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ABSTRACT

It is known that when two subspaces éf a Hilbert space
are in some sense close to each other, then there exists a
unitary operator which is called the direct rotation. This oper-
ator maps one of the subspaces onto the other while being as
close to identity as possible. In this thesis, we study such a
pair of subspaces, and the application of the angles between
them to the invariant subspace perturbation theory. We also
develop an efficient algorithm for computing the direct rota-

tion for pairs of subspaces of relatively small dimension.

(iii)



To my husband

(v)



INTRODUCTION

CHAPTER 1.

CHAPTER 2.

CHAPTER 3.

TABLE

OF CONTENTS

The Separation of Two Subspaces

Section 1.

‘

Section 2.

Section 3.

Section 4.

Section 5.

The Aperture of Two Linear
Manifolds

The Idea of Source Space
Unitary Application of One
Space onto Another

Unitary Invariants for a Pair
of Subspaces

Extremal Properties of the

Direct Rotation

On the Operator Equation BX - XA =

Section 1.

Section 2.

Section 3.

Rotation of

Section 1.

The Matrix Equation BX - XA =
in the Banach Algebraqs of
nxn Matrices

The Operator Equation BX - XA

Where & is the Space of Bounded

Operators on a Hilbert Space.
The Operator Equation BX - XA

in a More General Setting

Eigenvectors by a Perturbation

Rotation of Eigenvectors by a

(vi)

Q

Q

Q

Page

23

30

43

43

45

53

55



Page
Perturbation in Finite
Dimensional Space 55
Section 2. Rotation of Eigenvectors by a

Perturbation in General 78

CHAPTER 4. Error Bounds for Approximate Invariant
Subspaces of Closed Linear Operators 94
Section 1. The Class of Hilbert-Schmidt
Operators 95

Section 2. The Separation of Two

Operators 98
Section 3. The Error Bounds 105
CHAPTER 5. Algorithms 114

Section 1. Definition and Properties of
the Bisector of P and Q 114

Section 2. An Economic Expression for U 119

APPENDIX A Polar Representation of a Bounded Operators 130

APPENDIX B Singular Values and Unitary Invariant Norms 133

BIBLIOGRAPHY 147

(vii)



ACKNOWLEDGEMENT

I express my thanks to Dr. Z.V. Kovarik for his
assistance and encouragement during the preparation of this
thesis. Without his help the completion of this work would
have been impossible.

Appreciation is due also to the Mathematics Depart-
ment of McMaster University. |

Finally, I thank my family for their support through-

out L]

(1v)



INTRODUCTION

Pairs of linear subspaces of a real n~-dimensional
inner product space of equal dimensions have been studied
since 1875 [21]. Since then, it is known that this pair of
subspaces has a number of angles equal to the dimension of
each of them as unitary invariants.. A treatment of the subject
in somewhat modern style isvin [16]1. The subject was devel-
oped by S.N. Afriat [ 1] and others. The extension to the case
of Hilbert space was completely analysed by C. Davis [8 ].

In chapter one, we study such a pair of subspaces of a
Hilbert space. We define the direct rotation which maps one
of the subspaces onto the other. This direct rotation was
introduced by C. Davis [8 ] and T. Kato[24],§81.4.6, 1.6.8].

The study of the direct rotation is greatly simplified
using the idea of a source space, and the operator angle ©.
Following [11], we present a detailed study of the direct ro-
tation and a complete set of unitary invariants of a pair of
Subspaces. We conclude this chapter by studying the exfremal
properties of the direct rotation.

In chapter 2, we study the operator equation BX - XA = Q
in different settings. We show that under certain conditions,
the equation has a unique solution. Also we give an explicit
formula for the solution in special cases. This equation will
be of later use in chapters 3 and 4.

Chapter 3 is devoted to the case when a pair of sub-

spaces consists of reducing subspaces of A and A+H where A

-1 -



and H are Hermitian operators and H is small in a sense spec-
ified in the text. Through this, we can shed some light on

the behaviour of eigenvectors under perturbation. In the
finite dimensional case, we give bounds on the difference be-
tween eigenvectors of a Hermitian matrix and those of a Hermi-
tian perturbed matrix. In the infinite dimensional case, a
Hermitian operator may not have eigenvalues, but still has
reducing subspaces; in this case, we give bounds on the differ-
ence between corresponding reducing subspaces of A and A+H in
terms of the operator angle ©.

Chapter 4 is mainly concerned with the generalization
of chapter 3 to the case where A is a closed (possibly nonself-
adjoint). linear operator and the generalization is done from
a different point of view.

Chapter 5 is devoted to algorithms for computing the
direct rotation and the angles between subspaces. We define
the angle bisector and prove some of its properties. We dis-
cuss and compare different methods for computing the direct
rotation and introduce an algorithm, which is efficient for
subspaces of low dimensions.

For the convenience of the reader, we include two
appendices which contain the background necessary throughout
the thesis. 1In appendix A, the polar representation of a
bounded linear operator is presented.

In appendix B, we give some known results about the
singular values of a completely continuous operator and the

relation between unitary invariant norms and the singular values.



CHAPTER 1

The Separation of Two Subspaces

§1.1 The Aperture of Two Linear Manifolds.

The concept of the aperture of two linear manifolds
was introduced»by B. Nagy [38], and independently of him,
by M.G. Krein and M.A. Krasnoselskii [27].

Let Jx be a Hilbert space, and let M and N be two

linear manifolds inﬁ# .

Definition 1.1.1

The aperture of two linear manifolds in¥ ie defined
as the norm of the difference of the operators which project
2{ on the closures of these two linear manifolds. This aper-

ture is denoted by S(M,N):

I

(1.1.1) s, ) = ||P-qll = |le-F|| = |l(1-P) - (I-Q)|,

where P and @ are the operators of projection onto M and W.
3 - .
i.e. P2 = P and P = P, range P = M, similarly for 4.
From this definition, it follows that

§(M,N) = &8 (KoM, JyY ON)

(2) 8§(M,N) £ 1, and equality holds if there exists a

(1) &(M,N)

nonzero element of one of these manifolds, which is orthogonal
to the other. This property follows from || (P-Q)h||? = ||P(I-Q)h -
(I-P)ohl[* = ||P(I-Q)h[|* + |[(I-P)oh||* = || (1-Q)h]|* + |icn||® = ||n||*.

Now, given any two subspaces of a Hilbert space, or



equivalently two projectors P and Q, we have the following

Theorem 1.1.2 ({241, p. 56)

Two orthogonal progections P and @ such that

|P-¢qll<1 are unitarily equivalent, that is, there is a unitary
operator U with the property Q = upu 7.

Proof
Let R = (P-Q)?2, then R commutes with P and Q. Sim-

ilarly (I-P-Q)? commutes with P and Q, since I-P is a pro-

[QP + (I-0) (I-P)] (I-R) 1/? =

1/2

jector. We define U

= (I-R) [QP + (I-Q) (I-P)].

172 is obtain-

U is well defined since [|P~Q || <1 so that (I-R)
able, say, by Maclaurin series. It is easy to show that U*U =
UU* = I and UP = QU, since R commutes with P and Q. From
(I-Q)UP = 0 it follows that UPX < QJy. Similarly (I-P)U*Q = 0
implies that U*Q}¥ < PJy, so that UP) = Q0, i.e. U is a

unitary operator, taking PJ onto QJ2y and (I-P)}f onto (I—Q)}f,

Remark 1

A sufficient but not necessary condition for the exis-
tence of such an operator U is ||P-Q| < 1. A necessary condition
is dim P2 = dim QJ¥. This condition is sufficient in the
finite dimensional case, but it is far from being sufficient
in infinite dimensional 3 . See (1.3.2) below.

An equivalent definition of the aperture of two linear

manifolds is given in [2] as follows:



Definition 1.1.3

8§(M,N) = max {sup ||(I-P)f|, sup | (I-Q)g|}

feN geM
I€l = 1 gl =1
where || (I-P)f ||= d(£,M), the distance between the point f

and M. The importance of this formula is that it can be
used to define the aperture of two linear manifolds in a

Banach space.

Remark 2

Other measures of the difference between the subspaces
PJ}{ and QJy are:
(1) For a unit vector x = Px, to find how large
Ox-x is, Davis [9] estimates the following:
sup{jox-x|; ||x| = 1, x = Px}, and
(2) sup {inf [[y-xf, |yl = 1; ¥y = aovl, || = 1, x = Px}
A much stronger result than theorem 1.1.2 was given

by Kato ({24],p. 57):

Theorem 1.1.3

Let P and Q be two orthogonal projections, with
M = R(P), and N = R(Q), such that ||[(I-Q)P|| = §<1.

Then there are the following alternatives: Either
(i) @ maps M onto N one-to-one and bicontinuously and
|P-qll = |l(1-P)Q| = |(1-9)P|| = 6; or (ii) Q@ maps M onto a
proper subspace Ng<cll one-to-one, and bicontinuously, <1f QO

18 the orthogonal projection omn N Thus

0



IP-0,ll = I (I-P) Q] =
= | (1-g) P} = | (z-Q)p| =8
le-o] = | (1-P)o] = 1.

§1.2 The idea of a source space

Throughout,@ﬁ will denote a separable Hilbert space.
It is known that bounded opefatbrs on &/ admit matrix repre-
sentations, completely analogous to the well known matrix
representations of operators on finite dimensional spaces.
We will specify subspaces of Xf by their projectors. Having
a fixed subspace PJ@'ofJQ/, where P denotes the operator of
projection on PJA/ , we will study operators on.%y in terms of
the orthogonal decomposition of % into P Q¥ and (I-P) . To

facilitate this idea, we define E K(EO)-+3# and

0
El: K(El) +J¥ , where EO and El are isometric mappings of
some new Hilbert spaces into ﬂq, having ranges R(EO) = PRXN
and R(El) = (I-P)Xf - Here K( ) stands for the source space
of an isometry, R( ) for the range and N( ) for the null
space.
Now E"‘OE0 = I, EOEO* = P, R(EO*) = K(EO). Since N(Eo*) =

R(EO)"' = (I-P)X , one has Ej*E; = 0. Similarly E,*E, = I,
ElEl*_= I-P, R(El*) = K(El) and El*EO = 0. Now every xe gy
can be written as x = Px + (I-P)x. If we can write Xy = Eo*x
and x, = E,*x, then

1 1



(1.2.1) X = (EO El) X, = E0 X + El X -
X1
But (E0 El) {Eo* X = X for any xely
E *
g (7 %= = )
and EO (E0 El) X xo
*
Ey X Xy
Thus (E. E.)L = (g *
0 1 0
*
Eq

The corresponding notation for operators is

*
EO

*
El

= \
(1.2.2) A (E0 El) AOO AOl

Rig. Byg

This equation defines the new operators appearing in it,

i.e. AOO = EO* A E0 is an operator from K(EO) to K(EO) and
= All = El* A El is an operator from K(El) to K(El);
similarly AOl = EO* A E1 from K(El) to K(EO) and

Ayg = E;* A E, from K(Ej) to K(E,) .

If we agree that the sign ~ is to be read as "is
represented by", we can rewrite equations (1.2.1) and (1.2.2)

as follows.



]
X = xO ¢ A AAOO AOl
*1 B0 P
o o 0

The usual rules of matrix multiplication are appli-
cable here. However, the notion of representing operators on
& by 2x2 block matrices becomes treacherous, because there

is more than one way to represent them.

§1.3 Unitary Application of One Subspace Onto Another.

To say that two subspaces are close, we must see how
one can be changed to the other by a unitary transformation.

The unitaries V in question, will then be those such that

(1.3.1) VP = QV,
consequently V(I-P) = (I-Q)V.

Thus the dimensions agree:

dim P2y = dim OF,
(1.3.2){

dim (I-P)) = dim (I-Q)XN.

In 81.2 we gave a representation of operators in terms

of the decomposition by EO and El. Similarly, when decomposing

N according to QXN and (I—Qxy . we can define FO: K(FO)-+3$ ’

Fl: K(Fl) 4-3y. These are isometric mappings of the new

Hilbert spaces into® , with ranges R(Fy)) = Qif and R(F;) =



-0) % * = * = -
(I-Q)4 . Here FOFO Q and F,Fy I-Q. Henceforth, all

operators will be represented in terms of the decomposition

by EO and El' but never in terms of FO and Flz
-_— x
P= (E, E [1 ] E, } ;
*
0 El
i1.e. P~ |1 ’
0
= * = ( * * =)
Q FOFO (E0 El) EO QE0 E0 QEl E0
* * *
El QE0 El QEl El
Thus
~ * * * * 3
(1.3.3) Q =~ E0 FO FO EO EO F0 FO El
* * * *
El F Fo E0 El F F0 El

Assuming that the dimension conditions (1.3.2) are
satisfied, we conclude that there exists a unitary solution
of (1.3.1). Actually, (1.3.2) implies the existence of two

isometrics W., j = 0,1 from K(E.) onto K(F.), i.e. W.W.* = W.*W..
J ] J 13 J J

* * . e
FO WO E0 + Fl Wl El . V satisfies (1.3.1)

and W, = F_* VE., jJ =20,1.
J ] J

We then define V

Now it follows that any two unitary operators taking
P2 onto Q) will differ only by a unitary transformation

within the coordinate subspaces.
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Let us name the entries of a unitary solution V of

(1.3.1):
VvV > ‘CO —Sl
S ©1
where
- - E 3
CO S1 E0 v (E0 El).
*
S5 & By
On the other hand,
(m * * 1 = * *
EO F0 E0 Fl W0 0] EO v E0 E0 v E1
* * B o* *
El FO El Fl (8] Wl El v EO El v E1
Thus
( - - *) = * * (
(1.3.4) CO Sl EO v (E0 El) E0 FO EO Fl WO
* * *
S0 Cl El El FO E1 Fl 0

Since V is unitary, the relations between the entries are

* ~ [ * %* - * * -
(1.3.5) V*V = Co*Cy + S,*S, C, sl + 8, cl] 1 0
- * ¥ * *x
\51 c0 + cl s0 sl s1 + cl clJ 0 1
* ~ [ * * * - x| = B!
(1.3.6) VV* = COCO + slsl cos0 slc1 [1 0
* - * * *
\SOCO clsl sos0 + clcl [o 1

Note that C. = E.* F, W., § =0,1.
j j j Yy d ’

Thus C.C.* = E.* F, W, W.* F.* E, = E.* F, F.* E,
J 3 J J 3 3 J J J J 3 J

and C.* C. = W.* F.* E. E.* F, W..
J J J J J 3 ]
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So as W. varies, CjCj* does nét change, while Cj*Cj changes
by a unitary transformation. Similarly, as Wj varies, Sij*
does not change while Sj*Sj changes by a unitary transformation.
This means that, as Wj varies, the singular values of Cj and

Sj do not (Appendix B).

We now define

(1.3.7) Gj = arc cos (Cjcj*)l/2 20, j=0,1,

and we define an operator © 2 0 upon & , by

(1.3.8) 0 = (E E.) (o 0 E*\=E90E*+E®E*

0 1 0 0 0 0 1171

We take various norms of trigonometric functions of
@ or Oj as measures of separation between subspaces PX and
QJy. Note, from the previous discussion, that Oj is dependent
only on P and Q, and independent of the choice of vectors

within the subspaces.

befinition 1.3.1 [11]

0

S c

A unitary solution V ~ (C -Sz\ of the equation
s

VP = QV is called a "direct rotation" from P to Q@ , if

it satisfies the following additional conditions:

v

(i) ¢,

.. B X
(17) Sz = SO

0 and C] 20
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Definition 1.3.2 [11

The subspaces PJQ and QQy are said to be in the

"acute case", if

P n(I-Q)x = (I-P) J n @ X = {0}

Throughout, we will assume that relation (1.3.2) is satisfied.

Theorem 1.3.3 [11]

In the acute case, the direct rotatiom exists and is

unique.

Proof:
From (1.3.2) it follows that there exist isometries

l: K(El) > K(Fl). Setting
= * * i a i = .
v FO WO EO + Fl Wl El ; V will be unitary and VP Qv For

the operator C

W, : K(EO) - K(FO) and W

o’ K(EO) > K(EO), the polar representation

(Appendix A) is

1/2 1/2
= * — *
Co= 2o (Co* Cp) (Cq Co™) 20
where Z0 is a partial isometry uniquely determined from
R(CO*) onto R(CO). We now show that Z, is in fact unitary,
i.e. N(CO) and N(CO*) should be zero. Let xOEN(CO), thus
X = [onePﬁy satisfies VXEQ XY since VP = QV.

0 Jon the other hand,

~ - )] = = I
vx = [c, sl] 1XOJ [COXO} 0 ]
S C 0 SoxD S %

00
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But [o } e (I-P)Y -

S0%p

Thus Vxe (I-P)J n Q3¥ = {0}

This means that the equation Vx = 0 implies x = 0 and hence

X, = 0. Similarly, if xOEN(CO*), then x = xo]e PX and
0
*p = * * { = *y ) -
V*x C S4 X Co*%g) € (I-P) Y .
- * * — *
517 G 0 1 %o

Thus x = VV*x ¢ (I—Q)J{, since V(I-P) = (I-Q)V, and

Xxe PA n (I-QY = {0}.

This implies that N(CO*) = {0}, and Z, is unitary. Similarly,

by considering the polar representation of Cl' we get

1/2 1/2 . .

= * - *

Cl Zl (Cl Cl) (ClC l) Zl where Zl is an isometry
from R(Cl*) onto R(Cl), which is in fact unitary, since both

N(Cl) and N(Cl*) are {0}.

Let U = VZ-l, where

0 Z

7 = {zo 0 ] , o727l = ogx =
0 7

‘7 %k 3
Z0 0 J

*

1

It is clear that
(1) U is unitary, since it is the product of two unitaries,
(2) P reduces Z-l i.e. pz7t = Z—lP,
(3) UP = QU, since

UP = VZ “P = VPZ ~ = QVZ

00 11
%* *
SOZ0 C,Z

So U = |[C -S fg * 0 = {(c .z * ~S. 7 %1
3
1 191
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v
o

1/2
* * =
Then COZO (COC0 )

*
€12y

\4
o

1/2
(ClCl*)

Thus, starting from an arbitrary V, we construct U.
The uniqueness of U follows from the uniqueness of the polar
representation of C0 and Cl (Appendix A). To show that

S1 = SO*, we put V = U,

i.e. cj 2 0, zj =1, j =0,1

From equations (1.3.5) and (1.3.6), we get SO*Cl = CO*Sl,

and this implies that SO*Cl = COSl. Similarly, we get

COSO* = SlCl. Eliminating S,.* from the last two equations,

0

we get

4 _ 2_ 2 _ 2, 2 _ 4
Now CO Sl = C0 CO S1 C0 ulcl = SlCl . Thus
2 .

0 )Sl = Sl L(Clz) where f is any polynomial, hence it is

true for any continuous real function £ on [0,1]. Thus it

£(C

is true for the square root function,

i.e. COSl = Slcl
. . _ % .
This implies that slcl SO Cl’ which means that Sl
and SO* agree on the range of Cl‘ Since R(Cl) is dense in

K(El) in the acute case, we finally get S, = SO*.

Theorem 1.3.4 [11]

In the non-acute case, a direct rotation exists, <if

and only <if
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(1.3.9) dim PJJ n (I-@)kf = dim (I-P)X n Q¥ -
In this case, the existing rotatior is not unique.

Proof:
Suppose that (1.3.9) is satisfied, the proof goes

similarly to that of the acute case, starting with a unitary

v = Co —Sl , which is a solution of VP = QV.
[SO C1
The polar representation of C.; C, = 2,.(C,*C )l/2 where 2
0" 70 0°"70 "0 ! 0

is a partial isometry from R(CO*) to R(CO). " That is, Z0 is
determined except for N(CO).

We claim that N(Co)represents V_l((I—P)iv n QX)) in
the sense described in §1.2. For that, suppose x0€N(CO),
x = [x

0

0], so x€P) , and VX = VPx = QVx, which implies that

Ver]{; further

Vx

12
—
n 0
o o
I
QO W
=
“— -
—
(=
o
————
|
—
n o
o
14
o
—

so that Vxe(I-P)X .
Thus Vxe (QJ n (I-P)X ) and xeV *(Q ¥ n (I-P)X ).

' On the other hand, suppose that st_l((I—P)h’n QH) -
so Vxe(I-P)&y n QJ.

This means that VXEQRH , i.e. er_lQ3¢ or xePly . Thus

. - -
Vx [Co sl] [XOJ [COXO] ,
S0 Cl 0 SOXO
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which implies that COXO = 0, since xe(I-P)) . Thus N(CO)

1

represents V = ((I-P)X n Q%) . Similarly N(C,*) represents

P& n (I-Q)F , N(C;) represents V 1 (PJ n (I-Q)%/) and N(C;*)

A

represents (I-P)A n QJ¢. But, by our assumption,
dim((I-P)J n QXN) = dim(Pl n (I-Q){ ).

so that Z, can be extended to a unitary, and it will take

0
N(CO) onto N(CO*). This extension is not unique.

By the same argument, the polar representation of Cl

R(C,*) - R(Cl) is a partial

. 1/2
= * -
is Cl Zl(cl Cl) ;, where Zl'

isometry, determined except on N(Cl). Since dim N(Cl) =

dim N(Cl*), we can extend Z, to unitary, in such a way that

1

the second requirement of the direct rotation will be satis-
fied. Now, since N(CO) represents V_l((I—P)ﬁy n Q) and

N(C,*) represents (I-P)& n Q }f and S K(EO) > K(El) where

0:
maps N(CO) isometrically onto

1

- *
SO El VEO, we have that SO

N(Cl*). Similarly, we can show that S, takes N(Cl) isometri-

1

cally onto N(CO*). Thus, we extend Z, by defining it to be

1
-1 . -1
SOZO Sl on N(Cl)’ and we claim that SOZO S, maps N(Cl)
isometrically onto N(Cl*). Since S1 maps N(Cl) isometrically

0
and S0 takes N(CO) isometrically onto N(C

onto N(CO*) and z, 1 takes N(CO*) isometrically onto N(CO),

l*), the claim is

justified."

