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The st;ndard technique of ellipsometry allows the determination of
the optical constants of a substrate material providedveither the surface is
free of an oxide film or the oxide film thickness and optical constants of
this oxide film are known. The majority of ellipsometric measurements per-
formed on materials known to grow natural oxides is done by removing the
natural oxide (either by cleaving or etching) and performing the measurements
at one angle of incidence 4n vacuo. These processes perturb the surface and
the reported values of optical constants may be questionable.

The technique to be presented here assumes the material to be
studied has a naturally-ocggrring oxide. Measurements are performed at
several angles of incidencé and the optical equations are solved for a self-
consistent oxide film thickness until the best fit substrate optical constants

have been found. The optical constants of the oxide film are then determined.
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CHAPTER 1
_ INTRODUGTION AND HISTORY

Ellipsometry has been called the art of measuring and analyzing the
elliptical polarization of light. Inirhis general sense, no restriction has
been placed upon the method in which the elliptical polarization is obtained.
For the work to be discussed here, ellipsometry will be referred ro as ellip~-
tical polarization caused by reflection of plane polarized light from an
absorbing medium (substrate) or an absorbing medium (substrate) with an
adhering oxide film. The majority of the work here consists of calculating
the optical constants of the absorbing medium (substrate) and the optical
constants of the adhering oxide film along with its thickness.

Fundamental studies of reflection from optical media were performed
by Augustin Fresnel in the nineteenth century. At the boundary of two non-
absorbing dielectric media, Fresnel's formulae indicate that the rwo reflected
components of light, one vibrating parallel to plane of incidence and the
other perpendicular to the plane of incidence (denoted as the p and s com-
ponents respectively) undergo a phase shift of either 0 or 180 degrees at
the interface of a non—absorping medium, At a certain angle of incidence,
the parallel component becomes zero---this critical angle being called the
Brewster angle. It was found experimentally that the parallel component did
not vanish completely when the angle of incidence was equal to the Brewster
angle, Rayleigh1 explained this fact in terms of the ellipticity of the |
reflected light —-- if the incident light is plane polarized at 45 degrees

to the principal planes, the ratio of the reflected amplitudes in the plane

of incidence and perpendicular to the plane of incidence is called the



ellipticity of the reflected light. Lord Rayleigh concluded that the ellip-
ticity of the'light\reflected by clean liquids was much less than that of
comtaminated surface; i.e. it dependé'upon the absorption coefficient.

At about the same time, Drude2 was examining the properties of lighﬁ
reflected from solids rather than liquids. He was able to correlate
quantitatively the optical thickness of a film and the optical constants
of the material (substrate) upon which the film was evaporated. Two par-

ameters were used to characterize the ellipse representing the reflected

light:
pP
1) the ratio tan § =" where the angle ¢ is called the
P azimuth and pp and pS are the
reflection coefficients of the
(eq. 1-1) components in the plane and

perpendicular to the plane of
incidence after reflection.

2) the differential phase change for the two polarization

A= 6P - &5 where 6P and 6° are the absolute
- phase shifts of these same com-
' ponents brought about by reflec-
(eq. 1-2) tion. :

Starfing from Maxwell's equations and the appropriate boundary
conditions, Drude obtained a general exgyession relating the Fresnel
reflection coefficients (for the p and s polarizations) and the film
thickness d to the ellipticity (tan y) and the change in phase (4)

namely:



rp + b .exp~j.x 1+ .. seXp—Jj.X
12 23 12" 23
tan ¢y exp jA= -
1+ 2P .xP .exp=j.x . + ro..exp-j.x
12°°23° * 12 23

where the variable x denotes 4wn2 cos ¢d/A, an additional change

index of refraction for
this film,

angle of incidence,

film thickness,

wavelength of the incident
light.

The values of A and ¢ can be obtained experimentally by measuring

=]
]

in phase upon traversing the film

> Qe
nuu

theorientation of the elliptically polarized light. For thin films,
\

Drude3 expanded exp(~j.x) as ( 14j.xv) and determined two linear equat-
ions for the angles A and VY, viz.;

A-A=-qd (eq. 1-4)

W“‘ V= g d (eq. 1-5)

where the barred quantities A and E denote the measurements that
would be obtained for A and ¢ in the absence of an- oxide film; the
quantities A and ﬁk are fynctions of the substrate optical constants
and angle of the incidenc; only. These linear equations were tested by
Tronstad4 by measuring monomolecular films of fatty acids adsorbed on
a mercury surface. He found good agreement between measured values and
theoretical ones.

EE’EQAA,aRothens developed the ellipsometer in much the same
form as it is today. More recent changes involve the substitution of

photomultiplier tubes for half-shade detection devices thus greatly en-



hancing the sensipivity to detect oxide film thickness. Shortly after
the development of the elliposometer,'Vasicek6 published a series of art-
icles on the optical properties of thin films. He managed to show that
the Drude general equation could be developed in a useable form without
approximation.

R. J. Archer7, in 1957, developed better expansion coefficients
o and B than those of Drude as used in expressions 1-4 and 1-5.
With these new coefficients, he was able to determine the rate of growth
of oxide films on ;ilicon and germanium. McCrackin, Passaglia, Stromberg,
and Steinbergs;\in 1963, developed the exact equations for determining
film tbicknesses once the optical constants were known and produced a
computer program for their calcuiation.9 An added feature they presented
was a method to account for a non-exact quarter-waye piate and an average-
ing technique for determining A and ¢ from the polarizer and analyzer
readings. In 1964 Burge and Berinett10 showed Archer's 1ineér relations
to be more exact than theTDrude linear relations, both being inadequate
for oxide films greater tﬂan about 50 Angstroms. They maintained that
the variation in the ellipsometric parameters A and ¢ with angle of
incidence could not be used to determinejthe presence of a sufface oxide
film; their reason being that variation of these parameters with angle
of incidence for a film-covered surface was practically identical with
that for a fictitious film~free surface with slightly different optical

1

constants. It 1is this claim'that is to be refuted here. 1In 1965 Saxena11



extended the range of the Archer linear equation to certain ranges in the

thick film region since plots of A versus ¢ are periodic in film thickness.

28

A recent paper by Vedam et al®” shows a method of determining sub-

strate optical constants using the fact that the normal reflectivity of a

substrate remains constant to within 0.1% with increasing oxide film thick-

ness up to about 200 Angstroms. They chose silicon, a material for which

this is true. Other materials show larger deviation in normal reflectivity

with oxide film thickness.29



CHAPTER II
THEORY
The propagation of electimiagnetic waves in an homogeneous
isotropic medium can be expressed i»v Maxwell's equations (see appendix I)

yielding the wave equation for the electric field

VZE i J‘-’—E— .§_2._E)- - 41“’“’ ‘B_E‘_ = 0- i (eqo 2"1)
' 2 2 2 ot
c ot c

For a plane-wave solution of the form

E= ﬁo exp jwt - D) , (G =4FD (eq. 2-2)

the propagation vector i is a complex number whose magnitudé is

P —i;’-,\] ue - 3 Amo ., (eq. 2-3)

In free space, the wave pr&iagates with the velocity of light, c, and the

magnitude of the propagation vector is simply

In the medium, the velocity_of propagation is slower. In fact, we say the

phase velocity is divided by a complex refractive index

-

B= pfue - § AT o gl gy, S (eq. 2-4)



so that the propagation vector is

F=Dw - j ke | h (eq. 2-5)
c c '

Eq. 2~4 serves to define the index of/§;;:action n for the medium and the
extinction coefficient k. To see the effect of this extinction coefficient,
consider a plane wave propaga;}ﬂé in ghe z direction. Applying eq. 2-5 to
eq. 2-2 shows that J

E =E, exp jw(t - B2) exp -(l‘_‘*.’_z.) . (eq. 2-6)
Z Oz ‘ c c

'

‘This result shows that the velocity of the wave in the medium is reduced to
c¢/n and that the wave is damped as it propagates. Several terms are used to
describe the damping. These terms will bé included here for completeness

and because there appears to be a great deal of confusion in the literature
ag to their meaning. An absorption coefficient n is defined by the condition
that the energy of the wave decrease by a factor l/e in a distance 1/n. The

current density associated with the wave (eq. 2-6) can be calculated by

applying Ampere's law giving the result

> 4rug jwpe 3 . ~2 7
J = —P——_ - 2_
c c E Jo n E (eq. 2-7)

' > >
The rate of production of Joule heat is the real part of (J.E). Thus the

fraction of energy lost due to Joule heating per unit thickness of the



3
]
3
Ty
Th
I

=Re (- &%
Cc

=2nkw _4mrnk
c A )

(eq. 2-8)

An absorption index ¥ is defined as simply the nk product in the above ex~
pression. An attenuation constant a is defined in terms of the amplitude

of the electric vector decreasing by a factor 1l/e in a distance l/a, so that

In order to describe the state of polarization of the propagating
waves, it is convenient to treat waves with electric vectors vibrating
parallel (p) to the plane of incidence separately from those with vectors
vibrating normal (s) to the plane of incidence.

Consider a 1ighgryave ﬁropagating in the z direction of a right-
handed co-ordinate system ?see fig. 2-1). We specify the amplitude of the
electric vector travelliﬂé in the positive direction in the qth medium and
polarized with the electric vector parallel to the plane of incidence by

- .
E:(p); similarly Ez(s) denotes the component of the electric vector perpen-
dicular to the plane of incidence travelling in the positive direction: A
negative sign on the superscript denotes a wave travelling in the negative

ditection. Applying Maxwell's. equations at the interface of the two media

leads to the following results:



.7

‘ F;l.gﬁre' 2-1 'ﬁeflection and refraction of light at a boundary
! _ between two optically different media,

Fioure 2.1
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a) Law of Reflection

= ok Lo -
¢1 = ¢’1 . ) (eq . 2 10)
i.e. the angle of incidenceméquals the angle of

reflection.

b) Snell's Law of Refraction

nl.sintbl = nz.sin¢2 . / . (eq. 2-11)

c) Fresnel Reflection and Transmission Coefficientszo’21

El(p) nz.cosda1 - nl.cosqs2

P, = = , (eq. 2-12)
12 E+( ) + ‘
1 P nz.cos¢1 nl.cosdy2
E+(p) - 2.n,cosd :
e, = 2" = 11 (eq. 2-13)

+
El(p) nz.cos¢1 + nl.cos<b2

EZ(s) n,.cosp, - n,.cosd

s

]’.'12 = _::'_ =_1 1 2 2 (eq. 2-14)
El(s) nl.cos¢1 + nz..cos¢2

s _ Ep(e)

2.n.cos
and - t = 1 ¢l

T - (eq. 2-15)
El(s) Lnl.cos¢1 + nz.cos¢2

-

Here n1 and n2 are the optical constants for the two media and
¢1 and ¢2 are the angles of propagation infthese same two media. When both
media are transparent, the optical constants are their respective refractive

indices. In this case they are real numbers given by:

n, = id . ' _ (eq. 2-16)
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4

where the zero subscript indicates the "free space" value of the
particular variable.- For the particular case of two transparent dielectric
media, all of the terms in Snéll's‘lawiand the Fresnel coefficients are real.

