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CHAPTER I

INTRODUCTION

1.1 Introduction

The conventional theories for the reinforced con-
crete beam assume that concrete and the steel reinforcement
act together and that there is no slip between them. How-
ever, it has been well recognized from the experiments of

(1,20,25,29) that the concrete does

various research workers
not perfectly act together Qith the steel reinforcement, and
that thereris always some relative movement taking place
between them.

During the past few decadeé, a large number of
experiments have been carriéd out in order to classify the
modés and determine the causes of different types of
failures(4'6'7‘10’12’22). Similarly, on the other hand,
analytical stucdies are under way to find out the theoretical

L13’17’21’24’28) of these experimental findings.

interpretation

It is thought that the conventional theories for the
reinforced concrete beam are insufficient to give a Satis—
factory answer to the crackihg and failure phenomenon. They
have not provicded a comprehensive explanation of the cause
of the diagonal failure. As a resﬁlt, new approaches are

being undertaken(ll'20'27'29h

n particular those which could
account for the effect of slip between the reinforcement

and the concrete.



It was suggested(ll)

, that a reinforced concrete
beam should be treated as a composite beam with incomplete
interaction.

It will be demonstrated that a qualitative explana-
tion of various experimental phenomenon such as cracking

_patterns(17’24j (7:29),

(8)

, variations of the internal forces

strains and the influence of various parameters on the

moment carrying capacity(4'10)

of a beam, etc., can be
achieved by treating the reinforced concrete beam in this
manner.

By considering the reinforced concrete beam as a
composite beam with incomplete interaction, it is also

hoped that a rational eXplanation of the occurrence of dia-

gonal cracking in the shear span may ultimately be achieved.

1.2 Literature Survey

Since tﬁe early stages of develo?ment of rein-
forced concrete, research workers have been attempting to
uhdersténd the phenomeﬁon of the so-called "Shear Failure".

Before the year 1900, there were at least two
schools of thought existing. One considered horizontal
shear as the basic cause of shear failure, while the other
considered diac¢onal tension as the basic cause of shear
failure. However the origin of the later cohéept is unknoWn,
avclear explanation of the diagonal tension was first pre-

sented by Ritter as early as 1899.



» (6)

Morsct. in 1900, conducted laboratory tests and
in the light c¢f his expefiments, strongly supported the
concepﬁ of diagonal tension. Further he developealthe
following classical expression for the nominal shear.

v = B_‘]%- 1.1

This became accepted to the extent that today, codes
of practice in many countries recommend this for computing
the shear stresses.

Later in 1909 Talbot observed that Morsch's expres-
sion does not seem to be in general agreement with the test
results aﬁd in particular it fails to account for such

a’

and other factors influencing the stiffnesé of a beam.

variables as shear arm ratio =, the percentage of steel p,

In the early 1950's Clark(G) following Talbot's notion
first introduced a mathematical expression for the shear in
beams, involving, span to depth ratio, percentage of longi-
tudinal reinforcement and the strength of the concrete.
Subsequently researchersxdeveloped several empirical formulas
relaﬁing the effects of various factors that they observed in

(6) 326 has repor-

their experiments. The ACI-ASCE Committee
ted mosf of these empirical reiationships‘and.suggested a
new criterion for design. The committee stated that the

problem of sheer failure and diagonal tension has not been

Ifundamentally and conclusively solved and that further

research work be undertaken to establishva more rational



theory to desciribe the effects of shear and diagonal tension
on the behaviour of reinforced concrete membefs.

Kar_li.(lo)

in his paper "The riddle of shear failuié
and its soluticn" used the "concrete teeth" and "comblike
structure" concept to describe the cracking érocess. He
also suggested that redistribution.of stresses takes place
by the transformation of a beam with bond to a tied arch
without bond. The final failure due to him results in dia-
gonal compression instead of diagonal tension as conceived
earlier by others.

In 1964 Broms(l3'15)

carried out an analytical
investigation of the distribution of flexural, shear and
normal stress across the depth of beams at various points
along their spans. He also attempted to explain the cause
of different failure phgnomenon as a result of excessive
stresses either due to a single or a combination of these

stresses. He further repofted that the diagonal tension
failure could be due to the occurrence of higher shear
stresses near the neutral axis of a cracked beam.

(4) reported that

A year later Leonhardt and Walther
pxihcipal tensile stresses govern the crack formation in
concrete and that shear stress is neither decisive for the
carrying capacity nor‘for the crack formation. Similarly

Ferguson suggested that the theory of combined stresses

could possibly bz employed more constructively in connection



with rational studies of diagonal cracking. In his paper he
described failure patterns also in terms of the conventional
theory of combined stresses. |

- More recent analytic studies by Krahl, Kachaturian

and Siess(l7) (24)

and MacGregor ana Walters , on the development
‘and stability of tensile cracks have contributed, a great deal
towards this problem.

AcharYa(ls)

in 1965 suggested that after the beam
has taken the form of a comblike structure, about sixty
percent of the shear is carried by the beam through dowel

actioﬁ. Fenwick and pauléy(29)

in 1968 concluded from their
experiments that after the cracking has taken place, a
considerable amount of shear must be carried by the aggre-
gate interlock and dowel action in a beam.

A number of so far suggésted mechanisms of shear
failures have bheen well summarized in a recent review by
Bresler and MécGregor(zol |

Although a considérable amount of experimgntal
research as well as analytical studies have been cdnducted

to prqvide a rational explanation of the cause of shear

failure, no definite answer has been found.

(8) (11)

In a discussion of Plowman's paper Robinson
stated that while conducting preliminary investigations on
composite beams with cellular zone between the concrete

slab and I-bear., he discovered that in spite of the fact



that there was no distinct interfacial plane between the
concrete sléb and the éteel beam, the strain distribution
at any section had been observed to be essentially linear
in the elastic range. He also suggested’that a reinforced
concrete beam may be considered as a composite beam with
incomplete interaction.

Wong (18)

following Robinson's notion, stated that
although a reinforced concrete beém did not have a distinct
interfacial plane between the concrete and the steel rein-
forcement, through a slight modification of the approach by
Newmark at e1(3)(for conventional composite beams) the theory
be applied to a reinforced éqncrete beam provided a psuedo-
interface is assumed. He utilized this concept to estimate
the extremeties of a pdtential zone of flexural cracking in
a reinforced concrete beam. These éomputed crack profiles,
in case of a beam with ﬁwo point loading indicate that the
height of the flexural cracks are greatest under the load
points in spite of the fact that there is a constant moment
applied between the two load points. This trend becomes
more pronounced as the interaction between the steel and
concrete is reduced.

| Further the stfain variations along the tensile
reinforcement, estimated by him qualitatively characterized

(8)

those by Plowman . The increase in the top strain under

the load point indicated by his computation was similar to



(26)
(18)

the experimental observations by Kar

Ho(lg) work stated

in an extension of Wong's
that the study of the strain trajectories, the principali'
strain magnitucdes and their directions in the remaining
uncracked zone did not appeér to give much insight into the
nature of development of the diagonal crack. He also sug-
gested that micro}cracks must occur between the major cracks.
Althouch his investigations did not explain the
cause of shear failure, they did impart sufficient hope that

the applicatior. of composite theory and concept of combined

stresses may lead to a rational explanation of this problem.

1.3 Objective and Extent of Investigation

The objective of this investigation is to ﬁreat the
reinforced concrete beam as a composite beam with incomplete
interaction, and to attempt to study its cracking behaviour
and carrying capacity analytically.

A simply supported beam'carrying two symmetrically
situated point loads was’taken as a typical case and in-
fluence of the factors, such as interaction coefficient,
percentage of steel, location and intensity of the point
loads on the flexural crack profiles were studied.

Crack profiles were computéd also for the cases of
fixed end, as well as of continuous beams, for different
values of the-interaction coefficient %. Moment carrying

capacity curves for the typical cracked beam were computed.



This study was extended further to record the influence of
various paramefers on the carrying cépacity of a beam.
Distribution of the bond stress and the amount of
slip occurring along the length of a cracked beam were also
computed. The results of these iﬁvestigations were compared
with experiment:al observations by other research workers.
Finally a determination of the vertical shear

(19)

distribution was carried out using methods similar to Ho

and Broms(l3)

. The shear stresses were combined with the
strains due to flexure to compute the magnitude and direction
‘of the maximum and minimum principal strains across the depth
of a beam. However, although these investigations of the
principal strains did not lead to a definite conclusion
(owing’to certain drawbacks in the approaches folloWed), they
do offer prospectsvthat further investigations may reveal

more insight into the problem of diagonal cracking, particu-

larly if small incremental loading is utilized.

/



CHAPTER IX

REINFORCED CONCRETE BEAM

2.1 The conventionél working stress theory for the
reinforced corncrete beam assumes that the concrete and the
steel reinforcement act together and that there is no slip
permitted. However it is well fecognized by the experi-

(1,20,25,29) (1.t the

ments of various research workers
concrete does not perfectly.aét together with the reinforce-
ment and that there is always some relative movement or slip
taking place. This phenomenon is quité pronounced
~especially in the case of a'cracked beam where slip is
partially due to the breakdown in bond and partially due ﬁo
deformation of the concrete teeth. |

Moreover the reinforced cdncrete beam, unlike a
composite beam, does not possess a definite interface. How-
ever if a psuedo-interface is assumed the composite beam
theory can be applied. The following principal assumptions
were made for the analysis, corresponding to the composite
theory summarized in Appendix‘I. | |
It is assumed that

1) The concrete and steel are perfect elastic
materiélé.

2) There is a linear strain variation across the

depth of a section.

3) The bond-slip characteristic for aAgiven

9



- a)Uncracked b) Cracked ' ¢ Forces | d) Strains
- Secthon \SGCﬁOH ' . (Mt « Mot MS + F-Z) .

APPLICATION OF COMPOSITE THEORY TO THE REINFORCED  CONCRETE ,BEAM
Fig.2.1

0T
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“interaction coefficient is assumed to remain constant be-
fore and after cracking and ié uniform and continuous along
ithe‘léngth of the reinfqrced concrete beam. |

4) The amount of reiative movement between the
concrete and thé steel is directly proportiqnal to the
‘horizontal shear. |

5) Concrete and steel reinforcement deflect equal
amounts at all points along the length of a beam.

- The line joining the extremefies of the flexural

cracks will be referred to as the crack profile. This
- profile will be treated as a psuedo-interface, Fig. 2.1,
and then the "slip-strain" at the pseudo-interface

(analogous to Eg. Al.3) can be written:

%% = € " Eg | o . ‘ Al.3
=€) - ey,
now ey = - (e - estf
> %% = Egp T €x T Egp 2.1

From the similarity of shaded triangles,

D-%—_ZH'
erv= (Esb - sst) (' 3 2.2

where ;r is the strain due to distortion of the concrete

'teeth' in a cracked beam.  Since the strain distribuﬁion

has been assumed to be linear across the section, analogous



to Eq. Al.5(a

12

& b), following expressions can be written:

e - F + Mscs il
sb E A E I
s's s”s
€ = F - Mscs
st ESAS EsIs ,
MC 2.3
€, = - —— 4 5
cb E A E I
s’’s c
e - - F McC
ct EsAs ECI J
Therefore _ d'
y - e -m L}
. ‘AF/ N MSC }( M C D 5 2H
r .LSAS ESI E/‘/S s d
2M_C p -2 - on
e = —-SS 2
r E I d
: s’ s Ny

Now substituting this value of €.

change of slip will be

€

fe

3t -

T E

in Eq. 2.1, the rate of

2M_C
S
I

s's

g - o

(-

S

d 2.4

)

The compatibility condition, Eq. Al.7 can be rewritten as

2

B2

dx
concrete beam.

Therefore, Eqg.

2

o]
e

€

o ol
N

st

5

Substituting values of

%'é—%' , setting s

T € T

1l for the reinforced

2.4 will then be

2M C

EId (D- 2.4

5 - 2u')

€ and €ch in Eq. 2.4A from Eq. 2.3

st
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2 _ <_F__ ) Mscs>_ (_ P Mccc>_ 2MSCS<D_Q-2H')
dx EsAs EsIs ’ EcAc EcIc EsIsd 2

Re-arranging

2 _ F(} 1, 1 )_ MSCS+MCCc +2MscS (P-g-ZH)
dx EsAs EcAc EsIs EcIc EsIsd 2

oM
L]

i
¥

o]}
o

oy L
J

Since it is assumed that the concrete and steel
reinforcement deflect equally at all points, i.e. they have
equal curvatures, the moments Ms and Mc are related as

follows:

Also - from equilibrium of the composite section

M_ =M+ M+ F.2 _ | 2.5
Therefore

Mc _ MS _ Mt—F.Z )6

E;I. E.Ig ZEI

where by definition

.  ZEI = BI_ + E_I_

C
c

N Q.

H and Cs =

Substituting values of Eg. 2.6 in the expression above

1 a°F 1 1) _ M s .. d_..,
K F'(E'A Y ER ) TET [Fs*cc+ g (P-3z-2H J
dax s's cc

N

-oxr 2

[o}}
e

~=
!

_el1 o, 1 221 Ml
2 E A E A TEI LEI
&S S Cc C
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‘where
2C
- S - Q - '
Z = Cs + CC + I (D 3 2H')
Re-érranging the terms, yields

2

S - Fuk. —— = - k L= M (%) 2.7
dx EALEI

For an uncracked section, where there are no concrete
teeth, D ~ % - 2H' = 0 and so €. = 0, therefore Eq. 2.4

reduces to

312
it

st T fcb

which is identical to Newmark's Eqg. Al.3. This means slip
occurs only between the reinforcement and the concrete
surrounding it, whereas in a cracked beam (er # 0), there
would be an,aéditicnal slip due to deformation of the con-
crete teeth.

It, therefore, could be concluded ﬁhat the
differential equation 2.7 is applicable to both, a cracked
as well as an uncracked éection of a reinforced concrete

beam.‘

2.2 Solution of Differential Equation 2.7

Complete solutions for Eq. 2.7 were obtained for
a variety of beam cases. Only a beam, carrying two
symmetrically placed point loads,with different cases of

end conditions will be considered here.
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+2.2.1 Case I - Simply Supported Beam with Symmetrically

Placed Two Point Loads

ik

— vy 7
[

NS

____U~——,1

X

Fig. 2.2

The moment expressions are:

_ W ‘
Mt(x) =3 X for 0 £ x g u

2.8

u for 0 € x €

: _ _ Vl
and Mt(X) =3

Nj e

Two differential equations for these two ranges of

moment can be solved for FL and FR using the following

boundary conditions

-
at x = 0o ; FL =0
: d dar
-— . - -———L 1 ——-——R
at x = u ; FL = FR and gz I= d 2.9
dF '
=L . R _
and at x = 3 i gx 0 ]

The solutions for the interaction force F are

e Cosh E'<£ - E‘) '
F, = f_f‘_z%’.’-:‘.{% - [1CT < 12r L° sinh (——"L %)} 2.10a
EI Cosh — v/C
2/C
= Slnh( )
Fp = 22,2 g-{% ‘/—; ‘/—“L cosh -2 (3 - —-) 2.10b
EI Cosh ——

2/C
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; ol

ys3L|

lu--ssL

L N

END S1IP - DEQMITIED

where : £A .z !Véi is assumed unity for Tthis plot.

