MACRO PROCESSOR FOR HP 2100A ASSEMBLER

MACRO PROCESSOR FOR HP 2100A ASSEMBLER

By
KONDAPUR AM SESHACHAR SAMPATHKUMARAN, M. Sc.

A
Project
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the degree

Master of Science

McMaster University
May 1977

MASTER OF SCIENCE (1977) McMaster University

(Computation) Hamilton, Ontario
TITLE: MACRO PROCESSOR FOR HP 2100A ASSEMBLER
AUTHOR: Kondapuram Seshachar Sampathkumaran

B.Sc. (Bangalore University)
M.Sc. (Bangalore University)

SUPERVISOR: Professor Nicholas Solnsteff

NUMBER OF PAGES: Vviii, 104

iz

ABSTRACT

A Macro Processor is implemented in PILOT (Purdue Instructional
Language for Writing Operating systems and Translators) for HP 2100A
DOS-M Assembler. The Macro Processor has the capability to handle
Macro calls within macros, Macro definitions within other Macro
definitions, conditional Macro expansion and the string operation of
canatenation. A simple set of Macros for Fundamental Structured
programming constructs is provided. The project also demonstrates,
how an Intermediate-level language like PILOT can be used to
implement system software. Experiments with a new programming

philosophy for the writing of structured programs are also described.

iii

ACKCNWLEDGEMENT

The author is grateful to Prof. N. Solnsteff for being my project
adviser and his constant encouragement throughout the course of this
investigation. Grateful thanks are also due to Prof. G. L. Keech and
Prof. K. A. Redish for serving on defense committee. Special thanks
are also due to Prof. R. A. Rink for constant encouragement throughout
my stay at McMaster University. Finally thanks are due to Mr. Chris

Brvce for help during software implementation.

iv

TABLE 0 F CONTENTS

CHAPTER PAGE
1 - MACRO PROCESSOR b |
1.0 Introduction 1
1.1 Macro Instruction 1
1.2 Macro Definition Format 3
1.3 Macro Definition and Macro Call
Arguments 5
1.4 Conditional Macro Expansion Pseudo-Ops 8
1.5 Macro Calls Within Macros 8
1526 Macro Definition Within Macros 10
1.7 Macro Processor Function 11
2 - PILOT - AS A SYSTEMS PROGRAMMING LANGUAGE 12
2+0 Introduction 12
2.1 Facilities and Restrictions of PILOT
Language 12
2,2 Structured Programming in PILOT 17
2s.3 Discussion of PILOT As System
Programming Language 1
3 - MACRO PROCESSOR IMPLEMENTATION IN PILOT 20
3.0 Introduction 20
Fad Implementation Assumptions 20
3.2 Data Bases of Macro Processor 22
3.3 Format of Data Bases 23
3.4 Implementation of the Algorithm 25

CHAPTER
4 - STRUCTURED PROGRAMMING IN ASSEMBLY LANGUAGE
4.0 Introduction
T | Need for Structured Programming
4.2 Review of Wrok On Structured
Programming in Assembly Language
4.3 Implementation of Structured
Programming Constructs
APPENDIX - A HP Character Set
APPENDIX - B PILGT Language Syntax
APPENDIX - C Program Listing and Examples
APPENDIX - D Macro Processor Usage

REFERENCES

PAGE

38
39

40

41

30
31

52
102

164

10.

LIST OF FIGURES

PAGE
Logical action of a Macro Processor 4
Structure of a module in PILOT language indicating certain features 19
Structure of Macro Name Table 24
Structure of Macro Definition Table 24
Structure of Argument List Array 25
Macro Processor 26
Hashtable Searching of Macro Names 29
Stack organization 37
Fundamental Structured programming constructs 42
Macro processor Flowchart 45

vii

LIST OF TABLES

PAGE
(" Global Arrays Utilization Matrix 48-
2 Module Dependency Matrix) 49

viii

CHAPTER 1

MACRO PROCESSOR

1.0 INTRODUCTION:

The term Macro is derived from Greek makros, meaning long or
large. The term Macro is used in scientific literature in various
contexts, for example, macroscopic, meaning visible to the naked eye.
In the field of computer science the term Macro is used to denote an
instruction, the macro-instruction, which generates a long sequence
of machine-instructions. The macro-instruction concept has been
widely used in assembly systems since as early as the nineteen fifties

[GRE 59.

1.1 MACRO INSTRUCTION:

In assembly language programs there are often several occur-
rences of the same block of assembly language instructions. In this
situation the concept of a Macro is useful. An abbreviation can
be given to name the repetitive block or sequence of assembly language
instructions. In the course of an assembly language program, the
occurrence of the abbreviation for the sequence of assembly language
instructions is replaced by the entire sequence of instructions.

The computer software which facilitates this type of activity
is known as a Macro processor. As an example, consider the repetition

of a sequence of assembly language instructions.

The sequence of instructions

LDA A

ADA B

STA C
appears twice in the course of the program. A name can be associated
with this sequence of assembly language instructions, and reference to
this name in the assembly language program results in substitution of
the above sequence of instructions in place of the name. In the above
example, we can give a name ADD to the sequence of instructions and

then the following input to the macro-processor: will result in the

output.

Input to the Macro- Output from the Macro-
processor ' processor
ADD LDA A
= ADA B
2 STA C
ADD LDA A
i ADA B
. STA C

In general, a macro expansion provides us with the means to abbreviate

repeated sequences of assembly language instructions. The manner in

which such abbreviations can be defined is outlined below.

1.2 MACRO DEFINITION FORMAT

Indication of the start of the Macro definition. MACRO
Name for the sequence of instructions.

Actual sequence of instructions.

Indication of the end of the sequence of instructions for
which this name stands. MEND
In an assembly language the statements MACRO and MEND would
be called pseudo-operations or pseudo-ops. The pseudo-op MACRO indicates

the beginning of a Macro definiton. The line following this pseudo-op

is the name to be referred whenever the sequence of instructions for <
which this name stands is to be inserted in the assembly language
program. This name is known as the macro name. The sequence of

instructions following the macro name is known as the macro definition

body. The pseudo—op MEND indicates the end of the sequence of instruc-
tions for this macro name. The macro name, once defined, can be used
like an operation code in the assembly language program or, to be
explicit, the macro name behaves like an assembly language instruction.
The appearance of a macro name in the assembly language program

is known as a macro call. The action of inserting the sequence of

instructions wherever the macro call occurs is known as macro expansion.

The process of specifying the format for abbreviating the sequence

of instructions is referred to as macro definition. The process of

'

insertion of a sequence ofinstructions using a macro facility, is similar
to insertion of open subroutines in many of the higher level language
programs. The main difference is that, in case of open subroutine
insertion takes place usually at the loading time, whereas in the

case of Macro, insertion takes place before or during the translation

of assembly language program. If this process of insertion of sequence
of instructions takes place during the assembly time, the assembler

is termed an Macro-assembler [BRO 74] . The logical action of a Macro-

Processor can be viewed as below.

Source Program which is

Input to an Assembler.

—
7

Source Program With Macro
Definitions and Macro Calls

MACRO
PROCESSOR

Fig. 1: Logical action of a Macro Processor

The Macro Processor is not restricted to Assembly Language
Systems alone. Macro Processors can be designed for any programming
language. According to Brown[BRO 7éL Macro Processors can be
classified as either Special Purpose or General Purpose. A special
purpose Macro Processor is designed to process Macros written in a
particular base language. A programming language L is referred to as a
base language, for it is the base on which Macros are built and where
L is a programming language. Historically Macro Processors are
associated with a particular Assembly language. A general purpose
Macro processor is designed to work on any strings of characters and
is thereby suitable for any base language. The Macro Processor
implemented in the project falls into the category of special purpose
Macro Processors and accepts Macros written in Hewlett Packard Assembly

Language. ‘

1.3 MACRO DEFINITION AND MACRO CALL ARGUMENTS:

In the previous examples presented, each occurrence of the
abbreviated sequence of instructions involved the same operands.
This is an unrealistic situation. A simple modification to situation
might appear as follows:

LDA PQ
ADA RS
STA PQ

LDA A
ADA B
STA C

It can be seen that here two sequences of instructions are identical
except for the operand fields. An extension to the solution presented
in the previous example will take care of this situation, namely, we
give a name to the set of instructions along with general operands.
The sequence of instructions in the body of the macro definition will
have their operands in terms of the operands specified in the macro
name. The operands specified in the macro name are referred to as

macro-instruction arguments or dummy arguments. The first character

of the macro instruction argument is an ampersand (8). This special
character is used to distinguish macro instruction arguments from
assembly language symbols. Consider the following example to demonstrate

this situation.

Input to the Macro Processor Output from the Macro Processor
MACRO .
ADD SARGl, % ARG2 .
LDA $ARGI1 .
ADA 2 ARG2 .
STA 2ARGI1
MEND

N LDA PQ
. ADA RS
ADD PQ, RS STA PQ
ADD A, B i
. LDA A
ADA B

STA A

In the above example, the first call to the macro ADD uses PQ, RS
as operands and the second call to the same macro ADD uses A, B as
operands. The operands used in the macro call are sometimes referred

to as macro call arguments.

The arguments in the macro call can be specified in two ways.
The strategy wherein the macro call arguments are matched with the
macro-instruction or definition arguments according to the order in
which they appear is known as positional argument specification.
Another strategy is one in which the macro-instruction arguments are
referred to both by name and by position. This strategy of specification

of the arguments is known as keyword argument specification. The keyword

argument specification has the advantage of selective argument specifica-
tion. The following example illustrates the difference between the
two types of specification.

Positional argument specifications ADD PQ, RS
PQ, RS correspond to the first and second macro instruction or definition
argument % ARGl and 2 ARG2, respectively.

Keyword argument specification ADD % ARG1l=A, < ARG2=B
Here it is explicitly specified that A refers to the first macro
instrucion or definition argument and B refers to the second macro
instruction or definition argument and also their position is explicitly
specified. We have taken the approach of positional argument

specification in this study.

1.4 CONDITIONAL MACRO EXPANSION PSEUDO-OPS:

The conditional macro expansion pseudo-ops aid in conditional
selection of sequences of instructions within the body of macro
definitions. The two conditional macro expansion pseudo-ops considered
in this study are AIF and AGO. The AIF conditional macro pseudo-op aids
in branching to the statement immediately following the label specified
depending on the condition of the test performed. The AGO unconditional
macro pseudo-op aids in branching to the statement immediately following
the label specified within the macro definition body. The macro pseudo-
ops AIF and AGO provide flexibility in generating different sequences
of instructions from the macro definition body on different conditions.
The first character of the label used in the macro pseudo-ops AIF and
AGO is a period. Consider the following example which demonstrates

the behavior of macro pseudo-ops AIF and AGO.

MACRO MACRO CALL
ADD £ARGl1, % ARG2, % ARG3 ADD A, B, 2
LDA #%ARG1 generates the code
AIF CZARG3 EQ 2) .LABI1 LDA A
SUB #£ARG2 ADA B
AGO .LAB2 STA A
.LAB1 NOP MACRO CALL
ADA & ARG2 ADD A, B, @
.LAB2 NOP generates the code
STA %ARG1 LDA A
MEND SUB B
STA A

1.5 MACRO CALLS WITHIN MACROS:

The macro body of a macro definition is a sequence of assembly

language instructions with general operands. The conceptual consideration

of this sequence of instructions as another assembly language program
leads to consideration of a facility for calling another macro from
this conceptual assembly language program which is actually a body of
a macro definition. This facility is an extension of the very basic
concept of macros, i.e., the abbreviation of a repeated sequence of
instructions within macros. This facility is referred to as macro

calls within macros. It can be noticed that the macro calls can

occur only after the definition of the corresponding macro. This
is a fundamental restriction in the macro processor implementation.
This restriction applies to macro calls within macros. An example to

demonstrate this facility is presented below.

MACRO

ADD < ARG1
LDA =£ARGI1
ADA =2ARG1
STA 2ARGI1
MEND
MACRO
ADDS ZARG1l, £ARG2, SARG3 LDA A
ADD % ARGI1 ADA A
ADD 2 ARG2 STA A
ADD 2 ARG3 LDA B
MEND ADA B
s STA B
LDA C
. ADA C
STA C

10

In the above example it should be noted that expansion occurs level

by level. A call to macro ADDS results in calls to macro ADD with

different arguments.

1.6 MACRO DEFINITION WITHIN MACRO DEFINITION:

The argument for allowing macro calls within macro definition
leads us to consider the possibility of allowing macro definitions
within another macro definition. The usefulness of this facility is
demonstrated if we allow the macro name itself to be a macro instruction
argument. This flexibility enables us to define new macros with the help

of a single macro instruction.

MACRO

TEST 3 ARG TEST TEST 1
MACRO TEST 1 AR
SARG S ARG1l, EARG2 generates the code
LDA 2 ARG1 LDA A

ADA = ARG2 ADA B

STA SARG1 STA A

MEND

1

1.7 MACRO PROCESSOR FUNCTION:

A macro processor should have the capability of recognizing
macro definitions and macro calls. It should also have the capability
of recognizing conditional macro expansion pseudo—-ops and macro definitions
within macro definitions. In brief, the function of macro processor

can be classified into two phases, the macro definition phase and the

macro expansion phase. The third chapter deals with the actual implemen-

tation of the macro processor algorithm in PILOT (Purdue Instructional
Language for writing operating systems and Translators) on the HP2100A,

under the DOS-M operating system.

CHAPTER 2

PILOT - AS A SYSTEMS PROGRAMMING LANGUAGE

2.0 INTRODUCTION:

One of the basic problems faced by anyone who is developing
system software is to choose a suitable language among the available
higher-level languages (eg. PL/I, PASCAL, BLISS, etc.) and lower-level
languages (Assembly Language, PL300). One can find in the literature
arguments for and against these two fundamental approaches. It may
also be observed that there are inadequacies in a language of either
type [FRA 75]. A compromise can be achieved by using a language,
which belongs to the class of what we call Intermediate-level Languages,
for developing system software. The language PILOT is suggested as
a possible candidate for developing system software. PILOT can be
considered as an Intermediate-level Language as it has the capability
to behave like both a higher-level language and lower-level language to

a certain extent.

2.1 FACILITIES AND RESTRICTIONS OF PILOT LANGUAGE:

The compiler of language PILOT is of minimal size consisting
of approximately two hundred and fifty source statements EHAL 74].
This size is minimal compared to some existing compilers of higher-
level languages. The minimal size of compiler of PILOT does not imply

that PILOT excludes some important features common to many of the

12

13

existing higher-level languages. PILOT supports the concept of
modularity. This is one of the important facilities which aids in
introducing the concept of hierarchical structure in the software.
The term 'concept' is used because of the fact that there is no
universally acceptable measure to find out whether a piece of software
is structured or how effective is the hierarchical modular structure of
the software. The above two qualities of structuredness and hierarchical
modular structure in software can be introduced by the implementor
by judicious use of some of the available techniques eg. subroutines,
block structure, control structure. The concept of modularity has
been in extensive use particularly in the area of operating systems.
This concept helps to fit one's problem better to a given environment.
If the modules of a piece of software are independent, the facility of
overlay techniques can be exploited to advantage in the case of mini-
computers where resources such as main memory are limited. The
availability of subroutines in PILOT is one of the points in favour
of PILOT for developing system software. The compiler for PILOT is
itself written in PILOT in a modular fashion. It is worth noting that
this modular stru&ture of PILOT allows one the flexibility of adding
new features to the language. The language PILOT is portable as
indicated by its implementation on various machines eg. IBM 1130,
IBM 1620, HP2100A.

There are no keywords or reserved words in PILOT and there
is no block structure as such, as part of the language. It is possible

for a programmer to make a PILOT program resemble block structured

14

code found in any PL/I or ALGOL program. For example consider the
program given in fig. 2. The subroutine is divided into two basic
parts. The first part is used to declare global and local variables
made use in the subroutine. The second part contains the executable
code. The difference between the ALGOL type block and the PILOT sub-
routine is that entry to the subroutine is made at an entry point having
as a label the name of the subroutine (i.e., line 10 in fig. 2) rather
than through the statement which identifies the beginning of the module
(see fig. 2 line no. 1). There are no explicit data types in PILOT.
The variables such as ARRAY A, LENGTH OF THE ARRAY, ARRAY INDEX, etc.
are declared either as global or local variables used in the sub-
routine. This also demonstrates the flexible feature of allowing
variable names of unlimited length. This assists the programmer in
expressing the logical flow of the program and to a great extent helps
in the documentation. This is amply demonstrated in the example of
fig. 2. This facility may be cumbersome in developing large pieces

of software for care has to be taken to avoid collision among variable
names, as variable names are truncated at the sixth character. The
facility of unlimited variable name length is not used to a great
extent in implementing the macro processor this project, for the

author wanted to experiment to see how structured programs help in
communicating or understanding the logical flow in the program. The
assignment statement in PILOT is simple and does not allow parenthetical
grouping of expressions. The language PILOT supports two relational

operators equality and less than. An interesting observation is made

15
by the author regarding these relational operators later in the chapter.
It can be noticed from fig. 2, that the operator (=) is used to
assign initial values for some of the variables and in the executable
code the same operator is used as a relational operator. The language
does not support floating point arithmetic or facilities for bit
manipulation. The former does not hinder the work of the systems
programmer, whereas the later restriction is irksome. The only type
of arithmetic supported by the language PILOT is integer arithmetic.
This can be used to advantage to implement common functions which
occur during the course of developing system software, packing and
unpacking of characters in a word. The facility of integer division
can be used to perform the above functions of packing and unpacking.
This is an inefficient approach but this technique seems to be simpler
and more straight forward than built-in shift operation facilities.

