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ABSTRACT

The free and forced, undamped, transverse vibrations
of a beam, with one end clamped and the other supported on a
non]inear spring, have been studied. Theoretical analysis has
been carried out for two different cases of springs, viz.; cubic
nonlinear and bilinear types. For the study of forced vibrations
the exciting sinusoidal force has been considered to act at the
spring-supported end of the beam. The analysis is an
approximate one since it involves the solution of nonlinear
boundary value problems. Theoretical results for the bilinear

case have been compared with those obtained experimentally.

It has been shown that free vibrations can occur in
an infinite number of frequency ranges and each of the frequencies
of free vibration corresponds to a definite modal configuration.
The results of forced harmonic response reveal the possibility
of multiplicity of jump phenomena in the frequency ranges of
free vibrations. However, in the case of bilinear spring
jump phenomena may not occur if the amplitude of exciting force
is above a certain value. Furthermore, in the case of cubic
nonlinear spring it has been demonstrated that subharmonic

vibrations can occur in an infinite number of frequency ranges.
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NOMENCLATURE

Distance along fhe beam from fixed end, inch
Lateral deflection of any point on the beam, inch
Young's Modulus of Elasticity, 1bF/in?

Mass density, 1bm/in?

Length of beam, inch

Cross sectional area of the beam, 1n?
Area moment of inertia, in?

Mass of beam, 1bm

End mass; 1bm

(E1/9 a)%, in?/sec.

Constant of a linear spring, 1bf/in.
Nonlinearity constant of a cubic nonlinear spring,
1bf/in3

Deflection of bilinear spring at which spring
constant changes, inch

Constant of bilinear spring for deflection £ y
1bf/in. . °

Constant of bilinear spring for deflection >> Yo
1bf/in.

Amplitude of sinusoidal exciting force, 1bf
Restoring force of spring, 1bf
Frequency of excitation, rad./sec.

5 oL -1
(«2/c)™, inch
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x/L

Amp]itude.coefficient of harmonic component of
response

Amplitude coefficient of third order harmonic
component of response

Amplitude coefficient of one-third order
subharmonic component of response

Dimensionless amplitude of vibration at x

Dimensionless harmonic component of deflection
of spring supported end

Dimensionless third order harmonic component of
deflection of spring-supported end

Dimensionless one-third order subharmonic
component of deflection of spring supported end

Yo/l
AL
Ky L3/ED
5
Ky L /EI
Ky L3/EI
3
Ky L3/EI

.m/M

FL2/ET
?
Fo LE/EI
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1. INTRODUCTION

1.1 GENERAL INTRODUCTION:

The beam vibrations involving Tinear boundary
conditions have been dealt with in a number of references
[i,2,3,41°. Solution in closed form can be obtained for
problems with homogeneous boundary conditions. Techniques
have already been developed to solve the problems involving
time dependent boundary conditions [5,6,7] . Saito [9]
analysed the forced lateral vibrations of a beam, with a
concentrated mass, mounted on parallel elastic supports at
each end. Similar work has been done by Miller [10} considering
damped flexible end supports. Springfield and Raney [11]
made theoretical and experimental investigations to find the
optimum parameters of end supports. Lee and Saibel [8]
developed a general expression to find the frequency equation
for the vibration of a constrained beam with any combination
of intermediate elastic or rigid supports, concentrated masses

and sprung masses.

* Numbers 1in square brackets indicate references given in
bibliography.



In all the above cases the boundary conditions are
Tinear, i.e. they can be expressed by linear equations.
However, there may be some systems for which the boundary
conditions are nonlinear, for example, a beam on nonlinear
supports. The behaviour of sﬁch systems can still be des-
cribed by linear partial differential equations, but the
nonlinear boundary conditions cause difficulties in the

analysis.

Porter and Billet[12] have made an approximate
analysis for the vibrations of a uniform bar in Tongitudinal
motion. One end of the bar was fixed and the other was
anchored by means of a cubic nonlinear spring. Their results
show that the system exhibits nonlinear oscillations if the

boundary conditions are nonlinear.

1.2 OBJECT AND SCOPE:

The object of the present investigation is to study
the vibration of a beam with one end clamped and the other
supported on a nonlinear spring. It is proposed to analyse
the system with two different types of springs:

(i) cubic nonlinear ( Fs = Kpy + Ky y3 ) and

(i1) bilinear springs.

The forced vibration response is to be determined with
sinusoidal excitation provided at the end to which the spring

is attached.



The survey of literature indicates that no work has
been done on the above problem. It is expected that this study
will be useful from both academic and practical points of

view.

The theoretical analysis carried out for this
problem is given in chapter 2. An experimental study has been
made for the case of bilinear spring, the details of which
can be found in chapter 3. The results and conclusions of
this work are giveh in chapter 4. For a cantilever beam with
linear spring support at its free end, the variation of natural

frequencies with the spring stiffness is reported in appendix I.

1.3 A BRIEF HISTORY OF NONLINEAR VIBRATIONS:

Basically all the problems in mechanics are nonlinear
from the outset. The linearizations commonly practised are
approximating devices that are quite satisfactory for the
practical purposes. However, there are certain cases in which
linear treatment may not be applicable at all. The phenomena
of nonlinear vibration have long been recognized, but the
recent developments in the theory and methods of nonlinear
analysis have been stimulated by the works of Duffing and

Van der Pol.



Since exact solutions in terms of known functions

" can be found for only a few nonlinear equations, most of the
available references [13, 14, 15, 16] are concerned with
obtaining approximate solutions. A1thdugh a large number of
approximate analytic methods exist, most are applicable only
to a small class of problems, and in general they require that

the nonltinear parameter be small.

For systems in which the nonlinearity is relatively
large, approximate analytic methods are in general inadequate.
Ergin [177 developed a line segment approximation for nonlinear
systems, and found that for some problems involving even large
nonlinearities, only two line segments were enough to give
sufficient accuracy. Application of this method was made to a
single degree of freedom system having a cubic nonlinearity in
the spring force and subjected to various transient

excitations.

Den Hartog and Mikina [18] have found the solution
of single degree mass - spring system with initial set in the
spring. A general case of bilinear spring has been considéred
by Den Hartog and Heils [19] . The solution was found on the
assumption that the motion curve is symmetrical every quarter
wave. Some investigators [20, 21, 22] who considered

hysteretic, bilinear, single degree of freedom systems, found



electronic ana]og computers extremely useful for response
prediction. Brock [25] has presented a simple jterative
procedure employing numerical integrations for the analysis

of single degree of freedom systems having nonlinear elasticity.
Soroka [24] considered the free vibrations of two degree freedom
system with nonlinear unsymmetrical elasticity. Such a system
is characteristic of aircraft propeller super-charger
jnstallation. The results show that one mass may oscillate
several times while the other mass is going through one
oscillation. The ratio of amplititude of one mass with respect
to the other changes with amplitude. Ehrich [23, 26] has
indicated that the clearance between shaft and rotor provides

bilinear elasticity which can cause subharmonic vibration.

Rosenberg [27] has defined the concept of normal
modes in nonlinear multi - degree of freedom system. The
problem of finding the modes reduces to a geometrical
maximum - minimum problem in an n - space of known metric.

The solution of the geometrical problem reduces the coupled
equations of motion to n uncoupled equations whose natural
frequencies can always be found by a single quadrature.

PasTay and Gurtin [28] have found the vibration response of a
linear undamped system resting on a nonlinear spring. Caughey
[29] has analysed the forced oscillations of a semi - infinite

rod exhibiting weak bilinear hysteresis. Tauchert and Ayre [30]



have found the shock response of a simple beam on nonlinear
supports. The transient response was obtained by considering

Tumped mass system and applying numerical methods.

The dynamic analysis of ﬁon-]inear continuous
systems and multi-degree freedom systems has received less
attention than single degree of freedom systems although
several specific problems of this type have been investigated
as mentioned above. The main reason for the Tack of literature
on non-linear continuous systems seems to be the difficulty

of analysing them.
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2. THEORETICAL ANALYSIS

Figure 2.1 shows the schematic diagram of the system
considered for the present investigation. It consists of a
uniform beam which is clamped at one end and attached to a
nonlinear spring at the other end. The beam is of length L,
cross sectional area a, mass density © ,and flexural rigity EI .
The sinusoidal exciting force (F sinwt) is acting at the
spring - supported end which also carries a concentrated mass

m .

F sinwt} END MASS

s L Vam
Z Y
7 e T IS
m
Z =
VY
/ ks
Z NONLINEAR SPRING Jf;%
7Tiiriii7
y
y

FIGURE 2.1 : SCHEMATIC DIAGRAM OF THE SYSTEM



Neglecting the effects of shearing forces and
rotory inertia, the differential equation for the transverse

motion of the beam can be written as follows:

4

2 ¢ . 22 ?_i‘é; _

CES BT 3¢2 - ©

4

L P S o S SO (2.1)
where, c? - E_T/pa_

The four boundary conditions are:

1 at X = o , Yy =0 L (2.2)
a = O ot
2 at X% ? °d =R © R (2.3)
Kep4
2
3. at %2 =1L Ca:] = o T (2.4)
%’
4 at x = L 1]
3 2
b ¥
El ___._EI_; = Fg 4+ m ’(_).,5}? — F siqeot
o™ 0t
........ (2.5)

where, Fs = Restoring force of spring at time t



Any solution of the problem must satisfy these

four boundary conditions and equation (2.1).

2.1 CASE OF CUBIC NONLINEAR SPRING:

In this section the spring considered has a cubic non-
linearity. The restoring force of such spring can be expressed

by the relation:

Fs = Koy + K y3 (2.6)

where Kp and K, are positive constants of the spring.

The spring described by (2.6) has symmetrical odd
characteristic , i.e., Fs(y) = - Fg(-y), as shown in figure

2.2 .

