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CHAPTER !·. 

INTRODUCTION 

A. General Survey 

The atoms in a crystalline solid vibrate about their 

mean equilibrium positions as a result of thermal fluctua­

tions at finite temperatures. Even at absolute zero there 

is zero-point motion. From a modern point of view, the 

foundations of the theory of crystal dynamics were laid 

down in a pioneering paper by Born and von Karman (1912). 

In the early days, interest in the thermal motions 

was mainly with a view to explain thermal properties like 

specific heat. In more recent times the emphasis has 

changed. The study of lattice dynamics is carried out 

mainly with a view to obtain better understanding of the 

nature of interatomic forces in crystals. This approach 

has been promoted with the advent of some new techniques 

which enable one to study the detailed motion of the 

vibrating atoms in crystals. Slow neutron spectroscopy is 

probably the most powerful tool now available'for experi­

mental studies of the internal dynamics of matter in condensed 

phases. 

Einstein (1907) first applied thequantum hypothesis 

to a crystalline solid. Debye put forward his famous theory 

of specific heats in 1912. The distibution of frequencies in 

a solid was considered from the point of view of an elastic 
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continuum; the medium is assumed to be isotropic and 

dispersionless. At high temperature Debye theory reduces to 

the classical Dulong-Petit law and at low temperatures one 

gets the T3 law of specific heat. This law was found to 

hold fairly well for many substances with the experimental 

results available at that time. The main reason for the 

success of this simple theory is due to the fact that the 

thermal properties are rather insensitive to the actual 

details of the frequency distribution function. The in­

adequacies of the Debye model were largely pointed out 

by Blackman (1935, 1941). He showedthat considerable devi-

ations from the Debye values exist at intermediate temper­

atures. He (1935) further pointed out that the experimental 

observation of T
3 

variation in the range (10-50°K) was not 

related to the real T3 region, which lies at a much lower 

temperature (~0°K). 

The shortcomings of the Debye theory can be overcome 

by giving a proper discussion of the atomic motions taking 

into account the crystalline properties of the substance. 

In the formulation given by BOrn and von Karman (1912), 

the discrete nature of the lattice and the dispersive 

property of the medium are taken into account. In a crystal, 

the atoms execute small oscillations. The motion of the 

atoms can be considered as superposition of the normal vibra-

tions, the characteristic vibrations, of the crystal. The 

normal vibrations can be considered as standing waves (a 

bounded crystal) or travelling waves (an infinite one) . 

The frequency v or angular frequency w of the normal 



vibrations, and the wavevector ~are related through the 

dispersion relation 

v = v. (a) or w = w. (q) (I.l) 
J :::iL J -

3 

The index j characterizes the vibration branch. These lattice 

waves are quantized in energy and are termed as "phonons". 

The Born-von Karman theory provides the link between the 

phonon dispersion relation and the forces between the atoms 

in the crystal. 

According to the underlying atomic forces, crystalline 

solids may be classified into the following four principal 

types: 

(i) Ionic Crystals, 

(ii) van der Waals crystals, 

(iii) Covalent Crystals 

(i v) Metallic crystals. 

Light is cast on the nature of the interatomic forces 

if the lattice vibrations are measured. Such measurements 

have been made, in particular by neutron inelastic scattering, 

for many substances (Brockhouse 1966; Dolling and Woods 

1965) . A study of the dynamics of the metallic alloys of 

Bi, Pb and Tl by neutron scattering forms the subject of 

this thesis. 

Substitutional disordered alloys of bismuth)lead 

and thallium exist, with a face-centred-cubic structure. 

It is possible to vary the conduction electron concentration 

in these alloys from about 3.1 to 4.15 electrons per atom by 

varying the constituents and composition. This offers an 

interesting possibility of studying the effect of conduction 

electrons on the lattice dynamics (Ng and Brockhouse 1968). 



B. Outline of the thesis 

Chapter I (section A) summarizes the general back­

ground of lattice dynamics with a brief historical intro­

duction. 

Crystal dynamics of metals and alloys are discussed 

in Chapter II. A discussion of the anharmonic properties is 

also given. 

Chapter III describes the theory of slow neutron 

scattering from solids with emphasis on alloys. 

The work presented in these chapters is not original. 

These chapters are intended to provide a framework within 

which the experimental results obtained during the present 

course of work and their theoretical interpretation can be 

discussed. 

The main body of work i~ contained in Chapter xV. 

The measurement of phonon dispersion curves in Pb 33Tl 67 is 

presented in Sec. B. The interest in this work lies in the 

fact that starting from Pb, for which the Fermi surface 

extends to the third zone, as the electron concentration 

4 

is reduced by adding Tl the third zone is expected to become 

virtually empty for the binary alloy Pb
33

Tl 67 . This feature, 

in turn, manifests itself in the dispersion curves and is 

discussed in Sec. F along with a comparative study of the 

electron-phonon interaction in the Bi-Pb-Tl system. In that 

section we also describe a somewhat detailed experimental study 

of the Fermi surface in Pb
80

Tl 20 by the neutron scattering 

technique which is perhaps the only tool available for 

investigating the Fermi surface in disordered alloys. 



A comparison between the dispersion curves for the 

alloy Bi20Pb 60Tl 20 and for pure Pb, which both have the 

same number of electrons per atom, is given in Sec. B. 

Further, the effect of the force constant disorder, present 

in the ternary alloy, on the phonon lifetime is discussed 

in Sec. H. 

Anharmonic damping and the temperature induced 

frequency shifts have been studied in some selected alloys. 

Measurements of thermal expansion for the Bi-Pb-Tl alloys 

over a temperature range of 100°K-400°K are reported. 

5 

An experimental method of obtaining the frequency 

distribution function, from neutron scattering results, for 

polycrystalline materials is described in Sec. G. This method 

has been used to obtain the lattice frequency spectra of Pb 

and Pb40Tl60 • 

Appendix I describes the characterisation of the alloy 

specimens used in the experiment by neutron diffraction 

technique. The determination of the sensitivity function 

and the resolution function of the triple-axis spectrometer 

installed at Chalk River is dealt with in Appendix II. 

Finally, .Appendix III contains a study of temperature depend­

ence of the zone-boundary mode propagating along the hexad 

axis in pyrolitic graphite. This latter work is not directly 

related to the main body of work presented in the thesis. 



A. Introduction 

CHAPTER II 

CRYSTAL DYNAMICS 

In a crystal, the atom may be considered to execute 

small oscillations. An important restriction on the 

validity of the theory of lattice vibrations is that the 

adiabatic approximation hold; this states that the electrons 

in the crystal follow the motion of the ions and adjust 

themselves instantaneously to the nuclear coordinates in 

the perturbed crystal. 

Lattice dynamics is traditionally discussed within 

the framework of the Bo~n-von Karman theory. This is a 

phenomenological theory in which the analysis is carried out 

using a set of interatomic force constants, analogous to 

Hooke's spring constants in a mechanical system. 

In metals, where the forces are relatively unknown 

the force constants may not always possess clear physical 

meaning. There have been reasonably successful attempts 

to study lattice dynamics of metals from a more fundamental 

point of view. We also discuss briefly these approaches in 

this chapter. 

6 



B. Adiabatic approximation 

Since in this thesis we will be mainly concerned 

with the lattice vibrations in metals and metallic alloys 

where the conduction electrons play an important role, it 

will be worthwhile to examine the validity of the adiabatic 

approximation in metals. 

7 

In the free electron picture a metal can be considered 

an ordered arrangement of ions embedded in a uniform 

compensating background of conduction electrons. The 

core electrons belonging to an ion are assumed to move rigidly 

and cannot be excited at the energies available. The valence 

electrons respond easily to screen out the local charge 

fluctuations generated by the vibration of the positive 

ion. In other words, the electrons follow the nuclear motion 

and adjust their wave-functions adiabatically in the perturbed 

crystals. The exclusion principle forbids transitions 

from one state to another. Chester (1961) has pointed out 

that motion of the electrons will be essentially adiabatic, 

except for those few with energy close to the Fermi energy. The 

adiabatic approximation may then be expected to hold good for 

properties in which the entire distribution of electrons 

take part, such as for the frequencies of lattice vibrations*. 

The adiabatic approximation introduces considerable 

simplification in the problem by separating the dynamical 

aspects of the electron and ion motion (Born and Oppenheimer 

* The adiabatic approximation may break down in the region of 

Kohn anomaly--see Chapter IV. 



1927). One finds (Sham and Ziman 1963) that the part of the 

potential energy of the ion system due to the presence of 

8 

the conduction electrons is just the total energy of such an 

electron system. This electron energy is a function of the 

lattice coordinates only, though strictly speaking it also de­

pends on the exact electron states. We will see later how the 

"bare" lattice frequencies (computed from the direct inter­

action between the ions--mainly Coulomb interaction) are to 

be "renormalized" to give the observed frequencies when the 

contribution from the electron gas is taken into account. 

A rather independent justification of this decoupling 

procedure has been given by Migdal (1958) using techniques 

of many-body theory. Because phonon frequencies are so low 

compared with typical electron "frequencies" (being of the 

order of lm/M where m is the electron mass and M is the ionic 

mass) the phonons may be regarded as an external field which 

is only weakly coupled to the electron gas. The corrections 

to the electron-phonon interaction may be shown to be of 

order (m/M) 112 relative to the terms one has kept. Finally, 

mention may be made of the concept of "neutral pseudo-atom" 

(an ion plus its screening charge) introduced by Ziman (1964) 

which makes the adiabatic approximation more plausible in 

metals. As the bare ion moves around, it carries its cloud 

of screening electrons with it. The field of an ion is however, 

not completely screened at moderately large distances. Friedel 

(1952) showed that at large distances the screened potential 

has an oscillatory behaviour. This is a possible source of the 



long range interactions in metals (Langer and Vosko 1959}. 

Having discussed the justification of the adiabatic 

approximation we give a brief description of the elements of 

the classical theory of lattice dynamics to introduce the 

notation and terminology. Detailed discussions can be 

found in Born and Huang (1954}, Maradudin et al. (1963}, 

and Ludwig (1967}. 

9 



c. Born-von Karman approach 

We shall consider a perfect crystal, having no 

impurities, vacancies or dislocations. Further, we confine 

ourselves to monatomic Bravais latticest The interaction 

between the assembly of the particles is assumed to be 

completely described by a potential energy. This potential 

10 

energy is supposed to be a function of the relative positions 

of the particles only. 

It is often difficult to discuss finite crystals. 

Therefore one uses an infinite crystal in many considerations. 

But since the potential energy of an infinite crystal di-

verges, one divides this infinite crystal into "macrocrystals" 

simulating in this way a finite crystal. It can be shown 

(Maradudin et al. 1963) that for the discussion of bulk 

properties this procedure is alright since surface effects 

give negligible contributions. This infinite crystal can be 

described in terms of the basis vector a. (i=l,2,3). In 
-1 

equilibrium, all lattice sites are given by 

R1 = L: R,'. a . 
i 

1...:.1 

where { R-.} stands for the integer components of R- extending 
1 

from -oo to +oo • 

With respect to every Bravais lattice there exists a 

reciprocal lattice which is defined by the basis vectors 

a.·b· = o ..• 
__!. =.2 1] 

After specifying the equilibrium positions of the lattice we 

can give the expansion of the potential energy about these 

positions, ~R,being the displacements of the ions from the 

equilibrium position. 
* The substances discussed in this thesis fall in this category. 



<t(RR, + UR,) = 

with 

ell ( RR,) + 
0 -

<fll E = 
a,t 

¢2 
1 = 2! 

<fll + 

<flt R, 
u a a 

E ;t I 
aB aB 
ttl 

¢2 + 

UR, 
a 

ct3 + 

R_l 
UB 

... 
11 

( 2. 1) 

(2.2) 

1 R_R_IR_II 
¢3 = -3.. E E ~ D 

R, R_l t" 
U U0 U 

aBy tt 1 R. 1 1 aiJy a fJ Y 

The subscripts a,S,y denote Cartesian components; ell is just 
0 

the static (equilibrium) potential energy of the crystal and 

= ( 2. 3) 

0 0 

The subscript zero means that the derivatives are evaluated 

in the equilibrium configuration. For finite crystals, 

<fl(Rt+~t) is properly defined. In infinite crystals, one 

considers usually the potential energy of one periodicity 

volume in order to avoid divergences. In any case, the 
R_R_I . R_R_I R_l 

coupling parameters ~aS have a definite mean~ng:--~aB u
8 

is 

the force 

displaced 

acting on 
R_l 

by UB • 

ion R. in a-direction if the ion R- 1 is 

A first approximation to lattice theory is obtained 

from (2.1) by dropping terms of higher than 2nd order in 

displacements. If one further takes the equilibrium positions 

defined by the minimum of the potential energy (~t = 0) , 
a 

independent of temperature then it is called a harmonic theory. 

However, such a harmonic theory does not account for 

a number of effects,such as,thermal expansion, the temperature 

dependence of elastic constant, the difference between specific 

heat at constant volume and constant pressure and many other 



12 
effects. These effects are strongly related to anharmonic 

terms in the expansion of the potential energy with respect 

to the displacements. Therefore, it is convenient to use 

the following procedure: the expansion (2.1) is performed by 

starting with unknown equilibrium positions Rt which are 

treated as parameters to be determined later by the equilibrium 

condition which is the minimum of the Helmholtz free energy. 

Now, the equilibrium position does not coincide with the 

position of minimum potential energy and therefore the ¢1-term 

does not vanish in general. However, for Bravais lattices it 

can still be shown ( Leibfried and Ludwig 1961) that ¢£ = 0 a 

as a consequence of inversion symmetry. Therefore, limiting 

the expansion (2.1) to the quadratic terms 

n-.( Rt + ut) "' ( Rt) 1 t t 
1 

t t 
1 

~ = ~o - + 2! ;B ¢aS ua uB ( 2. 4) 

££ 1 

This is called the quasiharmonic approximation because it is 

formally identicalwiththe harmonic theory but the coupling 

££ 1 

parameters ¢aS involve the temperature dependent equilibrium 

't' t pOSl lOns ~ 

The equations of motion are 

Mut 
a 

=- L: ¢££1 u£61 
Btl aB 

( 2. 5) 

The displacement ut of an atom t from its equilibrium 

position is given by the superposition of the displacements for 

the individual normal vibration, thus: 

t 1 t u = ~ L: A. (g)§_. (g) exp [i <sr.· R -wJ. (g) t}] 
IMN gj J J 

( 2 • 6) 

The amplitudes A determine the amount of energy carried. 



~j(~) is a unit polarization vector and~ is a propagation 

vector with magnitude equal to ~n, A being the wavelength 
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of the lattice wave. Considering the contribution of one of 

the components (~,j) of Eq. (2.6), we obtain from Eg. (2.5) 

a relation between the normal mode frequencies and the 

coupling parameters of second order, 

with 

2 w. (g) = 
J 

ED 0 (o)t; .(q)t; 0 .(q) 
a~ ~ aJ - ~J -aS 

1 ££I £ £I 
Dao (~) = M- E cp 0 exp [ -ig_e(R -R ) ] 

~ t 1 a~ - -

( 2. 7) 

(2.8) 

The three solutions w. (q), j=l,2,3 for each value of o are 
J - .:;!.. 

obtained by finding the roots of the determinantal equation 

det !D - w2 
II = 0 

Using the translational invariance of the lattice, Eq. (2.8) 

can be rewritten as 
1 t~tl t £ 1 t' 

D aS (g) = M ~ 
1 

cpa S [ exp (i ~ • ~ ) - 1 ] (2.9) 

Because of the structural identity of all unit cells, the 

summation does not depend on t, the position of the unit 

cell containing the "origin atom". 

The different allowed values of g_ are determined by the 

t well known Born-von Karman cyclic condition imposed on u • 

The allowed g_ values are given by 

a= 2n E (h./L.)b. 
~ . 1 1 -1 

1 
where L.a. are the dimensions of the Born-von Karman repeat units. 

1 1 

In practical applications of the Born-von Karman model, 

the interactions are assumed to exist between a particle and 

a limited group of neighbours. This limits the total number 

of force constants. The independent constants for a particular 



neighbour are those permitted by symmetry considerations 

alone. Further reduction on the number of force constants 

can be achieved by postulating a form for the potential, 

eg, that the force constants be derivable from a 

spherically symmetric potential. Another useful way of 

analysing dispersion relations along symmetry directions in 

terms of interplanar forceconstants has been proposed by 

Foreman and Lomer {1957). Lucid discussiomof these 

14 

different force. constant models can be found in the review 

articles by Brockhouse et al. {1968) and Joshi and Rajagopal 

{1968). 
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D. Anharmonic Effects in Thermodynamic Properties 

Thermal Expansion: We can write the Helmholtz free energy 

in the quasiharmonic theory (see, for example, Ludwig (1967)) 

hv. (g_) 
F = i1> (RJI.) + kT 2: Jl.n{2t>in~ Rf ] } 

qh 0 - gj 
(2.10) 

which is again the harmonic free energy apart from the fact 

that il> and the frequencies v. (a) depend on the position 
0 J ~ 

5I. parameters ~ . Now, we can determine the equilibrium posi-

tions by taking the derivative of Fqh as a function of cell 

parameter. It is more convenient to introduce the tensor 

of finite thermal strain £aB to describe the temperature 

variation of the cell data. In cubic crystals with the 

assumption of isotropic expansion, we can write £aB = noaB 

where n = ~a/a , fractional change in lattice constant. 
0 

Hence, in case of vanishing stresses in the equilibrium state 

aF h 
~=0 an 

ahv. (g) 
J [n. (a) + !1 

J ~ 2 
(2.11) 

5I. 
since only v. (g) depends on the parameter R or n. In thi~ 

J 

expression n. (q) is the mean thermal occupation number of an 
J -

oscillator (9., j >., i.e. 
- -1 
n = [exp(hv/kT) - 1] . 

- 1 If we introduce the mean thermal energy £(v, T) = (n+2 )hv of 

an oscillator we have, 

1 atn(v~ <s)) 
+ 2 r . a - £ 

SI.J n 
(v,T) = 0 (2.12) 



We define the GrUneisen constant 

2 
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1 <Hnvj (g) 
yj(q) =- 6 an = = - (2.13) 

where v is the volume of the unit cell. The change of ~0 
with thermal strain can be related to the elastic constants 

With zero mechanical stresses (Ludwig 1967) 

a ~ o = rNC aanv ar;- aS aa,~->~-> I 

where C aa are the elastic constants and N is the number aa,jJIJ 

of unit cells in thecrystal. Further, in cubic crystals 

3 c = - ' aa, SS X 

where x is the compressibility. Solving for n from (2.12) 

we finally obtain 

n = ~v r y j < si) E < v , T ) , 
gj 

and the coefficient of thermal expansion 

S (T} = = X r y. (g) aE(v,T) 
NV gj J aT 

(2.14) 

( 2. 15) 

If we are interested in a rough overall estimate of temperature 

dependence then we may replace the Grftneisen constant by a 

mean value: 1 
y = - r y . <.g) 'and take it 3N . J g,J 

outside the 

summation. The expansion coefficient is then propo.rtional to 

the specific heat in harmonic theory; vanishing as T3 with 

T-+0 and at high temperature (T>6 0 ) becomes a constant 

(Grttneisen 1926). 

Entropy and Specific heat 

Since the number of atoms in a crystal is very large 

and the eigenvalues are bounded and quasi-continuous, it is 

more convenient to deal with the frequency distribution function 

in discussing thermodynamic properties than with the individual 

frequencies. We define g(v)dv to be the fraction of 
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frequencies in the interval (v,v+dv) along with the normali-

zation condition 

Jg(v)dv = 3N 

In the harmonic approximation, there are three alternative 

ways of calculating the heat capacity 

a2F 
= -T( a=-2"'v 

T 

aE 
= < aT> v (2.16) 

where S is the entropy, F the free energy and E is the 

vibrational energy of the lattice. To obtain the anharmonic 

contribution, one can start with the harmonic expressions 

and allow the normal mode frequencies to vary with tempera-

ture. The correction derived from a harmonic expression for 

E approaches a constant value at high temperature (Stedman 

et al. 1967) whereas according to anharmonic theory it should 

vary as T. Cowley (1963) has found that harmonic expressions 

for free energy leadL to a change in the temperature dependent 

part of the free energy which is twice the amount obtained by 

more proper consideration of phonon-phonon interaction. Now, 

Barron (1965) has shown that to a first approximation entropy 

is the appropriate quantity for calculating the thermodynamic 

properties of an anharmonic crystal; the entropy can be calcu-

lated by using the frequency distribution, determined by in-

elastic scattering, in the appropriate quasiharmonic 

expression. Essentially this approach has been used to 

calculate the total lattice specific heat (including the 

anharmonic contribution) by· Stedman et al. (1967b) for Al ana 

Pb and by Miiller and Brockhouse (1968~1970) for Pd and Cu. 
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The lattice entropy of a crystal is given by 

S (T) 

J
vm hvT/kT 

= k 
0 

{ (exp(hvT/kT)-1) 

(2.17) 

vT and gT(vT) represent the frequencies and the distribution 

function as obtained in neutron scattering experiments at a 

temperature T. Since the measurements are normally carried 

out at constant pressure (essentially zero pressure) S(T) 

refers to the entropy at constant pressure at the temperature 

T. It is useful to express the frequencies and the frequency 

distribution function in the above equation for S(T) in 

terms of the quantities at some reference temperature T
0

• 

This reference temperature may be chosen to be the room temp-

erature or some other convenient temperature for which de-

tailed measurements of phonon frequencies are available so 

that the frequency distribution function is well determined 

at that temperature. 

The temperature dependence of the normal mode frequencies 

can be described by 

v . (T) = v . (T )G . (T) 
~J ~J 0 ~J 

G . (T) has an implicit dependence on T (reference temperature). 
~J 0 

Assuming that the relative frequency shifts of all modes are the 

same (this is equivalent to assuming an average Gruniesen 

constant for the crystal) we can write in a simplified notation 

v = v G(T) T o 
(2.18) 

also gT(vT}dvT = go(vo)dvo 
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Hence Eq. (2.17) can be rewritten as 

- tn(l-exp[-(hv
0

/kT)G(T)])} ( 2. 19) 

The lattice specific heat at constant pressure is then given 

by 

as 
= T(aT) [(hv

0
jkT)G(T)] 2exp[(hv

0
jkT)G(T)] 

= kJdvogo(vo) (exp[(hv0/~)G(T)J-) 2 

T(dG(T)/dT) 
{1- G(T) } (2.20) 

Thus, it is seen that from a knowledge of the temperature 

dependence of normal mode frequencies one can calculate the 

total lattice specific heat at any temperature T using the 

frequency distribution function at some reference temperature 

T . This procedure automatically ensures inclusion of the 
0 

anharmonic contribution in the calculation. 
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E. Fundamental Theories of Crystal Dynamics of Metals 

It has been found experimentally that the Fermi surfaces 

of the polyvalent metals (eg Zn, Al, Pb) are remarkably 

close to the appropriate spherical surfaces corresponding to 

the free electron gas. This indicates clearly that the periodic 

potential of the lattice has only a relatively small effect 

upon the energy bands in metals. However, the lattice 

potential itself is certainly not small. Near an ion core 

the potential acting on a valence electron is very strong 

and attractive and the wavefunction of the electron has an 

oscillatory behaviour in this region arising from the ortho­

gonalisation of the conduction electron wavefunctions to the 

core orbitals. Phillips and Kleinman (1959) noted that this 

orthogonalisation has the effect of a repulsive potential to 

be added to the true crystalline potential. The net effective 

potential has come to be called the pseudopotential which 

can be suitably chosen to be a weak potential. This feature 

makes it possible to use perturbation theory. Harrison (1962) 

applied such a calculation to a metal in a study of the band 

structure and the Fermi surface of zinc. Subsequently, this 

pseudopotential method has proved to be a reasonably success­

ful tool in calculating band structure, phonon spectra and 

atomic properties of a large number of metals. In the general 

formulation, the pseudopotential is a nonlocal operator. 

Further, some kind of nonuniqueness is associated with the 

choice of the pseudopotential (Harrison 1966). 
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The Diffraction Model 

We consider a metal containing N similar atoms, each 

atom contributing Z conduction electrons. The ions interact 

with each other through a central force potential Vd(R) which 

we call the direct interaction. We use the small core 

approximation i.e. we assume that adjacent cores do not 

overlap. Hence, the only important contribution to Vd(R) 

arises from coulomb interaction. 

At the same time, these ions interact with the conduction 

electrons through a weak central force potential w0 (r). 

R, Summing over the ionic positions R (i=l,N), the potential 

0 energy W (r) of an electron at r is given by 

w0 
( r) = r w 0 

( I E-RR- I ) * ( 2 • 21) 
R, 

It may be noted that at this stage we have not specified the 

arrangement of the ions. Hence, the model includes the case 

of perfect crystal i.e. a periodic array of atoms as well as 

a completely disordered system. 

Next we evaluate matrix elements of W0 (r) between plane 

wave states. We represent a normalised plane wave labelled by 

the state k as 

\jJk(r) = I~>= 1 
/Nir 

0 

ik•r e--

where n is the atomic 
0 

volume+ and N is the number of unit cells. 

We find that 

< k+o I w0 
<rH k> = s <o>< k+g_l w

0 
<r> I~> -- - (2.22) 

where g_ is a general vector in reciprocal space. 

