THE EFFECT OF IMPACT DAMPER IN FORCED VIBRATIONS
THE EFFECT OF IMPACT DAMPER
IN FORCED VIBRATIONS

By

MAHENDRA D. SHAH, B. E.

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree
Master of Engineering
McMaster University
March, 1968
TITLE: Composite Action in the Reinforced Concrete Beam

AUTHOR: A. Shakoor Uppal, B.Sc.Eng. (Panjab University)

SUPERVISOR: Dr. H. Robinson

NUMBER OF PAGES: xii, 195

SCOPE AND CONTENTS:
This thesis involves the treatment of the reinforced concrete beam as a composite beam with incomplete interaction. Influence of the loss of interaction and other parameters on the flexural cracking, and the moment capacity of the remaining uncracked portion of the reinforced concrete beam is studied analytically.
TITLE: The Effect of Impact Damper in Forced Vibrations

AUTHOR: Mahendra D. Shah, B.E. (Electrical), B.E. (Mechanical)
M.S. University of Baroda, India

SUPERVISOR: Dr. M. A. Dokainish

NUMBER OF PAGES:

SCOPE AND CONTENTS:

An extensive experimental study is made of the general behaviour of the impact dampers, using a mechanical model. Coefficient of restitution, Mass-ratio, and Gap-factor are the parameters which were changed during the course of investigation and their effects were observed.

The noise level has been eliminated successfully. Dampers containing two particles in a single container are compared with single particle dampers and the latter are found to be relatively efficient. Results with the mass particle oscillating in the container filled with fluid indicate that friction forces acting on the mass-particle are detrimental to the efficiency of the damper.
ACKNOWLEDGEMENTS

The author wishes to express his gratitude to Dr. D. G. Huber, Chairman of Mechanical Engineering Department, whose advice, encouragement, and guidance were invaluable in the early stage of the work.

The author is deeply grateful to his supervisor, Dr. M. A. Dokainish, for the suggestion of the topic and constant guidance in all phases of this work.

The author is further indebted to the Department of Mechanical Engineering for the award of the scholarship and assistantship and to the National Research Council for support of this work under Grant No. A-2726.

Thanks are due to Mr. W. K. McDermid, of Polymer Corporation Limited, Sarnia, for the supply of rubber sheetings required for experimental purpose.

Thanks are due to Mrs. Anne Woodrow and Mrs. Carol Hedlund for their skillful typing.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 History</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Objectives</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>STEADY STATE SOLUTION</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.1 Two-Particle Impact Damper</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.2 Single-Particle Impact Damper</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2.3 Effect of Various Parameters</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>EXPERIMENTAL STUDIES</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>3.1 Experimental Technique</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>3.2 Two-Particle Impact Damper</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>3.3 Single-Particle Impact Damper</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>3.4 Single-Particle System with Fluid</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>DISCUSSION OF RESULTS</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>CONCLUSIONS</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>APPENDICES</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>AI Theoretical Solution for the System with Fluid</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>AII Typical Computer Results</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>B Method and Calculations for Coefficient of Restitution</td>
<td>84</td>
</tr>
</tbody>
</table>
C General Experimental Data and
List of the Equipment 88

D Computer Programmes 90

PROGRAMME:

1. Steady-State Solution for Two-Particle Impact Damper;
 Effect of Various Parameters. 91

2. Steady-State Solution for Two-Particle Impact Damper;
 Frequency Response. 93

3. Impact Damper with Fluid 95

REFERENCES: 98
NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Displacement Amplitude of the Primary System in the Absence of the Impact Damper.</td>
</tr>
<tr>
<td>A_R</td>
<td>Displacement Amplitude of the Primary System in the Absence of the Impact Damper, at Resonance.</td>
</tr>
<tr>
<td>C</td>
<td>Inherent Equivalent Viscous Damping of the System.</td>
</tr>
<tr>
<td>C_{cr}</td>
<td>Critical Damping, $2\sqrt{KM}$</td>
</tr>
<tr>
<td>d</td>
<td>Clearance in Which the Particle is Free to Oscillate.</td>
</tr>
<tr>
<td>e</td>
<td>Coefficient of Restitution Between Container and m_1, $i = 1, 2$.</td>
</tr>
<tr>
<td>e_3</td>
<td>Coefficient of Restitution Between m_1 and m_2.</td>
</tr>
<tr>
<td>F_0</td>
<td>Maximum Force of Excitation.</td>
</tr>
<tr>
<td>K</td>
<td>Spring Constant.</td>
</tr>
<tr>
<td>M</td>
<td>Mass of the Primary Vibrating System.</td>
</tr>
<tr>
<td>m</td>
<td>Mass of Particle.</td>
</tr>
<tr>
<td>m'</td>
<td>Added Mass Due to Fluid.</td>
</tr>
<tr>
<td>m_1</td>
<td>Mass of Each Particle in Two-Particle System.</td>
</tr>
<tr>
<td>m_2</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>Frequency Ratio, $\frac{\omega}{\omega_0}$</td>
</tr>
<tr>
<td>t</td>
<td>Time.</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Absolute Velocities of Particles, as Defined in Figure 2.2.</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Displacement of M.</td>
</tr>
<tr>
<td>X_0</td>
<td>Static Deflection, F_0/K.</td>
</tr>
<tr>
<td>X_R</td>
<td>Displacement of M, at Resonance.</td>
</tr>
<tr>
<td>Y_1</td>
<td>Displacement of Particle.</td>
</tr>
</tbody>
</table>
Y Relative Displacement of Particle with Respect to M.
Z_i Displacement of Particle m_i, i = 1,2.
α Phase Angle Between Exciting Force and the First Impact.
σ Critical Damping Ratio, C/C_cr.
μ Mass Ratio, m/M = \frac{m_1 + m_2}{M}
μ_1 Mass Ratio, \frac{m}{m_1 + m_1}
μ_2 Mass Ratio, \frac{m_1}{M} = \frac{m_2}{M}
δ Gap Ratio, d/A
ρ Density of Fluid in lbf. Sec.^2/ft.^4
ψ Phase Angle (due to damping).
τ Phase Angle, τ = α - ψ
ω Natural Frequency, \sqrt{K/M}
Ω Forcing Frequency.
I INTRODUCTION

I.1 HISTORY

The Impact Vibration Absorber, or Acceleration Damper, reduces the vibration of a mechanical system through momentum transfer by collision and conversion of mechanical energy into heat. A typical unit, Fig. 1.1, consists of a mass particle constrained to oscillate in a container which is fixed to the primary vibrating system. The effectiveness of the damper depends not only on the dissipation of energy in impacts but also on how the relative motion of the mass particle is tuned with respect to that of the container.

Paget [1]* was a pioneer in making experimental study of this damper. The free vibration of a simple harmonic oscillator attached with an impact vibration absorber was first investigated by Lieber and Jensen [2]. They considered only perfectly plastic impacts between the small mass and its container, and predicted theoretically that the maximum energy will be dissipated in a cycle when the container length is \(\pi \) times the amplitude of response. Results from experiments with lead spheres verified this theory.

Grubin [3] solved the viscously damped forced vibration problem by assuming that the impacts occurred twice per cycle at

* Numbers in square brackets designate reference at the end of the thesis.
equal time intervals and by summing the effects of many impacts. It was shown that these assumptions result in two possible solutions but it could not be shown which one of these prevails, without solving the problem by a more exact but long numerical impact to impact method.

By introducing an unknown phase angle into the applied harmonic force and assuming steady state of two equispaced impacts per cycle and neglecting the inherent damping in the system, Arnold [4] analysed the problem. His experimental evidence did not agree with the theory.

A considerably simpler method for deriving the solution for two impacts per cycle motion, which requires only the consideration of two successive impacts, was suggested by Warburton [5].

Masri [6] has reported the stability analysis for two impacts per cycle solution and experiments with mechanical model and electric-analog simulation. Application of the stability criteria developed by him is numerically extensive because of the complicated functional dependence of the stability boundaries on the system's parameters. A very simple stability criterion for these solutions, neglecting the inherent damping in the system, was developed by Egle [10], and was used to determine the dependance of the stability boundaries on the parameters of the system.
The effectiveness of the impact damper on nonlinear systems is to be found in a recent work by Jha [18].

On the experimental side, the feasibility of using impact damping to reduce vibrations of such diverse systems as ship hulls, cantilever beams, single degree of freedom systems, and turbine buckets was investigated by McGoldrick [13], Lieber and Tripp [14], Sankey [15], and Duckwald [16]. Eastabrook and Plunkett [17] made an analytical study of impact damping in turbine buckets. Kaper [9] has reported the use of the impact damper in reducing vibrations of the reflectors of television receiving antennae.

All the previous investigators have reported excessive noise level while the impact damper is in operation.

1.2 OBJECTIVES

The objectives of the present study are to:

1. Extend and complement the work of other investigators in this field.

2. Study experimentally the general response of the damper to a wide range of its parameters including effect of the coefficient of restitution.

3. Investigate the behaviour of the two-particle impact damper.

4. Make the system usable in practice by reducing the noise level.

5. Study the effect of fluid resistance on the motion of the mass particle.
The objectives were accomplished by conducting experimental studies of two-particle and single-particle impact dampers. Coefficient of restitution \(e \); Mass-ratio \(\mu \); and Gap-factor \(d/x_0 \); are the three parameters which were changed during the course of the experiments and their effects were observed. Coefficient of restitution was changed by using different rubber pads at the container ends where the collision occurs. The effect of friction was observed by allowing the mass particle to oscillate in a container filled with fluid.

The theoretical analysis and computed results are given in Chapter 2. The experimental procedure and apparatus are first described in Chapter 3 and then the results are plotted. The discussion is given in Chapter 4 and conclusions drawn from this investigation are stated in Chapter 5.
2 STEADY STATE SOLUTION

2.1 TWO-PARTICLE IMPACT DAMPER

The idealized model considered is shown in Figure 2.1. The equation of motion of primary mass \(M \), between impacts, following the method suggested by Warburton [5], becomes

\[
M \ddot{x} + C \dot{x} + Kx = F_0 \sin(\omega t + \alpha)
\]

(1)

and its complete solution is

\[
x = e^{-\sigma t} \left[B_1 \sin(\eta \omega t) + B_2 \cos(\eta \omega t) \right] + A \sin(\omega t + \tau)
\]

(2)

where

\[
\sigma = \frac{c}{c_{cr}} ; \quad c_{cr} = 2 \sqrt{\frac{K}{M}}
\]

\[
\omega = \sqrt{\frac{K}{M}} \quad ; \quad \eta = \sqrt{1 - \sigma^2}
\]

\[
r = \frac{\Omega}{\omega}
\]

\[
A = \frac{F_0 / k}{\sqrt{(1 - r^2)^2 + (2 \sigma r)^2}}
\]

\[
\tau = \alpha - \psi
\]

\[
\psi = \tan^{-1} \frac{2 \sigma r}{1 - r^2}
\]

It is assumed that the two particles \(m_1 \) and \(m_2 \) are identical and that each particle has a single degree of freedom. Furthermore, it is assumed that, if there is a collision between, let us say, \(m_1 \) and the right hand side of the container at time \(t = 0 \), then the
Fig. 2.1 Model Of System
Fig. 2.2 PHASE PLANE REPRESENTATION OF PERIODIC 4 IMPACTS/CYCLE MOTION
next impact will occur at \(t = \frac{\pi}{\Omega} \) between the two particles. At
\(\Omega t = \Pi \), there will be a collision between \(m_2 \) and the left hand side
of the container; and at \(\Omega t = \Pi + \infty \), the two particles will
collide again. The phase plane representation of the corresponding
periodic motion is shown in Figure 2.2.

The duration of impact is very small compared to the
natural period of the primary system, hence it is reasonable to assume
that at \(t = 0^+ \) the positions of \(M \), \(m_1 \) and \(m_2 \) remain the same while
their respective absolute velocities are discontinuously changing.

To summarize, the system should satisfy the following
conditions:

<table>
<thead>
<tr>
<th>(t)</th>
<th>(X)</th>
<th>(\dot{X})</th>
<th>(Z_1)</th>
<th>(\dot{Z}_1)</th>
<th>(Z_2)</th>
<th>(\dot{Z}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-</td>
<td>(x_b)</td>
<td>(\dot{x}_b)</td>
<td>(\frac{d}{2} + x_b)</td>
<td>(W)</td>
<td>(Z_4)</td>
<td>-V</td>
</tr>
<tr>
<td>0+</td>
<td>(x_b)</td>
<td>(\dot{x}_a)</td>
<td>(\frac{d}{2} + x_b)</td>
<td>(U)</td>
<td>(Z_4)</td>
<td>-V</td>
</tr>
<tr>
<td>(\frac{\kappa_3}{\Theta})</td>
<td></td>
<td></td>
<td>(Z_3)</td>
<td>(U)</td>
<td>(Z_3)</td>
<td>-V</td>
</tr>
<tr>
<td>(\frac{\kappa_4}{\Theta})</td>
<td></td>
<td></td>
<td>(Z_3)</td>
<td>(V)</td>
<td>(Z_3)</td>
<td>-W</td>
</tr>
<tr>
<td>(\frac{\Pi}{\Theta})</td>
<td>(-x_b)</td>
<td>(-\dot{x}_b)</td>
<td>(-Z_4)</td>
<td>(V)</td>
<td>(-\frac{d}{2} - x_b)</td>
<td>-W</td>
</tr>
<tr>
<td>(\frac{\Pi}{\Theta})</td>
<td>(-x_b)</td>
<td>(-\dot{x}_a)</td>
<td>(-Z_4)</td>
<td>(V)</td>
<td>(-\frac{d}{2} - x_b)</td>
<td>-U</td>
</tr>
</tbody>
</table>
Since the motion of the system during impact must satisfy the momentum equation, then

\[M \dot{X}_- + m_i \dot{Z}_{i-} = M \dot{X}_+ + m_i \dot{Z}_{i+} \quad (4) \]

where \(i = 1 \) or \(2 \) depending on the impinging mass particle, and for impact between the two mass particles,

\[m_1 \dot{Z}_{1-} + m_2 \dot{Z}_{2-} = m_1 \dot{Z}_{1+} + m_2 \dot{Z}_{2+} \quad (5) \]

or \(\dot{Z}_{1-} + \dot{Z}_{2-} = \dot{Z}_{1+} + \dot{Z}_{2+} \)

and from the definition of coefficient of restitution,

\[\dot{x}_+ - \dot{Z}_{i+} = -e(\dot{x}_- - \dot{Z}_{i-}) \quad (6) \]

similarly for impact between two masses

\[\dot{Z}_{1+} - \dot{Z}_{2+} = -e_3(\dot{Z}_{1-} - \dot{Z}_{2-}) \quad (7) \]

