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Differential Dynamic Programming is a new method,
based on .- Bellman's principle of optimality, for deter-
mining optimal control strategies for nonlinear systems.

It has originally been developed by D.H.Jacobson.

In this thesis.a,résult-is presented for a problem
with saturation characteristics in nonlinearity solved by
the Jacobson's approach, In the differential dynamic
programming the principle of optimality is applied to the
differential change in non-optimal cost due to small changes
in state: variables instead of the cost itself. This results
in modest memory requirements for its defining parameters

and rapid convergence..
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CHAPTER T

Introduction

1-1: Historical Background

There: have been many approaches to optimization,
which involves finding the best solution among several
feasible altérnatives. The term "best solution" is used
because there may be more than one optimal solution.

Having constructed an appropriate mathematical
model for the problem concerned, we: must choose an optim-
ization technique to solve the problem. The‘wai we deter-
mine an optimal solution depends, of course, on the form
of the objective function and constraints, the nature and
number of variables, the kind of computational facilities
available, taste and experience.

In 1940's there was a reawakening and change of
direétion in the study of optimization theory. This
renaissance was stimulated by the war effort. Two parallel
but interrelated occurrences are especially significant:
the work of sbientists and mamhematicians on problems in
operations résearch generated by modernrwarfare; and the
invention and development of the elctronic digital computer.

In 1950's following studies in the area of multi-

stage decision processes, Bel%?an.fnvented the rather un-
- 1,2,3 '



degscriptive but alluring name: for the=approach‘—f;—‘
Dynamic Programmingu A more representative but less
glamourous name would be "recﬁrsive optimization". Dynamie
Programming appears as having been practiced long before
it was named. Undoubtedly, however, R;Bellman is the father:
of Dynamic Programming. It has been applied to problems
in numerous fields, e.g. theory of inventory and produc%%gg
purchasing and investment problems, distribution of drugs
in the body,_satellite interception and rendezvous probligaf
design of chemical plants, statistical communication theory
and control sy?éggiﬁ Bellman's own output has been prolifiq.
The relevance of Dynamic Programming to control theory is
unquestionable but there are limitations to its practical
applications such as enormous computing time and storage
requirements.

Several attempts have been made to overcome the

- limitations, and Differential Dynamic Programming is one

of thenmn.

1-2: Statement of the problem in a general form

In recent years‘much interest has centred on the
problem of determining optimal control for dynamic systems
described by nonlinear, ordinary differential equations of

the following form:



x = f(x,u;t); Xty=%X, @1

‘The criterion of optimality is to minimize the cost

functional:

| .
Vit = Lo usae + Fla) o)

where: .z(t) is an n-dimensional vector function of time
describing the state of the dynamic system af any time
t é[to ’ ’c‘,-.], (The symbol X is also taken to mean X(t).);
u(t) — or u —— 1is an m-dimensional vector function
of time .representing the control variables avaidable for
manipulation at any time te[to, t¢]3 L and F are nonlinear
functions of their argumentsj and f is an n-dimensional
vector of its arguments. (1~{)describes the dynamiq struc-
ture of the system. The final time t; is aséumed to be
given explicitly.

f(x,u;t) is a function of X, u and time t. At a
particular time t.e[t, ’ tf] ’ f()_c_,;a_;t,) is a function of X
and u. The semi-colon is used to separate t from the
other arguments. Similar remarks apply to V, F and L.

All fﬁnctions are assumed to be continuously differ-
entiable in each argument up to any order required.

The purpose of the problem is to find E(t);‘teﬁ%, td



such that V, given by (1-2) is minimized.

Many second-variation type algorithms have been
developed for suécessively improving a nominal, guessed
control function. A very restrictive requirement:of those
second-order methods is that Hai -- the inverse matrix
of the second partial derivatives of the Hamiltonian (see
Bq.(3-17)) with respect to u -- should exist and be positive
definite along non-optimal trajectories for te&lt,,t;]. This
restriction is very severe since it implies that H must be
strictly convex, globally, with respect to u. In mapy non-
linear problems one finds that H is strictly convex only in:

the neighbourhood of its minimum with respect to u.

= 7. The differential dynamic programming requires only

1

a exists and is positive definite in the neighbour-

that H;
hood of the minimum of H with respect to u. This is a much
less severe requirement, therefore we may use the Fletcher
and Powell routinﬁﬂ(see Appendix I) to minimize H With
respect to u. The function and its first derivatives are
calculated by this procedure and the inverse of the matrix
of second derivatives is eétimated from this data as the
procedure progresses towards the minimum of the function.
Thus when the‘minimum is reached, an eétimate of the inverse
vof the matrix of second derivatives evaluated at the minimum
is available. Since the procedure does not evaluate the uﬂ

matrix of second derivatives directly it is not necessary

that its inverse be positive definite.-
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CHAPTER I

Dynamic Programming

Often.before-p?rforming the optimigation, it is
desirable to make some changes of variables and transform-
ations. in contrast to simplifying the model, these pre-
paratory operations preserve the: properties of the: model
completely. The transformed model has the same optimal
solution as the original, but is of a form that can be
optimized more easily.

Basically Dynamic Programming is such a transform-
ation. It takes a sequential or multistage decision process
containing many interdependent variables, and c;nverts it
into a series of single stage problems, each containing
only a few variables. The transformation is invariant in
that the number of feasible solutions, and the value of the
objective function associated with each feasible solution
is preser&ed.

The transformation is based on the principle of
optimality, due to Bellman, which states that
" An optimal set of decisions has the property that what-
ever the first decision is, the remaining decisions must
be optimal with respect to the outcome which results from

the first decision.”



Treating the control problem as a multistage decision

process we may use Dynamic Programming to write

. a
Vix;t) = s Metal | Lix,ujt)de + V/(x+ax;ten)]  (2-1)

where V(1) is the optimal cost to go from state x at

time +t. If we:let A be a small interval of time then

V(X$t) = 31?)[L'A + V(2_<+icA;t+A)] (2-2)

Now we' make the: fundamental assumption that V(x;t)
may be expanded in a Taylor series about the point 1;1:)

4

Vxemxyten) = \(x;t) + (,ax) + gea

+ higher-order terms,

=Vt + (Ve £ SLa + Q8 (a3

where V= g-% , and (Vx,f‘> is the scalar product of
the vectors V. and f. Then we: obtain from (2-2) and

V@it = "e[La + V(x50 « (g, Fa

P 2LA 4 (0)a%] (2-2)



since V(X;t) and —g—%— are. independent of u, thern .
=2 = mr{La o+ (Vg fpa + (98] (2-5)

DiViding by A and allowing A->0, we obtain

- %{gﬁ) = “‘&“[LCI,L—L;t) + (Vx(zc;t),{-‘(zc, t.l;t)}] (2-6)

Tquation (2-6) is the Bellman's partial differential
equation in n+l variables X;t and is in general unsolv-
able analytically. '

The difficulty of numerically solving . (2-6) is in
general, enormous. primarily due to the high dimensionélity
of the equation which means that storage and computing time
requirements are tremendous. To avoid this difficulty
several attempts have been made and Differential Dynanmic

Programming is one of them.



