DESIGN OPTIMIZATION

the state

.....

0F

•

VERTICAL WATER WHEEL GENERATOR

.

LOWER BRACKETS

DESIGN OPTIMIZATION

j.

1

З.

0F

VERTICAL WATER WHEEL GENERATOR

LOWER BRACKETS

By

DAVID LESLIE SAXTON, B.A.Sc.

A Thesis

Submitted to the Faculty of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Engineering

McMaster University

May, 1968

MASTER OF ENGINEERING (1968)

· 20

McMASTER UNIVERSITY

(Mechanical)

Hamilton, Ontario

T. K.

TITLE: Design Optimization of Vertical Water Wheel Generator Lower Brackets

AUTHOR: David Leslie Saxton, B.A.Sc. (U.B.C.) SUPERVISOR: Professor J. N. Siddall

NUMBER OF PAGES: xiv, 217

SCOPE AND CONTENTS:

In this thesis the functions, method of structural analysis, and design limits of lower brackets are described. The results of an investigation of the design formulae, the development of a method of optimizing the design, and the results of an experimental check on the accuracy of the design formulae are presented.

The maximum stresses as determined by experiment were in good agreement with the theoretical predictions, however, the stresses measured at other locations and the deflection were not. The optimizing technique used was successful in reducing the value of the optimization function from an initial starting point and produced consistent results with different starting points.

ii

ACKNOWLEDGEMENTS

з.

The author wishes to express his appreciation for the assistance given him by many people during the investigation and preparation of this report. He thanks particularly Professor J. N. Siddall for his advice and guidance, Mr. L. C. Galloway of Canadian Westinghouse Co. Ltd., Hamilton, Ontario, for his information and help in formulating the problem, and Dr. G. Kardos, for his assistance during Professor Siddall's abscence. In addition, the author wishes to thank Mr. W. Raynor, of Canadian Westinghouse Co. Ltd., who made the undertaking of this project possible, and Mrs. A. Woodrow, for her typing of the thesis.

This project was supported by Canadian Westinghouse Co. Ltd. and by a grant from the Ford Foundation to McMaster University.

TABLE OF CONTENTS

З.,

	CHAI	PTER	ĩ	PAGE
	LIS.	T OF ILLUSTRATIONS	*	vi
	LIS.	T OF TABLES		viii
	LIS.	T OF APPENDIX		ix
	NOM	ENCLATURE		x
	1.	INTRODUCTION		1
	2.	LOADING, STRUCTURAL ANALYSIS, AND DESIGN OF LOWER BRACKETS		3
		2.1 Description		3
		2.2 Loading		3
		2.3 Structural Analysis		4
		2.3.1 Normal Conditions		4
		2.3.2 Emergency Conditions		7
		2.4 Design Limits		9
	3.	DESIGN INVESTIGATION		11
		3.1 Rings		11
	•	3.2 Arms		12
		3.2.1 Short Beams		12
		3.2.2 Arm Stresses		13
		3.2.3 Arm Deflections		15
	4.	DESIGN OPTIMIZATION		17
•		4.1 Formulation of Problem		17
		4.2 Direct Search Method		22

4.3	Multiple Gradient Summa	tion Technique	27	
4.4	Method of Approximation	Programming	29	
4.4.1	Description of Method	-	29	
4.4.2	Application to Problem	•	31	
4.5	Optimization Results		34	
EXPER	IMENTAL	:	3 5	
5.1	Test Procedure	· · · · · · · · · · · · · · · · · · ·	36	
5.2	Results	•	40	
DISCU	SSION	• .	42	
6.1	Design Investigation		42	
6.2	Optimization		43	
6.3	Experimental		45	
6.4	Recommendations		47	
CONCL	USIONS		51	
ILLUSTRATIONS 52				
TABLES 82				
APPENDIX 88				
REFERENCES 215				
	4.3 4.4 4.4.1 4.4.2 4.5 EXPER 5.1 5.2 DISCU 6.1 6.2 6.3 6.4 CONCL STRATIONES NDIX RENCES	 4.3 Multiple Gradient Summation 4.4 Method of Approximation 4.4.1 Description of Method 4.4.2 Application to Problem 4.5 Optimization Results EXPERIMENTAL 5.1 Test Procedure 5.2 Results DISCUSSION 6.1 Design Investigation 6.2 Optimization 6.3 Experimental 6.4 Recommendations CONCLUSIONS STRATIONS ES NDIX RENCES 	 4.3 Multiple Gradient Summation Technique 4.4 Method of Approximation Programming 4.4.1 Description of Method 4.4.2 Application to Problem 4.5 Optimization Results EXPERIMENTAL 5.1 Test Procedure 5.2 Results DISCUSSION 6.1 Design Investigation 6.2 Optimization 6.3 Experimental 6.4 Recommendations CONCLUSIONS STRATIONS ES NDIX RENCES 	

۷

LIST OF ILLUSTRATIONS

З.

FIGURE NUMBER	TITLE	PAGE
1	Section of Water Wheel Generator	53
2	Lower Bracket	54
3	Lower Bracket	55
4	Section of Bracket	56
5	Section of Bearing	:56
6	Section of Three Ring Bracket	57
7	Loading on Structure	57
8	Loading on Upper Ring	58
9	Deflection of Bracket Due to Rotation of Hub	58
10	Plan View of Guide Bearing Under Short Circuit Loading	59
11	Schematic Section of Guide Bearing and Bracket Under Short Circuit Loading	59
12	Plan View of Bracket Under Short Circuit Loading	60
13	Loading on Square Plate Beam •	6 0
14	Variation of Bending Stress on Sections $x = \pm a/2$ for Square Plate Beam	61
15	Variation of Bending Stress at x = o for Square Plate Beam	61
16	Variation of Bending Stress on Sections $x = \frac{1}{2} a/2$ for a Plate with b/a = 1/2	62
17	Tapered Solid Beam	62
18	Horizontal Shear Stress in a Solid Tapered Beam with h_ = 2h_ at x=L	63

• • • •					
				-	
	19	Tapered Box Beam	•	63	
	20	Bracket Profile Limits	<i>,</i>	64	•
	21	Direct Search Method		65	
	22	Stalling of Direct Search Method on a Constraint		66	
	23	Multiple-Gradient Summation Technique		67	
•	24	Multiple-Gradient Summation Technique with Concave Constraint		68	
	25	Modified MAP and Direct Search Method		69	
:	26	Model Design		70	
· · ·	27	Location of Strain Gages on Rings		71	
	28	Location of Strain Gages on Arms		72	
	29	Model		73	
	30	Experimental Set-Up		74	
• • •	31	Upper Ring Stresses - Test 13	•	7 5	
	32	Lower Ring Stresses - Test 13		76	
	33	Flange Stresses - Gages 5 and 6 - Test 13		77	•
· ·	34	Flange Stress - Gage 7 - Test 13		78	
	35	Flange Stresses - Gages 8 and 9 - Test 13		79	
·· .	36	Flange Stress - Gage 10 - Test 13		80	
· · ·	37	Total Deflection - Test 13		81	
			·	•	
•			•		

LIST OF TABLES

TABLE NUMBER

З,

TITLE

E NUMBER	<u>TITLE</u>		PAGE
I	OPTIMIZATION RESULTS - DESIGN NO. 1	÷.	83
II	OPTIMIZATION RESULTS - DESIGN NO. 2		84
III	OPTIMIZATION RESULTS - DESIGN NO. 3		85
IV	NUMBER OF MODIFIED MAP ITERATIONS		86
V	COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS FOR TEST 13 AT 12000 LB. LOAD		87 _.

LIST OF APPENDIX

З.

APPENDIX	TITLE	PAGE
Α	RINGS UNDER THE ACTION OF EQUALLY SPACED FADIAL LOADS	89
B .	DERIVATION OF TAPERED BOX BEAM HORIZONTAL SHEAR STRESS AND DEFLECTION FORMULAE	94
B.1	Horizontal Shear Stress	94
B.2	Deflection Due to Bending	97
B.3	Shear Deflections	100
B.3.1	Simple Beam Theory	101
B.3.2	Tapered Beam Theory	102
C	COMPARISONS BETWEEN HORIZONTAL SHEAR STRESS IN A TAPERED BOX BEAM FROM SIMPLE BEAM THEORY AND FROM NEW FORMULA	103
D	COMPARISONS BETWEEN SHEAR AND BENDING DEFLECTIONS FROM NEW FORMULA AND FROM METHOD OF APPROXIMATING THE BEAM WITH STRAIGHT SECTIONS	107
E	DERIVATION OF THE CRITICAL BUCKLING LOAD FOR A RADIALLY LOADED COMPRESSION RING	110
F	DIRECT SEARCH RESULTS	119
F.1	Design 1	120
F.2	Design 2	126
F.3	Design 3	133
G	OPTIMIZATION COMPUTER PROGRAMME AND RESULTS	140
G.1	Computer Programme	141
G.2	Results	170
Н	EXPERIMENTAL TEST RESULTS AND THEORETICAL COMPARISONS	176

NOMENCLATURE

З,

SYMBOL

DESCRIPTION

UPPER CASE	
A2MAX	Maximum slope of lower flange of arm
В	Vertical distance from centreline of hub to guide bearing
B	Bending rigidity of ring
B(J)	Limiting values of constraining equations
С	Torsional rigidity of ring
c _i	Altered form of constraining equations
Ε	Modulus of Elasticity
۶ ₁	Radial load applied to ring
FS	Factor of safety (normal)
FSC	Short circuit force
FSE	Factor of safety (emergency)
G	Shear Modulus
Н	Vertical distance between arm flanges
HI	Vertical distance from soleplate to guide bearing
Ι	Area moment of inertia of arm section
Io	Area moment of inertia of arm section at x=L
L ,	Length of arm
M	Bending moment in arm
N	Number of arms
N	Normalized NSD vector
Nor	Bracket critical frequency

х

SYMBOL	DESCRIPTION
UPPER CASE	
NSD	New successful direction vector for Multiple-Gradient Summation Technique
Р	Vertical reaction at arm tip
Pcr	Critical buckling load for compression ring
РНІ(Ј)	Constraining equation
Q	Moment of area about neutral axis
RH	Horizontal radial reaction at arm tip under emergency conditions
RV	Vertical reaction at arm tip under emergency conditions
S _j	Slack variable in linear programming technique
SPAN	Distance over support points
SY	Yield strength of material
TL	Lower ring thickness
TF	Flange thickness
TU	Upper ring thickness
TW	Web thickness
U	Value of optimization function
Ul	Value of optimization function in linear programming method
۷	, Shear load in arm
W	Weight of rotating components of generator
WID	Width of beam flange
WT	Bracket weight

З.

xi

SYMBOL	DESCRIPTION
UPPER CASE	
X _i	Design variables in linear programming
Z(J)	Design variables
LOWER CASE	
a .	Term in arm formulae
b	Term in arm formulae
^b j	Limiting values of constraining equations
^b t	Solid beam thickness
h	Web height
h _o	Web height at $x = 0$
٤	Beam length
r	Radius to centroid of ring section
r _i	Inside radius of ring
ro	Outside radius of ring
t	Ring thickness
t _f	Flange thickness
t _w	Web thickness
u	Vertical depth of tapered flange
W	Flange width
x	Coordinate along length of beam
xx	Distance from support point to thrust bearing

3,

xii

SYMBOL	DESCRIPTION
LOWER CASE	
у	Vertical coordinate from neutral axis of box beam
у _l	Vertical coordinate from neutral axis of solid beam
GREEK SYMBOLS	
α .	Half-angle between radial loads on a ring
αl	Slope of upper flange of arm
α ₂	Slope of lower flange of arm
α3	Slope of centreline of hub under emergency conditions
δ _l	Radial deflection of lower ring
δ _s	Static deflection of bracket
δt	Total deflection of bracket
δ _u	Radial deflection of upper ring
δ _v	Vertical deflection of bracket due to rotation of hub
δXi	Change in variable X _i in linear programming method
٥X _i +	Positive part of <code>sX</code> i
٥X _i	Negative part of ۲۲
^{۵X} i	Change in variable X _i in direct search method
π	3.1416
[¢] .j	Constraining equations

3

xiii

GREEK SYMBOLS

3

DESCRIPTION

σ_b σ_{max}

^ζχy

Bending stress in arm Maximum stress in tapered flange Horizontal shear stress in arm June ----

-

I. INTRODUCTION

A lower bracket is a welded steel structure used to support and locate the rotating components of vertical water whee generators. The location of the bracket in a generator can be seen in Figure 1. Typically, brackets consist of two hub rings and three or more beams, called arms. Figures 2 and 3 illustrate four-armed brackets. The hub rings generally fall into the class of "thick" rings, that is, those with large ratios of outside diameter to inside diameter.

The loading on and structural analysis of lower brackets will be presented in detail in Chapter 2.

This project consisted of three major parts:

- (1) An investigation of the stresses and deflections in thick rings and in the arms. The validity of using ordinary beam formulae for predicting the stresses and deflections of the arms is in doubt because of the large depth to length ratio of the arms. In addition, the arms are often tapered and the effect of this taper is not taken into account.
- (2) Optimization of the design of the bracket utilizing the results of the preceding investigation with minimum bracket weight as the optimization criterion, to demonstrate the applicability of optimization

techniques to industrial design problems.

Э.

(3) Building and testing a model to determine the accuracy of the stress and deflection equations.

2. LOADING, STRUCTURAL ANALYSIS, AND DESIGN OF LOWER BRACKETS2.1 DESCRIPTION

As mentioned in the introduction, lower brackets generally consists of two hub rings and three or more arms. The arms are usually box sections or I-beams. The flanges butt onto the rings and the webs are extended between the rings to prevent relative motion of the rings in the vertical direction, thus forming a rigid structure, as illustrated in Figure 4.

The bracket supports the thrust and guide bearings, which are normally spigoted and bolted to the top ring of the bracket, as illustrated in Figure 5, or to the middle ring of the bracket illustrated in Figure 6.

In this report the structural effects of the middle ring illustrated in Figure 6 are neglected.

2.2 LOADING

The bracket functions under two kinds of loading, one being vertical, due to the weight of the rotating parts and the thrust on the hydraulic turbine, applied to the thrust bearing, and the other being horizontal, due to unbalance in the machine, and, in some cases, electrical faults, applied to the guide bearing.

Bracket analysis is generally divided into two parts:

(a) loading under normal operating conditions, and

(b) loading under emergency conditions.

Normal loading, as implied by the name, is the loading which occurs when the machine is operating at rated load, and consists of the weight of the rotating parts plus the hydraulic thrust. Lateral loading on the guide bearing due to machine unbalance is generally quite small and is therefore ignored.

Loading under emergency conditions consists of loading under normal conditions plus a lateral thrust on the guide bearing due to a magnetic force. The magnitude of the magnetic force is calculated as if half of the field poles were instantaneously shorted out, resulting in an unbalanced magnetic pull rotating at the speed of the machine.

The magnitudes of the normal and emergency forces are quite large, both being in the order of one million pounds or more.

2.3 STRUCTURAL ANALYSIS

٠.

2.3.1 NORMAL CONDITIONS

Analysis of a bracket under normal conditions generally proceeds inwards from the tips of the arms. The applied load W, consisting of the rotating weight and the hydraulic thrust, is transmitted from the runner to the bearing. Since the bearing is rigid relative to a ring loaded at right angles to its plane, the applied load is picked up at the webs and is not uniformly distributed around the ring.

The load applied to the webs of each arm, then, is equal to:

$\frac{W}{N}$,

and the reaction applied to the tip of the arm is:

З.

$$P = \frac{W + WT}{N}.$$

This tip reaction causes a bending moment and shear load in the arm, and from these, the bending and shear stresses are calculated using ordinary beam formulae. This loading is illustrated in Figure 7.

In many cases the arm is tapered with either the upper or lower flange being horizontal and the other sloped. In some cases, both are sloped so that the arm becomes deeper at the hub, and in even rarer cases, both may be sloped in the same direction to give a rising or falling arm.

The bending and shear deflections of the arm are calculated by approximating the beam with several straight sections.

The arm tip reaction causes a moment to be applied about the point of application of the load on the upper ring. This bending moment is resisted by the rings, the upper ring being loaded in compression and the lower in tension. The net effect of this loading is equivalent to that of applying radial loads to the rings, as illustrated in Figure 8. The magnitude of the radial force in Figure 8 is:

÷.

$$F_{1} = \frac{P.xx}{H + \frac{1}{2} (TU + TL)}$$

The rings, which generally have an outside diameter to inside diameter ratio of 2, are analyzed as if the loads acting on them were point loads. Their stresses and deflections are calculated from the formulae given in Appendix A.

The vertical deflection of the bracket due to the radial motion of the rings is calculated as follows:

If the radial deflection of the upper ring under load F_1 is δ_u , and if the radial deflection of the lower ring outwards under load F_1 is δ_ℓ , then the rings move relative to one another an amount $\delta_u + \delta_\ell$, but since the rings are rigidly joined, this relative motion can only occur through rotation of the hub, and for the hub to rotate it must deflect vertically, as illustrated in Figure 9.

The deflection of the bracket due to the rotation of the hub is:

 $\delta_{\mathbf{v}} = \frac{\left(\delta_{\mathbf{u}} + \delta_{\boldsymbol{\ell}}\right) \cdot \mathbf{x}\mathbf{x}}{\mathbf{H} + \frac{1}{2} (\mathbf{TU} + \mathbf{TL})}$

- 6

This deflection plus those of the arm in bending and shear are added to obtain a total deflection of the bracket, δ_+ .

The natural frequency of the bracket is calculated as follows:

The static deflection of the bracket under the weight of the rotating parts is:

$$\delta_{s} = \frac{(W + WT - Hydraulic Thrust)}{W + WT} \delta_{t}$$

The bracket natural frequency N_{cr} is:

$$N_{cr} = 187.7 \sqrt{\frac{1}{\delta_{s}}}$$

2.3.2 EMERGENCY CONDITIONS

З.

As mentioned in Section 2.2, loading under emergency conditions consists of the loading under normal conditions plus the loading due to the short circuit force applied at the generator guide bearing. This loading is illustrated in plan in Figure 10 and in section in Figure 11.

The loads on individual bearing shoes are assumed to vary as the square of the cosine of the angle between the shoe and the line of action of the short circuit force. These, however, are not of concern when designing those parts of the bracket considered in this thesis. In bracket design it is assumed that

the worst loading condition from both the stress and lateral deflection viewpoints occurs when FSC is directly in line with one of the arms, as illustrated in Figure 12. Furthermore, it is assumed that each of the arms directly in line with FSC takes 50 percent of the load, one arm being in compression and the other in tension. Thus, in Figure 11, the vertical and horizontal reactions are:

ъ.

$$RV = \frac{FSC \cdot HI}{SPAN}$$
 $RH = \frac{FSC}{2}$

This analysis is based on the premise that the hub is rigid.

Under short circuit loading, the bracket arms bend, resulting in a lateral deflection of the guide bearing, as shown by the dotted lines in Figure 11. The lateral deflection of the guide bearing is thus α_3 .B plus local deflections such as the compressive deflection of the guide bearing adjusting screws.

The stresses in the arms, calculated using ordinary beam formulae, are added to those for the normal loading condition. The loads and stresses in the rings caused by the short circuit force are calculated as if the tip reactions to the short circuit force, RV, were in the same direction and occurred on all arms.

The preceeding material is illustrated with a four arm bracket, the type most commonly used by Canadian Westinghouse Company. However, the design formulae apply directly to

structures having any number of arms. For analysis under short circuit conditions the vertical reactions at the arm tips are calculated with the assumptions that the hub is rigid and the resisting force at the tip of each varies as the cosine of its angle from the line of action of FSC.

In general, the torsional stiffness of the arms at right angles to the line of action of FSC is ignored.

During machine start-up, the breakaway coefficient of friction between the thrust bearing shoes and the runner can be as high as 0.35, the result being a torque exerted on the bracket and bending of the arms about their weaker axes. The stresses caused by this bending are not always checked.

2.4 DESIGN LIMITS

٩.,

The design requirements for a lower bracket may be stated briefly as follows:

- The tensile stresses should not exceed one-third the yield strength of the material under normal conditions, and the shear stresses should not exceed one-six the yield strength.
- The tensile and shear stresses in the material should not exceed two-thirds and one-third the yield strength, respectively, under emergency conditions.

- The maximum deflection of the bracket under normal loading should be 0.10 inches or less.
- 4. The natural frequency of the bracket, under the action of the weight of the rotating parts, should be greater than 1.25 times the runaway speed of the machine.
- Under emergency conditions the rotor should not touch the stator.
- In many cases, the bracket cross-section must fit within a given profile limit.

3. DESIGN INVESTIGATION

٩.

3.1 RINGS

A literature search for information on the stresses and deflection of radially loaded thick rings was carried out. Several papers of interest were found, particularly those of Blake [1], Srinath and Acharya [2], and Acharya, Srinath and Lakshiminarayana [3], and Leeman [4].

Briefly, Blake's paper states that the radial deflections of a diametrally loaded ring are less than those predicted by strain energy calculations, both at the points of application of the loads and at 90° to the direction of application. If this work can be extrapolated to cases of more then two loads one would expect the deflection of a bracket to be less than that predicted by the existing design formulae.

The remaining papers found deal with stresses, the general concensus being that the predicted stresses at large angles to the line of application of the forces agree with those obtained experimentally by photoelastic methods, at least to an extent which makes their use as design formulae feasible.

An analysis of the Canadian Westinghouse Company design formulae for rings indicates that they were developed from strain energy methods using curved beam theory, similar to those used by Srinath and Acharya [2] in developing the bending stress

equation for a ring loaded in diametral compression.

Since the investigation of the subject of thick rings did not seem to offer any reliable improvement in terms of either stress or deflection the topic was not pursued further.

3.2 ARMS

3.2.1 SHORT BEAMS

÷.,

Conway, Chow and Morgan [5] have determined the stress distribution in a square plate shown in Figure 13, using both strain energy and finite difference methods. They have also examined a rectangular plate having a depth to length ratio of 1/2. The results of their investigation are given in Figures 14, 15 and 16, which show the variation in bending stress across different sections. They also found that the shear stress across a section in such beams was much different from that predicted by the ordinary beam formula. In fact, it was much lower halfway between the top and bottom and much higher at the top and bottom.

The authors came to the conclusion that simple beam theory is an accurate predictor of the bending stresses in beams with depth to length ratios less than 1/2, and report that photoelastic methods confirmed, in general, their results.

Although the arms used in brackets are not only webs, but have flanges as well, one would expect the results of the work of Conway, Chow and Morgan, applied to a flanged beam, to give similar results. Since the arms in brackets are cantilevers, they fall into the class of beams having depth to length ratios less than 1/2, and, since the loads are not applied over the whole length of the arm, one would expect reasonable agreement between the acutal bending stresses at the hub and those predicted from simple beam theory.

3.2.2 ARM STRESSES

З.

As mentioned in the Introduction, the effects of taper on the stresses in the arms are not considered. Seely and Smith [6] state that the bending stress on a plane at right angles to the centreline of a tapered beam can be predicted with sufficient accuracy from the formula:

$$\sigma_{b} = \frac{My}{I}$$

Timoshenko [7] concurs with this. However, in the case of a tapered beam the plane at right angles to the centreline of the beam is not a principal plane, and, in fact, the principal plane at the flange is at right angles to the flange. The maximum stress on this plane is:

$$\sigma_{max} = \frac{\sigma_b}{\cos^2 \alpha_1}$$

where α_{l} is the angle between flange and the section on which σ_{h} is calculated. This formula is derived by Seely and Smith [6].

13

For the case of a beam which has different slopes on its upper and lower flanges the maximum stresses on the upper and lower flanges will be different.

Timoshenko [7], predicts the horizontal shear stress in the beam illustrated in Figure 17 as being:

$$z_{xy} = \frac{3M}{b_t h^2} \frac{dh}{dx} + \frac{6}{b_t} (\frac{h^2}{4} - y_1^2) \frac{d}{dx} (\frac{M}{h^3})$$

If $h_{x} = L = 2h_{0}$, then at the built-in and at the cantilever:

$$\zeta_{xy} = \frac{3}{8} \frac{P}{b_t h_0} (1 + \frac{y_1^2}{h_0^2})$$

and the shear stress distribution across the section is as shown in Figure 18.

Since most of the arms on lower brackets are tapered a similar formula based on Timoshanko's analysis was developed by the author for box beams. The derivation of this formula is given in Appendix B. For the tapered box beam illustrated in Figure 19, the horizontal shear in the webs of the beam is:

$$\zeta_{xy} = \frac{P}{2} \left(\frac{x}{I}\right) \frac{dh}{dx} \left\{\frac{h}{2} + \frac{u.w}{2t_w}\right\} + \frac{P}{2} \frac{d'}{dx} \left(\frac{x}{I}\right) \left\{\frac{h^2}{4} - y^2 + \frac{u.w}{2t_w} \left[h + u\right]\right\}$$

For the above, the taper of the flange is given as a slope rather than an angle, hence:

$$u = t_f \cdot \sqrt{1 + \alpha_l^2}$$

To obtain the horizontal shear in the flanges the preceding equation is multiplied by $2t_w/w$.

A comparison between the horizontal shear stresses predicted by the simple beam theory and by the new formula is given in Appendix C.

3.2.3 ARM DEFLECTIONS

÷.

It was felt that the existing technique used by Canadian Westinghouse Company for calculating the bending and shear deflections of tapered box beams introduced a large error into the total bracket deflection. Accordingly, three new formulae were developed which give closed solutions for the deflections. For the tapered box beam shown in Figure 19 these are:

(a) Deflection due to Bending:

$$\delta_{b} = \frac{P}{EI_{o}} \left[\frac{\ell}{(a-b)(1+a\ell)} + \frac{1}{(b-a)^{2}} \left\{ \frac{1}{b} \ln(1+b\ell) + \frac{b-2a}{a^{2}} \ln(1+a\ell) \right\} \right]$$

where $I_0 = moment of inertia at x = o$

$$a = \frac{\alpha_1 + \alpha_2}{h_0 + t_f}$$

$$b = \frac{t_w(\alpha_1 + \alpha_2)}{t_w(h_0 + t_f) + 3(w - t_w)t_f}$$

(b) Deflection due to Shear Using $\zeta_{xy} = VQ/IT$

3.

$$\delta_{s} = \frac{P(h_{0}+t_{f})}{4I_{0}t_{w}G} \left[\frac{t_{w}(h_{0}+t_{f})\ln\{1+b_{\ell}\}}{2b} - \frac{t_{w}t_{f}^{2}a_{\ell}}{2(h_{0}+t_{f})(b-a)(1+a_{\ell})} + \frac{1}{b-a}\ln\{\frac{1+b_{\ell}}{1+a_{\ell}}\}(w.t_{f}-t_{w}.t_{f} + [\frac{b}{b-a}]\frac{t_{w}\cdot t_{f}^{2}}{2(h_{0}+t_{f})})\right]$$
(c) Deflection due to Shear from New Formula

$$\delta_{s} = \frac{P}{2GI_{o}} \left(\frac{\ell}{\{1+a\ell\}^{2} \{1+b\ell\}} \right) \left[\left\{ \frac{h_{o} + (\alpha_{1}+\alpha_{2}) \ell}{2} \right\}^{2} + \frac{u.w}{2t_{w}} \{h_{o} + (\alpha_{1}+\alpha_{2})\ell + u\} \right]$$

The derivations of these three formulae are given in Appendix B, and are based on an approximation to the moment of inertia which is in error from the exact value at any section by less than one percent.

Comparisons between deflections predicted by approximating arms with a series of straight sections and the new formulae are given in Appendix D. Note that the deflections due to bending and shear obtained by integrating the approximated moment of inertia in the simple beam formulae are singular at $\alpha_1 + \alpha_2 = 0$.

4. DESIGN OPTIMIZATION

3.

4.1 FORMULATION OF PROBLEM

The weight of the bracket is a function of ten variables and several constants. The ten variables are:

Z(1) =	OD	outside diameter of rings	[in]
Z(2) =	τυ	thickness of upper ring	[in]
Z(3) =	TL	thickness of lower ring	[in]
Z(4) =	IT	distance between rings	[in]
Z(5) =	TF	thickness of arm flange	[in]
Z(6) =	TW	thickness of arm web	[in]
Z(7) =	IDL	internal diameter of lower ring	[in]
Z(8) =	WID	width of arm flange	[in]
Z(9) =	ALPHA1	slope of upper flange relative to horizontal	
7(10) =	AL PHA2.	slope of lower flange relative to	

horizontal

The slopes of the flanges are positive when they make the arm depth less at the tip than at the hub, as illustrated in Figure 18.

There are 42 limits and limiting equations on the design, of which 20 are nonlinear and 22 are linear. Of the 22 linear limits 20 are the lower and upper limits on the sizes of the variables. These limit equations and limits are described below, the PHI's being the limit equations and the B's the limiting values of the PHI's.

PHI(1)	• • • • • • •	bracket deflection at the bearing
PHI(2)	• • • • • • • •	bracket critical frequency
PHI(3)	•••••	radial load applied to upper ring minus one third of the critical buckling load for the upper ring
PHI (4)		upper ring thickness minus lower ring thickness minus l inch
PHI(5)	• • • • • • •	slope of upper flange plus slope of lower flange
PHI(6)	• • • • • • •	maximum upper ring bore stress between loads
PHI(7)	• • • • • • • •	maximum upper ring bore stress under load
PHI(8)	• • • • • • •	maximum lower ring bore stress between loads
PHI(9)	••••	maximum lower ring bore stress under load
PHI(10)	• • • • • • •	maximum horizontal shear stress at arm tip during normal conditions
PHI(11)	••••	maximum horizontal shear stress at arm tip during emergency conditions
PHI(12)	•••••	maximum horizontal shear stress in arm at hub during normal conditions
PHI(13)	••••	maximum horizontal shear stress in arm at hub during emergency conditions
PHI(14)	• • • • • • •	maximum horizontal shear stress in arm minus limit from CSA S16-1961 (Clause 12.5)
PHI(15)		maximum bending stress in arm during normal conditions
PHI(16)	•••••••	maximum stress in compression flange during emergency conditions
PHI(17)	• • • • • • •	maximum stress in tension flange during emergency conditions
PHI (18)	•••••	PHI(16) minus whichever is greater of CSA S16-1961 (Clause 12.4.1) or maximum allowable stress in compression flanges to limit local buckling

PHI(19)	maximum depth of arm at support	
PHI (20)	maximum elevation of upper support	ring, measured from
PHI(21)	minimum elevation of upper	ring
PHI(22)	difference in elevation be bracket profile limit (see	tween upper ring and Figure 20)
PHI(23)	Z(1)	
• •		
PHI(32)	Z(10)	
PHI(33)	Z(1)	
•		
PHI (42)	Z(10)	
B(1)	0.100	[inches]
B(2)	^N cr	[c.p.m]
B(3)	0.	[lb.]
B(4)	0.	[inches]
B(5)	0.	
B(6)	SY/FS	[p.s.i]
B(7)	şy/fs	[p.s.i]
B(8)	SY/FS	[p.s.i]

B(9) SY/FS B(10) SY/2FS

3

B(8)

[p.s.i]

[p.s.i]

B(11)	SY/2FSE [p.s.i]	
B(12)	SY/2FS [p.s.i]	
B(13)	SY/2FSE [ps.j]	
B(14)	0. [p.s.i]	
B(15)	SY/FS [p.s.i]	
B(16)	SY/FSE [p.s.i]	
B(17)	SY/FS [p.s.i]	
B(18)	0. [p.s.i]	
B(19)	maximum allowable depth of arm at support [inches]	
B(20)	maximum allowable elevation of upper ring [inches]	
B(21)	minimum allowable elevation of upper ring [inches]	
B(22)	0. [inches]	
B(23)	lower limit on variable size (dimensions are the sa	me
•	as chose for variable	5)
n(22)	lours limit as usuichle size	
B(32)	lower limit on variable size	
B(33)	upper limit on variable size	
•		
. •		
•		
B(42)	upper limit on variable size	

 $\mathbf{\hat{s}}_{i}$

The bracket profile limits are combinations of limits on variable sizes and four other limits. In Figure 20, the line joining the maximum height of arm at the support and the maximum elevation of the upper ring at the maximum slope of the flange forms

a profile limit for the upper half of the structure. The line joining the soleplate and the maximum outside diameter of the rings at a slope equal to A2MAX forms a limit profile for the lower half of the structure.

In the preceding, there are both equal to or less than constraints and equal to or greater than constraints. In order to make the constraints uniform the equal to or greater than constraints were converted by multiplying by minus one, i.e. if

 $PHI(J) \geq B(J),$

then

З.

 $-PHI(J) \leq -B(J).$

The preceding limits do not include any on the lateral deflection of the bracket or the stresses in the rings during emergency conditions since a reliable and accurate method for calculating these was not available. The author [8] has developed a mathematical model based on combinations of springs in two to four planes to represent the various components of brackets. This model, with further development, could be used to predict the lateral deflections and ring stresses, however, it was felt that such work was beyond the scope of this thesis and unnecessary for the demonstration of the usefullness of optimization in design.

- 21
The object then, is to minimize the optimization function U, which is the weight of the bracket and is a function of the 10 variables, subject to the condition that none of the 42 limits are exceeded.

4.2 DIRECT SEARCH METHOD

З.

Due to the complexity of the nonlinear limit equations it was felt that an optimizing technique based on iterative numerical calculations performed by a digital computer would be most desirable. The first technique to be tried was that of direct search [9,10].

The direct search algorithm operates in the following manner. Starting from an initial point, a variable X, is increased (or decreased) an amount ΔX_i . The value of U is then calculated for this new value of X_i . If this produces a better value of U the same procedure is applied to the second variable, and so on. If it is unsuccessful, the value of X_i is changed from its initial value by an amount ΔX_i in the opposite direction and a new value of U calculated. If this is successful, the value of X_i is left at its new value and a similar procedure applied to X_{i+1} . searches in both directions are unsuccessful, then the value of X_i is returned to its initial value and the procedure applied to This process is repeated until all variables have been X_{i+1}. tried, at which point a univariate search is complete.

If the univariate search is successful, then a pattern move is made and a new univariate search carried out. The pattern move is equal in magnitude to the result of the preceding pattern move plus the preceding univariate search. The value of U after the univariate search is compared to the value of U before the move, and, if this is successful, another pattern move is made. If not, the previous pattern move is cancelled and a univariate search made from the end of the previous search.

1

This process is repeated until a univariate search cannot find a better value of U, the process then being terminated or the step size reduced.

A direct search technique is illustrated in two dimensions in Figure 21.

This technique utilizes both sequential and simultaneous changes in the variables, the simultaneous changes or pattern moves being much faster than the sequential changes, or univariate searches, but less accurate.

This technqiue, in a modified form can be used with problems having constraints. In the modified algorithm, the values of the limit equations are checked after each search or move. If any limit is exceeded, the difference between the limit equation value and limit is multiplied by a large number, for example, 10^7 , and this added to U, thus creating an artificially large value of U. This soon forces the optimization into a feasible region

and also permits starting at an infeasible point.

÷.,

A computer programme to apply the modified direct search algorithm was written for this problem. The direct search method was included in the main programme while the calculation of U and of the limit equations was put into a subroutine.