In steady state motion absolute speed of the particle is constant between impacts and can be given by,

\[U = \{Z_3 - \left(\frac{d}{Z} + X_b \right) \} \frac{\Omega}{\varepsilon_0} \quad (8) \]

\[-V = \{Z_3 - Z_4 \} \frac{\Omega}{\alpha_0} \quad (9) \]

\[V = \{-Z_4 - Z_3 \} \frac{\Omega}{\pi - \alpha_0} \quad (10) \]
\[W = \left\{ \left(\frac{d}{2} + X_b \right) + Z_3 \right\} \frac{\Omega}{\pi - \alpha_0} \] \hspace{1cm} (11)

From equations (5), (7) and using conditions in (3),

\[U - V = V - W \] \hspace{1cm} (12)
\[V + W = - e_3 (U + V) \] \hspace{1cm} (13)

substituting \(U, V, W \) in equation (13) from equations (8), (9), (10) and (11) we get,

\[\left\{ \left(\frac{d}{2} + X_b \right) - Z_4 \right\} \frac{\Omega}{\mu - \alpha_o} = - e_3 \left\{ - \left(\frac{d}{2} + X_b \right) + Z_4 \right\} \frac{\Omega}{\alpha_0} \]

or

\[\frac{1}{\mu - \alpha_o} = \frac{e_3}{\alpha_0} \]

\[\alpha_0 (1 + e_3) = \mu e_3 \]

\[\alpha_0 = \frac{\mu e_3}{1 + e_3} \] \hspace{1cm} (14)

Using equations (12) and (13)

\[V = \frac{1 - e_3}{3 + e_3} U = C_1 U \] \hspace{1cm} (15)
\[W = - \frac{1 + 3 e_3}{3 + e_3} U = C_2 U \] \hspace{1cm} (16)

where

\[C_1 = \frac{1 - e_3}{3 + e_3} \]
\[C_2 = - \frac{1 + 3 e_3}{3 + e_3} \]
Substituting \(W \) and \(U \) from equations (8), (11) into equation (16)

\[
\left(\frac{d}{2} + X_b \right) + Z_3 \frac{\omega}{\nu - \omega_0} = C_2 \left(Z_3 - \left(\frac{d}{2} + X_b \right) \right) \frac{\omega}{\omega_0}
\]

or

\[
\left(\frac{d}{2} + X_b \right) + Z_3 = \frac{C_2}{e_3} \left\{ \left(\frac{d}{2} + X_b \right) + Z_3 \right\}
\]

or

\[
\left(\frac{d}{2} + X_b \right) \left(1 + \frac{C_2}{e_3} \right) = Z_3 \left(\frac{C_2}{e_3} - 1 \right)
\]

\[
Z_3 = \left(\frac{d}{2} + X_b \right) \left(\frac{C_2 + e_3}{C_2 - e_3} \right)
\]

\[
Z_3 = \left(\frac{d}{2} + X_b \right) \left(\frac{1 - e_3^2}{1 + 6e_3 + e_3^2} \right) \tag{17}
\]

From equations (8) and (17),

\[
U = \left(\frac{d}{2} + X_b \right) \left\{ -\frac{2e_3 (3+e_3)}{1 + 6e_3 + e_3^2} \right\} \frac{\omega}{\omega_0}
\]

\[
U = -\left(\frac{d}{2} + X_b \right) \left\{ \frac{2e_3 (3+e_3)}{2e_3 (3+e_3) + 1 - e_3^2} \right\} \frac{\omega}{\omega_0}
\]

\[
U = -\left(\frac{d}{2} + X_b \right) \left\{ \frac{1}{1 + \frac{(1+e_3)(1-e_3)}{2e_3 (3+e_3)}} \right\} \frac{\omega}{\omega_0} \tag{17-a}
\]
Using equations (14), (15) and (17-a);

\[U = -\left(\frac{d}{2} + X_b \right) \left(\frac{l}{1 + \frac{\pi c_1}{2 \alpha_0}} \right) \Omega, \]

\[U = -\left(\frac{d}{2} + X_b \right) \left(\frac{l}{\alpha_0 + \frac{\pi c_1}{2}} \right) \Omega, \] \hspace{1cm} (18)

simplifying equations (4), (6) to obtain relations for primary mass velocities before and after impact explicitly in terms of mass-particle velocities,

\[\dot{x}_l = \frac{(e - \mu_2) \dot{z}_{l-} + (1 + \mu_2) \dot{z}_{l+}}{1 + \epsilon}, \] \hspace{1cm} (19)

\[\dot{x}_t = \frac{e(1 + \mu_2) \dot{z}_{l-} + (1 - \mu_2 e) \dot{z}_{l+}}{1 + \epsilon}, \] \hspace{1cm} (20)

where \(\mu_2 = \frac{m_2}{M} = \frac{m_2}{M} \) and \(\mu = \frac{m_1 + m_2}{M} \).

Now from equations (16), (18), (19) and (3) at \(t = 0 \),

\[\dot{x}_b = \left(\frac{e - \mu_2}{1 + \epsilon} \right) W + \left(\frac{1 + \mu_2}{1 + \epsilon} \right) U, \]

\[\dot{x}_b = \left(K_1 c_2 + K_2 \right) U, \]

where \(K_1 = \frac{e - \mu_2}{1 + \epsilon} \).
and \(K_2 = \frac{1 + \mu_2}{1 + e} \)

\[
\begin{align*}
\dot{X}_b &= -\left(\frac{d}{2} + X_b \right) \left\{ \frac{\Omega (K_1 C_2 + K_2)}{\alpha_0 + \frac{\pi C_1}{2}} \right\} \\
X_b + \left\{ \frac{\alpha_0 + \frac{\pi C_1}{2}}{\Omega (K_1 C_2 + K_2)} \right\} \dot{X}_b &= -\frac{d}{2}, \quad (21)
\end{align*}
\]

 similarily from equations (16), (18), (20) and (3) at \(t = 0 \),

\[
\begin{align*}
X_b + \left\{ \frac{\alpha_0 + \frac{\pi C_1}{2}}{\Omega (K_3 C_2 + K_4)} \right\} \dot{X}_a &= -\frac{d}{2}, \quad (22)
\end{align*}
\]

where

\[
K_3 = \frac{e (1 + \mu_2)}{1 + e}
\]

and

\[
K_4 = \frac{1 - \mu_0 e}{1 + e}
\]

An expression describing the velocity of M can be obtained by differentiating equation (2) with respect to \(t \).

Thus

\[
\dot{x} = -\delta \omega e^{-\delta \omega t} \left(B_1 \sin \eta \omega t + B_2 \cos \eta \omega t \right) + \delta \omega e^{-\delta \omega t} \left(B_1 \eta \omega \cos \eta \omega t - B_2 \eta \omega \sin \eta \omega t \right) + A\Omega \cos(\alpha t + \tau) \quad (23)
\]

From equations (2), (23) and using conditions (3),

\[
X(0^+) = X_b = B_2 + A\sin(\tau) \quad (24)
\]
\[X\{\frac{\eta}{R}\}_- = -X_b = e^{\frac{SR}{R}} (B_1 \sin \frac{\eta R}{R} + B_2 \cos \frac{\eta R}{R}) - A \sin (\tau) \]
(25)

\[\dot{X}(0^+ = X_d = -\delta \omega B_2 + B_2 \eta \omega + A \Omega \cos (\tau) \]
(26)

\[\dot{X}\{\frac{\eta}{R}\}_- = -\dot{X}_b = -\delta \omega e^{\frac{SR}{R}} [B_1 \sin \frac{\eta R}{R} + B_2 \cos \frac{\eta R}{R}] + \eta \omega e^{\frac{SR}{R}} [B_1 \cos \frac{\eta R}{R} - B_2 \sin \frac{\eta R}{R}] - A \Omega \cos (\tau) \]
(27)

From equations (24), (27), (25), (26), (21), and (22),

\[\begin{align*}
X_b - B_2 - SA &= 0 \\
\dot{X}_b + \Theta_1 B_1 + \Theta_2 B_2 - CA &= 0 \\
X_b + h_1 B_1 + h_2 B_2 - SA &= 0 \\
\dot{X}_d - \eta \omega B_1 + \delta \omega B_2 - CA &= 0 \\
X_b + C_3 \dot{X}_b &= -\frac{d}{2} \\
X_b + C_4 \dot{X}_d &= -\frac{d}{2}
\end{align*} \]
(28)

where
\[S = \sin (\tau) \]; \quad C = \Omega \cos (\tau) \]

\[h_1 = e^{\frac{SR}{R}} \sin \frac{\eta R}{R} \]; \quad h_2 = e^{\frac{SR}{R}} \cos \frac{\eta R}{R} \]

\[C_3 = \left\{ \frac{\alpha_c + \frac{\Pi c_1}{2}}{\Omega (k_1 c_2 + k_2)} \right\} \]

\[C_4 = \left\{ \frac{\alpha_c + \frac{\Pi c_1}{2}}{\Omega (k_3 c_2 + k_4)} \right\} \]
\[\theta_1 = \omega e^{-\frac{\delta H}{n}} \left[-\delta \sin \frac{\eta H}{\gamma} + \eta \cos \frac{\eta H}{\gamma}\right]\]

\[\theta_2 = \omega e^{-\frac{\delta H}{n}} \left[-\delta \cos \frac{\eta H}{\gamma} - \eta \sin \frac{\eta H}{\gamma}\right]\]

Equation (28) can be put in the form of matrix,

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & -1 & -S \\
0 & 0 & 1 & -m & \delta & -C \\
1 & 0 & 0 & h_1 & h_2 & -S \\
0 & 1 & 0 & \theta_1 & \theta_2 & -C \\
1 & \cos \theta & 0 & 0 & 0 & 0 \\
1 & 0 & \cos \theta & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
X_b \\
\dot{X}_b \\
X_d \\
B_1 \\
B_2 \\
A
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
-d/2 \\
-d/2
\end{bmatrix}
\]

(29)

From these equations, \(A\), \(B_1\), and \(B_2\) in terms of the known parameters can be obtained. Thus

\[A = \frac{N(A)}{\Delta}\]

(30)

\[B_1 = \frac{N(B_1)}{\Delta}\]

(31)

\[B_2 = \frac{N(B_2)}{\Delta}\]

(32)
where \(N(A) = \frac{d}{2} \left[h_1(c_3 \theta_2 - c_4 \omega d) - (c_3 \theta_1 + \eta c_4 \omega)(1+h_2) \right] \)

\(N(B_1) = \frac{d}{2} (1+h_2) (c_4 - c_3) c \)

\(N(B_2) = \frac{d}{2} h_1 (c_3 - c_4) c \)

\(\Delta = h_1 [C (c_4 - c_3) - (S + cc_4) c_3 \theta_2 + (S + cc_3) \omega c_4] \)

\(+(1+h_2) [C (S + cc_4) c_3 \theta_1 + (S + cc_3) \eta \omega c_4] \)

Equation (30) can be put in the form

\[2 \sin \tau + H \cos \tau = -J \quad \ldots \ldots (33) \], where \(J = \frac{d}{A} \) and

\[H = 2 \omega \frac{\left[\left(C_4 - C_3 \right) + C_3 C_4 (c \omega - \theta_2) \right] h_1 + \left[C_3 C_4 (\theta_1 + \eta \omega) \right] (1 + h_2) \} {\left(d C_4 \omega - c_3 \theta_2 \right) h_1 + \left[C_3 \theta_1 + \eta c_4 \omega \right] (1 + h_2) } \]

Solution of equation (31) for \(\tau \) results in:

\[\sin \tau = \frac{-2J \pm H \sqrt{H^2 + 4 - J^2} }{H^2 + 4} \]

\[\cos \tau = \frac{-JH \mp 2 \sqrt{H^2 + 4 - J^2} }{H^2 + 4} \]

\[\tau = \tan^{-1} \left[\frac{-2J \pm H \sqrt{H^2 + 4 - J^2} }{-JH \mp 2 \sqrt{H^2 + 4 - J^2} } \right] \quad (34) \]

In order to have real values for \(\sin \tau \) and \(\cos \tau \), the clearance \(d \) cannot be arbitrarily large; it should satisfy the relation
The physical interpretation of this restriction is that, for \(d \) exceeding this limit, the actual system will not have a four-impacts per cycle steady state motion.

With the value of \(T \) determined from equation (34), \(B_1 \) and \(B_2 \) can be found from equations (31) and (32), and with the help of equation (2) the motion of the primary mass is determined.

Without introducing damping, the behaviour of damper at resonance \((r=1) \) can be determined by putting \(r = 1 + \epsilon \) and letting \(\epsilon \to 0 \). It is found that

\[
\frac{x}{x_0} = \left(\frac{\pi^2}{8\mu_2} - \frac{1}{2} \frac{d}{x_0} \right) \cos \omega t - \frac{(1 - \epsilon - 2\mu_2\epsilon)\pi}{4\mu_2(1 + \epsilon)} \sin \omega t \frac{-1\omega t \sin \omega t}{2} \quad (35)
\]

where \(x_0 = F_0/K \)

Differentiating equation (35) with respect to \(\omega t \), it can be shown that the maximum displacement occurs when \(\omega t = \pi/2 \), if

\[
\frac{d}{x_0} = 1 + \frac{\pi^2}{4\mu_2} \quad (36)
\]

From equation (35), the maximum displacement occurs at \(\omega t = \pi/2 \),

\[
\left| \frac{x}{x_0} \right|_{\text{max.}} = \frac{\pi(1 + \mu_2)(1 - \epsilon)}{4\mu_2(1 + \epsilon)} \quad (37)
\]
2.2 SINGLE-PARTICLE IMPACT DAMPER

Following the method of Warburton [5], complete solution of the system is derived by Masri [6]. The equation of motion of the primary mass M between two impacts is

$$M\ddot{X} + C\dot{X} + KX = F_0 \sin(\omega t + \phi)$$

and its complete solution is

$$X = e^{\sigma t} \left[B_1 \sin\eta t + B_2 \cos\eta t \right] + A \sin(\omega t + T) \quad (38)$$

where σ, ω, η, A and r are as defined before and B_1 and B_2 are unknown constants.

