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NOMENCLATURE

A Displacement Amplitude of the Primary System in the
Absence of the Impact Damper.

Ap Displacement Amplitude of the Primary System in the Absence
of the Impact Damper, at Resonance.

C Inherent Equivalent Viscous Damping of the System.

Cop Critical Damping, ZJKM

d Clearance in Which the Particle is Free to Oscillate.

e Coefficient of Restitution Between Container and mjs

i=1,2.

ey Coefficient of Restitution Between m].and m2.

Fo Maximum Force of Excitation.

K Spring Constant.

M Mass of the Primary Vibrating System.
m Mass of Particle.

m' Added Mass Due to Fluid.

my ) Mass of Each Particle in Two-Particle System.

v Frequéncy Ratio, é%}

{4 Time .

U i S

) Absolute Velocities of Particles, as Defiﬁed in Figure 2.2,
W

X Dishlacement of M.

XO Static Deflection, FO/K.

'XR Displacement of M, at Resonance.

Y] [isp]acemént of Particle.



¥ Relative Displacement of Particle with Respect to M.
Zi Displacement of Particle My s ¥ = 1.2,
< Phase Angle Between Exciting Force and the First Impact.
g Critical Damping Ratio, C/Cppe
/,'4_ - Mass Ratio, m/M = m]+ m,
M 2

M, Mass Ratio, m__

m o om
My Mass Ratio, myj . mp

MM
$ Gap Ratio, d/A
L Density of Fluld in 1bf. Sec.Z/ft.t
b Phase Angle (due to damping).
3 Phase Angle, T = &=
2 Natural Frequence, \/}_’\m
£ Forcing Frequency.

e



I INTRODUCTION

1.1 HISTORY

The Impact Vibration Absorber, or Acceleration Damper,
reduces the vibration of a mechanical system through momentum
transfer by collision and conversion of mechanical energy into
heat. = A typical unit, Fig. 1.1, consists of a mass particle
constrained to oscillate in a container which is fixed to the
primary vibrafing system. The effectiveness of the damper
depends not cnly on the dissipation of energy in impacts but also
on how the relative motinn of the mass particle is tuned with

respect to that of the container.

Paget []]* was a pioneer in making experimental study of
this damper. The free vibration of a simple harmonic oscillator
attached with an impact vibration absorber was first investigated
by Lieber and Jensen [2]. They considered cenly perfectly plastic
impacts between the small mass and its container, and predicted
theoretically that the maximum energy will be dissipated in a cycle
when the container length is » times the amplitude of response.

Results from exneriments with lead spheres varified this theory.

Grubin [3] solved the viscously damped forced vibration

problem by assuming that the impacts occured twice per cycle at

* Humbers in squre brackets designate reference at the end of the thesis.



wioa jshs 10 jePOW i -b14

,‘U

=
Mo

=

JUUIS Y ]

WWWWW
A

VA AV AY AV ALY AV AV AY AT
(54
¢

KX

THETETETETTENRNRSRRR



equal time intervals and by summing the effects of many impacts. It
Qas shown that these assumbtions result in two possible solutions
but it could not be shown which one of these prevails, without
solving the problem by a more exact but long numerical impact to

impact method.

By introducing an unknown phase qng1e into the applied
harmonic force and assuming steady state of-two equispaced impacts
per cycle and neg]ecting the inherent camping in the system,
Arnold [4] analysed the problem. His experimental evidence did

not agree with the theory.

A considerably simpler method for deriving the sclution
for two impacts per cycle motion, which requires only the consider-

ation of two successive impacts, was suggested by Warburten [5].

Masri [6] has reported the stability analysis for two impacts

per cycle solution and experiments with mechanical model and
e]ectric—ana]gg simulation. Application of the stabilitv criteria
developed by him is numerically extensive because of the complicated
functional dependence of the stability boundaries on the system's
parameters, A very simple stability criterion for these solutions,
neglecting the inherent damping in the system, was developed by
Egle [10], and was used to determine the dependance of the stability

boundaries on the parameters of the system.
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The effectiveness of the impact damper on nonlinear

systems is to be found in a recent work by Jha [18].

On the experimental side, the feasibility of using impact
damping to reduce vibrations of such diverse systems as ship hulls,
cantilever beams, single degree of freedom systems, and turbine
buckets was investigated by McGoldrick [13], Lieber and Tripp [14],
Sankey [15], and Duckwald [16]. Eastabrook and Plunkett [17]
made an analytical study of impact damping in turbine buckets.
Kaper [9] has reported the use of the impabt damper in reducing

vibrations of the reflectors of television receiving antennae.

A1l the previocus investigators have reported excessive

noise level while the impact damper is in operaticn.

1.2 OBJECTIVES

The objectives of the present study are to:

| Extend and complement the werk of other investigators in
this field.

i Study experimentaliy the general response of the damper
to a wide range of its parameters including effect of the

coefficient of restitution.

. Investigate the behaviour of the two-particle impact damper.

4, Make the system usable in practice by reducing the noise
level.

5. Study the effect of fluid resistance on the motion cof the

mass particle.
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The objectives were accomplished by conducting experimental
studies of two-particle and single-particle impact dampers.
Coefficient of restitution e; Massfratio u; and Gap-factor d/xo;
are the three parameters which were changed during the course of
. the experiments and their effects were observed. Coefficient of
restitution was changed by using different rubber pads at the
container ends where the collision occurs. The effect of friction
was chserved by allowing the mass partic]e'%o oscillate in a container

filled with fluid.

" The theoretical analysis and computed results are given in
Chapter 2. The experimental procedure and apparatus are first
described in Chapter 3 and then the results are plotted. The
discussion is given in Chapter 4 and conclusions drawn from this

investigation are stated in Chapter 5.



2  STEADY STATE SCLUTION

2l TWO-PARTICLE IMPACT DAMPER

The idealized model considered is shown in Figure 2.1.
The equation of motion of primary mass 1, between impacts,
following the method suggested by Warburton [5], becomes
MX + CX + KX = £ Sin(t +<). (1)

and its complete solution is -

X = e"’d—-ws [B; Sin ?Zl'ﬂf -+ Bg Cog IZQ)[_’] o+ ASU? (_{?ﬁ&..l. 7\) (2)
where d - C/Ccn ; CCr.= 2 ﬂ,\u“,'.;]*

W =Vkm p= Ji-d2

ro= Jz/zg

A= Fo /f{
10-r2)% +(247)?