Since brackets are normally constructed from commerical steel plate, the step sizes or incremental change sizes for the variables were set at values corresponding approximately to those of commerical steel plate and not reduced.

The direct search computer programme is not included in this thesis since it forms part of a more extensive programme to be discussed later.

Initial results obtained from the direct search method produced designs in which the rings were very thin and had diameters very near that of the pit diameter. After several runs produced this result it became obvious that some limit on the outside diameter of the rings was required. It should be noted that an unlimited diameter design is not practical from the point of view of generator design since it would not permit access to the bearing from below and would also pose design, manufacturing, and shipment problems. From a strcutural point of view the behaviour of such a bracket could no longer be predicted from the equations for rings and arms. Also, it was felt that the compression ring would tend to buckle when it became thin.

As a result of this initial work a literature search was carried out in an attempt to find a suitable formula which would predict the magnitude of the radial loads which would cause the upper ring to buckle. None was found, consequently, the author derived the following formula:

$$P_{cr} = \frac{2\alpha}{r^2} \left[\frac{B_1}{r} \left(\frac{\pi}{2\alpha} \right)^2 + C \left(\sqrt{r_0} - \sqrt{r} \right)^2 \right],$$

where:

3

Pcr	=	critical buckling load
α	=	one half the angle between loads
r	=	mean radius of ring
r _o	=	outside radius of ring
Bı	=	bending rigidity of ring
С	8	torsional rigidity of ring.

The derivation of this formula and an explanation of the symbols used are included in Appendix E.

· .

This formula, which forms part of PHI(3), apparently provided the necessary limit equation since, after its inclusion in the direct search programme, designs similar to actual designs were produced by the optimization.

After the direct search programme was fully developed runs were made for three different designs (sets of input data), each starting from three different points. The results are given in Appendix F. The results were not at all encouraging. Each starting point produced a different end result.

Examination of these results indicated that the direct search method was stalling on one or more constraints and was not reaching the optimum. This problem is illustrated in Figure 22, and is discussed by Klingman and Himmelblau [11]. Reducing the step size produced slightly better optima in each case, as did altering the ratios of the step sizes, however, the changes produced were not significant.

In order to overcome this difficulty, the direct search method was combined with each of two different optimizing methods, the Multiple-Gradient Summation Technique and the Method of Approximation Programming.

4.3 MULTIPLE-GRADIENT SUMMATION TECHNIQUE

÷.,

The Multiple-Gradient Summation Technique, proposed by Klingman and Himmelblau [11], is an algorithm created to change the variables in a constrained nonlinear optimization problem in such a manner as to improve the optimization function after a direct search technique has become stalled on a constraint, as shown in Figure 22.

For this technique the limits for the constraining functions. must be in the form

$$c_i(x_1, ..., x_n) \ge 0,$$

and U a maximum. When a constraint has been reached by the direct search method, a New Successful Direction ($\overline{\text{NSD}}$), along which a move is to be made, is defined as follows:

$$\overline{\text{NSD}} = \frac{\Sigma \text{Grad } C_1(X_1, \dots, X_n)}{|\Sigma \text{Grad } C_1(X_1, \dots, X_n)|} + \frac{\text{Grad } U(X_1, \dots, X_n)}{|\text{Grad } U(X_1, \dots, X_n)|}.$$

This, then, is the vector sum of the normalized gradients of the contacted constraints and the optimization function. This technique is illustrated in Figure 23. The $\overline{\text{NSD}}$ vector is then normalized to yield a unit vector:

$$\overline{N} = \frac{\overline{NSD}}{|\overline{NSD}|}$$

along which a move is to be made. Next, moves are made along

 \overline{N} . If the same constraint is reached, the size of the move along \overline{N} is reduced, or, if a different constraint is contacted, new values of \overline{NSD} and \overline{N} are calculated. If the amount of the move size is reduced to a limiting value specified by the programmer, the direct search step size is reduced and the optimization returned to the direct search method. If the direct search, at this stage, is unsuccessful, the Multiple-Gradient Summation Technique is applied again with an accelerating factor. If the direct search step sizes become less than a specified amount, the algorithm is terminated.

 \mathbf{S}_{i}

This technique was applied to the problem of bracket design optimization by altering the limit equations as follows:

$$C_{i}(X_{1},...,X_{n}) = PHI(I) - B(I) \le 0$$

Since all the constraints were of the equal to or less than type, and the object to minimize the optimization function, the New Successful Direction took the form:

 $\overline{\text{NSD}} = -\frac{\Sigma \text{Grad } C_i}{|\Sigma \text{Grad } C_i|} - \frac{\text{Grad } U}{|\text{Grad } U|}$

The gradients were evaluated numerically rather then analytically.

The application of this technique to the end results of the direct search method was only partly successful. While the optimization function was reduced, the amount of reduction achieved for long run times on the computer was not significant, hence work with this method was terminated.

З.

Examination of the computer results suggests that the reason for the slowness of this technique is that the constraints are concave, as illustrated in Figure 24, in which case the algorithm would only change the variable slightly before hitting the same constraint. One would expect, for convex constraints, that the Multiple-Gradient Summation Technique would produce a \overline{N} along which large moves could be made before hitting a different limit.

4.4 METHOD OF APPROXIMATION PROGRAMMING

4.4.1 DESCRIPTION OF METHOD

The Method of Approximation Programming (MAP), used by Griffith and Stewart [12] to solve oil refinery problems, essentially consists of linearizing the nonlinear optimization function and constraints followed by a linear programming solution of the linearized system. This cycle is applied repetitively in such way that the solution of the linear problem converges to the solution of the nonlinear problem.

Mathematically, the lower bracket optimization problem may be stated as follows:

Minimize: U=f (X_1, \dots, X_n) Subject To: $\phi_j(X_1, \dots, X_n) \leq b_j$ j = 1, m The ϕ 's also include the upper and lower bounds on the sizes of the variables. At some point $X_i = X_i^0$ the nonlinear problem can be linearized by expanding U and the ϕ_j in Taylor series and ignoring terms of higher order than the first. The linearized problem then takes the form:

Minimize:
$$U = f(x_1^0, \dots, x_n^0) + \sum_{i=1}^n (X_i - X_i^0) \frac{\partial f(X_1^0, \dots, X_n^0)}{\partial X_i}$$

Subject To:
$$\phi_j(X_1^0, \dots, X_n^0) + \sum_{i=1}^n (X_i - X_i^0) \frac{\partial \phi_j(X_1^0, \dots, X_n^0)}{\partial X_i} \leq b_j$$

 $j = 1, m$

This form is not yet suitable for a linear programming solution. If $X_i - X_i^0$ is denoted as δX_i , a requirement of the linear programming technique is that δX_i be positive. Another requirement is that all the limit equations be equality constraints. To meet the first requirement δX_i is defined as being:

$$\delta X_{i} = \delta X_{i}^{+} - \delta X_{i}^{-}$$

This step effectively doubles the number of variables, however, in the linear programming solution either δX_i^+ or δX_i^- will be zero. The second requirement is met by adding slack variables S_j to the limit equations. Denoting the partial derivatives as constants; i.e.,

$$\frac{\partial f(X_i^{O}, \dots, X_n^{O})}{\partial X_i} = C_i,$$

and

٠.

$$\frac{\partial \phi_j(X_i^{\sigma_1},\ldots,X_n^{\sigma_1})}{\partial X_i} = a_{ji},$$

the linear programming problem takes the form: Minimize: $U^{1} = U - f(X_{1}^{0}, \dots, X_{n}^{0}) = \sum_{i=1}^{n} C_{i} \delta X_{i}^{+} - \sum_{i=1}^{n} C_{i} \delta X_{i}$ Subject To: $\sum_{i=1}^{n} a_{ij} \delta X_{i}^{+} - \sum_{i=1}^{n} a_{ij} \delta X_{i}^{-} + S_{j} = b_{j} - \phi_{j}(X_{1}^{0}, \dots, X_{n}^{0})$ j = 1, m

Starting with a nonlinear problem having 10 variables and 42 constraints, the development of a linear programming problem has resulted in a linear problem having 62 variables and 42 constraints.

In the MAP algorithm, the changes in the variables, that is, the δX_i , are limited to small ranges so as to make the linear approximations reasonably accurate.

Since the exact details of linear programming algorithm are well documented elsewhere, they will not be presented here.

4.4.2 APPLICATION TO PROBLEM

A modified version of MAP was applied to the lower bracket problem. Instead of limiting the δX_i to small changes in the variables the changes were allowed to be large, that is, in the order of plus or minum 10 percent of the variable size. The linear programming solution, in most cases, would violate one or more limits. If this occurred, the capacility of the direct search method to find a feasible solution was utilized. This is illustrated in Figure 25.

G.,

A computer programme for the modified version of MAP, discussed above, was added to that of the direct search method. This programme, with its six subroutines, is listed in Appendix F. The main programme, into which the data is read, calculates all the constants related to the input data. It also contains the direct search method, the output, and the CALL statements to the various subroutines. Subroutine EVAL calculates the numerical derivatives, while subroutine XMAT formulates the linear Subroutine SIMP, supplied by Mr. V. Gurunathan; programming matrix. solves the linear programming problem. Subroutine CHECK, which is called after each change in a variable or variables in the direct search method, calculates the values of ϕ_i and of U, compares ϕ_i and b_j , and, if ϕ_j is greater than b_j , multiplies $\phi_j - b_j$ by 10⁷ and adds it to U. Subroutine CHECK2 is identical to CHECK except that it does not multiply $\phi_j - b_j$ by 10⁷ and add it to U. CHECK2 is used to determine the actual value of U. Subroutine SIZE, which is called at the end of the programme, allocates the variables to stepped sizes within the variable rings, thus producing material sizes approximating those commercially available.

 Graduate Student, Department of Mechanical Engineering, McMaster University, Hamilton, Ontario.

The computer programme and a typical output are listed in Appendix G. They are, in general, self explanatory, except for the following:

NNN	• • • •	number of univariate searches
NCALL	••••	number of linear programming solutions
U(11)	• • • • •	value of U after univariate search
U(22)	••••	value of U after univariate search following
	• .	pattern move
U(31)	••••	value of U plus $10^7 \times (\phi_j - b_j)$ after linear programming solution
U(45)	• • • • •	feasible value of U obtained by direct search from linear programming solution

Note that there are two OPTIMUM SOLUTIONS, one being that before the variables are adjusted by calling SIZE and the other after. If the direct search method cannot find a feasible solution, the direct search step size is reduced, the magnitude of the linear programming solution reduced by one-half, and the execution returned to the direct search.

In the event that a linear programming solution does not violate any constraints a pattern move of magnitude equal to the solution is tried. 'If this move is unsuccessful it is retracted, the direct search step size reduced, and another linear programming solution attempted.

When the linear programming algorithm will not reduce the actual value of U by more than 0.05 percent, execution is terminated.

4.5 OPTIMIZATION RESULTS

З,

The results of modified MAP method, starting from the end points of the three designs in Appendix F, were very encouraging. Both the direct search end results and modified MAP results are presented in Tables I, II and III, for Designs 1, 2 and 3 respectively. The number of linear programming - direct search iterations and approximate run time necessary to produce the modified MAP results listed in Tables I, II, and III are given in Table IV.

5. EXPERIMENTAL

З.,

A model was designed, built and tested in order to check the accuracy of the design formulae. The model was proportioned dimensionally to approximately 1/8th scale, within the limits of commercially available steel plate. The design formulae were directly applicable to this model insofar as stress was concerned.

The model dimensions and material thickness are shown in Figure 26. Ten strain gages were placed on the model, four on the bores of the rings and six on the arm flanges. The exact locations of the gages are shown in Figures 27 and 28. The model is illustrated in Figure 29 and the experimental set-up in Figure 30.

The model, as shown in Figure 29, was loaded through a 10 inch long piece of Schedule 40 steel pipe, both ends of which were turned. The cross-head of the machine and the pipe were assumed to be rigid so that the downwards movement of the crosshead, measured with a dial gage which would read to 0.0001 inch, was assumed to be the total bracket deflection. For the initial tests dial gages reading to 0.0001 inch were mounted vertically at the outside diameter of the upper ring in an attempt to measure the deflection there and thus determine the amount of deflection and rotation of the ring.

The top ring was faced and the bottom of the support blocks turned flat and parallel to the face of the top ring.

5.1 TEST PROCEDURE

а,

Fourteen tests, in all, were performed. Details of these tests are presented below:

- Test 1: Test 1 consisted of loading the model from zero to 12000 1b. in 1000 lb. increments as a trial run. During this test gages 1 and 2, which did not appear to be performing well, were changed from switch and balance channels 1 and 2, respectively, to channels 7 and 12. In addition, the dial gage mounted on the upper ring at arm #2 was moved.
- <u>Test 2</u>: Test 2 was a repeat of test 1. Again, gages 1 and 2 did not appear to be performing well.
- <u>Tests 3 and 4</u>: In order to ascertain if gages 1 and 2 were malfunctioning, the model was tested as a two-armed bracket by shimming arms #2 and #4 so that arms #1 and #3 did not touch the bedplate. Thus, gages #1 and #2 were halfway between loads instead of under the load. Loading was from zero to 3500 lb. and down to zero again in 500 lb. steps. During these tests the gages appeared to function well.

14.4

Tests 5 and 6: Tests 5 and 6 consisted of complete load-unload cycles of the model as a four-armed bracket. Loading was from zero to 12000 lb. and down to zero in 1000 lb. steps. During the unload cycle gage #6 and the dial gage measuring the deflection of the upper ring at arm #2 seemed to be sticking, i.e. the readings changed very little with decreasing load.

2

- <u>Test 7</u>: Test 7 consisted of a complete load-unload cycle with dial gage readings only being taken. The dial gage readings taken were the total bracket deflection and the deflection of the upper ring measured at arms #1 and #4. The dial gage measuring the upper ring deflection at arm #1 appeared to be sticking during the first part of the unload cycle.
- <u>Test 8</u>: Test 8 was a repeat of tests 5 and 6. Again, the dial gage measuring the deflection of the upper ring at arm #1 appeared to be sticking at the start of the unload cycle, as did strain gage #6.
- <u>Test 9</u>: Test 9 was a repeat of test 7, only with the vertical ring deflections being measured at arms #2 and #4. The readings at arm #2 did not decrease when the load decreased from 12000 lb. to 8000 lb., consequently no further readings were taken here during this test.

- 37

<u>Test 10</u>: In test 10 the model was tested as a two-armed bracket by shimming arms #1 and #3. Loading was from zero to 5000 lb. and back to zero in 500 lb. steps. In this test the readings of gage #6 actually increased slightly at the start of the unload cycle. Measurements of the upper ring deflections at the outside diameter were not taken in this test. It was postulated at this time that the erratic behaviour of the dial gages measuring the vertical deflection of the upper ring at arms #1 and #2 might be caused by the arm moving outwards during the loading cycle, then being held by friction at the start of the unload cycle.

Tests 11 and 12: Tests 11 and 12 consisted of loading the bracket to 12000 lb. from zero, then unloading to zero, in 1000 lb. Two dial gages were mounted horizontally and steps. radially so as to measure the outwards movement of arms #1 and #2. The results were very enlightening. Arm #1 moved outwards approximately 0.0025 inches on the load cycle, then the dial gage reading remained almost constant while the load decreased to 8000 lb., after which its readings started to decrease, returning near its initial value at zero load. The dial gage on arm #2 showed a slight decrease at the start of the load cycle, then increased for a net change from its initial value of 0.0013 inches.

-

On the unload cycle it increased slightly down to a load of 8000 lb., at which point it started to decrease, returning to its initial value at zero load.

- Test 13: In view of the findings of tests 11 and 12, it was decided to lubricate the bedplate and the bottom of the support blocks with heavy grease. Test 14 consisted of loading the model from zero to 12000 lb. in 1000 lb. steps, then unloading in the same manner. The only dial gage reading taken was that of the total bracket deflection. Even with the support blocks lubricated in this manner the readings of gage #6 remained constant as the load decreased from 12000 lb. to 10000 lb.
- Test 14: Test 14 was performed as a check on Test 13, and consisted of loading the model from zero to 12000 lb. in 2000 lb. steps, then unloading in the same manner.

5.2 RESULTS

The results of the 14 tests are presented in tabular The strains have been converted to stresses form in Appendix H. by multiplying the strain readings, in micro-inches per inch, by the modulus of elasticity of steel, 30×10^6 p.s.i. Beside each column of experimental results is a column of theoretical results obtained from an analysis identical to that used in the optimization except that the upper flange stresses have been divided by $\cos^2 \alpha_1$. Also included in each table are the theoretical slopes of the curves and experimental slopes for the load cycle, unload cycle, and last 5 points on the load cycle. The slopes were obtained by fitting the best straight line through the points using the least squares method.

Experimental points for Test 13 are plotted against theroetical curves in Figures 31 to 37, as listed below:

Figure	31	-	Upper	Ring	Str	esses	-	Gages	١	an	d 4	
Figure	32	-	Upper	Ring	Str	resses	-	Gages	2	an	d 3	
Figure	33	-	Lower	Flang	ge S	tress	es	- Gage	es	5	and	6
Figure	34		Upper	Flang	je S	itress	-	Gage	7			
Figure	35	-	Upper	Flang	ge S	tress	es	- Gage	es	8	and	9
Figure	3 6	-	Upper	Flang	je S	itress	-	Gage	10			
Figure	37	-	Bracke	et Def	flec	tion						

Table V contains the experimental and theoretical stresses and deflection at the 12,000 lb. load, the percentage deviation from the theoretical, and the experimental and theoretical slopes of the curves, all from Test 13.

÷.,

6. DISCUSSION

6.1 DESIGN INVESTIGATION

э.

There are several important points concerning the results of the theoretical investigation of the stresses and deflections in the arms and rings.

First, the formulae derived by the author for predicting the shear and bending deflections appear to be sufficiently accurate when compared to the deflections obtained by approximating the beams with 50 linear steps, as shown in Appendix H. For large slopes, the shear deflections obtained from the formulae based on Timoshenko's are considerably lower than those obtained from simple beam theory. Note, however, that the formulae obtained using the approximation to the area moment of inertia of a section are functions of small differences and small natural logarithms, consequently they are accurate only when calculated with a high degree of accuracy, such as on a desk machine or digital computer.

Second, all the formulae are based on the assumption that the bending stress in a tapered beam can be predicted from simple beam theory. In the case of a lower bracket arm, this is probably reasonable when predicting the bending stresses near the hub, however, the formulae for the shear stress and both bending and shear deflections depend on this being true along the length of the arm, consequently, these are probably inaccurate.

Third, the ring formulae, as mentioned earlier, are supposedly accurate for predicting stresses at large angles to the lines of actions of the loads but are inaccurate, as one would expect, for predicting the stresses at the loads. The deflections of the rings under radial loads should be somewhat less than predicted if the work of Blake [1] is applicable to rings with more than two loads. Since the loads are not point loads, but are distributed across the flanges and along the webs, the actual ring stresses and deflections should be somewhat less than expected, providing the technique for predicting the loading on the rings is reasonably accurate.

Fourth, and last, the analysis of the loading on the various components of the structure and the overall deflection of the structure is based on the assumption that the only reactions generated on the structure, at the arm tips, are vertical. This may or may not be true.

6.2 OPTIMIZATION

The results of the work on optimization provide much insight into the optimization of nonlinear functions with nonlinear constraints. This work has added evidence to the hypothesis that the direct search method can stall on constraints. The technique of adding the modified MAP method to a direct search method provided an algorithm which was able to solve this particular

problem. The Multiple-Gradient Summation Technique could probably be modified in the same manner as MAP, that is, allowing moves along \overline{N} to violate constraints, then using the direct search method to bring the optimization back into the feasible region.

The optima reached by the modified MAP algorithm are very interesting. Optimization of Design 2, starting from three different starting points produced three identical solutions, while that of Design 3 produced three similar solutions, differing only slightly in IDL, WID, and ALPHA1. Optimization of Design 1, however, produced two identical solutions and one markedly dissimilar, the dissimilarity being in TF and WID. For Starting Point 1,

> TF = 1.75 inches WID = 23.75 inches

while for Starting Points 2 and 3,

TF = 2.875 inches

WID = 15.0 inches.

This indicates the presence of multi-nodal optima for this particular design, a phenomenon which can occur in nonlinear optimization.

It is felt that the modified MAP method, although possibly not the fastest method, is suitable for most nonlinear optimization problems. Another technique, somewhat similar to the Multiple-Gradient Summation Technique, would be to project the gradient of the optimization function onto the voilated constraint, then follow that particular constraint until another is reached. This in effect, would be the nonlinear equivalent of a linear programming method, and could be used when the direct search method stalls on a constraint.

6.3 EXPERIMENTAL

3

Examination of the experimental results in Table V, Figures 31 to 37, and Appendix H, indicates the following:

- The bore stresses in the rings under the loads, as
 expected, were very much different from those predicted.
- (2) The bore stess in the lower ring half-way between loads was reasonably close to the theoretical while that in the upper ring was much higher than predicted
- (3) The stresses on the lower flange of arm 1 at gage 5were fairly close to the theoretical while those at gage 6 were low.
- (4) The stress on the upper flange at gage 7 on arm 1 was lower than expected while that at gage 10 on arm 2, in a similar location, was close to the expected value.
- (5) The stresses at gages 8 and 9 on the upper flange of arm
 1 were higher than expected, with that at gage 9 being
 slightly higher than that at gage 10.

(6) The total bracket deflection was much larger than predicted, the deflection curve resembling a parabola rather than a straight line.

3.

(7) Several of the curves appeared to "stick" at the start of the unload cycle.

Measurements of the horizontal deflections of the arms (Tests 11 and 12) indicated that the arms did move outwards a large amount on loading, then were held by friction until the load decreased approximately 4000 lb. This probably accounts for the "sticking" readings of the strain gages.

There are a number of possible explanations for the differences between the theoretical and experimental stresses. Among these are:

- Compressive loads applied to the arm tips by frictional resistance to the radial movement of the arms.
- (2) The fact that the arms are relatively short, hence the strain readings can be affected by local loading and by changes in section.
- (3) Built-in strains created during fabrication.
- (4) Non uniformity of loading due to differences in dimensions and material thickness.
- (5) Effect of the large weld on the area moment of inertia of arm sections.

(6) The maximum stresses may not have been in the directions predicted.

Since the maximum positive error in the stresses was only 31 percent while the normal factor of safety is generally 3, the stress formulae are reasonable for use in predicting maximum stresses. The bracket deflection, however, was 131 percent larger than expected. Part of this was due to initial deflections experienced as the bearing surfaces came into better contact, but even the slope of the line through the last 5 experimental points was 83 percent higher than the theoretical.

Actual brackets do not experience large radial movements of the arms since the arms are keyed or bolted to soleplates. This probably reduces the bracket deflection considerably but causes a large radial reaction at the arm tip. Consequently, one would expect the total deflection to decrease and the compressive stresses in the arms and in the upper ring to increase.

6.4 RECOMMENDATIONS

З.

There are several subjects presented in this thesis that bear further investigation, both experimentally and theoretically. These are:

 (a) The radial deflections of thick rings. As mentioned previously, Blake [1] has found, experimentally, that the radial deflections of a ring in diametral compression, loaded at the outside diameter, are less than predicted by theory. However, Blake's deflection measurements were made at the bores of the rings rather than at the outside, where the loads were applied. Further work might be done for cases of more than two loads in both compressive and tensile directions with deflection measurements being made at the inside and outside diameters.

- (b) The stresses in thick rings. Experimental results have confirmed that the stress formulae for thick rings are reasonably accurate at predicting stresses at 90 degrees to the line of action of loading in diametrally loaded rings. From a design point of view similar investigations should be carried out to determine the degree of accuracy of these formulae for predicting the stresses between loads for rings with more than two loads.
 - (c) The critical buckling load for a radially loaded compression ring. The formulae derived by the author should be checked experimentally. In addition, the differential equations describing the buckling could be set up and solved numerically as a check on the energy method used by the author.

- (d) The stresses and deflections in short beams, both straight and tapered. Most literature on beams seems to deal with the stresses in long beams, however, knowledge of the locations and magnitudes of maximum stresses in short box or I-beams and a reasonably accurate method, either theoretical or empirical, would be useful to the designer.
- (e) The loading and stresses in lower brackets. As a matter of academic interest, a more detailed theoretical and experimental study of lower brackets to determine why the experimental results in this thesis are so different from the theoretical predictions might be useful for the understanding of the behaviour of similar structures.
- (f) The optimization of designs. The optimization problem formulated in this thesis, although incomplete, was part of a real design problem, and as such, contained all the elements necessary to demonstrate that design optimization is both possible and practical. However, the technique presented in this thesis is just one of many that might Much more work remains to be done in have been used. the field of design optimization, particularly in the development and application of techniques to real industrial The author suggests that further design problems. work in this area be carried out, and, in particular, that

49

techniques permitting large moves with consequent violation of constraints followed by a technique which returns the optimization to a feasible design region be investigated.

7. CONCLUSIONS

Much of the work in this thesis pertains directly to lower brackets, however, the formulae derived, including that of the critical buckling load for a ring loaded in radial compression, are applicable to the design of other structures.

Designs of supporting structures similar to lower brackets should include analyses to determine if loading at right angles to the plane of the structure causes large deflections or loads in the plane of the structure. If so, these must be considered in the design.

The modified MAP technique presented in this thesis illustrates just one method of optimizing a nonlinear design. The optimization function, which in this case was minimum weight, can readily be altered in industrial design situations to include manufacturing costs since these are generally functions of the design variables.

ILLUSTRATIONS

Figure 1. Section of Water Wheel Generator

Figure 3. Lower Bracket

Figure 5. Section of Bearing

Figure 8. Loading on Upper Ring

Figure 9. Deflection of Bracket Due to Rotation of Hub

Figure 10. Plan View of Guide Bearing Under Short Circuit Loading

and Bracket Under Short Circuit Loading

Conway, Chow, and Morgan [5]

Figure 13. Loading on Square Plate Beam ·

Figure 14. Variation of Bending Stress on Sections $x=\pm a/2$ for Square Plate Beam

Figure 15. Variation of Bending Stress at x=0 for a Square Plate Beam

Figure 17. Tapered Solid Beam

Timoshenko [7]

Figure 19. Tapered Box Beam

Figure 20. Bracket Profile Limits

Figure 24. Multiple-Gradient Summation Technique With Concave Constraint ×1

- 0.123 - 0.125

Gage	1	Upper	Ring	ф	=	44.1°
Gage	2	Lower	Ring	ф	=	44.1°
Gage	3.	Lower	Ring	φ	=	-3.6°
Gage	4	Upper	Ring	φ	=	-0.9°

Figure 27. Location of Strain Gages on Rings

Gage Number	Arm	Upper or Lower Flange	a (inches)	b (inches)	c (inches)
5	1	Lower	1.03	3.65	0.22
6	1	Lower	3.10	1.58	0.24
7	1	Upper	1.06	3.62	0.26
8	1	Upper	3. 08	1.60	0.32
9	1	Upper	3. 08	1.60	0.84
10	2	Upper	1.09	3.46	0.24

Figure 28. Locations of Strain Gages on Arms

Figure 29. Model

Figure 30. Experimental Set-Up

Figure 31. Upper Ring Stresses - Test 13

STRESS PSI × 10⁻³

Figure 32. Lower Ring Stresses - Test 13

TABLES

TABLE I

OPTIMIZATION RESULTS - DESIGN NO. 1

VARIABLE	STARTING POINTS			DIRECT SEARCH RESULTS		MODIFIED MAP RESULTS			
	#1	#2	#3	#1	#2	#3	#1	#2	#3
OD -	157.	180.	200.	159.	196.	185.	132.	132.	132.
TU	4.	2	6.	2.75	2.125	2.25	3.25	3.25	3.25
TL .	3.5	2.	6.	2.5	2.	2.	3.25	3.25	3.25
Н	49.5	35.	60.	49.25	52.75	54.	60.	60.	60.
TF	1.5	1.	4.	1.5	1.6875	2.3125	1.75	2.875	2.875
TW	1.5	1.	4.	1.5	1.6875	2.8125	1	1.	1.
IDL	49.5	64.	75.25	75.25	75.25	75.25	75.25	75.25	75.25
WID	20.	10.	30.	20.	23.	23.	23.75	15.	15.
ALPHA1	0.5	0.2	0.	0.	0.	0.	0.	0.	0.
ALPHA2	0.1	0.8	1.	0.1	0.68	0.99	0.23	0.26	0.26
U	49986.	30879.	143371.	40387.	49369.	57926.	33794.	33907.	33907.
	8								

TABLE II

OPTIMIZATION RESULTS - DESIGN NO. 2:

VARIABLE	STARTING POINTS			DIRECT SEARCH RESULTS			MODIFIED MAP RESULTS		
	#1	#2	#3	#1	#2	#3	#1	#2	#3
	• .								
OD .	157.	180.	200.	195.	186.	200	175.	175.	175.
TU	4.	2.	6.	2.75	2.75	2.5	2.875	2.875	2.875
TL	3.5	2.	6.	2.125	2.25	2.	2.25	2.25	2.25
Н	49.5	35.	60.	48.75	51.5	56.	58.5	58.5	58.5
TF	1.5	1.	3.	1.625	2.625	2.375	1.875	. 1.875	1.875
ΤW	1.5	1.	3.	1.625	2.5625	2.625	1.5	[~] 1.5	1.5
. IDL	49.5	64.	90.	90 . ·	90.	90.	90.	90.	90.
WID	20.	10.	30.	15.	23.	24.25	15.	15.	15.
ALPHA1	0.5	0.2	0.	0.	0.	0.	0.	0.	0.
ALPHA2	0.1	0.8	1.	0.29	0.75	1.	0.45	0.45	0.45
U	47345.	29230.	123872.	49120.	57468.	62093.	44176.	44176.	44176.

84

ß

TABLE III

OPTIMIZATION RESULTS - DESIGN NO. 3

VARIABLE	STARTING POINT			DIRECT SEARCH RESULTS		MODIFIED MAP RESULTS			
	#1	#2	#3	#1	#2	#3	#1	#2	#3
00		2/10	55	127	137 5	136 5	122	122	133
TU `	4.	8.	1.5	3.25	3.125	2.875	3.	3.	3.
TL	4.	10.	1.	2.25	2.25	2.25	2.	2.	2.
Н	43.75	4.	0.5	43.375	43.125	43.875	43.75	43.75	43.75
TF	2.	3.5	0.5	1.125	1.5	1.	1	1.	1.
ΤW	2.	75.	45.	1.125	1.	1.0625	1.	1.	1.
IDL	54.	60.	35.	68.5	77.	76.5	55.	54.	55.
WID .	30.	25.	10.	26.5	16.5	18.75	16.	16.5	15.75
ALPHA1	0.1	0.05	0.	0.24	0.38	0.24	0.21	0.24	0.2
ALPHA2	0.1	0.05	0.2	0.	0.	0.	0.	0	0.
51									
U	50415.	227571.	-102035.	26990.	26782.	26169.	25213.	25188.	25229.

TABLE IV

NUMBER-OF MODIFIED MAP-ITERATIONS

٠.

		•	
DESIGN NUMBER	STARTING POINT	NUMBER OF ITERATIONS	APPROXIMATE RUN TIME (MINUTES)
1	1	20	10.35
	2	, 17	6.93
	3	46	26.90
2	1	9	4.80
	2	14	7.60
	3	14	7.73
3	1	10	6.62
	2	10	7.15
	3	20	7.53
1	_		

TABLE V

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS FOR

TEST 13. At 12000 LB. LOAD

· · ·	•	•	· · .	·	
LOCATION	EXP.	THEOR.	PERCENT DEVIATION	EXP. SLOPE	THEOR. SLOPE
Gage #1	1140 p.s.i.	2585 p.s.i.	-55.9	0.1255	.2158
#2	-1260	-3256	-61.4	-0.1314	2718
#3	6210	5795	7.2	0.4992	.4837
#4	-6060	-4621	31.1	-0.5147	3857
#5	6960	8309	-16.2	0.6373	.6936
#6	4800	4655	3.1	0.4624	.3886
#7	-7020	-8989	-21.9	-0.6565	7503
#8	-6240	-5109	22.1	-0.5768	4265
#9	-6570	-5109	28.6	-0.5775	4265
#10	-8760	-8621	1.6	-0.8085	7196
TOTAL DEFLECTION	0.0138 in.	0.0055 in.	151.0	1.04 x 10 ⁻⁶	0.46 x 10 ⁻⁶

APPENDIX

APPENDIX A

RINGS UNDER THE ACTION

EQUALLY SPACED RADIAL

LOADS

RINGS UNDER THE ACTION OF EQUALLY SPACED RADIAL LOADS

- P = Radial Load
- R = Radius to the gravity centre
- $r_0 =$ Outside radius of ring
- r_i = Inside radius of ring
- 2α = Angle between two loads
- ϕ = Angle between the centreline between loads and any point on the ring
- Δ = Distance between neutral axis and the gravity centre of the ring

$$= R - \frac{r_0 - r_i}{\ln(\frac{r_0}{r_i})}$$

 h_1 = Distance from neutral axis to inside radius of ring

 $= R - r_i - \Delta$

 h_2 = Distance from neutral axis to outside radius of ring

 $= r_0 - R + \Delta$

 \mathbf{I}_{ol} = Moment of Inertia of the ring around axis Ol.

a = cross sectional area of the ring

- $M\phi$ = Bending moment in the ring at angle ϕ
 - $= \frac{PR}{2} \left(\frac{1}{\alpha} \frac{\cos \phi}{\sin \alpha} \right) \cdot \text{ [For thick rings } M_{\phi} = \frac{PR}{2} \left(\frac{1}{\alpha} \frac{\cos \phi}{\sin \alpha} \frac{1}{2\alpha} \cdot \frac{\Lambda}{R} \right) \text{]}$

Mo

=

Bending moment half-way between loads ($\phi=0$)

=
$$C_1 PR$$
 [For thick rings $M_{\alpha} = (C_1 - \frac{1}{4\alpha} \cdot \frac{A}{R})PR.$]
 M_0 = Bending moment half-way between loads ($\phi=0$)
= $C_2 PR$ [For thick rings $M_0 = (C_2 + \frac{1}{4\alpha} \cdot \frac{A}{R})PR$]
F ϕ = Normal force at cross section at angle ϕ
= $P \frac{\cos \phi}{2\sin \alpha}$
F α = Normal force at the cross section under the load ($\phi=\alpha$)
= $C_3 P$
F $_0$ = Normal force at the cross section half-way between loads ($\phi=0$)
= $C_4 P$
 δ_M = Radial deformation under load due to bending
= $C_5 \cdot \frac{PR^3}{EI_{01}}$ [For thick rings $\delta_M = C_5(1-2\frac{A}{R}) \frac{PR^3}{EI_{01}}$].
 δ_F = Radial deformation under load due to normal forces
= $C_6 \frac{PR}{Ea}$ [For thick rings $\delta_F = (C_6 - \frac{1}{2\alpha} \cdot \frac{A}{R}) \frac{PR}{Ea}$]
 δ_S = Radial deformation under load due to shearing forces
= $C_7 \times \frac{PR}{Ga}$
where: , G = Modulus of elasticity in shear
= $\frac{E}{2.6}$
K = Factor of stress concentration
= $\frac{aQ_0}{a}$ = 1.5 for a rectangular section

t I_{ol}

δ = ΄

Total radial deformation under load

= $\delta_M + \delta_F + \delta_S$

$$C_{1} = \frac{1}{2} \left(\frac{1}{\alpha} - \frac{\cos \alpha}{\sin \alpha} \right)$$

$$C_{2} = \frac{1}{2} \left(\frac{1}{\sin \alpha} - \frac{1}{\alpha} \right)$$

$$C_{3} = \frac{1}{2} \frac{\cos \alpha}{\sin \alpha}$$

$$C_{4} = \frac{1}{2 \sin \alpha}$$

$$C_{5} = \frac{1}{2 \sin^{2} \alpha} \left(\frac{\sin 2 \alpha}{4} + \frac{\alpha}{2} \right) - \frac{1}{2 \alpha}$$

$$C_{6} = \frac{1}{2 \sin^{2} \alpha} \left(\frac{\sin 2 \alpha}{4} + \frac{\alpha}{2} \right)$$

$$C_{7} = C_{6} - C_{3}$$

σı

= Tensile Stress at the inside diameter

$$= \frac{Mh_1}{a\Delta(R-h_1)} = \frac{Mh_1}{a\Delta r_1}$$

 σ_2 = Tensile Stress at the outside diameter

$$= \frac{Mh_2}{a\Delta(R + h_2)} = \frac{Mh_2}{a\Delta r_0}$$
APPENDIX B

۰.

