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Abstract 

Supply chain management is a major issue in many industries as firms realize 

the importance of creating an integrated relationship with their suppliers and cus­

tomers. In many manufacturing organizations minimizing the total cost of inventory 

holding and delivery plays a major role in production scheduling. Inventory holding 

cost is proportional to the flow time of jobs at the shop. Therefore, we study single 

machine batch scheduling problems to minimize the sum of weighted flow time and 

the delivery cost in supply chains. 

It has been proven that many single machine batch scheduling problems even 

at the supplier level and the manufacturer level are hard problems to be solved. 

Therefore, batch scheduling problems for supplier-manufacturer coordination are even 

harder. Hence, heuristic algorithms may be developed to solve such problems. A good 

heuristic can be developed only when the specific properties of the given problem are 

analyzed thoroughly. Since there are many problems at the supplier level and man­

ufacturer level not yet solved, we study single machine scheduling problems under 

different conditions at the supplier and manufacturer. Then we study batch schedul­

ing problems in a supplier-manufacturer systerm. 

We first study some polynomially solvable problems at the supplier and at the 

manufacturer. Batch scheduling problems at the supplier when jobs have aribtrary 

processing times and arbitrary weights are intractable. We provide a 2-approximation 

algorithm for this problem. The performance of this 2-approximation algorithm shows 

that it provides close to optimal solutions for practical situations. Batch scheduling 

problems at the manufacturer of multi-product case is intractable even if the weights 

are identical. We provide a 2-approximation algorithm for this problem and a hybrid 

meta-heuristic algorithm for the arbitrary weight case. We develop an algorithm for 

the lower bound of this problem and compare the result of the heuristic algorithm 

with that of the lower bound solution. 

Then some batch scheduling problems at the manufacturer in a customer cen­

tric supply chain are analysed and dynamic programming algorithms are developed 

to solve these problems optimally. Finally batch scheduling with supplier manufac-
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turer coordination is studied and there again dynamic programming algorithms are 

developed to solve the batch scheduling problems of given job sequence under two 

different conditions. 
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Chapter 1 

Introduction 

1.1 Sequencing and Scheduling 

Sequencing and scheduling decisions play a crucial role in manufacturing and service 

industries, and information processing environments. Scheduling involves allocation 

of limited resources such as equipment, labor and space to jobs, activities, tasks, or 

customers through time. A sequencing problem involves finding a sequence in which 

to process a set of tasks, that minimizes a given cost function. Generally a scheduling 

problem involves determining a detailed assignment of jobs to machines over a period 

of time, that minimizes a given cost function. 

We use the terms product, item, and job throughout the thesis. The term prod­

uct represents the product type which is manufactured. Generally multiple copies of 

the same product type are manufactured in a manufacturing environment. We call 

the single unit of that product type item. When we study manufacturing environ­

ments where multiple product types are manufactured, we call a single unit of any 

product type a job. In machine scheduling terminology, processing time of a job is 

the time required to process it in the shop, and release time of a job is the time at 

which the job arrives in the shop from its immediate supplier. 
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1. 2 Machine Scheduling 

There are three levels of decisions in any business enterprise such as strategic de­

cision, tactical decision, and operational decision. In a manufacturing enterprise, 

on the tactical level medium term decisions are made, such as weekly demand fore­

casts, distribution and transportation planning, production planning, and material 

requirements planning. The operational level is concerned with the very short term 

decisions made from day to day. The border between the tactical and operational 

levels is vague. Production planning problems are generally called machine scheduling 

or production scheduling. 

Machine scheduling includes worker and machine assignment, job sequencing, 

and the coordination of material handling and maintenance support. In a compet­

itive business environment, efficient and effective machine scheduling has become a 

necessity for survival in the market. Therefore, machine scheduling has attracted 

many researchers since the early 1950s and an impressive amount of literature has 

been created. Broadly speaking machine scheduling is the translation of customer 

orders into production schedules. Even though machine scheduling arose originally 

in a manufacturing context, various other applications are also possible. Jobs and 

machines can stand for patients and hospital equipment, runways and take-offs and 

landings at an airport, classes and teachers, programs and computer processors, cities 

and traveling salesman, and/ or projects and payments. 

1.2.1 Machine Scheduling Models 

The major machine scheduling models are categorized by specifying the resource con­

figuration and the nature of the tasks. For example, a model may contain one machine 

or several machines; the set of jobs available for scheduling may not change over time 
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(also called static system) or new jobs appear over time (also called dynamic system); 

machines or buffers may have limited capacity; there may be technological restric­

tions on the job processing order, or no-wait in process; and scheduling is done in 

a stochastic or deterministic environment. Most research has traditionally been fo­

cused on deterministic machine scheduling. This is because most machine scheduling 

decisions are at operational level and therefore it is reasonably assumed to be deter­

ministic. Further, faster and reliable information flow due to high technology and 

shorter lead times provide strong support for deterministic scheduling in repetitive 

manufacturing environments. 

1.2.2 Single Machine Scheduling 

Single machine models are important for various reasons. The single machine envi­

ronment is simple and a special case of all other environments. Single machine models 

often display properties that do not hold for either machines in parallel or machines in 

series. However, the results that can be obtained for single machine models provide a 

basis for heuristics for more complicated machine environments. In practice, schedul­

ing problems in more complicated machine environments are often decomposed into 

subproblems that deal with single machines. For example, a complicated machine 

environment with a single bottleneck may give rise to a single machine model. 

1.2.3 Machine Scheduling Objectives 

The ultimate aim of any scheduler is to develop a feasible schedule that is optimal 

with respect to some objective. The first step in solving a scheduling problem is thus 

to define the scheduling objective. Ideally, the objective function should consist of all 

costs in the system that depend on scheduling decisions. In practice, however, such 

costs are often difficult to measure, or even to identify completely. Nevertheless, three 
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types of decision-making goals seem to be prevalent in scheduling: efficient utilization 

of resources, average length of time spent by a job on the shop floor, and conformance 

of task completion times to prescribed deadlines. 

The most common objective in machine scheduling is minimizing the makespan, 

i.e., the length of the schedule, which is concerned with efficient machine utilization. 

However, in some cases, the length of time an individual job stays in the shop may 

be more important because it has a direct impact on the inventory holding cost. Well 

studied objective functions in this case are sum of flow time and weighted sum of 

flow time. Flow time of a job is the time between the delivery of the finished job and 

the time when it becomes available for processing at the shop. Generally, different 

jobs have different holding costs and therefore, weights are assigned to jobs. Further, 

flow time is proportional to the inventory holding cost. Thus the weighted flow time 

of a job, which is the flow time multiplied by the corresponding weight, is equivalent 

to the inventory holding cost. In some environments, especially when delivery costs 

are significant, several jobs may be delivered together in a batch. When a cost is 

incurred on each batch delivery, it is better to increase the batch sizes so that the 

delivery cost is minimized. However, the larger batch sizes will lead for longer stays 

in the plant and cause larger inventory costs. Therefore, a tradeoff must be made 

between minimizing the total inventory cost and the delivery cost. 

1.2.4 Machine Scheduling Algorithms and Complexity 

Many scheduling problems have been viewed as optimization problems subject to 

constraints or as a combinatorial optimization problem. If a problem can be optimally 

solved using an efficient algorithm or mathematical models, then that problem is 

called an easy problem. However, many scheduling problems are hard problems for 

which finding an optimal solution efficiently is very difficult. These easy and hard 
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problems are widely studied in a branch of computer science known as complexity 

theory. 

Algorithms 

An algorithm is a precise rule (or set of rules) specifying how to solve some problem. 

Usually the efficiency or complexity of an algorithm is stated as a function relating 

the input length to the number of steps (time complexity) or storage locations (space 

or memory complexity) required to execute the algorithm. 

An Approximation algorithm is an algorithm to solve an optimization problem 

that runs in polynomial time in the length of the input and generates a solution that 

is guaranteed to be close to the optimal solution. An a - approximation algorithm 

is a polynomial time algorithm which always produces a solution of value within a 

times the value of an optimal (minimum) solution. Thus, an approximation algorithm 

provides solutions that will be generally an upper bound for a given problem. 

In some cases, a lower bound for a given problem is obtained by relaxing some 

constraints. For example, in a scheduling problem, we may relax the problem so that 

jobs can be preempted. The solution of this relaxed problem will be a lower bound 

for the original problem. 

A Heuristic is a rule of thumb or educated guess that reduces the search for 

solutions in domains that are difficult and poorly understood. The word heuristic 

comes from the Greek root euriskw meaning to discover. Heuristics may not always 

achieve the desired outcome, but can be extremely valuable to problem-solving pro­

cesses. Good heuristics can dramatically reduce the time required to solve a problem 

by eliminating the need to consider unlikely possibilities or irrelevant states. Neigh­

borhood search algorithms have become a popular heuristic technique for solving 

difficult combinatorial optimization problems. The standard neighborhood search al-
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gorithm is an iterative procedure that starts at a feasible solution for the optimization 

problem at hand and looks for a better solution in the neighborhood of the current 

solution. If a better solution is found, the current solution is replaced with it and an­

other iteration is started, otherwise the algorithm terminates. The main shortcoming 

of these classical heuristic methods is their inability to escape local optimality. 

A number of meta-heuristic approaches have been proposed to modify these 

classical neighborhood search algorithms to avoid convergence of the solution at local 

optimal points. Well known examples of meta-heuristics include simulated annealing, 

tabu search, genetic algorithm, and ant colony algorithm. We use a genetic algorithm 

to solve one of the manufacturer's problems discussed in Chapter 5. 

Genetic Algorithm (GA) is inspired by the efficiency of natural selection in 

biological evaluation. GAs have been applied successfully to a wide variety of com­

binatorial optimization problems. Unlike classical heuristics such as tabu search and 

simulated annealing that generate a single solution and work hard to improve it, GAs 

maintain a large number of solutions and perform comparatively little work on each 

one. 

As discussed earlier, a heuristic algorithm does not guarantee the optimality. 

Generally two standard methods are used to compare the performance of heurisc­

tic algorithms: (i) develop an algorithm to obtain a lower bound for the problem, 

and compare the performance of the heuristic with the lower bound for some ran­

domly generated problem instances; or (ii) develop an a-approximation algorithm 

and compare the performance of the heuristic with the approximation algorithm. In 

Chapter 5, we use the former method to compare the performance of the algorithm 

we developed. 
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Complexity 

The term complexity refers to the computing effort (measured by the number of 

elementary computations required as a function of the order-of-magnitude of the 

input data) required by an algorithm. An algorithm is said to be a polynomial time 

algorithm if its number of computations is polynomial in input data size. According to 

complexity theory, any optimization problem can be categorized as an easy problem 

or a hard problem. Proving a problem is hard itself is very difficult. Thus, computer 

scientists use more powerful methods for proving a problem is hard. They first analyze 

the decision version of the given problem. A decision problem is one whose solution is 

either yes or no. For example consider the optimization problem of traveling salesman 

problem where we want to find the tour of visiting all the cities once with minimum 

travel length. The decision problem is then, given a set of cities, the distances between 

cities, and a bound k, does there exist a tour of all the cities having total length k or 

less? If someone gives a 'yes' answer to the decision problem with the corresponding 

tour, we may verify it by adding all the distances of the corresponding tour. If such 

verification for a 'yes' instance to the decision problem can be done in polynomial 

time then that problem belongs to the class NP (non-deterministic polynomial time). 

Run time of an algorithm depends on the encoding of the input/ output. There 

are two main encoding systems in use. In unary numeral system, a number is repre­

sented by a string of multiple instances of an arbitrarily chosen symbol. For example, 

if we choose the symbol *, then the number 6 is represented as ****** and therefore, 

the size of the input is 0(6). In binary numeral system, a number is represented by 

a radix of two, i.e., each digit will have one of two different values. Typically the 

symbols 0 and 1 are used to represent binary numbers. For example, the number 6 

is represented as 110 and the size of the input is therefore, O(llog6l). 
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Decision problems that can be solved (on a deterministic sequential machine) 

m an amount of time that is polynomial in the size of the input are called easy 

problems which belong to the class P(polynomial time). Decision problems for which 

answers can be verified in polynomial time and no other NP problem is harder are 

called NP-Complete (NPc). ~'hen the decision version of an optimization problem 

belongs to the NP-Complete class, then the optimization problem is called NP-hard. 

NPC consists of the hardest problems in NP. The reason is that if one could find 

a way to solve an NP-hard problem quickly, then we could use that algorithm to 

solve all NP problems quickly. At present, all known algorithms for NP-hard problems 

require time that is exponential in the input size. Therefore, for NP-hard problems, 

the search for an efficient, exact algorithm should be given low priority and other 

less ambitious approaches must be given more priority. Thus, the knowledge that 

a problem is NP-hard provides valuable information about what approach has the 

potential of being most productive. Approximation algorithms and heuristics are 

mainly used approaches to solve NPC problems. 

Decision problems which are still NP-hard even when all numbers in the in­

put are bounded by some polynomial in the length of the input are called strongly 

NP-hard. NP-hard problems which are not NP-hard when all the numbers are 

bounded by some polynomial in the length of the input are called weakly NP-hard. 

The existence of many scheduling models and their complexities has made 

the scheduling field a focal point for the development, application, and evaluation 

of combinatorial procedures and heuristic solution approaches. The selection of an 

appropriate technique depends mainly on the nature of the model and the choice of 

objective function. Many scheduling problems are proved to belong to NPC. Since it is 

hard to develop an efficient algorithm for NP-hard problems, generally approximation 

algorithms, heuristics, and simulation techniques are used to solve such scheduling 
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problems. 

1.2.5 Batch Scheduling 

In traditional manufacturing systems, efficient utilization of resources such as ma­

chines, transportation vehicles and labor were considered the key issues for their 

successful operation. For example, when there is a setup required for each product 

on a machine, it is assumed that products must be processed in single lots so that 

the machine is utilized efficiently. Another example is, a whole lot is produced and 

sent to downstream customers, in order to fully utilize the transportation vehicle on 

a single trip. Therefore in traditional scheduling problems, selecting lot sizes and 

sequencing products were the major issues. 

Larger lot sizes may be attractive due to fower setups, less loss of production 

time, higher utilization of resources, more throughput and less time required to pro­

cess all the operations. On the other hand, a smaller batch may prevent an important 

operation from waiting for a prolonged time for a different setup. Smaller batches 

may also reduce storage space requirements, the amount of capital tied up in inven­

tory, and the average lead time. Thus researchers realized that the lot sizes must be 

further split into small batches so that machine idle time can be minimized, lead time 

can be reduced, and inventory holding cost can be minimized, while considering the 

high setup cost and/or the delivery cost. Further, recent trends in manufacturing, 

such as increasing demand toward customized products; increasing competition for 

market share from both domestic and international manufacturers; changing manu­

facturing technology; and changing customer needs and shorter product life cycles, 

force manufacturing organizations to focus on small batch production [26]. 

Modern technologies of flexible manufacturing reduce the setup cost/time and 

thus, provide an opportunity to process jobs in small batches. Thus Batch scheduling 
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problems, as combinations of sequencing and partitioning problems, have been of 

great interest over the past two decades. Generally, the batching component converts 

sales orders into the form required for a specific production environment. As in many 

cases, there are different versions of batching problems that exist according to the 

nature of the batch. In discrete version, batches can have only integer number of 

items, whereas in continuous version, a batch can have a fraction of items. There 

are different versions of batching problems depending on the calculation of the length 

of the batch processing time. For s-batching (serial batching) problems, the length 

is the sum of the processing times of the jobs in the batch, whereas for p-batching 

(parallel batching) problems, the length is the maximum of the processing time of 

the jobs in the batch. This thesis studies s-batching problems. 

1.3 Supply Chains 

Fierce competition in today's global markets, the introduction of products with short 

life cycles, and the heightened expectations of customers have forced business en­

terprises to invest in, and focus attention on, their supply chains. In a typical 

supply chain, raw materials are procured, items are produced at one or more fac­

tories, shipped to warehouses for intermediate storage, and then shipped to retailers 

or customers. Therefore, a supply chain consists of suppliers, manufacturing centers, 

warehouses, distribution centers, and retail outlets. Besides these there are raw mate­

rials, work-in-process inventory, and finished products that flow between the facilities 

in a supply chain. 

The objective of a supply chain is to be efficient and cost-effective across the 

entire system. Thus the total system-wide costs, from transportation and distribu­

tion to inventories of raw materials, work in process, and finished goods, are to be 
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minimized. Through supply chain integration a firm can significantly reduce costs 

and improve service levels. Unfortunately, supply chain integration is difficult for two 

main reasons: different entities in the supply chain may have conflicting objectives 

and a supply chain is a dynamic system that evolves over time. 

1.3.1 Push and Pull Systems in Supply Chains 

In a push system, products are being produced without being preassigned to any par­

ticular customer, i.e., products are produced based on forecasted demand and pushed 

through the system. In a pull system processes are based on customer demand, i.e., 

each process is manufacturing each component in line with the next downstream 

department's needs to build a final part to the exact expectation of delivery from 

the customer. Thus the demand for the final product generates implied upstream 

demands for parts and components in earlier stages of the production process, i.e., 

demand pulling the whole system. Push systems work well in environments where 

there are high customer demands and quick product turnaround times. It is often 

argued that in a push system too much WIP results in waste and failure to meet 

production targets. However, pull systems may not be suitable for all business types 

because of product types, lead times and any stock holding arrangements with cus­

tomers. In an efficient supply chain, the whole system may be neither a pure push 

system nor a pure pull system but a hybrid system. Generally the upstream suppliers 

or entities follow a push system and the downstream suppliers or entities follow a pull 

system. The entity at which market pull meets push is called the decoupling point. 

Thus in the supply chain, the real demand penetrates upstream up to the decoupling 

point. Beyond that the forecasted demand is used for scheduling. Items that are kept 

in stock at the upstream of the decoupling point are those items for which demand 

must be forecasted due to the fact that future demand between the moment of release 
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of items and the moment those items are received is (partially) unknown, i.e., the lead 

time of supplying the item is longer than the lead time requested by the customer. 

At the downstream of the decoupling point, items are normally not kept in stock 

since future demand for these items between release moments and receipt moments 

is known, i.e., the lead time of supplying the item from the decoupling point to the 

customer is shorter than the lead time requested by the customer. We study batch 

scheduling at an entity when it is in the push system and when it is in the pull system 

in the supply chain. 

1.4 Demand Driven Supply Chains 

In this highly competitive and demanding era, suppliers are forced to meet the de­

mands at the right time. Thus, demand driven supply chains are mainly controlled 

by consumer needs and/or wants. This in turn calls for Just-In-Time (JIT) manu­

facturing at each supplier. Just-In-Time manufacturing is a management philosophy 

that strives to increase value added and eliminate sources of manufacturing waste by 

producing the right parts in the right quantities at the right time [26]. 

A classical push production system may not improve supply chain performance 

even if perfect information flow among partners is achieved. On the other hand, 

JIT may be just the right mode of organizing the production process to take full 

advantage of an essential part to benefit from supply chain coordination and perfect 

information flow. One of the key points of successful JIT operations is maintaining 

low inventory levels while meeting the customer demands on time. To achieve this, it 

needs a synchronized movement of inputs and outputs in the production and delivery 

of goods and services to customers. Thus the competitive success of an organization 

which follows the JIT principle no longer depends only on its own efforts, but relies 
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on the efficiency of the entire supply chain. 

1.5 Supply Chain Scheduling 

Supply chain management has been one of the most important topics for researchers 

over the last fifteen years. In traditional scheduling, researchers are mainly concerned 

with economy in production and distribution, and efficiency in resource utilization. 

Later they realized that effectiveness must be given the most priority in scheduling. 

The effectiveness of a schedule depends on the schedules of other entities in the supply 

chain. Thus a proper coordination would give more effective schedules. Supply chain 

scheduling, a recently emerging research area in scheduling, is concerned with the 

coordination among the entities of a supply chain. 

As it is a new area of research, there are relatively few works dealing specifically 

with scheduling problems in supply chains. Depending on the number of stages in the 

supply chain, operating it may involve decisions by several decision-makers, e.g., the 

supplier and the customers. This gives rise to a rich variety of optimization problems 

for each decision-maker, and problems of coordination between them. 

1.6 Problem Definition 

We study batch scheduling problems at the supplier, manufacturer, and supplier­

manufacturer pair considered as a single system in a push environment, and batch 

scheduling problems in a pull manufacturing system which we call demand driven 

supply chain. In our analysis, we represent an entity (such as a supplier or a manu­

facturer) in the supply chain by a single machine. Figure 1.1 shows a supply chain 

model where a single supplier S delivers products tom manufacturers lvf1 , M2 , ... , l\1m 

and the manufacturer J\!11 delivers products to h end-customers C1 , C2 , ... , Ch. 
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s 

A1m 

Figure 1.1: A supply chain with 1 supplier, m manufacturers, and h customers. 

We assume that batch delivery cost does not depend on the batch size but on 

the customer to which it is destined for, and the batch processing time is the sum of 

processing times of items that compose the batch. We further assume that a holding 

cost is incurred for each job from its availability to its delivery, and the machine is 

continually available and can process at most one item at a time. 

\Ve focus on finding the optimal production batch sizes that would minimize 

the inventory holding cost and the batch delivery cost. As we discussed earlier, flow 

times have direct impact on inventory holding costs. Thus, we study batch sizes 

which will minimize the weighted sum of flow times and the total delivery cost. 

Batch Scheduling at the Supplier 

Batch scheduling problems at the supplier are discussed in Chapter 3 and Chapter 

4. We assume that all the items are available at time zero, i.e., at the start of the 

planning horizon. This is a reasonable assumption at an upstream supplier where 

holding cost of raw materials and/or components is not expensive. Chapter 3 studies 

polynomial algorihms for some batch scheduling problems, whereas Chapter 4 studies 

an NP-hard problem and develops a 2-approximation algorithm for it. 
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Batch Scheduling at the Manufacturer 

Chapter 5 analyses batch scheduling at the manufacturer. Unlike in the supplier's 

problem, jobs arrive in batches at the manufacturer. Therefore, jobs have release 

time. We provide polynomial algorithms, approximation algorithms, and heuristic 

algorithms for different types of batch scheduling problems at the manufacturer. 

Batch Scheduling in a Demand Driven Supply Chain 

We assume that the part manufacturer gets components from its only supplier for each 

product, processes them and sends the processed parts to its immediate customers. 