* We will see in the next section that W0 (r) will be screened 

+ 
when we allow the electrons to interact with each other. 

For a monatomic solid n =v (volume of the unit cell) 
0 



The structure factor 

S(Q) = 'Q R, -1 •R 
e --
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(2.23) 

depends only upon the arrangement of the ions and is 

independent of the individual ionic potentials. The form 

factor 

< k+Q.I w0 <r> I k> = 

(2.24) 

is quite independent of the arrangement of the ions (except 

through a change of volume, Q }. The form factors are 
0 

simply the Fourier transforms of the inaividual ionic po-

tential& (As discussed before, the ion-electron interaction 

can be represented by a weak pseudopotential. However, 

this is immaterial for the present discussion). If we make 

the assumption that w0 (r) is a local potential rather than 

an operator then the form will depend only on Q and be 

independent of k. Therefore, in the local approximation we 

arrive at the simple result 

0 w (Q) = (2.25} 

A Simple Theory of Screening in Metals (Local Pseudopotential) :--

So far we have neglected the electron-phonon inter-

action in the sense that the problem has been treated as an 

electrostatic one in which point ions move in a uniform distri-

bution of negative charge which does not respond to their 

motion. If we consider the electron-electron interaction 

explicitly then the electrons follow the motion of the ions 

and screen out the interaction of the latter. This result 
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was first obtained by Bardeen (1937) in his classic paper. 

Screening plays such a fundamental role in the behaviour 

of metals that it has been aptly remarked by Harrison "that 

any understanding of metals which does not include a feeling 

for screening is in a sense illusory". 

We first study the screening of an ion in an electron 

gas. For its interaction with an electron we represent the 

ion by a fictitious positive charge distribution eZ(r) which 

is localised at the core. The ionic charge is given by 

eZ = ~ e,J Z (r)dr 
~' . a - -0 0 

Assuming that the charge distribution is spherically 

symmetric, we obtain the corresponding potential from 

Poisson's equation V2w0 (r)=-4ne 2Z(r). Taking Fourier trans­-n:::--
0 

forms we obtain 

. w 0 ( Q) = 4 ~ ~~ 2 z ( Q) ( 2 • 2 6 ) 
0 

Now, electrons will pile up around the ion with a charge 

distribution Ze(r) and will tend to screen out the field of 

the ion at large distances. Let us write this potential 

due to the conduction electrons as w (r) .(This is a potential e 

energy; it is the electrostatic potential times the electronic 

4ne2ze(Q) charge). It also follows that we(Q) = 

n o2 
0 

finally obtain for the screened potential 

= w0 
(Q) + w (Q) 
2 e 

= 4ne [Z(Q)+Z (Q)] 
n 0 2 e 

0 

w(Q) 

We 

(2.27) 

Applying first order peturbation theory to the wave equation 

for free electrons where w(r) is the perturbing potential, 
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we obtain for the perturbed wavefunction 

1/Jk (r) = 1 exp(i~·r) + _ ._l_ E < ~+g_lw(r) I~ 
INS10 INS1 0 9_ E~ - Ek+Q 

x exp [i (k+g_) · ~] 

Now I 2 iQ·r E [ 1/Jk(r) I -1] = E Z (Q)e- -, where the 
k::: k - Q e 

- F 

summation is carried over the occupied states ie. over the 

Fermi surface. EF and k_F denote the energy and wavenumber 

of an electron at the Fermi surface. Substituting the value 

of 1/J:k (r) , we obtain for a particular Fourier component of 

the electron density 

Now, 

= N~ w(Q) E E i 
~'o · k~kF k- k+g_ 

E 1 
k<_ kF Ek -E~+g_ 

2NS1 - J dk 
= --0-3 2 

(2rr) k ~[k2- (k+Q) 2 1 F 2m - - -

(2. 28) 

l-n
2 

ll+n I [1+~ ~n 1-n l' 

me2 2 
Defining £(Q) = 1 + [1 + l-n 

2 2 2Tl 
2rrkF11 n 

we can rewrite (2.28) as 

Q 

n = 2kF 

~nll+n ll 
1-n 

2 
Ze(Q) = ~ w (Q) (1-£ (Q)) 

4rre 

Using Eq. (2.27) 

and 

~e~O) = -Z(Q) (1-~) 

w(Q) = w0 (Q)/£(Q) 

(2.29) 

(2.30) 

( 2. 31) 
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E(Q) may be termed the static dielectric function for a 

free electron gas in the Hartree approximation since we have 

neglected exchange and correlation effects. It should also 

be pointed out that the present analysis is valid only if w 

is a local potential; the result is slightly more complicated 

if this cannot be done (Sham and Ziman 1963). In the 

general case the scalar E(Q) is a matrix£(~+~' ~ + G') 

whose rows and columns are labeled by the reciprocal lattice 

vectors. Also, the Fourier components of the bare ionic 

potential are not screened independently in this case. We 

remark here that the logarithmic singularity in the screening 

at Q = 2kF gives rise to similar singularities in the disper­

sion curves (See Chapter IV(F) for a detailed discussion). 

One can allow for exchange and correlation effects in 

the electron interaction in an approximate way without 

changing the form of Eq. (2.31). Based upon Hubbard's methodJ 

and as used by Sham (1965) and Heine and Abarenkov (1964) , 

the exchange can be included in our formulation by writing 

E(Q) = 1 + V(Q)ITO(Q) 
l-V(Q)f(Q)IT

0
(Q) ( 2. 32) 

, f(Q) = 1 Q2/(Q2+S2) 
2 

2 
[ 1 + 1-n .tn ll+n I J 

2n 1-n 
(2.33) 

S is a measure of the inverse screening length used in the 

Hubbard correction.Geldart and Vosko (1966,1967) have given 

a prescription for determining S from the electron gas 

compressibility. 
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Having obtained the screened ion-electron interaction 

we can now proceed to obtain an expression for the total 

energy change when a pair of identical ions are introduced 

as imposed charges in the electron gas. For our purpose 

we can separate the total contribution into two parts 

(2.34) 

Vd(R) represents the direct coulomb interaction between the 

ions separated by a distance R. The ions can be treated as 

point charges to evaluate this contribution and is given by 

where 

z2e2 no 
Vd(R) = -R--- = (2-IT)3 

2 2 
U (Q) = 41TZ e . 

c n 02 
0 

!U (Q)eiQ·~Q 
c - (2.35) 

V. d(R) refers to the indirect interaction between the ions 
1n 

via the conduction electrons. The change of electron energy 

will involve the interaction of a positive charge distribution 

ez (r) with a negative charge distribution eZ <I R-r I ) • Express­e --

ing this part of the energy in terms of the corresponding 

Fourier transforms 

V. d (R) 1n 
iQ·R dQ e--

Substituting the value of Ze(Q} from Eq. (2.30), we can 

rewrite the above expression as 

v. d(R) = 0 u (Q)e 1~·~o n I . 
1n ( 27T) 3 e -

(2.36) 



where* Ue(Q) 
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(2.37) 

Finally, the total energy for N identical ions immersed in 

the electron gas can be expressed as 

¢ =! rs(Q)S*(Q)U(Q}, U(Q) = Uc{Q}+Ue(Q} 
2 Q 

( 2. 38) 

The treatment of electron-phonon interaction given above 

follows closely that given by Cochran (1965). The results are 

essentially the same as presented by Harrison (1966) in his 

book "Pseudopotentials in the Theory of Metals" where he has 

emphasized the significance of the above result. Some of the 

approximations made here do not enter his calculations; 

however same general conclusions were reached. His work was 

mainly directed at obtaining the total energy of the crystal 

which includes the contribution from the free electron energy 

also. However, in lattice dynamics calculations, the free 

electron energy does not enter since it is independent of the 

rearrangement of the ions at constant volume. 

Dispersion Curves and Interatomic Potential 

The dynamical matrix, D 0 (q), defined by Eq. (2.9) 
ex...., -

involves summation over all direct lattice points. We can 

obtain an alternative form for the dynamical matrix in terms 

of a summation over all reciprocal lattice points. 

* The present definition of U(Q) differs by a factor of two 

from the quantity F(Q) introduced by Harrison (1966). This 

is because Harrison's F(Q) refers to energy per ion and not 

for a pair of ions as considered here. 
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If Q is a general vector in the reciprocal space, 

we can take a Fourier expansion of the interatomic potential 

V(R} between two ions separated by a distance R: 

V(R} = E U(Q)exp(iQ•R) (2.39a} 
- Q. - --

If we regard the lattice potential ~ to be sum of two-body 

potentials V(Rt-~t'>, we have 

(2.39b) ~~~· = - [a
2
v(R)/aRaaRS]R=t-t' 

tt' 
Now, substituting ~aS from (2.39) and using the standard 

relation 

where G is a reciprocal lattice vector we obtain 

0~ 0 (~) = M~[E(~+G)~(~+G) 0 U(~+G) - E G G0 U(G)] 
~~ G ~ ~ ~0 a~-

(2.40) 

For short range interaction, (2.9) converges more rapidly and 

for long range potential (2.40) is to be preferred. The 

function U(Q) is a sum of two terms Uc(Q) and Ue(Q), as 

can be seen from the analysis given in the previous section. 

The first, Uc(Q}, describes the Coulomb interaction of the 

ions due to their valence charges and the second term describes 

the interaction of the conduction electrons with these ions 

and essentially screens the former interaction. 

Evaluation of the Coulomb contribution to vibration 

frequencies can be made using standard procedures (Born 

and Huang 1954). Ue(Q) depends upon the choice of model for 

the electron-ion potential and the nature of the approxi-

mation describing the interacting electron gas. 



Toya (1958) was the first to calculate the normal 

mode frequencies of monovalent metals from fundamental 

considerations. Recently the pseudopoential approach 
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has been successfully employed to calculate the 

lattice dynamics of metals. However, in some cases even 

though the phonon dispersion curves and the elastic constants 

could be explained fairly well, the calculated binding 

energy was far from the correct value (Cochran 1963; Harrison 

1966). This deficiency was rectified in an improved 

pseudopotential calculation for Na and K by Wallace (1968a) 

where the exchange and the correlation energy of the electron 

gas were properly taken into account. Heine and Abarenkov 

(1964) have proposed a method of setting up a model 

pseudopotential from the spectroscopic data pertinent to 

the free atom. An extensive discussion of the recent theories 

of lattice dynamics of metals can be found in the review 

article by Joshi and Rajagopal (1968). 



F. Disordered Alloy~ 

(i) Crystal Dynamics of Alloys 

In the preceding sections, the discussion of lattice 

vibrations within the framework of Born-von Karm~n theory 

and the treatment of electron-phonon interaction with the 

assumption of a sharply defined Fermi surface,are valid, 

strictly speaking, only for a perfect periodic crystal. 

A departure from lattice periodicity may be expected to 
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give rise to force constant disorder contributing to phonon 

life-time,and scattering of the conduction electrons due to 

the presence of disorder in the crystal may lead to blurring 

of the Fermi surface. It is therefore necessary to examine 

the validity of the previous results in the case of alloys. 

Since the work to be described in this thesis con-

cerns the Bi-Pb-Tl system, we shall confine our attention 

to the substitutional alloys where the constituent elements 

are neighbours on the periodic table and therefore th~ atomic 

masses are not significantly different. A substitutional alloy 

has lattice periodicity as a whole but the lattice points 

are occupied randomly by the constituent atoms. Hence, 

in a sense most pure metals are alloys in this category, 

since they are composed of isotopes which differ slightly 

in mass. This choice precludes the interesting topic of 

dilute alloys with large mass difference (Elliot and Mara­

dudin 1965) where "resonance" modes or "localized" modes 

appear inside or outside the frequency distribution of the 

host lattice (M¢ller and Mackintosh 1965; Svensson et al. 
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1965, Nicklow et al. 1968). 

It has been found from coherent neutron scattering 

experiments on binary compositions of Bi-Pb-Tl (Ng and 
~ 

Brockhouse 1967, 1968) and Mo-Nb alloys (~ewell et al. 

1968) that sharp and well-defined neutron groups exist in 

these disordered alloys. Neutron groups measured in B-brass 

(Gilat and Dolling 1965) also did not exhibit, in general, 

any anomalous broadening in going through the order-disorder 

transition. These results suggest that the interatomic 

potential in these disordered systemsare well-defined as 

in pure metals. This can be explained qualitatively with 

the following argument. (Brockhouse, Hallman and Ng 1968): 

The interatomic force constants in two pure metals A 

and B may be quite different. But in the alloy AB, the A-A, 

B-B and A-B force constants (for a given geometrical arrange-

ment of the pair) are specific to this alloy, having no 

necessary relation to the force constants in pure A or B. 

Hence, although the bare ion-ion interaction could fluctuate 

appreciably, the conduction electrons move to screen the 

cores in such a way that effective forces between individual 

pairs of ions may be quite similar. From this point of view, 

one can justify the application of the Born-von Karman theory 

of lattice dynamics to alloys. 

We may therefore make the reasonable assumption that 

the ionic potential consists of two parts--a periodic part 

which describes the normal modes of the system in exactly 

the same way as in pure metals and a weak non-periodic part 
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which gives rise to broadening of the phonons which we 

consider below. The non-periooic potential is also re­

sponsible for the residual resistivity in alloys. 

(ii) Damping of phonons in Solid Solutions 

It is clear from the preceding discussion that even 

for a disordered alloy, the use of the Born-von Karman 

theory as a starting point for the analysis is justified. 

The finite phonon life-time arising from the scattering of 

phonons in an imperfect lattice may then be treated using 

time-dependent perturbation theory. 

The influence of mass disorder has been discussed by 

Mathis (1957); Ivanov and Krivoglaz (1964) and Ng and 

Brockhouse (1968). For the particular case of a completely 

disordered binary alloy AB with a cubic lattice of the 

Bravais type, the spread in the phonon frequency is given by 

TI = 2 
2 M -M 

w 1(w) C C (A B)2 
!g w)dw A B M (2.41) 

g(w) denotes the frequency distribution function of the 

alloy, CA and CB are concentrations. Hence, even for a 

relative mass variation (MA-MB/M)~O.l,the associated 

broadening of peaks <O.Olw which is too small to be ob-

servable. 

It follows from the above analysis that small mass 

differences have little effect. However, for alloys composed 

of elements of similar mass, broadening may still be caused 

due to atomic force constant disorder. In this case, one 



can proceed by defining a configuration average (C.A.) of 

the force constants for a disordered alloy: 

The difference between the actual and the average force 

constants ~¢~~~ may be treated as a perturbation 
a.S 

One obtains for the width (Ng and Brockhouse 1968) 

+< I r 
a.,S 
~~~I 

~~~ * I -i~·R ~¢a ~ . (q)~a·1 (q )e -~ a.IJ <Y.J - 1-') 
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(2.42) 

It is seen that ~w involves products of pairs of deviations 

of force constants from their mean values and is therefore 

relatively insensitive to force constant disorder. This 

explains why the neutron groups observed in the disordered 

binary alloys are usually well defined. However, we shall 

see later in connection with the experimental results on ~ 

ternary alloy that there could be appreciable force constant 

disorder in such system causing significant broadening of 

the neutron groups. 
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(iii) Pseudo-potential formalism for disordered alloys 

In section E we briefly sketched the pseudopotential 

formulation of the indirect interaction among the ions by 

means of the conduction electron gas for an elemental crystal. 

For the case of a binary alloy it is necessary to generalise 

Eq. ( 2. 2 2) for factorization of matrix elemenis into the 

structure factor S(Q) and the form factor w(Q); this general-

ization has been considered by Hayes et al. (1968). 

We consider a disordered binary alloy AB,with 

fractional concentrations CA and c8 of the total number of ions 

N arranged randomly on a Bravais lattice. 0 0 
wA and wB denote 

bare pseudopotentials of each type of ions A and B; the 

ions are screened with conduction electrons of the density 

appropriate to the alloy. Following the notation of Hayes 

et al. (1968): cr(g_R-)=+1 if the site RR. contains an A atom, 

cr(R.R.)=-1 if the site RR. contains a B atom. Thematrix element 

of the lattice potential W as seen by the conduction electrons is 

1 ' RR. R 
=WE e-1 g_·_ {(1 +cr(g_'))<k+QiwAik> 

Q, 

+ (1 -cr(RR-))<k+QiwB!~} (2.43) 

wA and wB are the screened individual ionic pseudopoentials 

with screening appropriate to the alloy. We introduce an 

average pseudopotential (screened) for the alloy 

(2.44) 
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and a difference pseudopotential 

< k+QI ~wlk> = [<k+QiwAI~.>- <k+QiwBik>l 

Then Eq. (2.43) can be written as 

(2.45) 

<k+g_lwlk> = sco><k+olw.lk> 

+S' (Q)<~+ol~wlk> (2.46) 

where S(Q) is the usual structure factor: 

1 
. .Q, -1Q•R 

S (Q) = - E e - -
N .Q, 

1 
, .Q, n -1Q·R )<., 

and s' (Q) = 2N E e - - [a (R ) .... < o>R] (2.47) 
.Q, 

with 

If Born-von Karman theory is used as a starting point 

for the alloys to describe the normal modes, then within 

that framework it will be consistent to use the average 

pseudopotential w(q) of the alloy for calculating the electron-

ion contribution to lattice vibration. It also follows that 

for evaluating the direct interaction between the ions 

(Coulomb interaction) , one uses the average ionic charge 

Z = CA Z A + CB ZB. 

On the other hand, the difference pseudopotential ~w 

in the alloy will contribute to finite life-time to the one-

electron states. Neutron scattering study of Kohn effects in 

binary disordered alloys (Chapter IV(F)) suggests that,on 

alloying,Fermi level shifts in accordance with rigid-band 

model but without especially'la~eblurring of the Fermi 

surface. Therefore lwA-wBI should be small; nevertheless it 

should give a fair explanation of residual resistivity of 

such alloys. This non-periodic part (with a corresponding 

' 
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contribution arising from charge fluctuation, ~Z=IZA-ZBI, at 

the lattice sites) also gives rise to phonon broadening. 

Hayes et al. (1968) have given a pseudopotential 

formulation for binary alloys using a second order perturbation 

theory. It can be seen from their work that for a proper 

calculation of phonon frequencies in a disordered alloy 

one has to consider terms of the type w(q)~w(q) and l~w(q) 1
2 

in addition to the leading contribution arising from lw(q) 1
2 

(similarly for coulomb interactions). Finally, we note that 

Eq. (2.42) giving phonon broadening due to force constant 

disorder can be cast into pseudopotential formalism involving 

summations over reciprocal space (Trofimenkoff 1969). 
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G. Damping of Phonons 

(i) Anharmonic damping of phonons in solids 

In the previous section, we discussed the damping of 

phonons in disordered alloys within the harmonic approxi-

mation. In the expansion of the potential energy (Eq. 2.1), 

if we take into account the terms ~ 3 , ~ 4 (and higher ones) 

explicitly, we obtain an anharmonic theory which leads to 

interaction of the phonons. In an anharmonic crystal, the 

normal modes of vibration are altered in frequency and they 

also have a finite life-time. The expressions for shift 

and width are rather involved; they can be found in the 

review article by Cowley (1963). Detailed numerical calcu-

lations of the anharmonic shift and widths have recently 

been reported for aluminum ~Bg_berg and SandstrOm 1969) and 

for potassium (Buyers and Cowley 1969), using the ps.e~qo·~ 

potential approach. 

(ii) Damping of phonons due to the electron-phonon interaction 

In metals or metallic solid solutions damping of phonons 

may be present due to electron-phonon interaction. 

In section E the contribution to phonon frequency due 

to electron-phonon interaction was formulated in terms of the 

static dielectric constant £(q,O). In a more general treat-

ment, the expression will involve frequency dependent dielectric 

constant £(q,w ) which is complex. Now, the real part of 
q 

£(q,w ) describes the shift of phonon frequencies and the 
q 

imaginary part describes the damping. To obtain an estimate 

of the electron-phonon contribution to phonon width r (full 

width at half maximum) , we consider the coupling of the 
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longitudinal phonon-field to the electrons in the jellium 

model (Pines and Nozieres 1966): 

Im E(q,w ) 
r. /w = q 

q q Re E(q,wq) 

In the long wavelength limit it reduces to 

f /w ~ (m/M)l/2 ~ 10-2-10- 3 . 
q q 

We see that phonon damping as a consequence of the electron 

response is indeed small. This result essentially follows 

from the great mismatch in phonon and electron frequencies. 

Hence, if we assume the validity of the adiabatic approximation 

in the theory of metals, electron~phonon damping can be 

neglected. 

Realistic calculation of phonon life-time due to 

electron-phonon interaction has been carried out for Al 

(Bj~rkman et al. 1967; H~gberget al. 1969) and forK 

(Price et al. 1970). In both the cases it was found small 

compared with the anharmonic damping. Further since change 

of electron-phonon widths with temperature is extremely small 

(Buyers and Cowley 1969) this effect tends to be completely 

masked by phonon-phonon damping at a finite temperature. 



CHAPTER III 

INTERACTION OF THERMAL NEUTRONS WITH SOLIDS 

A. Introduction 

Normally, an experiment conducted on a physical system involves 

the excitation of the system by an external probe and the 

subsequent measurement of the system's response to that probe. 

If the interaction between the probe and the system is 

sufficiently weak, the system's response is linear and it is 

determined entirely by the properties that the system possesses 

in the absence of the probe. Inelastic scattering of slow 

neutrons from solids offers a convenient method of studying 

the spectrum of elementary excitations in the many-particle 

system. Thermal neutrons emerging from a research reactor 

have simultaneously energies of the order of the characteristic 

energies of solids and liquids, and wavelengths of the order of 

interatomic spacings. These features make the study of neutron 

inelastic scattering a powerful tool. The interaction between 

a neutron and an isolated atom is partly a nuclear interaction 

and partly a magnetic dipole interaction between the neutron 

and the electrons of the atom. A very weak non-magnetic 

interaction with the electrons has also been observed; however 

this part can be ignored for the present purpose. Further 

if we restrict ourselves to non-magnetic materials the magnetic 

scattering vanishes and only the nuclear part remains. For 

wavelengths long compared to the linear dimension of the nucleus 

39 
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the scattering is independent of scattering angle and for 

energies far below any resonance band of the nucleus the 

cross-section is also independent of the energy of the 

incident neutron under the assumption of a fixed nucleus. 

However, the scattering may differ significantly for parallel 

and antiparallel spins of the neutron and the nucleus. 
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B. Scattering Cross Section 

When considering scattering by a system of interacting 

nuclei it would be natural to assume the interaction potential 

as a sum of two particle potentials 

R, 
H. t = r v(R -

1n R, -
r ) -n (3.1) 

R, 
where R and r are the system particle and probe (neutron) 

-n 

positions respectively. It is convenient to Fourier analyse 

as follows: 

H. t 1n 
in• (RR,-r .> =EEve.:il- -n 

tq;;'O q 

+ -ia•r =Evp e .:ol.-n 
q q q 

(3.2) 

In the above equation v is the Fourier transform of v(R) 
q 

while p is the Fourier transform of the particle density q 

pq = /d 3Rp(R)e-is.·R = E Jd3Ro(R- RR,)e-iSI,·R 
• RR, R, -1CJ" 

=E e .:ol. -

R, 

( 3 0 3) 

p describes the fluctuations of the particle density about 
q 

its average value p = N. 
0 

We next consider a scattering event in which the 

incident particle is scattered from a state I~> of energy E
0 

to a state I~'> of energy E' and the state of the system is 

changed from Ia> of energy Ea to IB> of energy Ee· We also 

make the important assumption that the probe particle is weakly 

coupled to the many-particle system, so that the scattering 

act may be described within the Born approximation. The 

inelastic differential scattering cross section per unit 

solid angle per unit energy range is, per unit volume of 

specimen 
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(3.4) 

where E=hv = ~w is the energy transfer to the target; ~ is 

the reduced mass of the particle and n denotes solid angle. 

Since the crystal is in thermal equilibrium before scattering, 

therefore there is a thermal mixture of states, the probability 

of state a being 

P -£ /kT/~ -£ /kT = e a L..e a a a 

To get the true scattering cross section, we have to sum 

over all the states a with their probabilities. Further, we 

are not interested in the final states of the crystal, but 

only in that of the neutron; this means an additional sum 

over states IS >. Finally, we arrive at the result 

d 2cr 
dndE = AQ 5 (Q_,w) ( 3. 5) 

where 

g_=~-k' 

depends essentially on the two-body potential, and 

S(Q,w) = E P I< a I P + I S > 12 
6 (flw+ £ -£ 0 ) 

a S a q a ~ 
(3.6) 

S(Q_,w) embodies all the properties of the many-particle 

systems that are relevant to the scattering of the probe. It 

furnishes a direct measure of the excitation spectrum of the 

density fluctuations, being proportional to the squared matrix 

element for each permissible excitation energy. For neutron 

scattering, this important result was given by Van Hove (1954) 

who introduced time-dependent correlation functions. This 

approach has proved particularly fruitful in analysing neutron 
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scattering experiments on liquids and magnetic systems. 

The treatment given so far is perfectly general in that 

it applies to any system of interacting particles (gases, 

fluids or crystals). We next proceed to discuss the specific 

case of crystals. 
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C. Scattering by Crystals 

In the process of scattering if there is no change 

in energy between the incident and the scattered neutrons 

then the process is called elastic scattering. If the 

neutron and the lattice exchange energy then it is called 

"inelastic". As a consequence of periodicity of the 

structure in solids the scattered neutrons can interfere with 

each other coherently. Such coherent scattering can be either 

elastic or inelastic. On the other hand we can have spin 

and isotopic incoherence which can also be either elastic or 

inelastic. Additional incoherent scattering may be present 

in alloys. 