For an absorptive medium.the Fresnel equations are still valid,
along with the Snell's law expressions, provided a "complex index of refrac-
tion" defined by n = n - j.k (j = d:15 is used to characterize these materials.
Complex Fresnel coefficients indicate that the reflected and refracted rays
suffer a phase shift at the interface which is neither -0 or 180 degrees.

Film-Free Reflection

Consider a light wave resolved into parallel and perpendicular
components of the electric vector. This wave is travelling through a trans-~

parent dielectric medium of refractive index n. and striking the interface

1

between the dielectric medium and an absorbing substrate of refractive index

~

ng = n, - j.k3. This configuration is shown in fig; 2-2. The basic equations
describing the reflection remain as in eqs. 2-10 through 2-15 with n, replaced
with 53 and ¢2 replaced with the complex angle ¢. Application of Snell's

law yields the result N

cos ¢ = M 1- sin2¢

- 1. A[ (ny =3 ky)? = 0l sin®e; . (eq. 2-17)
ny = 3 kg |

A

The Fresnel refléction coefficients can then be expressed in terms of the
angle of incidence ¢1 and the substrate optical constants by substitution

into eqs. 2-12 and 2-14 giving
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REFLECTION FROM AN ABSOREING SUBSTRATE

REFLECTED BEAM

INCIDENT BEAM

$1

IMMERSION

)
|
|
|
i
MEDIUM !
Bi
ABSORBING |
SUBSTRATE |
~ . :
(ﬂ3 =Nz = lk3) |
]
- i
TRANSMITTED :

BEAM

Figure 2~-2 . Reflection and refraction of light at a boundary
between a transparent medium n; and an absorbing
substrate of complex refractive indix nj - j kj. .'

oo\ A s . PRGN
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p (n3 -3 k3)2cos¢1 - (n3 -3 k3)2 - ni sin2¢1
T3 = —= (eq. 2-18)
o 2 : o 2 _ 2 2¢
(n3 3 k3) cosdfl + . (n3 j k3) n; sin 1
. 2 2 2
and ri, =1 cosdy = (ng = jky)" - m sin"dy (eq. 2-19)
. 2 2 .2
n; cos¢1 + (ny - 3 k3) n] sin ¢l
For simplicity, it is convenient to define
W = (n3 - j k3)2 - ni sin2¢l \ (eq. 2-20)
With this definitiom,
2 2 2 ,
r§3 _ W+ nlsin ¢1) cos¢1 -n,w
2 2 2
w™ + n;sin ¢1) cos¢1 +n; W
(n.sing, tand, - w) (n,cosd, - w)
-1 1l 11 , (eq. 2-21)
_ (nlsin¢lt§n¢l + w) (nICos¢1.+ W) '
s n, cos¢, = w . :
and ry = 1 1 . . ; (eq. 2-22)
- n, cos¢l +w- '

The ratio ‘of these two reflection coefficients serves to characterize the

change in the state of polarization of the reflected light beam, in fact
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~

P
T13

s s .
T3 |r13| exp jés

|x2,| exp 3ép

= tan Y exp j 4

n sin¢1tan¢l - W

M
n

sin¢ltan¢1 + w

W
nlsin¢ltan¢l

sin¢ltan¢l

1+ =
1

Because we are dealing with reflection from a substrate devoid of any oxide
film, we will denote the phase change A and the ellipticity ¢ by A and ¥

respectively. Eq. 2-23 is of the form >

y = 1-x whose inverse is x = 1-3 .
1+ x

Inversion of eq. 2-23 allows one to calculate the substrate optical constants

from the experimentally measureable angles A and ﬁ. Inverting eq. 2-23,
e

rationalizing, and factoring yields the result

_ cos 2@ - j sin 2@ sinA

w
n,sin¢, tan¢, 1 + sin 2 cosk;

. (eq.lz-zl&)

The substrate optical constants n, and k3 are "hidden" in the term w. Appii—
cation of definition eq. 2-20 to eq. 2-24 and squaring both sides of the

resultant expression yields, after some algebraic manipulation,
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-

s:i.nzqa,1 -2 j n3.k3f 00822$—sin22$ sinzz - 2 j sin2y cos2ysinh

sin2¢1tﬁn2¢l ' (1 + sin2y cosA)2

n

N R

(eq . 2-25)

Finally, by separating this expression into real and complex components, we

obtain two equations in ng, and k3.

Real part:

2
2sinZ‘P

2 2 _
n3 - k3 nl

1+ tan2¢l cos?2y - sin’2ysin’d

1 - . -2
(1 + sin2y cosA)

(eq. 2-26)

Coﬁplex part:

nisin2¢ltang¢l sin4y sind
2 n, k3 = (eq. 2-27)

1+ sinZ@cosZ)2 |

For calculation purposes on substrates containing oxide films, the inverse
of eqs. 2-26 and 2-27 is ﬁgéessary, i.e. solve for A and ¥ in terms of the

substrate optical constants ng and k3. This calculation is done in appendix

II. The result of such a calculation is

tanA = sin Q tan 2P, (eq. 2-28)

and cos 2y = sin 2P cos Q. (eq. 2-29)
(n4+k4+n4sin4c[>1+2n2k2-2(n2--k2)nzsinzg>1)1/4

where tanP=_3 3 1 33 3 31 (eq. 2-30)

nlsin¢ltan¢1
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and tan2Q = . (eq. 2-31)

Reflection from a substrate with adhering surface film.12

Consider a plane electromagnetic wave striking the surface of an
optical system as shown in figure 2-3. The system of reflected waves is
replaced by an equivalent wave R leaving the film; D is the equivalent of
all waves entering the substrate; A and B are the equiﬁalent waves striking
and reflecting from the film-substrate interface respectively. Applying
Maxwell's equations of tangential electric field compénents and normal magnetic
field components being continﬁous across the boundaries at -z = 0 and z = d,
yields the following: . .

At the surface z = 0:
parallel components:

i
(Ep - Rp) cos¢1 = (Ap - Bp) cos¢2 (eq. 2-32)

(Ep + RP) ny =:.(Ap + Bp) i, (eq. 2~-33)
perpendicular components:

ES + RS = A.s + Bs A (eq. 2-34)

(Es - R.S)nlcos¢1 = (As - Bs) ﬁ2‘§°S*¢ (eq. 2-35)

At the surface z = d:
parallel components:

«(Ape-JTA - Bpe-jTB) cos*¢2 = Dpe-jTD cos*¢3, (eq. 2-36)



/[ /)
/\v"/ \/Av

| \ ¥
subsirate | | D

Figure 2-3 Reflection model assumed for elliptical polarization illustrating
o (a) Sign convention, ' .
. - (b) Multiple reflections assumed to occur in oxide,
and (c) Reflection system assumed gquivalen’t to (b).
. (Reproduced from Leberknight and Lustman®.)

—— Gt Gt G e

Y B
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—'jT

=it =iTgy - ~
-+ = N -
(Ape A wBP e * B) i, Dpe D fig (eq. 2-37)
. perpendicular components:
ae A+ e =T (eq. 2-38)

(Ase_JTA -Bse-JTB) ﬁzcos*¢2 = Dse-JTD ﬁ3cos*¢3 (eq. 2-39)

where Ty = (2n/2) ﬁ2 (x sin*¢2 + d cos*¢2),
g = (2w/X) ﬁz (x sin*¢2 -d cos*¢2),
and p = (2n/2) ﬁ3 (x sin*¢3 + d cos*¢3).

Now if eq. 2-36 is multiplied by e+JTA ﬁ3 and eq. 2-37 multiplied

by cos*¢3é+JTA their right hand sides become identical so that Dp is eliminated

giving
- i, = 1) % = F(T, = To)\a x
(Ap Bpe A B”) ﬂ3cos ¢2 (A.p + Bpe A B )nzcos ¢3.
Solving this expression for"‘Ap and calling 6 = T, ~ Tg Ve find
: fi *¢_ + fi, cos*9,)
L g JJ8  (Rgcos¥d, + 4, 3
Ap ﬁpe ‘. (eq. 2-40)

(ﬁ3cos*¢2 - ﬁz cosﬁ?3)

Substituting this result into eqs. 2-32 and 2-33 and dividing the resulting

expression eliminates Bp giving

(Ep-Rp)cds¢1.= cosg, ejs(ﬁ3cos*¢2+ﬂ2cos*¢3) - (ﬁscos*@z-ﬁzcos*¢3)

i6 . - - -
(Ep + Rp) ny ﬁz ed (n3cos*¢2+n2cos*¢3) + (n3cos*¢2—n2cos*¢3)
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After some tedious algebraic manipulation, this expression reduces to

. . 2 .2
= -n & ) + (& % —n 7 %
EE.= (ﬁ2n3cos¢lcos*¢2 nlnzcos*¢2cos*¢3) +(n2cos¢lcos ¢3 n, fi;cos ¢2)B
2 2
= = = %* * = % % *
Ep (n2n3cos¢1COs*¢2+nln2cos ¢2cos $3) +(n2cos¢1cos ¢3+n1n3cos ¢2)P
% - *
) fi cos¢1 n, cos ¢3 1 + aP
& *
.n3cos¢l+nlcos ¢3 1+ bP
= P 1+ aP -
'3 T+bP (eq. 2-41)
jé _ 1
where P = -‘?—6—-— = tanh j8/2 , (eq. 2-42)
eJ + 1
n,cos® i, cos*¢ i, cos*¢
. a=—21 1 2 3_ 3 2 (eq. 2-43)
- o =
(ﬁ3cos¢l nlcos*¢3) n, cos ¢2 n2cos¢1
n. cos¢ i, cos %9 i, cos*?
and b = 1 1. . 2 3,3 2 . (eq. 2-44)
N ek B -
(n3cos¢l+n1cqs ¢3) n, cos ¢2 n2c°8¢1,

