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SCOPE AND CONTENTS: 

The standard technique of ellipsometry allows the determination of 

the optical constants of a substrate material provided either the surface is 

free of an oxide film or the oxide film thickness and optical' constants of 

this oxide film are known. The majority of ellipsometric measurements per­

formed on materials known to grow natural oxides is done by removing the 

natural oxide (either by cleaving or etching) and performing the measurements 

at one angle of incidence in vacuo. These processes perturb the surface and 

the reported values of optical constants may be questionable. 

The technique to be presented here assumes the material to be 

studied has a naturally-occurring oxide. Measurements are performed at 
-r-

several angles of incidenc: and the optical equations are solved for a self-

consistent oxide film thickness until the best fit substrate optical constants 

have been found. The optical constants o~~:the oxide film are then determined. 
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CHAPTER I 

.. INTRODUCTION AND HIS TORY 

Ellipsometry has been called· the art of measuring and analyzing the 

elliptical polarization of light. In -this general sense, no restriction has 

been placed upon the method in which the elliptical polarization is obtained. 

For the work to be discussed here, ellipsometry will be referred to as ellip­

tical polarization caused by r~flection of plane polarized light from an 

absorbing medium (substrate) or an absorbing medium (substrate) with an 

adhering oxide filmo The majority of the work here consists of calculating 

the optical constants of the absorbing medium (substrate) and the optical 

constants of the adhering oxide film along with its thicknesse 

Fundamental studies of reflection from optical media were performed 

by Augustin Fresnel in the nineteenth century. At the boundary of two non-

absorbing dielectric media, Fresnel's formulae indicate that the two reflected 

components of light, one vibrating parallel to plane of incidence and the 

other perpendicular to the plane of incidence (denoted as the p and s com­

ponents respectively) undergo a phase shift of either 0 or 180 degree~ at 
·-r­

the interface of a non-absorbing medium. At a certain angle of incidence, 

the parallel component becomes zero---this critical angle being called the 

Brewster angle. It was found experimentally that the parallel component did 

not vanish completely when the angle of incidence was equal to the Brewster 

angle. Rayleigh1 explained this fact in terms of the ellipticity of the 

reflected light .:--- if the inci·dent light is plane polarized at 45 degrees
' . 

to the principal planes, the ratio of the reflected amplitudes in the plane 

of incidence and perpendicular to the plane of incidence is called the 
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ellipticity of the reflected lighte Lord Rayleigh concluded that the ellip­

ticity of the ·light reflected by clean liquids was much less than that of 

comtaminated surface; i.e. it depends upon the absorption coefficienta 

2At about the same time, Drude was examining the properties of light 

reflected from solids rather than liquids. He was able to correlate 

quantitatively the optical thickness of a film and the optical constants 

of the material (substrate) upon which the film was evaporated. Two par­

ameters were used to characterize the ellipse representing the reflected 

light: 

1) the ratio tan lJJ where the angle $ is called the 
azimuth and pp and p s are the 
reflection coefficients of the 

(eq. 1-1) components in the plane and 
perpendicular to the plane of 
incidence after reflection. 

2) the differential phase change for the two polarization 

where op and os are the absolute 
phase shifts of these same com­
ponents brought about by reflec­

(eq. 1-2) tion. 

Starting from Maxwell's equations and .the appropriate boundary 

conditions, Drude obtained a general exp·ression relating the Fresnel 
•I, 

reflection coefficients (for the p and s polarizations) and the film 

thickness d to the ellipticity (tan $) and the change in phase (6) 

namely: 
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tan lJJ 

where the variable x denotes 4nn cos $d/A, an additional change2 

in phase upon traversing the film n
2 

= index of refraction for 
this film, 

$ = angle of incidence, 
d = film thickness, 

and A = waveleng~h of the incident 
light. 

The values of A and $ can be obtained experimentally by mea~uring 

theorientation of the elliptically polarized light. For thin films, 

Drude3 expanded exp(-j.x) as ( 1-j.x ) and determined two linear equat­

ions for the angles A and$, viz.; 

(eq. 1-4) 

(eq. 1-5) 

where the barred quantities A and $ denote the measurements that 

would be obtained for A and $ in the absence of an. oxide film; the 

quantities 6 and $ are Lynctions of the substrate optical constants 

and angle of the incidence only. These linear equations were tested by 

4Tronstad by measuring monomolecular films of fatty acids adsorbed on 

a mercury surface. He found good agreement between measured values and.,, 

theoretical ones. 

5
~Rothen developed the ellipsometer in much the same 

form as it is today. More recent changes involve the substitution of 

photomultiplier tubes for half-shade detection devices thus greatly en­
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hancing the sensitivity to detect oxide film thickness. Shortly after 

6
the development of the elliposometer, Vasicek published a series of art ­

icles on the optical properties of thin films. He managed to show that 

the Drud~ general equation could be 	developed in a useable form without 

approximation. 

7R. J. Archer , in 1957, developed better expansion coefficients 

a and a than those of Drude as used in expressions 1-4 and 1-5. 

With these new coefficients, he was able to determine the rate of growth 

of oxide films on silicon and germanium. McCrackin, Passaglia, Stromberg, 

8
and Steinberg , in 1963, developed the exact equations for determining 

film thicknesses once the optic~l constants were known and produced a 
. 9 

computer program for their calculation. An added feature they presented 

was a method to account for a non-exact quarter-waye plate and an average­

ing technique for determining !J. and 	1/J from the polarizer and analyzer 

10readings. In 1964 Burge and Bennett showed Archer's linear relations 

to be more exact than th~_rprude linear relations, both being inadequate 
1. 

for oxide films greater than about SO Angstroms. They maintained that 

the variation in the ellipsometric parameters !J. and 1/J with angle of 

incidence could not be used to detennine....the presence of a surface oxide 
•), 

film; their reason being that variation of these parameters with angle 

of incidence for a film-covered surface was practically identical with 

that for a fictitious film-free surface with sligh~ly different optical 

constants. It is this claim that is to be refuted here. In 1965 Saxena 11 
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extended the range of the Archer linear equation to certain r~nges in the 

thick film region since plots of a v~rsus ~ are periodic in film thickness. 

A recent paper by Vedam et a128 shows a method of determining sub­

strate optical constants using the fact that the normal reflectivity of a 

subst:I:'ate remains constant to within 0.1% with increasi_ng oxide film thick:­

ness up to about 200 Angstroms. They chose silicon, a material for which 

this is true. Other- materials show larger deviation in normal reflectivity 

with oxide film thickness. 29 

•), 
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CHAPTER II 

THEORY 

The propagation of electrn;;t.agnetic waves in an homogeneous 

isotropic medium can be expressed !,.,, Naxwell 's equations (see appendi~ I) 

yielding the wave equation for the electric field 

o. (eq. 2-1) 

For a plane-wave solution of the form 

E" = l 0 exp j <wt - r. t> , (j =F1) (eq. 2-2) 

the propagation vector -+r is a complex number whose magnitude is 

1J e: - j 41Tl.IO' '. (eq. 2-3)
w 

··r-
In free space, the wave propagates with the ~elocity of light, c, and the 

magnitude of the propagation vector is simply 

r =~ •l, 

c· 

In the medium, the velocity of propagation is slower. In fact, we say the 

phase velocity is divided by a complex refractive index 

n = /ue: - j 4~.~0' • k (eq. 2-4) .AJ"" ""' = n - J , 
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so that the propagation vector is 

j kw (eq. 2-5) 
c 

Eq. 2-4 serves n for the medium and theto define the index ~action 
extinction coefficient k. To see;the effect of this extinction coefficient, 

consider a plane wave propagat:t.-ng in the z direction.· Applying eq. 2-5 to 

eq. 2-2 shows that 

Ez = EOz exp jw{t - ~Z) exp -(k~z) (eq. 2-6) 

·This result shows that the velocity of the wave in the medium is reduced to 

c/n and that the wave is damped as it propagates. Several terms are used to 

describe the damping. These terms will be included here for completeness 

and because there appears to be a great deal of confusion in the literature 
\ 

as to their meaning. An absorption coefficient n is defined by the condition 

that the energy of the wavf- decrease by a factor 1/e in a distance 1/n. The 

current density associated with the wave (eq. 2-6) can be calculated by 

applying Ampere's law giving the result 

•I. 

-+ -+ 
J = 47T}JO - ~ E= - j w ~2 E 

c c c (eq. 2-7) 

-+-+
The rate·of production of Joule heat is the real part of (J.E). Thus the 

fraction of energy lost due to Joule heating per unit thickness of the 
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material is given by 

Re <1~!) ( - j w .. -2)n = = Re - ··-n 
cIEI2 


2 n kw 41T n k
= = (eq. 2-8)
c A 

An absorption index x is defined as simply the nk product in the above ex­

pression. An attenuation constant a is defined in terms of the amplitude 

of the electric vector decreasing by a factor 1/e in a distance 1/a, so that 

a = l/Zn = nkw = 21rnk = l:!!x (eq. 2-9)
c A A 

In order to describe the state of polarization of the propagating 

waves, it is convenient to treat waves with electric vectors vibrating 

parallel (p) to the plane of incidence separately from those with vectors 

vibrating normal (s) to the plane of incidence. 

Consider a light wave propagati~g in the z direction of a right­
-r­

handed co-ordinate system (see fig. 2-1). We specify the amplitude of the 

thelectric vector travelling in the positive direction in the q medium and 

polarized with the electric vector parall,e.l to the plane of incidence by 
•!. 

E+(p); similarly E+(s) denotes the component of the electric vector perpen­
q q 

dicular to the plane of incidence travelling in the positive direction. A 

negative sign on the superscript denotes a wave travelling in the negative 

ditection. Applying Maxwell's. equations at the interface of the two media 

leads to the following results: 
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I 
I 
I, 

Ep 

:;i', 

\ F~gure · 2-1 Reflection and refraction of ~ight at a boundary
I 
i between two optic~~ly diffe~ent m~dia! 

; !·'. 