The theory of neutron scattering by monatomic crystals 

was developed by Weinstock (1944) and extended to lattices 

with bases by Waller and Froman (1952). Review articles 

dealing with the theory have been published by Cassels (1950), 

Kothariand Singwi (1958), Brockhouse (1964). Since the actual 

nuclear interaction between the neutron and the target nucleus 

is unknown, it is replaced by a a-function whose strength is 

adjusted to give the experimentally determined scattering 

length. This is the Fermi pseudopotential. The fact that the 

range of the nuclear interaction (~lo- 12 em) is very small, 

compared with the neutron wavelength (~lo- 8 em) makes it 

possible to treat the interaction as a point interaction. 

(i) Harmonic Perfect Crystals 

Coherent Scattering 

We consider a crystal with one atom per primitive 

unit cell. The coherent scattering length per atom is 



defined as 45 <b> = E p b 
R, R, R, 

where pR, is the probability that an atom will have the 

scattering amplitude bR,. 

For a harmonic crystal where plane waves (normal modes) are 

exact eigenstates of the crystal, the differential scattering 

cross section can be written as (Sjolander 1958) : 

1 (2n) 
3

N < b>2 k 1 e-2W = fl v ko [6 (w) ~ 6 (Q_ G) 

x E o(Q-
2 G 2-

1 fiiQ.·fsl fllg_·~~ l 
+- E E ( 2NMw ) ( 2NMw ) 2 

88 1££ 1 S 8 1 

G + 9.) 

Coth(Bw8 )+e: Coth(Bw8 1)+£ 1 

( 2 ) ( 2 ) o (w+e:ws+e: I ws I) 

+ ••.•.•••• ] ( 3. 7) 

-2W . ~ 
e 1s the well known Debye-Waller factor. B =2kT , S stands 

for the double index (9.,j) characterising a normal mode of 

wave-vector 9. and branch j, ~S denotes the polarization vector 

satisfying the orthonormality conditions, N is the number of 

unit cells in the crystal, v is the volume of the unit cell, 

M is the mass of the atom and £=+1 corresponding to emission 

and absorption of phonons. 

The first term on the right hand side of the equation 

(3.7) represents elastic scattering (zero phonon) at any 

reciprocal lattice vector G. The second term represents a 

one-phonon process, in which the neutron is scattered with 
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the creation or annihilation of one quantum. It is governed 

by selection rules 

Q = k - k' = G - q - -o - - -

1iw = E - E' = +flw. (q) 
0 - J -

( 3. sa) 

( 3. 8h) 

The satisfaction of these two laws of conservation of pseudo-

momentum and energy during one-phonon coherent scattering 

offers the possibility of determining dispersion relations in 

crystals. This point will be considered in more detail later. 

Finally, the third term in Eq. (3.7) describes two-

phonon processes which involve simultaneous creation and/or 

annihilation of two phonons. The selection rules are, 

~ - k' = G - a_ - q , - ..a.c -s (3.9) 
E

0 
- E' = +flws + ~ws, 

Similarly, there will be higher-phonon processes. The multi-

phonon process gives a continuous background under the a-function 

peaks in the one-phonon energy distributions. This effect may 

be important if the dispersion relations are studied close to 

the melting point of the crystal.and/or at large Q. However, 

there may be additional complication due to increased anharmon-

icity at high temperatures which leads to interference between 

one-phonon and multi-phonon scattering (Ambegaokar et al.l965, 

Cowley and Buyers 1969). 

Incoherent Scattering 

If the scattering amplitudes of the atoms vary randomly 

in a solid then the neutron waves scattered from the individual 

centres will appear not to interfere with each other and this 

part is said to be incoherent. The expression for the incoherent 

cross section may be directly obtained from Eq. (3.7) with 
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<b> 2 replaced by (<b2 >-<b>2 ) and substituting unity for 

(27T)3 roc •.• ). 
G 

v 

For the particular case of monatomic cubic Bravais 

lattices, the differential cross-section can be expressed 

in a compact form: 

d 2o 1 2 2 k' -2W oo n 
dS'ldE = fl (< b >-< b> ) K e l: (2W) G (w) 

o n=O n! n 

(3.10) 

where G
0

(w) = §, (w) 

Gn+l(w) = f h ( w-w ' ) G ( w ' ) dw ' , n> 0 

-oo 

h(w) = g(w) (11Q2 /2M) (Coth(Sw)-1) 
w 2W 2 

I wl< w -m 

= 0 ~wl>w m 
00 

Also, JGn(w)dw = 1 

-oo 

w denotes the cut-off of the frequency spectrum g(w). 
m 

In Eq. (3.10), n=O,l,2... denote zero, one and higher phonon 

processes respectively. Since 

G1 (w) = fh(w-w')o(w')dw' = h(w) a:g(w) 

we find that one-phonon incoherent scattering is directly 

related to the frequency distribution of the normal modes of 

a cubic crystal with one atom per unit cell. This important 

result was first obtained by Placzek and Van Hove (1954). 



(ii) Scattering from imperfect Crystals 

Coherent Scattering 

In Eq. (3.7), the origin of o-function in energy and 
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momentum transfer in the expression for the coherent scatter-

ing cross section is the infinite life-time of the phonons. 

In principle, this situation holds good only for an ideally 

perfect crystal with harmonic interaction between atoms and 

in the absence of any disorder or inhomogeneity in the crystal. 

Presence of anharmonicity in a crystal leads to 

interaction of the phonons and hence to the possibility of 

their decomposition into other phonons and scattering at 

one another. Plane waves are no longer exact eigenstates of 

the crystal and their life-times become finite. The corres-

ponding indeterminacy in the energy of a phonon leads to 

the spreading of the one-phonon peaks of coherent neutron 

scattering. We expect the o-function in the scattering 

amplitude replaced by 

1 
cS (w-wj (s_) >~ (w-w. (g)-!:::.. (g)) +ir . (q) 

J J J -

where!:::..(~) is the frequency shift and r. (s_) the life-time 
J J 

of the phonons due to anharmonicity. The cross-section is 

expected to be 

It turns out further that the exact cross-section does not have 

the symmetrical Lorentz shape but there has to be added an 

additional term which produces an asymmetry in the cross-

section (Maradudin and Fein 1962; Maradudin and Ambegaokar 1964). 
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In alloy crystals, damping of phonons may arise from 

mass and force constant disorder and this will modify the 

one-phonon coherent cross-section in much the same way as in 

anharmonic crystals. An experimental study of broadening by 

neutron scattering technique may give valuable inforrnati~n 

regarding the interaction of phonons with disorder present 

in the crystal and the relaxation times. The theory of 

neutron scattering by dilute alloys has been developed by 

Elliott and Maradudin (1965). Neutron scattering from binary 

alloys with finite concentration has been considered by 

Krivoglaz (1969). 

Incoherent Scattering from Alloys 

As mentioned before, the deviations in the scattering 

length b give rise to the incoherent scattering. In a 

crystal containing single chemical species,isotopic and spin 

incoherence may be present. 

For a completely disordered binary alloy AB (general-

ization to alloys containing several chemical species is straight-

forward) with average scattering lengths <bA> and <bB> and 

concentrations CA and CB' the incoherent scattering cross­

section per atom can be written as 

(3.12) 

The differential scattering cross-section is obtained from 

Eq. (3.10) by simply replacing (<b2 >-<b> 2 ) with (cr~B /4n). 1nc 

If we consider the special case where the species A and B have 
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negligible incoherent scattering lengths and their coherent 

scattering lengths are nearly equal (<bA>~<bB>} then Eq. (3.12} 

will predict no incoherent scattering from such a system. 

However, Ng (1967} has shown that there may still be an addi­

tional incoherence present arising from the fluctuation of the 

polarization vectors due to variation of mass and atomic force 

constants in the system. The expression for differential 

scattering cross-section is analogous to Eq. (3.10}. 

Krivoglaz (1969) has also considered the influence of static 

inhomogeneity on one-phonon incoherent scattering. 

In the above discussion of the disordered alloys we 

have tacitly assumed that phonons are well defined excitations 

in the system. A departure from this ideal situation will lead 

to a broadening of energy levels and consequent sp~eading of 

the singularities in the frequency distribution function g(w} 

which enters in the differential scattering cross-section. 
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D. Experimental Procedure 

The frequencies of the normal modes can be determined 

from neutron spectroscopy measurements, very directly. It 

was found in section C that one-phonon coherent scattering 

is governed by selection rules 

Q = ~ - k' = ~- ~ 

~w = E - E' = +~w. (a) 
0 - J ~ 

As emphasised by Brockhouse (1961) the above equations 

(3.8a) 

(3.8b) 

together with the dispersion relation w = w. (~) constitute 
J 

a system of five equations in four unknowns, for which solu-

tions can be expected but rarely; i.e. the neutrons occur in 

groups corresponding to certain discrete values of E'. 

Triple-Axis Spectrometer (Constant-g Method) 

Crystal spectrometers as well as time of flight 

instruments have been used to measure phonon dispersion rela-

tions in crystals. However, a triple-axis spectrometer 

operated in the constant-~ mode, first introduced by Brockhouse 

(1961) , offers the most powerful and the direct method for 

mapping phonon frequencies in the Brillouin zone. In a 

triple-axis spectrometer there are four parameters which can 

be varied. They are: the incident wave-vector (~),the 

scatterd wave-vector (k'), the angle of scattering (~),the 

specimen orientation in the scattering plane (~). By 

varying any of the three parameters and keeping the fourth 

one fixed,measurements can be made at a preselected point in 

the reciprocal space. The natural variables of a scattering 

experiment are the wave-vector and energy transfers, Q and w 



and therfore the constant-Q method is the natural method. 

In another mode of operation "Constant E" the energy 

transfer is kept fixed while <f>· and 1/J are varied in such a way 

that Q moves along a desired direction in reciprocal space 

(Brockhouse 1961; Stedman 1961). This method is useful for 

studying an extremely steep dispersion curve. 

In section c the differential cross section for one-

phonon coherent scattering was given (Eq. {3.7)). To obtain 

physical quantities the a-functions must be integrated out 

over the resolution of the apparatus and the track of the 

experiment. For a conventional experiment in which the 
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neutron group is integrated over the outgoing energy with the 

other parameters remaining fixed, the one-phonon differential 

cross-section per steradinn per unit cell for a neutron group 

is given by 

b
2 k I 'fl 

a. {k 1 ~k ) = ==~~~ 
J - -o coh k

0 
2NMwj (g) 

2 _ 2w Coth(Sw8 )+£ 1 
[ Q. ~j (g) ] e { ) m 

{3.13) 

where IJI is the Jacobian and has the value 

I J I = 11 + £ ~E' k 1
• V s_wj {9_) I 

£=+1 corresponding to emission and absorption of phonon. In 

the constant-Q method it turns out that IJI = 1 {Brockhouse 

1961). This feature facilitates intensity measurements of 

neutron groups. The fact that the intensity is proportional 

to a factor (Q·~· (s_)) 2 offers a means of observing a particular 
-~ 

mode j by suitably arranging the experimental conditions. 
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The experimental results presented in this thesis 

were obtained using two different triple-axis crystal 

spectrometers; one at the McMaster University reactor (Rowe 

1965) and the other at the NRU reactor at Chalk River 

(Brockhouse et al. 1968)· Fig. 3.1 shows a layout of the 

installation at the McMaster University reactor. A schematic 

diagram of the spectrometer installed at hole E2 of the NRU 

reactor at Chalk River is shown in Fig. 3.2. However, the bulk 

of the work was carried out using the latter spectrometer at 

Chalk River. This spectrometer has some unusual design features 

in that it employs a dual monochromator deep within the beam 

hole. Because of the double reflection ((220) planes of copper) 

the final monochromatic beam can be expected to be of high 

purity. Further, since only the monochromatic beam emerges 

from the reactor hole, the shielding required is comparatively 

modest. 

In the Constant-~ mode of operation, incident energy 

is kept fixed while E', ~and~ are varied. Since E' is 

variable, it is necessary in some cases to apply corrections 

for the efficiency of the analysing spectrometer. The sensi­

tivity function of the analysing spectrometer is discussed in 

the appendix. Further, due to a minor fault in the design a 

weak contaminant is present in the primary beam, produced by 

double reflection from (331) planes of the monochromator. While 

measuring a phonon, experimental conditions are suitably adjusted 

to avoid any possible interference with the contaminant. 
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CHAPTER IV 

CRYSTAL DYNAMICS OF BI-PB-TL ALLOYS 

A. Introduction 

In recent years, neutron scattering studies on 

various alloy systems have been undertaken. These have 

been mainly directed towards obtaining information about 

the effects of differences in the masses of the consti-

tuent atoms in alloys (Svensson et al. 1965; M?ller and 

Mackintosh 1965) or on alloys composed of different elements 

of similar mass to study the various effects of changes in 

the interatomic forces (Powell et al. 1968; Ng and Brockhouse 

1967,1968; Hallman and Brockhouse 1969). 

In particular, Ng and Brockhouse (1967,1968) have 

studied the atomic vibrations in face centred cubic alloys 

of Bi, Pb and Tl which are neighbouring elements in the 

Periodic table and possess favorable neutron scattering 

properties (Table 4.l(a)). Bismuth has five, lead four and 

thallium three conduction electrons per atom respectively. 

Hence, it is possible to vary the conduction electron con­

centration in a controlled way and study the effect of the 

electron-phonon interaction on the lattice dynamics. Six 

disordered binary alloys (Bi15Pb 85 , Pb 80Tl20 , Pb 40Tl 60 , 

Bi 20Tl 80 and Bi 10Tl90 > were investigated. The dispersion 

curves measured at 100°K show a progressive change with 

electron concentration. 
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In the course of the present work, measurements have 

been extended to another Pb-Tl binary alloy e.g. Pb 33Tl67 . 

The above composition was chosen because according to the 

phase diagram (Hansen 1958) the solidus and the liquidus 

curves get separated for higher Tl concentrations. (An 
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attempt to grow a single crystal of Pb20Tl 80 met with 

failure) • An additional interest lies in the fact that the 

Fermi surface is expected to be just empty in the third zone 

for the alloy Pb 33Tl67 and this feature might be reflected 

in the lattice vibrations in some important way. The ternary 

alloy Bi 20Pb60Tl 20 * was chosen since it has the same number 

of electrons per atom as for pure Pb. This offers an inter-

esting possibility of studying the role of the conduction 

electrons on lattice vibrations. In later sections the 

results of experimental investigations of the anharmonic 

properties in Bi-Pb-Tl alloys and the force constant disorder 

in the ternary alloy are reported. An experimental method 

of obtaining the frequency distribution function from neutron 

scattering results for polycrystalline materials is also 

described. 

The alloy crystals used were grown by Research Crystals 

Inc. of Richmond, Virginia; they were cylindrical, 1 1/4" in 

diameter and 3 1/2" long. Since it is desirable to know the com-

positions, homogeneities and mosaic spreads we describe in 

Appendix I these characterizations of the alloy crystals deter-

mined by neutron diffraction. Other useful physical properties 

are listed iri T~ble 4.l(b). 
* Initial measurements of the dispersion curves at 100°K and the 

Born von Karman analysis of the results in Bi2QPbGoT12owere made ir 
collaboration with Dr. S.C.Ng --see Ng and Brockhouse (1968). 



TABLE 4.l(a) 

Properties of the elements Bi, Pb,Tl 

Bi 

Atomic number 83 

Atomic mass (amu) 208.98 

Free atom 

Ground state 6s 26p3 

Crystal Structure rhomb. 

Melting temperature(°K) 544 

Superconducting 

Transition Temperature(a) (°K) 

Debye temperature(a) (°K) 119 

Neutron Scattering 

cross section(b) (barns) 

9.35 

0.034 

Pb 

82 

207.19 

F.C.C. 

600 

7.22 

110 

11.5 

0.17 

58 

Tl 

81 

204.37 

2 6s 6p 

H.C . P. 

575 

2.36 

87 

10.0 

3.4 

0 coherent 

0 absorption 

0 incoherent --~---negligible---~-----------------

(a) Am. Inst. Phys. Handbook. 1963 (McGraw-Hill Book Co., New York). 

(b) Neutron Cross Sections. 1958. Edited by Hughes, D.H. and 

Schwartz, W.B. (Brookhaven National Lab. U.S.A.). 



(a) 
Crystal Structure 

Specimen lattice constant 

at 296°K(b) (A 0 ) 

Specimen mosaic spread(b) 

(F.W.H.M.) 

Fusion Temp. (a) (oK) 

Elastic Constants at 296°K(c) 

(10 11 dynes/cm2 ) 

ell 

cl2 

c44 
Superconducting 

transition temJ1lK) 

Debye Temp. (e) (°K) 

TABLE 4.l{b) 

Properties of the Bi-Pb-Tl Alloys 

(Nominal compositions are indicated) 

Bi20Pb60Tl20 Bil5Ph85 Ph8oT12o Pb60Tl40 

F.C.C. F.C.C. F.C.C. F.C.C. 

4.9585 4.9646 4. 9 345 4.9179 

0.85° 0.8° 0.55° 0.75° 

512 618 635 

4.576 4.329 

3.964 3.851 

1. 38 1. 275 

7.26 (f) 7.7 6.6 5.8 

103 103 109 112 

Pb40Tl60 Pb33Tl67 

F.C.C. F.C.C. 

4. 89 86 4.8917 

0.5° 0.4° 

653 653 

4.157 4.148 

3.803 3.764 

1.195 1.182 

4.6 3.6 

116 117 

(a) Hansen, M. 1958. Constitution of Binary alloys (McGraw-Hill Book Co., New York). 

(b) See Appendix I. 

(c) Shepard, M.L. and Smith, J.F. 1967. Acta. Met. ~, 357. 

(d) Claeson, T. 1966. Phys. Rev. 147, 340. 

Bi2oT18o 

F.C.C. 

4.9170 

0.4° 

553 

4.0 

112 

(e) Debye temperature is estimated from the cut-off of the phonon frequency spectrum at 100°K. 

(f) Dynes, R.C. and Rowell, J. M. 1969. Phys. Rev. 187, 821. 

Bi10Tl9 

F.C.C. 

4. 881E 

0.3° 

573 

2.5 

122 



60 

B. Phonon dispersion curves in Pb 33Tl 67 and Bi 20Pb 60Tl 20 at 100°K 

Experimental* 

The frequency-wave vector dispersion relations for 

the lattice vibrations were measured mainly along the four 

major symmetry directions at 100°K on the McMaster University 

spectrometer at Chalk River (Brockhouse et al. 1968). The 

alloy crystals were sealed in thin walled aluminium cans 

since thallium is toxic and were pre-aligned using the 

double-axis spectrometer at the McMaster University reactor. 

(The latter instrument was constructed by S. H. Chen (1964) 

and modified by E. D. Hallman (1969)). The constant-Q mode 

of operation was generally employed. The measurements were 

made in neutron-energy loss with fixed incoming energy and 

variable outgoing energy, in the (100) and (110) planes of 

the reciprocal lattice. Copper crystals with (220) and 

(200) planes were used as the monochromator and the analyzer 

respectively. The monochromating crystal was normally set 

at 28M=92° corresponding to an incident neutron frequency 

12 of 5.85 x 10 cps. The energy resolution (F.W.H.M. of 

12 the vanadium elastic peak ~0.30 x 10 cps) was adequate for 

most of the measurements. The focussing characteristics of 

the spectrometer (see, for example, Brockhouse (1966)) were 

also exploited, as far as possible, to obtain sharp neutron 

groups. Further, with the above choice of the incident 

energy it was possible to avoid spurious neutron groups 

arising from a weak contaminant present in the incident beam. 

To reduce the occurence of spurious groups arising from higher 

order reflections of the monochromator and the analyzer, a 

* The general experimental details given here are not specific to 
this section only but apply to most of the experimental work 
presented in this chapter, unless otherwise stated. 



6" quartz single crystal filter was normally used in the 

incident beam. S¢ller collimators with horizontal diver-

gence of about 0.7° were used in both the incoming and the 
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outgoing neutron beams. To investigate the limiting slopes 

near the origin (long wavelength phonons), the constant-E 

technique was employed and S¢ller collimators were used in 

the vertical plane as well. 

Results and Force Constant Models 

Nearly one hundred phonons were measured in both 

Pb 33Tl67 and Bi 20Pb 60Tl 20 ; the results are tabulated in 

Tables *4. 2 and 4. 3. Fig. 4.1 shows the dispersion curves 

for Pb 33Tl67 in the four major symmetry directions at 

100°K. The straight lines through the origin give the 

initial sopes of the curves as calculated from the elastic 

constants (Shepard and Smith 1967). Along the [O~~]T1 
branch, the phonon dispersion curve begins to depart from 

the line of the limiting slope quite rapidly though it 

probably merges with it around ~= 0.1 as suggested by the 

limited measurements in the long-wavelength region. Kohn 

anomalies are also probably seen in the [O~~]L branch around 

s=0.48 and along the [~~~]L branch around ~=0.35. This will 

be discussed in more detail in section F· 

An analysis of the dispersion curves has been carried 

out on the basis of the Born-von Karman theory, using the 

programs of Svensson et al. (1967). (The solid curves in 

Fig . . 4 .1 represent a Born_.;.;y.on Karman fit to the measurements.) 

*In these tables, figures and elsewhere in the ·text, the wave­
vector g_ is written in reduced units; sr.=(2TI/a) [~1,~2,~3] and 
is usuaTly specified by the numbers~ .• 

1 
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TABLE 4. 2 

Phonon frequencies for the symmetry branches 

z;; \) !:J.'V z;; \) !:J.v z;; \) !:J.v 
[OOr,;]T 

0.20 0 375 0.03 0.50 0.93 0.02 0.80 1.355 0.02 
0.30 0.58 0.02 0.60 1.10 0.02 0.90 1. 45 0.02 
0.40 0.77 0.02 0.70 1.245 0.02 1. 00 1. 465 0.02 

[OOr,;]L 
0.20 0.765 0.02 0.50 1. 71- 0.03 0.80 2.24 0.03 
0.30 1.10 0.02 0.60 1.95 0.02 0.90 2.35 0.03 
0.40 1.41 0.02 0.70 2.115 0.03 1. 00 2.395 0.02 

[I',; z;; z;;] T 
0.15 0.33 0.02 0.30 0.67 0.02 0.45 0.785 0.03 
0.20 0.44 0.02 0.35 0.74 0.02 0.50 0.78 0.03 
0.25 0.56 0.02 0.40 0.78 0.03 

[ z;; z;; z;;] L 
0.10 0.805 0.03 0.337 2.09 0.02 0.425 2.37 0.02 
0.20 1.44 0.03 0.35 2.13 0.02 0.45 2.415 0.03 
0.25 1. 72 0.02 0.362 2.19 0.02 0.475 2.44 0.03 
0. 30 1.935 0.02 0.375 2.25 0.02 0.50 2.45 0.03 
0. 325 2.03 0.02 0.40 2.32 0.02 

0.20 0.61 0.02 0.50 
[Oz;;z;;]T2 

1.60 0.02 0.80 2.22 0.02 
0.30 0.96 0.02 0.60 1.84 0.02 0.90 2.34 0.02 
0.40 1.29 0.02 0.70 2.04 0.02 1. 00 2.39 0.02 

[Oz;;r,;]T1 
0.02 0.20 0.28 0.02 0.50 0.875 0.02 0.80 1.32 

0.30 0.46 0.02 0.60 1.035 0.02 0.90 1.42 0.02 
0.40 0.69 0.02 0.70 1.21 0.02 

[0 z;;z;;] L 
0.15 0.88 0.02 0.475 2.00 0.02 0.65 2.025 0.02 
0.20 1.13 0.02 0.50 2.01 0.02 0.675 2.05 0.04 
0. 30 1. 575 0.02 0.525 2.05 0.02 0.70 1. 94 0.30 
0.375 1. 835 0.02 0.55 2.075 0.02 0. 725 1.87 0.03 
0.40 1.90 0.02 0.575 2.07 0.03 0.75 1.825 0.03 
0.425 1. 95 0.02 0.60 2.075 0.02 0. 80 1. 72 0.02 
0.45 1.985 0.03 0.625 2.09 0.03 0.90 1.56 0.02 

[01',;1]1\ 
0 10 1.475 0.03 0.30 1. 46 0.02 0.50 1. 45 0.02 
0.20 1.47 0.03 0.40 1. 43 0.02 

[01',;1]1T 
0.10 2.375 0.02 0.40 2.065 0.02 0.70 1. 68 0.02 
0.20 2.30 0.02 0.50 1.95 0.02 0.80 1.58 0.02 
0.30 2.20 0.02 0.60 1.81 0.03 0.90 1.50 0.02 
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The dispersion curves for Pb
33

Tl
67 

in the four major symmetry directions at 100°K. The 

solid line is an eight-neighbour Born-von Karman fit to the experimental points. The 

straight lines through the origin give the initial slopes of the curves as calculated from 
the elastic constants. 
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The elastic constants were included in the fit. The atomic 

force constants are tabulated in Table 4.4. Good fits were 

obtained using an eight-neighbour model with forces from 

fifth to eighth neighbours constrained to be axially symmetric. 