T = & -

@ = tan’! 2dr

1-r2

It is assumed that the two particles ) and m, are identicai

and that each particle has a single degree of freedum. Furthermore,

it is assumed that, if there is a collision between, let us sav,

m and the right hand side of the container at time t = 0, then the
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next impact will occur at t = &~ between the two particles. At

Qt = 7, there will be a collision between m, and the left hand side
of the container; and at Qt = 7+ , the two particles will
collide again. The phase plane representation of the corresponding

periodic motion is shown in Figure 2.2.

The duration of impact is very small compared to the
natural period of the primary system, hence it is reasonable to assume

that at t = 0, the positions of M, m. and ﬁ, remain the same while

their respective absolute velocities are discontinuously changing.

To summarize, the system should satisfy the foilowing

conditions:

t X X Z, Z, Z, z,
s d ”
RCE A I ST W 2, Ry
0 X X 94y U 7 -V
s % a | 7t % 4
& (2)
(%) 7 U 7 Y
3 3
Mo
(F), Z Vo zg -
I i v |- Lo g
(). % X | =24 ViI-7-X% W
7 _y . B _d 4
AR EN X, | -2, V|- 8- x U
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Since the motion of the system during impact must satisfy

the momentum equation, then

= WX, + miZi+_ (4)

1'1X_ + l’ﬂ_i Z]

where 1 = 1 or 2 depending on the impinging mass particle, and for

impact between the two mass particles;

iy Bty . =il 08 Ta,
| : (5)
or Z]_ + 12_ = Z]+ t Ly,
and from the definition of ccefficient of restitution,
X =Ty, -3 3
Xe = Zig e(k_ - Z4) (6)
similarly for impact between two masses
Z]+ = Zz_i_ = -63(21- = Zz_) (7)
In steady state motion absolute speed of the particle is
constant between impacts and can be given by,
d . o 1)
U {73 " (‘2— + /\b)} :.‘-; (8)
_ . 1
-V = {23 - 24} aa (9)
= [_ _ 8 A
V= { 7.4 Z5) =" (10)



Q
+ 74} (11)

'!T"'CLO

% %

W= {4 b)

NN

From equations (5), (7) and using conditens 1in (3) ,

it

V-u (12)

-e4(U + V) | (13)

Uu-yVv
V+1U

1"

substituting U, V, W in equation {13) from equations (8), (9),.

(10) and (11) we get, -

((2+ b) 4}”_% ey {-(4+ %) + Z =
or e 4 €z
”-e(e “0

OCQ = ﬁ-ea (]4)
|+ €, :

Using ecuations (12) and (13)

3+8 ‘
W= - ;:i‘;gu = C, U (16}
where
£y LK
I 2+ €,
= o [+3€
Cz JTot3



Substituting W and U from equations (8), (11) into equation (16)

d UL - 3
{(2~+xb) Z % c, {z-(§
or d _ c d
(4 + X, ) + Z3 = ?3-2{“(—‘,2-+xb)+zs)
or
d . » c (
(z*%)(1+32) = & 3*-')
b — (_C_{_ + X )(Cg-l'eg
3 ' 2 b cznes_)
2
Z3 - (g- ¥ Xb) .L.:_.Qé_.__._) (17)

2

From equations (8) and (17),

U = (_qf_+x_){ 283(3+€3) _Q
- 1+ Gey + &f
= (4, x ( 263 (3+6) Y
U (2 % 'b) 2€5(3+€3)+ [~ 632 }“’Ca
/ |
U = -(2+ ¥ : === (17-a)
(2 b) r (/.;.ea)(,.. e3) } o<y

283 (3+e3) Y
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Using equations (14) (15) and (17-3);

J

(=]
2 - i / oy '
= e 2N (12)

simplifying equations (4), (6) to obtain relations for primary
mass velocities before and after impact explicitly in terms of mass-particle

velocities,

o = (e-Hp) i (1+42) 2, (10)
1+ e
N o= elItM)Z + (1= Hpe) Z, 20
! I +e . Gl
where n Wiz d LTS LYY
,( = LA . O ahn A o G .
= W w M

Now from equations (16), (18), (19) and (3) at t = 0,

Xp = (KCo + ky)U

where
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" »L/«’
and KZ % o

: d o (K, € + K
xb = -(_2_..}—’)(6){ (I;ﬁ 2)

< + 74

2
/7C!
{ oo - d

Xy + X B = a5 21
b i_Q_,KC ,,,,2)} b 2 _ (21)

similarly from equations (16), (18), (20) and (3) at t = 0,

VAN .
- el + 7.’. } )/ n N Q’_ (22)
b B - | =
2. (K3€z +Ky) <
where
K3 - C»I ';7;/‘2)
and K - [=Abe
¢ 7 TT+e

An expression describing the velocity of M can be cobtained
by differentating equation (2) with respect to t.
Thus
X = -Ja)e-dwt([;.’ Sin ywl + By ICoslgwf.)

4 5ot ( 8, 1w Cas peot - B, 0 Singet)+ AS. cos(at+T) (23)

From equations (2), (23) and using conditions (3),

X(0,) = Xy = By + ASin(T) (24)



n({/" - 7) 5 -
X{( - ). }*- - Xp = e”z»"‘j(i?, Sin /3/? + B, Cos 7% ) -ASin(T) (25)
X(04) = Xq == d08;, + B + A Cos(T) (26)
ar
X{(L } - % = -gwe” [8 SinqL + By Cos 0 ]
d'ﬂ'
+ qwe’ [ § Cos 2o = By Sin /g..-_/
- AS.?L Cos CT) (27)
From equations (24), (27), (25), (26), (21), and (22),
Xp -~ B2 - 3A g D

Xb + 9,3; + @‘28‘2 -CA =0
'X‘b e h, 8! ot hz 82 - SA =0

Xg =~ w8 +dwby —CA =0

. (22)
X, + €5 X .- d
5 T 3 ‘b 5
Xp T C‘i Xe & - )
where 5 = Sin(T) ; C = £2Co8(T)
-4r | _€r '
& ; Sty
h, = e’ Sin pZ 3 h, = e’ Cos ;-‘7?2'
7C
£ e ot + 250
L« (k,C, +K3)
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g
= we” [-dSin /2-;’; + 1 Cos rgl;]

-¢
= c’,’)er[-JCOS"Z—;[ - ’251'!?12—5-

Equation (28) can be put in the form of matrix,

: = (‘
0 0 0 -1 -S Xb 0 ‘\
0 1 -nw Sw ~C Xb 0
0 0 h] h2 -S Xa 0
R PR 0 € <B =< 0
2 1
] (29)
C3 0 -0 0 0 82 -d/?2
0 ¢C 0 0 0 ( A -d/2
4 i \
From these equations A, B], and 82 in terms of the known
parameters can be cbtained. Thus
% v NéA) (30)
H(B])
R] B (31)
N(B,
B, = _Ewéz. (32)
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where  N(A) = L[h(Cy &-Co08)  (C4 6+ 78, @(1hy)]
N(8) = Llmh)(c, -c;5)C
N (82)= 9 (5~ C4)C

