
BATCH SCHEDULING IN SUPPLY CHAINS

BATCH SCHEDULING IN SUPPLY CHAINS

By

Esaignani Selvarajah, B.Sc. (Eng.), M.A.Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for Ph.D.

McMaster University

© Copyright by Esaignani Selvarajah, December 2005

Ph.D in M/IS (2006)

Mc~aster University Hamilton Ontario

TITLE: Batch Scheduling in Supply Chains

AUTHOR: Esaignani Selvarajah

B.Sc. (University of Peradeniya)

M.A.Sc. (University of Toronto)

SUPERVISOR: Professor George Steiner

Abstract

Supply chain management is a major issue in many industries as firms realize

the importance of creating an integrated relationship with their suppliers and cus­

tomers. In many manufacturing organizations minimizing the total cost of inventory

holding and delivery plays a major role in production scheduling. Inventory holding

cost is proportional to the flow time of jobs at the shop. Therefore, we study single

machine batch scheduling problems to minimize the sum of weighted flow time and

the delivery cost in supply chains.

It has been proven that many single machine batch scheduling problems even

at the supplier level and the manufacturer level are hard problems to be solved.

Therefore, batch scheduling problems for supplier-manufacturer coordination are even

harder. Hence, heuristic algorithms may be developed to solve such problems. A good

heuristic can be developed only when the specific properties of the given problem are

analyzed thoroughly. Since there are many problems at the supplier level and man­

ufacturer level not yet solved, we study single machine scheduling problems under

different conditions at the supplier and manufacturer. Then we study batch schedul­

ing problems in a supplier-manufacturer systerm.

We first study some polynomially solvable problems at the supplier and at the

manufacturer. Batch scheduling problems at the supplier when jobs have aribtrary

processing times and arbitrary weights are intractable. We provide a 2-approximation

algorithm for this problem. The performance of this 2-approximation algorithm shows

that it provides close to optimal solutions for practical situations. Batch scheduling

problems at the manufacturer of multi-product case is intractable even if the weights

are identical. We provide a 2-approximation algorithm for this problem and a hybrid

meta-heuristic algorithm for the arbitrary weight case. We develop an algorithm for

the lower bound of this problem and compare the result of the heuristic algorithm

with that of the lower bound solution.

Then some batch scheduling problems at the manufacturer in a customer cen­

tric supply chain are analysed and dynamic programming algorithms are developed

to solve these problems optimally. Finally batch scheduling with supplier manufac-

11

turer coordination is studied and there again dynamic programming algorithms are

developed to solve the batch scheduling problems of given job sequence under two

different conditions.

iii

Acknowledgements

I would like to express my sincere gratitude to Professor George Steiner who

helped me profusely at various stages of this thesis work. His constant guidance

and profound involvement in my research need appreciation. His extended financial

support, encouragement, and patience cannot be rewarded by the simple word "thank

you".

I would like to thank Professor Prakash Abad, and Professor Brian Baetz

for their valuable comments and suggestions which improved the content and the

presentation of my thesis. I would like to thank my external examiner Professor

Fazle Baki for providing valuable comments on my thesis. I am also thankful to

Professor Mahmut Parlar for his encouragement and various supports throughout my

studies. I would like to thank Professor Elkafi Hassini for his valuable information

and advices. I cannot forget my great times with Tiina Salisbury when I was the

teaching assistant for her courses.

I thank McMaster University, and Natural Science and Engineering Research

Council of Canada for their financial support throughout my studies. I thank all my

colleagues who made my stay at McMaster enjoyable. The administrative assistance

provided by departmental staff Linda Kszytan, Carolyn Colwell, Vicki Cometto, and

Sandra Stephen and computer system administrators Steve Bendo, David Ryan, and

Carver Lewis is deeply remembered.

I express my deep gratitude to my parents who are always a source of moti­

vation and inspiration to me.

IV

Dedication

I dedicate this thesis to

my beloved grandfather late Mr. Sinnaiya Ponnappah and

my beloved grandmother late Mrs. Kanmani Ponnappah

v

Contents

1 Introduction 1

1.1 Sequencing and Scheduling . 1

1.2 Machine Scheduling 2

1.2.1 Machine Scheduling Models 2

1.2.2 Single Machine Scheduling . 3

1.2.3 Machine Scheduling Objectives 3

1.2.4 Machine Scheduling Algorithms and Complexity . 4

1.2.5 Batch Scheduling 9

1.3 Supply Chains 10

1.3.1 Push and Pull Systems in Supply Chains 11

1.4 Demand Driven Supply Chains 12

1.5 Supply Chain Scheduling . 13

1.6 Problem Definition 13

1.7 Some Applications 16

1.8 Motivation . . . 17

2 Literature Review 19

2.1 Single Machine Batch Scheduling 19

2.2 Scheduling Problems and Genetic Algorithms 20

Vl

2.3 Coordination and Scheduling in Supply Chains . 22

2.4 Demand Driven Supply Chain 24

3 Polynomial Algorithms for the Supplier's Problem 26

3.1 Introduction 26

3.2 Single Product Single Customer Problem 28

3.2.1 The n-batching Problem .. 28

3.2.2 Optimal Batching Problem 31

3.3 One Product per Customer to Multiple Customers Problem 39

3.4 Polynomially Solvable Special Cases of the Supplier's General Problem 45

3.4.1 Batching of Jobs with Fixed Job Sequence 46

3.4.2 Batching of Jobs with Identical Weights 52

3.4.3 Batching of Jobs with Identical Processing Times 53

3.5 Multiple Customer Batching of Jobs with Identical Processing Times 53

4 Approximation Algorithms for the Supplier's General Problem 55

4.1 Introduction 55

4.2 Multiple Products, Single Customer . 55

4.2.l Preemptive Batch Scheduling of Multiple Products to a Single

Customer 57

4.2.2 Non-preemptive Batch Scheduling of Multiple Product to a Sin-

gle Customer 60

4.2.3 Approximation Algorithm 68

4.2.4 Delivery Cost and Performance of Algorithm 4.1 . 69

4.3 Multiple Products, Multiple Customers 72

4.3.1 Preemptive Batch Scheduling of Multiple Products for Multiple

Customers 73

Vll

4.3.2 Nonpreemptive Batch Scheduling of Multiple Products for Mul-

tiple Customers

5 Batch Scheduling at the Manufacturer

5.1 Introduction

5.2 Some Preliminaries for the Manufacturer's Problem

5.3 Batching of Jobs with Fixed Job Sequence

5.4 Single-Product Batch Scheduling

5.5 Batch Scheduling of Jobs with Identical Weight

5.5.1 Batch Scheduling in the Preemptive Problem .

5.5.2 Non-preemptive Batch Scheduling

5.6 Hybrid Algorithm for the Manufacturer's Problem .

5.6.1 Phase 1: Genetic Algorithm

5.6.2 Phase 2: Optimal Batching of Job Sequence

5.6.3 Lower Bound

5. 7 Computational Experiment

6 Batch Scheduling in Customer Centric Supply Chains

6.1 Introduction

6.2 Batch Arrival Scheduling to Minimize the Total Weighted Flow Time

and Delivery Costs

6.2.1 Complexity

6.2.2 Batching a Given Job Sequence on a Single Machine

6.3 Minimizing the Total Flow Time and Delivery Costs . .

6.3.1 Scheduling Batch Arrivals on a Single Machine .

6.3.2 Batch Arrival Scheduling for an Assembly Shop

Vlll

76

81

81

82

83

85

86

87

90

91

92

94

94

96

99

99

101

101

103

104

104

108

6.4 Minimizing Maximum Flow Time and Delivery Costs 111

7 Supplier-Manufacturer Coordination and Batch Scheduling 114

7.1 Introduction 114

7.2 Batch Scheduling of a Given Job Sequence 115

7.2.1 Dynamic Programming Algorithms 116

8 Conclusions and Future Research 121

lX

List of Tables

4.1 Performance of the algorithm with different R :'.'.'. 1 values. 72

5.1 Performance of Algorithm 5.2 for wi = U(l, 100), Pi = U(l, 100) 97

5.2 Performance of Algorithm 5.2 for Wi = U(l, 10), Pi = U(l, 100) . 97

x

List of Figures

1.1 A supply chain with 1 supplier, m manufacturers, and h customers. 14

3.1 n-batching schedule 29

3.2 A Discrete Convex Cost Function 32

3.3 H~ vs. n

3.4 Multiple Customer Model.

3.5 A Partial Batching Schedule

3.6 A Schedule for Lemma 3.8

3.7 Structure of a queue q . ..

4.1 Schedule when aJj and /3Ji are assigned to Bk.

4.2 Schedule when aJj and (3Ji are assigned to Bk and Bk+I

4.3 A partial schedule of preemptive solution.

4.4 Preemptive and non-preemptive schedule, for Lemma 4.5

4.5 Preemptive and non-preemptive schedule for Lemma 4.6

37

40

41

44

48

57

58

59

62

66

4.6 Multiple Customer Model. 72

4.7 Partial schedule for Lemma 4.10. 74

4.8 Partial schedule when a1Ji(k) and a 2 Ji(k) are assigned to B 1(k) and B1~l1 . 75

4.9 Partial schedule when Ji(k) is split into r + 2 batches (r ~ 1). 77

5.1 A Schedule with r blocks. 83

Xl

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

5.2 Figure for Lemma 5.4 Case 1.

5.3 Schedule for Lemma 5. 7. . . .

6.1 Network showing the manufacturer's relationship with q suppliers, and

h customers .

7.1 A Supplier-manufacturer system with a single customer.

Xll

88

95

109

114

Chapter 1

Introduction

1.1 Sequencing and Scheduling

Sequencing and scheduling decisions play a crucial role in manufacturing and service

industries, and information processing environments. Scheduling involves allocation

of limited resources such as equipment, labor and space to jobs, activities, tasks, or

customers through time. A sequencing problem involves finding a sequence in which

to process a set of tasks, that minimizes a given cost function. Generally a scheduling

problem involves determining a detailed assignment of jobs to machines over a period

of time, that minimizes a given cost function.

We use the terms product, item, and job throughout the thesis. The term prod­

uct represents the product type which is manufactured. Generally multiple copies of

the same product type are manufactured in a manufacturing environment. We call

the single unit of that product type item. When we study manufacturing environ­

ments where multiple product types are manufactured, we call a single unit of any

product type a job. In machine scheduling terminology, processing time of a job is

the time required to process it in the shop, and release time of a job is the time at

which the job arrives in the shop from its immediate supplier.

1

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

1. 2 Machine Scheduling

There are three levels of decisions in any business enterprise such as strategic de­

cision, tactical decision, and operational decision. In a manufacturing enterprise,

on the tactical level medium term decisions are made, such as weekly demand fore­

casts, distribution and transportation planning, production planning, and material

requirements planning. The operational level is concerned with the very short term

decisions made from day to day. The border between the tactical and operational

levels is vague. Production planning problems are generally called machine scheduling

or production scheduling.

Machine scheduling includes worker and machine assignment, job sequencing,

and the coordination of material handling and maintenance support. In a compet­

itive business environment, efficient and effective machine scheduling has become a

necessity for survival in the market. Therefore, machine scheduling has attracted

many researchers since the early 1950s and an impressive amount of literature has

been created. Broadly speaking machine scheduling is the translation of customer

orders into production schedules. Even though machine scheduling arose originally

in a manufacturing context, various other applications are also possible. Jobs and

machines can stand for patients and hospital equipment, runways and take-offs and

landings at an airport, classes and teachers, programs and computer processors, cities

and traveling salesman, and/ or projects and payments.

1.2.1 Machine Scheduling Models

The major machine scheduling models are categorized by specifying the resource con­

figuration and the nature of the tasks. For example, a model may contain one machine

or several machines; the set of jobs available for scheduling may not change over time

2

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

(also called static system) or new jobs appear over time (also called dynamic system);

machines or buffers may have limited capacity; there may be technological restric­

tions on the job processing order, or no-wait in process; and scheduling is done in

a stochastic or deterministic environment. Most research has traditionally been fo­

cused on deterministic machine scheduling. This is because most machine scheduling

decisions are at operational level and therefore it is reasonably assumed to be deter­

ministic. Further, faster and reliable information flow due to high technology and

shorter lead times provide strong support for deterministic scheduling in repetitive

manufacturing environments.

1.2.2 Single Machine Scheduling

Single machine models are important for various reasons. The single machine envi­

ronment is simple and a special case of all other environments. Single machine models

often display properties that do not hold for either machines in parallel or machines in

series. However, the results that can be obtained for single machine models provide a

basis for heuristics for more complicated machine environments. In practice, schedul­

ing problems in more complicated machine environments are often decomposed into

subproblems that deal with single machines. For example, a complicated machine

environment with a single bottleneck may give rise to a single machine model.

1.2.3 Machine Scheduling Objectives

The ultimate aim of any scheduler is to develop a feasible schedule that is optimal

with respect to some objective. The first step in solving a scheduling problem is thus

to define the scheduling objective. Ideally, the objective function should consist of all

costs in the system that depend on scheduling decisions. In practice, however, such

costs are often difficult to measure, or even to identify completely. Nevertheless, three

3

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

types of decision-making goals seem to be prevalent in scheduling: efficient utilization

of resources, average length of time spent by a job on the shop floor, and conformance

of task completion times to prescribed deadlines.

The most common objective in machine scheduling is minimizing the makespan,

i.e., the length of the schedule, which is concerned with efficient machine utilization.

However, in some cases, the length of time an individual job stays in the shop may

be more important because it has a direct impact on the inventory holding cost. Well

studied objective functions in this case are sum of flow time and weighted sum of

flow time. Flow time of a job is the time between the delivery of the finished job and

the time when it becomes available for processing at the shop. Generally, different

jobs have different holding costs and therefore, weights are assigned to jobs. Further,

flow time is proportional to the inventory holding cost. Thus the weighted flow time

of a job, which is the flow time multiplied by the corresponding weight, is equivalent

to the inventory holding cost. In some environments, especially when delivery costs

are significant, several jobs may be delivered together in a batch. When a cost is

incurred on each batch delivery, it is better to increase the batch sizes so that the

delivery cost is minimized. However, the larger batch sizes will lead for longer stays

in the plant and cause larger inventory costs. Therefore, a tradeoff must be made

between minimizing the total inventory cost and the delivery cost.

1.2.4 Machine Scheduling Algorithms and Complexity

Many scheduling problems have been viewed as optimization problems subject to

constraints or as a combinatorial optimization problem. If a problem can be optimally

solved using an efficient algorithm or mathematical models, then that problem is

called an easy problem. However, many scheduling problems are hard problems for

which finding an optimal solution efficiently is very difficult. These easy and hard

4

Ph.D. Thesis - E.Selvarajah Mcl\/Iaster University - Management Science/ Systems

problems are widely studied in a branch of computer science known as complexity

theory.

Algorithms

An algorithm is a precise rule (or set of rules) specifying how to solve some problem.

Usually the efficiency or complexity of an algorithm is stated as a function relating

the input length to the number of steps (time complexity) or storage locations (space

or memory complexity) required to execute the algorithm.

An Approximation algorithm is an algorithm to solve an optimization problem

that runs in polynomial time in the length of the input and generates a solution that

is guaranteed to be close to the optimal solution. An a - approximation algorithm

is a polynomial time algorithm which always produces a solution of value within a

times the value of an optimal (minimum) solution. Thus, an approximation algorithm

provides solutions that will be generally an upper bound for a given problem.

In some cases, a lower bound for a given problem is obtained by relaxing some

constraints. For example, in a scheduling problem, we may relax the problem so that

jobs can be preempted. The solution of this relaxed problem will be a lower bound

for the original problem.

A Heuristic is a rule of thumb or educated guess that reduces the search for

solutions in domains that are difficult and poorly understood. The word heuristic

comes from the Greek root euriskw meaning to discover. Heuristics may not always

achieve the desired outcome, but can be extremely valuable to problem-solving pro­

cesses. Good heuristics can dramatically reduce the time required to solve a problem

by eliminating the need to consider unlikely possibilities or irrelevant states. Neigh­

borhood search algorithms have become a popular heuristic technique for solving

difficult combinatorial optimization problems. The standard neighborhood search al-

5

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

gorithm is an iterative procedure that starts at a feasible solution for the optimization

problem at hand and looks for a better solution in the neighborhood of the current

solution. If a better solution is found, the current solution is replaced with it and an­

other iteration is started, otherwise the algorithm terminates. The main shortcoming

of these classical heuristic methods is their inability to escape local optimality.

A number of meta-heuristic approaches have been proposed to modify these

classical neighborhood search algorithms to avoid convergence of the solution at local

optimal points. Well known examples of meta-heuristics include simulated annealing,

tabu search, genetic algorithm, and ant colony algorithm. We use a genetic algorithm

to solve one of the manufacturer's problems discussed in Chapter 5.

Genetic Algorithm (GA) is inspired by the efficiency of natural selection in

biological evaluation. GAs have been applied successfully to a wide variety of com­

binatorial optimization problems. Unlike classical heuristics such as tabu search and

simulated annealing that generate a single solution and work hard to improve it, GAs

maintain a large number of solutions and perform comparatively little work on each

one.

As discussed earlier, a heuristic algorithm does not guarantee the optimality.

Generally two standard methods are used to compare the performance of heurisc­

tic algorithms: (i) develop an algorithm to obtain a lower bound for the problem,

and compare the performance of the heuristic with the lower bound for some ran­

domly generated problem instances; or (ii) develop an a-approximation algorithm

and compare the performance of the heuristic with the approximation algorithm. In

Chapter 5, we use the former method to compare the performance of the algorithm

we developed.

6

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Complexity

The term complexity refers to the computing effort (measured by the number of

elementary computations required as a function of the order-of-magnitude of the

input data) required by an algorithm. An algorithm is said to be a polynomial time

algorithm if its number of computations is polynomial in input data size. According to

complexity theory, any optimization problem can be categorized as an easy problem

or a hard problem. Proving a problem is hard itself is very difficult. Thus, computer

scientists use more powerful methods for proving a problem is hard. They first analyze

the decision version of the given problem. A decision problem is one whose solution is

either yes or no. For example consider the optimization problem of traveling salesman

problem where we want to find the tour of visiting all the cities once with minimum

travel length. The decision problem is then, given a set of cities, the distances between

cities, and a bound k, does there exist a tour of all the cities having total length k or

less? If someone gives a 'yes' answer to the decision problem with the corresponding

tour, we may verify it by adding all the distances of the corresponding tour. If such

verification for a 'yes' instance to the decision problem can be done in polynomial

time then that problem belongs to the class NP (non-deterministic polynomial time).

Run time of an algorithm depends on the encoding of the input/ output. There

are two main encoding systems in use. In unary numeral system, a number is repre­

sented by a string of multiple instances of an arbitrarily chosen symbol. For example,

if we choose the symbol *, then the number 6 is represented as ****** and therefore,

the size of the input is 0(6). In binary numeral system, a number is represented by

a radix of two, i.e., each digit will have one of two different values. Typically the

symbols 0 and 1 are used to represent binary numbers. For example, the number 6

is represented as 110 and the size of the input is therefore, O(llog6l).

7

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Decision problems that can be solved (on a deterministic sequential machine)

m an amount of time that is polynomial in the size of the input are called easy

problems which belong to the class P(polynomial time). Decision problems for which

answers can be verified in polynomial time and no other NP problem is harder are

called NP-Complete (NPc). ~'hen the decision version of an optimization problem

belongs to the NP-Complete class, then the optimization problem is called NP-hard.

NPC consists of the hardest problems in NP. The reason is that if one could find

a way to solve an NP-hard problem quickly, then we could use that algorithm to

solve all NP problems quickly. At present, all known algorithms for NP-hard problems

require time that is exponential in the input size. Therefore, for NP-hard problems,

the search for an efficient, exact algorithm should be given low priority and other

less ambitious approaches must be given more priority. Thus, the knowledge that

a problem is NP-hard provides valuable information about what approach has the

potential of being most productive. Approximation algorithms and heuristics are

mainly used approaches to solve NPC problems.

Decision problems which are still NP-hard even when all numbers in the in­

put are bounded by some polynomial in the length of the input are called strongly

NP-hard. NP-hard problems which are not NP-hard when all the numbers are

bounded by some polynomial in the length of the input are called weakly NP-hard.

The existence of many scheduling models and their complexities has made

the scheduling field a focal point for the development, application, and evaluation

of combinatorial procedures and heuristic solution approaches. The selection of an

appropriate technique depends mainly on the nature of the model and the choice of

objective function. Many scheduling problems are proved to belong to NPC. Since it is

hard to develop an efficient algorithm for NP-hard problems, generally approximation

algorithms, heuristics, and simulation techniques are used to solve such scheduling

8

Ph.D. Thesis - E.Selvarajah lVIcMaster University - Ivlanagement Science/ Systems

problems.

1.2.5 Batch Scheduling

In traditional manufacturing systems, efficient utilization of resources such as ma­

chines, transportation vehicles and labor were considered the key issues for their

successful operation. For example, when there is a setup required for each product

on a machine, it is assumed that products must be processed in single lots so that

the machine is utilized efficiently. Another example is, a whole lot is produced and

sent to downstream customers, in order to fully utilize the transportation vehicle on

a single trip. Therefore in traditional scheduling problems, selecting lot sizes and

sequencing products were the major issues.

Larger lot sizes may be attractive due to fower setups, less loss of production

time, higher utilization of resources, more throughput and less time required to pro­

cess all the operations. On the other hand, a smaller batch may prevent an important

operation from waiting for a prolonged time for a different setup. Smaller batches

may also reduce storage space requirements, the amount of capital tied up in inven­

tory, and the average lead time. Thus researchers realized that the lot sizes must be

further split into small batches so that machine idle time can be minimized, lead time

can be reduced, and inventory holding cost can be minimized, while considering the

high setup cost and/or the delivery cost. Further, recent trends in manufacturing,

such as increasing demand toward customized products; increasing competition for

market share from both domestic and international manufacturers; changing manu­

facturing technology; and changing customer needs and shorter product life cycles,

force manufacturing organizations to focus on small batch production [26].

Modern technologies of flexible manufacturing reduce the setup cost/time and

thus, provide an opportunity to process jobs in small batches. Thus Batch scheduling

9

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

problems, as combinations of sequencing and partitioning problems, have been of

great interest over the past two decades. Generally, the batching component converts

sales orders into the form required for a specific production environment. As in many

cases, there are different versions of batching problems that exist according to the

nature of the batch. In discrete version, batches can have only integer number of

items, whereas in continuous version, a batch can have a fraction of items. There

are different versions of batching problems depending on the calculation of the length

of the batch processing time. For s-batching (serial batching) problems, the length

is the sum of the processing times of the jobs in the batch, whereas for p-batching

(parallel batching) problems, the length is the maximum of the processing time of

the jobs in the batch. This thesis studies s-batching problems.

1.3 Supply Chains

Fierce competition in today's global markets, the introduction of products with short

life cycles, and the heightened expectations of customers have forced business en­

terprises to invest in, and focus attention on, their supply chains. In a typical

supply chain, raw materials are procured, items are produced at one or more fac­

tories, shipped to warehouses for intermediate storage, and then shipped to retailers

or customers. Therefore, a supply chain consists of suppliers, manufacturing centers,

warehouses, distribution centers, and retail outlets. Besides these there are raw mate­

rials, work-in-process inventory, and finished products that flow between the facilities

in a supply chain.

The objective of a supply chain is to be efficient and cost-effective across the

entire system. Thus the total system-wide costs, from transportation and distribu­

tion to inventories of raw materials, work in process, and finished goods, are to be

10

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

minimized. Through supply chain integration a firm can significantly reduce costs

and improve service levels. Unfortunately, supply chain integration is difficult for two

main reasons: different entities in the supply chain may have conflicting objectives

and a supply chain is a dynamic system that evolves over time.

