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ABSTRACT

Several test statistics, which are known, can be used for test-
ing for exponentiality. A new test statistichE is propose&. Te is
based on a censored sample and is similar to Tiku's T statistic for
testing for normality. .The distribution of TE tends to normality with
increasing sample size. Besides, TE is easy to compute and is both
origin and scale invariant.- The power-of TE for non-exponential dis-

tributions is comparable with Shapiro & Wilk statistic W-exponential.
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PREFACE

Occasions arise in statistical practice when it is necessary
to test, whether a random variable x has fhe exponential distribution,
on the basis of n independent observations. Examples are to be found
in 1ife-testing where x measures the length of 1ife of, say, an electropic
tube and also in the study of the distribution of intervals between
events occurring in time, e.g., time between failures for a demonstra-
tion test of a system.

Several test statistics (Karl Pearson xz, Kolmogorov - Smirnov D,
Cramer - Von Mises wz, Kuiper V, Anderson - Darling A, Watson Uz, Shapiro
and Wilk W-Exponential), which are known, can be used for this problem.

A new stétistiq TE for testing for exponentialipy, similar to
Tiku's T statistic for testing for normality, is propo;ed. TE is origin
and scale invariant énd is easy to compute. The distribution of TE tends
to normality very rapidly with increasing samp]é size n (effectively
n > 20). Against non-exponential distributions wTﬂwskewheSSV%] > 2
(the skewness of exponential), TE is slightly more powerful than Shapiro
and Wilk w-Exponentfal, although against non-exponential distributions

with /81 < 2, the power of TE is slightly smaller than W-Exponential.
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CHAPTER 1

TESTING FOR DISCRIMINATION BETWEEN TWO MODELS WITH UNKNOWN
LOCATION AND SCALE PARAMETERS

When one wishes to select one of the two, location and scale
parameter models, the values of the parameters being unknown, one must
have a test which takes the alternative model into account. Let X1 Xo»
xn-be.a random sample from a diétribution with density function fo(x;e,o)

or f](x;e,o) where

1

fj(X;esO') = p

gj(x;S; =0 < § <o, 0 >0,

. X=-8
g, and g, are functions of ( = ).

Suppose that the null hypothesis is

Ho: x fo(x;e,o) = %- 90(559 s

and the alternative hypothesis is

-0
H]: X f](x;e,c) = %‘ 9](53-)

Let LR be defined by

n
Max T f1(xi;e,o)
_ 8,0 i=1
IR = &

n
Max T f _(x;30,0)
8,0 i=1 01 .



In gener‘a1 » if X-l ) XZ’ seey X n r.epr.esent n 1ndependent observa-

t1ons on a continuous variate x whose density. funct1on is of the form

X-6
A

f(x 0,0) =

Q|—l

(9:0‘) e 2, = {(930'); -0 < § < ®, g >0},

then the 1ikelihood function is given by

n (xi_ej
mog
i=1

1
L(x3;06,0) = —
"

If o, and o, represent the true values of ¢ and o for a given
case, the density of the standardized variate z=(x-eo)/ o, is aiven by
g(z), which is independent of both the parameters.

The maximum 1ikelihood estimates of 6 and o are the values o

and o which satisfy

L(x;é,;) = Max L(x36,0),

Q
n X -5 n X.=-0
or A] n g i“ ) = Max 1 1 g{(—),
- (o)™ =1 o 2 (o) i=1 o
X; =0 8-0
i Yo
(-9 - (=Y

or .l ~
(6,)" fﬁﬁn i=1 o/a,
0



n
Q ag 1 (o]
(o,) (g )
- Yo
or ' ’ . *
1 2% Iyn 1 24"
(=" = g (—) =Ma§(f;)“ T g (—),
O =] og q i= o
where -
s =9 o =.e-eo
9 ]
S 0'0 S 0'0 ‘
r g e* 0-6,
o = — s =
% %

and zi's correspond to observations on a standardised variable. Since

* - A
s 6 and ag correspond exactly to the maximum 1ikelihood estimators

Q=0
of © and o when the sampling is actually on a standardised variate z.
Thus the joint density of 85 and ;s does not depend on 6 and ¢. There-
-fore the density of 55/55 is also independent of parameters; see Antle
and Bain [1]. |

From this it follows that the distribution of LR is independent
of 8 ahd o. Hence, for any location and scale parameter mbde] one can

construct tables for critical values; see Dumonceaux et.al. [8].

Thus for testing normality against exponentiality

LR =*Jn r (xiei)zl ?' (x.= min xi).

i=1 =1 1



One would reject Ho: that the observations are from a normal
population when LR exceeds its critical value.

'Simi1ar1y for testing exponentiality against normality

n N -2
LR=7} (x;- min x;) / Jn }o(x:=X)¢ .
i=1 ! i=1 !
If LR > critical value, we reject the hypothesis HO: that the
observations are from exponential population.
Note that the use of 1ikelihood ratio test necessitates specifica-

tion of the functional form of the alternative distribution.



CHAPTER 2

TESTING ANY HYPOTHESIZED DISTRIBUTION
AGAINST UNSPECIED ALTERNATIVES

2.1 Introduction

Let X1s XgseeeesX be a random sample of observations on a con-
tinuous random variable x with cumulative distribution function (c.d.f.)
-F(x) and probability density function (p.d.f.) f(x). The general problem
of goodness of fit consists in testing the null hypothesis HO: that
F(x) = Fo(x; 015 Bpseens es) for every x, against unspecified alterna-
tives. Here the ei‘é denote the parameters of the hypothesized c.d.f. Fo'
in the sequel fo(x; 815 Bpsenees es) will denote the hquthesized p.d.f.