A = h[CCC,-C3)-(s+ce,)ca0,+(5+CC5)dwCy ]

+(1th)[(s+CCy)C36 + (S CC5) qw Cy ]

Equation (30) can be put in the form

25inT + HCos?T = -9 ..... (33), where = Z‘d.and

H :zsz.(ffclf ~C3)+ C5Cy (S ~62)]h, + [C5Cq (01 0)](1+43)
[dCs O = C36:]h +[C36 + €4 @OT (i hy)

Solution of equation {31) for T results in:

“29 FH (e -g2

H? + 4

Sin ¢ =

Cos T = _—SH F 2 {H+4-42
Hew 4

-1 =20 F H P4 492
™ = tany _.__._-._n]
~SHF 2 [Hi+ 4 -5

(34)

In order to have real values for sin T and cos 7. the clearance
;]

d cannot be arbitrarily large; it should satisfy the relation
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325 H+ 4 . The physical interpretation of this restriction
is that.,for d exceeding this limit, the actual system will not have

a four-impacts per cycle steady state motion.

With the value of T determined from equation (34), B, and B,
can be found from equations (21) and (32),and with the help of

equation (2) the motion of the primary mass is determined.

Without introducing damping, the behaviour of damper at
resonance (r=1) can be determined by putting r = 1 + ¢ and letting

e » 0, It is found that

X _ (FZ L d ) Cos ot~ (1=€=2/8)T Sinwt ~Leot Sin wt (35)

where X = Fo/K o<Wt &7
Differentating equation (35) with respect to wt, it can

be shown that the maximum displacement occurs when wt = /2, if

d _ ._’Lz ' (36)
X - /«-(h{{2

From equation (35), the maximum displacement occurs at

wt = /2,

X = rir+4)(1-e)
S P VATTD.

(37)



2.2 SINGLE-PARTICLE IMPACT DAMPER

Following the method of Warburton [5], complete solution of
the system is derived by Masri [6]. The equation of motion of

the primary mass M between two impacts is

MX + CX + KX = F Sin(at + )

and its complete solution is

X = g9 [8, Sinquwt + By Cospet | + A Sin(t +T)

where d, ), ,A and r are as defined before and B] and 82

are unknown constants.

Evaluating equation (38) and its derivative at £t = 0 and
T » and by using the definition of coefficient of restitution and
the momentum equation, we obtain six relationships invelving the six
unknowns x_, %y » ia’ By» B, and T. The value of By, B, and T
in the present case will be given by equations (31), (32), and (34)
if their constants C

3, and C4 are replaced by the new constants

6; and ¢ respectively
where

6 = I l+e
298 | -€+24

a [+ & i m
0, * e and 5
2 "0 T-e-zue L

(38)
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2.3 EFFECT OF VARIOUS PARAMETERS

Using the steady state solutions of section 2.1 and 2.2, to
study the effect of various parameters, computation was done with
the aid of digital computer IBM7040, at the computing center of
the MclMaster University. The computer programmes written in

FORTRAN IV language are given in Appendix D.

The two sets of sign appearing in equation (34) correspond
to two distinct steady state solutions. The upper sign is used
in computation, as suggested by previous investigators, since only

a part of the curve with upper signs results i @ stable solution.

A check is introduced in the computer programmes which
ensured that %% < #%4 and hence real valtues for T. Violation
of above condition resulted in a note stating that thc gap d is

too big and the motion is unsteady.

In Figure 2.3, two-particle and single-particle systems are
compared for various mass-ratios. It is seen that single-particle

system is twice as effective as that of two-particie systenm.

In Figures 2.4 and 2.10, effect of coefficient of restitution
is plotted. In both the systems it is seen that increase in value
of e increases the efficiency of the damper, provided that the proper
gap d is selected. Even with the value of e = 0 for both
single-particle and two-particle systems the maximum reduction in

amplitude is 59% and 42% respectively. It is observed that for
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e=1, the curve is V shaped; as e decreases the curve becomes flati.
It is worth noting that the efficiency of damper in this range of
optimum performance - where the curves are flat - is not sensitive
to the parameters of the damper, so that a small change in these
parameters will not affect the performance of the damper in an
appreciable manner.

" Figures 2.5, 2.9 show the effect of mass-ratio on the
effectiveness of impact damper for two particies and single particle
systems, respectiveTy.

Figures 2.6, 2.7 are response curves for various gap-factors
and mass-ratios for two-particle system.

Figures ?.8 (a), (b), (c) and (d) show X-X phase plane diagrams
computed, for twe-particle system, for four points as marked in figure 2-3.
For these four phésé plane diagrams, gap is varied keeping all other
parameters constant. It is noted that the change in gap changes the
amplitude and the position of impacts. For the optimum gap factor
the impacts occur near the peak velocity, causing the greatest possible
dissipation of kinetic energy.

As the Sing]e-partic]e impact damper is found to be more
effective, its computed results are summarized in Figures 2.11 and
2.12. The former curve shows the variation of the optimum gap-factor,
at which maximum reduction of amplitude ratio is achieved, for various
mass ratios. This shows that the optimum gap-factor decreases

continuously with the increase of mass-ratio. The second curve shows

the variation of minimum amplitude ratio, i.e. at optimum d/xo, for
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various mass-ratios. This curve shows that the amplitude ratio
"decreases with the increase of the mass-ratio until a certain limit

after which any more increase in M is not advantageous.



3 _EXPERIMENTAL STUDIES

31l EXPERIMENTAL TECHNIQUE

A schematic diagram of the mechanical model used and a
photograph of actual structure are shown respectively in Figures
2.1 and 3.2 (a), (b) and (c).

Since the response of a single degree of freedom oscillator
is not altered when the excitation is applied either to the base
or directly to the mass , the former type 0f excitation was used in
this case, as a matter of convenience.

The mass M fs primarily a rectangular box with adjustable
stops as its_ends, that constrain the movement of the free mass
particle M to oscillate within a certain clearance. The free mass
particles used are hardened-steel balls, of the type normally used
in ball bearings.

The base of the structure was excited by a vibration
exciter. The electro-magnetic coil of the exciter was energized
through an RC-generator and amplifier. The voltage and frequency
supplied to the exciter could be controlled with the help of RC-
generator.