FORCE

DEFLECTION

FIGURE 2.2 : RESTORING FORCE CHARACTERISTIC OF
CUBIC NONLINEAR SPRING
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For this case equation (2.5) becomes;

at x =1
3 3 Y
EY —— = K + K + m —%  — F sinowt
2 td " d 2t?
........ (2.7)

2.1.1 Harmonic Response:-

For the steady state motion of the system, the
solution of equation (2.1) has to satisfy the boundary
conditions (2.2), (2.3), (2.4) and (2.7) . To obtain a

harmonic solution of (2.1), let
HOL L)Y = X sim vt ool (2.8)

If (2.8) is to be the solution of (2.1), it follows
that X(x) must satisfy the equation:

4
d X 2
- - i§% X =0
d o’ <
A 4
or Ql&,%% - A X =0
d
4 w?
where » oz /2
and
X(x) = G eoshA2 4 ¢ sih A G cos AX

4+ G Sin AN
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From the conditions (2.2) and (2.3)

C3 -z - C|
Ca =~ C2
hence,
X(x%) = € (coshdX — cosDX) + G ( sinh AX — SinAX}

The condition (2.4) requires that

_ CDS"\ > L 4+ Ccos >IL .
C2 - = * Ci
gimh DL+ Sin AL

For simplicity, let

cosh DL+ cos AL

i

A

B Sivh JL 4+ sim AL -
C = cosh 2L — cos L
D

giph AL — Sl

12

X(x) = & [(— cosh Ax ~ cos A) ~ %(simh Ax - smAx)]

........ (2.9 a)
Dividing this by L
N Ay . s §
X‘X’ = C—?\ [( cosh Ax — cos >u‘l) - E(Slﬂh A - :,an);)()J
........ (2.9 b)
where, Xy = EESQEQ , dimensionless amplitude
L of vibration at x
C amplitude coefficient
Cg = = ’
W L

In (2.9 b) taking x = L ;
AD

2 - €. (Cc —- DX N o 2.1
Xoo = Gy (C—*«g) (2.10)
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where, X_ = Dimensionless amplitude of deflection of
spring supported end
The condition (2.7) will determine the remaining

constant cj. Substituting (2.9 a) in (2.8) and then in (2.7);

2~ ’ .
EI ¢4 AS(D - %) sin ol = KRC,(C——A;E?) sin wt 4

3 3 3
Kn ¢7(¢- 22) sin ot -
\mwzc‘(c—/i@.) sin wi
B

—F sin wt
Putting this equation in dimensionless form:

3 BD - A° 3
N7 Xa BC —AD simwl = o Xq sinet 4 B Xo Sin> b
- #Xafﬁ sin wt -~ P sinwt
where,
n = Al , dimensionless frequency parameter
L3
A = §<Q - , constant of spring (dimensionless
ET " stiffness at zero deflection)
2
B = Kiq =7 constant of spring (dimensionless
E nonlinearity parameter)
poo= -%2- , mass ratio
L?
Pz F = dimensionless exciting force
gr > " J

Now using the relation

- 2 .
sin " wt = Z" S\Y\wt - 1 S(hau«?t
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in the above equation;

3 BD- A, 3P U3 4 ( D
[—Q- m }<Q - O(XQ - Z—— Xa + -S)-/.an W’P] s oL

+ ﬁ— B Xc% smawt - 0 0 .ol (2.11)
For the assﬁmed solution (2.8) to be exact, the

coefficients of Sinwt and sin 3wt in (2.11) should be separately
zero. However, the coefficient of sin3wt will vanish at all
frequencies only in the linear case B= 0 (i.e., K, = 0), so the
assumed solution (2.8) is only an approximate one for the
nonlinear case P # 0 . In fact an exact solution will contain
harmonics of higher order. This has been analysed in the next
section. To ensure the approximate va]i&ity of (2.8), the
coefficient of Sineot in (2.11) should vém‘sh9 i.e., Xz must
satisfy the equation:

3 ad _40° gp-p2 407 ]X _ 4k
_ _ = 0
Xa ¥ [%B 5B Bc_AD  3g /17% 2B

Equations (2.9), (2.10) and (2.12) determine approximately
the frequency response of the cantilever beam supported on a

nonlinear spring at the free end and carrying an end mass.

In the linear case ( B = 0), the equation (2.12)

yields:

P | 0
- T e 2.13
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The natural frequencies of free vibration of the
beam with linear spring and an end mass can be obtained by
solving the equation;

5 .
3 BD = A 4
— ¢ —— — = 0  ceeeno (2.14)
of < BC -AD L /i

For the case with no end mass, the frequency equation is

3 pp - A?
- L R - 0
d BC - AD

However, in nonlinear case B # 0, (2.12) is a cubic
equation and, therefore, yields either one or three real values

of X, depending upon the value of frequency parameter £,

The backbone curves for the free oscillations in the
nonlinear case can be obtained by putting P = 0 1in equation

(2.12).

Therefore,
2
- 4
)(2 = 3 (}3 . =§J2———li= + M - o
Q 4P BC - AD

...... (2.15)
The free vibrations will exist only for the frequencies
for which Xg is positive.

For |Xy| = 0, from equation (2.15)

3 pD - A® o4
i - = 0 i e 2.16
R T T M of = 0‘ (2.16)
For lXal =co , from equation (2.15)

BC - AD = O



or °  tanl Lo = tom L .ol (2.17)

Equation (2.16) gives the natural frequencies of
the beam with a Tinear spring and an end mass. Equation (2.17)
gives the natural frequencies of clamped-simply supported
beam. These two equations determine the frequency ranges

in which free vibrations can exist.

For the case where J = o/ =0, equation (2.16)

15

becomes:
BD - A* =0
or i + C.QS‘\—(L COS"CL = 0 ..., (2.18)
and (2.17) remains unchanged.
Equation (2.18) gives the natural frequencies of
simple cantilever beam.
To determine the Toci of the points of vertical
tangency on the forced response curves , Zlil; -
0 Xa
Therefore, from equation (2.12)
3xl 4 4 _ 472 8D - A —im/x:o
3P 3p ®C-~-AD - 3P
...... (2.19)
For Xa. =0
3 gD - A% 4
£ QT - o zo
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and for Xg = ©0
»nC - AD = O
or  tamh S = tan {2

These two equations are the same as (2.16) and
(2.17), hence, the points of vertical tangency can lie only

in the frequency ranges for which free vibrations exist.

2.1.2 Superharmonic Response:-

The fact that the assumed harmonic solution (2.8)
does not exactly satisfy the last boundary condition, given by
(2.7), indicates that the required solution contains odd,higher

order harmonics and has the following form:

gy oz > Xv(x) snmyet (2.20)
Y=1,35, -
If this is to be the solution of (2.1), it follows

that

A

o >:Y — f_%?.:l XY - 0

d z - C
or Xy = div cosh(@ A%) + dav sinh(&¥ Ax») +

dar Cos(&F D%) + day sin (F A1)

From first three boundary conditions (2.2), (2.3)
and (2.4)

dgy = - dir P d4v = - d2¥



17

Av
and sz - - __B_; . d”
where, Ay =  cosh(&F AL) -+ cos (¥ AL)
By = sinh(U¥AL) -+ sin(Jv AL)

Further, let
Cy = cosh (v AL) - cos (J7 QL)
Dy = swh (¥ AL) = sin (47 AL)

and writing dy instead of dy.
Ky = dy - [( cosh(UYAX) - cos(dy A%)) -
% (Sioh(5i33%) = sin(¥ Ax)] oo (2.21)

Therefore,

y(x%, t) = Z dy [(Cosh(ﬁ AN - Cos(ﬁ_?fx)) -

=13, e A . o . —
Y=1,3, _8___: ( Slﬂ‘n‘}@*hyﬂ) - s (Jy 27())] sin Ywt

The constants dy's can be determined by requiring the
solution to satisfy the last boundary condition (2.7). However,
if large number of terms are taken in (2.22) , the calculations

become lengthy and tedious.
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For second order approximation let us include

the third order harmonic in the solution, i.e., taking

Y = di [(cosh 2% —cosAx) =& (sinh A - sind %) ] - sincot
+ds [(COS\\(J’% 2X) - cos (43 )23))

- -gfi( Sinh (B AX) ~ sin(J3 Mz))] sin 3wt

and using the condition (2.7)

2
2
3 - A _ 3 BzD3 = Az
17 Xa Bb- 2 sinwt + 383 17 X4 =27 g 3wt
BC — AD B,C; — AsDy

= o((’><a.53r103t + Xas sinzwt ) —
.!‘LA/M (XCL sin wt + gxas Sin 3wt) -+

. 3
E(Xa smt + Xgz sin SQJt) — P sin wt

In this equation X; and Xa3 are obtained by taking

x = L and dividing the equation (2.21) by L, therefore,

Xa = Ca(C - A2y . (2.24 a)
Xas = Cy (Cy - D2Po ) e (2.24 b)
Bs
Where,
c. - ¢©h . .y .
o= T o amplitude coefficient of harmonic
component
(:t - Eii , amplitude coefficient of third

L order harmonic component
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In equation (2.23), using ‘the following relations:

3
(Xa Sinwt + Xaz sin3wt) = x> o3¢, -&»'Xg.g, sinczwt
2 :
3% Xaz sin“wt sin3wt -+

2
3 Xa Xazg, sin Wl sin 3 @t

smgwt :% sin wt -1 sin 2wl
4
3 .
s 3wt = 2 sinzwt - L sinSwt
4 4
Sﬁmzwt sinawl = - L sinwl -ga.'.. Singm"t -4 smswt

4 2 4

2 . .
sin wi sin 5uo‘t - -%2- sin Wl —%é: sm*’éwt ,/_2_ sin g ot

and collecting the t=rms in Sinet and sin(3ewt) and insisting
that their coefficients must be separately zero, one gets the

following two nonlinear simultaneous equations in Xz and Xa3 .

3 o3 BD - A?
%’”a“‘B%a*("“’ﬂ“ S vy
P3G )He - P =0

3 R3Dy - A’
- -9 ap 33 AL
? Xa?, (o H B Co - PaDs

2
PXa ) Xas - LBXa =0

Taking ft = 0 (i.e., no end mass) and simplifying,

the above two equations are reduced to:
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With the help of equations (2.24) and (2.25), the

response including third order harmonic can be determined.

2.1.3 Subharmonic Response:-

The existance of subharmonic vibrations in nonlinear
single degree of freedom systems is well known. The nonlinear
continuous systems can also bé expected to exhibit similar
motions. In this analysis only one third subharmonic vibrations
have been investigated. A similar approach can be followed to

analyse subharmonic motions of other orders.

To investigate the one third order subharmonics,
let
de,t) = Xl/g(X) $in ‘i_"gt. + X (X) sinwt e (2.26)

be the approximate expression for the motion of the beam.

For any value of x, the fundamental component of vibration now



has a frequency equal to one third to that of the excitation.
If (2.26) is to be the solution of (2.1), X}% and X1 must

satisfy the following equations;

d4x% 2

d x4

A

dXi 2
d x* %

- - Q0
So that
Ny () = di cosh AX 4, sihAX 4
d3 33
dzcos 22 4 d4 sin 2
J3 3
Xi(x) = @ CC)S"\ AX A4 CZ S\'ﬂh)\ pd -+
Cg cos AX + (G Sin A X
after satisfying the conditions (2.2), (2.3) and (2.4);
dz = - d, ¢, = —¢
da = - da2 Ca = -G
Ay, .
d2 = - —2> d cz_—_—_‘%c.
B,
- AL AL
where » A\/é = cosh & + Cos =
B/\é = sinh -):-*L' 4 Sin ‘?‘J:-_

12 13
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Further, Tet Cy, = cosh 2L _ (o5 2L
3 NES )
‘Dyg = swh %}: —~ gim 2k
43 33
Therefore,

X}é(x) = d, [(éoslm %’9 — €OS %‘%) —

2 (sinh 2X _ o DX "
&y, ( 0 Sin ?;5-)] ...... (2.27 a)

X 0 = ¢ [(c«:)slnhx - Cos AX) -

% ( Simh dxn — Sin%%)] ...... (2.27 b)
or
Xy, (%)
—2— = Cs [(cosh2X _ o2
L I3 {3
Ay
5o (smh 22— gindxy] (2.28 a)
2 NEY
)({(7()
v = Cy [(cosh AX — COosAX) -
A (oot o .
= ( swh 22 - sin )x)] ...... (2.28 b)
where, CS = L , amplitude coefficient of
subharmonic component
C ’ .
Ca = -1, amplitude coefficient of
L harmonic component