DERIVATIONS OF TAPERED BOX BEAM HORIZONTAL SHEAR STRESS AND DEFLECTION FORMULAE

B.1 HORIZONTAL SHEAR STRESS

The following is the derivation of the horizontal shear stress in the webs of a tapered box beam such as that illustrated in Figure 19. This derivation is applicable only to the case where the slopes of the upper and lower flanges are equal, i.e., $\alpha_1 = \alpha_2 = \alpha$. When the derived formula is used, components of the load parallel and perpendicular to the centreline of the beam must be taken if α_1 does not equal α_2 .

Inherent in the analysis is the assumption that the bending stress at any section can be adequately represented by the formula:

Derivation

If a section such as that shown below is taken from the beam

illustrated in Figure 19 at any x, then for equilibrium of the section the sum of integrals of the stresses over their respective areas must be zero.

-For equilibrium of the section, then,

$$2 \cdot z_{xy} \cdot tw. dx - \int_{y}^{1/2} (h + \frac{dh}{dx} \cdot dx)^{2} (\sigma_{x} + \frac{d\sigma_{x}}{dx} \cdot dx) 2 \cdot tw. dy$$

$$-\int_{1/2}^{1/2} (h + \frac{dh}{dx} \cdot dx)^{+u} (\sigma_{x} + \frac{d\sigma_{x}}{dx} \cdot dx) \quad wdy + \int_{y}^{1/2h} \sigma_{x} \cdot 2 \cdot tw. dy$$

$$+\int_{1/2h}^{1/2h+u} \sigma_{x} \cdot w. dy = 0$$
Now: $\sigma_{x} = \frac{P_{xy}}{I}$

$$\frac{d\sigma_{x}}{dx} \cdot dx = \frac{P}{I} (1 - \frac{x}{I} \frac{dI}{dx}) y \cdot dx$$

$$\frac{dh}{dx} \cdot dx = 2 \cdot \alpha \cdot dx$$
Substituting for $\sigma_{x}, \frac{d\sigma_{x}}{dx} \cdot dx$, and $\frac{dh}{dx} \cdot dx$, and integrating,
$$z_{xy} \cdot dx = \frac{P}{2} (\frac{x}{I}) [y^{2} | \frac{1/2}{y} (h + 2\alpha dx)^{+u} - y^{2} | \frac{1/2h+u}{1/2(h + 2\alpha \cdot dx)^{+u}}]$$

+
$$\frac{P}{2I}(1 - \frac{x}{I}\frac{dI}{dx}) \cdot dx [y^2 | \frac{1/2(h+2\alpha.dx)}{y} + \frac{w}{2tw} | \frac{1/2(h+2\alpha.dx)+u}{1/2(h+2\alpha.dx)}]$$

Evaluating

Dividing both sides by dx and neglecting all differential terms,

$$z_{xy} = \frac{P}{2} \left(\frac{x}{I}\right) \left[h \cdot \alpha + \frac{w}{2tw} \left\{2\alpha \cdot u\right\}\right]$$
$$+ \frac{P}{2I} \left(1 - \frac{x}{I} \frac{dI}{dx}\right) \left[\frac{h^2}{4} - y^2 + \frac{w}{2tw} \left\{hu + u^2\right\}\right]$$
Now $2\alpha = \frac{dh}{dx}$,

$$\frac{1}{I}(1 - \frac{x}{I} \frac{dI}{dx}) = \frac{d}{dx}(\frac{x}{I}).$$

Hence,

$$\begin{aligned} \zeta_{\mathbf{x}\mathbf{y}} &= \frac{P}{2} \left(\frac{\mathbf{x}}{\mathbf{I}} \right) \frac{d\mathbf{h}}{d\mathbf{x}} \left[\frac{\mathbf{h}}{2} + \frac{\mathbf{w} \cdot \mathbf{u}}{2 \cdot \mathbf{t} \mathbf{w}} \right] \\ &+ \frac{P}{2} \frac{d}{d\mathbf{x}} \left(\frac{\mathbf{x}}{\mathbf{I}} \right) \left[\left(\frac{\mathbf{h}^2}{4} - \mathbf{y}^2 \right) + \frac{\mathbf{w} \cdot \mathbf{u}}{2\mathbf{t} \mathbf{w}} \left(\mathbf{h} + \mathbf{u} \right) \right] \end{aligned}$$

If the beam is solid, the preceding formula reduces to that in Section 3.2.2.

B.2 DEFLECTION DUE TO BENDING

In order to find a closed solution for the bending deflection of a tapered box beam, such as that illustrated in Figure 19, two approximations are made. These are: The area moment of inertia of any section can be represented by the formual:

$$I_1(x) = \frac{1}{12} \{w(h+2t_f)^3 - (w-2t_w)h^3\}$$

This approximation neglects the fact that the crosssections of the flanges are larger than the material thickness when the flanges are tapered and that the neutral axis of the "negative" moment of inertia is not at the same location as that of the "positive" moment of inertia when the slopes of the two flanges are different.

(2) The area moment of inertia, as given in (1) above, can be approximated by:

$$I_2(x) = \frac{1}{6} \cdot t_W(h+t_f)^3 + \frac{1}{2}(w-t_W) \cdot t_f(h+t_f)^2$$

The error introduced by approximating $I_1(x)$ with $I_2(x)$ is:

$$E(x) = \frac{I_1(x) - I_2(x)}{I_1(x)} = \frac{t_f^2}{6I_1(x)} \{w.t_f + 6t_w.h.4t_w.t_f\}$$

Typical dimensions for these beams are:

		W ,	2	20	inches	
		tw	~	1.5	inches	
		tf	~	1.5	inches	
20	<	h	5	60	inches	

For h = 20 inches, $E(x) \approx 0.83$ percent

h = 40 inches, $E(x) \approx 0.30$ percent

Since the error is generally in the order of 1 percent or less, the effect of the error is small and can be ignored.

Derivation

$$h(x) = h_{0} + (\alpha_{1} + \alpha_{2}).x$$

$$I(x) = \frac{1}{6} [h_{0} + t_{f}) + (\alpha_{1} + \alpha_{2}).x]^{2} [t_{w}(h_{0} + t_{f} + \{\alpha_{1} + \alpha_{2}\}.x)$$

$$+ 3(w - tw).t_{f}]$$

$$I_{0} = \frac{1}{6} [h_{0} + t_{f}]^{2} [t_{w}(h_{0} + t_{f}) + 3(w - tw).t_{f}]$$

$$0$$
 0 0 $1^ W$ 0 1^-

From the above relations, I(x) can be represented a function of I_0 , i.e.

$$I(x) = I_0 [1 + ax]^2 [1 + bx],$$

where

$$a = \frac{\alpha_1 + \alpha_2}{h_0 + t_f}$$

$$b = \frac{t_{w}(\alpha_{1} + \alpha_{2})}{t_{w}(h_{0} + t_{f}) + 3(w - t_{w}) \cdot t_{f}}$$

The bending energy stored in the beam is:

$$U = \int_{0}^{l} \frac{[M(x)]^{2} ds}{2EI}$$

Since M(x) = Px and ds = dx

$$U = \int_{0}^{R} \frac{(Px)^{2}}{2EI} dx^{2}$$

If the bending deflection of the tip is denoted by δ_b ,

$$\delta_{b} = \frac{\partial U}{\partial P} = \frac{\partial}{\partial P} \int_{0}^{\ell} \frac{(Px)^{2}}{2EI} dx = \int_{0}^{\ell} \frac{Px^{2}}{EI} dx$$

Substituting for I(x) and integrating,

$$\delta_{b} = \frac{P}{EI_{o}} \left[\frac{\ell}{a(a-b)(1+a\ell)} + \frac{1}{(b-a)^{2}} \left\{ \frac{1}{b} \ln(1+b\ell) + \frac{b-2a}{a^{2}} \ln(1+a\ell) \right\} \right]$$

B.3 SHEAR DEFLECTIONS

The slope of the deflection curve for a beam due to shear is:

$$\frac{dys}{dx} = \gamma_{xy} = \frac{\zeta_{xy}}{G} = \frac{VQ}{ItG},$$

all evaluated at y = 0 so as to obtain the slope of the beam centreline. The classical method of obtaining the shear deflection of a beam is to integrate the slope of centreline due to shear along the length of the centreline, i.e.,

$$\delta_{\mathbf{v}} = \int_{0}^{\ell} \frac{dy_{s}}{dx} \Big|_{y=0}^{dx}$$

MCMASTER UNIVERSITY LIBRARY

This approach is used here.

B.3.1 SIMPLE BEAM THEORY

Using the terminology and expressions derived in B.2, a formula for $\frac{VQ}{ItG}$ can be developed.

$$V = P$$

t = 2.t_w
Q(x) = $\frac{\text{wid.t}_{f}}{2}$ (h+t_f) + $\frac{1}{4}$ t_wh².

The expression for Q(x) as a function of 'a' and 'b' is:

$$Q(x) = \frac{\text{wid.t}_{f}}{2} (h_{0} + t_{f})(1 + ax) + \frac{1}{4} t_{w} (h_{0} + t_{f})^{2} (1 + ax - \frac{t_{f}}{h_{0} + t_{f}})^{2}$$

Hence,

$$\frac{VQ}{ItG} = \frac{P(h_0 + t_f)}{4I_0 t_w G} \left[\frac{t_w(h_0 + t_f)}{2(1 + bx)} + \frac{wid \cdot t_f - t_w t_f}{(1 + ax)(1 + bx)} + \frac{t_w t_f^2}{2(h_0 + t_f)(1 + bx)(1 + ax)^2} \right]$$

This expression can be integrated to yield a closed solution for the shear deflection.

$$\delta_{v} = \int_{0}^{\ell} \left[\frac{VQ}{ItG} \right] dx_{y=0}$$

$$\delta_{v} = \frac{P(h_{o} + t_{f})}{4I_{o}t_{w}G} \left[\frac{t_{w}(h_{o} + t_{f})}{2b} \ln \{1+b\ell\} - \frac{t_{w}t_{f}^{2}a\ell}{2(h_{o}+t_{f})(b-a)(1+a\ell)} + \frac{1}{b-a} \ln \{\frac{1+b\ell}{1+a\ell}\} (wid.t_{f}-t_{w}t_{f} + [\frac{b}{b-a}] \frac{t_{w}t_{f}^{2}}{2(h_{o}+t_{f})} \right]$$

B.3.2 TAPERED BEAM THEORY

The formula for the shear stress in a tapered box beam derived in B.1 can be divided by G, evaluated at y = o, and integrated along the length of the beam to obtain a shear deflection.

$$\delta_{s} = \frac{1}{G} \int_{0}^{\ell} \zeta_{xy} dx = \frac{1}{G} \int_{0}^{\ell} \left[\frac{P}{2} \left(\frac{x}{T} \right) \frac{dh}{dx} \left\{ \frac{h}{2} + \frac{u \cdot w}{2t_{w}} \right\} + \frac{P}{2} \frac{d}{dx} \left(\frac{x}{T} \right) \left\{ \frac{h^{2}}{4} + \frac{u \cdot w}{2t_{w}} \left[h + y \right] \right\} \right] dx$$

Substituting $h = h_0 + (\alpha_1 + \alpha_2)x$ and $\frac{dh}{dx} = (\alpha_1 + \alpha_2)$

into the preceding equation and integrating by parts,

$$\delta_{s} = \frac{P}{2G} \left(\frac{x}{I}\right) \left(\frac{2(\alpha_{1} + \alpha_{2}) x + (\alpha_{1} + \alpha_{2})^{2} x^{2}}{4} + \frac{u.w}{2t_{w}} (\alpha_{1} + \alpha_{2}) x\right) \bigg|_{0}^{k}$$

+
$$\frac{P}{2G}\left(\frac{x}{2}\right)\left(\frac{h_0^2}{4} + \frac{u.w}{2t_w}(h_0+u)\right)\Big|_0^{\ell}$$

$$\delta_{s} = \frac{P}{2G}\left(\frac{\ell}{I_{\ell}}\right)\left(\left[\frac{h_{0} + (\alpha_{1} + \alpha_{2})\ell}{2}\right]^{2} + \frac{u \cdot w}{2t_{w}}\left[h_{0} + (\alpha_{1} + \alpha_{2})\ell + u\right]\right)$$

Since $I_{\ell} = I_{0}(1 + a\ell)^{2}(1 + b\ell)$,

$$\delta_{s} = \frac{P}{2GI_{o}} \left(\frac{\ell}{(1+a\ell)^{2}(1+b\ell)} \right) \left\{ \frac{h_{o} + (\alpha_{1}+\alpha_{2})\ell}{2} + \frac{u.w}{2t_{w}} \left\{ h_{o} + (\alpha_{1}+\alpha_{2})\ell + u \right\} \right).$$

APPENDIX C

COMPARISONS BETWEEN HORIZONTAL SHEAR STRESS IN A TAPERED BOX BEAM FROM SIMPLE BEAM THEORY AND FROM NEW FORMULA C. COMPARISONS BETWEEN HORIZONTAL SHEAR STRESS IN A TAPERED BOX BEAM FROM SIMPLE BEAM THEORY AND FROM NEW FORMULA

Illustrations on the following two pages show the variation in horizontal sehar stress across sections at x = 0, x = L/2, and x = L as predicted from simple beam theory and from the shear stress formula derived in Appendix B.1. The stresses are for the tapered box cantilever shown below.

Dimensions Are In Inches

APPENDIX D

COMPARISONS BETWEEN SHEAR AND BENDING DEFLECTIONS FROM NEW FORMULAE AND FROM METHOD OF APPROXIMATING THE BEAM WITH STRAIGHT SECTIONS

DEFLECTIØN CØMPARISØNS

ALPHA2 = ALPHAI FLANGE THICKNESS= WEB THICKNESS= FLANGE WIDTH= LENGTH ØF ARM= HEIGHT ØF WEB AT TIP= TTP LØAD P=	0.125 0.125 1.750 4.500 2.500	IN. IN. IN. IN.
TIP LØAD $P=$	1000.000	LB.

D1=INTEGRATED BENDING DEFLECTIØN D2=APPRØXIMATED BENDING DEFLECTIØN - 5 STEPS D3=APPRØXIMATED BENDING DEFLECTIØN - 50 STEPS D4=INTEGRATED SHEAR DEFLECTIØN D5=NEW SHEAR DEFLECTIØN D6=APPRØXIMATED SHEAR DEFLECTIØN - 5 STEPS D7=APPRØXIMATED SHEAR DEFLECTIØN - 50 STEPS

DEFLECTIØNS (INCHES)

ALPHA1	C1	D2	03	D4	D5 .	D6	D7
0-200	0.0003603	0-0003806	0.0003617	0.0005462	0-0004407	0.0005487	0-0005520
0.190	0.0003200	0.0003947	0.0003013	0.0005517	0.0004485	0.0005540	0.0005571
	0.0003900	0 0004090	0.00000912	0.0000000774	0 0004567	0.00055552	0.0005677
0-160	0.0004234	0.0004294	0.0004245	0.0005693	0.0004742	0.0005710	0.0005733
0.150	0.0004416	0.0004599	0.0004427	0.0005756	0.0004835	0.0005770	0,0005791
0.140	0.0004610	0.0004788	0.0004620	0.0005820	0.0004933	0.0005832	0.0005851
Č.130	0.0004817	0.0004988	0.0004826	0.0005886	0.0005035	0.0005897	0.0005914
0.120	0.0005037	0.0005202	0.0005046	0.0005954	0.0005142	0.0005963	0.0005978
0.110	• 0.0005273	0.0005430	0.0005280	0.0006024	0.0005254	0.0006032	0.0006045
0.100	0.0005525	0.0005673	0.0005531	0.0006097	0.0005372	0.0006104	0.0006115
6+090	0.0005794	0.0005934	0.0005800	0.0006172	0.0005496	0.0006177	0.0005187
0.080	0.0006084	0.0006213	0.00000009	0.0000200		0.0006254	0.0006262
0.040		0.0006926	0.0000399	0.00000000	0.0005764	0.00066417	0.0006340
0.050		0 0007181	0.00007092	0.0006501	0.00009910	0.0006503	0.0006506
0-040	0.0007481	0.0007556	0.0007481	0.0006591	0.0006227	0.0006592	0-0006594
0.030	0.0007901	010007961	0.0007903	0.0006685	0.0006400	0.0006685	0.0006687
0.C20	0.0008361	0.0008401	0.0008360	0.0006782	0.0006584	0.0006782	0.0006783
G.010	0.0008807	0.0008879	0.0008857	0.0006884	0.0006780	0.0006884	0.0006884
-0.000	-0.0000000	0.0009400	0.0009400	0.0000000	0.0006990	0.0006990	0.0006990

801

DEFLECTION COMPARISONS

ALPHA2 = ALPHA1		
FLANGE THICKNESS=	2.000	IN.
WEB THICKNESS=	2.000	IN.
FLANGE WIDTH=	20.000	IN-
LENGTH ØF ARM=	60.000	IN-
HEIGHT ØF WEB AT TIP=	25.000	IN.
TIP LØAD P= 10	000.000	LB.

D1=INTEGRATED BENDING DEFLECTIØN D2=APPRØXIMATED BENDING DEFLECTIØN - 5 STEPS D3=APPRØXIMATED BENDING DEFLECTIØN - 50 STEPS D4=INTEGRATED SHEAR DEFLECTIØN D5=NEW SHEAR DEFLECTIØN D6=APPRØXIMATED SHEAR DEFLECTIØN - 5 STEPS D7=APPRØXIMATED SHEAR DEFLECTIØN - 50 STEPS

DEFLECTIØNS (INCHES)

ALPHA1	D1	02	D3	D4	05	D6	D7	
0.200	0.0003783	0.0004056	0.0003801	0.0004154	0.0003201	0.0004163	0.0004201	
0.190	0.0003960	, 0.0004232	0.0003978	0.0004204	0.0003268	.0.0004212	0.0004247	
0.180	0.0004150	0.0004419	0.0004167	0.0004256	0.0003338	0.0004263	0.0004295	
0.170	0.0004354	0.0004619	0.0004370	0.0004309	0.0003411	0.0004315	0.0004345	
0.160	0.0004572	0.0004834	0.0004587	0-0004364	0.0003489	0.0004369	0.0004397	
č, i šo	0.0004806	0-005063	0.0004820	0.0004421	0.0003570	0.0004426	0.0004450	
0,140	0.0005058	0.0005310	0.0005071	0.0004480	0.0003655	0.0004484	0.0004506	
0.130	0.0005330	0.0005575	0.0005342	0.0004542	0.0003746	0.0004545	0 0004565	
0 120	0.0005524	0.0005860	0 0005634	0 0004605	0 0003841	0 0004549	0.0004505	
0 110	0 0005941	0.0005000	0.0005951	0 0004000	0 0003042	0.0004000	0.0004023	
	0.000000041	0.0000107		0.0004012	0.00000042	0.0004013	0.0004009	
0.100	0.0000280	0.0000505	0.0000293	0.0004741	0.0004049	0.0004742	0.0004155	
0-090	0.0006660	0.0006865	0-0006666	0.0004812	0.0004103	0.0004813	0.0004824	
0.080	0.0007067	0.0007258	0.0007072	0.0004887	0.0004284	0.0004888	0.0004897	
0.670	0.0007512	0.0007687	0.0007515	0.0004965	0.0004413	0.0004966	0.0004973	
0.060	0.0007999	0.0008157	0.0008000	0.0005047	0.0004551	0.0005047	0.0005053	
0.050	0.0008534	0.0008671	0.0008533	0.0005132	0.0004698	0.0005132	0.0005137	
0.040	0.0009123	0.0009237	0.0009119	0-0005222	0.0004857	0.0005222	0.0005225	•
6.630	0.0009773	0.0009861	6.0009767	0.0005316	0.0005028	0.0005316	0.0005318	
0.000	0.0010/05	0 0010652	0 0010696	0.0005615	0.0005212	0 0005/15		
0.020			0.0010400	0.0005520	0.0005215	0.0005415	0.00000410	
0.010		0.0011320	0.0011282	0.000000220	0.0002413	0.0005520	0.0005520	1
-0.000	-0.0000000	0-0012178	0.0012178	0.0000000	0.0005630	0.0005630	0.0005630	•

601

· APPENDIX E

•.

DERIVATION OF CRITICAL BUCKLING LOAD

FOR A

RADIALLY LOADED COMPRESSION RING

The following is the derivation of the critical buckling load for a ring loaded radially in compression by n equal loads of magnitude P located symmetrically around the ring and in the plane of the ring.

The ring thickness is t.

If there are n loads of magnitude P, $\alpha = \frac{\pi}{n}$

<u>Plan</u>

View A-A

View B-B

Assumptions

- (1) Buckling is inextensional.
 - (2) When the ring segment between supports buckles, the
 load P moves inward radially, but the ends of segment
 do not rotate about any axes.

Coordinate System

In order to facilitate the analysis, the following coordinate system is created.

The x-y axes are defined at any cross-section at an angle φ as shown above. A deflection of the centreline 'v' and a rotation of the crosssection about the centreline ' β ' are positive in the directions shown below.

Rigidities

The bending rigidity of the strip about the x axis is B_1 and the torsional rigidity of the strip is C.

$$h = r_{0} - r_{1}$$

$$B_{1} = \frac{1}{12} ht^{3}E$$

$$C = \frac{ht^{3}}{3} \{1 - 0.630 \frac{t}{h}\} G$$

<u>Analysis</u>

When the segment buckles, both the inside and outside radii of the segment change by the same amount Δr , as shown on the following page:

The length of the centreline after buckling is the same as it was before.

The initial arc length of the centreline is

$$S = 2 \int_{0}^{\alpha} rd\phi$$

The arc length after buckling is

$$S = 2 \int_{0}^{\alpha} (r - \Delta r) \{1 + (\frac{dv}{(r - \Delta r)d\phi})^{2} \}^{1/2} d\phi$$

For small deflections,

$$\{1 + (\frac{dv}{(r' - \Delta r)d\phi})^2\}^{1/2} \approx 1 + \frac{1}{2} (\frac{dv}{(r - \Delta r)d\phi})^2$$

Using this approximation and equating the arc lengths before and after buckling,

$$2r\alpha = 2(r - \Delta r)\alpha + \frac{1}{(r - \Delta r)} \int_{0}^{\alpha} \left(\frac{dv}{d\phi}\right)^{2} d\phi$$

which reduces to:

$$\Delta r = \frac{1}{2\alpha r} \int_{0}^{\alpha} \left(\frac{dv}{d\phi}\right)^{2} d\phi.$$

The deflection of the outside edge of the ring segment is v_0 , where:

$$v_0 = v + \frac{h}{2}\beta.$$

Also,

$$\frac{dv_0}{d\phi} = \frac{dv}{d\phi} + \frac{h}{2} \frac{d\beta}{d\phi}$$

Since Δr is the same for both r_0 and r,

$$\frac{\mathrm{d} \mathbf{v}_{\mathbf{o}}}{\mathrm{d} \phi} = \sqrt{\frac{r_{\mathbf{o}}}{r}} \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} \phi} ,$$

hence

$$\frac{d\beta}{d\phi} = \left(\sqrt{\frac{r_0}{r}} - 1\right) \frac{dv}{d\phi} .$$

When the loads P are applied to the ring and it buckles, the loads do a certain amount of work on the ring and increase its strain energy.

The work done is $\Delta W = P \Delta r$, and the increase in strain energy is ΔE , where

$$\Delta E = B_{1} \int_{0}^{\frac{S}{2}} \left(\frac{d^{2}v}{ds^{2}}\right)^{2} ds + C_{0} \int_{0}^{\frac{S}{2}} \left(\frac{d\beta}{ds}\right)^{2} ds$$

$$\Delta E = \frac{B_1}{r^3} \int_0^\alpha \left(\frac{d^2 v}{d\phi^2}\right)^2 d\phi + \frac{C}{r} \int_0^\alpha \left(\frac{d\beta}{d\phi}\right)^2 d\phi$$

$$P \cdot \frac{1}{2\alpha r} \int_0^\alpha \left(\frac{dv}{d\phi}\right)^2 dv = \frac{B_1}{r^3} \int_0^\alpha \left(\frac{d^2 v}{d\phi^2}\right)^2 d\phi + \frac{C}{r} \left(\sqrt{\frac{r_0}{r}} - 1\right)^2 \int_0^\alpha \left(\frac{dv}{d\phi}\right)^2 d\phi$$

$$P = \frac{2\alpha}{r^2} \left[\frac{\frac{B_1}{r} \int_0^\alpha \left(\frac{d^2 v}{d\phi^2}\right)^2 d\phi}{\int_0^\alpha \left(\frac{dv}{d\phi}\right)^2 d\phi} + C \left(\sqrt{r_0} - \sqrt{r}\right)^2 \right]$$

Suppose that the ring segment buckles into a shape which can be described by the following equation:

$$\mathbf{v} = \sum_{n=1}^{\infty} a_n (1 - \cos[2n-1]\frac{\pi}{\alpha}\phi).$$

Then,

$$\frac{\mathrm{d}v}{\mathrm{d}\phi} = \sum_{n=1}^{\infty} a_n [2n-1] \frac{\pi}{\alpha} \sin [2n-1] \frac{\pi}{\alpha}\phi,$$

and

$$\frac{d^2 v}{d_{\phi}^2} = \sum_{n=1}^{\infty} a_n [2n-1]^2 (\frac{\pi}{\alpha})^2 \cos [2n-1] \frac{\pi}{\alpha} \phi.$$

If $\frac{dv}{d\phi}$ is squared, the result is a series of squares of the form $a_n^2 [2n-1]^2 (\frac{\pi}{\alpha})^2 \sin^2 [2n-1] \frac{\pi}{\alpha}\phi$

and cross-products $a_m a_n [2n-1][2m-1](\frac{\pi}{\alpha})^2 \sin[2n-1]\frac{\pi}{\alpha}\phi \sin[2m-1]\frac{\pi}{\alpha}\phi$

Integration of the cross-products between 0 and α would give a zero result, hence, for the purpose at hand,

$$\int_{0}^{\alpha} \left(\frac{\mathrm{d}v}{\mathrm{d}\phi}\right)^{2} \mathrm{d}\phi = \int_{0}^{\alpha} \sum_{n=1}^{\infty} a_{n}^{2} [2n-1]^{2} \left(\frac{\pi}{\alpha}\right)^{2} \sin^{2} [2n-1] \frac{\pi}{\alpha} \phi \mathrm{d}\phi$$

Similarly,
$$\int_{0}^{\alpha} \left(\frac{d^{2}v}{d\phi^{2}}\right)^{2} d\phi = \sum_{n=1}^{\infty} a_{n}^{2} \left[2n-1\right]^{4} \left(\frac{\pi}{\alpha}\right)^{4} \frac{\alpha}{2}$$

Hence,

$$P = \frac{2\alpha}{r^2} \begin{bmatrix} \frac{\omega}{\Sigma} & a_n^2 [2n-1]^4 (\frac{\pi}{\alpha})^4 \\ \frac{1}{r} & \frac{n=1}{\omega} \\ \frac{\omega}{\Sigma} & a_n^2 [2n-1]^2 (\frac{\pi}{\alpha})^2 \\ \frac{1}{n=1} \end{bmatrix}$$

For any real a_n , the product $(a_n)^2$ will be positive, hence P_{min} will occur where n=1

$$P_{cr} = \frac{2\alpha}{r^2} \left[\frac{B_1}{r} \left(\frac{\pi}{\alpha} \right)^2 + C \left(\sqrt{r_0} - \sqrt{r} \right)^2 \right]$$

Similarly, if a sine series is chosen as the mode shape for the buckling ring,

$$P_{cr} = \frac{2\alpha}{r^2} \left[\frac{B_1}{r} \left(\frac{\pi}{2\alpha} \right)^2 + C \left(\sqrt{r_0} - \sqrt{r} \right)^2 \right].$$

This latter equation was used in the optimization programmes. The difference between the two is relatively small since the right hand expression within the braces is generally much larger than that on the left.

APPENDIX F

;

٠.,

DIRECT SEARCH RESULTS

F.1 DESIGN 1

MAXIMUM WEB SHEAR IN BEAM=0.40*SY ØR 64'000'000 PSI*(2.*TW/H)**2 WHICHEVER IS LESS (CSA S16-1961 CLAUSE 12.5)

MAXIMUM STRESS IN CØMPRESSIØN FLANGE ØF ARM TØ LIMIT LØCAL BUCKLING=KC*E(TF/WID)**2, WHERE KC=6.3

NNN=	1	U(11) =	0.486972E	05LB.	
NNN=	2	U(22)=	C.465522E	05L3.	
NNN=	3	U(22),=	0.433346E	05LB.	
NNN=	4	U(22)=	C.403866E	05LB.	
NNN=	5	U(22)=	C.197581E	13LB.	
NNN=	6	U(11)=	0.403866E	0518.	
		CPTIN	UM SOLUTION	J	

ØUTSIDE DIAMETER ØF RINGS	159.000IN.
UPPER RING THICKNESS	2.500IN.
DISTANCE BETWEEN RINGS	49.250IN.
BEAM FLANGE THICKNESS	
BEAM WED THICKNESS	75-250IN-
WIDTH ØF BEAM FLANGE	20.000IN.
SLØPE ØF UPPER FLANGE ØF BEAM	0.000
SLØPE ØF LØWER FLANGE ØF BEAM	0.100
MINIMUM WEIGHT	40386.590LB.
. FINAL CALCULATIONS	
PHI(1)= 0.074 .LE.	0.100
PHI(2) = 911.630 .GE.	378.000
$PHI(3) = (43518 \cdot 11) \cdot 110$	749
PHI(5) = 0.100 GE.	0.000
PHI(6)= ,10593.710 .LE.	11666.667
$PHI(7) = 8529.945 \cdot LE \cdot$	11666 667
PHI(9) = 9382.939 IF.	11666.667
PHI(10)= 3848.689 .LE.	5833.333
$PHI(11) = 7763.583 \cdot LE$	11666.667
PHI(12) = 2797.545 .LC. PHI(13) = 5239.772 .LE.	11656.667
PHI(14)= 7763.583 .LE.	14000.000
PHI(15)= 7726.459 .LE.	11666.667

23333.333 11666.667 21350.000 50.000 200.000 21281.879 7934.485 21281.879 47.525 16)= 17)= 18)= 19)= PHI (•LE• PHI (LE. 'PHĪ ł PHI LE. 19)= 20)= 21)= 22)= 23)= 24)= 25)= 26)= 27)= 28)= 47-525 159-000 159-000 75-250 75-250 48-775 48-775 PHI F -130.000 75.250 75.250 PHI GE PHI ۱ 1 5 PHI 67.664 PHĨ ł PHI . 48.775 0.100 0.100 60.000 1.000 0.000 PHI(PHI(PHI(LE . .LE. .GE.

UNKNØWN PARAMETER ESTIMATES

ØUTSIDE DIAMETER ØF RINGS	180.000 [N.
UPPER RING THICKNESS	2.0001N-
LØWER RING THICKNESS	-2.000IN.
DISTANCE BETWEEN RINGS	35.000IN.
BEAM FLANGE THICKNESS	1.000IN.
BEAM WEB THICKNESS	1.000IN.
INTERNAL DIAMETER ØF LØWER RING	64.000IN.
WIDTH OF BEAM FLANGE	10.000IN.
SLØPE ØF UPPER FLANGE ØF BEAM	0.200
SLØPE ØF LØWER FLANGE ØF BEAM	0.800

CALCULATED TERMS

INITI MAXIM MAXIM INITI	AL WEI UM VER UM HØR AL NØR	GHT TICAL IZENTAI MAL VEI	REACTION L REACTI RTICAL R	DUE TØ SCF. ØN DUE TØ SCF. EACTIØN.
NNN=	7		U(11)=	C.216532E 13LB.
NNN=	8		U(22)=	C.251045E 12L8.
NNN=	9		U(22)=	0.104113E 12LB.
NNN=	10	- 1	U(22)=	0.143088E 11LB.
NNN=	11		U(22)=	C.255030E 07L8.
NNN=	12		U(22)=	0.130186E 07L8.
NNN=	13		U(22)=	0.741539E 12L8.
NNN=	14	•	,U(11)=	C.518365E 05L8.
NNN=	15		U(22)=	.C.504729E 05L8.
NNN=	16		U(22)=	0.129933E 07L8.
NNN=	17		U(11)=	C.496416E 05LB.
NNN=	1.8	.•	U(22)=	C.129900E 07L8.

1

30879.112LB. 381693.441LB. 1180000.000LB. 430719.777LB.