In a similar way, we can obtain an expression for the reflectivity of the
perpendicular components (RS/ES). If we multiply eq. 2-39 by edTA and
eq. 2-38 by edTa ﬁ3cos*¢3, their right hand sides become equal, so that DS

is eliminated, giving

A = BSeJG (ﬁzcos*¢2 + ﬁ3cos*¢3)

s . (eq. 2_45)

(ﬁzcos*¢2 - ﬁ3cos*¢3)
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Substitutiﬁg this result into egqs. 2-34 and 2-35 and dividing the resulting

expressions eliminates Bs’ so that

- R % =~ % - (3 %P =5 %¢
(ES Rs)nlcos¢1 . .o e (nzcos ¢2+n3cos ¢3) (nzcos ¢2 ficos 3)
(E_ +R) 259°7% ejG(ﬁ cos*¢ _+ii

s s 2 2

L

cos*¢3) + (ﬁzcos*¢2-ﬁ cos*¢3)

3 3

Further algebraic manipulation along with definition eq. 2-42 reduces this

expression to

- %
R (nlcos¢1 ﬁ3cos ¢3) l1+c?P

s
> *
E (nlcos¢1 + fizcos ¢3 l+eP

s 1l+c¢c?P )
s TT5 P ° (eq. 2-46)
where A
n, cos¢ i, cos*¢ fi, cos*¢
c = 1 1 3 ¢3 - -2 2 »  (eq. 2-47)
- % =
(nlcos¢l nsqos ¢3) nzcos* 2 nlcos¢1
n,cos® " fi,cos*? fi,cos*¢
and e = 1 L. 3 3,2 2 R (eq. 2-48

(nlcos¢1+ﬁ3cos*¢3) fi,cos*9, nlcos¢'l
Dividing eq. 2-41 by 2-46 gives 5

E. r®, 1+aP 1l+eP

S 13

. = S . ° . (eq - 2-49)
R, E, xj; 1+bP ;fcp

I
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Noting that the left hand side of eq. 2-49 is simply the ratio
of the two reflection coefficients for the whole system resolved in and
normal to the plane of inc¢idence, we may re-write the expression in terms
of the parameters describing the elliﬁtical polarization, tan §y and exp jA.
In addition, the ratio (r§3/r§3) is the analogous expression for a substrate
devoid of any surface film and can be described in terms of the "free-

surface" angles A and ¥. Making these changes, eq. 2-49 becomes

Ctany | = _ (1+a P) + (l+e P) i}
Z% = ’t;—% exp J(8-8) = T¥pP) + (1*c P (eq. 2-50)

This expresslon 1s the generalized ellipsometry equation 1-3 re-cast in a

slightly different form. It can be solved exactly for A and y; in fact

Re (Z%*)|°’

tan_1 Ean-u-; f\/Rez (Z*) + Im2 (ZQ . (eq. 2-52)

The generalized ellipsometry equation is useful in the form of eq. 2-50

A=A+ tan-]'{?EE-LZ£%} (eq. 2-51)

and ]

since this allowé us to se&j quite readily, how the thin-film expansions

7,10,11

used by several authors come about.

Approximate Solutions

For thin films, the phase_changé:d undergone in traversing the

oxide film is small so that the phase term, P, reduces to a simpler form

‘P = tanh j&6/2 % j&§/2 = j %1 52 cos*p, d . (eq. 2-53)
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If the terms in P are taken to be very small, eq. 2-50 can be approximated as
Z*x = tan exp j(A - &) = 1 + (ate-b-c) P, (eq. 2-54)
tan ¥

From the expressions for a, b, ¢, and e, the bracketed quantity, after apply-

ing Snell's law to eliminate ¢ and ¢3, becomes

2n1cos¢lsin ¢1(ﬁ§ i)[j ‘]
(ate~b=c) = (eq. 2-55)
2
ﬁzcos* ¢2 1 - ﬁ cos ¢1 nlsin ¢1
~2 ﬁZ
i3 3

Substitution of this expression along with eq. 2-53 into eq. 2-54 yields

2, .22 %—12-)
- 4 $.sin” ¢, (fio~ fiZ
2% = tan exp § (0B * 1 - § m, cos ¢, sin” ¢, (i) ;) a2 a2/
tan
v A1 - Ei. cosz¢1 - Ei?in2¢l
2 2
ﬂ3 ﬁ3
-
' (eq. 2-56)

If we now explicitly introduce the complex refractive indices for the sub-

strate and the oxide, and note that, in general,

2 2
1/ﬁZ =1/(n - j k )2 - n2 - kz z +3 22nk —
(n”™ + k%) (n® + k%)

= a o+ 3 a' “(eq. 2-57)
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the bracketed quantities in the denominator of eq. 2-56 become

2 . 2 2 , 2
(1 = nj(az+ja})) (cos“¢,-n] (ag+jaz)sin9,)

_ o2 2 4,2 20 20 . 2, 2 2
cos ¢l nla3+n1(a3 ay )sin ¢l 3 nla3(1 2nla3sin ¢l)

= X - j Y. (eq' 2-58)

Rationalizing eq. 2-56 by multiplying the numerator and denominator by the
complex conjugate of eq. 2-58, and expanding the bracketed quantities in the

numerator of eq. 2-56 with the aid of eq. 2-57, gives the result

tan _ 4nnlcos¢1sin2¢1
Z* = = exp j (A -4) *1-] 3 3 (u + jv)d.
tany A (x" +y7)
(eq. 2-59)
'where
= ( 2 _ k2 - 2)[(a' - al)x + (a{'— aldyl + (2 n.k,)
H=ny =Ky = my)llay = ég/ 9 = 33 2 nok,
[(a) - al)x + (a, - aj)y]
(eq. 2-60)

and

oy,

v = (n%-k%-ni) [(az-a3)y+(aé—a§)x] + (2n2k2) [(aé—aé)y-(az-aB)x]n .

(eq. 2-61)

For convenience, we define the thin film expansion coefficients a and B' as
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4ﬂnlcos¢lsin2¢lu
a = - s © (eq. 2-62)

A+ ¥

L 2wnlcos¢lsin2¢lv
and g' = . (eq. 2-63)

A (x2 + yz)

With these definitions, eq. 2-59 becomes

tan

% = exp j(A - &) = (1 + 28'd) - jod . (eq. 2-64)

tany
By performing different expansions on the left-hand side of this expression,
the various thin film approximations reported in the literature can be
obtained. Separating eq. 2-64 into real and complex components and dividing

gives

- 1 - o d

A -A = tan (eq. 2-64)
1+ 28'a

"Also by separating eq. 2-64 into real and complex components, squaring, and

‘adding gives

2
tand U 1o+ 28'@)2 + a2d?
tany

=1+ 48'd + (48'% + aBya® .

Expanding tanzw as a truncated power seriéé about the point ¥, the previous

expression becomes

tanza + 2(¢-$)sec2$tan$ -1+ 4 (=)

tanzw sin2y

2, .2

=1+4B'd+(46'2+a)d,
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Hence,

y-9 = B'sin2y d + 8'% + 1/40%)sin2y d°. (eq. 2-65)

These two approximate expressions 2-64 and 2-65 can be reduced to those
reported by Saxena11 by neglecting the term 2B'd with respect to unity and
ad. However, they differ from those of Saxena in two respects%3
(1) the coefficieét o contains the oxide extinction coefficient
k2’ not necessarily zero. Neglect of this extinction coefficient
can lead to erroneous thickness calculations for very thin
films (less than 50 angstroms) —-- the only regime where the
thin film expansions are wvalid.
(2) the term y contains a factof Zni aé sin2¢1 which is not
always small compared to unity and thus should not be neglected.
The expansions used by Archer7 can be obtained from the above expressions
by neg;ecting the term 28'd with respect to unity and byvapproximating the
tan—l function'by the first order term in its power series expansion in the
phase change equation 2—64T- The parabolic term in film thickness in eq. 2-65
is neglected by Archer.
The thin film approximations are unfortunately valid only for
very thin films -- of order 50 angst;omsiéﬁd less. Since they are sufficiently

complicated to require a computer for their calculation, it is of better

advantage to solve the exact equations 2-51 and 2-52.
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CHAPTER III1

AN ANALYSIS OF THE EQUATIONS

The Inversion Angles:

Initially the inversion angles P and Q used in solving for 3 and
¥ were analyzed for various combinations of n, and k3.

Case 1l: n, > k,;

3 35 Dj # 0 and k3 # 0.

2.n,.k

3°"3
- k2 - n;.sin"¢
3 1 1

- Here tan 2Q = is always positive provided

2

ng

2 2 2
n3 > k3 + nl

quadrant, i.e.