Fig. 4.2 shows a comparison between the dispersion 

curves for the alloy Bi 20Pb 60Tl 20 and for pure Pb, which 

both have the same number of electrons per atom. The results 

for Pb were taken from the literature (Brockhouse et al. 1962); 

to avoid confusion, the experimental points for Pb are omitted. 

The overall similarity between the dispersion curves is quite 

striking which implies that the lattice dynamics of this 

metallic alloy is primarily determined by the conduction 

electron density. The mean ratio <v(Bi 20Pb60Tl 20 )/ v(Pb)> 

is 0.96 with a standard deviation of 0.05. It should be 

noted however, that the force constant disorder present in 

the ternary alloy will lead to damping as well as shift of 

the phonon frequencies. 

The results of a force constant analysis are given 

in Table 4.4. The fit is less satisfactory than that obtained 

for Pb 33Tl 67 • It was noted by Ng and Brockhouse (1968) that 

long-range forces extending beyond eighth neighbours exist 

for the Bi-Pb-Tl alloys; the interaction with distant neigh-

hours becomes weaker as the electron concentration in the alloy 

system is reduced. 
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TABLE 4.3 

Phono n frequencies (in units of 1012 cps) for the symmetry branches 

in Bi20Pb60T120 at 100°K 

z: \) /::,.\) z: \) /::,.\) z: \) /::,.\) 

[OOZ:]T 
0.20 0 . 42 0.02 0.50 0.93 0.03 0.80 0.95 0.04 
0.30 0.595 0.03 0.60 0.99 0.03 1. 00 0.91 0.04 
0.40 0.79 0.02 0.70 1. 01 0.03 

[OOZ:]L 
0.20 0.81 0.03 0.50 1. 78 0.04 0.80 2.14 0.04 
0.30 1.22 0.03 0.60 1. 92 0.04 0.90 2.13 0.04 
0.40 1.53 0.03 0.70 2.10 0.04 1.00 2.05 0.03 

[Z:Z:Z:]T 
0.15 0.45 0.02 0.25 0.62 0.03 0.40 0.74 0.04 
0.2 0 0.53 0.02 0.30 0.675 0.03 0.50 0.775 0.04 

[Z:Z:Z:]L 
0.10 0.87 0.03 0.325 1. 985 0.03 0.425 2.09 0.04 
0.20 1.53 0.03 0.35 2.015 0.03 0.45 2.09 0.04 
0.25 1.735 0.03 0.375 2.05 0.03 0.475 2.13 0.05 
0.30 1.89 0.04 0.40 2.075 0.03 0.50 2.14 0.04 

[0Z:Z:]T2 
0.15 0.46 0.02 0.40 1.195 0.02 0.70 1.94 0.04 
0.20 0.62 0.02 0.50 1.47 0.02 0.80 2.04 0.04 
0.30 0.91 0.02 0.60 1.75 0.03 0.90 2.08 0.04 

[0Z:Z:]T1 
0.20 0 . 36 0.02 0.50 0.845 0.02 0.80 1.12 0.04 
0.30 0 . 51 0.02 0.60 1. 025 0.02 0.90 0.97 0.04 
0 . 40 0 . 69 0.02 0.70 1.145 0.03 

[OZ:Z:]L 
0.10 0. 62 . 0.03 0.375 1. 77 0.04 0.60 1. 965 0.04 
0.20 1.21 0.03 0.40 1.805 0.04 0.65 1. 97 0.04 
0.25 1 . 45 0.03 0.425 1. 84 0.03 0. 70 1.88 0.04 
0.275 1.535 0.03 0.45 1. 89 0.03 0.80 1. 52 0.03 
0.30 1. 60 0.03 0.475 1.92 0.04 0.90 1.12 _ 0.04 
0.325 1. 67 0.03 0.50 1.965 0.04 
0.35 1. 70 0.03 0.55 1. 99 0.04 

fl. 
0.10 0.98 0.04 0.30 1.24 0.04 0.50 1. 41 0.04 
0.20 1.15 0.03 0.40 1. 38 0.05 

7f 

0.10 2.06 0.04 0.40 1. 89 0.02 0.70 1. 32 0.04 
0.20 2.05 0.04 0.50 1. 695 0.02 0.80 1.15 0.05 
0.30 2.04 0.03 0.60 1. 465 0.02 0.90 0.94 0.04 
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AFC 

1XX 
1ZZ 
1XY 

2XX 
2YY 

3XX 
3YY 
3YZ 
3XZ 

4XX 
4ZZ 
4XY 

5XX 
5YY 
5ZZ 
5XY 

6XX 
6YZ 

7XX 
7YY 
7ZZ 
7YZ 
7XZ 
7XY 

*8XX 
8XY 

TABLE 4.4 

Atomic force constants for Bi
20

Pb
60

T1
20 

and Pb33T1 67 at 100°K 

in units of dyne/em 

Bi20Pb60T120 Pb33T167 

3687+75 4855+60 
-1574+152 -1409+"116 

5037+118 5759+"88 

1532+100 140+77 
-15+71 -38+"53 

-312+96 110+74 
71+46 -110+38 

233+60 -24+"51 
40+32 -41+"25 

572+37 46+28 
25+51 -157+"41 

176+143 148+111 

-4+86 -91+66 
-221+43 51+33 
-248+56 69+43 

81+47 -53+34 

-6+26 -105+21 
-88+77 12+67 

-32+46 79+34 
84+47 -25+37 
-1+21 26+17 
12+14 6+"13 
18+22 9+20 
37+20 18+12 

144+107 -73+68 
267+73 -8+46 

Force Constant Matrixcnxx nXY nXZ) 
nXY nYY nYZ 
nXZ nYZ nZZ 

a h>k>t>O reference atoms 2 Chkt), ---

*In the mathematical fit, the eighth-neighbour force 
constants are affected by the termination and this 
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is probably reflected in the values being comparatively 
large. 



C. Temperature Dependence of Phonon Dispersion Curves 
in Pb and Pb40Tl 60 

68 

It is seen from the discussion given in the previous 

section that the conduction electron concentration in metals 

and metallic alloys plays an important role in determining 

the phonon frequencies. Also lattice vibrations normally 

exhibit temperature dependence. Therefore, it may be in-

structive to study the temperature dependence of the phonon 

* frequencies in substances with different electron concen-

trations. We discuss below, the dispersion curves at 100°K 

and 296°K in Pb and Pb40Tl 60 which have 4 and 3.4 electrons 

per atom respectively. 

Comprehensive measurements on lead along the major 

symmetry directions at 100°K were made by Brockhouse et al 

(1962). Limited measurements at 296°K and 425°K were also 

reported (Brockhouse et al.l961, 1966). Stedman et al. 

(1967a) have also determined the phonon frequencies at many 

points in reciprocal space at 80°K and at some selected 

points at 300°K for lead. The results of the above workers 

agree quite well within the assigned errors. 

To make a detailed comparative study of the dis-

persion curves, we have measured the phonon frequencies in 

* The effect of temperature on phonon-lifetime is discussed 
later. 
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Pb along the four major symmetry directions at 296°K. These 

are presented in Fig. 4.3 along with the dispersion curves 

at 100°K (Brockhouse et al. 1962). (For the sake of clarity, 

the experimental points at 100°K have been omitted). Fig. 4.4 

shows the dispersion curves of Pb40T1 60 at two different 

temperatures. (The results at 100°K are due toNg (1967 )). 

In Pb40 Tl60 , all the phonon frequencies show very much the 

same temperature variation. The observation that the fre­

quencies decrease as the temperature of the crystal is in­

creased seems to apply to most of the metallic crystals 

studied so far; e.g. K {Buyers and Cowley 1969), Al (Larsson 

et al. 1961), Cu (Nicklow et al. 1967), Pd (Miiller and 

Brockhouse 1970), Ni (deWit and Brockhouse 1968). However, 

the temperature dependence of the phonon frequencies in Pb 

is unusual in the sense that different modes behave 

quite differently as to absolute magnitude, relative mag­

nitude and even sign (Brockhouse 1966). In particular, 

attention may be drawn to the branch [OO~]T and [O~l]A in 

lead to illustrate the above statement. Also, for the 

[OO~]L zone-boundary mode, the frequency seems to increase 

with increasing temperatures. The different kinds of 

frequency shifts observed in Pb and Pb40Tl 60 may be related 

to the fact that the strengths of the electron-phonon 

interaction are quite different in the two materials and 

hence the anharmonic frequency shifts which involve the 
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TABLE 4.5 

Phonon frequencies (in units of 1012 cps) for the symmetry 

branches in lead at 296°K 

1:; \) !:J.v 1:; \) !:J.v 1:; \) !:J.v 
[OOI:;]T 

0.15 0.37 0.02 0.40 0.86 0.025 0.80 1.00 0.03 
0.185 0.46 0.02 0.50 0.985 0.03 0.90 0.96 0.03 
0.25 0.58 0.02 0.60 1. 055 0.03 1.00 0.925 0.03 
0.30 0.69 0.02 0.70 1.04 0.03 

[00/:;]L 
0.30 1.225 0.03 0.60 1. 99 0.04 0.90 2.04 0.04 
0.40 1.54 0.03 0.65 2.04 0.04 0. 95. 1. 94 0.04 
0.50 1.77 0.035 0.75 21.45 0.04 1.00 1. 88 0.04 
0.55 1.875 0.04 0. 80 2.12 0.04 

[1:;1:;/:;]T 
0.10 0.31 0.02 0.25 0.62 0.02 0.40 0.80 0.03 
0.15 0.41 0.02 0.285 0.68 0.025 0.45 0.81 0.03 
0.20 0.53 0.02 0.35 0.74 0.03 0.50 0.825 0.03 

[1:;1:;/:;]L 
0.075 0.59 0.03 0.30 1.87 0.03 0.425 2.05 0.04 
0.10 0.70 0.03 0.325 1. 94 0.03 0.45 2.06 0.035 
0.15 1.13 0.02 0.35 1.97 0.03 0.475 2.10 0.04 
0.20 1.47 0.03 0.375 1. 98 0.04 0.50 2.165 0.035 
0.25 1.72 0.03 0.40 2.04 0.03 

[01:;1:;]T2 
0.10 0. 32 0.02 0.40 1. 21 0.03 0.70 1. 95 0.04 
0.20 0.62 0.02 0.50 1.46 0.03 0.85 2.00 0.04 
0.30 0.92 0.025 0.60 1.71 0.035 1. 00 1. 89 0.04 

[01:;/;;]Tl 
0.20 0.35 0.025 0.50 0.88 0.02 0.90 0.97 0.04 
0.25 0.42 0.025 0.60 1. 01 0.03 0.95 0.925 0.035 
0.30 0.505 0.02 0.70 1.14 0.035 
0.40 0.69 0.02 0.80 1.13 0.035 

[01:;/:;]L 
0. 09 3 0.63 0.03 0.35 1.68 0.03 0.60 2.06 0.04 
0.15 0.93 0.03 0.375 1.76 0. 035 0.65 2.01 0.045 
0.20 1.22 0.03 0.40 1.79 0.03 0.70 1. 89 0.04 
0.25 1.46 0.035 0.425 1.83 0.03 0.75 1. 72 0.035 
0.275 1.54 0.03 0.45 1.875 0.03 0.80 1.51 0.03 
0.30 1.61 0.03 0.50 1. 995 0.04 0.85 1.305 0.03 
0.325 1.67 0.03 0.55 2.04 0.04 

[01:;1]11. 
0.10 1.04 0.03 0.30 1. 295 0.04 0.50 1. 42 0.04 
0.20 1.18 0.03 0.40 1.355) 0.04 

[01:;1]TI 
0.10 1. 96 0.04 0.40 1.92 0.03 0.70 1.30 0.03 
0.20 2.05 0.04 0.50 1. 68 0.035 0.80 1.14 0.025 
0.30 2.025 0.04 0.60 1. 47 0.03 0.90 1. 00 0.03 
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TABLE 4.6 

Phonon frequencies for the symmetry 

branches in Pb40T160 at 100°K and 296°K 

12 Frequencyv(10 cps) 

Branch 1: 100°K{a) 296°K 

0.20 0.432+0.02 0.42+0.025 
0.30 0.626+0.02 0.595+0.03 
0.40 0.81 +0.02 0.78 +0.03 
0.50 0.965+0.02 0.92 +o. 03 5 

[OO?:]T 0.60 1.122+0. 02 1.09 +0. 03 5 
0.70 1. 275+0. 02 1.235+0.045 
0.80 1.37 +0.03 1.31 +o.o5 
0.90 1.45 +0 .03 1. 38 +o.o4 
1.00 1.455+0.03 1.41 +0.04 

0.30 1.155+0. 03 1.15 +0.04 
0.40 1. 46 +0.03 1.44 +o.o4 
0.50 1. 74 +0.03 1.685+0.04 

[OO?:]L 0.60 1. 975+0. 03 1.91 +0.04 
0.70 2.13 +0.04 2.08 +0.04 
0.80 2.24 +0.03 2.20 +0.045 
0.90 2.33 +0.04 2.30 +0.04 
1.00 2.38 +o .o3 2.34 +0.04 

0.15 0.383+0.02 0.375+0.03 
0.20 0.485+0.03 0.47 +o.o4 
0.30 0.675+0.02 0.65 +0.03 

[I:I:I:]T 0.35 0.742+0.02 0.72 +0.035 
0.40 0.784+0.02 0.75 +o.035 
0.45 0.777+0.02 0.765+0.035 
0.50 0.77 +0.02 o.74 +o.o35 

0.10 0.76 +0.02 0.715+0.04 
0.15 1.125+0. 03 1. 09 +o.o4 
0.20 1.45 +0.04 1. 41 +0. 04 
0.25 1. 70 +0.03 1. 66 +0.04 

[I:I:I:]L 0.30 1. 94 +0.04 1.89 +o.o4 
0.35 2.105+0.04 2.06 +0.045 
0.40 2.29 +0.05 2.265+0.045 
0.45 2.37 +0.04 2.37 +0.04 
0.50 2.42 +0.04 2.39 +0.045 

cont'd next page 



Table 4.6 cont'd 

Branch 

[z;z;z;]L 

[Oz;z;]L 

[Oz;l]/\ 

[Ol;l]TI 

0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 

0.15 
0.20 
0.30 
0.40 
0.50 
0.60 
0.90 

(1.00) 

0.15 
0.20 
0. 30 
0.40 
0.50 
0.60 
0.70 
0.80 

(1.00) 

0.15 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 

(1. 00) 

0.10 
0.30 
0.50 

0.20 
0.40 
0.60 

(a) Ng (1967 ) 

0.76 +0.02 
1.125+0.03 
1.45 +0.04 
1.70 +0.03 
1.94 +0.04 
2.105+0.04 
2.29 +0.05 
2.37 +0.04 
2.42 +0.04 

0.63 +0.02 
0.967+0.02 
1.32 +0.02 
1.59 +0.02 
1.85 +0.03 
2.32 +0.03 

(2.38 +0.03) 

0.325+0.02 
0.492+0.01 
0.745+0.02 
0.93 +0.02 
1.098+0.02 
1.25 +0.02 
1.37 +0.02 

(1.455+0.03) 

0.915+0.03 
1.155+0.03 
1.57 +0.02 
1.905+0.03 
2.01 +0.02 
2.09 +0.02 
1.965+0.03 
1.725+0.04 
1. 55 +0. 03 

(1.455+0.03) 

1.465+0.03 
1.45 +0.03 
1.45 +0.03 

2.305+0.03 
2.095+0.03 
1. 845+0. 03 

0.715+0.04 
1.09 +0.04 
1. 41 +0. 04 
1.66 +0.04 
1.89 +0.04 
2.06 +0.045 
2.265+0.045 
2.37 +0.04 
2.39 +0.045 

0.45 +0.03 
0.625+0.03 
0.925+0.025 
1.26 +0.025 
1.535+0.03 
1. 77 +0. 03 
2.21 +o.os 

(2.34 +0.04) 

0.23 +0.03 
0.30 +0.025 
0.47 +0.02 
0.71 +0.03 
0.88 +0.025 
1.06 +0.03 
1.22 +0.04 
1.30 +0.045 

(1.41 +0.04) 

0.85 +0.04 
1.12 +0.03 
1.535+"0.03 
1.87 +0.03 
1.96 +0.04 
2.035+0.035 
1.93 +0.035 
1.69 +0.04 
1.515+0.04 

(1.41 +o.o4) 

1.41 +0.035 
1.42 +0.03 
1.42 +0.035 

2.31 +0.04 
2.05 +0.04 
1.78 +0.035 
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electron-phonon matrix element may be quite different. 

Brockhouse et al. (1961, 1962) analyzed the disper­

sion curves of Pb in terms of Fourier components (interplanar 

force constants). The analysis indicated existence of very 

long range forces in Pb - the range of the f.orces apparently 

decreasing with increasing temperature. For Pb40 Tl60 , an 

adequate description of the dispersion curves can be ob­

tained using an eight-neighbour force constant model within 

the framework of the Born-von Karman formalism. The above 

statements about the range of the force constants should be 

qualified by the remark that since the force constants 

are determined from dispersion curves measured at finite 

temperatures they contain anharmonic contributions. 

Now, for T > 00 , the shift of the phonon frequency is 

expected to be a linear function of temperature (Leibfried 

and Ludwig 1961). In view of this, it has been suggested 

by Hahn (1963) and by Leibfried and Ludwig (1961), that 

the dispersion curves measured as a function of temperature 

(for T > e0 ) may be extrapolated linearly to T = 0 to 

obtain the dispersion curves for the harmonic crystal at 0°K 

and these may then be analyzed to yield information about 

the range of the harmonic force constants. 

Fundamental calculation of the dispersion curves 

In Chapter II (section E), we outlined the procedure 

of calculating the phonon frequencies of simple metals from 
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an effective interaction between ions arising from the 

direct Coulomb interaction between the ions and the conduc­

tion-electron response to the ion motion. Such a fundamental 

calculation for Pb was done by Vosko et al. (1965). Fair 

qualitative agreement was obtained; however quantitative 

agreement could not be expected since the Fermi surface 

was assumed to be completely spherical in reciprocal space 

and the spin-orbit effect (which is appreciable for a heavy 

element like lead) was neglected. 

For Pb40Tl60 , the calculation of the phonon frequencies 

may be expected to be comparatively simpler since the electron­

screening contribution is relatively small compared with that 

in lead. This is illustrated in Fig. 4.5 where we have plotted 

the bare-ion frequencies (in the absence of the conduction­

electron response) and the experimental frequencies. Dynes et 

al. (1969 ) obtained the electron-ion pseudopotential form 

factor (see Eq. (2.24)) for Pb 40Tl 60 , based on the Heine­

Abarenkov model potential (Heine and Abarenkov 1964). The 

model potential consists of a square well of radius r = ~ 

and equals Z/r for r > ~· The potential is characterized 

basically by three parameters; A0 , A1 and A2 (Animalu and 

Heine 1965). This bare potential is then screened in the 

local approximation as outlined in Chapter II (section E) 

and the phonon frequencies were calculated in the standard way 
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(Eq. (2.40)). The well depth parameters A0 , A1 and A2 and 

the screening parameters S (Eq. (2.33)) were adjusted to 

give reasonable fits to some selected zone-boundary phonon 

frequencies at 100°K. The fitted pseudopotential form 
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factor is shown in Fig. 4.6. The following values have been 

used for the various parameters*. 

A0 = 1.61, Al = 1.61, A2 = 1.52, S = 1.47 

(atomic units) 

For comparison, we also show in Fig. 4.6 the pseudopotential 

obtained by adding the bare model-potentials of Pb and Tl 

(calculated in the local approximation using the parameters 

given by Animalu and Heine (1965)) in proper concentrations 

(40 atomic % and 60 atomic % respectively) and then screened 

appropriate to the alloy Pb40Tl60 (i.e. Z = 3.4). 

The phonon dispersion curves computed along major 

symmetry directions using the fitted pseudopotential exhibit 

good agreement with the experimental measurements at 100°K 

(Dynes et al. 1969 ). Therefore, it may be of interest to 

calculate the volume dependent frequency shifts in the pseudo-

potential theory. For calculating the frequencies corres-

pending to a different equilibrium volume, the volume 

dependence of the parameters A
0

, A
1 

and A
2 

characterizing 

* The author is grateful to Dr. D. W. Taylor for the computer 
programme and for his advice. 
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the bare model-potential can be neglected (Trofimenkoff and 

Carbotte 1970; Coulthard 1970). The variation of the HA 

potential arises mainly from the explicit volume factor in 

the bare potential (Animalu and Heine 1965) and the change 

in the dielectric function E(q) with Fermi momentum ky· 

The shift to the phonon frequencies arising from the direct 

ion-ion interaction (Coulomb) is easily incorporated in 

the calculation as the relevant GrUneisen parameter 

1 
Ycoulomb = 2· The results of the calculations are shown 

in Fig. 4.7. The phonon dispersion curves for Pb 40Tl 60 

have been computed using the crystal volumes appropriate 

to 100°K and 296°K; the parameters for the model-potential 

were fixed by fitting to the [00~) · zone-boundary phonon 

frequencies at 100°K as explained before. 

The experimental measurements were made with the 

(llO) axis of the crystal vertical. For a given ~, the 

phonon frequencies were measured at the two different 

temperatures at identical points in reciprocal space and 

under identical spectrometer calibrations to eliminate 

systematic errors in obtaining the frequency shifts 

as far as possible. These limited measurements agree with 

the frequencies listed in Table 4.6 well within assigned 
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errors. It is seen that the computed frequency shifts are in 

fair agreement with the experimental values. No quantitative 

agreement was anticipated since in.the calculation we have 
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included the contribution arising from the "thermal strain" 

only (quasi-harmonic approximation) and neglected the 

explicit temperature shift caused by the anharmonic terms 

in the potential energy. However, the principal anharmonic 

contributions come from the third and the fourth order 
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terms (Maradudin and Fein 1962) and these are often of 

opposite signs and partially cancel (Cowley and Cowley 1965). 

However, it can not be stated with certainty that this 

situation applies to Pb 40Tl60 unless detailed anharmonic 

calculations are made (Buyers and Cowley 1969). 



Introduction 

D. Anharmonic damping of phonons in 

Pb 40Tl60 and Bi10Tl 90 

For a harmonic crystal the peaks in the coherent one­

phonon scattering for a particular ~ are a-functions in 

energy broadened by the resolution of the apparatus. In a 

crystal in which the interaction between the atoms are 

anharmonic the wave trains of the lattice vibration are 

limited in time. As a result, the form of the one-phonon 

cross section is approximately a Lorentzian. (This follows 

from a simple analogy with the decay of radioactive atoms; 

Fourier transform of an exponential decay. in time gives rise 

to a Lorentzian line shape in energy.) Therefore, the 

observed neutron group is the convolution of the instru­

mental resolution function (assumed tp be a Gaussian) 
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as a function of Q and w with a Lorentzian line. shape of the 

one-phonon excitation. In addition to the problem of decon­

volution to obtain the natural width of the phonon; the experi­

ments to study line broadening is complicated by the fact 

that often the neutron groups at elevated temperatures are 

superposed on a strong background. 

Experimental Energy Widths in Pb40T160 

Phonons were studied in Pb 40T1 60 at 100°K and 296°K 

to investigate the anharmonic effects. The temperature 

dependent frequency shifts observed in Pb 40Tl60 were considered 

in the earlier section. In this section we discuss the 

frequency widths of phonons. 
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Fig. 4.8 shows the neutron groups along the [~~O]L 

branch for ~=0.3 at two different temperatures measured 

under identical settings of the spectrometer using the same 

counting period as regulated by the monitor in the incident 

beam. At 296°K, the one-phonon group is observed to sit 

on a strong and sloping background arising from multi-phonon 

scattering and from multiple-event inelastic scattering pro-

cesses, both of which increase markedly with temperature. To 

obtain the true phonon-widths it is necessary to subtract 

the above background and correct the neutron group for resolution. 

The separation between one-phonon and multiphonon 

scattering may not be well defined for an anharmonic crystal. 

Ambegaokar et al. (1965} pointed out that anharmonicity gives 

rise to an interference between the sharp one-phonon peak and 

the diffuse multi-phonon background. This interference modi-

fies the shape as well as the intensity of the one-phonon 

peak. Numerical calculations by Maradudin and Ambegoakar 

(1964} indicated that the former effect is very small. However, 

it has been recently shown that the interference effect on 

the intensity of the one-phonon peak is larger (Cowley and 

Buyers 1969} and has also been observed experimentally in 

KBr (Cowley, Svensson and Buyers 1969}. In view of this, 

it was necessary to examine the intensities of the neutron 

groups more closely. The procedure followed for the sub-

traction of the background will be illustrated by referring 

to the neutron groups shown in Fig. 4.8. 
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We first calculate the multi-phonon cross-section as 

a function of the wave-vector and energy transfer in the 

neighbourhood of the one-phonon peak at 100°K, in the inco­

herent approximation for a harmonic crystal (Eq. (3.10)). 

At this temperature, all the higher phonon processes except 

the two-phonon cross-section are negligible. The computed 

cross-section is folded with the resolution function of the 
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spectrometer and the effect of the analyzer sensitivity is 

also included (Appendix II). The coherence effects in multi-

phonon processes are averaged out to a large extent (Eq. (3.9): 

see also Sjolander (1958)). Further, since the observed 

spectrum is heavily smeared by the resolution, the calculation 

of the two-phonon coherent cross-section in the incoherent 

approximation is expected to be reasonably valid. 