The relative displacement of the primary mass, with respect
to base, was measured with the help of a transducer which converts
the variations of displacement into variations of capacitance. The

transducer thus acts as an electrical reactance which varies in accordance

N
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with the phenomenon to be measured (displacement in our case). The
fluctuating reactance of the transducer is connected in series with
a fixed reactance of a tuning plug to form an electrical resonant
circuit, the resonant frequency of which determines the operating
frequency of an RF Oscillator. Thus change in physical quantity
to be measured is converted to a frequency shift in the signal
de]ive}ed by oscillator. The frequency modulated signal is

fed to the reactance converter which in turn is converted to a

d.c. voltage pulsating in accordance with the said signal., Output
of reacCtance converter is connected to the d.c. coupled oscilloscope
amplifier, which amplifies the pulsating d.c. voltages and its
output terminals are connected to the Cathode-Yay-tube, The
output on the screen of oscilloscope was calibrated by giving a
known disptacement to the transducer. Appropriate adjustments
were made on reactance converter to insure that it was operating

in a linecar region.

The velocity wave form for the primary mass wes cbtained
by integrating the output of a piezoelectric acceleronctler attached
to the primary mass. The integration was accomplishoed by an

integrating network and an operational amplifier.

A Tist of the equipment used is given in Appendix C.
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3.2 TWO-PARTICLE IMPACT DAMPER

Figure 2.1 shows the mechanical model used to obtain
experimental results on the impact vibration absorber. These
experiments were motivated by the desire to investigate the various
aspects and effectiveness of two-particle impact dampers and to
compére their behaviour with those of equivalent single particle

dampers.

The effects of various parameters of the impact damper, viz
K, i% and e were investigated when the vibrating system was in a
state of forced vibrations. Amplitudes of vibration of the system
were measured on the screen of the oscilloscope for various

excitation frequencies and the response curves of the system are

plotted.

Figures 3.3, 3.4 are the two sets of response curves
obtained by keeping the mass ratio A& constant for each set, and
varying the gap-factor d/x,. With the increase in damping'the
peak shifts to lower values of r. After optimum gap is reached
there is a decrease in dahping and peak is expected to shift towards
higher velues of r. The response curve for the vibrating system,

without inserting the free mass, was also
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obtained experimentally and is shown superimposed on the response
curves with impact damper to demonstrate the effectiveness of the

impact damper.

Similarly, Figures 3.5, 3.6 are the two sets of response curves

keeping d/x0 constant for each set and varying &« .

At resonance, the ratio of amplitudes with the impact dampér
in and out of action, for various va]ues'of_ A 5 are plotted versus
th? gap-factor d/xog in Figure 3.7. A curve shown in dotted
line for sing]e—partié]e systém with M = 0647, is also shown

superimposed in Figure 3.7.

By making the single-particle and two-particie systems
equivalent, i.e. by using same d/xo and 4 in both cases, 2 set of
response curves are plotted as Figure 3.8, to compare the behaviour

of the two systems in the frequency range.

In Figure 3.9 response curves for different values of coefficient
of restitution, e, for constant 4 and d/x0 are shown. Figure 3.10
shows the effect of e on the amplitude of vibration, for complete

range of d/xo.

The coefficient of restitution was varied by using different
rubber pads at the ends of the container where the mass particle
collides. The method and calculations for coefficient of

restitution is given in Appendix B.
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In case of two-particie impact damper, it is observed that,
when steady state motion is established, the symmetric four impacts. per
cycle motion predominates and confi rms the validity of assumption
in theoretical analysis, as shown in phase plane diagram in Figure

2vls
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3.3 SINGLE-PARTICLE IMPACT DAMPER

These sets of experiments were motivated by the desire to.
investigate the possibility of reduction of roisc level, reported
by previous investigators, due to fhe impacts between hard surfaces.
For this purpose different Butyl rubber sheetings, supplied by
Polymer Corporation, were used as soft material at the ends of the
contéiner where the mass particle collides. The effect of wide

range of various parameters, ViZ. %b’ M, and e, were also

investigated.

Figures 3.11, 3.12 are two sets of response curves, for the
single-particle system, obtained by keeping # constant for each
set and by varying d/xy.  Similarly, response curves are plotted

in Figures 3.13, 3.14 for constant d/x0 and varying u in each case.

Figure 3.15 is a summing up of results and the curves show
the effect of varying the gap-factor on the amplitude ratio XR/AR,
for various mass ratios at resonance. An optimum gap-factor is
observed in this set of curves for each & . However, an optimum
gap could not be reached for highest mass ratio A= .112, since the
beating started eaf]ier. This can be explained by the fact that the
higher is the value of A more energy the free mass will require to
travel through the specific gap.

Effect of difference values of e, on amplitude ratio for the

entire range of gap-factor is plotted in Figure 3.16.
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3.4 SINGLE PARTICLE SYSTEM WITH FLUID

This set of experiments was motivated by the desire to study
the effect of friction on the motion of mass particle. To accomplish
this, the container was filled with fluid and the mass particle was
allowed to osciliate between two stops. The fluid resistance
gave the effect of friction on the mass particle. The fluid
used was No. 1 diesel oil, supplied by Texaco, with density (pf)

equal to 1.562 1bf. secz/ft4 and kinematic viscosity equal to 4.9 x_]O’4

ftz/sec.

Amplitude ratio Xp/Ap 1is plotted versus the gap-factor /x>
for various mass ratios, in Figure 3.17. A curve, with p =0,0666
and without fluid in the container, is shown superimposed in the
same figure to compare the effects. Response curves for the
equivalent systems, i.e. keeping u and d/x0 same in both systems,
with and without fiuid are plotted in Figure 3,18, to compare the

effect in the complete frequency range.
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4 DISCUSSION OF RESULTS

By examining the various response curves, it is seen that
the peak - whiéh is always present'— moves to the lower value of
r as u increases. Before the peak is reached, the amplitude
is generally slightly abbve the amplitude without impact damper. After
the péak amplitude is reached the damper is really effective and
the amplitude is always less than that without the impact damper.
This is in - agreement with the theoretical prediction.
One more point to be noted is that, with constant d/xo, the peak
amplitude decreases constantly with increase in . However,
after a certain value of u, any further increase in the value of
u.does not necessarily increase the proportional effectiveness

L.

of the damper. It is generally seen that thc damping tends to
smooth out the sharpness of the undamped curves for amolitude

response.

