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Abstract

The theory of Newton-Okounkov bodies can be viewed as a generalization

of the theory of toric varieties; it associates a convex body to an arbitrary

variety (equipped with auxiliary data). Although initial steps have been taken

for formulating geometric situations under which the Newton-Okounkov body

is a rational polytope, there is much that is still unknown. In particular, very

few concrete and explicit examples have been computed thus far.

In this thesis, we explicitly compute Newton-Okounkov bodies of some

cases of Bott-Samelson and Peterson varieties (for certain classes of auxiliary

data on these varieties). Both of these varieties arise, for instance, in the

geometric study of representation theory.

Background on the theory of Newton-Okounkov bodies and the geometry

of �ag and Grassmannian varieties is provided, and well as background on

Bott-Samelson varieties, Hessenberg varieties, and Peterson varieties. In the

last chapter we also discuss how certain techniques developed in this thesis

can be generalized. In particular, a generalization of the �at family of Hes-

senberg varieties constructed in Chapter 6, which may allow us to compute

Newton-Okounkov bodies of more general Peterson varieties, is an ongoing

collaboration with H. Abe and M. Harada.
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Chapter 1

Background

In this chapter we set the stage for the remainder of the thesis. First, we recall

very brie�y the theory of toric varieties, which partly motivated the develop-

ment of the theory of Newton-Okounkov bodies. Second, we give a precise

de�nition and the construction of Newton-Okounkov bodies for general alge-

braic varieties. Thirdly, because the two main classes of varieties studied in this

thesis � Bott-Samelson varieties and Peterson varieties � are both intimately

related to the �ag variety, we recall some basic de�nitions and constructions

related to the variety of �ags in Cn.

1.1 Motivation: the Theory of Toric Varieties

A central theme in algebraic geometry is to associate combinatorial objects

to algebraic varieties. The combinatorics generally encodes certain geometric

or topological data of the corresponding varieties. Developing such bridges

between combinatorics and geometry can allow researchers to answer geometric

questions by looking at the combinatorics, or vice versa. For example, in the
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study of toric varieties, this correspondence is �perfect� in the sense that there

is a precise one-to-one correspondence between toric varieties and fans, or,

in the symplectic-geometric version of this correspondence we use below, a

one-to-one correspondence between symplectic toric manifolds (a special case

of toric varieties) and so-called Delzant polytopes. In particular, given the

combinatorial data of a fan (or Delzant polytope), there is an explicit way to

construct its corresponding toric variety (or symplectic toric manifold). Thus,

the geometry of the toric variety (e.g. its cohomology ring, Betti numbers,

etc.) are completely encoded in the combinatorics of the corresponding fan.

The study of toric varieties has deep connections with polyhedral geometry,

commutative algebra, combinatorics, and symplectic geometry, among many

other �elds. Its elegant structure also makes it an invaluable tool in other

areas of research such as coding theory, physics, and algebraic statistics.

Since the main topic of this thesis is not toric varieties, we do not give

precise de�nitions. We refer the reader to [Ful93] and [CdS03] for more detailed

treatments of what follows. To give the reader a sense of the objects under

consideration, however, we give below a concrete example of a toric variety

and its corresponding Delzant polytope.

Example 1.1. The complex projective plane P2 is a smooth projective toric

variety and a symplectic toric manifold. The torus T 2 = (C∗)2 can act on

P2 as follows: t · z = (t1, t2) · [z0 : z1 : z2] := [z0 : t1z1 : t2z2]. The T 2-

�xed points ({z ∈ P2|t · z = z}) are [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]. There

exists a function, µ : P2 → R2, called the moment map with special geometric

properties [CdS03, §1.4 and §1.6]; in particular, the image of the moment map

is precisely the Delzant polytope associated to P2 under the correspondence

referenced above. In this example, it turns out that µ : P2 → R2 is given by

2
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µ([z0 : z1 : z2]) = 1
2|z|2 (|z1|2, |z2|2), up to a constant. The image ∆ := µ(P2)

is the Delzant polytope corresponding to P2 (see Figure 1.1). The vertices of

∆ correspond to the T 2-�xed points: µ([1 : 0 : 0]) = (0, 0), µ([0 : 1 : 0]) =

(1, 0), µ([0 : 0 : 1]) = (0, 1). This is not a coincidence. In general, for X an

arbitrary symplectic toric manifold with respect to a torus T and µ : X → t∗

a moment map for this T -action, the moment map µ takes points with a

k-dimensional stabilizer to codimension-k faces of the moment map image

µ(X) =: ∆, and the inverse of a point on the polytope consists of exactly one

torus orbit.

t
t

tP2 -�

(1,0)(0,0)

(0,1)

Figure 1.1: Delzant polytope of P2.

On the other hand, given a Delzant polytope ∆, we can reconstruct the

symplectic toric manifold X using the so-called Delzant construction (see

[Ham08] or [CdS03] for details), and in the case of P2 one can check that

this Delzant construction is essentially the usual construction of projective

space as the quotient of S5 ⊆ C3 by scalar multiplication by a circle S1.

As indicated above, in the setting of a toric variety, the geometry of X is

fully encoded in its associated polytope ∆ = µ(X). Given a general projective

variety X which is not a toric variety, one might ask:

Is it possible to associate to X some combinatorial object which encodes

important geometric/ topological data of X (e.g. its degree, Betti numbers,

cohomology ring, orbit types)? (1.1)

3
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There exist some special situations where this is possible: for instance, in the

theory of Hamiltonian torus actions and moment maps, and Goresky-Kottwitz-

MacPherson (GKM) theory. However, these theories have some disadvantages.

In particular, in both cases, they only apply to special types of varieties, and

the correspondence between the varieties and associated combinatorial objects

is not one-to-one. In the case of the theory of Hamiltonian torus actions and

moment maps, this has to do with the fact that when a variety is not toric,

its corresponding moment polytope is not maximal-dimensional (the (real)

dimension of the torus is less than half of the (real) dimension of the manifold).

An example which will be central to this thesis is given below.

Example 1.2. Let Fl(C3) denote the variety of �ags in C3, i.e. the set of

nested sequences of subspaces {0 ⊂ V1 ⊂ V2 ⊂ C3 | dimC(Vi) = i}. The

�ag Fl(C3) is an example of a symplectic manifold which is not toric. Indeed,

viewing the torus T 2 as the subgroup of the diagonal matrices in SL3C, we can

de�ne an action of T 2 on Fl(C3) by acting by linear transformations on the

set of �ags in C3. Using the theory of Hamiltonian torus actions and moment

maps, one can compute a moment map µ associated to this action, and it

turns out that the corresponding moment polytope µ(Fl(C3)) is as follows:t
t
t
t

t ttt
Figure 1.2: Moment polytope of Fl(C3).

However, this polytope is not maximal-dimensional, since dimRFl(C3) = 6,

but the moment polytope has dimR = 2. Indeed, in this situation the torus

T 2 is 2-dimensional, whereas the �ag variety Fl(C3) is (real) 6-dimensional.

4
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In general, a partial answer to Question 1.1 is given by the theory of

Newton-Okounkov bodies. Suppose X is an arbitrary projective algebraic va-

riety over C, and let dimC = n. Building on the work of Okounkov [Oko96,

Oko98], Kaveh-Khovanskii [KK12] and Lazarsfeld-Mustata [LM09] construct

a convex body ∆ in Rn associated to X equipped with the auxiliary data of a

divisor D and a choice of valuation ν on the space of rational functions C(X).

There are several advantages of this theory over other theories (such as Hamil-

tonian torus actions, etc.). First, it applies to an arbitrary projective algebraic

variety. Second, under a mild hypothesis on the auxiliary data, the construc-

tion guarantees that the associated convex body ∆ is maximal-dimensional.

Thirdly, the construction also guarantees that the Euclidean volume of ∆ in

Rn gives the degree of the image of X under the Kodaira map corresponding to

D; i.e. vol∆ = 1
n!

degX. Dave Anderson [And13] took Kaveh-Khovanskii and

Lazarsfeld-Mustata's work a step further and developed a criterion for when a

certain semigroup is �nitely generated, which implies that the corresponding

Okounkov body is a rational polytope. The facts above suggest that, in the

situation when ∆ is a rational polytope, the combinatorics of ∆ should encode

some important geometric data.

There are many open questions in Newton-Okounkov body theory. In

particular, very few explicit examples of Newton-Okounkov bodies have been

computed thus far. Therefore, it is an interesting problem to compute new

concrete examples. In this thesis, we will explicitly compute the Newton-

Okounkov bodies of certain Bott-Samelson and Peterson varieties, for certain

choices of auxiliary data D and ν.

5
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1.2 Newton-Okounkov Bodies

As we indicated above, the main results of this thesis are explicit computations

of Newton-Okounkov bodies for certain varieties. In this section, we record

our conventions and recall the basic construction of Newton-Okounkov bodies.

In what follows, we �x a projective irreducible variety X over C, and set

n := dimCX. We also equip Zn with a total order as follows.

De�nition 1.3. We de�ne lexicographic order on Zn as follows. Let α =

(α1, . . . , αn) and β = (β1, . . . , βn) ∈ Zn. We say α > β, with respect to

lexicographic order, if the leftmost non-zero entry in α− β ∈ Zn is positive.

Example 1.4. We have (2, 1, 6) > (2, 1, 5), since α − β = (0, 0, 1). Also we

have (1, 4, 2) > (0, 5, 3), since α− β = (1,−1,−1).

In what follows, we always equip Zn with lexicographic order. The essential

insight in the theory of Newton-Okounkov bodies is that valuations (valued

in Zn) can be used to translate problems concerning algebra into those about

semigroups in Zn. By considering algebras naturally associated to varieties

(e.g. homogeneous coordinate rings, or more generally, algebras of sections of

a line bundle) we can therefore obtain a method to associate a semigroup to

geometric data. To explain this in more detail, we now introduce the notion

of a pre-valuation (a weaker version of a valuation, de�ned on a vector space)

and then de�ne the notion of a valuation (which, in our context, is de�ned on

a C-algebra).

De�nition 1.5. Let V be a vector space over C. We say that a function

ν : V \{0} → Zn is a pre-valuation with values in Zn if for all f, g ∈ V \{0}:

(i) ν(f + g) ≥ min{ν(f), ν(g)} for all f, g ∈ V with f, g and f + g all

non-zero,

6
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(ii) ν(kf) = ν(f), for all k ∈ C∗ and f 6= 0 in V .

Moreover, a pre-valuation is said to have one-dimensional leaves if it sat-

is�es:

(iii) if ν(f) = ν(g), then ∃ k ∈ C such that ν(g− kf) > ν(g) OR g− kf = 0.

The condition (iii) above can also be formulated as follows. For α ∈ Zn,

de�ne Vα := {f ∈ V | ν(f) ≥ α or f = 0}. This is a subspace of V . Also

de�ne the leaf V̂α above α in Zn as the quotient vector space V̂α := Vα/∪α<β
Vβ. Then condition (iii) is equivalent to the requirement that dimC(V̂α) ≤ 1

for all α. This explains the terminology.

An elementary but important property of a pre-valuation with one-dimensional

leaves is the following (see e.g. [Kav15, Proposition 1.9]) :

Proposition 1.6. Let V be a C-vector space and ν : V \ {0} → Zn a pre-

valuation (with values in Zn) with one-dimensional leaves. Let W ⊆ V be a

�nite-dimensional subspace of V . Then dimC(W ) = #ν(W \ {0}).

We now de�ne a valuation on a C-algebra, which is a pre-valuation which

additionally behaves well with respect to the algebra structure.

De�nition 1.7. Let A be a C-algebra. A pre-valuation on A, ν : A\{0} → Zn,

is said to be a valuation if it satis�es the additional property:

(iv) ν(fg) = ν(f) + ν(g) for all f, g ∈ A \ {0}.

The image of A in Zn is a semigroup and is called the value semigroup of

(A, ν).

As mentioned above, in our geometric setting we will consider the algebra

of sections of line bundles over our variety X. Moreover, we will deal with

7



Ph.D. Thesis - Lauren DeDieu McMaster University - Mathematics

valuations on such algebras constructed in a speci�c and geometric way, as we

now describe. Let

{pt} = Yn ⊂ Yn−1 ⊂ · · · ⊂ Y1 ⊂ Y0 = X

be a �ag of irreducible subvarieties where dim(Yi) = n − i and each Yi is

non-singular at the point Yn. This is called an admissible �ag [LM09, §1].

We denote such a �ag by Y• = {Yn ⊂ Yn−1 ⊂ · · · ⊂ Y1 ⊂ Y0}. A system

of parameters [Kav15] with respect to such a �ag is a collection y1, . . . , yn of

rational functions on X such that yk |Yk−1
is a well-de�ned, not identically

zero, rational function on Yk−1, which has a zero of �rst order on Yk.

Let L be a line bundle on X and k a positive integer. Given an admissible

�ag Y• and a system of parameters y1, . . . , yn with respect to Y•, we can de�ne

a pre-valuation ν : H0(X,L⊗k) \ {0} → Zn as follows. For a non-zero section

s ∈ H0(X,L⊗k) we de�ne ν(s) := (k1, . . . , kn), where the ki are inductively

de�ned in the following way. First we de�ne

k1 := ordY1(s),

i.e. k1 is the order of vanishing of s along Y1. De�ne s1 := sy−k11

∣∣∣∣
Y1

. Note

that s1 is not identically zero on Y1 by the de�nition of k1. Then we de�ne

k2 :=ordY2(s1), and so on.

Theorem 1.8. [LM09, Lemma 1.3] The pre-valuation ν : H0(X,L⊗k)\{0} →

Zn constructed above has one-dimensional leaves.

Let Rk denote the span of the image of the k-fold product H0(X,L)×· · ·×

H0(X,L) in H0(X,L⊗k), under the natural map given by taking the tensor

product of sections. Let R =
⊕

k≥0Rk denote the graded C-algebra of sections

of L. It is not di�cult to see that the pre-valuation ν de�ned above speci�es

8
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a valuation, by slight abuse of notation also denoted ν, on R [Kav15, Prop

1.11]. Given our valuation ν, we may de�ne the additive semigroup

S(R, ν) :=
⋃
k>0

{(k, ν(s))|s ∈ Rk \ {0}} ⊂ N× Zn.

We then de�ne the convex body ∆ by

∆ := conv

(⋃
k>0

{x
k
| (k, x) ∈ S(R, ν)

})
.

The convex body ∆ can also be described as the slice at {k = 1} of the cone

C ⊂ R×Rn generated by the semigroup (i.e. the smallest closed convex cone

centered at the origin containing S(R, ν)), projected to Rn via the projection

to the second factor (k, x) 7→ x.

De�nition 1.9. The convex body ∆ = ∆(X,R, ν) above is called the Newton-

Okounkov body of R with respect to ν.

Remark 1.10. This de�nition can naturally be extended to allow for a choice

of subspace V ⊂ H0(X,L) and R(V ) :=
⊕

k≥0 V
k ⊂ R, where V k is the

image of the k-fold product V × · · ·×V in H0(X,L⊗k). In this setup, we may

denote the Newton-Okounkov body by ∆(X,R(V ), ν). In Chapter 4, where

we compute the Newton-Okounkov bodies of Bott-Samelson varieties, we take

V = H0(X,L). In this context we use the notation ∆ = ∆(X,L, ν) instead of

∆(X,R, ν), so that the line bundle L is explicit in the notation. In Chapter

7, where we compute the Newton-Okounkov bodies of Peterson varieties, we

use a subset V ⊆ H0(X,L), and use the notation ∆(X,R(V ), ν).

When computing Newton-Okounkov bodies, the following language will be

useful.

9
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De�nition 1.11. We de�ne the level-j piece of a semigroup S(R, ν) to be

ν(Rj \ {0}). Moreover, we say that the Newton-Okounkov body is generated

in level-j if

∆ := conv

(
j⋃

k=1

{x
k
| (k, x) ∈ S(R, ν)

})
. (1.1)

Remark 1.12. We note that if a Newton-Okounkov body ∆ is generated in

level-j, then ∆ is a rational polytope (i.e. its vertices have rational coordi-

nates). Indeed, if ∆ is generated in level-j, then by (1.1) we know that in

order to compute ∆ it su�ces to look at the vertices of each level-k piece

ν(Rk \ {0}) for 1 ≤ k ≤ j. More precisely, any point in ∆ can be written

in the form 1
k
p for some 1 ≤ k ≤ j and for some point p in the level-k piece

ν(Rk \ {0}). Moreover, p is in the convex hull of the vertices vi of the level-k

piece, i.e. p =
∑
civi for some ci ∈ R such that

∑
ci ≤ 1 and vertices vi. It

follows that 1
k
p is in the convex hull of 1

k
times the vertices vi of the level-k

piece. Therefore, ∆ is exactly the convex hull of 1
k
times the vertices of the

level-k pieces for 1 ≤ k ≤ j. Each vertex vi in the level-k piece has rational

entries, and therefore, 1
k
vi has rational entries too. Therefore, ∆ is a rational

polytope.

Remark 1.13. In general, the semigroup S(R, ν) may not be �nitely gener-

ated. For example, in Example 5.10 of [And13], the Newton-Okounkov body

of an elliptic curve and a certain choice of valuation yields the semigroup

{(0, 0)} ∪ {(m, r) | 0 ≤ r ≤ 3m− 1} ⊂ N× Z, which is not �nitely generated,

since every lattice point on the line r = 3m − 1 is needed to generate the

semigroup. In general, the question of when the semigroup S(R, ν) is �nitely

generated is subtle and is sensitive to the choice of valuation. When the

semigroup is not �nitely generated, there is no guarantee that the associated

Newton-Okounkov body is a rational polytope.

10



Ph.D. Thesis - Lauren DeDieu McMaster University - Mathematics

The main goal of this thesis is to explicitly compute Newton-Okounkov

bodies of some special cases of Bott-Samelson varieties and Peterson varieties,

with respect to valuations de�ned with respect to geometrically natural �ags

of subvarieties. In the examples we consider, it turns out that the semigroup

is in fact generated in level one, i.e. ∆ = conv(ν(H0(X,L))). This fact is

critical for us, since it reduces the problem to a �nite computation (since

dimH0(X,L) <∞). It is worth noting here that the proof of the fact that the

semigroup is generated in level one is di�erent in the Bott-Samelson case and

the Peterson case. In the setting of Bott-Samelson varieties, for certain choices

of parameters, it turns out we have some a priori knowledge of the image ν(Rk)

at the k-th level, by using a special basis for Rk. We are therefore able to show

directly that for any (k, x) ∈ S(R, ν), we have x
k
∈ conv(ν(H0(X,L))).

In the case of Peterson varieties, we rely on a di�erent approach, for which

we recall some generalities. Suppose a variety X of complex dimension n

is embedded in a projective space PN and L is the restriction to X of the

antitautological bundle O(1) on PN . Then the homogeneous coordinate ring

of X in PN is a graded C-subalgebra of the graded ring of sections ⊕kRk,

so we may take it to be the R(V ) in Remark 1.10. Suppose ν is a valuation

with one-dimensional leaves as above. It is a general fact that the volume of

∆(X,R(V ), ν) exactly encodes the growth coe�cient of the Hilbert function

HR(V )(k) = dimC(V k) of R(V ) (see e.g. [Kav15, Theorem 1.15]), that is:

lim
k→∞

HR(V )(k)

kn
= vol(∆(X,R(V ), ν)).

Moreover, in the case at hand, it is a classical result that the LHS also agrees

(up to a factor of n!) with the degree of the embedding X ↪→ PN , i.e.,

1

n!
deg(X ⊆ PN) = lim

k→∞

HR(V )(k)

kn

11
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which implies

1

n!
deg(X ⊆ PN) = vol(∆(X,R(V ), ν)) (1.2)

in our case.

The discussion above implies that if we can compute the degree of X in

P(H0(X,L))∗ by some other means, then we know the volume of ∆(X,R(V ), ν),

independent of any properties of the semigroup or of the ν(Rk). In particular,

if we are able to obtain - via direct computations - a set of points in ν(R1)

whose convex hull has volume equal to 1
n!

times the degree, then we may im-

mediately conclude that this convex hull is in fact equal to ∆(X,R(V ), ν).

This is the approach we take in the case of the Peterson variety.

We close this introduction with one concrete and complete example of a

computation of a Newton-Okounkov body.

Example 1.14. Let X = P2 be the complex projective plane and let O(1)

be the dual of the tautological bundle. Let x, y, z be the usual homogeneous

coordinates for P2 = {[x : y : z]}. There is a natural �ag of subvarieties in

P2 speci�ed by [0 : 0 : 1] = {x = y = 0} ⊂ {x = 0} ⊂ X = P2. Note that

{x = y = 0} = {[0 : 0 : 1]} is a single point, while {x = 0} = {[0 : y : z]} is

isomorphic to the projective line P1. On the a�ne chart U = {z 6= 0} = {[x :

y : 1]} ∼= C2 in P2, we may view x and y as a system of parameters for this

�ag of subvarieties.

This �ag and system of parameters de�nes a valuation ν, as described

above. More precisely, given a non-zero polynomial f = f(x, y) in the variables

x and y (so a holomorphic function on the a�ne chart U), ν(f) is given by

(k1, k2), where ckx
k1yk2 is the lowest term in f with respect to lexicographic

order. This valuation is often called a lowest term valuation.

Recall that the space of sections H0(P2,O(1)⊗k) can be interpreted as

12
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the degree-k homogeneous polynomials in x, y, and z. With respect to the

above system of parameters, R1 can then be identi�ed with H0(P2,O(1)) =

span{x, y, 1}, and Rk is the vector space of polynomials in x and y with degree

at most k.

In particular, for any element (k, t1, t2) ⊂ S(R, ν) ⊂ N × Z2 in the semi-

group, we have, by de�nition, that (t1, t2) is in the level-k piece, i.e. (t1, t2) ∈

ν(Rk \ {0}). This, in turn, implies that t1 + t2 ≤ k and so t1
k

+ t2
k
≤ 1.

This in turn means that ( t1
k
, t2
k

) ∈ conv (ν(H0(P2,O(1)))) since (1, 0) = ν(x)

and (0, 1) = ν(y) are in the image of H0(P2,O(1)). From this we may con-

clude that the Newton-Okounkov body is conv(ν(H0(P2,O(1)))), i.e., it suf-

�ces to compute just the �level-one piece� ν(R1). In the language of De�nition

1.11 we say that the Newton-Okounkov body is generated in level-one. Since

R1 consists of the polynomials of degree at most 1 in the variables x and

y, we have dimR1 = dim(span{x, y, 1}) = 3 and we can explicitly compute

that ν(x) = (1, 0), ν(y) = (0, 1) and ν(1) = (0, 0). Therefore, the Newton-

Okounkov body ∆(P2,O(1), ν) is a triangle with vertices (0, 0), (1, 0), and

(0, 1).

Alternatively, we could have used the fact that the degree of P2 in

P(H0(P2,O(1))∗) is 1, and therefore (from the discussion above) the area of

the Newton-Okounkov body is 1
2
. The convex hull of the image of x, y, and

1 has area 1
2
, and so this convex hull must be the entire Newton-Okounkov

body.

1.3 Flags and Grassmannians

The main results of this thesis are computations of Newton-Okounkov bodies

of varieties which are closely related to the variety of �ags in Cn, or more

13
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generally, of �ag varieties associated to complex reductive algebraic groups.

As such, we dedicate this section to establishing notation and de�nitions con-

cerning �ag varieties and Grassmannian varieties. To set the stage, we �rst

describe the standard �ag variety in Cn. We then generalize the notion to

include partial �ag varieties in Cn (in particular, the Grassmannian), and ex-

plain how these are special cases of a more general construction using (complex,

connected, reductive) algebraic groups G and their parabolic subgroups P . In

this general context, the standard �ag variety in Cn corresponds to the �Lie

type A� case G = GLnC. While we focus almost exclusively on the G = GLnC

case in this thesis, it is useful to set up the general terminology since much of

the literature (and in particular, many of our references) on the subject uses

the more general set-up. We conclude by de�ning important maps and line

bundles over these varieties which arise in later chapters. For a more detailed

treatment of what follows, see [Bri05] and [SKKT00].

The (full) �ag variety in Cn is de�ned to be the collection of sequences of

nested linear subspaces of Cn:

Fl(Cn) := {V• = {0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn} | dimCVk = k for all k}.

Slightly more generally, given a sequence of increasing positive integers 0 <

d1 < · · · < dm < n, a �ag of type (d1, . . . ,dm) is an increasing sequence of lin-

ear subspaces V• = {0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊂ Cn | dimCVk = dk for all k =

1, 2, . . . ,m}. We then de�ne the (partial) �ag variety Fld1,...,dm(Cn), to be

the set of �ags of type (d1, . . . , dm). A special case of a partial �ag variety is

of particular importance and is called a Grassmannian variety ; it corresponds

to the case m = 1 and d1 = k. Thus

Gr(k, n) := {0 ⊂ Vk ⊂ Cn}

14
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and so Gr(k, n) is the variety of k-dimensional subspaces of Cn.

It is well-known that the full �ag variety Fl(Cn) and the partial �ag va-

rieties can also be realized as homogeneous spaces GLnC/P where P is a

parabolic subgroup of GLnC as we now quickly recall.

Let {e1, . . . , en} denote the standard ordered basis in Cn, where ei is

the vector with a 1 in the i-th spot and 0's elsewhere. For any d with

1 ≤ d ≤ n, denote by Ed the span of the �rst d standard basis vectors, Ed :=

spanC {e1, . . . , ed}. For any sequence (d1, . . . , dm) as above, we call the �ag of

standard coordinate subspaces E•(d1,...,dm) = {0 ⊂ Ed1 ⊂ Ed2 ⊂ · · · ⊂ Edm ⊂ Cn}

the standard �ag (of type (d1, . . . , dm)). Notice that for any element V• =

{0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊂ Cn} ∈ Fld1,...,dm(Cn), we can realize V1 as the span

of some vectors {v1, . . . , vd1}, V2 as the span of {v1, . . . , vd1} plus d2 − d1 ad-

ditional vectors {vd1+1, . . . , vd2}, and so on. At the �nal step, Cn is the span

of n vectors {v1 . . . , vd1 , vd1+1, . . . , vd2 , . . . , vdm+1, . . . , vn}. Let g be the invert-

ible matrix whose i-th column is the vector vi. It is not hard to see that g,

interpreted as a linear transformation of Cn, takes the standard �ag to V•,

i.e. V• = gE•(d1,...,dm) = {0 ⊂ gEd1 ⊂ gEd2 ⊂ · · · ⊂ gEdm ⊂ gCn}. In partic-

ular, the group GLnC acts transitively on the �ag variety Fld1,...,dm(Cn) for

any (d1, . . . , dm). Moreover, it is not hard to see that the isotropy group

P (d1, . . . , dm) of the standard �ag E•(d1,...,dm) consists of block-upper triangu-

lar invertible matrices with invertible diagonal blocks of sizes d1, d2 − d1, d3 −

d2, . . . , n− dm (see Example 1.15 below). Moreover,

Fld1,...,dm(Cn) ∼= GLnC/P (d1, . . . , dm),

via the isomorphism which sends an element [g] ∈ GLnC/P (d1, . . . , dm) to

gE•(d1,...,dm) ∈ Fld1,...,dm(Cn). In particular, P (1, . . . , n − 1) = B, the Borel

15
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subgroup of upper triangular invertible matrices, so

Fl(Cn) ∼= GLnC/B,

and we also have

Gr(k, n) ∼= GLnC/P (k)

where by de�nition, P (k) is the subgroup of block-upper triangular invertible

matrices with two diagonal blocks of sizes k and n− k.

Example 1.15. The isotropy group, P (1, 4, 5), of the standard �ag E•(1,4,5) ⊂

Fl1,4,5(C7) is the group of block upper triangular invertible matrices with in-

vertible diagonal blocks of sizes 1, 4 − 1 = 3, 5 − 4 = 1, and 7 − 5 = 2 (here

n = 7 and m = 3):

P (1, 4, 5) =



∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 ∗ ∗
0 0 0 0 0 ∗ ∗


.

Here and below, we will denote an element [g] ∈ GLnC/P (d1, . . . , dm) =

G/P by using square brackets:

[g] = gP =



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann


 .

From the discussion above, such a coset [g] = gP can be interpreted as a �ag

of type (d1, . . . , dm) by taking the span of the leftmost di vectors in the matrix

above, for each i with 1 ≤ i ≤ m.

16
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As mentioned above, we focus on the GLnC case in this thesis, but the

constructions above naturally generalize to other Lie types and much of the

literature (including those which we include as references) state their results in

the more general language. Thus we now take a moment to record the general

de�nitions.

Let G be a complex, connected, reductive, algebraic group. Recall that a

parabolic subgroup P of G has the property that B ⊆ P ⊂ G, where B is a

Borel subgroup of G.

De�nition 1.16. A (generalized) �ag variety of G is a homogeneous space

of G of the form G/P , where P is a parabolic subgroup of G. In the special

case P = B, we call G/B a full �ag variety.

We will now de�ne an important algebraic variety which has close ties

to the �ag variety, namely the Schubert variety. Consider an element of the

symmetric group w ∈ Sn, where we think about w as an n × n permutation

matrix (each row and column contains a single 1 with 0's elsewhere). Consider

the element of the full �ag variety wB ∈ Fl(Cn). For B ⊂ GLnC the Borel

subgroup of invertible upper triangular matrices, consider the orbit BwB ⊂

Fl(Cn). It it well known that Fl(Cn) can be written as the disjoint union of

these orbits BwB (see [Bri05, Proposition 1.1.1]). The orbits BwB are called

Schubert cells. The closure of a Schubert cell BwB in Fl(Cn) under the

Zariski topology is called a Schubert variety Xw.

In the remainder of this section, we record some standard algebraic-geometric

constructions related to the Grassmannians Gr(k, n) and the �ag varieties

more generally: the Plücker maps and the resulting (pullback) line bundles.

Before describing the Plücker maps, it is useful to �rst recall two standard

maps from algebraic geometry: the Veronese mapping and the Segre embed-
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ding (see e.g. [SKKT00] for more details).

De�nition 1.17. Let Pr be the r-dimensional complex projective space, with

homogeneous coordinates x0, x1, . . . , xr. Notice that there are precisely
(
d+r
d

)
distinct monomials in the variables x0, x1, . . . , xr of total degree equal to d. Let

z =
(
d+r
d

)
− 1. The d-th Veronese mapping is the map given by the list of

all such monomials:

νd : Pr → Pz

[x0 : · · · : xr] 7→ [xd0 : xd−1
0 x1 : · · · : xdr ]︸ ︷︷ ︸

all monomials of degree d

,

where z =
(
d+r
d

)
− 1 as above.

The next map is de�ned in a similar fashion.

De�nition 1.18. Let Pr be the r-dimensional complex projective space, consid-

ered with homogeneous coordinates x0, x1, . . . , xr, and similarly Ps with homo-

geneous coordinates y0, y1, . . . , ys. Notice that there are precisely (r+ 1)(s+ 1)

many distinct monomials of the form xiyj for some i, j with 0 ≤ i ≤ r and

0 ≤ j ≤ s. The Segre embedding, Σr,s = Σ is given by the list of all such

degree-two (or �degree (1, 1)�) monomials:

Σr,s : Pr × Ps → P(r+1)(s+1)−1

([x0 : · · · : xr], [y0 : · · · : ys]) 7→ [x0y0 : x0y1 : · · · : xiyi : · · · : xrys].

We now de�ne the Plücker mapping of Gr(k, n) into P(nk)−1. Given an ele-

ment [g] ∈ Gr(k, n) (written in matrix form), �rst note that the k-dimensional

subspace Vk of Cn speci�ed by [g] is given by the span of the leftmost k rows

in the matrix [g]. For any choice of 1 ≤ c1 < c2 < · · · < ck ≤ n, let us

denote by Pc1···ck the determinant of the k × k submatrix given by the rows

18
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1 ≤ c1 < · · · < ck ≤ n in the leftmost k columns of [g]. Notice that there are

precisely
(
n
k

)
choices of such square submatrices. The Plücker embedding

of Gr(k, n) into P(nk)−1 is then de�ned by the list of all such determinants:

pk : Gr(k, n)→ P(nk)−1

[g] 7→ [· · · : Pc1···ck : · · · ]. (1.3)

This map is well-de�ned because [g] = [h] implies that g = hA for an invertible

block-upper triangular matrix A, and in particular the value of Pc1···ck associ-

ated to [g] di�ers from that of [h] by a �xed non-zero scalar (namely, the deter-

minant of the upper k×k submatrix of A) for any values of c1 < c2 < · · · < ck.

The following is an example of the Plücker embedding when n = 3.