Evaluating equation (38) and its derivative at $\omega t = 0$ and π, and by using the definition of coefficient of restitution and the momentum equation, we obtain six relationships involving the six unknowns $x_a, \dot{x}_b, \ddot{x}_a, B_1, B_2$ and T. The value of B_1, B_2 and T in the present case will be given by equations (31), (32), and (34) if their constants c_3 and c_4 are replaced by the new constants σ_1 and σ_2 respectively

where

$$\sigma_1 = \frac{\pi}{2\omega} \frac{1+e}{1-e+2\mu}$$

$$\sigma_2 = \frac{\pi}{2\omega} \frac{1+e}{1-e-2\mu}$$

and $\mu = \frac{m}{M}$
2.3 EFFECT OF VARIOUS PARAMETERS

Using the steady state solutions of section 2.1 and 2.2, to study the effect of various parameters, computation was done with the aid of digital computer IBM 7040, at the computing center of the McMaster University. The computer programmes written in FORTRAN IV language are given in Appendix D.

The two sets of sign appearing in equation (34) correspond to two distinct steady state solutions. The upper sign is used in computation, as suggested by previous investigators, since only a part of the curve with upper signs results in a stable solution.

A check is introduced in the computer programmes which ensured that \(f^2 \leq H^2 + 4 \) and hence real values for \(T \). Violation of above condition resulted in a note stating that the gap \(d \) is too big and the motion is unsteady.

In Figure 2.3, two-particle and single-particle systems are compared for various mass-ratios. It is seen that single-particle system is twice as effective as that of two-particle system.

In Figures 2.4 and 2.10, effect of coefficient of restitution is plotted. In both the systems it is seen that increase in value of \(e \) increases the efficiency of the damper, provided that the proper gap \(d \) is selected. Even with the value of \(e = 0 \) for both single-particle and two-particle systems the maximum reduction in amplitude is 59% and 42% respectively. It is observed that for
COMPARISON OF TWO-PARTICLE AND SINGLE-PARTICLE SYSTEMS

EFFECT OF MASS-RATIO

\[
\frac{X^2}{X_0} = 0.0166
\]
\[
\delta = 0.045
\]
\[
e = 0.7
\]
\[
e_3 = 0.8
\]
\[
r = 1.0
\]

Fig. 2.3
EFFECT OF COEFFICIENT OF RESTITUTION

TWO-PARTICLE SYSTEM [Theoretical]

\[X_0 = 0.0166 \]
\[\delta = 0.045 \]
\[\mu = 0.112 \]
\[e_3 = 0.8 \]
\[r = 1.0 \]
EFFECT OF MASS-RATIO

TWO-PARTICLE SYSTEM

[Theoretical]

\[\frac{x^2}{A_f} \]

\[\mu = 0.0448 \]
\[\mu = 0.0848 \]
\[\mu = 0.129 \]
\[\mu = 0.176 \]

\(\chi_0 = 0.0203 \)
\(\epsilon = 0.4 \)
\(\epsilon_3 = 0.8 \)
\(r = 1.0 \)

Fig. 2.5
RESPONSE CURVES FOR VARIOUS GAP FACTORS
TWO PARTICLE SYSTEM

\[\begin{align*}
\chi_0 &= 0.0203 \\
\delta &= 0.045 \\
e &= 0.7 \\
e_3 &= 0.8 \\
\mu &= 1.12
\end{align*} \]

Fig. 2.6
RESPONSE CURVES FOR VARIOUS MASS RATIOS

TWO PARTICLE SYSTEM [Theoretical]

\[
\begin{align*}
\chi_0 &= 0.203 \\
\delta &= 0.045 \\
e &= 0.7 \\
e_3 &= 0.3 \\
d \frac{1}{\chi_0} &= 27.58
\end{align*}
\]

![Graph showing response curves for various mass ratios](image)

Fig. 2.7
(a) \(d/x_0 = 6.0241 \)

(b) \(d/x_0 = 18.0723 \)

Fig. 2.8 (a), (b).
Figure 2.8 (a),(b),(c),(d) Phase Plane Diagrams for Primary Mass Motion [Theoretical]
EFFECT OF MASS-RATIO

SINGLE-PARTICLE SYSTEM [Theoretical]

\[\frac{X_n}{A_n} \]

\[\mu = 0.25 \]
\[\mu = 0.112 \]
\[\mu = 0.0647 \]
\[\mu = 0.0474 \]

\(X_0 = 0.0166 \)
\(\delta = 0.045 \)
\(e = 0.7 \)
\(r = 1.0 \)

Fig. 2.9
SINGLE PARTICLE SYSTEM [Theoretical]

\[e = 0.7 \]
SINGLE PARTICLE SYSTEM [Theoretical]

\[\frac{x_m}{A_p \text{opt}} \]

\[\epsilon = 0.7 \]

Fig. 2.12
e=1, the curve is V shaped; as \(\epsilon \) decreases the curve becomes flat. It is worth noting that the efficiency of damper in this range of optimum performance - where the curves are flat - is not sensitive to the parameters of the damper, so that a small change in these parameters will not affect the performance of the damper in an appreciable manner.

Figures 2.5, 2.9 show the effect of mass-ratio on the effectiveness of impact damper for two particles and single particle systems, respectively.

Figures 2.6, 2.7 are response curves for various gap-factors and mass-ratios for two-particle system.

Figures 2.8 (a), (b), (c) and (d) show X-X phase plane diagrams computed, for two-particle system, for four points as marked in figure 2-3. For these four phase plane diagrams, gap is varied keeping all other parameters constant. It is noted that the change in gap changes the amplitude and the position of impacts. For the optimum gap factor the impacts occur near the peak velocity, causing the greatest possible dissipation of kinetic energy.

As the single-particle impact damper is found to be more effective, its computed results are summarized in Figures 2.11 and 2.12. The former curve shows the variation of the optimum gap-factor, at which maximum reduction of amplitude ratio is achieved, for various mass ratios. This shows that the optimum gap-factor decreases continuously with the increase of mass-ratio. The second curve shows the variation of minimum amplitude ratio, i.e. at optimum \(d/x \), for
various mass-ratios. This curve shows that the amplitude ratio decreases with the increase of the mass-ratio until a certain limit after which any more increase in μ is not advantageous.
3 EXPERIMENTAL STUDIES

3.1 EXPERIMENTAL TECHNIQUE

A schematic diagram of the mechanical model used and a photograph of actual structure are shown respectively in Figures 2.1 and 3.2 (a), (b) and (c).

Since the response of a single degree of freedom oscillator is not altered when the excitation is applied either to the base or directly to the mass, the former type of excitation was used in this case, as a matter of convenience.

The mass M is primarily a rectangular box with adjustable stops as its ends, that constrain the movement of the free mass particle M to oscillate within a certain clearance. The free mass particles used are hardened-steel balls, of the type normally used in ball bearings.

The base of the structure was excited by a vibration exciter. The electro-magnetic coil of the exciter was energized through an RC-generator and amplifier. The voltage and frequency supplied to the exciter could be controlled with the help of RC-generator.

The relative displacement of the primary mass, with respect to base, was measured with the help of a transducer which converts the variations of displacement into variations of capacitance. The transducer thus acts as an electrical reactance which varies in accordance
Fig. 3.2 (b). Front View of the Mechanical Model

Fig. 3.2 (c). Plan of the Container
with the phenomenon to be measured (displacement in our case). The fluctuating reactance of the transducer is connected in series with a fixed reactance of a tuning plug to form an electrical resonant circuit, the resonant frequency of which determines the operating frequency of an RF Oscillator. Thus change in physical quantity to be measured is converted to a frequency shift in the signal delivered by oscillator. The frequency modulated signal is fed to the reactance converter which in turn is converted to a d.c. voltage pulsating in accordance with the said signal. Output of reactance converter is connected to the d.c. coupled oscilloscope amplifier, which amplifies the pulsating d.c. voltages and its output terminals are connected to the Cathode-Ray-Tube. The output on the screen of oscilloscope was calibrated by giving a known displacement to the transducer. Appropriate adjustments were made on reactance converter to insure that it was operating in a linear region.

The velocity wave form for the primary mass was obtained by integrating the output of a piezoelectric accelerometer attached to the primary mass. The integration was accomplished by an integrating network and an operational amplifier.

A list of the equipment used is given in Appendix C.
3.2 TWO-PARTICLE IMPACT DAMPER

Figure 2.1 shows the mechanical model used to obtain experimental results on the impact vibration absorber. These experiments were motivated by the desire to investigate the various aspects and effectiveness of two-particle impact dampers and to compare their behaviour with those of equivalent single particle dampers.

The effects of various parameters of the impact damper, viz μ, $\frac{d}{x_0}$, and ϵ were investigated when the vibrating system was in a state of forced vibrations. Amplitudes of vibration of the system were measured on the screen of the oscilloscope for various excitation frequencies and the response curves of the system are plotted.

Figures 3.3, 3.4 are the two sets of response curves obtained by keeping the mass ratio μ constant for each set, and varying the gap-factor d/x_0. With the increase in damping the peak shifts to lower values of r. After optimum gap is reached there is a decrease in damping and peak is expected to shift towards higher values of r. The response curve for the vibrating system, without inserting the free mass, was also
RESPONSE CURVES WITH VARIOUS GAP-FACTORS

TWO-PARTICLE SYSTEM [Experimental]

$\mu = 0.0668$

$e = 0.442$

Fig. 3.3
RESPONSE CURVES WITH VARIOUS GAP FACTORS

TWO PARTICLE SYSTEM [Experimental]

\[\mu = 0.1294 \]
\[e = 0.442 \]

Fig. 3.4
obtained experimentally and is shown superimposed on the response curves with impact damper to demonstrate the effectiveness of the impact damper.

Similarly, Figures 3.5, 3.6 are the two sets of response curves obtained, while keeping d/x_0 constant for each set and varying μ.

At resonance, the ratio of amplitudes with the impact damper in and out of action, for various values of μ, are plotted versus the gap-factor d/x_0, in Figure 3.7. A curve shown in dotted line for single-particle system with $\mu = 0.0647$, is also shown superimposed in Figure 3.7.

By making the single-particle and two-particle systems equivalent, i.e. by using same d/x_0 and μ in both cases, a set of response curves are plotted as Figure 3.8, to compare the behaviour of the two systems in the frequency range.

In Figure 3.9 response curves for different values of coefficient of restitution, e, for constant μ and d/x_0 are shown. Figure 3.10 shows the effect of e on the amplitude of vibration, for complete range of d/x_0.

The coefficient of restitution was varied by using different rubber pads at the ends of the container where the mass particle collides. The method and calculations for coefficient of restitution is given in Appendix B.
RESPONSE CURVES WITH VARIOUS MASS RATIOS

TWO PARTICLE SYSTEM [Experimental]

\[\frac{d}{x_e} = 12.32 \]

\[e = 0.442 \]

Fig. 3.5
RESPONSE CURVES WITH VARIOUS MASS RATIOS

TWO PARTICLE SYSTEM [Experimental]

\[
\frac{d}{x_0} = 6.16 \\
e = 0.442
\]

Without Damper

\[
\mu = 0.0448 \\
0.0948 \\
0.1294 \\
0.1756
\]

Fig. 3.6
EFFECT OF MASS-RATIO

TWO-PARTICLE SYSTEM [Experimental]

\[e = 0.442 \]
\[r = 1.0 \]
\[\mu = 0.0448 \]
\[\mu = 0.0668 \]
\[\mu = 0.0948 \]
\[\mu = 0.1294 \]
\[\mu = 0.0647 \text{ Single-Particle System} \]

\[\mu = 0.1756 \]

GAP FACTOR \(\frac{d}{x_0} \)

AMPLITUDE RATIO

Fig. 3-7
COMPARISON OF TWO PARTICLE AND SINGLE PARTICLE SYSTEMS [Experimental]

\[\frac{d}{x_0} = 12.33 \]
\[e = 0.442 \]

Fig. 3.8
RESPONSE CURVES WITH VARIOUS COEFFICIENTS OF RESTITUTION

TWO PARTICLE SYSTEM [Experimental]

\[\mu = 0.1294 \]

\[\frac{d}{x_0} = 6.16 \]

Without Damper

\[e = 0.472 \]

\[e = 0.442 \]

\[e = 0.355 \]

Fig. 3.9
In case of two-particle impact damper, it is observed that, when steady state motion is established, the symmetric four impacts per cycle motion predominates and confirms the validity of assumption in theoretical analysis, as shown in phase plane diagram in Figure 2.2.
3.3 SINGLE-PARTICLE IMPACT DAMPER

These sets of experiments were motivated by the desire to investigate the possibility of reduction of noise level, reported by previous investigators, due to the impacts between hard surfaces. For this purpose different Butyl rubber sheetings, supplied by Polymer Corporation, were used as soft material at the ends of the container where the mass particle collides. The effect of wide range of various parameters, ViZ. \(\frac{d}{x_0} \), \(\mu \), and \(e \), were also investigated.

Figures 3.11, 3.12 are two sets of response curves, for the single-particle system, obtained by keeping \(\mu \) constant for each set and by varying \(\frac{d}{x_0} \). Similarly, response curves are plotted in Figures 3.13, 3.14 for constant \(\frac{d}{x_0} \) and varying \(\mu \) in each case.

Figure 3.15 is a summing up of results and the curves show the effect of varying the gap-factor on the amplitude ratio \(X_R/A_R \), for various mass ratios at resonance. An optimum gap-factor is observed in this set of curves for each \(\mu \). However, an optimum gap could not be reached for highest mass ratio \(\mu = 0.112 \), since the beating started earlier. This can be explained by the fact that the higher is the value of \(\mu \) more energy the free mass will require to travel through the specific gap.

Effect of difference values of \(e \), on amplitude ratio for the entire range of gap-factor is plotted in Figure 3.16.
RESPONSE CURVES WITH VARIOUS GAP-FACTORS

SINGLE-PARTICLE SYSTEM [Experimental]

$\mu = 0.0878$

$e = 0.442$

![Graph showing response curves with various gap-factors for a single-particle system. The graph plots amplitude ratio (x/A_r) against frequency ratio (r). Curves are labeled for different gap factors, with one curve showing data without a damper.](image-url)
RESPONSE CURVES WITH VARIOUS GAP-FACTORS

SINGLE PARTICLE SYSTEM [Experimental]

\(\kappa = 0.0334 \)

\(e = 0.442 \)

\(\frac{d}{X_0} = 6.16 \)

\(12.33 \)

\(18.5 \)

\(24.7 \)

\(27.8 \)

Fig. 3.12
RESPONSE CURVES WITH VARIOUS MASS-RATIOS

SINGLE PARTICLE SYSTEM [Experimental]

\[\frac{d}{x_0} = 6.16 \]
\[e = 0.442 \]

Without Damper

- \(\mu = 0.0474 \)
- 0.0647
- 0.0878
- 0.112

Fig. 3.13
RESPONSE CURVES WITH VARIOUS MASS-RATIOS

SINGLE PARTICLE SYSTEM [Experimental]

$\frac{d}{x_0} = 12.33$

e = 0.442

Without Damper

$\kappa = 0.0334$

0.0647

0.0878

0.112

Fig. 3.14
EFFECT OF COEFFICIENT OF RESTITUTION

SINGLE-PARTICLE SYSTEM [Experimental]

\[r = 1.0 \]

\[\mu = 0.0878 \]

Fig. 3.16
3.4 SINGLE PARTICLE SYSTEM WITH FLUID

This set of experiments was motivated by the desire to study the effect of friction on the motion of mass particle. To accomplish this, the container was filled with fluid and the mass particle was allowed to oscillate between two stops. The fluid resistance gave the effect of friction on the mass particle. The fluid used was No. 1 diesel oil, supplied by Texaco, with density \(\rho_f \) equal to 1.563 lbf. sec\(^2\)/ft\(^4\) and kinematic viscosity equal to 4.9 x 10\(^{-4}\) ft\(^2\)/sec.

