenvalues of A, hence P' = E([-S-9,f3+o]) 

and the intervals (-S-y+o,-S-o) and (S+o,S+y-o) do not inter

sect the spectrum of A+H. For xeP Jq i.e. x = Px, llx!J = 1 

we have 

2 x} 2 + 2 Re(AHx, x) 2 x) . ((A+H) x, = (A x,x) + (H x, 

Since PAP ~ a, it 2 follows that PA P ~ s2, and 

2 ( (A+H) x, x) s; f32 + 21 (AHx, x) I + 2 (H x, x) 

~ f32 + 2 11~11 .IIHxll + 02 

Since IJAxll s; Sllxll, we finally get 

(3.1.6) 

Since P'~ is the subspace spanned by the eigenvectors 

corresponding to the eigenvalues of A+H lying in (-S-y+o,S+y-o), 

we obtain 

(3.1.7) 
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This follows from [36], theorem 2, with a=O, E*S+y-o. 

Equations (3.1.6) and (3.1.7) imply 

II (I-P') PII ~ supll x-P 'xll ~ ( S+o) 1 ( (3+y-o) 
x==Px 
llxll=l 

In the above, we gave a bound for the rotation of a 

single subspace. We now give an estimate of the total amount 

of rotation, i.e. an estimate of II I-UII 2 
F. From our construc

tion of the unitary canonical mapping, we know that (we recall 

that (P. P'. P.)-l/2 is the pseudo inverse) 
J J J 

UP. = (P. P' . P.) -l/2 P 1 • PJ., thus 
J J J J J 

p . UP . = ( p . p ' . p . ) 1/2 0 

J J J J J 

Since P. P'. P. > 0 on P.~, P.UP. is positive definite, and 
J J J J J J 

this implies that P.UP. has an orthonormal basis of eigenvectors 
J J 

in P . j;;{ ·• Let us choose within each P . ~ the x. 's as unit 
J J 1. 

eigenvectors of P. P'. P. and let 8
1
. =arccos {Ux., x.), 8.>0. 

J J J 1 1 1 
2 Thus (P. P'. P. x., x.) =cos e., 

J J J 1 1 1. 

(P. (I-P' . ) p. X., X.) = sin2 e., so that 
J J J 1 1 1 

sin
2 e. =II (I-P. ')P. x.ll 2 

s II (I-P' .)P.II 2 
1 J J 1. J J 

and sin e.~ IICI-P'.)P.II for some j, j=l,2, ••• ,m 
1 J J 
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Theorem 3.1.6 [ 9]. 

Assume that any two eigenvalues of A diffeP by at 

Zeast y, and suppose that 1\HII = o<y/2 then 

2 IIHII2 F 
~---1+aosa y(y-2o) 

whePe a = arcsin 

Proof. 

II I-UI\ 2 
F = tr ( (I-U*) (I-U)) 

n 
= I 

i=l 
( ( I-U*) ( I-U) x. , X. ) 

l. l. 

n 
where {xi}i=l is an orthonormal set. Taking {x.} to be the 

l. 

eigenvectors of P. P 1 
, P., we get 

J J J 

n 

I 
i=l 

((2!-U-U*)x., x.) = 
l. l. 

n 
;::: 2 I (1-cos e . > = 2 I 

i=l ~ 

1: . 28 s1.n . 
2 

.. ~ 
~ 

l+min cos e . 
J. 

n 

I 
i=l 

sin 2 

l+cos 

(2-2cos e.) 
l. 

e. 
l. 

e. 
l. 

For any i, sin ei ~ \\ (I-P~j)Pjl\, for some j. From theorem 

3.1.5, setting 8=0, we get 

sin e. ~ 
0 

...-J...._.., 

l. y-o 
i.e. e. arcsin 0 for all i. ~ y-o = a., 

l. 



n 

Thus min cos 6. ~ cos a., and 
~ 

m 
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m 

I . 2 e 
s~n . = 

~ I 
j=l 

((I-P' .)P. 
J J 

X. ' J . 
~ 

x . ) = L tr (I-P ' . ) P . 
Ji j=l J J i=l 

From equation (3.1.6), we have 

( (A+H) 2 
X. , X. ) 
~ ~ 

2 
S (H X., X.) • 

~ ~ 

Using equation (3.1.7), we get 

n 
((A+H) 2 2 I X •' X •) ~ (y -2yo) L ((I-PI . ) p . X.' X.) 

i=l l. J. J J ~ ~ 

m 
tr H2 2 m 

I P. ~ (y -2yo) I tr {I-P' .) p ... 
j=l J j=l J J 

n 
Thus L 

i=l 

. 28 
s~n . = 

m 
L tr ( I-P ' . ) P . s ( 1 2 o ) 

m 

I 
j=l 

tr H2 P. 
~ 

Thus II I-UII
2 

F 

From the proof, 

n 
2 

is via I sin 
i=l 

j=l J J y y-

= 1 
tr H

2 = y(y-2o) 
1 

y(y-2o) 

, as claimed. 

we see that the better way 

e . , which suggests that e. 
~ l. 

J 

2 
II Hll F~ 

to estimate ~I-U~F 

is the most natural 

way of measuring the direct rotation. One can get better 
. 

estimates if only one spectral projector and its orthogonal 

complement are involved. Of course to get any conclusion, 

there should be some information about the size of H compared 

to the length y of the gap in the spectrum of A. Without loss 
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of generality, we take the gap to be between -1 and 1. 

Theorem 3.1.7 [ 9]. 

Let P = P1 and I-P = P2 be the spectral projectors 

E([1 3
00 )) and E((- 00

3 -1]) of A Pespectively 3 so that A has no 

spectrum in (-1 3 1). Assume ~H~ = 8<1 3 and let x be any 

eigenvector of A+H corresponding to an eigenvalue A~O. Then 

the acute angle between x and Px satisfies sin28S8. Assuming 

instead PHP + (I-P)H(I-P) = 03 (off-diagonaZity of H) then 

tan26S~. Both inequalities are sharp. 

Proof. 

From the assumption, we have P(A-I)P~O and 

(I-P) (A+I) (I-P)sO, thus the spectral projector which should 

be compared with P is P' = E '( [ 0, oo)) where P 1 (A+ H) P 1 ~0 and 

(I-P') (A+H) (I-P 1 )~0. Now x£(I-P)~~ is impossible, since if 

it is true, it would imply that (Ax,x) s -1, and since P 1 x = x, 

we get ((A+H)x, x) ~ 0, and hence (Hx, x) ~ 1, and this 

contradicts IIHII < 1. Now, x£PJ;{ is a trivial case, since it 

implies 8 = 0. If, on the other hand, PHP + {I-P)H(I-P) = 0, 

then for x = (I-P)x we have 

(Hx,x) = ((I-P)H(I-P)x,x) = -(PHPx,x) = 0 

again a contradiction. Thus, we assume that x, Px and 

(I-P)x span a 2-dirnensional subspace Ql{, and we represent 

vectors and operators of Q~ with respect to the bases 

vectors Px = (c0

0
58

) and ( I-P) x = ( . 0 l.· 'Ne have 
s1.n8 j 
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QHQ == [hll hl] I since H is Hermitian 

1112 h22 

~QHQ~ == 
sup I (QHQx, x) I ~ sup I (Hx, x) I = 0 
~x~==l !x~==l 

Thus [hll hl2] ~ 0 

hl2 h22 

. Now yt.Qjq implies that Pyt.QJi, so that Q J:i is an 

invariant subspace of P and hence a reducing subspaceo This 

implies that P commutes with Q. 

Thus QAQ [all al2] and since A commutes with Pi = , 
al2 a22 

we get 

QAQ = [:1 :J , al ;::: 1 and a 2 
~ -1 .. 

Now Q(A+H)x = ;\Qx means that 

[ c~s el = [A cos el 
S1n e A sin e 

Thus 0 ~ A = a 1 + hll + h12 tan 8 = h12 cot 8 + a 2 + h 22 and 

h12 is real, so 
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So, if 8 could be ~ TI/4, then cot 8 - tan 8 < 0 and h12 < 0. 

Thus 

a contradiction. TI So 8 < 4 and h12 > 0, consequently, 

cot e - tan e = 
a -1 

For fixed h12 , the requirement 

implies that 

!h .. 1 
l.l. 

cot e - tan 8 

The minimum of the right hand side 

hl2 ah- 4 o2 
e: (Oro], thus = 2 

(al-a2) 

218 2 2 
al - a - - hl2 

cot 8 tan e ~ 
2 -

hl2 

/cal 
-1 2 4o 2 = 0 - a ) -2 

is attained at 

Since a 1 - a 2 ~ 2, we get cot 8 - tan 8 ~ 2o-l /l-o 2 
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i .. e .. 
2 8 sec ::; 2/o 

tan 8 

Thus sin 28 ::; 0 

In the other case when @. H = 0, 

(A+H)x = A.x, 

and again h12 is real .. From a 1 - a 2 = h12 (cot 8- tan e), 

we get h12 < 0 under the assumption that, 8 ~ TI/4, and in this 

case 

0 ::; A = h12 cot 8 + a 2 < a 2 < - 1, a contradiction. 

Thus 8 < TI/4 and h12 > 0, and cot 8 - tan 8 = 

Since IIHII:::; o, then h12 :$; o, and cot 8- tan 8 ~ 2/o. 

i.e .. 2 tan e :::; 8, from which we finally get tan 28 ::; Oo 
l-tan28 

The proof is complete. 

This theorem does not say that the angle 8 between x 

and Px satisfies sin28 :::; o for all x£P\~ o The following 

theorem gives similar results as the previous theorem i.e. it 

. gives a bound on the amount of rotation of P. In fact, this 
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theorem coincides with the previous theorem in the 2-dimen-

sional case, but it has a more general setting since the 

restriction to be finite dimensional is removed. 

Suppose that A is a bounded self-adjoint operator on 

a Hilbert space ~ • Let P and I-P be complementary projec

tors reducing A, and let the spectrum of A restricted to P~ 

be from [l,oo) and the spectrum of A restricted to (I-P) J:t be 

from (-oo,-1], 

i.e. PAP ~ P and (I-P) A (I-P) ~· -P. Let H be a bounded 

self-adjoint perturbation such that II HI! = o. Then A+H will 

have the spectral projectors P' and (I-P') where P' is the 

spectral projector of A+H corresponding to [O,oo), so that 

p ' (A+ H ) p ' ~ 0 I ( I-pI )(A+ H) ( I-p ' ) ~ 0 • 

We use the following measure of separation between P~ and 

P'J;:{ 

. 26 
s~n = sup· {jj (I.-P) x!l 2

; x ;:: P •x, II x!l = 1} 

= jjP' (I-P)P'II =liP' (I-P)P' + (I-P')P(I-P)jl; 

the last equality holds, since both sides have the same spec-

trum ( I 8 ] , 1 enuna 5 • 2 ) • 

Theorem 3 .1. 8. [1 0 ] 

Let A~P~o and e be defined as above. Assuming o < 1~ 

then sin26 $ o. Assuming instead that PHP + (I-PJH(I-P) = 0~ 

then tan28 $ o. Both inequalities are sharp. 
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Proof. 

The general case can be reduced to the case where all 

operators have only point spectrum. This can be done as 

follows. 

By an approximate eigenvalue of an opera tor TE (J~ ( l:l) 

we mean a complex number ~, such that there exists a sequence 

xn such that ~xn~ = l·and ~Txn- ~xn~ tends to zero, or equi-

valently, there does not exist a number e:>O such that 

(T r-lli)*{T- lJI) ~ E I. 

By aa{T) we denote the approximate point spectrum ofT, 

the set of all approximate eigenvalues. Clearly 

op{T) c aa(T) c o(T). Now, if Tis a normal operator, then 

it can be shown that a(T) = oa(T) (C.F. [18], theorem 3.1.2). 

