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INTRODUCTION 

In 1932 Anderson (l), while studying cosmic rays, 

experimentally demonstrated the existence of the positron, 

thus verifying a prediction of Dirac's relativistic quantum 

theory of the electron. Even before the positron's experimental 

discovery Dirac( 2 ) had already derived the theoretical tran­

sition rate for the process in which an electron and its 

antiparticle, the positron, disappear simultaneously, their 

energy being emitted in the form of two y-rays. This process 

electron-positron annihilation is now well known. 

Beringer and Montgomery( 3 ), using standard counting 

techniques, were among the first to measure the angular dis­

tribution of the emitted y-rays. Since then many experiments 

have been performed and the properties of many solids particularly 

metals( 3 , 4 ) have been studied. Host of these are described in 

a recent review by Stewart( 4 ) and also in earlier reviews by 

Wallace(S) andFerrel(G). 

In a typical experiment a high energy positron from a 

a+ decay source, for instance Na22 , sandwiched between two thin 

aluminum foils, penetrates deep into the sample and quickly 

becomes thermalised(?). More recently Carbotte and Arora(S) 

have calculated that at liquid Helium temperatures - but as 

high as 100°K for Aluminum - the positron annihilates before 

1 
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ther.malisation. However since all of the experimental 

results to .be considered in this thesis were obtained at 

room temperature this point does not arise here. After 

thermalisation the low energy positron·migrates through the 

sample and eventually annihilate9 with one of the electrons 

with subsequent emission of two y-rays. In particular 

since the thermal energy of the positron (0.025 eV) is very 

small compared with the Fermi energies of ~etals (1.6- 7 eV), 

it can be assumed that the positron has zero momentum when it 

annihilates. Each of the emitted y-rays has an energy of 

approximately ~ MeV and they emerge in opposite directions 

from the sample relatively unattenuated and unscattered. 

This radiation is finally detected and analysed by conventional 

means. 

The experimental analysis of the y-rays falls into 

two distinct experiments. The first type of experiment 

measures the angular distribution of the y-ray radiation as a 

function of the angle between the two outgoing y-rays( 9 ). 

These observed distributions are also of two types. In one 

type the distribution is characterised by a central inverted 

parabola with a tail at large angles, the parabola displaying 

a fairly sharp cutoff at an angle corresponding to the Fermi 

momentum, as illustrated by the alkali metals, the alkaline 

earths and aluminum. The other type of distribution extends 

well past the expected Fermi momentum cutoff, exhibiting a 

Gaussian character as in, for example, the noble metals. 
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The second type of experiment measures the lifetime 

of the positron which is proportional to the reciprocal of 

the total annihilation rate. Total rate experiments make use 

of delayed coincidence methods and obtain a prompt curve with 

the sample out and a delayed curve with the sample in place. 

The mean life L of the positrons entering the sample generally 

is identified with the displacement of the centroid from the 

. (10)
prompt curve to the delayed curve • 

From a theoretical standpoint reference 6 gives an 

excellent summary of the early theories. Naturally the first 

theory to evolve was a Sommerfeld or free electron theory. 

This gave a generally good result for the inverted parabola 

of the angular correlation experiments but failed totally 

where total rates were involved by a factor of an order of 

magnitude. The first real step in the right direction was 

the theoretical analysis of Berko and Plaskett(ll). They 

assumed an independent particle model (I.P.M.) and computed 

the positron wave function in Al and Cu in the Wigner-Seitz 

approximation, using a potential produced by the positive ion 

and by a uniform charge distribution of the approximate 

number of valence electrons per atom. The angular correlation 

result for Al yielded an inverted parabola with small tails 

in good dgreernent with experiment. Unfortunately however this 

agreement was probably accidental as the tails in Al are very 

small, while in the case of Cu too much of a contribution was 

obtained from the core electrons. As regards the tot.al rates 
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these were still wrong by factors of an order ·of magnitude. 

The above procedure while simple ignores much of the important 

correlations and accounts for the direct Coulomb force between 

the positron and annihilating electron only in an average 

and trivial way. This attractive force certainly influences 

significantly the relative motion of the pair in their centre 

of mass system and must lead to a significant increase of the 

electronic density at the positron over that computed on the 

!.P.M. for after all the annihilation rate is directly 

. 1 th 1 . d . t h . t . (12 )propert 1ona to e e ectron1c ens1ty a t e pos1 ron s1te • 

What is required is the exact solution of the Schrodinger 

equation for the wavefunction of the pair coupled through 

their Coulomb field. However since many electrons are present 

one should more appropriately use a screened Coulomb force. 

Further because of the existence of an electron sea, all the 

plane wave states below the Fermi surface are occupied and 

therefore cannot be employed in building up the electron part 

of the effective-pair wave-function; hence the Pauli exclusion 

principle should also be incorporated. 

Kahana(l 3 ) was the first to realize this. He reasoned 

that in order to get sensible results the multiple scatterings 

of the annihilating electron off the positron must be included 

in the sense of perturbation theory. Kahana did this by solving 

a Bethe-Goldstone equation for the annihilating pair. Using 

modern Green's function techniques he summed the ladder 

diagrams, i.e. the multiple scattering mentioned above, to all 

orders but left out all other diagrams which enter the theory 
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in a rather arbitrary way. It is clearly impossible to 

analyse in detail all the remaining graphs, although Carbotte 

and Kahana(l 4) were able to show that, up to second order in 

the Coulomb potential, such corrections are small and many 

of the diagrams systematically cancelled. This can be taken as 

an indication that the ladder graphs represent the dominant 

contribution to the total rate and should describe quite well 

the angular correlation experiments. This was indeed found 

to be so. 

As mentioned previously, the total rate R depends 

only on the electronic density at the positron which is_ given 

by the limiting value of the electron-positron pair dis­

tribution function g (_X e - X ) as X - X ~ o, where X and ep -p -e -p -e 

X are the electron and positron coordinates respectively.
-p 

From a knowledge,of gep(~- ~p) for all values of the relative 

coordinate X - X the total displaced charge about the positron
-e -p 

can be computed. To have a consistent theory one must insist 

that this be exactly one unit. Bergersen(lS) pointed out 

that in the ladder approximation, the total displaced charge 

can actually be considerably greater than one e.g. 1.25 for 

sodium. On this basis he argued that Kahana's rates should 

be reduced by a corresponding amount. This might not necessarily 

be so because total rates depend oLly on the value of the pair 

distribution function for X - X -· 0 whilst on the other hand 
-e -p 

serious errors in this function for finite X - X may be 
-e -p 

responsible for most of the unphysical accumulation of charge 
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a.bout the positron. Recently Carbotte (l2 ) has shown quite 

clearly that in order to make the charge displacement equal 

to one a summation of certain third and higher order diagrams 

have to be .added to the ladder approximation. This modified 

ladder .approximation however only lowers the total rates by 

small amounts ranging from 10% in Aluminum to about 3% in 

-Sodium. Hence this thesis will evolve in the spirit of the 

simple ladder approximation. 

Returning to the Kahana-Carbotte theory it should 

be noted that their calculations considered only the con­

duction electrons taken in a plane wave approximation. They 

made two comparisons with experiment. For the angular 

correlation they obtained an inverted parabola with a slight 

bulge which fitted the experimental points very well. For 

the total rate a result lower than the experimental one was 

obtained but of the right order of magnitude. This was in­

deed a significant achievement because it pointed out for the 

first time that the inclusion of correlation effects in the 

annihilating pair could increase the contribution to the 

annihilation rate by an order of magnitude. Also it was quite 

understandable why the results were lower than the experimental 

ones since no core calculations had been done and also the 

lattice, which can give rise to Umklapp processes had as yet 

not been treated. This, of course, is of tantamount importance 

as has been experimentally shown by Berko(l6 ), since the 

lattice produces anisotropies in the annihilation rate, 
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particularly in Lithium and Beryllium. 

The next significant step was taken by Carbotte{l7). 

In his paper he derived a general theory for positron arin­

ihilation in metals showing how the Green's function expression 

for the. partial annihilation rate R(E), i.e. the angular 

correlation, can be rewritten as the square of a generalized 

Bethe-Goldstone type amplitude which must, however, first 

be weighed by an appropriate overlap integral of an electron 

and a positron single-particle Bloch state. The contribution 

to R(£) was written as the square of the sum of two distinct 

terms. The first is simply the E.,th Fourier component of the 

familiar electron-positron product wave-function i.e. the 

I.P.M. contribution. The second involves matrix elements 

which describe virtual transitions of the electrons to un­

occupied states with subsequent annihilation. At this point 

Carbotte purely looked at the core contribution and found that 

the evaluation of these latter matrix elements was difficult 

and a complete numerical calculation \vas not attempted. In­

stead, a simplified model was studied in the hope of getting 

some understanding of the physics of the problem. 

It is at this point that this thesis begins. Since 

the theory of Carbotte(l?) is crucial to its development the 

principal £esults of reference 17 &re re-derived in appendices 

A and B. The thesis consists of three chapters, outlining the 

three main pieces of work done: core annihilation in metals 

with specific reference to sodium and aluminum; the effect of 
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the lattice on the conduction band contribution in sodium; 

and finally positron annihilation in solid argon. 

Each chapter is further subdivided into sections. 

In chapter one, section one the general theory of annihilation 

is reduced to a formula describing core annihilation in 

simple metals. In section two this is further reduced using 

a single orthogonalized plane wave (O.P.W.) to describe the 

conduction states and an angular average over the O.P.W. is 

done due to computational difficulties. The error introduced 

is computed and discussed in section three. The numerical 

evaluation for sodium and aluminum follows in section four 

where the various computational techniques are elaborated on 

and the natural units are introduced. Finally in section five 

comparison is made to experiments for the two metals. It is 

found that significant enhancement factors are obtained with 

only a weak momentum dependence. Thus except for a multi ­

plicative constant, the results are nearly the same as obtained 

on the I.P.M. model. 

Chapter two begins with a derivation of a ·theory for 

conduction electron annihilation with the inclusion of the 

lattice. The Umklapp processes that are thus picked up are 

explained. This leads quite naturally to a beautiful geometrical 

interpretation, which is discussed at length in section two. 

Section three describes the Monte Carlo and other random 

processes that were required and used to finally compute the 

expression derived in section one.· Next the computations are 
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carried out and are followed by a.- discussion of the results 

in the final section. Due to the approximations that were 

necessary in order to make the calculation tractable a 

quantitative comparison with experiment was not attempted. 

Qualitatively the results are quite reasonable. 

The last chapter deals solely with solid Argon. In 

a brief introduction the reason.why Argon was chosen is given. 

In section one the state of the theory to the present is 

discussed. Next the limitations in the application of the 

simple metal core theory are treated in some detail as these 

seriously_affect the results. However this application is 

quite reasonable as Argon, an inert gas, has complete electron 

shells thus resembling ~he inner core of a metal. An 

explanation of the details of the calculations-follows in 

section three. Finally the results are computed and comparison 

is made with experiment. Excellent results are obtained for 

the angular correlations as well as reasonable agreement for 

the total rate. 



