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PREFACE 

In recent years several studies have been made 

of phrase-structure grammars with rewriting methods 

which are "parallel" in that more than one rewritinq 

rule is applied at each derivation step. This parallel

ism greatly increases the generative canacity of context

free nroductions in the case of scattered context lang

uages as defined by Greibach and Hopcroft 2], and simple 

matrix languages, tu?le languages and equal matrix 

languages as defined by Ibarra [ 4], Kuich and Mauer ( 5], 

and Siromoney [10] respectively. The absolutely parallel 

grammars of Rajlich [ 6] generate a smaller class of 

languages than the context-free lanquaqes. Rozenberq 

and Doucet [ 7] have studied 0-L systems which em?loy 

parallel rewriting without terminals. 

This thesis arose from the notion of placing 

a "k - at a time" restriction on 0-L systems. In 

the nresent form it is more closely related to [ 4 ] , 

[ 5 ] and tl 0 1 • 

Chapter 1 qives preliminary definitions and 

states some well-known results from Language Theory. 
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Proofs of these may be found in Hopcroft and Ullman 

[ 3 ] , or in Salonaa [ 9 ] • 

In Chapter 2 we define k-parallel right linear 

grammars and study the properties of the families ~ k 
which are qenerated by them. In §2 we show that the 

families £ k form a proper infinite hierarchy of 

language families. In §4 we consider closure properties 

of these families and give a characterisation of each 

by a simple language and non-deterministic generalised 

sequential machine mappings. In §5 we consider k-parallel 

left-linear lanquages and in §6 the decision properties 

of the families ~k. 

Chapter 3 is devoted to giving a new character-

isation of k-right-linear simple matrix languages by 

k-parallel right-linear languages with a control device. 

As far as the author knows, the families i 
k 

are new, s o all of Chapter 2 is original, although some 

of the proofs are standard. Except for Theorem 3.5 

which was pointed out by Seymour Ginsburg [1], Chapter 3 

is also new material. 
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CHAPTER 1 

INTRODUCTION 

§1. LANGUAGE AND GRAMMAR. 

A non-empty finite set is called an alphabet 

or vocabulary. Elements of an alphabet are called 

letters or symbols. If V is an alphabet we denote 

bv V* the free monoid generated by V. Elements 

of V* are called words or strings of symbols. The 

operation in V* is called catenation and is denoted 

by ju.-taposition i.e. if x, yeV*, their product is 

written xv. ~he neutral element of V* (which is 

the string with no svmbols) is called the empty word 

and is denoted by c . We denote by v+ the set 

V* - { E} • If x, V E V*, then y is a subword of X 

if there exist z, w EV* such that X = zyw: if z = E 

then y is an initial suhword, and if w = E then 

y is a final subword. If x ES V* then the mirror 

iMage of x, denoted mi(x), is the element of V* 

obtained by writing x backwards e.q. if V = {a, b} 

and x = abab, then mi(x) = baba. By convention 

mi(£) = E. 
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We define a length function I - I : V*+ (N U { 0} 

by ( i) I €: I = 0, I a I = 1 for all a E V 

(ii) lxyl = lxl + lvl for all x, yEV* . 

Intuitively, the length of a word is just the number 

of symbols occurring in it. 

Let V be an alphabet. A language over V 

is a subset of V*. A family of lanquaqes is a pair 

o: , t> where :tl: (I:) = oo and ;( is a family of subsets 

of I:* satisfvinq 

( i) there exists L E J: such that L :1 <P. 

(ii) for all L E £ there exists I:L ~ I: with 

~(I:L) < oo and L ~ I:t· 

In the sequel we will speak of a family of languages 

without mentioning the first component of the pair. 

Given a family of lanquaqes oe it is natural to 

ask if ;( i s closed under operations which can be 

defined on £: For example, since the members of 

are sets, we can ask if, qive n L1 , L 2 E £ , whether 

L 1 U L 2 , L 1 f\ L 2 and r... 1 - r~ 2 are in £ . We now define 

several language-theoretic operations: 

(1) the catenation (or product)of two languages Ll 

and L2 is defined by L1L2 = {xy I x t.. L1 and y E L2 } 
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(2) for a language L we define L~ i > 1 to be 

the language obtained by catenating i copies of 

L (catenation is associative!), and Lo = { e:}. 
co 

Li. The catenation closure of L is L* = u 
i=O 

(3) the left g:uotient of a languaqe Ll by a language 

L2 is defined by L2'\Ll = {x lvx e L1 for some 

y E. L2}. The right quotient is similarly defined: 

Ll/L2 = {xrxv <::L1 for some y E L2 }. 

(4) the mirror image of a language L is the collection 

of mirror images of its words i.e. mi (L) = {mi (x) lx €. L} 

(5) let V be an alphabet and for each a ~v, let 

Va be an alphabet. Let cr(a) be a language over 

v for each a E. V. Define cr(e:) = { e:} and a 

cr(xy) = cr(x)a(y) for x, y E: V* • Lettinq v = u 
a~ V 

a defines a mapping of V* into 2 v* which is 

called a substitution. For a language L over V 

we define cr (L) = {x lx GO (y) for some y E. L}. A 

family of languages ~ is closed under substitution 

if whenever L E £ is a language over V and cr 

is a substitution such that cr (a)~ f for all a f V 

then o (L) E £ . 

v a' 
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(6) a substitution such that #(cr(a)) = 1 for all 

a E V is called a homomorphism. (Thus a homomor-

phism maps V* into V* and is a homomorphism 

of free monoids.) 

We will define other closure operations below. 

We now define the four basic types of phrase-structure 

grammars and the associated language families. 

DEFINITION 1.1: A generative qrammar (of 

Type 0) is an ordered quadruple G = (N, T, s, P) where 

N and T are disjoint alphabets, S E. N and P is a 

finite set of pairs (u, v) such that u t: (N uT) *N (N u T) * 

and v E: (N u T) *. 

Elements of N are called non-terminals, 

elements of T are called terminals and s is called 

the sentence symbol. Elements (u, v) of P are 

called rewriting rules or productions and are written 

u+v. 

DEFINITION 1.2: Let G = (N, T, S, P) be a 

generative qrammar. We define a binary relation = > c; 

("yields") on (NUT)* by .x (f'Y iff there exist 

x1 , x 2 , u, v E:(NUT)* such that x = x 1ux 2 , y = x 1vx 2 

and u+v€ P. We denote by * + = > (= >) 
G G the reflexive, 

transitive closure (transitive closure) of ~> 
G 

i.e. 



* x==>y iff either (1) x = y or (2) there exist 
G 

such that 

1 < i < n 

x = x 0 , y = xn and 

+ (x~~>y iff 2 holds). 

When no confusion can arise we will write 
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simply * + = > (= >, =--,o>) instead of * . + 
-=G=> ( - G··> ' -=>) G . Ne 

note that later in this chapter, and especially in 

Chapters 2 and 3, the symbol ==> will have different 

meanings as different types of grammars are defined. 

The distinctions should be clear from the context. 

A derivation by G, where G = (N, T, s, P) 

is a generative qrammar is a finite sequence 

D : Q O , 0 l , ••• , On ( n ~ 0) 

1 < i < n. 

satisfvinq (), -==>Q. 
r-1 G 1 

-< 

DEFINITION 1.3: Let G = (N, T, S, P) be a 

generative grammar. The language generated by G is 

* L ( c;) = { x E. T* IS·-c;>x} • 

Aqain, as several types of qrammars are intro-

duced below, the notation L(G) will take on several 

meanings, hut its meaninq will always be clear from the 

context. We say two generative grammars G1 and G2 

are equivalent if L(G1 ) = L(G2). We denote by £ RE 

the family of languages generated bv qenerative qrammars 
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of Tyoe 0 and state 

THEOREM 1.1: ;(RE equals the family of 

recursively enumerable sets. 

DEF-INITION 1.4: A generative grammar 

G = (N, T, s, P) is context-sensitive (or Type 1) 

where XE.N, x 1 , x 2 , y E:(NUT)* and y 'I e: with the 

possible exception of the production s~e: whose occur

rence in P implies that S does not occur on the 

right side of any production in P. 

A lanquage L . is context-sensitive if there 

exists a context sensitive grammar (csq) G such 

that L = L(G). We denote the family of context-sensitive 

languages by ~ cs = {LIL = L(G) for some csq G}. 

DEFINITION 1.5: A context-free grammar (or 

Type 2 grammar) is a generative grammar G = (N, T, s, P) 

such that for each production u~v € P we have u EN. 

A language L is a context-free language 

(cfl) if there exists a cfg G such that L = L(G). 

We denote the family of context-free languages by 

£cF· 

Since the application of a rewritinq rule in a 
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a derivation by a context-free grammar depends only 

on one non-terminal (independent of context - hence 

the name) we can assign a derivation tree to a deriva-

tion by a cfg. A tree is a directed qraph satisfying 

(1) there is exactly one node (the vertex) which no 

edge enters. 

(2) there is exactly one path from the vertex to each 

other node. 

A derivation by a cfg is leftmost if at each step the 

leftmost non-terminal is the one replaced. It is easy 

to show that every word in the lanquaqe generated by a 

cfg has a leftmost derivation. To a leftmost derivation 

by a cfg 
. ,, . . 

it is possible to assiqn a un1que der1vat1on 

" tree. We give an example to illustrate this process. 

EXAMPLE 1.1: Let G = ({S, X, Y}, {a, b}, S, P) 

where P contains: 

s~xY 

x~xxlaYia (we use this notation as an abbreviation for 

x~xx, x~aY, x~a> 

Y~b 

G is clearly a cfg. Some sample leftmost derivations 

by G are: 



(1) S:=---=>XY= >aY= >ab 

(2) S==>XY==>XXY==>aXY==>aaYY==>aabY==>aabb. 

The tree associated with (1) i s 

s 

a 

FIGURE 1.1 

The tree associated with (2) is: 

s 

FIGURE 1.2 

b 

b 

b 

8 
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Note that the ''leaves" (the nodes from which 

no edges emanate) are labelled by terminals, all other 

nodes are labelled by non-terminals, and the vertex i s 

always labelled by s. The word qenerated can be read 

from the leaves from left to right. 

DEFINITION 1.6: A right-linear grammar (rlg) (regular 

grammar, Type 3 qrammar) is a context-free grammar 

G = (N, T, S, P) such that if X-+-x E P then x ~ T*N U T*. 

A language L is a regular language (regular set, finite

state language) if there exists an rlg G such that 

L = L(G). We denote the family of reqular languages 

by ;C Regular languages have been characterised REG" 

in many ways. We give one which will introduce useful 

notation for the sequel. 

DEFINITION 1. 7: Let T and V = { u, *, <P , ~ (,)} 

be disjoint alphabets. A word over T UV is a regular 

expres~ion ove~ T if 

( 1) x E. v or x = cp , or 

(2) x is one of the forms (y v z), (yz) or y* where 

y and z are regular expressions over T. 

Each regular expression x over T denotes a 

lanquaqe l(x) accordinq to the followinq conventions: 
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(1) the language denoted by ~ is the empty language. 

(2) the language denoted by a~ T is {a}. 

(3) for regular expressions x and y over T, 

t (X U y) = R. (X) U R. ( y) 1 R. ( ( XY n = R. '(X) R. ( y) 1 R. (X* ) = t (X) * • 

It is well known that a language is denoted by a regular 

expression iff it is regular. 

A cfg G ~ (N, T, s, P) is left-linear if 

X+x E P implies x E NT* v T*. The family of languages 

generated by left-linear grammars is ~REG" Given 

a rlg G = (N, T, s, P) we say that a non-terminal Y 

is reachable from a non-terminal X if there exists 

a derivation by G D• X = Q c-=-o>Q ~> = >O = yY · ·o ·1 • • • ·n · 
where 

n > 1 .and y E: T* • 

We use the notion of regular set to define a new 

closure operation. A family of languages of is closed 

under intersection with a regular set if whenever L E: £ 

and R E £REG tnen L 0 R f £ . 

The four families of languages we have defined 

are called the Chomsky Hierarchy and play a f undamental 

role in language theory. They are linked by: 

THEOREM 1.2: t REG ~ -;{ CF 'I L cs 'I i RE. 
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The lanquaqe families of the Chomsky Hierarchy 

are obtained by restricting the form of productions. 

It is also possible to restrict the manner of genera-

tion allowed. Several types of 'regulated rewriting ' 

have been defined. We now introduce a type of restricted 

derivation which will be used in the sequel. 

Consider a grammar G = (N, T, s, P) with 

production set P. A labelling of productions is a 

one-one correspondence Lab: P-->Lab(P) where Lab(P) 

is an alphabet. To each derivation by G there corr-

esponds a control word over Lab(P) consisting of the 

labels of productions applied in D in the order of thei r 

application. The language generated bv G with control 

languaqe C is the subset of L(G) which consists of 

words havinq a derivation with a control word in C. We 

denote L(G, C)= {x€.T*I 3 a derivation * D: S= >x 

and u E. C such that u is a control word of D}. 