There is another point worth mentioning, the restrictions
imposed by the language may look irksome to an application programmer,
but for a systems programmer these restrictions give an opportunity to
understand the implementatioﬁ better by forcing him to think at every
stage. Another important feature to be exploited in the language
PILOT is the use of character variables arithmetically. This facility
is not allowed even in higher level languages like PL/I [?RA 7ﬂ. This
facility is made use for most commonly used operation of searching.

It is convenient for the generation of hash codes from the entries to
be searched. This is another important facility which supports the claim

of PILOT as a systems program writing language. This facility can also be

16

viewed as dealing with characters at the machine level with higher level
instructions of PILOT.

The language PILOT allows one to go down one level to -a lower
level language. This capability is achieved using the facilities
provided in the language PILOT known as crutch coding. The term crutch
coding can be understood as the ability to mix the code of a lower
level language e.g., assembly language instructions, with the code
of higher level language. This facility is not unique to the PILOT
language. But this facility can be used to achieve machine-dependent
features, which cannot be achieved using higher-level language instructions,
by mixing the assembly language instructions along with the higher-level
language instructions. This facility substantiates the earlier claim
that PILOT behaves like a lower-level language. This is another argument
in favour of the language PILOT for writing system software. 1In
addition to these facilities, PILOT has the facility for addressing all
available core directly, that is, an instruction like K, results in a
branch to the location K. There was no opportunity to make use of
this facility in this project. The use of this facility can be seen
in operating system routines. This is demonstrated in the operating
system developed by Halstead[hAL 7@, where this facility is made use
of in the scheduler and I/0 routines.

The restriction of declaring all the global and local variables
used in the module is a good software engineering practice, as this aids

in debugging any side effects either due to system malfunction or the

17

language itself.

2.2 STRUCTURED PROGRAMMING IN PILOT:

The PILOT language itself does not include facilities for
writing structured programs. This lack of structuredness can be seen
in the language itself [HAL 74]. A new programming philosophy is
advocated to implement the standard structured programming constructs
EKK}75]. We are of the opinion that it is possible to implement
structured programming constructs in any higher level language by
making use of the philosophy that unconditional jumps within the
module should always be to the beginning of a loop or exit from the
module, and conditional jumps should branch to the statements below
the point from where one intends to jump. The implementer also should
think that only two relational operators are provided in the language
(=, <). This philosophy was followed in all the modules developed
for this project. In one of the studies conducted by Neely [NEE 76], these
concepts have been used to write structured programs in FORTRAN.
The author does not explicitly specify the above mentioned philosophy.

A close look at the examples discussed reveals this fact.

2.3 DISCUSSION OF PILOT AS SYSTEM PROGRAMMING LANGUAGE:

The argument in favour of higher level languages for developing
system software is reliability. Reliable software is produced with the
help of concepts of modularity and structured programming. Reliable
software leads to reduced development and maintenance costs. The PILOT

language supports the above mentioned concepts of modularity and

18

structured programming. This shows PILOT can behave to a great extent
as a higher level language. The lower level languages like Assembly
Language give the implementor more control over the implementation-
dependent functions, and produces miore highly optimized object code than
higher level languages. In the case of the PILOT language the implementor
can have control over the machine-dependent functions using the facility
of Crutch Coding. In this respect PILOT can be considered to behave
like a lower level language. It should be pointed out that PILOT is
not the only answér to a suitable language for writing system software. There
are several languages like BLISS, PL360, etc. that have appeared in
literature for possible candidature to become a system programming
language.

In view of the facilities available in PILOT it can be considered

as another possible candidate for the writing of system software.

SUBROUTIME, FIND THE MAXIMUM YALUE IH THE AREOY @
EXTERMNALS
BREAY AL
LEMGTH OF THE RRREAY A&,
e LOCALS
#MAKIMUM VAL UE,
ARRAY THDEX.
ZERO=48, |
ONE=21,
,s PROGRAM
FIND THE MAXIMUM YALUE IN THE ARR&Y &, 7
ARRAY ALZEROISMAXIMUN YALUE,
OME+ARRAY IMDEX,

COMTIMUE SERRCH:

AREAY IHDEX=LEMGTH OF THE AREAY & % RETUREHM MAXKIRHUM VALUE.

MasIimdn YaLUECARREAY ACARREAY THDER] £ IHTERCHANGE.
ARREAY ITHDEX+OHE«ARREAY IHDEX.
COMVINUE SEARCH.
IHTERCHAMGE .
HRREAY ACLARRAY IHIDEX J&MAXIMUM YALUE.
ARRAY ITHDER+OHE+3IRRAY IHIEX,
COHTTHUE SEXRCH.

PETURH MaR LMIH YALLE.

Fig. 2 Structure of a Module in PILOT language indicating

certain features.

19

CHAPTER 3

MACRO PROCESSOR IMPLEMENTATION IN PILOT

3.0 INTRODUCTION:

The two main phases of the Macro Processor mentioned earlier
in chapter 1 can be further classified as follows. During the Macro
definition phase the Macro Processor should recognize the macro
definitions with the help of MACRO and MEND pseudo-ops, and also macro
definitions within macros. The Macro Processor should save the body
of the macro definition with the pseudo—-op MEND, as this information
is used during the macro expansion phase. During the Macro expansion
phase, the macro processor must recognize macro calls and replace them
by the corresponding assembly language instructions after substituting
the macro call arguments for the macro definition arguments.

The macro processor implemented in this project accepts source
input written in HP2100A Assembly Language together with Macro definitions
and Macro calls. The output generated by the Macro Processor is source
input to the HP2100A DOS-M Assembler, i.e., the Macro Processor is

functionally independent of the Assembler.

3.1 IMPLEMENTATION ASSUMPTIONS:

The major restriction imposed in this study is that macro call
substitutes text, not values for macro definition arguments. It is

also worth mentioning that the programming style is very much influenced

20

21

by the programming language used to implement the software. This

argument is amply demonstrated in this project. The limitations imposed
by the language in some cases will be an advantage as indicated in

the previous chapter. The provision of only two relational operators

to a great extent aids in the development of structured programs, on

the other hand the limitations of the data types available in the

language and the lack of facilities for bit handling are great handicaps
to the implementor of system software. As discussed later in the chapter,
the character strings are stored in arrays with single character per

word. String matching is done by comparing individual characters. This
leads to inefficiency in both storage as well as execution time. In

order to overcome this inefficiency to great extent, packing and unpacking
of characters is achieved by the facility of Integer division.

In this project the concept of modularity has been exploited to
the maximum extent. This is revealed by the sparseness of the module
dependency matrix as shown in Table 2. It should also be mentioned that
redundant initialization of flag values and Initial values of counters
are made in the program as an aid in debugging any side effects. 1In
short, every effort is made to achieve structuredness, modularity and
flexibility within modules to accommodate future modifications, with
the limited facilities provided in the language. It is not claimed here

that all the available features of the language are exploited.

22

3.2 DATA BASES OF MACRO PROCESSOR:

10.

I1.

Data bases used by the Macro Processor are:
Assembly Language sourceldeck with Macro Definitions and Macro Calls.
Macro definition Table (AMARDT) for storing the body of the Macro
definitions.
Macro Name table (AMACNT) for storing the Macro names.
Macro Definition Table Counter (MADTC) indicates the next available
entry in Macro Definition Table.
Macro Name Table Counter (MANTC) indicates the next available
entry in the Macro name table.
Macro definition table pointer (MDTP) is a pointer to point to the
Macro definition Table for the Macro under expansion.
Array (S) is used to implement the stack using a Last in First out
strategy.
Array BUFFER is used to save the Assembly Language input text. The
length of the array is forty words, enough to hold one source input
of 80 characters with two characters per word.
Array SOURCE is used to save the eighty character Assembly Language
Statement for processing. The length of this array is eighty words
with one character per word.
HASHTB an array of thirty words used to store pointer to the macro
name table.
ALA - argument list array used to save the Macro definition arguments
along with their relative position (Index) in the Assembly Language

Statement.

23

12. RESULT - an array of length five words is used to save the extracted
fields or substrings from eighty character Assembly Language Statement.

13. IHASHPTR - pointer to save the Hash code generated for the enﬁry to be
searched or an entry to be saved in the Macro name table.

14, 1IFGO - an array of length five words for saving the characters A, I,
F, G, 0, .

15. OPER - an array of length ten words used for saving the characters A,
D, E, 6, L, N, O, R, Q, T, -

16. CHAR - an array of length eight words used for saving the characters
M, A, C, R, O, E, N, D, .

17. TEMP - a temporary array of length eighty characters to save the
Assembly Language source with Macro call arguments substituted for
Macro definition argument.

18. CHR - an array of length twenty six words used to save the twenty six
special characters presented in the Appendix A.

19. I - is pointer indicates the position in Assembly Language source

statements.

3.3 FORMAT OF DATA BASES:

The format of important data bases is presented. The macro
name table (AMARNT) is an array of length two hundred words. The macro
names associated with their pointers to Macro definition table are saved
in the Macro name table. The pointer to the Macro definition table counter

is Macro definition table counter (MANTC), which points to the next available

24

location in the macro name table. Fig. 3 illustrates the above described

scheme.

p - Pointer to Macro
definition table
(i.e., Value of MADTC)

Macro name .

v
MRSV ot O e o

Fig. 3 Structure of Macro Name Table (AMACNT)

The Macro definition table (AMACDT) is an array of length two
thousand words. The body of the Macro definition including the MEND
pseudo-op, to indicate the physical end of the defined macro, is stored
in packed format (i.e., Eighty character source input is packed into
a buffer of forty words with two characters per word). Here all the
blank characters are also stored. The main reason for this approach
was less overhead. This problem can be overcome by minor modifications
in the program. The modification is to scan the source input back-

wards up until a non-black character is encountered. Fig. 4 illustrates

the structure of Macro definition table (AMACDT).

First statement of Macro
Definition Body.

h D BONTE

yEng Indicates end of Macro
; Definition
]

Fig. 4 Structure of Macro Definition Table (AMACDT)

25

The argument List array (ALA) is an array of eighty words.
The macro definition arguments with their associated relative position
are saved in the array ALA. This information is used to substitﬁte the
index notation for the macro definition arguments appearing in the
body of the macro definition. The Structure of Argument List array

is illustrated in Fig. 5.

;—Index
Macro definition o SUM $#ARGA, ZARGB,
argument) 8ARGA_ : 2ZARGC.
BARGB 2
SARGC . 3

Fig. 5 Structure of Argument List ARRAY (ALA)

3.4 IMPLEMENTATION OF THE ALGORITHM:

The module PROCESSOR is the heart of the Macro Processor,
which calls modules AINPUT, COMPARE, EXTRACT, SEARCH, HASH, PRARG, SINOT
and STACK. The module PROCESSOR begins by initializing the global
arrays and variables.

The outcome of the call to the module AINPUT is a source
input either from the card reader, or from the macro definition table
where the macro definition body is stored during macro expansion phase.
The operation code field of this source input is extracted using the
module EXTRACT. A search is made in the macro name table for a match

with the operation-code field. A successful match indicates a

Assembly Language MACRO Assembly
Source Program ;PROCESSOR | Language
With Macro definitions Source

and macro calls

Assembly / HP Program
Language > Assembler 3 Listing
Source \ L——_/_---

Fig. 6: MACRO PROCESSOR

27

macro call. A stack will be prepared for macro call arguments using

the module STACK. Then the macro expansion phase begins. An unsuccessful
match indicates either a macro definition phase or assembly Laﬁguage
source input. In order to determine whether it is the macro definition
phase or it is an assembly language source input, the extracted
operation-code field is further examined for a match with pseudo-
operation code MACRO using module COMPARE. A successful comparison
results in the reading of new source input and the extraction of the
operation-code field of this new source input. The extracted operation
code field which is stored in temporary array RESULT will be the Macro
name. This macro name is stored in the Macro name table along with

the pointer to the macro definition table, where the macro definition
body will be stored. A hash code is generated by finding the sum of

the ASCl1l codes of the first and last characters from the extracted name
stored in the array RESULT, and then obtaining the remainder by dividing
the sum by the length of the table to be searched. This method of
generating a hash code is referred to as the division method [MAU 75]. In
this project we have provided storage for handling thirty macros. In
order to accommodate more macros, minor changes in the declarations

have to be made. The remainder computed for the entry gives the home
address in the hash table, where the pointer to the macro name table is
stored. The source input is read and stored in the macro definition
table until MEND pseudo-operation code is encountered. If there is

a macro definition within a macro definition, a macro definition level

counter is used to store all the macro definition body. This macro

28

definition level counter is incremented by unity whenever a MACRO
pseudo-operation code is encountered and is decremented by unity whenever
a MEND pseudo-operation code is encountered. Unsuccessful comﬁarison
for the MACRO pseudo-operation code results in the output of these
source lines, which will‘be either assembly language instructions of
input text or the source output generated during macro expansion phase
by substituting the macro definition arguments with the macro call
arguments. This source output will be also an assembly language
instruction. The extracted operation code is also compared for match
with pseudo-operation code END. A successful match results in the
completion of macro processing. The source output text produced by
the Macro processor will be passed on to the Assembler for further
processing. An unsuccessful match results in a return for further
processing of source input text.

It should be pointed out here that source input of forty words
stored in the array BUFFER is stored in its entirety in the Macro
definition table, i.e., the source input in the array BUFFER does
not contain useful information in all the forty words. One solution is
to scan the BUFFER backwards until a non-blank character is
encountered. Then only the information upto that point can be stored
in the macro definition table. This results in savings in storage
but an overhead results in scanning each source input to be stored in
macro definition table.

The hash code for the macro name is generated in module HASH.

The method used as indicated earlier is known as Division method. If

29

the key for which the hash code to be generated is o and the hash
table size is n, then home address of the key o in the hash table is
given by
h(a) = MOD(a,n)

where h(a) is the home address of the key a. In this approach we
have to face a problem known as collision, which is nothing but the
generation of two keys having the same home address. One solution to
this problem is to store this key in the next available position.

The module SEARCH is called by the main program PROCESSOR,
and this module itself calls the module HASH. The hash code (IHASHPTR)
is generated for the entry to be searched in the macro name table
AMACNT, using module HASH. If the content of the location in the
hash table i.e., HASHTB IHASHPTR is zero then the macro is not defined.
The content of the Hash table gives the pointer to the macro name in
the macro name table, and a comparison is made for the entry to be
searched. This comparison is necessary for a collision might have
occurred. A successful comparison results in return of appropriate

flag value along with the corresponding pointer for the macro defi-

nition table. Macro
Macro Definition
Hash Table Name Table
0 Pointer Table
to Macro
Name Table
20
\\\\\\\\iﬂﬁ : 10 Pointer
to Macro
Definit-
ion Table

Fig. 7 Hash Table Searching of Macro Names

30

The module AINPUT is called by the module or main program
PROCESSOR. This module calls the modules AGOS, AIFGO, AIFS, EXTRACT,
PACK, SUBARG, and UNPAK. The function of this module can be érouped
into two phases, Macro expansion phase and source input text phase.
These two phases are decided from the value of the stack pointer,
STKPT. The function of this module during source input text phase
is to read the input text from the card reader into an array buffer
of forty words with two characters per word. If the first character
of the Input text is an asterisk, this will be a comment and Input
text is written to the output file. A new source Input text is
read and processing continues. In case of the macro expansion phase,
the pointer to the macro definition table is retrieved from the Stack.
The operation-code field is extracted from the source input stored
in the macro definition table. A comparison is made for a match with
the pseudo-operation code MEND. A successful match results in either
termination of the macro expansion or expansion of the outer macro
after popping back to the previous stack frame, depending upon
whether there is a nested macro call or not. An unsuccessful comparison
for a match with pseudo-operation code MEND results in substitution
of actual arguments i.e., macro call arguments for the macro definition
arguments. Further processing of pseudo-operation codes AIF, AGO is
performed.

The module UNPAK is called by the modules PROCESSOR, AINPUT.
This module itself does not call any other modules. The function of

this module is to unpack the contents of the array BUFFER of length

31

forty words with two ASCll_characters per word, and to store one ASCll
character per word in the array SOURCE of eighty words. 1In the PILOT
language there is no bit handling facility. This forces one to make
use of the integer division facility to perform the above function.
The word size of the machine under consideration (HP2100A) is 16 bits
or two bytes. In order to shift eight bits or one byte the contents
of each word is divided by 23. Refer to the routine UNPAK for the
actual code. The advantages of storing characters in an Unpacked
format is that of ease in processing. The module PACK is called by
the modules PROCESSOR, AINPUT and ERROR. This module does not call
any other modules. The function of this module is exactly opposite
to that of module UNPAK. The eighty characters stored in the array
SOURCE with one ASCl1l character per word are packed into the array
BUFFER of forty words with two ASCl1l character per word. Refer to
the routine PACK for the actual code. The advantage of storing
characters in Packed format is that of storage conservation.

The module EXTRACT is called by most of the other modules
except PACK, UNPACK, IFTEST and this module itself calls the module
SPCHR. The function of this module is to extract a substring from
the string of eighty characters stored in the array SOURCE. The
extracted substring is stored in the array RESULT with one character
per word. The pointer I indicates the position in the eighty character
string stored in the array SOURCE for extracting the substring.

A substring is returned as soon as a delimeter such as a blank character,

32

a special character, etc. is encountered.

The module SPCHR is called by the module EXTRACT and this
module does not call any other module. The twenty six special characters
(see appendix A) are stored in the array CHR. The module using a linear
search of the array CHR returns.a corresponding flag value depending upon
success or failure of the search for the special character. The Linear
Search technique is used as other well known techniques like Binary
Searching, Hash Table Methods of searching are inefficient for a table
with less than thirty entries [MAU 75} and [DON 72].