EI

-c- = 2.07
C'L =[.0 7
cC 0§ 7
" .2 .3 4 ‘5 ¢ 8 9 Lo
I | §
VARIATION OF INTERACTION FORCE -SIMPLY SUPPORTED BEAM

FIGg.2.3



7=.__.;_c.._{/ C“A.faCZ L) . Cosh /f'( )} . £g: 2.I4a.‘

Cosh 7!' :
S?n/r--- . : | A v-2l
y X(L.Y . - * = e 4b
iﬁ EI { COS;) 7!‘ + Sinh z(z L) } 4 | 7 :
A ~ . oz | (0.33L YT EA T
o o ! ! where. E&.2. 0. 15 assumed
s | S— E 2 |
e b : : . P
4 L L) -
L ‘\\\
* N
. 8
-0 ‘ : ; — 7 ' ) 1
o / ,2 3; g 5 \\\‘ C-L.057 1-.2
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where the interaction coefficient, is a dimensionless

1
EI

quantity, introduced mainly for convenience, and is given by

k . L%ET
S

nzﬁZEI

1 _
5= 2.11

where s = unity. The interaction coefficent, %, depends on
the geometry and the bond-slip characteristics of a beam.

It has been found that for complete interaction, is =, and

C
for no interaction, % =‘0. Similarly a value of % = 200
indicates a high interaction and % = 0.5, a low interaction.
Therefore for complete interaction, i.e. % = o, we
obtain
F'=2tlg . 2% ' 2.12a
' EL '
' =22 g Mu 2.12b
R == 2 A
~ EI
The degree of interaction, o = %. for each range of
X is
F. Cosh -1 _ E)
FI-‘f=1.-/:9. = /c\2 T sinh (I ¥) 2.13a
L m I - Cosh - YC .
' 2/C
F % Sinh I~ u
R C L
He=1- B — A - °Cosh—l(%——’1-‘f 2.13b
R T Cosh —— /C
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The expressions for load per unit length transmitted
between the ccncrete and the reinforcement (i.e. horizontal

shear force per unit length) can be found by Eg. Al.6 and

are:
Cosh —-( 1 u )
q, = EA 4 . LU 1. /C . Cosh.(—l-i) 2.14a
L BT 2 /-6 L

Cosh 2/5

. Sinh 72 E)

_ EA W CL" . ms1l _x

ET Cosh — /C

2/C

Ploté showing variations of F, q, and'gf, along the
length of a beezm for this case, with varying values of the
‘interaction coefficient é‘are given in Figs. 2.3, 2.4 and
2.5,

2.2;2 Case II - Simply Supported Beam with Symmeﬁrically
- Placed'Two Point Lbads - End Slip Restricted
. This case is same as case I, except that slip at
free ends of th2 beam, is kept zero by imposing the condition
that at.x = o and L, gz = 0 in the solution of the differen-

tial equation 2.7.

The solutions for the interaction force F are:
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. Cosh —— - Cosh —1(% - %)
_EA _wL]) /C " 2/C VC L
FL— :’Z'T 3 - Cosh — I
i ET Sinh — /T
2/C
-Login L X 4 X | 2.15a
m J/C L ‘ L
Cosh — ;_ _ _:5_)
F= _—E.Z.WL ‘/.( - Cosh L %) ‘/— + 2+ 2.15
EI /C Sinh ——
2/6
For conplete interaction, when -g-‘:- = o, we have
- & WL (x) |
= I2.z L (%)  2.16a
Fp' =22 .z . 2 (8) 2.16b
The degree of interaction %—;— for each range of x is
. Cosh =L~ - cosh L (3 - B
L _ 4 /C L 2/C /C cosh T X
o T osh — T
L Sinh ~—— /C
2/C
- Sinh L £ | 2.17a
) ‘/(—:. .
and -
F : 1 41 - Cosh -—1-'-% _
i,-li,=1+-"§:§( T{G)Cosh-—zr—(%--% '2.17b
R Sinh /C
2/C
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The expressions for the horizontal shear force

per unit leng:h, from Eq. Al.6 are:

1

__ Cosh —f— - Cosh —% 5~ %)
EA W 2/C /C . T X
qL_ :.Z.:;‘ T S‘:th — I
EI ~© Sinh —— vC
2/C
- cost. L X 4+ ” | 2.18a
/C
~ and
1 - Cosh -L ¥ ‘ , :
FA , W f e Y w1 x
Q= ==-Z2.31 - = sinh — (5 - I 2.18b
EI [ Sinh —— /C
2/C
Plots showing variations of F, q, and %T along

the length of a beam with point loads at quarter span, and

for varying values of the interaction coefficient % are

given as Figs. 2.6, 2.7 and 2.8.



26

2,2.3 Case III - Fixed End Beam with Symmetrically Placed

Two Point Loads

W W
—y—ou|? 2 Vg
_F
x 2
F L -
Fig. 2.9
The moment expressions are:
M = - (L-u) + w X for 0 ¢ x g u |
(X) 2 N -~
and 4 2.19
' _ _ Wu W L
M(x) o A (L~-u) + 3 U for u £ x ¢ 7

Two differential equations for these two ranges of

moment can be solved for F and Fp using the following

boundary conditions:

=9 . 9F _ ]
at x = 0 ; ax = 0
, dFL dFR
at x = u ; FL=FRand-cﬁ—=-a-}-<——r 2.20
and
. _ L. dF _ A
at x =33 FxF=0 ]
The solutions for the interaction force F are
,Cosh ———-—Cosh ———(7 - L
_EA , WL|/C 2/C T X
FL_ .ZQ 2 "T_r‘ COSh —— ‘I-‘
ET Sinh — /C
2/C
-sinh -L X4 -2 (1 - -) + ¥ 2.21a
T



g-1

-02

0-4

lo-zsL 4

aa.zsl. l
7 X

where : % -z ‘-Zi' assumed

L
uriky for This lb/al

S'mA

EA Cosh L 57 Cas/n x ' . X \
___;. L;_ .f_[ E 2@ f) )C'os/: Z(%) -&nﬁg({)}/ —-£5: \\
' 2.2/a

L/

_éz A /"Co:/: [
£l z2/x 67n/p7r

X/L

cw(--i) Ho)* }] 22,

VARIATION OF INTERACTION FORCE — FIXED END BEAM

Fig. 2./0

Le



1.0

08

0.6

0.4

- XL

VARIATION IN YALUE OF UNIT HORIZONTAL SHEAR

Filg. 2./

Eg 2.24y
where EA.z. W assumed unity
&g %
for This Ib/a/'.

0-7 a-a 0-9 I-a

- FIXED ENO BEAM

8¢



29

T u

l - Cosh —_— =
Fp= EA.z.—Q— [1; f )Cosh’ L(3- %‘)
ET Sinh —— /€
2/C
(1 - %) T 2.21b
For complete interaction, when é = we have:

7 WL i u u W
F'=-——.Z.-——-—(l-—)+— 2.22a
L T 2 | L L L

. WL _u/y _uy, u]
?R-ET.-Z.T._ L(l L)+L , 2.22b

The degree of interaction, %T for each range of x is:

v Cosh —"— - Cosh -’1(%--%
L _ /C 1 2/C /C T X
F—. = 1+ T._ a TN = Cosh — I
L [_f(l-f)+f] Sinh — V/E.
2/C
- Sinh - -’I-f 2.23a
/C
and ,
-F , ' 1-Cosh —=& %
"R _ + /C 1 . ( VC. ) (
¢ = T R
Fr " [%(1-%)+%] Sinh T
2/C
2.23b

The expressions for the horizontal shear force per

unit length are derived from Eg. 2.6 as:
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L)

. Cosh - - Cosh __.(%.- %)
_EA_w 2/C vC N ' . T
q; :.Z.—z- — Sinh — T
ET Sinh —— /C
2vC
- Cosh —~ % + 1 ' 2.24a
vC
and 1- Cosh L % -
ap= %é.z.g - /E; Sinh —L % - %) 2.24b
ET Sinh —— /C
2/C

Plots showing variations of F, g, and %T along the length of
a beam with pbint loads at quarter span, and for varying
values of the interaétion coefficient é, are given in Figs.
2.10, 2.11 and 2.12.

2.2.4 Case IV - Partially Fixed End Beam with Symmetrically
Placed Two Point Loads - End Slip Restricted
Expressions for this case were obtained by using the

following modified values of moment expression in Eq. 2.19

of case III:

;

o Wu _ W :
’M(x) = B o3t (L u} + 5 X ﬁor 0 X< u |
and ' ' ' ‘ 2.25
= -y Wu -1 w L
M(x) = B 3T (L u) + 5 U for u € x ‘»2

where p defines degree of end fixity. For u = 0, case IV
reduces to case II and for u = 1 it is case III.
The corresponding expressions for the degree of

interaction %T are given by
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Cosh—L- -Cosh-%(1-8
L _,, < 1 {2/ fé(z ) T X
FV o T u, Uy X N Cosh— ¢
L [-uf(l-f) *'17] Sinh - /
ST 2/C
- Sinh X L’i 2.26a
vC
F 1l - Cosh —1 %
R _ /C 1 o -/ Tl  x
F——r =1+ —,Eo"" Q Q T . Cosh —-(—2- - 'L—
2/C

2.26b

2.2.5 .Discussion of Loading Cases I to iV

The variation of the tensile force F in the steel
-reinforcemen£ is given in Fig. 2.3, 2.6 and 2.10 for case I,
II and III respectively. Itvcan be observed that F = 0 at
the free ends and maximum at mid span for case I. This
could be expected, since the flexural strain is also maximum
‘at the mid span. Comparing this with case II, it will be
fouﬁd that F # 0 at free énd. This is because of the end
anchorages. Th2 effect 6f the end anchorage is more pro-
nounééd as the bond between the concrete and the steel rein-
forcement (é) diminishes. Case III exhibits maximum tension
at the fixed ends.

Similarly, variation of the load per unit length, qa,
transmitted between the concrete and the steel reinfbrcement‘
bis given in Fig. 2.4, 2,7 and 2.10 for case I, II, and III

respectively.
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It can be noticed that in case I, where slip is
permitted, the horizontal shear per unit length is maximum
at the free ends and diminishes gradually towards the mid

span. The value of the horizontal shear between thé two
1
C
(= 100, 50) compared with the smaller values of é (= 5.0 etc.)

point loads is smaller in cases of very high value of

In cases II and III, where the end slip is restricted,
horizontal sheer is zero at the ends, and the maximum value
occurs at a place between the support and therload point,
depending upon the value of % .
| Comparatively in case III, a smaller value of hori-
zontal shear per unit length has been observed between the
two load points.

‘Fig. 2.5, 2.8 and 2.12 are the plots showing varia-
tion in the degree of interaction %T for the case I, II and
III respectively. .Ail these cases show a drop in the degree
of interaction under the load poinﬁ.

Fig. 2..3 shows ajcomparison'of %T for case I and
case II for é = 5. The degree of interaction is generally
higher in case II but near the supports it increases

rapidly to a value in excess of unity. This reflects the

‘effect of end anchorage (i.e. imposition of condition that

%5 ' =0) and appears also in Fig. 2.6

at x=0, L v
: It can also be noted that for very small values of
1 .

z (= 0.5) the distribution of F, the tension in the rein-

- forcement in Fig. 2.6 is almost constant. This is in
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agreement with Kani's ‘") findings that "the force in the
reinforcement would remain consﬁant with a beam without
bond" but with an anchorage. |

Fig. 2.14 shows similar plots for case I and case
III. For a fixed end beam the %T distributions are generally
lower than for the case of simple supports; however, near
the point of contra flexure, values conforming to a continu-
ous curve were not obtained, because of computational
difficulties in the process of divisioﬂ of two small
quantities. |

Case III also exhibits a big drop in the value éf

%T at the fixed ends.

2.3 Interaction Coefficient %v

The dimansionless parameter, the Interaction

Coefficient;
1_%k E .1;2_..___.__.__1 1 z __Lz k 2.27
C s " == "2 1 *EA *"=°"2°5s
EALEZL m E’Ic + Is s'c Y L

(3)

was intioduCed by Newmark et al ’ in the development of
the theof& for incomplete interaction of composite beams.
It is a measure of the degree of interaction between the

concrete and the reinforcing steel. Variations in the

C
accumulative effects of slip between the concrete and steel

. 1 . .
magnitude of = can be considered to represent various

reinforcement, and deformation of the "concrete teeth".
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It can be seen, however, that the magnitude of % and hence
the loss of interaction in a reinforced concrete beam is
significantly infiuenced also by the geometric properties

of ﬁhe R.C. beam in addition to the bond-slip characteristic
k. The effect on é of the variation of one parameter at a
time and two paramefers simultanéously is demonstrated in
Fig. 2.15 and 2.16. It should be noted that variation in
the geometrical properties can have as significant éﬁ effect

upon the degre: of interaction as a change in the bond-slip

modulus k;

2.3.1 Influence of Variatipn‘of a Single Parameter
a) Width or ‘depth: |

If the length of a beam;'percentage of steel and k
is kept éonstant and éither width or depth of the section is
increased, the value of %'decreases parabolically, see Fig.
2.15. Decrease in the strength of a beam with increase in
depth was also observed experimentally by Kani(zz), (see
Fig. 2.15a) and Leonhardt and Walther(4). Decrease in
strengthkdﬁe to increase in width,'has not been demonstrated
experiméntally. On the contrary, Kani(zz) observes no
sigﬁifibant Chénge in the strength by increasing the width.
Although it has been shown in Fig. 2.15 that decrease in the
interaction coefficient % results from inéreasé in depth,

the range of é which has been shown in this thesis to have

significant effect on the performance of a beam is between
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1—' -—
c= 0 | 50,

b) Length:

If the cross-section.of a reinforced concrete beam
is kept constant and only the length of the beam is varied
it will be}found that é increases with the square of the
length. On close examination of the strength of the beams
tested by Kani(lg’z?)(fig. 2.15b),.this fact could also be
established, however, the effec£ of the length was not so
éronounced as found theoretically.

c) Percentage of Steel:

Similarly, if all the other parameters are kept
constant and only the percentage of steel is varied, the
value of é decreases with an increase in p. Kani(lg) re-
ported a similar reduction in the relative beam strength.
The results of his tests, in which % ratio ranges between
1 and approximately 6.5, show that for p = 0.5 there was
practically no loss in thg relative beam strength; however
for p = 2.80, a loss of ﬁp to 50% was indicated. (See
Fig. 5.6, Chapter V.)

d) Geometric S:milarity:
It has been found from the computations that varying

depth, width, length and the area of the reinforcehent

simultaneously such that the geometric similarity is main-

1

tained, does not vary the value of'E.
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2.3.2 Influence of Variation of Two Parameters
Fig. 2.16 shows that the value of é decreases

parabolically with increase in either the depth-percentage
of steel, width-percentage of steel, or the depth-&idth
raﬁio in a reinforced concrete beam. The effect of the
depth-percenﬁage of steel and widtthercentage of steel
ratios are exactiy similar; where the effect of depth-width
ratio is comparatiVely lower.

| The value of é increases linearly with increase in
either depth-length 6r width-length ratio. Similarly, the
value of é also increases with an increase in the length-

percentage of steel, but this increase is non-linear.

