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based on ~-- .Bellman's principle of optimality, for deter­

mining optimal control strategies for nonlinear systems. 
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In this thesis a result is presented for a problem 
( 

with saturation characteristics in nonlinearity solved by-

the J~cobson's approach~ In the differential dynamic 

programming the principle of optimality is applied to the 

di.fferential change in non-optimal cos·t due to small changes 

in state; variables instead of the cost itself'. This results 

in modest memory requirements for its defining parameters 

and rapid convergence. 
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CHAPTER T 

Introduction 

1-1: Historical Backgroun~ 

There-: have been many approaches to optimization, 

which involves finding the best solution among several 

feasible alternatives·. The te:rm "best solution" is- used 

because~ there·, may be more. than one? optimal solution. 

Having constructed an appropriate mathematical 

model for the· problem concerned, we~ must choose an optim­

ization technique to solve the problem. Th~ way we deter­

mine an optimal solution depends, of course, on the form 

of the objective func.tion and c·onstraints, the' nature and 

number of variables, the kind of computational facilities 

available,. taste, and experience. 

In 1940's there_~ was a reawakening and change of 

direction in the· studT of optimization theory. This 

renaissance was stimulated by the war effort:. Two parallel 

but interrelated occurrenc·es are especially significant: 

the work of scientists and ma•thematicians on prob.lems in 

operations· research generated by modern warfare:; and the~ 

invention and development of the elctronic digit~l computer~ 

In 1950's following studies in the area of multi­

stage) decision processes, Bellman invented the. ra~ther un­
[t. z, 3) 
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descriptive but alluring name' for the· approach. -­

Dynamic· Programming~ A more representative but less 

glamourous name would be "recursive optimization"., Dynamic 

Programming appears as having· been practic·ed long before, 

it was named .. Undoubtedly, however, R.Bellman is the father· 

of Dynamic Programming. It has been applied_ to problems 

in numerous fields, e.g •. theory of inventory and produc-tion_.,
(71 2ZJ 

purchasing and investment problems, distribution of drugs 

in the body, satellite interception and rendezvous problems,
[21]. 

design of chemical plants, statistical communication theor~ 

and cdntrol systems~ Bellman's own output has been prolific.
[16,18, lq] 

The relevance of Dynamic Programming to control theory is 

unquestionable but there are limitations to its practical 

applications such as enormous computing time and storage 

requirements.,. 

Several attempts have been made to overcome the 

limitations, and Differential Dynamic Programming is one 

of them. 

1-2: Statement of the problem in a· genera-l form 

In recent. years much interest has centred on the 

problem of determining optimal control for dynamic systems 

described by nonlinear, ordinary differential equations of 

the following form: 



' 
(1-1) 

The criterion of optimality is to minimize the cost 

functional: 

~ 
VCx.; t.) - 1L(x, ~; t)d..t + FCxC~)) (1-2) 

to 

where~ ~(t) is an n-dimensional vector function of time· 

describing the state of the dynamic system at any time 

t E [ t 0 , tf] , (The symbol :X: is also: taken to mean 6Ct).); 

~(t) or u is an m-dimensional vector function 

of time~representing the control variables avaia~ble for 

manipulation at any time te[to, tf]; L and F are nonlinear 

functions of their arguments; and f is ann-dimensional 

vector of its arguments. (1~1)describes the dynamic struc­

ture of the system. The final time ~ is assumed to be 

given explicitly. 

f(~,~;t) is a function of X, u and time t. At a 

particular time t 1e[to , t-f] , f('!,!:!_; t 1) is a function of x 

and u. The semi-colon is used to separate t from the 

other arguments~ S~milar remarks apply to V, F and L. 

All functions are assumed to be continuously differ­

entiable in each argument up to any order required~ 

The purpose· of the problem is to find ~( t); t e(to , tf] 
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such that V, given by (1-2) is minimized .. 

Many second-variation type algorithms have been 

developed for successively improving a nominal, guessed 

control function. A very restrictive requirement~:of those 

second-order methods is that H-l the inverse matrix uu 
of the second partial derivatives of the Hamiltonian (see 

Eq.(3-17)) with respect to u --should exist and be positive 

definite along non-optimal trajectories for t e[to, tf]• This 

restriction is very seve:re since it implies that H must be· 

strictly convex, globally, with respect to u. ~n map:_y non­

linear problems one finds that H is strictly convex only in_· 

the neighbourhood of its minimum with respect to u. 

·~ The differential dynamic programming requires only 

that H-1 exists and is positive definite in the neighbour­uu 
hood of the minimum of H with respect to u. This is a much 

less severe requirement, therefore v1e may use the Fletcher 

and Powell routine {see Appendix I) to minimize H with 
[8] 

respect to u. The function and its first derivatives are 

calculat-.ed by this procedure: and the inverse of the matrix· 

of second derivatives is estimated from this data as tha 

procedure progresses towards the minimum of the function. 

Thus when the minimum is reached, an estimate of the inverse 

of the matrix of second derivatives evaluated at the minimum 

is available. Since the procedure does not evaluate the ··'. 

matrix of second derivatives directly it is not necessary 

that its inverse be positive definite. 

http:calculat-.ed


CHAPTER 1[ 

Dynamic Programming 

Ofte~ befora.performing the ·optimization~ it is 

desirable to make some changes of variables and transform­

ations. In contrast to simplifying the model, these pre­

paratory operations preserve tha: properties of the: model 

completely., The transf·ormed model has the same optimal 

solution as th~ original, but is of a form that can be 

optimized more easily. 

Basically Dynamic Programming is such a transform­

ation~ It takes a sequential or multistage decision process 

containing many· interdependent variables, and converts i-tr. 

into a series of single staga problems~ each containing 

only a few· variables. The transformation is invariant. in 

that the numbe_r of feasible solutions·,. and the valu~ of the 

objec:tive function associated with each feasible solution 

.is preserved. 

The transf~rmation is based on the principle of 

optimality, due to Bellman, which. s·tates that 

" An optimal set of decisions has the pro.perty tha·t whart­

ever the first decision is, the remaining decisions must 

be optimal with respect to the outcome which results from 

the first; decision." 

-5­
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Treating the control problem as a multistage decision 

process we may use Dynamic Programming to write 

t+a 
vc~;t) = t~~hA[j L(~,\!j1:)J:c + v(~tAXjttA)] (2-l) 

t 

wher-e: vc~;t) is the optimal cost to go r·rom sta·te ~ at 

time t •. If we.' let A be a small interval of time then 

(2-2) 

:tfoW We' make; the.~· fundamenta.l assumption that V(~ ;t) 

may be expanded in a Taylor se-ries about~ the point ~; t , 

+ higher-order terms, 

( 2:-3-) 

_ avwhere v'¥'- - ' and ( Vx, f) is the scalar product of..... ax 

the vectors Vx and f .. Then we: obtain from ( 2-2 )" and,. 

(2-3), 

Vc~·;t)- m~n[L·~ + V(x;t) + <vx,f)·A 

(2-4-) 



Since VCx;t) and ~¥ are; independent of u, then. 

aV _ mu.in.[l·A. (2-5). - 9 t ·A u 

Dividing by b. and allowing A~o, we-' obtain 

(2-6) 

Equation (2-6) is the Bellman's partial differential 

equation in. n+l variables x·t and unsolv~_, is in general 

able analytically. 