23

and
Xay, = Cs(Cy, - AnDy ) e (2.29 a)
By,
Xo. = Cg(C - _AJQ) ........ (2.29 b)
B
where, XO.\/B is dimensionless amplitude of one third

harmonic component of end deflection

and K is dimensionless amplitude of harmonic
component of end deflection

Substituting equations (2.27) in (2.26) and then

making use of (2.7)

d, ) 2 2 .
£l [ 2 (Dy, - Ay st 4 (D= A7) sinat]

3 I3 - By

- . i Ay D\/ D . T A
- Kg Ld\(g‘é— Ey53) smw't +C|(C - E;-).smlzx)tJ i
- )
d _ Ay Dy, _ ADY ginwt]|
K A l(Cl/3 83{3.) Sin (A;’t +¢ (¢ B) 5t t_
2
W w [o_l_g(c% _ A )S n Wt + G (C- —-»-—) Smwt -
g 7 e\/ 3
F Sinwt

or putting it in dimensionless form

3 :
._Q_ B>"-\ D\“J - A . 3 -— 2 4 . -
( 2 3 Y )Xﬂ‘/:% sin L_%‘}_ 4+ QF @%)M st wi
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o((Xa)/B sin b;t +Xa snwt) + B (Mjé sin“—%}- 4+ Xo, §in oot)g
- —(14/“ (X% Sin‘%@ 4+ Yg simwt) — Psimwt ...... (2.30)

But, ”
(Xa\,3 Sin %@ + Xa Sin oa*t)?5 = X‘i% s‘mz’%i +><2 sirwt
5Xa?\ Xa sin —'12——{5‘ sinwt +

2
5 X " __t
>Qx>é . S 5 Sin whHT

and
e Wit 3 b
S\t —= = =2 A wr 1 ; 1t
3 3 Sty Y Sin w
s\n® wt = 2 sinwi - L sinauwt
4 4
2 .
Lot ' Uoci why g [ swf
SN W wt = - sSin Y% L oginwl-1sin
5~ Sinwd 4 S 37 2 Y
e WL o 2 ] < owt -
S > swm ot = L sim &F 4 L Wt 1 g, 700
3 2 3 +4 5w Z Sty 5

These relations show that (2.30) can be exactly
satisfied in the linear case when B = Xgf = 0 . This dictates
that solution (2.20) is an approximate one and the exact solution
will contain harmonics of other orders. Nevertheless, the
quantities ¢, and d, which define the approximate solution (2.26)
can be found by insisting that equation (2.30) be satisfied for
terms in sing%}_ and sinwt . This gives the following two

equations:


http:�o����(2.30
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2
3 2 3 By Dy - A
Yo, - XaXay — L0 BwDh T An "
SN By
407 4ol
- 2= B X 4 =0
27 ¢ 2 Xo,}é + 35 Xay + 2)(41 Xay, e (2.
2 4
E 4d 45827 pp - p? 4 0 2
v+ |75 - = —— = Xa
" [59’ 3 BC - AD 3P po+2 a/g] *a
- ( ~ ,XC?t 4+ :ii? .
3 /3 3[3) - 0 .(2
From (2.31 a), either Xabg = 0 or this equation has two

roots.

For Xa»' to exist, the condition to be satisfied s
)
4 2
_ AL 4_0—/1 4Q By Dy, — Ay,
: O
T wE T Q8P By 0, Tayy
...... (2.32)

For the case for which o/ = MU =0, (2.32) reduces to;

2 2 2
_7X . 49 By Dy - Ay > o
4 G >
But,
; QN
B‘/g,Dyg - A‘/3 B | + COSR = cos =
By, Cy, - Ay Dy B o o o
/3 ‘/3 B4 COS!’\ :r—i Sin "4—; — S\nﬂ:I—: Cos 'Jg
Therefore,
£ 0.
77@? 4 Q?’ | + cosh = coS T3 < 0
4 SREYZ L2 o Q Py <
? cosn I?) S\ —= ‘J?) - S\X)r‘\ -J_—M COS]%
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First term in this expression is a non-negative

quantity, hence, for subharmonic vibration to exist;

This condition will determine the frequency ranges in

which subharmonic vibration can exist. The response in these

ranges can be obtained with the help of equations (2.26), (2.28),

(2.29) and the following two nonlinear simultaneous equations:

2 2

2 By, Dy, — Ak

Xa}é _ Xaxal/5 4 . LB 3
AR By Cy - Ay Dy

3 0 2 2
Xa + ‘:—-4 B2 - A%, 2 :]X
i at
2P 8¢ — AD 7 “
3
— (4 4 P
(3Xa|/ + g‘*): 0O e



2.2 CASE OF BILINEAR SPRING:

In this section the response of the system, shown
in figure 2.1, has been determined for the case of bilinear
spring. The restoring force characteristic in a genaral

case of bilinear spring is as shown in figure 2.3 .

FORCE

DEFLECTION

FIGURE 2.3 : RESTORING FORCE CHARACTERISTIC
OF A BILINEAR SPRING

The restoring force of such spring is expressed by two

equations which are Tinear within their corresponding ranges.
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For Ijl < Yo Fs = K, Y
and For: I\Jl > :fo ’ Fs - ng '%"(K| ”’KZ) \AD
where, y_ is the deflection of the spring at which the '

(o]
spring constant changes from K; to K2 .
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For this case the first three boundary conditions
are given by (2.2), (2.3) and (2.4), but the fourth boundary

condition is expressed by different equations for two ranges

of deflection;

For]y|:$y, at x = L

0
¥ .
ET 5;%?’ = .Kl‘i + m Mz’; - Fsimowt ... (2.35)

For |y| > Yo at x = L

2%y ' MY
— Y " u . * A
E1 %'323’ = (K, Kz)ﬂo 4 KQJ + m —B:c“'zf F swuwtg
........ (2.36)
To determine the harmonic response with bilinear
spring, it will be assumed that the response is symmetrical
every quarter wave. With this, let the response be
YOLE) = X0 sinwt L (2.37)
where X(x) should satisfy
4 2
Si—%% - 820w -0
dx c?
Therefore,
X(%) = € cosh2A? + €3 Sinh A 4+ C3Cos2X + (4 SNAX

Using equation (2.2), (2.3) and (2.4)

Xey = C [(wshkx ~ Cos 2 X) —% ( sink A%~ smAx)}
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Dividing the above equatibn by L

X% = Ce, [(C.os‘v\}% ~ CosAX) — % ( sinh X ¢ - S'm)J():l

Where X, and Cy, are similar to as defined for cubic nonlinear

case.

- _AD
and Xa =G, (C - "?g“) ........ (2.39)

The fourth boundary condition given by equation
(2.35) in the linear case can be satisfied exactly by the
assumed harmonic solution. The main interest is to obtain
the response when the amplitude of end deflection is greater
than Y, - It can be seen that equation (2.36) cannot be
exactly satisfied by the assumed solution (2.37). In such a
case an approximate solution will be obtained by satisfying
the fourth boundary condition at zero deflection and at
its peak value. A similar procedure has been indicated in
reference 2 for obtaining the response of nonlinear single
degree of freedom systems. At zero deflection the Boundary
condition is indentically satisfied and for the peak
value,equation (2.36) becomes;
at x = L

3y
‘EI #d-;M = Fs - m UJz X(X) - f
d %3 '

Here Fg is the spring force at the peak va]ue.of

end deflection.
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Substituting (2.38) in the above equation:

. . ,2 ]

EI ;)\) CE(D_%) - Fs - 'YTlOJQ'C‘(C_ﬁ‘éP_) - F

or

(_QB gD~ Aj &4 [IRARY C P = PR 5 4
ge—-ap t ) Xa A X (2.40)

R L
where, R = E1 dimensionless spring force.
For \31 £ Yo P p, = (}(li. Xa

and for 1491 > Yo s Ps = olyXg + (ol - ofy) %o

)
i o/ = KL dimensionless spring constant
where, i €1 for end deflection <« Yo
Kzl? , dimensionless spring constant
Ay = =1 for end deflection > Yo

Yo = Yo , dimensionless end deflection

T U at which the spring constant
changes

The value of Xa determined by (2.40) ensures the
approximate validity of (2.37). Equation (2.40) can be
conveniently solved graphically as illustrated in figure 2.4 .
The right hand side of (2.40) is the spring force, while
the left side expresses a straight line on force-deflection
diagram with ordinate intercept P and the slope S equal to
tam (7 -E}Qwilﬁf—- +’114}1) . The intersection of this
line with thé spring characteristics gives the value of

Xy which satisfies (2.40).



DEFLECTION X,

FIGURE 2.4 : GRAPHICAL CONSTRUCTIOH TO OBTAIN RESPOHSE
OF THE SYSTEM IN CASE OF BILINEAR SPRING
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From figure (2.4), it can be observed that if the
slope S falls between the slopes of Tine AD (S3) and AC (S,),
there will be three values of Xz which can satisfy
equation (2.40). The value of S will be between S, and S,
for an infinite number of frequency ranges. These frequency
ranges are bounded by the natural frequencies of a cantilever
beam supported on a Tinear spring and carrying a concentrated
mass at the free end. The Tower bound of each range corresponds
to spring of stiffness ¢ and the upper bound corresponds to

spring of stiffness of.

The slopes of lines AB, AC and AD; i.e., S1» Sp and

S3 respectively, are given by the following relations:

gy, = ¢o, - P (2.41 a)
Xo

. - p

S, = oy + — L (2.41 b)
Xo

Sy = oLy (2.41 c)

Considering figure (2.4), the end deflection for

different ranges of slope S can be computed as follows:

(1) - S £ S : one solution
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S1 £ S <L S, t one solution
A —~
Yo (=A% (2.42 b)
Kz - s)
S3 » S 2 Sy, ¢ three solutions
. P =
O S —
@ (v S)
Xq = P+ % =) Xo | 542 )
bty = S)
)y - P = (=)o
(fy - 8)

It can be noticed from figure 2.4 that only one solution

will exist for all values of S if the force P is equal to or

more than indicated by point A'. Point A' is obtained by the

intersection of 1ine D'B' with the force axis.

Equations (2.38), (2.39) and (2.42) determine the

harmonic response with bilinear spring and an end mass.

For free vibrations of the beam P is zero and in

figure 2.4, point A will coincide with point 0. In this case

it can be seen that free vibrations will exist for the frequency

ranges for which o, € S £ of, . Outside this range the free

vibrations will not exist. For S =o, , the émp]itude of end

deflection will be zero to y, , and S = dﬁvﬁ11 correspond to
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Xy equal to infinity. For o <S <of, the ampTitude will
vary between yy and infinity. The modal configuration
corresponding to any frequency of free vibration is to be

determined by equation (2.38).

An alternative approach to obtain the free vibration
curves is to assume end deflection an& find the slope S. The
natural frequencies of cantilever beam,supported on a linear
spring of stiffness S at the free end, will correspond to the
frequencies of free vibration for the assumed end deflection.
In this way,by changing the value of end deflection,all the

frequency ranges of free vibration can be determined.

The computer programmes to determine free and forced
vibration response of the system,with both types of springs,

are given in appendix II.
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3. EXPERIMENTAL ANALYSIS

In order to verify the validity of the theoretical
results, an experimental study of the problem has been done

for the case of bilinear spring.