Now Jc:f will be extended to another Hilbert space ,;'k:.{ 1 
, in which 

we shall speak about "approximate eigenvectors". So, if T is 

a normal operator, and lJ and v are distinct approximate eigen-

values of T, then there exists sequences of unit vectors {x } 
n 

and· {yn} such that I!Txn ... ~xnll -+ 0 and jjTyn - vynll -+ 0 hence 

generalizing the known fact for the eigenvectors of a 

normal operator for distinct eigenvalues. So we may think of 

{x } and {y } as approximate eigenvectors, with their inner 
n n 

product defined to be glim(x ,y ), where glim denotes the n n 

Banach generalized limit defined in[l2, P.37].. For the exten-

sion through the space of approximate eigenvectors see [4,§3]. 

Now to every opera tor Te: 0~ ( ~k:{ ) there corresponds an opera tor 
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p (T) s ~ ( J:{') and the mapping p: ~ (~ ) -+ (13. ( ~·) satisfies 

1 • p { S+T) = p ( S) + p ( T) , p {AT) = A p ( T) , 

2. p(ST) = p(S) p(T), p(T*) = p(T)*, p(I) =I, 

4 • p (T) ~ 0 if and only if T 2! 0, 

5. For every opera tor Te: ~ ( J:() 

[see [ 4 ] §4, Theorem 1] . 

i.e. p preserves algebraic operations, spectra, adjoints, 

and order. From (2), it follows that p(P) will be a pro-

jector and every p(T) has only point spectrum. So given 

A,H,P,P 1 as in the theorem, then p(A), p{H), p(P) and p{P') 

will enjoy the same properties. Since sin2e = liP' {I-P)P'II 

i.e. the bound on e is the same as the bound of a norm of 

certain operator and this is preserved under p. Hence, 

proving the conclusion for p(P' (I-P)P') proves it for P' (I-P)P'. 

Now, considering that all operators have only point spectrum 

then since sin
2 e = ~P'(I-P)P'~, the result is a bound on the 

norm of the positive operator P' (I-P)P'. In this case the 

norm of P 1 (I~P)P' is its largest eigenvalue. 

Assume, then, tha·t xc:P 'J'i satisfies !lxll = 1 and 

P 1 (I-P)P'x = sin
2e x( so that P'PP'x = cos 2e x, ~Px~ = cos e. 

Let Q be the projector onto the two-dimensional sub

space spanned by x, Px, and (I-P}x. The possibility that Q 

be one-dimensional can be ruled out as in the proof of 

Theorem 3.1.7. Since Q ~ is spanned by eigenvectors of P, 
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then P commutes with Q. Similarly P' commutes with Q since 

Q ~ is spanned by x and (I-P')Px (This follows from (I-P')Px = 
2 

Px - P'Px = Px- P'PP'x = Px - cos 8 x £ QJ:f). It follows 

then that QPQ and QP'Q are projectors onto the one-dimensional 

subspace Q ~ n P ~ and Q J::i n P • .Jt respectively. 

As before, we represent vectors and operator of Q 

with respect to the basis vectors: 

Px = 
[
cos

0 

e) 
and (I-P)x = 

Since A= PAP+ (I-P) A (I-P), and Q commutes with P, 

then QAQ = [:l Similarly, since 

A+H = P' (A+H) P' + (I-P •) (A+H) (I-P') where P • (A+H) P • ~ 0 and 

(I-P') (A+H) (I-P') ~ 0, and since Q commutes with P', it follows 

that Q(A+H)Q has spectral projectors QP'Q and Q(I-P')Q, and 

QP'Q and Q(I-P')Q correspond to the nonnegative and nonpositive 

spectra of Q(A+H)Q. Since QP'Q~~ is spanned by x, then x is 

an eigenvector of P(A+H)A corresponding to an eigenvalue 

;.. ~a. Let QHQ = [hll hl2]" Then, it follows that 

hl2 h22 

[~+ hll hl2] [ c~s 8] 
[: 

cos 

:] = 

h12 a2+h22 s1.n e sin 
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Since II QHQII ~ II HI!, then II QHOII ~ o, and PHP + 

(I-P) H(I-P) = 0 and PQHQP + (I-P) QHQ(I-P) = 0. Since P 

commutes with Q, then if the bound in either part of the 

theorem is proved for the 2-dimensional case, it can be 

carried back from Q :J::I to~ . So the proof is now reduced 

to the proof of the theorem in the 2-dimensional case which 

is the same as the proof carried out in Theorem 3.1.7. 
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§3.2 Rotation of eigenvectors by a perturbation in general. 

Here we discuss the case when a Hermitian linear 

operator is slightly perturbed, and see how far its invariant 

subspaces will change. This discussion is an extension of 

the previous analysis in the finite dimensional case, and the 

main new idea here is ·the introduction of the operator angle 

0 defined in §1.3. These angles unify the treatment of nat-

ural geometric, operator theoretic and error-analytic questions 

concerning those subspaces. Sharp bounds on trigonometric fun

ctions of these angles are obtained from the gap between appro

priate parts of the spectra and from a bound on the pertur

bations. Similarly, sharp bounds will be obtained for arbi

trary unitary invariant norms, as in [11]. In [9 ] and [10] 

such bounds could be asserted only upon the operator's bound

norms. Such theorems are of two types, single-angle theorems 

and double-angle theorems, and the last ones are extensions of 

Theorems 3.1.7 and 3.1.8. All the theorems are applicable for 

infinite as well as finite dimensional spaces. The chief new 

tool in the proofs is embodied in a simple inequality for 

binomials AX-XB which were discussed in §2.2 and §2.3. 

Since the differences between the subspaces will be 

measured in terms of trigonometric functions of the angle 0, 

we first give the various measures of differences between the 

subspaces P~ = R(E 0 } and Q~q = R(F 0 ) mentioned in §1.1, 

in terms of 8: 



(1) . 2 e 
s~n -
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= P(I-Q)P + (I-P) Q(I-P) = (P-Q) 2 , thus 

(3.2.1) lsin el = :IP-Q), in all unitary invariant norms. 

(2) Since s0 = J 0 sin e0 , and sin 00 = (So* s0 ) 1/ 2 , then 

s0 and sin e0 have the same singular values and 

(Appendix B,) and 

* * . I I * (3. 2. 2) II sin e011 = II s 011 = II E1 u E 0 I = I (I-P) u Pll 

* = 11u cr-QJPII = II cr-Q)PII = II (I-Q)E: 0E 0 *11 

* * = II CI-Q) E 0 11 = II F 1 E 0 11 = II E 0 F 
1

11 ° 

(3) Sup {JJQp-pJJ; liP II = 1, p = Pp} = II sin el1 1 .. 

Proof. 

L .. H o S. = sup { ( (I-Q )p ,p) , liP II = 1, p = Pp} 

Thus 

(3 .. 2.,3) 

= sup { ( (I-Q) Pp,Pp); liP II = 1} 

= sup { ( P (I -Q) Pp, P) i ]Jp II = 1} 

= !IP(I-Q)Plll = JIPCI-Q)P + (I-P)Q{I-P)IIl 

= 11 sin e 11 ~ 

sup{[! Qp-p]J; IIP]I = 1, p = Pp} = ~sin 8 11 1 = 11 sin 8 0 \1 1 . 
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( 4) sup { inf {/I q-pl/ ; II qjJ = 1, q = Qq} ; II pjj = 1 1 p = Pp} 

Proof. 

Fixing p, we have 

2 ' 2 2 inf{jjq-pjj , jjqjj = 1, q = Qq} = inf{i!Q(q-p)ll +II (I-Q) (q-p)jj } 

= inf{~q~ 2 
+ ~Qp~ 2 

- 2Re(Qp,q) + 

= inf{l + IIP11 2
- 2Re(Qp,q)} ~ 1 + IIPII 2 - 2 ltoPII IJqjj 

The equality holds, when q = Qp , and 
~Qp~ 

in£ {fj q-pjj 2
; II qll = 1, q = Qq} = 1 + II Pll 2 - 2JI Qpll , 

sup { 1 + II Pll 2 
- 211 Qpll , II PI/ = 1, P = Pp} 

= sup{2- 2ljQpll} = sup{2- 2(PQPp, p) 112} 

= 2 - 2 inf { (PQPp, p) l/
2

, II Pll = 1, p = Pp} 

= 2 - 2 cos e 1 = 4 sin 
2 e 112 = 411 sin ~ e II i 

where e 1 ~ e 2 ~ .. .. • are the singular values of 8 
0

. 

Thus we have 
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(3.2.4) sup{inf{llq-pjj; llqll = 1, q = Qq}; IIPII = 1, P = Pp} 

In the notation of §1.2 let P~ be a reducing sub-

space of A and Q~ be a reducing subspace of A+H, so in our 

decomposition of J.;f onto PJ::/. and (I-P)~'1q/ , we have 

(3" 2. 5) 

(3.2.6) 

These equations define the new operators appearing 

* in them e.g. B = E
1 

HE 0 is an operator from K(E 0 ) to K(E1 ), 

and A. and H. are Hermitians. On the other hand, in the 
J J 

decomposition of ~ according to a reducing subspace Q~ of 

A+H,the two ways of representing A+H are 

(3.2.7) A+ H = (Eo El) [A0 + Ho 
+ H: *) [:~:) = 

B Al 

= {F 0 Fl} [:0 
A:] [:: :] 

From (3.2.5), it is clear that Ao is isometrically 

equivalent to a part of A, and instead of comparing A+H with 
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A and saying that the difference is small, we compare A+H 

with A
0 

acting on a space of lower dimension, and say that 

the residual R defined by 

(3.2.8) 

(actually, R = HE 0 .since P commutes with A) is small. 

Note that if E
0 

= F
0

, A0 = A0 , then R = o. 

Theorem 3.2ol [11] 

Assume there is an interval [8~a]and a o>D~ such that 

the spectrum of A0 lies entirely in [8~al~ while that of AI 

lies entirely outside (8-o~ a+o) (or such that the spectrum 

of AI lies entirely in [S,a], while that of A0 lies entirely 

outside (8-o, a+o)). Then for every unitary invariant norm, 

Remarks. 

1) In theorems 3.1.7 and 3.1.8, it has been usual to require 

a gap between parts of a single operator (e.g. A0 and A1). 

Here a part of A is separated from a part of A+H. 

2) Here the spectrum of A
1 

is also allowed to lie both above 

and below the spectrum of A
0

• 

Proof. 

Without loss of generality, we may assume a = -S ~ 0. 

From (3.2.8), we have 
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R = (A+H)E 0 - E0A0 = HE
0

v so for the unitary invariant 

norms, compatible with the bound norm, we have 

From (3a2.8), we get 

Applying theorem 2.3.1, with X= K(F
1
), t1.J = K(E

0
), 

X = E~ F1 , we have (since II A111 ~ a. and IIA~111 1 ~ (a+o) -l), 

(3. 2" 9} 

* rrom equation (3 .. 2.2), we have I!E 0 F1 11 = jjsin 8 0 11 

thus II Rll ~ o II sin e 0 II in every unitary invariant norm. 

In case of the bound norm, we can strengthen the conclu~ 

sions, under the same hypothesis, since {sine ~l = ~sin e 0 ~ 1 , 

namely II Rl! 1 ~ o II sin e 11 1 , and hence 

On the other hand, if we allow some more hypotheses on 

the separation of the parts of the spectra, we may get the 

following conclusion~ 

Theorem 3Q2.2. [11] 

For a given o>O, assume that the spectra A
0 

and A
1 

are 

separated as in the hypothesis of theorem 3.2.1, and assume that 
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the spectra of A
1 

and A
0 

are atso separated as in the hypothe

sis of the same theorem. Then~ for every unitary invariant 

Proof 

Repeating what has been done in the proof of theorem 

3o2.1, it follows from (3.2.2) and (3.2.9) that 

{3.2.10} 

= oil P (I-Q} II = oil sin e 011 • 

Since HE1 = (A+H)E1 - E1A1 , it follows that theorem 2.3.1 and 

from equation (3.2.2), that 

(3.2.11) 

= oil (I-P) Q!l = ell sine 
1

11 • 

Since (3.2.10} and (3.2.11) are true for all unitary 

invariant norms, it follows (see appendix B) that 

11 (I-P)HQ + PH(I-Q>II ~ell CI-P)Q + P(I-O)II 

= o!l [ (I-P)Q + P(I-Q)] [2Q-IJ!I = o!IP-QI!. 