The difficulty of numeric.ally solving·. (2--6) is in 

general,enormous: primarily due to the high dimensionality 

of the equation which means that storage and computing time 

requirements are tremendous. To avoid this difficulty 

several attempts have been made and Differential Dynamic 

Pr-ogramming is one of them. 



CHAPTER m 

Differential Dynamic· Programming 

3-1: The,Basis of Di:(ferential Dynamic Programming 

Differential Dynamic Programming is a technique~ 

based on Dynamic Programming~ for determining th~ optima~ 

control function of a nonlinear· system. Unlike convent­

ional Dynamic Programming where the optimal cost function 

is considered globally,, Differential. Dynamic Programming 

applies the principle of optimality in the neighbourhood 

of a·nominal, possibly non-optimal, trajectory. 

Mayne [15] introduced the notation of "Differential 

Dynamic Programming" and Jacobson [10,11,12] developed it 

for his Ph.D. thesis. 

V0
It is well known that the optimal cost (6; t) 

satisfies the Bellman's partial differential equation(2-6) 

as shown in the previous chapter. We rewrite it for con­

venience, 

(3-1) 

in n+l. variables X·_, t for the optimal cost v: {In the 

above equation, one should realize that ~ is an optima:l 

-8­



quantity and so should be written with superscript 0 How­• 

-

ever,. for simplicity, the superscript o appears on 'V 

quantity' only·.) 

It is assumed that V~~;~ is sufficiently smooth 

in x and t to allow the derivation of (3-1) which 
0requires that the second partial derivatives of V with 

respect to :X:._, t exist.. [6] 

In the problem of Section 1-2~ we assume that the· 

optimal control U 
0

( t); t e[to , t 1] is unknown but that a 

nominal control u{ t); t e[to , t.-] is available. 

On applicatiori of the nominal control, a nominal 

state trajectory X(t); te[to ,t,] is produced by (1-1), i.e .. 

f ( x, Ll; t) (3-2)
' 

The nominal cost V(Xo;'to)is calculated using (1-2), i.e ... 

+ F(x Cif)) (3-3) 

Equations (1-1), (1-2), and ( 3-1) .may be wri tte·-n in 

terms of the nominal trajectory by setting: 

X - X + SX 
(3-4) 

lL - Ll + Slt 
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sr and &lL are variations in the state and control vectors, 

respectively, measured with respect to the nominal quantities 

X, u; t they· are not necessarily small quanti ties at this 

stage. 

Equations (1-1), (1-2), and (3-1) become: 

d.Cx+Sx) f c.x+ s:x: , a+ sLL ; t) ; (3-5)clt 

:XCto) + Sx Cto) =Xo ( ·: Set SX Cto) == o) 

VCxo;to) = l~L(X+S~, U.+SU.;t)d.t 
to (3-6)' 

+ F(xc~) + sxc4); tf) 

8V~f+Sx;t)- ~~n[ LCX+SX, il+Sil;t) + 
(3-7)(v: (X+Sx;t), f(X+SX, U.+Sil; t))] 

respectively .. 

Equations (3-5),(3-6), and (3-7) are exactly equivalent to; 

(1-~),(1-2)~ and (3-~) since no approximations have been 

introduced: the nominal traijectory has been made into a. 

reference: tra·jec·tory. 

Now let us assume that· the optimal cost is smooth 

enough to allow for & power· series expans~on in SX about x. 



11. 

- V0

( x; t) + <v:, SX ) 
(3-8) 

+higher-order terms+t ( 8X, Vx:. SX) 

The optimal cost 

(3-9) 

where·· a( x; t) is defined· as the dif'ference between the-: 

optimal ·cost V
0

(X; t) obtained by using the optimal controls 

and the nominal cost ~(~;t) obtained by using the nomina1 

controls. 

(l (T) ; 

Using (3-9), Equation (3-8) becomea: 

(3-10) 

+ ~ ( SX, v:x SX) +higher-order terms in SX. 
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Substituting (3-10) into (3-7), we·· obtain: 

- sEL- acl- (~ sx)- -1 (sx ~sx). at at at , 2 ' e~ 

. + higher-order terms 

- ~~ [ L ( X+ sx, a.+ SlL; t) (3-11) 

+( V: + V:.x 8X + higher-order terms, 

f(X+SX, il+SUj t))] 

Equation (3-11) is very difficult to solve owing to the 

. very large computing time, and storage requirements for the 

parameters of the power· series expansion~ However, we can 

truncate~ the power series provided that the truncated terms 

are negligible .. In order to do this, the size of ox. must,. 

somehow, be restricted •. That is, the trajectory x(t)+SX(t); 

t e [to, ~f] must be kept in the neighbourhood of the nominal 

trajectory·.. 

Let. us assume that we' keep the S:.t.' s small. (Method·s 

ensuring this are, discussed later, in Section 3-3.·. It is 

sufficient at the moment to note tha~, because SX(to)=O, 

the SX's produced in the interval ~o ,t~ are caused only 

by Su acting through Equation (3-5).) Assume, further, 

that the ox's produced are small enough such that an expan­

sian up to quadratic terms, in 8X, is sufficient to 
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V0represent in the neighbourhood of the nominal traject­

ory. Equation (3-11) becomes:· 

- 9.2.. - ~ - (sY. sx) - _t_ (sx aVx.x s~)
at at, at ' 2 ' at . '""'" 

- rsiJ'- [L Cx + sx, il + 8l.L ; t) (3-12·) 

+ (\1-c + Vxx.sx, fCx+sx, U.+su.; t))] 

where 

VCx+sx; t) - VCx;t) + Q + (Vx, sx) 

+ t ( sx, Vxx sx) 
ana (3-13) 

Vx.Cx+sx;t) - VxCX; t) + Vxx: 8X 

One· should realize that expanding up to second­

order in cSX makes,. on differentiating, an expresS':Lon. for 

VxCX.+Sx;t) accurate only to first-order in SX •. 

In subsequent sec.tions, an algorithm is considered 

'second-order' if,, given the a. pri,ori expansion (3-13). for 

V and Vx, all second-order terms arising on the:· right 

hand side of (3-12) during the derivat'ions, are accounted 

for .. 

The superscxipt 0 on V in (3-12) and (3-13) has 

been dropped for the· following reason: 

Modelling the: cost surface t: locally, by- a second·. ­



order· expansion is made possible. by keeping SX small. So 

the cost described by the truncated series (3-13) is opti­

malt provided that the Su's are chosen in such a way that 

sx's remain small. It is,_ there::fore, not the truly opti­

mal cost given that any size of SX is allowed. 

Vr given by (3-l3)r is the optimal cost V0 when 

starting in the state x+oX at time t if the nominal 

trajectory is sufficiently clos~ to the optimal one, i.e~ 

if u(t:) is close to U 
0 ("t.);"t.E[tttf] then the minimizing 

Su's will be small and, from (3-5), the resulting oX's 

will be small so that the size of the 5X's need not be 

restrainerl artificially. The- expansion of V up to second-

order will thus be adequate to describe the truffi optimal 

V0cost in the neighbourhood of the nominal tr~jectory. 