3.1 EXPERIMENTAL SET-UP:

Figure 3.1 shows the over-all picture of the
experimental set-up. A mild steel beam of 45" 1engfh was
chosen for experimental purpose. The properties of the beam
are given in appendix III. One end of the beam was fixed
while the other was attached to a rigid support through a
bilinear spring. An electromagnetic shaker was used to provide
the sinusoidal excitation. The core of the shaker was attached
to the beam through a linear spring so as to cause no damage
to the shaker and allow sufficient deflection of the beam..
The beam was excited in the horizontal direction in order to
avoid the gravitational effects. The shaker was so positioned
that the line of action of the exciting force coincided with
the axis of the bilinear spring. The details of excitation
are shown in figure 3.2. The various equipments used in the

experiment are listed in appendix IV,



The shaker was powered through a power amplifier
which in turn was connected to R. C. generator. An ammeter
was provided in the circuit to ensure that the exciting force

is kept constant for different frequencies.

A capacitive type of displacement transducer was
used to'measure the amplitude at the end of the beam whereas
the displacements at other points of the beam were measured by
means of proximity vibration transducer. Details of mounting
and positioning of the displacement and the proximity |
vibration transducers are shown in figures 3.2 and 3.3
respectively. The output of these transducers was fed to a
cathode ray oscilloscope through oscillators and reactance
converters. This system of measurement converts the movement
of beam at point of measurement into a voltage signal which

is displayed on the screen of cathode ray oscilloscope.

3.2 DESIGN OF BILINEAR SPRING:

The bilinear spring used in the experiment was
obtained by combining two different linear springs 1in series
as shown in figure 3.4 . In this arrangement one end of the
spring Ki is fixed to the beam and the other to stopper (3),
whereas the spring Ké connects the stopper to a rigid support.

Two discs (1 and 2) are fixed to a threaded bar which is

attached to the end of the beam such that it is perpendicular
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to the axis of the beam and coaxial with the springs Ki and

Ké . The clearance provided between the threaded bar and the
stopper allows the free axial motion of the bar. Provision

is made to adjust the gap & between the discs and the stopper.
A1l parts, except the springs, of this arrangement were made

of aluminium in order to reduce the weight.

If springs Ki and Ké have symmetrical characteristics,
then this arrangement would give bilinear characteristics as
shown in figure 2.3. Consider that the springs are. being
compressed, then upto a certain deflection y, both Ki and Ké
act, but at deflection y, disc (1) touches the stopper which
stops further compression of Ki and only spring Ké is
compressed. Similarly when the springs are being stretched,
at deflection y, , disc (2) touches the stopper and stops
further action of Ki and only Ké will be stretched beyond the
deflection y, . In this way action of a symmetrical bilinear

spring is obtained.

The deflection y, at which the stiffness of the

spring system changes depends upon the initial gap & and the

stiffness Kl

and Ké . The relation to find Yo is:

Ky
Yo = (1 +—-)50
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and the constants of the bilinear spring are:

(i)  For Deflection £ y,

-~

Ky Ky
Kj = ———r
Ky + Ko

(i1) For deflection > Y,

K? = K2

The biTinear spring used in the experiment was
obtained with following specifications:

K; = 7.24 1bf/in,

Kk, = 35.20 1bf/in.

Yy 0.052 inch

3.3 TEST PROGRAMME:

The test programme included the measurement of
amplitudes of vibration with varying frequency at different

levels of excitation.

Before the actual experimentation the displacement
transducers were calibrated. In order to determine the
frequency response of the system, the amplitudes were
measured at five points with x = 15, 20, 25, 35 and 45

inches. Two different sinusoidal excitations of 0.5 1bf and



1.5 1bf were used in the experiments. In both the cases the
amplitudes of vibrations were recorded by varying the frequency

and keeping the exciting force constant.

39
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: OVERALL PICTURE OF EXPERIMENTAL SET-UP

FIGURE 3.1
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FIGURE 3.2 : DETAILS OF EXCITATION AND MEASUREMENT OF
END DISPLACEMENT

FIGURE 3.3 : SETTING OF PROXIMITY VIBRATION TRANSDUCER
TO MEASURE DISPLACEMENT ALONG THE BEAM



RIGID SUPPORT

END OF THE BEAM

\A\\. \\\\\\\\Mw

ERSGE AN Y

P T
oz D

Pliiesaois-] —

o

_ﬁa ©3 o

B e Fe TS

€T

Y SN,

hﬂm.&éd««{, 2
S SUS | — ML
. e ki

Jwy. ORI . A= .

[ L u,.hﬁ?nvill..lll..d
i PRI e Ve e

Tl e,

- am e \\l.
i —
-
IS SV e ~
SR !
el oy ey,
ey eI
v -
e NS | X
B et
“l‘ﬂ“-‘d
e
it
Bt adi e TEC SN (U
=i mn

- 4 g
e
PN et

s Rade R

¥ i ez g

=T
(ea]
[an]
el . g (%}
- )
e e o
e
B e <
spre—— [EN]
TR Rt
B i S P, c
i
U I =
G R T T R s pesernt. oo s vsiw |
q&aw\rzsﬁa.i R AR R e T e T
W H
LS.

)

FIGURE 3.4 : SCHEMATIC DIAGRAM OF BILINEAR SPRING

42



RESULTS AND CONCLUSIONS




4. RESULTS AND CONCLUSIONS

4.1 RESULTS:

4.1.1 Beam With Cubic Nonlinear Spring:-

The results of theoretical analysis show that free
vibrations of beam,with cubic nonlinear spring, exist in an
infinite number of frequency ranges. Each of the possible
frequencies of free vibration corresponds to a Specific value
of amplitude coefficient C and to a definite modal‘configuration
as given by equation (2.9). The free vibration curves for
different values of o with B = 0, 10, 102, 103, 10%, 10°, &0
are given in figures 4.1(a), 4.1(b), 4.2, and 4.3 . A1l these
curves are for M = 0 . For ¢ = 0, the amplitude coefficient
and the amplitude of end deflection have been plotted in
figures 4.1(a) and 4.1(b) respectively. It is apparent from
figure 4.1(b) that fréquency of free vibration increases as
the amplitude is increased. The frequency ranges of free
vibrations for o = 0 are specified by the natural frequencies
of simple cantilever beam and those of clamped - simply
supported beam. In figures 4.2 and 4.3 amplitude coefficient

Ch has been plotted for o = 2 and 10 respectively. The
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nature of these curves is similar to those of figure 4.1(a)
although the starting points of the curves shift towards

higher values of frequencies as o is increased.

Figures 4.4 to 4.9 show the harmonic response of the
system for ¢ = 0 and different values of nonlinearity
parameter P and the external force P. The free vibration
curves divide the forced harmonic response in a number of
separate sections. Further, the coefficient Cq changes its
sign whenever a free vibration curve is crossed. Therefore,
in each section the system behaves essentially in the same

manner as some of the nonlinear single degree of freedom

systems.

Equation (2.19) indicates that the point of vertical
tangency can 1ie only in the frequency ranges for which the
free vibrations exist. The points of vertical tangency
correspond to values of £ at which equation (2.12) changes
from having one real root to having three real roots. It can,
therefore, be inferred that the frequency ranges within which
the solution may become unstable are the same as for free

vibrations.

The harmonic response obtained with the help of

equations (2.9), (2.10) and (2.12) is only an approximate
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solution of the problem. An exact solution will contain
higher order harmonics. With the help of equations (2.24)

and (2.25), response including third order harmonic

component can be found which is a better approximation.

In figure 4.10 response including third order harmonic
component has been shown for # = 0, o = 0, B = 10%
and P = 0.1 . It has been found that the response becomes
unstable for: (a) the frequencies for which the harmonic
response is unstable, and (b) the frequencies which are (1/3)%

times the frequencies in (a).

Equation (2.33) gives the necessary condition for
one-third order subharmonic response to exist. This condition
will be satisfied only when the values of both numerator and
denominator in equation (2.33) do not have the same sign. This means
that subharmonic response can occur in the frequency ranges |
specified by [3mand I3 fLm, (n = 1,2,3, ...... , 06 ) ,wheré,
.4 and 0y correspond to the natural frequencies of simple cantilever
beam and clamped - simply supported beam respectively. Figure
4.11 shows the subharmonic response of the system only in the
first frequency range for o = 0, B = 104 ,P=0.Tandpr =0
It can be noticed that subharmonic curves arise through the
bifurcation from the harmonic response at the point on the

Ch curve corresponding to Cg = 0 .



4,1.2 Beam With Bilinear Spring:-

Figures 4.12(a), 4.12(b) and 4.13 give theoretical
free vibration curves for different values of o/ with oy = 10,
100, 1000 and A =0 . 1In figure 4.12(a), the amplitude
coefficient Cp, has been plotted for the case in which there is
a clearance between the beam and the linear spring of
stiffness a@ , whereas in figure 4.12(b) the amplitude of end
deflection has been plotted for the same values of clearance
and of, . The free vibration curves in figure 4.13 are for
amplitude coefficient Cj, for ofy = 2.0 and varying ofz . The
nature of these curves is essentially the same as in figure
4.12(a) , although the starting points of free vibrations

have been shifted towards higher frequencies.

In this case also, the free vibration curves exist
in an infinite number of frequency ranges. These frequency
ranges are bounded by the natural frequencies of a cantiiever
beam supported on a linear spring at its free end. The lower

{

bound of each range corresponds to a spring of stiffness of,

and the upper bound corresponds to a spring of stiffness o, .

It can be observed from figure 4.12(b) that the rate
of increase of frequency of free vibration decreases with the
end deflection. Contrary to this, in cubic nonlinear spring,

the rate of increase of frequency first increases and then



decreases ( see Figure 4.1(b) ) . This may be due to the
. fact that the rate of‘increase of stiffness in bilinear case
decreases with the deflection whereas in case of cubic

nonlinear spring it increases.

The experimental and theorefica] values of response
have been found out at five points along the beam and they
are given in tables 4.1 to 4.4 . The theoretical free vibration
values are given in table 4.5 . Figures 4.14 and 4.15 show
the theoretical and experimental response at xp = 1.0 and
0.555 respectively for P = 3.425 X 10'3 . In these figures
Jjump phenomena has been observed in the first free vibration
zone. Jump phenomena can also be seen in figure 4.20 which
shows qualitative response observed experimentally. Figures
4.16 and 4.17 show the response at P = 10.275 X 103 . No

jump has been observed for this value of the force,

It can be seen from figures 4.14 to 4.17 that at
large amplitudes the experimental and theoretical values differ
significantly, but at low amplitudes the two values are in
good agreement. Probably, damping has appreciable effect at
large amplitudes whereas it can be neglected at low amplitudes.

Moreover, the theoretical solution is an approximate one .

Furthermore, the second peak in the experimental

values 1is observed at Tower frequency of excitation than
q y
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corresponding to the theoretical value. This may be
attributed to the difficulty of obtaining a perfectly

clamped end of the beam in the experimental set-up.

Figures 4;18 and 4.19 give the typical time -
motion curves observed experimentally at the spring supported
end of the beam. In these figures it can be seen that evéry
quarter wave is symmetrical and the vibrations are periodic.
At Targe amplitudes, the response is not exactly sinusoidal

indicating the presence of higher order harmonics.