Thus I (I-P)HQ + PH(I-Q)~~ o~sin e!; this follows from equation 

(3.2.1}. Finally, 
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ollsin Gil::; ~(I-P)HQ + PH(I-Q}I! 

= ~ ~H + (I-2P} H(2Q-I)~ 

::; ; II Hll + II (I-2P) H (2Q-I) II ::; ~ H~ I 

since I-2P and 2Q-I are symmetrico We obtained 

In some applications of numerical analysis, concerning 

calculation only of some eigenvalues and eigenvectors of an 

operator A, this may be translated in our notation as follows: 

E 0 is used to approximate some of the eigenvectors, and 

hence the eigenvectors are not exactly orthonormal, and con-

sequently E
0 

is no longer an isometry, but we may suppose that 

* E 0E 0 ~ E where E is very near to 1. The following theorem 

discusses, besides the above case, the case when it is required 

to compare an eigenspace of A+H with an eigenspace of A, with 

different dimension. 

Theorem 3.2.2 [ll] 

Assume the Hermitian operator A+H satisfies (3.2.?) 

and that R is given by (3.2.8). Assume as before that F0 and 

* * F1 are isometrics with F0F0 + F1F1 = 1~ but for E0 ~ assume 

* 2 only that E
0 

E0 ~ E for some £>0, Let P and Q be the pro-

Jectors onto R(E
0

Jand R{F
0

Jas before~ but without any hypo

thesis on the dimension of these subspaces. Let sine
0 

be 
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any operator with the same singular values as P(I-Q) which 

we assume to be compact. Assume there is an interval [B3a] 

and a a>0 3 such that the spectrum of A0 lies entirely in 

[S_, a] while that of A1 lies entirely outside rs-o, a.+oJ (or 

such that the spectrum of A1 lies entirely in [S 3 a] while 

that of A0 lies enti~eZy outside (S-5 3 a+o)). Then for every 

unitary-invariant norm, O£~sin e 0 ~ s ~R~. 

For some applications, the hypothesis in theorem 3.2.3 

concerning the spectra of A0 and A1 is too restrictive. As a 

partial relief, we have the following theorem: 

Theorem 3.2.4 

Assume that aZl the hypotheses of theorem 3.2.3 are 

satisfied3 except that the only restriction on the spectra 

is that I A.-a I ~ o>O for all A in the spectrum of A1 and a in 

the spectrum of A0 . Assuming in addition that A
1 

and A0 are 

diagonable, then 

Proof. 

oEJI sin e0 II s II R]] • sq sq 

Note that the conclusion is trivial if ]] R]] is infinsq 

ite. Otherwise, the proof goes on the lines as for 

theorem 3.2.1, except instead of applying Theorem 2.3.1 we need 

to show that the equation C ~ A0X - xA1 has a solution X, which 
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satisfies II ell ~ oil XII = o (tr X*X) l/2 • To show that, con-sq sq 

sider the following singular decomposition of A0 and A1 ; 

A = UD U* and A1 = VDA V* where DA and DA are diagonal 0 Ao 1 o 1 
relative to suitable orthonormal bases and U,V are corres-

pending isometrics. The equation C = A0x - xA
1 

reduces to 

U*ev = D U*XV - U*XVDA , B = U*CV, Y = U*XV, b .. = a.y .. -Aa Hl ~J ~ ~J 

y .. A., 
~J ~ 

2 2 2 2 
jb .. l = ja.-A.I IY··I ~oiY··I, 

~] ~ ~ ~J ~J 

I 
i,j 

2 lb. ·I 
~J 

II U* evil sq ~ o II U* XVII sq 

But ll·ll
5

g is unitary invariant, thus 

II ell ~ oil xll · sg sg 

Now applying this inequality, to the equation 

* * II R F1 11 ~ o II E 0 F 1 11 • sq sq 

But II P (I -Q) II = II sin 8011 for any unitary- invariant norm, in 

particular 
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-] * * E ) - E F F II 0 0 1 1 sq 

thus 

* c:oll sin e0 JI s IIE0 F1 11 • sq sq 

Theorem 3.2.5 [11] 

Assume there is an interval [S~a] and a a>O such that the 

spectrum of A0 lies entirely in [S,a] while that of A1 lies 

entirely outside (S-o, oo). Assume further that H
0 

= 0, then 

for every unitary-invariant norm, 8~tan e 0 ~ s ~R~ and 

8 II tan 011 s II H II • 

Remark. 

Note that the spectrum of A1 should lie above that of 

A0 , in contrast with theorem 3.2.1, but we have gained an improved 

bound by a further assumption. 

Proofs 

In terms of the direct rotation U, 
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(3.2.12) 

where J 0 e 0 = e 1 J 0 ' c j ~ 0 

We rewrite (3.2.7) in terms of (3.2.12) in the form 

(3u2.13) 

Thus, it follows that 

(3.2.14) 

But B ~ AO ~ a < a+o ~ A
1 

and H0 = 0, and R = HE 0 = E0H0 

+ E1B = E1B, thus 

II Rll = II E1 BII = II Bll for every unitary-invariant norm. From 

(3.2.14), we get 

(3.2.15) 

To simplify the proof, we assume that all the operators 

are bounded, and s 0 is compact. Since !IA0 1! 1 ~ a, 

I -1 1 
I A 1 11 1 ~ a+o , then applying theorem 2.3.1 we get 

To get our conclusion, we try to prove that IIBII ~ 
\) 

ojltan eollv' from this, it follows that IIRII = IIBII ~ olltan eoll 
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for all unitary invariant norms (Appendix B). For an operator 

Ku we use the norm 

IIKII = supi!TKnll 
v n,T v 

v * = sup Re L yk 
k=l 

The first sup is taken over pairs of v-projectors n and Tu and 

the second sup is taken over all orthonormal v-tuples 

* 1/2 Since (SO s 0 ) = sin e0 u and s 0 is compact, then 

* h h . 1 . 28 . 28 w 1 1 t S 
0 

S 
0 

as t e e~genva ues s~n 
1 

> s~n 
2 

~ • • • e ca cu a e 

~BIIv for integers v exceeding neither dim K(E 0 ) nor dim K(E1 ). 

We choose orthonormal v-eigenvectors x
01

,x
02

, .•. ,x
0
v E K(E

0
) 

d . t . 1 . 2 e . 2 8 ° 2 8 correspon 1.ng o e1.genva ues s1.n 
1 

~ s1.n 
2 

~ ., .. o ~ s1.n v, 

then we choose orthonormal vectors y 11 ,y
12

, ... ,y
1

v E K(E
1

) 

defined by ylj = -s 0 x 0 j/sin8j, 8j + o. If 8j = o, we take ylj 

* * ·to form an orthonormal set from N (s
0 

) so ylj satisfies s
0 

ylj = 

sin8j x 0 j cs 0*s 0x 0 j = sin
2

8j x 0 j). From c
1 

= (I-s
0
s

0
*, 112 on 

K(E1 ), we get 

sin = . 2 8 s1.n j y 1 j 

* Now, from (3.2.15), it follows that y lj (C1B) x 0 j = 

* * * Y lj (SO A0 - A1 S 0 ) xOj cos 8j y lj B xOj = -sin 8j x Oj A xOj + 

* * sin ej ylj A1 ylj =sin ej (y lj A1 _y1j- x Oj A0 x 0j) 

* Since A1 ~ a+o, a ~ A 0 we find y lj A
1 

ylj ~ a+o, 
* * 

X Oj A0 XOj S a, cos 8j y lj B xOj ~ sin 8j (a+o-a.) = o sin 8.; 
J 



Since c>O implies that cos 8. > 0, we have 
J 

* y lj B XOj : ~ 0 tan e j I 

v * v 
=sup I y 1 . B x 0J. ~ o I 

j=l 
tan e. 

j=l J J 
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Thus II Rll = II Ell ~ o II tan 0
0

11 for all unitary-invariant norms. 

Now, since II tan e II = IIJ sine (cos e) -l", then in matrix notation 

we have 

-1 

=[Joo 
* 

01 ] 
J sin 8(cos 8) -J tan 

0 

tan e 0 
0 

and !J0 tan e0 11 IIJ0 
* e1 11 !I tan e0 11 IIBII/o. = tan = ::::; 

It implies that 

(3.2.16) 

* * E 0B E 1 11 = 11 ~I-P) HP + PH (I-P) 11 ::::; 11 Hll 

(For the 1st and the 2nd equality in equation ( 3. 2 ~6 ) 

see Appendix B ) 

If we now assume that the gap is between A0 and A1 or 

between A0 and A1 , we have the following: 

Theorem 3. 2. 6. [11] 

Assume that there is an interval [S_,c:t] and a o >0_, such 

that the spectrum of A0 lies entirely in [S_,a] while that of A1 

lies entirely outside rs-o,a+o)_, then for every unitary-invariant 



norm, oil sin 2 G0 ll ~ 211 Rll and oil sin 2 8 II ~ 211 HI!· 

Proof. 

(3.2.17) 

Let X = 2P - I .... [1 0) 1 

0 -1 

and Q_ 

X(A+H)X = A+XHX ~ [AO + H0 
-B 

= XQX; clearly 
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From equation (1.3.10), we have u2 = (2Q- I) {2P- I), 

thus u2x = 2Q - I, and since Q commutes with A+H, we obtain 

(A+ H)U2X = U2X(A +H), 

(A+ H)U 2 
= u2 (A + XHX), 

and in matrix notat~on 

(3.2.18) 

S
. 2 2 
~nee U Q_= U XQX = (2Q-I)QX = Q(2Q-I)X = QU 2 , we find that 

is a unitary taking Q_ t~ to Q ..1:/ .. 

-J0 sin 2 

cos 2 e 1 

The intention is to apply theorem 3.2.2 by regarding A+H 

as a perturbation, of A + XHX i.e. the perturbation is H - XHX. 

The parts of A+H on Q .J:j and (I-Q).k{ are represented by A0 and A1 
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* where A. =F. (A+H)F., j = 0,1. Clearly Q_ commutes with 
J J J 

A+XHX, hence the parts of A+XHX in Q_._A! and (I-Q_).A' are 

* A . = ( XF . ) (A+ XHX) (XF . ) = A . 
J J J J 

and the hypothesis of theorem 3.2.2 is satisfied, replacing 

* * * * * EO by XFO and EO Fl by (XF 0 ) Fl = FO XF1 = 2F 0 E0 E0 Fl = 

* * 2(F
0 

E
0

) (EO F
1

) so 

and from theorem 3.2.2, it follows that 

oJisin 2 Gil ~ IIH- XHXII ~ IIHII + IIXHXII = 2IIHII, 

so that for all unitary invariant norms, we have 

o II sin 2 8 II ~ 2 II H II • 

But 

This implies that ell sin 2 8 oil ~ 2 II Bll ~ 2 II Rll. 



CHAPTER 4 

Error Bounds for Approximate Invariant Subspaces of Closed 

Operators 

In chapter _3-we showed that)given an invariant subspace 

of a self-adjoint operator and the corresponding invariant sub

space of the perturbed operator,- then we can find a bound for 

the difference between the two subspaces in terms of the mag

nitudes of the perturbation and of the gap between appropriate 

parts of the spectra, and we measure the difference between the 

two subspaces in terms of a nonnegative operator 8. It was shown 

that the rotation is small if 8 is small (§1.3, §1.4) and 8 is 

small if the perturbation is small (§3.1, §3.2). 