Two cases of this problem are of interest:
case 1. Ho simple

case 2. H0 composite .

2.2 Simple Hypothesis
In this case the c,d.f. F0 under H0 is completely specified
as to its functional form (such as normality, exponentiality, etc.)
~as well as to the values of the parameters 8 involved. This case is
easier to handle and has been worked extensively and has a long and
well known history going back to Karl Pearson's Chi-square test.
In the standard application of the Chi-square test, thew observa-

tions in a random sample from a population are classified into k mutually



- b=

exclusive classes. The null hypothesis gives the probability Poj that an

th

observation falls into the i“ class (i = 1,2,.., k). The quantities

m.

§ T NP,y are called expected frequencies and

[ aer o
o
1]
—
-
[l Bl
3
1}
3

The joint density of the observed ni-g fa?]fng in the respective

classes is a multinomial distribution

nl

n n n
mT ol Pol T Pop 2 Poy K

The 1ikelihood function is

| k uk
: 1
Lings ngse-s me/Pops Pogs--sPg) = T (Pos)

On the other hand, if the true c.d.f. is F1(x), where F] may
be any distribution function, we may denote the probabilities in k classes
by Pyie i-= 1, 2,.., k and the 1ikelihood function by

n-
L(ﬂ]’ nz,..,.nk/ P-”, p12"" p]k) « (p]'i) !

wede
n=a=
e d

which is maximized when we substitute the maximum 1ikelihood estimators
-~ n' . N
Prs = 7 for by
Then the 1ikelihood ratio statistic for testing H0 against any

composite alternative hypothesis Hy: F(x} = F;(x) is therefore
1 1


http:falli.ng

L(n], 'ﬂzs- '9'ﬂk / po-!s pozs ] pOk)

L(ﬂ-ls NoseeesTy / p-”s p-|29 e p]k)

k P.s N
" 1 H 1.
i=1 4

Ho is rejected when L is small enough. The exact distribution of L

is unknown. However, as n > « and when ru) holds,

2700 (V=25 n Tog (4
- og (L) = n. log
i=1 ! " Poi
is asymptotically distributed as Chi-square with (k-1) degrees of freedom
(d.f.).
Karlv Pearson proposed the statistic
2 :
k (n; - m)
=) (2.2.2)
i=1 i ,
for testing Ho
As n —> =, under H x° follows Chi-square distribution with (k-1)d.f.
if m{Js~are known, |
The two distinct statistics (2.2.1) and (2.2.2) thus have the
same distribution asymptotically, given Ho‘ More than this, they are

asymptotically equivalent statistics when H0 holds. This is true because

1f we write a; = (n; - np i) / npgys

k R
-2log L=27] n; log (1 + Ai),
i=1



¥ o L2 -
= 2.21 {(ng = apyq) + npgi} (85 ~% 44 +0 (n 3/2y4,
1= '
5 "Poi , 2 -2
=25 Ung = nRoyday + Rgiag - 447+ 0ln T,
k
= I tomgg 457+ 0G7A),
i=1 .
= %2 g+ 06

TéstS‘Based'on Distances

let y; cyp = 2 Yq denote the ordered observations in
a complete sample of size n and the probability integral trans-

formation be denoted by

¥; |
zi = [ f(x) dx-
Let;
+ _ max s
D = T<isn {n 21} and
D- = max {z - l:l}
1<icgn i n
The test statistics based on distances are as follows:
. 2 _ ¢ 2i-1.2
Cramer-Von Mises We = , = £ 1
X 121' {24 2 120 °



Kolmogorov-Smirnov D = max {D%, D73,

D+ D .

Kuiper Vv

Watson U2 y

1 1

W - n(z -+5)2 ; 2=%

"~

i

1 e v (o
5 [ izl (2i - 1)(Tog z; + Tog(1 -z _ 5 , 1))}-n

Anderson-Darling A

If we consider a random variable z, connected with x by the

X .
relation z = j f(x)dx, then z is monotonic non-decreasing function

of x and o <z <1. Further if f(z) is the p.d.f. of z then
flz) = fx) & = 1.

Hence in the interval [o0,1] all values of z are equally
1ikely, or z is uniformly distributed in the interval [0,1], no
matter what the probability function of x. Therefore, if we have
- n independent random observations xi3s (i'= 1,24...5n) following
a known continuous probability distribution which is completely
specified by Ho’ the hypothesis to be tested, then by means of the
transformation

X

1
z; = I_ £(x;/H,) dxy,

-]

the xi'g can be transformed into n independent random observations
zilé which are uniformly distributed.
Thus, if we consider the Kolmogorov~-Smirnov test D, the distr

tion of D is independent of Fo' Tables of percentage points of D



for various values of n are given by Birnbaum [3], Miller [14] and others.

This test has at least two advantages over Chi-square test:

(i) It can be used with small sample siies where the validity
of Chi-square test would be questionable.

(ii) It is generally more powerful than Chi-square test.

2.3 Composite Hypothesis

This case arises when only the functional form of F0 is given
but one or more of the parameters ei’s (i =1,2,.., s) are unspecified.
This case is in fact of more relevance since situations are extremely
rare in practice where the c.d.f. to be tested is completely specified.

The following test statistics

RN CEL AV VR o

o
N
I

o 1
=0 5 -0t/ D ) by - 9E
i=1 i=1

and

[
n

T ) 101 Gy - 97 7

are all-scale and origin invariant and hence are appropriate
for testing the composite hypotheses.

It is well-known that the classical Chi-square test of goodne
of fit can be modified to fft this case hy properiy eé%imating t

unspecified parameters.
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In estimating the parametérs for this test, one may use maximum 1ikeli-

hood (or equivalent) estimates based on

(1) the cell frequencies or,

(1) the original observations.

