Differential Dynamic Programming:
An Optimization Technique
for Nonlinear Systems

Differential Dynamic Programming: An Optimization Technique for Nonlinear Systems

By

Nobuyuki Sato, B.Eng.

A Thesis
Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Master of Engineering

MASTER OF ENGINEERING
(Electrical Engineering)

McMASTER UNIVERSITY Hamilton, Ontario

TITLE: Differential Dynamic Programming: An Optimization Technique for Nonlinear systems

AUTHOR: Nobuyuki Sato, B.Eng.
(Nagoya Institute of Technology)
SUPERVISOR: Dr. N. K. Sinha
NUNBTER OF PAGES: $\mathrm{V}, 64$
SCOPE AND CONTENTS:
Differential Dynamic Programming is a new method, based on Bellman's principle of optimality, for determining optimal control strategies for nonlinear systems. It has originally been developed by D.H.Jacobson.

In this thesis a result is presented for a problem with saturation characteristics in nonlinearity solved by the Jacobson's approach. In the differential dynamic programming the principle of optimality is applied to the differential change in non-optimal cost due to small changes in state variables instead of the cost itself. Ihis results in modest memory requirements for its defining parameters and rapid convergence.

ACKNOWLEDGBMENTS

The author wishes to acknowledge with sincere gratitude the invaluable guidance and encouragement of Dr. N. K. Sinha in preparation of this thesis.

The author is also thankful to the Department of Electrical Engineering for the scholarship and teaching assistantship.

TABLE OF CONTENTS

PAGE
Chapter I Introduction 1
1-1. Historical Background 1
1-2. Statement of the problem in a general form - 2
Chapter II Dynamic Programining 5
Chapter III Differential Dynamic Programming 8
3-1. The Basis of Differential Dynamic Programming 8
3-2. A Second-order Algorithm 14
3-3. Step Size Adjustment Method 22
3-4. The Computational Procedure 29
Chapter IV Application to A System 32
Chapter V Conclusion 41
References 43
Appendix I The Fletcher and Powell Method 46
Appendix II Flow Chart of Differential Dynamic
Programming 56
Appendix III Program in FORTRAN IV 60

LIST OF FIGURES

FIGURE PAGE

1. A second-order Nonlinear System Under Consideration 33
2. Cost as a Function of Number of
Iterations 35
3. Unit Step Response 36
4. Phase Plane Diagram 37
5. A Characteristic of Nonlinearity with Discontinuity in the First Derivative 39
6. Geometric interpretation of x_{μ}^{i} and $g_{\mu}^{i}(\underline{x})$ 49
7. Plot of $f(\underline{x})$ along a one-dimensional
interval 53

CHAPTER I

Introduction

1-1: Historical Background

There: have been many approaches to optimization, which involves finding the best solution among several feasible alternatives. The term "best solution" is used because there may be more than one optimal solution.

Having constructed an appropriate mathematical model for the problem concerned, we must choose an optimization technique to solve the problem. The way we determine an optimal solution depends, of course, on the form of the objective function and constraints, the nature and number of variables, the kind of computational facilities available, taste and experience.

In 1940's there was a reawakening and change of direction in the study of optimization theory. This: renaissance was stimulated by the war effort. Two parallel but interrelated occurrences are especially significant: the work of scientists and mathematicians on problems in operations research generated by modern warfare; and the invention and development of the elctronic digital computer.

In 1950's following studies in the area of multistage decision processes, Bellman invented the rather un$[1,2,3]$
descriptive but alluring name for the approach \qquad Dynamic Programming. A more representative but less glamourous name would be "recursive optimization". Dynamic Programming appears as having been practiced long before: it was named. Undoubtedly, however, R.Bellman is the father of Dynamic Programming. It has been applied to problems in numerous fields, e.g. theory of inventory and produc.tion, purchasing and investment problems, distribution of drugs in the body, satellite interception and rendezvous problems, design of chemical plants, statistical communication theory and control systems. Bellman's own output has been prolific. The relevance of Dynamic Programaing to control theory is unquestionable but there are limitations to its practical applications such as enormous computing time and storage requirements.

Several attempts have been made to overcome the limitations, and Differential Dynamic Programming is one of them.

1-2: Statement of the problem in a general form
In recent years much interest has centred on the problem of determining optimal control for dynamic systems described by nonlinear, ordinary differential equations of the following form:

$$
\begin{equation*}
\dot{\underline{x}}=f(\underline{x}, \underline{u} ; t) ; \underline{x}\left(t_{0}\right)=\underline{x}_{0} \tag{1-1}
\end{equation*}
$$

The criterion of optimality is to minimize the cost functional:

$$
\begin{equation*}
V\left(\underline{x}_{0} ; t_{0}\right)=\int_{t_{0}}^{t_{f}} L(\underline{x}, \underline{u} ; t) d t+F\left(\underline{x}\left(t_{f}\right)\right) \tag{1-2}
\end{equation*}
$$

where $\underline{x}(t)$ is an n-dimensional vector function of time describing the state of the dynamic system at any time $t \in\left[t_{0}, t_{f}\right]$, (The symbol \underline{x} is also taken to mean $\left.\underline{x}(t).\right)$; $\underline{u}(t)$ - or \underline{u} - is an m-dimensional vector function of time representing the control variables available for manipulation at any time $t \in\left[t_{0}, t_{f}\right] ; L$ and F are nonlinear functions of their arguments; and f is an n-dimensional vector of its arguments. (1-1)describes the dynamic structore of the system. The final time t_{f} is assumed to be given explicitly.

$$
f(\underline{x}, \underline{u} ; t) \text { is a function of } \underline{x}, \underline{u} \text { and time } t \text {. At a }
$$ particular time $t_{1} \in\left[t_{0}, t_{f}\right], f\left(\underline{x}, \underline{u} ; t_{1}\right)$ is a function of \underline{x} and \underline{u}. The semi-colon is used to separate t from the other arguments. Similar remarks apply to V, F and L. All functions are assumed to be continuously differentiable in each argument up to any order required. The purpose of the problem is to find $\underline{u}(t) ; t \in\left[t_{0}, t_{f}\right]$

such that V, given by (1-2) is minimized.
Many second-variation type algorithms have been developed for successively improving a nominal, guessed control function. A very restrictive requirements of those second-order methods is that $H_{u u}^{-1}$-- the inverse matrix of the second partial derivatives of the Hamiltonian (see Eq. (3-17)) with respect to u-- should exist and be positive definite along non-optimal trajectories for $t \in\left[t_{0}, t_{f}\right]$. This restriction is very severe since it implies that H must be strictly convex, globally, with respect to u. In many nonlinear problems one finds that H is strictly convex only in. the neighbourhood of its minimum with respect to u.

The differential dynamic programming requires only that $H_{u u}^{-1}$ exists and is positive definite in the neighbourhood of the minimum of H with respect to u. This is a much less severe requirement, therefore we may use the Fletcher
 respect to u. The function and its first derivatives are calculated by this procedure and the inverse of the matrix of second derivatives is estimated from this data as the procedure progresses towards the minimum of the function. Thus when the minimum is reached, an estimate of the inverse of the matrix of second derivatives evaluated at the minimum is available. Since the procedure does not evaluate the , matrix of second derivatives directly it is not necessary that its inverse be positive definite.

CHAPTER II

Dynamic Programming

Often before performing the optimization, it is desirable to make some changes of variables and transformations. In contrast to simplifying the model, these preparatory operations preserve the properties of the model completely. The transformed model has the same optimal solution as the original, but is of a form that can be optimized more easily.

Basically Dynamic Programming is such a transformation. It takes a sequential or multistage decision process containing many interdependent variables, and converts it into a series of single stage problems, each containing only a few variables. The transformation is invariant in that the number of feasible solutions, and the value of the objective function associated with each feasible solution is preserved.

The transformation is based on the principle of optimality, due to Bellman, which states that " An optimal set of decisions has the property that whatever the first decision is, the remaining decisions must be optimal with respect to the outcome which results from the first decision."

Treating the control problem as a multistage decision process we may use Dynamic Programming to write

$$
V(\underline{x} ; t)=\min _{t \leqslant \tau \leqslant t+\Delta}\left[\int_{t}^{t+\Delta} L(\underline{x}, \underline{u} ; t) d \tau+V(\underline{x}+\underline{x} ; t+\Delta)\right] \quad(2-1)
$$

where $V(\underline{x} ; t)$ is the optimal cost to go from state \underline{x} at time t. If we let Δ be a small interval of time then

$$
V(\underline{x} ; t)=\min _{u(t)}[L \cdot \Delta+V(\underline{x}+\dot{x} \Delta ; t+\Delta)]
$$

Now we make the fundamental assumption that $V(\underline{x} ; t)$ may be expanded in a Taylor series about the point $x ; t$,

$$
\begin{aligned}
V(\underline{x}+\Delta x ; t+\Delta)=V(x ; t) & +\left\langle\frac{\partial V}{\partial x}, \Delta x\right\rangle+\frac{\partial V}{\partial t} \cdot \Delta \\
& + \text { higher-order terms }
\end{aligned}
$$

$$
\begin{equation*}
=V(\underline{x} ; t)+\langle V x, f\rangle \Delta t \frac{\partial V}{\partial t} \cdot \Delta+(0) \Delta^{2} \tag{2-3}
\end{equation*}
$$

where $V_{x}=\frac{\partial V}{\partial x}$, and $\left\langle V_{x}, f\right\rangle$ is the scalar product of the vectors V_{x} and $f . \quad$ Then we obtain from (2-2) and

$$
\begin{align*}
V(\underline{x} ; t)=\min _{u}[L \cdot \Delta & +V(\underline{x} ; t)+\left\langle V_{x}, f\right\rangle \cdot \Delta \\
& \left.+\frac{\partial V}{\partial t} \cdot \Delta+(0) \cdot \Delta^{2}\right]
\end{align*}
$$

Since $V(\underline{x} ; t)$ and $\frac{\partial V}{\partial t}$ are independent of u, then

$$
\begin{equation*}
-\frac{\partial V}{\partial t} \cdot \Delta=\min _{u}\left[L \cdot \Delta+\left\langle V_{x}, f\right\rangle \Delta+(0) \Delta^{2}\right] \tag{2-5}
\end{equation*}
$$

Dividing by Δ and allowing $\Delta \rightarrow 0$, we obtain

$$
\begin{equation*}
-\frac{\partial V(x ; t)}{\partial t}=\min _{u}\left[L(\underline{x}, \underline{u} ; t)+\left\langle V_{x}(\underline{x} ; t), f(\underline{x}, \underline{u} ; t)\right\rangle\right] \tag{2-6}
\end{equation*}
$$

Equation (2-6) is the Bellman's partial differential equation in $n+1$ variables $\underline{x} ; t$ and is in general unsolv- . able analytically.