CHAPTER ONE 


CORE ANNIHILATION IN SODIUM AND ALUMINUM 

A calculation of the core contribution to the 

angular distribution of the two quantum radiation emitted 

when a positron and electron annihilate and the total 

annihilation rate will be performed for the simple metals 

sodium and aluminum. 

The calculation includes electron-positron 

correlations which are due to the screened Coulomb 

potential and significantly alter the electronic density 

about the positron. Further details of these correlations 

are given in Appendix A. This large density increase is 

expected on purely physical grounds since correlations 

appreciably alter the I.P.M. picture. This increase is 

called the average enhancement factor and for the conduction 

electrons it was found to be of the order of 10 by Kahana(l 3 ) 

and by Carbotte and Kahana(l 4 ). 

The large _enhancement factor of course is partly due 

to the fact that conduction electrons are nearly free and 

hence their motion can easily be disturbed. However the core 

electrons are not so free since their motion is dominated by 

the screened nuclear field of their respective ions and hence 

the positron Coulomb field, in the core case, represents a 

much weaker disturbance or perturbation. From this it follows 

10 
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that smaller, but significant, enhancement factors should 

result for the core case. 

The general mathematical expression for annihilation, 

(A-49) is next rewritten bearing core annihilation directly 

in mind i.e. 

A= v 

I . . (:e_) X0 {1}
: . ' ~,n m,n;~ ,o 

The various symbols have the same meaning as given them 

in the appendix, except that now Rn~~(p) gives the contribution 

to the partial rate R(p) arising from a core electron in the 

state (n,t,m,~) where the n£ index refers to the core band, m 

is the magnetic quantum number, and s is the crystal momentum 

restricted to the first Brillouin zone. The m' in equation (1) 

refers to all the occupied core states. Hence the first term 

in the square, being a simple transform of the overlap between 

a core wavefunction and the positron wavefunction gives the 

I .. P.M. result of Berko and Plaskett(ll). The summations over 

~ and n are for unoccupied states of the electron and positron 

.respectively. For the electrons these would mean all the 

states above the Fermi sea and foi· the positron any state with 

non-zero momentum. 

Before discussing the second term of the square further, 

a simplif~cation due to Carbotte{l?) can be carried out. This 

simplification replaces all conduction-conduction overlap 
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integrals by delta functions i.e. it treats all such con­

duction states as plane waves. This no doubt is a good 

approximation in simple metals where the conduction states 

are not complex and have little or no band structure. How­

ever for elements such as Argon where conduction. states are 

not so simple this app+oximation is not valid. Further 

detailed explanation is given in Appendix B. 

As explained in Appendix B expression (1) is re­

written as 

R(nim~) (n) =A I I ( ) + 
L v nims P 

(2) 

where once more all the symbols have the same meaning as de­

fined in the appendices. Now it can be clearly seen that the 

second term is proportional to the overlap between a single 

particle core state and an unoccupied conduction state. From 

a physical point of view this matrix element represents 

virtual transitions from a core state to an unoccupied state 

above the Fermi surface with subsequent annihilation. These 

transitions are due to the excitation by the positron force 

which is contained in the enhancement factor Eni(k). This 
p ­

factor further includes (cf B-16) the Pauli exclusion 

principle term P+ which only allows scattering into the 
k,E-~ 

unoccupied states and a term x (k;-~ 0 ). which describes allE- nN 
the further multiple scatterings contained in the ladder 
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approximation. 

The most difficult part in the evaluation of (2) 

is the calculation of the core-conduction matrix element 

since as figure 1 shows the core functions are largest 

where conduction states are small~st and vice cersa. 

For the core functions the tight bindi~g sum 

'¥ (x) = __!__ \ eis ·a u (x-a) (3}
n~m~ - IN ~ nim - ­

is used where N is the number of primitive cells in the ­

crystal and the a's are vectors giving the various lattice 

sites. The atomic wavefunction u n ·(x) centred about 
nx..m ­

x = 0 is given by 

(4) 


where Yn (Q ) is the (im)th spherical harmonic, referred x..m x 

for the present to some general coordinate system by the 

angle nx and Pn 2 (x)/x is the radial part of the core wave­

function. In particular for the computations the Pni(x) 

were taken from the Hartree-Fock-Slater calculations of 

Taylor(lg) for sodium and aluminum and are given in table 1. 

The substitution of the tight binding sum (3) into 

{2) gives 

(5) 

where a is a reciprocal lattice vector; the positron wave­
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function is given by 

.. '1 
q, (x) = - v (x) (6) 

0 IV 0 

and the electron wavefunction by 

ik. X ( )'¥k (x) = 1 
e--uk~ (7)

IV 

Summing all the core electrons in the (n~) band and 

denoting the contribution to the partial annihilation rate 

by Rn~ (E) yields 

+R. 
RnR.(p) = I Rn.tm~(p) 

m=-R. 

= A 
v 

1 
n 

0 

+R. 
I J 

3d X - UnQ.m(x} 
-ip.x

e -­

m=-~ 

1 12{v (x) + I EnQ. (k) u*k (x)} (8) 
o v k E 

where n is the volume of a primitive lattice cell. 
0 

R(p) ON A ONE O.P.W. MODEL 

In order to evaluate the expression 

1 \ EnR, (k) u* (x)
V L p k 

k 

a knowledge of the conduction and excited states of the 

electrons is needed. For sodium and aluminum a single O.P.W. 

has been shown to be a reasonable description of these Bloch 
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states( 2l). The O.P.W. basically is the distortion of 

plane waves so as to make them orthogonal to all core wave-

functions in order to try to give the electron wavefunctions 

their ideal behaviour i.e. far from the core they should 

look like plane waves and near the core they should behave 

like core wavefunctions but be orthogonal to them. They can 

be written as 

where A(k) is the normalization coefficient obtained in the 

usual manner i.e. 

A (k) [ ik. X = rv­ e - - (9) 

(10) 


The orthogonalization coefficients, A o (k), as their n,x-,m­

name implies are obtained by orthogonalizing {9) to the 

core states i.e. 

< 'l' (11)n.tm;k 

0 0 0 ( 0 0h 21) t f d th tOn perf orm1ng t e 1ntegrat1on 1 1s oun a 

ik.x e-- (12) 

Equation (12) can be further reduced by making use of the 

well known expansion 
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eik.x = L 4Tiii Y*im(nk) Yim<nx) ji(kx) (13) 

im 

where the spherical harmonics Yim are referred to the 

same general coordinate system as that used in writing the 

core wavefunctions u n (x).nNm - The substitution of equation 

(13) into (12) yields 

A (k) = I d3x
n,i,m­

i'm' 

Using the fact that 

(15) 

equation (14) becomes 

00 

A (k} = 4Tiii I (16}
n, i ,m ­

0 

Introducing 

• !,d. 

(17} 

equation (lfi} can be re-written as 

(18) 
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It should be noted quite clearly that, unlike other authors, 

the orthogonalization coefficients are dependent on the 

angles of k. This fact is of some importance and cannot be 

avoided here. Using these results (10) can easily be 

evaluated in terms of (17) to give 

(19) 

no n, t. 


A(k) = [1 - 1 l: 4n(2i+l) 


These coefficients are easily computed using a Simpson's 

rule, with a Hermann Skillmann type mesh, to perform the 

integrals( 22 ). The Ant(k), which characterise the be­

haviour of the O.P.W., and the normalisation coefficient 

A{k) are plotted in figures 2 and 3 for sodium and aluminum 

respectively. Results are only shown for k ~ kF since the 

electrons can only be excited into this region, due to the 

Pauli exclusion principle. 

Removing the exponential and /v factors in equation 

(9) the uk(x) part of the O.P.W. is written as 

.t -ik. (x-a)= A (k) [ l-4TI 	 I I 1 e - - ­
a ntm 


I, 

(20) 


In equation 	 {20) the u n (x) are of very limited range, i.e.n;.:,m ­

they are well localized functions in the \vigner-Seitz cell, 
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and hence the assumption of retaining only the first term 

in the a summation can be made. Thus 

.i -ik.x * ( }Uk (~) = A(k) [1 - 4TI ~ e Y nkim 
n, i,m 

{21} 


The correlation term of expression (8} can now be 

further ·reduced using (21) i.e. 

1 L Eni (k) A(k)v k p 

(22} 

This expression as it stands cannot be put in a readily com­

putable form but the difficulty can however be simply over­

come by noting that the enhancement factor Eni (k) is not 
p 

expected to be strongly dependent on the direction of k. Hence 

an angular average over k suggests itself and·~~s greatly 

simplifies the orthogonalization part. However its effect on 

the calculation should be considered as indeed it will in a 

later section. 

Performing this angular average over ~' equation (22) 

becomes 



.1 2 Eni (k) u*k (x) = ! L En£ (k) A(k) 
v k E v k E 

u *n im (~) ] (2 3 ) 

where 

= I dnk Ent 
4TI. p <k> 

By. defining 

G(k_;x) = X - 4TIX 2 
n,t,m 

A*nt (k) u*ntm (x) (24) 

equation (23) can be written as 

1 \ EntV~E. (k_) * ( ) 
ukx 

= ! \ EntV~p (k) A (k) G (k.. ;x) /x (25) 

Expression (24) can be further 

of equation (13) to give 

reduced by employing the aid 



20 


) ' (-1.·) R, J df"'lk.G(k ;x = x - 4nx L ~G 
n,R.,m 

I 

Using (15), equation (26) reduces-to 

G(k;x) = X - 4TIX \ 4TI Yn (Q) jn (kx) A* n (k) U n (x).
L Nm x N nN n)(,m ­n,R.,m 

(27) 

Writing the u n (x) out explicitly and using the fact thatn;vm ­

+R. 2R. + 1 (28)
4TIm=-t 

equation (27) becomes 

G(k;x) = x- 4TI I (2R. + 1) jR, (kr) A*nR, (k) PnR. (x) (29) 
n,R. 

which can readily be evaluated. 

Substituting (25) into (8) and again using the 

explicit form of unR.rn (x} yields 

-ip.x
e -­

2[v (x) + .!_ L EnR. (k) A (k) G(k; x) /x] 1
(30)o- v k E 
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The function v (x) is the positron Bloch state at
0­

the bottom of the ls band and is needed only in the Wigner-

Seitz sphere about ~v = 0. Hence it can be taken to be 

spherically symmetric and written as R+ {x)/Xe Next an 

expansion of the exponential can be performed using {13) i.e. 

+i 

Jd 
3 

X P n(X)/x Yn {Q)I - nJv Jvm X
m=-Jl. 

l 
!l, 'm' 

2[R+{x)/x + ~ l Eni{k) A{k) G {k;x)/x] 1 • (31)
k E. ­

Since the only x angular dependence is contained in the 

spherical harmonics the angular integration dn can simply
X 

be done with the use of (15) to give 

+t 

= A 1 \ I 4TI {-i) .Q, y n {n )


V o L ·J.,m n n m=-i ~ 

00 

J dx j 5l. {px) Pni {x) [R+ {x) + 
0 

1 \ -ni 2 
- L E {k) A (k) G (k i X) ] I (32)
V k ·P 

which can be simplified to 
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1[R+ (x) + \ Ent(k) A(k) G (k;x)] j 2 ( 33) 
v ~ E. ­

wher~ use was made of the sum rule (28) and the factor 2 was 

introduced for spin degeneracy in the core levels. 