’-?Jlfj

2.4 Influence Lines for

From the distribution of thevdegree of interaction,
‘%T along the length of a beém, the investigation was extended
to study the effect of the iocatibn of the loéé point on %T.
The purpose was to make a‘éomparison of the breakdown ih
interaction. for various rétios of %‘(or %) with the relative

(10)

beam strengths cletermined experimentally by Kani , and

Leonhardt and Walther(4). It should be noted that although
the influence lines for %T are for the uncracked beam, the
general trends of the curves give an inaication of the
relative efficiency of a beam with variation in the shear

span, Fig. 2.17, 2.18a and b, and Fig. 2.19.
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2,4,1 Simply Supported Beam with Symmetrically Placed Two
- Point Loads.

As a first attempt a simply supported beam with
symmetrically placed two point loads was considered, and
computations forng were carried out under the load point
for intervals of %.= 0.05 and for values of % = 100, 50,
20, 5, 2, 1 and 0.5. ‘

The result§ obtained are shown in Fig. 2.17. All

the curves have the samé{general shape and indicate higher

degree of interaction in the range of % between 0.375 to

0.450 decreasing gradually outside this range on each side.
The breakdown in interactipn is more pronounced as the loéd
poinfs approach the supports. The degree of interaction
decreasés as thes shear span reduces. Similar trends were
demonstrated by Kani(lo) in experiments on a large number of
beams. In his tests a decrease in the relative beam
strengih was observed by décreasing the shear span ratio %
to approximately 2.5. Ho&ever, with further reduction of

the shear span the experimental results gave an increase in

the relative bezm strength.

2.4.2 Simply Supported Beém with Symmetrically Placed Two
Point Loads - End Slips Restricted
.In the case of a simply supported beam with two point
loads (case I), the computed variations of horizontal shear

per unit length, g, indicate that maximum slip occurs at the
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ends of beam, Fig. 2.4; however, in Kani's test beams, the
reinforcement was anchored at’eaéh end of all the beams by
means of bolt and anchor plate. This prevented slip at the
ends of the beams. The previoué case, (case I), was modi-~
fied by imposing a boundary cﬁndition of (%%) =0, x =0,
and x = L, i.e. that there is no slip permitted at the ends
of the beam. Solutions were qbtained for ¥, q, and %T as
given in section 2.4.2, Figs. 2.6, 2.7 and 2.8. Computations
for the influepce lines for %T were carried out for é = 100,
50, 20, 5, 2, .. and 0;5 and the results are shown in Figqg.
2.18a and b. | ‘
| About the influence of bond on the strength of a
beam; Kani(lo) wrote, "For two beams, identical in every
respect except boﬁd‘resistance, the one with poor bond, and
therefore large Ax‘(i.e. width between two cracks), will
have a higher load carrying capacity than the beam with good
bond. The surprising result is: fhe better the bond the
lower thé diagonallload-cérrying capacity." ‘

He further discussed the test beams, described by
- Leonh;rdt and Wélther(4) and demonstrating ﬁhis point he
stated: "The beams with poor bond carried at least 31 per;
cent more load than the corresponding beams with deformed
bars. The beams with.poor bond reached their flgxural

failure, while thae beams with deformed bars stayed far below

their full flexural capacity."” These comments pertain to
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~ 2.4.3 Fixed End Beam with Two Symmetrically Placed Point
Load |
This is an extreme case because in addition to zero
slip af the ends of beam, there are also méments due to end

fixity. The influence lines for %T are shown in Fig. 2.20.

It can be seen that the %T values are very high near the

supports and depending upon the value of é, they rapidly

u
L

this fange their magnitude increases again gradually towards

drop off to zero between a range of = 0,10 to 0.25., After
the mid span, showing a small drop where both point loads

approach mid span. It should be noted that values of %T in
this case are ¢generally lower than the previously considered

two cases. (Figs. 2.17 and 2.18a and b.)
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CHAPTER III

FLEXURAL CRACKING

3.1 Development of a Flexural Crack

In adcition to the assumptions made in Chapter II,
it is assumed here that the concrete is capable of with-
standing flexural tensile strain to some limiting value. If

the computed flexural tension strain, exceeds this

€cb
critical (or limiting) value,gcr at any section of the bean,
a flexural crack will develop and will extend into the beam
until equilibrium betweeh the internal forces énd moments,
énd the applied moment is obtained, and the actual tensile
strain €cp ié at the‘value'of the critical strain, €op®
From the geometry of.the strain distribution across
the depth of a reinforced concrete beam, Fig. 3.1, the
following can be written: | -
€cb ~ €er

C, = 2H
€cb + ec;t

h 3.1

where Ch is the first increment in the crack height, and its
value can be computed by finding €cb and €t from Eq.2.3
and a knowledge of € .. Therefore the remaining uncracked

depth of concrete will be

' _ _ N . V -
2H' =28 - ¢ o 3.2

This value of 2H' can be re-used in Eg.3.1 to work
out the successive increments of a developing crack, until
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finally a stage of equilibrium is achieved. The height of

a fully developed crack, therefore, can be given by
. -

Ch =0 ‘
C = C where at n & 3.3
ch h o €
= €
i cb cr

3.1.1 Flexural Crack under a Load Point
o The dimensions of the typical ﬁ.C. beam considered
ih this thesis has the dimension of that tested by Plowman
and repbrted in reference number 8.
It has a concrete cross-section 4" wide x 8.5" deep,
With a single %" diameter, mild steel reinforcing bar
located at an effective depth of 7". No stirrups are used.
The span of £he beam is 90", simply supported and carrying
two symmetric point loadS'eéch at a distance of 29.25" from
either of the supports. ~The modulus of elasticity of the
concrete and the steel is assumed to be 3.5 x 106 psi and
30 x 106 psi respectively. The beam carries a design
mon}ent of 36200.0 lb-in.
. - Since thesé dimensions were used in most parts of
this report, the beam will be referred to as "Typical Beam" .
The concrete is assumed to be capable of with-
standiﬁg a flexural tensile strain of 100 micro inches per

inch. Strains in excess of lOO m "/" will cause cracking.

0 3.1.2 Equaticns 3.1, 3.2 and 3.3 were used to derive an
iterative tecknique for computing the crack height under

the load point in the "Typical Beam". This was done for
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the cases of complete interaction (% = ) as well as for
incomplete interaction (% = 100,50,25,10,5,2,1 and 0.5). It
is assumed that. k remains constant. Its value will depend

on the choice of % at the start of the computation. As the

flexural crack develops the cross-section of the concrete
diminishes. Assuming that k remains cénstant, the value of

% will change clue to the change in the concrete cross-section.

During the iteration process, the values of % were .

found to increase due to the change in the geometry of the
cross—-section. This in turn affected the degree of inter-
%., causing variations in the quantities such as

the concrete top fibre strain €

. ‘action 0 =

ct’ interaction force F, and

the moments in the steel,'Ms; and concrete, Mc' The varia-

tion of these parameters are shown in Fig. 3.2 and Fig. 3.3.

1
cb’ ¢ Mc
and F for several initial values of é are given in Figs.

Curves showing variations in values of ¢

3.4 to 3.7.
It is evident from these curves that the choice of
é value for these analytic computations has a significant

influence on the final crack height.

3.1.3 PFig. 3.€ shows that for a certain value of the crack
height, Mcvdoes not change much between é = 0.5 to 200. A
comparison of Figs.'3;6 and 3.7 shows a decrease in the

moment carried by the concrete, Mc, and an increase in F for

increasihg height of crack. The moment carrying capacity of

b}
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the uncracked concrete section reduces as thé'uncracked
concrete section diminishes. The increase in the horizontal
force F, helps to suppress the tensile strains due to bending,‘
preventing continuation of the crack.up to the top of the
beam. A reduci:ion in the interaction coefficient results in
a decrease in the actual compressive force for a specific

crack height, Fig. 3.7.

3.1.4 Terminal values of 1 initial as well as terminal

—él

values of F, M., and C.y are plotted against the initial

h
values of % in Fig. 3.8, and the resulting plots show that
most of these cuantities become fairly constant for a value

of é > 50. Therefore the investigations carried out

for % > 50 would be insignificant for our objectives.

3.1.5 Equations of Equilibrium

From the free—body'diagram of Fig. 2.1, the applied
moment Mt can, in genéral form, be expressed in terms of the
internal forces and moments as in Eg. 2.5.

If there is complete ipteraétion (% = «) between the

concrete and the reinforcement in a reinforced concrete beam,

Eq. 2.5 will then be:

‘ = W ' ’ ‘ |
M_ = M+ M+ F'.2 | | 3.4

where F' indicates the force of interaction for complete
interaction. Assuming that now the moment of the same magni-

tude as My is applied to a beam with incomplete interaction
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(é <), then Ig. 3.4 would reduce to:

=y T + ' . ‘
M, = M7 + M + aF'Z o B . 3.5

* %, is the degree of inter-

action between the concrete and the steel reinforcement in

+ ' _
where MC > Mc' Ms > Ms and o =
a reinforced concrete beam, at a particular section. The
variation of E, along a beam depends upon the external
loading and the support conditions (see Fig. 2.13).

In the case of no interaction (% = 0), o =0 and

Eg. 3.5 becomes
M =M + M ' ' 3.6
s .

This means that the concrete and the steel reinforce-
ment, both carry pure moment and are acting independent of
each other.

Since a reinforced concrete beam is considered to be
va composite beamn with incomplete interaction, Eg. 3.5 defines
the state of eqailibrium. 

' This equation must‘hold for every stable cross-

section in the beamn.

3.2 Fléxural C:irack Profiles

The estimation of crack heights at various sections
along the length of a beam, lead to a profile which divides
the entire beam into two distinct portions, namely a com-

puted potential flexural cracking zone, and the remaining
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uncracked beam section. The cracking zone defines the
extremities of a region within which pure flexural cracks
could occur. Formation of the flexural cracks in a beam is
shown in Fig. 3.19. As the'cracking progresses, the beam
takes the form of a 'comblike' strﬁcture. The transfer of
stresses between the reinforcement and the:concrete then is
through the bord provided by the concrete 'teeth', when for
‘a certain magnitude of the applied loading, flexural cracking
has taken place, the extremities of these cracks will repre-
sent a crack profilé in the actual beam.

The crack profiles for the "Typical Beam" are
'considereé‘here. Details of the crack profiles for other
cases will be found in subsequent appendices.

The shape and size of a flexural cracking zone was
found to be influenced by various parameters, such as inter-
%, location of the load points, the
peréentage of steel p, and the intensity of the point loads

action coefficiant,

A.

3.2.1 Influenca of Interaétion Coefficient 1

C
The significance of the influence of é on the crack
profile is obvious from Fig. 3.9. With é = o, a minimum

extent of the cirack profile was obtained for given load
conditions. A decrease in the magnitude of the initial
value of é resu.ts in an enlargement of the potentially

cracked zones. This is particularly due to increase in the
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height of cracks. The cracks are higher in a beam with poor
bond than in the case of a beam with better bond. Reduction
in the interaction coefficient does not significantly affect
the longitudinel spread of the fle#ural crack zone. It
should be noted.that the magnitude of % increases to a
magnitude greater than the initial value but this is a
reflection_bf the influence of geometry on %, namely that as
the uncracked section diminishes, the magnitude of successive

values of é increases (see Eq. 2,27).

3.2.2 1Influencz of Percentage of Steel, p.

Crack profiles are shown in Fig. 3.9 for the "Typicai
Beam" in which :the reinforcement consisted of l—%" diameter
bar giving p = 1.1 percent. Increase in height and extent of
the cracked zone due to reduction in % is clearly indicated.
In Fig. 3.10 to 3.13 p was varied between 0.5 to 3.0. Fig.
3.10 is a case of éomplete interaction (% = »), Fig. 3.11 is

for = = 100, i.e. a high bond or interaction case, and Fig.

ol

3.12 is for % = 5, i.e. a case of moderate bond.

The effect of increase in percentage of steel, p,
is to reduce the crack height whereas the reauction in bond
modulus, k, reflected in a reduction of the initial value
of 1 leads to incréase in crack height.

c
~MacGregor and Walters(24)

, concluding from their
investigation, state "In a region of pure flexure the height

of flexural cracking is stronglyAinfluenced by steel
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percentage p. For low values of'p the crack will extend a
considerable distance into the beam with no increase in load.”

Experirnents by other research workers also substan-

tiated this fact(10),

Fig. 3.13 shows the variation in the crack height
under the load point with different values of p. Each of

these curves is for a particular value of %.
of the influence of % as well as of p can easily be made.

With a percentage of steel of 0.5, the influence of bond as

A comparison

manifested by %-causes an increase in crack height from

6.0" to 6.9",.or 15% for % = ® and % = 5 respectively, With
a percentage of steel of 3.0, the crack height is increased
from 2.8" to 4.3", an increase of 53.6% for the same range

1
Of "C"o

3.2.3 Influence of Locétion of the Load Point 'u'

Fig. 3.14,vshows the crack profiles for a value of
é = 10, and one times the design load fbr different locations
of point loads (u=15",20";25",30",35" and 40"). The example
chosenAwas for the "Typical Beam" except that the location
of the_point loads was varied. The load intenéity was
changed to prodice the same magnitude of the applied moment.
It is found tha: cfack heighf undef the load point increases
as the load moves towards the support. Thé éhange in shape
of the‘crack profile resulting from the movement of thé load

point is also shown.
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3.2.4 1Influence of the Intensity of Load A

The influence of the intensity of load on the size
and shape of tae crack profile is shown in Figs. 3.15, 3.16
and.3.l7.’ The load intensities were varied between 1 and
3.5 times the desi§n load.

Fig. 3.15 is again for the case of complete inter-
action (% = «) whereas Fig. 3.16 and 3.17 are cases of in-
complete interaction, with the interaction coefficient, %,
of 100 and 5 respectively.

The increase in the‘load intensity A did not
. increase the crack heights much, in comparison to the

influence of p, or that of 1 However, an increase in )\ has

c
the predominant effect of extending the length of the
flexural cracking zone. Fig. 3.18 gi?es the crack height
under the load point for varying values of X as well as é.
Therefore a comparison of the influénce of these two para-
meters can be made. Loss of interaction has a much more

significant effact on the height of the flexural crack than

does an increase in load intensity.