Customers order jobs at the manufacturer with required quantity and delivery time 

specified and the manufacturer has to deliver the right quantities at the promised 

delivery times. Since it is a demand driven supply chain, the manufacturer in turn 

specifies job requirements and arrival dates to its supplier and the supplier will deliver 

the right quantities at the promised delivery times to the manufacturer. We further 

assume that since the customer of a transaction decides the delivery time and the 

batch sizes of its immediate supplier, the delivery cost is charged partly or in whole 

to the customer. Therefore, the manufacturer's problem is to find the optimal arrival 

batch sizes and the corresponding arrival times from the supplier so that the total 

flow time related cost and the batch delivery cost is minimized while delivering the 

jobs to customers at the promised delivery times. Chapter 6 studies this problem. 

We develop dynamic programming algorithms to solve batch scheduling problems in 

demand driven supply chains. We will also consider the total cost minimization of 

weighted sum of flow time or some due date constraints with delivery cost. 

Supplier Manufacturer Coordination and Batch Scheduling 

Chapter 7 studies supplier manufacturer coordination and batch scheduling. We 

consider the supplier and the manufacturer as a single system and study the batch 
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scheduling problems so that the total cost of the system is minimized. It is clear 

that this problem is harder than the batch scheduling problem at the supplier and 

manufacturer. \\,Te develop a basic model where a single supplier delivers products 

to a single manufacturer and the manufacturer processes and delivers products to a 

single customer. We develop two dynamic programming algorithms to solve the batch 

scheduling in the system under two conditions. 

1. 7 Some Applications 

The problems studied in this thesis have many practical applications and we provide 

a few examples. 

Consider a manufacturer producing plastic containers for different customers 

who make juice, milk, vegetable oil, shampoo etc. Each customer has its own shape, 

size, colour and texture for the containers. ·when switching from one product to 

another one a setup is required. The delivery costs to different customers vary based 

on their locations. The manufacturer, therefore, has to find the optimal job sequence, 

number of batches, and batch sizes so that the total cost of inventory holding and 

delivery is minimized. We present a polynomial-time solution for this problem. 

Generally, the pasta industry involves manufacturing long goods and short 

goods. Spaghetti, capilli, linguini, angel hair etc are long goods, and macaroni, 

rigatoni, fusilli etc are short goods. There are also many novelty shapes such as bow 

ties, shells, cannolloni, lasagna and wheels. In addition, some pastas now include 

spinach and other vegetables. Pasta manufacturers produce these different products 

and deliver to their customers. The manufacturer has to decide batch sizes so that 

the total inventory holding cost and delivery cost is minimized. 

The study on batch scheduling in customer centric supply chains is motivated 
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by the wide adoption of JIT systems in many successful production organizations. 

One example is Bl\'!\\', the winner of the productivity award for manufacturing by 

Modern Materials Handling [6]. BM"'"s newly expanded manufacturing plant in 

Spartanburg, S.C., uses a pull system to build customer-specified vehicles within 10 

days of order placement. Although the plant builds only two models, X-5 sports 

utility vehicles and the two-seater Z-4 roadster, there are many options available for 

each model in terms of shape, colour, and interior requirements. For example, for 

the X-5 model, there are 8 body variances, 12 colours, 19 engine choices, 16 interior 

choices, and 85 other options. The plant keeps its suppliers constantly informed of 

accurate and stable demand data. As a result, the plant is able to follow the JIT 

philosophy successfully. 

1.8 Motivation 

A supply chain consists of suppliers, manufacturers, and customers, i.e., many man­

ufacturing enterprises. Each enterprise may have multi-stage processing in a serial, 

parallel, or assembly model. Thus, supply chain coordination and scheduling is a 

very complex problem to solve. Therefore, as Bhatnagar et. al [5] discussed, we need 

to represent each enterprise of the supply chain by a simpler system which captures 

the salient features of the original enterprise, and then develop a suitable lotsizing 

technique which can be applied to the simplified system. In our work we consider 

each entity as a single machine. The single machine representation is reasonable in 

many cases because it may be possible to solve the embedded single-machine problem 

independently and then incorporate the result into the larger problem. For example, 

there may be a bottleneck stage in the multi-processes of an enterprise, and therefore 

treating the bottleneck as a single machine and analysing the single machine problem 
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may provide some insights about the enterprise. 

Further, some decisions treat resources in the aggregate, as if jobs were coming 

to a single facility. In order to completely understand the behavior of a complex 

system, it is vital to understand its parts. Thus analysis of batch scheduling at the 

supplier and manufacturer will give some ideas to solve the coordination and batch 

scheduling at a supplier-manufacturer pair. 

As discussed earlier, a trade-off between inventory holding cost and the delivery 

cost is very important in supply chain scheduling. Thus we study batching and 

scheduling of jobs on a single machine to minimize the sum of weighted flow time, 

and the total delivery cost, where weight assigned to each job is generally assumed 

to be the unit holding cost of that job. vVhen all the jobs have the same unit holding 

cost, minimizing the sum of flow times will be equivalent to minimizing the weighted 

sum flow times. 
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Chapter 2 

Literature Review 

2.1 Single Machine Batch Scheduling 

In the mid 1980s researchers found that the inventory holding cost of WIP inventory 

in a shop contributed a considerable portion of an organization's total cost. Such a 

large cost proportion has attracted many researchers to find a compromise between 

full utilization of resources and WIP inventory reduction. Batching is a well-known 

model for this situation. Batching is to split a lot into batches and to schedule these 

batches for processing. The lot size is a predetermined quantity typically set by the 

customer or by the planning processes that precede scheduling. A batch is a set of 

items (jobs) which must be processed jointly. For a given batch the number of items 

it contains is called its batch size. 

Potts and Van Wassenhove [32], Albers and Brucker [1], Webster and Baker 

[41], and Potts and Kovalyov [31] gave comprehensive surveys on batch scheduling. 

Several papers have dealt with one-machine batch scheduling problems in which the 

objective is to minimize the inventory holding cost. Dobson et al. [16], Santos and 

Magazine [34], Naddef and Santos [28] and Coffman et al. [14] have studied the 

batching of identical items processed on a single machine to minimize the inventory 
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holding cost when each batch requires a setup. They give explicit formulas for de­

termining the optimal number of batches to be used. Finally, Shallcross [35] gave a 

polynomial-time solution for the problem. Dobson et al. [16], and Naddef and San­

tos [28] also propose heuristic solutions for the corresponding N-job problem under 

the assumption that only items of the same job (product) can be part of a batch. 

Monma and Potts [27] study the batching problem in a one-machine environment for 

N products where a batch may contain items from different jobs. They prove that 

jobs within each batch are sequenced in shortest-weighted-processing-time order in 

the optimal batching to minimize the inventory holding cost. There are only a few 

studies which consider the delivery cost in batching problems. Among these, Cheng 

et al. [12] study the batch scheduling problem on a single machine to minimize the 

sum of delivery costs and earliness penalties. Yang [43] analyzes a similar model with 

given batch delivery dates. Chen [9] presents a dynamic programming algorithm for 

single machine scheduling and common due date assignment with earliness and/or 

tardiness penalties and batch delivery costs. 

Most papers on batching problems consider the single product problems or in 

the multi-product case, the optimal batch sizes are obtained for a product sequence 

which is assumed to be given. Although this hierarchical solution scheme of the 

multi-product case is appealing, it is not necessarily optimal. 

2.2 Scheduling Problems and Genetic Algorithms 

Genetic Algorithm (GA) is a meta-heuristic inspired by the efficiency of natural se­

lection in biological evaluation. GA was introduced by Holland [22] as a method for 

modeling complex systems. The general idea of GAs is to start with randomly gen­

erated solutions and, implementing a "survival-of-the-fittest" strategy, evolve good 
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solutions. Even though, GA was introduced more than three decades ago, it has seen 

impressive growth in the past decade. GA is an iterative procedure that consists of 

a constant size population of individuals, each one represented by a finite string of 

symbols, known as genome, encoding a possible sollution in a given problem space. 

The standard GA proceeds as follows: (i) an initial population of individuals is gener­

ated at random or heuristically. (ii) every individual in the population is decoded and 

evaluated according to some predefined quality criterion, referred to as fitness. (iii) 

individuals are selected, to form a new population, according to their fitness. (iv) ge­

netically inspired operators are used to introduce new inividuals into the population. 

(v) terminal condition is specified as some fixed, maximal number of generations or 

as the attainment of an acceptable fitness level for the best individual. 

There are many selection procedures currently in use, one of the simplest being 

Holland's original fitness-proportionate selection, where individuals are selected with 

a probability proportional to their relative fitness. This ensures that the expected 

number of times an individual is chosen is approximately proportional to its relative 

performance in the population. 

The best known operators are crossover and mutation. Crossover is performed, 

with a given probability Per between two selected individuals, called parents, by ex­

changing parts of their genomes to form two new individuals, called offsprings. In 

its simplest form substrings are exchanged after a randomly selected crossover point. 

This operator tends to enable the evolutionary process to move towards "promising" 

regions of the search space. If the crossover operations is not performed, with prob­

ability ( 1 - Per), then the off springs are exact copies of each parent. The mutation 

operator is introduced to prevent premature convergence to local optima by randomly 

sampling new points in the search space. Mutation entails flipping bits at random, 

with some small probability Pm· 
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Since the publication of a paper by Davis [15], a lot of research has been done 

in the field of production scheduling with GAs. The main difficulty in this subject 

arises from the question of how to represent the problem in the algorithm, which is the 

most important for genetic search. A tutorial survey of the representation approaches 

in the literature can be found in Cheng et. al. [11]. 

We present a Random Keys Genetic Algorithm (RKGA) to solve one of our 

problems in Chapter 5. Our approach is based on the random keys encoding of 

Bean [4]. This method encodes a solution with a random number. These values are 

used as sort keys to decode the solution. The RKGA operates in two spaces, the 

chromosome space and the schedule assignment space. We briefly discuss the RKGA 

procedure in Chapter 5 when developing the meta heuristic algorithm. 

2.3 Coordination and Scheduling in Supply Chains 

Supply chain management is a major issue in many industries as firms realize the 

importance of creating an integrated relationship with their suppliers and customers. 

The new trends in IT, the ever changing taste of customers, as well as quality and price 

pressure compel firms to focus on their supply chains, i.e., to work in an integration of 

organizations that cooperate for improving the flow of material and information from 

supplier to customers at the lowest cost and highest speed. Thomas and Griffin [39] 

provide an extensive review and discussion of the supply chain management literature. 

They point out that for many products logistics expenditures can constitute as much 

as 30% of their cost. Whereas most of the supply chain literature focuses on inventory 

control issues on the strategic level, using stochastic models, Thomas and Griffin [39] 

discuss the need for research dealing with supply chain problems on the operational 

level instead, using deterministic rather than stochastic models. 
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Supply chain coordination is driven by the realization that the typical market­

ing channel contains redundant activities and unnecessary inventories. To eliminate 

these redundant activities and unnecessary inventories, manufacturers must take a 

channel-wide perspective concerning inventories. The purpose of supply chain coor­

dination is to integrate the output of a firm's supply chain efforts with other com­

ponents of manufacturing and the marketing mix so that customer satisfaction can 

be maximized and competitive advantage can be achieved across all levels in the 

supply chain. In recent years there has been an increasing focus on the integration 

of different segments of the supply chain. Chandra and Fisher [8] study integration 

and coordination of production and distribution functions. Bhatnagar et al. [5] study 

two broad levels of coordination, general coordination and multi-plant coordination. 

General coordination is the integration of different functions, whereas the multi-plant 

coordination is the integration among the plants of an internal supply chain. The 

authors claim that an efficient coordination will be possible only when the effects of 

uncertainty of final demand, uncertainties of production processes at each plant, and 

capacity constraints at each plant are taken into consideration. Treville et. al [40] 

claim that the efforts for supply chain coordination between partners without the 

effort for lead time reduction may not improve the chain's performance to its best. 

Hall and Potts [19] study batch scheduling in supply chains. They study 

the coordination of a supplier-manufacturer pair and conclude that the coordinated 

batching decision will really provide the lowest system cost. They study a variety 

of scheduling, batching and delivery problems in supply chains with the objective of 

minimizing the overall scheduling and delivery cost. Chen and Hall [10] extend these 

to supply chains with assembly-type manufacturing systems. Some of the issues 

studied in these papers are related to previous work on coordinating production and 

distribution systems. We mention here the papers by Williams [42], and Lee and 
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Chen [24], which consider the integration of transportation time and capacity issues 

with scheduling decisions. 

2.4 Demand Driven Supply Chain 

Manufacturers are caught between increasing customer demands, more intense global 

competition, shorter product lifecycles, and growing supply chain complexity. There­

fore, many manufacturers are turning to demand-driven manufacturing for their sur­

vival in the market. The basic concept of demand-driven manufacturing is that 

customer demand signals drive manufacturing plans and operations. Customers pull 

product from suppliers as needed, instead of suppliers pushing product to customers 

in anticipation of forecasted demand. Thus, in demand driven supply chain, providing 

the right quantity of the right product at the right time is very important. 

There have been many works in single machine scheduling with due dates as 

constraints. Some of the major objectives, which are related to due dates are sum 

of tardinesss, maximum lateness, sum of weighted tardiness, sum of weighted earli­

ness/tardiness, and sum of tardy jobs. These due date related objectives consider 

mainly minimizing deviation from due dates. Also several other papers have studied 

single machine scheduling problems with deadline constraints where jobs must be de­

livered on or before the due date. Smith [37] develops a polynomial time algorithm 

for the sum of the completion time problem with deadline constraints and Heck and 

Roberts [20] present an algorithm for minimizing the sum of completion times subject 

to not increasing the maximum tardiness. Emmons [17] and Burns [7] provide counter 

examples to show that the extension of Smith [37] and Heck and Roberts [20] for ar­

bitrary positive weights will not work. Burns [7] also develops a new algorithm to get 

local optima for the arbitrary weight case. Bansal [3] proposes a branch and bound 
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algorithm with dominance criteria for the total weighted completion time problem 

with deadline constraints. Potts and Van vVassenhove [33] improve Bansal's proce­

dure using additional dominance criteria. Posner [30] provides a branch and bound 

algorithm with a lower bound calculated for a preemptive version. Then Bagchi and 

Ahmadi [2] provide a lower bound which is better than Posner's lower bound. Finally 

Pan [29] provides an efficient branch and bound algorithm to solve weighted comple­

tion time with deadline constraints. Steiner and Stephenson [38] study the closely 

related problem of minimizing weighted completion time and maximum lateness. All 

these papers accept early deliveries, assume job arrivals to the shop are not decision 

variables, and assume negligible delivery cost of jobs to customers. 
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Chapter 3 

Polynomial Algorithms for the 

Supplier's Problem 

3.1 Introduction 

In this chapter, we analyse different problems of the supplier which can be solved 

optimally in polynomial time. Batch scheduling problems are combinations of se­

quencing and partitioning problems. There have been many works which develop 

batch scheduling algorithms using a hierarchical procedure where they first assume 

a job sequence and then find the batching of this job sequence. This hierarchical 

procedure may not guarantee optimality. However, if we could prove that job se­

quencing and batching are separable, then we could use the hierarchical procedure to 

solve our batching problem optimally, if there is a polynomial algorithm to find the 

job sequence and a polynomial algorithm to batch a given job sequence. For all the 

problems we study in this chapter, we use the above property to obtain the optimal 

batching schedule. We prove that problems with single product, with jobs of identical 

weights, and with jobs of identical processing times can be solved polynomially and 

develop algorithms for these problems. 
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We study the batch scheduling problem at the supplier where production is 

controlled by a push system. There are m manufacturers J\J(I), J\f( 2), · · · , J\f(m) with 

N(j) number of jobs for customer .Af(]) (j = 1, 2, · · · , m). We refer to these manufac-

turers simply as customers in this Chapter and in Chapter 4. The supplier is required 

to process jobs on a single machine and the kth job of customer l\;f(j) denoted by lkj) 

needs p~) time to process on the machine. All the jobs are available at time zero, i.e., 

at the start of the planning horizon. This is a reasonable assumption at the upstream 

suppliers when production is controlled by push system. We further assume that the 

batch delivery cost is partially or in whole is charged to the supplier. 

Associated with each batch delivery to customer Af(J) is the delivery cost d(j). 

A holding cost of w~) incurs per unit time for job lkj). We also use the term weight for 

wP). We have to find the batch schedule so that the total cost of inventory holding 

and batch delivery at the supplier is minimized, i.e., our objective is to minimize 
m n(j) . . m 

TC= 2..: 2..: VT!Flci(J) + 2..: n(jld(j), where n(j) is the number of batches for customer 
j=l i=l j=l 

Af(Jl, Bij) is the ith batch to customer Jvf(J), Ci(j) is the completion time of batch 

Bij), and ivi(j) is the sum of the weight of all the jobs assigned to batch Bi(j). 

For convenience, we remove the subscript k (resp., superscript (j)) when we 

deal with single-product (resp., single-customer) problems. Chapter 3 analyses some 

polynomially solvable problems and Chapter 4 develops a 2-approximation algorithm 

for the multiple product batch scheduling problem of the supplier which is known to 

be NP-hard. 

First, we make some observations that are used later in our proofs. We omit 

the proofs of these since they are very simple. 
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Observation 1: There should not be any idle time on the machine during 

the whole production horizon. 

Observation 2: A batch must be delivered as soon as the processing of all 

the items belonging to that batch is completed. 

Observation 3: Items belonging to the same batch must be processed con­

secutively. 

3.2 Single Product Single Customer Problem 

We study the basic batching problem at the supplier, i.e., the problem with single 

product and single customer. In the single product problem, wi = w, Pi = p for 

i = 1, 2, ... , N. We first prove some properties for the n-batching problem in which 

the number of batches is fixed at n, and for the general optimal batching problem 

with variable number of batches. Then we show that this basic model can be solved 

in polynomial time. We denote the ith batch and its size by bi. 

3.2.1 

The following observation is used for this problem. 

Definition 1: If N items are split into n batches of integer size 

bi such that bi E {x,x-1} for i = 1,2, ... ,n, then x = l~l 

We refer to this as the almost-equal-batch-size ( AEBS) pol­

icy. 

Then-batching Problem 

In then-batching problem, N identical items must be split into n batches, for a given 

n, so that bi > 0 for i = 1, 2, ... , n, and the total holding cost of all the batches 

is minimized. In this section, we derive expressions for the optimal batch sizes for 

the n-batching problem. This will lead to a polynomial-time solution of the overall 

problem. 

Property 3.1 Given batch sizes b1, b2, ... , bn, the order of the batches does not affect 
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t 

Figure 3.1: n-batching schedule 

the objective value. 

Proof: Let the holding cost of batch sequence b1 , b2, ... , bn be H n- Then 

Hn = w(b1(b1)P + b2(b1 + b2)P + ... + bn(b1 + b2 + ... + bn)P) 

= pw(b1(b1) + b2(b1 + b2) + ... + bn(b1 + b2 + ... + bn)). 

This is a symmetric function of the batch sizes b1 , b2, ... , bn. Therefore, the order of 

the batches does not affect the holding cost. Delivery cost is fixed at nd. Hence, the 

total cost is not affected by the batch sequence. o 

Lemma 3.1 shows that the AEBS policy is optimal in the single-product single-

customer case. 

Lemma 3.1 The AEBS policy zs optimal for the n-batching problem with bi E 

{ l~l, l~l -1}, Jori= 1,2, ... ,n. 

Proof: Figure 3.1 shows a typical n-batching schedule. Let the ith batch start at 

time t, and consider batch bj for some j > i. Let the holding cost of the batches 

(b1 , b2, ... , bi_ 1 , bj+1, bj+2, ... , bn) be denoted by A and the holding cost of the whole 

schedule by I. Then I equals the holding cost of (bi+ bi+I + ... + bj) plus A. Thus we 

can write 

I= biw(t + bip) + bi+1w(t +(bi+ bi+1)P) + ... + bjw(t +(bi+ bi+1 + ... + bj)P) +A 

= tw(bi + bi+I + ... + bj) + pw(bi(bi) + bi+1(bi + bi+1) + ... + bj(bi + bi+1 + ... + bj)) +A 

Now consider the schedule in which one item is moved from bi to bj. Let the holding 

cost of this schedule be I'. The holding cost of the batches (b1, b2 , .•. , bi_1, bJ+1, bJ+2 , ... , bn) 
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clearly remains A. Therefore, 

I'= tw(bi + bi+l + ... + bj) + pw((bi - l)(bi - 1) + bi+1(bi - 1 + bi+i) + ... 

+ bj_1(bi - 1 + bi+1 + ... + bj-1) + (bj + l)(bi - 1 + bi+i + ... + bj-i + bj + 1)) +A 

After some simple calculations, we obtain I - I' = pw(bi - bj - 1). 

Thus, there will be savings in the holding cost by moving one item from bi to 

bj, if I - I' > 0, i.e., if bi - bj > 1. Since this does not change the number of batches, 

the delivery cost part for the schedule will not change. By Property 3.1 , the sequence 

of the batches does not affect I. Thus, repeating the above argument for a sequence 

in which bj and bi are interchanged, we obtain that there will be savings by moving 

one. item from bj to bi if bj - bi > 1. This implies that all the batch sizes will be 

either x or (x - 1) for some integer x in the optimal schedule. Thus, by Definition 1, 

bi E { j ~l , j ~l - 1} for i = 1, 2, ... , n in the optimal batching. 

To be more precise, assume that we have l batches of size j ~ l and n-l batches 

of size j ~l - 1. This means that that we must have l · j ~l + (n - l) · ( j ~l - 1) = N. 

Solving this for l, we obtain that there will be l = N - n · ( j ~ l - 1) batches of size 

j ~l and the remaining batches will have size j ~l - 1 in the AEBS solution, which 

can be obtained in constant time for a given n. o 

Lemma 3.2 The holding cost of the optimal n-batching schedule is 

H~ = p; ( 2N I~ 1- n I ~r + n I ~l + N 2 
- N). 

Proof: From Lemma 3.1, we know that in the optimal batching bi E { x, x - 1} for 

i = 1, 2, ... , n, where x = j ~l · Let m batches contain x items and (n - m) batches 

contain ( x - 1) items in the optimal batching. Then mx + ( n - m) ( x - 1) = N :::? 

m= N-nx+n 
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By Property 3.1, we can assume that all m batches of size x are scheduled first 

and are followed by the (n - m) batches of size (x - 1). Therefore, 

H~ = pw ( x · x + x · 2x + ... + x · mx) + pw ( ( x - 1) ( mx + ( x - 1)) 

+ (x - l)(mx + 2(x - 1)) + ... + (x - l)(mx + (n - m)(x - 1))) 

m (n- m) 
= pw( 2 (m + l)x2 + m(n - m)x(x - 1) + 

2 
(n - m + l)(x - 1)2

) 

(N - nx + n) 
= pw( 

2 
(N - nx + n + l)x2 + (N - nx + n)(nx - N)x(x - 1) 

(nx - N) + 
2 

( nx - N + 1 )( x - 1) 2 ) 

= p; (2Nx - nx2 + nx + N 2 
- N) 

= P;" (2N r :1- n r :r + n r :1 + N2 - N). o 

3.2.2 Optimal Batching Problem 

In this section, we discuss the problem of finding the optimal number of batches for 

the basic model. Following this, the batch sizes corresponding to the optimal number 

of batches can be obtained using Lemma 3.1. 

