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Abstract

A recent result (see [12]) was the construction of a quasianalytic class

containing all transition maps at hyperbolic singularities with logarithmic

monomials in their series expansions. The end goal being obtaining o-

minimality of this structure, we need an extension to several variables stable

under certain operations (such as blow-up substitutions). As a first step to-

wards the several variable extension, we construct a quasianalytic Hardy

field extending the previous class where the monomials are now allowed to

be any definable function in Ran,exp.
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1 History and Motivation

“This is the question as to the maximum number and position of Poincaré’s bound-

ary cycles (cycles limites) for a differential equation of the first order and degree

of the form dy
dx

= Y
X

where X and Y are rational integral functions of the n-th

degree in x and y.” (Hilbert, [4]). The second part of Hilbert’s 16th problem re-

mains unsolved to this day and a number of questions arise from Hilbert’s initial

statement:

Question 1. Is it true that a polynomial vector field on the real plane has a finite

number of limit cycles?

In 1923, Dulac claimed a solution of the first problem but it was found later that his

proof contained a gap. It was only in the early 1990’s that Écalle and Ilyashenko

proved independently that planar polynomial vector fields have finitely many limit

cycles. The idea of Dulac is that if a polynomial vector field has infinitely many

limit cycles, then they must converge to a polycycle (a finite collection of singular

points and orbits forming a Jordan curve); so the problem was reduced to proving

the non-accumulation of limit cycles on polycycles.

Question 2. Is it true that the number of limit cycles of a polynomial vector field

of degree d on the real plane is bounded by a constant depending on d only?

If the second problem has an affirmative answer, the bound is called the Hilbert

number and is denoted H(d). Only the case d = 1 is known and H(1) = 0, as

linear vector fields have no limit cycles.

Question 3. Find an upper bound for H(d).

The second question can be reduced to studying analytic families of real analytic

vector fields (see [6] for details):

Question 4. Is there a uniform bound on the number of limit cycles in analytic

families of real analytic planar vector fields?
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A positive answer was given in [8] if we restrict ourselves to vector fields with

compact parameter space having only isolated non-resonant hyperbolic singulari-

ties. In order to obtain locally uniform bounds on the number of limit cycles, the

approach was using quasianalyticity and its connection to o-minimality:

Let ξ be a real analytic vector field in R2 and Γ a polycycle of ξ with hyperbolic

non-resonant singular points p0, p1, . . . , pk and trajectories γ0, . . . , γk connecting

the pi’s in the order following the flow. For each i, it is possible to choose trans-

verse segments Λ−i ,Λ
+
i sufficiently close to pi such that:

• there exists real analytic maps hi : Λ+
i → Λ−i+1 representing the flow of ξ

from Λ+
i to Λ−i+1,

• each trajectory starting on Λ−i sufficiently close to pi crosses Λ+
i near pi. We

can therefore define correspondence maps σi : Λ−i → Λ+
i .

The Poincaré map σ is then represented by the finite composition σ = hk ◦ σk ◦

· · · ◦ σ1 ◦ h0 ◦ σ0 where each σi ◦ e−x is an almost regular map:

Definition 1.1 (see §0.3 in [6]). The germ of a map f is said to be almost regular

if it has a holomorphic extension f to some standard quadratic domain Ω (see 2.3)

and can be expanded in an asymptotic Dulac exponential series in this domain,

i.e., if:

∀N ∈ N,

∣∣∣∣∣f(z)−
N∑
j=0

Pj(z)e−νjz

∣∣∣∣∣ = o(e−νNz) as |z| → +∞ in Ω

where Pj ∈ R[x] with P0 ∈ R>0 and 0 < ν0 < ν1 < . . . with lim
n→+∞

νn = +∞. We

denote by I, the class of all almost regular maps.

In the case where the singularities are non-resonant, all the Pj’s are actually real

numbers and it is proven in [8] that the hi’s and the σi’s (and hence σ) are definable

in a same o-minimal structure which leads to uniform bounds on the number of

2
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Figure 1: Example of a polycycle for ξ

limit cycles in this case.

This thesis is part of an ongoing project with P. Speissegger and T. Kaiser aiming at

modifying the procedure presented above in order to settle the general hyperbolic

case where one of the main difficulties is that the Pj’s are not constant.

Objective. Given an analytic family ξ of real analytic planar polynomial vector

fields with hyperbolic singularities, we want to construct a multivariable quasi-

analytic algebra (stable under the operations needed for o-minimality) containing

all the corresponding transition maps and prove that the obtained stucture is o-

minimal.

A recent result (see [12]) was the construction of a quasianalytic field with log-

arithmic generalized power series as asymptotic expansions, containing I. The

monomials in the construction were in the set {e− logk |k ∈ N} (logk := log ◦ · · ·◦ log

(k times) and log0 := id).

In order to obtain o-minimality of this class, we need an extension to several vari-

3
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ables stable under certain operations (such as blow-up substitutions). We want,

for example, stability under substitutions such as x 7→ xy which will map log2 x

to log(log x + log y) which is not an element of (e−x, e−y, 1
x
, 1
y
, . . . ). The idea is

instead to first replace (x, log, log2, . . . ) by any definable curve (f0, f1, f2, . . . ) in

Ran,exp and then extend to several variables. As a first step towards the several

variable extension, we construct in this thesis a quasianalytic Hardy field extend-

ing the class obtained in [12] where the monomials are now allowed to be any

definable function in Ran,exp.

2 Setup and Definitions

2.1 Series

2.1.1 Generalized Series

Definition 2.1. A set of monomials is an ordered set (M,≤) of germs at +∞ of

real one-variable functions. A subset S ⊂M is said to be Noetherian or anti-well

ordered if there is no strictly increasing infinite sequence of elements in S.

In our case, the monomials will be elements of Han,exp which has a total linear

order (further details are given in section 2.4).

Definition 2.2. Let K be a field of coefficients and M be a group of monomials.

For a function f : M → K, we define its support to be the set supp(f) := {m ∈

M | f(m) 6= 0}. If supp(f) is Noetherian, we call f a generalized series, and the

set of all generalized series with coefficients in K and monomials in M is denoted

by K((M)). We also denote f by
∑

m∈M fmm where fm := f(m) is the coefficient

of the term m ∈ supp(f).

Remark. K((M)) is an abelian group where addition of two elements f and g is

4
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defined as follows:

f + g :=
∑
m∈M

(fm + gm)m

Definition 2.3. Given a non-zero element f ∈ K((M)), the maximal element in

supp(f) is called the leading monomial of f and is denoted lm(f).

Fact 2.4 (see [15]). K((M)) is a field where multiplication of two elements f ang

g is defined by:

fg :=
∑
m∈M

(∑
pq=m

fpgq

)
m.

We assume for the rest of the section that M is equipped with a total linear

order.

Definition 2.5. A subset S ⊂M is said to be natural if for allm ∈M, S∩[m,+∞[

is finite.

Remark. If a set is natural, then it is Noetherian. Naturality ensures that the

support doesn’t have accumulation points. For example, S := {· · · ≺ e
1
k
x ≺ · · · ≺

e
1
2
x ≺ ex} is Noetherian but not natural.

Lemma 2.6. Let S, S ′ ⊂M be two natural subsets and assume that M is closed

under multiplication. Then, the following holds:

(1) Every subset of S is natural with the induced ordering

(2) S ∪ S ′ is natural

(3) S · S ′ is natural

(4) If S ≺ 1 and for all k ∈ N, Sk is coinitial inM, then S∗ :=
⋃
k∈N

Sk is natural.

Proof. (1) Follows immediately from definitions.

(2) Follows from (S ∪ S ′) ∩ [m,+∞[⊆ (S ∩ [m,+∞[) ∪ (S ′ ∩ [m,+∞[).

5
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(3) We first assume that S, S ′ ≤ 1. Let m ∈ M, then S · S ′ ∩ [m,+∞[= {nj =

sjs
′
j}j∈J for some index set J . Since S, S ′ ≤ 1, nj = sjs

′
j ≤ sj, s

′
j ≤ 1 for all

j ∈ J so {sj}j∈J and {s′j}j∈J are both subsets of [m,+∞[. By naturality of

S and S ′, they are both finite so {nj}j∈J must be finite as well. Now, for

the general case, if S is natural, then for any m ∈ M, S ∩ [m,+∞[ has a

maximal element sM . Then, for all s ∈ S, s
sM
≤ 1 and we can work with the

set S
sM

instead (if S ∩ [m,+∞[= ∅, we just take sM := m).

(4) Let m ∈ M, then S ∩ [m,+∞[ is finite, say it is equal to {s0, . . . , sj} with

s0 < · · · < sj. Then, for all k ∈ N, the maximal element of Sk is skj .

Since the powers of elements of S are coinitial in M, there exists k0 ∈ N

such that sk0j < m which implies that Sk0 ∩ [m,+∞[= ∅. Now, (skj )k∈N is

a strictly decreasing sequence so for all k ≥ k0, Sk ∩ [m,+∞[= ∅. Hence,

Sk ∩ [m,+∞[=
⋃

0<k<k0

(
Sk ∩ [m,+∞[

)
, which is finite by naturality of each

Sk.

2.1.2 Generalized Power Series

Definition 2.7. Let R be a ring and X = (X1, . . . , Xk) be a k-tuple of indeter-

minates. We consider formal power series of the form:

f(X) =
∑
α

aαX
α

where α = (α1, . . . , αk) ∈ (R≥0)k and Xα = Xα1
1 . . . Xαk

k . Given f as before, we

define the support of f as supp(f) := {α| aα 6= 0} ⊂ (R≥0)k. We define the set of

generalized power series, denoted by R[[X∗]], to be the set of formal power series

with Noetherian support.

Definition 2.8. A set S ⊂ (R≥0)k is said to be natural if for every compact box

B ⊂ Rk, A ∩B is finite.

6
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2.2 Hardy Fields

The contents of this section are taken from [2].

2.2.1 Germs

Definition 2.9. We say that two functions f, g : R→ R ultimately agree if there

exists a ∈ R such that f[a,+∞[ = g[a,+∞[. It is an equivalence relation and the

equivalence class of a function f is called the germ of f at +∞ and is denoted

germ(f).

Remark. The set of germs forms a ring with addition germ(f) + germ(g) :=

germ(f+g) and multiplication germ(f)·germ(g) := germ(f ·g). If f is ultimately

differentiable, we define germ(f)′ := germ(f ′).

Definition 2.10. A set of germs is called a Hardy field if it is a field closed under

differentiation.

From now on, we will denote a function and its germ by the same symbol.

Facts 2.11 (see §1 in [2]). Let K be a Hardy field, and f ∈ K, then:

(1) ultimately, either f(x) = 0, f(x) > 0 or f(x) < 0 so K can be made into an

ordered differential field by defining f > 0 if f(x) is ultimately positive,

(2) ultimately, either f is constant, strictly increasing or strictly decreasing.

2.2.2 Dominance Relations

Definition 2.12. Let (K, 0, 1,+,−) be a field. A dominance relation on K is a

binary relation � on K such that for all f, g, h ∈ K:

(1) 0 ≺ 1

(2) f � f

7
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(3) f � g and g � h⇒ f � h

(4) f � g or g � f

(5) If h 6= 0, (f � g ⇔ fh � gh)

(6) (f � h and g � h)⇒ f + g � h

If f � g, we say that f is dominated by g. If f � g and g � f , we say that f and

g are asymptotic and write f � g. If f − g ≺ f , we say that f and g are equivalent

and write f ∼ g (note that f ∼ g implies f � g).

Given f ∈ K, we say that f is bounded if f � 1, infinitesimal if f ≺ 1 and infinite

if f � 1.

Fact 2.13 (see §1 in [2]). If (K,≤) is an ordered field, then 0 ≤ f ≤ g implies

f � g. If (K,≤, δ) is a differential ordered field with constant field C, then f �

g :⇔ ∃c ∈ C>0, |f | ≤ c |g| is a dominance relation so every ordered differential field

and in particular every Hardy field can be equipped with a dominance relation.

Fact 2.14 (see §1 in [2]). There is a bijective correspondence between dominance

relations on K and valuations on K. In other words, if v is a valuation on K,

then the following relation is a dominance relation:

f � g :⇔ v(f) ≥ v(g)

Conversely, if � is a dominance relation on K, then K�1 := {f ∈ K | f � 1} is a

valuation ring of K with maximal ideal K≺1 := {f ∈ K | f ≺ 1}.

In a Hardy field, the dominance relation in fact 2.13 can be interpreted in terms

of limits at +∞:

Facts 2.15 (see lemma 1.3 in [2]). Let K be a Hardy field and f, g ∈ K, then the

following holds:

8
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(1) f � g ⇔ lim
x→+∞

f(x)
g(x)
∈ R

(2) f ≺ g ⇔ lim
x→+∞

f(x)
g(x)

= 0

(3) f � g ⇔ lim
x→+∞

f(x)
g(x)
∈ R∗

(4) f ∼ g ⇔ lim
x→+∞

f(x)
g(x)

= 1

Some useful properties of Hardy fields:

Facts 2.16 (see proposition 1.4 in [2]). Let K be a Hardy field and f, g ∈ K×,

then the following holds:

(1) f, g 6� 1⇒ (f � g ⇔ f ′ � g′)

(2) f � 1⇔ f ′ ≺ 1

2.2.3 Archimedean Classes and Comparability Classes

Definition 2.17. Let (G,≤) be an ordered abelian group and a ∈ G. The

archimedean class of a is the set {g ∈ G | ∃n ≥ 1, |a| ≤ n |g| and |g| ≤ n |a|}.

Definition 2.18. Let K be an ordered differential field with field of constants C.

For f, g ∈ K with f, g � 1, we say that f is comparable to g if there exists n ≥ 1

such that |f | ≤ |g|n and |g| ≤ |f |n. Comparability is an equivalence relation and

the equivalence class of f is called the comparability class of f and is denoted [f ].

Lemma 2.19. Let K be as above and f, g ∈ K be in the same archimedean class.

Then, ef and eg are in the same comparability class.

Proof. For simplicity of the notation, assume that f, g > 0. By definition, there

exists n ∈ N such that 1
n
g ≤ f ≤ ng, then (eg)

1
n = e

1
n
g ≤ ef ≤ eng = (eg)n.

9
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2.2.4 Quasianalytic Algebras

We assume in this section that G is a multiplicative subgroup of some Hardy field

H of C∞ germs at +∞.

Definition 2.20. Let F =
∑
m

cmm be an element of R((G)) where the valuation

map is injective on G. For q ∈ G, we say denote by Fg :=
∑
m≥g

cmm, the truncation

of F above g. Note that since supp(F ) is Noetherian, Fg is finite.

Definition 2.21. A tuple (K,G, T ) is called a quasianalytic asymptotic algebra

if:

(1) K is an R-algebra of C∞ germs at +∞.