1.3.1 Push and Pull Systems in Supply Chains

In a push system, products are being produced without being preassigned to any par­

ticular customer, i.e., products are produced based on forecasted demand and pushed

through the system. In a pull system processes are based on customer demand, i.e.,

each process is manufacturing each component in line with the next downstream

department's needs to build a final part to the exact expectation of delivery from

the customer. Thus the demand for the final product generates implied upstream

demands for parts and components in earlier stages of the production process, i.e.,

demand pulling the whole system. Push systems work well in environments where

there are high customer demands and quick product turnaround times. It is often

argued that in a push system too much WIP results in waste and failure to meet

production targets. However, pull systems may not be suitable for all business types

because of product types, lead times and any stock holding arrangements with cus­

tomers. In an efficient supply chain, the whole system may be neither a pure push

system nor a pure pull system but a hybrid system. Generally the upstream suppliers

or entities follow a push system and the downstream suppliers or entities follow a pull

system. The entity at which market pull meets push is called the decoupling point.

Thus in the supply chain, the real demand penetrates upstream up to the decoupling

point. Beyond that the forecasted demand is used for scheduling. Items that are kept

in stock at the upstream of the decoupling point are those items for which demand

must be forecasted due to the fact that future demand between the moment of release

11

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

of items and the moment those items are received is (partially) unknown, i.e., the lead

time of supplying the item is longer than the lead time requested by the customer.

At the downstream of the decoupling point, items are normally not kept in stock

since future demand for these items between release moments and receipt moments

is known, i.e., the lead time of supplying the item from the decoupling point to the

customer is shorter than the lead time requested by the customer. We study batch

scheduling at an entity when it is in the push system and when it is in the pull system

in the supply chain.

1.4 Demand Driven Supply Chains

In this highly competitive and demanding era, suppliers are forced to meet the de­

mands at the right time. Thus, demand driven supply chains are mainly controlled

by consumer needs and/or wants. This in turn calls for Just-In-Time (JIT) manu­

facturing at each supplier. Just-In-Time manufacturing is a management philosophy

that strives to increase value added and eliminate sources of manufacturing waste by

producing the right parts in the right quantities at the right time [26].

A classical push production system may not improve supply chain performance

even if perfect information flow among partners is achieved. On the other hand,

JIT may be just the right mode of organizing the production process to take full

advantage of an essential part to benefit from supply chain coordination and perfect

information flow. One of the key points of successful JIT operations is maintaining

low inventory levels while meeting the customer demands on time. To achieve this, it

needs a synchronized movement of inputs and outputs in the production and delivery

of goods and services to customers. Thus the competitive success of an organization

which follows the JIT principle no longer depends only on its own efforts, but relies

12

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

on the efficiency of the entire supply chain.

1.5 Supply Chain Scheduling

Supply chain management has been one of the most important topics for researchers

over the last fifteen years. In traditional scheduling, researchers are mainly concerned

with economy in production and distribution, and efficiency in resource utilization.

Later they realized that effectiveness must be given the most priority in scheduling.

The effectiveness of a schedule depends on the schedules of other entities in the supply

chain. Thus a proper coordination would give more effective schedules. Supply chain

scheduling, a recently emerging research area in scheduling, is concerned with the

coordination among the entities of a supply chain.

As it is a new area of research, there are relatively few works dealing specifically

with scheduling problems in supply chains. Depending on the number of stages in the

supply chain, operating it may involve decisions by several decision-makers, e.g., the

supplier and the customers. This gives rise to a rich variety of optimization problems

for each decision-maker, and problems of coordination between them.

1.6 Problem Definition

We study batch scheduling problems at the supplier, manufacturer, and supplier­

manufacturer pair considered as a single system in a push environment, and batch

scheduling problems in a pull manufacturing system which we call demand driven

supply chain. In our analysis, we represent an entity (such as a supplier or a manu­

facturer) in the supply chain by a single machine. Figure 1.1 shows a supply chain

model where a single supplier S delivers products tom manufacturers lvf1 , M2 , ... , l\1m

and the manufacturer J\!11 delivers products to h end-customers C1 , C2 , ... , Ch.

13

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

s

A1m

Figure 1.1: A supply chain with 1 supplier, m manufacturers, and h customers.

We assume that batch delivery cost does not depend on the batch size but on

the customer to which it is destined for, and the batch processing time is the sum of

processing times of items that compose the batch. We further assume that a holding

cost is incurred for each job from its availability to its delivery, and the machine is

continually available and can process at most one item at a time.

\Ve focus on finding the optimal production batch sizes that would minimize

the inventory holding cost and the batch delivery cost. As we discussed earlier, flow

times have direct impact on inventory holding costs. Thus, we study batch sizes

which will minimize the weighted sum of flow times and the total delivery cost.

Batch Scheduling at the Supplier

Batch scheduling problems at the supplier are discussed in Chapter 3 and Chapter

4. We assume that all the items are available at time zero, i.e., at the start of the

planning horizon. This is a reasonable assumption at an upstream supplier where

holding cost of raw materials and/or components is not expensive. Chapter 3 studies

polynomial algorihms for some batch scheduling problems, whereas Chapter 4 studies

an NP-hard problem and develops a 2-approximation algorithm for it.

14

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Batch Scheduling at the Manufacturer

Chapter 5 analyses batch scheduling at the manufacturer. Unlike in the supplier's

problem, jobs arrive in batches at the manufacturer. Therefore, jobs have release

time. We provide polynomial algorithms, approximation algorithms, and heuristic

algorithms for different types of batch scheduling problems at the manufacturer.

Batch Scheduling in a Demand Driven Supply Chain

We assume that the part manufacturer gets components from its only supplier for each

product, processes them and sends the processed parts to its immediate customers.

Customers order jobs at the manufacturer with required quantity and delivery time

specified and the manufacturer has to deliver the right quantities at the promised

delivery times. Since it is a demand driven supply chain, the manufacturer in turn

specifies job requirements and arrival dates to its supplier and the supplier will deliver

the right quantities at the promised delivery times to the manufacturer. We further

assume that since the customer of a transaction decides the delivery time and the

batch sizes of its immediate supplier, the delivery cost is charged partly or in whole

to the customer. Therefore, the manufacturer's problem is to find the optimal arrival

batch sizes and the corresponding arrival times from the supplier so that the total

flow time related cost and the batch delivery cost is minimized while delivering the

jobs to customers at the promised delivery times. Chapter 6 studies this problem.

We develop dynamic programming algorithms to solve batch scheduling problems in

demand driven supply chains. We will also consider the total cost minimization of

weighted sum of flow time or some due date constraints with delivery cost.

Supplier Manufacturer Coordination and Batch Scheduling

Chapter 7 studies supplier manufacturer coordination and batch scheduling. We

consider the supplier and the manufacturer as a single system and study the batch

15

Ph.D. Thesis - E.Selvarajah I\kMaster University - Management Science/ Systems

scheduling problems so that the total cost of the system is minimized. It is clear

that this problem is harder than the batch scheduling problem at the supplier and

manufacturer. \\,Te develop a basic model where a single supplier delivers products

to a single manufacturer and the manufacturer processes and delivers products to a

single customer. We develop two dynamic programming algorithms to solve the batch

scheduling in the system under two conditions.

1. 7 Some Applications

The problems studied in this thesis have many practical applications and we provide

a few examples.

Consider a manufacturer producing plastic containers for different customers

who make juice, milk, vegetable oil, shampoo etc. Each customer has its own shape,

size, colour and texture for the containers. ·when switching from one product to

another one a setup is required. The delivery costs to different customers vary based

on their locations. The manufacturer, therefore, has to find the optimal job sequence,

number of batches, and batch sizes so that the total cost of inventory holding and

delivery is minimized. We present a polynomial-time solution for this problem.

Generally, the pasta industry involves manufacturing long goods and short

goods. Spaghetti, capilli, linguini, angel hair etc are long goods, and macaroni,

rigatoni, fusilli etc are short goods. There are also many novelty shapes such as bow

ties, shells, cannolloni, lasagna and wheels. In addition, some pastas now include

spinach and other vegetables. Pasta manufacturers produce these different products

and deliver to their customers. The manufacturer has to decide batch sizes so that

the total inventory holding cost and delivery cost is minimized.

The study on batch scheduling in customer centric supply chains is motivated

16

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

by the wide adoption of JIT systems in many successful production organizations.

One example is Bl\'!\\', the winner of the productivity award for manufacturing by

Modern Materials Handling [6]. BM"'"s newly expanded manufacturing plant in

Spartanburg, S.C., uses a pull system to build customer-specified vehicles within 10

days of order placement. Although the plant builds only two models, X-5 sports

utility vehicles and the two-seater Z-4 roadster, there are many options available for

each model in terms of shape, colour, and interior requirements. For example, for

the X-5 model, there are 8 body variances, 12 colours, 19 engine choices, 16 interior

choices, and 85 other options. The plant keeps its suppliers constantly informed of

accurate and stable demand data. As a result, the plant is able to follow the JIT

philosophy successfully.

1.8 Motivation

A supply chain consists of suppliers, manufacturers, and customers, i.e., many man­

ufacturing enterprises. Each enterprise may have multi-stage processing in a serial,

parallel, or assembly model. Thus, supply chain coordination and scheduling is a

very complex problem to solve. Therefore, as Bhatnagar et. al [5] discussed, we need

to represent each enterprise of the supply chain by a simpler system which captures

the salient features of the original enterprise, and then develop a suitable lotsizing

technique which can be applied to the simplified system. In our work we consider

each entity as a single machine. The single machine representation is reasonable in

many cases because it may be possible to solve the embedded single-machine problem

independently and then incorporate the result into the larger problem. For example,

there may be a bottleneck stage in the multi-processes of an enterprise, and therefore

treating the bottleneck as a single machine and analysing the single machine problem

17

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

may provide some insights about the enterprise.

Further, some decisions treat resources in the aggregate, as if jobs were coming

to a single facility. In order to completely understand the behavior of a complex

system, it is vital to understand its parts. Thus analysis of batch scheduling at the

supplier and manufacturer will give some ideas to solve the coordination and batch

scheduling at a supplier-manufacturer pair.

As discussed earlier, a trade-off between inventory holding cost and the delivery

cost is very important in supply chain scheduling. Thus we study batching and

scheduling of jobs on a single machine to minimize the sum of weighted flow time,

and the total delivery cost, where weight assigned to each job is generally assumed

to be the unit holding cost of that job. vVhen all the jobs have the same unit holding

cost, minimizing the sum of flow times will be equivalent to minimizing the weighted

sum flow times.

18

Chapter 2

Literature Review

2.1 Single Machine Batch Scheduling

In the mid 1980s researchers found that the inventory holding cost of WIP inventory

in a shop contributed a considerable portion of an organization's total cost. Such a

large cost proportion has attracted many researchers to find a compromise between

full utilization of resources and WIP inventory reduction. Batching is a well-known

model for this situation. Batching is to split a lot into batches and to schedule these

batches for processing. The lot size is a predetermined quantity typically set by the

customer or by the planning processes that precede scheduling. A batch is a set of

items (jobs) which must be processed jointly. For a given batch the number of items

it contains is called its batch size.

Potts and Van Wassenhove [32], Albers and Brucker [1], Webster and Baker

[41], and Potts and Kovalyov [31] gave comprehensive surveys on batch scheduling.

Several papers have dealt with one-machine batch scheduling problems in which the

objective is to minimize the inventory holding cost. Dobson et al. [16], Santos and

Magazine [34], Naddef and Santos [28] and Coffman et al. [14] have studied the

batching of identical items processed on a single machine to minimize the inventory

19

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

holding cost when each batch requires a setup. They give explicit formulas for de­

termining the optimal number of batches to be used. Finally, Shallcross [35] gave a

polynomial-time solution for the problem. Dobson et al. [16], and Naddef and San­

tos [28] also propose heuristic solutions for the corresponding N-job problem under

the assumption that only items of the same job (product) can be part of a batch.

Monma and Potts [27] study the batching problem in a one-machine environment for

N products where a batch may contain items from different jobs. They prove that

jobs within each batch are sequenced in shortest-weighted-processing-time order in

the optimal batching to minimize the inventory holding cost. There are only a few

studies which consider the delivery cost in batching problems. Among these, Cheng

et al. [12] study the batch scheduling problem on a single machine to minimize the

sum of delivery costs and earliness penalties. Yang [43] analyzes a similar model with

given batch delivery dates. Chen [9] presents a dynamic programming algorithm for

single machine scheduling and common due date assignment with earliness and/or

tardiness penalties and batch delivery costs.

Most papers on batching problems consider the single product problems or in

the multi-product case, the optimal batch sizes are obtained for a product sequence

which is assumed to be given. Although this hierarchical solution scheme of the

multi-product case is appealing, it is not necessarily optimal.

2.2 Scheduling Problems and Genetic Algorithms

Genetic Algorithm (GA) is a meta-heuristic inspired by the efficiency of natural se­

lection in biological evaluation. GA was introduced by Holland [22] as a method for

modeling complex systems. The general idea of GAs is to start with randomly gen­

erated solutions and, implementing a "survival-of-the-fittest" strategy, evolve good

20

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

solutions. Even though, GA was introduced more than three decades ago, it has seen

impressive growth in the past decade. GA is an iterative procedure that consists of

a constant size population of individuals, each one represented by a finite string of

symbols, known as genome, encoding a possible sollution in a given problem space.

The standard GA proceeds as follows: (i) an initial population of individuals is gener­

ated at random or heuristically. (ii) every individual in the population is decoded and

evaluated according to some predefined quality criterion, referred to as fitness. (iii)

individuals are selected, to form a new population, according to their fitness. (iv) ge­

netically inspired operators are used to introduce new inividuals into the population.

(v) terminal condition is specified as some fixed, maximal number of generations or

as the attainment of an acceptable fitness level for the best individual.

There are many selection procedures currently in use, one of the simplest being

Holland's original fitness-proportionate selection, where individuals are selected with

a probability proportional to their relative fitness. This ensures that the expected

number of times an individual is chosen is approximately proportional to its relative

performance in the population.

The best known operators are crossover and mutation. Crossover is performed,

with a given probability Per between two selected individuals, called parents, by ex­

changing parts of their genomes to form two new individuals, called offsprings. In

its simplest form substrings are exchanged after a randomly selected crossover point.

This operator tends to enable the evolutionary process to move towards "promising"

regions of the search space. If the crossover operations is not performed, with prob­

ability (1 - Per), then the off springs are exact copies of each parent. The mutation

operator is introduced to prevent premature convergence to local optima by randomly

sampling new points in the search space. Mutation entails flipping bits at random,

with some small probability Pm·

21

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Since the publication of a paper by Davis [15], a lot of research has been done

in the field of production scheduling with GAs. The main difficulty in this subject

arises from the question of how to represent the problem in the algorithm, which is the

most important for genetic search. A tutorial survey of the representation approaches

in the literature can be found in Cheng et. al. [11].

We present a Random Keys Genetic Algorithm (RKGA) to solve one of our

problems in Chapter 5. Our approach is based on the random keys encoding of

Bean [4]. This method encodes a solution with a random number. These values are

used as sort keys to decode the solution. The RKGA operates in two spaces, the

chromosome space and the schedule assignment space. We briefly discuss the RKGA

procedure in Chapter 5 when developing the meta heuristic algorithm.

2.3 Coordination and Scheduling in Supply Chains

Supply chain management is a major issue in many industries as firms realize the

importance of creating an integrated relationship with their suppliers and customers.

The new trends in IT, the ever changing taste of customers, as well as quality and price

pressure compel firms to focus on their supply chains, i.e., to work in an integration of

organizations that cooperate for improving the flow of material and information from

supplier to customers at the lowest cost and highest speed. Thomas and Griffin [39]

provide an extensive review and discussion of the supply chain management literature.

They point out that for many products logistics expenditures can constitute as much

as 30% of their cost. Whereas most of the supply chain literature focuses on inventory

control issues on the strategic level, using stochastic models, Thomas and Griffin [39]

discuss the need for research dealing with supply chain problems on the operational

level instead, using deterministic rather than stochastic models.

22

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Supply chain coordination is driven by the realization that the typical market­

ing channel contains redundant activities and unnecessary inventories. To eliminate

these redundant activities and unnecessary inventories, manufacturers must take a

channel-wide perspective concerning inventories. The purpose of supply chain coor­

dination is to integrate the output of a firm's supply chain efforts with other com­

ponents of manufacturing and the marketing mix so that customer satisfaction can

be maximized and competitive advantage can be achieved across all levels in the

supply chain. In recent years there has been an increasing focus on the integration

of different segments of the supply chain. Chandra and Fisher [8] study integration

and coordination of production and distribution functions. Bhatnagar et al. [5] study

two broad levels of coordination, general coordination and multi-plant coordination.

General coordination is the integration of different functions, whereas the multi-plant

coordination is the integration among the plants of an internal supply chain. The

authors claim that an efficient coordination will be possible only when the effects of

uncertainty of final demand, uncertainties of production processes at each plant, and

capacity constraints at each plant are taken into consideration. Treville et. al [40]

claim that the efforts for supply chain coordination between partners without the

effort for lead time reduction may not improve the chain's performance to its best.

Hall and Potts [19] study batch scheduling in supply chains. They study

the coordination of a supplier-manufacturer pair and conclude that the coordinated

batching decision will really provide the lowest system cost. They study a variety

of scheduling, batching and delivery problems in supply chains with the objective of

minimizing the overall scheduling and delivery cost. Chen and Hall [10] extend these

to supply chains with assembly-type manufacturing systems. Some of the issues

studied in these papers are related to previous work on coordinating production and

distribution systems. We mention here the papers by Williams [42], and Lee and

23

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Chen [24], which consider the integration of transportation time and capacity issues

with scheduling decisions.

2.4 Demand Driven Supply Chain

Manufacturers are caught between increasing customer demands, more intense global

competition, shorter product lifecycles, and growing supply chain complexity. There­

fore, many manufacturers are turning to demand-driven manufacturing for their sur­

vival in the market. The basic concept of demand-driven manufacturing is that

customer demand signals drive manufacturing plans and operations. Customers pull

product from suppliers as needed, instead of suppliers pushing product to customers

in anticipation of forecasted demand. Thus, in demand driven supply chain, providing

the right quantity of the right product at the right time is very important.

There have been many works in single machine scheduling with due dates as

constraints. Some of the major objectives, which are related to due dates are sum

of tardinesss, maximum lateness, sum of weighted tardiness, sum of weighted earli­

ness/tardiness, and sum of tardy jobs. These due date related objectives consider

mainly minimizing deviation from due dates. Also several other papers have studied

single machine scheduling problems with deadline constraints where jobs must be de­

livered on or before the due date. Smith [37] develops a polynomial time algorithm

for the sum of the completion time problem with deadline constraints and Heck and

Roberts [20] present an algorithm for minimizing the sum of completion times subject

to not increasing the maximum tardiness. Emmons [17] and Burns [7] provide counter

examples to show that the extension of Smith [37] and Heck and Roberts [20] for ar­

bitrary positive weights will not work. Burns [7] also develops a new algorithm to get

local optima for the arbitrary weight case. Bansal [3] proposes a branch and bound

24

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

algorithm with dominance criteria for the total weighted completion time problem

with deadline constraints. Potts and Van vVassenhove [33] improve Bansal's proce­

dure using additional dominance criteria. Posner [30] provides a branch and bound

algorithm with a lower bound calculated for a preemptive version. Then Bagchi and

Ahmadi [2] provide a lower bound which is better than Posner's lower bound. Finally

Pan [29] provides an efficient branch and bound algorithm to solve weighted comple­

tion time with deadline constraints. Steiner and Stephenson [38] study the closely

related problem of minimizing weighted completion time and maximum lateness. All

these papers accept early deliveries, assume job arrivals to the shop are not decision

variables, and assume negligible delivery cost of jobs to customers.

25

Chapter 3

Polynomial Algorithms for the

Supplier's Problem

3.1 Introduction

In this chapter, we analyse different problems of the supplier which can be solved

optimally in polynomial time. Batch scheduling problems are combinations of se­

quencing and partitioning problems. There have been many works which develop

batch scheduling algorithms using a hierarchical procedure where they first assume

a job sequence and then find the batching of this job sequence. This hierarchical

procedure may not guarantee optimality. However, if we could prove that job se­

quencing and batching are separable, then we could use the hierarchical procedure to

solve our batching problem optimally, if there is a polynomial algorithm to find the

job sequence and a polynomial algorithm to batch a given job sequence. For all the

problems we study in this chapter, we use the above property to obtain the optimal

batching schedule. We prove that problems with single product, with jobs of identical

weights, and with jobs of identical processing times can be solved polynomially and

develop algorithms for these problems.

26

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

We study the batch scheduling problem at the supplier where production is

controlled by a push system. There are m manufacturers J\J(I), J\f(2), · · · , J\f(m) with

N(j) number of jobs for customer .Af(]) (j = 1, 2, · · · , m). We refer to these manufac-

turers simply as customers in this Chapter and in Chapter 4. The supplier is required

to process jobs on a single machine and the kth job of customer l\;f(j) denoted by lkj)

needs p~) time to process on the machine. All the jobs are available at time zero, i.e.,

at the start of the planning horizon. This is a reasonable assumption at the upstream

suppliers when production is controlled by push system. We further assume that the

batch delivery cost is partially or in whole is charged to the supplier.

Associated with each batch delivery to customer Af(J) is the delivery cost d(j).

A holding cost of w~) incurs per unit time for job lkj). We also use the term weight for

wP). We have to find the batch schedule so that the total cost of inventory holding

and batch delivery at the supplier is minimized, i.e., our objective is to minimize
m n(j) . . m

TC= 2..: 2..: VT!Flci(J) + 2..: n(jld(j), where n(j) is the number of batches for customer
j=l i=l j=l

Af(Jl, Bij) is the ith batch to customer Jvf(J), Ci(j) is the completion time of batch

Bij), and ivi(j) is the sum of the weight of all the jobs assigned to batch Bi(j).

For convenience, we remove the subscript k (resp., superscript (j)) when we

deal with single-product (resp., single-customer) problems. Chapter 3 analyses some

polynomially solvable problems and Chapter 4 develops a 2-approximation algorithm

for the multiple product batch scheduling problem of the supplier which is known to

be NP-hard.

First, we make some observations that are used later in our proofs. We omit

the proofs of these since they are very simple.

27

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Observation 1: There should not be any idle time on the machine during

the whole production horizon.

Observation 2: A batch must be delivered as soon as the processing of all

the items belonging to that batch is completed.

Observation 3: Items belonging to the same batch must be processed con­

secutively.

3.2 Single Product Single Customer Problem

We study the basic batching problem at the supplier, i.e., the problem with single

product and single customer. In the single product problem, wi = w, Pi = p for

i = 1, 2, ... , N. We first prove some properties for the n-batching problem in which

the number of batches is fixed at n, and for the general optimal batching problem

with variable number of batches. Then we show that this basic model can be solved

in polynomial time. We denote the ith batch and its size by bi.

3.2.1

The following observation is used for this problem.

Definition 1: If N items are split into n batches of integer size

bi such that bi E {x,x-1} for i = 1,2, ... ,n, then x = l~l

We refer to this as the almost-equal-batch-size (AEBS) pol­

icy.

Then-batching Problem

In then-batching problem, N identical items must be split into n batches, for a given

n, so that bi > 0 for i = 1, 2, ... , n, and the total holding cost of all the batches

is minimized. In this section, we derive expressions for the optimal batch sizes for

the n-batching problem. This will lead to a polynomial-time solution of the overall

problem.

Property 3.1 Given batch sizes b1, b2, ... , bn, the order of the batches does not affect

28

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

t

Figure 3.1: n-batching schedule

the objective value.

Proof: Let the holding cost of batch sequence b1 , b2, ... , bn be H n- Then

Hn = w(b1(b1)P + b2(b1 + b2)P + ... + bn(b1 + b2 + ... + bn)P)

= pw(b1(b1) + b2(b1 + b2) + ... + bn(b1 + b2 + ... + bn)).

