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~ABSTRACT 

Several test statistics, which are ·known, can be used for test ­

ing for exponentiality. A new test statisticTE is proposed. TE is 

based on a censored sample and is similar to Tiku•s T statistic for 

testing for norma1 i ty. .The di strfbuti on of T E tends to norma1 i ty with 

increasing sample size. Besides, TE is easy to compute and is both 

origin and scale invariant.· The power-:-of TE for non-exponential dis­

tributions is comparable with Shapiro &Wilk statistic W-exponential. 

(111) 




PREFACE 

Occasions arise in statistical practice when it is necessary 

to test, whether a random vari~ble x has the exponential distribution, 

on the basis of n independent observations~ Examples are to be found 

in life-testing where x measures the length of life of, say, an electrqpic 

tube and also in the study of the distribution of intervals between 

events occurring in time, e.g., time between failures for a demonstra­

tion test of a system. 
2Several test statistics {Karl Pearson x , Kolmogorov- Smirnov D, 

Cramer- Von Mises w2, Kuiper V, Anderson- Darling A, Watson u2, Shapiro 

and Wilk W-Exponential), which are known, can be used for this problem. 

A new statistic TE for testing for exponentiali~y, similar to 

Tiku's T statistic for testing for normality, is proposed. TE is origin 

and scale invariant and is easy to compute. The distribution of TE tends 

to normality very rapidly with increasing sample size n {effectively 

n > 20). Against non-exponential distributions withskewnessls1 > 2 

(the skewness of exponential), TE is slightly more powerful than Shapiro 

and Wilk W-Exponential, although against non-exponential distributions 

with ls1 < 2, the power of TE is slightly smaller than W-Exponential. 

(i v) 
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CHAPTER 1 

TESTING FOR 	 DISCRIMINATION BETWEEN TWO MODELS WITH UNKNOWN 

LOCATION AND SCALE PARAMETERS 

When one wishes to select one of the two, location. and scale 

parameter models, the values .of the parameters being unknown, one must 

have a test which takes the alternative model into account. Let x1, x2, 

xn· be. a random sample from a distribution with density function f0(x;6,o) 

or f 1(x;e ,a) where 

(X-6)fj ( x;6,o) =a1 gj a ; -~ < e < ~, a > o, 

g
0 

and g
1 

are functions of ·{x~e). 

Suppose that the null hypothesis is 

Ho: X ~ f 	 (x·e o) = l g ex-e)
o '' a o a' 

and the alternative hypothesis is 

1 (x-e)H1: X ~ f 1( x; 6 ,a ) =-; 91 0 

Let LR· be de~ined by 

n 
Max rr f 1(x;-;e,o) 


LR = e,a i=l 

n 


Max rr f {x · ; 6 ,~)

0 1a,a i=l 
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In general, if x,, x2' .• ~, xn represent n independent observa­

tions on a continuous variate x whose density function is of the form 

f{x;e,a) = ! g(x~e) ; 

{e,a) En, n =· {(e,a); -~ < e <~,a> o}, 

then the likelihood function is given by 

1L{x;e,a) = - ~ 
an i=l 

If e and a represent the true values of a and a for a given
0 0 

case, the density of the standardized variate z={x-e }/ a is ~iven by
0 0 

g{z), which is independent of both the parameters. 

The maximum likelihood estimates of e and a are the values e 

and a 
,. 

which satisfy 

L(x;e,~) = Max L(x;e,a), 
g 

n x -a n x.-e 
or 1 n g{~) = Max - 1- n g{-;-),

{~)n i=l a n (a)n i=l 
,... 

x1-e e-e 
(. 0} - {-0) 

·a a .o 0_1_ 1or ,. } 
a/a

0 
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::: 1 1 g([{x;-e0 ) e-e ~ Max II 
n 

(__Q_} I £1.. ] 
g {a }n n . 1 ao a0 . ao ' 

(L) 1=0 
ao 

or 
n z.-e n z.-e * 

{~)n n g ( 1 A s) = Max(~}n n g { , * ) ' 
as 1=1 as g * a i=l a 

where 
A .e-e 

A a 
a=- e =--o ,

s a ' s a
0 0 

a* = ..!L , 
O:o 

and •s correspond to observations on a standardised variable. Sincez1

* A A 

g = g , e
5 

and as correspond exactly to the maximum likelihood.estimators 

of e and a when the sampling is actually on a standardised variate z. 
A A 

Thus the joint density of es and as does not depend on e and a. There­

fore the density of es/os is also independent of parameters; see Antle 

and ~ain [1]. 

From this it follows that the distribution of LR is independent 

of e and a. Hence, for any location and scale parameter model one can 

construct tables for critical values; see Dumonceaux et.al. [8]. 

Tbus for testing normality against exponentiality 

LR =Jn ~- r. -}2 ~ l. v< .. -x l , (x .. ~ m'i n x .. } . 
1 1 1i=l 1=1 



One would reject H : that the observations are from a normal 
0 

-.,.­

population when LR exceeds its critical value. 

Similarly for testing exponentiality against normality 

n 

LR = l 


i=l 

If LR ~ critical value, we ~eject the hypothesis H : that the 
0 

observations are from exponential population. 

Note that the use of likelihood ratio test necessitates specinca­

tion of the functional fonn of the alternative distribution. 
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CHAPTER 2 


TESTING ANY HYPOTHESIZED DISTRIBUTION 


AGAINST UNSPECIED ALTERNATIVES 

b 

2.1 	 Introduction 


Let x1, x2, .••• ,xn be a random sample of observations on a con­


tinuous random variable x with cumulative distribution function (c.d.f.) 