It can be seen from Figures 3.7, 3.15, 3.16, that with the
increase in gap from zero the damper becomes more effective.
This situation confinues until an entimum condition is reached,
after which the peak amplitude of vibration increases with increase
in gap. The points on the extreme right of the curves in
Figures 3.7, 3.15 and 2.16 are for the gap-factor beyond which
any increase in gap resuilts in erratic behaviour or 'beating' of

the damper. This stems from the fact that the energy imparted

O



to the free mass at one impact is inadequate to force the free

mass to the opposite end of the damper container. The free

mass then starts to oscillate while the amplitude of the primary
system builds up until subsequent impacts occur between the damper
container ends and the vibrational amplitude decreases subsequently,
resulting in a vibration wave form that resembles that of the beating
phenomenon-Pictures of the beating phenomgpon are shown in Figure

4,1 (a), (b), which indicates the building up of amplitude while

there is no impact.

Figures 4.2 (a), (b) are photographs taken from the screen
of the oscilloscope, showing the reduction in amplitude when the
impact damper comes into action. Two photographs show the

effect of two different mass-ratios as marked on the figures.

Figures 4.4 (a), (b), (c), (d) show the phase plane diagrams
obtained by experimentation with a different pair of u and d/xo.
Various X-t and ¥-t wave forms are shown in Figures 4.3 (a), (b),
(c) and (d). These were obtained from the screen of the
oscilloscope for different values of d, for the same value of u.

It is observed that two impacts per cycle,with the stops, occur

at equal time intervals. This behaviour'is observed to repeat
for wide range of parameters for which impact damper is in action,
so it justifies the assumption of equispaced impacts in analytical
derivation. The actuai wave form of the response is sinusoidal,

and the assumption that the velocity changes discontinuously is
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Jjustifiable . This is seen in Figures 4.3 and 4.4.

It is to be noted that a change in gap changes the position of
impact and for optimum gap the impacts occur near the peak velocity.
This shows that at resonance, when the optimum damping is called
for to improve the behaviour of the vibrating system, the impacts
occur when the velocity of the vibrating system is maximum thereby

causing the greatest possible dissipation-of kinetic energy.

It is clear from Figures 3.7, 3.15 that the increase in u
causes a decrease in maximum gap-factor that can be reached before
beating sterts. Simiiarly, optimum gap cdecreases, and, for the
same gap, more efficient behaviour of the damper is achieved. This
is to be expected since increasing the free mass weight will cause -
higher dissipation of energy from the vibrating system in order to

traverse the free mass through this specific gap.

From Figure 3.16 it is seen that increase in value of e improves
the performance of the damper for wide range of gap-factor.
However, for smaller gap - where the damper is not so efficient -

the effect of fincrease in e is not favourabie.

In Figures 3.7, 3.8, two-particle system is compared with
the single-particle system for the mass ratics marked on the figure.
The behaviour of the two systems are qualitatively similar for the
range used, The comparision of the two systems shows that, if

the same total mass is used in both cases, the single
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particle damper is more efficient than the two-particle damper for

‘a complete range of frequencies and gap-factors.

A1l through the experiments, rubber pads were used at the
stops. The biggest gain in the system, with single-particle
impact damper, is that the noise is eliminated and hence the
1mpa¢t damper becomes more practical in light of its use in the
presence of human beings. =

It i1s noted in the case of the two-particle impact damper, that

in spite of use of rubbef pads, the system is still noisy due to the

intermediate impacts between two mass particles.

Due to thé resistance of the fluid on the motion of mass
particle, the system is less efficient in its purpose of reducing
the amplitude of vibration. . These experiments suggest that
the impact damper is effective even in the presence of fluid and
that there is a little reduction in noise. However, the use of
the fluid in the container, for such a damper, is not recommended
because of two reasons. Firstly, noise reduction is not significant
compared to loss of efficiency. Secondly, the presence of fluid
complicates the design and maintenance of the damper which otherwise

~is quite simple.

The experiments generally tend to confirm the theory and the
behaviour is qualitatively comparable. The amplitude at

resonance is markedly reduced while the amplitude at frequencies



close to resonance is larger. For frequencies above resonance

there is no indication of increased amplitudes.



5 CONCLUSIONS

As a result of the experimental investigation, the following

conclusions could be made.

1. Experiments with rubber pads at the ends of the container
indicate that the system behaves similarly to one with rigid
Qtops. - In this system noise is eliminated, as the impact

is on éoft surfaces. A1l the previous investigators have
reported excessfve noise level while the damper is functioning;
with the use of this system and by proper selection of the soft
mgteria]s (with high coefficient of restitution), the damper

becomes less noisy and hence more practical.

Choosing a practical value of u, say .1 to .2, and
materials giving high coefficient of restitution, it will
be seen that the use of the correctly designed impact damper

considerably reduces the vibrations at resonance.

2. With higher value of e, the efficiency of the damper

improves.

3. Experiments with a pair of mass-particles in the container
show that even if the same total mass is used in a single-
particle as in two-particle impact damper, the former will be

more effective in reducing the amplitude of vibrations.
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4. In the case of the two-particle impact damper, the
intermediate impacts between two mass particles, makes the

system noisy and hence for continuous operation will require

muffling. This is true even if rubber pads are used at the
ends.
5. Experiments with the mass particle moving in a fluid

suggest that the friction forces acting on the mass particle -

are detrimental to the efficiency of the damper.

6. The significant advantage of the impact vibration
absorber over the conventional dynamic absorber is the reduction
of the amplitude of the primary system both at resonance and

at higher frequencies.

1y Since in practical applications the resulting amplitude
rather than the existence of stable periodic motions is of prime
concern, the impact damper fulfilled its role even when its

motion was not steady.

8. Some of the main advantages, of impact damper, would
be the relative simplicity of installation, maintenance and

facility of variation of damper parameters.



With more investigation and development, the future :
-of the impact damper appears quite promising. For further
studies, it would be worth considering the effects of various
soft materials as impacting surfaces and two-mass particle

system with each particle in a separate channel.
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THEORETICAL SOLUTION FOR THE SYSTEM WITH FLUID

The equation of motion of primary mass M, between impacts,
is

Y C>':+('=- i
MX + KX ro sinat (a1)

when the mass particle is oscillating in the container filled with

fluid the equation of motion for mass particle, between impacts, is

aa 1 d
m}’+'2-'pf”

w

-y = -nk (42)

oo

or
Tm+ )y = X

1 “dg
where m' = 05 g added mass due to fluid.