We first prove that the total cost function is a discrete convex function. A 

function f(x), defined on a non-empty interval S of the integers, is discrete convex 

if for every two integer points x1 and x2 in S and every o: such that 0 :::;: o: :::;: 1 and 

ax1 + (1-o: )x2 is integer, we have f ( ax1 + (1-o: )x2 ) :::;: o:f (x1 ) + (1-a) f (x2). In order 

to prove the convexity of the total cost function, we consider its two components: the 

holding cost and the delivery cost. An example showing the cost function and its 

components is depicted in Figure 3.2. 

Lemma 3.3 H~ is a monotonically decreasing function of n. 

Proof: It is easy to see that when we move the last item of any batch i with bi > 1 of 

the best n-batch schedule to a new batch, the holding cost will decrease. Therefore, 
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Figure 3.2: A Discrete Convex Cost Function 

the holding cost of the best (n + 1 )-batch schedule will be smaller than that of the 

best n-batching. o 

The marginal savings m the holding cost when we increase the number of 

batches from n ton+ 1 is defined by H~ -H~+l · Lemma 3.4 proves the non-increasing 

behavior of the marginal savings of the holding cost. 

Lemma 3.4 The marginal savings of the holding cost function is non-increasing in 

n. 

Proof: The proof is based on extensive case analysis shown in detail below. 

Let Hk be the holding cost of k-batching problems. 

If we prove that H~ - H~+l 2". H~+l - H~+2 for 1 ::; n ::; N - 2, then the marginal savings 

is non-increasing inn. 

H~ - H~+i p~ { 2N r ~l -n r ~r + n I ~l -2N In: 11 + (n + l) r n: 1 r -(n + l) In: 11 } 

pw {2N l _!!___l - (n + 1) l _!!___1
2

+(n+1) l _!!___l - 2N l _!!___l 
2 ln+l ln+l Jn+l ln+2 

+(n+2) 1_!!___1
2 

-(n+2) l_!!___l} 
ln+2 ln+2 

We have to show that (H~ - H~+l) - (H~+l - H~+2 ) 2". 0. We show that L - R 2". 0 for all 
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n where, 

L=2NfNl +2Nr~1 +nfNl +(n+2) f ~1 +2(n+l) r~1
2 

and In ln+2 In ln+2 ln+l 

R = 4N f ~1+2(n + 1) f ~1 + n f Nl
2 

+ (n + 2) f ~1
2 

ln+l ln+l In ln+2 

We consider the problem into different cases, and prove that L - R 2 0 for all the cases. 

We know that N 2 n + 2. Let N = a(n + 1) + b, where a 2 1,0::; b::; n and 

a+ b 2 2. 

I ~1 =a+ I a+ bl J ~1 =a+ l_b l ; and I ~1 =a - l~J In I n ln+l ln+l ln+2 n+2 

Case 1: b = 0::::::} N = a(n + 1); a 2 2 

r ~1 =a+ r ~ i ; I n~l l =a; I n~2 l =a - l n~2 J 

Case 1.1: 2::; a::; n 

r ~1 = a+ 1; I n~l l = a; I n~2 l = a. 

L = 2N(a + 1) + 2Na + n(a + 1) + (n + 2)a + 2(n + l)a2 

R = 4Na + 2(n + l)a + n(a + 1)2 + (n + 2)a2 

L - R = 2N - 2an = 2a( n + 1) - 2an = 2a > 0 

Case 1.2: a = n + 1 

r ~1 = a+ 2; I n~l l = a; I n~2 l = a. 

L = 2N(a + 2) + 2Na + n(a + 2) + (n + 2)a + 2(n + l)a2 

R = 4Na + 2(n + l)a + n(a + 2) 2 + (n + 2)a2 

L - R = 4a(n + 1) - 2n - 4an = 4a - 2n = 4(n + 1) - 2n > 0 

Case 1.3: a 2 n + 2 

Let a = dn + e, where d 2 1, 0 ::; e < n; d + e 2 2. 

Let a= f(n + 2) + g, where f 2 1, 0::; g < n + 2. 

r ~1 =a+ d + 1~1; I n~l l =a; I n~2 l =a - 1. 

Case 1.3.1: e = 0::::::} d 2 2 
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I~ l = a + d; Jn~ 1 l = a; J n~2 l = a - f. 

L = 2N(a + d) + 2N(a - f) + n(a + d) + (n + 2)(a - f) + 2(n + l)a2 

R = 4N a + 2 ( n + 1) a + n (a + d) 2 + ( n + 2 )(a - f) 2 

L - R = 2N d - 2N f + nd - nf - 2f - 2nad - nd2 + 2anf + 4af - nf2 
- 2f 2 

= 2da(n + 1) - 2fa(n + 1) +a - (a - g) - 2nad - da + 2anf + 4af - f(a - g) 

= 2ad + 2af +a~ (a - g) - da - f(a - g) =ad+ fa+ g + f g > 0 

Case 1.3.2: e > 0 

I ~l =a+ d + 1; J n~l l =a; J n~2 l =a - f. 

L = 2N(a + d + 1) + 2N(a - f) + n(a + d + 1) + (n + 2)(a - f) + 2(n + l)a2 

R = 4Na + 2(n + l)a + n(a + d + 1)2 + (n + 2)(a - !) 2 

L - R = 2N d - 2N f + 2N - nd - nf - 2f - 2nad - nd2 + 2anf - nf2 + 4af - 2f2 
- 2na 

= 2da(n + 1) - 2fa(n + 1) + 2a(n + 1) - nd - nf - 2f - 2nad - nd2 

+ 2anf - nf2 + 4af - 2f2 
- 2na 

= 2ad + 2af - nd - nf - 2f - nd2 
- nf2 

- 2f2 + 2a 

= 2ad + 2af - (a - e) - (n + 2)f - d(a - e) - f(a - g) + 2a 

?:: ad+ a.f + g +de+ Jg+ e > 0 

Case 2: b > 0 

I Nl =a+ fa+bl. r _!Y_l =a+ 1· r _!Y_l =a - la-bJ 
I n I n ' I n+l ' I n+2 n+2 

By definition, b < n + 1 ::::? b - a < n + 1. Therefore, when a - b < 0, l n~2 J = a+ 1. 

Case 2.1: 2 ::::; a+ b ::::; n and a - b < 0 

I Nl = a+ 1 · r _!Y_l = a+ 1 · r _!Y_l = a+ 1 
I n ' I n+l ' I n+2 

L-R=O 

Case 2.2: 2 ::::; a+ b ::::; n and a - b ?:: 0 ::::? a - b < n 
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L = 2N(a + 1) + 2Na + n(a + 1) + (n + 2)a + 2(n + l)(a + 1)2 

R = 4N(a + 1) + 2(n + l)(a + 1) + n(a + 1)2 + (n + 2)a2 

L - R = -2N + 2na + 4a 

= - 2 (an + a + b) + 2na + 4a = 2 (a - b) 2: 0 

Case 2.3: a+ b > n and a - b < 0 

Let a+ b = dn + e; d 2: 1, 0 ::; e < n, d + e 2: 2 

l~l =a+d+ l~l; f n~ll =a+l; f n~2l =a+l 

Case 2.3.1: e = 0::::} d 2: 2 

l~l =a+d; f n~ll =a+l; f n~2l =a+l 

L = 2N(a + d) + 2N(a + 1) + n(a + d) + (n + 2)(a + 1) + 2(n + l)(a + 1) 2 

R = 4N(a + 1) + 2(n + l)(a + 1) + n(a + d) 2 + (n + 2)(a + 1)2 

L - R = 2N(d - 1) + n(d - 1) - 2an(d - 1) - nd2 + n 

= 2(an +a+ b)(d - 1) + n(d - 1) - 2an(d - 1) - n(d - l)(d + 1) 

= (2a + 2b - nd)(d - 1) > 0 

Case 2.3.2: e > 0 

I ~l =a+ d + 1; I n~l l =a+ 1; I n~2 l =a+ 1 

L = 2N(a + d + 1) + 2N(a + 1) + n(a + d + 1) + (n + 2)(a + 1) + 2(n + l)(a + 1)2 

R = 4N (a + 1) + 2 ( n + 1) (a + 1) + n (a + d + 1) 2 + ( n + 2 )(a + 1) 2 

L - R = 2Nd - 2and - nd2 
- nd = 2d(an +a+ b) - 2and - nd(d + 1) 

= 2d(a + b) - (a+ b - e)(d + 1) =(a+ b)(d - 1) + e(d + 1) > 0 

Case 2.4: a + b > n and 0 ::; a - b < n + 2. 

Let a + b = dn + e where d 2: 1, 0 ::; e < n, and d + e 2: 2. 

I ~l = a+ d + I~ l ; I n~l l = a+ 1; I n~2 l = a 

Case 2.4.1: e = 0::::} d 2: 2. 
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r ~l =a+ d; r n~l l =a+ 1; r n~2 l =a 

L = 2N(a + d) + 2Na + n(a + d) + (n + 2)a + 2(n + l)(a + 1)2 

R = 4N(a + 1) + 2(n + l)(a + 1) + n(a + d) 2 + (n + 2)a2 

L - R = 2N(d - 2) + nd - 2an(d - 2) - nd2 + 4a 

= 2(an +a+ b)(d - 2) + nd - 2an(d - 2) - nd2 + 4a 

= 2(a + b)(d - 2) - nd(d - 1) + 4a = 2(a + b)(d - 2) - (a+ b)(d - 1) + 4a 

= (a+ b)d +(a - 3b) = (a+ b)(d - 1) + 2(a - b) > 0 

Case 2.4.2: e > 0 

r ~l =a+ d + 1; r n~l l =a+ 1; r n~2 l =a 

L = 2N(a + d + 1) + 2Na + n(a + d + 1) + (n + 2)a + 2(n + l)(a + 1)2 

R = 4N(a + 1) + 2(n + l)(a + 1) + n(a + d + 1)2 + (n + 2)a2 

L - R = 2N(d - 1) + nd - 2an(d - 1) - 2nd - nd2 + 4a 

= 2(an +a+ b)(d - 1) - nd - 2an(d - 1) - nd2 + 4a 

= (a+ b)(d - 1) + 2(a - b) + e(d + 1) > 0 

Case 2.5: a - b ;::: n + 2 ::::} a + b > n 

Let a+ b = dn + e, d;::: 1, 0 :Se< n, e + d 2: 2 

Let a - b = l ( n + 2) + g, l ;::: 1, 0 :S g < n + 2, l + g ;::: 2 

r ~l =a+ d + l~l; r n~l l =a+ 1; r n~2 l =a - l 

Case 2.5.1: e = 0::::} d 2: 2 

r ~l = a+ d; r n~l l = a+ 1; r n~2 l = a - l 

L = 2N(a + d) + 2N(a - J) + n(a + d) + (n + 2)(a - J) + 2(n + l)(a + 1)2 

R = 4N (a + 1) + 2 ( n + 1 )(a + 1) + n (a + d) 2 + ( n + 2 )(a - J) 2 

L - R = 2N d - 4N - 2N l + nd - nl - 21 - 2nad - nd2 + 2anl - nl2 + 4al - 212 + 4an + 4a 

= 2d(an +a+ b) - 4(an +a+ b) - 2l(an +a+ b) + nd - nl - 21 

- 2nad - nd2 + 2anl - nl2 + 4al - 212 + 4an + 4a 

=ad+ b(d - 2) + l(a - b) + g +lg> 0 

Case 2.5.2: e > 0 
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H* ---------* ni ' 

H~ -- -- ---- -~ -------- - - - - - ---t 

H~ ---- - - ---~ -- -- - - -- - -- -- - --:- -- -- -- - - --- -~ 

Figure 3.3: H~ vs. n 

I ~l = a+ d + 1; r n~l l = a+ 1; r n~2 l = a - f. 

L = 2N(a + d + 1) + 2N(a - f) + n(a + d + 1) + (n + 2)(a - f) + 2(n + l)(a + 1)2 

R = 4N (a + 1) + 2 ( n + 1 )(a + 1) + n (a + d + 1) 2 + ( n + 2) (a - f) 2 

L - R = 2N d - 2N - 2N f - nd - nf - 2f - 2nad - nd2 + 2anf - nf2 + 4af - 2f2 + 2an + 4a 

= 2d(an +a+ b) - 2(an +a+ b) - 2f(an +a+ b) - nd - nf 

- 2f - 2nad - nd2 + 2anf - nf2 + 4af - 2f2 + 2an + 4a 

= (ad - b) + b( d - 1) + f (a - b) + g + f g + e + de > 0 

Therefore, (H~ - H~+ 1 ) - (H~+i - H~+2 ) 2: 0 for all 1 ~ n ~ N - 2. Thus, 

the marginal savings is non-increasing in n. o 

Lemma 3.5 H~ is a discrete convex function of n. 

Proof: Figure 3.3 shows the total holding cost H~ which satisfies Lemmas 3.3 and 3.4 

at n = n1 , n = n3 and n = n2 = [cm1 + (1 - a)n3], where 0 < a < 1 and n2 is the 

integer part of an1 + (1 - a)n3 • By Lemma 3.4, 

This implies 
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Corollary 3.1 The optimal total cost function is discrete convex inn. 

Proof: H~ is discrete convex in n. Since the delivery cost is linear in n and the sum 

of convex functions is convex again, the corollary follows. o 

Since the optimal total cost function is discrete convex in n, we can find the 

optimal number of batches using binary search. The marginal savings in the holding 

cost at n = r is H; - H;+i · Since the marginal savings in the holding cost is non­

increasing and increasing the number of batches by 1 increases the delivery cost by 

d, there will not be any savings in the total cost by a further increase in the number 

of batches if H; - H;+1 :S d. Thus at a given r, we can check the marginal savings 

and decide which way to move in the binary search. Based on this argument, we give 

our algorithm BatchNum (Algorithm 3.1) for finding the optimal number of batches. 

Algorithm 3.1 {Algorithm BatchNum for Optimal Number of Batches) 

Step 1 

Step 2 

Step 3 

Set s = 1, l = N - 1 

Calculate llz =Hz* - Hz*+ 1 

If !::::.1 2: d then set n* = l + 1; Stop 

Calculate ll 8 = H; - H;+I 

If f::::.s :S d then set n* = s; Stop 

Set m = l stlJ 

If m = s then set n* = m + 1; Stop 

Calculate llm = H:n - H:n+i 

If !::::.m = d then set n* = m; Stop 

If !::::.m < d then set l = m; Go to Step 3 

Set s = m; Go to Step 3 

Since the algorithm uses binary search over n, and we clearly have n :S N, the 

complexity of BatchNum is O(logN). Thus we have proved the following theorem. 
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Theorem 3.1 Algorithm BatchNum finds an optimal number of batches for the single­

product batch scheduling problem of the single-customer model in O(logN) time. Thus 

the single-product single-customer batching problem can also be solved in O(logN) 

time. 

Remark 3.1 Once we have found the optimal n, the AEBS policy and the formulas 

in Observation 4 clearly define the optimal batch sizes. Thus Theorem 3.1 leads to 

the interesting situation that we can find and describe the solution for the problem in 

O(logN) time, which is polynomial in the size of the input for the problem, however, if 

we wanted to output explicitly the batch sizes b1 , b2 , ... , bn and the resulting schedule, 

this may require exponential time in the size of the input, since n itself may be 

exponentially sized. 

Remark 3.2 It is easy to see that Algorithm BatchNum also gives the optimal 

number of batches when the machine needs a setup at the start of the first batch: In 

this case, each item will be delayed by s time units, thus the total cost will have an 

additional term wsN, which does not vary with n or the batch sizes, and thus the 

same n and the batch sizes will remain optimal as without setups. 

3.3 One Product per Customer to Multiple Customers Prob­

lem 

In this section, we analyse the supplier's problem when each customer requires a 

single product, but different customers may require different products. This model is 

applicable to the plastic manufacturer example discussed in Chapter 1. The model 

also applies to situations where a customer may need more than one product as long 

as different products are delivered in separate batches. The supplier needs a setup 
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s 

Figure 3.4: Multiple Customer Model. 

si on the machine when switching the machine to produce product Pi succeeding a 

different product. Figure 4.6 illustrates a network representation of the model when 

the supplier delivers to m customers 1111 , M 2 , ... , lvlm. We utilize the results obtained 

in the previous section to solve the supplier's general problem. \Ve assume that orders 

to different customers are delivered in separate batches. 

Lemma 3.6 There exists an optimal schedule in which batches of the same product 

are processed consecutively. 

Proof: Consider an optimal schedule in which batches of the same product are not 

processed consecutively. Consider a part of the schedule in which the kth batch bik of 

product Pi starts at time t followed by r batches of products other than Pi and then 

the (k + l)th batch bi,k+l of product Pi as shown in Figure 3.5. (Since the holding 

cost of an item is independent of the customer, we have removed the subscript of the 

customer for simplicity.) As it is not important which product (only that other than 

Pi) the batches between bik and bi,k+l belong to, let us denote these r batches by 

b~, b~, ... , b~ and the corresponding unit processing times, unit holding costs and setup 
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b~p~ · · · · · · s~ b~p~ Si bi,k+ lPi 
t 

Figure 3.5: A Partial Batching Schedule 

times by p~, wj and s~, respectively for j = 1, 2, ... , r. Note that s~ is zero if bj_ 1 and 

bj are batches of the same product. 

Let the holding cost of bik and bi,k+l in this partial schedule be h and h+1, 

respectively. Also let the holding cost of b~ be AJ for j = 1, 2, ... , r, and the total 

holding cost of the remaining batches be A. Then 

Aj = b~wj(t + si + s
1

1 + s~ + ... + s~ + bikPi + b
1

1p
1

1 + b~p~ + ... + b>~), for j = 1, 2, ... , r 

Ik+1=bi,k+lwi(t+2si + s~ + s~ + ... + s~ + bikPi + b~p~ + b~p~ + ... + b~p~ + bi,k+lPi) 

Now consider the schedule in which bi,k+l is moved right after bik and let the corre­

sponding holding costs for bik and bi,k+l be I~ and 1~+ 1 , respectively, and for bj let 

it be A~, for j = 1, 2, ... , r. It is clear that the total holding cost of the remaining 

batches will not be worse than A. We also have 

Al bl / ( I I I b b bl I bl I bl I ) C . j = jwj t+si+s1 +s2+ ... +sj+ ikPi+ i,k+lPi+ 1P1 + 2P2+ ... + jPJ, ior J = 

1, 2, ... , r 

I~+l = bi,k+ 1 Wi ( t + Si + bikPi + bi,k+ lPi) 

Let H
1 

= (I~+ 1~+ 1 +A~ +A~+ ... + A~) and H = (h + h+i +Ai + A2 + ... +Ar). 

Then 

H I H - b (bl I bl I bl I) b ( I I I - - i,k+lPi 1 W1 + 2W2 + ... + T WT - i,k+l Wi Si+ S1 + S2 + ... +ST + 

b~p~ + b~p~ + ... + b~pJ 
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Now consider another schedule derived from the original schedule by moving bik just 

before bi,k+l and let the corresponding holding costs for bik and bi,k+l be I~ and 1~+ 1 , 

respectively, and for bj let it be A;, for j = 1, 2, ... , r. Again the holding cost of the 

remaining batches will not be worse than A. We have 

Let H" = (I~ + I~+ 1 + A~ + A; + ... + A~) . Then we get 

H" - H = bikwi(s~ + s; + ... + s~ + b~p~ + b;p; + ... + b~p~) 
-bikPi(b~w~ + b;w; + ... + b~w~) 
-si(b~w~ + b;w; + ... + b~w~) - bi,k+1WiSi 

Since H' and H" are obtained by moving batches of the optimal schedule, we 

know that H
1 

2: Hand H" 2: H. Let us assume now that H
1 > H. Then, 

which implies 

bikPi(b~w~ + b;w; + ... + b~w~) + si(b~w~ + b;w; + ... + b~w~) + bi,k+lwisi > bikwi(s~ + 

s; + ... + s~ + b~p~ + b;p; + ... + b~p~). 

The last inequality, however, is equivalent to H" - H < 0. This contradicts 

the assumption that the partial schedule is from the optimal schedule. So we could 

not have H' > H originally, i.e. H' = H. 

Repeatedly using the above argument, we can construct an alternative optimal 

schedule in which batches of every product are processed consecutively, thus proving 

the lemma. o 
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Lemma 3. 7 There exists an optimal schedule in which batches of the same product 

to the same customer are processed consecutively. 

Proof: Let us consider an optimal schedule satisfying Lemma 3.6, that is in which 

batches of the same product are consecutive. If this schedule does not satisfy the 

current lemma, then there will be two batches bJ~ and b]'.~+1' for customer f\fz, which 

are not consecutive, but every other batch between them is for product Pj. We can 

apply Property 3.1 to the part of the schedule for Pj, which implies that moving bJ'.~+i 

next to bJ~ will not affect the total holding cost. Repeatedly using this argument, we 

can obtain a schedule satisfying Lemma 3. 7. o 

Lemma 3.6 allows us to make the batching decisions for a given product 

separately from other products. Since delivery to each customer is done separately 

in the optimal schedule and we can assume that batches of the same product to the 

same customer are processed consecutively, optimal batch sizes of a given product to 

a given customer are also independent of the batching of the same product to other 

customers. Therefore, the optimal number of batches and the resulting batch sizes 

for product Pj to customer Jvf(i) can be obtained by using the algorithm BatchNum 

with input N?), where Nji) is the number of items of product Pj to be delivered to 

customer Af( i). 