AN ESTIMATION OF THE ERROR IN En.Q,(k)
p ­

In making the sph~rical assumption in equation (23) 

i.e. using En~(k) instead of Ent(k), it should be noted that
E - E - · 

all the error arises in the orthogonalization part and not 

in the plane wave parto To estimate this error the two 

expressions 

XE (~;-~n~) us (E - ~) e~·o. (k) 
(34) 

(E- k)2 + k2 + ~n~ 

and 

u. o.
dQk X (k;-~ ~) u s (E_ - ~) 8e 

(k) 

En~(k) -· J 
- P- n 

(35)p -
4n (E_ - k)2 + k2 + ~n~ 

have to be computed for several random values of p and k, 
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As it stands however expression (35) cannot be 

computed as the dependence of x.nt 
(k;-~ 0 ) on the vectorsE - n..., 

p and ~ complicates matters considerably. However since 

only_a rough estimate of the error is required, the function 

xn 2 (k;-6 ) will be restricted to depend only on !k! and p - n...,0 

!PI . It might be pointed out that this assumption renders 

equation (Bll) i.e. 

3 u (k - k I)
d k' s 

nt(k) nt (k,)
Xp - = 1 + J 8(k' - k

F 
) xP (36)-

(2rr) 3 k'2+(p-k')2+~
- - nt 

inconsistent. However this inconsistency can be overcome by 

averaging the integrand over E_or over~· Both results yield 

the same answer which shows consistency. 

Making this assumption it is immediately obvious that 

for p = 0 the spherical approximation is perfectly correct as 

expression (35) then depends only on the magnitude of the 

vector k. For other ~ and p it is not a trivial comparison 

but the integral can be easily done numerically and a comparison 

2made with the true value of En (k). The integral was done 
p ­

using a Simpson's rule on the IBM 360/30 computer of the 

University of Guelph. 

The results show that as E increases from zero the 

error in the spherical approximation increases from zero to 
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20% at jpj = 3. This increase in error is uniform and 

is approximately 8% at lEI = 1 and 15% at ·IPI = 2. One 

result that is of importance however is that in the 

. . n~
computations E (k) always came out to be. greater than 

p ­

En2 (k}. This ~eans that the angular average does not 
p ­

subtract a sufficient amount from .the right hand side of 

equation (23) and thus leads to too. great a contribution 

in equation (33}. The 20% factor however cannot be simply 

extrapol~ted to estimate the error due to this angular 

average in (33) since in order to obtain the final form 

(33) many averages are taken. This.points to the fact that 

the final result should be too great as indeed is found to 

be the case~ 

NUMERICAL EVALUATION 

The averaging over the angles of ~ in the enhance­

ment factor was done by taking the E direction as the polar 

axis. This in no way restricts the argument as this E 

direction could be chosen in any general way. Substituting 

the enhancement i.e. 

U (z)s 

pk 
(36) 

into equation (33) and taking the limit of infinite volume 
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gives 

U (z)p+k 
s ] 12 (37)J pkIP-~1 

To streamline this equation a function Sn~(p,x) 

is introduced defined by 

oo k2 dk n 
S
n~ (p, r) = nN(k) A(k) G(k;x)

JkF (27rl3 xP 

u (z)
s (38) 
pk 

and thus (37) becomes 

0 n~ 4n R oo + n~ 12R (E_) = 2(2~ + 1) V z IJ dx j£ (px) Pn,Q,(x) [R (x)+S (p,x)]
0 

(3 9) 

where Z is the valence of the element under consideration, en1 


R0 
, the Sommerfeld annihilation rate given by R0 = AZ/n° . 


A transformation to Fermi momentum units y =.E/Pp is made, 


since these units are the natural units of the systeme Thus 
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equation (39) becomes 

(40) 

ni · 
where S {y,r) is now defined as 

ni Joo k dk n~S (y,r) = -y--- x1 (y,k) A {kkF) G {kkF,r) 
1 

k+y 21T zdz au (z) { 41) 
+ z2 + /j,n~f k-y k2 

( 23)
/j,n~ 2where = /j,n~/Pp 

2 
= r /(1.9191T )s 

with r the usual electron gas density parameter and the 
s 

potential function 

U (z) = [z 2 + 21Ta {1 - ( 4 2) 

ni nt
The integral equation satisfied by x (y,k) - X {pFy,pFk)1 

is, doing the ~k integration in (35} 
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ni Joo dk1 Kni ni(y, k) = 1 + (k k ) X (y k ) (43).x1 2yk Y I 1 1 1
1 

I 

with the kernel given by 

Kni(k k )y , 1 

This ends the algebraic development and next the 

results of the computations are discussed for the sample 

metal sodium which, as is well known, is one of the simplest 

nQ,
metals. Equation (43) can easily be solved for x (y,k) by1 

turning it into a set of linear equations and solving for 

these by a standard method e.g. the Gauss pivotal technique. 

This was done using a 41 point mesh with linear interpolation 

for large k values. The results for the 2p and 2s core 

electrons with four values of y are shown in figure 4. 

The ls core state was never computed since its 

contribution is negligible due to the fact that the energy 

nQ,
parameter ~ appearing in the denominators is very large. 

This is also the reason why the 2p contribution for a given y 

as a function of k is always greater than the corresponding 2s 

contribution. As expected from equations (43) and (44) for large. 

nik values x (y,k) tends to one, hence it might be stressed once1 

more that in this asymptotic region the k angular dependance 

would certainly play little or no role. 

The complex structure of G(kkF,x) is shown in figure 5, 

where it is plotted as a function of x for various characteristic 
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values of k. The first value plotted, namely k = 0, was 

not used but served as a check on the calculations. The 

comparison was made with Callaway's( 24 ) result since.at the 

bottom of the 3s band the O.P.W. almost reduces to the Wigner 

Seitz wavefunction which Callaway quotes. The graphs in 

figure 5 also bring out the physical characteristics of the 

G function. As can be seen the oscillations get weaker and 

weaker as both r and k increase and especially for large r 

the graphs become a straight line with slope one. This can 

be interpreted physically by noting that in (29) as r and k 

increase· the orthogonalization coefficients play less and 

less of a role till finally the plane wave part completely 

takes over and the function G becomes independent of any k 

dependence. Further figure 5 brings out the limitations of 

the model discussed in reference 17. It can be seen that the 

difference between G(kkF,x) at k = 0 and k = 2.5 is not great 

and hence if the only transitions of importance in (41) were 

those about the Fermi surface, i.e., k = 1 the model of refer­

ence 17 would be recovered. This results because it would 

then.be justified to fix G(kkF,x) in (41) at G(kF,x) and take 

it outside of the integration. But G(kF,x) is nearly equal to 

G(o,x) which in turn reduces to the Callaway wavefunction 

R (x) (24 ) so that 

n£S (y,x) ~ R (x) ( 4 3)
0 

with 

0 

http:since.at


n.Q, (y) Joo. kdk nt J k+y · ·2n:. ·zdz a.U Cz)
m (44)

; 1 -y- xl (y,k) . k2 + z2 + ~nt 
lk-yj 

where mnt(y) is essentially the same quantity as that plotted 

in figure 5 of reference 17. This procedure is not justified 

since as was pointed out the ampli~ude x
nt 

(y,k) does not have
1 

a strong k variation. Further the quantity 

k J k+y 2n zdz a.U(z) 

lk-yl k2 + z2 + ~nt 
(45) 

is not a rapidly damping function about the Fermi surface. 

This means t~at G(kkF,x) for many values of k gets averaged 

in the expression for Snt·(Y, x) . Since for large k' s the 

G(kkF,x) are nearly straight lines the oscillation at x ~ .5 

atomic units occurring in G(kkF,x) for k around 1. will clearly 

be considerably smoothed out in Snt(y,x) ( 2S) and indeed this 

is precisely what figures 6 and 7 show. Figure 6 simply shows 

2 2the s P, s s curves for y= 0 whilst figure 7 shows the develop­

ment of s 2P as y increases and it can be clearly seen that the 

oscillations die out. Thus with all of this smoothing the 

correlation part of the partial rate tends more and more to have 

a similar y dependence as the I.P.M. 

In o~der to bring out this very important point the 

functions J+ and J of reference 17 are plotted in figure 8 and 

9.. They are 

( 4 6) 
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(47) 

where 

0
4rr R + - 12= 2(2JL + 1) v z J nJL (y) + J nJL (y)__ - • ( 4 8} 

The similarity between (46) and (47} is clearly seen 

and so the neglect of the correlation term (47} would lead to 

incorrect rates. However it should be stressed that whilst 

the rate would be out by a factor of approximately 4 the general 

shape of the correlation curves would be unaltered by con­

sidering (46} only. 

Finally since the computations involved were rather 

lengthy it was fortunate to have been able to put a simple 

check on them. For arbitrary k and in the region of x around 

the Wigner Seitz cell edge the functions G(kpF,x) behave very 

nearly like a straight line of slope 1. Hence in this region 

SnJL(y,x) should go like a straight line of slope mnJL(y) provided 

the O.P.W. normalization factor A(kkF) is set equal to one. 

This can be verified with the help of figure 7 and the value of 

mnJL(y) · · f 17g1ven 1n re erence . 

DISCUSSION AND CONCLUSION 

In ordinary two slit annihilation experiments the 
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quantity that is measured is R(yz),:where yz is a direction 


defined by the geometry of the apparatus. The quantity 


calculated in this chapter is Rc(y ) given by
z 

(49} 

where Rc (y) stands for<the core contribution. A direct z 


experimental comparison cannot be made for this expression 


since experiment~! procedures do not diffe~entiate between 

core contributions and other contributions. However the 


quantity Rc(y ) can be added to the conduction electron con­
z 


tribution as given in reference 14 and satisfactory comparison 


with experiment can then be made. 