Here we extend the above results to the case of non

Hermitian matrices or more generally, to closed operators on a 

Hilbert space. The result for this case depends on a measure 

of the separation of the spectra of the two operators, and for 

Hermitian matrices or self~adjoint operators the distance between 

the spectra is an adequate measure ~his being the one used 

in chapter 3). However, in the general case, the spectra and 

hence the distance between them may vary violently with small 

perturbations in the operators, and hence we need a more stable 

measure of the separation. This measure and its properties will 

be discussed in §4.2. 
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§4.1 The Class of Hilbert-Schmidt Operators 

Definition 4.1.1 

Let {x ~ aEA} be a complete ortho~ormaZ set in the 
Cl. 
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Hilbert spaeeJ<j. A bounded Zinear operator T is said to be a 

Hi Zbert-Sehmidt operator if the quantity II TI!HS defined by the 

equation 

II T!l88 is ea Z Zed the Hi Zbert-Schmidt norm. The e Zass of Hi Zbert 

Schmidt operators wiZZ be denoted by HS~~). 

Lemma 4.1.2 

The HiZbert-Sehmidt norm is independent of the ortho-

normaZ basis used in its definition. If T is in HS~VJ and U 

. . -1 
1.-s un1.-tary operator on :kJ ~ then U TU is in HS (JJ) and 

Proof 

IITII 88 = llu- 1 
TUjj 88 • In addition~ IITII 88 ~ IITII and 

I!TIIns = IIT*ll 88 · 

Let IITIIA' IITIIB be the Hilbert Schmidt operator norm when 

defined in terms of different complete orthonormal systems 

. {xa' <XEA}, {x
6

, 6EB}. 

From II xji 2 = 2 I 2 I 12 E I (x,y6) I we have I Til A = l: I Txo.l = E 
S a a 

L: L: 1 ( x , T*y s > 1
2 

= 2: 11 T*y 6!1
2 

= II T*ll ~. 
S a a S 

= 



If we take the same complete orthonormal set, we get 

[ITII~ = !IT*il~ = IITII~ which implies that IITII~ = IITII~· 
If u is unitary operator, then the set {Uxa' at.A} is also a 

complete orthonormal set, since llxll = uu-1xll' 
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By defini tion
1 

II Til = sup II Txll , so given e:> 01 let x 0 be any unit 
II xll =1 

vector such that II Tl1 2 
< II Tx01!

2 
+ e: • 

Since there exists a complete orthonormal system containing x
0

, 

IITII 2 ~ L IITx 11
2 + e:; since e:>O is arbitrary, we conclude 

a a 

II Til ~ II Til HS. 

An equivalent definition of the Hilbert-Schmidt norm is 

as follows: 

Then 

Since 

Let {x , ae:A} be any complete orthonormal system in,~. 
Ct 

IITIIHs I 1
2 1/2 = ( L B A ( ( Tx 1 x a ) ) ) • 

et, e: Ct JJ 

2 IITx II = 
Ct 

L I (Txa,x 8> 1
2

, the equivalence is obvious. 
ae:A 

Theorem 4.1.3 [12] 

The set HS ( ... ?~/) of a 7, 7, Hi Zbert-Sc hmidt opera tors is a 

Banach Space under the Hilbert-Schmidt norm. In addition HS(~) 

is an algebra with IITBllHs ~ IITliHs !ISIIHS. for every T~St.HS{.)f). 
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Corollary 4.1.4 

The set of Hilbert-Schmidt operato~s is a two-sided ideal 

in the Banach algebra of all bounded linear operators in a Hilbert 

Space~~. Moreover, if T is in HS (J:/) and BEjJ(!J.i) then 

Proof. 

Let TEHS (J;/) , B£ @ (.J:l) , then 

!IBTII~s = I 
a.EA 

II Bll 2 II Til ~s' 

hence BTsHS (lJ) • 

On the other hand, ~TB~HS = ~ (TB)*~HS = ~B*T*~HS 

So TBsHS (~) • 

Theorem 4.1.5 [12] 

Every Hilbert-Schmidt operator is compact and is the limit 

in the Hilbert-Schmidt norm of a sequence of operators with finite 

dimensional range. 

Remark 

Not every compact operator is in HS(~), for example if 

~{xn} is an orthonormal set in a separable Hilbert space and if T 

is determined by Tx = n-l/ 2 x n = 1, ••. Then Tis compact but 
n n 

I JITxn!l
2 

= E ~is not finite and hence Tis not in HS{J¥). 
n n=l 
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The class of Hilbert-Schmidt operators is a Banach 

algebra without identity. In addition HS(~) is a Hilbe~t space 

with the inner product defined by 

(S, T) = l (Sx , Tx ) a a 

= 

(by the general Parseval relation, where {x } A is a complete a a.e: 

orthonormal system). 

§4o2 The Separation· of Two Operators 

Let/{., 'l{ be Hilbert spaces. Let Be: (13 ('Y,) , Ce: (fi (o.f J • Let 
' o 1'-· a 

Te: (jj [ Q3: (~,';f) ] defined by 
(.;. 

T(P) = PB - CP 

Also let T e: ~· [HS <l(;,?j> ] defined by 

T (P) = PB - CP, Pe:HS (~.:d J • 

It was shown in theorem 2.2.8 that 

cr(T) = cr(B) - a(C) = {S-y: Se:cr(B), ye:o(C) }. 

Also it has been shown in theorem 2.2.5 that for A£p(T), 

(T-AIJ-1 (Q) = 2;i J (zi-c)-1 Q (B-AI-zi)-1 dz 

= 2;i J R(z; C) Q R(A+z; B) dz 

where R(z; C) = (zi c)-l d h · - an t e 1ntegral is taken over a suit-

(4.2.1) 

able contour. 
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Now we extend the above results when C is an unbounded operator. 

For that, let C be a closed operator on~ whose domain JC is 

dense ind. If Ps~<1~~C), then the mapping P + PB- CP defines 

a linear operator 

T: (S <X I\( ) + ® (/0'1() , note: since CP is closed , 
.l()C ..,0 

defined on;lv 1 then CPs ((j <:i;(f). 

Theorem 4.2.1 [36] 

a(T) = a(B) - a(C). 

Proof 

To prove this, it is clearly equivalent to prove that 

Oscr(T) iff cr(B) n a(C) f cp. Suppose, cr(B) n a(C) = ¢. Since 

cr(B), a(C) are closed,and the complex plane is connected, we have 

p{B) n p(C) + ¢; this implies that there exists a point 

:\sp (B) n p (C) . Let Qs@ <J-:~~) and consider the equation 

(4 .. 2.2) TA(P) = PR(:\;B) - R{:\; C)P = R(:\; C) QR(:\;B). 

Since a (B) n cr (C) = ¢ and :\sp (B) n p (C) 1 so a (B-:\) n a (C-:\) = ¢ 

and hence a(R(:\; B)) n cr(R(:\; C)) =¢which in turn implies that 

-1 
TA exists as a bounded operator. 

Moreover, if P satisfies (4.2.2), then R(P) =~c' and 

if we postmultiply by (AI-B) and premultiply by (:\I-C), we get 

PB - CP = Q, that is T(P) = Q 

which implies that T has a bounded inverse, and 
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p = T~l(Q) = T~l(R(A.; C)QR(A.; B)). Moreover, 

so that Osp{T). 

For the other implication, let AEO(B) n cr(C), then 

0Ecr(B-:X) n cr(C-A), and since T(P) = P(B-A.I) - (C-A.I)P, we may 

assume without loss of generality that A.= 0, i.e. 0Ecr(B) n cr(C), 

the proof is adapted from [28]. The spectrum of the operator C 

has the following subdivisions: 

cr (C) = crp (C) u crc (C) u or (C). 

Here crp(C) denotes the point spectrum, crc(C) denotes the con

tinuous spectrum, and a (C) denotes the residual spectrum. r 

If :Xe:crp (C) n oc (C), then there is a sequence of unit vectors 

yiEac such that II (A.I-C)y~l + o, similarly for cr(B). Now for 

0Ecr(B) n cr(C) and by the above subdivisions of cr(B) and cr(C), 

we have the following cases to consider. (The star denotes, 

for convenience, the Banach space adjoint). 

(1) Oe:cr (B*) u a (B*), Oscr (C) u o (C). p c p c 

Then there are sequences of unit vectors x., y. such 
~ ~ 

that B*x~ = x~B + 0 and Cy. + 0. Let P. = y.x~ then 
~ ~ ~ ~ ~ ~ 

IIP.jl = 
~ 
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(2) 0£0 (B*) I 0£0 (C) u 0 (C) r p c 

For 0£0r(B*) we have 0£0p(B} (since Osor(B*) imply R(B*) f~, 

which imply that N(B) + {0}). So we have unit vectors x, yi 

such that Bx = 0 and Cy. ~ 0. If O~o (T) (note y.x*sQS <,Xt~l)) it 
1 1 ~u 

follows that there are P.; £(ft.('~"{ ) such that T (P.) = y. x*. Now 
• # ;ac 1 1 

2 
CP. = P.B- y.x* and C P. = CP.B - Cy.x*, which implies in turn 

1 1 1 1 1 1 

that CPiE Q£,dfc> and c2
Pi is bounded. It follows that 

2 T(CP.) = CP.B- C P. = CT(P.) = Cy.x* ~ 0, so that CP. ~ 0. 
1 1 1 1 1 1 

But, 1 = y~(y.x*)x = y~T(P.)x = y'(P.B- CP.}x = y~CP.x ~ 0, 
1 1 1 1 1 1 1 1 1 

a contradiction .. 

(3) 0£0 (B*) u 0 (B*), 0£0 (C). This goes similar to (2) p c r 

and implies Oso(T). 

{4) 0£0 (B*), 0£0 (C). Let x,y be unit vectors such r r 

that Bx = 0 and y*C = 0. If 0¢0(T), then there is a 

P£ (B <;Xt..:dc) such that T (P) = yx*. But then 1 = y*T (P) x = 

y*(PB-CP)x = 0, a contradiction. The proof is complete. 

The same result holds for the operator T: 

Theorem 4.2.2 

O(T) = 0(B) - a(C) 

Proof 

The same as in theorem 4.2.1. 

After we extended theorem 2.2.3 to the case where Cis a closed 

linear operator, we try to find a measure of the separation 
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between the two operators. Now in case a (B) n a {C) = cp , 

l -1 that is, O~cr(T}, T exists, and 

so that 0 < IIT-1 11-1 ~ Inf lA-I = Inf lcr(B) - cr(C) I 
A.e:cr(T) 

= Inf{jB-yj, Se:cr{B), ye:cr(C)}. 

Definition 4.2.3 

II T- 111- 1 if O~a(TJ 
sep(B~C) =·{ 0 if Oe:a(T)} 

= { 11 T - 1 ~1- 1 
if 0 ~ 0 ( T ) } 

0 if Oe:a(-rJ 

Theorem 4.2.4 

(4.2.3) 

then 

The separation of B and C satisfies the inequality 

sep(B,C) ~ Inf ja(B) - a(CJI, and if sep(B,C) + 0, 

sep(B,C) = Inf ~T(P)~ 
11.PI=1 

The Hilbert-Schmidt separation aZso satisfies (4.2.3) and if 

sepHS(B,C) t 0 then sepHS(B,C) = Inf _ ~T(P)ijHS" 
~p HS-l 

Proof 

As we showed before, if cr(B) n cr(C) = ¢ then 

I!T-1 11-1 ~ Inf Jcr(B) = cr(C) I 

Similarly II 1" -l~~-l ~ Inf I a (B) - a (C) 1, and hence inequality 

(4.2.3) follows from definition 4.2.3. 