As in the previous theorem, let
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vz .

N
]
—
]
(=]
o
[
| S
jA))
3
o
—t
D
r-‘-
c
Il

As before,

(1) U is unitary,

-1
(2) P reduces 72 —,

(3) U satisfies UP = QU.
In addition, we have
(4) For XePX n (I-Q)k or xe(I-P) ¥ n QJf, we have U2x = -X.

To prove that, let xePXN n(I-Q)Y , which represents
-1,2

N(CO*), so x = [XO) ; where xOSN(CO*)° Since'sz = (V2 7)° x,
0
we get
~ ¢ -1 -1 42 ¢ _
U'x o2 S, 2y } 1xo) =
-1 -1
(502 Cc,%q 0
.
-1.2 _ -1 -1
(COZ0 ) X SlZl SOZO X
-1 -1 -1 -1
| SOZO COZO x0 + C1Zl SOZO x0
Since 2 -1 X, € N(C.), then C_.Z -1 x~ = 0 and
0 0 o'’ 00 0
-1 -1 _ -1 e i
SOZO COZO Xy = 0 and SOZ0 Xy € N(C1 ) implies that
-1 -1 _ . -1 %
Clzl SOZO Xy = 0. Now since Zl maps N(C1 ) onto N(Cl),
-1 . -1
VA * -
and S0 0 Xy € N(Cl ), and since Zl SOZO Sl on N(Cl), we
-1 -1 -1
Z = * * * —
get 1 Sl Z0 S0 on N(Cl ), and SlZl SOZO X,
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-1 .
* *
Slsl ZOSO SOZ0 Xq - From equation(l.3.5), we know that

* - * = *
S0 S0 I on N(CO), and SlS1 I on N(C0 ), so
-1 -1 _
slzl SOZ0 x0 = XO' and
( 2 _
Ux - l—xol iT.e. U x = -x
0

Similarly, for xe(I-P)& n QX we get the same result.
It is clear that U = VZ'_l satisfies the first condition
of the direct rotation. To prove that it satisfies the second

condition, we reformulate the question as follows. If V

satisfies (4) and C, 2 0 and cy 2 0, then Sy* = S;- 1In other
words:
= - 2 >
S C1
and let sz = -x for any xePX n (I-Q)JY , or xe(I-P)Jy n QX¥.
. . . — * * =
Since V is unitary, we have COSl S0 Cl and COSO SlCO'

by the previous arguments as in the acute case.

= * i *
We have Slcl S0 Cl which shows that Sl and SO

agree on R(C,). Since R(C;) = N(Cl)land K(E,) = R(Cj)eN(C,),

the proof is complete if we show that Sl = SO* on N(Cl)'

For that, let x. ¢ R(cl)l

= =
1 N(Cl) SO X 0 ’
X1

xe (I-P)X n QJy.

Thus V2x = ~-x,
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- 3
i.e. Vx =-V*x, Vx = { Slxl} = I 1 l} "and
C

= S *x and

Thus, for any x, € N(Cl), we have Slxl 0 Xy

1

this means that S, = S.% on N(Cl).

1 0
To prove the converse, suppose that, there exists a

direct rotation U = C, -Sl‘ » where C, 2 0, cq 2 0

S0 ©1

* =
and S0 Sl'
fied. We have to show that, to every x € P¥ n (I-Q)X .

It is required to show that (1.3.9) is satis-

Ux £ (I-P)JH n Q% , and that for each Uy € P¥ n (I-Q)% .

y e (I-P) n Q}Y. To do that, let x € PX n (I-Q)% .

~

' — 1 * — 1 * =
i.e. x [XO] » where x; € N(Cy*) N(C,), since C Cqy-

0 0

0

Now, since N(Co)represents U—l((I-P)ﬁy n QK ), it follows that

Ux € (I-P)JY n Q) . Let Uy € (I-P)K n QX, thus Uy = [o ] ,
1

b4
* = = * oy * .
X, € N(Cl ) N(Cl). But y U* Uy Cy S0 0
-Sl C1 xl
( * = * B! g -
Sy*xq S0 %)) - But So*xl > N(CO*), thus vy ¢ PN n (I-Q)XN .
C.x 0
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Now, unless otherwise stated, we will assume that
(1.3.9) is satisfied. Thus the direct rotation will always
exist, and rather than with the more general V, we will deal

with its direct special case

U= (c -8, . *) ; C. 20 j = 0,1,

Since UP = QU, we get Q = UPU¥,

%
0 Co50

*
00 5050 .

By direct computation, we have

_ T ) )
(20-1I) (2pP-1) ZCO 1 2COSO 1 0
K - -
LZSOC0 ZSOS0 lJ 0 1
. 2
= - — 'k}
2C0 1 2COS0
- *
MZSlCO 1 ZSOSO J
On the other hand,
2 - 2 - * - % - *
U = CO SO S0 COSO S0 Cl
2
- *
SOCO + ClSO SOSO + C1
_ 2 _ _ *
= ZCO 1 2COS0
— X
kZSOC0 1 2SOSO

This follows from (1.3.5) and (1.3.6).
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Thus

(1.3.10) w2 = (20 - T) (2P - 1)

We remark that any direct rotation of PX to Q) is

a principal square root of (2Q-I) (2P-I)

i.e. a unitary square root, with spectrum in the right half
plane. This is because our constructed direct rotation of

PN to Ql}y satisfies (1.3.10)

12
Q
w0

*

: > [ -C % *
Since U CO S0 ’ U

S C -S C ’

which gives

0

U + U* = (2¢ 0 2 9.
o

v

This implies that A + A 0 for any X2 in the spectrum
of U. But the spectrum of U lies on the unit circle, and this
implies that it lies in the right half plane, (in general,

the spectrum of a unitary lies in the right half plane if and
only if U + U* 2 0). So, if P and Q are given, then U2 is very
easy to compute by the above given constructive definition of U.

We now relate the operator angle O given by (1.3.8) to the

direct rotation,

i.e. Oj = arc cos Cj, i=20,1.
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From (1.3.5) and (1.3.6), it follows that SO*S0 =

1l - C02 and SOSO* =1 - Clz. Since SO*S0 and SOSO* are iso-
metrically equivalent if restricted to the orthogonal comple-
ment of their null spaces (Appendix B), it follows that Cj2
must be isometrically equivalent except for their eigenspaces
belonging to the eigenvalue 1. Since Cj = cos Oj, then the
two operators Oj’ j = 0,1 must be isometrically equivalent
except perhaps for different dimensionalities of their null
spaces. Let 6, 2 9, 2 ... be the singular values of 0, then

the nonzero singular values of 0 are the same, but each

occuring twice.

i.e. el, 61, 62, 82, .es
The polar representation of SO: K(EO) > K(El) is
1/2 2 2
— X * - —_ = — =
Sy I (S0 SO) (where S5*S, 1 <y 1 cos” @,
L2 _ .
sin OO), so that SO = J0 sin 60,
. . . 1/2
here Jy 1s a partial isometry from R((SO*SO) onto R(SO),
i.e. From R(SO*) to R(SO).
s * - * - S
Since N(S0 SO) N(GO), one has R(S0 ) R(OO).

Similarly, R(SO) = R(Ol).

Now S0 = (SOSO*)l/z JO. (Appendix A), and we may write

1/2
* = %* *
SO JO (SOSO )

* s
J0 sin @l ,
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where JO* is a partial isometry from R(Ol) to R(OO).
If we put
= [ -J *
J 0 J0
J0 0 ,

then J is defined uniquely on R(0), and we put J = 0 on N(O).

. ~ - * . - T% 1
Since U CO S0 cos 00 J0 sin Ol
\SO C1 J0 sin 90, cos Ol
o~ A} - :
U cos @0 0+ o0 Jg sin Ol
0 cos@l kJ0 sin 90 0
= Va4 { -7 * (<4
coSs OO 0 '+{ O J0 sin @O 0
0 cos Ol \ J0 0 0 sin Ol

So U = c¢cos O + J sin 6. ©Now, it follows that

2 . 2, 2 . .
cos” 0O = EOC0 EO + Elcl El ; while
from (1.3.10) we have
cos® 0 = PQP + (I-P) (I-Q) (I-P)
sin? 0 = P(I-Q)P + (I-P)Q(I-P)

(P—Q)z.

So, given P and Q, we know how to construct Oj.

§1.4 Unitary Invariants For a Pair of Subspaces

It has been known for many years that two m-dimen-
sional subspaces of real n~dimensional inner product space

have m angles as a complete set of unitary invariants [16].
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By unitary invariants we mean a set of objects to be assigned
to any pair of subspaces PX and QX , and such that P
and QX can be carried to (PX)' and (QX )' by an isometry
of 4 , if and only if the same set of objects was assigned
to (P )' and (Q%)' as to PX and QK.

We shall give a complete set of invariants for the
subspaces PJX and Q& in terms of the eigenvalues of ©

0

and @l (multiplicity counted).

Theorem 1.4.1 [11]

Consider a pair of subspaces Pjy and ij subject to

dim PX = dim QY and
dim[PJ/ n (I-@) 1 = dim [(I-P)KX n Q&R ]

and such that P(I-Q)P is compact. A complete system of
invariants under isometric equivalence is afforded by the

eitgenvalues of 9, and 0, (multiplicity is counted). The

etigenvalues Gi, 7 = 1,2,... of OO are an arbitrary sequence,
satisfying % 2 8, 2 0, 2'... and approaching zero, together
with a possible eigenvalue 0. The eigenvalues of 61 must be

the same, except perhaps for the multiplicity of 0.

For proof see [1l1l]

It is known [35] that, given two 2-dimensional subspaces
PXf and Q;V of 4-dimensional spaceg@f r intersecting in a
single point 0, then there exist 2-dimensional perpendicular

subspaces Ml and Mo, intersecting at 0, each intersecting PJ¥



25

and Q J perpendicularly in a line. The angles 6, (0<6i<ﬂ/2),
between Mi n P&y and Mi n QXxf (i=1,2) may have any values
independently. These two numbers are determined uniquely, by
the Figure of PDV and qu'. This determination is up to a
congruence .

The previous theorem shows how this behaviour gener-
alizes to higher dimensions. But in the general case, we
have to modify it by the fact that © may have a continuous
spectrum. (Note that for any normal operator, the residual
spectrum is void). Other obvious properties are given by the
following theorem, where by 2(+), we denote the spectral resol-

ution of 0, as defined in [33].

Theorem 1.4.2. [11]

O commutes with P, with &, with J and with U described
in Section 1.3. For every eigenvalue 0 of 0O, the eigen-
vector x satisfies¥(xz,Ux) = 6. In the acute case, for every
etgenvalue 8, the eigenspace Q({0})N <is the unique maximal

subspace, with the following properties:

(a) It reduces P and Q.
(b) For every nonzero vector xePl , lying in QU{0})N, ¥(x,Qx) = 6.
(c) For every nonzero vector x of (I-P)N , lying in Q({06})XN,

¥z, (I-Q)x) = 0.

Proof. Since 0 = {0 o}y , J =

{ {
| |
lo 01 lJ 0
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then J commutes with @, if and only if

That is JOOO = @lJO.

0 0 0 150
R(@l) .

But S, = J. sin @, = sin 0, J, , where J0 takes R(@o) onto

By an argument similar to that given in the proof of theorem

(1.3.3), we get JOOO = OlJO.

To show that 0O commutes with P, we have

QP = (EOOOEO* + El@lEl*) EOEO*
= EOGOEO*,
PG = EOEO* (EOOOEO* + ElOlEl*) = EOOOEO*
Since U = cos O + J sin 0O, and noting that J3 = -J,
JZO = -0, and J commutes with 0 we even can write U = exp JO.
Now that U commutes with © follows since J commutes
with 0.

Q = UPU*, and both U and P commute with 0, thus Q
also commutes with 0.

Suppose now that we are in the acute case. Let 6 be
an eigenvalue of 0, and x a corresponding eigenvector.
i.e. Ox = O6x. Now OO and Ol have the same nonzero eigenvalues,
so 0 is an eigenvalue of OO as well as of 0O

ll

and x < X where
X

1
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x,. and xl are the eigenvectors of @0 and @l corresponding

0

_ _ Re (x*Ux) _ [x*(U+U*) x]
to 0. Thus ¢(x,Ux) = arc cos T=I Tox[ arc cos ARE

* * * * * *
arc cos %._ [(xo E0 + xl. E'l‘ ) 2A(E0C0E0, + ElclEl ) (ono + Elxl)]
=] *

* *

arc cos X0’C0X0'+'xl C1X1 = arc cos (cos 0) = 8.

(B3

Let Q(.) be the spectral resolution of 6. Since P
and Q commute with 6, each member of the spectral resolution
of © commutes with P and Q, and in particular Q({6}) commutes
with P and Q. This proves part (a).

(b) If x 4 0, xePX n Q({6})% , then

0

~ \ =
x XO , where © X exo
0

Hence (cos Oo) X (cos B8) x

0o~ 0
i.e. Cox0 = (cos B8) xO
From Q =~ fc 2 C.S. *
0 00 !
*
SoCo 5050
we have
2 _ * = * 2
| ox|| X*Qx X0*Cy %q
= x4* cos?® 8 Xg = cos? 0 |x| 2,
i.e. j|ox|| = cos @8 ||x||, and finally
*
¥(x,0x) = arc cos ¥ gx = arc cos Ox)) _ 8.
x|l jox| | x|
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(c) For x % 0, xe(I-P)& n Q({6})% , we have

~

> f = =
b 4 0 and elxl 8 x, cos Ol X cos 6 x
*1

Similarly as in proving {(b), we can show here that

1

¥(x, (I-Q)x} = 9.

To prove that Q({0}) is a maximal subspace satis-
fying the properties (a), (b) énd (c), we assume that x is
a subspace of Jy , which is not included in Q({eh)X , and ¥
satisfies (a). We will show that x satisfies neither (b)
nor (c). Since ¥ % Q({61% , then there exists xex, having
a nonzero component in (Q({G})J{)l, Since yx reduces P and Q,
and cos? @ = PQP + (I-P) (I-Q)(I-P), then y will reduce
cos? @, and thus reduce every spectral projector f(.) of 0;

in particular it reduces Q({6}) and by our choice of x, we

have x - Q({8})xey.

The assumption about y implies that there exist ¢l

and ¢,, where ¢, s ¢, < B or 8 < ¢ £ 4., and such that

2[
0 F Q([¢l,¢2])x = yex. Now not both Py and (I-P)y are zero,
and both are in x. Since Q(.) commutes with P, we can assume

that there exists a unit vector z = Q([¢,,0,]1)2ePH n x.

Therefore

~ ~ | ~
z Zy| - Qz C0 zO ;, Uz = Coz0
0 S C =z S5,z
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and it follows that Qz = (cos 0) (Uz},

* = * 2 z 2
z*Qz Z, C.0 2y € [cos $,¢ COS ¢l]

loz]2 = (Uz)* cos? © Uz = z* U* cos®? 0 Uz
= z* cos®* 0 z € [cos” by cos? 9,1

2
os ?l

. 2 Cc
Now cos €(z,0z) = f%%ﬁ = #%;%_ 2 cosztb2

This is true for any ¢, < ¢, < 6, such that Q([$,,0,1)x + 0.

We can choose, a fixed ¢; ¢l < ¢ < ¢2, with ¢2 - ¢l arbitrar-
Z
ily small, such that °°% %2 > cos s.
coszcbl

The property (b) is then violated. Similarly, pro-

perty (c) may be shown violated. This proves the theorem.

Remark.

If the roles of P and Q are interchanged, then the

relation

cos? 0 (I—P—Q)2 shows that © remains the same,

while U* (P,Q) = U (Q,P).

So J(P,Q) = -J(Q,P).
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§1.5 Extremal Properties of the Direct Rotation

In this section, we will study the properties of the
direct rotation as introduced in definition 1.3.1. We will
assume the hypothesis of theorem 1.4.1 to be satisfied, so

that for any unitary, taking PJy onto QX , the eigenvalues

ei of 0. and O, (where 6, 2 6., 2 ...) will be invariant. We

0 1 1 2
have already shown that

cos O + J sin O

(20 - I) (2P - I)

o
Il

The first of these equations; gives the relation between 0 and
the direct rotation, while the second one tells us how to
construct U given P and Q. We should mention that [31,§105], a
partial isometry also denoted U, was defined which maps P J
onto QJ . In fact, it coincides with the direct rotation on
PX . We refer the reader to [31, §136 ] for the application
of using U in perturbation theory. From theorem 1.3.3 we

have (back in our notation)

fc -5 * z 0)
gz |0 Ol ,v=uz, 2210 )
Sy c, 0 7,
Remark 1l: We have
C.% -5 % 71
(1.5.1) v = { 00 0 1
5020 €1 %

n
-
I
0
N
n
*
N

3
Thus I -V 070 0 "1
-S.2 I -C.7% J
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and (I-v)P = [ 1 - COZO 0 )
= SOZ0 0
hence
[(I-V)P]* = (I = ZO*C0 -ZO*SO*
0 0

So, the singular values of (I - V) (1 - V)Plpﬁ

PH =
are the nonnegative square roots of the eigenvalues of

- - x - - %* -
[(I-V)P]*[(I-V)P] I ZO*C0 ZO*S0 I COZ0 0

0 0 -S.%Z 0

on

i.e. the eigenvalues of (1-Z *CO)(l—C ZO) + Z.*S

%
0 0 075075020

K(EO)O Since CO2 + SO*S0 = I on K(EO), the singular values

of (I-Vv) are the nonnegative square roots of the eigen-

| X
- - *
values of 2 I COZ0 ZO C0 on K(E0)°

Remark 2. Since % P(V + V*¥)P is a Hermitian operator on

PQ#, it has a complete set of eigenvectors. Call them

le Vzl o5 0

Since % P{(V+V*)P

I

STl

* LAVA 1 *
By (Eg*V Ej + Eg*V*E)) Ej

%
’

!
N

*
EO(COZ + Z CO) E

0 0 0

1

the operator E(COZO + ZO*CO) has a complete set of eigen-

vectors v v on K(EO), such that

01" “g2' °°°
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Since for any unit vector xePJ{, x = [XO] ’

0

and since cos ¥ (x,VX) = Re x*Vx = %X*P(V+V*)PX

:é* *‘ * *

5% (EOE0 ) (V+V )(EOE0 )%

—-.].'.. * *® * *

= 2(E0 X) (COZ0 + ZO CO)(EO X)

=14 * = x % L *

= 3 X, (COZ0 + Z0 Co)x0 = X 2(COZ0 + Z0 Co)xo,
the vectors Vox are the eigenvectors belonging to the eigen-

values cos ¢l < cos ¢2 £ ... Of %—(COZ0 + ZO*CO),

where ¢k = ¥ (vk, Vvk),

Now, if U =V then 2, = I and ¢k = g, and v will

0 k 0k
be orthonormal eigenvectors Uk of COw Now, the eigenvalues
1
- - * - R * -
of 2I COZ0 Z0 C0 2[1 2(COZO + ZO CO)] are 2(l-cos ¢k)

(Spectral mapping theorem [12]).

Thus, by remark 1, the singular values A, 2 A, 2,

of (I—V)lpﬁi are related to ¢k by

(1.5.2) Akz = 2(1 - cos ¢,),

that is,

2 sin 1

M 7 Oy

Il

, _ N
Alsq, if v U, then Ak = 2 sin 5 ek.

Using the above remarks, we can prove the following theorem.
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Theorem 1.5.1 [11]. Given any unitary transformation, which

maps Py onto QXN , then there exists an orthonormal bastis

Vv, J)=z8

Vo sVgse s of P&, such that for all k, ¥ (vk, % x

Proof. By the minimax principle

_ Inf sup _
(1.5.3) A = X x | (z-v) x| ,

where the inf is taken over the (k-1)-dimensional subspace
x of PN , and the sup is taken over unit vectors xePN © ¥
i.e. those elements-of PX which are orthogonal to yx .

Fixing X for which the minimum is attained (this
is guaranteed under the hypothesis of Theorem 1.4.1),
there is at least one unit vector xePX © x, which is a
linear combination of the first k eigenvectors

\ {

~ u ~ u ~ u

ul [ OlJ ’ u2 I 02J10~¢luk l Ok], of PUP IPJQ’ .
0 0 0

Note that % P(U+U*)P = PUP since U*

(2P-I)u (2P-1I).