The complete solution of equaticr (41) is,

-5'\ o . .
X=¢e “t[u]s1n net + 82 cos nwt] + A sin (ot - )

(43)
using the initial conditions at impact,
= X, . X(t.) = X, , ts B
X(ti+) Xi + X( 1+) Xj, the constants P] and 82
can be evaluated,
Differentiating the equation (43) w.r.t. ¢,
i = enéwt[~5w8 sinnet - SwB.cosnwt + nwBycosnwt - nwb,sinnwt]
1 2 o e (44)

+ Aacos (at - v)



Substituting initial conditions in (43) and (44),

X ed'wt[[Ei Sin /?ojtt. & D‘- Cos "ZCJL"]

g
it got [Ex Cos noot; - D‘- Sin qwé[]
where E; =X, = ASin (et - w)
D, = é- [JE‘ o+ _f_f_)!-_ = AI"C‘oS(.Q.tL‘—lp)]
Hence s (t-t)
X = e ’ [Dc Sin puw(t-&) + E; Cos qw(t—ti)]

+ ASI‘n (‘Q-t ~ Q’) (45)

For the solution of equation (42), using the initial conditions

at the time ‘ciJr immediately after ith impact,

X(t1.+) = Xi 5 X(‘ti-l~) = Xi 4
Y(t].+) = Y1. . Y(t].+) = Y1.
Integrating twice equation (42)

(m + m')jl = -mx + C]

1}

(m+m')y = -mx + ¢t + G,

Applying initial conditions
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C] = (m+m )Yi X, and
- ' . . y 4 v L
C, (m +m )Yi o, ' {(m +m )Yi mX 3t
Hence
(m+m")y = -mX + mX; + (m + m')yi
+ {(m+m)y, o+ mkY(e-t, )
letting
M o=_m
1 m+ m'
TRl L M ALY F (Y, +4 %) (t-t) (46)
i

i i 1 i

In equation (42) potential flow analysis is used. This
has been justified* by several reported experimental investigations
condueted in water and other low viscosity fluid, as in our case,
and in such cases viscous effects are negligible and results weuld
easily be within one percent of potential flow solution.

The solutions (45)and (46) are valid only up to t

(1 + 1)-*
time dmmediately before next impact. From the impact conditions,

* Reference: "Added Mass of a Sphere in a Bounded Viscous Fluid"
by McConnel and Young, Journal of Engineering Mechanics Division,

August 1965, page 263.
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= & T

K(E(g 4 194) = XE(5 4 gy

(47)
Y+ 1)e) = VeG4 ).

: _ v (1 +e
X(tes 4 qye) = X(Eg5 4 qy) Ea_;;ﬁ)y(t(]. s 1))

§(t(i + ])+) : 'ey(t(i + 1)-)

Using the new initial conditions from equation (47) the solution
can be obtained for the time interval t(i + 1)+ to t(i + 2)-
This procedure can be continued and the motion can be determined

from collision to cellision.

A digital computer programme for this method is given in
Appendix D. A check is introduced in the programme so that when
the periodic solution reaches steady state conditions, the programme
would then discontinue that solution and start constructing a new

one correpsonding to a new set of parameters.

A typical digital computer output for two systems with and
without fluid is given in Appendix AII. The two sets of curves
obtained from similar computation are shown as Figures (A1) and (A-2)
Experimentally obtained curves, with and without fluid, for the same

parameters, are superimposed in figure Al.
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APPENDIX B

METHOD AND CALCULATIONS FOR
COEFFICIENT OF RESTITUTION

. The following method was used to calculate the coefficient
of restitution.
Reducing to single particle system equation (21) and (22)

will become ;

w [+ e ’ S |
Xb 4 2.(2.([—81'-2/())("’ - 2 (B 1)
I 4 [+ € V . "
XO G 2-‘7-‘ I"@"Zﬂﬁ)xﬂ ;_'; (B ?)

Substracting equation (B-2) from equation (B-1)

7_(1+e o _ [ |+e N
20 lre+2,u)xb 20 /~'€~2/ze> Xg =0
or Xp (1-e -24e) = X,(1-€ +24)
- Xa i 1o Y X
or e((+24 £ ) =1 (1+24) 72

) X

5 Vd ( ‘72/1} _)qu_——_
{+ - Xay,

( 2/() a/xb

or

£ (B-3)

<o
B



This gives the relation for coefficient of restitution in

terins of known quantities. The ratio Xa/i is calculated
b

from the X wave forms obtained.

Figure Bl shows the X-X wave forms for three different

rubber pads used. The three pads are named Bl, B2 and R.

The average ratio xa/Xb is observed as follows:

Pad >'<a/><b u
B2 : .5616 112
B1 .5895 : 112
R .651 112
Now
8- = Johieas)Ren,

(l+2A9-—X7%

%
=224 5

Xb




Figure BI.
(a)
(c)

(c)
i Wave Form With y = 0,112
Rubber Pad B2, (b) Rubber Pad B1
Rubber Pad R
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. L= 1,224 x 5616

87

1.224 - .5616

1 - 1.224 x 5895 _

1.224 ~ .5895

1 - 1.224 x .651 _

= «8120 " ey
.6624
28 - o auap
6345
. A

1.224 - ,65]

573



_APPENDIX C

GENERAL EXPERIMENTAL DATA

Primary Mass:

M= 4.4/386 = .0114 1b.sec?/in.
Natural Frequency of the System:

| £y, = 7.4 cycles/sec.

Equivalent Spring Constant:

K= 24.5 1bs./in.
Critical Damping Ratio:

& = .0146

Amplitude of Sinusoidal Driving Force:

F = 0.49 1bs.
Mass Ratio ()

Ball Size Weight Single-=Particle Double-Particle

(inches) (1bs.) System Systen
1/2 0.0183 0.0042 0.0084
5/8 0.0357 0.0081 0.0162
3/4 0.0621 0.0141 0.0282
7/8 0.0988 0.0224 0.0448
1 0.147 0.0334 0.0668
1-1/8 0.208 0.0474 0.0948
1-1/4 0.284 0.0647 0.1294
1-3/8 0.386 0.0878 0.1756
1-1/2 0.495 B.112 0.2240
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LIST OF THE EQUIPMENT

| 1, Frequency Generator, "RC-Generator, type 79 060 69",
Philips Gloeilampenfabrieken, Eindhoven, Holland.

Z. 1, Amplifier Unit, "250 VA Amplifier, type 119567", Philips.
K 1, Ammeter, Range 0-5 Amps, Conway Electronic Enterprises.
4, _ 1, Vibration Generator (exciter)", Moving Coil Vibration

Generator Model 790", Goodmans Industries Ltd., Wimbley,

England. ol

B 2, Canacitance Transducers (1, type 51 D04-204 with a tuning
piug type 51C02; 1, proximity Vibration Transducer type
51D11). Disa Electronik, Herlev, Denmark.

6. 2, Oscillators, typne 51E02-103, Disa Electronik.

i 2, Reactance converters, type 51E01, Disa Electronik.

8. 1, Cathod Ray Oscilloscope, type 564 storage oscilloscope,
Tektronix Inc. S.W. Millikan Yay, Beaverton, Oregon, U.S.A.