The computed cross-section is then normalized to the 

observed multi-phonon background at 100°K. The drawing 

of the background line is somewhat arbitrary: however the 

neutron groups are quite well defined at this temperature 

(100°K) and therefore the uncertainty is not large. Using 

this intensity scale factor obtained from the above normali-

zation at 100°K, the multi-phonon conbribution is fixed at 

296°K and is used to draw the background line under the 

neutron group at 296°K. (See Fig. 4.8.) 

It should be mentioned that for large specimens* used 

in the neutron-scattering experiments, multiple-event in-

elastic scattering processes are also present--either two-

phonon scattering followed or preceded by Bragg scattering, or 

; The transmission of the specimen crystal was about 45% at 296°K 
--a rather low value. However, the transmission was 60% at 100°K 
and was suitable for measuring the dispersion relations. 
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two one-phonon scattering events (successive energy gain and/ 

or energy loss). However, for both the above processes, the 

shape of the spectrum is roughly the same as that of the 

single-event two-phonon scattering (simultaneous energy gain 

and/or loss) and therefore the two-event scattering processes 

mentioned above are also included in the calculation in an 

approximate way. 

Finally, the integrated intensities of the background 

subtracted neutron groups are compared with the calculated 

one-phonon cross-sections(Eq. (3.13)}. From the measured 

transmissions of the specimen at the two temperatures, a 

correction for self-absorption in the specimen was made 

in all the above calculations. No deviations from the calcu­

lations based on the harmonic theory were found outside the 

limits of the experimental uncertainty for the phonons in­

vestigated at 100°K and 296°K. 

Fig. 4.9 shows typical neutron groups corrected for 

the analyzer sensitivity in the [ssO]L and [sOO]T directions, 

at 100°K and 296°K. The background lines were drawn from the 

considerations given before and the integrated intensities 

of the neutron groups were consistent with the one-phonon 

cross sections calculated using Eq. (3.13}. It may be remarked 

that this procedure involves the assumption that the energy 

broadening does not affect the integrated cross-section. If 

the anharmonic width and shift are small compared with 

the phonon frequency then the above assumption can be shown to 

be valid (Brockhouse 1966). 
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The natural line width of a group at 296°K may be 

deduced by comparison with the width of the corresponding 

group at 100°K. However, at 100°K some anharmonic broadening 

is also present. In Fig. A2.4 (App.II ) we have plotted 

the widths of neutron groups at 100°K corresponding to the 

zone-boundary phonons ([~OO]T and L) in Pb, Pb 40Tl60 and 

Bi10Tl90 . The resolution of the spectrometer as a function 

of the energy transfer is estimated from the observed 

vanadium width at the zero energy transfer. Since, for the 

zone boundary phonons (gradSI.v=O) the gradient focussing is 

virtually absent, we may conclude from Fig. A2.4 that the 

resolution widths are approximately 90% of the widths of 

the corresponding resonances at 100°K.* We next make the 

reasonable assumption that the above procedure of obtaining 

the resolution widths from the corresponding measured widths 

at 100°K holds true for the phonons measured at other values 

of g_ also. (Grad v does not change much with temperature). 
g_ 

Fi.g A2.4 also shows that we may disregard any additional 

. + broaden1ng that may be present in the neutron groups for 

Pb 40Tl 60 and Bi10Tl90 caused by force constant disorder. 

This statement is consistent with the observation of Ng and 

Brockhouse (1967, 1968) that the neutron groups in these 

binary alloys are as sharp and well formed as for pure metals. 

To extract the natural width at 296°K tables of 

Lorentz functions folded with Gaussian resolution function 

(Rose~~.) were employed. The results are presented as 

* The machine calculation of the instrumental widths (App.II) 
indicates that the resolution widths are 80-90% of the observed 
line widths in Pb 40Tl 60 at 100°K 

+The electron-phonon damping may be ignored (Chap.II(G)). 
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triangles in Fiq. 4.10. A more extensive but somewhat less 

reliable result for the widths are .shown as filled circles. 

These were obtained from another independent set of measure­

ments made at room temperature (296°K) only. Therefore to 

obtain the true widths it was necessary to calculate the 

resolution function of the spectrometer as a function of 

energy and momentum transfer. A proper consideration of 

the focussing characteristics of the spectrometer is rather 

involved (see also Appendix II). The computations, based 

on the work of Cooper and Nathans (1967) , were done in 

the McMaster University CDC-6400 computer. (The programme 

was written by Mr. A. Larose; the author is grateful to 

him for a copy of the computer programme.) 

Large errors are introduced in the deconvoluting 

process, particularly when the line width is comparable with 

the resolution width. When the broadening is large the 

Lorentzian line shape is not necessarily expected to hold. 

(Incidentally this fact introduces little uncertainty in 

the extraction of the widths provided the width is signi­

ficantly larger than the resolution width.) According to 

the detailed theories (Maradudin and Fein 1962; Kokkedee 

1962; Cowley 1963) the damping turns out to be a function of 

the frequency; it is a constant only when the anharmonic 

interaction and thus the damping itself is very small. In 

view of these, we have not shown the errors on the individual 

widths since many of the widths may not be significant by 

themselves. However; the overall trend of any group of re­

sults is likely to be significant. 
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Frequency Shifts and Widths in Bi10Tl 90 

The measurements were made at 100°K and 296°K in the 

[~00] direction only, for the longitudinal and the transverse 

branches. The widths at 296°K were obtained from a compara-

tive study of widths at 100°K, as discussed for Pb 40Tl 60 . 

Fig. 4.11 shows the results for the widths and shifts in 

Bi10Tl 90 . Along the [~OO]L branch widths are unusually large 

in the neighbourhood of ~=0.7.* This is illustrated in Fig. 4.12 

where some of the neutron groups are shown at 100°K and 296°K. 

It is interesting to note that the frequency shifts are also 

probably large in that region. These effects could be inter-

related and may be associated with a singularity in the phonon-

phonon interaction there. Unfortunately, proper calculation 

of these anharmonic properties calls for a major effort of 

computation; it is only very recently that such detailed cal-

culations have appeared in the literature. (Buyers and 

Cowley 1969; Sandstr~m and H~gberg 1970; Koehler et al. 1970). 

Nevertheless, we may analyze the results in terms of 

an extension to the Born-von Karman theory of lattice dynamics 

following Brockhouse et al. (1961). If we include dissipative 

forces depending linearly on the relative velocities of the ions 

then for a branch in the symmetry direction the energy width 

*The dispersion curves ([~OO]L) for Bi 10Tl 90 and Bi 20Tl 80 show 

some structure in this region which is not readily inter­
pretable in terms of Kohn kinks. However, the neutron groups 
at 100°K do not exhibit any anomalous width along this branch. 



Fig. 4.11 

Phonon widths and shifts in Bi
10

Tl90 • The solid lines 

drawn in (a) represent fits to the widths from simple 

theoretical consideration. (For the [z;:OO]T zone ... 

boundary mode, the phonon widths were determined at 

two different positions in reciprocal space and are 

shown by the filled and the open circles. The 

measured frequency shifts were identical (See Table 4.9) .) 
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of a phonon, W=liy, can be expressed as (Brockhouse et al. 1961) 

N 
y = L r (1-Cos nnq/qM) 

n=l n 
(4.1) 

where r are effectively the dissipative force constants 
n 

between planes of atoms. The index n indicates the nth plane 

of atoms and the summation is carried out to a value n=N 

beyond which rn effectively vanishes. The solid lines shown 

in Fig. 4.ll(a) show the best fits to expressions of the form 

of Eq. (4.1) with N=l for the [sOO]T branch and N=3 for the 

[ sOO] L branch. 

Before concluding this section it may be relevant to 

mention that the anharmonic broadening in Pb was studied by 

Brockhouse et al. (1961) at 425°K and by Stedman et al. (1967a) 

at 300°K. A comparison of the widths along various symmetry 

directions between Pb and Pb 40Tl60 at 300°K shows similar 

trends---the damping in lead being probably somewhat larger, 

in general. Since the damping of phonons is mainly governed 

by the cubic term in the potential energy and the thermal 

expansion also involves the cubic anharmonic term to the 

lowest order, it may not be unreasonable to argue that Pb 

and Pb 40Tl60 should have similar thermal expansion 

coefficients. We discuss the measurements of thermal expansion 

of the alloys in the next section. It may be recalled here 

that the temperature dependent frequency shifts for certain 

modes show quite different trends in the two materials which, 

however, does not contradict the above discussion in any direct 

way. 



TABLE 4.7(a) 

Phonon frequencies in Bi10Tl 90 

along the [ s 0 0] symmetry direction. 

v(lo12 cps) 

Transverse Longitudinal 

100°K 296°K 100°K 296°K 

0.20 0.440 0.420 0.770 0. 735 

0.30 0.635 0.605 1.115 1. 080 

0. 4 0 0.820 0.770 1.430 1.390 

0.50 0.995 0.930 1.720 1. 655 

0.60 1.155 1. 095 1.945 1.880 

0.70 1. 280 1. 210 2.105 2.040 

0.80 1. 355 1.295 2.240 2.190 

0. 9 0 1.415 1.355 2.390 2.330 

1.00 1.420 1.360 2.440 2.410 

For the purpose of calculating the frequency 
shifts, errors of 0.5-1% were assigned to 
the frequencies. It should be pointed out, 
however, that the absolute error for any 
particular measurement is considerably 
higher than this. 
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TABLE 4.7(b) 

Phonon widths (F.W.H.M.) at 296°K 
corrected for resolution, in Bi 10Tl 90 along the 

[sOO] symmetry direcE1ons 

Phonon Widths (lol2 cps) 
s Transverse Longitudinal 

0.20 0 +0.05 0 +0.05 

0.30 0 +0.06 0.05+0.05 

0.40 0.08+0.05 0.10+0.05 

0.50 0.13+0.04 0.16+0.05 

0.60 0.13+0.05 0.18+0.06 

0.70 0.10+0.05 0.22+0.06 

0.80 0.13+0.05 0.23+0.05 

0.90 0.11+0.06 0.16+0.05 

f 0 .14:+:_0. OS 0.08+0.05 
1.00 

0.17+0.04 

The error in the natural width was obtained by 
changing the observed width of the neutron 
group by its error and repeating the decon­
voluting procedure. Because of large errors, 
many of the widths are not significant by 
themselves, however, the over-all trend of 
any group of results may be expected to be 
significant. 
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E. Anharmonic Effects in Thermodynamic Properties 

(i) Thermal Expansion of Bi-Pb-Tl Alloys (experimental) 

Introduction 

In a harmonic theory the equilibrium positions of 

the ions are those defined by the minimum of the potential 

energy, independent of temperature. However, the fact that 

solids exhibit thermal expansion implies that equilibrium 

positions are temperature dependent and this effect is 

related to anharmonic terms in the expansion of the poten­

tial energy with respect to the displacements of the atoms. 

Therefore, experimental information on thermal expansion 

in solids is useful in the investigation of anharmonic 

properties. In this section we describe experimental 

measurements of thermal expansion of Bi-Pb-Tl alloys over 

a temperature range of 100°K-400°K. 

Experimental Details and Results 

The characterization and lattice constant measure­

ments at room temperature of the alloy single crystals by 

neutron diffraction is described in Appendix I. Expansion 

coefficients can be obtained by measuring lattice constants 

as a function of temperature. All the specimens were pre­

viously annealed· Because the large neutron beam penetrates 

almost the whole ingot, the effect arising from any 

quenching stress present on the surface layers may be 

expected to be negligible. Further most of the alloy crystals 

were fairly homogeneous in composition as can be seen from 

Table (Al.l). 



The experiments were carried out at the McMaster 

triple axis spectrometer (Rowe 1965). Neutrons with in­

coming wavelength of 2.330 A0 were used throughout the 

experiment. A"perfect"Cu(220) analyzer (26A'Vl32°) was 

employed with a mosaic spread of 8' (FWHM) to ensure high 

resolution in the scattered beam. Back angle reflection 
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(400) off the specimens were measured to improve the sensitivity; 

the scattering angles were in the range of 140°-150°. 

Effect on lattice constant arising from mislocating the crystal 

on the spectrometer table was investigated by deliberately 

displacing the specimen from the centre of rotation of 

the ~-table. It was found that displacement along the 

scattering vector of the Bragg reflection plane has virtually 

no effect. In a direction perpendicular to the scattering 

vector a shift of ~" (diameter of the specimen 'Vl") amounted 

to a change of 0.0015 A0 in lattice constant. However, it 

should be noted that this effect does not contribute any 

appreciable error to the measurement of thermal expansion. 

The accuracy in measuring a lattice constant was estimated to 

be about one part in 10 4 • 

Specimen single crystals were mounted in a cryostat 

and were aligned using neutron beam either with (100) or 

(llO) axis vertical. The crystals used have cylindrical 

geometry (1-1~" in dia and 3~" long) with the angle between 

the cylindrical axis and the crystallographic axis varying 

from 0° to 20°. The alignment was probably good to within 

a few minutes of arc. All the specimen crystals were en­

closed in tight fitting aluminmum cans (1/32" thickness) and 
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insulated heating elements were wrapped round the base of 

the can. Temperatures were recorded at two points across 

the length of the crystal using calibrated copper-constantan 

thermocouples screwed on to the alumimum can. Radiation 

shields were placed around the specimen to ensure thermal 

equilibrium with the temperature bath.· For measurements 

below room temperatur~ liquid nitrogen and dry ice were 

used along with the heater for other intermediate tempera­

tures. When the specimen is cooleG the aluminum can enclosing 

it contracts less than does the specimen, thus resulting in poor 

thermal contact. For this reason, the specimen was allowed 

to cool for five to six hours before starting a low tempera­

ture run (liquid nitrogen or dry ice bath). Temperatures 

were measured probably to within an accuracy of 2-3°K. 

For the runs carried out at intermediate temperatures using 

heaters, temperature measurements were less accurate--tempera­

tures recorded at two ends of the specimen indicated a 

gradient of ~6°K across the length of the crystal. These 

measurements are indicated by crosses in Fig. 4.13. In 

particular, for both the Bi-Tl alloys, namely Bi10Tl90 and 

Bi 20Tl 80 there were serious discordances for the measurements 

at intermediate temperatures and consequently they have been 

omitted from the plot. It may be noted that for the 

measurements made above room temperature good thermal contact 

between the aluminum can and the specimen was automatically 

insured ~s the coefficients of expansion of the alloys are about 

one and half times greater than the expansion coefficient of 

aluminum 

~ ... ..A~-1- .......... ~. ••• -• ··-.. ~ A-----
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Fig.4.13shows a plot of lattice constants as a function 

of temperature for various alloys as well as for pure lead. 

It is seen that for lead, the present limited measurements agree 

with other more accurate measurements (interferometric 

measurements (Nix and McNair 1942) are shown from 85°K to 

296°K and X-ray measurements (Stokes and Wilson 1941) from 

296°K extending to higher temperatures) within limits of the 

experimental accuracy. This comparison provides a valuable 

and important check of the temperature scale as well as on 

the measurement of lattice constant. The lines drawn through 

the experimental points of the alloys represent a least 

2 square fit of the form a(T) = a
0
+a1T+a2T • The coefficients 

are tabulated in Table 4.8 along with values of lattice 

constants at a few selected temperatures. Since the measure-

ments were confined to temperatures ranging from e0 and 

above, a 0 probably gives a measure of the extrapolated lattice 

constant at 0°K for the harmonic lattice. It is seen that 

alloys have more or less similar thermal expansion coeffic-

ients which would probably imply (to some extent) similar 

anharmonic interactions (cubic term) too. However, for 

the Bi 20Pb 60Tl 20 alloy, the curvature of the fitted line is 

negative whereas for the rest of the alloys it is positive. 

In addition to measuring thermal expansion there was 

some additional interest with the Bi-Tl alloys. According 

to the phase diagram for Bi
10

Tl90 and Bi 20Tl 80 there is 

some indication for the existence of a new phase boundary 

above 55°C and ~ssoc respectively (Hansen 1958). Search was 
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Temp°K 
Materials ( +2 0) 

395 

Pb 296 

121 

398 

296 

117 

398 

296 

118 

396 

296 

122 

* 

TABLE 4.8 

Latt1ce Const. 
a (A 0

) 

(+0.0005 A 0
) 

4.9656 

4.9499 

4.9255 

4.9757 

4.9597 

4.9300 

4.9824 

4.9651 

4.9374 

4.9491 

4. 9 33 6 

4.9087 

(4.9651) 1 

(4.9498) 1 

(4.9260) 2 

ao al a2 Linear Expansion 
(xl0

4
) (xl0

8
) coefficient Cat 

30-().~ K)--( -i-0.:-~d€g_::: ') 

4.9108 1.14 6.1 30.5(28.8)+ 

4.9100 J,.74 -2.3 

4.9204 3.8 

4.8919 1.36 2.0 

The coefficients of expansion were calculated from the parameters a 0 ,a1 and a2 w0ich were 
obtained by fitting to the measured lattice constants. The errors 1n the expans1on 
coefficients are probably 6% or slightly more. 

+ Interferometric measurements (Nix and McNair 1942). 

I-' 
0 
w 



Table 4 • 8 con t ' d 

Pb60Tl40 

Temp°K 
(~20) 

382 

295 

120 

396 

296 

122 

417 

296 

101 

430 

296 

100 

Lattice Const. 
a (A o ) 

(+0.0005 

4.9~26 

4.9189 

4.8941 

4.9133 

4.8982 

4.8752 

4.9358 

4.9169 

4.8893 

4.9015 

4.8807 

4.8547 

AO) 

ao al 
(xl0 4 ) 

4.8781 1. 30 

4.8606 1.15 

4.8760 1. 31 

4.8438 

1. Interpolated from X-ray measurements (Stokes and Wilson 1941). 

a2 
(xl0

8
) 

3.1 

4.6 

2.8 

7.2 

2. Interpolated from interferometric measurements (Nix and McNair 1942). 

Linear Expansion 
coefficient(at 
300°K) (lo-6deg-

29.6 

30 

30 

Pb was taken as standard; a=4.9499 A0 at 296°K (Pearson 1958). a
0

,a1 and a 2 
are the coefficients of the least square fit a(T)=a 0+a1T+a 2T

2 
to the experimental points. 
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for any anomalous change in lattice constant above and below 

the transition temperature with negative result. 

(ii) Calculation of thermodynamic properties 

in Pb40Tl60 

Thermal Expansion 

We found in Section C that for Pb40Tl
60

, since 

the electron-phonon interaction is not too strong, a 

simple pseudopotential calculation of the phonon frequencies 

gave reasonably good results. Therefore, it may be of 

interest to calculate anharmonic properties using this 

pseudopotential and compare them with experimental results. 

We describe below the calculation of thermal expansion. 

The quasiharmonic lattice dynamical contribution 

to thermal expansion can be written as (Eq. 2.15): 

8ovo _ 1 
-3k - 3N r Y · <s.> 

XT g_j J 
(hv/kT) 2 n . (n . + .!.> g,J g,J 2 

( 4. 2) 

All the quantities appearing in the above equation have 

beendefinedearlier in Chapter II(D)--the subscript Ton 

x implies isothermal compressibility and 8
0 

is the volume 

expansion coefficient corrected thermodynamically to a 

fixed volume v • The phonon frequencies were calculated 
0 

within the irreducible volume of the Brillouin zone on a 

uniform mesh of g_-points using the pseudopotential fitted 

to the dispersion curves at 100°K (section C). Proper 

weights were assigned to the surface points. The Gruniesen 

parameters, yj(g_)=(oinvj(q)/oinv), were found by calculating 

the frequencies as a ·function of volume and determining the 

limiting slope.· 
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The comparison of the calculation with 

the measured quantity is shown in Fig. 4.14. The experi-

mental value of the coefficient of expansion S was deter-

mined from a least square fit to the lattice constants 

measured as a function of temperature described in the 

previous section. It was further necessary to correct 

the measured (zero pressure) thermal expansion coefficient 

B(v,T) to a fixed volume coefficient S(•
0

,T) (Barron et al. 

1964). This was done by using the following thermodynamic 

relation (Wallace 1968b) 

The adiabatic compressibility Xs was determined from the 

experimental data on elastic constants (0-300°K) 

(Shepard and Smith 1967) using the following expression 

1 -= 

The isothermal compressibility was found from the relation 

where CP is the heat capacity. 

described later.) 

(The calculation of CP is 

Fig. (4.14) shows a discrepsncy of about 10% 

between the theory and the experiment. This could be 

attributed to the neglect of the explicit anharmonic free 

energy (see, for example, Cowley 1968) and the electronic 

contribution. (The latter contribution is, however, expected 

to be negligible except at very low temperatures.) 
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Frequency distribution function and heat capacity 

From the measurement of the phonon dispersion 

curves along symmetry directions in Pb40Tl60 at 100°K and 

296°K, it was found that the frequency shifts in different 

modes were rather similar (Section C). This behaviour 

may be expected to hold reasonably well for the off-

symmetry modes also. In Fig. 4.15, we show the frequency 

distribution functions of Pb 40Tl 60 at 100°K and 296°K 

(model calculation using an eight nearest neighbour fit 

to the dispersion curves measured along the four major 

symmetry directions). These distributions should be 

accurate*enough to use in calculating lattice specific heats 

since the force constant model can reproduce the phonon 

frequencies along both symmetry and non-symmetry directions 

to within 2% of the experimental results (Ng and Brockhouse 

19 6 8) • 

We next proceed to calculate the total lattice 

specific heat (harmonic + anharmonic) of Pb40Tl 60 at con­

stant pressure (essentially zero pressure) using the method 

outlined in Chapter II(D). The reference temperature T
0 

was 

chosen as 100°K. From the measured phonon frequencies 

at 100°K and 296°K (Table 4.6), the frequency ratio defined 

with respect to the reference temperature T was found to be 
0 

* The sharp singularities in the computed frequency spectra are 
artificial to some extent for a disordered alloy, like Pb 40Tl 60 . 
See section G for a discussion of the effect of the 
phonon life time on the singularities. 
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Since, for T>e 0 , the shift of the phonon frequency is 

expected to be a linear function of temperature (Leibfried 

and Ludwig 1961) we make the assumption that (dG(T)/dT) is 

a constant above 100°K (~80 ) and therefore G(T) at any 

temperature above T is readily obtained from G(296°K). 
0 

For temperatures less then 100°K, dG/dT is temperature 

dependent and tends to zero near 0°K. dG/dT may be 

estimated from the known temperature variation of the 

elastic constants assuming that (d£nv/dT)~~(d£nC/dT) 

where C is an appropriate elastic constant. From the 

experimental elastic constants (Shepard and Smith 1967), 

(d£nC/dT) was evaluated in the symmetry direction [sOO], 

[ssOl and [sssl for all the acoustic branches, as a 

function of temperature in the range 0-100°K. A simple 

average of (d£nC/dT) over all the above branches was used 

to evaluate G(T) and dG/dT. Finally, the heat capacity 

was computed from Eq. (2.20). Fig. 4.16 shows the results 

of the calculation. The harmonic specific heat is calcu-

lated by using an effective frequency distribution corr-

esponding to 0°K and assuming that the normal mode fre-

quencies are temperature independent. No calorimetric 

measurements of the heat capacity for Pb-Tl alloys are 

available. Therefore, we have taken the experimental heat 

capacities of Pb and Tl from the literature (Hultgren 

et al. 1963) and added them in proper concentrations; these 



are shown as filled circles in Fig. 4.16 for comparison.* 

If we subtract the electronic specific heat contribution 

(Calculated in the free electron model) from the experi­

mental pointsthe agreement with the calculated curve 
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(the solid line in Fig. 4.16) will be excellent. However, 

the above method of obtaining the heat capacity of the alloy 

by adding the heat capacities of the constituent elements is 

admittedly very crude and physical significance 

can be attached to the agreement obtained. 

* According to Neumann-Kopp's rule, the heat capacity of an 
alloy may be calculated additively from the heat capacities 
of the components. This rule is obeyed to within +3% for 
various intermetallic compounds and alloys (Smither 1962) . 
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F. Kohn Anomaly and Electron-phonon Interaction in Bi-Pb-Tl Alloys 

(i) Kohn Anomaly and Fermi Surface in Pb-Tl alloys 

Introduction 

It was first pointed out by Kohn {1959) th.at 

the interaction of lattice vibrations with the conduction 

electrons in a metal should cause anomalies in the phonon 

spectra. This was first experimentally demonstrated for 

lead by Brockhouse et al. (1961). Kohn anomalies have 

subsequently been seen in the transition metals of columns 

V and VI of the periodic table (Woods and his collaborators 

1965; Walker and Egelstaff 1969), aluminum (Stedman and 

Nilsson 1965), zinc (Iyengar et al. 1968), Nb-Mo alloys 

{Powell, Martel and Woods 1968) and Bi-Pb-Tl alloys (Ng 

and Brockhouse 1967, 1968). It is interesting to note 

that all the above materials are superconductors~ We will 

return to this point later. 

Although the neutron method is perhaps less accurate 

then the conventional electrodynamic methods for 

studying Fermi surfaces, it has the advantage that it does not 

require very low temperatures or particularly pure samples. 