The module PRARG (Prepare argument list Array) is called by
the main program PROCESSOR and this module itself calls the module
EXTRACT. The function of this module is to prepare a macro definition
argument list array with corresponding relative position of these
arguments in the macro definition. The module extracts each macro
definition arguments and stores in the array ALA (argument list array)
along with index for its relative position in the macro definition.

The module SINOT (Substitute Index Notation) is called by the
main program PROCESSOR, and this module itself calls the module EXTRACT.
The function of this module is to substitute the index of the macro
definition argument stored in the array ALA in the macro definition body.
The module extracts the macro definition argument from the macro
definition body and substitutes the index of the macro definition
argument. The index is obtained by searching for the macro definition
argument in the array ALA.

The module SUBARG (Substitute Arguments) is called by the

33

module AINPUT and this modqle itself calls module EXTRACT. The function
of this module is to substitute the macro call arguments stored in the
Stack S for the macro definition arguments in source input obtained

from the macro body. The source input from the macro definition table
is scanned for the macro definition arguments. The formal parameter

or macro call argument stored in the stack is obtained using a pointer,
which is computed using the stack pointer and the relative position of
the macro definition argument in the macro definition.

The module COMPARE does not call any other module. The function
of this module is to recognize the pseudo-operation code MACRO, MEND,
END, and return the appropriate flag values. The character string
MACROEND is stored in an array CHAR. The entry to be compared in
array RESULT is input to this module. A comparison is made with the
characters stored in the array CHAR, and an appropriate flag value i.e.,
either 0 or 1, is returned depending upon the success or failure of the
comparison.

The module AIFGO is called by the module AINPUT and this
module itself calls the module EXTRACT. The function of this module
is to recognize calls to pseudo-operations AIF and AGO. The operation
code field of the source input String is extracted and is compared
for match with characters stored in the array IFGO. An appropriate
flag value is returned depending upon the success or failure of the
match.

The module AGOS calls the module EXTRACT, and this module

is called by the modules AINPUT and AIFS. The functions of this module

34

are to extract the label associated with the pseudo-op AGO, and to update
the macro definition table pointer (MDTP). The macro definition body
of the macro under expansion is scanned for the label associated with
the pseudo-op AGO. A successful match with the label results in up-
dating the pointer to the macro definition body. An unsuccessful match
by way of encountering MEND pseudo-op results in writing of an error
message to the effect that the label specified with AGO, pseudo-op is
undefined. The AGO pseudo-op provides flexibility of conditional
expansion of macros.

The module RELATIONAL does not call any other module and
is called by the module AIFS. The function of this module is to return
an appropriate flag value for the various relational and logical
operators. The relational and logical operators provided in this
project are greater (GT), greater than or equal (GE), less than (LT),
less than or equal (LE), Equality (EQ), Not equal (NE) and Logical
AND, OR. The characters stored in the array RESULT are compared with
the characters stored in the local array OPER and appropriate flag
value is returned through the variable RFLAG.

The module IFTEST does not call any other module and' this
module is called by AIFS. The function of this module is to return
an appropriate flag value through the global variable AIFFLAG depending
on whether the operands of the relational test stored in the array
OPERAND, satisfy the relation specified by the variable RFLAG.

The module AIFS calls the modules AGOS, IFTEST, EXTRACT and

RELATIONAL. This module is called by AINPUT. The function of this

35

module is to extract the operands of the Relational and Logical
expressions, and the relational or logical operators. If the Relational
and/or logical expression evaluates to true then the module AGOS is
called i.e., a conditional jump is made to the label specified, other-
wise the processing will continue.

The module STACK is called by the module PROCESSOR during
macro expansion phase. This module calls the module EXTRACT. The
function of this module is to set up a stack for the macro call argu-
ments. The stack S is implemented using an array. This stack is
used by the module SUBARG for substituting macro call arguments for
macro definition arguments or dummy arguments of the macro body. The
stack can be considered as an array of pointers and character strings.
A stack pointer STKPT, indicates the beginning of the current stack
frame. A stack pointer value of -1 indicates that the macro processor
is not in macro expansion phase. The location S(STKPT) will provide
the previous value of the Stack Pointer. The value of the stack pointer
for the first frame, which is the top of the stack is zero i.e., STKPT = 0
and the contents of location S(STKPT) is -1. The contents of location
S(STKPT+1) give the pointer to the macro definition table for the macro
under expansion. The locations S(STKPT+2), S(STKPT+3) ...
S(STKPT+NOARG), contain the character strings of the macro call arguments
of the macro currently under expansion. A general outline of the stack
is presented in fig. 8. The approach of using a stack to save
macro call arguments is taken in order to facilitate the handling of

macro calls within macros. The inner most macro will be under expansion,

36

when pseudo—-op MEND is encountered the expansion of outer Macro will
continue. This is achieved by updating the stack pointer i.e., STKPT =
S(STKPT) (as indicated earlier S(STKPT) points to the top of the

previous stack frame).

Stack Index

— c—

One

Stack
Frame

STKPT + NOARG

Stack Contents

Si(d):
STKPT:
NOARG:

-1 /
{
¢ 7
. —
STKPT S (STKPT)
STKPT + 1 S(STKPT + 1) °
STKPT + 2 S(STKPT + 2) A
STKPT + 3 S (STKPT + 3)-
< ' ' 3
r .
S(STKPT + NOARG) | |
e * im..—‘

i

[

1th
Contents of i

Stack Pointer

Number of Arguments

Fig. 8-

AR)

Macro Call

Arguments

Available for next

Stack Frame

position on the Stack

STACK ORGANIZATION

} Previous Stack Frame(s)

P

i
Pointer to Previous Stack Frame

i

——

37

Pointer to Macro definition table

CHAPTER 4

STRUCTURED PROGRAMMING IN ASSEMBLY LANGUAGE

4.0 INTRODUCTION

The concept of structured programming is in a state of confusion
and controversy. In'computer science literature one can find a number of
definitions for structured programming. The interested reader can refer
to the articles in the Infotech state of the art report on structured program-
ming [lNF 76] structured programming can be defined as a way of organiz-
ing one's thoughts in a way that leads in a reasonable time, to an under-
standable and correct expression of a computing task. The aim of structured
programming is the production of reliable software, which in turn leads to
lower cost in overall development and maintenance of a piece of software.
The principle of structured programming postulates that a critical factor
in producing software, which is understandable, reliable and modifiable
is the presence of some quality of structure such as:

(i) Developing software with the use of certain control and data
structures.
(ii) Developing software with interconnections of modular units.
The number of interconnections depends on the implementor and to
a great extent on the problem.

(iii) Developing software in terms of hierarchial levels of abstraction.

38

39

With the above aims and principles of structured programming in mind,
structured programming can be defined as the practice of writing
programs that are well structured according to one or more of the
above mentioned qualities.
It is worth presenting a definition of structured programming

by Wirth [WIR 74] ,

Structured programming is the expressing of a conviction

that the programmer's knowledge must not consist of a

bag of tricks and trade secrets, but of a general intellec-

tual ability to tackle problems systematically, and that a

particular technique should be replaced (or augmented) by

a method. At its heart lies an attitude rather than a
recipe: the admission of the limitations of our minds.

4,1 NEED FOR STRUCTURED PROGRAMMING

As discussed in Chapter 2 of this report, there have been a lot
of arguments in favour and against developing software in higher level
languages or lower level language (Assembly Language). The one strong
argument in favour of higher level language for developing system software
is the presence of facilities for developing structured programs with
the help of control structures and data structures provided in the language.
The reliability, readability and ease in debugging any piece
of software implemented in Assembly Language is enhanced by grouping
chunks of code into segments. These segments form a module which, in
turn forms a program. In the case of the debugging of Assembly Language programs,
there are three considerations: The ability to read and understand the

intended function of the code, to follow the flow of control for designated

40

test cases and to ensure data item integrity. The conceptof structured
programming itself does not help the problem of data integrity. .Data
integrity means that a portion of code in one segment does not inadvertently
modify the contents or logic of other portions of code. With the low level
nature of Assembly Language program - i.e., one statement corresponds in
general to one machine instruction - a simple function in design may be

a few or many instructions. This fluctuation in lines of code has a
detrimental effect on readability regardless of organization. However,

in adopting structured programming concepts, developing meaningful

control function macros, the comprehensibility of structured Assembly
Language programs is greatly increased over non-structured Assembly

Language programs.

4.2 REVIEW OF WORK ON STRUCTURED PROGRAMMING IN ASSEMBLY LANGUAGE

A practical, productive approach to facilitate structured
programming in Assembly Language is to develop macro definitions for
each segment of code. A set of structured programming macros were
developed by Kessler [KES 72]. These macros have very flexible predicate
formats, but their format is rather awkward and does not enhance readability.
The advantages of Kessler's predicate formats are that all possible
Assembly Language tests and comparisons can be included within the
predicates and the length of the predicate is only limited by assembler
resources. These macros were developed by Kessler with the following
macro and assembly time facilities: Integer arithmetic, character string

variables, the arithmetic operations of addition, subtraction, string

41

operation of concatenations, substring extractions, and length determina-
tion, and finally conditional expansion pseudo-ops. The macro processor

is a part of the Assembler, i.e., macro Assembler. The macro processor
developed in this project is functionally independent of the Assembler.

The approach taken in‘this project to provide macros for writing structured
programs is a very new development. This approach is aimed at achieving
simplicity and readability. The macros developed in this project make

use of the facilities of conditional macro expansion psuedo-ops only.

4.3 TIMPLEMENTATION OF STRUCTURED PROGRAMMING CONSTRUCTS

The structured programming control structures considered in
this study are the fundamental control structures advocated in the
literature [MCG 75]. These are IF-THEN-ELSE and DO-WHILE control
structures. The approach taken in this study is to develop three Macros
in case of IF-THEN-ELSE control structure, a macro to handle the IF-THEN
part, a macro to handle the ELSE part and a macro to handle the range of the
IF-THEN-ELSE control structure. The macro for the IF-THEN part accepts two
operands, a predicate and a label. When the predicate evaluates to
a false condition a branch occurs to the specified label, otherwise the
processing continues without any branching. The ELSE macro has two
arguments. The first argument specifies the range of the IF-THEN-ELSE
control structure. The second argument specifies the beginning of the

ELSE part of the IF-THEN-ELSE control structure.

——-———{} First-Part

Sequence Flowchart

Second-part

True

False

then-part

-

42

else-part

IF-THEN-ELSE flowchart

sL
]/\

do-Part

DO-WHILE flowchart

Fig. 9: FUNDAMENTAL STRUCTURED PROGRAMMING CONSTRUCTS

>€ WHILE-Test

false

43

IF Predicate Labell IF-THEN
JMP Label2
Labell NOP ELSE
Label2 NOP ENDIF

The DO-WHILE control structure is implemented using two macros, one macro
to handle the DO-WHILE part and another macro to handle the range

of the DO-WHILE control structure.

Labell NOP
WHILE (Predicate) Label?2 WHILE
JMP Labell

Label2 NOP ENDWHILE

In implementing the above macros only the psuedo-op's AIF and AGO are
used. The above are simple to use and understand. With the

help of the above macros, it should be possible to write structured
programs in assembly language. This area has potential for further
research as there are only three research publications in the literature
EHE 76], [KES 7Q]. The approach taken in this study in implementing the
above macros i s wunique in the sense that only two psuedo-ops are used
and this facility is provided for a macro processor which is functionally

independent of the Assembler.

CHAPTER 5
CONCLUSIONS

A Macro Processor with the capability of handling Macro
calls within Macros, Macro definitions within a Macro definition, the
String operation of concatenation and an ability to branch conditionally
and unconditionally Qithin a Macro has been successfully implemented.
The PILOT language with its limited facilities has been successfully
used to implement the Macro Processor Software. A new programming
philosophy of Unconditional branch to beginning of a loop and a conditional
branch to a point below that from which the branch is taking place is
experimented with to achieve structuredness in the software. The concept
of modularity has also been used to the greatest extent possible. Tﬁe
software has sufficient flexibility for modification and extension in
order to allow the incorporation of new features. A limited set of
Macros for fundamental structured programming constructs is implemented
within the frame work of available features of the Macro Processor
implemented. Research work in this area has not progressed because of the
development of higher level languages for developing system software.
The applicability of Macro Processors to aid portability of Assembly

language programs is still to be explored.

44

MACRO
PROCESSOR

e - &
NCARG ~ 0 ¢
MACDLC <= O Initialization
STKPT <« =1

INPUT

Write Assembly Language
<~ MACRO ™\ NO MACR6\\\\ NO | text onto the output
\CALL PSEUDO-OP file

YES YES
Save Previous Stack Increment Macro
Pointer, new Stack definiton Level
Pointer, Macro counter
Definition table
Pointer

I . ; N
Stack Macro Call INPUT " Transfer control
Arguments . to ASSEMBLER

Fig. 10: MACRO PROCESSOR FLOW CHART

Cont.

Sy

P 4

ve Macro name with
Macro definition
table pointer

¢
ﬁ')r!

o

~

)

INPUT &

N

Substitute Index
for Mzcro definition
arguments

l

//////;::;g\\\\\ YES

Increment Macro

eudo-op
///

YES

MEND

definition Level
icounter

Decrement Macro

L~

pseudo-op

definition Level
counter .’

Level counter

facro definitcion

Cont.

< INPUT /}

.

AL

.

YES

Pl ‘\\
<:STKPT = -1/
& /)/”
\Ifﬁb

Update M:crol

Defidition
table Pointeq

STKPT - S(STKPT)
~1 <« NOARGC
STKPT < S(STKPT)

PROCESS AIF
01 AGO pseudo-op

Substitute Macro
Call Arguments

NO

Read Assembl
Language tex

—pety

i

Comment

YES

Write onto thd
output file

NO

Return to main
Processing

Ly

YOuYZ +
HSVH =
Epracs
WHOJS
YNOTIVITL %
Tdgem,
1SATIT +
SAIV -+ -+ +
O
S0V
+ + F
GoIIV & +
ZTvaNs & +
onIs | + "
swvad | F + +
NOVIS + 5
HOYVAIS 4 + +
TIVAHOD + *
IOVIIXT + *
MoVd + +
AVAND ¥ =5
INANIV' + » *
£ =
I3 f4 ~) = £~ = (C
A ot =] — < — O <
o O o 0 2 =) & %)
< | 2| & sl2]|8] 3 =1 2
S ot Allglal B4 B 21 2

Global Arrays Utilization Matrix

Table 1:

48

)
\

ESSOR:

ROC

I

MACRO--

SUBARG

AIFGO
AGOS
AIFS

IFTEST
RELATIONAL
EXTRACT

SPCHE
UNPAK
PACE

HASH

> -

RE

L.

PRARG

SINOT

ERROR

LACRO PROCESSOR

+ | AINPUT

+ | SEARCH

+ |STACK

AINPUT

-+

+
-+
+

+ |+
+
+

+ | + |COMPAI

SUBARG

-

AIFGO

AGOS

ATIFS
e

TETEST

RELATIONAL

EXTRACT

SPCER

UNPAK

PACK

SEARCH

HASH

STACK

COMPARE

PRARG

SINOT

ERROR

ke

Table 2:

Module Dependency Matrix

6¥%

APPENDIX - A

HP CHARACTER SET

ASCII ASCIT
Symbol (Octal code) Symbol (Octal code)
(Space) 44 A 141
! 41 B 122
& 42 e 143
43 D 1¢4
S 44 E 185
3 45 F 186
& 46 G 187
i 47 H 11¢
(5@ I I11
) 51 J 112
P 52 K 113
o 53 L 114
’ 54 M 118
- 55 N 116
5 56 0 117
/ 57 P 120
0 121
R 122
1] 67 S 123
i 61 T 124
2 62 U 125
3 63 v 126
4 64 W 127
5 65 X 134
6 66 Y 131
o 67 Z 132
8 79
9 71 { 133
] 135
¥ 136
: 72 “ 137
s 73
< 74
= 75
> 76
% 77
@ 199

50

APPENDIX - B
PILOT Language Syntax

ROUTINE RT::=HLiiLa VL. .
MOUN 'LIST ML: :=DC~HNL, DC
DECLARATION DC: : =NANA=NR/FA NA/CNR] /NA: KR
%iLLen ARRAY FA::=NA [NR] =HR/FA, HR
VERE LIST VL::=STsYL ST
STATEMENT ST::=AS/C0/SR/JU/CA/RD/WR/CR/LA ST
‘ASSINGMENT AS::=OP+OP, / OP AR OP<OP,
béMPnston CO::=0P RE OP : JU ;
. SUBROUTINE SR::=LA: ? VL
Jump JU: : =0F.
éQLL CA: : =0P,
ésan : RD: : =>HA<
WRITE WR: : =<HA>
CRUTCH CR: : =£NR, HR; #$NR, NA; #3NA, NR; #$NA, NA
gEITHHETIC AR: :=+/=/%/7
RELATIONAL RE: : ==/%
OPERAND OP..=NA/NA S5-8%
éﬁBSCRIPT $S::=[IN1]
. LABEL LA: : =NA
ﬁhmg NA::.=LE/NA LE/NA NR
NUMBER HR::=0 0 HN/ O ON</DN/0Q
LETTER LE::=A/Bs/C/D/E/F/G/H/71IN/0/P/Q/R/7S/T7UsV/W/R7Y 72
IHDEX IN: : =I1/J/K/7L/7M/7N
HEXANUMBER HN: : =HD/HN HD/HN O
DECIMALNR DN::=DD/DN DD~/DN O
OCTALNR ON::=0D/0N OD/ON O
6crnLn1c OD::=1,2,374/5/6/7
DECIMALDIG ' DD: . =8,9/0D

HEXDIG HD:.:=As/B/C/D/E/F/DD

s
1
1
|

AT

A -

{RE TGRS | T O

il

APPENDIX - C
PROGRAM LISTING AND EXAMPLES

77 R Rk K k1 o R i ko ok e b R K s R R Sk Sk ok i R s e R R R R SiOROR R R oK Sk ke ok ok ok ok e oo ok ok ok kok ok

Pt
7w
e
s
&4
s
s
SR
Ve 5
res d

e
/¥
Vs .
s
SOE
P a
e
Y
/S H
/S
e
e d
AW
e

FURFISE QF THE MODULE
T FROCESS MACRO CALLS AND MACRO DEFINITIONS IN HP21069
ASSEMELY LAMGUAGE SOURCE INFUT TEXT.
USAGE

MODULES REQUIRED

ATHPUT

EXTRACT

ERROR

HASH

PACK

PRARG

SEARCH

SINOT

UHF#HK

SYSTEM MODULES REQUIRED

CLSEFILE

EXEC

GET ARGUMENT

CFEMFILE

JOEFILE

PUTCODE

IMNFUT TO THE MODULE.
SSEMBLY LAMGUAGE INPUT TEXT WITH MACRO DEFINITIONS
AHD MACRO CALLS.