9. 1, Analog Computer, Electronic Pace Associates Inc.

(R 1, Amplifier Model 26168, Endevco Corporation, Pasadena.
California.

33 1, Accelerometer Model 2221, Endevco Corporation.

12. 1, Oscilloscope Camera C-12 Serial 007109, Tektronix, Inc.,
Portland, U. S. A.



APPENDIX D

COMPUTER PROGRAMMES

PROGRAMME 1
1. With proper chahge in read statements the same programme was
used for computing the effect of different parameters.
2. By inserting the write statement x and x, at proper place,
results were obtained for phase-plane plot.
PROGRAMME 1 and 2

3. Replacing statements (3 and 4 by ¢, and o,, with formulae
for single-particle system, the same programme was used for

single-particle system computations.
PROGRAMME 3

4, The same programme was used, for the system without fluid

with proper change in formulae.

~N
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PROGRAMME 1

003727 M D SHAH

$IBFTC
(% TWO PARTICLE IMPACT DAMPER
(@ STEADY STATE SOLUTION
C TO STUDLY THE EFFECT OF COEFFICIENT OF RESTITUTION
READ%S 1 2HFF +DsUWES
WNAH1 e 0O
WH L el
RAW/WN

A#FF/SQRT%%]1 e —R¥RUX*2 X2 ¢ ¥DHRU*#2H

ETA#SQRT%1e Dx*LH

RP#3e 14 /R

DRPH# =D *RP

ERPAE TA¥RP

EXH#EXPZ%4DRPO

SITHSIN®ERPO

CO#COSKERPO

HIAEX*S] Sl

H2#EX¥CO

THIAWNH¥EX*% D*¥SIGETA*COO

TH2HWN*EX*% D*¥CO-ETA¥*SIO

DO SC [#1s1

DO#UL U

READ%S s 2HE

Ul#2e%U

WRITE%64+ 1OFF sDsEsULl sR9A

ALPO#3e14*E3/%1 « GE3D

CO#%] « —EBL/ %3 e GE3H

ClU#=%] « G3 e *E3U/7%3 e GE3H

AKT7RBE-UH/%]1 o GER

AKBH#% 1 «65UL/%]1 e GEH

AKOAE* %1 « GUH/ %1 o GEH

AKIUK %] « —UXEU/%1 « GEDO

ClY9F%ALPOES3 e 14%CO9/2 e 0/ %WHUAKT*ClUEAKBOH

CR2UHBALPOG3e 14%CO/2e O/ BWHHAKO¥CIUGAK1OHE

SG1#C19 ‘

SG2#C20

HH2 e ¥ WH %% %USC2—SG1lUESG 1 #SC2¥UDHWN=TH2HO¥H]1 6%SG1 ¥SGC2%¥%TH1 GETA#WNHE %%

11 e6H2O00/%%L%*SC2 % WN=SG1#TH2U*¥H]1 G%SG1I*¥THIGETA*XSG2¥%WNH*%1 « GH2EU

N#O ' ;
10 ROH#DO/A

NANEG 1

IF%NeGTel0COOD GO TO 25

GARP#DO/FF

ARGHHA¥*26G4 « ROMA¥*X2

IFAARGeLTeLevnGO TO 25

ARGH#SQRT%ARGH
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TOIHATAN%%=2 « ¥ROHGH*ARGO /% —ROH¥*—2 ¢ ¥ ARGH

TO#TO1 g
11 SASIN%TOO

CRW*COS%TOR

BN#DO /2« ¥%S5G2-SG 1 H*C

BN1ZBN¥*% 1 e &GH20O

BN2A#—BN#*H 1

ANHDO /2 ¢ ¥ %H1 ¥ %SG 1 ¥ TH2 =SG2* WN¥DHU=4SG1*¥THIGETA#*SG2%WNE*% 1 « GH2HH

WTHYeU

X1#Jae 0
15 XBYARXEXPZ=D*¥wT/RO/AN¥*%BN1¥SINKETA¥WT/RUGBN2¥COSKUETA¥WT /ROUGSINAWTE

1TOo

IF%ABS4X10eGT e ABSZXBYAOOGO TO 2V

X1#XBYA
20 IF%WT eGTe3e140G0O TO 21

WTHWT GV .02

GO TO 15
21 WRITE%6,10TOsX1sGAP
24 DO¥DLOGuU.LZ2

GO. TO: 10
25 WRITE%6,3H
SU CONTINUVE T
FORMAT%AS5X+s8F 10401
FORMAT#A5F 10e400
FORMAT%/ +5X s 27HGAP TOO BIGsUNSTEADY MOTION 74
STOP
END

W -
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PROGRAMME 2

uu3727 M D SHAH

$IBFTC

c TwO PARTICLE IMPACT DAMPER

(S STEADY STATE SOLUTION

C FREQUENCY RESPONSE

C loe VARING MASS RATIO

C 2o VARING GAP FACTOR

c 3e VARING COEFFICIENT OF RESTITUTION

DIMENSICON FREQ%25%

READ IN PARAMETERS

READ%S s 2U%FREQ%x IO [#1 200
READ%S s 2HFF s D3

DO 50 J# 142
READ%S s 24z U DO

GAPH#DO/FF

Ul#2e%U
WRITE%60, 1OFF +DsEsULl s GAP
WNHT e 4%6 ¢ 28 e
DO DU [#1s2

WHO « 28%FREQ% I O

C

RAW/WN
ARFF/SURT%%] ¢« =R¥RO¥H*26%2 ¢ ¥DFRO* %20
ROH#DO/A

ETA%SQRT%1e D*DH
RP#3e14/R

DRP# =D %RP

ERPH#E TA*RP

EX#EXP%ERPO

S I#5S1N%ERPO

CO#CO S%ERPDO

HIAEX*S]

H2H#EX*CO

THIAWN¥EX%% D*SIGETA*COD

TH2AWN*EX*% D#COM

ALPO#3e 14%E3/%1 « GE3D

CON%] e —E30/%3 e GE3L

ClU#=—%1 e 63 %BEBH/ %3 e GEBL

AKTHAE=UD /%1 « GED

AKB8A% 1 « GULO/ %1 « GED

AKGHE*%1 « U/ %] « GED

AK1U#%1 e —U¥ELD/%1 e 6ED

ClO4%ALPOG3 ¢ 14%CYO /2 e O/ UWHUAKT*C1OGAKBHH
C2UH%ALPOES3e 14%CO/2e O/ %WH%AKO*C1UGAK 1 0DOD

SG1#C19

SG2#C20

HH2 o ¥ WH %% %SG2=SC1O6SG 1 ¥SGR2¥%D* WN—TH2HE*H1 %SG 1*SG2¥ % TH1 6ETA¥WNHU*%
11 e&H2OO/%%D%*SG2¥WN=SG1¥TH2H*¥H1 G%SG1*THI GETAXSG2%WNH*X%1 o EH2LHH