In fact it is the only tool available for investigating the 

Fermi surface in disordered alloys. This was mainly the 

motivation for undertaking a somewhat detailed study of the 

Fermi surface in Pb80T12 0 which will be described in this section 

Origin of the Anomalies 

The Kohn effect results from an abrupt change in the 

ability of the electrons to screen the ionic motions. When the 

wavevector transfer exceeds an extremal distance across the 

* The kohn anomalies have been rec~~tly observed in Pd, a material 
which is not a superconductor {M11ller 1969) • 
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Fermi surface, the electrons can not be scattered with con-

servation of energy as the phonon energy is negligible com-

pared with the typical Fermi energy in metals. Therefore, 

sudden variation of transition density occurs for pair of 

points where the tangent planes are parallel. For a dia-

metral transition one has the relation 

where kF is the Fermi radius. 

Size of the Anomalies 

For diametral transitions, with the assumption of a 

spherical Fermi surface, the anomalies will be mainly governed 

by the magnitude of the electron-phonon matrix element at Q=2kF. 

However, even for a nearly free electron metal the Fermi sur-

face departs appreciably from the appropriate spherical shape 

near a Bragg reflection plane. As a result, the detailed de-

pendence of the electron-phonon interaction, on the magnitude 

of the momentum transfer corresponding to a particular tran-

sition (diametral or non-diametral}, plays an important role 

in determining the size of the anomaly. The strength of the 

anomaly also depends on (i} the multiplicity of the transitions 

(eg. some particular transition across the Fermi surface may be 

produced from several reciprocal lattice points} (ii} phonon 

polarization ~j(g} and the momentum transfer q through the 

factor (Q·~j (g)} 2 and (iii} the density of states on the Fermi 

surface and the local curvature. 

Taylor (1963} suggested that the relative sizes of the 

effects in different materials (neglecting Fermi surface 

3 shape effects} should be governed by the factor F=Z p/McrT 
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where the various quantities are defined as: z valence; 

p density; M atomic weight; a electrical conductivity; T 

absolute temperature. a appears in the expression because 

nearly the same electron-phonon matrix element as used in 

phonon frequency, determines the resistivity. This reasoning 

also indicates why superconductors which display stronq 

electron-phonon coupling are likely candidates for observing 

the Kohn effect. We give below the value of F for a few 

substances (Taken from a table given by Taylor (1963) and 

Sharp (1969)), in which Kohn anomalies have been studied. 

Cu Z.n Al Pb Nb 

F X 108 0.08 1.83 2.63 25.4 60.8 
(CGS units) 

Though these values should not be taken too literally, they 

nevertheless give an idea of the relative magnitudes of the 

Kohn effect. 

In Chapter II-D, it was found that the bare-ion 

frequencies are renormalized when the electron response is 

taken into account. As a consequence, anomalies in the phonon 

dispersion curves may arise from s~ngularities present in 

the dielectric function £(Q). This can be seen immediately 

by writing the contribution of the electron-phonon interaction 

to the dynamical matrix D 0 (Q): 
O.tJ -

1 
M l: (g_ + G)a(g_ + G)S Ue(SI. +G) 

G 

Now, Ue (Q) contains £ (Q) (Eq. (2. 37)) • For free electrons 

with spherical Fermi surface £(Q) is given by Eq. (2.29). 



We see that E(Q) has a logarithmic singularity at Q = 2kF. 

The first derivative near 2kF is given by 

and 

'i1 c;fl2 (Q) 

me 2 Q "o£"" .R.nll--1 
47Th2kF2 2kF 

Q'V2k 
F 

a: 

Now, V
0

£(Q) is infinitely negative (in 0 = -oo) at Q = 2kF. 

Furthermore £(Q) is positive for Q = 2kF: therefore as we 
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follow the phonon wavevector path from the inside to the outside 

of the sphere Q = 2kF 1 the frequency increases rapidly. This 

is called an upward anomaly (Brockhouse et al. 1961; Woll and 

Kohn 1962). If we cross from outside to the inside, the 

frequency drops infinitely rapidly--a downward anomaly. However, 

it should be noted that E(Q) is well behaved and if one plots 

£(Q) as a function of Q one finds only a slight inflection in 

the neighborhood of Q = 2kF. The remarkable smallnessof a 

logarithmic singularity is rather striking. 

For evaluating the magnitudes of Kohn anomalies, one 

needs an accurate knowledge of the electron-phonon matrix 

element. Stedman et al.(l967c) estimated the sizes and senses 

of Kohn anomlaies in Pb for a nearly spherical surface. It 

was found that the experimentally observed heights of the anom-

alies were higher by a factor of seven even after suitably 

adjusting the value of electron-phonon matrix element. This 

discrepency is attributed to the departure of the Fermi sur-

face from a spherical shape which arises from the interaction 

of the electrons with the periodic ionic potential in the 
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crystal--the distortion of the Fermi surface being greatest 

near a Bragg plane. 

Afansev and Kagan (1963) have shown that for a circular 

cylinder of radius kF 

2 
E(Q) = 1 + me [1- (l-n2)1/2J 

TikFh2n2 

The cylindrical Fermi surface therefore, has a square-root 

singularity in v
0

w2 and is much more pronounced than the 

logarithmic singularity for the spherical case. 

Kaganov and Semenenko (1966) have considered para-

bolic, elliptic and hyperbolic surfaces. Fo,r a planar Fermi 

surface, the singularity is like I0-2kFI-1 , thus very sharp.* 

Experimental Observation of Anomalies 

Kohn anomalies were seen in Pb-Tl alloys by Ng and 

Brockhouse (1967, 1968) along the symmetry directions corr-

esponding to those observed for Pb in the [~~O]L and [s~~]L 

branches. They found that their results correlate well with 

the Fermi surfaces deduced from the band structure of Pb 

determined by Anderson and Gold, using the rigid band model. 

In the present work, measurements have been extended 

to another Pb-Tl alloy--Pb33 Tl
67

. The results are tabulated 

below along with the results for the other alloys, for the 

sake of completeness, taken from the paper by Ng and Brockhouse 

. (1968). 

*Near a singularity, in addition to an anomalous change in phonon 
frequency, damping of phonons may also arise from the electron­
phonon interaction. This has been observed in Pd (Miiller 1969). 
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Fermi Surface Diameters (units 27r/a) 

Face Body Free electron 
diameter diameter diameter 

Pb 2.38+0.02 2.50+0.02 2.48 

Pb80Tl20 2.28 2.44 2.44 

Pb60Tl40 2.21 2.39 2.40 

Pb40Tl60 2.16 2.34 2.34 

Pb33Tl67 2.15 2.34 2. 336 

It is seen that for Pb 33Tl
67 

along the face diagonal (110) 

the Fermi radius is ~l.07 5 (27r/a) and is smaller than the free 

electron radius by about 8%. Since the third zone starts from 

the point K (rK~l.06(27r/a)} along this direction, it follows 

that it is virtually empty in this alloy. 

A comparatively more elaborate study of the Fermi sur-

face was carried out for Pb 80Tl 20 • Fig.4.17shows a section 

through the Fermi surface of Pb 80Tl
20 

in the (llO) plane 

deduced from the Fermi surface of Pb determined by Anderson 

and Gold (1965), using the rigid band model. Filled circles 

indicate points obtained from the neutron scattering experi-

ments discussed below. We also show in Fig. 4.17 the 

(llO) plane of the reciprocal lattice. The directions along 

which measurements were carried out are labelled by capital 

letters. Results along the symmetry direction fL and fK 

were obtained earlier by Ng (1967). Phonon dispersion rela-

tions along AB and PQ are shown in Figs.4.18&4.19. For 

locatingthe anomalies, a curve of (~v/~s) versus s was 

drawn. The values of the slope were taken from pairs of 
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20 

adjacent measurements. An example of such a curve is also 

shown for the direction AB in Fig. 4.18. Even though the 

errors get magnified in a plot of (6v/6s) , it should be 

noted that the errors in the curve are not ordinarily 

mutually independent errors. The anomalies as observed in 

the phonon dispersion relations measured along various 

directions in the reciprocal space are labelled by Greek letters. 

Mapping of the anomalies ~ and A on to the Fermi sur-

face has been discussed earlier by Brockhouse et al. (1962) 

in connection with their work on Pb. They arise from transi-

tions of the type e 1e 2and b 1b 3 respectively. We consider 

next the anomaly S observed along the non-symmetry direction 

AB at ~TI ~ = (2.514, 2.514, 2.264). This corresponds to an 
I 

extremal dimension*of the Fermi surface of lo - ~111 1= ~ (2.48 9 ) 

and is defined with respect t .o .the (111) direction by the angle 

* A general figure for the uncertainty in these dimensions for 
our results is +0.015. 
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a= cos-l((Q•Glll)/(121. ~~1111>> = 4.6o. 

The points y and K can be similarly mapped by referring them 

with respect to the lattice point (444) and (000) respectively. 

The anomaly marked a arises from the diameteral transitions 

in the neighborhood of u 2u 6 referred to the lattice point (220) 

(Fig. 4.17). Similarly, one can relate the anomaly o to non­

diametral transitions near x 2u 6 (or u 2x 6 ) referred to the 

lattice point (335) (Fig.4.17). The transition ux differs 

from the ones previously considered in the sense that it 

corresponds to a non-diametral transition between two non­

equivalent poin~u and x on the Fermi surface which belong 

to the third and the second energy band respectively. It 

was noted by Taylor (1963) that states that are actually on 

the zone boundary possess definite symmetry characteristics 

and consequently transitions between states that are on the 

same zone boundary but in different bands will be inhibited. 

In the present case u and x are situated on Bragg planes and 

they belong to different bands but they are both general 

points (unlike u or X) on Bragg planes and therefore transi­

tions are not expected to be forbidden. Further, the phonons 

may have the proper symmetry for compatibility. We also note 

that the anomalies arising from the transitions uu and ux 

considered before are quite strong and this is probably due 

to the high density of states of the electrons near a Bragg 

plane. The fact that the density of states play an important 

role in determining the magnitude of the Kahn kinks was 

pointed out earlier by Brockhouse et al. (1962). As noted 



123 

by Stedman et al. (1967c) ,Taylor's formulas include this effect 

through the term lva-vbl-l where va and vb are the electron 

velocities at the points a and b. As the component of the 

electron velocity perpendicular to the Bragg plane has to be 

small, it ·follows that lva-vbl-l may be quite large near a 

Bragg plane. 

Transitions of the type cc, cf and ff may be expected 

to give rise to structures in the [~~O]L branch, beyond 

;; = 1.24. Unfortunately, detailed measurements are not 

available in that region. However, we note that the marked 

depression of this branch near zone boundary observed experi-

mentally for lead (Brockhouse et al. 1962, Stedman et al. 1967a1 

and lead rich alloys (Ng and Brockhouse, 1968), may be inter-

preted in terms of these transitions as the third zone of the 

Fermi surface plays an important role. 

On the basis of the results described above, it is 

seen that for Bb 80Tl20 there is fair agreement between the 

Fermi surface deduced from the rigid band model and that 

obtained from the present neutron scattering experiments. 

Smearing of the Kohn An·omalies 

A finite temperature as well as various scattering 

mechanisms of the electrons lead to a smoothing out of the 

singularities. 

Kaganov and Semenenko (1966) have considered spreading 

of the anomaly, ~ , arising from finite temperature effects. 

For our purpose we can express their result in the form 

~ = 2kF(T/TF) where TF is the Fermi temperature of the conduc­

tion electrons. Since TF ~10 5 °K we find that this will 
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have a negligible effect for cases of interest. 

The role of scattering leads to the result that the 

minimum value which the parameter ~ can take is ~It where t 

is the smallest of the mean free paths of the electrons or 

phonons with w·avevector Q=2kF. In a pure metal at 0°K, t-+oo 

consequently singularity will be ideally sharp. At a finite 

temperature electron mean path will be limited by electron-

phonon scattering. For lead at 100°K, the broadening can be 

estimated from the observed electrical resistivity to be 

~(0.007)!TI which is still quite small. At higher temperatures, 

one must also consider the phonon-phonon interaction which will 

limit the phonon mean free path. Buyers and Cowley (1969) find that 

the temperature dependence is given by the well known Debye-

Waller factor.Fig.4.20 shows the Kohn kinks as observed 

in Pb along the [~~~]L branch at 100°K and 296°K. There 

is an indication that the anomaly gets weaker with increasing 

temperature in accordance with the preceding discussion. 

In a disordered alloy mean free path of the electrons 

will be further modified due to lack of perfect periodicity, 

thus spreading out the singularity (Ng and Brockhouse 1968). 

From deGenne's work (1964) we see that for 2tkF>20, one still 

has the Kohn singularity at Q=2kF while for 2tkF~20 the 

singularity tends to wash out. From the available resis-

tivity measurements at room temperature we can set a lower 

limit of 2tkF~40 for the Pb-Tl alloys and therefore the 

anomalies should be observalble. This qualitative argt.Unent 
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is consistent with the experimental findings of Ng and 

Brockhouse (1968). However, it should be noted that the 
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0 

0.5 

relative strengths of the anomalies in the different alloys 

are directly related to the strengths of the electron-phonon 

matrix element at Q=2kF. In the pseudopotential theory it 

appears that it decreases monotonically as electron concentra-

tion is decreased in going from Pb to Pb40Tl60--the reduction 

being roughly by a factor of two at Q=2kF. 



(ii) Comparative Study of the electron-phonon interaction 

in Bi-Pb-Tl alloys. 
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In the preceding section, we mentioned the fact that 

the Kohn anomaly, which is a manifestation of the electron-

phonon interaction in lattice vibrations, grows weaker in 

Bi-Pb-Tl alloys with decreasing electron concentration (Ng 

and Brockhouse 1968). The superconducting transition 

temperature Tc and the superconducting gap edge ~0 have 

been measured by Claeson (1966) and Dynes et al. {1969) 

respectively. Their results show that Tc and ~0 decrease 

with electron concentration indicating again a similar trend 

in the electron-phonon coupling strength. 

It was mentioned in Chapter II(D) that for metals with 

small non-overlapping cores, the frequencies of lattice 

vibrations can be separated into two parts 

\)2 = \)2 - \)2 
c e ( 4. 2) 

where v~ arises from the Coulomb interaction between the 

bare ions with a uniform non-responsive conduction electron 

background and v~ is the contribution from the indirect 

interaction via the electrons due to their response to the 

ion motion. To compare the observed frequencies in Bi-Pb-Tl 

alloys which have different valences and slightly different 

mass, we may express the observed frequencies in terms of the 

"plasma frequency" v == (l/2n) (4nz 2e 2/M~ ) 112 • In Fig. 4.21, 
p 0 

the second moments of the frequency distribution function (the 

2 average of v over the whole frequency distribution) in units 

of plasma frequency are plotted as a function of the average 
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The second moments of the frequency distributions for Bi-Pb-Tl alloys 
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of the average valence. (after Ng and Brockhouse 1968). 
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valence. (This figure is taken from Ng and Brockhouse (1968): 

an additional point corresponding to the alloy Pb33Tl 67 has 

been added in the figure.) This figure shows that the 

average of the phonon frequencies squared decrease with increase 

i n electron concentration. In other words, the contribution 

from the indirect interaction and hence the electron-phonon 

coupling strength increases with electron concentration: in 

agreement , with the conclusion stated previously. 

It may also be illuminating to focuss our attention 

to a specific mode which exhibits large electron-phonon inter-

action. It was pointed out in Section C that for certain 

modes in Pb and in particular, the [sOO]T zone boundary mode, 

the phonon frequency increases with temperature (Fig. 4.3)--

a rather unusual feature in the sense that a similar behaviour 

has not been observed in any other metallic crystal studied 

so far. It is also worth mentioning that for this mode, the 

electron screening contribution v 2 cancels off 96% of v 2 , a e c 

particularly high value. It may be recalled here that for 

Pb 40Tl60 (Fig. 4.4), the sign of the frequency shift for this 

mode is opposite to that in Pb and we also note that the 

cancellation of v~ is 85% in this case. In an attempt to 

relate these observationsto the electron concentration in a 

systematic way, we describe below an experimental study of 

the temperature induced frequency shifts for the [sOO]T zone 

boundary mode in Bi-Pb-Tl alloys. 
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The general experimental details were essentially the 

same as outlined in Section B. The specimen crystal was 

mounted in a cryostat and the measurements were made at 

liquid nitrogen temperature and room temperature using 

the same set-up thus eliminating systematic errors in deter­

mining the frequency shifts to a large extent which might 

otherwise arise from the spectrometer calibration and/or 

slight misalignment of the crystal. Bi15Pb 85 , Pb and Bi 10Tl 90 

had the (100) crystallographic axis vertical and for the 

rest the measurements were made in the (lTO) plane of the 

reciprocal lattice. For liquid-nitrogen runs, the temper­

ature of the specimen crystals, as recorded by a calibrated 

copper-constantan thermocouple were ~100°K(+3°K) except for 

Pb80Tl20 and Bi
20

Tl 80 for which the temperatures were ~ll5°K. 

This difference arose because of the use of a different 

cryostat in the latter measurements. However, the slight 

temperature difference is of no significance since shifts of 

frequency from 100°K to ll5°K are expected to be less than 

0.1 of the shifts from 100°K to 297°K (room temperature) and 

are therefore well within the errors. The neutron groups as 

measured for the [~OO]T zone-boundary mode at two different 

temperatures in the Bi-Pb-Tl alloys are shown in Fig. 4.22. 

From some alloys, the measurements were repeated at a differ­

ent point in reciprocal space. All the experimental results 

are given in Table 4.9. 

To gain some insight into the results, we have pre­

sented the experimental information in Fig. 4.23 in a form 

which is suggested by Eq. (4.2}. The Coulomb frequency 
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TABLE 4.9 

[~OO]T zone-boundary phonon frequencies in the Bi-Pb-Tl alloys 

measured at different temperatures. 

a 
(2'1T) Q. 

{

(4.0,1.0,0.0) 

(3.0,3.0,0.0) 

(2.0,2.0,1.0) 

(4.0,1.0,0.0) 

{

(2.0,2.0,1.0) 

(3.0,3.0,0.0) 

{

(2.0,2.0,1.0) 

(3.0,3.0,1.0) 

(3.0,3.0,0.0) 

{

(2.0,2.0,1.0) 

(3.0,3.0,0.0) 

{

(4.0,1.0,0.0) 

(3.0,3.0,0.0) 

Frequency (10
12 

cps) 

0.805(101°K) 

0.805(101°K) 

0.92 (100°K) 

0.890(100°K) 

1. 045 (ll5°K) 

1. 040 (ll5°K) 

1. 350 (100°K) 

1. 360 (100°K) 

1. 470 (98°K) 

1. 315 ( ll5°K) 

1. 330 (ll5°K) 

1.420(100°K) 

0.870(297°K) 

0.865(297°K) 

0.96 (298°K) 

0. 930 (296°K) 

1.060(296°K) 

1.055(296°K) 

1.285(296°K) 

1.295(296°K) 

1.415 (296°K) 

1.260 (297°K) 

1. 280 (297°K) 

1. 360 (296°K) 

1.340(296°K) 
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Note: T~ estimate errors in the frequency shifts [v2 (300°K)-
vex (100°K)], it was assumed that the frequen~tgs at 100°K 
werg known to an accuracy of 1% and those at 300°K to an 
.accuracy of 1.5%. However, it may be seen that the freqUency 
shifts obtained from measurements at two different positions 
in reciprocal space indicate better accuracy. 
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(The contribution arising from the direct interaction between 

ions) can be simply expressed in terms of the plasma frequency 

vp and for this particular mode (i.e. [sOO]T zone-boundary) 

2 2 v = 0.161 v c p 

Hence the coulomb contribution to the frequency shift may be 

written as 

V~ =[v~(300°K) - V~(lQQ°K)) 

= O.l6l[v
2

(300°K) - v 2 (100°K)] 
p p 

and is shown as the dashed line in Fig. 4.23. Finally, the 

electron-phonon contribution is obtained from 

~v2 = ~v2 - ~v2 
e c exp 

We note in Fig. 4.23 that there is a strong indication of an 

abrupt change in the measured frequency shifts (accompanied 

with a change in sign also) as Z changes from 3.8 to 3.6 

and since the Coulomb contribution is rather smooth this 

feature is also reflected in the electron-phonon term. It 

is instructive to make a similar plot of the phonon 

frequencies themselves. Such a plot for the alloys is shown 

in Fig. 4.24 for the [~OO]T zone-boundary mode at 100°K; the 

respective Coulomb and electron-phonon contributions are also 

indicated. (The experimental results are due toNg (1967 ).) 

It is interesting to find a sudden change in the electron-

phonon interaction again in the region Z=3.8-3.6. (It should 

be noted that in Fig. 4.24, v;l-phonon is plotted on a rather 

compressed scale and the uncertainty in its value for any 

particular alloy, arising from the uncertainty in v;xp' is 

probably less than the size of the trangle drawn in the figure.) 



Pb4o Tlso 

! 
cl 20 PbsoTI4o 
~ 

I (/) 

Q. 
0 

N --No --------- --12 ---
i 

PbeoTI2o 
a.: 
X 
IJJ 

N 
4 [~oo] T: ? ZONE BOUNDARY 

(100°K) f V 2 
EXP. 

0 
3.2 3.4 3.6 3.8 

z 
Fig. 4.24 

V 2 COULOMB 

1J 2 EL-PHONON 

I 
Pb f 

Bi15 Pbe5 4 

4.0 

N --ITJ() 
ro 
I C -,r 
J:O 
03: 
ZQJ o­z --

n 
u 
en -

Plot of v2 ([~OO]T zone-boundary)against average valence for some alloys. Coulomb and 
electron-~fignon contributions are also indicated. Note the abrupt change in v2 as 
Z changes from 3.8 to 3.6 exp 



135 

The interpretation of the results presented in Fig. 

4.23 is incomplete in the sense that the anharmonic effects 

have not been considered explicitly. However, in Section C 

it was shown that the temperature dependence of the phonon 

dispersion curves in Pb40Tl60 could be explained within 

the quasiharmonic approximation and therefore the approach 

used here is perhaps justified for alloys with similar electron 

concentrations. For higher electron concentrations (~4.0), 

the situation is less clear. For Pb,very limited measurements 

of the pressure induced frequency shifts are available (Lechner 

and Quittner 1966). All the modes (including the [z:;OO)T zone-

boundary mode) were found to have positive Grftneisen constant, 

in other words, frequency increases with decreasing volume.* 

This suggests that the consideration of the explicit temper-

ature dependent anharmonic contribution may be necessary. At 

present, it does not seem to be feasible to carry out a reliable 

anharmonic calculation in metals which exhibit very strong 

electron-phonon interaction, like Pb. Nevertheless, the fact 

that the discontinuous change in the observed frequency shift 

occurs precisely in the region where also the electron-phonon 

interaction undergoes a sudden change (Fig. 4.24) lends some 

support to the interpretation given for the experimental results 

presented in Fig. 4.23. 

*In these experiments, the absolute magnitude of the frequency 
shifts were rather small. For example, along the [z:;OO]T branch, 
for z:;=l.O, l6vi~0.02 and z:;=0.65, l6vi~0.007. For both these 
modes, the temperature dependent frequency shifts give 
negative Gr&neisen constants. 



G. Coherent Inelastic Scattering of Neutrons from 

Polycrystalline Materials* 

Lattice Frequency Spectra of Pb and Pb 40Tl60 

Introduction 

For Bravais lattices with cubic symmetry, the 
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frequency distribution function g(v) of the lattice vibrations 

is directly related to the one-phonon incoh~rent partial dif-

ferential scattering cross section of monoenergetic neutrons 

scattered by a single or poly crystal (Placzek and Van 

Hove 1954). For coherent scatterers fairly accurate curves 

of g(v) can be calculated provided one can obtain a satis­

factory force-constant model by fitting to the dispersion 

curves measured (along symmetry directions) by neutron 

inelastic scattering from a single crystal. For super-

conductors information about g(v) is furnished by tunneling 

experiments also (McMillan and Rowell 1965}. 

Because of extremely long range forces present in 

lead (Brockhouse et al, 1962) it is not possible to obtain a 

detailed description of the force constants in the Born-von 

Karman theory for this material • Serious discrepancies are 

observed if one compares the frequency distribution presented 

by Gilat (1965} (Model calculation using an eight-nearest 

neighbour fit to the dispersion curves measured along high 

symmetry directions by coherent inelastic slow-neutron scattering) 

with that obtained from the tunneling data (McMillan and Rowell 

1965}. These discrepancies are attributed to inadequacy of 

the force constant model in predicting off-symmetry phonon 

frequencies (Dynes~~- 1968; Stedman et al. 1967b}. A 

* The work described in this section is now published-­
Roy and Brockhouse (1970). 
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realistic frequency distY~bution for lead was constructed by 

Stedman et al.(l967b) by measuring a limited number of phonon 

frequencies in off-symmetry directions using neutron spectro­

metry and making interpolation throughout the cell utilising 

symmetry conditions. However, an adequate sampling of fre­

quencies in the whole Brillouin zone by this technique requires 

considerable time and effort. For lead, the distribution pre­

sented by Stedman et al.(l967b) compares favorably with that 

obtained from the tunneling data (Rowell et al. 1969; Franck 

et al. 1969). However, there is a small but significant 

discrepancy regarding the position of the principal maximum 

arising from the longitudinal phonons. It is true that in 

the tunneling experiment one obtains the product a 2 (v)g(v) 

where a 2 (v) is the electron-phonon coupling strength. 