4.2 CONCLUSTONS:

From this study the following conclusions have been

drawn:

(1) Free vibrations of the system can exist in an infinite
number of frequency ranges and each of the frequencies of
| free vibration depends on the amplitude of end deflection

and corresponds to a definite modal configuration.

(2) For the case of bilinear spring, the rate of increase of
frequency of free vibration decreases with the end deflection
as the upper bound of each freauency range of free vibration
is approached, However, for ﬁhe case of cubic nonlinear

spring this rate first increases and then decreases.



(3) Harmonic response can exhibit jump phenomena in the

frequency ranges corresponding to free vibrations.
However, in case of bilinear spring, jump phenomena may
not occur if the amplitude of exciting force is above

a certain value, which depends on the restoring force

characteristic of the spring.

Subharmonic vibrations can occur in the case of cubic
nonlinear spring in a number of specified frequency

ranges.

The free vibration curves divide the forced harmonic
response in a number of separate sections. In each of
these sections the system behaves essentially in the same
manner as some of the nonlinear single degree of freedom

systems.
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FIGURE 4.18 : TIME MOTION CURVE OBSERVED EXPERIMENTALLY
WITH BILINEAR SPRING AT LOW AMPLITUDE ,

FOR P = 3.425 X10™3

FIGURE 4.19 : TIME MOTION CURVE OBSERVED EXPERIMENTALLY
WITH BILINEAR SPRING AT HIGHER AMPLITUDE,

FOR P = 3.425 X103
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TABLE 4e1 THEURETICAL VALUES OF X FOR THE
CASE OF BILINEAR SPRING
o = 2422 oly= 1C.82 Xo = 1.175C~03
FOR P = 34425E-03
Q_xe 1eUlU GeTT7 04555 0o hlits 06323
~
1606 TeU29E=U4 LoThOE=04 2e0671E—=04 1e7910-04 14053E-04
1429 TeT72UE=0U4 5e228E~C4 2e960E~04 1e950E-04 1el73E-04
1049 Be964E=04 6e106E-04 3e482E-04 2¢34E8E-04 1e389E—04
1067 1e134E=0% TeT82E-U4 4et4T7T7E-04 3e022E-04 1leBULE-0
1483 1e273E-U3 BeS20E=U4 5e129E-064 Z2e4935E-04 2e085E—04
1098 14433E-03 1eU04E=03 5.918E—04 440556-04 2e434E—04
2¢11 1e682E~03 1e195E~03 Tel4TE-04 44532E-04 2e980E-04
2¢24 2e106E=03 14520E=03 9e248E-04 6e4232E-04 34015E-04
2030 Ze448FE=03 1e4783E-03 14095E-03 TeLABE-04  4e6T73E-04
—1e1l4E=03 —8¢l18F=04 ~b4e9G4E-04 -3e481E-04 -2e127E—04
—14209E~03 =Be805E=04 ~5¢406E=04 —347T76E=04 ~24307E-04
2¢36  2e964E-03 24180FE~03 1e351E-03 Ge480E~04 5e85150-04
~BehBIE-04 —Gocb3E=0h ~3e871E~Cl —2e715E-C4 ~le666E-0k
—14e463E=03 —14076E=03 —64672E~04 ~4e681E~04 —24871E-0%4
2042  34824E=03 24541E-03 1e780E~03 1e254E-02 7e725E-04
—6eTETE=04 =54027E=04 ~34149E-04 =242200-04 ~1e367E-04
~1e888E=03 —14402E=03 —84786E~04 —~64192F-04 ~3e2314F-04
2e48 54538E-C3 44159E=03  2e634E-03 1e865E-03 1e154FE-03
~5e563E-04 ~belTBE=Ul —2e646E-04 ~1e8740~04 —1e159E—04
20 T34E=03 —2e053E=03 ~1a3C0E=02 =94209E~04 ~5¢696E—04
Ze5% leUbLE=GZ B8e059E=03 5e162E-03 34674E-03 2e282E-03
—h 6TOE=CA ~34953E=04 ~2e276E-04 —14620E-04 =1e006E-04
—5423TE~U3 =3eY79E=03 —2e549E—03 ~1a014E-03 —1e127E-03
2059 44257E-0U1 34275E=01 24123E-01 1e519E-01 D4478E-02
—34997F~04 ~3e075E=04 ~1e9940—04 —1e426E-04 -8e899E-05
~24102E=01 ~14617E=01 —1e048E—01 =7 ¢490E=02 ~4e6T79E=02
2069 =34030E=04 =2¢396E~04 ~1e593E~04 =14152E~04 ~Te255F-05
2089 ~1e90BE=U4 —1e613E=Gl —1el37E-04 =3e411E~05 —54401E-05
3413 —14168E=04 -14108E=04 =84506E=05 —6e496E-05 —be280E=05
3434 —Te359E=05 —8e252E=05 =Te0Z2E~05 ~5e5490-05 —34754E-05
3074 ~2¢174E=05 =54381E=05 ~54582E-05 =540890~05 —3e620E-05
5092 —1eU93E=06 —4e64TE=05 —60158E=05 =5¢445E-05 —3eGE8E~05
4409 24251E=05 ~4e229E=05 =6e068E-05 =6e411E-00 —4e817E—05
4e23 5eU2BE=05 =4e158E=05 ~3e533E-05 -841076~05 —6e216E-05
4029 Tel91E=05 =44271F~05 =0¢994E-05 ~94652E-05 —Te4T5F-05
4436 1eUSTE=04 —4eI80E=05 =~1e247E=04 =1e225E-04 =04579E-05
Golb2 1e695E=0h =5es42E~05 ~1e741E~04 ~1e737E=04 —~1e372E-04
4048  34445E-04 —Te (41E-05 -3¢141E~04 ~34187E-04 —24542E-04
G454 10420E~03 —=2e170E=04 ~1el66E~03 —~1e204E-03 ~3e694E—04
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TABLE 442 THECRETICAL VALUFS OF Xy FOR THE

CASE OF BILINEAR SPRING

oy = 2422 oy = 1C.82 Xo = 1el75E-03

FOR P = 10.275E-03

XQ o - -

> 1000 GeTT77 0e555 0444 04333
106 1e513E=03 14U20E-U3 5¢748E-04 3.853E-04 2e266FE-04
129 1e563E=03 1,059E-03 54995E-04 44025E~04 2.375E-04
1e49 14641E=03 1,118E-03 64373E-04 4.298E-04 2.542E-04
167 1e754E=03 1.204E-03 6+925E~04 44691E-04 2.786FE-04
1483 1e917E-03 14328E-0U3 7e726E-04 5.261E-04 3.140E-04
1498 24158E~03 14513E-03 84914E-04 6.1U8E-04 3.667E-04
2011 2e533E-03 1.600E-03 14077E=03 Te420E-04 £Le439E-04
224 34172E=03 24290E-03 14393E-03 9.689E-04 5.897E-04
243U 34688E-03 24686E-02 1.649E-C3 14152E-07 7.032E-04
2436 4e464E=03 3.283E-03 24036E-03 1.428FE-03 38.760E-04
2:42 54760E-03  4.279E- 2.681E-03 1.8 B9E-03  1+164E-03
2448 84342E-03 6,265E~-03 3.96BE-03 2.810E-03 1.738E-03
2453 1 568F-02 1e214E-02 7.776E-03 5.534F-03 3.438E-03
255 €e413E~01 4e934E=01 2.198E-01 2.288E-01 1.428E-01
2069 ~9eUB9E=04 ~T4187E-04 —4e780E~14 =3.456E=04 =24 176F=04
2489 -54724E-04 —44840E-04 =2e410E-04 —2.522E-04 -14620E-04
3413 =34505E-04 =34323E~N4 =24552E-04 -14940E-04 —14284E~04
3434 -24208F~04 ~2,476E=0% =~24107E-04 -14665F=04 —14126F-04
3474 ~64523F=05 —14614E~04 —14795E=04 —1,527E=04 -1.089E~04
3092 =34279E=06 -1.394E=04 —14847E~04 ~1e634E=04 ~14196F=04
4409  64753E=05 =14269E-04 =24090F=04 =1,923E-04 ~14445E=04
4423 1e5U8E=04 —1e248E-U4 =2e560E=04 =24432E-04 -1.865FE-04
4429  24157E=-04 ~14281E-CH —-24998E-04 =24896E-04 ~24242E-04
4436  34172E=04 -143T4E=01 =34742E-04 =346T4E-04 —2.8T4E-04
4e42  54084E=04 —14603E-04 =5e222E~014 =5,2126-04 —4e117E=04
4048  1e023F=02 =24222F=04 =94422E-04 ~9,562F-04 ~74A26E-04
he54 20129E-02 ~24268E-04 —~1e757E=02 =14813E-03 ~14460F~03
406U  14504E=02 ~14413E-03 —14126E-02 -14182F=02 =9,610E-03
4467 ~64926E-04 3,096E-05 4eT73E~04 5.097E-04 4e184FE-04
4072 =4e665E=04 1e234E-06 24934E~04 3,241E-04 24686E-04
4478 =34550E-04 ~14203E-05 20122E-04 24346E-0%4 1e962E-04
484 8T9E-04 —1,904E=05 1e618E=14 1.820E-04 1.537E-Ch
5401 ~14852E~04 ~2,688E~05 84903E-05 1.057E-04 9. 183E-05
5028 -1el49E=04 =24615E-05 4e563E-05 5.962E-05 54428E-05
5e79 -54980E=05 -2,709E=07 14891E-05 3,096E-05 24105E-05
6025 ~34428E~05 =~2,309E-05 T38E-N6  24194E-05 2,447F-05
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TABLE 4.3 : EXPERIMENTAL VALUES OF |Xy| X 103 FOR TIHE

CASE OF BILINEAR SPRING

A = 2,22 o= 10.82 ¥o=1.175 X 10-3

FOR P = 3.425 X 107

o
a 1.000 0.777 0.555 | 0.444 0.333
1.49 0.850 0.522 0.276 | 0.222 0.132
1.67 1.040 0.710 0.400 | 0.276 0.178
1.83 1.240 0.890 0.490 | 0.355 0.178
1.98 1.510 1.060 0.620 | 0.444 0.222
2.11 1.740 1.240 0.755 | 0.490 0.312
2.24 2.290 1.550 0.930 | 0.740 0.400
2.36 3.020 2.220 1.380 | 0.934 0.622
0.710 0.520 0.310 | 0.276 0.132
2.48 3.550 2.640 1.780 | 1.240 0.756
0.530 0.440 0.220 | 0.178 0.089

2.59 0.380 0.310 0.178 | 0.132 0.089
2.69 0.244 0.178 0.155 | 0.111 0.066
2.89 0.190 0.133 0.111 | 0.089 0.066
3.13 0.095 0.089 0.082 | 0.066 0.044
3.34 0.047 0.066 0.066 | 0.044 0.044
3.74 0.000 0.044 0.066 | 0.044 0.044
4.09 0.047 0.044 0.089 | 0.066 0.044
4,23 0.19 0.066 0.178 | 0.089 0.066
4.36 0.285 0.132 0.247 | 0.245 0.178
4.42 0.755 0.198 0.710 | 0.710 0.444
4.48 1.050 0.198 0.930 | 0.935 0.666
4.54 0.190 0.044 0.089 | 0.112 .| 0.089
4.60 0.133 0.022 0.044 | 0.044 0.022
4.72 0.047 0.022 0.044 | 0.022 0.022
5.28 0.022 0.000 0.022 | 0.022 0.022
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TABLE 4.4 : EXPERIMENTAL VALUES OF lXX\X 103 FOR THE