QUTFUT FROM THE MOQDULE.
ASSEMELY LAMGUAGE TEXT.

* * X ¥ ¥ X X X %

R B R KR N K K SR K K E KL

7 A o e s o R K S s o R R R S oK S o oK K 3K 3R sk o R e O ok B ok o sk K oK ok s ok ok

O al
7/

P
g
Fo

e
A

PROGRAM, MACRO PROCESSOR

AIHPUT,
EUFFER- AN ARRAY OF FORTY WORDS FOR SAVING ASSEMBLY
LAHGUAGE TEKT.
BUFFER,
COMFARE,

EXTRACT,
EFLHG,
ERROR,
HAZH.
II
IHAZHPTR- SAYES HASH CODE GENERATED FOR ENTRY TO BE
SEARCHED AHD FOR MACRO NAME TO BE STORED IN MACRO
HAME TABLE.
IHASHPTR,
MESSAGE,
PACK,
PRARG,
2 o ¥
vP. CUTY,
b 2% £ O R
RESULT- AN ARRAY TO SAYE THE EXTRACTED SUB-STRING
FrROM ASSEMLY LANGUAGE TEXT.
RESULT,
$- KN ARRAY USED FOR IMPLEMENTING THE STARCK TO
HANDLE MACRO CALLS WITHIN MACROS.
S.
S

ERRTH,

52

g4

'
7’7

&
e

c3

AL

zs

oA

P

&7

LK

2L

/7

/77

77

e

rid
77

SINUY o
STACK:

TAG:
CLSEFILE,
EXEC,

GET ARGUMENT.
JOEFILE,
QFENFILE.
PUTCOLE.

i

AFLAG- FLAG TO INDICATE A MACRO CALL.
*AFLAG.

AMACDT- MACRO DEFINITION TABLE TO STORE THE BODY OF THE

MACRO DEFINITION.
*AMACDTL 2860 1.

AMACNT- MACRO NAME TABLE TO STORE MACRO NAME WITH
ASSOCIATED MACRO DEFINITION TABLE POINTER.

*AMACNTL 206 1.

AMEG1- REPRESENTS -1.
*ANEGLI=8177777.

BLANXKELANK- BLANK CHARACTER WITH ASCII
*ELAMKELANK=340,

BEUFF LIM- LENGTH OF THE ARRAY ’BUFFER’.

*BUFF LIM=858,
*FLAG,

HASHTB- HASH TABLE WHICH SAVES POINTER

TAELE.

*HASHTBL 30 1,

TEMPORARY VARIABLES.

ITEMP, '

JTENMP.
KOUHT,

DEFAULT LOGICAL UMIT NUMBERS
*LUIHPUT=5

*LUQUTPUT=6,

*LUOBJECT=2,

*LUPUNCH =8,

*LPPAGE =~ =55,

*LGO =8,

"ASME "

ASMEL 3] =B40523, 046502, 0200409,

CODE 0409

TO MACRO NAME

MACDLC- MACRO DEFIMNITION LEYEL COUNTER WHICH IS USED AS

A SWITCH TO CONTROL MACRO CALLS WITHIN MACRO
DEFINITION AND MACRO DEFINITION WITHIN MACRO

DEFINITIONS.
*MACDLC,

MADTC- POINTER TO MACRD DEFINITION TABLE TO STORE MACRO

DEFINITION BODY.
*MADTC,

MANTC- POINTER TO MACRO NAME TABLE TO STORE MACRO NAME.

*MANTC,

MDTP- POINTER TO MACRO NAME IN MACRO NAME TABLE.

*MDTP,

HOAPG- MUMBER OF ARGUMENTS IN THE MACRO CALL.

*HOARG,

* SAND- SPECIHL CHARACTER ’&’ TO INDICATE MACRO DEFINITION

ARGUMENT.

*SAND=0486.
’s STEKPT- STACK POINTER.
*STKPT. 5

*05=015,
*018=0610,
*01z2=a12,
*0IE=B3E,
*058=0850,
*0118=81108,
*0144=8144,
*02@5=03210,
*02@aBE=083720.

MACRC PROCESSOR:. ?

7 GET ARGUMENTS
EXEC,
3 » DEF, HEXT, .,
$ » DEF, 07, .,
NEXT:
GET ARGUMENT,
OFEMFILE,
es INITIALIZE ERROR FLAG
0<EFLAG,
77 INITIALIZE TEMPORARY AND LOCP CONTROL VARIABLES.

O«MDTFP,
0<MNOARG,
0<MACILC,
O0«FLAG,
0«KOUHT,
O«MADTC,
O1€MANTC,
77 STACK POINTER ’STKPT’ POINMTS TO THE TOP OF THE STACK. |
AHEG1«STKPT,
O0<«ITEMP,
O0¢JTENP,
LS ZERO FILL HASH TARBLE ‘HASHTE’.
MLOOF .
KOUNT=036 $ HNLOOP.
0«HASHTBLKOUNT 3, -
KOUNT+01€KOUNT,
MLOOP.
NLOOF .

DeKOUNT,
Ff ZEROD FILL MACRO DEFINITION TABLE ’‘AMACDT’, MACRO NAME

P g i

S —

e —— e

s

54

7z TABLE *AMACHT’ AND ARRAY ’S’.

CLOOF:
KOUNT=0144 ¥ START.
0«AMRCNTLO KQUNT 1,

0«SLKOUNT 1.
ELOOF:

ITEMP=012 ¢ DLOOP.
0¢€AMACDTL JTEMP 1.

JTEMP+01€JTENF,
ITEMP+01€«ITEMP.
ELOOP.

DLOOP:
O€ITEMF,

KOUNT+01€KOUNHT,

CLOOF.
START:

77 EXIT IF ERROR FLAG IS SET
EFLAG=01 $ CALL RSMB.
0«TAHG.
0«1,

a4 READ ASSEMBLY LANGUSGE INPUT TEXT.
O0«KOUNT,
AIHPUT,

Vs EXTRACT THE OP-CODE FIELD OF THE INPUT TEXT.
EATRACT,
A SEARCH MACRO NAME TABLE FOR MATCH WITH NAME IN OP-CODE FIELD
/7 SEARCH MODULE RETURNS FLAG VALUE, AFLAG=01 IF SEARCH
sz IS UNSUCCESSFUL, ELSE AFLAG=A.
01¢AFLAG,
SERRCH,
AFLAG=01 $ ADTMACRD.

77 * MACRO EXPAMSIOM PHASE *

SAYE MACRO CALL ARGUMENTS OM STACK
STACK,
START.

AOTMACRO
77 CHECK FOR MACRO DEFINITION PHASE.
¥ MACRO PSUEDO-OP

D2+#FLAG,
COMPRRE,

B S

L T

FLAG=0Z2 $ CONT.

77 MACRO PSUEDO-0OP NO

s QUTRUT THE ASSEMBLY LANGUAGE TEXT AFTER PACKING INTO
4 THE ARRAY ’‘EUFFER’ QF FORTY WORDS.

PACHK,

PUTCODE.,

0¢FLAG.

COMPARE,
7/ END PSUEDO-0OP ENCOUNTERD, PASS CONTROL TO ASSEMBLER

77 FOR FURTHER PROCESSING.
FLAG=0 ¢ CALL ASME.

START.
CONT:
77 * MACRO DEFIMITION PHASE * .
b4 & IMCREMENT THE MACRO DEFINITION LEVEL COUNTER

MACDLC+01€¢MACILC,

77 READ ASSEMELY LANGUAGE INPUT TEXT.
0«1,
AINFUT,
0«1,
Ved EXTRACT THE MACRO NAME FROM THE INPUT TEXT.
EXTRACT,

O<KQUHT,

’s COMFUTE THE HASH CODE FOR THE ENTRY.
HASH,
KLOOP:
7/ CHECK FOR COLLISION OF HASH CODE.
HASHTBL IHRSHPTR1=0 & JLOOP.
IHASHFTR+01«IHASHPTR,

KLOCP.
JLOOP.
s/ CHECK FOR MACRO MAME TABLE LENGTH
0208<{MANTC $ MAM. ;
s/ SAYE THE POINTER TO MACRO NAME TABLE IN HASH TABLE
MANTC«HASHTEBL IHASHPTR 1,
77 SAYE THE MACRO HAME WITH ARSSOCIATED POINTER TO MACRO
77 DEFIMITION TABLE IN MACRO HAME TABLE ’‘AMACNT’.
ALOOF:

KOUNT=0S5 $ FLOOP.
RESULTLKOUNT J«AMACNTL MANTC 1,
MANTC+01¢MANTLC,
KOUHT+01€KOUNT,

ALOOP.

FLODP.

]

3

AR TR PN N R S —————

56

7/ SAVE THE MACRC DEFIMITION TABLE POINTER IN THE MACRO
77 NAME TRBLE
MADTC«AMACNTIMANTC 3,

MAHTC+01€MANTE,

;s PREFARE MACFDG DEFINITION ARGUMENT LIST ARRAY WITH INDEX

s TO THEIR RELATIVE PJISITICN
FRARG.

EACK.

0«1,

s REAT ASSEMELY LANGUAGE INPUT TEXT, WHICH IS MACRO

Fy DEFINITION EODY.
AINPUT,

’s SUESTITUTE THE INDEX FOR MACRO DEFINITION ARGUMENTS.
SINOT.
D€KOLUNT,
s PACK EIGHTY CHARACTERS IN ARRAY ’SOURCE’ INTO ARRAY

s *BUFFER’ OF FORTY WORDS. :
PACK.

’s MACRO MAME CARD IS EMTERED IN THE MACRO DEFINITION TABLE

s MACRO PSUEDO-0OP
ELOOF.

s’ CHECK FOR MACRO DEFINITION TABLE LENGTH
020BE<HMADTC £ MAD.

’ SAYE THE MACRO DEFIMITION EODY IN MACRO DEFINITION

,r TRELE.

KOUMT=056 % GLOOFP.
BUFFERLKOUNT J«AMACDTLMADTC 1,
KOUHT+01€KOUMT.,

£.4 UPDATE MACRO DEFINITIOM TAELE COUMTER- MADTC.
MADTC+01€MADTLC,

ELOOP.
GLOOF:

i CHECK FOR MACRO DEFIMITIOM WITHIM MACRO.
0«1,
EXTRACT,
0Z€FLAG,
COMPARE,
FLAG=02 % CHECK.

77 CHECK FOR ’‘MEND’ PSUEDO-OP.
O1€FLAG,

COMPARE,

FLAG=0 $ SKIP.

BACK.
vs MEMD PSUEDO-OP YES
s DECREMENT MACRO DEFINITION LEYEL COUNTER.
SKIP.
o CHEC¥ FOR SAYING ALL MACRO DEFINITIONS.

MACDLC-01¢MACDLC,

TR YT IR

po Y S

57

MACDLC=0 % START.
< MACRD FPSUEDO-OF YES
BACKE.
CHECK:

7/ INCREMEMNT MACRO DEFINITIOM LEVEL COUNTER.
MACDLC+01«MACILC,
BARCK.
77 PROCESS ERROR CONDITION
MAN:
CZ+MESSAGELDLIA],
ERROR,
CALL ASHMB.
MAD:
03+«MESSAGELQ1B 1,
ERROE,

CALL ASME:

CLSEFILE.
JOBFILE,

EXEC,
» DEF, ENDPROG, .
» DEF,012,.,
» DEF, ASME. I,

, DEF, LUOBJECT. .
» DEF, LUQUTPUT. .
, DEF, LUPUMCH. .
IDEF)L?FHGEM
,» DEF. LGO, .
EMDFFROG:

R R R R R

e = =

SUBROUTINE, AIHPUT

/A RO A o ok st Ok b o ok o e s i o st ok e o olOR R R sk ok b ok ok ok sk skl s ok Rz O kol ok e ko g RO Oj ook R %
Y d

ok PURPOSE OF THE MODULE

g4

ok TO SUBSTITUTE MACRO CALL ARGUMENTS FOR MACRO
sow DEFIMITION ARGUMENTS IMN CASE OF MACRO EXPANSION PHASE
sk OF TO RE&4D ASSEMBLY LANGUAGE INPUT TEXT

/S

sk USAGE

Pl a

Ve AINPUT,

Vs

’ 7k MODULES REGUIRED

Y&s

e AGO

’k AIFGO

/S A AlFS

r7% HTRACT

P ERROR

ok SUZARG

s7% T UNPHK

Ygad

Sk SYSTEM MODULES RERUIRED S i,

LK 3R BN BN BE SR R BK B BE R B NE CBE BE BN B IR B SR AE

58

P
72k
7S A¥

7 R oA s b s ok e s ok s b o o BRI SR b b o ob e ook e o sl o e sk s ok o ke sk e kool e ik e ke skl ke s koR ke o ook sk ke ok

A

LS

7/

7

‘s

FUTCOLE

EXTERNALS
"PLTHY,
"P.OUT",
WRLHLT?
AGOS,
AIFGO,
AIFS,
AMACTDT,
AHEGL,
BLANKBLANK,
BUFFER.
BUFF LIM,
COMFARE,

EXTRACT,
EFLAG,
ERROR,
FLAG.

II
LUIHF,
LuouT,
MACDLC,
MESSAGE,
NORRG.
PRCK,
PUTCODE,
RESULT,
SOURCE.
STHEFT,
SUBARG,
TARG,
UHPALK,
D)

01)

02.‘

05,

o1a,
0114,
0zaa,

i

LOCALS

GFLAG- FLAG TO INDICATE A CALL TO PSUEDO-OP’S AIF,AGO

*GFLAG,
TEMPORARY VARIABLES
IHDEX,

IFTR,
ITENP,
KOUNT,

PTR- A TEMPORARY VARIABLE USED

MACRO DEFINITION BODY.

*PTR,

STHR- SAVES ASCII CODE FOR THE
STAR=852,

TO SAVE THE POINTER TO

CHARACTER **’

i
-

® ¥ %

59

L

AR
s 7

77
L

77

v 4

A
Pl

FPROGRAM

AINFUAT. 7

INITIALIZE TEMPORARY YARIAGLES
QeITEMP.

O« INIEX,

RECUR:
EXIT IF ERROR FLAG IS SET
EFLAG=01 & EXIT INPUT.
CHECK FOR STACK LIMIT
023B<{STKPT $ OVERFLOW.

CHECK FOR MACRO EXFAMSION PHASE. YALUE OF STACK

STKPT IS -1
QeKQUNT,
STEFT=ANEG1 % EXFAND.

STEPT*+01€«ITEMP,

RETRIEVE THE MACRO
SLITEMFI€IFPTR,
SLITEMP J+BUFF LIMeSLITEMP 1,

TRAHSFER IHPUT ASSEMELY

DEFIMITIOHN THELE TiO ARRAY

SLOo0P:
KOUNT=BLUFF LIM $ ALCOOF.
AMECTTIIPTRI-EUFFERL EKOUNT 1.
IPTR+01<«IPTR
KOURT+01«KOUHT.,
BELCOF.
ALOOF .

UNFAK
UHFaEY.
O«TAG,
0«1,

EXTRACT THE OP-CODE FIELD.
EXTREACT,

CHECK FOR MEHD

‘BUFFER’

THE CONTEMTS CF THE RRRAY

FSUETDO-0OP
O1«FLAG,
COMFARE,

FLAG=0 $ CHEDK. ;
SUEBSTITUTE THE ASSOCIATED MACRO CALL
MACFO DEFINITION ARGUMEHTS.

SUBAFRG,

0«1,

0Z2<GFLAG,

CHECK FOR PSUEDO-0OF’S

AIFGO,

GFLAG=01 & CaLL.

GFLAG=0 % CALL AIFS.

EXIT IHPUT.)

PROCESS
CALL AIFS.

IPTR«PTR,

~IFs,

RECUFR.

FROCESS

"RIF’, *AGD’.

*AIF’

FSUEDO-GOF

"AGD’ PSUEDO-0OP

POINTER

DEFINITION TABLE POINTER.

LAHGUAGE TEXT STORED IN MACRO
OF FORTY WORDS.

‘BUFFER? .

ARGUMENTS FOR THE

%;wfg. o=
- T
g
AT =

60

CALL:
IPTR<PTR,
AGDS,
RECUR.

CHECK:

&4 CHECK FOR MACRO CALL WITHIM MACRO.
MACDL.C=0 $ POP.
EXIT IMPUT.