This is a symmetric function of the batch sizes b1 , b2, ... , bn. Therefore, the order of

the batches does not affect the holding cost. Delivery cost is fixed at nd. Hence, the

total cost is not affected by the batch sequence. o

Lemma 3.1 shows that the AEBS policy is optimal in the single-product single-

customer case.

Lemma 3.1 The AEBS policy zs optimal for the n-batching problem with bi E

{ l~l, l~l -1}, Jori= 1,2, ... ,n.

Proof: Figure 3.1 shows a typical n-batching schedule. Let the ith batch start at

time t, and consider batch bj for some j > i. Let the holding cost of the batches

(b1 , b2, ... , bi_ 1 , bj+1, bj+2, ... , bn) be denoted by A and the holding cost of the whole

schedule by I. Then I equals the holding cost of (bi+ bi+I + ... + bj) plus A. Thus we

can write

I= biw(t + bip) + bi+1w(t +(bi+ bi+1)P) + ... + bjw(t +(bi+ bi+1 + ... + bj)P) +A

= tw(bi + bi+I + ... + bj) + pw(bi(bi) + bi+1(bi + bi+1) + ... + bj(bi + bi+1 + ... + bj)) +A

Now consider the schedule in which one item is moved from bi to bj. Let the holding

cost of this schedule be I'. The holding cost of the batches (b1, b2 , .•. , bi_1, bJ+1, bJ+2 , ... , bn)

29

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

clearly remains A. Therefore,

I'= tw(bi + bi+l + ... + bj) + pw((bi - l)(bi - 1) + bi+1(bi - 1 + bi+i) + ...

+ bj_1(bi - 1 + bi+1 + ... + bj-1) + (bj + l)(bi - 1 + bi+i + ... + bj-i + bj + 1)) +A

After some simple calculations, we obtain I - I' = pw(bi - bj - 1).

Thus, there will be savings in the holding cost by moving one item from bi to

bj, if I - I' > 0, i.e., if bi - bj > 1. Since this does not change the number of batches,

the delivery cost part for the schedule will not change. By Property 3.1 , the sequence

of the batches does not affect I. Thus, repeating the above argument for a sequence

in which bj and bi are interchanged, we obtain that there will be savings by moving

one. item from bj to bi if bj - bi > 1. This implies that all the batch sizes will be

either x or (x - 1) for some integer x in the optimal schedule. Thus, by Definition 1,

bi E { j ~l , j ~l - 1} for i = 1, 2, ... , n in the optimal batching.

To be more precise, assume that we have l batches of size j ~ l and n-l batches

of size j ~l - 1. This means that that we must have l · j ~l + (n - l) · (j ~l - 1) = N.

Solving this for l, we obtain that there will be l = N - n · (j ~ l - 1) batches of size

j ~l and the remaining batches will have size j ~l - 1 in the AEBS solution, which

can be obtained in constant time for a given n. o

Lemma 3.2 The holding cost of the optimal n-batching schedule is

H~ = p; (2N I~ 1- n I ~r + n I ~l + N 2
- N).

Proof: From Lemma 3.1, we know that in the optimal batching bi E { x, x - 1} for

i = 1, 2, ... , n, where x = j ~l · Let m batches contain x items and (n - m) batches

contain (x - 1) items in the optimal batching. Then mx + (n - m) (x - 1) = N :::?

m= N-nx+n

30

Ph.D. Thesis - E.Selvarajah Mc.Master University - Management Science/ Systems

By Property 3.1, we can assume that all m batches of size x are scheduled first

and are followed by the (n - m) batches of size (x - 1). Therefore,

H~ = pw (x · x + x · 2x + ... + x · mx) + pw ((x - 1) (mx + (x - 1))

+ (x - l)(mx + 2(x - 1)) + ... + (x - l)(mx + (n - m)(x - 1)))

m (n- m)
= pw(2 (m + l)x2 + m(n - m)x(x - 1) +

2
(n - m + l)(x - 1)2

)

(N - nx + n)
= pw(

2
(N - nx + n + l)x2 + (N - nx + n)(nx - N)x(x - 1)

(nx - N) +
2

(nx - N + 1)(x - 1) 2)

= p; (2Nx - nx2 + nx + N 2
- N)

= P;" (2N r :1- n r :r + n r :1 + N2 - N). o

3.2.2 Optimal Batching Problem

In this section, we discuss the problem of finding the optimal number of batches for

the basic model. Following this, the batch sizes corresponding to the optimal number

of batches can be obtained using Lemma 3.1.

We first prove that the total cost function is a discrete convex function. A

function f(x), defined on a non-empty interval S of the integers, is discrete convex

if for every two integer points x1 and x2 in S and every o: such that 0 :::;: o: :::;: 1 and

ax1 + (1-o:)x2 is integer, we have f (ax1 + (1-o:)x2) :::;: o:f (x1) + (1-a) f (x2). In order

to prove the convexity of the total cost function, we consider its two components: the

holding cost and the delivery cost. An example showing the cost function and its

components is depicted in Figure 3.2.

Lemma 3.3 H~ is a monotonically decreasing function of n.

Proof: It is easy to see that when we move the last item of any batch i with bi > 1 of

the best n-batch schedule to a new batch, the holding cost will decrease. Therefore,

31

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

+

Cost *

+

* +
+ +: Total Cost

+ +
0

* 0 0: Delivery Cost
0

0 * *: Holding Cost
0

*
0 *

0 1 2 3 4 5 6 n

Figure 3.2: A Discrete Convex Cost Function

the holding cost of the best (n + 1)-batch schedule will be smaller than that of the

best n-batching. o

The marginal savings m the holding cost when we increase the number of

batches from n ton+ 1 is defined by H~ -H~+l · Lemma 3.4 proves the non-increasing

behavior of the marginal savings of the holding cost.

Lemma 3.4 The marginal savings of the holding cost function is non-increasing in

n.

Proof: The proof is based on extensive case analysis shown in detail below.

Let Hk be the holding cost of k-batching problems.

If we prove that H~ - H~+l 2". H~+l - H~+2 for 1 ::; n ::; N - 2, then the marginal savings

is non-increasing inn.

H~ - H~+i p~ { 2N r ~l -n r ~r + n I ~l -2N In: 11 + (n + l) r n: 1 r -(n + l) In: 11 }

pw {2N l _!!___l - (n + 1) l _!!___1
2

+(n+1) l _!!___l - 2N l _!!___l
2 ln+l ln+l Jn+l ln+2

+(n+2) 1_!!___1
2

-(n+2) l_!!___l}
ln+2 ln+2

We have to show that (H~ - H~+l) - (H~+l - H~+2) 2". 0. We show that L - R 2". 0 for all

32

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

n where,

L=2NfNl +2Nr~1 +nfNl +(n+2) f ~1 +2(n+l) r~1
2

and In ln+2 In ln+2 ln+l

R = 4N f ~1+2(n + 1) f ~1 + n f Nl
2

+ (n + 2) f ~1
2

ln+l ln+l In ln+2

We consider the problem into different cases, and prove that L - R 2 0 for all the cases.

We know that N 2 n + 2. Let N = a(n + 1) + b, where a 2 1,0::; b::; n and

a+ b 2 2.

I ~1 =a+ I a+ bl J ~1 =a+ l_b l ; and I ~1 =a - l~J In I n ln+l ln+l ln+2 n+2

Case 1: b = 0::::::} N = a(n + 1); a 2 2

r ~1 =a+ r ~ i ; I n~l l =a; I n~2 l =a - l n~2 J

Case 1.1: 2::; a::; n

r ~1 = a+ 1; I n~l l = a; I n~2 l = a.

L = 2N(a + 1) + 2Na + n(a + 1) + (n + 2)a + 2(n + l)a2

R = 4Na + 2(n + l)a + n(a + 1)2 + (n + 2)a2

L - R = 2N - 2an = 2a(n + 1) - 2an = 2a > 0

Case 1.2: a = n + 1

r ~1 = a+ 2; I n~l l = a; I n~2 l = a.

L = 2N(a + 2) + 2Na + n(a + 2) + (n + 2)a + 2(n + l)a2

R = 4Na + 2(n + l)a + n(a + 2) 2 + (n + 2)a2

L - R = 4a(n + 1) - 2n - 4an = 4a - 2n = 4(n + 1) - 2n > 0

Case 1.3: a 2 n + 2

Let a = dn + e, where d 2 1, 0 ::; e < n; d + e 2 2.

Let a= f(n + 2) + g, where f 2 1, 0::; g < n + 2.

r ~1 =a+ d + 1~1; I n~l l =a; I n~2 l =a - 1.

Case 1.3.1: e = 0::::::} d 2 2

33

Ph.D. Thesis - E.Selvarajah McMaster University - l\/Ianagement Science/ Systems

I~ l = a + d; Jn~ 1 l = a; J n~2 l = a - f.

L = 2N(a + d) + 2N(a - f) + n(a + d) + (n + 2)(a - f) + 2(n + l)a2

R = 4N a + 2 (n + 1) a + n (a + d) 2 + (n + 2)(a - f) 2

L - R = 2N d - 2N f + nd - nf - 2f - 2nad - nd2 + 2anf + 4af - nf2
- 2f 2

= 2da(n + 1) - 2fa(n + 1) +a - (a - g) - 2nad - da + 2anf + 4af - f(a - g)

= 2ad + 2af +a~ (a - g) - da - f(a - g) =ad+ fa+ g + f g > 0

Case 1.3.2: e > 0

I ~l =a+ d + 1; J n~l l =a; J n~2 l =a - f.

L = 2N(a + d + 1) + 2N(a - f) + n(a + d + 1) + (n + 2)(a - f) + 2(n + l)a2

R = 4Na + 2(n + l)a + n(a + d + 1)2 + (n + 2)(a - !) 2

L - R = 2N d - 2N f + 2N - nd - nf - 2f - 2nad - nd2 + 2anf - nf2 + 4af - 2f2
- 2na

= 2da(n + 1) - 2fa(n + 1) + 2a(n + 1) - nd - nf - 2f - 2nad - nd2

+ 2anf - nf2 + 4af - 2f2
- 2na

= 2ad + 2af - nd - nf - 2f - nd2
- nf2

- 2f2 + 2a

= 2ad + 2af - (a - e) - (n + 2)f - d(a - e) - f(a - g) + 2a

?:: ad+ a.f + g +de+ Jg+ e > 0

Case 2: b > 0

I Nl =a+ fa+bl. r _!Y_l =a+ 1· r _!Y_l =a - la-bJ
I n I n ' I n+l ' I n+2 n+2

By definition, b < n + 1 ::::? b - a < n + 1. Therefore, when a - b < 0, l n~2 J = a+ 1.

Case 2.1: 2 ::::; a+ b ::::; n and a - b < 0

I Nl = a+ 1 · r _!Y_l = a+ 1 · r _!Y_l = a+ 1
I n ' I n+l ' I n+2

L-R=O

Case 2.2: 2 ::::; a+ b ::::; n and a - b ?:: 0 ::::? a - b < n

34

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

L = 2N(a + 1) + 2Na + n(a + 1) + (n + 2)a + 2(n + l)(a + 1)2

R = 4N(a + 1) + 2(n + l)(a + 1) + n(a + 1)2 + (n + 2)a2

L - R = -2N + 2na + 4a

= - 2 (an + a + b) + 2na + 4a = 2 (a - b) 2: 0

Case 2.3: a+ b > n and a - b < 0

Let a+ b = dn + e; d 2: 1, 0 ::; e < n, d + e 2: 2

l~l =a+d+ l~l; f n~ll =a+l; f n~2l =a+l

Case 2.3.1: e = 0::::} d 2: 2

l~l =a+d; f n~ll =a+l; f n~2l =a+l

L = 2N(a + d) + 2N(a + 1) + n(a + d) + (n + 2)(a + 1) + 2(n + l)(a + 1) 2

R = 4N(a + 1) + 2(n + l)(a + 1) + n(a + d) 2 + (n + 2)(a + 1)2

L - R = 2N(d - 1) + n(d - 1) - 2an(d - 1) - nd2 + n

= 2(an +a+ b)(d - 1) + n(d - 1) - 2an(d - 1) - n(d - l)(d + 1)

= (2a + 2b - nd)(d - 1) > 0

Case 2.3.2: e > 0

I ~l =a+ d + 1; I n~l l =a+ 1; I n~2 l =a+ 1

L = 2N(a + d + 1) + 2N(a + 1) + n(a + d + 1) + (n + 2)(a + 1) + 2(n + l)(a + 1)2

R = 4N (a + 1) + 2 (n + 1) (a + 1) + n (a + d + 1) 2 + (n + 2)(a + 1) 2

L - R = 2Nd - 2and - nd2
- nd = 2d(an +a+ b) - 2and - nd(d + 1)

= 2d(a + b) - (a+ b - e)(d + 1) =(a+ b)(d - 1) + e(d + 1) > 0

Case 2.4: a + b > n and 0 ::; a - b < n + 2.

Let a + b = dn + e where d 2: 1, 0 ::; e < n, and d + e 2: 2.

I ~l = a+ d + I~ l ; I n~l l = a+ 1; I n~2 l = a

Case 2.4.1: e = 0::::} d 2: 2.

35

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

r ~l =a+ d; r n~l l =a+ 1; r n~2 l =a

L = 2N(a + d) + 2Na + n(a + d) + (n + 2)a + 2(n + l)(a + 1)2

R = 4N(a + 1) + 2(n + l)(a + 1) + n(a + d) 2 + (n + 2)a2

L - R = 2N(d - 2) + nd - 2an(d - 2) - nd2 + 4a

= 2(an +a+ b)(d - 2) + nd - 2an(d - 2) - nd2 + 4a

= 2(a + b)(d - 2) - nd(d - 1) + 4a = 2(a + b)(d - 2) - (a+ b)(d - 1) + 4a

= (a+ b)d +(a - 3b) = (a+ b)(d - 1) + 2(a - b) > 0

Case 2.4.2: e > 0

r ~l =a+ d + 1; r n~l l =a+ 1; r n~2 l =a

L = 2N(a + d + 1) + 2Na + n(a + d + 1) + (n + 2)a + 2(n + l)(a + 1)2

R = 4N(a + 1) + 2(n + l)(a + 1) + n(a + d + 1)2 + (n + 2)a2

L - R = 2N(d - 1) + nd - 2an(d - 1) - 2nd - nd2 + 4a

= 2(an +a+ b)(d - 1) - nd - 2an(d - 1) - nd2 + 4a

= (a+ b)(d - 1) + 2(a - b) + e(d + 1) > 0

Case 2.5: a - b ;::: n + 2 ::::} a + b > n

Let a+ b = dn + e, d;::: 1, 0 :Se< n, e + d 2: 2

Let a - b = l (n + 2) + g, l ;::: 1, 0 :S g < n + 2, l + g ;::: 2

r ~l =a+ d + l~l; r n~l l =a+ 1; r n~2 l =a - l

Case 2.5.1: e = 0::::} d 2: 2

r ~l = a+ d; r n~l l = a+ 1; r n~2 l = a - l

L = 2N(a + d) + 2N(a - J) + n(a + d) + (n + 2)(a - J) + 2(n + l)(a + 1)2

R = 4N (a + 1) + 2 (n + 1)(a + 1) + n (a + d) 2 + (n + 2)(a - J) 2

L - R = 2N d - 4N - 2N l + nd - nl - 21 - 2nad - nd2 + 2anl - nl2 + 4al - 212 + 4an + 4a

= 2d(an +a+ b) - 4(an +a+ b) - 2l(an +a+ b) + nd - nl - 21

- 2nad - nd2 + 2anl - nl2 + 4al - 212 + 4an + 4a

=ad+ b(d - 2) + l(a - b) + g +lg> 0

Case 2.5.2: e > 0

36

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

H* ---------* ni '

H~ -- -- ---- -~ -------- - - - - - ---t

H~ ---- - - ---~ -- -- - - -- - -- -- - --:- -- -- -- - - --- -~

Figure 3.3: H~ vs. n

I ~l = a+ d + 1; r n~l l = a+ 1; r n~2 l = a - f.

L = 2N(a + d + 1) + 2N(a - f) + n(a + d + 1) + (n + 2)(a - f) + 2(n + l)(a + 1)2

R = 4N (a + 1) + 2 (n + 1)(a + 1) + n (a + d + 1) 2 + (n + 2) (a - f) 2

L - R = 2N d - 2N - 2N f - nd - nf - 2f - 2nad - nd2 + 2anf - nf2 + 4af - 2f2 + 2an + 4a

= 2d(an +a+ b) - 2(an +a+ b) - 2f(an +a+ b) - nd - nf

- 2f - 2nad - nd2 + 2anf - nf2 + 4af - 2f2 + 2an + 4a

= (ad - b) + b(d - 1) + f (a - b) + g + f g + e + de > 0

Therefore, (H~ - H~+ 1) - (H~+i - H~+2) 2: 0 for all 1 ~ n ~ N - 2. Thus,

the marginal savings is non-increasing in n. o

Lemma 3.5 H~ is a discrete convex function of n.

Proof: Figure 3.3 shows the total holding cost H~ which satisfies Lemmas 3.3 and 3.4

at n = n1 , n = n3 and n = n2 = [cm1 + (1 - a)n3], where 0 < a < 1 and n2 is the

integer part of an1 + (1 - a)n3 • By Lemma 3.4,

This implies

37

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Corollary 3.1 The optimal total cost function is discrete convex inn.

Proof: H~ is discrete convex in n. Since the delivery cost is linear in n and the sum

of convex functions is convex again, the corollary follows. o

Since the optimal total cost function is discrete convex in n, we can find the

optimal number of batches using binary search. The marginal savings in the holding

cost at n = r is H; - H;+i · Since the marginal savings in the holding cost is non­

increasing and increasing the number of batches by 1 increases the delivery cost by

d, there will not be any savings in the total cost by a further increase in the number

of batches if H; - H;+1 :S d. Thus at a given r, we can check the marginal savings

and decide which way to move in the binary search. Based on this argument, we give

our algorithm BatchNum (Algorithm 3.1) for finding the optimal number of batches.

Algorithm 3.1 {Algorithm BatchNum for Optimal Number of Batches)

Step 1

Step 2

Step 3

Set s = 1, l = N - 1

Calculate llz =Hz* - Hz*+ 1

If !::::.1 2: d then set n* = l + 1; Stop

Calculate ll 8 = H; - H;+I

If f::::.s :S d then set n* = s; Stop

Set m = l stlJ

If m = s then set n* = m + 1; Stop

Calculate llm = H:n - H:n+i

If !::::.m = d then set n* = m; Stop

If !::::.m < d then set l = m; Go to Step 3

Set s = m; Go to Step 3

Since the algorithm uses binary search over n, and we clearly have n :S N, the

complexity of BatchNum is O(logN). Thus we have proved the following theorem.

38

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Theorem 3.1 Algorithm BatchNum finds an optimal number of batches for the single­

product batch scheduling problem of the single-customer model in O(logN) time. Thus

the single-product single-customer batching problem can also be solved in O(logN)

time.

Remark 3.1 Once we have found the optimal n, the AEBS policy and the formulas

in Observation 4 clearly define the optimal batch sizes. Thus Theorem 3.1 leads to

the interesting situation that we can find and describe the solution for the problem in

O(logN) time, which is polynomial in the size of the input for the problem, however, if

we wanted to output explicitly the batch sizes b1 , b2 , ... , bn and the resulting schedule,

this may require exponential time in the size of the input, since n itself may be

exponentially sized.

Remark 3.2 It is easy to see that Algorithm BatchNum also gives the optimal

number of batches when the machine needs a setup at the start of the first batch: In

this case, each item will be delayed by s time units, thus the total cost will have an

additional term wsN, which does not vary with n or the batch sizes, and thus the

same n and the batch sizes will remain optimal as without setups.

3.3 One Product per Customer to Multiple Customers Prob­

lem

In this section, we analyse the supplier's problem when each customer requires a

single product, but different customers may require different products. This model is

applicable to the plastic manufacturer example discussed in Chapter 1. The model

also applies to situations where a customer may need more than one product as long

as different products are delivered in separate batches. The supplier needs a setup

39

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

s

Figure 3.4: Multiple Customer Model.

si on the machine when switching the machine to produce product Pi succeeding a

different product. Figure 4.6 illustrates a network representation of the model when

the supplier delivers to m customers 1111 , M 2 , ... , lvlm. We utilize the results obtained

in the previous section to solve the supplier's general problem. \Ve assume that orders

to different customers are delivered in separate batches.

Lemma 3.6 There exists an optimal schedule in which batches of the same product

are processed consecutively.

Proof: Consider an optimal schedule in which batches of the same product are not

processed consecutively. Consider a part of the schedule in which the kth batch bik of

product Pi starts at time t followed by r batches of products other than Pi and then

the (k + l)th batch bi,k+l of product Pi as shown in Figure 3.5. (Since the holding

cost of an item is independent of the customer, we have removed the subscript of the

customer for simplicity.) As it is not important which product (only that other than

Pi) the batches between bik and bi,k+l belong to, let us denote these r batches by

b~, b~, ... , b~ and the corresponding unit processing times, unit holding costs and setup

40

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

b~p~ · · · · · · s~ b~p~ Si bi,k+ lPi
t

Figure 3.5: A Partial Batching Schedule

times by p~, wj and s~, respectively for j = 1, 2, ... , r. Note that s~ is zero if bj_ 1 and

bj are batches of the same product.

Let the holding cost of bik and bi,k+l in this partial schedule be h and h+1,

respectively. Also let the holding cost of b~ be AJ for j = 1, 2, ... , r, and the total

holding cost of the remaining batches be A. Then

Aj = b~wj(t + si + s
1

1 + s~ + ... + s~ + bikPi + b
1

1p
1

1 + b~p~ + ... + b>~), for j = 1, 2, ... , r

Ik+1=bi,k+lwi(t+2si + s~ + s~ + ... + s~ + bikPi + b~p~ + b~p~ + ... + b~p~ + bi,k+lPi)

Now consider the schedule in which bi,k+l is moved right after bik and let the corre­

sponding holding costs for bik and bi,k+l be I~ and 1~+ 1 , respectively, and for bj let

it be A~, for j = 1, 2, ... , r. It is clear that the total holding cost of the remaining

batches will not be worse than A. We also have

Al bl / (I I I b b bl I bl I bl I) C . j = jwj t+si+s1 +s2+ ... +sj+ ikPi+ i,k+lPi+ 1P1 + 2P2+ ... + jPJ, ior J =

1, 2, ... , r

I~+l = bi,k+ 1 Wi (t + Si + bikPi + bi,k+ lPi)

Let H
1

= (I~+ 1~+ 1 +A~ +A~+ ... + A~) and H = (h + h+i +Ai + A2 + ... +Ar).

Then

H I H - b (bl I bl I bl I) b (I I I - - i,k+lPi 1 W1 + 2W2 + ... + T WT - i,k+l Wi Si+ S1 + S2 + ... +ST +

b~p~ + b~p~ + ... + b~pJ

41

Ph.D. Thesis - E.Selvarajah McMaster University - l\fanagement Science/ Systems

Now consider another schedule derived from the original schedule by moving bik just

before bi,k+l and let the corresponding holding costs for bik and bi,k+l be I~ and 1~+ 1 ,

respectively, and for bj let it be A;, for j = 1, 2, ... , r. Again the holding cost of the

remaining batches will not be worse than A. We have

Let H" = (I~ + I~+ 1 + A~ + A; + ... + A~) . Then we get

H" - H = bikwi(s~ + s; + ... + s~ + b~p~ + b;p; + ... + b~p~)
-bikPi(b~w~ + b;w; + ... + b~w~)
-si(b~w~ + b;w; + ... + b~w~) - bi,k+1WiSi

Since H' and H" are obtained by moving batches of the optimal schedule, we

know that H
1

2: Hand H" 2: H. Let us assume now that H
1 > H. Then,

which implies

bikPi(b~w~ + b;w; + ... + b~w~) + si(b~w~ + b;w; + ... + b~w~) + bi,k+lwisi > bikwi(s~ +

s; + ... + s~ + b~p~ + b;p; + ... + b~p~).