Example 1.19. The Plücker embedding of Gr(2, 3) into P2 is given by:

p2 : Gr(2, 3)→ P2a11 a12 a13

a21 a22 a23

a31 a32 a33

 7→ [P12 : P13 : P23] =

[∣∣∣∣a11 a12

a21 a22

∣∣∣∣ :

∣∣∣∣a11 a12

a31 a32

∣∣∣∣ :

∣∣∣∣a21 a22

a31 a32

∣∣∣∣] .
We can also embed the �ag variety Fld1,...,dm(Cn) into projective space

as follows. First we embed the �ag variety into a product of Grassmannian

varieties. Second, we apply the Plücker embedding to each coordinate in this

product to further embed into a product of projective spaces. Then, we apply

the Segre embedding to the product of projective spaces to embed into a

single (large) projective space. More precisely, �rst we map Fld1,...,dm(Cn) into

a product of Grassmannians Gr(d1, n) × · · · × Gr(dm, n) via a map ι which

essentially �reads o�� each of the k-dimensional subspaces in a given �ag V•:

ι : Fld1,...,dm(Cn)→ Gr(d1, n)× · · · ×Gr(dm, n)

{V1 ⊂ · · · ⊂ Vm} 7→ (V1, . . . , Vm). (1.4)
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Then we apply the Plücker embedding for a Grassmannian (as described

above) to each coordinate:

p : Gr(d1, n)× · · · ×Gr(dm, n)→ P( nd1)−1 × · · · × P( n
dm

)−1

(V1, . . . , Vm) 7→ [p1(V1) : · · · : pm(Vm)], (1.5)

where pk is the Plücker embedding of Gr(dk, n). Finally, we map the product

of projective spaces into a large projective space using the Segre embedding,

Σ, described above.

The (standard) Plücker embedding of Fld1,...,dm(Cn) into projective

space is given by composing equations (1.4) and (1.5), and then applying the

Segre embedding, i.e. Σ ◦ p ◦ ι.

Given a sequence of integers λ = (λ1 ≥ . . . ≥ λn−1 ≥ λn = 0), one can

also de�ne the Plücker mapping of Fl(Cn) corresponding to λ. This map

is the same as the standard Plücker embedding given above, except that we

apply the (λk − λk+1)-th Veronese mapping, νλk−λk+1
, to the k-th coordinate

in P(n1)−1 × · · · × P( n
n−1)−1 before applying the Segre embedding Σ.

We denote this Veronese mapping as follows:

ν : P(n1)−1 × · · · × P( n
n−1)−1 → Pr1 × · · · × Prn−1

[x1 : · · · : xn−1] 7→ [νλ1(x1) : · · · : νλn−1(xn−1)], (1.6)

where νλk−λk+1
is the (λk − λk+1)-th Veronese mapping, and

ri :=
((nk)−1+(λk−λk+1)

(nk)−1

)
− 1.

De�nition 1.20. The Plücker mapping associated to λ, ϕλ, of Fl(Cn)

into projective space is given by composing equations (1.4), (1.5), and (1.6),

and then applying the Segre embedding, i.e. ϕλ = Σ ◦ ν ◦ p ◦ ι.
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Note that the standard Plücker embedding is the Plücker mapping corre-

sponding to

λ = (n− 1, n− 2, . . . , 1, 0).

Finally, using these maps, we can de�ne certain pullback line bundles over

the Grassmannian variety and �ag variety which play an important role in

our discussion. In order to de�ne the pullback bundle over Gr(k, n), we �rst

embed Gr(k, n) into projective space using the Plücker mapping, p. Let O(1)

denote the dual of the tautological bundle over any projective space.

De�nition 1.21. The Plücker bundle over the Grassmannian variety Gr(k, n)

is the pullback line bundle p∗(O(1)).

Similarly, we de�ne a line bundle over Fl(Cn) by �rst mapping Fl(Cn) into

projective space, using the Plücker mapping, ϕλ.

De�nition 1.22. The Plücker (line) bundle corresponding to λ over the

full �ag variety Fl(Cn) is the pullback line bundle Lλ := ϕ∗λ(O(1)).

We conclude this section with a concrete example.

Example 1.23. Let λ = (2, 1, 0). We embed Fl(C3) into P8 via the Plücker

mapping corresponding to λ. First, embed Fl(C3) into Gr(1, 3) × Gr(2, 3)

by V• = (0 ⊆ V1 ⊆ V2 ⊆ C3) 7→ (V1, V2). Second, map the image of this

into P2 × P2 using the corresponding Grassmannian Plücker mappings. Since

λ1 − λ2 = λ2 − λ3 = 1, we do not apply any Veronese mappings to P2 × P2.

Finally, the Segre embedding takes P2 × P2 to P8. We pull back the O(1)

bundle over P8 to Fl(C3). This pullback bundle is our Lλ. The following

diagram illustrates this map:
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Lλ := (Σ ◦ p ◦ ι)∗(O(1)) O(1)y y
Fl(C3) −−−→

ι
Gr(1, 3)×Gr(2, 3)

Plücker−−−−→
p

P2 × P2 Segre−−−→
Σ

P8

Concretely, for an element V• = {0 ⊂ V1 ⊂ V2 ⊂ C3} ∈ Fl(C3), the

composition Σ ◦ p ◦ ι is given by:

V• 7→ (V1, V2) 7→ ([P1 : P2 : P3], [P12 : P13 : P23])

7→ [P1P12 : P1P13 : P1P23 : P2P12 : P2P13 : P2P23 : P3P12 : P3P13 : P3P23].
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Bott-Samelson Varieties
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Chapter 2

Background on Bott-Samelson

Varieties and Generalized

Demazure Modules

Bott-Samelson varieties are closely related to �ag varieties and Schubert vari-

eties, and as such, they are important in the study of representation theory. In

recent years, they have also been studied in the context of Newton-Okounkov

bodies. The �rst explicit computation of Newton-Okounkov bodies of a �ag va-

riety is due to Okounkov [Oko98]. Using a geometric valuation, Okounkov iden-

ti�ed the Newton-Okounkov bodies of symplectic �ag varieties with symplec-

tic Gelfand-Zetlin polytopes. Kaveh [Kav15] computed the Newton-Okounkov

bodies of general �ag varieties G/B of complex algebraic groups G using a

highest term valuation corresponding to a certain coordinate system on a

Bott-Samelson variety. He showed that these Newton-Okounkov bodies can

be realized as Berenstein-Littlemann string polytopes associated to a choice

of reduced-word decomposition of the longest element of the Weyl group and
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a choice of an irreducible representation. In the process, Kaveh computed

the Newton-Okounkov bodies, ∆(ZI , L), of Bott-Samelson varieties ZI (to be

de�ned precisely below), where L is a line bundle which can be realized as a

pullback line bundle from the �ag G/B. Using the same valuation as Kaveh,

Fujita [Fuj15] generalized Kaveh's results to include line bundles which do not

necessarily have to be pullback bundles; he also has analogous results for an-

other valuation with respect to di�erent coordinates. Similarly, with respect

to coordinates di�erent from Kaveh (also used in Section 6.4 in [And13]), Kir-

itchenko [Kir15] has computed the Newton-Okounkov bodies of line bundles on

the �ag variety G/B. Recently, Harada and Yang [HY16] have also explicitly

computed the Newton-Okounkov bodies of Bott-Samelson varieties using yet

another valuation; they found that the polytopes that arise are special cases

of the Grossberg-Karshon twisted cubes. Seppänen and Schmitz [SS14] also

study the so-called global Newton-Okounkov body of Bott-Samelson varieties

using the same valuation as ours, and they show it is rational polyhedral and

give an inductive description of it.

In this thesis, we use the same coordinate system as in [Kav15], but un-

like Kaveh we use a lowest term valuation associated to these coordinates. In

general, the Newton-Okounkov body depends very much on the choice of val-

uation and understanding the nature of this dependence seems to be a rather

subtle problem (see e.g. [Kav15, Remark 2.3]).

2.1 Bott-Samelson Varieties

Bott-Samelson varieties are central in the study of the geometry of �ag varieties

and in the study of Schubert calculus. They were originally introduced in the

context of di�erential geometry by Bott and Samelson [BS58]. This construc-
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tion was then adapted by Demazure [Dem74] and Hansen [Han73] to apply

to an algebraic-geometric context. They showed that Bott-Samelson varieties

could be realized as desingularizations of Schubert varieties and therefore could

be used in Schubert calculus. For instance, Bott-Samelson varieties have been

used to study the Chow ring and projective coordinate ring of G/B, to �nd

character formulas for irreducible representations of G, and to determine prop-

erties about Schubert varieties, such as being normal and Cohen-Macauley

with rational singularities [BK07]. Bott-Samelson varieties are useful partly

because they are birationally isomorphic to Schubert varieties and can also be

factored into iterated P1 �brations, each with a birational map to G/B.

In this chapter, we will de�ne Bott-Samelson varieties, describe the line

bundles over them, and give a basis for the space of sections of these line

bundles. Although the results of this thesis are for Lie type A, we follow

the standards of the literature in this subject and give the de�nition of these

varieties in general Lie type.

Let G be a complex, connected, reductive, algebraic Lie group of rank r, B

a Borel subgroup, and {α1, . . . , αr} the set of positive simple roots associated

to this choice of B. Let W be the Weyl group generated by simple re�ections

s1, . . . sr corresponding to the roots αi. Let Pαk be the minimal parabolic sub-

group associated to the simple re�ection sk. We give an example to illustrate

these de�nitions in the type A case.

Example 2.1. Let G = GL3C. Let B be the Borel subgroup of invertible

upper triangular matrices and H the Cartan subgroup of invertible diagonal

matrices. We denote a diagonal matrix with diagonal entries h1, h2 and h3

by [h1, h2, h3]. We have two simple roots {α1, α2}. Concretely, we can think

of these roots as α1 = L1 − L2 and α2 = L2 − L3, where Li(h) = hi, for
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h = [h1, h2, h3] ∈ h. Then W ∼= S3, the symmetric group generated by simple

re�ections s1 = 213 and s2 = 132, where we have written permutations in

standard one-line notation. The two minimal parabolic subgroups, Pα1 and

Pα2 , have the form

Pα1 =

 ∗ ∗ ∗∗ ∗ ∗
0 0 ∗

 and Pα2 =

 ∗ ∗ ∗0 ∗ ∗
0 ∗ ∗

 ,
where ∗ denotes an arbitrary parameter (subject to the condition that the

matrices in question are invertible).

Given this set-up, we can now de�ne a Bott-Samelson variety.

De�nition 2.2. Fix a sequence I = (i1, . . . , i`) ∈ {1, 2, . . . , r}`, which speci�es

a sequence of positive roots (αi1 , . . . , αi`). Let PI denote the product of the

corresponding minimal parabolics Pαi1 × . . . × Pαi` . We de�ne a right action

of B` on PI by

(p1, . . . , p`) · (b1, . . . , b`) = (p1b1, b1
−1p2b2, . . . , b`−1

−1p`b`). (2.1)

Then the Bott-Samelson variety, ZI, corresponding to I, is de�ned to be

ZI := PI/B
`.

Theorem 2.3. [Dem74, §3] ZI is a smooth projective algebraic variety of

dimension `.

In order to discuss the relationship between Bott-Samelson varieties and

Schubert varieties, we need the following de�nition.

De�nition 2.4. The length of an element of the Weyl group, w ∈ W , is

the smallest positive integer k so that w can be written as the product of k

simple re�ections. The length of w is denoted `(w). A (word) decomposition

w = si1 . . . si` is called reduced when ` = `(w).
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For a reduced word w = si1 . . . si` and I = (i1, . . . , i`), the multiplication

map

π : ZI → Xw ⊂ G/B

[(p1, . . . , p`)] 7→ [p1 · · · p`] (2.2)

is a birational morphism between ZI and Xw, and in particular, if w = w0 is

the longest element of the Weyl group, then the image of ZI is the full �ag

variety G/B ([Dem74, §3],[Jan87, §13.5]).

In Lie type A, we also have a map taking ZI to a product of Grassmannian

varieties as follows. Let Gr(k, n) denote the Grassmannian of k-dimensional

subspaces of Cn. First, we can map ZI into Gr(ij, n) for 1 ≤ j ≤ ` as follows:

µj : ZI → Gr(ij, n) ∼= GLnC/P (ij)

[(p1, . . . , p`)] 7→ [p1 · · · pk]. (2.3)

It is clear from the de�nition of the action (2.1) and of ZI that the above µj

is well-de�ned. Let

Gr(I) := Gr(i1, n)× · · · ×Gr(i`, n) (2.4)

denote the product of Grassmannians corresponding to the sequence I =

(i1, . . . , i`). We now de�ne a map µI from ZI to Gr(I) by letting the j-th

coordinate be the image of µj:

µI : ZI → Gr(I)

[(p1, . . . , p`)] 7→ ([p1], [p1p2], . . . , [p1 · · · p`]). (2.5)

The above maps will be important in the sections that follow.

We denote the (set of) homogeneous coordinates on the j-th factor of Gr(I)

by

x(j), (2.6)
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e.g. the 4-th homogeneous coordinate of µI([(p1, . . . , p`)]) ∈ Gr(I) is x(4) =

[p1p2p3p4].

We close this section by giving an alternative useful way to construct and

interpret Bott-Samelson varieties, as an iterated �bre product [Mag98, §1].

Namely, it turns out that the Bott-Samelson variety can also be described as

ZI = eB ×G/Pαi1 G/B ×G/Pαi2 . . .×G/Pαi` G/B ⊂ G/B × . . .×G/B︸ ︷︷ ︸
`+1

where we recall that in general, given maps f : X → Z and g : Y → Z, the

�bre product X ×Z Y is {(x, y) ∈ X × Y | f(x) = g(y) ∈ Z} ⊆ X × Y . Thus

we can build the Bott-Samelson variety through the following iterative process.

De�ne ZO := eB and I` = (i1, . . . i`−1) if ` > 1, I` = O if ` = 1. Then the

Bott-Samelson variety ZI is realized as ZI`×G/Pαi`G/B = {(x, y) ∈ ZI`×G/B |

f(x) = g(y)}, where f : ZI`
π→ G/B → G/Pαi` is the composition of the above

map π with the natural projection G/B → G/Pαi` and g : G/B → G/Pαi` is

the natural projection. Note that by de�nition of the �bre product we have a

(Cartesian) commutative diagram

ZI` ×G/Pαi` G/B −−−→ G/By yg
ZI` −−−→

f
G/Pαi` .

This iterative process builds a tower of P1-bundles with ZI as the last step:

ZO ← Z(i1) ← Z(i1,i2) ← . . .← ZI .

We illustrate these de�nitions concretely in the following speci�c example.

Example 2.5. Let G = GL3C and I = (1, 2, 1). An element of the �ag

variety GL3(C)/B ∼= Fl(C3) is a sequence V• = {0 ⊂ V1 ⊂ V2 ⊂ C3}. In the
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projectivization P2 = P(C3) of C3, the line V1 corresponds to a point b ∈ P2

and the 2-dimensional subspace V2 corresponds to a 1-dimensional line ` in P2.

Thus, in this example we will interpret a �ag [g] ∈ GL3(C)/B as {b ∈ ` ⊂ P2},

a �point in a line in P2�, illustrated schematically as ub `
. We also let

a0 denote the point in P2 speci�ed by the span of e1 (the �rst standard basis

vector) and `0 the line in P2 speci�ed by span{e1, e2}. Then the �standard

�ag� ZO = eB clearly corresponds to {a0 ∈ `0 ⊂ P2} = ua0 `0
. Notice

also that since G/Pα1 = Gr(2, 3) and G/Pα2 = Gr(1, 3), the projection maps

from ZO are given by reading o� the �` coordinate� and the �b coordinate�,

respectively:

f : ZO → G/Pα1 , g : G/B → G/Pα1

{a0 ∈ `0 ⊂ P2} 7→ {`0 ⊂ P2} {b ∈ ` ⊂ P2} 7→ {` ⊂ P2}.

From this it is not di�cult to see that the �bre product Z(1) = ZO×G/Pα1 G/B

can be described as follows:

Z(1) =
{

(x, y) ∈ ZO ×G/B | x = {a0 ∈ `0 ⊂ P2}, y = {b ∈ `0 ⊂ P2}
}

= u ua0 `0
b

and in particular, Z(1) is the set of points in `0, hence is isomorphic to P1. For

the next step, we have by de�nition Z(1,2) = Z(1)×G/Pα2 G/B, where the maps

f and g are given by

f : Z(1) → G/Pα2 , g : G/B → G/Pα2

({a0 ∈ `0 ⊂ P2}, {b ∈ `0 ⊂ P2}) 7→ {b ⊂ P2} {a ∈ ` ⊂ P2} 7→ {a ⊂ P2}

where f is the composition of π : Z(1) → G/B with the natural projection

G/B → G/Pα2 . Therefore, at the next step of our construction we have that

Z(1,2) consists of certain pairs ((x, y), z) ∈ Z(1) ×G/B as follows:

Z(1,2) =
{

(x, y) = ({a0 ∈ `0 ⊂ P2}, {b ∈ `0 ⊂ P2}), z = {b ∈ ` ⊂ P2}
}

= u ua0 `0
b

` .
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Finally, we know that, by de�nition, Z(1,2,1) = Z(1,2)×G/Pα1 , where the maps

f and g are given by:

f : Z(1,2) → G/Pα1(
({a0 ∈ `0 ⊂ P2}, {b ∈ `0 ⊂ P2}), {b ∈ ` ⊂ P2}

)
7→ {` ⊂ P2},

g : G/B → G/Pα1

{a ∈ ˜̀⊂ P2} 7→ {˜̀⊂ P2}.

Therefore, the Bott-Samelson variety Z(1,2,1) can be described as

Z(1,2,1) = {
(
({a0 ∈ `0 ⊂ P2}, {b ∈ `0 ⊂ P2}), {b ∈ ` ⊂ P2}

)
, {a ∈ ` ⊂ P2}}

= u uua0 `0
b

`a .

2.2 A Coordinate System on ZI and its Associ-

ated Valuation

Let G = GLnC and I = (i1, . . . , i`) as in the previous section, and let ZI

denote the associated Bott-Samelson variety. We now describe a particular

coordinate system on ZI (following Kaveh [Kav15, §2.2]) and de�ne a valuation

on spaces of rational functions of ZI using these coordinates. This is the

valuation considered in the next two chapters.

Let {α1, . . . , α`} be the set of simple positive roots corresponding to I.

For each αi, let Fαi denote the corresponding Chevalley generator. Let U−αi =

{exp(tFαi) | t ∈ C} ⊆ GLnC. We consider the map

Φ : C` → U−αi1 × · · · × U
−
αi`
→ ZI

(t1, . . . , t`) 7→ [(exp(t1Fαi1 ), . . . , exp(t`Fαi` ))]. (2.7)
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It will be frequently useful to consider the composition of Φ with the projection

π : ZI → G/B, as de�ned in (2.2). It is straightforward to see that the

composition is given by:

π ◦ Φ : C` → U−αi1 × · · · × U
−
αi`
→ GLnC/B ∼= Fl(Cn)

(t1, . . . , t`) 7→ [(exp(t1Fαi1 ) · · · exp(t`Fαi` )]. (2.8)

Example 2.6. Let n = 3 and I = (1, 2, 1). Then

Fα1 = Fα3 =

0 0 0

1 0 0

0 0 0

 , Fα2 =

0 0 0

0 0 0

0 1 0

 ,

and

π(Φ(t1, t2, t3)) = π

1 0 0

t1 1 0

0 0 1

 ,

1 0 0

0 1 0

0 t2 1

 ,

1 0 0

t3 1 0

0 0 1


=

 1 0 0

t1 + t3 1 0

t2t3 t2 1

 .
The map Φ : C` → ZI gives coordinates on ZI near the point [e, e, . . . , e] ∈

ZI [Kav15, Proposition 2.2]. With respect to these coordinates, consider the

�ag of subvarieties

Y` = {t1 = . . . = t` = 0} ⊂ · · · ⊂ Y2 = {t1 = t2 = 0} ⊂ Y1 = {t1 = 0} ⊂ Y0 = ZI .

We know ZI is smooth and dimCZI = ` (see Theorem 2.3). Therefore, this

�ag is an admissible �ag, since dimCYi = ` − i and each Yi is nonsingular at

the point Y`. Moreover, t1, . . . , t` is a system of parameters about this �ag,

since tk |Yk−1
is a well-de�ned, not identically zero, rational function on Yk−1

and has a zero of �rst order on Yk.
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For the following, we focus on computations which are restricted to the

(open dense) a�ne coordinate chart on ZI given by the coordinate system

Φ above, with variables t1, . . . , t`. Recall that holomorphic sections of line

bundles may be represented by polynomials in the ti in this coordinate chart;

such identi�cations are described in the following sections. Thus we may

ask how the geometric (pre)valuation ν de�ned by the admissible �ag above

(following the method in Section 1.2) behaves on polynomials in the ti. The

lemma below shows that, in fact, ν corresponds to taking the lowest term with

respect to lexicographic order on Z` (cf. De�nition 1.3). This is in contrast to

Kaveh's choice in [Kav15], where he uses the highest term valuation.

Lemma 2.7. Given a polynomial f =
∑
aαt

α, where α = (a1, . . . , a`) ∈ Z`,

ν(f) = minlex

{
α ∈ Z` | aα 6= 0

}
.

Proof. By de�nition, ν(f) = (k1, . . . , k`), where k1 = ordY1(f), k2 =

ordY2

(
ft−k11

∣∣∣∣
Y1

)
, and so on (see §1.2). With respect to our coordinates, the

order of vanishing of f along Y1 = {t1 = 0} is precisely the lowest exponent

of t1 which occurs in the terms which appear in f . Denote this value by a1,

so k1 = a1. Next, the de�nition of ν states that we must divide f by tk11

and then restrict to Y1 = {t1 = 0}, where t1 is the parameter corresponding

to Y1. In our case this is ta11 . Note that in the notation of §1.2, t1 = y1.

Dividing f by ta11 and restricting to {t1 = 0} yields monomials in the variables

t2, . . . , t`, corresponding to those monomials appearing in f whose t1 exponent

is a1. (The other monomials must vanish once we restrict to {t1 = 0}.) At

the next step, the same reasoning shows that k2 is the lowest exponent of t2

which occurs in these remaining monomials (i.e. k2 = a2), and so on. Thus the

valuation ν picks out the exponent vector which is minimal in lexicographic

order.
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Example 2.8. The lowest term valuation, ν, maps the sections in H0(ZI , L)

to Z` as follows:

ν(t21t2t
3
3t5 + t1t

2
3 + t1t

2
4) = (1, 0, 0, 2, 0, . . . , 0),

ν(t1t
4
2t

2
3t4 + t42t3t5 + t3t6 + t1t6) = (0, 0, 1, 0, 0, 1, 0 . . . , 0).

It will be useful to set the following notation.

De�nition 2.9. The lowest term of a polynomial f =
∑
aαt

α is

LT (f) := aν(f)t
ν(f).

2.3 Line Bundles on Bott-Samelson Varieties

Let G = GLnC and I = (i1, . . . , i`). Let ZI be the corresponding Bott-

Samelson variety as in the previous sections. We will now de�ne certain line

bundles over ZI . Let {αi1 , . . . , αi`}, {si1 , . . . , si`} and {ωi1 , . . . , ωi`} be the

corresponding sequences of positive simple roots, simple re�ections, and fun-

damental weights, respectively. In type A, a fundamental weight ωj ∈ h∗ is

of the form ωj = L1 + . . . + Lj, where Lk is the linear functional de�ned by

Lk(h1, . . . , hn) := hk for (h1, . . . hn) ∈ h. Let m = (m1, . . . ,m`) ∈ N`. We now

de�ne the line bundle over ZI corresponding to m by a quotient construction

as follows:

O(m) = O(m1, . . . ,m`) := ZI ×B` C

where the action of B` on the product ZI × C is de�ned as

(b1, . . . , b`) · (p, k) := (b · p, em1ωi1 (b−1
1 ) · · · em`ωi` (b−1

` )k)

for p ∈ ZI and k ∈ C.

It turns out that any line bundle over a Bott-Samelson variety can be

written in this form.
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Theorem 2.10. [LT04, §3.1] Any line bundle over ZI is isomorphic to

O(m1, . . . ,m`), for some (m1, . . . ,m`) ∈ N`.

Remark 2.11. The notation above di�ers slightly from that in [LT04], where

the mi's are written in reverse order.

Another way to think about the line bundle O(m) is as follows. Consider

the Plücker bundle p∗(O(1)) over the Grassmannian Gr(ij, n) (De�nition 1.21)

and its pullback to ZI under the map µj : ZI → Gr(ij, n) (cf. equation (2.3)).

This pullback bundle is isomorphic to O(m̂j), where m̂j has a 1 in the j-th

position and 0's elsewhere. In other words:

O(m̂j) = O(0, . . . , 0, 1︸︷︷︸
j−th spot

, 0, . . . , 0) ∼= µ∗j ◦ p∗(O(1)).

More generally, if m̃j = (0, . . . , 0, mj︸︷︷︸
j−th spot

, 0, . . . , 0) for some positive integer

mj, then O(m̃j) ∼= µ∗j ◦ (p∗(O(1))⊗mj). Finally, for m = (m1, . . . ,m`), we have

O(m) ∼= O(m̃1)⊗ · · · ⊗O(m̃`). (2.9)

2.4 Standard Monomial Basis

In modern representation theory, combinatorial models have been used to con-

struct bases for representations. For example, the famous theory of crystal

bases and string polytopes gives a combinatorial model for constructing bases

of irreducible representations, Vλ, of connected reductive algebraic groups G

using directed graphs. Spaces of global sections of Bott-Samelson varieties,

H0(ZI ,O(m)), also appear in representation theory as so-called generalized

Demazure modules ; special cases of H0(ZI ,O(m)) yield the irreducible rep-

resentations Vλ mentioned above. The goal of Chapters 3 and 4 is to com-

pute Newton-Okounkov bodies of a Bott-Samelson variety ZI with respect
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to special cases of the line bundles O(m) introduced in the previous sec-

tion. Such a computation necessarily involves analyzing the vector spaces

H0(ZI ,O(m)). In the cases when H0(ZI ,O(m)) can be identi�ed with an ir-

reducible representation Vλ as above, Kaveh used the theory of crystal bases

to compute an associated Newton-Okounkov body [Kav15]. However, for the

cases we consider in this thesis (for which we do not necessarily have such

an isomorphism H0(ZI ,O(m)) ∼= Vλ), we use a di�erent basis, namely the

standard-monomial basis developed by Lakshmibai, Littelmann, and Magyar

[LM97, LM98, LLM02]. In this section, we summarize the explicit algorithm

for computing the standard monomial basis for H0(ZI ,O(m)) in the case of

GLnC, as described in [LM98].

2.4.1 De�nition of Standard Tableaux

Throughout this discussion, we letG = GLnC and �x a sequence I = (i1, . . . , i`)

and an integer vector m = (m1, . . . ,m`) ∈ N`. In order to construct the stan-

dard monomial basis of H0(ZI ,O(m)), we need some notation and de�nitions.

De�nition 2.12. A tableau is a sequence of integers τ = (r1, . . . rN) with

rj ∈ {1, 2, . . . , n} for N ≥ 0. We let O represent the empty tableau.

De�nition 2.13. The concatenation τ ? τ ′ of two tableaux τ = (r1, . . . rN)

and τ ′ = (r′1, . . . r
′
N), is de�ned as

τ ? τ ′ = (r1, . . . , rN , r
′
1, . . . , r

′
N).

We also de�ne O?τ = τ?O= τ for any tableau τ , and de�ne τ ?j := τ ? · · · ? τ

(i.e. a concatenation of j many copies of τ). For j = 0, we de�ne τ ?0 =O.

For τ a tableau and T a set of tableaux, we denote by τ ? T the set of tableaux
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obtained by concatenating each element of T with τ , i.e.

τ ? T := {τ ? σ | σ ∈ T}.

De�nition 2.14. A column of size j is a tableau κ = (r1, . . . , rj) such that

the entries are strictly increasing, i.e. 1 ≤ r1 < · · · < rj ≤ n. Let w̄i denote

the column (1, 2, . . . , i). Then w̄?ji = (1, 2, . . . i, . . . , 1, 2, . . . , i) (i.e. j copies of

w̄i).

De�nition 2.15. We de�ne a tableau of shape (I,m) to be the concatenation

of m1 columns of size i1, m2 columns of size i2, etc.:

τ = κ11 ? κ12 ? · · · ? κ1m1︸ ︷︷ ︸
m1 of size i1

? κ21 ? · · · ? κ2m2︸ ︷︷ ︸
m2 of size i2

? · · · ? κ`1 ? · · · ? κ`m`︸ ︷︷ ︸
m` of size i`

,

where each κkj is a column of size ik for each k and j. If mk = 0 for any k,

then there is the empty tableau O in the corresponding position of τ .

De�nition 2.16. For i ∈ {1, . . . , n− 1}, we now de�ne the lowering oper-

ator fi. The operator fi takes a tableau τ = (r1, . . . , rN) to either the formal

null symbol O or to a new tableau τ ′ = (r′1, . . . , r
′
N), by changing a single en-

try rj = i to r′j = i + 1 and leaving all other entries alone, according to the

following algorithm:

1. Ignore all entries of τ except those equal to i or i+ 1.

2. Considering the string consisting of i's and i + 1's, if an i in the string

is immediately followed by an i+ 1, then ignore that pair of entries.

3. Upon completing Step 2, if the new (sub)string is of the form

i+ 1, i+ 1, . . . , i+ 1, i, i, . . . , i

(i.e. no i + 1 appears to the right of any i), stop and proceed to Step 4.

Otherwise, return to and repeat Step 2.
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4. If the remaining (sub)string does not contain any i's, then return the

null symbol, i.e. fi(τ) =O. Otherwise, change the leftmost i to i + 1.

This new string (along with all other original entries of τ) is fi(τ).

Example 2.17. Below, we schematically illustrate the steps in the computa-

tion of fk2 (τ) for di�erent values of k, for τ = 124123123113221.

τ = 1 2 4 1 2 3 1 2 3 1 1 3 2 2 1

· 2 · · 2 3 · 2 3 · · 3 2 2 ·
· 2 · · · · · · · · · 3 2 2 ·
· · · · · · · · · · · · 2 2 ·

f2(τ) = 1 2 4 1 2 3 1 2 3 1 1 3 3 2 1

(f2)2(τ) = 1 2 4 1 2 3 1 2 3 1 1 3 3 3 1

(f2)3(τ) = O

Next, we de�ne the Demazure operator Λi which takes a tableau τ to a set

of tableaux. More precisely, we de�ne

Λi(τ) = {τ, fi(τ), f 2
i (τ), . . .} \ {O} if τ 6= O (2.10)

and Λi(O) = {O}. We also de�ne Λi acting on a set of tableaux T by applying

Λi to each element and taking the union:

Λi(T) :=
⋃
τ∈T

Λi(τ). (2.11)

Example 2.18. We apply Λ1 to the set of tableaux T = {123121, 13}:

Λ1(T ) = {123121, f1(123121), f 2
1 (123121), . . .} ∪ { 13, f1(13), f 2

1 (13), . . .} \ {O}
= {123121, 123122, 13, 23}.

De�nition 2.19. We call a tableau of shape (I,m) standard if it is an ele-

ment of the set

T (I,m) := Λi1(w̄
?m1
i1

? Λi2(w̄
?m2
i2

? · · ·Λi`(w̄
?m`
i`

) · · · )).
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In particular, the above de�nition gives an explicit algorithm for computing

T (I,m) by a sequence of Demazure operators and concatenation operators.

We illustrate this in the following explicit example.

Example 2.20. If I = (1, 2, 1) and m = (0, 1, 1), then the set of all standard

tableaux of shape (I,m) is produced as follows:

{O} 1?→ {1} Λ1→ {1, 2} 12?→ {121, 122} Λ2→ {121, 131, 122, 132, 133}
O?→ {121, 131, 122, 132, 133} Λ1→ {121, 131, 231, 232, 122, 132, 133, 233}.

2.4.2 The Standard Monomial Basis

We will now show how to associate an element of H0(ZI ,O(m)) to a standard

tableau.

Suppose we have a point in the Grassmannian represented by an n × k

matrix as follows:

x =


x11 · · · x1k

...
. . .

...

xn1 · · · xnk


 ∈ Gr(k, n) ∼= G/P (k).

Suppose κ = (r1, . . . , rk) is a column in the sense of De�nition 2.14. We

denote by Θκ(x) the homogeneous coordinate in the Plücker mapping pk of

Gr(k, n) (see §1.3, (1.3)) which corresponds to the k × k minor given by the

rows (r1, . . . , rk) in κ. Speci�cally,

Θκ(x) = detk×k

xr11 · · · xr1k
...