CHECKING FOR THE REAL ROQOTS

ARGHH¥¥254 ¢ ROM**2

IF%ARG«LTe0enGO TO 25

ARGHSQRT % ARGH

TOHXATAN%%=2 ¢ ¥ROHGH* ARGLE /% =ROH%* H=2 « ¥ ARGH L

SHSIN%TOMO

CHA*¥COS%TOO

SNHDO /2« ¥%65G2-56Ga*C

BN1#BN*%1 «&H2O

BN2A#—=BN¥*H1

ANFOO /2 « ¥%H 1 ¥%5CG 1 ¥ TH2-SG2* WN*DU=%SG1#*#TH1GETA¥SG2%WNH*% 1 o GH2HH

WTHU 6O

K1V 0
15 XBYAREXP%=D¥*¥WT/RO/AN*¥XBN1¥SINKETA¥WT /REEBN2HCOSKETA¥WT /ROUGSINAWT G

17T0O

IF%ZABSAX I E«GT e ABS%XBYAKOGO TO 20

X14#XBYA
20 IF%WT «eGTe36140G0 TO 21

WTHWTGEU L 02

GO TO 15
21 XEX1*A
WRITEHO 1 #FREQHI¥*¥sWsR X X19ATO
GO TO 50
WRITE%6 .30
5 CONTINUE
FORMAT%ASX +8F 10 e 4L
FORMAT#%5F 104D
FORMAT%/ 45X+ 27HGAP TOO BIGsUNSTEADY MOTION /4
STOR
END

urn
QN =Ccu
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Programme 3 95

$JoB 003727 M D SHAH

$IBJOB NODECK

$IBFTC

c IMPACT DAMPER WITH FLUID
DO 60 MD=1s4

C READ IN PARAMETERS

READ(594)WNsDsUsEsWsFFsDO»U1
4 FORMAT(8F10e4)
R=W/WN
IF(ReEQele0O) GO TO 6
PSI=ATAN(2e*D*¥R/ (1le~R*R))
GO TO 8
6 PSI=1.57
8 A=FF/SQRT( (] e=R¥R)%*%¥2+(24%D¥*R)*%2)
WRITE(694)Ul9sR9sEsUsDsFFsDOsA
IF(DO/AeGTe2e0) GO TO 60
C INITIAL CONDITIONS
ETA=SQRT(1le=D¥%D)
TI=060
XI=0.0
YI=0e0
DXI=0.0
DY1=0.0
YY=D0/20
T=T1
MM=0
XX=0.0
DO 50 I=15250
AK=0.01
X1=0s0
G SOLUTION BETWEEN TWO CONSECUTIVE IMPACTS
EI=XI=A*SIN(W*TI=PSI)
DI=(D*EI+DXI/WN=A*R*COS(W*TI~-PSI))/ETA
N=0
5 T=TI+AK
X =EXP(=D*WN*(T=TI))*(DI*SIN(ETA*WN*(T=TI))+EI*COS(ETA*WN*(T=T1)))
1+A¥SIN(W#T=PST)
Y==Ul%X+YI+U1*XI+(DYI+U1%DXI)*(T=T1)
C CHECKING IF THE NEXT IMPACT IS REACHED
ARG=D0/2.-ABS(Y)
IF(ABS(X1)eGTeABS(X))GO TO 7
X1=X
7 IF(ARGeLT«060)GO TO 10
AK=AK+0401
N=N+1
GO 70 5
10 IF(YeGTe0e0) GO TO 11
YY==D0/2e



11
12

14

15

22
2.1

20

70
71

49
48

96

GO TON 12

YX=DO/2 o

CONTINUE

FORMAT(3F10e4)

K=0

NEWTON=-RAPHSON METHOD FOR SOLVING TRANSCENDENTAL EQUATION
T2=T

M=0

T3=T=-T1

WNT=WN#*T3

DWNT==-D*WNT

IF(ABS(DWNT) «GTe8560) GO TO 50

EW=ETA%*WNT

EX=EXP(DWNT)

SI=SIN(EW)

CO=COS(EW)
FT==YY=U1%(EX#(DI*SI+EI*CO)+A*SIN(WH*T=PST))+YI+U1*XI+(DYI+Ul1*DxXI)*
1T3

DX=EX#* (ETA¥WN*(DI¥CO=EI#SI)=D*WN* (DI*¥ST+FI#CO))+A*nw*¥CO0n¥* ,=Po1)
FDFT==U1l%DX+DYI+U1l%DX]I

T1=FT/FDFT

T=T=T1

IF(ABS(T1)eLTe0,0001)GO TO 21

IF(MeEQe100)GO TO 22

M=M+1

GO TO 15

WRITE(692)

GO TO 48

YI=YY

IF(TeLTSTI)GO TO 49

COMPUTING THE CONDITIONS AT IMPACI
XI=EXP(=D*¥WN*(T=TI))*(DI*SIN(ETA*WN*(T=TI))+FEI*COS(ETA*WN*(I1=1T)))
1+A#SIN(W*T=PST)
DX=EXP(=D#WN*#(T=TI))*(ETA*WN*(DI*COS(ETA*WN*(T=11))=EI*SIN(EIA*WN*
1(T=TI)))~D*WN* (DI*SIN(ETA*WN*(T=TI))+ET*COSIEIA¥WN*( 1=1T))) ) +A%wkC
20S(W*T=PSI)

FOFT==Ul#DX+DYI+U1l%DXI

DXI=DX+U%(1le+E)/(le+U)*FDFT

DYI=—-E*FDFT

Tl=T

X1=X1/A

IF(ABS({ABS(XX)=ABS(X1))eLTo0400001) GO TO 70C

XX=X1 . 2

GO TO 71

MM=MM+1

IF(MMeGT410) GO TO 60

WRITE(691)IsTIsXIoYIsDXIsDYIsX]

GO TO 50

WRITE(633)

T=T2+0.2

K=K+1

IF(KeGTel5) GO TO 50



A N

50
60

SENTRY
$IBSYS

97

GO TO 14

CONTINUE

WRITE(691)1sTsXsY

FORMAT(I59F10e29F10e45F10e293F10e4)

FORMAT (5X+41HMETHOD DOES NOT CONVERGE IN 5u I+ERAIIONS
FORMAT(5X9s2/HT FOUND LESS THAN TI)

STOP

END

)
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