.sin2¢l——so that the angle 2Q always lies in the first or third

90° > 2Q > 0° or -90° > 2Q > -180° or 270° > 2Q > 180°

45° > Q > 0° - =45° > Q> -90° 135° > Q > 90°
-
1/ 2>sinQ >0 -1 >sin Q> -1 1>sinQ>1/ 2
1>cosQ>1/ 2 1/ 2 > cos Q > 0 0>cos Q>-1/ 2

We see that there are three possible regions where the angle Q may lie for

this case;, with sinQ and cosQ.possibly taking on both positive and negative

signs. Now looking at the expression for the angle P:

2,2 2 .2
[ng + kg + nﬁ.sin4¢l + Z.ni.kg - 2.nl.(n3 - k3).51nA¢1]

.Sind)l. tanq)l

/4

tan P =

ny
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This expression 1s always positive so that the angle P always lies in the first
or third quadrants. “As a result the angle 2P always lies in the first two
quadrants, so that tan 2P can take on either sign and sin 2P is always posi-
tive. Now sincéni is determined by cos 2@ = cos Q. sin 2P, the angle 2y takes
on the same sign as the angle Q. For the cases Where cos Q is positive, lying
between 0 and 1, the angle 2y lies between 0° and 90° or ¥ lies between 0°

and 45°. When cos Q is negative, cos 2@ can assume values between zero and
-1/ 2 so that § can assume values between 67.5° and‘45°, 112.5° and 135°,
-67.5° and -45°, and -112.5° and —135°; A similar situation occurs for the
angle A since tan 2P takes on both signs.and a variety of magnitudes since

tan P can vary between infinitj and zero. As a result A must lie between

0° and 180°. The two regions 135° > ¢ > 112.5° and =45° > § > -67.5° can

be rejected on physical grouﬁds since the ellipticify tany is negative in

these two ranges --— an impossibilty since tany = E()| >

[ECs) |
Case 2: n, 2 k3' n, # 0 and k # 0.
2 2 2
If n3 is such that k3 + sin ¢1 l 3 > k3 then tan 2Q lies between

infinity and (—2.n3.k3/n1,§in ¢1). .
Consequently:

360° > 2Q > 270° or 270° > 2Q > 90° or 0° > 2Q > -90°

180° > Q > 135° 135° > Q >"45° 0° > Q > -45°

1/ 2 >sinQ >0 1>sinQ>1/ 2 0>sinQ > =1/ 2

-1/ 2 > cos Q> ~1 +1/ 2 > cos Q > -1/ 2 -1/ 2 >cos Q> -1
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The expression for tan P is always positive so that the angle P always lies
in the first or third quadrants; As a result the angle 2P always lies in
the first two quadrants and tan 2P can take on either sign and sin 2P is
always positive, and less than or equal to unity. Again ZE lies in the
same quadrants as Q, i.e. .
180° > 2y > 135° or 135° > 2y > 45° or 0° > 2y > =-45°
90° > ¥ > 67.5° 67.5° > y > 22,5° 0 > ¢ > -22,5°
The third region for negative angles is, as before, physically inconsistant
with the positive ellipticity since the tangent of the negative angles in
this range are nega;ive. Since tan 2P can take either sign and a wide range
of magnitudes —-airesult of the variation in ¢1, tanA can take on all magni-

tudes and either sign so that A lies between 0° and 180°.

Case 3: ng = k3 #0 2 2
2.n3 2.k3-
For this case, tan 2Q = =
n2 sin2 2 i 2¢
1°8in ¢y my.sing

which can take on values between minus infinity and -2.n§/ni. Hence:

360° > 2Q > 270°-r- or - 180° > 2Q > 90° or 0° > 2Q > -90%
L

180° > Q > 135° 90° > Q > 45° 0° > Q > =45°

1/ 2>sinQ >0 "l >sinQ>1/ 2 0 > sin Q > -1/

-1/ 2 > cos Q > -1 1/ 2> cos Q>0 1>cos Q> 1/
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As in the other cases tan P is always-ppsitive; tan 2P can take all magnitudes
and either sign; sin-2P is always positive. This results in 29 located in
the regions: ‘

180° > 2y > 135° 90° > 2§ > 45° 0 > 2y > -45°

90° > T > 67.5°  45° > § > 22.5° 0> § > ~22.5°
The last region is eliminated on account of negative ellipticity. Again
because of the wide variation in tan 2P, A can lie between 0° and 180°.
Case 4: n, # 0 and k3 =0

For this case tan 2Q = 0, so that 2Q is a multiple of 180 degrees..
Thus Q is a multiple of 90°. Also for this case

2 2 2
ny - nl.sin ¢l

nl.sinqbl.tanq:1

. tan P =

Here ngy > ny since the substrate is a more optically dense medium., Then tan
P is positive (not complex), and P lies between 0° and 90° or between 180°
and 270°. As a result, 2P lies between 0° and 180° and tan 2P can take on
all magnitudes and both sigﬁs while sin 2P is always positive. For the even
multiples of 180° for 2Q, sin Q = 1 and A takes on values between 0° and
180°; cos Q = 0 so cos 29 = 0, i.e. 2¢ = -90°, +90°, or +270° or ¥ = -45°,
45°, or 135°. The only physically meaningful solution is y = 45° since the
tangent of the other two values is negative implying a negative ellipticity.
For the odd multiples of 180° for 2Q, sin Q = 0 and cos Q = ] resulting in
tand = 0, i.e. A is a multiple pf 180°; cos ZE = T gin 2P for this case so

that 2y takes on all values and so doés 5. However physically this represents
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reflection from a dielectric medium so that the reflected E vectors in both
p and s polarizétions have the same magnitude or tan$ = 1. This has solution
¥ equal to a multiple of 45 degrees. “Consequently the odd multiples of 180°
for 2Q have no physicaltmeaning, bgt are extraneous solutions implicit i£ the
inversion. |
Case 5: ‘ng << k3 :ong # 0 and k3# 0

Here tan 2Q is negative since it is dominated by the term in the
denominator. As a result the angle 2Q either lies between -90° and 0° or

Pl

90° and 180° or 270° and 360°.

0° > 2Q > -90° 180° > 2Q > 90° 360° > 2Q > 270°
0° > Q > =45° 90° > Q > 45° 180° > Q > 135°
0>sin Q>-1/ 2 1>sin Q>3/ 2 1/ 2>sin Q>0
l>cos Q> 1/ 2 | 1/ 2>cos Q>0 -1/ 2>cos Q>-1

Tan P is always positive so that 2P lies between 0° and 180° with sin 2P
being pos&tive. For cos Q positive, cos 25 lies between 0 and 1 so that

¥ lies between 0° and 45°. When cos Q isjﬁegative, cos 2y values between
0 and -1. Consequently ZE lies between -270° and -90° or between 90° and
270° so that E‘éan-lie between -135° and -45°; and —45°; 45° and 135°; 225°
and 315°. - However the regions between -90° and -45°; 90° and 135° and 270°

and 315° have negative tangents-hence a negative ellipticity and are not
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physically.acceptable sélutions. So for cos Q negative, the allowed regions
for y are between -135° and -90°; 45° and 90°; 225° and 270°. For the phase
change A acceptable solutions are bet&een 0° and 180° since tan 2P can take

on all values.

Case 6: = (0 and k3 #0

3
This case 1s impossible physically since it represents a purely
‘absorbing medium having zero conductivity.

Plotting the free-surface angles A and ¥ as a function of angle of
incidence ¢1 shows that the azimuth ang;e ¥ goes through a minimum at the
Brewster angle. In addition, the phase change A varies from 180° to 0° —--
the change occuring rapidly about the Brewséer angleh(at the Brewsﬁer angle,

A = 90°). The rate‘of change is a function of the magnitude of the extinction
coefficient k3. For small k3, the change is very abrupt; for large k3 the
change is gradual. Figures 3-1 and 3-2 show A and E plotted as functions of

the angle of incidence ¢l' The following materials were chosen since they

have a wide range of optical constants:

3

Silicon™® n, = 4.05 and k, = 0.028,
Aluminum.l7 n3 = 0.82 and k3 = 5,99,
ron'®  n, = 3.35 and kg = 3.8,
Go1a™? n, = 0.382 and k, = %.295.
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The Thin-Film Approximations

The next relations to be examined were the phase changes A from
the free surface angle A as a function of film thickness "d" for the exact
equations of McCrackin and the approximate equations of Drude, Archer, Saxena,
and those derived in Chapter II. The Drude, Aréher, and Chapter II expan-
sions are all of the form:
A=A =-ad
where the coefficient o contains successively more terms for each
respective expansion. The expression of Saxena has been inverted to the
form:
A=A = —tanfl(ad)
These plots are shown in figures 3-3, 3-4, 3-5, and 3-6 for several materials
at an angle of incidence somewhat below the Brewster angle for the parti-
cular material involved. In all cases the expansion derived in Chapter II
is within 10% of the exact expression for film thicknesses up to 100 angstoms,
indicating that A - A does not deviate appreciably from a linear relation in
film thickness "d" up to iﬁb angstroms. The difference between the Archer
expression for a and that derived in Chapter II is simply the omission of
the term Znia3sin2¢l with respect to unity (see equation 2~58). For these
calculations, the surrounding medium wasjéésumed to have an index n, = 1.0,

1

2 = 0.0). The more

pronounced deviation in Archer's expansion from the exact expression is

and the oxide was assumed to be non-absorbing (i.e. k

simply a reflection of his neglect of this term. This is most pronounced

for gold (n3 = O.382—2.295j)18 where the quantity ag is approximately -0.175
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which is starting to become large with respect to unity (see fig. 3-6). For
the other materials'blotted the quantity ag is of order 10“2 or smaller and

the term ZniaBSin2¢l is not so drastic.

Analyzing fhe change in azimuth angle ¥ from the free surface value
¥ as a function of oxide film thickness "d" for both the exact and approximate
relations showed one particularly interesting fact: If the substrate index
ng is greater than fhe absorption coefficient k3, the plot of ¢ - E versus
film thickness '"d" for the exact expréssion shows considerable curvature; if
not, the plot of y - ¥ versus film thickness "d" shows only a slight amount
of curvature. As a result the parabolic expression of Saxena is a better fit
to the exact curve provideé the substrate index is greater than the substrate
extinction coefficient than are any of the linear expansions. The converse
for the substrate index less than the substrate extinction coefficient indicates
that the linear expansioﬂ is better than the parabolic expression of Saxena.
This effect is shown in figures'3-7 (n3> k3); 3-8, 3-9, and 3-10 (n3<k3).

The effect of an increasing oxide extinction coefficient appears

i

to simply increase the slope of the plots of A - A versus film thickness.