. . .
...

xrk1 · · · xrkk

 . (2.12)

Recalling that a basis of sections of the dual of the tautological bundle over

any projective space may be given by its homogeneous coordinates, we see that
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Θκ(x) may be viewed as an element of H0(Gr(k, n), p∗k(O(1))) for any column

κ. Similarly, given a tableau τ = κ11 ? · · · ? κ`m` of shape (I,m), let

Θτ :=
∏̀
j=1

mj∏
m=1

Θκjm(x(j)) ∈ H0(Gr(I), p∗(O(m))), (2.13)

where x(j) denotes the homogeneous coordinate on the j-th factor of Gr(I),

as de�ned in (2.6) and (2.4), and p∗(O(m)) denotes the Plücker bundle over

Gr(I), as de�ned in De�nition 1.21. Note that we use the product notation in

(2.13) to be consistent with the notation used in [LM98], but strictly speaking

we mean a tensor product of sections. By slight abuse of notation we also

denote by Θτ the pullback to ZI of the section Θτ via the map µI (see equa-

tion (2.5)). By construction, this new Θτ is a section of the bundle O(m)

in (2.9).

De�nition 2.21. If τ is a standard tableau in the sense of De�nition 2.19,

then we call Θτ a standard monomial.

We denote the set of standard monomials by

Θ(T (I,m)). (2.14)

The following theorem explains why standard monomials are useful in the

study of generalized Demazure modules.

Theorem 2.22 ([LM98]). The set of standard monomials of shape (I,m)

forms a basis for the space of sections H0(ZI ,O(m)).

We close the section with some concrete computations.

Example 2.23. Let I = (1, 2, 1) and m = (0, 1, 1). In what follows, we

describe the basis of standard monomials Θ(T (I,m)) concretely as polyno-

mials in the coordinates t1, t2, t3 (note ` = 3 in this case) on the coordinate
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neighborhood of ZI as constructed in Section 2.2, where we take

Φ(t1, t2, t3) =

1 0 0

t1 1 0

0 0 1

 ,

1 0 0

0 1 0

0 t2 1

 ,

1 0 0

t3 1 0

0 0 1

 ∈ ZI .
The composition with µI then yields

µI(Φ(t1, t2, t3)) =

1

t1
0

,
1 0

t1 1

0 t2

,
 1

t1 + t3
t2t3

 ∈ Gr(1)×Gr(2)×Gr(1).

Here and in all of the discussions in the next chapter, it is implicit that we

have trivialized the line bundle O(m) over this open neighborhood using as

a base section the standard monomial corresponding to the standard tableau

w̄?m1
i1

? w̄?m2
i2

? · · · ? w̄?m`i`
, which in the special case under consideration is

12 ? 1 = 121 (since m1 = 0,m2 = 1 and m3 = 1), i.e. we view each section as

a rational function by dividing by the base section Θ121 = 1. From Example

2.20 we know the set of all standard tableaux of shape (I,m) is given by

{121, 131, 231, 232, 122, 132, 133, 233}. We can now explicitly compute Θ121 =

Θ12x
(2)Θ1x

(3) = 1, Θ131 = t2, Θ231 = t1t2, Θ232 = t1t2(t1 + t3), Θ122 = t1 + t3,

Θ132 = t2(t1 + t3), Θ133 = t2(t2t3), and Θ233 = t1t2(t2t3). By Theorem 2.22,

these 8 polynomials describe the restrictions to this coordinate chart of a basis

for the space of sections H0(Z(1,2,1),O(0, 1, 1)).
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Chapter 3

Injectivity of ν on the Standard

Monomial Basis

We will show in this chapter that our lowest term valuation ν (§2.2) is injective

on the standard monomial basis Θ(T (I,m)) for I = (1, 2, . . . , n−1, 1, 2, . . . , n−

2, . . . , 1, 2, 1) ∈ N` and line bundlesO(m) withm = (m1,m2, . . . ,m2n−3, 0, . . . , 0) ∈

N`. In other words, distinct basis elements map under ν to distinct values in

Z`. Since ν has one-dimensional leaves, this fact will help us compute the

Newton-Okounkov body ∆(ZI ,O(m), ν) in Chapter 4.

This chapter is technical and purely combinatorial. The arguments rely

heavily on the structure of a standard tableau τ ∈ T (I,m), which by de�nition

is produced by successive application of concatenation operators and Demazure

operators.
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3.1 Notation

We �rst establish some notation. Recall that a tableau of shape (I,m) has the

form

τ = κ11 ? κ12 ? · · · ? κ1m1 ? κ21 ? · · · ? κ2m2 ? · · · ? κ`1 ? · · · ? κ`m` ,

where each κjs is a column of size ij for each j and s (see De�nition 2.15).

The following example illustrates this de�nition.

Example 3.1. If I = (1, 2, 1) and m = (1, 2, 2), then a tableau, τ , of shape

(I,m) has the form τ = κ11 ? κ21 ? κ22 ? κ31 ? κ32, where κ11 has length i1 = 1,

κ21 and κ22 each have length i2 = 2, and κ31 and κ32 each have length i3 = 1.

Note there is only one word κ11 with �rst index equal to 1 since m1 = 1, two

words κ21 and κ22 with �rst index equal to 2 since m2 = 2, and two words κ31

and κ32 with �rst index equal to 3 since m3 = 2. More speci�cally, an example

of a τ of shape (I,m) is 1 ? 13 ? 12 ? 2 ? 1 where κ11 = 1, κ21 = 13, κ22 = 12,

κ31 = 2 and κ32 = 1.

In order to refer to certain parts of τ , we make the following de�nition.

De�nition 3.2. Let I = (i1, . . . , i`), m = (m1, . . . ,m`). Let τ be a standard

tableau, τ ∈ T (I,m). Fix j ∈ {1, . . . , `}. We de�ne the j-sector, denoted

[Mj], to be the subsequence of τ consisting of the κjs, for 1 ≤ s ≤ mj, i.e.

[Mj] consists of the concatenation of the words κjs with �rst index equal to

j. More precisely, [Mj] := κj1 ? κj2 ? · · · ? κjmj . Intuitively, the j-sector is

the part of the tableau τ corresponding to the j-th component ij in the word

I = (i1, . . . , i`).

By de�nition of the j-sector, we may write τ as a concatenation of the

[Mj]'s:

τ = [M1] ? · · · ? [M`].
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Example 3.3. In the setting of Example 3.1, τ = 1 ? 13 ? 12 ? 2 ? 1 can be

decomposed as [M1]?[M2]?[M3], where [M1] = κ11 = 1, [M2] = κ21?κ22 = 1312

and [M3] = κ31 ? κ32 = 21.

Remark 3.4. For notational convenience, we will sometimes drop the ? con-

catenation notation, and simply right the concatenation of two sectors [Mi]

and [Mj] as [Mi][Mj].

In the arguments below, we always use a speci�c choice of sequence I which

depends on a positive integer n and is de�ned as follows.

De�nition 3.5. Fix a positive integer n. We de�ne a sequence I(n) of length

` = n(n−1)
2

to be

I(n) = (1, 2, . . . , n− 1, 1, 2, . . . , n− 2, . . . , 1, 2, 1) = w̄n−1 ? w̄n−2 ? · · · ? w̄2 ? w̄1.

(3.1)

It may be useful for the reader to remember that the sequence I(n) corre-

sponds to the reduced word decomposition

(s1s2s3 · · · sn−1)(s1s2 · · · sn−2) · · · (s1s2)(s1) (3.2)

of the longest element, w0, in the Weyl group Sn.

Thus far in our discussion, the word I and the vector m have had indexing

set {1, 2, . . . , `}, ordered via the usual total ordering on N. When working with

the word I(n) = (1, 2, . . . , n − 1, 1, 2, . . . , n − 2, . . .) as above, for notational

purposes, it will be convenient to allow other �nite totally ordered sets as

indexing sets. In particular, let

S := {(a, b) ∈ N× N | 1 ≤ a ≤ n− 1, 1 ≤ b ≤ n− a},
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and equip S with lexicographic order. Thus, listed in increasing order with

respect to this total order, we have

S = {(1, 1), (1, 2), . . . , (1, n− 1), (2, 1), (2, 2), . . . , (2, n− 2), . . . ,

(n− 2, 1), (n− 2, 2), (n− 1, 1)}. (3.3)

Note that |S| = ` = n(n−1)
2

. De�ne i(a,b) := b. Then I(n) is the word I(n) =(
i(a,b)

)
(a,b)∈S where S is listed in increasing order with respect to lexicographic

order. Similarly, the vector (m(a,b))(a,b)∈S can be de�ned with indexing set S,

and for (a, b) ∈ S, the (a, b)-sector of a standard tableau τ of shape (I(n),m)

is the concatenation

[Ma,b] := κ(a,b),1 ? κ(a,b),2 ? · · · ? κ(a,b),m(a,b)
.

In the injectivity results below, we will be concerned with certain groups

of sectors, motivating the following de�nition.

De�nition 3.6. Let S and I(n) be as above. Let m = (m(a,b))(a,b)∈S ∈ N`.

Suppose τ is a standard tableau of shape (I(n),m). We de�ne the k-chain

of τ to be the concatenation of the (k, j)-sectors for 1 ≤ j ≤ n − k, i.e.

[Mk,1] ? [Mk,2] ? · · · ? [Mk,n−k].

Intuitively, the k-chain of τ is the part which corresponds to the segment

(s1s2 · · · sn−k) in the reduced word decomposition (3.2) above, so for example

the 1-chain corresponds to the �rst segment (s1s2 · · · sn−1), the 2-chain to the

second segment (s1s2 · · · sn−2), etc.

Remark 3.7. In the proofs in the sections that follow, we in fact only use the

1-chain and the 2-chain of a tableau τ .
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3.2 Properties of Lowering Operators

The purpose of this section is to record some observations, to be used in the

arguments below, which relate the behaviour of the lowering operators fi of

De�nition 2.16 with the behaviour of certain projection operators which we

de�ne below.

Recall that a general tableau as in De�nition 2.12 is simply a sequence of

integers τ = (r1, . . . , rN) for some non-negative integer N . For any sequence

of positive integers a1, . . . , ak with
∑k

j=1 aj = N , we can naturally break up τ

into �pieces� of lengths speci�ed by the aj, i.e.

τ = (r1, r2, . . . , rN) = (r1, . . . , ra1)︸ ︷︷ ︸
a1 entries

? (ra1+1, . . . , ra1+a2)︸ ︷︷ ︸
a2 entries

? · · ·?(r∑k−1
j=1 aj+1, . . . , rN)︸ ︷︷ ︸

ak entries

and we may evidently de�ne projections from the set of tableaux of length N

to the set of tableaux of length aj for any j by

τ = (r1, r2, . . . , rN) 7→ (ra1+···+aj−1+1, . . . , ra1+...+aj)︸ ︷︷ ︸
aj entries

.

More speci�cally, we will be interested in looking at projections to certain

j-sectors and k-chains as in De�nitions 3.2 and 3.6. As a special case of the

above discussion, observe that for I = (i1, i2, . . . , i`) andm = (m1,m2, . . . ,m`),

a tableau of shape (I,m) as in De�nition 2.15

τ = κ11 ? κ12 ? · · · ? κ1m1 ? κ21 ? · · · ? κ2m2 ? · · · ? κ`1 ? · · · ? κ`m` = [M1] ? · · · [M`]

can be projected to any of the κjs's, [Mj]'s, or concatenations thereof. Thus

for instance the projection

τ 7→ κjs (3.4)

yields a projection from the set of tableaux of shape (I,m) to the set of

tableaux of length ij, which we note can also be viewed as the set of tableaux
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of shape (I,m) where I = (i1, . . . , i`) and m′ = (0, . . . , 0, 1, 0, . . . , 0), where

the 1 is in the j-th coordinate. Similarly, the projection

τ 7→ [Mj] (3.5)

is a projection to the set of tableaux of shape (I,m′′) where I = (i1, . . . , i`),

m′′ = (0, . . . , 0,mj, 0, . . . , 0), and the projection

τ 7→ [M1][M2] · · · [Mj] (3.6)

is a projection to the set of tableaux of shape (I,m′′′) where I = (i1, . . . , i`)

and m′′′ = (m1,m2, . . . ,mj, 0, . . . , 0).

As we have just seen, projection from a tableau to a smaller tableau is quite

straightforward. For our later arguments however, we in fact wish to restrict

attention to the set of standard tableaux of a given shape. Given the discussion

of the projections (3.4), (3.5), and (3.6) above, it becomes natural to ask

whether the projection of a standard tableau τ ∈ T (I,m) is also standard, i.e.

for example, if τ ∈ T (I,m) is standard, then is it true that [Mj] is standard,

i.e., is it an element in T (I, (0, . . . , 0,mj, 0, . . . , 0))?

To address this question, the following lemma will be useful. Here fi is the

lowering operator de�ned in De�nition 2.16.

Lemma 3.8. Let τ and τ ′ be tableaux with entries in {1, . . . , n}. Then one of

the following holds:

1. fi(τ ? τ ′) = fi(τ) ? τ ′, fi(τ) 6=O

2. fi(τ ? τ ′) = τ ? fi(τ
′), fi(τ ′) 6=O

3. fi(τ ? τ ′) =O.
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Proof. To see this, we go back to the de�nition of the lowering operator fi in

De�nition 2.16, which is given by an explicit algorithm which involves �can-

celling� (ignoring) a pair (i, i+ 1) in the string when the i+ 1 appears imme-

diately to the right of the i.

Although the algorithm stated in De�nition 2.16 speci�es a certain order

in which to make these cancellations, it is useful to note that the result is in

fact independent of this ordering, in the following sense: we can replace the

instructions in Step 2 of the algorithm of De�nition 2.16 with the instructions

�Considering the string consisting only of i's and i+ 1's, if there exists an i in

the string immediately followed by an i+ 1, then choose one such i, and then

ignore that pair (i, i+1) of entries.� It is not hard to see that the �nal result of

the algorithm is independent of the choices made in a repeated implementation

of this altered Step 2, so fi(σ) for any σ is well-de�ned by such an algorithm.

In particular, in applying the algorithm to a concatenation τ ? τ ′, we may �rst

apply the algorithm separately to both τ and τ ′ and obtain, as an intermediate

step, strings of the form i + 1, i + 1, . . . , i + 1, i, i, . . . , i (as in Step 3 of the

algorithm) for each τ and τ ′, resulting in the string (for τ ? τ ′)

i+ 1, i+ 1, . . . , i+ 1, i, i, . . . , i︸ ︷︷ ︸
obtained from τ,

r= number of i+1's,
s= number of i's appearing

i+ 1, i+ 1, . . . , i+ 1, i, i, . . . , i︸ ︷︷ ︸
obtained from τ ′,

t= number of i+1's,
u= number of i's appearing

. (3.7)

In order to complete the algorithm for τ ?τ ′, we now need to �cancel� the pairs

of i's (occurring in the string from τ) with i+ 1's (occurring in the string from

τ ′). There are three possible cases.

Case 1: u = 0 and t ≥ s. In this case, all of the i's appearing in the string

coming from τ cancel with the i+ 1's in the string coming from τ ′, and there

are no i's in the �nal string from τ ? τ ′. Thus, by Step 4 in the algorithm of

De�nition 2.16, fi(τ ? τ
′) = O in this case.
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Case 2: u > 0 and t ≥ s. As in the case above, in this case all of the i's

in the string from τ cancel with the i + 1's in the string from τ ′. But u > 0,

so the �nal string from τ ? τ ′ is of the form i+ 1, i+ 1, . . . , i+ 1, i, . . . , i where

the leftmost i is an entry that is coming from τ ′, not τ . Thus the entries

in τ remain unchanged. Moreover, this leftmost i (which gets changed to an

i + 1) is the same as the i that gets changed when computing fi(τ
′). Thus

fi(τ ? τ
′) = τ ? fi(τ

′) in this case.

Case 3: t < s. In this case, not all i's in the string from τ cancel with

i + 1's in the string from τ ′, hence the �nal string for τ ? τ ′ has a leftmost i

which was originally from τ . Since the elements of τ ′ remained unchanged, we

conclude fi(τ ? τ
′) = fi(τ) ? τ ′.

The following is immediate from the above lemma.

Corollary 3.9. Let τ1 and τ2 be tableaux with entries in {1, . . . , n}. Then for

a �xed i ∈ {1, . . . , n} and a non-negative integer a ∈ N we have that either

fai (τ1?τ2) =O or there exists a1, a2 ∈ N with a1+a2 = a such that the following

are true:

• fai (τ1 ? τ2) = fa1i (τ1) ? fa2i (τ2)

• fa1i (τ1) 6=O

• fa2i (τ2) 6=O.

As we already mentioned, the above results will help us analyze certain

subtableaux of a standard tableau. We now re�ne our understanding further

by analyzing the relationship between projections and Demazure operators.

Speci�cally, we show below that certain types of �projections to subtableaux

preserve standardness�, in a sense we make precise below.
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For this discussion we �x n > 0 and N > 0 positive integers. Consider the

set of tableaux τ = (r1, r2, . . . , rN) of lengthN with entries in {1, 2, . . . , n}. Let

j, k be positive integers with 1 ≤ j ≤ k ≤ N and denote by pr the projection

to the subtableau given by reading o� consecutive entries in τ starting at the

j-th and ending at the k-th entry, i.e.,

pr(τ = (r1, . . . , rN)) = (rj, rj+1, . . . , rk). (3.8)

We may also naturally extend the de�nition of pr to sets of tableaux of

length N by applying pr to each element of the set, e.g. if S = {τ1, τ2, . . . , τs}

is a set of tableaux of length N , then

pr(S) := {pr(τ1), pr(τ2), . . . , pr(τs)}. (3.9)

Recall that Λi(τ) = {τ, fi(τ), f 2
i (τ), . . .} \ {O} is the Demazure operator

taking a tableau τ to a set of tableaux (see De�nition 2.10). We have the

following.

Lemma 3.10. Let τ be a tableau of length N > 0 with entries in {1, 2, . . . , n}.

Let j, k be positive integers such that 1 ≤ j ≤ k ≤ N and let pr denote the

projection operator in (3.8) and (3.9). Let i ∈ {1, 2, . . . , n} and let Λi denote

the corresponding Demazure operator. Then

pr(Λi(τ)) ⊆ Λi(pr(τ)).

Proof. An element of Λi(τ) is of the form fai (τ) for some integer a ≥ 0 by

de�nition of Λi (here f
a
i (τ) 6=O). By de�nition of pr, we may write

τ = τ ′ ? pr(τ) ? τ ′′

for τ ′ = (r1, . . . , rj−1) and τ ′′ = (rk+1, . . . , rN). By Corollary 3.9 applied to

τ1 = τ ′ and τ2 = pr(τ) ? τ ′′ and since fai (τ) 6= O by assumption, there must
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exist a1, a2 ∈ N with a1 + a2 = a with fai (τ) = fa1i (τ ′) ? fa2i (pr(τ) ? τ ′′) where

fa2i (pr(τ) ? τ ′′) 6= O. Applying Corollary 3.9 again to τ1 = pr(τ) and τ2 = τ ′′,

there must exist b1, b2 ∈ N with b1 + b2 = a2 and with fa2i (pr(τ) ? τ ′′) =

f b1i (pr(τ)) ? f b2i (τ ′′) and f b1i (pr(τ)) 6= O. But then

fai (τ) = fa1i (τ ′) ? f b1i (pr(τ)) ? f b2i (τ ′′)

and pr(fai (τ)) = f b1i (pr(τ)) ∈ Λi(pr(τ)), as desired.

We next analyze how the Demazure operators and certain projection oper-

ators interact with concatenation operators. Since we deal only with a special

type of projection operator, it will be useful to introduce some notation. We

used the notation pr above for a generic projection to a subtableau of consecu-

tive entries. In the arguments below we project to subtableaux corresponding

to certain subsets of columns within each sector. Let I = I(n) as in De�ni-

tion 3.5 and let m = (m1,m2, . . . ,m`) ∈ N` where ` = n(n−1)
2

. Recall that a

tableau τ of shape (I,m) as in De�nition 2.15 is a concatenation ofm1 columns

of size i1, m2 columns of size i2, etc., so that

τ = κ11 ? κ12 ? · · · ? κ1m1︸ ︷︷ ︸
m1 of size i1

? κ21 ? · · · ? κ2m2︸ ︷︷ ︸
m2 of size i2

? · · · ? κ`1 ? · · · ? κ`m`︸ ︷︷ ︸
m` of size i`

,

where each κjs is a column of size ij for each j and s. Recall from De�nition 3.2

that the j-sector [Mj] of τ consists of the concatenation of the columns corre-

sponding to the j-th component ij in the word I, so [Mj] := κj1?κj2?· · ·?κjmj .

For each j with 1 ≤ j ≤ `, let Sj denote a consecutive subset of the indices

{1, 2, . . . ,mj} (indexing the columns in the j-sector), i.e. Sj is of the form

{p, p + 1, . . . , q} for some p, q with integers 1 ≤ p ≤ q ≤ mj. Let prS1,S2,...,S`

denote the projection operator which takes the subtableau of τ given by read-

ing o� (in sequence) exactly the columns of each j-sector which are contained
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in Sj. So for example if Sj = {1, 2, . . . ,mj} for all j ≤ k and Sj = ∅ for

all j > k then prS1,...,S`
would correspond to reading o� the �rst k sectors of

τ . In the rest of this section we always take sets Sj with the property that

prS1,...,S`
is a projection of the form described in (3.8), namely, that it reads

o� a subtableau of consecutive entries in τ .

Example 3.11. For example, let I = (1, 2, 1) and m = (2, 6, 1). Consider the

tableau τ = 21 ? 232323131312 ? 1. Let S1 = {2}, S2 = {1, 2, 3, 4} and S3 = ∅.

Then prS1,S2,S3
= 1 ? 23232313.

Before stating the next lemma we must set some conventions. First suppose

I = (i1, . . . , i`) and m = (m1, . . . ,m`) are �xed. It follows from the de�nition

that the concatenation operator w̄?m1
i1

sends tableaux of shape

((i2, . . . , i`), (m2, . . . ,m`)) to those of shape (I,m). Now in addition suppose

that for each k with 1 ≤ k ≤ `, we have a subset Sk ⊆ {1, 2, . . . ,mk} such

that prS1,...,S`
is a projection of tableaux of shape (I,m) to subtableaux as in

the previous discussion. We may also use the same subsets Sk for 2 ≤ k ≤ `

to de�ne a projection of tableaux of shape ((i2, . . . , i`), (m2, . . . ,m`)). In the

lemma below we denote this projection by prS2,...,S`
. With these conventions

we can now state the following, which is immediate from the de�nitions.

Lemma 3.12. Let I = (i1, . . . , i`) and m = (m1, . . . ,m`) and S1, S2, . . . , S` be

as above. Let τ be a tableau of shape ((i2, . . . , i`), (m2, . . . ,m`)). Then

prS1,S2,...,S`
(w̄?m1

i1
? τ) = w̄

?|S1|
i1

? prS2,...,S`
(τ).

We now use Lemmas 3.10 and 3.12 to show that projections of the form

prS1,...,S`
(where again we assume that this projection reads o� consecutive

entries in τ) �preserves standard tableaux�. In the statement of the lemma
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below we use that such an operator prS1,...,S`
sends a tableau of shape (I,m)

to a tableau of shape (I, (|S1|, |S2|, . . . , |S`|)).

Lemma 3.13. Let I = (i1, . . . , i`) and m = (m1, . . . ,m`) and S1, S2, . . . , S` be

as above. Then the projection operator prS1,S2,...,S`
maps T (I,m) to

T (I, (|S1|, |S2|, . . . , |S`|)), i.e. if τ is a standard tableau of shape (I,m), then

prS1,...,S`
(τ) is a standard tableau of shape (I, (|S1|, |S2|, . . . , |S`|)).

Proof. Recall that T (I,m) is de�ned by a sequence of Demazure operators

and concatenation operators

T (I,m) := Λi1(w̄
?m1
i1

? Λi2(w̄
?m2
i2

? · · ·Λi`(w̄
?m`
i`

) · · · )).

We wish to apply prS1,...,S`
to the set T (I,m) and see that it is contained in

T (I, (|S1|, |S2|, . . . , |S`|)). We have

prS1,...,S`
(T (I,m)) = prS1,...,S`

(Λi1(w̄
?m1
i1

? Λi2(w̄
?m2
i2

? · · ·Λi`(w̄
?m`
i`

) · · · )))

⊆ Λi1(prS1,...,S`
(w̄?m1

i1
? Λi2(w̄

?m2
i2

? · · ·Λi`(w̄
?m`
i`

) · · · ))) by Lemma 3.10

= Λi1w̄
?|S1|
i1

prS2,...,S`
(Λi2((w̄

?m2
i2

? · · ·Λi`(w̄
?m`
i`

) · · · ))) by Lemma 3.12.

Repeating the above argument for prS2,...,S`
relative to prS3,...,S`

, and so on, it

is straightforward to see that

prS1,...,S`
(T (I,m)) ⊆ Λi1(w̄

?|S1|
i1

? Λi2(w̄
?|S2|
i2

? · · ·Λi`(w̄
?|S`|
i`

) · · · ))

= T (I, (|S1|, |S2|, . . . , |S`|))

as desired.

In the later arguments in this section, we only use Lemma 3.13 for the

cases which lead to a projection of τ to its 1-chain and to its 2-chain. More
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speci�cally, using now the indexing set S = {(a, b)} as in Section 3.1, these

correspond to the choices

S1,p = {1, 2, . . . ,m(1,p)} for 1 ≤ p ≤ n− 1 and Sa,b = ∅ for a 6= 1 (3.10)

and

S2,p = {1, 2, . . . ,m(2,p)} for 1 ≤ p ≤ n− 2 and Sa,b = ∅ for a 6= 2 (3.11)

respectively. We denote by pr1−chain (respectively pr2−chain) the projection

corresponding to the choices of S(a,b) as in (3.10) (respectively (3.11)).

We record the following Corollary.

Corollary 3.14. Let I = I(n) and m = (m(a,b))(a,b)∈S ∈ N`.

(a) Let pr1−chain denote, as above, the projection of a tableau τ of shape

(I(n),m) to its 1-chain, i.e.,

pr1−chain(τ) = [M1,1][M1,2] · · · [M1,n−1].

If τ is standard, then pr1−chain(τ) is standard of shape

(I(n), (m(1,1), . . . ,m(1,n−1), 0, . . . , 0)). Thus there is a well-de�ned map

pr1−chain : T (I(n),m)→ T (I(n), (m(1,1), . . . ,m(1,n−1), , 0, . . . , 0)).

(b) Let pr2−chain denote, as above, the projection of a tableau τ of shape

(I(n),m) to its 2-chain, i.e.,

pr2−chain(τ) = [M2,1][M2,2] · · · [M2,n−1].

If τ is standard, then pr2−chain(τ) is standard of shape

(I(n), (0, . . . , 0,m(2,1), . . . ,m(2,n−2), 0, . . . , 0)). Thus there is a well-de�ned

map

pr2−chain : T (I(n),m)→ T (I(n), (0, . . . , 0,m(2,1), . . . ,m(2,n−1), 0, . . . , 0)).
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Example 3.15. Let I = I(3) = (1, 2, 1) and m = (0, 1, 1). From Example

2.20 we know T (I,m) = {121, 131, 231, 232, 122, 132, 133, 233}. For τ = 132,

[M1] = ∅, [M2] = 13, and [M3] = 2. Therefore, pr1−chain(τ) = 13 and

pr2−chain(τ) = 2. We can compute the standard monomials Θpr1−chain(τ) = t2

and Θpr2−chain(τ) = t1 + t3, using the coordinates on Gr(1) × Gr(2) × Gr(1)

from Example 2.23.

3.3 Injectivity for the Case n = 3

In this section, we explore the case where n = 3 and I = I(3), so throughout

this section we �x I = (1, 2, 1) and m = (m1,m2,m3). Although we prove the

general result in the next section (Proposition 3.21), the concrete computations

for this special case serve as a warm-up for the general case.

We �rst recall the algorithm which produces the set of standard tableaux

of shape (I(3),m) = ((1, 2, 1), (m1,m2,m3)). By De�nition 2.19,

T ((1, 2, 1), (m1,m2,m3)) is the set

Λ1(1?m1 ? Λ2((12)?m2 ? Λ1(1?m3))) (3.12)

where for any mi ∈ N, 1?mi denotes the word 11 · · · 1 with mi copies of 1, and

(12)?mi denotes the word 1212 · · · 12 with mi copies of 12. To describe this set

explicitly we proceed step by step. First, from the de�nition of the Demazure

operator Λ1, we have

Λ1(1?m3) = {11 · · · 1︸ ︷︷ ︸
m3 times

, f1(11 · · · 1), f 2
1 (11 · · · 1), . . .} \ {O}.

From the de�nition of the operator f1, which successively changes certain 1's
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into 2's, it is not di�cult to see that

Λ1(1?m3) = {τ0 := 1 · · · 1︸ ︷︷ ︸
m3 copies

of 1

, τ1 := 2 1 · · · 1︸ ︷︷ ︸
m3−1 copies

of 1

, τ2 := 22 1 · · · 1︸ ︷︷ ︸
m3−2 copies

of 1

, . . . , τm3 := 2 · · · 2︸ ︷︷ ︸
m3 copies

of 2

},

where we use τk to denote the word with k 2's on the left and m3 − k 1's on

the right.

Next we must apply the Demazure operator Λ2 to the set

(12)?m2 ? {τ0, . . . , τm3} = {(12)?m2 ? τ0, (12)?m2 ? τ1, . . . , (12)?m2 ? τm3}

= {1212 · · · 12︸ ︷︷ ︸
m2 copies

of 12

11 · · · 1︸ ︷︷ ︸
m3 copies

of 1

, 1212 · · · 12︸ ︷︷ ︸
m2 copies

of 12

2 1 · · · 1︸ ︷︷ ︸
m3−1 copies

of 1

, . . . , 1212 · · · 12︸ ︷︷ ︸
m2 copies

of 12

22 · · · 2︸ ︷︷ ︸
m3 copies

of 2

}.

We analyze each (12)?m2 ? τk separately. Let k ∈ {0, 1, . . . ,m3}. Then by

de�nition of Demazure operators, Λ2 successively changes 2's to 3's starting

from the left, so we have

Λ2((12)?m2 ? τk) = Λ2(1212 · · · 12︸ ︷︷ ︸
m2 copies

of 12

22 · · · 2︸ ︷︷ ︸
k copies
of 2

1 · · · 1︸ ︷︷ ︸
m3−k copies

of 1

)

= {1212 · · · 12︸ ︷︷ ︸
m2 copies

of 12

2 · · · 2︸ ︷︷ ︸
k copies
of 2

1 · · · 1︸ ︷︷ ︸
m3−k copies

of 1

, 13 12 · · · 12︸ ︷︷ ︸
m2−1 copies

of 12

2 · · · 2︸ ︷︷ ︸
k copies
of 2

1 · · · 1︸ ︷︷ ︸
m3−k copies

of 1

,

1313 12 · · · 12︸ ︷︷ ︸
m2−2 copies

of 12

2 · · · 2︸ ︷︷ ︸
k copies
of 2

1 · · · 1︸ ︷︷ ︸
m3−k copies

of 1

, . . . , 1313 · · · 13︸ ︷︷ ︸
m2 copies

of 13

2 · · · 2︸ ︷︷ ︸
k copies

of 2

1 · · · 1︸ ︷︷ ︸
m3−k copies

of 1

,

1313 · · · 13︸ ︷︷ ︸
m2 copies

of 13

3 2 · · · 2︸ ︷︷ ︸
k−1 copies

of 2

1 · · · 1︸ ︷︷ ︸
m3−k copies

of 1

, 1313 · · · 13︸ ︷︷ ︸
m2 copies

of 13

33 2 · · · 2︸ ︷︷ ︸
k−2 copies

of 2

1 · · · 1︸ ︷︷ ︸
m3−k copies

of 1

,

. . . , 1313 · · · 13︸ ︷︷ ︸
m2 copies

of 13

3 · · · 3︸ ︷︷ ︸
k copies
of 3

1 · · · 1︸ ︷︷ ︸
m3−k copies

of 1

}, (3.13)

so there arem2+k+1 distinct words contained in Λ2((12)?m2?τk) corresponding

to the number (ranging between 0 and m2 + k) of left-most 2's that have been

changed to 3's. The set Λ2((12)?m2 ? Λ1(1?m3)) = Λ2((12)?m2 ? {τ0, . . . , τm3})
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is then obtained by taking the union over all k ∈ {0, 1, . . . ,m3} of the sets

Λ2((12)?m2 ? τk) as described in (3.13).

Finally, the concatenation with 1?m1 and the Demazure operator Λ1 adds

a word with all 1's and changes certain 1's to 2's. We note that both of these

operations do not alter the 3's which are present in the word.

The discussion so far leads to the following.

Lemma 3.16. Let τ ∈ T (I(3) = (1, 2, 1),m = (m1,m2,m3)). Let [M2] and

[M3] denote the 2-sector and 3-sector of τ , respectively. If 12 appears as a

subword of [M2], then 3 does not appear as a subword of [M3].

Proof. As already observed above, the last step in producing the set of stan-

dard tableaux (3.12) is the concatenation with 1?m1 and the Demazure operator

Λ1, but these do not a�ect the presence or absence of 3's in the 3-sector of [M3].

