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ABSTRACT 

General theory of nuclear reactor kinetics is 

discussed, with emphasis on CANDO* reactors. The numerical 

solution of the.group diffusion equations using the IQs+ method 

is presented. Several important numerical parameters are 

studied with reference to a one-dimensional slab reactor 

undergoing a LOC0 accident. These parameters are: number of 

mesh points in the region of solution, frequency of shape 

calculations, and convergence criteria. 

* Canada - Deuterium - Uranium 

+ Improved Quasi-Static 

o Loss of Coolant 
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1. INTRODUCTION 

Present .day nuclear power systems require sophisticated 

numerical methods both for their design and for the unprecedented 

accuracy now de•anded for dynamic analysis. It is particularly 

important to be able to predict the consequences of both planned 

and unplanned space dependent transients in the reactor core. 

For this purpose, the Boltzmann Transport Equation applied to 

neutrons in a chain reacting assembly provides the basic 

mathematical statement from which the required results are 

generated. 

In Chapter 2, the neutron group diffusion equations are 

presented, and their evolution from the Boltzmann Transport 

Equation is discussed. In this regard, emphasis is placed on 

Fick's Law and energy spectrum collapsing. The Improved Quasi­

static method, a procedure for linearizing the group diffusion 

equations, is described, along with a method to solve the 

resulting set of inhomogeneous algebraic equations iteratively. 

In Chapter 3, the reactor model and transient used in 

this study are described. The transient consists of a Loss of 

Coolant (LOC) reactivity perturbation followed by shut-off rod 

(SOR) insertion in a one-dimensional reactor. 

1 



Optimum values of parameters input into the numerical 

procedure are investigated in Chapter 4. The parameters studied 

include the number of space mesh points, the frequency of flux 

shape calculations, and convergence criteria. 

2 



2. CANDU NUCLEAR KINETICS 

2-1. General Theory of Nuclear Reactor Kinetics 

The primary objective of nuclear reactor kinetics is to 

calculate the behaviour of a neutron population as a function of 

space, time and energy in assemblies containing materials of 

known nuclear properties. Phenomena may include radioactive 

decay, neutron induced fission, neutron scattering, and neutron 

absorption. In most cases, neutron transport can be treated as 

the dispersion of a fluid, which greatly simplifies the 

calculations. The most important physical parameter to calculate 

is then N(r,n,E,t), which is defined by the statement that 

N(r,n,E,t) dVdEdO is the number of neutrons which, at time t, are 

~ 

located in an infinitesimal volume dV containing the point r, 

have kinetic energy in an infinitesimal energy range dE about E, 

and are travelling in a direction contained in the infinitesimal 

cone of direction do about n. The integrodifferential equation 

for N(r,n,E,t) is called the Boltzmann Transport Equation. For a 

derivation of this equation, the reader is referred to 

3 
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Reference (1). The essential feature of the transport equation 

is that it eq~ates the net rate of change of neutrons in the 

phase volume dVdEdn to the rate of production minus the loss of 

neutrons in that_phase volume. 

The solution of the Boltzmann Transport Equation for 

most heterogeneous reactor assemblies is extremely time-consuming 

and expensive. Hence, numerous approximations have been devised 

to facilitate both the design of power reactors and studies of 

various accident conditions. Before we explicitly describe some 

of these approximations, it is necessary to define certain 

parameters. 

The first parameter of interest is the net current 

density, J(r,E,t) which is defined so that J(r,E,t).ndSdE is the 

net number of neutrons in the energy interval [E,E+dE] which pass 

through a surface dS whose outward normal is n in one second at 

timet. It can be shown that:(l) 

J(r,E,t) ... - .... = J0dn n v(E) N(r, n,E,t) 

where v(E) is the scalar velocity at energy E. 

The second quantity of interest is the scalar flux 

density, +(r,E,t), defined such that: 

+(r,E,t) = v(E) lgN(r,n,E,t) dn 

2-1 

2-2 
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The flux density is a quantity which facilitates the calculation 

of reaction rates. For example, the number of type-x 

interactions per second, Fx, between neutrons in dE and nuclei in 

dV is given by: 

where Ex is the macroscopic cross section for a type-x 

interaction. 

With these preliminaries in mind, we can now write down 

the neutron balance equation, ie, the net rate of increase of 

neutrons in dVdE is the difference between their rate of 

appearance and their rate of disappearance: 

d 1 -dt [v ,(r,E,t) dVdE] = 

[~ X~ (E) (1 - a j ) ! ~ v j I:~ (r, E' , t) ' ( r, E' , t) dE'] dVdE 
J 

I 
+ L.. x 

1
. <E) A. c. cr, t) dvdE - v. :J cr, E, t) dvdE 

i=l 1 1 

- I: t (r, E, t) • ('r, E, t) dVdE 

+ [!~ I:s(r,E'~E,t) ,(i!,E' ,t) dE'] dVdE 2-3 

The first term on the right-hand side is the rate at which prompt 

neutrons appear in dVdE. The second term is the rate at which 

delayed neutrons appear in dVdE from I precursor groups. 

Precursors are fission products which decay by neutron emission 
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with some half-life. Photoneutrons are also represented as a 

precursor gro.up. The third term represents the rate at which 

neutrons leak out of the phase volume dVdE. The fourth term 

represents the rate at which neutrons are absorbed in dVdE and 

scattered out of dVdE. The fifth term represents the rate at 

which neutrons are scattered into dVdE. We now explicitly define 

the variables used in 2-3. 

j 
\) 

Xi {E) 

- the fraction of total prompt neutrons emitted 
by isotope j at energy E 

- the number of neutrons released per fission of 
isotope j 

- the macroscopic fission cross section of 
isotope j 

- the total yield of delayed precursors from 
isotope j 

- the fraction of total delayed neutrons emitted 
by precursor i at energy E 

- the decay constant for the i'th precursor 

- the space-time concentration of the i'th 
neutron precursor 

- the total macroscopic absorption cross section 
including the total macroscopic cross section 
for scattering out of the energy interval [E,E+dE] 

l:s(r,E'+E,t) -the macroscopic cross section for scattering 
into the energy interval [E,E+dE] from E' 

A second equation relates the rate of change of the 

i'th neutron precursor to its production and destruction, ie: 
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ac. ( r, t) L . . . 
1 o] = J J(~ E' t) (~ E' t) dE' = ~. 1 v tf r, , 'r, , at . 1 o 

J 

2-4 

i where a. is the. fraction of the precursor i produced per fission 
. J 

of isotope j. There are I groups of precursors. Note that: 

2-5 

Equations 2-3 and 2-4 represent the fundamental 

mathematical statements of nuclear reactor kinetics. We note, 
_. 

however, that there are 2 + I unknown functions, ,, J and Ci, 

i = 1, ... , I, and only 1 +I equations. Hence, another equation 
.... 

is needed to relate J and ,. This equation is known as Fick's 

Law, and states that the neutron current density is directly 

proportional to the gradient of the flux density, ie: 

J(r,E) = -D(r,E) v,('r,E) 2-6 

where D(r,E) is called the diffusion constant. For a derivation 

of Fick's Law directly from the Boltzmann Transport Equation, the 

reader is referred to Reference (1). While we shall not prove 

Equation 2-6, we shall discuss its plausibility and its 

limitations, since Fick's Law currently represents one of the 

most important approximations utilized in reactor physics 

calculations. 
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Equation 2-6 states that for neutrons at energy E, the 

net current across a surface is proportion~! to the rate of 

decrease of the density of neutrons across that surface. 

Moreover, the direction of the net current is the direction in 

which the number of neutrons is decreasing at its maximum rate. 

Thus, the neutron population tends to drift from a region of high 

concentration to one of low concentration, like a gas diffusing 

through a porous.plug, and this drift gives rise to~ net 

current. Equation 2-6 represents the starting point for neutron 

diffusion theory. 

One method of obtaining Equation 2-6 is to assume that 

.... _.; 
N(r,u,E,t) has the form: 

N(r,n,E,t) 
..... 3_.._..__.. 

= [' ( r, E, t) + :r;n • J·( r, E , t) ] v ( E ) 2-7 

It can easily be shown that Equations 2-1 and 2-2 are consistent 

with this form of N(r,n,E,t). The neutron distribution described 

by Equation 2-7 is said to be linearly anisotropic. It is clear 

that Equation 2-7 cannot describe neutron population distributions 

which are strongly anisotropic. Hence, Pick's Law will not be 

valid near the outside surface of a reactor and near or within 

strong absorbers, where strong anisotropy will exist due to rapid 

variations in scattering and absorption cross sections. 
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Equations 2-3, 2-4 and 2-6 represent, in principle, the 

equations of neutron diffusion theory. However, their energy 

dependence makes them difficult to solve, so further 

approximations resulting in the energy-group diffusion equations 

are used. The essential approximation is that the flux density, 

,(r,E,t), in the energy group ~Eg = [Eg,Eg-11, may be 

written: 

where we assume that wg(r,E) can be determined for different 

regions from the nuclear data and isotopic concentrations of 

materials throughout the reactor. tg(r,E) is defined so that: 

Using 2-6, 2-8 and 2-9 in 2-3, we obtain for G groups: 

2-8 

2-9 

- Lt <F,t> , cr,t> + z [L , cr,t> 'g' <r,t>l g g g' g g 
2-10 

g' = 1, 2, ••• , G 



where: 

1 
v ( f') g 

J
. 