The last inequality, however, is equivalent to H" - H < 0. This contradicts

the assumption that the partial schedule is from the optimal schedule. So we could

not have H' > H originally, i.e. H' = H.

Repeatedly using the above argument, we can construct an alternative optimal

schedule in which batches of every product are processed consecutively, thus proving

the lemma. o

42

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Lemma 3. 7 There exists an optimal schedule in which batches of the same product

to the same customer are processed consecutively.

Proof: Let us consider an optimal schedule satisfying Lemma 3.6, that is in which

batches of the same product are consecutive. If this schedule does not satisfy the

current lemma, then there will be two batches bJ~ and b]'.~+1' for customer f\fz, which

are not consecutive, but every other batch between them is for product Pj. We can

apply Property 3.1 to the part of the schedule for Pj, which implies that moving bJ'.~+i

next to bJ~ will not affect the total holding cost. Repeatedly using this argument, we

can obtain a schedule satisfying Lemma 3. 7. o

Lemma 3.6 allows us to make the batching decisions for a given product

separately from other products. Since delivery to each customer is done separately

in the optimal schedule and we can assume that batches of the same product to the

same customer are processed consecutively, optimal batch sizes of a given product to

a given customer are also independent of the batching of the same product to other

customers. Therefore, the optimal number of batches and the resulting batch sizes

for product Pj to customer Jvf(i) can be obtained by using the algorithm BatchNum

with input N?), where Nji) is the number of items of product Pj to be delivered to

customer Af(i).

Lemma 3.8 In the optimal schedule, products are scheduled in non-decreasing order
m

of s;+p;N; where N· = """"N(k).
w·N· ' i L.J i

' • k=l

Proof: Consider an optimal schedule in which, contrary to the lemma, product ~

immediately precedes product Pj, where s;:;;,ti > s1;;Jv~1 , and processing of product

Pi starts at time t as shown in Figure 3.6. In the figure, we have removed the subscript

for customers since the holding cost does not depend on the customer. In total, there

are ni batches of Pi and nj batches of Pj.

43

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

t

Figure 3.6: A Schedule for Lemma 3.8

Let Hi and Hj be the holding cost of product Pi and Pj, respectively, in the

schedule. Then

H, = w,((t + s,)N; + ~b., tp;b;,,)

H.; = w; ((t + "' + s; + p,N,)N; + ~ b;, tp;b;,)

Let us exchange the batches of Pj with the batches of Pi without changing their sizes

or relative order. Let the corresponding holding costs be H; and H; for Pj and ~ in

the resulting schedule. Then

H; = w; ((t + s; + s; + p;N;)N; + ~ b;, tp;b;,)

H; = w; ((t + s;)N; + ~ b1, tP1b1,)

(H: + H;) - (Hi+ Hj) = WiNi(Sj + PjNj) - WjNj(Si + PiNi)

Since si+PiNi < s;+p;N; we have (H 1 + H'.) - (H + H·) < 0. This contradicts the
WjNj w;N; ' i J i J

optimality assumption for the original schedule. o

Therefore, the optimal product sequence can be obtained by Lemma 3.8. The
m

optimal batching of a product Pi needs at most oo:= log N?)) calculations by The-
k=l

orem 3.1. Therefore, the total complexity of our solution for the multi-customer
m

multi-product batching problem is oo:= I:f=1 log Ni(k)) ~ O(SmlogNmax), where S
k=l

is the number of product types, and Nmax max Ni(k). Thus we have
k=l,2,. .. ,m, i=l,2 ... ,s

proved the following theorem.

44

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Theorem 3.2 There exists a polynomial-time algorithm which solves the multi-customer

multi-product optimal batch scheduling problem in O(mSlogNmax) time under the as­

sumption that different products are delivered in separate batches.

\Ve observe that in practice suppliers often use long production runs making

enough to satisfy the demand for a product over the entire scheduling period and

thus saving the avoidable setups. Lemma 3.6 means that this "intuitive" solution is

optimal in the current model. It also means that when looking for the optimal batch

sequence, we can assume that if there is more than one batch of a product for the

same customer, then these batches are scheduled consecutively. We can use this to

derive the optimal batch sizes and sequence, but note that reordering these batches

of identical products after, does not affect our objective function. Thus once the

optimal batch sizes have been determined, the supplier is free to use any sequence of

the batches of identical product. For example, the supplier can cyclically deliver one

batch of a product to every customer before delivering any subsequent batches of the

same product to the same customer without increasing the total cost.

So far, we have analyzed batch scheduling at the supplier with the assumption

that different products are never batched together. In the next sections we study

polynomially solvable cases of the supplier's problem without this assumption.

3.4 Polynomially Solvable Special Cases of the Supplier's

General Problem

The supplier's general problem was proven to be strongly NP-hard [19] when different

products can be batched together even if we have only a single customer. In the next

subsections we study special cases of this problem which are solvable in polynomial

time.

45

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

3.4.1 Batching of Jobs with Fixed Job Sequence

We prove that batch scheduling problems of multiple products (jobs) at the supplier

with a single customer can be solved polynomially when the jobs follow an arbitrary

but fixed job sequence. Coffman et al. [14] study the batch scheduling problem to

minimize the sum of the completion times for jobs with arbitrary processing times

when there is a constant setup time at the start of each batch. They present an O(N)

algorithm for the optimal batching of any job sequence of N jobs. They further prove

that in the optimal schedule, jobs are ordered in SPT order to minimize the sum of

completion times. Since the SPT job sequence can be obtained in O(NlogN) time,

they are able to solve the optimal batch scheduling problem in O(NlogN) time. Later,

Albers and Brucker [1] extended this study and proved that the optimal batching of

jobs with identical processing times and arbitrary weights can be solved in O(NlogN)

time, and the optimal batching of jobs with arbitrary processing times and arbitrary

weights with any given job sequence can also be solved in O(N) time. In this section,

we study the batching of jobs with arbitrary processing times and arbitrary weights of

any fixed job sequence when there is an associated batch delivery cost. We prove that

this problem can be solved polynomially by an extension of the algorithm of Coffman

et al. with some modifications, similar to the ones used by Albers and Brucker. We

follow the notation of Albers and Brucker.

Without loss of generality let us assume that the fixed job sequence we want to batch

optimally is J1 , J2 , ... , JN. Consider a batching solution of this job sequence with k

batches

BS= {Jill ... ' Ji2-1}, {Ji2, ... 'Ji3-i}, ... ' {Jik-1' ... ' Jik-d, {Jik' ... ' JN},

where i1 is the index of the first job in the jth batch and 1 = i 1 < i 2 < · · · < ik :::; N.

We show that this problem can be reduced to the special shortest path problem

46

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

discussed by Albers and Brucker.

Let F(BS) be the total cost (sum of the weighted flow time and the delivery

cost) of the batching solution BS. Since the completion time of every item in batch
ij+l -1

{ Ji1 , Jij+l' ... , JiJ+i-d is L Pv, F(BS) can be calculated as follows:
v=i1

where ik+I = N + 1 is a 'dummy' job.

If we set

N j-1

Cij = (L Wv) (LPv) + d, (3.1)
v=z v=z

which is the cost contribution by a batch containing jobs Ji, li+l, ... , Jj_ 1 , then
k

F(BS) = L ci1,iJ+i-I· Furthermore, for any k > j,
j=l

N k-1 N k-1

Cik-Cij = (L Wv) (LPv) = J(i)h(j, k), where f(i) = L Wv and h(j, k) = LPv
v=z V=J v=z V=J

Since f (i) is monotone nonincreasing and h(j, k) > 0 for all j < k, our problem

can also be formulated as a special shortest path problem introduced by Albers and

Brucker. The following is the corresponding network for our problem:

a. Each job Ji (i = 1, 2, ... , N) is represented by a vertex i in the network.

b. Since the job sequence J 1 , J 2 , ... , JN is given, the network contains edges (i, j)

only if i < j.

c. Any edge (i, j) is assigned an edge length Cij.

d. A dummy job lN+l with PN+l = WN+l = 0 is added.

47

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

I tail I ... I next(i) I i I previou.s(i) I · · · I head

Figure 3.7: Structure of a queue q.

The batching problem then is equivalent to finding the shortest path from

vertex 1 to vertex N + 1 in the network.

Let Fj be the length of the shortest path from vertex j to vertex N + 1, and

Fj (k) be the length of a shortest path from j to N + 1 which contains (j, k) as first

edge. Then,

Fj(k) = cjk + Fki and Fj = min{Fj(k)IJ < k:::; N + l}.

Therefore, Fj (k) :::; Fj (l) for vertices j < k < l is equivalent to

But Cjl - Cjk = f (j)h(k, l), therefore the condition can be written as f (j) 2: ~(~,~1 •

Thus for any two vertices k, l (k < l), if the threshold J(k, l) = ~"(~,~1
:::; J(j),

then Fj (k) :::; Fj (l) and l is called not better than k with respect to j. On the other

hand, if J(j) < J(k, l), then Fj(k) > Fj(l) and l is called better thank with respect

to j.

Therefore, the problem can be solved in O(N) time using a slightly modified

version of the algorithm by Albers and Brucker. They use the queue data structure

shown in Figure 3. 7 to solve the problem.

The correctness of the algorithm is based on the following two lemmas, which

can be proved by the same proof as in Albers and Brucker [l].

Lemma 3.9 Let 1 :::; j < k < l be vertices satisfying f(j) 2: cS(k, l). Then Fi(k) :::;

Fi(l), for all i = 1,2, ... ,j.

48

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Algorithm 3.2 (Modified Algorithm of Albers and Brucker)

begin

Step 1

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

q = N + 1; FN+l = 0

for j = N to 1 do begin

while head(q) # tail(q) and f(j) 2: 6(next(head(q)), head(q)) do

Delete head(q) from q;

N(j) = head(q); Fj = Cj,N(j) + FN(j)

while head(q) # tail(q) and 6(j, tail(q))::::; 6(tail(q),previous(tail(q))) do

Delete tail (q) from q

Add j to the tail of q;

end

end

Lemma 3.10 Suppose 6(j, k) :::::; 6(k, l) for some vertices 1 ::::; j < k < l ::::; n + 1.

Then for each vertex i, 1 ::::; i ::::; j, either k is not better than j or l is better than k

with respect to i.

In order to obain the linear time complexity, we need to do some preprocessing.

Each Cij value needed can be calculated in 0(1) time by equation (3.1). The f(j)

values can easily be computed in a preprocessing step in O(N) time. To make an

h(j, k) value computable in 0(1) time, we also compute in the preprocessing step the

following:

0 for i = 1

sp(i) =
i-1

2: Pv for i = 2, 3, ... , N + 1.
v=l

This clearly requires O(N) time and using h(j, k) = sp(k) - sp(j) makes

any h(j, k) computable in 0(1) time. Finally, the algorithm requires at most O(N)

49

Ph.D. Thesis - E.Selvarajah McMaster University - l\fanagement Science/ Systems

iterations, as each vertex gets added or deleted at most once from q. Thus we have

the following theorem.

Theorem 3.3 Algorithm 3.2 computes the optimal batching of a given job sequence

in O(N) time.

The following example illustrates the detailed execution of the algorithm.

Example 3.1: Consider optimal batching of a job sequence (J1, J2, J3, J4, J5, J5).

Let P1 = P2 = 10; p3 = p4 = 100; p5 = P6 = 20; W1 = W2 = 50; W3 = W4 = 60;

W5 = W5 = 11; d = 1200.

Initialization: q = {7}; head(q) = 7; tail(q) = 7; F7 = 0.

j = 6 N(6) = 7; F6 = 1420

Add 6 to q; q = {6, 7}; tail(q) = 6

j = 5 f(5) = 22; next(head(q)) = 6

6(6, 7) = 71 > J(5)

N(5) = 7; F5 = 2080

6(5, 6) = 33; previous(tail(q)) = 7

6(6, 7) = 71 > 6(5, 6); Remove 6 from q

Add 5 to q; q = {5, 7}; tail(q) = 5

j = 4 J(4) = 82; next(head(q)) = 5

6(5, 7) = 70 < J(4); Remove 7 from q

q = {5}; head(q) = 5

N(4) = 5; F4 = 11480

Add 4 to q; q = {4,5}; tail(q) = 4

50

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

j = 3 .f(3) = 142; next(head(q)) = 4

6(4, 5) = 94 < f(3); Remove 5 from q

q = {4}; head(q) = 4

N(3) = 4; F3 = 26880

Add 3 to q; q = {3, 4}; tail(q) = 3

j = 2 J(2) = 192; next(head(q)) = 3

6(3, 4) = 154 < f (2); Remove 4 from q

q = {3}; head(q) = 3

N(2) = 3; F2 = 30000

Add 2 to q; q = {2, 3}; tail(q) = 2

j = 1 f(l) = 242; next(head(q)) = 2

6(2, 3) = 312

J

N(j)

N(l) = 3; F1 = 32920

6

7

5

7

4

5

3

4

2

3

1

3

Therefore, the optimal batching is (J1 , J2) (J3) (J4) (J.5 , J6) with an objective

value of 32,920.

We have proved that there exists a polynomial time algorithm when the job

sequence is given. Therefore, when there are multiple products to be batched, if job

sequencing and batching are separable and if the optimal job sequence can be found

in polynomial time then the batch scheduling problem can be solved in polynomial

time. We use this property to solve special cases of the batch scheduling problem

optimally in the following two subsections.

51

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

3.4.2 Batching of Jobs with Identical Weights

In batching of jobs with identical weights all the jobs have the same weight, i. e.,

wi = w for i = 1, 2, ... , N. This model is applicable to the pasta manufacturer

example discussed in Chapter 1. This problem is equivalent to the batching problem

to minimize the sum of the completion times and the delivery costs.

Property 3.2 There exists an optimal solution in which jobs are sequenced in SPT

order.

Proof: If job Jj precedes job Ji in a schedule, where P) > Pi, then interchanging

jobs Jj and Ji will not increase the total holding cost without affecting the number

of batches. o

Corollary 3.2 The optimal batch scheduling problem of jobs with identical weights

can be solved in O(NlogN) time.

Proof: From Property 3.2, in the optimal schedule, jobs are sequenced in SPT order.

SPT order can be obtained in O(NlogN) time. Further, the optimal batching of

this given job sequence can be done in O(N) time using Algorithm 3.2. Thus, the

complexity of the problem is O(NlogN). o

Corollary 3.2 improves the complexity of the solution from O(N2
), which is the

complexity of the algorithm given for the same problem by Hall and Potts [19]. They

provide a dynamic programming algorithm to find optimal batch sizes for given job

sequences to minimize the sum of flow time and delivery costs with time complexity

O(Nm+I), where N is the total number of jobs delivered tom customers.

52

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

3.4.3 Batching of Jobs with Identical Processing Times

vVe study batch scheduling of jobs with identical processing time, i.e., Pi = p for

i = 1, 2, ... , N.

Property 3.3 There exists an optimal solution in which jobs are scheduled in non­

increasing order of job weights.

Proof: If job Jj precedes Ji, where Wj < wi, then interchanging Jj and Ji will not

increase the total holding cost without changing the number of batches. o

Corollary 3.3 The optimal batch scheduling of jobs with identical processing times

can be solved in O(NlogN) time.

Proof: We need O(NlogN) time to order the jobs in non-increasing weight order and

O(N) time to get the optimal batching for this given job sequence using Algorithm

3.2. D

3.5 Multiple Customer Batching of Jobs with Identical Pro­

cessing Times

Here we prove that batch scheduling of jobs with identical processing times with

multiple customers can be solved polynomially. We denote by a(k) the job sequence

of customer Mk. In the batch scheduling problem for multiple customers, we have

to find the job sequence of each customer, batch sizes for each customer, and the

sequence of the batches.

Lemma 3.11 There exists an optimal batch schedule in which jobs of each customer

are sequenced in nondecreasing weight order.

53

Ph.D. Thesis - E.Selvarajah Mcl\faster University - Management Science/ Systems

Proof: If the lemma is not true then there will be at least two jobs Ji(k) and 1yl of

customer llh such that Ji(k) follows J?) in o-(k), where wj < w;k). If we interchange

Ji(k) and 1yl, the holding cost will not increase since the batch completion time

remains the same while the job with larger weight is as signed to an earlier position.

D

Therefore, job sequencing and batching are separable for this problem. The

algorithm by Hall and Potts [19] can be used to solve the batching problem of this fixed

job sequence. Job sequencing requires O(mlogNmax) time, where Nmax = max Nk
k=l,2, ... ,m

and Nk is the demand from customer Mk. The algorithm by Hall and Potts requires
m

0((2:: Nk)m+ 1
) time to find the optimal batching.

k=l

54

Chapter 4

Approximation Algorithms for the

Supplier's General Problem

4.1 Introduction

In this chapter, we study the batch scheduling of jobs with arbitrary processing times

and arbitrary weights and provide a 2-approximation algorithm for this problem. The

batch scheduling problem with arbitrary processing times and arbitrary weights is

strongly NP-hard (Hall and Potts [19]). This justifies the development of an approx­

imation algorithm. We first study some properties of preemptive batch scheduling

and based on these properties, we develop our 2-approximation algorithm.

4.2 Multiple Products, Single Customer

In this section, we study the job sequencing and batching of multiple products for a

single customer at the supplier.

Lemma 4.1 If WiPj ~ d, (for all i #- j, i, j = 1, 2, ... , N), then in the optimal

batching solution, jobs are sequenced in WSPT order.

55

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Proof: When WiPJ ~ d, (for all i #- j and i, j = 1, 2, ... , N), then each job is delivered

as soon as its processing is completed. Thus the problem is equivalent to scheduling

N jobs so that the weighted sum of the completion times is minimized. Smith [37]

proves that \VSPT job sequence is optimal for minimum weighted completion time

problems. o

The example given below, however, proves that the WSPT job sequence may

not provide the optimal batching solution for the general problem.

Example 4.2: Counter example for WSPT job sequence being optimal.

Consider the following example with three jobs and d = 1200:

Ji J1 J2]3

Pi 10 100 20

Wi 50 60 11
Pi 0.20 1.7 1.8
w;

The optimal batching solution for this problem is (J 1, J3) in the first batch

and (J2) in the second batch with total cost of 12030. The optimal batching solution

of the WSPT job sequence, however, is (Ji) in the first batch and (J2 , J3) in the

second batch with total cost 12130. Thus the total cost of the optimal batching of

the WSPT job sequence is approximately 1.008 times the total cost of the optimal

batching solution.

We first prove that the WSPT job sequence is optimal for a preemptive version

of the problem. Based on this, we then prove that there exists a 2-approximation

algorithm for the general problem.

Our development of a 2-approximation algorithm for the general batching

problem is based on a strong lower bound for the optimum, which is derived from a

56

Ph.D. Thesis - E.Selvarajah l'v1cl'v1aster University - Management Science/ Systems

Figure 4.1: Schedule when o;Jj and f3Ji are assigned to Bk·

preemptive version of the problem. It is interesting to note that the algorithm does

not have to solve the preemptive problem. \Ve only use the properties of its optimal

solution in bounding the approximation ratio of our algorithm.

4.2.1 Preemptive Batch Scheduling of Multiple Products to

a Single Customer

In the preemptive batch scheduling problem, we assume that if a fraction a of a job

Ji (denoted by o;Ji) is completed, that a fraction can be delivered separately from

the other parts of Ji. In calculating the objective function, we assign weight m1Ji and

processing time api to the fractional job o;Ji. Thus the processing-time-to-weight

ratio of the fractional job o;Ji is the same as the ratio for Ji. The following lemmas

describe useful properties for this preemptive problem.

Lemma 4.2 There is an optimal schedule in which jobs are scheduled in WSPT

order for the preemptive batching problem.

Proof: Let us assume that the lemma does not hold. Then there exists an optimal

batching in which a part f3 of job Ji (f3Ji) immediately follows a part o; of job Jj

(o;Jj) in the schedule, where ;::. > ~i. Note that 0 < a, f3 :S 1.
J '

If o;Jj and f3Ji belong to the same batch Bk (refer to Figure 4.1), then moving

f3Ji before o;Jj will not change the weighted flow time. If o;Jj and f3Ji are assigned

to different batches Bk and Bk+l (refer to Figure 4.2), then moving f3Ji before o;Jj

will change the total weighted flow time, and let this change be .6.. While exchanging

57

Ph.D. Thesis - E.Selvarajah Mc.Master University - Management Science/ Systems

Figure 4.2: Schedule when aJj and .BJi are assigned to Bk and Bk+l

the partial jobs, we redefine the boundary of Bk so that the batch completion times

Ck and Ck+l will not change. Furthermore, the exchange of the jobs does not change

the delivery cost.

Case 1 (apj;::: f3Pi): After moving the jobs, all of (3Ji and (a - f3;;)Jj of aJj will

be assigned to batch Bk and the remaining (3;; part of aJj will be assigned to batch

Bk+1·

~ < 0, contradicting the optimality of the original schedule.

Case 2 (apj < (3pi).· After moving the jobs, (a:~)Ji of (3Ji will be assigned to Bk and

((3 - a:~)Ji of (3Ji and all of aJj will be assigned to Bk+l·

Therefore ~ <

p·
-(a-2)wi(Ck+1 - Ck)+ awj(Ck+1 - Ck)

Pi
w· w·

-apj(Ck+l - Ck)(-z - --1.)
Pi P)

0, a contradiction again.

Thus moving (3Ji before aJj will decrease the total weighted flow time, and

the total cost will be reduced in each case. This, however, contradicts the optimality

of the original schedule. Thus the optimal schedule must sequence the jobs in WSPT

order. o

Remark 4.1 We note that Lemma 4.2 clearly implies that there is an optimal preemp-

tive schedule in which fractional parts of the same job are sequenced consecutively.

58

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Ck-1 c,. CJ.+1

(a) Partial schedule when o:1Ji and a 2 Ji are assigned to Bk and Bk+l

ck-1 c~ c,,+1

(b) Partial schedule when rounded according to Lemma 4.4 Case 1.

Figure 4.3: A partial schedule of preemptive solution.

Lemma 4.3 In the optimal schedule with preemption, if fractional jobs o:1 Ji and

a 2 Ji of job Ji (0:1 + 0:2 :S 1 and 0:1, 0:2 > 0) are assigned to batches Bk and Bk+ 1 as

in Figure 4.3 (a), then the total processing time for Bk+I, Tk+l, and the total weight

Proof:

Case 1: Move 6Ji (0 < 6 :S 0:1) of a1Ji to Bk+I

Let the change in the weighted flow time be ~1 .

But ~ 1 > 0 by optimality

Since the last inequality holds for arbitrarily small 6 > 0, we must have

(4.1)

59

Ph.D. Thesis - E.Selvarajah McMaster University - l\fanagement Science/ Systems

Let the change in the weighted flow time be .6.2.

.6.2 lVkbPi - bwi (Tk+ 1 - bpi)

But .6.2 > 0, thus

bwiTk+1 < bpi (H1k + bwi)

wiTk+1 < Pi i-vk + bpiwi

Since the last inequality must hold for any b > 0, we must have

(4.2)

From inequalities (4.1) and (4.2), Tk+ 1 = i;k. o
'

In the optimal preemptive batch schedule, a job Ji can be assigned to a single

batch Bki assigned over two batches Bk and Bk+i, or assigned over r + 2 (r 2: 1)

4.2.2 Non-preemptive Batch Scheduling of Multiple Product

to a Single Customer

In this section, we use the properties of the preemptive solution and round the pre-

empted jobs. The next three lemmas show how these solutions can be rounded into

non-preemptive schedules and estimate the resulting errors.