I , ~' 
_J 

Fi12:ure 2 .. 1 
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a) Law of Reflection 

1' (eq. 2-10)4>1 = 4>1 

i.e. the angle of incidence equals the ang~e of 


reflection. 


b) Snell's Law of Refraction 


(eq. 2-11) 

21c) Fresnel Reflection and Transmission Coefficients20 , 

Ei(p) n2• co's~ 1 - n1 • cos~ 2rp = = (eq. 2-12)12 +El(p) n2• coscp 1 + n1 • cos"'2. 

+ 
p E2(p) 2.n1cos~ 1=t12 = (eq. 2-13) 

El+(p) n2• cos4> 1 + n1 • cos<P 2_ 

El(s) n .cos4> 1 - n2 .cos~s 1 2=rl2 = (eq. 2'-14) 
E+ 

1 (s) n1• cos~ 1 + n2.• cos~ 2 

E+ 
2{s) 2.n1cos~sand = = 1 (eq. 2-15)~12 

E+(s) -~~1 .cos~1 + n2 .cos~ 21

Here n1 and n2 are the optical constants for the two media and 
·J. 

4> 1 and 4> 2 are the angles of propagation in these same two media. When both 

media are transparent, the optical constants are their respective refractive 

indices. In this case they are real numbers given by: 

(eq. 2-16) 
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where the zero subscript indicates the "free space" value of the 

particular variable.·· For the particular case of two transparent dielectric 

media, all of the terms in Snell's 'law- and the Fresnel coefficients are real. 

For an absorptive medium -.the J!resnel equations are still valid, 

along with the Snell's law expressions, provided a "complex index of refrac­

tion" def.ined by n = n - j. k (j =J=i> is used· t.o characterize these materials. 

Complex Fresnel coefficients indicate that the reflected and refracted rays 

suffer a phase shift at the interface which is neither·O or 180 degrees. 

Film-Free Reflection 

Consider a light wave resolved into parallel and perpendicular 

components of the electric vector. This wave is tr~velling through a trans­

parent dielectric medium of refractive index n and striking the interface
1 

between the dielectric medium and an absorbing substrate of refractive index 

= n - j.k • This configuration is shown in fig. 2-2. The basic equationsn3 3 3

describing the reflection remain as in e.qs. 2-10 through 2-15 with n replaced2 

with n and ~2 replaced with the complex angle ~. Application of Snell's3 

law yields the result 

2 cos 4> = - sin 4> 

....
!, 

1·= 

The Fresnel reflection coefficients can then be expressed in terms of the 

angle of incidence ~l and the substrate optical constants by substitution 

into eqs. 2-12 and 2-14 giving 

i i 
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··~ 

REFLECTION FROM AN ABSORBING SUBSTRATE 

INCIDENT BEAM 	 REFLECTED BEAM 

IMMERSION 
MEDIUM 

ABSORBING 
SUBSTRATE 

TRANSMITTED 
BEAM 

Figure 2-2 	 Reflection and refraction of light at a boundary 
between a transparent medium. n1 and an absorbing 
substrate of complex refractive indix n3 - j ·k3. 

: ' ~ ) 	 ~ .. • j :. ; ~ . <I ... 
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(n3 - j k3)2 - ni sin2$1 
(eq. 2-18) 

(n3- j,k3)2- ni sin2$1 

2 2 2 
s = n1 cos$1 - (n - j k ) n sin $and 3 . 3 1 1 (eq. 2-19)r13 

2 2 2$(n - j k ) n sin
3 3 1 1 

For simplicity, it is convenient to define 

W= (eq. 2-20) 

With this definition, 

= (n1sin$ 1t~~~l- w) (n1cos$1 - w) 
(eq. 2-21) 

(n1sin~1t~n$1 + w) (n cos$ + w)
1 1 

and •), (eq. 2-22) 

The ratio ·of· these two reflection coefficients serves to characterize the 

change in the state of polarization of the reflected light beam, in fact 
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lri31.exp j<Sp 
-~----- = tan 1/J exp j l1 

lr~3 1 exp j<Ss 
n1sin~1tan!P1 - w 

= n1sin~1 tan~ 1 + w 

{eq•.2-23) 

Because we are dealing with reflection from a substrate devoid of any oxide 

film, we will denote the phase change ~ and the ellipticity 1/J by Xand ~ 

respectively. Eq. 2-23 is of the form 

y = 1 - X 1 - ywhose inverse is X = 1 +X 1 + y 

Inversion of eq. 2-23 allows one to calculate the substrate optical constants 

from the experimentally measureable angles ~ and 1/J. Inverting eq. 2-23, 
-r­

rationalizing, and factorirtg yields the result 

w = cos 2~ - j sin 2$ sin~ {eq."' 2-24) 
nlsin4>1 tancl>l 1 + sin 21/J cosA;: 

The substrate optical constants n and k3 are "hidden" in the term w. Appli­
3 

cation of definition eq. 2-20 to eq. 2-24 and squaring both sides of the 

resultant expression yields, after some algebraic manipulation, 
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2 - 2 - 2- - - ­cos 2$-sin 2$ sin ~ - 2 j sin2$ cos2$sin~ 

(1 + sin2~ cos~) 2 

(eq. 2-25) 

Finally, by separating this expression into real and complex components, we 

obtain two equations in n and k •3 3

Real part: 

2tan <1>1 

(eq. 2-26) 

Complex part: 

2 2 	 2 ­n sin ~1 tan .~1 sin4$ sin~1 (eq. 2-27) 

(1 + sin2~cos~) 2 

For calculation purposes on substrates containing oxide films, the inverse 

of eqs. 2-26 an'd 2-27 is necessary, i.e. solve for ~ and ~ in terms of the 

substrate optical constants n3 and k3. This calculation is done in appendix 

II. 	 The result of such a calculation is 

tan~ = sin Q tan 2P, 
.,, 

(eq. 2-28) 

and 	 cos 2$ = sin 2P cos Q. (eq. 2-29) 

4 4 4 4 2 2 2 2 2 . 2 1/4
(n3+k3+nlsin ~ 1+2n3k3-2(n3-k3)n1s~n f 1)

where 	 tan P = (eq. 2-30) 
n1sin~1tan~1 
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and (eq. 2-31) 

Reflection from a substrate with adhering surface film. 12 

Consider a plane electromagnetic wave striking the surface of an 

optical system as shown in figure 2-3. The system of reflected waves is 

replaced by an equivalent wave R leaving the film; D is the equivalent of 

all waves entering the substrate; A -and B are the equivalent waves striking 

and reflecting from the film-substrate interface respectively. Applying 

Maxwell's equations of tangential electric field components and normal magnetic 

field components being continuous across the boundaries at,z = 0 and z = d, 

yields the following: 

At the surface z = 0: 

parallel components: 

(eq. 2-32) 

'(E + R ) n =r-(A + B ) n (eq. 2-33). p p 1 I. 2p p. 

perpendicular components: 

E+R=A+B (eq. 2-34)s s s s 

(E - R )n cost = (A - B ) ii :~as* (eq. 2-35)s s 1 1 s s 2 . • 

At the surface z = d: 

parallel components: 

-jT -jT -J·T . (A e A - B e B) cos*~2 = D e D cos*~3 (eq. 2-36)p p p 

I• , 



1­... 

(a) (b) (c} 

E R 

oxide 

t 
d 

l 

substrate D 
D 

Figure 2-3 Reflection model assumed for elliptical polarization illustrating 
(a) Sign convention, 
(b) Multiple reflections assumed to occur in oxide, 

and (c) Reflection system assumed ~quivalerit to (b). 
(Reproduced from Leberknight and Lustman • ) 

_________1.--------------------------------------------­
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(eq. 2-37) 

. perpendicular components: 

(eq. 2-38) 

-jl' -jl' -jl'{A e A -B e B) ii cos*~ = Dse D n3cos *~3 (eq. 2-39)s s 2 2 

where 1' = (2-rr/"A) ii2 {x sin*<l> + d cos*<l> 2),A 2 


1' = (2-rr/'A) ii.2 (x sin*9> - d cos*~2 ),
B ·2 

and 1'
D 

= (2-rr/'A) ii.3 (x sin*<P 3 + d cos*<P 3). 

Now if eq. 2-36 is multiplied by e+jl'A n and eq. 2-37 multiplied
3 

+. 
by cos*<P3e Jl'A their right hand sides become identical so that Dp is eliminated 

giving 

Solving this expression foy-A and calling o = l'A - l'B we find 
I. p 

(n cos*<P2 + n cos*4> )3 2 3

(ft3cos*·~2 - ft2 cos~.~3) 
•). 

Substituting this result into eqs. 2-32 and 2-33 and dividing the resulting 

expression eliminates B giving
p 

·a
eJ (ft3cos*j2+n2cos*~3) - (n3cos*~2-n.2cos*~3) 

(E + R ) n ej 0 (n3cos*<P2+n2cos*~3 ) + (ii~cos*w2-n2 cos*<P 3 )p p 1 
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After· some tedious algebraic manipulation, this expression reduces to 


R (ii.2ii.3cos $1cos*~2-nlii.2 cos* $2cos *4>3'~' + cn.;cos 4>1 cos* cp3-nliijCOS*2
4>2) ~ 


_R= --~~--~----~-=~----~----~----~--~----~~~----~~ 2
EP (n

3
cos ct> cos*4>2+n1n2 cos*~2 cos*cJ> 3) +(n;cos 4> cos*4>3+n1n3cos* cJ>2)P2n 1 1 

= 

1 +bP 

1 + aP (eq. 2-41)
1 + bP 

where p = = tanh jo/2 (eq. 2-42) 

n1cos~ 1 n cos*<f> n~ 
3

cos *4>
2 3 2 

a = (eq. 2-43)' 
(n cos<f>1-n cos*cJ> ) n cos*cJ> n cos<f>3 1 3 1 2 2 1 

n cos<f>1 ii cos *<f>' n~ 3cos*$ 
and b = + (eq. 2-44)1 2. 3 2 

(n3cos<f> 1+n1 c~s*cJ> 3 ) n cos*<P n coscJ>1 2 2 1 

In a similar way, we can obtain an expression for the reflectivity of the 

perpendicular components (R /E ). If we multiply eq. 2-39 by ejTA and 
s s ·), 

eq. 2-38 by ejTA n cos*·<f>3, their right hand sides become equal, so that Ds3

is eliminated, giving 

(eq. 2-45) 
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Substituting this result into eqs. 2-34 and 2-35 and dividing the resulting 

expressions eliminates B , so that 
s 

(Es-Rs)n1cos<t>1 

(E + R ) 
s s 

Further algebraic manipulation along with definition eq. 2-42 reduces this 

expression to 

s 1 + c p 
= rl3 1 + b P 

where 
n1 cos~1 c = 

(n1cos$1-a3~os*4>3 ) 

n1cos <Pi-~--
and e = 

(n cos<P +a cos*<P )1 1 3 3

Dividing eq. 2-41 by 2-46 gi~es . 

pR: E· 1 +a P s rl3__E. . -=-­
. ~s E s 1 + b pp r13 

1 + c p 

1 + e P 

. 
n... 

