
RESTRICTED PARALLELISM AND RE~ULAR GRAMMARS

RESTRICTED PARALLELISM AND REGULAR GRAMMARS

By

ROBERT DOUGLAS ROSEBRUGH, B.SC.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

~cMaster University

November 1972

MASTER OF SCIENCE (1972)
(Mathematics)

McMASTER UNIVERSITY
Hamilton, Ontario.

TITLE: Restricted Parallelism and Regular Grammars

AUTHOR: Robert Douglas Rosebrugh, B.Sc. (McMaster University)

SUPERVISOR: Dr. Derick Wood

NUMBER OF PAGES: vi, 89

SCOPE AND CONTENTS:

This thesis studies the properties of k-parallel

right-linear languages. An infinite hierachv of language

families is found and closure properties of these families

are studied. The language families are characterised

in terms of simple languages and non-deterministic general-

ised sequential machine mapPings. In addition a character-

isation of k-right-linear simple matrix languages by

k-parallel right-linear languages with a control device

is g i ven.

- ii -

ACKNOWLEDGEMENTS

The author wishes to express his deep grati

tude to his supervisor, Dr. Derick Wood, whose encour

agement and criticism were of great value in the prepar

ation of this thesis. Thanks are also due to Dr. Arto

Salomaa of the University ot Turku, Finland, whose

enliqhteninq presentation of a qraduate course on

Formal Lanquages was most helpful.

The author also wishes to acknowledge the

financial support of the National Research Council and

express his appreciation to Ms. Carolyn pheeler for

her prompt and efficient typing of the manuscript.

- iii -

\

TABLE OF CONTENTS

Chapter 1: Introduction 1

§1. Lanquage and ~rammar 1

§2. Accepters and Machines 13

Chapter 2: k-Parallel Right Linear Languages 18

§1. Introduction 18

§2. The Infinite Hierarchy and Related 24
Results

§3. E-Rules and Factor Lanquaqes 39

§4. Closure Properties 47

§5. k-Parallel Left Linear Lanquaqes 59

§6. Decidability Questions 64

Chapter 3: Regulated Rewriting 68

§1. k-Parallel Right-Linear with Regular 68
Control Languages

§2. Right-Linear Tuple Languages 74

§3. Right-Linear Simple Matrix Lanquaqes 79

§4. Another Restriction on Derivations 86

Bibliography 88

- iv -

PREFACE

In recent years several studies have been made

of phrase-structure grammars with rewriting methods

which are "parallel" in that more than one rewritinq

rule is applied at each derivation step. This parallel

ism greatly increases the generative canacity of context

free nroductions in the case of scattered context lang

uages as defined by Greibach and Hopcroft 2], and simple

matrix languages, tu?le languages and equal matrix

languages as defined by Ibarra [4], Kuich and Mauer (5],

and Siromoney [10] respectively. The absolutely parallel

grammars of Rajlich [6] generate a smaller class of

languages than the context-free lanquaqes. Rozenberq

and Doucet [7] have studied 0-L systems which em?loy

parallel rewriting without terminals.

This thesis arose from the notion of placing

a "k - at a time" restriction on 0-L systems. In

the nresent form it is more closely related to [4] ,

[5] and tl 0 1 •

Chapter 1 qives preliminary definitions and

states some well-known results from Language Theory.

- v -

Proofs of these may be found in Hopcroft and Ullman

[3] , or in Salonaa [9] •

In Chapter 2 we define k-parallel right linear

grammars and study the properties of the families ~ k
which are qenerated by them. In §2 we show that the

families £ k form a proper infinite hierarchy of

language families. In §4 we consider closure properties

of these families and give a characterisation of each

by a simple language and non-deterministic generalised

sequential machine mappings. In §5 we consider k-parallel

left-linear lanquages and in §6 the decision properties

of the families ~k.

Chapter 3 is devoted to giving a new character-

isation of k-right-linear simple matrix languages by

k-parallel right-linear languages with a control device.

As far as the author knows, the families i
k

are new, s o all of Chapter 2 is original, although some

of the proofs are standard. Except for Theorem 3.5

which was pointed out by Seymour Ginsburg [1], Chapter 3

is also new material.

- vi -

CHAPTER 1

INTRODUCTION

§1. LANGUAGE AND GRAMMAR.

A non-empty finite set is called an alphabet

or vocabulary. Elements of an alphabet are called

letters or symbols. If V is an alphabet we denote

bv V* the free monoid generated by V. Elements

of V* are called words or strings of symbols. The

operation in V* is called catenation and is denoted

by ju.-taposition i.e. if x, yeV*, their product is

written xv. ~he neutral element of V* (which is

the string with no svmbols) is called the empty word

and is denoted by c . We denote by v+ the set

V* - { E} • If x, V E V*, then y is a subword of X

if there exist z, w EV* such that X = zyw: if z = E

then y is an initial suhword, and if w = E then

y is a final subword. If x ES V* then the mirror

iMage of x, denoted mi(x), is the element of V*

obtained by writing x backwards e.q. if V = {a, b}

and x = abab, then mi(x) = baba. By convention

mi(£) = E.

- 1 -

2

We define a length function I - I : V*+ (N U { 0}

by (i) I €: I = 0, I a I = 1 for all a E V

(ii) lxyl = lxl + lvl for all x, yEV* .

Intuitively, the length of a word is just the number

of symbols occurring in it.

Let V be an alphabet. A language over V

is a subset of V*. A family of lanquaqes is a pair

o: , t> where :tl: (I:) = oo and ;(is a family of subsets

of I:* satisfvinq

(i) there exists L E J: such that L :1 <P.

(ii) for all L E £ there exists I:L ~ I: with

~(I:L) < oo and L ~ I:t·

In the sequel we will speak of a family of languages

without mentioning the first component of the pair.

Given a family of lanquaqes oe it is natural to

ask if ;(i s closed under operations which can be

defined on £: For example, since the members of

are sets, we can ask if, qive n L1 , L 2 E £ , whether

L 1 U L 2 , L 1 f\ L 2 and r... 1 - r~ 2 are in £ . We now define

several language-theoretic operations:

(1) the catenation (or product)of two languages Ll

and L2 is defined by L1L2 = {xy I x t.. L1 and y E L2 }

3

(2) for a language L we define L~ i > 1 to be

the language obtained by catenating i copies of

L (catenation is associative!), and Lo = { e:}.
co

Li. The catenation closure of L is L* = u
i=O

(3) the left g:uotient of a languaqe Ll by a language

L2 is defined by L2'\Ll = {x lvx e L1 for some

y E. L2}. The right quotient is similarly defined:

Ll/L2 = {xrxv <::L1 for some y E L2 }.

(4) the mirror image of a language L is the collection

of mirror images of its words i.e. mi (L) = {mi (x) lx €. L}

(5) let V be an alphabet and for each a ~v, let

Va be an alphabet. Let cr(a) be a language over

v for each a E. V. Define cr(e:) = { e:} and a

cr(xy) = cr(x)a(y) for x, y E: V* • Lettinq v = u
a~ V

a defines a mapping of V* into 2 v* which is

called a substitution. For a language L over V

we define cr (L) = {x lx GO (y) for some y E. L}. A

family of languages ~ is closed under substitution

if whenever L E £ is a language over V and cr

is a substitution such that cr (a)~ f for all a f V

then o (L) E £ .

v a'

4

(6) a substitution such that #(cr(a)) = 1 for all

a E V is called a homomorphism. (Thus a homomor-

phism maps V* into V* and is a homomorphism

of free monoids.)

We will define other closure operations below.

We now define the four basic types of phrase-structure

grammars and the associated language families.