1	<u>-</u> . •	8 ⊂ , 1	- · · · - · · · ·			• • • • • • • •	,	*********	• • • • • • · · · · · · · · · · · · · ·	• •
N I	NNN=	19		U(11)=	0.496	113E 05L	В.			
•	NNN=	20		U(22)=	0.495	506E 05L	В.			
•	NNN=	21	•	U(22)=	0.494	596E 05L	B•			
	NNN=	22	•	U(22)=	0.493	686E 05L	.8.			
	NNN=	23		U(22)=	0.495	297E 05L	В.	n n Mara n M		
	NNN=	24		U(11)=	0.493	686E 05L	В.			
			· .	ØPTIM	UM SØL	UTIØN			•	
	ØUTSI UPPER LØWER DISTA BEAM BEAM INTER WIDTH SLØPE	DE CIA RING RING NCE 8E FLANGE WEB TH NAL DI ØF 8E ØF LØ	METER THICKN THICKN TWEEN THICK THICKNES IAMETER IAMETER PPER FL IWER FL	ØF RINGS ESS RINGS NESS ØF LØWE NGE ANGE ØF	R RING EEAM EEAM			196 52 1	-0001 -1251 -0001 -7501 -6881 -6881 -2501 -0001 -680	
	MINIM	UM WEI	GHT		••••		ан алдан 1 Ф	49368	3.595LE	В.
				FINAL	CALCU	LATIONS				
	Ранисски странати с	1)====================================		0.0 1175.1 696747.3 0.668747.3 0.6899.2 9253.22 6246.62 9253.22 6246.62 12656.22 2680.1 72666.02 11656.23 1656.23 1656.23 1656.23 1656.23 1656.23 1656.23 1656.23 1656.23 1656.23 1656.23 1656.23 1656.23 1656.23 1666.03 1966.02 196.02 755.22 37.02 37.02 0.6 0.6	465900344677967474750000003338867796747475000000000000000000000000000000000			$\begin{array}{c} 378\\ 697197\\ 11666\\ 11666\\ 11666\\ 11666\\ 11666\\ 11666\\ 11666\\ 2333\\ 11666\\ 2333\\ 11666\\ 2333\\ 11666\\ 2333\\ 11666\\ 2333\\ 1666\\ 200\\ 136\\ 76\\ 60\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 1$	100 100 100 100 100 100 100 100	

UNKNØWN PARAMETER ESTIMATES

ØUTS I UPPER	DE DIA RING	AMETER THICKN	ØF RINGS	• • • • • • • • • • •	• • • • •	200.000IN 6.000IN	
 LUWER DISTA BEAM BEAM INTER WIDTH SLØPE	RING NCE HE FLANCE WEB TH NAL DI ØF BE ØF UF	ETWEEN ETWEEN E THICKNES LAMETER EAM FLA PER FLA	RINGS NESS ØF LØWE NGE ANGE ØF ANGE ØF	R RING.		6.0001N. 60.0001N. 4.0001N. 4.0001N. 75.2501N. 30.0001N. 0.000	
			CALCU	LATED TERM	S		
INITI MAXIM MAXIM INITI	AL WEI UM VEI UM HØF AL NØF	IGHT RTICAL RIZONTA RMAL VE	Reaction L Reacti Rtical R	DUE TØ SC 2N DUE TØ FACTION	F. SCF.	143371.473LB. 381693.441LB. 1180000.000LB. 458842.867LB.	
NNN=	25		U(11)=	0.139424E	06L8.		
NNN=	26	-	U{22}=	G•131679E	06L8.		
NNN=	27		U(22)=	0.120437E	06LB.	3 • • • • • • • • • • • • • • • • • • •	
NNN=	28		U(22)=	0.106147E	06LB.	•	
NNN=	29		U(22)=	G.893985E	05L8.		
NNN=	30		U(22)=	C-738941E	05LB.		
NNN=	31		U(22)=	0-14903LE	11L8.		
NNN=	32	•	U(11)=	0.720951E	05L8.		
NNN=	33		U(22)=	0.690777E	05L8.	e a ser e se	
NNN=	34		U(22)=	0-643906E	05L8.		
NNN=	35		U(22)=	0.588813E	05LB.	en e	
ŃNN=	36		U(22)=	C.158166E	13L8.		
NNN=	37	•	U(11)=	C-580337E	05LB.	an in the second second	
NNN=	38		U(22)=	0-579258E	05LB.	•	
NNN=	39	•	U(22)=	0.578862E	05LB.		
NNN=	40		U(11)=	0.579258E	05L8.		
		-	ØPT(M	UM SØLUTIØ	N	na an a	
						105 00011	

ØUTSIDE DIAMETER 2F RINGS. UPPER RING THICKNESS. LØWER RING THICKNESS. DISTANCE BETWEEN RINGS.

2.250IN. 2.000IN. 54.000IN.

BEAM FLANGE BEAM WEB TH INTERNAL CI WIDTH ØF BE	THICKNESS ICKNESS AMETER ØF LØWER RIN AM FLANGE	G	2.3131N. 2.8131N. 75.2501N. 23.0001N.
SLØPE ØF UP SLØPE ØF LØ	PER FLANGE ØF BEAM. Wer flange Øf Beam.	• • • • • • • • • • •	0.000 0.990
MINIMUM WEI	GHT		57925.831L8.
· · · ·	FINAL CALC	ULATIØNS	
PHI(1)= PHI(2)= PHI(3)= PHI(3)= PHI(5)= PHI(6)= PHI(7)= PHI(8)= PHI(10)= PHI(10)= PHI(10)= PHI(10)= PHI(12)= PHI(12)= PHI(15)= PHI(15)= PHI(15)= PHI(15)= PHI(20)= PHI($\begin{array}{c} 0.038\\ 1270.661\\ 676858.102\\ 2.000\\ 0.990\\ 8809.108\\ 6234.527\\ 9910.247\\ 7013.843\\ 3911.995\\ 11664.741\\ 1679.717\\ 5008.560\\ 11664.741\\ 2375.443\\ 10424.947\\ 3232.204\\ 10424.947\\ 3232.204\\ 10424.947\\ 24.718\\ 185.000\\ 185.000\\ 185.000\\ 185.000\\ 185.000\\ 0.990\\ 0.990\\ 0.990\end{array}$		$\begin{array}{c} 0.100\\ 378.000\\ 709244.008\\ 1.249\\ 0.000\\ 11666.667\\ 11666.667\\ 11666.667\\ 11666.667\\ 5833.333\\ 11666.667\\ 5833.333\\ 11666.667\\ 5833.333\\ 11666.667\\ 23333.333\\ 11666.667\\ 23333.333\\ 11666.667\\ 23333.333\\ 11666.667\\ 23333.333\\ 11666.667\\ 23333.333\\ 11666.667\\ 23333.333\\ 11666.667\\ 25834\\ 26844\\ 40.000\\ 1.000\\ 0.000\\ 0.000\\ 1.000\\ 0.000\\ $

\$CARD READ

D L SAXTON

F.2 DESIGN 2

CALCULATED TERMS

INITIAL WEIGHT....47345.478LB.MAXIMUM VERTICAL REACTION DUE TO SCF...412943.14LB.MAXIMUM HØRIZØNTAL REACTION DUE TØ SCF..1290000.000LB.INITIAL NØRMAL VERTICAL REACTIØN....462586.367LB.

LIMITS

MAXIMUM	ALLØWABLE STRUCTURE DEFLECTIØN	0.100IN.
BRACKET	CRITICAL FREQUENCY LIMIT	540.000CPM
MAXIMUM	NØRMAL TENSILE_STRESS	11666-667PSI
MAXIMUM	NORMAL SHEAR STRESS	5833-333PSI
MAXIMUM	EMERGENCY TENSILE STRESS	23333.333PSI
MAXIMUM	EMERGENCY SHEAR STRESS	11666.667251

MAXIMUM WEB SHEAR IN BEAM=0.40*SY ØR 64'000'000 PSI*(2.*TW/H)**2 WHICHEVER IS LESS (CSA S16-1961 CLAUSE 12.5)

MAXIMUM STRESS IN CØMPRESSIØN FLANGE ØF ARM TØ LIMIT LØCAL BUCKLING=KC*E(TF/WID)**2, WHERE KC=6.3

STEP LENGTHS FOR VARIABLES

DX (1)=	1.000000
DX(2)=	0.125000
DX (31=	0.125000
DX (4)=	0.250000
DXI	5)=	0.062500
DX (6)=	0.062500
DX (7)=	1.00000
DX (8)=	0.250000
DXI	9)=	0.010000
DX (10) =	0.010000

ØPTIMIZATIØN

NNN=	1	U(11)=	0.259850E	11L8.
NNN=	2	Ų(22)=	0.147910E	09LB.
NNN=	3	U(22)=	0.143913E	09LB.
NNN=	4	U(22)=	0.261078E	12L8.
NNN=	5	U(11)=	0.142662E	09LB.
NNN=	6	U(22)=	0.137615E	09LB.
NNN=	7	U(22)=	0.133196E	0918.

NNN=	8	U(22)=	0.126676E	09LB.	
NNN=	9	U{22}=	0.116184E	09L8.	
NNN=	10	U(22)=	0.104521E	09LB.	
NNN=	11	U(22)=	0•823827E	08LB -	-
NNN=	12	U(22)=	0.579721E	08LB•	
NNN=	13 ·	U(22)=	0.292145E	08L8.	
NNN=	14	U(22)=	0•754964E	07L8.	•
NNN=	15	U(22)=	0.475517E	08LB.	
NNN=	16	U(11)=	0•504924E	07LB.	
NNN=	17	U(22)=	0•492836E	0518.	
NNN=	18	U(22)=	0•491530E	05LB.	
NNN=	19	U(22)=	0.502603E	0518.	
NNN=	20	U(11)=	0•491202E	0518.	
NNN=	21	U(22)=	0•495342E	05LB.	
NNN=	22	U(11)=	0.491202E	05LB.	
		ØPTIM	UM SØLUTIØ	N	
ØUTSI UPPER LØWER DISTA BEAM INTER WIDTH SLØPE SLØPE	DE DIAMETER RING THICKN RING THICKN NCE BETWEEN FLANGE THICK WEB THICKNES NAL DIAMETER ØF BEAM FLA ØF UPPER FL	ØF RINGS ESS RINGS NESS ØF LØWE NGE ANGE ØF	R RING BEAM BEAM		195.000 2.750 2.125 48.750 1.625 1.625 90.000 15.000 0.000 0.290
MINIM	UM WEIGHT		• • • • • • • • • •	• • • •	49120-228
FINAL CALCULATIØNS					
PHI(PHI(PHI(PHI(PHI(PHI(PHI(PHI(1) = 2) = 3) = 4) = 5) = 6) = 7) = 8) = 9) = 10) = 11) =	0.0 * 855.0 784738.2 2.1 0.2 8871.3 6987.9 11480.5 9043.2 4417.2 10104.9	79 .LE 27 .GE 73 .LE 90 .GE 62 .LE 66 .LE 80 .LE	•	$\begin{array}{r} 0.100\\ 540.000\\ 876158.133\\ 1.749\\ 0.000\\ 11666.667\\ 11666.667\\ 11666.667\\ 11666.667\\ 11666.667\\ 11666.667\\ 11666.667\\ 5833.333\\ 11666.667\end{array}$

. .

....

λ

128

195.0001N. 2.7501N. 2.1251N. 48.7501N. 1.6251N. 1.6251N. 90.0001N. 15.0001N. 0.000 0.290

49120.228L8.

2776-115 6350.761 10104-980 6528-991 21301-095 PHI(PHI(PHI(12)= 13)= 14)= 5833.333 11666.667 ·LE. 14000.000 LE. PHI (PHI (15)= 16)= .LE. 11666.667 23333.333 7165.328 21301.095 PHI (11666.667 171= 21350.000 PHI (18)= 41-886 PHI 19)= 1 F 200.000 195.000 PHI 1 20)= PHIL 21)= 195.000 130-000 G 22) =90.000 PHI (90.000 IE. 221 = 231 = 241 = 251 = 261 = 271 = 281PHI 90.000 90.000 GE PHI(PHI(PHI(PHI(PHI(44.614 43.011 LE. 43.000 43.011 12 • 43.011 0.290 0.290 LE. 1.000 LE • .GE.

UNKNØWN PARAMETER ESTIMATES

ØUTSIDE DIAMETER ØF RINGS	
UPPER RING THICKNESS	
LØWER RING THICKNESS	
DISTANCE BETWEEN RINGS	
BEAM FLANGE THICKNESS	
BEAM WEB THICKNESS	
INTERNAL DIAMETER ØF LØWER RING	
WIDTH ØF BEAM FLANGE	
SLØPE ØF UPPER FLANGE ØF BEAM	
SLØPE ØF LØWER FLANGE ØF BEAM	

CALCULATED TERMS

INTIAL	WE15月] ************************************
MAXIMUM	VERTICAL REACTION DUE TO SCF
MAXIMUM	HØRIZØNTAL REACTIØN DUE TØ SCF
INITIAL	NØRMAL VERTICAL REACTIØN

ØPTIMIZATIØN

NNN=	23	U(11)=	0-447750E	1318.
NNN=	24	U(22)=	0•293156E	13L8.
NNN=	25	U(22)=	0.575997E	0518.
NNN=	26	ย(22)=	0.602867E	05LB.
NNN=	27	U(11)=	0•575339E	05LB.
NNN=	28	U(22)=	0.574681E	05LB.
NNN=	29	U(22)=	0-576379E	05LB.
NNN=	30	U(11)=	0.574681E	05LB.

129

180.000IN. 2.000IN. 2.000IN. 35.000IN.

1.000IN.

1.0001N. 64.0001N. 10.0001N. 0.200

0.800

29299.563LB. 412943.141LB. 1290000.000LB. 458074.891LB.
ØPTINUM SØLUTIØN

	ØUTSIDE DIAMETER ØF RINGS UPPER RING THICKNESS LØWER RING THICKNESS DISTANCE BETWEEN RINGS BEAM FLANGE THICKNESS BEAM WEB THICKNESS INTERNAL DIAMETER ØF LØWER RING WIDTH ØF BEAM FLANGE SLØPE ØF UPPER FLANGE ØF BEAM SLØPE ØF LØWER FLANGE ØF BEAM	186.000IN. 2.750IN. 2.250IN. 51.500IN. 2.625IN. 2.563IN. 90.000IN. 23.000IN. 0.000 0.750
÷	MINIMUM WEIGHT	57468.060LB.
	FINAL CALCULATIONS	
	PHI(1) = 0.069 .LE.PHI(2) = 911.994 .GE.PHI(3) = 733660.313 .LE.PHI(3) = 733660.313 .LE.PHI(5) = 0.750 .GE.PHI(6) = 9168.245 .LE.PHI(7) = 7528.253 .LE.PHI(8) = 11205.633 .LE.PHI(8) = 11205.633 .LE.PHI(9) = 9201.198 .LE.PHI(11) = 11659.784 .LE.PHI(12) = 2136.063 .LE.PHI(13) = 6007.304 .LE.PHI(15) = 3192.670 .LE.PHI(15) = 3192.670 .LE.PHI(16) = 12620.163 .LE.PHI(16) = 12620.163 .LE.PHI(17) = 3980.413 .LE.PHI(18) = 12620.163 .LE.PHI(19) = 27.219 .LE.PHI(21) = 186.000 .LE.PHI(21) = 186.000 .LE.PHI(23) = 90.0006 .LE.PHI(23) = 27.344 .LE.PHI(25) = 27.344 .LE.PHI(26) = 27.344 .LE.PHI(26) = 27.344 .LE.PHI(28) = 0.750 .LE.PHI(28) = 0.750 .LE.	$\begin{array}{c} 0.100\\ 540.000\\ 743493.734\\ 1.749\\ 0.000\\ 11666.667\\ 11666.667\\ 11666.667\\ 11666.667\\ 11666.667\\ 5833.333\\ 11666.667\\ 5833.333\\ 11666.667\\ 14000.000\\ 11666.667\\ 23333.333\\ 11666.667\\ 21350.000\\ 50.000\\ 200.000\\ 200.000\\ 90.000\\ 43.919\\ 43.000\\ 45.000\\ 1.000\\ 0.000\end{array}$
	UNKNØWN PARAMETER ESTIMATES	
· · · · · · · ·	ØUTSIDE DIAMETER ØF RINGS UPPER RING THICKNESS LØWER RING THICKNESS DISTANCE BETWEEN RINGS BEAM FLANGE THICKNESS BEAM WEB THICKNESS INTERNAL DIAMETER ØF LØWER RING WIDTH ØF BEAM FLANGE SLØPE ØF UPPER FLANGE ØF BEAM SLØPE ØF LØWER FLANGE ØF BEAM	200.0001N. 6.0001N. 6.0001N. 3.0001N. 3.0001N. 90.0001N. 30.0001N. 0.000 1.000
		a a secondar a secondar a secondar a

CALCULATED TÉRMS

INITIAL WEIGHT. MAXIMUM VERTICAL REACTION DUE TO SCF... MAXIMUM HØRIZØNTAL REACTION DUE TO SCF.. INITIAL NØRMAL VERTICAL REACTION.....

ØPTIMIZATIØN -

NNN=	31	•	U(11)=	0-120080E	06L8.
NNN=	32		U(22)=	0.112654E	06L8.
NNN=	33		U(22)=	0.101910E	06L8.•
NNN=	34		U(22)=	0.100163E	1116.
NNN=	35		U(11)=	0.100080E	06L8.
NNN=	36		U(22)=	·0.973289E	05LB.
NNN=	37		U(22)=	0.932538E	05L8.
NNN=	3 8		U(22)=	0.869914E	05LB.
NNN=	39		U(22)=	0-400789E	08LB.
NNN=	40		U(11)=	0.851862E	05LB.
NNN=	41		U(22)=	0.815759E	05LB.
NNN=	42		U(22)=	0.764841E	05L8.
NNN=	43		U(22)=	0:200694E	08LB.
NNN=	44		U(11)=	0.746590E	05L8.
NNN=	45		U(22)=	0.710087E	05L8.
NNN=	46		U(22)=	0.200657E	08LB.
NNN=	47		U(11)=	0.692362E	05LB.
NNN=	48		U(22)=	0.656384E	05L8.
NNN=	49		U(22)=	0.524340E	12LB.
NNN=	50		Ú(11)=	0.647522E	05LB.
NNN=	51		U(22)=	0.629796E	05LB.
NNN=	52		U(22)=	0•620933E	05L8.
NNN=	53		U(22)=	0.620933E	05LB.
NNN=	54		U(11)=	0.620933E	05L8.

123872.238LB. 412943.141LB. 1290000.000LB. 481718.059LB.

ØPTIMUM SØLUTIØN

ØUTSIDE DIAMETE UPPER RING THIC LØWER RING THIC DISTANCE BETWEE BEAM FLANGE THI BEAM WEB THICKN INTERNAL DIAMET WIDTH ØF BEAM F SLØPE ØF UPPER SLØPE ØF LØWER	R ØF RINGS KNESS N RINGS CKNESS ESS ER ØF LØWER RIN LANGE FLANGE ØF BEAM FLANGE ØF BEAM	G	200.000IN. 2.500IN. 2.000IN. 56.000IN. 2.375IN. 2.625IN. 90.000IN. 24.250IN. 0.000 1.000
MINIMUM WEIGHT.		• • • • • • • • • •	62093.268LB.
	FINAL CALC	ULATIØNS	e e anteres
PHI(1)= PHI(2)= PHI(3)= PHI(5)= PHI(6)= PHI(6)= PHI(8)= PHI(8)= PHI(1)= PHI(10)= PHI(10)= PHI(12)= PHI(12)= PHI(15)= PHI(15)= PHI(15)= PHI(15)= PHI(15)= PHI(16)= PHI(16)= PHI(20)= PHI(2	$\begin{array}{c} 0.057\\ 999.988\\ 681937.203\\ 2.000\\ 1.000\\ 8058.203\\ 6209.937\\ 10072.754\\ 7762.422\\ 3645.236\\ 11657.503\\ 1864.043\\ 5651.023\\ 1864.043\\ 5651.023\\ 11657.503\\ 2208.873\\ 10267.259\\ 3121.530\\ 10267.259\\ 3121.530\\ 10267.259\\ 28.500\\ 200.000\\ 90.000\\ 200.000\\ 28.500\\ 28.$	- LG - LG - LG - LG - LG - LG - LG - LG	$\begin{array}{c} 0.100\\ 540.000\\ 717389.281\\ 1.499\\ 0.000\\ 11666.667\\ 11666.667\\ 11666.667\\ 11666.667\\ 11666.667\\ 11666.667\\ 5833.333\\ 11666.667\\ 5833.333\\ 11666.667\\ 23333.333\\ 11666.667\\ 21350.000\\ 11666.667\\ 21350.000\\ 50.000\\ 200.000\\ 50.000\\ 200.000\\ 45.000\\ 45.000\\ 45.000\\ 45.000\\ -5.000\\ 0.000\\ -5.000\\ -$

. \$CARD READ

D L SAXTØN

F.3

DESIGN 3

CØNSTANT PARAMETERS NUMBER ØF 4 NUMBER ØF ARMS. PØISSØN'S RATIØ. NØRMAL FACTØR ØF SAFETY. EMERGENCY FACTØR ØF SAFETY INTERNAL DIAMETER ØF UPPER RING. DISTANCE FRØM LINE ØF ACTIØN ØF FSC TØ PLANE ØF SUPPØRTS. DIAMETER ØVER SUPPØRT PØINTS. TURBINE ØVERSPEED. PLATE YIELD STRENGTH. HYDRAULIC THRUST. ARMS.... 0.300 3.000 77.000IN. 58.250IN. 270.000IN. 160.000RPM 35000.000PSI 305600.000LB. HYDRAULIC THRUST MAXIMUM STATIC LØAD SHØRT CIRCUIT FØRCE MØDULUS ØF ELASTICITY 420400.000LB. 371500.000LB. 3000000.000PSI RANGES FØR VARIABLES •LE• 97.00000 216.00000 • GE • 1) Ž) 6.00000 2.00000 .GE. 3) 4) 2.00000 .LE. 6.00000 •GE• 20.0000 1.0000 1.00000 •LĒ• •GE• 80.00000 5) 6) 7) 4.00000 .GE. -GĒ-.LE. 4.00000 54.00000 77.0000 .GE. •LE• 35.00000 1.00000 0.00000 15.0000 C.00000 • GE • 8) .LE. - ўj 10) .GE. .LE. 0.00000 •ĞĒ• IF. BRACKET PRØFILE LIMITS 40.000IN. 47.750IN. 47.750IN. 216.000IN. MAXIMUM HEIGHT ØF ARM AT SUPPØRT..... HEIGHI ØF ARM AL SUPPORT ELEVATIØN ØF UPPER RING ELEVATIØN ØF UPPER RING ØUTSIDE DIAMETER ØF RINGS UTSIDE DIAMETER ØF RINGS INSIDE DIAMETER ØF LØWER RING MAXIMUM MINIMUM MAXIMUM MINIMUM 97.000IN. MAXIMUM 77.000IN. ØF LØWER FLANGE-------ØF LØWER FLANGE-------MININUM INSIDE SLØPE SLØPE 54.0001N. 0.000 MAXIMUM MINIMUM UNKNOWN PARAMETER ESTIMATES ØUTSIDE DIAMETER ØF RINGS UPPER RING THICKNESS LØWER RING THICKNESS DISTANCE BETWEEN RINGS 135.000IN. 4.0001N. 4.000IN. 43.750IN. 2.000IN. 2.000IN. BEAM FLANGE THICKNESS BEAM WEB THICKNESS INTERNAL DIAMETER ØF LØWER RING WIDTH ØF BEAM FLANGE SLØPE ØF UPPER FLANGE ØF BEAM SLØPE ØF LØWER FLANGE ØF BEAM 54.000IN. 30.000IN. 0.100 0.100

CALCULATED TERMS

		· · · · · · · · · · · · · · · · · · ·
INITIAL MAXIMUM MAXIMUM INITIAL	WEIGHT. VERTICAL REACTION DUE TØ SCF HØRIZØNTAL REACTION DUE TØ SCF NØRMAL VERTICAL REACTION	50415.167LB. 80147.097LB. 371500.000LB. 194103.791LB.
	LIMITS	
MAXIMUM BRACKET MAXIMUM	ALLØWABLE STRUCTURE DEFLECTIØN CRITICAL FREQUENCY LIMIT NØRMAL TENSILE STRESS	0.100IN. 216.000CPM 11666.667PSI
MAXIMUM MAXIMUM MAXIMUM	EMERGENCY TENSILE STRESS	23333.333PSI 11666.667PSI

MAXIMUM WEB SHEAR IN BEAM=0.40*SY ØR 64'000'000 PSI*(2.*TW/H)** WHICHEVER IS LESS (CSA S16-1961 CLAUSE 12.5)

MAXIMUM STRESS IN CØMPRESSIØN FLANGE ØF ARM TØ LIMIT LØCAL BUCKLING=KC*E(TF/WID)**2, WHERE KC=6.3

STEP LENGTHS FØR VARIABLES

DX (1)=	1.000000
DX(2)=	0.125000
DX(3)=	0.125000
DX(4)=	0.250000
DX (5)=	0.062500
DX(6)=	0.062500
DX(7)=	1.000000
DX (8)=	0.250000
DX(9)=	0.010000
DX(10) =	0.010000

ØPTIMIZATIØN

NNN=	1	U(11)=	0-484041E	05LB.
NNN=	2	, U(22)=	0.441750E	05LB.
NNN=	3	U(22)=	0.381048E	0518.
NNN=	4	U(22)=	0.913619E	12LB.
NNN=	5	U(11)=	0.364034E	05LB.
NNN=	6	U(22)=	0.337195E	05LB.
NNN=	7	U(22)=	0.295057E	05LB.

135

UNKNØWN PARAMETER ESTIMATES

						•
ØUTSI UPPER LØWER DISTA BEAM INTER WIDTH SLØPE	DE DIAN RING RING BELANGE WEB THI NAL DIA ØF BEA ØF UPI	AETER Ø FHICKNE FHICKNE FWEEN R THICKN CKNESS METER METER METER AMETER	F RINGS SS INGS ESS ØF LØWER GE ØF E NGE ØF E	RING		240.0001N. 8.0001N. 10.0001N. 4.0001N. 3.5001N. 75.0001N. 60.0001N. 25.0001N. 0.050
SEMIL			CALCUL	ATED TERMS	,	
INITI MAXIM MAXIM INITI	AL WEIG UM VERI UM HØRI AL NØRI	GHT FICAL R IZØNTAL MAL VER	ÉACTION REACTIO TICAL RE	DUE TØ SCF N DUE TØ S ACTIØN	SCF	227571.148LB. 80147.097LB. 371500.000LB. 238392.787LB.
		•	ØPTIMI	ZATIØN	,	
					· · · · · · · · · · · ·	
NNN=	13		U(11)=	0.363407E	08LB.	
NNN=	14		U(22)=	0-203376E	08L8.	, i i isa waxaa ahaa ka
NNN=	15		U(22)=	0.581943E	05LB.	
NNN=	16		U(22)=	0.525189E	05LB.	and the second
NNN=	17	÷	U(22)=	0.447503E	05L8.	
NNN=	18		U(22)=	0.400355E	08L8.	and a second
NNN=	19	:	U(11)=	0.426466E	05LB.	,
NNN=	20	•	U(22)=	0.386671E	05L8.	n an
NNN=	21		U(22)=	0.331221E	05LB.	
NNN=	22	a ara	U(22)=	0.652532E	06LB.	an an ann an an seolaí an t-r-rainn an an 2000annach. Bha an an
NNN=	23		U(11)=	C.313428E	05LB.	• • • • •
NNN=	24		U(22)=	0.288356E	05L8.	
NNN=	25		U(22)=	0.652517E	06LB.	
NNN=	26	-	U(11)=	C.282325E	05LB.	a na sa
NNN=	27	•	U(22)=	0.273503E	05LB.	
NNN=	28	•	U{22}=	C-268423E	05L8.	
NNN=	29	:	U(22)=	C.267817E	05L8.	

0.267723E 05LB.

30

NNN=

U(22)=

U(11)= 0.267817E 05LB.

OPTIMUM SØLUTIØN

31

NNN=

SLØPE Ø SLØPE Ø	F UPPER FLA F LØWER FLA	NGE ØF E	EAM		0.000 0.200
		CALCUL	ATED TERMS	5	
INITIAL MAXIMUM MAXIMUM INITIAL	WEIGHT VERTICAL R HØRIZØNTAL NØRMAL VER	REACTION REACTION	DUE TØ SCE IN DUE TØ S ACTIØN	SCF.	-102034.985LB. 80147.097LB. 371500.000LB. 155991.252LB.
	• .	ØPTIMI	ZATIØN	· .	
NININ- 2	ີ ເ	11(11)-	0 5404205	0.81 8	· · · · · · · · · · · · · · · · · · ·
NNN- 2	2	11/221-	0 30/5075	0010	en e
NNN=3	ے د	11(22) =	0.1795535	08LB.	
NNN= 3	י ק	11(22) =	0.495213E	0518-	
NNN= 3	6	U(22) =	G.300419E	0818.	•
NNN= 3	י אי אי א	U(11) =	C-472871E	05LB.	
NNN= 3	8	U(22)=	0.431578E	05LB.	
NNN= 3	9	U(22)=	0.372200E	05LB.	an a
NNN= 4	C	U(22)=	0.297807E	05L8.	
NNN= 4	1 .	U(22)=	C.395544E	12L8.	
NNN= 4	2	U(11)=	C.286708E	05LB.	
NNN= 4	3	U(22)=	0.264659E	05LB.	an an an ann an Anna an
NNN= 4	4	U(22)=	0.305210E	1218.	
NNN= 4	5	U(11)=	0.262075E	05L8.	a second the transmission of the second s
NNN= 4	6	U(22)=	C-263421E	05LB.	
NNN= 4	7	U(11)=	C-261692E	05LB.	المراجعين والمراجع والمراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع
NNN= 4	8	U(22)=	0-263534E	05LB.	
NNN= 4	9	U(11)=	0.261692E	05LB.	an a
		ØPTIM	IM SØLUTIØN	1	
ØUTSIDE UPPER R LØWER R DISTANC	DIAMETER Ø ING THICKNE ING THICKNE E BETWEEN R	F RINGS SS SS INGS			136.500IN. 2.875IN. 2.250IN. 43.875IN.
BEAM FL	ANGE THICKNESS	ESS			1.000IN. 1.063IN.

.

•

.

.

. . .

DIANETER ØF LØWER RING..... BEAM FLANGE.... UPPER FLANGE ØF BEAM..... LØWER FLANGE ØF BEAM..... 76.500IN. 18.750IN. 0.240 0.000 INTERNAL WIDTH ØF SLØPE ØF SLØPE ØF MINIMUM WEIGHT..... 26169.191LB. FINAL CALCULATIONS FINAL C 0-100 770-549 444177-898 2-250 0-24C 9090-078 8603-570 11478-318 10795-895 3623-781 4321-225 1921-306 2291-086 4321-225 8735-512 13296-237 8395-372 13296-237 13296-237 13296-237 13296-237 13296-237 136-500 76-500 47-750 47-750 6-000 PHI(PHI(.LE. 0.100 1)= 2)= .GE. 216.000 452858.055 PHI (PHI(PHI(PHI(1.874 4)= .GE. 5)= 6)= 0.000 .GE. .LE. 11666.667 PHI(PHI(PHI(PHI(PHI(PHI(PHI(PHI(.LE. 7)= 11666.667 11666.667 8)= .LE. $11666.667 \\ 5833.333 \\ 11666.667 \\ 5833.333 \\ 11666.667 \\ 1466.667 \\ 1406.6$ 9)= 10)= .LE. .LE. 11)= 12)= .LE. 13)= 14)= .LE. 14000.000 .LE. PHI(PHI(PHI(PHI(PHI(PHI(11666.667 23333.333 11666.667 15)= .LE. .LE. 16)= 17)= .LE. ·LE. 21350.000 -18)= 40.000 19)= 216.000 97.000 77.000 20)= 21)= PHI(.GE. 221 = 221 = 231 = 241 = 251 = 261 = 271 = 281PHI(PHI(PHI(.LE. 54.000 .GE. 59.160 .LE. PHI(PHI(PHI(PHI(.GE. 47.750 47.750 .LE. 0.000 .LE. 0.000 0.000 .GE.