Since Ak is related to ¢k by equation (1.5.2), one has
sup
¢k eDPN 9X (y, Vy) 2 ¥ (x,Vx).
?’Y” =1
k
(1.5.4) % 2 ¥ (x,Vvx), x = Z ajuy -

Now, it is enough to show that ¥ (x,Vx) =2 6, = ¥ (uk,Uuk)



34

Suppose 0x + 0 (otherwise x will be orthogonal to Q.
i.e. x is orthogonal on Vx, and ¥ (x,Vx) = m/2, and by

Theorem 1.4.1 it follows that 0 < Gk < gw which gives

¥ (x,Vx) < ek). From (1.5.2), it follows that ¢k will be
minimized if A, is minimized. i.e. if |x-y|l is minimized
where vy € QKX , |lyl = 1. But since inf |x-y| is

yeQ¥

Iyl =1

attained at y = 0x/]|0x|, it follows that

Ix - vx| = ||x - ?gxl . This implies that
(1.5.5) ¥ (x,Vx) 2 ¥ (x,0%)

We now relate the right hand side of the above inequality

to ek; this will depend upon our particular choice of x:
*Qx X*Qx 1/2
cos ¥ (x,0x) = Re ¥ = = (x*Qx) .
Toxl = Tox] 0
Since x € P}, then x = Eq Xy and cos ¥ (x,Qx) =
1/2
*E %
(xO EO Q ono) .
But Q0= f(c.? C.S. *
0 070
*
500 5050
Thus cos ¥ (x,0x) = (x,*C 2x )l/2
0 70 70
Since u reees g are the eigenvectors of PUPfor, corres-
ponding to the eigenvalues cos 91 < ... £ cos ek, and
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since x ¢ [u,,u .,uk], thus x,. ¢ [ ] where

177200 0
Uppre-erlg, are the eigenvectors of C

uO]_'uOZ' ...,uok

0 corresponding to

the eigenvalues cos 6, < cos 6, < ... < cos 6, . Since
17y 2 K
= 2 - 2=
X, zo Ej qu' where § | .| ”xO” 1, then

3 j=1

k k
cos ¥ (x,0x) = (] |&.|? cos? 0.)1/2 < [} |E.|2)coszek]l/2
j=1 J j=1

= cos ek.

Combining (1.5.4) and (1.5.5) with the last inequality,
we get $e = 0x for any k, and this means that there exists
an orthonormal system which is efficiently moved by U, or
equivalently the singular values of (I_V)IPgi are minimized
when V = U, or by observing from (1.5.3) that Ak is the
minimax value of the distance a unit vector in P is moved

by V. This distance is minimized when V = U.

Corollary. For every unitary invariant norm, -|| (I-V)P||

18 minimized when V = U.

Proof. Since for every unitary invariant norm, H(I-V)PH
is a monotone function of the nonzero singular values of
(I-Vv)P, and by the previous theorem, the singular value

Ak of (I-V)P is minimized when V = U. The corollary follows.
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Theorem 1.5.2. Given any unitary operator V which maps

P onto QQ{ and given any orthonormal basis

{”1’”2""} of PX , we have

kzl sin® $ (v, Vo) 2 kzz sin® 6,

(1.5.6)

Proof. Since v, € PY , V) = [VOk] we have
0

2
) sin? ¥ (v, Vv) = ) [l-cos ¥ (Vi Vv )]

k k
2 2
= - % - - * *
% [1 (Re vy ka) ] £ [1 (RevOk EO VEOVOk) ]

z %,[l"|V0k* Co%0 Vok

|2 it follows

. 2
Now, since |vg, * C Z,v, |” < % Vox* CoZoVos,

: .2 - * 2
that ) sin“ ¥ (Ve Vv ) 2 yIL-7] Vok COZOVORI 1.
k , k £

But ) |v,,* CoZ.V |2 = |z,*C v u2 = |lc,v M2 thus

9 Ok 070 02 0 "0 0k 0 0k !
§ osin® ¥ (v,,Vv,) =] [1-v. *C.2v. 1 = T [V *(1-C 2)v ]

k' Tk’ T 0k “0 "0k Ok 0 0k

k k k
But from I~C02 = SO*SO on K(EO), it follows that

2

1 ® * = *
g sin® ¥ (vy,Vvy) = g Vor*S0*SgVox = EX S4*S,
= ) (eigenvalues of SO*SO)"= ) (singular values

k k
of sin © )2 =¥ sin2 8, .
J ﬁ k
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We observe that in case V = U (so that Z = I) we obtain
equality in (1.5.6) by choosing the orthonormal basis

ulﬂlz,... of PXf to be the eigenvectors of elPﬂ corres-—

1 > 62 > ...; in this case,

X (uk,U uk) = ek by Theorem (1.4.2).

ponding to the eigenvalues &

Remark. In theorem 1.5.1, we explained that, if uOk are

the orthonormal eigenvectors of OO, then U = (U, | are
o

the eigenvectors of (I-U*)(I-U)lP?i' corresponding to the

2

we know that J commutes with ©, that J0 OO = Ol

that @l has the same nonzero eigenvalues as OO. Since

eigenvalues A. = 2 sin L Sj. But from theorem 1.4.2,

JO, and

OOGOl = Oluol,then JOGOuOl = 61J0u01, and thus OlJOuOl
61J0u01. This means that Jou01 is the eigenvector of @l
corresponding to 91. But Ju = {0 —JO* Ugq| = 0 '

JO 0 0 Jou01

so, the eigenvalues of (I-U*)(I-U) will be 2 sin % 6y

2 sin L 0 and the correspon-

27 2 720 0o

ding eigenvectors are u . Jul, Uy, Ju2, .o

.1 .1
2 sin 5 81, 2 sin 5 6

Theorem 1.5.3 [11]. For every unitary invariant norm,

| (T-v*) (I—V)“ 18 minimized when V = U.

Proof. It is enough to show that
|| (z-v*) (1-v) [, =l (x-u%) (z-w),; v = 1,2,... (Appendix B)

For the compact cperator A, we have equivalently
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(1.5.7) |aj, = sup HAQHv
Q

iy
Where Q is the projector onto the v-dimensional

subspace of {J, or

14

Where 2 and T are projectors onto v-dimensional

subspaces i.e. over pair of v-projectors.

Thus
v/2
ru(l-v*)(I-V)"v > kzl "Qk(I=V*)(I—V)Qk"2; Vv even
, =
(1.5.9)% |
I. [v/2]
”(I—V*)(I—V)“vz Z Ity (x-v*) (1-v) Q. [, +
k=1
lo,,; (I-v*) (I-—V)Q\H_l”l; v odd.
2 2 -
Here QM = [Xl’x2’°"’xv] where X, and X, lie in Qlii,
X4 and X, lie in Qzlf,... where Qkﬁi = [ukJu'k]° Thus, it

is sufficient to prove that HSZk(I-V*)(I-V)QkII2 and

| 2 (I-V¥*) (I-V)Q are minimized when V = U. Let

v+l“ 1

v+1
and 3 =u

2

Q ="Q B = 0 Since Uoge is the eigenvector of

k' k k-’

@O corresponding to ek, JuOk will be the eigenvector of 0,

corresponding to the eigenvalue ek;

-Thus Uu = (cos @0 + J sin © ) u =cos 6 u + J sin 6 u =
cos 6 u + sin 6 Ju,
And UJu = (cos @ + J sin ©) Ju = -sin 6 u + cos 6§ Ju,

since J commutes with © and J2 6 = -0.
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1

Since Vu € Ql{, V = (UZU“l)U and UZU — maps QX into QX

and (I-Q)X into (I-Q)JX . Thus we can write

Vu = a, Uu + byw; we Q6 [Uu], Iwl = 1,

2 2
[aol + lbol = 1.

VJu = a,UJu + b;x; x ¢ (I-Q)& © [Jvuul, x| =1

1

la, 12 + by 1% = 1.

Since Q commutes with Q, then Qw = Qx = 0.

We consider operators, reduced by the 2-dimensional
subspace Qﬁf, and which are zero on the orthonormal com=
plement. We represent the part of such an operator in

QN by its 2x2 matrix relative to the basis (u, Ju).

So QVQ ={aij}, where a;p = (QVou, u) = (Vu, u)
and Vu = a, cos 6 u + a, sin 6 Ju + bow.
Thus Ay, = @, cos 0
and Ay, = (avadu,u) = -ay sin 0,
Uy = (QvQu, Ju) = a, sin 6,
Oy = (QVQJu, Ju) = a; cos 6.

In matrix representation

Qv cos 6 -a, sin 0).

40

a0 sin 0 al cos 6

The eigenvalues of Q(I-V*) (I-V)Q are uf and ug,
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where My and B, are the singular values of (I-V)Q. Hence,

the eigenvalues of %Q(V+V*)Q are 1 - % uf,and 1 - % “3

(since Q(I-V#*) (I-V)Q = Q(2I-V* - V)Q).

1 R - - 1= = ; )
Thus > QIV+V*) Q: 5 |8y cos 6 a, sin 6 . 5|2g cos ) a, sin 3]
a0 sin 6 al cos © —al sin 6 al cos 6
f 1,- N
(Re ao) cos 9 j(a0 - al) sin
1 (a. — a.) sin © (Re a,) cos 8
2 0 1 1

The calculated eigenvalues of Q(V+V*) @, from the above

Nj=

matrix are

1 - % uf = ¢ cos § - Véz + e2 sin2 8,
(1.5.10)
1 - % “; = ¢Cc cos 6 + Vgé + e2 sin 6

where c¢,d,e and £ are real constants, defined by

ag +a) = 2c + 2ie, a; - a; = 2d - 2if.
. 2 2 2
Since Iaj | < 1, we have (c+d)“ + (e-f)“ < 1 and

(c-d)2 +(e+£)% < 1, so that c® + d2 + e + £2 < 1

But [ (I-v#) (I-v)a], = ul > 2 - 2c cos 8 2 2 - 2 cos o,

2

My 2 2 -

(c £ 1) and since ”(I—V)Q”i = "Q(I—V*)(I—V)Ql[l =

2 cos 0 = ”(I—U)Q”i, then

“Q(I—V*)(I—V)Q”l > “Q(I—U*)(I—U)Qul

| a=vialy = -mal,

But ”Q(I—V*)(I—V)Q”Z = uf + Ug
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And from (1.5.9), ui + ug = 4 (1 - c cos 9).

The right hand side will be minimized when c = 1,

i.e. e =d = f = 0, which reads in original terms V = U.
So "(I—V*)(I-V)“v > "(I-U*)(I—U)”v for any v. Thus

| (I-v*) (1~V)]| is minimized when V = U.

From the proof, we also get |I(I-=V)||l > H(I-U)Hl,

since H(I—V*)(I—V)“l = n(I-V)]I2 and [ (I-U*) (I-0) |, =

ll
]II-VHzl° This conclusion is true for the bound norm, and
for the square norm, but is not valid for other v-norms and we

will provide an example for the last case.

For the square norm
”I-Vnzq = tr [(I-V*) (I-V)] = tr[P(I-V¥*) (I-V)P]

+ tr[(I=-P) (I-V*) (I-V) (I-P)]

From the corollary to theorem (1.5.1), the right

hand side will be minimized when V = U, thus

2 2
I=viZg = hr-ul2, -

Example.
Take V = [cos 6 sin 9

sin 6 -cos 0

as the unitary operator, taking P} to QJy . The eigen-

values of Vv are 1 and -1. So the singular value of (I-V)
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are 2 and 0.

U = [cos 8 =-sin 6}

sin 6 cos 6

The singular values of (I-U), are the positive
square roots of the eigenvalues of (I-U¥*) (I-U) = 2 - U - U¥%,
i.e. the square roots of 2 - 2 cos 6 and 2 - 2 cos 8. Thus

the singular values of (I-U) are 2 sin % and 2 sin %.
|I-ull, = 4 sin 6/2, |I-V]|, = 2

So “I—V"2 > ||I—U||2 if and only if & < 7w/3.

We conclude this chapter by quoting a positive result in

this direction. We refer the reader to[l1l] for the proof.

Theorem 1.5.4 [1ll]. Assume V is a unitary operator, taking

PN onto Q¥ in a real spaceXN . Assume also that 6 < w/3.
Then |I-V| is minimized, for every unitary invariant when

v =1U.

The previous example shows that if 8 > then the

T
'3—1
conclusion of the theorem fails.




CHAPTER 2

The Operator Equation BX - XA = Q

We consider a Banach algebra (3 , with two particular
elements A and B . T is an operator on 3 , such that T(X) =
BX - XA for every X in(3 .

§2.1 The Matrix Equation BX-XA = Q in the Banach Algebra

-

of nxn Matrices

Definition 2.1.1. If 4 = (aij) 18 an mxn matrix and B 18 an

sxt matrix, the msxnt Kronecker product ABB is defined as the

bloek matrix

ABB = (aij B).
One of the most important properties of this product

is that it enables us to convert matrices into column vectors.

Definition 2.1.2. If Aj denotes the jth column of an mxn

matrix A, the mn vector veec A is then defined as

Theorem 2.1.3 [30]. Let A be an mXn matrix, and B be an nXp

matrix, then

veec 4B = (Ip ® 4) vee B = (B' & Im) vee 4

where B' is the transpose of B.

We now state the standard properties of Kronecker

products. The proofs of these properties are given in {3 ].

- 43 -~
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1. (A ® B)(C ® D) = (AC) ® (BD),

2. aem t=atesr,

3. (2+B) @ (C+D) = A ® C+A®D+BO®C+ B ® D.

4, If A has eigenvalues oy i=1,2,...,m and B has eigen-
values Bj' j=1,2,...,8, then A @ B has eigenvalues

aiej' Further, Is ® A+ B@® Im has eigenvalues oy + Bj'

The matrices involved here have the appropriate orders.
In Property 4, it is assumed that A and B are square matrices

of orders m and s respectively.

Theorem 2.1.4. Let A,B,X and @ be square matrices of order n.

Then a necessary and suffictent condition for the equation
BX - XA = @ to have a unique solution is that the eigenvalues

of A are distinct from the eigenvalues of B.
Proof. BX - XA = Q can be written as follows:

vec BX - vec XA = vec Q.

Using theorem 2.1.3 we get

(In ® B)vec X -~ (A' ® In)vec X = vec Q,
that is,

[(In Q@ B) - (A' @ In)] vec X = vec Q.
This equation has the unique solution

vec X = [(I_ 8 B) - (A' ® In)J‘l vec O
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if and only if the matrix (In ® B) - (A' ® In) is nonsingular.
Using property 4. of the Kronecker products, we conclude that
B. - o + 0 is a necessary and sufficient condition for the

J
equation BX - XA = Q to have a unique solution.

Remarks.

1. Definition 2.1.2 and Theorem 2.1.3 can be applied to a
more general class of linear matrix equation [30].

2. The theorem may be restated as follows: For the operator
T on{ﬁ, defined by T(X) = BX - XA, this operator is inver-
tible if and only if the eigenvalues of A and B are dis-
tinct. The solution X may be derived using definition
2.1.2; note that o(T) = o(B) - o(A). This follows from
property 4. of Kronecker products.

3. The equation BX - XA = 0 has a non-zero solution if and

only if o; = Bj = 0 for some i and j.

§2.2 The operator equation BX - XA = Q where 8 is the space

of bounded operators on a Hilbert space.

Theorem 2.2.1. [20]. If there exist real numbers a and b such

that a>b, B+B* < b and A+A* > a, then the operator 771 exists

as a bounded operator and has the representation

(2.2.1) rleq) = - J Pt g AT ax.
0
By p(A) we denote the resolvent set of an element A of
the Ranach algebra@%, i.e. the set of all complex numbers z

such that (zI - A)-l is in (@ , while o(A), the complement of
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p{A) is the spectrum of A.

Definition 2.2.2. A4 set D in the complex plane is said to be

a Cauchy domain, 1if the following conditions are satisfied.

1. D is bounded and open

2. D has a finite number of components, the closures of any
two of which are disjoint.

3. The boundary of D is compoéed of a finite number of closed
rectifiable jordan curves, no two of which intersect. We

denote the positively oriented boundary of D by b(D).

Theorem 2.2.3 [39]. Let F be closed, and G a bounded open

subset of the complex plane, such that FcG. Then there exists

a Cauchy domain D such that FcD and DcG.

Definition 2.2.4 [39]. Let f be a complex valued function,

holomorphic in a bounded region G which includes o(T), the
spectrum of the operator T. The function f(T) of the operator

T is defined by

-1
2t

1

(2.2.2) f(r) = flw) (T - wI) ~ dw,

b(p")

where D' is a Cauchy domain, such that o(T)cD'c<G.

Theorem 2.2.5.[32]. If w ¢ O(B) - O(4), then

(1) wep(T),
(2) There exists a Cauchy domain D such that o(A)<D and

0(B-wI) n D = ¢,
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(3) For any Cauchy domain D, which satisfies (2),

-1 1 -7 -
(T-wI) @ = ErTA (B-wI - zI) @ (zI - A)

b(p)

1 da.

Proof. Since w § o(B) - o(A), then o(B) - w n 0(A) = ¢.
Since o0(B) - w = o(B-wI), then o(B-wI) n o(A) = ¢.
But A and B are bounded operators, thus o(B-wI) and o(A) are
compact disjoint sets
i.e. there exists a bounded open set G containing o (A)
and disjoint from o (B-WI).
From theorem 2.2.3, it follows that there exists a
Cauchy domain D, such that o(A) < D, and DcG. Thus o(B=wI)aD = ¢.

Now suppose X is a solution of the operator equation
(T-wI)X = BX-XA - wX = Q.

If zeb(D), then zep(A) since o(A)cD. Also zep(B-wI) since

o(B-wI) n D = ¢. Next, zeb(D) implies that zep (A)np(B-wI), and

(T-wI)X = (B-wI-2zI)X + X(zI-A) = Q.

Since (zI-A) T and (B-wI-zI) T exist, then
X(zI-A)"Y + (B-wI-2zI) X = (B-wI-zI) ! 0 (z1-a) %
ie. or J X(zI-2) " dz + 5hr J (B-wI-zI) 1x dz =
b (D) b'(D)
1 J -1 -1
2,”_—1 (B=wI-z1I) Q (zI-A) dz.

b (D)
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Now, from equation (2.2.2), it follows that

1 J -1 _ 1 J -1 _
= X(zI-A) " dz = X |=— (zI-A) — dz| = X.

Since p(B-wI) > D and (B-wI-zI) ' is an analytic vector

valued function on p(B-wI), then

(=1 J (B-wI-2ZI)

2wi b(D)

1 4z1x = o.

By Cauchy's theorem [32], it follows that

J (13—wI—zI)"l 0 (zI-—A)—l dz,

b (D)

.

i

and the proof is complete.

In an analogous way, we can obtain the following.

Theorem 2.2.6 [32]. If w ¢ o(B) - o(4), then

(r-w1)"1q = 21 J (B-21)"1 @ (a+wI-21)"

b(Dz)

I dz

For any Cauchy domain D such that o(B) < D

o(4+wIl) n D, = ¢.

1° 1° 1

Corollary 2.2.7.

(1) o(T) < o(B) - c(4)

(2) If o(B) n o(4) = ¢, then T-J exists as a bounded operator,

and this generalizes the results of §2.1.
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Proof.
(1) Follows from theorem 2.2.5.
(2) Follows from theorem 2.2.5, part (3) by putting w = 0.

G. Lumer and M. Rosenblum [27] proved the following unpub-

lished theorem of D.C. Kleinceke, and generalized it.

Theorem 2.2.8. Given A and B from(B , where 18 the Banach

algebra of all bounded operators on B . Let T be defined on(3,

by T(X) = BX - XA, then
c(T) = o(B) - o(4)

We now present an operational calculus for T in terms of

elements of (3 . For this we need the following lemma.

Lemma 2.2.9 [32]. Let G be a bounded open set containing

6(B) - o(A). Then there exist Cauchy domains D and D', such

that o(B) - o(A) < D' and o(A) < D. Furthermore:

(1) If web(D'), then w¢o(B)-o(A), and o(B-wI)nD = ¢.

(2) If zeb(D), then o(B-zI)cD’.

Theorem 2.2.10. [32]. If f(z) is a complex valued function,

holomorphic, in a region which include o(B) - o(A), then
(2.2.3) £(1)Q = 50— J £(B-21) @ (21-4)"1 da
b(D)

where D 18 as in lemma 2.2.9.

Proof. Since o(T) = o(B) - 0(A) < D', where D' is defined as

in lemma 2.2.9, then using equation (2.2.2), we get
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£(1)Q = o3¢ J £(w) (T-wI) "1 Q aw.
b(D")
By thecrem 2.2.5, we have
£(T)Q = For J FW) |5ir J (B-wI-zI) ' 0 (z1-2)7! az|aw
b(D') b (D)
Interchanging the order of integration, we get
£(T)Q = or e J £(w) (BwI-zI) L aw] q (zI-a)~ ! dz
b (D) b(D')

Now, from lemma 2.2.9, it follows that o (B-zI) < D'

for zeb(D), and thus

1

J £(w) (B-wI-zI) © dw = -f (B-zI)

L
2mi b(D')
and
1 -1
£(T)Q = TN £(B-zI) Q (zI-A) dz.
b (D)
This proves the theorem.

We can similarly prove that if f(z) is a complex-valued function,

holomorphic in a region G that includes o (B) - o(A), then
1 -1
f(T)Q = m J (ZI—B) Q f(ZI—A) dZ’
b(D')

where D' is a certain Cauchy domain that contains o(B).