DEFINITION 1.1: A generative qrammar (of

Type 0) is an ordered quadruple G = (N, T, s, P) where

N and T are disjoint alphabets, S E. N and P is a

finite set of pairs (u, v) such that u t: (N uT) *N (N u T) *

and v E: (N u T) *.

Elements of N are called non-terminals,

elements of T are called terminals and s is called

the sentence symbol. Elements (u, v) of P are

called rewriting rules or productions and are written

u+v.

DEFINITION 1.2: Let G = (N, T, S, P) be a

generative qrammar. We define a binary relation = > c;

("yields") on (NUT)* by .x (f'Y iff there exist

x1 , x 2 , u, v E:(NUT)* such that x = x 1ux 2 , y = x 1vx 2

and u+v€ P. We denote by * + = > (= >)
G G the reflexive,

transitive closure (transitive closure) of ~>
G

i.e.

* x==>y iff either (1) x = y or (2) there exist
G

such that

1 < i < n

x = x 0 , y = xn and

+ (x~~>y iff 2 holds).

When no confusion can arise we will write

5

simply * + = > (= >, =--,o>) instead of * . +
-=G=> (- G··> ' -=>) G . Ne

note that later in this chapter, and especially in

Chapters 2 and 3, the symbol ==> will have different

meanings as different types of grammars are defined.

The distinctions should be clear from the context.

A derivation by G, where G = (N, T, s, P)

is a generative qrammar is a finite sequence

D : Q O , 0 l , ••• , On (n ~ 0)

1 < i < n.

satisfvinq (), -==>Q.
r-1 G 1

-<

DEFINITION 1.3: Let G = (N, T, S, P) be a

generative grammar. The language generated by G is

* L (c;) = { x E. T* IS·-c;>x} •

Aqain, as several types of qrammars are intro-

duced below, the notation L(G) will take on several

meanings, hut its meaninq will always be clear from the

context. We say two generative grammars G1 and G2

are equivalent if L(G1) = L(G2). We denote by £ RE

the family of languages generated bv qenerative qrammars

6

of Tyoe 0 and state

THEOREM 1.1: ;(RE equals the family of

recursively enumerable sets.

DEF-INITION 1.4: A generative grammar

G = (N, T, s, P) is context-sensitive (or Type 1)

where XE.N, x 1 , x 2 , y E:(NUT)* and y 'I e: with the

possible exception of the production s~e: whose occur

rence in P implies that S does not occur on the

right side of any production in P.

A lanquage L . is context-sensitive if there

exists a context sensitive grammar (csq) G such

that L = L(G). We denote the family of context-sensitive

languages by ~ cs = {LIL = L(G) for some csq G}.

DEFINITION 1.5: A context-free grammar (or

Type 2 grammar) is a generative grammar G = (N, T, s, P)

such that for each production u~v € P we have u EN.

A language L is a context-free language

(cfl) if there exists a cfg G such that L = L(G).

We denote the family of context-free languages by

£cF·

Since the application of a rewritinq rule in a

7

a derivation by a context-free grammar depends only

on one non-terminal (independent of context - hence

the name) we can assign a derivation tree to a deriva-

tion by a cfg. A tree is a directed qraph satisfying

(1) there is exactly one node (the vertex) which no

edge enters.

(2) there is exactly one path from the vertex to each

other node.

A derivation by a cfg is leftmost if at each step the

leftmost non-terminal is the one replaced. It is easy

to show that every word in the lanquaqe generated by a

cfg has a leftmost derivation. To a leftmost derivation

by a cfg
. ,, . .

it is possible to assiqn a un1que der1vat1on

" tree. We give an example to illustrate this process.

EXAMPLE 1.1: Let G = ({S, X, Y}, {a, b}, S, P)

where P contains:

s~xY

x~xxlaYia (we use this notation as an abbreviation for

x~xx, x~aY, x~a>

Y~b

G is clearly a cfg. Some sample leftmost derivations

by G are:

(1) S:=---=>XY= >aY= >ab

(2) S==>XY==>XXY==>aXY==>aaYY==>aabY==>aabb.

The tree associated with (1) i s

s

a

FIGURE 1.1

The tree associated with (2) is:

s

FIGURE 1.2

b

b

b

8

9

Note that the ''leaves" (the nodes from which

no edges emanate) are labelled by terminals, all other

nodes are labelled by non-terminals, and the vertex i s

always labelled by s. The word qenerated can be read

from the leaves from left to right.

DEFINITION 1.6: A right-linear grammar (rlg) (regular

grammar, Type 3 qrammar) is a context-free grammar

G = (N, T, S, P) such that if X-+-x E P then x ~ T*N U T*.

A language L is a regular language (regular set, finite

state language) if there exists an rlg G such that

L = L(G). We denote the family of reqular languages

by ;C Regular languages have been characterised REG"

in many ways. We give one which will introduce useful

notation for the sequel.

DEFINITION 1. 7: Let T and V = { u, *, <P , ~ (,)}

be disjoint alphabets. A word over T UV is a regular

expres~ion ove~ T if

(1) x E. v or x = cp , or

(2) x is one of the forms (y v z), (yz) or y* where

y and z are regular expressions over T.

Each regular expression x over T denotes a

lanquaqe l(x) accordinq to the followinq conventions:

10

(1) the language denoted by ~ is the empty language.

(2) the language denoted by a~ T is {a}.

(3) for regular expressions x and y over T,

t (X U y) = R. (X) U R. (y) 1 R. ((XY n = R. '(X) R. (y) 1 R. (X*) = t (X) * •

It is well known that a language is denoted by a regular

expression iff it is regular.

A cfg G ~ (N, T, s, P) is left-linear if

X+x E P implies x E NT* v T*. The family of languages

generated by left-linear grammars is ~REG" Given

a rlg G = (N, T, s, P) we say that a non-terminal Y

is reachable from a non-terminal X if there exists

a derivation by G D• X = Q c-=-o>Q ~> = >O = yY · ·o ·1 • • • ·n ·
where

n > 1 .and y E: T* •

We use the notion of regular set to define a new

closure operation. A family of languages of is closed

under intersection with a regular set if whenever L E: £

and R E £REG tnen L 0 R f £ .

The four families of languages we have defined

are called the Chomsky Hierarchy and play a f undamental

role in language theory. They are linked by:

THEOREM 1.2: t REG ~ -;{ CF 'I L cs 'I i RE.

11

The lanquaqe families of the Chomsky Hierarchy

are obtained by restricting the form of productions.

It is also possible to restrict the manner of genera-

tion allowed. Several types of 'regulated rewriting '

have been defined. We now introduce a type of restricted

derivation which will be used in the sequel.

Consider a grammar G = (N, T, s, P) with

production set P. A labelling of productions is a

one-one correspondence Lab: P-->Lab(P) where Lab(P)

is an alphabet. To each derivation by G there corr-

esponds a control word over Lab(P) consisting of the

labels of productions applied in D in the order of thei r

application. The language generated bv G with control

languaqe C is the subset of L(G) which consists of

words havinq a derivation with a control word in C. We

denote L(G, C)= {x€.T*I 3 a derivation * D: S= >x

and u E. C such that u is a control word of D}.

The study of grammars with control lanquaqes has

been mainly restricted to the case where C is a regular

lanquaqe. It can be shown that if G is of Type 0,

context-sensitive or regular then L(~, C) (where C

is a regular set) is also Type 0, context-sensitive or

regular respectively. We shall have occasion to use

the last case in Theorem 2.12. In fact the most inte r-

estinq case of grammars with control lanquages are context-

12

free qrammars, for in this case the qenerative capacity

is qreatly increased by the addition of a control languaqe.

§2. ACCEPTERS AND MACHINES.