If only the numbers N of observations falling into the 1th

of the k cells are available, there is no difficulty. In this case
Tet 301 be any best asymptotically normal (B.A.N.) estimate of Poi
such as minimum Chi-square or maximum 1ikelihood estimate. Then
under certain suitable regularity conditions, the asymptotic distri-

bution of

2
(n - "Pg4)

- ‘E
R= =
=1 1y

is that of a Chi-square with (k-s-1) d.f., where s is the
" number of parameters being estimated.

If the original observations X1s xz,...,xn are available
. ]

one is tempted to use more efficient estimates, such as the maximum
1ikelihood estimate ﬁoi based on all the data. The distribution of

“ ~ (2
.. g (n; = nPy;)

i

LI

differs from that of R. If we let

2
v k (n; - np.;)
R=§ i 0i

i=1 "Poi




which has a 1imiting Chi-square distribution with (k-1) d.f., then
1imiting distribution of R 1ies between .those of R and R. Chernoff

& Lehman. [5] have shown that the asymptotic.distribution of ﬁ is that of

k-s-1

k-1
2 2
u. + Z X u ]
i i=1 15

i=1
where ui's are independently normally distributed with zero mean,
and unit variance and Aj's are between o and 1 and may depend on
the s parameters 815 850005 B
But there are several objections to this test, such as the
Tack of "proper' estimates iﬁ many situations and the arbitrariness
in the choice of the class intervals. Also its validity is questionable
when the sample size n is small.
- Bearing in mind that the Kolmogorov-Smirnov statistic D has,
in general, a higher power than Chi-square statistic when Ho is
simple, one might try to modify D to the case when H0 is composite.
If we replace unknown parameters by sample estimates, the zi'S
obtained by the probability integral transformation will no longer
be indeﬁendent, neither will they be uniformly distributed.
David & Johnson [7] have shown that if F, depends only on
a location ¢, andascale c,and 6 and o are "proper" estimates of o
and o reSpectively,’then the distribution of the random variable

zZ= Fo(x; é, 5) under Ho depends only on the functional form of Fo’

but not on the parameters 6 and ¢. Thus if D is defined by

D = Sup Sn(x) - Fo(x; 9,0)



where S (x) {s Empirical Distribution Function, then the
d1str1but1on of D is non-parametric, and therefore D can be used
as a test statistic. Its percentiles are given by Lilliefors [12],
[13] for the normal and exponential distributions using Monte Carlo
calculations. He has also shown that in these two cases the test
based on D is more powerful than the Chi-square for any sample size
against certain alternatives.

Another modification of D based on the unique minimum variance
~.unb1ased estimator of Fo~is given by Srinivésan [23] as follows:

Assume that Fo(x; 815 O9se0s es) is such that ty, tys...t
are joint complete sufficient statistics for the parameters e], 92,,.,,63.
For a fixed real number u define the random variable Z as

'6,0f rwise
Then it is ébvious that Z is an unbiased estimator of Fo(u; e], 62,...;6s).
under Ho’ and by the Rao-Blackwell theorem, | |

N .
Fo(u; e.],Aez,v....,es) = E [2/t1, tz,...,ts]

is the unique minimum variance unbiased estimator ofF(}u; 01 929“.965)°

- Define the statistic D as

~

D = Sup Sn(x) = Fo(x; 075 ezg.ﬂo,es)

0§ X § ®
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If the distribution of D is independent of 81, 6,,...0
then it would serve as an appropriate statistic for testing Ho'
Srinivasan [ 23] has derived the estimator ?0 for the case of normal,
mean and variance unknown, and exponential, 6 = o and o unknown,
and showed that D is non-parametric in both cases.

The percentage points of D for various values of n have been
tabuTated by Srinivasan [23]. If we choose the alternatives to be
lognormal and Chi-square with 1 d.f., D is sTightly more powerful
than the test given by Lilliefors [12], [13] (see also Schafer et. al.
[17]1 ). However, no general recommendations can be made regarding
which test is to be preferred in a given practical situation since
the choice would obviously depend on the alternatives that one has
in mind.

Shapiro & Witk [19] proposed a statistic W which is obtained
by dividing the square of an appropriate linear combination 6f the

| order statistics by the usual symmetric estimate of variance. Let
J£= (cﬁ, <§,..,<%) denote the vector of expected values of standardized
normal ordered observations and y =<yij) be the corresponding n X n
variance - covariance matrix. |

Let yl = (y], yz,...,yn) denote a sample of ordered observa-
tions. If the‘_yj'gcome from a random sample from a normal distribu-
tion with mean 4 and variance 02, the best linear unbiased estimator
of o is .

>

)
0= =

o

<<

-1

a

L 3 U 4

provided V7! exists.
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n
Let 5? =} (yin&)z, y = %- § Yis denote

the usual symmetric unbiased estimate of (n—T)oz. The W test statistic

for testing for normality is defined as

(a y)?
¢
n
= (1 3 )2/ _21 (y; - 9%,
L i
where a: (a1,a2,...an) =a V@ vyt g%

The coefficients'{a.} are the normalized best linear unbiased
coefficients tabulated in Sarhan & Greenberg [16].

W is scale and origin invariant and hence 1s appropriate
for a test of the composite hypothesis of normality. It has not
been possible, for general n, to obtain an explicit form of the
distribution of W. Shapiro & Wilk [19] have supplied percentage
points of the null distribution of W for samples of size 3 to 50.
Subsequent investigation revealed that this test has good power properties;
see Shapiro et. al. [21]. It is an omnibus test, that is, it is
appropriate for detecting deviations from normality due either to
skewness or kurtosis and is generally superior to "distance" tests. |
It also generally dom1nates standard tests JB], b2 and u for testing
for normality '

| Shapiro and Wilk did not extend their test beyond samples

of size 50. A number of reasons indicate that it is best not to
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make such an extension. D'Agostino [6] presented a test D of
normality applicable for samples of size 50 or larger which possesses
the desirable omnibus property.