Amplitude ratio \(X_R/A_R \) is plotted versus the gap-factor \(d/x_0 \), for various mass ratios, in Figure 3.17. A curve, with \(\mu = 0.0666 \) and without fluid in the container, is shown superimposed in the same figure to compare the effects. Response curves for the equivalent systems, i.e. keeping \(\mu \) and \(d/x_0 \) same in both systems, with and without fluid are plotted in Figure 3.18, to compare the effect in the complete frequency range.
RESPONSE CURVES OF THE SYSTEM

[Experimental]

\[\mu = 0.0666 \]
\[\frac{d}{x_0} = 31.25 \]
\[f_f = 1.563 \text{ lbf/sec.}^2/\text{ft}^4 \]

AMPLITUDE RATIO \(\frac{X}{A_R} \)

FREQUENCY RATIO \(r \)

Without Damper

Damper With Fluid

Damper Without Fluid
4 DISCUSSION OF RESULTS

By examining the various response curves, it is seen that the peak - which is always present - moves to the lower value of r as \(\mu \) increases. Before the peak is reached, the amplitude is generally slightly above the amplitude without impact damper. After the peak amplitude is reached the damper is really effective and the amplitude is always less than that without the impact damper. This is in agreement with the theoretical prediction. One more point to be noted is that, with constant \(d/x_0 \), the peak amplitude decreases constantly with increase in \(\mu \). However, after a certain value of \(\mu \), any further increase in the value of \(\mu \) does not necessarily increase the proportional effectiveness of the damper. It is generally seen that the damping tends to smooth out the sharpness of the undamped curves for amplitude response.

It can be seen from Figures 3.7, 3.15, 3.16, that with the increase in gap from zero the damper becomes more effective. This situation continues until an optimum condition is reached, after which the peak amplitude of vibration increases with increase in gap. The points on the extreme right of the curves in Figures 3.7, 3.15 and 3.16 are for the gap-factor beyond which any increase in gap results in erratic behaviour or 'beating' of the damper. This stems from the fact that the energy imparted
to the free mass at one impact is inadequate to force the free mass to the opposite end of the damper container. The free mass then starts to oscillate while the amplitude of the primary system builds up until subsequent impacts occur between the damper container ends and the vibrational amplitude decreases subsequently, resulting in a vibration wave form that resembles that of the beating phenomenon. Pictures of the beating phenomenon are shown in Figure 4.1 (a), (b), which indicates the building up of amplitude while there is no impact.

Figures 4.2 (a), (b) are photographs taken from the screen of the oscilloscope, showing the reduction in amplitude when the impact damper comes into action. Two photographs show the effect of two different mass-ratios as marked on the figures.

Figures 4.4 (a), (b), (c), (d) show the phase plane diagrams obtained by experimentation with a different pair of μ and d/x_0. Various $X-t$ and $\dot{X}-t$ wave forms are shown in Figures 4.3 (a), (b), (c) and (d). These were obtained from the screen of the oscilloscope for different values of d, for the same value of μ. It is observed that two impacts per cycle, with the stops, occur at equal time intervals. This behaviour is observed to repeat for wide range of parameters for which impact damper is in action, so it justifies the assumption of equispaced impacts in analytical derivation. The actual wave form of the response is sinusoidal, and the assumption that the velocity changes discontinuously is
Figure 4.1 (a) Two-Particle System, X, \dot{X} Motion of Primary Mass for $\mu = .1294$, $d/X_0 = 24.7$, $r=1$

Figure 4.1 (b) Single-Particle System, X, \dot{X} Motion of Primary Mass for $\mu = .112$, $d/X_0 = 18.5$, $r=1$
Figure 4.2 Motion of Primary Mass M
(a) Effect of Introducing $\mu = .0878$
(b) Effect of Introducing $\mu = .0224$; for $\frac{d}{X_0} = 12.3$
(a) $d/X_0 = 3.08$

(b) $d/X_0 = 9.25$
Figure 4.3 (a),(b),(c),(d) Two-Particle System
X, X Wave Forms as Photographed from The Screen of C.P.O. for \(\mu = 0.1294 \)

(c) \(d/X_0 = 12.32 \)

(d) \(d/X_0 = 15.4 \)
(a) Single-Particle System

(b) Single-Particle System
Figure 4.4. Limit Cycles of Impact Damper
(a), (b), (c) $X - \dot{X}$ With $\mu = 0$ & $\mu \neq 0$
(d) $X - \dot{X}$ with $\mu \neq 0$

(c) Two-Particle System

(d) Single-Particle System
justifiable. This is seen in Figures 4.3 and 4.4.

It is to be noted that a change in gap changes the position of impact and for optimum gap the impacts occur near the peak velocity. This shows that at resonance, when the optimum damping is called for to improve the behaviour of the vibrating system, the impacts occur when the velocity of the vibrating system is maximum thereby causing the greatest possible dissipation of kinetic energy.

It is clear from Figures 3.7, 3.15 that the increase in μ causes a decrease in maximum gap-factor that can be reached before beating starts. Similarly, optimum gap decreases, and, for the same gap, more efficient behaviour of the damper is achieved. This is to be expected since increasing the free mass weight will cause higher dissipation of energy from the vibrating system in order to traverse the free mass through this specific gap.

From Figure 3.16 it is seen that increase in value of e improves the performance of the damper for wide range of gap-factor. However, for smaller gap - where the damper is not so efficient - the effect of increase in e is not favourable.

In Figures 3.7, 3.8, two-particle system is compared with the single-particle system for the mass ratios marked on the figure. The behaviour of the two systems are qualitatively similar for the range used. The comparison of the two systems shows that, if the same total mass is used in both cases, the single
particle damper is more efficient than the two-particle damper for a complete range of frequencies and gap-factors.

All through the experiments, rubber pads were used at the stops. The biggest gain in the system, with single-particle impact damper, is that the noise is eliminated and hence the impact damper becomes more practical in light of its use in the presence of human beings.

It is noted in the case of the two-particle impact damper, that in spite of use of rubber pads, the system is still noisy due to the intermediate impacts between two mass particles.

Due to the resistance of the fluid on the motion of mass particle, the system is less efficient in its purpose of reducing the amplitude of vibration. These experiments suggest that the impact damper is effective even in the presence of fluid and that there is a little reduction in noise. However, the use of the fluid in the container, for such a damper, is not recommended because of two reasons. Firstly, noise reduction is not significant compared to loss of efficiency. Secondly, the presence of fluid complicates the design and maintenance of the damper which otherwise is quite simple.

The experiments generally tend to confirm the theory and the behaviour is qualitatively comparable. The amplitude at resonance is markedly reduced while the amplitude at frequencies
close to resonance is larger. For frequencies above resonance there is no indication of increased amplitudes.
5 CONCLUSIONS

As a result of the experimental investigation, the following conclusions could be made.

1. Experiments with rubber pads at the ends of the container indicate that the system behaves similarly to one with rigid stops. In this system noise is eliminated, as the impact is on soft surfaces. All the previous investigators have reported excessive noise level while the damper is functioning; with the use of this system and by proper selection of the soft materials (with high coefficient of restitution), the damper becomes less noisy and hence more practical.

Choosing a practical value of μ, say .1 to .2, and materials giving high coefficient of restitution, it will be seen that the use of the correctly designed impact damper considerably reduces the vibrations at resonance.

2. With higher value of e, the efficiency of the damper improves.

3. Experiments with a pair of mass-particles in the container show that even if the same total mass is used in a single-particle as in two-particle impact damper, the former will be more effective in reducing the amplitude of vibrations.
4. In the case of the two-particle impact damper, the intermediate impacts between two mass particles, makes the system noisy and hence for continuous operation will require muffling. This is true even if rubber pads are used at the ends.

5. Experiments with the mass particle moving in a fluid suggest that the friction forces acting on the mass particle are detrimental to the efficiency of the damper.

6. The significant advantage of the impact vibration absorber over the conventional dynamic absorber is the reduction of the amplitude of the primary system both at resonance and at higher frequencies.

7. Since in practical applications the resulting amplitude rather than the existence of stable periodic motions is of prime concern, the impact damper fulfilled its role even when its motion was not steady.

8. Some of the main advantages, of impact damper, would be the relative simplicity of installation, maintenance and facility of variation of damper parameters.
With more investigation and development, the future of the impact damper appears quite promising. For further studies, it would be worth considering the effects of various soft materials as impacting surfaces and two-mass particle system with each particle in a separate channel.
APPENDIX A

THEORETICAL SOLUTION FOR THE SYSTEM WITH FLUID

The equation of motion of primary mass \(M \), between impacts, is

\[
M \ddot{X} + C \dot{X} + KX = F_0 \sin \omega t
\]

(41)

when the mass particle is oscillating in the container filled with fluid the equation of motion for mass particle, between impacts, is

\[
\ddot{y} + \frac{1}{2} \rho_f \frac{\pi d^3}{6} \ddot{y} = -m \ddot{X}
\]

(42)

or

\[
(m + m') \ddot{y} = -m \ddot{X}
\]

where \(m' = \frac{1}{2} \rho_f \frac{\pi d^3}{6} \) added mass due to fluid.

The complete solution of equation (41) is,

\[
X = e^{-\delta \omega t} [B_1 \sin \eta \omega t + B_2 \cos \eta \omega t] + A \sin (\dot{\eta} t - \psi)
\]

(43)

using the initial conditions at impact,

\[
X(t_{i+}) = X_i; \dot{X}(t_{i+}) = \dot{X}_i, \text{ the constants } B_1 \text{ and } B_2 \text{ can be evaluated.}
\]

Differentiating the equation (43) w.r.t. \(t \),

\[
\dot{X} = e^{-\delta \omega t} [-\delta \omega B_1 \sin \eta \omega t - \delta \omega B_2 \cos \eta \omega t + \eta \omega B_1 \cos \eta \omega t - \eta \omega B_2 \sin \eta \omega t] + A \dot{\eta} \cos (\dot{\eta} t - \psi)
\]

(44)
Substituting initial conditions in (43) and (44),

\[B_1 = e^{\omega t_i} [E_i \sin \omega t_i + D_i \cos \omega t_i] \]

\[B_2 = e^{\omega t_i} [E_i \cos \omega t_i - D_i \sin \omega t_i] \]

where

\[E_i = x_i - A \sin (\Omega t_i - \psi) \]

\[D_i = \frac{1}{\eta} \left[\frac{dE_i}{dt} + \frac{x_i}{\omega} - A R \cos (\Omega t_i - \psi) \right] \]

Hence

\[x = e^{-\omega (t-t_i)} \left[D_i \sin \omega (t-t_i) + E_i \cos \omega (t-t_i) \right] + A \sin (\Omega t - \psi) \quad (45) \]

For the solution of equation (42), using the initial conditions at the time \(t_{i+} \) immediately after \(i \)th impact,

\[x(t_{i+}) = x_i \quad , \quad \dot{x}(t_{i+}) = \dot{x}_i \]

\[y(t_{i+}) = y_i \quad , \quad \dot{y}(t_{i+}) = \dot{y}_i \]

Integrating twice equation (42)

\[(m + m') \ddot{y} = -mx + C_1 \]

\[(m + m') y = -m \dot{x} + C_1 t + C_2 \]

Applying initial conditions
\[C_1 = (m + m') \dot{Y}_i + m \dot{X}_i \quad \text{and} \]
\[C_2 = (m + m') Y_i + mX_i - \{(m + m') \dot{Y}_i + m \dot{X}_i\} \frac{1}{t_i} \]

Hence
\[(m + m') Y = -mX + mX_i + (m + m') Y_i \]
\[+ \{(m + m') \dot{Y}_i + m \dot{X}_i\} (t - t_i) \]

letting
\[\mu = \frac{m}{m + m'} \]
\[Y = -\mu X + \mu X_i + Y_i + (\dot{Y}_i + \mu \dot{X}_i) (t - t_i) \quad (46) \]

In equation (42) potential flow analysis is used. This has been justified* by several reported experimental investigations conducted in water and other low viscosity fluid, as in our case, and in such cases viscous effects are negligible and results would easily be within one percent of potential flow solution.

The solutions (45) and (46) are valid only up to \(t_i \), time immediately before next impact. From the impact conditions,

at $t(i + 1)_+$,

$$X(t(i + 1)_+) = X(t(i + 1)_-)$$

$$Y(t(i + 1)_+) = Y(t(i + 1)_-)$$

$$\dot{x}(t(i + 1)_+) = \dot{x}(t(i + 1)_-) + \frac{\mu(1 + e)}{1 + \mu} \dot{y}(t(i + 1)_-)$$

$$\dot{y}(t(i + 1)_+) = -cy(t(i + 1)_-)$$

Using the new initial conditions from equation (47) the solution can be obtained for the time interval $t(i + 1)_+$ to $t(i + 2)_-$. This procedure can be continued and the motion can be determined from collision to collision.

A digital computer programme for this method is given in Appendix D. A check is introduced in the programme so that when the periodic solution reaches steady state conditions, the programme would then discontinue that solution and start constructing a new one corresponding to a new set of parameters.