The difficulty of numerically solving (2-6) is in general, enormous : primarily due to the high dimensionality of the equation which means that storage and computing time requirements are tremendous. To avoid this difficulty several attempts have been made and Differential Dynamic Programming is one of them.

CHAPTER III

Differential Dynamic Programming

3-1: The Basis of Differential Dynamic Programming
Differential Dynamic Programming is a technique, based on Dynamic Programming, for determining the optimal control function of a nonlinear system. Unlike conventional Dynamic Programming where the optimal cost function is considered globally, Differential Dynamic Programming applies the principle of optimality in the neighbourhood of a nominal, possibly non-optimal, trajectory.

Mayne [15] introduced the notation of "Differential Dynamic Programming" and Jacobson [10,11,12] developed it for his Ph.D. thesis.

It is well known that the optimal cost $V^{0}(\underline{x} ; t)$ satisfies the Bellman's partial differential equation(2-6) as shown in the previous chapter. We rewrite it for convenience,

$$
\begin{equation*}
-\frac{\partial V^{0}(\underline{x} ; t)}{\partial t}=\min _{u}\left[L(\underline{x}, \underline{u} ; t)+\left\langle V_{x}^{0}(\underline{x} ; t), f(\underline{x}, \underline{u} ; t)\right\rangle\right] \tag{3-1}
\end{equation*}
$$

in $n+l$. variables x; for the optimal cost V^{0}. (In the above equation, one should realize that \underline{x} is an optimal
quantity and so should be written with superscript ${ }^{\circ}$. However, for simplicity, the superscript 0 appears on 'V quantity' only.)

It is assumed that $V^{0}(\underset{\sim}{x} ; t)$ is sufficiently smooth in \underline{x} and t to allow the derivation of (3-1) which requires that the second partial derivatives of V^{0} with respect to $x ; t$ exist. [6]

In the problem of section 1-2, we assume that the optimal control $u^{\circ}(t) ; t \in\left[t_{0}, t_{f}\right]$ is unknown but that a nominal control $\bar{u}(t) ; t \in\left[t_{0}, t_{f}\right]$ is available.

On application of the nominal control, a nominal state trajectory $\bar{x}(t) ; t \in\left[t_{0}, t_{f}\right]$ is produced by (1-1), ie.

$$
\dot{\bar{x}}=f(\bar{x}, \bar{u} ; t) ; \quad \bar{x}\left(t_{0}\right)=x\left(t_{0}\right)=x_{0} \quad(3-2)
$$

The nominal cost $\bar{V}\left(x_{0} ; t_{0}\right)$ is calculated using (1-2), ie.

$$
\begin{equation*}
\bar{V}\left(x_{0} ; t_{0}\right)=\int_{t_{0}}^{t_{f}} L(\bar{x}, \bar{u} ; t) d t+F\left(x\left(t_{f}\right)\right) \tag{3-3}
\end{equation*}
$$

Equations (1-1), (1-2), and (3-1) may be written in terms of the nominal trajectory by setting:

$$
\begin{align*}
& x=\bar{x}+\delta x \tag{3-4}\\
& u=\bar{u}+\delta u
\end{align*}
$$

δx and δu are variations in the state and control vectors, respectively, measured with respect to the nominal quantities $\bar{x}, \bar{u} ; t$ they are not necessarily small quantities at this stage.

Equations (1-1), (1-2), and (3-1) become:

$$
\begin{equation*}
\frac{d(\bar{x}+\delta x)}{d t}=f(\bar{x}+\delta x, \bar{u}+\delta u ; t) ; \tag{3-5}
\end{equation*}
$$

$\bar{x}\left(t_{0}\right)+\delta x\left(t_{0}\right)=x_{0}\left(\because \operatorname{Set} \delta x\left(t_{0}\right)=0\right)$

$$
\begin{align*}
V\left(x_{0} ; t_{0}\right)=\int_{t_{0}}^{t_{f}} L(\bar{x}+\delta x, \bar{u} & +\delta u ; t) d t \tag{3-6}\\
& +F\left(\bar{x}\left(t_{f}\right)+\delta x\left(t_{f}\right) ; t_{f}\right)
\end{align*}
$$

$$
\begin{equation*}
-\frac{\partial V^{0}(\bar{x}+\delta x ; t)}{\partial t}=\min _{\delta u}[L(\bar{x}+\delta x, \bar{u}+\delta u ; t)+ \tag{3-7}
\end{equation*}
$$

$$
\left.\left\langle V_{x}^{0}(\bar{x}+\delta x ; t), f(\bar{x}+\delta x, \bar{u}+\delta u ; t)\right\rangle\right]
$$

respectively.
Equations (3-5), (3-6), and (3-7) are exactly equivalent to (1-1),(1-2), and (3-1) since no approximations have been: introduced: the nominal trajectory has been made into a reference trajectory.

Now let us assume that the optimal cost is smooth
enough to allow for a power series expansion in δx about $\bar{x}_{\text {. }}$

$$
\begin{aligned}
& V^{0}(\bar{x}+\delta x ; t)=V^{0}(\bar{x} ; t)+\left\langle V_{x}^{0}, \delta x\right\rangle \\
&+\frac{1}{2}\left\langle\delta x, V_{x x}^{\circ} \delta x\right\rangle+\text { higher-order terms }
\end{aligned}
$$

The optimal cost

$$
\begin{equation*}
V^{0}(\bar{x} ; t)=\bar{V}(\bar{x} ; t)+a^{0}(\bar{x} ; t) \tag{3-9}
\end{equation*}
$$

where $a^{0}(\bar{x} ; t)$ is defined as the difference between the optimal cost $V^{0}(\bar{x} ; t)$ obtained by using the optimal controls

$$
u^{0}(\tau)=\bar{u}(\tau)+\delta u(\tau) ; \tau \in\left[t, t_{f}\right]
$$

and the nominal cost $\overline{\mathrm{V}}(\bar{x} ; t)$ obtained by using the nominal controls.

$$
\bar{u}(\tau) ; \quad \tau \in\left[t, t_{f}\right]
$$

Using (3-9), Equation (3-8) becomes:

$$
\left.\begin{array}{rl}
V^{0}(\bar{x}+\delta x ; & t) \tag{3-10}
\end{array} \quad=\bar{V}(\bar{x} ; t)+a^{0}+\left\langle V_{x}^{0}, \delta x\right\rangle\right) .
$$

Substituting (3-10) into (3-7), we obtain:

$$
\begin{aligned}
& -\frac{\partial \bar{v}}{\partial t}-\frac{\partial a^{0}}{\partial t}-\left\langle\frac{\partial V_{x}^{0}}{\partial t}, \delta x\right\rangle-\frac{1}{2}\left\langle\delta x, \frac{\partial V_{x x}^{o}}{\partial t} \delta x\right\rangle \\
& \quad+\text { higher-order terms } \\
& =\min _{\delta u}[L(\bar{x}+\delta x, \bar{u}+\delta u ; t) \\
& +\left\langle V_{x}^{0}+V_{x x}^{o} \delta x+\right.\text { higher-order terms } \\
& \\
& f(\bar{x}+\delta x, \bar{u}+\delta u ; t)\rangle]
\end{aligned}
$$

Equation (3-11) is very difficult to solve owing to the very large computing time, and storage requirements for the parameters of the power series expansion. However, we can truncate the power series provided that the truncated terms are negligible. In order to do this, the size of δx must, somehow, be restricted. That is, the trajectory $\bar{x}(t)+\delta x(t)$; $t \in\left[t_{0}, t_{f}\right]$ must be kept in the neighbourhood of the nominal trajectory.

Let us assume that we keep the δx^{\prime} s small. (Methods ensuring this are discussed later, in Section 3-3. It is sufficient at the moment to note that, because $\delta x\left(t_{0}\right)=0$, the δx^{\prime} s produced in the interval [$\left.t_{0}, t_{f}\right]$ are caused only by δu acting through Equation (3-5).) Assume, further, that the δx^{\prime} s produced are small enough such that an expansion up to quadratic terms, in δx, is sufficient to
represent V^{0} in the neighbourhood of the nominal trajectory. Equation (3-11) becomes:

$$
\begin{align*}
& -\frac{\partial \bar{v}}{\partial t}-\frac{\partial a}{\partial t}-\left\langle\frac{\partial V_{x}}{\partial t}, \delta x\right\rangle-\frac{1}{2}\left\langle\delta x, \frac{\partial V_{x x}}{\partial t} \delta x\right\rangle \\
& =\min _{\delta u}[L(\bar{x}+\delta x, \bar{u}+\delta u ; t) \tag{3-12}\\
& \left.\quad+\quad\left\langle V_{x}+V_{x x} \delta x, f(\bar{x}+\delta x, \bar{u}+\delta u ; t)\right\rangle\right]
\end{align*}
$$

where

$$
\begin{align*}
& V(\bar{x}+\delta x ; t)=\bar{V}(\bar{x} ; t)+a+\left\langle V_{x}, \delta x\right\rangle \\
&+\frac{1}{2}\left\langle\delta x, V_{x x} \delta x\right\rangle \tag{3-13}
\end{align*}
$$

and

$$
V_{x}(\bar{x}+\delta x ; t)=V_{x}(\bar{x} ; t)+V_{x x} \delta x
$$

One should realize that expanding up to secondorder in δX makes, on differentiating, an expression for $V_{x}(\bar{x}+\delta x ; t)$ accurate only to first-order in δx.