Lemma 3.8 In the optimal schedule, products are scheduled in non-decreasing order 
m 

of s;+p;N; where N· = """"N(k). 
w·N· ' i L.J i 

' • k=l 

Proof: Consider an optimal schedule in which, contrary to the lemma, product ~ 

immediately precedes product Pj, where s;:;;,ti > s1;;Jv~1 , and processing of product 

Pi starts at time t as shown in Figure 3.6. In the figure, we have removed the subscript 

for customers since the holding cost does not depend on the customer. In total, there 

are ni batches of Pi and nj batches of Pj. 
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t 

Figure 3.6: A Schedule for Lemma 3.8 

Let Hi and Hj be the holding cost of product Pi and Pj, respectively, in the 

schedule. Then 

H, = w,((t + s,)N; + ~b., tp;b;,,) 

H.; = w; ( (t + "' + s; + p,N,)N; + ~ b;, tp;b;,) 

Let us exchange the batches of Pj with the batches of Pi without changing their sizes 

or relative order. Let the corresponding holding costs be H; and H; for Pj and ~ in 

the resulting schedule. Then 

H; = w; ( (t + s; + s; + p;N;)N; + ~ b;, tp;b;,) 

H; = w; ( (t + s;)N; + ~ b1, tP1b1,) 

(H: + H;) - (Hi+ Hj) = WiNi(Sj + PjNj) - WjNj(Si + PiNi) 

Since si+PiNi < s;+p;N; we have (H 1 + H'.) - (H + H·) < 0. This contradicts the 
WjNj w;N; ' i J i J 

optimality assumption for the original schedule. o 

Therefore, the optimal product sequence can be obtained by Lemma 3.8. The 
m 

optimal batching of a product Pi needs at most oo:= log N?)) calculations by The-
k=l 

orem 3.1. Therefore, the total complexity of our solution for the multi-customer 
m 

multi-product batching problem is oo:= I:f=1 log Ni(k)) ~ O(SmlogNmax), where S 
k=l 

is the number of product types, and Nmax max Ni(k). Thus we have 
k=l,2,. .. ,m, i=l,2 ... ,s 

proved the following theorem. 
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Theorem 3.2 There exists a polynomial-time algorithm which solves the multi-customer 

multi-product optimal batch scheduling problem in O(mSlogNmax) time under the as­

sumption that different products are delivered in separate batches. 

\Ve observe that in practice suppliers often use long production runs making 

enough to satisfy the demand for a product over the entire scheduling period and 

thus saving the avoidable setups. Lemma 3.6 means that this "intuitive" solution is 

optimal in the current model. It also means that when looking for the optimal batch 

sequence, we can assume that if there is more than one batch of a product for the 

same customer, then these batches are scheduled consecutively. We can use this to 

derive the optimal batch sizes and sequence, but note that reordering these batches 

of identical products after, does not affect our objective function. Thus once the 

optimal batch sizes have been determined, the supplier is free to use any sequence of 

the batches of identical product. For example, the supplier can cyclically deliver one 

batch of a product to every customer before delivering any subsequent batches of the 

same product to the same customer without increasing the total cost. 

So far, we have analyzed batch scheduling at the supplier with the assumption 

that different products are never batched together. In the next sections we study 

polynomially solvable cases of the supplier's problem without this assumption. 

3.4 Polynomially Solvable Special Cases of the Supplier's 

General Problem 

The supplier's general problem was proven to be strongly NP-hard [19] when different 

products can be batched together even if we have only a single customer. In the next 

subsections we study special cases of this problem which are solvable in polynomial 

time. 
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3.4.1 Batching of Jobs with Fixed Job Sequence 

We prove that batch scheduling problems of multiple products (jobs) at the supplier 

with a single customer can be solved polynomially when the jobs follow an arbitrary 

but fixed job sequence. Coffman et al. [14] study the batch scheduling problem to 

minimize the sum of the completion times for jobs with arbitrary processing times 

when there is a constant setup time at the start of each batch. They present an O(N) 

algorithm for the optimal batching of any job sequence of N jobs. They further prove 

that in the optimal schedule, jobs are ordered in SPT order to minimize the sum of 

completion times. Since the SPT job sequence can be obtained in O(NlogN) time, 

they are able to solve the optimal batch scheduling problem in O(NlogN) time. Later, 

Albers and Brucker [1] extended this study and proved that the optimal batching of 

jobs with identical processing times and arbitrary weights can be solved in O(NlogN) 

time, and the optimal batching of jobs with arbitrary processing times and arbitrary 

weights with any given job sequence can also be solved in O(N) time. In this section, 

we study the batching of jobs with arbitrary processing times and arbitrary weights of 

any fixed job sequence when there is an associated batch delivery cost. We prove that 

this problem can be solved polynomially by an extension of the algorithm of Coffman 

et al. with some modifications, similar to the ones used by Albers and Brucker. We 

follow the notation of Albers and Brucker. 

Without loss of generality let us assume that the fixed job sequence we want to batch 

optimally is J1 , J2 , ... , JN. Consider a batching solution of this job sequence with k 

batches 

BS= {Jill ... ' Ji2-1}, {Ji2, ... 'Ji3-i}, ... ' {Jik-1' ... ' Jik-d, {Jik' ... ' JN}, 

where i1 is the index of the first job in the jth batch and 1 = i 1 < i 2 < · · · < ik :::; N. 

We show that this problem can be reduced to the special shortest path problem 
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discussed by Albers and Brucker. 

Let F(BS) be the total cost (sum of the weighted flow time and the delivery 

cost) of the batching solution BS. Since the completion time of every item in batch 
ij+l -1 

{ Ji1 , Jij+l' ... , JiJ+i-d is L Pv, F(BS) can be calculated as follows: 
v=i1 

where ik+I = N + 1 is a 'dummy' job. 

If we set 

N j-1 

Cij = ( L Wv) ( LPv) + d, (3.1) 
v=z v=z 

which is the cost contribution by a batch containing jobs Ji, li+l, ... , Jj_ 1 , then 
k 

F(BS) = L ci1,iJ+i-I· Furthermore, for any k > j, 
j=l 

N k-1 N k-1 

Cik-Cij = ( L Wv) ( LPv) = J(i)h(j, k), where f(i) = L Wv and h(j, k) = LPv 
v=z V=J v=z V=J 

Since f ( i) is monotone nonincreasing and h(j, k) > 0 for all j < k, our problem 

can also be formulated as a special shortest path problem introduced by Albers and 

Brucker. The following is the corresponding network for our problem: 

a. Each job Ji ( i = 1, 2, ... , N) is represented by a vertex i in the network. 

b. Since the job sequence J 1 , J 2 , ... , JN is given, the network contains edges ( i, j) 

only if i < j. 

c. Any edge ( i, j) is assigned an edge length Cij. 

d. A dummy job lN+l with PN+l = WN+l = 0 is added. 
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I tail I ... I next( i) I i I previou.s( i) I · · · I head 

Figure 3.7: Structure of a queue q. 

The batching problem then is equivalent to finding the shortest path from 

vertex 1 to vertex N + 1 in the network. 

Let Fj be the length of the shortest path from vertex j to vertex N + 1, and 

Fj ( k) be the length of a shortest path from j to N + 1 which contains (j, k) as first 

edge. Then, 

Fj(k) = cjk + Fki and Fj = min{Fj(k)IJ < k:::; N + l}. 

Therefore, Fj ( k) :::; Fj ( l) for vertices j < k < l is equivalent to 

But Cjl - Cjk = f (j)h(k, l), therefore the condition can be written as f (j) 2: ~(~,~1 • 

Thus for any two vertices k, l (k < l), if the threshold J(k, l) = ~"(~,~1 
:::; J(j), 

then Fj ( k) :::; Fj ( l) and l is called not better than k with respect to j. On the other 

hand, if J(j) < J(k, l), then Fj(k) > Fj(l) and l is called better thank with respect 

to j. 

Therefore, the problem can be solved in O(N) time using a slightly modified 

version of the algorithm by Albers and Brucker. They use the queue data structure 

shown in Figure 3. 7 to solve the problem. 

The correctness of the algorithm is based on the following two lemmas, which 

can be proved by the same proof as in Albers and Brucker [l]. 

Lemma 3.9 Let 1 :::; j < k < l be vertices satisfying f(j) 2: cS(k, l). Then Fi(k) :::; 

Fi(l), for all i = 1,2, ... ,j. 
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Algorithm 3.2 (Modified Algorithm of Albers and Brucker) 

begin 

Step 1 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

q = N + 1; FN+l = 0 

for j = N to 1 do begin 

while head(q) # tail(q) and f(j) 2: 6(next(head(q)), head(q)) do 

Delete head(q) from q; 

N(j) = head(q); Fj = Cj,N(j) + FN(j) 

while head(q) # tail(q) and 6(j, tail(q))::::; 6(tail(q),previous(tail(q))) do 

Delete tail ( q) from q 

Add j to the tail of q; 

end 

end 

Lemma 3.10 Suppose 6(j, k) :::::; 6(k, l) for some vertices 1 ::::; j < k < l ::::; n + 1. 

Then for each vertex i, 1 ::::; i ::::; j, either k is not better than j or l is better than k 

with respect to i. 

In order to obain the linear time complexity, we need to do some preprocessing. 

Each Cij value needed can be calculated in 0(1) time by equation (3.1). The f(j) 

values can easily be computed in a preprocessing step in O(N) time. To make an 

h(j, k) value computable in 0(1) time, we also compute in the preprocessing step the 

following: 

0 for i = 1 

sp(i) = 
i-1 

2: Pv for i = 2, 3, ... , N + 1. 
v=l 

This clearly requires O(N) time and using h(j, k) = sp(k) - sp(j) makes 

any h(j, k) computable in 0(1) time. Finally, the algorithm requires at most O(N) 
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iterations, as each vertex gets added or deleted at most once from q. Thus we have 

the following theorem. 

Theorem 3.3 Algorithm 3.2 computes the optimal batching of a given job sequence 

in O(N) time. 

The following example illustrates the detailed execution of the algorithm. 

Example 3.1: Consider optimal batching of a job sequence (J1, J2, J3, J4, J5, J5). 

Let P1 = P2 = 10; p3 = p4 = 100; p5 = P6 = 20; W1 = W2 = 50; W3 = W4 = 60; 

W5 = W5 = 11; d = 1200. 

Initialization: q = {7}; head(q) = 7; tail(q) = 7; F7 = 0. 

j = 6 N(6) = 7; F6 = 1420 

Add 6 to q; q = {6, 7}; tail(q) = 6 

j = 5 f(5) = 22; next(head(q)) = 6 

6(6, 7) = 71 > J(5) 

N(5) = 7; F5 = 2080 

6(5, 6) = 33; previous(tail(q)) = 7 

6(6, 7) = 71 > 6(5, 6); Remove 6 from q 

Add 5 to q; q = {5, 7}; tail(q) = 5 

j = 4 J(4) = 82; next(head(q)) = 5 

6(5, 7) = 70 < J(4); Remove 7 from q 

q = {5}; head(q) = 5 

N(4) = 5; F4 = 11480 

Add 4 to q; q = {4,5}; tail(q) = 4 
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j = 3 .f(3) = 142; next(head(q)) = 4 

6(4, 5) = 94 < f(3); Remove 5 from q 

q = {4}; head(q) = 4 

N(3) = 4; F3 = 26880 

Add 3 to q; q = {3, 4}; tail(q) = 3 

j = 2 J(2) = 192; next(head(q)) = 3 

6(3, 4) = 154 < f (2); Remove 4 from q 

q = {3}; head(q) = 3 

N(2) = 3; F2 = 30000 

Add 2 to q; q = {2, 3}; tail(q) = 2 

j = 1 f(l) = 242; next(head(q)) = 2 

6(2, 3) = 312 

J 

N(j) 

N(l) = 3; F1 = 32920 

6 

7 

5 

7 

4 

5 

3 

4 

2 

3 

1 

3 

Therefore, the optimal batching is (J1 , J2 ) (J3 ) (J4 ) (J.5 , J6 ) with an objective 

value of 32,920. 

We have proved that there exists a polynomial time algorithm when the job 

sequence is given. Therefore, when there are multiple products to be batched, if job 

sequencing and batching are separable and if the optimal job sequence can be found 

in polynomial time then the batch scheduling problem can be solved in polynomial 

time. We use this property to solve special cases of the batch scheduling problem 

optimally in the following two subsections. 
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3.4.2 Batching of Jobs with Identical Weights 

In batching of jobs with identical weights all the jobs have the same weight, i. e., 

wi = w for i = 1, 2, ... , N. This model is applicable to the pasta manufacturer 

example discussed in Chapter 1. This problem is equivalent to the batching problem 

to minimize the sum of the completion times and the delivery costs. 

Property 3.2 There exists an optimal solution in which jobs are sequenced in SPT 

order. 

Proof: If job Jj precedes job Ji in a schedule, where P) > Pi, then interchanging 

jobs Jj and Ji will not increase the total holding cost without affecting the number 

of batches. o 

Corollary 3.2 The optimal batch scheduling problem of jobs with identical weights 

can be solved in O(NlogN) time. 

Proof: From Property 3.2, in the optimal schedule, jobs are sequenced in SPT order. 

SPT order can be obtained in O(NlogN) time. Further, the optimal batching of 

this given job sequence can be done in O(N) time using Algorithm 3.2. Thus, the 

complexity of the problem is O(NlogN). o 

Corollary 3.2 improves the complexity of the solution from O(N2
), which is the 

complexity of the algorithm given for the same problem by Hall and Potts [19]. They 

provide a dynamic programming algorithm to find optimal batch sizes for given job 

sequences to minimize the sum of flow time and delivery costs with time complexity 

O(Nm+I ), where N is the total number of jobs delivered tom customers. 
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3.4.3 Batching of Jobs with Identical Processing Times 

vVe study batch scheduling of jobs with identical processing time, i.e., Pi = p for 

i = 1, 2, ... , N. 

Property 3.3 There exists an optimal solution in which jobs are scheduled in non­

increasing order of job weights. 

Proof: If job Jj precedes Ji, where Wj < wi, then interchanging Jj and Ji will not 

increase the total holding cost without changing the number of batches. o 

Corollary 3.3 The optimal batch scheduling of jobs with identical processing times 

can be solved in O(NlogN) time. 

Proof: We need O(NlogN) time to order the jobs in non-increasing weight order and 

O(N) time to get the optimal batching for this given job sequence using Algorithm 

3.2. D 

3.5 Multiple Customer Batching of Jobs with Identical Pro­

cessing Times 

Here we prove that batch scheduling of jobs with identical processing times with 

multiple customers can be solved polynomially. We denote by a(k) the job sequence 

of customer Mk. In the batch scheduling problem for multiple customers, we have 

to find the job sequence of each customer, batch sizes for each customer, and the 

sequence of the batches. 

Lemma 3.11 There exists an optimal batch schedule in which jobs of each customer 

are sequenced in nondecreasing weight order. 

53 



Ph.D. Thesis - E.Selvarajah Mcl\faster University - Management Science/ Systems 

Proof: If the lemma is not true then there will be at least two jobs Ji(k) and 1yl of 

customer llh such that Ji(k) follows J?) in o-(k), where wj < w;k). If we interchange 

Ji(k) and 1yl, the holding cost will not increase since the batch completion time 

remains the same while the job with larger weight is as signed to an earlier position. 

D 

Therefore, job sequencing and batching are separable for this problem. The 

algorithm by Hall and Potts [19] can be used to solve the batching problem of this fixed 

job sequence. Job sequencing requires O(mlogNmax) time, where Nmax = max Nk 
k=l,2, ... ,m 

and Nk is the demand from customer Mk. The algorithm by Hall and Potts requires 
m 

0((2:: Nk)m+ 1
) time to find the optimal batching. 

k=l 
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Chapter 4 

Approximation Algorithms for the 

Supplier's General Problem 

4.1 Introduction 

In this chapter, we study the batch scheduling of jobs with arbitrary processing times 

and arbitrary weights and provide a 2-approximation algorithm for this problem. The 

batch scheduling problem with arbitrary processing times and arbitrary weights is 

strongly NP-hard (Hall and Potts [19]). This justifies the development of an approx­

imation algorithm. We first study some properties of preemptive batch scheduling 

and based on these properties, we develop our 2-approximation algorithm. 

4.2 Multiple Products, Single Customer 

In this section, we study the job sequencing and batching of multiple products for a 

single customer at the supplier. 

Lemma 4.1 If WiPj ~ d, (for all i #- j, i, j = 1, 2, ... , N ), then in the optimal 

batching solution, jobs are sequenced in WSPT order. 
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Proof: When WiPJ ~ d, (for all i #- j and i, j = 1, 2, ... , N), then each job is delivered 

as soon as its processing is completed. Thus the problem is equivalent to scheduling 

N jobs so that the weighted sum of the completion times is minimized. Smith [37] 

proves that \VSPT job sequence is optimal for minimum weighted completion time 

problems. o 

The example given below, however, proves that the WSPT job sequence may 

not provide the optimal batching solution for the general problem. 

Example 4.2: Counter example for WSPT job sequence being optimal. 

Consider the following example with three jobs and d = 1200: 

Ji J1 J2 ]3 

Pi 10 100 20 

Wi 50 60 11 
Pi 0.20 1.7 1.8 
w; 

The optimal batching solution for this problem is ( J 1, J3 ) in the first batch 

and ( J2 ) in the second batch with total cost of 12030. The optimal batching solution 

of the WSPT job sequence, however, is (Ji) in the first batch and ( J2 , J3 ) in the 

second batch with total cost 12130. Thus the total cost of the optimal batching of 

the WSPT job sequence is approximately 1.008 times the total cost of the optimal 

batching solution. 

We first prove that the WSPT job sequence is optimal for a preemptive version 

of the problem. Based on this, we then prove that there exists a 2-approximation 

algorithm for the general problem. 

Our development of a 2-approximation algorithm for the general batching 

problem is based on a strong lower bound for the optimum, which is derived from a 
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Figure 4.1: Schedule when o;Jj and f3Ji are assigned to Bk· 

preemptive version of the problem. It is interesting to note that the algorithm does 

not have to solve the preemptive problem. \Ve only use the properties of its optimal 

solution in bounding the approximation ratio of our algorithm. 

4.2.1 Preemptive Batch Scheduling of Multiple Products to 

a Single Customer 

In the preemptive batch scheduling problem, we assume that if a fraction a of a job 

Ji (denoted by o;Ji) is completed, that a fraction can be delivered separately from 

the other parts of Ji. In calculating the objective function, we assign weight m1Ji and 

processing time api to the fractional job o;Ji. Thus the processing-time-to-weight 

ratio of the fractional job o;Ji is the same as the ratio for Ji. The following lemmas 

describe useful properties for this preemptive problem. 

Lemma 4.2 There is an optimal schedule in which jobs are scheduled in WSPT 

order for the preemptive batching problem. 

Proof: Let us assume that the lemma does not hold. Then there exists an optimal 

batching in which a part f3 of job Ji (f3Ji) immediately follows a part o; of job Jj 

( o;Jj) in the schedule, where ;::. > ~i. Note that 0 < a, f3 :S 1. 
J ' 

If o;Jj and f3Ji belong to the same batch Bk (refer to Figure 4.1), then moving 

f3Ji before o;Jj will not change the weighted flow time. If o;Jj and f3Ji are assigned 

to different batches Bk and Bk+l (refer to Figure 4.2), then moving f3Ji before o;Jj 

will change the total weighted flow time, and let this change be .6.. While exchanging 
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Figure 4.2: Schedule when aJj and .BJi are assigned to Bk and Bk+l 

the partial jobs, we redefine the boundary of Bk so that the batch completion times 

Ck and Ck+l will not change. Furthermore, the exchange of the jobs does not change 

the delivery cost. 

Case 1 (apj;::: f3Pi): After moving the jobs, all of (3Ji and (a - f3;;)Jj of aJj will 

be assigned to batch Bk and the remaining (3;; part of aJj will be assigned to batch 

Bk+1· 

~ < 0, contradicting the optimality of the original schedule. 

Case 2 (apj < (3pi).· After moving the jobs, (a:~ )Ji of (3Ji will be assigned to Bk and 

((3 - a:~ )Ji of (3Ji and all of aJj will be assigned to Bk+l· 

Therefore ~ < 

p· 
-(a-2 )wi(Ck+1 - Ck)+ awj(Ck+1 - Ck) 

Pi 
w· w· 

-apj(Ck+l - Ck)(-z - --1.) 
Pi P) 

0, a contradiction again. 

Thus moving (3Ji before aJj will decrease the total weighted flow time, and 

the total cost will be reduced in each case. This, however, contradicts the optimality 

of the original schedule. Thus the optimal schedule must sequence the jobs in WSPT 

order. o 

Remark 4.1 We note that Lemma 4.2 clearly implies that there is an optimal preemp-

tive schedule in which fractional parts of the same job are sequenced consecutively. 
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Ck-1 c,. CJ.+1 

(a) Partial schedule when o:1Ji and a 2 Ji are assigned to Bk and Bk+l 

ck-1 c~ c,,+1 

(b) Partial schedule when rounded according to Lemma 4.4 Case 1. 

Figure 4.3: A partial schedule of preemptive solution. 

Lemma 4.3 In the optimal schedule with preemption, if fractional jobs o:1 Ji and 

a 2 Ji of job Ji (0:1 + 0:2 :S 1 and 0:1, 0:2 > 0) are assigned to batches Bk and Bk+ 1 as 

in Figure 4.3 (a), then the total processing time for Bk+I, Tk+l, and the total weight 

Proof: 

Case 1: Move 6Ji (0 < 6 :S 0:1) of a1Ji to Bk+I 

Let the change in the weighted flow time be ~1 . 

But ~ 1 > 0 by optimality 

Since the last inequality holds for arbitrarily small 6 > 0, we must have 

(4.1) 
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Let the change in the weighted flow time be .6.2. 

.6.2 lVkbPi - bwi (Tk+ 1 - bpi) 

But .6.2 > 0, thus 

bwiTk+1 < bpi (H1k + bwi) 

wiTk+1 < Pi i-vk + bpiwi 

Since the last inequality must hold for any b > 0, we must have 

(4.2) 

From inequalities (4.1) and (4.2), Tk+ 1 = i;k. o 
' 

In the optimal preemptive batch schedule, a job Ji can be assigned to a single 

batch Bki assigned over two batches Bk and Bk+i, or assigned over r + 2 (r 2: 1) 

4.2.2 Non-preemptive Batch Scheduling of Multiple Product 

to a Single Customer 

In this section, we use the properties of the preemptive solution and round the pre-

empted jobs. The next three lemmas show how these solutions can be rounded into 

non-preemptive schedules and estimate the resulting errors. 