A typical digital computer output for two systems with and without fluid is given in Appendix AII. The two sets of curves obtained from similar computation are shown as Figures (A1) and (A-2). Experimentally obtained curves, with and without fluid, for the same parameters, are superimposed in figure A1.
RESPONSE CURVES OF THE SYSTEM

$\mu = 0.1$

$\frac{d}{K_o} = 14.0$

$S_f = 1.563 \text{ lbf. Sec}^2/\text{ft}^4$

FIG. A1
EFFECT OF GAP-FACTOR ON AMPLITUDE RESPONSE

Theoretical

\[r = 1.0 \]
\[\mu = 0.1 \]
\[f = 0.45 \]
\[e = 0.8 \]

With Fluid

Without Fluid

AMPLITUDE RATIO

GAP-FACTOR \(\frac{d}{x_0} \)
APPENDIX AII

DIGITAL COMPUTER OUTPUT FOR THE SYSTEM WITHOUT FLUID

\[\omega = 46.47 \quad \delta = 0.045 \quad \mu = 0.1 \quad e = 0.8 \quad \omega_n = 46.47 \quad \frac{F_0}{K} = 1.0 \quad \frac{d}{F_0/K} = 16.0 \]

\[\frac{x_{\text{max}}}{A} \]

<table>
<thead>
<tr>
<th>Impact (i)</th>
<th>(t_i)</th>
<th>(x_i)</th>
<th>(y_i)</th>
<th>(x_{i+1})</th>
<th>(y_{i+1})</th>
<th>(t_{i-1} < t < t_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.67</td>
<td>7.9999</td>
<td>-8.00</td>
<td>-100.9629</td>
<td>96.5732</td>
<td>-0.7209</td>
</tr>
<tr>
<td>2</td>
<td>0.71</td>
<td>0.1481</td>
<td>-8.00</td>
<td>296.3541</td>
<td>472.4157</td>
<td>-0.7321</td>
</tr>
<tr>
<td>3</td>
<td>0.74</td>
<td>6.5505</td>
<td>-8.00</td>
<td>184.6966</td>
<td>356.6798</td>
<td>0.5949</td>
</tr>
<tr>
<td>4</td>
<td>0.82</td>
<td>7.9393</td>
<td>-8.00</td>
<td>-9.3901</td>
<td>345.7412</td>
<td>-0.7212</td>
</tr>
<tr>
<td>5</td>
<td>0.91</td>
<td>5.1162</td>
<td>-8.00</td>
<td>-202.6083</td>
<td>-515.3959</td>
<td>0.7332</td>
</tr>
<tr>
<td>6</td>
<td>0.94</td>
<td>-5.3915</td>
<td>-8.00</td>
<td>-295.1243</td>
<td>407.3654</td>
<td>-0.5409</td>
</tr>
<tr>
<td>7</td>
<td>0.99</td>
<td>0.3583</td>
<td>-8.00</td>
<td>348.7453</td>
<td>226.2233</td>
<td>-0.7313</td>
</tr>
<tr>
<td>8</td>
<td>1.03</td>
<td>6.9387</td>
<td>-8.00</td>
<td>-9.6158</td>
<td>-558.2111</td>
<td>0.6626</td>
</tr>
<tr>
<td>9</td>
<td>1.08</td>
<td>5.9466</td>
<td>-8.00</td>
<td>-270.4099</td>
<td>283.5293</td>
<td>-0.6242</td>
</tr>
<tr>
<td>10</td>
<td>1.12</td>
<td>5.1007</td>
<td>-8.00</td>
<td>244.0137</td>
<td>220.8594</td>
<td>-0.6944</td>
</tr>
<tr>
<td>11</td>
<td>1.18</td>
<td>6.3003</td>
<td>-8.00</td>
<td>-64.3662</td>
<td>-506.2442</td>
<td>0.6451</td>
</tr>
<tr>
<td>12</td>
<td>1.22</td>
<td>-5.5169</td>
<td>-8.00</td>
<td>-224.7095</td>
<td>327.0548</td>
<td>-0.5138</td>
</tr>
<tr>
<td>13</td>
<td>1.27</td>
<td>-1.3400</td>
<td>-8.00</td>
<td>304.0573</td>
<td>196.7680</td>
<td>-0.6345</td>
</tr>
<tr>
<td>14</td>
<td>1.31</td>
<td>5.6230</td>
<td>-8.00</td>
<td>-35.0674</td>
<td>-513.5495</td>
<td>0.5585</td>
</tr>
<tr>
<td>15</td>
<td>1.36</td>
<td>-4.4454</td>
<td>-8.00</td>
<td>-230.9094</td>
<td>304.8505</td>
<td>-0.4357</td>
</tr>
<tr>
<td>16</td>
<td>1.40</td>
<td>-1.1762</td>
<td>-8.00</td>
<td>-270.2466</td>
<td>157.7703</td>
<td>-0.5656</td>
</tr>
<tr>
<td>17</td>
<td>1.45</td>
<td>4.6108</td>
<td>-8.00</td>
<td>-52.7303</td>
<td>485.0564</td>
<td>0.4369</td>
</tr>
<tr>
<td>18</td>
<td>1.50</td>
<td>-3.7252</td>
<td>-8.00</td>
<td>-206.6249</td>
<td>319.1595</td>
<td>-0.2972</td>
</tr>
<tr>
<td>19</td>
<td>1.56</td>
<td>2.9553</td>
<td>-8.00</td>
<td>209.1012</td>
<td>92.3671</td>
<td>-0.4801</td>
</tr>
<tr>
<td>20</td>
<td>1.60</td>
<td>0.9858</td>
<td>-8.00</td>
<td>-163.4030</td>
<td>-444.6567</td>
<td>0.4605</td>
</tr>
<tr>
<td>21</td>
<td>1.64</td>
<td>-3.5358</td>
<td>-8.00</td>
<td>-126.3382</td>
<td>460.7761</td>
<td>-0.3200</td>
</tr>
<tr>
<td>22</td>
<td>1.71</td>
<td>4.3629</td>
<td>-8.00</td>
<td>75.2681</td>
<td>-247.8996</td>
<td>0.2907</td>
</tr>
<tr>
<td>23</td>
<td>1.75</td>
<td>1.8466</td>
<td>-8.00</td>
<td>166.4857</td>
<td>324.3759</td>
<td>-0.4259</td>
</tr>
<tr>
<td>24</td>
<td>1.85</td>
<td>2.1494</td>
<td>-8.00</td>
<td>-20.7907</td>
<td>-489.4094</td>
<td>0.3534</td>
</tr>
<tr>
<td>25</td>
<td>1.89</td>
<td>-2.4618</td>
<td>-8.00</td>
<td>-194.0908</td>
<td>302.3594</td>
<td>-0.2948</td>
</tr>
<tr>
<td>26</td>
<td>2.03</td>
<td>-4.1211</td>
<td>-8.00</td>
<td>-129.5141</td>
<td>-223.5240</td>
<td>0.4619</td>
</tr>
<tr>
<td>27</td>
<td>2.06</td>
<td>-1.3711</td>
<td>-8.00</td>
<td>141.4314</td>
<td>469.2403</td>
<td>0.4390</td>
</tr>
<tr>
<td>28</td>
<td>2.10</td>
<td>3.5198</td>
<td>-8.00</td>
<td>157.5002</td>
<td>-433.4664</td>
<td>0.3399</td>
</tr>
<tr>
<td>29</td>
<td>2.19</td>
<td>-4.7138</td>
<td>-8.00</td>
<td>49.0896</td>
<td>310.9243</td>
<td>-0.4704</td>
</tr>
<tr>
<td>30</td>
<td>2.26</td>
<td>4.5523</td>
<td>-8.00</td>
<td>-49.9255</td>
<td>-392.1713</td>
<td>0.4715</td>
</tr>
<tr>
<td>31</td>
<td>2.31</td>
<td>-4.7985</td>
<td>-8.00</td>
<td>-83.2245</td>
<td>343.2184</td>
<td>-0.4479</td>
</tr>
<tr>
<td>32</td>
<td>2.40</td>
<td>2.6904</td>
<td>-8.00</td>
<td>-155.1763</td>
<td>-298.0759</td>
<td>0.4916</td>
</tr>
<tr>
<td>33</td>
<td>2.45</td>
<td>-4.3217</td>
<td>-8.00</td>
<td>-130.3855</td>
<td>405.4377</td>
<td>-0.3698</td>
</tr>
<tr>
<td>34</td>
<td>2.53</td>
<td>3.9096</td>
<td>-8.00</td>
<td>-96.4088</td>
<td>-357.2280</td>
<td>0.4603</td>
</tr>
<tr>
<td>35</td>
<td>2.59</td>
<td>-4.5857</td>
<td>-8.00</td>
<td>-70.2932</td>
<td>366.5592</td>
<td>-0.4071</td>
</tr>
<tr>
<td>36</td>
<td>2.67</td>
<td>3.8176</td>
<td>-8.00</td>
<td>-30.4606</td>
<td>-362.2853</td>
<td>0.4394</td>
</tr>
<tr>
<td>37</td>
<td>2.72</td>
<td>-4.2953</td>
<td>-8.00</td>
<td>-70.4340</td>
<td>356.1245</td>
<td>-0.3778</td>
</tr>
<tr>
<td>38</td>
<td>2.81</td>
<td>3.3803</td>
<td>-8.00</td>
<td>-84.9143</td>
<td>354.4916</td>
<td>0.4112</td>
</tr>
<tr>
<td>39</td>
<td>2.86</td>
<td>-3.9283</td>
<td>-8.00</td>
<td>-67.9512</td>
<td>355.3064</td>
<td>-0.3506</td>
</tr>
<tr>
<td>40</td>
<td>2.94</td>
<td>3.3301</td>
<td>-8.00</td>
<td>-64.4584</td>
<td>-356.5154</td>
<td>0.3785</td>
</tr>
<tr>
<td>41</td>
<td>3.00</td>
<td>-3.6711</td>
<td>-8.00</td>
<td>-39.1218</td>
<td>346.1193</td>
<td>-0.3276</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>42</td>
<td>3.07</td>
<td>3.3575</td>
<td>8.00</td>
<td>-31.8499</td>
<td>-324.1149</td>
<td>0.3363</td>
</tr>
<tr>
<td>43</td>
<td>3.14</td>
<td>-3.3697</td>
<td>-8.00</td>
<td>-6.4644</td>
<td>334.3220</td>
<td>-0.3186</td>
</tr>
<tr>
<td>44</td>
<td>3.21</td>
<td>-3.2442</td>
<td>8.00</td>
<td>-6.1218</td>
<td>-319.4758</td>
<td>0.3165</td>
</tr>
<tr>
<td>45</td>
<td>3.27</td>
<td>-3.0662</td>
<td>-8.00</td>
<td>12.8581</td>
<td>323.7402</td>
<td>-0.3078</td>
</tr>
<tr>
<td>46</td>
<td>3.34</td>
<td>3.0523</td>
<td>8.00</td>
<td>3.1357</td>
<td>-318.9643</td>
<td>0.2940</td>
</tr>
<tr>
<td>47</td>
<td>3.41</td>
<td>-2.8990</td>
<td>-8.00</td>
<td>13.6700</td>
<td>315.1726</td>
<td>-0.2933</td>
</tr>
<tr>
<td>48</td>