3
cos *4> 

3 

n... 2cos *<P 
2 

n... 3cos *<P 
3 + 

n cos*·~2 2 

•). 

1 + e P 

1 + c p 

n... 
2

cos *cp 
2 

n cos<P
1 1 

n... 
2

cos *<P 
2 

n1cos <P
1 

{eq. 2-46) · 

(eq. 2•47) 

(eq. 2-48 

(eq. 2-49) 

. I 
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Noting that the left hand side of eq. 2-49 is simply the ratio 

of the two reflection coefficients for the whole system resolved in and 

normal to the plane of incidence, we may re-write the expression in terms 
.. 

of the parameters describing the ellip.tical polarization, tan ljJ and exp j6. 

In addition, the ratio (ri3/r~ 3 ) is the analogous expression for a substrate 

devoid of any surface film and can be described in terms of the "free-

surface" angles 6 and $. Making these changes, eq. 2-49 becomes 

= (l+a P) • (l+e P) .Z* = tan 11! • exp j (6-6) {eq. 2-50){l+b P) • (l+c P)tan ljJ 

This expression is the generalized ellipsometry equation 1-3 re-cast in a 

slightly different form. It can be solved exactly for ~ and ljJ; in fact 

A = A + -1 {_Im (Z*)_l 
u u tan l Re (Z*)} , (eq. 2-51) 

and (eq. 2-?2) 

The generalized ellipsometry equation is useful in the form of eq. 2-50 
. -r-

since this allows us to se~, quite readily, how the thin-film expansions 

7 10 11used by several authors ' ' come about. 

Approximate Solutions 

For thin films, the phase. change'· o undergone in traversing the 

oxide film is small so that the phase term, P, reduces to a simpler form 

· P = tanh j oI 2 ::: jo/2 {eq. 2-53) 
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If the tenns in.,P are taken to be very small, eq. 2-50 can be approximated as 

Z* =tan o/ exp j(~- ~) : T+ (a+e-b-c) P, (eq. 2-54) 
tan tJ1 

From the expressions for a, b, c, and e, the bracketed quantity, after apply~ 

ing Snell's 

(a+e-b-c) = (eq. 2-55) 

Substitution of this expression along with eq. 2-53 into eq. 2-54 yields 

,k • 2"' (- 2 2)tanw _ 4no.1coso/ s1n o/ 2-nZ* 1 1 n 1= exp j (~-~) = 1 - j _....;;;;.._ ___,;;._____;,_...;;;;..._,~--!:!..-~ 


tantJl 


(eq. 2-56) 

If we now explicitly introduce the complex refractive indices for the sub­

strate and the oxide, and note that, in ge~eral, 

= a + j a' · (eq. 2-57) 
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the bracketed quantities in the denominator of eq. 2-56 become 

= X j y. (eq. 2-58) 

Rationalizing eq. 2-56 by multiplying the numerator and denominator by the 

complex conjugate of eq. 2-58, and expanding the bracketed quantities in the 

numerator of eq. 2-56 with the aid of eq. 2-57, gives the result 

Z* = tanl/J 
tant/J 

{eq. 2-59) 

where 

(eq. 2-60) 

and 
•), 

{eq. 2-61) 

For convenience, we define the thin film expansion coeffi~ients a and B' as 
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41Tn
1
cos <P sin2

·<P1ll1 
a = (eq. 2-62)2 2·-A (x + y ) 


2
21Tn cos <P sin <P \)
1 1 1and a• = (eq. 2-63) 


A (x2 + y2) 


With these definitions, eq. 2-59 becomes 

Z* = tan~ exp j(6 - X) = (1 + 2a'd) - jad (eq. 2-64) 
tan~ 

By performing different expansions on the left-hand side of this expression, 

the various thin film approximations reported in the literature can be 

obtained. Separating eq. 2-64 into real and complex components and dividing 

gives 

-1 - a. d
6 - IJ. = tan (eq. 2-64) 

1 + 2a'd 

·Also by separating eq. 2-64 into real and complex components, squaring, and 

adding gives 

-
tan~ 

2 •).
Expanding tan w as a truncated power ~erie~ about the point ~, the previous 

expression becomes 

2- - 2- - ­tan ~ + 2(~-~)sec ~tanl/J = 1 + 4(p-l/J} 

tan2~ sin2~ 
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Hence, 

(eq. 2-6S) 

These two approximate expressions 2~64 and 2-6S can be reduced to those 

11reported by Saxena by neglecting the term 28'd with respect to unity and 

23ad. However, they differ from those of Saxena in two respects: 

(1) the coefficient a contains the oxide extinction coefficient 

k
2

, not necessarily zero. Neglect of this extinction coefficient 

can lead to erroneous thickness calculations for very thin 

films (less than SO angstroms) --- the only regime where the 

thin film expansions are yalid. 

. 2 2 
(2) the term y contains a factor 2n a sin ~l which is not1 3 

always small compared to unity and thus should not be neglected. 

The expansions used by Archer7 can be obtained from the above expressions 

by neglecting the term 28'd with respect to unity and by approximating the 

-1
tan function by the first order term in its power series expansion in the 

phase change equation 2-64~ The parabolic term in film thickness in eq. 2-6S 

is neglected by Archer. 

The thin film approximations are unfortunately valid only for 

very thin films -- of order SO angstroms 
•I,

and less. Since they are sufficiently 

complicated to require a computer for their. calculation, it is of better 

advantage to solve the exact equations 2-Sl and 2-52. 
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CHAPTER III 

,, AN ANALYSIS OF THE EQUATIONS 

The Inversion Angles: 

Initially the inversion angles P and Q used in solving for ~ and 

~ were analyzed for various combinations of n and k •
3 3

Case 1: 

2.n .k3 3Here tan 2Q = - --___,;;;._...;:;.._--- is always, positive provided2 2 2 2
n3 - - n1 asin ~lk3 


2 2 2 2 
n > k + n .sin ~1--so that the angle 2Q always lies in the first or third
3 3 1

quadrant, i.e. 

or -90° > 2Q > -180~ or 

1/ 2 > sin Q > 0 -1 > sin Q > -1· 1 > sin Q > 1/ 2 
.... 

1 > cos Q > 1/ 2 1/ 2 > cos Q ,. 0 0 > cos Q > -1/ 2 

We see that there are three possible regions where the angle Q may lie for 

this case, with sinQ and cosQ possibly taking on both positive and negative 

signs. Now looking at the expression for the angle P: 

[ 4 k4 4 4 2 2 k2 2 2 ( 2 - k2) . 2~ ]1/4n3 + 3 + nl.sin ~1 + .n3. 3- .nl. n3 3 .s~n. ~1 
tan P = 
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This expression is always positive so that the angle P always lies in the first 

or third quadrants. ··As a result the angle 2P always lies in the first two 

quadrants, so that tan 2P can take on ··either sign and sin 2P is always posi­

tive. Now since ~ is determined by cos 2~ = cos Q. sin 2P, the angle 2~ takes 

on the same sign as the angle Q. For the cases where cos Q is positive, lying 

between 0 and 1, the angle 2~ lies between 0° and 90° or ~ lies between 0° 

and 45°. When cos Q is negative, cos 2~ can assume values between zero and 

-1/ 2 so that~ can assume values between 67.5° and·45°, 112.5° and 135°, 

-67.5° and -45°, and -112.5° and -135°. A similar situation occurs for the 

angle 6 since tan 2P takes on both signs and a variety of magnitudes since 

tan P can· vary between infinity and zero. As a result ~:!! must lie between 

0° and 180°. The two regions 135° > ~ > 112.5° and -45° > ~ > -67.5° can 

be rejected on physical grounds since the ellipticity tan~ is negative in 

these two ranges--- an impossibilty since tan~= IE(p)l > 0. 
/E(s)j 

Case 2: n ~ k ; n ~ 0 and k ~ 0.3 3 3 3 

2 2 2 2 k2
If n is such that k +sin ~ > then tan 2Q lies between.n1 n3 >

3 3 1 3 
2 -r-. 2

infinity and (-2.n3 .k3/n 1 .~in ~1). 

Consequently: 

or 270° > 2Q > 90° or 

180° > Q > 135° 135° > Q >:·;45° 

1/ 2 > sin Q > 0 1 > sin Q > 1/ 2 0 > sin Q > -1/ 

-1/ 2 > cos Q > -1 +1/ 2 > cos Q > -1/ 2 -1/ 2 > cos Q > -1 

2 
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The expression for tan P is always positive so that the angle P always lies 

in the first or thirCl qu.adrants. As a result the angle 2P always lies in 

the first two quadrants and tan 2P can take on either sign and sin 2P is 

always positive, and less than or equal to unity. Again 2~ lies in the 

same quadrants as Q, i.e. 

or or 0° > 2$ > -45° 

0 > ~ > -22.5° 

The third region for negative angles is, as before, physically inconsistant 

with the positive ellipticity since the tangent of the negative angles in 

this range are negative. Since tan 2P can take either sign and a wide range 

of magnitudes --a result of the variation·in ~l' tanX can take on all magni­

tudes and either sign so 'that~ lies between 0° and 180°. 

Case 3: 

For this case, tan 2Q 

22.n
3= -­2 ----­2 -- = 

n1~sin ~l 

22.k
3 

. 
--2--~-2--
n1 .sin ~l 

which can take on 2 2values between minus infinity and -2.n
3
/n

1 
• Hence: 

or · or 0~ > 2Q > -90°' 

90° > Q > 45° 

•I. 