V~ will also be described adequately .. 

Equation (3--12) can be used to develop methods for 

determining the optimal control U
0 

( t); t E [to, tf] by 

successively improving the cur~ent nominal trajectory U(t); 

3-2: A Second-order Algorithm 

To overcome the restric·tion that a;iz should exist 

and be positive definite along non-optimal traJectories 

for t e[to , tf] , H(.X., u,.Vx.; t) may be actually minimi.z.ed 
(see. ey,. (3 -17)) 

with respect to u using the Fletcher· and Powell method. 

http:minimi.z.ed
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This u, obtained by minimizing H, is denoted by u*. 


All quantities! including H~;(x,u,V";t), are evaluated at· 


u*. Becaus~ u* minimizes Hlthehthe Fletcher and Powell 


routine requires only that H~;(x,u*,Vx ;t) be positive def­


inite. It is less restrictive than requiring H to be 


globally, strictly co·nvex in u. Further, Hu (X:, u·* ,v~; t )=0 ~ 


which is a well known condition of optimality. 


Variations SX about X. are then introduced and a· 

linear relationship found between Su and Sx, which maintains 

the necessary condition of optimality, 

Hu.C:X+cSX, Ll*+Sll, Vx+Vxxsx;t)- 0 

for Sx sufficiently smal~. 

With the above two p6ints in mind~ the derivation 

of the second-order algorithm will be understood readily. 

The following is the full derivation of the algorithm: 

At any time t e[to, t.,] ,. Eq_uation ( 3-12) is valid. 

locally with respect to Sx ~ but g~obally with respect to 

Su.. Consider Eq_uation (3-12) at time t with Sx(t) set 

eq_ual to zero; its right-hand-side becomes: 

s\1 [L ( x, ll+su ;t) + <Vx , f ( x, ll+oll; t) ) ] (3-14) 

Instead of using a second-order prediction of the 
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minimizing Sut let us completely minimize the contents of 

the square brackets in E.xpressiqri(3·,4) with respect to Su; 

this may be done analytically or, if necessary, numerically. 

Let us denote the minimizing control 

LL~ a- + su.. 

Ei.p_ressio.n ( 3-14) becomes 

L(x, LL*; t) + (Vx, f(x, u*; t)) (3-15) 

Now we consider variations SX about x,. i .. e. reintroduce sx. 

In order to kee:-p the minimali ty of the right-hand­

minside of (3-12) the SlL must be reintroducedr it should, 

be noted that Su is now measure~ with reference to u*. 

-~- ~~ - ( ~~ , ax) - ~ ( sx, • sx) · 
(3-l6) 

= stt [L(X +OX, LL*+SU. ; t) + ( Vx + Vxx SX, f ( ~+SX, tL*+cSU; t))] 

Of course··~ by allowing these large (global) changes 

in c.ontrol, large SX's will be introduced through Equat­

ion(3-5)., The S:X.' s must, in some way, be restrained in 

size in order that the second-order expansion for V be 

valid. This will be discussed later. 
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Define'; 

HCx,LL,Vx;t)- Lcx,u;t) +(Vx:,fC:x,u.;t)) (3-17) 

The right-hand-side of (3-16) becomes: 

min
Bll H ( X+SX , ll*+ S U, Vx +Vx;c S:t ; t) (3-18) 

Since u* minimiz:es H( :X:, u, Yx.; t), the following necessary 

condition holds·: 

Hu (x, u~, Yx; t) - o (3-19) 

Expanding (3-18) about X, u* the following expres­

sion is obtained: 

~1~ [ H + (Hll, su) + (Hx, sx) + <Vxxf, sr) 

+ <su' (Hl.LX +fJVxx) sx) + t< SU, HuttSU) (3-20) 

+ J ( SX, (1-bt:t + f:JVx:c + Vx:cfx)SX) + {higher-order terms)] 

All quantities in (3-20) are evaluated at ~,u*;t. 

From Equation (3-19), ~= o,, so the' terms involv­

ing Su in (3-20) are: 
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<su.' ( Hltx + f:Vxx) oX >+ t ( Sll' HlLlL su> 
+(higher-order terms) (3-21) 

If Su is of the same order as sx then these terms are 

quadratic in sx. .There is, therefore, no point in 

finding a relationship betwe:en Su and cS:.X:. which is of 

order higher than linear, since terms higher than second­

order in SX are neglected. {Because the left-hand-side 

of (3-16) is expanded only to second-order in sx.) A 

relationship of the following form is, therefore, required.: 

su - psx (3-22) 

where fl is chosen to minimize the contents of the square 

brackets in Expression (3-20). 

A necessary condition for minimality is obtained 

by differentiating (3-20) with respect to 8u and 

equating to zero. 

Ht.l + HILu. 5U + CHu.x + f;Vxx) oX 

+ (higher-order terms) = 0 (3-23) 

Substituting (3-22) into (3-23): 
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+ (higher-order terms) = 0 (3-24) 

From Equation (3-19)~ H = 0. Keeping SX. sufficiently;·u 

small in (3-24), coeff~cients of the first-order terms 

may be equated to zero, then 

~ -- - H~~ ( Httx: + f~Vx:c) (3--25) 

Quantities in (3-25) are evaluated at x,u*;t. This (3 

is the optimal linear feedback controller which maintains 

the necessary condition of optimality 

Hu.Cx+SX, U*+Sll, Vx.+VxxBx; t)- 0 

for SX sufficiently- small .. 

Substituting (3-22) into (3-20) and neglecting terms 

of order higher than the secondt we obtain: 

H + ( Hx + Vxxf + ~THu., BX ) 

+ ~ ( sx, CHxx + f;Vr:x + Vx:.:fx -rHuu.M sx) (3-26) 

Expression (3-26) equals to the left-hand-sida of Equation 
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(3-16). Sinc·e equality holds for arbitrary SX we can 

equate coefficients: 

~v a a. 
- et at - H 

eVx 
- a:r;- - ~ + Vx.Xf + ~THu. 

(3-27) 
_ ~~XX= Hxx + f: V:cx + V:xx fx 

where all quantities are evaluated at ~,u*;t. 

V, a., Vx and Vxx. are all functions of x. and t. 

along the nominal ~ trajector~ thus 
:J 

also 

~¥x + Vxxf(:X, Q; t) 
(3-28)

eVxx 
at 

since higher-order terms of V have been truncated .. 

Substituting Equations (3-28) into (3-27) and noting that. 

-V (:i:; t) = LC X, Q; t) : 
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. 
-a H H(X, ll, Vx ; i) 

-v~ - Hx + .Vxx (f - f ( x, a.; t)) + ftTHu.=o 
(3-29)­

- Y-x:x:. - Hn: + f:Vx-x:. + Vxxfx 

. - (Htt:c + f~Vxx)T H:~ (Hta + f:Vxx) 

Unless otherwise:. specified, all quantities are evaluated 

at X.,_u*;t •. ( H =o indicates that H = 0 •. )u u 
At t = tf , V(~;tf) = F(~(tf);tf) 

whence 

actf) - o 


Vx Ctf) - Fx (x(~); tf) (3-30) 


Vx:c (~) = Fxx (xCtp); tf) 


Equations (3-30) are boundary- conditions for thR different­

ial equations ( 3-29) •. 