The study of grammars with control lanquaqes has 

been mainly restricted to the case where C is a regular 

lanquaqe. It can be shown that if G is of Type 0, 

context-sensitive or regular then L(~, C) (where C 

is a regular set) is also Type 0, context-sensitive or 

regular respectively. We shall have occasion to use 

the last case in Theorem 2.12. In fact the most inte r-

estinq case of grammars with control lanquages are context-
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free qrammars, for in this case the qenerative capacity 

is qreatly increased by the addition of a control languaqe. 



§2. ACCEPTERS AND MACHINES. 

In this section we define the language accept-

inq and translating devices which we will use in 

Chapters 2 and 3. 

(fsa) 

DEFINITION 1.8: A finite state accepter 

is an 5-tuple M - (0 r o q 0 ) where - - , , , 0 , _.,.. 

Q and r are finite non-empty sets, o: Q x !-->Q, 

We call Q the set of states, r the input 

alphabet, o the transition function, q 0 the initial 

~ and QF the final states. We can extend o to 

o* defined on Q X !* by 

(i) o*Cq, e:) = q for all q€0 

( ii) o*(q, x) = o*(o*Cq, y) , a) for all qEQ where 

ya = X E! + and a E r. 

The lanquage accepted by ~-1 is T (M) = {x E L'* I 
o*(q0 , x)E QF}. We denote the family of languages accepted 

by f.sa' s by £ f.sa. 

DEFINITION 1.9: A nondeterministic finite state 

accepter (nfsa) is a 5-tuple M = (Q, r, o, q 0 , OF) 

where Q, r, q 0 and QF are as in Definition 1.8 and 

O: Q X !->2Q• 

- 13 -
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Again, o can be extended to o* defined on 

Q x r* and the language accepted by an nfsa M is 

defined by T (M) = {x E. T* I o *'{q0 , x) (')OF #4>l. The family 

of languages accepted by nfsa's is denoted by nfsa· 

The result linking these two language families to the 

Chomsky Hierarchy is 

THEOREM 1 • 3 : ~ f = f f = __/) • sa n sa ~REG 

If L is a language over T, we denote 

F(L) = {a E: Tlax E L for some x E. T*}. If L is a 

regular lanquage specified by an fsa, regular qrammar 

or regular expression, there is an alqorithm to find 

F.(L) . 

In §2 of Chapter 2 we will qive a qeneralisa-

tion of the following well-known theorem on regular sets. 

THEOREM 1.4: (Iterating Factor Theorem) Let 

L he a regular set. There exist natural numbers p and 

q such that if X EL and lxl > p then X= UVW with 

q > I vi > 0 and for all i > 0, uviw € L. 

DEFINITION 1.10: A nondeterministic generalised 

sequential machine (ngsm) is an ordered 6-tuole 

s = (0, r, 6, o, q 0 , QF) where o, r. and 6 are 

alphabets, q
0

E: Q, QF<; Q and o: o x r->2Qx 6* 

(finite subsets only). 
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We call 0 the set of states, E the input 

alphabet, /). the outEut alphabet, ~ the transition 

function, qo the initial state and OF the final 

states. As for fsa's and nfsa's, ~ can be extended 

to 0 X E*. For x E E* we denote 

S(x) = {yEfl*l (q, y) E:.~*(q 0 , x) for some q£QF}. 

If L is a language over r we denote 

S(L) = {yE:6*IY E.S(x) for some xEL}. We call S(L) 

an ngsm mapping. If ~ is a family of lanquages, then 

~ is closed under nqsm mappings if whenever L £ £ 
and S is an ngsm, then S (L') E £ 

We also note that an ngsm can also be defined 

as a 7-tuple s = (Q, r, 6, ~, ~, qo, QF) where 

Q, r, 6, qo and OF are as above, and ~: Q X r->Q 

and ~: Q X E->2 6* (finite subsets only). In this 

notation S(x) = {y~6*ly£~*(q0 , x)} and S(L) is 

as above. We shall use whichever formalism is more 

convenient in the sequel. 

DEFINITION 1.11: A push-down accepter (pda) is 

an ordered 7-tuple M = (Q, r' r, 0, qo, ZO' QF) where 

Q, r and r are alphabets, qo E: o, z 0 E. r, OF <;; Q and 

0: Q x(EU{e:})x r~2oxr* (finite subsets only) • 
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We call Q the set of states, E the input 

alphabet, r the set of pushdown symbols, o the 

transition function, q 0 the initial state, z0 the 

bottom of pushdown marker, and Q the final states. 
F 

A configuration of a pda M is a pair (q, y) 

where q €. Q and y £ r * . If a E ( r u { e: } ) , y , y I ~ r * , 
z E..r, and (q 1

, Y 1 )E. o(q, a, Z) then we write 

a: (q, Zy) I- (q 1
, y 1 y). We can extend this notation in 

the obvious way to cover strings of symbols over 

* and we then write x : ( q, y) f- ( q • , y 1 
) for x 

a word over r v { e: } , q, q 1 E. Q and y , y 1 f:. r * • 

For a pda M we defined the language accepted 

{xEE*!x: * by final state to be T(M) = <qo' zo> l- (q, y) 

for some q Ec OF, yf: r*L We denote by oC pdl the 

family of languages accepted by final state by a pda. 

For a pda M, we define the lan~uage accepted 

{xE.E*Ix: * by empty store to be N(H ) = <qo, zo> 1- (q, E: ) 

for some q € Q}. We denote by £ the family 
35 

of languages accepted by empty store by a pda. We have 

the follm<~ing theorem linking these two types of acceptance 

by pda 1 s and the Chomsky Hierarchy. 

THEOREM 1.5: -P d = -P = r£ c'C'· 0\... p a ~ es - r: 
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Before we go on to the study of parallelism 

and regular grammars we make one more remark. The proofs 

in Chapters 2 and 3 involve many constructions of new 

grammars and machines from given ones. In these con

structions new symbols are added to qiven alphabets, 

and new symbols are constructed from old ones. We make 

the convention that any new symbols introduced are 

really ~ symbols i.e. they do not occur in any alphabet 

already given. In addition, abstract symbols will often 

be introduced as pairs of members from qiven alphabets. 

We use square brackets instead of round brackets for 

convenience of. notation and to aid the reader e.q. given 

alphabets X and Y we form the new alphabet 

X X y a { [x, y] I X t X, y €: y} • 



CHAPTER 2 

k-PARALLEL RIGHT LINEAR LANGUAGES 

§1. INTRODUCTION 

In this chapter we introduce the notion of 

k-parallel right-linear grammar and study the families 

of languages generated by them. These grammars differ 

from conventional phrase-structure grammars in that k 

productions are applied at each derivation step with a 

resulting increase in generative capacity. 

DEFINITION 2.1: For k£~ , a k-parallel right

linear grammar (k-rlg) is a 5-tuple G = (N, T, S, P, k) 

where 

(1) (N, T, S, P) is a context-free grammar 

(2) S-f?C E: P implies x € Nk LIT* 

(3) X-+x € P and X# S implies X E T*NVT+ 

(4) X-+xEP implies x # ysz for all y, zE.(NUT)*. 

Points (2) and (4) of the definition mean that 

productions from S generate k non-terminals or a 

terminal word and that S can never appear on the right 

side of a production. Point (3) means that all other 

- 18 -
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rules are right-linear rules. 

DEFINITION 2.2: Let G = (N, T, S, P, k) be a 

k-parallel right linear grammar. The yield relation 

is defined on (NUT)* X (NVT)* by X =>y G . 

and X. +z. E: P 
l. l. 

for i = 1, 2, ••. , k. 

* + ===>( ===>) is the reflexive, transitive closure (transi-G G 

tive closure) of ,.,.,.,.,. > 
G 

When no confusion can arise we will write => 
G 

simply as => .. 

DEFINITION 2. 3. A language L <.: T* is called a 

k-parallel right-linear language (k-rll) iff there exists 

a k-rlg G = (N, T, S, P, k) such that L = L(G) = 
* {x E. T* Is G-->x}. We denote {.__ k = {LI L is a k-rll and 

00 

[___ = u f_ k" 
k=l 

EXAMPLE 2.1: Consider the 3-rlg G3 = 
({S, X, Y, Z}, {a, b, c}, s, P, 3) where P contains: 

S+XYZ 

X+aXIa 

Y+bYib 

Z+cZic. 

Some examples of derivations by G3 are: 



S=>XYZ=>abc 

S==>XYZ==>aXbYcZ==>a2b 2c 2 

S==>XYZ==>aXbYcZ==>a2Xb2Yc 2 Z==>a 3b 3c 3 • 

20 

From these it should be evident (and it is easy to show 

by inductio~ that L(G3) = {anbncnln > 1}. This lanquage 

is context-sensitive, but it is not context-free. 

EXAMPLE 2.2: Consider the 2-rlq 

G = ( { S , X, Y, W, Z} , {a, b, c, d} , S, P, 2) where P 

contains: 

S+XY 

X+ax!xlzla 

Z+bZ I b 

Y+cYIW 

W+dW !d. 

Some sample derivations by G are: 

S==>XY~>aXcY==>aZcW==>abcd 

S==>XY==>aXcY==>a2XcW~>a 3cd 

S==>XY~>aXW==>aZdW==>abd2 • 

Again an induction shows that 

L (G) = {xy I x € a*bb* v aa*, y E c*dd* and 

I xI ~ I Y I i f x € a *bb*, I xI < I y I + 1 if 

x ~ aa*}. 
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L(G) is context-free (as are all 2-rll 1 s, see 

Lemma 2.7) but is clearly not regular. 

LEMMA 2.1: The family of regular languages 

equals ;:_ 1. 

PROOF: First, it is clear that any language 

in f._ 1 is regular since it is generated by a context

free grammar with only right-linear productions. Next 

let L ~ T* be a regular language and G = (N, T, s, P) 

be a right-linear grammar for L. If P contains no 

productions of the form X+E then 

G1 :: (NU{S 1
}, T, S 1

, PU{S 1 +S}, 1) is a 1-rlg for L. 

Otherwise1 we construct G2 = (N2 , T, S 1
, P2 , 1) where 

N2 = NU{S 1 }U{XalX€N, acT}. For each XEN let 

L(X) be the regular language generated by GX = (N, T, X, P) 

and recall that we can. decide if E E L (X) or not. P 2 

contains: 

( 1) s 1 +S, and S 1 +E if E E:. L 

(2) X+y'J if X+yY €P, yeT*, X, Y E:N . and E ¢L(Y) 

1. It is well known that every regular set can be generated 

by a right-linear qrammar without E-rules. We qive a 

construction to show this fact in order to introduce the 

notion L (X) , for X EN (see Theorem 2. 3 and Theorem 

2.12) and to give an example of a type of construction 

used in Theorem 2.11 and Theorem 3.3. 



(3) X+yY if X+yaYE'P, yeT*, aET, X, YEN and a 

(4) 

(5) 

€ E L (Y) 

X +Y a a 

Xa+ayYb 

if X+Y E P, X, Y E. N, for all aE:.T 

if X+ybY E P, y E T*, bE T, X, Y, E N and 

€ € L (Y) , for all a E T 

(6) Xa+ayY 

for all 
I 

(7) Xa+ay 

(8) X+y if 

if + X-+-yY € P , y E T , X , Y ~ N and 

aET 

if X+y E P, y € T*, X EN 

+ X +y E P , y € T , X E N. 

for all aET 
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G2 imitates derivations by G. When G2 detects 

that the corresponding G-derivation may end without 

further deposit of terminals, it attaches the last symbol 

which is deposited by G to its non-terminal (point 3) 

as a subscript. This terminal is carried along (4) and 

is deposited when the €-rule would be applied in the 

corresponding G-derivation (7), or, i if a non-trivial word 

could also be generated, before the next deposit of term-

inals takes place in the corresponding G-derivation 

(5 and 6). Note that the new sentence symbol guarantees 

that initial productions will be of the correct form 

for G2 to be a 1-rlq. Now L = L(G2 ) so each reg

ular set is in ~l and we are done. 

LEMMA 2. 2: Given a word x E:. T*, there is an 

algorithm to decide if x E L (G) where G = (N, T, S, P, k) 

is a k-rlg. 
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PROOF: By the definition of k-rlg it is obvious 

that E E L (G) iff the production S-+E is in P. Thus 

we may assume x + E and consider sequences of the form 

(1) 

where n ~ 1, yi are pairwise distinct words over 

N u T and for 0 < i < n - 1 we have I Y i I 2 I Y i+ll • 

Clearly the number of such sequences is finite. Moreover 

x E L (G) iff for some sequence (1) we have 

Thus it suffices to check, for each of th~ finitely many 
' 

sequences (1), whether or not (2) is sati~fied. This can 

be done since for any two words and and a k-rlg 

G we can decide by checking through productions of G 

whether or not z 1~> z 2 holds. 

