IN MEMORIAM MATRIS



'POSITRON ANNIHILATION



THEORY OF POSITRON ANNIHILATION
IN

SODIUM,ALUMINUM AND ARGON

By

ANTONIO SALVADORI, M.Sc.

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Doctor of Philosophy

McMaster University

October 1968



DOCTOR OF PHILOSOPHY (1968) McMASTER UNIVERSITY,

(Physics) Hamilton, Ontario.

TITLE: Theory of Positron Annihilation in Sodium, Aluminum

and Argon.
AUTHOR: Antonio Salvadori, B.Sc., M.Sc. (N.U.I.)

SUPERVISOR: Professor J.P. Carbotte
NUMBER OF PAGES: v, 119

SCOPE AND CONTENTS:

This work is concerned with the calculation of the
angular correlation curves and the lifetime of positrons
annihilating in Sodium, Aluminum and Argon. The Carbotte-
Kahana theory is developed using orthogonalized plane waves
to represent conduction states. The theory is put in a
computational form and techniques, which reduce the computational
labour to a manageable level are developed for its practical
evaluation. Results are obtained for the electron core
contribution in Sodium and Aluminum whilst for Sodium a
lattice contribution is also atteméced. The core theory is
applied to Argon with a limiting approximation and results are
obtained in a first order perturbation theory approximation.
The calculations are compared to experiment with a satisfactory

result.

(ii)



ACKNOWLEDGEMENTS

I wish to thank my research director, Professor
J.P. Carbotte, for his very valuable guidance, encouragement
- and assistance.

Further I wish to thank Professors S.H. Vosko,

D.J. Geldart, S. Tinney and R. Coyle S.J., for introducing
me to solid state physics, computing, theoretical physics
and mathematics respectively.

Thanks are also expressed to Professor D.J. Kenworthy
for assistance in computing; to Professor T.D. Newton for
reading and making valuable suggestions in the’manuscript;
and my wife Mary for her encouragement.

I am deeply indebted to the Dublin County Council,
University College Dublin, McMaster University, and the
Ontario Government for scholarships without which I would

have been unable to reach and complete my graduate studies.

(iid)



TABLE OF CONTENTS

INTRODUCTION

CHAPTER 1

Core Annihilation in Sodium and Aluminum
R(p) on a One O.P.W. Model

Numerical Evaluation

Discussion and Conclusion

CHAPTER 2

Conduction Electron Theory Within the Lattice
Framework

Geometrical Interpretation

Computation of R
z

Computational Techniques

Results and Discussion

CHAPTER 3
Positron Annihilation in Solid Argon
Present State of the Theory

Limitations of the Core Theory

(iv)

10
14
24
30

35
47
49

53
55

57
58
59



Application of the Theory
Derivation of the Fartial Annihilation Formula

Computation of the Partial Rate and Lifetime

APPENDIX A

Carbotte-Kahana Theory of Positron Annihilation

APPENDIX B

Core Annihilation Formula

FIGURE CAPTIONS
TABLES

BIBLIOGRAPHY

(v)

60
62
64

83

89
114

117



INTRODUCTION

In 1932 Anderson %)

, while studying cosmic rays,
experimentally demonstrated the éxistence of the positron,

thus verifying a prediction of_Dirac's relativistic quantum
theory of the electron. Even before the positron's experimental
discovery Dirac(z) had already derived thé theoretical tran-
sition rate for the process in which an electron and its
antiparticle, the positron, disappear simultaneously, their
energy being emitted in the form of two y-rays. This process
electron-positron annihilation is now well known.

(3)

Beringer and Montgomery , using standard counting

techniques, were among the first to measure the angular dis-
tribution of the emitted y-rays. Since then many experiments
have been performed and the properties of many solids particularly

(3,4) have been studied. Most of these are described in

(4)

metals

a recent review by Stewart and also in earlier reviews by

Wallace(s) (6).

and Ferrel
In a typical experiment a high energy positron from a
B+ decay source, for instance Na22, sandwiched between two thin
aluminum foils, penetrates deep into the sample and quickly
becomes thermalised(7). More recently Carbotte and Arora(s)
have calculated that at liguid Helium temperatures - but as

high as 100°K for Aluminum - the positron annihilates before

1



thermalisation. However since all of the experimental
results to be considered in this thesis were obtained at
room temperature this point does not arise here. After
thermalisation the low energy positron migrates through the
sample and eventually annihilates with one of the electrons
with subsequent emission of two Y-rays. In particular
'since the thermal energy of the positron (0.025 eV) is very
small compared with the Fermi energies of metals (1.6 - 7 eV),
it can be assumed that the positron has zero momentum when it
annihilates. Each of the emitted y-rays has an enexgy of
approximately % MeV and they emerge in opposite directions
from the sample relatively unattenuated and unscattered.
This radiation is finally detected and analysed by conventional
means. |

The experimental analysis of the y-rays falls into
two distinct experiments. The first type of experimeht.
measures the angular distribution of the y-ray radiation as a
function of the angle between the two outgoing Y—rays(g).
These observed distributions are also of two types. In one
type the distribution is characterised by a central inverted
parabola with a tail at large angles, the parabola displaying
a fairly sharp cutoff at an angle corresponding to the Fermi
momentum, as illustrated by the alkali metals, the alkaline
earths and aluminum. The other type of distribution extends
well past the expected Fermi momentum cutoff, exhibiting a

Gaussian character as in, for example, the noble metals.



3

The second type of experiment measures the lifetime
of the positron which is proportional to the reciprocal of
the total annihilation rate. Total rate experiments make use
of delayed coincidence methods and obtain a prompt curve with
the sample out and a delayed curve with the sample in place.
The mean life 1t of the positrons entering the sampie generally
is identified with the displacement of the centroid from the
prompt curve to the delayéd curve(lo)._

From a theoretical standpoint reference 6 gives an
excellent summary of the early theories. Naturally the first
theory to evolve was a Sommerfeld or free electron theory.
This gave a generally good result for the inverted parabola
of the angular correlation experiments but failed totally
where total rates were involved by a factor of'an order of
magnitude. The first real step in the right direction was
the theoretical analysis of Berko and Plaskett(ll). They
assumed an independent particle model (I.P.M.) and computed
the positron wave function in Al and Cu in the Wigner-Seitz
approximation, using a potential produced by the positive ion
and by a uniform charge distribution of the approximate
number of valence electrons per atom. The angular correlation
result for Al yielded an inverted parabola with small tails
in good agreement with experiment. Unfortunately however this
agreement was probably accidental as the tails in Al are very

small, while in the case of Cu too much of a contribution was

obtained from the core electrons. As regards the total rates
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these were still wrong by factors of an order of magnitude.
The above procedure while simple ignores much of the important
cdrrelations and accounts for the direct Coulomb force between
the positron and annihilating electron only in an average

and triﬁial way. This attractive force certainly influences
significantly the relative motion of the pair in their centre
of mass system and must lead to a significant increase of the
electronic density at the positrop over that computed on the
I.P.M. for after all the annihilation rate is directly
proportional to the.electronic density at the positron site(lz).
What is required is the exact solution of the Schrodinger
equation for the wavefunction of the pair coupled through

their Coulomb field. However since many electrons are present
one should more appropriately use a screened Coulomb force.
Further because of the existence of an electron sea, all the
plane wave states below the Fermi-surface are occupied and
therefore cannot be employed in building up the electron part
of the effective-pair wave-~function; hence the Pauli exclusion
principle should also be incorporated.

(13) was the first to realize this. He reasoned

Kahana
that in order to get sensible results the multiple scatterings
of the annihilating electron off the positron must be included
in the sense of perturbation theofy. kahana did this by solving
a Bethe-Goldstone equation for the annihilating pair. Using
modern Green's function techniques he summed the ladder

diagrams, i.e. the multiple scattering mentioned above, to all

orders but left out all other diagrams which enter the theory



in a rather arbitrary way. It is clearly impossible to
analyse in detail all the remaining graphs, although Carbotte

(14)

and Kahana were able to show that, up to second order in
the Coulomb potential, such corrections are small and many
of the diagrams systematically cancelled. This can be taken as
an indication that the ladder graphs represent the dominant
contribution to the rotal rate and should describe guite well
the angular correlap;on experiménts. This was indeed found
to be so.

As mentioned previously, the total rate R depends
only on the electronic density at the positron which is given
by the limiting value of the electron-positron pair dis-

tribution function g __ (X - X ) as X - X_ - o, where X_ and
~-e —p —e ~p —e

ep
X_ are the electron and positron coordinates respectively,

From a knowledge of gep(ze - §p) for all values of the relative

coordinate X - Ep the total displaced charge about the positron
can be computed. To have a consistent theory one must insist

(15)

that this be exactly one unit. Bergersen pointed out

that in the ladder approximation, the total displaced charge

can actually be considerably greater than one e.g. 1.25 for
sodium. On this basis he argued that Kahana's rates should

be reduced by a corresponding amount. This might not necessarily
be so because total rates depend 6nly on the value of the pair
distribution function for X - Ep = 0 whilst on the other hand
serious errors in this function for finite Xo §p may be

responsible for most of the unphysical accumulation of charge
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about the positron. Recently Carbotte(lz) has shown quite
clearly that in order to make the charge displacement equal
to one a summation of certain third and higher order diagrams
have to be added to the ladder approximation. This modified
ladder approximation however only lowers the total rates by
small amounts ranging from 10% ih Aluminum to about 3% in
-Sodium. Hence this thesis will evolve in the spirit of the
simplé ladder approximation.

Returning to the Kahana-Carbotte ﬁheory it should
be noted that their calcuiations considered only the con-
duction electrons taken in a plane wave approximation. They
made two comparisons with experiment. For the angular
correlation they obtained an inverted parabola with a slight
bulge which fitted the experimental points very well. For
the total rate a result lower than the experimental one was
obtained but of the right order of magnitude. This was in-
deed a significant achievement because it pointed out for the
first time that the inclusion of correlation effects in the
annihilating pair could increase the contribution to the
annihilation rate by an order of magnitude. Also it was quite
understandable why the results were lower than the experimental
ones since no core calculations had been done and also the
lattice, which can give rise to Umklapp processes had as yet
not been treated. This, of course, is of tantamount importance
as has been experimentally shown by Berko(lG), since the

lattice produces anisotropies in the annihilation rate,



particularly in Lithium and Beryllium.

The next significant step was taken by Carbotte(l7).
In his paper he derived a general theory for positron ann-
ihilation in metals showing how the Green's function expression
for the partial annihilation rate R(p), i.e. the angular
correlation, can be rewritten as the square of a generalized
Bethe-Goldstone type amplitude which must, however, first
be weighed by an appropriate overlap integral of an electron
and a positron single-particle Bléch state. The contribution
to R(E) was written as the square of the sum of two distinct
terms. The first is simply the pth Fourier component of the
familiar electron-positron product wave-function i.e. the
I.P.M. contribution. The second involves matrix elements
which describe virtual transitions of the elecfrons to un-
occupied states with subsequent annihilation. At this point
Carbotte purely looked at the core contribution and found that
the evaluation of these latter matrix elements was difficult
and a complete numerical calculation was not attempted. In-
stead, a simplified model was studied in the hope of getting
some understanding of the physics of the problem.

It is at this point that this thesis begins. Since

the theory of Carbotte(l7)

is crucial to its development the
principal results of reference 17 zre re-derived in appendices
A and B. The thesis consists of three chapters, outlining the

three main pieces of work done: core annihilation in metals

with specific reference to sodium and aluminum; the effect of



the lattice on the conduction band contribution in sodium;
and finally positron annihilation in solid éréon.