1/ 2 > sin Q > 0 · 1 > · sin Q > 1/ 2 0 > sin Q > -1/ 2 

~1/ 2 > cos Q > -1 1/ 2 > cos Q > 0 1 > ~OS Q > 1/ 2 
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As in the other cases tan P is always p~sitive; tan 2P can take all magnitudes 

and either sign; sin-2P is always positive. This results in 2~ located in 

the regions: 

180° > 2$ > 135° 90° > 21./J > 45° 0 > 2$ > -45° 

90° > lJJ > 67.5° 45° > 1JJ > 22.5° 0 > l./J > -22.5° 

The last region is eliminated on account of negative ellipticity. Again 

because of the wide variation in tan 2P, 6 can lie between 0° and 180°. 

Case 4: n + 0 and k3 = 03 


For this case tan 2Q = 0, so that 2Q is a multiple of 180 degrees. 


Thus Q is a multiple of 90°. Also for this case 

2 2 2 n - n .sin <P3 1 1tan P = 
n •sin<t> • tancp1 1 1 

Here n > n since the substrate is a more optically dense medium. Then tan
3 1 

Pis positive (not complex), and Plies between 0° and 90° or between 180° 

and 270°. As a result, 2P lies between 0° and 180° and tan 2P can take on 

all magnitudes and both sfips while sin 2P is always positive. For the even 

multiples of 180° for 2Q, sin Q = 1 and K takes on values between· 0° and 

180°; .cos Q = 0 so cos 21./J = 0, i.e. 2~ = -90°, +90°, or +270° or lJJ = -45°, 

45°, or 135°. The only physically meaningful solution is ~ = 45° since the 

tangent of the other two values is negative implying a negative ellipticity. 

For the odd multiples of 180° for 2Q, sin Q = 0 and cos Q = ±1 resulting in 

tan6 = o,.i.e. K is a multiple ~f 180°; cos 2$ =!sin 2P for this case so 

that 2~ takes on all values and so does l}J. However physically this represents 



- 30 ­

reflection from a dielectric medium so· that the reflected E vectors in both 

p and s polarizations have the same 1n:agnitude or tanl/.1 = 1.. This has solution 

ljJ equal to. a multiple of 45 .~egrees. ·~-Consequently the odd multiples of 180° 

for 2Q have no physical meaning, but are extraneous solutions implicit in the 

inversion. 

Here tan 2Q is negative since it is dominated by the term in the 

denominator. As a result the angle 2Q either lies between -90~ and 0° or 

90° and 180° or 270° and 360°. 

0° > 2Q > -90° 180° > 2Q > 90° 360° > 2Q > 270° 

0° > Q > -45° 90° > Q >· 45° 180° > Q > 135° 

O>sin Q>-1/ 2 l>sin Q>t/ 2 1/ 2>sin Q>O 

l>cos. Q> 1/ 2 -r- 1/ 2>cos Q>O -1/ 2>cos Q>-1 

Tan P is always positive so that 2P lies between 0° and 180° with sin 2P 

being positive. For cos Q positive, cos 2~ lies between 0 and 1 so that 

tiJ lies between 0° and 45°. When cos Q is :·negative, cos 2~ values between 

0 and -1. Consequently 2~ lies between -270° and -90° or between 90° and 

270 o so that ~ can lie be tween -135 ° and -45 °; and -45 °; 45 ° and 135°; 225 ° 

and 315°. · However the t:egions between -90° and -45°; 90° and 135° and 270° 

and 315° have negative tangents-hence a negative ellipticity and are not 
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physically.acceptable solutions. So for cos Q negative,· the allowed regions 

for~ are b.etween -135° and -90°; 45° and 90°; 225° and 270°. For the phase 

change ~ acceptable solutions are betWeen 0° and 180° since tan 2P can take 


on afl values. · 


Case 6: n = 
3 

This case is impossible physically since it represents a purely 

absorbing medium having zero conductivity. 

Plotting the free-surface angles ~ and ~ as a function of angle of 

incidence ~l shows that the azimuth angle ~ goes through a minimum at the 

Brewster angle. In addition, the phase change K varies from 180° to 0° -- ­

the change occuring rapidly about the Brewster angle (at the Brewster angle, 

~ = 90°) ~ · The rate of change is a function of the magnitude of the extinction 

coefficient k • For small k
3

, the change is very abrupt; for large k the3 3 

ch~nge is gradual. Figures 3-1 and 3-2 show ~ and ~ plotted as functions of 

the angle of incidence ~1 • The following materials were chosen since they 

have a wide range of optical constants: 

=-4-.05Silicon14 and k3 = 0.028,n3 

Al . 17 
um~num = 0.82 and k3 = 5.99,n3 


Iron18 
n3 = 3.35 and k = 3.84,
3 


Gold19 
n3 = 0.382 and k3 ='2·. 295. 
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The Thin-Film Approximations 

The next relations to be examined were the phase changes 6 from 

the free surface angle Xas a function of film thickness "d" for the exact 

equations of McCrackin and the approximate equations of Drude, Archer, Saxena, 

and those derived in Chapter II. The Drude, Ar.cher, and Chapter II expan­

sions are all of the form: 

6 - 6 = -ad 

where the coefficient a contains successively more terms for each 

respective expansion. The expression of Saxena has been inverted to the 

form: 

These plots are shown in figures 3-3, 3-4, 3-5, and 3-6 for several materials 

at an angle of incidence somewhat below the Brewster angle for the parti­

cular material involved. In all cases the expansion derived in Chapter II 

is within 10% of the exact expression for film thicknesses up to 100 angstoms, 

indicating that 6 - Xdoes not deviate appreciably from a linear relation in 

film thickness "d" up to i6o angstroms. The difference between the Archer 

expression for a and that derived in Chapter II is simply the omission of 

the term 2nia3sin2 ~1 with respect to unity (see equation 2-58). For these 

calculations, the surrounding medium was ·assumed to have an index n = 1. 0,
1 

and the oxide was assumed to be non-absorbing (i.e. k = 0.0). The more2 

pronounced deviation in Archer's expansion from the exact expression is 

simply a reflection of his neglect of this term. This is most pronounced 

18 . ·' 
for gold (n = 0.382-2.295j) where the quantity a is approximately -0.1753 3 
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which is starting to become large with respect to unity (see fig. 3-6). For 

the.?ther materials .plotted the quantity a is of order 10-2 or smaller and
3 

2 . 2~ . d .t he term 2n1a3s~n ~ ~s not so rast~c.1 
Analyzing the change in azimuth angle ~ from the free surface value 

1jJ as a function of oxide film thickness "d" for both the exact and approximate 

relations showed one particularly interesting fact: If the substrate index 

n is greater than the absorption coefficient k3 , the plot of 1jJ - ~ versus3 

film thickness "d" for the exact expression shows considerable curvature; if 

not, the plot of 1jJ - ~ versus film thickness "d" shows only a slight amount 

of curvature. As a result the parabolic expression of Saxena is a better fit 

to the exact curve provided the substrate index is greater than the substrate 

extinction coefficient than are any of the linear expansions. The converse 

for the substrate index less than the substrate extinction coefficient indicates 

that the linear expansion is better than the parabolic expression of Saxena. 

This effect is shown in figures 3-7 (n3> k ); 3-8, 3-9, and 3-10 (n <k ).
3 3 3

The effect of an increasing oxide extinction coefficient appears 

to simply increase the slope of the plots of 6 - 6 versus film thickness. 

This is shown for silicon in figure 3-11 where the exact expansion using 

McCrakin's method has been used; in addition, the linear expansion derived in 
.,, 

Chapter II has been plotted. Other expansions (Drude, Archer, and Saxena) 

neglect the effect of the film extinction coefficient and would not show any 

variation with increasing film extinction coefficient. The Chapter II expansion 

shows the same effect of increasing t~e slope of the curve and appears to be 

of the correct magnitude (the closeness of fit is always less than 5% even at 
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a film thickness of 100 angstroms .. ).. Consequently the expansions derived in 

Chapter II for the ~hase change ~ - ~ are better than any derived to date. 

Unfortunately, this expansion is not 'so good for the other materials studied 

(figures 3-12, 3-13, and 3-14), although it still shows the correct effect 

of increasing the slope. 

The azimuth angle wshows a similar effect with increasing film 

extinction. The exact expressions show a decreasing slope with increasing 

film extinction coefficient (see figs. 3-15!1 3-16, 3-17 and 3-18). Conse­

quently for an absorbing oxide film on silicon, the parabolic expression 

would become progressively worse since the coefficient a is increasing with 

increasing oxide extinction coefficient k2 , (Using the expression in Chapter 

II for a since Saxena's expression does not take into account a~sorptive 

effects in the oxide). The linear approximation derived in Chapter II 

contains the correct behaviour for very thin absorbing films (up to approx­

imately 20 angstroms) but becomes progressively worse for thicker films once 

the curvature of the exact expression comes into play. This seems to indicate 

-,-­that the expansion for tjJ - • w should contain both a linear term and a parabolic
1 

term in film thickness; the linear term having a negative expansion coefficient 

which is very small when the extinction coefficient is very s~all (or zero) 

and becoming larger with increasing film:extinction coefficient. Since in 

the method of determining optical constants in the computer program, the 

azimuth angles are not used for calculation of film thickness but only serve 

as a rough check that the correct solution has been chosen, further .analysis 

of the azimuth angle has not been perfomed. 

I' 
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CHAPTER IV 

EXPERIMENTAL 

This chapter will primarily·be concerned with methods of obtaining 

and measuring elliptically polarized light (both historical and recent); the 

relation of experimentally measured angles to the phase change ~ and the azimuth 

w; and finally, the methods of sample fab.rication. 

Hauschild's Method 

13Hauschild's method of analyzing elliptically polarized light

rests upon the fact that when elliptically polarized light passes through a 

quarter-wave plate, the emergent light is linearly polarized when suitably 

oriented. This can be extinguished with a Nicol prism (used as an analyzer) 

positioned at 90 degrees when the principal direction of the quarter-wave 

plate is oriented along the major axis of the ellipse. In such a case, the 

tangent of the angle between the linear vibrations and one of the principal 

directions of the quarter-wave plate measures the ellipticity (viz. the ratio 

of minor to major axis of ·~he ellipse) of the original vibration. The 

orientation of the quarter-wave plate determines the position of the ellipse. 