CHAPTER 1L

Differential Dynamic Programming

3-1: The Basis of Differential Dynamic Programming

Differential Dynamic Programming is a technique,
bésed on Dynamic Programming, for determiningvthefoptimal
control function of a nonlinear system. Unlike convent-
idnal Dynamié Programming where the oﬁtimal dostvfunction ;
is considered globally, Differential Dynamic Programming
applies the principle of optimality in the neighbourhood
of a nominal, possibly non-optimal, trajectory.

Mayne [15] intrbduced the notation of'"Differential
Dynamic Programming" and Jacobson [10,11,12] developed it
for his Ph.D. thesis. |

It is well known that the optimal cost V°(x;t)
satisfies fhe Bellman's partial differential équation(2-6)
as shown in the previous chapter. We rewrite it for con-

venience,
-2t = MR (x,use) + (Ve Gest), f(x,us )] (3-1)

in n+l variables x;t for the optimal cost V. (In the

above equation, one should realize that X 1is an optimal

-8



quantity and so should be written With superscript °. How-
ever, for simplicity, the superscript ° appears on 'V
qﬁantity' only.)

It is assumed that VY(X;t) is sufficiently smooth
in x and t to allow the derivation of (3-1) which
requires that the second partial derivatives of V° with
respect to x;t exist. [6]

In the problem of 3ection 1-2, we assume that the:
optimal control ul{t); te[t,,t;] is unknown but tﬁat a
nominal contfol u(t); telt.,t] is available.

On'application'of the nominal control, a nominal

state trajectory X(t); te[t.,t] is produced by (1-1), i.e.

X = f(x0;t) ; X)=xXt)=X (3-2)

The nominal cost V(X.;t)is calculated using (1-2), i.e.
— tf L ' ‘
Vix.; t.) =J L(x,a;t)dt + F (xtp) (3-3)
t. _ o

Equations (1—1);(1—2),vand.(3-1).may be written in

terms of the nominal trajectory by settings

X = X + 8X
(3-4)
+ SU

-

uw =
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sr and SW are variations in the state and control vectors,
respectively, measured with respect to the nominal quantities

X, U; t they are not necessarily small quantities at this

stage.
Equations (1-1), (1-2), and (3-1) become:
AXHE0 . Frzasx, G+sL; 1)
it — T(X+8x, U+sl;t); (3-5)

Xt + 8x(t) =2 (' Set 8X (t)=0)

Vix; to)

r‘ L(x+8x, +8U; t)dt
to (3-6)
+ F (Xt + sxctp; )

I

- DVZHE - min[ | (xesx, GrSUs L) +

. (3-7)
OV (xesx;t), F(xrsx, Uorsi; t) ) ]

respectively.
Equations (3-5),(3-6), and (3-7) are exactly equivalent to

(1-1),(1-2), and (3-1) since no approximations have been:
introduced: the nominal tragjectory has been made into a
reference trajectory.

Now let us assume that the optimal cost is smooth

enough to allow for a: power series expansion in X about X,
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\/o(a'c+5x;t) = \/o(iit) + <\/’:’ 8 ) (3-8)

+‘é“< 85X, \/x:c 8I> +higher-order terms
The optimal cost
o, — - o _
Vix;t) = V(xst) + a(x5t) (3-9)

" where a{%;t) is defined as the difference between the

optimal cost V{(Z;t) obtained by using the optimal controls
W(t) = W) + SW ; telt,t]

and the nominal cost V(X;t) obtained by using the nominal

controls

Uee) 3 celt,t].

Using (3~9), Equation (3-8) becomes.:

Vizesxst) = V(i) + @+ {\g, 6)
’ (3-10)
+%~<SI, \/:,:,x 8I> + higher-order terms in 8X.
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substituting (3-10) into (3-7), we obtain:

- 0 | i
- 8L -8 (2 sx)-L(sx, e sx)
+ higher-order terms
= "gl’f[ L (x+8x, 0+8W; t) (3-11)
0 o ‘
+ < Ve + Vx 8X + higher-order ternms,

Flxrex, W+SU; ) ) ]

Equation (3-11) is very difficult to solve owing to the

- very large computing time, and storage requirements for the
parameters of the power series expansion. However, we can
tfuncate»the power series provided that the truncated terms
are negligible.  In order to do this, the size of 8§x must,.
somehow, be restricted. That is, the trajectory X(t)+8x(t);
te[to,tf] must be kept in the neighbourhood of the nominal
trajectory.

Let us assume that we: keep the §x's small. (Methods
ensuring this are discussed later, in Section 3-3. It is
sufficient at the moment to note that, because Sxito)=o,
the §x's produced in the interval ﬁ,,td are caused only
by 8su acting through Equation (3-5).) Assume, further,
that the 8X's produced are small enough such that an éxpan—

sion up to quadratic terms, in 8X, is sufficient to
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represent V° in the neighbourhood of the nominal traject-

ory. Equation (3-11) becomes:

-8% - 3% - (3%, sx) - + (ox, 2= o)
= T%E&L[L(i»}sx, w+éu;t)  (312)
# Ve + Vi 8, £ (48X, TrslL; 1)) ]
where | | | | |

I

V(z+80; 1) = TCRst) + a+<_vg, sx)

+ % (8, Vex 8X) .
and o (3-13)

Ve (Z+8x;3t) = Vx(i;t) + Vex 8X |

One- should realize that expanding upAto second-

order in &X makes, on differentiating, an expression for
Vi (Z+sx;1) accurate only to first-order in §X .