-F{x) and probability density function (R.d.f.) f(x). The general problem 

of goodness of fit consists in testing the null hypothesis H
0 

: that 

F(x) = F (x; e1, e2, ••. , e ) for every x, against unspecified alterna­
0	 5 

tives. 	 Here the ei·~ denote the parameters of the hypothesized c.d.f. F •
0 

In the sequel f (x; e1, e2, ..•• , es) will denote the hy~qthesized p.d.f.
0 

Two cases of this problem are of interest: 

case 1. 	 H
0 

simple 

case 2. 	 H composite •
0 

2.2 Simple Hypothesis 

In this case the c.d.f. F
0 

under H
0 

is completely specified 

as to its functional form (such as normality, exponentiality, etc.) 

as well as to the values of the parameters ei involved. This case is 

easier to handle and has been worked extensively and has a long and 

well known history going back to Karl Pearson•s Chi-square test. 

In the standard application of the Chi-square test, the'Y'\ observa­

tions in a random sample from a population are classified into k mutually 



exclusive classes. The null hypothesis gives the probability Po; that an 

observation falls into the ;th class (i = 1,2, •• , k). The quantities 

m; = nP
0

; are called expected frequencies and 

k 	 k 
l poi = 1' l m.

1 
= n 

i=l i=l 

The joint density of the observed n; • sfalli.ng in the respective 

classes is a multinomial distribution 

n! 

The likelihood function is 


On the other hand, if the true c.d.f. is F1(x), where F1 may 

be any distribution function, we may denote the probabilities in k classes 

by pli, i = 1, 2, .• , k and the likelihood function by 

which 	 is maximized when we substitute the maximum likelihood estimators 
n· 

p1i = -;- for p 1i ... 

Then the likelihood ratio statistic for testing H
0 

against any 

composite alternative hypothesis H1: F(xl = F1(x} fs therefore 

k 
a: II 

i=l 

http:falli.ng
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k (Poi)n; • = (n)n n 
n·1=1 1 

H is rejected when L is small enough. The exact distribution of L
0 

is unknown. However, as n--::. and when H ho 1ds,oo 
0 

k n. 
- 2 log (L) = 2 I n; log ( 1 

} ••••••••••••• (2.2.1)
i=l n Po; 

is asymptotically distributed as Chi-square with {k-1) degrees of freedom 

(d.f.). 

Karl Pearson proposed the stat i s.ti c 

2k (n. -m.)2 1 1X . = I ••••.••••••••••••••••••••••••••• (2. 2. 2) 
• 1 m.1= 1 

for testing H
0 

, 

As n ->·co_, under H x 2 follows Chi~-square distribution with (k-l)d.f.
0 

i f m.--·' s - a r e kn0 wn . 
1 

The two distinct statistics (2.2.1) and (2.2.2) thus have the 

same distribution asymptotically, given H • More than this, they are 
0 

asymptotically equivalent statistics when H
0 

holds. This is true because 

1f we write 6; = (n; - np ;) I nP0;,0

-2 log L= 2 l
k 

n • 1og (1 + 6 • ) , 

i=l 1 1 
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~ . } . . 2 -3/2}=2 l {(n~ - nP • + np .} {A. - ~ A· + 0 ln },i=l . ...... 01 01 1 1 

k nP • 2 V2
. { ( ) + - 201 uA; . + 0 (n- ) } ' = 2 L\ n· - nP · A· nP .A.i=l 1 01 , 01 1 

= ~ a1 
2 ( -~).L {nP0; + 0 n },

l=l 

= 

TestS' Based·on Distances 

Let Y.1 ! y2 ~ ~ yn denote the ordered observations in 

a canplete sample of size n and the probability i·ntegral trans­

formation be denoted by 
y. 

z1 f(x) dx=I-~ 
Let 

0+ = N(lX . i{n- Z;} and
1 ' i ~ n 

The test statistics based on distances are as follows: 

Cramer-Von Mises 



..g.. 

0Kolmogorov-Smirnov D= max {0+ , D - }, 

+ -Kuiper V = D + D • 

Watson z. 
1 

Anderson-Darling A = l [:-{ I (2i - l)(log z. + log(l -z ,. + 1 ))}]-n- n i=l · 1 n-

If we consider a random variable z, connected with x by the 

re;ation z =(,. f(x)dx, then z is monotonic non-decreasing function 

of x and o <z <1. Further if f(z) is the p.d.f. of z then 

f{z) = f{x) ~~ =1 • 

Hence in the interval [o,l] all values of z are equally 

likely, or z is uniformly distributed in the interval [o,l], no 

matter what the probability function of x. Therefore, if we have 

n independent random observations x. 1s (i'= 1,2, ••• ,n) following 
1 ° 

a known continuous probability distribution which is completely 

specified by H , the hypothesis to be tested, then by means of the 
0 

transformation 

the x1•
I 

5 can be transformed into n independent random observations 

z.~~ which are uniformly distributed. 

Thus, if we consider the Kolmogorov-Smi rnov test D, the distr~ 

tton of D is independent of F
0 

• Tables of percentage points of D 

1 
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for various values of n are given by Birnbaum [3], Miller [14] and others. 

This test has at least two advantages over Chi-square test: 

{i.} It can be used ~ith small sample sizes where the validity 

of Chi-square test would be questionable. 

{ii) It is ~enerally more powerful than Chi-square test. 

2.3 Composite Hypothesis 

This case arises when only the functional form of F
0 

is given 

but one or more of the parameters s;'s (i =1,2, •• , s) are unspecified. 

This case is in fact of more relevance since situations are extremely 

rare in practice where the c.d.f. to be tested is completely specified. 

The following test statistics 

(y. _ j)3 I [ ~ (y. _ j)2 ]3/2 ,~ =rn I 
n 

1 1=1 1 .i=l 

n 
= n Ib2 1=1 

and 

are a11 'Scale and origin invariant and hence are appropriate 

for testing the composite hypotheses. 

It is well-known that the classical Chi-squar-e test of goodne 

of fit can be modified to fit this case by proper~r es~imating tl 

unspecified parameters. 
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In estimating the parameters for this test, one may use maximum likeli­

hood (or equivalent) estimates based on 

(i) the cell frequencies or, 

(ii) the original observations. 