In subsequent sections, an algorithm is considered 'second-order' if, given the a prior expansion (3-13) for V and V_{x}, all second-order terms arising on the right hand side of (3-12) during the derivations, are accounted for.

The superscript ${ }^{\circ}$ on V in (3-12) and (3-13) has been dropped for the following reason:

Modelling the cost surface, locally, by a second-
order expansion is made possible by keeping δx small. So the cost described by the truncated series (3-13) is optimal, provided that the δ 's are chosen in such a way that δx^{\prime} s remain small. It is, therefore, not the truly optimal cost given that any size of δx is allowed.
V, given by $(3-13)$, is the optimal cost V^{0} when starting in the state $\bar{x}+\delta x$ at time t if the nominal trajectory is sufficiently close: to the optimal one, i.e. if $\bar{u}(\tau)$ is close to $u^{\circ}(\tau) ; \tau \in\left[t, t_{f}\right]$ then the minimizing Su's will be small and, from (3-5), the resulting δx 's will be small so that the size of the δx^{\prime} s need not be restrained artificially. The expansion of V up to secondorder will thus be adequate to describe the true optimal cost V^{0} in the neighbourhood of the nominal trajectory. V_{x}^{0} will also be described adequately.

Equation (3-12) can be used to develop methods for determining the optimal control $u^{\circ}(t) ; t \in\left[t_{0}, t_{f}\right]$ by successively improving the current nominal trajectory $\bar{u}(t)$; $t \in\left[t_{0}, t_{f}\right]$.

3-2: A Second-order Algorithm

To overcome the restriction that $H_{u u}^{-1}$ should exist and be positive definite along non-optimal trajectories for $t \in\left[t_{0}, t_{f}\right], H\left(\bar{x}, u, V_{x} ; t\right) \underset{(\text { see eq. }(3-17))}{ }$ be actually minimized with respect to u using the Fletcher and Powell method.

This u, obtained by minimizing H, is denoted by u^{*}. All quantities, including $H_{u u}^{-l}\left(\bar{x}, u, V_{x} ; t\right)$, are evaluated at u^{*}. Because u^{*} mininizes H, them the Fletcher and Powell routine requires only that $H_{u u}^{-1}\left(\bar{x}, u^{*}, V_{x} ; t\right)$ be positive definite. It is less restrictive than requiring H to be globally, strictly convex in u. Further, $H_{u}\left(\bar{x}, u^{*}, V_{x} ; t\right)=0$, which is a well known condition of optimality.

Variations δx about \bar{x} are then introduced and a Iinear relationship found between δu and δx, which maintains the necessary condition of optimality,

$$
H_{u}\left(\bar{x}+\delta x, u^{*}+\delta u, V_{x}+V_{x x} \delta x ; t\right)=0
$$

for δx sufficiently small.
With the above two points in mind, the derivation of the second-order algorithm will be understood readily. The following is the full derivation of the algorithm: At any time $t \in\left[t_{0}, t_{f}\right]$, Equation (3-12) is valid locally with respect to δx, but globally with respect to Su. Consider Equation (3-12) at time t with $\delta x(t)$ set equal to zero; its right-hand-side becomes:

$$
\begin{equation*}
\min _{\delta u}\left[L(\bar{x}, \bar{u}+\delta u ; t)+\left\langle V_{x}, f(\bar{x}, \bar{u}+\delta u ; t)\right\rangle\right] \tag{3-14}
\end{equation*}
$$

Instead of using a second-order prediction of the
minimizing δu, let us completely minimize the contents of the square brackets in Expresision(3-14) with respect to $\delta u ;$ this may be done analytically or, if necessary, numerically. Let us denote the minimizing control

$$
u^{*}=\dot{U}+\delta u
$$

Expression (3-14) becomes

$$
\begin{equation*}
L\left(\bar{x}, u^{*} ; t\right)+\left\langle V_{x}, f\left(\bar{x}, u^{*} ; t\right)\right\rangle \tag{3-15}
\end{equation*}
$$

Now we consider variations δx about \bar{x}, ie. reintroduce δx_{0} In order to keep the minimality of the right-handside of $(3-12)$ the $\frac{\min }{\delta u}$ must be reintroduced; it should be noted that δu is now measured with reference to u^{*}.

$$
\begin{aligned}
& -\frac{\partial \bar{V}}{\partial t}-\frac{\partial a}{\partial t}-\left\langle\frac{\partial V_{x}}{\partial t}, \delta x\right\rangle-\frac{1}{2}\left\langle\delta x, \frac{\partial V_{x x}}{\partial t} \delta x\right\rangle \\
= & \min _{\delta u}\left[L\left(\bar{x}+\delta x, u^{*}+\delta u ; t\right)+\left\langle V_{x}+V_{x x} \delta x, f\left(\bar{x}+\delta x, u^{*}+\delta u ; t\right)\right\rangle\right]
\end{aligned}
$$

Of course, by allowing these large (global) changes in control, large δX^{\prime} s will be introduced through Equalion (3-5). The δx^{\prime} s must, in some way, be restrained in size in order that the second-order expansion for V be valid. This will be discussed later.

Define:

$$
\begin{equation*}
H\left(x, u, v_{x} ; t\right)=L(x, u ; t)+\left\langle V_{x}, f(x, u ; t)\right\rangle \tag{3-17}
\end{equation*}
$$

The right-hand-side of (3-16) becomes:

$$
\begin{equation*}
\min _{\delta u} H\left(\bar{x}+\delta x, u^{*}+\delta u, V_{x}+V_{x x} \delta x ; t\right) \tag{3-18}
\end{equation*}
$$

Since u^{*} minimizes $H\left(\bar{x}, u, v_{x} ; t\right)$, the following necessary condition holds:

$$
\begin{equation*}
H_{u}\left(\bar{x}, u^{*}, V_{x} ; t\right)=0 \tag{3-19}
\end{equation*}
$$

Expanding (3-18) about \bar{x}, u^{*} the following expression is obtained:

$$
\begin{aligned}
& \min _{\delta u}\left[H+\left\langle H_{u}, \delta u\right\rangle+\left\langle H_{x}, \delta x\right\rangle+\left\langle V_{x x} f, \delta x\right\rangle\right. \\
& \quad+\left\langle\delta u,\left(H_{u x}+f_{u}^{T} V_{x x}\right) \delta x\right\rangle+\frac{1}{2}\left\langle\delta u, H_{u u} \delta u\right\rangle \\
& \left.\quad+\frac{1}{2}\left\langle\delta x,\left(H_{x x}+f_{x}^{T} V_{x x}+V_{x x} f_{x}\right) \delta x\right\rangle+\text { (higher-order terms) }\right]
\end{aligned}
$$

All quantities in (3-20) are evaluated at $\bar{x}, u^{*} ; t$. From Equation (3-19), $H_{u}=0$, so the terms involving du in (3-20) are:

$$
\begin{aligned}
\left\langle\delta u,\left(H_{u x}+\right.\right. & \left.\left.f_{u}^{\top} V_{x x}\right) \delta x\right\rangle+\frac{1}{2}\left\langle\delta u, H_{u u} \delta u\right\rangle \\
& +(\text { higher-order terms })
\end{aligned}
$$

If δu is of the same order as δx then these terms are quadratic in δx. There is, therefore, no point in finding a relationship between δu and δx which is of order higher than linear, since terms higher than secondorder in δx are neglected. (Because the left-hand-side of (3-16) is expanded only to second-order in δx.) A relationship of the following form is, therefore, required:

$$
\begin{equation*}
\delta u=\beta \delta x \tag{3-22}
\end{equation*}
$$

where β is chosen to minimize the contents of the square brackets in Expression (3-20).