Theorem 2.2.11. [20]. ZLet(3 , 4, B, a, b, be as in theorem

2.2.1. Then T—l exists, and is defined everywhere in § , and
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- J Bt g o4t a4y,

T (Q) =
0 0
Proof. Let f£(z) =-etz in theorem 2.2.10, thus
1 —z _
£(r) (@) = e () = 5r et B0 o (21-2)7! 4z =
b (D)
= E%T eBt 0 J eﬁZt (zI=—A)ml dz
b (D)
But e-'At = E%T J e-Zt (zI-A)-l dz.
b (D)
Thus etT (Q) = eBt Q e"At.
=l * —_1...* 141
Let Bl 2(B+B ) and B2 = 2i(B B¥*), Bl and B2 are hermitian
operators and B = B1 + iB2. Since B+B* < b, we have Bl < %b.
B * gk
Using e- = I + T we conclude that there exists a
k=1 ™°

number m>0 such that for every positive

integer n,

1 .
=(B.+1iB.,)
-.nT1 2 2 _ 1 . 1 . 2 2
lle £ = |£f + =(B,+iB,) £ + ;;7(Bl+1B2) £+ ..
b m
< (£,£) + S(E,£) + ;7(f,f)
= (1 + % + EE) (£,£).
(B, +iB.) ?
n 1 72 b
Thus [e < @a+3 @+,
n
1 B %(Bl+iB2) n b \n m . n
el = Je [T s @+ 3271+ =),
; n
Taking the limits as n + ®, we get ”eB” < P2,
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Bt
e

vow [[e"T ()|l = [e®F 0 ™Y < |1 BY| Jlall [[e72Y|

<

e"t(a=b)/2 loll for t = 0.

@© (o]
Also, J‘ etT (Q) dt = J Bt g oAt dt, and these integrals
0 0

are absolutely convergent, we then get
3

1% 0 e at] < i eTHaV2Z 4t g

©

fm e (@] at = f’
0 0

= ;%B o , for any Q, which finally gives

(2.2.4) J 1T at < 2
0

We now complete the proof, by showing that

0
Actually, -T J etT at = - J T 1 ae
0 0
_ d tT _ _ lim _tT
= l e dt = ow ©  + I

I (This follows from relation (2.2.4)).

Thus T T = - j etT at,
0
ie. T HQ = - J et (o) at = - J Pt g 7Rt at.
. 0 0

Thus, the operator equation BX - XA = Q, has solution

X, and
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2

1
@[ = = lal.

It =l

§2.3 The Ooperator Equation BX - XA = Q in a More General
Setting

Theorem 2.3.1 [11]. Let 9{and“ﬁ be Banach spaces, let the operators

A onS4 and B onQa > satisfy ||4||l; < o and ”B-ZHI < (ar8)7 2,

denotes the bound norms on the

for some a20 and §>0. | |1

respective spaces. For any transformation fromﬂ% to"ﬁ s We may

use any norm compatible with the bound norms (See App. B).

Assume BX -~ XA = @, then |@| = 8| x].

Proof. Compatibility implies that

Ixal = Ix] |al, = alx|, and |x] = |B87'Bx|

< |Bx] ﬂB_l"l < (a+8) "t |BX],

i.e. IBx] = (at68) |X|

From BX - XA = Q, it follows that

lo] =lBxl - [xal > (a+8) x| - ofx| = 8]x]

This result is similar to theorem 2.2.11, but the separation
of the spectrum of A and B; 0(A) n o0(B) = ¢ does not give as

sharp a result as theorem?2 .3.1 or theorem 2.2.11.

Further generalizations of theorem 2.3.1 for unbounded

operators A and B may be found in [11].
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Theorem 2.3.2. Let andfé be Hilbert spaces, let B

on‘é and A on 96 be semi-bounded self adjoint operators,

satisfying

B =z y+§

2
-

[\

[

for some scalars Y and 8. Assuming BX-XA = C, where X and
C are bounded operators from §¢ to °f then el = §|ix|| for

every unitary-invariant norm.



CHAPTER 3

Rotation of Eigenvectors by a Perturbation

§3.1 Rotation of Eigenvectors by a Perturbation in a Finite

Dimensional Space.

We discuss here how the eigenvalues and the eigen-
vectors (or eigenprojections) change with the change of the
operator, in particular when the operator depends analytically
on a parameter. The discussion of the finite dimensional
case 1s analogous to that of the general case when the
eigenvalues are isolated. However it is easy to treat the
finite dimensional case separately, without being bothered
by complications arising from the infinite dimensionality of
the underlying space. Another reason for treating the finite
diﬁensional case separately is that the finite dimensional
theory has its direct applications for example, in connection
with the numerical analysis of matrices. The method used is
based on a function-theoretic study of the resolvent, in par-
ticular on the expression of eigenprojections as contour
integrals of the resolvent.

Let X be a finite dimensional normed space, and let

Tef§(X) be an operator having eigenvalues A, ; h = 1,2,...,s

h;
with multiplicities my i h=1,2,...,s. It is known that T has

the canonical form

(3.1.1) T = E A, P, + D where

h h ’

_ 1 -1
(3.1.2) Ph = o1 - (zI-T) dz.

b

- 55 -
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Here each Th, h=1,...,8 is a positively oriented small

circle enclosing kh and lying outside other such circles.

Finally, Dh and Ph’ h=1,2,...,s satisfy
s
(3.1.3) PPy = 85 Ppi th Py = I,
P,T = TP, ; P (T-A,I) = (T-2, I)P, = D,.

Ph is called the eigenprojection, and Dy is the eigennilpotent,

and Mh = PhX is called the algebraic eigenspace of the eigen-

value Ah of T, where dim Mh =m

city of A T is called diagonable if and only if all Dh = 0,

is the algebraic multipli-

ha

h=1,2,...,8, and simple if m, = 1 for h=1,2,...,s. Now

(3.1.4) T = S+D; S5 = Z)\hPh; D = ZDh

S is the diagonable operator, D is the nilpotent, S commutes
with D since PhDh = DhPh = Dy s h=1,2,...,s, Phq{ =0

h # k. Equation(3.1.4)is called the spectral representation
of T. This representation is unique, in the sense that if T
is the sum of S and D where S is diagonable and D is nilpotent,
and S and D commute, then S and D would be given by (3.1.4)

To see the effect of a perturbation on a linear oper-

ator T, we consider a family of operators of the form
T(x) = T + xT'

T(0) = T is the unperturbed operator, and yT' is the

perturbation. Now, if we can express the eigenvalues and
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the eigenvectors of T(xy)} as power series in X, then they
will be of at least the same order of magnitude as the
perturbation xT' for small |X|. This is not always the case.
More details are given in [24].

If T(x)eGE(X) is a family, holomorphic in a domain Dy
of the complex y-plane. By representing T(x) as a matrix
with respect to a basis of X, then the eigenvalues of T(Xx)

satisfy the characteristic egquation
det(T(x) = A(x)) =0

This is an algebric function in A(X) with coefficients
holomorphic in x. It is known [25] that the roots of this
equation are branches of analytic functions of ¥ with only
algebraic singularities in Do;such points are called excep-
tional points. So at an exceptional point there is always
splitting of the eigenvalues. As an illustration, consider
the two-dimensional example where T(X) is represented by a

matrix with respect to a basis T(x) = [; _§}. The eigen-

values of T(x) are A (x) = 1'-‘(1+)<2)l/2

. The exceptional points
are X = *i, T(+¥i) have only the eigenvalue 0. Now the number
s of eigenvalues of T(x) is constant if x is not one of the
exceptional points, of which there are only a finite number

in each compact subset of D In each simple subdomain (simply

0‘
connected subdomain containing no exceptional points) D of D,

the eigenvalues of T(x) can be expressed as s holomorphic
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functions Ah(x), h=1,2,..,8. The eigenvalue_kh(x) has
constant multiplicity my, - The eigenprojections Ph(x) and

the eigennilpotents Dh(X) for the eigenvalues Ah(x)_of T (x)
are also holomorphic in each simple subdomain D. In this

case there is exactly one eigenvalue A(yx) of T(y) in the
neighbourhood of A, and P(X) is itself the eigenprojection

for this eigenvalue X(X). Note that dim P (X) = dim P = m,,
the multiplicity of the eigenvalue Ah(x). Most of the results
in error estimates are much simplified when X is a unitary

space and T is normal. We have the following

Theorem 3.1.1 ([24] p. 95)

Let X be a unitary space, let T(X) = T+xT(1), and let

T be normal. Then, the power series for P(X) and A(X) are
convergent i1f the magnitude of the perturbation HXT(J)H 18
smaller than half the isolation distance of the eigenvalues

A of T.

So far, we speak about eigenprojections. Since the
eigenvectors are not uniquely determined, there are no defin-
ite formulas for the eigenvectors of T(x) as functions of ¥.
However, they vary analytically under analytic perturbations.
In some situations, we may need sharp bounds on the distance
between eigenvectors, and those approximating them. We will
discuss this case for Hermitian matrices, or equivalently for

Hermitian operators. Let A and A+H be Hermitian operators,
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acting on n-dimensional complex (or real) Hilbert space J&f .
We denote the eigenvalues of A by'Ai i=1,2,...,n where

Al > Az 2 ... 2 An and let the corresponding normalized eigen-
vectors be x, 1 =1,...,n. By A'i; i=1,...,n we denote the

i
eigenvalues of A+H where A'; 2z A', 2 ... 2 At . and let the
corresponding normalized eigenvectors be x'i, i=1,2,...,n.
Sometimes we will speak about the spectral projectors E(I)
and E'(I) the argument I of which is a subset of the real line.
Now given a specified perturbation H, how much may X be
rotated to become x'i? For that, suppose the spectrum‘of A is

confined to m intervals of length < 28, with gaps =Yy > 0, so

that we can write

Pj = E([vj, uj]) j=1,2,...,m
0 < My T ovy oS 28
Vi T M4 =Y
LPpy=1
Let |H|] = & < y/2, then P'j = E'([vj -3, Myt 8]) is

of the same dimensionality as the corresponding Pj' General-
izing what has been done in §1.3, we try to find a unitary W
which for all j satisfies WPj = P'jw. [Note that W will not
necessarily take eigenvectors to eigenvectors]. Every vector

X in Pjay is nearly an eigenvector, in the sense that
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l .
lax - f(uj + vj)x" < B |[x]|. To see this, 1let Ajl’ Ajzr

-++s A;_ be the eigenvalues of A in [vj, uj] and xerﬁd .

is g
Then x = )} o, e.., e.. being the eigenvectors of A corres-
i=1 *+ 3t Jt
ponding to Aji’ and
lax - i(v + px]| = § 6., A..e.. = l( + v.) I
2 V5 3 ;81 %1 %5i%51 T 2 j7 %1 %51

max 1
< "Tggm gl v |
Consequently,

[ .

(3.1.5) |ax - %(vj +uxl < 8l

The method of constructing a canonical unitary map,

which carries PjJJ to P'jﬂd , 1s carried over from the special

case., Let B = § PjP'j. It is easy to check that B is normal.

Let C = B B* then C =2 0 and

cC = (Z P.P', I P'.P, = % P.P'.P.
(] J J) (J J J) 3 J 133

= (I P'.P. LI P.P'. = % P'.P.P'.
( J J) (- J J) . 33 3
J J
From the definition of C, it follows that

Cp. = P.P'.P. = P.C for all j,
J J 33 J

cp'., = P'.P,P', = P'.C for all j.
J JJ 3 J
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. -1/2
1, ' = .P'.P. T P'.P.
Define U({PJ} {p J}) (§ PJP JPJ) (j jPJ)
-1/2
= P'.P. P.P'.P. ,
(§ J J) (§ i3 J)

It follows that U U*¥ = U* U = I, as well as

U({Pj}, {P'j})* =U ({P'j}, {Pj}),

1/2

-1/2
P'.P. = P'. (P, P."' P,
J 3 J( J . J J)

P.

UP 3

T P.P'.P.)}
(j J 2 J)

1/2

P'ij (£ Pjp'jpj)' = P'j U, in short,

-1/2
UP. = P', U = P', P.P'.P,
3 5 (P5 5)

P. for all j where
J J 3

1/2

(PjP'.P.)— is the pseudo inverse.

J 3

A sufficient condition for the existence of such U is
"Pj - P'j“ < 1 for all j, or equivalently x = Pj x ¥ 0 implies
P'j x # 0 for all j. (See theorem 1.1.2 and recall that we
are in a finite-dimensional space). This condition will be
satisfied if Pj and P'j arise from A and A+H as described
above. One can get resuits similar to those in [ 81. For

this, let P ’P2"’°’Pm be a complete orthogonal set of projec-

1
tors (one may take them to be the spectral projectors of A).

We define the pinching of B by Pj as

B = L P. B P..
1€ 3 J J

¢ has the following properties:
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Temma 3.1.2

In the real Hilbert space of Hermitian operators on
&{ under the Frobenius norm, ¢ is a projector, and it is

trace preserving.

Proof.
Let F denote the real Hilbert space of the Hermitian
operators on J¢ under the Frobenius norm HsHF,and let

¢ : F - F be defined by

€ B z Pj B Pj , then we have
J

@23 ¢(¢B) = L P.(Z P, BP.)P, =% P, BP
5 45 3 J 1] 5 3

i.e. @B = ¢ B for any BeF;

(B, A) = tr(fgB)A = I tr P, BP. A =TI tr B(P, A P.)
5 ] J : J J
J
=tr BE A= (B, €A4)
i.e. (£B, A) = (B, £ A) for any A and BeF.
Thus & = @*, and £ is a projector. Let the ortho-

s ~
gonal complement of £ be denoted’by’é , soB=§ B+ & B,

and hence

[B[2 = “513"2 + HgB“z where |+|_denotes the
1Bl g L Ie

Frobenius norm.
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We now prove that é is trace preserving:
tr B =131 tr P, BP, =3I tr BP..
: 3 J : J
J J
Let {Xj}j=l ke a complete orthonormal set of vectors adapted

to the decomposition of X by'{Pj}

i m . m mg
tr 6 B = z tr B P, j£1 ( FB Py Xy x,))

j=1 J i=1
m
where m, = dim P., } m, = n = dim X
3 37 52
¢ ? mj n
tr €B = ( % (B x,, x,)) = ] (Bx,, x,) = tr B.
j=1 i=1 o1 i=1 ol

So é,is trace preserving, as claimed.

Theorem 3.1.3 [ 9].

Let PI’PZ""’Pm and P’l,

orthogonal projectors, such that x = ij + 0 implies that

P'2,...,P'm be two complete sets of

P'jx + 0. ILet U = U({Pj}, {P'j}) be defined as before. Let

W be any unitary, such that WPj = P’jW. Then
| @((I-w*)(.r_w)||¢ > | t’:({r-u*)(f-u))ll¢,

for any unitary invariant norm.

Corollary 3.1.4.

Under the hypothesis of theorem 3.1.3, we have

1 I-wlp = |1-U],.
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Proof: Note that

n .
[T-wl"p = tr T-W*(T-w) = ] ((1T-Ww*) (I-W) Y, ;)
i=1

where the sum is taken over orthonormalyri. The right hand
side is equal to the sum of the eigenvalues of (I-W*) (I-W);

we will denote it by

[l(I—w*)(I-W)[[l

d

the previous theorem:

We know that 1 is unitary invariant, and hence we can apply

1€ ((z-u*) (z-u))|l; < [| & ((T-w*) (T-W))] ;-
But | @ ((I-w*) (Z-W))[; = tr £((I-W*) (I-W))

= tr (I-W¥*) (I-W).

This implies that || & (I-W*) (I-W))|| 1= ”I—WHZF

From this, the result follows.

We now get a bound for the rotation of a single spectral

subspace. Let P = Pj = E([vj, uj]) of A, where uj—vj < 28, B=0,

and the intervals (Vj - y,vj) and (p.,u.+y) contain no eigen-

J° 73
values of A. For a unit vector x, x = Px, we estimate now how
large x-P'x is,where P' = P'j is the corresponding spectral

projector of A+H. Without loss of generality, one can take
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Theorem 3.1.5 [ 9]

If B < 8 < v/2, then

| ¢z-P*)P| < (B+8)/ (B+Y-6)

Proof,

P = E([-B,B]), and the intervals (-B-vy,-B) and
(B,B+vY) contain no eigenvalues of A, hence P' = E([~B-§,B+d])
and the intervals (~-8~y+d,-B-6) and (B+6,B+y-8) do not inter-
sect the spectrum of A+H. For xePX i.e. x = Px, |[x¥]] = 1

we have

((a+H) %%, x) = (A%x,x) + 2 Re(AHx, x) + (H%%, x).

Since PAP < B, it follows that PAZP < 82, and

((a+H)%x, x) < 8% + 2|(aHx, x)| + (E%x, x)

s 8%+ 2 flax]| x| + 6®
Since ||ax] < B|x||, we finally get
2 2
(3.1.6) ((A+H) "x, x) =< (B+d8)”.

Since P'X is the subspace spanned by the eigenvectors
corresponding to the eigenvalues of A+H lying in (-B-y+¢S,B8+y-38),

we obtain

(3.1.7)  (B+y-8)2 |x-P'x|? < | (a+m) x| °.
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This follows from [36], theorem 2, with a=0, e=B+y-d.

Equations (3.1.6) and (3.1.7) imply

| (z-P")P|| < sup||x-P'x]| < (B+38)/(B+y-4)
X=Px
lI<|=1

In the above, we gave a bound for the rotation of a
single subspace. We now give an estimate of the total amount
of rotation, i.e. an estimate of HI-U“ZF. From our construc-

tion of the unitary canonical mapping, we know that (we recall

1/2

that (Pj P'j Pj)— is the pseudo inverse)

-1/2
Up. = (P. P', P, P!, P., th
PJ ( 3 : j) 5 By us

p.up, = (p. P'. B,)Y/2,
shal sI B

Since Pj P'j Pj > 0 on ijd ' P.UPj is positive definite, and

J
this implies that PjUPj has an orthonormal basis of eigenvectors

in Pjﬂd‘. Let us choose within each Pj3¥ the xi's as unit
' 1 =
eigenvectors of Pj P 5 Pj and let Bi arccos (Uxi, xi), 8i>0.
2
] =
Thus (Pj P 3 Pj Xs 0 xi) cos ei,
.2
-p ! =
(Pj(I P j)Pj Xs xi) sin ei, so that
. 2 2 2
sin® 6. = I-P.')P. x, < I-pP'.)P.
g = ey ey xyl? s ame ey

and sin 0, < H(I—P'j)PjH for some j, j=1,2,...,m
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Theorem 3.1.6 [ 9].

Assume that any two eigenvalues of A differ by at

least vy, and suppose that ||H|| = 8<Yv/2 then
2
Il 2]l
z-vl?, < =2 £
F I+coso y(y-26)
. . 9
where o = aresin —s .
¥-§
Proof.
“I-U“ZF = tr ((I-U%*) (I-U))
n
—t — * —
i£1 ((I-U*) (I-U)x;, x,)
n

where {xi}i=l is an orthonormal set. Taking'{xi} to be the

eigenvectors of Pj P'j Pj' we get

2 N n . B n
lz-v]“p = i£l ((21-U-U%)x;, x;) = izl (2-2cos 6,)
n . 2 0
=2 ] (l-cos 8;) =2 ] 3" i
i=1 l+cos 6,
1
.2
L sin" 0,
< 2 - =

l1+min cos Gi

For any i, sin 6, < H(I—P“j)Pjﬂ, for some j. From theorem

3.1.5, setting B=0, we get

. s,
sin Gi < s
: .8 ,
i.e. 6; < arcsin y=5 = % for all 1i.
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Thus min cos ei > cos o, and

sin® 6

m
1 3 ((T-P'y)Py x5 » %50 = 1

1 i i j

I ~113
N
]

I ~—8

From equation (3.1.6), we have

(arm? x, x) s ®8 x;, x,).

Using equation (3.1.7), we get

n

2 2 \
i£1 ((A+H)“ x5, x4) = (v -2v8) ] (I-P )Py xg %)
m 2 2 m
} tr H° P, = (y“-2y8) ] tr (I-p',) P..
& 2 v 1 e 2
Thus ] sin®6; = J tr(I-P' )P, < T-TET ) tr H° P,
_ 1 2 _ 1 2
= yv-zey T E = yrpmzey 1D

2
,  Iul?,
l+coso Yy (y~238)

Thus || I--U||2F < , as claimed.

From the proof, we see that the better way to estimate ﬁI-UﬂF
° 2

is via )} sin 0., which suggests that 6, is the most natural
i=1

way of measuring the direct rotation. One can get better

estimates if'only one spectral projector and its orthogonal

complement are involved. Of course to get any conclusion,

there should be some information about the size of H compared

to the length ¥y of the gap in the spectrum of A. Without loss
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of generality, we take the gap to be between -1 and 1.

Theorem 3.1.7 [ 9].

Let P = Pl and I-P = P2

E([1,»)) and E((-»,-11) of A respectively, so that A has no

be the spectral projectors

spectrum in (-1,1). Assume |H| = 8<1, and let x= be any
eigenvector of A+H corresponding to an eigenvalue A20. Then
the acute angle between x and Px satisfies sin20s<8. Assuming
instead PHP + (I-P)H(I-P) = 0, (off-diagonality of H) then

tan20<8. Both inequalities are sharp.