II II -- II T-1,,-1 But Inf T(P) if T is invertible, and 
IIPII=l 

So it follows that if sep(B,C) + 0, then 

sep(B,C) = Inf II T (P) II 
I!P!I=l 

sepHS(B,C) 
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The reason for using sep(B,C) as the measure of separation of 

the spectra of B & C, is that it is insensitive to small 

perturbations in B and C, as shown by the following theorem: 

Theorem 4.2.5 

If E£@ (J!.J and F£~ (';jJ 3 then 

sep(B-E3 C-F) ~ sep(B3 C) - liE!! - IIFII and 

sep88 rB-E, C-F): ~ sep88 (B3 C) - !!Ell - IIFII· 

Proof 

The proof is the same for sep and sepHS' so we prove it 

for sepHs· 

If sepHS (B ,C) - II Ell - II Fll ::;; 0, then the theorem is true 

since sepH5 (B-E, C-F) ~ 0. Now we suppose that sepHS(B,C) 

!IEII - !IFII > 0, that is sepHS (B,C) > II Ell + IIFII· 
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llvll = sup IIV(P)IIHs ~ IIEII +IfF!! (by corollary 4.1.4) 
IIPIIHs=l 

so Uv-r-111 s !lvll 11-r-111 s liE+ Fll < 1. 
sepHS(B,C) 

Hence (VT-l) is invertible and 

But 

which implies that (-r-V)-l is bounded. But sepHS(B-E, C-F) = 

II (-r-V)-1,,-1, 

sepHS(B-E, C-F) =.II (-r-V)-ljl-1 = IIT-l(I-VT-1)-111-1 

~ ,, T -1,,-1 II (I-VT -1,-1,1-1 

: ~ sepHS (B,C) (1 - !IV-r -l,,) 

~ sepHS (B,C) - sepHS (B,C) IIV-r-1
11 

2: sepHS (B, C) - II Ell - II Fjj · 

The importance of sepHS rests in extra properties not satisfied 

by sep. We list some of the properties of sepHs· 

For proofs and more properties of sepHS we refer to ~6]. 

1. Let"J ==~1 m"j 2 e ... EBd'm' si the projector ontod'i such 

that s.c = CS., so we can write 
~ ~ 

C == c
1 

ffi c
2 

e ... ED Cm where Ci is the restriction of C to 

BW. 
~ 

i = l, ... ,n. Then we have 
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sepH8 (B
1 

m B2 e ... m Bn' c1 e c2 m .•. e em) 

=min {sepHS(Bi' Cj): i=l,2, •. ,n, j=l,2, .• ,m}. 

( 2) If Be:(~ (fo,) and Ct: $ (~) , then 

sepHS(B,C) = sepHS(C,B). 

(3) If Band Care selfadjoint then sepHS(B,C) = 

Infjcr(B} - cr(C} j. 

§4.3 The Error Bounds 

Let A be a closed linear operator defined on a separable 

Hilbert space)4 whose domain £)(A) is dense in .. lf. Let.% c tJ (A) 

be a subspace, let "t1 be the orthogonal complement f n,-: 0 ~V· Let 

~A be the projection of ~(A) into(f. 

We note that the linear manifold ~A is contained in 

~(A) and is dense ind(. Because ye:1A implies y = z- x for 

some ze: ~) (A) and xt:Xc ~~ (A) which implies that ys ~ (A) • 

Since g) (A) is dense in v'l::f; if A is dense in~(. 

Let X, Y and Y A be the insertions of ,10, 'y., and i[ A into 

0/ respectively. (note that X,Y are isometrics}. 

Theorem 4.3.1 

X' 

Y' 
A 

Let ?t' 

(X + YAP) (I + P*P)-l/ 2 

(Y - XP*) (I + PP*J-l/ 2 
A 

R(X') andn(' = R(Y'J then C A A , 



Proof 

(i) X' and YA are isometries 

(ii) ~~c~{A) is a subspace 3 
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(iii) ~A is the pPojection of g) (A) onto the orthogonaZ 

compZement of X', 

(iv) the subspace X' is an invariant subspace of A 

iff Y' * AX' = 0. A 

(i) To prove that X' and Y' is an isometry, it is 
A 

enough to prove that X'*X' = I. 

But X'*X' = (I+ P*P)-l/2 (X*+ P* YA) (X+ YAP) (I+ P*P)-l/2 

Since ?}Ac~ and R(X) =%., and since N(X*) =ij, we have X*YA = 0 

and YA X = 0. AlsO X*X = I, Y_A YA = IA (The identity on l( A) • 

Consequently, X'*X'= (I+ P*P)-l/2 (I+ P*P) (I+ P*P)-l/ 2 =I. 

Similarly we can show that Yi* YA =I. 

(ii) Since X': X -+J:{ and R(X') =?&', the setjt' is a 

subspace since .X is, and X' is an isometry, 

X'= R(X 1
) == R(X +_YAP)-c R(X) + R(YAP) c}0+"JA c {)(A}. 

(iii) First we note that 

Yi: ID (Yi) -+J;f 

f.l (Y j,,_l = (I + P*P) +1/ 2 d A. 

Let Q' be the projection operator on/~'· Then (I- Q') is the 

projection operator on;f', the orthogonal complement of~'· 

Since YA_ * X' = 0, this implies that 'tlr c :1-'. JA u 
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To prove that (I- Q') ~(A) ='¥A' we first note that clearly 

·~A c (I - Q') 1") (A}. On the other hand, let y' E (I - Q') b (A); 

by the previous remark, (I - Q' } t; (A} c [) (A} and (I - Q' ) <.D (A) 

is dense in '"Lf' which implies that y IE ro (A) • Now y' = X + y 
(i 

x~);., YEJA but since y's(I- Q') ~(A) this implies that X'*y' = O, 

which implies 

(I + P*P) -l/2 . (X* + P* yA) y' = 0, 

(I + P*P}-l/ 2 (x + P* y) = 0, 

which implies X = -P* y y' = y + X = (YA - XP*)y, 

which implies y' = Y' (I + PP*) 1/ 2 y, 
A 

So finally, y'siJA and (I- Q')'J)(A) =((i· 
(iv) ~A is the projection of 1; (A) into d', so that by 

the previous remark d A c £) (A) and if A is dense in ~' , 

SoYA_* AX'= 0 iff A?() eX'· 

Lemma 4.3.2 

The operator AY 'A: [) (Y ~) + J:i is eZosed. 

Proof 

Let zn -+ z 

and AY' z +h. We will show that AYA'z = h. 
A n 

Let y~ = Y' z where y' Ed.' c&'\ (A) • 
A n n A ct .... · 

Since Y' is an isometry, the sequence y' + Y' s:vr 
A n (JA. 

Since A is closed, Ay' + h, y' + y I I hence y' £ ~ (A) n n 

and Ay' = h. The fact that y' £ ~ (A) and y' 
£ dA implies 

Jl ( ' 
- J\ (Y' ) • that y' E· t:A• So, y' = Y' z for some z £ A .:-- A 

By assumption, z + z, which implies Y' z + Y' z. n A n A 



108 

Since YA_ is an isometry, it follows that z = z, z e: ID (YA_) 

% will be an invariant subspace of A iff G = YA AX = 0, 

so if G is small, then X is hopefully near an invariant sub

space of A. We will show in the next theorem that, under cer

tain conditions, there exists an isometry X': % +~ such that 

R(X') is an invariant subspace of A and JJx-x•JJ tends to zero 

as G tends to zero. 

Theorem 4. 3. 3 [36] 

Let A: ~(A) + lf be a cZosed 'linear operator with 

domain [) (A) dense ink'· Let .,~ c tJ (A) be a subspace and~ A 

the projection of ro (A) onto the orthogonal. complement of~. 

Let X, and Y A be the inj eations of ;t, 1{A in to J.t, Pespeative Zy 

and let 

Set 

B = X*AX, 

G = Y A *AX, 

H = X*AYA" 

C = YA*AYA. 

Y = II GJJ, n = Jl Hjj, o = s ep ( B, c J • 

Then if 

(4.3.1) 

then there is a 

( 4. 3. 2) ,, PJI 2 y/o. 

such that R(X + YAP) is an invariant subspace of A. Moreover, 

a{A) is the disjoint union 
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(4.3.3) a(A) = a(B + HP) u a(C - PH). 

Proof 

Since B: ;..(.. +~, X is a subspace and A is closed then 

it follows that B is bounded; on the other hand, C is closed, 

so that 8 is well defined. X', YA are as before, so according 

to theorem 4.3.1, IC' is an invariant subspace iff 

G' = YA AX' = 0. We can calculate 

G' = (I+PP*)-l/2 (Y*- PX*) A(X+Y P) (I+P*P)-l/ 2 
A A 

= (I+PP*)~l/ 2 (CP- PB+G- PHP) (I+P*P)-1/ 2 . 

(4.3.4) T(P) = PB - CP = G - PHP. 

Since 8>0, T-l exists and ~T-l~ = l/8. 

To solve (4.3.4) by for P, we solve it by successive sub-

stitutions. Let 

(4.3.5) 

Now given Pi' define Pi+l as follows: 

(4.3.6) Pi+l = T-l (G-PiHPi) = T-l(G) - T-l(PiHPi) i ~ 0 

= PO - T -l ( P . HP . ) 
~ 1 

From ( 4. 3. 6) , if II P 1 11 ~ TI i then 



Now n. can be written as follows: 
l. 

n i = n 
0 

( 1 + K • ) , where 

71 710 + 0-1 TJ 710 2 
1/Tio -1 = · - 1 = 

nO 

-1 
= n 0 + o n 

which implies that K. has the recursion 
l. 

2 
'IT. 

l. 
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To find the limit of the numbers K. we solve the equations 
l. 

2 y = K1 (1 + x) andy= x, then we have two roots r 1 , r 2 given by 

= 
( 1 - 2 K l ) .:j: fl - 4 K l 

2Kl 1 - 2 K l =F {l - 4 K l 

Condition (4.3.1) guarantees that r
1
,r2 exist; also 

since 2K1 (l+x)<l, xs[O,l), the numbers Ki will converge to 

< 1. 

so = lim K. = < 1 
i l. 

and sup 
i~O 

11 P . ~ ~ 1 im 'IT • = 
l. . 1. 

l.+OO 
7f Q (1 + K), 

so that the sequence· {!I P .jf} is bounded. 
l. 
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To show that the iteration defined by (4.3.6) converges 

we show that the p, converge. 
~ 

We find that lim 
i-+-oo 

in either case, I 
i 

since K<l, K1 <1/4. 

-1 = 0 ll p. HP. - p. lHP. +P. 1HP .-p. HP. II 
~ ~ ~- ~ ~- ~ ~-1 ~-1 

= o-1 II D. 1HP. +P. 1HD. 111 
~- ~ ~- ~-

.s;, .t'-1 I 
u I HI! I Di-111 Cll p ~I +III? i-1'') 

~ 2 0 -
1 

II H II II pi II II D i -1'' 

II Dill < oo provided 2K 1 CL+K) K<l, which is true 

So I;=O IIPi+l - Pill = 0, which implies that the iter-

ation converges.. Hence Pi -+ P, Pe: (f3 ( 'X-;~J'A); but since 

p = T-l(G- AHP) where T: IG<i-"f)-+ 13 ('~l\f), it follows IJ... i J(.) A u~ ' J o 

II PI! 
1 + {1-4K 1 

~ 'IT 0 { 1 +K ) = y I 0 < 2y I 0 . 
l-2Kl + /l-4Kl 
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Now to prove the statement about the spectrum of A, let Y' 

be the extension of YA_ to (1 • . Then the transformation 

U = X'X* + Y'Y* satisfies 

U*U = UU* = I and u ro (A) = ID (A) • 

Hence if A' = U* AU then cr(A) = cr(A 1
). 

With respect to the decomposition J\1 = jL e(f, the opera tor A • 

has the representation 

A' = (X Y) 

[

B 1 

G' 
H' J 
Cl 

where B' = X*A'X, H 1 = X*A'Y , G' = Y* A'X, C' A A = YA A'YA. 

But A'= (X X'*+ Y Y'*) A (X' X*+ Y1 Y*). 

So it follows that 

B' =X'* A X', H' = X'* A Y', C' = Y'* A Y', G' = Y'* AX= O, A A A A 

the last equality holds since ~ 1 is an invariant subspace. 

Therefore 

So that if A.ep(B') n p(C'), then R(A.; A') has the representation 

[

R.{A.