The new control applied to the system is· 

(3-31)u - u + su*" + ~ sx - u..* + ~ s~. 

The above theory assumes that~ the c5X.'s generated by 

(3-3l) will be sufficiently small to justify the second-

order expansions used earlier. 
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3-3: step Size Adjustment Method 

Substituting (3-31) into (3-5), we obtain the 

following equation: 

d.. ex+ sx) f (X+8X, LL*+pox; t) (3-32)cLt 

Since~ Sx(to) = 0,. the 8X.'s produced by (3-32) are due 

to the driving action of Su* = u* - u. 
A way in which the size of the SX's can be restra­

ined is by adjusting the time interval over which Equat­

ion (3-32) is· integrated. 

Consider.· the time interval [t 1 ,. tf] where: to ~ t, < t.,. 

Assume that one runs along the nominal trajectory ~ from 

to to t, . At time t = t 1 , X ( t, ) = X ( t 1 ) since the: 

path of the nominal trajectory has been followed from t~ 

to t 1 ., (i.e. SX( t); t E[to , t 1] is z..ero). Now let us consi­

der integrating (3-32) over the time interval [t 1 , t-F] • 

If t 1 < tf and [ t 1 , tf] is small, then the 8:X:' s produced by 

(3-32) in this interval will be small~ even for large Su*, 

since there is very little time over which to integrate 

the differential. equaxion: 

d.Cx+ Sx)
d.t (3-33_,) 
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Thus,.by making ~ 1 near tf one can force the 

srs to be as small as one pleases. 

The above description is summarized in the following 

statement: 

There exists a time t 1 , sufficiently close to tf , 

in the range to ~t1 < tf, suc·h that if the nominal trajectory 

is followed from to to and then (3-33) is integratedt 1 

from t. to tf t· the sx.'s produced by (3-33) in the inter­

val [t 1 , tf] will be small enough for the second-'order expan­

sions of V ,. L and f to be valid. 

The following questions may arise: 

1) How does one decide if the sx's are sufficiently small? 

2) How does one choose a t 1 such that S~s produced are 

small enough? 

The answers are as follows: 

1) 

Iaex: ; t I ) I = / fl [H - Hcx, u., v, ; t)Jd.t / 
f 

is the predicted improvement in cost when starting at the; 

point X. ( t 1 ) ; t 1 and using 

Let us assume for the moment that tt = t~. (i.e. 

http:Thus,.by
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consider the whole time interval [to , t 1] • ) Integrating 

(3-33) and calculating the cost V, the actual improvement 

in cost is 

( 3--34) 

If this actual improvement in cost is 'near' the predi­

cted value 

then the SX's produced by the new control, acting through 

Equation (3-33), are considered 'small enough'. 

It may be convenien-t., in practice, to define 'near' 

in the following way: 

If the following inequali.ty is satisfied, llV is 

considered to be 'near' 

c c>o (3-3:5)> , 

' 

C· is prac-tically set as 0 •.5. There are no hard and fast. 

rules for setting C. Certainly it should be e.qual .to 1 0r: ..t 

greater ~.than z-ero since a negative ~V is inadmissible. C 

should not be greater than unity since one cannot expect 

improvements in cost. greater· than predicted~ if the expans­

http:inequali.ty


ions for V '· IJ and f are valid. Moreover, C should be; 

somewhat less than unity so that any decision based on 

(3-35) is not influenced by round off exrors in the comput­

ations .. 

2) If the inequality (3-35) is satisfied with t 1 = to all 
' .

is well, and the next iteration of th·e main algorithms may 

be begun with the knowledge that a reasonable reduction in 

cost of AV has been made. If (3-35) is not satisfied then 

we use the step size adjus.tment method •. 

Set 

(3-36.) 


~ 

The above procedure is rep~a~ed with this t 1 and (3-35) 

is checked again (with the new.' AV). If it is satisfied then 

the next iteration may.be begun. If. not, then set 

_ 1:,-tot tt 1 2 + Of 

and repeat again. 

Subdividing [to ,.t,] in this way, there will come a'. 

time t1 when the in~quali ty (}-3.5) is satisfied· •. 

In general,; 

(3-3.8)+ 



where: r = .0 ,. 1 , 2 ,, · · · · · · · · · · · · · and._ too = 2t, - t, •. 

The: new nominal traJectory ma~ sometimes hav~ a. 

corner at tt sinca U(t 1 ) ma~ be differen~ from u*(t, ). 

This introduceS' no difficulty provided that the numerica:l 

integration routine- used is capable of handling different. ­
. 

ial equations with discontinuous right-hand-sides~ 

It may happen that the nominal trajectory ~(t) is 

optimal on an interval [t 1 , tf] ; e[to , tf] , but is non­t 2 

optimal on the interval [to , t.p] • If t 1 is being found· in 

the manner outlined above~ then a trial may fall in thet 1 

interval ~2 ,tf]. The S~s generated in the interval [t 1 ,~] 

would then be zero because- u*{t) = u{t); t E(tz ,tf-] t.· 

and no reduction in cost would occur~ even though 

the·· whole tra;jectory X( t); t E[to ,. tf] is non-op-timal_ in 

One~ must ensure". there£ore, that t1 will never 

fall in [ t 2 , tf]•· This c.ondi tion is ensured easily- in the 

following way: 

At t = tf ,. Q.(X.; t) = 0. When integrating the 

backward equations, monitor J a.(x; t) j • Record the time teff 

when )a(~;t)( becomes different f~om zero. (Or in practice, 

when it becomes greater than a small, positive quantity, 1l). 
The trajectory between teff and tf satisfies a necessa,ryr 

condition of optimalityr 

(3-39)a(x;t)- o ' 
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If on the forward run, a time t 1 ( ~ t~ ) is required to 

be determined then the time interval [to ,teff]t instead of 

[to ,t-7], is subdivided as described earlier.. As the over-­

all trajectory becomes more and more optimal from iteration 

to· iteration, the time teff tends to to •.. Finally, on an 

optimal trajectory, ·ja.(x; t )j< l'Lt; t E[t~, tf] and teff = to 

and the computation is stopped. , 

When programming algorithms on a digital computer it 

is generally necessary to use a numerical iteration routine 

to integrate the differential equations.. This means that 

the interval .[t0 ,tf}is divided into N - 1 time steps. 

(i.e~ t going from 1 to N)~ 

The subdivision of [to , terfJused for determining t 1 

must be done with respect to this discrete scale, i.e. a 

time Nl E[l ,Neff] must be sought such that 

N1 + Nor+1 (3-40) 

where r -. = a·· -1 -.~ • • ., ..... ~ • • • an·d·, N-: - 2 l.r. In the quant­. t ' ' . ~ . . . . --: oo; - - .!.leW• 

ity Ner£ 2 Nor of Equation (3-40), only the integer part 

of the result of the division is to be used. r is incre­

ased until Nl = Neff - 1. If Neff = 1 then only r = 0 is 

used. 