If this can be correlated to the original major axis of the incident ellipti­

ically polarized light, this orientation ~~ a measure of the phase change. 

This is indicated in figure 4-1. 

Rothen's Early Ellipsometer 

Rothen's ellipsometer is schematically indicated in.figure 4-2. Re­

ferring to this diagram, monochromatic light passes through a polarizing 

I' I I 
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Nicol prism P w~th the transmitted.vibration at 45 degrees to the plane of in­

cidence i. This is indicated for two rays of light impinging upon the upper 

and lower parts of the sample S. The state of polarization of these two inci­

dent rays is indicated in the plane I. The upper and lower portions of the 

sample slide were coated with one and three monomolecular urreference" films 

of barium stearate respectively. Upon reflection from the slide S, the 

reflected light is elliptically polarized~ Since the evaporated films in 

the upper and lower portions of the sample slide S differ in thickness, the 

corresponding ellipses E and E; differ in ellipticity and ori-entation. The 

linear vibration of a ray can be considered as a resultant vector (shown in 

plane I) having a component in phase (OP) and a component perpendicular to it 

(OS). The change of phase of the components OP and OS upon reflection is 

greater than 90 degrees (if the angle of incidence is below the principal 

angle); the vector OP being in advance. With the original linear vibration 

in the direction indi~ated, the resulting ellipses rotate in a clockwise 
'iii 

direction as shown in the plane M. Due to the difference in upper and lower 

film thicknesses, the elli"ifticity (ratio of minor to major axes) is greater 

in the lower ellipse. To an observer facing the light source, the lower 

ellipse has rotated counter-clockwise with .respect to the upper one. 

Now the two elliptical polarizations traverse a mica quarter-wave 

plate, Q, oriented with its "fast" axis.parallel (or nearly so) to the 

bisector of the angle formed by the major axes of the two ellipses E and E'. 

Upon passing through the quarter-wave plate, the ellipses E and Ev are trans­

formed into elongated ellipses L and L' (i.e. near linear polarization). 
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Finally the beams pass through an analyzing Nicol prism A. As a consequence 

of the small ellipticity of the ellipses Land L', the angle made by the two 

major axes corresponds to the "half-shadow" angle of this polarimeter. The 
·- ... , 

observation is made through an ocular focused on slide S. The angle read 

on the analyzer when both halves of the field appear of the same intensity 

gives the zero position of the apparatus. Now if a film of unknown thickness 

is added on the whole surface of the slide, the upper and lower parts become 

unequal in intensity since the ellipses E and E' have rotated counter-clockwise 

and their ellipticity is larger; the same applies to the ellipticity of 

ellipses Land L'. A counter-clockwise rotation of the analyzer returns the 

two halves of the field to equal intensity. The difference in position of 

the analyzer before and after deposition of the film is a measure of its 

thickness. 

The Present Ellipsometer: 

Light from a mercury vapour lamp first passes through a filter and 

collimating lens system producing a parallel beam of monochromatic light 
...... 4~-

about 6 mm. in diameter (wavelength= 5460.74 Angstroms). Next it passes 

through a polarizing Nicol prism followed by a variable diaphragm which can 

vary the diameter of the beam from 1 mm. to 6 mm. When the electric vector 

or plane of polarization is set at an azimuth of 45 degrees to the plane of 

incidence, one of its component is propagating in the plane of incidence 

and the other perpendicular to it; each with equal intensity. The compensator 

or quarter-wave plate can be mounted in either of two locations; 

(1) between the polarizer and the sample (figures 4-3 and 4-4) 
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Sli t 
Source Polarizer 

Photoelectri c 
Detector 

Observe r 

Figure 4-3 	 Symbolic representation of present ellipsometer 
for quarter-wave plate mounted before sample 
holder. 

Figure 4-4 Photograph of present ellipsometer for quarter­
wave plate mounted before sample holder. 
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(2) between the sample and the analyzer (figures 4-5 and 4-6) 

Case (1) 

When the compensator (quarter-wave plate) is mounted before the 

sample, the plane-polarized light upon passing through the compensator is 

elliptically polarized before striking the reflecting surface. Upon reflection, 

the light is linearly polarized and is analyzed with an analyzing Nicol prism 

connected to a photomultiplier tube and associated metering electronics. 

Case (2) 

When the compensator is mounted between the sample and the analyzer, 

the plane - polarized light striking the reflecting surface becomes elliptically 

polarized upon reflection. The elliptical polarization is converted to plane­

polarized light after passing through the compensator. As in the other 

geometry, this is analyzed with another Nicol prism connected to a photomulti­

plier tube and associated metering electronics. 

Correlation of Angles~ 

For the case of an exact quarter-wave plate, i.e. one whose fast 

and slow axes are exactly ·perpendicular to each other, the phase change ~ 

and the azimuth angle w are related to the polarizer P and analyzer A angles 

in a simple way: 

~ = A (eq. 4-1) 

~ = 2P + 90 (eq. 4-2) 

where 8 and ~ are in degreese 

The ellipsometric parametric parameters ~ and ~ characterizing the ellipse 

are shown in figure 4-7. 
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Source Slit 

Photoelectric 
Detector 

Observer 

Figure 4-5 	 Symbolic representation of present ellipsometer 
for quarter-wave plate mounted after sample 
holder. 

Figure 4-6 Photograph of present ellipsometer for quarter­
wave plate mounted after sample holder. 
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14For the case of a non-exact quarter-wave plate, Archer has shown 

the retardation can be corrected for by performing measurements with the 

quarter-wave plate oriented at +45 degrees and -45 degrees to the plane of 

incidence. This results in two analyzer readings denoted a and a measured 
p s 

in the -45 and +45 degree orientations respectively (taking only the first 

two zones into account). The zone scheme of measuring will be discussed later 

when referring to the computer program. The ellipticity can be obtained 

from the relation: 

tan2w= tan a tan a (eq. 4-3)
p s 

The retardation of the quarter-wave plate o 'can be calculated using the 

expressions: 

tanl]J = tan L tan a = cot L tan a (eq. 4-4)
p s 

cos 21 = -cosocos 2P (eq. 4-5) 

From this the phase change 6 is obtained simply: 

tan6 = sinocot 2P (eq. 4-6) 

It is obvious that for a perfect quarter-wave plate i.e. o=90°, L = 45° and 

equation 4-6 reduces to eq~ation 4-2. 

S~1ple Preparation 

Aluminum 

Aluminum films were prepared by evaporating 99.999 percent aluminum 

wire from a tungsten filament onto microscope glass slides. Both the slides 

and the aluminum wire were etched and degreased before mounting into the 

vacuum system, an NRC model 720 with liquid nitrogen cold trap. The aluminum 

films.were evaporated at a base pressure of 2 X 10-7 torr and a Sloan Deposit 
. ! l 
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Control Master model Omni II was used to monitor the evaporation rate and 

film thickness during deposition. The aluminum filni.s obtained. in this way 

were approximately 3000 Angstroms thick. The bell jar was returned to atmos­

pheric pressure·-by back-filling with nftrogen gas. The aluminum was then 

allowed to oxidize in room air. For thicker oxide films, the glass slides 

were heated in air on a sma~l hot plate. 

Molybdenum 

Molybdenum metal 99.99 percent pure was anodically oxidized in 

acetic acid, 1 mole of distilled water, and 0.02 moles of sodium borate 

(Na B4o •1Q H 0). The cathodic material used in the reaction was platinum.2 7 2

One sample was oxidized naturally and the other three were oxidized at potentials 

of 3 volts, 4 volts, and 6 volts. 

Silicon 

Polished 10 ohm-em. silicon wafers were rinsed f~r approximately 

ten minutes in a mixture of sulphuric acid and doubly-distilled de-ionized 

water mixed in equal parts. This rinsing was performed to remove any surface 

grease. Following the rins:e, the mixture was decanted with de-ionized water 

and cleaned in a mixture of one part hydrogen peroxide, one part hydrocholoric 

acid, and four parts doubly-distilled de-ionized water to remove any surface 

metal ions. The mixture was heated to boiiing and the sample decanted with 

the distilled de-ionized water. One drop of hydrofluoric acid was added to 

the sample in a distilled water solution and the solution heated to boiling 

in order to remove the remaining surface oxide. The sample was then decanted 

into doubly-distilled de-ionized water until ready to oxidize. For very thin 
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oxides, the oxidation process simply involves allowing the sample to come into 

contact with room air; for thicker ones, the sample was oxidized in a furnace 

at 900 degrees Centigrade in a wet air mixture for appropriate times up to 

5 minutes. This procedure was developed in order to co.rrelate oxide film 

thickness measurements by ellipsometry with MOS tunneling measurements. 
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CHAPTER V 

COMPUTER PROGRAM 

The computer program used to solve for substrate optical constants 

consists of three major parts: 

1). Reduction of input polarizer and analyzer angles 

to phase change ll and ellipticity tP• 

2). Solution of the exact ellipsometry equations· fg,.r 

the substrate optical constants n and k •
3 3 

3). Solution of the exact ellipsometry equations for 

~he oxide film optical constants n2 and k2 • 

Figure 5-l shows a simplified flow chart indicating the basic outline of the . 

computer program. . 

1). Reduction of input data 

Here we simply calculate the phase change ll and azimuth w from the 

jexperimental polarizer and analyzer readings P and A. These can be calcula~ 

j
ted either by assuming that the quarter-wave plate is exact or by calculating 

j 
the retardation of the qu~rter-wave plate. In the exact assumed case, the 

j 
polarizer and analyzer angles are related to the phase change ~ and azimuth 

j 
l/J simply j 

ll = 2 p + 90 (eq. 5-l) j 

and l/J =A (eq. 5-2) j 

jThe added complication of performing measurements in all four zones and 
j

calculating the retardation of the quarter-wave plate, as done by McCrackin8, 
j 

does not improve the convergence to any noticeable extent. These "improved" 
j 

j 

j 

j 

j 
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constants n and k 3 .3 
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angles are still typically in error several hundreths of a ~egree. However, 

for completeness, the meanings of the angles a , a , and p. mentioned in 
p s 

chapter IV, will be expounded here. 