Proof.
From the assumption, we have P(A-I)P20 and

(I-P) (A+I) (I-P)<0, thus the spectral projector which should

be compared with P is P' =E'([0,»)) where P'(A+H)P' =20 and

(I-P') (A+H) (I-P')<0. Now xe(I-P)Y is impossible, since if

it is true, it would imply that (Ax,x) < -1, and since P'x = x,

we get ((A+H)x, x) = 0, and hence (Hx, %) =1, and this

contradicts [H| < 1. Now, xePX is a trivial case, since it

implies 6 = 0. If, on the other hand, PHP + (I-P)H(I-P) = O,

then for x = (I-P)x we have

(Hx,x) = ((I-P)H(I-P)x,x) = -(PHPx,x) = 0

again a contradiction. Thus, we assume that X, Px and
(I-P)x span a 2-dimensional subspace Q% , and we represent

vectors and operators of QJY with respect to the bases

0

cosb .
sin6q°*

0 We have

vectors Px = [ ]and (I-P)x = [
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h h
QHQ = 11 12 , Since H 1s Hermitian
B2 B
loEg| = SYP |(omox, x)| < SYP |(mx, x)| = &
| %=1 x[=1
h h
Thus 11 12 <34
h12 h22

- Now yeQX implies that PyeQx, so that QX is an
invariant subspace of P and hence a reducing subspace. This

implies that P commutes with Q.

411 %12
Thus QAQ = | , and since A commutes with P,
812 222
we get
al 4]
QAQ = 0 ’ al > 1 and a, < =1.
a
2
Now Q(A+H)x = AQx means that
a1+hll hl2 cos © _ A cos 6
h12 a2+h22 sin € A sin 6

Thus 0 < A = a1 + h11 + h12 tan @ = h12 cot 6 + a, + h22 and

h12 is real, so

hlz(cot 6 ~ tan 0) = a; - a, + hll - h22 =2 =28 >0
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So, if 6 could be = w/4, then cot 6 - tan 6 < 0 and h12 <

Thus

0 <X =nh cot 6 + a, + h < a, + h22 < -1+ 8,

12 2 22

a contradiction. So 6 < % and h12 > 0, consequently,

a, — a, + h - h
cot 0 - tan 0 = 1 2 o 11 22 .
12

For fixed h12’ the requirement

hy;  hyy
-§ < < § implies that
h,, by,
2 _ .2 .,1/2 _ 082 .2 172
Ihiil (s hi,) ¢, thus h;; - h,, 2 -2(8°-h],)
a, - a, - 2 §2 - hiz
cot 6 - tan 6 = 5 *

The minimum of the right hand side is attained at

2
h, . = 6/1—----43——:z e (0,81, thus

12
(al-az)

a

2 2
- a, - 2/6% - B2,

1

cot 6 - tan 0 =

h12

-1 _ 2 _ 2
= § /Qal a2) 44 .

Since a; - a, 2 2, we get cot 6 - tan 6 > 26—1 /1-6
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Thus sin 26 < §

In the other case when EH = 0,

i.e. hll = h22 = 0, we proceed as above:

(A‘l‘H) X = lx;

0 <A=a, +h tan 6 = h,. cot 6 + a

1 12 12 2

and again h]_2 is real. From a; - a, = h12 (cot 6 - tan 8},

we get h12 < 0 under the assumption that, 6 = n/4, and in this

case

cot 8§ + a, < a, < - 1, a contradiction.

0 <A =nhnh 2

12 2

Thus & < m/4 and h12 > 0, and cot 6 - tan 6 = —lﬁ————-,

12

since ||H| < &, then h,, < §, and cot 6 ~ tan 6 = 2/8.

i.e. 2 tan 6 < 8,‘from which we finally get tan 20 < §.

1-tan?o

The proof is complete.

This theorem does not say that the angle & between x
and Px satisfies sin20 < § for all xeP'ly . The following
theorem gives similar results as the previous theorem i.e. it

~gives a bound on the amount of rotation of P. 1In fact, this
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theorem coincides with the previous theorem in the 2-dimen-
sional case, but it has a more general setting since the
restriction to be finite dimensional is removed.

Suppose that A is a bounded self-adjoint operator on
a Hilbert space Jy . Let P and I-P be complementary projec-
tors reducing A, and let the spectrum of A restricted to PX
be from [1,«) and the spectrum of A restricted to (I-P)XN be
from (-«,-1],
i.e. PAP = P and (I-P)A(I-P) < -P. Let H be a bounded
self-adjoint perturbation such that [|H| = §. Then A+H will
have the spectral projectors P' and (I-P') where P' is the

spectral projector of A+H corresponding to [0,«), €0 that
P'(A+H)P' =2 0, (I-P')A+H) (I-P') < 0.

We use the following measure of separation between PX and

P'X :

sin’e sup’{u(I—P)xuz; x = P'x, |x] = 1}

|p*(z-p)P'|| = |P'(I-P)P' + (I-P")P(I-P)|;

I

the last equality holds, since both sides have the same spec-

trum ([ 8], lemma 5.2).

Theorem 3.1.8. [10]

Let A,P,8 and © be defined as above. Assuming § < 1,
then 8in20 < §. Assuming instead that PHP + (I-P)H(I-P) = 0,

then tan2@ < 8. Both inequalities are sharp.
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Proof.

The general case can be reduced to the case where all
operators have only point spectrum. This can be done as
follows.

By an approximate eigenvalue of an operator Te({H (&)
we mean a complex number u, such that there exists a sequence
x  such that uxnu = 1 and ]ITxn - uxn" tends to zero, or equi-

valently, there does not exist a number e€>0 such that
(T - uI)*(T - uI) =z ¢ I.

By ca(T) we denote the approximate point spectrum of T,
the set of all approximate eigenvalues. Clearly
OP(T) c oa(T) c 0o(T). Now, if T is a normal operator, then
it can be shown that o(T) = oa(T) (C.F. (18], theorem 3.1.2).
Now;k/ will be extended to another Hilbert spaceJy ', in which
we shall speak about "approximate eigenvectors". So, if T is
a normal operator, and p and v are distinct approximate eigen-
values of T, then there exists sequences of unit vectors {xn}

and {y_ } such that = -~ uxn” +~ 0 and HTyn - vynﬂ + 0 hence
| Gum9) Gope w0 | 5 iy = x|+ D7, - vyl

generalizing the known fact for the eigenvectors of a
normal operator for distinct eigenvalues. So we may think of
{xn} and {yn} as approximate eigenvectors, ywith their inner
product defined to be glim(xn,yn), where glim denotes the
Banach generalized limit defined in[l12, P.37]. For the exten-
sion through the space of approximate eigenvectors see [4,§3].

Now to every operator Tetﬁ(ﬁj) there corresponds an operator
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p(T) € @ (X') and the mapping p: R (&) -~ @(Jq“) satisfies

1. p(8+T) = p(8) + o(T), p(AT) = Ap(T),

2. p(8ST) = p(8) p(T), p(T*) = p(T)*, p(I) = I,
3. e = 1=,

4, p(T) 20 if and only if T = 0,

5. For every operator Te @i(.}{)
0, (T) = o (p(T)) = o,(p(T)) [see [4 ] §4, Theorem 1].

i.e. p preserves algebraic operations, spectra, adjoints,
and order. From (2), it follows that p(P) will be a pro-
jector and every p(T) has only point spectrum. So given
A,H,P,P' as in the theorem, then p(A), p(H), p(P) and p(P'")

will enjoy the same properties. Since sin%g = et (1-P)P'|

i.e. the bound on § is the same as the bound of a norm of
certain operator and this is preserved under p. Hence,

proving the conclusion for p(P'(I-P)P') proves it for P'(I-P)P'.
Now, considering that all operators have only point spectrum
then since sin20 = [p*(z-P)P'|], the result is a bound on the
norm of the positive operator P'(I-P)P'. 1In this case the

norm of P'(I~P)P' is its largest eigenvalue.

Assume, then, that xeP'}y satisfies |x| = 1 and

P'(I-P)P'x = sin’6 x, so that P'PP'x = cos’0 x, |Px] = cos 6.

Let Q be the projector onto the two-dimensional sub-

space spanned by X, Px, and (I-P)x. The possibility that Q

be one-dimensional can be ruled out as in the proof of

Theorem 3,1.7. Since Q Yy is spanned by eigenvectors of P,
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then P commutes with Q. Similarly P' commutes with Q since
Q J 1is spanned by x and (I-P')Px (This follows from (I-P')Px =
Px - P'Px = Px - P'PP'x = Px ~ cosze x € QF). It follows
then that QPQ and QP'Q are projectors onto the one-dimensional
subspace QX n Pl and QKX n P'lY respectively.

As before, we represent vectors and operator of Q

with respect to the basis vectors:

cos 6 0
Px = [ ] and (I-P)x = [ }

0 sind

Since A = PAP + (I-P) A (I-P), and Q commutes with P,
then QAQ = a; c |, al > 1 and a, < -1. Similarly, since

0 aé
A+H = P'(A+H)P' + (I-P') (A+H) (I-P') where P'(A+H)P' = 0 and
(I-P') (Aa+H) (I-P') < 0, and since Q commutes with P', it follows
that Q(A+H)Q has spectral projectors QP'Q and Q(I-P')Q, and
QP'Q and Q(I-P')Q correspond to the nonnegative and nonpositive

spectra of Q(A+H)Q. Since QP'Q X/ is spanned by x, then x is

an eigenvector of P(A+H)A corresponding to an eigenvalue

A=20. Let QHQ = hll h12 . Then, it follows that
his hyy
a; + hll h12 cos B A cos ©
h12 a2+h22 sin © A sin ©
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Since ||QHQ|| < ||H[|, then ||QHQ|| =< &, and PHP +
(I-P) BH(I-P) = 0 and PQHQP + (I-P) QHQ(I-P) = 0. Since P
commutes with Q, then if the bound in either part of the
theorem is proved for the 2-dimensional case, it can be
carried back from Q& toly . So the proof is now reduced
to the proof of the theorem in the 2-dimensional case which

is the same as the proof carried out in Theorem 3.1.7.
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§3.2 Rotation of eigenvectors by a perturbation in general.

Here we discuss the case when a Hermitian linear
operator is slightly perturbed, and see how far its invariant
subspaces will change. This discussion is an extension of
the previous analysis in the finite dimensional case, and the
main new idea here is the introduction of the operator angle
© defined in §1.3. These angies unify the treatment of nat-
ural geometric, operator theoretic and error-analytic questions
concerning those subspaces. Sharp bounds on trigonometric fun-
ctions of these angles are obtained from the gap between appro-
priate parts of the spectra and from a bound on the pertur-
bations. Similarly, sharp bounds will be obtained for arbi-
trary unitary invariant nerms, as in [11]. In [9 ] and [10]
such bounds could be asserted only upon the operator's bound-
norms. Such theorems are of two types, single-angle theorems
and double~angle theorems, and the last ones are extensions of
Theorems 3.1.7 and 3.1.8. All the theorems are applicable for
infinite as well as finite dimensional spaces. The chief new
tool in the proofs is embodied in a simple inequality for

binomials AX-XB which wére discussed in §2.2 and §2.3.

Since the differences between the subspaces will be
measured in terms of trigonometric functions of the angle O,
we first give the various measures of differences between the
subspaces P = R(Eo) and Qb = R(FO) mentioned in §1.1,

in terms of O:
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(1) sin® © = P(I-Q)P + (I~P) Q(I~P) = (P-Q)2, thus

(3.2.1) lsin ©| = .|p-Q}, in all unitary invariant norms.
(2) Since s, = J, sin ©,, and sin 6, = (S8,* S )l/2 then
0 0 o’ 0 0 0 !
SO and sin OO have the same singular values and
Isgl = llsin 64 (Appendix B,) and
. % k. *
(3.2.2) |lsin gyl =lIsyll = |lE; U gl = || (z-P)U |
* .
= " (z-012] = || (z-@)B|| = || (T-Q)E,E, |
* %
= T a-aiEgl = (7, gyl = 1=, "F,Il.

(3) sup {|lop-p|: lpl = 1, p = Pp} = [sin e”l,

Proof.
L.H.8. = sup {((1-Q)p,p), |lpll = 1, p = Pp}
= sup {((I-Q)Pp,Pp); lp| = 1}
= sup {(P(I—Q)Pp}p): lell = 1}
= [[P(I-Q)P||, = [|[P(I-Q)P + (I-P)Q(I-P)|,
= [|sin 0|
Thus

(3.2.3)  sup{|op-p|l; |lpl = 1, p = Pp} = |sine |I; = llsin o, -
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(4) sup{inf{”q-p”: fall = 1, g = Qq}; Iell = 1, p = pp}

o |

= 2||sin %

l°
Proof.

Fixing p, we have

L 2 v
inf{la-pll ) flall = 1, q = oq} = inf{]lQ(g-p)|? + I (1-Q) (g-p) || %}

a=Qq q=0Qq
|l alf=2 llal=1

Il

inf{[q|® + Jop|? - 2Re(op,q) + (1-0)p|?}

inf{l + |p]® - 2re(op,a)} =1 + |p]? - 2 |ap| |ql

The equality holds, when gq = IQB“, and
ep

inf{la-pll %illal = 1, a = 0q} = 1 + [p| 2 - 2]op|l,
sup{l + HpH2 - 2[lopll, Ilpll = 1, p = Pp}

sup{2 - 2||op||} = sup{2 - 2(poPp, p)t/?)

1/2 Pp}

1
Il

2 - 2 inf{(PQPp, p) el = 1, p

' . 2 . 1 2
2 - 2 cos Bl = 4 sin 61/2 = 4||sin 5 0 ”l

where 8, =6, > ... are the singular values of ©

2 0

Thus we have
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(3.2.4) sup{inf{|la-p|l; |ldl = 1, @ = Qq}; |lp|l = 1, p = Pp}

1
= 2”51n‘§ Olll.
In the notation of §1.2 let PX be a reducing sub-

space of A and QX be a reducing subspace of A+H, so in our

decomposition of & onto PAX and (I-P)X , we have

= (
(3.2.5) A (EO El) Ao 0 EO
L3
\o Al E;
3.2.6 = ) | B *
(3.2.6) H = (E0 1 HO E,
x
\B Hl E;

These equations define the new operators appearing
in them e.g. B = El*HE0 is an operator from K(EO) to K(El),
and Aj and Hj are Hermitians. On the other hand, in the
decomposition of & according to a reducing subspace Q& of

A+H, the two ways of representing A+H are

(3.2.7) A+ H= (E0 El) AO + HO B EO* =
B A +H | |B
A s
= (Fqg  Fy) |4 0 Fo
*
0 A Fy

From (3.2.5), it is clear that A, is isometrically

0

equivalent to a part of A, and instead of comparing A+H with
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A and saying that the difference is small, we compare A+H
with AO acting on a space of lower dimension, and say that
the residual R defined by

(3.2.8) R = (A+H)E0 - EOAO

i

(actually, R = HE, since P commutes with A) is small.

0

F A, = A

Note that if E0 o' Ao 0

then R = 0.

Theorem 3.2.1 [11]

Assume there is an interval [B,oland a §>0, such that

the spectrum of A, lies entirely in [B,al, while that of AJ

0
lies entirely outside (B-8, a+8) (or such that the spectrum

of A, lies entirely in [B,al, while that of A, lies entirely

1
outside (B~8, oa+8)). Then for every unitary invariant norm,

§]lsin © < [|R].

N

Remarks.
1) In theorems 3.1.7 and 3.1.8, it has been usual to require
a gap between parts of a single operator (e.g. A0 and Al)'

Here a part of A is separated from a part of A+H.

2) Here the spectrum of Al is also allowed to lie both above

and below the spectrum of AO.

Proof.
Without loss of generality, we may assume a = -8 = 0.

From (3.2.8), we have
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R = (A+H)E0 = EOAO = HEOF so for the unitary invariant

norms, compatible with the bound norm, we have

[l = |R"| = |R'F,|, since |[F |, = 1. From (3.2.8), we get
* _ * * * b
R = EO (FO AO FO + Fl Al Fl) - AO E0 p

* *

Applying theorem 2.3.1, with X = K(Fl),‘g = K(EO),

* : - -
X = E, F;, we have (since |[A]| < a and||A0H]l < (a+8) 7Yy,
* * ®
(3.2,9) IRl = r| =[r" Fi| =8[E, F,f.
From equation (3.2.2), we have HE; Fil = Isin ol

thus |R| =2 §|sin @ , | in every unitary invariant norm.

In case of the bound norm, we can strengthen the conclu-
sions, under the same hypothesis, since |sin @ I, = Isin 0],
namely [R|, = é[sin ©],, and hence

slsin o |, < [RI; = 18 Egl, = [Hly. (5], = 1)

On the other hand, if we allow some more hypotheses on
the separation of the parts of the spectra, we may get the

following conclusion:

Theorem 3.2.2. [11]

For a given 8>0, assume that the spectra A, and Al are

separated as in the hypothesis of theorem 3.2.1, and assume that



84

the spectra of AJ and Ao are also separated as in the hypothe-

sts of the same theorem. Then, for every unitary invariant

norm, S8lsin ©f =< |Z].

Proof

Repeating what has been done in the proof of theorem

3.2.1, it follows from (3.2.2) and (3.2.9) that

) * *
(3.2.10) fer(1-0)|| = [lE § B F |l =4l[E, Fyll
= o[p(x-Q)|] = §llsin o.
Since HEl = (A+H)El - ElAl, it follows that theorem 2.3.1 and

from equation (3.2.2), that

i

* *
(3.2.11) | (1-P)HQ|| = ||E 1 BRI = 8llE, Foll

Sl (x-prall = éfjsine .

Since (3.2.10) and (3.2.11) are true for all unitary

invariant norms, it follows (see appendix B) that

| (1-P)HQ + PH(I-Q)|| > §|| (I-P)Q + P(I-Q)|
= 6|l [(I-P)Q + P(I-Q)] [20-I1f = ¢&|p-qf.
Thus | (I-P)HQ + PH(I-Q) |2 6|sin 0]; this follows from equation

(3.2.1}. Finally,
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§|sin ©|

IA

| (z-PYHQ + PH(I-Q)]

|E + (1-2P) H(20-I)]

|
NP

A
Do -

fg] + J(x-2p) H (20-1)] < |H]|,

since I-2P and 2Q-I are symmetric. We obtained

§[sin o || <|H].

In some applications of numerical analysis, concerning
calculation only of some eigenvalues and eigenvectors of an
operator A, this may be translated in our notation as follows:
Eq is used to approximate some of the eigenvectors, and
hence the eigenvectors are not exactly orthonormal, and con-
seqguently E0 is no longer an isometry, but we may suppose that
E*OE g =€ where € is very near to 1. The following theorem
discusses, besides the above case, the case when it is required

to compare an eigenspace of A+H with an eigenspace of A, with

different dimension.

Theorem 3.2.2 [11]

Assume the Hermitian operator A+H satisfies (3.2.7)

and that R 1s given by (3.2.8), Assume as before that F, and

* X
F_, are isometrics with F,F, + F_F, = 1, but for E,, assume

1 00 171 0’
*
only that E, E, 2 62 for some €>0, Let P and § be the pro~
Jeetors onto R(Eo)and R(Fo)as before, but without any hypo-

thesis on the dimension of these subspaces. Let sin@o be
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any operator with the same singular values as P(I-Q) which

we assume to be compact. Assume there is an interval [B,a]
and a d>0J such that the spectrum of A, lies entirely in
[R,a] while that of AZ lies entirely outside (B-8, a+S) (or
such that the spectrum of A, lies entirvely in [B,al while
that of Ao lies entirely outside (B-§, a+d)). Then for every

unitary-invariant norm, Selsin OOH < |&B].

For some applications, the hypothesis in theorem 3.2.3
concerning the spectra of AO and Al is too restrictive. As a

partial relief, we have the following theorem:

Theorem 3.2.4

Assume that all the hypotheses of theorem 3.2.3 are
satisfied, except that the only restriction on the spectra
is that |A-a| =2 8>0 for all X in the spectrum of A, and o in
the spectrum of Ay Assuming in addition that Az and A, are

diagonable, then

seflain )1, < |7l

sq
Proof.,
Note that the conclusion is trivial if "R"sq is infin-
ite. Otherwise, the proof goes on the 1lines "as for

theorem 3.2.1, except instead of applying Theorem 2.3.1 we need

to show that the equation C = AOX - XAl has a solution X, which



87

satisfies “C"sq > SHXHSq = s(tr x*x)/2, To show that, con-
sider the following singular decomposition of AO and Al;

= * = * r
AO UDAOU and Al VDAlV where DAO and DAl are diagonal

relative to suitable orthonormal bases and U,V are corres-

ponding isometrics. The equation C = AOX - XAl reduces to

U*Cv = DAOU*XV - U*xvnAl, B = U*CV, Y = U*XV, by, = a;¥ 5 -
yijki,
2 _ .2 2 2
lbijl = Iai hil lyij' 2 dlyijl '
2 2
Podpsl® 28 1y,
i iyt
Jor cvl__ = sfur xv]
sq sq
But i'lsq is unitary invariant, thus
lell o = sl
Now applying this inequality, to the equation
* _ * *
R Fl = EO Fl Al - AO Eo Fl, we get
* *
BN TR N
But [|P(I-Q)| = |lsin SOH for any unitary-invariant norm, in
particular

HP(I—Q)HSq = ||sin OOqu'



88

* -1 *
(E E.) E0 . one calculates

Since P = E 0 0

0

_ * _l * *
HP(I-Q)“sq- lEq (B, EQ) " E, Fy Fy ||Sq

* -1 * *
< IEq®y Eg) Tlly 1By Fillgg N7y M-

* 2 * -1 2
From E0 E0 z € > 0, we get (EO Eo) < 1/e”, and
thus
l *
lp-0)l o = 22y Fillg,r and
. *
e8] sin eO"sq < "EO Fl"sq'

Theorem 3.2.5 [11]

Assume there i1s an interval [B,al and a o>0 such that the

spectrum of A, lies entirely in [B,a]l while that of A, lies

0

1
entirely outside (B-§, =). Assume further that H, = 0, then
for every unitary-invariant norm, 8l tan ©,| < [R| and

s tan o] < |a].