A necessary condition for minimality is obtained by differentiating (3-20) with respect to δu and equating to zero.

$$
\begin{align*}
H_{u}+H_{u u} \delta u+ & \left(H_{u x}+f_{u}^{\top} V_{x x}\right) \delta x \\
& + \text { (higher-order terms })=0 \tag{3-23}
\end{align*}
$$

$$
\begin{array}{r}
H_{u}+H_{u u} \beta \delta x+\left(H_{u x}+f_{u}^{\top} V_{x x}\right) \delta x \\
+ \text { (higher-order terms) }=0 \tag{3-24}
\end{array}
$$

From Equation (3-19), $H_{u}=0$. Keeping δx sufficiently small in (3-24), coefficients of the first-order terms may be equated to zero, then

$$
\begin{equation*}
\beta=-H_{u u}^{-1}\left(H_{u x}+f_{u}^{T} V_{x x}\right) \tag{3-25}
\end{equation*}
$$

Quantities in (3-25) are evaluated at $x, u^{*} ; t$. This β is the optimal linear feedback controller which maintains the necessary condition of optimality

$$
H_{u}\left(\bar{x}+\delta x, u^{*}+\delta u, V_{x}+V_{x x} \delta x ; t\right)=0
$$

for δX sufficiently small.
Substituting (3-22) into (3-20) and neglecting terms of order higher than the second, we obtain:

$$
\begin{align*}
H & +\left\langle H_{x}+V_{x x} f+\beta^{\top} H_{u}, \delta x\right\rangle \\
& +\frac{1}{2}\left\langle\delta x,\left(H_{x x}+f_{x}^{\top} V_{x x}+V_{x x} f_{x}-\beta^{\top} H_{u u} \beta\right) \delta x\right\rangle \tag{3-26}
\end{align*}
$$

Expression (3-26) equals to the left-hand-side of Equation
(3-16). Since equality holds for arbitrary δx we can equate coefficients:

$$
\begin{align*}
& -\frac{\partial \bar{V}}{\partial t}-\frac{\partial a}{\partial t}=H \\
& -\frac{\partial V_{x}}{\partial t}=H_{x}+V_{x x} f+\beta^{\top} H_{u} \\
& -\frac{\partial V_{x x}}{\partial t}=H_{x x}+f_{x}^{\top} V_{x x}+V_{x x} f_{x} \tag{3-27}\\
& \\
& \quad-\left(H_{u x}+f_{u}^{\top} V_{x x}\right)^{\top} H_{u u}^{-1}\left(H_{u x}+f_{u}^{\top} V_{x x}\right)
\end{align*}
$$

where all quantities are evaluated at $\bar{x}, u^{*} ; t$. \bar{V}, a, V_{x} and $V_{x x}$ are all functions of x and t along the nominal \bar{x} trajectory, thus

$$
\frac{d}{d t}(\bar{V}(\bar{x} ; t)+a(\bar{x} ; t))=\frac{\partial(\bar{V}+a)}{\partial t}+\left\langle V_{x}, f(\bar{x}, \bar{u} ; t)\right\rangle
$$

also

$$
\begin{align*}
& \dot{V}_{x}=\frac{\partial V_{x}}{\partial t}+V_{x x} f(\bar{x}, \bar{u} ; t) \\
& \dot{V}_{x x}=\frac{\partial V_{x x}}{\partial t} \tag{3-28}
\end{align*}
$$

since higher-order terms of V have been truncated. Substituting Equations (3-28) into (3-27) and noting that

$$
-\dot{\bar{V}}(\bar{x} ; t)=L(\bar{x}, \bar{u} ; t):
$$

$$
\begin{aligned}
-\dot{a}= & H-H\left(\bar{x}, \bar{u}, V_{x} ; t\right) \\
-\dot{V}_{x}= & H_{x}+V_{x x}(f-f(\bar{x}, \bar{u} ; t))+\beta^{\top} H_{u}^{=0} \\
-\dot{V}_{x x}= & H_{x x}+f_{x}^{\top} V_{x x}+V_{x x} f_{x} \\
& \quad-\left(H_{u x}+f_{u}^{\top} V_{x x}\right)^{\top} H_{u u}^{-1}\left(H_{u x}+f_{u}^{\top} V_{x x}\right)
\end{aligned}
$$

Unless otherwise specified, all quantities are evaluated at $\bar{x}, u^{*} ;$ t. $\quad\left(H_{u}^{=0}\right.$ indicates that $\left.H_{u}=0.\right)$

$$
\text { At } t=t_{f}, V\left(\bar{x} ; t_{f}\right)=F\left(\bar{x}\left(t_{f}\right) ; t_{f}\right)
$$

whence

$$
\begin{align*}
& a\left(t_{f}\right)=0 \\
& V_{x}\left(t_{f}\right)=F_{x}\left(\bar{x}\left(t_{f}\right) ; t_{f}\right) \tag{3-30}\\
& V_{x x}\left(t_{f}\right)=F_{x x}\left(\bar{x}\left(t_{f}\right) ; t_{f}\right)
\end{align*}
$$

Equations (3-30) are boundary conditions for the differentrial equations (3-29).

The new control applied to the system is

$$
\begin{equation*}
u=\bar{u}+\delta u^{*}+\beta \delta x=u^{*}+\beta \delta x . \tag{3-31}
\end{equation*}
$$

The above theory assumes that the δX^{\prime} s generated by (3-31) will be sufficiently small to justify the secondorder expansions used earlier.

3-3: Step Size Adjustment Method
Substituting (3-31) into (3-5), we obtain the following equation:

$$
\begin{equation*}
\frac{d(\bar{x}+\delta x)}{d t}=f\left(\bar{x}+\delta x, u^{*}+\beta \delta x ; t\right) \tag{3-32}
\end{equation*}
$$

with $\quad \bar{x}\left(t_{0}\right)+\delta x\left(t_{0}\right)=x_{0}$.
Since $\delta x\left(t_{0}\right)=0$, the δx^{\prime} s produced by $(3-32)$ are due to the driving action of $\delta u^{*}=u^{*}-\bar{u}$.

A way in which the size of the δX^{\prime} s can be restraind is by adjusting the time interval over which Equation (3-32) is integrated.

Consider the time interval $\left[t_{1}, t_{f}\right]$ where $t_{0} \leq t_{1}<t_{f}$. Assume that one runs along the nominal trajectory \bar{x} from to to t_{1}. At time $t=t_{1}, x\left(t_{1}\right)=\bar{x}\left(t_{1}\right)$ since the: path of the nominal trajectory has been followed from t. to t_{1}. (i.e. $\delta x(t) ; t \in\left[t_{0}, t_{1}\right]$ is zero). Now let us consider integrating (3-32) over the time interval $\left[t_{1}, t_{f}\right]$. If $t_{1}<t_{f}$ and $\left[t_{1}, t_{f}\right]$ is small, then the δX^{\prime} s produced by (3-32) in this interval will be small, even for large δu^{*}, since there is very little time over which to integrate the differential equation:

$$
\begin{gathered}
\frac{d(\bar{x}+\delta x)}{d t}=f\left(\bar{x}+\delta x, u^{*}+\beta \delta x ; t\right) \\
x\left(t_{1}\right)+\delta x\left(t_{1}\right)=\bar{x}\left(t_{1}\right)
\end{gathered}
$$

Thus, by making t_{1} near t_{f} one can force the δx^{\prime} s to be as small as one pleases.

The above description is summarized in the following statement:

There exists a time t_{1}, sufficiently close to t_{f}, in the range $t_{0} \leq t_{1}<t_{f}$, such that if the nominal trajectory is followed from t_{0} to t_{1} and then (3-33) is integrated from t_{1} to t_{f}, the δx^{\prime} s produced by (3-33) in the inter$\operatorname{val}\left[t_{1}, t_{f}\right]$ will be small enough for the second-order expansion of V, L and f to be valid.

The following questions may arise:

1) How does one decide if the δX^{\prime} s are sufficiently small?
2) How does one choose a t_{1} such that δx^{\prime} s produced are small enough?

The answers are as follows:
1)

$$
\left|a\left(\bar{x} ; t_{1}\right)\right|=\left|\int_{t_{f}}^{t_{1}}\left[H-H\left(\bar{x}, \bar{u}, v_{x} ; t\right)\right] d t\right|
$$

is the predicted improvement in cost when starting at the point $\bar{x}\left(t_{1}\right) ; t_{1}$ and using

$$
u(\tau)=u^{*}(\tau)+\beta(\tau) \delta x(\tau) ; \tau \in\left[t_{1}, t_{f}\right]
$$

Let us assume for the moment that $t_{1}=t_{0}$. (ie.
consider the whole time interval [$\mathrm{t}_{0}, \mathrm{t}_{\mathrm{f}}$].) Integrating (3-33) and calculating the cost V, the actual improvement in cost is

$$
\begin{equation*}
\Delta V=\nabla\left(\bar{x} ; t_{0}\right)-V\left(\bar{x} ; t_{0}\right) \tag{3-34}
\end{equation*}
$$

If this actual improvement in cost is 'near' the predicoed value

$$
\left|a\left(\bar{x} ; t_{1}\right)\right|
$$

then the δx^{\prime} s produced by the new control, acting through Equation (3-33), are considered 'small enough'.

It may be convenient, in practice, to define 'near' in the following way:

If the following inequality is satisfied, ΔV is considered to be 'near' $\left|a\left(\bar{x} ; t_{1}\right)\right|$

$$
\begin{equation*}
\frac{\Delta V}{\left|a\left(\bar{x} ; t_{1}\right)\right|}>C \quad ; \quad C \geq 0 \tag{3-35}
\end{equation*}
$$

C is practically set as 0.5 . There are no hard and fast rules for setting C. Certainly it should be equal to or greater thanzero since a negative ΔV is inadmissible. C should not be greater than unity since one cannot expect improvements in cost greater than predicted, if the expans-
ions for V, L and f are valid. Moreover, C should be somewhat less than unity so that any decision based on (3-35) is not influenced by round off errors in the computations.
2) If the inequality $(3-35)$ is satisfied with $t_{1}=t_{0}$ all is well, and the next iteration of the main algorithms may be begun with the knowledge that a reasonable reduction in cost of ΔV has been made. If (3-35) is not satisfied then we use the step size adjustment method.
set

$$
\begin{equation*}
t_{1}=\frac{t_{f}-t_{0}}{2}+t_{0}=t_{01} \tag{3-36}
\end{equation*}
$$

The above procedure is repeated with this t_{1} and (3-35) is checked again (with the new: ΔV). If it is satisfied then the next iteration may be begun. If not, then set

$$
\begin{equation*}
t_{1}=\frac{t_{f}-t_{01}}{2}+t_{01} \tag{3-37}
\end{equation*}
$$

and repeat again.
Subdividing $\left[t_{0}, t_{f}\right]$ in this way, there will come a : time t_{1} when the inequality $(3-35)$ is satisfied.
In general,

$$
\begin{equation*}
t_{1}=\frac{t_{f}-t_{o r}}{2}+t_{o r}=t_{o r+1} \tag{3-38}
\end{equation*}
$$

where $\quad r=0,1,2, \ldots \ldots \ldots \ldots$ and $t_{00}=2 t_{0}-t_{f}$.
The new nominal trajectory may sometimes have a corner at t_{1} since $\bar{u}\left(t_{1}\right)$ may be different from $u^{*}\left(t_{1}\right)$. This introduces no difficulty provided that the numerical integration routine used is capable of handling differential equations with discontinuous right-hand-sides.