If only the numbers ni of observations falling into the ith 

of the k cells are available, there is no difficulty. In this case 

let p01 be any best asymptotically normal (B.A.N.} estimate of Poi' 

such AS minimum Chi-square or maximum·likelihood estimate. Then 

under certain suitable regularity conditions, the asymptotic distri­

bution of 

... 2 
... k (ni ~ nP0 ;)
R = r 

i=l nPoi 

fs t~at of a Chi-square with (k-s-1) d.f., where sis the 

number of parameters being estimated. 

If the original observations x1, x2, ... ,x are available 
. n ' 

one is tempted to use more efficient estimates, such as the maximum 

likelihood estimate p
,. 

01 based on all the data. The distribution of 

2 
k (ni - nP

1\ 

0;)
R= I 

i=l np
0
i 

differs from that of R. If we let 

k (n; - nP0;) 
2 

R =I nP0;i=l 
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which. has a limiting Chi-square distribution with (k-1) d. f., then 
-

limiting distribution of R lies betwe~-n .those of R and R. Chernoff 

a Lehman,. I5J have s.hown that the asymptotic,. distribution of R is that of 

k-s-1 k-1 
f U. 

2 
+ l .A1 U; 

2 
' 

i~l 1 i=l 

where ui •s are independently normally distributed with zero mean, 

and unit variance and Ai's are between o and 1 and may depend on 

the s parameters a1, a2 , ••• , as. 

But there are several objections_to this test, such as the 
11 11lack of proper estimates in many situations and the arbitrariness 

in the choice of the class intervals. Also its validity is questionable 

when the sample size n is small. 

- Bearing in mind that the Kolmogorov-Smirnov statistic D has, 

in general, a higher power than Chi-square statistic when H
0 

is 

simple, one might try to modify D to the case when H
0 

is composite. 

If we replace unknown parameters by sample estimates, the zi 's 

obtained by the probability integral transformation will no longer 

be independent, neither will they be uniformly distributed. 

D.avid & Johnson [7] have shown that if F
0 

depends only on 
,.. ,. 

a location a, anda!cale a,and e and a are 11 proper11 estimates of a 

and a respectively, then the distribution of the random variable 

z = F (x; e, ~) under H depends only on the functional form of F
0 

,
0 0 ,. 

but not on the parameters a and a. Thus if Dis defined by 

,.

D= Sup 




where S (x} is Empirical Distribution Function9 then the n 
~ ~ 

distribution of D is non-parametric, and therefore D can be used 

as a test statistic. Its percentiles are given by Lilliefors [12]Sl 

[13] for the normal and exponential distributions using Monte Carlo 

cal cul ati·ons o He has a 1 so shown that in these two cases the test · 
~ 

based on D is more powerful than the Chi-square for any sample size 

against certain alternativeso 

Another modification of D based on the unique minimum variance 

unbiased estimator of F
0 

· is given by Srinivasan [23] as follows: 

Assume that F (x; e1, e2, •• , es) is such that t 1Sl t 29gect
0 5 

are joint complete sufficient statistics for the parameters e1, e2,.ee,e •
5 

For a fixed real number u.define, the random variable Z as 

Then it is obvious that Z is an unbiased estimator of F {u; e1, e2, ..• ;e ).
0 5 

under H , and by the Rmo;..;Blackwell_theorem,
0 

-
Define the statistic D as 

D~Sup jsn(x)- F0 (x; e1, e2, ... ,es)l 

...co ' X ~ oo 
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... 
If the distribution of Dis independent of a1, e2, ••• ~es 

then it would serve as an appropriate statistic for testing H •
0 

Srinivasan [2~ has derived the estimator F for the case of normal, 
0 

mean and variance unknown, and exponential, e = o and a unknown, 

and showed that D is non-parametric in both cases • 
... 

The percentage points of D for various values of n have been 

tabulated by Srinivasan [23]. If we choose the alternatives to be 
... 

lognormal and Chi-square with 1 d.f., Dis slightly more powerful 

than the test given by Lilliefors [12], [13] (see also Schafer et. al. 

[17] ). However, no general recommendations can be made regarding 

which test is to be preferred in a given practical situation since 

the choice would obviously depend on the alternatives that one has 

in mind. 

Shapiro & Wilk [19] proposed a statistic Wwhich is obtained 

by dividing the square of an appropriate linear combination of the 

order statistics by the usual symmetric estimate of variance. Let 

...~ ' = ( '1, ~, .. , an) denote the vector of expected va1ues of standardized 

normal ordered observations and~ =~;j) be the corresponding n x n 

variance - covariance matrix. 
I 

tion with mean ).land variance the best linear unbiased estimator 


Let y 
... 

= (y1, y2, ••• ,y) denote 
n 

a sample of ordered observa­

tions. If the .Y;·~come from a random sample from a ~ormal distribu­
2 a , 

of a is 
a 

1 

v-l y
(] = ... ­

a
1 v-l a 

provided v-l exists. 
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Let denote 

the usual symmetric unb1ased estimate of (n..l)a2• 

for testing for normality is defined as 

(a • y)2 
w= ... 2 ' 

s 

TheW test statistic 

The coefficients {a;} are the normalized best linear unbiased 

coefficients tabulated in Sarhan &Greenberg {16]. 

Wis scale and origin invariant and hence is appropriate 

for a test of the composite hypothesis of normality. It has not 

been possible, for general n, to obtain an explicit form of the 

distribution of W. Shapiro &Wilk [19] have supplied percentage 

points of the null distribution of W for samples of size 3 to 50. 

Subsequent investigation revealed that this test has good power properties; 

see Shapiro et. al. [21]. It is an omnibus test, that is, it is 

appropriate for detecting deviations from normality due either to 

skewness or kurtosis and is generally superior to 11 distance 11 tests. 

It also generally dominates standard tests J61 , b2 and u for testing 

for normality. 