However, a 2 (v) is thought to be a rather slowly varying 

function of frequency and therefore positions of the critical 

points are expected not to be affected. This is readily seen 

by referring to Fig. 3 of the paper by Dynes et al. (1969 ). 

For the Pb 40Tl 60 alloy, an eight-neighbour tensor 

force model can rep~oduce the phonon frequencies along both 

symmetry and non-symmetry directions to within 2% of the 

experimental results (Ng and Brockhouse 1967 , 1968). However, 

the frequency spectrum calculated within the framework of the 

Born-von Karman model does not represent the true physical 

situation as it neglects the phonon life time broadening in 

a disordered alloy crystal (Ng and Brockhouse 1968). 
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In the light of the preceding discussion, we thought 

it worthwhile to obtain the frequency spectra of lead and the 

lead-thallium alloy directly using a different experimental 

technique which is described below. 

Principle of the Experimental Method 

It was remarked earlier that one-phonon incoherent 

inelastic neutron scattering is directly related to the 

density of states g(v). For coherent scattering, when 

collective atomic motions in the system are dominant, it is 

necessary to ensure a high degree of averaging of the inter­

ference pattern. By using a polycrystalline target one 

essentially averages the scattering cross-section over all 

directions of momentum transfer with respect to a fixed 

crystal orientation. Further, to provide a more adequate 

sampling of the reciprocal space one can superpose the energy 

distribution of slow neutrons scattered coherently from a 

polycrystalline sample over a wide range of magnitudes of 

momentum transfer. Finally, g(v) can be obtained from the 

superposed data in the incoherent approximation (Placzek and 

Van Hove 1954). A notable feature of this experiment is 

that one can profitably use relatively thick specimens to 

enhance the intensity. Normally, multiple scattering is 

considered undesirable, however, in this type of experiment 

double scattering events which involve successive creation 

(or annihilation) of one phonon and elastic scattering or 

vice versa contribute significantly to the intensity and 

improve the sampling. 
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Though it seems reasonable to assume that the method 

described above is capable of giving frequency spectra for 

coherent scatterers to a fair approximation, this approach 

has not been justified rigorously in theory. According 

to a precription given by Egelstaff (1953) the polycrystal-

line coherent one-phonon cross section is written as a 

product of incoherent inelastic cross-section and an energy de-

pendent structure factor. Marshall and Stuart (1961) have 

examined the validity of Placzek's incoherent approximation 

(Placzek 1954) for calculating the total inelastic coherent 

scattering. The limitation of these approaches has been 

discussed recently by deWette and Rahman (1968) . They carried 

out computer calculations of the one phonon coherent poly­

crystalline cross-section for a monatomic crystal assuming a 

Lennard-Jones (6-12) potential of interaction between the atoms 

for values of momentum transfer lol comparable with the 

dimensions of the Brillouin zone. Results were presented 

in terms of a function f(Q,v) defined as 
3 

f(Q,v) = < L [Q·~(Q,j)] 2 o((v-v(Q,j))>, 
j=l - - -

where ~(Q,j) is the polarization vector of a phonon with 

wave vector Q and frequency v(Q,j), j = 1,2,3, and <----> 

denotes averaging over all directions of Q. In our experiment, 

-1 
the average value of the momentum transfer was about 6.5 A0 

, 

much larger than the linear dimension of the Brillouin zone 

-1 
(~1.3A 0 

) and in such cases f(Q,v) may be expected to 

resemble the density of states, g(v). However, the importance 

of adequate sampling in reciprocal space for obtaining a 
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reliable g(v) must be borne in mind. Obviously if Q-points 

are sampled uniformly over just one Brillouin zone, the 

quantity within <----> is proportional to o2g(v). Even for 

single scattering events only, the region of reciprocal space 

sampled in the present experiment may be estimated to be 

roughtly one hundred times the volume of the first Brillouin 

zone. For coherently scattering polycrystalline substances, 

as pointed out earlier, double scattering events, involving 

coherent zero-phonon and one-phonon scattering, play an 

important role in enhancing the degree of sampling (Fig. 4.25). 

Bredov et al. (1967) have considered the influence of multiple 

coherent elastic reflection on the inelastic coherent scat­

tering from polycrystalline sample. Various authors1 have 

studied time-of-flight spectra of polycrystalline substances 

using chopperor beryllium filtered cold neutrons. For strong 

coherent scatterers, structures appear in the spectra arising 

from interference effects because proper averaging is not 

effected in these methods. Therefore, any attempt to extract 

the frequency distribution function in the incoherent approxi-

mation might lead to incorrect results. For example, the g(v) 

spectrum obtained by Mozer et al. (1963) for palladium by the 

above procedure deviates appreciably from the true spectrum 

(Miiller and Brockhouse 1970) . Similar conclusions were 

reached by Schmunk et al. (1965) and Larsson et al. (1965) in 

connection with their work on polycrystalline aluminum which 

1 See, for example, Proceedings of Neutron Inelastic Scattering 
in Solids and Liquids. 1961, 1963, 1965, 1968 (IAEA, Vienna). 



Fig. 4.25 

DEBYE - SCHERRER 
CONE 

Reciprocal space diagram illustrating double scattering events. The incident beam k 
is first elastically scattered (422) and the scattered beam can lie anywhere on the-o 
Debye-Scherrer cone. It finally emerges in the direction k' after an inelastic 
scattering event. It may be seen from the figure that the-magnitude of the momentum 
transfer for the inelastic event can vary over a large range. 
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is again a substance which scatters coherently. Bredov et al. 

(1967) and Kotov et al. (1968)have also studied the frequency 

spectrum by coherent inelastic scattering of cold neutrons 

from polycrystalline materials - aluminium, lead and tellurium. 

In addition to the interest in the detailed results 

through comparison of g(v) from neutron scattering with 

a 2 (v)g(v) from tunneling, a motivation for the present work 

was to actually attack this long-posed problem of obtaining 

a good g(v) from neutron scattering results for polycrystalline 

material. 

Experimental Details 

The lead sample was in the form of shots, about 2.5 

mm in diameter, with a nominal purity of 99.99%. The lead-

thallium alloy was in the form of granules. Neutron diffrac-

tion measurements were used to characterise the composition 

and bulk homogeneity of the alloy. By comparing the positions 

of Debye-Scherrer lines ((220) and (311)) of the alloy with 

those of pure lead powder (Fig. 4.26) the composition was 

estimated to be Pb41 • 5Tl58 _5 (with an accuracy of +3 atomic %) 

from the known behaviour of the lattice constant as a function 

of alloy concentration (Pearson 1958). Further, the alloy 

peaks did not show any appreciable broadening compared with 

the lead powder peaks, a fact which implies that the alloy was 

quite homogeneous. 

A cylindrical aluminium container (3" long and 1" in 

diameter) was used for both specimens. Transmission of the 

lead specimen was 60%. The experiments were carried out using 

the McMaster triple-axis spectrometer installed at the NRU 
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reactor at the Chalk River Nuclear Laboratories (Brockhouse, 

deWit, Hallman and Rowe 1g68). Neutrons with incoming 

frequency of 7.0 x 1012 cps were used throughout the experiment. 

The energy distribution of the outgoing neutrons was measured 

over a range of frequency transfer of 3.2 x 1012 cps for eleven 

different scattering angles ranging from 142° to goo, with 

neutron energy loss (phonon creation) . Measurements were 

made at temperatures within five degrees of gooK. Ideally 

the experiments should have been done in the Constant-lgl mode; 

however this was not feasible as Debye-Scherrer lines from the 

sample interfered with the inelastic spectrum by rescattering 

from the analyzing crystal. 

Results and Analysis 

The raw data for lead is shown in Fig. 4.27. The sharp 

peaks appearing in the patterns taken at scattering angles 

134°, 110° and goo at the frequency 2.5 x 1012 cps are spurious 

and were smoothed out. They arise from a very weak contaminant 

present in the main beam which happens to produce a Debye-

Scherrer line by scattering off the specimen at these scat-

tering angles and finally is Bragg reflected by the analyzer, 

For the Pb 40Tl60 alloy similar peaks appeared at scattering 

angles 131° and 107° for the same energy transfer of 2.5 x 10
12 

cps and could be accounted for in exactly the same way. 

Background was monitored in another counter which 

was placed at an angle of 40° with respect to the signal 

counter (Brockhouse et al. 1g68). In addition to this, in 
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3.2 x 1012 cps and an angular range of 90-142°. The background recorded for one 
angle (142°) is also shown. 
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some instances background counts were recorded in the signal 

counter by flipping the analyzer from the Bragg position. 

Also runs were carried out for a few selected scattering 

angles to ascertain the contribution from the empty aluminium 

sample holder and the cryostat. After correcting for general 

background effects it was necessary to further correct the 

data for multiphonon and multiple-event inelastic processes. 

As the experiments were done at liquid nitrogen temperature, 

all higher phonon processes except the two phonon process 

were negligible. The two-phonon contribution (simultaneous 

creation and/or annihilation of two phonons) , in this (coherent 

scattering) case, is quite well described by the incoherent 

approximation. It is further necessary to consider the effect 

of the following multiple scattering events on the observed 

inelastic spectrum. They are (a) creation of one phonon in 

a scattering event followed by the annihilation or creation 

of another phonon in another scattering event i.e. successive 

energy loss and gain and successive energy loss, and (b) 

single two-phonon events (simultaneous creation or creation 

and annihilation of two phonons) followed or preceded by 

elastic scattering. It is interesting to note that for both 

the above processes (a) and (b) the shape of the energy 

spectrum is about the same as that of the single two-phonon 

event mentioned earlier. Therefore, subtraction of the 

contributions arising from these multiple scattering events 

do not present any additional problem. A rough estimate 

of the relative importance of these processes can be easily 

made by calculating the following quantity: 
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Single-event scattering: Two-event scattering: 

+ (i) One-phonon, one-phonon 

Two-phonon (ii) two phonon, elastic 

[ Single-event scattering: Two-event scattering: l One-phonon + one-phonon, elastic 

[Se-2W 1(2W)2 + (Se-2W)2(2W)2] 
2 

In the above expression, S = loge(l/T) where T is the trans­

-2W mission of the sample and e is the Debye-Waller factor. 

For the lead specimen S ~ 0.50 and e-2W ~ 0.75. Substituting 

these values we get the ratio 0.18. The cross-sections 

referred to above, essentially imply integration over the 

whole range of energy transfer. To apply correction to 

the data it is necessary to evaluate the energy-dependent 

partial differential cross sections in the incoherent 

approximation. 

The two-phonon differential scattering cross-section 

was evaluated for a mean scattering angle of 116° assuming 

an approximate frequency distribution function (Sjolander 1958). 

It was then folded with the resolution function of the spectra-

meter. The ratio of the integrated two-phonon cross section 

to the one-phonon cross section was fixed by the analysis 

given before. Fig. 4.28 shows the accumulated data for Pb and 

Pb40TI60 obtained from superposition of all the individual runs 

recorded at various scattering angles ranging from 142° to 90° 

and the estimated two-phonon contribution. It can be seen 

that the calculated two-phonon partial differential cross section 
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Accumulated data for Pb and Pb40Tl60 obtained from superposition 

of all the individual runs recorded at various scattering angles. 
General background and the estimated two-phonon contribution are 
also shown. 
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fits reasonably well in the tail region (from 2.8 x 1012 cps 

to 3.2 x 1012 cps) which is beyond the cut off of the one-phonon 

spectrum. After subtracting the calculated two-phonon cross 

sect~on, normalised as described above, from the experimental 

data, the frequency distribution function is extracted in the 

incoherent approximation. As uncertainty is introduced in the 

average magnitude of the momentum transfer lgl at a given 

energy transfer and angle of scattering by multiple scattering 

we did not attempt to weight the individual angular patterns 

with the factor [Q2 exp(-2W)] before adding them; rather 

we used mean values of momentum transfer determined by the 

angular range covered in the various runs. 

Finally, correction had to be applied to the data to 

take into account the variation in the reflectivity of the 

analysing crystal over the range of the energy transfer measured. 

The determination of the sensitivity function of the analyzing 

spectrometer is discussed in Appendix II. It was found to 

vary approximately linearly by about 30% over the energy 

range covered in the present e;Kperiment. 

Discussion 

We show in Fig. 4.29 the frequency distribution function 

of lead obtained from the present experiment. For comparison 

we also show the tunneling data (Rowell et al. 1969) and 

the neutron scattering results of Stedman et al. (1967a), in 

each case broadened by the resolution function of our spectre-
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Compar~son of g(v) for Pb obtained from the powder experiment 
with a (v) g (v) from tunneling measurements of Rowell et al. 
(1969) (-----). Additional Lorentzian broadening of ~v/v=0.05 
is shown by the (-.-.-.) line. The tunneling spectra have 
been folded with the resolution function of the spectrometer. 
All the distributions (also in Fig. 4.29(b) and 4.30) are 
normalized to the same area. 
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Comparison of g(v) for Pb obtained from the powder experiment 
with that from the neutron scattering results of Stedman et 
al. (1967) (----). Additional Lorentzian broadening of ~v/v 
=0.05 is shown by the {-.-.-) line. The effect of the resolu­
tion function of the spectrometer has been taken into account 
as explained in the text. 
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meter1 (assumed to be Gaussian). We find that the position 

of the longitudinal peak agrees particularly well with the 

tunneling result. The high energy tail appearing in the 

powder experiment can be attributed to an inadequate corr-

ection for the multiphonon effects or to some inherent 

broadening present in the experimental result. The tunnel-

ing spectrum corresponds to a temperature of 1°K, whereas 

the present neutron scattering experiment was carried out 

at 90°K. Therefore some anharmonic broadening should be 

present in our result. This effect is particularly import­

ant for the short wavelength longitudinal modes (Brockhouse 

et al. 1961; Stedman et al. 1967a); as the longitudinal peak 

in the g(v) spectrum is relatively sharp, any additional 

broadening appreciably modifies the peak height. Similarly, 

although the frequency distribution given by Stedman et al. 

(1967b) refers to 90°K, the effects of the finite lifetimes 

of the phonons at this temperature were not incorporated by 

them in their g(v). Stedman et al. (1967a) estimate the 

broadening (~v/v) to be about 5%; for the sake of comparison 

we show in Fig. 4.29 the effect of this additional broadening 

assuming that the phonon lifetimes have a Lorentzian distri-

bution. 

Their frequency distribution functions were first used to 
calculate the one-phonon cross-section in the incoherent 
approximation which was then folded with the resolution 
function of the spectrometer. Frequency spectra computed 
from the folded cross section are plotted in Fig. 4.29. 
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We find in Fig. 4.30 that for Pb40Tl60 (unlike Pb} 

a 2 (v} tends to decrease in the longitudinal region. We may 

explain this behaviour qualitatively on the simplified assump-

tion that whereas for Pb both the normal and the umklapp 

processes contribute to a 2 (v) for the longitudinal modes and 

only umklapp processes for the transverse modes, the sharp 

distinction between the normal and the umklapp processes 

no longer exists for a disordered lattice like Pb 40Tl 60 • Fig. 

4.30 clearly indicates the strong effect of energy smearing 

on the strengths of narrow peaks in the density of states. 

The anharmonic broadening tends to be masked by the broadening 

caused by force constant disorder of the alloy. In a recent 

paper Dynes and Rowell (1969) have demonstrated smearing 

of the fine structure in the product function a 2 (v)g(v) for 

the alloy system BixPb1_2xTlx. 

If it is assumed that the phonon lifetimes have a 

Lorenzian distribution in the alloy and that the relative 

linewidth ~v/v remains a constant then we can easily incor-

porate the effect of the finite lifetime in the frequency 

spectrum computed from the force constant model. It is 

seen from Fig. 4.30(b) that for a value of ~vjv = 0.10, the 

experimentally observed broadening is well reproduced in 

the calculated distribution. 

The various discordances remaining in Figs. 4.29 and 4.30 

are probably also contributed to by inadequate sampling. 

Inspection of Fig. 4.27 shows that very considerable differences 

exist between the patterns for the different angles of 
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Comparison of g(v) for Pb 40Tl 6 obtained from the powder 
experiment with g(v) computed ~rom an eight neighbour tensor 
force model (-.-.-.) and a smeareq g(v) (----) with an 
additional Lorentzian broadening of 6v/v =0 .10·. The computed 
frequency spectra are further modified by the resolution 
function of the spectrometer as explained in the text. 
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scattering. Attention should be particularly focussed on 

the varying prominence of the longitudinal peak at ~2.0 x 1012 

cps in the various patterns. The reason for the observed 

fluctuation in the intensity of the longitudinal peak may be 

qualitatively understood by referring to Fig. 4.31. The 

scattering diagrams drawn in reciprocal space correspond 

to an energy transfer of 2 x 1012 cps. The intensity of the 

longitudinal peak at any particular scattering angle depends 

on the relative positions of the end point of the scattering 

vector k' with respect to the Debye-Scherrer lines (with 

due consideration of the multiplicity). It is obvious that 

averaging over eleven patterns is not really sufficient to 

satisfactorily delineate this peak in the "average" pattern. 

An increase in the number of patterns taken and the angular 

range covered ought to improve the situation. It may be noted 

that the resolution of the neutron crystal spectrometer 

is inadequate to reveal all the fine details of the frequency 

spectrum. However, the principal maxima in the spectra are 

clearly resolved for Pb and Pb 40Tl60 , the substances studied 

in the present work. In Pb 40Tl60 we see direct evidence of 

energy smearing arising from the finite lifetimes of the 

phonons caused by force constant disorder of the alloy. 
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Fig. 4.31 A Schematic reciprocal space diagram showing the Debye-Scherrer lines (multiplicities are 
also indicated), k and k' represent the incident and the scattered neutron wave-vectors 
respectively. Theoenergy transfer corresponds to the main longitudinal peak of g(v) in Pb. 
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H. Force Constant Disorder in Alloys 

It was stated in Chapter II{F) that in alloys composed 

of different elements of similar mass, the neutron groups from 

coherent scattering are expected to be reasonably sharp and 

well defined. This is because the widths of the neutron 

groups involve products of pairs of deviations of force 

constants from their mean values and therefore are relatively 

insensitive to force constant disorder. This explains 

qualitatively the observation that for the binary alloys Pb 40Tl60 

and Bi10Tl90 , the broadening caused by force constant disorder 

was very small (see section D and also Fig. A2.4). In this 

section, we describe the neutron scattering studies from 

the ternary alloy, Bi20Pb60Tl20 , for which the force constant 

disorder is found to be significantly larger. 

It should be remarked here that ;force constant disorder 

also leads to a spreading of the singularities in the frequency 

distribution function g{v), as was shown in Section G. The 

fact that the longitudinal peak in the frequency spectrum is 

relatively sharp makes it possible to observe the effect 

of the energy smearing. 



Neutron Scattering from Bi20Pb60Tl20 

Fig. 4.32 shows the scattered neutron spectrum as a 

function of the energy transfer observed at the point 
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(a/2rr)Q = (222). Neutrons with incoming frequency of 5.45xlo12 

cps were used and the measurements were made at temperatures 

within five degrees of 100°K, with neutron energy loss, 

employing the Const-Q technique. Since the point of observa­

tion is a reciprocal lattice point, no coherent one-phonon 

process is expected. Hence, the observed intensity is mainly 

arising from the incoherent inelastic processes. However, 

Bi, Pb and Tl--the constituent elements of the alloy--all 

have negligible incoherent cross sections and the coherent 

cross-sections are almost identical. The fluctuation of the 

polarization vectors as a result of variation of the atomic 
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Observed neutron spectrum at the reciprocal lattice point (222). 
The solid line represents a theoretical calculation of the inelastic 
spectrum (one phonon + two phonon) in the incoherent approximation, 
arbitrarily normalized to the tail region of the experimental spectrum. 
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force constants may be expected to give rise to an incoherent 

scattering from the system. It is fairly straightforward to 

calculate the one-phonon incoherent inelastic cross-section 

(Eq. (3.10)) using the smeared frequency spectrum shown in 

Fig. 4.33. The calculated curve (the effect of the analyzer 

sensitivity was taken into account--Appendix II) is shown 

in Fig. 4.32,arbitrarily normalized to the tail region of 

the experimental spectrum. The contribution of the two­

phonon processes (coherent + incoherent) was estimated to be 

10-15% of the one-phonon incoherent inelastic cross section. 

It is interesting to note that the longitudinal peak in g(v) 

is reflected in the experimental spectrum as should be expected. 

In the region of small energy transfer, the departure of the 

experimental points from the calculated curve is marked. This 

may be partly spurious because of the contamination from the 

strong Bragg peak as evidenced by the observed rise in back­

ground also, in that region. It should be added here that 

since the specimen crystal was large (~50% transmission) and 

the mosaic width: (SO' F.W.H.M.) was appreciable~ multiple-event 

scattering processes also contribute to the observed spectrum. 

A typical pattern, for (a/2~)Q = (2.5,2.5,2.5) is shown in 

Fig. 4.34 (filled circles) for which only the [~~~] zone­

boundary longitudinal phonon should appear. ((~·f> 2 is zero for 

the transverse mode at the point of observation, see Eq (3.13) .) 

However, a strong group appears at a frequency corresponding 

to the [~~~] zone-boundary transverse mode. This anomalous 

neutron group may be ascribed to a double scattering process 
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The dashed line gives the frequency distribution function for Bi 20Pb 60Tl20 at 100°K, 
calculated using an eight-neighbour force constant model. The solid line is obtained after 
a Lorentzian broadening of ~v/v~O.l3 (to simulate the energy smearinq caused by force constant 
disorder in the alloy) and then folde€L.J6lith-±he _ _resolution function Of the spectrometer. 
Both the distributions are normalized to the same area. 
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Constant-Q measurement at 2TI(2.5,2.5,2.5) where only the longitudinal 
mode (v~2~07x1Ql2 cps) is gxpected to be excited. For 0° tilt, the 
(~lO) axis is vertical; the peak at v~0.8xlol2 cps is probably the 
transverse mode appearing as a result of multiple scattering processes. 
By rotating the crystal about the (lll) direction which leaves the 
point of O:bservation invariant, the peak disappears for a tilt of 6°. 
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(Brockhouse et al. 1962) in which the neutrons involved in 

the one-phonon group have been Bragg scattered before or 

after the single phonon scattering. Then, if k 1 1 is the 

neutron wave vector after the first scattering and k 1 after 

the second scattering, 

Adding we have 

k -k I 1 =G 
0 - . 1 

k 1 1 
- k 1 =G -n - - 2.::L 

k -k 1 = (G +G ) - a = G ~a 0 - . 1 . 2 .::L . . 3 ~ 

since the sum of two reciprocal lattice vectors G1 and G2 is 

itself a reciprocal lattice vector. 

On the other hand, 

E -E 1 = +hv. (a) 
0 - J .::;l.! 

Therefore, the reduced wave-vector ~ is not changed but the 

position in reciprocal space at which the neutron group is 

observed is changed. Thus, the intensities need no longer 

satisfy the one-phonon theoretical expression as to polari-

zation dependence. To demonstrate experimentally the influence 

of Bragg scattering, we also show in Fig. 4.34 the patterns 

obtained after rotating the crystal about the (111) axis which 

lies in the plane defined by the incident and the final scattered 

neutron wave vectors k and k 1 respectively. By this pro-
o -

cedure, the point of observation (2.5,2.5,2.5) remains 

unaltered, always lying in the plane of k
0 

and k 1
• However, 

the relative orientations of the Bragg planes with respect to 

k
0 

and k 1 are changed and hence also the probability of Bragg 
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scattering. It is seen, for example, that for a tilt of 6° 

the transverse peak is virtually absent. However, for a tilt 

of -10° (the minus sign simply indicates that the tilt was 

applied in a sense opposite to the previous one) the transverse 

peak reappears. Consideration of the probability of occurence 

of the double scattering leads to the conclusion that the 

process may be the rule rather than the exception for large 

crystals which are efficient Bragg scatterers (Brockhouse 

et al. 1962). 

Damping of Phonons caused by Disorder 

It was mentioned earlier that the presence of force 

constant disorder in alloys leads to the damping of phonons, 

although, for the binary alloys, the damping is relatively 

small. Considerable broadening of the neutron groups beyond 

the resolution of the instrument is observed in Bi20Pb60Tl 20 

which implies the existence of significant force constant 

disorder in this ternary alloy. Fig. 4.35 shows the neutron 

groups in Pb 80Tl 20 and Bi 20Pb60Tl20 for the [~~~] zone­

boundary modes at 100°K. The resolution widths (incident 

neutron frequency ~5.8 x 1012 cps) may be calculated easily 

at these points (Vg_v=O) since the focussing characteristics 

of the spectrometer need not be considered; the effect of 

the mosaic spread of the specimen also can be neglected. 

The instrumental widths were estimated to be about 85% of 

the widths of the neutron groups observed for Pb 80Tl20 . The 

natural line width of the phonon was obtained by finding the 

width of the Lorentzian curve that must be convoluted with the 
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ZONE - BOUNDARY PHONONS 
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Comparison of neutron groups in PbA 0Tl 20 and Bi 20PB60Tl20 • This 
figure illustrates significan~ broAaen1ng, pres~nt 1n tne ternary 
alloy, caused by force constant disorder. 
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resolution function (assumed to be Gaussian) so as to give 

the observed width. The extracted width contains a small 

contribution from the anharmonic broadening present at 100°K 

which is probably less than the uncertainty introduced by the 

deconvoluting process. We give in Table 4.10 the phonon 

widths (F.W.H.M.), corrected for resolution, for the zone 

boundary points X and L. 