Each chapter is further subdivided into sections.

In chapter one, section one the general theory of annihilation
is reduced to a formula describing core annihilation in

simple metals. In section two tﬁis is further reduced using

a single orthogonalized plane wave (0.P.W.) to describe the
conduétion states and an angular average over the O.P.W. is
done due to computational difficulties. The error introduced
is computed and discussed in section three. The numerical
evaluation for sodium and aluminum follows in section four
where the various computational technigues are elaborated on
and the natural units are introduced. Finally in section five
comparison is made to experiments for the two metals. It is
found that significant enhancement factors are obtained with
only a weak momentum dependence. Thus except for a multi-
plicative constant, the results are nearly the same as obtained
on the I.P.M. model.

Chapter fwo begins with a derivation of a theory for
conduction electron annihilation with the inclusion of the
lattice. The Umklapp processes that are thus picked up are
explained. This leads guite naturally to a beautiful geometrical
interpretation, which is discussed at length in section two.
Section three describes the Monte Carlo and other random
processes that were required and used to finally compute the

expression derived in section one.  Next the computations are



carried out and are followed by a discussion of the results
in the final section. Due to the approximations that were
necessary in order to make the calculation tractable a
quantitative comparison with experiment was not attempted.
Qualitatively the results are quite reasonable.

The last chapter deals sélely with solid Argon. In
a brief introduction the reason.why Argon was chosen is given.
In section one the state of the theory to the present is
discussed. Next the limitations in the aéplication of the
simple metal core theory are treated in some detail as these
seriously affect the results. However this application is
quite reasonable as Argon, an inert gas, has complete electron
shells thué resembling the inner core of a metal. An
explanation of the details of the calculations follows in
section three. Finally the results are computed and comparison
is made with experiment. Excellent results are obtained for
the angular correlations as well as reasonable agreement for

the total rate.



CHAPTER ONE
CORE ANNIHILATION IN SODIUM AND ALUMINUM

A calculation of the core contribution to the
angular distribution of the two gquantum radiation emitted
when a positron and eléctron annihilate and the total
annihilation rate will be performed for the simple metals
sodium and aluminum,

The calculation includes electron-positron
correlations which are due to the screened Coulomb
potential and significantly alter the electronic density
about the pésitron. Furﬁher details of these correlations
are given in Appendix A. This large density increase is
expected on purely physical grounds since correlations
appreciably alter the I.P.M. picture. This increase is
called the average enhancement factor and for the conduction

electrons it was found to be of the order of 10 by Kahana(l3)

and by Carbotte and Kahana(l4).

The large enhancement factor of course is partly due
to the fact that conduction electrons are nearly free and
hence their motion can easily be disturbed. However the core
électrons are not so free since their motion is dominated by
the.screened nuclear field of their respective ions and hence

the positron Coulomb field, in the core case, represents a

much weaker disturbance or perturbation. From this it follows

10
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that smaller, but significant, enhanéementvfactors should - .
result for the core case.

The general mathematical expression for annihilation,
(A-49) is next rewritten bearing core annihilation directly

in mind i.e.

nims A e
ROT=R) =5 | I o @ #
: o P e 2
E Im,n () X m,n;m',o (Eo * Em')l : (1)
m,n == === =
The various symbols have the same meaning as given them
in the appendix, except that now anmi(g) gives the contribution

to the partial rate R(p) arising from a core electron in the
state (n,%,m,s) where the nf index refers to tﬁe core band, m
is the magnetic guantum number, and s is the crystal momentum
restricted to the first Brillouin zone. The m' in equation (1)
refers to all the occupied core states. Hence the first term
in the square, being a simple transform of the overlap between
a core wavefunction and the positron wavefunction éives the
I.P.M. result of Berko and Plaskett(ll). The summations over
m and n are for unoccupied stateé of the electron and positron
‘respéctively. For the electrons these would mean all the
states above the Fermi sea and for the positron any state with
non-zero momentum.

Before discussing the second term of the square further,

(17)

a simplification due to Carbotte can be carried out. This

simplification replaces all conduction-conduction overlap
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integrals by delta functions i.e. it treats all such con-
duction states as plane waves. This no doubt is a good
approximation in simple metals where the conduction states
are not complex and have little or no band structure. How-
ever for elements such as Argon where conduction states are
not so simple this approximation is not valid. Further

. detailed explanation is given in Appendix B.

As explained in Appendix B expression (l) is re-

written as

R(n2m§) (E) = % l Inzms (_E)
%E{Egz (k) [k |p-k|nims]® |2 (2)

wherernce more all the é?mbols have the same meaning as de-
fined in the appendices. Now it can be clearly seen that the
second term is proportional to the overlap between a single
particle core state and an unoccupied conduction state. From
a physical point of view this matrix element represents
virtual transitions from a core state to an unoccupied state
above the Fermi surface with subsequent annihilation. These
transitions are due to the\excitation by the positron force

L

which is contained in the enhancement factor Eg (k). This

factor further includes (cf B-16) the Pauli exclusion

principle term pt which only allows scattering into the

k,p-k
unoccupied states and a term XE(E;—AnQy which describes all

the further multiple scatterings contained in the ladder
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approximation.

The most difficult part in the evaluation of (2)
is the calculation of the core-conduction matrix element
since as figure 1 shows the core functions are largest
where conduction states are smallest and vice cersa.

For the core functions the tight binding sum

lS a
Ynams %) g u oo (x-a) (3)

is used where N is the number of primitive cells in the -
crystal and the a's are vectors giving the various lattice

sites. The atomic wavefunction unlm(ﬁ) centred about

X = 0 is given by

n() = (B (x)/x) ¥, (R) (4)

ni

where Ylm(gx) is the (Q,m)th spherical harmonic,'referred
for the pre;ént to some general coordinate system by the
angle Qx and Pnl(x)/x is the radial part of the core wave-
functio;. In particular for the computations the Pnﬁ(x)
" were taken from the Hartree-Fock-Slater calculations of
Taylor(lg) for sodium and aluminum and are given in table 1.
The substitution of the tight binding sum (3) into
(2) gives |

nlms

A, (W
~()—v|f;a§_

{vo(x) + % ) E
k

d3§ u_, (x) e"ip-X

(K wr, (03] (5

where a is a reciprocal lattice vector; the positron wave-
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function is given by

o (x) = 2 v_ (x) (6)

(o] /V o]

and the electron wavefunction by
E(§)=————e—-u£(§) . (7)

Summing all the core electrons in the (n%) band and

denoting the contribution to the partial annihilation rate

by g™ (p) yields

+2
an(E) - z anmg(g)
m=-2
+2
Al 3 -ip.
“voa, b 1 SE RN
m=-%
1 L 2 :
Vo) + g Bg (k) wr @117 (@®)

where.ﬂO is the volume of a primitive lattice cell.
R(p) ON A ONE O.P.W. MODEL

In order to evaluate the expression
a knowledge of the conduction and excited states of the

electrons is needed. For sodium and aluminum a single O0.P.W.

has been shown to be a reasonable description of these Bloch
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states ?Y) . The 0.p.W. basically is the distortion of

plane waves so as to make them orthogonal to all core wave-
functions in order to try to give the electron wavefunctions
their ideal behaviour i.e. far from the core they should
look like plane waves and near the core they should behave
like core wavefunctions but be orthogonal to them. They can

be written as

A (k) [ei_]§_.§ _ Z A

XE =TV ,m(k) anm;E(g)] (9)

n,4L
n,4,m
where A(k) is the normalization coefficient obtained in the

usual manner i.e.

<t I x> =1 ' (10)

(k), as their

The orthogonalization coefficients, A
n,Q.,m -

name implies are obtained by orthogonalizing (9) to the

core states i.e.

< Yogmk | e? =0 (11)
On performing the integration(zl) it is found that
_ 3 * ik.x .

By gk = [ @x ux , (x) e"="= . (12)

Equation (12) can be further reduced by making use of the

well known expansion
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eik.x L

= Z 47i
fm

Y*Qm(gi) Yzm(ﬂﬁ) 3, (kx) (13)

where the spherical harmonics Yzm are referred to the

same general coordinate system as that used in writing the

core wavefunctions u, (x) . The substitution of equation

m
(13) into (12) yields

_ 3 * . 2
A gtk = [&x ] P ,(x) Y+, (Q) 4ni
2'm! -
Y& ot (915_) YﬁLm(Q§) 3o (kx)/x . (14)
Usiné the fact that
i Yo, o (Q) Y, (@)aR = &, ., &, (15)
equation (14) becomes
TS : .
An,l,m(E) = 47i é dx xPnz(x) jo (kx) Y Qm(QE) (16)
Introducing
A, (k) = [ ax x jg (kx) P, (x) (17)
equation (16) can be re-written as
N . %
An,z,m(h) = 4mi Y*zm(E) A, (k? . (18)
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It should be noted quite clearly that, unlike other authors,
the orthogonalization coefficients are dependent on the
angles of k. This fact is of some imporfance and cannot be
avoided here. Using these results (10) can easily be
evaluated in terms of (17) to give

< 1w [a A7 (19)

o n,%

A(k) = [1 -

These coefficients are easiiy computed using a Simpson's
rule, with a Hermann Skillmann type mesh, to perform the

integrals(zz).

The Anl(k)' which characterise the be-
haviour of the 0.P.W., and the normalisation éoefficient
A(k) are plotted in figures 2 and 3 for sodium and aluminum
respectively. Results are only shown for k 2 kF since the
electrons can only be excited into this region, due to the
Pauli exclusion principle.

Removing the exponential and /V factors in eqguation

(9) the uk(g) part of the O.P.W. is written as

u (x) = AGK) [1-4m ] ] if eTE- (22
- a nim

Y*gm(ﬂk) A k) u o (x-a)] . (20)

In equation (20) the unﬁm(§) are of very limited range, i.e.

they are well localized functions in the Wigner—Seitz cell,
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and hence the assumption of retaining only the first term

in the a summation can be made. Thus

w (x) = A(k) [1-4r ) 1% e ='=vy* (@

n,%,m

A, (k) u, (X1 . (21)

nf 2m

The correlation term of expression (8) can now be

further reduced using (21) i.e.

"1 nf * -1 ng
= % B0 (R uwh ) =g g By (6) Adk)
1 -4r J (DY EEy qa) ar k) ur, (01.
n,%,m im k ni nfm =

(22)

This expression as it stands cannot be put in a readily com-
putable form but the difficulty can however be simply over-

* (k) is not

come by noting that the enhancement factor Eg
expected to be strongly dependent on the direction of k. Hence
an angular average over k suggesté itself and:t@is greatly
simplifies the orthogonalization part. However its effect on
the calculation should be considered as indeed it will in a
later section.

Performing this angular average over k, equation (22)

becomes
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(k) A(k)

ik.x %
[aq e ==y (QB) a* o (k)

u* om (X010 (23)
where
’ an ,
=nf _ k .ng
EP_ (k) = f I E.E_ (k) .
By defining
G(k;x) = x - 4mx §  (-0)* [ ag, Xy (g
n’Q/,m - . -
A* g (k) ux oo (x) (24)
equation (23) can be written as
STE w0 =3 1B oA ¢ kix)/x . (25)
k B L k B - ‘

Expression (24) can be further reduced by employing the aid

of equation (13) to give



Glkix) = x - 4mx ] (-0)* [ag. ] 4ni
]
n,l,m — R,'m -_—

Using (15), equation (26) reduces to

G(kix) = x - 41x ] 47 Yo (0y) 3y (kx) A% 0 (k) up,,(x).

n,%,m
(27)

Writing the unzm(g) out explicitly and using the fact that

+2
280+ 1
Lo Y ) Yo (@) = (28)
m=-1 d =
equation (27) becomeé
. = - 1 * -
G(k;x) = x - 4r ] (28 + 1) j, (kr) A* o (k) P, (x) (29)

n,%

which can readily be evaluated.