The statistic Q is defined as

D= —F
"2
Y
where
. on _
T=iz]{1-l§(ﬂ+])}.‘/i:
and
.2, 17% N2 =
1= — I (x; = X)®, x being the sample mean.
g5y

If the sample is drawn from a normal distribution, the ex-

pected value of D and its asymptotic standard deviation are, respectively,

-1y v3 %
E(D) = —2 e
2/(2 nn) V(%J

D i),

and
a.s.d.(p) = 02998598
Jn

An approximate standardized variable, possessing asymptotically

mean zero and variance unity, is

-1
_ D - (2Jm)
Y a.s.é.iD) *
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Values of the percentage points of y, obtained using the Cornish-
Fisher expansion, are available for a number of different_samp]e
sizes. The statistic D is most powerful when the type of deviation
from normality is unknown. Simulafion results of powers for various
alternatives, when the sample size is 50, indicate that the test
compares favourably with the Shapiro-Wilk W test, /bl, b2 and u,

A test statistic for the exponential distribution can be obtaine
using the-same‘princiPTe as employed in défining the W statistic
for testing for normality; see Shapiro & Witk [20]. The ‘kl.-exbonentia1
statistic for testing the composite hypothesis of exponentiality

is, therefore,

n(§~y1)2
(n - 1)s° .
where
2 n
2. 3 2
i=1 (.V-i'y) o

The null distribution of W was studied through empirical
sampling. The empirical cﬂmuiative distribution of W was obtained

for sample sizesn = 2(1)100; see Shapiro & Wilk [20].

2.4 Qther Tests For Exponentiality

Given a random sample Xy, XgseeosX s We wish to test the
hypothesis that this samp1e‘comes from an exponential distribution.
Let Yy € Yo €eoeesyy denote the above sample observations arraﬁged

in ascending order of magnitude.




Under the assumption that this sample comes from an exponential
distribution with p.d.f. f(x) = %—exp (-g), (x >0, 0 >0), it is

Well known that

-i+-| "'y-i) (i=]9 29-'0971)

. Di = (T'I“'i) (.Y

are independently distributed, each having the same exponential density

f(x). The following test statistics have been proposed; see Bartholomew [2]:

o -
M=-2{ } TlogD; -n log O} ,
S== 1 (=
nz i=1 D
W= ) |n1.-5|/2r.a :
i=1 |
where
--.I_n
D-n'ig] D'i

~Jackson [10] gave a test statistic which is based on a direct
comparison between the ordered observations and the corrésponding
expected}va1ues of the order statistics. If Yis Yaoeees¥y are the
order statistics for a random sample from the distribution with p.d.f.

1

1 F‘)L N .
= ©Xp ( o), 1t~1s known that

: J-E()=§(y i+1) V=t ,sa
. - g yl" i1 n-=- rn® .Y-.
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Then the test statistic is

_ 3 n
T~ rgl ten yf/rz] Ype
The distribution of Tn tends asymptotically to normality.
Two techniques, based on the transformations, J and K, of

the observations X; for testing for exponentiality have been proposed

by Seshadri, Csorgo and Stephens [18].

Transformation J:

Let Zr =

. .
21 xi/s (1 ¢« r¢n-1),
'l'-'

where

()
"
ev13
x

i

\

Then z, are (n-1) ordered random variables from U(o,1), the uniform
distribution between o and 1, if and only if X, have an exponential
distribution with parameters o and o.

Transformation K:

Let d,.=(n-1'+1)(y1-y1-_]) (1sisn)

where

(y, = 0),

D; = Ei- for all i, where S, = ? d;,

i SA A j=1 |
and

' r ,

Zr = Z D, (1 ¢ rgn-1).



Then zr' are (n-1) ordered U(o,1) random variables if and
only if y; are ordered observations from exponential distribution
with parameters 6 and o.

In the practical applications, 6 is not known, so that d1

cannot be calculated. D1 must be found omitting d], ie.,

4
Di-—-—* (zs'iSn-]),
A S
where
r
¥ = § 4,
i=2
and :
L ( )
Z = D 25sysn-l).
roysp i
Therefore, under the null hypothesis,
(i) the J transformation yields a set of (n-1) observations from

U(o,1), and

(i) the K transformation yields a set of (n-2) observations from

U(o,1).

-y~

These two transformations enable us to use the test statistics

based on "distance" for testing for exponentiality, even though the

parameters 6 and o are unknown. The statistics may be computed as

pt = max'{i-e 2.1,
i n ) i

Sl (1)
D m?x {z, - }



2] =

.Y

D =max {D' , D"},

v =0+,

'NZ N ﬁgl.{zi B 2%;;4}2 * %%hs
and
i - 5
It may, however, be noted that transformations with the data
inflate the power and therefore exaggerate the power properties of
these tests; see Durbin [9]. Shapirc & Wilk [20 p.370] mention other

difficulties with such transformations.

2.5 Tiku's T Test For Testing For Normality

Tiku [27] proposed a statistic T, based on a censored sample,
as a test for normality. Since the end observations are more sensitive
to non-normality, especially to long tailedness, we censor y smallest

and 92 largest observations to obtain the censored sample

yaS ya+“9°°"9yb (agr-l'}?, b'—' n = Y‘z).