Moreover, for τ ∈ T (I(3),m), by de�nition (3.12) there must exist a ∈ N and

τ ′ ∈ Λ2((12)?m2 ? Λ1(1?m3)) such that τ = fa1 (1?m1 ? τ ′), and the 2-sector [M2]

of τ ′ corresponds to the (location of) the subwords

1313 · · · 13︸ ︷︷ ︸
s copies
of 13

12 · · · 12︸ ︷︷ ︸
m2−s copies

of 12

(3.14)

for s ∈ {0, . . . ,m2} in the words explicitly listed in (3.13).

In particular, it follows from the de�nition of f1 (which changes 1's to 2's)

that if a 12 appears as a subword in the 2-sector [M2] of τ , then a 12 had

to have already appeared in the subword (3.14) of τ ′. Therefore, in order to

prove the claim of the lemma it su�ces to prove that for any k ∈ {0, 1, . . . ,m3}

and any word τ ′ in Λ2((12)?m2 ? τk) as listed in (3.13), if a 12 appears in the

subword of the form (3.14), then a 3 does not appear in the last m3 places

of τ ′ (corresponding to the 3-sector [M3] of τ). This can be seen directly by

examining the words listed in (3.13).
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Remark 3.17. Intuitively, the lemma can be explained by noting that because

Λ2 changes 2's to 3's �starting from the left�, if there are some 12's remaining

in the left part of a word, then the 2's in the right part of the word cannot

have already been changed to 3's.

We also have the following.

Lemma 3.18. Let τ ∈ T (I(3) = (1, 2, 1),m = (m1,m2,m3)). Let [M1] and

[M2] denote the 1-sector and 2-sector of τ , respectively. Then if 23 appears as

a subword of [M2] then 1 does not appear in [M1], and in particular [M1] =

222 · · · 2 (m1 times).

Proof. By de�nition, a standard tableau τ ∈ T (I(3),m) is in the set

Λ1(11 · · · 1︸ ︷︷ ︸
m1 times

?Λ2(1212 · · · 12︸ ︷︷ ︸
m2 times

?Λ3(11 · · · 1︸ ︷︷ ︸
m3 times

))).

In particular, the 2-sector of a standard tableau τ is of the form

pr(fα1
1 (11 · · · 1 ? fα2

2 (12 · · · 12))

for some α1, α2 ∈ N, where pr denotes the projection to the last 2m2 entries

in this word of length m1 + 2m2. Since f2 successively raises a 2 to a 3,

starting from the left, it follows that fα2
2 (12 · · · 12) = 13 · · · 13︸ ︷︷ ︸

α2 times

12 · · · 12︸ ︷︷ ︸
m2−α2 times

, i.e.

the leftmost α2 copies of 12 get changed to 13's.

The next steps are a concatenation with 11 · · · 1 = 1?m1 and an application

of fα1
1 to 11 · · · 1 ? fα2

2 (12 · · · 12) = 11 · · · 1 ? 13 · · · 13 ? 12 · · · 12. The only way

for a 23 to appear in the 2-sector is for a 13 to be changed to a 23 due to the

fact that f1 raises 1's to 2's. However, by the de�nition of f1, a 1 appearing in

the 2-sector cannot be raised unless the leftmost m1 copies of 1 have already
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been raised to a 2. Thus, if a 23 appears in [M2], then a 1 cannot appear in

[M1], as claimed.

In Example 2.23 we saw that for I = (1, 2, 1), standard monomials can be

realized as products of minors of the coordinates1

t1
0

,
1 0

t1 1

0 t2

,
 1

t1 + t3
t2t3

 ∈ Gr(1)×Gr(2)×Gr(1), (3.15)

where Θ1x
(1) = 1, Θ2x

(1) = t1, Θ12x
(2) = 1, Θ13x

(2) = t2, Θ23x
(2) = t1t2,

Θ1x
(3) = 1, Θ2x

(3) = t1 + t3, and Θ3x
(3) = t2t3.

Before proving the main proposition of this section, namely Proposition 3.20,

we need to prove the following lemma. Let W denote the set of polynomials

in the variables obtained by taking products of minors in the matrices shown

in (3.15). More precisely, a polynomial is in W exactly if it is of the form

(A1(t1, t2, t3))(A2(t1, t2, t3))(A3(t1, t2, t3)), where A1(t1, t2, t3) is a product of

1× 1 minors of

1

t1
0

, A2(t1, t2, t3) is a product of 2× 2 minors of

1 0

t1 1

0 t2

,

and A3(t1, t2, t3) is a product of 1× 1 minors of

 1

t1 + t3
t2t3

. The possible mi-

nors that arise are listed after (3.15), so in particular any such product in W

must be of the form

tk11 t
k2
2 t

k3
3 (t1 + t3)k4 (3.16)

for some non-negative integers ki. Let I(3) = (1, 2, 1) and �xm = (m1,m2,m3) ∈

N3.

Lemma 3.19. For any polynomial f ∈ W , there exists at most one standard

tableau τ ∈ T (I(3),m) such that f = Θτ .

59



Ph.D. Thesis - Lauren DeDieu McMaster University - Mathematics

Proof. Suppose f = tk11 t
k2
2 t

k3
3 (t1 + t3)k4 as in (3.16) for a �xed (unique) set of

k1, k2, k3, k4 ∈ N and suppose there exists τ ∈ T (I(3),m) with f = Θτ . We

wish to show τ is unique. Let a1 and a2 denote the number of 1's and 2's in [M1]

respectively, b23, b13, b12 the number of 23's, 13's, and 12's in [M2] respectively,

and c1, c2 and c3 the number of 1's, 2's, and 3's in [M3] respectively. Then

from the de�nition of Θτ and the list of minors of matrices in (3.15) as above

we conclude

Θτ = ta21 t
b13
2 (t1t2)b23(t1 + t3)c2(t2t3)c3 = ta2+b23

1 tb13+b23+c3
2 tc33 (t1 + t3)c2 .

We are assuming f = tk11 t
k2
2 t

k3
3 (t1 + t3)k4 is equal to Θτ , so we immediately see

that

a2 + b23 = k1 (3.17)

b13 + b23 + c3 = k2 (3.18)

c3 = k3 (3.19)

c2 = k4. (3.20)

We would like to assert that a2, b13, b23, c2 and c3 are uniquely determined by

the constraints above. Being a system of 4 equations in 5 variables, this may

seem impossible, but we are aided by Lemma 3.18 as follows. Suppose b23 6= 0.

Then by Lemma 3.18 we know that a2 = m1 and hence b23 = k1 −m1 > 0 by

the �rst equation; this uniquely determines a2 and b23. Evidently c3 and c4 are

already uniquely determined by the last 2 equations, and now b13 is uniquely

determined by the second equation (and the �xed values of b23 and c3). On the

other hand, if b23 = 0, then evidently the given equations uniquely determine

the other variables c2, c3, b13, and a2. Now by de�nition of these parameters
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we have

a1 + a2 = m1

b12 + b13 + b23 = m2

c1 + c2 + c3 = m3

from which we see that the determination of a2, b13, b23, c2 and c3 also deter-

mines a1, b12, and c1. From this it follows that the composition of each sector

[M1], [M2] and [M3] is uniquely determined by f , i.e., there exists at most one

τ = [M1] ? [M2] ? [M3] with the property that Θτ = f , as desired.

Proposition 3.20. Let m = (m1,m2,m3) ∈ N3. Then ν : Θ(T (I(3),m)) −→

Z3 is injective, i.e. the valuation ν takes distinct values on distinct standard

monomials in Θ(T (I(3),m)).

Proof. We begin by noting that Θ(T (I(3),m)) ⊂ W by de�nition. Let us �x

a γ = (γ1, γ2, γ3) ∈ Z3. To prove the proposition, it su�ces to show that there

exists at most one f ∈ W such that ν(f) = γ and f ∈ Θ(T (I(3),m)).

Suppose f ∈ W and ν(f) = γ. Recall that ν is the lowest term valuation

with respect to the variables t1, t2, t3, so ν(tk11 t
k2
2 t

k3
3 (t1 + t3)k4) = tk11 t

k2
2 t

k3+k4
3 .

Thus in order to have ν(f) = γ = (γ1, γ2, γ3), there must exist some i ∈ Z,

0 ≤ i ≤ γ3, such that f = tγ11 t
γ2
2 t

i
3(t1 + t3)γ3−i. For such an i we let fi denote

the polynomial

tγ11 t
γ2
2 t

i
3(t1 + t3)γ3−i. (3.21)

We begin by considering the γ2 ≤ m2 case. If fi = tγ11 t
γ2
2 t

i
3(t1 + t3)γ3−i is

a standard monomial in Θ(T (I(3),m)) for some m, then fi = Θτ for some

τ ∈ T (I(3),m). If γ2 ≤ m2, then there must be a 12 in [M2], since the other

two possible minors in [M2] contain a power of t2. By Lemma 3.16 this means

that there are no 3's in [M3]. Therefore, there must exist a monomial in fi
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which does not contain a positive power of t3, since the only minor with a t3

in every term is the minor corresponding to 3 in [M3]. This implies that i = 0.

Next we consider the case in which γ2 > m2. Again suppose there exists

τ ∈ T (I(3),m) such that fi = Θτ . Note that there are no minors in [M1]

which contain a positive power of t2. Moreover, we note that the only minor

in [M3] which contains a positive power of t2 is the minor corresponding to 3.

Since γ2−m2 > 0, the above observations imply that there must be a 3 in

[M3]. By Lemma 3.16 this means that there are no 12's in [M2]. Therefore,

the columns of [M2] together contribute a power of tm2
2 to all monomials in fi.

This means that [M3] must contribute a tγ2−m2

2 . Therefore, there are exactly

γ2 −m2 3's in [M3]. This implies that i = γ2 −m2.

We can now prove that for a �xed γ and m there exists at most one f ∈

Θ(T (I(3),m)) with ν(f) = γ. Indeed, if m2 ≥ γ2 then from above we see that

f must be of the form f0 = tγ11 t
γ2
2 (t1 + t3)γ3 , and by Lemma 3.19 there exists

at most one τ ∈ T (I(3),m) such that Θτ = f0 = f . Similarly if m2 < γ2 then

we must have f = fγ2−m2 and again by Lemma 3.19 there is at most one τ

with Θτ = fγ2−m2 = f . This proves the claim.

3.4 Injectivity for the General Case

We now make the injectivity argument in the general case, as follows. Let n ∈

N with n ≥ 3. Let I = I(n) be the corresponding sequence as in De�nition 3.5

and recall that for I(n) we will �nd it convenient to use the indexing set

S = {(a, b) | 1 ≤ a ≤ n − 1, 1 ≤ b ≤ n − a} as in (3.3). Recall also from
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De�nition 3.6 that for τ ∈ T (I(n),m) we call

[M1,1][M1,2] · · · [M1,n−1] and [M2,1][M2,2] · · · [M2,n−2]

the 1-chain and the 2-chain of τ , respectively. Remembering that I(n) is

associated to the reduced word decomposition

(s1s2 · · · sn−1)(s1s2 · · · sn−2) · · · (s1s2)(s1)

of the longest element in the permutation (Weyl) group Sn, the 1-chain and

the 2-chain can be interpreted as the parts of τ associated to the leftmost two

subwords (s1s2 · · · sn−1) and (s1s2 · · · sn−2), respectively, of this word decom-

position. Now let m = (m(a,b))(a,b)∈S ∈ N` where ` = n(n−1)
2

and we use the

same indexing set S as for I(n), so e.g. the (a, b)-sector [Ma,b] of τ contains

m(a,b) columns of size i(a,b).

Throughout this section we will assume that m(a,b) = 0 for a > 2,

or in other words, that τ ∈ T (I(n),m) consists only of a 1-chain and

a 2-chain, and all k-chains for higher k are empty. We now �x such

an m ∈ N`N`N`.

The main result of this section, and this chapter, is the next proposition.

Proposition 3.21. Let I = I(n) and m = (m(1,1), . . . ,m(2,n−2), 0, . . . , 0) ∈ N`

be as above and let T (I(n),m) and Θ(T (I(n),m)) be the corresponding sets of

standard tableaux and standard monomial basis elements as in Section 2.4.2.

Let ν : Θ(T (I(n),m)) → Z` denote the lowest term valuation de�ned in Sec-

tion 2.2 (restricted to Θ(T (I(n),m))). Then ν is injective on Θ(T (I(n),m)).

Remark 3.22. We chose I = I(n) and the lowest-term valuation ν because

they happened to behave well with respect to the standard monomial basis.

See Remark 3.36 and Example 3.35 at the end of this section for a discussion

about why these restrictive conditions were placed on m.
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Before proving Proposition 3.21, we must establish some notation and lem-

mas.

Given a column κ = (r1, . . . , rj) in the (s, j)-th sector, recall that by de�-

nition (see (2.12))

Θκ(x
(s,j)) = detj×j

xr11 · · · xr1j
...

. . .
...

xrj1 · · · xrjj

 ∈ H0(Gr(j, n), p∗j(O(1))) (3.22)

where x(s,j) ∈ Gr(j, n) denotes the coordinate entries of µI(n)(ZI(n)) ⊂ Gr(I(n)) =

Gr(1, n) × Gr(2, n) × · · · × Gr(n − 1, n) × Gr(1, n) × · · · × Gr(n − 2, n), as

de�ned in (2.6) and the matrix entries in the right hand side of (3.22) refers to

the j × j submatrix of Gr(j, n) whose minor gives us the Plücker coordinate

Pr1,...,rj (see §1.3, (1.3)).

In what follows it will be helpful to work out an analogue of Exam-

ple 2.23 in our general case. More speci�cally, since our standard monomials

Θ(T (I(n),m)) are de�ned by pullbacks under µI(n)◦Φ it will be useful to have

explicit matrix representations of the elements of Gr(i(a,b), n) corresponding to

a point (ta,b)(a,b)∈S ∈ C` under the composition

C` Φ−→ ZI(n)

µI(n)−−−→ Gr(I(n)) =
∏

(a,b)∈S

Gr(i(a,b), n).

Since µI(n) is de�ned by successive products in (2.5) and because Φ sends each

ta,b to

exp(ta,bFαi(a,b) ) = exp(ta,bFαb) =



1
. . .

. . .

ta,b
. . .

1


(where the ta,b appears immediately below the main diagonal in the b-th col-

umn), it is not di�cult to see that in the �rst n − 1 factors of Gr(I(n))
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corresponding to the 1-chain, these matrices are as follows:



1

t1,1
0
...
...

0


×



1 0

t1,1 1

0 t1,2
0 0
...

...

0 0


× · · · ×



1 0 · · · · · · 0

t1,1 1 0 · · · 0

0 t1,2
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 · · · · · · 0 t1,n−1


.

Similarly it is not di�cult to see that the next n−2 components of µI(n)(ZI(n))

are of the form:



1

t1,1+t2,1
t2,1t1,2

0

0
...

0


×



1 0

t1,1+t2,1 1

t2,1t1,2 t1,2+t2,2
0 t2,2t1,3
... 0
...

...

0 0


×· · ·×



1 0 · · · · · · 0

t1,1+t2,1 1 0 · · · 0

t2,1t1,2 t1,2+t2,2
. . .

. . .
...

0 t2,2t1,3
. . .

. . . 0
...

. . .
. . .

. . . 1
...

. . .
. . .

. . . t2,n−2+t1,n−2

0 · · · · · · 0 t2,n−2t1,n−1


.

We note that strictly speaking, following the conventions of Section 1.3, we

should represent elements of Gr(j, n) by n × n matrices, not n × j matrices.

But because an element in Gr(j, n) is independent of the rightmost n − j

columns in such a matrix representation, we have cut o� from the notation

the n× (n− j) matrix consisting of the right n− j columns.

We will frequently refer back to these matrices and the terms in each entry.

The following lemma summarizes this information and also computes lowest

terms.

Lemma 3.23.

a) Let x(1,j) denote the n× j matrix representing the component in Gr(i1,j =

j, n) of µI(n) ◦Φ((ta,b)(a,b)∈S) corresponding to the index (1, j). The (i, k)-th
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entry of x(1,j) equals 1 if i = k, t1,k if i = k + 1, and 0 otherwise. In

particular, with respect to the usual lexicographic order (De�nition 1.3), its

lowest term equals 1 if i = k, t1,k if i = k + 1, and 0 otherwise.

b) Let x(2,j) denote the n× j matrix representing the component in Gr(i(2,j) =

j, n) of µI(n) ◦Φ((ta,b)(a,b)∈S) corresponding to the index (2, j). The (i, k)-th

entry of x(2,j) equals 1 if i = k, t1,k + t2,k if i = k+ 1, t1,k+1t2,k if i = k+ 2,

and 0 otherwise. In particular, with respect to the usual lexicographic order,

its lowest term equals 1 if i = k, t2,k if i = k+ 1, t1,k+1t2,k if i = k+ 2, and

0 otherwise.

Using the above, we next compute the lowest term of a minor of x(s,b) with

respect to the same lexicographic order.

Lemma 3.24. Let (s, b) ∈ S with s ∈ {1, 2} and let x(s,b) be the n × b

matrix representing a component of µI(n) ◦ Φ as in Lemma 3.23. Let κ =

(r1, r2, . . . , rb) ∈ Nb with rj ∈ {1, 2, . . . , n} for all j and r1 < r2 < · · · < rb,

and let Aκ = [aij] denote the b × b submatrix of x(s,b) obtained by taking the

r1-th, r2-th, ... and rb-th rows of x(s,b). Then the lowest term with respect to

lexicographic order of the determinant detAκ of Aκ is the product of the lowest

terms of the diagonal entries of Aκ.

Proof. We begin with some preliminary arguments, for which we treat the

s = 1 and s = 2 cases separately. First suppose s = 1, so that x(s,b) represents

a component of Gr(I(n)) associated to the 1-chain. By Lemma 3.23 a), we

know that the (i, k)-th entry in x(1,j) is 1 if i = k, t1,k if k = i − 1, and

0 otherwise. Recall that with respect to our lexicographic order, we have

ν(1) < ν(t1,n−1) < ν(t1,n−2) < · · · < ν(t1,1). Therefore, the non-zero entries of

x(1,j) strictly increase from right to left along rows, and strictly increase down

columns. Hence the submatrix Aκ also has this property.
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Recall that the determinant of a b × b matrix can be expressed as a sum

over the index set Sb, the set of permutations on b letters, i.e. detAκ =∑
w∈Sb sgn(w)aw(1),1aw(2),2 · · · aw(b),b. We claim that in the case of detAκ, the

summands corresponding to distinct permutations are distinct monomials.

The fact that they are monomials follows immediately from the fact that each

matrix entry in Aκ is a monomial by Lemma 3.23. Next suppose σ, σ′ are

distinct permutations in Sb. Since we are comparing summands in the deter-

minant, we may assume without loss of generality that the terms in detAκ

corresponding to σ and σ′ are both non-zero. Suppose further, without loss of

generality, that σ < σ′ with respect to standard lexicographic order when σ

and σ′ are written in one-line notation. Let k denote the �rst (leftmost) entry

where σ(k) < σ′(k). Since the terms corresponding to σ and σ′ are non-zero,

we must have aσ(k),k = 1 and aσ′(k),k = t1,k. Since the variable t1,k does not

appear in any other column of Aκ, this implies t1,k does not appear with a

positive exponent in the term corresponding to σ, while it does appear in that

of σ′. In particular, the terms are distinct, as claimed.

Now we consider the case s = 2, so x(s,b) corresponds to a component in the

2-chain. By Lemma 3.23 b), the (i, k)-th entry in x(2,j) is 1 if i = k, t1,k + t2,k

if k = i − 1, t1,k+1t2,k if k = i − 2, and 0 otherwise, with lowest terms 1, t2,k,

t1,k+1t2,k and 0 respectively. In particular the non-constant entries of x(2,j) are

all distinct, and as in the s = 1 case, the (valuations of the) lowest terms

strictly increase down columns and strictly increase from right to left along

rows. Hence the submatrix Aκ also has this property.

Similarly to the s = 1 case, we now claim that each non-zero term in

det(Aκ) has a distinct lowest term (with respect to lexicographic order). Fol-

lowing the arguments for the s = 1 case above, suppose without loss of gen-

erality that σ, σ′ ∈ Sb are distinct, σ < σ′ in lexicographic order, and both

67



Ph.D. Thesis - Lauren DeDieu McMaster University - Mathematics

correspond to non-zero terms in detAκ. The lowest term of the summand cor-

responding to σ (respectively σ′) will be the product of the lowest terms of the

matrix entries aσ(k),k (respectively aσ′(k),k) for 1 ≤ k ≤ b. Let k denote the �rst

index where σ(k) < σ′(k). Since the only non-zero entries in the k-th column

occur in rows k, k+ 1 and k+ 2, and because σ(k) < σ′(k) by assumption, we

conclude σ′(k) must equal either k + 1 or k + 2, so aσ′(k),k is either t1,k + t2,k

or t1,k+1t2,k.

Note that t1,k+1 only appears in a lowest term in the k-th column. There-

fore, if aσ′(k),k = t1,k+1t2,k, then aσ(k),k 6= t1,k+1t2,k and so t1,k+1 does not appear

in the lowest term of the term corresponding to σ. Similarly, note that t2,k only

appears in the k-th column. Therefore, if aσ′(k),k = t1,k + t2,k, then aσ(k),k = 1,

and hence t2,k does not appear in the lowest term of the term corresponding

to σ. Therefore, the summands corresponding to σ and σ′ must have distinct

lowest terms.

From the above arguments, it follows that there are no cancellations of

lowest terms in the computation of detAκ as a sum over the set of permutations

Sb. Hence the lowest term of detAκ is simply the lowest among the lowest terms

of the summands corresponding to σ, as σ ranges over Sb.

We now argue that this lowest term (for s = 1 or 2) is that of the summand

corresponding to the identity permutation. To see this, consider a non-identity

permutation σ ∈ Sb corresponding to a non-zero summand in detAκ. Let k be

the largest integer such that σ(k) < k (which exists since σ 6= id). Since σ is

a permutation, there must exist q such that σ(q) = k, and by the maximality
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of k we must have q < k. Schematically we get the diagram of matrix entries:



q k

. . .
...

...

q · · · aq,q · · · · · ·
... · · ·

...
. . . aσ(k),k

...
. . .

...

k=σ(q) · · · aσ(q)=k,q · · · · · · ak,k · · ·
...

...
. . .


.

Next we claim that the lowest term of aσ(q)=k,q contains a positive power of a

variable which is strictly larger than all of the variables which appear in the

lowest terms of aq,q and ak,k. For this we take cases. Suppose s = 1. Then,

as in the argument above, since there are only two non-zero entries in any

given column of Aκ, we must have aq,q = 1 and aσ(q)=k,q = t1,q. Similarly,

there are only at most two non-zero entries in any given row, so ak,k = 1.

The variable t1,q appears in the q-th column of Aκ and nowhere else, so this

implies t1,q appears in the lowest term of aσ(q)=k,q but not in either aq,q or

ak,k. Now suppose s = 2. By Lemma 3.23 and reasoning similar to that

above, we know aσ(q)=k,q must equal either t2,q or t1,q+1t2,q. If aσ(q)=k,q = t2,q

then by Lemma 3.23 we must have aq,q = 1 = ak,k, hence the claim holds.

If aσ(q)=k,q = t1,q+1t2,q then the lowest term of aq,q is either 1 or t2,q and the

lowest term of ak,k is either 1 or t2,q+1. In either case, the variable t1,q+1 does

not appear, and the claim holds.

We may inductively repeat the above argument for the next largest k′

such that σ(k′) < k′, and so on. In this way we see that the lowest term

of the product aσ(1),1aσ(2),2 · · · aσ(b),b must be larger than the lowest term of

a1,1a2,2 · · · ab,b. Thus the lowest of the possible lowest terms occurs in the

summand corresponding to the identity permutation, as desired.
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We next observe some useful properties of the entries in a standard tableau

of shape (I(n),m), where I(n) and m are as above. For the discussion below

it will be useful to visualize a tableau in a certain way. Recall that for our

special case of m we have

τ = [M1,1] ? [M1,2] ? · · · ? [M1,n−1] ? [M2,1] ? [M2,2] ? · · · ? [M2,n−2]

(so τ consists of only a 1-chain and a 2-chain) where each [Ms,j] is of the form

[Ms,j] = κ(s,j),1 ? · · ·κ(s,j),m(s,j)

where each κ(s,j),k is a column of length j. For one such column suppose we

have κ(s,j),k = (r1
(s,j),k, r

2
(s,j),k, · · · , r

j
(s,j),k) where the entries are in {1, 2, . . . , n}.

In what follows we visualize such a column as

r1
(s,j),k

r2
(s,j),k

...

rj(s,j),k

and similarly we visualize the (s, j)-sector [Ms,j] as a sequence of m(s,j) many

columns of length j

r1
(s,j),1 r1

(s,j),2 · · · r1
(s,j),m(s,j)

r2
(s,j),1 r2

(s,j),2 · · · r2
(s,j),m(s,j)

...
... · · · ...

rj(s,j),1 rj(s,j),2 · · · rj(s,j),m(s,j)
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(so it looks like a j ×m(s,j) box). Putting these together, we can visualize the

entire 2-chain as a sequence of columns that look like a staircase, starting with

m(2,1) many columns of length 1, m(2,2) many columns of length 2, etc.

Example 3.25. Suppose n = 5 and m(2,1) = 2,m(2,2) = 1 and m(2,3) = 2.

Then a 2-chain 2 ? 2 ? 13 ? 124 ? 123 can be represented as:

2 2 1 1 1
3 2 2

4 3 .

The following general lemma follows easily from the de�nition of Demazure

operators.

Lemma 3.26. Let τ be a tableau with entries in {1, 2, . . . , n}, represented as a

diagram as above. Assume that the length of the columns in this representation

weakly increase from left to right. Suppose in addition that the entries of τ (in

its diagram representation as above)

(a) strictly increase down columns and

(b) weakly decrease from left to right along rows.

Let i ∈ {1, 2, . . . , n}. Then fi(τ) (represented as a diagram in the same way

as τ) also has properties (a) and (b).

Proof. The Demazure operator fi only changes one entry of τ by de�nition, so

it su�ces to consider the relationship between it and the entries immediately

below and to its left in the diagram of τ (if they exist). Suppose we have

x
y in

the original tableau τ where x is the entry that gets changed from x to x+1. By

assumption x < y. The only way for x+1 to fail to be less than y is if y = x+1.

But then the pair x, x+ 1 would be �cancelled� in the de�nition/construction

of fi and x cannot change to x + 1, so we get a contradiction. Thus we must
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have y > x + 1 and hence
x+1

y
is still strictly increasing down columns, as

desired. Next suppose z x is the original tableau τ where x gets changed to

x + 1. By assumption z ≥ x, so the only way for x + 1 to fail to be less than

or equal to z is if z = x. In order to derive a contradiction, suppose z = x.

We know that x was raised by fi and z was not. Since z is to the left of x,

this means that the box directly below z must equal x+ 1 before fi is applied:
z x

x+1
. But then by properties (a) and (b) the box directly below x must

also equal x + 1:
z x

x+1 x+1
. This means that the pair x, x + 1 would be

�cancelled� in the application of fi, and hence x cannot change to x+ 1, which

is a contradiction. This completes the proof.

The following is now straightforward.

Lemma 3.27. Let τ ∈ T (I(n),m) and let pr1−chain(τ) = [M1,1] ? [M1,2] ? · · · ?

[M1,n−1] and pr2−chain(τ) = [M2,1] ? [M2,2] ? · · · ? [M2,n−2] be its (projection to

the) 1-chain and 2-chain respectively. Represent both chains as diagrams as in

the discussion preceding Example 3.25. Then the entries of both the 1-chain

and the 2-chain satisfy properties (a) and (b) of Lemma 3.26.

Proof. We argue for the case of the 2-chain. The 1-chain is similar (and even

simpler) and we leave it to the reader. We have already seen that pr2−chain(τ)

is standard by Lemma 3.13, and a standard tableau is produced by a sequence

of concatenation and Demazure operators. Since we know from Lemma 3.26

that any fi preserves properties (a) and (b) in the statement of Lemma 3.26, it

su�ces to check that the concatenation operator also preserves these properties

during the process of building a standard tableau of shape

(I(n), (0, . . . , 0,m(2,1),m(2,2), . . . ,m(2,n−2), 0, . . .)). By de�nition, standard
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tableau of this shape are given by

Λ1Λ2 · · ·Λn−1(w̄
?m(2,1)

1 ? Λ2(w̄
?m(2,2)

2 ? · · · ? Λn−2(w̄
?m(2,n−2)

n−2 ) · · · )). (3.23)

Also recall that, in the diagrammatic representation of a 2-chain discussed

above, w̄
?m(2,i)

i is represented as a block of the form:

1 1 · · · 1

2 2 · · · 2

...
... · · · ...

i i · · · i

Now notice that, in the equation (3.23), the only Demazure operators that

have been applied before a concatenation by w̄
?m(2,i)

i are the fj's associated to

j strictly larger than i, which means that they can only a�ect rows which are

strictly below any entry in w̄
?m(2,i)

i . From this it follows that concatenation

with w̄
?m(2,i)

i preserves properties (a) and (b), since w̄
?m(2,i)

i also consists of

columns which strictly increase going down and weakly decrease from left to

right along rows. This proves the claim.

In the following discussion, we will refer to a representation of a word in a

diagram as above as a staircase. Here it is assumed that a staircase consists

of a sequence of top-justi�ed columns whose lengths weakly increase from left

to right. When we represent a word as a staircase, we occasionally refer to

a box of the staircase (indicating the location of an entry of the word, and

occasionally - by slight abuse of language - also the entry itself). It should be

noted that under our restrictions on I(n) andm, a standard tableau τ of shape

(I(n),m) is a concatenation of two separate staircases, one corresponding to

its 1-chain, and the other corresponding to its 2-chain, so the staircase of the

1-chain would be
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and similarly for the 2-chain. (The above �gure only indicates the shape of

the staircase; the entries are omitted for visual simplicity.) We will refer to

these as the 1-chain staircase and the 2-chain staircase.

Next we introduce a simpli�cation of the notation which further clari�es

matters. Let i ∈ {1, 2, . . . , n−1}. Notice that by the de�nition of T (I(n),m),

the construction of a 1-chain of a standard tableau τ ∈ T (I(n),m) applies

the Demazure operator Λi only once. Moreover, the only Demazure operators

Λj which are applied after Λi are those with j < i. This implies that for any

�xed box in the 1-chain, that box can be changed at most once in the entire

algorithm. And since any Λi can only increase a box by 1, this means that for

any given box in the 1-chain which is in the p-th row, its entry can only be

either a p+ 1 or a p, in accordance with whether it was changed by a (single)

Demazure operator or not, respectively. Given this binary situation, for the

purposes of further analysis it su�ces to only record the data of whether or not

a box in the p-th row is, or is not, raised by 1. Below, we choose to indicate by

shading in grey a box which was increased, and using a white box to indicate

one which was not.

Example 3.28. With the above conventions, we may notate a 1-chain such

as

2 2 1 1 1 1 1
3 3 3 3 2 2

4 4 3 3
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by

.

Recall that, by Lemma 3.27, a 1-chain staircase must have the property

that its entries are strictly increasing down columns and weakly decreasing

from left to right along rows. This implies that if any given box is grey, then

all of the boxes to its �southwest� must also be grey, where by �southwest� we

mean any box below and to its left, i.e., if a box is in the p-th row and q-th

column, then a box in the i-th row and j-th column is to its southwest if i ≥ p

and j ≤ q. Notice that this means that if we remove the grey boxes in such

a staircase, then what remains (i.e. the white boxes) still form a (connected)

staircase.

Next we consider the 2-chain staircase of τ . Here, the only di�erence

between the 1-chain and the 2-chain is that a box in the 2-chain can be acted

upon by two Demazure operators, due to the fact that the Demazure operators

applied in the algorithm for creating T (I(n),m) are, in sequence, (reading left

to right)

Λn−2,Λn−3, . . . ,Λ2,Λ1,Λn−1,Λn−2, . . . ,Λ2,Λ1

so it is possible, for example, for a box to be �rst raised by Λn−2 and then by

the Λn−1. Otherwise, the reasoning for the 1-chain staircase can be used in

a similar fashion and it is straightforward to see that a given box in the p-th

row of a 2-chain staircase must be p, p+ 1, or p+ 2, depending on whether it

was acted upon by 0, 1, or 2 Demazure operators respectively. Following the

scheme introduced above, we choose to indicate these as follows:

• a box which has been increased by 2 is black,
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• a box which has been increased by 1 is grey,

• a box which has not been increased is white.

Example 3.29. In this scheme, we can visualize a 2-chain staircase such as

3 3 3 2 2 1 1
4 4 4 3 2 2

5 5 4 3

as

.