Substituting (25) into (8) and again using the

explicit form of Uom (x) yields -
+2 i
ng Al 3 -ip.x
R™(p) =5 =, 1 | Ja&'xp /vy (o) e B2
Q m=-2 2
1 =nf 2
o) + g ) By7 ) 200 clax/x | (30)
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The function v_(x) is the positron Bloch state at
.the bottom of the 1ls band and is needed only in the Wigner-
Seitz sphere about Bv = 0. Hence it can be taken to be
spherically syﬁmetric and written as R+(x)/x. Next an

expansion of the éxponential can be performed using (13) i.e.

) ' +2
n%, . x1 3
R7(p) = 3 56 mz—l | a7 x P, (x)/x ng(ﬂé)
A .
2'2{:" (=3)7 47 Yy, (85) Y00 (R) 3 (px)

R (x)/x + & % ﬁgz(g> Ak) G (kix)/x1]% . (31)

Since the only x angular dependence is contained in the

spherical harmonics the angular integration de can simply

be done with the use of (15) to give

[ ax 3, (px) P_, (x) [R'(x) +
o |

4

] ENY 0 At 6 (x| (32)
k : ’

<+

which can be simplified to
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ng _ A1 e )
R 7 (p) = 7 50 2(29 + 1) 47 | fo dx:jz (px) Png(x)'
[RT(x) + 2§ 8%%x) a0 6 (x;x)1]2 (33)
Vitp =

where use was made of the sum rule (28) and the factor 2 was

introduced for spin degeneracy in the core levels.

_nl

AN ESTIMATION OF THE ERROR IN E_7(k)

In making the spherical assumption in equation (23)
i.e. using ESQ(E) instead of Egg(g), it should be noted that

all the error arises in the orthogonalization part and not

in the plane wave part. To estimate this error the two

expressions

Xp (Ki=8,) Ug (R - k) 0% (k)
M (k) = — ©(34)
E o - k)2 + k% + 4

E —_— n‘Q‘
and :
u.0

. 80y xp(ki=be) Uy (- K) o (k)
B (k) = / (35)
= an (p - K% + k2 + 4

have to be computed for several random values of p and Xk,
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where |p| < 3pp and |k| 2 Pp -

As it stands however expression (35) cannot be
computed as the dependence of XER(E;_AnR) on the vectors
p and k complicates matters conéiderably. However since
only a rough estimate of the error is required, the function
xgz(g;—Ang) will be restricted to depend only on |k| and
|£| . It might be pointed out that this assumption renders

equation (Bll) i.e.

d3k' US (E - ]_<_')

— B(k' - k) (36
k'2+(g¢5')2+An

ng
k) =1+
XE (k)

(21r)3 2

inconsistent. However this inconsistency can be overcome by

averaging the integrand over p or over k. Both results yield

the same answer which shows consistency.

~Making this assumétion it is immediately obvious that
for p = 0 the spherical approximation is perfectly correct as
expression (35) then depends only on the magnitude of the
vector k. For other k and p it is not a trivial comparison
but the integral can be easily done numerically and a comparison

2

% -
made with the true value of E; (k). The integral was done

using a Simpson's rule on the IBM 360/30 computer of the
University of Guelph.
The results show that as p increases from zero the

error in the spherical approximation increases from zero to
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1 20% at lp| = 3. This increase in error is uniform and
is approximately 8% at |p| = 1 and 15% at |p| = 2. One
result that is of importance however is that in the

computations Egz(h) always came out to be greater than

.Egg(£). This means that the angular average does not

subtract a sufficient amount from the right hand side of
equation (23) and thus leads to too great a contribution

in equation (33). The 20% factor however cannot be simply
extrapoiated to estimate the error due to fhis angular
average in (33) since in order to obtain the final form
(33) many averages are taken. This.points to the fact that
the final result should be too great as indeed is found to

be the case.
NUMERICAL EVALUATION

The averaging over the angles of k in the enhance-
ment factor was done by taking the p direction as the polar

axis. This in no way restricts the argument as this p

direction could be chosen in any general way. Substituting

- .

_the enhancement i.e.

ptk U_(z)

zdz s

(36)
|p-k| K2tg 24 An

n _ ng
[ ae, Ep (k) = 276 (k=kp) X, (k)J -
. - 9 p

into equation (33) and taking the limit of infinite volume
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gives
rR™ (p) = % AT 220 + 1) | [T ax 3, (px) P, (x) [RY(x)
Q |
° ¥%ak _ng
4 J ; oMK AK) G(kix)
kp (2m) p '

112 . (37)

J Ptk 21 24z Us(z)
p-k| k%+z%+s_, bk

To streamline this equation a function Snl(p,x)

is introduced defined by

s (p,r) = (k) A(k) G(k;ix)

Jm k% dk ns
X
X

3
F (2m)

(38)

J ptk 27 zdz Us(Z)

| p-k | k2+zz+An2 pk

and thus (37) becomes

4r RO 2

R™ (p) = 2(22 + 1) 7 7

[[oax 3, (ox) B, (x) [RY () +s™ (p,3) 1]

(39)

where Z is the valence of the element under consideration, eni
Ro, the Sommerfeld annihilation rate given by RC = XZ/QO .
A transformation to Fermi momentum units y =__p_/pF is made,

since these units are the natural units of the system. Thus



26

equation (39) becomes

2 ° © :
rR" (Ypp) = 2(22 + 1) 3% 57 | [, dr 3, (ypgr) P, (x)

L

R () + s™* (v,m11% (40)

where Snl(y,r) is now defined as

% ® %
s (y,r) = J k dk \nd v,k 2 (Kkp) G (kkp,r)

R A
Kty 21 zdz 0oU(z)
> 2 % (41)
k-v k™ + 27 + A
(23)
ng _ 2
where A = Anl/pF
2
o = rs/(l.919ﬂ )

with ry the usual electron gas density parameter and the
potential function
1 z-2,2 -1

U(z) = 27 + 210 {1 - 50 - w2 mEH % 1T L e

The integral equation satisfied by ng(y,k) = an(pr,ka)

is, doing the Qk integration in (35)
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ng _ 1 .nt ng

X7 (y/k) =1+ Il 3ok Ky (k) X3 (vakg) (43)
with the kernel given by

. k+k k]2_+(y+kl)2+Anl

K (k,kl) = J zdz aU(z)min| 5 Y 1 . (44)
Y | k=X, | KT+ (y=kp) THa

This ends the algebraic development and next the
results of the computations are discussed for the sample
metal sodium which, as is well known, is one of the simplest
metals. Equation (43) can easily be solved for x?g(y,k) by
turning it into a set of linear equations and solving for
these by a standard method e.g. the Gauss pivotal technigque.
This was done using a 41 point mesh with linear interpolation
for large k values. The results for the 2p and 2s core
electrons with four values of y are shown in figure 4.

The ls core state was never computed since its
contribution is negligible due to the fact that the energy
parameter An2 appearing in the denominators is very large.

This is also the reason why the 2p contribution for a given vy

as a function of k is always greater than the corresponding.Zs
contribution; As expected from equations (43) and (44) for large.
k values ng(y,k) tends to one, hence it might be stressed once
more that in this.asymptotic region the k angular dependance
would certainly play little or no role.

Thg complex structure of G(kkF,x) is shown in figure 5,

where it is plotted as a function of x for various characteristic
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values of k. The first value plotted, namely k = 0, was
not used but served as a check on the calculations. The

(24) result since. at the

comparison Wés made with Callaway's
bottom of the 3s band the 0.P.W. almost reduces to the Wigner
Seitz wavefunction which Callaway quotes. The graphs in.
figure 5 also bring out the physicél characteristics of the

G function. As can be seen the Qscillations get weaker and
weaker as both r and k increase and especially for large r

the graphs becomé a straight line with slope one. This can
be interpreted physically by noting that in (29) as r and k
increase the orthogonalization coefficients play less and

less of'a role till finally the plane wave part completely
takes ovef and the functipn G becomes independent of any k
dependence. Further figure 5 brings out the limitations of
the model discussed iﬁ reference 17. It can be seen that the
difference between G(kkF,x) at k = 0 and k = 2.5 is not great
and hence if the only transitions of importance in (41) were
thosé about the Fermi surface, i.e., k = 1 the model of refer-
ence 17 would be recovered. This results because it would
then. be justified to fix G(kkF,x) in (41) at G(kF,x) and take
it outside of the integration. But G(kF,x) is nearly equal to
G(o,x) which in turn reduces to the Callaway wavefunction

(24)

R (x) so that
o

s (y,x) = R () w™(y) | (43)

with


http:since.at
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2 ng (44)

U
ng ) = J kdk an (v, %) J »2; gdz aU (2)
1 K+ z° + A

Ik-v|

where mnz(y) is essentially the same quantity as that‘plqtted
in figure 5 of reference 17. This procedure is not justified
since as was pointed out the amplitude x?z(y,k) does not have

a strong k variation. Further the quantity

X J kty 21 zdz aU(z)

lk-v| k% + 2% + A%

(45)
is not a rapidly damping function about the Fermi surface.
This means that G(kkF,x) for many values of k gets averéged
in the expression for SnZ(Y,x). Since for large k's the
G(kkF,x) are nearly straight lines the oscillation at x = .5
atomic units occurring in G(kkF,x) forvk around 1. will clearly
be considerably smocothed out in SnQ(Y,x)(ZS) and indeed this
is precisely what figures 6 and 7 show. Figure 6 simply shows
the SZP, SZS curves for y= 0 whilst figure 7 shows the develop-
ment of 82p as Y increases and it can be clearly seen that the
oscillations die out. Thus with all of this smoothing the
correlation part of the partial rate tends more and more to have
a similar vy dependence as the I.P.M.

In order to bring out this very important point the
functions J° and J° of reference 17 are plotted in figure 8 and

9. They are

3T 0 = [T 3, (yppx) P, (x) R'(x) ax (46)
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and

2

3T 0 =[5 3, (rppx) B (x) ST (y,x) ax (47)

where

A Ro
= |

4n | 2
v

R (ypy) = 2(20 + 1) I 3 |12 s

The similarity between (46) and (47) is clearly seen
and so the neglect of the correlation term (47) would lead to
incorrect rates. However it should be stressed that whilst
the rate would be out by a factor of approximately 4 the general -
shape of the correlation curves would be unaltered by con-
sidering (46) only.

Finally since the computations involved were rather
lengthy it was fortunate to have been able to put a simple
check on them. For arbitrary k and in the region of x around
the Wignerlseitz cell edge the functions G(ka,x) behave very
néarly like a straight line of slope 1. Hence in this region
Sng(y,x) should go like a straight line of slope mnR(Y) provided
the 0.P.W. normalization factor A(kkF) is se£ equal to one.

This can be verified with the help of figure 7 and the value of’

mnl(y) given in reference 17.
DISCUSSION AND CONCLUSION

In ordinary two slit annihilation experiments the
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guantity that is measured is R(YZ),_where Yz is a direction
defined by the geometry of the apparatus. The quantity

calculated in this chapter is Rc(yz) given by

L
RC(YZ) = zz i dyx dyy R" (pr) o ' (49)

n,

whére Rc(yz) stands for the core contribution. A direct
experimental comparison cannot bé made for this expression
since experimental procedures do_not differentiate between
core contributions and other contributions. However the
quantity Rc(yz) can be added to the conduction electron con-
tribution as given in reference 14 and satisfactory comparison
with experimént can then be made.