Lemma 4.4 Consider a job Ji which is split over two batches Bk and Bk+l with

fractional jobs a 1 Ji and a2 Ji (a 1 + a 2 = 1) in the optimal preemptive schedule. Let

us move the fractional job a2Ji (resp. a1Ji) from Bk+l (resp. Bk) to Bk (resp. Bk+I)

if a 1 2: a2 (resp. a 1 < a2), and let .6. be the change in the weighted flow time. Then

.6. :=; ~i, where Hi is the holding cost of Ji in the preemptive optimal schedule.

60

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Proof: Refer to Figure 4.3 (a).

Case 1: o:1 2: o:2 (refer to Figure 4.3 (b)).

p
From Lemma 4.3, Wk-i

w i

Therefore, ~

From Lemma 4.3, Wk Pi
wi

Therefore, ~

(4.3)

(4.4)

(4.5)

From equations (4.4) and (4.5), ~ < min{o:i,o:DwiPi· Therefore, from inequal­

ity (4.3), ~::; ~;· D.

Lemma 4.5 Consider two jobs Ji and Jj where Ji is split over two batches Bk and

Bk+ 1 with fractional jobs 0:1 Ji and 0:2 Ji (0:1 + o:2 = 1), and Jj is split over two

batches Bk+l and Bk+2 with fractional jobs (31 Jj and f32 Jj ((31 + (32 = 1} in an optimal

61

Ph.D. Thesis - E.Selvarajah Mcl\faster University - Management Science/ Systems

(a) Preemptive batch schedule

c· k-1

J;

C' k

(b) Non-preemptive schedule. Case 1: a 1 2 0:2 and /31 < /32

c· k-1

J;

c· k

(c) Non-preemptive schedule. Case 2: a 1 2 0:2 and /31 2 /32

J;

(d) Non-preemptive schedule. Case 3: a 1 < a 2 and /31 < /32

J;

(e) Non-preemptive schedule. Case 4: a 1 < 0:2 and /31 2 /32

Figure 4.4: Preemptive and non-preemptive schedule, for Lemma 4.5

preemptive schedule. If we move the smaller fractional part of each job Ji and Jj to

the batch which contains the other part of the corresponding job, and the change in

the total weighted flow time is ~' then ~ < H;;Hj, where Hi and Hj represent the

holding cost of job Ji and Jj respectively in the optimal preemptive schedule.

62

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Proof: Refer to Figure 4.4 (a).

Hi > a(wiTk + a2wi(Tk + Ti.:+1)

> a1wi(a1Pi) + a2wi(a1Pi + 0:2Pi + f31Pj)

0'.1 (0'.1 + a2)WiPi + a~WiPi + 0:2/31 WiPj

0:1 WiPi + a~WiPi + 0:2/31 WiPj

> 0'.1 WiPi + 0:2/31 WiPj

Hj > f31wj(Tk + Tk+1) + f32wj(Tk + Tk+1 + Tk+2)

(/31 + f32)(wjTk + WjTk+1) + f32wjTk+2

(4.6)

But applying Lemma 4.3 to Bk+l and Bk+2, we get WjTk+2 = pjWk+l· Substituting

this and using a 1 + a 2 = 1 and /31 + /32 = 1, we obtain

Hj > wjTk + wjTk+1 + ,B2Pj wk+1

> Wj(0:1Pi) + wj(a2Pi + f31Pj) + f32Pj(a2wi + f31wj)

0:1 WjPi + 0:2WjPi + /31 WjPj + f32a2WiPj + f31/32WjPj

WjPi + ,B1WjPj + f32a2WiPj + f31f32wjpj

> /31 WjPj + f32a2WiPj

Adding inequalities (4.6) and (4.7), we have

Hi + Hj > 0:1 WiPi + 0:2/31 WiPj + /31 WjPj + f32a2WiPj

> 0:1 WiPi + 0:2WiPj + /31 WjPj

(4.7)

> 2(min{a1,a2}a1WiPi+min{/31,/32}a2wipj+ (4.8)

min{f31,/32}/31WjPj) (4.9)

The last inequality holds, since min{ a 1, a 2} ~ ~and min{/31, (32} ~ ~· Let the

change in the weighted flow time due to moving fractional jobs of Ji and Jj be ~.

63

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Case 1: D'.1 2:: 0'.2; /31 < f32

:Move a 2Ji from Bk+l to Bk and (31Jj from Bk+l to Bk+2· (See Figure 4.4 (b)

which shows the nevi' batch completion times C~ and C~+ 1 .)

But WkPi = Tk+l wi and liVk+lPj = Tk+2Wj by Lemma 4.3, so substituting these and

using equation (4.9), we get

< 0.50'.1 WiPi + 0.5f31 WjPj + 0.5a2WiPj

1
< 2(Hi + Hj)·

(4.10)

Move a2Ji from Bk+l to Bk and (32Jj from Bk+2 to Bk+l· (See Figure 4.4 (c)

for the changed completion times.)

But WkPi = Tk+l Wi and wk+lPj = Tk+2Wj by Lemma 4.3, so substituting these and

using equation (4. 9), we get

< 0.50'.1 WiPi + 0.5/31 WjPj

1
< 2,(Hi + Hj)·

(4.11)

64

Ph.D. Thesis - E.Selvarajah l'v1cMaster University - l\fanagement Science/ Systems

Case 3: a1 < 0:2; /31 < /32

Move o:1Ji from Bk to Bk+l and ,B1Jj from Bk+I to Bk+2. (See Figure 4.4 (d)

for the changed completion times.)

But WkPi = Tk+1 wi and TVk+lPj = Tk+2Wj by Lemma 4.3, thus using these and

equation (4.9), we get

< 0.50:1 WiPi + 0.5/31 WjPj

1
< -(Hi+ Hj)·

2

Case 4: 0:1 < 0:2; /31 ~ /32

(4.12)

Move 0:1Ji from Bk to Bk+l and /32lj from Bk+2 to Bk+l· (See Figure 4.4 (e)

for the changed completion times.)

But WkPi = Tk+1 wi and lVk+lPj = Tk+ 2Wj by Lemma 4.3, thus substituting and using

equation (4.9), we obtain

< 0.50:1 WiPi + 0.5a2WiPj + 0.5,81 WjPj

1
< 2(Hi + Hj).

Therefore, in all possible cases ~ < H;;Hj, as claimed. o

65

(4.13)

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

(a) Preemptive batch schedule

c~.

(b) Non-preemptive batch schedule

Figure 4.5: Preemptive and non-preemptive schedule for Lemma 4.6

Lemma 4.6 Consider a job Ji which is scheduled over r + 2 batches (r 2: 1),

Bk, Bk+1, ... , Bk+r+1 in the optimal preemptive schedule with fractions a1, a2, ... , O'.r+2

(where a 1 + a 2 + · · · + ll'.r+2 = 1). If we combine all these fractional parts of job Ji

into batch Bk+ 1 , then the change in the total weighted flow time is less than Hi.

Proof: Refer to Figure 4.5.

Let the change in the weighted flow time due to combining the fractional jobs

of job Ji into batch Bk+l be ~-

batches Bk, Bk+1, ... , Bk+r+l will be changed. Flow times of other batches will remain

the same. In the new schedule, batch Bk will have total weight of (Hlk - a 1 wi) and

it will be completed at time C£ = (Ck - a 1pi); batch Bk+1 will have total weight

of (0'.1 Wi + a2wi + · · · + ll'.r+2wi) = wi and it will be completed at time C£+1 =

Ck+ (a2Pi + · · · + ar+2Pi); if r 2: 2, batches Bk+2, Bk+3, ... , Bk+r will be empty; batch

Bk+r+l will have total weight of (Wk+r+l - O'.r+2wi) and will be completed at Ck+r+l·

66

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Therefore,

In the above equation, the first term is the increase in the weighted flow time of

partial job a 1Ji due to the increase in its completion time by (a2pi+a3pi+· · +ar+2Pi);

the second term is the increase in the weighted flow time of the partial job a 2 Ji due

to the increase in its completion time by (a3pi + · · · + O:r+2Pi); the third term is the

increase in the weighted flow time of the partial job ar+lJi due to the increase in its

completion time by ar+2Pi; the fourth term is the decrease in the weighted flow time

of jobs in the original batch Bk, except the partial job a 1 Ji, due to the decrease in

its completion time by a 1pi; the fifth term is the decrease in the weighted flow time

of partial job O:r+2Ji due to the decrease in its completion time by (Tk+r+l - O:r+2Pi)·

Lemma 4. 7 Any algorithm which rounds preempted jobs of the optimal preemptive

batch schedule according to Lemmas 4.4 - 4. 6 is a 2-approximation algorithm.

Proof: From Lemmas 4.4, 4.5 and 4.6, the total change in the weighted flow time
N

due to these roundings of jobs is less than L Hi· But the total weighted flow time

67

Ph.D. Thesis - E.Selvarajah McMaster University - J\fanagement Science/ Systems

N

of the optimal preemptive schedule is TCpmt = I: Hi. Therefore, the total weighted
i=l

flow time after rounding the preempted jobs into non-preempted jobs is less than

2TCpmt· Also note that the total delivery cost after rounding is not more than nd

(which is the delivery cost of the optimal preemptive batch schedule), where n is the

total number of batches in the optimal preemptive schedule. Thus the total cost of

the rounded schedule is less than 2TC*, where TC* 2: TCpmt + nd is the total cost

of the optimal non-preemptive schedule. o

The following result shows that we do not need to know the optimal pre-

emptive schedule, it is used only for proving the upper bound for our much simpler

approximation.

Corollary 4.1 Optimal batching of the WSPT job sequence is a 2-approximation

algorithm.

Proof: It is obvious that the rounding of the preempted jobs as explained in Lem-

mas 4.4 - 4.6 does not disturb the job sequence. Furthermore, in the optimal pre-

emptive batch schedule, jobs follow the WSPT job sequence. Therefore, the non­

preemptive batch schedule of Lemma 4. 7 follows the WSPT job sequence. Thus,

the optimal non-preemptive batching of the WSPT job sequence will not be worse

than this rounded solution. By Lemma 4. 7, the rounded batch schedule is a 2-

approximation solution, and so the optimal batching of the WSPT sequence cannot

be worse. o

4.2.3 Approximation Algorithm

Corollary 4.1 allows us to use the following simple approximation algorithm.

68

Ph.D. Thesis - E.Selvarajah McMaster University - l'vianagement Science/ Systems

Algorithm 4.1 (Approximation algorithm)

Step 1 Sequence the jobs in \VSPT order

Step 2: Call Algorithm 3.2 for the optimal batching of this job sequence.

Theorem 4.1 Algorithm 4.1 is a 2-approximation algorithm with time complexity

O(NlogN).

Proof: We know from Corollary 4.1 that Algorithm 4.1 is a 2-approximation algo­

rithm. As discussed in Section 3.4.1, the optimal batching of the given \VSPT job

sequence can be obtained in O(N) time, and obtaining the WSPT job sequence re­

quires O(NlogN) time. o

Remark 4.2 In the preemptive optimal batch schedule, if jobs are preempted at

most into two batches, then Algorithm 4.1 is a ~-approximation algorithm (from

Lemmas 4.4, 4.5).

4.2.4 Delivery Cost and Performance of Algorithm 4.1

In this section, we study the performance of Algorithm 4.1 with different values of

the delivery cost d. We show that the batch schedule generated by the algorithm is

close to the optimal batch schedule when the batch delivery cost is relatively large.

Generally, the delivery cost is larger than the holding cost of an item. For example,

the batch delivery cost can be the combination of the transportation cost, loading

and unloading cost; but the weight wi of any job Ji is the holding cost of that job over

a unit time. Thus, we often have (wp)max ::; d, where (wp)max = .. max { WiPj}·
i,J=l,2, ... ,N

We further analyze below the performance of Algorithm 4.1 when (wp)max ::; d. Let

R = (f , where R 2 1 by assumption.
wp max

Lemma 4.8 In the optimal preemptive batching schedule, a job Ji is split into at

most two batches if R 2 1.

69

Ph.D. Thesis - E.Selvarajah McMaster University - rvianagement Science/ Systems

Proof: Let us assume that there exists an optimal schedule in which a job Ji is

split into (r + 2) batches, Bk, Bk+i, ... , Bk+r+i, r 2 1 (refer to Figure 4.5 (a)). Move

due to this move be ~-

~ a 2 WiPi ((r) + (r - 1) + · · · + 2 + 1) - rd

2 r
a WiPi2(r + 1) - rd

r
< a 2

(wp)max2(r + 1) - rd

1
But a < -,

r

therefore, ~ < r+l
(wp)max~ - rd

r+l
< --d-rd < 0.

2r

This contradicts the optimality assumption. o

Lemma 4.9 If R 2 1, then total change in the holding cost from rounding the

preempted jobs in the optimal preemptive schedule is less than 3
(n;l) (wp)max' where

n is the number of batches in the optimal preemptive schedule.

Proof: From Lemma 4.8, we know a job is split into at most two batches. Therefore

preempted jobs are rounded using Lemmas 4.4 and 4.5. In Lemma 4.4, only one job

Ji (i = 1, 2, ... , N) is rounded and the change in the weighted flow time is less than

70

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

iwiPi S ~(wp)max (refer equations (4.4) and (4.5)). In Lemma 4.5, two preempted

jobs Ji and Jj are rounded and the change in the weighted flow time per job rounded

is less than k(wiPi + WjPj + WiPj) S ~(wp)max (refer to equations (4.10) - (4.13)).

Therefore, change in the weighted flow time per job rounded is less than ~ (wp)max.

Since there are n batches, there will be at most (n - 1) roundings. Thus, total change

in the holding cost is less than 3(n;1l(wp)max· o

Theorem 4.2 For a given R ~ 1, Algorithm 4.1 is a ~!~~-approximation algorithm.

Proof: From Lemma 4.8, any job is split into at most two batches in the optimal

preemptive schedule. Let Ll denote the total change in the weighted flow time from

rounding these split jobs and let p be the approximation ratio of Algorithm 4.1.

From Lemma 4.9, Ll S 3
(n8-l) (wp)max and from Remark 2, Ll < ~TCpmt· Since the

gap between the objective value produced by Algorithm 4.1 and TC* will be no more

than Ll we have p < TC* +fl Furthermore,
' - TC* . ,

3(n-1)() 3(n-l)d
Ll < S wp max S SR

8RLl
Therefore, (n - l)d >

3

Also TCpmt > 2Ll

TC* > TCpmt + nd

TC* > 2Ll + nd

> 2Ll + (n - l)d

> 2Ll + 8RLl
3

>
(6 + 8R)Ll

3

Th. · l' fl 3 d 1 fl 9+8R
lS imp ies TC* < 6+8R an p s +TC* < 6+8R' D

Table 4.1 shows how the approximation guarantee changes as the R value

mcreases.

71

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

R= d
, lwpJ_rnax

p

1.00 1.214

2.00 1.136

3.00 1.100

4.00 1.079

5.00 1.065

Table 4.1: Performance of the algorithm with different R ~ 1 values.

s

Figure 4.6: Multiple Customer Model.

4.3 Multiple Products, Multiple Customers

In this section, we study batch scheduling at the supplier who supplies products to

m customers lv11 ,Jllh, ... ,lv1m (refer to Figure 4.6). In fact, these customers may

be manufacturers in the supply chain. A batch schedule with multiple customers

will have the job sequence a of all the jobs, job sequence a(k) of customer Mk, k =

1, 2, ... , m, and the batch sequence. Since we deal with multiple customers, we need

an additional index to denote the customer.
m S

In section 3.3, we gave an oo:= ~ log(Nk)) algorithm for multiple customer
k=l i=l

72

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

batch scheduling problem of identical product for each customer l\fki where Nk is the

number of items to be delivered to customer l\fk, and S is the number of product

types. Hall and Potts [19] provide a dynamic programming algorithm with time
m

complexity 0((2.::: Nk)m+ 1
) to solve multi-customer batch scheduling problems with

k=l

non-identical products to minimize the sum of the completion time and total delivery

cost. The multiple customer batch scheduling problem with arbitrary processing

times and arbitrary weights is NP-hard. We prove that if each a(k) (k = 1, 2, ... , m)

follows the vVSPT job sequence (WSPT customer job sequence), then the optimal

batching on these job sequences is a 2-approximation solution. We first analyze the

preemptive version of the problem and then we round the preempted jobs to get the

2-approximation algorithm.

4.3.1 Preemptive Batch Scheduling of Multiple Products for

Multiple Customers

In this section, we study some properties of preemptive batch schedules of the multiple

customer problem.

Property 4.1 Changing the sequence of jobs within a given batch will not affect the

flow time of any jobs in the schedule.

Therefore, there exists an optimal preemptive batch schedule in which jobs in

the same batch are scheduled in WSPT order. Hereafter, whenever we talk about

a preemptive batch schedule, it is assumed that jobs within the same batch are

scheduled in WSPT order.

Lemma 4.10 There exists an optimal preemptive batch schedule in which jobs of

the same customer are scheduled in WSPT order.

73

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

(W,T)

I···· I

Figure 4.7: Partial schedule for Lemma 4.10.

Proof: If the lemma is not true then there will be at least two jobs (3Ji(k) and aJY),

(0 < a, f3 :::; 1) for some k = 1, 2, ... , m such that f3Ji(k) immediately follows aJY1

p(k) (k) (k) (k) (k)
in a(k) and - 1- > !!i._ Thus f3J. and aJ. may be assigned to a batch B or

(k) (k) • ' z J • l '
wj wi

assigned to batches B1(k) and B1(~)1 respectively.

If they both are assigned to B 1(k), then from Property 4.1, interchanging aJY)

and f3Ji(k) will not affect the total cost. If (3Ji(k) and aJY) are assigned to B 1(k) and

B1(~1i, respectively, refer to Figure 4.7, where W and T denote the total weight and

total processing time, respectively, of all the batches which are scheduled between

B (k) d B(k)
1 an 1+1·

Case 1: ap)k) ~ f3p~k)

Move f3J(k) to B(k) and f3p'.kl of aJ(k) to B(k) This will not change the batch
z l (k) J l+l.

Pj

completion times. However, W/kl is increased and W1~i is decreased by f3wik) -
(k)

f3~ici wY). Thus the interchange has decreased the holding cost, a contradiction.
Pj

Case 2: ap)k) < f3p~k)

Move apjkl J(k) of f3f k) to B(k) and af k) to B(k) Again this will not affect
p;k) z z l J 1+1 ·

(k)

the batch completion time, but W1(k) is increased and W1~i is decreased by a~{i wt) -
P;

awY). Thus the interchange has decreased the holding cost.

In both cases, the number of batches is not changed but the holding cost is

decreased. This contradicts the optimality assumption. o

Remark 4.3 There exists an optimal preemptive batch schedule, in which if a job Ji(k)

is split into two batches B~k) and B~k), then s = r + 1, i.e., no batch of customer Mk

is scheduled between B~k) and B~k). Thus, in the optimal preemptive batch schedule,

74

Ph.D. Thesis - E.Selvarajah McMaster University - l\fanagement Science/ Systems

I• (IF,T) •I

erk) Cz(!)1

Figure 4.8: Partial schedule when o:1 Ji(k) and o:2 Ji(k) are assigned to Bik) and Bi~l1 •

job Ji(k) (k = 1, 2, ... , m) may be assigned to a single batch Bik); assigned to two

b h B (k) d B(k) . d b h () B(k) B(k) B(k) ate es 1 an 1+1; or ass1gne to r+2 ate es r 2: 1, 1 , 1+1, ... , l+r+l'

with no other job for the same customer scheduled between them.

Lemma 4.11 If a job Ji(k) is split into two batches, B
1
(k) and B1(~)1 in the optimal

preemptive schedule, then (w?l + vV)p;k) = wtl(T + Tz~i), where vV and T are

respectively the total weight and total processing time of all the batches which are

scheduled between batches B1(k) and B1~)1 .

Proof: Refer to Figure 4.8. Let us assume that job JY) is split into two batches B1(k)

and B1~)1 with 0:1J?l and a 2 Jt) respectively, where o:1 + 0:2 :::::; 1.

Case 1: Move 6Ji(k) (0 < c5:::::; o:1) from B1(k) to B1(~l1 . Let the change in the weighted

flow time be 6 1.

61 6w(k) (T + T(k)) - (W(k) - 6w(k) + TV)6p(k)
i l+ 1 l i i

But 6 1 > 0 by optimality.

Therefore, w;k)(T + Tz~i) > (vV/k) - bwik) + W)p;k)

Since the last inequality holds for arbitrarily small c5 > 0, we must have

w(k)(T + T(k)) > (W(k) + W)p(k)
i l+l - l i

(4.14)

75

Ph.D. Thesis - E.Selvarajah :tvicMaster University - Management Science/ Systems

Case 2: Move c5Ji(k) (0 < c5:::; a 2) from B1(1)
1

to B
1
(k) and let the change in the weighted

flow time be ..6. 2 .

-c5w(k)(T + r,(k) _ c5p(k)) + (H1 (k) + VV)c5p(k)
i l+l i l 1

But ..6.2 > 0 by optimality.

Therefore, wik)(T + Tz~i - c5p~k)) < (M7t(k) + H1)p~k)

Since the last inequality holds for arbitrary small c5 > 0, we must have

From inequalities (4.14) and (4.15), (w?l + vV)p~k) = wik)(T + Tz~i). o

In the next section, we develop the 2-approximation algorithm using the prop-

erties the optimal preemptive batch schedule discussed in this section.

4.3.2 Nonpreemptive Batch Scheduling of Multiple Products

for Multiple Customers

We prove the existence of 2-approximation algorithm for this problem.

Lemma 4.12 Consider a job J?) of customer Mk split over two batches B1(k) and

B1(1~ with fractional jobs a 1Ji(k) and a 2Ji(k). Let 6 be the change in the weighted flow

time when moving a J(k) to B(k) Then 6 < w(k)p(k) and 6 < H(k) where H(k) is
1 i l+ 1. i i ' i ' i

the holding cost of Ji(k) in the optimal preemptive schedule.

Proof: Refer to Figure 4.8.

6 < -(W + W(k) - a w(k))a p(k) +a w(k)(T + r,Ckl)
- l 1 i 1 i 1 i l+ 1

From Lemma 4.11, (W?) + W)p~k) = wik)(T + Tz~i). Therefore,

6 < a2w(k)p(k)
- 1 i i

76

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

(vV' T') I• - · - •I

Figure 4.9: Partial schedule when J?) is split into r + 2 batches (r ~ 1).

But H(k) >a w(k)(a p(k)) +a w(k)(a p(k) +a p(k))
i-li li 2i li 2i

Therefore, ~ < Hi(k).

Since a 1 < 1, ~ < w?)P;k) follows too. o

As in WSPT job order, we also define batch- WSPT order where batches are

sequenced in increasing order of ~. ratio.
i

Property 4.2 In the optimal preemptive batching schedule, batches are scheduled in

batch- WSPT order.

Lemma 4.13 If a job Ji(k) is split into r+2 batches (r ~ 1) with a 1 Ji(k), a 2 Ji(k), .. . , °'r+21i(k),

then there exists an optimal preemptive batch schedule in which, a 2 J?), a 3 J?), ... , °'r+l Ji(k)

are scheduled in consecutive batches.

Proof: Refer to Figure 4.9. Note that batches B1~l1 , Bi!~, ... , B1(!~ will have the
(k)

same ratio Pi(k) by Property 4.2. If there is any batch B~u) of customer Mu that is
wi

(k)

assigned between two of these batches, then B~u) too will have the same ratio Pi(kl.
wi

Therefore, moving this batch B~u) after batch B1(~~ will not change the holding cost.