Lemma 4.4 Consider a job Ji which is split over two batches Bk and Bk+l with 

fractional jobs a 1 Ji and a2 Ji ( a 1 + a 2 = 1) in the optimal preemptive schedule. Let 

us move the fractional job a2Ji (resp. a1Ji) from Bk+l (resp. Bk) to Bk (resp. Bk+I) 

if a 1 2: a2 (resp. a 1 < a2), and let .6. be the change in the weighted flow time. Then 

.6. :=; ~i, where Hi is the holding cost of Ji in the preemptive optimal schedule. 
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Proof: Refer to Figure 4.3 (a). 

Case 1: o:1 2: o:2 (refer to Figure 4.3 (b)). 

p 
From Lemma 4.3, Wk-i 

w i 

Therefore, ~ 

From Lemma 4.3, Wk Pi 
wi 

Therefore, ~ 

(4.3) 

(4.4) 

( 4.5) 

From equations (4.4) and (4.5), ~ < min{o:i,o:DwiPi· Therefore, from inequal­

ity (4.3), ~::; ~;· D. 

Lemma 4.5 Consider two jobs Ji and Jj where Ji is split over two batches Bk and 

Bk+ 1 with fractional jobs 0:1 Ji and 0:2 Ji ( 0:1 + o:2 = 1), and Jj is split over two 

batches Bk+l and Bk+2 with fractional jobs (31 Jj and f32 Jj ((31 + (32 = 1} in an optimal 
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(a) Preemptive batch schedule 

c· k-1 

J; 

C' k 

(b) Non-preemptive schedule. Case 1: a 1 2 0:2 and /31 < /32 

c· k-1 

J; 

c· k 

(c) Non-preemptive schedule. Case 2: a 1 2 0:2 and /31 2 /32 

J; 

(d) Non-preemptive schedule. Case 3: a 1 < a 2 and /31 < /32 

J; 

(e) Non-preemptive schedule. Case 4: a 1 < 0:2 and /31 2 /32 

Figure 4.4: Preemptive and non-preemptive schedule, for Lemma 4.5 

preemptive schedule. If we move the smaller fractional part of each job Ji and Jj to 

the batch which contains the other part of the corresponding job, and the change in 

the total weighted flow time is ~' then ~ < H;;Hj, where Hi and Hj represent the 

holding cost of job Ji and Jj respectively in the optimal preemptive schedule. 
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Proof: Refer to Figure 4.4 (a). 

Hi > a(wiTk + a2wi(Tk + Ti.:+1) 

> a1wi(a1Pi) + a2wi(a1Pi + 0:2Pi + f31Pj) 

0'.1 ( 0'.1 + a2)WiPi + a~WiPi + 0:2/31 WiPj 

0:1 WiPi + a~WiPi + 0:2/31 WiPj 

> 0'.1 WiPi + 0:2/31 WiPj 

Hj > f31wj(Tk + Tk+1) + f32wj(Tk + Tk+1 + Tk+2) 

(/31 + f32)(wjTk + WjTk+1) + f32wjTk+2 

(4.6) 

But applying Lemma 4.3 to Bk+l and Bk+2, we get WjTk+2 = pjWk+l· Substituting 

this and using a 1 + a 2 = 1 and /31 + /32 = 1, we obtain 

Hj > wjTk + wjTk+1 + ,B2Pj wk+1 

> Wj(0:1Pi) + wj(a2Pi + f31Pj) + f32Pj(a2wi + f31wj) 

0:1 WjPi + 0:2WjPi + /31 WjPj + f32a2WiPj + f31/32WjPj 

WjPi + ,B1WjPj + f32a2WiPj + f31f32wjpj 

> /31 WjPj + f32a2WiPj 

Adding inequalities (4.6) and (4.7), we have 

Hi + Hj > 0:1 WiPi + 0:2/31 WiPj + /31 WjPj + f32a2WiPj 

> 0:1 WiPi + 0:2WiPj + /31 WjPj 

(4.7) 

> 2(min{a1,a2}a1WiPi+min{/31,/32}a2wipj+ (4.8) 

min{f31,/32}/31WjPj) (4.9) 

The last inequality holds, since min{ a 1, a 2} ~ ~and min{/31, (32} ~ ~· Let the 

change in the weighted flow time due to moving fractional jobs of Ji and Jj be ~. 
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Case 1: D'.1 2:: 0'.2; /31 < f32 

:Move a 2Ji from Bk+l to Bk and (31Jj from Bk+l to Bk+2· (See Figure 4.4 (b) 

which shows the nevi' batch completion times C~ and C~+ 1 .) 

But WkPi = Tk+l wi and liVk+lPj = Tk+2Wj by Lemma 4.3, so substituting these and 

using equation ( 4.9), we get 

< 0.50'.1 WiPi + 0.5f31 WjPj + 0.5a2WiPj 

1 
< 2(Hi + Hj)· 

( 4.10) 

Move a2Ji from Bk+l to Bk and (32Jj from Bk+2 to Bk+l· (See Figure 4.4 (c) 

for the changed completion times.) 

But WkPi = Tk+l Wi and wk+lPj = Tk+2Wj by Lemma 4.3, so substituting these and 

using equation ( 4. 9), we get 

< 0.50'.1 WiPi + 0.5/31 WjPj 

1 
< 2,(Hi + Hj)· 

(4.11) 
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Case 3: a1 < 0:2; /31 < /32 

Move o:1Ji from Bk to Bk+l and ,B1Jj from Bk+I to Bk+2. (See Figure 4.4 (d) 

for the changed completion times.) 

But WkPi = Tk+1 wi and TVk+lPj = Tk+2Wj by Lemma 4.3, thus using these and 

equation (4.9), we get 

< 0.50:1 WiPi + 0.5/31 WjPj 

1 
< -(Hi+ Hj)· 

2 

Case 4: 0:1 < 0:2; /31 ~ /32 

( 4.12) 

Move 0:1Ji from Bk to Bk+l and /32lj from Bk+2 to Bk+l· (See Figure 4.4 (e) 

for the changed completion times.) 

But WkPi = Tk+1 wi and lVk+lPj = Tk+ 2Wj by Lemma 4.3, thus substituting and using 

equation ( 4.9), we obtain 

< 0.50:1 WiPi + 0.5a2WiPj + 0.5,81 WjPj 

1 
< 2(Hi + Hj). 

Therefore, in all possible cases ~ < H;;Hj, as claimed. o 
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(a) Preemptive batch schedule 

c~. 

(b) Non-preemptive batch schedule 

Figure 4.5: Preemptive and non-preemptive schedule for Lemma 4.6 

Lemma 4.6 Consider a job Ji which is scheduled over r + 2 batches (r 2: 1), 

Bk, Bk+1, ... , Bk+r+1 in the optimal preemptive schedule with fractions a1, a2, ... , O'.r+2 

(where a 1 + a 2 + · · · + ll'.r+2 = 1). If we combine all these fractional parts of job Ji 

into batch Bk+ 1 , then the change in the total weighted flow time is less than Hi. 

Proof: Refer to Figure 4.5. 

Let the change in the weighted flow time due to combining the fractional jobs 

of job Ji into batch Bk+l be ~-

batches Bk, Bk+1, ... , Bk+r+l will be changed. Flow times of other batches will remain 

the same. In the new schedule, batch Bk will have total weight of (Hlk - a 1 wi) and 

it will be completed at time C£ = (Ck - a 1pi); batch Bk+1 will have total weight 

of ( 0'.1 Wi + a2wi + · · · + ll'.r+2wi) = wi and it will be completed at time C£+1 = 

Ck+ (a2Pi + · · · + ar+2Pi); if r 2: 2, batches Bk+2, Bk+3, ... , Bk+r will be empty; batch 

Bk+r+l will have total weight of (Wk+r+l - O'.r+2wi) and will be completed at Ck+r+l· 
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Therefore, 

In the above equation, the first term is the increase in the weighted flow time of 

partial job a 1Ji due to the increase in its completion time by (a2pi+a3pi+· · +ar+2Pi); 

the second term is the increase in the weighted flow time of the partial job a 2 Ji due 

to the increase in its completion time by (a3pi + · · · + O:r+2Pi); the third term is the 

increase in the weighted flow time of the partial job ar+lJi due to the increase in its 

completion time by ar+2Pi; the fourth term is the decrease in the weighted flow time 

of jobs in the original batch Bk, except the partial job a 1 Ji, due to the decrease in 

its completion time by a 1pi; the fifth term is the decrease in the weighted flow time 

of partial job O:r+2Ji due to the decrease in its completion time by (Tk+r+l - O:r+2Pi)· 

Lemma 4. 7 Any algorithm which rounds preempted jobs of the optimal preemptive 

batch schedule according to Lemmas 4.4 - 4. 6 is a 2-approximation algorithm. 

Proof: From Lemmas 4.4, 4.5 and 4.6, the total change in the weighted flow time 
N 

due to these roundings of jobs is less than L Hi· But the total weighted flow time 
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N 

of the optimal preemptive schedule is TCpmt = I: Hi. Therefore, the total weighted 
i=l 

flow time after rounding the preempted jobs into non-preempted jobs is less than 

2TCpmt· Also note that the total delivery cost after rounding is not more than nd 

(which is the delivery cost of the optimal preemptive batch schedule), where n is the 

total number of batches in the optimal preemptive schedule. Thus the total cost of 

the rounded schedule is less than 2TC*, where TC* 2: TCpmt + nd is the total cost 

of the optimal non-preemptive schedule. o 

The following result shows that we do not need to know the optimal pre-

emptive schedule, it is used only for proving the upper bound for our much simpler 

approximation. 

Corollary 4.1 Optimal batching of the WSPT job sequence is a 2-approximation 

algorithm. 

Proof: It is obvious that the rounding of the preempted jobs as explained in Lem-

mas 4.4 - 4.6 does not disturb the job sequence. Furthermore, in the optimal pre-

emptive batch schedule, jobs follow the WSPT job sequence. Therefore, the non­

preemptive batch schedule of Lemma 4. 7 follows the WSPT job sequence. Thus, 

the optimal non-preemptive batching of the WSPT job sequence will not be worse 

than this rounded solution. By Lemma 4. 7, the rounded batch schedule is a 2-

approximation solution, and so the optimal batching of the WSPT sequence cannot 

be worse. o 

4.2.3 Approximation Algorithm 

Corollary 4.1 allows us to use the following simple approximation algorithm. 
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Algorithm 4.1 (Approximation algorithm) 

Step 1 Sequence the jobs in \VSPT order 

Step 2: Call Algorithm 3.2 for the optimal batching of this job sequence. 

Theorem 4.1 Algorithm 4.1 is a 2-approximation algorithm with time complexity 

O(NlogN). 

Proof: We know from Corollary 4.1 that Algorithm 4.1 is a 2-approximation algo­

rithm. As discussed in Section 3.4.1, the optimal batching of the given \VSPT job 

sequence can be obtained in O(N) time, and obtaining the WSPT job sequence re­

quires O(NlogN) time. o 

Remark 4.2 In the preemptive optimal batch schedule, if jobs are preempted at 

most into two batches, then Algorithm 4.1 is a ~-approximation algorithm (from 

Lemmas 4.4, 4.5). 

4.2.4 Delivery Cost and Performance of Algorithm 4.1 

In this section, we study the performance of Algorithm 4.1 with different values of 

the delivery cost d. We show that the batch schedule generated by the algorithm is 

close to the optimal batch schedule when the batch delivery cost is relatively large. 

Generally, the delivery cost is larger than the holding cost of an item. For example, 

the batch delivery cost can be the combination of the transportation cost, loading 

and unloading cost; but the weight wi of any job Ji is the holding cost of that job over 

a unit time. Thus, we often have (wp)max ::; d, where (wp)max = .. max { WiPj}· 
i,J=l,2, ... ,N 

We further analyze below the performance of Algorithm 4.1 when (wp)max ::; d. Let 

R = ( f , where R 2 1 by assumption. 
wp max 

Lemma 4.8 In the optimal preemptive batching schedule, a job Ji is split into at 

most two batches if R 2 1. 
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Proof: Let us assume that there exists an optimal schedule in which a job Ji is 

split into (r + 2) batches, Bk, Bk+i, ... , Bk+r+i, r 2 1 (refer to Figure 4.5 (a)). Move 

due to this move be ~-

~ a 2 WiPi ( ( r) + ( r - 1) + · · · + 2 + 1) - rd 

2 r 
a WiPi2(r + 1) - rd 

r 
< a 2

(wp)max2(r + 1) - rd 

1 
But a < -, 

r 

therefore, ~ < r+l 
(wp)max~ - rd 

r+l 
< --d-rd < 0. 

2r 

This contradicts the optimality assumption. o 

Lemma 4.9 If R 2 1, then total change in the holding cost from rounding the 

preempted jobs in the optimal preemptive schedule is less than 3
(n;l) (wp)max' where 

n is the number of batches in the optimal preemptive schedule. 

Proof: From Lemma 4.8, we know a job is split into at most two batches. Therefore 

preempted jobs are rounded using Lemmas 4.4 and 4.5. In Lemma 4.4, only one job 

Ji ( i = 1, 2, ... , N) is rounded and the change in the weighted flow time is less than 
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iwiPi S ~(wp)max (refer equations (4.4) and (4.5)). In Lemma 4.5, two preempted 

jobs Ji and Jj are rounded and the change in the weighted flow time per job rounded 

is less than k(wiPi + WjPj + WiPj) S ~(wp)max (refer to equations (4.10) - (4.13)). 

Therefore, change in the weighted flow time per job rounded is less than ~ ( wp )max. 

Since there are n batches, there will be at most ( n - 1) roundings. Thus, total change 

in the holding cost is less than 3(n;1l(wp)max· o 

Theorem 4.2 For a given R ~ 1, Algorithm 4.1 is a ~!~~-approximation algorithm. 

Proof: From Lemma 4.8, any job is split into at most two batches in the optimal 

preemptive schedule. Let Ll denote the total change in the weighted flow time from 

rounding these split jobs and let p be the approximation ratio of Algorithm 4.1. 

From Lemma 4.9, Ll S 3
(n8-l) ( wp)max and from Remark 2, Ll < ~TCpmt· Since the 

gap between the objective value produced by Algorithm 4.1 and TC* will be no more 

than Ll we have p < TC* +fl Furthermore, 
' - TC* . , 

3(n-1)() 3(n-l)d 
Ll < S wp max S SR 

8RLl 
Therefore, (n - l)d > 

3 

Also TCpmt > 2Ll 

TC* > TCpmt + nd 

TC* > 2Ll + nd 

> 2Ll + (n - l)d 

> 2Ll + 8RLl 
3 

> 
(6 + 8R)Ll 

3 

Th. · l' fl 3 d 1 fl 9+8R 
lS imp ies TC* < 6+8R an p s +TC* < 6+8R' D 

Table 4.1 shows how the approximation guarantee changes as the R value 

mcreases. 

71 



Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems 

R= d 
, lwpJ_rnax 

p 

1.00 1.214 

2.00 1.136 

3.00 1.100 

4.00 1.079 

5.00 1.065 

Table 4.1: Performance of the algorithm with different R ~ 1 values. 

s 

Figure 4.6: Multiple Customer Model. 

4.3 Multiple Products, Multiple Customers 

In this section, we study batch scheduling at the supplier who supplies products to 

m customers lv11 ,Jllh, ... ,lv1m (refer to Figure 4.6). In fact, these customers may 

be manufacturers in the supply chain. A batch schedule with multiple customers 

will have the job sequence a of all the jobs, job sequence a(k) of customer Mk, k = 

1, 2, ... , m, and the batch sequence. Since we deal with multiple customers, we need 

an additional index to denote the customer. 
m S 

In section 3.3, we gave an oo:= ~ log(Nk)) algorithm for multiple customer 
k=l i=l 
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batch scheduling problem of identical product for each customer l\fki where Nk is the 

number of items to be delivered to customer l\fk, and S is the number of product 

types. Hall and Potts [19] provide a dynamic programming algorithm with time 
m 

complexity 0((2.::: Nk)m+ 1
) to solve multi-customer batch scheduling problems with 

k=l 

non-identical products to minimize the sum of the completion time and total delivery 

cost. The multiple customer batch scheduling problem with arbitrary processing 

times and arbitrary weights is NP-hard. We prove that if each a(k) (k = 1, 2, ... , m) 

follows the vVSPT job sequence (WSPT customer job sequence), then the optimal 

batching on these job sequences is a 2-approximation solution. We first analyze the 

preemptive version of the problem and then we round the preempted jobs to get the 

2-approximation algorithm. 

4.3.1 Preemptive Batch Scheduling of Multiple Products for 

Multiple Customers 

In this section, we study some properties of preemptive batch schedules of the multiple 

customer problem. 

Property 4.1 Changing the sequence of jobs within a given batch will not affect the 

flow time of any jobs in the schedule. 

Therefore, there exists an optimal preemptive batch schedule in which jobs in 

the same batch are scheduled in WSPT order. Hereafter, whenever we talk about 

a preemptive batch schedule, it is assumed that jobs within the same batch are 

scheduled in WSPT order. 

Lemma 4.10 There exists an optimal preemptive batch schedule in which jobs of 

the same customer are scheduled in WSPT order. 
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(W,T) 

I···· I 

Figure 4.7: Partial schedule for Lemma 4.10. 

Proof: If the lemma is not true then there will be at least two jobs (3Ji(k) and aJY), 

(0 < a, f3 :::; 1) for some k = 1, 2, ... , m such that f3Ji(k) immediately follows aJY1 

p(k) (k) (k) (k) (k) 
in a(k) and - 1- > !!i._ Thus f3J. and aJ. may be assigned to a batch B or 

(k) (k) • ' z J • l ' 
wj wi 

assigned to batches B1(k) and B1(~)1 respectively. 

If they both are assigned to B 1(k), then from Property 4.1, interchanging aJY) 

and f3Ji(k) will not affect the total cost. If (3Ji(k) and aJY) are assigned to B 1(k) and 

B1(~1i, respectively, refer to Figure 4.7, where W and T denote the total weight and 

total processing time, respectively, of all the batches which are scheduled between 

B (k) d B(k) 
1 an 1+1· 

Case 1: ap)k) ~ f3p~k) 

Move f3J(k) to B(k) and f3p'.kl of aJ(k) to B(k) This will not change the batch 
z l (k) J l+l. 

Pj 

completion times. However, W/kl is increased and W1~i is decreased by f3wik) -
(k) 

f3~ici wY). Thus the interchange has decreased the holding cost, a contradiction. 
Pj 

Case 2: ap)k) < f3p~k) 

Move apjkl J(k) of f3f k) to B(k) and af k) to B(k) Again this will not affect 
p;k) z z l J 1+1 · 

(k) 

the batch completion time, but W1(k) is increased and W1~i is decreased by a~{i wt) -
P; 

awY). Thus the interchange has decreased the holding cost. 

In both cases, the number of batches is not changed but the holding cost is 

decreased. This contradicts the optimality assumption. o 

Remark 4.3 There exists an optimal preemptive batch schedule, in which if a job Ji(k) 

is split into two batches B~k) and B~k), then s = r + 1, i.e., no batch of customer Mk 

is scheduled between B~k) and B~k). Thus, in the optimal preemptive batch schedule, 
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I• (IF,T) •I 

erk) Cz(!)1 

Figure 4.8: Partial schedule when o:1 Ji(k) and o:2 Ji(k) are assigned to Bik) and Bi~l1 • 

job Ji(k) (k = 1, 2, ... , m) may be assigned to a single batch Bik); assigned to two 

b h B (k) d B(k) . d b h ( ) B(k) B(k) B(k) ate es 1 an 1+1; or ass1gne to r+2 ate es r 2: 1, 1 , 1+1, ... , l+r+l' 

with no other job for the same customer scheduled between them. 

Lemma 4.11 If a job Ji(k) is split into two batches, B
1
(k) and B1(~)1 in the optimal 

preemptive schedule, then (w?l + vV)p;k) = wtl(T + Tz~i), where vV and T are 

respectively the total weight and total processing time of all the batches which are 

scheduled between batches B1(k) and B1~)1 . 

Proof: Refer to Figure 4.8. Let us assume that job JY) is split into two batches B1(k) 

and B1~)1 with 0:1J?l and a 2 Jt) respectively, where o:1 + 0:2 :::::; 1. 

Case 1: Move 6Ji(k) (0 < c5:::::; o:1) from B1(k) to B1(~l1 . Let the change in the weighted 

flow time be 6 1. 

61 6w(k) (T + T(k)) - (W(k) - 6w(k) + TV)6p(k) 
i l+ 1 l i i 

But 6 1 > 0 by optimality. 

Therefore, w;k)(T + Tz~i) > (vV/k) - bwik) + W)p;k) 

Since the last inequality holds for arbitrarily small c5 > 0, we must have 

w(k)(T + T(k)) > (W(k) + W)p(k) 
i l+l - l i 

(4.14) 
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Case 2: Move c5Ji(k) (0 < c5:::; a 2 ) from B1(1)
1 

to B
1
(k) and let the change in the weighted 

flow time be ..6. 2 . 

-c5w(k)(T + r,(k) _ c5p(k)) + (H1 (k) + VV)c5p(k) 
i l+l i l 1 

But ..6.2 > 0 by optimality. 

Therefore, wik)(T + Tz~i - c5p~k)) < (M7t(k) + H1)p~k) 

Since the last inequality holds for arbitrary small c5 > 0, we must have 

From inequalities (4.14) and (4.15), (w?l + vV)p~k) = wik)(T + Tz~i). o 

In the next section, we develop the 2-approximation algorithm using the prop-

erties the optimal preemptive batch schedule discussed in this section. 

4.3.2 Nonpreemptive Batch Scheduling of Multiple Products 

for Multiple Customers 

We prove the existence of 2-approximation algorithm for this problem. 

Lemma 4.12 Consider a job J?) of customer Mk split over two batches B1(k) and 

B1(1~ with fractional jobs a 1Ji(k) and a 2Ji(k). Let 6 be the change in the weighted flow 

time when moving a J(k) to B(k) Then 6 < w(k)p(k) and 6 < H(k) where H(k) is 
1 i l+ 1. i i ' i ' i 

the holding cost of Ji(k) in the optimal preemptive schedule. 

Proof: Refer to Figure 4.8. 

6 < -(W + W(k) - a w(k))a p(k) +a w(k)(T + r,Ckl) 
- l 1 i 1 i 1 i l+ 1 

From Lemma 4.11, (W?) + W)p~k) = wik)(T + Tz~i). Therefore, 

6 < a2w(k)p(k) 
- 1 i i 
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(vV' T') I• - · - •I 

Figure 4.9: Partial schedule when J?) is split into r + 2 batches (r ~ 1). 

But H(k) >a w(k)(a p(k)) +a w(k)(a p(k) +a p(k)) 
i-li li 2i li 2i 

Therefore, ~ < Hi(k). 