3.3 Strain Distribution in a Cracked Beam

3.3.1 Fig. 3.20 and 3.21 show the variation of upper, mid-
height and lower fibre strains in the reinforcement and top
fibre concrete strain along the length of a crécked beam for

é = 100 and % = 5 respectively. These correspond to the
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flexural crack profiles of Fig. 3.9. It may be observed that
strains in general, are much higher in a.cracked zone than in
the uncracked beam. The shape of the concrete top fibre‘
strain distribution resembles that found experimentally by
Kar(26), see Fig. 3.23.

The mid—height steel strains measured'experimentally

by Plowman(s) (29)

and Fenwick and Pauley are reproduced in
Figs. 3.22 and 3.24 respectively. Observations by Fenwick
and Pauley were made only in the cracked portion of the bean.
It should be ncted, however, that although the computed
variations in the mia-height strain show a -sudden change in
the magnitﬁde.at the point where cracking starts, Plowman's
results could provide an envelope forAthis variation.

Fenwick and Pauley's results also compare qualitatively with

the computed distribution in the zone of potential flexural

cracking.

3.3.2 1In the vicinity of the load points the steel bottom

strain, €p ! and concrete top strain, show an increase

£
ct’

in magnitude, whereas the steel top strain, € shows a

st’

drop in the magaitude compared to the case for complete
interaction. Tais change in the steel strains, could, in

cases of low wvalue of 1 result in a considerable local

EI
deformation of the reinforcement.
Also from Fig. 3.27b and 3.28 for the case of a

small value of p or of‘é, if craéking is quite high, it
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would result in a very high magnitude of the top fibre

conpressive stirain, € in the vicinity of the load point.

ct’
If this strain exceeds the crushing strain of the concrete,
spalling of the concrete will occur, and the beam will

finally fail in compression by crushing of the concrete near

the load point.

3.3.3 Fig. 3.25 and 3.26 show variation along the length of
a>beam, of the interaction force F, the moment, Mc’ in the

remaining section of concrete and the interaction coefficient

é, relating to the strain plots of Figs. 3.20 and 3.21. It
may be' noticed that the final values of 1 in the cracked

C

beam are quité high due to change in the geometry of the
cross-section. This crackinélincreases the amount of the
.axial force on the remaining concrete section and reduces
the amount of moment, Mc’ carried by concrete.

A comparison of the distribution of these quantities,
in é beam, between a state before cracking and the one after
cracking suggesﬁs thatvthé flexural cracking of a reinforced
concrete beam causés it to transform into a tied afch.

It shou.ld also be noted.that an increase in the
applied.load car increase the axial force F further, and
could be responsible for the final failure of the beam.

This type of failure could be either due to the buckling of
fhe remaining arch or due to the breakage of bond in the

uncracked zone c¢f the beam.
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3.3.4 Fig. 3.27a shows the effect of the ratio of the design
load, A, and the percentage of steel, p, on the values of
strain under the point load. The strains exhibit a linear
variation with A. It may also be observed that an increése
- in the percentage of steel reduces the magnitude of the
compressive strain, Fig. 3.27b, for a given load and magni-
tude of %.

Fig. 3.28 shows the effect of % on the steel strains.
For higher values of 1 (i.e. 50 and above), the strains are

Cc

not markedly affected by a change in as indicated by the

El

straight line portion of these curves. For small values

of %, the effect on strains is significant. The tob fibre
strain, €ct’ ir. the concrete as well as the bottom steel

strain, ¢ show a rapid increase in thelr magnitude, and

sb’

strain, at the top fibre of steel shows a rapid de-

Est?’
1

crease in the magnitude with a decrease in the value of c

%;, in a Cracked Beam

It was observed in an earlier section of this

3.4 Degree of Interaction,

chapter, that cracking in a reinforced concrete beam leads
to an increase in the magnitude of the interaction coeffi-

cient, caused by reduction in the cross~section of the

1l
'6'
uncracked concrete. This in turn causes an increase in the

%.. (The bond-slip modulus k is

assumed to remain constant throughout the entire loading.

degree of interaction,

range) .
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3.4.1 Figs. 3.29, 3.30 and 3.31 show the distribution of

%. for a cracked, as well as uncracked beam, for the Cases
I, II, and III respectively. These cases have already been
described in Cﬁapter II.

| It may be seen that while the distribution of the
degree of interaction, %., remains the same in the uncracked
portion, it increases considerably in the cracked portion of
%, approaches unity as in the
case of complete interaction. The terminal distribution of

the beam. At certain places,

%. does not shcw any significant decrease in magnitude in

the region of the load points as has been found for the un-
cracked prismatic section, see Fig. 3.29 and 3.30. This is
due to an increase in the magnitude of % because of reduction
of the concrete cross-section and that the bond-slip modulus
is assumed to remain consﬁant throughout the entire loading
process. In reality the bond-slip modulus is curvilinear.

(5) from their tests on reinforced beams

Mathey and Watstein
with web reinforcement, obtained non-linear bond-slip
characteristics.

(20) in their review state,

Bresler and MacGregor
"TheVSlip is related to intefface shear between steel and
concrete, usual.y called "bond stress". As a result, a
"bond-slip" law must be formulated to obtain meaningful

determination of the stress in steel and concrete."

A curvilinear bond-slip characteristic would have
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the effect of offsetting the increase in % due to geémetric

change in the cross-section.

3.4.2 In an actual beam, the degree of interaction, %,; in
an uncracked region of the cracked beam would be affected by
the cracking. This, however, does not show in these computa-
tions, because this method of analysis is to compute the
magnitude of %. only at the section under consideration and
does not reflect the geometry of the cross-section in the
other parts of the beam.

Therefcre an approach which could account for.the
effect of other sections of the beam, such as the Finite
Difference or.Finite Element Methods incorporating a non-

linear bond-slip characteristic would impart mathematically

more correct results.



CHAPTER 1V

INFLUENCE LINES

4.1 Influence Lines for Crack Heights

It was obsefved in the computation of the flexural
crack profiles that for a particular load position, maximum
crack height occurs under the load point. By moving the
point loads along the length of the beam, influence lines
for the crack height were computed. These curves show
maximum heightﬁ to which a flexural crack can possibly go
for point loads which produce the same magnitude of moment
A(36200 lb~-in) at the load points, as they are moved outwards
from the midspan of the beam. It has been demonstrated in
Fig. 3.9 that the height of a crack due to flexure is
greatest under the load points or that the degree of inter-
action, %. is winimum at the load points Fig. 3.29 and 3.30.
The flexural capacity of the beam can be seen to be governed
by the conditions at the load points.

Fig. 4.1 shows the Influence Lines for crack height
under the load points for the "Typical Beam", which is
simplj supporteﬂ and carries two symmetrically placed point
loads. The cas2 of Fig. 4.2 is the same as for Fig. 4.1,
except that in this case, the solution for %. was obtained
by imposing the condition of zero slip at the ends (see
Fig. 3.30). The computed Influence Lineé of Fig. 4.2 are

very much the same as the Influence Lines of Fig. 4.1. Thus

98
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the effect of restriction of end slip on the distribution

of %..

been reflected in computing crack heights. Compare Fig. 2.3

that was conspicious in an uncracked beam has not

and 2.6 and also Fig. 3.29 and 3.30. This is probably due
to the assumption that the bond-siip_characteristic of a
reinforced concrete beam is linear.
It may also be observed that the magnitudes of crack

height are larger for a smaller value of the shear span, u.
The lowest points on these curves occur near the midspan.

| As is the case for the cfack profiles_% has a signi-
- ficant effect on the Influence Lines for the crack heights.
Influence curves for a large value of % are flat in the
middle half of the span, whereas the curves for smaller
values of é are flatter in the outer éuarter of the span.’
This suggests that the flexural capacity of a beam with a
large value of é (say 100) would be the same for load
positions within the middle half of the span. On the other

hand, for a medium range value of 1 the flexural capacity

EI
Af the uncracked beam varies with the position of the load
point.
-Increase in the moment carrying capacity for a
smaller value of the shear arm ratio, %, have been observed
. (7)

in the results of experiments by Kani and Leonhardt and

Walther(4).
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4.1.1 Effect of percentage of steel reinforcement, p.

Fig. 4.3 shows the Influence Lines for the craék
heights in the "Typical Beam" with a value of % = 5( and
for varying percentage of steel. Increase in the percentage
of steel, p, has been found to result in lesser crack heights
and vice versé, and p has a remarkable influence on the
flexural capacity of a reinforced concrete beam. It may also
be noted that although increase in p lowers crack height
considerably ir. central portion of beam reflecting increase
in strength, towards the end of the beam, the effect of loss

of interaction markedly reduces the flexural capacity and

the reduction cf crack height is comparatively smaller.

4.2 Influence Lines for Strains

Fig. 4.4 and 4.5 show the Influence Lines for con-
crete top strain and mid-height steel strain corresponding
to the Influence Lines for the crack height and values of

é shown in Fig. 4.1 and 4.3 respectively.

y "Fig. 4.4 indicates the effect of the magnitude of

é on the values of strains. It may be noticed that the

effect of % is more pronounced on the concrete top strain,

than on the mid-height steel strain, e¢__. For larger

€t sSm

1 .
values of c’ stirain values (ec as well as Esm) are constant

t

over most of the span except near the ends where €ot increases

rapidly in magnitude. On the other hand, for small values of

1

cr € varies significantly from point to point over the

ct
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entire span.

It may also be observed that when point load is near
the mid span, effect of é.is the least, but as the poinf.
load towards the ends of the beam, effect of variation in é
is more pronounced. |

Fig. 4.5 shows the influence of p on the Influence
Lines for strains, for a case where % = 5, It may be seen

that increase in p results in decrease in magnitude of the

strain in top fibre of concrete € as well as the mid-height

ct
strain in steel €gpme FOr high percentage of steel, p, the
values of € 3TE constant in the middle half of the span,
whereas for small values of p, it shows significant variation
in magnitude. Fig. 4.5 also shows théﬁ €sm is not affected
much by variation in the location of the point load.

A comparison between Fig. 4.4 and 4.5 will show that
increase in é affects éct more than €em and an increase in p

has more effect on esm than on ect'



CHAPTER V

MOMENT CARRYING CAPACITY

5.1 The Influence Line plots of Fig., 4.5 give the
magnitude of the top fibre concrete strain, €t and the

mid-height strain, e€__, in the steel at the load point for

sm
a constant applied moment. Each curve shows the effect of

particular value of the steel percentage p. It can be seen
that by limiting the magnitude of strains in the steel and
the concrete, the strength of a beam can be made to be

governed by either the steel or the concrete or both. For

example, assume that the crushing strain, €ct , of

max.

concrete and yield strain, €sm , in steel are 1000 and

~max.
500 micro in/in. respectively. For a beam with p = 0.5 in

Fig. 4.5, it may be seen that ¢ is less than € for
- ct ctmax

values of U between 22 in. and 45 in. and €t is greater

than €ct for U= 0 to 22 in. On the other hand, €sm is
max -

greater than the assumed €em at all locations of the
U max.

point load along the span. Therefore, for this beam with

0 to

p = 0.5, the concrete will govern the strength for U

22 in. and the steel will'govern the strength from U 22 in.
to the midspan.

For the samé values of the limiting strains, if a
beam with p = 1.0 is examined, it will be found that the
éoncrete governs the strength for U, only between 0 and 12 in.

and for all other locations of the load point up to the
107
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midspan, the steel reinforcement governs the strength,

Similarly for the same beam with p = 3.0, it is
only the concrete that governs the strength of the bean,
since the value of steel strain never approaches the
limiting value.

Thus for certain values of ¢ and ¢ ’

Ctmax - smmax .

the moment capacity of a section at the load point can be
determined analytically. This will be the maximum carried

by such a section.

5.2 For computing the Influence Line for maximum moment,
Miax.? at.the load points, the dimensions_of the "Typical
Beam" of Chapter II and case I are considered. It is further
assumed that the concfete‘can withstand a maximum compressive

strain, € of 2500 micro in/in. and the steel a maxi-

mum tensile strain, €em , of 1200 micro in/in. The inter-

- max. .

action coefficient, é, is taken as 5. The moment carrying

capacities have been computed at the load point as the load
point moves along the length of the beam. The values of

computed moment capacity are plotted against the shear span

and are shown in Fig. 5.1.

5.2.1 It méy be ébserved that the.plot of Fig. 5.1 consists
of two distinct portions, namely one which slopes downwards,
and the other which is almost horizontal. 1In thé'sloping
part,‘the concrete reaches the limiting strain and so the

strength of the beam is governed by concrete; in the

.



Moment Co,baéi/fy (10000 %b-in ) —

0

o XN ) ® N . ®

N

sl

Acruai Theoreficai NMoment
L Mu=7.60x10Tbm ? nt Carried Mnax

i C2 x DESIGN MOMENT =72,400 /b-1n

. /"/x DESIGN MOMENT = 36,200 lb-in

i | 1 [} 1

o 5 10 15 20

U (inches)

MOMENT CARRYING CAPACITY OF THE

25

30

35 40 45

Fig.5./

= =y

| »—O—
L— ava
END SLIP PERMITTED Ag=0.3107

L 290.00

P="’%

Ec=3.5x10°lp)in*
Es= 30 x10° [p/in*

€C6 = [00 ml‘CI’O ”}//ﬂ
Limitahons { G.p . 2506 =
Esm = 1200 »

*',/acaqo/O/ei‘e Interachion -c/— =5

“ . ”
TYPICAL — BEAM.

60T



- 110

horizontal part the steel governs the strength of the beam.
Between the two parts there is a transition point where

both concrete as well as steel reach the limiting strains.

5.2.2 The region in which concrete strain governs, the
capacity of the beam ranges between 0,6 and 2.1 times the
design moment and varies with the location of the load point,
whereas in the part where steel Strain_governs, the moment
capacity is fairly uniform and ié_generally greater than two

times the design moment,

5.2.3 The ultimate strength, M 6, of the "Typical Beam"
'has been computed by the conventional method adopted by

Kani(lz)

where

y S Smmax'
and

and is indicated by a horizontal line in Fig. 5.1.
A comparison of M and M 6 shows that between

max

M
ﬁax is less than unity. Near the tran-

u=20 and 10 in.,

sition point gax is more than unity and between u = 12 in.
u
and the mid span gax is slightly less than unity.

u
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5.2.4 Experinental data obtained by Kani(lo) for a large

number of beams tested with two symmetrical load points, are

MMtQEE ersus the shear arm ratio, g . A typical
u

plot is shown in Fig. 5.2. It may be observed that the

plotted as

portion VTE (Fig. 5.2) resembles in shape, the computed
curve shown in Fig. 5.1. However, in Fig. 5.1, for small
values of u, nc increase in the computed value, Mmax is
observed. The transition point, T, in Fig. 5.2 is located

comparétively'néarér to the mid span, than in fié;'s.l.