(2) G is a multiplicative subgroup of some Hardy field H of C∞ germs at +∞

and the valuation map is injective on G.

(3) T is an injective R-algebra homomorphism from K to R((G)) such that:

• T (K) is truncation closed, i.e., for every f ∈ K and g ∈ G, there exists

h ∈ K such that T (h) = T (f)g,

• ∀f ∈ K, ∀g ∈ G, |f(x)− T−1 (T (f)g) (x)| = o(g(x)) as x→ +∞.

In our case, the valuation map on G will not be injective so we need to generalize

the definition for truncation in a series. The idea is to work with equivalence classes

of series and to group all monomials with the same valuation together when we do

the truncation:

Definition 2.22. Let F =
∑
m

cmm be an element of R((G)). For q ∈ G, we denote

by Fg :=
∑
m�g

cmm, the truncation of F above g. Note that Fg is finite for this case

as well.

Definition 2.23. A tuple (K,G,O, T ) is called a generalized quasianalytic asymp-

totic algebra if:

10
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(1) and (2) hold as in definition 2.21 without the valuation independence as-

sumption

(3) T is an injective R-algebra homomorphism from K to R((G))/O where O is

a prime ideal of R((G)) and the following holds:

• T (K) is truncation closed

• for all f ∈ K, g ∈ G and F such that T (f) = F+O, |f(x)−Φ (Fg) (x)| =

o(g(x)) as x→ +∞ where Φ is defined as follows:

Let R := {F ∈ R((G)) | ∃f ∈ K,T (f) = F +O}. We define Φ : R → K

to be the surjective map F 7→ f so that for all f ∈ K with T (f) = F+O,

T (Φ(F )) = T (f) = F + O. Note that since T (K) is truncation closed,

for every F ∈ R and g ∈ G, Fg ∈ R.

2.3 Standard Quadratic Domains and the Phragmén-Lindelöf

Principle

As mentioned in the introduction, transition maps at hyperbolic singularities have

holomorphic extension to standard quadratic domains and for the rest of the thesis,

we will work with germs of functions having asymptotic expansions holding in

standard quadratic domains.

Definition 2.24. A subset of C is called a standard quadratic domain if it is of

the form ΩC := {z + C
√

1 + z |Re(z) > 0} for some C > 0.

Fact 2.25 (Phragmén-Lindelöf principle, Lemma 24.37 in [7]). Let Ω ⊂ C be a

standard quadratic domain and f : Ω → C be a holomorphic function. If f is

bounded and for all n ∈ N and z ∈ Ω, f(z) = o(e−nz) as |z| → +∞ then f is the

0 function.

Definition 2.26. Let U ⊂ C be an open set. A function ϕ : U → C is said to be

conformal if it is holomorphic and injective.

11
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Fact 2.27 (see section 14.7 in [11]). If U is a domain, then ϕ : U → C is conformal

if and only if it is biholomorphic (i.e. both ϕ and ϕ−1 are holomorphic).

Lemma 2.28. For all C > 0, ϕC : C>0 → C, with ϕC(z) := z + C
√

1 + z is

conformal.

Proof. The principal square root is holomorphic on C \ R≤0. Hence, z 7→ z +

C
√

1 + z is holomorphic on C>0 so ϕC is holomorphic on C>0 as well. For injec-

tivity, we prove that ϕC has a compositional inverse:

ω = z + C
√

1 + z

⇒(ω − z)2 = C2(1 + z)

⇔ω2 − 2ωz + z2 = C2 + C2z

⇔z2 − 2

(
ω +

C2

2

)
z = C2 − ω2

⇔z2 − 2

(
ω +

C2

2

)
z +

(
ω +

C2

2

)2

= C2 − ω2 +

(
ω +

C2

2

)2

⇔
(
z −

(
ω +

C2

2

))2

= C2 − ω2 + ω2 + C2ω +
C4

4

⇔
(
ω +

C2

2
− z
)2

= C2

(
1 + ω +

C2

4

)
⇒ω +

C2

2
− z = C

√
1 + ω +

C2

4
(∗)

⇒z = ω +
C2

2
− C

√
1 + ω +

C2

4

(∗) follows from the fact that Re(z) > 0 implies Re

((
ω + C2

2
− z
)2
)
> 0 and

Re(1+ω+C2

4
) > 0. Hence, ϕ−1

C is the holomorphic map z 7→ z+C2

2
−C
√

1 + z + C2

4

so ϕC is injective.

Facts 2.29. For all α,C,D > 0, the following holds:

12
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(1)

δ(ΩC) = ϕC(iR) =

C
√√

1 + r2 + 1

2
+ i

r + C sgn(r)

√√
1 + r2 − 1

2

 | r ∈ R


(2) There exists a continuous function fC : [C,+∞[→ R such that Im(ϕC(ir)) =

fC(Re(ϕC(ir))) for all r ∈ R and fC(r) ∼ 2
(
r
C

)2
. In particular, for all

C > 0, z ∈ ΩC if and only if Re(z) > C and |Im(z)| < fC(Re(z)).

(3) ΩC + αΩC ⊂ Ωmin(1,α)C

(4) Log(ΩC) ⊂ ΩD

(5) If D > C, then there exists ε > 0 such that Vε(ΩD) ⊂ ΩC where Vε(A) =

{z ∈ C| d(z, A) < ε}

(6) There exist k,K such that keK
√
|z| ≤ |ez| ≤ e|z| for |z| large enough in ΩC

Proof. (1) By the open mapping theorem, since ϕC is biholomorphic, it is an

open and closed map. Let U := C>0, then δ(U) = iR so the following holds:

ϕC(iR) = ϕC(δ(U))

= ϕC(U) \ ϕC(U◦) (ϕC is injective)

⊂ (ϕC(U)) \ ϕC(U)◦ (ϕC is open and closed)

= δ(ΩC)

Likewise, ϕ−1
C (δ(ΩC)) ⊂ δ(U). Hence, the first equality holds. The second

equality follows directly from the formula of the principal square root in

cartesian coordinates:

√
z =

√
|z|+ Re(z)

2
+ i sgn(Im(z))

√
|z| − Re(z)

2
for z ∈ C \ R≤0

13
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(2) Let gC : [C,+∞[→ R be the map x 7→
√(

2
(
x
C

)2 − 1
)2

− 1. It is easy to

check that for r ∈ R, gc(Re(ϕC(ir))) = |r| and that gc(x) ∼ 2
(
x
C

)2
. Now,

define fC(x) := gC(x)+C

√√
1+gC(x)2−1

2
for x ∈ [C,+∞[. Then, for all r ≥ 0,

fc(Re(ϕC(ir))) = Im(ϕC(ir)).

(3) , (4), (5) and (6): see [12].

Definition 2.30. A set Ω ⊂ C>0 is said to be a standard domain if there exists

a > 0 and f :]a,+∞[→]0,+∞[ such that:

Ω = {z ∈ C | Re(z) > a and |Im(z)| < f(Re(z))}.

In particular, every standard quadratic domain is standard domain.

2.4 Han,exp and Geometrically Pure Functions

The content of this section comes from work in progress by P. Speissegger and T.

Kaiser (see [9]). Recall that the objective is to generalize the construction done in

[12] by allowing any germ in Han,exp (the Hardy field of all germs at +∞ of unary

functions defined in Ran,exp, see [14] and [15] for more details) as monomials. The

main issue is that these germs do not in general verify the desired holomorphic ex-

tension properties. We need each fi ◦ f−1
j (j < i) to have a holomorphic extension

fi ◦ f−1
j : Ωij → C where Ωij is a standard quadratic domain and such that fi ◦ f−1

j

maps standard quadratic domains into standard domains. It turns out that there

is a subset of Han,exp, called geometrically pure functions of level at most 0, that

verify these properties. Moreover, every germ in Han,exp can be decomposed as a

finite sum of geometrically pure functions.

More precisely, in [10], it is shown that Ran,exp is levelled, i.e. that every definable

14
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infinitely increasing function has level.

Definition 2.31. Let f be an element of Han,exp. We say that f has level s ∈ Z

if there exists k ∈ N such that logk(f) ∼ logk−s. Then, s is unique and we write

level(f) = s.

Without giving the precise definition, we can also associate to every element

f in Han,exp a complexity corresponding to the number of times exp is used in

the construction of the term in Lan,exp,log (see introduction of [14]). We call this

complexity the exponential height of f and denote it by eh(f).

Example. For all k ∈ N, we have:

• eh(logk) = level(logk) = −k, in particular eh(x) = level(x) = 0

• eh(expk(x)) = level(expk(x)) = k

• eh(x+ exp(−x)) = 1 but level(x+ exp(−x)) = 0

• for all f ∈ Han,exp, level(f) ≤ eh(f).

Facts 2.32. The set E0 := {f ∈ Han,exp |eh(f) ≤ 0} verifies the following:

(1) E0 is a differential subfield of Han,exp

(2) E0 is stable under composition, i.e. for f, g ∈ E0 with g � 1, f ◦ g ∈ E0.

Definition 2.33. An infinite element f is said to be geometrically pure if eh(f) =

level(f).

Facts 2.34. Let f and g be such that x ≥ f > g. Then the following holds:

(1) if both f and g are geometrically pure, then eh(g ◦ f−1) ≤ 0,

(2) if eh(f) ≤ 0, then f has a holomorphic extension f on the right half-plane

that maps standard quadratic domains into standard domains.

15
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Facts 2.35. (1) For all f ∈ Han,exp, there exist geometrically pure g1, . . . , gk

such that f = g1 + · · ·+ gk.

(2) For all f ∈ Han,exp, there exist unique h ∈ Han,exp, c ∈ R and g geometrically

pure such that f = g + h + c with level(g) = level(f) and h is either 0 or

level(h) > level(f).

The holomorphic extensions of pure functions verify the following properties

that will be important when doing the construction.

Facts 2.36. Let x > f, g � 1 with holomorphic extensions f and g be such that

eh(f), eh(g) ≤ 0. Then the following holds:

(1) if e−f = o(e−g), then lim
|z|→+∞

∣∣∣ e−f(z)

e−g(z)

∣∣∣ = 0 on any standard quadratic domain

Ω,

(2) if lim
x→+∞

f(x) = c ∈ R and level(f) ≤ 0, then lim
|z|→+∞

f(z) = c in the right half

plane and level(e−f ) ≤ 0.

16
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3 Construction of a Quasianalytic Asymptotic

Algebra

Notation. Let Ω be a standard quadratic domain and f, g : Ω → C be two

holomorphic functions. We write:

• |f| = o(|g|) if lim
|z|→+∞ in Ω

∣∣∣ f(z)g(z)

∣∣∣ = 0

• |f| � |g| if lim
|z|→+∞ in Ω

∣∣∣ f(z)g(z)

∣∣∣ is a non-zero real number.

3.1 Valuation Independent case

Let f0, f1, . . . , fk be elements of Han,exp verifying:

P1. x = f0 > f1 > · · · > fk � 1

P2. f0, . . . , fk are in distinct archimedean classes

P3. for all 0 ≤ i < j ≤ k, eh(fj ◦ f−1
i ) ≤ 0.

Since the fi’s are in distinct archimedean classes, the monomials e−fi belong to

distinct comparability classes; in particular, they have R-independent valuation,

i.e. for all r1, . . . rk ∈ R, if r1v(e−f1) + · · ·+ rkv(e−fk) = 0, then r1 = · · · = rk = 0.

Notation. Given the tuple (f0, . . . , fk) we introduce the following inductive no-

tation:

• f<k> := (f0, f1, . . . , fk),

• f<k−1> = (f1 ◦ f−1
1 , . . . , fk ◦ f−1

1 ),

...

• f<1> = (fk−1 ◦ f−1
k−1, fk ◦ f

−1
k−1),

• f<0> = (fk ◦ f−1
k ) = (f0).

17
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3.1.1 Base case: k = 0

In the base case, the coefficients in the series expansion are real numbers and the

monomials are powers of e−x. We let M(f0) :=< e−f0 > be the R-multiplicative

vector space generated by {e−f0} so each element n ∈ M(f0) is of the form e−αx

for some α ∈ R. Each monomial n has a holomorphic extension n := e−αz to the

right half plane and |n(z)| = n(Re(z)). If α ≥ 0, then n and n are bounded.

Definition 3.1. Let Af<0> be the set of germs at +∞ of functions f : R → R

such that:

(1) f has a bounded holomorphic extension f : Ω → C where Ω is a standard

quadratic domain

(2) there exists a series F =
∑

m∈M(f0)

ann with natural support included in

M(f0)≤1 and an ∈ R such that:

∀m ∈M(f0),

∣∣∣∣∣f−∑
n≥m

ann

∣∣∣∣∣ = o(|m|) as |z| → +∞ in Ω.

In that case, we say that F is an asymptotic expansion of f and write f ∼ F .

Remark. The set Af<0> ◦ (− log) contains all analytic functions near 0+ and all

correspondence maps near non-resonant hyperbolic singularities of planar real an-

alytic vector fields (see [8] for details).

Lemma 3.2. Let m and n be elements of M(f0), then m = o(n) ⇔ |m| = o(|n|)

on any standard quadratic domain.

Proof. It directly follows from fact 2.29(6).

Lemma 3.3. Let f and g be elements of Af<0> and let Ω be a standard quadratic

domain on which both f and g have bounded holomorphic extensions. Then f =

o(g)⇔ |f| = o(|g|) on Ω.

18
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Proof. Assume that f ∼ F =
∑
ann and g ∼ G =

∑
bnn with leading monomials

m0 and n0 respectively. Then, the following holds:

lim
|z|→+∞ in Ω

∣∣∣∣ f(z)− a0m0(z)

m0(z)

∣∣∣∣ = 0

⇒ lim
|z|→+∞ in Ω

∣∣∣∣ f(z)

a0m0(z)
− 1

∣∣∣∣ = 0

⇒|f(z)| � a0 |m0(z)| � |m0(z)| (a0 ∈ R∗)

Likewise, we obtain that |g(z)| � |n0(z)|. Since a standard quadratic domain

contains the positive real line, we also have:

lim
x→+∞

∣∣∣∣ f

a0m0

− 1

∣∣∣∣ = 0

Hence, f � m0 and g � n0. Now, using lemma 3.2, we obtain that m0 = o(n0)⇔

|m0| = o(|n0|) on Ω so the desired equivalence follows.

In order to show that Af<0> is an R-algebra, we need the following lemma for

the multiplication of two series.

Lemma 3.4. Let f ∼ F =
∑

n∈M(f0)

ann and g ∼ G =
∑

n∈M(f0)

bnn be elements of

Af<0>. Then,

(1) For all n ∈ M(f0), there are finitely many elements p ∈ supp(F ) and q ∈

supp(G) such that pq = n.