It may happen that the nominal trajectory $\bar{x}(t)$ is optimal on an interval $\left[t_{2}, t_{f}\right] ; t_{2} \in\left[t_{0}, t_{f}\right]$, but is nonoptimal on the interval [t_{0}, t_{f}]. If t_{1} is being found in the manner outlined above, then a trial t_{1} may fall in the interval $\left[t_{2}, t_{f}\right]$. The δx^{\prime} s generated in the interval $\left[t_{1}, t_{f}\right]$ would then be zero - because $u^{*}(t)=\bar{u}(t) ; t \in\left[t_{2}, t_{f}\right]$, —— and no reduction in cost would occur, even though the whole trajectory $\bar{x}(t) ; t \in\left[t_{0}, t_{f}\right]$ is non-optimal in $\left[t_{2}, t_{f}\right]$. One must ensure, therefore, that t_{1} will never fall in $\left[t_{2}, t_{f}\right]$. This condition is ensured easily in the following way:

At $t=t_{f}, a(\bar{x} ; t)=0$. When integrating the backward equations, monitor $|a(\bar{x} ; t)|$. Record the time $t_{\text {eff }}$ when $|a(\bar{x} ; t)|$ becomes different from zero. (Or in practice, when it becomes greater than a small, positive quantity, η). The trajectory between $t_{\text {eff }}$ and t_{f} satisfies a necessary condition of optimality,

$$
\begin{equation*}
a(\bar{x} ; t)=0 ; t \in\left[t_{\text {eff }}, t_{f}\right] \tag{3-39}
\end{equation*}
$$

If on the forward run, a time $t_{1}\left(\neq t_{0}\right)$ is required to be determined then the time interval [$\left.\mathrm{t}_{0}, \mathrm{t}_{\text {eff }}\right]$, instead of [$\mathrm{t}_{0}, \mathrm{t}_{\mathrm{f}}$], is subdivided as described earlier. As the overall trajectory becomes more and more optimal from iteration to iteration, the time $t_{\text {eff }}$ tends to t_{0}. Finally, on an optimal trajectory, $|a(\bar{x} ; t)|<\eta_{1} ; t \in\left[t_{0}, t_{f}\right]$ and $t_{\text {eff }}=t_{0}$ and the computation is stopped.

When programming algorithms on a digital computer it is generally necessary to use a numerical iteration routine to integrate the differential equations. This means that the interval [$\mathrm{t}_{0}, \mathrm{t}_{\mathrm{f}}$] is divided into $\mathrm{N}-1$ time steps. (i.e. t going from I to N).

The subdivision of $\left[t_{0}, t_{\text {eff }}\right]$ used for determining t_{1} must be done with respect to this discrete scale, ie. a time $\mathbb{N} I \in\left[1, \mathbb{N}_{\text {eff }}\right]$ must be sought such that

$$
\begin{equation*}
N 1=\frac{N_{\text {eff }}-N_{\text {or }}}{2}+N_{\text {or }}=N_{o r+1} \tag{3-40}
\end{equation*}
$$

where $\mathrm{r}=0,1, \ldots \ldots, \ldots$ and $\mathrm{N}_{00}=2-\mathrm{N}_{\mathrm{eff}} \quad$ In the quantity $\frac{N_{\text {eff }}-N_{\text {or }}}{2}$ of Equation (3-40), only the integer part of the result of the division is to be used. r is increased until NI $=N_{\text {eff }}-1$. If $N_{\text {eff }}=1$ then only $r=0$ is used.

It should be appreciated that since there are a finite number $N-1$ of discrete time steps, this sub-
division can only be done a finite number of times. The smallest possible non-zero time interval is

$$
\frac{t_{f}-t_{0}}{N-1}
$$

It is clear that N must be large enough such that the δX^{\prime} s produced during this basic time interval are 'small enough'. This restriction is a practical one and brought about by the discrete time routine of the digital computation.

When ΔV and $|a(\bar{x} ; N I)|$ are small, but greater than η_{1}, the criterion (3-35) may be too severe with $C=0.5$, owing to round off errors, i.e. there may come a stage where (3-35) remains unsatisfied even when $N 1=N_{\text {eff }}-1$. If this happens, set $C=0.0$ and repeat the procedure for determining Nl. $C=0$ is a much less stringent test, because it asks only that $\Delta \mathrm{V}>0$. If once again (3-35) is unsatisfied, even when $N 1=N_{\text {eff }}-1$, then we: should stop the computation since no further reduction in cost is possible. This implies that either optimality has been attained (in which case $\left|a\left(\bar{x} ; t_{0}\right)\right|<\eta_{1}$ and so $\left.N_{\text {eff }}<1\right)$ or N is not large enough and hence $\frac{t_{f}-t_{0}}{N-1}$ is too large for a basic time interval.

3-4: The Computational Procedure

The computational procedure is given in the flow chart and the FORTRAN IV program at the end of this thesis. The minimization of H with respect to u may be done either analytically or numerically by using the Fletcher and Powell method.

If the δx 's produced by the new control are too large, as measured by criterion (3-35), then the step size adjustment routine must be used. If the problem is very nonlinear the routine will have to be used a number of times in order to determine t_{1}, which will be close to t_{f}. However, as t_{1} tends to t_{f}, Equation (3-33) is integrated over the decreasing time intervals $\left[t_{1}, t_{f}\right]$. So this method will use less computing time in determining t_{1} than existing methods in determining ε [14,15] , because we do not have to integrate (3-33) over the whole interval $\left[t_{0}, t_{f}\right]$. In the algorithm the new control is computed using

$$
\begin{equation*}
u(t)=u^{*}(t)+\beta(t) \delta x(t) \tag{3-41}
\end{equation*}
$$

It can happen, in non-linear problems, that $\beta(t) \delta x(t)$ becomes too large and so invalidates the local expansions in au. However, δx might still be small enough for

$$
\begin{equation*}
V_{x}(\bar{x}+\delta x ; t)=V_{x}+V_{x x} \delta x \tag{3-42}
\end{equation*}
$$

to be valid. The following alternative way can be used for computing $u(t)$:

Instead of storing $u^{*}(t)$ and $\beta(t)$, store $V_{x}(t)$ and $V_{x x}(t)$. Compute $u(t)$ directly, by minimizing $H\left(\bar{x}+\delta x, u, V_{x}+V_{x x} \delta x ; t\right)$ with respect to u either anallytically or using the Fletcher and Powell routine,. In this way the radius of convergence of the algorithm may be increased.

In order that the cost decreases at each iteration, for δx sufficiently small, $a(\bar{x} ; t)$ must be less than zero.

$$
\begin{equation*}
a(\bar{x} ; t)=\int_{t_{f}}^{t_{1}}\left[H\left(\bar{x}, u^{*}, V_{x} ; t\right)-H\left(\bar{x}, \bar{u}, V_{x} ; t\right)\right] d t \tag{3-43}
\end{equation*}
$$

For $a\left(\bar{x} ; t_{1}\right)<0$ it is clearly sufficient that:

$$
\begin{equation*}
H\left(\bar{x}, u^{*}, v_{x} ; t\right)<H\left(\bar{x}, \bar{u}, v_{x} ; t\right) ; u^{*} \neq \bar{u} \tag{3-44}
\end{equation*}
$$

u^{*} is the control that minimizes H, so (3-44) is true for $u^{*} \neq \bar{u}$ if

$$
H_{u}\left(\bar{x}, u^{*}, V_{x} ; t\right)=0
$$

and:

$$
H_{u u}^{-1}\left(\bar{x}, u^{*}, V_{x} ; t\right) \quad \text { is positive definite. }
$$

The quantities manipulated above must be bounded in magnitude for these conditions to be valid, so it is
required that the solutions of Equations (3-29) be bounded.

CHAPTER IV

Application to A System

Using the preceding algorithms Jacobson [10,11,12] successfully solved a linear first-order problem. It seems, however, that no attempt has been made as yet to solve a higher order nonlinear problem.

In this chapter the result is presented for the solution of a second-order nonlinear problem with saturation characteristics using the differential dynamic programming approach.

Let us consider a system which is shown in Fig.l, and is described by the following equations:

$$
\begin{aligned}
\dot{x}_{1}= & x_{2} \\
\dot{x}_{2}= & -10 x_{1}-2 x_{2}+\tanh x_{1}+u \\
& x_{1}(0)=3.20 \text { and } x_{2}(0)=-2.20 .
\end{aligned}
$$

The problem is to find the optimal control variables $u(t)$ such that

$$
V(x ; t)=\int_{0}^{6}\left(x_{1}^{2}+x_{2}^{2}+0.5 u^{2}\right) d t
$$

is minimized.