Under the assumption of normality, an efficient estimator

of the population standard deviation o can be obtained as (see Tiku [25]):



where

and

here

and

q,
fl

(B + /(8% + 4AC)}/2A,

r-l . Y‘z
Q=5 9% =5 »A=1-9-0,

B = Qoog¥p - Q0 Yg - (q202 - q]d‘l)Ks

2 2 2 2
¥i~ + agbpyp” - abyy,” - (1-q4-g5+ayb,-q4bq )K

eSO

C = l
n

1=a

o

= (L .
K= G5 Lyy + agba¥y - aybyp)/ (1-ay-05%505-01¢),

“]and b], and 62 and b2 are chosen to give good fits

f(z)/P(z) I oy + byZ and f(z)/ Qz) = o + byI;

f(z) = 1

2 z
= Z 0, P(2) = 1-Q(2) = I_w f(z)dz,

a and b are functions of n.

The approximate bias in o is

- c/n(l-q]qu) ; see Tiku [28]. For qy = q, = 0

e .- ¢l 1 -2, 1/2
g.=9S= (=
c {n 151 (xi X) %

«22-
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The statistic T is defined as
T=0-Do/0-d)s , (A=1-q-qlosTew
n‘ ¢ nA ? 9 - 9 AR

T is both, orgin and scale invariant. The mean of T is ap-
proximately 1; see Kendall & Stuart [11 p.232]. For qy = 0, q2=[%+.6n]/n
and 9y = 9 = [%+.3n]/n, a close approximation to the variance of T
is (see Tiku [27])

V(M = L e-D% 0008 [7420-01-05) = (958, - ayoyty))

-.5- .0532(qy + q,) + 1.1288(qy0, - 9400,
where

P(Y) = q; and () = 1 = (%) = q.

Small values of T lead to the rejection of HO(HO: the sample

~ comes from a normal distribution). The distribution of T under Ho

tends to normality with increasing sample size n (effectively n > 30).
The power of T against non-normal distributions is generally

an increasing function of q; + Q,- For q; + 4y >0.6, the power of T

{s not much higher than for qy + a4y = 0.6, and since for 9; +q, >0.6,

the null distribution of T tends to normality more slowly than for

9y + 9, = 0.6, the following choice of ry = nq and ry = ng, has

been suggested:



(1) Choose ry=oandr, = [% + 0.6n] if the non-normal distribu-
tion is positively skewed, ie., has its longer tail on the right
hand side. Note that if the distribution of x is negatively skewed,

then the distribution of y = -x is positively skewed.

(ii) Choose ry = [% + 0.3n] and ry = [% + 0.3n], if the non-normal
distribution is symmetric. |
O0f course, the assumption is that one has "a priori" knowledge
whether the alternative non-norﬁa1 distribution is skew br symmetric.
Against skew distributions,and symmetric distribu;ions having large
kurtosis (ie., having long tails on both sides), T is generally more
powerful than W and other goodness of fit statistics. Against sym-
metric distributions having kurtosis less than 3, T has very low power.
The lower percentage points of T for the above cho{ce of
ry and r, were determined empirically for‘sample sizesn = 10(1) 30.
For n > 30, the normal approximation of the distribution
of T may be used, with E(T) = 1 and variance of T as V(T) given
above; see Tiku [27].

It may be noted thatT admits straightforward generalization

to multi-sample situations.. Most of the goodness-of-fit tests do not.
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CHAPTER 3

A NEW STATISTIC SIMILAR TO TIKU'S T,
FOR TESTING FOR EXPONENTIALITY

3.1 Introduction

Given a random sample X{s XgaeeesX of size n, we want to
test the null hypothesis
H : that these observations come from an exponential dis-

(]
tribution with p.d.f.

= 1 expi- (X8
fo(x) = exp{~-( )} x> 8,0>0

(6, o unknown) «...veiiiiiniiiiniann., (3.1.1),
against the alternative hypothesis '

H]: that these obserﬁations come from a non-exponential
distribution. In practical situations, this alternative distribu-
tion will have a long tail on the right hand side.

Let Yy yz,...,yn denote the above sample observations arranged
in ascending order of magnitude. Since the end observations on the
right hand side would be particularly sensitive to long taiis, we
censor r largest observations to obtain the censored sample

y" ’ .Y29-;~ ’yn-f‘ .



Under the assumption of exponentiality, Tiku [26] obtained
the following estimator of o from his modified maximum 1ikelihood
equation,

1 s’ ' r
o= Iy b Vit W -l (adia=y

The bias in o 1is g /(n-r) and variance of o is given by

o2(n-r=1)/(n-r ); see Tiku [26]-

V(cc)=
Note that when r = o,
_e1 ¢ - o
o= S=n L Y-y ¥oy

is the maximum Tikelihood estimator of o obtained from a
complete sample of size n, "
where

]X.i.

I o~~13

1
Yi = w

-ts
o~
-

2.1
Y= g i

The bias in S is -o/n and variance of S is given by
vis) = Lozl o2
_ n
Define the statistic TE as

o/ (1-1.)

5/(1-1)

T

. 1 . .
= (..I - ﬂ)GC/(] n_r)s' » 0 < TE<

Note that TE is origin and scale invariant.
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3.2 Mean And Variance Of TE

For large n, the mean of TE is approximately 1; see also

Tiku [27] and Kendall & Stuart [11 p.232]. For example, for q = 0.5,

the empirical values of the mean of TE are:

0.999 for n = 10,
1.000 for n = 20,
0.999 for n = 30,
0.999 for n = 50.

Variance of TE is obtained as

1,2
v(Tg) = 271) . v(-c-;—)
n-r
where ,
"E(o ) V(o) V(s) 2Cov(o.,s)

V(T)‘["(TJ L g T B®) T ERIEET e GE

c

see Kendall & Stuart [11 p.232].