Moreover, by the same reasoning as for the 1-chain, it follows from Lemma 3.27

that if any given box in the 2-chain is black, then any box to its southwest

must be black, and if any box is grey, then any box to its southwest must be

either grey or black. Thus, if we remove the black boxes, what remains is still

a staircase, and if we remove both grey and black boxes, what remains is still

a staircase.

We refer to coloured diagrams such as the above as shaded staircases.

We record the above discussion in the following lemma.

Lemma 3.30. Let τ ∈ T (I(n),m).

1. The 1-chain shaded staircase has the property that if we remove the grey

boxes, then what remains is still a (connected) staircase.

2. The 2-chain shaded staircase has the property that if we remove the black

boxes, what remains is still a staircase, and if we remove both grey and

black boxes, what remains is still a staircase.
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We now introduce the following notation. Let τ ∈ T (I(n),m). For p ∈

{1, 2, . . . , n− 1} we let bp denote the number of grey boxes in the p-th row of

the 1-chain shaded staircase. For p ∈ {1, 2, . . . , n−2}, we let ap and cp denote

the number of grey and black boxes, respectively, in the p-th row of the 2-chain

shaded staircase. It will be useful later on to note that, by de�nition and by

Lemma 3.30, the bp, ap and cp are integers satisfying

• 0 ≤ bp ≤ m(1,p) + bp+1,

• ap ≥ 0, cp ≥ 0, and ap + cp ≤ m(2,p).

The following immediately follows from Lemma 3.30.

Lemma 3.31. Let τ ∈ T (I(n),m). Then τ is uniquely determined by the

bp, ap and cp as de�ned above.

The next statement is an elementary but crucial technical observation that

allows us to prove Proposition 3.21.

Lemma 3.32. Let τ ∈ T (I(n),m) and bp, ap and cp the corresponding integers

de�ned above. Let p ∈ {1, 2, . . . , n− 2}. Then:

if cp 6= 0 then bp+1 = bp+2 +m(1,p+1)

where we take the convention bn = 0. In particular, if cp 6= 0 then bp+1 ≥

m(1,p+1).

In terms of our staircase diagrams, the above lemma states that if there is

a black box in p-th row of the 2-chain shaded staircase, then the grey boxes

in the (p + 1)-th and (p + 2)-th rows of the 1-chain shaded staircase have to

�line up�, as in the schematic example below:
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Proof. Suppose τ ∈ T (I(n),m) and that cp 6= 0, i.e., there is a black box in the

p-th row of the 2-chain shaded staircase of τ . As discussed when we de�ned

the shaded staircases, this precisely means that the box in question was acted

upon by exactly two lowering operators, namely, fp and fp+1 (in that order),

associated to Λ2,p and Λ1,p+1 respectively. The remainder of this argument

is similar in spirit to those in the previous section (see e.g. Remark 3.17).

Speci�cally, at the step in the algorithm when Λ1,p+1 is applied, we know from

Lemma 3.27 that the boxes strictly below and at or to the left of the box in

question are already black. This means that the only boxes which can contain

a p + 2 in the 2-chain are those in columns strictly to the right of the box in

question.

To prove the statement of the lemma, it su�ces to show the following. At

the step in the algorithm when Λ1,p+1 is applied, any p + 1 contained in a

white box in the (p + 1)-th row of the 1-chain which sits immediately above

a grey box in the (p + 2)-th row (in the same column) is not cancelled by a

p + 2 anywhere in the 2-chain. By the argument above, and because Λ1,p+1

has not yet been applied, there cannot be such a p+2 anywhere in the 2-chain

at or to the left of the column containing the box in question. On the other

hand, such a p + 2 cannot be contained in any column to the right of the

box in question, since otherwise the box in question (which contains a p + 1)

would be cancelled by this p+ 2 and hence cannot become black, contracting
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the assumption. Therefore, when Λ1,p+1 is applied the entries in the leftmost

m(1,p+1) + bp+2 boxes of the (p+ 1)-th row of the 1-chain will raise to a p+ 2,

which is precisely what the statement of the lemma asserts.

Our next lemma computes the lowest term of (and hence the valuation

evaluated on) the standard monomial Θτ corresponding to a standard tableau

τ ∈ T (I(n),m).

Lemma 3.33. Let τ ∈ T (I(n),m), let Θτ denote its corresponding standard

monomial, and let bp, ap and cp be the parameters de�ned above. Then the

lowest term LT (Θτ ) of Θτ is given by

LT (Θτ ) = tb11,1t
b2+c1
1,2 · · · tbn−1+cn−2

1,n−1 tc1+a1
2,1 tc2+a2

2,2 · · · tcn−2+an−2

2,n−2 . (3.24)

In particular, ν(Θτ ) = (b1, b2 + c1, . . . , bn−1 + cn−2, c1 + a1, c2 + a2, . . . , cn−2 +

an−2, 0, . . . , 0).

In other words:

• the exponent of t1,1 in LT (Θτ ) is the number of grey boxes in the 1st

row of the 1-chain shaded staircase,

• for p ∈ {2, . . . , n− 1}, the exponent of t1,p in LT (Θτ ) is the sum of the

number of grey boxes in the p-th row of the 1-chain shaded staircase and

the number of black boxes in the (p − 1)-th row of the 2-chain shaded

staircase, and

• for p ∈ {1, 2, . . . , n − 2}, the exponent of t2,p is the number of shaded

boxes (either grey or black) in the p-th row of the 2-chain shaded stair-

case.
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Proof. By de�nition, Θτ is a product of determinants with one factor cor-

responding to each column of τ . Since the lowest term of a product is the

product of the lowest terms of each factor, in order to prove the claim of the

lemma it now su�ces to prove:

• for a column κ in the 1-chain, the lowest term of detAκ is the product

of the t1,p where the p-th box in κ is grey, i.e.∏
p∈{1,2,...,n−1}

the p-th box in κ is grey

t1,p.

• for a column κ in the 2-chain, the lowest term of detAκ is the product∏
p∈{1,2,...,n−2}

the p-th box in κ is black

(t2,pt1,p+1) ·
∏

p∈{1,2,...,n−2}
the p-th box in κ is grey

t2,p.

We have already seen in Lemma 3.24 that the lowest term of detAκ is

the product of the lowest terms of the entries along the main diagonal

of Aκ. Recalling that a grey (respectively black) box in the p-th row

contains the entry p+ 1 (respectively p+ 2), the claim now follows from

Lemma 3.23. The assertion about ν(Θτ ) follows since ν simply reads o�

the exponents of the lowest term.

Our last lemma shows that the values of the bp as de�ned above are uniquely

determined by ν(Θτ ).

Lemma 3.34. Let τ ∈ T (I(n),m) and suppose

ν(Θτ ) = (k1,1, . . . , k1,n−1, k2,1, . . . , k2,n−2, 0, . . . , 0) ∈ N`

for some ks,j ∈ N. Then for any p ∈ {2, . . . , n− 1}, we have

bp := min{k1,p,m(1,p) + bp+1}.
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Proof. For each 3 ≤ p ≤ n we wish to prove that if k1,p−1 > m(1,p−1) + bp

then bp−1 = m(1,p−1) + bp, and if k1,p−1 ≤ m(1,p−1) + bp then bp−1 = k1,p−1.

So, suppose k1,p−1 > m(1,p−1) + bp. In the discussion following Lemma 3.30

we recorded that bp−1 ≤ m(1,p−1) + bp. Moreover, by Lemma 3.33 we know

that k1,p−1 = bp−1 + cp−2 for p ≥ 3. Putting our initial assumption and

these two facts together, we have that m(1,p−1) + bp < k1,p−1 = bp−1 + cp−2 ≤

m(1,p−1) + bp + cp−2, which implies that cp−2 > 0. By Lemma 3.32 this implies

that bp−1 = bp +m(1,p−1), as desired.

Now, suppose k1,p−1 ≤ m(1,p−1)+bp. Since k1,p−1 = bp−1+cp−2 (Lemma 3.33)

it su�ces to show that cp−2 = 0. In order to derive a contradiction, suppose

cp−2 > 0. Then by Lemma 3.32 this implies that bp−1 = bp +m(1,p−1). By our

assumption, this implies that bp−1 ≥ k1,p−1 = bp−1 + cp−2, which means that

0 ≥ cp−2, which is a contradiction. This completes the proof.

Using this lemma, we can see that bn−1 = min{k1,n−1,m(1,n−1)} (using our

convention that bn = 0). In particular, bn−1 is uniquely determined by ν(Θτ ).

Similarly, using this lemma, bn−2 is uniquely determined by ν(Θτ ), since bn−1

is, and so on.

We are �nally ready to prove Proposition 3.21.

Proof of Proposition 3.21. Suppose

ν(Θτ ) = (k1,1, k1,2, . . . , k1,n−1, k2,1, k2,2, . . . , k2,n−2, 0, . . . , 0) ∈ N`

for some ka,b ∈ N. We just saw in Lemma 3.34 that for p ∈ {2, . . . , n− 1}, we

have

bp = min{k1,p,m(1,p) + bp+1}.

Moreover, by Lemma 3.33 we know that b1 = k1,1. In particular, the bp are
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uniquely determined by ν(Θτ ). But then for p ∈ {2, . . . , n− 1} we have that

cp−1 = k1,p − bp

by Lemma 3.33, hence the cp's are also uniquely determined, and in turn

ap = k2,p − cp

also by Lemma 3.33, which means the ap's are also uniquely determined. By

Lemma 3.31 this means there exists a unique τ such that

ν(Θτ ) = (k1,1, k1,2, . . . , k1,n−1, k2,1, . . . , k2,n−2, 0, . . . , 0),

i.e., ν is injective. This completes the proof.

We conclude this section with an example where the standard monomial

basis is not mapped injectively under ν and the m does not satisfy the restric-

tive hypothesis placed at the beginning of this section (i.e. that m(a,b) = 0 for

a > 2).

Example 3.35. Let I = I(5) = (1, 2, 3, 4, 1, 2, 3, 1, 2, 1),

m = (0, 0, 0, 0, 0, 0, 1, 1, 0, 0). We will �rst show that the tableaux 134 ? 2

and 124 ? 3 are contained in the set of standard tableaux T (I(5),m). We will

trace through the algorithm used for creating the set of standard tableaux (see

De�nition 2.19 and Example 2.20). Recall that each Demazure operator Λj,k

takes a set of tableaux to another set of tableaux. At each step, we only write

down the tableaux we need to consider, and omit the other tableaux in the

set.
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{O} O?→ {O} Λ4,1→ {O} O?→ {O} Λ3,2→ {O} 1?→ {1} Λ3,1→ {2} 123?→ {123 ? 2}
Λ2,3→ {123 ? 2} O?→ {123 ? 2} Λ2,2→ {123 ? 2, 123 ? 3} O?→ {123 ? 2, 123 ? 3}
Λ2,1→ {123 ? 2, 123 ? 3} O?→ {123 ? 2, 123 ? 3} Λ1,4→ {123 ? 2, 123 ? 3}
O?→ {123 ? 2, 123 ? 3} Λ1,3→ {124 ? 2, 124 ? 3} O?→ {124 ? 2, 124 ? 3}
Λ1,2→ {134 ? 2, 124 ? 3} O?→ {134 ? 2, 124 ? 3} Λ1,1→ {134 ? 2, 124 ? 3}.

Therefore 134 ? 2 and 124 ? 3 are in T (I(5),m). We will now compute the

corresponding standard monomials Θ134?2 and Θ124?3. To do this, it will be

helpful to consider the entries in µI(5)(Z(I(5)). The �rst four components of

µI(5)(Z(I(5)) are of the form:


1

t1,1
0

0

0


︸ ︷︷ ︸
x(1)

×


1 0

t1,1 1

0 t1,2
0 0

0 0


︸ ︷︷ ︸

x(2)

×


1 0 0

t1,1 1 0

0 t1,2 1

0 0 t1,3
0 0 0


︸ ︷︷ ︸

x(3)

×


1 0 0 0

t1,1 1 0 0

0 t1,2 1 0

0 0 t1,3 1

0 0 0 t1,4


︸ ︷︷ ︸

x(4)

.

The next three components of µI(5)(Z(I(5)) are of the form:


1

t1,1 + t2,1
t1,2t2,1

0

0


︸ ︷︷ ︸

x(5)

×


1 0

t1,1 + t2,1 1

t1,2t2,1 t1,2 + t2,2
0 t1,3t2,2
0 0


︸ ︷︷ ︸

x(6)

×


1 0 0

t1,1 + t2,1 1 0

t1,2t2,1 t1,2 + t2,2 1

0 t1,3t2,2 t1,3 + t2,3
0 0 t1,4t2,3


︸ ︷︷ ︸

x(7)

.

The eighth component of µI(5)(Z(I(5)) is of the form:
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1

t1,1 + t2,1 + t3,1
t1,2t2,1 + t3,1(t1,2 + t2,2)

t1,3t2,2t3,1
0


︸ ︷︷ ︸

x(8)

.

Notice that

Θ2(x(8)) = t1,1 + t2,1 + t3,1

and

Θ3(x(8)) = t1,2t2,1 + t3,1(t1,2 + t2,2) = t1,2t2,1 + t1,2t3,1 + t2,2t3,1.

Also,

Θ124(x(7)) =

∣∣∣∣∣∣
1 0 0

t1,1 + t2,1 1 0

0 t1,3t2,2 t1,3 + t2,3

∣∣∣∣∣∣ = t1,3 + t2,3,

and

Θ134(x(7)) =

∣∣∣∣∣∣
1 0 0

t1,2t2,1 t1,2 + t2,2 1

0 t1,3t2,2 t1,3 + t2,3

∣∣∣∣∣∣ = (t1,2 + t2,2)(t1,3 + t2,3)− t1,3t2,2

= t1,2t1,3 + t1,2t2,3 + t2,2t2,3.

By de�nition,

Θ124?3 = Θ124(x(7))Θ3(x(8)) = (t1,3 + t2,3)(t1,2t2,1 + t1,2t3,1 + t2,2t3,1).

So, ν(Θ124?3) = ν(t2,2t2,3t3,1) = (0, 0, 0, 0, 0, 1, 1, 1, 0, 0). Similarly,

Θ134?2 = Θ134(x(7))Θ2(x(8)) = (t1,2t1,3 + t1,2t2,3 + t2,2t2,3)(t1,1 + t2,1 + t3,1).

So, ν(Θ134?2) = ν(t2,2t2,3t3,1) = (0, 0, 0, 0, 0, 1, 1, 1, 0, 0). In particular, both

Θ134?2 and Θ124?3 have the same image under ν.
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Remark 3.36. When we only consider standard monomials with

m = (m(1,1), . . . ,m(2,n−2), 0, . . . , 0) ∈ N` (i.e. we only consider the 1-chain

and 2-chain) then Lemma 3.32 tells us that the 1-chain and 2-chain behave

�distinctly� in the algorithm for creating standard tableaux. More precisely, if

a t1,p appears as a lowest term in a column in the 2-chain of τ , then it must

have appeared a �maximal� number of times as a lowest term in columns in

the 1-chain. However, if we allow a 3-chain for example (i.e. allow m to have

nonzero terms after m2n−3), then the 2-chain and 3-chain do not necessarily

behave �distinctly�. In particular, in Example 3.35, we obtained a standard

monomial Θ124?3 whose 3-chain contributes a lowest term t2,2, but whose 2-

chain does not. Such things do not happen when we only consider 1-chains

and 2-chains, which allowed us to prove injectivity in these cases.
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Chapter 4

Newton-Okounkov Bodies of

Bott-Samelson Varieties

In this chapter, we compute the Newton-Okounkov bodies of Bott-Samelson

varieties ZI with respect to the lowest term valuation ν de�ned in §2.2, for

I = I(n) and line bundles O(m) with m = (m(1,1), . . . ,m(2,n−2), 0, . . . , 0) ∈ N`.

First, for these special cases we show that the corresponding semigroup S(R, ν)

is generated in level one, so in particular it is �nitely generated. It then

follows from our results that, for these cases, the Newton-Okounkov body of

ZI(n) (with respect to O(m) and ν) is the convex hull of the image under ν

of the standard monomial basis of H0(ZI(n),O(m)). We apply these results in

Theorem 4.3 to give an explicit description of the Newton-Okounkov bodies

of Z(1,2,1) by a concrete list of inequalities and by giving a list of its vertices.
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4.1 The Semigroup is Generated in Level 1

Let I(n) = (i1, . . . , i`) = (1, 2, . . . , n − 1, 1, 2, . . . , n − 2, . . . , 1, 2, 1) and m =

(m(1,1), . . . ,m(2,n−2), 0, . . . , 0) ∈ N` be as in De�nition 3.5. For a positive inte-

ger k, let km denote the vector

km := (km(1,1), km(1,2), . . . , km(2,n−2), 0, . . . , 0) ∈ N`.

Let m̃(s,j) denote the vector in N` consisting of an m(s,j) in the (s, j)-th coor-

dinate and 0's elsewhere.

Before computing the Newton-Okounkov body of ZI(n), we need to estab-

lish the following lemma. Recall that Θ(T (I(n), km) is the set of standard

monomial basis vectors for H0(ZI(n),O(km)), as in (2.14).

Lemma 4.1. Let ` = n(n−1)
2

and let I(n) = (i1, . . . , i`) be as de�ned in De�-

nition 3.5. Let m = (m(1,1), . . . ,m(2,n−2), 0, . . . , 0) ∈ N` and let k ∈ N. Then

for any (z1, z2, . . . , z`) ∈ ν(Θ(T (I(n), km))) we have(
1
k
z1,

1
k
z2, . . . ,

1
k
z`
)
∈ conv(ν(H0(ZI(n),O(m)))).

Proof. Let (z1, z2, . . . , z`) ∈ ν(Θ(T (I(n), km))) and let τ ′ ∈ T (I(n), km) with

ν(Θτ ′) = (z1, . . . , z`). Recall that the standard tableau τ ′ may be decomposed

into pieces as follows (De�nitions 2.15 and 3.2):

τ ′ = κ(1,1)1 . . . κ(1,1)(km(1,1))︸ ︷︷ ︸
[M ′1,1]

κ(1,2)1 . . . κ(1,2)(km(1,2))︸ ︷︷ ︸
[M ′1,2]

· · ·κ(2,n−2)1 . . . κ(2,n−2)(km(2,n−2))︸ ︷︷ ︸
[M ′2,n−2]

.

Note that there are only 2n−3 sectors [M ′
s,j] (in the sense of De�nition 3.2) in

τ ′, since in the case under consideration km = (km(1,1), . . . , km(2,n−2), 0, . . . , 0),

all coordinates after the (2, n−2)-coordinate are equal to zero. We can further

divide each sector, [M ′
s,j], into k pieces which we label as [M q

s,j] for 1 ≤ q ≤ k

as follows:
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[M ′
s,j] =κ(s,j)1 . . . κ(s,j)m(s,j)︸ ︷︷ ︸

[M1
s,j ]

·κ(s,j)(m(s,j)+1) . . . κ(s,j)(2m(s,j))︸ ︷︷ ︸
[M2

s,j ]

· . . . · κ(s,j)((k−1)m(s,j)+1) . . . κ(s,j)(km(s,j))︸ ︷︷ ︸
[Mk

s,j ]

.

i.e.

τ ′ = [M ′
1,1] · · · [M ′

2,n−2] = [M1
1,1] . . . [Mk

1,1]︸ ︷︷ ︸
[M ′1,1]

· [M1
1,2] . . . [Mk

1,2]︸ ︷︷ ︸
[M ′1,2]

· · · [M1
2,n−2] . . . [Mk

2,n−2]︸ ︷︷ ︸
[M ′2,n−2]

.

By Lemma 3.13 we know that [M ′
s,j] ∈ T (I(n), (0, . . . , 0, km(s,j)︸ ︷︷ ︸

(s,j)−th spot

, 0, . . . , 0)).

Moreover, by Lemma 3.13 we know that [M q
s,j] ∈ T (I(n), m̃(s,j)) for any

1 ≤ q ≤ k. Therefore Θ[Mq
s,j ]
∈ Θ(T (I(n), m̃(s,j))) ⊂ H0(ZI(n),O(m̃(s,j))).

Now, de�ne

τq := [M q
1,1][M q

1,2] · · · [M q
2,n−2], for 1 ≤ q ≤ k.

Since each Θ[Mq
s,j ]

is a section of O(m̃(s,j)) this implies that the product Θτq =

Θ[Mq
1,1] · · ·Θ[Mq

2,n−2] may be considered as a section of the tensor productO(m̃(1,1))⊗

· · ·⊗O(m̃(2,n−2)) ∼= O(m) (see §2.3, (2.9)). Therefore, for each q with 1 ≤ q ≤ k

we have a section Θτq ∈ H0(ZI(n),O(m)).

Since Θτ ′ is a product of minors, we have Θτ ′ = Θτ1 ·Θτ2 ·. . .·Θτk . Therefore,

(
1

k
z1,

1

k
z2, . . . ,

1

k
z`

)
=

1

k
ν(Θτ ′) =

1

k
ν(Θτ1 . . .Θτk) =

1

k
(ν(Θτ1) + . . .+ ν(Θτk))

is contained in the convex hull of ν(H0(ZI(n),O(m))), as desired.
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The following theorem tells us that the Newton-Okounkov body of ZI(n),

with respect to the above choices of O(m) and ν, is the convex hull of the

(�nite) set of integer lattice points determined by the standard monomial basis

vectors.

Theorem 4.2. Let I(n) = (i1, . . . , i`) andm = (m(1,1), . . . ,m(2,n−2), 0, . . . , 0) ∈

N` be as de�ned in De�nition 3.5. Then the Newton-Okounkov body

∆(ZI(n),O(m), ν) is the convex hull of the image of Θ(T (I(n),m))) under the

valuation ν, i.e.

∆(ZI(n),O(m), ν) = conv(ν(Θ(T (I(n),m)))).

Proof. By Proposition 3.21, ν is injective on both Θ(T (I(n),m)) and

Θ(T (I(n), km)). Since ν additionally has one-dimensional leaves,

ν(H0(ZI(n),O(km))) = ν(Θ(T (I(n), km))). On the other hand, we have

already seen in Lemma 4.1 that any pair (k, z = (z1, . . . , z`)) ∈ N × Z`

with z ∈ ν(Θ(T (I(n), km))) = ν(H0(ZI(n),O(km))) has the property that

1
k
(k, z) = (1, 1

k
z) is contained in {1} × conv(ν(H0(ZI(n),O(m)))). This means

that the cone C in R≥0 × R` generated by

⋃
k>0,k∈Z

{
(k, ν(σ)) ∈ N× Z`

∣∣σ ∈ Rk = H0(ZI(n),O(km))
}

is contained in the cone generated by
{

(1, ν(σ))
∣∣σ ∈ H0(ZI(n),O(m))

}
. Thus

the Newton-Okounkov body is generated in level 1 in the sense of De�ni-

tion 1.11. In particular, the intersection of C with {1} × R` is exactly the

convex hull of ν(H0(ZI(n),O(m))) = ν(Θ(T (I(n),m))) and hence the Newton-

Okounkov body is exactly this convex hull, as claimed.
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4.2 Explicit Computation of Newton-Okounkov

Body of Z(1,2,1)

In the previous section, we proved that the Newton-Okounkov body

∆(ZI(n),O(m), ν) is the convex hull of the images under ν of the standard

monomial basis vectors. In this section, we will explicitly compute this Newton-

Okounkov body in terms of inequalities and give a list of its vertices for the

special case n = 3 and ` = n(n−1)
2

= 3.

Theorem 4.3. The Newton-Okounkov body ∆ := ∆(Z(1,2,1),O(m1,m2,m3), ν)

can be described in any of the following ways:

(a) ∆ = conv(ν(Θ(T (1, 2, 1), (m1,m2,m3)))),

(b) ∆ is the convex hull of the following:

(0, 0, 0), (0, 0,m3), (0,m2 +m3,m3), (0,m2, 0), (m1, 0, 0), (m1, 0,m3),

(m1 +m2,m2, 0), (m1 +m2,m2 +m3,m3), (m1 +m2,m2,m3)

and the above points are precisely the vertices of ∆,

(c) Using standard coordinates x, y, z for R3, the polytope ∆ is cut out as a

subset of R3 by the following inequalities:

0 ≤ x ≤ m1 +m2, 0 ≤ z ≤ m3, x−m1 ≤ y ≤ z +m2, y ≥ 0.

In particular, we have vol∆ = 1
2
m1m

2
3 +m1m2m3 + 1

2
m2m

2
3 + 1

2
m2

2m3.

Before proving the above theorem, we �rst need to establish the following

lemma.
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Figure 4.1: Newton-Okounkov body ∆(Z(1,2,1),O(m1,m2,m3), ν).

Lemma 4.4. Elements in the set of standard monomials T ((1, 2, 1), (m1,m2,m3))

must have one of the following four forms:

(i) 2 · · · 2︸ ︷︷ ︸
α1

1 · · · 1︸ ︷︷ ︸
m1−α1

13 · · · 13︸ ︷︷ ︸
β1

12 · · · 12︸ ︷︷ ︸
m2−β1

2 · · · 2︸ ︷︷ ︸
γ1

1 · · · 1︸ ︷︷ ︸
m3−γ1

(ii) 2 · · · 2︸ ︷︷ ︸
α1

23 · · · 23︸ ︷︷ ︸
β2

13 · · · 13︸ ︷︷ ︸
β1

12 · · · 12︸ ︷︷ ︸
m2−β1−β2

2 · · · 2︸ ︷︷ ︸
γ1

1 · · · 1︸ ︷︷ ︸
m3−γ1

(iii) 2 · · · 2︸ ︷︷ ︸
α1

1 · · · 1︸ ︷︷ ︸
m1−α1

13 · · · 13︸ ︷︷ ︸
β1

3 · · · 3︸ ︷︷ ︸
γ2

2 · · · 2︸ ︷︷ ︸
γ1

1 · · · 1︸ ︷︷ ︸
m3−γ1−γ2

(iv) 2 · · · 2︸ ︷︷ ︸
α1

23 · · · 23︸ ︷︷ ︸
β2

13 · · · 13︸ ︷︷ ︸
β1

3 · · · 3︸ ︷︷ ︸
γ2

2 · · · 2︸ ︷︷ ︸
γ1

1 · · · 1︸ ︷︷ ︸
m3−γ1−γ2

,

where α1, α2, β1, β2, γ1, γ2 ≥ 0, α1 ≤ m1, β1 + β2 ≤ m2, and γ1 + γ2 ≤ m3.

Moreover, if β2 is non-zero, then α1 = m1.

Proof. By De�nition 2.19, an element of the set

T ((1, 2, 1), (m1,m2,m3)) is formed by �rst beginning with a string 1 · · · 1︸ ︷︷ ︸
m3

and applying the Demazure operator Λ1 to it (see (2.11)). This produces a

set of tableaux with elements of the form 2 · · · 2︸ ︷︷ ︸
γ1

1 · · · 1︸ ︷︷ ︸
m3−γ1

, where 0 ≤ γ1 ≤ m3.
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Next, we concatenate each tableau in this set with m2 many 12's, producing

a set containing tableaux that look like 12 · · · 12︸ ︷︷ ︸
m2

2 · · · 2︸ ︷︷ ︸
γ1

1 · · · 1︸ ︷︷ ︸
m3−γ1

. We then ap-

ply the Demazure operator Λ2 to this set, producing tableaux that look like

13 · · · 13︸ ︷︷ ︸
β1

12 · · · 12︸ ︷︷ ︸
m2−β1

2 · · · 2︸ ︷︷ ︸
γ1

1 · · · 1︸ ︷︷ ︸
m3−γ1

and 13 · · · 13︸ ︷︷ ︸
β1=m2

3 · · · 3︸ ︷︷ ︸
γ2

2 · · · 2︸ ︷︷ ︸
γ1

1 · · · 1︸ ︷︷ ︸
m3−γ1−γ2

, where 0 ≤

β1 ≤ m2, 0 ≤ γ2, and γ1 + γ2 ≤ m3. Next, we concatenate each tableau

in this set withm1 many 1's, producing a set containing tableaux that look like

1 · · · 1︸ ︷︷ ︸
m1

13 · · · 13︸ ︷︷ ︸
β1

12 · · · 12︸ ︷︷ ︸
m2−β1

2 · · · 2︸ ︷︷ ︸
γ1

1 · · · 1︸ ︷︷ ︸
m3−γ1

and 1 · · · 1︸ ︷︷ ︸
m1

13 · · · 13︸ ︷︷ ︸
β1=m2

3 · · · 3︸ ︷︷ ︸
γ2

2 · · · 2︸ ︷︷ ︸
γ1

1 · · · 1︸ ︷︷ ︸
m3−γ1−γ2

. Fi-

nally, we apply the Demazure operator Λ1 to each tableau in this set. Apply-

ing Λ1 to tableaux of the form 1 · · · 1︸ ︷︷ ︸
m1

13 · · · 13︸ ︷︷ ︸
β1

12 · · · 12︸ ︷︷ ︸
m2−β1

2 · · · 2︸ ︷︷ ︸
γ1

1 · · · 1︸ ︷︷ ︸
m3−γ1

produces

tableaux that look like

2 · · · 2︸ ︷︷ ︸
α1

1 · · · 1︸ ︷︷ ︸
m1−α1

13 · · · 13︸ ︷︷ ︸
β1

12 · · · 12︸ ︷︷ ︸
m2−β1

2 · · · 2︸ ︷︷ ︸
γ1

1 · · · 1︸ ︷︷ ︸
m3−γ1

and

2 · · · 2︸ ︷︷ ︸
α1=m2

23 · · · 23︸ ︷︷ ︸
β2

13 · · · 13︸ ︷︷ ︸
β1

12 · · · 12︸ ︷︷ ︸
m2−β1−β2

2 · · · 2︸ ︷︷ ︸
γ1

1 · · · 1︸ ︷︷ ︸
m3−γ1

,

where α1, β2 ≥ 0 and β1 + β2 ≤ m2 (see (i) and (ii) in the statement of the

lemma). Similarly, applying Λ1 to tableaux of the form

1 · · · 1︸ ︷︷ ︸
m1

13 · · · 13︸ ︷︷ ︸
β1=m2

3 · · · 3︸ ︷︷ ︸
γ2

2 · · · 2︸ ︷︷ ︸
γ1

1 · · · 1︸ ︷︷ ︸
m3−γ1−γ2

produces tableaux that look like

2 · · · 2︸ ︷︷ ︸
α1

1 · · · 1︸ ︷︷ ︸
m1−α1

13 · · · 13︸ ︷︷ ︸
β1=m2

3 · · · 3︸ ︷︷ ︸
γ2

2 · · · 2︸ ︷︷ ︸
γ1

1 · · · 1︸ ︷︷ ︸
m3−γ1−γ2

and

2 · · · 2︸ ︷︷ ︸
α1=m1

23 · · · 23︸ ︷︷ ︸
β2

13 · · · 13︸ ︷︷ ︸
β1=m2−β2

3 · · · 3︸ ︷︷ ︸
γ2

2 · · · 2︸ ︷︷ ︸
γ1

1 · · · 1︸ ︷︷ ︸
m3−γ1−γ2

,

where α1, β2 ≥ 0 and β1 + β2 ≤ m2 (see (iii) and (iv) in the statement of the

Lemma). In particular, we can see that if β2 is non-zero, then α1 = m1. This

completes the proof.

We are now ready to prove the theorem.
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Proof of Theorem 4.3. Theorem 4.2 implies (a). To prove (b) and (c) we will

�rst use the properties of the algorithm that produces the standard monomial

basis to obtain a polytope ∆̃ that must contain ∆. We will then show that

the vertices of ∆̃ are contained in ∆, which implies ∆̃ = ∆.

For I = I(3) = (1, 2, 1), recall that we can �nd a basis for the space

of sections H0(ZI(3),O(m)) by looking at standard monomials which can be

realized as products of minors of the coordinates

µI(3)(Φ(t1, t2, t3))

1

t1
0

,
1 0

t1 1

0 t2

,
 1

t1 + t3
t2t3

 ∈ Gr(1)×Gr(2)×Gr(1)

where Θ1x
(1) = 1, Θ2x

(1) = t1, Θ12x
(2) = 1, Θ13x

(2) = t2, Θ23x
(2) = t1t2,

Θ1x
(3) = 1, Θ2x

(3) = t1 + t3, and Θ3x
(3) = t2t3 (see (2.5), (2.7), and Exam-

ple 2.23). By De�nition 2.21, a standard monomial Θτ in

Θ(T ((1, 2, 1), (m1,m2,m3))) is a product of minors of the coordinates listed

above, where the minors are determined by the columns of the standard mono-

mial τ . In Lemma 4.4, we saw exactly what form each standard tableau

τ ∈ T ((1, 2, 1), (m1,m2,m3)) must have. In particular, columns in the 1-sector

must be 2 or 1; columns in the 2-sector must be 23, 13, or 12; and columns in

the 3-sector must be 3, 2, or 1. Therefore, a standard monomial Θτ must be a

product of the minors listed above. In other words, for τ having one of the four

forms listed in Lemma 4.4, a standard monomial Θτ must be a polynomial of

the form tα1
1 t

β1
2 (t1t2)β2(t1 + t3)γ1(t2t3)γ2 , where α1, β1, β2, γ1, γ2 ≥ 0, α1 ≤ m1,

0 ≤ β1 + β2 ≤ m2, and 0 ≤ γ1 + γ2 ≤ m3. The image of this polynomial under

the lowest term valuation ν is (α1 + β2, β1 + β2 + γ2, γ1 + γ2) by Lemma 2.7.