In subsequent sections, an,algorithm is considered
'second-order' if, given the a,priori expansion (3—13);for
Vv and Vx, all second-order terms arising on.the~right
hand side of (3—1?) during the derivations, afe accounted
for. |

The superscript on V in (3-12) and (3-13) has
been dropped for the following reéson:

Modelling the: cost surface, locally, by a second-
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order-expansioﬁ is made possible by keeping §X small. So
the cost described by the truncated series (3-13) is opti-
mal, provided that the Su's are chosen in such a way that
§x's remain small. It is, therefore, not the truly opti-
mal cost given that any size of 86X is allowed.

v, givén by (3-13), is the optimal cost V° when
starting in the state X+8X at time +t if the nominal
trajectory is sufficiently close: to the optimal one, 1i.e.
if @(T) is close to u°(z);Telt,t] then the minimizing

Su's will be small and, from (3-5), the resulting &X's
will be small so that the size of the 6X's need not be
restrained artificially. The expansion of V up to second-
order will thus be adequate to describe the true: optimal
cost V° in the neighbourhood of the nominal trajectory.

Vx will also be described adequately.

Equation (3-12) can be used to develop methods for
determining the optimal control wu°(t); telte,t;] by
successively improving the current nominal tréjectory u(t);

tefto ,te]

3-2: A Second-order Algorithm

To overcome the restriction that H;i should exist
and be positive definite along non-optimal trajectories
for telto,te] , H(X,u,Vx;t) may be actually minimized

(see eg.(3 -173)
with respect to u wusing the Fletcher and Powell method.


http:minimi.z.ed

15.

This u, obtained by minimizing .H, is denoted by u*.
All gquantities, including H&i(i,u,vx;t), are evaluated at-
u*. Because: u* minimizes H, theh the Fletcher and Powell
routine requires only fhat Hai(i,u*,vg;t) be positive def-
inite. It is less restrictive than requiring H +to be
~globally, strictly édhvex in u. Further, H (%,u*,Vx;t)=0,
which is a well known condition of optimality.

Variations §X about X are then introduced and a.
linear relationship found between &u and &x, which maintains

the necessary condition of optimality,

Hu.(i"'sx: WS, VetVec®x;t) = O

for &x sufficiently small.
With the above two points in mind, the derivation
of the second-order algorithm will be undersfood readily.
The following is the full derivation of the algorithm:
At any time tefto,t] , Equation (3-12) is valid
locally with respect to &§x , but globally with respect to
Su. Consider Equation (3-12) at time t with §x(t) set

equal to zero; its right-hand-side becomes:

LD t) + O\ F(R T t))] (-1

Instead of using a second-order prediction of the
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minimizing Su, let us completely minimize the contents of
the square brackets in RExpreéssion(3-4) with respect to Su;
this may be done analytically or, if necessary, numerically.

Let us dgnote the minimizing control
Uf' = 0+ s
Eip.res.smi‘o'n@-lﬂr) becomes
L(x,u;t) + (\k, (X, u; t)> | (3-15)
Now we consider variations §Xx about X, i.e. reintroduce &X
In order to keep the minimality of the:?;ght-hand—

side of (3-12) the "§i must be reintroduced; it should

be noted that 8u 1is now measured with reference to u¥*.

-85 - 8% - (%, ax) — £(sxX, Pfmex)
(3-16)

L(+8x, WrsW;t) + (Ve + Ve 8%, F (T48X, WU )Y

]
M3
=
—t

0f course, by allowing these large (global) changes
in control, large &X's will be introduced through Equat-
ion(3-5). The s&x's must, in some way, be restrained in
size in order that the second-order expansion for V De

valid. This will be discussed later.



17.

Define:

Hxu, s t) = Lix, ust) + Ok, fix,u; )y (3-17)
The right-hand-side of (3-16) bvecomes:

" H(Zesx, Wresl, Ve+r\VeedX ; t) (3-18)

Since u* minimizes H(X,u,Vx;t), the following necessary

condition holds:

Ho (2, W Vest) =0 (3-19)

Expanding (3-18) about X, u* +the following expres-

sion is obtained:

ML H + (Ha, 8u) + (Hx, 8x) + {Vaf, 82
+(8U, (Hux +Fu Vi) 8% + 28U, Huu 58U (3-20)

+ '.'2L<5x7 (Hxx + ‘F:::erx + sz{x)5x> + (higher-order terms )]

A1l quantities in (3-20) are evaluated at X,u*;t.
Prom Equation (3-19), H,= 0, so the terms involv-

ing 8u in (3-20) are:
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<8u;ﬂﬂx+ fu Vi) 6X +‘%<6u,Hm5u>
+(higher-order terms) (3-21)

if su 1is of the same order as s&x then these terms are
quadratic in &X. .There is, therefore, no point in
finding a relationship between &u and 66X which is of
order higher than linear, since terms higher than second-
order in &X are neglected. (Because the left-hand-side
of (%3-16) is expanded only to second-order in §X.) A

relationship of the following form is, therefore, required:

Su = PSI (3-22)

where ﬁ is chosen to minimize the contents of the square
brackets in Expression (3-20).

A necessary condition for minimality is obtained
by differentiating (3-20) with respect to Su and

equating to zero.

He + Hu s + (Hye + fiVie) 8X

+ (higher-order terms) = 0O (3-23)

Substituting (3-22) into (3-23):
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HLL + HuwB X + (Hux + £ Vix) 8X

+ (higher-order terms) = O (3-24)

From Equation (3%3-19), H, = 0. Keeping Sx sufficiently

small in (3-24), coefficients of the first-order terms

may be equated to zero, then

B = "Huu_ < HUJC + 'FIV::I) (3-25)
Quantities in (3-25) are evaluated at x,u*;t. This B

is the optimal linear feedback controller which maintains

the necessary condition of optimality

Ho (T +8x, Ur+sl, Ve +Vx8X5t) =0

for 8&X sufficiently small.
Substituting (3-22) into (3-20) and neglecting terms

of order higher than the second, we obtain:

H + <+4x + Vaxf + 5TFLL, 81:)
+%< 8X, (Hxx + ‘F;Vxx + \/xx‘Fx "'pTHuuﬁ) SI> (3-26)

Expression (3-26) equals to the left-hand-side of Equation
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(3—16). Since equality holds for arbitrary §X we can

equate coefficients:

~ 2k He + Vi + BTHy
- %;é5:= Fkx'f'ﬁzwéx + \&x{k
- (}4ux4'ﬁrb&xjr ;i (}4ax'+'ﬁ1\éa>

(3-27)

"~ where all quantities are evaluated at X,u*;t.

V, a, Vx and Vex are all functions of x and +%

along the nominal X trajectory thus

(VT 1) + a(x; 1) = AL L\ FZT )
also

Ve = 8% + \Lf(X,0;1t)

v (3-28)
Vo =

since higher-order terms of V have been truncated.