We notice that both, e and 5, are linear functions of order
statistics Yis Ypoeees¥ps ie.,

: .
=LY ands=n Y,
where ' '
Y =D, ya, oo Yoo Yoer Yoers1 o Yols
¢ 1
E- =;_'1:F'["(n“1)s]9-0-3]9 T""], Oseees 0]9

3
i
|

—
1
~~
3
)}
—
S
-
—t
")
e ]
—d
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]
Therefore, Cov(oc,s) =LV m, where V is the nxn variance-covariance

~ .~

matrix of ordered observations. The elements of V can easily be

obtained by using the relation

2 1
V(y:) =Cov (y.,y, ) = o %
0T ew)?
j<

(see Sarhan & Greenberg [16]).

Thus - ]
1 .
COV(UCQS) = 0'2 ~L lz 1'2 ooooo To oo o veaesn __l Ln'

n n “2
11,1 1 +__]_.2_
né n  (n-1) n® (a-1)
1 1 1 é 1 1
LI I LI +, ..+
n? nt (n-1) n? (n~1)2 g
- ° -

The above expression can easily be simplified, and reduces to

2 (n=r-1)

Cov(oc,s) =0 TToor

We therefore, obtain from equation (3.2.1)

\1)
Cy A n=r
u(,-(]z [YIY‘]—_TH ]-

Thus




In spite of its approximating nature, equation (3.2.2) provides
accurate values. .For example, for r = n/2 and n = 10, 20, 30 and 100,
equation (3.2.2) giyes V(TE) = 0,136, 0.0525, 0.0369 and 0.0103 re-
spectively. The empirical values of the variance for these values
of n are 0.126, 0.0557, 0.0362 and 0.0102 respectively.

3.3 Testing For Exponentiality

We propose TE as a test statistic for testing for exponentiality.
As an omnibus procedure, the test based on Te fs to be used as a
two tailed test. However, if one knows "a priori" the class of
alternative non-exponential distribution H], one can improve the
sensitivity of the test by employing the 1left or right tail.. This is
true, because for distributions having By 2, the mean of TE shifts
to the left, gnd small values of TE will constitute the critical
tail. For distributions with J%] < 2, the opposite is true.

Calculations show that the power of TE against some non-
exponential distributions H] is an increasing function of g and for
others, the power is rather a decreasing function of q. The choice
q = [% + 0.5n]/n ([k] being integer value of k) was a very good com-
promise. Besides, for this value of q, the distribution of TE
tends to normality very rapidly. It may be noted that the asymptotic
normality of TE can be established from the work of Moore [15],

Shorak [22] and Stigiler [24], and also follows from the fact that
e is asmptotically identical with the maximum 1ikelihood estimator

and therefore cC/o:oc/S is asymptotically normally distributed.



3.4 Percentage Points of TE

The null distribution of TE was studied by empirical sampling.
For sample size n = 10(1)20, 30, 50 and 100, the lower and upper 1%,
2,5%, 5% and 10% points of TE for the abévé choice of q were determined
from M samples, where M = 15000 for n = 10(1)20, M = 10008 for n = 30,
M = 8000 for n = 50 and M = 4000 for n = 100. The percentage points
’éﬁe given in Table 1. The percentage points were not calculated
for n < 10, because it is unlikely that one will be doing a goodness-

anfit test with so few observations.

3.5 Sensitivity Properties

The values of the power of T have been obtained empirically
(based on 2000 random samples) against some non-exponential distribu-
tions HT' For each sample size (n = 10,20,30,50) and alternative
distribution, two entries are given in fab]e 2, namely, the proportion
which fell below o% point, and the proportion which fell above 100 (1-&)%
- points; o= 1.0, 2.5, 5.0 and 10.0. The sum of the two entries in ‘
the table is, therefore, the power of a two tailed test of size 2q%.

It may be noted that alternative non-exponential distribu-
tions fall into two categories with respect to the behaviour of TE
statistic - those which lead to an excess of small values and those
which lead to an excess of large values. The statistic TE exhibits
a shift to smaller values for alternatives with Pearson coefficient
J51> 2 (J31 = 2 for exponential distribution) and a shift to larger

values for alternatives with /B]< 2.
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The values of the power of TE for SOme'signfficance Tevels

;re given in Table 3 and compared with the values of the power of
Shapiro & Wilk [20] W-exponential statistic. It is clear that against
alternative distributions with ¢%1'> 2, TE is slightly more powerful
than W-exponential and for alternatives with Jel < 2, its power is
slightly smaller. On the whole, the two statistics W and TE are

of comparable magnitudes so for as their sensitivity to non-exponential
djstributions is concerned. It may be noted that the values of the

power of W-exponential for Chi-square (v = 3) as reported in Shapiro

& Wilk [20] are in error.

3.6 Null Distribution of Te

As indicated earlier, the asymptotic normality of Tp can
be rigorously established. To study its null distribution for small
samples, we did extensive Monte Carlo simulations. For q = [%+0.5n]/n,
the empirical (8;, 8,) values of Ty for n = 10, 20, 30, 50 and 100
are (0.013, 2.502), (0.002, 2.710), (0.000, 2.755), (0.000, 2.885)
and (0.000, 2.894), respectively;[E] and B, are Pearson coefficients
of "skewness" and "kurtosis". As is indicated by these values, the
distribution of Te tends to normality with increasing sample size
n(effectively n > 20). To verify this more fully, the empirical
percentage points of TE were compared with the normal approximation;
see Table 4, It is clear that for n > 20, the distribution of TE
can successfully be approximated by a normal distribution with mean

-1 and variance given by (3.2.2).



It may be noted that the distribution of Shapiro & Wilk W-
exponential becomes unmanageable with increasing sample size. The
rapid convergence of the distribution of TE to normality seems there-

fore a considerable gain.