Fig. 1. A Second-order Nomlinear System
UNDER CONSIDERATION

The Hamiltonian, in this case, is given by:

$$
\begin{aligned}
H=x_{1}^{2}+ & x_{2}^{2}+0.5 u^{2}+V_{x_{1}} x_{2} \\
& +V_{x_{2}}\left(-10 x_{1}-2 x_{2}+\tanh x_{1}+u\right)
\end{aligned}
$$

The necessary condition of optimality for the above problem is

$$
\begin{aligned}
H_{u}=u+V_{x_{2}} & =0 \\
\therefore u^{*} & =-V_{x_{2}}
\end{aligned}
$$

and the second derivative of H with respect to u is:

$$
H_{u u}=1>0
$$

Other factors of Equation (3-29) for this particular problem are:

$$
\begin{aligned}
& H_{x}=\left[\begin{array}{l}
2 x_{1}-V_{x_{2}}\left(9+\tanh ^{2} x_{1}\right) \\
2 x_{2}+V_{x_{1}}-2 V_{x_{2}}
\end{array}\right] \\
& H_{u x}=0 \\
& H_{x x}=\left[\begin{array}{cc}
2-2 V_{x_{2}} \tanh x_{1}\left(1-\tanh ^{2} x_{1}\right) & 0 \\
0 & 2
\end{array}\right]
\end{aligned}
$$

An arbitrary nominal control of

$$
\bar{u}(t)=-3.3 x_{1}-2.2 x_{2} ; \quad t \in[0,6]
$$

was chosen.
The DEQ subroutine (The Gill variation of the Runge-Kutta method) was used for the forward integrations. Three hundreds integration steps were used. Six iterations were performed to reach the optimal cost and it took 21 seconds for computation by CDC 6400. The cost was reduced from the nominal value of 35.9 to the optimal value of 13.4, which is shown in Fig.2. It follows that more iterations will not reduce the cost appreciably. The trajectory was considered optimal when $\left|a\left(x_{0} ; t_{0}\right)\right|$, the predicted reduction in cost, was less than 0.01 . Observing Fig.2, one can find that convergence is rapid when the cost is far from the optimal value, but getting slower near the optimum.

The state X_{1} versus time is shown in Fig.3. While the nominal trajectory oscillates initially, the optimal one reaches down to the final state almost immediately, without any overshoot.

Fig. 4 illustrates the phase plane diagram for both of the nominal and optimal trajectories. The superiority of the optimal trajectory over the nominal one is more obvious in Fig. 4 than in Fig. 3.

Fig. 5 A Characteristic of Nonlinearity with discontinuity in the first derivative.

As another example the differential dynamic programming algorithm was tried on a system similar to the one described by Fig.l, but for which

$$
\begin{array}{rlrlrl}
m & =x^{3} & & \text { for } & & |x| \leq \sqrt[3]{10} \\
& =10 & & \text { for } & x>\sqrt[3]{10} \\
& =-10 & & \text { for } & & x<-\sqrt[3]{10}
\end{array}
$$

The characteristic of the nonlinearity is shown in Fig. 5.
The author experienced difficulty in applying the differential dynamic programming algorithm to this case, as the final state did not converge to the desired value in various iterations. It is believed that the discontinuity in the first derivative of the nonlinear characteristic was the reason for this difficulty.

CHAPTER V

Conclusion

This thesis presents an extension of the original work of Jacobson. It is believed that Differential Dynamic Programming is a significant contribution to the field of "Numerical Techniques for Solving Optimal Control Problems", since it may handle a larger class of problems than the existing second variation methods:

The advantages of the method described in this
thesis are:
(l) the principle of optimality is applied only in the neighbourhood of a nominal, possibly non-optimal, trajectory;
(2) $H_{u u}^{-1}\left(\bar{x}, \bar{u}, v_{x} ; t\right)$ is not required to be positive definite along non-optimal nominal trajectorjies. In the algorithm $H\left(\bar{x}, u, V_{x} ; t\right)$ is minimized with respect to u and so it is required only that $H_{u u}^{-I}\left(\bar{x}, u, V_{x} ; t\right)$ be positive definite at the minimizing $u=u^{*}$, i.e. $H_{u u}^{-l}\left(\bar{x}, u, V_{x} ; t\right)$ must be strictly convex only in the neighbourhood of u^{*};
(3) in some problems, the solutions of backward integration becomes unbounded along some nominal trajectories though along optimal trajectories it always has bounded solutions. Differential Dynamic Programming is able to compute optimal
control for these problems whereas the existing methods do not.

In this thesis the differential dynamic programming approach is applied to a nonlinear system whose nonlinearity is continuously differentiable in the whole time interval concerned.

It may also be possible to apply this approach to the following type of problems:
(1) 'bang-bang' type of control problems;
(2) systems with piecewise continuous nonlinearities over a given interval of time.

However, there is a difficulty in the direct application of this algorithm to such a system as mentioned in (2). The difficulty is that the final state is not attainable depending on values of the initial state. The author experienced the difficulty when the nonlinearity was as given in Fig.5. It is believed that this difficulty was due to the discontinuity in the first derivative of the nonlinear characteristic. Perhaps this may be overcome by introducing a suitable modification in the computational procedure.

REFERENCES

1. Bellman, R.: Dynamic Programming, Princeton University Press, 1957.
2. Bellman, R. and S. Dreyfus: Applied Dynamic Programming, Princeton University Press, 1962:
3. Bellman, R. and R. Kalaba: Dynamic Programming and Modern Control Theory, Academic Press, 1965.
4. Box, M. J.: A New Method of Constrained Optimization and A Comparison with Other Methods, Computer Journal, Vol.8, 1965.
5. Davidon, W. C.: Variable Metric Method for Minimization, AEC Research and Development Report, ANL-5990 Rev., 1959.
6. Dreyfus, S.: Dynamic Programming and the Calculus of Variations, Academic Press, 1965.
7. Droretzky, A.. J. Kiefer and J. Wolfowitz: The Inventory Problem I. and II., Econometrica, 20, 1952.
8. Fletcher, R. and M.J.D. Powell: A Rapidly Convergent Descent Method for Minimization, Computer Journal, Vol.6, 1963.
9. Fletcher, R.: Function Minimization without evaluating derivatives --- a review, Computer Journal, Vol.8, 1965
10. Jacobson, D. H.: Differential Dynamic Programming Methods for Determining Optimal Control of Nonlinear systems, Control Systems Research: Report, Centre for Computing and Automation, . Imperial College, London, Nov. 1966.

1l. Jacobson, D. H.: Second-order and Second-variation Methods for Determining Optimal Control: A Comparative study using Differential Dynamic Programming, International Journal of Control, Vol.7, No.2, 1968.
12. Jacobson, D. H.: New Second-order and First-order Algorithms for Determining Optimal Control, A Differential Dynamic Programming Approach, Office of Naval Research, Technical Report No.55I, Division of Engineering and Applied Physics, Harvard University, Cambridge, Massachusetts, 1968.
13. Kalman, R. E.: The theory of Optimal Control and the Calculus of Variations, Mathematical Optimization Techniques, editedy by R. Bellman, 1963.
14. Liebelt, P. B.: An Introduction to Optimal Estimation, Addison Wesley, 1967.
15. Mayne, D. Q.: A Second-order Gradient Method of Optimiziing Nonlinear Discrete-Time Systems, International Journal of Control, Vol.3, No.1,1966.
16. Merriam, C. W.: Optimization Theory and the Design of Feedback Controls, McGraw Hill, 1964.
17. Nemhauser, G. L.: Introduction to Dynamic Programming, John Wiley, 1966.
18. Noton, A. R. M.: Introduction to Variational Methods in Control Engineering, Pergamon Press,1965.
19. Noton, A. R. M., P. Dyer and C. A. Markland: Numerical Computation of Optimal Control, IEEE trans.. Vol. AC-12, No.1, 1967.
20. Powell, M. J. D.: An Efficient Method for Finding The: Minimum of A Function of Several Variables Without Calculating Derivatives, Computer Journal, Vol.7, 1964.
21. Smith, F. T.: The Application of Dynamic Programming to Satellite Intersept and Rendezvous Problems, Advances in Control Systems, 1965.
22. Wald, A.: Statistical Decision Functions, John Wiley, 1950.
23. Zangwill, W. I.: Minimizing a Function Without Calculating Derivatives, Computer Journal, Vol.IO, No.3, 1967.

APPENDIX I.

The Fletcher and Powell Method

General

The main disadvantage of second-order successive approximation mehtods is that the inverse of the second derivative of the function 'f' is required to be positive definite along non-optimal trajectories. This is a very restrictive requirement for nonlinear problems as f is unlikely to be quadratic in \underline{X} when \underline{X} is far from the minimum value.

In the neighbourhood of the minimum of f, the: inverse of the matrix of second derivatives is often positive definite since many functions are essentially quadratic in the neighbourhood of their minimum.

Fletcher and Powell have developed a method to avoid the restrictive requirement, which is based on the Davidon's method. In this method the function to be minimized and its first derivatives are calculated by the procedure and the inverse matrix of second derivatives is estimated from these data as the procedure progresses towards the minimum of the function. Thus when the minimum is reached, an estimate of the inverse of the matrix of second derivatives evaluated at the minimum is available.

Since the procedure does not evaluate the second -46 -
derivatives directly it does not require that its inverse be positive definite.

Fletcher and Powell have shown that the procedure has quadratic convergence and for a region in which the function depends quadratically on the variables, no more than N iterations are required, where N is the number of variables.

Notation
$x_{\mu}^{i}: \mu=1,2, \ldots \ldots \ldots, N$ the set of N independint variables.
$f\left(\underline{x}^{i}\right)$: the value of the function to be minimized evaluated at the point \underline{x}^{i}.
$g_{\mu}^{i}(x)$: the derivatives of $f\left(\underline{x}^{i}\right)$ with respect to x_{μ}^{i} evaluated at $\underline{x}^{i} ; \quad g_{\mu}^{i}(\underline{x})=\frac{\partial f\left(\underline{x}^{i}\right)}{\partial x_{\mu}^{i}}$.
$h_{\mu \nu}^{i} \quad:$ a non-negative definite symmetric matrix which will be used as a matrix in the space of the variables.
ε : two times absolute accuracy to which the: function $f\left(\underline{x}^{i}\right)$ is to be minimized.