In (49) the sum o&er all core electrons was performed,
the units being such that the counting rate RC(YZ) integrated
over vy, gives the total rate. This quantity as well as the
I.P.M. result is plotted in figure 10 for both sodium and
aluminum. The close correlation between the full curve and
the I.P.M. result is now obvious. For sodium it is approximately
a factor of 4 while for aluminum it is a factor of 3 with some-
what more of a variation. These same factors occur in the total
rate i.e. the area under the curves in figure 10. The Berko-
Plaskett result is 0.97 R® and 0.49 R® while this result is
3.5,RO and 1.4 R® for sodium and éluminum respectively. It
should be noted however that all elements do not have the same

enhancement factor and hence in general the I.P.M. could not be
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simply multiplied by a factor to give an approximately

correct result. If the complete numerical calculations

are either too involved or too bothersome to be done, for

after all experimentalists are not too interested in doing
lengthy calculations, a method of chbosing the correct
enhancement factor would be to take the best one that fits

the lifetime and correlation curves correctly. In fact this
has been attempted by Berko and Terrell(26) for certain
ferromagnetic metals in the transition series but discrepancies
arise. In partiéular, they conclude that such a procedure
overestimates the high momentum tails. The experiments

favour momentum dependent enhancement factors decreasing with
increasing angle. These present calculations show no evidence
of such a tendency, at least in region O to 3pF. However
ferromagnetic materials are not as simple to deai with as
sodium and aluminum and thus the theory developed in this
chapter cannot be readily applied. The lack of momentum
dependence couid be due to several causes. The first of course
is the anéular average approximation made. The region lying
between zero and large p’is where it is weakest but a more
accurate calculation seems to be too difficult. Secondly
positfon self—ene;gy corrections have been neglected. Woll and

Rose (27)

have, pointed out that these could play a significant
role; however without a proper systematic treatment of other
diagrams no prediction could be made in this respect. Further

it is felt that the experimental tails might not be of a high
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~accuracy. For low momenta the experimental countsg are of
the order of 2 x 104, while for the tails they are of the
order of 102, thch would’lead to less accuracy in this region
i.e. a greater statistical variance. Doppler broadening

experiments would test the theory much more rigorously and

would yield more accurate experimental tails(zs).

In figure 11 a least square £i¢ (29)

(30)

of R(p) to the
experimental data of Kim and Stewart in sodium is presented.
iny half the angular correlation curve is shown although the
data from both sides of thevdistribution was used in the
comparison. The general agreement is good; however in the
tails there is still some discrepancy. For regions beyond
3pF it seems that the theory is as yet limited but, for the
discrepancylbetween Pp and 2pF it should be remembered that
lattice effects in the conduction bands have as yet to be
treated. These will constitute the topic for chapter 2;

For the lifetime of the positron, which is equal to
thé reciprocal of the total rate, excellent agreement has been

obtained with the experimental work of Berko-and Weisberg(Bl).

Their result is 2.94 x 169 sec—l, while this work gives

3.0 x 109 sec_l.

| A beﬁter ;esult holds for aluminum in the angular
correlation curves as shown in figure 12, where the theoretical
data is compared to the experiméntal‘work of Kusmiss and
SteWart(Bz). In particular in the tails the data remains

above the computed curve. Part of this discrepancy is certainly
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due to lattice effects but the curve on the whole shows

that the angular correlation data can at least be qualitatively
understood. However in comparison to the Aluminum lifetime

the theoretical result is too low by a factor of approximately
25%. This is not discouraging since recent work by Berko and

(38) (39) indicates that

Erskine and MacKenzie, McKee and Bird
rates in plastically deformed Aluminum are generally higher
than in well annealed samples. The theory developed here of
¢ourse only applies to this latter case for which the lifetime
may well be 20% £o 25% lower than the experimental number

quoted to date.



CHAPTER TWO
CONDUCTION ELECTRON THEORY WITHIN THE LATTICE FRAMEWORK

In their derivation of a theory for conduction

(14) used plane

electron annihilation,‘Kahana and Carbotte
waves to describe the electron wavefunctions in the con-
duction band. Plane waves were used in order to keep the
calculations simple. Such a theory can in fact explain
experiments to good accuracy. However, it is well known
that due to the presence of the periodic crystal lattice,
the conduction electrons are more appropriately described
by means of Bloch wavefunctions. For Sodium, which is the
only element considered in this chapter, a single orthogon-
alized plane wave (0.P.W.) as was pointed out previously,
has been shown to describe these Bloch states very well(zl).

The following is an extension of the Kahana-Carbotte theory

incorporating this lattice effect.
DERIVATION OF THE THEORY

As is shown in appendix A eguation (A-49) for the

partial annihilation rate R(p) reads

35
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P + €, ) |? (1)

where each term has the same meaninq as given in the
appendix. The summatiqn over m' is now a summation over

all océupied electron states in the conduction band. As

has been seen in the previous chapter, the contribution
arising from the core electron annihilation does not describe
the momentum dependence of the exéerimental tails. Also in
the region between P and ZpF a greater overall increase

of these tails is desired. Hence the aim in this chapter is
to see by how much the I.P.M. tails get enhanced, expecially.
in the region Pp to 2pF and to examine their momentum depend-
ence. If such a éontribution or dependence is supplied by
the lattice it should be seen in a lesser degree to any order
of perturbation theory'and hence to simplify calculations it
is looked for only in the first order of perturbation theory533)
Hence expression (1) can now be written to first order as

eO.(

Rp) =57 6% m) | 1, (@ +
m|

m',o

(2)
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where
B jo e - pt P e
er.fl?f_fl'o(EO + Em,) P mn (E, + E_,) By nim',0 ° (3)

Equation (2) represents the graphs:

r- -2

where %5 represents free positron propagation, é; represents

free electron propagation and «~~~ais the interaction be-

tween the pair. 1In P+m n (EE + Eg) the m and n indeces refer
, i L

to excited states; consequently the energies Ei and Ei
appearing in its denominator can be approximated by m? and n?
respectively. This quadratic approximation is identical to

that previously introduced in chapter one. Incorporating this

into equation (3) yields

) Imlg|m'1®(n]-g]ol®

I
<l
Q2 ~1
a
n
)

.0.

(I

(m) eg‘o' (n)

. (4)
n2 + m2 - m'2
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Equation (2) is next‘simplified. For the conduction

electrons the single 0.P.W., as described in detail in the

previous chapter, is now employed, namely,

ik.r

WE(E) —v7— e="= u, (r)

i.e.

1 ik.r -ik. (r-R,,)
v (r) = = TLam (1-7 § IRy
k= [ v n,4,m

unQ,m (£ - B\)) An,Q,m (E) ] (5)
where
S AL
Ao (K) = dm y*, (QE) i fo j, (kr) P, (r) r dr
and
AR = (1 -3 7 |a, w177 .
7 n,q,m

The positron wavefunction

0 (x) = 7o e Xy (x) (6)
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is used and as before the k dependence in vy (%) is

—

suppressed i.e. it is used in a Wigner-Seitz approximation.

The matrix elements

In,n(® = [ () e ‘X o, (%) a'x A
mlglm'1® = [ ¥ (0 'L X wx (x) a3x (8)
(n]-glol® = [ o (x) e X ox (x) a’x (9)

which are defined in appendix A are now developed.
Substituting equations (5) and (6) into equation
(7) ‘gives

[ eir_n_.z{_ u_(x) e
m —

-ip.x _in.x
P.X in-X

il

<+

I (p)

v_ (%) d3x
m,n o - -

i (m-p+n) .x 3
[ em =5 =2 u (x) v (x) dx . (10)

<[

Since um(z) and vo(§) are periodic in reciprocal space with

the same period, it is possibie to expand the product of the

two of them in reciprocal space i.e.

w (%) v (x) =] e (@) X Coan
, a

m
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where the sum extends over all reciprocal lattice vectors

a, and»wﬁ(g) is given by

1 3 -ia.x
w_(a) = — / d”x e 22 u_(x) v_(x) (12)
a4- ° atomic B a= o=
"~ polyhedron
(a.p.)

the evaluation of which will be explained later.

The substitution of equation (11) into (10) yields

=] u (@) & _ (13)
a

Equations (8) and (9) are developed in a similar manner

mlgln'1® = 5 [ ™%y () tLELTRE Y (x) &%
=1 WA Ry () (x) a’x (14)
Expanding umxg) ug,(§) i.e.
ib.x

(15)

where the summation extends over reciprocal lattice space and
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'fmm.(g) = la ) d3§ e‘ig'ﬁ.um(§) u o (x)- (16)
— f a.p. - -
hence
) 1 i (m+g-m') . - ib. 3
mlgln')® = § [ e WERIE T £ ) 2 @x
= g fmm.(g) SE*Q'_'+Ev0 . (17)
Finally
[n]- lo]p =1 f ein X | (x) e—ig'i v_ (%) a3
=g v o= o'= X
_ 1 i(n-q).x 3
= 5 [ e v, (x) v_(x) d’x
expanding VO(E) vo(§) i.e.
_ ic.x
v, (x) v (x) = z gl(c) e ="= (18)

where again the summation extends over reciprocal lattice space

and

gle) = i Fx e E v (%) v_(x) (19)

/
a.p.

o)

hence
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[n]-g|olP =

<+

=) glg) 8 (20)
(o]

These rather lengthy algebraic manipulations were put in
for completeness and the numerical evaluation of these
equations will next be given. The equations (12), (16) and
(19) will be dealt with together. The type of expression

to be evaluated is

s (a) =

nm (x) (21)

where g (x) is a periodic spherically symmetric function
n,m— '

in space with period a. Expanding the exponential by means

of plane waves as given in (1-13) vyields

: L
_ Ar 3. 0% _ )
Sﬂrm(g) = 53 a{p. a~x 220 m-z_g( i) jl(ax)Y lm'(QE)
Since g (x) is spherically symmetric the integration over

n,m

the angles of X gives

_ 4m 2. . |
sn'm(g) = = [ x%ax Jo(ax) YOO(Qk) qn,m(x) VT
n/m 2° a.p. kK nm
= 41 f X dx Sin ax g (x) . (22)

n,n

L



This can be written as
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s (a) = — / x dx Sin ax[q_ _(x)-g_. (r_)]
n,m 2 a a.p. n,m n,m- s
+ qﬂlg(rs),6ilo (23)
where r, is the Wigner Seitz cell radius. In the first

<]

term on the right hand side it is possible to replace, with

very little error, the atomic polyhedron by the Wigner Seitz

sphere since around x| = r

vanish. It should be noted that s

the integrand should almost

o m(g) can depend only on

I

|a| and not on its direction.

the.sn m(a) can easily be evaluated numerically.

’

evaluation a Simpson's rule with a

used(zz)

f
o

With a knowledge of g _ (x)
7

In their

Herman-Skillman mesh was

Table II gives the results for zero momenta i.e.

o(a) gives the O.P.W. of momentum o - O.P.W. of momentum o

reciprocal transform; g(a) gives the positron-positron re-

ciprocal transform; and wo(a)_gives the positron-O0.P.W. of

momentum o reciprocal transform. .