\$CARD READ

D L SAXTØN

APPENDIX G

OPTIMIZATION COMPUTER PROGRAMME

AND RESULTS

G.1 COMPUTER PROGRAMME

\$IBFTC MIN

С C LOWER BRACKET OPTIMIZATION BY THE DIRECT SEARCH METHOD С COMBINED WITH SUCCESSIVE LINEAR APPROXIMATION AND SIMPLEX С SOLUTION OF LINFARIZED SYSTEM С DIMENSION RETA(15) DIMENSION XMEM(15) DIMENSION DXX(15) DIMENSION X(15,5),Z(15),U(50),PHI(50),BETA(15),DX(15) DIMENSION B(50) DIMENSION C(7) DIMENSION RANGE(15,2) DIMENSION ZINT(10) DIMENSION RNGSTR(10,2) DIMENSION ZLIM(20) COMMON B,C,Z,U,PHI,SPAN,IDU,PI,N,E,SL,HTHR,MU,RV,P,RH,SY,FS,FSE COMMON DELTAB, DELTAS, DELTAU, DELTAL COMMON SUM5,M COMMON HOMAX, HRMAX, HRMIN, ODMAX, ODMIN, IDLMAX, IDLMIN, A2MAX, A2MIN COMMON RANGE

KNOWN PARAMETERS

N=NUMBER OF ARMS IDU=INTERNAL DIAMETER OF UPPER RING E=MODULUS OF ELASTICITY HTHR=HYDRAULIC THRUST MU=POISSON'S RATIO SY=YIELD STRENGTH OF PLATE MATERIAL FS=FACTOR OF SAFETY UNDER NORMAL CONDITIONS FSE=FACTOR OF SAFETY UNDER EMERGENCY CONDITIONS FSC=SHORT CIRCUIT FORCE HI=DISTANCE FROM LINE OF ACTION OF FSC TO PLANE OF SUPPORTS SL=MAXIMUM STATIC LOAD 'OS=OVERSPEED OF TURBINE SPAN=DIAMETER OVER SUPPORT POINTS

READ IN KNOWN PARAMETERS

REAL MU,IDU,IDL,L READ(5,1) NCLIM,DXLIM READ(5,1)N,IDU,MU READ(5,2)HTHR,SL,E,SY,FSC READ(5,3)FS,FSE,HI,OS,SPAN WRITE(6,101) WRITE(6,102)N WRITE(6,109)MU WRITE(6,112)FS WRITE(6,113)FSE

```
WRITE(6,103)IDU
   WRITE(6,115)
    WRITE(6,120)HI
    WRITE(6,119)SPAN
    WRITE(6,117)0S
    WRITE(6,110)SY
    WRITE(6,107)HTHR
    WRITE(6,111)SL
    WRITE(6,114)FSC
    WRITE(6,108)E
    READ IN BRACKET PROFILE LIMITS
    REAL IDLMAX, IDLMIN
    READ(5,500)HOMAX, HRMAX, HRMIN
    READ(5,500)((RANGE(L31,L32),L32=1,2),L31=1,10)
    READ(5,8) (ZLIM(J), J=1,20)
    WRITE(6,499)
    DO 498 I89=1,10
    RNGSTR(189,1)=RANGE(189,1)
    RNGSTR(189,2) = RANGE(189,2)
    B(189+22) = -RANGE(189,1)
    B(189+32)=RANGE(189,2)
    WRITE(6,402) RANGE(189,1),189,RANGE(189,2)
498 CONTINUE
    ODMAX=RANGE(1,2)
    ODMIN=RANGE(1,1)
    IDLMAX=RANGE(7,2)
    IDLMIN=RANGE(7,1)
    A2MAX=RANGE(10,2)
    A2MIN=RANGE(10,1)
    WRITE(6,502)
    WRITE(6,503)HOMAX
    WRITE(6,504)HRMAX
    WRITE(6,505)HRMIN
    WRITE(6,506)ODMAX
    WRITE(6,507)ODMIN
    WRITE(6,508)IDLMAX
   WRITE(6,509)IDLMIN
    WRITE(6,510)A2MAX
   WRITE(6,511)A2MIN
            UNKNOWN PARAMETERS
       OD=OUTSIDE DIAMETER OF RINGS
       TU=THICKNESS OF UPPER RING
       TL=THICKNESS OF LOWER RING
       H=DISTANCE BETWEEN RINGS
       TF=THICKNESS OF BEAM FLANGE
       TW=THICKNESS OF BEAM WEB
```

C C C

C C C C C C C

С

С

С

CCC		IDL=INTERNAL DIAMETER OF LOWER RING WID=WIDTH OF BEAM FLANGE
C		ALPHAI=SLOPE OF UPPER FLANGE OF BEAM ALPHA2=SLOPE OF LOWER FLANGE OF BEAM
	360	NNN=0 ITER=0 CONTINUE NCALL=0 READ IN ESTIMATES FOR UNKNOWN PARAMETERS
Ĺ	121	READ(5,3)OD,TU,TL,IDL,H,TF,TW,WID,ALPHA1,ALPHA2 WRITE(6,121) FORMAT(1H0,10X,27HUNKNOWN PARAMETER ESTIMATES)
		WRITE(6,122)0D WRITE(6,123)TU WRITE(6,124)TL WRITE(6,125)H
		WRITE(6,126)TF WRITE(6,127)TW WRITE(6,128)IDL WRITE(6,131)WID
с		WRITE(6,132)ALPHAI WRITE(6,133)ALPHA2
C C		CALCULATE ESTIMATED WEIGHT
c		PI=3.1416 WT=.25*PI*(TU*(OD**2-IDU**2)+TL*(OD**2-IDL**2))+FLOAT(N)*(2.*H*TW* 1((SPAN-OD)*0.5+0.50*(OD-IDU)-TW)-TW*(ALPHA1+ALPHA2)*(0.5*(SPAN-OD) 2)**2+TF*0.5*(SPAN-OD)*WID*(SQRT(1.+ALPHA1**2)+SQRT(1.+ALPHA2**2))) WT=0.283*WT
c		CALCULATE MAXIMUM HORIZONTAL AND VERTICAL REACTIONS UNDER SCF
	4	SUM1=0. SUM2=-1. JJ=(N+2)/4 DO 4 I1=1.N SUM1=SUM1+ABS(COS((2.*PI/FLOAT(N))*(FLOAT(I1)-1.))) RV=2.*FS(*HI/(SPAN*SUM1))
	5	DO 5 I2=1,JJ SUM2=SUM2+2.*(CDS((2.*PI/FLOAT(N))*(FLOAT(I2)-1.)))**2 RH=FSC/SUM2
C C C		CALCULATE INITIAL VALUE OF P
		W=HTHR+SL P=(W+WT)/FLOAT(N) WRITE(6,141)

WRITE(6,142)WT WRITE(6,143)RV WRITE(6,144)RH WRITE(6,145)P IF(NNN.GT.1) GO TO 361

CALCULATE FACTORS FOR RINGS

ALPHA=PI/FLOAT(N) C(1)=0.5*(1./ALPHA-COS(ALPHA)/SIN(ALPHA)) C(2)=0.5*(1./SIN(ALPHA)-1./ALPHA)C(4)=0.5/SIN(ALPHA)C(3)=C(4)*COS(ALPHA)ANGLE=ALPHA+ALPHA C(5)=C(4)*(0.25*SIN(ANGLE)+0.5*ALPHA)/SIN(ALPHA)-0.5/ALPHA C(6) = C(5) + 0.5 / ALPHAC(7) = C(6) - C(3)DO 146 JINT=1,7 $IF(C(JINT) \bullet LT \bullet 0 \bullet 0) C(JINT) = -C(JINT)$ 146 CONTINUE -B(1)=0.100 $B(2) = -1.35 \times 0S$ B(3) = 0.0 $B(4) = 0 \cdot 0$ B(5) = 0.0B(6) = SY/FSB(7) = B(6)B(8) = B(7)B(9) = B(8)B(10) = B(6)/2. B(11)=0.5*SY/FSE B(12)=B(10)B(13) = B(11)B(14) = 0.0B(15) = B(6)B(16) = SY/FSEB(17) = B(15)B(18) = 0.0B(19) = HOMAXB(20) = HRMAXB(21) = -HRMINB(22) = 0.0WRITE(6,160) WRITE(6,164)B(1) QRS = -B(2)WRITE(6,167)QRS WRITE(6,161)B(6) WRITE(6,162)B(10) WRITE(6,165)B(16) WRITE(6,166)B(11)

WRITE(6,450) WRITE(6,168) WRITE(6,169) WRITE(6,450) WRITE(6,170) WRITE(6,171) WRITE(6,450) WRITE(6,172) WRITE(6,173) OPTIMIZATION ROUTINE 361 CONTINUE -X(-1, -, 1) = ODX(2,1) = TUX(3,1)=TL X(4,1) = HX(5,1) = TFX(6,1)=TW X(7,1)=IDLX(8,1) = WIDX(9,1) = ALPHA1X(10,1) = ALPHA2IF(NNN.GT.1) GO TO 353 DX(I) IS THE STEP LENGTH FOR PARAMETER (I) READ(5,8)(DX(J2),J2=1,10) WRITE(6,370) DO 371 I98=1,10 DXX(198) = DX(198)WRITE(6,372) 198, DX(198) 371 CONTINUE 353 CONTINUE WRITE(6,430) IF (HRMAX \bullet EQ \bullet HRMIN) DX(4)=0 \bullet 0 DO 350 L33=1,10 IF(RANGE(L33,1), EQ, RANGE(L33,2)) GO TO 351 GO TO 352 351 CONTINUE DX(L33) = 0.0X(L33,1) = RANGE(L33,1)GO TO 350 352 CONTINUE IF(X(L33,1).LT.RANGE(L33,1).OR.X(L33,1).GT.RANGE(L33,2)) X(L33,1)= 10.5*(RANGE(L33,1)+RANGE(L33,2)) 350 CONTINUE DO 7 J1=1,10 7 Z(J1)=X(J1,1) M=1

C C

С

C C

С

```
CALL CHECK
 9 CONTINUE
   DO 10 I4=1,10
   M = I4 + 1
   X(I4,2) = X(I4,1) - DX(I4)
   Z(I4) = X(I4,2)
   CALL CHECK
   IF(U(I4+1).LT.U(I4)) GO TO 10
   X(14,2) = X(14,1) + DX(14)
   Z(I4) = X(I4,2)
   CALL CHECK
   IF(U(I4+1).LT.U(I4)) GO TO 10
   X(I4,2) = X(I4,1)
   Z(I4) = X(I4,2)
   U(I4+1) = U(I4)
10 CONTINUE
   NNN=NNN+1
   WRITE(6,205)NNN,U(11)
   IF(NNN.GT.250) GO TO 971
   AT THIS POINT THE EXECUTION OF THE PROGRAM HAS OBTAINED A MINIMUM
   U AFTER THE FIRST SEARCH
   IF(U(11).GE.0.99995*U(1)) GO TO 17
   DO 11 I5=1,10
   BETA(15) = X(15, 2) - X(15, 1)
   X(15,3) = X(15,2) + BETA(15)
11 Z(I5) = X(I5,3)
   THE X(15,3) ARE THE COORDINATES AFTER THE FIRST MOVE
   CALCULATE A NEW VALUE OF U
12 CONTINUE
   M = 12
   CALL CHECK
   DO.13 I6=1,10
   M = I6 + 12
   X(I6,4) = X(I6,3) - DX(I6)
   Z(I6) = X(I6, 4)
   CALL CHECK
   IF(U(16+12).LT.U(16+11)) GO TO 13
   X(16,4) = X(16,3) + DX(16)
   Z(I6) = X(I6, 4)
   CALL CHECK
   IF(U(16+12).LT.U(16+11)) GO TO 13
   X(I6,4) = X(I6,3)
   Z(I6) = X(I6, 4)
   U(I6+12) = U(I6+11)
13 CONTINUE
   NNN=NNN+1
```

С

C C

C

C C C

C

6		WRITE(6,206)NNN,U(22) IF(NNN.GT.250) GO TO 971
		AT THIS POINT A SECOND SEARCH STARTING FROM THE END OF THE LAST MOVE HAS BEEN COMPLETED
<u> </u>		IF(U(22).LT.0.999*U(11)) GO TO 14 -DO 15_I7=1.10
	15	X(17,1)=X(17,2) Z(17)=X(17,1) U(1)=U(11)
	14	GO TO 9 CONTINUE -DO 16 I8=1,10
	8 - 184 - 2 APR 1	BETA(I8) = X(I8,4) - X(I8,2) X(I8,2) = X(I8,4) X(I8,2) - X(I8,4)
	-16	Z(18) = X(18) = X(18) = U(11) = U(22)
	17	CONTINUE M=30
	180	CALL CHECK DO 180 N44=1,10 ZINT(N44)=Z(N44) UINT=U(30) U(1)=UINT
C C C		BEST POINT FROM DIRECT SEARCH IS IN INTERMEDIATE STORAGE
c	40	START LINEAR APPROXIMATION METHOD WRITE(6,40) FORMAT(1H0,10X,29HOPTIMIZATION IN SIMPLEX STAGE)
c.		DIMENSION COEFF(50,10),UCOEFF(10) DIMENSION XMATRX(50,80),RHS(50),CONST(80),USIMP(1)
c		CALCULATE NUMERICAL DERIVATIVES .
	45	CONTINUE NCALL=NCALL+1 IF(NCALL.GT.NCLIM) GO TO 971
	7 99	WRITE(6,799) NCALL FORMAT(1H0,10X,6HNCALL=,15) M=50
C C		GENERATE SIMPLEX MATRIX
c		CALL XMAT(XMATRX, RHS, CONST, USIMP, COEFF, UCOEFF, PHI, B, Z, ZLIM, U)

DO 775 JIG=21,62 775 CONST(JIG)=0.0 С C SOLVE S'IMPLEX PROBLEM .DIMENSION XSIMP(80), JH(80) DO 777 J=1,42 JII = J + 20ABA = ABS(RHS(J)) $IF(ABA \cdot LT \cdot 1 \cdot E - 06) RHS(J) = 0 \cdot 0$ XSIMP(JII)=RHS(J) 777 JH(J)=JII MREAL=20 MM = 42**ITER=200** NM = 62INDEX=0 NUMBER=0 DO 776 J=1,20 776 XSIMP(J)=0.0 CALL SIMPLX (XMATRX, RHS, CONST, NUMBER, NM, MM, MREAL, INDEX, XSIMP, ITER, 1JH, CONST) WRITE(6,450) DO 30 J=1,10 JX = J*2BETA(J) = XSIMP(JX-1) - XSIMP(JX)Z(J) = Z(J) + BETA(J)X(J,1)=Z(J)XMEM(J) = Z(J)30 CONTINUE 600 CONTINUE M = 31CALL CHECK IF(U(31).LT.U(30)) GO TO 31 WRITE(6,83) U(31) 1,E14.6,4H LB.) DIMENSION NUM(50) 46 CONTINUE DO 75 J=1,42 NUM(J) = 0IF(PHI(J).GT.B(J)) GO TO 76 GO TO 75 76 CONTINUE NUM(J) = 1WRITE(6,77) J 77 FORMAT(1H0,10X,5HLIMIT,I3,1X,8HEXCEEDED) 75 CONTINUE M=32 CALL CHECK2 IF(U(32).LT.0.9995*U(30)) GO TO 80

NCALL=NCLIM 706 CONTINUE DO 705 J=1,10 Z(J) = Z(J) - BETA(J)X(J,1) = Z(J)705 CONTINUE GO TO 971 80 CONTINUE WRITE(6,81) U(32) 81 FORMAT(1H0,10X,20HACTUAL VALUE OF U IS,1X,E14.6,4H LB.) U(35) = U(31)270 CONTINUE DO 258 I4=1,10 M = 14 + 35X(I4,2) = X(I4,1) - DX(I4)Z(I4) = X(I4,2)CALL CHECK IF(U(M).LT.U(M-1)) GO TO 258 X(14,2) = X(14,1) + DX(14)Z(I4) = X(I4,2)CALL CHECK IF(U(M).LT.U(M-1)) GO TO 258 X(I4,2) = X(I4,1)Z(I4) = X(I4,2)U(M) = U(M-1)258 CONTINUE NNN=NNN+1 IF(NNN.GT.250) GO TO 971 IF(U(45).LT.U(30)) GO. TO 262 IF(U(45).LT.U(35)) GO TO 259 GO TO 260 262 U(30) = U(45)DO 261 J=1,10 $261 \times (J,1) = \times (J,2)$ WRITE(6,273) NNN, U(45) 273 FORMAT(1H0,4HNNN=,14,10X,6HU(45)=,E14.6,3HLB.) GO TO 45 259 CONTINUE DO 675 I5=1,10 RETA(15)=X(15,2)-X(15,1) X(15,3) = X(15,2) + RETA(15)675 CONTINUE 676 CONTINUE M=29 CALL CHECK DO 677 .16=1,10 M = 29 - 16X(I6,4) = X(I6,3) - DX(I6)Z(I6) = X(I6,4)

С

CALL CHECK IF(U(M).LT.U(M+1)) GO TO 677 X(I6,4) = X(I6,3) + DX(I6)Z(16) = X(16,4)CALL CHECK IF(U(M) • LT • U(M+1)) GO TO 677 X(I6,4) = X(I6,3)Z(16) = X(16,4)U(M) = U(M+1)677 CONTINUE NNN=NNN+1 IF(NNN.GT.250) GO TO 971 IF(U(19).LT.0.999*U(45)) GO TO 678 DO 679 I7=1,10 X(I7,1) = X(I7,2)679 Z(17)=X(17,1) U(35) = U(45)GO TO 270 678 CONTINUE DO 680 I8=1,10 RETA(I8) = X(I8,4) - X(I8,2)X(18,2) = X(18,4)X(18,3) = X(18,4) + RETA(18)680 Z(18)=X(18,3) U(45) = U(19)GO TO 676 260 CONTINUE DO 98 J=1,10 Z(J) = XMEM(J)BETA(J)=BETA(J)/2. Z(J) = Z(J) - BETA(J)XMEM(J)=Z(J) $X(J_{1})=Z(J)$ 98 CONTINUE 272 CONTINUE C WRITE(6,654) 654 FORMAT(1H0,10X,17HSTEP SIZE REDUCED) 655 CONTINUE C С DO 42 J=1,10 42 DX(J) = DX(J)/2. IF(DX(1).LT.DXLIM*Z(1)) NCALL=NCLIM IF(NCALL.GE.NCLIM) GO TO 706 GO TO 600 31 CONTINUE С С SIMPLEX SOLUTION OF LINEAR APPROXIMATION WAS SUCCESSFUL С

```
WRITE(6,32) U(31)
 32 FORMAT(1H0,20HSIMPLEX OPTIMUM..., 14.6,1X,3HLB.)
    MAKE PATTERN MOVES BASED ON SIMPLEX SOLUTION
    DO 33 J=1,15
    DO 34 JY=1,10
 34 Z(JY) = Z(JY) + BETA(JY) * FLOAT(J)
    M = J + 31
    CALL CHECK
    IF(U(M).LT.U(M-1)) GO TO 35
    GO TO 36
 35 CONTINUE
    WRITE(6,37) J,U(M)
 37 FORMAT(1H0,12HPATTERN, MOVE, I3,1X,10HSUCCESSFUL,10X,2HU=,E14.6,1X,3
   1HLB.)
    GO TO 33
 36 CONTINUE
    WRITE(6,38) J,U(M)
38 FORMAT(1H0,12HPATTERN MOVE,13,1X,12HUNSUCCESSFUL,8X,2HU=,E14.6,1X,
   13HLB.)
    WRITE(6,654)
    DO 39 JY=1,10
    DX(JY)=DX(JY)/2.
    Z(JY) = Z(JY) - BETA(JY) * FLOAT(J)
 39 X(JY,1)=Z(JY)
    IF(DX(1).LT.DXLIM*Z(1)) NCALL=NCLIM
    RETURN TO DIRECT SEARCH METHOD
    M=30
    CALL CHECK
    GO TO 45
33 CONTINUE
772 CONTINUE
971 CONTINUE
    M=1
    CALL CHECK
    WRITE(6,150)
    WRITE(6,122)Z(1)
    WRITE(6,123)Z(2)
    WRITE(6,124)Z(3)
    WRITE(6,125)Z(4)
    WRITE(6,126)Z(5)
    WRITE(6,127)Z(6)
    WRITE(6,128)Z(7)
    WRITE(6,131)Z(8)
    WRITE(6,132)Z(9)
    WRITE(6,133)Z(10)
    WRITE(6,151) U(M)
    DO 250 J=1,10
```

C C

С

C C

```
IF(DX(J) \cdot NE \cdot 0 \cdot 0) DX(J) = DXX(J)
250 CONTINUE
    CALL SIZE (RANGE, Z, DX)
    DO 253 J=1,10
253 X(J,1)=Z(J)
    DO 186 J=1,10
    IF(X(J,1).LT.RANGE(J,1)) X(J,1)=RANGE(J,1)
    IF(X(J_{1}) GT_{RANGE}(J_{2})) X(J_{1}) = RANGE(J_{2})
186 CONTINUE
    IF(HRMAX.EQ.HRMIN) X(4,1)=HRMAX-X(2,1)-X(5,1)+X(10,1)*0.5*(SPAN-
   1X(1,1))
    M = 1
    CALL CHECK
251 CONTINUE
    DO 252 I4=1,10
    M = I4 + 1
    X(14,2) = X(14,1) - DX(14)
    Z(I4) = X(I4,2)
    CALL CHECK
    IF(U(I4+1).LT.U(I4)) GO TO 252
    X(I4,2) = X(I4,1) + DX(I4)
    Z(I4) = X(I4,2)
    CALL CHECK
    IF(U(I4+1).LT.U(I4)) GO TO 252
    X(14,2) = X(14,1)
    Z(I4) = X(I4,2)
    U(I4+1)=U(I4)
252 CONTINUE
    IF(U(11).LT.U(1)) GO TO 256
    GO TO 254
256 CONTINUE
    U(1) = U(11)
    DO 255 J=1,10
255 X(J,1)=X(J,2)
    GO TO 251
254 CONTINUE
    M=1
    CALL CHECK
    WRITE(6,150)
    WRITE(6,122)Z(1).
    WRITE(6,123)Z(2)
    WRITE(6,124)Z(3)
    WRITE(6,125)Z(4)
    WRITE(6,126)Z(5)
    WRITE(6,127)Z(6)
    WRITE(6,128)Z(7)
    WRITE(6,131)Z(8)
    WRITE(6,132)Z(9)
    WRITE(6,133)Z(10)
    WRITE(6,151) U(M)
```

IF(SUM5.GT.1.E-05) GO TO 580 GO TO 581 580 CONTINUE M=1CALL CHECK2 WRITE(6,81) U(1) CALL CHECK 581 CONTINUE WRITE(6,214) DO 302 M11=1,42 WRITE(6,211)M11,PHI(M11),B(M11) 302 CONTINUE IF(NNN.GT.1) GO TO 360 FORMAT STATEMENTS 1 FORMAT(15,5F10.5) 2 FORMAT(5E10.5) 3 FORMAT(8F10.5) 101 FORMAT(1H0,20X,19HCONSTANT PARAMETERS) 102 FORMAT(1H0,40HNUMBER OF ARMS..... • • • • • • • • • • • 10X • I 4) 115 FORMAT(1X,41HDISTANCE FROM LINE OF ACTION OF FSC TO 120 FORMAT(1X,40H 119 FORMAT(1X,40HDIAMETER OVER SUPPORT POINTS.....,F18.3,3HIN.) 500 FORMAT(8F10.5) 499 FORMAT(1H0,10X,20HRANGES FOR VARIABLES//) 402 FORMAT(5X,F10.5,2X,4H.GE.,2X,2HZ(,13,1H),2X,4H.LE.,F10.5) 502 FORMAT(1H0,20X,22HBRACKET PROFILE LIMITS//) 503 FORMAT(1X,40HMAXIMUM HEIGHT OF ARM AT SUPPORT....,F18.3,3HIN.) 506 FORMAT(1X,40HMAXIMUM OUTSIDE DIAMETER OF RINGS....,F18.3,3HIN.) 507 FORMAT(1X,40HMINIMUM OUTSIDE DIAMETER OF RINGS...., F18.3,3HIN.) 508 FORMAT(1X,40HMAXIMUM INSIDE DIAMETER OF LOWER RING...,F18.3,3HIN.) 509 FORMAT(1X,40HMINIMUM INSIDE DIAMETER OF LOWER RING...,F18.3,3HIN.) 1) 123 FORMAT(1X,40HUPPER RING THICKNESS..... •F18•3•3HIN•)

C C

C

133 FORMAT(1X,40HSLOPE OF LOWER FLANGE OF BEAM....., F18.3) 141 FORMAT(1H0,20X,16HCALCULATED TERMS) 1) 143 FORMAT(1X,40HMAXIMUM VERTICAL REACTION DUE TO SCF....,F18.3,3HLB.) 144 FORMAT(1X,40HMAXIMUM HORIZONTAL REACTION DUE TO SCF...,F18.3,3HLB.) 145 FORMAT(1X,40HINITIAL NORMAL VERTICAL REACTION....,F18.3,3HLB.) 160 FORMAT(1H0,20X,6HLIMITS//) 164 FORMAT(1X,40HMAXIMUM ALLOWABLE STRUCTURE DEFLECTION...,F18.3,3HIN.) 167 FORMAT(1X,40HBRACKET CRITICAL FREQUENCY LIMIT....,F18.3,3HCPM) 165 FORMAT(1X,40HMAXIMUM EMERGENCY TENSILE STRESS....,F18.3,3HPSI) 450 FORMAT(1H0) 168 FORMAT(1X,77HMAXIMUM STRESS IN COMPRESSION FLANGE OF BEAM (LATERAL 1 BUCKLING LIMIT)=0.61*SY) 169 FORMAT(10X,84HOR 12,000,000 PSI*(WID*TF)/(2.*L*CO), WHICHEVER IS L 1ESS (CSA S16-1961 CLAUSE 12.4.1)) 170 FORMAT(1X,65HMAXIMUM WEB SHEAR IN BEAM=0.40*SY OR 64'000'000 PSI*(12•*TW/H)**2,) 171 FORMAT(10X,44HWHICHEVER IS LESS (CSA S16-1961 CLAUSE 12.5)) 172 FORMAT(1X,58HMAXIMUM STRESS IN COMPRESSION FLANGE OF ARM TO LIMIT 1LOCAL) 173 FORMAT(10X,38HBUCKLING=KC*E(TF/WID)**2, WHERE KC=6.3) 370 FORMAT(1H0,10X,26HSTEP LENGTHS FOR VARIABLES//) 372 FORMAT(15X,3HDX(,13,2H)=,F10.6) 8 FORMAT(8F10.5) 430 FORMAT(1H0,20X,12HOPTIMIZATION//) 205 FORMAT(1H0,4HNNN=,14,10X,6HU(11)=,E14.6,3HLB.) 206 FORMAT(1H0,4HNNN=,14,10X,6HU(22)=,E14.6,3HLB.) 939 FORMAT(1H0,19X,5HU(1)=,E14.6,3HLB.) 410 FORMAT(2110) 150 FORMAT(1H0,20X,16HOPTIMUM SOLUTION) 151 FORMAT(1H0,40HMINIMUM WEIGHT..... ••••F18•3•3HLB• 1) 214 FORMAT(1H0,20X,18HFINAL CALCULATIONS/) 211 FORMAT(1X,4HPHI(,13,2H)=,F18.3,5X,4H.LE.,4X,F18.3) 306 FORMAT(1X,4HPHI(,13,2H)=,F18.3,5X,4H.GE.,4X,F18.3) STOP END

\$ I	BFT	CEVAL
		SUBROUTINE EVAL (COEFF, UCOEFF, PHI, M, Z, U, DX, HRMAX, SPAN)
C		
C	N	SUBROUTINE FOR EVALUATING NUMERICAL DERIVATIVES
C		DIMENSION $D7(10.3)$ DPHI(50.3) DH(3) COFFE(50.10) AUCOFFE(10)
		1PHI(50) • Z(15) • U(50)
		DIMENSION DX(15)
		DO 801 J=1,42
	801	DPHI(J,2)=PHI(J)
		DU(2) = U(30)
		DO 802 J=1,10
		X = Z(J) * 0.001
		$IF(DX(J) \bullet EQ \bullet 0 \bullet 0) X=0 \bullet 0$
		Z(J) = Z(J) + X I = (DX(J) = C = 0 = 0 = 7(A) - HDMAX - 7(2) - 7(E) + 7(20) + 0 = E + (SDAN - 7(2))
		$\frac{1}{1} \frac{1}{1} \frac{1}$
		D0 803 11=1.42
	803	$DPHI(JJ_{1})=PHI(JJ)$
		DU(1)=U(M)
		Z(J) = Z(J) - X - X
		IF(DX(4),EQ.0.0) Z(4)=HRMAX-Z(2)-Z(5)+Z(10)*0.5*(SPAN-Z(1))
		CALL CHECK2
		Z(J) = Z(J) + X
		$IF(DX(4) \cdot EQ \cdot 0 \cdot 0) Z(4) = HRMAX - Z(2) - Z(5) + Z(10) * 0 \cdot 5 * (SPAN - Z(1))$
	001	DO 804 JJ=1,42
	804	DPH1(JJ,J)=PH1(JJ)
		DU(3) = U(M)
		IE(IICOEEE(1) = 0.0) = 0.10, 809
		$UCOFFE(1) = UCOFFE(1) * 500 \cdot / Z(1)$
	809	CONTINUE
		DO 805 JJ=1,42
	с. С	COEFF(JJ,J)=DPHI(JJ,1)-DPHI(JJ,3)
		IF(COEFF(JJ,J).EQ.0.0) GO TO 805
		COEFF(JJ,J)=COEFF(JJ,J)*500./Z(J)
	805	CONTINUE
~	802	CONTINUE
C		NUMERICAL DERIVATIVES HAVE BEEN CALCULATED
С		
		RETURN
		END

\$IBFTC XMAT

SUBROUTINE XMAT(XMATRX, RHS, CONST, USIMP, COEFF, UCOEFF, PHI, B, Z, ZLIM, 1U)

```
DIMENSION XMATRX(50,80),RHS(50),CONST(80),USIMP(1)
DIMENSION PHI(50),B(50),Z(15),COEFF(50,10),UCOEFF(10),U(50)
GENERATE SIMPLEX MATRIX
```

C

```
DO 810 J=1,42

DO 811 JJ=21,62

XMATRX(J,JJ)=0.0

IF((J+20).EQ.JJ) XMATRX(J,JJ)=10.

811 CONTINUE

DO 812 JJ=1,10

JJJ=JJ*2

JJK=JJJ-1
```

XMATRX(J,JJK)=COEFF(J,JJ)
XMATRX(J,JJJ)=-COEFF(J,JJ)

- 812 CONTINUE
- 810 CONTINUE
 - DO 813 J=1,10
 - JJJ=J*2
 - JJK=JJJ-1
 - CONST(JJK)=UCOEFF(J)
- 813 CONST(JJJ)=-UCOEFF(J)

EVALUATE LIMITS ON VARIABLES

DIMENSION ZLIM(20),ZZZ(20)

ZLIM REPRESENTS THE PERCENTAGE VARIATION IN THE Z(I) WHICH DOES NOT CAUSE AN APPROXIMATING ERROR IN U OR ANY PHI(I) GREATER THAN 0.1 PERCENT DEVIATION FROM THE ACTUAL VALUE

C C C

C C

С

C

C

```
DO 814 J=1,42
814 RHS(J)=B(J)-PHI(J)
    USIMP(1) = U(30) - U(30)
    DO 815 J=23,32
    NEW = J - 22
    ZZZ(NEW) = ZLIM(NEW) \times Z(NEW)
    IF(ZZZ(NEW).LT.RHS(J)) RHS(J)=ZZZ(NEW)
815 CONTINUE
    DO 816 J=33,42
    NEW= J-22
    NNEW = J - 32
    ZZZ(NEW) = ZLIM(NEW) * Z(NNEW)
    IF(ZZZ(NEW).LT.RHS(J)) RHS(J)=ZZZ(NEW)
816 CONTINUE
    RETURN
    END
```

\$IBFT	C SIMP SUBROUTINE SIMPLX(A,B,C,NN,N,M,MM,INDEX,X,NMAX,II,S) DIMENSION A(50,80),B(50),C(50),II(80),X(80),S(80)
C C	PHASE 1 OR 2 OF LINEAR PROGRAMING STANDARD SIMPLEX
с — —	INDEX =0 FOR PHASE 2 INDEX =1 FOR PHASE 1 IF (INDEX.NE.1) GO TO 8
c c	CALCULATION OF ALLC(J) FOR VARIABLES NOT IN BASIS
	MM=N-M $MMM=M+1-NN$ $DO 5 J=1 MM$ $C(J)=0$
5	DO 5 I=MMM $_{9}M$ C(J)= C(J)-A(I $_{9}J$)
c c	SET C(J) = 1.E10 FOR VARIABLES IN BASIS
4	MA=MM+1 DO4 J=MA;N C(J)=1.E10
c c	CALCULATE INITIAL UO
6	U0=C. D0 6 I=MMM,M U0=U0+B(I) G0 T0 9 MB=M+1
12 C	DO 12 J=1,N C(J) =S(J) U0=0.0 SELECT SMALL C(J) WHICH IS C(L)
9	SMALL=C(1) L=1 DO 10 I=2.N IF (C(I).GE.SMALL) GO TO 10
10	SMALL=C(I) L=I CONTINUE
č	TESTING FOR OPTIMUM NOTE ALLOWANCE FOR ROUND OFF ERROR IF(C(L)+1.E-5.GE.0.) GO TO 100
C C	TESTING FOR FINITE OPTIMUM ALLOWANCE FOR ROUND OFF ERROR

DO 15 I=1.M IF(A(I,L).GT.1.E-5) GO TO 16 15 CONTINUE WRITE(6,210) GO TO 101 C SELECT SMALLEST RATIO FOR WHICH A(I,L) GT.O. GIVING EQN.(LL) С C IN WHICH VARIABLE IS DROPPED С SMALL = +1.0E+1016 LL=1DO 18 I=1,M IF (A(I,L).LE.1.E-5) GO TO18 IF(B(I)/A(I,L).GT.SMALL) GO TO 18 SMALL=B(I)/A(I,L)LL=I **18 CONTINUE** C С BRINGING C(K) BACK TO O BEFORE CONVERTING TO NEW CANNONICAL FORM K = II(LL)C(K)=0. C С CONVERTING TO NEW CANONICAL FORM C B(LL) = B(LL) / A(LL,L)U0=U0+B(LL)*C(L)DO 30 J=1,N IF(J.EQ.L) GO TO 30 A(LL,J) = A(LL,J)/A(LL,L)C(J)=C(J)-A(LL,J)*C(L)30 CONTINUE A(LL,L)=1. DO 33 I=1,M IF(I.EQ.LL) GO TO 33 Y = A(I,L)B(I) = B(I) - B(LL) * A(I,L)DO 31 J=1,N 31 $A(I,J) = A(I,J) - A(LL,J) \times Y$ 33 CONTINUE C SWITCH BASIS TAGS ON LL'EQN. С C C(L) =1.E10 KK = II(LL)II(LL)=LC C SETTING OLD VARIABLE IN BASIS =0 X(KK) = 0. С С RECORD NEW VALUES OF X IN MEMORY. VARIABLES NOT IN BASIS ARE

ALREADY O IN MEMORY С С DO 40 I=1,M K = II(I)40 X(K) = B(I)С C **ITERATION COMMAND** С NCYCLE \neq NCYCLE + 1 IF (NCYCLE . EQ . NMAX) GO TO 110 GO TO 9 С С OUTPUT 100 CONTINUE IF(INDEX.NE.1) GO TO 101 Ċ CALCULATION OF CANONICAL FORM OF OPT. EQN. С 102 N = N - NNMC = M + 1DO 94 J=MC .N 94 S(J) = 0.0DO 95 J = 1, N95 C(J) = S(J)U0=0. DO 90 I=1,M K = II(I)Q = C(K)U0=U0+B(I)*QDO 90 J=1,N 90 C(J) = C(J) - A(I,J) * QINDEX = 0DO 91 I=1,M K = II(I)91 C(K) = 1.E10GO TO 9 101 RETURN 110 WRITE(6,211) NCYCLE 111 STOP 200 FORMAT(2X, 4HU0 = .E11.5) 201 FORMAT(2X,8HA MATRIX,/,(1X,10F11.5)) 202 FORMAT(2X, 22HVARIABLES IN BASIS ARE, /, (2X, 3013)) 206 FORMAT(2X,28HPHASE II OF SIMPLEX SOLUTION,//) 208 FORMAT(2X,8HC MATRIX,/,(2X,8E13.5)) 210 FORMAT(2X, 17HNO FINITE OPTIMUM) 211 FORMAT(2X, 30HPROCESS DID NOT CONVERGE AFTER, 2X, 18, 2X, 6HCYCLES)

END

\$1BFTC	CHECK
	SUBROUTINE CHECK DIMENSION C(7),B(50),Z(15),U(50),PHI(50) DIMENSION RANGE(15,2) REAL IDU,IDL,L,K,IO,IL REAL MU,LL,IDLMAX,IDLMIN COMMON B,C,Z,U,PHI,SPAN,IDU,PI,N,E,SL,HTHR,MU,RV,P,RH,SY,FS,FSE COMMON DELTAB,DELTAS,DELTAU,DELTAL COMMON SUM5,M COMMON HOMAX,HRMAX,HRMIN,ODMAX,ODMIN,IDLMAX,IDLMIN,A2MAX,A2MIN COMMON RANGE
C C	CALCULATED TERMS
	L=BEAM LENGTH RU=RADIUS TO GRAVITY CENTRE OF UPPER RING ARU=CROSS-SECTIONAL AREA OF UPPER RING DU=DISPLACEMENT OF NA OF UPPER RING FROM GRAVITY CENTRE YU=RADIAL DISTANCE FROM GRAVITY CENTRE OF UPPER RING TO OUTER EDGE RGU=RADIUS OF GYRATION OF UPPER RING RL=RADIUS TO GRAVITY CENTRE OF LOWER RING ARL=CROSS-SECTIONAL AREA OF LOWER RING YL=RADIAL DISTANCE FROM GRAVITY CENTRE OF LOWER RING TO OUTER EDGE DL=DISPLACEMENT OF NA OF LOWER RING FROM GRAVITY CENTRE RGL=RADIUS OF GRYATION OF LOWER RING ALPHA=ONE-HALF THE ANGLE BETWEEN ARMS K=1.5 TORRU=TORSIONAL RIGIDITY OF UPPER RING IN RING PLANE
C C	CALCULATION OF CONSTANT TERMS
	L=0.5*(SPAN-Z(1)) IF(HRMAX.EQ.HRMIN) Z(4)=HRMAX-Z(2)-Z(5)+Z(10)*L A1=0.5*(Z(4)+Z(5)) IDL=Z(7) RU=0.25*(Z(1)+IDU) ARU=0.5*Z(2)*(Z(1)-IDU) IF(Z(1).LT.0.0) GO JO 29 DU=RU-0.5*(Z(1)-IDU)/ALOG(Z(1)/IDU) YU=0.25*(Z(1)-IDU) RGU=YU/1.732 RL=0.5*Z(3)*(Z(1)-IDL) DL=RL-0.5*(Z(1)-IDL)/ALOG(Z(1)/IDL) YL=0.25*(Z(1)-IDL) RGL=YL/1.732

```
ALPHA=PI/FLOAT(N)
```

K=1.5

TORRU=2.*YU*(Z(2)**3)*(1.-0.63*Z(2)/(2.*YU))*E/7.8 BENDRU=2.*YU*(Z(2)**3)*E/12.