In (49) the sum over all core electrons was performed, 


the units being such that the counting rate Rc(y ) integrated
z . 


over y gives the total rate. This quantity as well as the 
z 

I.P.M. result is plotted in figure 10 for both sodium and 

aluminum. The close correlation between the full curve and 

the I.P.M. result is now obvious. For sodium it is approximately 

a factor of 4 while for aluminum it is a factor of 3 with some­

what more of a variation. These sam~ factor~ occur in the total 

rate i.e. the area under the curves in figure 10. The Berko~ 

R0Plaskett result is 0.97 and 0.49 R0 while ·this result is 

~ 	 3.5 R0 and 1.4 R0 for sodium and aluminum respectively. It 

should be noted however that all elements do not have the same 

enhancement factor and hence in general the I.P.M. could not be 
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simply multiplied by a factor to give an approximately 

correct result. If the complete numerical calculations 

are either too involved or too bothersome to be done, for 

after all experimentalists are not too interested in doing 

lengthy calculations, a method of choosing the correct 

enhancement factor would be to take the best one that fits 

the lifetime and correlation curves correctly. In fact this 

has been attempted by Berko and Terre11< 26 ) for certain 

·ferromagnetic metals in the transition series but discrepancies 

arise. In particular, they conclude that such a procedure 

overestimates the high momentum tails. The experiments 

favour momentum dependent enhancement factors decreasing with 

increasing angle. These present calculations show no evidence 

of such a tendency, at least in region 0 to 3pF. However 

ferromagnetic materials are not as simple to deal with as 

sodium and aluminum and thus the theory developed in this 

chapter cannot be readily applied. The lack of momentum 

dependence could be due to several causes. The first of course 

is the angular average approximation made. The region lying 

between zero and large p is where it is weakest but a more 

accurate calculation seems to be too difficult. Secondly 

positron self-energy corrections have been neglected. Woll and 

Rose(Z?) have. pointed out that these could play a significant 

role; however without a proper systeuatic treatment of other 

diagrams no prediction could be made in this respect. Further 

it is felt that the experimental tails ~ight not be of a high 
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accuracy. For low momenta the experimental count~ are of 

the order of 2 x 104 , while for the tails they are of the 

2order of 10 , which would lead to less accuracy in this region 

iee. a greater statistical variance. Doppler broadening 

experiments would test the theory much more rigorously and 

would yield more accurate experimental tails( 2S). 

In figure 11 a least square fit( 29 ) of R(p} to the 

experimental data of Kim and Stewart( 3 0) in sodium is presented. 

Only half the angular correlation curve is shown although the 

data from both sides of the distribution was used in the 

comparison. The general agreement is good; however in the 

tails there is still some discrepancy. For regions beyond 

3pF it seems that the theory is as yet limited but, for the 

discrepancy b.etween pF and 2pF it should be remembered that 

lattice effects in the conduction bands have as yet to be 

treated. These will constitute the topic for chapter 2. 

For the lifetime of the positron, which is equal to 

the reciprocal of the total rate, excellent agreement has been 

obtained with the experimental work of Berko. and Weisberg( 3l) G 

1Their result is 2.94 x 109 sec- , while this work gives 

3.0 x 10 9 sec-l 

A better result holds for aluminum in the angular 

correlation c~rves as shown in figure 12, where the theoretical 

data is co~~ared to the experimental work of Kusmiss and 

. ( 3 2)
Stewart . In particular in the tails the data remains 

above the ~omputed curveo Part of this discrepancy is certainly 
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due to lattice effects but the curve on the whole shows 

that the angular correlation data can at least be qualitatively 

understood. However in comparison to the Aluminum lifetime 

the theoretical result is too low by a factor of approximately 

25%. This is not discouraging since recent work by Berko and 

Erskine( 3 S) and MacKenzie, McKee and Bird( 39 ) indicates that 

rates in plastically deformed Aluminum are generally higher 

than in well annealed samples. The theory developed here of 

course only applies to this latter case for which the lifetime 

may well be 20% to 25% lower than the experimental number 

quoted to date. 



CHAPTER TWO 


CONDUCTION ELECTRON THEORY WITHIN THE LATTICE FRAMEWORK 

In their derivation of a theory for conduction 

electron annihilation, .Kahana and Carbotte(l 4 ) used plane 

waves to describe the electron wavefunctions in the con­

duction band. Plane waves were used in order to keep the 

calculations simple. Such a theory can in fact explain 

experiments to good accuracy. However, it is well known 

that due to the presence of the periodic crystal lattice, 

the conduction electrons are more appropriately described 

by means of Bloch wavefunctions. For Sodium, which is the 

only element considered in this chapter, a single orthogon­

alized plane wave (O.P.W.) as was pointed out previously, 

has been shown to describe these Bloch states very well( 2l). 

The following is an extension of the Kahana-Carbotte theory 

incorporating this lattice effect. 

DERIVATION OF THE THEORY 

As is shown in appendix A equation (A-49) for the 

partial annihilation rate R(p) reads 

35 
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0e • (m' ) I .I , (p) + 
e - m ,o - I~,!! 

(1) 


where each term has the same meaning as given in the 

appendixc The summation over m' is now a summation over 

all occupied electron states in the conduction band. As 

has been seen in the previous chapter, the contribution 

arising from the core electron annihilation does not describe 

the momentum dependence of the experimental tails. Also in 

the region between pF and 2pF a greater overall increase 

of these tails is desired. Hence the aim in this chapter is 

to see by how much the I.P.M. tails get enhanced, expecially 

in the region Pp to 2pF and to examine their momentum depend­

ence. If such a contribution or dependence is supplied by 

the lattice it should be seen in a lesser degree to any order 

of perturbation theory and hence to simplify calculations it 

is looked for only in the first order of perturbation theory~ 33 ) 

Hence expression (1) can now be written to first order as 

= ~ l: eO • (m I) I ' (p) +v I e - m ,o ­
m 

B (2)X~:.' !:i~', o 
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where 

(3) 

~quat ion (2) represents the graphs: 

2 

1 + 

where ~ represents free positron propagation, }~ represents 

free electron propagation and ~is the interaction be­

tween the pair. In P+ (Ep + Ee) the m and n indeces refer 
m,n n m 

to excited statesi consequently the energies Ee and Epm n 

appearing in its denominator can be approximated by m2 and n 2 

respectively. This quadratic approximation is identical to 

that previously introduced in chapter one. Incorporating this 

into equation (3) yields 

eu.o. {m) eu.o. (n) 
e - p (4) 

n 2 + m2 - m, 2 
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Equation (2) is next simplifiedo For the conduction 

electrons the single O.P.W., as described in detail in the 

previous chapter, is now employed, namely, 

i.e. 

-ik. (r-R )= ~ eik.£ A(k) [1 - I I e - - _v 
v n,i,m 

(5) 

where 

Anim (~ ) = 4rr Y*im (nk) i i fooo J. ~n (kr) Pni (r) r dr 

and 

A(k) = [1 - lo I 
n . n, i ,m 

The positron wavefunction 

~ ( ) 1 ik.x ( ) 'i'k ~ = Tv e -- vo x ( 6) ' 
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is used and as before the k dependence in vk(~) is 

suppressed i.e. it is used in a Wigner-Seitz approximation. 

The matrix elements 

(7} 

(8} 

-iq.x n-.*e -- (9)':1! 
0 

which are de£ined in appendix A are now developed. 

Substituting equations (5) and (6) into ~quation 

(7) ·gives 

1 im.x -ip.x in. x ( ) d 3 = e -- u (x) e -- e -- V X x1m, n (E_) f m-v 0­

1 i (m-p+n) . x = f e --- -u (x) v (x) d 3x (10)v m- 0­

Since u (x) and v (x) are periodic in reciprocal space with m- o­

the same period, it is possible to expand the product of the 

two of therLl in reciprocal space i.e. 

ia.x u (x) v (x) = I w (a} e-- (11)m- o- m a 
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where the sum extends over all reciprocal lattice vectors 

a, and -w~(a) is given by 

1 	 3 -ia.xw {a) = 	 d x e - - u (x) v (x) (12}Im- no 	 m- o-atomic 

polyhedron 


(a.p.) 


the evaluation of which will be explained later. 

The substitution of equation (11) into (10) yields 

1 i (m-p+n) . x ·ia.x 3 = v e --- - I w (a) e -- d x1m,n{p) I 	 m­a -

= l w (a) 0 	 (13)m- m-E_+n+a,oa -

Equations (8) and (9) are developed in a similar manner 

Expanding u (x) u , (x) ioe. 
m- m ­

ib.x 
= 	 I e-- (15} 

b 

where the summation extends over reciprocal lattice space and 
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d 3x e-ib.~ .u ·ex) u , (x) (16)I m- m ­a.p. 

hence 

(17) 


Finally 

expanding v (x) v (x) i.e. 
0- 0­

ic.x v (x) v (x) = L g(c) e-- (18)
0- 0­

c 

where again the summation extends over reciprocal lattice space 

and 

1 · I 3 -ic. xg(_c) = d x e -- v (x) v (x) (19)
0 0- 0­n a.p. 

hence 
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1 i(n-q).x ic.x[nj-g_jo]P = v I e -- - I g (£) e-­
c
-

= I g (£) 0 (20)!_!-g_+c,oc -

These rather lengthy algebraic manipulations were put in 

for completeness and the numerical evaluation of these 

equations will next be given. The equations (12), (16) and 

(19) will be dealt with together. The type of expression 

to be evaluated is 

(21)s (a) = 10 f.n,!!!. ­ n a.p. 

where q!!_,~ (x) is a periodic spherically symmetri.c function 

in space with period a. Expanding the exponential by means 

of plane waves as given in (1-13) yields 

4TI d 3 
00 ~ 

s (a) = J x 2 2 (-i) ~ j ~(ax) Y* ~rn, (nk)
!!_,~ ­ no a.p. £=0 m'=-~ 

Y i ' (n > q!!_,~ (~)rn x 

Since q (x) is spherically symmetric the integration over 
!!_,Til ­

the angles of x gives 

s (a)
£,Til -

(22)= I 
a.p. 
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This can be written as 