5.3  Kani found that the relative beam stfenétﬁ’versus

% plots are influenced by parametérs, such as percentage of
steel, p, concrete strength, fc' and depth of the beam.
Consequently th2 effect of certain parameters on the com-
puted values of the flexural capacity have been investigated'

and are discussed in the following. o e

5.3.1 Restriction of Slip'at Ends of Beam

) Fig. 5.3 shows the Influgnce‘Line of the moment
carrying cépacity.for Case II, in which the slip at the ends
of the beam has been assumed to be zero (due to end anchoragé).
A comparison of this with Fig. 5.1, shows that both influence
lines are very much the same. Therefore, the effect of the
end slip restriction does not affect the magnitude of the

maximum moments carried by the beam.
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5.3.2 Influence of the Interaction Coéfficient, %
Fig. 5.4 shows plots of moment carrying capacities
for case II as in section 5.3,1 but with.various Qélues of
% (= 10, 8, 6, 4, 2 and 1). It may be noticed that decrease
in the value of é results in moving the transition point
towards the centre of the beam. It is also interesting to
note that while an increase in % increases the moment
capacity in the region to the left of the transition point,
a decrease in capacity results to the right of the transition
point. This means that incréase'in é decreases the strength
where the‘stéel strain is the governing factor and increases
the strength where the concrete strain is the governing
factor. | |

(10)

Kani in evaluating the influence of bond stated
“the better the bond, the lower the diagonal load- (moment)
carrying capacityﬁ.b This cén be said to épply‘éo ihe beam

in Fig.'5.4 at locations to the right of the transition where
a slight reduction in moment capacity results from an in-

3 “ ’ %. Aﬁ increase in the
initial value of the interaction coefficient represents an

crease in the interaction coefficient

EN

increase in the bond-slip modulus, k.

5.3.3 Influence of the Percentage of Steel, p.
Figs. 5.5a and 5.5b show the influence line of the

computed maximum moment carried by the section at the load

M
max.

, ard the relative moments, M versus shear
u

point, Mmax.
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~span, u, respectively for the "Typical Beam" with a value

%v= 5, and varying percentages of steel, p (= 0.5, 1, 1.5,

of
2.0 and 2.5). It may be seen that an increase in steel per-
centage has two effects; It increases the.moment carrying
capacity and secondly, it causes a shift of the transition
point towards the centre of the beam. Increase in the
moment capacity with increase in the percentage of steel was
also demonstrat.ed by MacGregor and Walters(24)p Kani(lz),
in describing the influence of p, states "that the amount of
main'reinforceﬂent influences the location of the transition

point, T, ..}..." (Fig. 5.6). "Varying the main reinforce-

ment from p = 2.80% to 1.88% and 0.80%, the test results

produced locations of the transition point, T, at % = 6.5,
6.0 and 3.5 respectively". This is also evident in Kani's
M _
test

versus = and p reproduced

three dimensional plot of g

M
u

in Fig. 5.6,

5.3.4 A comparison of Fig. 5.3 and 5.7 shows the effect

of a significant reduction in the magnitude of the inter-
action coefficient, %, from 5 to 0.5 for the same beam. The
location of the transition point in the latter case has been
‘moved much closer to the cehtré of the béah. fﬁé computed
moment caéacities to the right of the transition point are
essentially the same but at a particular location to the
left of the transition point in Fig. 5.7 (say u = 17.5 in.,,

coincident with a % ratio of 2.5) the moment capacity is
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' onlf 72.5% of that at the same location for the beam in
Fig. 5.3.

Fig. 5.7 compares qualitatively with the ﬁortion |
VTE of Kani's plot in Fig. 5.1. This comparison suggests
that for an actual reinforced concrete beam the value of

é would be qui:e small.

5.3.5 Fig. 5.8a demonstrates the effect of the variation
1

of p on the beam with poor bond, i.e. ol 0.5. Curves with

P =‘0.5 and 1.0 are-comparable in form with the curves of

Fig. 5.5a. The transition points are further moved towards
the mid span. The curves with p = 2.0 and above (Fig. 5.8a
have‘no transition points, because of the fact that the
concrete strain governs the ﬁoment capacity throughout the -
length of the beam. It may also be observed that the capacity
of such beams drops off after”reaching a maximum value as the
point loéas move towérds mid span. At this maximum value the

strain in the steel is also at a maximum but it never reaches

its limiting value.

M .
max.

[4

M
, _ u
plots corresponding to Fig. 5.8a. A comparison of Fig. 5.5b

Fig. 5.8b shows the relative computed moment

and S.Sb,'ihdicate'that a decfease in the valué 6f %, causes

"the transition point to move nearer to mid span.

(12)

Kani ‘also stated thaﬁ from the tests conducted

on beams with p = 0.5, there was no transition point obtained.
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5.4  Influence of Choice of Limiting Strains

Fig. 5.9 shows the effect of increasing the limiting
strain in the steel reinforcement, The strain has been in-
creased from 1200 micro in/in. as in Fig. 5.4 to 1500 micro
in/in. (Fig. £.9). This is analogous to using a higher
streﬁgth steel. A comparison of Fig. 5.4 and Fig. 5.9 shows
a decrease in the capacity to the left of the transition
point at any rparticular value of u and an increase in the

capacity to the right of the transition point. For example,

M
at u = 17.5 in. and % = 1,0 the moment capacity ratio ﬁﬁi&;
u

for the cése in Fig. 5.4 is 87% whereas for the case in
Fig. 5.9 at the same location the ratio is 69%. The move-
‘ment of the transition point towards mid span is a direct
result of the increase in the steel yield strain in that the
curves in Fig. 5.9 are extensions of those in Fig. 5.4 to
the left of ths transition points where the concrete strain
governs the moment capacity. For the case where é = 0.5,

Fig. 5.9, no transition point exists ahd only the concrete

governs the strength.

5.5 Kani(ln) argued‘that diagonal failure occurs when

the central section of a test beam under pure bending is
stfonger than {the end sections. Under increasing ioad, a
reinforced concrete beam transformé into a comblike structure.
In the tensile zone, the flexural cracks create more or less

vertical concrete teeth, while the compressive zone represents



Moment Capacify (%0000 %-ir) ——e

lo

| 4
Mq-9.76x/<y = =8 |
: . L o

/
c=é

1 3 1 A A X A i -

5 10 5 2 25 30 35

U (inches)

40 45

.

- Limitations

— =Y l. : ! .
L 1 70 8.5
L rj 1
 END  SLIP RESTRICTED (”’__ !
As=0-310°
| L =9.0"
all ¥
Ec = 3.5 % 10° lpJin Pt
- Eg= 30 x10° Ib)in®

6(.’5 = /0O rmicro Ih/fh .
€t = 2500 '
66771 = /500 o,

MOMENT  CARRYING CAPACITY = EFFECT OF INCREASE IN THE VALUE OF Esm.

Flg. 5.9

i

sTT



126

the backbone of the concrete comb. In the comblike structure
the applied load i§ resisted by transfer of stresses through
the bond existing between the reinforcemenf and the concrete.
Afterrthe resistance of the concrete teeth has disappeared,
the concrete cross-section is reduced and only a tied arch
remains. The transformation of a reinforced beam into a
tied arch may occur suddenly or may develop gradually.

Kani states that for beams with small % ratios (i.e.
% < 2,5), the capacity of the concrete teeth is lower than
the capaéity of the arch. Therefore, under gradually in-
creasing loads, the transformation of the beam into an arch
occurs gradua:ly and the structure faiis when the capacity
of the arch is exceeded,

For beams with % lying between 2,5 and 5.6, the
capacity of the arch is lower than the capacity of the con-
crete teeth, but of course failure does not occur until the

capacity of the concrete teeth is exceeded at which stage
the trénsformation begins. Since the arch capacity is lower
than the applied load, a sudden collapse must follow. He
found also from his experiments that in region beyond the
transition ppint (% > 5.6) only normal flexure.failure.is
possible.

(10), the

Therefore, in Fig. 5.2, according to Kani
-portion DV represents the relative beam strength'values for
% ratios between 1 and 2.5 and is due to the strength of the

remaining arch. The portion VTE shows the relative beam
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strength values for % ratios of more than 2.5, and which
are aue to the resistance of the concrete teeth, Point V in
Fig. 5.2 show:s the minimum value of the relative beam

strength and point'T stands for the transition, beyond which

(10)

according to Kani only normal flexural failure can take

place.

5.5.1 Figs. 5.1 and 5.3 to 5.5 and 5.7 to 5.9 show the
computed maximum moment carried by the section at the load

point, M , versus the location of the load point, u. It

max.
has been observed that they are influenced by certain para-
meters in very much the same way as the experimental findings
by Kani. However, they have not shown an increase in the

relative beam strength for small values of u. This, Kani

argued, is due to the strength of the remaining arch.

5.5.2 Kani(lo)

shows in Fig. 5.2 that diagonal cracking
occurs in cases where % is between 1 and 5.6 and beyond this
range only flexural failufes are possible. The diagonal
cracking takes place in the shear span, where both éhear as
well as moment are present. The relative beém strength plots
in Fig. 5.6, (% ratio between 1 and 5.6) pertain, therefore,
to diagonal cracking. Kani suggests that the transition
point is a demarcation between modes of failure. The beém
with % ratio less than ét T fails in diagonal tension and the

one with % ratio greater than at T will fail in normal flexure.
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However, the computed values Of.Mmax. in this thesis
are bnly basecl on flexural consideration and in their com-
putation no account has been made for the applied éhear;. It
is nevertheless interesting to note that a reduction in
moment capacity does occur as the shear span is reduced and

in spite of the fact that no direct account of diagonal

shear failure is made,

5.5.3 Discussing the influence of the percentage of steel,

P, Kani(lz) stated, "For those beams with a high percentage

of reinforcemeat (p = 2.80 percent), the "valley of dia-

M
gonal failure" has a low point in the vicinity of :;353 = 50
M
percent, whereas for those beams with a low percentage of
M
reinforcement p = 0.50 percent with :;SEE = 100 percent),
' M
u

the "valley of diagonal failure" disappears.”

He also stated that in most of the cases the lowest

u
d

This refers to a distance of 7" x 2.5 = 17.5 in. from the

point in the velley occurred in the vicinity of = = 2,5.
support in case of the "Typical Beam" discussed in this
thesis. Fig. 5.8b shows a variation in the computed rela-
tive strength between 81 percent for p = 0.5 percent and
49 percent for p = 2.5 at the shear span length of 17.5 in.

(or -g of 2.5).

5.6 As mentioned earlier, the computations of the

influence lines for the moment capacity are based on a beam
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model and they did not indicate any rise in the computed
relative beam strengtﬁ as has been obtained experimentally
by Kani (see portion DV of Fig. 5.2). Kani argueéAthat this
increase is due to the strength of the remaining arch. From
an evaluation of the approach taken in this thesis it seems
unlikely that an increase in relative moment capacity for
very short shear spansv(% < 2.5) can be achieved even if
more correct curvilinear stress-stress and bond-slip
characteristics are introduced. It is therefore suggested
tﬁat perhaps the arch model should be investigated in order
to establish & complete theoretical explanation of the be-
haviour of the reinforced concrete beam.

An outline of the method for investigation of the
strength of the remaining arch is suggested in the following:

l. Select a beam, i.e, dimgnsions such as width,
depth, length, reinforcement and its location, and the
properties of the material, such as Es' Eqr €y é, etc.

-2. Choose the limiting strains, €ct and €sm .

. ' max. max
3. Assume a moment value Mo, find out the crack
'profile corresponding to it, and hence the dimensions of the
remaining arch.
4., Determine momént carrying capacity for sﬁch an

arch, MR, poséibly by means of some semi-graphical method

of analysis.
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5. Compare MR w1tb Mo

if,M < M decrease M
R o
and repeat
X > :
if MR Mo increase Mo

the steps 1 to 5 until Mp = Mo = Mmax. within permissible

limits of accuracy.

6. Determine ey in the same way at different
sections under the point load along the length of the beam.
Plot Mmax. versus u on the curve for the flexural moment
capacity. The point of intersection of the curve for
flexural'capacity and the curve for the arch capacity will

determine the minimum value of the beam strength.



CHAPTER VI

BOND AND SLIP DISTRIBUTION ALONG THE LENGTH OF A CRACKED

REINFORCED CONCRETE BEAM

A reinforced concrete beam,tOn cracking, usually
assumes a 'comblike structure' (10), and between the visible
cracks form what are known ae the 'concrete teeﬁh'. The
concrete teeth provide the remaining interaction through
bond between the concrete and steel reinforcement, before
either the 'comblike structure' fails or it transforms into
an arch. During this transformation, considerable change
takes place in the magnitude of bond stress and slip.

The variation ih bond stress and slip in the vicinity
of a flexural crack was investigated by Evans and Robinson(l)
in 1954. They feund that the magnitude of bond stress as
well as slip were considerably higher at the cracks than be-

(28) in 1968 carried out similar

tween the cracks. Nilson
investigations analytically.

In the analysis carried out by the author, the pre-
dominant assumption is that there is an infinite number of
cracks in the potential zone of flexurai crecking. This is
in contradiction with the fact (because then there would be
no tooth formation),_yet the variations of bond stress and
slip obtained being the Influence Lines, are quite informa-

tive and yield values of bond stress as well as slip at any

point where a crack has already been formed.
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6.1 Bond Stress
| Considering the horizontal equilibrium of a concrete

tooth, Fig. 6.3, the following can be written.

¥+o, .nmd .nAx =Y + AF
b

or
: where n = no. of the bars
[s] =-_].'....A_F.‘. ‘
b 7dn AX 1rd2
n . = Ag
or
s = 25 aF
b d Ax

or in the differential form
s d4dF
%@ & , 6.1

and the equilibrium equation 2.5 pertaining to any composite
section can be rewritten as:

= 1 - -
F=g M -M, -M]

differentiating w.y.t.x and re-substitution gives

ar 1 ffy oM Ml L a 6.2
dx A dax dx dx *
Therefore from Eq. 6.1 and 6.2 0, can be written as:
oomts 1 | f, oM Ml a 6.3
% = 4 Z ax  ~ dx ax .

Now for case of conventional working stress theory

for reinforced concrete, the beam is uncracked and no slip
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is permitted, i.e. %% = 0 (because Z is constant), and for

a particular section

g g
> a3 =0+ Eq. 6.3 reduces to

6.4

which is the classical expression for bond stress widely used

in reinforced concrete design.

6.2 Slip
From 2g. 2.2a and Eq. 2.16 we can write
2 —
L° EI a
Y= e - T 6.3
m EAIEI (3)
Since according to Eq. 2.6, g = %§ , therefore
Eq. 6.5 can be re-written as
, =L EL__ 1 l{v_iM_s-iM_s_},,Fdz 6.6

Knowing the forces, and geometry of a cracked section
in a beam, Eqgs. 6.3 and 6.5 can be used to determine bond

stress and slip respectively for any magnitude of %.

6.3 Numerical Examples

TwO cases are considered, oné for two symmetrically
placed point loads 29.25" from each end, and the other for
uniformly dis:ributed loading over the entire span. All the
other data pertainihg to these examples is the same as for

the "Typical Beam" of Chapter II~except that the value of
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% assumed here is 5. The maximum moment on the beam is equal
to one times the design moment. Egs. 6.3 and 6.5 were used ‘to
compute the bond stress and slip respectively along. the length
of the cracked beam at intervals of %-inch.' These values are
plotted in Fig. 6.4 and 6.5.