CALCULATE OPTIMIZATION FUNCTION

RNGWTU=0.25*PI*Z(2)*(Z(1)+IDU)*(Z(1)-IDU) RNGWTL=0.25*PI*Z(3)*(Z(1)+IDL)*(Z(1)-IDL) FLNGWT=FLOAT(N)*Z(8)*L*Z(5)*(SQRT(1.+Z(9)**2)+SQRT(1.+Z(10)**2)) WEBWT=2.*FLOAT(N)*Z(6)*(Z(4)*(L+2.*YU-Z(6))-0.5*(Z(9)+Z(10))*L**2) U(M)=0.283*(RNGWTU+RNGWTL+FLNGWT+WEBWT) P=(SL+HTHR+U(M))/FLOAT(N)

THE PHI(I) ARE THE STRESSES IN AND THE DEFLECTION OF THE STRUCTURE CALCULATE DEFLECTIONS CALCULATION OF RADIAL RING DEFLECTIONS XXX=RADIAL DISTANCE FROM POINT OF APPLICATION OF LOAD ON UPPER RING TO SUPPORT POINT (LOAD IS APPLIED TO BRACKET BY BASE RING)

XXX=0.5*(SPAN-IDLMIN)-2. DELTAU=(P*XXX/(A1+A1))*(RU/(E*ARU))*(((RU/RGU)**2)*C(5)*(1.-2.*DU/ 1RU)+C(6)-0.5*DU/(ALPHA*RU)+2.6*K*C(7)) DELTAL=(P*XXX/(A1+A1))*(RL/(E*ARL))*(((RL/RGL)**2)*C(5)*(1.-2.*DL/ 1RL)+C(6)-0.5*DL/(ALPHA*RL)+2.6*K*C(7))

CALCULATE ARM DEFLECTIONS THESE ARE NEW FORMULAE

```
BETA1 = ATAN(Z(9))
BETA2 = ATAN(Z(10))
BETA3=0.5*(BETA1-BETA2)
BETA4=0.5*(BETA1+BETA2)
HO=Z(4)-(Z(9)+Z(10))*L
HOP=HO*COS(BETA3)
UU=Z(5)/COS(BETA4)
P1=P*COS(BETA3)
P2=P*SIN(BETA3)
LL=L/COS(BETA3) ·
IO=(Z(6)*(HOP+UU)+3'*(Z(8)-Z(6))*UU)*((HOP+UU)**2)/6.
DEE = (Z(9) + Z(10)) / (HOP + UU)
EEE=Z(6)*(Z(9)+Z(10))/(Z(6)*(HOP+UU)+3*(Z(8)-Z(6))*UU)
RV1=RV*COS(BETA3)
RV2=RV*SIN(BETA3)
RH1 = -RH \times SIN(BETA3)
RH2=RH*COS(BETA3)
G=0.5 \times E/(1.+MU)
DELTAC=P2*LL/(E*(2.*Z(8)*UU+Z(6)*(HOP+LL*(Z(9)+Z(10)))))
HL = HOP + (Z(9) + Z(10)) * LL
IL=IO*(1.+EEE*LL)*(1.+DEE*LL)**2
```

DELTAS=P1*LL*(0.25*HL**2+0.50*Z(8)*(HL*UU+UU**2)/Z(6))/(2.*G*IL) RATIO=IL/IO IF(RATIO.LT.1.1) GO TO 600 GO TO 601 600 CONTINUE DELTAB=P1*LL**3/(3.*E*IO) GO TO 602 601 DELTAB=P1*(LL/(DEE*(DEE-EEE)*(1.+DEE*LL))+ALOG(1.+EEE*LL)/(EEE* 1(EEE-DEE)**2)+(EEE-DEE-DEE)*ALOG(1.+DEE*LL)/(((DEE)**2)*(EEE-DEE) 2**2))/(E*IO) 602 CONTINUE DELTAV=(DELTAB+DELTAS)*COS(BETA3)+DELTAC*SIN(BETA3) MAXIMUM DEFLECTION OF BASE RING DELTA=XXX*(DELTAU+DELTAL)/(Z(4)+0.5*(Z(2)+Z(3)))+DELTAVBRACKET STATIC DEFLECTION STADEF=DELTA*(SL+U(M))/(SL+HTHR+U(M)) IF(STADEF.LT.0.0) GO TO 29 PHI(1)=DELTA BRACKET VERTICAL FREQUENCY XNS=187.7/SQRT(STADEF) PHI(2) = -XNSCRITICAL BUCKLING LOAD FOR UPPER RING RT1 = RU + YUIF(RT1.LT.0.0) GO TO 29 IF(RU.LT.0.0) GO TO 29 PCRU=2.*ALPHA*(BENDRU*PI**2/(RU*4.*ALPHA**2)+TORRU*(SQRT(RU+YU)-1SQRT(RU))**2)/(RU**2) PCRU=PCRU/3. PHI(3)=P*XXX/(A1+A1)-PCRU PHI(4) = -Z(3) + Z(2) - 1.000001PHI(5) = -Z(9) - Z(10)STRESSES IN RINGS UNDER NORMAL CONDITIONS P5=P*XXX/(A1+A1)PHI(6)=(P5/ARU)*((RU/(DU*0.5*IDU))*(C(2)+0.25*DU/(ALPHA*RU))*(YU-1DU)+C(4)PHI(7)=(P5/ARU)*((RU/(DU*0.5*Z(1)))*(C(1)-0.25*DU/(ALPHA*RU))*(YU+ 1DU)+C(3))PHI(8)=(P5/ARL)*((RL/(DL*0.5*IDL))*(C(2)+0.25*DL/(ALPHA*RL))*(YL-1DL)+C(4))PHI(9)=(P5/ARL)*((RL/(DL*0.5*Z(1)))*(C(1)-0.25*DL/(ALPHA*RL))*(YL+ 1DL)+C(3))

C C

С

C C

С

С

C C

С

C C

C

С

ARM SHEAR STRESSES

C

C

C C

C C

C

PHI(19)=HO

```
PHI(10)=(P1/(2.*IO))*(0.25*HOP**2+0.5*Z(8)*(HOP*UU+UU**2)/Z(6))
   PHI(11) = PHI(10) * (P1 + RV1 + RH1)/P1
   PHI(12) = P1*LL*(Z(9)+Z(10))*(HL+Z(8)*UU/Z(6))/(4*IL)+P1*Z(8)*(
  1HL*UU+UU**2)*(0.25/IL)*(1.-LL*(DEE+EEE+2.*DEE*EEE*LL)/(1.+(EEE+DEE
  2)*LL+DEE*EEE*LL**2))
   PHI(13) = PHI(12) * (P1 + RV1 + RH1)/P1
   XLIM1=0.40*SY
   XLIM2=(64.E+06)*(2.*Z(6)/HL)**2
   IF(XLIM2.IT.XLIM1) XLIM1=XLIM2
   PHI(14) = PHI(11) - XLIM1
   IF(PHI(13).GT.PHI(14)) PHI(14)=PHI(13)-XLIM1
      ARM BENDING STRESSES
   PHI(15) = 0.0
   PHI(16) = 0.0
   PHI(17) = 0.0
   XDIV=LI/1C.
   XX = -XDIV
   DO 25 JJK=1:11
   XX = XX + XDIV
   SIG1=P1*XX*0•5*(HOP+(Z(9)+Z(10))*XX+2•*UU)/(IO*(1•+EEE*XX)*(1•+DEE
  1*XX)**2)
   SIG_{2=0.5*P2/(Z(8)*UU+Z(6)*(HOP+(Z(9)+Z(10))*XX))
   SIG3 = (SIG1 + SIG2) / COS(BETA4)
   SIG4=SIG1*(P1+RV1+RH1)/P1
   SIG5=SIG2*(P2+RV2+RH2)/P2
   SIG6=(SIG4+SIG5)/COS(BETA4)
   SIG7=(SIG1-SIG2)/COS(BETA4)
   IF(SIG3.GT.PHI(15)) PHI(15)=SIG3
   IF(SIG6.GT.PHI(16)) PHI(16)=SIG6
   IF(SIG7.GT.PHI(17)) PHI(17)=SIG7
25 CONTINUE
   TERM10=0.61*SY
   TERM11=(12.E+06)*Z(8)*Z(5)/(LL*(HL+UU+UU))
   IF(TERM11.LT.TERM10) TERM10=TERM11
   TERM12=6.3*E*(Z(5)/Z(8))**2
   IF(TERM12.LT.TERM10) TERM10=TERM12
   PHI(18)=PHI(16) - TERM10
   PROFILE LIMITS
   HWEB = Z(4) - (Z(9) + Z(10)) \times L
   HO=HWEB+Z(5)+Z(5)
   SLOPE=(HRMAX-HOMAX)/(0.5*(SPAN-ODMAX))
   HBAR=HOMAX+SLOPE*L
   HEIGHT = HO - Z(5) + Z(9) + L + Z(2)
```

PHI(20)=HEIGHT PHI(21) = - HEIGHT PHI(22)=HEIGHT-HBAR SUM5=0.0 DO 100 J5=1,10 PHI(J5+22) = -Z(J5)PHI(J5+32)=Z(J5)100 CONTINUE DO 27 J4=1,42 $IF(PHI(J4) \bullet GT \bullet B(J4))$ SUM5=SUM5+PHI(J4)-B(J4) 27 CONTINUE $IF(SUM5 \cdot GT \cdot 0 \cdot 0) \quad U(M) = U(M) + (10 \cdot E + 06) * SUM5$ USTORE=U(M) GO TO 30 29 CONTINUE U(M)=USTORE*100. 30 CONTINUE RETURN

С

END

· \$IBFTC CHECK2 SUBROUTINE CHECK2 DIMENSION C(7), B(50), Z(15), U(50), PHI(50)REAL IDU, IDL, L, K, IO, IL .REAL MU, LL, IDLMAX, IDLMIN COMMON B,C,Z,U,PHI,SPAN,IDU,PI,N,E,SL,HTHR,MU,RV,P,RH,SY,FS,FSE COMMON DELTAB, DELTAS, DELTAU, DELTAL COMMON SUM5,M COMMON HOMAX, HRMAX, HRMIN, ODMAX, ODMIN, IDLMAX, IDLMIN, A2MAX, A2MIN CALCULATED TERMS L=BEAM LENGTH RU=RADIUS TO GRAVITY CENTRE OF UPPER RING ARU=CROSS-SECTIONAL AREA OF UPPER RING DU=DISPLACEMENT OF NA OF UPPER RING FROM GRAVITY CENTRE YU=RADIAL DISTANCE FROM GRAVITY CENTRE OF UPPER RING TO OUTER EDGE RGU=RADIUS OF GYRATION OF UPPER RING RL=RADIUS TO GRAVITY CENTRE OF LOWER RING ARL=CROSS-SECTIONAL AREA OF LOWER RING YL=RADIAL DISTANCE FROM GRAVITY CENTRE OF LOWER RING TO OUTER EDGE DL=DISPLACEMENT OF NA OF LOWER RING FROM GRAVITY CENTRE RGL=RADIUS OF GRYATION OF LOWER RING ALPHA=ONE-HALF THE ANGLE BETWEEN ARMS K=1.5 TORRU=TORSIONAL RIGIDITY OF UPPER RING BENDRU=BENDING RIGIDITY OF UPPER RING IN RING PLANE CALCULATION OF CONSTANT TERMS SUM5=0.0 L = 0.5 * (SPAN - Z(1))A1=0.5*(Z(4)+Z(5))IDL=Z(7)RU=0.25*(Z(1)+IDU)

ARU=0.5*Z(2)*(Z(1)-IDU) IF(Z(1).LT.0.0) GO TO 28 DU=RU=0.5*(Z(1)=IDU)/ALOG(Z(1)/IDU)YU=0.25*(Z(1)-IDU) / RGU=YU/1.732 RL=0.25*(Z(1)+IDL)ARL=0.5*Z(3)*(Z(1)-IDL)DL=RL=0.5*(Z(1)-IDL)/ALOG(Z(1)/IDL)YL=0.25*(Z(1)-IDL)RGL=YL/1.732 ALPHA=PI/FLOAT(N) K=1.5 TORRU=2•*YU*(Z(2)**3)*(1•-0•63*Z(2)/(2•*YU))*E/7•8
BENDRU=2.*YU*(Z(2)**3)*E/12.

CALCULATE OPTIMIZATION FUNCTION

```
RNGWTU=0.25*PI*Z(2)*(Z(1)+IDU)*(Z(1)-IDU)

RNGWTL=0.25*PI*Z(3)*(Z(1)+IDL)*(Z(1)-IDL)

FLNGWT=FLOAT(N)*Z(8)*L*Z(5)*(SQRT(1.+Z(9)**2)+SQRT(1.+Z(10)**2))

WEBWT=2.*FLOAT(N)*Z(6)*(Z(4)*(L+2.*YU-Z(6))-0.5*(Z(9)+Z(10))*L**2)

U(M)=0.283*(RNGWTU+RNGWTL+FLNGWT+WEBWT)

P=(SL+HTHR+U(M))/FLOAT(N)
```

THE PHI(I) ARE THE STRESSES IN AND THE DEFLECTION OF THE STRUCTURE CALCULATE DEFLECTIONS CALCULATION OF RADIAL RING DEFLECTIONS XXX=RADIAL DISTANCE FROM POINT OF APPLICATION OF LOAD

ON UPPER RING TO SUPPORT POINT (LOAD IS APPLIED TO BRACKET BY BASE RING)

```
XXX=0.5*(SPAN-IDLMIN)-2.
DELTAU=(P*XXX/(A1+A1))*(RU/(E*ARU))*(((RU/RGU)**2)*C(5)*(1.-2.*DU/
1RU)+C(6)-0.5*DU/(ALPHA*RU)+2.6*K*C(7))
DELTAL=(P*XXX/(A1+A1))*(RL/(E*ARL))*(((RL/RGL)**2)*C(5)*(1.-2.*DL/
1RL)+C(6)-0.5*DL/(ALPHA*RL)+2.6*K*C(7))
```

```
CALCULATE ARM DEFLECTIONS
THESE ARE NEW FORMULAE
```

BETA1 = ATAN(Z(9))BETA2 = ATAN(Z(10))BETA3=0.5*(BETA1-BETA2) BETA4=0.5*(BETA1+BETA2) HO=Z(4)-(Z(9)+Z(10))*LHOP=HO*COS(BETA3) UU=Z(5)/COS(BETA4)P1=P*COS(BETA3) P2=P*SIN(BETA3) LL=L/COS(BETA3) IO=(Z(6)*(HOP+UU)+3.*(Z(8)-Z(6))*UU)*((HOP+UU)**2)/6. DEE = (Z(9) + Z(10)) / (HOP + UU)EEE=Z(6)*(Z(9)+Z(10))/(Z(6)*(HOP+UU)+3.*(Z(8)-Z(6))*UU) IF(DEE.LT.O.O.OR.EEE.LT.O.O) GO TO 28 RV1=RV*COS(BETA3) RV2=RV*SIN(BETA3) $RH1 = -RH \times SIN(BETA3)$ RH2=RH*COS(BETA3) G=0.5*E/(1.+MU) DELTAC=P2*LL/(E*(2.*Z(8)*UU+Z(6)*(HOP+LL*(Z(9)+Z(10))))) HL = HOP + (Z(9) + Z(10)) * LLIL=IO*(1.+EEE*LL)*(1.+DEE*LL)**2 DELTAS=P1*LL*(0.25*HL**2+0.50*Z(8)*(HL*UU+UU**2)/Z(6))/(2.*G*IL)

RATIO=IL/IO IF(RATIO.LT.1.1) GO TO 600 GO TO 601 600 CONTINUE DELTAB=P1*LL**3/(3.*E*IO) GO TO 602 601 DELTAB=P1*(LL/(DEE*(DEE-EEE)*(1.+DEE*LL))+ALOG(1.+EEE*LL)/(EEE* 1(EEE-DEE)**2)+(EEE-DEE-DEE)*ALOG(1.+DEE*LL)/(((DEE)**2)*(EEE-DEE) 2**2))/(E*IO) 602 CONTINUE DELTAV=(DELTAB+DELTAS)*COS(BETA3)+DELTAC*SIN(BETA3) MAXIMUM DEFLECTION OF BASE RING DELTA=XXX*(DELTAU+DELTAL)/(Z(4)+0.5*(Z(2)+Z(3)))+DELTAVBRACKET STATIC DEFLECTION STADEF=DELTA*(SL+U(M))/(SL+HTHR+U(M)) IF(STADEF.LT.0.0) GO TO 28 PHI(1)=DELTA BRACKET VERTICAL FREQUENCY XNS=187.7/SQRT(STADEF) PHI(2) = -XNSCRITICAL BUCKLING LOAD FOR UPPER RING ATERM=RU+YU IF (ATERM.LT.0.0) GO TO 28 IF(RU.LT.0.0) GO TO 28 PCRU=2.*ALPHA*(BENDRU*PI**2/(RU*4.*ALPHA**2)+TORRU*(SQRT(RU+YU)-1SQRT(RU))**2)/(RU**2) PCRU=PCRU/3. PHI(3)=P*XXX/(A1+A1)-PCRU PHI(4) = -Z(3) + Z(2) - 1.000001PHI(5) = -Z(9) - Z(10)STRESSES IN RINGS UNDER NORMAL CONDITIONS P5=P*XXX/(A1+A1)PHI(6)=(P5/ARU)*((RU/(DU*0.5*IDU))*(C(2)+0.25*DU/(ALPHA*RU))*(YU-1DU) + C(4))PHI(7)=(P5/ARU)*((RU/(DU*0.5*Z(1)))*(C(1)-0.25*DU/(ALPHA*RU))*(YU+ 1DU) + C(3))PHI(8)=(P5/ARL)*((RL/(DL*0.5*IDL))*(C(2)+0.25*DL/(ALPHA*RL))*(YL-1DL)+C(4))PHI(9)=(P5/ARL)*((RL/(DL*0.5*Z(1)))*(C(1)-0.25*DL/(ALPHA*RL))*(YL+ 1DL)+C(3))ARM SHEAR STRESSES

C C

С

C

C

С

C C

C

C C

C

C C

C C C

C C C

	<pre>PHI(10)=(P1/(2.*I0))*(0.25*HOP**2+ PHI(11)=PHI(10)*(P1+RV1+RH1)/P1 PHI(12)=P1*LL*(Z(9)+Z(10))*(HL+Z(8) HL*UU+UU**2)*(0.25/IL)*(1LL*(DEE 2)*LL+DEE*EEE*LL**2)) PHI(13)=PHI(12)*(P1+RV1+RH1)/P1 VIU1*0.40*CY</pre>	0•5*Z(8)*(+)*UU/Z(6))/ +EEE+2•*DEE	HOP*UU+UU '(4•*IL)+ F*EEE*LL)	**2)/Z() P1*Z(8) /(1•+(E)	6)) *(EE+DEE
	$XL1M1=0.40\times51$				•
	$TE(XLTM2_{-}T_{-}XTTM1) XTTM1=XTTM2$				
	PHI(14) = PHI(11) - XI IM1				÷
	IF(PHI(13)•GT•PHI(14)) PHI(14)=PHI	(13)-XLIM1			
	ARM BENDING STRESSES				
	· · · · · · · · · · · · · · · · · · ·	•			•
	PHI(15)=0.0 ·				
	PHI(16)=0.0				
	-PHI(1-7)=0.0				
	XDIV=LL/10.				
	XX=-XDIV				
	DO 25 JJK=1,11				
	XX = XX + XUIV				1 .DEE
	_5161=P1*XX*U•5*(H0P+(Z(97+2(1077*X	X+2•*007711	10*11•+EE		INTUCL
	【×∧∧/×∧∠/ 「SICコー① E×Dコ//7(0)米 +7(4)米(HOD+(7(0) + 7 (10) + 3	(X))		
	SIG2=(SIG1+SIG2)/COS(BETA4)	· · · · · · · · · · · · · · · · · · ·			
	$SIG_{2}=SIG_{1}*(P_{1}+P_{1}+P_{1})/P_{1}$				
	SIG5=SIG2*(P2+RV2+RH2)/P2				
	SIG6=(SIG4+SIG5)/COS(BETA4)				
	SIG7 = (SIG1 - SIG2)/(COS(BETA4))				
	IF(SIG3 GI PHI(15)) PHI(15)=SIG3				
	$IF(SIG6 \cdot GT \cdot PHI(16)) PHI(16) = SIG6$			•	
	IF(SIG7.GT.PHI(17)) PHI(17)=SIG7	•			
25	CONTINUE		·		
	TERM10=0.61*SY				
	TERM11=(12.E+06)*Z(8)*Z(5)/(LL*(HL	+UU+UU))			•
	IF(TERM11.LT.TERM10) TERM10=TERM11	•			
	TERM12=6.3*E*(Z(5)/Z(8))**2				
	IF(TERM12.LT.TERM10) TERM10=TERM12)			
	PHI(18)=PHI(16) -TERM10				
		•			
	PROFILE LIMITS				
	•			.*	
	HWEB=Z(4)-(Z(9)+Z(10))*L				
	HO = HWEB + Z(5) + Z(5)				•
	HEIGHT=HO=7(5)+7(0)*1+7(2)				
	DHI(20)=HFIGHT				
			• .		

PHI(21)=-HEIGHT PHI(22)=HEIGHT-HBAR

1	DO 27 J4=1,10
	PHI(J4+22) = -Z(J4)
	PHI(J4+32)=Z(J4)
27	CONTINUE
	GO TO 29
28	CONTINUE
	SUM5=1.

29 CONTINUE RETURN END

С

SUBROUTI

SUBROUTINE SIZE (RANGE, Z, DX) DIMENSION RANGE(15,2),Z(15),DX(15) DO 1 J=1,10 IF(DX(J).EQ.0.0) GO TO 1 KK=INT((RANGE(J,2)-RANGE(J,1))/DX(J)) KK = KK + 1DIV=DX(J)/2. XX=RANGE(J,2)-DIV DO 2 I=1.KK IF(Z(J).GT.XX) GO TO 3 XX = XX - DX(J)GO TO 2 3 CONTINUE Z(J) = XX + DIVGO TO 1 2 CONTINUE **1** CONTINUE RETURN

END

					S. S	A real and the second s		
	INIT MAXI MAXI INIT	IAL MUM MUM IAL	WEIGHT. VERTICA HØRIZØN NØRMAL	NL REACTIØ ITAL REACT VERTICAL LIMI	N DUE TØ IØN DUE T REACTIØN. TS	SCF Ø SCF	26990.482 80147.097 371500.000 188247.619	L8. L8. L8.
	MAXI BRAC MAXI MAXI MAXI MAXI	MUM KET MUM MUM MUM	ALLØWAE CRITICA NØRMAL NØRMAL EMERGEN EMERGEN	LE STRUCT L FREQUEN TENSILE S SHEAR STR ICY TENSIL ICY SHEAR	URE DEFLE CY LIMIT. TRESS ESS ESTRESS. STRESS	CTIØN	0.100 216.000 11666.667 5833.333 23333.333 11666.667	IN. CPM PSI PSI PSI PSI
	MAXI	MUM	STRESS (LATER *(WID* (CSA S	IN CØMPRE AL BUCKLI TF)/(2.*L 16-1961 C	SSION FLA NG LIMIT) *C0), WHI LAUSE 12	NGE ØF BEAM =0.61*SY ØR CHEVER IS L 4.1)	12,000,000 PS ESS	I
•	MAXI	MUM	WEB SHE WHICHE	AR IN BEA VER IS LE	M=0.40*SY SS (CSA S	ØR 64 000 1 16-1961 CLA	000 PSI*(2.*TW USE 12.5)	/H)**2,
	махі	MUM	STRESS BUCKLI	IN CØMPRE NG=KC*E(T	SSIØN FLAN F/WID)**2	NGE ØF ARM , WHERE KC=	TØ LIMIT LØCAL 6.3	
				LENGIHS F (1) = (2) =	2R VARIAB 1.000000 0.125000 0.250000 0.250000 0.062500 1.000000 0.250000 0.010000 0.010000	LES		
	•			ØPTI	MIZATIØN			
	NNN= NNN= NNN= NNN=		L 2 3	U(11)= U(22)= U(22)= U(11)=	0.27318 0.27252 0.27358 0.27358	4E 05LB. DE 05LB. DE 05LB. 2E 05LB.	1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 199	
	NNN= NNN=	5	5	U(22)= U(22)=	0.269593 0.266674	3E 05LB. 4E 05LB.		

U(22)= C.267441E 05L8. NNN= 7 NNN= 8 U(11) =0.266674E 05LB. **ØPTIMIZATIØN IN SIMPLEX STAGE** NCALL= 1 SIMPLEX SØLUTIØN UNSUCCESSFUL U(31)= 0.2 0.286629E 05LB. LIMIT 1 EXCEEDED LIMIT 21 EXCEEDED LIMIT 27 EXCEEDED LIMIT 28 EXCEEDED ACTUAL VALUE OF U IS 0.260876E 05 L8. NNN= 9 U(45)= 0.262467E 05L8. 2 NCALL= SIMPLEX SØLUTIØN UNSUCCESSFUL U(31)= 0.270852E 05L8. LIMIT 1 EXCEEDED LIMIT 21 EXCEEDED LIMIT 27 EXCEEDED LIMIT 28 EXCEEDED ACTUAL VALUE &F U IS 0.258352E 05 LB. NNN= 10 U(45)= 0.259996E 05LB. NCALL= 3 SIMPLEX SØLUTIØN UNSUCCESSFUL U(31)= 0.266691E 05LB. LIMIT 1 EXCEEDED LIMIT 21 EXCEEDED LIMIT 27 EXCEEDED LIMIT 28 EXCEEDED ACTUAL VALUE OF U IS 0.255905E 05 L8. U(45)= 0.257553E 05LB. NNN= 11 NCALL= 4 SIMPLEX SØLUTIØN UNSUCCESSFUL U(31)= 0.263420E 05LB. 1 EXCEEDED 1 EXCEEDED 7 EXCEEDED 8 EXCEEDED LIMIT LIMIT 21 LIMIT 27 LIMIT 28

ACTUAL VALUE ØF U IS 0.253631E 05 LB.

NNN= 12

U(45)= 0.255283E 05LB.

NCALL= 5

SIMPLEX SØLUTIØN UNSUCCESSFUL - U(31)= 0.260006E 05LB.

LIMIT	1	EXCEEDED
LIMIT	21	EXCEEDED
LIMIT	27	EXCEEDED
LIMIT	28	EXCEEDED

ACTUAL VALUE OF U IS 0.252312E 05 LB.

NNN= 13

U(45)= 0.253984E 05LB.

NCALL= 6

SIMPLEX SØLUTIØN UNSUCCESSFUL U(31)= 0.198635E 10LB.

LIMIT	1	EXCEEDED
LIMIT	3	EXCEEDED
LIMIT	21	EXCEEDED
LIMIT	27	EXCEEDED
LIMIT	28	EXCEEDED

ACTUAL VALUE OF U IS 0.251588E 05 LB.

NNN = 14

U(45)= 0.253274E 05LB.

NCALL= 7

SIMPLEX ØPTIMUM..... 0.253022E 05 LB.

PATTERN MØVE 1 UNSUCCESSFUL .U= 0.159712E 12 LB.

STEP SIZE REDUCED

NCALL= 8

SIMPLEX SØLUTIØN UNSUCCESSFUL U(31) = 0.100180E 07LB.

LIMIT	1	EXCEEDED
LIMIT	3	EXCEECEC
LIMIT	21	EXCEEDED
LIMIT.	25	EXCEEDED
LIMIT	27	<i>'EXCEEDED</i>
LIMIT	28	EXCEEDED
LIMIT	29	EXCEEDED

ACTUAL VALUE ØF U IS 0.251483E 05 LB. NNN= 15 U(45)= 0.252389E 05LB.

SIMPLEX ØPTIMUM..... 0.252160E 05 LB.

PATTERN MØVE 1 UNSUCCESSFUL

U= 0.817278E 11 LB.

STEP SIZE REDUCED

NCALL= 10

SIMPLEX SØLUTIØN UNSUCCESSFUL U(31)= 0.191217E 10LB.

LIMIT	1	EXCEEDED
LIMIT	3	EXCEEDED
LIMIT	21	EXCEEDED
LIMIT	25	EXCEEDED
LINIT	27	EXCEEDED
LIMIT	28	EXCEEDED

ACTUAL VALUE ØF U IS 0.251538E 05 LB.

STEP SIZE REDUCED

ØPTIMUM SØLUTIØN

ØUTSIDE DIAMETER UPPER RING THICK LØWER RING THICK DISTANCE BETWEEN BEAM FLANGE THIC BEAM WEB THICKNE INTERNAL DIAMETE WIDTH ØF BEAM FL SLØPE ØF UPPER F SLØPE ØF LØWER F	ØF RINGS NESS RINGS KNESS SS ØF LØWER RIN ANGE LANGE ØF BEAM LANGE ØF BEAM	NG	132.5101N. 3.0001N. 2.0001N. 43.7501N. 1.0001N. 1.0001N. 54.0001N. 16.6421N. 0.224 -0.000
MINIMUM WEIGHT			25216.748LB.
	ØPTIMUM S	BLUTIØN	
ØUTSIDE DIAMETER UPPER RING THICK LØWER RING THICK DISTANCE BETWEEN BEAM FLANGE THIC BEAM WEB THICKNE INTERNAL DIAMETE WIDTH ØF BEAM FL SLØPE ØF UPPER F SLØPE ØF LØWER F	ØF RINGS NESS RINGS KNESS KNESS SS ØF LØWER RIN ANGE ØF BEAM LANGE ØF BEAM	NG	133.000IN. 3.000IN. 2.000IN. 43.750IN. 1.000IN. 1.000IN. 55.000IN. 16.500IN. 0.220 -0.000
MINIMUM WEIGHT			25240.505LB.
	FINAL CALC	CULATIONS	
PHI(1)= PHI(2)=	0.100 -771.410	•LE•	0.1 00 -216.000

•LE. •LE. •LE. PHI(PHI(PHI(0.000 -8151.805 31= $\begin{array}{r} -0.000\\ -0.220\\ 9409.434\\ 9134.244\\ 9134.244\\ 9175.165\\ 6583.150\\ 3776.616\\ 4576.239\\ 1964.813\\ 2380.822\\ -11619.178\\ 9885.275\\ 15096.765\\ 9546.538\\ -6253.234\\ 30.680\\ 47.750\\ -11.912\\ -133.000\\ -2.000\\ -43.750\\ -11.000\\ -1.000\\ -1.000\\ -1.000\\ \end{array}$ 4)= 5)= 6)= 11666.667 PHIC 11666.667 .LE. PHI (7)= PHI PHI .LE. 11666.667 8)= (11666.667 5833.333 11666.667 9)= .LE. PHI .LE. 10)= 1 PHI 11)= 12)= 5833.333 11666.667 PHI .LE • .LE. PHI (PHI 14)= •LE• 0.000 (11666.667 23333.333 11666.667 15) = 16) = 17) = 18) =PHI PHI .LE. PHI PHI PHI ·LE. 0.000 40.000 191= .LE. 40.000 47.750 -47.750 -97.000 -2.000 -2.000 -2.000 191 = 201 = 2211 = 2221 = 22.LE. PHI { PHI .LE. (PHI .LE. PHI .LE. .LE. PHI (PHI PHI .LE. •LE• •LE• -1.000 PHI PHI PHI PHI 1 -16.500 -0.220 -54.000 291= .LE. ·LE· 31) = 32) = 33) =-0.000 PHI $\begin{array}{c} -0.220\\ 0.000\\ 133.000\\ 2.000\\ 43.750\\ 1.000\\ 1.000\\ 55.000\\ 16.500\\ 0.220\\ -0.000\end{array}$.LE. -0.000 PHI 216.000 .LE. PHI PHI PHI PHI PHI 34)= 6.000 .LE. 35)= •LE• 6.000 (36)= 80.000 (371= .LE. 4.000 4.000 .LE. PHI 38)= PHI(PHI(PHI(PHI(·LE. ·LE. 77.000 39)= 35.000 1.000 0.000 40)= 41)= 42)=

\$CARD READ

D L SAXTON

- APPENDIX H

EXPERIMENTAL TEST RESULTS AND THEORETICAL COMPARISONS

an ang sina analah sa ang sa kana ang sa kana ang sa kana ang sa kana sa kana sa kana sa kana sa kana sa kana s	teres (and reader to all of the state of th	e ne analasi tanan sebelah sebe T	RING ST	RESSES (PS	I)	anga mangan také kang pang mang mang mang mang pang pang pang pang pang pang pang p	an nganga bahan ng gagana ana ang kana ng ang kanang kang gang g	ann a an an an Arran Anna an Anna an Anna Anna
LØAD	GA	GE 1	GA	GE 2	GA	GE 3	GA	GE 4
(LB)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.
1050	420.	227.	-540.	-285.	570:	508.	-570.	-0. -405.
1980. 3000. 4010. . 5020.	690. 840. 1020. 1140.	427. 647. 865. 1083.	-540. -630. -840. -900.	-538. -815. -1090. -1364.	1200 • 1590 • 2160 • 2610 •	958 • 1451 • 1940 • 2428 •	-1080. -1620. -2100. -2520.	-764. -1157. -1547. -1936.
5980 - 7000 - 8020 - 9020 -	1230. 1380. 1500.	1290. 1511. 1731. 1947.	-990. -1140. -1110. -1830.	-1625. -1903. -2180. -2452.	3150 -3450 -3960 	2893• 3386• 3879• 4363•	-3000. -3600. -4050. -4530.	-2306. -2700. -3093. -3479.
10050. 11070. 12000.	1800. 1920. 1980.	2169. 2389. 2590.	-1920. -2040. -2100.	-2732. -3009. -3262.	5010. 5580. 6000.	4861. 5355. 5804.	-5100. -5640. -5880.	-3876. -4270. -4628.
SLOPES (PSI/KIP)	na na sana na sana na sana na sana sana		an a	$\label{eq:statistical} \mathcal{T} = \mathcal{T} = \mathcal{T} = \mathcal{T} = \mathcal{T} = \mathcal{T} = \mathcal{T}$	nden anderse all a low the prover of the antibacture of	ana ana amin'ny sorana amin'ny tanàna amin'ny tanàna amin'ny tanàna amin'ny tanàna amin'ny tanàna amin'ny tanàn N	an a she a she a she a sa s	ana ana ana amin' ami
LØAD CYCLE LAST 5 PØINTS ØN LØAD CYCLE	196. 138.	216. 216.	-143. -117.	-272. -272.	519. 491.	484. 484.	-499. -473.	-386. -386.