(2) The set supp(FG) = {n ∈ M(f0) |
∑
pq=n

apbq 6= 0} is natural and included in

M(f0)≤1.

Proof. (1) Let Pn := {p ∈ supp(F ) | ∃q ∈ supp(G), pq = n} and Qn := {q ∈

supp(G)|∃p ∈ supp(F ), pq = n}. Then, since both supp(F ) and supp(G) are

subsets of M(f0)≤1, n = pq ≤ p and n = pq ≤ q for all p ∈ Pn and q ∈ Qn.
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Hence, Pn and Qn are subsets of [n,+∞[ and by naturality of supp(F ) and

supp(G), they must both be finite.

(2) supp(FG) is natural by lemma 2.6(3). Also, since both supp(F ) and supp(G)

are subsets of M(f0)≤1 and supp(FG) ⊂ supp(F ) · supp(G), we obtain that

supp(FG) ⊂M(f0)≤1 as well.

Lemma 3.5. Af<0> is an R-algebra.

Proof. We just need to check that Af<0> is a subalgebra of the algebra of germs

of functions at +∞. Let f, g ∈ Af<0> , then there exists C,D > 0 such that f

and g have a bounded holomorphic extension to the closure of standard quadratic

domains ΩC and ΩD respectively. Also, there exist series F =
∑

n∈M(f0)

ann, G =∑
n∈M(f0)

bnn with real coefficients such that f ∼ F on ΩC , g ∼ G on ΩD and

supp(F ), supp(G) ⊂M(f0)≤1 are natural.

• Let r ∈ R, then rf also has a bounded holomorphic extension to ΩC and

for all m ∈ M(f0),

∣∣∣∣rf− ∑
n≥m

(ran)n

∣∣∣∣ = o(|m|) and supp(rF ) = supp(F ) ⊂

M(f0)≤1 is natural.

• Let E := min{C,D}, then ΩC ,ΩD ⊂ ΩE so f+g has a bounded holomorphic

extension to ΩE and for all m ∈M(f0),

∣∣∣∣f + g−
∑
n≥m

(an + bn)n

∣∣∣∣ = o(|m|) and

supp(F +G) ⊂ supp(F ) ∪ supp(G) ⊂M(f0)≤1 is natural.

• By the same argument as above, fg has a bounded holomorphic extension

to ΩE. Now, for all m ∈M(f0), we have:

(∑
n≥m

ann

)(∑
n≥m

bnn

)
=
∑
n≥m

(∑
pq=n

apbq

)
n+ ε

where
∑
pq=n

apbq and ε =
∑

m>n≥m2

( ∑
pq=n

apbq

)
n are finite sums (by lemma 3.4)
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and |ε| = o(|m|) (since supp(ε) < m). Hence, the following holds:

∣∣∣∣∣fg−∑
n≥m

(∑
pq=n

apbq

)
n

∣∣∣∣∣ =

∣∣∣∣∣fg− f
∑
n≥m

bnn + f
∑
n≥m

bnn−

(∑
n≥m

ann

)(∑
n≥m

bnn

)
+ ε

∣∣∣∣∣
≤ |f| |g−

∑
n≥m

bnn|+ |
∑
n≥m

bnn||f−
∑
n≥m

ann|+ |ε|

= o(|m|)

The last equality follows from the boundedness of |f| and

∣∣∣∣ ∑
n≥m

bnn

∣∣∣∣ (as a

finite sum of bounded elements). Hence, fg ∈ A(f0) and fg ∼ FG.

Lemma 3.6. If 0 ∼ F =
∑

n∈M(f0)

ann, then an = 0 for all n ∈M(f0).

Proof. Assume that supp(F ) 6= ∅ and let m0 be the leading monomial of F . Then,

|0 −
∑
n≥m0

ann| = o(|m0|) is equivalent to |a0m0| = o(|m0|) and since a0 ∈ R, we

must have a0 = 0.

Corollary 3.7. Each f ∈ Af<0> has a unique asymptotic expansion.

Proof. Assume that f ∼
∑
ann and f ∼

∑
bnn, then F :=

∑
(an − bn)n is an

asymptotic expansion of 0. By lemma 3.6, (an − bn) = 0 for all n ∈M(f0).

Definition 3.8. Let f ∈ Af<0> with f ∼ F , we define Tf<0> : Af<0> → R((M(f0)))

to be the map f 7→ F .

Lemma 3.9. Let f 6= g be elements of Af<0>. Then, f and g have distinct

asymptotic expansions.

Proof. Assume that f and g have the same asymptotic expansion, then |f− g| =

o(|m|) for all m ∈ M(f0). In particular, it holds for mj := e−jx ∈ M(f0) (j ∈ N )
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so by the Phragmén-Lindelöf principle (fact 2.25), |f− g| = 0 on Ω so f − g = 0

i.e. f = g.

Corollary 3.10. Tf<0> is a well-defined and injective R-algebra homomorphism.

Proof. Follows directly from corollary 3.7 and lemma 3.9.

Lemma 3.11. (1) Tf<0>(Af<0>) is truncation closed.

(2) For all f ∈ Af<0> and m ∈ M(f0), |f − T−1
f<0>

(
[Tf<0>(f)]

m

)
| = o(|m|) as

|z| → +∞ in Ω.

Proof. Let f ∈ Af<0> with f ∼ F where F :=
∑

n∈M(f0)

ann and fix m ∈M(f0).

(1) We need to show there exists g ∈ Af<0> such that Tf<0>(g) = [Tf<0>(f)]
m

=

Fm. If m < supp(F ), Fm =
∑
n≥m

ann = F so we can just take g := f . Oth-

erwise, Fm =
∑
n≥m

ann is a finite sum of bounded elements (since supp(F ) is

natural and included in M(f0)≤1) so Fm :=
∑
n≥m

ann is a bounded holomor-

phic extension of Fm to any standard quadratic domain.

We want to show that we can take g := Fm with itself as asymptotic ex-

pansion so we need to prove that for all t ∈ M(f0), |Fm − (Fm)t| = o(|t|)

(where (Fm)t is the truncation of the finite sum Fm above t). If t < m,

then (Fm)t =
∑

n≥m and n≥t
ann = Fm so |Fm − (Fm)t| = 0 = o(|t|). If not,

|Fm − (Fm)t| =
∣∣∣∣ ∑
t>n≥m

ann

∣∣∣∣ = o(|t|). Hence, g = Fm ∈ A(f0) as desired.

(2) Now, T−1
f<0>

(
[Tf<0>(f)]

m

)
= g has a bounded holomorphic extension g and

we obtain by definition of f ∼ F :

|f− g| =


|f− f| = 0 = o(m) if m < supp(F )

|f−
∑
n≥m

ann| = o(m) otherwise
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Corollary 3.12. (Af<0> ,M(f0), Tf<0>) is a quasianalytic asymptotic algebra.

Proof. It directly follows from lemmas 3.5, 3.6, 3.7, 3.9 and 3.11.

We can formally extend Af<0> to its fraction field but we also want the multi-

plicative inverses to have compatible asymptotic expansions.

Lemma 3.13. Let f ∈ Af<0> \ {0} with f ∼ F , then 1
f
∼ 1

F
.

Proof. Let f be a nonzero element of Af<0> with asymptotic expansion F =∑
ann. Let m0 be the leading monomial of F i.e.:

|f− a0m0| = o(|m0|)

Let ε := f
a0m0

− 1 and E := F
a0m0

− 1. Since m0 = e−α0f0 for some α0 ≥ 0, it

has a bounded holomorphic extension m0 : Ω0 → C \ {0} to the closure of some

standard quadratic domain Ω0. Since ε ≺ 1, it also has holomorphic extension

ε = f
a0m0
−1 to some standard quadratic domain Ωε. To show that it is an element

of Af<0> , we need ε ∼ E (which implies that ε is bounded). Let m ∈ M(f0) and
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let Em be the holomorphic extension of Em on Ω. then:

|f−
∑

n≥m0m

ann| = o(|m0m|)

⇒ lim
|z|→+∞

∣∣∣∣∣∣
f−

∑
n≥m0m

ann

m0m

∣∣∣∣∣∣ = 0

⇒ lim
|z|→+∞

∣∣∣∣∣∣
f−

∑
n≥m0m

ann

a0m0m

∣∣∣∣∣∣ = 0

⇒ lim
|z|→+∞

∣∣∣∣∣ 1

m

[(
f

a0m0

− 1

)
−

( ∑
n≥m0m

an
a0

n

m0

− 1

)]∣∣∣∣∣ = 0

⇒ lim
|z|→+∞

∣∣∣∣ε− Em
m

∣∣∣∣ = 0 (since Em =
Fm0m

a0m0

− 1)

⇒ |ε− Em| = o(|m|)

Since supp(E) ≺ 1, (supp(E))∗ is natural by lemma 2.6. Let m ∈ M(f0), we

need to prove that:

∣∣∣∣∣ 1

1 + ε
−

(∑
k∈N

(−1)kEk

)
m

∣∣∣∣∣ = o(|m|)

Since (supp(E))∗ is natural, there are finitely many powers of E whose sup-

port contain the monomial m. In other words, there exists km ∈ N such that

supp
(∑

k>km
(−1)kEk

)
∩ [m,+∞[= ∅, hence:

(∑
k∈N

(−1)kEk

)
m

=
∑
k≤km

(−1)k(Ek)m
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Hence, the following holds:

∣∣∣∣∣ 1

1 + ε
−

(∑
k∈N

(−1)kEk

)
m

∣∣∣∣∣
=

∣∣∣∣∣ 1

1 + ε
−

∑
k≤km+1

(−1)kεk +
∑

k≤km+1

(−1)kεk −
∑
k≤km

(−1)k(Ek)m

∣∣∣∣∣
=

∣∣∣∣∣
(

1

1 + ε
−

∑
k≤km+1

(−1)kεk

)
+ (−1)km+1εkm+1 +

∑
k≤km

(−1)k(εk − (Ek)m)

∣∣∣∣∣
We use the following facts:

(1)

∣∣∣∣∣ 1
1+ε
−

∑
k≤km+1

(−1)kεk

∣∣∣∣∣ = o(
∣∣εkm+1

∣∣) = o(|m|) since |εkm+1 − (Ekm+1)m| =

o(|m|) and |(Ekm+1)m| = o(|m|) (since supp((Ekm+1)m) ≺ m)

(2) |(−1)km+1εkm+1| = o(|m|) for the same reason as above

(3) for all k ∈ N, |εk − (Ek)m| = o(|m|) and since

∣∣∣∣∣ ∑k≤km(−1)k(εk − (Ek)m)

∣∣∣∣∣ is a

finite sum, it is equal to o(|m|) as well.

Hence,

∣∣∣∣∣ 1
1+ε
−

∑
k≤km+1

(−1)kεk

∣∣∣∣∣ = o(|m|) for all m as desired i.e. 1
1+ε
∼ 1

1+E
.

Let F−1 := 1
a0m0

1
1+E

, then 1
f

= 1
a0m0

1
1+ε
∼ F−1.

Definition 3.14. Let Ff<0> denote the fraction field of Af<0> . After extending

Tf<0> to Ff<0> accordingly, we obtain that (Ff<0> ,M(f0), Tf<0>) is a qaa field.

Remark. Elements of Ff<0> are not necessarily bounded or have a bounded holo-

morphic extension and the support of the corresponding series may contain (finitely

many) infinite monomials (i.e. the condition supp(F ) ⊂M(f0)≤1 doesn’t hold any

more).
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3.1.2 Inductive step: k > 0

Definition 3.15. Let Af<k> be the set of germs at +∞ of functions f : R → R

such that:

(1) f has a bounded holomorphic extension f : Ω → C where Ω is a standard

quadratic domain

(2) there exists a series F =
∑

m∈M(f0)

(an ◦ f1)n with natural support included in

M(f0)≤1 and an ∈ Ff<k−1> such that:

∀m ∈M(f0),

∣∣∣∣∣f−∑
n≥m

(an ◦ f1)n

∣∣∣∣∣ = o(|m|) as |z| → +∞ in Ω.

In that case, we say that F is an asymptotic expansion of f and write f ∼ F .

The construction of Af<k> is inductive. The first step is to construct Af<0> =

A(fk◦f−1
k ) (which corresponds to the base case k = 0 described in the previous

section). In the second step, the coefficients are elements of Ff<0> composed with

fk ◦ f−1
k−1 and so on. In the last step, described in definition 3.15, to obtain the

coefficients, we compose elements of Ff<k−1> with f1 ◦ f−1
0 (= f1). For all these

steps, the monomials are always elements of M(f0) i.e. real powers of e−x.
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x = f0 > f1 > · · · > fk step k: construction of Af<k>

x = f1 ◦ f−1
1 > · · · > fk ◦ f−1

1 step k − 1: construction of Af<k−1>

x = f2 ◦ f−1
2 > f3 ◦ f−1

2 > · · · > fk ◦ f−1
2 step k − 2: construction of Af<k−2>

x = fk−1 ◦ f−1
k−1 > fk ◦ f−1

k−1 step 1 construction of Af<1>

x = fk ◦ f−1
k step 0: construction of Af<0>

◦(f1 ◦ f−1
0 )−1 ≡ ◦f−1

1

...

◦(f2 ◦ f−1
1 )−1 ≡ ◦f1 ◦ f−1

2

◦(fk ◦ f−1
k−1)−1 ≡ ◦fk−1 ◦ f−1

k

f<k> := (f0, f1, . . . , fk)

f ∼
∑

n∈M(f0)

(an ◦ f1 ◦ f−1
0 )n, where an ∈ Ff<k−1>

f<k−1> = (f1 ◦ f−1
1 , . . . , fk ◦ f−1

1 )

f ∼
∑

n∈M(f0)

(an◦f2 ◦ f−1
1 )n, where an ∈ Ff<k−2>

...

f<1> = (fk−1 ◦ f−1
k−1, fk ◦ f

−1
k−1)

f ∼
∑

n∈M(f0)

(an◦fk ◦ f−1
k−1)n, where an ∈ Ff<0>

f<0> = (fk ◦ f−1
k ) = (f0)

f ∼
∑

n∈M(f0)

ann, where an ∈ R

Example. If we take f0 > f1 := log, then Af<1> ◦ (− log) contains all f ∼∑
n∈N Pn(log x)x−νnx where Pn ∈ R[x] and (νn)n∈N is a strictly increasing sequence

of positive real numbers with limn→+∞ νn = +∞. In particular, it will contain all

correspondence maps near hyperbolic singularities of planar real analytic vector

fields.

A key point that we will use several times is that |an ◦ f1(z)| is larger than any

positive power of e−Re(z) and smaller than any positive power eRe(z). A consequence

of this lemma is that even if an ◦ f1 is infinite (elements of the fraction field are

not always bounded), |an ◦ f1(z)| is still bounded.
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Lemma 3.16. Let f ∼ F =
∑

(an ◦ f1)n be as in definition 3.15, then for all

n ∈ supp(F ) and α > 0, e−αRe(z) = o(|an ◦ f1|) and |an ◦ f1| = o(eαRe(z)) on Ω.