Shapiro and Wilk did not extend their test beyond samples 

of size 50. A number of reasons indicate that it is best not to 
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make such an extension. D'Agostino [6] presented a test D of 

normality applicable for samples of size 50 or larger which possesses 

the desirable omnibus property. 

The statistic D is defined as. 

TD -- -r' 
n sr

where 

. n 
T = l .{1 - ~(n + l)l Y; , 

i=l 
and 

1 be1ngS ,. ·2-- - L ~ (x.. - x-) 2 , x - . the samp 1e mean. 
n i=l 1 

If the sample is drawn from a normal distri·bution, the ex­

pected va1ue of D and its asymptotic standard devi.ati on are, respectively, 

E(D} = (n-1)
_21(2 nrr) 

) 

and 
.02998598a.s.d.(D) =---- • 

An approximate standardized variable, possessing asymptotically 

mean zero a~d variance unity, is 

• 
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Values of the percentage points of y, obtained using the Cornish­

Fisher expansion, are available for a number of different sample 

sizes. The statistic D is most powerful when the type of deviation 

from normality is unkno~n. Simulation results of powers for various 

alternatives, when the sample size is 50, indicate that the test 

. compares favourably with the Shapiro-Wilk W test, lb1, b2 and u, 

A test statistic forthe exponen-tial di$tributi·bn can be obtaine 

using the same· principle as employed in defining the W statistic 

for testing for normality; see Shapiro &Wilk [20]. The -~J.-exponenti al 

statistic for testing the composite hypothesis of exponentiality 

is!P therefore, 

where 

s2 = .I 2 
1=1 (yi - y) ® • 

The null distribution of W was studied through empirical 

sampling. The empirical ctimulative distribution of W was obtained 
. ' 

for sample size~n =2(1)100; see Shapiro &Wilk [20]~ 

2e4 Other Tests For Exponentiality 

Given a random sample x ~ x2, •• o,Xn9 we wish to test the1 
hypothesis that this sample comes from an exponential distribution. 

let y1 'y2 ~e~~·'Yn denote the above sample observations arranged 

in ascending order of magnitudeo 



Under the assumption that this sample comes from an exponential · 

distribution with p.d.f. f(x} = l exp {-x), (x > o, a > o), it is a a 

well known that 

are independently distributed, each having the same exponential density 

f{x). The following test statistics have been proposed; see Bartholomew I2]: 

n .. 
M= -2{ I log D; - n log D} ,

i=l 

1 n o1 2 
s = -2 I . <~> 

n i=l D 

w= I lo· - nl I 2nD ' 11=1 

where 

...D= l I Di • 
n i=l 

/Jackson [10] gave a test statistic which is based on a direct 

comparison between the ordered observations and the corresponding 

expected values of the order statistics. If y1, y2, ••• ,yn are the 

order statistics for a random sample from the distribution with p.d.f. 

exp (...!.), it is known thatr:r a 

r 
l E(y ) = I (n - i + 1)-1 =t~, say. 
a r 1=1 • ·• 

l 
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Then the test statistic is 

n n 
Tn = r~l tr y·; l Yr· 

n r r=l 

The distribution of T tends asymptotically to normality. n 

Two techniques, based on the transformations, J and K, of 

the observations x1 for testing for exponentiality have been proposed 

by Seshadri, Csorgo and Stephens [18]. 

Transformation J: 
r 

Let Z = I x./s {1 ~ r ~ n-1},r . 1
1=1 

where 
n 

s = \ x.. 
I,i~l 1. 

Then zr are (n-1) ordered random variables from U(o,l), the uniform 

distribution between o and 1, if and only if xi have an exp'on·en t i a 1 

distribution with parameters a and a. 

Transformation K: 

where 

{yo= e), 

d; ~ o. =-- for all i, where SA= l 
1 SA i=l 

and 

(1 ~ r ~ n-1}.' 



Then zr 
t 

are (n-1} ordered U(o,l) random variables if and 

only if Y; are ordered observations from exponential .distribution 

wtth parameters e and a. 

In the· practical applications, e is not known, so that d1 

cannot be calculated. D; must be found omitting d1, ie., 

Di 
-
-

d. 
1* s 

(2 ' 1. 1}' n­ ' 

where 
* s r= I 

i=2 
d; , 

and 

(2 ~ y ~ 	n-1) • 

Therefore, under the null hypothesis, 

(i) 	 the J transformation yields a set of (n-1) observations from 

U(o,1}, and 

(ii) 	 the K transformation yi.elds a set of (n-2) observations from 

U(o,l). 

These two transformations enable·us to use the test statistics 

based on "distance 11 for testing for exponentiality, even though the 

parameters e and a are unknown. The statistics may be computed as 

+ 	 . i
D = max {- - z. }, 

; n 1 

-	 · { _ (i n-1 )J.D = max z. 
1 1 



. + ­D = max {D » D }, 

...zl­

and 
22 2 ­_.U · = ~J = n (z ..... 5) • 

It mays however, be noted that transformations with the data 

inflate the power and therefore exaggerate the power properties of 

these tests; see Durbin [9]o Shapiro & Wilk [20 p.370] mentipn other 

difficulties with such transformations. 

2.5 Tiku's T Test For Testing For Normality 

Tiku [27] proposed a statistic T,' based on a censored sample~ 

as a test for normality~ Since the end observations are more sensitive 

to non~normality~ especially to long tailedness, we censor r1 smallest 
' . 

and r2 largest observations to obtain the censored sample 

Under the assumption of normality, an efficient estimator 

of the population standard deviation a can be obtained as (see Tiku [25]): 
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where 

and 

here 

c = 
b·_1· \' 
l 

n i=a 

and 

. a 1and b1, and ~ and b2 are chosen to give good fits 

f(z) =~ e~ l , P(z) =1-Q(z) = [.,. f(z)dz, 

a. and b are functions of n. 

The approxim~te bias in crc is 

0 =_ 5 = f! n - 2~ 1/2c n I (x . -x1 •
1' 1=1 . 