CASE OF BILINEAR SPRING
Ay = 2.22
FOR P = 10.275 X 10

ol,= 10.82

-3

Xo= 1.175 X 10-3

¢

¢ 1.000 | 0.777 | 0.555| 0.444 0.333
a
1.49 1.470 | o0.970 | o0.620 | 0.400 0.222
1.67 17660 | 1.150 | 0.665 | 0.444 0.274
1.83 1800 | 1.280 | 0.754 | 0.532 0.310
1.98 2220 | 1.550 | 0.930 | 0.620 0.355
211 2,750 | 1.860 | 1.110 | 0.754 0.444
2.24 3.330 | 2.430 | 1.460 | 1.020 0.532
2.36 3.780 | 2.870 | 1.660 | 1.100 0.666
248 1.230 | 3.100 | 1.780 | 1.440 0.775
259 4650 | 3.330 | 1.880 | 1.550 0.775
269 1.780 | 1.420 | 0.930 | 0.660 0.444
2.89 0.690 | 0.565 | 0.440 | 0.310 0.222
3.13 0333 | 0.310 | 0.272| 0.222 0.133
3.31 0.222 | 0.222 | 0.178| 0.155 0.089
3.74 0.044 | 0.133 | 0.133] o0.111 0.066
1.09 0.000 | 0.111 | 0.133| 0.133 0.066
4.23 0.089 | 0.089 | 0.155| 0.133 0.089
4.36 0.333 | 0.178 | 0.424 | 0.333 0.222
4.4 0.890 | 0.222 | 1.110 | 0.666 0.333
4.48 1550 | 0.666 | 1.500 | 0.800 0.666
4.54 0.312 | 0.111 | 0.310| 0.310 0.222
4.60 0.222 | 0.080 | 0.222| 0.222 0.178
4.72 0.133 | 0.111 | 0.178| 0.178 0.133
5.28 0.044 | 0.022 | 0.084| 0.066 0.044
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TABLE 445 THEORETICAL VALUES OF X, FCR FREE
. VIBRATION FOR THE CASE OF BILINEAR
SPRING
A = 2,22 olg = 10.82 Xo = 1.175E-03
% 1.000 0s777 De555 L4t 3

.CL . U . e555 Celilr 0e333

2008 14201E=03 B84507E~04 5¢068E~04 3e491E-04 2el06E=04
2010 1e234E-03 8.754E-04 5e227E-04 3.604E-04 24177E-04
2¢12 1e269E-03 94U24E=04 5¢401E=04 34729FE=04 2e254E-04
2014 1.307E-03  9.319E-04 5.592E-04 3.865E-04 2.339E-04
2016 14349E=03 9,643E-04 54801E-04 4e0L4E=04 2,432E5-04
2¢18 1.396E~03 1.000E-03 64032E~04 44179E-0/ :.5345—04
2020 1e44BE=G3 1e040E-03 6e28TE~04 4e361E-04 2e648E-04
2022 1e505E-03 1.0B84E-03 6e571E-04 &e564E-04 2e7T4E=04
2424 14569F=03 14133E-03 GeB89E~04 4aT91E-04 24916E-0%
2¢26 1e641E=03 14188E~03 7e247E=04 5.047E=04 34075E-04
2028  1e723E=03 14251FE=03 Te603E~04 5a336E-04 34256E-04
2030 1a4BL6E=03 14322E-03 Bell6E-C4 5e6670-04 3446204
2¢32 14923E=03 14405E-03 Be649E=04 6e04EBE=04 24700004
2e34  24048FE=03 1.501E-03 9e270E=04 Ee492F-0% 2.076E=04
2¢36 24195E-03 14614E~03 14000E=03 7e014E=04 443020-06
2¢38 2e370E-03 147480-03 14087E~03 74628E-04 44691E-04
2el40  ZeH583E~03 1e%12E-05 1e193E~03 B8e2395E=04 5416204
2042 2eB4BE-U3 2e114E-03 1324E-03 9e324E-04 54740FE-04
2044 34181E=03 24372E=C3 1e491E-03 1e053E-03 Ce492E-04
2046 34620E=03 24709E=03 1e71CE-C3 1e2090-03 7e462F-04
2448  44220E-03 34171E-03 26009E-03 14422E~02 B8.503E-04
Ze5U 5e090E~C3 34040E-03 2e442E-N3 1.733E~03 1e0T4E-03
2052 6e464E=03 44097E-03 3e128E-03 2e224E-02 14380E-03
Ze54  B4959E=03 64618E-03 4e274E=03 3e4114E-02 14936E-03
2056 1e489YE-C2 14138E-02 Te321E-02 230E-02 3425603
2058 4e6BBE=CZ 34600E~D2 2¢320E-02 1e6655-02 14038E-02
4456 14380E=03 ~1le081E=04 =1el05E~03 —lel&6E=03 ~De251E-04%
4457 1e694E=U3 —24141E-04 ~1e235E-03 —1438086-03 ~1e122E-03
4458 2e1B3E~03 =2e549E=04 ~1e695E-03 =~le76TE-03 =1e431E~03
4459 34U55E=03 =34283E~04 —2e338E~03 =2e444E~07 ~1e982E-03
4ebU  5e0B4E=03 —443T71E~-04 ~2e8L11E-03 ~34975E-00 —2e246E-03
G061 1e434E-UZ —1e284E~03 —~1e066E~02 =lel21b=0U2 =0el20E-03
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APPENDIX I

NATURAL FREQUENCIES OF A CANTILEVER BEAM

SUPPORTED ON A LINEAR SPRING

AT THE FREE END
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APPENDIX 1

NATURAL FREQUENCIES OF A CANTILEVER BEAM SUPPORTED

ON A LINEAR SPRING AT THE FREE END

The natural frequencies‘of a cantilever beam supported
on a linear spring at the free end can be obtained by solving

the equation:

Lo O
o( + ..Qf’ . | + Cosh Cos . -0

Cosh L. Sw H- S‘mh 0 Cos 0

Figures 5.1(a) and 5.1(b) show the variation in the
natural frequencies with the spring stiffness o . It can be
observed that all the natural frequencies increase as the
spring stiffness increases. However, the lower natural frequencies
are affected significantly at lower values of spring stiffness,
whereas the higher natural frequencies are affected for larger
values of stiffness. This may be attributed to the fact that
Tower mode shapes change even with the addition of a weak spring,
but the higher mode shapes remain almost unchanged until the

spring is strong enough,

Further, it can be noticed from figures 5.1(a) and

5.1(b) that as the stiffness increases from zero to infinity,
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all the natural frequencies become asymptotic to the nearest
corresponding natural frequency of clamped-simply supported
beam. In the figures the natural frequencies of clamped-

simply supported beam are indicated by broken Tlines.
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A42U39T1luuslLClluuUU
RUN(Sesssssluuuu)
REDUCE
LGOe
' 640U END OF RECORUL
PROGRAIMN T3T (INPUTSOUTPUTsTAPES=INPUTsTARPEE=CUTPUT)

CUBIC NUONLINEAR SPRINGs VARYING Thc VALUE OF SETA

AL=ALPHA
BT=BETA

OO O

COSHEW)=(EXP(W)+EXP(=W)) /24U
SINH(W)=(EXP{W)~EXP(=W))/2eU
AL=JVeu
BT=lVey
WRITE(695) ALsbT
FORMAT(/1uX s THALPHA =9F8el91UXs6HBETA =5F941/)
W=leb
A=COSH (W) +CCS (W)
BSTRHIW)+SIN(W)
C=COSHI(W)=CCS (VW)
D=STRH{W)=5IN(W)
AA=3 e U*BT /4 eV
AX==(AL=(w¥*%3) % (B¥D=A*A)/ (B*C=A*D) ) /AA
IF(AXeLEeueuw) GO TO 3
XA=SQRT (AX)
CH=XA/ (C=A%*D/B)
WRITE(692) WesCHeXA
2 FORMAT(1uXs5E155)
3 W=W+Uel
IF(W.LTOlé.U) GO TO l
BT=pT*10euU
IF(BT.LE-l.UquE5) GO TO 4
AL=AL+2eU
IF(ALeGTe2eu) AL=AL+6eU
IF(ALeLEslveu) GO TO 7
STOP
END
' 64ul ENL OF RECORU
! 64vu Ehv FILE

R

—

THIS PROGRAM Is TO OuTAln Tre FRezo VISKRATICN CURVLS

84
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AL2U30
RUN({Se299900luwwu)
REDUCE e
LGUe
0 oLy ENR OF RECORL
PROGEAM TST (IRPUToCUTRPUT o TAPES=INPUT e TARPEA=CQUITRUT)
C .
C THIS PROGRAM IS TO DETERGINE THE RESPOMNSE 0F SIMPLE
C CANTILLEVER BEAM (ALPHA= Uo LETA= U)
C
COSHIW = (EAP (W) +EXP (=0} ) /20U
SINHIW)=(EARPLWI=EXP(=W))/ 24
P=uelUl
1 WRITE(GoZ)Y P
z FORMAT(/LUX o3P =0FEe3/)
W=Uel
3 A=COSH(W)I+CO5{W)
B=SINHIW)+SINIW)
C=CoOSH W) =COS (W)
D=0TMNH{W)=3TN(W)
KAF=P3 (L3 C=AD )/ ((WEw3 )3 (BRD=-AFA) )
CH=XKA/ {C=A%L/B)
WRITE(Ge4) wWeCHoXA
4 FORMAT(1UA X 9F56292E1503)
W=w+uel
IFlWeLEolUow) GO TO 3
P=Prluel
IF{PelLEslavi) GO TO 1
STOP
ciND
! 6400 END OF RECGRD

I 6400 END FILEZ
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AL2U3eT20UuU,
RUN(Sss9sssluvuul
REDUCE «
LGOe
' 64uV0 END OF RECORD
PROGRAM TST (INPUTsOQUTPUTsTARPES=INPUTsTAPEG=0ULTPUT)

THIS PROGRAM IS TO UDETERMINE THE HARMONIC REOPONSE IN
CASE OF CubIC NURLINEFAR HSPRINGs wITH ALPHA= uvsAND
VARYING BETAs FOR P= Ueulsueluslelu