Let x = α1 + β2, y = β1 + β2 + γ2, z = γ1 + γ2. The image of the standard

monomial basis in R3 will be (x, y, z) subject to a set of restrictions. These
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restrictions include the following. We must have that

0 ≤ z ≤ m3, (4.1)

since 0 ≤ γ1 + γ2 ≤ m3, and

0 ≤ x ≤ m1 +m2, (4.2)

since 0 ≤ α1 ≤ m1 and 0 ≤ β2 ≤ m2. Moreover, 0 ≤ β1 + β2 ≤ m2 implies

that 0 ≤ β1 + β2 + γ2 ≤ m2 + γ2 ≤ m2 + γ2 + γ1. This implies that

0 ≤ y ≤ z +m2. (4.3)

Now, if x −m1 > 0, then this implies that α1 + β2 −m1 > 0, which implies

that β2 > 0, since α1 ≤ m1. By Lemma 4.4, if β2 is non-zero, then α1 = m1.

Therefore, x = α1 + β2 implies that β2 = x−m1. This implies that

y = β1 + β2 + γ2 = x−m1 + β1 + γ2, which implies that

y ≥ x−m1. (4.4)

These four restrictions, (4.1), (4.2), (4.3), (4.4), cut out a polytope, ∆̃, given

by the inequalities 0 ≤ x ≤ m1 +m2, 0 ≤ z ≤ m3, x−m1 ≤ y ≤ z +m2, y ≥ 0

(notice that these are the same inequalities given in (c)). This polytope must

contain the Newton-Okounkov body ∆, since ∆ will be cut out by the four

inequalities listed (and possibly more), i.e. ∆ ⊆ ∆̃.

It is not hard to see that the polytope ∆̃ has nine vertices

(0, 0, 0), (0, 0,m3), (0,m2 +m3,m3), (0,m2, 0), (m1, 0, 0), (m1, 0,m3),

(m1 +m2,m2, 0), (m1 +m2,m2 +m3,m3), (m1 +m2,m2,m3).
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By Lemma 4.4, the set of tableaux

{ 1 . . . 1︸ ︷︷ ︸
m1

12 . . . 12︸ ︷︷ ︸
m2

1 . . . 1︸ ︷︷ ︸
m3

, 1 . . . 1︸ ︷︷ ︸
m1

13 . . . 13︸ ︷︷ ︸
m2

1 . . . 1︸ ︷︷ ︸
m3

, 1 . . . 1︸ ︷︷ ︸
m1

12 . . . 12︸ ︷︷ ︸
m2

2 . . . 2︸ ︷︷ ︸
m3

,

1 . . . 1︸ ︷︷ ︸
m1

13 . . . 13︸ ︷︷ ︸
m2

3 . . . 3︸ ︷︷ ︸
m3

, 2 . . . 2︸ ︷︷ ︸
m1

12 . . . 12︸ ︷︷ ︸
m2

1 . . . 1︸ ︷︷ ︸
m3

, 2 . . . 2︸ ︷︷ ︸
m1

12 . . . 12︸ ︷︷ ︸
m2

2 . . . 2︸ ︷︷ ︸
m3

,

2 . . . 2︸ ︷︷ ︸
m1

23 . . . 23︸ ︷︷ ︸
m2

1 . . . 1︸ ︷︷ ︸
m3

, 2 . . . 2︸ ︷︷ ︸
m1

23 . . . 23︸ ︷︷ ︸
m2

2 . . . 2︸ ︷︷ ︸
m3

, 2 . . . 2︸ ︷︷ ︸
m1

23 . . . 23︸ ︷︷ ︸
m2

3 . . . 3︸ ︷︷ ︸
m3

}

are contained in the set of standard tableaux T ((1, 2, 1), (m1,m2,m3)). Their

respective standard monomials are

1, tm2
2 , (t1 + t3)m3 , tm2

2 (t2t3)m3 , tm1
1 , tm1

1 (t1 + t3)m3 ,

tm1
1 (t1t2)m2 , tm1

1 (t1t2)m2(t1 + t3)m3 , tm1
1 (t1t2)m2(t2t3)m3 .

The image of these nine polynomials under ν are exactly the vertices of ∆̃ listed

above. They are also contained in ∆, since ∆ = conv(ν(Θ(T (1, 2, 1), (m1,m2,m3)))).

Therefore, ∆̃ ⊆ ∆, and hence ∆ = ∆̃. This proves (b) and (c).

Given (c) we can compute the volume given in (d):

vol∆ =

∫ m1

0

∫ m3

0

∫ z+m2

0

dydzdx+

∫ m1+m2

m1

∫ m3

0

∫ z+m2

x−m1

dydzdx

=
1

2
m1m

2
3 +m1m2m3 +

1

2
m2m

2
3 +

1

2
m2

2m3.

Note that in Figure 4.1, the purple face is the plane y = z +m2, and the blue

face is the plane y = x−m1.

Remark 4.5. Since dim(Z(1,2,1)) = 3, we know from equation (1.2) in §1.2 that

the degree of the projective embedding of Z(1,2,1) in P(H0(Z(1,2,1),O(m1,m2,m3)))

equals 3!vol∆ = 3m1m
2
3 + 6m1m2m3 + 3m2m

2
3 + 3m2

2m3.
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In the next theorem we show that, when m has a certain form, these

Newton-Okounkov bodies ∆ are a�nely equivalent to the well-known Gelfand-

Zetlin polytopes from representation theory. For more details about Gelfand-

Zetlin polytopes, see e.g. [KST12, §3.1].

De�nition 4.6. The 3-dimensional Gelfand-Zetlin polytope GZ(λ1,λ2,λ3),

corresponding to a set of strictly increasing integers (λ1 < λ2 < λ3), can be

de�ned by the inequalities λ1 ≤ y ≤ λ2, λ2 ≤ x ≤ λ3, y ≤ z ≤ x.

Theorem 4.7. The Newton-Okounkov body ∆ := ∆(Z(1,2,1),O(0,m2,m3), ν)

is a�nely equivalent to the Gelfand-Zetlin polytope GZ(0,m2,m2+m3).

Figure 4.2: Newton-Okounkov body ∆(Z(1,2,1),O(0,m2,m3), ν).

Proof. By Theorem 4.3, we know ∆ is the polytope determined by the in-

equalities 0 ≤ x ≤ m2, 0 ≤ z ≤ m3, x ≤ y ≤ z + m2. Consider the a�ne

transformation ψ : ∆→ GZ(0,m2,m2+m3), where

ψ(x, y, z) =

0 0 1

1 0 0

0 1 0

xy
z

+

m2

0

0

 .

Since ψ is invertible, it su�ces to show that ψ(∆) ⊆ GZ(0,m2,m2+m3). If

(x′, y′, z′) are in the image im(ψ), then (x′, y′, z′) has the form (z + m2, x, y)
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for some (x, y, z) ∈ ∆. But then 0 ≤ x ≤ m2 implies that 0 ≤ y′ ≤ m2.

Similarly, 0 ≤ z ≤ m3 implies that m2 ≤ z + m2 ≤ m2 + m3, which im-

plies that m2 ≤ x′ ≤ m2 + m3. Similarly, x ≤ y ≤ z + m2 implies that

y′ ≤ z′ ≤ x′. By De�nition 4.6, GZ(0,m2,m2+m3) is the polytope determined by

the inequalities m2 ≤ x′ ≤ m2 +m3, 0 ≤ y′ ≤ m2, and y
′ ≤ z′ ≤ x′. Therefore

ψ(∆) ⊆ GZ(0,m2,m2+m3).
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Part II

Peterson Varieties
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Chapter 5

Background

The second part of this thesis gives a computation of Newton-Okounkov bod-

ies of a Peterson variety, which is a special type of Hessenberg variety. The

connections between Hessenberg varieties and combinatorics has been evi-

dent for some time. For instance, Harada and Tymoczko proved a Schubert-

calculus-type Monk formula for the equivariant cohomology of Peterson vari-

eties in purely combinatorial and manifestly-positive terms [HT11]. More re-

cently, a study of the cohomology of Hessenberg varieties led to a proof of the

Shareshian-Wachs conjecture, which is in turn related to the famous Stanley-

Stembridge conjecture in combinatorics (cf. [BC15], see also [AHHM15]).

Thus, it is of interest to compute combinatorial invariants associated to Hes-

senberg varieties and to relate them to known results.

In this thesis, we focus on Peterson varieties, which are a special case of

Hessenberg varieties, and are in a certain sense the �simplest� of the regular

nilpotent Hessenberg varieties, in a sense we make precise below. In fact, our

results in this thesis apply to the single special case Pet3, the Peterson variety

in Fl(C3). However, it is worth mentioning here that we have generalized
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some of the tools used in this thesis to the case of general n, notably the �at

family constructed in Chapter 6, in an ongoing collaboration with H. Abe and

M. Harada. In particular, at the time of this writing, we are optimistic that

we can compute the Newton-Okounkov bodies of Peterson varieties Petn for

general n using similar arguments to those in this thesis, at least under some

technical hypotheses on the choice of line bundle. We intend to discuss this

and related results in forthcoming work [ADH].

The above being said, because the motivation for the results in Part II of

this thesis stems from the broader context and also because our later argu-

ments (particularly the �at family mentioned above) require a discussion of

more general Hessenberg varieties, we brie�y recall below some history of this

research area, give the basic de�nitions, and record some explicit computations

and facts concerning the case of Pet3 ⊆ Fl(C3).

We thank Dave Anderson for teaching us the essence of the ideas and

techniques used in Chapter 6.

5.1 Hessenberg Varieties

Hessenberg varieties are subvarieties of the full �ag variety G/B. Histori-

cally, they have arisen in many contexts, including geometric representation

theory, numerical analysis, mathematical physics, combinatorics, and alge-

braic geometry, among others [Fun03, DMPS92, Kos96, Rie03, Ful99, BC04].

Furthermore, there are many special cases of Hessenberg varieties, such as

Springer varieties, which play a fundamental role in geometric representation

theory. Another special case, namely Peterson varieties, arise in the study of

the quantum cohomology of �ag varieties. In Part II of this thesis, we will

primarily be concerned with Peterson varieties.
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Peterson varieties were introduced in the 1990's by D. Peterson. Since then,

the geometry and combinatorics of Peterson varieties have been of particular

interest and have been actively researched. For example, as brie�y mentioned

above, Kostant [Kos96] showed that Peterson varieties have a dense subvari-

ety whose coordinate ring is isomorphic to the quantum cohomology of the

�ag variety, and Rietsch [Rie03] showed that the quantum parameters can be

realized as principal minors of certain Toeplitz matrices. In another direction,

Insko-Yong [IY12] have explicitly described the singular locus of Peterson va-

rieties of type A. There is much that is still unknown about the Peterson

variety. For additional background, see [HT11].

In what follows, let G = GLnC. These de�nitions can be generalized, but

here we will always work in type A.

We begin with the de�nition of a Hessenberg variety.

De�nition 5.1. Let X : Cn → Cn be a linear operator and h : {1, 2, . . . , n} →

{1, 2, . . . , n} a function satisfying h(i + 1) ≥ h(i) for all 1 ≤ i ≤ n − 1 and

h(i) ≥ i for all 1 ≤ i ≤ n. Such a h is called a Hessenberg function. The

Hessenberg variety associated to X and h is de�ned to be

Hess(X, h) := {V• ∈ Fl(Cn) | XVi ⊆ Vh(i)∀i}.

In particular, any Hessenberg variety Hess(X, h) is, by de�nition, a sub-

variety of the �ag variety Fl(Cn).

Remark 5.2. Since Hess(X, h) and Hess(gXg−1, h) are isomorphic varieties

∀ g ∈ G, we may always assume that X is in Jordan form with respect to the

standard basis on Cn.

Two important special cases of Hessenberg varieties are the regular semisim-

ple Hessenberg varieties and the regular nilpotent Hessenberg varieties. We will

encounter these varieties in Chapter 6.
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De�nition 5.3. A Hessenberg variety Hess(X, h) is called regular semisim-

ple if X is a semisimple operator with distinct eigenvalues. Equivalently, there

is a basis of Cn with respect to which X is diagonal with distinct entries along

the diagonal.

De�nition 5.4. A Hessenberg variety Hess(X, h) is called regular nilpotent

if X is a principal nilpotent operator. Equivalently, the Jordan canonical form

of X has a single Jordan block with eigenvalue zero, so up to a change of basis

X is of the form: 

0 1 0 · · · · · · 0

0 0 1 0 · · · 0
...

...
. . .

. . .
. . .

...
...

... · · ·
. . .

. . . 0
...

... · · · · · · 0 1

0 · · · · · · · · · · · · 0


.

5.2 Peterson Varieties

We will now give the precise de�nition of the Peterson variety. This variety

will be our main object of study in the chapters that follow.

De�nition 5.5. If X is a principal nilpotent operator and h is the Hessenberg

function de�ned by h(i) = i+1 for 1 ≤ i ≤ n−1 and h(n) = n, then Hess(X, h)

is called a Peterson Variety. In this case, we denote Hess(X, h) by Petn.

In the example that follows, we explicitly describe the subvarieties Pet2 and

Pet3 in Fl(C2) and Fl(C3) respectively. We also give the de�ning equations

of Pet3 ⊂ Fl(C3).

Example 5.6. For n = 2, we have Fl(C2) = {0 ⊂ V1 ⊂ V2 = C2}, and

let X =

(
0 1

0 0

)
. In this case, we always have XV1 ⊆ V2 = C2, so Pet2 =

Fl(C2) ∼= P1.
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For n = 3, Fl(C3) = {0 ⊂ V1 ⊂ V2 ⊂ V3 = C3}, and let X =

0 1 0

0 0 1

0 0 0

 .

Suppose V1 =

〈ab
c

〉 and V2 =

〈ab
c

 ,

de
f

〉. We needXV1 =

〈bc
0

〉 ⊂
V2. Note that we may express V1 as V1 =

〈αβ
1

〉 if c 6= 0, V1 =

〈γ1
0

〉 if

c = 0 and b 6= 0, and V1 =

〈1

0

0

〉 if c = b = 0. Then XV1 equals

〈β1
0

〉,
〈1

0

0

〉, and 〈
0

0

0

〉, in each case, respectively. In the �rst two cases, V1

and XV1 are linearly independent, so V2 is spanned by V1 and V2. In the last

case, XV1 = {0}, so the requirement XV1 ⊆ V2 is vacuous. Therefore, Pet3

consists of the following four types of �ags:


〈αβ

1

〉 ,〈
αβ

1

 ,

β1
0

〉 ,C3

 ,


〈γ1

0

〉 ,〈
γ1

0

 ,

1

0

0

〉 ,C3

 ,


〈1

0

0

〉 ,〈
1

0

0

 ,

0

δ

1

〉 ,C3

 ,


〈1

0

0

〉 ,〈
1

0

0

 ,

0

1

0

〉 ,C3

 ,

where α, β, γ, and δ are free parameters.

We will now �nd the de�ning equations of Pet3 in P2 × P2. We have

Pet3 ⊂ Fl(C3), and can map it into P2 × P2 using the Plücker mapping, p.

Given an element x of the �ag represented by a matrix

x =

x11 x12 x13

x21 x22 x23

x31 x32 x33


let Pi denote the leftmost 1× 1 minor in row i, and let Pij denote the leftmost
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2 × 2 minor in rows i and j. Then the Plücker mapping maps x to p(x) =

([P1 : P2 : P3], [P12 : P13 : P23]) ∈ P2 × P2. Recall that Fl(C3) is cut out in

P2×P2 by the equation P1P23−P2P13 +P3P12 (the Plücker relations of Gr(1)

and Gr(2) in P2 are trivial, and the incidence relation V1 ⊂ V2 ⊂ V3 gives this

single de�ning equation). For Pet3, XV1 ⊂ V2 ⇐⇒

det

x11 x12 x21

x21 x22 x31

x31 x32 0

 = 0 ⇐⇒ x21P23−x31P13 = 0 ⇐⇒ P2P23−P3P13 = 0.

Thus we conclude Pet3 = Z(P2P23−P3P13, P1P23−P2P13 +P3P12) ⊂ P2×P2.

Finally, we record the following facts about Peterson varieties which we use

in later chapters [IY12].

Theorem 5.7. [IY12, Cor. 1.8, Lemma 4.2] Consider Petn ⊂ GLnC/B.

(i) Petn is an irreducible variety of dimension n− 1.

(ii) Pet3 is normal and has a unique singular point at the identity1 0 0

0 1 0

0 0 1

 .
.
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Chapter 6

The Degree of Pet3

The goal of this chapter is to compute the degree of the Peterson variety

Pet3 with respect to a chosen Plücker mapping. By equation (1.2) in §1.2,

which relates the volume of a Newton-Okounkov body with the degree of a

projective embedding, this computation allows us to explicitly describe ∆ =

∆(Pet3, R(Vλ), ν) in the next chapter.

We compute the degree of Pet3 in an indirect manner, as we now describe.

It turns out that Pet3 can be realized as the special �bre of a �at family

of Hessenberg varieties, the generic �bre of which happens to be a smooth

projective toric variety. The fact that the generic �bre is toric allows us to

use standard techniques in equivariant topology, and in particular the Atiyah-

Bott-Berline-Vergne localization formula, to compute its degree. Then the

well-known result that the degree is constant along �bres of a �at family yields

our result.

We brie�y outline the contents of this chapter. In Section 6.1 we describe

the scheme structure of our family X of Hessenberg varieties. In Section 6.2

we show that the natural morphism p : X → Y = SpecC[t] ∼= C is �at. In
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Section 6.3 we show that the �bres of this family are reduced and hence can

be naturally identi�ed with the Hessenberg varieties (in the classical algebraic

geometry sense) de�ned in the previous chapter. Finally, in Section 6.4 we use

the Atiyah-Bott-Berline-Vergne localization formula to compute the degree of

a generic �bre of the �at family, and hence obtain the degree of Pet3.

Although some of the arguments in this chapter can readily be generalized

to the case of general n, for simplicity we restrict the discussion in this chapter

to the special case n = 3.

6.1 The De�nition of the Family p : X → Y

Let gl3(C) denote the Lie algebra of GL3(C), i.e. 3 × 3 matrices with entries

in C. For distinct complex numbers γ1, γ2, γ3 and z ∈ C let

Mz :=

zγ1 1 0

0 zγ2 1

0 0 zγ3

 .

Consider the subset

Y := {Mz ∈ gl3(C) | z ∈ C}

in the Lie algebra of gl3(C). Evidently Y is an a�ne line (not going through

the origin) in the vector space gl3(C), and we can give Y the induced reduced

closed subscheme structure. In particular we have

Y ∼= SpecC[t]

as schemes. Next consider the subset

X := {(V•,Mz) ∈ Fl(C3)× Y |MzVi ⊂ Vh(i), 1 ≤ i ≤ 3} ⊂ Fl(C3)× Y (6.1)
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where h(1) = 2, h(2) = 3, and h(3) = 3. Notice that there is a natural

projection map

p : X → Y

(V•,Mz) 7→Mz

and that each (set-theoretic) �bre Xz := p−1(Mz) ⊆ Fl(C3) is the Hessenberg

variety Hess(Mz, h) (see De�nition 5.1). In particular, when z = 0 we get

(set-theoretically) the Peterson variety Pet3 and when z 6= 0 we get a regular

semisimple Hessenberg variety (see De�nitions 5.5 and 5.3, respectively). As

mentioned above, the basic idea of this chapter is to view X as a family of

Hessenberg varieties over the a�ne line Y ∼= SpecC[t] and to use the �atness

of this family to compute the degree of the �bre X0
∼= Pet3. As a �rst step

in implementing this plan, we must describe the scheme structure on X and

also prove that the projection p : X → Y is a �at family. We must also verify

that the scheme-theoretic �bre of z ∈ SpecC[t] ∼= C, which by slight abuse of

notation we also denote by Xz, is reduced; this would allow us to identify the

scheme-theoretic �bre Xz with the corresponding Hessenberg varieties (in the

classical algebraic geometry sense) mentioned above. We do the �rst of these

tasks in the remainder of this section. The second task, of proving �atness,

occupies Section 6.2, and the proof that the scheme-theoretic �bres are reduced

is given in Section 6.3.

First recall that Fl(C3) has a standard scheme structure which can be

described explicitly using an open cover by a�nes, indexed by the permutation

group S3 (see for example [IY12, Section 2]). We already speci�ed, above, a

scheme structure on Y . Let Fl(C3)×Y denote the product scheme. We give X

a closed subscheme structure by locally giving generators for an ideal cutting

out the subset X. Since we work locally when we describe these ideals, we
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also check that our scheme structures are compatible with respect to gluing

a�ne charts.

We use the following open cover of Fl(C3) (see for example [IY12, §2]). Let

S3 denote the symmetric group on 3 elements and let U− denote the group of

3× 3 lower triangular unipotent matrices, so an element u ∈ U− has the form

u =

1 0 0

a 1 0

b c 1


for some a, b, c ∈ C. For each w ∈ S3 and u ∈ U− we write

Uw := {[wu] | u ∈ U−} ⊂ Fl(C3)

where we use [g] to denote the �ag represented by the matrix g ∈ GLn(C)

as in Section 1.3. Each Uw ⊂ Fl(C3) is isomorphic to U− ∼= C3 and Fl(C3)

decomposes into these six open cells

Fl(C3) =
⋃
w∈S3

Uw

where

U(123) =

 1 0 0

u1 1 0

u2 u3 1

 , U(213) =

v1 1 0

1 0 0

v2 v3 1

 , U(132) =

 1 0 0

w2 w3 1

w1 1 0


U(231) =

x2 x3 1

1 0 0

x1 1 0

 , U(312) =

y1 1 0

y2 y3 1

1 0 0

 , U(321) =

z2 z3 1

z1 1 0

1 0 0


(6.2)

and all the parameters are complex parameters. Next we �nd the (set-theoretic)

intersection of the subset X with each of these a�ne open cells. Consider, for

instance, the a�ne cell U(123). Recalling that X is de�ned by the conditions
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MzVi ⊂ Vh(i) for all i, we �nd that on U(123) this is equivalent to the condition

that

det

 1 0 zγ1 + u1

u1 1 zγ2u1 + u2

u2 u3 zγ3u2

 = 0

which in turn holds if and only if

(γ31u2 + γ12u1u3)z + (u2
1u3 − u1u2 − u2u3) = 0,

where we denote

γij := γi − γj.

Based on the above, we can equip the intersection U(123) ∩ X with a scheme

structure by de�ning

U(123)∩X := SpecC[u1, u2, u3, t]/
(
(γ31u2 + γ12u1u3)t+ (u2

1u3 − u1u2 − u2u3)
)
.

(6.3)

For each of the other �ve open cells, by computing their corresponding

determinantal equations, it is not hard to see that we can give the following

scheme structure to their intersections with X:

U(213) ∩X := SpecC[v1, v2, v3, t]/
(
(γ23v2 + γ12v1v3)t+ (v2

2 + v3 − v1v2v3)
)
,

U(132) ∩X := SpecC[w1, w2, w3, t]/
(
(γ12w2 + γ31w1w3)t+ (w2

2 − w1 − w1w2w3)
)
,

U(231) ∩X := SpecC[x1, x2, x3, t]/
(
(γ12x2 + γ23x1x3)t+ (x2

2x3 + 1− x1x2)
)
,

U(312) ∩X := SpecC[y1, y2, y3, t]/ ((γ23y2 + γ31y1y3)t+ (1− y2y3)) ,

U(321) ∩X := SpecC[z1, z2, z3, t]/ ((γ31z2 + γ23z1z3)t+ (z3 − z1)) . (6.4)

For notational simplicity, henceforth we denote by Aw the coordinate rings

of the Uw ∩X and by Iw the ideals appearing in the RHS of (6.4), so that

Uw ∩X := Spec(Aw)
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and Iw is the ideal of relations de�ning Aw, so for example

I(123) =
(
(γ31u2 + γ12u1u3)t+ (u2

1u3 − u1u2 − u2u3)
)
.

It is well known that the open charts Uw of the �ag Fl(C3), each of

which is isomorphic to C3 (where for example we regard U(123) as the scheme

SpecC[u1, u2, u3]), glue together to give a well-de�ned scheme structure on

Fl(C3). To show that the schemes (6.4) and (6.3) also glue, we must show

that there exist isomorphisms (i.e. change-of-coordinate morphisms) Uw∩Uv ⊂

Uw → Uw∩Uv ⊂ Uv for all pairs w, v which satisfy the usual cocycle conditions.

We show how to do this concretely for a concrete pair of w and v. It is not

hard to see that the intersection (X ∩U(123))∩ (X ∩U(213)) can be described as

D(u1) ⊆ U(123) and D(v1) ⊆ U(213). (Here we follow the notation of [Vak15],

so in particular, for an element f ∈ A, the subset D(f) in SpecA is de�ned as

{p | f 6∈ p}.) Indeed, if u1 6= 0, then the �ag 1 0 0

u1 1 0

u2 u3 1


in U(123) is equal to the �ag 1

u1
1 0

1 0 0
u2
u1

u2 − u1u3 1


in U(213). Similarly, if v1 6= 0, thenv1 1 0

1 0 0

v2 v3 1

 ∼
 1 0 0

1
v1

1 0
v2
v1

v2 − v1v3 1

 .
Recall that the coordinate ring of D(f) ⊆ SpecA is the localization Af .

With this in mind, we can de�ne an isomorphism between the coordinate rings
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of D(u1) and D(v1) by(
C[v1,v2,v3,t]

/
I(213)

)
v1

ϕ→
(
C[u1,u2,u3,t]

/
I(123)

)
u1

v1 7→
1

u1

v2 7→
u2

u1

v3 7→ u2 − u1u3.

The inverse can be easily checked to be(
C[u1,u2,u3,t]

/
I(123)

)
u1

ψ→
(
C[v1,v2,v3,t]

/
I(213)

)
v1

u1 7→
1

v1

u2 7→
v2

v1

u3 7→ v2 − v1v3.

Similar calculations with respect to other pairs of intersections con�rms

that the six coordinate patches indeed glue together to give a well-de�ned

global closed subscheme structure on X. It is also not di�cult to check di-

rectly the cocycle conditions. Moreover, the description given above evidently

realizes X as a closed subscheme of Fl(Cn)× Y .

6.2 Flatness of the Family p : X → Y

As already mentioned, there is a natural projection map

p : X → Y

(V•,Mz) 7→Mz

whose �bres are set-theoretically identi�able with Hessenberg varieties. In this

section we will show that this is in fact a �at morphism of schemes with respect
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to the scheme structures on X and Y de�ned in the previous section. In other

words, the �bres of this morphism form a �at family. For more details about

�atness see for example [Har77, Ch.3, §9].

We �rst recall the de�nition of a �at morphism.

De�nition 6.1. We say a morphism of schemes p : X → Y is �at at x ∈ X

if the stalk (OX)x is a �at (OY )p(x)-module. The morphism is called �at if it

is �at at every x ∈ X.

Since X can be covered by six open a�ne schemes, Uwi ∩X = Spec(Awi),

we can check for �atness by checking it on each open chart. The following

proposition will help us do just that, since Y = Spec(C[t]) is an a�ne scheme.

Proposition 6.2. [Har77, Proposition 9.2] Let B → A be a ring homomor-

phism. Then this is a �at ring homomorphism if and only if the corresponding

morphism of a�ne schemes SpecA→ SpecB is �at.

Using this proposition, we can see that it su�ces to show that for each

w ∈ S3, the morphism SpecAw → SpecC[t] corresponds to a �at ring homo-

morphism C[t]→ Aw, i.e., Aw is �at with respect to the C[t]-module structure

speci�ed by this ring homomorphism. In order to show that Aw is a �at C[t]-

module, we can take advantage of the fact that C[t] is a PID. We recall the

following useful criterion for this special case.

Proposition 6.3. [Har77, Example 9.1.3] Let B be a principal ideal domain

and let B → A be a ring homomorphism. Then this morphism is �at (i.e. A

is a �at B-module) if and only if A is a torsion-free B-module.

Before proceeding, we must �rst concretely describe the ring homomor-

phism ϕw : C[t] → Aw corresponding to Uw ∩X = SpecAw → Y = SpecC[t]
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for each w ∈ S3. From the description of the intersections Uw ∩ X given

in Section 6.1, it is not hard to see that for each w ∈ S3 the ring ho-

momorphism ϕw is given by the composition of the canonical inclusion of

C[t] into a larger polynomial ring (where the variable t gets sent to the

variable t) and the quotient map of the polynomial ring to its quotient by

the ideal Iw. So for example ϕ(123) : C[t] → A(123) is the composition of

the usual inclusion C[t] ↪→ C[u1, u2, u3, t] with the quotient homomorphism

C[u1, u2, u3, t] → A(123) := C[u1, u2, u3, t]/I(123). This ring homomorphism

then de�nes the C[t]-module structure on Aw.

We are now ready to prove that our morphism is �at.

Proposition 6.4. The morphism of schemes p : X → Y is �at.

Proof. By our discussion above, it su�ces to show that for each w ∈ S3, the

coordinate ring Aw contains no torsion element as a C[t]-module. In other

words, for each Aw we want to show that zero is the only element of Aw that

can be annihilated by a non-zero element of C[t].

For concreteness, let us �rst consider

A(123) = C[u1, u2, u3, t]/
(
(γ31u2 + γ12u1u3)t+ (u2

1u3 − u1u2 − u2u3)
)
.

Let f ∈ C[u1, u2, u3, t], g 6= 0 ∈ C[t] and suppose fg ≡ 0 in A(123). We

wish to show that f ≡ 0 in A(123).

Given fg ≡ 0, this implies that there exists a h ∈ C[u1, u2, u3, t] such that

fg = h
(
(γ31u2 + γ12u1u3)t+ (u2

1u3 − u1u2 − u2u3)
)
∈ C[u1, u2, u3, t].

Since g ∈ C[t] does not contain any positive powers of the variables u1, u2, u3,

it cannot be a multiple of (γ31u2+γ12u1u3)t+(u2
1u3−u1u2−u2u3) in C[u1, u2, u3, t].

Since C[u1, u2, u3, t] is a UFD, it now su�ces to show that (γ31u2 +γ12u1u3)t+
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(u2
1u3 − u1u2 − u2u3) is irreducible in C[u1, u2, u3, t], since that would imply

that it divides f .

To see this, suppose F,G ∈ C[u1, u2, u3, t] are such that

FG = (γ31u2 + γ12u1u3)t+ (u2
1u3 − u1u2 − u2u3). (6.5)

Since the right-hand side has degree 1 with respect to the variable t, we can

assume without loss of generality that

F = F1t+ F0 for F1, F0 ∈ C[u1, u2, u3], G = G0 ∈ C[u1, u2, u3].

Then (6.5) is equivalent to

F1G0 = γ31u2 + γ12u1u3 and F0G0 = u2
1u3 − u1u2 − u2u3. (6.6)

Since the right-hand side of the �rst equation in (6.6) is a degree-1 polynomial

with respect to the variable u2 with a non-zero constant coe�cient, it is not

di�cult to see that either F1 or G0 must be a constant polynomial.

Now suppose in order to obtain a contradiction that F1 = k, where k ∈ C

is non-zero. Then by the �rst equation in (6.6) we have

G0 =
1

k
(γ31u2 + γ12u1u3). (6.7)

Substituting G0 into the second equation in (6.6) we obtain

F0G0 = F0
1

k
(γ31u2 + γ12u1u3) = u2

1u3 − u2(u1 + u3). (6.8)

Note that the RHS of (6.8) is degree-1 in the variable u2. Since the factor

1
k
(γ31u2 + γ12u1u3) is also degree-1 in u2 (recall γ31 6= 0 by assumption on the

eigenvalues γi), we must have that F0 is degree-0 with respect to the variable

u2. Now, comparing coe�cients in front of the u2 term, we see then that we

must have

F0 =
−k
γ31

(u1 + u3).
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Taking the G0 found in (6.7), this means that

F0G0 = −u2(u1 + u3)− γ12

γ31

u1u3(u1 + u3)

which is a contradiction, since this does not equal the F0G0 found in (6.8).

(Recall as before that γ12 6= 0 and γ31 6= 0.) Therefore, G0 = G must be

a constant polynomial. Hence (γ31u2 + γ12u1u3)t + (u2
1u3 − u1u2 − u2u3) is

irreducible, and thus A(123) is torsion-free.