0

; B') 
R(A; A') = 

R(A.; B') H' R(A.,C')) 

R(A.; C') 
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Consequently R(A; A') is bounded if R(A.; B') H R(A.;C') is 

bounded. 

Since by Lemma 4. 3. 2 AYA. is closed and R(A.; c•) e: ~ <7..,.;J¥A). 
it follows that AYAR(A.; C') is bounded. Hence 

R(A.; B') X'* AY' R(A.; C') = R(A.; B 1 )H' R(A.; C 1
) is bounded. 

A 

c 
This proved that a (A) = a (A 1

) = a (B 1
) u a (C 1

); the above repre-

sentation also shows that the reverse inclusion, hence equality, 

holds. 

From B' = X'* AX' we deduce 

B' = (I+P*P)-l/2 (X*+P*Y*) A(X+Y P) (I+P*P)-l/ 2 
A A 

= (I+P*P)-l/2 (B+P*G+HP+P*CP) (I+P*P)-l/ 2 • 

Since G satisfies (4.3.4), we have P*G = P*PB- P*CP+P*PHP. 

Hence B' = (I+P*P) 1/ 2 (B+HP) (I+P*P)-l/ 2 , and a(B') = a(B+HP) 

Also C' = Y' * A Y' A A' 

C' = (I+PP*)-l/ 2 (Y*-PX*) A (Y -XP*) (I+PP*)-1/ 2 
A A 

= (I+PP*)-1/ 2 (C-GP*-PH-PBP*) (I+PP*)-l/ 2 . 

But from (4.3.4), GP* = PBP*- CPP* + PHPP*, 

so that C' = (I+P*P)l/ 2 (C-PH) (I+PP*)-l/ 2 , 

a~C' ) = a ( C-PH) • Consequently a (A' ) = a (B+HP) u a (C-PH) • 

Finally, since II HPII ~ II Hll II Pll ~ 2 n y /o , we conclude that 

sep (B+HP, C-PH) ,;:: sep (B, C) - IIHP II - IIPH II (Theorem 4. 2. 5) 

,;:: 0 - 4 y/o o2 
- 4 Yn = > 0 {by ( 4 • 3 • 1) ) 1 

So that a(B+HP) n cr(F-PH) = ¢. 



CHAPTER 5 

Algorithms 

In this chapter, we discuss how to compute the direct 

rotation u, if we are given two subspaces of a Hilbert space, 

or equivalently two ortho projectors P and Q. We also discuss 

here how to compute the angles between the subspaces. These 

quantities are of interest in many applications, as in sta

tistics [ 7], the generalized eigenvalue problem [15] and in 

the computation of invariant subspaces of matrices [40]. 

§5.1 Definition and Properties of the Bisector of P and Q 

Let~G' be a Hilbert space, and let P~ and Q.'if be two 

subspaces satisfying 

(5.1.1) { 
dim P:k.f = dim Q}J, 

dim (I-P)J;{ = dim (I-Q)Jt. 

From theorem 1.3.4, we recall that the direct rotation 

exists if and only if Plf and QJq are equivalently positioned, i.e. 

(5.1.2) dim P,~ n (I-Q).:k{ = dim (I-P)~ n QJi. 

We can show that P~~and Q~can be decomposed as follows. 

PJ:/ = PQ,~ e (P~ n ( I-Q);~) , 

Q~= QP:l.i EB ( (I-P),;J.i n Q~). 

Thus, it follows that if~ is a unitary space, then equations 

(5.1.1) and (5.1.2) are equivalent. We should also remark that, 

- 114 -
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even if ~t is infinite dimensional, these two equations 

will still remain equivalent, provided either P or (I-P) is a 

finite dimensional projector. 

Using the notation adopted in chapter lv we have 

* Q = F
0

F
0 

, and 

(5~1.3) U = [QP + (I-Q) (I-P)] [I - (P-Q) 21 -l/2 

(whenever the inverse is bounded), or in terms of the decem-

position of :X(, into P,1:[ and (I-Pkq', 

Let 

(5.1.4) T = T(P,Q) = [I- (P-Q) 2 ]-l/2 (P+Q-I). 

It follows from equation (5.1.3) that 

T = U (2P- I), 

or equivalently 

It is easy to check that T* = T, T2 = I and TP = QT, 

so that T is an involution exchanging P~ with Q~. 



We define the bisector of P and Q [8, 26] by 

Z = Z(P,Q) = 1 (I + T); 2 
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This is the projector on a subspace, which may be named 

· the angle bisector of Plt and Q.U. 

Remark 1 

Since in the 2-dimensional space the angle bisector 

is not unique, but the one defined above is unique, it will be 

the bisector of the acute angle as we will show in theorem 5.1.1. 

Remark 2 

In the acute case, T will be unique, but in the non-

acute case, with equation (5.1.2) satisfied, we define T on 

{ P oN n ( I -Q >~tt) u ( Q~l.i n ( I-P )J.f ) 

as an involution exchanging P'J\( n {I-Q) with Q . .:(fn (I-P)~. 

Theorem 5.1.1 

In the acute case~ T(P,QJ is the unique involution, 

satisfying 

Proof 

(i) TP = QT 

(ii) PTP > 0 

Clearly T(P,Q), as defined by equation (5.1.4), sat-

isfies (i), and since 
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PTP .... ~ 0 

then (ii) is also satisfied. 

To prove uniqueness, let 

w = 

be.an involution, satisfying (i) and (ii). Thus, we have the 

following relations between the entries T .. of W: 
l.J 

(5.1.5) 

From the assumptions, we have T00 ~ 0, T
11 

~ 0 and 

Q = WPW, 

i.e. [c 2 coso*] roo 
2 

Too 
TlO *] 

s:co 
= 

soso* TlO Too TlO T1o* 
-

Thus, we have 

c 2 2 
which implies that c

0 
= Too ' = Too since Too 0 

coso* = TOOTlO * i.e. soco = TlOTOO = TlOCO 

~ 0 



' 
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which implies that s
0 

and T10 agree on R(c 0 ). But in the acute 

case, R(c 0)is dense, and hence s
0 

= T1o· 

From equations (5.1.5) we have, 

which implies that T
11 

= c
1

. This proves the theorem. 

Remark 

We should point out that if P;kt and Q.Jj are in the acute 

case, then ~~and P~will also be in the acute case, (otherwise, 

on (PJ:l n (I-Z)Ji) u ( (I-P)J\;{ n ZJ.£), we will have P+Z-I = 0, so 

that T =I- 2P and PTP = -P which contradicts PTP ~ 0). So 

there exists a unique direct rotation mapping P~onto z~, which 

we denote U(P,Z). Let the corresponding angle operator be¢, 

so we have the following theorem which generalizes the facts in 

the 2-dimensional case. 

Theorem 5.1.2 

If P~ and Q~are in the acute case, and ZJq is the angte 

bisector, then 

(i) 
2 1 

cos ~ = 2(1 + cos 0), 

(ii) [U{P,Z)]2 = U(P,Q). 

Proof 

We have cos 2 ~ = PZP + (I-P) (I-Z) (I-P) and 
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2 ..... 

~ [1 + co :r~[: 0 

CJ 
cos <P -

0 1 + 

= ~[: :r~[co: e 

e:] 
0 

cos 

So that 

cos
2

¢ = ~ (1 +cos 9). 

(ii) u2 (P, Z} = (2Z I) (2P-I) = T (2P-I) = u (P ,Q). 

Remark 

The inequality PTP ~ 0 implies that QTQ = TPTPT ~ 0, 

and hence ZU and Q~ are in the acute case, by the same argument 

as in the case of P~ and z~. Now, let U(Z,Q} be the direct 

rotation mapping Z~ onto Q~, then 

u2 (Z,Q) = U(P,Q). 

§5.2 An Economical Expression for u. 

For simplicity, we assume that dim~~ = n is finite. 

Suppose that the subspaces P~ and Q~ are defined by their 

"bases" E0 and F 0 , so that 

Eo Eo* = P and 

So, in terms of P and Q we have an expression for the square 

of the direct rotation, given by 

(5.2.1) 2 
U = (2Q-I) (2P-I). 
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If we are in the acute case, then we find that the 

direct rotation is unique, and we have just to find the prin-

cipal square root, i.e. unitary square root whose spectrum 

is in the right half plane. Since u2 is represented by an 

nxn matrix, one can write 

u2 
= A + iB 

h · 2 1 d d 1 . w ere 1 = - , an A an B are rea matr~ces. u2 being unitary, 

implies that 

(5.2.2) AA' + BB 1 = A'A + B'B = I,. 

AB' - BA' = A'B - B'A = 0. 

Hence, if we let W be the real symmetric matrix 

of order 2n, defined as ~ 

w = [: -:J 
then relation (5.2.2) gives 

WW' = W'W = I, 

so that W is an orthogonal matrix. Furthermore, from 

W = KSK-l 

where s = [A:iB A:iB) 
and K = r: -i:J 



there follows that 

det W = det S = det(A + iB). det (A+ iB) 

= !det (A+ iB) 1
2 = !det u2

j
2 = 1. 
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We now refer to [22] for a detailed discussion of how 

to compute the principal square root of an orthogonal matrix, 

with determinant equal to +1. It turns out that the principal 

square root of W is a matrix R of the form 

with L- iM a unitary matrix, and (L + iM) 2 =A+ iB. 

Thus, in order to find u, one has to work with a 

matrix of double dimensions. 

Sometimes, it is of interest to find the restriction 

of U on PJ~and the ab?ve procedure will be computationally 

inefficient, especially when the dimension of P~' is relatively 

small compared to that of~. In the following, we will provide 

an economical expression for u. 

Lemma 5.2.1 

Let E 
0 

and F 
0 

be bases for Pt'"" and Q,'kJ_ respective Zy. 

Then there exists an isometry from K(E0 J onto R(F0 J~ so that it 

gives a basis for R(F0 ) closest to E0 . 
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Proof 

Since 

and since we assume the equation {5.1.1) to be satisfied, then 

we have 

where U is the direct rotation mapping P~onto Q~. 

Let w0 :K{E0 ) + K{F
0

) be defined by 

It is easy to check that w0* w0 = w0 w0* = I. Let F: K(E 0 ) + 

be defined by 

(5.2.3) 

Then R (F) = R (F 
0

) and F* F = I, so that F is an isometry 

mapping K(E 0 ) onto R(E
1

). But since 

F will be a basis for R(E1 ) closest to E0 as was shown in 

theorem (1.5.2). This proves the lemma. 

We need now to find an expression for w0 in terms of 

F 0 and E0 , so that F will be expressed also in terms of E
0 

and 

Fa. 
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Lemma 5.2.2 

Proof 

Since w0 = F 0* u E0 , using (5.1.4) we have 

wo = F * T E = F * (P+Q-I) [(I-P-Q)2]-l/2 E 
0 0 0 . 0 

= F * 
0 (Eo Eo* + Fo Fo* - I) [(I-P-Q)2]-l/2 

= F * Eo E * [(I-P-Q)2]-1/2 Eo· 0 0 

2 2 Let c = cos e = {I-P-Q) I then 

CEO = (I-P-Q + PQ + QP) Eo 

= (I - E E * - F F * + EoEo* FoFo* + FoFo* 0 0 0 0 

= -F F * Eo + EoEo* FoFo* Eo + FoFo* Eo 0 0 

= Eo<Eo* FoFo* Eo> = Eo<Fo* Eo>* (Fo* Eo> 

Let L = (F0* E0 )* (F0* E
0

) > o then 

CEO = E0L and 

c2E = E L2 
0 0 

and in general, 

Eo 

EOEO *) Eo 

en E
0 

= E0 Ln, for any positive integer n. Thus, for 

all polynomials f(C), we have 

f(C) EO = EO f(L) 
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Thus, this is true for all continuous functions on 

[Ofl], so it is true for the inverse square root, provided 

that 0 ~ cr(C), 

i.e. c-112 E = E L-l/2 and 0 0 , 

and 

Lenuna 5.2.3 

Let 

G = F + EO" 

then D = G(G* G)-l/ 2 

is a basis for z~. 