TEST NUMBER 1

ARM STRESSES (PSI)

LØAD	GAGE 5		GAGE 6		GAGE 7	
(LB)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.
0 1050 1980 3000 4010 5020 5980 7000 8020 9020 10050 11070 12000	0: 540 1200 1500 2160 2760 3150 3570 4170 4740 5160 5820 6210	0 • 728 • 1373 • 2081 • 2781 • 3482 • 4148 • 4855 • 5563 • 6256 • 6971 • 7678 • 8323 •	0. 360. 780. 1020. 1470. 1800. 2220. 2400. 2850. 3120. 3460. 3870. 4140.	0. 408. 769. 1166. 1558. 1951. 2324. 2720. 3117. 3505. 3905. 4302. 4663.	0. -1140. -1260. -2220. -2580. -2940. -3600. -4380. -4620. -5220. -6000. -6480. -6960.	-0. -788. -1486. -2251. -3009. -3767. -4487. -5252. -6017. -6768. -7541. -8306. -9004.
SLØPES (PSI/KIP)						
LØAD CYCLE LAST 5 PØINTS ØN LØAD CYCLE	532. 515.	694 • 694 •	366. 365.	389. 389.	-564. -539.	-750. -750.

ARM STRESSES (PSI)

LØAD	GAGE 8		GAGE 9		GAG	E 10	and and a second se	
(LB)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.		
0. 1050. 1980. 3000. 4010. 5020. 5980. 7000. 8020. 9020. 10050. 11070. 12000.	0. -870. -1110. -2190. -2700. -3120. -3660. -4500. -5100. -5520. -5940.	-0. -448. -1280. -1710. -2141. -2550. -2986. -3421. -3847. -4286. -4721. -5118.	0. -600. -1170. -1650. -2250. -2700. -3300. -3300. -4350. -4330. -5370. -5880. -6300.	-0. -448. -844. -1280. -1710. -2141. -2550. -2986. -3421. -3847. -4286. -4721. -5118.	0. -1440. -2460. -3120. -3930. -4590. -5340. -6000. -6750. -7440. -8010. -8760. -9270.	-0. -756. -1425. -2159. -2886. -3612. -4303. -5037. -57771. -6491. -7232. -7966. -8635.		
SLØPES (PSI/KIP)		•					1 k	
LØAD CYCLE LAST 5 PØINTS ØN LØAD CYCLE	-506. -497.	-427. -427.	-544. -530.	-427. -427.	-852. -721.	-720. -720.		
			ø			•		

DEFLECTIONS (INCHES/10000.)

LØAD	Т	TØTAL		ARM 1		ARM 2	
(LB)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.	
0. 1050. 1980. 3000. 4010. 5020. 5980. 7000. 8020. 9020. 10050. 11070. 12000.	0.0 39.0 55.0 79.0 88.0 106.5 116.0 124.0 130.0 138.0 144.5	$\begin{array}{c} 0 \cdot 0 \\ 4 \cdot 8 \\ 9 \cdot 1 \\ 13 \cdot 3 \\ 18 \cdot 4 \\ 23 \cdot 0 \\ 27 \cdot 4 \\ 32 \cdot 1 \\ 36 \cdot 8 \\ 41 \cdot 4 \\ 46 \cdot 1 \\ 50 \cdot 8 \\ 55 \cdot 0 \end{array}$	$ \begin{array}{c} 0.0\\ 2.5\\ 6.0\\ 10.0\\ 17.0\\ 21.5\\ 24.0\\ 29.0\\ 33.5\\ 37.5\\ \end{array} $	0.0 3.3 6.2 9.4 12.6 15.8 18.8 22.0 25.2 28.3 31.6 34.8 37.7	0.0 22.0 28.5 32.0 35.0 38.5 44.0 47.0 50.5 53.5 57.0 60.0	0.0 3.3 6.2 9.4 12.6 15.8 18.8 22.0 25.2 28.3 31.6 34.8 37.7	
SLOPES (TENTHS/KIP)					* "	
LØAD CYCLE LAST 5 PØINTS ØN LØAD CYCLE	8.5 2.6	4.6	3.3 3.3	3.1 3.1	3•3 3•3	3.1 3.1	

and a second			RING ST	RESSES (PS	The formation and the mean and the second	e e e e e e e e e e e e e e e e e e e	anna airdean ann ann an ann an an ann an ann an an	ele da, at da e contra que l'Altreage desservare reg
LØAD	GA	GE 1	GΑ	GE 2	GA	GAGE 3		GE 4
(LB)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.
0. 1050. 1980. 3000. 4010. 5020.	0. 390. 510. 720. 780. 960.	0 • 227 • 427 • 647 • 865 • 1083 •	0. -390. -180. -270. -480. -630.	-0. -285. -538. -815. -1090. -1364.	0. 570. 990. 1620. 2010. 2580.	0. 508. 958. 1451. 1940. 2428.	-510 -1080 -1590 -2100 -2520	-0. -765. -1157. -1547. -1936.
7010. 8020. 9020. 10020. 1000.	1050 1140 1230 1470 1380 1530 1620	1290. 1513. 1731. 1947. 2162. 2374. 2590.	-420. -600. -570. -630. -810. -600.	-1025. -1905. -2180. -2452. -2723. -2990. -3262.	2050 3600 3900 4440 4800 5430 5820	2093. 3391. 3879. 4363. 4847. 5321. 5804.	-3540 -4080 -4440 -4950 -5370 -5910	-2704 -3093 -3479 -3865 -4243 -4628
SLØPES (PSI/KIP) LØAD CYCLE LAST 5 PØINTS ØN LØAD CYCLE	164• 132•	216 • 216 •	-74. -85.	-272. -272.	487. 468.	484. 484.	-516. -500.	-386. -386.

.

TEST NUMBER 2

ARM STRESSES (PSI)

LØAD	GAGE 5		GAG	GE 6	GAGE 7		
(LB)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.	
0. 1050. 1980. 3000. 4010. 5020. 5980. 7010. 8020. 9020. 10020. 10020. 1000.	0. 840. 1080. 1680. 2160. 2760. 3150. 3810. 4110. 4770. 5190. 5640. 6180.	0 - 728 - 1373 - 2081 - 2781 - 3482 - 4148 - 4862 - 5563 - 6256 - 6950 - 7630 - 8323 -	0 • 420 • 600 • 1230 • 1380 • 1860 • 2040 • 2610 • 2700 • 3270 • 3270 • 3390 • 3780 • 4020 •	0. 408. 769. 1166. 1558. 1951. 2324. 2724. 3117. 3505. 3894. 4275. 4663.	$\begin{array}{c} 0 \\ -1170 \\ -1830 \\ -2130 \\ -2790 \\ -3240 \\ -4110 \\ -4440 \\ -4920 \\ -5430 \\ -5940 \\ -6180 \\ -6990 \end{array}$	-0. -788. -1486. -2251. -3009. -3767. -4487. -5260. -6017. -6768. -7518. -8253. -9004.	
SLOPES (PSI/K	IP)			,			
LØAD CYCLE LAST 5 PØINTS ØN LØAD CYCLE	515. 521.	694 • 694 •	351. 351.	389. 389.	-624. -565.	-750. -750.	

182

-

ARM STRESSES (PSI)

LØAD	GAG	E 8	GAGE 9		GAGE 10	
(LB)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.
0. 1050. 1980. 3000. 4010. 5020. 5980. 7010. 8020. 9020. 10020. 11000. 12000.	0: -870. -1350. -1770. -2640. -2760. -3240. -3780. -4200. -4560. -5100. -5400. -6060.	-0. -448. -844. -1280. -1710. -2141. -2550. -2790. -3421. -3847. -4274. -4692. -5118.	$\begin{array}{r} 0 \\ -660 \\ -1080 \\ -1650 \\ -2130 \\ -2730 \\ -3150 \\ -3840 \\ -4170 \\ -5100 \\ -5610 \\ -5610 \\ -6150 \end{array}$	-0. -448. -844. -1280. -1710. -2141. -2550. -2990. -3421. -3847. -4274. -4692. -5118.	0. -1200. -2130. -2790. -3540. -4440. -4920. -5850. -6360. -7050. -7650. -8190. -8910.	-0. -756. -1425. -2159. -2886. -3612. -4303. -5044. -5771. -6491. -7210. -7916. -8635.
SLØPES (PSI/KIP)						
LØAD CYCLE LAST 5 PØINTS ØN LØAD CYCLE	-530. -476.	-427. -427.	-525. -521.	-427. -427.	-812. -722.	-720. -720.

.

DEFLECTIØNS (INCHES/10000.)

TØTAL		ARM 1		2
EXP. THEØ	R. EXP.	THEØR.	EXP.	THEØR.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 3.3 6.2 9.4 12.6 15.8 18.8 22.0 25.2 28.3 31.5 34.5 37.7	0.0 17.5 24.7 28.3 31.8 35.3 37.4 41.3 41.3 45.8 45.8 48.8 51.3 55.3	0.0 3.3 6.2 9.4 12.6 15.8 18.8 22.0 25.2 28.3 31.5 34.5 37.7
12.9 10.2 4	• 6 2 • 1 • 6 3 • 3	3.1 3.1	5.6 3.2	3.1 3.1
	$\begin{array}{c ccccc} T\emptysetTAL\\ EXP & THE\emptyset\\ 0 & 0 & 0\\ 31 & 5 & 4\\ 41 & 2 & 9\\ 56 & 5 & 13\\ 66 & 0 & 18\\ 74 & 6 & 23\\ 83 & 0 & 27\\ 95 & 5 & 32\\ 99 & 5 & 36\\ 108 & 0 & 41\\ 116 & 4 & 46\\ 124 & 2 & 50\\ 130 & 6 & 55\\ 12 & 9 & 4\\ 10 & 2 & 4\\ \end{array}$	TØTALEXP. $THEØR.$ $EXP.$ 0.00.00.031.54.8 -1.2 41.29.1 -1.2 56.513.81.066.018.44.874.623.08.083.027.411.695.532.115.8108.041.421.8116.446.025.3124.250.428.5130.655.032.8	TØTALARM 1EXP.THEØR.EXP.THEØR.0.00.00.00.031.54.8 -1.2 3.341.29.1 -1.2 6.256.513.81.09.466.018.44.812.674.623.08.015.883.027.411.618.895.532.115.822.099.536.818.525.2108.041.421.828.3116.446.025.331.5124.250.428.534.5130.655.032.837.7	TØTALARM 1ARMEXP.THEØR.EXP.THEØR.EXP. 0.0 0.0 0.0 0.0 0.0 0.0 31.5 4.8 -1.2 3.3 17.5 41.2 9.1 -1.2 6.2 24.7 56.5 13.8 1.0 9.4 28.3 66.0 18.4 4.8 12.6 31.8 74.6 23.0 8.0 15.8 35.3 83.0 27.4 11.6 18.8 37.4 95.5 32.1 15.8 22.0 41.3 99.5 36.8 18.5 25.2 43.3 108.0 41.4 21.8 28.3 45.8 116.4 46.0 25.3 31.5 48.8 124.2 50.4 28.5 34.5 51.3 130.6 55.0 32.8 37.7 55.3 12.9 4.6 2.1 3.1 5.6 10.2 4.6 3.3 3.1 3.2

.

SHIMS UNDER SUPPORT BLOCKS OF ARMS 2 AND 4

STRESSES (PSI)

LØAD	GA	GAGE 1		GE 2	GAGE 10	
(LB)	. EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.
0. 495. 995. 1500. 2000. 2505. 3015. 3505.	0. -870. -1350. -2070. -2640. -3300. -3930. -4500.	-0. -616. -1238. -1866. -2488. -3116. -3751. -4360.	0. 810- 1650. 2190. 2790. 3360. 3990. 4500.	0. 774. 1555. 2344. 3126. 3915. 4712. 5478.	0. -600. -1470. -2520. -3270. -4080. -4950. -5700.	-712 -1432 -2158 -2878 -3605 -4339 -5044
2990 - 2500 - 1995 - 1495 - 1000 - 490 - 90 -	-3900. -3360. -2760. -2070. -1620. -990. -210.	-3720. -3110. -2482. -1860. -1244. -610. -112.	4050- 3600- 2880- 2520- 1800- 870- -60-	4673. 3907. 3118. 2337. 1563. 766. 141.	-5010. -4290. -3570. -2640. -1800. -900. -150.	-4303. -3597. -2871. -2151. -1439. -705. -130.
SLØPES (PSI/KIP)						
LEAD CYCLE	-1262.	-1244.	1260.	1563.	-1666.	-1439.
. UNLØAD CYCLE	-1234.	-1244.	1371.	1563.	-1685.	-1439.
LAST 5 PØINTS ØN 10AD CYCLE	-1224.	-1244.	1158.	1563.	-1600.	-1439.

SHIMS UNDER SUPPORT BLOCKS OF ARMS 2 AND 4

STRESSES (PSI)

LØAD	LØAD GAGE 1		1 GAGE 2			GAGE 10	
(LB)	. EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.	
0. 495. 1005. 1500. 2000. 2500. 2995. 3505.	0. -870. -1410. -2040. -2670. -3300. -3840. -4440.	-0. -616. -1250. -1866. -2488. -3110. -3726. -4360.	0. 780. 1440. 2010. 2580. 3210. 3840. 4440.	0. 774. 1571. 2344. 3126. 3907. 4681. 5478.	0. -900. -1680. -2580. -3300. -4080. -4860. -5730.	-0. -712. -1446. -2158. -2878. -3597. -4310. -5044.	
2985. 2495. 2000. 1500. 1010. 485. 5.	-3750. -3240. -2760. -1920. -1500. -930. -90.	-3713. -3104. -2488. -1866. -1256. -603. -6.	4080- 3660- 3180- 2520- 1830- 930- 90-	4666. 3900. 3126. 2344. 1579. 758. 8.	-4950. -4260. -3540. -2730. -1920. -870. 0.	-4295. -3590. -2878. -2158. -1453. -698. -7.	
SLØPES (PSI/KIP)							
LØAD CYCLE	-1243.	-1244.	1244.	1563.	-1614.	-1439.	
UNLØAD CYCLE	-1208.	-1244.	1347.	1563.	-1667.	-1439.	
LAST 5 PØINTS ØN LØAD CYCLE	-1193.	-1244.	1223.	1563.	-1571.	-1439.	

.

RING STRESSES (PSI)

LØAD	GAC	GE 1	GA	GE 2	GAG	E 3	GA	GE 4
· (LB)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.
990	0. 360.	214.	-390.	-0.	510.	479.	-690.	-0.
1980. 2990.	720.	427. . 645.	-330.	-538. -813.	1050. 1470. 2100	958 • 1446 • 1944	-1170. -1710. -2190.	-764.
5050.	990.	1090	-570.	-1373.	2490.	2443.	-2760.	-1948.
7000.	1200.	1511.	-750 -720 -	-1903.	3420. 3930.	3386 • 3879 •	-3660.	-2700.
9020. 10020. 11120. 11980.	1410 • . 1530 • 1620 • 1800 •	1947. 2162. 2400. 2585.	-930. -960. -1020. -990.	-2452. -2723. -3022. -3256.	4350. 4920. 5400. 5850.	4363. 4847. 5379. 5795.	-4680. -5100. -5580. -6000.	-3479. -3865. -4289. -4621.
11000. 9980.	1680. 1530.	2374 • 2154 •	-1050. -990.	-2990. -2713.	5520 • 5220 •	5321. 4827.	-5550. -5010.	-4243. -3849.
8000.	1260.	1726.	-900.	-2174.	4980.	3870.	-4140.	-3086.
6980 • 6000 • 5000 •	1110. 1080. 930.	1502 • 1295 • 1079 •	-870. -690. -570.	-1892. -1631. -1359.	4050 • 3570 • 3000 •	3367. 2902. 2418.	-3660. -3180. -2730.	-2314. -1928.
.3000- 20C0- 1010-	660. 600. 450.	647. 432. 218.	-510 -420 -510	-815. -544. -275.	1770. 1170. 600.	1451. 967. 489.	-1710. -1170. -750.	-1157. -771. -390.
SLØPES (PSI/KIP)		ana ana amin'ny fanisa amin'ny fanisa ana amin'ny fanisa amin'ny fanisa amin'ny fanisa amin'ny fanisa amin'ny f N	anna a tha a tha an ann an an ann an ann an an ann an a	ana	ononinenten (* 1917) serveren konst	aanaanaan aysaanaan Toona Qaasayaa		energia de la companya de la company
LØAD CYCLE UNLØAD CYCLE LAST 5 PØINTS ØN LØAD CYCLE	129. 126. 122.	216. 216. 216.	-77. -76. -63.	-272. -272. -272.	483. 521. 488.	484. 484. 484.	-492. -487. -461.	-386. -386. -386.

. .

ARM STRESSES (PSI)

LEAD	GA	GE 5	GAG	GE 6	GAGE 7		
(LB)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.	
0. 990. 1980. 2990. 4020. 5050. 5990. 7000. 8020. 9020. 10020. 11120. 11980.	630 1170 1590 2220 2730 3270 3630 4230 4710 5280 5760 6300	687 1373 2074 2788 3503 4155 4855 5563 6256 6950 7713 8309	0. 300. 630. 960. 1470. 1710. 2130. 2430. 2790. 3120. 3510. 3810. 4080.	0. 385. 769. 1162. 1562. 2328. 2720. 3117. 3505. 3894. 4321. 4655.	0. -1170. -1560. -2280. -2880. -3420. -3840. -4380. -4380. -4920. -5370. -5910. -6600. -7080.	-0. -743. -1486. -2243. -3016. -3789. -4494. -5252. -6017. -6768. -7518. -8343. -8989.	
110C0. 9980. 9000. 8000. 6960. 6000. 5000. 4000. 3000. 2000. 1010.	5970. 5760. 5400. 4920. 4410. 3870. 3150. 2520. 1800. 1320. 840. -90.	7630. 6922. 6242. 5549. 4827. 4162. 3468. 2774. 2081. 1387. 701. 0.	4080. 4080. 3930. 3510. 3090. 2490. 1950. 1320. 810. 660. -90.	4275. 3878. 3497. 3109. 2705. 2332. 1943. 1554. 1166. 777. 392. 0.	-6570. -6030. -5580. -5100. -4590. -3900. -3480. -2910. -2400. -1860. -1140. -300.	-8253. -7488. -6753. -6002. -5222. -4502. -3751. -3001. -2251. -1501. -758. -0.	
SLOPES (PSI/KIP)							
LØAD CYCLE UNLØAD CYCLE LAST 5 PØINTS ØN LØAD CYCLE	515. 565. 517.	694 • 694 • 694 •	347. 411. 326.	389. 389. 389.	-555. -553. -554.	-750. -750. -750.	

.+				ARM STR)		
	LØAD	GA	GE 8	GA	GE 9	GAGI	E 10
	(LB)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.
	0. 990. 1980. 2990. 4020. 5050. 5990. 7000. 8020. 9020. 10020. 11120. 11980.	0. -960. -1410. -1920. -2340. -2940. -3360. -3810. -4200. -4740. -5100. -5670. -6000.	-0. -422. -1275. -1715. -2154. -2555. -2986. -3421. -3847. -4274. -4743. -5109.	$\begin{array}{r} 0 \\ -600 \\ -1110 \\ -1620 \\ -2220 \\ -2730 \\ -3240 \\ -3720 \\ -4290 \\ -4740 \\ -5220 \\ -5730 \\ -6300 \end{array}$	-0. -422. -844. -1275. -1715. -2154. -2555. -2986. -3421. -3847. -4274. -4743. -5109.	0. -1290. -3870. -3870. -4530. -5250. -5760. -6480. -7290. -7890. -8340. -9180.	-0. -712. -1425. -2152. -2893. -3634. -4310. -5037. -5771. -6491. -7210. -8002. -8621.
	11000. 9980. 9000. 8000. 6960. 6000. 5000. 4000. 3000. 2000. 1010.	-5730. -5220. -4830. -4410. -4080. -3510. -3120. -2460. -2130. -1530. -1080. -120.	-4692. -4256. -3839. -3412. -2968. -2559. -2133. -1706. -1280. -853. -431. -0.	-5790. -5430. -4830. -4470. -3990. -3600. -2940. -2460. -1920. -1410. -780. -120.	-4692. -4256. -3839. -3412. -2968. -2559. -2133. -1706. -1280. -853. -431. -0.	-8460. -7860. -7110. -6600. -5400. -3990. -3210. -2430. -1410. -60.	-7916. -7182. -6476. -5757. -5008. -4318. -3598. -2878. -2159. -1439. -727. -0.
SLØPE	S (PSI/KIP	•)					
LØAI UNLØ LAST ØN LØ	D CYCLE AD CYCLE 5 PØINTS AD CYCLE	-478. -486. -453.	-427. -427. -427.	-516. -512. -499.	-427. -427. -427.	-720. -725. -641.	-720. -720. -720.

A () 44

DEFLECTIONS (INCHES/10000.)

LEAD	T	ØTAL	ARM 1		ARM 2		
(LB)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.	
0. 990. 1980. 2990. 4020. 5050. 5990. 7000. 8020. 9020. 10020. 11120. 11980.	0.0 42.0 58.5 71.0 83.3 91.5 100.0 108.3 116.8 125.2 133.4 139.6 146.0	$\begin{array}{r} 0.0 \\ -4.5 \\ -9.1 \\ -13.7 \\ -13.8 \\ -23.2 \\ -27.5 \\ -32.1 \\ -36.8 \\ -41.4 \\ -46.0 \\ -51.0 \\ -54.9 \end{array}$	$\begin{array}{c} 0 \cdot 0 \\ -0 \cdot 5 \\ -0 \cdot 5 \\ 0 \cdot 7 \\ 4 \cdot 5 \\ 9 \cdot 0 \\ 12 \cdot 0 \\ 16 \cdot 0 \\ 20 \cdot 0 \\ 23 \cdot 0 \\ 23 \cdot 0 \\ 27 \cdot 8 \\ 31 \cdot 9 \\ 36 \cdot 0 \end{array}$	$\begin{array}{c} 0.0 \\ -3.1 \\ -6.2 \\ -9.4 \\ -12.6 \\ -15.9 \\ -18.8 \\ -22.0 \\ -25.2 \\ -28.3 \\ -31.5 \\ -34.9 \\ -37.6 \end{array}$	0.0 16.2 23.7 28.2 31.2 36.2 38.2 41.2 44.2 47.2 53.2 53.2 56.2	0.0 3.1 6.2 9.4 12.6 15.9 18.8 22.0 25.2 28.3 31.5 34.9 37.6	
11000. 9980. 9000. 8000. 6960. 6000. 5000. 4000. 3000. 2000. 1010. 0.	146.0 141.8 136.8 132.2 124.8 116.2 108.4 102.0 91.8 81.0 65.2 22.0	-50.4 -45.8 -41.3 -36.7 -31.9 -27.5 -22.9 -18.3 -13.8 -9.2 -4.6 0.0	35.2 33.2 31.0 28.0 23.0 18.5 14.0 9.0 4.7 2.2 2.2 2.2 1.0	$ \begin{array}{r} -34.5 \\ -31.3 \\ -28.3 \\ -25.1 \\ -21.9 \\ -18.8 \\ -15.7 \\ -12.6 \\ -9.4 \\ -6.3 \\ -3.2 \\ 0.0 \end{array} $	56.2 566.2 51.4 51.2 50.7 49.5 44.2 41.0 29.2 29.2 9.2	34.5 31.3 28.3 25.1 21.9 18.8 15.7 12.6 9.4 6.3 3.2 0.0	
SLOPES (TENTHS/KI	(P)		A				
LØAD CYCLE UNLØAD CYCLE LAST 5 PØINTS ØN LØAD CYCLE	10.5 9.5 7.3	4 • 6 4 • 6 4 • 6	3.3 3.6 4.1	3.1 3.1 3.1	3.9 3.6 3.0	3.1 3.1 3.1	

n - na ann ann an tha a an tha na ann an tharaichte an tharaichte an tharaichte ann an tharaichte ann an tharai B	e estrator - presidente superante come	energen an de laterne (en lan monetenation provinsionen en l	RING ST	RESSES (PS	I)	n fan in de fanteringen ander ander inder de	ndesen eta manana konstantut arte arte arte arte arte arte arte art	e and a second se
LØAD	GA	GE 1	GA	GE 2	GA	GE 3	GA	GE 4
(LB)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.	EX4.	THEØR.
980	600-	211.	-240.	-266.	600.	474	-600	-378.
3000- 4020-	780-	• 647• 868•	-300.	-938. -815. -1093.	1500.	1451 • 1944 •		-1157.
6000. 7000.	960- 1200- 1230-	1295.	-590. -510. -600.	-1364. -1631. -1903. -2177	3000 • 3600 •	2428 • 2902 • 3386 • 3874	-3090 -3600 -3600	-1936. -2314. -2700.
9020. 10010. 10980. 12060.	1590. 1620. 1710.	1947. 2160. 2369. 2603.	-900. -960. -1020.	-2452. -2721. -2984. -3278.	4500. 4920. 5400.	4363. 4842. 5311. 5833.	-4500. -4980. -5520.	-3479. -3861. -4235. -4652.
10980. 10020. 9000.	1650. 1500. 1380.	2369. 2162. 1942.	-960. -930. -870.	-2984. -2723. -2446.	5670. 5160. 4950.	5311. 4847. 4353.	-5400. -4950. -4440.	-4235. -3865. -3471.
7990. 7000. 5980. 5000.	1260- 1110- 930- 960-	1724. 1511. 1290. 1079.	-780. -720. -630. -540.	-2172. -1903. -1625. -1359.	4560. 4050. 3480. 2940.	3865. 3386. 2893. 2418.	-3990. -3540. -3030. -2550.	-3082. -2700. -2306. -1928.
4040. 2960. 2000. 960.	840. 810. 600. 570.	872 - 639 - 432 - 207 -	-480. -420. -300. -480.	-1098. -805. -544. -261.	2400 • 1740 • 1200 • 510 •	1954 • 1432 • 967 • 464 •	-2130. -1500. -1140. -600.	-1558. -1142. -771. -370.
0. SLØPES (PSI/KIP)	90.		-120.	-0-	-120.	•		-0.
LØAD CYCLE UNLØAD CYCLE LAST 5 PØINTS ØN LØAD CYCLE	129. 119. 119.	216. 216. 216.	-86. -69. -77.	-272. -272. -272.	484. 529. 453.	484 • 484 • 484 •	-490. -485. -483.	-386. -386. -386.

.

.

TEST NUMBER 6

191

۰.

ARM STRESSES (PSI)

LØAD	GAGE 5 EXP. THEØR.		GA	GE 6	GAGE 7		
(LB)			EXP.	EXP. THEOR.		THEØR.	
0- 980 1980 3000 4020 5020 6000 7000 8010 9020 10010 10980 12060	0. 750. 1140. 1650. 2160. 2730. 3240. 3810. 4230. 4800. 5250. 5700. 6210.	0 • 680 • 1373 • 2081 • 2788 • 3482 • 4162 • 4855 • 5556 • 6256 •	0. 600. 750. 110. 1560. 1920. 2220. 2670. 3000. 3420. 3630. 3810. 4080.	0. 381. 769. 1166. 1562. 1951. 2332. 2720. 3113. 3505. 3890. 4267. 4687.	0. -840. -1590. -2130. -2610. -3030. -3570. -4140. -4770. -5250. -5850. -6330. -7020.	-0. -735. -1486. -2251. -3016. -3767. -4502. -5252. -6010. -6768. -7511. -8238. -9049.	
10980 10020 9000 7990 7000 5980 5000 4040 2960 2000 960 0	5970. 5670. 5400. 4980. 4440. 3690. 3090. 2520. 1800. 1200. 840. -120.	7616. 6950. 6242. 5542. 4855. 4148. 3468. 2802. 2053. 1387. 666. 0.	4140. 4170. 4200. 3960. 3600. 2940. 2460. 2010. 1440. 900. 600. -120.	4267. 3894. 3497. 3105. 2720. 2324. 1943. 1570. 1150. 777. 373. 0.	-6450. -6000 -5430. -4950. -4410. -3720. -3330. -2790. -2280. -1680. -900. 60.	-8238. -7518. -6753. -5995. -5252. -4487. -3751. -3031. -2221. -1501. -720. -0.	
SLØPES (PSI/KIP)							
LØAD CYCLE UNLØAD CYCLE LAST 5 PØINTS ØN LØAD CYCLE	510. 566. 483.	694 • 694 • 694 •	343 • 419 • 254 •	389. 389. 389.	-556. -567. -555.	-750. -750. -750.	

192

)

ARM STRESSES (PSI)

LØAD	GA	GE 8	GA	GE 9	GAG	10
(LB)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.
0 980 1980 3000 4020 5020 5020 6000 7000 8010 9020 10010 10980 12060	$\begin{array}{r} 0 \\ -780 \\ -1170 \\ -1740 \\ -2100 \\ -2640 \\ -3090 \\ -3540 \\ -4140 \\ -4500 \\ -5100 \\ -5490 \\ -6000 \\ \end{array}$	-0. -418. -844. -1280. -1715. -2141. -2559. -2986. -3416. -3847. -4269. -4683. -5144.	0. -540. -1140. -1740. -2070. -2790. -3240. -3720. -4200. -4770. -5730. -6180.	-0. -418. -844. -1280. -1715. -2141. -2559. -2986. -3416. -3847. -4269. -4683. -5144.	0. -1410 -2280 -3150 -3870 -4560 -5070 -5790 -6480 -7170 -7860 -8550 -9120	-0. -705 -1425 -2159 -2893 -3612 -4318 -5037 -5764 -6491 -7203 -7901 -8678
10980. 10020. 9000. 7990. 7000. 5980. 5000. 4040. 2960. 2000. 960. 0.	-5520. -5250. -4740. -4350. -3780. -3330. -2820. -2400. -1800. -1380. -750. 60.	-4683. -4274. -3839. -3408. -2986. -2550. -2133. -1723. -1262. -853. -409. -0.	-5700. -5340. -4950. -4470. -4020. -3450. -3000. -2310. -1800. -1200. -750. 60.	-4683. -4274. -3839. -3408. -2986. -2550. -2133. -1723. -1262. -853. -409. -0.	-8550. -7890. -7320. -6780. -6090. -5340. -4650. -3900. -3180. -2280. -1230. 0.	-7901. -7210. -6476. -5750. -5037. -4303. -3598. -2907. -2130. -1439. -691. -0.
SLØPES (PSI/	KIP)					
LØAD CYCLE UNLØAD CYCL LAST 5 PØINT ØN LØAD CYCL	-485. E -499. S -468. E	-427. -427. -427.	-513. -523. -489.	-427. -427. -427.	-719. -749. -661.	-720. -720. -720.

DEFLECTIONS (INCHES/10000.)

L	ØAD	TØT	AL	AR	M 1	AR	M 2
(LB)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.
9 19 30 40 50 60 70 80 90 109 120	0 80 80 20 20 20 20 20 20 20 20 20 20 20 20 20	0.0. 21.7 35.5 47.7 564.5 73.3 81.0 89.3 97.7 105.9 111.3 114.5	$\begin{array}{c} 0 \cdot 0 \\ -4 \cdot 5 \\ -9 \cdot 1 \\ -13 \cdot 8 \\ -18 \cdot 4 \\ -23 \cdot 0 \\ -27 \cdot 5 \\ -32 \cdot 1 \\ -36 \cdot 7 \\ -41 \cdot 4 \\ -45 \cdot 9 \\ -55 \cdot 3 \end{array}$	0.0 0.0 0.2 3.5 11.0 15.0 18.4 22.2 26.0 29.9 33.9	$\begin{array}{c} 0.0 \\ -3.1 \\ -6.2 \\ -9.4 \\ -12.6 \\ -15.8 \\ -18.8 \\ -22.0 \\ -25.2 \\ -28.3 \\ -31.4 \\ -34.5 \\ -37.9 \end{array}$	0.0 16.0 23.5 27.5 30.8 34.0 36.7 39.0 42.0 45.5 47.6 50.8 55.0	0.0 3.1 6.2 9.4 12.6 15.8 18.8 22.0 25.2 28.3 31.4 34.5 37.9
109 100 90 79 70 50 50 40 29 20	80 • 20 • 900 • 900 • 800 • 900 • 90	114.5 113.5 107.0 105.4 97.4 88.3 81.0 74.7 64.5 55.5 38.5 -4.0	$ \begin{array}{r} -50.4 \\ -46.0 \\ -41.3 \\ -36.6 \\ -32.1 \\ -27.4 \\ -22.9 \\ -18.5 \\ -13.6 \\ -9.2 \\ -4.4 \\ 0.0 \\ \end{array} $	33.2 31.7 28.4 25.0 21.0 16.0 12.0 7.2 2.0 -0.5 -0.5 -1.0	-34.5 -31.5 -28.3 -25.1 -22.0 -18.8 -15.7 -12.7 -9.3 -6.3 -3.0 0.0	55.8 555.8 555.4 553.0 49.0 47.3 42.0 39.8 35.0 26.0 7.0	34.5 31.5 28.3 25.1 22.0 18.8 15.7 12.7 9.3 6.3 3.0 0.0
SLØPES (TE	NTHS/KIP)						
LØAD C UNLØAD LAST 5 P ØN LØAC	CYCLE CYCLE WINTS CYCLE	9.0 9.1 6.3	4.6 4.6 4.6	3.1 3.6 3.8	3.1 3.1 3.1	3.7 3.7 3.1	3.1 3.1 3.1

BRACKET DEFLECTIONS (INCHES/10000.)