The essential point i n the proof is that we may 

assume lv I < lv I for 0 < i < n - 1 since k-rlg's . i - . i+l . 

are 'length-increasing'. Lemma 2.2 means that the 

'Membership Problem' is decidable for k-rlq's. We will 

make extensive use of this fact. Other decision problems 

are considered in §6. 



§2. THE INFINITE HIERARCHY AND RELATED RESULTS 

In this section we show that the families 

~k form an infinite proper hierarchy of lanquage 

families and present results relatinq these language 

families to the Chomsky Hierarchy. 

THEOREM 2. 3. For all k ~ 1 , t'k <;: Lk+l • 

REMARKS: The proof of this theorem is quite 

involved, but the idea is simple: a derivation by a 

k-rlg is mimicked by a derivation of a constructed 

k+l-rlg which uses one of its "slots" to deposit only one 

letter of the word in question. We recall that for a 

regular language L s;T* the set F (L) = {a E. Tl3 x e T* with 

ax € L 1 can be found effectively. 

PROOF: Let L E .(.k and G = (N' T, s, P, k) 

a k-rlg such that L = L(G). We construct a k+l-rlq 

r,l = (N I , T, s, pI t k + 1) where Nl = NV {[X, a] I X EN, 

a E.T}U{YalaE T}. Let m = maxflxiiX+x E p}. P' contains: 

(1) S+X1 ••• Xi-lYa[Xi' a]Xi+l"""Xk if S+X1 ••• XkEP, 

Xi E: N, 1 .::_ i .::_ k, and a E: F (L (Xi)) • 

( 2 ) S+x if S+x € P and x E T* • 

- 24 -
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(3) S+x if X €.L(G) and lxl <km (this step is 

okay by Lemma 2 .2). 

(4) Ya+Yala for all a € T. 

(5) X+yY if X+yY E. P, X, Y E N, y E: T* • 

(6) X+x if X+x € P, X € N, x E. T* • 

(7) [X, a]+[Y, a] if X+YEP, aET and X is reachable 

by a sequence of chain rules from a non-terminal 

occurring on the right side of an initial production. 

(8) [X, a]+yY if X+ayYE:P, X, YE:N, yE.T*, aET. 

G' is clearly a k+l-rlg. We now give a descrip

tion of the operation of G': 

(i) all words in L(G) of length <km are generated 

by initial productions from S (point 3). 

(ii) if a word of length >km is to be generated non

trivially by G, at least one non-terminal on 

the right of an initial production must lead to 

at least two deposits of terminals. (This allows 

proper operation of 7 and 8). The productions of 

1 allow G' to pick one such non-terminal. Pro

ductions from 3, 5 and 6 allow the derivation by 

G' to procede essentially as it did by G except 

for the presence of a Ya. The non-terminal to the 

immediate right of the Ya keeps track of Ya until 
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the first deposit of terminals ( 7) • If the first 

terminal deposited by Gx. 
l. 

in the G-derivation is an 

"a", then all terminals except "a" are deposited and 

generation now procedes as it did in G(8). When 

termination occurs the "a" is deposited in the correct 

place by Ya (4). 

We now qive a detailed proof that L(G) = L(G'). 

CLAIM 1: L(G) ~ L(G'). 

PROOF: Let XEL(G). If lxl < km then xEL(G') 

by construction. Otherwise I xI > km and S+x E P implies 

x ~ L (G') by (2) , or there exists a derivation 

D: S = 00~>01- G> ••• =a>Qn = x with n > 2. (By the defini

tion of m, the maximum possible lenqth of o2 is km 

and since lxl > km we know n > 2.) 

In the second case x can be factored x = x 1 ••• xk 

where x.E.L(X
1

.),1 < i < k. Also 

each x. 
l. 

can be factored 

l. l. -

x. = y2.y3 .••• y. l. l. l. - nl. where 

X. 1 k+yjix .. is the production applied to the i-th 
J- , Jl. 

non-terminal in Q. 1==>Q., 2 < j < n- 1 and X 1 .+y. 
J- J - - n- ,1 nl. 

is the production applied to the i-th non-terminal in 

0n-1=>Qn. Hence y .. E. T* 
Jl. 

1 < i < k, 2 < j < n - 1 and 

+ y. E.T' nl. 1 < i < k. 

For some i there exists a j < n such that 
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y .. ~ E for otherwise x could have length at most km. Jl. 
We fix such an i and let j be the least j such that 

y .. ~ Jl. E • Suppose y. . = ay .
1
., a E T, y .. E. T*. Jl. J Jl. 

Clearly 

a € F (L (Xli)). By 7 and 8, we have the following list of 

productions in P': 

G I: 

[Xli' a]+[X2i' a] 

[X. 2 ., a]+[X. 1 ., a] 
J- ,l. J- ,J. 

[X. l. a]+y .. X.i. J- ,J., . Jl. J 

Thus we have the following derivation for x in 

* ~>y2l···Yj-l,lxj-l,l···Ya[Xj-l,i'a]y2,i+l···Yj-l,kxj-l,k 

Thus x e L(G') and we have L(G) c L(G'). 

Claim 2: L(G') c L(G). 



28 

PROOF: If x E L(G') and S+x € P' then x E L(G) 

by construction. Otherwise there exists a non-trivial 

derivation for x by G' which must take at least 

three steps. This is because all non-terminating initial 

productions are of the form 1 • A non-terminal of the 

[X, a] type c an lead to termination only after applica-

tion of a production from 8 and a production from 6. 

This requires at least two steps after the initi al produc-

tion. Thus the derivation of x must have the form (I) 

above. Now by 7 and 8, the productions used in this 

derivation of x at the i + 1 - st non-terminal before 

the j-th step were constructed from productions of P 

to allow the following derivation of x by G (where x 

is factored as before): 

* = >Y21· • • Y · 1 lx · 1 1· • .x · 1 · lx · 1 · Y2 · +1" • • Y · 1 kx · 1 k J- , J- , J- ,1.- J- ,l. . ,l. J- , J- , 

= >y21···Y ·1x.l ••• x. 1 · lay .. X ..••. x.k . J J J- ,1.- - Jl. Jl. J 

* ==>y2l···Ynl···Yn,i-layji"""Yni···Ynk = x. 

Thus x € L (G) and L (G') S L (G). 

Claim 1 and Claim 2 qive L(G) = L(G'), so we have 
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EXAMPLE 2.3. Consider the 2-rlg 

G: ({S, A, B}, {a, b}, s, P, 2) where P contains: 

S+AB 

Evidently L (G) = {anbm lm > n > 1}. ll'le apply the construe-

tion of Theorem 2.3 to give a 3-rlg for L(G). First we 

note that F(L(A)) : {a} and F(L(B)) = {b}, and that 

m = 2 so km = 4. The set of non-t~rminals for the new 

grammar is 

N': {S, A, B, [S, a], [S, a], [S, b], [A, a], (A, b], 

The new production set P' contains (where numbers below refer 

to the construction in Theorem 2.3): 

(1) S+Ya[A, a]B, S+AYb(B, b] 

(3) S+abla2b 2 lab2 lab3 

(4) Ya+Yala, Yb+Yblb 

( 5 ) , ( 6 ) A+ aA I A I a , B+ bB I b 

(7) [A, a]+[A, a] 

(8) [A, a)+A, [B, b)+B. 

Now G' = {N', {a, b}, S, P',3} is a 3-rlg for L(G). 

We give some sample derivations by G': 



3 3 4 ==>Y aAb B=--->a b a 
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Our next result generalizes the iterating factor 

theorem for regular languages to 2-rlg's. First, however , 

some comments on derivation trees are in order. Since 

the grammar underlying a k-rlg is context-free we can 

attach a derivation tree to a generation of a word by a 

k-rlg. Since the form of productions is restricted and 

the manner of generation is "k-parallel" we can be quite 

specific about the nature of possible derivation trees. 

We first give examples to illustrate: 

Example 2.4. Using the grammar G3 from Ex. 2.1 

we have the derivation S *>a3b 3c 3 • The tree associated 

with this derivation is 

s 

X 

a 

z 

a \ b c 
FIGURE 2.1 
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EXAMPLE 2.5. Using the grammar G from Ex. 2.2 

we had a derivation S~>a 3cd. The tree associated with 

this derivation is 

s 

X 

a d 
FIGURE 2.2 

In general the trees associated with derivation 

by a k-rlg look like the tree of Fig. 2.3, i.e. an 

initial branching to k subtrees all of which have the 

same length and all of which have leaves only to the 

left. 
s 

' ' ' ' ' ' yl ' 

12 
' yk ' lZ2 ~zk zl 

zl z2 zk 

note: Some of X •' ~ 
yi, z. may 

~ 
be labelled e: • 

FIGURE 2.3 
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THEOREM 2.4: Let L£ 1:, 2 • There exist positive 

integers p, n, r, s such that if x £ L and I xI > p 

then X = uvwu'v'w' with I vi + lv' I > o, lvl, lv'l < n 

and for all i > 0 uvriwu'v'siw'E L where q = lcm{r, s} 

and r = .s., s = g 
r s· 

PROOF: Let G = (N, T, S, P, 2) be a 2-rlg 

such that L = L(G) and suppose #(N) = j and 

max { I x I I X-+x € P} = t . Let p = 2 j t and suppose x E: L 

and I xI > p. Then for some A, B £ N we have 

* S=>AB= >x, moreover there exist + y, z € T such that 

* * A=r,> y, B~> z and x = vz. One of lvl and lzl is 
3 A GB 

greater than jt and we conclude that in the correspond-

ing subtree of the derivation tree for x there must 

be a repeated node-name. Moreover there must be a repeti-

tion of node-name which is "non-trivial" in that term-

inals are deposited between the first and second occurr-

ences (for otherwise jt terminals could never be deposited). 

Since the generation of x precedes in parallel the 

number of non-terminals appearing in the other subtree is 

equal to that of the first, and a node-name must be repeat-

ed there as well. 

Now suppose there is a repeated node-name in the 

tree for y separated by r - 1 non-terminal nodes, 

and a repeated node name in the tree for z separated by 

s - 1 non-terminal nodes which satisfy the conditions: 
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(1) at least one of the repetitions is non-trivial and 

(2) in each case the repeated node-name does not occur 

among the names for the separating nodes. 

The subtrees thus picked out generate words v and 

v' respectively which are not both empty and since 

r, s < j we have lvl, lv'l < jt = n. 

Since q is a common multiple of r and s, 

a subtree of length q may be inserted in the y-tree 

and the z-tree which generates respectively vr and 

v' 8
• The resulting tree is a tree for a terminating 

derivation by G of uvrwu'v'sw' where y = uvw and 

z = u'v'w. We may iterate the insertion of subtrees o~ 
I 

for all i > o. 
\J 

We can generalize this result to 

THEOREM 2. 5: Let L £ ..(k. Then there exist 

positive integers p, n, r 1 , ••• , rk such that if x E L 

and lxl > p then x = u1v1w1 ••• ukvkwk, vi not all £, 

' 
' -. 

lv. I < n 1 < i < k and for all 
]. -

rlj rkj 
j > 0 u 1 v1 w1 ••• uk vk wk E: L 

where q =tern {r1 , .•• , rk} and r. = _g 
]. r . 

]. 

i€:[1, k]. 

PROOF: Take p = kjt and precede as above. 

THEOREM 2.6. £: k <j ,e_k+l for all k > 1. Thus 

the families L k form a proper infinite hierarchy of 



, 
• I 

'r I I 
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language families. 

PROOF: By Theorem 2.3 we have only to show the 

existence of a language in ~k+l - oCk for all k > 1. 

When· k = 1 we can use L2 = {anbnln ~ 1} for this 

language is clearly in L2 (modify Ex. 2.1 to give a 

2-rlg for it) but L2 is not regular, so not in L 1" 

When k = 2 we can use L3 = L (G 3 ) = {anbncnln ~ 1}. , 

By Ex. 2.1 L3 E L
3 

and we apply Theorem 2. 4 to show 

L3 4: /!.. 2 • Suppose L3 E.C2 and let p, n, r, s be 

positive integers satisfying Theorem 2.4 for L3 • Let 

q be a positive integer so that laqbqcql > p, then 

aqbqcq = uvwu'v'w' with v and v' not both € • 

Neither v nor v' can consist of a single letter for 

if it did increasing powers of that letter (those letters) 

would occur while the third letter did not increase in 

power since all i > 0 by Th. 2. 4. 

Now if either of v or v' has more than one letter we 

!should have words in L3 containing powers of one of 

or for integers k, t, m < q. This is 

impossible. We conclude L3 4 .!.., 2 . 