Proof 

We have 

by the remark on theorem 5.1.1, we have 

ZP.V = Z.lf 

and it follows that 

G.)1 = Z)J. 
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Now D*D = I, R(D) = z~, so it follows that D is a 

basis for z~, and 

Remark 

The construction of D was inspired by the elementary 

fact that the diagonal of a rhombus bisects the angle from 

which it emanates. 

Note that 

T = 2Z - I = 2DD* - I 

where D = G(G* G)-1/2 

G = E0+F = Ea+Fo <Fo*Eo> [ (F *E ) * 
0 0 

(F *E )]-1/2 
0 0 

Thus u = (2DD* - I) (2E 0E 0* - I) 

But (2E0E0 * - I) I PJ~ = I. 

Thus, we have an economical expression for U (when restricted 

to P~) in terms of E0 and F 0 . 

As an illustration, if dim :1:1 = 50 and dim PJ:/ = 5, 

then F 0*E 0 will be a SxS matrix, and the computation of Ux, 

x E P~ will be notably shortened. 

We should remark here, that in the previous expression 

of U, we did not demand that E0 be represented as (~) in which 

case we would have the nice matrix representation for 
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u -

But on the other hand, P = E0E0* instead of [~ ~]· 

A different a~gorithm to find the direct rotation U 

was done by A. Bjorck and G.H. Golub [5 ]. Their main tool 

was the singular value decomposition of a matrix. 

Theorem 5.2.4 [6, P.l34] 

Let A be an mxn matrix with rank r. Then there exists 

mxm and nxn unitary matrices U and V and rxr diagonaZ matrix D 

with striatZy positive eZements aaZZed the singular vaZues of A~ 

such that 

A = USV*~ S 
= [~ ~] D = diag 

The columns u. and v. of U and V satisfy 
l. ~ 

Av. = s.u., 
.1. .1. 1. 

A*u. = s. v., 
~ 1. 1. 

2 so that A*Av. = s. v., 
1. ~ 1. 

AA*u. = s. 2u 
1. 1. i• 

They are called the singular vectors. This leads to 

the singular value decomposition of A (shortly SVD) : 

r 
A = L 

i=l 
s. u. v.*. 

l l l 
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Since the direct rotation is expressed as 

If we consider the SVD of CO' so and cl' then it turns 

out that assuming dim P~= k, 2k ~ n 

co = YE c YE * so = YE 

[:J 
YE * 

0 0 1 0 

s * = YE (S 0) YE * c1 = YE 

[: :] YE * 0 
0 1 1 1 

Then u = Eo YE c YE * Eo* + El YE (:J YEO* 
E * 

0 0 1 0 

+ Eo YE (-S 0) YE * El* + El YEl[: :] YE * E * 
0 1 1 1 

where C = diag (cos ek > 1. s = diag (Sin ek} 1 

u = VE c v * + VE [~) VE * + VE (-S 0) VE * 
0 Eo 1 0 0 1 

+ VE 

[: :J 
VE * 

1 1 

Let VE = (WE
1 

ZE ) , where WE is an nxk matrix and 
1 1 1 

WE * VE = 01 which is possible. 
1 0 



( -s O) 

where VE = E YE are the principal vectors in P4 [1 ], 
0 ° 0 
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associated with the pair of subspaces P~and Q~, and WE are 
1 

the principal vectors in Qj,J associated with the pair of sub-

spaces P .L and Q • So, U will be determined if the quantities 

C, S, VE , WE are known. In [17], an efficient algorithm for 
a 1 

computing the SVD of a matrix is shown. Now, we are given (as 

before) bases E0 and Fa for P~ and Q~. In [5 ], these quan

tities were calculated as follows: 

Let L = Eo* Fa, 

So the SVD of L will be 

Eo* FO =YEO C YFO*· 

Now PFO = EO Eo* FO = E0L, 

So the SVD of PF 0 is PF 0 = 

where c = diag (cos ek). 

Also the SVD of (I-P)FO is (I-P)F0 = 

where s = diag (sin ek). 

We can choose WE 
1 

such that w·* V = 0, so we have s, c, 
El EO 

VE and WE by doing 2 SVD, so to find U we just complete 
0 1 

(VE WE ) to be a basis for;,V (this is always possible) , say 
0 1 



129 

u = (VE WE ZE ) c -s 0 VE * 
0 1 1 0 

s c 0 WE * 
1 

0 0 I ZE * 
1 

One should also note that 

Comparing this algorithm, with that given before, we 

find that this algorithm will not be computationally efficient, 

although it provides other information implicitly, such as the 

angle between the two subspaces and the principal vectors. 



APPENDIX A 

Polar Representation of a Bounded Operator 

For A E [~ (~) 1 where Scf is a separable Hilbert space 1 

N(A) denotes the null space of A and R(A) is the range of A. 

It is known that 

~ = R(A) e N(A*) = R(A*) e N(A). The bar denotes 

the norm closure of the corresponding linear manifolds. 

Definition A.l 

An operator UEm~VJ is said to be a partial isometry 

if it maps~QN(U) isometriaaZZy onto R(U). So for a partially 

isometric operator U, the linear manifold R(U) is a subspace. 

Let P
1 

be the orthogonal projector onto~9N(U) 1 then U being 

a partial isometry is equivalent to II U<PII = II P1 <t>ll for all ¢E~. 

Consequently, 

so U*U = P1 • 

Since (I-P1 ) ¢sN(U) (all ¢£~) one has U(I-P1 )¢ = 0 (¢£~) and 

hence U = UP 1 . 

* The relation U*U = P1 implies II U U¢jl = II P1 <t>ll = II U<t>ll, 

so llu*¢ 1 II = II¢ 1 II for all <P' ER (U) and U* is a partial isometry. 

As above, let P 2 be the projector onto the subspace~9N(U*}, 

then IIU*¢11 = IIP 2 ¢!1 for all ¢£l{, 

- 130 -
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which implies U U* = P 2 and U* = U* P2 • 

Next, let A be any operator from~(~). Then it is well known 

that there exists a unique nonnegative operator H such that 

H2 = A*A (H = (A*A)l/ 2}. 

It follows that IIAf 11
2 = (Af, Af) = (A*Af, f) = (H

2
f, f) 

= {Hf I Hf) = IIHf 11
2 

so that IIAfll = IIH£11 for all ft.Jf, which implies that there exists 

an isometry U: R(H) on~o R(A) such that Af = UHf. Extending 

U to all of R(H) by continuity, and setting U¢ = 0 for ¢sN(H), 

we obtain a partial isometry. The fact·H ~ 0 implies N(H) = 

N (H
2
); also I!Afll =· II Hfll (all fsij) implies R(H) = R(A*), so all 

these give R(H) = R(H
2

} = R(A*A) = R(A*). That is, U is a 

partial isometry which maps R(A*) onto R(A). 

Hence every operator As~(~) admits a representation 

in the form 

(1) A = UH 

where H = (A*A) 1/ 2 and U is a partial isometry which maps R(A*) 

isometrically onto R(A). (1) is called the polar representation 

of A. 

From (1}, it follows that 

(i) U*A = H, since U*A = U*UH = P1H = H; 

(ii) H1 = UHU*, H = U*H1 U, where Hl = (AA*)l/ 2 . 

(H1 f,f) = (UHU*f,f) = {HU*f,U*f) ~ 0 fs~. Since H ~ 0, 

this implies that H1 is non-negative, and since 
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H 2 = UHU* UHU* = UHP HU* = UH 2U* = AA* then H = (AA*)l/ 2 
1 1 ' 1 

by the uniqueness of the non-negative square root. 

Hl = AU*. 

It follows from (ii) that H
1 

= UHU* =AU*. 

Also, A= UH = UU*H1U = P2H1U = H1U; 

this implies that A= H1u and A* = U*H1 . 

Remarks 

(1) If AE ~ {~) and if A is invertible, then there exists a 

unique unitary operator U and a positive operator H such that 

A= UH. 

The partial isometry will be unitary since A is invertible. 

(2) If AE ~{~) and A is normal, then A has a polar decompo-

sition A = UH where U is a unitary and H is a non-negative 

operator. The operators U and H commute with each other and 

with A. 

(3) By the dimension (also called rank) of the operator A, we 

mean the number r(A) (~ oo) equal to the dimension of the 

subspace R (A) . 

It is clear that r(A) = r(H) = r(H
1

) = r(A*). 



APPENDIX B 

Singular Values and Unitary Invariant Norms 

§B.l The Singular Values of a Completely Continuous Operator 

Let A be a completely continuous operator. The eigen

values of H where H = (A*A) 112 are called the singular values 

of A. We shall enumerate the non-zero singular values of A in 

decreasing order taking account of their multiplicities, so that 

s . (A) = A • (H) 
J J 

(j=l,2, ••• ). 

If rank(H) < oo then s.(A) = 0 where j = r(H) + 1. Also, we 
J 

have 

(i) s
1

(A) = Al (H) = IIHII = II All 

( ii) s. (A) = I A. (A) I when A is self adjoint, 
J J 

(iii) s. (cA) ::::;; lc I s. (A) (j=l,2,3, .•. ), c is a constant. 
J J 

We encounter two important properties of the singular values 

of a completely continuous operator. 

Lemma B.l.l 

Fo~ a completely continuous operator A~ we have 

(i) s .(A) = s .(A*) 
J J 

(j=1,2, ..• ). 

(iiJ For any bounded operator B, 

s . ( BA) < II Bll s . (A) 
J J 

s . ( AB) s II Bll s . (A) 
J J 

(j=l, 2, .. . ) 

- 133 -
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Proof 

Since it is well known that for a self adjoint com-

pletely continuous operator A, all the eigenvalues are real 

and the operator has a uniformly convergent representation 

v (A) 

A = I 
j=l 

A . (A) ( I cp • ) cp . 
J J J 

where cp. (j=l, ..• v(A)) is an orthonormal system of eigenvectors 
J 

of A, complete in R(A), such that 

Act> • = A. • (A) cp . 
J J J 

j=1,2, ••. v(A), 

and where v(A) is the sum of the algebraic multiplicities of all 

the non-zero eigenvalues of the operator A. Note that v(A) is 

related to r{A) by the inequality 

v (A) < r (A) • 

Hence, H has the representation 

r{H) 
H = I 

j=l 
s . (A) cp • cp . *. 

J J J 

Now let A = UH be the polar representation of A, so it follows 

that 
r (A) 

A = UH = I 
j=l 

s . (A) ucp . cp . * 
J J J 

cp.£R(A). 
J 

Since U is a partial isometry mapping R(H) onto R(A) then 

U¢. = ~· constitutes an orthonormal system complete in R(A). 
J J 

Consequently, 



(1) 

(2) 

r (A) 

A = I 
j=l 

Hence 

r(A) 
A* = I 

j=l 

s . (A) l/J • <f> • *, 
J J J 

s . (A) <j> • l/J . *. 
J J J 

Next, we prove that A*A has the same eigenvalues as AA*. 

It follows from (1) and (2), that 

A*A <j>. 
2 

(A) <f>. = s. 
J J J 

j=l,2, ••• ,r(A) 

AA* l/J. 2 (A) l/J. = s. 
J J J 

j=l,2, ••• ,r(A) 

So, we obtain 

s. {A) = s. {A*) 
J J 

j=l,2, ••• ,r(A) 

This proves (i). For (ii), we have 

2 s . ( BA) = A . (A* B * BA) • 
J J 

But we have 

(A*B*BAf,f) = IIBAf~ 2 ~ ~B~ 2 
(Af,Af) fs.2:/ 
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which implies A*B*BA ~ I!BII 2 A*A. The last inequality implies 

that A. (A*B*BA) 
J 

2 
sj (BA) 

< A. <II Bll
2 

A*A) = II Bll 2 
A. (A*A) . Therefore 

J J 

< liB 11
2 s ~ (A) , that is, s . (BA) S liB II s . (A) . 