Geometrical Interpretation

It is convenient to use geometrical concepts to describe the minimization procedure. We do so by considering the variables x_{μ}^{i} to be coordinates of a point in an N - dimensional linear space. As shown in Fig. 6 - (a), the set of \underline{x} for which $f(\underline{x})$ is constant forms an $N-1$ dimensional surface in this space. One of this family of surfaces passes through each x, and the surface about a point is characterized by the gradient of the function at that point:

$$
g_{\mu}^{i}(\underline{x})=\frac{\partial f(\underline{x})}{\partial x_{\mu}^{i}}
$$

These \mathbb{N} components of the gradient can in turn be considered as the coordinates of a point in a different space, as shown in Fig. 6 - (b). As long as $f(\underline{x})$ is differentable at all points, there is a unique point \underline{g} in the gradient space associated with each point \underline{x} in the position space, though there may be more than one \underline{x} with the same g.

In the neighbourhood of any one point A, the second derivatives of $f(\underline{x})$ specify a linear mapping of changes in position, dㅆ, onto changes in gradient dg, in accordance with the equation

$$
d g_{\mu}=\frac{\partial^{2} f}{\partial x_{\mu} \partial x_{\nu}} d x_{\nu}
$$

(a)

(b)

Fig. 6 Geometrical interpretation of

$$
x_{\mu}^{i} \quad \text { and } \quad g_{\mu}^{i}(\underline{x})
$$

The vectors $d \underline{x}$ and $d \underline{g}$ will be in the same direction only if $d \underline{x}$ is an eigenvector of the matrix

$$
\left\|\frac{\partial^{2} f}{\partial x_{\mu} \partial x_{\nu}}\right\|
$$

If the ratios among the corresponding eigenvalues are large, then for most $d \underline{x}$ there will be considerable difference in the directions of these two vectors.

The Fletcher and Powell Method
In this method $\left\|\frac{\partial^{2} f}{\partial x_{\mu} \partial x_{\nu}}\right\|^{-1}$ is not evaluated directly; instead an initial trial value is assumed for it. This matrix, denoted by $h_{\mu \nu}$, specifies a linear mapping of a:ll changes in the gradient onto changes in position. It may initially be chosen to be any positive definite symmetric matrix.

After making a change in the variable x, this trial value is improved on the basis of actual relation between the changes in \underline{g} and \underline{x}, ie. this matrix is modified after the $i^{\text {th }}$ iteration using the information gained by moving down the direction

$$
\underline{s}^{i}=-h_{\mu \nu}^{i} \underline{g}^{i}
$$

in accordance with

$$
x_{\min }-\underline{x}=-\left\|\frac{\partial^{2} f}{\partial x_{\mu} \partial x_{\nu}}\right\|^{-1} \underline{g}
$$

which is the displacement between the point \underline{x} and the: minimum $\underline{x}_{\text {min }}$ *
The modification is such that $\underline{\sigma}^{i}$, the step to the minimum down the line

$$
\underline{x}=\underline{x}^{i}+\lambda \underline{s}^{i}
$$

is effectively an eigenvector of the matrix

$$
h_{\mu \nu}^{i+1} \cdot\left\|\frac{\partial^{2} f}{\partial x_{\mu} \partial x_{\nu}}\right\|
$$

This ensures that as the procedure converges $h_{\mu \nu}$ tends to $\left\|\frac{\partial^{2} f}{\partial x_{\mu} \partial x_{\nu}}\right\|^{-1}$ evaluated at the minimum.

It is convenient to take the unit matrix initially for $h_{\mu \nu}$ so that the first direction is down the line of steepest descent.

Let the current point be \underline{x}^{i} with gradient \underline{g}^{i} and matrix $h_{\mu \nu *}^{i}$ The iteration can then be stated as follows.

The direction of the first step is chosen by using the matrix $h_{\mu \nu}$ in the relation

$$
\underline{s}^{i}=-h_{\mu \nu}^{i} \underline{g}^{i}
$$

The component of the gradient in this direction is evaluated through the relation

$$
g_{\Delta}^{i}=\underline{s}^{i} \underline{g}^{i}
$$

- g_{β}^{i} is the squared length of g^{i}, and hence the improvement to be expected in the function is $-\frac{1}{2} g_{\Delta}^{i}$. The positive definiteness of $h_{\mu \nu}$ ensures that g_{Δ} is negative, so that the step is in a direction which (at least initially) decreases . the function. If the reduction is within the accuracy desired, then the minimum has been determined. If not we continue with the procedure.

In a first effort to find a region containing the minimum, we take a step which is twice the size that would locate the minimum if the trial $h_{\mu \nu}$ were $\left\|\frac{\partial^{2} f}{\partial x_{\mu} \partial x_{\nu}}\right\|^{-1}$. However, in order to prevent this step from being unreasonably large when the trial $h_{\mu \nu}$ is a poor estimate, we restrict the step to a length such that ($\left.\lambda \Delta^{i}\right) g^{i}$; the decrease in the function if it continues to decrease linearly, is not greater than some preassigned maximum, if. We then change \underline{x}^{i} by

$$
\underline{x}^{+}=\underline{x}^{i}+\lambda \underline{s}^{i}
$$

and calculate the new value of the function and its gradient
 the direction of the step is positive, or if the new value of the function f^{+}is greater than the original f^{i}, then there is a relative minimum along the direction s^{i} between \underline{x}^{i} and \underline{x}^{+}, and we proceed to the next process where we will interpolate its position. However, if neither of these conditions is fulfilled, the function has decreased and is decreasing at the point \underline{x}^{+}, and we infer that the step taken was too small.

If the step had been taken on the basis of $h_{\mu \nu}^{i}$, i.e. $\lambda=1$, we modify $h_{\mu \nu}^{i}$ so as to double the squared. length of \underline{s}^{i}, leaving the length of all perpendicular vetor unchanged. This is accomplished by making

$$
h_{\mu \nu}^{i}=h_{\mu \nu}^{i}+\frac{1}{l} s_{\mu}^{i} s_{\nu}^{i}
$$

where ℓ is the squared length of $\hat{S}^{\dot{j}}$. This doubles the determinant of $h_{\mu \nu}^{i}$. The process is then repeated, starting from the new position.

Now we proceed to estimate the location of the relative minimum within the interval selected by the preceding processes.

The values of f^{i} and f^{+}of the function at points \underline{x}^{L} and \underline{x}^{+}are known, and so are its slopes, g_{s}^{i} and g_{s}^{+}, at these two points. We interpolate for the location of the minimum by choosing the "smoothest" curve satisfying

$$
\begin{aligned}
& \text { Fig. } 7 \text { Plot of } f(\underline{x}) \text { along a } \\
& \text { one-dimensional interval }
\end{aligned}
$$

the boundary conditions at \underline{x}^{i} and \underline{x}^{+}, namely, the curve defined as the one which minimizes

$$
\int_{0}^{\lambda}\left(\frac{d^{2} f}{d \alpha^{2}}\right) d \alpha
$$

over the curve. This is the curve formed by a flat spring fitted to the known ordinates and slopes at the end points. The resulting curve is a cubic, and its slope at any α ($0 \leqq \alpha \leqq \lambda$) is given by

$$
g_{\Delta}(\alpha)=g_{\Delta}^{i}-\frac{2 \alpha}{\lambda}\left(g_{\Delta}^{i}+Z\right)+\frac{\alpha^{2}}{\lambda^{2}}\left(g_{\rho}^{i}+g_{\beta}^{+}+2 Z\right)
$$

where

$$
Z=\frac{3\left(f^{i}-f^{+}\right)}{\lambda}+g_{s}^{i}+g_{s}^{+}
$$

The root of $g_{\rho}(\alpha)$ that corresponds to a minimum lies between 0 and λ by virtue of the fact that $g_{s}^{i}<0$ and
either $g_{s}^{+}>0$ or $Z\left\langle g_{s}^{i}+g_{s}^{+}\right.$. It can be expressed as

$$
\alpha_{\min }=\lambda(1-a)
$$

where

$$
a=\frac{g_{s}^{+}-w-z}{g_{s}^{+}-g_{s}^{i}+2 w}
$$

and

$$
W=\left(z^{2}-g_{\Delta}^{i} g_{\Delta}^{+}\right)^{\frac{1}{2}}
$$

Now the step $\underline{\sigma}^{i}$ can be obtained as

$$
\underline{\sigma}^{i}=\alpha \underline{\Delta}^{i}
$$

then we change \underline{x}^{i} by

$$
\underline{t}=\underline{x}^{i}+\underline{\sigma}^{i}
$$

and calculate the new value of the function \bar{f} and its gradient \bar{g} at t. If the new value of the function \bar{f} is greater than f^{i} or f^{+}by a significant amount ε, the interpolation is not considered satisfactory and at new one is made within that part of the original interval for which f^{i} at the end point is smaller. Then \bar{f} and $\overline{\underline{g}}$ are used as f^{i+1} and \underline{g}^{i+1} respectively, for the next iteration.