Since a 1 < 1, ~ < w?)P;k) follows too. o 

As in WSPT job order, we also define batch- WSPT order where batches are 

sequenced in increasing order of ~. ratio. 
i 

Property 4.2 In the optimal preemptive batching schedule, batches are scheduled in 

batch- WSPT order. 

Lemma 4.13 If a job Ji(k) is split into r+2 batches (r ~ 1) with a 1 Ji(k), a 2 Ji(k), .. . , °'r+21i(k), 

then there exists an optimal preemptive batch schedule in which, a 2 J?), a 3 J?), ... , °'r+l Ji(k) 

are scheduled in consecutive batches. 

Proof: Refer to Figure 4.9. Note that batches B1~l1 , Bi!~, ... , B1(!~ will have the 
(k) 

same ratio Pi(k) by Property 4.2. If there is any batch B~u) of customer Mu that is 
wi 

(k) 

assigned between two of these batches, then B~u) too will have the same ratio Pi(kl. 
wi 

Therefore, moving this batch B~u) after batch B1(~~ will not change the holding cost. 

D 

Lemma 4.14 In the optimal preemptive batch schedule, consider any job Ji(k) which 

is split into r + 2 batches (r ~ 1) Bfkl,B1(!l1 , ... ,B1(!~+i· If we schedule the whole 

job Ji(k) into batch B1~L then ~' the total change in the holding cost due to this 

adjustment, is less than Hi(k) and ~ < w~k)p~k). 
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Proof: Refer to Figure 4.9. Let the change in the total holding cost due to moving 

all the fractional jobs of Ji(k) to Br1l1 be ~-

~ 0:1 wt) [T - 0:1P~k) + ( 0:2 + 0:3 + · · · + O:r+2)P~k)] + 0:2w}k) ( 0:3 + 0:4 + · · · + O:r+2)P~k) 

+0:3w}k) ( 0:4 + 0:5 + · · · + O:r+2)P~k) + · · · + O:r+l w}k) O:r+2P~k) 

+ · · · + O:r+1wt)o:r+2P~k) - (W + W/kl)o:1p~k) + o:iw}klp~k) 

(kl (T' T(k) ) 2 (k) (k) W' (k) 
-O:r+2Wi + l+r+l + O:r+2Wi Pi + O:r+2Pi 

But from Lemma 4.11, 

(W(k) + W)p(k) = w(k) (T + ,., p(k) and (o: w(k) + W')p(k) = w(k) (T' + T(k) ) 
l i i '-"2 i r+ 1 i i i l+r+ 1 · 

Therefore, 
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Corollary 4.2 In the preemptive optimal schedule, if any job split into two batches 

B 1(k) and B1~)1 is scheduled according to Lemma 4.12 and if any job split into r + 2 

batches (r ::'.': 1) B 1(k), B1(~1i, ... , B1~~+l is scheduled according to Lemma 4.14, then we 

will get a non-preemptive batch schedule with 2-approximation. 

Proof: From Lemmas 4.12 and 4.14, total change in the weighted flow time is less 
m Nk (k) 

than I: I: Hi . o 
k=l i=l 

Theorem 4.3 Any algorithm which can optimally solve the multiple customer batch 

scheduling problem with fixed WSPT customer job sequence is a 2-approximation al-

gorithm. 

Proof: We know that starting from the preemptive solution on the WSPT customer 

job sequence, we can get a 2-approximation solution. This 2-approximation solution 

maintains WSPT job sequence among jobs for the same customer. Therefore, any 

optimal batching solution on WSPT customer job sequence will not be worse than 

2-approximation. o 

The dynamic programming algorithm provided by Hall and Potts can be mod-

ified for batching a given job sequence with arbitrary processing times and arbitrary 
m 

weights. This algorithm will take O((°L: Nk)m+l) time. 
k=l 
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Theorem 4.4 Applying the dynamic programming algorithm by Hall and Potts to the 

WSPT job sequence will provide a 2-approximation solution for the multi-customer 

batch scheduling problem with arbitrary processing times and arbitrary weights. 

Remark 4.1 If for each customer lvh, (wp)max::; d, then the algorithm performance 

is similar to the one shown in Table 4.1. 

80 



Chapter 5 

Batch Scheduling at the 

Manufacturer 

5.1 Introduction 

In this chapter, we study the batch scheduling problem at the manufacturer where pro­

duction is controlled by a push system. There are h end-customers Af(m+l), fvf(m+ 2l, ... , 

M(m+h) with N(j) jobs for customer M(j) (j = m + 1, m + 2, ... , m + h). We 

call these end-customers simply customers in this chapter, and in Chapters 6 and 

7. The manufacturer is required to process jobs on a single machine and the kth 

job of customer MU), denoted by Jkj), needs pp) time to process on the machine 

(j = m + 1, m + 2, ... , m + h). vVe assume that items (jobs) arrive at the manu­

facturer at different time points. The item arrival time depends on its immediate 

upstream supplier's delivery time. 

Associated with each batch delivery to customer Af(]) is the delivery cost d(j) 

which is charged to the manufacturer. There incurs a holding cost of wP) per unit 

time for job Jkj). Let the number of delivery batches to customer MU) be nUl and 

the ith batch delivered to customer M(j) be B}j). We have to find the batch schedule 
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so that the total cost of inventory holding and batch delivery at the manufacturer is 
m+h nUl . . m+h 

minimized, i.e., our objective is to minimize TC= L L iv/1 lT/1l + L n(j)d(j), 
j=m+l l=l j=m+l 

where wYl is the sum of weights of all the jobs assigned to batch B;j) and Ti(j) is the 

delivery time of batch B?). 

We first focus on the single customer problems and then extend its results 

to multicustomer problems. Therefore, we remove the superscript (j) representing 

customer f'vf(1) in our modeling work. 

In the manufacturer's problem, jobs arrive in batches at different time points. 

Therefore, unlike in the supplier's problem, the manufacturer's problem has another 

constraint that job Ji has release time ri, for i = 1, 2, ... , N. First we provide a 

polynomial algorithm for batch scheduling of a fixed job sequence and single prod-

uct problems. Batch scheduling at the manufacturer to minimize weighted sum of 

completion time is NP-hard [19]. It is a hard problem even if the weights wi = 1 

( i = 1, 2, ... , N). 

Therefore, we develop a 2-approximation algorithm for batch scheduling of 

jobs with identical weights and a hybrid meta-heuristic algorithm for general batch 

scheduling of multiple products. Our meta-heuristic uses a genetic algorithm. At 

the end of the chapter, we compare the performance of the hybrid algorithm with an 

algorithm which provides a lower bound to the problem. 

Before developing models for different problems, in the next section, we first 

analyze some preliminaries of the manufacturer's problem. 

5.2 Some Preliminaries for the Manufacturer's Problem 

Since jobs have release times, manufacturer's problems are harder than supplier's 

problems. In this section, we provide some basic properties of the manufacurer's 

82 



Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems 

Block - 1 Block - 2 Block - r 

Figure 5.1: A Schedule with r blocks. 

problem. 

Property 5.1 There exists an optimal schedule in which a batch is delivered as soon 

as the last job of the batch has completed processing. 

We call any schedule in which at any time point t when a job starts processing, 

the first job available from the job list is scheduled for processing a list schedule. 

Without loss of generality, we may assume that the list is { J1 , J2, ... , JN}. In a 

list schedule, there may be an idle time on the machine before starting processing 

of Ji (i = 2, 3, ... , N) if Ji-l is completed before Ji is released. We call these idle 

times inserted on the machine forced idle times. A set of jobs assigned between two 

adjacent forced idle times is called a block. For example, in Figure 5.1, there are r 

blocks in the schedule. Block - 1 = {J1 , J2, J3}, Block - 2 = {J4, J5, J6, J7}, and 

Block - r = {JN-2, JN-1, JN}. 

We further define a schedule as a busy schedule, if the machine is continuously 

processing jobs from time t = 0 until the completion of the last job. 

5.3 Batching of Jobs with Fixed Job Sequence 

We prove that batch scheduling problems with release times can be solved polynomi­

ally when the jobs follow an arbitrary but fixed job sequence. Let us assume, without 

loss of generality, that the job sequence is J1 , J2, ... , JN. We use the following modifi­

cation to solve batching of a fixed job sequence. Processing time of job Ji is modified 

to p~ =Pi +ti, where ti is the forced idle time, if any, on the machine immediately 
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preceding Ji and t1 = 0. We call this the modified problem. 

Remark 5.1 For a given job sequence, modified processing time can be obtained in 

O(N) time by setting p~ =Pi+ max{O, ri - ci-i}, where ci-l is the completion time 

of Ji-l in the fixed job sequence, and c0 = 0. 

Now we prove that the solution of the modified problem is equivalent to solving the 

original problem. 

Lemma 5.1 The modified batch scheduling problem is equivalent to the original batch 

scheduling problem. 

Proof: Consider an n-batching schedule with batch sizes 01 , fh, ... , On. Let the 

total cost of the optimal schedule of the original problem and the modified problem 

be TC* and TC:n
0
d respectively. 

N 

+ ... + L wic~= (PJ + t1) - ri) + nd 
iEBn j=l 

L wi L (PJ + t1) + L wi L (PJ + t1) 

N N 

+ · · · + L wi L (PJ + t1) - L wiri + nd 
iEBn j=l i=l 

N N 

L wi L p~ + L wi L p~ + · · · + L wi L p~ - L wiri + nd 
iEB1 iEB1 i=l i=l 

TC:nod· D 

N 

Remark 5.2 Let rc:nod = TCmod - L Wiri· Then it is clear that minimizing rc:nod 
i=l 

N 

is equivalent to minimizing TCmod because L wiri is a constant. 
i=l 
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Remark 5.3 The modified batch scheduling problem on a fixed job sequence is 

equivalent to batch scheduling of multiple products without release times. Therefore, 

Algorithm 3.2 provided in Section 3.4.l can be used to solve the modified batch 

scheduling problem on the same fixed job sequence. 

Now we provide our optimal batching algorithm for the fixed job sequence problem 

of the manufacturer. 

Algorithm 5.1 (Batching Algorithm for Jobs with Fixed Sequence) 

Step 1 Input job sequence and other data. 

Step 2 Compute the modified processing time for all the jobs. 

Step 3 Call Algorithm 3.2 to solve the modified problem. 

Lemma 5.2 There exists a polynomial-time algorithm that optimally solves the batch 

scheduling problem at the manufacturer with fixed job sequence. 

Proof: For any given job sequence, we can find the equivalent modified batching 

problem in O(N) time. The optimal batching of this modified problem can be found 

in O(N) time using Algorithm 3.2. o 

5.4 Single-Product Batch Scheduling 

In this section, we prove that single-product batch scheduling for the manufacturer 

can be solved polynomially. In the single product problem, all the jobs have identical 

processing times and identical weights, i.e., Pi = p and wi = w (i = 1, 2, ... , N). We 

use the following two easy-to-prove properties to prove the existence of a polynomial 

algorithm. 

Property 5.2 There exists an optimal schedule in which the machine is idle only 

when no job is available for processing on the machine. 
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Proof: Consider a schedule in which the machine idles when there are jobs available 

for processing. If we start processing any of these available jobs during the machine 

idle time, the delivery cost of any batch will not be increased. o 

Property 5.3 Since jobs have the same processing times and weights, any job se­

quence that follows first come (first arrive) first served order is an optimal job se­

quence. 

Therefore, batching and job sequencing are separable and an optimal job sequence 

can be obtained in O(N) time. 

Lemma 5.3 There exists a polynomial-time algorithm for the single product batch 

scheduling problem of the manufacturer. 

Proof: We know that the optimal job sequence can be obtained in polynomial time. 

From Lemma 5.2, optimal batching of this job sequence can be obtained in O(N) 

time using Algorithm 5.1. o 

For the identical product batching with multiple customers, again we can find 

the optimal job sequence for each customer from Properties 5.2 and 5.3. Optimal 

splitting of these customer job sequences can be obtained using the dynamic pro­

gramming algorithm of Hall and Potts [19] which requires O(Nm+l) time, where N 

is the total number of items to be produced and m is the number of customers. 

5.5 Batch Scheduling of Jobs with Identical Weight 

We study batch scheduling of jobs with release times and arbitrary processings times 

but with identical (unit) weights, i.e., wi = w (for i = 1, 2, ... , N). This problem 

is NP-hard even if the delivery cost d = 0 (Lenstra et. al [25]). Therefore, we 

develop a 2-approximation algorithm based on the rounding of preempted jobs in 
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an optimal preemptive schedule. The next section analyzes some properties of the 

optimal preemptive schedule to get the insight on rounding the preempted jobs. 

5.5.1 Batch Scheduling in the Preemptive Problem 

We consider the classical preemptive schedule, where a job can be interrupted while 

processing and the remaining part is continued later, but the job can be deliv-

ered only after the whole job is completed. Thus, our objective is to minimize 
n 

TCpmt = w 2:: (TJ - rJ) + nd, where Tj is the delivery time of the jth batch from 
j=l 

the manufacturer to the customer. We interchangeably use ()J to denote the jth 

batch and the set of jobs in the jth delivery batch to the customer and denote the 

minimum value of TCpmt by rc;mt· 

Before developing the approximation algorithm, we first analyze some basic 

properties of the optimal preemptive schedule to get the insight on rounding the 

preempted jobs. Note that Properties 5.1 and 5.2 are true for preemptive batch 

scheduling problems too. 

Lemma 5.4 There exists an optimal schedule in which whenever a job is completed 

or a new job arrives, the job with the shortest remaining processing time (SRPT) is 

scheduled next. 

Proof: Let us assume that the lemma does not hold. Then there exists an optimal 

schedule in which at some time point t, a' JJ is scheduled, where (3Ji and aJj, are two 

of the fractional jobs available for processing at t, and f3Pi < apj, (0 < a' :S a :S 1 

and 0 < (3 :S 1). 

Let us assume that (3Ji is split into r fractional jobs f3ikJi (k = 1, 2, ... , r) 

(refer to Figure 5.2 - a). Let f3ikJi start processing at time tik (k = 1, 2, ... , r) and 
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c'. 
J 

Cir 

a- Figure for Lemma 5.4 before exchanging o/ Jj and /3Ji. 

c'. 
J 

Cir 

b- Figure for Lemma 5.4 after exchanging o/ Jj and f3Ji. 

Figure 5.2: Figure for Lemma 5.4 Case 1. 

complete at time cik in the optimal preemptive schedule. Also assume that a' Jj 

completes processing at cj. 

Case 1 a'pj 2': PPi· 

Bring Pi1Ji, Pi2Ji, ... , PirJi together and schedule the fractional job f3Ji at time 

t. Also split the processing time of a'pj into pieces so that they 'fit' into the processing 

slots previously occupied by the PiiJi, Pi2Ji, ... , /3irJi. Schedule the corresponding 

O'.jkJj (k = 1, 2, ... , r) of a' Jj at time ti1, ti2, ... , tir (refer to Figure 5.2 - b), where 

O'.jk = f3~:i, and if a'pj > PPi then schedule ajo = a'p~~f3Pi of Jj right after f3Ji. 

We keep batch delivery times the same after the exchange. The number of jobs 

which complete processing by t remains the same, may increase by 1 in the interval 

(t, ci1), and after ci1 remains the same. Since the delivery times are not changed, at 

least the same number of jobs will be available for delivery at these times and the 

sum of the completion times is not increased. 

Case 2 a'pj < /3Pi· 

Again refer to Figure 5.2- a. Bring the first available /3' = °';i fraction of 

Ji from /3i1Ji, /3i2Ji, ... , /3irJi together, and assign /3' Ji at time t and a' Jj in the 

corresponding time slots of /3' Ji. This will not increase the sum of the completion 

times, if we do not change the original batch delivery times. 

Since the number of batches does not increase in the above two cases, the job 
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exchanges do not change the total delivery cost. Therefore in both cases, the total 

cost is not increased. Repeating the above exchanges for every violation of the SRPT 

order will yield a schedule which satisfies the lemma. o 

In the optimal preemptive batch schedule, e1 (l = 1, 2, ... , n) may contain two types 

of jobs: 

(i) set of jobs which are completely processed in the time interval (1[_1, Tz]. We 

denote this set by Fl. 

(ii) set of jobs for which only a fraction of the job is processed in (1[_ 1 , Tz]. We 

denote this set by P1. 

Therefore, e1 = {F1 U .Pi}. For each job in P1, the corresponding remaining 

parts, the early parts are processed before 1[_1 and let u1 be the total time required 
l 

to process these early parts. Clearly, I: Uj ::; 1[_1 for l = 2, 3, ... , n. 
j=2 

Lemma 5.5 Consider a batch e1• If we schedule all early fractional jobs of Pi at 1[_1, 

then the change in the sum of the weighted completion time, ~1 , is not greater than 
n 

u12:wlejl· 
j=l 

Proof: Move all the corresponding early parts of Pi to 1[_1 . Moving these partial 

jobs to 1[_1 will not increase the delivery times of batches e1 , e2 , ... , e1_ 1 . However, 

it may increase the delivery times of batches el, el+l, ... , en by at most Ut time units. 

Therefore, 

n 

~1 < u1 L wjejl· o 
j=l 

Lemma 5.6 Let the change in the total cost due to moving all the early fractional 

jobs of Pi to Tz-1 (for l = 2, 3, ... , n) be~. Then~ < rc;mt· 
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Proof: 

z 

n n n 

~ :~:::>~/ = L (u1 L wl01I) 
1=2 1=2 j=l 

U2w(I02I + I03I + · · · + IOnl) + U3W(I03I + 1041 + · · · + IOnl) 

+ · · · + Unw(IOnl) 

But L u1 < Ti_ 1 , for i = 2, 3, ... , n. Therefore, 
j=2 

n 

< L wl0il1i + nd 
i=l 

rc;mt 0 

5.5.2 Non-preemptive Batch Scheduling 

We develop the non-preemptive batch schedule using the properties of the optimal 

preemptive batch schedule of Lemma 5.4. After we moved all the early fractional jobs 

of Pi to start their processing at 'I'z_ 1 (for l = 2, 3, ... , n), we obtain a schedule in 

which all parts of the jobs delivered in 01 are scheduled at or after 'I'z_1 . It is clear that 

we can turn this (possibly preemptive) schedule into a nonpreemptive one without 

any further increase in the batch completion times by scheduling all parts together 

for every job in the order of their job completion times in the optimal preemptive 

schedule. This will result in a non-preemptive schedule, in which jobs are sequenced 

according to their completion times in the SRPT schedule. This schedule can be 

obtained in O(N) time. 

We provide now our 2-approximation algorithm. 
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Algorithm 5.2 (Approximation Algorithm for Jobs with Identical Weights) 

Step 1 Find the optimal SRPT job sequence for the preemptive batching problem. 

Step 2 Schedule jobs in the order of their completion time in the optimal preemptive 

schedule. 

Step 3 Call Algorithm 5.1 for the optimal batching of the sequence. 

Theorem 5.1 Algorithm 5.2 is a 2-approximation algorithm requiring O(N) time. 

Proof: The total cost of moving all the early partial jobs of P,, to 01 ( for l = 

1, 2, ... 'n) in the optimal preemptive batch-delivery schedule is less than rc;mt by 

Lemma 5.6. Thus bringing together all fractions within a batch into a non-preemptive 

schedule does not increase the cost further, so the resulting schedule will have a cost 

of at most 2TC;mt· We also know that the jobs of this non-preemptive batch schedule 

follow the order of their completion in the optimal preemptive schedule. Therefore 

any optimal batch-delivery schedule on this sequence will not have a cost higher than 

2TC;mt· Algorithm 5.1 in Step 4 finds the optimal batching of this job sequence. 

Hence the Algorithm 5.2 is a 2-approximation algorithm. It is clear that each step of 

the algorithm can be implemented in O(N) time. o 

5.6 Hybrid Algorithm for the Manufacturer's Problem 

In this section, we study batch-delivery schedules of jobs with arbitrary processing 

times and weights at the manufacturer. It is clear that this problem is NP-hard, 

since the same problem is NP-hard even with identical weights. We develop a hybrid 

meta-heuristic algorithm to solve this problem. We have proved that the optimal 

batching of any job sequence can be obtained in O(N) time. Therefore, we consider 

this problem in two phases. In Phase 1, we generate job sequences based on a Genetic 

Algorithm (GA) and in Phase 2, we call Algorithm 5.1 to get the optimal batching of 

these sequences. Phase 2 is in fact called in Phase 1, since we need the fitness value 
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of each schedule in GA. We explain the procedures of our algorithm in detail in the 

next section. 

5.6.1 Phase 1: Genetic Algorithm 

In early application of GA in scheduling, the primary strategy used for encoding 

sequences was the literal permutation order. In permutation order encoding, each 

chromosome represents the job order in the corresponding schedule. For example, in 

a permutation order encoding system, a job sequence {3, 2, 5, 1, 4} is encoded as given 

below: 

2 I 5 1 I 4 

Whenever a crossover or mutation operation is carried out, the feasibility of 

the schedule is not guaranteed by this encoding system. Thus, using permutation 

order encoding forces the algorithm developer to apply specialized operators in the 

crossover procedure in order to maintain the feasibility. To avoid this difficulty, we 

use the random keys encoding of Bean [4). 

Random Keys Genetic Algorithm (RKGA) 

We briefly review the concept of random keys in a genetic algorithm. RKGA is widely 

used in GA applications for scheduling problems because it only produces feasible 

offsprings. Moreover, relative and absolute ordering information can be preserved 

after recombination of parents. In RKGA a chromosome is assigned a string of random 

numbers. For example, consider the chromosome: 

I .3451 .983 \ .726 \ .1671.529 I 

The intepretation of this chromosome is as follows: Jobs J 1 , J2 , ... , J5 are as-

signed random numbers 0.345,0.983,0.726,0.167, and 0.529, respectively. Then the 
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job sequence of this chromosome is obtained by ordering the jobs in ascending or-

der of their random numbers. Therefore, the job sequence of this chromosome is 

{4,1,5,3,2}. 

We briefly describe the major steps of our GA below. 

Initial Population 

We use a population size of 30 in our GA. The initial population includes the 

optimal batch-delivery schedule of the ready WSPT job sequence. (A ready WSPT 

job sequence is a schedule in which at each arrival and/or job completion, a job Ji 

with the largest ;; ratio among the available jobs is scheduled next.) 

We also include 9 schedules in which jobs in the same block are scheduled 

consecutively, i.e., jobs in block k are scheduled before those in block l (l > k). 