J J J 

Statement (iii) follows directly from (ii) since 
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Remarks 

(1) The expansion (1) is called the Schmidt expansion of a 

completely continuous operator where {¢.}, {~.} are certain 
J J 

orthonormal systems. 

(2) For a non-negative completely continuous operator A, we 

have the following minimax properties of eigenvalues ([31], §95): 

Theorem B.l.2 

Let A($0) be a non-negative completely continuous oper

ator and let ¢.(j=1~2~ ••• ) be an orthonormal system of its 
J 

eigenvectors which is complete in R(AJ~ so that 

AcJ>. = A..(A)¢. 
J J J 

(j=1~2~ ••• ), 

Then its eigenvalues have the 

following minimax properties: 

(3) (A<{>,p) 
( ¢_, ¢) 

where the maximum in (3) is attained only for those eigenvectors 

of the operator A which correspond to A
1

(A). 

(4) min 

X 

(A¢,¢) 
(¢_,¢) (j = 1,2_, ••• ) 

where the minimum is taken over all j-dimensionaZ subspaces of 

the space ... ~' _, and the minimum in ( 4) is attained when X coincides 

with the linear subspace of the eigenvector cp 1 _,¢n,•··~¢·· 4 J 



B.l.3 Equivalent Definition of the Singular Values of a 

Completely Continuous Operator 
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We shall denote by B (n = 0,1,2, ••• ) the set of all n 

finite dimensional operators of dimension less or equal to n. 

Let A be a completely continuous operator, then for any 

n = 0,1,2, •.• 

{5) sn+l(A) = min 
kt:B 

n 

II (A-K) II • 

To prove the equivalence, let K be ann-dimensional operator. 

Then the subspaceJ~9N(K) is n-dirnensional (recall that r(K*) = 

r (K)) • Now it follows for (4) that 

Since for all ¢t:N ( ~, we have II Act> II = II (A-.K) <t>ll, 

then II A<t>ll ~ II A- KJI II ct>ll ' 

so sn+l (A} $ !lA-: K!l 
n 

kEB .• 
n 

Let K = n L s. (A) W· ¢.*be the n-th partial sum of the 
j=l J J J 

Schmidt expansion of A. Clearly K has dimension n and 
n 
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II (A-K ) £11 2 r{A) 
(f) 112 = II I s. (A) 1JJ. ¢.* n j=n+l J J J 

r {A) 
2 (A) I ( f I¢ . ) 1

2 = I s. 
j=n+l J J 

2 
r(A) 

I <t~<P·> 12 ~ 5 n+l I 
j=n+l J 

< 2 ~ f 12 I 5 n+l 

So that I!A-Knll ~ sn+ll hence IIA-Knll = sn+l 1 concluding 

that 

sn+l(A) = 
min 
Ke:B 

n 
II A-KII n = 0,1 1 2, •• ~ 

In fact, (5} shows that sn+l(A) is the distance from the oper

ator A to the set B . 
n 

From this equivalent definition of the singular values of a 

completely continuous operator, we have the following inequal-

ities. The proof can be found in [18]. 

1. If A is a completely continuous operator, let T be any 

r-dimensional operator. Then 

sn+r(A) ~ s (A+T) ~ s (A). n n-r 

2. {K. Fan [14]} If A,B are completely continuous operators, 

then 

s + 1 {A+B) S s (A) + s (B) rn n- m n 
(m, n = 1, 2, .•. ) , 

sm+ 1 CAB) ~ s (A) s (A). n- m n 
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3. For any linear completely continuous operators A,B, 

I s (A) - s ( B ) I :S II A-Bfl ( n = 1 , 2 , • • • ) • n n 

Lemma B.l.4 [A. Horn [23], K. Fan [14]) 

For any completely continuous operators A,B, 

n n ·n 
IT s. (AB) ~ IT s. (A) II s. (B) (n = 1,2, ... ), 

j=l J j=l J j=l J 

n n n 
I s. (A+B) ~ I s. (A) + I s. (B) (n = 1,2, ..• ). 

j=l J j=l J j=l J 

§B.2 Symmetric Norms 

A functional II xll
5 

defined on some two-sided ideal a 

of the ring ~ (~) is called a symmetric norm if it has the 

following properties: 

( 1) II XII s > o ( Xe: a, x+ 0) , 

(2) II AXIl 
5 

=·I A I II XII 
5 

(xe:a), where A is any complex number, 

(3) 

(4) 

IIX+YII s 

IIAXBII s 

~ llxlls + 11~11 5 {X,Ye:o), 

~ IIAII IIXII
5 

IIBII (A,Be:~ (,Y), Xe:cr), 

(5) for any one-dimensional operator X, II XII 
5 

= II XII = s 1 (X). 

Clearly, the bound norm is symmetric on any cr. If in 

the definition of a symmetric norm,(4) is replaced by 

(4') 11ux11 
5 

= II xujl 
5 

= II XII 
5

, (Xe:o) where U is an arbitrary 
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unitary operator, then we have the definition of a unitary 

invariant norm. Note that every symmetric norm is a unit~ry 

invariant norm. 

(Since for a symmetric norm 11uxv lis ~ llx lis, llx lis 

= uu-1uxv v-1
1ls :s; IIUXV lis, hence Uuxv lis = l!x lis> • 

The reverse will hold only under certain assumptions. 

B.2.1 Important Properties of Symmetric Norm 

1. Let a be some two-sided ideal of the ring (~) and let a 

symmetric norm ll·lls be defined on a. Then for any operator XEO, 

II xll = II X* II = II (X* X) 
112 11 = II (X X*) 

112 11 • s s s $ 

Indeed, if X = UH is the polar representation of X, then 

llxll = IIHII ; s s 

on the other hand U*X = H, 

II H II = II u *XII ~ II X II . s s s 

Consequently II xll = II Hll • s s 

Now starting from the equalities X* = HU* and X*U = H, we 

obtain llx* II = IIH II • s s 

2. Let a be some two-sided ideal of the ring p (~) and let a 

symmetric norm be defined on cr. Then for any operator XEO and 

a completely continuous operator Y such that 
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s. {Y) ~ c s. (X) 
J J 

j = 1,2, ••. , 

where c is a positive constant, it follows that Yeo and 

II Ylls S ell XII s . 

Proof 

If H x = (X* X) 112 and Hy = (Y*Y) 112 , then by the ass.ump

tion s. (Y) :S c s. (X) one can find a unitary operator V and a 
J J 

non-negative opera tor A£ ~ (j,;j) with IIA II S 1 (A can be that oper-

ator with eigenvalues equal to 

1 -c 

s. (Y) 
J 

s. (X) 
J 

or 0 if sj(X) = 0), 

So that H = 
y 

cAV H 
X 

-1 v 

where V maps some orthonormal basis of eigenvectors of H into 
X 

an appropriate orthonormal basis of eigenvectors of Hy. 

It follows from HY = cAV Hx v-l that HY£a and IIHylls $. c 11Hxll
5

• 

Now it follows that Y£a and Y = U H (the polar representation) 
y y 

3. For any symmetric norm II XII 
5 

defined on some two sided ideal 

a we have s 1 (X) ~ ~X~ 5 , and if dim X< oo, then also 

Proof 

L s. (X) • 
. J 
J 

In fact, let Y = s 1 (X)¢¢*, where¢ is an arbitrary unit 

vector ofjJ. Then it follows that the property (2) is satisfied 
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with c = 1, hence 

on the other hand, if dim X < oo, then we have 

X= I s.(X) ¢. ~·* 
j J J J 

!lxlls = II L s. (X) ¢. ~.*II • 
j J J J s 

Hence it follows from property (3) and (5) of a sym-

metric norm that 

Remark 

II XII 
5 

~ ~ sj (X) • 
J 

It follows from property (2) that the symmetric norm 

IIX lis depends only on the singular values of X, that is, if the 

singular values of x1 , x2 coincide 1 then l!x1 jj
5 

1 jjx2 lls also 

coincide. 

So, for every symmetric norm we have 

llx 11
5 

= <I> ( s
1 

(X) 1 s
2 

(X) ••• ) 

where~ (~ 11 ~ 2 , .... ) is a function of the non-negative vari

ables ~ .. 
l 

§B.3 Symmetric Norming Functions 

The case when a coincides with the ideal R of finite 

dimensional operators, the domain of the function ~ mentioned 

before consists of all non-increasing sequences{~.} of 
~ 
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non-negative numbers of which only finitely many are different 

from zero. 

Let c 0 be the space of all sequences ~ = · {~. }~ 
1 

of 
~ ~= 

real numbers which tend to zero. We denote by c the linear 

manifold of c
0 

consisting of all sequences with a finite number 

of non-zero terms. 

Definition B.3.1 

A real function~(~) = ~(~1 ,~2 , •.• ) defined on cis 

called a norrning (gauge) function if it has the following 

properties: 

" 
(i) <P(~) > 0 (~£C 1 ~={:0) 1 

(ii) for any real a, <P(a~) = lal ~(~} (~t:c), 

(iii) ~(~+n) ~ ~{~) + ~P(n) (~,nee), 

(iv) ~(1,0,0, ••• ) = 1. 

A norming function$(~) is said·to be symmetric if it has the 

property 

(v) 

A 

where~ ={si} is any vector from c and j 1 ,j 2 , •.. jn is any per-

mutation of the integers 1,2, ••• ,n. 

We bring here various properties of symmetric norming functions. 

" 
1. Let~= {~j} c, let 0 ~ pj ~ 1. Then ~(p 1 1 ,p2 2 , .. ) < ~(~) • 
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Without loss of generality, we may assume sj ~ 0 j = 1,2, ••• 

It is clear by induction that it is sufficient to prove the 

above conclusion when p. + 1 occur only for one j, i.e. 
J 

For 0 < P ~ 1, the conclusion follows from direct calculation: 

l+p 1-p l+p (1-p) 
= ~<--2--sl+--2--~2, •• ,--2--~i+ 2 <-~i>, ... > 

< l+P l+p 1-p 1-p 
- ~(--2-~1, ••• ,--2-~i, •• )+~(--2-~l' •. +--2-{-~i), •• ) 

< l+p ~(~) + 1-p -2- -2- <P { ~) 

< ~ (~) 

Lemma B.3.2 (K. Fan, L. Mirsky) 
A 

Suppose E:: = {~.} and n = {n .}£c. If 
1, 1, 

~1 ~ ~2 ? ... ?: 0, nl ?: n2 2: ?: 0 

then the set of inequalities 

k k 

I ~. < I n . (k=1, 2, .• ) 
j=l J j=l J 

is a sufficient and necessary condition for the relation 

to hold for every symmetric norming function. 



145 

Proof 

See [14] , [2 9] , 

Theorem B.3.3 

Let 1!·11
0 

be any unitary invariant norm on the ideal R of all 

finite dimensional operators. Then the equation 

c'P(s(A)) = !lAlla (A t:.R; s (A ) = { s . (A ) } ) 
J 

defines a symmetric norming function ¢(~). Conversely~ if ¢(s) 

is any symmetric norming function~ then the equality 

I !A llcp = c'P ( s (A J J (A eR J 

defines an invariant-norm on the ideal R. 

Proof 

See [ 18] . 

So for any two completely continuous operators A,B IIAII :S IIBII 
holds for any unitary invariant norm if and only if it holds 

for v-norms defined by 

\) = 1,2, ... 

We state the following lemma without proof. 

Lemma B.3.4 

Let P and Q be projectors. If I!PKQII ~ !IPLQjj and 

!I (I-P)K(I-QJII $ II (I-P)L(I-QJII for all unitary invariant norms, 

then I!PKQ+(I-P)K(I-QJII :S IIPLQ+(I-P)L(I-QJII for aZZ unitary 
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invariant norms. The converse will hold whenever PKQ has the 

samE singular values as (I-P)K(I-QJ and PLQ has the same sing

ular values as (I-P)L(I-Q) .. 
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