This is shown for silicon in figure 3-11 where the exact expansion using
McCrakin's method has been used; in addition, the linear expansion derived in
Chapter II has been plotted. Other expané{ons (Drude, Archer, and Saxena)
neglect the effect 6f the film extinction coefficient and would not show any
variation with increasing film extinction coefficient. The Chapter II expansion
shows the same effect of increasiﬁg the slope of the curve and appears to be

of the correct magnitude (the closeness of fit is always less than 5% even at
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a film thicknéss of 100 angstroms.). Consequently the expansions derived in
Chapter II for the phase change A - Z are better than any derived to date.
Unfortunately, this expansion is not so good for the other materials studied
(figures 3-12, 3-13, and 3-14), although it still shows the correct effect
of increasing the slope. |

The azimuth angle ¥ shows a similar effect with increasing film
extinction. The exact expressions show a decreasing slope with increasing
film extinction coefficient (see figs. 3-159 3-16, 3-17 and 3-18). Conse-
quently for an absorbing oxide film on silicon, the parabolic expression
would become progressively worse since the coefficient o is increasing with

increasing oxide extinction coefficient k (Using the expression in Chapter

2’
II for o since Saxena's expression does not také into account absorptive
effects in the oxide). ‘The linear approximation derived in Chapter II

contains the correct behaviour for very thin absorbing films (up to approx-
imately 20 angstroms) but becomes progressively worse for thicker films.once
the curvature of the exact expression comes into p1ay. This seems to.indicate
that the expansion for ¥ ;fﬁ should contain both a linear term and a parabolic
term in film thickness;‘the linear term having a negative expansioﬁ coefficient
which is very small when the extinction coefficient is very.small (or zero)

and becoming larger with increasing film extinction coefficient. Since in

the method of determining optical constanfs in the computer program, the
azimuth angles are not used for calculation of film thickness but only serve

as a rough check that the correct solution has been chosen, further analysis

of the azimuth angle has not been perfomed.
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CHAPTER. IV
EXPERIMENTAL
This chapter will primarily be concerned with methods of obtaining
and measuring elliptically polarized light (both historical and recent); the
relation of experimentally measured angles to the phase change A and the azimuth

Y; and finally, the methods of sample fgbrication.

Hauschild's Method

Hauschild's method of analyzing elliptically polarized light13

rests upon the fact that when elliptically polarized light passes through a
quarter-wave plate, the emergent light is linearly polarized when suitably
oriented. This can be extinguished with a Nicol prism (used as an analyzer)
positioned at 90 degrees when the principal direction of the quarter-wave
plate is oriented along the major axis of the ellipse. In such a case, the
tangent of the angle between the linear vibrations and one of the principal
directions of the quarter-wave plate measures the ellipticity (viz. the ratio
of minor to majof\axis of'ﬁhe ellipse) of the original vibration. The
orientation of the quarter-wave plate determines the position of the ellipse.
If this can be correlated to the original major axis of the incident ellipti-
ically polarized light, this orientation is a measure of the phase change.
This is indicated in figure 4-1.

Rothen's Early Ellipsometer

Rothen's ellipsometer is schematically indicated in figure 4~2. Re-

[}

ferring to this diagram, monochromatic light passes through a polarizing



S direction

f:P’
direction

(plane of incidence

— - sy PR

tation of the ellipsometer

‘Figure 4-1 Graphical represen
\ eater than the

\ angles 4 and y for reflection gr
principal angle. '

f ' ,



- 55 -

ey ———

's early ellipsometer.

* Representation of Rothen

-Figure 4-2



- 56 -

Nicol prism P with the transmitted vibration at 45 degrees to the plane of in-
cidence i. This is indicated for two rays of light impinging upon the upper
and lower parts of the sample S. The state of polarization of these two inci-
dent rays is indicated in the plane I. The upper and lower portions of the
sample slide were coated with one and three monomolecular "reference" films‘
of barium stearate respectively. Upon reflection from the slide S, the
reflected light is elliptically polarized, Since the evaporated films in

the upper and lower portions of the sample slide S differ in thickness, the
corresponding ellipses E and E; differ in ellipticity and orientation. The
linear vibration of a ray can be considered as a resultant vector (shown in
plane I) having a componént in phase (OP) and a compoment perpendicular to it
(0S). The change of phase of the components OP and OS upon reflection is
greater than 90 degrees (if the angle of incidence is below the principal
angle); the vector OP being in advance. With the original linear vibration

in tﬁe direction indicated, the resulting ellipses rotate in a clockwise

9 .
direction as shown in the plane M. Due to the difference in upper and lower

film thicknesses, the ellipticity (ratio of minor to major axes) is greater
in the 1o&er ellipse. To an obsefver facing the light source, the lower
ellipse has rotated counter-clockwise with respect to the upper one.

Now the two elliptical polarizations traverse a mica quarter-wave
plate, Q, oriented with its "fast" axis parallel (of nearly so) to the
bisector of the angle formed by the major axes of the two ellipses E and E'.
Upbn passing through the quarter-wave plate, the ellipses E and E' are trans-

formed into elongated ellipses L and L' (i.e. near linear polarization).
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Finally the beams pass through an analyzing Nicol prism A. As a consequence
of the small ellipticity of the ellipses L and L', the angle made by the two
major axes corresponds to the "half-shadow" angle of this polarimeter. The
observation is>;ade through an ocular focused on slide S. The angle read

on the analyzer when both halves of the field appear of the same intensity
gives the zero position of the apparatus. Now if a film of unknown thickness
is added on the whole surface of the slide, the upper and lower parts become
unequal in intensity since the ellipses E and E' have rotated counter-clockwise
and their ellipticity is larger; the same applies to the ellipticity of
ellipses L and L'. A counter-clockwise rotation of the analyzer returns the
two halves of the field to equal intensity. The difference in position of
the analyzer before and after deposition of the film is a measure of its
thickness.

The Present Ellipsometer:

Light from a mercury vapour lamp first passes through a filter and
collimating lens system producing a parallel beam of monochromatic light
about 6 mm. in diameter (QQQelength = 5460.74 Angstroms). Next it passes
through a polarizing Nicol prism followed by a variable diaphragm which can
vary the diameter of the beam from 1 mm. to 6 mm. When the electfic vector
or plane of polarization is set at an azimuth of 45 degrees to the plane of
incidence, one of its component is propagating in the plane of incidence
and the other perpendicular to it; each with equal intensity. The compensator

or quarter-wave plate can be mounted in either of two locations;

(1) between the polarizer and the sample (figures 4-3 and 4~4)



Slit
Source Collimating Polarizer

Analyzer

Focussing
Lens

Photoelectric

Moveable Detector

Mirror

$e
Observer

Figure 4-3 Symbolic representation of present ellipsometer
for quarter-wave plate mounted before sample
holder.

Figure 4-4 Photograph of present ellipsometer for quarter-
wave plate mounted before sample holder.
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(2) between thé sample and the analyzer (figures 4-5 and 4-6)
Case (1)

When the compensator (quarter-wave plate) is mounted before the
sample, the plane-polarized light upon passing fhrough the compensator is
elliptically polarized before striking the reflecting surface. Upon reflection,
the light is linearly polarized and is analyzed with an analyzing Nicol prism
connected to a photomultiplier tube and associated metering electronics.

Case (2

When the compensator is mounted between the sample and the,anélyzer,
‘the plane - polarized light striking the reflecting surface becomes elliptically
polarized upon reflection., The elliptical polarization is converted to plane-
polarized light after passing ;hrough the'compensatore As in the other
geometry, this is analyzed with another Nicol prism connected to a photomulti-
plier tube and associated metering electroﬁics.

Correlation of Angles:

Fdr the case of an exact quarter-wave plate, i.e. one whose fast »
and slow axes are exactly perpendicular to each other, the phase change A
and the azimuth angle aré related to the polarize: P and analyzer A angles
in a simple way:

b= A , ’ y  (eq. 4-1)

A = 2P + 90 , ' (eq. 4~2)
where A and y are in degrees. | R
The ellipsometric parametric parameters A and Y charaéterizing the eliipse

are shown in figure 4-7.
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Figure 4-5 Symbolic representation of present ellipsometer
for quarter-wave plate mounted after sample
holder.

Figure 4-6 Photograph of present ellipsometer for quarter-
wave plate mounted after sample holder.
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For fhe case of a non-exact quarter-wave plate, Archer14 has shown
the retardation can be corrected for by performing measurements with the
quarter-wave plate oriented at +45 degrees and -45 degrees to the plane of
incidence. This resu;ts in two analyzer readings denoted ap and ag measured
in the =45 and +45 dégree orientations respectively (taking only the first
two zones into account). The zone scheme of measuring will be discussed later
when referring to the computer program. The ellipticity can be dbtained
from the relation:

. tanzw = tan aP tan a_ ’ (eq. 4-3)
The retardation of the quarter-wave plate § can be calculated using the
expressions:

’tanw = tan L tan ap = cotAL tan a (eq. 4=4)

cos 2L = -cosécos 2P : (eq. 4-5)

From this the phase change A is obtained simply:

tanA = sinscot 2P : (eq. 4-6)

It is obvious that for a perfect quarter-wave plate i.e. 6§=90°, L = 45° and
equation 4-6 reduces to equation 4-2.

Sample Preparation

Aluminum
Aluminum films were prepared by evaporating 99.999 percent aluminum
wire from a tungsten filament onto microscope glass slides. Both the slides
and the aluminum wi;e were etched and degreased before mounting into the
vacuum system, an NRC model 720 with liquid nitrogen cold trap. The aluminum

films were evaporated at a base pressure of 2 X 10-7 torr and a Sloan Deposit
’ o A .
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Control Master‘model Omni Ii was used to monitor the evaporation rate and
film thickness during deposition. The aluminum films obtained in this way
were approximately 3000 Angstroms thick., The bell jar was returned to atmos~-
pheric pressure by back-filling with nitrogen gas. The aluminum was then
allowed to oxidize in room air. TFor thicker oxide films, the glass slides
were heated in air on a small hot plate.

Molybdenum

Molybdenum metal 99.99 percent pure was anodically oxidized in

acetic acid, 1 mole of distilled water, and 0.02 moles of sodium borate

(Na 0.°10 HZO)' The cathodic material used in the reaction was platinum.