Xpg = 

1 E 
A g 

j ( .... ' ) ( _.. E ' ) dE ' Ef r,E ,t lllg' r, 

Xig = 1/lE xi(E) dE 
g 

o (r, t > = 1 A E ocr , E , t > ljl cr, E > dE 
g u g g 

E tg (r, t) = 1 ll E E t (r, E, t) w g (r, E) dE 
g 

E < r-, E, • E > ljl , rr:, E, > dE, s g 

Equation 2-4 reduces to: 

aci Cr,t) ~ . . J. __ =L [L..a~ vJ E (r t) ~ 9 ,(r,t)1 at , . 1 fg' ' 
g J 

-)..c.(r,t> 
1 1 

10 

2-11 

Equations 2-10 and 2-11 represent multi-group diffusion 

theory. We can see that the problem of solving for group fluxes 

can be made simplest by using as few groups as necessary in the 

analysis, while sacrificing some accuracy. 
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2-2. Some Specifics of CANDO Kinetics 

The CANDO PHW nuclear power system is a heavy water 

moderated pressure tube type reactor. Figure 1 displays a 

typical reactor assembly. There are several neutron kinetic 

peculiarities associated with this type of reactor design. 

Firstly, for short (several seconds) transients, it is adequate 

to perform most calculations using six delayed neutron groups.(2) 

Secondly, the reactor is so well moderated that two energy groups 

are sufficient.(3) Thus, Equations 2~10 and 2-11 reduce to: 

GROUP 1 (fast) 

GROUP 2 (slow) 

6 
= (1- a) 'liEf , 2 (r,t), + L 

i=l 

DELAYED NEUTRON PRECURSORS 

ac. 
1 

at 

i = 1, •.• , 6 

... 
A.C.(r,t) 

1 1 

2-12 

2-13 

2-14 
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Note that in the above notation we have omitted reference to the 

superscript j, and hence we are limiting the calculation to one 

fissionable isotope (unless the group cross sections are updated 

to account for fuel burnup}. It should be noted that for long­

term transient and fuel burnup studies, it may be necessary to 

include up to 33 delayed neutron precursor groups. 

Other physics and engineering factors which affect 

space dependent neutron transients in CANDO reactors have been 

studied by Dastur and Buss.(4) Major factors were found to be: 

1. Neutronic decoupling of reactor segments due to 

deliberate flattening of the power distribution. 

2. Retardation of the power shape transient due to 

delayed neutron holdback. 

3. Photoneutron production in heavy water. 

4. Asymmetric insertion of reactivity devices. 

2-3. Numerical Solution of the Group Diffusion Equations 

There are numerous spatial approximation and time 

integration methods available for the solution of the space-time 

dependent neutron group diffusion equations. For example, one 

can employ techniques of Finite Difference, Modal Ex.pansion, 

Nodal Expansion, and Factorization. A review of the principles 

behind each of these methods can be found in Reference {5}. For 

this work, the Improved Quasi-Static {IQS} method has been used. 

We first describe the factoring procedure and obtain the point 

kinetics equations. We next describe how the flux distribution 

is generated using the IQS method. 
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2-3-1. The Point Kinetics Equations 

It is necessary to introduce the fast and slow time 

independent (static) adjoint fluxes, defined by the equations: 

v.o1 (r) * .... 
Vljll (r) l: tl 

* ... 
ljll(r) + l: 12 

* ..... 
ljl2(r) = 0 

2-15 
~ * .... * ~ *-V.D 2 (r) Vljl 2 (r) - l: t2 ljl2(r) + vl:f w1 (r) = 0 

The use of the ad joints shall soon become apparent. The physical 

meaning of the adjoint function is as follows: Assume we 

introduce K neutrons, all with £nergies in one group, into a 

small volume dV of a critical reactor. If the initial neutron 

population is N0 , and the asymptotic neutron population is 

N0+~N, then it can be shown that:(l) 

liN 
a:-

K 
2-16 

* .... w (r) is called the "neutron importance" at the point ~, and g 

represerits the increase in asymptotic population level caused by 

one neutron introduced at r in group g. we note that the above 

* description of neutron importance is simplified, since llig will be 

sensitive to both the energy and direction of a neutron in the 

core, as well as its position. For example, a large fraction of 

fast neutrons introduced into the reflector of a reactor would 

escape without causing any increase in neutron population level, 

and hence this region is considered to have small importance when 

neutrons are travelling away from the core. For a more complete 
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discussion of neutron importance, the reader is referred to 

Reference (1). 

We now introduce a quantity AMP(t), the amplitude 

function, defined by: 

AMP(t) = 2-17 

AMP(t) is clearly the integral of the fast and slow neutron 

densities, each weighted by its respective importance. For a 

point reactor, AMP(t) is directly proportional to the power. 

Additionally, we require that AMP(O) = 1, as can be accomplished 

by multiplying the adjoints by a suitable constant. 

Next, we introduce a group shape function ~g(r,t), 

defined such that: 

Substituting 2-18 into 2-17, we find that: 

If we substitute Equation 2-18 into Equations 2-12, 

2-13 and 2-14, and then integrate Equation 2-14, we obtain: 

2-18 

1 ·a~ 1 (r,t) 
vl at 

AMP( t) · .... 
v AMP(t))~ l(r,t) 

1 

~ 

.A. .c. (r,t) 
1 1 

2-20 
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( (- ) AMP ( t) ) (- ) 
= v.D2 r,t v - Ia2 - v2AMP(t) '2 r,t 

+ I12 "'lcr,t> 

= - -A t C.(r,O) e i 
1 . 

2-21 

2-22 

In the above equations, AMP(t) is the rate of change of the 

amplitude function with respect to time. Next we multiply 

* - * ~ Equation 2-20 by w1 (r) and Equation 2-21 by w2 (r), integrate both 

equations over the whole reactor volume, and add the two 

resulting equations together. The result is: 

6 
AMP ( t ) = ( P ( t ~ t) a ) AMP ( t ) + ,L: A • n . ( t ) 

A i=l 1 1 

where (using < f, g > = f fg dV) 
REACTOR 

6 
e = .Z a· 

i=l 1 

2-23(a) 

2-23 (b) 
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If Equation 2-18 is used in 2-14, and the result 

* ...... multiplied by ~ 1 (r) and integrated over the reactor volume, we 

obtain: 

2-24 

Equations 2-23(a) and 2-24 are called the point 

kinetics equations, and for many years have formed the basis of 

almost all transient design analysis performed for reactors. 

Their exclusive use depends to a large extent on the fact that 

for many transients of practical interest, the flux shapes change 

very little, hence the kinetics parameters, (p,A,ni) can be 

calculated using the initial flux shape throughout the entire 

transient. This procedure leads to excellent results for the 

amplitude function, which is a measure of the time variation of 

the total neutron population, if the reactor is relatively small 

and its segments are well coupled, as with early research 

reactors. Modern day power reactors require more sophisticated 

methods due to their large size and the accuracy demanded for 

complex accident analysis. 

2-3-2. The Meaning of the Kinetics Parameters 

The parameter p(t) is called the reactivity of the 

reactor. Careful inspection of the numerator of the equation for 

p(t) shows that it is an integral of the net instantaneous 

production of neutrons in the reactor, weighted by the importance 
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function. The denominator is the instantaneous production rate 

due to fission, weighted by the importance function. Reactivity 

is, then, the ratio of this net weighted rate to the weighted 

production rate due to fission. It can be thought of as the 

fractional increase of importance per generation due to fission 

neutrons. 

The quantity A(t} is called the prompt-neutron 

generation time. The equation for can be rewritten as follows: 

A(t} = AMP(t} 

The numerator of the right-hand side is equal to the 

total number of fast and slow neutrons in the reactor, weighted 

by the respective importance. The denominator is the weighted 

production rate of all neutrons. Hence, A can be interpreted as 

the time a neutron of average importance survives after it 

appears either as a prompt neutron or one emitted from a delayed 

neutron precursor. 