3.7 The Statistic‘E For Known Location Parameter
If the location parameter 6 in the exponential distribution

(3.1.1) is known, the estimator o is given by (see Tiku [26 ])

c

. m=r
9 (o) =A{‘i§1 Yi + vy Mo -

Note that
Elog(e))= © .
and
V(o oy )= 0%/ (n-r) <
: c(o)
For known 6 , define

TE(O) = Oc(e)/g(e) . 8’(0) = 9 .

The distribution of TE(e) {s approximately normal with mean 1 and
variance r@h(n~r)ﬁ For r = [0.5 + 0.51] and n > 10, the normal
approximation provides accurate values as is clear from the following

values of o % points of TE(e)’



b ® X% had

Lower Upper

- 1 2.5 5 10 10 5 2.5 1
| ~ n=10
Approximate .265 .380 .480 .595 1.41 1.52 1.62 1.74
Empirical .346 .418 .49 .595 1.40. 1.50 1.58 1.66
n=15
Approximate .359 .460 .547 .647 1.35 1.45 1.54 1.64
Empirical .413 .488 .558 .649 1.35 1.44 1.53 1.61
_ n=30
.Approximate .576 .642 .700 .766 1.23 1.30 1.36 1.42
Empirical .590 .646 .699 .763 1.23 1.30 1.35 1.41 |

It may be noted that the power of TE(e) is, on the whole,
of the same magnitude as Kolmogorov-Smirnov type test-statistics,
6 (Srinivasan [23])and D (Lilliefors [13]);see Schafer et. al [17].
For example, wc have the following values of the power based on a

two-tailed test of size 5%:

| =10 _ n=20
Alternative D, ﬁn Tee) D Dy Te(e)
Lognormal
¢=2.0 .67 .61 .64 .90 .89 .91
o=2.4 .81 .77 .80 97 .97 .97

Chi-squared (v=1) .30 .25 .31 .48 .44 47
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3.8 Generalization to Multisample Situation .
If ¥y 49 Y2 500 - s¥ni, 1> 1= 1,2,..,k, are k independent

samples of ordered observations from k exponential populations
(1/0) expi-(x-8,)/c} 5 1 = 1,2,..,k,....(3.8.1),

with a common scale parametor o, then the k-sample versions of the

ahove statistics are

% (11— ).1 % (1171 (3.8.2)
T = 1e— c.a/ v Sieee..(3.8.2),
Eo gl eyt ety ) T
and if 05 s are known
K . ,
T = Z o K .
E(e) "4 “c;(e)/ 121 03(6) oinininiiinill.l(3.8.3).
Here
ni=Ty
031 = 321 Y5, T T y"i'ri i =y 0,3 (=)

and similarly for S. and o (s).

(Y} is the number of observations censored on the right hand

th

side in the i~ sample). For large ny» the distributions of Tg

and TE(e) are approximately normal with mean 1 and
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1

W) s L § () 28 (1)1
' -5 Ny=l.= - Ns*
E k2 =1 i'1i i=1 i ’

.k kA
V(TE(G)) - ‘k‘z { 1.2_-1 (ﬂ.i'r.i) —‘igl ([Li) N

A
y

It needs further study of the distributions of the above

generalized versions of TE for small samples and their power properties.



TABLE

1

VALUES OF THE LOWER AND UPPER PERCENTAGE POINTS

=36~

OF T, -
Lower Upper
n | 1% 258 5% 10% 05 5% 2.5% 1%
0| .274 .36 425 5% 1.475  1.599  1.699  1.799
1N | .250 .338 .418  .523 1.499  1.636 1.745  1.875
12| .30 .#13 - .481  .583 1.423  1.537 1.638  1.731
13| .31 .394 .475  .576 1.43¢  1.550  1.657  1.765
14| .31 .45 525 .620 | 1.382 1.489 1.578  1.662
5| .375 .46 .518 608 1.393  1.503 1.504 1,700
16| .413  .491  .566  .645 1.353  1.446  1.527  1.606
17| .35 475 552 .643 1.368  1.468  1.549  1.641
18| .451 519 .587  .672 1,327 1.418  1.497  1.579
19| .447 515 .58  .666 1.338  1.43%  1.506 1,502
20 | .483 552 .615  .693 1.307  1.391  1.465  1.542
0 | .569 .629 .687  .752 1.247  1.311 1.364  1.429
50 | .674 .723 .764  .814 1.181  1.23  1.279  1.329
00| .766 .798 .832 .871 {, 1.128 1.166 1.194  1.233




TABLE 2
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VALUES OF THE POWER OF Te FOR LOWER AND UPPER 1,2.5,75 and 10

PERCENTAGE POINTS.

(4) Weibull k= .2, (5) Weibull k = .5, (6) Weibull k = 2,
(7) Lognormal o = 2.4, (8) Beta a = 2, b = 1, (9) Halfnormal,

- (10) Half Cauchy.