In this section we define the language accept-

inq and translating devices which we will use in

Chapters 2 and 3.

(fsa)

DEFINITION 1.8: A finite state accepter

is an 5-tuple M - (0 r o q 0) where - - , , , 0 , _.,..

Q and r are finite non-empty sets, o: Q x !-->Q,

We call Q the set of states, r the input

alphabet, o the transition function, q 0 the initial

~ and QF the final states. We can extend o to

o* defined on Q X !* by

(i) o*Cq, e:) = q for all q€0

(ii) o*(q, x) = o*(o*Cq, y) , a) for all qEQ where

ya = X E! + and a E r.

The lanquage accepted by ~-1 is T (M) = {x E L'* I
o*(q0 , x)E QF}. We denote the family of languages accepted

by f.sa' s by £ f.sa.

DEFINITION 1.9: A nondeterministic finite state

accepter (nfsa) is a 5-tuple M = (Q, r, o, q 0 , OF)

where Q, r, q 0 and QF are as in Definition 1.8 and

O: Q X !->2Q•

- 13 -

14

Again, o can be extended to o* defined on

Q x r* and the language accepted by an nfsa M is

defined by T (M) = {x E. T* I o *'{q0 , x) (')OF #4>l. The family

of languages accepted by nfsa's is denoted by nfsa·

The result linking these two language families to the

Chomsky Hierarchy is

THEOREM 1 • 3 : ~ f = f f = __/) • sa n sa ~REG

If L is a language over T, we denote

F(L) = {a E: Tlax E L for some x E. T*}. If L is a

regular lanquage specified by an fsa, regular qrammar

or regular expression, there is an alqorithm to find

F.(L) .

In §2 of Chapter 2 we will qive a qeneralisa-

tion of the following well-known theorem on regular sets.

THEOREM 1.4: (Iterating Factor Theorem) Let

L he a regular set. There exist natural numbers p and

q such that if X EL and lxl > p then X= UVW with

q > I vi > 0 and for all i > 0, uviw € L.

DEFINITION 1.10: A nondeterministic generalised

sequential machine (ngsm) is an ordered 6-tuole

s = (0, r, 6, o, q 0 , QF) where o, r. and 6 are

alphabets, q
0

E: Q, QF<; Q and o: o x r->2Qx 6*

(finite subsets only).

15

We call 0 the set of states, E the input

alphabet, /). the outEut alphabet, ~ the transition

function, qo the initial state and OF the final

states. As for fsa's and nfsa's, ~ can be extended

to 0 X E*. For x E E* we denote

S(x) = {yEfl*l (q, y) E:.~*(q 0 , x) for some q£QF}.

If L is a language over r we denote

S(L) = {yE:6*IY E.S(x) for some xEL}. We call S(L)

an ngsm mapping. If ~ is a family of lanquages, then

~ is closed under nqsm mappings if whenever L £ £
and S is an ngsm, then S (L') E £

We also note that an ngsm can also be defined

as a 7-tuple s = (Q, r, 6, ~, ~, qo, QF) where

Q, r, 6, qo and OF are as above, and ~: Q X r->Q

and ~: Q X E->2 6* (finite subsets only). In this

notation S(x) = {y~6*ly£~*(q0 , x)} and S(L) is

as above. We shall use whichever formalism is more

convenient in the sequel.

DEFINITION 1.11: A push-down accepter (pda) is

an ordered 7-tuple M = (Q, r' r, 0, qo, ZO' QF) where

Q, r and r are alphabets, qo E: o, z 0 E. r, OF <;; Q and

0: Q x(EU{e:})x r~2oxr* (finite subsets only) •

16

We call Q the set of states, E the input

alphabet, r the set of pushdown symbols, o the

transition function, q 0 the initial state, z0 the

bottom of pushdown marker, and Q the final states.
F

A configuration of a pda M is a pair (q, y)

where q €. Q and y £ r * . If a E (r u { e: }) , y , y I ~ r * ,
z E..r, and (q 1

, Y 1)E. o(q, a, Z) then we write

a: (q, Zy) I- (q 1
, y 1 y). We can extend this notation in

the obvious way to cover strings of symbols over

* and we then write x : (q, y) f- (q • , y 1
) for x

a word over r v { e: } , q, q 1 E. Q and y , y 1 f:. r * •

For a pda M we defined the language accepted

{xEE*!x: * by final state to be T(M) = <qo' zo> l- (q, y)

for some q Ec OF, yf: r*L We denote by oC pdl the

family of languages accepted by final state by a pda.

For a pda M, we define the lan~uage accepted

{xE.E*Ix: * by empty store to be N(H) = <qo, zo> 1- (q, E:)

for some q € Q}. We denote by £ the family
35

of languages accepted by empty store by a pda. We have

the follm<~ing theorem linking these two types of acceptance

by pda 1 s and the Chomsky Hierarchy.

THEOREM 1.5: -P d = -P = r£ c'C'· 0\... p a ~ es - r:

17

Before we go on to the study of parallelism

and regular grammars we make one more remark. The proofs

in Chapters 2 and 3 involve many constructions of new

grammars and machines from given ones. In these con

structions new symbols are added to qiven alphabets,

and new symbols are constructed from old ones. We make

the convention that any new symbols introduced are

really ~ symbols i.e. they do not occur in any alphabet

already given. In addition, abstract symbols will often

be introduced as pairs of members from qiven alphabets.

We use square brackets instead of round brackets for

convenience of. notation and to aid the reader e.q. given

alphabets X and Y we form the new alphabet

X X y a { [x, y] I X t X, y €: y} •

CHAPTER 2

k-PARALLEL RIGHT LINEAR LANGUAGES

§1. INTRODUCTION

In this chapter we introduce the notion of

k-parallel right-linear grammar and study the families

of languages generated by them. These grammars differ

from conventional phrase-structure grammars in that k

productions are applied at each derivation step with a

resulting increase in generative capacity.

DEFINITION 2.1: For k£~ , a k-parallel right

linear grammar (k-rlg) is a 5-tuple G = (N, T, S, P, k)

where

(1) (N, T, S, P) is a context-free grammar

(2) S-f?C E: P implies x € Nk LIT*

(3) X-+x € P and X# S implies X E T*NVT+

(4) X-+xEP implies x # ysz for all y, zE.(NUT)*.

Points (2) and (4) of the definition mean that

productions from S generate k non-terminals or a

terminal word and that S can never appear on the right

side of a production. Point (3) means that all other

- 18 -

19

rules are right-linear rules.

DEFINITION 2.2: Let G = (N, T, S, P, k) be a

k-parallel right linear grammar. The yield relation

is defined on (NUT)* X (NVT)* by X =>y G .

and X. +z. E: P
l. l.

for i = 1, 2, ••. , k.

* + ===>(===>) is the reflexive, transitive closure (transi-G G

tive closure) of ,.,.,.,.,. >
G

When no confusion can arise we will write =>
G

simply as => ..

DEFINITION 2. 3. A language L <.: T* is called a

k-parallel right-linear language (k-rll) iff there exists

a k-rlg G = (N, T, S, P, k) such that L = L(G) =
* {x E. T* Is G-->x}. We denote {.__ k = {LI L is a k-rll and

00

[___ = u f_ k"
k=l

EXAMPLE 2.1: Consider the 3-rlg G3 =
({S, X, Y, Z}, {a, b, c}, s, P, 3) where P contains:

S+XYZ

X+aXIa

Y+bYib

Z+cZic.

Some examples of derivations by G3 are:

S=>XYZ=>abc

S==>XYZ==>aXbYcZ==>a2b 2c 2

S==>XYZ==>aXbYcZ==>a2Xb2Yc 2 Z==>a 3b 3c 3 •

20

From these it should be evident (and it is easy to show

by inductio~ that L(G3) = {anbncnln > 1}. This lanquage

is context-sensitive, but it is not context-free.