s (a) = 4n I x dx Sin ax[q. (x)~q. (r )J 
~~~ - ~,m ~~~ sa.p. 

where r is the Wigner Seitz cell radius. In the first8 

term on the right hand side it is possible to replace, with 

very little error, the atomic polyhedron by the Wigner Seitz 

sphere since around lxl = r the integrand should almost 
- s 

vanish. It should be noted that s . (a) can depend only on 
n,m -

lal and not on its direction. With a knowledge . of q. (x) 
~,m 

the s (a) can easily be evaluated numerically. In their 
n,~ 

evaluation a Simpson's rule with a Herman-Skillman mesh was 

used( 22 ). Table II gives the results for zero momenta i.e. 

f (a) gives the O.P.W. of momentum o - O.P.W. of momentum o 
00 

reciprocal transform; g(a) gives the positron-positron re­

ciprocal transform; and w
0 

(a) 
. 
gives the positron-O.P.W. of 

momentum o reciprocal transform. 

As can easily be seen all the transforms oscillate 

and hence an extremely accurate calculation involves the 

consideration of many terms. However it was found, on looking 

at several t•ossible products, that t~king the first twelve 

shells gave sufficient accuracy for the present work. To 

show the variation with 1~1 of the w function relevant results 

for various momentum values were .plotted in figure 13. 
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Returning to the main line of a!gurnent equations 

(13), (4), (17) and (20) are substituted into equation (2} 

to yield 

= ~ I 6Oe. (m_ 1 
) _I \ .Wffi 1 (a) 0 + v I ~ . ~I -E_+a 1 0 

m 

us·(q) eu.o. (m) eu.o. (n) 
- e - p ­

2 + 2 '2n m - rn 

\ f (b) s c\ g{c) s!!-~+~,ol2t nun' u~+q-~ 1 +b,o L u 

Summing over ~-yields 

= ~ Iv Irn 

wm (a) from 1 {b) g (c) o 
~-p+~+a,o 

Summing over n gives 
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e0R(p) = ~ L (m') 
V m' e-

U {p-m-a+c}s--- ­L eu.o. <m> 
e ­m 

In order to symmetrise things the coordinate transformation 

a' = a b' = a c c' = a c b 

is made, which is permissible as the Jacobian is equal to 

one. Hence 

eO (m I} 
e - I I 

a 

U (p-m-b)s-- ­I eu. o. {m} 
e - 2 2 2 m (p-m-~) +m -m' 

Interchanging a and c in the second term the equation be­

comes 
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R(p_) = ~ l eo(m') L 0 ' . wm, (a) + 
V m' e - . a ~ -:e_+~,o 

U (p-m-b)
_vl . 2 L eu. o. (m} s - - ­

e - ( ) 2· . 2 2_,cb m p-m-c +m -m' 

Summing over m' 

u (p-m-b)s--­.!. l l eu. o. (m)
V e ­b,£ m 

is obtained. As pointed out in chapter one the quantity that 

is of physical interest and experimentally measured is R which 
Pz 

is obtained from R(E) by simply int~Jrating over all values o~ 

Px and Py· Hence on taking the limit of infinite volume 
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1R = ~ t I dp I dp 6(pF~ p-aj) 1~. (a) + 
Pz (2n)3 ~ x y r_- p-~ 

(24) 

GEOMETRICAL INTERPRETATION 

The geometrical interpretation of (24) may be con­

sidered by looking at reciprocal space as shown below. 

plane 
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The integral is taken over a plane perpendicular 

to the Pz axis at a height Pz· The only portion of the plane, 

entering the calculations, lies inside each respective Fermi 

sphere of reciprocal space. The summation a is taken over 

all such spheres that are cut by this particular plane. The 

contribution is proportional to the square of the sum of two 

matrix elements. The first is purely the Fourier transform 

thof the (p-a) plane wave matrix element taken between the 

positron _wavefunction and the conduction electron wavefunction 

in the I.P.M. The plane wave term ei(E-a).~, expresses the 

fact that the two y-rays emerge not with momentum E but with 

momentum IP-~1, the additional amount a coming from Urnklapp 

type processes. These processes arise from the fact that the 

lattice transfers an amount a of momentum to the' electron 

prior to annihilation. (Note that if ~ is set equal to zero, 

it follows that the first term gives the contribution solely 

from the single central Fermi sphere with no momentum transfer.) 

From table 2 it can be seen that this term gives a maximum 

contribution at the central sphere and then slowly converges 

in an oscillatory manner as one goes out into reciprocal space. 

The second term is basically a correction for correlations and 

ranks in'importance with the first because the relative motion 

of the anni~ilating pair is highly correlated as indeed was 

seen in chapter one. It consists of the Fourier transforms of 

electron-electron, positron-positron, positron-electron matrix 
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elements describing particle excitations with subsequent 

annihilation. Due to the summation over· b and· c i.e. a 

complex ·coupling of all the spheres, it is hard to estimate 

what terms will dominate. This makes the calculation very 

lengthy as no set of terms can be ~~glected beyond those 

which have been mentioned previously. In addition a screened 

Coulomb.potential with the relevant energy denominators is 

also included in equation {24). 

COMPUTATION OF R 
Pz 

Referring expressly to the physical and geometrical 

aspects of the problem the simplification o£ expression (24) 

now follows. Per£orming the coordinate transformations 

p = E.' + a a' = a b' = a b c' - a c 

{which are allowed since the Jacobian is equal to one) gives 



X f dp 'X dp I aL e (pF_., E' I ) f wn' (a ' } + 
(2n) 3 y. 	 £. 

1 \ f d3 ... us.(: f.p '-m+b. '.j.). 
3 L ·~ 2 2 2 

(2TI) · b'·,c• fmf>pF (p'-m+c') +m -p' 

2 
w c j·a • - c • 1> .£ , <b • > g <1~ • ·-b • 1> 1m - - ~,p 

It should now be noticed that the coordinate transformation 

has reduced the integral in (24) to an integral in each 

. 	separate Fermi sphere and to a·summation over all spheres. 

From a physical point of view it is a reasonable assumption 

that the angular variation of the expression in each sphere 

is small. Therefore the assumption can be made that the 

expression is spherically symmetric in p'. Making p the z 

axis of integration and introducing a factor of 2 for spin 

degeneracy the result may be written as 

47TA 
L\ JP.p p 'dp' I wp, (a' ) + 


(27T) 3 a I IPz-a' z I 


u (jp'-m+b' I> s - - ­

wm (1.::! ' -_c 'j) f (b I ) 12 	 (25) 
~ ~,p' 
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Measuring all momenta in units o£ the Fermi momentum p$ 

0 3 3i.e. p' = yp , introducing the factor 3/4 R = 2Tri..Pp/(21TlF 	 . 

and 	remembering that R = Pp R ,. equation (25) becomes 
Yz Pz 

= 3/4 R
0 

2 
a 
I r 	 ydy I w 

Y_ 
(a) + 

3f d m w ( Ia-c' I ) f (b' )
1~1>1 m -- ~,y 

2 

2 2 . 2 I 
(y-m+c') + m - y 

Due to the slow convergence of the Fourier coefficients w 

and f with respect to their arguments the summations over 

b 1 and c' have to be extended to many reciprocal lattice 

vectors. Taking several particular values of a and looking at 

g ( I~' -b 1 I ) w ( Ia' -c 1 I ) f (b')
0 - - o,o 

it was found that 12 shells in reciprocal space are sufficient 

for adequate convergence. However, even by doing this, the. 
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computation of the expression is so lengthy that the 

subscripted momentum dependence in the Fourier transforms 

had to be neglected i.e. 

0 
= 3/4 R 2 	 I I ydy I w(a') + 


a 
 a 
o<fy -~1- z p. F 

}: w <I~-£· I> f Cb •> g cI£· -e.· I> 
b I ,C I 

u cIy-!!!.-b • I> 2 

I (26) 

where the Fourier transforms are those of table II. This 

assumption destroys the quantitative correctness of the 

result but nevertheless it will still be qualitatively correct 

and at worst it will be a model calculation and indicative of 

the correct result. This approximation is certainly good for 

w (a) as can be seen from f{gure 13, but for the f (a) 
~~~ 

there is quite a momentum variation and the approximation is 

poor. Indeed this is the weakest po~nt in this theory. To 

get an estimate of the error made the calculations for two 

distinct cases were performed. 

X 
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The first case was the.Wigner Seitz model in which 

all the subscripts are set equal to zero. The second case 

was based on the fact that for very large momentum the O.P.W. 

tend to plane waves; hence plane waves were used in the 

eyaluation of the Fourier coefficients. It was found on 

performing the computations that both cases were equivalent 

to within five per cent - thus indicating that the 

assumptions might not be as bad as m~ght be expected. 

Furthermore the potential chosen was not the static 

limit of the screened Coulomb potential but a Fermi Thomas 

potential was used. The reason for this was purely technical 

since the logarithmic term in the screened Coulomb potential 

(cf equation I-42) would have taken too long to be evaluated 

on the computer. 

COMPUTATIONAL TECHNIQUES 

Before presenti~g the results, the techniques.used 

in the computation o£ equation (26) will be discussed. The 

integral over· m was carried out u~ing a stratified sampling 

Monte Carlo type method( 34 ). In ord~r to get an even 

sampling over all space the mesh was chosen in an unusual way. 

A vector was taken with several points randomly distributed 

on it. This vector was rotated in the first octant to give a 
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randomly distributed set of points totalling 738. The 

points in the fi~st octant were then rotated to give the 

full remaining seven octants. In this way one can economise 

on the number of times the integrand.has to be evaluated but 

in actual fact one performs a Mont~ Carlo calculation with 

5904 points. To ensure that a sat1sfactory job was being 

done a comparison was made to·a Simpson's rule evaluation of 

the integral 

u <I y-m-b I> 
(27)f 

1~1 >1 

for a couple of fixed vectors. c and b. Agreement was 

obtained to within 3-5%. 

In the evaluation of (26) random sample vectors b 

and c were taken out of each shell and they were used as the 

representative vectors of the whole shell. This was justified 

by the fact that on taking several random samples and 

evaluating the whole of the correlation term in (26) a 

variation of less than 2% resulted. Anyway this random 

sampling conforms to the general spirit of a Monte Carlo 

approach. The computer time saved by doing this is enormous. 

This reduces the evaluation of a 225 x 225 matrix to an 

evaluation of a 12 x 12 matrix. Table 3 gives a typical 

matrix for p = 1, px = 0.866 and Pz = 0.5. The table shows 

that (27) assists convergence but is not in itself sufficient 
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for convergence. This must be sought in the Fourier 

coefficient products. The rest of the computation was 

done exactly using the I.B.M. 7040 computer of McMaster 

University. 

RESULTS·AND DISCUSSION 


Firstly the result for the independent particle 

model or the first term of the square in equation (24) is 

plotted in figure 14. This shows an inverted parabola for 

momentum less than pF which reflects the spherical surface 

of the Fermi sea. For momentum values greater than Pp the 

"tails" due to Umklapp type processes are obtained. The 

full evaluation of expression (24) is shown in figure 15. 

It can be clearly seen that the central parabola is enhanced 

by a factor of approximately four. As was pointed out 

earlier this is due to correlations between the annihilating 

pair. However the shapes are not identical - a slight bulging 

out of the parabola takes place as indeed was found by Carbotte 

and Kahana(l 4 ) in their plane wave summation of the ladder 

diagrams. Ti1is furthers the evidence which shows that.the 

Born approximation is sufficient to give a good qualitative 

description of the total result i.e. the summation of all the 

ladder diagrams which have only been carried out to first order. 
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The tail is also enhanced in a similar way as the main 

parabola. The momentum variation of the tails was not 

found. The calculation seems to indicate that the complete 

summation of all the ladders would give too much of a 

contribution in the region of momentum greater than two pF; 

however on a brighter note it would correct the discrepancy 

between theory and experiment in the region between one and 

2 PF· 

A detailed graphical comparison to experiments is 

not included here since, as was pointed out earlier this 

calculation .is of a qualitative nature, and in a detailed 

quantitative way it is not too reliable. 

As a final remark it might be stressed that this 

calculation implies that the Berko-Plaskett theory is 

sufficient to explain experimental results. This theory 

has to be multiplied by a constant factor varying from 

element to element to obtain reasonable results in agreement 

with experiment. This factor is the one referred to in the 

last section of chapter one. 



CHAPTER THREE 

POSITRON ANNIHILATION IN SOLID ARGON 

The experimental angular correlation curves are 

of two types~ an inverted parabola with tails at large 

angles, and a Gaussian type distribution. In chapter 1 

and 2 the former type were examined. The parabolas dis­

played a fairly sharp cut off at an angle correspondi~g 

to the Fermi momentum as characterized by the alkali metals 

and by aluminuma However the distribution in the noble 

metals and in insulators extends well past the expected 

Fermi cut off, exhibiting the Gaussian character. This 

momentum spread is characteristic of highly localized 

electron states and it is expected in an insulator because 

all the atomic shells are filled and all the electrons are, 

in effect, core electrons. Indeed a Gaussian distribution 

was obtained in the core calculations of both sodium and 

aluminum as given in chapter 1 and in figure lOa The core 

theory of Carbotte(l?), expanded in chapter 1, is now applied 

with certain limitations to solid argon. 