The.statistic Tis defined as 


T is both, orgin and scale invariant. The mean of T is ap­

pr~ximately 1; see Kendall & Stuart [11 p.232]. For q1 = o, q2=[~+.6n]/n 
and q1 = = [~.3n]/n, a close approximation to the variance of Tq2 

is (see Tiku [27]) 

. . 

-.5- .0532(q1 + q2) + 1.1284(q2a 2 - q1al)], 

where 
I 

P( ~) = q1 and Q( t2) = 1 - P( t2) = q2• 

Small values of T lead to the rejection of H
0 

(H
0 

: the sample 

comes from a normal distribution). The distribution ofT under H
0 

tends to normality with increasing sample size n (effectively n > 30). 

The power of T against non-normal distributions is generally 

an increasing function of q1 + q2. For ~l + q2 >0.6, the power of T 

ts not much higher than for q1 + q2 = 0.6, and since for q1 + q2 >0.6, 

the null distribution of T tends to normality more slowly than for 

q1 + q2 = 0.6, the following choice of r1 = nq1 and = nq2 hasr2 
been suggested: 



(i) Choose = o and r 2 = [~ + 0.6n] if the non~normal distribu­r1 
tion is positively skewed, ie., has its longer tail on the right 

hand side. Note that if the distribution of x is negatively skewed, 

then the distribution of y = -x is positively skewed. 

(ii) Choose r = [~ + 0 .. 3n]and r2 = [~ + 0.3n], if the non.-normal1 

distribution is symmetric• 

.Of course, the assumption is that one has "a priori" knowledge 

whether the alternative non-normal distribution is skew or symmetric. 

Against skew distributions,and symmetric distributions having large 

kurtosis (ie., having long tails on both sides), Tis generall~ more 

powerful than W and other goodness of fit statistics. Against sym­

metric distributions having kurtosis less than 3, T has very low power~ 
. 

The lower percentage points of T for the above choice of 

r1 and r2 were determined empirically for_ sample sizesn =10(1) 30. 

For n > 30, the normal approximation of the distribution 

of T may be used, with E(T) = 1 and variance of T as V{T) given 

above; see Tiku [27]. 

It may be noted that T admits straightforward generalization 

to multi~sample situations·· Most of-the goodness~of-fit tests do not. 
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CHAPTER 	 3 

A NEW STATISTIC SIMILAR TO TIKU 1S T, 

FOR TESTING FOR EXPONENTIALITY 

3.1 	 Introduction 

Given a random sample x1, x2, ••• ,xn of s1·ze n, we want to 

test the null hypothesis 

H
0 

: that these observations come from an exponential dis­

tribution with p.d.f. 

f (x) =lexp{-(x-e}}, x > e, a> o
0	 a a 

(e, a unknown) ························~·{3.1.1), 
.against the alternative hypothesis 

H1: that these observations come from a non-exponential 

distribution. In practical situations, this alternative distribu­

tion will have a long tail on the right hand side. 

Let y1, y2, .•• ,yn denote the above sample observations arranged 

in ascending order of magnitude. Since the end observations on the 

right hand side would be particularly sensitive to long tails, we 

censor r largest observations to obtain the censored sample 



Under the assumption of exponentiality, Tiku [26] obtained 

the following estimator of a from his modified maximum likelihood 

equation, 

. 1 n ...r , r 
a =I- I y. + qy - y1Jt (l~q), q =­c n i=l 1 n~r n 

The bias in crc is ....0 /(n-r} and .var.iance_ of. oc is. given by 

2 ·,. ~ 
V(oc} =a (n... r-1)/(n~r .); see Tiku I26]· 

Note that when r = o, 
l ~ ­a =S = - L y. - yl = y - ylc n i=l 1 

is the maximum likelihood estimator of a obtained from a 

complete·sample of size n, 
I. 

where 

y =l I Y; = l I x,. • 
n ·i=l n i=l 

The bias in S is -cr/n and variance of S is given by 

V(S) = (n-~} a 2 • 
n 

Define the statistic TEas 

= (1 - ~)ac/(1 - n~r)S , o < TE< •m 

Note that TE ;·s origi·n and scale inv~riant. 



.-2]... 

3.2 Mean And Variance Of TE 

For large n, the mean of TE is approximately 1; see also 

Tiku [27] and Kendall &Stuart Ill p.232]. For example, for q = 0.5, 

the empirical values of the mean of TE are: 

0.999 for n = 10, 
-1~000 for n = 20, 

. 0.999 for n =30, 
0.999 for n = 50. 

Variance of TE is obtained as 

(j 

V(_f.)
s 

where 


see Kendall &Stuart [11 p.232]. 

We notice that both, crc and $, are linear functions of order 
statistics y1, y2, •.• ,yn' ie., 

I 

cr = L y •c _ _ and s =m . y, 

where 

1
L

t 
= -r [- (n-1), 1 , .•. , 1 , r + 1, o, ••• , o],... n.. 


m 
I = -1 I ... (n-1 ) , 1 , . . . . . .. . . . . . . . . . . . . . . 1 ., ] • 
... n 



Therefore, Cov(ac,S) =L... ~~'where V ;·s the nxn variance.. covariance 

matrix of ordered observations. The elements of Vcan easily be 

obtained by using the relation 

1
V(y.) =Cov (y.,yk) = rl i 

J J i=l (n.-1+1) 2 


j < k 


{see Sarhan & Greenberg I16]}e 

Thus 

. . . . .·}. . . . . . . . l m 
pJY\2 

1 1 1 1 1 

-2 ~2 + --2 · · · n2 + -{n---}~2
n n (n..l} ~1


1 1 1 { 1 1

-2 -2 + 2.. ~ -2 + -- 2 + ••• + l) 
n n (n-1) n {n-1} ) 

The above expression can easily be simplified, and reduces to 

We therefore, obtain from equation {3.2.1) 

' 2 


( 1 . 1 ) 

V(ac) ... - n=r [ 1 1 ] 


· - - (l ~)2 n-r-1 - n:T · 
n· 

Thus 

.............................. (3.2.2). 