EXAMPLE 2.2: Consider the 2-rlq

G = ({ S , X, Y, W, Z} , {a, b, c, d} , S, P, 2) where P

contains:

S+XY

X+ax!xlzla

Z+bZ I b

Y+cYIW

W+dW !d.

Some sample derivations by G are:

S==>XY~>aXcY==>aZcW==>abcd

S==>XY==>aXcY==>a2XcW~>a 3cd

S==>XY~>aXW==>aZdW==>abd2 •

Again an induction shows that

L (G) = {xy I x € a*bb* v aa*, y E c*dd* and

I xI ~ I Y I i f x € a *bb*, I xI < I y I + 1 if

x ~ aa*}.

21

L(G) is context-free (as are all 2-rll 1 s, see

Lemma 2.7) but is clearly not regular.

LEMMA 2.1: The family of regular languages

equals ;:_ 1.

PROOF: First, it is clear that any language

in f._ 1 is regular since it is generated by a context

free grammar with only right-linear productions. Next

let L ~ T* be a regular language and G = (N, T, s, P)

be a right-linear grammar for L. If P contains no

productions of the form X+E then

G1 :: (NU{S 1
}, T, S 1

, PU{S 1 +S}, 1) is a 1-rlg for L.

Otherwise1 we construct G2 = (N2 , T, S 1
, P2 , 1) where

N2 = NU{S 1 }U{XalX€N, acT}. For each XEN let

L(X) be the regular language generated by GX = (N, T, X, P)

and recall that we can. decide if E E L (X) or not. P 2

contains:

(1) s 1 +S, and S 1 +E if E E:. L

(2) X+y'J if X+yY €P, yeT*, X, Y E:N . and E ¢L(Y)

1. It is well known that every regular set can be generated

by a right-linear qrammar without E-rules. We qive a

construction to show this fact in order to introduce the

notion L (X) , for X EN (see Theorem 2. 3 and Theorem

2.12) and to give an example of a type of construction

used in Theorem 2.11 and Theorem 3.3.

(3) X+yY if X+yaYE'P, yeT*, aET, X, YEN and a

(4)

(5)

€ E L (Y)

X +Y a a

Xa+ayYb

if X+Y E P, X, Y E. N, for all aE:.T

if X+ybY E P, y E T*, bE T, X, Y, E N and

€ € L (Y) , for all a E T

(6) Xa+ayY

for all
I

(7) Xa+ay

(8) X+y if

if + X-+-yY € P , y E T , X , Y ~ N and

aET

if X+y E P, y € T*, X EN

+ X +y E P , y € T , X E N.

for all aET

22

G2 imitates derivations by G. When G2 detects

that the corresponding G-derivation may end without

further deposit of terminals, it attaches the last symbol

which is deposited by G to its non-terminal (point 3)

as a subscript. This terminal is carried along (4) and

is deposited when the €-rule would be applied in the

corresponding G-derivation (7), or, i if a non-trivial word

could also be generated, before the next deposit of term-

inals takes place in the corresponding G-derivation

(5 and 6). Note that the new sentence symbol guarantees

that initial productions will be of the correct form

for G2 to be a 1-rlq. Now L = L(G2) so each reg

ular set is in ~l and we are done.

LEMMA 2. 2: Given a word x E:. T*, there is an

algorithm to decide if x E L (G) where G = (N, T, S, P, k)

is a k-rlg.

23

PROOF: By the definition of k-rlg it is obvious

that E E L (G) iff the production S-+E is in P. Thus

we may assume x + E and consider sequences of the form

(1)

where n ~ 1, yi are pairwise distinct words over

N u T and for 0 < i < n - 1 we have I Y i I 2 I Y i+ll •

Clearly the number of such sequences is finite. Moreover

x E L (G) iff for some sequence (1) we have

Thus it suffices to check, for each of th~ finitely many
'

sequences (1), whether or not (2) is sati~fied. This can

be done since for any two words and and a k-rlg

G we can decide by checking through productions of G

whether or not z 1~> z 2 holds.

The essential point i n the proof is that we may

assume lv I < lv I for 0 < i < n - 1 since k-rlg's . i - . i+l .

are 'length-increasing'. Lemma 2.2 means that the

'Membership Problem' is decidable for k-rlq's. We will

make extensive use of this fact. Other decision problems

are considered in §6.

§2. THE INFINITE HIERARCHY AND RELATED RESULTS

In this section we show that the families

~k form an infinite proper hierarchy of lanquage

families and present results relatinq these language

families to the Chomsky Hierarchy.

THEOREM 2. 3. For all k ~ 1 , t'k <;: Lk+l •

REMARKS: The proof of this theorem is quite

involved, but the idea is simple: a derivation by a

k-rlg is mimicked by a derivation of a constructed

k+l-rlg which uses one of its "slots" to deposit only one

letter of the word in question. We recall that for a

regular language L s;T* the set F (L) = {a E. Tl3 x e T* with

ax € L 1 can be found effectively.

PROOF: Let L E .(.k and G = (N' T, s, P, k)

a k-rlg such that L = L(G). We construct a k+l-rlq

r,l = (N I , T, s, pI t k + 1) where Nl = NV {[X, a] I X EN,

a E.T}U{YalaE T}. Let m = maxflxiiX+x E p}. P' contains:

(1) S+X1 ••• Xi-lYa[Xi' a]Xi+l"""Xk if S+X1 ••• XkEP,

Xi E: N, 1 .::_ i .::_ k, and a E: F (L (Xi)) •

(2) S+x if S+x € P and x E T* •

- 24 -

25

(3) S+x if X €.L(G) and lxl <km (this step is

okay by Lemma 2 .2).

(4) Ya+Yala for all a € T.

(5) X+yY if X+yY E. P, X, Y E N, y E: T* •

(6) X+x if X+x € P, X € N, x E. T* •

(7) [X, a]+[Y, a] if X+YEP, aET and X is reachable

by a sequence of chain rules from a non-terminal

occurring on the right side of an initial production.

(8) [X, a]+yY if X+ayYE:P, X, YE:N, yE.T*, aET.

G' is clearly a k+l-rlg. We now give a descrip

tion of the operation of G':

(i) all words in L(G) of length <km are generated

by initial productions from S (point 3).

(ii) if a word of length >km is to be generated non

trivially by G, at least one non-terminal on

the right of an initial production must lead to

at least two deposits of terminals. (This allows

proper operation of 7 and 8). The productions of

1 allow G' to pick one such non-terminal. Pro

ductions from 3, 5 and 6 allow the derivation by

G' to procede essentially as it did by G except

for the presence of a Ya. The non-terminal to the

immediate right of the Ya keeps track of Ya until

26

the first deposit of terminals (7) • If the first

terminal deposited by Gx.
l.

in the G-derivation is an

"a", then all terminals except "a" are deposited and

generation now procedes as it did in G(8). When

termination occurs the "a" is deposited in the correct

place by Ya (4).

We now qive a detailed proof that L(G) = L(G').

CLAIM 1: L(G) ~ L(G').

PROOF: Let XEL(G). If lxl < km then xEL(G')

by construction. Otherwise I xI > km and S+x E P implies

x ~ L (G') by (2) , or there exists a derivation

D: S = 00~>01- G> ••• =a>Qn = x with n > 2. (By the defini

tion of m, the maximum possible lenqth of o2 is km

and since lxl > km we know n > 2.)