As can easily be seen all the transforms oscillate

and hence an extremely accurate calculation involves the

consideration of many terms.

at several possible products, that

shells gave sufficient accuracy for the present work.

show the variation with [x| of the

However it was found, on looking

taking the first twelve
To

w function relevant results

for various momentum values were plotted in figure 13.
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Returning to the main line of argument equations

(13), (4), (17) and (20) are substituted into equation (2)

to yield
A )
R(p) = ¢ ,% ee@')-lg vt (B 8propia,0 ¥
- U_(@)82"%" (m) 6% °" (n)
Loy Ve a s ]
T Wry “m-p+n+a, o 2 2 12
mna = S =="g notmoom
: 2
1}; fm_ﬂ' (b) 61_“_'*'9_ m|+9’0 g g(C) 61_1_-9_"’9_'0[ -
Summing over g yields
= A o
R(p) = & %; Se(mv)|§ wa.(a) 6%"E+ir° +
U_ (n+c)
Vabe mn ¢ T P 7 nfmfm?

w (a) £ _,(b) g(c) 8 |2

—

m-p+n+a,o 6m+n—m‘+g}§,o

Summing over n gives
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A '
R = 35 o2 | [ g ta) S, o
m 2 - T
) 4o U_(p-m-atc)
Loy ettm =
a,b,c m (p-m-a) “+m"-m’

wm(a) £ (B) gle) 6

p-a-m'+c+b,0

In order to symmetrise things the coordinate transformation

is made, which is permissible as the Jacobian is equal to

one. Hence

R(p) =& ] 8%m") | ] u,(a) St —pra,o ¥
m' a - - ==
U, (p~m-b)

% z 2 e:.o.(m) s >

asb,c m (p-m-a) “+m"-m’

2
oy (@) e (1B=e]) g Cla=bD) 65 o _p o]

— =

Interchanging a and ¢ in the second term the equation be-

comes



R(p) =

46 .

A o, ,
Vgi Oe(m )-g- 61_“_"‘9_*_&_:0 l .U)ml (a) +
U_(p-m-b)
b,c m (p-m-¢) “+m”-m'
’wIE(c) fom (|b-al) g(lS‘E!)lz .

—

Summing over m'

R(p) =

is
is

is

A
(2m) > § (ppmfpma]) lop_g(a) +
1y 7 0u° (m Ug (p-m-b)
Vbe n © (p-m-¢) “+n’- (p-a) *
wn(e) £ o (Ib-al) g(le-b])|?

obtained. As pointed out in chapter one the quantity that

of physical interest and experimentally measured is R

Z

which

obtained from R(p) by simply intejrating over all values of

and .
Py

Hence on taking the limit of infinite volume



R =
p

Z (2m)~ a

1 z f d.3£n_' o

(2m> bye || >pp

A T
31 [ dp, [ dp, 0(pp-ip-al)fuy g

wﬂ(c).f _o (b-a]) g(lgfgl)lz

m,p

GEOMETRICAL INTERPRETATION

(24)

The geometrical interpretation of (24) may be con-

sidered by looking at reciprocal space as shown below.

2O

TeTi%

OO

plane
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The integral is taken over a plane perpendicular
to the P, axis at a height P,- The only portién of the plane,
entering the calculations, lies inside each respective Fermi
sphere of reciprocal space. The summation a is taken over
all such spheres that are cut by this particular plane. The
contribution is proportional to the square of the sum of tﬁo
matrix elements. The first is purely the Fouriér transform
of the (E—i)th plane wave matrix element taken between the
positron wavefunction and the conduction electron wavefunction
in the I.P.M. The plane wave term ei(B—i)'ﬁ, expresses the
fact that the two y-rays emerge not with momentum p but with
momentum ]gfgl, the additional amount a coming from Umklapp
type processes. These processes arise from the fact that the
lattice transfers an amount a of momentum to the electron
prior to annihilation. (Note that if a is set equal to zero,
it follows that the first term gives the contribution solely
from the single central Fermi sphere with no momentum transfer.)
From table 2 it can be seen that this tefm gives a maximum
contribution at the central sphere and then slowly converges
in an oscillatory manner as ohe goes out into reciprocal space.
The second term is basically a correction for correlations and
ranks in importance with the first because the relative motion
of the annihiléting pair is highly correlated as indeed was

seen in chapter one. It consists of the Fourier transforms of

electron-electron, positron-positron, positron-electron matrix
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elements describing particle excitations with subsequent
annihilation. Due to the summation over é and ¢ i.e. a
complex coupling of all the spheres, it is hard to estimate
what terms will dominate. This makes the calculation very
lengthy as no set of terms can be neglected beyond those
which have been mentioned previously. In addition a screened
Coulomb .potential with the relevant energy denoﬁinators is

also included in equation (24).

COMPUTATION OF Rp
z

Referring expressly to the physical and geometrical
aspects of the problem the simpiification of expression (24)

now follows. Performing the coordinate transformations

(which are allowed since the Jacobian is equal to one) gives
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R = dp dp' elp_~lp'|) |w.,(@a") +
Py (211) f y’g F "] E
1 3 - U (|p'-m+b'[).
2 [ &m IR
(Zn) b',c Iﬂl>PF (p'-m+c') “+m"-p'
o (l2'=e' 1) £y 0 ) alle’-p' )| -

It should now be noticed that the coordinate transformation
has reduced the integral in (24) to an integral in each

. separate Fermi sphere and to a summation over all spheres.
From a physical point of view it is a reasonable assumption
that the angular variation of the expression in each sphere
is small. Therefore the assumption can be made that the
expression is spherically symmetric in p'. Making P, the

axis of integration and introducing a factor of 2 for spin

degeneracy the result may be written as

P
R,o=-2T 7 [T puap |w @)+
Py (2m) a IPz"ale P
| U (|p'-m+b'|)
L Z g(c'-b") / d3E_ = 3 3 D
(Zw) m|>p (p'-m+c') "+m " -p'
= F g 72T

o la'-e) £ o 0" ]° : (25)



51

Measuring all momenta in units of the Fermi momentum Py

i.e. p' = YPL s introducing the factor 3/4 R® = 2nxp§/(zﬂ13

and remembering that RY = pF.Rp ;- equation (25) becomes
z z
1
R, =3/4R° 27 [ ydy | w, (a) +
Yz a Y
v, 5=
F.
.
Y g(le'-b']) d’m w_(la-c'|) £ (b')
_.'S' - lm{>]_ = m I m,y
a U (|y-m+b'|) |2
(x-mren? + m® -y ,

Due to the slow convergence of the Fourier coefficients w
and f with respect to their arguments the summations over
b' and ¢' have to be extended to many reciprocal lattice

vectors. Taking several particular values of a and looking at

g(le'-b') w (la'-c']) £, (b")

it was found that 12 shells in reciprocal space are sufficient

for adequate convergence. However, even by doing this, the
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computation of the expression is so lengthy that the
subscripted momentum dependence in the Fourier transforms

had to be neglected i.e.

1
R, =3/4R 2] i ydy | w(a') +
Y a

Olez-Ei

I w(la'-c']) £(6") g(lc'-b'])

a’m B 5 | (26)

where the Fourier transforms are those of table II. This
assumption destroys the gquantitative correctness of the

result but nevertheless it will still be qualitatively correct
and at worst it will be a model calculation and indiéative of
the correct result. This approximation is certainly good for

w (a) as can be seen from figure 13, but for the £, Y(a)
r

there is quite a momentum variation and the approximation is
poor. Indeed this is the weakest point in this theory. To
get an estimate of the error made the calculations for two

distinct cases were performed.
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The first case was the Wigner Seitz model in which
all the subscripts are set equal to zero. The second case
was based on the facﬁ that for Very large momentum the O.P.W.
tend to plane waves; hence plane waves were used in the
evaluation of the Fourier coefficients. It was found on
performing the computations that béth cases were equivalent
to within five per cent - thus indicating that the
assumptions might‘not be as bad as might be expected.

Furthermore the potential chosen was not thekstatic
limit of the screened Coulomb potential but a Fermi Thomas
potential was used. The reason for this was purely technical
since the logarithmic term in the screened Coulomb potential
(cf equation I-42) would have taken too long to be evaluated

on the computer.

COMPUTATIONAL TECHNIQUES

Before presenting the results, the techniques used
in the computation of equation (26) will be discussed. The
integral over m was carried out using a stratified saﬁpling

Monte Carlo type method(34)

. In order to get an even
sampling over all space the mesh was chosen in an unusual way.
A vector was taken with several points randomly distributed

on it. This vector was rotated in the first octant to give a
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randomly distributed set of points.totalling 738. The
points in the first octant were then rotated to give the
full remaining seven octants. In this way one can economise
on the number of times the integrand has to be evaluated but
in actual fact one performs a Monte Carlo calculation with
5904 points.. To ensure that a satisfactory job was being
done a comparison was made to a Simpson's rule evaluation of

the integral

(27)

for a couple of fixed vectors ¢ and b. Agreement was
obtained to within 3-5%.

In the evaluation of (26) random sample vectors b
and ¢ were taken out of each shell and they were used as the
representative vectors of the whole sheli. This was justified
by the fact that on taking several random samples and
evaluating the whole of the correlation term in (26) a
variation of less than 2% resulted. Anyway this random
sampling conforms to the general spirit of a Monte Carlo
approach. Tﬁe computer time saved by doing this is enormous.
This reduces the evaluation df a 225vx 225 matrix ﬁo an

evaluation of a 12 x 12 matrix., Table 3 gives a typical

]

matrix for p = 1, P, = 0.866 and P, 0.5. The table shows

that (27) assists convergence but is not in itself sufficient
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for convergence. This must be sought in the Fourier
coefficient products. The rest of the computation was
done exactly using the I.B.M. 7040 computer of McMaster

" University.

RESULTS -AND DISCUSSION

Firstly the result for the independent particle
model or the first term of the square in equation (24) is
plotted in figure 14. This shows an inverted parabola for
momentum less than Pp which reflects the sphericgl surface
of the Fermi sea. For momentum values greater than Pp the
"tails" due to Umklapp type processes are obtained. The
full evaluation of expression (24) is shown in figure 15,
It can be clearly seen that the central parabola is enhanced
by a factor of approximately four. As was pointed out
earlier this is due to correlations bétween the annihilating
pair. However the shapes are not identical - a slight bulging
out of the parabola takes place as indeed was found by Carbotte

and Kahana(l4)

in their plane wave summation of the ladder
diagrams. Tais furthers the evidence which shows that. the
Born approximation is sufficient to give a good qualitative
description of the total result i.e. the summation of all the

ladder diagrams which have only been carried out to first order.
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The tail is also enhanced in a similar way as the main
parabola. The momentum variation of the tails was not
found. The calculation seems to indicate that the complete
summation of all the ladders would give too much of a
contribution in the region of momentum greater than two Ppi
however on a brighter note it would correct the discrepancy
between theory and expefiment in the region between one ana
2 Pp-

A detailed graphical comparison to experiments is
not included here since, as was pointed out earlier this
calculation .is of a qualitative nature, and in a detailed
qguantitative way it is not too reliable.

As a.final remark it might be stressed that this
calculation implies that the Berko-Plaskett theory is
sufficient to explain experimental results. This theory
has to be multiplied by a constant factor varying from
element to element to obtain reasonable results in agreement
with experiment. This factor is the one referred to in the

last section of chapter one.



CHAPTER THREE
POSITRON ANNIHILATION IN SOLID ARGON

The experimental angular éorrelation curves are
of two types; an inverted parabola with tails at large
angles,uand a Gaussian type distribution. In chapter 1
and 2 the former type were examined. The parabolas dis-
played a fairly sharp cut off at an angle corresponding
to the Fermi momentum as characterized by the alkali metals
and by aluminum. However the distribution in the noble
metals and in insulators extends well past the expected
Fermi cut off, exhibiting the Gaussian character. This
momentum spread is characte;istic of highly localized
electron states and it is expected in an insulator because
all the'atomic shells are filled and all the electrons are,
in effect, core electrons. Indeed a Gaussian distribution
was obtained in the core calculations of both sodium and
aluminum as given in chapter 1 and in figure 10. The core

theory of Carbotte(l7)

, expanded in chapter 1, is now applied
with certain limitations to solid argon.