It is also interesting to study the dependence of the 

phonon broadening as a function of the phonon wave vector g_. 

We show in Fig. 4.36 the phonon widths along the symmetry 

direction [~00] for the transverse mode. The instrumental 

widths were calculated following Cooper and Nathans (Appendix II) . 

The effect of mosaic structure of the specimen crystal on the 

width of the neutron group was also taken into account. The 

contribution from the mosaic structure can be written as 

n(~ vxQ) where n is the mosaic spread. For longitudinal 
9. -

phonons this contribution can be small because it is possible 

to choose Q along a symmetry direction but for transverse 

phonons (particularly if gradg_v is large) it may be appreciable. 

We find in Fig. 4.36 that for small wave vectors, the 

phonons are relatively sharp. It also follows from Eq. {2.42) 

that 6v approaches zero as g_ tends to zero; it is perhaps 

intuitively obvious that sound waves should propagate freely 

in the continuum limit. For the short wavelength phonons, 

the lifetime is quite short. If we define the lifetime as 

~=~/r where r is the energy width then at zone-boundary 

the lifetime is only about half the period of vibration! 
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Table 4.10 

Phonon widths (F.W.H.M.) for the zone-boundary modes 
in Bi

20
Pb

60
Tl

20 
at 100°K, ~btai~ed after correction for 

resolut1on w1dths 
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a 
(27T)Q_ Polarization Frequency Phonon Width 

(+ 0.10) 
(1.5,1.5,1.5) Longitudinal 2.14 0.36 

(2.5,2.5,1.5) Transverse 0.78 0.25 

(0.0,0.0,3.0) Longitudinal 2.05 0.31 

(2.0,1.0,0.0) Transverse 0.91 0.31 

(units 1012 cps) 
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also indicated. 
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An estimate of force constant disorder at the zone-boundary 

can be made from Eq. (2.42). The contribution from the 

t second neighbours vanishes by symmetry ((exp~~·R )-1)=0) and 

we may assume that the contribution from the distant neighbours 

is negligible. Further, since the polarization vectors are 

fixed by symmetry ([~00] direction), we arrive at the simple 

result 

This expression yields a force constant disorder of ~30%. 

Before concluding this chapter mention should be made 

of the recent tunneling work in the alloy system BixPb1_ 2xTlx 

(Dynes and Rowell 1969). The product function a 2 (v)g(v) was 

determined experimentally for the ternary alloys where a 2 (v) 

is a measure of the electron-phonon coupling strength and g(v) 

is the frequency distribution function. It was found that 

the calculated a 2 (v)g(v) function (in the absence of force 

constant disorder) with a Lorentzian broadening of 6v/v=0.16 

agrees with the experimentally determined distribution for 

Bi 20Pb60Tl 20 • Considering the fact that this smearing is 

somekind of an average over the frequency distribution function, 

the above value of phonon broadening is not in disagreement 

with the values we presented before from a study of the line-

shapes of the coherently scattered one-phonon neutron groups. 

They (Dynes and Rowell) also calculated the frequency spread 

~v as a function of v from Eq. (2.42) by averaging over g. 

The calculated phonon width in the longitudinal region is 

larger by a factor of three compared with that in the trans-

verse region. However, we note from Table 4.10 that the 
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zone-boundary longitudinal and transverse modes have similar 

energy broadening. It is doubtful, if for a highly disordered 

system, like Bi20Pb 60Tl20 , such a simple perturbation calcula­

tion, as carried out by these authors using the density of 

states appropriate to the unperturbed crystal, is valid. 



APPENDIX I 

Lattice Constant Measurements and 

Characterisation of the Specimen 

Characterisation of large alloy single crystals by 

neutron diffraction has been discussed by Ng, Brockhouse 

and Hallman (1966). Because of large area, the neutron 

beam essentially samples the whole crystal and therefore 

measurement of lattice constant specifies the composition 

if variation of the lattice constant with composition for 

an alloy system is known from other methods (e.g. X-ray 

diffraction). Fig. A-1.1 shows a plot of lattice constant 

variation with composition for the Bi-Pb-Tl system as deter­

mined by X-ray methods (Pearson 1958) . 

The lattice constant of an alloy is determined by 

running a family of rocking curves for a given lattice 

plane of the specimen at different closely spaced scattering 

angles. A plot of the peak intensity for each rocking 

curve vs the scattering angle establishes the scattering 

angle for the Bragg condition.For calibration purposes, a 

similar procedure is carried out on a single crystal of a 

pure metal whose lattice constant is close to that of the 

alloy. The lattice constant of the alloy is then given by 

aA = aMSin(~M/2)~im~A/2) 
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Lead solutions (Pb-Tl and Pb-Bi) lattice spacing at 
20°C. (After Pearson (1958).) 
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where ~A and ~M are the scattering angles of the alloy 

and pure metal respectively and ~ is the accurately known 

lattice constant of the pure metal. Further, inhomogeneity 

of the alloy crystal can be estimated from the broadening 

observed in the plot of peak intensity vs scattering angle 

in comparison to that for pure metals. 

The alloy crystals described here were cylindrical, 

in diameter and roughly 3!• ' long. Preliminary 
2 

results on the characterisation of these alloys were published 

by Ng et al. (1966) and subsequently improved data were re­

ported by Ng (1967). The results presented here were obtained 

more recently using the McMaster Triple axis spectrometer (E2) 

at Chalk River under high resolution. 

Copper (220) was used as the monochromator and 26M 

was about 125°. Soller collimators having a horizontal di-

vergence of 0.18° FWHM were placed both in the incident and 

the scattered beam. Quartz (300) was used as the analyser 

because it has a very narrow mosaic width (4' FWHM). 28A 

was 107° thus almost matching the energy resolution of the 

incident beam. (400) reflections were employed for the alloys 

and the scattering angles were in the range of 130-140°. 

Resolution widths were determined by measuring Cu(220), 

Ni(220), Pb(400) and Mg(202) reflections. Lattice constant 

of lead was used as the standard for calibration. 

A typical family of rocking curves for Bi10Tl90 (400) 

is shown in Fig. lA-1.2). Fig. (A-1.3) shows a plot of peak 

intensity vs lattice constant for the alloys and a plot of 

the observed width (FWHM) vs lattice plane spacing is given 
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in Fig. (A-1.4). It is clear from the plot that among the 

alloys Pb
80

Tl20 , Pb 40Tl60 and Bi10Tl90 are highly homogeneous. 

On the other hand Bi15Pb 85 , Bi 20Pb 60Tl20 have appreciable 

inhomogeneity present whereas Pb 60Tl 40 and Bi20Tl 80 fall 

inbetween. 

The results of characterisation are tabulated in Table 

A-1.1. The X-ray results were interpolated from those given 

in the literature* (Pearson 1958). Average compositions were 

determined by comparing the present results with those in the 

literature for similar alloys. Inhomogeneity was estimated 

from the spread in the lattice constant. 

It may be worthwhile mentioning here that Bi15Pb85 

exhibited a width (FWHM) of 0,85° (After taking out the reso-

lution width) when the first set of measurements was carried 

out in Chalk River during Sept. 1967. In a subsequent measure-

ment undertaken during July 1968, the same crystal showed a 

FWHM of 0.60° whereas other alloy crystals (which are compara-

tively older) exhibited more or less similar widths as observed 

in the previous measurement. It may be thought that at room 

temperature which is an appreciable fraction of the fusion 

temperature of the alloy (~500°K) I considerable diffusion is 

going on inside the crystal thus reducing the inhomogeneity. 

In view of this, the Bi15Pb 85 crystal was annealed in a fur­

nace for two weeks, maintained at a temperature of 450°K. 

The crystal was then reexamined for any change in' the width. 

No change was detected within the limits of the experimental accuracy. 

* For the Bi-Tl alloys, an anomaly in the lattice parameter · 
at a~out 14at.% Bi in Tl has recently been reported (Claeson 
and Ostklint 1970). The anomaly is very sharp and could 
have been easily missed in the present experiments. 
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TABLE A 1.1 

Nominal Average Spread in Average Inhomogeneity Mosaic 
Composition Lattice Canst. (23°C) Lattice Canst. Composition (+1%) Width 

(+0.0014 A0
) (:!:_0. 5%) (FWHM) 

Bi20Pb60T~O 4.9585 Ao 0.0056 Ao 0.85° 

Bil5Pb85 4.9646 0.0057 12.5%Bi +4.5%Bi 0.8 ° 

Pb80T120 4.9345 0.0027 21 %Tl +2.5%Tl 0.55° 

Pb60Tl40 4.9179 0.0040 42 %T1 +3.5%T1 0.75° 

Pb40Tl60 4.8986 0.0017 62 %T1 +2 %Tl 0.5 ° 

Pb34Tl66 4.8917 0.0048 67 %Tl +3 %Tl 0.4 ° 

BilOT190 4.8816 0 88 %T1 0 0.3 ° 

Bi20T180 4.9170 0.0036 78.5%Tl +1. 5%Tl 0.4 ° 

Pure metal for calibration: Pb a = 4.9499 A0 (23°C) 



Appendix II 

Sensitivity function and the resolution function of 

the triple-axis spectrometer. 

Sensitivity function: As mentioned before, the bulk of the 

work described in this thesis was carried out using the McMaster 

University spectrometer installed at the NRU reactor, Chalk 

River. Since the experiments were done with fixed incoming 

energy and variable outgoing energy, it was necessary to apply 

corrections to the data to take into account the variation in 

the reflectivity of the analyzing crystal particularly if a 

wide range of energy transfer was covered. The sensitivity 

function was determined following an approach first used by 

Brockhouse (1958). In principle, the method consists in 

producing a Maxwellian spectrum and a comparison of this 

energy distribution as measured by the instrument with the 

theoretical spectrum. 

Fig. A2.1 shows the measured spectra emitted from the 

interior of a large block of paraffin placed on the specimen 

table into which monoenergetic neutrons were incident. The 

triangles were obtained using incoming neutrons of frequency 

5.85 x 1012 cps and the filled circles correspond to the 

frequency 16 x 1012 cps. The dips in the spectra arise 

from the simultaneous Bragg reflection processes in the 

analyzing crystal. The fact that the measured spectra agree 

quite well over a large energy range, indicates that the 

monochromatic neutrons were well therma1ized in the paraffin 

block. The deviation in the high energy region is also 

understandable since the slowing down of the neutrons by the 
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moderator is relatively more efficient. (The energy distri-

bution represented by the filled circles was used in the 

analysis.) 

The experimental distributions shown in Fig. A2.1 con-

sist of two spectra measured in the first and second orders 

of the anlayzing cyrstal. The relative sensitivities of the 

analyzing crystal in the first and second order were cal-

culated for several different energies (The author would like 

to thank Mr. R. Dymond regarding the computations. An experi-

mental check on the calculation was also made from measure-

ments on the elastic scattering of vanadium using the Cu(200) 

and Cu(400) reflections of the analyzer) and therefore, the 

correction to the measured spectrum arising from the second 

order component could be estimated. This is shown as the 

dashed line in Fig. A2.1. Finally, the instrumental sensitivity 

function (n(8A)) is obtained by dividing the corrected spectrum 

by the assumed Maxwellian distribution. We also show the 

energy sensitivity function n(v), defined by the relation, 

n(v)dv = n(8A)d8A 

n(v) is the appropriate quantity while applying corrections 

to the data (for example, the distribution shown in Fig. 4.28) 

for the analyzer sensitivity. 

Fig. A2.2 shows a comparison of the present work with the 

measurements of Dymond and Brockhouse (1970)*. In their 

* To appear in the Proceedings of the Panel on Instrumentation 
for Neutron Inelastic Scattering Research, (IAEA, Vienna). 
The authors are thanked for permission to include their 
results. 
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experiment, a Ge single crystal was used to obtain a mono­

chromatic beam of neutrons which was then passed through an 

aperture into the analyzer. For several different wavelengths, 

the integrated reflectivities were measured by rocking the 

analyzing crystal. For comparison, the theoretical curves 

are also reproduced from their paper: in these calculations 

u denotes the linear absorption coefficient. 

Resolution function of the triple-axis spectrometer 

We found in Chapter III that the coherent one-phonon 

process is governed by the energy and momentum conservation 

conditions (Eq. (3. 8}}. The presence of finite collima.tion 

in the spectrometer introduces a spread in the energv and 

momentum of the neutrons detected at the same setting. 

Accordingly, we may define the resolution function of the 

instrument as the probability of detection of neutrons as 

a function of ~w and ~Q when the instrument has been set 

to measure a scattering process corresponding to the point 

w,Q. 

The crystal spectrometers show some interesting but 

complicated focusing characteristics that make it difficult 

to calculate the line shapes of the neutron groups. Approxi­

mate treatment of the problem has been considered by Collins 

(1963}, Peckham (1964}, Bergsma and Van Dijk (1965} and by 

others. A more complete discussion has been recently given 

by Cooper and Nathans (1967}. They have derived an analytic 

expression for the resolution function, R(w,g} assuming 

Gaussian mosaic and collimation function--the loci of constant 

probability are shown to be ellipsoids. 



185 

The observed intensity for a given scattering cross-

seation cr(w,~) can be expressed as (Cooper and Nathans(l967}) 

(A2. 1) 

For a Bragg reflection, cr(w,Q)~o(w)o(Q-G). Therefore, by 

mapping the Bragg reflected intensities as a function of the 

settings of the spectrometer one can obtain the resolution 

function R(w,Q) near a reciprocal lattice point and for 

essentially zero energy transfer*. Constant energy scans were 

made (for energies on both sides of the elastic scattering 

position w=O) along a symmetry direction which passed through 

a reciprocal lattice point (i.e. a Bragg reflection) of the 

specimen (Pb 40Tl 60 ). Plots of the frequency of the scan vs 

the ~ values for which each peak has fallen to half of its 

maximum are shown in Fig. A2.3 corresponding to the transverse 

and longitudinal scans with respect to the lattice points 

(220) and (002) respectively. The "half-intensity contours" 

were calculated from the analytic expressions given by Cooper 

and Nathans**(l967) using the appropriate instrumental para-

meters (see Table A2.1). The good agreement obtained between 

the calculated and the experimentally determined resolution 

function gives confidence in calculating the resolution function 

at any point in w,~ space. 

* Apparently, this was first suggested by M¢ller (Ph.D. thesis, 
Univ. of Copenhagen (1967)}; see also Nielsen and ·M¢ller. 
1968. Acta Cryst. A25, 547. 

** -
The computions were done in the McMaster CDC-6400 computer. The 
author is grateful to Mr. A. Larose and Mr. J.R.D. Copley for 
the relevant computer programme. 
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TABLE A2.1 

The instrumental parameters used in the 

calculation of the resolution function. 

Horizontal mosAic spread (effective) 

of the monochromator (Cu(220)) 22' (F.W.H.M.) 

Horizontal mosaic spread 

of the analyzer (Cu(200)) 30' (F.W.H.M.) 

Collimations (F.W.H.M.): 

Horizontal 
Collimation 
angle 

Vertical 
Collimation 
angle 

In-pile region No Soller-slit collimation 

Monochromator to sample 'V 45 1 

Sample to analyzer 'V 45' 

Analyzer to detector No Soller-slit collimation 

The experimental results shown in Fig. A2.3 were obtained using 

neutrons with incoming frequency v
0

=5.8 x 1012 cps (or w
0 

= 3.7 x 

1013 rad/sec) . 
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Application to Phonon Measurements 

The intensity corresponding to a one-phonon coherent 

scattering process for a given setting of the instrument 

(w ,Q ) is given by the convolution of the dispersion surface 
0 ""'() 

with the resolution function centred at w ,Q (eq. (A2.1)). To 
0 .=.o 

simplify the calculation, the dispersion surface was assumed 

to be planar; the effect of the sample mosaic was also incor-

porated. It is seen from Fig. A2.3 that the resolution 

ellipsoid is extremely aspherical and it is this property which 

gives rise to the focusing effects. It is clear that if 

transverse phonons are measured from the lattice point (220) 

along the [OOs] symmetry direction then marked focusing or 

defocusing can occur depending on the relative orientation of 

the ellipse with respect to the dispersion surface. On the 

McMaster University spectrometer, installed at· the NRU reactor, 

Chalk River, the transverse phonons are usually studied with 

~ in the anti-clockwise sense from a reciprocal lattice point 

to achieve the gradient focusing. Focusing effects are far 

less for longitudinal phonons with gradqv along Q. It also 

follows that the width of a phonon peak will depend on the 

type of scan in w,Q_ space used. The"Const-g_"mode of scan was 

normally adopted. (Computer programs which produce punched 

cards to operate the spectrometer in the usual "Constant-E" or 

"Constant-Q" modes, were originally written by Dr. E.C. Svensson 

for the triple-axis spectrometer at the McMaster reactor. 

They have been modified, including changes required for use 

on the Bendix G20 and CDC-6600 computers at Chalk River, by 

Mr. J.R.D. Copley and also by Mr. A. Larose.) Comparison of 



189 

the calculated line shape* with the measured one-phonon neutron 

groups at 100°K in Pb 40Tl60 and Bi10Tl90 showed good general 

agreement. However, in almost all the cases, the calculated 

line widths were found to be 80-90% of the observed widths. 

~his difference can be attributed, at least partly, to the 

presence of the anharmonic and disorder broadening in the 

experimental neutron groups. In view of the above agreement 

it was felt that the computed line widths may be used in 

analyzing the observed widths of the neutron groups. This 

approach was used to obtain the anharmonic line broadening 

in Pb 40Tl60 at 296°K (Chapter IV (D)) and in the investigation 

of the broadening caused by force constant disorder in 

Bi
20

Pb
60

Tl 20 (Chapter IV (H)). 

Energy Resolution of the Spectrometer 

We have, so far, considered the resolution function of the 

spectrometer as a function of the energy transfer w and momentum 

* In these calculations, it was assumed that the component of 
Q normal to the scattering plane is not correlated with the 
other two components of Q, or with w. In other words, we 
consider the resolution runction in three dimensions, that 
is, the energy transfer w and momentum transfer in the 
scattering plane. This assumption is a good one if measure­
ments are made in the mirror plane of the crystal and if the 
curvature of the dispersion surface is small. If the two 
branches of a dispersion curve are degenerate along a symmetry 
direction but split for any adjacent wavevector (eg [sssJT branch) 
then relaxed vertical collimation may lead to broadened or 
double neutron groups (Cowley, E.R. and Pant, A.K. 1969. (To 
be published)). Spurious neutron groups have also been ob­
served in Na and Rb along the [OOsl symmetry direction where 
the longitudinal and the transverse branch are very close 
and have similar origin (Copley, J.R.D. Private communication). 
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transfer Q. In the study of line widths and line shapes 

involving incoherent scattering (also the powder experiment 

described in Chapter IV (G)) or for lines for which grad v=O, 
9. 

the dependence of the resolution function on Q can largely 

be ignored. This makes it rather simple to estimate the 

resolution width as a function of the energy transfer. 

The instrumental width corresponding to the zero energy 

transfer is determined by using an incoherent scatterer (for 

example, vanadium). The energy resolution of the monochromatic 

beam may be e~pressed as (here all width factors refer to 

widths at half-maximum) 

(f1EM/E
0

) = 2(CoteMxa
2
+n

2
>
112 (A2. 2) 

where, E ( or v ) 
0 0 

Incident neutron energy (or frequency) 

eM Monochromator angle 

Horizontal collimation in the incident beam 

n Mosaic width of the monochromator 

The resultant width of the instrument may be taken as the 

convolution (in Gaussian approximation) of the widths contributed 

by the monochromator and the analyzer. The energy width of 

the analyzing system corresponding to the elastic scattering 

(denoted by f1EA(E
0

)) may, therefore, be obtained from the 

measured elastic width and Eq. (A2.2). Since the experiments 

are usually done with neutron energy loss employing fixed 

incoming energy, flEM remains constant. However, flEA decreases 

with energy transfer (energy loss) and this may be estimated 

from f1EA(E
0

) using the known dependence on CoteA. Finally, 

the energy resolution of the spectrometer at a given energy 

transfer is obtained by adding (root mean squares) flEM and f12A 
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The result of such a calculation is shown in Fig. A2.4 as 

the solid line. For comparison, the observed widths of 

some zone-boundary neutron groups (gradient focusing is 

absent for these phonons) are also shown. It may be mentioned 

here that the energy resolution calculated using the Cooper-

Nathans programme (setting grad~v=O) agreed quite well with 

the simple calculation presented here. 
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Fig. A2.4 Energy resolution of the Chalk River spectrometer for 2eM~92° (Cu(220) monochromator and 

Cu(200) analyzer). Gradient focusing is not considered in the calculation. Widths of 
typical neutron groups at 100°K corresponding to the zone-boundary phonons are also 
plotted for comparison. 



APPENDIX III 

Temperature variation of the frequency of 
longitudinal inter-planar oscillations 

in pyrolitic graphite 

The temperature dependence of the zone-boundary 

longitudinal phonon frequency, propagating along the hexad 

axis in pyrolitic graphite, has been studied by neutron 

spectrometry over a range of 200° to 900°K. The measurements 

were made using the McMaster University triple-axis spec-

trometer, at the NRU reactor at Chalk River (Brockhouse 

et al. 1968). The pyrolitic graphite specimen consisted 

of a square sheet of approximately 2" on edge and 3/8" 

thick. The sample used has a mosaic spread about the hexad 

axis of approximately 10°, F.W.H.M.; it is commercial 

material obtained from the General Electric Company. 

The temperature of the specimen was measured by 

an iron-constantan thermocouple. An internal check on 

the temperature scale was provided by measuring the lattice 

constants (Ng et al. 1967) at two different temperatures. 

Fig.A~lshows plots of the maximum intensity of the crystal 

rocking curves for the (008) reflection as a function of 

scattering angle. From the observed peak shift of 6~ = 2.52°, 

the temperature difference with respect to the room tempera­

ture (296°K) is given by AT~ ~(cot~)(~) ~ 384°K where 

a, the coefficient of linear expansion along the hexagonal 

direction is taken as 28 x 10-6 deg-1 • The probable error 
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in measuring the thermal expansion is estimated to be about 

3 parts in 10 4 which amounts to an uncertainty of ± l0°K in 

the temperature of the specimen. The temperature of the 

specimen, as recorded by the thermocouple, was found to be 

The phonons were measured at the point c
2 

Q = (003), 
TI -

0 

where c(6.70 A at 296°) is the lattice constant along the 

hexagonal direction. At this point in reciprocal of space 

one measures the longitudinal vibration propagating along 

the c-axis with wavevector at the zone boundary (point A 

in group theoretical notation). This mode involves vibrations 

of neighbouring 'rigid' hexagonal planes of carbon atoms 

against each other. It has been studied previously at 

room temperature (Dolling and Brockhouse, 1962), who give the 

rationale as to why these modes are measurable in pyrolitic 

graphite. 

The phonons were well defined and sharp and did 

not exhibit measurable changes in natural line width over the 

temperature range studied (Fig.A3.2).The line width is 

roughly that expected from instrumental resolution. The 

mosaic spread of 10° F.W.H.M. broadens the point of observation 

Q = ~TI (0,0,3) into a distribution ~TI (0.18,0.18,3) about 

the hexad axis. (In the basal plane, the Brillouin zone may 

be taken as bounded by a linear dimension of 2
TI (_!} where 

o a ~ 
a= 2.456 A is the lattice constant in the basal plane. 

Thus the Q-space resolution spread is about 15% of the zone 
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Fig. A3.2 Neutron groups observed at the point (cj2rr)Q. = (003) at various temperatures. 
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dimension in the basal plane. The branch under observation 

appears to be "flat" enough that this does not give a 

measurable effect 1 .) 

The phonon frequencies are given in Table A3.1 along 

with calculated values for the lattice constant (c). The 

relative frequency shifts are believed to have an accuracy 

of better than ±0.02 x 1012 cps. However, the independent 

frequency measurements probably have somewhat larger errors 

because of the large mosaic spread as discussed above. In 

the present case, the effect of finite resolution will be to 

shift the observed frequencies to higher values. It may be 

seen that the phonon frequencies display strong temperature 

dependence even though the highest temperature reached 

was only a small fraction of the melting temperature of 

graphite (> 3800°K). From the observed frequency shifts 

the average Grftneisen constant Y for this zone boundary mode, 

defined as (-dtnv/dtnV) where v is the frequency and V is the 

crystal volume, is found to be 3.6. 

Further, assuming that the [0001] longitudinal 

mode is adequately described by a sine wave (Dolling and 

Brockhouse 1962), the elastic constant c33 is estimated 

to vary by about 11% over the entire temperature range, from 

0.37 at 190°K to 0.33 at 890°K in units of 1012 dynesjcm2 • 

1 Recent measurements by Nicklow et al (.1970) indicate that 
the transverse modes propagating in the basal plane and 
polarized along the c-axis are essentially isotropic. 



TABLE l\.3 .1 

Phonon frequencies v measured at 

Q=~(003) as a function of temperature T. 

* 

190 

296 

490 

680 

890 

6.688 

6.708 

6.744 

6.780 

6.821 

v 

(lol2cps) 

3.84 

3.79 

3.725 

3.66 

3.59 

Coefficient of linear expansion along 

c-axis was taken from AIP Handbook, 1963. 

2nd Ed. (McGraw-Hill, New York). 
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