In the second case x can be factored x = x 1 ••• xk

where x.E.L(X
1

.),1 < i < k. Also

each x.
l.

can be factored

l. l. -

x. = y2.y3 .••• y. l. l. l. - nl. where

X. 1 k+yjix .. is the production applied to the i-th
J- , Jl.

non-terminal in Q. 1==>Q., 2 < j < n- 1 and X 1 .+y.
J- J - - n- ,1 nl.

is the production applied to the i-th non-terminal in

0n-1=>Qn. Hence y .. E. T*
Jl.

1 < i < k, 2 < j < n - 1 and

+ y. E.T' nl. 1 < i < k.

For some i there exists a j < n such that

.27

y .. ~ E for otherwise x could have length at most km. Jl.
We fix such an i and let j be the least j such that

y .. ~ Jl. E • Suppose y. . = ay .
1
., a E T, y .. E. T*. Jl. J Jl.

Clearly

a € F (L (Xli)). By 7 and 8, we have the following list of

productions in P':

G I:

[Xli' a]+[X2i' a]

[X. 2 ., a]+[X. 1 ., a]
J- ,l. J- ,J.

[X. l. a]+y .. X.i. J- ,J., . Jl. J

Thus we have the following derivation for x in

* ~>y2l···Yj-l,lxj-l,l···Ya[Xj-l,i'a]y2,i+l···Yj-l,kxj-l,k

Thus x e L(G') and we have L(G) c L(G').

Claim 2: L(G') c L(G).

28

PROOF: If x E L(G') and S+x € P' then x E L(G)

by construction. Otherwise there exists a non-trivial

derivation for x by G' which must take at least

three steps. This is because all non-terminating initial

productions are of the form 1 • A non-terminal of the

[X, a] type c an lead to termination only after applica-

tion of a production from 8 and a production from 6.

This requires at least two steps after the initi al produc-

tion. Thus the derivation of x must have the form (I)

above. Now by 7 and 8, the productions used in this

derivation of x at the i + 1 - st non-terminal before

the j-th step were constructed from productions of P

to allow the following derivation of x by G (where x

is factored as before):

* = >Y21· • • Y · 1 lx · 1 1· • .x · 1 · lx · 1 · Y2 · +1" • • Y · 1 kx · 1 k J- , J- , J- ,1.- J- ,l. . ,l. J- , J- ,

= >y21···Y ·1x.l ••• x. 1 · lay .. X ..••. x.k . J J J- ,1.- - Jl. Jl. J

* ==>y2l···Ynl···Yn,i-layji"""Yni···Ynk = x.

Thus x € L (G) and L (G') S L (G).

Claim 1 and Claim 2 qive L(G) = L(G'), so we have

29

EXAMPLE 2.3. Consider the 2-rlg

G: ({S, A, B}, {a, b}, s, P, 2) where P contains:

S+AB

Evidently L (G) = {anbm lm > n > 1}. ll'le apply the construe-

tion of Theorem 2.3 to give a 3-rlg for L(G). First we

note that F(L(A)) : {a} and F(L(B)) = {b}, and that

m = 2 so km = 4. The set of non-t~rminals for the new

grammar is

N': {S, A, B, [S, a], [S, a], [S, b], [A, a], (A, b],

The new production set P' contains (where numbers below refer

to the construction in Theorem 2.3):

(1) S+Ya[A, a]B, S+AYb(B, b]

(3) S+abla2b 2 lab2 lab3

(4) Ya+Yala, Yb+Yblb

(5) , (6) A+ aA I A I a , B+ bB I b

(7) [A, a]+[A, a]

(8) [A, a)+A, [B, b)+B.

Now G' = {N', {a, b}, S, P',3} is a 3-rlg for L(G).

We give some sample derivations by G':

3 3 4 ==>Y aAb B=--->a b a

30

Our next result generalizes the iterating factor

theorem for regular languages to 2-rlg's. First, however ,

some comments on derivation trees are in order. Since

the grammar underlying a k-rlg is context-free we can

attach a derivation tree to a generation of a word by a

k-rlg. Since the form of productions is restricted and

the manner of generation is "k-parallel" we can be quite

specific about the nature of possible derivation trees.

We first give examples to illustrate:

Example 2.4. Using the grammar G3 from Ex. 2.1

we have the derivation S *>a3b 3c 3 • The tree associated

with this derivation is

s

X

a

z

a \ b c
FIGURE 2.1

31

EXAMPLE 2.5. Using the grammar G from Ex. 2.2

we had a derivation S~>a 3cd. The tree associated with

this derivation is

s

X

a d
FIGURE 2.2

In general the trees associated with derivation

by a k-rlg look like the tree of Fig. 2.3, i.e. an

initial branching to k subtrees all of which have the

same length and all of which have leaves only to the

left.
s

' ' ' ' ' ' yl '

12
' yk ' lZ2 ~zk zl

zl z2 zk

note: Some of X •' ~
yi, z. may

~
be labelled e: •

FIGURE 2.3

32

THEOREM 2.4: Let L£ 1:, 2 • There exist positive

integers p, n, r, s such that if x £ L and I xI > p

then X = uvwu'v'w' with I vi + lv' I > o, lvl, lv'l < n

and for all i > 0 uvriwu'v'siw'E L where q = lcm{r, s}

and r = .s., s = g
r s·

PROOF: Let G = (N, T, S, P, 2) be a 2-rlg

such that L = L(G) and suppose #(N) = j and

max { I x I I X-+x € P} = t . Let p = 2 j t and suppose x E: L

and I xI > p. Then for some A, B £ N we have

* S=>AB= >x, moreover there exist + y, z € T such that

* * A=r,> y, B~> z and x = vz. One of lvl and lzl is
3 A GB

greater than jt and we conclude that in the correspond-

ing subtree of the derivation tree for x there must

be a repeated node-name. Moreover there must be a repeti-

tion of node-name which is "non-trivial" in that term-

inals are deposited between the first and second occurr-

ences (for otherwise jt terminals could never be deposited).

Since the generation of x precedes in parallel the

number of non-terminals appearing in the other subtree is

equal to that of the first, and a node-name must be repeat-

ed there as well.

Now suppose there is a repeated node-name in the

tree for y separated by r - 1 non-terminal nodes,

and a repeated node name in the tree for z separated by

s - 1 non-terminal nodes which satisfy the conditions:

33

(1) at least one of the repetitions is non-trivial and

(2) in each case the repeated node-name does not occur

among the names for the separating nodes.

The subtrees thus picked out generate words v and

v' respectively which are not both empty and since

r, s < j we have lvl, lv'l < jt = n.

Since q is a common multiple of r and s,

a subtree of length q may be inserted in the y-tree

and the z-tree which generates respectively vr and

v' 8
• The resulting tree is a tree for a terminating

derivation by G of uvrwu'v'sw' where y = uvw and

z = u'v'w. We may iterate the insertion of subtrees o~
I

for all i > o.
\J

We can generalize this result to

THEOREM 2. 5: Let L £ ..(k. Then there exist

positive integers p, n, r 1 , ••• , rk such that if x E L

and lxl > p then x = u1v1w1 ••• ukvkwk, vi not all £,

'
' -.

lv. I < n 1 < i < k and for all
]. -

rlj rkj
j > 0 u 1 v1 w1 ••• uk vk wk E: L

where q =tern {r1 , .•• , rk} and r. = _g
]. r .

].

i€:[1, k].

PROOF: Take p = kjt and precede as above.

THEOREM 2.6. £: k <j ,e_k+l for all k > 1. Thus

the families L k form a proper infinite hierarchy of

,
• I

'r I I

34

language families.

PROOF: By Theorem 2.3 we have only to show the

existence of a language in ~k+l - oCk for all k > 1.