The left half of these figures show the plots for
bond stress and on the right half is the variation of slip.
It is interesting to note that the bond stress as well as
the slipé are considerably higher in the shear span than in
the portion between two point loads in the cracked region
of the beam. This is because of the applied shear. At the
load point, slip changes its direction, consequently re-
versing the sign of the bond stress, and at the mid span
slip as well as bond is zero. This is what could be
expected for the case of beam loaded symmétrically about its
mid span. .

In case 2, i.e. the beam carrying uniformly distri-
buted loading, however, the form of the bond stress and slip
curves are similar to case 1, except that there is no change
in the direction of the bond stress, This is because, for
uniformly distributed loading, slips are directed towards
the ends of the beam.

It can also be observed from Fig. 6.4 and 6.5, that
in the uncracked portion of the beam, slip variation is not
significant. In case 1, Fig. 6.4, maximum slip occurs under

the load point with a magnitude of more than .01". The
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bond stress corresponding to this slip is approximately

250 psi. The maximum bond stress is, however, at the point
where cracking starts and its value is approximately 900 psi.
In case 2, Fig. 6.5, maximum slip occurs just after the
point where cracking starts. The magnitude of this slip

is 0.005" and the value of the corresponding bond is approxi-

mately 900 psi.



CHAPTER VII

SHEAR AND PRINCIPAIL STRAINS

11 Since the diagonal cracking is often regarded as
being caused by the combined stresses and strains, it was
therefore of interest to study the distribution of the
shear strain at different sections along the length of a
cracked beam, in order to investigate the magnitude and
direction of the principal strains.

Two methods were considered, both primarily based
upon the equilibrium of the horizontal forces, and these

are discussed in the following.

7.2 Method I

Ts2:1 In this approach the equilibrium conditions were
applied to an uncracked portion between any two sections of
a cracked beam. Fig. 7.1la shows such a portion between
sections 1-1 and 2-2. The strains at any levels Yy and Yoy

can be given by

I (’_‘_1_1_3’_;)
Yy cty By

S
Y, ct, Ry

where ny and n, are the positions of the neutral axis in the

7.1

m
]

respective cross-sections.
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7.2.2 Shear Stress

143

The ur.cracked portion between sections 1-1 and 2-2

of Fig; 7.la can be partitioned into a number of trapizoidal

laminas, by dividing each of the two sections into equal

number of parts.

any lamina, determined from

body above that base level,
I Tl |
12 b.Ax

where

F

, € + ¢
ct1 yl
1 2
2 € + €

4 ct2 Y
2 2

b is the width of the beam,
stress over the base of the

the vertical shear at depth

The average shear stress at the base of

the equilibrium of the free-

would be

7.2
Ylec
yzbEc
and T12 is the average shear
free body of Fig. 7.la. = is

Xy
y from the top of the beam and

is equal in nmagnitude to Ty, Fig. 7.1lc.

7.2.3 Shear Force

The t.otal amount of

shear, S, carried by the section

at x distance from left hand support, as per Fig. 7.lc is

given by

7.3



144

] ' Y1+y
where Cd = —— and T = Ty9 at y ———— , see

Fig. 7.1la.

7.2.4 Shear Strain
Similarly the shear strain at any level where Ty
is known, wou.ld be

vhere G = wT vV

and v is the Poisson's ratio, its value for concrete is
taken to be 0.16.
7.2.5 Principal Strains

, € + €
If Y1 Y2 is considered approximately equal

€x = 2

to the flexural strain at any section, distance x from the
left.hand support, ey, the corresponding strain in the
transverse direction, would then be equal to - VE . The

. magnitude and the direction of the principal strains at a
point:distance, x, from the left hand-support and y below

the top fibre of concrete in a beam can be written as

max €. + € €. = € _13\2 2
| Tty <_>5_2___z) +(I§x) 7.5
€ . '
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and

a=%tanl<-—-——’i¥—) N 7.6

7.2.6 The distribution of shear straih, the magnitude and
direction of the principal strain at various levels, and the
total shear cerried by the concrete section were comphted
at x = 15", 25", 35" and 45". The values of % = 5 and

Ax = 0.1" were taken in these computations pertaining to the
*Typical Beam" of Chapter II. The results of these compu-
tations were plotted and are gi#en in Fig. 7.2.

The amount of shear carriéd by the uncracked beam
varies from section to section. At x = 15", a section
where the concirete was about to crack, 95% of the shear was
carried by the concrete itself. At x = 25", before the
point load in the shear sban about 14.6% and at x = 35",
between the load points where there is no shear due to thé
applied loads, only 3.4% of the total shear is carried by
the uncracked concrete. l

Mofeover, the magnitudes of/the principal tensile
strains, in the uncracked part of the beam, did not exceed

the cracking strain, €y = 100 micro in/in.

7.3 Method II - Modified Broms' Method(l3)

7.3.1 Broms considered that between every two vertical

cracks, there wias an uncracked section. The computations
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based on this method will give the shear distribution be-
tweeh a crackzd and an uncraéked section, and an uncracked
and a cracked section as sho&n in Fig. 7.3a.

The portions of the beam between sections 1-1 to
3-3, weré partitioned into a number of rectangular lamina
of equal depth., The average shear stresses at the base of
any lamina, between sections 1l-1 and 2-2 and sections 2-2
and 3-3 were determined from the equilibrium of the free
bodies abové that base level, see Fig. 7.3b.

Thé other steps involved in these computations are

exactly the same as those of Methdd I.

7.3.2 The aistribution of shear strain, and the magnitude
"and direction of the principal strains at various levels of
the depth, were computed for % =5, v=0.16 and Ax = 0.1.
The results of these computations are shown in Fig. 7.3.

| The magnitude of the principal strains were éxt;emely
high and consequently the shear carried by the sections was

also found to be as high as 12 times the shear due to the

applied load.

7.4 Discussion

The basic drawback of Method I is that it only
determines the shear in the sections of the remaining un-
cracked portion of a beam, and its application to the case

of a comblike structure, fails to account for the shear

3
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carried'by the dowel action of the reinforcement and through
the interlock between the aggregate of the concrete teeth.

Investigations in this regard bv Acharya(ls) en-
visage more than 60% of the shear to be carried by the dowel |
action. Similarly; more recent findings of Fenwick and

Pauley(zg)

putAthe shear carried bf the aggregate interlock
and the uncracked section at 60% and Zb% of the total,
respectively.

In thez light of these_pbservations, a value of 14.6%
éhear carried by the uncracked concrete section at x = 25"
could be considered as a reasonable amount, with the
Vremainder to be carried by the aggregate interlock and dowel
action. | |

Broms' approach, on the other hand, gave an unrealis-
tically high vélue for the shear. The reason for this could
be the following drawbacks in his approach.

a) It is assumed that there is an uncracked section
between two cracked ones. Also, it was assumed earlier that
concrete could only take the tensile strains up to a certain

limiting value, ¢ __, beyond which it would crack. It can

cr
therefore be argued that the strains in the tensile zone of
the uncracked section should always be less than €or® " How-
ever the strains computed by the conventional methods

were more than e and still the section was conéidered to

be uncracked. Therefore, these conflicting assumptions are
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~objectionable and probably the unrealistic magnitudes of
the computed quantities are as a result of these assumptions.

b) Another drawback of this approach is that even
in the shear span, cracks were assumed to be vertical, how-
ever observations have shown evidence that generally such
cracks are inclined.

Because of the results (Figs. 7.3 and 7.4), both
approaches could be regarded as two extremes and the actual
situation may be a case of a secondary crack between every
two visible cracks. An analysis based upon this criteria
may reveal results closer to the facts.

Although both of the approaches considered above are
crude, they éertainly help to conclude the following:

l. In Broms' approach, which is an upper limit,
principal strains are higher than the cracking strain of
100 micro in/in, above the neutral axes. If this could be
established by a more correct solution then the principal
strains or stresses could be held responsible for the dia-
'génal cracking in the beam.

2. An analysis based on the assumption of a secon-
dary crack between two visible cracks, or an approach based
on the uncracked section of a cracked beam including the
shares of dowel agtion and aggregate interlock, may reveal
more reliable results.

Therefore, once a more realistic approach is
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established, it would then be possible to trace the paths
of diagonal cracks analytically and extend these investi-

gations to study the cause of such a failure.



CHAPTER VIII
DISCUSSION

Analytical studies have shown that cracking is influ-
enced by parameters, such as the interaction coefficient é,
the percentage of steel reinforcement, p, the intensity of
loading, A, and location of the point load. Since the bond-
slip modulus, k, was assumed to be constant during computa-
tion of the crack height, the variation in é reflected the
change in the geometry of the cross-section. It was found
that a decrease in % results in a higher crack height.
Crack profiles were studied for a wide range of values of ol
i.e. » to 0.5, Fig. 3.9. This range of % produced in general
a 40% increase in the height of the crack and 50% at the load
points. The height of the crack was always greatest at the
load point.

In case of an uncracked prismatic section, for a high
value of l, tension in the reinforcement varied from point to
point, whereas for a small value of % (= 0.5) in a beam with
reinforcement anchored at ends, tension was almost constant,
Fig. 2.6. Kani mentioned in his paper (7), "Due to lack of
bond, no interchange of forces exists between steel bars and
concrete,.except at bar ends. The tensile force, F, of the
reinforcing bar is constant from one end to the other. At

both ends some kind of anchorage is necessary, oeese."

It was also seen that the cracking pattern is

153
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affected by the location of the point loads, Fig. 3.14.
Under a constant moment, cracks were higher in the shear
span, for a reduced value of the shear span. On the other’
hand, cracks occurring between the two load points were
found to be higher in case of a larger shear span.

It was also established that an increase in the
intensity of the point loads significantly increased the
horizontal spread of the crack zone. It also increased the
crack heights, but at the load points this increase was not
as significant as in the shear span, see Figs. 3.14, 3.15
and 3.16.

It may be observed that the cracking patterns of the

test beams reported by Kani(7'12) (4)

and Leonhardt and Walther
generally indicate more increase in the horizontal spread of
cracking under increasing intensity of the point load than it
does to the heights of crack at the load point.

It was also found that the percentage of the steel
reinforcement has the greatest effect on the crack profiles.
Décreasé in the reinforcement results in an increase in the
horizontal spread of cracking zone as well as an increase in
the crack heights. For the case of % = 5, Fig. 3.12, decrease
in p from 3.0 to 0.5 resulted in an iﬁcrease in the height of
~crack from 4.35" to 7.10", i.e. 63.2% at the load points and

a horizontal spread of the crack zone from 53.4" to 61.2",

i.e. 14.6%. Regarding influence of p on the crack height,
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MacGregor and Walters(24)

concluding from their analytical
studies state, "In a region of pure flexure, the height of
flexural cracking is strongly influenced by the steel per-
centage p. For a low value of p the crack will extend a
considerable distance into the beam with no increase in load."

Krahl et al(l7) from their analytical studies con-
cluded, "In a region of pure moment, the addition of a small
amount of tensile reinforcement to a plain concrete beam
changes an unstable crack to a crack that is initially un-
stable, but then is stabilized. The addition of a large
amount of tensile reinforcement can stabilize the entire
range of crack development."

However, the approaches followed by MacGregor and
Walters and Krahl et al are different from the one considered
in this thesis, in the sense that they did not account for
the slip between the concrete and the steel reinforcement,
the conclusion drawn, as far as p is basically the same.

Treatment of the reinforced concrete beam as a com-
posite beam with incomplete interaction indicated that the
degree of interaction reduces as the point lbads are moved
towards the supports (Fig. 2.17), i.e. shear arm is reduced.
This breakdown of the interaction resulted in computed
influence lines for the maximum moment capacity essentially
similar in form to those obtained experimentally by Leonhardt

and Walther, and Kani (see Fig. 5.1, compare with Fig. 5.2,
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for % > 2.5). The computed capacity curves were based solely

on fiexural consideration and no account was taken of the
applied shear. Each curve consists of two parts, namely one
sloping down (analogous to portion VT in Fig. 5.2) in which

- the concrete strain governed the strength and the other which
is horizontal (analogous to portion TE in Fig. 5.2) in which
steel strain governs the strength of the beam. Between these
two parts, there is a transition point, T, at which both con-
crete and steel strains govern the strength simultaneously.

. (10)

Kani argued that the transition point, T, (Fig.

5.2) differentiates between two types of failure. Beams with
% ratio less than T fail by inclined cracking and those with
%_greater than T, only a flexural failure is possible.

It was found that the value of % affects the moment

carrying capacity of a reinforced concrete beam. For a given

1 .
value of u, a decrease in ¢ causes a decrease in Mmax on the

left hand side of the transition point and an increase in

Mmax on the right hand side of the transition point, Fig.

5.4. Decreése in % also results in a shift of the transition

point towards the mid span. Describing the influence of bond,

Leonhardt and Walther(4)

stated, "Therefore the quality of
the bond influences the failure load considerably more for
failure under shear (i.e. left of T) than for.bending (i.e.
right of T)." Kani(loz in discussing the influence of bond
for the beam tests reported by Leonhardt and Walther stated,
“the better the bond the lower the diagonal load-carrying

\
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capacity". "The beams with poor bond carried at least 31
percent more load than the corresponding beams with deformed
bars. The beams with poor bond reached their flexural
failure, while the beams with deformed bars stayed far be-
low their full flexural capacity." This, however, in our
analysis holds only for beams with u to the right of T.

The percentage of steel reinforcement has shown a
considerable influence on the moment carrying capacity. It
was found that increase in p has two effects, namely, an
increase in the moment carrying capacity of the beam and,
secondly, a shift of the transition point, T, towards the
midspan, Figs. 5.5a and 5.8a. 1It, however, reduces the
relative beam strength, Figs. 5.5b and 5.8b.

Kani established similar conclusions experimentally
(Fig. 5.6). He stated, "For those beams with a high per-

centage of reinforcement (p = 2.80 percent), the "valley of

M

diagonal failure" has a low point in the vicinity of H§E§E
; u

= 50 percent, whereas for those beams with a low percentage

Mtest
"3
the valley of diagonal failure" disappears, and "that the

of reinforcement (p = 0.50 percent with

= 100 percent),

amount of main reinforcement influences the location of the

trangition point,; Ty sesves "Varying the main reinforcement

from p = 2.80% to 1.88% and 0.80%, the test results pfoduced

-

locations of the transition point, T, at - 6.5; 6.0 and

3.5 respectively."
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From the computed results for p = 0.5 to 3.0, the

transition point, T, moved from u = 23" (i.e. 4= 3.28) to

d
u= 40" (i.e. % = 5.72) and the computed relative beam
: T
strength, MaX. reduced from 81% to 49%, Fig. 5.8b. In spite

M
u

of the fact that certain simplifying assumptions were made
for this analytic approach, the computed values are in reason-
able agreement with the experimental results. |

An attempt was made to study the distribution of
bond stress and the amount of slip occurring along the length
of a reinforced concrete beam. it was observed that bond
stress and slip are considerably higher in the cracked region
of a beam than in the uncracked one. The amount of slip
varied considerably within the cracked region. Interestingly
in case 1, (the beam with two symmetric point loads), reversal
of slip was indicated on éither side of the load point. The
maximum slip at design load was found to be more than .01
inches and took place at the load point. The minimum slip
occurred at the point where cracking started. The bond stress
was maximum.of 900 psi, Fig. 6.4.