It should be noted that these interpretations of p and 

A depend on the importance remaining approximately the same 

throughout the transient. In cases where regions gieatly change 

their material properties during the transients (such as a fast 

shutdown}, the physical interpretation of the kinetics parameters 

is elusive. Use of time-dependent importance functions would aid 

interpretation but would immensely complicate and add significant 

cost to numerical procedures. 



2-3-3. The IQS Methods 

Equations 2-20, 2-21 and 2-22 are solved by the 

Improved Quasistatic Approximation (IQS).(G} The important 

difference between the IQ& method and other quasistatic methods 

is that it replaces th~ derivative of ~g(r,t) by a backward 

difference of first order: 

~ - . 
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a _ ~ (r,t) - ~ (r,t-At) 
at ~g(r,t) = g g 2-25 

At 

where t - At is the time of the last shape calculation. It can 

be shown (see, for example, Reference (5)) that the backward 

difference approach is numerically stable for large time steps, 

but that the forward difference approach is not. In the next 

sections, we describe the numerical procedures used to solve the 

shape, neutron precursor, and point kinetics equations to obtain 

a complete space-time representation of the neutron flux. 

2-3-4. The Numerical Procedure 

The shape, precursor, and point kinetics equations are 

coupled. Hence, in order to obtain accurate numerical solutions, 

it is necessary to iterate several times between th~ equations in 

order to perform the current calculations with updated values 

from the previous calculation. We now list the stages. of 

calculation used in this study: 



1. The static (exactly critical) model is set up. 

2. Equations 2-20 and 2-21 are solved with: 

(a) 

(b) 

(c) 

awg (r,t=O) = 0 
at 

AMP(O) = 0 

This step gives the static flux shape and the 

initial precursor concentration. 

3. Equations 2-15 are solved, to give the static 

19 

adjoint fluxes. The adjoints are adjusted so that 

Equation 2-19 is satisfied at t = 0. 

4. The reactor model is changed in accordance with the 

transient conditions at a particular time, tNEW' 

into the transient. 

5. Equations 2-20 and 2-21 are solved using the 

amplitude and the time derivative of the amplitude 

from the previous time, toLD• In Equation 2-20, 

Ci(r,t) is given by Equation 2-22 with: 

w2<r,t) = w2<r,toLD) 

2-26. 
ljl2(r,tNEW) - ljl2(r,tOLD) 

+ ( tNEW - tOLD ) (t~tOLD) 

6. New values for p(t) and A(t) are calculated using 

the new shape functions from step 5. 
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7. The time interval (tNEW- toLo> is broken up into 

smaller time intervals, P is linearly interpolated 

over this time interval, and the point kinetics 

equations are solved. 

8. Equations 2-20 and 2-21 are re-solved using the 
• 

updated AMP(tNEW) and AMP(tNEW)• 

9. Using the results of step 8, the kinetic parameters 

are updated. 

10. The precursor concentrations are updated using 

Equation 2-22. 

11. Steps 4 to 10 are repeated for a new time. 

For convenience, steps 5 to 6 shall be known as the "A" 

case, step 7 as the amplitude calculation, and steps 8 to 10 as 

the "B" case. Several features of the above procedure should be 

pointed out: 

1. It is unlikely that an exactly critical reactor 

will be set up the first try. When Equations 2-20 

and 2-21 are solved for the static flux shape, a 

number, EOK, is determined such that when vEf 

is replaced by vEf/EOK, the reactor is exactly 

critical. All subsequent vEf's must be corrected 

by EOK. 

2. When the reactivity, p(t), is interpolated in 

step 7 (the amplitude calculation}, the value of 

P ( tNEW) is taken from the "A" case which has just 
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been completed. The value of p(toLo> is taken from 

the previous "A" case, and not from the previous 

"B" case. 

3. The shape function varies considerably slower than 

the amplitude function. This is the reason for 

using relatively large time intervals between shape 

calculations (performed in the "A" and "B" cases), 

and breaking this time interval up in step 7 (the 

amplitude calculation). 

2-3-5. The Numerical Solution of the Shape Equations 

Equations 2-20 and 2-21 represent the equations to be 

solved to obtain the flux shape. We have described in section 

2-3-3 the way in which the IQS method deals with the time 

derivative term. We now show how the space derivative term is 

calculated. 

The reactor is first broken up into small cells, of 

dimensions ~X, ~Y and ~z. In a typical CANDU cell, ~X and ~Y 

correspond to one lattice pitch and ~z to one ·fuel bundle length. 

Equations 2-20 and 2-21 are then integrated over the cell volume.· 

The space derivative term, which represents the leakage from the 

cell now becomes: 

..... ..... 
LEAKAGE= /cell V.Dg(r,t) V ljlg(r,t) dV 



or, using the divergence theorem: 

-

LEAKAGE = I Dg(r,t) V .g(r,t) 

surface 
of cell 
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dA 2-27 

where dA is a vector elemental area which is outward normal to 

the cell surface. Figure 2 shows three representative cells. We 

now show how the leakage is calculated through the shaded area in 

Figure 2 between the (I- l)'th and I'th cells. The flux must be 

continuous at the boundary, so let wg be the value of the shape 

function at the boundary. The neutron current must be continuous 

at the boundary, hence: 

D -
a w....9. [ wg - "'g ( I -1 > 1 

= D ( I -1 ) -""'------'"---~-
g ax boundary g AX(I-l)*l 

2 

[wg<I> - wg1 
= D (I) -

g A X (I)*_!. 
2 

w _ aX(I-1) Dg(I) wg(I) + aX(I) Dg(I-1) .lJig(I-1) 

g - D (I) aX(I-1) + D (I-1) AX(I) g g 

Using 2-27, 2-28 and 2-29, we find: 

LEAKAGE THROUGH SHADED AREA IN FIGURE 2 = 

2 Dg(I) Dg(I-1) [wg(I) - wg(I-1)] AY AZ 

Dg(I) !iX(I-1) + Dg(I-1) liX(I) 

In order to calculate the leakage from all sides of the cell, 

2-28 

2-29 

2-30 

equations analogous to 2-30 are used for each cell face. This 

procedure yields 2N linear difference equations with the fast and 



thermal shape functions as unknown variables at N points in the 

reactor. This set of algebraic equations may be presented as a 

matrix equation: 
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A~ = y 2-31 . 

While this equation may be solved by Gaussian 

elimination, it is considerably cheaper to solve it iteratively. 

The method used is called the Gauss-Seidel method with provisions 

made for the employment of Liebmann over-relaxation. This 

procedure is described more fully in Appendix 1. 

2-3-6. Conditions for Convergence 

The basic assumption in the IQS method is that both the 

time rate of change of the spatial flux, ~g(r,t), and the time 

rate of change of reactivity, P(t), are linear over a time 

interval. These conditions can be satisfied if the time interval 

is chosen small enough so that further reductions in its size do 

not lead to improvements in the desired accuracy. 

As described in section 2-3-5, the above assumptions 

lead to a set of algebraic equations which are solved by the 

Gauss-Seidel iteration method. There are three major conditions 

in the numerical procedure which must be satisfied if the method 

is to yield the correct solution to the diffusion equations. 

These conditions presuppose that the assumptions outlined in the 

previous paragraph are reasonably satisfied. 
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The first condition is that Equation 2-19 must be 

satisfied at the end of each shape calculation. 

The linearization of Equations 2-20 and 2-21 yields 2N 

equations in 2N unknowns, where N is the number of mesh points. 

Hence, Equation 2-19 represents the (2N+l)'th equation, an 

overspecification to the set of linear algebraic equations to be 

solved. (The entire problem is not overspecified.) It is found 

that the Gauss-Seidel method with Liebmann over-relaxation by 

itself leads to slow convergence. Hence, to speed convergence, 

an empirical method was developed to include an extra degree of 

freedom in the calculation. This method requires that every term 

containing vEf in the set of algebraic equations is divided 

by a number, KE 0 , such that: 

SUMM 
KE n * KE n = SUMM

0
_

1 
n-1 

where n refers to the n'th iteration, and: 

SUMM = 
n ~ ['~(I,J,K) + ~~(I,J,K)] 

(I,J,K) 

The second condition to be satisfied is, then: 

KE = EOK 
nf 

where nf is the number of the final iteration, and EOK· was 

defined in section 2. 

The third condition to be satisfied is: 

2-33 

2-34 

2-35 
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n + n 

1 I 

~ 1 (I,J,K) • 2 (I,J,K) 
EPS ) 

n-1 n-1 - 2-35 
• l (I,J,K) + ~ 2 (I,J,K) 

where EPS is an input parameter. Equation 2-35 must be satisfied 

for every point (I,J,K) in the reactor before the calculation 

terminates. An important point to note is that if the iteration 

is converging very slowly, Equation 2-35 may be satisfied even 

though the current values for the tg's may be far from the 

solution of the algebraic equations. Hence, EPS is not a 

parameter which gives the absolute error between the calculated 

solution and the exact solution, but merely provides a convenient 

method for exiting from the iteration loop when it becomes likely 

that sufficient accuracy has been reached. 