C1sC2+C3 RLPRESENT AMPLITUDE COEFFICIENTSs AND XAsKl
AND XJ REPRESENT THE END DEFLECTIONS

a¥eaNsEaNaEaEaER

COSHIWI=(EXP(W)+EXP(=W))/2eU
SINH(WI=(EXP{wW)=EXP(=W))/2eU
AL=UeU
P=UeUl
18 BT=1060
17 WRITE(Gs1l) ALSBTSP
1 FORMAT(/1UX s 7THALPHA =3F6e3 35X s6HBETA =9F8e1s5Xe3HP =»
1 F7¢3/) '
W=Uel
2 A=COSH(W)+C0OS (W)
B=SINHIW)+SIN(W)
C=COoH(IW)=COS(W)
D=SINH(W)-5IN(W)
AAA=3 qURBT /4 eV
Al=(AL-(W##3 )= (BrD=-A%A) / (B*C=A%D) ) /AAA
AJ==P/AAA
KA==AJ/AL
N=1
5 FX=XA%¥3+AT*XA+AJ
DFX=3 e Uk KANXA+AL
DXA=—=FX/ULFX
KA=XA+DXA
N=N+1
IF(NeGTeB5UU) GO TO 11
IF(ABS(DXA) e GE«ABS(XA)¥#1eUE~6) GO TO 5
T=C=A*D/E
Cl=XA/T
E==XA/2eU
F=E*E-AI-XA*XA
IF(FeGEsveu) GU TO 10
WRITE(699) WsCleXA
9 FORMAT(1UX93E15e3)
GO TO 11
10 XI=E+SQRT(F)
XJ=E=-SQRT(F)
C2=X1/T
C3=XJ/T
WRITE(6915) WeCleC2ZeC3eRAsXIsAJ
15 FORMAT(1uAnes7E15e3)


http:u.ul,0.lu,l.Uu

11

14

W=W+Uel

IFtWeLToluav) GU TO 2
BT=BT#1lUeuU

IF{vTeklbe levuulid) WO Tu 17

P=pP#llau

IF{PalLCe leuuUl) GO TOU 18
STOP

END

640U END OF RECORD
g4ud ENDL FILE

87
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A4203sLCIluuulU.
RUN(SsesssslulLu)

REDUCE
LGUe
! 6400 END OF RECORD

PROGKAM TST (LiiPUTsOUTRPUT s TAPES=INPJT s TAPES=0UTPUT

THIS PRUGKA IS T DETERGINE THE RESPONSZs TAKING FIRST

AND THIRD URDER HARMOKNIC COMPUNRENTSs FOR BIAYM wWITH CL3IC
NOH=-LINEAR SPRING

X = AlMPe UF END LEFLECTIUN CORRESPONDING TCO FIRST ORuLR

HARMONIC COMPONENT
Y = AMPe OF END DEFLCCTION CORRESPUMDING TO THIRD GRDER
HARMONIC COMPGNENT

OO Oy OY O Oy

DIMENSTION X1(3)sYY(3)eZI(27)54J(27)
COSHIW)I=(EXP (W) +EXP{(=W)) /240U
SINHIW)=(EAP (W) =EXP(=W))/2eU
P=Uel
AL=UeU
W=Uel
YY{(1)=UaU
YY(2)=Ueu
YY(3)=UeU
1 WE=W#SURT(3eu)

A=COSH (W) +C05(w)
R=SINH{W)I+SIN(W)
C=COSH(W)=CO5(W)
D=3InHAW) =S TIN{W)
A3=COSH(W3)+COS(W2)
B3=STHH(W2)+5IN(W3)
C3=COUSH{W32)=-C0S(w3)

’ D3=SINH{W3)=5IN(W3)
DI=C~-A%*U/w
DJ=C3-A3%0L3/B3

Pl==1. U

Ql=beU® (AL= (W33 )#(BHD=A¥A) /(BXC=A%D) )/ (2 GXET)

R1=240

Sl==4 e UHP/ (Z4U%BT)

W2=4 e U (AL— (W3¥%3) ¥ (E3%D3-A3%A3) / (E3%¥C3-A3%D3) )/ (2e0%1T)
RZ=2e0

T2=—=1leu/3eu

CALL APPRUX(ALsBToPswWeAsaCoDsX1s4)

L=
DO 4 I=1sk
Y=YY (1)

DO & J=1s2
X=A1(1)
N=U

FaX%#34P 13y #X% X+ (Q1+RIFYFY)IFX+51
G=Y#u43+(U2+RZFAFKIFY+T 250408323

N


http:COf.!iPON[f.lT

12

W

13
14

89
FARX=3 g ¥ XH¥X+2 g URPLIH¥XEYHGT+HRIFYHRY
FYZPL#X®X+2 ¢ UHRIFNFY
GX=2 e UR2¥XXY +3 ¢ UHTZHX*K
GY=3eUNYHY+Q2+R2%*X¥X
DX=(F®*GY=G#*FY )/ {GX¥FY=FX*GY)
DY=(F*GX=C*FX)/{FX#*CY~GX*FY)
XR=X+DX
Y=Y+DY
N=N+1
IF(r\j.GT.lJVU.OROXQEa.U.UCOR.Y.EG.U.O) GO Tn 3
IF(ALSIDX/X) eGT 0leUb—5e0ReAES(DY/Y) eGTele0E~5) GO TO 2
IF(JeEQel) YY(I)=Y ’
L=L+1
ZI(L)Y=X
ZJL)=Y
QA== (3 UxY®Y /4y +Q2+R2¥X*X)
IF(QQeLTeavev) GU TO 3
YI=-Y/2.U+5QRT(QQ)
YJ==Y/24L—=SQRT(QQ)
K=1
Y=YI |
X=UoeU
Fe=X#%3+P1#*Y#*XXEX+(QI+RIFYHFY ) *¥X+51
G=Y#*#3+ (Q2+R2¥X¥X ) *Y+T2%A%3%3
FXZ3 qUHXEX+2 ¢ UKPL#¥X#Y+QI+RIFYHY
FYSP1#X#X+Z e UNRIFXRY
GXZ2 qUHR2HAXY+3 4 UNTZHX¥X
GY=3 e UNY*Y+(EG2+R2%*X#X
DX=(F¥GY=GXFY) / (GX*FY=FX*GY)
DY=(F#GX=G*FX)/ (FX#GY~-GX#FY)
X=X4+DX
Y=Y+DY
N=iN+1
IF(N.GT.].U\J‘ucORoX.EQoOQUOORUYOEQOOOO) GO TO 12
IF(ABS(DX/X) 60T 01e0E=5e0ReABS(LY/Y) eGTele0E~5) GO TO 10
L=L+1
ZI(L)=X
ZJLy=Y
Y=YJ
K=K+1
IF(KeLEe2) GO TO 9
Y=UeU
CONT INUE
IF(LeLTel) GO TO 6
DO 11 IJ=1lsL
IF(IJeEQel) GO TO 14
IK=1J-1
DO 13 II=1».1IK
IF(ABS{1eu=ZI(I1)/Z1(1J)) elEeleltE=5eANDeABS(1e0-ZJ(IT)/
ZJ(1J))eLEeleE=5) GO TO 11
CONTINUE
X=Z1(1J)
Y=2J(1J)
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Cl=X/D1

C3=Y/DJ

WRITE(695) WeClaC3sXsY
FORMAT(/1UuXsFYe396E14e3)

CONTINUE

GO TO &

WRITE(&sT)

FORMAT(1UXs 1THSHECK CONVERGENCE)
W=w+U,el

IF(WeGTele3eANDevielLloledtG) W=w=0G e U9
IF(WeLEelvev) GO 0 1

STOP

END

SUBROUTINE APPROX(ALIBTePswsAsBsCoDsX1sid)

SUBROUTINE APPRCX IS TO DETERMINE THE STARTING VALUE OF

HARMONIC CUMPONERNT UF RESPURSE REGUIKED "IN THE
PROGRAM

DIMENSION X1(3)
AAA=34U*BT/ b4eU
Al=(AL=(Wk*3) % (B*D=A%A) /(BFC=A%D) )}/ AAA

AJ=—=P/ANA
XA==AJ/AI
N=1

FX=XA®%¥3+AL%#XA+AJ

DFX=3 ¢ ust XA¥XA+AIT

DXA==FX/DFX

XA=XA+DXA

N=N+1

IF({NeGT&aBUU) GO TO 11

IF(ABS(DXA) e GEABS(XA)Y*1eUE=6) GO TO 5

M=1

X1(1)=XA

E==XA/2eV

F=g*E-Al=XA*XA

IF(FeLTeUeuv) GO TO 11

M=3

X1(2)1=E+SGRTI(F)

X1(2)=E=5SQRTI(F)

RETURN

END
6400 END OF RECORD \
64VU END FILE

MATHN

90



91

A4Z203 ;
RUN(S9s9999s]UUULU)

REDUCE «

LGOe

' 64uu Ehv UF RECORUD

NOOOO OO GO

PROGRAM ToT (IRPUT sOJTPUT s TAPES=IMPUTsTAPESE=CLTPUT)

THIS PROGRAM IS5 TO FIND IHE SUB-HARMORIC RESPONSL WITH
CUBIC NON-LINEAR SPRING

Cl Io AidPe CUEFFe AD XX IS END DEFe CURRESPURDING To
HARKMONIC CuimPUNENTe C31 ARD (32 ARE AMPe COERFFe Al A3
AND K32 AR END DEFe CURKESPONDING Tu SUbHARMUNIC
CUMPUNENT '

COSHIW)=(EXP{W)+ERP (=) ) /240
STHH(W)=(EXP{W)=EXP(=w))/2eU
DIMENSION XX(6)sYY{(6)sU(T)
AL=Ue U

P=Uel

BT=luuuUev

BT=1luuuue

W=5e2

WRITE(699) ALSBTaP
FORMAT(/9XK s THALPHA =9F4e 135X s6HBETA =eFJels5Xe3HP =
Fbhel/)

W3=W/SQRT(340)
A=COoH(W)+COS (W)
B=3IhH(WI+oIN(W)
C=COSH(wW)-=CUS (W)
D=STHNH{W)-SIN(W)
A3=COSH(W3)+C0O5(wW3)
B3=SINH(W3)+5IR(W3)
C3=COSH{W3)-COS(w3)
D3=SINHIW3)~-SIRNIW3)

Al==1leu
BI=2ev
Cl=beURAL/ (3e¥BT) =Lo% (W¥%3)#(B3%D3-A3%A3) /((B3X¥{3-AT*

D3)#I 4URSURT(34U)%BT)

DI=4e*AL/ {3 e¥BT) —Ge¥ (W3 )W (BRU=AKA)/ ((EFC-A®D)I*3 4T )
EI=240

Fi==4e%P/(3e%BT)

Gl==—1le/3e

HI=AI*Al-4e%b1

FPlzleu+Ze*c I¥ALI*Al/4euU —=l®l —GI®(AI*%3)/8e —3e0FAI®GI
*HI/GaU -

QI=DI-EI%Cl +34%AI*GI*CI/240

SISEI#AI-0l%HI/4eu =3e%ALFAL#*GL /40y


http:GI=-1.13
http:COi::.FF

[S3)
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34

UlL)=Pl#Pl-3I#0I#*HI/4ev
Uld)=Jel
Ul3)=2e%P il +0I#5[#CI-01%GI#CIH#HLI/Ze
U4 )=2e %P IRF]
U5 )1 =@IQl+2 e S50 #CI#CL=CI#0I#CIaCIwI 4,40
U(s)=2exQI%#F1 :
UCTI=FI#F1 +GI#GI={CI®%3)
N=6
DO 2 I=19H
CALL BAIRST(UsXKeVY o)
Cl=RA(1)Y/ {C=A%D/B)
WRITE(6e3)wWeCloRX{T)e VY (L)
FORMAT(IULR«4EL1Se3)
IF(YY(I)eNEsveu) GO TD 2
PP=—AT#XA(1)/2ev
R (PPHPP—=(RX{1)%x2) «*B8I-CI)
IF{WUeLTeVeu) GU TO 2
W=o5uRT QW)
A5=PP+U
A32=PP=U
C31=r3/{C3=A3%D3/B3)
C32=n32/(C3=-A3%D3/B3)
WRITE(He4) W 2C319C329R3e432
FORMAT(55XsBELZe3)
CONTINUE
W=W+uel
BT=BT#1Uev
IF(BTeLEealevwUlEUS) GO TO 7
P=P*1Je0
IF(PoelLkeleav) GO TO %
STOP
END