Substituting Equations(3-28) into (3-27) and noting that

-V(xit) = L(X,

i

;t)
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-a = H - H(X, 1, \k; t)
Ve = Hx + V (F - F(2, D) + FHS
Ve = Hae + 7V + ViuFe

"~ (Hue + F7Ve) Hab (Hae + Vo)

(3-2'9):

Unless otherwise specified, all quantities are evaluated
at X,u*;t. ( H;° indicates that H, = 0.)
At 1t = t.f Py V(i;tf) = F(i(tf);tf)

whence
a (te)
Ve (te) = Fe(X(te); ty) (3-30)
Vi Cbe) = Fce (2t £ '

Equations (3-30) are boundary conditions for the different-

0

i

ial equations (3-29).

The new control applied to the system is
= x — ’ | (3-31)
u ~'u-+5u~+ﬁSX = W + p&X.
The above theory assumes that the SX's generated by

(3-31) will be sufficiently small to justify the second-

order expansions used earlier.
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3-3: Step Size Adjustment Method

Substituting (3-31) into (3-5), we obtain the

following equation:

.CL(ELC_?L) = {? (X+8x, U.*+p81; 't) (3-32)
with X(t) + &x(t) = xX,.

gsincee §x(t.,) = 0, the 8&X's produced by (3-32) are due
to the driving action of 8u* = u* - i,

A way in which the size of the &X's can be restra-
ined is by adjusting the time interval over which Equat-
ion (3-%2) is integrated. |

Consider the time interval [t;,t;] where +t. < t; < tg,
Assume that one runs along the nominal trajectory X from
te to . At time t = %, x(ty) =X(ty) since the
path of the nominal trajectory has been followed from t;
to t;. (i.e. 8X(t); te€[t.,t,] is zero). Now let us consi-
der integrating (3-32) over the time interval [t,,t;].

If t,< t; and [%;,%;] is small, then the 5X's produced by
(3-32) in this interval will be small, even for large S&u*,
since there is very little time over which fO‘integraie
the differential equation:

A(X+8X) f(x+sx, u.*+}38x;t)

dt (3-3%)

xX(t) + &X(t) = X(ty)
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Thus, by making +%; near t; one can force the
s§x's to be as small as one pleases,

The above description is summarized in the following
étatement:

There exists a time t;, sufficiently close to t;,
in the range t,st,<t;, such that if the nominal trajectory
is followed from 1t, to t; and then (3-33) is integrated
from t, to t;, the §x's produced by (3-33%3) in the inter-
val [t,,td will be small enough for the second~order expan-
sions of V, L and £ to be valid.

The following questions may arise:

1) How does one decide 1if the &x's are sufficiently small?

2) How does one choose a t; such that 8&x's produced are
small enough? ‘

The answers are as follows:

1)

Jaces to] = | ['IH - Hex B, W o)t
f

is the predicted improvement in cost when starting at the

point X (t,);t; and using

U(T) = W) + BSX@; T elt,t],

Let us assume for the moment that +t, = to. (i.e.


http:Thus,.by
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consider the whole time interval [t,,t;].) Integrating
(3-33) and calculating the cost V, the actual improvement

in cost is

AV = V(X;t.) - V(X;t.) (3-34)
If this actual improvement in cost is 'near! the predi-
cted value

la(x;t)]

then the 8X's produced by the new conﬁrol, acting through
Equation (3-33), are considered 'small enough'.

It may be convenient, in practice, to define 'near!
in the following way:

If the following inequality is satisfied, AV is

considered to be 'near' |a(X;ty)]
AV |
_AV.__ . S 35

C is practidally set as 0.5. There are no hard and fast
rules for setting C. Certainly it should be equal to ‘or.:
greater7thanzero since a negative AV is inadmissible. C
should not be greater than unity since one cannot expect

improvements in cost greater than predicted, if the expans-
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ions for V, L and f are valid. MNMoreover, C should be
somewhat less than unity so that any decision based on
(3-35) is not influenced by round off errors in the comput-
ations.

2) 1If the inequality (3-35) is satidfied with 4= to all
is weil, and the next iteration of the main algorithms may
be begun with the knowledge that a reasonable reduction in
cost of AV has been made; If (3-35) is not satisfied then
we use the step size adjustment method.

Set

't1 = Et" + to = tot (3-36)

The above procedure is repeated with this 1 and (3-35)
is checked again (with the new AV), If it is satisfied then

the next iteration may be begun. If not, then set

b, = teste g, (3-37)

2

and repeat again.
Subdividing [t.,t;] in this way, there will come a.
time t; when the inequality (3-35) is satisfied.

In general,,

t = étw‘ + tor = town , (3-38)
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wheres r =0, 1, 2,-----------.. and %, = 2%, - 7.

The: new: nominal trajectory may sometimes have: a
corner at t; since: U(t;) may be different from u*(t,).
This introduces no difficulty provided that the numerical
integration rqutine:used is capable of handling different-
ial eduations with discontinuous right;hand—sides.

It may happen that the nominal trajectory X(t) is
optimal on an interval [t,,t;] ; t,€[t.,t;] , but is non-
optimal on the interval [t,,t;]. If +t; is being found in
the manner outlined above, then a trial +; may fall in the

interval [tz,t;]. The 8X's generated in the interval [t,,t;]

would then be zero because u*(t) = u(t); telty,te] »

and no reduction in cost would occur, even though

the: whole trajectory X(t); t€&[te,t;] is non-optimal in
[tz,tf], One: must ensure, therefore, that +t; will neﬁer
fall in [t,,tg]. This condition is ensured easily in the
following way: ‘

At t = %, Q(X;t) = 0. When integrafing the
backward equations, monitor la(i;t)]. Record the time teg
when la(i;t)l becomes different from zero. (Or in practice,
when it becomes greater than a small, positive quantity,?[).
The trajectory between tgp and tp satisfies a necessary

condition of optimality,

a(x;t) =0 ; te [te,t] (3-39)
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If on the forward run, a time t{( X t,) is required to

be determined then the time interval [t,,tey], instead of
[to,tf], is subdivided as described earlier. As the over-
all trajectory becomes more and more optimal from iteration
to iteration, the time tep tends to t,. PFinally, on an
optimal trajectory, “|Q(X;t)|I< N5 t€lto,td] and  ter= t,

and the computation is stopped. .

When programming algorithms on a digital computer it
is generally necessary to use a numerical iteration routine
to integrate the differential equations. This means that
the interval [to,tf]is divided into N - 1 time steps.
(i.e. t going from 1 +to N).

The subdivision of [t, ,teused for determining t
must be done with respect to this discrete scale, i.e. a

time N1€[1,Ney] must be sought such that

N1 = Ngﬁ_z— Nor + Nor = Nor‘-i-'l (3-40)

where r = 0, Lyneecnireee and; Ny, = 2 - N In the quant—-
ity -EﬁLEQEE of Equation (3-40), only the integer part
of the result of the division is to be.uSed. r 1is incre-
ased until N1 = Nep - 1. If Ny = 1 then only r = 0 is
used.