Remark.

Note that the spectrum of Al should lie above that of
Ay, in contrast with theorem 3.2.1, but we have gained an improved

bound by a further assumption.

Proof.

In terms of the direct rotation U,
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(3.2.12) U - C0 -S0 = |cos @0 —J0 sin Ol
S0 Cl J0 sin @0 cos Ol
where Jo 00 = elJO’ cj 20

We rewrite (3.2.7) in terms of (3.2.12) in the form

* *
* - = -
(3.2.13) A0+H0 B C0 S0 CO So AO 0
B A1+Hl SO Cl So Cl 0 Al
Thus, it follows that
3.2.14 * xC. = -8 A
But B < AO < a < g+d8 < Al and H0 = 0, and R = HE0 = EOHO
+ ElB = ElB, thus
IR| = "ElB" = |B|] for every unitary-invariant norm. From
(3.2.14), we get
{(3.2.15) ClB = SOAO - AlSO'

To simplify the proof, we assume that all the operators

are bounded, and So is compact. Since “AOHI s a,

”A-llnl < 5%5 » then applying theorem 2.3.1 we get

el = sils,l

To get our conclusion, we try to prove that HBHv 2

§ftan o from this, it follows that ||R| = [|B]] = &|tan OOH

Onv’
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for all unitary invariant norms (Appendix B). For an operator

K, we use the norm

I | x| f ”
[X]. = sup|TKQ|. = sup Re Y, K x
Vooq,T v k=1 ¥ k

’

The first sup is taken over pairs of v-projectors § and T, and
the second sup is taken over all orthonormal v-tuples

{Xl,xz,...,xv]’ and {yer2v0°-lyv‘}" )

E
Since (S0 80)1/2 = gin 60, and S0 is compact, then
*
SO S0 has the eigenvalues sin261 p sinze2 2 ... . We calculate

"B"v for integers v exceeding neither dim K(E;) nor dim K(E;).

We choose orthonormal v-eigenvectors x € K(EO)

01’ %027 *gy

corresponding to eigenvalues sinzel > sin292 2 ,.. 2 sinzev, |

then we choose orthonormal vectors Y117¥157 - € K(El)

"Y1y
d i . = = . i . . . ., = .
efined by Y15 S, xOJ/51nSJ, 6] + 0 If SJ 0, we take Y14

*

to form an orthonormal set from N(S0 ) so ylj satisfies So*ylj =

. * . 2 * 1/2

0. . . = . ). = -~
sin 3 XOj (S0 SOXOJ sin GJ XOJ) From Cl (I SOSG ) on
K(El), we get
S, S * = in 6. S = sin?
0 So ylj = sin i 5o XOj = sin Gj Ylj
Cl ylj = ¢oSs Gj ylj
*

Now, from (3.2.15), it follows that y 13 (ClB) X =

*® * %

7 .. (S, A, - . . . ., = =si . . .
Y 15 ( o 2o Ay 84) Xg5 COS ej Y 15 B %03 sin eJ X 03 A X0 +

. . * %
sin . . . = . . . = .
O3 Y13 Ay Y5 = 810 05 (¥ 14 Ay Y14 = X o5 Ag Xgy)

Since A, = g+§ > i *
3 20+, o ..AO we find y 15 Al ylj > o+§,

*

X

\
\
|
\
\
\
|
\
\
03
|
\
03 AO ij < o, cos ej Y*lj B xOj 2 sin ej (o+8~a) = & sin Oj;
|
|
|
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Since §>0 implies that cos ej > 0, we have

*
v 13 B xoj‘z § tan Gj,

v v
IB[,, = sup 21 Y 15 B Xy 28 jél tan 6 = §|tan o], -

j_
Thus ||R]| = ||B|| =26 | tan(%” for all unitary-invariant norms.
Now, since [[tan©|| = ||J sin © (cos © )—lll , then in matrix notation
we have
. -1 *
J sin O (cos 0) = 0 -J 0 tan Ol
Jg tan 9, 0

" *

and |3, tan 04 = |5, tan o] = [tan o4l = |B]/S.

It implies that

; * * * *
(3.2.16) Slitan 0| = ||E;J, tan @ 4E - EqJ, tan 0,E, |<|E;BE ; +

* *
EgB E 4| = [[f1-P)EP + PH(I-P)| < |H|

(For the lst and the 2nd equality in equation (3.216)

see Appendix B )

If we now assume that the gap is between A, and A, or

between AO and Al, we have the following:

Theorem 3.2.6. {111

Assume that there is an interval [B,a]l and a8 >0, such
that the spectrum of M, lies entirely in [B,a] while that of A,

lies entirely outside (B-8,a+8), then for every unitary-invariant




norm, 8llein 2 O < 2||R|| and S§|sin 20| = 2| =]l .

Proof.

0 -1

Let X = 2P - I = [1 0] , and Q_ = XQX

X% = I, X =X*=X 7, Q% = Q.= (XFO)(XFO)*, and

~

(3.2.17) X{(A+H)X = A+XHX = Ao + H0 -B*

-B A1+Hl

From equation (1.3.10), we have U2

fl
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clearly

(ZQ - I) (ZP - I)I

thus U2X = 20 - I, and since Q commutes with A+H, we obtain

(A + H)UZX = U2X(A + H),

(A + H)U2 = UZ(A + XHX),

and in matrix notation

* - = -

(3.2.18) Ay + Hy B Co (5] 0 Co S Ay +H
B Al+Hl S0 Cl S0 C -B
. 2 2 _ _ _ 2 .
Since U"Q_= U"XQX = (20-I)QX = Q(20-I)X = QU”, we find that
U2 = {cos 2 9 -J. sin 2 o
0 0
J0 sin 2 GO cos 2 Ol

is a unitary taking Q_J to QW .

A_+H

The intention is to apply theorem 3.2.2 by regarding A+H

as a perturbation, of A + XHX i.e. the perturbation is H -

XHX.

The parts of A+H on Q Yk and (I-Q)& are represented by AO and Al
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*
where Aj = Fj (A+H)Fj, j = 0,1. Clearly Q_ commutes with

A+XHX, hence the parts of A+XHX in Q_JX and (I-Q_ )X are

*
Aj = (XFj) (A+XHX)(XFj) = Aj

and the hypothesis of theorem 3.2.2 is satisfied, replacing

* * % * *
Eg by XF; and B, F by (XF)) F) = Fy XF) = 2F 'E(Ej F =
% *
2(F0 EO)(EO Fl) so
* k]
“(XFO) Fl“ = |sin 2 90" 5

and from theorem 3.2.2, it follows that

Sllsin 2 0| < |[B - xmx| < |[H]| + |xux| = 2|5,
so that for all unitary invariant norms, we have

§|sin 2 0] < 2 [H|.

5 . * % . *
But §[|-E, sin 2 @, Jy E; + E;J; sin 2 9, E |

* * *
< |EgB B, + EBE, |

This implies that §fjsin 2 0,] < 2 |B] < 2 ||R|.

o s




CHAPTER 4

Error Bounds for Approximate Invariant Subspaces of Closed

Operators

In chapter 3 we showed that,given an invariant subspace
of a self-adjoint operator and the corresponding invariant sub-
space of the perturbed operator, then we can find a bound for
the difference between the two subspaces in terms of the mag-
nitudes of the perturbation and of the gap between appropriate
parts of the spectra, and we measure the difference between the
two subspaces in terms of a nonnegative operator 0. It was shown
that the rotation is small if © is small (§1.3, §81l.4) and O is
small if the perturbation is small (§3.1, §3.2).

Here we extend the above results to the case of non-
Hermitian matrices or more generally, to closed operators on a
Hilbert space. The result for this case depends on a measure
of the separation of the spectra of the two operators, and for
Hermitian matrices or self-adjoint operators the distance between
the spectra is an adequate measure (this being the one used
in chapter 3). However, in the general case, the spectra and
hence the distance between them may vary violently with small
perturbations in the operators, and hence we need a more stable
measure of the separation. This measure and its properties will

be discussed in §4.2.
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§4.1 The Class of Hilbert-Schmidt Operators

Definition 4.1.1

Let {xa, aed} be a complete orthonormal set in the
Hilbert space¥ . A bounded linear operator T is said to be a
Hilbert-Schmidt operator if the quantity “ﬂﬂﬂs defined by the
equation

Irll,e = { ZA Izz 131/ % 1o finite.
QE

HZﬂHS ig called the Hilbert-Schmidt norm. The class of Hilbert

Sehmidt operators will be denoted by HS(¥).

Lemma 4.1.2

The Hilbert-Sehmidt norm is independent of the ortho-
normal basis used in its definition. If T is in HS(X) and U

18 unitary operator onk, then vl TU is in HS(H) and

-1

v TU”HS' In addition, “T“HS > |7l and

1l

E

N7l g = H*] e

Proof

Let HTHA, |Tll; be the Hilbert Schmidt operator norm when
defined in terms of different complete orthonormal systems

{Xa, GEA]’, {XB, BEB}.

, 2
From”xn2 = zl(x,yB)l2 we have HTHi = I HTxaHZ = Iz | Txu,ys)l
B o o B
= I I)(x_, T*y8)|2 =3 HT*YB“2 = HT*Hg-
Ba “ B
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If we take the same complete orthonormal set, we get
2 . . 2 _ 2
”Tng = HT*"E = HT"i which implies that [Tg = HTHA.

If U is unitary operator, then the set {Uxa, oeA}l is also a

complete orthonormal set, since [x| = ”U-le,
ot qulg = 3 Mo moxl? = 1 drox )® = g
HS O.EA ' o C.EA
By definition, ||| = sup |lTx||, so given e>0, let x, be any unit

IIxl|=1

2 2
vector such that ||T||“ < “Txou + €.
Since there exists a complete orthonormal system containing Xyt
"T"2 <z HTxaﬂz + €; since €>0 is arbitrary, we conclude

Izl < D7y

An equivalent definition of the Hilbert-Schmidt norm is
as follows:

Let {xu, acA} be any complete orthonormal system ink .

Then
= 2,,1/2
"T”HS - (é,BEA(I (TXO(.'XB)I )) .
Since
| = H2 = 7 [(TXG;XB)|2, the equivalence is obvious.
o aeh

Theorem 4.1.3 [12]

The set HSR) of all Hilbert-Schmidt operators is a
Banach Space under the Hilbert-Schmidt norm. In addition HS(Y)

is an algebra with "TS“HS < ”THHS US”HS'for every T,SeHS(¥).
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Corollary 4.1.4

The set of Hilbert-Schmidt operators is a two-sided ideal
in the Banach algebra of all bounded linear operators in a Hilbert
Space . Moreover, if T is in HS(}) and BeR(Y) then

I22) g < N7l g 121 and |2, < J2) 120 ,q.

Proof.
Let TeHS(¥), Be (@ (X¥), then
IerliZg = 1 Msex i < I Isl® Nz % = |82 |zl 2,

oelA oeA

hence BTeHS (Y).
On the other hand, [TB|gq = [ (TB)*|,q = [B*T*|

< Jer] 75 = 18] 17

So TBeHS (&) .

Theorem 4.1.5 {121

Every Hilbert-Schmidt operator is compact and is the limit
in the Hilbert-Schmidt norm of a sequence of operators with finite

dimensional range.

Remark

Not every compact operator is in HS (¥}, for example if

*{xn} is an orthonormal set in a separable Hilbert space and if T

is determined by Txn = n-l/2 X, n=11... Then T is compact but

2 S . o
) HTan = % is not finite and hence T is not in HS(}).
n n=1 '
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The class of Hilbert-Schmidt operators is a Banach
algebra without identity. 1In addition HS(¥) is a Hilbert space

with the inner product defined by

(s,T) = ] (Sx,, Tx,)

Q

!
t~1

o, bea (Sxa. XB)(XB, Txa)

(by the general Parseval relation, where {xa}as is a complete

A
orthonormal system).

84,2 The Separation of Two Operators

Let‘){,j‘\é be Hilbert spaces. Let Be(B(X), Ceff (). Let

Tsé@[é&(xgg)] defined by

T(P) = PB - CP Pe(ﬁ(?%j).

Also let Teﬁg[HS(zay)] defined by

T(P) = PB - CP, PeHS(Qgg).

It was shown in theorem 2.2.8 that

o(T) = o(B) - o(C) = {B-y: Beo(B), yeo(C)}.

Also it has been shown in theorem 2.2.5 that for Aep(T),

-1 1
(4.2.1) (T-AI) Q) = 50— f (21-C) "1 o (p-A1-21)71 4
=—L R(z:-
e (z; C) Q R(A+z; B) dz
. _ -1 .
where R(z; C) = (zI-C) and the integral is taken over a suit-

able contour.
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Now we extend the above results when C is an unbounded operator.

For that, let C be a closed operator on‘% whose domain‘xC is

dense in%y. TIf Peli() then the mapping P - PB - CP defines
i RO Pping

a linear operator

r: (B (%j'zjc) - @ (QC,;Z{) , note: since CP is closed,
defined onj{, then CPeGB(%gg).

Theorem 4.2.1 {[36]

o(T) = o(B) - o(C).

Proof

To prove this, it is clearly equivalent to prove that
Oeo(T) iff o(B) n o(C) ¥ ¢. Suppose, o(B) n o(C) = ¢. Since
0(B), o(C) are closed,and the complex plane is connected, we have
p(B) n p(C) % ¢; this implies that there exists a point

Aep(B) n p(C). Let QE(@(?@%) and consider the equation
(4.2.2) TA(P) = PR(A;B) = R(A; C)P = R(X; C) QR(X;B).

Since o(B) n o(C) = ¢ and Aep(B) n p(C), so og(B=A) n o(C=A) = ¢
and hence o(R{(A; B)) n o(R(A; C)) = ¢ which in turn implies that

T)\l exists as a bounded operator.

Moreover, if P satisfies (4.2.2), then R(P) =q{ and

¢e’
if we postmultiply by (AI-B) and premultiply by (AI-C), we get

PB - CP = Q, that is T(P) = Q

which implies that T has a bounded inverse, and
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P = Tfl(Q) = T;l(R(A; C)QR(X; B)). Moreover,

Jz~* e ITh@) s I RO ol (RO B

so that 0ep(T).

For the other implication, let Aeo(B) n o(C), then
Oec(B-A) n o(C-1), and since T(P) = P(B-AI) - (C-AI)P, we may
assume without loss of generality that A = 0, i.e. 0eo(B) n o(C),
the proof is adapted from [28]. The spectrum of the operator C

has the following subdivisions:
g(C) = cp(C) u cc(C) U crr(C).

Here qp(C) denotes the point spectrum, cc(C) denotes the con-
tinuous spectrum, and cr(C) denotes the residual spectrum.

If Aaqp(C) n oc(C), then there is a sequence of unit vectors

yiégc such thatl[(AI—C)yﬂ] + 0, similarly for o(B). Now for

0eo(B) n o(C) and by the above subdivisions of ¢(B) and o (C),
we have the following cases to consider. (The star denotes,

for convenience, the Banach space adjoint).
*
(1) Oeop(B*) LJOC(B ), Oeop(C) lJUc(C).

Then there are sequences of unit vectors Xer ¥y such
= w% L= yLUX*
that B*x¥ = xI¥B -~ 0 and Cy; = 0. Let P, = y,x¥ then
P.| = . x*(x)| = ) = y.(X*B) - (Cy.)x*
e, ﬁi?—l ly; x¥(x)| = 1 and T(P;) = y, (X}B) (Cy;)x%.

X eb\/

Now, [[T(P )]l < |fx#B]| + llcy,l + 0, so that 0Oeo(T).
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(2) Osor(B*), Oecp(C) uoC(C)

For Oeo,(B*) we have Oeop(B) (since Oeo_(B*) imply R(B*) =X,
which imply that N(B) + {0}). So we have unit vectors x, Y;
such that Bx = 0 and Cy; > 0. If 040 (T) (note y;x*e@ (,.'1;,‘2,1‘)) it
follows that there are Piegz(?%ﬁe) such that T(Pi) = yix*. Now
Cp, = P,B - yix* and C2Pi = CPiB - Cyix*, which implies in turn
that CPie C%}gé) and C2Pi is bounded. It follows that

CP.B - C2P. = CT(P.,) = Cy.x* » 0, so that CP, > 0.
i i i i i

T(CPi)

But, 1 yi(yix*)x = y;T(Pi)x y;(PiB - CPi)x = y;CPix -+ 0,

a contradiction.

(3) Oecp(B*) U GC(B*), Oeor(c). This goes similar to (2)

and implies 0Oeoc(T).

(4) Oecr(B*), Oecr(c). Let x,y be unit vectors such
that Bx = 0 and y*C = 0. If 040(T), then there is a
Pe(ﬁ(g@?é) such that T(P) = yx*. But then 1 = y*T(P)x =
y*(PB-CP)x = 0, a contradiction. The proof is complete.

The same result holds for the operator T:

Theorem 4.2.2

g(t) = o(B) - o(C)

Proof
The same as in theorem 4.2.1.
After we extended theorem 2.2.3 to the case where C is a closed

linear operator, we try to find a measure of the separation
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between the two operators. Now in case o(B) n o(C) =¢ ,

that is, Oic(T), T“l exists, and

-1
™ > sup 13,
rec (T)
-1-1 _
so that 0 < [T | < Inf |A] = Inf |g(B) - o{(C)|
Aea (T) _
‘ = Inf{|B-vy|, Bec(B), yeo(C)}.
Definition 4.2.3
B L T P72 3
sep(B,c) = 1, if 0eo(T)

{HT'JH'Z if o¢alt),

sep,,(B,C) =
BS 0  if Oeo(r)

Theorem 4.2.4

The separation of B and C satisfies the inequality

(4.2.3) sep(B,C) < Inf |o(B) - o(C)|, and if sep(B,C) % 0,

then

sep(B,C) = Inr lzep)|
| 7]

The Hilbert-Schmidt separation also satisfies (4.2.3) and <if
sep, (B, C) + 0 then sep,s(B,C) = In ) “T(P)HHS.
7l 5=1

Proof
As we showed before, if o(B) n o{(C) = ¢ then
7717t < 1nf [o(B) = o(C)]
Similarly ”T—lH—l < Inf |o(B) - o(C)]|, and hence inequality

(4.2.3) follows from definition 4.2.3.
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But Tnf  [T(®)] = 7Yt if T is invertible, and
firfl=1
Inf @) = "T_l“_l if 1t is invertible
2l =1

So it follows that if sep(B,C) # 0, then

sep(B,C) = ﬁnf @)
1

sep.q (8,C) = Inf ”T(P)”HS

HS

The reason for using sep(B,C) as the measure of separation of
the spectra of B & C, is that it is insensitive to small

perturbations in B and C, as shown by the following theorem:

Theorem 4.2.5

If Ee@(}.{) and Felf (), then

sep(B-E, C-F) 2 sep(B,C) - ||E| - ||F| and
sepyc(B-E, C-F):zsep, (B,C) - ||E| - |[F].
Proof
The proof is the same for sep and sepygs SO we prove it
for S€Ppg -

If sepyg(B,C) - ||E[| - ||F]| < 0, then the theorem is true
since sepHS(B—E, C-F) =2 0. Now we suppose that sepHS(B,C)

el - [l > o, that is sep,.(B,C) > || + ||F].

Let v@ab[HS(ﬁgy)] be defined by V(P) = PE - FP
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vl = mup Ive)li,g < el + I[Fll (by corollary 4.1.4)
HS~

E+F < 1.

so [lve M < Iv) 7Y < S&Pyg (B/C)

Hence (VT_l) is invertible and

lz-vi 5™ < @ - vt
But (t-v) "t = 7L (z-vehH) 7T,
which implies that (T-V)-l is bounded. But sepHS(B—E, C-F) =
| (-») 747,
sep, o (B-E, C-F) = || (=) "7 = 7L z-ve™hy 7Yt
-1,-1 ~1,-1,-1
T fa-veTh T

sep,q (B,C) (1 ~ ve™Y)

\%

ol

v

sep,¢ (B,C) - sepHS(B,C)HVr-

\Y%

sepyq (B,C) - lel - {&] -

The importance of SePyg rests in extra properties not satisfied

by sep. We list some of the properties of S€Pyq -

For proofs and more properties of sep,g we refer to [361].

1. Let“‘f =°Jl GBC‘(‘{Z & ... e‘l({m, §; the projector onto (}.{i such

that SiC = csi, S0 we can write

C = Cl ® C2 ® ... @ Cm where Ci is the restriction of C to

s, ('gc);
Similarly, let)& =;§l 6}52 @ ... ean where W, is the

projector on)fi and WiB = BWi i=1,...,n. Then we have
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sepHS(Bl ® B2 ® ... ® Bn' Cl ® C2 ® ... © Cm)
= min {sepHS(Bi, Cj): i=1,2,..,n, j=1,2,..,m}.
(2) 1f Be® (%) and ce@® (), then

sepHS(B,C) = sepHs(C,B).

(3) If B and C are selfadjoint then sepHS(B,C)

Inf|o(B) - o(C)].