{ n n n I } By similar arguments Lk+l = a 1a 2 ••• ak+l n ~ 1 

is in !v k+l (modify G3 to Gk) but not in -1-, k 

(by Theorem 2.5) for all k > o. This completes the 

proof. 

tbm 
a ' 



Before we summarize the known relationships 

between the families i k and f and the Chomsky 

Hierarchy we give a relevant lemma. 

Lemma 2 • 7 : 1 2 ~ [, CF. 

PROOF: Letting L € ~2 implies there exists 
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a 2-rlg G = (N, T, S, P, 2) such that L = L(G). We 

construct a pda M such that L = N(M). we let 

M = (Q, T, o, {A, B}, S, B, ~) where Q = {S} U(V x(N V{E}}) 

and 

V = N v {xX I x e T+, X € N, 3 Y+zxX E P, z €. T*} 

U {x € T+ I 3 Y+zx E P, z e. T*, Y e. N} U { e:}. 

o is constructed as follows: 

(1) o(S, e:, B)= {([x
1

, x 2], B)jS+X
1

X
2

E.P}(U{(S, E)} if 

S+£ E P) 

o(S, a, B)= {([y,e:), B)jS+ay€P, yt.T+}(U{(S, E)} if 

S+a € P) 

( l.J { ( [X 
2 

, e: ] , AB ) } i f X l +a E P ) 

L){([y, X2 ], M)jX
1
+ay€P, y€T+} 

(U{([X
2

, E), M)} if X
1
+a€.P) 
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o<rx1 , X21' E' B) = { < [Y, x 2 1 , AB) I X 1 + y € p ' YEN} 

o ( [Xl, X2] ' e: ' A) = {([Y,X2], AA) 1 x
1 

+Y E. P, y € N} 

(3) o ( [xx
1

, x 2 J , a, A) = { ( [ yX 1' X 2 1 , A) I X = ay, y € T*} 

(4) o([y, x21, a, A)= {([z, x2J, A>IY = az, 

o([a, x21, a, A)= {([X2 , e:1, A)} 

+ z € T } 

(5) IS ( [X2 , e: 1 , a, A) = { ( [yY, e: 1 , e:) I x2~ayY € P, v € T* , 

{ ( [y, e: 1 , e:)IX 2+ayE:P, yE:T*} 

o ( [X2 , e: 1 , e: , A) = { ( [Y' e: J , e:)IX2+Y€P, y E. N} 

(6) o([yX, e:1, a, A)= {([zX, e:], A)IY = az, zE.T*} 

(7) o([y, e:l, a, B)= {([z, e:], B)IY 

o([a, e:], a, B)= {([e:, e:], e:)} 

+ = az, z E T } 

(8) o(q, b, c)=~ CE.{A, B}, q€Q, bE. T U{e:} in all 

other cases. 

While the construction of M is quite complex its 

operation is simply described. M adds one symbol to 

the pushdown store each time a production is found in 

the tree resulting from the first non-terminal of an 

initial production (point 2) • The second non-terminal 

y € N} 

of this initial production is "remembered" in the second 

component of the state. When the derivation in the first 

tree terminates this initial non-terminal is moved to the 

1 first component of the state (point 4) and the productions 
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used are counted off as they are found (point 5). If an 

equal number of productions have been found when this 

derivation terminates (point 7), the input word is 

accepted by empty store. Note that words in L(G) 

by an S-+x production, where x E: T* , are accepted by 

operation of 1 and 7. 

Finally, L = N (M) so L G LcF· 

COROLLARY 2.8: ~ 2 is contained in the family 

of one-counter languages. 

I 

PROOF: We used only a bottom-marker and one other 

push-down symbol (the "counter") in our construction. 

THEOREM 2.9. 

(1) The family L 1 equals the family of reqular sets 

and for every k ~ 2, ~k contains non-regular 

languages. 

(2) L 2 ~t:.CF and for every k > 31 Lk contains non

context free lanquages. 

<3 > £ 7: "Lcs. 
(4) There exist context-free languaqes not in 1: (and so 

not in i k for any k) • 

PROOF: 

(1) The first part is by Lemma 2.1. L2 = {anbnln > 1} 

is a non-regular language in £2 and hence in 
/ 

£k for all k > 2. -
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(2) The first part is by Lemma 2.7 and 4 below. 

L3 = {anbncnln > 1} is a non-context-free language 

in i 3 and hence in fv k for all k > 3. 

( 3) This follows from f..._ k <:: 'tR-k and Corollary 3. 6 

below, and Theorem 1. 3 of Ibarra [ 4 J • 

(4) This is from Corollary 3.7 below. 



§3. £-RULES AND FACTOR LANGUAGES 

In this section we show that allowing £-rules 

does not chanqe the generative capacity of k-rlq's 

and that the'language of i-th factors' of a k-rll is 

regular. 

LEMMA 2.10: The family 'fv k is closed under 

union for all k > 1. 

PROOF: Let L1 , L2 E. ;{ k and let 

Gl = (Nl' T, sl, pl' k) and G2 = (N2' T, s2, p2' k) 

be such that Ll = L(G1 ) and L2 = L(G2). We assume 

N1 n N2 = <fl and S ¢ Nl U N2 • Let G =' (N1 uN2 U{S},T,S,P,k) 

where P contains: 

S+ y 1 • • • y k if S 2 + y 1 • • • y k E: p 2 ' y i E. N 2 ' 1 < i < k 

( 2) S+x if Sl +x E P l, x E. T* 

S+y if S 2 +y € P 2 , y E T* 

(3) X+yY if X+yY€P1 UP2, y€.'"1' and X, Y€.N1 or 

X, Y E.N2 • 

- 39 -



Clearly L (G) = L (G1 ) V L (G2 ) = L
1 

V L2 , therefore 

Ll u L2 € ;(k. 

NOTATION: In what follows we denote for 

1 < i < k 
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&i = {f: [1, i]+[l, kJj f is one-one and n < ~> ~(n )< ~ (m) 

for all n, m E. [1, i]}. 

We define a k-parallel right-linear grammar with 

£-rules (£- krlg) exactly as in Dfn. 2.1 except that 

point ( 3) is modified to ( 3') X+x E. P imolies x € T*N u T*. 

This means we allow terminating rules of the form X+£. 

We define the yield relation for an £-krlg exactly as 

in Dfn. 2.2 and denote the family of languages generated 

by c -krlg 's by .;(~. It is immediate from Lemma 2 .1 

that ;( 1 = ~~ = ~REG" We also note that a slight 

modification of Lemma 2.2 shows that the membership problem 

is decidable for languages specified by £-krlq's. 

Definition 2.4: Let and xE.L. Fix 

an £-krlq G for L. Then ~. (D, x) 1 < i < k is 
l. -

defined to be the subword of x generated by the i'th 

non-terminal on the right side of the initial production 

of some derivation D of x by G. 

Note that ~. (D, x) is defined only if there is 
l. 
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a non-trivial derivation of X by G and in this 

case X = '11'1(0, X)'11' 2 (D, x) ••• 'll'k(D, x) for all deriva-· 

tions D of X by G. 

THEOREM 2.11. ;;(k= i~. 

PROOF: Each language L in -i_k is generated 

by a k-rlg which is trivially an e-krlg, so L€ ;(~. 

Thus ike,(~. 

The reverse inclusion is more interesting: let 

LE ;;(~ and G = (N, T, S, P, k) be an £-krlq such 

that L = L(G). For all i E [1, k], for all 

define 

L~ = {x ELI 3 a derivation D of x by G satisfying 
1 

'11'. (D, x) ~ e: 
J 

for all j f im <p , '11' j ( D , X ) = e: otherwise}. 

Define L. = 
ufE:£i 

L! 1 < i < 
1 1 

Then 
k 

u 
.i•O 

L = 
k 
u 

i=O 

Ne next claim L '!' E cf_. for all 
1 1 

construct r;! = (N', T, S, P'!', i) 
1 1 

k and 

L. if 
1 

L.U{e:} 
1 

La = { x E. T* I S-+x E. P} • 

£~L 

if t:.EL. 

q> E ~i. To see this we 

where 

N' = NU{[X, a]/ X EN, a ET} and P . contains: 
1 
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(1) S+X<p(l) ••• x<f(k) whenever S+X1 ••• xk E. P • 

. ( 2) X+yY whenever X+yY E: P, y E: T* , X, Y E N and 

e: ¢ L (Y) • 

( 3) X+y [Y, a] whenever X+yaY E. P, a E: T, y E T*, 

X, Y € N and e: € L (Y) • 

(4) For all a€T, [X, a]+[Y, a] whenever X+Y€P, X, YE.N. 

(5) For all aET, [X, a]+ay[Y,b] whenever X+ybY€P, 

,b E: T, y E T* X, Y E. N and e: E: L (Y) • 

(6) <For all a € T, [X, a]+ayY whenever X+yY £ P, yET*, 

X, Y E. N and e: ~ L (Y) • 

(7)Forall aE.T, {X,a]+ay whenever X+yEP, XE.N, 

y E: T* • 

(8) X+y whenever + X+y E: P, y €: T • 

The construction of t G. 
1 

is essentially similar 

to that· in Lemma 2 .1. Since for all x € L~, 'II'. (D, x) :j: e: 
1 ) 

for all j ( im <p we know that at least one terminal 

letter is deposited in the j'th subword of x. A termin-

al letter which is potentially the last one deposited 

is carried throuqh the derivation (points 3 and 4) until 

either more terminals are deposited (5 and 6) or the 

derivation terminates (7). The other productions are as 
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before (2 and 8) except that the initial productions pick 

out only the productive non-terminals (1). Thus G~ 
l. 

is an i-rlg which generates By Lemma 2.10, 

L. £ L. 1 < i < k. L0 E 1..,1 since it is finite. Thus 
l. l. -

Li € f: k, 0 < i < k (by Theorem 2. 3) and since \'Te can 

decide if e: E L or not, we have L E £ k (another applica

tion of 2.10). Thus ;(~ 5: Lk. This completes the proof. 

REMARK: This theorem leads to the question 

'Why not allow X+e: rules in the first place?' for then 

the analogue of Theorem 2.3 would be a triviality. The 

ans~er is that Theorem 2.11, which is a most desirable 

result in either case, does not follow without heavy 

use of Theorem 2.3 for k-rlq's as we have defined them. 

DEFINITION 2. 5: Let L E f._ k and G be a 

k-rlg for L. For 1 < i ~ k, X EN we define 

and 

where X. = X} 
l. 

I,l.. = u L . (X) • 
X€N 1 

This means is the language consisting of 

i'th factors of words qenerated when X is the i'thnon-terminal 



on the right side of an initial production. 
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L . is the 
1 

language consisting of all i'th factors of non-trivially 

generated words. 

EXAMPLE 2.5: Consider G = ({S,A,B,C,D},{a,b} , S,P,2) 

where P is given by: 

S+AB A+C B+bBI b 

C+D D+aAia. 

Clearly L(G) = {anbJnln ~ 1} but here 

h* = ;_ L(B) ~ L2 (B) = I.2 = {b3nln ~ 1}. Thus while L(X) 

is regular for all X £ N (X '# S) , we have to consider 
.1\ 

L(X) 

G = 

i = 

and so separately. 

THEOREM 2.12. Let L E£k anp fix a k-rlg 
! 

(N, T, s, P, k) for 
1\ 

L. Then Li is regular 

1, ... , k. 

PROOF: We will show that each L . is generated 
1 

by a right-linear grammar with a regular control language 

and so [by Salomaa [ 9]) is regular. First let Lah(P) 

be a set of labels for productions in P, sav 
a . 

Lah(P) = {ajll ~ j < n} and we denote by X~ X that 

a. is a label for X+xE.P. 
J 

We say a k-tuple of non-terminals 

"terminates" if there is an + 
X. E. T 

J 
such that X .+x . f. P 

J J 
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1 < j < k. 

We say a k-tuple of non-terminals cx1 , ••• ,Xk) 

"yields" another k-tuple (Y1 , ••• ,Yk) (written as 

cx1 , .•. ,Xk)+(Y1 , ••• ,Yk)) if there exist productions 

in P : X . +y . Y . , y . E. T* 1 < j < k. 
J J J J 

We now construct k nfsa's M. 
~ 

1 < i < k by 

M i = ( Nk u { S } \) { F} , Lab ( P) , IS i , S , { F} ) 

is defined by: 

where IS . 
~ 

(2) oi((X1 , ••• ,Xk)' aj) = {(Y1 , ••• , Yk) €Nkl (X
1

, ••• , Xk)+(Y1 , ••• ,Yk ) 

and 
aj 

xi~.,yYi 

terminates and 

(3) oi(q, aj) =~ 

1 .::_ j < n. 

some y € T* } ( U { F} 

aj 
X. -->x for some 
~ 

otherwise for all 

if (X
1

, ••• , Xk) 

X € T+) 1 .::_ j < n. 

q E. Nk U { S } U { F} , 

We now define k right-linear grammars G. 
~ 

by G. = (N, T, s, p . ) where P. = (P - { S+" I S+x € P } ) 
~ ~ ~ 

u {S+Xi I S+x
1 

••• xk t. P, X. EN, 1 < j < k}. We now label 
J -

the productions of pi by usi~g the same labels as above 

for productions of P and giving the new productions 

the label of the production of 
aj 

constructed (i.e. s -->X. if 
~ 

P from which they were 
a · 

s .2>x1 ••• xk). 
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We claim that "" L. = L(G., T(M
1
.)). 