3. DESCRIPTION OF STUDY 

3-1. The Reactor Model 

The model was chosen to satisfy several requirements. 

Firstly, it was necessary to keep the calculations cheap, so a 

one-dimensional model was used for the study, as shown in 

Figure 3. The reactor is 600 em in length, and consists of four 

basic regions whose properties are listed in Table 1. The mesh 

spacing was non-uniform. The boundary condition used was that 

the flux goes to zero at .7104 Atr from the surface of the 

reactor. 

The production cross sections (vEf) for the 

different regions were chosen to emphasize neutronic decoupling. 

This is illustrated by the dished flux distribution shown in 

Figure 4. 

3-2. The Transient 

The transient was chosen to satisfy several 

requirements: 

1. Delayed neutron holdback was emphasized. Table 2 

displays the delayed neutron data used for this 

work, taken from Reference {2). 

26 
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2. The transient was representative of those 

encountered in safety analysis. To satisfy this 

requirement, a loss of coolant (LOC) type 

reactivity perturbation was assumed. Figure 5 

shows the reactivity perturbation as a function of 

time. The reactivity insertion due to LOC is 

included in the transient by changing vEf in 

the following manner: 

3-1 

where p'(t) is taken from Figure 5. 

3. The transient was sub-prompt critical in order to 

represent a typical CANDO transient. 

4. There was a large change in the flux shape during 

the transient. This was accomplished by perturqing 

the right half of the reactor with the LOC type 

reactivity perturbation, and having the shut-off 

rod (SOR) moving into the left half. Table 3 

displays the, SOR incremental properties. Figure 6 

shows the rate at which the SOR moves into the 

reactor. The rod is 540 em in length, and sits 

symmetrically in the reactor at the end of the 

transient. Hence, the rod is considered' to be 100% 
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inserted in the 600 em reactor when it has 

travelled 570 em into the reactor from the left. A 

0.4 second delay was assumed between the beginning 

of the LOC and the triggering of the SOR. 

3-3. Parameters Studied 

studied: 

The effects of changing the following parameters were 

1. Frequency of the shape calculation. 

2. Number of mesh points. 

3. The convergence parameter, EPS, where EPS is the 

number which determines when the iteration 

terminates, as described in section 2-3-6. 

The frequency of shape calculations is determined by 

the time step between A (or B) cases. Tables 4 to 7 display the 

input data for the time steps st~died. Rather than referring to 

a time step in seconds, we shall refer to the distance travelled 

by a SOR, which directly determines the time step from Figure 6. 

The time steps studied correspond to rod movements of 20, 10, 5 

and 2.5 centimeters per time step. 

The study of the number of mesh points used 20 em time 

steps. Two cases were studied; 60 mesh points and 34 mesh 

points. Larger mesh spacings were not investigated, since this 

would require smearing of SOR properties, which introduces 
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another independent variable into the study and complicates the 

analysis. Table 8 shows the geometry used for the 34 mesh point 

case. For the 60 mesh point case, the position, P(I), of the 

I'th mesh point is given by: 

P(I) = (lOI - 5) em 

The study of EPS used the best converged time step. 

Hence, cases 3 to 96 used 10 em time steps~ cases 97 to 108 used 

5 em time steps, and cases 109 to 244 used 2.5 em time steps. 

EPS = lo-6, lo-5, lo-4, and lo-3 were studied. 

The value of KE was kept constant for the first five 

iterations of every case. The Liebmann acceleration parameter 

was set equal to 1.5. 



4. RESULTS 

4-1. Variation of Time Step 

The time steps studied corresponded to 20, 10, 5 and 

2.5 em rod movements per time step. The mesh spacing used was 

10 em, so there were 60 mesh points. EPS = lo-6 was the 

convergence criterion, and in all cases Equation 2-19 was 

satisfied. 

Since the mesh points were 10 em apart, it was 

necessary to smear SOR properties over the cell for 5 and 2.5 em 

time steps. For example, if the SOR was 7.5 em into the 10 em 

cell, the SOR properties input for that cell were .75 times the 

values for full insertion. In comparing the results of different 

runs, it is important to keep this fact in mind, since the 

smearing will cause the flux in the cell (and adjacent cells) to 

drop faster. This is because in cases where there is no 

smearing, the cell must await the full time step fo~ complete 

insertion of the SOR. The cases of no smearing would seem to be 

the most conservative from a safety point of view, but may in 

fact be incorrect due to the length of the time step, violating 

the linearity assumptions described in section 2-3-6. 

30 
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Figure 7 shows (KEnf/EOK -1) versus time for 

different runs. Firstly, it can be seen that deviation from zero 

begins at - 1.8 seconds into the transient. At this time, the 

rod is 430 em into the reactor. It can be seen from Figure 4 

that the rod is beginning to enter the high flux region, hence 

the shape of the flux is expected to change with time more 

quickly than before and smaller time steps are needed. Figure 7 

also shows that halving the time step approximately halves the 

maximum deviation of (KEnf/EOK -1) from zero. The strange 

behaviour of the 5 em time step curve after 2.0 seconds has not 

been satisfactorily explained. 

Table 9 shows the I vEf , 2 (X,t) dV versus time for 
REACTOR 

the various time steps. It can be seen that the differences 

between the runs is less than 1% for all times. 

Table 10 shows the relative maximum of the flux shape 

and its position. It. can be seen that the position_ of the 

maximum flux is identical in all cases. The difference between 

shape values for the two cases with smearing is < 1% for each 

time. The difference between the two nonsmearing cases is < 3% 

for all times. The difference between the 10 em time step (no 

smearing) case and 5 em time step (smearing) case is < 2% for all 

times. The maximum difference between any two tabulated values 

at the same time is - 6%. 

Table 11 shows the relative values of the thermal flux 

shape function for two positions in the reactor versus time for 



32 

the different time steps. At 495 em, the maximum difference 

between any value at the same time is ~ 3%. There is less than 

1.0% gain in going from 20 em time steps to 10 em time steps. 

There is less than 1.5% gain in going from 5 em time steps to 

2.5 em time steps. At 105 em, there is a maximum of - 8% 

difference between cases with no smearing, and a maximum of ~ 3% 

difference for the cases with smearing. However, between any 

value at the same time, the error is as much as 20% (see T = 

1.97 sec in Table 11). 

Table 12 shows the value of the total leakage divided 

by the total production. It can be seen that the percent 

differences between values become greatest at about the same 

times as when KEnf does not converge to EOK. This is reason­

able, since the leakage depends on the flux gradients, which are 

rapidly changing during this time. 

Since the calculation of the total energy generation 

during a transient will be strongly dependent on the amplitude 

function, this parameter is probably the most important to 

examine. Tables 13 and 14 display the reactivity and amplitude 

functions at various times during the transient. 

The first feature of interest is the rather large value 

of the dynamic reactivity at the end of the transient. In the 

one-dimensional model used, the SOR is considered to be a large 

slab moving uniformly into the reactor from one side. Since the 

SOR properties used were representative of a CANDO reactor, the 
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final dynamic reactivity turns out to be unrealistic. This does 

not effect tie results of this study, since the flux gradients 

produced are realistic, and the information obtained from the 

analysis of the results is applicable to realistic cases. 

A second feature of interest is that the amplitude 

function and reactivity decrease faster for the cases where there 

is smearing. This phenomenon has already been explained at the 

beginning of this section. It is expected that this effect shall 

not be nearly as large in a real study, since smearing effects 

will be localized. 

From Table 14, it can be seen that there are 

differences of up to 10% between the two cases where there is no 

smearing. The maximum errors exist at the same time as when the 

reactivities and KEnf disagree the most. This information 

indicates that too large a time step has been chosen. This 

prevents KEnf from converging to EOK, resulting in incorrect 

reactivities. When these reactivities are fed into the point 

kinetics equations, the resulting amplitudes are erroneous. 

Since the 5 and 2.5 em time step studies involved 

smearing, they cannot be compared to the 20 em and 10 em time 

step studies consistently. It is suggested, therefore, that this 

study must be pursued with smaller mesh spacings, perhaps of 

2.5 em. Furthermore, the effects of smearing should ·be examined 

in greater detail with parallel studies. It is interesting to 

note that Garvey(?) has concluded that there is no a-priori 

method of determining the required length of the time steps apart 

from the experience gained by the analysis of similar cases. 
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4-2. Number of Mesh Points 

This study examined the effects of using 34 and 60 mesh 

points. Smearing of the SOR properties was avoided by choosing 

20 em time steps and a minimum of 34 mesh points. This has the 

disadvantage that such large time intervals did not allow 

convergence, as illustrated by Figure 8, which also shows that 

the values of (KEnf/EOK -1) versus time are approximately equal 

for the two cases, even when nonconverged. This difficulty will 

not affect the results, since if the transients are identical 

except for number of mesh points, a comparison is valid. Another 

disadvantage is that smaller numbers of mesh points could not 

effectively be studied without significant smearing of SOR 

properties. 