It should be appreciated that since there are a

finite number N - 1 of discrete time steps, this sub-
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division can only be done a finite number of timeé. The
smallesf pbssible non-zero time iﬂterval is
EE -t
N ~ 1

It is clear that N must be large enough such that
the §x's produced during this basic time interval are
'small enough'. This restriction is a practical one and
’ brought abouﬁ by the discrete time routine of the digital
computation. .

When AV and |a(i;Nl)| are small, but greater than
N, , the criterion (3-35) may be too severe with C = 0.5,
owing to round off errors, i.e. there may come a stage
where (3-35) remains unsatisfied even when N1 = Negg - Lo
If this happens, set C = 0.0 and repeat the procedure
for determining N1. C =0 1is a much less stringent
test, because it asks only that AV > 0. If once again
(3-35) is unsatisfied, even when N1 = Negg- 1, then we
should stop the computation since no furtherbreduction in:
cost is possible. This implies.tﬁat either optimality-has
been attained (in which case |Q(X;t.)| < 1], and so Neg<l)
or N is not large enough and hence J&{}%% is too

N
large for a basic time interval.
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3~4: The Computational Procedure

The computational procedure is given in the flow
chart and the FORTRAN IV program at the end of this thesis.
The minimization of H with respect to u may be done
either analytically or numerically by using the Fletcher
and Powell method.

If the 8&X's prodﬁced by the new control are too
large, as measured by criterion (3-35), then the step size
ad justment routine must be used. If the problem is very
nonlinear the routine will ha?e to be used a number of times
in order to determine ty » which will be close to tg.
However, as t; tends tb t¢ , Equation (3-33) is integrated
over the decreasing time intervals [ty ,t;] . So this method
will use less computing time in defermining t; than exist-
ing methods in determining € [14,15] , because we do not
have’fo integrate (3-33) over the whole interval [t,,ts] .'

In the algorithm the new control is computed using

W) = Ut + B SXM) (3-41)

It can happen, in non-linear problems, that B(t)8X(t) be-
comes too large and so invalidates the local expansions in

Su.. However, &x might still be small enough for

Ve(x+8x;t) = Vo + Vo 8X (3-42)



30. -

to be valid. The following alternative way can be used
for computing u(t): A

Instead of storing u*(t) and B(t), store V(%)
and Ve {t). Compute wu(t) directly, by minimizing

H(Z+8x, U, Vu+VexbX;t) with respect to u either analy-

tically or using the Fletcher and Powell routine,. In this
Way‘the radius of convergence of the algorithm may be |
increased.

In order that the cost decreases at each iteration,’

for §X sufficiently small, Q(X;t) must be less than zero.

[HCE, U ey t) —HE T,V t)dt  (3-43)
t | o

For (Q(X;ty) <0 it is clearly sufficient that:
HOX, W Ves t) < HOX T, Vs 1) 5 U (3-44)

u* is the control that minimizes H, so (3-44) is true for

u* ¥ 4 if

Hu(i: u—*; Vx ; t) =0
and [
'4uu(ja,Lfi\Q; t) is positive definite.

The quantities manipulated above must be bounded

in magnitude for these conditions to be valid, so it is
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required that the solutions of Equations (3-29) be bounded.



CHAPTER IV

Application to A System

Using the preceding algorithms Jacobsbn [10,11,12]
successfully solved a linear first-order problem. It |
seems, however, that no attempt has been made as yet to
solve\a higher ordef nonlinear problem.

In this chapter the result is presented for the
solution of a second-order nonlinear problem with satura-
tion characteristics using the differential dynamic |
programming approach,

Let us consider a system which is shown in Fig.1l,

and is described by the following equations:

X, Xz

-10X, - 2X, *+ tanh X, + W

X,
U X,(0) = 3.20 qnd Xa(0) = -2.20.

The problem is to find the~optimal control variables

u(t) such that

Vix:t)

6 ' ,
S (x} + XX + os5u*)dt
(1]

is minimized.

~32~
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The Hamiltonian, in this case, is given by

H = xF +x2 + 05U + Vi Xa

+ Vy, (10x, - 2%, + tanh X, + U)

The necessary condition of optimality for the above

problem is:
Hu = uw + sz = 0
. ’ ° u* = - vIz

and the second derivative of H with respect to u is:

Huu. =1 > 0

Other factors of Equation (3-29) for this particular

problem are :

2%, = Vi, (9 + tankix,)

Hx
2X; +Vx, = ZV:rz

Hux = 0

2 =~ 2Vigtanh X, (1 - tank’x) 0

0 2
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An arbitrary nominal control of

Lct) = -3.3x, -22%x,; telo,6]

was chosen.

The DEQ subroutine (The Gill variation of the
Runge-Kutta method) was used for the forward integrationé.
Three hundreds integration steps were used. Six iterations
were performed to reach the optimal cost and it took 21
seconds for computation by CDC 6400. The cost was reducéd
from the nominal value of 35.9 to the optimal value of
-13.4, which is shown in Fig.2. Itbfollows that more itera-
tions will not reduce the cost appreciably. The trajectory
was considered optimal when ]a(xdtJL theepredicted reduc-
tion in cost, was less than 0,01 . Observing Fig.2, one
can find that convergence is rapid when the cost is far
from the optimal value, but getting slower near the optimﬁm.

The: state X, versus time is shown in Fig.3. While
the noﬁinal trajectory oscillates initially, the optimal
one reaches down to the final state almost immediately,
without any overshoot.

Fig. 4 illﬁstrates the phase plane diagram for both
of the nominal and optimalAtrajectories. The’superibrity
of the optimal trajectory over the nominal one is more

obvious in Fig.4 than in Fig.3.



A Characteristic of Nonlinearity
with discontinuity in the first

derivative,

39.
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As another example the differential dynamic progranm-
ming algorithm was tried on a system similar to the one

described by Fig.l, but for which

m = X3 for  |x| 2 30
= 10 for x> Y0
= -10 ‘ for xX < "?/15

The characteristic of the nonlinearity is shown in Pig.5.
The author experienced difficulty in applying the
differential dynamic programming algorithm to this case,
as the final state did not converge to the desired value
in various iterations. It is believed that the disbonti—
nuity in the first derivative of the nonlinear’characfer—

istic was the reason for this difficulty..