28497
One sample was oxidized naturally and the other three were oxidized at potentials
of 3 volts, 4 volts, and 6 volts.
Silicén

Polished 10 ohm—cm. silicon wafers were rinsed for approximately
ten minutes in a mixture of sulphuric acid and doubly-distilled de-ionized
water mixed in equal parts. This rinsing was performed to remove any surface
grease. Following the rinse, the mixture was decanted with de-ionized water
and cleaned in a mixture of one part hydrogen peroxide, one part hydrocholoric
acid, and four parts doubly-distilled de-ionized water to remove any surface
metal ions. The mixture was heated to boiiing and the sample decanted with
the distilled de-ionized water. One drop of hydrofluoric acid was added to
the sample in a dis;illed water solution and the solution heated to boiling

in order to remove the remaining surface oxide. The sample was then decanted

into doubly-distilled de-ionized water until ready to oxidize. For very thin

1
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oxides, the-oxidation proéess simply involves allowing the sample to come into
contact with rodm air; for thicker ones, the sample was oxidized in a furnace
at 900 deg:ees Centigrade in a wet air mixture fof appropriate times up to

5 minutes. This procedure was developed in order to correlate oxide film

thickness measurements by ellipsometry with MOS tunneling measurements.



- 65 -

CHAPTER V
COMPUTER PROGRAM
The computer program used to solve for substrate optical constants
consists of three major parts:
1). Reduction of input polarizer and analyzer angles
to phase change A and ellipticity .
2). Solution of the exact ellipsometry equations fqr
the substrate optical constants n, and k3'
3). Solution of the exact ellipsometry equations for
ghe oxide £ilm optical constants n, and k2.
Figure 5-1 shows a simplified flow chart indicating the basic outline of the
computer program,

1). Reduction of input data

Here we simply calculate the phase change A and azimuth ¢ from the
experimental polarizer and analyzer readings P and A.. These can be calcula-
ted either by assuming that the quarter-wave plate is exact or by calculating
the retardation of the quarter-wave plate. In the exact assumed case, the
polarizer and analyzer anéles are related to the phase change A and azimuth
Y simply

A

2P+90 , . (eq. 5-1)

The added complication of performing measurements in all four zones and
calculating the retardation of the quarter-wave plate, as done by McCrackinS,

does not improve the convergence to any noticeable extent. These "improved" |

|
|
|
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angles are still typically in error several hundreths of a degree. However,
for completenesé, the meanings of the angles ap, as, and p, mentioned in
chapter IV, will be expounded here.

McCrackin's Zone Scheme8

Since the experimentally measured angles are only measureable to
0.01 degrees (even if there is no error in quarter-wave plate retardation),
an averaging process is performed over all four zones. The meanings of p,
ays and a in the four zones are as follows:

zone 1:

The fast axis of the quarter-wave plate is at -45°. The polarizer
makes an angle of +p with the plane of incidence; the analyzer makes an angle
of +ap with the plane of incidence.

zone 2:

The fast axis of the quarter-wave plate is at +45°. The polarizer

makes an anglé of -p with the surface or 90° with the plane of incidence; the

analyzer makes an angle of +as with the plane of incidence.

zone 3: e
The fast axis of the quarter-wave plate is at -45°. The polarizer
makes an angle of +p with the surface or 90° with the plane of incidence;
the analyzer makes an angle of -a with the plane of iﬁcidence.
zone 4:

The fast axis of the quarter-wave plate is at +45°. The polarizer

makes an angle of -p with the plane of incidence; the analyzer makes an angle

of -ap with the.plane of incidence.



QUARTER ,
ZONE WAVE PLATE POLARIZER ANALYZER
1 -45° Plﬁ Py SP | mAi;ipi ; ii -
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lTable 5-1  McCrackin's Zome Scheme.’
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With this zone scheme, the measured polarizer angle P and the measured
analyzer angle A are related to the angles p, ap, and ag in the way shown in

table 5-1. The sum of the four polarizer readings should total 360 degrees;

4
if not, the difference (360 - E:; Pi) is four times the polarizer zero correc=-
i=1
tion factorls. Each polarizer reading in each zone is corrected by the zero
correction factor and the angles ap, as and p are calculated‘in the following

manner:

4 :
p= 1/4 2:: Py (corrected), | (eq. 5-2)
i=1
4
a, = 1/2 2:: ay | (eq. 5-3)
- i=1
, 4 .
a = 1/2 2:: agy . (eq. 5-4)
o A=1

With these values p, ap, and as the angles A and ¥ are determined using the
relations eq. 4-3 through 4-6.

2). Solution to substrate dpﬁical constants

The computer program basically consists in solving the exact equa-
tion 2-50 at several angles of incidence for a consistent film thickness, d.
With the calculated angles A and ¥ from thé experimental polarizer and analyzer
angles, and an assumed oxide index (either the reported bulk value for the
oxide material or a typical dielectric value of 1.5), the exact equation is
solved for the substrate optical~constant$ n, and k3,‘subject to the constraint

that the percent deviation in oxide film thickness be miniﬁized. The method
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involved is to increment n3 and k3 (in;tially in steps of 1.0) and calculafe
at each angle of incidence the freg surface angles‘z and ﬁ. This 1s done
using the inversion expressions in appendix II. Armed with these parameters
and the angles A and Yy, the phase term P in eq. 2-50 is calculated. This
phase term is then inverted giving‘th% oxide phase angle 6 by applicafion
of eq. 2-42. From this parameter, it is a relatively simple matter to solve
for film thickness d.
’ . The rejection of a'trial ng, k3 pair is performed by the following -
convergence requirements;
1. Negative thicknesses are rejected immediately.
2. A percent deviation in oxide film thickness is calculated.

" If greater than the previous value (or a large initial value), the .
Ng, k3 triai pair are rejected. The reason for using a percent
deviation for convergence rather than an absolute difference was
that the thickness tended to converge towards zero on an absolute
difference calculation.
3. For non~absorbing oxides, i.e. the oxide extinctlion coefficient
kz equal to zero; the azimuth angle ¢ is tested to make surg that
it is greater than its free surface counterpart E. This check is
deléf;d for absorbing oxides.
4. From the avefage thickness and the trial optical constants, a
calculated value of the azimuth angle wcalé is generated. This

value is compared with the measured value of y and the sum of the

squares of the difference is calculated. If greater than an
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an initial large value or the pfévious value, the trial Mg, k3 pair
is rejected.
After having chosen the best fit by the previous convergence technique in this
coarse increment range, thé increment size is reduced by a factor of ten.
Only solutions near ta the coarse best fit are tested. The increment size is
made smaller sequentially at the end of each range, until thé increment size

on n3 and k., is smaller than 0.001.

3

3). Solution to Oxide optical constants

Once the substrate optical constants, ng and k3, have been deter-~ ‘
mined, the oxide phasevangie § is known quite accurately. In general, this
quantity is a complex number (except in the case of non-absorbing oxide).
From this phase change, the average oxide thickness, and the wavelength, the
proéuct ﬁ2 cos*d}2 can be calculated. Knowing these quantities for each angle
of iﬂcidencé and the refractive index for the immersion medium, and applying
Snell's law, the only unknown quantity is the complex refractive index for
the oxide i, = n

2 2 2°

the coefficients a,b,c and’e, in eq. 2-50 needed to solve for the phase temm

-jk As a result, it may be solved exactly. Fortunately
P are not too sensitive to the oxide index and the oxide extinction coefficient.
This means that if the intial assumed oxide index was reasonably close to the
calculated value, it is not necessary to correct the phase term P each time

the oxide index is slightly altered; then the resulting oxide optical constants

are reasonably valid.
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CHAPTER VI
DISCUSSION
Aluminum

For evaporated films of aluminum, the calculated substrate optical
constants were found to lie within the reported values found in the litera-
turelo’l7’24. The literature shows a scatter in the reported values of th?
substrate index n, between 0.786.and 1.140. By this self-consistent ellip-
sometric technique, the substrate index n, was found to lie between 0.700
and 1.200 showing reasonable agreement. Table 6-1 shows the calculated
values for both naturally occurring and thermally grown oxides on aluminum.

A statistical analysis of the twelve data points shows the average refractive
index to be ng = 0.989 with a standard deviation of 0.140. Figure 6-1 shows
a plot of the refractive index of the aluminum substrate as a function of

the aluminum oxide film thickness.

The scatter in thg reported values of the substrate extinction
coefficient is “also reasonably large, with values lying between 5.45 and 6.77.
By the technique reported here, the extinction coefficient for the aluminum
. substrate was found to 1ieﬂbetween 5.201 and 6.701. A similar statistical
-average of the twelve data points shows the average extinction coefficient
for aluminum to be 6.036 with a standard deviation of 0.312. Both the
aiuminum refractive index and extinction coefficient are in reasonable
agreement with that reported by Hass and Waylonis17 (n3 = 0.82 and k3 = 5.99
at the 5461 Angstrom wavelength) who determined these values from reflectance

and transmittance measurements on semitransparent aluminum films.

The oxide index for aluminum was found to be 1.66+0.0l1. However,

\


http:1.66�0.01
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TABLE 6-1.
Experimentally determined optical constants for evaporated aluminum films

containing an adhering oxide film.

Sample Group Refractive . Extinction Oxide film
‘ Index ng Coefficient k3 Thickness d (&)

0 0.870 6.&21 ! " 14,186

0 0.900 6.101 21.857

A 0.700 . 5.201 26.109

A 1.100 . | | 6.001 35.300

0 1.100 6.001 36.206

d 11.200 6,701 37.685

A 1.100 6.001 40,503

A o 0.900 _ 6.101 43,012

0 0.900 G.lbl 45,765

0 1.100 6,001 ] 51.110

A 1.100 6.001 51.361

0 O.QOdT— 6.101 79.603
Average ng, = 0.989 - Standard deviation = 0.140
= = 0.312

Average k3. 6.036 Standard deviation
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since the reported value of 1.66 was initially assumed for the thickness
calculation, it is not unreasonable to expect the program to converge to a
value cldse to this assumed number once the substrate optical constants have
been detemmined. |

The extinction coefficient for the oxide film on the evaporated
aluminum was found to lie between 0.023 for a tﬁin oxide film and 0.0024 for
thicker ones (68 Angstroms). Figure 6—3‘shows the oxide extinction coefficient
plotted versus oxide film thickness. The decrease in oxide extinction coefficient
with increase in oxide film thickness seems to support the work of Bashara
and Peterson25 who propose the absorption should decrease exponentially with
increasing oxide film thickness. Since the thinner films show lagger scéttér
in the oxide extinction coefficient with angle of incidence (shown by error
bars in fig. 6-3), it was not possible to determine such an empirical expon-
ential fit. This effect of the larger scatter in extinction coefficient with
angle of incidence might be evidence to the fact that we are really seeing
the random film nucleation as the oxide grows. ‘The fact that the initial
oxidation of aluminum is fgthef amorphous in nature implies vélidity of the .
plane parallel model used in the calculation as‘will be shown later in this
chapter. |
Molybdenum

The results of the ellipsometer measurements on molybdenum are
presente& in Table 6-2. In this case there was found to‘be a larger scatter
in the calculated optical constants presumably attributed to two factors;

(1) instability of the oxide materialso, | |

and (2) a rougher oxide-air surface.
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REFRACTIVE EXTINCTION
SAMPLE INDEX ng COEFFICIENT kq
NATURAL =
3.146 3.601
OXIDE \
3 VOLT OXIDE C3.23 3.555
4 VOLT OXIDE 2760 3.500
6 VOLT OXIDE © 2612 3480
AVERAGE ny= 295 ;  STANDARD DEVIATION = 0.242
AVERAGE k=353 ;  STANDARD DEVIATION = 0.047

TABLE 6-2 Experimentally determined optiééi constants for anodicaily‘%iidiéé&v

+Molybdenum metal.