8McCrackin's Zone Scheme 

Since the experimentally measured angles are only measureable to 

0.01 degrees (even if there is no error in quarter-wave plate retardation), 

an averaging process is performed over all four zones. The meanings of p, 

a , and a in the four zones are as follows: 
p s 

zone 1: 

The fast axis of the quarter-wave plate is at -45°. The polarizer 

makes an angle of +p with the plane of incidence; the analyzer makes an angle 

of +a with the plane of incidence. 
p 

zone 2: 

The fast axis of the quarter-wave plate is at +45°. The polarizer 

makes an angle of -p with the surface or 90° with the plane of incidence; the 

analyzer makes an angle of +a with the plane of incidence. 
s 

zone 3: 

The fa
1 

st axis of the quarter-wave plate is at -45°. The polarizer 

makes an angle of +p with the surface or 90° with the plane of incidence; 

the analyzer makes an angle of -a with the plane of incidence. 
s 


zone 4: 


The fast axis of the quarter-wave plate is at +45°. The polarizer 

makes an angle of -p with the plane of incidence; the analyzer makes an angle 

of -a with the.plane of incidence. 
p 
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With this zone scheme, the measured polarizer angle P and the measured 

analyzer angle A are related to the angles p, a , and a in the way shown in p s 

table 5-l. The sum of the four polarizer readings should total 360 degrees; 

4 
if not, the difference (360 - .L_ P ) is four times the polarizer zero correc­1

15 i=l
tion factor • Each polarizer readi.ng in each zone is corrected by. the zero 

correction factor and the angles a ,p a ,
s 

and p are calculated in the following 

manner: 

4 
p = 1/4 L pi (corrected), (eq. 5-2) 

i=l 

4 
a = 1/2 L (eq. 5-3)

p api 
i=l 

4 
a = 1/2 L (eq. 5-4)asi 

.i=l 

With these values p, a , and a , the angles 6 and ~ are determined using the 

s 

p s 

relations eq. 4-3 through 4-6. 
I 

2). Solution to substrate optical constants 

The computer program basically consists in solving the exact equa­

tion 2-50 'at several angles of incidence for a consistent film thickness, d. 

With the calculated angles 6 and ~ from the experimental polarizer and analyzer 

angles, and an assumed oxide index (either the reported bulk value for the 

oxide material or a typical dielectric value of 1.5), the exact equation is 

solved for the substrate optical constants n and k
3

,. subject to the constraint
3 

that the percent deviation in oxide film thickness be minimized. The method 
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involved is to increment n and k (initially in steps of 1.0) and calculate
3 3 

·- ­at each angle of incidence the free surface angles ~ and $. This is done 

using the inversion expressions in appendix II. Armed with these parameters 

and the angles ~ and $, the phase term P in eq. 2-50 is calculated. This 

phase term is then inverted giving 'the oxide phase angle o by application 

of eq. 2-42. From this parameter, it is a relatively simple matter to solve 

for film thickness d. 

The reje~tion of a trial n3, k pair is performed by the following · 3 

convergence ·requirements; 

1. Negative thicknesses are rejected immediatelye 

2. A percent deviation in o~ide film thickness is calculated. 

If greater than the previous value (or a large initial value), the 

n3, k3 trial pair are rejected. The reason for using a percent 

deviation for convergence rather than an absolute difference was 

that the thickness tended to converge towards zero on an absolute 

difference calculation. 

3. For non-absorbing oxides, i.e. the oxide extinction coefficient 

~ 	 k2 equal to zero, the azimuth angle $ is tested to make sure that 

it is greater than its free surface counterpart $. This check is 

deleted for absorbing oxides. 

4. From the average thickness and the trial optical constants, a 

calculated value of the azimuth angle $ is generated. Thiscalc 

value is compared with the measured value of $ and the sum of the 

squares of the difference is calculated. If greater than an 
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an initial large value or the previous value, the trial n3, k pair
3 

is rejecte·d. 

After having chosen the best fit by the previous convergence technique in this 

coarse increment range, the increment size is reduced by a factor of ten. 

Only solutions near to the coarse best fit are tested. The increment size is 

made smaller sequentially at the end of each range, until the increment size 

on n 3 ~nd k is smaller than 0.001.3 

3). Solution to Oxide optical constants 

Once the substrate optical constants, n and k3, have been deter­3 

mined, the oxide phase angle o is known quite accurately. In general, this 

quantity is a complex number (except in the case of non-absorbing oxide). 

From this phase change, the average oxide thickness, and the wavelength, the 

pro~uct n2 cos*~z can be calculated.' Knowing these quantities for each angle 

of incidence and the refractive index for the immersion medium, and applying 

Snell's law, the only unknown quantity is the complex refractive index for 

the oxide n = n - j k • As a result, it.may be solved exactly. Fortunately2 2 2

the coefficients a,b,c ancr:_e, in eq. 2-50 needed to solve for the phase tenn 

P are not too sensitive to the oxide index and the oxide extinction coefficient. 

This means that if the intial assumed oxide index was reasonably close to the 

calculated value, it is not necessary to correct the phase te~ P each time 

the oxide index is slightly altered; then the resulting oxide optical constants 

are reasonably valid. 
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CHAPTER VI 

DISCUSSION 

Aluminum 

For evaporated films of aluminum, the calculated substrate optical 

constants were found to lie within the reported values found in the litera­

turelO,l7,24. The literature shows a scatter in the reported values of the 

substrate index n between 0.786 and 1.140. By this self-consistent ellip­
3 

sometric technique, the substrate index n3 was found to lie between 0.700 

and la200 showing reasonable agreement. Table 6-1 shows the calculated 

values for both naturally occurring and thermally grown oxides on aluminum. 

A statistical analysis of the twelve data points shows the average refractive 

index to be n = 0.989 with a standard deviation of 0.140. Figure 6-1 shows
3 

a plot of the refrac.tive index of the aluminum substrate as a function of 

the aluminum oxide film thickness. 

The scatter in the reported values of the substrate extinction 

coefficient is&also reasonably large, with values lying between 5.45 and 6.77. 

By the technique reported.~ere, the extinction coefficient for the aluminum 


substrate was found to lie between 5.201 and 6.701. A similar statistical 


· average of the twelve data points shows the average extinction coefficient 

for aluminum to be 6.036 with a standard d.eviation of 0.312. Both the 

aluminum refractive index and extinction coefficient are in reasonable 

17agreement with that reported by Hass and Waylonis (n = 0.82 ~nd k = 5.99
3 3 

at the 5461 Angstrom wavelength) who determined these values from reflectance 

and transmittance measurements on semitransparent aluminum films. 

The oxide index for aluminum was found to be 1.66±0.01. However, 

http:1.66�0.01
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TABLE 6-l_
'• 

\ 

Experimentally determined optical constants for evaporated aluminum films 

contain~ng an adhering oxide film. 

Sample G;r'oup Refractive 
Index n

3 

Extinction 
Coefficient k3 

Oxide film 
Thickness d <A) 

0 

0 

A 

/). 

0 

0 

!Y. 

/). 

0 

0 

6 

0 

0. 870 

0.900 

0.700 

1.100 

1.100 

.1. 200 

1.100 

0.900 

0.900 

1.100 

1.100 
··~--

0. 900 '· 

I ' 

6.12J. 

6.101 

5.201 

6.001 

6.001 

6. 701 

6.001 

6.101 

6.101 

6.001 

6.001 

6.101 

! 

. 14.186 

.21. 85 7 

26.109 

35.300 

36.206 

37.685 

40.503 

43.012 

45.765 

51.110 

51.361 

79.603 

Average n = 0. 989 Standard deviation = 0.140
3 

Average k . = 6.036 Standard deviation 0.312
3 
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since the reported value of 1.66 was initially assumed for the thickness 

calculation, it is not unreasonable to expect the program to converge to a 

value close to this assumed number once the substrate optical constants have 

been detennined. 

The extinction coefficient for the oxide film on the evaporated 

aluminum was found to lie between 0.023 for a thin oxide film and 0.0024·for 

thicker ones (68 Angstroms). Figure 6-3 shows the oxide extinction coefficient 

plotted versus oxide film thickness. The decrease in oxide extinction coefficient 

with increase in oxide film thickness seems to support the work of Bashara 

25and Peterson who propose the absorption should decrease.exponentially with 

increasing oxide film thickness. Since the thinner films show larger scatter 

in the oxide extinction coeffic.ient with angle of incidence (shown by error 

bars in fig. 6-3), it was not possible to determine such an empirical expon­

ential fit. This effect of the larger scatter in extinction coefficient with 

angle of incidence might be evidence to the fact that we are really seeing 

the random film nucleation as the oxide grows. The fact that the initial 

oxidation of alumiz:tum is r~fther amorphous in nature implies validity of the 

plane parallel model used in the calculation as will be shown later in this 

chapter. 

Molybdenum 

The results of the ellipsometer measurements on molybdenum are 

presented in Table 6-2. In this case there was found to be a larger scatter 

in the calculated optical constants presumably attributed to two factors; 

(1) instability of the oxide materia130 , 

and (2) a rougher oxide-air surface. 
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SAMPLE 

NATURAL 
. OXIDE 

;- ~ 

3 VOLT OXIDE 

4 VOLT OXIDE 

6 VOLT OXIDE 

REFRACTIVE 
INDEX n3 

3.146 
_, 

' 

3.237 

2.760 

·. 2.672 

-

EXTINCTION 
COE_FFICIENT k3 

= 

/ 

3.601 

3.555 

3.500 

3.480 
------.. ~-------

....... 
Q) 

I 

AVERAGE ~ =2.954 STANDARD D~VIATION ~ 0.2423 
AVERAGE k =3.534 STANDARD DEVIATION = 0.0473 

TABLE 6-2 Experimentally determined opti;~l constants for anodically ·oxldl~~-d · 

•.Molybdenum metal. 