§4.3 The Error Bounds

Let A be a closed linear operator defined on a separable
Hilbert space2{ whose domain {)(A) is dense ind. LetXc §(A)
be a subspace, letcg be the orthogonal complement of /4. Let
q, . . .
éA be the projection of £ (A) 1nto?{.
We note that the linear manifold"&'A is contained in
é)(A) and is dense in?{. Because yey% implies y = z - x for
some ze ‘5} (a) and xe;'{cg“; (A) which implies that yeé) (a).
. . . . . ;)
Since ﬁ)(A) is dense ani’?{A is dense 1n(f.
. . o Q .
Let X, Y and Y, be the insertions offé,zf, andJA into

X respectively. (note that X,Y are isometrics).

Theorem 4.3.1

Let Pe(? (}5_,2/(4). Let

X' = (X + Y,P) (I + P*P)'1/2

Ypo= (Y, - XP*) (I + PP*)_Z/Z

LetX.' = R(X') andzfé = R(Y!), then
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(i) X' and Yé are isometries
(i) X '<f(4) is a subspace,
(111) 'yu is the projection of D (4) onto the orthogonal
complement of ',

(iv) the subspace ¥.' is an invariant subspace of A

iff Y)* Ax' = 0.

Proof
(i) To prove that X' and YA is an isometry, it is

enough to prove that X'*X' = I,

But X'*X' = (I + p*p) 1/2 (x* + p* Y%) (X + Y, P) (I + pxp)~1/2

Since XAC“:H and R(X) =%, and since N(X¥) ='g, we have X*YA = 0

and Y% X = 0. Als0 X*X = I, Y% Y, = I, (The identity on’l(fA).
Consequently, X'*X'= (I + P*P)-l/2 (I + P*P) (I + P*P)—l/2 = I.
Similarly we can show that YA* YA = I.
(ii) Since X': ;5 +}¥ and R(X") =$§', the setgé' is a
subspace sincej%’is, and X' is an isometry,
K' = R(X') = R(X + Y,P) c R(X) + R(Y,P) <X+, c S ().

(iii) First we note that

) H (¥3) X

N +1/2
@ (Yp) = (I + P*P) ng.

Let Q' be the projection operator on;&'. Then (I - Q') is the

projection operator onn{', the orthogonal complement of?,'.

d

Since YA* X' = 0, this implies that:jé czj',
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To prove that (I - Q') & (A) = B’I‘X, we first note that clearly

}j‘}‘?\ c (I -Q"')%H (A). On the other hand, let y'e(I - Q') © (A);
by the previous remark, (I - Q') {(A) < § (A) and (I - Q') H (A)
is dense in "2{' which implies that y'e§(A). Now y' = x + y

XeY, YeYa but since y'e(I - Q') 2 (A) this implies that X'*y' = 0,

which implies

(I + P*P)-l/z- (X* + P* y,) y'
1/2

0,

(I + P*P) (x + P* y) = 0,

!

which implies x = -P* y y' =y + x (YA - XP¥%)y,

which implies y' = Y}'\ (I + PP”‘)]'/2 Y

So finally, y‘e?j'z; and (I - Q') §H(A) =q(fl‘;;'

(iv) %2& is the projection of 4 (A) into fg', so that by
the previous remark 'gi c § (p) and ’gi is dense in QJ',

So Yj* BX' = 0 iff Ayl < ',

Lemma 4.3.2

The operator AY',: © (Y,) XN is closed.

Proof
]
Let z -~ z z € {D(YA)
and AYA 2, * h. We will show that AYAZ = h.
| J— ] 1 /1
Let y, = Y, z  where yneJA c & (A).
: | I : 1 [
Since YA is an isometry, the sequence yn >y EBA'

Since A is closed, 2-\yI'1 + h, yr; + y', hence y' e ) (d)
and Ay' = h. The fact that y' ¢ § (A) and y"' eﬁ' implies

oL Af T = & '
that y' € dA So, y YA z for some z € £ (YA).
B ! . 1] . - ' '

Yy assumption, Zn + 2z, which implies YA zn - YA z.
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Since Y, is an isometry, it follows that z = z, z € d)(YA)
X will be an invariant subspace of A iff G = Y3 AX = O,
so if G is small, then ) is hopefully near an invariant sub-
space of A. We will show in the next theorem that, under cer-
tain conditions, there exists an isometry X': §6-+J# such that

R(X') is an invariant subspace of A and |X-X'| tends to zero

as G tends to zero.

Theorem 4.3.3 [36]

Let A: D (4) » X be a closed linear operator with
domain §(4) dense inkl. Let X < $(A) be a subspace cma'."g‘4
the projection of ﬁ)UU onto the orthogonal complement of )X .

Let X, and Y, be the injections oij,‘ﬁh into Y, respectively

A

and let

B = X*AX, H o= X*AY,,

G = YA*AX, C = YA*AYA.
Set

y = 6], n= 8], § = sep(B,C).
Then 1f
(4.3.1) <, = /62 < 1/4

then there i1s a Pe@(?(/;?a(A) satisfying
Y 1 + /1-4K1

5 < 2 v/6.
1—2K1+¢1-4K1

(4.3.2) lz) £ L1+ x) =

such that R(X + YAP) 18 an invariant subspace of A. Moreover,

0(A) Zis the disjoint union
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(4.3,3) o(A) = o(B + HP) u o(C - PH).

Proof

Since B: jxr+}$,¢% is a subspace and A is closed then
it follows that B is bounded; on the other hand, C is closed,
so that 8§ is well defined. X', YA are as before, so according

to theorem 4.3.1, %' is an invariant subspace iff

G' = YA AX' = 0. We can calculate
G' = (I+PP*)_1/2(Y£ - PX*) A(X+YAP)(I+P*P)'1/2
= (I+PP*)"1/2 (CP - PB+G - PHP)(I+P*P)-1/2.
(4.3.4) T(P) = PB - CP = G - PHP.
. -1 . -1y _
Since §>0, T - exists and [T ~|] = 1/8.

To solve (4.3.4) by for P, we solve it by successive sub-

stitutions. Let

(4.3.5) B, =171 so eyl < It el = v/8 = m,

Now given Pi’ define Pi+l as follows:

=71 (a-
(4.3.6) P.,y = T (G-P HP,)

-1 _ ol >
iel T “(G) - T “(P;HP,) i 20

b a1
= Py-T " (P;HP,)

From (4.3.6), if [[P.| < =, then

I2s .l < 1Bl + 7

< -1 .2 _
WO + § nﬂi =T

Ip,EE. |

i+1°
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Now ﬂi can be written as follows:

m., = m.(1 + x,) , where
i 0 _ 2
T, + & now
=T 1+ - _0 0 _ _ -1
Ky = 1/1T0 1= T 1 =25 n To*
Hence m = {1l + K Y = 7w, + 6—1 nw 2
i+l 0 i+l 0 i
-1 2 2
=T, + & n Ty (1 + Ki) '

which implies that Ky has the recursion

_ 2
K = Kk, (1 + Ki) .

i+l 1

To find the limit of the numbers K, we solve the equations

y = Kl(l + x)2 and y = x, then we have two roots rys I, given by

(1 - 2Kl) ¥ vl - 4Kl 2Kl

ZKl 1l - 2Kl F /1 - 4Kl

1,2 =

Condition (4.3.1) guarantees that rysT, exist; also

since 2Kl(l+x)<l, xe [0,1), the numbers Ky will converge to

2K
rl= 1 <l.
1 - ZKl + y¥1 - 4Kl
2Kl
so = l1lim Ky = <1
i 1l - 2Kl + /1 - 4Kl

<13 =
and igg IP;1 £ lim 7, = Ty (1 + k),
1 -+o0

so that the sequence'{HPiH} is bounded.
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To show that the iteration defined by (4.3.6) converges

we show that the Pi converge.

Let Di = Pi+l - Pi’ then

Ipgll = IByyy = 2y) S 670 Jpymey - vy ywey )
= &7 p.mp, - P, ,HP,+P, ,HP~P. .up. |
=1 I, _yHe +p; _.HD, |
<67 |m| Io;_q) (g +Hey o
< 2670 Juf |20 Io; 4l
<2670 g mg Ipy gl S 2¢ (k) oyl

o,

We find that lim = 2Kl(1+K) unless Di terminates at 0;

iseo | Di-l"
in either case, ] |ID,|| < » provided 2k, (1+«)x<l, which is true
i
since k<1, Kl<l/4.

So z;;o IPiq - P.| = 0, which implies that the iter-

ation converges. Hence Pi + P, Pe @(%;KAT; but since
P = T_l(G - AHP) where T : @3(}Q?A) - é3(ﬁ%g), it follows
Pe &a(y(,:\éA) and

1+ /I—ZKl

l—ZKl + Vl—4Kl

<2y/86.

el € mg(1te) = v/8
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Now to prove the statement about the spectrum of A, let Y'

be the extension of YA to:j'. Then the transformation

U= X'"X* + Y'Y* satisfies

U*U = UU*

I

I and ULH(A) = § (B).

Hence if A' = U* AU then o(A) = o(A').
With respect to the decomposition J =;ﬁe7p the operator A'

has the representation

A' = (X Y) B' H' X*
G' c' Y*

where B' = X*A'X, H' = X*A'Y G' = Yi A'X, C' = Y* A'Y .

A’ A A

But A" = (X X'* + Y Y'*) A (X' X* + Y' Y*),

So it follows that

B' = X'* A X', H' = X'* A Y!, C' = YA* A YA, G' = YA* AX = 0,

the last equality holds since 55 ' is an invariant subspace.

Al ; BI Hl
14
0 c'

So that if Xep(B') n p(C'), then R(A; A') has the representation

Therefore

_ [r(x; B") R(A; B') H' R(A,C")
R(A; A') =

0 R(A; C")
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Consequently R(A; A') is bounded if R(A; B') H R(A;C') is

bounded.

s L > - ] 4
Since by Lemma 4.3.2 AY; is closed and R(}; C )eGB(?%kA).
it follows that AYAR(A; C') is bounded. Hence

R(A; B') X'* AYA R(X; C') = R(A; B')H' R(A; C'") is bounded.

This proved that o(A) = o(A'") g-0'(B') Uucg(C'); the above repre-
sentation also shows that the reverse inclusion, hence equality,

holds.

From B' = X'* AX' we deduce

1/2 1/2

B! (I+P*P) (X*+P*Y¥) A(X+Y,P) (I+P*P) "~

1/2

172 (B+P*G+HP+P*CP) (I+P*P) ]

(I+P*P)

Since G satisfies (4.3.4), we have P*G = P*PB - P*CP+P*PHP.

Hence B' = (I+p*p)~/2 (+HP) (I+P*P) 1/2, and o(B') = o(B+HP)
Also C' = YA* AY!,
c' = (1+pp*)TL/2 (YX-PX*) A (Y -XP*) (T+pp*) "1/2
= (1+Pp*) "1/2 (Cc-Gp*-pH-PBP*) (T+PP*) 172,

But from (4.3.4), GP* = PBP* - CPP* + PHPP*¥*,

2 1/2
[

so that C' = (I+P*P)l/ (C-PH) (I+PP*)

o(C') = o(C-PH). Consequently o(A') = o(B+HP) uc(C-PH).

Finally, since |[HP} < |H|| |P] = 2nvy/s, we conclude that

sep (B+HP, C-PH) 2 sep(B,C) - [HP|| - ||PH|| (Theorem 4.2.5)
2 - 4
2§-4 y/8= M > o(by (4.3.1)),
$

So that ¢ (B+HP) n o(F-PH) = ¢.



CHAPTER 5

Algorithms

In this chapter, we discuss how to compute the direct
rotation U, if we are given two subspaces of a Hilbert space,
or equivalently two ortho projectors P and Q. We also discuss
here how to compute the angles between the subspaces. These
quantities are of interest in many applications, as in sta-
tistics [ 71, the generalized eigenvalue problem [15] and in

the computation of invariant subspaces of matrices [40].

§5.]1 Definition and Properties of the Bisector of P and Q

Letd be a Hilbert space, and let P& and QX be two

subspaces satisfying

dim Pxl = dim CY,
(5.1.1) {

dim (I-P)& = dim (I-Q)X.

From theorem 1.3.4, we recall that the direct rotation

exists if and only if PJf and QXfare equivalently positioned, i.e.

(5.1.2) dim P 0 (I-Q)X = dim (I-P)X n QY.
We can show that Pl and QJf can be decomposed as follows.

PX = PQY ® (P n (I-Q)N),
QXY= QPN @ ((I-P)Y n OX).

Thus, it follows that 1fX is a unitary space, then equations

(5.1.1) and (5.1.2) are equivalent. We should also remark that,

- 114 -
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even if & is infinite dimensional, these two equations
will still remain equivalent, provided either P or (I-P) is a
finite dimensional projector.

Using the notation adopted in chapter 1, we have

* *

P =E.E, , Q = FOFO , and

(5.1.3) U= [OP + (I-Q)(I-P)] [I - (p-q)2]71/2

(whenever the inverse is bounded), or in terms of the decom-

position of ), into P& and (I-P)Y,

i
0
|
|92]

U

0 0
S0 ¢1
Let
(5.1.4) T = T(P,Q) = [I - (P-0)21 Y2 (p+o-1).
It follows from equation (5.1.3) that
T = U (2P - I},
or equivalently
- *
T - CO S0
S¢ ¢
It is easy to check that T* = T, T2 = I and TP = QT,

so that T is an involution exchanging Pl with Q.
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We define the bisector of P and Q [8, 26] by
1
zZ = 7Z(P,Q) = 7(1 + T);

This is the projector on a subspace, which may be named

" the angle bisector of PY and QY.

Remark 1
Since in the 2-dimensional space the angle bisector
is not unique, but the one defined above is unique, it will be

the bisector of the acute angle as we will show in theorem 5.1.1.

Remark 2

In the acute case, T will be unique, but in the non-

acute case, with equation (5.1.2) satisfied, we define T on

(PY n (I-Q)WY) v (Qun (I-P)Y)

as an involution exchanging Pl n (I-Q) with Q¥fn (I-P)X.

Theorem 5.1.1

In the acute case, T(P,Q) is the unique involution,

satisfying
(1) TP = QT
(i1) PTP 2 0
Proof

Clearly T(P,Q), as defined by equation (5.1.4), sat-

isfies (i), and since
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e

PTP C

then (ii) is also satisfied.

To prove uniqueness, let

W= 1Ts To1

Tyo "T11

be an involution, satisfying (i) and (ii). Thus, we have the

following relations between the entries Tij of W:

2 * _
Too T Tio Tio = I
X - * =
(5.1.5) Too T10 Tio* Typ = O
2
* —1
Tio T10* * Tq1 I.
From the assumptions, we have T00 2 0, Tll 2 0 and
Q = WPW,
2 * 2 *
i.e. <, CoSo i} Too Tyo T10
* *
So%o 5050 T10 Too T10 T107)
Thus, we have
c.?2 =7 2 yhich implies that C. =T i 2
0 00 ¢ P o =~ Tog Since Ty,
C.S.* = T * i.e. = =
050 00710 e 558 = T19To0 = T10%



118

which implies that S0 and T10

case, R(Co)lS dense, and hence SO = TlO'

agree on R(CO). But in the acute

From equations (5.1.5) we have,

2 _ . . . 2
Tz =T~ TipTy0 I = 845,*=2¢C

which implies that Tll = Cl. This proves the theorem.

Remark

We should point out that if PX and Q{yare in the acute
case, then 2N and PX will also be in the acute case, (otherwise,
on (PH n (I-2)Y) v ((I-P)X n 2X), we will have P+2Z-I = 0, so

2 0). 8o

that T = I - 2P and PTP = -P which contradicts PTP
there exists a unique direct rotation mapping PY onto Z.y, which
we denote U(P,Z). Let the corresponding angle operator be &,

so we have the following theorem which generalizes the facts in

the 2-dimensional case.

Theorem 5.1.2

If PN and Q% are in the acute case, and 2M is the angle

bisector, then

(z) cosz b = %(1 + cos 0O),

(1) [U(P,2)12 = U(P,q).

Proof

We have cosz¢ = PZP + (I~-P) (I-Z) (I-P) and
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2 1, 1
cos @& - 5 1l + C0 0 +7 0 0
\ 0 0 0 1+ Cl
_ 1. 1
=3 1 0 +§ cos Oo 0
\0 1 0 cos Ol '
So that
cosz¢ = % (1 + cos ©).

(ii) U%(P,2) =(2% I)(2pP-I) = T(2P-I) = U(P,Q).

Remark

The inequality PTP 2 0 implies that QTQ = TPTPT 2 0,
and hence 24 and Q) are in the acute case, by the same argument
as in the case of PY and Z%. Now, let U(Z,Q) be the direct

rotation mapping ZJ4 onto QX, then
2
U”(z,Q) = U(P,Q).

§5.2 An Economical Expression for U.

For simplicity, we assume that dim & = n is finite.
Suppose that the subspaces P& and Q& are defined by their

"bases" EO and FO, so that

* = * =
EO EO P and FO F0 Q.

So, in terms of P and Q we have an expression for the square

of the direct rotation, given by

(5.2.1) u? = (20-1I) (2pP-I).
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If we are in the acute case, then we find that the
direct rotation is unique, and we have just to find the prin-
cipal square root, i.e. unitary square root whose spectrum
is in the right half plane. Since U2 is represented by an

nxn matrix, one can write

v = a + iB

where i2 = -1, and A and B are real matrices. U2 being unitary,

implies that

(5.2.2) AA' + BB' = A'A + B'B=1I,.

|
()

AB' - BA' = A'B ~ B'A =

Hence, if we let W ©be the real symmetric matrix

of order 2n, defined as -

w= (A -B
B A
then relation (5.2.2) gives

WW' = W'W = I,

so that W is an orthogonal matrix. Furthermore, from

W = KSK *
where S = [A+iB 0
| B A-iB
and K= (1 -iI
0 I
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there follows that

|

det W det S = det(A + iB). det (A + iB)

|det (A + iB)l2 = |det U2]2 = 1.

Il

We now refer to [22] for a detailed discussion of how
to compute the principal square root of an orthogonal matrix,
with determinant equal to +l1. It turns out that the principal

square root of W is a matrix R of the form

L -M
M L

with L - iM a unitary matrix, and (L + iM)2 = A + iB.

R =

Thus, in order to find U, one has to work with a
matrix of double dimensions.

Sometimes, it is of interest to find the restriction
of U on PJyand the above procedure will be computationally
inefficient, especially when the dimension of P¥ is relatively
small compared to that of J§. In the following, we will provide

an economical expression for U.

Lemma 5.2.1

Let E, and F, be bases for PY and QJXj respectively.

Then there exists an isometry from K(Eo) onto R(Fo), so that it

gives a basis for R(Fa) elosest to E,
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Proof

* = * = * = * =
E.*E I, ELE P, FO FO I and FOFO Q,

and since we assume the equation (5.1.1l) to be satisfied, then

we have

* = *
UE0 E0 FOFO U

where U is the direct rotation mapping PX onto Q.

Let W, :K(EO) + K(F,) be defined by

= *
W0 FO U EO

It is easy to check that W * W0 =W, W.* I. Let F: K(EO) -

0 00
be defined by

(5.2.3) F=F, W

Then R(F) = R(FO) and F* F = I, so that F is an isometry

mapping K(EO) onto R(El). But since

= — * = % =
F FO WO FO FO U EO U EO EO EO U EO,

F will be a basis for R(El) closest to E0 as was shown in
theorem (1.5.2). This proves the lemma.
We need now to find an expression for W0 in terms of

and E so that F will be expressed also in terms of E0 and

Ol

0"
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Lemma 5.2.2

= -1/2
F = FO(FO* EO) [(FO* Eo)* (Fo* EO)]

Proof
Since W0 = Fo* U EO’ using (5.1.4) we have
' 2.-1/2
= * = * - i T
WO Fo* T E, F, (P+Q-I) [(I-P-Q)7] EO
2.-1/2
- * * X - —P=
Fo* (Ey Ep* + Fy Fy ) [{1-P-Q) 7] Eq
2,-1/2
= x B * . -
Fo EO EO [(I-P-Q) "] EO.
2 2
Let C = cos® © = (I-P-Q)“, then
CE, = (I-P-Q + PQ + QP) E,
= - [ . * * * *
(1 EOEO FOFO + EOEO FOFO* + FOFO EOEO ) Eq

= - * * * *
FOF0 E0 + EOEO FOFO EO + FOFO E0

= * % = * * *
EO(EO F FO EO) EO(F0 EO) (FO EO)

0
= * ® %* Z
Let L (F0 EO) (FO EO) 0 then
CE0 = EOL and
2 _ 2
C E0 = EOL

and in general,

ct E0 = E, Ln, for any positive integer n. Thus, for

all polynomials f£(C), we have

£(C) Eg = E0 £(L)
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Thus, this is true for all continuous functions on
[0,1], so it is true for the inverse square root, provided

that 0 ¢ o(C),

i.e. c1/2 E, = E L—l/z, and

W, = (F y171/2

0 ¥ EQ) [(Fg* EQ)* (Fo* E

0 0

and

F = Fo(Fo* E)) [(Fy* Eg)* (Fy* EO)]-l/z.

Lemma 5.2.3

Let
G = F + EO’
then D = G(G* G)'Z/Z
18 a basis for 7.
Proof
We have
G=F+E0=UE0+E0=TE0+EO=ZZE0;

by the remark on theorem 5.1.1, we have

ZPN = Z%

and it follows that

GH = Z4.
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Now D*D = I, R(D) = Z% so it follows that D is a

basis for 2%, and

1

DD* = ZE, [(ZE,)* (ZEO)]_ (ZEg)* = Z.