These precedence constraints between the jobs in different blocks are easily handled 

in RKGA by assigning random numbers from increasing and disjoint ranges to jobs 

in later blocks. For example, let us assume there are 2 blocks formed on 10 jobs. The 

first 7 jobs form the first block and the next 3 form the second block. Then for the 

first 7 jobs we generate random numbers from the range (0,10), and for the next 3 

jobs we assign random numbers from the range (11,15). This way a random number 

assigned to any job in the second block will always be greater than that of any job 

in the first block. Thus the precedence constraint is handled automatically. 

Another 20 schedules contain jobs in random order. For this set of schedules, 

random keys are assigned randomly. 

Fitness Evaluation We decode each chromosome into a job sequence and call 

Phase 2 to obtain the optimal batching of each sequence and its corresponding 

cost. For each population, we find the maximum cost of all its batch-delivery sched­

ules (maxcost), and for each individual in the population we set fitnessvalue = 

maxcost-cost of the individual 
30*maxcost-sum of the cost of all individuals· 
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Parent Selection We use the roulette wheel method to select two parents to create 

two new offsprings. In roulette wheel selection, the probability of selecting a parent 

is proportional to its fitness value. 

Crossover A two point crossover is used with a crossover probability Peros = 0.9. 

Mutation For each chromosome obtained after crossover, we select a random integer 

k not greater than N. Then we randomly select k genes (jobs) of that chromosome 

and for each selected gene, we assign a new random key with mutation probability of 

Pmut = 0.1. 

5.6.2 Phase 2: Optimal Batching of Job Sequence 

In Phase 2, we call Algorithm 5.1 to get the optimal batching of each individual. 

To analyse the performance of our heuristic, we develop a lower bound ex-

plained in the following section. 

5.6.3 Lower Bound 

We use the preemptive schedule to obtain a lower bound for the problem. We make 

the assumption that jobs arrive from the supplier and are delivered to the customer 

at discrete time points. Therefore it is clear that in the optimal preemptive batch-

delivery schedule, a job is split only at discrete time points. Consider a set of jobs 

J 1 , h, ... , JN. We replace each job Ji (i = 1, 2, ... , N) with Pi unit processing time 

(UPT) jobs, i.e., Jk with processing time p~ = 1, weight w~ = ;; and release time 
i-1 i-1 i 

r~ = ri (for k = L: Pj + 1, L: P1 + 2, ... , L: P1 ). We find the optimal batching of 
j=l j=l j=l 

these UPT jobs, and the total cost of this optimal batch-delivery schedule will be a 

lower bound for our problem. We briefly discuss the optimal batching of UPT jobs. 

Optimal Batching of UPT Jobs 

If we could find the optimal job sequence for the UPT jobs then Algorithm 5.1 
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(W,T) 

Figure 5.3: Schedule for Lemma 5.7. 

will find the optimal batching of the sequence. In Lemma 5. 7, we prove that ready 

LW job sequence is optimal for the UPT problem. A ready L W schedule is one in 

which at each job arrival and/or completion, a job with the largest weight among the 

available jobs is scheduled next. 

Lemma 5.7 Ready LW schedule is optimal to minimize the total cost of UPT jobs. 

Proof: Let us assume that the lemma does not hold. Then there exists an optimal 

schedule in which Jj is scheduled at time t 1 and JI at t2 , where t2 > t 1 and w~ > wj. 

Let t2 -(t1 +1) = T (refer to Figure 5.3) and the total weight of all the jobs scheduled 

in the time interval [t1 + 1, t2] be TV. 

Let us exchange jobs Jf and Jj while not affecting the batch delivery times 

and let the change in the total cost be ~. Then 

~ wj(T + 1) - w~(T + 1) 

(T + 1) ( wj - wD < 0 

This contradicts the optimality assumption. o 

Since we know the optimal job sequence for the batching problem, using Algo­

rithm 5.1, we can obtain the optimal batching of this job sequence. Now we describe 

the major steps of our algorithm to find the lower bound. 

Algorithm 5.3 (Batching Algorithm for UPT Jobs) 

Step 1 Convert the problem to the equivalent UPT problem. 

Step 2 Schedule UPT jobs in ready LW order. 

Step 3 Call Algorithm 5.1 to find the optimal batching of the ready LW schedule. 
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5. 7 Computational Experiment 

In order to analyze the performance of our hybrid meta-heuristic algorithm, we coded 

it and the lowerbound algorithm in ANCII C and tested it on a SUN computer. The 

results of our experiments are summarised in Tables 5.1 and 5.2. We tested the algo-

rithm for 50 jobs with processing times randomly generated from U(l, 100) (uniform 

distribution). Jobs arrive in batches at different time points. Batch sizes are ran-

domly generated from U(l, 5) and arrival times are from U(O, 50.5 * 50 * R). We set 

6 different values for R and therefore, there are 6 instance types with R = 0.2, R = 

0.4, R = 0.6, R = 0.8, R = 1.0 and R = 2.0 respectively. We consider 3 differ-

ent delivery costs d = 500, d = 1000, and d = 5000 for each instance. We ran 

the algorithm for 10 randomly generated problems for each treatment and obtained 

the percentage gap = hybrid s~lutio~ -l~werbound * 100. In Table 5.1, weights are from 
ower oun 

U(l, 100) whereas in Table 5.2 weights are from U(l, 10). The results of the experi-

ments show that our algorithm's solution is close to the lowerbound, as the maximum 

gap was about 5%. 

The CPU time is measured in seconds. The tables show that in almost all 

the cases, the average percentage gap decreases with increasing batch delivery cost. 

This may be because the larger delivery cost results in larger batch sizes and job 

sequence within a batch does not affect the total cost. Further the results show that 

the average percentage gap increases when increasing R from 0.2 and then decreases 

when R becomes higher. 

Remark 5.4 We could also use the above algorithm for the multiple customer batch 

scheduling problem at the manufacturer, with a minor modification. The algorithm 

by Hall and Potts [19] can be used to get the optimal batching of given job sequence. 

Therefore, in Step 3, we would have to call the dynamic programming algorithm by 
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d = 500 d = 1000 d = 5000 

Instance Avg. % Gap Avg. % Gap Avg. % Gap 

Type CPU CPU CPU 

Time Avg. Max Time Avg. Max Time Avg. Max 

R=0.2 6.0 1.940 2.930 6.3 2.038 3.833 7.3 1.680 4.399 

R = 0.4 5.9 2.723 4.397 6.4 2.054 5.008 7.2 1.596 2.161 

R=0.6 6.0 2.716 3.811 6.3 2.410 4.248 7.1 2.328 3.933 

R = 0.8 5.8 2.447 3.435 6.2 1.826 4.157 7.2 1.543 2.905 

R = 1.0 5.8 1.615 2.498 6.2 1.354 2.686 7.0 1.133 1.954 

R = 2.0 5.7 0.751 1.229 6.1 0.452 1.090 7.4 0.329 0.741 

Table 5.1: Performance of Algorithm 5.2 for wi = U(l, 100), Pi = U(l, 100) 

d = 500 d = 1000 d = 5000 

Instance Avg. % Gap Avg. %Gap Avg. % Gap 

Type CPU CPU CPU 

Time Avg. Max Time Avg. Max Time Avg. Max 

R =0.2 7.0 1.773 3.549 7.2 1.297 3.430 9.0 1.145 2.156 

R = 0.4 7.0 2.377 4.900 7.4 1.581 2.664 9.2 1.311 2.377 

R=0.6 7.2 1.708 3.544 7.8 1.460 2.444 9.2 1.573 4.327 

R=0.8 7.0 1.657 2.722 7.7 1.573 2.753 9.2 1.144 1.640 

R = 1.0 7.0 0.856 1.330 7.7 1.343 2.958 8.8 0.728 1.244 

R=2.0 6.9 0.359 0.937 8.8 0.293 0.646 8.8 0.262 0.441 

Table 5.2: Performance of Algorithm 5.2 for wi = U(l, 10), Pi = U(l, 100) 
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Hall and Potts. 
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Chapter 6 

Batch Scheduling in Customer 

Centric Supply Chains 

6.1 Introduction 

This chapter studies batch scheduling at the manufacturer in a customer centric sup­

ply chain. There are N jobs, J 1 , J 2 , ... , JN, to be processed at the manufacturer 

whose system may be modeled by either a single machine or an assembly-type op­

eration with subtasks Ji,j to be processed on l machines in a series for i = 1, ... , N 

and j = 1, ... , l. Job Ji must be delivered to a customer at time Di. The cost of these 

deliveries is borne by the customer. In the single-machine model, Ji requires process­

ing for Pi time for i = 1, 2, ... , N. In the assembly operation, the processing time of 

subtask Ji,j is denoted by Pi,j. (If a job skips a certain operation then Pi,j = 0 for the 

corresponding subtask.) Since no job is delivered before its deadline, the manufac­

turer wants to complete them as close to these deadlines as possible. Therefore, we 

assume that the jobs are processed in earliest due date (EDD) order and this leads to 

a feasible schedule, i.e., the manufacturer has sufficient capacity to make this schedule 

feasible for meeting the deadlines. The manufacturer receives parts and supplies for 
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each job or subtask from his supplier(s) in batches and is charged a delivery cost of d 

for each batch. The manufacturer must receive the batches in time to enable him to 

meet the final deadlines, but does not want to receive the supplies too early because 

each job Ji incurs an inventory holding cost in the time interval [ai, Di], where ai is 

its arrival time at the manufacturer for i = 1, 2, ... , N. The inventory holding cost of 

a job Ji is closely related to its flow time defined as Di - ai· Since the delivery cost is 

measured in monetary terms, we multiply flow-time related performance measures by 

appropriate constants in order to maintain compatibility in measurement. Therefore, 

we multiply the sum of flow times by a constant w, which is the cost of holding a 

job in inventory over a unit time; multiply the maximum flow time by a constant K, 

which is the penalty cost associated with the maximum flow time; and multiply the 

flow time of job Ji by wi, which is the holding cost of job Ji over a time unit when the 

objective is to minimize the sum of the weighted flow times and delivery costs. The 

manufacturer wants to find the optimal arrival time aj of each job Jj, the number of 

batches n and the partitioning of the jobs into arrival batches so that the total cost 

is minimized. We consider the following objectives: 

N 

1. For the sum of flow times with batching, total cost TC1 = L w(Dj - aj) + nd; 
j=l 

2. For the maximum flow time with batching, total cost TC2 = K. max (Dj -
J=l, ... ,N 

N 

3. For the sum of weighted flow times with batching, total cost TC3 = L wj(Dj­
j=l 

The chapter proceeds as follows. In the next section, we study problems of 

batch arrival scheduling to minimize the total weighted flow time and delivery costs, 

i.e., cost function TC3 . First we prove that the problem is strongly NP-hard on a single 
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machine even with a common due date for all the jobs. Following this, we present 

a linear-time dynamic programming algorithm for the problem on a fixed job arrival 

sequence. This algorithm is used repeatedly in Section 6.3 for minimizing TC1 both 

for single-machine and assembly-shop environments. In Section 6.4, we present an 

efficient dynamic programming algorithm for batch arrival scheduling with objective 

6.2 Batch Arrival Scheduling to Minimize the Total Weighted 

Flow Time and Delivery Costs 

6.2.1 Complexity 

Let us consider the batch arrival scheduling problem at the manufacturer when its 

system is modeled by a single machine and the objective is to minimize TC3 . 

N 

Theorem 6.1 Minimizing TC3 = I: wj(Dj - aj) + nd is strongly NP-hard. 
j=l 

Proof: Hall and Potts [19] have proved that minimizing the sum of total weighted 

flow times and delivery costs for a supplier in a push-type system is strongly NP-hard. 

They used the well-known strongly NP-hard 3-PARTITION problem to reduce it to 

their scheduling problem. We show how this reduction can be adapted to prove the 

strong NP-hardness of our problem. 

3-PARTITION [18]: 

Given 3r integers u 1 , ... , u3r, where 2::~: 1 ui = rz and z/4 < ui < z/2, for 

i = 1, ... , 3r, does there exist a partition A1 , ... ,Ar of the index set {1, ... , 3r }, such 

that IAj I = 3 and LiEAj ui = z, for j = 1, ... , r? 

Consider the following instance of our scheduling problem: N = 3r, job Ji 

has Pi = wi = ui and Di = rz, for i = 1, ... , 3r, d = z2 /2 and let C = r(r + 2)z2 /2 
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be a threshold value. \Ve prove that there exists a batch arrival schedule for this 
N 

instance with TC3 = L wj(Dj - aj) + nd::; C if and only if there exists a solution 
j=l 

for 3-P ARTITI 0 N. 

Suppose 3-PARTITION has a solution and assume, without loss of generality, 

that the integers are numbered so that u3i_2 +u3i-l + u3i = z, for i = 1, ... , r. Consider 

the schedule in which the jobs are scheduled in the sequence J1 , ... , JN and supply 

batch Bi for jobs { J3i_2, J 3i_ 1 , J3i} arrives at time J3i_2 and starts its processing right 

on, i.e., a3i_2 = a3i-l = a3i = (i - l)z, for i = 1, ... , r. It is easy to see that the jobs 

{J3i-2, J3i_ 1 , J3i} have flow time equal to rz - (i - l)z = (r - i + l)z. Therefore, 

TC3 = L~=l (u3i-2 + u3i-l + U3i)(r - i + l)z +rd= L~=l (r - i + l)z2 + rz2 /2 = C 

for this schedule. 

Next we prove the theorem in the other direction. Suppose we have a schedule 

with n arrival batches and let xi be the total processing time of the jobs corresponding 

to the ith batch Bi for i = 1, ... , n. It is clear that supplies for Bi must arrive at the time 

the last job in Bi-l completes its processing, i.e., at 2:=;-:~ Xj· Therefore, the flow time 

of the jobs in Bi will be rz - 2:=;-:~ Xj = 2:=7=i Xj for i = 1, ... , n. Thus we have TC3 = 

2:=7=1 Xi 2:=7=i Xj+nd = 2:=~ 1 xi 2:=7=i Xj+nz2 /2 = ( 2:=7=1 Xj)

2 

/2+ 2:=7=1 xJ /2+nz
2 /2. 

Thus minimizing TC3 on n batches can be written as 

( 

n )2 n 

minimize f; x j /2 + f; xJ /2 + nz2 /2 

subject to 

n 

LXj = rz. 
j=l 

Since the first term of this objective is (rz) 2 , it is easy to see that the whole 

function will be minimized when x 1 = x2 = ... = Xn = rz/n. Thus for any n-batch 
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solution we must have TC3 2". (rz) 2 /2 + n(rz/n) 2 /2 + nz2 /2. Simple arguments from 

calculus show that this expression reaches its minimum at n = r and the minimum 

value is C. Thus if there exists a batching schedule with TC3 = C, then we must have 

n = r and each batch must have a size x1 = z. This implies that each batch has 3 

jobs in it and 3-PARTITION has a solution. o 

6.2.2 Batching a Given Job Sequence on a Single Machine 

In this section, we study the optimal batching problem at the manufacturer to mini­
N 

mize TC3 = 2: w1(D1-a1)+nd when the order of job processing at the manufacturer 
j=l 

is given and this is also the order of job arrivals. Without loss of generality, let this 

sequence be J 1 , ... JN. Note that the given job processing sequence is assumed to be 

feasible for meeting the promised delivery times. Let Si denote the latest start time 

for job Ji such that the schedule is feasible. 

Consider an n-batch arrival schedule, and let i1 be the index of the first job of 

arrival batch B1, i.e., the batch schedule is { i1, i1 +1, ... , i2 - 1 }, { i 2, i2 + 1, ... , i3 -

1}, ... , {in, in + 1, ... , N}. Then it is easy to see that batch B1 should arrive at time 

Sij and not earlier. Thus 

n ik+1-l 

TC3 = L L w1(D1 - sik) + nd. 
k=l j=ik 

N 

If we define SN+l = DN, then we can write sik = DN - 2= (Sj+l - S1)· Therefore, 
j=ik 

N n ik+1-l N 

TC3 = L:w1D1 - L L w1(DN- L (S1+1-S1)) +nd 
j=l k=l j=ik j=ik 

N n ik+1-l N 

= L w1(D1 - DN) + L L Wj L (SJ+1 - S1) + nd. 
j=l 
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Let SJ+1 - S.i = pj for j = 1, 2, ... , N. Note that pj 2:: P.i and pj can be interpreted 

as the length of time on the machine 'allocated' to job j. (We have pj > PJ if there is 

an idle time in the schedule.) Then 

N n ik+1-l N 

TC3 = Lw.i(DJ-DN)+ LL WJLP}+nd. 
j=l 

N n ik+i -1 N 

TC3 = Lw.i(DJ -DN) + L ( L w.i LP}) +nd 
j=l k=l j=ik j=ik 

N n N ik+1-l 

= LWJ(Dj - DN) + L (LP} L Wj +d) 
j=l k=l j=i1.: j=ik 

Therefore minimizing TC3 can also be formulated as a special shortest path 

problem by exchanging processing times for weights and weights for allocated times 

pj in our formulations discussed in Section 3.4.1. Thus the Algorithm 3.2 given in 

Section 3.4.1 will find the optimal batching solution. 

Theorem 6.2 The optimal batching which minimizes 
N 

L wJ(DJ - aJ) + nd on a given job sequence can be found in O(N) time. 
j=l 

6.3 Minimizing the Total Flow Time and Delivery Costs 

In this section, we study simultaneous sequencing and batching of jobs for arrival at 
N 

the manufacturer to minimize TC1 = (2.:: w(DJ - aJ) + nd). 
j=l 

6.3.1 Scheduling Batch Arrivals on a Single Machine 

Lemma 6.1 There is an optimal schedule in which the order of job arrivals is the 

same as the order of job processing. 
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Proof: A job cannot start processing until the job immediately preceding it in the 

EDD processing sequence is not completed, and the arrival of any job before the 

arrival of a job preceding it in the processing sequence can only make the total flow 

time larger. Therefore, no job should arrive in the optimal schedule before any of its 

predecessors in the EDD order. o 

Without loss of generality, we index jobs in the order they are in this common 

sequence of arrival and processing. Then the latest possible start time of job Ji 

can be recursively calculated by SN = DN - PN, and Si = min{ Di, Si+d - Pi for 

i = N - 1, N - 2, ... , 2, 1. 

Although the job arrival and job processing sequence is the same, the optimal 

schedule may contain jobs which arrive early and wait in the shop. Consider the 

following example: 

J 1 2 3 4 5 6 

Pj 9 7 5 12 6 5 

Dj 23 23 23 48 48 48 

Let us say that we are given the job processing sequence {1,2,3,4,5,6} and we 

have to find the optimal 2-batching schedule. For this problem, the optimal batching 

is B1 = {1, 2, 3, 4} and B2 = {5, 6} with total flow time of 131. In this batching 

solution, the second batch arrives at t = S5 = 37 and the processing of job set {5, 6} 

is completed at t = 48; the first batch arrives at t = S1 = 2 and the processing of job 

set {1, 2, 3} is completed at t = 23, and the processing of job set { 4} is completed 

at t = 35. If we move job J4 to the second batch, then B 2 must arrive at t = 25 so 

that the job set { 4, 5, 6} will be completed by t = 48; and the job set {1, 2, 3} must 

arrive at t = 2 and will be completed at time t = 23. The total flow time of this new 

schedule will increase to 132. This shows that in the optimal schedule some jobs may 

arrive with early batches and wait in the shop. 
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Lemma 6.2 There exists an optimal schedule in which a batch arrives only when 

all the previously available jobs at the manufacturer have completed processing, z. e., 

a batch arrives only when the machine is available to start its processing. 

Proof: Since the job processing sequence is given, a job cannot be started before its 

immediately preceding job is completed. From Lemma 6.1, the order of job arrivals 

follows the processing sequence. Therefore, jobs assigned to any batch will be pro­

cessed after the last job of the previous batch has completed processing. Thus arrival 

of a batch before the completion of the processing of the last job of the previous 

arrival batch can only increase the flow time of the schedule. o 

Lemma 6.3 Let job JJ be the first job to be processed in arrival batch Bk, then batch 

Bk should arrive at time SJ. 

Proof: Let us assume that there is an optimal schedule which does not satisfy the 

lemma, but it is consistent with Lemmas 6.1 and 6.2. Select the last batch ·which 

arrives before the latest start time of the first job of the batch in this schedule. If we 

delay the batch arrival time to the latest start time of the first job of this batch, the 

schedule will remain feasible. Furthermore, the flow times of all the jobs belonging to 

this batch will be reduced, flow times of all the jobs belonging to other batches will 

remain the same. This contradicts the optimality assumption for the schedule. o 

Lemma 6.4 There exists an optimal schedule in which the jobs to be delivered to 

customer(s) at the same due date are scheduled in LPT order at the manufacturer. 

Proof: We know that jobs to be delivered at the same delivery time to customer(s) are 

processed consecutively at the manufacturer because of the EDD processing order. 

\i\Tithout loss of generality, let this sequence be J 1 , ... ,JN. Let us assume that the 
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lemma is not true for an optimal schedule. Then there will be at least two jobs Ji 

and Ji+l at the manufacturer such that Pi < Pi+I and Di= Di+l· If jobs Ji and Ji+l 

belong to the same arrival batch, then interchanging them will not affect the flmv 

time of any job. If jobs Ji and Ji+l belong to different arrival batches, say, to Bk and 

Bk+1, respectively, then let the arrival time of batch Bk be tk and the arrival time of 

Bk+1 be tk+I· From Lemma 6.3, we know tk+I =min{ Di+I, Si+2} - Pi+I· Interchange 

jobs Ji and Ji+I in these batches, which does not change the arrival batch sizes. Call 

the new batches B~ and B~+i · Thus in the new schedule, B~ arrives at tk and B~+i 

arrives at t~+i =min{ Di, Si+2} - Pi =min{ Di+1, Si+2} - Pi = tk+1 + Pi+I - Pi· Note 

that the interchange will not affect the feasibility of the schedule. The interchange 

will not affect the flow times of the jobs in Bk \Ji in the original schedule. The flow 

time of every job in Bk+I \ Ji+I is decreased by Pi+I - Pi > 0 compared to the original 

schedule. The flow time of Ji+1 is increased by tk+I - tk and the flow time of Ji is 

decreased by t~+I - tk > tk+I - tk. Thus the net change in the total flow time is a 

decrease by at least Pi+ I -pi, which contradicts the optimality of the original schedule. 

Therefore, any jobs Ji and Ji+1 not in LPT order must belong to the same batch. 