.., 
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A similar statistical analysis on the four molybdenum samples gives 

an average refractive index n = 2.954 with a standard deviation of 0.242· and 3 

an average extinction coefficient k = 3.534 with a standard deviation of3 

0.047. Upon re-calculating the film thickness with these average substrate 

optical constants, the natural oxide thickness is found to be a negative 

number; clearly a non-physical solution. However if we use the upper stat­

istical limits for the substrate constants i.e., n = 2.954 + 0.242 = 3.196,3 

and k = 3.534 + 0.047 = 3.581, the re-calculated natural oxide 'thickness is3 
265.605 angstroms, a more realistic number physically. Waldron and Juenker 

report the optical constants of unpolished molybdenum as n = 3.61 and
3 

k = 3.67 at the 5461 angstrom wavelength. Here ~hey estimate the optical­3 
27constants from reflectan~e versus angle of incidence data. Summers has 

also reported t~e optical constants of polished bulk molybdenum as n = 3.59
3 

and k = 3.40.3 

Silicon 

Initially the program tended to converge toward k = 0.0 since the
3 

extinction coefficient is ·so small for silicon. However by solving the 

equations involving the free-surface angles Xand ~ (Eqs. 2-26 and 2-27) in 

a self consistent manner knowing that the converged substrate refractive 

index n3 is close to the true value, it is: possible to determine the sub­

strate extinction coefficient k • The results of the ellipsometer measure­3

ments on silicon are presented in table 6-3. A statistical analysis of the 

refractive index for silicon gives an average value of n = 4.044 with a
3 

standard deviation of 0.014~. 
~ 

Figure 6-4 shows a plot of substrate refractive 
. 



TABLE 6-3 

Experimentally detet·mined optical constants for steam grown oxides on silicon. 

I 

Refractive 
index n3 

Extinction 
Coefficient k3 

Oxide-film 
thickness d (;\) 

4.050 

4.050 

4.050 

4 .. 050 

4.011 

'•. 050 

0.050 

0.066 

0.020 

0.032 

0.039 

O.Ol•7 

13.13 

28.31 

35.82 

36.62 

50.65 

70.59 

·· Average n = 4. 0445 Standard deviation = O.Ol4t3 

Average k = 0.042 Standard deviation 0.02843 A 

·-·i~-
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index versus oxide film thickness fortsilicon. 

An identical statistical analysis of the substrate extinction 

coefficient for silicon gives an ave~age value of k = 0.042 with a standard
3 

deviation of 0.0284. Archer14 reports the optical constants of silicon as 

n = 4.050 and k = 0.028. However he has to rely upon other well-known3 3 

optical absorption techniques in order to establish the extinction coefficient 

for silicon. Vedam's constant reflectivity technique28 suffers from the 

fact that a small change in n causes a significant change in k • He reports
3 3

that a change from 4.0517 to 4.0518 in the refractive index causes a change 

from 0.029 to 0.022 in the value of the extinction coefficient. 

Validity of the plane-parallel assumption 

For the materials studied her~, namely aluminum, molybdenum, and. 

silicon, the initial oxidation is known to produce an amorphous oxide relatively 

free of any definite crystallographic structure. In addition, since the oxide 

films are very thin, the oxide-immersion medium surface is essentially an 

exact replica of the substr~te-oxide interface. The validity of the plane 

parallel boundaries then relies upon the substrate surface being optically 

flat. For evaporated films of aluminum, the grain size is small and the sur­

face fulfills the optically flat criterion.: The silicon wafers are mechanically 

polished and also fulfill this same criterion. Th~ molybdenum samples are 

also purported to be the best attainable surface. Some of the samples were 

analyzed with an interference microscope and no discontinuities in the fringe 

structure were observed. 
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Walk-off error 

A simplified calculation using the normal reflectivies of the 

substrate-oxide and the substrate-immersion medium interfaces shows that 

approximately four reflections of significance take place in the oxide. 

-4This implies that the reflected beam displacement is of order 10 em. The 

initial beam aperature is of order 1 m.m •. so this "walk-off" error is negligible. 

Conclusions 

We have been able to show that it is possible to determine 

substrate optical constants by ·analyzing the ellipsometry parameters 

6 and $ with angle of incidence - previously reported in the literature 

. .bl 10to be 1mposs1 e • A recent paper by Vedam et a128 reports a method of 

determining substrate optical constants making use of the fact that the 

normal reflectivity is almost constant (within 0.1%) for oxide films up to 

230 Angstroms on silicon. However, they fail to mention strongly that this 

constancy in normal reflectivity is very dependent upon the extinction 

coefficient of the substrate material, i.e. their method is very much 

dependent upon the material being studied. Table 6-4 shows the variation 

in normal reflectivity with oxide film thickness for oxide films on silicon. 

Similar tables for aluminum and tungsten (Tables 6-.S and 6-6) show progressively 

larger deviation in normal reflectivity with oxide film thickness. Table 6-7 

shows a list of several materials and an ~pper limit to oxide film thickness 

calculated from a 0.1% deviation in film free normal reflectivity. It can 

be seen quite readily that very few of these materials support the constant 

, : I 
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TABLE 6-4.Calculated values of~ and~ for various thicknesses d of a 

film of refractive index n = 1.460 on a substrate of refractive index2 

= 4.050 and extinction coefficient k3 = 0.028. The wavelength A. i:sn3 


5461 Angstroms and angle of incidence c1>1 is 70 degrees. The "pseudo 


optical constants" n3 and k3 and normal r~f1ectivity R calculated from 


these angles ~ and w are also given in the table. 


_(Reproduced in part from ·vedam et. a11.) 


! 
I 

d 
0 

(A) 
~ 

(degrees) 
~ 

(degrees) 
-
n3 

-
k3 R 

o.oq 179.038 11.763 4.05000 0.02800 . 0.36479 

5.00 177.488 11.769 4.04877 0.07313 o. 36LJ.78. 

10.00 175.941 11.781 4.04647 0.11819 0.36478 

15.00 174.396 11.798 4.04311 0.16315 0.3647.8 

20.00 172~857 11.821 4.03869 0.20799 0.36478 

25.00 171.323 11.850 4.03322 0.25264 0.36478 

35.00 168.279 11.9~3 4.01917 0.34131 0.36477 

50.00 163.788 ' 12.073 3.99048 0.47214 0.36477 

75.00 156.569 12·,.424 
•. 

3.92346 0.68230 0.36478 

100.00 149.763 12.889 3.83471 0.87954 0.36480 

125.00 143.427 13.1.53 3. 72738' 1.06106 0.36485 

150.00 137.578 14.099 3.60498 1.22495 0.36494 

200.00 12 7. 295 1.5.580 3.32920 1 •.49648 0.36531 

250.00 118.690 17.226 3.03376 1.69749 0.36641 

300.00 111.466 18.961 2.73850 1.82797 0.36747 

400.00 100.173 22.516 '2.19513 1.95168 0.37362 

500.00 91.992 26.063 1.73662 1.96530 0.38806 



TABLE 6-5. Calculated values of ~ and ~ for various thicknesses of a film of 

refractive index n2 = 1.66 on a substrate of refractive index n = 0.820
3 

and extinction coefficient k3 = 5.990. '!'he wavelength .A is 5461 Angstroms 

and angle of incidence ~l is 70 degrees. The "pseudo optical constants" 

n3 and k3 and normal reflectivity R calculated from these angles ~ and ~ 

are also given in the table. 

I d 
0 

I I 

(A) 

~-

(degr£~es) 
tP 

(degrees) nj 

0.82000 

k3 R 

5.99000 0.91631o.oo 13'•. /f 80 42.276 

·5.00 133.539 42.292 o., 78514 5.• 85590 0.91620 

10.00 132.605 '+2. 309 0.75249 5.72735 0.91610 

15.00 131.678 42.326 0.72187 5.60402 0.91599 

20.00 130.757 42.343 0.69312 5.48560 0.91588 

25.00 129.843 42.360 0.66609 5.37182 0.91577 

35.00 128.035 42.395 0.61665 5.15712 0.91555 

50.00 125.37~ . 42.448 0.55241 4.86383 0.91523 

75.00 121.087 42.•;540 
.. 

0.46607 4.43937 0.91471 

100.00 116.985 42. 631• 0.39892 4.07976 0.91422 

125.00 113.073 "42.730 0.34562 "3. 77155 0.91378 

150.00 109.357 42.826 0.30255 3. 50!.90 0.91344 

200.00 
I 

102.524 43.022 0.23768 3.06851 0.91316 

250.00 96.509 43.218 0.19133 2.73027 0.91375 

300.00 91.341 '•3. 417 0.15623 2.46645 0.91578 

400.00 83.764 44.840 0.10320 2.11429 0.92742 

500.00 80.661 44.367 0.05434 1.97987 0.95680 



-

3 

\.11 

TABLE 6-6. Calculated values of 6 and for various thicknesses d of at.P 

film of refractive index n2 = 2.50 on a substrate of refractive index 

n = 3. 460 and extinction coefficient k3 = 3. 250.. The wavelength A is 

5461 Angstroms and the angle of incidence q, is 70 degrees. The "pseudo
1 

optical constants" n and k and normal reflectivity R calculated from
3 3 

these angles 6 and t.lJ are also given in the table. 

d 
·o 

(A) 
6 

(degrees) 
.t.IJ 

(degrees) rr3 "K3 R 

o.oo 132.769 26.538 3.46000 3.25000. 0.54555 

5.00 131.365 26.595 3.35270 
•' 