LØAD	T	ØTAL	Α	RM 4	A	ARM 1 EXP. THEØR.			
(LB)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.			
0. 980. 1980. 3000. 4000. 5000. 6000. 7000. 8020. 9020. 10010. 10980. 11980.	0.0 34.5 47.7 59.2 68.5 80.0 89.0 96.2 101.5 113.7 121.5 126.9 133.6	0.0 4.7 9.5 14.5 19.1 28.9 33.7 38.7 38.7 38.5 48.9 57.8	0.0 9.0 17.5 24.0 35.0 45.0 55.0 55.0 55.0 55.0 55.0 68.2	0.0 3.0 6.1 9.2 12.2 15.3 18.3 21.4 24.5 27.6 30.6 33.6 36.6	0.0 0.0 0.0 2.7 10.5 14.7 18.3 21.5 25.5 28.7 32.5	0.0 3.0 6.1 9.2 12.2 15.3 18.3 21.4 24.5 27.6 30.6 33.6 36.6			
10980. 10020. 9000. 8000. 6960. 6000. 5000. 4000. 3000. 2000. 1000. 0.	133-5 130-0 126-0 118-0 109-8 101-6 95-0 86-3 76-3 64-8 49-0 -6-5	52.9 48.3 43.4 38.6 33.6 28.9 24.1 19.3 14.5 9.6 4.8 0.0	67.5 64.0 57.5 607.5 52.5 41.5 30.0 22.6 14.0 3.0	33.6 30.6 27.5 24.5 21.3 18.3 15.3 12.2 6.1 3.1 0.0	32.4 31.7 29.5 27.7 18.5 13.5 2.5 2.5 2.5 2.5 1.5	33.6 30.5 27.5 24.3 18.3 15.3 12.2 6.1 3.1 0.0			
SLØPES (TENTHS/KIP)									
LØAD CYCLE	9.9	4.8	5.5	3.1	3.0	3.1			
UNLØAD CYCLE	10.4	4.8	5.7	3.1	3.3	3.1			
LAST 5 PØINTS ØN LØAD CYCLE	7.8	4.8	4.6	3.1	3.6	3.1			

- m	500	C	T		4 .	1.2	12	-	17	acade and the second
	E	2		N	U	P'i	U	t	K	8
	~~	-	-		-		-			-

RING STRESSES (PSI)

LØAD	GA	GE 1	GA	GE 2	GA	GE 3	GA	GE 4
(LB)	EXP.	THEZR.	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.
0. 1050. 1980. 3000. 4020. 5020. 5990. 7000. 8060. 9020. 10010. 11040. 12070.	0 • 420 • 450 • 630 • 1020 • 930 • 1080 • 1110 • 1320 • 1320 • 1530 •	0 227 427 647 868 1083 1293 1511 1739 1947 2160 2382 2605	0- -180 -210 -180 -300 -330 -450 -540 -630 -780 -870 -900 -900	-0. -285. -538. -815. -1093. -1364. -1628. -1903. -2191. -2452. -2721. -3001. -3281.	0 630 990 1650 2010 2520 3000 3570 3960 4440 4890 5610 5850	0: 508. 958. 1451. 1944. 2428. 2897. 3386. 3899. 4363. 4842. 5340. 5838.	$\begin{array}{c} 0 \\ -630 \\ -1170 \\ -1620 \\ -2190 \\ -2610 \\ -3210 \\ -3630 \\ -4200 \\ -4620 \\ -5160 \\ -5610 \\ -6120 \\ \end{array}$	-0. -405. -764. -1157. -1551. -1936. -2310. -2700. -3109. -3479. -3861. -4258. -4655.
11000 10010 9000 7990 6960 5980 4970 3990 3000 1950 1000	1530- 1320- 1260- 1050- 990- 840- 810- 630- 570- 390- 360- -150-	2374. 2160. 1942. 1724. 1502. 1290. 1073. 861. 647. 421. 216. 0.	-900 -840 -780 -780 -600 -600 -450 -420 -210 -300 -330	-2990. -2721. -2446. -2172. -1892. -1625. -1351. -1084. -815. -530. -272. -0.	5490. 5220. 5010. 4530. 4110. 3450. 2940. 2310. 1800. 1050. 540. -120.	5321. 4842. 4353. 3865. 3367. 2893. 2404. 1930. 1451. 943. 484. 0.	-5490. -5100. -4530. -4530. -4530. -3180. -2610. -2160. -1560. -1140. -600. -120.	-4243. -3861. -3471. -3082. -2684. -2306. -1917. -1539. -1157. -752. -386. -0.
SLØPES (PSI/KIP) LØAD CYCLE UNLØAD CYCLE LAST 5 PØINTS ØN LØAD CYCLE	116. 128. 104.	216 • 216 • 216 •	-78. -75. -65.	-272. -272. -272.	487. 528. 493.	484 • 484 • 484 •	-502. -492. -481.	-386. -386. -386.

ARM STRESSES (PSI)

LØAD	GA	GE 5	GA	GE 6	GA	GE 7
(18)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.
0. 1050. 1980. 3000. 4020. 5020. 5990. 7000. 8060. 9020. 10010. 11040. 12070.	810 1230 1230 2280 2820 3270 3810 4320 4320 4320 5850 6300	0. 728. 1373. 2081. 2788. 3482. 4155. 4855. 5590. 6256. 6943. 7657. 8372.	0. 510. 960. 1200. 1590. 2010. 2250. 2730. 3000. 3330. 3570. 3960. 4110.	0. 408. 769. 1166. 1562. 1951. 2328. 2720. 3132. 3505. 3890. 4290. 4690.	0. -1050 -1560 -2040 -2610 -3120 -3630 -4170 -4740 -5160 -5790 -6180 -6840	-0. -788 -1486 -2251 -3016 -3767 -4494 -5252 -6047 -6768 -7511 -8283 -9056
11000. 10010 9000 7990 6960 5980 4970 3990 3000 1950 1000 0	6120 - 5790 - 5520 - 5520 - 5100 - 4560 - 3840 - 3240 - 2460 - 1980 - 1290 - 870 - 0 -	7630. 6943. 6242. 5542. 4827. 4148. 3447. 2767. 2081. 1353. 694. 0.	4350. 4200. 4260. 3720. 3150. 2670. 1980. 1440. 960. 720. 0.	4275. 3890. 3497. 3105. 2705. 2324. 1931. 1166. 758. 389. 0.	-6240. -5850. -5250. -4800. -4110. -3720. -3120. -2700. -2040. -1530. -810. 120.	-8253. -7511. -6753. -5995. -5222. -4487. -3729. -2994. -2251. -1463. -750. -0.
SLOPES (PSI/KIP)						
LØAD CYCLE UNLØAD CYCLE LASI 5 PØINTS ØN LØAD CYCLE	514. 572. 493.	694 • 694 • 694 •	341. 422. 284.	389. 389. 389.	-538. -559. -520.	-750. -750. -750.

ARM STRESSES (PSI)

LØAD	GA	GE 8	GAG	GE 9	GAG	E 10
(LB)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.
0. 1050. 1980. 3000. 4020. 5020. 5990. 7000. 8060. 9020. 10010. 11040. 12070.	0. -780. -1320. -1710. -2160. -2700. -3180. -3570. -4020. -4020. -5040. -5430. -6000.	-0. -448. -1280. -1715. -2141. -2555. -2986. -3438. -3847. -4269. -4709. -5148.	0. -690. -1080. -1650. -2040. -2790. -3120. -3780. -4110. -4770. -5280. -5850. -6240.	-0. -448. -844. -1280. -1715. -2141. -2555. -2986. -3438. -3438. -3847. -4269. -4709. -5148.	0. -1350. -2070. -3030. -3810. -4560. -5130. -5850. -6450. -7110. -7740. -8490. -9000.	-0. -756 -1425 -2159 -2893 -3612 -4310 -5037 -5800 -6491 -7203 -7944 -8686.
11000. 10010. 9000. 7990. 6960. 5980. 4970. 3990. 3000. 1950. 1000. 0.	-5430. -5130. -4620. -4290. -3720. -3300. -2730. -2280. -1800. -1320. -750. 120.	-4692. -4269. -3839. -3408. -2968. -2550. -2120. -1702. -1280. -832. -427. -0.	-5880. -5340. -4920. -4500. -4020. -3420. -2940. -2280. -1800. -1200. -750. 30.	-4692. -4269. -3839. -3408. -2968. -2550. -2120. -1702. -1280. -832. -427. -0.	-8340. -7770. -7170. -6600. -5940. -5130. -4500. -3420. -2880. -2280. -1380. 180.	-7916. -7203. -6476. -5750. -5008. -4303. -3576. -2871. -2159. -1403. -720. -0.
SLOPES (PSI/KIP)						
LØAD CYCLE UNLØAD CYCLE LAST 5 PØINTS ØN LØAD CYCLE	-477. -492. -487.	-427. -427. -427.	-518. -529. -531.	-427. -427. -427.	-718. -741. -645.	-720. -720. -720.

	5 (*** * *****)		at interest of the set of the set of	TEST	NUMBER 8		
				BRACKET L	DEFLECTIONS	(MCHES /	10000.)
	LØAD		TØTAL		ARM 1		ARM 3
	(LB)	EXP.	THEØR.	EXP.	THEOR.	EXP.	THEØR.
	0. 1050. 1980. 3000. 4020. 5020. 5990. 7000. 8060. 9020. 10010. 11040. 12070.	-0.0 50.8 65.4 76.0 84.5 93:3 101.5 110.1 117.1 124.0 132.0 139.0 145.8	-0.0 4.8 9.1 13.8 18.4 23.0 27.5 32.1 37.0 41.4 45.9 50.6 55.4	-0.0 0.1 0.2 0.2 1.4 15.5 17.7 20.6 23.9 24.6 29.3 32.4 35.8	-0.0 3.3 6.2 9.4 12.6 15.8 18.8 22.0 25.3 28.3 31.4 34.7 37.9	0.0 26.5 35.2 41.8 46.2 51.0 55.9 60.0 65.0 70.0 74.8 79.0 83.0	0.0 3.3 6.2 9.4 12.6 15.8 18.8 22.0 25.3 28.3 31.4 34.7 37.9
	11000- 10010- 7990- 6960- 5980- 4970- 3990- 3000- 1950- 1000- 0-	142.0 136.0 130.0 123.5 116.0 108.3 100.2 92.0 83.2 72.5 57.2 -1.1	50.4 45.9 41.3 36.6 31.9 27.4 22.8 18.3 13.8 4.6 -0.0	35.9 35.8 35.8 35.7 35.6 34.0 32.1 26.6 24.2 24.1	34.5 31.4 28.3 25.1 21.9 18.8 15.6 12.5 9.4 6.1 3.1 -0.0	83.0 80.5 76.8 773.7 64.5 59.9 53.6 59.9 53.8 40.8 -0.5	34.5 31.4 28.3 25.1 21.9 18.8 15.6 12.5 9.4 6.1 3.1 0.0
SLØPES	(TENTHS/K	IP)					
L 2 UNLI LAST ZN I	AD CYCLE ØAD CYCLE 5 PØINTS LØAD CYCLE	9.9 10.4 7.2	4.6 4.6 4.6	3.4 1.3 3.2	3.1 3.1 3.1	5.7 6.3 4.5	3.1 3.1 3.1

•

.

,

BRACKET DEFLECTIØNS (INCHES/10000.)

LØAD	1	ØTAL	Α	RM 2	Α	RM 4
(LB)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.
0. 990. 2060. 3000. 4020. 5020. 5990. 7000. 8020. 9020. 10020. 10980. 12060.	-0.0 51.1 66.5 76.7 85.8 94.9 103.1 1109.1 126.1 134.1 140.6 147.9	0.0 4.8 9.9 14.5 19.4.2 283.7 283.7 283.7 338.5 338.5 383.5 383.9 1 482.1	-0.0 9.9 13.9 13.9 18.9 226.1 231.9 335.9 335.9 335.9 42.1	0.0 3.0 9.2 12.3 15.3 15.3 15.3 21.5 21.5 21.5 21.5 33.6 33.6 9	0.0 6.2 19.0 30.0 35.0 35.0 35.0 56.0 560.5 360.5 360.5 360.5 360.5 360.5 360.5 360.5 360.5 360.5 360.5 360.5 360.5 360.5 360.5 360.5 560.	0.0 3.0 6.3 9.2 12.3 15.3 14.5 24.5 27.6 33.6 36.9
10940. 10010. 8960. 7990. 7000. 6000. 5010. 3970. 2970. 1960. 980. 0.	143.9 138.1 131.7 125.9 111.1 101.9 93.1 84.6 74.1 58.6 10.6	52.7 48.3 43.2 38.5 33.7 28.9 24.2 19.1 14.3 9.4 4.7 0.0	42.1 42.0 42.1 42.1	33.5 30.6 27.4 24.4 18.3 15.3 12.1 9.1 6.0 3.0 0.0	64.5 62.0 58.1 54.0 49.2 43.2 38.0 31.7 26.0 18.3 9.3 1.0	33.5 30.6 27.4 24.4 21.4 18.3 15.3 12.1 9.1 6.0 3.0 0.0
SLØPES (TENTHS/KIP)						
LØAD CYCLE	10.1	4.8	3.1	3.1	5.4	3.1
UNLØAD CYCLE	10.0	4.8		3.1	5.8	3.1
LAST 5 PØINTS ØN LØAD CYCLE	7.2	4.8	2.5	3.1	4.8	3.1

SHIMS UNDER SUPPORT BLOCKS OF ARMS 1 AND 3

RING STRESSES (PSI)

	LØAD	GA	GE 1	G4	AGE 2	ĢAC	GAGE 3 GAGE 4			
	(LB)	EXP:	THEØR.	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.	
	0. 495. 1005. 1500. 2005. 2500. 3000. 3505. 4000. 4505. 5005.	990 1830 2760 3360 3900 4530 5280 5880 6540 7140	0. 830. 1684. 2514. 3360. 4190. 5028. 5874. 6704. 7550. 8388.	0. 1800. +2460. -3210. -3750. -4410. -5130. -5700. -6300. -6960.	-0. -1043. -2118. -3160. -4225. -5267. -6321. -7385. -8428. -9492. -10546.	210 390 690 900 1200 1470 1650 1890 2100 2250	0. 259. 527. 786. 1051. 1310. 1572. 1837. 2096. 2361. 2623.	0. -300. -660. -930. -1290. -1530. -1800. -2130. -2340. -2700. -2970.	-0. -195. -396. -591. -790. -985. -1182. -1381. -1576. -1775. -1972.	
	4490. 3990. 3500. 3000. 2505. 1995. 1500. 1000. 500. 0.	6630. 5880. 5280. 4590. 4020. 3270. 2670. 1920. 1020. -60.	7525. 6687. 5866. 5028. 4198. 3344. 2514. 1676. 838. 0.	-6420 -6030 -5580 -5100 -4350 -3540 -2670 -1830 -870 270	-9460. -8407. -7374. -6321. -5278. -4203. -3160. -2107. -1053. -0.	2280 1980 1800 1800 1560 1080 870 600 300 60	2353. 2091. 1834. 1572. 1313. 1045. 786. 524. 262. 0.	-2580. -2280. -1950. -1800. -1500. -1140. -930. -600. -180. 120.	-1769. -1572. -1379. -1182. -987. -786. -591. -394. -197. -0.	
SLØPE LØA UNLØ LAST ØN LØ	ES (PSI/KIP) AD CYCLE DAD CYCLE 5 PØINTS JAD CYCLE	1385. 1427. 1293.	1676 • 1676 • 1676 •	-1356. -1496. -1252.	-2107. -2107. -2107.	469. 498. 401.	524. 524. 524.	-589. -592. -581.	-394. -394. -394.	
ARM STRESSES (PSI)

	LØAD	GAG	E 5	GA	GE 6	GA	GE 7
	(LB)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.
	0. 495. 1005. 1500. 2005. 2500. 3000. 3505. 4000. 4505. 5005.	0. 570. 1050. 1650. 2070. 2580. 3120. 3480. 3960. 4410. 4920.	0. 687. 1394. 2080. 2781. 3467. 4161. 4861. 5548. 6248. 6942.	0. 300. 720. 1080. 1500. 1800. 2070. 2250. 2550. 2790. 3120.	0. 385. 781. 1166. 1558. 1943. 2331. 2723. 3108. 3500. 3889.	0. -660. -1200. -1530. -1530. -2370. -2370. -3270. -3270. -3780. -4260. -4680.	-0. -743. -1509. -2252. -3010. -3753. -4503. -5261. -6004. -6762. -7513.
	4490. 3990. 3500. 2505. 1995. 1500. 1000. 500. 0.	4710 4410 3900 3330 2700 2070 1350 840 60	6228 • 5534 • 4854 • 4161 • 3474 • 2767 • 2080 • 1387 • 693 • 0 •	3180. 3330. 3210. 2970. 2460. 1950. 1170. 660. 0.	3489. 3100. 2720. 2331. 1946. 1550. 1166. 777. 389. 0.	-4350. -3840. -3390. -2880. -2520. -2160. -1500. -1290. -630. -60.	-6739. -5989. -5254. -4503. -3760. -2994. -2252. -1501. -751. -0.
SLØPE	S (PSI/KIP	>					
LØA UNLØ LAST ØN LØ	D CYCLE AD CYCLE 5 PØINTS AD CYCLE	970. 1056. 904.	1387. 1387. 1387.	617. 760. 527.	777. 777. 777.	-906. -924. -1024.	-1501. -1501. -1501.

.

ARM STRESSES (PSI)

	LØAD	GA	GE 8	GA	GE 9	GAG	E 10
	(LB)	EXP.	THEOR .	EXP.	THEØR.	EXP.	THEØR.
- 4 	0 495 1005 1500 2005 2500 3000 3505 4000 4505	$ \begin{array}{r} 0: \\ -570: \\ -1110: \\ -1590: \\ -2370: \\ -2610: \\ -3210: \\ -3600: \\ -4020: \\ -4440. \\ \end{array} $	-0 -422 -857 -1280 -1710 -2133 -2559 -2990 -3412 -3843 -4269	0. -720. -1200. -1740. -2130. -2790. -3270. -3720. -4110. -4620.	-0. -422. -857. -1280. -1710. -2133. -2559. -2990. -3412. -3843. -4269.		-0. -712. -1446. -2158. -2885. -3597. -4317. -5044. -57483. -6483.
	4490 • 3990 • 3500 • 3000 • 2505 • 1995 • 1500 • 1000 • 500 •	-4140. -3750. -3390. -3090. -2610. -2160. -1710. -1290. -690. -60.	-3830. -3403. -2986. -2559. -2137. -1702. -1280. -853. -427. -0.	-4770. -4290. -3990. -3360. -3090. -2370. -1890. -1290. -840. -180.	-3830. -3403. -2986. -2559. -2137. -1702. -1280. -853. -427. -0.		-6461. -5742. -5036. -4317. -3605. -2871. -2158. -1439. -719. -0.
SLØPE	S (PSI/KIP	•)					
LØA UNLØ LAST ØN LØ	D CYCLE DAD CYCLE 5 PØINTS DAD CYCLE	-862. -889. -892.	-853. -853. -853.	-992. -1021. -886.	-853. -853. -853.	-1208. -1194. -1174.	-1439. -1439. -1439.

BRACKET DEFLECTIØN (INCHES/10000.)

•

. .

LØAD	TØTAL	
(LB)	EXP.	THEØR.
0	-0.0	0.0
495	71.5	8.8
1005	92.5	17.8
1500	107.1	26.5
2005	119.5	35.5
2500	131.7	44.2
3000	143.7	53.1
3505	154.5	62.0
4000	164.5	70.8
4505	164.5	79.7
5005	186.5	88.6
4490.	182.7	79.5
3990.	174.5	70.6
3500.	165.5	61.9
3000.	156.1	53.1
2505.	146.0	44.3
1995.	134.3	35.3
1500.	121.7	26.5
1000.	108.3	17.7
500.	86.1	8.8

SLØPES (TENTHS/KIP)

LØAD CYCLE	30.6	23.2
UNLØAD CYCLE	38.1	17.7
LAST 5 PØINTS	21.3	17.7
AN LAAD CYCLE		

HØRIZØNTAL DEFLECTIØNS ØF ARMS (INCHES/10000.)

LØAD	ARM 1	ARM 2
(LB)	EXP.	EXP.
0. 980. 1990. 3000. 4020. 5990. 7000. 8060. 9020. 10020. 10020. 11040. 11980.	-0.0 5.6 9.6 11.5 15.2 19.1 20.7 22.8 25.3	-0.0 -0.2 -0.0 1.0 2.3 3.8 5.9 7.6 11.0 13.3
10980. 10010. 9000. 7990. 6960. 5980. 5000. 3980. 3000. 1980. 1020.	25.3 25.3 24.8 20.7 13.2 10.1 8.8 0.8	13.2 13.3 13.5 13.5 12.3 10.0 8.0 3.9 1.8 0.6

HØRIZØNTAL DEFLECTIØNS ØF ARMS (INCHES/10000.)

TEST NUMBER 12

LØAD	ARM 1	ARM 2	
(LB)	EXP.	EXP.	
0. 980. 1990. 3000. 3990. 5900. 5980. 7070. 8000. 9000. 10010. 10980. 12000.	-0.0 9.4 11.1 13.4 17.8 19.3 21.2 22.8 22.8 22.8 22.8 22.8 22.6 26.3 27.6	$ \begin{array}{c} -0.0 \\ -4.7 \\ -3.0 \\ -1.8 \\ -0.8 \\ 0.9 \\ 2.6 \\ 4.4 \\ 6.0 \\ 8.1 \\ 9.6 \\ 11.4 \\ \end{array} $	
11000. 10010. 9000. 8000. 7010. 5980. 5980. 3990. 3000. 2000. 1010. 0.	27.6 27.6 27.2 25.6 22.3 19.2 16.5 14.0 12.0 10.0 5.2	11.4 11.4 11.5 11.5 11.5 7.7 4.6 1.0 -0.8 -2.3 -2.4	

206

.

SUPPORT BLOCKS LUBRICATED

RING STRESSES (PSI)

LØAD	GA	GE 1	GA	GE 2	GA	GE 3	GA	IGE 4
(L8)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.
0.	0.	0.	0.	-0.	. 0.	0.	⁰ .	0.
980.	480.	. 211.	-150-	-266.	630.	414.	-510.	-318.
1980.	540.	4210	-330.	-538.	1620	900.	-1110.	-1157
4020-	660.	868	-570.	-1093.	2100-	1944	-2100-	-1551
5000-	720	1079.	-630.	-1359	2610	2418.	-2580.	-1928.
5990	720.	1293.	-720.	-1628.	3030.	2897.	-3030.	-2310.
7000.	870.	1511.	-810.	-1903.	3600.	3386.	-3570.	-2700.
8020.	870.	1731.	-900.	-2180.	4140.	3879.	-4080.	-3093.
9000.	1020.	1942 -	-960.	-2446.	4590.	4353.	-4530.	-3471.
10000.	1050.	2158.	-1050.	-2718.	5220.	4837.	-5070.	-3857.
10980 •	1140.	2369.	-1140.	-2984.	5610.	5311.	-5460.	-4235.
11980.	1140-	2585.	-1260.	-3256.	6210.	5195.	-6060.	-4621.
11000.	1140.	2374.	-1110.	-2990.	5820.	5321.	-5520.	-4243.
10000.	990.	2158.	-1080.	-2718.	5460.	4837.	-4980.	-3857.
8990.	960.	1940.	-1080.	-2443.	5040.	4348.	-4470.	-3467.
8000.	8 (0.	1726 .	-930.	-2174.	4440.	3870.	-4020.	-3086.
6970.	840.	1004-	-150.	-1894.	3900.	. 2007	-3420.	-2088.
6010 ·	600.	1291.	-090.	-1004.	2920	2418	-2490	-1029
3000	480	861	-480.	-1084	2310.	1930.	-1980.	-1539
3000-	600-	647.	-300-	-815.	1680.	1451.	-1470.	-1157.
2020	480.	436	-270.	-549.	1170.	977.	-960.	-779.
1010.	330.	218.	-120.	-275.	600.	489.	-420.	-390.
0.	Ŭ •	0.	210.	-0.	30.	0.	30.	0.
SLOPES (PSI/KIP)			an and a stress age of production of the second function		and concepted with a second of the concepted spec	and the second	an and has signed to second design	
1 CAD CYCLE	76	016	-90	-272	510.	484	-500:	-386
UNE GAD CYCLE	85	216-	-115-	-272.	538.	484	-505.	-386-
LAST 5 PRINTS	67.	216-	-91-	-272.	521.	. 484.	-494.	-386-
EN LØAD CYCLE	a ka sherar waa ka k	an a she ana an	e dentre wat were en er i stiller in service	$(a)^{2}$	en e	ear response from a structure of the second	and the second	and Michael Information and a second second
						•		

.

ARM STRESSES (PSI)

LØAD	GAC	SE 5	GA	GE 6	GA	GE 7
(LB)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.
0 • 980 • 1980 • 3000 • 4020 • 5000 • 5990 • 7000 • 8020 • 9000 • 10000 • 10980 • 11980 •	0 960 1560 2130 2670 3210 3780 4260 4890 5400 5940 6480 6960	0. 680. 1373. 2081. 2788. 3468. 4155. 4855. 5563. 6242. 6936. 7616. 8309.	0. 720. 1020. 1530. 1860. 2280. 2700. 3030. 3390. 3840. 4110. 4530. 4800.	0. 381. 769. 1166. 1562. 1943. 2328. 2720. 3117. 3497. 3886. 4267. 4655.	0. -930. -1740. -2310. -2820. -3330. -3840. -4350. -4890. -5370. -5910. -6510. -7020.	-0. -735. -1486. -2251. -3016. -3751. -4494. -5252. -6017. -6753. -7503. -8238. -8989.
11000. 10000. 8990. 8000. 6970. 6010. 5000. 3990. 3000. 2020. 1010. 0.	6660 6330 5910 5280 4620 4020 3420 2760 2220 1560 930 120	7630. 6936. 6235. 5549. 4834. 4169. 3468. 2767. 2081. 1401. 701. 0.	4800. 4800. 4680. 4170. 3750. 3180. 2790. 2280. 1770. 1200. 810. -60.	4275. 3886. 3494. 3109. 2709. 2335. 1943. 1551. 1166. 785. 392. 0.	-6450. -5940. -5280. -4860. -4260. -3810. -3270. -2700. -2100. -1560. -690. 90.	-8253. -7503. -6745. -6002. -5230. -4509. -3751. -2994. -2251. -1516. -758. -0.
SLØPES (PSI/KIP)	. 1					
LØAD CYCLE UNLØAD CYCLE LAST 5 PØINTS ØN LØAD CYCLE	562 • 604 • 527 •	694 • 694 • 694 •	390. 457. 354.	389 389 389	-555. -575. -545.	-750. -750. -750.

ARM STRESSES (PSI)

LØAD	GA	GE 8	GA	GE 9	GAG	E 10	
(18)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.	
0 980 1980 3000 4020 5000 5990 7000 8020 9000 10000 10980 1980	$\begin{array}{c} 0 \\ -780 \\ -1380 \\ -1920 \\ -2460 \\ -2910 \\ -3420 \\ -3840 \\ -4230 \\ -4230 \\ -4770 \\ -5250 \\ -5760 \\ -6240 \end{array}$	-0. -418. -844. -1280. -1715. -2133. -2555. -2986. -3421. -3839. -4265. -4683. -5109.	0. -780. -1260. -1920. -2340. -3000. -3420. -3990. -4380. -5100. -5460. -6060. -6570.	-0. -418. -844. -1280. -1715. -2133. -2555. -2986. -3421. -3839. -4265. -4683. -5109.	0. -1140. -1920. -2640. -3330. -3990. -4710. -5460. -6150. -6840. -7440. -8190. -8760.	-0 -705 -1425 -2159 -2893 -3598 -4310 -5037 -5771 -6476 -7196 -7901 -8621	
11000. 10000. 8990. 8000. 6970. 6010. 5000. 3990. 3000. 2020. 1010. 0.	-5760. -5310. -4830. -4350. -3900. -3450. -2880. -2460. -1890. -1410. -600. 30.	-4692. -4265. -3834. -3412. -2973. -2563. -2133. -1702. -1280. -862. -431. -0.	-6180 -5670 -5070 -4620 -4200 -3540 -2970 -2400 -1980 -1350 -660 30	-4692. -4265. -3834. -3412. -2973. -2563. -2133. -1702. -1280. -862. -431. -0.	-8130. -7530. -6990. -6330. -5640. -4980. -4290. -3570. -2940. -2160. -1320. 120.	-7916. -7196. -6469. -5757. -5016. -4325. -3598. -2871. -2159. -1454. -727. -0.	
SLØPES (PSI/KI	(P)						
LØAD CYCLE UNLØAD CYCLE LAST 5 PØINTS ØN LØAD CYCLE	-499. -515. -506.	-427. -427. -427.	-534. -555. -539.	-427. -427. -427.	-712. -715. -664.	-720. -720. -720.	

BRACKET DEFLECTIØN (INCHES/10000.)

LØAD	TØTAL	•	
(LB)	EXP.	THEØR.	
0. 980. 1980. 3000. 4020. 5000. 5990. 7000. 8020. 9000. 10000. 10980. 11980.	-0.0 345.2 57.5 67.3 87.4 905.3 1013.4 122.2 130.6 138.4	0.0 4.5 9.1 13.8 18.4 22.9 27.5 32.1 36.8 41.3 45.9 50.4 54.9	
11000 10000 8990 8000 6970 6010 5000 3990 3000 2020 1010 0	133.0125.9118.0110.0101.292.883.674.565.055.542.01.0	50.4 45.9 41.2 36.7 32.0 27.6 22.9 18.3 13.8 9.3 4.6 0.0	
SLØPES (TENTHS/KIP) LØAD CYCLE UNLØAD CYCLE LAST 5 PØINTS ØN LØAD CYCLE	10.4 10.4 8.4	4.6 4.6 4.6	12.

210

SUPPORT BLOCKS LUBRICATED

RING STRESSES (PSI)

CDAD	SAL		· GA	ILE Z	GA	6E 3	GA	6E 4
(LB)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR:	EXP.	THEØR.
0- 1990- 4020- 5980- 8010- 10020- 11980-	0. 360. 660. 960. 1020. 1260.	0 • 429 • 868 • 1290 • 1729 • 2162 • 2585 •	0. -420. -600. -810. -960. -1140. -1350.	-0. -541. -1093. -1625. -2177. -2723. -3256.	0. 1020. 2160. 3,120. 4200. 5220. 6180.	0. 963. 1944. 2893. 3874. 4847. 5795.	$\begin{array}{r} 0 \\ -1140 \\ -2160 \\ -3150 \\ -4080 \\ -5160 \\ -6180 \end{array}$	-0. -768. -1551. -2306. -3089. -3865. -4621.
10010. 7990. 5960. 3980.	990 - 930 - 750 - 540 -	2160. 1724. 1286. 859.	-1230. -1050. -810. -630.	-2721. -2172. -1620. -1082.	5490 • 4440 • 3330 • 2250 •	4842 • 3865 • 2883 • 1925 •	-5010. -3990. -3000. -1920.	-3861. -3082. -2299. -1535.
1970. 0.	300 . 60 .	425.	-420. 60.	-535.	1020.	953 . 0.	-1020.	-760.
LØAD CYCLE UNLØAD CYCLE LAST 5 PØINTS ØN LØAD CYCLE	98 • 96 • 84 •	216. 216. 216.	-104. -121. -92.	-272. -272. -272.	518. 553. 508.	484 • 484 • 484 •	-509. -511. -503.	-386. -386. -386.

ARM STRESSES (PSI) GAGE 7 GAGE 5 GAGE 6 LØAD (LB) THEØR. THEØR. EXP. THEØR. EXP. EXP. -0. 0: 0. 0. 0. 0. 0. -1493. 1560. 773. -1860. 1990. 1380. 1080. 1562. 2788. 2100. -2880. -3016. 4020. 2730. -4487. 2790. -3870. 4148. 5980. 3870. 8010. 10020. 4920. 5556. 3720. 3113. -4890. -6010. -7518. 6950 . 3894. -6060. 5940. 4200. -8989. 11980. 7050. 8309. 4950. 4655. -7140. 3890. -7511. -6060. 10010. 6480. 6943. 4890. -5995. 5542. 4140. 3105. -4950. 7990. 5190. -4472. 2316. 4134. -3870. 5960. 3930. 3180. 3980. 2760. 2761. 2220. 1547. -2700. -2986. -1478. 1366. 1170. 766. -1620. 1970. 1590. . 0. -0. 0. 0. 120. 120. 0. SLØPES (PSI/KIP) -750. LØAD CYCLE 573. 389. -568. 694 . 406. -600. UNLØAD CYCLE 633. 694. 481. 389. -750. 389. -537. -750. LAST 5 POINTS 537. 694. 356. ØN LØAD CYCLE

ARM STRESSES (PSI)

LØAD	GA	GE 8	GA	GE 9	GAG	E 10
(L8)	EXP.	THEØR.	EXP.	THEØR.	EXP.	THEØR.
0. 1990. 4020. 5980. 8010. 10020. 11980.	0. -1710. -2610. -3570. -4470. -5520. -6360.	-0. -849. -1715. -2550. -3416. -4274. -5109.	0. -1170. -2460. -3420. -4620. -5550. -6510.	-0. -849. -1715. -2550. -3416. -4274. -5109.	0. -2070. -3540. -4800. -6300. -7590. -8940.	-0. -1432. -2893. -4303. -5764. -7210. -8621.
10010. 7990. 5960. 3980. 1970. 0.	-5.610. -4560. -3600. -2550. -1530. 0.	-4269. -3408. -2542. -1697. -840. -0.	-5610. -4620. -3450. -2430. -1170. 150.	-4269. -3408. -2542. -1697. -840. -0.	-7590. -6300. -4920. -3630. -2370. 120.	-7203. -5750. -4289. -2864. -1418. -0.
SLOPES (PSI/KIP))					
LØAD CYCLE UNLØAD CYCLE LAST 5 PØINTS ØN LØAD CYCLE	-510. -545. -473.	-427. -427. -427.	-544. -573. -513.	-427. -427. -427.	-726. -736. -681.	-720. -720. -720.

1

. .

BRACKET DEFLECTION (INCHES/10000.) LØAD TØTAL (LB) EXP. THEØR. -0.0 0. 1990. 4020. 0.0 9.1 18.4 27.4 36.7 68.1 5980 8010 10020 11980 88.0 105.2 123.0 138.3 46.0 126.0 110.3 92.0 74.0 55.3 2.0 45.9 36.6 27.3 18.3 9.0 0.0 10010. 7990. 5960. 3980. 1970. Õ. SLØPES (TENTHS/KIP)

LØAD LYLLE	10.8	4.0
UNLØAD CYCLE	11.4	4.6
LAST 5 POINTS	8.8	4.6
ØN LØAD CYCLE		

. . . .

REFERENCES

*.÷.

REFERENCES

- Blake, A.: "Deflection of a Thick Ring in Diametral Compression by Test and by Strength of Materials Theory", Journal of Applied Mechanics, Vo. 2, June, 1959, pp. 294-
- Srinath, L. S., and Y.V.G. Acharya: "Stresses in a Circular Ring, Comparison of Theory with Experiment", Appl. Sci. Res., Section A., Vol. 4, 1954, pp. 189.
- Acharya, Y.V.G., L. S. Srinath, C. N. Lakshminarayana, "Evaluation of Stresses in a Circular Ring by the Relaxation Method", Appl. Sci. Res., Section A, Vol. 3, 1953, page 415.
- Leeman, E. R.: "Stresses in a Circular Ring, Analytical Solutions Compared with Photoelastic Evidence", Engineering, Vol. 181, No. 4701, April 1956, p. 201.
- Conway, H. D., L. Chow, and G. W. Morgan: "Analysis of Deep Beams", Journal of Applied Mechanics, Vol. 18, June, 1951, p. 163.
- Seeley, F. B., J. O. Smith: "Advanced Mechanics of Materials", Second Edition, John Wiley and Sons, New York, 1966, p. 53.
- Timoshenko, S.: "Strength of Materials, Volume 2", McGraw-Hill, New York, 1949, p. 62.
- Saxton, D. L.: "Determination of Horizontal Reactions and Flexibilities for V.W.W. Generator Lower Brackets Under Field Short Circuit Loading", Canadian Westinghouse Co. Ltd. Engineering Report No. 335, March, 1967.
- '9. Hooke, R., T. A. Jeeves: "Direct Search Solution of Numerical and Statistical Problems", J. Acm, Vol. 8, April, 1961, p. 212.
- 10. Siddall, J.N.: "Theory of Engineering Design", Unpublished manuscript, McMaster University, Hamilton, Ontario, 1965, Section 12.7.
- 11. Klingman, W. R., D. M. Himmelblau: "Nonlinear Programming with the Aid of a Multiple-Gradient Summation Technique", J. Acm. Vol. 11, No. 4, Oct. 1964, p. 400.

12. Griffith, R. E., R. A. Stewart: "A Nonlinear Programming Technique for the Optimization of Continuous Processing Systems", Management Science, Vol. 7, 1961, p. 379