640U END OF RECORD

6400 ENDL FILE

92



93

AL203eT1UUSLCI0UUU,
RUN(Se9ssss9luuuu)
LGOe
' 6400 ENw OF RECORUD
PROGRAM TST (INPUTsOUTPUTsTAPES=INPUTsTAPES6=0UTPUT)

THIS PROGKAM IS TO DETERWINE THE FREE VIBRATIONS FOR
THE SYOSTEM WITH BILINEAR SPRINGs TAKING END MASS = O
W
Al
AJ

OMEGA
ALPHA ONE
ALPHA TwO

ftowon

OO OO0

COSHIW)=(EXP(W)+EXP(=W)) /240
SINMHIW)=(EXP(W)Y=EXP(=W))/2.0
XO=UeUlU]
Al=UeU
1 Ad=10,U
21 WRITE(E92) AlsAJ
2 FORMAT(/1UA s 11HALPHA UNE =eF5e195Xs 11IHALPHA Twl =sF941/
W=1ebH
3 A=COSH (W)+C0S (W)
B=3 INHIW)+SIN(W)
C=COSH((W)~CCS (W)
D=STNH{W)=OIN(W)
S=(Wxx#3) % (B*D-A%A) / (L*C-A%*D)
IF(S.LTOI’F‘\IOORQbQGT.AJ) GG TO 5
RA=XO% (AJ~-AT )/ (AS=S)
CH=XA®B/ (8% C-A%*D)
WRITE(694) WelHsXA
FORMAT(1UX9F6e292E14e3)
W=l+Ueub
IF(WelLEaldeu) GC TO 2
AJ=AJ#1040
IF(AJeLEeluuuev) GO TO 2
Al=ATl+2ev
IF(AleLEe2ev) GO TO 1
6 STOP
END
i 6400 END OF RCCORD
i 64vu END FILE

U


http:IF<AI.LE.Z.ul
http:IF<S.LT.AI.OR.~.GT.AJ
http:INPi.JT,OUTPUT,TAPE5=INPLJT,TAPE6=0UTPi.JT
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A4203,
RUN(S)
REDUCE.
LGOe
! 6400 END OF RECORD
PROGRAM TST (INPUT 9PUNCHe TAPES=TNPUT s TARPET=FUINCH)

THIS PROGRAM [5 TO UETERMINE THE FREE VIBRATIONS FOUR

THE oYSTiEm WITH BILINEAR SPRINGs CUNSIUVERING ERND
MASS

AMU= END MASS/BEAM MASS

OO OO O

DIMENSION VVIT)
COSHIW)=(EXP(W)+EAP(=W)) /26U
SINHIWI={EXPIW)=EARP(=W))/2eV
XO=UdeWUL1T5
AMU=U U424
Al=2e22
AJ=10e82
W=1leb

1 A=COSH(WI+CO5(W)
B=STNH{W)+o IN{W)
C=COSHIW)=Cou(w)
D=STRH{W)=oIN{w)
Sz (WH#3) % (BRD=A%A) / (B#C=A%D) + (Wikits ) wamU
IF(SelLTeAIeOReSeGTeAd) GU TO 5
KA=XO#(AJ=-AL)/ AJ=5)
CH=KA%B/ (B#*C~=A%D)
AL=15ev
DO 2 I=195
L=5-1+1
WR=WH#XL/45ew
VVIL)=CHS (COSHAWA Y =COS W) =A% (STNHIWX ) —=STN(wX) 1 /5)
A=A +54u
IF(IeGEe3) XL=AL+5ey

2 CONT I NUE
WRITE(T724) WelVVI(I)el=10e5)

4 FORMAT(LUXKsFGelo5E11e3)

5 W=WtueUZ
IF{WeGTadteuv) Weii=Loeul
IF({WelLEeboav) GO TO

6 STOP
END i

' 6400 END OF RECORD
I 640U END FILE


http:lf(S.LT.AigORoS~GT.AJ
http:AJ=l0.82
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A4203.
RUN(S)
REDUCE
LGOe
' o4uu ENL OF RECURUD
PRUGRAM ToT (INPUTsFUNCHs TAPESZ=TPI T o TAPET=PURCH)
C
C PROGKAM TU Flu THE RESPUNSE wlTH olILINCAR SPRIKG.
C THEOGRETICAL ANALYSIOS
C
C CleCZeC53 ARE THE AMPLITUDE CUOEFFICIENTL AND XKALsHAZsXAD
C ARE THE END DEFLECTIGHNS IN THE USTAoLD RANGE
C
DIMENSION VVIio)sUVI6)sUdUlb)
COOHIW)={EAP (W) +EXP(-W)) /20
STNHIW)=(EXPIW)=EAP(=W))/2eU
X0O=UeLUL1T5
AMU=U U424
Al=2e22
Ad=1VeE2
P=ueuusash
K=1
25 S1=A1-P/X0
52=A1+P/ X0
S32=AJ

DO 24 J=1936
READ(5+28) FREQ

26 FORMAT(Flueu)
W=SQRT(6e 284%¥FREQ)*¥Ue2598
A=COSH(W)+C0S (W)
B=SINH(W)+SIN(W)
C=COSH(W)I-=COS(wW)
D=SINH(W)=SIN(W)
Cl=B*P/(AI*(B*C‘A*D)‘(W**3)*(B*D-A*A)-(W**4)*AMU*

1 (B®*C-A%*D))

XA=C 1% {C—-A%D/B)
S={WHH3)# (BHD=AFA) / (B¥C-ARD )+ (WHH4 ) FAMNU
IF(SB.GE.&-AND.S.GE.bZ, GO TO 200
IF(5eGle53eUReSebLEeol) LU TO 10U
XA=(X0# (AI-AJ)}-P) /7 (S5=-AJ)
Cl=XA#B/(B*C-A%D)

1uv XL=154U
‘DO 2 1I=195
L=5-1+1
WA=WHXL/45 ey
VVIL}=C1# (COSHIWX)=COS{WA) =A% (SINH(WX)-SIN(WA))/B)
XL=XL+56U
[IF{leGEe3) XL=XL+5.U

2 CONT INUE



200

24
22

WRITE(Tesa)wel{VV(I)el=195)
FORMATU1UKsFbe295E11e3)
GO TO 24

XA1={(XO* (AT-AJ)Y=P)/(5-AL)
XAZ2=-P/(5-A1)

XA3=(XO% (AJ—=AT)-P)/ (5=-AU)
T=C=A%D/b

Cl=XA1/T

C2=AA2/T1

C3=XA3/T

XL=15460

DO 3 1I=1s5

L=5=1+1

WX=WHXL/4560

-

VVIL)=C1% (COSH(WX)=COSIWX ) =A% (SINH{WX)}=SIN(WX))}/B)
UVIL)=C2% (COSHIWX)=COSIWA)=A¥(STNHI{WX)=SIN(WX))/B)
UUL) =Cax(COSHIWX)=COSIWX) =A% (STHH{WX)=SIN(WX))/B)

XL=XL+540
IF(I+GEe3) XL=XL+540
CONT INUE

96

WRITE(795) WedlVV(I)sI=195)s(UV(I)el=1e5)s(UU(TI)sI=145)

FORMAT(1UX9F6e295E11e392(/16X95E11e3))

CONTINUE
P=UeulU275
K=K+1
IF(KeLEe2) GG TO 25
STOP
END
6400 END OF RECORD


http:IFCKeLE.2l

A4203

RUN(S)

REDUCE »
LGO

v (v OV O

OOy Oy

11
12

[O%]

(e

o4ulu ERND OF RECCRD

NATURAL FREWUENCIES OF CANTILEVER SEAM WITH LINEAR

PROGRAM TST (INPUT’(bTPUT TAPES=

VARYING THC STIFFRNESSsALPHA

ALPHA
OMEGA

AL
W

[{B ]

COSHUW) = (EXP{W)+EAP (=) )/240
SINHIW)=(EXP(W)=EXP(=wW))/2av

Flw) =(wWex3)3%(14U+CCSHIW

=STNH(W)Y*COS(W))

MATURAL FREZGUENCIES ARE THE

Flw)y = v

DEF (W) = (w3 )% (STNH (W) *
{1eu+COSH{W) *COS(W) )
WM=154U

Hz=Ue 2

AL=UaU

WRITE(Ss12) AL

CCOS(IW)=COSHIW)I*SIN(w) )
+2 o UHALFSTINH WY #SIM (W)

)#COS(W)

FORIMAT(//71VX s4HAL =9F38a1)

W=Uel

FI=F (W)

W=W+H

IF(WeGTaw) GO TO 13
FJ=F (W)

IF(FI#FJeLEaveuw) GO TO 3

FI=FJ

Gu Tu z

N=1

W=l=H/Zeu

DW=—-FI/DF{w)

W=W+DW

FI=F (W)

N=i+1

IF(NeGTalwuw) GO TO 2

IFLABG(DW) e GE WX 1 4 UE~

WF\ITE_(E)’D) W
CRMAT(IUX e F12e3)

W”W+H

5)

GO T0 4

97

INPUT s TAPEA=0UTPLT)

SPRIMNS.

)4+ AL®(COSHW)#SIN(W)

ROOTS OF THE EQUATION

42 ¢ O u %


http:IF<W.GT.WM

13

IF(wWwelkewri) GO TG 1lu
AL=AL+1lUe
IF(ALeGTalbaw) AL=AL+9L .0
IFlALeLE e vuvel GO TO 11
STOP
END

GLhuu b OF RECCRU

64uu CNU FILE

98



APPENDIX ITI

PROPERTIES OF BEAM
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APPENDIX III

PROPERTIES OF BEAM

Material Mild Steel

Length 45"

Width 2"

Thickness 3/8"

Weight of the beam, M 9.45 1bs

End mass, m ( shaker core + 0.40 1b

effective mass of the spring )

Mass ratio, M (= M/M ) 0.0424

£l 29.61 X 10* 1bf in?

( EI/fpg)* 2.28 X 10%  in? sec:!



APPENDIX TV

LIST OF EQUIPMENT
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APPENDIX IV

LIST OF EQUIPMENT

Goodman's Vibration Shaker ( Model V. 390/200 )
Vibration Shaker Amplifier

R. C. Generator (Philips 79.060.69)

Ammeter

Micrometer Proximity Transducer ( DISA 51D11 )
Displacement Transducer ( DISA 51D05 )
Oscillators ( DISA 51E02 )

Tuning Plug ( DISA 51E03 )

Reactanﬁe Converters ( DISA 51E0L )

Storage Oscilloscope ( Tectronics 564 )


http:Z9.060.69
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