A comparison of /vEf ~2(t) dV//vEf ~2(0) dV 

at different times is shown in Table 15. It can be seen that the 

difference between the two cases is < .2% for all times. 

Table 16 shows the FORM FACTOR, where: 

FORM FACTOR = 
max 

(/vEf dV) ~ 2 

The differences observed in Table 16 may be due to the fact that 

max 
the ~ 2 were not taken at exactly the same point for each model 

because of the geometry chosen. This is illustrated in Table 17, 

which compares the maximum shape function at different times to 

its initial value. It can be seen that the positions of the 

maxima are never more than 5 em apart in the two models. This is 

the minimum difference allowed due to the models chosen. 



Tables 18 and 19 display the reactivity and amplitude 

functions. Two questions are suggested by the data: 

1. What causes the sudden large differences at 

t = 1.68 seconds and 1.77 seconds? 
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2. After the results have diverged so extensively, how' 

do they manage to return to similar magnitudes at 

later times? 

Figures 9 to 12 display the flux shapes at various 

times during the transient. It can be seen that there is a 

negligible difference between the two models. Since the integral 

quantities used to calculate the amplitude depend on the flux 

shapes, it would be expected that only small differences between 

the amplitudes calculated from the two models would be obtained. 

However, the integrals have been calculated by multiplying the 

cell value of the shape function by the cell volume by the 

appropriate cross section. This method assumes that the flux 

behaves as a step-like function from cell to cell. ·This 

assumption may be the cause of the large differences between the 

two models for certain flux shapes. For example, the large flux 

tilts at T = lw68, 1.77, and 2.01 seconds, may cause the 

assumption to break down due to the large flux gradients. This 

suggests that a flux interpolation method may yield adequate 

results with fewer mesh points. 

Ott and Meneley(8) have pointed out that the 

calculation of the flux shape is relatively insensitive to errors 

in the amplitude and its time derivative for cases of practical 
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interest. Hence, if the delayed neutron precursor population is 

correctly calculated after each time step, then the flux shape 

will depend almost entirely on the current reactor material 

configuration. There is a reason for the delayed neutron source 

distribution to be correct even though the current flux shape may 

be in error. This is because there is negligible precursor 

production during the transient and the pre-event precursor 

distribution dominates during the transient. Therefore, the 

delayed source distribution is quite independent of the current 

reactor configuration. Since the accuracy of the integral 

parameters may depend not only on the flux values, but also on 

the flux shape (as pointed out in the preceding paragraph), these 

parameters may alternatively increase and decrease in accuracy. 

This suggests that error accumulation from time step to time step 

is negligible in comparison to the errors generated from the 

assumption that the flux behaves in a step-like manner. This 

explains why the accuracy in the 34 mesh point cas~ increases 

after T = 1.68 seconds (see Tables 18 and 19). 

4-3. Variation of EPS 

Figure 13 shows the value of KEnf/EOK -1 versus time 

for the various EPS parameters studied. The only detectable 

differences occur when EPS = lo-3. Tables 20 to 25 show values 

for various important output parameters. It can be seen that 

with EPS = lo-4, results are obtained which differ by less than 

1% compared to EPS = lo-6. However, significant differences are 



obtained with EPS = lo-3. Figures 14 and 15 show two 

representative flux shapes at various times. These results 

indicate that lo-4 is the largest EPS which will give 

satisfactory convergence. However, this may not be true, as 

discussed below. 
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In section 2-3-6, it was argued that if the iterations 

are converging too slowly, Equation 2-35 could be satisfied even 

if proper convergence has not been obtained. The satisfaction of 

Equation 2-35 at every point in the reactor would automatically 

terminate the calculation resulting in a flux shape which is 

inaccurate. Table 26 shows the total number of iterations for 

each time step. Immediately apparent is the drastic reduction in 

the number of iterations for EPS = lo-3. The reason for this 

drastic reduction can be explained by considering that KE was 

held constant for five iterations before ,it was allowed to vary 

by the method described in section 2-3-6. This caused the 

convergence to proceed too slowly, terminating the iteration 

procedure before KE was given a chance to change its value. This 

is considered to be the prime reason for the inaccuracy obtained 

with EPS = lo-3. Garvey(?) has suggested that a fu~ther 

reduction in computing time for negligible loss in accuracy could 

be obtained by setting EPS = lo-2 but ensuring that the 

iteration count has a minimum value which has been empirically 

determined to give satisfactory results. Furthermore, KE should 

be given a chance to vary by the method described in section 

2-3-6. 



5. CONCLUSIONS 

1. The study of the length of the time step met with 

difficulty due to smeared representation of the shut-off rods. 

Further study with smaller mesh spacings is necessary to 

determine optimum time steps. Smearing effects should be studied 

in parallel. 

2. Preliminary evidence suggests that interpolating 

the thermal flux when calculating integral quantities may 

decrease the number of mesh points needed for satisfactory 

convergence. 

3. A value of EPS = lo-4 was sufficient for 

satisfactory convergence of the solution. The possibility of 

increasing EPS by at least an order of magnitude requires further 

study. 
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6. SUGGESTIONS FOR FURTHER WORK 

From a cost point of view, the three parameters 

investigated in this work are the most important of all the input 

parameters, and their optimization can reduce computer time 

considerably. The choice of time step and number of mesh points 

are related, since if smaller time steps and fewer mesh points 

are used, smearing of SOR properties may be necessary. Hence, it 

is important to study the effects of smearing on the results. It 

may also be useful to continue the study of EPS by fixing the 

minimum number of iterations performed for each case. A study of 

the Liebmann acceleration parameter may prove fruitful in 

lowering computer costs. 

From an accuracy point of view, it would be useful to 

study the effects of small errors on the experimentally measured 

physics and engineering variables which are fed into the 

calculation. Some examples of these are cross sections, the 

number of delayed neutron groups, errors in the total and 

individual delayed neutron fractions, errors in the voiding rate 

and errors in the SOR drop rates. 
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TABLE 1 

Initial Material Properties 
for 1-D Reactor 

t1aterial Regions Regions 
Pro:eerty 1 and 4 2 and 3 

Dl em 1.2 1.2 

D2 em .9 .9 

l:al em -1 .001 .001 

1:a2 em -2 .004 .004 

vl:f em -1 .00430439 .00483891 

1:12 em -1 .008 .008 

vl em/sec .714 X 10 7 .714 X 10 7 

v2 em/sec .273 X 10 6 .273 X 10 6 



Group 

1 

2 

3 

4 

5 

6 

TABLE 2 

Delayed Neutron Data 
Note that a = .00582 

-1 a . A , (sec ) 
.:__J_ J 

.000295 .000612 

.001165 .03155 

.001033 .1218 

.00235 .3175 

.000780 1.389 

.000197 3.784 



TABLE 3 

Incremental Shut-Off Rod Properties 

Value 

Pro12erties em -1 

Al:2 
tr 0 

AEl 
tr -.733589E-3 

Al:al .5158992E-3 

AE a2 .0039190188 

Avl:f .5417969E-3 

Al:l2 0 



TABLE 4 

Data for 20 em Time Step 

I Distance 
Time p (t) of Rods 

Case (sec) (mk) (em) 

2 o.o o.o 0 
4 • 06 1.0 0 
6 .13 2.0 0 
8 .19 3.0 0 

10 .25 4.0 0 
12 .36 5.0 0 
14 .65 6.0 0 
16 .68 6.075 20 
18 .77 6.4 40 
20 .835 6.6 60 
22 .9 6.825 80 
24 .97 7.05 100 
26 1. 03 7.25 120 
28 1.08 7.425 140 
30 1.14 7.6 140 
32 1.195 7.825 180 
34 1.25 8.0 200 
36 1. 295 8.15 220 
38 1.35 8.375 240 
40 1.4 8.5 260 
42 1.44 8.625 280 
44 1.49 8.8 300 
46 1.54 8.95 320 
48 1.58 9.125 340 
50 1.63 9.275 360 
52 1.68 9.45 380 
54 1. 72 9.575 400 
56 1.77 9.75 420 
58 1.825 9.925 440 
60 1.88 10.125 460 
62 1. 925 10.2 480 
64 1.97 10.25 500 
66 2.01 10.275 520 
68 2.14 10.375 540 
70 2.3 10.5 560 
72 2.5 10.65 570 