no|% (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
11 .12 00 00 .97 .39 00 65 00 .00 .22
00 02 03 .00 .00 08 00 40 .04 .00
-10} 2.5} .20 01 01 .98 .49 00 72 00 .00 .30
01 05 07 .00 .00 16 00 56 .08 .00
15 28 02 01 .98 .58 00 79 00 01 .36
02 09 12 .00 .00 27 00 70 .14 01
10 40 04 03 .99 .69 01 85 .00 .02 .46
03 17 23 .00 .01 42 00 80 .26 .02
20| 1 28 00 00 1.00 .73 00 93 00 .00 47
00 04 07 .00 .00 30 00 87 .07 .00
2.5 .40 00 00 1.00 .80 00 96 00 .00 .56
00 08 14 .00 .00 46 00 93 .15 .00
5 48 01 00 1.00 .87 00 97 00 .00 .64
00 14 23 .00 .00 61 00 97 .25 .00
‘10 | .60 02 00 1.00 .91 .00 a8 00 .01 .72
01 .24 39 .00 .00 716 .00 99 .39 .01
3011 41 00 00 1.00 .88 00 99 00 .00 .65
00 07 13 .00 .00 58 .00 98 .14 .00
2.5],53 00 00 1.00 .93 00 1,00 00 .00 71
.00 12 23 .00 .00 72 00 99 24 .00
5 63 01 00 1.00 .95 00 1.00 00 .00 .78
00 19 35 00 .00 82 00 1.00 .36 .00
10 73 01 00 1.00 .98 00 1.00 00 .01 .84
. 00 32 Y 00 .00 9] 00 1.00 .52 .00
50| 1 66 00 00 1.00 .99 00 1.00 00 .00 .86
00 10 30 .00 .00 89 00 1.00 .25 .00
2.5} .76 00 00 1.00 1.00 00 1.00 00 .00 .90
.00 20 46 00 .00 95 00 1.00 .40 .00
5 83 00 00 1.00 1.00 00 1.00 .00 .00 .93
00 33 62 00 .00 98 00 1.00 .56 .00
10 90 00 00 1.00 1.00 00 1.00 00 .00 .96
< 1.00 47 75 00 .00 99 00 1.00 .69 .00
(1) Chi-square v= 1, (2) Chi-square v=3, (3) Chi-square v = 4,




TABLE 3

"~ " VAWES OF THE PQWER OF TE AND W-EXPONENTIAL

FOR 5, 10 AND 20 PER CENT SIGNIFICANCE LEVELS

A]tﬁrnative % n=10 = 20 = 30 n = 50
] .
TE W-Exp. TE w-E§p. TE W-EXxp. TE W-Exp.
Chi-Squared 51 .21 A7 | .40 .28 .53 42 1 .76 .58
v=1 | 10}.30| .27 .48 | .20 | .63 .54 | .83 | .73
201 .43 | .38 .61 | .55 | .73 .69 .90 | .83
v=3 5/.06{ .08 .08 | .10 | .12 a7 ] .20 | .25
100.11) .13 .15 | .19 | .20 .26 | .33 | .36
20{.21| .22 .26 | .31 | .33 .40 | .47 | .50
v=4 | 5f.08| 12| .14 | .22 |.23 | .35/ .46 | .57
10l.13] 18| .23 | .31 .35 | .a6| .62 | .69
20|.26 |. .29 | .39 | .46 | .52 | .60 | .75 | .81
Weibull k = 5/.98 | .93 {1.00 [1.00 {1.00 |71.00
100.98 | .96 {1.00 [1.00 |1.00 |71.00
20].99 | .98 |1.00 |1.00 {1.00 |1.00
a
k = 5(.40 | .43} .80 | .73 | .93 .90 |1.00 | .99
10/.58 | .54 .87 | .82 | .95 .94 {1.00 | .99
20|.70 | .66 .91 | .89 | .98 .| .97 {1.00 {1.00
continued, ...




TABLE 3 (Continued)

Alternative % n =10 n =20 n =30 n =50
r ‘ ‘
! T W-Exp. [T WExp.| Tp M-Exp.| Tp W-Exp.
k=2.0}, 5 |.16 .26 .46 .63 | .72 { .88 | .95 .99
10 {.27 | .38 | .61 | .75 ] .82} .93 .98| 1.00
20 .43 | .52 | .76 | .86 | .91 | .97 | .99 1.00
Lognormal, | 5 |.72 | .67 | .96 | .93 |1.00 | .99 | 1.00| 1.00
c=2.4 . '
10 {.79 | .77 | .97 | .96 |1.00 | .99 | 1.00] 1.00
20 {.85 | .84 | .98 | .98 |1.00 |1.00 | 7.00| 1.00
Beta,

a=2b=15 |.56 |.72 |.93 | .98 | .99 |1.00 | 1.00 | 1.00
10 |.70 |.s2 | .97 |1.00 |1.00 |71.00 | 1.00] 1.00
20 |.80 |.90 |.99 |1.00 {1.00 [1.00 | 1.00| 1.00
Halfrormal | 5 |.08 |.11 |.15 | .21 | .2a | .38 | .a0| .55
10 |15 |.18 | .25 | .33 | .36 | .46 | .56 | .70
20 |.28 |.30 |.20 | .48 | .53 | .63 | .69| .84
Walf Cauchy | 5 [.30 |.40 |.56 | .68 | .71 | .83 | .90| .95
10 (.37 | .48 | .66 | .74 | .78 | .86 | .93| .98
20 |.48 |.58 | .73 | .81 | .84 | .00 | .96 .99
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TABLE 4

100P PER CENT POINTS OF TE

n=20 | ..n=30 t n=250 n = 100
P Empirical Approx. | Emp. Approx. |- Emp. Approx.| Emp. Approx.
Lower .
.01 .483 T .438 .569 .553 .674 .661 .766 .764
.025 .552 - .526 .629 -623 .723 714 .798 . 801
.05 .615 .602 .687 .684 .764 .760 .832 .833
.10 , .693 .690 .752 .754 814 .813 .871 .870
Upper f
;IO_ 1.307 1.310 1.247 1.246 1.181 1.187 1.128  1.130
.05 1.391 1.398 1.311 1.316 1.234 1.234 | 1.166 1.167
.025 | 1.465 1.474 1.364 1.377 | 1.279 1.286 1.194 1.199
.01 1.542 1.562 1.429 1.447 1.329  1.339 1.233 1.236
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