In spite of its approximating nature, equation (3.2.2) provides 

accurate values. For example, for r = n/2 and n = 10, 20, 30 and 100, 

equation (3.2.2} gives V{TE) = 0.136, 0.0525, 0.0369 and 0.0103-re­

spectively. The empirical values of the variance .for these values 

of n are 0.126, 0.0557s 0.0362 and 0.0102 respectively. 

3.3 Testing For Expo"nentiality 

We propose T~ as a test statistic for testing for exponentiality. 

As an omnibus procedure, the test based on TE is to be used as a 

two tailed test. However, if one knows "a priori" the class of 

alternative non~exponential distribution H1, one can improve the 

sensitivity of the test by employing the left or right tai-.1 . - Th; s ; s 

true, because for distributions having Js1 ) 2, the mean of TE shifts 

to the left, ~nd small values of TE will constitute the critical 

tail. For distributions with Js1 < 2, the opposite is true. 

Calculations show that the power of TE against some non­

exponential distributions H1 is an increasing function of q and for 

others, the power is rather a decreasing function of q. The choice 

q = [~ + O.Sn]/n ([k] being integer value of k) was a very good com­

promise. Besides, f~r this value of q, the distribution of TE 

tends to normality very rapidly. It may be noted that the asymptotic 

normality of TE can be established from the work of Moore [15], 

Shorak [22] and Stigler [24], and also follows from the fact that 

ac is asmptotically identical with the maximum likelihood estimator 

and therefore crc/a:crc/S is asymptotically normally distributed. 



3.4 Percentage Points of TE 

The nu11 distribution of TE was studied by empirical samplingo 

For sample size n = 10(1)20~ 30, 50 and 100~ the lower and upper 1%, 

2.5%~ 5% and 10% points of TE for the above choice of q were determined 

from Msamples~ where M= 15000 for n = 10(1)20 9 M= 10000 for n ~ 30, 

M~ 8000 for n = 50 and M=4000 for n =100. The percentage points 

are given in Table 1. The percentage points were not calculated 

for n < 10, because it is unlikely that orte will be doing a goodness­

ofpfit test with so few observations. 

3.5 Sensrtivity Properties 

The values of the power of TE have been obtained empirically 

(based on 2000 random samples) against some non-exponential distribu~ 

tions H1• For each sample size (n = 10,20,30,50) and alternative 

distribution, two entries are. given in Table 2, namely9 the prop·ortion 

which fell below a% po<aint, and the proportion which fell above 100 (1-~)% 

points; a::; l.Os 2.5 9 5.0 and 10o0e The sum of the t\11/0 ~ntries in 

the table is~ therefore, the power of a two tailed test of size 2a%. 

It may be noted that alternative non-exponential distribu~ 

tions fall into two categories with respect to the behaviour of TE 

statistic - those which lead to an excess of small values and those 

which lead to an excess of large valuesQ The statistic TE exhibits 

a shift to smaller values for alternatives with Pearson coefficient 

ls1} 2 (ls1 =2 for exponential distribution) and a shift to larger 

values for alternatives with le1< 2e 



-~ ... 


The values of the power of TE for ·some·signi·ficance levels 
,. 
are given in Table 3 and compared with the values of the power of 

Shapiro & Wilk [20] W~exponential statistic. It is clear that against 

alternative distributions with la1 > 2, TE is slightly more powerful 

than W-exponential and for alternatives w~th la1 < 2, its power is 

slightly smaller. On the whole, the two statistics W_and TEare 

of comparable magnitudes ~o for as their sensi_tivity to non-exponential 

distributions is concerned. It may be noted that the values of the 

power of W~exponential for Chi-square (v = ~) as reported in Shapiro 

&Wtlk [20] are in error. 

3.6 Null Distribution of TE 

As indicated earlier, the asymptotic normality of TE can· 

be rigorously established. To study its null distribution for small 

samples, we did extensive Monte Carlo simulations. For q = [~+O.Sn]/n, 
the empirical (a1, a2) values of TE for n =10, ·20, 30, 50 and 100 

are (0.013, 2.502), (0.002, 2.710), (0.000, 2.755}, (0.000, 2.885} 

and (0.000, 2.894), respectively;ji1 and s2 are Pearson coefficients 

of "skewness" and "kurtosis". As is indicated by these values, the 

dis~ribution of TE tends to normality with increasing sample size 


n(effectively n > 20). To verify this more fully, the empirical 


percentage points of TE were compared with the normal approximation; 


see Table 4. It is clear that for n > 20, the distribution of TE 


can successfully be approximated by a normal distribution with mean 


· 1 and variance given by (3.2.2). 



It may be noted that the distribution of Shapiro &Wilk W­

exponential becomes unmanageable with increasing sample size. The 

rapid co~vergence of the distribution of TE to normality seems there­

fore a considerable gain. 

3,7 The Statistic ~For Known Location Parameter 

If the location parameter _e in the exponential distribution · 

(3.1.1) is known, the estimator crc is given by (see Tiku [26 ]) 

n-r 
a ( ) =: { .[.\ Yt + ryn-r} /(lcn-'r"'J •C e i=l 

I 

Note that 

E(ac(e} )= a 
and 

For known e , define 
A A . 

TE(e} =ac(e)/a(e) , a(e) = y • 

The distribution of TE(e) is approximately normal with mean 1 and 

variance r1n(n-r)}. F~r r = [0.5 + 0.5n] and n > 10, the .normal 

approximation provides accurate values as is clear from the following 

values· of a.% points of TE(e): 



I 

Lower U~:2er 

o( 1 2.5 5 10 10 5 2.5 1 

Approximate .265 .380 .480 •595 
n=lO 

1. 41 1.52 1.62 1.74 

Empirical •346 .418 .496 .595 1.40. 1.50 1.58 1.66 

n=15 

Approximate . 359 .460 .547 .647 1.35 1.45 1.54 1. 64 

Empirical .413 .488 .558 e649 1.. 35 1.44 1.. 53 1 610 

n=30 

Approximate a576 .642 .700 .766 1.23 1. 30 1. 36 1. 42 

Empirical .590 .646 .699 .763 1.23 1.30 1. 35 1.41 

It may be noted that the power of TE(e) is, on the whole, 

of the same magnitude as Kolmogorov-Smirnov type test-statistics, 

D (Srinivasan [23])and 5 (Lilliefors [1~]) ;see Schafer et. al [17]. 