<td>3.48</td>
<td>2.8757</td>
<td>8.00</td>
<td>-2.6401</td>
<td>-317.0704</td>
<td>0.2822</td>
</tr>
<tr>
<td>49</td>
<td>3.54</td>
<td>-2.8269</td>
<td>-8.00</td>
<td>6.3813</td>
<td>311.9139</td>
<td>-0.2812</td>
</tr>
<tr>
<td>50</td>
<td>3.61</td>
<td>2.7681</td>
<td>8.00</td>
<td>-9.2369</td>
<td>-313.2915</td>
<td>0.2785</td>
</tr>
<tr>
<td>51</td>
<td>3.68</td>
<td>-2.7759</td>
<td>-8.00</td>
<td>3.9782</td>
<td>312.3106</td>
<td>-0.2746</td>
</tr>
<tr>
<td>52</td>
<td>3.75</td>
<td>2.7472</td>
<td>8.00</td>
<td>-8.7805</td>
<td>-310.9359</td>
<td>0.2762</td>
</tr>
<tr>
<td>53</td>
<td>3.81</td>
<td>-2.7508</td>
<td>-8.00</td>
<td>6.7707</td>
<td>312.2920</td>
<td>-0.2747</td>
</tr>
<tr>
<td>54</td>
<td>3.88</td>
<td>2.7640</td>
<td>8.00</td>
<td>-6.4057</td>
<td>-311.3176</td>
<td>0.2756</td>
</tr>
<tr>
<td>55</td>
<td>3.95</td>
<td>-2.7637</td>
<td>-8.00</td>
<td>8.3472</td>
<td>311.8935</td>
<td>-0.2773</td>
</tr>
<tr>
<td>56</td>
<td>4.02</td>
<td>-2.7687</td>
<td>8.00</td>
<td>-6.4463</td>
<td>-314.4832</td>
<td>0.2776</td>
</tr>
<tr>
<td>57</td>
<td>4.08</td>
<td>-2.7992</td>
<td>-8.00</td>
<td>7.5929</td>
<td>312.3257</td>
<td>-0.2798</td>
</tr>
<tr>
<td>58</td>
<td>4.15</td>
<td>2.8139</td>
<td>8.00</td>
<td>-7.5034</td>
<td>-313.1862</td>
<td>0.2810</td>
</tr>
<tr>
<td>59</td>
<td>4.22</td>
<td>-2.8337</td>
<td>-8.00</td>
<td>6.9140</td>
<td>313.3599</td>
<td>-0.2822</td>
</tr>
<tr>
<td>60</td>
<td>4.29</td>
<td>-2.8444</td>
<td>8.00</td>
<td>-7.6890</td>
<td>-313.7036</td>
<td>0.2839</td>
</tr>
<tr>
<td>61</td>
<td>4.35</td>
<td>-2.8595</td>
<td>8.00</td>
<td>7.0951</td>
<td>314.2057</td>
<td>-0.2847</td>
</tr>
<tr>
<td>62</td>
<td>4.42</td>
<td>2.8703</td>
<td>8.00</td>
<td>-7.2905</td>
<td>-314.3048</td>
<td>0.2858</td>
</tr>
<tr>
<td>63</td>
<td>4.49</td>
<td>-2.8782</td>
<td>-8.00</td>
<td>7.3772</td>
<td>314.6694</td>
<td>-0.2866</td>
</tr>
<tr>
<td>64</td>
<td>4.56</td>
<td>2.8868</td>
<td>8.00</td>
<td>-7.0891</td>
<td>-314.8255</td>
<td>0.2871</td>
</tr>
<tr>
<td>65</td>
<td>4.62</td>
<td>-2.8908</td>
<td>-8.00</td>
<td>7.3335</td>
<td>314.9329</td>
<td>-0.2877</td>
</tr>
<tr>
<td>66</td>
<td>4.69</td>
<td>-2.8946</td>
<td>8.00</td>
<td>-7.1568</td>
<td>-315.1005</td>
<td>0.2879</td>
</tr>
<tr>
<td>67</td>
<td>4.76</td>
<td>-2.8970</td>
<td>-8.00</td>
<td>7.1694</td>
<td>315.1038</td>
<td>-0.2881</td>
</tr>
<tr>
<td>68</td>
<td>4.83</td>
<td>2.8974</td>
<td>8.00</td>
<td>-7.2193</td>
<td>-315.1668</td>
<td>0.2882</td>
</tr>
<tr>
<td>69</td>
<td>4.90</td>
<td>-2.8978</td>
<td>-8.00</td>
<td>7.1096</td>
<td>315.1698</td>
<td>-0.2881</td>
</tr>
<tr>
<td>70</td>
<td>4.96</td>
<td>-2.8966</td>
<td>8.00</td>
<td>-7.1822</td>
<td>-315.1373</td>
<td>0.2881</td>
</tr>
<tr>
<td>71</td>
<td>5.03</td>
<td>-2.8954</td>
<td>-8.00</td>
<td>7.1395</td>
<td>315.1309</td>
<td>-0.2879</td>
</tr>
<tr>
<td>72</td>
<td>5.10</td>
<td>-2.8938</td>
<td>8.00</td>
<td>-7.1293</td>
<td>-315.0742</td>
<td>0.2878</td>
</tr>
<tr>
<td>73</td>
<td>5.17</td>
<td>-2.8918</td>
<td>-8.00</td>
<td>7.1536</td>
<td>315.0372</td>
<td>-0.2876</td>
</tr>
<tr>
<td>74</td>
<td>5.23</td>
<td>2.8900</td>
<td>8.00</td>
<td>-7.1199</td>
<td>-314.9929</td>
<td>0.2874</td>
</tr>
<tr>
<td>75</td>
<td>5.30</td>
<td>-2.8881</td>
<td>-8.00</td>
<td>7.1436</td>
<td>314.9409</td>
<td>-0.2873</td>
</tr>
<tr>
<td>76</td>
<td>5.37</td>
<td>2.8865</td>
<td>8.00</td>
<td>-7.1351</td>
<td>-314.9058</td>
<td>0.2871</td>
</tr>
<tr>
<td>77</td>
<td>5.44</td>
<td>-2.8850</td>
<td>-8.00</td>
<td>7.1328</td>
<td>314.8619</td>
<td>-0.2870</td>
</tr>
<tr>
<td>78</td>
<td>5.50</td>
<td>2.8837</td>
<td>8.00</td>
<td>-7.1471</td>
<td>-314.8313</td>
<td>0.2869</td>
</tr>
<tr>
<td>79</td>
<td>5.57</td>
<td>-2.8828</td>
<td>-8.00</td>
<td>7.1364</td>
<td>314.8054</td>
<td>-0.2868</td>
</tr>
<tr>
<td>80</td>
<td>5.64</td>
<td>2.8819</td>
<td>8.00</td>
<td>-7.1488</td>
<td>-314.7823</td>
<td>0.2867</td>
</tr>
<tr>
<td>81</td>
<td>5.71</td>
<td>-2.8814</td>
<td>-8.00</td>
<td>7.1442</td>
<td>314.7677</td>
<td>-0.2867</td>
</tr>
<tr>
<td>82</td>
<td>5.77</td>
<td>-2.8810</td>
<td>8.00</td>
<td>-7.1501</td>
<td>-314.7551</td>
<td>0.2867</td>
</tr>
<tr>
<td>83</td>
<td>5.84</td>
<td>-2.8807</td>
<td>-8.00</td>
<td>7.1503</td>
<td>314.7487</td>
<td>-0.2866</td>
</tr>
<tr>
<td>84</td>
<td>5.91</td>
<td>2.8807</td>
<td>8.00</td>
<td>-7.1529</td>
<td>-314.7453</td>
<td>0.2866</td>
</tr>
<tr>
<td>85</td>
<td>5.98</td>
<td>-2.8807</td>
<td>-8.00</td>
<td>7.1533</td>
<td>314.7449</td>
<td>-0.2866</td>
</tr>
<tr>
<td>86</td>
<td>6.04</td>
<td>-2.8808</td>
<td>8.00</td>
<td>-7.1552</td>
<td>-314.7466</td>
<td>0.2866</td>
</tr>
<tr>
<td>87</td>
<td>6.11</td>
<td>-2.8809</td>
<td>-8.00</td>
<td>7.1552</td>
<td>314.7502</td>
<td>-0.2867</td>
</tr>
<tr>
<td>88</td>
<td>6.18</td>
<td>-2.8812</td>
<td>8.00</td>
<td>-7.1560</td>
<td>-314.7543</td>
<td>0.2867</td>
</tr>
<tr>
<td>89</td>
<td>6.25</td>
<td>-2.8814</td>
<td>-8.00</td>
<td>7.1573</td>
<td>314.7603</td>
<td>-0.2867</td>
</tr>
<tr>
<td>90</td>
<td>6.31</td>
<td>2.8816</td>
<td>8.00</td>
<td>-7.1555</td>
<td>-314.7656</td>
<td>0.2867</td>
</tr>
<tr>
<td>91</td>
<td>6.38</td>
<td>-2.8818</td>
<td>-8.00</td>
<td>7.1570</td>
<td>314.7703</td>
<td>-0.2867</td>
</tr>
<tr>
<td>92</td>
<td>6.45</td>
<td>-2.8820</td>
<td>8.00</td>
<td>-7.1593</td>
<td>-314.7753</td>
<td>0.2867</td>
</tr>
<tr>
<td>93</td>
<td>6.52</td>
<td>-2.8821</td>
<td>-8.00</td>
<td>7.1575</td>
<td>314.7804</td>
<td>-0.2868</td>
</tr>
<tr>
<td>94</td>
<td>6.59</td>
<td>2.8823</td>
<td>8.00</td>
<td>-7.1538</td>
<td>-314.7834</td>
<td>0.2868</td>
</tr>
<tr>
<td>V</td>
<td>d</td>
<td>d</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>6.65</td>
<td>-2.8824</td>
<td>-8.00</td>
<td>7.1571</td>
<td>314.7858</td>
<td>-0.2868</td>
</tr>
<tr>
<td>96</td>
<td>6.72</td>
<td>2.8825</td>
<td>8.00</td>
<td>-7.1561</td>
<td>314.7903</td>
<td>0.2868</td>
</tr>
<tr>
<td>97</td>
<td>6.79</td>
<td>-2.8826</td>
<td>-8.00</td>
<td>7.1532</td>
<td>314.7908</td>
<td>-0.2866</td>
</tr>
<tr>
<td>98</td>
<td>6.86</td>
<td>2.8826</td>
<td>8.00</td>
<td>-7.1563</td>
<td>314.7916</td>
<td>0.2868</td>
</tr>
<tr>
<td>99</td>
<td>6.92</td>
<td>-2.8826</td>
<td>-8.00</td>
<td>7.1551</td>
<td>314.7942</td>
<td>-0.2865</td>
</tr>
<tr>
<td>100</td>
<td>6.99</td>
<td>2.8826</td>
<td>8.00</td>
<td>-7.1523</td>
<td>314.7928</td>
<td>0.2868</td>
</tr>
<tr>
<td>101</td>
<td>7.06</td>
<td>-2.8826</td>
<td>-8.00</td>
<td>7.1570</td>
<td>314.7934</td>
<td>-0.2868</td>
</tr>
<tr>
<td>102</td>
<td>7.13</td>
<td>2.8826</td>
<td>8.00</td>
<td>-7.1516</td>
<td>314.7934</td>
<td>0.2868</td>
</tr>
<tr>
<td>103</td>
<td>7.19</td>
<td>-2.8826</td>
<td>-8.00</td>
<td>7.1552</td>
<td>314.7917</td>
<td>-0.2868</td>
</tr>
</tbody>
</table>
APPENDIX A11