It should be appreciated that since there are a 

finite number N - 1 of discrete time steps, this sub­
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division can only be done a finite number of times. The 

smallest possible non-zero time interval is 

It is clear that N must be large enough such tha.t 

the SX's produced during this basic time interval are 

'small enough' ·- This restriction is a practica,l one and 

brought about by the discrete time routine of the digita.l 

computation. 

When ~V and la(x;Nl)l are small, but greater than 

~~, the criterion (3-35) may be too severe with C = 0.5, 

owing to round off errors, i.e. there may come a stage 

where (3-35) remains unsatisfied even when Nl = ~H- 1. 

If this happens, set C = 0.0 and repeat the procedure 

for determining Nl~ C = 0 is a much less stringent 

tes·t, because i.t asks only that AV. > 0 ~. 

(3-35) is unsatisfied, even when Nl = Nerf'- 1, then we~ 

should stop the computation sinc-e no further reduction in· 

cost is possible. This implies- that either optimality has 

been atta.fned (in which case jQ.(X.;to)f( fl. 1 and: so Neff<l) 

or N is not large enough and hence is too 

large for a. basic time interval .. 
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3-4: The Computational Procedure 

The computational procedure is given in the flow 

chart and the FORTRAN IV program at the end of this thesis •. 

The minimization of H with respect to u may be done 

either analytically or numerically by using the Fletcher 

and Powell method. 

If the SX's produced by the new control are too 

large, as measured by criterion (3-35), then the step size· 

adjustment routine must be used. If the problem is very 

nonlinear the routine will have to be used a number of times 

in order· to determine t 1 , which will be close to t., • 

However·, as t 1 tends to tf , Equation (3-33) is integrated 

ave~ the decreasing time intervals [t 1 ,tJ • So this method 

will use less computing time in determining t 1 than exist ­

ing methods in determining £ [14, 15] , because: we do not 

have to integrate (3-33) over the whole interval [tot tf] • 

In the algorithm the new control is computed using 

UCt) u.*Ct) + ~(t) 8X(t) 

It can happen, in non-linear problems, that ~(t)SX(t) be­

comes too large and so invalidates the local expansions in 

Su. However·, SX might still be small enough for 

Vx (X+ SX; t) + Vxx. 8X (3-42) 
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to· be valid:. The following alternative way can be used 

for computing u(t): 

Instead of storing u*(t) and ~(t), store Vx. (t) 

and Vx~( t). Compute u(t) directly, by minimizing 

H(.X+sx, llJ ·Vx+Vxxox; t) with respect to u either- analy­

tically or using the.Fletcher and Powell routine,.~ In this 

way the radius of convergence of the algorithm may be 

increased .. 

In order tha.t the· cost decreases at each iteration, 

for Sx sufficiently small, ~(~;t) must be less than zero. 

a(X; t) - H(X, lL*, Vx; t)- HCX,ll, Vx;t)]d.t (3-43.)r [ 
~ 

it is clearly suffici.ent that: 

(3-44) 

u* is the control that minimiz:es H,; so (3-44-) is true for 

u* ~ u if 

Hl.l(x, u~ V-x; t)- o 

and~ 

H-'c-X' u ' * V:t ; t ) is positive definite ..
u.u. 

The quantities manipulated above must be bounded 

in. magnitude for these· conditions to be valid, so it is 
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required that the solutions of Equations (3-29) be bounded. 



CHAPTER IV 

-A_EE,lication to A System 

Using the preceding algorithms JacDbson [10,11,12] 

successfully solved a linear first-order problem. It 

seems, however, that no attempt has been made as yet to 

solve a higher order nonlinear problem. 

In this chapter the, result is presented for the 

solution of a second-order nonlinear problem with satura­

tion characteristics using the differential dynamic 

programming approach. 

Let us consider a system which is shown in Fig.l, 

and is described by the following equations: 

& 

X, = Xa 

X2 = -lOX, - 2Xz + ta.nh X, + lL 

X, (0) = 3. 20 a.ncl. X2 (0) = -2~20. 

The problem is to find the nptimal control variables 

u( t) such that 

r6v(~; t) J C xf + + 0.5 ll2 
) d.t 

0 

is· minimized. 

-32­
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The Hamiltonian, in this case, is given by~ 

H = X~ + x= + 0.5 U
2 

+ Vx, Xz 

+ VXz ( - I 0 .X1 - 2 Xz + ta.nh X, + U) 

The necessary condition of optimality for· the abova 

problem is: 

Hu. = Ll + Vxz = 0 


u* == - Vr.z 


and the second derivative of H with respect to u is: 

Hu.IL = 1 > 0 

Other factors of Equation (3-29) for this part~cular 

problem are : 

2 x, - V:x:2 ( q + bh2x,) 

[2 x2 + Vx, - 2 Vrz 

Hux. 0 

0 2 
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An arbitra~y nominal control of 

Qct) == - 3. 3 x, - 2. z X2 ; t E [ 0, 6] 

was chosen. 

The DEQ sub~outine (The Gill variation or the 

Runge-Kutta method) was used for the forward integrations. 

Thre·e hundreds integration steps were used. Six iterations 

were performed to reach the optimal cost and it took 21 

seconds· for computation bT CDC 6400. The cost was reduced 

from the nominal value of 35.9 to the optimal value of 

13.4, which is shown in Fig.2. It follows that more itera­

tions will not reduce the cost appreciably. T~e trajectory· 

was considered optimal when jaCxo;to)J, the~ predicted reduc­

tion in cost, was less than 0.01 •. Observing Fig.2, one 

can find that convergence is rapid when the. cost is- far· 

from the optimal value, put. getting slower near the optimum. 

The_= state versus time is shown in Fig.3. WhileX1 

the nominal tra~j ectory osc·illates initially, the optimal 

one reaches down to: the~ final sta.te almost immediately, 

without any overshoot. 

Fig. 4 illustrates the. phase plane: diagram for both: 

of the nominal and optimal trajectories. The superiority 

of the optimal trajectory· over the nominal one is more 

obvious in Fig .-4 than in Fig •.3., 
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m 


Fig. 5 	 A Characteristic of Nonlinearity 

with discontinuity in tha first 

derivative. 
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As another example the differential dynamic program­

ming algorithm was tried on a system similar to the one 

described by Fig •.1, but for which 

m = Jx/L.Wff 

- 10 X > ViO 

= -10 X ( -o/[0 

The c·haracteristic of the nonlinearity is shown in Fig. 5 •. 

The author experienced difficulty in applying the 

differential dynamic programming algorithm to this case, 

as the final state .did not converge to the desired valua 

in various iterations. It is believed that the disconti­

nuity in the first derivative of the nonlinear~character­

is tic: was the reason for this difficulty •. 
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· Conclusion 

This thesis presents an extension of the original 

work of Jacobson. It is believed that Differential 

Dynamic Programming is a significant contribution to the 

field of "Numerical Techniques for Solving Optimal 

Control Problems", since it may handle a larger class of 

problems than the existing second variation methods • .. 
The advantages of the method described in this 

thesis are: 

(1) the principle of optimality is applied only in the 

neighbourhood of a nominal, possibly non-optimal, traject­

ory; 

(2) H-1(x,U,Vx ;t) is not required to be positive definite· uu 
along non-optimal nominal trajectori.es •. In the algorithm 

H(x,u,Vx ;t) is minimized with respect to u and so it is 

required only that~ H~~(x,u,Vx ;t) be positive definite at 

the minimizing u = u*, i.e. H~~(X.,u,Vx ;t) must be stric·t ­

ly convex only in the neighbourhood of u*; 

(3) in some problems, the solutions of backward integration 

becomes unbounded along ·some nominal trajectories though 

along optimal trajectories it always ha~ bounded solutions •. 