0

Remark
The construction of D was inspired by the elementary
fact that the diagonal of a rhombus bisects the angle from

which it emanates.

Note that

T =22 - I = 2DD%* - I
where D = G{(G* G)-‘l/2

G = EAF = EA4F. (F.*E.) [(F*E.)* (F.*E.)] /2

0 070 Yo "o 0 -0 0“0
Thus U = (2DD* - I) (2E,E,* - I)
* - =

But (2E4E, I)]PN I.

Thus, we have an economical expression for U (when restricted
to P¥) in terms of E0 and FO'
As an illustration, if dim &/ = 50 and dim P}y= 5,
then FO*EO will be a 5x5 matrix, and the computation of Ux,
X € P will be notably shortened.
We should remark here, that in the previous expression

of U, we did not demand that E, be represented as [I] in which
0

case we would have the nice matrix representation for
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But on the other hand, P = E E * instead of [I OJ.
0 0

A different algorithm to find the direct rotation U
was done by A. BjSrck and G.H. Golub [5 ]. Their main tool

was the singular value decomposition of a matrix.

Theorem 5.2.4 [6, P.134]

Let A be an mxn matrix with rank r. Then there exists
mxm and nxn unitary matrices U and V and rxr diagonal matrix D
with strictly positive elements called the singular values of 4,
such that
A = USV*, S = [D 0} D = diag (8 ,...,8,)
0 0

The columns us and v of U and V satisfy

Av., = s.u
i iif
A*u., = s,v,,
i i'i
2
so that A*Av. = s, v.,
i i i
AA*u, = s, 2,
i i Y4

They are called the singular vectors. This leads to

the singular value decomposition of A (shortly SVD):
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Since the direct rotation is expressed as

- -C % *
U (E0 El) CO S0 E0
*
Sg 1) B
= x X * * *
EOCOEO + ElSOEl EOSO El + E1C1E1
If we consider the SVD of CO' S0 and Cl, then it turns
out that assuming dim PX/= k, 2k £ n
C, =Y, CY_ *, S, = Y s| Y, *,
0 E0 EO 0 El EO
0
S * =Y (s 0) Y. * , C, =Y C 0} v_ * .
0 EO El 1 El El
0 I

where C = diag (cos b)), S = diag (sin Gk),

Uu=1yV CV, * +V

S| v, * + V (-s 0) v_ *
E, E, E, 0] E, E, E,

+ V C 0 v, *

El El

0 I
Let VEl = (WEl ZEl), where WE is an nxk matrix and
1
WE * VE = 0, which is possible.
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U= (v, W, 2z ) C (-5 0)) [v, *
S c 0 W, *

0 0 I Z.%

1

where VE = Eo YE are the principal vectors in P¥ [1 1,

0 0

associated with the pair of subspaces P2y and Q%, and WE are
1

the principal vectors in ng‘associated with the pair of sub-
spaces Pt and Q . So, U will be determined if the quantities

c, s, VE » W are known. In [17], an efficient algorithm for
0 1

computing the SVD of a matrix is shown. Now, we are given (as

before) bases E, and F, for P} and Q% In [5 ], these quan-

0 0

tities were calculated as follows:

= *
Let L E0 FO'

So the SVD of L will be

0 0 E0 0
= * =
Now PFO EO EO FO EOL,
i = * = *
So the SVD of PFO is PFO EO YEO C YFO VEO C YFO

where C = diag {(cos ek).

- 1 —_ _ —_ * = *
Also the SVD of (I P)F0 is (I P)F0 (I EOEO )FO W S YF

where S = diag (sin ek).

We can choose W such that W* v = 0, so we have S8, C,
Ey E1 B

VE and WE by doing 2 SVD, so to find U we just complete
0 1

W ) to be a basis forX (this is always possible), say

Ey Ep
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Ey By By
U= (V. W. 2z.) {c -8 0] (v. *
E, "B, "E E,
s C ol |w_ *
Ey
0 0 I P

One should also note that

c
S

V * [ ]
Eo

Uln, = (V, W)
PH By By

Comparing this algorithm, with that given before, we
find that this algorithm will not be computationally efficient,
although it provides other information implicitly, such as the

angle between the two subspaces and the principal vectors.



APPENDIX A

Polar Representation of a Bounded Operator

For A ¢ & (X)), where Jy is a separable Hilbert space,
N(A) denotes the null space of A and R(A) is the range of A.

It is known that

X = R(A) & N(A*) = R(A*) & N(A). The bar denotes

the norm closure of the corresponding linear manifolds.

Definition A.1l

An operator Ue®(W) is said to be a partial isometry
1f 1t mapsd ON(U) isometrically onto R(U). So for a partially
isometric operator U, the linear manifold R(U) is a subspace.

Let Pl be the orthogonal projector ontodf 6N(U), then U being

a partial isometry is equivalent to ||U¢| = HP1¢H for all ¢eX.
Consequently,
2 2
los 1% = 1o,01%,

((U*U-P1)6,9) = 0 (¢eX),

so U*U = P,
Since (I—Pl) $eN(U) (all ¢eX) one has U(I—Pl)¢ = 0 (¢e¥) and
hence U = UPl.
The relation U*U = P, implies “U* uell = Ipy0ll = [uel,

so |u*¢'|] = |l¢" || for all ¢'eR(U) and U* is a partial isometry.
As above, let P, be the projector onto the subspaceX/6N(U*),

then [[U*¢|| = [P, 4|l for all ¢ey,

- 130 -



131

which implies U U* = P2 and U* = U* Pz.

Next, let A be any operator from (3(%). Then it is well known

that there exists a unique nonnegative operator H such that

u? = a*a (g = (a*a)t/?y.

It follows that |Af]? = (Af, Af) = (A*Af, £) = (H’E, f)
= (Hf, HE) = |uE|?
so that ||Af] = [|Hf| for all fed, which implies that there exists

an isometry U: R(H) ongo R(A) such that Af = UHf. Extending

U to all of R(H) by continuity, and setting U¢ = 0 for ¢eN(H),

we obtain a partial isometry. The fact' H 2 0 implies N(H) =

N(HZ); also |Af| = |HE| (all fey) implies R(H) = R(A¥), so all

these give R(H) = R(H%) = R(A¥A) = R(A¥). That is, U is a

partial isometry which maps R(A*) onto R(A).
Hence every operator Ac 3 ({y) admits a representation

in the form
(1) A = UH

where H = (A*A)l/2 and U is a partial isometry which maps R(A*)
isometrically onto R(A). .(l) is called the polar representation
of A.
From (1), it follows that
(i) U*A = H, since U*A = U*UH = PlH = H;
2

(idi) Hl = UHU*, H = U*HlU, where Hl = (AA*)l/ .

(H,£,f) = (UHU*f,f) = (HU*£,U*f) 2 0 fe}j. Since H 2 0,

this implies that Hl is non-negative, and since
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le = UHU* UHU* = UHPlHU* = UH2U* = AA*, then Hl = (AA*)1/2

by the uniqueness of the non-negative square root.

* = =
Now U*H,U = P,HP, = H,
141 = = *
(iii) A HlU' Hl AU*,
It follows from (ii) that Hl = UHU* = AU¥*,
= - * = = -
Also, A UH uu HlU P2H1U HlU,

this implies that A = H1U and A* = U*Hl.

Remarks

(1) If Ae £ () and if A is invertible, then there exists a

unique unitary operator U and a positive operator H such that
A = UH.

The partial isometry will be unitary since A is invertible.

(2) If Ac ﬁ(w) and A is normal, then A has a polar decompo-
sition A = UH where U is a unitary and H is a non-negative

operator. The operators U and H commute with each other and

with A.

(3) By the dimension (also called rank) of the operator A, we

mean the number r(A) (5 ») equal to the dimension of the

subspace R(A).

It is clear that r(A) = r(H) = r(Hl) = r(A*).



APPENDIX B

Singular Values and Unitary Invariant Norms

§B.1 The Singular Values of a Completely Continuous Operator

Let A be a completely continuous operator. The eigen-
values of H where H = (A*A)l/2 are called the singular values
of A. We shall enumerate the non-zero singular values of A in

decreasing order taking account of their multiplicities, so that

sj(A) = Aj(H) (ij=1,2,...).

i

If rank(H) < « then sj(A) 0 where j = r(H) + 1. Also, we

have
(1) sy (B) = A () = |H| = [2]
(ii) sj(A) = ]lj(A)I when A is self adjoint,
(iidi) sj(cA) = |c] sj(A) (3=1,2,3,...) , ¢ is a constant.

We encounter two important properties of the singular values

of a completely continuous operator.

Lemma B.1l.1

For a completely continuous operator A, we have

(2) Sj(A) = sj(A*) (§=1,2,...).

(i2) For any bounded operator B,
s (BA) Sb:| 5 (4) (§=1,2,...)
5 (AB) S F:( s (4) (§=1,2,...)

- 133 -
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Proof

Since it is well known that for a self adjoint com-

pletely continuous operator A, all the eigenvalues are real

and the operator has a uniformly convergent representation
v (A)

A=l

1

where ¢j (j=1,...v(A)) is an orthonormal system of eigenvectors

of A, complete in R(A), such that

A¢] = )\j (A)qb] j=1,2,...v(3d),

and where v(A) is the sum of the algebraic multiplicities of all
the non-zero eigenvalues of the operator A. Note that v(a) is

related to r(A) by the inequality
v(a) £ r(a).

Hence, H has the representation

r (H)
H = jzl 55 () ¢4 oy*.
Now let A = UH be the polar representation of A, so it follows
that
r (A)
A =UH = j£1 s (A) U¢j ¢j* ¢ng(A).

Since U is a partial isometry mapping R(H) onto R(A) then

U¢j = wj constitutes an orthonormal system complete in R(A).

Consequently,
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r(A)
= . [ . *’
(1) A jzl sJ(A) wj ¢J
Hence
r(A)
* = *
(2) A jzl S5 (B) &5 by*.

Next, we prove that A*A has the same eigenvalues as AA¥%*,

It follows from (1) and (2), that

2 .
A*A ¢j = Sj (A) ¢j j=l,2',...,r(A)
2 .
Ap* IPJ = Sj (A) 1})] j=1,2,...,x(3)
So, we obtain
sj(A) = sj(A*) j=1,2, ..., (A)

This proves (i). For (ii), we have

s§ (BA) = A, (a* B* BA).

But we have

(A*B*BAf,f) = |Baf]? < [B]? (af,Af) fe oY

which implies A*B#*BA < "B“2 A*A. The last inequality implies

that A, (A*B*BA) = Aj(HBH2 A*p) = ”BH2 A;(A*A). Therefore
2 < 2 2 . <
sj (Ba) = I8 | s} (p), that is, 55 (Ba) = |Bf sj(A).

Statement (iii) follows directly from (ii) since

s;(RB) = s, (B*A%) b5 s; (%) = [[B] s;(2)
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Remarks

(1) The expansion (1) is called the Schmidt expansion of a
completely continuous operator where {¢j}, {wj} are certain

orthonormal systems.

(2) For a non-negative completely continuous operator A, we

have the following minimax properties of eigenvalues ([31], §95):

Theorem B.1l.2

Let A(%0) be a non-negative completely continuous oper-
ator and let ¢j(j=1’2"") be an orthonormal system of <its

etgenvectors which is complete in R(A), so that

Ad .

p Aj(A)¢j (§=1,2,...),

v

>

where XI(A) AZ(A) 5 ..., Then its eigenvalues have the

following minimax properties:

_ max (A, $)
(3) AI(A) = beX (6.6

where the maximum in (3) is attained only for those etigenvectors

of the operator A which correspond to KZ(A).

(4) X, (a) = min maz (A6, 0) (i = 1,82,

41 = y ¢€Xl T, el

where the minimum <8 taken over all j-dimensional subspaces of
the spacel , and the minimum in (4) is attained when X coincides

with the linear subspace of the eigenvector ¢1,¢2,...,¢j.
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B.1.3 Equivalent Definition of the Singular Values of a

Completely Continuous Operator

We shall denote by Bh (n =20,1,2,...) the set of all

finite dimensional operators of dimension less or equal to n.

Let A be a completely continuous operator, then for any

n = 0'1'2'0--

(5) s ,1(A) = min Il (a-x)| .
ke
n
To prove the equivalence, let K be an n-dimensional operator.

Then the subspacey©ON(K) is n-dimensional (recall that r(K*)

r{K)). Now it follows for (4) that
< max Ad
Sn1 (B = gen) 0T
Since for all ¢eN(K, we have [[A¢] = || (a-K) 4|,

then ||a¢] < |a-x| [[¢ff,

< flam: _
S0 S, 41 (B) fla- K| keB .
- ‘
Let K, = ] s;(A) ¥y ¢,* be the n-th partial sum of the
j=1

Schmidt expansion of A. Clearly Kn has dimension n and
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2 r{n) 2
- f = . . ‘*
| (a-x ) £] nj=§1+1 s5(2) ¥y ¢, (£) ]
r(A)
= ¥ 8?2 a|(£,0.0]°
j=n+l J J
<52, T 12
= 8 PO
n+1l j=n+1 J
2 2
= Sn+l L

so that [A-X_ || = s_ ;. hence ”A—Knﬂ = s_,,r concluding
that
min
s 41 () K;Bn (| a~K]| n=0,1,2,...

In fact, (5) shows that sn+l(A) is the distance from the oper-

ator A to the set Bn.

From this equivalent definition of the singular values of a
completely continuous operator, we have the following inequal-

ities. The proof can be found in [18].

1. If A is a completely continuous operator, let T be any

r-dimensional operator. Then

< <
S 4p (B) = s, (A+T) Spoy (B)-

r
2. (XK. Fan [14]1) 1If A,B are completely continuous operators,
then
£ =
Spin-1 (A¥B) = s (A) + s _(B) (m,n =1,2,...),

Spepn-y (AB) = s (B) s _(A).
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3. For any linear completely continuous operators A,B,

]sn(A) - sn(B)l S)la-g| (n=1,2,...).

Lemma B.1l.4 [A. Horn {231, K. Fan [14])

For any completely continuous operators A,B,

n n n

I s.(AB) £ 1T s.(A) 1 s.(B) (n=1,2,...),
3=1 J j=1 J j=1 J

n n n

J s.(A+B) = J s.(A) + ] s.(B) (n=1,2,...).
j=1 J j=1 4 j=1

§B.2 Symmetric Norms

A functional [x|, defined on some two-sided ideal o
of the ring R () is called a symmetric norm if it has the

following properties:

(1) Uxus >0 (Xeo, X#0),

(2)  flaxl, =[x | xllg (xeo0), where X is any complex number,
(3wl S hxlg v Y, (veo,

(4) llaxsll, = Jla] =l I8l (A,Be B &), Xeo),

(5) for any one-dimensional operator X, [[X| = {|X]| = s; (X).

Clearly, the bound norm is symmetric on any o. If in

the definition of a symmetric norm,(4) is replaced by

(4') HUXHS = HXUHS = ﬂxﬂs, (Xeo) where U is an arbitrary
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unitary operator, then we have the definition of a unitary

invariant norm. Note that every symmetric norm is a unitary

invariant norm.

(Since for a symmetric norm [[Uxv]_ = x|, Il

1
I

_1 -
= Jutuxv v Ol = Juxvll,, hence |uxv], = [x] ).

The reverse will hold only under certain assumptions.

B.2.1 Important Properties of Symmetric Norm

1. Let ¢ be some two-sided ideal of the ring (%) and let a

symmetric norm “.”s be defined on o. Then for any operator Xeog,

Il

Ix*l, = T 3 = Jx xn P

Indeed, if X

UH is the polar representation of X, then

Ixl = el
on the other hand U*X = H,
= <
Jal, = Jusxl, < |x] .
Consequently HX"S = HH“S.

Now starting from the equalities X* = HU* and X*U = H, we

obtain ”x*ns = ”H"s.

2. Let 0 be some two-sided ideal of the ring @ () and let a
symmetric norm be defined on o. Then for any operator Xeo and

a completely continuous operator Y such that
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sj(Y) 2 c sj(X) = 1,2,40.,

where ¢ is a positive constant, it follows that Yeo and

el < clx, -

Proof

If Hx== (X*X)1/2 and Hy = (Y*Y)l/z, then by the assump-
tion sj(Y) £ ¢ s.(X) one can find a unitary operator V and a
non-negative operator Ae  (§) with JJAf £ 1 (A can be that oper-
ator with eigenvalues equal to

1 S;(0) .
z sj(X) or 0 if sj(x) = 0),

So that H_ = cAv H_ v 1
Yy X

where V maps some orthonormal basis of eigenvectors of Hx into

an appropriate orthonormal basis of eigenvectors of Hy.

_ N} <
It follows from H, = cAV H, V ° that H eo and IIHyHS c ”Hx“s'

Now it follows that Yeo and ¥ = UyHy (the polar representation)
i <

gives Iell_ % c IxIl.

3. For any symmetric norm [[X|_ defined on some two sided ideal
o we have s;(X) £ |xX|_, and if dim X < =, then also

<
%] § s (%) .

Proof

In fact, let Y = sl(X)¢¢*, where ¢ is an arbitrary unit

vector of Xf. Then it follows that the property (2) is satisfied |

l
l
l



142

with ¢ = 1, hence

sy =[xl = fivl = felg = Jxlg

on the other hand, if dim X < «, then we have

X2 L0 5 0y7

I35 = 1] 850 o5 w54l

Hence it follows from property (3) and (5) of a sym-

metric norm that
<
Ixlg £ ] =500,

Remark

It follows from property (2) that the symmetric norm
"X”S depends only on the singular values of X, that is, if the
singular values of X;, X, coincide, then ”Xl"s' Ix, g also

coincide.
So, for every symmetric norm we have
Il = e(sy (X)) s,(0)..0)

where ¢ (El, 52,....) is a function of the non-negative vari-

ables Si.

§B.3 Symmetric Norming Functions

The case when 0 coincides with the ideal R of finite
dimensional operators, the domain of the function ¢ mentioned

before consists of all non-increasing sequences {Ei} of
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non-negative numbers of which only finitely many are different
from zero.

Let c, be the space of all sequences £ ='{€i}:=l of

0
real numbers which tend to zero. We denote by c the linear

manifold of ¢, consisting of all sequences with a finite number

0
of non-zero terms.

Definition B.3.1

A real function ®(&) = @(51,52,...) defined on ¢ is
called a norming (gauge) function if it has the following

properties:

(1) 9(E) >0 (Eec, £40),
(ii) for any real o, ®(af) = |a] ©(&) (Esa),
(i1i) 6(£+n) £ 0(E) + 6(n)  (E,nec),

(iv) ¢(1,0,0,...) = 1.

A norming function ¢(£) is said to be symmetric if it has the
property
(V) ®(Ey,E5r0erE 40,0,..) = @(lgjll, lajzl,..,lgjnl,o,...)

where £ ={€i} is any vector from c and jl’jZ""jn is any per-

mutation of the integers 1,2,...,n.
We bring here various properties of symmetric norming functions.

- - < < <
1. Let & {Ej} c, let O Py 1. Then ¢(p; 1+/Py 5r--) e(8).
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Without loss of generality, we may assume Ej 209=1,2,...
It is clear by induction that it is sufficient to prove the

above conclusion when pj + 1 occur only for one j, i.e.

q)(glrgzr---r pigi'gi'l'l) = ¢ (8&).

For 0 Sp = 1, the conclusion follows from direct calculation:

O(E) Eprean PE;,..) = 0(HRe +3 Ry BB WP gy, )
S o(HBe, ... R, e BRe L+ SR8, )
S IR 9 (E  Eyren By )R 0 E By mEL )
SHR ey + 1B g(e)
= o(E)

Lemma B.3.2 (K. Fan, L. Mirsky)

Suppose & = {Ei} and n = {ni}e;. If

v
v

&, 2 £, 0, n, 2n, 2 ... 290

then the set of inequalities

J £.5 ) n. (k=1,2,..)
= j=1 7

18 a sufficient and necessary condition for the relation
(E) S 0 (n)

to hold for every symmetric norming function.
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Proof

See [l4]r [29]l

Theorem B.3.3

Letllﬂlc be any unitary invariant norm on the ideal R of all

finite dimensional operators. Then the equation
o(s(a)) = ||4|l,  (4eRr; s(4) = {sj(A)})

defines a symmetric norming funetion ¢(&). Conversely, if ¢(&)

18 any symmetric norming function, then the equality
|M|% = &(s(A)) (AeR)
defines an invariant .norm on the ideal R.

Proof
See [18].

So for any two completely continuous operators a,B |[a] = | B

holds for any unitary invariant norm if and only if it holds

for v-norms defined by
2, = s (B) + s,(B) + .. + s (R) v=1,2,...
We state the following lemma without proof.

Lemma B.3.4

Let P and Q be projeetors. If ||PKQ| < ”PLQ” and
H(I-P)K(I-Q)H S | (1-P)JL(I-q)|| for all unitary invariant norms,

then ||PKQ+(I-P)k(I-Q)| S ||PLQ+(I-PJL(I-Q)| for all unitary
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invariant norms. The converse will hold whenever PKQ hag the
same singular values as (I-P)K(I-@) and PLQ has the same sing-

ular values as (I-P)L(I-Q)..
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