Proof. Let n ∈ M(f0). Since, by definition, an ∈ Ff<k−1> , an ∼ G for some

G =
∑

(bq ◦ f2 ◦ f−1
1 )q where q ∈ M(f0), bq ∈ Ff<k−2> . Let q0 be the leading

monomial of G, then by induction:

e−βRe(z) = o(
∣∣b0 ◦ f2 ◦ f−11

∣∣) and
∣∣b0 ◦ f2 ◦ f−11

∣∣ = o(eβRe(z)) for all β > 0

which implies:

(1) |b0 ◦ f2 ◦ f−11 | ≥ |q0| and

(2) e−βRe(f1(z)) = o(|b0 ◦ f2|) and |b0 ◦ f2| = o(eβRe(f1(z))) for all β > 0

Since f0 � f1, e−βf1 � e−αf0 and eβf1 ≺ eαf0 for all α > 0. Hence, e−αRe(z) =

o(|b0 ◦ f2(z)|) and |b0 ◦ f2(z)| = o(eαRe(z)) for all α > 0. The first point implies

o(q0) = o((b0 ◦ f2 ◦ f−11 )q0) so the following holds:

∣∣an − (b0 ◦ f2 ◦ f−11 )q0
∣∣ = o(q0) = o((b0 ◦ f2 ◦ f−11 )q0)

⇒ lim
|z|→+∞

∣∣∣∣an − (b0 ◦ f2 ◦ f−11 )q0
(b0 ◦ f2 ◦ f−11 )q0

∣∣∣∣ = 0

⇒|an| �
∣∣(b0 ◦ f2 ◦ f−11 )q0

∣∣
⇒|an ◦ f1| � |(b0 ◦ f2)(q0 ◦ f1)|

⇒e−αRe(z) |q0 ◦ f1| = o(|an ◦ f1|) and |an ◦ f1| = o(eαRe(z) |q0 ◦ f1|) for all α > 0

We have two cases: q0 = 1 or q0 = e−α0x for some α0 > 0. In the first case,

|(q0 ◦ f1)| = 1 and we are done. In the second case, |(q0 ◦ f1)| =
∣∣e−α0f1

∣∣ = o(1)

so |an ◦ f1| = o(eαRe(z)). Since f0 � f1, e−α0f1 � e−αf0 for all α > 0 so we obtain

e−αRe(z) = o(|an ◦ f1|) as desired.
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Corollary 3.17. Let f ∼ F =
∑

(an ◦ f1)n be as in definition 3.15, then for all

n ∈ supp(F ):

(1) o(n) implies o((an ◦ f1)n)

(2) |(an ◦ f1)n| is bounded.

Proof. (1) Since supp(F ) ⊂ M(f0)≤1, n = e−αnx (αn ≥ 0). Lemma 3.48 implies

that |an ◦ f1| ≥ e−αnx = |n| so |an ◦ f1n| ≥ |n|. Hence, o(n) implies o((an◦f1)n).

(2) If n = 1 and a1 6= 0, then it is the leading monomial of F and we have

|f− an ◦ f1| = o(1). Since |f| is bounded, |an ◦ f1| is bounded as well so

|(an ◦ f1)n| is bounded as desired. Otherwise, n = e−αnx (αn > 0) and the

following holds:

|an ◦ f1| = o(eαn Re(z)) by lemma 3.48

⇒|(an ◦ f1)n| = o(eαn Re(z)e−αn Re(z)) = o(1)

Lemma 3.18. Let f and g be elements of Af<k>, then f = o(g)⇔ |f| = o(|g|).

Proof. Assume that f ∼ F =
∑

(an ◦ f1)n and g ∼ G =
∑

(bn ◦ f1)n with leading

monomials m0 and n0 respectively. By lemma 3.48, o(m0) = o((a0 ◦ f1)m0) and

o(n0) = o((b0 ◦ f1)n0). Hence, the following holds:

|f− (a0 ◦ f1)m0| = o(|m0|) = o(|(a0 ◦ f1)m0|)

⇒ lim
|z|→+∞

∣∣∣∣ f− (a0 ◦ f1)m0

(a0 ◦ f1)m0

∣∣∣∣ = 0

⇒ lim
|z|→+∞

∣∣∣∣ f

(a0 ◦ f1)m0

− 1

∣∣∣∣ = 0

⇒|f| � |(a0 ◦ f1)m0| = |a0 ◦ f1|m0(Re(z))

Likewise |g| � |b0 ◦ f1|n0(Re(z)). In a standard quadratic domain, |z| → +∞
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implies that Re(z)→ +∞ so we also have:

lim
Re(z)→+∞

∣∣∣∣ f(Re(z))

(a0 ◦ f1)(Re(z))m0(Re(z))
− 1

∣∣∣∣ = 0 and

lim
Re(z)→+∞

∣∣∣∣ g(Re(z))

(b0 ◦ f1)(Re(z))n0(Re(z))
− 1

∣∣∣∣ = 0

⇒f(Re(z)) � (a0 ◦ f1)(Re(z))m0(Re(z)) and g(Re(z)) � (b0 ◦ f1)(Re(z))n0(Re(z))

We have two cases, either m0 = n0 = 1 or at least one of following equalities

hold: m0 = e−α0x (α0 > 0) or n0 = e−β0x (β0 > 0). In the second case, we obtain

by lemma 3.48 that m0 ≺ n0 ⇒ |a0 ◦ f1|m0(Re(z)) = o(|b0 ◦ f1|n0(Re(z))) and

m0 ≺ n0 ⇒ a0 ◦ f1m0 ≺ b0 ◦ f1n0. Hence, the following holds:

f = o(g)⇔


m0 = o(n0) if m0 or n0 ≺ 1

a0 ◦ f1 = o(b0 ◦ f1) if m0 = n0 = 1

and

|f| = o(|g|)⇔


m0 = o(n0) if m0 or n0 ≺ 1

|a0 ◦ f1| = o(|b0 ◦ f1|) if m0 = n0 = 1

By induction, a0 ◦ f1 = o(b0 ◦ f1) ⇔ |a0 ◦ f1| = o(|b0 ◦ f1|) so we obtain that

f = o(g)⇔ |f| = o(|g|) as desired.

Lemma 3.19. Each f ∈ Af<k> has a unique asymptotic expansion.

Proof. It suffices to show that if 0 ∼ F =
∑

(an ◦ f1)n, then an ◦ f1 = 0 for

all n ∈ M(f0). Assume that supp(F ) 6= ∅ and let m0 = e−α0x (α0 ≥ 0) be the

leading monomial of F . Take m1 = e−α1x ∈ M(f0) be such that α1 > α0 and

supp(F ) ∩ [m1,m0[= ∅. Then, the following holds:
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∣∣∣∣∣0− ∑
n≥m1

(an ◦ f1)n

∣∣∣∣∣ = o(|m1|)

⇒ lim
|z|→+∞

∣∣∣∣(a0 ◦ f1)m0

m1

∣∣∣∣ = 0

⇒ lim
|z|→+∞

∣∣(a0 ◦ f1)e(α1−α0)z
∣∣ = 0

Since α1 > α0, lim
|z|→+∞

∣∣e(α1−α0)z
∣∣ = +∞. Also, by lemma 3.48, |a0 ◦ f1| =

o(|e(α1−α0)z|). Hence, we must have a0 ◦ f1 = 0 which implies a0 ◦ f1 = 0.

Lemma 3.20. Let f 6= g be elements of Af<k>. Then, f and g have distinct

asymptotic expansions.

Proof. Assume that f and g have the same asymptotic expansion, then |f− g| =

o(|m|) for all m ∈M(f0). In particular, it holds for mj := e−jx ∈M(f0) (j ∈ N) so

by the Phragmén-Lindelöf principle (theorem 2.25), |f− g| = 0 in Ω so f − g = 0.

Definition 3.21. We define the function Tf<k> from Af<k> to R((M(f0, . . . , fk)))

inductively by:

f 7→
∑

n∈M(f0)

((
Tf<k−1>(an)

)
◦ f1

)
n where f ∼

∑
n∈M(f0)

(an ◦ f1)n

So Tf<k>(f) is a series with support of order-type at most ωk+1 and real coefficients.

Lemma 3.22. Tf<k> is well-defined and injective.

Proof. Follows directly from lemmas 3.19 and 3.20.

Lemma 3.23. (1) Tf<k>(Af<k>) is truncation closed.
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(2) For all f ∈ Af<k> and m ∈M(f0, . . . , fk),

∣∣∣f− T−1
f<k>(

[
Tf<k>(f)

]
m

)
∣∣∣ = o(|m|) as |z| → +∞ in Ω.

Proof. Let f ∈ Af<k> with f ∼ F =
∑

n∈M(f0)

(an ◦ f1)n and fix m ∈M(f0, . . . , fk).

(1) We need to show that there exists g ∈ Af<k> such that Tf<k>(g) =
[
Tf<k>(f)

]
m

.

Since m ∈ M(f0, . . . , fk), m = m0mr for some m0 = e−α0f0 ∈ M(f0) and

mr ∈M(f1, . . . , fk). Hence, we have:

[
Tf<k>(f)

]
m

=

 ∑
n∈M(f0)

(
Tf<k−1>(an) ◦ f1

)
n


m

=
∑
n>m0

(
Tf<k−1>(an) ◦ f1

)
n+

[(
Tf<k−1>(am0) ◦ f1

)]
mr
m0

By induction, there exists h ∈ Ff<k−1> such that:

Tf<k−1>(h) ◦ f1 =
[(
Tf<k−1>(am0) ◦ f1

)]
mr

and |am0 ◦ f1 − h ◦ f1| = o(|mr|)

Now, we want to prove that we can take g :=
∑
n>m0

(an ◦ f1)n+ (h ◦ f1)m0 so

we need g to have a bounded holomorphic extension to a standard quadratic

domain.

∣∣∣∣ ∑
n>m0

(an ◦ f1)n

∣∣∣∣ is a finite sum of bounded elements by corollary

3.17 and |(h ◦ f1)m0| is also bounded by corollary 3.17. Hence, g ∈ Af<k>

with itself as asymptotic expansion and Tf<k>(Af<k>) is truncation closed as

desired.

(2) We need to show that |f− g| = o(|m|):

|f− g| =

∣∣∣∣∣f−
(∑
n>m0

(an ◦ f1)n + (h ◦ f1)m0

)∣∣∣∣∣
≤

∣∣∣∣∣f− ∑
n≥m0

(an ◦ f1)n

∣∣∣∣∣+ |(am0 ◦ f1)m0 − (h ◦ f1)m0|
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Let m1 ∈M(f0) be such that m1 ≺ m0 and supp(F )∩ [m1,m0[= ∅, then we

have: ∣∣∣∣∣f− ∑
n≥m1

(an ◦ f1)n

∣∣∣∣∣ = o(|m1|)

⇒

∣∣∣∣∣f− ∑
n≥m0

(an ◦ f1)n

∣∣∣∣∣ = o(|m1|) = o(|m|)

Also, since |am0 ◦ f1 − h ◦ f1| = o(|mr|), we obtain |(am0 ◦ f1)m0 − (h ◦ f1)m0| =

o(|m|). Hence, |f− g| = o(|m|) as desired.

Corollary 3.24. (Af<k> ,M(f0, . . . , fk), Tf<k>) is a qaa algebra.

Lemma 3.25. Let f ∈ Af<k> \ {0} with f ∼ F , then 1
f
∼ 1

F
.

Proof. Let f be a nonzero element of Af<k> with asymptotic expansion F =∑
(an ◦ f1)n with an ∈ Ff<k−1> . Let m0 be the leading monomial of F so:

|f− (a0 ◦ f1)m0| = o(|m0|)

Let ε := f
(a0◦f1)m0

− 1 and E := F
(a0◦f1)m0

− 1. By induction, 1
a0
∈ Ff<k−1> . Also,

ε has a holomorphic extension ε = f
(a0◦f1)m0

− 1 to the closure of some standard

quadratic domain Ωε. To show that it is an element of Af<k> , we need ε ∼ E

(which implies that ε is bounded). Let m ∈M(f0), then:

|f−
∑

n≥m0m

(an ◦ f1)n| = o(|m0m|) = o(|(a0 ◦ f1)m0m|) (By corollary 3.17)

⇒ lim
|z|→+∞

∣∣∣∣∣∣
f−

∑
n≥m0m

(an ◦ f1)n

(a0 ◦ f1)m0m

∣∣∣∣∣∣ = 0

⇒ lim
|z|→+∞

∣∣∣∣∣ 1

m

[(
f

(a0 ◦ f1)m0

− 1

)
−

( ∑
n≥m0m

(an ◦ f1)
(a0 ◦ f1)

n

m0

− 1

)]∣∣∣∣∣ = 0

⇒ lim
|z|→+∞

∣∣∣∣ε− Em
m

∣∣∣∣ = 0

⇒ |ε− Em| = o(|m|)
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The rest of the proof is similar to lemma 3.13.

Lemma 3.26. For all f ∈ Ff<k>, there exists g ∈ Af<k> and m ∈ M(f0, . . . , fk)

such that f = g
m

i.e.:

Ff<k> =
Af<k>

M(f0, . . . , fk)

Hence, every element of Af<k> can be written as a monomial times a unit.

Proof. Let f ∈ Ff<k> \ {0} with asymptotic expansion F =
∑

n∈M(f0)

(an ◦ f1)n

where an ∈ Ff<k−1> . An element of Ff<k> is in Af<k> if it is bounded by lemma

3.25. Let m0 be the leading monomial of F , then by induction, a0 = g0
q0

for some

g0 ∈ Af<k−1> and q0 ∈ M(f1 ◦ f−1
1 , . . . , fk ◦ f−1

1 ). Hence, a0 ◦ f1 = g0◦f1
q0◦f1 where

g0 ◦ f1 ∈ Af<k> and q0 ◦ f1 ∈ M(f1, . . . , fk). Since f � (a0 ◦ f1)m0, f
(a0◦f1)m0

is

bounded so it is an element of Af<k> . Now, let:

g :=
f

(a0 ◦ f1)m0

∈ Af<k> and m :=
q0 ◦ f1

m0

∈M(f0, . . . , fk).

We obtain that f = g
m

as desired.