Differential Dynamic Programming is able to compute optimal 

-41­
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control for thesa problems whereas the existing methods 

do not. 

In this thesis: the differential dynamic programming 

approach is applied to a nonlinear system whose nonlinear­

ity is continuously differentiable in the whole time 

interval concerned. 

It may also be possible to apply this approach to 

the fbllowing type of problems: 

(1) 	 'bang-bang' type of control problems; 

(2) 	 systems with piecewise continuous nonlinearities 

over a given interval of time. 

However, there is a difficulty· in the direct appli ­

cation of this algorithm to such a system as ~entioned 

in (2). The difficulty is· that the final state is not 

attainable depending on values of the initial state. The 

author experienced the difficulty when the. nonlinearLty 

was as given in Fig~5. It is believed that this difficulty 

was due to the discontinuity in. the· first derivative .of 

the nonlinear characteristic. Perhaps this may be overcome 

by introducing a suitable modific~tion in the computational 

procedure:·., 
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APPENDIX I. 

The Fletcher and Powell Method 

Genera1 

The: main disadvantage of second-order successive 

approximation mehtods is that the inverse: of the· second. 

derivative: of the function 'f' is required to be positive 

definite alo~g non-optimal trajectories. This is a very 

restrictive requirement for nonlinear problems as f is 

unlikely to be quadratic in X when X is far from the mini­

mum value .. 

In the neighbourhood of the minimum of f, the: 

inverse of the matrix of second derivatives is often posi­

tive definite since ·many functions are essentially quadratic 

in the neighbourhood of their minimum. 

Fletcher and Powell have developed a method to a~oid 

the restrictive requirement., which is based on the. Davidon's 
. . ~SJ 

method. In this method the function to be minimized and 

its first derivatives are calculat'ed by the procedure and 
the inverse matrix of second derivatives is estimated from 

these data: as the procedure progresses towards the minimum 

of the function. Thus when the minimum is reached, an esti­

mate of the inverse of the matrix of second derivatives 

evaluated at the minimum is ava~lable •. 

Since the procedure does not evaluate the second 
-46­
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derivatives directly it does not req_uire that :Ets inverse 

be positive definite~ 

Fletcher and Powell have shown that the procedure 

has quadratic convergence and for a region in which the. 

function depends quadratically on the variables, no more 

than N iterations are required, where N is the number· 

of variables. 

Notation 

-- 1 ' 2 t •· •· • • • • • • ,. N the set of N independ­f 
ent variables •. 

: 	 the value of the function to be minimized 

evaluated at the point xt ~ 

the derivatives of f(~t) with respect to: 

x~ evaluated at xi · 
I 	 - ' 

L 
1t.fv 	 a non-negative definite symmetric matrix 

which will be used as a rna trix in the spac:e 

of the variables. 

: 	 two times absolute accuracy to which the; 

function f(~t) is to be minimized. 
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Geometrical InterE_reta·tion 

It is convenient to use geometrical concepts to 

describ~ the minimization procedure. We do so by con­

sidering the variables x~ to be coordinates of a point in 

anN- dimensional linear spaca. As shown in Fig.~ -(a), 
-

the set of x for which f(~) is constant forma anN -·1 

dimensional surface· in this space... One' of thi.s family of· 

surfaces passes through each ! , and the, surface about a 

point is characterizBd by the gradient of the function·at 

that point: 

These N compone~ts of" the gradient can in turn be con­

sidered as the coordinates of a point in a different space, 

as shown in Fig.6 -(b). As long as f(~) is differenti~ 

able: at. all points, there is a unique point ~ in the 

gradient space associated with each point x in the posit ­

ion space, though there may be more than one x with the 

same ~· 

In tha neighbourhood of any one point A, tha 

second derivatives of f(!,) specify a linear mapping of 

changes in position, d!, onto changes in gradient d~, 

in accordance with the equation 
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c 

9-, 

(a) (b) 

Fig •.6 Geometrical interpretation of 

x~ and @~(?E,) 

The' vectors dx and d~ will be> in the. same direct.­

ion only if dx is an eigenvector of the matrix 

If the ratios among the corresponding eigenvalues are; 

'large., then for most dx there will be· considerable differ·­

ence in the~ directions of these two vectors. 

The Fl~tclier and Powell Method- . ~ 

In this method ll at~xy~ is not evaluated directly; 

instead an initial. trial value is assumed for it. This 

matrix,. denoted by -KJ-ll' specifies a linear mapping of· 

~11 changes in the gradient. onto changes in position. It 

may ini tial.ly be c.hosen ta: be, any positive. definite~ symmetr:ic: 

matr-ix. 
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After making a change in the variable !' this trial 

value is improved on the basis of actual relation betwee,n 

the changes in @ and ~' i.e. this matrix is modified 
.. thaft· er· .the 1. iteration using the information gained by 

moving down the direction 

in accordance with 

which is the displacement between the point X and the~-
minimum X ...-mln 

The modification is such that 6'- the. step to the- ~ 

minimum down the line 

X 

is effectively an eigenvector of the matrix 

This ensures that. as the procedure· converges -RJ'u tends to 

lla;~:xvfevaluated at the' minimum~· 
It is convenient to take· the unit matrix initially~~· 

for -RJ"v so tha;t, the first direction is down the line. of 

ste~pest descent. 

Let the current point be xL with gradient it and 

matrix ~v· The iteration can then be stated as follows. 

IDOl\ 



5]_.:. 

The direction of the first step is chosen by using 

the mat,rix -R1, in the re:lation 

The component of the~ gradient in this direction is 

evaluated through the. relation 

- g.~ is the squared length of _,.t and hence the improvement 

to be expected in the. function is -ts~. The positive defi­

niteness of -ft.? e-:nsures tha-t 9-~ is negative, so that the step·. 

is in a direction which {at least initially) decreases 

the function. If the. recluction is within the. accuracy des-i­

red J! then the minimum has been determined. If not we, con­

tinue with the procedure:._ 

In a· first.. effort to find a region containing the 

minimum, we take a step which is twice the size that would. 

locate the minimum if the trial ~ were: l\a;:tx,r1 
Rowever·~• 

in order to prevent this step from being unreasonably large 

when the trial -ftjill is a poor estimate, we restrict the 

step to a length such that (A.~t) g.t; the· decrease in the 

function if it c·ontinues to decrease linearly, is not great­

er than some~ preassigned maximum, 2f. We· then change !."by 

X. 
+ 

+ 



and calculate the new value of the function and its gradient 

at !.+. If the pro je:ction ~Lfl+ = g_: of the new gradient. in 

the direction of the step is positive, ·or if the new value 

of the functton f+ is greater· than the original ft ' then_ 

there is ru relative minimum aiong the directi.on ....6i. be~we·e-n. 