3.22787 0.54331 

10.00 129.967 26. 653· 3.24943 3.20313 0.54100 

15.00 128.574 26.713 3.15007 3.17606· 0.53863 

20.00 127.187 26.775 3.05453 3.14696 0.53618 

25.00 '125.806 26.839 2.96269 3.11607 0.53367 

35.00 123.062 26.972 2.78962 3.04983 0.52844 

50.00 118.993 27.184 2.55468 2. 91+216 0.52007 

75.00 112.342 27.576 2.22058 2.75025 0.50478 

100.00 105.865 28.020 
ooin­

1.94576 2.55345 0.48788 

125.00 99.571 28.522' 1.71755 2.35921 0.46952 

150.00 93.469 29.094 1.52535 2.17144 0.44995 

200.00 81.84"8 30.526 1.21475 1.82070 0.40888 

250.00 70.948 32.569 0.95474 1.49841 0.37046 

300.00 60.385 35.734 0.68928 1.17470 0.34875 

400.00 30 •. 420 48.905 -0.68434 0.19310 20.99105 

500.00 -39.842 49.576 0.50745 0.42754 0.17326 



~.._..,. ~ - ;._r;>;r._..,
~~~'''>-~~~-='~=>"-~---.~--:~:;r , 'l!'m~:r-·-r"-""" 

FILM- FREERE~ MAXIMUMOXIDEMATE-­ EXTINCTION RATIO 
NORMALTHICKNESSINDEXFRACTIVE COEFFICIENTRIAL 0(k3 fn3) REFLECTIVITYd (A).· n2INDEX · k3n3 

~ . r~~ = 

Si 4.050 0.028 0.00691 1.460 235 . 0.36479 

GaAs . 3.923 0.30.4 0.07749 
-

1.930 25 0.35499 

Ge 5.010 1.0.30 0.38703 1.900 11 0.,49749 

.lnSb . 4.104 ·­ -;2.058 0.50146 1.90 (?) 10 0.45797 

Ta 3.500 . 2.440 0.69714 2.260. 5 0.46572 

.VJ 3.460 3.250 0.93931 2.500 3 0.54555 

Mo 3.610 .3.670 1.01662 1.548 (?) 25 0.58411 

Fe 
.. 

3.350 3.840 1.14627 2.130 4 0.60200 

Au 0.382 2.295 . 6.00785 .1.330 85 OJ8710 

AI . . 0.820 
I 

5.990 7.30488 1.660 50 0.91631 

Ag 0.055 : 3.320 60.36363 1.50 {?) 275 0.98187 

·­

.. .. 

I 

.o 
0 

! 

TABLE.6-7.Calculated maximum 
.. 

thickness for which constant reflectivity 

method of determining substrate optical constants n 3 and k 3 is valid •. 

Thickness is determined by 0.1 percent deviation· in normal reflectivity 
...... 

,from the film-free surface value of normal reflectivity. 
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reflectivity for oxides of order of several hundreds of Angstroms in thickness. 

Our method does not suffer from this fault. In addition, we need 

only study one film thickness in order to make an.estimate of the optical 

constants of the substrate. We need not assume that the optical properties 

of two films of different oxide film thickness be the same. For example, we 

have seen the variation in oxide extinction coefficient with oxide film 

thickness that Vedam et al would, of necessity, omit. Finally, our metho~ 

does not lead to a direct.error in k from an error in n as the constant
3 3 

reflectivity does. 
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APPENDIX I 

Derivation of the Wave Equations 

The fundamental equations governing the propagation of electro­

22magnetic waves in a medium are the Maxwell equations • These can be summar­

ized as follows: 

Coulomb's law 

-+
~.D = 4np (eq. I-1) 

This describes the production of a displacement current density 
-+
D from a 

free charge p. 

Ampere's law 

(eq. I-2) 

This describes the production of a magnetic field Hfrom a current density j 

and a displacement current density -+D. 

Faraday's law -r­

-+ -1 a B 
~ x E = - -- • (eq. I-3)c a t 

This describes the production of an electric field -+E from a magnetic induction ­

-+B. 


Absence of free magnetic poles 


-+ 
~ • B = 0 (eq. I-4) 
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For isotropic 9 homogeneous~ linear dielectric media, the displacement 

current density, D, current density, 1, and magnetic induction, B, are 

·. + +related to the electr~c field, E, and magnetic field, H, by the following 

relations: 

(eq. I-5) 

+ +
J = a E (eq. I-6) 

+ +
and B = lJ. H (eq. I-7) 

In the absence of free charge, the equations describing the wave propagation 

in the isotropic, homogeneous dielectric medium simplify. These simplified 

MaXwell equations are: 

8\1 
+
E = 0 (eq. I-8) 

(eq. I-9) 

(eq. I-10) 

+and '\1 • B = 0 (eq. I-ll) 

Taking the curl of both sides of eq. I-10 gives 

+ 

\1 x (V x E) = -1 V X !_1!. 


c a t 

- 1 d (V X B)=c-rt 

= V (V • 
+
E) - V • ('\/ 

+
E) 
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Applying eqs. I-8 and I-9 for time independent pennittivity and conductivity 

gives the result 

{eq. I-12) 

In a similar way, the wave equation for the magnetic induction can be obtained 

by taking the curl of eq. I-9 and substituting eqs. I-10 and I-ll into the 

resulting expression. 
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APPENDIX II 

INVERSION OF THE TRANSCENDENTAL ELLIPSOMETRY 

EQUATIONS 

Referring to chapter II, we start with equation 2-16 and definition 

equation I-12: 

w cos 2i- j sin 2W sin6· = 1 + sin 2~ cos! 

= (eq. II-1) 

The complex expression under the square-root sign is written in Euler form 

as t.exp-2jQ, so that: 

2 - k2 2 2- n1.sin ~l - 2j.n3.k = t.exp-2jQn3 3 3 

= t.(cos2Q- j sin 2Q) (eq. II-2) 

This requires that: 

= 

(eq. II-3) 

Also: 

(eq. II-4) 
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Now ~ t.exp-2jQ 	 =(t .exp-jQ 

=,[t . ( cosQ - j sinQ) (eq. II-5) 

Applying this result to equation II-1: 

4t. (cosQ -jsinQ) 	= cos 2$ - j sin 2$ cos6 (eq. II-6) 
n .sin$ .tan$ 1 +sin 2$ cosX 1 1 1 


Separating into real and complex parts yields: 

A. Real part: 

_ift,_,_t_.c_o,_;s;....;Q.___ = __c__o.;;...;s;;.._..2-'~--- (eq·. II-7) 
n1.sin$1.tan$1 1 	+sin 2~ cos6 

B. Complex part: 

___re_t_.s_i_n_Q.___ = __s 1_.n_2__.~,__c-.;;;o.-.s_6_ 
(eq. II-8) 

n .sin$1 .tan$1 1 	+sin 2~ cos61

·-r­

For simplicity we 	 now defin~: 

4 4 4 4 2 2 2 2 2 . 2 
n3 + k3 + n1 .sin $1 +2.n3.k -2.(n -k ).n .s1n $3 3 3 1 1 
= ----~--~------------------~----~~~~-------
nl. sin.cp • tan<P11


(eq.II-9) 
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so that equations II-7 and II-8 reduce to: 

cos 2~tan P cos Q = 	__.=;.;;..;:::;._,;;~-- (eq. II -10) 
1 + sin 2'$ cos~ 

sin 2ljj sin~tan P sin Q =-~~~~~-- (eq. II-11) 
1 + sin 2~ cos£\ 

Squaring these last two equations and adding gives: 

2 - 2 - 2­
tan2P = cos 2W + sin 	2Wsin ~ (eq. II-12) 

(1 + sin 2~ cos~) 2 

- - 2 2 - 2 - 2­
Hence 1 _ tan2P = (1 + sin2$cos~) - cos 2p + sin 2Wsin ~ 

(1 + sin 2~ cosl\) 2 

- - 2 	- 2- 2- 2 ­= 1 + 2sin2$ cos~ + sin 22 (cos ~ sin ~) -cos 2p 

(1 + sin 2~cosl\) 2 

Combining the 	first and last term in the numerator, since 
··r· 

2 - 2 ­1 - cos 2~ = sin 2~ , yields: 

- - 2 - : 2- 2­
1 _ tan2P = 2 sin 22 	 cos~+ sin 2w.(l +cos~ -sin~). 

(1 + sin 2~ cosK) 2 

= 2 sin 2~ cos~. (1 + sin 2* cos~) 


( 1 + sin 2~ cosK) 2 




__ __ 
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_ tan2P = 2 sin 2~ cosA1 (eq. II-13) 
(1 + sin 2~cosl\) 

Dividing equation II-11 by II-13 gives: 

tan P sin Q = sin 2m sinA - x = 1/2 tan.A 
1 - tan2P 2 sin 2~cosA 

- 2 tan POr: tanA = • sin Q = sin Q tan 2P . , 
2 (eq. II-14)

1 - tan P 

This is the inverted equation for the phase change ~ where the angles P and 

Q are defined by equations II-9 and II-4 respectively. The azimuth can be 

solved by starting with equation II-10 in the fonn: 

cos 2~ = tan P cos Q .(1 + sin2~ cos~) 

= 2.tan P cos Q.(l +sin 2~ cos6) 2 

2 + 2 sin 2~ cos6 

- - 2= 2 tan P cos Q .(1 +sin 2$ cosA) 


1 + (cos22~ + sin22~) + 2 sin 2~ cos6 


- - 2= --~2~t~an~P~c~o~s~Q~·~<~l~+ s~1~·n~2~p~c~o~s~8~)____________ 


cos 22~ + sin22~.(sin26 + cos 26) + 1 +2 sin2$ cos~ 


- - 2= --~------~2~t~a=n~·~P~c~o~s_Q~~·<~l~.~+~s~i~n~2~p~c~os~8~)~---------
2 - 2 - 2- - - 2 - 2­cos 2w + sin 2~sin 8 + 1 + 2sin 2~ cos8 + sin 2w cos ~ 

= ______2~t~an~~P~c~os~Q~------- {eq. II - 15)2 - ' 2 - 2­(cos 2W + sin 2W sin 8) + 1 

- - 2 .


(1 + sin 2w cos~) 
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However the first tenn in the denominator of equation II-15 is exactly tan2P--­

see expression II-12. Making this substitution in II-15: 

cos 2~ = 2 tan P cos Q = 2 tan P cos Q 
tan2P + 1 sec2 P 

= 2 sin P cos P cos Q 

= sin 2P cos Q (eq. II-16) 

to summarize, the inverted equations are: 

tan~ = sin Q tan 2P (eq. II-14) 

cos 2~ = cos Q sin 2P (eq. II-16) 

where: 
4 4 4 . 4 2 2 2 2 2 2 n3 + k3 + n1 .s1n ~l + 2.n3.k -2.(n -k ).n1 .sin ~l3 3 3tan P =~--~--~~--~----~----~~~----~~~~~----~ 

n1 .sin~1 .tan~1 
(eq. II-3) 

and 

(eq. II-4) 

.. ,_ 
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