Repeatedly resequencing the jobs with the same due date into LPT order within the 

batches does not change the cost or the feasibility of the schedule and leads to an 

optimal schedule satisfying the conditions of the lemma. o 

The combination of EDD ordering with LPT ordering of jobs with the same 

due date within batches fixes the optimal sequence for the jobs. Since we know the 

job sequence, Algorithm 3.2 given in Section 3.4.1 can be used to find the optimal 

batch sizes. Algorithm 6.1 summarizes the steps needed to find the optimal batch 

arrival schedule. 

Theorem 6.3 Algorithm 6.1 finds zn O(N log N) time an optimal batch arrival 
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Algorithm 6.1: Algorithm to minimize the sum of flow times and delivery costs 

Step 1: Order the jobs in EDD order and schedule the jobs with the same due date in 

LPT order. 

Step 2: Call Algorithm 3.2 to find the optimal arrival batch sizes of the sequence found. 

schedule that minimizes TC1, the sum of flow times and delivery costs. 

Proof: Step 1 finds the optimal job sequence by sorting, which requires O(N log N) 

time. Algorithm 3.2 finds the optimal batching of this job processing sequence in 

O(N) time. o 

6.3.2 Batch Arrival Scheduling for an Assembly Shop 

In this section, we study the optimal batch arrival policy in an assembly shop where 

jobs are processed and assembled on a series of l machines. At each machine, a job 

may require parts which are delivered from one of q suppliers. The schematic of 

the supply chain for this problem is shown in Figure 6.1. The manufacturer has to 

deliver the right products in the right quantities at the promised times to customers 

and delivery costs are charged to the customers. In order to meet the promised 

delivery times, the manufacturer has to order the parts from the suppliers, and process 

and assemble them on the l machines. For any product Ji (i = 1, 2, ... , N) which 

does not need processing on the jth machine (j = 1, 2, ... , l), we set Pi,j to zero. 

Suppliers have to deliver parts to the manufacturer at the manufacturer's required 

times and the costs for deliveries from part suppliers to the manufacturer are charged 

to the manufacturer. Thus the manufacturer wants to find the optimal batch arrival 

schedules for the parts from each supplier so that the total of sum of flow times and 

delivery costs is minimized while meeting promised delivery times to customers. 
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Figure 6.1: Network showing the manufacturer's relationship with q suppliers, and h 

customers 

Let Si,j denote the latest possible start time of task Ji,j in a feasible schedule. 

Then the fact that the jobs are 'pulling' their subtasks through the system can be 

captured by the following backward recursive calculations: 

} (6.1) Si,t =min{ Di, Si+1,1} - Pi,z, for i = 1, 2, ... , N - 1 

Si,j = min{Si,J+i, Si+i,j} - Pi,j, for i = 1, 2, ... , N: j = 1, 2, ... , l - 1 

Lemma 6.5 There exists an optimal batch arrival schedule and associated production 

schedule in which task Ji,j (for i = 1, 2, ... , N; j = 1, 2, ... , l) starts its processing at 

time Si,j· 

Proof: By using Si+l,l as an upper bound on the completion time of task Ji,L, the 

first two rows of ( 6.1) ensure that sufficient time will be available at the last machine 

to finish the processing of Ji,l by Di. The calculations in the last row of (6.1) make 

sure that there is sufficient time also for task Ji,j at machine j for i = 1, 2, ... , N; 

j = 1, 2, ... , l. (The schedule is feasible if Si,i ;::: 0 for i = 1, 2, ... , N.) It is also clear 

that the arrival time of the parts for Ji,j, ai,j, must satisfy ai,j :S Si,j for the schedule 

to be feasible, but some parts may arrive early. Now suppose we have an optimal 

schedule in which there are some tasks starting before their latest start time. Consider 
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the last such task, say lr,k, and shift its processing to start at Sr,k· The shift will 

neither affect the feasibility of the schedule nor the flow time of any task. Repeatedly 

applying the above argument to all remaining early tasks will lead to a schedule which 

satisfies the lemma. o 

Lemma 6.6 The batch arrival scheduling problems from each supplier are separable 

and can be solved independent of each other. 

Proof: We know from Lemma 6.5 that there exists an optimal production schedule 

in which each task Ji,j starts at its latest possible start time Si,j· Then Si,j can 

be viewed as the deadline for the arrival of the parts needed from their supplier. 

Since each task Ji,j receives its part(s) from at most one supplier by assumption, 

each Si,j can become a delivery deadline only for one supplier. Thus whatever batch 

arrival times are scheduled from a supplier, this does not affect the flow time of other 

parts (tasks) from other suppliers. So by considering the delivery requirements from 

one supplier, we get a separable batch arrival scheduling problem for this supplier. 

Therefore, the problems can be solved separate from each other for each supplier. o 

Theorem 6.4 The batch arrival scheduling problem at an assembly manufacturer can 

be optimally solved in 0 ( qlN log( ZN)) time. 

Proof: By Lemma 6.6, parts arriving from each supplier can be scheduled for arrival 

in a separate batch scheduling problem. We have (at most) q of these problems. Each 

of them can be solved by Algorithm 6.1 in 0 (ZN log(lN)) time, thus the overall time 

required is at most O(qlNlog(lN)). o 
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6.4 Minimizing Maximum Flow Time and Delivery Costs 

In this section, we consider the batch arrival scheduling problem with objective TC2 = 

K. max {Dj-aj} + nd at the manufacturer. It is easy to see that Lemmas 6.1-6.3 
J=l,2, ... ,N 

apply to this problem too and they can be proved the same way. 

Lemma 6. 7 There exists an optimal schedule in which the jobs to be delivered to 

customer(s) at the same due date are scheduled in LPT order at the manufacturer. 

Proof: Let there be an optimal schedule in which jobs with the same due date 

do not follow the LPT order. Without loss of generality, let the job sequence be 

J1, J2, ... , JN. Then there will be at least two jobs Ji and Ji+l with Pi < Pi+l and 

Di = Di+l· If Ji and Ji+l belong to the same batch, then interchanging these two 

jobs will not affect the maximum flow time. If jobs Ji and Ji+l belong to differ-

ent arrival batches, say, to Bk and Bk+1, respectively, then let the arrival time of 

batch Bk be tk and the arrival time of Bk+l be tk+l· From Lemma 6.3, we know 

tk+1 = min{Di+l, Si+z} - Pi+l· Interchange jobs Ji and Ji+l in these batches with­

out changing the arrival batch sizes. Call the new batches B~ and B~+i · Thus in 

the new schedule, B~ arrives at tk and B~+i arrives at t~+i = min{ Di, Si+2 } - Pi = 

min{ Di+1, Si+2 } - Pi = tk+l + Pi+i - Pi· Note that the interchange will not affect the 

feasibility of the schedule. Furthermore, the interchange will not affect the flow times 

of the jobs in Bk \Ji in the original schedule. The flow time of every job in Bk+1 \ Ji+l 

is decreased by Pi+l - Pi > 0 compared to the original schedule and the flow time of 

Ji clearly decreases. The only flow time that is increased is that of Ji+l, which goes 

up by tk+1 - tk < Di+l - tk. We have, however, Di+1 - tk=Di - tk, and the latter 

is the flow time of Ji in the original schedule. Therefore, the maximum flow time of 

the new schedule will not be greater than that of the original one. Repeating this 
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interchange for every violation of the job order in the lemma will yield an optimal 

schedule satisfying its conditions. o 

Note that the lemma implies that there is a job sequence \vhich is optimal for 

both the maximum flow time plus delivery cost and sum of flow time plus delivery cost 

objectives. To find the optimal arrival batching for TC2 = K . max { Dj-aj} + nd, 
1=1,2,. .. ,N 

however, we cannot use Algorithm 3.2, which was designed for the sum of flow times 

objective. Therefore, we present a new dynamic programming algorithm below. 

Dynamic Programming Algorithm: Algorithm to minimize TC2 

Let f (k, j) be the minimum value of TC2 on the first j jobs in a schedule using 

k arrival batches for 1 :::; k :::; j :::; N. For easier notation, we also define J(k, j) = oo 

for 1:::; j < k:::; N. The optimal value of TC2 can be obtained by mink=l, ... ,N f(k, N). 

The recursive computation of J(k, j) for 1 :::; k :::; j :::; N is defined as follows. 

J(k,j) =min 

K r=k~~.~,j-l { max{[f(k-1,r) - (k- l)d]/K,u=~~~ . .,j {Du - Sr+l}}} + kd 

Kmax {[j(k,j -1) - kd]/K, Dj - Si(k,j-1)} + kd, 

where si(k,j-1) is the starting time of the first job, i(k,j -1), of the last batch in the 

schedule realizing J(k,j-1). The first row of the recursion corresponds to taking the 

optimal schedule realizing f(k- l, r) and adding to it a new arrival batch containing 

jobs {r + 1, ... , j} for r = k - 1, ... , j - 1. Here [f(k - 1, r) - (k - l)d]/ K expresses 

the maximum flow time of the schedule realizing f(k - 1, r). The second row of the 

recursion corresponds to the case when job Jj is simply added to the last batch of 

the schedule realizing f(k,j - 1) without starting a new batch. To facilitate the 

computations, we need to store the index of the first job of the last batch in the 

schedule realizing J(k, j), denoted by i(k, j). 

Initial conditions: f(O, 0) = 0 and f(k, j) = oo for j, k = 1, ... , N. 
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Theorem 6.5 Algorithm 6.2 finds an optimal batch arrival schedule at the manu­

facturer to minimize the total cost of maximum flow time and deliveries in O(N3
) 

time. 

Proof. The algorithm needs to compute O(N2
) f(k, j) values. Each computation 

needs O(N) time. By storing the indices i(k, j), we can obtain the optimal batching 

at the end by backtracking. o 
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Chapter 7 

Supplier-Manufacturer 

Coordination and Batch 

Scheduling 

7 .1 Introduction 

In Chapters 3 to 6, we studied different batch scheduling problems at the supplier 

and manufacturer without considering the coordination between players. In this 

chapter, we treat the supplier and the manufacturer as a single system and study 

the coordination and batch scheduling in a supplier-manufacturer system. It is clear 

that this problem is harder than those corresponding problems studied in the earlier 

chapters. Therefore, we focus our study on the basic models, with a single supplier 

S, a single manufacturer Mand a single customer C as depicted in Figure 7.1, where 

the supplier and the manufacturer are considered as a system. 

:-- -- --- --- --- --- ------ ----- --- -;-- System 

' ' ' ' ' ' ' ' t--'----

' ' -- --- ----------- - --- ----- -- - --- --

Figure 7.1: A Supplier-manufacturer system with a single customer. 
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There are N jobs to be processed at the supplier and delivered to the manu-

facturer; the manufacturer in turn processes the arrived jobs and delivers the finished 

jobs to the customer. Job Ji needs times p~s) and p~m) to process at the supplier and 

manufacturer, respectively. A holding cost of wfs) and wf m) occur for job Ji at the 

supplier and at the manufacturer, respectively. Also associated with each delivery 

batch from the supplier to the manufacturer is a delivery cost d8 and from the man-

ufacturer to the customer is a delivery cost dm. We have to find the optimal number 

of delivery batches n(s), batch sizes b~s) and the delivery times ui (for i = 1, 2, ... , n(s)) 

for the supplier, and the optimal number of delivery batches n(m), batch sizes b;m) 

and the delivery times vi (for i = 1, 2, ... , n(m)) for the manufacturer so that the total 

cost of the system, TC, is minimized. 

n(s) b(s) 
I 

n(m) b(m) 

' 
n(s) b(s) 

i 

TC Lui I: w]8l + L vi I: w(m) _ L:u· 
J i I: 

i=l j=bi~\+1 i=l ·-b(m)+l J- i-1 
i=l j=b;~_\ +1 

n(m) 

(w;s) - w;m)) + n(s)ds + L Vi 

i=l ·-b(m)+l J- i-1 

w(m) + n(s)ds + n(m)dm 
J 

(7.1) 

In Equation 7.1, the first and the second terms are associated with the sup-

plier's delivery batches, and the third and the fourth terms are associated with the 

manufacturer's delivery batches. Based on this, we develop our batch scheduling 

algorithms. 

7.2 Batch Scheduling of a Given Job Sequence 

In this section, we develop dynamic programming algorithms to find the optimal 

batch scheduling in a supplier-manufacturer system, where the supplier and the man-

ufacturer follow the same given job processing sequence. Without loss of generality, 
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let the job processing sequence be .11, .12, ... , JN. 

Property 7.1 There exists an optimal batch schedule in which a batch is delivered 

from the manufacturer to the customer as soon as the last item of that batch is com-

pleted processing. 

7.2.1 Dynamic Programming Algorithms 

We develop dynamic programming algorithms to find the optimal batching schedule 

in a supplier-manufacturer system in which the supplier and the manufacturer process 

jobs in the same given job sequence. We analyse the problem in two cases: 

(i) holding cost at the supplier is less than the holding cost at the manufacturer, i.e., 

w;s) < w;m) for (i = 1, 2 ... , N) 

(ii) holding cost at the supplier is greater or equal to the holding cost at the manu-

c · (s) > (m) c ( · - 1 2 N) 1acturer, i.e., wi _ wi 1or i - , , ... , . 

The holding cost of a job is generally characterized by the warehouse costs, 

insurance, and interest rate in addition to the value of the job. Therefore it is reason-

able to assume that holding costs at the manufacturer are larger(smaller) than the 

holding costs at the supplier for all the jobs. 

C 1 (s) (m) fi · - 1 2 N ase wi < wi or i - , , ... , 

Lemma 7.1 In the optimal schedule, a batch is delivered from the supplier to the 

manufacturer only when there is no item waiting for processing at the manufacturer. 

Proof: Consider an optimal schedule which contradicts the lemma. Then in that 

optimal schedule, there is at least one batch bis) which is delivered to the manu­

facturer at time t1 while the items waiting for processing at the manufacturer at 

t1 are completed processing at t2 (t2 > t1). Now move the delivery time of bis) to 
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t2 . Note that this shift in the delivery time does not affect processing and deliv-

However, this ery schedules of other batches at the supplier and the manufacturer. 
b(s) 

k 

shift will increase the holding cost at the supplier by (t2 - ti) L wis) and de-
i=bi.s~1 +l 

b(s) 
k 

crease the holding cost at the manufacturer by (t2 - ti) L w;m). Therefore the 
·-b(s) 
i- k-1 

net change in the total cost of the supplier-manufacturer system due to this shift is 
bis) 

~ = (t2 - ti) L (w;s) - w;m)) < 0. This contradicts the optimality assumption. 
i=bis~I +l 

D 

We develop the forward dynamic programming algorithm for Case 1 based on 

Lemma 7.1. 

Dynamic Programming Algorithm for Case 1 

Let f (x, a, y, ts) be the minimum total cost of the system when the supplier has 

delivered x items to the manufacturer with the last batch of size a delivered at time 

ts, and the manufacturer has delivered y ::;: x items to the customer. 

The state variables x, a, y and ts change only when the supplier delivers a batch 

to the manufacturer or when the manufacturer delivers a batch to the customer. The 

supplier's delivery changes the state variables x, a and ts, and the manufacturer's 

delivery changes the state variable y. 
N 

Let T = L (p~s) + p~m)). 
i=l 

Forward Recurrence Relation: 

{ 

x 

, min, f(x - a, a', y, t~) +ts L ( wis) - w;m)) + ds 
. a Sx-a,t 8 ET i=x-a+l 

f (x, a, y, ts) =mm y ( ) y ( ) 
~inf(x, a, y', ts)+ dm +(ts+ L Pt) L wim 
Y <y i=(x-a)+l i=y'+l 

In the recurrence relation, the first term finds the minimum cost when the 

supplier delivers a batch of size a at time ts, and the second term finds the minimum 

cost when the manufacturer delivers a batch of size (y - y') to the customer. 
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Boundary Condition: f(O, 0, 0, 0) = O; f(x,., y, .) = oo for ally> x; f(x, a,.,.) = oo 

for all a> x; 

Optimal Solution Value: llJin {f(N, a, N, ts}· 
aS:N;Vts 

Theorem 7 .1 Algorithm 7.1 finds the optimal batching schedule in the supplier­
N 

manufacturer system for the case 1 in O(N4T 2 ) time, where T = E (p;s) + p;m)). 
i=i 

Proof: The algorithm looks at all feasible values for decision variables. Therefore, it 

finds the optimal solution. For a given x, a, y, ts value there will be at most O(NT) 

operations. Thus the total complexity is O(N4T 2 ). o 

C 2 (s) (m) c . 1 2 N ase wi ~ wi 1or z = , , ... , 

Lemma 7 .2 There exists an optimal batch schedule in which a batch is delivered from 

the supplier to the manufacturer as soon as all the items belonging to that batch have 

completed processing at the supplier. 

Proof: Let us assume that the lemma does not hold. Then there will be at least 

one batch bks) delivered from the supplier to the manufacturer at time t 2 while bks) 

has already been completed at the supplier at ti (ti < t 2 ). Now move forward 

the delivery time of bks) to ti. This would result in decreased holding cost at the 
bks) 

supplier by (t2 - ti) E w;s) and increased holding cost at the manufacturer by 
i=b(s) +i 

k-1 

b(s) 
k 

(t2 - ti) E w;m). Therefore the total change in the holding cost in the supplier­
·-bCs) +i 
Z- k-1 

b(s) 
k 

manufacturer system, ~ = (t2 - ti) E (w;m) - w~s)) :::; 0. Further note that this 
i=bks~l +a 

shift does not affect the processing and delivery batch schedules of all other batches 

at the supplier and manufacturer. Thus this contradicts the optimality assumption. 

D 
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From Lemma 7.2, we know that at the supplier the delivery time of any batch 

whose last item is the xth job is t p;s). Based on this property, we develop a 
i=l 

dynamic programming algorithm to find the optimal batching of the system for the 

case w;s) 2 Wlm). 

Algorithm 7.2: Dynamic Programming Algorithm for Case 2 

Let f (x, y, tm) be the minimum total cost of the system when the supplier has deliv­

ered x items to the manufacturer, and the manufacturer has delivered y items to the 

customer with the last delivery batch from the manufacturer being delivered at time 

tm. 

Recurrence Relation: 

f(x, y, tm) =min 

In the recurrence relation, the first term finds the minimum cost when the 

supplier delivers a batch of size (x - x'), and the second term finds the minimum cost 

when the manufacturer delivers a batch of size (y - y') to the customer at time tm. 

Boundary Condition: J(O, 0, 0) = O; J(x, y, .) = oo, for ally> x. 

Optimal Solution Value: min {f (N, N, tm}· 
Ir/ lm 

Theorem 7 .2 Algorithm 7. 2 finds optimal batch scheduling in a supplier-manufacturer 

system in O(N8 ) time. 

Proof: This algorithm is similar to the one developed by Hall and Potts [19] for the 

combined problem to minimize sum of completion times. Hall and Potts prove that 

for a given job sequence, there are only a polynomial number of values for the set of all 

possible completion times at the manufacturer. They prove that the number of values 

for the completion times is in O(N9+h-1), where g is the number of manufacturers 
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and h is the number of customers in the supply chain. Therefore, for our problem, 

the number of possible values for tm is in O(N3). There will be O(N2
) possible 

combinations for (x, y) and for each (x, y, tm) there will be O(N3
) operations. Thus 

the complexity is O(N8
). o 

Remark 7.1: In a supplier-manufacturer system with multiple copies of single prod­

uct manufacturing, job sequence does not matter. Thus the dynamic programming 

algorithms Algorithm 7.1 and Algorithm 7.2 can be used to find optimal batch sched­

ule for a single product. 
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Chapter 8 

Conclusions and Future Research 

This thesis studied batch scheduling in a supply chain. Chapters 3 and 4 studied 

the optimal batch scheduling problem in a supply chain from the viewpoint of a sin­

gle supplier who services demand for multiple products by multiple customers. The 

supplier's system was assumed to have a single stage and was modeled by a single 

machine with possible setups. We developed an efficient polynomial time algorithm 

for the single product batch scheduling problem at the supplier using the property 

that the total cost function is discrete convex in the number of batches. Then for 

the problems with identical processing times or identical weights we proved that job 

sequencing and batching are separable and we provide polynomial time algorithms 

using an algorithm for a special shortest path problem. The algorithms can easily 

be modified to handle problems with possible practical restrictions on the maximum 

number of batches or batch sizes and different trucks with different capacities and 

delivery costs. Batch scheduling problems with arbitrary processing times and ar­

bitrary weights are NP-hard. We provided a 2-approximation algorithm for this 

problem with single customer. Further, we proved that the approximation ratio of 

the algorithm decreases with increasing delivery costs and it approaches to 1 when 

the delivery costs are very large. We also extended the results of the single customer 

model to the batch scheduling problem with multiple customers. 

Chapter 5 focused on batch scheduling problems at the manufacturer in a sup­

ply chain. It is clear that batch scheduling problems at the manufacturer are harder 
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than those at the supplier. \,Ye first analyzed some polynomially solvable problems 

of the manufacturer. Multiple product batch scheduling problems at the manufac­

turer are NP-hard problems even when jobs have identical weights. Therefore we 

developed a 2-approximation algorithm for the identical weight problem and a hybrid 

meta-heuristic algorithm for the problem with arbitrary processing times and arbi­

trary weights. We developed a lowerbound for the weighted case using unit processing 

time model and then compared the performance of the heuristic algorithm with our 

lower bound. 

In Chapter 6, we studied batch arrival scheduling problems at the manufac­

turer in a customer-centric supply chain where promised job due dates are considered 

constraints which must be satisfied. We showed that the problems are closely related 

to batch scheduling problems on a single machine with flow-time related objectives. 

We proved that minimizing the sum of total weighted flow time and delivery costs is 

strongly NP-hard. For the unweighted version of the problem, we presented efficient 

solution algorithms both for single machine and assembly systems. We also developed 

a dynamic programming solution for minimizing the sum of maximum flow time and 

delivery costs. 

Finally Chapter 7 studied coordination and batch scheduling in a supplier­

manufacturer system. We analyzed a basic model with a single supplier, a single 

manufacturer, and a single customer. We developed a dynamic programming algo­

rithm to solve the batch scheduling problem of given job sequence in the supplier­

manufacturer system. 

Future research in this area may look at alternative objective functions or 

look for efficient heuristic or approximating solutions for the computationally difficult 

weighted cases at the manufacturer and the supplier-manufacturer system. We were 

unable to provide an example to check the tightness of our approximation algorithm. 

In some problems we only consider single manufacturer and/ or single end-customer. 

Adding more manufacturers and/ or customers may be a challenging work in the 

future. 
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