Since argon is an insulator with a simple structure,
it was chosen as the most suitable example for the calculations.
Furthermore, in the argon crystal the atoms are bound solely

by Van Der Waal's forces so that, to a first approximation,

57
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each cell, centred at an atomic siée, is electrically
neutral. Thus no complications arise due to 1) positron -
ion core correlation effects as would be expected in sub-
stances with ionic binding, and'2) the sharing.of electrons
by neighbouring atoms as in the case of crystals with

covalent bonding.

PRESENT STATE OF THE THEORY

(35, 27) have tried to explain

Two recent papers
the theory of angular correlation and lifetime experiments.
Rose and De Benedetti‘35) have applied a simple’Berko~
Plaskett theory to their experiments. Their results, like
all of the I.P.M. calculations, explain the angular dis-
tribution curves very well but, when it comes to the positron
lifetime, they highly overestimate the experimental results.
This overestimation of the lifetime is of course now fully
understood i.e. the correlation terms are equivalent in
importance to the I.P.M. terms.

Woll and Rose(27)

went a little further. Instead of
assuming that the positron sees a simple Hartree field due
to the outer electrons, they also included an attraction due

to the virtual polarization of the outer electrons. As

might be expected this gave rise to a highly distorted positron
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wavefunction with a peak about halfway along the Wigner
Seitz cell and as a consequeﬁce the positron penetrated the
core to a greater extent i.e. the core is sampled better
than in the I.P.M. Their result was very good for the
lifetime: of the positron but their angular distribution
curve is totally wrong. But since both the angular dis-
tribution and lifetime measurements should be explained

simultaneously their theory is unsatisfactory.

LIMITATIONS OF THE CORE THEORY

In the derivation of the core formula (B-14) in
appendix B a plane wave approximation was made. In other
words wherever a conduction-conduction matrix element
entered the theory it was replaced by a delta function.

But Argon is more complex than the alkali metals and the
single O0.P.W.'s are now more complicated with more structure
than in the simple metals for which the theory was derived.
Figure 16 shows the momentum dependence of these O.P.W.
Hence overlap matrix elements have now to be treated much
more carefully than was done in appendix B as band effects
play a major role. The theoretical derivation leading to
equation (I-2) is only wvalid for Argon if it is evéluated

to first order. This will of coursé, as in the last chapter,
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be only qualitatively correct. However, in sodium 80%
of our theoretical contribution came from a first'order
calculation so that now the first order calculation for
Argon is carried out bearing in mind the fact that the
final result might only be approximately 80% of the true
result. This suffices as indeed the scope of this work
is not to derive a theory that will explain Argon but
rather to apply the already developed theory to see what
type of results it gives.

This is done chiefly for two reasons. Firstly by
applying this theory to other elements a better undérstanding
of the theory itself in general might be obtained with
resultant improvement. Secondly by its application to Argon
it might suggest a way in which Argon and other molecular
insulators could be properly treated in a diagrammatic way.
This would be the next step in the general de§elopment of

the theory.

APPLICATION OF THE THEORY

A knowledge of the atomic core wavefunctions and the
positron wavefunction is basic to these calculations. The

electron core wavefunctions used were those derived in
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(20)

Hartree and Hartree . No better wavefunctions were
derived as thése were thought to be sufficiently accurate
for the present calculation. As in the case of Sodium
and Aluminum it was assumed that the positron éees a simple
Hartree field due to all the othe; electrons, taken in a
Wigner Seitz approximation. The result is shown in figure
17, and it is very similar to the wavefunction of Rose and
De Benedetti(35).

The 0.P.W. representing the excited states were
constructed in a similar manner to that described in
chapter 1. As already mentioned these are plotted in
figure 16 for various momentum values. The extra oscillation
in the wavefunctions as compared to Sodium should be noted.
This, although it seems to be a trivial point is very
important since now the O0.P.W. only approximate to a plane
wave for very large momenta. As a result the fact is
stressed once more that the core calculation is not carried
out to all orders but merely to the first order in the
laddér approximation. This difficulty must not however be
thought to be of a physical nature; it is purely a mathematical
one and no attempt was made to remove it as it was felt that
agreement to 80% would be sufficient. Deéeloping the present
theory further makes the calculations too long and involved

to be practical.
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DERIVATION OF THE PARTIAL ANNIHILATION FORMULA

Equation (I-37) can be carried over to the Argon
case very simply by remembering the fact that no Fermi
momentum arises in insulators. Hence the contribution to

the partial rate R(p) arising from an electron in the state

ni is
nf Al . +
R (p) =5 o 2(28+1) 4m | [ ax J (px) P (x) R'(x) +
2 j, (px) A(k) P_,(x)
2%' 2 75 ni US(IEfgl)
[A o*+2k"+p -2pkuk]
2 2
G(kx) k“dk duk dx | (1)
! + =2
=T 8m(28+1) | I + J |

where the various symbols are explained in chapter 1.
One major chénge has occurred which at first may seem
trivial but actually complicates matters considerably.
The Coulomb potential US(IE‘KI)'iS no longer given by

(I-42) but by
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8
U_(|p-k|) = ——— - . (2)
lp-k |

This introduces a removable singularity in the correlation
term of expression (l). This can best be seen by doing the

integration over My in this term to yield

- —i2 Jw Pnz(x)
J = = j, (px) A(k) —5—— G(kx)
™ Jo % k2+A
ni
( p2kZ-2pk ) (An2+2k2+p2+2pk)
Zn :

55 >3 kdkdx . (3)
(2k"+p —2pk+An2) ( p“+k“+2pk )

The singularity is now obvious in the logarithmic term for
p = k. In evaluating the integral care has to be taken
since there are the added singularities at the integral

limits. This can easily be done by using a counterterm

method and with the aid of the auxiliary function
Y = 2
glp:k) = [1 + p - k] (4)

(3) can be written as
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L oo '
- —3 .J.:.._ - - - - - )
= L Io ak [g(pik)F(pskib_,) - F(pipih_,)]
L (p-k) 2 (p+k)2+An£
SR W , > *
9P (p+k)©  (p-k) T4

L

2 2
(p-k) (p+k) +An2

L ©
i . - ak

2 2
(ptk) (p-k)“+A o

where

_k
k% + A

F(pskid ) = [O ar 3, (pr) B_, (r) G(kr) A(k)
ni

The function g(p;k) had to be introduced to obtain con-

vergence at both limits.
COMPUTATION OF THE PARTIAL RATE AND LIFETIME

The computation of (1) is now trivial. In
particular to do the integrals the Hartree—Hartree(zo)
mesh was used in a Simpson's rule evaluation. This mesh

might be criticized as being too rough but the accuracy

and speed achieved was thought to be sufficient for the

(5)

(6)
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present limited purposes. The only levels evaluated

(23)

were the 3s and 3p since, due to the large band gap Ang ’

the other levels give an insignificant contribution.
Figures 18 and 19.give the Jinz functions for the

3s and 3p levels. These show the same characteristic be-

haviour as in the Sodium core i.e. figures 8 and 9. The

theoretical and experimental(36)

partial annihilation result
is shown in figure 20. As can be seen agreement is re-
markably good. This is very encouraging; however the life-
time calculation is a more sensitive comparison. For this
the theoretical result is 0.5 x J.O—8 sec compared with the
experimental value of 0.43 x 10'-8 sec given by Liu and
Roberts(37). This agreement is very good considering the
80% accuracy of the theory.

From this it may be inferred that a better treatment
of Argon is certainly worthwhile. However in such a treatment
not only should the complete ladder approximation be used but
the diagrams that give rise to polarization effects, as dis-
cussed by Woll and Rose(27), should also be included. The
very good results obtained however suggest the possibility
that these terms might cancel against higher order diagrams
in a similar way to the cancellations obtained in Carbotte's

thesis(l4‘

for the diagrams of the conduction theory in simple
metals.

In conclusion the questions posed earlier may now be
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answered. It seems evident that the general positron
annihilation theory derived by Kahana and Carbotte gives good
results both in metals, and with some slight modifications,
in general. At least non-ionic insulators can definitely

be described by it and with a further extension as suggested
above the theory should be able to explain the experimental

results to within five to ten per cent.



APPENDIX A

CARBOTTE-KAHANA THEORY OF POSITRON ANNIHILATION(17)

in order to make the thesis complete and self con-
tained the follbwing éppendix, which is a synopsis of the
paper by Carbotte(l7), is included.

In the non-relativistic limit of guantum electro—.

dynamics the Hamiltonian operator, that produces a two-

photon final state of total momentum 7 p is proportional to

a, b, 8 , (1)

where akl and bk are annihilation operators for the electron
X 2

(6)

of momentum k; and the positron of momentum k, respectively
The corresponding point annihilation operators ¢(x;) and

¥(x2) can be introduced by means of the relations

_ 1 3 -ii_{_1.__X_1
Y, =W [ &7x:1 e @ (x1)

(2)

e M2 X2 gy,

o
I

1 3
&2 v f d X2

where V is the volume of gquantisation. Substituting (2) into

67
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(1) and performing the summation over k., yields

b=

7 f d3§1 d3§z e 1R-X2 ~iki. (X1-X>) o(x,) ¥Y(x2)
ki

Summing over k; and integrating over X, yields

[ @3 e71RX o(xy) vixy) . (3)

The partial annihilation rate is easily obtained
by taking the matrix element of equation (3) between the
initial and final states, squaring the absolute value, and

4

summing over all final states i.e.

3 ip. (x~y)

R(p)=<fadx ady 7B XY 5(x) ot(y) v viw)> . (4

It is possible to relate equation (4) to a contraction
of the zero temperature electron positron correlation or
Green's function. The latter is defined as

2

Goptxyixn'y") = 12 < T ¥x) oy) o (y) vHx) > (5)

where x = (x, tx) and T is the Wick time ordering operator.

Using this (4) becomes
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.y 2 X
R(p) = i:%l_l [ d3§ d3z o~ip. (x-y) Gep(X:X:Y+,y+) (6)

where x = (x,t) and y+ = (z)t+). The proportionality
constant A in equation (6) can conveniently be fixed by
referencé to the known properties of singlet positronium.
The electron density at the positron in the positronium
ground s$tate is l/(8wag) and the annihilationArate is 4AO
with A = 2.01 x 10% sec™®. Since annihilation into two
quanta can only occur from a singlet spin state, the correct
proportionality constant for a metal is A = 4Ao (8ﬂag)%
where the factor % is just the probability for a given
electron-positron pair in a metal to be in a singlet state.
Equation (6) is not only a mathematical gxpression
for R{p) but also a physical one, since the Gep term diagram-
matically contains all of the interactions between the
annihilating pair. Solving for this in the ladder approx-

imation i.e. summing all the ladder diagrams yields the

integral equation

. _ ~9,.. O unr.aury_s:ral 4‘ . o,..
Gep(x,X',y,y") = Ge(x,y)Gp(x jy')-ifd7z d47z'U(z;2")G (xi2)

o P et
G (x';2z") Ge

p

p(Z,,g';y,,y') (7)

where
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U_(z;z') is the screened Coulomb force of an electron-

s
gas theory(lz), i.e. only the conduction electrons are

assumed to play a significant role in the screening. The
functions GZ and Gg are respectively the zeroth order
electron and positron propagators.