7’ POP BACK TO PREVIOUS STACK FRAME.

STKPT¢INDEKX,
STKPT-SL INDEX J¢NOARG.
NOARG-01€¢NORRG.,
S[L INDEX J€STKPT,
RECUR.

EXPAHD:

77 UNPACK THE SOURCE INPUT OF EIGHTY CHARACTERS

0«KOUMT., :
s BPLAMK FILL THE ARRAY ’BUFFER’.
CLOOF:
KOUNT=BUFF LIM $ DLOOF. ;
ELANKELANK«BUFFERL KOUNT 1,
KOUNT+01€K0OUNT,
CLOCOP.
DLOOP:
77 READ ASSEMELY LANGUAGE INPUT TEXT.
YBUFFERZ
L UH®ACK THE COMNTENTS OF ARRAY °*BUFFER’.
UHP ALK,

O« IHLEX,
s PROCESS COMMENTS
SOURCEL INDEX 1=STAR & COMMENT.
EXIT INPUT.
! COMMEMNT .
A H PACK THE CONTENTS OF ARRAY ’SOURCE’.

PACK,
s OUTPUT THE COMMENT STATEMENT ON TO THE OUTPUT FILE.

PUTCODE,
EXPAND. ¢

OVERFLOW:
2 PROCESS ERROR CONDITION
0S¢MESSAGEL 0183,
ERROR,
EXIT IMPUT. ,

0«1,

s gl T PR Y

o

e

SUERQUTINE, A&IFGO

/7 ok b R sk ok ok S ok v ok OB kOB b o ko8 koK S b ok skok s kok KOk kR ok ok ok ko ok o kol lkoR kool ok b ok

¥ % E R R EREREELER

‘ALF’,

s
s FPURPQSE OF THE MODULE
7%
e TO PROCESS PSUEDO-OP ‘AIF’.
SIHE JAIF’, PAGO’.
7ok
77k USAGE
s
sk AIFGO,
77k
e MODULES REQUIRED
Pt
7 SE ERROR
. EXTRACT
7ok)
7 334K oK K o sk sk o oK oK oK 3K s 3k o o oK oK K e 35 6 b ok 3K K 3K S o 3o K R K K R ok s e o oK R o o ok o o ok ook ok o ok sk ok
i EXTERHNALS
EFLAG,
ERROR,
EXTRECT.,
s GFLAS- FLAG WALUE TO INDICATe CALL TO PSUEDD-OP’S
i YAGO’ .
24 GFLAG=1 INDICATES CALL TO PSUEDO-CP ’AIF’
i GFLAG=71 IMDICATES CALL TO PSUEDO-OP ’AGD’
GFLAG.
II
LUIHNP,
LuouT,
MESSAGE,
RESULT,
SOURCE,
0,
D1,
0z,
032,
oS,
014,
4 LOCALS
CFLAG,
s IFGO- ARRAY SAYING CHRRACTER A 1 F G O
IFGCLSI=8161,0111,0168€, 8107, 8117,
s/ TEMPORARY VARIAELES
ITEME,
KOUNT.,
’7 PROGRAM
AIFGD. 7
D«CFLAG,
0«1,
4 INITIALIZE TEMPORARY VARIABLES
O0<«ITEMP,
O«IKOUNT,
77 EXTPACT THE OP-CODE FIELD OF SOURCE INPUT.
EATRACT,
/7 EZIT IF ERROR FLAG IS SET
EFLAG=01 $ EXIT RIFGOD.
77 COMPARE FOR MATCH WITH PSUEDO-OP’S ’AIF’, ’AGO’
ALDOP.

WOUNT=0Z $ SET FLAG.

RESULTIKOUNTI=IFGOLIVEMP] $ BLOOP.

i

SYRr TIPSR AL R g (Y 4P A

62

/¢ N3T PESUEDO-OF’S *AIF’,
KOUNT=0 $ EXIT AIFGO.
CFLAG=01 $ EXIT AIFGO.
O1+CiLAG,

N2e1TEMF.
ALOGE.

sLODF.
ITEMP+01«ITENF,
KOUNT+01€KOUNT,
ALOOP.

SET FLAG.
ITEMP=0S $ SET GO.

/7 RETURN FLAG YALUE FOR
0¢GFLAG,

EXIT AIFGO.
SET GO.

/s RETURN FLAG VALUE FOR

01¢G7LAG,
EXIT AIFGO.

’

SUBROUTIHME, AGOS

L o ok b ok sl b o ok o e ok b o sk ok R BB ok o o ol ok s o ok s o sk ke b e e ook sk s A o ok ke ok o ok K AR ok ol s ok o ok ok ok ok ok

‘AGD”

’

*AIF?

‘AGO’

PSUEDO-OP

PSUEDO-0OP

Sk

77 PURPOSE OF THC MODULE

Y

7lE TO PROCESZ UNCONDITIOHAL BRANCH PSUEIO-OP ‘RGO’
/Il

77 METHOD

e

7% SCAM MACRO DEFINWITIOM BODY FOR MATCH WITH LABEL
e SFECIFIED IH PSUEDC-OP STATEMENT AGO.

LA

'S4 . LZAGE

S

e ACOS,

s

ge: MODULES REQUIRED

/SR

S A

LS

Tad L= aK

/S

i

27 EATEHALS
AMACDT,
BLAHKBLANK,
BUFF LIM,
BUFFER,
COMPARE,
EFLAG,
ERROR,
EXTRHCT,
FLAG,

I,
LUINP,
LuouT,
MESZHGE,
PTR,
RESULT,

SOURCE,

% 3 F F F A XXX E XX EXEEEE RN

PR T I

SRR IR L TR

63

STKFPT,
TAG.
UMFAE,
O,
Q1.
23,
a13a.
ni1a,
7’7 LOCHLS
& TEMFPORARY VARIAEBLES
ITEMF,
JTEMPF,
KQUNT,
i LAEZL- ARRAY TO SAYE THE LABEL SPECIFIED IN AGO PSUEDO-OP
s’z ; STRTEMEHNT.
LABELLS 1.
C ¥ PROGRAM
AGOE: 72
0+ THG,
0€KOUNAT,
Fs EXTRACT THE LABEL SPECIFIED IN ’AGJ’ PSUEDO-OP
EXRTRACT,
/- ExIT 1IF ERROR FLAG IS SET
7 ZERD FILL ARRAY ’LABEL’
ALOOP:

KOUNT=0S £ BLOOP.

0«LABELLKOUNT 1.

KOUNT+01«KOUNT,

ALOOP. '
ELOOP:

O€KOUNT,

77 SAVE THE LABEL SPECIFIED IH AGO PSUEDO-0OP STATEMENT IN

77 ARRAY ‘LABEL’
CLOOF:
KQUNMT=0S $ DLOOP.
RESULTLKOUNT J«LPBELLKOUNT 1,
EOUNT+01€KOUHT.

CLOOP.
DLOOF:
O«KOUNT,
S SAYE THE POINTER TO MACRO DEFIMITION EODY
Vs DEFIMITION TRELE.
PTR<ITEMP,
s SCAH FOR THE LABELED STATEMENT.
LAE:

EFLAG=01 % EXIT AGOS.
AMACDTL ITEMP J=ELANKBLANK ¢ GLOOP.
ITEMP«JTEMP,

ELOOP:
KOUNT=BUFF LIM ¢ FLOOP. ;
BLAMVELANK«BUFFERL KOUNT 3,
AMACDTL JTEMP J«BUFFERLKOUNT 1,
JTEMP+01€JTENMP,
KOUNT+01€KOUHNT,

IN THE MACRO

ELOOP.
GLOQOP:
77 UPTIATE POIMTER TO POINT TO NEXT ASSEBLY LAHGUARGE
£ STHTEMENT IH THE MACRO DEFIMNITION BODY.
ITEMP+BUFF LIM«ITEMP,
D«KOiINT,
LAE.

R TEIVGS ORI A T b e s

oy
<

64

TLOOP:
UHPAK,
QeKOUHT,
TR
EXTRACT,
CHECK FOR CMINLC PSUEDO-CP
:+FLAG,
COMPARE,
FLAG=D & NOLSEEL.
i CONPARE FOS MATOH WITH THE LABEL SPECIFIED IN AGO
v FSUEDO-OF STHTEMENT
COMF.
KOUNT=05 $ UPDATE. ;
LABELLKOUNMT J=RESULTLKOUNT] $ CONT.
ITEMP+BUFF LIM¢ITEMP,
0€KOUNT,
LAB.
COMT:
KOUNT+01¢KOUNT,
Carpr.
77 UPDATE POIHNTER TO MACRO DEFINITION TAELE ON STACK.
UPDATE.
ITEMP+BUFF LIM¢ITEMF,
STKPT+01¢JTEMF,
ITEMP«SLJTEMP L
EXIT AGOS.
NOLABEL:
014MESSAGELO1A D,
ERROR.
EXIT AGOS:

SUBROUTIHE, AIFS
7 e ko sk b o K oK R o R o b e ok R o ot o oK R T oK A b o ROR T AR RO R R R ROK

oL *
e PURFOSE OF THE MOLDULE *
/7R *
s TO PROCESS PSUEDO-QOF ‘AIF’
aa *
/S METHOD »*
o4 d »”
s EYALUATE THE FREDICATE, A TRUE CONDITION RESULTS IN =
e BRAHCH TO THE LAZEL SFPECIFIED IN THE AIF PSUEDO-OP *
o4 STATEMEHT BY UPDATING THE POINTER TO MACRO DEFINITION=
SIH BODY SAYED IW MACFEO DEFINITION TABLE. *
sk A FALSE CONDITIOH RESULTS IH CONTINUARTIOHN OF »
s PROCESSIHG. *
FF *
e USAGE *
I Ea *
s AIFS, *
ead »*
’oH MODULES REQUIRED *
V&4 3 *
e ERROR
s EXTRACT *
sk IFTEST =
s PELATIONAL %
Ve o »*
7 AR AR O b e e e A A R ok o b o sk Ok e ok ke e o ol ok R R R K K K b ok 3k ke sl ok 3¢k ok ok S ol o ok oK 3k
X EXTERHALS

EFLAG,

65

> o
r &
&7

L

v

4

F

s s

ars

77/
7/

e
P&
7

7

e

ERROR,
IFTEST,
MESSHGE,
SOURCE,
RESULT,
RFLAG.
EXTRACT,
RELATIONAL,
AGDS.

TAG.

Qe&.
oia,
o1z,
LUINF,
LuauT,

LOCALS

AIFFLAG- A FLAG TO INDICATE WHETHER EVALUATED PREDICATE

IS TRUE OF FALSE

ASCII CODE FOR THE CHARACTER
LEFT PARANTHESIS=G54.

OFPERAND- AH ARRAY
#0PERANDL 12],

ASCII CODE FOR CHARACTER
RIGHT PARANTHESISsG3I1,

TEMPORARY VARIABLES
KOLUNT,

s

ITEMP,
CHECK FLAG,
LOGICAL.,

LOCAL OCTAL
*02=01a,
*09=011,
FROGRAM
AlFs:. 2

INITIALIZE TEMFORARY VARIARELES
Ne.J,
0«ITEMF,

O«LOGICAL,
O0«RFLAG,

1

FOR SAYING TWO

+y?

CONSTAMTS

BEGIH:

ERLY IF
EFLAG=01 %
01€TAG,
0«KOUNT,
EXATRACT,

EFEROR FLAG IS SET
EXIT AIFS.

OPERANDS OF A PREDICATE

PROCEED WITH THE EVALUATION OF THE PREDICATE IF LEFT

PARANTHESIS IS ENCOUNTERED.

RESULTLKOUNT J=LEFT PARANTHESIS $ SCAH.
EFPAHCH TO LABEL RETURN TO TAKE APPROPRIATE ACTION
OH EMCOUNTERIMG RIGHT PARAHTHESIS.

RESULTLKOUHT J=RIGHT PARANTHESIS $ RETURN.

RETRIEYE THE OPERATOR

RELATIONAL,

BRGMCH TO LABEL SCaN IF RELATIONAL OPERATOR.

PR YN T A e e

66

RFLAGLOE § SCAH.
L7 SHYE THE LOGICAL QFERATOR.
RFLAG«LOGICAL.
BEGIM.
ScAaM:
el DUNT,
o TERD FILL THE ARReRY OFERAND

L 4) WS
EOUNT=012 & START.
Q«DFERANDL KOUMT 1.
KOUHT+01€KQUMT.
ZERO.
STAET:
£ INITIALIZE TEMPORARY VYARIAEBLES
O«KEQUHT.
0*_')
Q=ITEMP,
LGOFD:
01€TAG,
O OUNT,
V4 EATRACT THE OPERAMD OF THE PREDICATE
EXTRACT,
v SAYE THE COFERAMD IH THE ARRAY OPERAND
LOOR 1
KOUNT=0S $ EXITL1.
RESULTLKOUHNT J¢#OPERANDC ITEMP 1,
KOUHT+01€KOUHNT.
ITEMP+01€ITEMF,
LOOFL.
EXITL:
01«TAG.
J=01 % EXITZ2.
J+01€ 4,
EATRACT THE RELATICHAL OFERATOR
EXTRACT,
s RETRIEVYE THE FLAG VALUE 0OF THE RELATIONAL OPERARTOR
FELATIOMAL,
LOAFD,
EXITZ2:
77 IF LOGICAL OPERATOR ‘AND’ BRAHCH TO LABEL SET AND FLAG
LOGICAL=02 % SET AHD FLAG.
’7 IF LOGICAHL OFERAMTOR ‘OR‘ BRANCH TO LABEL SET OR FLAG
LOGICAL=09 % SET OF FLAG.
rs CHECK FOR SATISFYINMG THE CONDITION
IFTEST.
a4 SAYE THE COHDITION FLAG VYALUE
AIFFLAG«CHECK FLAG,
BEGIH.
CET AHD FLAG:
IFTEST,
CHECK FLAG=01 % COMTL.
0«CHECK FLAG,
BEGIH.
COMTIL:
HIFFLAG=0 % CONT3. .
BEGIH.
CONTZ
O«CHECK FLAG,
EZGIN.
SET CF FLAG:
IFTEST,
JATFFLAG=01 $ COHNTZ.
CHECK FLAG=01 $ CONTZ2. ;

ST A O T ————

s

67

BEEGIH.

CONTZ2:

01€CHECK FLAG,
BEGIN.

RETURH.

CHEZK FLAG=D1 % CALL AGDS.

;

FREDICATE EVALUARTED TO FALSE, RETURN FROM THE MODULE

EXLT A&IFS.

PREDICATE EYARLUATED TO TRUE.

CALL AGZS:

AGCS.

ERIT AIFS:

SUEROUTINE, RELATIOHNAL

BRANCH TO AFFRJIPRIATE LABEL

A R ok K ok R e kR A e o o o ook o o ol ok s s Kok b ook sk ok ok s b sk ok ok o ok skokook ok ok ok ook sk ok
P . _

PURFOSE OF THE MODDULE

TO RETURH AFPROPRIATE FLAG YALUE FOR RELATIOHAL AND
LOGICAL OFERATORZ(HME, EQ, GT, GE, LT, LE. AND, ORD

USAGE

RELATIONAL.

MODULES REQUIRED

ERROR

'

% %R R HEE XD R XN

*

/f#*$***************************ﬂ***************#***********4**

77

Y5 4
e
rad

&

LA

EXTERNALS
EFLAG.
ERROR,
LUIH=,
LuauT,
MEZSHSE,
RESULT,
a, %
01,
0z,
03,
o4,
03,
0g,
03z,
0z,
019,
LOCALS
RFLAG- SAVES APPROFPRIATE

LOGICAL OPERATORS.

*RFLAG,

TEMPORARY YARIABLES.
ITEMP,
KOUNT,

FLAG VALUE FOR -RELATIONAL AND

’OPER’- AH ARRAY WITH CHARACTERS A D EGLNOCQRT
OPER[191=0101.90154,4165,0107,0114,0116,06117,0121,0122,0124,

FROGRAM
RELATIONAL: 7

"0«KOUNT,

TR Y ST VRN P R TIPSOt SAar UL et s

.
I

- 68

{ (A RELATIOHAL OPERATOR *GE‘, RETUNH RFLAG=62.

FECULTIKOUNT 3=0PERLKHUMT] & SET AND FLAG.

NE<ITEMP,
RESULTLKOUNT I=0PERC ITENMP] $ SET OR FLAG.

T ¢

FECULSIRKOUNT J=0PERE 172453 3 LOBPI. 3
NZ«IVEMP,
PERRLTL KOUNT I=0PERCITENRP] $.4.0092..

Q4 ITEMR,
FESULTLKOUNT 1=0PERL I 7EHP
s RELATIONAL OFERAT

01<RFLAG.

EXIT RELATIOHNAL.

LCOP3.

01<KOUNT,

02¢ITEMP,

RESULTLKOUNT J=0PERTITEMF] $ LOOPS.

Td RELATIONAL OPERATOR ‘LT’, RETURN RFLAG=84.

04<RFLAG.,
EXIT RELATIONAL.
LOOPS:

< RELATIOHNAL QOPERATOZ ‘LE’, RETURN RFLAG=@S.

05 «RFLAG,
EXIT RELATIOHNAL.
LOoP2:
01 €KOUNT,
D2<«ITEMP,
PESULTLKOUNT J=0FERCITEMF] $ L 0O0P4.

/7 RELATIONAL OPERATOR ’GT’, RETURN RFLAG=83.

O3 <¢RFLAG,
EXIT RELATIOHAL.
LOOPS.