In case 2 (the beam with uniformly distributed loading),
the maximum slip was 0.005 inches and took place at the
extremities of the cracking zone. The minimum slip took place
just before the point of maximum slip. Bond stress was highest
at the end of cracking zone and had a magnitude of 910 psi,

Fig. 6.5.
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The variation in the uncracked region of beams was
comparatively very small.

Shear studies carried out by the two methdds re-
vealed quite different results. Method 2, the modified
Broms' method gave unrealistically high magnitudes of the
total shear capacity. Method 1, indicated that 14.7% of the
total shear is carried by the remaining uncracked section at
X = 25", The remainder of the shear is presumably carried by
aggregate interlock and dowel action. The opinions of the
investigators vary regarding the share of the total shear
carried by the remaining uncracked concrete section in a

(24)

beam. MacGregor and Walters suggested that 11% of shear
is carried by the dowel action, 23% of the aggregate inter-
lock  and the rest (i.e. 66%) is carried by the uncracked

concrete. Fenwick and Pauley(zg)

put 60% of the shear as
carried by the aggregate interlock, 20% by the dowel action
and only 20% carried by the uncracked concrete section.

(16) assumes that as much as 60% of the shear is

Acharya
cérried.by the dowel action.

Therefore more rigorous analysis is required to
determine the share of shear carried by different actions in

a cracked beam. Such analysis hopefully will lead to further

insight into the problem of inclined cracking.



CHAPTER IX

SUMMARY AND SUGGESTIONS FOR FUTURE STUDIES

The reinforced concrete beam has been treated as a
‘composite bean with incomplete interaction. The interaction
coefficient,;%, percentage of steel reinforcement, p, in-
tensity of thz2 point load, A, and the location of the load
point, u, werz found to affect the extremities of the com-
puted flexural cracking zone. Decrease in the interaction
coefficient,;%, increased the height of flexural cracks.v It
did not, however, significantly affect the horizontal spread
of the cracked zone. Increase in the percentage of steel
reinforcement, p, on the other hand, decreased the height as
well as horizontal spread of the cracked zone for a given
load. With a percentage of steel of 0.5, the influence of
bond as manifested by interaction coefficient, é, caused an
increase of 15% in the crack height for % = o to 5. With a
percentage of steel of 3, the crack height showed an increase
of 53.6% fo; the same rangé of %, Fig. 3.13.

| - Increase in the intensity of the point load, for a
given value of é, produced proportionately higher crack
heights in the shear span, than it did between the load points.
It, however; significantly increased the horizontal spread of

the flexural cracking zone, Figs. 3.15 to 3,17.
The shape of the flexural crack profile was also
influenced by the location of the load points. With a smaller
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value of the shear span, u, érack heights in the shear span
were greater than the crack heights between the load points
whereas for larger shear Spans‘the_crack heights between
the point loads were greater than those in the shear span,
.Fig. 3.14.

| Influence lines for strains at the load points in-
dicated that a decrease in the interaction coefficient, %,
affects the concrete top fibre strain, €,q ¢ MOTe than the

average steel strain, €__, Fig. 4.4, whereas an increase in

sm
the steel pefcentage, p, has more effect on the steel strain,
€sm’ than on the concrete fibre strain, €at’ Fig. 4.5.

' The computed influence lines for’the moment carrying
'capacity were similar to the curves for relative beam
strengths obtained experimentally by Kani. The transition
point, T, divided the computed curves into two parts, one in
which the concrete strain governed the strength (to the left
of the transition point, T, i.e. for shorter shear spans) and
the other in which steel governed (to the right of T, i.e.
larger shear spans) the strength of the beam, Fig. 5.1. A
decrease in tne interaction coefficient, é, produced a harked
reduction in the moment carrying capacity for a value of the
shear span, u, to the left of the transition point, T, and
increased the moment capaciﬁy slightly for a value of the

shear span, u, to the right of T. Decrease in %.shifted

the transition point towards the mid span, Fig. 5.4.
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With the same percentage of steel (p = 1.1%) and at

17.5" (i.=. % = 2.5), the moment carrying capacity for

Q= ¢

= 0.5 was found to be only 72.5% of the case where é =5

and at the same location for the "Typical Beam". The

= 5 and

Q=

transition po:nt was at u = 10.5" and 35.0" for
0.5 respectively, Figs. 5.1 and 5.7.

Increase in the percentage of steel, p, had two
effects, it increaéed the moment carrying capacity of the
beam and it shifted the tranéition point towards the mid-
span. It alsc decreased the ratio of the computed flexural

capacity, M

max. ' to the computed ultimate strength, Mu' of

the beam with complete interaction, Figs. 5.5a and b and
5.8a and b.
For i = 0.5, in the case of the "Typical Beam", an

C
increase of p, from 0.5 to 3.0 resulted in a shift of the

M
transition poiat from 23" to 35" and a decrease in EE§§~
_ 7 "
from 81% to 49% at u = 17.5" (i.e. coincident with % = 2.5).

The shear distribution computed by Method II, indicated
that 14.7% of {he total shear was carried by the uncracked
condrete section at x = 25", i,e. in the shear span. The
remaining external shear is prdbably carfiedvby aggregate
interlock and dowel action.

Method II yielded unrealistically high values of both

shear stress ard total vertical shear capacity.



Suggestions for further work are as follows:

1. - The influence -of curvilinear bond-slip charac-
teristic on the flexural cracking should be investigated.
‘The method of analysis should be extended to include the
study of incremental loading.

2. An arch model should be investigated for
determination of the moment capacity of a beam for smaller
values of shear span (i.e. % < 2.5), in order to establish
a complete theoretical explanation of the reinforced con-
crete beam.

3. Tﬁe distribution of shear stress and strain
across the depth of a cracked reinforced concrete beam
should be investigated more rigorously, particularly in
regard to the magnitude of vertical shear carried by

aggregate interlock and dowel action.
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This will yield a better assessm=nt of the principal

stresses and strains, which may further lead to an insight

into the problem of the diagonal cracking.



CHAPTER X

CONCLUSIONS

The conclusions from this study are as follows:

l. The degree of interaction for a composite beam,
with symmetrical two point loads is a minimum at the load
points. This results in the increase of strains at the top

fibre of concrete, a decrease in the average steel

Eet?
strain, €sm’ at the load point compared with the usual trans-
formed section.

2. The computed flexural crack profile is similar
in form to those observed in tests showing an increase in
the height of the flexural crack at the load points due to
the fact that there is a lower degree of interaction at the
load points.

3. End anchorage of the reinforcement in a fein-
forced concrete beam, improves the degree of intefaction near
the supports, compared with one without anchorage. This
improvement, however, did not lead to any increase in the
moment capacity.

4. In the case of an uncracked, prismatic beam with
end anchorages, for a very low value of the interaction co-
é, i.e.‘poor bond, the tensile force, F, in the
reinforcement is constant throughout its length.

efficient,

5. The interaction coefficient, decreases with

1
'C‘l
an increase in the width, depth or the percentage of steel
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in a reinforced concrete beam and it increases with an
increase in the length of the beam.

6. When flexural cracking takes place, due to re-
duction in the depth of the uncracked concrete section, the
%, increases. This

results in an increase in the degree of interaction as

value of the interaction coefficient,

cracking progresses upwards.

7. During flexural cracking, the direct compressive
force in the concrete, F, increases, due to a reduction in
Mc' the moment carried by the reﬁaining concrete.

8. The influence.lines for %T at the load point,
(in a simple beam with symmetrical two point loads and end
slip permitted) indicates a decrease in the degree of inter-
action as the shear span is reduced.

Restriction of thé end slip by means of end'anchor—
ages results in an improvement of the degree of interaction
near the support which is particularly significant in case
of smaller values of the shear span. 1In spite of this
improvement, no significant difference in the flexural
capacity is obtained.

9. Loss of interaction, percentage of steel rein-
forcement, intensity of the point load and location of the
load point have an effect on the computed extremities of
flexural cracking. Loss of interaction'increaseé £he crack
height. It does not significantly affect the longitudinal

spread of the crack zone. Increase in the percentaée of
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steel decreases the crack height as well as the horizontal
spread of the crack zone.

Increase in the intensity of the point loads haé
more significant effect on the spreading of the crack zone
than of increasing the crack height. The length of the
shear span as a whole affects the shape of the crack profile.
1
c’
produces a marked reduction in the moment carrying capacity

10. A decrease in the interaction coefficient,

for a value of the shear span, u, to the left of the transi-
tion point, T, and increases the moment capacity slightly

for a value of the shear span, u, to the right of the transi-
tion point. Decrease in % also results in a shift of the
transition point towards the mid span.

11. Increase in the percentage of steel has two

effects, it increases the moment carrying capacity and it
shifts the transition point towards the midspan. Increase

in p, however, reduces the ratio of Mo to M.

ax.

12. Method I, for determination of the shear
distribution shows that 14.7% of the total shear is carried
by the uncracked concrete section. Method II - Modified

Broms' Method gives unrealistically high values of the

shear carried by a cracked section of beam.
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APPENDIX I

Composite Theory

Al.l General

The type of structure considered in this analysis is
shown in Fig. Al.l. It is a T-beam consisting of a beam and
a slab tied together by means of a shear connection which
transfers horizontal shear from one element to the other.
The degree of composite action depends on the effectiveness
of the shear connection in preventing the relative movement
between the beam and the slab. If no movement or slip is
permitted (i.e. the shear connectors are perfectly rigid),
the interaction would be complete and the resisting moment
of the composite section would be based upon the trénsformed
sectional properties. On the other hand, if the beam and
the slab are not interconnected (i.e. no shear connection),
slip would take place freely and there would be no inter-
action and the resisting moment in this case would be sum
of the resistiﬁg moments of each element.

Generally the shear connectors in a composite section
are not perfectly rigid and so there‘is a relative movement
or slip between the beam and the slab. Such cases are re-
ferred to as the composite sections with incomplete inter-

action.
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Al.2 Assumptions

The principal assumptions made in this analysis of
a composite section with incomplete interaction are as
follows:

1) The shear connection between the beam and slab
is assumed to be continuous along the length of the beam,
i.e. connectors are of equal capacities and are equally

spaced; then

n|~

= constant Al.l

where k is so-called modulus of connector and /

s is the spacing between connectors.
(If connectors are not equally spaced this assumption will
be satisfied only if the capacities of connectors vary
directly as their spacings.)

2) The amount of slip permitted by the shear

connection is directly proportional to the load transmitted:

y =3 Al.2

where AQ is the load transmitted by a connector, (i.e. the

load-slip curve for a connector be a straight line, the

slope of which is called the modulus, k, of the connector).
3) The distribution of strains throughout the

depth of the beam and the slab is linear.

4) The-beam and the slab are assumed to deflect

equal amounts at all points along their lengths.
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The total load on a shear connector, Q, is also
expressed as:
Q =4g.s
where g is the load transmitted per unit length of the beamn.

An alternate form of Eq. Al.2, therefore, is

y = q.§ | | Al.2a

Al.3 Basic Relationships

The rate of change of slip along the length of a
beam is equal to the difference between the strain in the
slab, and the strain in the beam at the level at which slip
occﬁrs, i.e. the interface. Using notation of Fig. Al.lc,

this may be written as:

- £ Al.3

where dy is the change in slip over a length, dx, of the
beam.-

When a composite beam is subjected to a positive
bending moment, the shear connectors exert forces which pro-
duce compression in the siab and tension in the beam. These
forces act at location of the shear connector, but on each
elementvmay be replaced by a couple and a force acting at
the centroid of the element. The couples can be added |
algebraically to the moments that would exist in the beam
and slab to obtain the total resistance of the composite

section; that is,
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M, = M_ + M + F.Z Al.4

Eq. Al.4 is also called an Equilibrium Equation for a section
of the composite beam.
Since the distribution of the strains, throughout the

depth has been assumed linear, then

e . r WS
b~ A T EI Al.5a
'vBp  Eplp
C
- _ F S s
S S

where Eb anc. Es are moduli of elasticity of the bean,
Ib anc. Is are the moments of inertia, and
b anc. As are the cross-sectional areas of the beam
and the slab respéctively.
The lcad per unit length, q, (or = %) which is
transmitted between the slab and the beam is egual to the

chapge in the interaction force, F, along the length of the

beam. This may be written as

daF

and from Eq. Al.2a
dy . 8 gig : Al.7
| dx k dx.2 '

Substitution of Eq. Al.3 and Al.5 in Eq. Al.7

yields:
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aiigwe /1 o3 ) . <\Mbcb 5 Mscs) g
k dx2 EbAb EsAs Eblb EsIs

Since the beam and the slab deflect alike at all
points, that is, they have equal curvatures, the moments

MS and Mb are related as follows:

Ms = Mb ) Ms + e
ESIs EbIb ESIs + EbIb
or by substitution of Eq. Al.4, Eqg. Al.9 becomes
MS % Mb 4 Mt - F.Z e
EsIs EbIb LEI
where IEI = EsIS + EbIb
Substituting from Eq. Al.1l0 into Al.8 yields
§_Cf_E_=F[1 - +Zz]-ﬂ
k dx2 EbAb ESAS IEI LETI
which may be written as
a’r k ET % 2
_?”F.E.—— ="'-§.-2—E-—I'.Mt Al.1l1l
dx EAZEI

where the following expressions are introduced for convenience:

EI = IEI + EA . & and
W e
EA EsAs EbAb

Eg. Al.1ll is a second order differential equation in
F. The solution of Eg. Al.ll, can be obtained by expressing

the external moment Mt in terms of the distance x of the
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section from the left hand support.

Solutions of a beam with symmetrical two point load,
and with different end conditions have been included in
Chapter II of this thesis.