Since we want to take the direct limit of all such algebras, we need to know

that by doing the construction on a subsequence of f0 > f1 > · · · > fk, we obtain

a subalgebra of Ff<k>

Lemma 3.27. For all i ≤ k and strictly increasing ϕ : {0, 1, . . . , i} → {0, 1, . . . , k}

with ϕ(0) = 0:

(1) Ff<i>ϕ
⊂ Ff<k> where f<i>ϕ := (fϕ(0), fϕ(1) . . . , fϕ(i))

(2) Tf<i>ϕ
= Tf<k>|F

f<i>ϕ

Proof. Let f ∈ Ff<i>ϕ
, then f ∼ F for some F =

∑
n∈M(f0)

(an ◦ fϕ(1))n with an ∈

Ff<i−1>
ϕ

where f<i−1>
ϕ = (fϕ(1) ◦ f−1

ϕ(1), fϕ(2) ◦ f−1
ϕ(1), . . . , fϕ(i) ◦ f−1

ϕ(1)).
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(1) Let bn := an ◦ fϕ(1) ◦ f−1
1 so that F =

∑
n∈M(f0)

(bn ◦ f1)n. To show that

f ∈ Ff<k> , it suffices to prove that for all n ∈ supp(F ), bn ∈ Ff<k−1> . We

will start by showing that Ff<i−1>
ϕ

⊂ Ff<k−ϕ(1)> , where:

f<k−ϕ(1)> = (fϕ(1) ◦ f−1
ϕ(1), fϕ(1)+1 ◦ f−1

ϕ(1), . . . , fk ◦ f
−1
ϕ(1))

We define the following:

gj := fϕ(1)+j ◦ f−1
ϕ(1) for j ∈ {0, 1, . . . , k − ϕ(1)}

so that the following holds:

g0 = fϕ(1) ◦ f−1
ϕ(1) > g1 = fϕ(1)+1 ◦ f−1

ϕ(1) > · · · > gk−ϕ(1) = fk ◦ f−1
ϕ(1).

Let ψ : {0, 1, . . . , i − 1} → {0, 1, . . . , k − 1} be the strictly increasing map

j 7→ ϕ(j + 1) for j ≥ 1 and ψ(0) := 0 so that:

gψ(0) = fϕ(1)◦f−1
ϕ(1) > gψ(1) = fϕ(2)◦f−1

ϕ(1) > gψ(2) = fϕ(3)◦f−1
ϕ(1) > · · · > gψ(i−1) = fϕ(i)◦f−1

ϕ(1).

Hence, with g<i−1>
ψ = (gψ(0), gψ(1), . . . , gψ(i−1)) and g<k−ϕ(1)> = (g0, g1, . . . , gk−ϕ(1)),

we obtain by induction that:

Fg<i−1>
ψ

⊂ Fg<k−ϕ(1)>

⇔Ff<i−1>
ϕ

⊂ Ff<k−ϕ(1)>

Hence, an ∈ Ff<k−ϕ(1)> . Now, by definition, we have:

an ◦ fϕ(1) ◦ f−1
ϕ(1)−1 ∈ Ff<k−(ϕ(1)−1)>

where f<k−(ϕ(1)−1)> = (fϕ(1)−1◦f−1
ϕ(1)−1, fϕ(1)◦f−1

ϕ(1)−1, fϕ(1)+1◦f−1
ϕ(1)−1, . . . , fk◦f

−1
ϕ(1)−1).
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Iterating this process, we obtain that:

bn = an ◦ fϕ(1) ◦ f−1
1 =

(
an ◦ fϕ(1) ◦ f−1

ϕ(1)−1

)
◦
(
fϕ(1)−1 ◦ f−1

ϕ(1)−2

)
◦ · · · ◦

(
f2 ◦ f−1

1

)
∈ Ff<k−1>

(2) Given f and F as above, we have by definition:

Tf<i>ϕ
(f) =

∑
n∈M(f0)

((
Tf<i−1>

ϕ
(an)

)
◦ fϕ(1)

)
n

and

Tf<k>(f) =
∑

n∈M(f0)

((
Tf<k−1>(bn)

)
◦ f1

)
n

With the same setting as above, we obtain by induction:

Tg<i−1>
ψ

= Tg<k−ϕ(1)>|F
g<i−1>
ϕ

⇔Tf<i−1>
ϕ

= Tf<k−ϕ(1)>|F
f<i−1>
ϕ

Hence, Tf<i−1>
ϕ

(an) = Tf<k−ϕ(1)>(an). Now, by definition,

[
Tf<k−ϕ(1)>(an)

]
◦ fϕ(1)

=
[
Tf<k−(ϕ(1)−1)>(an ◦ fϕ(1) ◦ f−1

ϕ(1)−1)
]
◦ fϕ(1)−1

Iterating this process, we obtain that:

[
Tf<k−1>(bn)

]
◦f1 =

[
Tf<k−1>(an ◦ fϕ(1) ◦ f−1

1 )
]
◦f1 = · · · =

[
Tf<k−ϕ(1)>(an)

]
◦fϕ(1)

By the previous lemma, the set of all fields Ff<k> is a directed set (with respect

to inclusion on the set of all finite tuples (f0, ..., fk)) so taking the direct limit, we

obtain a field F and a common extension T such that (F ,M, T ) is a qaa field
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where M := {
k∏
i=0

eαifi | f0 > · · · > fk verify P1, P2, P3 and αi ∈ R}.

Remark. In particular, (F ,M, T ) is an extension of the qaa field constructed in

[12] where the construction is done with f0 > log > log2 > . . . .
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3.2 General case

In general, the e−fi ’s do not have independent valuations and we need to modify

the definition of asymptotic expansions to preserve stability under addition and

multiplication. Let f0, f1, . . . , fk be elements of Han,exp verifying:

P1. x = f0 > f1 > · · · > fk � 1

P2. the fi’s are in l + 1 distinct archimedean classes:

f0 > · · · > fk1−1 > fk1 > · · · > fk2−1 > · · · > fk(l−1)
> · · · > fkl−1 > fkl > · · · > fk

P3. for all 0 ≤ i < j ≤ k such that fi and fj are in distinct archimedean classes,

eh(fj ◦ f−1
i ) ≤ 0.

Lemma 3.28. Let f : Ω → C be a holomorphic map with Ω a standard quadratic

domain. Then, for all m ∈M(f0, . . . , fk1−1), |f| = o(|m|) implies |f′| = o(|m|).

Proof. Since m ∈M(f0, . . . , fk1−1), there exist αi ∈ R such that m = e
−
∑
i
αifi

. Let

D > C be such that V1(ΩD) ⊂ ΩC (see facts 2.29). Since all the fi are holomorphic,∑
i

αifi is continuous so for all z ∈ ΩD. Since each fi is in the same archimedean

class as f0 and is an element of a Hardy field, there exists c > 0 such that fi ∼ cf0.

By facts 2.36, lim
|z|→+∞

fi
f0

= c so each fi (and hence
∑
i

αifi) is in fact uniformly

continuous. Hence, there exists δ > 0 such that for all ω ∈ C with |z − ω| < δ,∣∣∣∣∑
i

αifi(z)−
∑
i

αifi(ω)

∣∣∣∣ < 1. Let γ := min(1, δ
2
) so that for z ∈ ΩD, |z − ω| = γ

implies that ω ∈ ΩC and |z − ω| < δ. Hence, for |z − ω| = γ, the following holds:

∣∣∣∣∣∑
i

αifi(z)−
∑
i

αifi(ω)

∣∣∣∣∣ < 1

⇒Re(
∑
i

αifi(z)) < Re(
∑
i

αifi(ω)) + 1

⇒e
−Re(

∑
i
αifi(z))

> e−1e
−Re(

∑
i
αifi(ω))

⇒|m(z)| > e−1 |m(ω)|
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Using Cauchy’s formula, we obtain:

|f′(z)| ≤
sup|z−ω|=γz |f(ω)|

γ

⇒ |f
′(z)|
|m(z)|

≤
sup|z−ω|=γ |f(ω)|

γ |m(z)|

⇒ |f
′(z)|
|m(z)|

≤
sup|z−ω|=γ |f(ω)|
γe−1 |m(ω)|

As |z| → +∞ in ΩD, |ω| → +∞ in ΩC and since |f| = o(|m|) in ΩC , the LHS goes

to 0 and we obtain that |f′| = o(|m|) in ΩD as desired.

Lemma 3.29. Let f ∈ Han,exp be in the same archimedean class as f0 with eh(f) ≤

0, then the following holds:

(1) f−1 is in the same archimedean class as f0.

(2) there exists c > 0 such that lim
x→+∞

f ′(x) = c and lim
|z|→+∞ in Ω

f′(z) = c.

Proof. (1) f is in the same archimedean class as f0 implies that there exists

n ∈ N such that:

1

n
f ≤ f0 ≤ nf ⇒ 1

n
f0 ≤ f−1 ≤ nf0

(2) Since f and f0 are infinite elements of the Hardy field, the following holds:

1

n
f0 ≤ f ≤ nf0 ⇒

1

n
f0 � f � nf0

⇒ 1

n
� f ′ � n

⇒ f ′ � 1

Since f ′ is in a Hardy field, it is ultimately increasing, decreasing or constant.

Hence, there exists c > 0 such that lim
x→+∞

f ′(x) = c. By fact 2.34, we also

obtain that lim
|z|→+∞ in Ω

f′(z) = c.
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Lemma 3.30. Let f0 > f1 > · · · > fk verify P1, P2 and P3. For all h ∈ Han,exp

geometrically pure of level 0 and i ≤ l, if we insert h in f<i> and obtain the

new tuple h<i> := (fk(l−i) ◦ f
−1
k(l−i)

, . . . , h, . . . , fk(l−i+1)−1
◦ f−1

k(l−i)
, . . . , fk ◦f−1

k(l−i)
), then

the tuple h<l> := (f0, . . . , fk(l−i) , . . . , h ◦ fk(l−i) , . . . , fk(l−i+1)−1
, . . . , fk) also verifies

P1, P2 and P3.

In particular this holds for h = fi − ln(f ′i).

Proof. Assume that i = l, then we just need to check that for all j ≥ k1, eh(fj ◦

h−1) ≤ 0. Since both fj (level(fj) = 0 and P3 implies that eh(fj) ≤ 0) and h are

geometrically pure and less than f0, it follows directly from fact 2.34(1). Assume

that i = l − 1 (the rest of the proof will follow by induction), then we need to

check that:

(1) eh((h ◦ fk1) ◦ f−1
j ) ≤ 0 for all 0 ≤ j ≤ k1 − 1

(2) eh(fj ◦ (h ◦ fk1)−1) ≤ 0 for all j ≥ k2.

(1) By assumption, eh(fk1 ◦ f−1
j ) ≤ 0 and eh(h) ≤ 0 (it is geometrically pure of

level 0) so by fact 2.32(2), we obtain the desired result.

(2) Since eh(fj ◦ (h ◦ fk1)−1) = eh((fj ◦ f−1
k1

) ◦ h−1), the conclusion follows from

the base case (eh(h−1) ≤ 0 by fact 2.32(2)).

3.2.1 Base case: l = 0

We assume here that f0, . . . , fk are in the same archimedean class and we let

M(f0, . . . , fk) :=< e−f0 , . . . , e−fk >.

Lemma 3.31. Each n ∈M(f0, . . . , fk) has a holomorphic extension n : ΩCn → C

where ΩCn is a standard quadratic domain and for n,m ∈M(f0, . . . , fk), n = o(m)

implies |n| = o(|m|) as |z| → +∞ in Ωmax(Cn,Cm).
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Proof. For each n ∈ M(f0, . . . , fk), there exists αi ∈ R such that n = e
−

k∑
i=0

αifi
.

The conclusion follows directly from P3 and fact 2.34(2).

Definition 3.32. We define Af<0> to be the set of germs at +∞ of functions

f : R→ R such that:

(1) f has a bounded holomorphic extension f : Ω → C where Ω is a standard

quadratic domain

(2) there exists a series F :=
∑

n∈M(f0,...,fk)

ann with natural support included in

M(f0, . . . , fk)
≤1 where we only use positive coefficients for the monomials

and an ∈ R such that:

∀m ∈M(f0, . . . , fk),

∣∣∣∣∣f−∑
n�m

ann

∣∣∣∣∣ = o(|m|) as |z| → +∞ in Ω

In that case, we say that F is an asymptotic expansion of f and write f ∼ F .

Lemma 3.33. Let f ∼ F =
∑
n∈M

ann and g ∼ G =
∑
n∈M

bnn be elements of Af<0>.

Then, the following holds:

(1) For all n ∈ M , there are finitely many elements p ∈ supp(F ) and q ∈

supp(G) such that pq = n

(2) The set supp(FG) = {n |
∑
pq=n

p∈supp(F )
q∈supp(G)

apbq 6= 0} is natural and included in M≤1.

(3) For all m ∈M , there are finitely many n ∈ supp(FG) such that n � m.

Proof. The proofs of 1. and 2. are similar to lemma 3.4. For 3., if we take any s ∈M

such that s ≺ m, we obtain by naturality of supp(FG) that supp(FG)∩ [s,+∞[⊃

{n ∈ supp(FG) | n � m} is finite.

Proposition 3.34. Af<0> is an R-algebra.
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Proof. The proofs for stability under scalar multiplication and addition are similar

to lemma 3.4. For multiplication, we obtain that for all m ∈M :

(∑
n�m

ann

)(∑
n�m

bnn

)
=
∑
n�m

(∑
pq=n

apbq

)
n+ ε

where
∑
pq=n

apbq and ε =
∑

m�n�m2

( ∑
pq=n

apbq

)
n are finite sums (by lemma 3.33) and

|ε| = o(|m|) (since supp(ε) ≺ m). The rest of the proof is similar.

Remark. Without valuation independence, elements of Af<0> do not have unique

asymptotic expansions in general but distinct elements still have distinct asymp-

totic expansions by the Phragmén-Lindelöf principle.

Example 3.35. Let f0 = x > f1 := x − 1, then f0 and f1 verify properties

P1, P2, P3 and we have:

M(f0, f1) =< e−f0 , e−f1 >=< e−x, ee−x >=< e−x > .

Consider F := ee−f0 − e−f1 = 0, then for all m ≺ e−x, Fm = 0 so |0 − Fm| = 0 =

o(|m|) and for all m � e−x, Fm = F = 0 so |0− Fm| = 0 = o(|m|) as well. Hence,

0 ∼ F but supp(F ) = {e−f0 , e−f1} 6= ∅.

Definition 3.36. Let Rf<0> be the subring of R((M(f0, . . . , fk)
≤1)) defined by:

Rf<0> := {F ∈ R((M(f0, . . . , fk)
≤1)) | ∃f ∈ Af<0> , f ∼ F}

and Of<0> be the set of asymptotic expansions of 0, i.e.

Of<0> := {F ∈ Rf<0> | 0 ∼ F}.