NzZ«<Rr LAG.
EXIT RELATIOHAL
LOOP1.:

i

d ;
E’, RETURN RFILLAC=81.

S RELATIONAL OPERATOR ‘EQ’, RETURN RFLAG=8.

0<RFLAG,
EAIT RELATIOHAL.
SET CR FLAG:
i d LOGICAL OPERATOR “0OR’, RETURH RFLAG=Q9
05 <RFLAG,
EXIT RELATIOHAL.
SET AHD FLAG:
77 LOGICAL OPERATOR ’@END’, RETURH RFLAG=88.
02«RFLAG,
cAIT RELATIOHAL:

’

SUEROUTINE, STACK

7 A o b oK ok e ok st b ok ook ol o K e b ok ok ik ol ok sOR b o ok ok ke sk ke sk ook o e sk R i R R sk R oboT i g ik e i e e

Vg i
oy PURPOSE OF THE MODULE -
7w § b
sk TO SET UP MACRO CALL ARGUMEHT LIST AND TO HANDLE MACRO =
s CALLS WITHIN MACRO e
e &
LTk URSGE s
i d
ssv T STACK, il
s S *

69

WITH LAST IN

Il
)

FIR IR IR IR TR

.

A/ A e e s hon ok ook e RO K R R sk R o s s ok s 0k s ok o v sk ok ok ok ok ok 6 ok ROk ek ok R s ok i ko o ok ok sk skoleok

£k METHOD
B o
e STACK IS IMPLEMENTED USING AN ARRAY ‘S’
e FIRET OUT STRATEGY.
Lk
e MQDULES RERQUIRED
P s :
sk ERROR
LI EXTREACT
P
P EXTERHALS
EFLaG,
ERROR.
EXTRACT,
I,
LUINF,
LuouT,
MITF.,
MESSAGE,
HORRG,
RESULT,
STKPT,
TARG,
0.
o1,
0z,
035,
011a,)
rFr LOCARLS
s TEMPORARY VARIABLES
ITEMP,
KQOUHT,
’7/ €S- AH ARRAY FOR IMPLEMEMTING
#S[z0a 1,
77 PROGRAM
STACE:. 7
a4 SAVE THE STACK POINTER.
STHPT+NOARRG«ITENF,
ITEMP+01<«ITEMP,
STKPT«SLITEMP 1.
e
ITEMP«STKPT,
STHKFT+01€ITEMF,
77 SAVE THE
MDTP+SCLITEMF 1. i
ARGESUE:

STARCK

SAYE THE STHCK POINTER FOR THE PREVIOUS STACK FRAME

aeTAG,

I=0118 ¢ EXIT STACK.

MACRO DEFINITION TABLE POINTER IN THE STACK.

* X % % ¥

|
|
|

AR ANl e 4

i
L:

S FESEARE Tl s g S S

70

47 EXTRACT THE ACTUAL ARGUMENT FROM THE MACRC CALL STATEMENT.

EXTRACT, £
CeRDUNT,

oz IF ALL THE MACRO CALL ARGUMENTS ARE SAVED ON THE STACK.

A& EXIT FROM THE MODU _E

RESULTIKOQUNT 1=0 & EXIiT STACK.
aL00F:

KOQUNT=0S $ BLOOP.

ITEMP+01€ITEMP,

O0«SCITEMP 1,)

L7 SAYE THE MACRO €ALL ARGUMENT IN THE STACK.
RESULTIKOUNT J«SCITEMF 1, ’
KOUNT+U1€KOUNT,

ALOCF.

ELOOF. :
ARGSUB.

EXIT STACK:

44 SAYE THE NUMBER OF ARGUMENTS IN THE MACRO CALL.
TEMF«NOARG.

SUBROUTINE, HA&SH
77 A s ok s S S o R o R o ok o o R Sk oK ok st e o o o R s KRR R 3 3k 3R oK B B o o 60 SR B oK o

L& ¥
s PURPOSE OF THE MODULE *
os *
s # TO GEHMERATE HASH CODE FOR THE ENTRY TO BE SEARCHED IN *
s IN MACRO NAME THELE. #<
77% *
/% METHOD N
Va4 d *
/0 DIVISION METHOD *
7% *
7% USAGE *
&Pa *
oa HASH, *
S *
/7% M2DULES REQUIRED *
a d *
s ERROR -
Vol i *

/7o oo e sk AR b R R R b b AR o K R e o R o sk sk st R o 3K K 3B ok ok b e ke ok s ok R b s sk ok iR o ok ok ok
EXTERHALS

EFLAG, }
ERROR,

~LUIHZ, 3
LUDUT,]

RESULT. 2

Q.
01,
0S.
03,
a4 LOCALS
'<s IHARSHPTR- 3AVES HASH CODE GENERATED FOR THE ENTRY
#IHAZHPTR.,
P TEMPORARY VARIARRBLES
ITEMF,
JTEMF,
KOUNT,
MESSAGE,
P
5 PROGRAM
HASH:. ?
v INITIALIZE TEMPORARY VARIAEBLES.
0«ITEMP,
O«KOUNT,
44 OBTAIM THE POINTER TO LAST CHARACTER OF THE ENTRY.
ILOOF.
KOUHT=0S5 ¢ H_OOP.
RESULTIKOUNT J=0 $ HLOOF.
KOUHT+01<KOUHT.,

ILOOP.
HLOOP:
KOUNT-01€KOUNT,
77 COMPUTE THE SUM OF ASCII CODES OF FIRST AND LAST
7/ CHARACTERS OF THE ENTRY.

RESULTLO J+RESULTLKOUHNT J«ITEMP,
77 COMPUTE THE REMAINDZR BY DIVIDING THE ABOVE SUM
] BY TABLE LEMGTH.
e CINTEGER DIYISION IS USED)

ITEMP/0Z2«JTENMP,

JTEMP#035«JTEMP.

ITEMP-JTEMP€IHASHPTE.

SUBROUTINE, EXTRACT
77 o ok o o e o o e o s s o ok ook o e b ob ok o o o o ok S o oo oK s o b ok ok ok ok ok 3K K okl ok Sk ok oK K ok

SH £
S E PURPOSE OF THE MODULE *
7/ TO EXTRACT SUEBSTRING FROM EIGHTY CHARACTERS SAVED IN *
SIH ARRAY *SOURCE’. -
4 d *
e METHOD *
s 3 *
7k SCAM THE EIGHTY CHARACTERS FROM THE POSITIOM INDICATED =
R BY POINTER ‘1’ UPTILL A DELIMETER IS ENMCOUHTERED. *
SIH USAGE *
Y@ s d *
vL EXTRACT, *
s S *
77% MOTULES REQUIRED *
77w *
(4% ERFOR *
’oK SPCHR *
SR *

77 AN o ok e s o o ok O O R R A RO ok ok e ok RO Rk S s sk ok o sk ok R o ok ok Sl ok R KR
L -EXTERHALS

72

V4

v

A
ZL

Fo¥ &
7x

7L

£ L

ELAMKELANK,
DOLLGR,
EFLAS,
ERROR,

LUIMF.

= .Ir ,‘
SOURCE.

SFCHR.
TAG.
o,

01,
03,
014,
o11a,

LOCALS

*COHCT=042,

SAve ASCII CHARACTER CODE FOR THE CHARACTER

COMMa=654,

TEMPORARY FLAG VARLUE

FLAG,

Bl W
2

I- POINTER TO POSITION OF CHARACTER TO BE EXTRACTED FROM
EIGHTY CHARACTER INPUT

*I}

ISC- VARIABLE TO SAYE ERCH INPUT CHARAQCTER IW ORDER TO

FIHD ANy

*1SC,

TEMFORARY

ITENP,
KOUHT,

RESULT- AN FOR SAYIMG EXTRACTED SUEB-STRING.

*RESULTLS 1.

SFLRG- FLAS

*EFLAG,

i

PROGRAM

EXTRACT. ?

O«KOUNT,

SPECIAL CHRRACTER IN THE IWPUT

VARIABLES

SOURCE

YALUE 7C INDICHTE A SPECIAL CHRRACTER

IMITIALIZE THE ARRAY RESULT

AINTZ:

KOUHT=0S ¢ START.

O<«RESULTLKOUNTJ,

KOUHT+01 €K OUNT,

AINTZ.

START.

O«KOUHT,

73

Q0 « FLAG,
ANAMESETUF:

4 EMIT IF ERROR FLAG IS SET
EFLAG=01 % EXIT EXTRACT.
I=0113 $ EXIT EXTRACT. ;
QeSFLHAG,
£ ERAHCH TO APPROPRIATE LABEL ON ENCOUNTERING DELIMETERS
KOUNT=0S & EXIT EXTRACT.;

SOURCEL I J=BLANKBLANK $ 3SKIP. ;
SOURCELI1=COiMA $ BIMCT.

e SAYE THE CHARACTER IN ISC
SOURCEL I J&ISC,

S CHECK FOR SPECIAL CHARACTER
SFPCHR.

SOURCEL I J€RESULTIKOUMT 1,

I+01«ITEMP,
77 CHECK FOR THE BEGINING OF MACRO DEFINITION ARGUMENTS
SOURCEL ITEMP 1=SAMD & AIMNCT.
SOURCEL ITEMF I=DOLLAR $ AIHNCT. =
TAG=3d & ALOOF.

s/ ERANCH T AINCT IF SPECIAL CHARACTER
SFLAG=01 $ RINCT. ;
ALOOP:
7t SET FLAG VALUE FOR HOORDINARY CHARACTER
01< FLAG,
& INCREMENT FOINTER TO THE POSITION OF THE CHARACTER
I+01 <1,

KOUHT+01 « KOUNT,
AHAMESETUP.

EINCT:
TAG=0 % SKIP. ;
SOURCEL I J¢RESULTLKOUHT 1,
ATNCT.
I1+01€1,

s FETURM EMCOUNTERED SPECIAL CHRRACTER
FLAG=0 $ EXIT EXTRACT.
0<SFLAG,
O«RESULTLKOUNT 1,

I1-D1¢1,
SKIP:

| % DELIMETER ENCOUNTERED, RETURHN SUB-STRING
! FLAG=01 % EXIT EXTRACT.

; I+01«1,
N CONMTINUE SCAHNING IKPUT SOURCE STRING
AMARMESETUP.
EXIT EXTRACT:

DeTHG,

’

.gvmw»* VNG IR S R et e e

74

SUBROUTINE, SPCHR

o e oo ke o &*****#*?*}”************#***************#*************

7 FIURPOSE 0OF THE MOLULE

TO RETURH APFROFRIATE FLAG VALUE FOR SPECIAL
‘CHARACTER.

USAGE

SFCHR,

sk
22
£
ok
"k MODULES REGUIRED
#
& ERROR

&3

*

&
7S
ey

§rey
7
&7
gt

2

7

EXTERNALS
IOLLAR,
EFLAG,
ERRCOR,
I15C,
LUTIHP,
LuouT,
MESSAGE,
SAMND.
SFLAG,
0.

‘:]1)

s LOCALS

~
x

B E XL EREEREREE RN

*
*

e ok ok e o ok R b b o o ok R ROk ke o ke ok s ok e ook ok ok ook e ok ok o ok o8 sk ol K ok ok ok ko ok R sk e e o oo ok o K

s ‘CHR* = ARREAY WITH TUENTY SIX ASCII SPECIAL CHARACTERS.
',[”F] @40, 041, 6842, 843, 044, 845, 34, 847, 850, »51. 652, 853, 854,

b TEMFORQRY VARIRELZ
KOUNT,
7 TEMFCRARY COMSTAMT.
031=221,
77 PROGRAM
SPCHR:. 7
0«5FLAG,
7/ IF SPECIHL CHARACTER IS5 AMFERSANDC&) RETURN.
ISC=SAND $ EXIT SFChR.
ISC=DOLLAR % EAIT SFCKHR.
0«KOUHT,
ALOOP:
4 IMPUT CHARREARCTER IS NOT A SPECIAL CHARACTER. RETURN
KOUNT=021 $ EXIT SPCHR. ;
CHRIKOUNTI=1ISC $ SET FLAG.
7urt IHNPUT CHARACTER IS A SPECIAL CHARACTER, RETURHN
P 4 FLAG VALUZ, SFLAG=061.
KOUHT+01€KOUNT.,
ALOOP.
SET FLAG:
01«SFLAG,
EXIT SFPCHR:

CURROUTINE, ZIMPARE

2,874, 675, 87, 677, 8188, 81323, 8134, 6135,

U TR o bt o~

75

o

A,

{837

R,

0‘

#7277 AR N R R B e O R OR R R AR R R OR T K R R R sk ke s R R K b kR B P kb 4R ok RO R K R B ook

E,

*

¥ O® X % £ ¥ R FF E R

*

NJ

P
7 PURPOSE 0F THE MOIDULE
7%
s T& RETURH APPROPRIATE FLAG VALUE FOR PSUENO-OFP’S
% "MACROY, MEND’., ‘EMD’.
/A
Ak UZAGE
P
EE COMPARE.
o
S MODULES REZQUIRED
7k
7O ERROR
Ak
2 sk sk o ok e ob b sk o ok ok sk ok o 3K oK 3K oK S R ok 3K ok K oK K o 3 oK ok ok o s oK 3K R ok ok s ok o ok sk o8 3K o e o ook R sk
Ves EXTERNALS
EFLAG,
ERRGRE.
FLAG:
LUINP,
LUoUT.,
MESSAGE,
RESULT,
0'
01,
03,
04,
05,
0%,
014,
s LacaLs
77 IHNITIALIZE ARRAY CHAR WITH CHARACTERS M,
CHARL21=6115,0161, 8143, 0122, 9117, 0105, 0116, @184,
s TEMPORARY “ARIABLES.
CHECEK,
Ik,
KOUHT,
PROGRAM
COMPARE: ?
4 INITIALIZE TEMPORARY VYARIAELES
D«KOUHNT,
0«IK,
/7

JUrMF TO ELOOP IF COMPARISON 1S FOR PSUEDO-OP

- FLAG=0 $ ELOOP.;

END

*

D

Aok,

MIGRNITE 4y st

76

s JUMP TO CLOODF IF COMPARISON IS FOR THE PSUEDO-OP MEND

FLAG=01 & CLOOP.
04 «CHECK,

ALQOPR.

s CHECK FOR MACRO PZUEDO-O0F, RETURN FLAG=6 IF SUCCESSFUL

¥ KQUNT=CHECK % EXIT COMPARE.
RESULTIKOUNT J=CHARL IX] § BLOOP. ;
01¢FLAG:
EXIT COMPARE.

ELOOF:

KOUNT+01€KOUNT,
IK+01«1IK,
ALCGOR.

MEND PSUEDO-OP,

£ CHECK FOF

/7
CLOOF:
D«FLAG.
041K,
03«CHECK,
REZULTIKOUNT I=CHARRLKOUHT] % DLOOF.
01<FLAG,
EXIT COMPARE.
LLOOP.
FOUHT+01«KOUNT
IK+01€1K,
ALOOP.

€7 CHECK FOR END PSUEIDO-0OP, RETURN

L7
ELOOP:

O€¢FLAG,

05¢IK,

03Z+«CHECK,
GLOOF:

KOUHMT=CHECK % EXIT
FESULTLKOUHT I=CHARL IK 3

C2MPARE.
$ FLOGP. i

"D1€FLAG,

FLAG=81 IF UNSUCCESSFUL

RETURN FLAG=6 IF SUCCESSFUL

FLAG=81 IF UNSUCCESSFUL

i

FLAG=8 IF SUCCESSFUL
FLAG=81 IF UNSUCCESSFUL

Jf e

77

EXIT COMPARE.
FLOOP:

FOUHMT+01«KOUNT.

IK+01«IK,

GLOOP.
EXIT COMPRRE:

0«IK,

’

SUBRCOUTINE, SIHNOT
7 e ok s o ob ok sk o oh s o ok e b s sk ke e ok o sk o obe sk sk ok ok ok ok e st sk ok e ke sk sk s ob sk skl ok sk sk ok ok sk ok ok ok oK

s
SISk PURFOSE OF THE MODULE
L]
/% TCO SUBSTITUTE THE INDEX FOR THE MACRO DEFINITOHN
e ARGUMENTS IH THE MACRO DEFINIYION EBODY.
s o
da IJSAGE
s
SIE SIHOT,
s !
e MODULES REGUIRED
s
s ERROR
SLE EATRACT
LrE
7 A Ok o o Sk S ok o o o R HOK o o oK K o SOk o o K s o 2 o6k o6 K 8 K SR SO SR Ok o R ok K
i EMTERNALS
LA,
EFLAG.
ERROE,
EXTRECT,
I,
LUINP,
LuouT,
MESSAGE,
RESULT.
SANLD,
SOURCE.
0}
01}
04,
0sS,
0&,
014,
o116,
0144,
77 LOCAHLS
L TEMPCORARY VARIABLES
1K,
JTEMP.
Js

¥ kR E R XX KR K KX XX R

P AR T

YT

o

JTEMP.
KOUMT,

+TAG,
=DNLI_AR=044,

FPROGRAT

SIHQWT. ?2
g INITIALIZE TEMPORARY VRRIASLES.
Qel,
O« ITEMP,
<.l
0« JTEMP,
BINTZ.
'Ee EXIT IF ERRDR FLAG IS SET
EFLAG=01 $ EXIT SINOT.
0« ITEMP.,
O«KOUNT,
014THG,
Cs EXTRACT THE MACTRO DEFINITION QRGUMENT OF ASSEMELY
HTRACT,
I=C0118 ¢ EXIT SIHOT.
RESULTIKOUNT I=0 & EXIT SIHOT. ;
RESULTLKOQUNT 1=3AQHD & SCHM.
BIMTZ.
s RETRIEVE THE IHDEX FOR MACRO DEFINITION ARGUMENT BY
77 SCANMING THE ARGUMEHT LIST ARRAY ’‘ALA’.
SCAM: :
ITEMP=0D118 ¢ BLOOP.
FOUMT=05 $ EXCHA.
RESULTLKOUNT 1=0 % EXCHR.
FESULTOKOUMT J=ALAIITENMP] $ ALODOP.
0S-KIJUNT«JTENF,
JTEMP+01<«JTEMP,
JTEMP+ITEMP+<I TEMP,
O«FOUHT,
SCAM.
~LOGF:
KOUNT+01<KOUNT,
ITEMP+01+«ITENF.
SCANM.
EXCHA:
O0S5-KOUNMT<«J,
ITEMP+J«ITENP,
I-01+«IK,
77 SUBSTITUTE IHDEX FOR THE MACRO DEFINITION ARGUMENT.
ALAL ITEMP J€SOURCEL IK 1,
I-KOUNT<«IK,
DOLLAR«SOURCEL IK 1,
cLOOP.