1 1 
·Now " x. € L. 

1 1 

iff there exists X E: I. such that and 

" . x. €L. 1 < J < n iff there exists a derivation 
J J - - -

S==>X1 ••. Xk==> •.• ~>x with the productions at the i-th 

place labelled so that the control word is in T (M . ) 
1 

A 
iff x.E:L(G., T(M.)). 

1 1 1 
Thus L. 

1 
is qenerated by a 

right-linear grammar G., 
1 

I 

uage T (M.) 
1 

and therefore 

with regular control lanq-
A 
L. 

1 
is a reqular set. 



§4. CLOSURE PROPERTIES 

In this section we consider closure properties 

of the families ~k and we then qive a simple character

ization of ~ k. 

THEOREM 2.13: For all k ~ 1, ;( k is closed 

under union and finite substitution. 

PROOF: Closure under union is by Lemma 2.10. 

Next let Lf2£ k and G = (N' T, s, P, k) be a 

k-rlq for L. Let f: T-+21:* be a finite substitution. 

We define an E-krlg ~f = (N, i, S, Pf, k) for f(L) 

where Pf contains: 

(2) x ... zy if z E. f ( y) , X ..,yy e P , y € T* , X , Y E N • 

(3) x ... z if + Z E. f (X) , X ..,X E.. P , X € T , X € N • 

Clearly L (Gf) = f (L) , hence f (L) ( "£ ~ and, 

by Theorem 2.11, f(L) E £k. 

COROLLARY 2.14: ~ is closed under union and 

finite substitution. 

PROOF: Let Ll, L2 € !._, 

L2 ( ~ k for some k 1 , 1<: 2 • Let 
2 

- 47 -

then · L1E: -£ k and 
1 

k = max {k1 , k 2 } and 



we have L1 , L2 E: -£k, so L1 u L2 € -;l k and thus 

L1 U L2 E. .i . Similarly we have closure under finite 

substitution. 

COROLLARY 2.15. i_ k and eL are closed 

under homomorphism. 

THEOREM 2.16: For all k ~ 1, ;:k is closed 

under intersection with a regular set. 
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PROOF: Let L be a k-rll and G = (N,T,S,P,k) 

be a k-rlg for L. Let R be a regular set 

and • M = (Q, T, cS, s 0 , F) an fsa such that 

R = T (M). We will construct a new k-rlg for Lll R. 

Let G' = (N', T, S, P', k) where N' = {S] U(QxNxQ)U(QxN). 

P' contains: 

( 1) S-+x if S-+x E: P , x E. T* and X € R. 

(2) S-+[s 0 , x1 , s 1 J [s 1 , x2 , s 2 J. .. [sk-l' Xk] for all 

sequences s 1 , ••• , sk-l of members of Q if 

s-.x1 ... XkEP, XiE N 1 .::_ i < k. 

(3) [si, x, sj]-+y[o*(si, y), Y, sj] if X-+yYE:P, 

y £ T* , X, Y f. N and s i, s j E. Q. 

(4) [ s . , X , s . 1 -+x 
1. J 

cS*(s., x) = s .• 
1. J 

if + X-+x E. P, X € N - { s} , x E: T and 
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(5) [ s. , X]-+y [s., Y] if X-+yY E P, y € T*, X, y E. N 
l. J 

and ~*(si, y) = s., s. , s. G. Q. 
J l. J 

(6) [si' X]-+x if X-+x E. P, X EN - {S}, + X € T , s.E 
l. 

Q 

and ~· (s. , X) E F. 
l. 

In point 1 all words generated trivially by G 

that are in R are generated by G 1
• A word is qener-

ated non-trivially by G1 if it is generated by G (the 

cores of productions from points 3-6) and is accepted by 

M (the state components of non-terminals in productions 

from points 3-6 contain information as to the state of 

M a .s it processes a word generated by G. If M is 

in a final state at the end of a word generated by G, 

then G1 is allowed to generate it.) Since this type of 

construction will be used again below we give a detailed 

proof that L (G 1
) = L" R. 

CLA::M 1: L (G I) <:; L II R. 

PROOF: Let x E L (G 1
), then either S-+x E P 1 

and so x E: L n R or there exists a derivation 

D: S = P0===>P!'''"""> ••• ~>Pn = x in G 1 and n > 2. We 

then have P1 = [s 0 , x1 , s 1 J[s1 , x2 , s 2 ] ••• [sk-l' Xk] 

for some x1 , ••• , XkfN and s
1

, ••• , sk_1 €Q. Moreover 

x. E:L([s . 1 , X., s . ]) 1 < i < k- 1, 
l. l.- 1 1 -
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and xk ~ L ( [sk-l, Xk]). Thus, by points 3-6 of the 

construction, xi € L (Xi) 1 < i < k and there is a 

derivation of xi of length n - 1 

* 
from X . • 

~ 
Hence 

S~>X1 ••• Xk==>k1 ••• xk = x (utilizinq also point 2 
G 

for the initial production) and so x € L(G) = L. 

Also, by points 3 and 4, 

(by 5 and 6), hence 6*(s0 , x) = o*(s0 , x 1 ••• xk) ~ F and 

x £ R. Thus x E. L f\ R which proves Claim 1. 

CLAIM 2 : L n R S L ( G' ) • 

PROOF: Let x E. L () R, then either S-+x E. P 

and o* (s 0 , x) E. F qiving x E L (G') by point 1 or 

o* (so I X) E. F and there exists a derivation 

D: S = P 0==>P 1~> ••• ==>Pn = x in G where n > 2. We 

can factor x for this derivation D as we did in t h e 

proof of Theorem 2.3 i.e. x = x 1 ••• xk and for 1 < i < k 

with y . . €. T* 2 _::. j ~ n - 1 
J~ 

and + y .E. T. 
n~ 

We denote the correspondinq productions of P by 

x .. -+v.+l .x.+l . 1 < j 
J~ J ,~ J ,~ 

< n - 2 - and X 1 .-+y . 1 
n - ,~ n~ 

< i < k. 

There exist s. € 0 
~ . 1 < i < k - 1 such that 

o*(s
0

, xl)= sl' 6*(s. 1 , X •) = si and o*(sk-1' xk) E F. 
~- ~ 

l~e also have sj i E. Q 1 < i < k, 2 < j < n such that 

o*(s. 1 ., vjJ = s .. 2 < j < n, sli = s. 1 and 
J- , l. J~ ~-
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s . = s. 1 < i < k. Now by construction we have n1 1 

S+[so, xll' sl) [sl, xl2' s2]. •• [sk-1' xlk] in p1. 

[s .. , x .. , s.]+y.+l .[s.+l ., x.+l . , s.] 1 < j ~ n- 2 J1 )1 1 J ,1 J ,1 J ,1 1 -

and [s 1 . , X 1 . , s.]+y . in P 1 1 < i < k - 1, n- ,1 n- ,1 1 n1 

by points 3 and 4 • We also have 

[sjk' xjk]+yj+l,k [sj+l,k' xj+l,k] for 1 < j < n - 2 

and [sn-l,k , Xn-l,k]+ynk in ? 1 b y points 5 and 6. 

Thus we have the followinq derivation o~ x by 

G I • , . 

S==>[so, xll' sl] ••• [sk=l ' xlk1 

==>y2l[s21' x21' sl] ••• y2k[s2k' x2k1 

* ==>y21···Yn-1,1[sn-l,l' Xn-1,1' sl] ••• yn-l,k[sn-l,k'Xn-l,k] 

= x. 

Thus x E L (G 1
) which completes the proof of Claim 2. 

Claim 1 and Claim 2 give L(G 1
) = LnR, so L(\R € .lk. 

COROLLARY 2.17. ~ is closed under intersec-

tion with a reqular set. 

COROLLARY 2.18: -£ k for all k > 1 and j_ 

are closed under right quotient with a regular set. 

PROOF: Lemma 9.5 page 131 of Hopcroft and 

Ullman [ 3 L 

Next we show that, while ~l is closed under 
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intersection (this is well-known by Lemma 2.1), none 

of the other families under consideration are closed 

under intersection. 

THEOREM 2.19: For all k > 2, ~k is not closed 

under intersection. 

PROOF: We first consider k = 2 to make the 

argtunent clear: let Lc = { (a u b) 2n cnln > 1}, that i s -
the language consistinq of all words of lenqth 3n 

who~e first 2n letters consist of a's and b's and 

whose last n letters are c. Let La = {an(bvc) 2nln > 

Both Lc and La are in i 2. Lc is qenerated by 

1}. 

G = ( {S' X, c, D}, {a, b, c}, s, P, 2) where p contains: 

S-+XC 

C-+D 

o-.cclc 

x-.axlbxlalb. 

A similar 2-rlg generates L • a 
Now we consider 

Let xE:L (\L c a then for some 
n n n > 1 x = a yc 

where I y I = n and y E (a u b u c) * . Now y has no 

occurrence of c since x €Lc and the first 2n letters 

of x must be a or b. Similarly y has no occur-

renee of a. Hence n y = b • Thus 
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Clearly {anbncnln ~ 1} c;; LcnLa' so Lcf"La = 

{anbncnln ~ 1} = L3 • But in Theorem 2.6 we showed that 

L3 ¢ ;(2 • Hence ~ 2 is not closed under intersection. 

We can generalize this counterexample by consid

ering Lkl = { (a1 u a 2 ) 
2

n a~ •.• a~+ll n ~ 1} £ /.._ k and 

{ n n n 2nl } P Lk2 = a 1a 2 ••. ak-l (ak u ak+l) n ~ 1 E J.-...- k and noting 

that Lk1flLk 2 = {a~a~ ••• a~+ 1 1n ~ 1}¢ fk. 

COROLLARY 2. 20: For all k > 2, fv k is not 

closed under complement. 

PROOF: If some ~k were closed under comple

ment, closure under union would imply closure under inter-

section, contradicting Theorem 2.10. 

THEOREM 2.21: For all k ~ 1, ~k is closed 

under ngsm maps. 

PROOF: Let L ~ ik and G = (N' T, s, P, k) 

a k-rlg for L. Let s = (Q, T, h., 0, A, qo, F) be 

ngsm. We qive an E-krlg for S (L) which shows 

S(L)E. t_E 
k = ..t k" Let G' = (N' , h. , S, pI' k) where 

N' = (Q x N x Q) u (Q x N) U {S} and P' contains: 

(1) S+z if Z€."*(q0 , x) and S+xE.P, XET*. 

(2) S+[q0 , x1 , q1 J [q1 , x 2 , q 2J. .• [qk-l' xkJ for all 

sequences q1 , •.• , qk-l of. members of Q if 

be 

an 
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s-.x1 ••• xk € P, x. E: N 1 < i < k. 
l. - -

(3) [qi' X, qj]-.z[o*(qi' y), Y, qj] if x-.yYEP, yf.T*, 

X, YEN, qi, qj€0 and zt:~*(qi' y): 

[qi' X]-.z(o*(qi' y), Y.] if x-.yYt:P, yt.T*, 

X, YE:N, qiE: Q and zt:A*(qi' y). 

(4) [q. , X, q. J-.z if x-.x € p, X e: T*, X € N, 6* (q., X) = q. 
"1. J l. J 

and Z€A*(qi' X) : [qi, x]-.z if x-.x t p, + X E T , 

X E.. N, o*(qi' x) C:::: F and zE">.*(q . , 
l. 

X) • 

G' generates all of 5 (x) fior each x € T* 

generated trivially by G (point 1). If a word x is 

generated non-trivially by G, each word in S(x) is 

qenerated by G' which deposits the "translation" of a 

word deposited by G, and keeps track of the state of S 

in its first component. The third component is used to 

match states at the boundaries corresponding to a factoris-

ation of the word according to the non-terminal from which 

it is generated (points 2- 4). The detailed proof that 

S(L) = L(G') follows the method of Theorem 2.16 and is 

ommitted. 

COROLLARY 2 • 2 2 : ~ is closed under non-deterministic 

gsm maps. 

We are now in a position to qive a characterisation 
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of the family ~k in terms of a closure property . The 

languages Lk defined above play a fundamental role in 

the theory of k-parallel right-linear languages so we 

{ n n nl } recall that Lk = a 1a 2 •.• ak n ~ 1 . 

THEORE~1 2. 2 3. ~ k is the smallest family of 

languages containinq Lk and closed under non-determin

istic gsm mappings for all k > 1. 