DIGITAL COMPUTER OUTPUT FOR THE SYSTEM WITH FLUID

\[
\begin{align*}
\omega &= 46.47 & \delta &= 0.045 & \mu &= 0.1 & e &= 0.8 & \omega_n &= 46.47 & \frac{F_o}{K} &= 1.0 & \frac{d}{F_{o/K}} &= 16.0 \\
\nu_1 &= 0.051 & \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>Impact (i)</th>
<th>(t_i)</th>
<th>(X_i)</th>
<th>(Y_i)</th>
<th>(X_{i+})</th>
<th>(Y_{i+})</th>
<th>(t_{i-1} \leq t \leq t_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.81</td>
<td>-8.8889</td>
<td>-8.00</td>
<td>-73.1817</td>
<td>-61.7909</td>
<td>-1.1426</td>
</tr>
<tr>
<td>2</td>
<td>0.85</td>
<td>2.6741</td>
<td>-8.00</td>
<td>327.9986</td>
<td>396.7057</td>
<td>-1.0977</td>
</tr>
<tr>
<td>3</td>
<td>0.88</td>
<td>7.6556</td>
<td>8.00</td>
<td>70.8947</td>
<td>-589.2626</td>
<td>0.9620</td>
</tr>
<tr>
<td>4</td>
<td>0.93</td>
<td>-5.5116</td>
<td>-8.00</td>
<td>-327.2044</td>
<td>216.6919</td>
<td>0.9453</td>
</tr>
<tr>
<td>5</td>
<td>0.96</td>
<td>-7.9967</td>
<td>-8.00</td>
<td>143.8073</td>
<td>194.4059</td>
<td>-1.1193</td>
</tr>
<tr>
<td>6</td>
<td>1.04</td>
<td>3.8510</td>
<td>8.00</td>
<td>-267.9083</td>
<td>-530.0170</td>
<td>1.0677</td>
</tr>
<tr>
<td>7</td>
<td>1.08</td>
<td>-5.6437</td>
<td>-8.00</td>
<td>-303.7184</td>
<td>467.0079</td>
<td>-0.8579</td>
</tr>
<tr>
<td>8</td>
<td>1.19</td>
<td>1.0493</td>
<td>8.00</td>
<td>-319.1050</td>
<td>-651.1228</td>
<td>1.0739</td>
</tr>
<tr>
<td>9</td>
<td>1.22</td>
<td>-6.7626</td>
<td>-8.00</td>
<td>-191.2584</td>
<td>531.1754</td>
<td>-0.8668</td>
</tr>
<tr>
<td>10</td>
<td>1.30</td>
<td>7.7939</td>
<td>8.00</td>
<td>-15.3741</td>
<td>-349.8230</td>
<td>-0.2662</td>
</tr>
<tr>
<td>11</td>
<td>1.38</td>
<td>-6.0837</td>
<td>-8.00</td>
<td>143.1710</td>
<td>462.0596</td>
<td>-0.5567</td>
</tr>
<tr>
<td>12</td>
<td>1.45</td>
<td>6.1313</td>
<td>8.00</td>
<td>224.2266</td>
<td>-365.0494</td>
<td>0.5363</td>
</tr>
<tr>
<td>13</td>
<td>1.48</td>
<td>-4.4185</td>
<td>8.00</td>
<td>-283.7730</td>
<td>-66.4524</td>
<td>0.9530</td>
</tr>
<tr>
<td>14</td>
<td>1.53</td>
<td>-2.9335</td>
<td>-8.00</td>
<td>223.0237</td>
<td>509.0204</td>
<td>-0.9227</td>
</tr>
<tr>
<td>15</td>
<td>1.56</td>
<td>4.7303</td>
<td>8.00</td>
<td>241.3877</td>
<td>-462.0401</td>
<td>0.6937</td>
</tr>
<tr>
<td>16</td>
<td>1.66</td>
<td>-4.3116</td>
<td>-8.00</td>
<td>180.6966</td>
<td>332.2260</td>
<td>-0.8597</td>
</tr>
<tr>
<td>17</td>
<td>1.70</td>
<td>5.7049</td>
<td>8.00</td>
<td>131.6780</td>
<td>-399.8115</td>
<td>0.7300</td>
</tr>
<tr>
<td>18</td>
<td>1.79</td>
<td>-4.3268</td>
<td>-8.00</td>
<td>146.1244</td>
<td>387.1187</td>
<td>0.7913</td>
</tr>
<tr>
<td>19</td>
<td>1.84</td>
<td>5.2436</td>
<td>8.00</td>
<td>126.6069</td>
<td>-379.4421</td>
<td>0.6711</td>
</tr>
<tr>
<td>20</td>
<td>1.93</td>
<td>-3.6278</td>
<td>-8.00</td>
<td>149.0470</td>
<td>374.7079</td>
<td>0.7328</td>
</tr>
<tr>
<td>21</td>
<td>1.98</td>
<td>4.7712</td>
<td>8.00</td>
<td>111.3518</td>
<td>-383.1973</td>
<td>0.6063</td>
</tr>
<tr>
<td>22</td>
<td>2.06</td>
<td>-4.1248</td>
<td>-8.00</td>
<td>92.9513</td>
<td>344.6418</td>
<td>-0.6629</td>
</tr>
<tr>
<td>23</td>
<td>2.12</td>
<td>4.6115</td>
<td>8.00</td>
<td>53.6552</td>
<td>-357.3553</td>
<td>0.5717</td>
</tr>
<tr>
<td>24</td>
<td>2.19</td>
<td>-4.1178</td>
<td>-8.00</td>
<td>52.8230</td>
<td>334.5560</td>
<td>-0.5925</td>
</tr>
<tr>
<td>25</td>
<td>2.26</td>
<td>4.2253</td>
<td>8.00</td>
<td>20.0191</td>
<td>-341.5672</td>
<td>0.5404</td>
</tr>
<tr>
<td>26</td>
<td>2.33</td>
<td>-3.9076</td>
<td>-8.00</td>
<td>25.8696</td>
<td>325.3866</td>
<td>-0.5343</td>
</tr>
<tr>
<td>27</td>
<td>2.39</td>
<td>3.7979</td>
<td>-8.00</td>
<td>-3.4934</td>
<td>-330.0589</td>
<td>0.5087</td>
</tr>
<tr>
<td>28</td>
<td>2.45</td>
<td>-3.6461</td>
<td>-8.00</td>
<td>7.6437</td>
<td>319.2182</td>
<td>-0.4921</td>
</tr>
<tr>
<td>29</td>
<td>2.53</td>
<td>3.4335</td>
<td>-8.00</td>
<td>-15.8585</td>
<td>-319.4926</td>
<td>0.4760</td>
</tr>
<tr>
<td>30</td>
<td>2.60</td>
<td>-3.3635</td>
<td>-8.00</td>
<td>3.4560</td>
<td>316.0454</td>
<td>-0.4546</td>
</tr>
<tr>
<td>31</td>
<td>2.67</td>
<td>3.2133</td>
<td>8.00</td>
<td>-14.1411</td>
<td>-311.3613</td>
<td>0.4468</td>
</tr>
<tr>
<td>32</td>
<td>2.73</td>
<td>-3.1365</td>
<td>-8.00</td>
<td>9.4929</td>
<td>312.0640</td>
<td>-0.4325</td>
</tr>
<tr>
<td>33</td>
<td>2.80</td>
<td>3.0317</td>
<td>8.00</td>
<td>-8.5551</td>
<td>-305.2579</td>
<td>0.4292</td>
</tr>
<tr>
<td>34</td>
<td>2.87</td>
<td>-3.0909</td>
<td>-8.00</td>
<td>12.9555</td>
<td>307.6782</td>
<td>-0.4206</td>
</tr>
<tr>
<td>35</td>
<td>2.93</td>
<td>3.0528</td>
<td>8.00</td>
<td>-9.3699</td>
<td>-307.5130</td>
<td>0.4142</td>
</tr>
<tr>
<td>36</td>
<td>3.00</td>
<td>-2.9715</td>
<td>-8.00</td>
<td>11.1716</td>
<td>305.6426</td>
<td>-0.4141</td>
</tr>
<tr>
<td>37</td>
<td>3.07</td>
<td>2.9579</td>
<td>8.00</td>
<td>-11.9161</td>
<td>-305.4254</td>
<td>0.4132</td>
</tr>
<tr>
<td>38</td>
<td>3.14</td>
<td>-2.9704</td>
<td>-8.00</td>
<td>10.3484</td>
<td>306.2753</td>
<td>-0.4129</td>
</tr>
<tr>
<td>39</td>
<td>3.20</td>
<td>2.9746</td>
<td>8.00</td>
<td>-11.8474</td>
<td>-306.0766</td>
<td>0.4153</td>
</tr>
<tr>
<td>40</td>
<td>3.27</td>
<td>-2.9695</td>
<td>-8.00</td>
<td>11.4659</td>
<td>306.8553</td>
<td>-0.4166</td>
</tr>
<tr>
<td>41</td>
<td>3.34</td>
<td>3.0167</td>
<td>8.00</td>
<td>-11.1016</td>
<td>-306.9174</td>
<td>0.4188</td>
</tr>
<tr>
<td>42</td>
<td>3.41</td>
<td>-3.0259</td>
<td>-8.00</td>
<td>11.8685</td>
<td>307.2363</td>
<td>-0.4216</td>
</tr>
<tr>
<td>43</td>
<td>3.47</td>
<td>3.0475</td>
<td>8.00</td>
<td>-11.3393</td>
<td>-307.9262</td>
<td>0.4236</td>
</tr>
<tr>
<td>44</td>
<td>3.54</td>
<td>-3.0661</td>
<td>-8.00</td>
<td>11.4763</td>
<td>308.1502</td>
<td>-0.4261</td>
</tr>
<tr>
<td>45</td>
<td>3.61</td>
<td>3.0617</td>
<td>8.00</td>
<td>-11.6730</td>
<td>-308.6422</td>
<td>0.4282</td>
</tr>
<tr>
<td>46</td>
<td>3.68</td>
<td>-3.0985</td>
<td>-8.00</td>
<td>11.3521</td>
<td>308.9950</td>
<td>-0.4299</td>
</tr>
<tr>
<td>47</td>
<td>3.75</td>
<td>3.1108</td>
<td>8.00</td>
<td>-11.5568</td>
<td>-309.2355</td>
<td>0.4317</td>
</tr>
<tr>
<td>48</td>
<td>3.81</td>
<td>-3.1217</td>
<td>-8.00</td>
<td>11.4863</td>
<td>309.5708</td>
<td>-0.4330</td>
</tr>
<tr>
<td>49</td>
<td>3.88</td>
<td>3.1311</td>
<td>8.00</td>
<td>-11.3255</td>
<td>-309.7417</td>
<td>0.4340</td>
</tr>
<tr>
<td>50</td>
<td>3.95</td>
<td>-3.1372</td>
<td>-8.00</td>
<td>11.4814</td>
<td>309.9064</td>
<td>-0.4349</td>
</tr>
<tr>
<td>51</td>
<td>4.02</td>
<td>3.1425</td>
<td>8.00</td>
<td>-11.3816</td>
<td>-310.0568</td>
<td>0.4354</td>
</tr>
<tr>
<td>52</td>
<td>4.08</td>
<td>-3.1558</td>
<td>-8.00</td>
<td>11.3910</td>
<td>310.1127</td>
<td>-0.4358</td>
</tr>
<tr>
<td>53</td>
<td>4.15</td>
<td>3.1464</td>
<td>8.00</td>
<td>-11.4082</td>
<td>-310.1672</td>
<td>0.4361</td>
</tr>
<tr>
<td>54</td>
<td>4.22</td>
<td>-3.1484</td>
<td>-8.00</td>
<td>11.3423</td>
<td>310.2072</td>
<td>-0.4361</td>
</tr>
<tr>
<td>55</td>
<td>4.29</td>
<td>3.1481</td>
<td>8.00</td>
<td>-11.3587</td>
<td>-310.2072</td>
<td>0.4361</td>
</tr>
<tr>
<td>56</td>
<td>4.35</td>
<td>-3.1473</td>
<td>-8.00</td>
<td>11.3456</td>
<td>310.1998</td>
<td>-0.4360</td>
</tr>
<tr>
<td>57</td>
<td>4.42</td>
<td>3.1461</td>
<td>8.00</td>
<td>-11.3331</td>
<td>-310.1676</td>
<td>0.4358</td>
</tr>
<tr>
<td>58</td>
<td>4.49</td>
<td>-3.1443</td>
<td>-8.00</td>
<td>11.3433</td>
<td>310.1358</td>
<td>-0.4356</td>
</tr>
<tr>
<td>59</td>
<td>4.56</td>
<td>3.1426</td>
<td>8.00</td>
<td>-11.3260</td>
<td>-310.0993</td>
<td>0.4354</td>
</tr>
<tr>
<td>60</td>
<td>4.62</td>
<td>-3.1408</td>
<td>-8.00</td>
<td>11.3320</td>
<td>310.0555</td>
<td>-0.4351</td>
</tr>
<tr>
<td>61</td>
<td>4.69</td>
<td>3.1390</td>
<td>8.00</td>
<td>-11.3297</td>
<td>-310.0159</td>
<td>0.4349</td>
</tr>
<tr>
<td>62</td>
<td>4.76</td>
<td>-3.1373</td>
<td>-8.00</td>
<td>11.3281</td>
<td>309.9804</td>
<td>-0.4347</td>
</tr>
<tr>
<td>63</td>
<td>4.83</td>
<td>3.1358</td>
<td>8.00</td>
<td>-11.3313</td>
<td>-309.9456</td>
<td>0.4349</td>
</tr>
<tr>
<td>64</td>
<td>4.89</td>
<td>-3.1345</td>
<td>-8.00</td>
<td>11.3319</td>
<td>309.9158</td>
<td>-0.4344</td>
</tr>
<tr>
<td>65</td>
<td>4.96</td>
<td>3.1334</td>
<td>8.00</td>
<td>-11.3323</td>
<td>-309.8888</td>
<td>0.4342</td>
</tr>
<tr>
<td>66</td>
<td>5.03</td>
<td>-3.1325</td>
<td>-8.00</td>
<td>11.3311</td>
<td>309.8672</td>
<td>-0.4341</td>
</tr>
<tr>
<td>67</td>
<td>5.10</td>
<td>3.1318</td>
<td>8.00</td>
<td>-11.3367</td>
<td>-309.8508</td>
<td>0.4340</td>
</tr>
<tr>
<td>68</td>
<td>5.17</td>
<td>-3.1312</td>
<td>-8.00</td>
<td>11.3369</td>
<td>309.8374</td>
<td>-0.4340</td>
</tr>
<tr>
<td>69</td>
<td>5.23</td>
<td>3.1309</td>
<td>8.00</td>
<td>-11.3406</td>
<td>-309.8201</td>
<td>0.4339</td>
</tr>
<tr>
<td>70</td>
<td>5.30</td>
<td>-3.1307</td>
<td>-8.00</td>
<td>11.3417</td>
<td>309.8221</td>
<td>-0.4339</td>
</tr>
<tr>
<td>71</td>
<td>5.37</td>
<td>3.1306</td>
<td>8.00</td>
<td>-11.3432</td>
<td>-309.8107</td>
<td>0.4339</td>
</tr>
<tr>
<td>72</td>
<td>5.44</td>
<td>-3.1305</td>
<td>-8.00</td>
<td>11.3445</td>
<td>309.8176</td>
<td>-0.4339</td>
</tr>
<tr>
<td>73</td>
<td>5.50</td>
<td>3.1306</td>
<td>8.00</td>
<td>-11.3449</td>
<td>-309.8134</td>
<td>0.4339</td>
</tr>
<tr>
<td>74</td>
<td>5.57</td>
<td>-3.1308</td>
<td>-8.00</td>
<td>11.3460</td>
<td>309.8202</td>
<td>-0.4339</td>
</tr>
<tr>
<td>75</td>
<td>5.64</td>
<td>3.1309</td>
<td>8.00</td>
<td>-11.3462</td>
<td>-309.8247</td>
<td>0.4339</td>
</tr>
<tr>
<td>76</td>
<td>5.71</td>
<td>-3.1311</td>
<td>-8.00</td>
<td>11.3442</td>
<td>309.8274</td>
<td>-0.4340</td>
</tr>
<tr>
<td>77</td>
<td>5.77</td>
<td>3.1312</td>
<td>8.00</td>
<td>-11.3494</td>
<td>-309.8309</td>
<td>0.4340</td>
</tr>
<tr>
<td>78</td>
<td>5.84</td>
<td>-3.1314</td>
<td>-8.00</td>
<td>11.3460</td>
<td>309.8338</td>
<td>-0.4340</td>
</tr>
<tr>
<td>79</td>
<td>5.91</td>
<td>3.1316</td>
<td>8.00</td>
<td>-11.3457</td>
<td>-309.8272</td>
<td>0.4340</td>
</tr>
<tr>
<td>80</td>
<td>5.98</td>
<td>-3.1317</td>
<td>-8.00</td>
<td>11.3504</td>
<td>309.8423</td>
<td>-0.4341</td>
</tr>
<tr>
<td>81</td>
<td>6.04</td>
<td>3.1318</td>
<td>8.00</td>
<td>-11.3442</td>
<td>-309.8457</td>
<td>0.4341</td>
</tr>
<tr>
<td>82</td>
<td>6.11</td>
<td>-3.1320</td>
<td>-8.00</td>
<td>11.3473</td>
<td>309.8464</td>
<td>-0.4341</td>
</tr>
<tr>
<td>83</td>
<td>6.18</td>
<td>3.1320</td>
<td>8.00</td>
<td>-11.3480</td>
<td>-309.8502</td>
<td>0.4341</td>
</tr>
<tr>
<td>84</td>
<td>6.25</td>
<td>-3.1321</td>
<td>-8.00</td>
<td>11.3444</td>
<td>309.8515</td>
<td>-0.4341</td>
</tr>
<tr>
<td>85</td>
<td>6.31</td>
<td>3.1322</td>
<td>8.00</td>
<td>-11.3473</td>
<td>-309.8517</td>
<td>0.4341</td>
</tr>
<tr>
<td>86</td>
<td>6.38</td>
<td>-3.1322</td>
<td>-8.00</td>
<td>11.3473</td>
<td>309.8546</td>
<td>-0.4341</td>
</tr>
<tr>
<td>87</td>
<td>6.45</td>
<td>3.1322</td>
<td>8.00</td>
<td>-11.3435</td>
<td>-309.8541</td>
<td>0.4341</td>
</tr>
<tr>
<td>88</td>
<td>6.52</td>
<td>-3.1322</td>
<td>-8.00</td>
<td>11.3482</td>
<td>309.8545</td>
<td>-0.4341</td>
</tr>
<tr>
<td>89</td>
<td>6.58</td>
<td>3.1523</td>
<td>8.00</td>
<td>-11.3438</td>
<td>-309.8550</td>
<td>0.4341</td>
</tr>
<tr>
<td>90</td>
<td>6.65</td>
<td>-3.1322</td>
<td>-8.00</td>
<td>11.3473</td>
<td>309.8547</td>
<td>-0.4241</td>
</tr>
</tbody>
</table>
APPENDIX B

METHOD AND CALCULATIONS FOR
COEFFICIENT OF RESTITUTION

The following method was used to calculate the coefficient of restitution.

Reducing to single particle system equation (21) and (22) will become;

\[x_b + \frac{\pi}{2\alpha} \left(\frac{1 + e}{1 - e + 2\mu} \right) \dot{x}_b = -\frac{d}{2} \] \hspace{1cm} (B-1)

\[x_b + \frac{\pi}{2\alpha} \left(\frac{1 + e}{1 - e - 2\mu e} \right) \dot{x}_a = -\frac{d}{2} \] \hspace{1cm} (B-2)

Subtracting equation (B-2) from equation (B-1)

\[\frac{\pi}{2\alpha} \left(\frac{1 + e}{1 - e + 2\mu} \right) \dot{x}_b - \frac{\pi}{2\alpha} \left(\frac{1 + e}{1 - e - 2\mu e} \right) \dot{x}_a = 0 \]

or

\[\dot{x}_b (1 - e - 2\mu e) = \dot{x}_a (1 - e + 2\mu) \]

or

\[e (1 + 2\mu - \frac{x_a}{x_b}) = 1 - (1 + 2\mu) \frac{x_a}{x_b} \]

or

\[e = \frac{1 - (1 + 2\mu) \frac{x_a}{x_b}}{(1 + 2\mu) - \frac{x_a}{x_b}} \] \hspace{1cm} (B-3)
This gives the relation for coefficient of restitution in terms of known quantities. The ratio \(\dot{x}_a / \dot{x}_b \) is calculated from the \(X \) wave forms obtained.

Figure B1 shows the \(X-X \) wave forms for three different rubber pads used. The three pads are named B1, B2 and R.