CHAPTER V

- Conclusion

This thesis presents an extension of the originél
work of Jacobson. It is believed that Differential
Dynamic Programming is a significant contribution to the
field of "Numerical Techniques for Solving Optimal
Control Problems", since it may handle a larger class of
problems than the existing second variation methods:

The advantages of the method described in this
thesis are:

(1) the principle of optimality is applied only in fhe
neighbourhood of a nominal, possibly non-optimal; traject-
ory,

(2) Hai(i,ﬁ,vg;t) is not required to be positive definite
along non-optimal nominal trajectories. In the algorithm
H(X,u,Vx ;t) is minimized with respect to u and so it is
reqﬁired only that H;i(i,u,vg;t) be positive definite at
the minimizing u = u*, i.e. HZX(%,u,V;t) must be strict-
1y convex only in the neighbourhood of u*j}

(3) in some problems, the solutions of Backward integration
becomes unbounded along 'some néminal trajectories though
along optimal trajectories it always has bounded solutions.

Differential Dynamic Programming is able to compute optimal

41~
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control for these problems whereas the existing methods
do not.

In this thesis the differential dynamic programming
approach is applied to a nonlinear system whose nonlinear-
ity is continuously differentiable in.the whole time
interval concerned.

It may also be possible to apply this approach to
the following type of problems:

(1) 'bang-bang' type of control problems;
(2) systems\with‘piecewise continuous nonlinearities
over a given interval of time. ‘

However, there is a difficulty in the direct appli-
cation of this algorithm +to such a system as mentioned
in (2). The difficulty is that the final state is not
attainable depending on values of the initial state. The
author experienced the difficulty when.the.honlinearity
was as given in Fig.5. It is believed that this difficulty
was due to the discontinuity in the first derivative .of
the nonlinear characteristic. Perhaps this may be overcome
by introducing a suitable modification in the computational

procedures.
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APPENDIX T.

The Fletcher and Powell Method

General

Thefmain.disédvantage of sécond-order successive
apprdximation.mehtods is that the inverée of the second
derivative of the function 'f' is required to be positive
definite along non-optimal trajectories. This is_a.very
restrictive fequirement for nonlinear problems as f 1is
unlikely to be quadratic in X when gbis far from the mini-
mum value.

In the neighbourhood of the minimum of £, the:
inverse of the matrix of second derivatives is often posi-
tive definite since'many functions are éSSentially quadratic
in the néighbourhood of their minimum.

Fietchervand Powell have devéloped a method to avoid
the restrictive requirement, which is based on the Davidon;%]
method. In this method the function to be minimized and
its first derivatives are célculatéd by the procedure and
the inverse matrix of second derivatives is estimated from
thése data as the procedure progresses}towards the minimum
of the function.r Thus when the minimum is reéched, an esti-
mate of the inverse of the matrix of second derivatives
evaluated at the minimum is available..

Since the procedure does not evaluate the second
-46- '
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derivatives.directly it does not require that its inverse
be positive definite.

Fletcher and Powell have shown that the procedure
has quadratic convergence and for a region in which the:
function depends quadratically on the variables, no more
than N iterétions‘are required, where N 1is the number

of variables.

Notation
x; 2 p= 1,2,%eeeeeee N the set of N independ-

ent variables.

the value of the function to be minimized

£(x*) :
evaluated at the point x'. .

a;(x) : the derivatives of f(x') with respect to
xi evaluated at x'; Q;(5)= {;é?l.

%fy : a non-negative definite symmetfic matrix
which will be used as a matrix in the space
of the variables.

€ : two times absolute accuracy to which the:

function f(x') is to be minimized..
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Geometrical Interpretation

It is convenient to use geometrical concepts to
describe the minimization procedure. We: do so by con-
sidering the variableé g} to be coordinates of a point in
an N — dimensional linear space. As shown in Fig.0 -(a),
the set of x for which f(x) 1is constant forms an N - 1
dimensional surface in this space., One of this family of
surfaces passes through each X , and the surface about a
point is characterized by the gradient of the function at

that point:

gi(x) — _.g_f(_ﬁ_

/A 2%
These N components of the gradient can in turn be con-
sidered as the coordinates of a point in a different space,
as shown in Fig.6 -(b). As long as f(x) is differenti-
able at all points, there is a unique point & in the
gradient space associated with each point x in the posit-
ion space, though there may be more than one x with the
same $.

In the neighbourhood of aﬁy one point A, the

second derivatives of f(x) specify a linear mapping of
cﬁanges in position, dx, onto changes in gradient 4%,

in accordance with the equation

°f
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c A »
x, 2.
B
( ¢
x,‘ ‘g'l
(a) (o)
Pig. 6 Geometrical interpretation of

X, and Q.;(g)

The vectors dx and‘dg will be: in the same direct-

ion only if dx is an eigenvector of the matrix

” Chi

| 2%y
If the ratios among the corresponding eigenvalues are
large, then for most dx there will be considerable differ-

ence: in the directions of these two vectors.

The Fletclier and Powell Method

-1
In this method Hgi?%;;“ is not evaluated directlyy

instead an initial trial value is assumed for it. This
matrix, denoted by'-%,,, specifies a linear mapping of

all changes in the~gradieﬁt,ontOvchanges in position. It

may initially be chosen to be any positive definite symmetric

matrix.
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After making a change in the variable x, this trial
value ié improved on the basis of actual relation between
the changes in § and x, 1.e. this matrix is modified
after the ith’ iteration using the information gained by
moving down the direction

- i
<é; = '—'ﬁyv

in accordance with

gF

xmin - Z

I

-1
*F

57 5% %
81%_81 <

which is the displacement between the point x and the

minimum X .. .
n m -min

The modification is such that &, the step to the

minimum down the line
X = X' 4+ 24
is effectively an eigenvector of the matrix

i1

T

This ensures that as the procedure converges %,ytends to

_Ff
Xy Xy

"ax aI”evaluated at the minimum.

It is convenient to take the unit matrix initially
for ’%w so that the first direction is down the line: of
steepest descent.