PROOF: Let -:y k be the smallest family of 

lap~uages containing Lk and closed under non det. qsm 

maps. Since LkE.: i.k we have ~k £,lk by Theorem 2.21. 

To show the reverse inclusion let L E :l k, and 

G=(N, T, s, P, k) be a k-rlg for L. We will construct 

an ngsm M = (Q, rk' T, o, q 0 , F) such that L = M(Lk). 

We first construct G' = (N', T, S, P', k) with 

L = L(G') where N' = .(N x {1, 2, ••• , k } ) U{S} and P' 

contains 

( 1 ) S+x if S+x E P and x E T* 

(2) S+(X1 , l][X2 , 2). •• [Xk' k] if S+X1 ••. Xk P 

X.EN,l<i<k. 
~ 

(3) [X, i]+y[Y, i] if X+yY E.P, X, YEN, yE.T*, 1 < i < k. 

( 4) (X, i] +x if + X +x E. P , X E: N , x € T , 1 < i < k • 

Note that each non-terminal in G' carries 

I 
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with it information specifying from which of the k 

original non-terminals it is qenerated. 

Next we number the initial productions lettinq 

the first n be the non-trivial initial productions 

and productions numbered from n + 1 to m be the 

trivial ones. 

Now we can construct M. r k = {a1 , a 2 , ••• , ak}' 

Q == 'N' x {1, 2, ••• , n}U{q0 , qn+l'"""' qm' qf} and 

F = {qn+l' ••• , qm' qf}. Next we specify J: 

(1) o (q0 , a 1 ) = { (qi, x) IS+xE: P, xE: T* is the ith production} 

U { ( [Y, 1, j], y) IS+ [x
1

, 1] ••• [Xk, k] is the 

jth production and x1+yY E. P, y E. T*} 

is the j 'th production and x1 +x E. P, 

X E.T*}. 

(2) o (qi, aj) = { (qi, £:)} n + 1 < i < m, 1 < j < k· 

(3) 6 ([X, i, j], a.) = { ([Y, i, j] ,y)l [X,i]+y[Y,i] €P', 
~ 

y E' T* , X, Y E: N} 

U{ ([Y, i+l, jl,v>l [X,il+yE.P', yET+, 

Y is i+lst non-terminal in 

initial production j J 

for 1 < j < n , 1 < i < k - 1 • 
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(4) o((X, k, j], ak) = {((Y, k, j], y)j(X, k]-+y[Y, k]E.P', 

y €. T*} 

{ ( q f , y ) I [X , k 1 -+y £ p I , v E: T + } 

(5) o (q, a) = 4> otherwise for all q ~ O, a E: rk. 

M operates by either (1) outputting the result 

of a trivial derivation and reading the remainder of an 

input word in a final state with no output (1 and 2) 

or (2) using the states of M to keep track of a non

terminal in the first component, the position of the non

terminal in the second component, and which initial pro

duction was used in the third com?onent. Reading an 

input symbol causes M to write any terminals deposited 

by a oroduction from the non-terminal in the first com

ponent of the present state, and to change state so that the 

non-terminal on the right side of the production used 

appears as the first component of the new state (3). 

If a terminating production is oossible its right side 

is written and the first component of the new state is 

the non-terminal in the next slot on the right side of 

the initial production identified in the third component 

(3). At the same time the second component is incre-

mented by one. Note that ~ is allowed ·to procede only 

if the subscript of the input letter beinq read and the 



58 

second component of the state agree. The input word is 

used to ensure that the derivation has the same length 

in each position. (1, 3, 4). An output word is in 

M(Lk) if and only if it is the result of a terminating 

derivation by G' • There fore L = M (Lk) , [ k s; ':J k 

and the result follows. 

REMARK: We can define an operator GSM on 

families of languages ~ (over a fixed countably infinite 

alphab!t) by GSH ( ~) = n 011.1 m_? 'J, 'On closed under 

non-det. qsm maps}. It is easy to verify that GSM 

is a closure operator. In this notation Theorem 2.23 

reads [ k = GSM ( { Lk} ) • 

In the next section we show one more closure 

property of the families £ k, namely that they are 

closed under mirror image. 



§5. k-PARALLEL LEFT LINEAR LANGUAGES. 

In this section we define k-parallel left-

linear grammars and show that they generate the same 

class of languages as k-rlg's. 

DEPINITION 2.5: A k-parallel left-linear grammar 

(k-llg) is a 5-tuple G = (N, T, s, P, k) satisfvinq 

(1), (2) and (4) of Definition 2.1 and 

3t) X-+x p and implies + xE:NT*UT. 

As for k-rlq's we can define the class of lang
.p». 

uages generated by k-llg's which we denote by ~ k 

and call members of this class k-parallel left-linear 

languages (k-lll's). 

EXAMPLE 2.6. Consider G~ = ({S, A, B, C}, 

{a, h, c}, s, P, 3) where P contains: 

S-+ABC 

A-+Aaja 

B-+Bbjb 

C-+Ccjc. 

- 59 -
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which (recall Example 2.1) is also a 3-rll. We see 

from this example that Lk E ;(~ for all k > 1, by 

modifying t 
G3 to t 

Gk. 

Our aim is to show that tk =!~. To do this 

we will use Theorem 2.23. 

THEOREM 2. 24: ;{ ~ is the smallest family of 

languages containing Lk and closed under non-deterministic 

qsm maopinqs for all k > 1. 

PROOF: l~e let ~k denote the smallest family. 

We know that Lk( t ~· Next we show that t:t 
k is closed 

under non-deterministic gsm maps. 

CLAIM 1: Allowing E-rules in 3!) of Definition 

2.5 does not change the generative capacity of k-llg's. 

PROOF: We observe that is closed under 

union (nroof similar to Lemma 2.10), then the claim follows 

bv the right-left dual of the proof of Theorem 2.11. 

CLAIM 2: t._t 
k is closed under nqsm mappings. 

PROOF: Let Lt:f_t 
k and G = (N, T, s, P, k) be 

a k-llq for L . Let M = (Q, T, !::., 6, qo, F) be a 

non-deterministic gsm. Ne construct a new k-llg G' 

for M(L). Let G' = (N', !::., s, P', k) where 
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N' = (0 x N x Q) U (N x Q) U{S} and P' contains: 

(1) S+[X1 , q
1

J [q1 , x 2 , q 2 J ••• [qk-l' xk' qkJ for all sequ

ences q 1 , ••• , qk-l of members of Q if 

S+X1 •.• xk E: P, xi E: N, 1 < i < k, and qk €. F. 

(2) [q., X, q.]+[q., Y, q ]z if X+Yy€P, y€.T*, X, Y€.N, 
~ J ~ t 

and ( q j , z ) € tS * ( q t , y) • 

(3) [qi, X, qj]+z if 

(qj, z)E:tS*(qi' x). 

+ X+x € P, X €. N, X E. T and 

(4) [X, qj]+{Y, q 1Jz if X+YyCP, X, Y E.N, y€T* and 

( qj ' z) E: tS * ( q t' y) • 

(5) [X, qj]+z if X+xE:.P, XE.N, x€.T+ and (qj' z)f:.l5*(q0 , x). 

The operation of G' is similar to that of the grammar 

constructed in Theorem 2.21. Here however, since genera-

tion procedes from right to left we insist that the 

matching of states in terminal productions take place from 

right to left (3), that the final state reached be terminal 

(1) and that the machine started operation from the initial 

state (5). We conclude that M(L) = L(G') and this com-

pletes Claim 2. 

We now conclude since contains 

Lk and is closed under nqsm maps. 
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Next we show the reverse inclusion. Let LE:;f.! 
k 

and G = (N, T, s·, P, k) a k-llg for L. Since 

:tk<=~k) is closed under union, we can number the initial 

productions of G from 1 to n say and let K. 
~ 

be 

the language generated by G when all initial productions 

but the ith are deleted from P. Clearly L = K1 U ••• U Kn. 

If the ith initial production is trivial then K. 
~ 

has 

only one member and Kif :fk since 3 k contains all 

regular sets. Otherwise let the i-th production be 

S+x1 ••• xk say. We construct an nqsm 

Mi = (Q, Ek' T, oi' q 0 , F) so that Mi(Lk) = Ki. 

Let Q = {q
0

}UN' where N' = N X {1, 2, • • • I 

F = {[Xk' k]} and 6. is given by: 
~ 

(1) 6i<qo, { ([X' 11 , x) I X+x C P, + 
al) = X €. N, xE.T }. 

k}, 

(2) 6.([Y, j1, a.)= {([X, j1, y)IX+YyEP, X, YEN, yE.T*} 
~ J 

for 1 ~ j < k. 

( 3 ) 6 . ( [X . , j ], a . + 
1 

) = { ( [X , i + 1 1 , x ) I X +x E. P , X E. N , x €. T + } 
~ J J 

for 1 ~ j < k - 1. 

(4) 6i(q, aj) = 4> otherwise qEQ, 1 < j < k. 

~i uses the input word to count steps and gives what 

G would deposit as output in a manner similar to the 
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construction of Theorem 2.23. An output word is in 

Mi (Lk) if and only if it is the result of a generation 

from the i-th initial production of G. Hence 

L = 

t~ 
k 

k 
u 
i=l 

K. • 
~ 

Hence in this case as well 

We conclude Ki E: 3 k 1 ~ i < k and so 

K.€ Jk. 
~ 

-r.JJ c_ ~ 
Thus ~k Yk and therefore 

= ~k. 

COROLLARY 2. 25: t:~ = t k. 

COROLLARY 2.26: ;Ck is closed under mirror 

image. 

PROOF: Let L E: £ 
k 

and ~ = (N, T, S, P, k) 

be a k-rlq for L. We construct a k-llq 

R = (N I T, s I p I k) for mi (L) • contains: 

(1) S-+mi (x) if S-+x f. P, x f. T*. 

(3) X-+Ymi(y) if X-+yY E: P, X, Y € N, y E. T*. 

(4) X-+mi(x) if + X -+x E: P , X €. N , x E: T • 

It is easv to verify that L(GR) = mi(L). 



§6. DECIDABILITY QUESTIONS 

In this section we consider two decidability 

questions relating k-rlg's and the generated languages 

which have a positive answer. We recall that in 

Lemma 2.2 we showed membership problem is decidable 

for k-rlg's. 

Let G = (N, T, S, P, k) be a k-rlg. We recall 

that in Theorem 2.12 we defined a relation "+" on Nk 

by (X1 , ••• , Xk)+(Yl 1 ••• , Yk),Xi' Yif.N 1 < i < k iff 

there exist X. +y . Y. E: P, y. ~ T* 1 1 < i < k. 
1 1 1 1 - -

DEFINITION 2.7: An N-sequence for G is a finite 

sequence of members of k ~ n N = (s.) . 
1 

such that s . +~ . 1 1 1= 1 1+ 

1 < i < n - 1. 

Note that we can always associate an N-sequence 

with a non-trivially generated word x E L (G). If D 

is a derivation of X by G we denote the associated 

N-sequence by ) (DI x) and the i-th member of this 

sequence by si (D, x) • We call a repetition 

s . (D I x) = s . (D I x) j > i in an N-sequence associated 
1 J 

with a word x "trivial" if there are no terminals 

- 64 -



65 

deposited in intervening steps. We can now show that 

the "emptiness problem" is decidable for k-rlg's. 

THEOREM 2.27: Given a k-rlq G = (N, T, S, P, k) 

there is an algorithm to decide whether L(G) = ¢ or 

not. 

PROOF: Since L(G) is recursive by Lemma 2.2 

we have only to give an upper bound for the shortest 

non-trivially generated word in L(G). Suppose 

t(N)=t and max{lxiiX+xE.P,XE::N}=m. 

CLAn-1: L (G) ~ ¢ iff there exists x E L (G) 

such that lxl < mktk + mk or there exists a production 

S+x E:. P with x € T* . 

PROOF: if: obvious. 

only if: Suppose G has no rules of the form S+x, 

x€T* and there does not exist xEL(G) with 

lxl 2 mktk + mk, but that L(G) ~ ¢. This implies 

there exists a shortest y E:L(G) with IYI > mktk + mk. 

There exists a derivation D: S = P0~>P1==> ••• ~>Pn+l = Y 

for y and an N-sequence ;$<n, y) = (si(D, y))~=l· 

Ne may suppose ) (D, y) has no trivial repetitions 

(for if it has we may find a shorter derivation for y 

with no trivial repetitions). Since each application of 

k non- terminating productions can deposit at most 



(m - l)k terminals, it is clear that 

r < n. Thus lvl ~ (n + l)mk and so 

1Pr1 ~ rmk, 
k n > t • Hence 
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there must be a repetition (non-trivial!) in ~(D , y) , 

say sp(D, y) = sq(D, y). Then s 1 (n, v>~s 2 (D, y)~ •.• 

~s (D, y)~s +l(D, y)~ .•. ~s (D, y) is an P q n N-sequence 

associated to a word y' L(G) and since s (D, y) = p . 

is non-trivial, we have lv'l < lvl con t radic-

ting the minimality of lvl. Hence no such y exists 

and we condlud~ L(G) = ~. This completes the claim 

and so we are done. 