Lemma 3.37. Of<0> is a prime ideal of the ring Rf<0>.
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Proof. Clearly, Of<0> is a subring ofRf<0> . Now, given F ∈ Of<0> and G ∈ Rf<0>

with g ∼ G for some g ∈ Af<0> , we obtain by proposition 3.34 that FG is an

asymptotic expansion of 0g = 0 so FG ∈ Of<0> . To prove that Of<0> is a prime

ideal, let F,G ∈ Rf<0> with FG ∈ Of<0> . Then, there exist f, g ∈ Af<0> such

that f ∼ F and g ∼ G and fg ∼ FG. Since 0 ∼ FG and distinct germs have

distinct asymptotic expansions, we must have fg = 0. Since the field of germs of

functions at +∞ is an integral domain, f = 0 or g = 0, so F ∈ Of<0> or G ∈ Of<0>

as desired.

Lemma 3.38. Let f, g ∈ Af<0> with f ∼ F and g ∼ G, then f = g if and only if

F −G ∈ Of<0>.

Proof. One direction follows directly from the definition of Of<0> . For the other

direction, assume that F−G ∈ Of<0> , then for all m ∈M(f0, . . . , fk), |Fm−Gm| =

o(|m|). Hence, the following holds:

|f− g| ≤ |f− Fm|+ |Fm −Gm|+ |g−Gm|

= o(|m|) + o(|m|) + o(|m|) = o(|m|)

In particular, it holds for mj := e−jf0 ∈M(f0, . . . , fk) (j ∈ N) so by the Phragmén-

Lindelöf principle (theorem 2.25), |f− g| = 0 in Ω so f − g = 0 as desired.

Definition 3.39. We now consider equivalence classes of asymptotic expansions

and we have the following bijection:

τf<0> : Af<0> → Rf<0>/Of<0>

f 7→ F +Of<0>

We define Tf<0> : Af<0> → R((M(f0, . . . , fk)))/Of<0> to be the map f 7→ F +

Of<0> where Of<0> := Of<0> ⊂ R((M(f0, . . . , fk))).

We also let Φf<0> : Rf<0> → Af<0> be the surjective map F 7→ f (it is well
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defined by lemma 3.38) where Tf<0>(f) = F +Of<0> . Note that for all F ∈ Rf<0> ,

Tf<0>(Φf<0>(F )) = F +Of<0> .

Remark. In the base case, since the coefficients of the series are just real numbers,

Of<0> and Of<0> are the same and τf<0> is just a restriction of Tf<0> .

Corollary 3.40. Tf<0> is well-defined and injective.

Proof. Follows directly from lemma 3.38.

Lemma 3.41. (1) Tf<0>(Af<0>) is truncation closed.

(2) For all f ∈ Af<0> ,m ∈M(f0) and F ∈ R((M(f0, . . . , fk1−1))) with Tf<0>(f) =

F +Of<0>,

|f−Φf<0>(Fm)| = o(|m|) as |z| → +∞ in Ω.

Proof. Let f ∈ Af<0> with f ∼ F + Of<0> where F =
∑

n∈M(f0,...,fk)

ann and fix

m ∈M(f0, . . . , fk).

• We need to show that there exists g ∈ Af<0> such that Tf<0>(g) = [Tf<0>(f)]
m

=∑
n�m

ann = Fm. If m ≺ supp(F ), Fm = F so we can just take g := f ∈ Af<0>

and we are done.

Otherwise, Fm =
∑
n�m

ann is a finite sum of bounded elements (since supp(F )

is natural and included in M(f0, . . . , fk)
≤1) so Fm :=

∑
n�m

ann is a bounded

holomorphic extension to the closure of a standard quadratic domain.

We want to show that we can take g := Fm with itself as asymptotic ex-

pansion so we need to prove that for all t ∈ M(f0), |Fm − (Fm)t| = o(|t|). If

t � m, then (Fm)t = Fm so the previous equality is trivial. If t � m, then

(Fm)t = Ft and:

|Fm − (Fm)t| ≤ |f− Fm|+ |f− Ft| = o(|m|) + o(|t|) = o(|t|)
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Hence g = Fm ∈ Af<0> as desired.

• The proof follows directly from the definition of Φf<0> and by a reasoning

similar to lemma 3.11.

Corollary 3.42. (Af<0> ,M(f0, . . . , fk), Tf<0>) is a generalized quasianalytic asymp-

totic algebra.

Lemma 3.43. For all i ≤ k and strictly increasing ϕ : {0, 1, . . . , i} → {0, 1, . . . , k}

with ϕ(0) = 0, the following holds:

(1) Af<0>
ϕ
⊂ Af<0>

(2) Tf<0>
ϕ

= Tf<0>|A
f<0>
ϕ

Proof. Let f ∈ Af<0>
ϕ

, then f ∼ F for some F =
∑

n∈M(f0,fϕ(1)...,fϕ(i))

ann.

(1) To show that f ∈ Af<0> , it suffices to prove that:

• For all n ∈ supp(F ), n ∈M(f0, . . . , fk)

• For all m ∈M(f0, . . . , fk),

∣∣∣∣f− ∑
n�m

ann

∣∣∣∣ = o(|m|)

The first point follows directly from M(f0, fϕ(1), . . . , fϕ(i)) ⊂ M(f0, . . . , fk).

For the second, we know that the equality holds for m ∈M(f0, fϕ(1) . . . , fϕ(i))

and we need to show that it holds for all monomials in M(f0, f1, . . . , fk)

as well. Let m ∈ M(f0, f1, . . . , fk) \ M(f0, fϕ(1), . . . , fϕ(i)). Then, since

supp(F ) ⊂ M(f0, fϕ(1), . . . , fϕ(i)), there exists m′ ∈ M(f0, fϕ(1), . . . , fϕ(i))

such that m′ � m and ]m,m′] ∩ supp(F ) = ∅ (which implies Fm = Fm′).
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Hence, the following holds:

∣∣∣∣∣f−∑
n�m′

ann

∣∣∣∣∣ = o(|m′|)

⇒

∣∣∣∣∣f−∑
n�m

ann

∣∣∣∣∣ = o(|m′|) (since Fm = Fm′)

⇒

∣∣∣∣∣f−∑
n�m

ann

∣∣∣∣∣ = o(|m|) (since m′ � m implies |m| = o(|m′|))

(2) By definition, we have:

Tf<0>
ϕ

(f) = F +Of<0>
ϕ

and Tf<0>(f) = F +Of<0>

Since Of<0> lies over Of<0>
ϕ

(Of<0> ∩ Rf<0>
ϕ

= Of<0>
ϕ

), we obtain that

Rf<0>
ϕ

/Of<0>
ϕ

↪→ Rf<0>/Of<0> . Indeed, it directly follows from the second

isomorphism theorem:

Rf<0>
ϕ

/Of<0>
ϕ

= Rf<0>
ϕ

/
(
Of<0> ∩Rf<0>

ϕ

)
≈
(
Rf<0>

ϕ
+Of<0>

)
/Of<0>

⊂ Rf<0>/Of<0>

Hence, τf<0>
ϕ

= τf<0> |A
f<0>
ϕ

which implies that Tf<0>
ϕ

= Tf<0>|A
f<0>
ϕ

as de-

sired.

Proposition 3.44. Let f ∈ Af<0> such that f ∼ F =
∑

n∈M(f0,...,fk)

ann, then f ′ ∈

Ah<0> where h<0> = (f0, f1, . . . , fk, h1, . . . , hk) for hi := βifi − ln(f ′i) with βi ∈ R

chosen to such that fk > h1 > · · · > hk and f ′ ∼ F ′ =
∑

n∈M(f0,...,fk,h1,...,hk)

ann
′.

Proof. By lemma 3.29(2), for each i ∈ {1, . . . , k}, fi − ln(f ′i) is in the same

archimedean class as fi. Hence, we can chose real numbers βi ≥ 0 such that
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fk > β1f1− ln(f ′1) > · · · > βkfk− ln(f ′k) � 1. We now do a new construction with

the functions f0 > f1 > · · · > fk > h1 > · · · > hk where hi := βifi − ln(f ′i) and

obtain the generalized qaa algebra Ah<0> ⊃ Af<0> (h<0> verifies P3 by lemma

3.30).

For each n ∈ M(f0, . . . , fk), there exist αni ≥ 0 such that n = e−
∑
i α

n
i fi so

n′ =

(
−
∑
i

αni f
′
i

)
n and:

F ′ =
∑

n∈M(f0,...,fk)

an

(
−
∑
i

αni f
′
i

)
n =

∑
q∈M(f0,...,fk,h1,...,hk)

bqq

where q = f ′in = eln(f ′i)e
−

k∑
i=0

αni fi
= e

−
(

k∑
i=0

αni fi−ln(f ′i)

)
and bq = −anαni . Note that

supp(F ′) =
⋃

0≤i≤k
f ′i supp(F ) is natural as well.

For all m ∈ M(f0, . . . , fk), we have |f− Fm| =

∣∣∣∣f− ∑
n�m

ann

∣∣∣∣ = o(|m|) and we

want to prove that:

∀s ∈M(f0, . . . , fk, h1, . . . , hk), |f′ − (F′)s| =

∣∣∣∣∣f′ −∑
q�s

bqq

∣∣∣∣∣ = o(|s|)

For any s ∈ M(f0, . . . , fk, h1, . . . , hk), there exists αsi , γ
s
i ≥ 0 such that s =

e−(
∑
αsi fi−

∑
γsi ln(f ′i)) = e−

∑
αsi fie

∑
γsi ln(f ′i). Since each f ′i � 1, we also have e

∑
γsi ln(f ′i) �

1. Hence, if we let m := e−
∑
αsi fi ∈M(f0, . . . , fk), we have s � m so the following

holds:

∑
q�s

bqq =
∑
n�m

(
k∑
i=0

bf ′inf
′
in

)
=
∑
n�m

(
−

k∑
i=0

anα
n
i f
′
in

)
=

(∑
n�m

ann

)′

In other words, (F ′)s = (Fm)′. By lemma 3.31, s � m implies |s| � |m| so we also
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obtain (F′)s = (Fm)′. Now, applying lemma 3.28, we have:

|f− Fm| = o(m)⇒ |f′ − (Fm)′| = o(m)

⇒ |f′ − (F′)s| = o(s)

We cannot mimic the proof of the multiplicative inverse for the general case

but we define the following

Definition 3.45. Let F̃f<0> be the set { g
m
|g ∈ Af<0> and m ∈ M(f0, . . . , fk)}

and we extend Tf<0> as follows:

T̃f<0> : F̃f<0> → R((M(f0, . . . , fk)))/Of<0>

f =
g

m
7→

Tf<0>(g)

m
+Of<0>

We also extend Φf<0> to Φ̃f<0> :
R((M(f0,...,fk1 )))

M(f0,...,fk1 )
→ F̃f<0> that maps G

m
to g

m
for g

and G such that Tf<0>(g) = G+Of<0> .

If the fi’s are valuation independent, F̃f<0> is a field but in the general case,

it is an integral domain (it follows directly from the fact that Of<0> is a prime

ideal).

Lemma 3.46. (F̃f<0> ,M(f0, . . . , fk), T̃f<0>) is a generalized qaa integral domain.

Proof. It is easy to check that T̃f<0> is a well-defined injective R-algebra homomor-

phism. Let f ∈ F̃f<0> , then f = g
m0

for some g ∈ Af<0> and m0 ∈ M(f0, . . . , fk).

Since f := g
m0

is a holomorphic extension of f to a standard quadratic domain, it

only remains to show that for all m ∈ M(f0, . . . , fk) and F ∈ R((M(f0, . . . , fk)))

with T̃f<0>(f) = F +Of<0> , the following holds:

∣∣∣f− Φ̃f<0> (Fm)
∣∣∣ = o(|m|)
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By definition of T̃f<0> , F = G
m0

where g ∼ G. Using a similar argument to that of

lemma 3.13, we obtain that
[
G
m0

]
m

=
Gm0m

m0
which implies that:

Φ̃f<0>

([
G

m0

]
m

)
=

Φf<0> (Gm0m)

m0

Hence, the following holds:

|g−Φf<0> (Gm0m)| = o(|m0m|)

⇒
∣∣∣∣ gm0

− Φf<0> (Gm0m)

m0

∣∣∣∣ = o(|m|)

⇒
∣∣∣f− Φ̃f<0> (Fm)

∣∣∣ = o(|m|)

Notation. From now on, we will denote T̃f<0> by Tf<0> .
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3.2.2 Inductive step: l > 0

Definition 3.47. Let Af<l> be the set of germs at +∞ of functions f : R → R

such that:

(1) f has a bounded holomorphic extension f : Ω → C where Ω is a standard

quadratic domain

(2) there exists a series F :=
∑

n∈M(f0,...,fk1−1)

(an ◦ fk1)n with natural support

included in M(f0, . . . , fk1−1)≤1 where we only use positive coefficients for the

monomials and an ∈ F̃f<l−1> such that:

∀m ∈M(f0, . . . , fk1−1),

∣∣∣∣∣f−∑
n�m

(an ◦ fk1)n

∣∣∣∣∣ = o(|m|)

In that case, we say that F is an asymptotic expansion of f and write f ∼ F .

The construction of Af<l> is similar to the valuation independent case, except

that we only shift when the element is in a different archimedean class. The

first step is to construct Af<0> where f<0> = (fkl ◦ f−1
kl

> · · · > fk ◦ f−1
kl

) (which

corresponds to the base case k = 0 described in the previous section). In the

second step, the coefficients are elements of F̃f<0> composed with fkl ◦ f−1
kl−1 and

so on. In the last step, described in definition 3.47, to obtain the coefficients,

we compose elements of F̃f<kl−1> with fk1 ◦ f−1
0 (= fk1). For all these steps, the

monomials are always comparable to e−x.
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step l: construction of Af<l>

f ∼
∑

n∈M(f0,f1,...,fk1−1)

(an ◦ fk1 ◦ f−1
0 )n =

∑
(an ◦ fk1)n, where an ∈ F̃f<l−1>

f<l> = (f0, f1, . . . , fk1−1, fk1 , . . . , fk2−1, . . . , fkl , . . . , fk)

step l − 1: construction of Af<l−1>

f ∼
∑

n∈M(fk1◦f
−1
k1
,...,fk2−1◦f−1

k1
)

(an ◦ fk2 ◦ f−1
k1

)n, where an ∈ F̃f<l−2>

f<l−1> = (fk1 ◦ f−1
k1

> · · · > fk2−1 ◦ f−1
k1

> · · · > fkl ◦ f−1
k1

> · · · > fk ◦ f−1
k1

)

step l − 2: construction of Af<l−2>

f<l−1> = (fk2 ◦ f−1
k2

> · · · > fk3−1 ◦ f−1
k2

> · · · > fkl ◦ f−1
k2

> · · · > fk ◦ f−1
k2

)

step 1: construction of Af<1>

f ∼
∑

n∈M(fk(l−1)
◦f−1
k(l−1)

,...,fkl−1◦f−1
k(l−1)

)

(an ◦ fkl ◦ f−1
k(l−1)

)n, where an ∈ F̃f<0>

f<1> = (fk(l−1)
◦ f−1

k(l−1)
> · · · > fkl−1 ◦ f−1

k(l−1)
> fkl ◦ f−1

k(l−1)
> · · · > fk ◦ f−1

k(l−1)
)

step 0: construction of Af<0>

f ∼
∑

n∈M(fkl◦f
−1
kl
,...,fk◦f−1

kl
)

ann, where an ∈ R

f<0> = (fkl ◦ f−1
kl

> · · · > fk ◦ f−1
kl

)

◦(fk1 ◦ f−1
0 )−1 ≡ ◦f−1

k1

...