Similar arguments show that Aw is C[t]-torsion-free for the non-identity

elements in S3. Since �atness is a local property, we conclude p : X → Y is a

�at morphism, as desired.

6.3 Reducedness of the Fibres of the Flat Family

Having shown that the family p : X → Y is �at in Section 6.2, our next task

� which we accomplish in this section � is to prove that the �bres of p are

reduced schemes. This will allow us to compute the degree of Pet3 in the next

section.

We �x a choice of a (closed) point z ∈ Y ∼= C ∼= SpecC[t] for the duration

of this discussion. We �rst recall (cf. for example [Har77, Ch. 2.3, pg. 89])

that the �bre over z of the morphism p : X → Y is de�ned to be the scheme-

theoretic �bre product

Xz := X ×Y Spec k(z)

where k(z) denotes the residue �eld of the local ring C[t](t−z):

k(z) := C[t](t−z)/m ∼= C ;
f(t)

g(t)
+ m 7→ f(z)

g(z)
.
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In particular, the C[t]-module structure on k(z) ∼= C is speci�ed by the ring

homomorphism C[t]→ k(z) ∼= C which evaluates a polynomial at the value z,

i.e., f(t) 7→ f(z).

For our purposes, it su�ces to know that in the case of a�ne schemes, the

�bre product SpecA×SpecC SpecB of ϕ : SpecA→ SpecC and ψ : SpecB →

SpecC is given by Spec(A ⊗C B), where the C-algebra structure of A and

B are speci�ed by the maps C → A and C → B corresponding to ϕ and ψ.

Using the open cover X = ∪w∈S3SpecAw of X constructed in Section 6.1, we

may therefore describe a �bre Xz as follows:

Xz :=X ×Y Spec k(z) =

( ⋃
w∈S3

SpecAw

)
×Y Spec k(z)

=
⋃
w∈S3

(
SpecAw ×SpecC[t] Spec k(z)

)
∼=
⋃
w∈S3

Spec
(
Aw ⊗C[t] k(z)

)
. (6.9)

Recall that each of the rings Aw above are of the form C[a, b, c, t]/Iw for

some variables a, b, c and an ideal Iw, and is equipped with the natural C[t]-

module structure induced by the natural inclusion C[t] ↪→ C[a, b, c, t]. The

following is then immediate from the given module structure on k(z) ∼= C.

Lemma 6.5. Let k(z) ∼= C be as above. Let I be an ideal of C[a, b, c, t] and

equip C[a, b, c, t]/I with the natural C[t]-module structure as above. Then

(C[a, b, c, t]/I)⊗C[t] k(z) ∼= C[a, b, c]/It=z

as C-algebras, where It=z denote the ideal of C[a, b, c] obtained from I by setting

t equal to z, i.e.,

It=z := {f(a, b, c, z) ∈ C[a, b, c] | f(a, b, c, t) ∈ I} .
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Henceforth we let Bw denote the ring Aw ⊗C[t] k(z). From Lemma 6.5 it

immediately follows that

Spec(B(123)) ∼= SpecC[u1, u2, u3]/
(
(γ31u2 + γ12u1u3)z + (u2

1u3 − u1u2 − u2u3)
)
,

Spec(B(213)) ∼= SpecC[v1, v2, v3]/
(
(γ23v2 + γ12v1v3)z + (v2

2 + v3 − v1v2v3)
)
,

Spec(B(132)) ∼= SpecC[w1, w2, w3]/
(
(γ12w2 + γ31w1w3)z + (w2

2 − w1 − w1w2w3)
)
,

Spec(B(231)) ∼= SpecC[x1, x2, x3]/
(
(γ12x2 + γ23x1x3)z + (x2

2x3 + 1− x1x2)
)
,

Spec(B(312)) ∼= SpecC[y1, y2, y3]/ ((γ23y2 + γ31y1y3)z + (1− y2y3)) ,

Spec(B(321)) ∼= SpecC[z1, z2, z3]/ ((γ31z2 + γ23z1z3)z + (z3 − z1)) (6.10)

and from (6.9) it follows that these six a�ne schemes form an open cover of

the �bre Xz.

We now wish to show that each scheme-theoretic �bre Xz is in fact a re-

duced scheme, and hence corresponds to a Hessenberg variety in the classical

algebraic-geometric sense. In particular, X0 corresponds to the Peterson vari-

ety Pet3 and Xz for z 6= 0 corresponds to the regular semisimple Hessenberg

variety

Hess(Mz, h), (6.11)

with Hessenberg function h(1) = 2, h(2) = 3, and h(3) = 3 and matrix

Mz =

zγ1 1 0

0 zγ2 1

0 0 zγ3

 .

For reference, we recall the de�nition of reducedness (see e.g. [Vak15,

De�nition 5.2.1]).

De�nition 6.6. A ring is said to be reduced if it has no non-zero nilpotents.

A scheme X is reduced if OX(U) is reduced for every open set U of X.
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The following is the main result of this section.

Proposition 6.7. The �bres Xz of p : X → Y are reduced for all closed points

z ∈ Y .

Proof. It is clear from De�nition 6.6 that reducedness is a local property, so

it su�ces to show that each SpecBw is reduced. It is also straightforward

[Vak15, Exercise 5.2.B] to see that an a�ne scheme SpecB is reduced if B

is a reduced ring, so in our case it su�ces to show that each Bw is reduced.

By Lemma 6.5, each of the rings Bw is a polynomial ring modulo a principal

ideal, generated by a polynomial which we denote here by fw. To show that

Bw is reduced, it now su�ces to show that this ideal is radical, and since prime

ideals are radical, we will show that the generator fw is irreducible.

The argument showing that each fw is irreducible is similar to the argument

given in Proposition 6.4. One di�erence, however, is that in the argument

below we must treat the cases z = 0 and z 6= 0 separately. Since the proof for

all six possibilities of w ∈ S3 are nearly identical, we only provide details for

the case w = (123) and leave the other cases to the reader.

Let w = (123) and suppose z 6= 0. Then the generator fw for the de�ning

ideal of B(123) is

(γ31u2 + γ12u1u3)z + (u2
1u3 − u1u2 − u2u3).

Suppose F and G are polynomials in C[u1, u2, u3] such that

FG = (γ31z − u1 − u3)u2 + γ12zu1u3 + u2
1u3. (6.12)

The right-hand side of (6.12) is linear in the variable u2. Therefore, without

loss of generality, we may assume that

F = F1u2 + F0 and G = G0 for F1, F0, G0 ∈ C[u1, u3].
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Moreover,

F1G0 = γ31z − u1 − u3 and F0G0 = γ12zu1u3 + u2
1u3. (6.13)

Since the right-hand side of the �rst equation in (6.13) is a degree-1 polynomial

with respect to the variable u1 with a non-zero constant coe�cient, it is not

di�cult to see that either F1 or G0 must be a constant polynomial. Suppose

in order to obtain a contradiction that F1 = k is a non-zero constant. Then

the �rst equation of (6.13) implies that

G0 =
1

k
(γ31z − u1 − u3). (6.14)

Substituting into the second equation of (6.13) tells us

F0G0 =
F0

k
(γ31z − u1 − u3) = (γ12zu1 + u2

1)u3. (6.15)

Note that both G0 and the RHS of (6.15) are degree-1 polynomials in u3.

Hence F0 must be degree-0 in u3. Comparing coe�cients in front of u3 in

(6.15), we conclude that that

F0 = −k(γ12zu1 + u2
1). (6.16)

Multiplying the expressions for F0 and G0 from (6.16) and (6.14) respectively,

we obtain

F0G0 = (γ12zu1 + u2
1)u3 + (γ12zu1 + u2

1)(u1 − γ31z)

which is not equal to the expression for F0G0 in (6.15), yielding a contradiction.

Therefore, G = G0 must be a constant polynomial, and we conclude that

(γ31u2 + γ12u1u3)z + (u2
1u3 − u1u2 − u2u3) is irreducible, as desired.

Next we consider the case z = 0. Then the generator for the de�ning ideal

of B(123) is

u2
1u3 − u1u2 − u2u3.
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Suppose F and G are polynomials in C[u1, u2, u3] such that

FG = (u2
1 − u2)u3 − u1u2.

The right-hand side is degree-1 in u3, so once again without loss of generality

we may assume that

F = F1u3 + F0 and G = G0 for F1, F0, G0 ∈ C[u1, u2].

Moreover,

F1G0 = u2
1 − u2 and F0G0 = −u1u2. (6.17)

Since the �rst equation in (6.17) is linear in u2 with a non-zero constant coe�-

cient, again it is not hard to see that either F1 or G0 is a constant polynomial.

If F1 = k is constant with k 6= 0, then G0 = 1
k
(u2

1 − u2). Substituting into the

second equation of (6.17) gives

F0G0 =
F0

k
(u2

1 − u2) = −u1u2.

By arguments similar to the above, F0 must have degree 0 with respect to u2.

Comparing the coe�cients in front of u2, we must have that F0 = ku1, and so

F0G0 = u3
1 − u1u2

which does not equal −u1u2, yielding a contradiction. Therefore, G0 = G must

be a constant polynomial, and u2
1u3−u1u2−u2u3 is irreducible, as desired.

6.4 The Degree of Pet3 via Equivariant Local-

ization

The results in the previous sections allow us to compute the degree of the

Peterson variety Pet3, as we now explain. The key is the well-known fact that

degrees are preserved under �at families.
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Theorem 6.8. [Har77, Corollary 9.10, pg. 263] Let T be a connected noethe-

rian scheme, and let X ⊆ Pn × T be a closed subscheme which is �at over T .

For any t ∈ T , let Xt denote the �bre, considered as a closed subscheme of

Pn × Spec k(t), where k(t) is the residue �eld of t. Then the degree of Xt is

independent of t.

In our setting, recall that we can view the �ag variety Fl(C3) as a subvariety

of some (large) projective space PN via a Plücker mapping. Since the total

space X of our �at family is by de�nition a closed subscheme of Fl(C3)× Y ,

we may use the mapping Fl(C3) ⊆ PN to view X as a closed subscheme of

PN × Y as well. Also note that SpecC[t] ∼= C is both connected (since it

is irreducible) and noetherian (since C[t] is a PID). We have also shown in

Section 6.2 that p : X → Y is �at. Hence Theorem 6.8 applies. Moreover,

recall that we saw in Section 6.3 that the �bres Xz are reduced and therefore

that X0 can be identi�ed with the Peterson variety Pet3 of De�nition 5.5 and

Xz for z 6= 0 with a regular semisimple Hessenberg variety as in De�nition 5.3.

In particular, since each �bre is reduced, its degree (as a scheme) coincides

with the degree of its embedding in PN as a classical algebraic variety. Thus

by Theorem 6.8 we may conclude

deg(Pet3) = deg(Hess(Mz, h)) for any z 6= 0, z ∈ C. (6.18)

In order to achieve our goal of computing deg(Pet3) it therefore su�ces to

compute deg(Hess(Mz, h)); this latter computation is simpler due to the fact

that this regular semisimple Hessenberg variety is in fact a smooth projective

toric variety.

Before proceeding we recall the cohomological formula for the degree of a

projective algebraic variety. We �x for the duration of this discussion a choice

of Plücker mapping (as described in Section 1.3) of Fl(C3) into some projective
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space PN . Since Hess(Mz, h) is a subvariety of Fl(C3), by composing with

the inclusion map Hess(Mz, h) ↪→ Fl(C3) we also obtain a mapping of the

Hessenberg variety Hess(Mz, h) ↪→ PN . Let LHess(Mz ,h) denote the Plücker

bundle restricted to Hess(Mz, h) under this mapping, i.e., the pullback via

this mapping of the anti-tautological line bundle O(1) on PN . Then the degree

of Hess(Mz, h) with respect to this mapping is given by

deg(Hess(Mz, h)) =

∫
Hess(Mz ,h)

c1(LHess(Mz ,h))
2 (6.19)

where c1(LHess(Mz ,h)) denotes the �rst Chern class of the line bundle LHess(Mz ,h)

[GH78, Section 1.3, pg. 171]. As already mentioned, for z 6= 0 and Hessenberg

function h with h(1) = 2, h(2) = h(3) = 3, it is known that the Hessen-

berg variety Hess(Mz, h) is a smooth projective toric variety [DMPS92]. This

fact allows us to use the well-known Atiyah-Bott-Berline-Vergne formula to

compute the integral on the RHS of (6.19). The Peterson variety Pet3, in

contrast, is not smooth (cf. Theorem 5.7); this explains why it is useful to

�rst relate the degrees of Pet3 and Hess(Mz, h) and then to compute the de-

gree of Hess(Mz, h) instead. In fact, since the degree is constant along the

�bres of a �at family, we may, without loss of generality, compute the degree

of Hess(M1, h).

We now recall the famous theorem of Atiyah-Bott-Berline-Vergne.

Theorem 6.9. [AB84, BV82] Let M be a compact complex manifold of real

dimension 2m and let T ∼= (S1)n be a compact torus acting on M . Suppose

the T -�xed point set MT is �nite. Then for α ∈ H2m
T (M) we have∫

M

α =
∑
p∈MT

α(p)

eT (p)
,

where eT (p) denotes the T -equivariant Euler class of the normal bundle to the

T -�xed point p ∈MT .
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Before proceeding, some comments are in order regarding Theorem 6.9.

The class α mentioned in the theorem and the notation
∫
M
α refers to an

equivariant cohomology class and the equivariant integral
∫
M

: H∗T (M) →

H∗−2m
T (M) respectively, whereas the computation of the degree in (6.19) uses

the ordinary integral
∫
M

: H∗(M) → H∗−2m(M) of an ordinary cohomology

class c1(LHess(Mz ,h))
2. These maps are related by the commutative diagram

H∗T (M) −−−→ H∗−2m
T (M)y y

H∗(M) −−−→ H∗−2m(M)

where the horizonal arrows are the integrals and the vertical arrows are for-

getful maps. In particular, since H0
T (M) ∼= H0(M) ∼= C and the right ver-

tical arrow is an isomorphism in degree 0, in order to compute the RHS

of (6.19) it su�ces to �nd an equivariant lift of the ordinary cohomology class

c1(LHess(Mz ,h))
2. The equivariant cohomology class cT1 (LHess(Mz ,h))

2 coming

from the equivariant �rst Chern class is a natural candidate. The discussion

above therefore implies that it now su�ces to compute∫
Hess(Mz ,h)

cT1 (LHess(Mz ,h))
2

using ABBV (Theorem 6.9).

In order to use the Atiyah-Bott-Berline-Vergne formula we will need to

describe the variety Hess(Mz, h) and its T -action more precisely. For the

remainder of this discussion we �x z = 1. First observe that since M1 has

distinct eigenvalues, it is diagonalizable and hence there exists a g ∈ GLn(C)

with

gM1g
−1 = A :=

γ1 0 0

0 γ2 0

0 0 γ3

 .
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It is not di�cult to see that for g ∈ GLn(C) as above and from the de�nition

of the GL3(C)-action on Fl(C3) that we have

g ·Hess(M1, h) = Hess(gM1g
−1, h) = Hess(A, h).

Since the Plücker mapping is also GL3(C)-equivariant, where the target PN

is realized as the projectivization of a GL3(C)-representation in a well-known

way [Bri05], it follows that the degree of Hess(M1, h) in PN is equal to that of

Hess(A, h). So in what follows we compute the degree of Hess(A, h) instead.

Next we recall the torus action on Hess(A, h). Recall that the group

GL3(C) acts on Fl(C3) by left multiplication. This action restricts to an

action of the usual maximal torus of GL3(C), namely, the subgroup of diagonal

matrices

T =


t1 0 0

0 t2 0

0 0 t3

 | ti ∈ C

 ∼= C3.

Since A is itself a diagonal matrix, we have tAt−1 = A for any t ∈ T . It is

not hard to see that this implies that the action of T on Fl(C3) preserves the

subvariety Hess(A, h), i.e., that T acts on Hess(A, h). Moreover, since this

action is de�ned simply by restricting the action on Fl(C3), it is immediate

that Hess(A, h)T ⊆ Fl(C3)T . It is well-known that the T -�xed point set of

Fl(C3) is given by the �ags represented by the permutation matrices (which in

turn we identify with S3), so in particular, the �xed point set Hess(A, h)T is

�nite. In fact it is not di�cult to see that any �ag represented by a permutation

matrix is contained in Hess(A, h), so we have Hess(A, h)T ∼= S3.

The above discussion shows that the ABBV formula of Theorem 6.9 applies

to our situation. Identifying Hess(A, h)T with S3 as above, we have∫
Hess(A,h)

c1(LHess(A,h))
2 =

∑
w∈S3

cT1 (LHess(A,h))
2(w)

eT (w)
. (6.20)
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To compute the RHS of (6.20), we therefore need to compute the restriction

to the T -�xed points of the T -equivariant Chern classes cT1 (LHess(A,h)) and also

the T -equivariant Euler classes of the normal bundle at the T -�xed points.

We begin with the equivariant Chern classes. Computations for the bundle

LHess(A,h) will be more convenient using a di�erent description of it, as follows.

Following our conventions in Section 1.3, let λ = (λ1, λ2, 0) ∈ Z3 with λ1 ≥

λ2 ≥ 0 and let ϕλ denote the corresponding Plücker mapping of Fl(C3). Let B

denote the standard Borel subgroup in GL3(C) of invertible upper triangular

matrices as in Section 1.3 and de�ne a one-dimensional representation of B

associated to λ as follows:

for b =

t1 b12 b13

0 t2 b23

0 0 t3

 ∈ B and z ∈ C de�ne b · z := tλ11 t
λ2
2 z. (6.21)

We can now de�ne a line bundle Lλ over the �ag variety Fl(C3) ∼= GL3C/B

using the above action. More precisely, we de�ne the total space of the bundle

as a quotient

Lλ := GL3C×B Cλ = GL3(C)× C
/

(gb, z) ∼ (g, b · z) (6.22)

where the action of B on C is given by (6.21) and the right action of B on

GL3(C) is given by right multiplication in the group GL3(C). The projection

π : Lλ → Fl(C3) is given by projecting to the left factor, i.e. π([g, b]) = gB ∈

Fl(C3) = GL3(C)/B. It is easy to see that left multiplication by T on the left

factor of GL3(C)× C induces a T -equivariant line bundle structure on Lλ.

It is well-known that this line bundle Lλ is T -equivariantly isomorphic to

the Plücker bundle Lλ = ϕ∗λ(O(1)) over the �ag variety [Ful97, §9.3, pg. 143].

Therefore the T -equivariant line bundle LHess(A,h) can also be equivalently

described as the restriction to Hess(A, h) of the line bundle Lλ → Fl(C3),
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and this will turn out to be more amenable to computation. By slight abuse

of notation, below we will use the same notation Lλ to denote the restriction

to Hess(A, h) of the bundle Lλ above.

We now quickly recall some facts about equivariant cohomology.1 We refer

the reader to e.g. [Web12, GGK02] for more details on equivariant cohomology.

For a T -equivariant line bundle Lλ the equivariant Chern class cT1 (Lλ) is an

element in H2
T (Hess(A, h)). Recall that for a T -�xed point w ∈ Hess(A, h)T ,

the T -equivariant inclusion w ↪→ Hess(A, h) (where the T -action on the point

w is trivial) induces a pullback

H∗T (Hess(A, h))→ H∗T (w) ∼= C[u1, u2, u3], α 7→ α(w) (6.23)

where the isomorphism H∗T (w) ∼= C[u1, u2, u3] can be derived from the de�-

nition of equivariant cohomology as H∗T (w) := H∗(ET ×T {w}) ∼= H∗(BT )

where ET → BT is the universal bundle over the classifying space BT of

T . Here the variables ui each have cohomological degree 2. In the nota-

tion of the RHS of (6.20) we need to compute cT1 (Lλ)(w), i.e. the image of

cT1 (Lλ) ∈ H2
T (Hess(A, h)) in H∗T (w) ∼= C[u1, u2, u3] under the map (6.23).

Since the polynomial variables have degree 2, the restriction must be a lin-

ear polynomial in the variables. Indeed, from the naturality of Chern classes

it follows that cT1 (Lλ)(w) is the T -equivariant Chern class of the line bundle

Lλ restricted to the T -�xed point w ∈ Hess(A, h)T ∼= S3. Since w is a T -

�xed point, the �bre over p is a (one-dimensional) T -representation, and it is

well-known that the T -equivariant Chern class cT1 (Lλ|w) is then exactly the

T -weight of this representation.

The above discussion shows that we must compute the weights of the T -

representation on the �bre of Lλ over each w ∈ S3. To �nd these weights we

1We always work with cohomology with C-coe�cients.
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will need the following. Let w ∈ S3. For an element

t = (t1, t2, t3) =

t1 0 0

0 t2 0

0 0 t3

 ∈ T
let tw denote the �permuted� element

tw :=

tw(1) 0 0

0 tw(2) 0

0 0 tw(3)

 .

For the remainder of this discussion we identify an element w ∈ S3 with a

permutation matrix in GL3(C) in the standard way, and multiplication of an

element in S3 with an element of T as multiplication of matrices in GL3(C).

The following is then an easy matrix computation.

Lemma 6.10. Given w ∈ S3 and t ∈ T we have tw = wtw.

We remind the reader that the dictionary between T -representations and

linear polynomials in H2
T (w) ∼= C[u1, u2, u3] is given as follows: if T acts on a

1-dimensional vector space C by

t · z = (t1, t2, t3) · z = (tβ11 t
β2
2 t

β3
3 )z

for some integers βi ∈ Z, then the corresponding linear polynomial (i.e. the

�T -weight�) is β1u1 +β2u2 +β3u3. With respect to this dictionary, we compute

the T -weights of the �bres (Lλ)w = Lλ|w in the next lemma. Recall that our

choice of λ is such that λ = (λ1, λ2, 0).

Lemma 6.11. Let w ∈ S3. Let λ = (λ1, λ2, 0) ∈ Z3 with λ1 ≥ λ2 ≥ 0

and Lλ de�ned as above. Then the T -weight of the T -representation (Lλ)w is

λ1uw(1) + λ2uw(2).
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Proof. As above, we view an element w ∈ S3 as a T -�xed point of Fl(C3) by

viewing it as a permutation matrix in GL3(C) (and its corresponding �ag). A

point in the �bre (Lλ)w can be represented by a pair (w, z) for some z ∈ C. For

t ∈ T acting on the left component by left multiplication we have t · (w, z) =

(tw, z). By Lemma 6.10 this equals (wtw, z), which is equivalent to (w, tw ·z) =

(w, tλ1w(1)t
λ2
w(2)t

0
w(3)z). Therefore, with respect to the association given above, the

T -weight of this representation is λ1uw(1) + λ2uw(2), as desired.

From the discussion above, we conclude

cT1 (Lλ)(w) = λ1uw(1) + λ2uw(2). (6.24)

The last computations required to evaluate the RHS of (6.20) are the T -

equivariant Euler classes eT (w) of the normal bundle of Hess(A, h) at w for

each w ∈ Hess(A, h)T ∼= S3. Since w is an isolated T -�xed point, the normal

bundle is just the tangent space TwHess(A, h) of Hess(A, h) at w, and this

is naturally a T -representation. It is well-known (see for example [Web12,

§3, pg.11]) in this situation that the T -equivariant Euler class eT (w) is the

product of the T -weights appearing in the decomposition of TwHess(A, h)

into T -weight spaces. Hence our main remaining task is to describe these

weights. For this purpose, let α1 and α2 denote the positive simple roots of

GL3C with respect to the standard Borel subgroup B and let gαi denote the

weight space generated by the simple root αi. We recall the following.

Lemma 6.12. [DMPS92, Lemma 7] Let w ∈ S3 be a T -�xed point of Hess(A, h).

The tangent space of Hess(A, h) at a w is isomorphic to w (⊕2
i=1gαi)w

−1 as a

T -representation, i.e.

TwHess(A, h) ∼= w
(
⊕2
i=1gαi

)
w−1
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where the notation on the RHS indicates the S3-action on the Lie algebra gl3(C)

of GL3(C) by (matrix) conjugation.

From Lemma 6.12 it immediately follows that the T -equivariant Euler class

is equal to the product of the weights of wgα1w
−1 and wgα2w

−1. We will now

compute these weights more concretely, in terms of the variables ui. Recall

that E12 (the matrix with a 1 in the (1, 2)-th entry and 0s elsewhere) and E23

spans gα1 and gα2 , respectively, in gl3(C). Recall also, as mentioned in the

statement of Lemma 6.12, that S3 acts on gl3(C) by conjugation. Fix w ∈ S3.

Using Lemma 6.10 it is straightforward to compute

t · wE12w
−1 = (tw(1)t

−1
w(2))wE12w

−1 and t · wE23w
−1 = (tw(2)t

−1
w(3))wE23w

−1.

Hence, the weights of wgα1w
−1 and wgα2w

−1 are tw(1)− tw(2) and tw(2)− tw(3),

respectively, and we obtain the following.

Lemma 6.13. Let w ∈ S3. The T -equivariant Euler class of the normal

bundle to w in Hess(A, h) is

eT (w) = (uw(1) − uw(2))(uw(2) − uw(3)). (6.25)

With the above in place, we may now compute the degree of Hess(A, h).

Note that in the line bundles we consider we always have that λ1 ≥ λ2 and

λ3 = 0 Therefore, for notational convenience in future sections, we denote

a1 := λ2, a2 := λ1 − λ2, and a3 := 0 given a �xed λ = (λ1, λ2, 0). In other

words, we have λ = (a1 + a2, a1, 0).

Theorem 6.14. The degree of Hess(A, h) with respect to the mapping de-

termined by the pullback of the Plücker line bundle Lλ = LHess(A,h) for λ =

(a1 + a2, a1, 0) is a2
1 + 4a1a2 + a2

2, i.e.

deg(Hess(A, h)) = a2
1 + 4a1a2 + a2

2.
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Proof. By Theorem 6.9, it su�ces to compute the equation given in (6.20).

By equations (6.24) and (6.25) we have that

cT1 (Lλ)(w) = (a1 + a2)uw(1) + a1uw(2)

and

eT (w) = (uw(1) − uw(2))(uw(2) − uw(3)).

Simplifying ∑
w∈S3

((a1 + a2)uw(1) + a1uw(2))
2

(uw(1) − uw(2))(uw(2) − uw(3))
,

in Sage for example, gives a2
1 + 4a1a2 + a2

2.

By our discussion at the beginning of this section, we have the following

corollary.

Corollary 6.15. The degree of Pet3 with respect to the mapping determined

by the pullback of the Plücker line bundle L(a1+a2,a1,0)|Pet3 ∼= L(a1+a2,a1,0)|Pet3 is

a2
1 + 4a1a2 + a2

2, i.e.

deg(Pet3) = a2
1 + 4a1a2 + a2

2.
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Chapter 7

Computing a Newton-Okounkov

Body of Pet3

The results in the previous section allow us now to explicitly compute Newton-

Okounkov bodies of Peterson varieties Pet3, ∆(Pet3, R(Vλ), ν), where Vλ is the

image of H0(Fl(C3),Lλ) in H0(Pet3,Lλ |Pet3) and Lλ is the Plücker bundle

over Fl(C3) corresponding to λ (see De�nition 1.22).

7.1 Young Tableaux

In order to compute the Newton-Okounkov body of Pet3, we need to consider

line bundles over Pet3 and their spaces of sections. To do this, we �rst recall

some terminology (for more details see [Ful97]).

De�nition 7.1. A Young diagram of shape λ = (λ1 ≥ . . . ≥ λn−1 ≥ λn =

0) ∈ Zn is a collection of boxes arranged in left-justi�ed rows of size λi.

Example 7.2. The Young diagram of shape λ = (4, 3, 2, 0) is .
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Note that a Young diagram of shape λ = (λ1 ≥ . . . ≥ λn−1) is the same as

one of shape λ′ = (λ1 ≥ . . . ≥ λn−1 ≥ λn = 0), that is, we may always add

any number of �rows of length 0� to a Young diagram without changing the

diagram. In this chapter it will be convenient for us to assume that the last

entry in λ is 0, as we do in the de�nition below.

De�nition 7.3. The conjugate of λ = (λ1 ≥ . . . ≥ λn−1 ≥ λn = 0), denoted

λ̃ = (λ̃1 ≥ . . . ≥ λ̃λ1 > 0), is the diagram obtained by �ipping λ over its main

diagonal. In other words, λ̃i is the length of column i in the Young diagram

λ, counting from the left. There are an−i := λi − λi+1 columns of size i in

the Young diagram of shape λ, where here we use the convention that λn = 0.

Thus, λ̃ = (n− 1, . . . , n− 1︸ ︷︷ ︸
a1

, n− 2, . . . , n− 2︸ ︷︷ ︸
a2

, . . . , 1, . . . , 1︸ ︷︷ ︸
an−1

).

Example 7.4. If λ = (4, 3, 2, 0), as in Example 7.2, then a3 = 1, a2 = 1, and

a1 = 2, so λ̃ = (3, 3, 2, 1) and

λ̃ = .

De�nition 7.5. Let λ = (λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ λn = 0) ∈ Zn be a

Young diagram. A semistandard Young tableau, T , is a �lling of a Young

diagram of shape λ by positive integers (possibly with repetition) from the set

{1, 2, . . . , n} such that the entries are weakly increasing across rows and strictly

increasing down columns.

Example 7.6. Let λ = . Then there are 8 semistandard Young tableaux

of shape λ:

1 1
2 ,

1 1
3 ,

1 2
2 ,

1 2
3 ,

1 3
2 ,

1 3
3 ,

2 2
3 ,

2 3
3 .
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Similarly,

1 2 2 3 3
2 3 4 4
4 4 is an example of a semistandard Young tableau of

shape λ = (5, 4, 2).

A semistandard Young tableau T induces a function which takes a matrix

to a product of minors. For the following de�nition it is convenient to introduce

some notation. Suppose C is a column in a semistandard Young tableau T .

We temporarily denote by |C| the length of this column, so C is of the form

r1

r2
...

r|C| . Suppose the semistandard Young tableau T is of shape λ = (λ1 ≥

λ2 ≥ . . . ≥ λn−1 ≥ λn = 0). For a square n×n matrix A = (aij) and a column

C of T as above, let us denote by det(A(C)) the determinant of the |C| × |C|

submatrix of A obtained by taking the rows indexed by C of the |C| leftmost

columns of A, i.e.

det(A(C)) := det


ar1,1 ar1,2 · · · ar1,|C|
ar2,1 ar2,2 · · · ar2,|C|
...

...
. . .

...

ar|C|,1 ar|C|,2 · · · ar|C|,|C|

 .

Notice that a semistandard Young tableau T of shape λ = (λ1 ≥ · · · ≥ λn−1 ≥

λn = 0) has exactly λ1 columns. Starting from the leftmost column we may

label these columns as C1, · · · , Cλ1 . With this notation in place we may de�ne

the following.

De�nition 7.7. Let T be a a semistandard tableau T of shape λ = (λ1 ≥

λ2 ≥ . . . ≥ λn−1 ≥ λn = 0). Following notation as above, we de�ne S(T ),

also denoted detA(T ), as the product of the minors of A corresponding to the
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columns of T . More precisely,

S(T ) = detA(T ) =

λ1∏
i=1

det(A(Ci)).

We illustrate this de�nition in the following example:

Example 7.8. If A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

, then detA(

1 3
2 ) corresponds to the

minor P12P3 =

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ a31. Similarly, if B =


b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

b41 b42 b43 b44 b45

b51 b52 b53 b54 b55

, then

detB(

1 2 2 3 3
2 3 4 4
4 4 ) = P124P234P24P34P3

=

∣∣∣∣∣∣
b11 b12 b13

b21 b22 b23

b41 b42 b43

∣∣∣∣∣∣
∣∣∣∣∣∣
b21 b22 b23

b31 b32 b33

b41 b42 b43

∣∣∣∣∣∣
∣∣∣∣b21 b22

b41 b42

∣∣∣∣ ∣∣∣∣b31 b32

b41 b42

∣∣∣∣ b31.

In this chapter, we will only be concerned with Young tableaux of shape

λ = (a1 + a2, a1, 0) for a1, a2 ∈ N. Note that these ai are the same as those

which appear in De�nition 7.3. Since a semistandard Young tableau of shape

λ must be a �lling by integers {1, 2, 3} and because columns of a semistandard

Young tableau must be strictly increasing, the only possibilities for the columns

of length 2 in such a T are

1
2 ,

1
3 and

2
3 . The only possibilities for the

columns of length 1 are 1 , 2 and 3 . Moreover, because rows must be

weakly increasing (from left to right), it is clear that a column

1
2 must appear

to the left of a

1
3 or a

2
3 , and a

1
3 can only appear to the left of a

2
3 ,

etc. Thus it is not hard to see that we can uniquely represent a semistandard
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Young tableau of shape λ = (a1 + a2, a1, 0) by recording the number of times

each type of column appears. The following lemma formalizes this reasoning.