For example, we have the following values of the pov1er based on a 

two-tailed test of size 5%: 

n = 10 n = 20 
Alternative D 0 D 

,.. 

n n TE(e) n D 
n TE(e) 

Lognormal 

a=2.0 .67 . 61 .64 o90 .89 •91 

a=2.4 . 81 '. 77 .80 .97 .97 .97 

Chi-squared (v=l) .30 e25 •31 .48 .44 .47 



3.8 Generalization to Multisample Situation 

If Yl,i' Y2,1, ..•. ,y~j,i' i =1,2, .• ,k, are k independent 

samples of ordered observations from k exponential populations 

(1/a) exp{~(x-e 1 )/a} , i = 1,2, •. ,k, •.•. (3.8.1), 

with a common scale parameter a, then the k-sample versions of the 

above statistics are 

~ ( 1 . ) .., ~ (1 1 ·~.-1 ( 2)TE = . L 1 cr,.c1 ( J.. -:-1 S .. II! • • • • 3 • 8. ,~ 
1i=l nr~·r i '.. 1=1 ni J 

and if a1 •s are known 

Here n1-r1 

a = ( L y . . + r · y · - ni · )I (n·- r. ) , j=l J,1 1 n1-r1,, y1,1 1 1c1 

" and similarly for Si and a1 (a), 

(rt is the number of observations censored on the right hand 

sfde in the ;tfl sample}. Par large n1 , the distributi-ons of TE 

and TE(e} are approximately normal with mean 1 and 



\ 

It needs further study of the distributions of the above 

generalized versions of TEfor small samples and their power properties. 

\ 
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TABLE 1 

VALUES OF THE LOWER AND UPPER PERCENTAGE POINTS 

·oF TE 

UpperLower 

10% 5% 2.5% 1%,n 1% 2.5% 5% 10% ~ 

1.475 1.599 1.699 1.79910 .274 .346 .425 .536 

'11 1.499 1.636 1.745 1.875.259 .338 .418 .523 

•330 .413 .•481 • 583 
.. 

T.423 ·1.537 1.635 1. 73112 

1.434 1.559 1.657 1.76513 .321 .394 .475 .576 

1.382 1.489 1.578 1.662·.371 .445 .525. .62014 

1.393 1.503 1.594 1.70015 ·~375 .446 .518 .·608 

1.353 1.446 1.527 1.60616 .413 .491 .566 .645 

1.368 1.468 1.549 1.641·17 .395 .475 .552 .643 

1."327 1.418 1.497 1.57918 .451 .519 .587 .672 

1.338 1.434 1.506 1,59219 .447 ,515 .586 .666 

1.307 1.391 1.465 1.542.483 .552 .615' .69320 

1.247 1. 311 1.364 1.42930 .569 .629 .687 .752 
: 

50 1.181 1.234 1.279 1.329.674 .723 .764 .814 

1.128 1.166 1.194 1.233 
... 

100. ~ .766 .798 .832 .871 ' 
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TABLE 2 


VALUES OF THE POWER OF T E FOR LOWER AND UPPER f, 2 .·5 ;-:--5 and 10 

PERCENTAGE__ PQINTS_ •. 

n 

·10 

20 

30 

50 

% ( 1) (2) (3) . (4) (5) (6) (7) (8) (9) 

. '1 • 12 .00 .00 •97 .39 .00 . .65 .00 .00 
.00 .02 .03 .00 .00 .08 .00 .40 .04 

2. 5. .20 . 01 . 01 .98 .49 .00 .72 .00 .00 
·.01 .05 .07 .00 .00 .16 .00 .56 .08 .. 5 .28 .02 . 01 .98 .58 .00 .79 .00 •01 
.02 .09 .. 12 .oo .00 .27 .00 .70 .14 

10 .40 .04 .03 .99 .69 . 01 .85 .oo .02 
.. 03 .J7 .23 .00 . 01 .42 .00 .80 .26 

1 .28 .00 .00 1.00 .73 .00 .93 .00 .00 
.00 .04 .07 .00 .00 .30 .00 .87 •07 

2.5 .40 .00 .00 1.00 .80 .00 .96 .00 .00 
.00 .08 . 14 .00 .00 .46 . 00 .93 .15 

5 .48 •01 .00 1.00 .87 .00 .97 .00 .00 
.00 e 14 .23 .00 .00 . 61 .oo .97 .25 

~ 10 .60 .02 .00 1. 00 •91 . .00 .98 .00 •01 
. 01 .24 .39 .00 .00 .76 .00 .99 .-39 

1 .41 .00 .00 1. 00 .88 .00 .99· .00 .00 
.00 .07 .13 .00 .00 .58 .00 .98 .14 

2.5 .53 .00 .00 1.00 .93 .00 1 '00 .00 .00 
.oo .12 .23 .00 .00 .72 .00 .99 .24 

5 .63 . 01 .00 1.00 ~95 .00 1.00 .00 .00 
.00 •19 .35 .00 .00 .82 .00. 1. 00 .36 

10 .73 .01 .00 1. 00 .98 . 00 1. 00 .00 •01 
-· 00 32 52 00 00 .91 .00 1. 00 .52 
1 .66 .00 .00 1. 00 .99 .00 1. 00 .00 .00 

.00 .1 0 .30 . .00 .00 .89 .00 1. 00 .25 
2.5 .76 .00 .00 1. 00 1. 00 .00 1. 00 .00 .00 