◦(fk2 ◦ f−1
k1

)−1 ≡ ◦fk1 ◦ f−1
k2

◦(fkl ◦ f−1
k(l−1)

)−1 ≡ ◦fk(l−1)
◦ f−1

kl
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Similarly to the valuation independent case, we need the coefficients to be

incomparable to the monomials.

Lemma 3.48. Let f ∼ F =
∑

(an ◦ fk1)n be as in definition 3.47, then for all

n ∈ supp(F ) and α > 0, e−αRe(z) = o(|an ◦ fk1(z)|) and |an ◦ fk1(z)| = o(eαRe(z)).

Proof. Let n ∈ M(f0, . . . , fk1−1). Since an ∈ F̃f<l−1> , an = gn
mn

for some gn ∈

Af<l−1> and mn ∈ M(fk1 ◦ f−1
k1
, . . . , fk2−1 ◦ f−1

k1
). Hence, gn ∼ G for some G =∑

(bq ◦ fk2 ◦ f−1
k1

)q where bq ∈ F̃f<l−2> . Let q0 be the leading monomial of G, then

by induction, for all q � q0:

e−βRe(z) = o(
∣∣bq ◦ fk2 ◦ f−1

k1
(z)
∣∣) and

∣∣bq ◦ fk2 ◦ f−1
k1

(z)
∣∣ = o(eβRe(z)) for all β > 0

which implies:

(1)
∣∣bq ◦ fk2 ◦ f−1

k1
(z)
∣∣ ≥ |q0(z)| and

(2) e−βRe(fk1 (z)) = o(
∣∣bq ◦ fk2(z)

∣∣) and
∣∣bq ◦ fk2(z)

∣∣ = o(eβRe(fk1 (z))) for all β > 0

Since f0 � fk1 , e
−βfk1 � e−αf0 and eβfk1 ≺ eαf0 for all α > 0 so e−αRe(z) =

o(|bq ◦ fk2(z)|) and |bq ◦ fk2(z)| = o(eαRe(z)) for all α > 0. Hence, the following

holds:

|an| �

∣∣∣∣∣∑
q�q0

(bq ◦ fk2 ◦ f−1
k1

)q

∣∣∣∣∣
⇒|an ◦ f1| �

∣∣∣∣∣∑
q�q0

(bq ◦ fk2)(q ◦ fk1)

∣∣∣∣∣
⇒e−αRe(z)

∣∣∣∣∣∑
q�q0

(q ◦ fk1(z))

∣∣∣∣∣ = o(|an ◦ f1(z)|) and

|an ◦ f1(z)| = o

(
eαRe(z)

∣∣∣∣∣∑
q�q0

(q ◦ fk1(z))

∣∣∣∣∣
)

for all α > 0

If q0 = 1,the rest of the proof is similar to lemma 3.48. Otherwise, each q is

comparable to e−x (and by lemma 3.31 so are each |q|) so |q ◦ fk1(z)| = o(e−αRe(z))
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for all α > 0. In both cases, we obtain e−αRe(z) = o(|an ◦ fk1(z)|) and |an ◦ fk1(z)| =

o(eαRe(z)) as desired.

Corollary 3.49. Let f ∼ F =
∑

(an ◦ fk1)n be as in definition 3.47, then for all

n ∈ supp(F ):

(1) o(|n|) implies o(|(an ◦ fk1|)n),

(2) |(an ◦ fk1)n| is bounded.

Proof. The proof is similar to lemma 3.17.

Lemma 3.50. Let f ∼ F =
∑

(an ◦ f1)n and g ∼ G =
∑

(bn ◦ f1)n be elements

of Af<l>. Then, the following holds:

(1) For all n ∈ M(f0, . . . , fk1−1), there are finitely many elements p ∈ supp(F )

and q ∈ supp(G) such that pq = n

(2) The set supp(FG) = {n |
∑
pq=n

p∈supp(F )
q∈supp(G)

apbq 6= 0} is natural and included in

M(f0, . . . , fk)
≤1

(3) For all m ∈ M(f0, . . . , fk), there are finitely many n ∈ supp(FG) such that

n � m.

Corollary 3.51. Af<l> is an R-algebra.

Definition 3.52. Let Rf<l> be the ring:

Rf<l> := {F ∈ F̃f<l−1> ◦ fk1((M(f0, . . . , fk1−1)≤1)) | ∃f ∈ Af<l> , f ∼ F}

and Of<l> be the set of asymptotic expansions of 0, i.e.

Of<l> := {F ∈ Rf<l> | 0 ∼ F}.
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We obtain similarly that Of<l> is a prime ideal of the ring Rf<l> .

Lemma 3.53. Let f, g ∈ Af<l> with f ∼ F and g ∼ G, then f = g if and only if

F −G ∈ Of<l>.

Proof. The proof is similar to 3.38.

Definition 3.54. We now consider equivalence classes of asymptotic expansions

and we have the following bijection:

τf<l> : Af<l> → Rf<l>/Of<l>

f 7→ F +Of<l>

We define the map Tf<l> as follows:

Tf<l> : Af<l> → R((M(f0, . . . , fk)))/Of<l>

f 7→
∑

n∈M(f0,...,fk1−1)

(
Tf<l−1>(an) ◦ fk1

)
n+Of<l>

where Of<l> is defined inductively in a similar way:

Of<l> := {
∑

n∈M(f0,...,fk1−1)

(
Tf<l−1>(an) ◦ fk1

)
n | 0 ∼

∑
(an ◦ fk1)n}

We also let R̃f<l> := {F ∈ R((M(f0, . . . , fk))) | ∃f ∈ Af<l> , Tf<l>(f) = F} and

define Φf<l> : R̃f<l> → Af<l> be the surjective map F 7→ f for Tf<l>(f) =

F + Of<l> . Note that it is well defined by lemma 3.53 and for all F ∈ R̃f<l> ,

Tf<l>(Φf<l>(F )) = F +Of<l> .

Remark. τf<l>(f) is an equivalence class of series with support of order ω where the

coefficients are in F̃f<l−1> ◦fk1 and the monomials are elements of M(f0, . . . , fk1−1)

(comparable to e−x) whereas Tf<l>(f) is an equivalence class of series with support

of order ωl+1 where the coefficients are real numbers and the monomials are in all

of M(f0, . . . , fk).
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Corollary 3.55. Tf<l> is well-defined and injective.

Proof. Follows directly from lemma 3.53.

Lemma 3.56. (1) Tf<l>(Af<l>) is truncation closed.

(2) For all f ∈ Af<l>, m ∈ M(f0, . . . , fk) and F ∈ R((M(f0, . . . , fk))) with

Tf<l>(f) = F +Of<l>,

∣∣f−Φf<l>(Fm)
∣∣ = o(|m|) as |z| → +∞ in Ω.

Proof. Let f ∈ Af<l> with f ∼ F =
∑

n∈M(f0,...,fk1−1)

(an ◦ fk1)n and fix m ∈

M(f0, . . . , fk).

(1) We need to show that there exists g ∈ Af<l> such that Tf<l>(g) =
[
Tf<l>(f)

]
m

.

Since m ∈ M(f0, . . . , fk), m = m0mr for some m0 ∈ M(f0, . . . , fk1−1) (com-

parable to e−x)and mr ∈M(fk1 , . . . , fk) (in a larger comparability class than

e−x). Hence, we have:

[
Tf<l>(f)

]
m

=

 ∑
n∈M(f0...,fk1−1)

(
Tf<l−1>(an) ◦ fk1

)
n


m

=
∑
n�m0

(
Tf<l−1>(an) ◦ fk1

)
n+

∑
n�m0

[(
Tf<l−1>(an) ◦ fk1

)]
mr
n

The set {n ∈ M(f0 . . . , fk1−1) |n � m0} is finite by lemma 3.50, say it is

equal to {n0, . . . , nq}. By induction, for each nj, there exists hj ∈ F̃f<l−1>

such that:

Tf<l−1>(hj) ◦ fk1 =
[(
Tf<l−1>(aj) ◦ fk1

)]
mr

and |aj ◦ fk1 − hj ◦ fk1| = o(|mr|)

Now, we want to prove that we can take g :=
∑
n�m0

(an ◦ f1)n +
∑

0≤j≤q
(hj ◦

fk1)nj so we need g to have a bounded holomorphic extension to a standard
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quadratic domain.

∣∣∣∣ ∑
n�m0

(an ◦ f1)n

∣∣∣∣ is a finite sum of bounded elements by

corollary 3.17 and each |(hj ◦ fk1)nj| is also bounded by corollary 3.17. Hence,

g ∈ Af<l> with itself as asymptotic expansion and Tf<l>(Af<l>) is truncation

closed as desired.

(2) The proof showing that |f− g| = o(|m|) is similar to lemma 3.23.

Lemma 3.57. For all i ≤ k and strictly increasing ϕ : {0, 1, . . . , i} → {0, 1, . . . , k}

with ϕ(0) = 0, the following holds:

(1) A
f<l
′>

ϕ
⊂ Af<l>

(2) T
f<l
′>

ϕ
= Tf<l>|A

f<l
′>

ϕ

where l′ ≤ l is the number of distinct archimedean classes of {fϕ(0), fϕ(1), . . . , fϕ(i)}.

Proof. Let f ∈ Af<l>ϕ
. Assume that the fϕ(j)’s are in the following l′ archimedean

classes:

fϕ(0) > fϕ(1) > · · · > fϕ(l1−1) > fϕ(l1) > · · · > fϕ(l2−1) > · · · > fϕ(l′) > · · · > fϕ(i)

Then, f ∼ F for some F =
∑

n∈M(fϕ(0),...,fϕ(l1−1))

(an◦fϕ(l1))n with an ∈ F̃f<l′−1>
ϕ

where

f<l
′−1>

ϕ = (fϕ(l1) ◦ f−1
ϕ(l1), fϕ(l1+1) ◦ f−1

ϕ(l1) . . . , fϕ(i) ◦ f−1
ϕ(l1)).

(1) fϕ(l1) may not be the first element of its archimedean class in the original

sequence, i.e. the sequence could be of the form

· · · > fkj−1 > fkj > fkj+1 > · · · > fϕ(l1) > · · · > fkj+1−1 > fkj+1
. . .

We first compose an by ◦fϕ(l1) ◦ f−1
kj

to obtain that an ◦ fϕ(l1) ◦ f−1
kj

is an

element of F̃f<l−j>t
where

f<l−j>t = (fkj ◦ f−1
kj
, fϕ(l1) ◦ f−1

kj
, . . . , fϕ(l2−1) ◦ f−1

kj
).
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In order to obtain the rest of the elements in the same archimedean class

of fϕ(l1), we use the same reasoning as in lemma 3.43 and obtain that an ◦

fϕ(l1) ◦ f−1
kj

is an element of F̃f<l−j> where

f<l−j> = (fkj ◦ f−1
kj
, . . . , fϕ(l1) ◦ f−1

kj
, . . . , fk ◦ f−1

kj
).

We now make successive compositions
(
an ◦ fϕ(l1) ◦ f−1

kj

)
◦
(
fkj ◦ f−1

kj−1

)
◦· · ·◦(

fk2 ◦ f−1
k1

)
and at each composition, we repeat the argument of lemma 3.43

to obtain all the elements in the same archimedean class. We then obtain

that an ◦ fϕ(l1) ◦ f−1
k1

is an element of F̃f<l> as desired.

(2) The proof is similar.

Lemma 3.58. Let f ∈ Af<l> be such that f ∼ F =
∑

n∈M(f0,...,fk1−1)

(an ◦ fk1)n,

where an ∈ F̃f<l−1>. Then, f ′ ∈ Ah<l> for some h<l> ⊃ f<l> and the following

holds:

f ′ ∼ F ′ =
∑

n∈M(f0,...,fk1−1)

[
f ′k1(a

′
n ◦ fk1)n+ (an ◦ fk1)n′

]

Proof. For each n ∈M(f0, . . . , fk1−1), there exist αni ≥ 0 such that n = e
−
k1−1∑
i=0

αni fi

so n′ =

(
−

k1−1∑
i=0

αni f
′
i

)
n and:

F ′ =
∑

n∈M(f0,...,fk1−1)

[
f ′k1(a

′
n ◦ fk1)n+ (an ◦ fk1)

(
−

k1−1∑
i=0

αni f
′
i

)
n

]

Hence, supp(F ′) = supp(F ) ∪
k1−1⋃
i=1

f ′in (note that it is natural as well).

In order to obtain the desired result, we need:

(1) Each f ′in to be a monomial
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(2) Each f ′k1(a
′
n◦fk1) to be of the form bn◦fk1 where bn is in the set of coefficients

i.e. we want (f ′k1 ◦ f
−1
k1

)a′n to be in the set of coefficients.

• Step 1: Enlarge the monomial set to contain f ′in

For i ∈ {1, . . . , k1−1}, fi− ln(f ′i) is in the same archimedean class as f0 and

in a larger archimedean class than fk1 so we can choose real numbers βi > 0

such that:

f0 > · · · > fk1−1 > β1f1 − ln(f ′1) > · · · > βk1−1fk1−1 − ln(f ′k1−1) > fk1 > · · · > fk

Then, if we do the construction for Ah<l>1
where

h<l>1 := (f0, . . . , fk1−1, h1, . . . , hk1−1, fk1 , . . . , fk)

with hi := βifi− ln(f ′i) for i ∈ {1, . . . , k1− 1}, the new monomial set will be

M(f0, . . . , fk1−1, h1, . . . , hk1−1) and will contain supp(F ′).

• Step 2: Enlarge the set of coefficients to contain (f ′k1
◦ f−1

k1
)a′n

– Step 2a: Enlarge the set of coefficients to contain a′n

an ∈ F̃f<l−1> means that an = gn
mn

for some gn ∈ Af<l−1> and mn ∈

M(fk1 ◦ f−1
k1
, . . . , fk ◦ f−1

k1
). By induction, g′n ∈ Ah<l−1>

2
for some h<l−1>

2

equal to:

(fk1 ◦ fk−1
1
, . . . , fk2−1 ◦ fk−1

1
, hk1+1 ◦ fk−1

1
, . . . , hk2−1 ◦ fk−1

1
, fk2◦fk−1

1
, . . . , fk◦fk−1

1
)

where hj := βjfj − ln
(
f ′j
f ′k1

)
for j ∈ {k1 + 1, . . . , k2 − 1} and βj is a

positive real number chosen such that:

fk1 > · · · > fk2−1 > hk1+1 > · · · > hk2−1 > fk2 > · · · > fk
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It is possible to choose such a βj because fj − ln
(
f ′j
f ′k1

)
is in the same

archimedean class as fk1 and in a larger archimedean class than fk2 .