The matrix $h_{\mu \nu}$ is modified by adding to it two terms A^{i} and B^{i}; which are given by Fletcher and Powell

$$
h_{\mu \nu}^{i+1}=h_{\mu \nu}^{i}+A^{i}+B^{i}
$$

where

$$
\begin{aligned}
& A^{i}=\frac{\underline{\sigma}^{i}\left(\underline{\sigma^{i}}\right)^{\top}}{\left(\underline{\Phi}^{i}\right)^{\top} \underline{y}^{i}} \\
& B^{i}=\frac{-h_{\mu \nu} \underline{y}^{i}\left(\underline{(}^{i}\right)^{\top} h_{\mu \nu}}{\left(\underline{y}^{i}\right)^{\top} h_{\mu} \underline{\underline{y}}^{i}} \\
& \underline{y}^{i}=\underline{g}^{i+1}-\underline{g}^{i}
\end{aligned}
$$

APPENDIX III

```
    DIMENSION X1(300), X2(300), U(300), VX1(300), VX2(300)
    1
    2
    EXTERNAL TAMAKI, CEIL
    COMMON UC,XL,YL
    READ(5,999) A1, A2
999 FORMAT(2F15.2)
    31 FORMAT(I5, E15.5)
    3 2 ~ F O R M A T ~ ( 4 X 1 H M , ~ 5 X 2 H X 1 , ~ 9 X 3 H X M 1 , ~ 8 X 2 H X 2 , ~ 9 X 3 H X M 2 , ~ 9 X 1 H U , ,
        1 9X4HUOP1, 7X4HUOP2, MX5HVSX11, 6X5HVSX21,
        2 6X5HVSX22, 6X3HVX2 /)
    33 FORMAT(1XI4, 11E11.2)
331 FORMAT( )
332 FORMAT(//)
333 FORMAT (///)
334 FORMAT (1H1)
335 FORMAT(/ 20X5HNEFF=, I5, 10X3HN1=, I5)
    DT = 0.02
    NT = 1
    TX = TY = 0.
    X = Al
    Y = A2
    VX1(300)=VX2(300)=-1.OE-8
C INITIAL TRAJECTORY AND COST
NASA \(=0\)
VOL \(=0\).
\(U(1)=-3 \cdot 3 \div A 1-2 \cdot 2 \div A 2\)
\(U C=U(1)\)
DO 20 IA \(=1,300\)
\(X L=X\)
\(Y L=Y\)
\(U C=U(I A)\)
CALL DEQ(TX, OT, NT, \(X, ~ D X, ~ W O R K, ~ T A M A K I)\)
CALL DER
CALL DFQSET
\(X I(I A)=X\)
CALL DEQ(TY, OT, NT, Y, DY, WORK, CEIL)
CALL DEG
```

C

```
        CALL DEQSET
        X2(IA) = Y
        IF(IA.EQ. 300) GO TO 20
        U(IA+1) = -3.3*XI(IA) - 2. 2*X2(IA)
        20 VOLD = VOLD + (XI(IA)**2 + X2(IA)**2 + 0.5*U(IA)**2)*DT
        WRITE(6,31) NASA, VOLD
C
    INITIAL SMALL CHANGES IN X
C
    DO 211 L = 1,300
    DX1(L) = -0.05*X1(L)
    211 DX2(L) = -0.05*X2(L)
    10O CONTINUE
        KPAGE = 300
        KLINE=0
        NB = 1
        M = 3 0 0
        VSX11 = VSX12 = VSX21 = VSX22 = -1.0E-9
    101 CONTINUE
        IF(KLINE.NE.5).GO TO 1500
    WRITE(6,331)
    KLINE = 0
1500 KLINE = KLINE + 1
    IF(M.NE.300) GO TO 1000
    WRITE(6,332)
    WRITE(6,32)
1000 CONTINUE
    IF(KPAGE.NF.255) GO TO 1200
    WRITE(6,333)
    WRITE(6,32)
    KPAGE = 300
1200 CONTINUE
    UOP1 = -VX2(M)
    H=X1(M)**2+X2(M)**2+0.5*U(M)**2 + VX1(M)*X2(N) +
    1 V K2(M)*(-10.*X1(M) - 2.*X2(M) + TANH(X1(M)) + U(M))
    CH= X1(M)**2 + X2(M)**2 + 0.5*U(M)**2 + VX1(M)*X2(M) +
    1 VX2(N)*(-10*X1(M)-2.*X2(M) + TANH(X1(M)) + UOP1)
    ACHD(M) = 1T*ABS(CH-H)
    DVX1 = 2.*X1(N) - (9. + TANH(X1(M))**2)*VX2(N) +
    1 VSX12%(UOP1 - U(M))
    DVX2 = 2.*X2(M) +VX1(M) - 2.*VX2(M) +
    1V VSX22*(UOP1 - U(M))
    IF(M.EQ.1) GO TO 633
    VX1(M-1) = VX1(M) - DT*DVX1
```

$V \times 2(M-1)=V \times 2(M)-D T * D V \times 2$
$T M=M-1$
$T X=T Y=T M * D T$
$P X=X 1(M-1)+D X 1(M-1)$
$P Y=X 2(M-1)+D \times 2(M-1)$
GO TO 634
$633 \mathrm{PX}=\mathrm{Al} * 0.999^{\circ}$
$P Y=A 2$
$T X=T Y=0$.
$634 U C=U(M)$
$X L=P X$
$Y L=P Y$
CALL DEQ(TX, DT, NT, PX, DX, WORK, TAMAKI)
CALL DEQ
CALL DEQSET
$X M 1($ in $)=P X$
CALL DEQ(TY, DT, NT, PY, DY, WORK, CEIL)
CALL DEQ
CALL DEQSET
$X M 2(M)=P Y$
C
C NEW: SMALL CHANGES IN StATE VARIABLES
C
IF(M.EQ.1) GO TO 777
$\operatorname{DX1}(M)=X M 1(M)-X 1(M)$
$D X 2(M)=X M_{2}(M)-X 2(M)$
GO TO 666
777 DX1(1) $=-0.05 * \times 1(1)$
$\operatorname{DX2}(1)=-0.05 * \times 2(1)$
C
$666 \operatorname{VOP} 2(M)=-(V \times 2(M)+V S \times 21 * D \times 1(M)+V S \times 22 * D \times 2(M))$
WRITE $(6,33) \mathrm{M}, \mathrm{XI}(M), X M 1\left(M_{i}\right), X 2(M), X M 2(M), U(M)$, 1 UOP1, UOP2(M), VSX11, VSX21, VSX22, VX2(M)
IF (M.EQ.1) GO TO 310

$1-(9 \cdot+\operatorname{TANH}(X 1(M)) * * 2) *(V S X 21+V S X 12)-V S X 21 * 2$
D12XV $=-(9 .+\operatorname{TANH}(X 1(M)) * 2) * V S X 22+V S X 11-$
$1 \quad 2 . * V S X 12-V S X 21 \div V S X 22$
D21XV = VSX11-2. $2 V S X 21-(9 .+T A N H(X 1(M)) * 2) * V S \times 22-$
$1 \quad V S \times 22 * V S X 21$
$D 22 X V=2 .+V S X 12+V S X 21-4 . * V S X 22-V S X 22 * 2$
VSX11 = VSX11 - DT*D11XV
VSX12 $=$ VSX12 - DTKD12XV
$V S X 21=V S X 21-D T * D 21 X V$

```
    \(V S \times 22=V S \times 22-D T * D 22 \times V\)
    \(A V X=A B S(V \times 2(M-1))\)
    IF (AVX.GT. 1.OE+O2) GO TO 310 .
    \(M=M-1\)
    \(K P A G E=K P A G E-1\)
    GO TO 10.1
    \(310 \mathrm{NB}=\mathrm{M}\)
    111 ALON = 0 .
        \(J A=300\)
    112 ALON = ALON + ACHD(JA)
        IF (ALON.GT. O.O1) GO TO 113
        \(J A=J A-1\)
        IF (JA.FQ.O) GO TO 230
        GO TO 1.12
    113 NEFF = JA
        IF (NEFF. LE. NB) GO. TO 103
        GO TO 104
    \(1 \cup 3 \mathrm{NB}=\mathrm{NEFF}-1\)
    \(104 C=0.5\)
    \(114 K=1\)
    \(115 \mathrm{MO}(1)=2 * N B-N E F F\)
        \(N 1=N O(K+1)=(N E F F-N O(K)) / 2+N O(K)\)
\(C\)
\(C\)
\(C\)
    CALCULATION OF COST
    \(V C=0\).
    IF(N1.LE.I) GO TO 321
    \(L K=N 1-1\)
    DO 21 I \(\mathrm{A}=1, L K\)
    \(V C=V C+(X 1(I B) * * 2+X 2(I B) * * 2+0.5 * U(I B) * * 2) * D T\)
    21 CONT INUE
\(321 V D=0\).
    DO \(22 \mathrm{IC}=\mathrm{N} 1,300\)
    \(V D=V D+(X 1(I C) * * 2+X 2(I C) * * 2+0.5 * U O P 2(I C) * * 2) * D T\)
    22 CONTINUE
        \(V N E W=V C+V D\)
        \(D V=V O L D-V N E W\)
        \(C R I=0\).
        DO 23 ID \(=\mathrm{NI}, 300\)
        \(C R I=C R I+A C H D(I D)\)
        23 CONTINUE
            RATIO = DV/CRI
    IF (RATIO.GT.C) GO TO 108
    IF (N1.EQ•NEFF-1) GO TO 71
```

IF (NEFF.EQ.1) GO TO 71
$K=K+1$
GO TO 115
71 CONTINUE
IF(C.EQ.O.) GO TO 155
$C=0$.
GO TO 114
108 CONTINUE
DO 24 IE $=$ N1, 300
U(IF) $=$ UOP2(IE)
$X I(I E)=X M 1(I E)$
X2(IE) $=$ XM2(IE)
24 CONTINUE
VOLD = VNEW
NASA $=$ NASA +1
WRITE 6,335) NEFF, N1
WRITE $(6,334)$
WRITE(6,31) NASA, VOLD
GO TO 100
155 WRITE $(6,35)$
35 FORMAT (10X $20 H$ NO NORE IMPROVEMENT /)
GO TO 225
$230 \operatorname{WRITE}(6,36)$
36 FORMAT (10X 14 H OPTIMAL FOUND /)
225 CONTINUE
STOP
END
C
SUBROUTINE TAMAKI(X, DX, T)
COMMON UC, XL, YL
c
$D X=Y L$
C
RETURN
FND
C
SUBROUTINE CEILY, DY, T)
COMMON UC, XL, YL
c
$D Y=-10 . * X L-2 \cdot * Y+\operatorname{TANH}(X L)+U C$
C
RETURN
END