Since argon is an insulator with a simple structure, 

it was chosen as the most suitable example for the calculations. 

Furthermore, in the argon crystal the. atoms are bound solely 

by VanDer Waal's forces so that, to a first approximation, 
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each cell, centred at an atomic site, is electrically 

neutral. Thus no complications arise due to 1) positron 

ion core correlation effects as would be expected in sub­

stances with ionic binding, and 2) the sharing of electrons 

by neighbouring atoms as in the case of crystals with 

covalent bonding. 

PRESENT STATE OF THE THEORY 

Two recent papers( 3S, 27 ) have tried to explain 

the theory of angular correlation and lifetime experiments. 

Rose and De Benedetti{ 3S) have applied a simple Berko-

Plaskett theory to their experiments. Their results, like 

all of the !.P.M. calculations, explain the angular dis­

tribution curves very well but, when it comes to the positron 

lifetime, they highly overestimate the experimental.results. 

This overestimation of the lifetime is of course now fully 

understo6d i.e. the correlation terms are equivalent in 

importance to the I.P.M. terms. 

{27) .
Wall and Rose went a little further. Instead of 

assuming that the positron sees a simple Hartree field due 

to the outer electrons, they also included an attraction due 

to the virtual polarization of the outer electrons. As 

might be expected this gave rise to a highly distorted positron 
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wavefunction with a peak about halfway along the Wigner 

Seitz cell and as a consequence the positron penetrated the 

core to a greater extent i.e. the core is sampled better 

than in the I.P.M. Their result was very good for the 

lifetime-of the positron but their angular distribution 

curve is totally wrong. But since both the angular dis­

tributi?n and lifetime measurements should be explained 

simultaneously their theory is unsatisfactory. 

LIMITATIONS OF THE CORE THEORY 

In the derivation of the core formula (B-14} in 

appendix B a plane wave approximation was made. In other 

words wherever a conduction-conduction matrix element 

entered the theory it was replaced by a delta function. 

But Argon is more complex than the alkali metals and the 

single O.P.W. •s are now more complicated with more structure 

than in the simple metals for which the theory was derived. 

Figure 16 shows the momentum dependence of these O.P.W. 

Hence overlap matrix elements have now to be treated much 

more carefully than was done in ap?nndix B as band effects 

play a major role. The theoretical derivation leading to 

equation (I-2) is only valid for Argon if it is evaluated 

to first order. This will of course, as in the last chapter, 
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be only qualitatively correct. However, in sodium 80% 

of our theoretical contribution came from a first order 

calculation so that now the first order calculation for 

Argon is carried out bearing in mind the fact that the 

final result might only be approximately 80% of the true 

result. This suffices as indeed the scope of this work 

is not to derive a theory that will explain Argon but 

rather to apply the already developed theory to see what 

type of results it gives. 

This is done chiefly for two reasons. Firstly by 

applying this theory to other elements a better understanding 

of the theory itself in general might be obtained with 

resultant improvement. Secondly by its application to Argon 

it might suggest a way in which Argon and other molecular 

insulators could be properly treated in a diagrammatic way. 

This would be the next step in the general development of 

the theory. 

APPLICATION OF THE THEORY 

A knowledge of the atomic core wavefunctions and the 

positron wavefunction is basic to these calculations. The 

electron core wavefunctions used were those derived in 
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Hartree and Hartree( 20). No better wavefunctions were 

derived as these were thought to be sufficiently accurate 

for the present calculation. As in the case of Sodium 

and Aluminum it was assumed that the positron sees a simple 

Hartree field due to all the other electrons, taken in a 

Wigner Seitz approximation. The result is shown in figure 

17, and it is very similar to the wavefunction of Rose and 

De Benedetti( 3S). 

The O.P.W. representing the excited states were 

constructed in a similar manner to that described in 

chapter 1. As already mentioned these are plotted in 

figure 16 for various momentum values. The extra oscillation 

in the wavefunctions as compared to Sodium should be noted. 

This, although it seems to be a trivial point is very 

important since now the O.P.W. only approximate to a plane 

wave for very large momenta. As a result the fact is 

stressed once more that the core calculation is not carried 

out to all.orders but merely to the first order in the 

ladder approximation. This difficulty must not however be 

thought to be of a physical nature; it is purely a mathematical 

one and no attempt was made to remove it as it was felt that 

agreement to 80% would be sufficient. Developing the present 

theory fu~~her makes the calculations too long and involved 

to be practical. 
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DERIVATION OF THE PARTIAL ANNIHILATION FORMULA 


Equation (I-37) can be carried over to the Argon 

case very simply by remembering the fact that no Fermi 

momentum arises in insulators. He·nce the contribution to 

the partial rate R(p) ~rising from an electron in the state 

ni is 

_2i£ . J 
Tf 

G(kx) k 
2
dk d~k dx I 2 (1) 

=--A 1 8rr(2£+1) I J+ + J- 12 
v no 

where the various symbols are explained in chapter 1. 

One major change has occurred which at first may seem 

trivial bnt actually complicates matters considerably. 

The Coulomb potential U Clp-kj) is no longer given by
s - ­

(I-42) but by 



(2) 


This introduces a removable singularity in the correlation 

term of expression (1). This can-best be seen by doing the 

integration over ~k in this term to yield 

J 

2 2 p 2+k2-2pk ). (llnQ.+2k +p +2pk) 
kdkdx • (3)in 2 2

(2k +p -2pk+L1ni) p2+k 2+2pk 

The singularity is now obvious in the logarithmic term for 

p = k. In evaluating the integral care has to be taken 

since there are the added singularities at the integral 

limits. This can easily be done by using a counterterm 

method and with the aid of the auxiliary function 

g(p;k) = [1 + p- k] 2 (4) 

(3) can be written as 
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(p-k) 2
1 

g(p;k) 2n (p+k) 2 

{p-k) 2 (p+k) 
2" 

+L\n2 
- F(p·p·!J. ) 2n 
ii oo. dk 

(5)1Tp n2 g(p;k)I I 0J (p+k) 2 (p-k)2+L\nR. 

where 

The function g(p;k) had to be introduced to obtain con­

vergence at both limits. 

COMPUTATION OF THE PARTIAL RATE AND LIFETIME 

The computation of (1) is now trivial. In 

particular to do the integrals th(~ Hartree-Hartree (2 0) 

mesh was used in a Simpson's rule evaluation. This mesh 

might be criticized as being too rough but the accuracy 

and speed achieved was thought to be sufficient for the 

+ 

F(p;k;~n2) = r dr 
0 

(6) 
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present limited purposes. The only levels evaluated 

were the 3s and 3p since, due to the large band .gap 8ni( 23), 

the other levels give an insignificant contribution. 

Figures 18 and 19.give the J±n~ functions for the 

3s and 3p levels. These show the same characteristic be­

haviour as in the Sodium core i.e. figures 8 and 9. The 

theoretical and experimental( 3G) partial annihilation result 

is shown in figure 20. As can be seen agreement is re­

markably good. This is very encouraging; however the life­

time calculation is a more sensitive comparison. For this 

the theoretical result is 0.5 x 10-8 sec compared with the 

-8experimental value of 0.43 x 10 sec given by Liu and 

Roberts( 3?). This.agreement is very good considering the 

80% accuracy of the theory. 

Ftom this it may be inferred that a better treatment 

of Argon is certainly worthwhile. However in such a treatment 

not only should the complete ladder approximation be used but 

the diagrams that give rise to polarization effects, as dis­

cussed by Woll and Rose( 2?), should also be included. The 

very good results obtained however suggest the possibility 

that these terms might cancel against higher order diagrams 

in a similar way to the cancellations obtained in Carbotte's 

thesis (14'' for the diagrams of the conduction theory in simple 

metals. 

In conclusion the questions posed earlier may now be 
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answered. It seems evident that the general positron 

annihilation theory derived by Kahana and Carbotte gives good 

results both in metals, and with some slight modifications, 

in.general. At least non-ionic insulators can definitely 

be described by it and with a further extension as suggested 

above the theory should be able to explain the experimental 

results to within five to ten per cent. 



APPENDIX A 

CARBOTTE-KAHANA THEORY OF POSITRON ANNIHILATION(l?) 

In order to make the thesis complete and self con­

tained the following appendix, which is a synopsis of the 

paper by Carbotte(l?), is included. 

In the non-relativistic limit of quantum electro­

dynamics the Hamiltonian operator, that produces a two-

photon final state of total momentum n E is proportional to 

(1) 

where a~ and bk are annihilation operators for the electron1 2 

of momentum ~ 1 and the positron of momentum k 2 respectively( 6 ). 

The corresponding point annihilation operators ~ (x 1) and 

'¥ (x 2) can be introduced by means of the relations 

1 3 -ikt .x1 
ak1 = Tv I d ~1 e - - cp (~1) 

(2) 

1 3 -ik2.X2 
bk2 = Tv I d X2 e - - '1' {~2) 

where V is the volume of quantisation. Substituting (2) into 
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(1) and performing the sununation over k 2 yields 

Summing over k1 and integrating over ~2 yields 

(3) 

The partial annihilation rate is easily obtained 

by taking the matrix element of equation (3) between the 

initial and final states, squaring the absolute value, and 
e 

summing over all final states i.e. 

• ( 4) 

It is possible to relate equation (4} to a contraction 

of the zero temperature electron positron correlation or 

Green's function. The latter is defined as 

where x = ·ex, t ) and T is the Wick time ordering operator.
- X 

Using this (4) becomes 
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(-i) 
2

A J d3 d3 -in. (x-y) + += v ~ ~ e £ -- Gep(x,x;y ,y ) (6) 

+ . +
where x = (~,t) andy = (y,t ). The proportionality 

constant A in equation (6) can conveniently be fixed by 

reference to the known properties of singlet positronium. 

The electron density at the positron in the positronium 

ground state is l/(8na~) and the annihilation rate is 4A
0 

with A 
0 

~ 2.01 x 410 -1 sec • Since annihilation into two 

quanta can only occur from a singlet spin state, the correct 

proportionality constant for a metal is A = 4A 
0 

where the factor ~ is just the .probability for a given 

electron-positron pair in a metal to be in a singlet state. 

Equation (6) is not only a mathematical expression 

for R(p) but also a physical one, since the G term diagram­- ep 

matically contains all of the interactions between the 

annihilating pair. Solving for this in the ladder approx­

imation i.e. summing all the ladder diagrams yields the 

integral equation 

Gp0 
(X ' ,· z I ) G ( z z I • y y I ) (7) . ep ' II I 

where 

U(z;z 1 
) = u (z;z 1·) o(t -t I)

s -- z z 
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U (z;z') is the screened Coulomb force of an electron­s- ­

gas theory(l 2 ), i.e. only the conduction electrons are 

assumed to play a significant role in the screening. The 

functions G0 

e 
and G

P 
0 are respectively the zeroth order 

electron and positron propagators .. 