The positron Bloch state will be denoted by ¢ (%)

and the positron propagator is then given by

dw e—lw(tx—t

G_(x;x') =] ¢ (x) o* (x') Ji’ﬁ x') Gg(r_n_;w) (8)
m —

with

890" (m) _ e;(fﬂ)

o o)

G (m;w) = + 3
p - P _ _ st P _ .+
Em w 10 Em w + io

(9)

where Eﬁ is the energy of the positron in the state @m(i),

while eg'o'(m) is a theta function equal to 1 for all un-

occupied states and equal to zero otherwise. The function

U..O.(

o
] =1-29 m) .
p (m) p m)

The electron wavefunction will be denoted by Wm(§),
where the Bloch label m stands for the usual (nfms) ifﬁit is
a core state, or for any momentum value in an extended zone
scheme (or the equivalent) if it is a conduction state. GZ
can be written in a similar form changiné all the positron

labels in (8) and (9) to electron ones.
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In equation (7) the variables y and y' do not get
coupled in the integration. Since the two body potential
is assumed to be static the electron-positron Green's
function Gep(z,z';y,y') need only be known for tz = tz"
Henceforth in this appendix for any pair of variables x and
x' it‘ié always understood that te =t

In order to simplify expression (7) the Bethe-Goldstone
amplitude Q(x,x';v,y') is introduced as follows

3

4 o O L L
Gep(x,X';y,y') =[dzad g' Q(x,x';z,2"') G_(z;y) Gp(z iy').

(10)

Introducing equation (10) into equation (7) yields
4 3 e} o o o}
[ da%z a7z' Qx,x'3z,2") G (ziy) G (z'3y") = G o(xiy) G (x';y') -

3

4y Gg(x;z) G;(x';z') U(z;z") | a‘r a3r

if d4z d
' ' o ‘ o ' ' |
Q(z,z";y,y") Ge(r:y) Gp(r AR . (11)

On interchanging dummy symbols and introducing delta functions

this expression can be rewritten as

4

fd4z d'z' GZ(z;y) Gg(z';y')[ﬂ(x,x';z,z') - 64(x—z)'53(§'-5') +

3

i f d4r a’r' GZ(x;r)Gg(x';r')U(r;r') Q(r,r*;z,z")] = 0. (12)
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which implies that

3

9(x,X';y,?') =.'64(x-y) 53(35'-1') - i fd4z a’z' GZ(X;Z) GS(X';Z')

U(z;z') Q(z,z";y,y") . (13)
Because of the translational invariance in time, Q(x,x';y,y"')

can depend only on the time difference tx-ty. Thus, the

generalized Fourier transform, can be introduced for £ i.e.

Q(x,x';y,vy") = E \ym(ﬁ) @n(_}i') [%%T)_ e-iw(tx—ty)
mnm',n' T 2
lea;énlﬂl (w) ‘Y*m. (y) @*n, (y") . (14)

Using this result to Fourier transform (13) yields

(W) ¥E, (Y) 0% (y')

-— -—

Z \ym(z{_) (Dn(?-{—l) J%’% e—iw(tx-ty) Q

m,n;m',n

2m = 2
- 33,1 ipi.(z-2") : dw,

i J dt, d7z d7z' 3 gl e = 7 U (p1) ézj 5 WEZ(E)w*Ez(E)
iwp (t_-t ) o, . dw, , o —iws (EL, -t )
e x "z° G_(p2;w2) IZ)J-ZH—‘ (DBS (x") Q*Es(g) e T x

o oy [dw —iw(t -t))
Gp(Ea7w3) ; Tm.(g)ég(g )JE% e z y @

em! :
m,nym',n' = Srninoon

) et g - as)
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where US(EI) is the usual Fourier transform of the static
effective potential Us(§,§'). Carrying out the trivial

integrals and summations and interchanging dummy variables

yields
' dw -10.) (t. -t ) l
8272372111' ’nl ‘ygz (§) ®£3 (E ) J 5‘1?' e X y qj*l_f_l' (.Y_) @*r_.l.' (_Y_ )
. 1 k
[QEZ'Ea;E"E'(N) ) SEZ’E' 683'2' " Egkn{v gl Ug (1)

J gﬁz 922,23;mv,ﬂu(w). G:(m,wz) Gg(ps;w?—w)] (16)
which implies that
¥m,nim' 0" (w) = *m,m' °n,nt 7 _g,i. "m,nik, k'
J%% QE’k,;m;’E.(w) GZ(E;E) Gg(g;w—e) .(17)
where N

® o [-g| k1P (18)
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and

m lgl k1€ = | ¥_(x) e1q-X vx () a3x (19)
o .

n]-glk"1® = | o (x) e'LE o+, (x) a’x : (20)

Substituting equation (10) into (6) results in

| L2 ’ |
R(p) = {752 J a’x aly iR (x7Y) I a'z az' a(x,xiz,2")

Golziy) Gg (z':y) (21)

Fourier analysing the right hand side of this equation gives

\Y

a2 ' . .
R(p) = 17 J d3x d3y e—lB'(E-X) f dtZ d3§ dBE'

' dw -iw(t -t )
IR ‘Pr_n(g) e (x) J 5= © X 'z Qm'n;m',n.(w)
oo orCt . - - - - -

2T

¥x L (z) o*_,(2") % v (z) ¥* (y) I dwy e—1w1(tz—ty) GZ(&iwl)

. dw —ilwa (t -t ) O ..
%. 2., (2" @*&'(X) I E?A e 2'Tz vy Gp(& jw2) . (22)

On rearranging terms



75,

Jd3?-_ az' v, (2) ¥olz) 0y (2") o* . (z) . (23)

3

Carrying out the integral over dtz, a~z, dBE'andvsubsequent

summations over m', n' gives

(=1i) A
R(p) = ) I _(p) I*, ,(p)
' mmsger RRT LA
dw dw dw 1wo+
1 2 —_ -
j 3 L 5 e S (w W Ws) QE!E’&'&'(w)
o
Gg(2iw1) Go(L'5wz) (24)

where the rotation

.IE’E(Q) = J Ym(g) e_iE'§ @E(i) d3§ “ (25)



76

has been introduced. Doing the integral over w, and changing-

dummy variables yields.

(-i) %
R(p) = ) (p) I* , _,(p)
Vo mmim,n R SR
dw de iwo+ o o
Iﬁ J 77 © U nimt,nt (0) Ce@'ie)Cointiume). (26)

The € integration can now easily be done with the help of

equation (9) by contour integration i.e.

f de G (m';e) Gg(g';w—e)

27
u.o. 'y (o] ' u.o. ' o '
(e hy (m)+ 82 (m') 6, " (n') K 6,(n")
) 2m e . ¥ e . ¥ P .+ P .+
Em,—e—lo Em,—e+1o En,—w+e—1o En,—w+e+1o
60" m") 02 %" (n") oom’) 62(n')
=i -
Ep,+Ee,-w—io+ E ,+Ep,—w+1o+
n° m mn
=i [p" (w) + P~ ()] (27)
IR L m',n' "

where the functions

g¥-0- (1) %O (1)
Pt (W) N
m',n

n

(28)
Ep,+E§1,-—w-io+
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and
- oo (m') 6o (n") _
m'n’ EP +ES, ~ut+io”
n° m
Hence equation (26) becomes
R(p) = 232 ) I (p) I* , ,(p)
YV mam,n mETORLRT
dw _iwo + -
J 5= € erafm"a' (w) [P m',n’ (w) + P m',n’ (w)].(30)

The result of equation (27) can also be applied to equation

(17) to give

S S Q . , (w) . (31)

In order to further simplify equation (30) a simple

matrix notation is introduced. In this notation (30) reads

m,n ’

R =5 m ngm' n' I_ _(E) I*E' n'(E)

W el <mn | awi @ + P71 | 0> (32)
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and (31) becomes
Q{w) =1 + [P+(w) + P (w)] HQ((Q) . ' (33)

The whole integral of equation (32) can be easily performed
by treating the integrals that arise when Q(w) is expanded
with the help of (33) separately. The first term in the

expansion is

Y () + P (w)] S

§
27 m,n m,n m,m'

——

do _iwo’

J e n,n' (34)
Using the definitions of P+(w) and P (w) this integral can
easily be performed by contour integration, and closing the
contour in the upper half plane P+(w) can be neélected since
there are no poles. Hence

. A0 o

i ee(g) Gp(g) GE'E' 62'2, (35)
results. Other possible members in the expansion are of the
type

. +
et iy wm @t ey ...m @Y+ PT) (36)

which reduce to
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the exponential factor

be defined unambigously

being
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. T (37)
. P _ (38)
. " | (39)
Pt (40)
P | (41)

L) . 14

dropped as the contour can now

Neither (37) or (38) contribute as

the integration contour encloses a perfectly analytic function

in one of the half-planes.

Terms with two or more P c¢can also

be discarded for the following simple reason. For each P in

a term there exists a theta function of the type eg(g). These

can be used to eliminate
over the positron states
the remaining expression

in the limit of infinite

one of the intermediate summations

(cf equation (43) beloﬁ), so that

is of the order of 1 , which vanishes

A

volume since the rest of the

expression remains finite.

Hence the only remaining terms are

those with at least one P and any number of P+. These can

simply be treated by introducing the intermediate amplitude

0° defined by

o

°®=1+p"ug°

Then clearly all the remaining terms as well as (34) above

. [
are included in ° P

ot

Hence equation (32) now reduces to
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Introducing a set of intermediate states into this

equation gives

'R = == I *
(p) = m,ngm"n' _'_(g) T* e, n (p)
dw _iwo o
do ] mn | %W | st
s/tis' st
lPE - ot
<s t | P (w) | s't'> <s'" t' | 9 (w) | m'

Noting that all the singularities of the Q's are in the

lower half plane, the contour is closed above, picking up

the P contribution to yield

R(p) =& ] 02(s) o

which can be rewritten as

e, P
¢ (Eg¥ED) ]

-—

(44)
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(EP,+85,) |2 - (45)

Since the positron is thermalized on annihilating(7’8) the
summation over n' is equivalent to setting n' = 0 since all
other states are empty. Finally equation (45) can be put

in a more physical form by making the transformation

o . _ o
im0 T %mm' %0 T Xmonim o (46
and substituting into equation (31)
o =
*nom' *mo ¥ Xmnint,0 T fmym' On,o
P* (w) ] H [s s, +x° 1 . (47)
m,n Kok m,n;k, k' k,m'" "k,o k,k';m',0" °
=z k, k' === L L2
This implies that
xo = pt (w) [H + Z H xo ]
m,n;m',0 m,n m,n;m',o K k! m,n;k,k'* k,k';m',0
m,2 menqam k, k' T2 20T

and
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p,.e 2
',O(EO+Em') I .

(49)

This equation was obtained by Carbotte in reference
17 and is of basic importance to this thesis. In the form
(49) it is completely general within the ladder framework and
no approximations have as yet been made. It can easily be
applied to describe both the core and conduction electron
annihilation and hence a complete physical interpretation
is given in the appropriate section of the thesis. However
a mere glance shows that the rate R(p) is proportional to
the absolute square of the sum of two terms. The first
gives the I.P.M. result and is the pth Fourier component of
the core electron and positron single particle Qavefunction
overlap. The second term is a correction which describes
in an approximate way the correlation in the relative

motion of the annihilating pair.



APPENDIX B
.CORE ANNIHILATION FORMULA

Expression (A-49) is now fufther reduced to deal

with core annihilation in simple metals. It is important
to bear this in mind because some of the approximations,
that will be made, only hold for simpie metals but not in
general e.g. the case of solid Argon treated in chapter 3.