-~ 8L -



_79_

A similar statistical analysis on the four molybdenum samples gives
an average refractive index n, = 2,954 with a gtandard deviation of 0.242 and
an average extinction coefficient k3 = 3,534 with a standard deviation of
0.047. Upon re-calculating the film thickness with thesé average substrate
optical constants, the natural oxide thickness is found to be a negative
number; clearly a non-physical solution. However if we use the upper stat~
istical limits for the substrate constants i.e., ny = 2.954 + 0.242 = 3.196,
and k3 = 3.534 + 0.047 = 3.581, the re-calculatéd natural oxide -thickness is
5.605 angstroms, a more realistic number physically, Waldron and Juenker26
report the optical constants of unpolished molybdendm as ng = 3.61 and
k3 = 3,67 at the 5461 angstrom wavelength. Here they estimate the optical’
constants from reflectance versus angle of incidence data. Summers27 has
also reported the optical constants of polished bulk molybdenum as n, = 3.59
and k3 = 3.40.

Silicon

Initially the program tended to converge toward k3 = 0.0 since the
extinction coefficient is'%b small for silicon. However by solving the
equations involving the free-surface angles A and V¥ (Eqs. 2-26 and 2-27) in
a self consistent manner knowing that the converged substrate refractive
index ng is close to the true value, it is. possible ﬁo determine the sub-
strate extinction coefficient k3. The results of the ellipsometer measure-
ments on silicon are presented in table 6-3. A statistical analysis of the

refractive index for silicon gives an average value of n, = 4,044 with a

" standard deviation of 0.014%. Figure 6-4 shows a plot of substrate refractive



TABLE 6-3

Experimentally determined optical constants for steam grown oxides on silicon.

/

Refractive Extinction d%ide—film
index ng Coefficient k3 thickness d (A)

4.050 0.050 ‘ 13.13

4.050 0.066 28.31

4,050  0.020 . 35.82

4,050 0.032 36.62

4.011 0.039 50.65

4,050 0.047 _ 70.59

" Average n, = 4.0445 3  Standard deviation = 0.014%

Average k., = 0.042 ; Standard deviation = 0.0284

3



~ oxidized films of silicon at wavelength A = 5461 K.
indicates averaged value of refractive index.
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. “Figure 6-4 Plot of refractive index ng vs. oxide film thickness d for
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Figure 6-5 Plot of extinction coefficient k3 vs. oxide film thickness for

7 oxidizea films of silicon at wavelength A = 5461 A. Dashed line indicates
~averaged value of extinction coefficient. ) -
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index versus oxide film thickness forssilicon.
An identical statistical analysis of the substrate extinction

coefficient for silicon gives an average value of k3 = 0.042 with a standard

deviation of 0.0284. Archer14 reports the optical constants of silicon as

ng = 4,050 and k3

optical absorption techniques in order to establish the extinction coefficient

= 0.028. However he has to rely upon other well-known

for silicon. Vedam's constant reflectivity technique28 suffers from the

fact that a small change in n., causes a significant change in k3. He reports

3
that a change from 4.0517 to 4.0518 in the refractive index causes a change

from 0.029 to 0.022 in the value of the extinction coefficient.

Validity of the plane-parallel assumption

’For the materials studied here, namely aluminum, molybdenum, and 
silicon, the initial oxidation is known to produce an amorphous oxide relatively
free of any definite crystallograpﬁic structuré. In addition, since the oxide
films are very thin, the oxide~immersion medium surface is essentially an
exact replica of the substf?te-oxide interface. The validity of the plane
parallel boundaries then relies upon the substrate surface being optically
flat. For evaporated films of aluminum, the grain size is small and the sur-
face fulfills the pptically flat criterion.- The silicon wafers are mechanically
polished and also fulfill this same criterion. The molybdenum samples are
also purported to be the best attainable surfgce. Some of the samples were
analyzed with an interference microscope and no discontinuities in the fringe

structure were observed.
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Walk-off error

A simplified calculation using the normal reflectivies of the
substrate-oxide and the substrate-immersion medium interfaces shows that
approximately four reflections of significance take place in the oxide.
This implies that the reflected beam displacement is of order 10—4 cm. The

initial beam aperature is of order 1 mm..so this "walk-off" error is negligible.

Conclusions

We have been able to show that it is possible to determine
substrate optical constants by ‘analyzing the ellipsometry parameters
A and Y with angle of incidence - previously reported in the literature
to be impossiblelo. A recent paper by Vedam et al28 reports a method of
determining substrate optical constants making use of the fact that the
normal reflectivity is almost constant (within 0.1%) for oxide films up to
230 Angstroms on silicon. However, they fail to mention strongly that this
constancy in normal reflectivity is very dependent upon the extinction
coefficient of the substré;é material, i.e. their method is very much
dependent upon the material being studied. Table 6-4 shows the variation
in normal reflectivity with oxide film thickness for oxide films on silicon.
Similar tables for aluminum and tungsten (fables 6~5 and 6-6) show progressively
larger deviation in normal reflectivity with oxide film thickness. Table 6-7
shows a list of several materials and an uppef limit to oxide film thickness
calculated from a 0.1% deviation in film free normal reflectivity. It can

be seen quite readily that very few of these materials support the constant
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TABLE 6-4.Calculated values of A and ¢ for various thicknesses d of a
film of refractive index n, = 1.460 on a substrate of refractive index
ng = 4,050 and extinction coefficient k3 = 0.028. The wavelength A is
5461 Angstroms and angle of incidence ¢; is 70 degrees. The "pseudo
optical constants" T3 and k3 and normal reflectivity R calculated from

these angles A and y are also giVen in the table.

(Reproduced in part from Vedam et all.)

d A P - —
(R) (degrees) (degrees) ‘ n3 k3 R
0.00 179.038 11.763 |° 4.05000 | 0.02800 | 0.36479
5.00 177.488 11.769 4.04877 | 0.07313 | 0.36478.
10.00 175.941 11.781 4.04647 | 0.11819 | 0.36478
15.00 174.396 11.798 4.04311 | 0.16315 | 0.36478
20.00 172,857 11.821 4.03869 | 0.20799 | 0.36478
25.00 171.323 11.850 4.03322 | 0.25264 | 0.36478
35.00 168.279 11.923 4.01917 | 0.34131 | 0.36477
50.00 163.788 ©12.073 3.99048 | 0.47214 | 0.36477
75.00 156. 569 12,424 3.92346 | 0.68230 | 0.36478
100.00 149.763 12.889 3.83471 | 0.87954 | 0.36480
125.00 143.427 13.453 3.72738 | 1.06106 | 0.36485
150.00 137.578 14.099 3.60498 | 1.22495 | 0.36494
200.00 127.295 15.580 3.32920 | 1.49648 | 0.36531
250.00 118.690 17.226 3.03376 | 1.69749 | 0.36641
300.00 111.466 18.961 2.73850 | 1.82797 | 0.36747
400.00 100.173 22.516 2.19513 | 1.95168 | 0.37362
500.00 91.992 26.063 1.73662 | 1.96530 | 0.38806




hdad

TABLE 6-5. Calculated values of A and y for various thicknesses of a film of
refractive index n, = 1.66 on a substrate of refractive index n3 = 0,820

and extinction coefficient k, = 5.990. The wavelength A is 5461 Angstroms

3
and angle of incidence ¢l is 70 degrees. The '"pseudo optical constants"
ﬁé and Eé and normal reflectivity R calculated from these angles A and ¥

are also given in the table.

d A" v —
(K) (degrees) (degrees) Eﬁ k3 R
O.QO ' 134.480 42.276 . 0.82000 5.99000 0.91631
"5.00 133.539 42,292 0.78514 5.85590 0.91620
10.00 132.605 .42f309 0.75249 5.72735 0.91610
15.00 131.678 42,326 | 0.72187 5.60402 0.91599
20.00‘ | 130.757 42,343 '0.69312 5.48560 0.91588
25.00 129.843 42.360 0.66609 5.37182 0.91577
35.00 128.035 42.395 0.61665 5.15712 0.91555'
50.00 125.376 - 42,448 0.55241 4.86383 0.91523
75.00 121.087 - 42,540 0.46607 4.43937 0.91471
100.00 116.985 42;%34 0.39892 4.07976 0.91422
125.00 113.073 42,730 0.34562 '3.77155 0.91378
150.00 109.357 42.826 0.30255 3.50490 0.91344
200.00 102.524 43.022 0.23768 | 3.06851 0.91316
250.00 - 96.509 43,218 | 0.19133. 2.73027 0.91375
300.00 91.341 43.417 0.15623‘ 2.46645 0.91578
-400.00 83.764 44.840 0.10320 2.11429 0.92742
500.00 80.661 44.367 0.05434 1.97987  0.95680

3



TABLE 6-6. Calculated values of A and ¢ for various thicknesses d of a
film of refractive index n, = 2.50 on a substrate Qf refractive index

ng = 3.460 and extinction coefficient k3 = 3.250, The wavelength A is

5461 Angstroms and the angle of incidendedj_is 70 degrees. The "pseudo

optical constants" 55 and k3

these angles A and § are also given in the table.