EINTZ.

EAIT SIHOT:

D1€THG,

’

SUBROUTINE, PRARG

S H A ke ok b RO O b Ak R o ook e A ROK oK b 7 A b ok ok e ok A i e ok ko ok e o K ke ok o ol sl i R i R Ok o

s
P s
S
P
S IH

PURPOSZE OF THE MCDULE
TO PREPARE MACRO DEFINITIOH ARGUMENT LIST ARRRAY WITH
THEIR ASSOCIATED RELATIVE FOSITION IN THE STRTEMENT

*
*
e
»*
*

USAGE

e epeusm——

59

L% T T i
e PRARG,
EPEs
SE MODULES RERUIRED
P]
S ERROR
SO EXTRACT
1 R ok o o b b ok o b K o o b s b A R R o o s ok ol ol K ok e o o ke o o ok e ok ok b o b ol R s ok e o ke e ko e sk ok koK
7 EXTERNALS
EFLAG.
ERROR.
EXTRACT,
I)
LUIHNP.
LuUQuUT,
MESSAGE.,
RESULT,
SQURCE,
TAG,
0,
DIJ
04,
0s,
014,
011@,
77 LOCALS
s ‘ALA' - ARRAY OF EIGHTY WORDS FOR SAYINHG MACRC DEFINITION
Y4 ARGUMENTSS WITH THEIR ASSOCIATED RELATIVE POSITIOHN.
*ALALEE],
s/ TEMPORARY VARIARBLES
ITENP,
J,
KOUNT,
*0120=0128,
27 PROGRAM
PRARG:. ?
4 INITIALIZE TEMPORARY VARIABLES
0«ITEMP,
0«4,
CHECK.
L CHECK FOR ARGUMENT LIST ARRAY LIMIT
O0128<1ITEMP $ ALAFULL.
sz EXIT 1F ERROR FLAG IS SET
EFLAG=01 $ EXIT PRARG.
O«KOUHNT,
0«TaG,
I=0118 % EXIT PRARG.
2 EXTRACT THE DUMMY ARGUMENTS FROM THE SOURCE INPUT.

JEXTRACT,

*
“

FERERE RS

|

LTI T sy

e .

T

{
i

80

REZULTIKOUNT 1=0 % EXIT PRHRG.

s STORE THE DUMMY ARGUMENT IN THE ARRAY ALA.
ALDOF:

KOUNT=0% % ADJUS.
FESULTOKOUNT J«ALAZITEMP I,
KOUMT+01€KOUNT,
ITEMP+Q1<€ITEMP,

ALOOP.

7’7 SAVE THE INDEX OF THE DUMMY ARGUMENT IN THE ARRAY ALA.
ADJUS:

JeALAL ITEMP 1.

ITEMP+01<ITENMP.

77 INCREMEHNT THE INDEX FOR MACRO DEFINITION ARGUMENT.
J+aied, i
CHECK.

s PROCESS ERROR COMDITION

ALAFULL:

04€MESSAGELOQ1IA],
ERFOR,

EXIT FRARG:

’

SUBROUTIHE, SUBARG
£ Ak Ko R o ok o ok kR b o o ok K K ok oK S ok b b ok ook o ook b ok kR ol sk ok ok 3

/iw :
S/ PURPOSE OF THE MODULE
S E
SH TO SUBSTITUTE MRCRO CALL ARGUMENTS FOR MACRO
s DEFIMITION ARGUMENTS.
7 7%
77 USAGE
b a
SoH SUEARG,
Y&a i
P e MODULES REQUIRED
Vo
sk ERFROR
s EXTRACT,
e d
77 e sk R Ok R R A o o Ok T S b R R o Sk oK R R e SHOR K b K b oK R Ok 0K K K oKk oK
24 EXATERPHRLS
ELAMEKELAME,
NICLLAR.,
COHCT,
EFLAG,
ERROFR,
EXTRACT.
-1,
I1sC,

* R EF X R ER TR RXEEESE

RTINS 1 | WV e 4

et 8
&

o

LUINP.
LUCUT.
MESSAGE,
RESULT.

=

>

019,

o11a,
g LOCALE
A7 TEMPORARY VARIABLES

IK,

IPTR.

JPTER.

HOUNT,

KPTR,
7 TEMP- A TEMPORARY ARRAY FOR SAVING TEXT WITH MACRO
£ CALL ARGUMENTS SUBSTITUTED FOR MACRO
& DEFIMITION ARGUMENTS

TEMPL 88 1,

i

C s PROGEAM

SUBARG: 72
s/ IMITIGLIZE TEMPORARY YARIABLES
0«KOUHNT,
O«IFTR.
0« JFTR.
0«l,
y 0«TAG,
4 ELAMK FILL THE TEMFORARY ARRAY *TEMP’
ZERD:
KOUHT=0118 % ALOOF.
ELANKBLAMK«TEMPLKOUMT 1,
KOUMT+01«KOUHT,
ZEROD.
ALOOF .
77 EXIT IF ERROR FLAG IS SET
EFLAG=01 % EXIT SUBARPG.
01€TAG.
1€JPTR,
0«KOUNT,
Vs EXTRACT THE DUMMY ARGUMENTS OF THE INPUT SOURCE
EXTRACT.
I<«KFTR,
RESULTLKOUNT =0 $ FIHAL.
77 CHECK FOR MACRO DEFINITION ARGUMENT
FESULTCKOUHT 1=DOLLAFR % START. .
o7 CHECK FOF SFECIAL CHARACTER
SFLAG=0 $ INTZ1.
ISC=COMCT % SKIP1.
RESULTLKOUNT J«TEMPL IPTR 1,
IPTR+C1<«IPTF.
SKIF1.
ALOCQP.
s " TRANSFER INPUT CHARCTER STRING FROM ARRAY SOURCE TO ARRAY

|

2w

R a2

—

82

. CERP
INTZ1-

JPTR=KPTR $ INTZ2.

SOURCEL JPTRISTEMPL IPTR 1,

JETR+01¢JPTR.

IPTR+01€IPTR.
ELANKSLANK<TEMPL IPTR 1,
INTZ1.

INTZ2
SOURCEL KPTR I=ELAMKELANE § SKIP.
ALOOPR.

SKIP.
SOURCECLKPTRI«TEMPL IFTR 1,
IPTR+01€I1PTR,

ALOOP.
START.
’e COMPUTE THE POIMTER TO MACRO CALL ARGUMENT IN STACK

0€IK,
GeJPTR,
I-01¢IK, K
SOURCEL IK 1#03¢JPTR,
JPTR+02¢JPTR,
JETR+STKPT&JFTR,
O«KQUNT,

ELOOP.

;

.

SUBSTITUTE THE ACTUAL ARGUMENT OF THE MACRO CALL SAYED IN
g 8 THE STRCKE

S[IJPTRI=0 $ CLOQP. ;

KQUMT=05 $ CLOOF.

SLIPTRICTEMPLIFTR 1.

IPTR+01«IPTR,

JFTR+01<«JPTR,

SUURCEL I 1=BLAHKELANE $ DLOOP.

H

ALOOP
nLOOF.
IPTR+01«IPTR,
ALOOF.
TIHAL:
0«1k,
O«KOLHT,
7% SAYE THE ASSEMELY LAHGUAGE TEXT WITH MACRO CALL ARGUMENT
27 SUBSTITUTED FOR MACRO DEFIMITION ARGUMENT IN ARRAY
Vs *SOURCE”.
/7 SOURCE.
SETST:

KOUHT=0118 % EXIT SUEARG.
BELAHKELAMK«SOURCECKOUNT 1,
TEMFPLKOUHT 1¢S0URCECKOUNT 1.
KOUHT+01€KOUNT,
SETST,

EXIT SUBHRG:

»

;

SUBROUTINE, EPRROR.
7 AR R 4 A K K KK R o Rk ok o s ook b ok ok btk b sk ok ot ok sk ek

L% *
FURFPOSE O THE MOTDULE -
s .

83

P

e

P s
Vi i
P
£l
A%
P
SO

P

TO QUTPUT APFROPRIATE ERROR MESSAGE CODE

|
|
* |
1}

. .
USAGE * !
¥
ERROR, »
*
MODULES REGUIRED *
i *
FACK *
*

/s kb ok ok ok ok sk ok s ok o ok sk ok sk s sk s ob s it b sk e ok ok o ok ok s ok ok sk sk ol ok e sl e o OB ok ok e sl S lOR e ko ok kR R

s’ ENTERNALS
BLANKBLANK,
BUFFER.
LUINP,
LUQUT.
PACK,
“P.IN",
“P.OUT",
"P_HLT". !
SOURCE. !
0.
01'
012,
0126.
Vs EFLAG- FLAG TO INDICATE ERROR CONDITICH
*EFLAG,
s, TEMPORARY YARIABLE
KOUMT.
s MESSAGE- AM ARRAY SAVING CHARACTERS ’* % E R R O R* AND
s ERROR CODE .
*MESSAGEL 19 1=052, 852, 61065, 8122, 2122, 0117, 8122,
’s TEMP- A TEMFPORARY ARRAY TO SAVE COWNTEMTS OF ARRAY SOURCE
TEMPL 56 1. |
0
ERROR: 7
0€KOUNT,
s SHVYE THE COMTEMTS OF ARRAY SOURCE IN ARRAY TEMP.
LOOPO:
KOUMT=0128 $ LOOP1. ;
BLANKELANK¢TEMPLKOUNT 1,
SOURCEL KOUNT 1« TEMPL KOUNT 1,
BLAMKBLANK¢SOURCEL KOUMT 3,
KOUMT+01€KOUMT,
LOOFO.
LOOP1.
0«KQUNT, Y ¢
’r TRA4HSFER ERROR MESSAGE IM ARRAY MESSAGE TO ARRAY SOURCE i
LOOP2. !_
KOUMT=012 $ LOOF3. £
MESSAGEL KOUNT 1« SOURCEL KOUNT 1, i
KOUNT+01€KOUNT, x
LOOF2. ?
LOOPZ. §
0€KOUNT, . . n
77 PACK THE COMTENTS OF ARRAY SOURCE ; B} z
PACK, &
s OUTPUT THE ERROR MESSAGE 5
<BUFFER> 3
s/ TRASFER BACK THE CONTENTS OF ARRAY SOURCE i
LooP4, E
KOUNT=0120 $ EXIT ERROR. £

84

ELANKBLANK€SOURCELKUUNT 1,
TEMPL KOUNT J«S0URCEL KJUNT 1,
KOUNT+01€RKOUNT,

LOar.
EMIT ERRCR:
o3 327 ERROR FLAG
Q01<EFLAG:
SUBROCUTINE. FACK

0 s B o o R R S R B ok e o o s o o R oo st o b o s ok ok e Ok 3 R R ke ok Sk AR s B R b ok ok ok ook ok ok ok ok ok e e ok ok ok

s
P
P &
P
P
Pt
s 3
PR
Y
P O
S
e
P
P o
PP
e s
P
s

*
FURPOSE 0F THE MODULE *
*
T0O PACK EIGHTY A=SCII CHARACTERS INTO A FCORTY WORD *
ARRAY ‘EBUFFER* WITH TWO ASCII CHBRACTERS PER LORD. *
*
METHOT *
*
IMTEGER DIWISIOH *
*
USAGE *
*
FaCK., *
*
MODULES REQUIREL »
*
ERROR

/o ok o e sk ok ok s b sk o ok ol b e o s sk o ok ok s ok ok ok ok e ok o A ok ok ok e ok ok kR 3ok i R ROk ke ROk bk koK

7y

LH
A

F &

77

EXTERMALS
ELANKEBLAMK,
EUFF LIM.
EFLAG:
ERROR,
LUTHF.
LuouT,
MESEAGE,
SHIFT,
SOURCE,
a.
o1,
a1ia,
LOCALS
LEMGTH OF THE ARRAY SOURCE.
ARRAY LIM=6124a,
'BEUFFER’- ARRAY OF FORTY WORDS TO
WJITH TWQ CHARACTERS PER
*BUFFERL[48 1],
TEMPORARY
JI
Ko
ITEMP,

VYARIAEBLES.

FROGRPAM
PACE. 2)
INITIALIZE TEMPGRARY VARIARLES.
Qe d,
Oek,

0e1TENP,

BLANHK FILL THE ARRAY BUFFER

SAVE

WORD.

EIGHTY CHARACTERS

s’
*

i

e

T

IR I TN ETTY N AT

i

85

AINTZ:

K=BUFF LIM % BLOOF. ;
ELANBELAMK«BUFFERIK],

K+01+<K,
AINTE.
ELOOP.
0K,
#LOOFP: .
K=ARRAY LIM & EXIT PACK. ;
I SAYE THE UFPPER BYTE IN ITZIMP.
SOURCELK I*SHIFT¢ITEMP,
K+01+K,
4 SAVE THE LOWER AND UPPER BYTE.

SOURCELKI+ITEMP«BUFFERLJ1,
K+01€K,

J+01«J,

ALOOP.

EXIT PACK:

LIST ENﬁ-****

SUBROUTIME. UHPAK

7 ok ko b s ok ok Sk R R ok s b b b b b s ok o e ok o R kR ok s o o sbe o o ok ok o ke ke ok oK Kok ke e ke bokok

EUFFER

OF FORTY

*
*
*

*

R X F XX X X X ¥ X

e

e
s FURPOSE 0OF THE MODULE
PFE
Pas TO UNPACK THE COHMTENTS OF THE ARRAY
e WORDS, WHERE EACH WORD IS PRCKED WITH TWO ASCII
LIk CHARACTERE.
FaE '
e METHOD
/A
/O IMTEGER DIWISIOHN
s
/EH UZAGE
/R
s UMFAE,
s
K MODN'JLES REQUIRED
Ve o
VoL ERROE
e
A A o A R R s s o ok o R b K o o oK K o ok oK K ok sk S K e oK B OK e o ke
| A EXTERHALS
BLAMKEBLANEK,
BUFFER.
BUFF LIM,
EFLAG.
ERROR,
LUINF,
LUOUT,
MESSAGE,
a,
o1,
014,
01108,
et LOCALS

*

T P i

R

+ sge

86

yar

87

TEMPORARY “ARIAEBLES.
ITENP,
Js
K.
*SHIF 400,
*SQI!RCE’ - ARRAY TC SAYE THES UNPACKED CH4RACTERS OF
. CUFFER WITH ONE ASCII CHARACTER PER MORD.
+SOURCELSE],

PROGRAM
UNPAK: ?

INITIALIZE TEMPORARY YARIABLES
0eJ,

0k,

0+«ITEMF,
BELAHK FILL ARRAY SOURCE.

AINTZ:

;7

ZAIT UHPAK:

K=0118 §$ BLOOP.
BLANKELAHK«SOURCELK 1,
K+01«K,

AINTZ.

ELOOF:

0K,

0«J,

G+«ITEHNF,

ALOOF:

K=BUFF LIM % EXIT UHPaK.

spYE UPPER EYTE 0OF THE WORD.
BUFFERLK1/SHIFT«S0URCEL J D,

SOURCEL JI*SHIFT«ITENMF,
J+01+J,

SAVE LOWER EYTE OF THE WORD.
BUFFERCK1-ITEMP«SOURCEL J I,

J+01¢J,
K+01¢K,

1
ALOOP. %

’

)
i
|
'
i
H
'
ST TICT RO W o

-

SUBROUTINE. SEARCH

27 6 3 sk ok ot ok sk o S ok o8 oK o 2ot s ok R R A R oK ok o ok S o 2 R S oK oK K o 3ok 3K o K oK o ok S5 K s o o A ok

s o
s d
P
%
S
s g
rate o
s 8
SIw
S
Vs
AR
PR o
P g
SOk
e
s
PR
/S

FURPNSE OF THE MODULE.
TO SEARCH MACRO NAME TRELE.
METHCT

HASH TRBLE SEARCHING METHOD,
DI¥ISION METHOD.

USAGE
SEARCH,
MODULES REGUIRED

ERROR
HASH

HASH CODE GENERATED USING

* X % R R B X OXF X X H X ¥ X ¥

*
*

ook o ok e o o R K ok oo R b S K S8 K S AR R Sk R R ok KR oo 5 KK R A oK o o oK ok e s o e RO

’L

\ 27

77

EXTERHALS

AFLAG,
AMACHT.
EFLAG,
ERROR.
HASH,
HASHTE, - '
IHASHPTR,
LUINF,
LuouT,
MOTF.
MESSAHGE,
RESULT,
OI

01,

04,
03,
01g,

LOCALS

TEMPORARY VYRARIABLES
ITEMP,

JTEMP,
KOUNT,
ARRY LIM=61449,

PROGRAM

0

ERRCH: ?
INITIALIZE TEMPORARY AND LOOP

"01+AFLAG,

VARIABLES

CONTROL

*

#

N B L T e —

88

0« ITEHP,
0«JTENP, R
O<¢KOLHT. g
L CETAIN THE HASH CODE.
HASH,
oy EXIT IF ERROR FLAC IS SET
EFLAG=01 $ E<IT SEQRCH. ;
P CHECK WHETHER EHMTRY TO BE SEARCHED IS5 IN THE MACRQ NAME
v TABLE.