D

Lemma 4.14 In the optimal preemptive batch schedule, consider any job Ji(k) which

is split into r + 2 batches (r ~ 1) Bfkl,B1(!l1 , ... ,B1(!~+i· If we schedule the whole

job Ji(k) into batch B1~L then ~' the total change in the holding cost due to this

adjustment, is less than Hi(k) and ~ < w~k)p~k).

77

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Proof: Refer to Figure 4.9. Let the change in the total holding cost due to moving

all the fractional jobs of Ji(k) to Br1l1 be ~-

~ 0:1 wt) [T - 0:1P~k) + (0:2 + 0:3 + · · · + O:r+2)P~k)] + 0:2w}k) (0:3 + 0:4 + · · · + O:r+2)P~k)

+0:3w}k) (0:4 + 0:5 + · · · + O:r+2)P~k) + · · · + O:r+l w}k) O:r+2P~k)

+ · · · + O:r+1wt)o:r+2P~k) - (W + W/kl)o:1p~k) + o:iw}klp~k)

(kl (T' T(k)) 2 (k) (k) W' (k)
-O:r+2Wi + l+r+l + O:r+2Wi Pi + O:r+2Pi

But from Lemma 4.11,

(W(k) + W)p(k) = w(k) (T + ,., p(k) and (o: w(k) + W')p(k) = w(k) (T' + T(k))
l i i '-"2 i r+ 1 i i i l+r+ 1 ·

Therefore,

78

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Corollary 4.2 In the preemptive optimal schedule, if any job split into two batches

B 1(k) and B1~)1 is scheduled according to Lemma 4.12 and if any job split into r + 2

batches (r ::'.': 1) B 1(k), B1(~1i, ... , B1~~+l is scheduled according to Lemma 4.14, then we

will get a non-preemptive batch schedule with 2-approximation.

Proof: From Lemmas 4.12 and 4.14, total change in the weighted flow time is less
m Nk (k)

than I: I: Hi . o
k=l i=l

Theorem 4.3 Any algorithm which can optimally solve the multiple customer batch

scheduling problem with fixed WSPT customer job sequence is a 2-approximation al-

gorithm.

Proof: We know that starting from the preemptive solution on the WSPT customer

job sequence, we can get a 2-approximation solution. This 2-approximation solution

maintains WSPT job sequence among jobs for the same customer. Therefore, any

optimal batching solution on WSPT customer job sequence will not be worse than

2-approximation. o

The dynamic programming algorithm provided by Hall and Potts can be mod-

ified for batching a given job sequence with arbitrary processing times and arbitrary
m

weights. This algorithm will take O((°L: Nk)m+l) time.
k=l

79

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Theorem 4.4 Applying the dynamic programming algorithm by Hall and Potts to the

WSPT job sequence will provide a 2-approximation solution for the multi-customer

batch scheduling problem with arbitrary processing times and arbitrary weights.

Remark 4.1 If for each customer lvh, (wp)max::; d, then the algorithm performance

is similar to the one shown in Table 4.1.

80

Chapter 5

Batch Scheduling at the

Manufacturer

5.1 Introduction

In this chapter, we study the batch scheduling problem at the manufacturer where pro­

duction is controlled by a push system. There are h end-customers Af(m+l), fvf(m+ 2l, ... ,

M(m+h) with N(j) jobs for customer M(j) (j = m + 1, m + 2, ... , m + h). We

call these end-customers simply customers in this chapter, and in Chapters 6 and

7. The manufacturer is required to process jobs on a single machine and the kth

job of customer MU), denoted by Jkj), needs pp) time to process on the machine

(j = m + 1, m + 2, ... , m + h). vVe assume that items (jobs) arrive at the manu­

facturer at different time points. The item arrival time depends on its immediate

upstream supplier's delivery time.

Associated with each batch delivery to customer Af(]) is the delivery cost d(j)

which is charged to the manufacturer. There incurs a holding cost of wP) per unit

time for job Jkj). Let the number of delivery batches to customer MU) be nUl and

the ith batch delivered to customer M(j) be B}j). We have to find the batch schedule

81

Ph.D. Thesis - E.Selvarajah Mc.Master University - Management Science/ Systems

so that the total cost of inventory holding and batch delivery at the manufacturer is
m+h nUl . . m+h

minimized, i.e., our objective is to minimize TC= L L iv/1 lT/1l + L n(j)d(j),
j=m+l l=l j=m+l

where wYl is the sum of weights of all the jobs assigned to batch B;j) and Ti(j) is the

delivery time of batch B?).

We first focus on the single customer problems and then extend its results

to multicustomer problems. Therefore, we remove the superscript (j) representing

customer f'vf(1) in our modeling work.

In the manufacturer's problem, jobs arrive in batches at different time points.

Therefore, unlike in the supplier's problem, the manufacturer's problem has another

constraint that job Ji has release time ri, for i = 1, 2, ... , N. First we provide a

polynomial algorithm for batch scheduling of a fixed job sequence and single prod-

uct problems. Batch scheduling at the manufacturer to minimize weighted sum of

completion time is NP-hard [19]. It is a hard problem even if the weights wi = 1

(i = 1, 2, ... , N).

Therefore, we develop a 2-approximation algorithm for batch scheduling of

jobs with identical weights and a hybrid meta-heuristic algorithm for general batch

scheduling of multiple products. Our meta-heuristic uses a genetic algorithm. At

the end of the chapter, we compare the performance of the hybrid algorithm with an

algorithm which provides a lower bound to the problem.

Before developing models for different problems, in the next section, we first

analyze some preliminaries of the manufacturer's problem.

5.2 Some Preliminaries for the Manufacturer's Problem

Since jobs have release times, manufacturer's problems are harder than supplier's

problems. In this section, we provide some basic properties of the manufacurer's

82

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Block - 1 Block - 2 Block - r

Figure 5.1: A Schedule with r blocks.

problem.

Property 5.1 There exists an optimal schedule in which a batch is delivered as soon

as the last job of the batch has completed processing.

We call any schedule in which at any time point t when a job starts processing,

the first job available from the job list is scheduled for processing a list schedule.

Without loss of generality, we may assume that the list is { J1 , J2, ... , JN}. In a

list schedule, there may be an idle time on the machine before starting processing

of Ji (i = 2, 3, ... , N) if Ji-l is completed before Ji is released. We call these idle

times inserted on the machine forced idle times. A set of jobs assigned between two

adjacent forced idle times is called a block. For example, in Figure 5.1, there are r

blocks in the schedule. Block - 1 = {J1 , J2, J3}, Block - 2 = {J4, J5, J6, J7}, and

Block - r = {JN-2, JN-1, JN}.

We further define a schedule as a busy schedule, if the machine is continuously

processing jobs from time t = 0 until the completion of the last job.

5.3 Batching of Jobs with Fixed Job Sequence

We prove that batch scheduling problems with release times can be solved polynomi­

ally when the jobs follow an arbitrary but fixed job sequence. Let us assume, without

loss of generality, that the job sequence is J1 , J2, ... , JN. We use the following modifi­

cation to solve batching of a fixed job sequence. Processing time of job Ji is modified

to p~ =Pi +ti, where ti is the forced idle time, if any, on the machine immediately

83

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

preceding Ji and t1 = 0. We call this the modified problem.

Remark 5.1 For a given job sequence, modified processing time can be obtained in

O(N) time by setting p~ =Pi+ max{O, ri - ci-i}, where ci-l is the completion time

of Ji-l in the fixed job sequence, and c0 = 0.

Now we prove that the solution of the modified problem is equivalent to solving the

original problem.

Lemma 5.1 The modified batch scheduling problem is equivalent to the original batch

scheduling problem.

Proof: Consider an n-batching schedule with batch sizes 01 , fh, ... , On. Let the

total cost of the optimal schedule of the original problem and the modified problem

be TC* and TC:n
0
d respectively.

N

+ ... + L wic~= (PJ + t1) - ri) + nd
iEBn j=l

L wi L (PJ + t1) + L wi L (PJ + t1)

N N

+ · · · + L wi L (PJ + t1) - L wiri + nd
iEBn j=l i=l

N N

L wi L p~ + L wi L p~ + · · · + L wi L p~ - L wiri + nd
iEB1 iEB1 i=l i=l

TC:nod· D

N

Remark 5.2 Let rc:nod = TCmod - L Wiri· Then it is clear that minimizing rc:nod
i=l

N

is equivalent to minimizing TCmod because L wiri is a constant.
i=l

84

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Remark 5.3 The modified batch scheduling problem on a fixed job sequence is

equivalent to batch scheduling of multiple products without release times. Therefore,

Algorithm 3.2 provided in Section 3.4.l can be used to solve the modified batch

scheduling problem on the same fixed job sequence.

Now we provide our optimal batching algorithm for the fixed job sequence problem

of the manufacturer.

Algorithm 5.1 (Batching Algorithm for Jobs with Fixed Sequence)

Step 1 Input job sequence and other data.

Step 2 Compute the modified processing time for all the jobs.

Step 3 Call Algorithm 3.2 to solve the modified problem.

Lemma 5.2 There exists a polynomial-time algorithm that optimally solves the batch

scheduling problem at the manufacturer with fixed job sequence.

Proof: For any given job sequence, we can find the equivalent modified batching

problem in O(N) time. The optimal batching of this modified problem can be found

in O(N) time using Algorithm 3.2. o

5.4 Single-Product Batch Scheduling

In this section, we prove that single-product batch scheduling for the manufacturer

can be solved polynomially. In the single product problem, all the jobs have identical

processing times and identical weights, i.e., Pi = p and wi = w (i = 1, 2, ... , N). We

use the following two easy-to-prove properties to prove the existence of a polynomial

algorithm.

Property 5.2 There exists an optimal schedule in which the machine is idle only

when no job is available for processing on the machine.

85

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Proof: Consider a schedule in which the machine idles when there are jobs available

for processing. If we start processing any of these available jobs during the machine

idle time, the delivery cost of any batch will not be increased. o

Property 5.3 Since jobs have the same processing times and weights, any job se­

quence that follows first come (first arrive) first served order is an optimal job se­

quence.

Therefore, batching and job sequencing are separable and an optimal job sequence

can be obtained in O(N) time.

Lemma 5.3 There exists a polynomial-time algorithm for the single product batch

scheduling problem of the manufacturer.

Proof: We know that the optimal job sequence can be obtained in polynomial time.

From Lemma 5.2, optimal batching of this job sequence can be obtained in O(N)

time using Algorithm 5.1. o

For the identical product batching with multiple customers, again we can find

the optimal job sequence for each customer from Properties 5.2 and 5.3. Optimal

splitting of these customer job sequences can be obtained using the dynamic pro­

gramming algorithm of Hall and Potts [19] which requires O(Nm+l) time, where N

is the total number of items to be produced and m is the number of customers.

5.5 Batch Scheduling of Jobs with Identical Weight

We study batch scheduling of jobs with release times and arbitrary processings times

but with identical (unit) weights, i.e., wi = w (for i = 1, 2, ... , N). This problem

is NP-hard even if the delivery cost d = 0 (Lenstra et. al [25]). Therefore, we

develop a 2-approximation algorithm based on the rounding of preempted jobs in

86

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

an optimal preemptive schedule. The next section analyzes some properties of the

optimal preemptive schedule to get the insight on rounding the preempted jobs.

5.5.1 Batch Scheduling in the Preemptive Problem

We consider the classical preemptive schedule, where a job can be interrupted while

processing and the remaining part is continued later, but the job can be deliv-

ered only after the whole job is completed. Thus, our objective is to minimize
n

TCpmt = w 2:: (TJ - rJ) + nd, where Tj is the delivery time of the jth batch from
j=l

the manufacturer to the customer. We interchangeably use ()J to denote the jth

batch and the set of jobs in the jth delivery batch to the customer and denote the

minimum value of TCpmt by rc;mt·

Before developing the approximation algorithm, we first analyze some basic

properties of the optimal preemptive schedule to get the insight on rounding the

preempted jobs. Note that Properties 5.1 and 5.2 are true for preemptive batch

scheduling problems too.

Lemma 5.4 There exists an optimal schedule in which whenever a job is completed

or a new job arrives, the job with the shortest remaining processing time (SRPT) is

scheduled next.

Proof: Let us assume that the lemma does not hold. Then there exists an optimal

schedule in which at some time point t, a' JJ is scheduled, where (3Ji and aJj, are two

of the fractional jobs available for processing at t, and f3Pi < apj, (0 < a' :S a :S 1

and 0 < (3 :S 1).

Let us assume that (3Ji is split into r fractional jobs f3ikJi (k = 1, 2, ... , r)

(refer to Figure 5.2 - a). Let f3ikJi start processing at time tik (k = 1, 2, ... , r) and

87

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

c'.
J

Cir

a- Figure for Lemma 5.4 before exchanging o/ Jj and /3Ji.

c'.
J

Cir

b- Figure for Lemma 5.4 after exchanging o/ Jj and f3Ji.

Figure 5.2: Figure for Lemma 5.4 Case 1.

complete at time cik in the optimal preemptive schedule. Also assume that a' Jj

completes processing at cj.

Case 1 a'pj 2': PPi·

Bring Pi1Ji, Pi2Ji, ... , PirJi together and schedule the fractional job f3Ji at time

t. Also split the processing time of a'pj into pieces so that they 'fit' into the processing

slots previously occupied by the PiiJi, Pi2Ji, ... , /3irJi. Schedule the corresponding

O'.jkJj (k = 1, 2, ... , r) of a' Jj at time ti1, ti2, ... , tir (refer to Figure 5.2 - b), where

O'.jk = f3~:i, and if a'pj > PPi then schedule ajo = a'p~~f3Pi of Jj right after f3Ji.

We keep batch delivery times the same after the exchange. The number of jobs

which complete processing by t remains the same, may increase by 1 in the interval

(t, ci1), and after ci1 remains the same. Since the delivery times are not changed, at

least the same number of jobs will be available for delivery at these times and the

sum of the completion times is not increased.

Case 2 a'pj < /3Pi·

Again refer to Figure 5.2- a. Bring the first available /3' = °';i fraction of

Ji from /3i1Ji, /3i2Ji, ... , /3irJi together, and assign /3' Ji at time t and a' Jj in the

corresponding time slots of /3' Ji. This will not increase the sum of the completion

times, if we do not change the original batch delivery times.

Since the number of batches does not increase in the above two cases, the job

88

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

exchanges do not change the total delivery cost. Therefore in both cases, the total

cost is not increased. Repeating the above exchanges for every violation of the SRPT

order will yield a schedule which satisfies the lemma. o

In the optimal preemptive batch schedule, e1 (l = 1, 2, ... , n) may contain two types

of jobs:

(i) set of jobs which are completely processed in the time interval (1[_1, Tz]. We

denote this set by Fl.

(ii) set of jobs for which only a fraction of the job is processed in (1[_ 1 , Tz]. We

denote this set by P1.

Therefore, e1 = {F1 U .Pi}. For each job in P1, the corresponding remaining

parts, the early parts are processed before 1[_1 and let u1 be the total time required
l

to process these early parts. Clearly, I: Uj ::; 1[_1 for l = 2, 3, ... , n.
j=2

Lemma 5.5 Consider a batch e1• If we schedule all early fractional jobs of Pi at 1[_1,

then the change in the sum of the weighted completion time, ~1 , is not greater than
n

u12:wlejl·
j=l

Proof: Move all the corresponding early parts of Pi to 1[_1 . Moving these partial

jobs to 1[_1 will not increase the delivery times of batches e1 , e2 , ... , e1_ 1 . However,

it may increase the delivery times of batches el, el+l, ... , en by at most Ut time units.

Therefore,

n

~1 < u1 L wjejl· o
j=l

Lemma 5.6 Let the change in the total cost due to moving all the early fractional

jobs of Pi to Tz-1 (for l = 2, 3, ... , n) be~. Then~ < rc;mt·

89

Ph.D. Thesis - E.Selvarajah Mc.Master University - l\fanagement Science/ Systems

Proof:

z

n n n

~ :~:::>~/ = L (u1 L wl01I)
1=2 1=2 j=l

U2w(I02I + I03I + · · · + IOnl) + U3W(I03I + 1041 + · · · + IOnl)

+ · · · + Unw(IOnl)

But L u1 < Ti_ 1 , for i = 2, 3, ... , n. Therefore,
j=2

n

< L wl0il1i + nd
i=l

rc;mt 0

5.5.2 Non-preemptive Batch Scheduling

We develop the non-preemptive batch schedule using the properties of the optimal

preemptive batch schedule of Lemma 5.4. After we moved all the early fractional jobs

of Pi to start their processing at 'I'z_ 1 (for l = 2, 3, ... , n), we obtain a schedule in

which all parts of the jobs delivered in 01 are scheduled at or after 'I'z_1 . It is clear that

we can turn this (possibly preemptive) schedule into a nonpreemptive one without

any further increase in the batch completion times by scheduling all parts together

for every job in the order of their job completion times in the optimal preemptive

schedule. This will result in a non-preemptive schedule, in which jobs are sequenced

according to their completion times in the SRPT schedule. This schedule can be

obtained in O(N) time.

We provide now our 2-approximation algorithm.

90

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Algorithm 5.2 (Approximation Algorithm for Jobs with Identical Weights)

Step 1 Find the optimal SRPT job sequence for the preemptive batching problem.

Step 2 Schedule jobs in the order of their completion time in the optimal preemptive

schedule.

Step 3 Call Algorithm 5.1 for the optimal batching of the sequence.

Theorem 5.1 Algorithm 5.2 is a 2-approximation algorithm requiring O(N) time.

Proof: The total cost of moving all the early partial jobs of P,, to 01 (for l =

1, 2, ... 'n) in the optimal preemptive batch-delivery schedule is less than rc;mt by

Lemma 5.6. Thus bringing together all fractions within a batch into a non-preemptive

schedule does not increase the cost further, so the resulting schedule will have a cost

of at most 2TC;mt· We also know that the jobs of this non-preemptive batch schedule

follow the order of their completion in the optimal preemptive schedule. Therefore

any optimal batch-delivery schedule on this sequence will not have a cost higher than

2TC;mt· Algorithm 5.1 in Step 4 finds the optimal batching of this job sequence.

Hence the Algorithm 5.2 is a 2-approximation algorithm. It is clear that each step of

the algorithm can be implemented in O(N) time. o

5.6 Hybrid Algorithm for the Manufacturer's Problem

In this section, we study batch-delivery schedules of jobs with arbitrary processing

times and weights at the manufacturer. It is clear that this problem is NP-hard,

since the same problem is NP-hard even with identical weights. We develop a hybrid

meta-heuristic algorithm to solve this problem. We have proved that the optimal

batching of any job sequence can be obtained in O(N) time. Therefore, we consider

this problem in two phases. In Phase 1, we generate job sequences based on a Genetic

Algorithm (GA) and in Phase 2, we call Algorithm 5.1 to get the optimal batching of

these sequences. Phase 2 is in fact called in Phase 1, since we need the fitness value

91

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

of each schedule in GA. We explain the procedures of our algorithm in detail in the

next section.

5.6.1 Phase 1: Genetic Algorithm

In early application of GA in scheduling, the primary strategy used for encoding

sequences was the literal permutation order. In permutation order encoding, each

chromosome represents the job order in the corresponding schedule. For example, in

a permutation order encoding system, a job sequence {3, 2, 5, 1, 4} is encoded as given

below:

2 I 5 1 I 4

Whenever a crossover or mutation operation is carried out, the feasibility of

the schedule is not guaranteed by this encoding system. Thus, using permutation

order encoding forces the algorithm developer to apply specialized operators in the

crossover procedure in order to maintain the feasibility. To avoid this difficulty, we

use the random keys encoding of Bean [4).

Random Keys Genetic Algorithm (RKGA)

We briefly review the concept of random keys in a genetic algorithm. RKGA is widely

used in GA applications for scheduling problems because it only produces feasible

offsprings. Moreover, relative and absolute ordering information can be preserved

after recombination of parents. In RKGA a chromosome is assigned a string of random

numbers. For example, consider the chromosome:

I .3451 .983 \ .726 \ .1671.529 I

The intepretation of this chromosome is as follows: Jobs J 1 , J2 , ... , J5 are as-

signed random numbers 0.345,0.983,0.726,0.167, and 0.529, respectively. Then the

92

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

job sequence of this chromosome is obtained by ordering the jobs in ascending or-

der of their random numbers. Therefore, the job sequence of this chromosome is

{4,1,5,3,2}.

We briefly describe the major steps of our GA below.

Initial Population

We use a population size of 30 in our GA. The initial population includes the

optimal batch-delivery schedule of the ready WSPT job sequence. (A ready WSPT

job sequence is a schedule in which at each arrival and/or job completion, a job Ji

with the largest ;; ratio among the available jobs is scheduled next.)

We also include 9 schedules in which jobs in the same block are scheduled

consecutively, i.e., jobs in block k are scheduled before those in block l (l > k).

These precedence constraints between the jobs in different blocks are easily handled

in RKGA by assigning random numbers from increasing and disjoint ranges to jobs

in later blocks. For example, let us assume there are 2 blocks formed on 10 jobs. The

first 7 jobs form the first block and the next 3 form the second block. Then for the

first 7 jobs we generate random numbers from the range (0,10), and for the next 3

jobs we assign random numbers from the range (11,15). This way a random number

assigned to any job in the second block will always be greater than that of any job

in the first block. Thus the precedence constraint is handled automatically.

Another 20 schedules contain jobs in random order. For this set of schedules,

random keys are assigned randomly.

Fitness Evaluation We decode each chromosome into a job sequence and call

Phase 2 to obtain the optimal batching of each sequence and its corresponding

cost. For each population, we find the maximum cost of all its batch-delivery sched­

ules (maxcost), and for each individual in the population we set fitnessvalue =

maxcost-cost of the individual
30*maxcost-sum of the cost of all individuals·

93

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Parent Selection We use the roulette wheel method to select two parents to create

two new offsprings. In roulette wheel selection, the probability of selecting a parent

is proportional to its fitness value.

Crossover A two point crossover is used with a crossover probability Peros = 0.9.

Mutation For each chromosome obtained after crossover, we select a random integer

k not greater than N. Then we randomly select k genes (jobs) of that chromosome

and for each selected gene, we assign a new random key with mutation probability of

Pmut = 0.1.

5.6.2 Phase 2: Optimal Batching of Job Sequence

In Phase 2, we call Algorithm 5.1 to get the optimal batching of each individual.

To analyse the performance of our heuristic, we develop a lower bound ex-

plained in the following section.

5.6.3 Lower Bound

We use the preemptive schedule to obtain a lower bound for the problem. We make

the assumption that jobs arrive from the supplier and are delivered to the customer

at discrete time points. Therefore it is clear that in the optimal preemptive batch-

delivery schedule, a job is split only at discrete time points. Consider a set of jobs

J 1 , h, ... , JN. We replace each job Ji (i = 1, 2, ... , N) with Pi unit processing time

(UPT) jobs, i.e., Jk with processing time p~ = 1, weight w~ = ;; and release time
i-1 i-1 i

r~ = ri (for k = L: Pj + 1, L: P1 + 2, ... , L: P1). We find the optimal batching of
j=l j=l j=l

these UPT jobs, and the total cost of this optimal batch-delivery schedule will be a

lower bound for our problem. We briefly discuss the optimal batching of UPT jobs.

Optimal Batching of UPT Jobs

If we could find the optimal job sequence for the UPT jobs then Algorithm 5.1

94

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

(W,T)

Figure 5.3: Schedule for Lemma 5.7.

will find the optimal batching of the sequence. In Lemma 5. 7, we prove that ready

LW job sequence is optimal for the UPT problem. A ready L W schedule is one in

which at each job arrival and/or completion, a job with the largest weight among the

available jobs is scheduled next.

Lemma 5.7 Ready LW schedule is optimal to minimize the total cost of UPT jobs.

Proof: Let us assume that the lemma does not hold. Then there exists an optimal

schedule in which Jj is scheduled at time t 1 and JI at t2 , where t2 > t 1 and w~ > wj.