TABLE 5 

Data for 10 em Time Step 

I Distance Distance 
Time p (t} of Rod I of Rod 

Case (sec} (mk) (em} Case Time p (t) (em) 

2 o.o 0.0 0 70 1.35 8.325 240 
4 .06 1.0 0 72 1.37 8.4 250 
6 .12 1.8 0 74 1.40 8.5 260 
8 .18 2.9 0 76 1.42 8.55 270 

10 .24 3.75 0 78 1.44 8.625 280 
12 .30 4.75 0 80 1.46 8.7 290 
14 .36 5.0 0 82 1.49 8.8 300 
16 .42 5.2 0 84 1.51 8.875 310 
18 .48 5.4 0 86 1.54 8.95 320 
20 .54 5.6 0 88 1.56 9.025 330 
22 .60 5.8 0 90 1.58 9.125 340 
24 .63 5.925 10 92 1.6 9.175 350 
26 .68 6.075 20 94 1.63 9.275 360 
28 .72 6.2 30 96 1.65 9.35 370 
30 .77 6.4 40 98 1.68 9.45 380 
32 .8 6.5 50 100 1.7 9.5 390 
34 .835 6.6 60 102 1. 72 9.575 400 
36 .86 6.75 70 104 1. 75 9.675 410 
38 .9 6.825 80 106 1.77 9.75 420 
40 .94 6.95 90 108 1.8 9.85 430 
42 .97 7.05 100 110 1.825 9.925 440 
44 1.0 7.15 110 112 1.85 10.025 450 
46 1.03 7.25 120 114 1.88 10.125 460 
48 1.05 7.325 130 116 1.9 10.175 470 
50 1.08 7.425 140 118 1.925 10.2 480 
52 1.11 7.525 150 120 1.95 10.225 490 
54 1.14 7.6 160 122 1.97 10.25 500 
56 1.17 7.725 170 124 1. 99 10.26 510 
58 1.195 7.825 180 126 2.01 10.275 520 
60 1. 22 7.9 190 128 2.07 10.325 530 
62 1. 25 8.0 200 130 2.14 10.375 540 
64 1. 27 8.075 210 132 2.21 10.425 550 
66 1. 295 8.15 220 134 2.3 10.5 560 
68 1. 33 8.275 230 136 2.5 10.65 570 



TABLE 6 

Data for 5 ern Time Step 

I Distance 
Time p (t) of Rod 

Case (sec) (rnk) (ern) 

98 1. 67 9.425 375 
100 1.68 9.45 380 
102 1. 69 9.475 385 
104 1.7 9.5 390 
106 1. 71 9.55 395 
108 1. 72 9.575 400 
110 1. 74 9.64 405 
112 1.75 9.675 410 
114 1.76 9.7 415 
116 1. 77 9.75 420 
118 1. 78 9.78 425 
120 1.8 9.85 430 
122 1.81 9.875 435 
124 1.825 9.925 440 
126 1.84 9.975 445 
128 1. 85 10.025 450 
130 1.86 10.05 455 
132 1.87 10.075 460 
134 1.885 10.125 465 
136 1.9 10.175 470 
138 1. 91 10.19 475 
140 1. 925 10.2 480 
142 1. 94 10.21 485 
144 1.95 10.225 490 
146 1.96 10.24 495 
148 1.97 10.25 500 
150 1.98 10.25 505 
152 1.99 10.26 510 
154 2.0 10.27 515 
156 2.01 10.275 520 
158 2.04 10.3 525 
160 2.07 10.325 530 
162 2.10 10.34 535 
164 2.13 10.36 540 
166 2.16 10.38 545 
168 2.2 10.4 550 
170 2.24 10.44 555 
172 2.28 10.48 560 
174 2.36 10.55 565 
176 2.5 10.65 570 



TABLE 7 

Data for 2.5 em Time Step 

' 
Distance ' 

Distance 
Time p (t) of Rod Time p (t) of Rod 

Case (sec) (mk) (em) Case (sec) (mk) (em) 

110 1. 73 9.6 402.5 178 1. 945 10.218 487.5 
112 1.74 9.64 405 180 1.95 10.225 490 
114 1.745 9.66 407.5 182 1.955 10.233 492.5 
116 1.75 9.675 410 184 1. 96 10.24 495 
118 1. 755 9.7 412.5 186 1.965 10.245 497.5 
120 1.76 9.7 415 188 1.97 10.25 500 
122 1.765 9.725 417.5 190 1.975 10.25 502.5 
124 1. 77 9.75 420 192 1.98 10.25 505 
126 1.775 9.76 422.5 194 1.985 10.255 507.5 
128 1.782 9.78 425 196 1.99 10.26 510 
130 1. 79 9.825 427.5 198 1.995 10.265 512.5 
132 1.8 9.85 430 200 2.0 10.27 515 
134 1.805 9.87 432.5 202 2.01 10.275 517.5 
136 1.81 9.9 435 204 2. 02 10.29 520 
138 1.818 9.925 437.5 206 2.03 10.3 522.5 
140 1.825 9.925 440 208 2.04 10.3 525 
142 1.832 9.95 442.5 210 2.055 10.31 527.5 
144 1.84 9.975 445 212 2.07 10.325 530 
146 1.845 10.0 447.5 214 2.085 10.33 532.5 
148 1. 85 10.025 450 216 2.1 10.34 535 
150 1. 855 10.035 452.5 218 2.115 10.35 537.5 
152 1. 86 10.05 455 220 2.13 10.36 540 
154 1.865 10.075 457.5 . 222 2.145 10.37 542.5 
156 1. 87 10.075 460 224 2.16 10.38 545 
158 1.878 10.1 462.5 226 2.19 10.39 547.5 
160 1.885 10.125 465 228 2.2 10.4 550 
162 1.893 10.15 467.5 230 2.23 10.44 552 .·5 
164 1.9 10.175 470 232 2.24 10.45 555 
166 1.905 10.19 472.5 234 2.26 10.465 557.5 
168 1.91 10.19 475 236 2.28 10.48 560 
170 1.9175 10.195 477.5 238 2.34 10.51 562.5 
172 1. 925 10.2 480 240 2.37 10.55 565 
174 1. 9325 10.205 482.5 242 2.43 10.6 567.5 
176 1.94 10.21 485 244 2.5 10.65 570 



TABLE 8 

The Geometry of the 34 Mesh Point Reactor 

Mesh Point 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

Position 
(em) 

10 
25 
35 
50 
70 
90 

110 
130 
145 
155 
170 
190 
210 
230 
250 
270 
290 
310 
330 
350 
370 
390 
410 
430 
445 
455 
470 
490 
510 
530 
550 
565 
575 
590 



Time 
(sec) 

.06 

.36 

.68 

.97 

1.44 

1.77 

1.825 

1.85 

1.88 

1.925 

1.97 

2.01 

2.14 

2.5 

Time Step 
= 20 em, 

TABLE 9 

/vl:fljl 2 (x,t) dV 

REACTOR 

[/vEfw2 (0) dV = 1.667308] 

REACTOR 

Time Step Time Step 
= 10 em, = 5 em, 

No Smearing No Smearing Smearing 

1.6681 1.6681 

1.6717 1.6717 

1.6718 1.6722 

1.6824 1.6821 

1.6424 1.6425 

1.5245 1.5244 1.5244 

1. 5296 1.5293 1.5295 

1.5405 1.5407 

1. 5600 1.5599 1.5592 

1. 6231 1.6236 1. 6251 

1.7207 1.7206 1.7211 

1. 82725 1.8243 1.8228 

1.8735 1.8704 1.8682 

1. 8408 1.8402 1.8406 

Time Step 
= 2.5 em, 
Smearing 

1.5243 

1.5295 

1.5407 

1.5594 

1.6255 

1.7213 

1.8128 

1.8693 

1.8399 



TABLE 10 

Relative Maximum Shape Function and its Position 

Time TS=20 em Position TS=lO em Position TS=5 em Position TS=2.5 em Position 
(sec) No Smearing (em) No Smearing (em) Smearing (em) Smearing (em) 

1.77 2. 46 32 515 2.4617 515 2.4623 515 2.4627 515 

1.825 2.6328 525 2.6325 525 2.6333 525 2.6338 525 

1.85 2.7541 525 2.7519 525 2.7517 525 

1.925 3.1836 535 3.1633 535 3.136 535 3.133 535 

1.97 3.4524 545 3.3940 545 3.343 545 3.320 545 

2.01 3.375 555 3.2715 555 3.204 555 3.187 555 

2.5 1.4513 505 1.4660 505 1. 459 505 1.470 505 



TABLE 11 

The Shape Function at Two Positions in the Reactor 

TS = 20 em TS = 10 em TS = 5 em TS = 2.5 em 
Time No Smearing: No Smearing: Smearing: Smearing 
{sec) w2 (105 em) w2 (495 em) w2 (105 em) w2 {495 em) w2 {105 em) w2 (495 em) w2 (105 em) w2 {495 em) 