The positron Blo_ch state will be denoted by ~ (x)m-
and the positron propagator is then given by 

(8) 

with 

eu.o. (m) 8°(m) 
G0 p - + p­(rn;w) = (9)
p- P . + P . +E - w - 1.0 E - w + 1.0 m m 

where Ep is the energy of the positron in the state~ (x),
m m-

while 8u.o. (m) is a theta function equal to 1 for all un­
p ­

occupied states and equal to zero otherwise. The function 

8°(rn) = 1 - 8u • 0 
• (m) • 

p- p ­

The electron wavefunction will be denoted by~ (x),m-
where the Bloch label m stands for the usual (n£m~) if it is 

a core state, or for any momentum va~ue in an extended zone 

scheme (or the equivalent) if it is a conduction state. 

can be \v.ri tten in a similar form changing all the positron 

labels in {8) and (9) to electron ones. 
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In equation (7) the variables y and y' do not get 

coupled. in the integration. · Since the two body potential 

is assumed to be static the electron-positron Green's 

function G (z,z';y,y') need only be known fort = t ,.ep z z 

Henceforth in this appendix for any pair of variables x and 

x' it is always understood that t = t ,.
X X 

.In order to simplify expression (7) the Bethe-Goldstone 

amplitude Q(x,x';y,y') is introduced as follows 

(10) 

Introducing equation (10) into equation (7) yields 

n ( z' z I; y, y I) Ge
0 

(r; y) Gp
0 

(r I ~ y') (11) 

On interchanging dummy symbols and introducing delta functions 

this expression can be rewritten as 

1if d 4r d 
3
r• G~(x;r)G~(X'ir')U(r;r ) D(r,r';z,z')] = 0. (12) 
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which implies that 

n (X 1 X I i Y 1 Y I) o4 
(x-y) o3 

(~' -y_' ) - i J 

U(z;z') n(z,z 1 ;y,y 1 
) {13) 

Because of the translational invariance in time, n(x,x 1 ;y,y 1
) 

can depend only on the time difference t -t • Thus, the 
X y 

generalized Fourier transform, can be introduced for n i.e. 

dw -iw (t -t )ncx,x';y,yl> = I '¥ (x) 4> (x 1 
) 

J 2 7f e x y 
m,!!;!!!_l ,!!~ m- n­

(w) '¥*m 1 (x_) 4>*n 1 (y 1 
) .• (14) 

Using this result to Fourier transform (13) yields 

\' '¥ (X) <l> (X 1 ) J d W e- i W ( t X- ty) n (W ) '¥ * ( ) <l> * ( 1 )
l m n - 27f m_,n_·,m_' ,n' m_' Y n' X.m,!!;m 1 ,n' ­

= __!_ Jei~. (x-y)dk 1· dw -iw(t -t ) 1 I ·ik 2 • (x'-y') 

27f _ 2 7f e x y 2 7f dk 2 e - - ­

- i '¥ (x)'¥* (z)
E_2 - P2 -

'¥* m I (y_) <I>* n I (x_' ) (15) 
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where U {p 1 ) is the usual Fourier transform of the static s ­

effective potential U (x,x'). Carrying out the trivial s- ­

integrals and summations and interchanging dummy variables 

yields 

dw .:...iw(t -t )'¥ {x) q> (x') 27f e- x Y 'i'*m• {y) q>*n• {y')P2 E_3 - f 

-ip 1 • Z I 3 
q> (z') e - - q> , {z')d z'}
n- k - ­

(16) 

which implies that 

(17) 

where 

{18) 
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and 

iq.x 3
[~ "lql ~le. = I '¥ {x) e-- '¥*k (~) d x (19)m­

-iq.x 3[~1-q Ik' 1P = J 4> (x) e -- ¢*k' (x) d x (20)
n-

Substituting equation (10) into (6) results in 

d 3 d3 -fp. (x-v) Ix y_e- -L 

G
0 

{ z ; v) G
0 (z ' ; y) (21)

e-L p-­

Fourier analysing the right hand side of this equation gives 

R{E_) dt z 

I
dw -iw(t -t )
'¥ (x) <I> (x)m- n- 2 TI e x z n!!!: 1 n ; !.!!-,' 1 n ' (w) 

'¥ * { ) <I> * { , ) \ '¥ ( ) '¥ * ( ) J d w1 - i w1 ( t - t ) Go { n )m' ~ n' z t Q, ~ Q, Y. ~ e z y e ~;wl 

J
dw2 
2TI 

(22) 

On rearranging terms 
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{23) 

Carrying out the integral over 

summations over m', n' gives 

dtz' 
3

d ~, 
3

d z'and subsequent 

I 
!!!_,n;~,~· 

J 
dw 
21f 

. + 
J.WO 

e 

{24) 

where the rotation 

.I. (p) { 25)= J~~~ ­
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has been introduced.· Doing the integral over w2 and changing· 

dummy variables yields 

J 
dw 
2'IT J 

de: iwo+ 
2n e (26) 

The e: integration can now easily be done with the help of 

equation (9) by contour integration i.e. 

8	u. o. (m 1) · 8o (m I) 
e - e ­+= J e . + e . +Eml -e:-1.0 E -E:+l.O m 1 

8u. o. (m 1 ) 8u. o. (n, ) 
e - p ­= i 

Ep +Ee m1 
-w-io+ n 1 · 

8u.o.(n1) 

p - + 


p . + p . +E -w+e:-l.o Enl -w+e:+l.On' 

Ee P . + 
m1 +E n 1 -w+l.O 

(27) 


where the functions 

8U • 0 • (ffi I ) 8U • 0 • (hI ) 
+ 	 e - P ­p I I (W) = 	 (28)m ,n 	 p e . +E +E -w-l.o 

n 1 m' 
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and 

8°(m') 8°(n 1 
)

e- p-
P- ' ' (w) = (29)m ,n Ep +Ee -w+io+ 

n' m' 

Hence equation (26) becomes 

R ( p) = -Vi A \ I ( ) I* { ) 
1.. m,n P m',n' P

m,n;m' ,!!_' 


. +
d W 1WO + ­
I 2 7r e nm, £i m, , n 1 { w) [P ~ 1 , ~, ( w) + P m 1 , n, {w) ] . ( 3 0) 

The result of equation (27) can also be applied to equation 

(17) to give 

I Hm k nk ' ~ I ,· ~' ' ( w) 
(31)n k ' n I~,k' _,_;_,_ 

In order to further simplify equation (30) a simple 

matrix notation is introduced. In this not-ation (30) reads 

. +d W l.WO m' n'> (32)
2 1T e < m n I 
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and (31) becomes 

(33) 

The whole integral of equation (3~) can be easily performed 

by treating the integrals that ar{se when n(w) is expanded 

with the help of (33) separately. The first term in the 

expansion is 

. +d W 1WO + ­ (34)2TI e [P m,~(w) + P ~~~(w)]J 

Using the definitions of P+(w) and P-(w) this integral can 

easily be performed by contour integration, and closing the 

+ ' contour in the upper half plane P (w) can be neglected since 

there are no poles. Hence 

( 35) 

results. Other possible members in the expansion are of the 

type 

. +
1WO e (36) 

which reduce to 
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p+ H p+ 	 p+H . . . 	 (37) 

p - H p H . . . p (38) 

- p+ p+p H H . . . (39) 

p+ p+H p H . ( 40) 

p+ H p H . 	. . . . p (41) 

. . . . . , 

the exponential factor being dropped as the contour can now 

be defined unarnbigously. Neither (37) or (38) contribute as 

the integration contour encloses a perfectly analytic function 

in one of the half-planes. Terms with two or more P can also 

be discarded for the following simple reason. For each P in 

a term there exists a theta function of the type 60 (n) . These 
p-

can be used to eliminate one of the intermediate summations 

over the positron states (cf equation (43) belo~), so that 

the remaining expression is of the order of ~ , which vanishes 

in the limit of infinite volume since the rest of the 

expression remains finite. Hence the only remaining terms are 

-	 +those with at least one P and any number of P . These can 

simply be treated by introducing the intermediate amplitude 

n° defined by 

Then clearly all the remaining terms as well as (34) above 

are included in n°•P- n°t~ Hence equation (32) now reduces to 



R{p) = -iA. 
v 
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dw iwo+ 
m' n'> {42)I <m,~27T e 

Introducing a set of intermediate states into this 

equation gives 

= -iA. \R{p) --q- l 
!!!_,n;m' ,!!_' 

dw iwo+ <m n s t>27T eI 

<s t s' t'> <s' t' 1 not cw>· 1 m' n'>. C43> 

Noting that all the singularities of the n•s are in the 

lower half plane, the contour is closed above, picking up 

the P contribution to yield 

e0 e0
(s) (t)e- p­

{ 4 4} 

which can be rewritten as 
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.R(p) = ~ r 
~· ,~· 


(45) 


Since the positron is thermalized on annihilating(?,a) the 

summation over n' is equivalent to setting ~· = 0 since all 

other states are empty. Finally equation (45} can be put 

in a more physical form by making the transformation 

(46) 


and substituting into equation (31) 

0 n,o + 

This implies that 

0 
X m,,!!;m' ,o 

(48) 


and 
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(49) 

This equation was obtained by Carbotte in reference 

17 and i"s of basic importance to this thesis. In the form 

(49) it is completely general within the ladder framework and 

no approximations have as yet been made. It can easily be 

applied to describe both the core and conduction electron 

annihilation and hence a complete physical interp~etation 

is given in the appropriate section of the thesis. However 

a mere glance shows that the rate R{p) is proportional to 

the absolute square of the sum of two terms. The first 

gives the I.P.M. result and is the pth Fourier component of 

the core el.ectron and positron single particle wavefunction 

overlap. The second term is a correction which describes 

in an approximate way the correlation in the relative 

motion of the annihilating pair. 



APPENDIX B 

.CORE ANNIHILATION FORMULA 

Expression (A-49) is now further reduced to deal 

with core annihilation in simple metals. It is important 

to bear this in mind because some of the approximations, 

that will be made, only hold for simple metals but not in 

general e.g. the case of solid Argon treated in chapter 3. 

In order to evaluate equation (A-48) the following 

simplifying approximation has to be made. In a Wigner 

Seitz cell a core state is highly localized abou~ the 

centre, while a conduction state extends appreciably 

throughout the cell. Hence the matrix element [m 1~1 ~], 

where k is a core state and m is a conduction electron or 

positron wavefunction, is very sensitive to the deviations 

of ~ from a plane wave. Thus band effects are of tantamount 

importance in the evaluation of such matrix elements. This 

point is clearly seen from figure 1 where a plot of the 

overlap between core and conduction matrix element is shown 

for Sodium. In such evaluations the mesh for the integration 

has to be carefully chosen. However if k is also a conduction 

state, then it is quite reasonable, at least for simple cases 

83 
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like Sodium, to set 

(1) 

That this is a good approximation can be inferred by 

examining figure 5, where it is seen that the major portion 

of the curves are plane-wave like. This point can perhaps 

be seen more clearly by looking at the expansion of a 

conduction state in reciprocal space i.e. 

w ( ) 1 ik. X \' ia. X ( )
Tk x . = lv e - - ~w e - - uk ~ (2) 

a 

For the simple metals the uk (~ = o) term dominates and is 

approximately equal to one. As a result the \fk(x) are nearly 

plane waves. However figure 16 suggests that this is not 

the case for Argon. The a = o term does not dominate the 

expansion (2) and several of the a terms have to be included. 