Let t2 -(t1 +1) = T (refer to Figure 5.3) and the total weight of all the jobs scheduled

in the time interval [t1 + 1, t2] be TV.

Let us exchange jobs Jf and Jj while not affecting the batch delivery times

and let the change in the total cost be ~. Then

~ wj(T + 1) - w~(T + 1)

(T + 1) (wj - wD < 0

This contradicts the optimality assumption. o

Since we know the optimal job sequence for the batching problem, using Algo­

rithm 5.1, we can obtain the optimal batching of this job sequence. Now we describe

the major steps of our algorithm to find the lower bound.

Algorithm 5.3 (Batching Algorithm for UPT Jobs)

Step 1 Convert the problem to the equivalent UPT problem.

Step 2 Schedule UPT jobs in ready LW order.

Step 3 Call Algorithm 5.1 to find the optimal batching of the ready LW schedule.

95

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

5. 7 Computational Experiment

In order to analyze the performance of our hybrid meta-heuristic algorithm, we coded

it and the lowerbound algorithm in ANCII C and tested it on a SUN computer. The

results of our experiments are summarised in Tables 5.1 and 5.2. We tested the algo-

rithm for 50 jobs with processing times randomly generated from U(l, 100) (uniform

distribution). Jobs arrive in batches at different time points. Batch sizes are ran-

domly generated from U(l, 5) and arrival times are from U(O, 50.5 * 50 * R). We set

6 different values for R and therefore, there are 6 instance types with R = 0.2, R =

0.4, R = 0.6, R = 0.8, R = 1.0 and R = 2.0 respectively. We consider 3 differ-

ent delivery costs d = 500, d = 1000, and d = 5000 for each instance. We ran

the algorithm for 10 randomly generated problems for each treatment and obtained

the percentage gap = hybrid s~lutio~ -l~werbound * 100. In Table 5.1, weights are from
ower oun

U(l, 100) whereas in Table 5.2 weights are from U(l, 10). The results of the experi-

ments show that our algorithm's solution is close to the lowerbound, as the maximum

gap was about 5%.

The CPU time is measured in seconds. The tables show that in almost all

the cases, the average percentage gap decreases with increasing batch delivery cost.

This may be because the larger delivery cost results in larger batch sizes and job

sequence within a batch does not affect the total cost. Further the results show that

the average percentage gap increases when increasing R from 0.2 and then decreases

when R becomes higher.

Remark 5.4 We could also use the above algorithm for the multiple customer batch

scheduling problem at the manufacturer, with a minor modification. The algorithm

by Hall and Potts [19] can be used to get the optimal batching of given job sequence.

Therefore, in Step 3, we would have to call the dynamic programming algorithm by

96

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

d = 500 d = 1000 d = 5000

Instance Avg. % Gap Avg. % Gap Avg. % Gap

Type CPU CPU CPU

Time Avg. Max Time Avg. Max Time Avg. Max

R=0.2 6.0 1.940 2.930 6.3 2.038 3.833 7.3 1.680 4.399

R = 0.4 5.9 2.723 4.397 6.4 2.054 5.008 7.2 1.596 2.161

R=0.6 6.0 2.716 3.811 6.3 2.410 4.248 7.1 2.328 3.933

R = 0.8 5.8 2.447 3.435 6.2 1.826 4.157 7.2 1.543 2.905

R = 1.0 5.8 1.615 2.498 6.2 1.354 2.686 7.0 1.133 1.954

R = 2.0 5.7 0.751 1.229 6.1 0.452 1.090 7.4 0.329 0.741

Table 5.1: Performance of Algorithm 5.2 for wi = U(l, 100), Pi = U(l, 100)

d = 500 d = 1000 d = 5000

Instance Avg. % Gap Avg. %Gap Avg. % Gap

Type CPU CPU CPU

Time Avg. Max Time Avg. Max Time Avg. Max

R =0.2 7.0 1.773 3.549 7.2 1.297 3.430 9.0 1.145 2.156

R = 0.4 7.0 2.377 4.900 7.4 1.581 2.664 9.2 1.311 2.377

R=0.6 7.2 1.708 3.544 7.8 1.460 2.444 9.2 1.573 4.327

R=0.8 7.0 1.657 2.722 7.7 1.573 2.753 9.2 1.144 1.640

R = 1.0 7.0 0.856 1.330 7.7 1.343 2.958 8.8 0.728 1.244

R=2.0 6.9 0.359 0.937 8.8 0.293 0.646 8.8 0.262 0.441

Table 5.2: Performance of Algorithm 5.2 for wi = U(l, 10), Pi = U(l, 100)

97

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Hall and Potts.

98

Chapter 6

Batch Scheduling in Customer

Centric Supply Chains

6.1 Introduction

This chapter studies batch scheduling at the manufacturer in a customer centric sup­

ply chain. There are N jobs, J 1 , J 2 , ... , JN, to be processed at the manufacturer

whose system may be modeled by either a single machine or an assembly-type op­

eration with subtasks Ji,j to be processed on l machines in a series for i = 1, ... , N

and j = 1, ... , l. Job Ji must be delivered to a customer at time Di. The cost of these

deliveries is borne by the customer. In the single-machine model, Ji requires process­

ing for Pi time for i = 1, 2, ... , N. In the assembly operation, the processing time of

subtask Ji,j is denoted by Pi,j. (If a job skips a certain operation then Pi,j = 0 for the

corresponding subtask.) Since no job is delivered before its deadline, the manufac­

turer wants to complete them as close to these deadlines as possible. Therefore, we

assume that the jobs are processed in earliest due date (EDD) order and this leads to

a feasible schedule, i.e., the manufacturer has sufficient capacity to make this schedule

feasible for meeting the deadlines. The manufacturer receives parts and supplies for

99

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

each job or subtask from his supplier(s) in batches and is charged a delivery cost of d

for each batch. The manufacturer must receive the batches in time to enable him to

meet the final deadlines, but does not want to receive the supplies too early because

each job Ji incurs an inventory holding cost in the time interval [ai, Di], where ai is

its arrival time at the manufacturer for i = 1, 2, ... , N. The inventory holding cost of

a job Ji is closely related to its flow time defined as Di - ai· Since the delivery cost is

measured in monetary terms, we multiply flow-time related performance measures by

appropriate constants in order to maintain compatibility in measurement. Therefore,

we multiply the sum of flow times by a constant w, which is the cost of holding a

job in inventory over a unit time; multiply the maximum flow time by a constant K,

which is the penalty cost associated with the maximum flow time; and multiply the

flow time of job Ji by wi, which is the holding cost of job Ji over a time unit when the

objective is to minimize the sum of the weighted flow times and delivery costs. The

manufacturer wants to find the optimal arrival time aj of each job Jj, the number of

batches n and the partitioning of the jobs into arrival batches so that the total cost

is minimized. We consider the following objectives:

N

1. For the sum of flow times with batching, total cost TC1 = L w(Dj - aj) + nd;
j=l

2. For the maximum flow time with batching, total cost TC2 = K. max (Dj -
J=l, ... ,N

N

3. For the sum of weighted flow times with batching, total cost TC3 = L wj(Dj­
j=l

The chapter proceeds as follows. In the next section, we study problems of

batch arrival scheduling to minimize the total weighted flow time and delivery costs,

i.e., cost function TC3 . First we prove that the problem is strongly NP-hard on a single

100

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

machine even with a common due date for all the jobs. Following this, we present

a linear-time dynamic programming algorithm for the problem on a fixed job arrival

sequence. This algorithm is used repeatedly in Section 6.3 for minimizing TC1 both

for single-machine and assembly-shop environments. In Section 6.4, we present an

efficient dynamic programming algorithm for batch arrival scheduling with objective

6.2 Batch Arrival Scheduling to Minimize the Total Weighted

Flow Time and Delivery Costs

6.2.1 Complexity

Let us consider the batch arrival scheduling problem at the manufacturer when its

system is modeled by a single machine and the objective is to minimize TC3 .

N

Theorem 6.1 Minimizing TC3 = I: wj(Dj - aj) + nd is strongly NP-hard.
j=l

Proof: Hall and Potts [19] have proved that minimizing the sum of total weighted

flow times and delivery costs for a supplier in a push-type system is strongly NP-hard.

They used the well-known strongly NP-hard 3-PARTITION problem to reduce it to

their scheduling problem. We show how this reduction can be adapted to prove the

strong NP-hardness of our problem.

3-PARTITION [18]:

Given 3r integers u 1 , ... , u3r, where 2::~: 1 ui = rz and z/4 < ui < z/2, for

i = 1, ... , 3r, does there exist a partition A1 , ... ,Ar of the index set {1, ... , 3r }, such

that IAj I = 3 and LiEAj ui = z, for j = 1, ... , r?

Consider the following instance of our scheduling problem: N = 3r, job Ji

has Pi = wi = ui and Di = rz, for i = 1, ... , 3r, d = z2 /2 and let C = r(r + 2)z2 /2

101

Ph.D. Thesis - E.Selvarajah l\!IcMaster University - Management Science/ Systems

be a threshold value. \Ve prove that there exists a batch arrival schedule for this
N

instance with TC3 = L wj(Dj - aj) + nd::; C if and only if there exists a solution
j=l

for 3-P ARTITI 0 N.

Suppose 3-PARTITION has a solution and assume, without loss of generality,

that the integers are numbered so that u3i_2 +u3i-l + u3i = z, for i = 1, ... , r. Consider

the schedule in which the jobs are scheduled in the sequence J1 , ... , JN and supply

batch Bi for jobs { J3i_2, J 3i_ 1 , J3i} arrives at time J3i_2 and starts its processing right

on, i.e., a3i_2 = a3i-l = a3i = (i - l)z, for i = 1, ... , r. It is easy to see that the jobs

{J3i-2, J3i_ 1 , J3i} have flow time equal to rz - (i - l)z = (r - i + l)z. Therefore,

TC3 = L~=l (u3i-2 + u3i-l + U3i)(r - i + l)z +rd= L~=l (r - i + l)z2 + rz2 /2 = C

for this schedule.

Next we prove the theorem in the other direction. Suppose we have a schedule

with n arrival batches and let xi be the total processing time of the jobs corresponding

to the ith batch Bi for i = 1, ... , n. It is clear that supplies for Bi must arrive at the time

the last job in Bi-l completes its processing, i.e., at 2:=;-:~ Xj· Therefore, the flow time

of the jobs in Bi will be rz - 2:=;-:~ Xj = 2:=7=i Xj for i = 1, ... , n. Thus we have TC3 =

2:=7=1 Xi 2:=7=i Xj+nd = 2:=~ 1 xi 2:=7=i Xj+nz2 /2 = (2:=7=1 Xj)

2

/2+ 2:=7=1 xJ /2+nz
2 /2.

Thus minimizing TC3 on n batches can be written as

(

n)2 n

minimize f; x j /2 + f; xJ /2 + nz2 /2

subject to

n

LXj = rz.
j=l

Since the first term of this objective is (rz) 2 , it is easy to see that the whole

function will be minimized when x 1 = x2 = ... = Xn = rz/n. Thus for any n-batch

102

Ph.D. Thesis - E.Selvarajah McMaster University - l\fanagement Science/ Systems

solution we must have TC3 2". (rz) 2 /2 + n(rz/n) 2 /2 + nz2 /2. Simple arguments from

calculus show that this expression reaches its minimum at n = r and the minimum

value is C. Thus if there exists a batching schedule with TC3 = C, then we must have

n = r and each batch must have a size x1 = z. This implies that each batch has 3

jobs in it and 3-PARTITION has a solution. o

6.2.2 Batching a Given Job Sequence on a Single Machine

In this section, we study the optimal batching problem at the manufacturer to mini­
N

mize TC3 = 2: w1(D1-a1)+nd when the order of job processing at the manufacturer
j=l

is given and this is also the order of job arrivals. Without loss of generality, let this

sequence be J 1 , ... JN. Note that the given job processing sequence is assumed to be

feasible for meeting the promised delivery times. Let Si denote the latest start time

for job Ji such that the schedule is feasible.

Consider an n-batch arrival schedule, and let i1 be the index of the first job of

arrival batch B1, i.e., the batch schedule is { i1, i1 +1, ... , i2 - 1 }, { i 2, i2 + 1, ... , i3 -

1}, ... , {in, in + 1, ... , N}. Then it is easy to see that batch B1 should arrive at time

Sij and not earlier. Thus

n ik+1-l

TC3 = L L w1(D1 - sik) + nd.
k=l j=ik

N

If we define SN+l = DN, then we can write sik = DN - 2= (Sj+l - S1)· Therefore,
j=ik

N n ik+1-l N

TC3 = L:w1D1 - L L w1(DN- L (S1+1-S1)) +nd
j=l k=l j=ik j=ik

N n ik+1-l N

= L w1(D1 - DN) + L L Wj L (SJ+1 - S1) + nd.
j=l

103

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Let SJ+1 - S.i = pj for j = 1, 2, ... , N. Note that pj 2:: P.i and pj can be interpreted

as the length of time on the machine 'allocated' to job j. (We have pj > PJ if there is

an idle time in the schedule.) Then

N n ik+1-l N

TC3 = Lw.i(DJ-DN)+ LL WJLP}+nd.
j=l

N n ik+i -1 N

TC3 = Lw.i(DJ -DN) + L (L w.i LP}) +nd
j=l k=l j=ik j=ik

N n N ik+1-l

= LWJ(Dj - DN) + L (LP} L Wj +d)
j=l k=l j=i1.: j=ik

Therefore minimizing TC3 can also be formulated as a special shortest path

problem by exchanging processing times for weights and weights for allocated times

pj in our formulations discussed in Section 3.4.1. Thus the Algorithm 3.2 given in

Section 3.4.1 will find the optimal batching solution.

Theorem 6.2 The optimal batching which minimizes
N

L wJ(DJ - aJ) + nd on a given job sequence can be found in O(N) time.
j=l

6.3 Minimizing the Total Flow Time and Delivery Costs

In this section, we study simultaneous sequencing and batching of jobs for arrival at
N

the manufacturer to minimize TC1 = (2.:: w(DJ - aJ) + nd).
j=l

6.3.1 Scheduling Batch Arrivals on a Single Machine

Lemma 6.1 There is an optimal schedule in which the order of job arrivals is the

same as the order of job processing.

104

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Proof: A job cannot start processing until the job immediately preceding it in the

EDD processing sequence is not completed, and the arrival of any job before the

arrival of a job preceding it in the processing sequence can only make the total flow

time larger. Therefore, no job should arrive in the optimal schedule before any of its

predecessors in the EDD order. o

Without loss of generality, we index jobs in the order they are in this common

sequence of arrival and processing. Then the latest possible start time of job Ji

can be recursively calculated by SN = DN - PN, and Si = min{ Di, Si+d - Pi for

i = N - 1, N - 2, ... , 2, 1.

Although the job arrival and job processing sequence is the same, the optimal

schedule may contain jobs which arrive early and wait in the shop. Consider the

following example:

J 1 2 3 4 5 6

Pj 9 7 5 12 6 5

Dj 23 23 23 48 48 48

Let us say that we are given the job processing sequence {1,2,3,4,5,6} and we

have to find the optimal 2-batching schedule. For this problem, the optimal batching

is B1 = {1, 2, 3, 4} and B2 = {5, 6} with total flow time of 131. In this batching

solution, the second batch arrives at t = S5 = 37 and the processing of job set {5, 6}

is completed at t = 48; the first batch arrives at t = S1 = 2 and the processing of job

set {1, 2, 3} is completed at t = 23, and the processing of job set { 4} is completed

at t = 35. If we move job J4 to the second batch, then B 2 must arrive at t = 25 so

that the job set { 4, 5, 6} will be completed by t = 48; and the job set {1, 2, 3} must

arrive at t = 2 and will be completed at time t = 23. The total flow time of this new

schedule will increase to 132. This shows that in the optimal schedule some jobs may

arrive with early batches and wait in the shop.

105

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Lemma 6.2 There exists an optimal schedule in which a batch arrives only when

all the previously available jobs at the manufacturer have completed processing, z. e.,

a batch arrives only when the machine is available to start its processing.

Proof: Since the job processing sequence is given, a job cannot be started before its

immediately preceding job is completed. From Lemma 6.1, the order of job arrivals

follows the processing sequence. Therefore, jobs assigned to any batch will be pro­

cessed after the last job of the previous batch has completed processing. Thus arrival

of a batch before the completion of the processing of the last job of the previous

arrival batch can only increase the flow time of the schedule. o

Lemma 6.3 Let job JJ be the first job to be processed in arrival batch Bk, then batch

Bk should arrive at time SJ.

Proof: Let us assume that there is an optimal schedule which does not satisfy the

lemma, but it is consistent with Lemmas 6.1 and 6.2. Select the last batch ·which

arrives before the latest start time of the first job of the batch in this schedule. If we

delay the batch arrival time to the latest start time of the first job of this batch, the

schedule will remain feasible. Furthermore, the flow times of all the jobs belonging to

this batch will be reduced, flow times of all the jobs belonging to other batches will

remain the same. This contradicts the optimality assumption for the schedule. o

Lemma 6.4 There exists an optimal schedule in which the jobs to be delivered to

customer(s) at the same due date are scheduled in LPT order at the manufacturer.

Proof: We know that jobs to be delivered at the same delivery time to customer(s) are

processed consecutively at the manufacturer because of the EDD processing order.

\i\Tithout loss of generality, let this sequence be J 1 , ... ,JN. Let us assume that the

106

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

lemma is not true for an optimal schedule. Then there will be at least two jobs Ji

and Ji+l at the manufacturer such that Pi < Pi+I and Di= Di+l· If jobs Ji and Ji+l

belong to the same arrival batch, then interchanging them will not affect the flmv

time of any job. If jobs Ji and Ji+l belong to different arrival batches, say, to Bk and

Bk+1, respectively, then let the arrival time of batch Bk be tk and the arrival time of

Bk+1 be tk+I· From Lemma 6.3, we know tk+I =min{ Di+I, Si+2} - Pi+I· Interchange

jobs Ji and Ji+I in these batches, which does not change the arrival batch sizes. Call

the new batches B~ and B~+i · Thus in the new schedule, B~ arrives at tk and B~+i

arrives at t~+i =min{ Di, Si+2} - Pi =min{ Di+1, Si+2} - Pi = tk+1 + Pi+I - Pi· Note

that the interchange will not affect the feasibility of the schedule. The interchange

will not affect the flow times of the jobs in Bk \Ji in the original schedule. The flow

time of every job in Bk+I \ Ji+I is decreased by Pi+I - Pi > 0 compared to the original

schedule. The flow time of Ji+1 is increased by tk+I - tk and the flow time of Ji is

decreased by t~+I - tk > tk+I - tk. Thus the net change in the total flow time is a

decrease by at least Pi+ I -pi, which contradicts the optimality of the original schedule.

Therefore, any jobs Ji and Ji+1 not in LPT order must belong to the same batch.

Repeatedly resequencing the jobs with the same due date into LPT order within the

batches does not change the cost or the feasibility of the schedule and leads to an

optimal schedule satisfying the conditions of the lemma. o

The combination of EDD ordering with LPT ordering of jobs with the same

due date within batches fixes the optimal sequence for the jobs. Since we know the

job sequence, Algorithm 3.2 given in Section 3.4.1 can be used to find the optimal

batch sizes. Algorithm 6.1 summarizes the steps needed to find the optimal batch

arrival schedule.

Theorem 6.3 Algorithm 6.1 finds zn O(N log N) time an optimal batch arrival

107

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Algorithm 6.1: Algorithm to minimize the sum of flow times and delivery costs

Step 1: Order the jobs in EDD order and schedule the jobs with the same due date in

LPT order.

Step 2: Call Algorithm 3.2 to find the optimal arrival batch sizes of the sequence found.

schedule that minimizes TC1, the sum of flow times and delivery costs.

Proof: Step 1 finds the optimal job sequence by sorting, which requires O(N log N)

time. Algorithm 3.2 finds the optimal batching of this job processing sequence in

O(N) time. o

6.3.2 Batch Arrival Scheduling for an Assembly Shop

In this section, we study the optimal batch arrival policy in an assembly shop where

jobs are processed and assembled on a series of l machines. At each machine, a job

may require parts which are delivered from one of q suppliers. The schematic of

the supply chain for this problem is shown in Figure 6.1. The manufacturer has to

deliver the right products in the right quantities at the promised times to customers

and delivery costs are charged to the customers. In order to meet the promised

delivery times, the manufacturer has to order the parts from the suppliers, and process

and assemble them on the l machines. For any product Ji (i = 1, 2, ... , N) which

does not need processing on the jth machine (j = 1, 2, ... , l), we set Pi,j to zero.

Suppliers have to deliver parts to the manufacturer at the manufacturer's required

times and the costs for deliveries from part suppliers to the manufacturer are charged

to the manufacturer. Thus the manufacturer wants to find the optimal batch arrival

schedules for the parts from each supplier so that the total of sum of flow times and

delivery costs is minimized while meeting promised delivery times to customers.

108

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Figure 6.1: Network showing the manufacturer's relationship with q suppliers, and h

customers

Let Si,j denote the latest possible start time of task Ji,j in a feasible schedule.

Then the fact that the jobs are 'pulling' their subtasks through the system can be

captured by the following backward recursive calculations:

} (6.1) Si,t =min{ Di, Si+1,1} - Pi,z, for i = 1, 2, ... , N - 1

Si,j = min{Si,J+i, Si+i,j} - Pi,j, for i = 1, 2, ... , N: j = 1, 2, ... , l - 1

Lemma 6.5 There exists an optimal batch arrival schedule and associated production

schedule in which task Ji,j (for i = 1, 2, ... , N; j = 1, 2, ... , l) starts its processing at

time Si,j·

Proof: By using Si+l,l as an upper bound on the completion time of task Ji,L, the

first two rows of (6.1) ensure that sufficient time will be available at the last machine

to finish the processing of Ji,l by Di. The calculations in the last row of (6.1) make

sure that there is sufficient time also for task Ji,j at machine j for i = 1, 2, ... , N;

j = 1, 2, ... , l. (The schedule is feasible if Si,i ;::: 0 for i = 1, 2, ... , N.) It is also clear

that the arrival time of the parts for Ji,j, ai,j, must satisfy ai,j :S Si,j for the schedule

to be feasible, but some parts may arrive early. Now suppose we have an optimal

schedule in which there are some tasks starting before their latest start time. Consider

109

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

the last such task, say lr,k, and shift its processing to start at Sr,k· The shift will

neither affect the feasibility of the schedule nor the flow time of any task. Repeatedly

applying the above argument to all remaining early tasks will lead to a schedule which

satisfies the lemma. o

Lemma 6.6 The batch arrival scheduling problems from each supplier are separable

and can be solved independent of each other.

Proof: We know from Lemma 6.5 that there exists an optimal production schedule

in which each task Ji,j starts at its latest possible start time Si,j· Then Si,j can

be viewed as the deadline for the arrival of the parts needed from their supplier.

Since each task Ji,j receives its part(s) from at most one supplier by assumption,

each Si,j can become a delivery deadline only for one supplier. Thus whatever batch

arrival times are scheduled from a supplier, this does not affect the flow time of other

parts (tasks) from other suppliers. So by considering the delivery requirements from

one supplier, we get a separable batch arrival scheduling problem for this supplier.

Therefore, the problems can be solved separate from each other for each supplier. o

Theorem 6.4 The batch arrival scheduling problem at an assembly manufacturer can

be optimally solved in 0 (qlN log(ZN)) time.

Proof: By Lemma 6.6, parts arriving from each supplier can be scheduled for arrival

in a separate batch scheduling problem. We have (at most) q of these problems. Each

of them can be solved by Algorithm 6.1 in 0 (ZN log(lN)) time, thus the overall time

required is at most O(qlNlog(lN)). o

110

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

6.4 Minimizing Maximum Flow Time and Delivery Costs

In this section, we consider the batch arrival scheduling problem with objective TC2 =

K. max {Dj-aj} + nd at the manufacturer. It is easy to see that Lemmas 6.1-6.3
J=l,2, ... ,N

apply to this problem too and they can be proved the same way.