When· k = 1 we can use L2 = {anbnln ~ 1} for this

language is clearly in L2 (modify Ex. 2.1 to give a

2-rlg for it) but L2 is not regular, so not in L 1"

When k = 2 we can use L3 = L (G 3) = {anbncnln ~ 1}. ,

By Ex. 2.1 L3 E L
3

and we apply Theorem 2. 4 to show

L3 4: /!.. 2 • Suppose L3 E.C2 and let p, n, r, s be

positive integers satisfying Theorem 2.4 for L3 • Let

q be a positive integer so that laqbqcql > p, then

aqbqcq = uvwu'v'w' with v and v' not both € •

Neither v nor v' can consist of a single letter for

if it did increasing powers of that letter (those letters)

would occur while the third letter did not increase in

power since all i > 0 by Th. 2. 4.

Now if either of v or v' has more than one letter we

!should have words in L3 containing powers of one of

or for integers k, t, m < q. This is

impossible. We conclude L3 4 .!.., 2 .

{ n n n I } By similar arguments Lk+l = a 1a 2 ••• ak+l n ~ 1

is in !v k+l (modify G3 to Gk) but not in -1-, k

(by Theorem 2.5) for all k > o. This completes the

proof.

tbm
a '

Before we summarize the known relationships

between the families i k and f and the Chomsky

Hierarchy we give a relevant lemma.

Lemma 2 • 7 : 1 2 ~ [, CF.

PROOF: Letting L € ~2 implies there exists

35

a 2-rlg G = (N, T, S, P, 2) such that L = L(G). We

construct a pda M such that L = N(M). we let

M = (Q, T, o, {A, B}, S, B, ~) where Q = {S} U(V x(N V{E}})

and

V = N v {xX I x e T+, X € N, 3 Y+zxX E P, z €. T*}

U {x € T+ I 3 Y+zx E P, z e. T*, Y e. N} U { e:}.

o is constructed as follows:

(1) o(S, e:, B)= {([x
1

, x 2], B)jS+X
1

X
2

E.P}(U{(S, E)} if

S+£ E P)

o(S, a, B)= {([y,e:), B)jS+ay€P, yt.T+}(U{(S, E)} if

S+a € P)

(l.J { ([X
2

, e:] , AB) } i f X l +a E P)

L){([y, X2], M)jX
1
+ay€P, y€T+}

(U{([X
2

, E), M)} if X
1
+a€.P)

36

o<rx1 , X21' E' B) = { < [Y, x 2 1 , AB) I X 1 + y € p ' YEN}

o ([Xl, X2] ' e: ' A) = {([Y,X2], AA) 1 x
1

+Y E. P, y € N}

(3) o ([xx
1

, x 2 J , a, A) = { ([yX 1' X 2 1 , A) I X = ay, y € T*}

(4) o([y, x21, a, A)= {([z, x2J, A>IY = az,

o([a, x21, a, A)= {([X2 , e:1, A)}

+ z € T }

(5) IS ([X2 , e: 1 , a, A) = { ([yY, e: 1 , e:) I x2~ayY € P, v € T* ,

{ ([y, e: 1 , e:)IX 2+ayE:P, yE:T*}

o ([X2 , e: 1 , e: , A) = { ([Y' e: J , e:)IX2+Y€P, y E. N}

(6) o([yX, e:1, a, A)= {([zX, e:], A)IY = az, zE.T*}

(7) o([y, e:l, a, B)= {([z, e:], B)IY

o([a, e:], a, B)= {([e:, e:], e:)}

+ = az, z E T }

(8) o(q, b, c)=~ CE.{A, B}, q€Q, bE. T U{e:} in all

other cases.

While the construction of M is quite complex its

operation is simply described. M adds one symbol to

the pushdown store each time a production is found in

the tree resulting from the first non-terminal of an

initial production (point 2) • The second non-terminal

y € N}

of this initial production is "remembered" in the second

component of the state. When the derivation in the first

tree terminates this initial non-terminal is moved to the

1 first component of the state (point 4) and the productions

37

used are counted off as they are found (point 5). If an

equal number of productions have been found when this

derivation terminates (point 7), the input word is

accepted by empty store. Note that words in L(G)

by an S-+x production, where x E: T* , are accepted by

operation of 1 and 7.

Finally, L = N (M) so L G LcF·

COROLLARY 2.8: ~ 2 is contained in the family

of one-counter languages.

I

PROOF: We used only a bottom-marker and one other

push-down symbol (the "counter") in our construction.

THEOREM 2.9.

(1) The family L 1 equals the family of reqular sets

and for every k ~ 2, ~k contains non-regular

languages.

(2) L 2 ~t:.CF and for every k > 31 Lk contains non

context free lanquages.

<3 > £ 7: "Lcs.
(4) There exist context-free languaqes not in 1: (and so

not in i k for any k) •

PROOF:

(1) The first part is by Lemma 2.1. L2 = {anbnln > 1}

is a non-regular language in £2 and hence in
/

£k for all k > 2. -

38

(2) The first part is by Lemma 2.7 and 4 below.

L3 = {anbncnln > 1} is a non-context-free language

in i 3 and hence in fv k for all k > 3.

(3) This follows from f..._ k <:: 'tR-k and Corollary 3. 6

below, and Theorem 1. 3 of Ibarra [4 J •

(4) This is from Corollary 3.7 below.

§3. £-RULES AND FACTOR LANGUAGES

In this section we show that allowing £-rules

does not chanqe the generative capacity of k-rlq's

and that the'language of i-th factors' of a k-rll is

regular.

LEMMA 2.10: The family 'fv k is closed under

union for all k > 1.

PROOF: Let L1 , L2 E. ;{ k and let

Gl = (Nl' T, sl, pl' k) and G2 = (N2' T, s2, p2' k)

be such that Ll = L(G1) and L2 = L(G2). We assume

N1 n N2 = <fl and S ¢ Nl U N2 • Let G =' (N1 uN2 U{S},T,S,P,k)

where P contains:

S+ y 1 • • • y k if S 2 + y 1 • • • y k E: p 2 ' y i E. N 2 ' 1 < i < k

(2) S+x if Sl +x E P l, x E. T*

S+y if S 2 +y € P 2 , y E T*

(3) X+yY if X+yY€P1 UP2, y€.'"1' and X, Y€.N1 or

X, Y E.N2 •

- 39 -

Clearly L (G) = L (G1) V L (G2) = L
1

V L2 , therefore

Ll u L2 € ;(k.

NOTATION: In what follows we denote for

1 < i < k

40

&i = {f: [1, i]+[l, kJj f is one-one and n < ~> ~(n)< ~ (m)

for all n, m E. [1, i]}.

We define a k-parallel right-linear grammar with

£-rules (£- krlg) exactly as in Dfn. 2.1 except that

point (3) is modified to (3') X+x E. P imolies x € T*N u T*.

This means we allow terminating rules of the form X+£.

We define the yield relation for an £-krlg exactly as

in Dfn. 2.2 and denote the family of languages generated

by c -krlg 's by .;(~. It is immediate from Lemma 2 .1

that ;(1 = ~~ = ~REG" We also note that a slight

modification of Lemma 2.2 shows that the membership problem

is decidable for languages specified by £-krlq's.

Definition 2.4: Let and xE.L. Fix

an £-krlq G for L. Then ~. (D, x) 1 < i < k is
l. -

defined to be the subword of x generated by the i'th

non-terminal on the right side of the initial production

of some derivation D of x by G.

Note that ~. (D, x) is defined only if there is
l.

41

a non-trivial derivation of X by G and in this

case X = '11'1(0, X)'11' 2 (D, x) ••• 'll'k(D, x) for all deriva-·

tions D of X by G.

THEOREM 2.11. ;;(k= i~.