.06 .979 1.022 .979 1.022 

.36 .756 1.246 .752 1.250 

.68 .564 1.441 .538 1.467 

.97 .043 1. 946 .042 1. 947 

1.44 .001 2.068 .001 2.068 

1.77 .002 2.431 .002 2.431 .002 2.431 .002 2.431 

1.825 .006 2.538 .005 2.539 .006 2.539 .006 2.539 

1.85 .010 2.581 .011 2.58 .011 2.580 

1.925 .056 2.432 .059 2.431 .067 2.421 .067 2.420 

1.97 .118 1.603 .127 1.607 .136 1.605 .140 1.603 

2.01 .229 1.235 .238 1.248 .247 1.254 .240 1.273 

2.5 .538 1.451 .525 1. 466 .531 1.459 .521 1.470 



Time TS = 20 ern 
(sec) No Smearing 

1.77 23.90 

1.825 27.22 

1.925 37.75 

1.97 43.86 

2.01 47.00 

2.5 28.86 

TABLE 12 

LEAKAGE * 3 
PRODUCTION 10 (rnk) 

TS = 10 ern TS = 5 ern 
No Smearing Smearing 

23.84 23.85 

27.18 27.21 

37.30 36.84 

42.75 41.89 

45.17 44.10 

28.85 28.79 

TS = 2.5 ern 
Smearing. 

23.86 

27.23 

36.79 

41.52 

43.46 

28.84 



TABLE 13 

p ( t) ( mk) 

Time TS = 20 em TS = 10 em TS = 5 em TS = 2.5 em 
(sec) No Smearing No Smearing Smearing ·smearing 

.06 .50989 .50989 

.36 3.0426 3.069 

.68 3.3736 3.4898 

.97 4.1117 4.2313 

1.44 5.8662 5.9045 

1.75 6.8119 - 7.0268 - 7.0117 

1.77 - 11.147 - 11.459 -11.559 -11.54 

1.825 - 24.967 - 25.798 -26.415 -26.75 

1.85 - 37.701 -39.848 -40.746 

2.01 -366.77 -415.02 

2.5 -812.93 -812.99 



TABLE 14 

Table of Amplitudes 

Time Step Time Step Time Step Time Step 
Time = 20 em = 10 em = 5 em = 2. 5 em 
(sec) No Smearing No Smearing Smearing Smearing 

.06 1.015 1.015 

.36 1. 4249 1.4361 

.68 2.1630 2.1647 

.97 2.4681 2.4894 

1.44 5.5176 5.6953 

1.75 3.4208 3.4062 3.4007 

1.77 2.4934 2.6365 2.5998 2.5921 

1.825 0.86476 0.92213 0.85784 0.85272 

1.85 0.48642 0.45007 0.44104 

1.88 0.23482 0.23005 

2.01 0.0237 0.0214 

2.3 0.00956 0.00936 

2.5 0.00833 0.00856 



Time 34 

o06 

o25 

0 6 5 

o77 

• 9 

lo03 

lol4 

lo35 

lo54 

lo68 

lo77 

2o0l 

2o5 

TABLE 15 

Table of: 

Mesh Points 

lo000526 

lo002106 

lo00342 

lo00447 

lo00684 

lo00912 

lo00807 

o99789 

0 966 57 

.93060 

o9l305 

lo09440 

1o10546 

/v'F.f 1!J 2 (t) dV 

/v'F.f w2 (0) dV 

60 Mesh Points 

lo000475 

lo00203 

lo00341 

lo00455 

1. 00851 

lo00911 

1.00803 

o99754 

.96593 

o93036 

o9l435 

1.09593 

lo10406 

% Difference 

< o03 

< o03 

< o03 

< o03 

< o03 

< o03 

< o03 

< o03 

< o03 

< .03 

o14 

ol4 

o13 



TABLE 16 

Form Factor 

Time 34 Mesh Points 60 f-iesh Points % Difference 

.06 .5924 .5955 .52 

.25 .5234 .5262 .53 

.65 .4352 .4380 .64 

.77 .3654 .3667 .36 

• 9 .3212 .3227 .64 

1.03 .3103 .3115 .39 

1.14 .3058 .3070 .39 

1.35 .2968 .2976 .04 

1.54 .2777 .2776 .64 

1.68 .2525 .2509 .53 

1.77 .2270 .2258 2.7 

2.01 .1924 .1975 1.4 

2.5 .4594 .4529 



TABLE 17 

Maximum Flux (t} 
Initial Maximum and Position 

Time 34 Mesh Position 60 Mesh Position 
(sec} Points (em} Points (em} % Difference 

.06 1. 0216 490 1.0215 495 .01 

.25 1.1581 490 1.1577 495 .03 

.65 1.3946 490 1.3930 495 .11 

.77 1.6625 490 1.6656 495 .19 

.9 1. 8961 490 1.9000 495 .21 

1.03 1.9670 490 1.9694 495 .12 

1.14 1.9940 490 1.9963 495 .12 

1.35 2.0335 490 2.0379 495 .23 

1.54 2.1054 490 2.1154 495 .46 

1.68 2.2296 490 2.2542 495 1.1 

1.77 2.4328 510 2.4623 505 1.2 

2.01 3.4410 550 3.3738 555 2.0 

2.5 1.4553 490 1.4821 495 1.8 



TABLE 18 

p ( t) ( rnk) 

Time 
(sec) 34 Mesh Points 60 t-tesh Points % Difference 

.06 .50994 .50989 .01 

.25 2.2888 2.2872 .07 

.65 3.972 3.9649 .18 

.77 2.8627 2.847 .55 

.9 3.6204 3.5902 .84 

1.03 4.5145 4.4774 .83 

1.14 5.0657 5.0259 .79 

1.35 5.9128 5.8554 .98 

1.54 5.4503 5.3084 2.7 

1.68 1.1903 .72379 64.5 

1.77 9.8639 - 11.147 13.0 

2.01 -348.3 -366.77 5.3 

2.5 -813.67 -812.93 .09 



TABLE 19 

Table of Amplitudes 

Time 34 Mesh Points 60 Mesh Points % Difference 

.06 1. 0150 1.0150 0 

.25 1.2137 1.2136 .01 

.65 2.1060 2.1033 .13 

.77 2.2428 2.2195 1.05 

• 9 2.3317 2.3046 1.2 

1.03 2.7042 2.6706 1.3 

1.14 3.202 3.1571 1.4 

1.35 4.7504 4.6573 2.0 

1.54 6.6006 6.387 3.3 

1.68 6.0059 5.6125 7.0 

1.77 2.8475 2.4934 14.2 

2.01 .025591 .023738 7.8 

2.5 .0084691 .0083315 1.7 



TABLE 20 

Time EPS = 10-3 EPS = 10-4 EPS = 10-S EPS = 10-6 

.06 1. 668117 1.668065 1. 668105 1.668094 

.12 1.668675 1.668706 1.66875 1.668752 

.18 1.669225 1.66965 1.669687 1.669695 

.24 1.669699 1.670414 1. 670466 1.670475 

.30 1.670523 1.671355 1.671417 1.671426 

.36 1. 670808 1.671654 1.67173 1.671738 

.42 1.671074 1.67192 1.671996 1.672004 

.48 1.671341 1.672177 1.672252 1.672260 

.54 1.671603 1.672429 1.672503 1.672511 

.60 1.67187 1.672681 1.672754 1.672762 

.63 1.671595 1.672541 1.672536 1.672528 

.68 1.671018 1.672091 1.672163 1.672157 

2.10 1. 8633 1.863642 1.863681 1.863721 

2.16 1. 86696 1.863642 1.867389 1.867423 

2.26 1.854697 1.854663 1.854678 1.85479 

2.37 1. 844506 1.843993 1.843965 1.844163 

2.43 1.842264 1.841575 1.841528 1. 841755 

2.5 1. 840864 1.839758 1.839672 1.83993 



TABLE 21 

Maximum Flux and Its Position 

Time 
EPS=l0- 3 Position 

EPS=l0- 4 Position 
EPS=lO-S 

Position 
EPS=l0-6 Position 

(sec) (em) (em) (em) _(em) 