Lemma 6. 7 There exists an optimal schedule in which the jobs to be delivered to

customer(s) at the same due date are scheduled in LPT order at the manufacturer.

Proof: Let there be an optimal schedule in which jobs with the same due date

do not follow the LPT order. Without loss of generality, let the job sequence be

J1, J2, ... , JN. Then there will be at least two jobs Ji and Ji+l with Pi < Pi+l and

Di = Di+l· If Ji and Ji+l belong to the same batch, then interchanging these two

jobs will not affect the maximum flow time. If jobs Ji and Ji+l belong to differ-

ent arrival batches, say, to Bk and Bk+1, respectively, then let the arrival time of

batch Bk be tk and the arrival time of Bk+l be tk+l· From Lemma 6.3, we know

tk+1 = min{Di+l, Si+z} - Pi+l· Interchange jobs Ji and Ji+l in these batches with­

out changing the arrival batch sizes. Call the new batches B~ and B~+i · Thus in

the new schedule, B~ arrives at tk and B~+i arrives at t~+i = min{ Di, Si+2 } - Pi =

min{ Di+1, Si+2 } - Pi = tk+l + Pi+i - Pi· Note that the interchange will not affect the

feasibility of the schedule. Furthermore, the interchange will not affect the flow times

of the jobs in Bk \Ji in the original schedule. The flow time of every job in Bk+1 \ Ji+l

is decreased by Pi+l - Pi > 0 compared to the original schedule and the flow time of

Ji clearly decreases. The only flow time that is increased is that of Ji+l, which goes

up by tk+1 - tk < Di+l - tk. We have, however, Di+1 - tk=Di - tk, and the latter

is the flow time of Ji in the original schedule. Therefore, the maximum flow time of

the new schedule will not be greater than that of the original one. Repeating this

111

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

interchange for every violation of the job order in the lemma will yield an optimal

schedule satisfying its conditions. o

Note that the lemma implies that there is a job sequence \vhich is optimal for

both the maximum flow time plus delivery cost and sum of flow time plus delivery cost

objectives. To find the optimal arrival batching for TC2 = K . max { Dj-aj} + nd,
1=1,2,. .. ,N

however, we cannot use Algorithm 3.2, which was designed for the sum of flow times

objective. Therefore, we present a new dynamic programming algorithm below.

Dynamic Programming Algorithm: Algorithm to minimize TC2

Let f (k, j) be the minimum value of TC2 on the first j jobs in a schedule using

k arrival batches for 1 :::; k :::; j :::; N. For easier notation, we also define J(k, j) = oo

for 1:::; j < k:::; N. The optimal value of TC2 can be obtained by mink=l, ... ,N f(k, N).

The recursive computation of J(k, j) for 1 :::; k :::; j :::; N is defined as follows.

J(k,j) =min

K r=k~~.~,j-l { max{[f(k-1,r) - (k- l)d]/K,u=~~~ . .,j {Du - Sr+l}}} + kd

Kmax {[j(k,j -1) - kd]/K, Dj - Si(k,j-1)} + kd,

where si(k,j-1) is the starting time of the first job, i(k,j -1), of the last batch in the

schedule realizing J(k,j-1). The first row of the recursion corresponds to taking the

optimal schedule realizing f(k- l, r) and adding to it a new arrival batch containing

jobs {r + 1, ... , j} for r = k - 1, ... , j - 1. Here [f(k - 1, r) - (k - l)d]/ K expresses

the maximum flow time of the schedule realizing f(k - 1, r). The second row of the

recursion corresponds to the case when job Jj is simply added to the last batch of

the schedule realizing f(k,j - 1) without starting a new batch. To facilitate the

computations, we need to store the index of the first job of the last batch in the

schedule realizing J(k, j), denoted by i(k, j).

Initial conditions: f(O, 0) = 0 and f(k, j) = oo for j, k = 1, ... , N.

112

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Theorem 6.5 Algorithm 6.2 finds an optimal batch arrival schedule at the manu­

facturer to minimize the total cost of maximum flow time and deliveries in O(N3
)

time.

Proof. The algorithm needs to compute O(N2
) f(k, j) values. Each computation

needs O(N) time. By storing the indices i(k, j), we can obtain the optimal batching

at the end by backtracking. o

113

Chapter 7

Supplier-Manufacturer

Coordination and Batch

Scheduling

7 .1 Introduction

In Chapters 3 to 6, we studied different batch scheduling problems at the supplier

and manufacturer without considering the coordination between players. In this

chapter, we treat the supplier and the manufacturer as a single system and study

the coordination and batch scheduling in a supplier-manufacturer system. It is clear

that this problem is harder than those corresponding problems studied in the earlier

chapters. Therefore, we focus our study on the basic models, with a single supplier

S, a single manufacturer Mand a single customer C as depicted in Figure 7.1, where

the supplier and the manufacturer are considered as a system.

:-- -- --- --- --- --- ------ ----- --- -;-- System

' ' ' ' ' ' ' ' t--'----

' ' -- --- ----------- - --- ----- -- - --- --

Figure 7.1: A Supplier-manufacturer system with a single customer.

114

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

There are N jobs to be processed at the supplier and delivered to the manu-

facturer; the manufacturer in turn processes the arrived jobs and delivers the finished

jobs to the customer. Job Ji needs times p~s) and p~m) to process at the supplier and

manufacturer, respectively. A holding cost of wfs) and wf m) occur for job Ji at the

supplier and at the manufacturer, respectively. Also associated with each delivery

batch from the supplier to the manufacturer is a delivery cost d8 and from the man-

ufacturer to the customer is a delivery cost dm. We have to find the optimal number

of delivery batches n(s), batch sizes b~s) and the delivery times ui (for i = 1, 2, ... , n(s))

for the supplier, and the optimal number of delivery batches n(m), batch sizes b;m)

and the delivery times vi (for i = 1, 2, ... , n(m)) for the manufacturer so that the total

cost of the system, TC, is minimized.

n(s) b(s)
I

n(m) b(m)

'
n(s) b(s)

i

TC Lui I: w]8l + L vi I: w(m) _ L:u·
J i I:

i=l j=bi~\+1 i=l ·-b(m)+l J- i-1
i=l j=b;~_\ +1

n(m)

(w;s) - w;m)) + n(s)ds + L Vi

i=l ·-b(m)+l J- i-1

w(m) + n(s)ds + n(m)dm
J

(7.1)

In Equation 7.1, the first and the second terms are associated with the sup-

plier's delivery batches, and the third and the fourth terms are associated with the

manufacturer's delivery batches. Based on this, we develop our batch scheduling

algorithms.

7.2 Batch Scheduling of a Given Job Sequence

In this section, we develop dynamic programming algorithms to find the optimal

batch scheduling in a supplier-manufacturer system, where the supplier and the man-

ufacturer follow the same given job processing sequence. Without loss of generality,

115

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

let the job processing sequence be .11, .12, ... , JN.

Property 7.1 There exists an optimal batch schedule in which a batch is delivered

from the manufacturer to the customer as soon as the last item of that batch is com-

pleted processing.

7.2.1 Dynamic Programming Algorithms

We develop dynamic programming algorithms to find the optimal batching schedule

in a supplier-manufacturer system in which the supplier and the manufacturer process

jobs in the same given job sequence. We analyse the problem in two cases:

(i) holding cost at the supplier is less than the holding cost at the manufacturer, i.e.,

w;s) < w;m) for (i = 1, 2 ... , N)

(ii) holding cost at the supplier is greater or equal to the holding cost at the manu-

c · (s) > (m) c (· - 1 2 N) 1acturer, i.e., wi _ wi 1or i - , , ... , .

The holding cost of a job is generally characterized by the warehouse costs,

insurance, and interest rate in addition to the value of the job. Therefore it is reason-

able to assume that holding costs at the manufacturer are larger(smaller) than the

holding costs at the supplier for all the jobs.

C 1 (s) (m) fi · - 1 2 N ase wi < wi or i - , , ... ,

Lemma 7.1 In the optimal schedule, a batch is delivered from the supplier to the

manufacturer only when there is no item waiting for processing at the manufacturer.

Proof: Consider an optimal schedule which contradicts the lemma. Then in that

optimal schedule, there is at least one batch bis) which is delivered to the manu­

facturer at time t1 while the items waiting for processing at the manufacturer at

t1 are completed processing at t2 (t2 > t1). Now move the delivery time of bis) to

116

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

t2 . Note that this shift in the delivery time does not affect processing and deliv-

However, this ery schedules of other batches at the supplier and the manufacturer.
b(s)

k

shift will increase the holding cost at the supplier by (t2 - ti) L wis) and de-
i=bi.s~1 +l

b(s)
k

crease the holding cost at the manufacturer by (t2 - ti) L w;m). Therefore the
·-b(s)
i- k-1

net change in the total cost of the supplier-manufacturer system due to this shift is
bis)

~ = (t2 - ti) L (w;s) - w;m)) < 0. This contradicts the optimality assumption.
i=bis~I +l

D

We develop the forward dynamic programming algorithm for Case 1 based on

Lemma 7.1.

Dynamic Programming Algorithm for Case 1

Let f (x, a, y, ts) be the minimum total cost of the system when the supplier has

delivered x items to the manufacturer with the last batch of size a delivered at time

ts, and the manufacturer has delivered y ::;: x items to the customer.

The state variables x, a, y and ts change only when the supplier delivers a batch

to the manufacturer or when the manufacturer delivers a batch to the customer. The

supplier's delivery changes the state variables x, a and ts, and the manufacturer's

delivery changes the state variable y.
N

Let T = L (p~s) + p~m)).
i=l

Forward Recurrence Relation:

{

x

, min, f(x - a, a', y, t~) +ts L (wis) - w;m)) + ds
. a Sx-a,t 8 ET i=x-a+l

f (x, a, y, ts) =mm y () y ()
~inf(x, a, y', ts)+ dm +(ts+ L Pt) L wim
Y <y i=(x-a)+l i=y'+l

In the recurrence relation, the first term finds the minimum cost when the

supplier delivers a batch of size a at time ts, and the second term finds the minimum

cost when the manufacturer delivers a batch of size (y - y') to the customer.

117

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

Boundary Condition: f(O, 0, 0, 0) = O; f(x,., y, .) = oo for ally> x; f(x, a,.,.) = oo

for all a> x;

Optimal Solution Value: llJin {f(N, a, N, ts}·
aS:N;Vts

Theorem 7 .1 Algorithm 7.1 finds the optimal batching schedule in the supplier­
N

manufacturer system for the case 1 in O(N4T 2) time, where T = E (p;s) + p;m)).
i=i

Proof: The algorithm looks at all feasible values for decision variables. Therefore, it

finds the optimal solution. For a given x, a, y, ts value there will be at most O(NT)

operations. Thus the total complexity is O(N4T 2). o

C 2 (s) (m) c . 1 2 N ase wi ~ wi 1or z = , , ... ,

Lemma 7 .2 There exists an optimal batch schedule in which a batch is delivered from

the supplier to the manufacturer as soon as all the items belonging to that batch have

completed processing at the supplier.

Proof: Let us assume that the lemma does not hold. Then there will be at least

one batch bks) delivered from the supplier to the manufacturer at time t 2 while bks)

has already been completed at the supplier at ti (ti < t 2). Now move forward

the delivery time of bks) to ti. This would result in decreased holding cost at the
bks)

supplier by (t2 - ti) E w;s) and increased holding cost at the manufacturer by
i=b(s) +i

k-1

b(s)
k

(t2 - ti) E w;m). Therefore the total change in the holding cost in the supplier­
·-bCs) +i
Z- k-1

b(s)
k

manufacturer system, ~ = (t2 - ti) E (w;m) - w~s)) :::; 0. Further note that this
i=bks~l +a

shift does not affect the processing and delivery batch schedules of all other batches

at the supplier and manufacturer. Thus this contradicts the optimality assumption.

D

118

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

From Lemma 7.2, we know that at the supplier the delivery time of any batch

whose last item is the xth job is t p;s). Based on this property, we develop a
i=l

dynamic programming algorithm to find the optimal batching of the system for the

case w;s) 2 Wlm).

Algorithm 7.2: Dynamic Programming Algorithm for Case 2

Let f (x, y, tm) be the minimum total cost of the system when the supplier has deliv­

ered x items to the manufacturer, and the manufacturer has delivered y items to the

customer with the last delivery batch from the manufacturer being delivered at time

tm.

Recurrence Relation:

f(x, y, tm) =min

In the recurrence relation, the first term finds the minimum cost when the

supplier delivers a batch of size (x - x'), and the second term finds the minimum cost

when the manufacturer delivers a batch of size (y - y') to the customer at time tm.

Boundary Condition: J(O, 0, 0) = O; J(x, y, .) = oo, for ally> x.

Optimal Solution Value: min {f (N, N, tm}·
Ir/ lm

Theorem 7 .2 Algorithm 7. 2 finds optimal batch scheduling in a supplier-manufacturer

system in O(N8) time.

Proof: This algorithm is similar to the one developed by Hall and Potts [19] for the

combined problem to minimize sum of completion times. Hall and Potts prove that

for a given job sequence, there are only a polynomial number of values for the set of all

possible completion times at the manufacturer. They prove that the number of values

for the completion times is in O(N9+h-1), where g is the number of manufacturers

119

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

and h is the number of customers in the supply chain. Therefore, for our problem,

the number of possible values for tm is in O(N3). There will be O(N2
) possible

combinations for (x, y) and for each (x, y, tm) there will be O(N3
) operations. Thus

the complexity is O(N8
). o

Remark 7.1: In a supplier-manufacturer system with multiple copies of single prod­

uct manufacturing, job sequence does not matter. Thus the dynamic programming

algorithms Algorithm 7.1 and Algorithm 7.2 can be used to find optimal batch sched­

ule for a single product.

120

Chapter 8

Conclusions and Future Research

This thesis studied batch scheduling in a supply chain. Chapters 3 and 4 studied

the optimal batch scheduling problem in a supply chain from the viewpoint of a sin­

gle supplier who services demand for multiple products by multiple customers. The

supplier's system was assumed to have a single stage and was modeled by a single

machine with possible setups. We developed an efficient polynomial time algorithm

for the single product batch scheduling problem at the supplier using the property

that the total cost function is discrete convex in the number of batches. Then for

the problems with identical processing times or identical weights we proved that job

sequencing and batching are separable and we provide polynomial time algorithms

using an algorithm for a special shortest path problem. The algorithms can easily

be modified to handle problems with possible practical restrictions on the maximum

number of batches or batch sizes and different trucks with different capacities and

delivery costs. Batch scheduling problems with arbitrary processing times and ar­

bitrary weights are NP-hard. We provided a 2-approximation algorithm for this

problem with single customer. Further, we proved that the approximation ratio of

the algorithm decreases with increasing delivery costs and it approaches to 1 when

the delivery costs are very large. We also extended the results of the single customer

model to the batch scheduling problem with multiple customers.

Chapter 5 focused on batch scheduling problems at the manufacturer in a sup­

ply chain. It is clear that batch scheduling problems at the manufacturer are harder

121

Ph.D. Thesis - E.Selvarajah McMaster University - Management Science/ Systems

than those at the supplier. \,Ye first analyzed some polynomially solvable problems

of the manufacturer. Multiple product batch scheduling problems at the manufac­

turer are NP-hard problems even when jobs have identical weights. Therefore we

developed a 2-approximation algorithm for the identical weight problem and a hybrid

meta-heuristic algorithm for the problem with arbitrary processing times and arbi­

trary weights. We developed a lowerbound for the weighted case using unit processing

time model and then compared the performance of the heuristic algorithm with our

lower bound.

In Chapter 6, we studied batch arrival scheduling problems at the manufac­

turer in a customer-centric supply chain where promised job due dates are considered

constraints which must be satisfied. We showed that the problems are closely related

to batch scheduling problems on a single machine with flow-time related objectives.

We proved that minimizing the sum of total weighted flow time and delivery costs is

strongly NP-hard. For the unweighted version of the problem, we presented efficient

solution algorithms both for single machine and assembly systems. We also developed

a dynamic programming solution for minimizing the sum of maximum flow time and

delivery costs.

Finally Chapter 7 studied coordination and batch scheduling in a supplier­

manufacturer system. We analyzed a basic model with a single supplier, a single

manufacturer, and a single customer. We developed a dynamic programming algo­

rithm to solve the batch scheduling problem of given job sequence in the supplier­

manufacturer system.

Future research in this area may look at alternative objective functions or

look for efficient heuristic or approximating solutions for the computationally difficult

weighted cases at the manufacturer and the supplier-manufacturer system. We were

unable to provide an example to check the tightness of our approximation algorithm.

In some problems we only consider single manufacturer and/ or single end-customer.

Adding more manufacturers and/ or customers may be a challenging work in the

future.

122

Bibliography

[1] S. Albers and P. Brucker. (1993) The complexity of one-machine batching prob­

lems. Discrete Applied Mathematics 47, 87-107

[2] U. Bagchi and R.H. Ahmadi. (1986) An improved lower bound for minimizing

weighted completin times with deadlines. Operations Research 35, 311-313

[3] S.P. Bansal. (1980) Single machine scheduling to minimize weighted sum of com­

pletion times with secondary criterion- A branch and bound approach. European

Journal of Operational Rsearch 5, 177-181

[4] J.C. Bean. (1994) Genetic algorithms and random keys for sequencing and opti­

mization. ORSA Journal on Computing 6, 154-160

[5] R. Bhatnagar, P. Chandra and S.K. Goyal. (1993) Models for multi-plant coordi­

nation. European Journal of Operational Research 67, 141-160

[6] BMW. (2004) Custom cars on demand:The automaker uses a pull system to build

a customer-specified bbehucles within 10 days of order placement. Modern Mate­

rials Handling

[7] R.N. Burns. (1976) Scheduling to minimize the weighted sum of completion times

with secondary criteria. Naval Research Logistics Quarterly 23, 125-129

[8] P. Chandra and M.L. Fisher. (1994) Coordination of production and distribution

planning. European Journal of Operational Research 72, 503-517

[9] Z.L. Chen. (1997) Scheduling with batch setup times and earliness-tardiness penal­

ties. European Journal of Operational Research 96, 518-537

123

Ph.D. Thesis - E.Selvarajah Mcl\/Iaster University - l\fanagement Science/ Systems

[10] Z.L. Chen and N.G. Hall. (2000) Supply chain scheduling: Assembly systems.

\Vorking Paper

[11] R. Cheng, M. Gen and Y. Tsujimura. (1996) A tutorial survey of job shop

scheduling problems using genetic algorithms - I: Representation. Computers and

Industrial Engineering 30, 983-997

[12] T.C.E. Cheng, V.S. Gordon and M.Y. Kovalyov. (1996) Single machine schedul­

ing with batch deliveries. European Journal of Operational Research 94, 277-283

[13] S. Chopra, and P. Meindl. (2004) Supply Chain Management: Strategy, Plan­

ning, and Operation. Second Edition, Pearson Prentice Hall.

[14] E.G. Coffman, Jr., M. Yannakakis, M.J. Magazine and C. Santos. (1990) Batch

sizing and job sequencing on a single machine. Annals of Operations Research 26,

135-147

[15] L. Davis. (1985) Job shop scheduling with genetic algorithms. Proceedings of

1st International Conference on Genetic Algorithms and Their Applications,

Carnegie-Mellon University, Pittsburgh, pp. 136-140

[16] G. Dobson, U.S. Karmarkar and J.L. Rummel. (1987) Batching to minimize flow

times on one machine. Management Science 33,784-799

[17] H. Emmons. (1975) A note on a scheduling problem with dual criteria. Naval

Research Logistics Quarterly 22, 615-616

[18] M.R. Garey and D.S. Johnson. (1979) Computers and Intractability: A Guide

to the Theory of NP-Completeness, W.H. Freeman, San Francisco, CA.

[19] N.G. Hall and C.N. Potts. (2003) Supply chain scheduling: Batching and Deliv­

ery. Operations Research 51, 566-584

[20] H. Heck and S. Roberts. (1972) A note on the extension of a result on scheduling

with secondary criteria. Naval Research Logistics Quarterly 19, 403-405

124

Ph.D. Thesis - E.Selvarajah McMaster University - J\fanagement Science/ Systems

[21] D.S. Hochbaum and R. Shamir. (1991) Strongly polynomial algorithms for the

high multiplicity scheduling problem. Operations Research 39, 648-653

[22] J.H. Holland. (1975) Adaptation in natural and artificial system, Ann Arbor,

The University of Michigan Press

[23] H.L. Lee and C. Billington. (1992) Managing supply chain inventory: pitfalls

and opportunities. Sloan Management Review/Sprint, 65-73

[24] C.Y. Lee and Z.L. Chen. (2001) Machine scheduling with transportation consid­

erations. Journal of Scheduling 4, 3-24

[25] J.K. Lenstra, A.H.G. Rinnoy Kan, and P. Brucker. (1977) Complexity of machine

scheduling problems. Annals of Discrete Mathematics 1, 343-362

[26] Y. Monden. Toyota production system, Second Edition, 1993.

[27] C.L. Monma and C.N. Potts. (1989) On the complexity of scheduling with batch

setup times. Operations Research 37, 798-804

[28] D. Naddef and C. Santos. (1988) One-pass batching algorithms for the one ma­

chine problem. Discrete Applied Mathematics 21, 133-145

[29] Y. Pan. (2003) An improved branch and bound algorithm for single machine

scheduling with deadlines to minimize total weighted completion time. Operations

Research Letters 31, 492-496

[30] M.E. Posner. (1984) Minimizing weighted completion times with deadlines. Op­

erations research 33, 562-574

[31] C.N. Potts and M.Y. Kovalyov. (2000) Scheduling with batching: A review.

European Journal of Operational Research 120, 228-249

[32] C.N Potts and L.N. Van Wassenhove. (1992) Integrating scheduling with batch­

ing and lot-sizing: a review of algorithms and complexity. Journal of Operational

Research Society 43, 395-406

125

Ph.D. Thesis - E.Selvarajah IviclVIaster University - l'vlanagement Science/ Systems

[33] C.N Potts and L.N. Van "'Tassenhove. (1983) An algorithm for single machine

sequencing with deadlines to minimize total weighted completion time. Journal

of Operational Research Society 43, 395-406

[34] C. Santos and M. Magazine. (1985) Batching in single operation manufacturing

systems. Operations Research Letters 4, 99-103

[35] David F. Shallcross. (1992) A Polynomial algorithm for a one machine batching

problem. Operations Research Letters 11, 213-218

[36] E. Selvarajah and G. Steiner. (2004) Batch scheduling in a two-level supply chain:

A focus on the supplier. European Journal of Operational Research, to appear.

[37] W.E. Smith. (1956) Various optimizers for single-stage production. Naval Re­

search Logistics Quarterly 3, 59-66

[38] G. Steiner and P. Stephenson. (2004) Pareto optima for total weighted completion

time and maximum lateness on a single machine. Working Paper

[39] D.J. Thomas and P.M. Griffin. (1996) Coordinated supply chain management.

European Journal of Operational Research 94, 1-15

[40] S. Treville, R. D. Shapiro, A. Hameri. (2004) From supply chain to demand

chain: the role of lead time reduction in improving demand chain performance.

Journal of Operations Management 21, 613-627

[41] ·webster, S., K.R. Baker. (1995) Scheduling groups of jobs on a single machine.

Operations Research 43, 692-703

[42] Williams, J.F. (1981) A hybrid algorithm for simultaneous scheduling of produc­

tion and distribution in multi-echelon structures. Management Science 29, 77-92

[43] X. Yang. (2000) Scheduling with generalized batch delivery dates and earliness

penalties. IIE Transactions 32, 735-7 41

126