PROOF: Each language L in -i_k is generated

by a k-rlg which is trivially an e-krlg, so L€ ;(~.

Thus ike,(~.

The reverse inclusion is more interesting: let

LE ;;(~ and G = (N, T, S, P, k) be an £-krlq such

that L = L(G). For all i E [1, k], for all

define

L~ = {x ELI 3 a derivation D of x by G satisfying
1

'11'. (D, x) ~ e:
J

for all j f im <p , '11' j (D , X) = e: otherwise}.

Define L. =
ufE:£i

L! 1 < i <
1 1

Then
k

u
.i•O

L =
k
u

i=O

Ne next claim L '!' E cf_. for all
1 1

construct r;! = (N', T, S, P'!', i)
1 1

k and

L. if
1

L.U{e:}
1

La = { x E. T* I S-+x E. P} •

£~L

if t:.EL.

q> E ~i. To see this we

where

N' = NU{[X, a]/ X EN, a ET} and P . contains:
1

42

(1) S+X<p(l) ••• x<f(k) whenever S+X1 ••• xk E. P •

. (2) X+yY whenever X+yY E: P, y E: T* , X, Y E N and

e: ¢ L (Y) •

(3) X+y [Y, a] whenever X+yaY E. P, a E: T, y E T*,

X, Y € N and e: € L (Y) •

(4) For all a€T, [X, a]+[Y, a] whenever X+Y€P, X, YE.N.

(5) For all aET, [X, a]+ay[Y,b] whenever X+ybY€P,

,b E: T, y E T* X, Y E. N and e: E: L (Y) •

(6) <For all a € T, [X, a]+ayY whenever X+yY £ P, yET*,

X, Y E. N and e: ~ L (Y) •

(7)Forall aE.T, {X,a]+ay whenever X+yEP, XE.N,

y E: T* •

(8) X+y whenever + X+y E: P, y €: T •

The construction of t G.
1

is essentially similar

to that· in Lemma 2 .1. Since for all x € L~, 'II'. (D, x) :j: e:
1)

for all j (im <p we know that at least one terminal

letter is deposited in the j'th subword of x. A termin-

al letter which is potentially the last one deposited

is carried throuqh the derivation (points 3 and 4) until

either more terminals are deposited (5 and 6) or the

derivation terminates (7). The other productions are as

43

before (2 and 8) except that the initial productions pick

out only the productive non-terminals (1). Thus G~
l.

is an i-rlg which generates By Lemma 2.10,

L. £ L. 1 < i < k. L0 E 1..,1 since it is finite. Thus
l. l. -

Li € f: k, 0 < i < k (by Theorem 2. 3) and since \'Te can

decide if e: E L or not, we have L E £ k (another applica

tion of 2.10). Thus ;(~ 5: Lk. This completes the proof.

REMARK: This theorem leads to the question

'Why not allow X+e: rules in the first place?' for then

the analogue of Theorem 2.3 would be a triviality. The

ans~er is that Theorem 2.11, which is a most desirable

result in either case, does not follow without heavy

use of Theorem 2.3 for k-rlq's as we have defined them.

DEFINITION 2. 5: Let L E f._ k and G be a

k-rlg for L. For 1 < i ~ k, X EN we define

and

where X. = X}
l.

I,l.. = u L . (X) •
X€N 1

This means is the language consisting of

i'th factors of words qenerated when X is the i'thnon-terminal

on the right side of an initial production.

44

L . is the
1

language consisting of all i'th factors of non-trivially

generated words.

EXAMPLE 2.5: Consider G = ({S,A,B,C,D},{a,b} , S,P,2)

where P is given by:

S+AB A+C B+bBI b

C+D D+aAia.

Clearly L(G) = {anbJnln ~ 1} but here

h* = ;_ L(B) ~ L2 (B) = I.2 = {b3nln ~ 1}. Thus while L(X)

is regular for all X £ N (X '# S) , we have to consider
.1\

L(X)

G =

i =

and so separately.

THEOREM 2.12. Let L E£k anp fix a k-rlg
!

(N, T, s, P, k) for
1\

L. Then Li is regular

1, ... , k.

PROOF: We will show that each L . is generated
1

by a right-linear grammar with a regular control language

and so [by Salomaa [9]) is regular. First let Lah(P)

be a set of labels for productions in P, sav
a .

Lah(P) = {ajll ~ j < n} and we denote by X~ X that

a. is a label for X+xE.P.
J

We say a k-tuple of non-terminals

"terminates" if there is an +
X. E. T

J
such that X .+x . f. P

J J

45

1 < j < k.

We say a k-tuple of non-terminals cx1 , ••• ,Xk)

"yields" another k-tuple (Y1 , ••• ,Yk) (written as

cx1 , .•. ,Xk)+(Y1 , ••• ,Yk)) if there exist productions

in P : X . +y . Y . , y . E. T* 1 < j < k.
J J J J

We now construct k nfsa's M.
~

1 < i < k by

M i = (Nk u { S } \) { F} , Lab (P) , IS i , S , { F})

is defined by:

where IS .
~

(2) oi((X1 , ••• ,Xk)' aj) = {(Y1 , ••• , Yk) €Nkl (X
1

, ••• , Xk)+(Y1 , ••• ,Yk)

and
aj

xi~.,yYi

terminates and

(3) oi(q, aj) =~

1 .::_ j < n.

some y € T* } (U { F}

aj
X. -->x for some
~

otherwise for all

if (X
1

, ••• , Xk)

X € T+) 1 .::_ j < n.

q E. Nk U { S } U { F} ,

We now define k right-linear grammars G.
~

by G. = (N, T, s, p .) where P. = (P - { S+" I S+x € P })
~ ~ ~

u {S+Xi I S+x
1

••• xk t. P, X. EN, 1 < j < k}. We now label
J -

the productions of pi by usi~g the same labels as above

for productions of P and giving the new productions

the label of the production of
aj

constructed (i.e. s -->X. if
~

P from which they were
a ·

s .2>x1 ••• xk).

46

We claim that "" L. = L(G., T(M
1
.)).

1 1
·Now " x. € L.

1 1

iff there exists X E: I. such that and

" . x. €L. 1 < J < n iff there exists a derivation
J J - - -

S==>X1 ••. Xk==> •.• ~>x with the productions at the i-th

place labelled so that the control word is in T (M .)
1

A
iff x.E:L(G., T(M.)).

1 1 1
Thus L.

1
is qenerated by a

right-linear grammar G.,
1

I

uage T (M.)
1

and therefore

with regular control lanq-
A
L.

1
is a reqular set.

§4. CLOSURE PROPERTIES

In this section we consider closure properties

of the families ~k and we then qive a simple character

ization of ~ k.

THEOREM 2.13: For all k ~ 1, ;(k is closed

under union and finite substitution.

PROOF: Closure under union is by Lemma 2.10.

Next let Lf2£ k and G = (N' T, s, P, k) be a

k-rlq for L. Let f: T-+21:* be a finite substitution.

We define an E-krlg ~f = (N, i, S, Pf, k) for f(L)

where Pf contains:

(2) x ... zy if z E. f (y) , X ..,yy e P , y € T* , X , Y E N •

(3) x ... z if + Z E. f (X) , X ..,X E.. P , X € T , X € N •

Clearly L (Gf) = f (L) , hence f (L) ("£ ~ and,

by Theorem 2.11, f(L) E £k.

COROLLARY 2.14: ~ is closed under union and

finite substitution.

PROOF: Let Ll, L2 € !._,

L2 (~ k for some k 1 , 1<: 2 • Let
2

- 47 -

then · L1E: -£ k and
1

k = max {k1 , k 2 } and

we have L1 , L2 E: -£k, so L1 u L2 € -;l k and thus

L1 U L2 E. .i . Similarly we have closure under finite

substitution.