Let the current point be x* with gradient g° and

matrix -ﬁ;w The iteration can then be stated as follows.
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The direction of the first step is chosen by using

the matrix ﬁﬂ in the relation

. _ (A
2 = — fwd
The component of the gradient in this direction is
evaluated through the relation

N .
v 13

9, = 44¢
-g: is the squared length of gﬂ and hence the improvement
to be expected in the function is -%éﬁ. The positive defi-
niteness of {yyemsures that g, is negative, so that the step:
is in a direction which (at least initially) decreases
the function. If the reductionis within the accuracy desi-
red, then the minimum has been determined. If not we con-
tinue with the procedﬁre,

In a first effort to find a region containing the
minimum, we take a step which is twice the size that would:
locate the minimum if the trial 4§u were lg%%%ﬁ;wd . However,
in order to prevent this step from being unreasonably large
when the trial 'ﬁﬂyis a poor estimate, we restrict the
step to a length such that (\£)Q", the decrease in the
function if it continues to decrease linearly, is not great-

er than some preassigned maximum, 2f. We then change §fby

+

X = X + AQ
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and calculate the new value of the function and its gradient
at x'. If the projection &g'= g} of the new gradient in
the direction of the step is posifive,'or if the new value
of the function f* is greater than the original fl, then
there is a relative minimum along the'direction .éi between
x' and §+, and we proceed to the next process where we will
interpolate its position. However, if neither of these
conditions is fulfilled, the function has decreased and is
decreasing at the point §+, and we infer that the step |
taken was tod small.

If the step had been taken on the basis of 4@3,
i.e. A =1, we modify -ﬁ;;so as to double the squared
length of .é; leaving the length of all perpendicular vect-

ors unchanged. This is accomplished by makihg

R = F —;:—,A,i»ﬁ |
where [ is the squared length of 4. This doubles the
determinant of 49;. The process 1s then repeated, starting
from the new position.
Now we: proceed to estimate: the location of the re;
la%ive minimum within the‘interval selected by the preceding

processes.

 The values of f° and f* of the function at points
g‘ and §+ are known, and so are its slopes, %:aﬂd g: ’
at these two points. We interpolate for the location of

the minimum by choosing the "smoothest" curve satisfying
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—— e — o o - o -

Fig. 7 Plot of f(x) along a

one-dimensional interval

the boundary conditions at 5‘ and §+, namely, the curve

defined as the one which minimizes

A
& (&F) ax

over the curve. This is the curve formed by a flat spring

fitted to the known ordinates and slopes at the end points.
The resulting curve is a cubic, and its slope at any

( 0 XS A\) is given by
. . : Z % +
q,) = g - Z2(g+7) + 5 (8 + % 2D
where:

Z:—.&F%__ﬂ*_g:_‘“g';l’

The root of Ehwﬂthax corresponds to a minimum lies

between 0 and A by virtue of the fact that 9;410 and
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either g, >0 or Z{ G, + g7. It can be expressed as

Kmin = A (1~ a)
where
+ —
a = S-W-Z2
. @»"g;'VZW
and:

. i
2 L +\2
W=(Z _g,ag,a)
Now the step gi can be obtained és

i

ST = oA

then we: change §‘ by

t = X + &
and calculate the new value of the function T and its
gradient § at t. If the new value of the function ¥
is greater than ' or £t by a significant amount & ,
the interpolation 1s not considered satisfactory and a
new one is madg within that part of the original interval
for which f' at the end point is smaller. Then T and
Z are used as f and 9" respectively, for the next
iteration.

The matrix *9wis modified by adding to it two terms

A and BL, which are given by Fletcher and Powell

%}iyﬂ _ “91):;' . Ai +BL

where:



i
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APPENDIX TI

Flow Chart of Differential Dynamic Programming

( START )

READ
X,(0), X2(0), Nominal Control a('t),
Ve (G t6) and. Ve (x+8X; te)

CALL
Nominal State Variables Xi(t),
L X,(t), and initial cost V

MR, T Ve t)

-56-




?

Ve(X5t) + f VedT = Vi (2389

: t
X (t-T) +L X-DT — I(E)J
T

X (t) -X(t) — §X(t)

m&n H (i+5x,u,vx+v:(xsx;t)

t-t.
Vie(esxit) + [ = dT =\ (xr8x;t0)

Caleculate Vo (%3t-T)

t-T>t Ne

©

Yes

Find tett when |a)
becomes greater then 1

@ e HALT \
OPTIMAL FOUND

No

@
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@

Set C=0.5

T

Set =0

O~

t’ =(E§i_2;§£)+ + Tor = tor+l where
too = 2te - ter. Apply U=U on
the interval [tg,1,] and u=u¥+péx
on the interval [ti,te]. Colculate
the cost V  and hence the
improvement AV = V-V

X+8X =X

vV -V
u*+psX-=U

Y
a{%; tpf

-+l > T
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HALT

Set C=0

No more im?rovemen.t

in trajectory attainable
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DIMENSION X1(30G)s X2(300)s UL3U0+s VX1(30G0)s VX2(300)
1 s .XM1(300)s XM2(3G0),s DX1(3C0)s DX2(300),
? UOP2(3020), ACHD(300)s NO(300)
EXTERNAL TAMAKIs CEIL
COMMON UCsXLsYL
READ(5+999) Al,s A2
999 FORMAT(2F15e2)
31 FORMAT(I5s F15.5)
32 FORMAT (4X1HMs 5X2HX1s 9X3HXMls BX2HX2s 9X3HXM2s 9X1HU»
1 IX4HUOP1s TX4HUOP2s MXS5HVSX11ls 6X5HVSX21s
2 6XB5HVGX22s 6X3HVX2 /)
33 FORMAT(1XI4s 11E11.2)
331 FORMATI( )
332 FORMAT(//)
333 FORMAT(///)
334 FORMAT (1H1)
135 FORMAT(/ 20X5HNEFF=s I5» 10X2HN1l=s 15)

DT = 0.02

NT = 1 . ,
TX=TY=O.

X = Al

Y = A2

VX1(300) = VX2(300) = -1.0E-8

INITIAL TRAJECTORY AND COST

0
Oe

NASA
VOLD
ull) ~3¢3%A1 = 2e2%A2
uc U1y

DO 20 IA = 15300

XL = X

YL = Y

Uc = U(IA)

CALL DEQ(TXs DTs NTs Xs DXs WORKs TAMAKI)
CALL DEQ

CALL DEQSET

X1(IA) = X

CALL DEQ(TYs DTs NTs Ys DYs VWORKs CEIL!
CALL DEQ

I ou

1]

=60~


http:11Ell.2l
http:XM1(3.00

2C

211
160

101

1500

1000

1200

61,

CALL DEQSET

X2(IA) = Y -
TF(1A.EQe 300) GO TO 20
UCIA+1) = =2.3#X1(IA) = 242%X2(1A)

VOLD = VOLD + (X1(IA)®%2 + X2 (IA)¥%2 + CoS*ULIAI*%21%DT
WRITE(6531) NASAs VOLD

C INITIAL SMALL CHANGES IN X

DO 211 L = 15300

DX1(L) -G at25%¥X1 (L)

DX2 (L) ~0e05%X2(L)