By a similar method we can show that the 

"finiteness-infiniteness problem" is decidable for 

k-rlg's. 

THEOREM 2.28: Given a k-rlg G = (N, T, S, P, k), 

there is an algorithm to decide whether or not 

-:i\: (L(G)) = oo. 

PROOF: We again use the fact that L(G) is 

recursive. Let m and Q be as above and p = mk~ 
(cf. Theorem 2.5). We claim that L(G) is infinite iff 

there exists a non-trivially generated x E. L (G) with 

p ~ lxl ~ p + mktk If L(G) is not infinite there 

cannot exist x € L (G) with I x I ~ p (otherwise by 



67 

Theorem 2.5 there are infinitely many words in L(G)) . 

If L(G) is infinite, then there exists a shortest 

x E:L(G) with lx I > p. If lxl > p + mk!k an argument 

similar to that · of Theorem 2.27 shows that we can find an 

x' E L(G) with p ~ lx' I < lxl contradicting the minim

ality of lxl. Thus if L(G) is infinite there exists 

x E. L (G) with P < lxl 
k < p + mkt • 



CHAPTER 3 

REGULATED REWRITING 

§1. k-PARALLEL RIGHT-LINEAR WITH REGULAR CONTROL LANGUAGES. 

In this chapter we add a control device to 

k-parallel right-linear grammars, namely a regular 

control language. We show that the language families 

generated are the same as both the k-tuple languages 

of Kuich and Maurer [ 5] with a right-linear restric

tion and the k-right-linear simple matrix languages of 

Ibarra ( 4 ] • 

t.ole wish to define "control word" for a derivation 

by a k-rlg. Since productions are applied k at a 

time except in the initial step, the labelling of deriva

tion steps must take this fact into account. 

DEFINITION 3.1: Let G = (N, T, S, P, k) be a 

k-rlg. A lahelling of productions from G is a 1-1 

correspondence Lab: ~--+Lab(P) where Lab (P) is a 

finite set of "labels" and 
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DEFINITION 3.2: Let G = (N, T, S, P, k) be a 

k-rlg and Lab (P) a set of labels for productions from 

~. Let D be a derivation by G. Then u is a control 

word for D if one of the following holds (i) D is 

o0==>Q1 , u = aE Lab (P) and a is the label of the 

production applied in Q0==>Q1 , or (ii) D is 

* 0 =>Q ··o ·n 

u = and is the control word of 

* and is the control word of Q = >0 • n ·-m 

With these definitions we can assign to a pair 

(D i x) , where D is a derivation by G of x, a control 

word denoted u(D, x). 

DEFINITION 3. 3: L ~ T* is a k-parallel right

linear with regular control language (k-rrll) iff there 

exists a k-rlq G = (N, T, s, P, k), a labelling of 

productions from G Lab, and a regular language C over 

Lab (P) such that L = L (G, C) = {x € L (G) ! there exists 

a derivation D for x, and u E.C with u = u(D, x)}. 

We denote the family of k-rrl's by 11Lk. 

EXAMPLE 3.1: We consider the 2-rlg 

G = (N' T, s, P, z) where N = {S, A, X, B, C}, 

T = {a, b, c} and p contains: 



S+AX 

A+aAIB 

B+bBib 

x~xlc 

C+cCjc. 
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It is easy to show that L(G) ~ {aibjckli + j ~ k, i,j,k ~ 1). 

We qive labels to production pairs which will be allowed: 

S+AX: e 

(A, X)+(aA, X): a 

(A, X)+ (B, C): b 

(B, C)+(hB, cC): c 

(B, C)+(b, c): d. 

Let D ~ ea*bc*d, then L(G, D) ~ {anbmcm!n, m > 1} 

L(G, D) is a 2-rrll, hut apparently not a 2-rll. 

Example 3.1 may be generalized to give 

Lk ~ { n m m ml > ,r a a 1a 2 ••• ak n, m 1} which is a k-rrll, but 

apparently not a k-rll for k > 2. When k ~ 1 we 

have ;(1 = 11(_ 1 (by Salomaa [ 9 ]) • For k > 1 we have 

J:k~ ?R,k since qiven a k-rlg G = ' (N' T, s, P, k) we 

may take C = Lab (P) * and then L(G) = L(G, C) • 



The first result we shall need is that the 

families ~k form a hierarchy. 

THEOREM 3.1: For all k > 1, -a?_k <:=_ iek+l" 

PROOF: The method is to construct a k+l-rlg 
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as in Theorem 2.3 and to construct a new control language. 

Let L€ ~k' G = (N, T, S, P, k) a k-rlg and 

M = (Q, r, o, q 0 , F) an fsa such that L = L(G, T(M)) 

where r is a set of labels for productions of G. 

We apply the construction of Theorem 2.3 to give a k+l-rlq 

G' such that L(G) = L(G'). We will construct an nfsa 

M' such that L = L(G', T(M')). The idea is to associate 

to a control word of a derivation by G a control word 

of a derivation by G' in such a way that the new control 

word is accepted by M' iff the old word was accepted 

by M. In view of the fact that, except for a finite 

number of short words, derivations precede in G' in 

essentially the same way as they did in G, we can 

construct M'. (Note that G1 = (N 1
, T, S, P', k + 1) . ) 

Let M' = (Q', r•, o', q 0 , F') where Q 1 = Q U{q1 }, 

q 1 f Q, r 1 is a set of labels for productions of G 1 
, 

F' = FU{q1 } and o' is constructed as follows: 
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(1) cS'(q0 , a)= q
1 

if s ~ xt:P', xET* (we again use 

the notation X ! x to mean that a is the label 

for the production X+x.) 

(2) o• (q0 , a)"= q' if S ~ x1 ••• Yc[Xi' c] ••• Xk in C";' 

and cS(q0 , b) = q' where s ~ x 1 ••• xi .•. xk in G. 

(3) ~'(q, a)= q' if {X
1

, ••• , Yc, [Xi' c], ••• , Xk) ~ 

where y . E T* , Y . E. N 
J J 

1 < j < i - 1 and i + 1 < j < k, where either - - -
y = yY, y E: T*' y €. N or -y = [Y' c] and 

::: 

(Xl' . . . , Xk) ~ (y 1 y 1, ... , y, . . . , ykYk) in 

= = and 0 {q, where either y = cyY or y = y 

(4) o'(q, a)= q• if X. ' • • • ' l. 

(y1Y1 , ..• , Yc, yiYi' ~ •• , ykYk) where 

{X1 , •.• , Xk) ~ (y1Y1 , ••• , ykYk) in G and 

o(q, b)= q'. 

b) 

{5) ~' (q, a) = q• 1.' £ {x Y X X ) ~ u 1' •••r C' i' •••t k 

G 

= q I • 

. . . , c, xi, ••• , xk) where . . . , 
Cx

1
, ••• , cxi, ••• , xk) in G and o(q, b)= q'. 

{6) o'(q, a)= <P otherwise. 

By the construction, X € L(G 1
, T{M')) iff x € L{G, T{M ) ). 

Hence L € VG k+l and we conclude 'Ot k c; (£ k+l. 

We also need 
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LEMMA 3.2: lGk is closed under union for all 

k > 1. 

PROOF: Let Ll' L2E 1(k' say Ll = L(G1 , cl > 

and L2 = L(G2 , C2) • We construct G3 so that L (G 3) = 

L(G1 )UL(G2 ) (as in Lemma 2.10). We label productions 

of G3 by the labels of the corresponding productions of 

,. 



§2. RIGHT-LINEAR TUPLE LANGUAGES. 

Kuich and Maurer [ 5 ] have defined "Tuple 

Languages" with context-free productions. We specialise 

this notion to allow only riqht-linear productions. 

DEFINITION 3.4: Let T be a finite set of 

terminal symbols. Then we denote T* x ••• x T* (k times) 

by T~, the set of k-tuples of words over T. Let 

ci: Tk_,T* be the homomorphism defined by ci ( (x1 , ••. , xk)} = xi 

for 1 < i < k. If x, y E T~ then 

xy = (c1 (x) c (y) , ••• , ck (x) ck (y)). lie define 

ll: Tk~T* by · 1J (z) = c 1 (z)c 2 (z) ••• ck (z), z E. Tk. Denote 

the k-tuple of £'s by£. 

DEFINITION 3.5: A right-linear k-tuple grammar 

(k-tlg) is a 5-tuple G = (k, N, T, s, P) where 

(1) k > 1 is an inteqer. 

(2) N is a finite set (of non-terminal symbols). 

(3) T is a finite set (of terminal symbols) with TnN = ~. 

(4) S~N. 

(5) p is a finite set of productions of the form x~x 

with X € N and x e: TkN U Tk. 
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The "yields" relation => for words over NUT* k i s 

defined by x=>y if x = uXv, y = uzv and X+z E P. 
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DEFINITION 3. 6: L <; T* is a riqht linear k - tl!ple 

language (k-tll) iff there exists a k-tlg G = (k , N,T,S,P) 

* such that L = L (G) = {lJ (x) I S=>x, x E Tk}. 

We denote the family of right-linear k-tuple 

languages by :J k" We observe immediately that 

'Jl = t'l. 

THEOREM 3.3: For all k > 1, :J' k = i< k. 

PROOF: CLAIM 1: 1(_k. <; ]' k • 

PROOF: Let L ~ ~k' then there exists a k-rlg 

G = (N, T, s, P, k) and an fsa M = (Q,!, ~, q 0 , F) 

such that E is a set of labels for productions of G 

and L = L(G, T(M)). We construct a 

G' = (k, N', T, [S, q 0 J, P') where 

and P' contains: 

k-tlg 

N' = { [S ,q
0

]} U (NkxQ) 

( 1) [ S ] ( ) l.• f S ~ X <"' P , X r T* and . , qo -+ x, e: ' ••• ' e: ~ <:. 

~(q0 , a)E.F. 

(2) [s, q 0 J-..rx1 , •.• , xk' q'J if s ~ x1 ••. xkf..P, xiEN 

1 < i < k and o(q0 , a) = q'. 
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(3) [Xl' . . . , xk ,q 1 + (y 1, . . . , yk) [Yl, . . . ' yk' q I 1 if 

(Xl' . . . , Xk) ~ (yl y 1, ... , ykYk) with X., yi € N, 
l. 

(yl, . . . , yk) € Tk and o(q, a) = q'. 

(4) [Xl' . . . , xk, q] + (yl' . . . , yk) if (yl, ••• , yk)f.Tk, 

(Xl' . . . , Xk) ~ (yl' ... , yk) and o(q, a) e F. 

Now G' is a k-tlq which imitates a derivation by 

G while keeping track of the state of M in the last 

component of its non-terminals. A derivation by G' 

is allowed to terminate iff the control word of the 

corresponding derivation by G is in T(M). Thus 

L = L(G, T(M)) = L(G') f :Tk and we have 1£k <; Jk. 

CLAIM 2 : 'J k <;; (1G k. 

PROOF: We use a technique similar to that used 

in Theorem 2.11. First, let L E 'J k' say L = L(G) 

for the k-tlg G = (k, N, T, s, P). We again consider 

the sets of functions &i' and note that the notion 

'If. (D, x) for a derivation D of a word x E:L(G) makes 
l. 

sense for 1 < i < k. We define 

L~ = {x E:. Llnj (D,x) #£ all jf imr,nj (D, x) = £ otherwise}, 



k 
L = U L. if € fL 

i=l ]. 

k 
U. Li U{€} otherwise. 

l.=l 

Using the method used in Theorem 2.11 to construct 

the i-rlg Gi, we construct an i-tlg 
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Gl = (i, Nr, T, S, Pl) for L! with the property that if 

X+ (Xl, ••• , X. ) E P:, X . E T* ]. ]. J 

xj ~ € 1 ~ j < i. Usinq Gr 

and X ~ s, we have 

we will show L '! E it. 
]. ]. 

by 

constructing an i-rlg G. = (N. , T, S' , P. , i) and a 
]. ]. ]. 

control language. -q> N. 
]. 

= N{ x {1, ••• , i}U{S'}. PJ contains: 

if S+ (Xl, ••• ,x.) €. P~. 
]. ]. 

(2) S'+[S, 1] ••• [S, i]. 

(3) [X, j]+yj[Y,j] for 

X, Y E:. Ni, y j E.. T*, 1 < j < i. 

( 4) [X, j 1 +x. 
J 

X E N'f and 
]. 

for 1 < j < i if 

X. E. T+ 1 < j < i. 
J - -

if X+ (yl, •.. , y. ) Y E p:' , . . ]. ]. 