The interaction force, F, is related to the effec-
tiveness of the shear connection. Denoting the value of

interaction force, for complete interaction by F', the

degree of interaction "a" can be written as
o F
o -—-f;'-r . Al.12

Al.5 Strains
Strains in the beam may be determined for any degree

of interaction from the equation

y
Bl - W

€, = Al.1l3a
b~ EA T ET
and in the slab from the equation
My
A s’s
By ™ S0 S ! Al.13b
s”s s”s

where yb and yg are the distances from the centroid of the
beam or of the slab to the point at which a strain is desired.
In both cases, y is positive when measured downwards. The
force F in these equations'may be computed from the solution

of Eq. Al.1ll and moment M

b and Mg may be obtained as

E I
Mo BB (M

t
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EI
S's

s = ﬁ Lt F.Z) Al.14b

(Mt

Thus the equations for strains may be written in the

form

s=—s-aﬁ——-j‘-z<sz-lwm Al.15a

b i b 5T b EbAb t

‘ | EI s's

where

Sp ® TEI 55

Y
P
By = LEI

The strains for complete interaction eé and eé can
be obtained by putting a = 1 in above equations for € and

EZS.
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APPENDIX II

List of Symbols

A Effective cross-sectional area of the concrete

(sg. inches)

A Cross-sectional area of the steel reinforcement (sq.
inches)

b Width of the beam (inches)

% Interaction coefficient, a dimensionless number

cd,cd, ,Cd Effective depths of the concrete in a beam cross-

e

section (inches)

Total crack height (inches)

Cch

Ch Increment in the crack height (inches)

CS,CS Distances from the centroids of concrete and steel,
respectively, to the psuedo interface (inches)

d Effective depth of the section of a reinforced con-
crete beam (inches)

E ,Es Moduli of>elasticity of concrete and steel respec-
tively (1lb./sqg.inch)

LEA ECAC *+ ESAS

i LEA

EA (E A -Egh)

LEI EI + ETX

e s’s
ET IEI + EA.z°
F,Fl,Fé,F3,F' Horizontal direct forces acting at the cen-

troids of the concrete and the steel (lbs.)



H,H'

jd

q.,9
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Shear modulus of concrete

Half of the uncracked depth of the concrete section
(inches) |

Second moments of area of the concrete and steel
respectively (inches4)

Depth of lever arm in the conventional reinforced
concrete theory (inches)

Bond-slip modulus in case of a reinforced concrete
beam (lb./in.)

Span length of the beam (inches)

Internal moments carried by the concrete and steel
respectively (lb.-in.)

Moment due to external loads on the beam (lb.-in.)

Maximum experimental moment capacity of a beam (lb.-in.)

Maximum computed moment capacity of a beam (lb.-in.) for
incomplete interaction.

Computed ultimate moment capacity of a beam (lb.-in.) for

complete interaction.

E
C

Number of reinforcing bars in a reinforced concrete section.
Depths of the neutral axes at sections 1 and 2

respectively (inches)
Percentage of reinforcement in a reinforced concrete

section

Horizontal shear per unit length (1lb./in.)
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‘Total shear at a connector in a composite section

(1lbs.)

Spacing between studs in a composite section (inches)

Total horizontal shear carried by a concrete section
(1lbs.)

Distance from the support to the nearest load point
i.e. shear span (inches)

Shear arm ratio

Vertical shear due to external loading (1lbs.)

Magnitude of the external point load (1lbs.)

Distance from the left hand support to any section
within the span (inches)

Depth from the top fibre of the concrete to any level
within the depth of the section (inches)

Distance between the centroidal axis of the uncracked
concrete area and the neutral axis of the trans-
formed area of the cracked reinforced concrete beam
(inches)

Distance between the centroidal axes of the uncracked
concrete section and the steel reinforcement (inches)

Degree of interaction between the concrete and the
reinforcement in a reinforced concrete beam

Slip between the concrete and the steel (micro inches)

Shear strain (micro in./in.)
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Ax Distance between two closely spaced cross-sections
of a beam (inches)

€ep’Cet Strains at the bottom and top concrete fibres re-
spectively (micro in./in.)

B The critical (cracking) tensile strain of the con-
crete (micro in./in.)

€ Strain due to the distortion of the concrete 'teeth'
in a cracked beam (micro in./in.) ‘

Bl ' Cam?Ect Strains at the bottomf mid height and top fibres
respectively of the steel (micro in./in.)

Ect ,sém Maximum pérmissible compressive strain at the

max max

top fibre of concrete and maximum permissible
average tensile strain in the steel reinforcement,
respectively (micro in./in.)

Emin®Cuax Minimum and maximum principal strains, respectively

(micro in./in.)

Cx,

ey Flexural longitudinél and transverse strains respec-
tively (micro in./in.)

syl,eyz Flexural strains at levels Y, and Y, respectively
(micro in./in.)

0 Angle of inclination of the direction of principal
_strains (degrees)

A Ratio of the applied load to one times the design

" load

H Degree of the end fixity



Poisson's ratio for the concrete (assumed as 0.16)
Bond stress (lb./sg.in.)
Horizontal shear stress (lb./sq. inch)

Vertical shear stress = le
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TYPICAL COMPUTER  PROGRAM

———— —— — — s S i s B o ot s O ol et W e e S ey i B il

| THE PROGRAM COMPUTES THE FLEXURAL CRACK PROFILES IN A REINFO-
RCED CONCRETE BEAM - TREATING IT AS A COMPOSITE BEAM WITH
INCOMPLETE INTERACTIONS

DESCRIPTION

ALL DIMENSIONS ARE THOSE OF THE TYPICAL BEAM EXCEPT THE

VALUE OF

NOTATIONS

AL
ACsAS
B
BETAL(I)
cC(I
CcCl
CCH
CD

CH

™

ED
ECHES
EPCR

EPCBLEPCT
EPSBSEPST

EPSM
FII)sF1

H

0

™

PHI

U

WT

X
XICsXIS

Z
DECK

THE INTERACTION COEFFICIENT HAS BEEN VARIED

LENGTH OF THE BEAM

AREAS OF THE CONCRETE AND STEEL RESPECTIVELY

WIDTH OF THE BEAM

DEGREE OF INTERACTION

INTERACTION COEFFICIENT - TERMINAL VALUE AS OUTPUT
INTERACTION COEFFICIENT - INITIAL VALUE AS QUTPUT
TOTAL CRACK HEIGHT ‘ ~

IUNCRACKED DEPTH OF CONCRETE

INCREMENT IN THE CRACK HEIGHT

MOMENT CARRIED BY THE UNCRACKED CONCRETE SECTION
EFFECTIVE DEPTH OF THE CONCRETE

MODULI OF ELASTICITY OF CONCRETE AND STEEL RESPECTIVELY

PERMISSIBLE C(RACKING STRAIN

STRAINS AT BOTTOM AND TOP FIBRES OF CONCRETE RESPECTIVE
STRAINS AT BOTTOM AND TOP FIBRES OF STEEL RESPECTIVELY

STRAIN AT THE MID-HEIGHT OF STEEL REINFORCEMENT
INTERACTION FORCE FOR INCOMPLETE AND COMPLETE INTER=-

-ACTIONS RESPECTIVELY

HALF THE DEPTH OF UNCRACKED SECTION OF CONCRETE
TOTAL DEPTH OF CONCRETE

EXTERNAL MOMENT

DIAMETER OF THE RuINFORCING ‘BAR

LENGTH OF THE SHEAR SPAN

EXTERNAL LOAD

DISTANCE OF ANY SECTION FROM LsHeSe SUPPORT

MOMENTS OF INERTIA OF THE CONCRETE AND STEE RESPECT-
IVELY :
INTERNAL LEVER ARM

DIMENSION CCH1U)sBETACLIU) sGCAMMALLIO)sF(10)

U=29.25
X=4425
PI=22e/ 7
AL=90C.0

WRITE(691UIX



10 FORMAT(10X»s42i4 *¥¥%x%%x%( THE CURRENT SECTION IS AT X
111H ) #*¥X%¥%x%%t/) .

40
45

50

B=440

TD=8,50

TDOM=TC*#045

ED=7.0
WT=36200,/29.225
IF(XeGTWU) GO TO 5
TM=WT %X

GO TO 6

TM=36200.

AS=0.31 .
XIS=(AS*AS)/ (PI1*4.)
PHI=SQRT(4e*A5/P1)
CS=045%PHI
ES=3u00U000U
EC=350U000Ue0
EPCR=0,0001
CC(1)=100.
cc{2)=50.
CC(3)=20.
CCl4)=10.

CC(5)=50

CC(6)=2

CC(7)=1.

DO 200 I=1s7

CCI=CC(I)

CCH=0.0

H=TD/2.

AC=B#2 +%H

XIC=B*(2¢%H)%%3/124
EABAR=(ES®*AS#ZC*#AC) / (EC*ACHES*AS)
EISIG=ES*XIS+EC*XIC

Z=ED-H

EIBAR=EISIG+EABAR®Z %%
THETA=EIBAR/ ( ZABAR®EISIG)
GAMMA(1)=CC(I)/THETA
AA=PI#SQRT(CC(I))

BB=COSH(AA* (Us5-U/AL))
DD=COSH(AA%Ue5)
EE=SINH(AA%X/AL)
GG=SINH(AA*U/AL)
HH=COSH(AA%{Ue5-X/AL))
IF{XeGToU) GO TO 40
BETA(I)=1eu—(AL%*BB*EE)/ (AA%X¥DD)
GO TO 45 '
BETA(I)=1e—{A_%GG*HH)/ (AAXU*DD)
Fl=(EA3AR/EIBAR)#*Z%*THM
F(I)=F1*BETA(I)
CM=(TM=F({I)%Z)*(EC*¥XIC)/EISIG

. GO TO 60

AC=B%2 ¢ ¥H

XIC=B%*(2e%H)%%3/12

EABAR= (ES*AS*ZC*¥AC) /(ECHACHESH*AS)
EISIG=ES*XIS+EC*XIC

Z=ED~-H -
EIBAR=EISIG+EABAR®Z*%2
THETA=EIBAR/ (EABAR*EISIG)

185

sFGelo
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CC(I)=GAMMA(T 1 %THETA
AA=PI*SQRT(CC 1))
BB=COSH(AA%*¥(UL5-U/AL))

' DD=COSH(AA¥U.5)

55
56

60

90
100
200

150

EE=SINH(AA#X/AL)

GG=SINH{AA®U/AL)
HH=COSH (AA* (L. 5=X/AL))

IF(X,GTeU) GO TO 55
BETA(I)=1e0-(AL%*BB*EE)/ (AAXX*DD)

GO TO 56 '
BETA({I)=1e—(AL%#GG*HH) / (AAXU%DD)
F1=(EABAR/EIBAR) *Z%TM

F{I)=F1%*BETA(])
CM=(TM=F (1) %2 )% (EC*¥XIC)/EISIG
SCB=H/E1SIG

SCT=-H/EISIG

EPCB=( (SCB~- BETA(x)*(EABAR/EIBAR)*Z*(SCB*Z+1 /(ACXEC) ) ) %TM)
EPCT={ (SCT-BETA(I)*(EABAR/EIBAR)*Z* (SCT*Z+1./(AC*EC) ) )*TM)
EPSB=F(I1)/(ASH*ES)+(TM=F(1)%¥Z)/EISIG*CS
EPST=F(I)/(ASHES)—(TM~F(I)*Z)/EISIG%CS
EPSM=Ue 5% (EPST+EPSB)

CH=2+ U%H* (EPCB-EPCR)/ (EPCB-EPCT)

CD=2. ¥*H

CCH=CCH+CH

H=H=~0 « 5%CH

IF(EPCBeLESEPCR) GO TO 90
IF(ABS(EPCB-EPCR)eLTe2eE~-6) GO TO 90
IF (HetToVev) GO TO 200

IF(HeGT«TDM) GO TO 20
IF(EPCB«GT«EPCR) GO TO 50
WRITE(éslbU)CCH’CDgEPCBQEPCT9EPstEPST9EPSM F(I)oCM9CC(I)’CCI
FORMAT(ZF8e398E13¢53F7¢2)

CONTINUE

X=X+140

IF(XeLEe&45eU) GO TO 4

STOP

END

CD TOT 0154
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APPENDIX IV

Computed Flexural Crack Profiles

The flexural crack profiles discussed here, are
based on the method of computation, described in the thesis.
Therefore, for details on the procedure of calculations, the

reader may refer to Chapter III.

Ad4.1l PértiallxﬁFixed End Beam

Figs. A4.1 to A4.3 show the computed crack profiles
for the "Typical Beam" with varying degrees of fixity at the
ends. >The beam in Fig. A4.1 is subjected to one times the
design load, and in Fig. A4.2 and A4.3 to 1.5 and 2.0 times
the‘design 1lcad respectively. The value of % has been taken
= 5», and that the steel reinforcement is only in the tensile

zones of the beam. The degree of end fixity, u, is given by

u = 5'42 a4.1
F

where M_ is the momeht due to the complete fixity at the ends.
Mo.is the moment at the ends for a given value of ﬁ. The
degrees of fixity considered are'O, 0.2, 0.4, 0.6, 0.8 and
1.0. One times the design load is approximately 1240 1lbs.
(i.e. 36200/23.25). The distribution of the bending along
the length of a beam for varying degrees of fixity, u, is

shown quaiitatively in Fig. A4.0 below.
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- Fig. a4.1 shows the crack profiles for u = 0.0, 0.2,

0.4 and 0.6 ir. the region of éositive moment and no profile
in £he'region of negative moment. For u = 1.0, the crack
profile is only obtained in the zone of negative moment. It
may also be poted, however, that there is no crack profile
for u = 0.8, because the strain in ﬁhe tensile zones never
exceeds the value of €ore

Fig. A4.2 shows crack profiles for u = 0.0, 0.2 and
0.4 in the zone of positive moment, for p = 0.6 and 0.8 in
the zone of positive as well as negative moment.

Similarly, Fig. A4.3 shows the crack profiles for
p = 0.0, 0.2 and 0.4 in the zone of positi&e bendihg moment;
and for u = 0.6, 0.8 and 1.0, both in the zone of negative
~as well as positive bending moments. |
A comparison of Fig. A4.2 to A4.3 indicates that

increase in the load intensity as well as the degree of end

fixity, both have significant influence on the cracking
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pattern. Increase in the load intensity‘results in higher
cracks as well as longitudinal spread. Increase in the
degree of end fixity results in increased cracking in the
zone of negative bending and suppression of the spread of
the crack profile in the zone of positive bending moment.
It may also be noticed that for the same intensity
of the point loads, the height of crack in the viéinity of
the point load inéreases with incréase innthe degree of end
fixity. This is due to the fact that-%T distribution for
the fixed end beam is lower than the %T distribution for a
simply supported beam (see Fig. 2.14). However, the effect
of degree of end fixity is opposite in the zone of negative
bending. The height of cracks in the vicinity of the sup-
ports reduce with an increase in the degrée of fixity. This

'is because the terminal %T predominates over the degree of

end fixity.

Ad4.2 Continucous Beams

‘The continuous beam considered here has two equal
spans, each with a length of 90 inches. The cross—-sectional
dimensions are same és of the "Typical Beam" of Chapter II,
except Ehe reinforcement is assumed to exist only in the
tensile zones of the beam. Two cases of loading are consi-
dered, one with central point load at each span and the
other, of uniformly distributed over the entire length of

- the beam. The intensity of the loading is taken such that
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the magnitude of the maximum applied (i.e. at the central
support) is 1.5 times the design load. The computed crack

profiles for varying values of the interaction coefficient,

%} are shown in Figs. A4.4 and A4.5.