Lemma 7.9. The set of semistandard Young tableaux of shape λ = (a1 +

a2, a1, 0) is in one-to-one correspondence with the set

S = {(k1, . . . , k6) ∈ N6 | k1 +k2 +k3 = a1, k4 +k5 +k6 = a2, k3 6= 0⇒ k4 = 0}.

Proof. By de�nition, a Young tableau of shape λ = (a1 +a2, a1, 0), reading left

to right, has a1 columns of size 2 and a2 columns of size 1. A semistandard

Young tableau is a �lling of λ from the set {1, 2, 3} such that entries are weakly

increasing across rows and strictly increasing down columns. Therefore, the

columns of length two, reading from top to bottom, must be �lled with 12's,

13's, or 23's. Moreover, since the rows are weakly increasing, the only way to

arrange columns �lled with 12, 13, and 23 is by placing all 12's to the left,

followed by 13's, followed by 23's. Let k1, k2, k3 denote the number of times

12, 13 and 23 appear in T respectively.

Next consider the columns of length one. These must be �lled with 1, 2, or

3. Let k4, k5, k6 denote the number of times 1, 2, and 3 appear in T respectively.

Since the rows must be weakly increasing, all 1's must be placed in the leftmost

columns of size 1, followed by the 2's, followed by the 3's. Again, since rows

are weakly increasing, if k3 6= 0, then this implies that k4 = 0, since we cannot

have a row with a 1 to the right of a 2.

Therefore, any semistandard Young tableau of shape λ corresponds to ex-

actly one element in S. Conversely, any element in S corresponds to exactly

one semistandard Young tableau T (the leftmost k1 columns are �lled with 12,

the next k2 columns are �lled with 13, etc.).

Based on the above lemma, henceforth we denote a semistandard Young
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tableau of shape λ = (a1 + a2, a1, 0) by

(12)k1(13)k2(23)k3(1)k4(2)k5(3)k6 , (7.1)

where k1 +k2 +k3 = a1, k4 +k5 +k6 = a2, and k3 and k4 cannot simultaneously

be non-zero.

Example 7.10. If λ = (5, 2, 0), then a2 = 3, a1 = 2, and the �lling

1 1 2 2 3
3 3

will be notated as (13)2(2)2(3).

The tableau λ = (a1 + a2, a1, 0) also determines a mapping ϕλ of Fl(C3)

into projective space (see De�nition 1.20). Let Lλ denote the Plücker bundle

over Fl(C3) corresponding to λ (see De�nition 1.22).

We now describe a correspondence between semistandard Young tableaux

T of shape λ and an element S(T ) in the space of sections H0(Fl(C3),Lλ). It

turns out that these S(T ) form a basis for H0(Fl(C3),Lλ). The following is

well-known.

Lemma 7.11. Let T be a semistandard tableau of shape λ = (a1 + a2, a1, 0)

and let A be a 3 × 3 matrix of indeterminates. Then the polynomial S(T ) =

detA(T ) can be interpreted as an element of H0(Fl(C3),Lλ).

Proof. The Plücker mapping ϕλ maps Fl(C3) into a large projective space PN .

Recall that elements of the space of sections H0(PN ,O(1)) can be interpreted

as homogeneous polynomials of degree one in the homogeneous coordinates

x0, . . . , xN of PN . If we restrict these sections to (the image of) Fl(C3), then

we will obtain sections in H0(Fl(C3),Lλ). In other words, given an element

of the �ag [A] =

a11 a12 a13

a21 a22 a23

a31 a32 a33

, homogeneous polynomials of degree

one in the homogeneous coordinates of the image ϕλ(A) will be sections of
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H0(Fl(C3),Lλ). We now discuss how a semistandard Young tableau T reads

o� a homogeneous coordinate of ϕλ(A), and hence determines a section of

H0(Fl(C3),Lλ).

Recall that the Plücker mapping ϕλ �rst maps Fl(C3) into the product of

Grassmannians Gr(1) × Gr(2) ∼= P2 × P2. It then takes the a2-th Veronese

mapping (see De�nition 1.17) of the �rst coordinate of P2 × P2 and the a1-

th Veronese mapping of the second coordinate. Finally, it takes the Segre

embedding (De�nition 1.18) of the two factors. In terms of a 3× 3 matrix A

representing a �ag [A] ∈ Fl(C3), the a2-th Veronese map on the �rst P2 ∼=

Gr(1) factor corresponds to taking all monomials of degree a2 in the entries

(i.e. the 1×1 minors) of the leftmost column of A, and the a1-th Veronese map

on the second factor P2 ∼= Gr(2) corresponds to taking all possible products

of a1 many 2× 2 minors of the leftmost columns of A. Finally, the last Segre

map exactly multiplies the results of each of these Veronese maps, resulting in

a product of the form S(T ) = detA(T ) as in De�nition 7.7. The result follows.

It turns out that these sections of the form S(T ) form a basis of the space

of sections. We have the following.

Theorem 7.12. [Ful97, §9.3, Proposition 3 and §8.1, Theorem 1] The set of

semistandard Young tableaux of shape λ = (a1+a2, a1, 0) are in one-to-one cor-

respondence with a basis for the space of sections H0(Fl(C3),Lλ). Moreover,

the set of polynomials

{S(T ) | T is a semistandard Young tableau of shape λ} ,

when interpreted as an element of H0(Fl(C3),Lλ) as in Lemma 7.11, form a

basis for H0(Fl(C3),Lλ) .
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Example 7.13. Let λ = . Then a1 = a2 = 1. We consider the pullback

bundle Lλ, as in Example 1.23. A basis for the space of holomorphic sections

H0(Fl(C3),Lλ) is given by the 8 polynomials determined by the 8 semistan-

dard Young tableaux of shape λ, as in Example 7.6. Applying Theorem 7.12,

we obtain:

H0(Fl(C3),Lλ) = spanC{P1P12, P1P13, P2P12, P2P13, P3P12, P3P13, P2P23, P3P23}.

7.2 Newton-Okounkov Body of Pet3

In order to construct the Newton-Okounkov body of Pet3, we use certain a�ne

coordinates on an open dense subset of Pet3:

U :=


y x 1

x 1 0

1 0 0

 | x, y ∈ C

 . (7.2)

Lemma 7.14. The set of �ags U given in (7.2) is an open dense subset of

Pet3.

Proof. It is well-known that the �ag variety Fl(C3) can be realized as the

disjoint union of so-called open Schubert cells (for details see, for instance,

[Bri05, §1.2]). In particular, the set of �ags

Bw0B :=

y z 1

x 1 0

1 0 0


is an open set in Fl(C3) around the point corresponding to the permutation

matrix w0 = 321 (i.e. x=y=z=0). Since Pet3 is a subvariety of Fl(C3), the

intersection Pet3 ∩Bw0B is open in Pet3. Recall that in order for a �ag to lie
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in Pet3, we need that XV1 ⊂ V2 (see De�nition 5.5 and Example 5.6), where

X =

0 1 0

0 0 1

0 0 0

 .

It is not hard to see that

X(Bw0B) =

〈x1
0

〉 ⊂ 〈
yx

1

 ,

z1
0

〉

if and only if x = z. Therefore, the intersection Pet3 ∩ Bw0B is exactly the

matrix given in (7.2). Finally, since the Peterson variety is irreducible by

Theorem 5.7, an open subset must be dense. The result follows.

With respect to these coordinates, we consider the �ag of subvarieties

Y2 = {x = y = 0} ⊂ Y1 = {x = 0} ⊂ Y0 = Pet3.

By Theorem 5.7, Pet3 is irreducible, has dimension 2, and has a unique

singular point at the identity. Therefore, since dimYi = 2 − i and each Yi is

nonsingular at the point Y2, this �ag is an admissible �ag. We choose the

system of parameters y1 := x, y2 := y about this �ag. Notice that yk |Yk−1
is a

well-de�ned, not identically zero, rational function on Yk−1 and has a zero of

�rst order on Yk, so this is a valid system of parameters (see §1.2).

For a line bundle L, this admissible �ag and system of parameters de�nes

a geometric valuation ν : H0(Pet3, L) → Z2 as in §1.2. It is not hard to see

that for the usual lexicographic order on Z2 with x > y, the valuation ν is the

lowest term valuation (see Lemma 2.7 and Example 2.8).

We de�ne Vλ to be the image of H0(Fl(C3),Lλ) in H0(Pet3,Lλ |Pet3),

where λ = (a1 + a2, a1, 0). Below we compute the Newton-Okounkov body, ∆,

for R(Vλ) with respect to ν. Using the combinatorics of Young diagrams, we
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can explicitly write down elements in this subspace of sections restricted to

the open a�ne coordinate chart U .

Example 7.15. In Example 7.13, we found a basis for H0(Fl(C3),Lλ), where

λ = (2, 1, 0). In particular, we found that

H0(Fl(C3),Lλ) = spanC{P1P12, P1P13, P2P12, P2P13, P3P12, P3P13, P2P23, P3P23},

where Pc1···ck denotes the k × k subdeterminant of [A] ∈ Fl(C3) formed by

the rows 1 ≤ c1 < · · · < ck ≤ n of [A]. In order to restrict these sections

to U , we instead take minors of an element [B] ∈ U . With respect to the

coordinates (7.2) on U , we obtain P1 = y, P12 = y − x2, and P13 = −x.

Therefore P1P12 restricted to U is y(y − x2) and P1P13 restricted to Pet3 is

y(−x). Continuing in this manner, we can �nd a basis:

V(2,1,0) = spanC{y2 − yx2,−xy, x3,−x2,−x, y − x2,−1}.

Recall that in (7.1), we established the notation

(12)k1(13)k2(23)k3(1)k4(2)k5(3)k6

where k1 +k2 +k3 = a1, k4 +k5 +k6 = a2, and k3 and k4 cannot simultaneously

be non-zero; this corresponds to a unique semistandard Young tableau. We

also showed in Lemma 7.11 that each semistandard Young tableau corresponds

to a section in H0(Fl(C3),Lλ). As in Example 7.15, we can further restrict

these sections to our coordinates on U . In other words, each semistandard

Young tableau (12)k1(13)k2(23)k3(1)k4(2)k5(3)k6 corresponds to a section in Vλ.

Lemma 7.16. The semistandard Young tableau

T := (12)k1(13)k2(23)k3(1)k4(2)k5(3)k6 ,
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(where k1+k2+k3 = a1, k4+k5+k6 = a2, and k3 and k4 cannot simultaneously

be non-zero) corresponds to the section

(y − x2)k1(−x)k2(1)k3yk4xk51k6 ∈ Vλ.

Proof. Let A denote the 3×3 matrix given in (7.2). By De�nition 7.7, S(T ) =

detA(T ) is equal to the product of minors

(P12)k1(P13)k2(P23)k3(P1)k4(P2)k5(P3)k6 .

Here,

P12 =

∣∣∣∣y x

x 1

∣∣∣∣ = y − x2, P13 =

∣∣∣∣y x

1 0

∣∣∣∣ = −x,

P23 =

∣∣∣∣x 1

1 0

∣∣∣∣ = −1, P1 = y, P2 = x, P3 = 1.

Therefore,

detA(T ) = (P12)k1(P13)k2(P23)k3(P1)k4(P2)k5(P3)k6 = (y−x2)k1(−x)k2(1)k3yk4xk51k6 .

We need to establish the following lemma before computing Newton-Okounkov

bodies of Pet3.

Proposition 7.17. If the convex hull, ∆̃, of a set of points {ν(s1), . . . , ν(sk) |

si ∈ V(a1+a2,a1,0)} has area equal to 1
2
a2

1 + 2a1a2 + 1
2
a2

2, then ∆̃ is equal to the

Newton-Okounkov body ∆(Pet3, R(V(a1+a2,a1,0)), ν).

Proof. Recall that equation (1.2) in §1.2 relates the volume of a Newton-

Okounkov body to a degree of a projective variety. In our case, the Peter-

son variety Pet3 is embedded in a projective space by composing the nat-

ural inclusion Pet3 ↪→ Fl(C3) with the Plücker mapping Fl(C3) ↪→ P(Vλ).
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It follows that the degree of Pet3 ⊆ P(Vλ) is equal to 2! times the vol-

ume of ∆(Pet3, R(V(a1+a2,a1,0)), ν). In §6, we found that the degree of the

Plücker mapping corresponding to V(a1+a2,a1,0) is a
2
1 +4a1a2 +a2

2. Therefore, we

know that the area of the Newton-Okounkov body ∆(Pet3, R(V(a1+a2,a1,0)), ν)

is 1
2
a2

1 + 2a1a2 + 1
2
a2

2.

By the de�nition of a Newton-Okounkov body (De�nition 1.9), the image

under ν of the sections si ∈ V(a1+a2,a1,0) are contained in ∆(Pet3, R(V(a1+a2,a1,0)), ν).

Therefore, ∆̃ ⊂ ∆(Pet3, R(V(a1+a2,a1,0)), ν). But by assumption, the area of ∆̃

equals the area of ∆(Pet3, R(V(a1+a2,a1,0)), ν). Hence the two polytopes must

in fact be equal, i.e.

∆̃ = ∆(Pet3, R(V(a1+a2,a1,0)), ν).

We will now compute the Newton-Okounkov body of Pet3 with respect to

ν and the space of sections V(a1+a2,a1,0) de�ned above. We need to consider the

cases a2 ≥ a1 and a1 ≥ a2 separately. For a discussion about how these results

might be generalized for larger Peterson varieties, see §8.1.

Theorem 7.18. The Newton-Okounkov body ∆(Pet3, R(V(a1+a2,a1,0)), ν), where

a2 ≥ a1, is the convex hull of the vertices {(0, 0), (2a1+a2, 0), (0, a1+a2), (3a1, a2−

a1)}.

Proof. First, notice that the area of the polytope described in the theorem

is 3a1(a2 − a1) + 1
2
(3a1)(2a1) + 1

2
(a2 − a1)2 = 1

2
a2

1 + 2a1a2 + 1
2
a2

2. Therefore,

by Proposition 7.17, it su�ces to show that the four vertices given in the

statement of the theorem lie in ν(V(a1+a2,a1,0)). We will deal with the four

cases separately.
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Figure 7.1: Newton-Okounkov body ∆(Pet3, R(V(a1+a2,a1,0)), ν) for a2 ≥ a1.

Case (0,0): The �lling (23)a1(3)a2 corresponds to the polynomial 1 (see

Lemma 7.16), and ν(1) = (0, 0) Hence, (0, 0) is in the image ν(V(a1+a2,a1,0)).

Case (0, a1 + a2): The �lling (12)a1(1)a2 corresponds to the polynomial

(y − x2)a1ya2 , and ν((y − x2)a1ya2) = (0, a1 + a2).

Case (2a1 + a2,0): Now consider (12)k(13)a1−k(1)a1−k(2)a2−a1+k. This

semistandard Young tableau has corresponding polynomial

gk := (y − x2)kxa2ya1−k =

[
k∑
j=0

(−1)j
(
k

j

)
yk−jx2j

]
xa2ya1−k

=
k∑
j=0

(−1)j
(
k

j

)
xa2+2jya1−j.

Concretely, g0 = xa2ya1 , g1 = xa2ya1 − xa2+2ya1−1, g2 = xa2ya1 − 2xa2+2ya1−1 +

xa2+4ya1−2, etc. Notice that each gk consists of the same monomials as in gk−1

(with possibly di�erent coe�cients), plus one monomial not in gk−1, namely,

xa2+2kya1−k. Therefore, by taking appropriate linear combinations of gk's we

can obtain any monomial of the form xa2+2jya1−j. In particular, applying this
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to the case j = a1, we see that there exists an element in V(a1+a2,a1,0) whose

expression with respect to our choice of coordinates is the monomial xa2+2a1 .

Since ν(x2a1+a2) = (2a1 + a2, 0), we conclude that (2a1 + a2, 0) is in the image

of V(a1+a2,a1,0) under ν.

Note that another way to state the above argument is the following. The

set of monomials xαyβ that appear in the a1 + 1 polynomials {g0, . . . , ga1} is

precisely: {
xa1ya1 , xa2+2ya1−1, xa2+4ya1−2, . . . , xa2+2a1

}
. (7.3)

In terms of this basis, the polynomial gk has coordinates, up to a sign,[(
1
(
k
1

) (
k
2

)
· · ·

(
k
k−1

)
1 0 · · · 0

)]T
. (7.4)

Therefore, to show that there exists a linear combination of gk's which equal

xa2+2a1 , it su�ces to show that the (a1 + 1)× (a1 + 1) matrix consisting of the

polynomials gk, written in terms of the basis (7.3), is invertible. From (7.4),

we can see that this matrix is upper triangular, and its diagonal entries are

equal to ±1. Therefore it is invertible.

Case (3a1, a2 − a1): Now, consider (12)k(13)a1−k(1)a2−k(2)k. This semis-

tandard Young tableau has corresponding polynomial

hk := (y − x2)kxa1ya2−k =

[
k∑
j=0

(−1)j
(
k

j

)
yk−jx2j

]
xa1ya2−k

=
k∑
j=0

(−1)j
(
k

j

)
xa1+2jya2−j.

Concretely, h0 = xa1ya2 , h1 = xa1ya2−x2+a1ya2−1, h2 = xa1ya2−2x2+a1ya2−1 +

x4+a1ya2−4, etc. As in the argument above, by taking appropriate linear com-

binations of hk's we can obtain any monomial of the form xa1+2jya2−j. In

particular, when j = a1 we can obtain the monomial x3a1ya2−a1 which means

(3a1, a2 − a1) is in the image.
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Therefore, the four vertices (0, 0), (0, a1+a2), (2a2+a1, 0), and (3a2, a1−a2)

are in the image of V(a1+a2,a1,0) under ν. This completes the proof.

In order to prove the a1 ≥ a2 case, we will need the following terminology.

De�nition 7.19. An upper triangular Pascal matrix is an in�nite matrix

with the (i, j)-th entry equal to the binomial coe�cient
(
j−1
i−1

)
, i.e.

T :=


(

0
0

) (
1
0

) (
2
0

) (
3
0

)
· · ·

0
(

1
1

) (
2
1

) (
3
1

)
· · ·

0 0
(

2
2

) (
3
2

)
· · ·

...
...

...
... · · ·

 ,

where we take the convention that
(
j
i

)
:= 0 if i > j and

(
k
0

)
= 1.

De�nition 7.20. A truncated Pascal matrix is a matrix obtained from T

by selecting some arbitrary �nite subsets of the rows and columns of T of equal

size, i.e.

T (r, x) :=


(
x0
r0

) (
x1
r0

)
· · ·

(
xd
r0

)(
x0
r1

) (
x1
r1

)
· · ·

(
xd
r1

)
...

...
. . .

...(
x0
rd

) (
x1
rd

)
· · ·

(
xd
rd

)
 ,

for some sets r = {r0 < r1 < · · · < rd} and x = {x0 < x1 < · · · < xd}, for

xi, ri ∈ N.

We will need the following result of Kersey.

Theorem 7.21 ([Ker13]). Following the notation above, truncated Pascal ma-

trices are invertible if and only if ri ≤ xi, ∀i.

We now compute the Newton-Okounkov body for the case a1 ≥ a2.
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Theorem 7.22. The Newton-Okounkov body ∆(Pet3, R(V(a1+a2,a1,0)), ν), where

a1 ≥ a2, is the polytope with vertices (0, 0), (0, a1 + a2), (2a2 + a1, 0), and

(3a2, a1 − a2).

Figure 7.2: Newton-Okounkov body ∆(Pet3, R(V(a1+a2,a1,0)), ν) for a1 ≥ a2.

Proof. As in Theorem 7.18, we notice that the area of the polytope described

in the theorem is 3a2(a1−a2) + 1
2
(3a2)(2a2) + 1

2
(a1−a2)2 = 1

2
a2

1 + 2a1a2 + 1
2
a2

2.

Therefore, by Proposition 7.17, it su�ces to show that the four vertices given

in the statement of the theorem lie in ν(V(a1+a2,a1,0)). We deal with the four

cases separately.

Case (0,0): The �lling (23)a1(3)a2 corresponds to the polynomial 1 (see

Lemma 7.16), and ν(1) = (0, 0) Hence, (0, 0) is in the image ν(V(a1+a2,a1,0)).

Case (0, a1 + a2): The �lling (12)a1(1)a2 corresponds to the polynomial

(y − x2)a1ya2 , and ν((y − x2)a1ya2) = (0, a1 + a2).

Case (2a2 + a1,0): Consider (12)k(13)a1−k(1)a2−k(2)k. This semistandard
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Young tableau has corresponding polynomial

gk := (y − x2)kxa1ya2−k =

[
k∑
j=0

(−1)j
(
k

j

)
yk−jx2j

]
xa1ya2−k

=
k∑
j=0

(−1)j
(
k

j

)
xa1+2jya2−j.

Concretely, g0 = xa1ya2 , g1 = xa1ya2 − xa1+2ya2−1, g2 = xa1ya2 − 2xa1+2ya2−1 +

xa1+4ya2−2, etc. Notice that each gk consists of the same monomials as in

gk−1 (with possibly di�erent coe�cients), plus one monomial not in gk−1,

xa1+2kya2−k. Therefore, by taking appropriate linear combinations of gk's we

can obtain any monomial of the form xa1+2jya2−j. In particular, when j = a2

we can obtain the monomial xa1+2a2 , which means (2a2 +a1, 0) is in the image

of ν.

Case (3a2, a1 − a2): To �nd the vertex (3a2, a1−a2) we begin in a similar

way. Consider (12)a1−a2+k(13)a2−k(1)a2−k(2)k for 0 ≤ k ≤ a2. De�ne the

polynomial hk to be the polynomial associated to this semistandard Young

tableau,

hk : = (y − x2)a1−a2+kxa2ya2−k

=

[
a1−a2+k∑
j=0

(−1)j
(
a1 − a2 + k

j

)
ya1−a2+k−jx2j

]
xa2ya2−k

=

a1−a2+k∑
j=0

(−1)j
(
a1 − a2 + k

j

)
xa2+2jya1−j, for 0 ≤ k ≤ a2.

This de�nes a collection of a2 + 1 polynomials. In particular,

ha2 =

a1∑
j=0

(−1)j
(
a1

j

)
xa2+2jya1−j.

Notice that since a2 ≤ a1, the monomial x3a2ya1−a2 corresponding to j = a2

will have a non-zero coe�cient in ha2 , and the image of this term under ν is
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(3a2, a1 − a2). We want to show that there exists a linear combination of hk's

such that the image of this linear combination under ν is (3a2, a1 − a2).

The set of monomials xαyβ that appear in these a2 + 1 polynomials

{h0, h1, . . . , ha2} is precisely

{xa2ya1 , xa2+2ya1−1, xa2+4ya1−2, . . . , x3a2ya1−a2 , . . . , x2a1+a2−2y, xa2+2a1}. (7.5)

Note that these monomials are listed in increasing order with respect to our

lexicographical order, i.e. xa2ya1 is the lowest term, xa2+2ya1−1 is the sec-

ond lowest term, etc. For a �xed k, the set of monomials appearing in the

polynomial hk is exactly

{xa2ya1 , xa2+2ya1−1, . . . , xa2+2(a1−a2+k)ya2−k},

i.e. the �rst (leftmost) a1 − a2 + k + 1 elements in the ordered list (7.5).

Recall we need to construct a linear combination of the hk with the property

that the lowest term of this linear combination is a constant multiple of the

monomial x3a2ya1−a2 . In terms of the basis given in (7.5), the polynomial hk

has coordinates 
(
a1−a2+k

0

)
−
(
a1−a2+k

1

)
...

 .

A linear combination of the basis elements in (7.5) has lowest term x3a2ya1−a2

if its coordinate vector is of the form
(
0 · · · 0 r ∗ · · · ∗

)T
, where r is

a non-zero entry in the (a2 + 1)-th row, and the entries below r are free.

Therefore, we are looking for a solution to the matrix equation(
A B

C D

)(
X

Y

)
=
(
0 · · · 0 r ∗ · · · ∗

)T
,

where A is a (a2 + 1)× (a2 + 1) block matrix, X is a (a2 + 1)× 1 vector, and

B, C, D, and Y are block matrices of the appropriate sizes. Choosing Y = 0,
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it su�ces to show that

AX =


0
...

0

1


has a solution. More precisely, we wish to show that the matrix equation


(
a1−a2

0

) (
a1−a2+1

0

)
· · ·

(
a1−1

0

) (
a1
0

)
−
(
a1−a2

1

)
−
(
a1−a2+1

1

)
· · · −

(
a1−1

1

)
−
(
a1
1

)(
a1−a2

2

) (
a1−a2+1

2

)
· · ·

(
a1−1

2

) (
a1
2

)
...

... · · ·
...

...


︸ ︷︷ ︸

A


c0

c1

...

ca2

 =


0

0
...

0

1


has a solution, where cj ∈ C. Here we take the convention that

(
α
β

)
= 0 if

β > α. In particular, it would su�ce to show that det(A) 6= 0.

Consider the matrix Ã obtained by multiplying the even rows of A by -

1. Clearly det(Ã) = ±det(A), so det(A) 6= 0 if and only if det(Ã) 6= 0. Now

observe that Ã is the truncated Pascal matrix T (r̃, x̃), where r̃ = {0, 1, . . . , a2},

and x̃ = {a1− a2, a1− a2 + 1, . . . , a1}. Since a1 ≥ a2, we have ri ≤ xi for all i.

Therefore, by Theorem 7.21, Ã is invertible, as desired. Hence there exists an

element in V(a1+a2,a1,0) whose image under ν is (3a2, a1 − a2). This completes

the proof.
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Chapter 8

Open Questions and Future Work

We now brie�y assemble some open questions and directions for future work.

As was mentioned in Chapter 1, part of the motivation for the theory of

Newton-Okounkov bodies is to associate combinatorial objects to algebraic

varieties. Thus, given the explicit computation of Newton-Okounkov bod-

ies given in this thesis, an obvious and natural question is to explore the

connections between the combinatorics of these polytopes and the geomet-

ric/topological properties of the underlying varieties. For example, do these

Newton-Okounkov bodies encode the cohomology ring of the original variety,

Betti numbers, orbit types, and if so, how? This question is still wide open,

and we hope to explore it further in future work. In what follows, we instead

discuss some of our preliminary results concerning certain generalizations of

the computations in this thesis.

More speci�cally, the results of this thesis concern very special cases of

Bott-Samelson varieties and Hessenberg varieties, and also place restrictive

conditions on the choices of the auxiliary data. Therefore, a natural direction

for future work is to relax these conditions and also to work with more general
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classes of Peterson varieties, Hessenberg varieties, and Bott-Samelson varieties.

8.1 Peterson Varieties Petn for n > 3

In joint work with Hiraku Abe and Megumi Harada, I have begun work on

generalizing the results of this thesis to the case of the Peterson variety Petn

for general n (in particular, n > 3). Indeed, we already have preliminary

results showing that the Peterson variety Petn for general n can be realized

as a special �bre in a �at family of Hessenberg varieties, thus generalizing the

results in Chapter 6. By the same reasoning as in Chapter 7, this should then

allow us to compute the volume of the Newton-Okounkov body by computing

the degree of a smooth projective toric variety.

We note that there is a natural generalization of our admissible �ag of

subvarieties in Pet3 to the case of general n. More precisely, Insko and Yong

[IY12, Theorem 1.4] proved that the point

w0B :=




0 · · · 0 1

0 · · · 1 0
... . .

.
. .
. ...

1 0 · · · 0




is nonsingular in Petn and by reasoning similar to that in Lemma 7.14, it is

not hard to see that the following is an a�ne open neighbourhood around the

point w0B in Petn:

U =





xn−1 xn−2 xn−3 · · · x1 1

xn−2 xn−3 xn−4 · · · 1 0

xn−3 xn−4 · · · . .
.
. .
. ...

...
... . .

.
. .
.
. .
. ...

x1 1 . .
.

. .
.
. .
. ...

1 0 · · · · · · · · · 0




.
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The following is then an admissible �ag of subvarieties in Petn:

Yn−1 = {w0B} ⊂ Yn−2 = {x1 = x2 = · · · = xn−2 = 0} ⊂ · · ·

⊂ Y2 = {x1 = x2 = 0} ⊂ Y1 = {x1 = 0} ⊂ Y0 = Petn

and using the system of parameters x1, . . . , xn−1 about this �ag, this geomet-

ric valuation corresponds to the lowest term valuation ν with respect to the

lexicographical ordering x1 > x2 > · · · > xn−1. Thus the natural question

which I intend to pursue together with Abe and Harada is to compute the

Newton-Okounkov body of Petn with respect to this �ag, for di�erent choices

of Lλ.

We also take a moment to observe that the problem outlined above appears

to be non-trivial to solve. For instance, one challenge we face in the compu-

tations for higher values of n is that the corresponding degree (of Petn) gets

large quite quickly. For instance, for Pet4 and the line bundle corresponding to

a = (1, 1, 1, 0), the degree is 96 and for Pet5 and a = (1, 1, 1, 1, 0) the degree is

3000. Another obstacle is that even if we compute the sections corresponding

to the set of semistandard Young tableaux and also obtain their images under

ν, we would most likely need to take linear combinations of these sections to

�nd the vertices of Petn (as we did in Theorems 7.18 and 7.22). Even using a

computer, this could be quite challenging.

8.2 Regular Semisimple Hessenberg Varieties

We also have preliminary computations concerning Newton-Okounkov bodies

of Hessenberg varieties di�erent from the Peterson variety; more speci�cally, we

have computed an example of a Newton-Okounkov body of a regular semisim-

ple Hessenberg variety, i.e. the �generic �bre� in the �at family of Hessenberg
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varieties alluded to above.

Let h be the Hessenberg function h(1) = 2, h(2) = h(3) = 3 and let

Hess(A, h) be the regular semisimple Hessenberg variety discussed in Chap-

ter 6. We use coordinates on an open set in Hess(A, h) following the method

described in §7.2. Recall that in order for a �ag V• to lie in Hess(A, h), we

need that AV1 ⊂ V2 where

A =

γ1 0 0

0 γ2 0

0 0 γ3


is the matrix corresponding to the Hessenberg varietyHess(A, h). Using meth-

ods similar to those in Chapter 6 it is straightforward to compute that the

intersection of Hess(A, h) with the well-known open Bruhat cell

Bw0B :=


y z 1

x 1 0

1 0 0

 | x, y, z ∈ C


of Fl(C3) is the subset


γ2−γ3

γ1−γ3xz z 1

x 1 0

1 0 0

 | x, z ∈ C

 .

(Note that γ2−γ3
γ1−γ3−1 6= 0 since γ1, γ2, and γ3 are distinct by assumption.) With

respect to the coordinates x and z appearing above, we can consider the �ag

of subvarieties

Y2 = {x = z = 0} ⊂ Y1 = {x = 0} ⊂ Y0 = Hess(A, h).

For any line bundle L, this �ag gives rise to a geometric valuation

ν : H0(Hess(A, h), L) → Z2, which can be realized as the lowest term valua-

tion with respect to the lexicographic ordering x > z.
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By Theorem 6.14 we know that the degree of Hess(A, h) with respect

to the mapping determined by the pullback of the Plücker line bundle Lλ for

λ = (a1 +a2, a1, 0) is a2
1 +4a1a2 +a2

2, and hence the volume of its corresponding

Newton-Okounkov body is 1
2
a2

1 + 2a1a2 + 1
2
a2

2.

Therefore, as in the Pet3 case, it su�ces to �nd points in the the Newton-

Okounkov body of Hess(A, h) whose convex hull is a polytope of area 1
2
a2

1 +

2a1a2 + 1
2
a2

2. As in Chapter 7 we de�ne Vλ to be the image of H0(Fl(C3),Lλ)

in H0(Hess(A, h),Lλ |Hess(A,h)= Lλ), and consider the restrictions of sections

over the �ag corresponding to semistandard Young tableaux (see Lemma 7.16).

Consider the following semistandard Young tableaux, their corresponding

restricted sections in Hess(A, h), and their images under ν:

Young tableaux Sections Image under ν

(23)a1(1)a2 1 (0, 0)

(23)a1(2)a2 xa2 (a2, 0)

(13)a1(3)a2 za1 (0, a1)

(13)a1(1)a2 za1(γ2−γ3
γ1−γ3xz)a2 (a2, a1 + a2)

(12)a1(2)a2 (γ2−γ3
γ1−γ3xz − xz)a1xa2 (a1 + a2, a1)

(12)a1(1)a2 (γ2−γ3
γ1−γ3xz − xz)a1(γ2−γ3

γ1−γ3xz)a2 (a1 + a2, a1 + a2)

Let ∆ denote the convex hull of these six points. It is not hard to see that

the area of ∆ is exactly 1
2
a2

1+2a1a2+ 1
2
a2

2, and hence ∆ is the Newton-Okounkov

body ∆(Hess(A, h), R(V(a1+a2,a1,0)), ν).
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Figure 8.1: Newton-Okounkov body ∆(Hess(A, h), R(V(a1+a2,a1,0)), ν).
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