Hence this approximation, whilst good for simple metals, is 

not good for non-metals such as Argon. In fact this is the 

very reason why the calculations for Argon are only carried 

to Born approximation in chapter 3. 

Applying (1) to (A-18) yields 

(3) 


and 
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(4) 


where it should be clearly noted that in {3) the correspond­

ing positron matrix element does not appear since it is 

treated as a plane wave. Hence (A-48) can be written as 

(5) 

Since the m and n momenta refer to excited states, on 

account of P+ (w), the quadratic approximation for Ee 
m,n m 

and Ep can be made. This measures the electronic energies
n 

from the bottom of the 3s band and positron energies from 

the ls band. 

Also r~,n(p) can be replaced by o~+n,p where m and 

n refer to unoccupied states as in {A-49) . Hence 

(6) 

where 



and 
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(7) 


In order to solve (6) the trial solution 

L 4?m,p-m; k (w) ·J~,p-k (w) 
k ---- -- ­

(8) 


is taken. Substituting into (6) yields 

= J 1 (w) [m IP_-ml n~m_s]e + 
m,p-~ 

I 
k' 

Rearranging terms 
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which implies that 

Summing both sides over m and introducing the notation 

(10)X (k;w) = :e.­

yields 

x (k;w):e.­

(11) 

Interchanging dummies on the right hand side and using (10) 

(12) 

Introducing the notation 

equation (8) becomes 

[k IE.-kl nQ,ms]e (13) 



88 


This is the second expression of the square in (A-49) which 

on using (10) becomes 

Using the energy convention introduced above it now follows 

e .Pthat E . = 0 and E n = -A · where A is the band gap be-o nNms n~ n~ 

tween the core level (n~rn~) and the bottom of the 3s band. 

Equation (14) finally becomes 

(15) 

where 

(16) 


This is the required result. 



FIGURE CAPTIONS 


FIGURE 1 


The Hartree-Fock-Slater core wavefunctions for 

Sodium as given by Taylor(lg). Superimposed on these is 

the zero momentum O.P.W. This clearly shows that the core 

wavefunctions are greatest where the O.P.W. are smallest 

and vice versa. 

FIGURE 2 

The O.P.W. orthogonalization coefficients A n(k)nN. 
defined by equation (I-17) and the normalization constant 

A(k) defined by equation (I-19) for the Sodium core wave-

functions. Only momentum values greater than Pp are of 

interest. 

FIGURE 3 

The equivalent of figure 2 for· Aluminum. 

FIGURE 4 

Solution of the integral equation (I-43) for the 

89 
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amplitude xn~{y,k} as a function of momentum k and for a 

number of'y values. Notice that xn~(y,k) is defined only 

fork> 1, i.e., above the Fermi surface. 

FIGURE 5 

The k dependence of the quanti.ty G(kFk,r) entering 

equation (I-41). The complex structure from the orth~gonal-

ization parts smooths out for sufficient la!ge k. 

FIGURE 6 

· ni
The function S (o;r) for the 2p and 2s shell. 

FIGURE 7 

The y dependence of the function Snt (y;r) for the 

2p shell. The lack of oscillations implies that the 

correlation corrections have much the same variation with 

r as the I.P.M. term. 

FIGURE 8 

The bverlap integrals J-
+ 

s{k) for the 2s electronic
2

shells showing the similarity of the J to the J+ term. 

http:quanti.ty
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FIGURE 9 


The equivalent of f~gure 8 for the 2p electronic 

shell. 

FIGURE 10 

The contribution of the core electrons to the 

two-photon counti~g rate for both Na and Al. The enhanced 

curves are nearly simple multiples of the I.P.M. curves. 

FIGURE 11 

The two-photon counting rate for Na. ~he 

experimental data have not been corrected for background 

effects. 

FIGURE 12 

The two-photon counting rate for Al. 

FIGURE 13 

The reciprocal transform of the O.P.W.-positron 

wavefunction overlap as given by equation (2-12). As can 

be seen the momentum dependence only introduces an appreciable 
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error in the first and second shells otherwise it could 

be neglected. 

FIGURE 14 

The unenhanced lattice contribution to the 

annihilation.rate. The units are such to allow easy 

cdmparison with f~gure 15. 

FIGURE 15 

The full enhanced lattice contribution to the 

annihilation rate. A bulgi~g of the parabola is seen on 

comparison to f~gure 14 but both the central distribution 

and tails are equally enhanced. 

FIGURE 16 

The equivalent of figure 5 for Argon. The extra 

oscillation ih the O.P.W. forces·a first order calculation 

of the core theory. 

FIGURE 17 

The positron wavefunction for Argon. This is very 

similar to that given in reference 35. 
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FIGURE 18 

The overlap integrals J± (k) for the 3s electronic . 3 s 

shells in Argon. These are not as closely matched as the 

Na case of figure 8. 

FIGURE 19 

The equivalent of f~gure 18 for the 3p electronic 

shell in Argon. 

FIGURE 20 

The annihilation rate for Argon. A ro~gh fit was 

applied to the experimental points as. given in reference 27. 

The units were chosen for easy reference to 27. 
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FIGURE 11 
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FIGURE 14 
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FIGURE 15 
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FIGURE 16 

5. 

4. 

3. 
tl) 

~ 

~ 
~ 
J:il z 
~ 2. 
p., 

Q 
~ 
N 
H 
H 

~ 
0 1. 
(.!) 
0
p:: 
8p:; 
0 

0. 

-1. 

- p = o. 

--- p = 1.5 

-·-p = 5.0 

/ 
,~ 

.//"/ 

//. 
// 

/ / 
/ / 

/ / 
/

/ /
/ / 

/ 
/ 

/., 

-2. 

0.0 	 1.0 2.0 3.0 Cell 
Edge 

RADIAL DISTANCE IN BOHR UNITS 




110 

FIGURE 17 
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TABLE 1 

The radial core wavefunctions after Taylor< 19 ) 

Sodium Aluminum 

r P2s p2p r P2s p2p 

0.0000 0.0000 0.0000 o·. oooo 0.0000 0.0000 

0.0149 0.2234 0.0087 0.0094 0.2005 0.0060 

0.0299 0.3756 0.0322 0.0188 0.3530 0.0228 

0~0498 0.4915 0.0805 0.0282 0.4644 0.0482 

0.0796 0.5284 0.1763 0.0377 0.5408 0.0808 

0.1095 0 .·4576 0.2865 0.0565 0.6087 0.1615 

0.1592 0.2149 0.4749 0.0753 0. 591,5 0.2559 

0.2189 -0.1410 0.6785 0.0941 0.5156 0.3569 

0.2787 -0.4732 0.8409 0.1130 0.4008 0.4597 

0.3981 -0.9405 1.0362 0.1883 -0.1997 0.8314 

0.5175 -1.1470 1.0935 0.2636 -0.7386 1.0871 

0.6768 -1.1569 1.0416 0.3389 -1.0948 1.2227 

0.9156 -0.9321 0.8529 0.4895 -1.3281 1.2375 

1.1545 -0.6642 0.6483 0.7154 -1.0887 0.9766 

1.5525 -0.3340 0.3792 0.8660 -0.8384 0.7696 

2.0303 -0.1330 0.1867 1.1672 -0.4325 0.4341 

2.5080 -0.0503 0.0887 1.7697 -0.0898 0.1147 

3.4634 -0.0068 0.0193 2.3721 -0.0164 0.0275 

4.4188 -0.0009 0.0041 3.5770 -0.0005 0.0015 

5.6927 -0.0000 0.0000 4.7819 -0.0000 0.0000 
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TABLE 2 

Reciprocal Transforms 

a f (a)
00 

g (a) w 
0 

(a) 

0.00000 1.00000 1.00000 0.98531 

1.11044 -0.03490 -0.07635 -0.06752 

1.57040 -0.01396 -0.01854 -0.02688 

1.92334 -0.00220 -0.00041 -0.01075 

2.22088 0.00448 0.00274 -0.00494 

2.48302 0.00820 0.00160 -0.00296 

2.72001 0.01014 0.00016 -0.00212 

2.93795 0.01100 -0.00057 -0.00151 

3.14080 p.01119 -0.00065 -0.00092 

3.33132 0.01098 -0.00039 -0.00039 

3.51152 0.01054 -0.00007 0.00002 

3.68291 0.00996 0.00017 0.00030 

3.84668 0.00932 0.00028 ·o.ooo44 

4.00375 0.00864 0.00027 ·0.00050 

4.30072 0.00729 0.00009 0.00046 

4.44176 0.00663 -0.00001 0.00043 

4.57846 0.00600 -0.00007 0.00041 

4.71120 0.00541 -0.00010 0.00040 

4.84030 0.00585 -0.00009 0.00040 

4.96604 0.00434 -0.00006 0.00041 

5.08868 0.00387 -0.00003 0.00042 

5.20843 0.00345 0.00002 0.00042 

5.32549 0.00305 0.00005 0.00041 

5.44002 0.00269 0 • .00007 0.00040 

5.55220 0.00237 0.00009 0.00039 



116 

TABLE 3 

Matrix elements of the integral (2-27) 

c 
+" 

b -+­

.978 

.896 

.819 

.755 

.732 

.688 

.673 

.621 

.612 

.646 

.543 

.588 

.680 

.582 

.613 

.516 

.494 

.619 

.646 

.441 

.579 

.531 

.433 

.491 

.522 

.504 

.437 

.444 

.463 

.470 

.408 

.407 

.423 

.443 

.340 

.385 

.444 

.471 

.401 

.451 

.476 

.377 

.337 

.444 

.352 

.369 

.348 

.339 

.430 

.382 

.406 

.352 

.339 

.444 

.464 

.312 

.440 

.379 

.319 

.359 

.380 

.381 

.330 

.345 

.368 

.345 

.306 

.331 

.316 

.365 

.271 

.317 

.359 

.328 

.324 

.300 

.298 

.381 

.355 

.273 

.368 

.327 

.261 

.298 

.330 

.342 

.294 

.319 

.345 

.293 

.264 

.317 

.271 

.320 

.252 

.285 

.331 .317 

.307 .314 

.320 .307 

.283 .291 

.283 .304 

.310 .267 

.347 .294 

.260 .279 

.302 ·.254 

.380 .415 

.257 .255 

.355 .383 

.279 

.268 

.249 

.250 

.255 

.297 

.253 

.237 

.285 

.246 

.213 

.223 

.267 

.281 

.276 

.292 

.291 

.233 

.238 

.298 

.231 

.245 

.285 

.249 
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