CONT INUE '

KPAGE = 300

KLINE = O

NB = 1

M = 300

VSX11 = VSX12 = VSX21 = VSX22 = ~1.0E-9

CONT INUE

IF(KLIME«NE.5) GO TO 1500
WRITE(69331) :
KLINE = O

KLINE = KLINE + 1
IF(MeNE«300) GO TO 1000
WRITE(65332)

WRITE(6932)

CONTINUE

IF(KPAGENF4255) GO TO 1200
WRITE(69333)

WRITE(6932)

KPAGE = 300

CONT INUE

UOP1 = =VX2(M) '
H o= X1(M)#%2 + X2(M)#%2 + 045%U(M)I#%2 4+ VX1(M)%X2(M) +
1 VX2 (M) % (=10a%X1 (M) = 24%X20M) + TANH(XL1(M)) + u())
CH= X1(M)#%2 4+ X2(M)%%2 4+ 0,5%U{(MI*%2 + VUXL(M)*X2(M) +
1 VX2 (M) % (=10%X1(M) = 2.%X2(M) + TANH(X1(M)) + UOP1)
ACHD(M) = . T*ABS(CH - H)

DVX1 = 2e#X1(M) — (9e + TANH(XI(M) }%x2)2Vvx2(M) +

1 VSX12%(UOP1 - U(M))
DVX2 = 24%X2(M) 4+ VX1(M) = 2.%VX2(M) +
1 VSX22#%(UOP1 - U(M))

IF{MeEQsl) GO TO 633
VX1({(M=-1) = VX1(M) - DT*DVX1


http:IF<KLINE�NE.5l
http:IF<IA.EO

633

634

77

666

62

VX2 (M=1) = VX2(M) - DT*DVX2

™ = M - ]

TX = TY = TM%DT

PX = X1{M=1) + DX1(M=1)
PY = X2(M=1) + DX2(M=-1)
GO TO 634

PX = Al * 04999°

PY = A2

TX = TY = 0,

uc = UtMm)

XL = PX

YL = PY , ‘
CALL DFQ{TXs DTs NTs PXs DXs WORKs TAMAKI!
CALL DEQ :

CALL DEQSET

XM1{M) = PX A

CALL DEQ(TYs DTs NTs PYs DY, WORKs CEIL)
CALL DEQ

CALL DEQSET

XM2 (M) = PY

MEW SMALL CHANGES IN STATE VARIABLES

IF(MeEQel) GO TO 777
DX1 (M) = XMI(M) = X1(M)
DX2 (M) = XM2(M) = X2(M)
GO TO 666

DX1(1)
CX2(1)

~0.05%X1(1)
-0e05%X2(1)

i

UOP2 (M) = —(VX2({M) + VSX21%DX1(M) + VSX22%DX2(M))
WRITE(659233) Ms X1(M)s XMLIM)y X2(M)y XM2(M)y U(M),
1 UOP1ls UOP2(M)s VSX11ls VSX21s VSX22s VX2(M)
IF(M.EQel) GO TO 310 . :
DILXV = 24 — 2a%¥VX2(MIRTANHIXL (M) )% (1e = TANH(X1 (M) ) %%2)

1 (9 +TANH(XT (M) ) *¥%2 )% (VSX214+VSEX12) = VSX21%%2
D12XV = —=(94+TANH(X1(M))*%2)%VSX22 + VSX11 -

1 2e%¥VSX12 —~ VSX21%VSX22 ,

D21XV = VSX11 =24%VSX21 = (Q.+TANH(X1 (M) ) *#2)%VSX22 -
1 VSX22%V5X21

D22XV = 24 + VSX12 4 VSX21 — 44%*VSX22 = VSX22#%2
VSX11 = VSX11 - DT#D11XV

VSX12 VSX12 - DT#D12XV

V&X21 VSX21 = DT#D21XV



310
111

112

112

163
104
114
115

C CALCULATION OF

21
321

22

- DO 23 ID =

23

VSX22 = VSX22
AVX = ABS(VX2(M-1))
IF(AVXeGTe 14CE+02)
M = M=1

KPAGE = KPAGE - 1
GO TO 101

NB = M

ALON = O

JA = 300

ALON = ALON + ACHD(JA)
IF(ALON +GTe 0.C1)
JA = JA - 1
IF(JAFQ.0)
GO TO 112
NEFF = JA
IF(NEFFe
GO TO 104
NB = NEFF =1

C Deb

K 1 .
NO(1) = 2%NB - NE
N1 = NO(K+1) = (N

GO TO 230

LE. NB) GO TO

i

pd

FF
EFF -
CosT

VC = U,
IFINlJLES1)
LK = N1 -1
DO 21 IR=1,LK

VC = VC + (X1(IB)*%2 +
CONT INUE

VD = Oo

DO 22 1C = Nls 300

VD = VD + (X1(IC)#*%2 +
CONT INUE '

VNEW = VC + VD

DV = VOLD -~ VNEW

CRTI = 0.

GO TO 321

N1ls 300
CRI = CRI + ACHD(ID)
CONT INUE _
RATIO = DV/CRI
IF(RATIOWGT«C)

IF(N1.EQeNEFF~1) GO TO

63..

- DT#*D22XV

GO TO 310-

GO TO 113

103

NO(K))1/2 + NO(K)

X2(18)%%2 + 045%U(IB)*%2)%DT

X2(I1C)*%2 + 0.5%UCP2(1C)%%2)%DT

GO TO 108

71


http:IF(AVX.GT

IF(NEFF.EQes1l) GO TO 71
K = K+1
GO TO 115
71 CONTINUE
IF(CeEQsDe) GO TO 155
C:OO
GO TO 114 T
108 CONTINUE
DO 24 IE = Nls 300
ULIF) = UOP2I(IE)
XI1(IE) = XM1(IE)
X2(IE) = XM2(IE)
24 CONTINUE
VOLD = VNEW
NASA = NASA + 1
WRITE(69335) MEFFs N1
WRITE(65334)
WRITE(6531) MASA, VOLD
GO TO 100
155 WRITE(6935) .
35 FORMAT(10X 20H NO NORE IMPROVEMENT /)
GO TO 225
230 WRITE(6:36) :
36 FORMAT(10X 14H OPTIMAL FOUND /)
225 CONTINUE
STOP
END

SUBROUTINE TAMAKI(Xs DXs T)
COMMON UCs XL» YL

DX = YL
RETURN
END

SUBROUTINE CEIL(Y» DYs T)
COMMON UCs XLs YL

DY = ~104%XL — 2e%Y + TANH(XL) + UC

RETURN
END
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