We now suppose a set of labels for productions of 
-cp 
Gi has 

been introduced and define 

A= {a! (X, .•. ,X)~ (y
1

Y, ••• ,y.Y) and X+(y
1
' , ..• ,y.)Y€ P'!} 

]. ]. ]. 

U {a! (X, ... , X) ~ 
1
(x1 , ... ,xi), X+(x 1 , ... , xi) E P~,xj E:. T+} 
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B == {b!S' ~ x, xeT*} 

and we suppose c is the label for S'+[S, 1] •.• [S, i]. 

Define C == B u c.A.* which is a regular language over the 

set of labels for productions of -cp 
G •• 

]. 

-cp xEL(G., C) 
]. 

iff X has a derivation 

Now we have 

D by -q> Gi with a 

control word in c iff D is either trivial, or it 

uses productions after the initial one with labels from 

'A iff there is a derivation of X by 
cp 

(;. 
]. 

iff - Cf 
X E' Li. 

Thus L 'f' == c-q> C) and so L~ E lti. By Lemma 3.2 L G., 
]. ]. ]. 

L. = u ~€t\. ~ 
E \1( i 1 < i < k and by Theorem 3.1 r •. 

]. ]. 
]. 

L. E -o:(k' ]. 
so we have LE: 1( k. Thus Jk ~ "£k. 

Combining the two results we have '3 k = l1t k. 



§3. RIGHT-LINEAR SIMPLE MATRIX LANGUAGES 

Ibarra [ 4 ] has introduced the notions of simple 

matrix language and right-linear simple matrix lanquaqe 

and studied their properties extensively. In this sec-

tion we relate the second .of these concepts to the 

families 71? k. 

DEFINITION 3.7: A k-riqht-linear simple matrix 

grammar (k-rlmg) is a (k+3)-tuple ~ = (N1 , ••• ,Nk, T, S, P) 

where 

are pairwise disjoint finite sets 

of non-terminals. 

(2) T is a finite set of terminals and T ()N. = cf> l. 

1 < i < k. 

k 
(3) s is the stal!'t symbol and S ¢ U N . UT. 

. 1 l. l.= 

(4) P is a finite set of matrix rewriting rules of the 

form 

(i) [S-+x], x E T* 

( ii) [S-+xll xllx12xl2 • • .xlnxln • • · xkl xkl • • .xknxkny] 

where n ~ 1 , y € T* and 1 < i < k, 1 < j < n 

X . . E N. and x .. E. T* • 
l.) l. l.) 
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< i v > [ x 1 +y 1 Y 1 ' · · · ' xk +y k Y kJ 

v. E T* 1 < i < k. 
· ]. 

where 
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X., Y.EN. 
l. l. l. 

and 

DEFINITION 3.8: Let G = (N1 , .•• , Nk' T, S, P) 

be a k-rlmg. We define the yield relation for 
~ 

x, Yf(U N.UTU{S})*by X= >y iff 
. 1 l. l.= 

( 1) x = S and [ S+y 1 tZ P or , 

(2) There exist y 1 , .•. , yk £ T*, w1 , .•• , wk, z 1 , ..• , zk 

with Wi , z . € (N • U T) * 
l. l. 

and x1 , ••• , xk with X. € N. 
l. l. 

such that x = y 1x 1 z 1 ... ykXkzk' y = y 1w1 z1 ... ykwkzk 

* and [X1+w1 , ••• , Xk+wk] E P. ==> is the reflexive 

transitive closure of ~>. (Note that this is a 

"leftmost" derivation.) 

DEFINITION 3. 9: L <; T* is a k-right-linear 

simple matrix language (k-rlml) iff there exists a k-rlmg 

* G = (N1 , •.. , Nk' T, S, P) such that L = L(G) = {xE:T*!S-==>x}. 

We denote the family of k-rlml's by Oflk. 

Before we qive the main result of this section we need 

LF:~1MA 3. 4: If L E ffi k then L can be qenera ted 

by a k-rlmq havinq rewriting rules onlv of the forms 

(i), (iii), (iv) and (ii'): [S+x1 x
1

x 2x 2 •.. xkXky] with 

x. , yET* and X. E N. 1 < i < k. 
1 1 l. - -
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PROOF: Let G = (N1 , ••• , Nk' T, S, P) be a 

k-rlrng for L. If G has rewriting rules only of forms 

(i), (iii), (iv) and (ii') we are done. Otherwise let 

Let 

G = 

- 2 ~..rn N. = N . UN. U ••• UN. 
]. ]. ]. ]. 

(N1' ••• , Nk' T, s, P) 

1 < i < k 

where P 

(1) [S+xJ if [S+x] €. P and x € T*. 

and 

contains: 

(2) [S+xl1[Xl1' x12' ••• , x1t]x2l"""xk1[Xk1' 

[S+xl1 x11" •. x1txlt ••• xktxkty] E P where 

and X . . E. N . 1 < i _< k , 1 _< j < t. 

• • ·' xkt1Yl 

y, X •• E T* 
l.J 

l.J ]. 

(3) r [ z1' xl1' • • • I xlj]+yl[Yl' x11' . . . , xlj J ' 

[Zk, xkl' ... , xkj]+yk[Yk' xkl' . . . , xkjll if 

[Zl+y1Y1' ... , zk +ykYkl t: p' j E {1, . . . , rn - 1} 

X. €N. 0 _< q < j. l.q ]. 

(4) [[z1 ,j_1 , Xlj' ••• x 11 J+w1x 1 j[Xlj' .•• , X1 ), ••• , 

[zk,j-1' Xkj' ••• , Xkt]+wkxkj[Xkj' ••• , Xkt]) if 

rz1 ,j_1+w1 , ••• , zk,j-l+wk] E P and 

[S+x11 x 11 ••• x 1 jxlj ••• x 11x 11 ••• xktxkt 1 E P where 

and 

Xi p, Xi E T* , z i , j -1 , Xi p E N i 1 < i < k ' 1 < p < t . 

(5) [X1+x1 , ••• , Xk+xk] if [X1+x1 , ••• , Xk+xk] €P 

and X. E:. N. , x ~ E: T* , 1 < i < k. 
]. ]. ... 

if 
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G simply imitates a derivation by G while keeping 

track of any unused non-terminals which resulted from 

its initial production in the components of its non-

terminals. We conclude L(G)= L(G) and G has only 

productions of the desired types. 

THEOREM 3.5: For all k > 1, J" k = mk. -
PROOF: Let LEJ'k and G = (k, N, T, s, P) 

a k-tlg for L. Let Ni = { [X' i] I X EN - {S}} and 

G = (Nl, . . . , Nk' T, s, P) a k-rlmg where p contains: 

(3) [[X, l]+yl [Y, 1], ••• , [X, k]+yk [Y, k]] if 

X+(y1 , •.• , yk)Y€P where X, Y€N, yi€T*. 

(4) [[X, l]+x1 , ••• , [X, k]+xk] if X+(x1 , ••• , xk) E. P, 

X E. N , x . €. T* • 
1 

Clearly L (G) = L (G) = L. Hence L E: mk and we have 

Jk ~ ffik. 

To show the reverse inclusion let L E OYLk and 

G = (N1 , ••• , Nk, T, S, P) be a k-rlmg for L normal

ized as in Lemma 3. 4. Let W = {y E T* I [S+x1 x1 ••• xkXky] E. P} 



and N = {S} U (N
1 

x N
2 

x ••• x Nk x W). Define 

G = (k, N, T, s, P) where P contains: 

(1) S ( ) ~f [S+w] ~ P . +W, e:, ••• , e: ... .:; 
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(2) S+(x1 , ••• , xk)[X1 , ••• , xk,Y1 if [S+x1x 1 ••• xkxk,y)EP 

where y, x. E. T*, X. E.. N. 1 < i < k. 
~ ~ ~ 

< 3 > r x 1 ' ••• , xk 'Y J .. < Y 1 , ••• , Y k > [ Y 1 , ••• ' Y k , Y 1 if 

[Xl+ylYl' ••• , Xk+ykYk]€.P,yi£ T*, yE..W, Xi' YiE:Ni. 

(4) [X1 , ••• , Xk' y]+(x1 , ••• , x0') if [X 1+x1 , ••• ,Xk+xk) E. P, 

y E. W, x . E T* , X . E N . 1 < i < k • 
~ ~ ~ 

Now G is clearly a k-tlg such that L(~) = L(G) = L. 

Hence L ( .:J k and O(L k ~ :f k. This completes the proof. 

COROLLARY 3.6: For all k ·~ 1, 'fil.k = ~ k" 

We now note that we.could alter the definition of k-tlq 

to demand that if X+(x1 , .•. , xk) is a production and 

X # s then x. ~ e: 1 < i < k. Similarly, in the defini
~ 

tion of k-rlmg we could demand that if 

is a rewriting rule, then x. ~ e: 
~ 

1 < i < k. We denote the family of languages generated 

by k-rlmg t s with this restriction by m~' and similar

ly define ~ ~· Now we can extend the definition of 

k-rrlg to allow the base grammar to be an e:-k-rlg and 

we denote the family of languages so obtained by 1t~. 



COROLLARY 3.7: For all k > 1 

(i) 'Jk = J'~ and mk = m~. 

(ii) fflk = 1?.~. 
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PROOF: (i) It is clear that :J ~ ~ :Jk. Since 

J k = 1?, k, we have the reverse inclusion when we note 

that in the construction of a right-linear k-tuple 

grammar from a k-rrll (Theorem 3.3) no terminating 

k-tuples contain E's. 

The second equality follows from Corollary 3.6 

by a similar argument. 

(ii) The family YOL k is closed under homo

morphism, hence so is 11?.- k. Now let L E. -0?, ~ with a base 

grammar G = (N, T, S, P, k) • Let a ¢ T then the 

grammar obtained by substituting x~a for all rules of the 

form x~E with X # s is a k-rlg. Let La be the 

language obtained by making this substitution and using the 

same control language. Then La € ~ k" Define 

h: TU{a}~T* by hiT= idT and h(a) = E. Clearly 

L = h (La) , so L E: iGk. Therefore ""6t ~ ~ 7R k. The reverse 

inclusion is obvious and the result follows. 

COROLLARY 3.8: There exist context-free languages 

which are not in 1?. k for any k, hence not in ;f k 

for any k, or in ;t:_, • 
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PROOF: This is from Corollary 3.6 and Theorem 

4. 7 of Ibarra [ 4 J • 



§4. ANOTHER RESTRICTION ON DERIVATIONS. 

In this section we define another form of req-

ulated rewriting for k-rlq's. As is the case for 

context-free qrammars, periodically time varying k-rlg's 

and k-rlg's with regular control have the same genera-

tive capacity. 

DEFINITION 3.10: A k-parallel right linear 

periodically time-varying grammar (k-rlg) is a pair (G,~) 

where G = (N, T, s, P, k) is a k-rlg and <p: i)J --2P 

(P as in Definition 3.1!) with the property that there 

exists p E: fN such that Cf (j + o) = 'f (j) for all j E IN • 

DEFINITION 3.11: Let (G, Cf ) be a k-rlpg 

where G = (N, T, s, P, k). We define the yields relation 

on pairs from (N u T*) x fN by 

either (1) j 1 = 1, j 2 = 2, P = s 

(2) j2 = jl + 1, P = zlxl •.• zkxk 

( p , j 1 ) = > ( Q , j 2 ) 

and S+Q E <pCl) 

iff 

or 

and 0 = z 1y 1 •.. zkyk 

with z . € T* , X . €. N 1 < i < k and 
1 1 - (X 1 ' • • • 'Xk) + ( y 1 ' • • • 'y k) E cp ( j 1) • 

DEFINITION 3.12: L s; T* is a k-parallel right

linear periodically time-varying lanquage (k-rlpl) if 

there exists a k-rlpg (G,~) where G = (N, T, S, P, k) 

- 86 -
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* such that L = L(G, Cf>) = {xE T*l (S, l)=>(x, j) for some 

j~IN}. 

We denote the family of k-rlpl's by 

Since the methods used to show the main result of this 

section have been developed above, and since they 

involve somewhat lengthy constructions, we simply state 

the result and sketch its proof. 

THEOREM 3.8: For all k ~ 1, -c£k = "U\. 

PROOF: The first step is to show t/k ~ lfk+l 

and u k is closed ·under union for all k > 1. This is 

achieved by the methods of Theorem 3.1 and Lemma 3.2. 

Next we show 7 k ~ U k. Given L = L(G)E :J k 

it is easv to construct a k-rlg G1 and q> with period i~ 

sothat L=L(Gl 1 'f)· Finallyweshow '(/k~1(_k. Given 

L =- L (G, q> ) E: V k, we define an fsa which counts modulo 

p and accepts any control word of a derivation by G 

such that at the i-th step the productions used form a 

member of cp ( i) • 
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