HASHTBL IHASHFTR1=0 $ ENIT SEARCH. ; /
’s OBTAIN FROM HASH TABLE THE FOINTER FOR THE ENTRY TO BE .
s SEARCHED IN THE MACRO NAME TABLE. (
HASHTBL IHASHFTR 1« ITEMF,
ALOOF. ‘ .=

ITEMF=ARRY LiM & EXIT SEARCH.

S COMFARE FOR ENTRY TC BE SEARCHED IS IN THE MACRO NAME TABLE
KQUNT=0S ¢ BLOOP. ; o7 il
RESULTIKOUNT J=AMACHTLITEMP] & CLOOP. =

s MATCH HOT SUCESSFUL, TRY TO MATCH WITH THE NEXT EMTRY IN THE TAGLE
OS-KOUNT«JTEMF,

JTEMF+01«JTEMF.
ITEMP+JTEMP«ITEMF.

AMACHTL ITEMPI=0 $ EXIT SEARRCH.
O¢KOUHT,

ALQCP,
CLOOP:
KOUNT+01€KOUNT,

ITEMP+01<ITEMF,

ALOOF.
77 MATCH IS SUCESSFUL., RETURM THE FLAG VALUE FOR SUCESSFUL MATCH
BLOOF.
O+<AFLAG, ”
77 RETRIVE THE MACRO DEFINITION TABLE POINTER :

- ——

AMACKTC ITEMP 1«MDTF,
EXIT SEARCH:

|
s
|

89

SURROUTINE, IFTEST

23k Ao ok o ok o ok ok K sk s K K K K K 59 R OK 3K K ok Sk 3 A b o ok ok ok o o b oK o ok o 38 K ok o R ok st ok ok o o o o

P *
ey PURPOSE OJF THE MCDULE *®
o *

P TO EVALUATE THE FREDICATE OF AIF- PSUEDG-OP *
7% *
e USAGE *
7AW *
£k IFTEST. *
e o *
e MODULES REQUIRED *
Ly *
Sk ERROR
Fas *
2 s ok ok oK o o ook o s RO S SOR 3K a1 5K ok 3K ok ok 3k sk ok ok 3K o sk ko 0ok o 3 3k s o o o ok Bk 35 ok ok 3 ke ok ok o 3
s’/ EXTERNALS
ARIFFLAG.
EFLAG,
ERROF,
OFERAMND,
MESSHCE,
RFLASG,
0.
01!
0z,
04,
05,
0&, i
012,
LUIHP,
LuauT,
2S LOCHLS
e TEMPORARY VARIABLES
K.
KOUMT.
77 PROGRAN
IFTEST: 2
s INITIALIZE TEMPORARY VARIABLES
0«KOUHNT,
O«¥,
7/ ERANCH TO APPROPRIATE LABEL DEPENDING UPON RELATIONAL
v e d OPERATORS SPECIFIED BY THE FLAG VALUES
RFLAG=0 $ CHEK EQUAL.
RFLAG=01 % CHEK MOT EBUAL. ;
RFLAG=04 $ CHEK LESS.
RFLAG=0S $ CHEK LESS.
0S«K,
£ COMPARE THE TWO OPERANDS FOR THE CONDITIOH GREATER.,
77/ GFREATER THAN OR ERUAL
LOOF1.
K=012 % EXITL. ;
OPERANDLK I<OPERANDIKOUNT] $ GREARTER.
OPERANDLK J=0PERANDLKOUNTI ¢ CONT1.
4 COMDITIOM HMOT SATISFIED, RETURN FLAG YALUE IN ’AIFFLAG’

O«AIFFLAG,
FEETURH.

CONTL:

K+01 ¢k,
KOUNT+01€K0UNT,

E 3

-~

RN, T e W—"

Coe

90

LOOFL.
GREARTER:
e CONDITION SATISFIELD., RETURN FLAG VYALUE 81 THROUGH
Fid 'AIFFLAG’
01<ATFFLAG,
RETURH.
EXITL.
RFLAG=0Z2 $ FASS2 .
0«AIFFLAG,
RETURN.
PASS2.
01¢AIFFLAG,
RETURHN.
CHEK LESS:.
DK,
0S«KOUMNT,
b COMPARE THE TWO OPERANDS FOR THE CONDITION LESS,
P LESS THAN OR EQUAL
LOOPZ:
KOUNT=012 $ EXIT2.
OFERAHDLK JCOPERANDLKOUMTI ¢ LESS.
OPERANDL K J=0FERANDLKOUMTI ¢ CONT2.
7/ COMDITION MOT SATISFIED RETURM FLAG VALUE
O<AIFFLAG,
RETURH.
CONTZ.
K+01+<K,
KOUHT+01€KOUNT,
LOOFZ.
LESS.
s’ CONDITION SATISFIED RETURM FLAG VALUE THROUGH AIFFLAG
D1¢AIFFLAG,
RETURH.
EXIT2:
RFLAG=05 $ FASS1.
0+AIFFLAG,
RETURH.
PASSL:
01¢AIFFLAG,
RETURH.
CHEK EGUAL:
0«t,
0S<KOUNT,
72 COMPARE THO OPERANDS FOR EQUALITY
LOOP3.
KOUHT=012 § EXITZ.
OPERANDLK 1=0PERANDLKNOUNT] $ EGUAL.
sz COMDITIOM HOT SATISFIED RETURN FLAG VALUE
0+«RIFFLAG,
RETURH.
EQUAL:
K+01¢K,
KOUMT+01€KOUNT,
LOOFZ.
EXIT3.
sz COMDITION SATISFIED RETURN FLAG VALUE
01¢AIFFLAG,
RETURM.
CHEK HOT EGUAL:
0<K,
05«KOUNT,
s/ 7 COMPARE THE TWQ OPERANDS FOR THE CONDITION NOT EQUAL
LOOP4.

91

KQUNT=012 $ EXIT4.
QFERAMNDLK I=0PERAMDIKOUNT 1 $ CONT3.
s CONDITION SATISFIED RETURH FLAG VALUE
01«AIFFLAG.
FETURMN.
CONTZ:
K+01+<K,
KOUNT+01€KOUNT.
LOOPS.
EXIT4: &
s CONDITION HMOT SATISFIED RETURN FLAG VALUE
0«AIFFLAG:
RETURH:
?

g
E
¥
t
3
gir-
:
i

92

ADA &ARGZ
53R SKIF IF 6 GE @
JMP &ARG3 BoIs HEGATIVE IF &aRiGz EOEGL
[MEMD
INDER LEC @&
LOWER DEC 1
UFFRER 1 IMIDES 0OF LAasST ELEMEHNT
BRSE QDDRESS OF FIRST ELEMEHT
ARRAY ROGE IS RESERYVED HERE
COMTATIHNS aDDRESS OF
OUTPUT FROM THE MACRO PROCESSOR
INDEX DEC B
LONER DEC 1 INDEX 0OF FIRST ELEMEHMT
UPPER DEC 10@ INDEX 0OF LAST ELEMENT
. ARRAY ADDRESS OF FIRST ELEMEMT
ARRAY BSS 18G9 .. ARERAY STORAGE I3 RESERMVEDL HERE
LDEg IMBEXR COMPUTE UPPER-IMIEX
CHa, THA
G0Aa UPPER
55A ERIP IF A GE @8
AMP ERROR A IS HEGATIWE IF UFPFER <{IHMDE¥X
LDE LOWNER COMFPUTE UFPER-IMIDEX
CHMas THA
al ITHDEX
55A SEIF IF A GE @&
JHWP ERROR H IS HEGATIVE IF IMDEX (Lﬂﬂkr
FITA EuEE A REGISTER HOW COMT&INS ADDRESS OF
v EASECIMDERY
END

INPUT TO THE MACRO PROCESSOR

MACED

CHECK &ARGL. 2ORG2, &ARGSE

LTA RARG1 COMPUTE UPFPER-IHDEX
CMA. TNA '

EXAMPLE NO. 1 SIMPLE MACRO EXPANSION

93

INPUT TO THE MACRO PROCESSOR

MACHO

L EOARG1 . ARG
LDRARG] RARGEZ
HMEND

MaCRDd

2T R2ARGY, AARGE
STEARGY BARG?
MEMNT

L f. ¥

ST N X

ENT

OUTPUT FROM THE MACRO PROCESSOR

LDa X
STA X
END X

EXAMPLE NO. 2 MACRO'S FOR IBM LOAD AND STORE INSTRUCTIONS

INPUT TO THE MACRO PROCESSOR

MACRO
LOAD RARG)H
LDA &ARG1
MEND
MACRO
STa &PRGL

MEHD

MR

ADE RARGL. BARG:
LOAD &ARGL

ADA RARG2

STORE &aRG1
MEMT

ann H. %

EMT

OUTPUT FROM THE MACRO PROCESSOR

L. DA
ADA
5TA
END

X X <K

EXAMPLE NO. 3 MACRO CALL WITHIN MACRO DEFINITION

INPUT TO THE MACRO PROCESSOR

MACRO

LOAD ®C. £4RG1 o
LDRRES RARG1 L0gDh THE REGISTER 2EEL
MEND

MACKD

STORE SREG. &2ARGL
STEREG &E8RGT
MEMT

OUTPUT FROM THE MACRO PROCESSOR

LDS X LOgT THE REGISTER B
ADD :

STB ¥

CND

EXAMPLE NO. 4 MACRO CALL WITHIN MACRO DEFINITION WITH

CONCATENATION

INPUT TO THE MACRO PROCESSOR

MECRED
STORE &/RGL. &ARGE
BIF Ce@RGZ2 E® 1» LuBl
STa ARGl
HEO LREZ
La=1 HIOF
O=T &aRGL. I
AaEZ2 MOF
MEHT
STORE ®s 1
STORE /. 2
MaCREO
LOaD EARGL. &ARGE
HIF CL£ARGE EQ 1> LAEL
LIa &AaRGH
AGD LABZ
LaEl HMOP
LD RARGL. I
Lape HOF
MEHD
LOAD . 2
Loan a1
ErD

CUTP®E FROM THE MACRO PROCESSOR

ST A, 1
LABZ2 MOR
3TA A i
LDA A u
LD A, I 3
LAE2 NOP |
END !

EXAMPLE NO.. 5 CONDITIONAL MACRO EXPANSION

INPUT TO THE MACRO PROCESSOR

EARGL SARGE LAREE LARGS
Loy Earcl
o 2ARGE

AMEP ENRGS
MEMD
MEcRd

SARGE HOF
MEHTD
MaCREO
IFEMT &RRGd
&HRGS HOP
MEHT
IF & EQ@ B LAl
LG &g
ala EBE
STa CC
ELSE ParRT
ELSE LAE1l LAEZ2 \

=1

OUTPUT FROM THE MACRO PRUCLSSOR

I

LDA A

CFRa B

RSS

AriE LABL

LTA AR

Al BB

STw CC
H ELZE FART

JMF LARZ
Lakil NOP

LLE =D+

crRa B

RS

J5& MACPR
& ENDIF
LABEZ NOP

€ Nb

4

EXAMPLE NO. 6 SIMPLE IF-THEN-ELSE STRUCTURED PROGRAMMING
CONSTRUCT.

INPUT TO THE MACRO PROCESSOR

WHILE &AR
LARGE HOP

LI &ARG1

CREa BRRGE3E

JHFP BARGS

MEHT

MECR

WHEMT

WHILE A E
LIE

CRE =012

ASEOSAMF

IMHA

WHEMD LAE

EHT

v

OUTPUT FROM

LaE1l HOF
LD -
CFa B
AP LaBz
LoE XX
CFE =D1Z
J5B SAMF
Ihn
AMP LaRl
L&=2 NGP
EHI

EXAMPLE NO. 7 SIMPLE

LERGY LARES

- R
51 &@/REZ2 &aEL2

i

@B LARl LAz

1 LS

i
[

THE MACRO PROCESSOR

WHILE STRUCTURED PROGRAMMING CONSTRUCT

99

INPUT TO THE MACRO PROCESSOR OUTPUT FROM THE MACRO PROCESSOR

MaCRD

1]

OF LRRG1 LARGE LARGCE LARGY ; g

GIF C&ARGY Em 82 . LABi : e
E CFa =D2

A 3
LARGE HOF e

JrF LAB2

LoE Y

A= =D1455
Lagz MOoF

JHP CEHIIL

-
8 |
1

LEEL

bl e
=
455
im
&
s
]
e
o
a1
-
e

o 35 N

2y .LrB

T

HiGO
.LaB2 HOF
P CEMII"EARGY

Daw T = T W 5 B
s ool p e 1

z

1]

=t

Jo

LU B B w Y

-n
oy

JEB CHESBE
JHF CEMIN

CPa =D

0

JMP CEHD1

CEND1I NOP

CRrzofr 2 LaRZ 21 | - - e

CHEMD 1
EHD l

EXAMPLE NO. 8 SIMPLE CASE STRUCTURED PROGRAMMINMG CONSTRUCT

APPENDIX - D
MACRO PROCESSOR USAGE
The Deck set up for using Macro Processor is similar to that of;an
HP Assembly Program. The only difference is the file name used in the

PROG control card.
:PROG,MACPRO, pl,p2,p3,p4,99

Where
pl = Logical unit of input device (5 is standard)
p2 = Logical ﬁnit of list device (8 is standard)
p3 = Logical unit of puﬁch device
p4 = Lines per page on listing (56 is standard)
99 = Job binary parameter. If present, the object program is

stored in the job binary area for later loading.

RESERVED WORDS:

The following.are reserved words exclusively used by the Macro Processor
Viz: MACRO,MEND,END,AIF,AGO .

The major restriction Macro Processor is strictly no recursion is allowed,

i.e. A Macro cannot call itself.

The output generated by the Macro Processor is processed by the HI> Assembler.
As HP Assembler has software to generate extensive error messages, only a
limited number of error messages are generated by the Macro processor. The

. '
Macro Processor software is flexible enough for extension.

101

102

#*ERROR 1 Label specified in AGO psuedo-op is undefined. -

%#%ERROR 2 : Macro Name Table is full.

*%ERROR 3 Macro Definition Table is full.

**ERROR 4

Argument List Array is full.

#%ERROR 5 Stack over flow.

| BrO

[BRO

| pon

[Fra

[cre

73]

74]
72]

75]

59]

741

75]

76}
70]

72
75]

REFERENCES

Browning, C.A., '"Discussion and Correspondence Using
Macros to aid Assembly Language Teaching". Comp. J.
Vol. 16, No. 3, (Aug 1973), pp. 281-282.

Brown, P.J., '"Macro Processors', John Wiley & Sons, 1974.

Donovan, J.J., Systems Programming, McGraw Hill Koga Kusha,
Ltd., International Student Edition (1972)

Frailey, D.J., "Should High Level Language be Used to Write
System Software?" Proc. ACM Conf. 75, Minneapolis,
Minnesota.

"Greenwald, I.D., "A technique for Handling Macro

Instructions', Comm. ACM, Vol. 2, No. 11, (Nov. 1959),
pPp. 21-22.

Halstead, M.H., "A Laboratory Manual for Compiler and Operating
System Implementation'', American Elsevier Publishing Co.,
Inc., 1974.

Herman-Giddens, G.S., Warren, R.B., Barr, R.C., and Spach, M.S.,
""BIOMAC - Block Structured Programming Using PDP-11
Assembler Language', Software — Practice and Experience,

Vol. 5, (1975), pp. 359-374.

Infotech State of the Art Report 1976, "Structured

Programming', Infotech International Limited, Berkshire,
England.

Kessler, M.M., "*#CONCEPT* Report 14, Implementation of
Macros to Permit Structured Programming in 0S1360",
IBM Corp., Gaithersburgh, Maryland 20760 (1970).

Kessler, M.M., "Assembly Language Structured Programming
Macros', IBM, Gaithersburgh, Md., (1972).

Maurer, W.D., and Lewis, T.G., "Hash Table Methods",
Computing Surveys, Vol. 7, No. 1, (March 1975).

103

| Mco
[NEE
[RIE
[son
[wir

[wIir

76
76]
76
68 |
74]
71]_'

g

104

McGowan, C.L., and Kelley, J.R., "Top-Down Structured
Programming Techniques', Petrocelli Charter, N.Y. 1975.

Neely, P.M., '"The New Programming Dicipline', Software -
Practice and Experience, Vol. 6, (1976), pp. 7-27.

Rieks, G.E., "Structured Programming in Assembler Language',
Datamation, (July 76), pp. 79-84.

Sohrabji, N., '""Macro Processor Simplifies Micro-computer",
Computer Design, Vol. 15, No. 8, (Aug. 1976), pp. 108-112.

Wirth, N., "PL360, A Programming Language for the 360
Computers'", J. ACM, Vol. 15, No. 1, (Jan. 1968), pp. 37-74.

Wirth, N., "On the Composition of Well Structured Programs',
Computing Surveys, Vol. 6, (Dec. 1974), pp. 247-259.

Wulf, W., Russel; D.B., and Haberman, A.N., "BLISS: A
Language for Systems Programming', Comm. ACM, Vol. 14, No. 2,
(Dec. 1971), pp. 780-790.