~In érder fo evaluate equation (A-48) the following
simplifying approximation has to be made. In a Wigner
Seitz cell a core state is highly localized about the
centre, while a conduction state extends appreciably
throughout the cell. Hence the matrix eiement [m |g| k1,
where k is a core state and m is a conduction electron or
positron wavefunction; is very sensitive to the deviations
of m from a plane wave. Thus band effects are of tantamount
importance in the evaluation of such matrix elements. This
point is clearly seen from figure 1 where a plot of the"
overlap between core and conduction matrix element is shown
for Sodium. In such evaluations the mesh for_the integration
has to be carefully chosen. However'if k is also a conduction

state, then it is quite reasonable, at least for simple cases

83
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like Sodium, to set

[I_ﬂ_ lg..l ]..<_] = 6x_n‘+9__‘]i’o

. ‘ (1)

That this is a good approximation can be inferred by
examining figure 5, where it is seén that the major’portion
of the curves are plane-wave like. Thié point can perhaps
be seen more clearly by looking at the expansion of a
conduction state in reciprocal space i.e.

_ 1
X = g (@ . (2)

For the simple metals the uk(g = o) term domiﬁates and is
approximately equal ﬁo one._ As a result the Wk(g) are nearly
plane waves.' However figure 16 suggests that ;ﬁis is not

the case for Argon. The a = o term does not dominate the
expansion (2) and several of the a terms have to be included.
Hence this approximation, whilst good for simple metals, is
not good for non-metals such as Argon. In fact this is the
very reason why the calculations for Atgon are only carried

to Born approximation in chapter 3.

Applying (1) to (A-18) yields
H o i’U (n) [m[nlnS’cms]e (3)
“m s vV Ts'= RRI=ITREE

and
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(4)

where it should be clearly noted that in (3) the correspond-
ing positron matrix element does not appear since it is

treated as a plane wave. Hence (A-48) can be written as

° = 1 e
X’m:g;ngmg,o(w) = P g,g(w) 7 Ug(n) [m|n|ntms]™ +

) J ¢ Ug (k-m) X%y () . (5)

m,n

|~

Since the m and n momenta refer to excited states, on

account of P+m n(w), the quadratic approximation for E;
I

and EE can be made. This measures the electronic energies

from the bottom of the 3s band and positron energies from

the 1s band.
Also IE'E(B) can be replaced by 6E+E'E where m and
n refer to unoccupied states as in (A-49). Hence
X° (w) = J! (0) [m |p-m| nems]®
m,p-m;n2ms, o m,p-m

2 (o]
L 9n,pmik ) X, prkimeng, 0 ) )
where

(w) U (p -m)



86
and

JZ.

: P
m, p-m;

, o
mop-m(®@) Uglkm (7)

<HAA

]i(w) =

In ordef to solve (6) the triai solution

Ik |p-k| nams]® (8)
is taken. Substituting into (6) yields
(w) [k |g—§| nzmgle

1
]E ®m,p-mik ) Tk, p-k

(@) [m |p-m| nams]® +

2
Lompm @ | *kipktix®
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which implies that

J2  (w) @

*n,p-mik @ T Cmx T L, Impmik k', p-k'ik (@) (9)

2
|~
| W~

Summing both sides over m and introducing the notation

XE(E;w) = (w) (10)

|19
O
12
e
!
13
|~

'-
om0 U T s by (0

(11)

Interchanging dummies on the right hand side and using (10)

xplcio) = 1+ S é Xp (s ) PI;’E_E(UJ) U_(k-m) . (12)
Introducing the notation

ngmg - é Xog,_—m,ans,o(Eg Eizmg)

equation (8) becomes

ngmi = ]Z( % QE'_".H_"E(EE + Eo, ) ngg__(Eg + Es, )

[k |p-k| ntms]® . (13)
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This is the second expression of the square in (A-49) which

on using (10) becomes

b e N
(B + By Ug (B7K) - (14)

e}
<~
|~

ige]

3

=

=}
|t
|~ +
[

|~

Using the energy convention introduced above it now follows

that E§«= 0 and Ee = —K' where An

nems ) is the band gap be-

2
tween the core level (nf&ms) and the bottom of the 3s band.

Equation (14) finally becomes

anm.&:’. = l En’q' k -k I3 e ) 15
where

nl _ . + _ _ v

E_ = XE(E, ALg) P.]ErP_"E( A,) U (p-k) . (16)

This is the required result.



FIGURE CAPTIONS

FIGURE 1

The Hartree-Fock-Slater core wavefunctions for
Sodium as given by Taylor(lg). Superimposed on these is
the zero momentum O.P.W. This clearly shows that the core
wavefunctions are greatest where the O.P.W. are smallest

and vice versa.

FIGURE 2

The O0.P.W. orthogonalization coefficients Anz(k)
defined by equation (I-17) and the normalization constant
A (k) defined by equation (I-19) for the Sodium core wave-
functions. Only momentum values greater than Pp are of

interest.

FIGURE 3

The equivalent of figure 2 for Aluminum.

FIGURE 4

Solution of the integral equation (I-43) for the

89
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amplitude an(y,k)'as a function of momentum k and for a
number of 'y values. Notice that an(y,k) is defined only

for k > 1, i.e., above the Fermi surface.

FIGURE 5

The k dependence of the guantity G(ka,r) entering
equation (I-41). The complex structure from the orthogonal-

ization parts smooths out for sufficient large k.

FIGURE 6

The function Sng(o;r) for the 2p and 2s shell.

FIGURE 7

The y dependence of the function Snz(y;r) for the
2p shell. The lack of oscillations implies that the
correlation corrections have much the same variation with

r as the I.P.M. term.

FIGURE 8

The overlap integrals J#Zs(k) for the 2s electronic

shells showing the similarity of the J  to the gt term.
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FIGURE 9

The equivalent of figure 8 for the 2p electronic

shell.

FIGURE 10

The contribution of the core electrons to the
two-photon counting rate for both Na and Al. The enhanced

curves are nearly simple multiples of the I.P.M. curves.

FIGURE 11

- The two-photon counting rate for Na. The
experimental data have not been corrected for background

effects.

FIGURE 12

- The two-photon counting rate for Al.

FIGURE 13

The reciprocal transform of the O.P.W.-positron
wavefunction overlap as given by equation (2-12). As can

be seen the momentum dependence only introduces an appreciable
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error in the first and second shells othetwise it could

be neglected.

FIGURE 14

The unenhanced lattice contribution to the
annihilation rate. The units are such to allow easy

comparison with figure 15.

FIGURE 15

The full enhanced lattice contribution to the
annihilation rate. A bulging of the parabola is seen on
comparison to figure 14 but both the central distribution

and tails are equally enhanced.

FIGURE 16

The equivalent of figure 5 for Argon. The extra
oscillation in the O.P.W. forces a first order calculation

of the core theory.

FIGURE 17

The positfon wavefunction for Argon. This is very

similar to that given in reference 35.
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FIGURE 18

The overlap integrals Ji3s(k) for the 3s electronic
shells in Argon. These are not as closely matched as the

Na case of figure 8.

FIGURE 19

The equivalent of figure 18 for the 3p electronic

shell in Argon.

FIGURE 20

The annihilation rate for Argon. A rough fit was
applied to the experimental points as given in reference 27.

The units were chosen for easy reference to 27.
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FIGURE 7
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FIGURE 13
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FIGURE 16
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TABLE 1

The radial core wavefunctions after Taylor(lg)
Sodium . - Aluminum

o PZS ' P2p t st PZp
0.0000 0.0000 0.0000 .0}00004 0.0000 0.0000
0.0149 0.2234 0.0087 0.0094 0.2005 0.0060
0.0299 0.3756 0.0322 0.0188 0.3530 0.0228
0.0498 0.4915 - 0.0805 0.0282 - 0.4644 0.0482
0.0796 0.5284 0.1763  0.0377 0.5408 0.0808
0.1095 0.4576 0.2865 0.0565 0.6087 0.1615
0.1592 0.2149 0.4749 0.0753 0.5915 0.2559
0.2189 -0.1410 0.6785 0.0941 0.5156 0.3569
0.2787 -0.4732 0.8409 0.1130 0.4008 0.4597
0.3981 —0.9405 1.0362 0.1883 ~0.1997 0.8314
0.5175 -1.1470 1.0935 0.2636 -0.7386 1.0871
0.6768 —}.1569 1.0416 0.3389 -1.0948 1.2227
0.9156 -0.9321 0.8529 0.4895 -1.3281 1.2375
1.1545 -0.6642 0.6483 0.7154 -1.0887 0.9766
1.5525 -0.3340 0.3792 0.8660 -0.8384 0.7696
2,0303 ~0.1330 0.1867 1.1672 -0.4325 0.4341
2.5080 -0.0503 | 0.0887 1.7697 -0.0898 0.1147
3.4634 -0.0068 0.0193 2.3721 -0.0164 0.0275
4.4188 -0.0009 0.0041 3.5770 | -0.0005 0.0015

5.6927 -0.0000 0.0000 4.7819 -0.0000 0.0000



a

0.00000
1.11044
1.57040
1.92334
2.22088
2.48302
2.72001
2.93795
3.14080
3.33132
3.51152
3.68291
3.84668
4.00375
4.30072
4.44176
4.57846
4.71120
4.84030
4.96604
5.08868
5.20843
5.32549
5.44002
5.55220

TABLE 2

Reciprocal Transforms

fOO(a)

'1.00000
-0.03490
-0.0139%6
-0.00220

0.00448
0.00820
0.01014
0.01100
0.01119
0.01098
0.01054
0.00996
0.00932
0.00864
0.00729
0.00663
0.00600
0.00541
0.00585
0.00434
0.00387
0.00345
0.00305
0.00269
0.00237

g(a)

1.00000
-0.07635
-0.01854
-0.00041

0.00274

0.00160

0.00016
-0.00057
-0.00065
-0.00039
-0.00007

0.00017

0.00028

0.00027

0.00009
-0.00001
-0.00007
-0.00010
-0.00009
-0.00006
-0.00003

0.00002

0.00005

- 0.00007

0.00009
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wo(a)

0.98531
-0.06752
-0.02688
-0.01075
-0.00494
-0.00296
-0.00212
-0.00151
-0.00092
-0.00039

0.00002

0.00030
10.00044

'0.00050

0.00046

0.00043

0.00041

0.00040

0.00040

0.00041

0.00042

0.00042

0.00041

0.00040

0.00039



b »
c .978

.896
.819
. 755
.732
.688
.673
.621
.612
.646
.543

.588

TABLE 3

Matrix elements of the integral

.680
.582
.613
.516
.494
.619
.646

.441

.579
.531
.433

.491

.522
.504
.437
.444
.463
.470
.408
.407
.423
.443
.340

.385

.444
.471
.401
.451
.476
.377
.337
.444
.352
.369
.348

.339

.430

.382

.406
.352
.339
444
.464
.312
.440
.379
.319

.359

.380
.381
.330
. 345
.368
.345
.306
.331
.316
.365
.271

.317

359
.328
.324
.300
.298
.381
.355
.273
.368
.327
.261

.298

.330

.342

.294
.319
.345
.293
.264
.317
271
.320
.252

.285

(2-27)

.331 .317
.307 .314
.320 .307
.283 .291
.283 .304
.310 .267
.347 .294
.260 ,.279
.302 -.254
.380 .415
.257 .255
.355 .383

1l6

.279
.268
.249
.250

.255

.297 .

.253
.237
.285
.246
.213

.223

.267
.281
.276
.292
.291
233
.238
.298

.231

.245
.285

.249
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