!i. and ~+, and we pr.oc:e'e-d to the next process where we wil~ 

interpolate its position. However~ if neither of these 

conditions is fulfilled, the function has decreased and is 

decreasing at the point !,+, and we infer that the step 

taken was too small. 

If the step had been takei:J. on the basis of -R)~, 
i .. e. 'A= 1 ,. we: modify -«..;Y so as to double the squared 

length of ~\ leaving the length of all perpendicular vect­

ors unchanged. This is accomplished by making 

+ 

where L is the squared length of .,6\ This doubles the 

determinant of -R;v. The process is then repeated, starting 

from the new positio~. 

Now we' procee-d t.o estimate: the location of the re.­

lative minimum within the interva:l selected by the preceding 

processes. 

The values of ft. and. f+ of the function at points· 
i. 

~+ are known, and so are its slopes, @~and 

at these~ two points. We interpolate for the location of 

the minimum by choosing the "smoothest." curve satisfying; 

http:directi.on
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Fig. ·7 Plot of f(!) along a 

one-dimensional interval 

the boundary conditions at, x"' and ! + , namely, the curve: 
.I 

defined as the one which minimizes 

j}::.) cL~ 
over the c·urve. This is the c·urve formed by a flat spring 

fitted to the known ordinates and slopes a·t the end points., 

The resulting curve is a cubic,. and its slope at any 0( 

( 0~ 0( ~A.) is given by: 

2@_.(d) - g.~ - : ( @; + Z) + ~ (g.~ + ~: -t-ZZ) 

where; 

The, root. of @...A(~) that corresponds to a minimum lies 

between 0 and A. 1Yyr virtue_: of the fact that @~ ( 0 and 



54. 


. +
either or Z ( @.; + 9-A • It can be .expressed as 

X ( 1 - a.) 

where 

a == 
@; - w- z 
~; - @.~ +2W 

and 

Now the step ~t can be obtained as 

then we: change x~ by 

t 
and calculate the new v~iue of the function 1 and its: 

gradient S at t. If the new value. of the function 1 

· t th ft or r+ by a significant amount, E.. ,1s grea. er- an 

the interpolation is not considered satisfactory. and a 

new one is made within that part of the original interval 

f 1for which at the end point is smaller. Then ? and 

~ are used :..as fi...., and ~t..-l respec~ive·ly, for the next. 

iteration.. 

The: matrix -R;t~ is modified by adding to it two te-Tms 

A~ and B" ;, which are given by- Fletcher and Powel1 

where:: 
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APPENDIX TI 

Flow Chart of Differential Dynamic Programming 

READ 
X,(O), Xz(O), Nom.in.a.l Control [Ct)

Vc (X; "4) a.:n.cl V:x. (X+SX; 4) 
1 

CALL 
Nomirta.l Sta.te. Va.ria.bles X, (t), 
L Xz (t), and.. i.nitLal cost V 

1~----------~ 

3t---------..... 

min 
u 

·-56­



. t 
xct-'t) +i X(t-t)d.T __,. X(t) 

t.-'C 

XCt)- X(t) --oo- SXCt) 

Ca.lcu.la.te Vx:x:. (i:; t-t) 

No 

Ftnd. teff when Ja<x;t}f 

>--=Yes~- HALT 

OPTIMAL FOUND 

http:Ca.lcu.la.te
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t (terf - tor) t t 
1 = 2 + or = o r+t where 

too = 2to - teff.. App~ U. = [1 on. 

th.e interval [ t,J t 1) a.nd.. U =u* + ~Sx 

on th.e interva..t [ t1, tf] .. Ca.lcu.la.te. 
th.e. cost V o..nd. henc.e the. 

improvement ~V = V - V 

i: +sx ... i: 
v ..... v 

u*+,esx-.il 
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YEs HALT 

No more im.provernel\t 

in tra.jectory a.tta..ina.ble. 



APPENDIX DI 


DIMENSION Xl(300), X2(3GO}, U(3JOJ, VX1(3QO)' VX2(3QOJ 
1 ,.XM1(3.00), Xr'/!2(300), DX1{3CQ), DX2(30o>, 
2 UOP2(3GO), ACHD(30CJ, N0(3QQ) 

EXTERNAL TAMAKI, CEIL 

COilti"~ON UC, XL, YL 

READ(5,999> Al, A2 


999 FORMAT<2Fl5.2) 
31 FOR~AT(I5, E15.5l 
32 FORMAT<4X1HM, 5X2HX1, 9X3HXM1' 8X2HX2, 9X3HXM2, 9X1HU, 

1 9X4HUOP1, 7X4HUOP2' MX5HVSX11, 6X5HVSX21, 
2 6X5HVSX22' 6X3HVX2 1> 

33 FORMAT<lXI4, 11Ell.2l 

331 FOR~ItAT ( ) 

3 3 2 F 0 R :\1 AT ( I I ) 

333 FOR:\1/\T(I/1) 

3 34 	 FOr~HA T ( 1 H 1) 
335 	 FORMAT(/ 20X5HNEFF=, 15, 10X3HN1=' 15) 


DT = 0.02 

NT = 1 

TX = TY = O. 

X = A1 

Y = A2 

VX1(3UO} = VX2(300) = -1.0E-8 

c 
C INITIAL TRAJECTORY AND COST 
c 

NASA 	 = 0 
VOLD = o. 

u ( 1 ) = -3.3.!-tA1 2.2-'*A2 

uc = u ( 1) 


DO 20 IA = 1,300 

XL = 	 X 


y
YL = 

uc = U ( I A) 

CALL DEQ(TX, DT, .NT, X, OX, WORK, TAMAKI) 

CALL DEQ 

CALL DF:QSET 

Xl<IA) =X 

CALL DEQ(TY, DT, NT, y, DY, ~ORK, CEILl 

CALL DEO 


http:11Ell.2l
http:XM1(3.00
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CALL DEQSET 

X2(IA) = Y . 

IF<IA.EO. 300) GO TO 20 
UCIA+l) = -3.3*X1<IA)- 2.2*X2(1A> 

20 VOLD = VOLD + <X1(IA>**2 + X2(IA)**2 + 0.5*U(IA)**2l*DT 
WRITE(6,~1) N~SA, VOLD 

c 
C INITIAL SMALL CHA~GES IN X 
c 

DO 211 L = 1,300 
DXl(L) = - C • \.~· 5*X 1 ( L ) 


211 DX2(L) = -0.05*X2(L) 

1GO CONTINUE 


KPAGE = 300 
KLINE = 0 
NB = 	1 
M = 300 

VSX11 = VSX12 = VSX21 = VSX22 = -l.OE-9 


101 CONTINUE 

IF<KLINE·NE.5l GO TO 1500 

~~! R I T E ( 6 ' 3 3 1 ) 

KLINE = 0 

1500 	KLINE = KLINE + 1 

IF(M.NE.300) GO TO 1000 


\•J R I T E ( 6 ' 3 3 Z ) 