and normal reflectivity R calculated from

{E) (deggees) (degiees) ﬁb RB ) R
0.00 132.769 26.538 3.46000 3.25000. 0.54555
5.00 131.365 26.595 - 3.35270 | 3.22787 0.54331
10.06 129.967 26.653 " 3.24943 3.20313 0.54100
15.00 128.574 26.713 3.15007 | 3.17606-| 0.53863
20.00 127.187 26.775 3.05453 3.14696 0.53618’
25.00 'l25.806 26.839 2.96269 3.11607 0.53367
35.00 123,062 26,972 2.78962 3.04983 0.52844
50.00 118.993 27.184 2.55468 2.94216 0.52007
75.00 | 112.342 27.576 2.22058 | 2.75025 | 0.50478
100.00 105.865 28.020 1.94576 2.55345 0.48788
125.00 99.571 28.5&2' 1.71755 2.35921 0.46952
150.00 93.469 29.094 1.52535 2.17144 0.44995
200.00 81.848\q 30.526 1.21475 '1.82070 - 0.40888
250.00 70.948 | 32.569 0.95474 1.49841 0.37046
300.00 60.385 35,734 0.68928 1.17470 0.34875
400.00 30.420 48.905 -0.68434 0.19310 | 20.99105
500.00 -39.842 49.576 0.50745 0.42754 0.17326




EXTINCTION

MAXINUM

MATE- | RE- ~RATIO | OXIDE FILM~ FREE
RIAL | FRACTIVE | GOEFFICIENT | . | INDEX [THICKNESS |  NORAL
INDEX ng ky 37" |, d (R) REFLECTIVITY
Si 4.050 0.0%8 0.00691 | 1460 | 235 0.36473
GaAs | 3923 0.304 007743 | 1930 2 0.3509
Ge | 5000 1030 0.38703 | 1500 11 0.49749
msb |4l | 2.0 05046 | 180(n | 10 045787
Ta | 3500 2.040 0.60724 | 2.260 5 0.46572
W] 3460 3.250 09931 | 2.500 3 0.54555
Mo | 3610 3610 101662 | 158()| 25 0.58411
CFe | 33% 3880 | Lu627 | 2.%0 4 0.60200
A | 0.2 2.295 600785 | 130 | 5 0.78710
T X 5.990 7.30888 | 1660 50 0.91631
Az | 0.085 3.32 6036363 | 150 | 215 0.98187

Thickness is determined by 0.1 percent deviation in normal reflectivity

from the film-free surface value of normal reflectivity.

TABLE 6-7.Calculated maximum thickness for which constant reflectivity

method of determining substrate optical constants ng and k3 is valid.

.,

a0 -
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reflectivity for oxides of order of several hundreds of Angstroms in thickness.
Our metho& does not suffer from this fault. In addition, we need
only study one film thickness in order to make an.estimate of the optical
constants of the substrate. We need not assume that the optical properties
of two films of different oxide film thickness be the same. For example, we
have seen the variation in oxide extinction coefficient with oxide £ilm
thickness that Vedam et al would, of necessity, omit. Finally, our method
does not lead to a direct error in k, from an error in n, as the constant

3
reflectivity does.
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APPENDIX I

Derivation of the Wave Equations

The fundamental equations governing the prOpagation of electro-
magnetic waves in a medium are the Maxwell equationszz. These can be summar-
ized as follows:

Coulomb's law

v.D = bop . (eq. I-1)
This describes the production of a displacement current density D from a
free charge p.

Ampere's law

oy

9

l,

VxH-=

[

> _ b4 > 1
- + = (eq. I-2)

Qo
rt
.

This describes the production of a magnetic field H from a current density Kj
and a displacement current density D.

Faraday's law . -

E—E . (eq- I"3)

VxE =
x &= t

II
(e (o

This describes the production of an electric field E from a magnetic induction -
-
B.

Absence of free magnetic poles

V.B=0 . (eq. I-4)
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For isotropic, homogeneous, linear dielectric media, the displacement
current density, 3, current density, 3, and magnetic induction, ﬁ, are
related to the electric field, E, and magnetic field, ﬁ, by the following

relations:

D=c B , (eq. I-5)
J=06%E (eq. I-6)
and B = u i (eq. I-7)

In the absence of free charge, the equations describing the wave propagation
in the isotropic, homogeneous dielectric medium simplify. These simplified

Maxwell equations are:

V.E= 0 , . v (eq. 1I-8)
VxB= %§'2~%'+ 4T:° E ‘, (eq. I-9)
g .
VxE-= %%-%—% . (eq. I-10)
and v-B=0 . | (eq. I-11)

Taking the curl of both sides of eq. I-10 gives

1 5 B
Vx(VxE)=—E-VXr£
==13 3
=<3 (V x B)

V(O *E)-V+(VE) .
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Applying eqs. I-8 and I-9 for time independent permittivity and conductivity

gives the result

2

2 > 3°E  4muo 3 B -
¢ ot ¢ 9dt

In a similar way, the wave equation for the magnetic induction can be obtained
by taking the curl of eq. I-9 and substituting eqs. I-10 and I-11 into the

resulting expression.

-



APPENDIX II
iNVERSION OF THE TRANSCE&DENTAL ELLIPSOMETRY
EQUATIONS
Referring to chapter II, we start with equation 2-16 and definition

equation I-12:

w - Lcos 2@ - 4 sin 2@ sinh"
n,.sing,.tan¢, 1 + sin 29y cosd
= (eq. II-1)
nl.sin¢1.tan¢l

The complex expression under the square-root sign is written in Euler form
as t.exp-2jQ, so that:
2 2 2 2 . .
n3 k3 - nl.sin ¢l - 23.n3.k3 t.exp 2jQ
= t.(cos2Q - j sin 2Q) (eq. II-2)

This requires that:

2 .2 2 2, 2 2

_af 24 4 4 4 2 - 2.2, 2 .2
«/ n3\+ k3 + nl.sin ¢l + 2n3.k3 2.(n3 k3).n1.51n ¢l

(eq. II-3)

Also:

(eq. II-4)



Now /\/t.exp-2jQ =,\[E'.exp-jQ
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=.JE~.(cosQ -jsinQ)

Applying this result to equation II-1:

JE: (cosQ =jsinQ) _ cos 20 - 4§ sin 20 cosA

(eq. II-5)

nl.sln¢l.tan¢l 1l + sin 2¢ cosA

(eq. I1I-6)

Separating into real and complex parts yields:

A. Real part:

«f; . cosQ - cos 2@

n1.51n¢1.tan¢l 1 + sin 2y cosA

B. Complex part:

dz—.sinQ - sin 25 cosA

nl.sintbl.tanq)l 1 + sin 29y cosA

-

For simplicity we now define:

(eq. II-7)

(eq. II-8)

2 .2 2 2
--2.(n3 k3).nl.sin ¢1

ten P = n si:E' tan
18109, - tand,
4 4 4 4 2.2
=,®/ n3 + k3 + nl.sin ¢1 +2.n3.k3
nl.sin¢l.tan¢l

(eq.1I-9)



so that equations II-7 and II-8 reduce to:

cos ZE

1 + sin 2y cosA

tan P cos Q = (eq. II -10)

sin ZE sinA

1 + sin 2y cosh

tan P sin Q = (eq. II-11)

Squaring these last two equations and adding gives:

2 COSZZE + sin22ﬁsinzz

tan'P = - T}
(1 + sin 2y cosA)

(eq . II"'J.Z)

- a+ sin2$cos§)2 - coszzﬁ + sin22$sin25
(1 + sin 29 cosZ)2

Hence 1 - tanzP

_ 1+ 2sin2y cosA + sin22$ (coszz - sinZZ) -cos%gﬂ
(1 + sin 2$cosZ)2

Combining the first and last term in the numerator, since

- c0322$ = sinZZ@ , ylelds:

| o

1 - tanzP 2 sin 2y cosA + sinfzﬁ.(} ; cdszz -sinZZ)
(1 + sin 2y cosA)

2 sin 2V cosZ.(l + sin 2y cosA)
(1 + sin 2@ cosZ)2
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1 - tanzP _ 2 sin 29 chA .
(1 + sin 2ycosd)

Dividing equation II-11l by II-13 gives:

tan P sin Q _ sin 2y SinA_ = 1/2 tanA

1- tan?P 2 sin 2$cosA

Or: tan-A- = _.g_tép.__z._.

1 - tan™?P

. sin Q@ = sin Q tan 2P..

(eqn II-13)

This is the inverted equation for the phase change & where the angles P and

Q are defined by equations II-9 and II-4 respectively. The azimuth can be

solved by starting with equation II-10 in the form:

cos 29 = tan P cos Q .(1 + sin2y cosh)

2.tan P cos Q.(1 + sin 2@,cosZ)2

2 + 2 sin 2y cosA

2 tan P cos Q .(1 + sin 2¥ cosZ)2

1 + (coszza + siqzza) + 2 sin 2y cosA

2 tan P cos Q .(l + sin 2% cosZ)2

c0322$ + sinZZ'IIJ.(sin2

2 tan P cos Q (L4 sin 20 cosK)2

A+ COSZZ) + 1 +2 sinZE cosh

coszza + sinzqusin2

- 2 tan P cos Q
(c0522$ +'sin22ﬁ sinZZ) + 1
(1 + sin 29 cosl_s)2

B+ 1+ 2sin 2} cosh + sin22$ cos

23

(eq. II - 15)
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However the first term in the denominator of equation II-15 is exactly tanzP—--

see expression II-12. Making this substitution in II-15:

2 tan P cos Q _ 2 tan P cos Q

tanzP + 1 sec2 P

cos 2y =

2 sin P cos P cos Q

sin 2P cos Q ‘ (eq. II-16)

to summafize, the inverted equations are:

tanA = sin Q tan 2P (eq. II-14)
cos 2y = cos Q sin 2P ' (eq. II-16)
where: 4 4. & 4 2 2 2 2. 2 2.
D . 4 ng + k3 + n,.sin ¢lv+ 2.n3.k3 —2.(n3~k3).nl.sin ¢1

nl.sin¢l.tan¢l

(eq. II-3)

(eq. II-4)
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