The average ratio \(\dot{x}_a / \dot{x}_b \) is observed as follows:

<table>
<thead>
<tr>
<th>Pad</th>
<th>(\dot{x}_a / \dot{x}_b)</th>
<th>(\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2</td>
<td>0.5616</td>
<td>0.112</td>
</tr>
<tr>
<td>B1</td>
<td>0.5895</td>
<td>0.112</td>
</tr>
<tr>
<td>R</td>
<td>0.651</td>
<td>0.112</td>
</tr>
</tbody>
</table>

Now

\[
e = \frac{1 - (1 + 2\mu) \dot{x}_a / \dot{x}_b}{(1 + 2\mu) - \dot{x}_a / \dot{x}_b}
\]

\[
= \frac{1 - 1.224 \dot{x}_a / \dot{x}_b}{1.224 - \dot{x}_a / \dot{x}_b}
\]
Figure B1. X Wave Form With $\mu = 0.112$

(a) Rubber Pad B2, (b) Rubber Pad B1
(c) Rubber Pad R
\[e_{B2} = \frac{1 - 1.224 \times 0.5616}{1.224 - 0.5616} = \frac{0.3120}{0.6624} = 0.471 \]

\[e_{B1} = \frac{1 - 1.224 \times 0.5895}{1.224 - 0.5895} = \frac{0.28}{0.6345} = 0.442 \]

\[e_{R} = \frac{1 - 1.224 \times 0.651}{1.224 - 0.651} = \frac{0.203}{0.573} = 0.355 \]
APPENDIX C

GENERAL EXPERIMENTAL DATA

Primary Mass:

\[M = 4.4/386 = 0.0114 \text{ lb.sec}^2/\text{in.} \]

Natural Frequency of the System:

\[f_n = 7.4 \text{ cycles/sec.} \]

Equivalent Spring Constant:

\[K = 24.5 \text{ lbs./in.} \]

Critical Damping Ratio:

\[\zeta = 0.0146 \]

Amplitude of Sinusoidal Driving Force:

\[F = 0.49 \text{ lbs.} \]

<table>
<thead>
<tr>
<th>Ball Size (inches)</th>
<th>Weight (lbs.)</th>
<th>Mass Ratio (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Single-Particle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>System</td>
</tr>
<tr>
<td>1/2</td>
<td>0.0183</td>
<td>0.0042</td>
</tr>
<tr>
<td>5/8</td>
<td>0.0357</td>
<td>0.0081</td>
</tr>
<tr>
<td>3/4</td>
<td>0.0621</td>
<td>0.0141</td>
</tr>
<tr>
<td>7/8</td>
<td>0.0988</td>
<td>0.0224</td>
</tr>
<tr>
<td>1</td>
<td>0.147</td>
<td>0.0334</td>
</tr>
<tr>
<td>1-1/8</td>
<td>0.208</td>
<td>0.0474</td>
</tr>
<tr>
<td>1-1/4</td>
<td>0.284</td>
<td>0.0647</td>
</tr>
<tr>
<td>1-3/8</td>
<td>0.386</td>
<td>0.0878</td>
</tr>
<tr>
<td>1-1/2</td>
<td>0.495</td>
<td>0.112</td>
</tr>
</tbody>
</table>
LIST OF THE EQUIPMENT

1. 1, Frequency Generator, "RC-Generator, type Z9 060 69", Philips Gloeilampenfabrieken, Eindhoven, Holland.
2. 1, Amplifier Unit, "250 VA Amplifier, type 119567", Philips.
3. 1, Ammeter, Range 0-5 Amps, Conway Electronic Enterprises.
5. 2, Capacitance Transducers (1, type 51 D04-204 with a tuning plug type 51C02; 1, proximity Vibration Transducer type 51D11). Disa Electronik, Herlev, Denmark.
6. 2, Oscillators, type 51E02-103, Disa Electronik.
7. 2, Reactance converters, type 51E01, Disa Electronik.
8. 1, Cathod Ray Oscilloscope, type 564 storage oscilloscope, Tektronix Inc. S.W. Millikan Way, Beaverton, Oregon, U.S.A.
9. 1, Analog Computer, Electronic Pace Associates Inc.
10. 1, Amplifier Model 2616B, Endevco Corporation, Pasadena, California.
11. 1, Accelerometer Model 2221, Endevco Corporation.
12. 1, Oscilloscope Camera C-12 Serial 007109, Tektronix, Inc., Portland, U. S. A.
APPENDIX D

COMPUTER PROGRAMMES

PROGRAMME 1

1. With proper change in read statements the same programme was used for computing the effect of different parameters.

2. By inserting the write statement x and x, at proper place, results were obtained for phase-plane plot.

PROGRAMME 1 and 2

3. Replacing statements C_3 and C_4 by \(\sigma_1 \) and \(\sigma_2 \), with formulae for single-particle system, the same programme was used for single-particle system computations.

PROGRAMME 3

4. The same programme was used, for the system without fluid with proper change in formulae.
C TWO PARTICLE IMPACT DAMPER
C STEADY STATE SOLUTION
C TO STUDY THE EFFECT OF COEFFICIENT OF RESTITUTION
READ%5,2,FF,D,U,E3
WN%1,0
W%1,0
R%W/WN
AFF/SQRT%1.*R*RA**26%2.*D*RA**4
ETA#SQRT%1.*D*4
RP#3,14/R
DRP#-D*RP
ERP#ETA*RP
EX#EXP*DRP
SI#SIN*ERP
CO#COS*ERP
H1#EX*SI
H2#EX*CO
TH1#WN*EX% D*SI*ETA*CO
TH2#WN*EX% D*CO-ETA*SI
DO 50 IN1,1
DO#0,0
READ%5,2,H,E
U1#2,*U
WRITE%6,1FF,D,E,U1,R,A
ALPO#3,14*E3/%1.*6E3
C9#%1.*E3/%3.*6E3
CIU%-1.*63.*E3/%3.*6E3
AK7#%E-UH/%1.*6E4
AK8#%1.*6UH/%1.*6E4
AK9#%1.*6UH/%1.*6E4
AK14#%1.*E4/%1.*6E4
C19#ALPO63.*14*C9/2.0/%W%AK7*C1UAK84
C20#ALPO63.*14*C9/2.0/%W%AK9*C1UAK104
SG1#C19
SG2#C20
N#U
10 ROH#DO/A
N#NG1
IF%N*GT.1000 GO TO 25
GAP#0/FF
ARG#H**264. ROH**2
IF%ARG*L,T.U.,U GO TO 25
ARG#SQRT%ARG
TO1#ATAN%-2.*ROH&H*ARGD/%-ROH*-2.*ARGD

TO#T01
11 S#SIN%T0D
CW#COS%T0D
BN#DO/2.*%SG2-SG1*C
BN1/BN**1.6H2e
BN2#/BN#H1
AN#DO/2.*H1*%SG1*TH2-SG2*W*N*D=#%SG1*TH16ETA*SG2*WN#*%1.6H2uH
WT#UJ
X1#UJ0
15 XBYA#EXP%-D*wT/RO/AN%BN1*SN%ETA*wT/Ru6BN2*COS%ETA*wT/RO6SN%WT&
1 TO1
1 IF%ABS%X1B.GT.ABS%XBYAGO TO 20
X1#XBYA
20 IF%WT.GT.3.14GO TO 21
WT#WT&v.02
GO TO 15
21 WRITE%6,1BTO.X1.GAP
24 DO#DO%v.02
GO TO 10
25 WRITE%6,3B
50 CONTINUE
1 FORMAT%5X.8F10.4B
2 FORMAT%5F10.4B
3 FORMAT%7.5X.27HGAP TOO BIG,UNSTEADY MOTION /H
STOP
END
003727 M D SHAH
$1BFTC
C TWO PARTICLE IMPACT DAMPER
C STEADY STATE SOLUTION
C FREQUENCY RESPONSE
C
1. VARYING MASS RATIO
2. VARYING GAP FACTOR
3. VARYING COEFFICIENT OF RESTITUTION

DIMENSION FREQ%25-

READ IN PARAMETERS
READ%5,2%FREQ%10,1#1,230
READ%5,2%FF%D,E3
DO 50 J#1,42
READ%5,2%E,U,DO
GAP#DO/FF
U1#2.*U
WRITE%6,1%FF,D,E,U1,GAP
WN#7,4*6,28
DO 50 1#1,2
W#6,28%FREQ%10
R#W/WN
A%FF/SQRT%1,-R%RO**26%2*D%RO**2
ROH#DO/A
ETA%SQRT%1,D*D-
RP#3,14/R
DRP#D*RP
ERP%ETA*RP
EX%EXP%ERP0
SI%SIN%ERP0
CO%COS%ERP0
H1%EX*SI
H2%EX*CO
TH1%WN%EX%D*SIG%ETA*CO0
TH2%WN%EX%D*CO0
ALPO#3,14*E3/%1,6E3
C9#1,-E3D/%3,6E3
C1U#-1,63,%E34/%3,6E3
AK7%E-9D/%1,6E0
AK8#1,6U/%1,6D0
AK9#E%1,6D%/1,6E0
AK10#1,-U*ED/%1,6ED
C19#ALPO63,14*C9/2,0/%W%AK7*C10&AK8*U
C20#ALPO63,14*C9/2,0/%W%AK9*C10&AK10*U
SG1#C19
SG2#C20
H#2.0/%W%SG2-SG1*H1&SG1*SG2*%D%WN-TH2**H1&SG1*SG2%TH1ETA*WN-U**%11*H2**%D*SG2*WN-SG1*TH2**H1&SG1*TH1ETA*SG2*WN-U**%11*H2**
C CHECKING FOR THE REAL ROOTS
ARG#H**264* RÜH**2
IF%ARG•LT.0* UBDGO TO 25
ARG#SQRT%ARGH
T0%ATAN%-%2.*RÜH%H*ARGH%-%RÜH%H-2.*ARGH
S%SIN%T0%U
C%W*COS%T0%U
BN#/DO%Z.**SG2-SG2%C
BN1#BN%-%*G2%BN2%-BN%H1
AN#DO%Z.**H1**SG1*TH2-SG2*WN*DO-%SG1*TH16ETA*SG2*WN%*%1.*G2%H2%U
WT%U%O
X1%V.0
15 XBYA#EXP%-%D*WT/RG/AN**BN1*SIN%ETA*WT/®H6BN2*COS%ETA*WT/®H6SIN%WT6
1T0%
IF%ABS%X1E. GT.ABS%XBYA*UBGO TO 20
X1#XBYA
20 IF%WT.GT.3.145GO TO 21
WT%WT6.02
GO TO 15
21 X#X1* A
WRITE%6,1*FREQ#I* WR* X1*A*TO
GO TO 50
25 WRITE%6.3D
50 CONTINUE
1 FORMAT%5X.8F10.4D
2 FORMAT%5F10.4D
3 FORMAT%7.5X.27HGAP TOO BIG•UNSTEADY MOTION /U
STOP
END
$JOB
$IBJOB
$IBFTC
C IMPACT DAMPER WITH FLUID
DO 60 MD=1,4
C READ IN PARAMETERS
READ(5*4)WN,D,U,E,W,FF,DO,U1
4 FORMAT(8F10.4)
R=W/WN
IF(R.EQ.1.0) GO TO 6
PSI=ATAN(2.*D*R/(1.-R*R))
GO TO 8
6 PSI=1.57
8 A=FF/SQRT((1.-R*R)**2+(2.*D*R)**2)
WRITE(6*4)U1,R,E,U,D,FF,DO,A
IF(DD/A.EQ.2.0) GO TO 60
C INITIAL CONDITIONS
ETA=SQRT(1.-D*D)
TI=0.0
XI=0.0
YI=0.0
DXI=0.0
DYI=0.0
YY=DO/2.0
T=TI
MM=0
XX=0.0
DO 50 I=1,250
AK=0.01
XI=0.0
C SOLUTION BETWEEN TWO CONSECUTIVE IMPACTS
EI=XI-A*SIN(W*TI-PSI)
DI=(D*EI+DXI/WN-A*R*COS(W*TI-PSI))/ETA
N=0
5 T=TI+AK
X =EXP(-D*WN*(T-TI))*(DI*SIN(ETA*WN*(T-TI))+EI*COS(ETA*WN*(T-TI)))+
1+A*SIN(W*T-PSI)
Y=-U1*X+YI+U1*XI+(DYI+U1*DXI)*(T-TI)
C CHECKING IF THE NEXT IMPACT IS REACHED
ARG=DO/2.-ABS(Y)
IF(ABS(X).LT.0.0) GO TO 7
X1=X
7 IF(ARG.LT.0.0) GO TO 10
AK=AK+0.01
N=N+1
GO TO 5
10 IF(Y.GT.0.0) GO TO 11
YY=-DO/2.
GO TO 12
11 YY=DO/2.
12 CONTINUE
9 FORMAT(3F10.4)
 K=0
C NEWTON-RAPHSON METHOD FOR SOLVING TRANSCENDENTAL EQUATION
14 T2=T
 M=0
15 T3=T-TI
 WNT=WN*T3
 DWNT=-D*WNT
 IF(ABS(DWNT)*GT*.85.0) GO TO 50
 EW=ETA*WNT
 EX=EXP(DWNT)
 SI=SIN(EW)
 CO=COS(EW)
 FT=-YY-U1*(EX*(DI*SI+EI*CO)+A*SIN(W*TI-PSI))+YI+U1*XI+(DYI+U1*DXI)*
 1T3
 DX=EX*(ETA*WN*(DI*CO-EI*SI)-D*WN*(DI*SI+EI*CO))+A*WN*CO;*W,*-PSI)
 FDFT=-U1*DX+DYI+U1*DXI
 T1=FT/FDFT
 T=T-T1
 IF(ABS(T1)*LT.0.0001)GO TO 21
 IF(M*EQ.100)GO TO 22
 M=M+1
 GO TO 15
22 WRITE(6,2)
 GO TO 48
21 YI=YY
 IF(T. LT.TI)GO TO 49
 COMPUTING THE CONDITIONS AT IMPACT
20 XI=EXP(-D*WN*(T-TI))*(DI*SI*ETA*WN*(T-TI))+EI*COS(ETA*WN*(1-TI))
 1+A*WN*(W*TI-PSI)
 DX=EXP(-D*WN*(T-TI))*(ETA*WN*(DI*COS(ETA*WN*(T-TI)))-EI*SIN(ETA*WN*
 1(T-TI)))-D*WN*(DI*SIN(ETA*WN*(T-TI)))-EI*COS(ETA*WN*(T-TI)))+A*WN*
 20S(W*T-PSI)
 FDFT=-U1*DX+DYI+U1*DXI
 DXI=DX+U*(1.+E)/(1.+U)*FDFT
 DYI=-E*FDFT
 TI=T
 XI=X1/A
 IF(ABS(ABS(XX)-ABS(X1))*LT.0.00001) GO TO 70
 XX=X1
 GO TO 71
70 MM=MM+1
 IF(MM.GT.10) GO TO 60
71 WRITE(6,1)I, TI,XI,YI,DXI,DYI,X1
 GO TO 50
49 WRITE(6,3)
48 T=T2+0.2
 K=K+1
 IF(K.GT.15) GO TO 50
GO TO 14
50 CONTINUE
60 WRITE(6,1)I,T,X,Y
1 FORMAT(I5,F10.2,F10.4,F10.2,F10.4)
2 FORMAT(5X,4AHMETHOD DOES NOT CONVERGE IN 50 ITERATIONS)
3 FORMAT(5X,2AH FOUND LESS THAN TI)
STOP
END
$ENTRY
$IBSYS
REFERENCES