\f,' r~ I T E ( 6 ' 3 2 > 


100C 	 CONTINUE 

IF<KPAGE.NF.255) GO TO 1200 

'~··JR IT E ( 6 '3 3 3) 

I.•JR IT E ( 6' 3 2 ) 

KPAGE = 300 


12(.1 0 	 CONTINUE 
U 0 P 1 	 = - V X 2 0"1 ) 
H = X1(M)**2 + X2(M)**2 + 0.5*U(Ml**2 + VX1<~l*X2(Ml + 


1 V X 2 U·i ) -~ { - 1 0 • ~-X 1 { ~1 l - 2 • * X 2 ( :·,1 ) + TANH ( X 1 ( i-1> ) + U P1 l ) 

CH= Xl<M>**2 + X2(M)**2 + o.~*U<Ml**2 +. VXl(M)*X2<~> + 


1 VX2<Ml*(-10*X1(M) - 2.*X2{Ml + TANH(Xl<M>l + UOP1) 
ACHD(M) = I T*ARS(CH - H) 
DVX1 = 2.*X1(~) - {9. + TANH(Xl(M> '**Zl*VXZ<M> + 

1 VSX12*(U0Pl- UCM)) 
DVX2 = 2•*X2{M> + VXl(Ml - 2·*VX2<Ml + 

1 VSX22*{U0Pl- U(M)) 

IFCM.EQ.l) GO TO 633 

VX1CM-ll = VX1(M) - DT*DVXl 


http:IF<KLINE�NE.5l
http:IF<IA.EO
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VXZ(M-1} = VXZ<M> - DT*DVX2 

Tf\~ = ~1- 1 

TX = TY = T~H~DT 


PX = XlCM-1) + DXl(M-1) 

PY = XZCM-1) + DXZCM-1) 

GO TO 634 


633 	 PX = Al * 0.999· 

PY = A2 

TX = TY = o. 

634 	 UC = U(M) 

XL = PX 

YL = PY . 

CALL DEQCTX, DT, NT, PX' DX, WORK' TAMAKI) 

CALL DEO 

CALL DEQSET . 

X ~.·~ 1 ( ;v1 ) = P X 

CALL DEOCTY, DT, NT, py, OY, WORK' CEIL) 

CALL DEQ 

CALL DEOSET 

XH2 ( ;.1) = PY 


c 
C r1EW SMALL CHANGES IN STATE VARIABLES 
c 

IFC~.EQ.l) GO TO 777 

OXIC~) = XMlCM) - Xl(Ml 

DX2(M) = X~2(~) - XZCM) 

GO TO 666 


777 DXlCl) = -0.05*X1Cll 
DX2(1) = -0.05*X2(1) 

c 
666 UOPZ(M) = -CVX2{M) + VSX2l*DX1CM) + VSX22*DX2(~J) 

~RITE(6,33> ~, X1(M), XMl{Ml, XZC~), XM2CM), U(M>, 
1 UOPl' UOP2(M), VSXll, VSX21' VSX22' VXZCM) 
IFC~.EQ.l) GO TO 310 . 
DllXV = 2.- 2•*VX2CM)*TANHCX1CM))*(l.- TANHCX1CM))**2) 

1 -(9.+TANH(Xl(M).)**2)*(VSX2l+VSX12J ~ VSX21**2 
DlZXV = -(9.+TANH<XlCM))**Z)*VSX22 + VSXll­

1 2.*VSX12 - VSX2l*VSX22 
D21XV = VSXll -2.*VSX21 - C9.+TANHCX1(N) )**2l*VSX22 ­

1 VSX22*VSX21 
D22XV = 2. + VSX12 + VSX21 - 4.*VSX22 - VSX22**2 
VSXll = VSXll - DT*DllXV 
VSX12 = VSX12 - DT*Dl2XV 
VSX21 = VSX21 - DT*D21XV 
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VSX22 = VSX22 - DT*022XV 

AVX = ABS<VX2(M-1)) 

IF(AVX.GT. 1.0E+02) GO TO 310· 

rv~ = ill-1 

KPAGE = KPAGE - 1 

GO TO 10.1 


310 	 ~18 = ~ 
111 	 ALON = O. 

JA 	 = 300 
112 	ALON = ALON + ACHD(jA) 


IF<ALON .GT. 0.01) GO TO 113 

JA = JA - 1 

IF(JA.FQ.O) GO TO 230 

GO TO 112 


113 NEFF = JA 

IF<NEFF. LEG N8) GO TO 103 
GO TO 104 


1G3 NB = NEFF -1 

lUI+ ( = 0 • 5 

11l._ K = 1 

1 1 5 !'.! 0 ( 1 ) = 2 -x- r\ G - N E F F 


r~l = NO(K+l> = (~!EFF- NO<K))/2 + NO(Kl 
c 
C C.t\LCULATION OF COST 
c 

vc :: o. 
IF<N1.LE.l) GO TO 321 
LK = Nf -1 
DO 21 IR=l,LK 
VC = VC + (X1(IB)**2 + X2(IBJ**2 + 0.5*U(JB)**2>*DT 

21 CONTINUE 

321 VD = o. 


DO 22 IC = N1, 300 
VD = VD + <X1(1C)**2 + X2CIC)**2 + 0.5*UOP2(IC)**2)*DT 

22 	 CONTINUE 

VNE\A/ = VC + VD 

DV = VOLD - VNE\~ 


CRI = o. 

, DQ 23 ID = Nl, 300 


CRI = CRI + ACHD<IDl 

23 CONTINUE 


RATIO = DV/CRI 

IF(RATIO.GT.C) GO TO 108 

IF(N1.EQ.NEFF-1) GO TO 71 


http:IF(AVX.GT


IFCNEFF.EQ.1) GO TO 71 

K = K+1 

GO TO 115 


71 	 CONTINUE 

IF(C.EQ.O.l GO TO 155 

c = o. 

GO TO 114 


108 	 CONTINUE 

DO 2 lf. IE :: N1, 300 

U ( IE) = UOP2(IE) 

X 1 ( I E ) = Xfvil ( IE ) 

X2<IE) = xr-~zcrE> 


24 	 CONTINUE 

VOLD = VNEW 

NASA ::: N/\..SA + 1 

lt.'RITE(6,335> NEFF, Nl 

\•J R I T E ( 6 , 3 3 4 ) 

'···1 R I T E C 6 , 3 1 ) NASA, VOLD 

GO TO 100 


155 '~'1R IT E ( 6' '3 5) 
35 FQ!~ fv1: AT ( l 0 X 20H NO f/Of~E I f<PROVE.·,iENT I ) 

GO TO 225 
23J \!J R I T E ( 6 , 3 6 ) 

36 F 0 R iv1 AT { 10 X 14H 0 P T Ii''ll\ L FOUND I) 

225 CONTINUE 
STOP 
END 

c 
SUBROUTINE TA~AKICX, DX' Tl 
COMMON uc, XL, YL 

c 
OX = YL 

c 
RETURN 
FND 

c 
SUBROUTINE CEIL(Y, DY, Tl 
COMMON UC, XL, YL 

c 
DY = -IO.*XL - 2•*Y + TANH<XLJ + UC 

c 
RETURN 
END 
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