.06 1.001832 505 1.017887 505 1.02147 505 1.021866 505 

.12 1.005318 505 1.04658 505 1.052544 505 1.053273 505 

.18 1.019321 505 1.089503 505 1.097285 505 1.098199 505 

.24 1. 042466 505 1.137199 505 1.146413 505 1.14742 505 

.30 1.0878 505 1.192846 505 1.202977 505 1.20403 505 

.36 1.125479 505 1.238622 505 1.249168 505 1.250238 505 

.42 1.157469 505 1.276349 505 1.287056 505 1.288127 505 

.48 1.187137 505 1.309481 505 1.32027 505 1.321337 505 

.54 1.214929 505 1.339553 505 1.350325 505 1.351377 505 

.60 1.241578 505 1.366688 505 1.377331 505 1.378364 505 

.63 1.276509 505 1.391820 505 1.398831 505 1.398553 505 

.68 1. 352539 505 1.460670 505 1.467693 505 1.46651 505 
2.10 2.546442 565 2.590178 565 2.59397 565 2.585963 565 
2.16 2.090462 565 2.132719 565 2.136289 565 2.128669 565 
2.26 1.480103 575 1.514264 575 1. 517136 575 1.511009 575 
2.37 1. 438346 505 1.473037 505 1.475859 505 1.469852 505 
2.43 1.435128 505 1.470315 505 1.473197 505 1.467075 505 
2.5 1.437269 505 1.473311 505 1.476349 505 1.470124 505 



Time 

.06 

.12 

.18 

.24 

.30 

.36 

.42 

.48 

.54 

.60 

.63 

.68 

2.10 

2.16 

2.26 

2.37 

2.43 

2.5 

TABLE 22 

Form Factor = 
/v1:fw 2 (t) dV 

max 
$ 2 ( t) J v 1: fdV 

EPS = 10-3 EPS = 10-4 EPS = 10-5 

.60703 .59743 .59535 

.60512 .58128 .57800 

.59701 .55869 .55474 

.58392 .53550 .53122 

.55986 .51081 .50653 

.54121 .49202 .48789 

.52633 .47755 .47360 

.51326 .46554 .46176 

.50160 .45516 .45155 

.49091 .44619 .44276 

.47740 .43810 .43590 

.45041 .41733 .41535 

.26676 .26231 .26193 

.32559 .31857 .31868 

.45683 .44652 .44568 

.46751 .45550 .45549 

.46799 .45662 .45571 

.46694 .45524 .45428 

EPS = 10-6 

.59512 

.57760 

.55428 

.53075 

.50609 

.48747 

.47321 

.46139 

.45120 

.44243 

.43598 

.41569 

.26274 

.31982 

.44751 

.45741 

.45767 

.45627 



EPS = 10- 3 EPS = 
Time X = X = X = 
(sec) 105 em 495 em 105 em 

.06 .999 1. 002 .983 

.12 .996 1.005 .954 

.18 .983 1.019 .912 

.24 .960 1. 042 .864 

.30 .915 1.088 .809 

.36 .878 1.125 .763 

.42 .846 1.157 .726 

.48 .816 1.187 .693 

.54 .788 1.215 .663 

.60 .636 

.63 .728 1.277 .611 

.68 .544 

2.1 .357 

2.16 .416 

2.26 .506 1. 420 .473 

2.37 .501 

2.43 .547 1. 433 .513 

2.5 .552 1.437 .518 

TABLE 23 

w(x,t) 
w(x,O) 

10-4 

X = 
495 em 

1.018 

1.047 

1.090 

1.137 

1.193 

1. 239 

1.276 

1.309 

1. 340 

1.367 

1.392 

1. 461 

1.310 

1.380 

1. 453 

1. 473 

1.470 

1. 473 

EPS = 
X = 

105 em 

.979 

.948 

.904 

.855 

.799 

.753 

.715 

.682 

.652 

.625 

.604 

.537 

.413 

.471 

.511 

10-s EPS = 10-6 

X = X = X = 
495 em 105 em 495 em 

1.021 .979 1.022 

1.053 .948 1.053 

1.097 .903 1.098 

1.146 .857 1.147 

1.203 .798 1.204 

1.249 .752 1.250 

1.287 .702 1.288 

1.320 .681 1.321 

1.350 .651 1. 351 

1.377 .624 1.378 

1.399 .604 1.399 

1.468 .538 1.467 

.359 1.308 

1.383 .418 1.378 

1.455 .476 1.450 

.504 1.470 

1.473 .516 1.467 

.521 1. 470 



TABLE 24 

REACTIVITY (P) 

Time 
= 10-3 = 10-4 = 10-5 = 10-6 

(sec) EPS EPS EPS EPS 

• 06 .500 .50746 .50967 .50989 

.12 .903 .9373 .94307 .94365 

.18 1.465 1.5671 1.5783 1.5795 

.24 1.929 2.1083 2.1244 2.1261 

.30 2.546 2.7904 2.8123 2.8146 

.36 2.7716 3.0422 3.0665 3.069 

.42 2.960 3.2554 3.2812 3.2838 

.48 3.150 3.4644 3.4912 3.4939 

.54 3.339 3.6712 3.6991 3.7019 

• 6 3.8756 3.9043 3.9071 

.63 3.501 3.8795 3.9110 3.8765 

.68 3.4634 3.4954 3.4898 

2.1 -619.83 -620.22 

2.16 -706.3 -706.06 -706.58 

2.26 -780.7 -779.2 -779.08 -779.35 

2.43 -809.8 -809.18 -809.13 -809.24 

2.5 -813.6 -813.26 -813.3 



TABLE 25 

Table of Amplitudes 

Time 
EPS = 10-3 EPS = 10-4 EPS = 10-S EPS = 10-6 (sec) 

.06 1. 0147 1. 0149 1.0150 1.0150 

.12 1.0506 1.0520 1.0523 1.0523 

.18 1.106 1.1112 1.112 . 1.112 

.24 1.1802 1.1939 1.1954 1.1956 

.30 1. 277 1.3038 1.3065 1. 3068 

.36 1.3883 1. 4315 1. 4357 1.4361 

.42 1.497 1. 5590 1. 5648 1. 5654 

.48 1.609 1.6913 1. 6990 1. 6998 

.54 1. 726 1. 8319 1.8416 1.8426 

.60 1. 8462 1.9784 1.9905 1.9917 

.63 1.9647 2.1271 2.1418 2.0675 

.68 2.0313 2.2242 2.2413 2.1647 

2.1 .012684 .013533 .013607 0.013363 

2.16 .010777 .011457 .011517 .011318 

2.26 .009320 .0098698 .0099182 .0097546 

2.37 .0086969 .0091893 .0092328 .0090849 

2.43 .008386 .0088498 .0088907 .008751 

2.5 .008305 .0087596 .0087997 .008662 



Time 
= 10-3 (sec) EPS 

.06 5 

.12 6 

.18 16 

.24 23 

.30 44 

.36 39 

.42 35 

.48 34 

.54 33 

.60 33 

.63 40 

.68 67 

2.1 26 

2.16 24 

2.26 22 

2.37 20 

2.43 20 

2. 5 23 

TABLE 26 

Number of Iterations 
(Case A + Case B) 

EPS = 10-4 EPS = 10-5 

106 262 

134 306 

163 372 

177 412 

199 448 

197 450 

190 444 

185 439 

182 437 

179 433 

202 433 

208 414 

40 54 

38 51 

34 46 

30 44 

29 42 

32 46 

EPS = 10-6 

472 

566 

645 

689 

727 

731 

727 

723 

720 

828 

423 

645 

67 

64 

60 

57 

55 

58 
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APPENDIX 

The matrix equation: 

-
A X = Y 

where V and A are n x n, and X is 1 x n, may be solved by 

assuming an iteration of the form: 

1 

where p is the number of the iteration, and L, D and U are lower 

triangular, diagonal, and upper triangular respectively such 

that: 

A = L + D + U 2 

It can be easily seen from Equation 1 that if at some state 

-p X It can be shown { 9 ) that if a. . is 
1) 

the ij'th element of A and if: 

I a .. I 
11 .?.L 

j 

with inequality for some i, then the proposed iteration method 

converges. Equation 1 is called the method of successive 

displacement, or Gauss-Seidel method. 

Equation 1 can be written: 

-p+l -p -p X = X + r 3 



with: 

rP = - (L+D)-l(AxP-Y) 

We can anticipate further corrections to xP by 

overcorrecting (or perhaps undercorrecting) in the hope of 

speeding the convergence of the iteration. The iteration may 

then be written: 

where a is a real number called the Liebmann acceleration 

parameter. For a > 1, we speak of over-relaxation. For a < 1, 

4 

5 

we speak of under-relaxation. Again, if xP = A-l Y, then the 

iteration yields xP+l = A-l Y, proving consistency. It can be 

shown<9) that proper choice of the Liebmann acceleration 

parameter can sometimes increase the convergence rate by an order 

of magnitude. 
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