Then, the following holds:

hj ◦ f−1
k1

=βj(fj ◦ f−1
k1

)− ln

(
f ′j ◦ f−1

k1

f ′k1 ◦ f
−1
k1

)

=βj(fj ◦ f−1
k1

)− ln
(
(f−1
k1

)′(f ′j ◦ f−1
k1

)
)

=βj(fj ◦ f−1
k1

)− ln
(
(fj ◦ f−1

k1
)′
)

as desired

Now, a′n = g′n·mn−m′n·gn
m2
n

. Since gn, g
′
n,mn andm′n are elements ofAh<l−1>

2
,

g′n ·mn −m′n · gn is also an element of this algebra and m2
n ∈ M(fk1 ◦

fk−1
1
, . . . , fk ◦ fk−1

1
) which is a subset of

M(fk1 ◦fk−1
1
, . . . , fk2−1 ◦fk−1

1
, hk1+1 ◦fk−1

1
, . . . , hk2−1 ◦fk−1

1
, . . . , fk ◦f−1

k−1).

– Step 2b: Enlarge the set of coefficients to contain (f ′k1 ◦ f
−1
k1

)

Since we want to consider (f ′k1 ◦f
−1
k1

)a′n, we can introduce another func-

tion hk1 := βk1fk1 − ln(f ′k1) (also in the same archimedean class as fk1)

where βk1 is chosen such that fk2−1 > hk1 > hk1+1. Then,

hk1 ◦ f−1
k1

=βk1(fk1 ◦ f−1
k1

)− ln(f ′k1 ◦ f
−1
k1

)

=βk1f0 − ln(f ′k1 ◦ f
−1
k1

)

so we can write f ′k1 ◦ f
−1
k1

as an element of the algebra divided by a

monomial:

f ′k1 ◦ f
−1
k1

=
e−(βk1f0−ln(f ′k1

◦f−1
k1

))

e−βk1f0
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Now we do the construction for:

f0 > · · · > fk1−1 > h1 > · · · > hk1−1 > fk1 > · · · > fk2−1 > hk1 > hk1+1 > . . .

> hk2−1 > fk2 > · · · > fk

and we have:

F ′ =
∑

n∈M(f0,...,fk1−1)

[
f ′k1(a

′
n ◦ fk1)n+ (an ◦ fk1)

(
−
∑
i

αni f
′
i

)
n

]

=
∑

q∈M(f0,...,fk1−1,h1,...,hk1−1)

(bq ◦ fk1)q

where bq is an element of Ah<l> (h<l> verifies P3 by lemma 3.30) with

h<l> := (fk1◦fk−1
1
, . . . , fk2−1◦fk−1

1
, hk1+1◦fk−1

1
, . . . , hk2−1◦fk−1

1
, fk2◦fk−1

1
, . . . , fk◦fk−1

1
) and

bq =


(f ′k1 ◦ f

−1
k1

)a′n if q = n for some n ∈ supp(F )

−αni an if q = f ′in for some n ∈ supp(F ) and i ∈ {1, . . . , k1 − 1}

For all m ∈M(f0, . . . , fk1−1), we have |f− Fm| =
∣∣∣∣f− ∑

n�m
(an ◦ fk1)ın

∣∣∣∣ = o(|m|)

and we want to prove that for all s ∈M(f0, . . . , fk1−1, h1, . . . , hk1−1),

|f′ − (F′)s| =

∣∣∣∣∣f′ −∑
q�s

(bq ◦ fk1)q

∣∣∣∣∣ = o(|s|)

.

By definition, there exists αsi , γ
s
i ≥ 0 such that s = e

−
k1−1∑
i=0

αsi fi
e

k1−1∑
i=1

γsi ln(f ′i) � m

where m := e
−
k1−1∑
i=0

αsi fi ∈M(f0, . . . , fk1−1). Now, for any q ∈ supp(F ′), there exists

n ∈ supp(F ) such that q = n or q = f ′in � n for some i ∈ {1, . . . , k1− 1}. In both

cases, q � s implies n � m so (F ′)s = (Fm)′. Hence, (F′)s = (Fm)′ so applying
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lemma 3.28, we obtain the desired result:

|f− Fm| = o(|m|)⇒ |f′ − (Fm)′| = o(|m|)

⇒ |f′ − (F′)s| = o(|m|) = o(|s|)

Definition 3.59. Let F̃f<l> be the set { g
m
|g ∈ Af<l> and m ∈ M(f0, . . . , fk)}

and we extend Tf<l> as follows:

T̃f<l> : F̃f<l> → R((M(f0, . . . , fk)))/Of<l>

f =
g

m
7→

Tf<l>(g)

m
+Of<l>

We obtain similarly that (F̃f<l> ,M(f0, . . . , fk), T̃f<l>) is a generalized qaa in-

tegral domain. Our objective is to obtain a field after taking the direct limit at

the end and even if F̃f<l> is just an integral domain, the multiplicative inverse will

live in some larger algebra (obtained by enlarging the monomial set).

Lemma 3.60. Let f ∈ Af<l> \ Of<l>, then there exists h<l> ⊃ f<l> such that

1
f
∈ F̃h<l>.

Proof. For simplicity of the notation, we assume that l = 1 (the general case

follows the same idea) i.e.

f<1> = (f0, . . . , fk1−1, fk1 , . . . , fk2).

Let f ∈ Af<l> \ Of<l> , then f ∼ F for some F =
∑

n∈M(f0,...,fk1−1)

(an ◦ fk1)n where

an ∈ F̃f<l−1> . Let m0 be the leading monomial of F , then:

∣∣∣∣∣f− ∑
n�m0

(an ◦ fk1)n

∣∣∣∣∣ = o(|m0|)
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Now, for all n, an ∼ Gn for some Gn =
∑

q∈M(fk1◦f
−1
k1
,...,fk2−1◦f−1

k1
)

bqq, where bq ∈ R.

Let qn be the leading monomial of Gn so that the following holds:

∀n � m0,

∣∣∣∣∣an −∑
q�qn

bqq

∣∣∣∣∣ = o(|qn|)

⇒∀n � m0,

∣∣∣∣∣an ◦ fk1 −∑
q�qn

bq(q ◦ fk1)

∣∣∣∣∣ = o(|qn ◦ fk1 |)

Let εn := an ◦ fk1 −
∑
q�qn

bq(q ◦ fk1), then εn has a holomorphic extension to a

standard quadratic domain εn := an ◦ fk1 −
∑
q�qn

bq(q ◦ fk1) and the following holds:

|εn| = o(|qn ◦ fk1|)

⇒|εnn| = o(|(qn ◦ fk1)n|) = o(|n|) = o(|m0|) (by corollary 3.49 and since n � m0)

Now, we obtain:

∣∣∣∣∣f− ∑
n�m0

(an ◦ fk1)n

∣∣∣∣∣ = o(|m0|)

⇒

∣∣∣∣∣f− ∑
n�m0

(bq(q ◦ fk1)n + εnn)

∣∣∣∣∣ = o(|m0|)

⇒

∣∣∣∣∣f− ∑
n�m0

bq(q ◦ fk1)n

∣∣∣∣∣ = o(|m0|) (since |εnn| = o(|m0|))

Let M :=
∑
n�m0

bq(q ◦ fk1)n (we can assume that M 6= 0 since we are working

modulo Of<l>). Since each monomial in the finite (by lemma 3.50) sum has the

same valuation as m0 (comparable to e−f0 by definition), there exists k ∈ N such

that M ≤ e−kf0 . On the other hand, M verifies the hypotheses of the Phragmén-

Lindelöf principle so if M = o(e−jf0) for all j ∈ N, M must be equal to 0 which

contradicts our initial assumption. Hence, there exists j ∈ N such that M ≥ e−nf0 .

Combining the two inequalities, we obtain that M is comparable to e−f0 . Let

m′ ≺ m0 be such that ]m0,m
′] ∩ supp(F ) = ∅ so that the following implications

62



M.Sc. Thesis - Zeinab Galal McMaster University - Mathematics

hold: ∣∣∣∣∣f−∑
n�m′

(an ◦ fk1)n

∣∣∣∣∣ = o(|m′|)⇒

∣∣∣∣∣f− ∑
n�m0

(an ◦ fk1)n

∣∣∣∣∣ = o(|m′|)

⇒

∣∣∣∣∣f− ∑
n�m0

bq(q ◦ fk1)n

∣∣∣∣∣ = o(|m′|)

⇒ |f−M | = o(|m′|)

Now, M
m′

= m0

m′

( ∑
n�m0

bq(q ◦ fk1) n
m0

)
. Each n

m0
� cn for some non-zero real

number cn and each q ◦ fk1 is of smaller comparability class than ef0 . Even if( ∑
n�m0

bq(q ◦ fk1) n
m0

)
tends to 0, it level at most 0 by facts 2.36(2) so in either

case,
∑
n�m0

bq(q ◦ fk1) n
m0

has a smaller comparability class than ef0 . Since m0

m′
� 1

and is in the same comparability class as ef0 , we obtain that M
m′
� 1. Hence,

f
M
− 1 ≺ 1 and supp( F

M
− 1) ≺ 1. Now, fM := ln( 1

M
) is in the same archimedean

class as f0 and by fact 2.35(2), fM = g+h+c where c ∈ R, g is geometrically pure

with level(g) = level(fM) = 0 (and therefore eh(g) = 0), h = 0 or level(h) > 0 in

which case, lim e−h = ch for some ch > 0.

To simplify the notation, we write M =
∑

0≤i≤j
e−hi for some j ∈ R and hi such that

eh(hi) ≤ 0. Then, the following holds:

M = e−fM = e−g

(∑
i

eg−hi

)

⇔e−h−c =
∑
i

eg−hi

Along the real line, lim
x→+∞

eg−hi = ci for some ci ∈ R≥0 and lim
x→+∞

e−h−c =

d for some d ∈ R>0. Hence, at least one the c′is is positive. By fact 2.36(2),

lim
|z|→+∞

eg−hi = ci on Ω (since eh(g − hi) ≤ 0). Since M
e−g =

∑
i

eg−hi , we obtain

that |M | � |e−g|. Now, since g is geometrically pure of level 0, we can do the

construction for g<1> := (f0, . . . , fk1−1, g, fk1 , . . . , fk2) ⊃ f<1> (the tuple g<1>

verifies P3 by lemma 3.30 and we assumed without loss of generality that fk1−1 >
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g). e−g is now a monomial in M(f0, . . . , fk1−1, g) and the following holds in Ag<1> :

|f−M | = o(
∣∣e−g∣∣)

⇒ lim
|z|→+∞

∣∣∣∣ f−M

e−g

∣∣∣∣ = 0

Since |M | � |e−g|, there exists a ∈ R \ {0} such that lim
|z|→+∞

∣∣ f
ae−g − 1

∣∣ = 0 on Ω.

Let ε := f
ae−g
− 1, then ε ≺ 1 and by repeating the same reasoning as in lemma

3.13, we obtain that ε ∼ E := F
ae−g
− 1 and then 1

1+ε
∼
∑
k∈N

Ek which implies that

1
f

= ae−g

1+ε
∼ 1

F
as desired.
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4 General Construction

We take any infinite elements f0 > f1 > · · · > fk of Han,exp.

(1) Using the results of theorem 2.35, we can decompose uniquely each fi as a

finite sum of geometrically pure functions fi = gi1 + · · ·+ giki where each gij

is either infinite, infinitesimal or equal to a constant.

(2) We remove constants, possible duplicates and if gij ≺ 1, we replace it by

1
gij
� 1.

(3) Now, we order the set {gij}1≤i≤k,1≤j≤ki and obtain a longer sequence g0 >

g1 > · · · > gk′ � 1 (if g0 > x, we compose the whole sequence by g−1
0 ) which

verifies P1, P2 and P3 by fact 2.34(2).

(4) Assume that the gi’s are in l distinct archimedean classes, then we con-

struct the generalized qaa algebra (Ag<l> ,M(g0, . . . , gk′), Tg<l>) where g<l> =

(g0, . . . , gk′) as in definition 3.47.

Remark. M(f0, . . . , fk) is the multiplicative group generated by monomials of the

form e−αifi =
∏

1≤j≤ki
e−αigij and is a subset of M(g0, . . . , gk′). Elements of Ag<l>

have asymptotic expansions involving monomials in M(g0, . . . , gk′) and the idea

is to restrict ourselves to series whose support is included in M(f0, . . . , fk). Note

that they form an R-algebra because such series are stable under addition and

multiplication.

Definition 4.1. • We define the algebra A(f0, . . . , fk) to be the elements of

Ag<l> that have at least one asymptotic expansion (modulo the ideal Og<l>)

involving only monomials in M(f0, . . . , fk).

• Similarly, we define O(f0, . . . , fk) to be the elements of Og<l> whose support

is included in M(f0, . . . , fk). It is easy to check that it is a prime ideal of

R((M(f0, . . . , fk)))
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• We define T(f0,...,fk) : A(f0, . . . , fk) → R((M(f0, . . . , fk)))/O(f0, . . . , fk) to

be Tg<l>|A(f0,...,fk) and we obtain that T(f0,...,fk) is an injective R−algebra

homomorphism.

• (A(f0, . . . , fk),M(f0, . . . , fk), T(f0,...,fk)) is now a generalized qaa algebra and

we similarly define F̃(f0, . . . , fk) as follows:

F̃(f0, . . . , fk) :=
A(f0, . . . , fk)

M(f0, . . . , fk)

Lemma 4.2. (F̃(f0, . . . , fk),M(f0, . . . , fk), T(f0,...,fk)) is a generalized qaa integral

domain.

Proof. The proof is similar to lemma 3.46.

Theorem 4.3. The direct limit of the integral domains described above, (F ,M, T ),

is a generalized qaa Hardy field.

Proof. It follows from lemmas 3.60 and 3.58.

Conclusion

As mentioned in the introduction, the end goal is to extend the class I into a

quasianalytic algebra and obtain o-minimality using a similar procedure to the

one in [8]. One of the main challenges of the extension to a multivariable class was

to determine what multivariable logarithmic asymptotic series are. The approach

taken is to first enlarge the set of monomials to the set of all functions definable

in the o-minimal structure Ran,exp and then extend the construction to any curve

(f1, f2, . . . ) where the fi’s have the same number of variables.
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