.00 .20 .46 .00 .00 .95 .00 1.00 .40 
5 .83 .00 .00 1.00 1. 00 .00 1.00 .00 .00 

.00 .33 .62 .00 .00 .98 .00 1.00 .56 
10 .90 .00 .00 1. 00 1.00 .00 1~00 .00 .00 

. .00 .47 .75 .00 .00 .99 .00 1.00 .69 

(1 0) 

.22 

.00 

.30 

.00 

.36 

. 01 

.46 

.02 

.47 

.00 

.56 

.00 

.64 

.00 

.72 

. 01 

.65 

.00 
•71 
.00 
.78 
.00 
. 84 

.. 00 
·• 86 
.00 
.90 
. 00 
.93 
.00 
.96 
.00 

(1) Chi-square v= 1, (2) Chi~square v=3, (3) Chi-square v = 4, 
(4) Weibu11 k·= .2, (5) Weibul1 k = .5, (6} Weibu11 k = 2, 
(7) Lognormal cr = 2.4, (8) Beta a= 2, b =1, (9) Halfnorma1, 

· (10) Half Caucby. 
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TABLE 3 

VAlUES OF THE POWER OF TE AND W-EXPONENTIAL 

FOR 5, 10 AND 20 PER CENT SIGNIFICANCE LEVELS 

n = 50
Alternative 
 % 
 n = 30
n = 20
1l = 10 
.Hl 
W-Exp.W-Exp. W-Exp.W-Exp. TE TETETE 

.58
.76
.42
.53
.40 
 .28
Chi-Squared .21 
 . 17
5 


.54 
 .83 
 .73
.48 
 .40 
 .63
.30 
 .27
v = 1 
 10 


.9(}.55 
 .69 
 .83 


v = 3 


.38 
 .73
.43 
 •61
20 


.17
.08 .08 •10 
 .12 
 .20 
 .25
.065 

~ 

.33 
 .36
•19 
 .20 
 .26
•15
10 
 .11 
 •13 


.26 
 •31 
 .50
.22 
 .33 
 .47
.21 
 .40
20 
. 

•.46 
 .57
.35
.23
•14 
 .22
.08 •12
v = 4 
 5 


.. 69
.46 
 .62
•31 
 •35
.23
•18
. 13 
10. 

.52 . 
 .60 
 .75 
 .81
•39 
 •46
.29
20 
 .26 


1.001.00 1. 00•93 
 1.00Weibull k =.2 .98
5 


1.00 1. 00 1.001.00.98 
 .96
10 


1.001 .00 ·20 .98 
 1.00 1. 00e99 

.... 

.90
.80 
 .73 
 •93
k =.5 5 
 .43
.49 
 1. 00 .99 


.58 
 .54 
 .82
10 
 s87 .95 
 .94 
 1.00 • 99 


.89
.70
20 
 •91 
 .98 
 .97 
 1.00 1. 00~66 

Ali 1 l' dliiN~i'RlliAildi 



TABLE 3 (Conttnued) 


Alternative 
Hl 

% n 

TE 

= lQ 

W-Exp. 

n 

TE 

= 20 

W-Exp. 

n 

TE 

= 30 

W-Exp. 

. 
n 

TE 

. 
= 50 

W-Exp • 

k ~2.0 5 

10 

20 

•16 

.27 

.43 

.26 . 

.38 

.. 52 

.46 

•61 

.76 

.63 

.75 

.86 

.72 

.82 

•91 

.88 

.93 

.97 

.95 

.98 

.99 

.99 

1.00 

·1.00 

Lognormal, 
a =2.4 

5 

10 

20 

.72 

.79 

.85 

.67 

.77 

.. 84 

.96 

.97 

.98 

.93 

•96 

.98 

1. 00 

1.00 

1.00 

.99 

•99 

1. 00 

1.00 

1.00 

1.00 

1.00 

1. 00 

1.00 

Beta, 
a=2b.=l 5 

10 

20 

.56 

.70 

.80 

•72 

•82 

.• 90 

.93 

.97 

.99 

.98 

1.00 

1. 00 

.99 

1. 00 

l. 00 

1.00 

1. 00 

1.00 

1.00 

1. 00 

1.00 

1. 00 

1 .. 00 

1.00 

Halfnormal 5 

10 

20 

.08 

.15 

.28 

.11 

.18 

.30 

• 15 

.25 

.40 

.. 21 

.33 

.48 

.24 

.36 

.53 

.34 

.46 

.63 

.40 

.56 

.69 

.55 

•70 

.84 

.. 

Half Cauchy 

i 

5 

10 

20 

• 30 

.37 

~48 

.40 

.• 48 

~58 

. .56 

.64 

.73 

.68 

.74 

•81 

•71 

.78 

.84 

.83 

.86 

.90 

.90 

.93 

.96 

.95 

.98 

.99 



I 

-40­

TABLE 4 


lOOP PER CENT POINTS OF TE 


,p 

n = 20 . _. n = 30 n = 50 n = 100 

Empirical Approx. Emp. Approx. ·. Emp .. Approx. Emp. Approx. 

LO\'LE!r 
.01 

~025 

.05 

.10 

Upper 
.10 

.05 

.025 

.01 

.483 .•438 

.552 .526 

.615 .602 

.693 .690 
I 

1.307 1. 310 

1. 391 1.398 

1.465 1.474 

1.542 1.562 

.569 .553 

.629 .623 

.687 .684 

.752 •754 

1.247 1.246 

1. 311 1.316 

1.364 1.377 

1.429 1.447 

.674 .661 

•723 •714 

.764 .760 

.814 .813 

1.181 1.187 

1.234 1.234 

1.279 1.286 

1.329 1.339 

I 

\ 

•766 •764 

.798 .801 

.832 .833 

.871 .870 

1.128 1.130 

1.166 1.167 

1.194 1.199 

1.233 1.236 
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