COROLLARY 2.15. i_ k and eL are closed

under homomorphism.

THEOREM 2.16: For all k ~ 1, ;:k is closed

under intersection with a regular set.

48

PROOF: Let L be a k-rll and G = (N,T,S,P,k)

be a k-rlg for L. Let R be a regular set

and • M = (Q, T, cS, s 0 , F) an fsa such that

R = T (M). We will construct a new k-rlg for Lll R.

Let G' = (N', T, S, P', k) where N' = {S] U(QxNxQ)U(QxN).

P' contains:

(1) S-+x if S-+x E: P , x E. T* and X € R.

(2) S-+[s 0 , x1 , s 1 J [s 1 , x2 , s 2 J. .. [sk-l' Xk] for all

sequences s 1 , ••• , sk-l of members of Q if

s-.x1 ... XkEP, XiE N 1 .::_ i < k.

(3) [si, x, sj]-+y[o*(si, y), Y, sj] if X-+yYE:P,

y £ T* , X, Y f. N and s i, s j E. Q.

(4) [s . , X , s . 1 -+x
1. J

cS*(s., x) = s .•
1. J

if + X-+x E. P, X € N - { s} , x E: T and

49

(5) [s. , X]-+y [s., Y] if X-+yY E P, y € T*, X, y E. N
l. J

and ~*(si, y) = s., s. , s. G. Q.
J l. J

(6) [si' X]-+x if X-+x E. P, X EN - {S}, + X € T , s.E
l.

Q

and ~· (s. , X) E F.
l.

In point 1 all words generated trivially by G

that are in R are generated by G 1
• A word is qener-

ated non-trivially by G1 if it is generated by G (the

cores of productions from points 3-6) and is accepted by

M (the state components of non-terminals in productions

from points 3-6 contain information as to the state of

M a .s it processes a word generated by G. If M is

in a final state at the end of a word generated by G,

then G1 is allowed to generate it.) Since this type of

construction will be used again below we give a detailed

proof that L (G 1
) = L" R.

CLA::M 1: L (G I) <:; L II R.

PROOF: Let x E L (G 1
), then either S-+x E P 1

and so x E: L n R or there exists a derivation

D: S = P0===>P!'''"""> ••• ~>Pn = x in G 1 and n > 2. We

then have P1 = [s 0 , x1 , s 1 J[s1 , x2 , s 2] ••• [sk-l' Xk]

for some x1 , ••• , XkfN and s
1

, ••• , sk_1 €Q. Moreover

x. E:L([s . 1 , X., s .]) 1 < i < k- 1,
l. l.- 1 1 -

50

and xk ~ L ([sk-l, Xk]). Thus, by points 3-6 of the

construction, xi € L (Xi) 1 < i < k and there is a

derivation of xi of length n - 1

*
from X . •

~
Hence

S~>X1 ••• Xk==>k1 ••• xk = x (utilizinq also point 2
G

for the initial production) and so x € L(G) = L.

Also, by points 3 and 4,

(by 5 and 6), hence 6*(s0 , x) = o*(s0 , x 1 ••• xk) ~ F and

x £ R. Thus x E. L f\ R which proves Claim 1.

CLAIM 2 : L n R S L (G') •

PROOF: Let x E. L () R, then either S-+x E. P

and o* (s 0 , x) E. F qiving x E L (G') by point 1 or

o* (so I X) E. F and there exists a derivation

D: S = P 0==>P 1~> ••• ==>Pn = x in G where n > 2. We

can factor x for this derivation D as we did in t h e

proof of Theorem 2.3 i.e. x = x 1 ••• xk and for 1 < i < k

with y . . €. T* 2 _::. j ~ n - 1
J~

and + y .E. T.
n~

We denote the correspondinq productions of P by

x .. -+v.+l .x.+l . 1 < j
J~ J ,~ J ,~

< n - 2 - and X 1 .-+y . 1
n - ,~ n~

< i < k.

There exist s. € 0
~ . 1 < i < k - 1 such that

o*(s
0

, xl)= sl' 6*(s. 1 , X •) = si and o*(sk-1' xk) E F.
~- ~

l~e also have sj i E. Q 1 < i < k, 2 < j < n such that

o*(s. 1 ., vjJ = s .. 2 < j < n, sli = s. 1 and
J- , l. J~ ~-

51

s . = s. 1 < i < k. Now by construction we have n1 1

S+[so, xll' sl) [sl, xl2' s2]. •• [sk-1' xlk] in p1.

[s .. , x .. , s.]+y.+l .[s.+l ., x.+l . , s.] 1 < j ~ n- 2 J1)1 1 J ,1 J ,1 J ,1 1 -

and [s 1 . , X 1 . , s.]+y . in P 1 1 < i < k - 1, n- ,1 n- ,1 1 n1

by points 3 and 4 • We also have

[sjk' xjk]+yj+l,k [sj+l,k' xj+l,k] for 1 < j < n - 2

and [sn-l,k , Xn-l,k]+ynk in ? 1 b y points 5 and 6.

Thus we have the followinq derivation o~ x by

G I • , .

S==>[so, xll' sl] ••• [sk=l ' xlk1

==>y2l[s21' x21' sl] ••• y2k[s2k' x2k1

* ==>y21···Yn-1,1[sn-l,l' Xn-1,1' sl] ••• yn-l,k[sn-l,k'Xn-l,k]

= x.

Thus x E L (G 1
) which completes the proof of Claim 2.

Claim 1 and Claim 2 give L(G 1
) = LnR, so L(\R € .lk.

COROLLARY 2.17. ~ is closed under intersec-

tion with a reqular set.

COROLLARY 2.18: -£ k for all k > 1 and j_

are closed under right quotient with a regular set.

PROOF: Lemma 9.5 page 131 of Hopcroft and

Ullman [3 L

Next we show that, while ~l is closed under

52

intersection (this is well-known by Lemma 2.1), none

of the other families under consideration are closed

under intersection.

THEOREM 2.19: For all k > 2, ~k is not closed

under intersection.

PROOF: We first consider k = 2 to make the

argtunent clear: let Lc = { (a u b) 2n cnln > 1}, that i s -
the language consistinq of all words of lenqth 3n

who~e first 2n letters consist of a's and b's and

whose last n letters are c. Let La = {an(bvc) 2nln >

Both Lc and La are in i 2. Lc is qenerated by

1}.

G = ({S' X, c, D}, {a, b, c}, s, P, 2) where p contains:

S-+XC

C-+D

o-.cclc

x-.axlbxlalb.

A similar 2-rlg generates L • a
Now we consider

Let xE:L (\L c a then for some
n n n > 1 x = a yc

where I y I = n and y E (a u b u c) * . Now y has no

occurrence of c since x €Lc and the first 2n letters

of x must be a or b. Similarly y has no occur-

renee of a. Hence n y = b • Thus

53

Clearly {anbncnln ~ 1} c;; LcnLa' so Lcf"La =

{anbncnln ~ 1} = L3 • But in Theorem 2.6 we showed that

L3 ¢ ;(2 • Hence ~ 2 is not closed under intersection.

We can generalize this counterexample by consid

ering Lkl = { (a1 u a 2)
2

n a~ •.• a~+ll n ~ 1} £ /.._ k and

{ n n n 2nl } P Lk2 = a 1a 2 ••. ak-l (ak u ak+l) n ~ 1 E J.-...- k and noting

that Lk1flLk 2 = {a~a~ ••• a~+ 1 1n ~ 1}¢ fk.

COROLLARY 2. 20: For all k > 2, fv k is not

closed under complement.

PROOF: If some ~k were closed under comple

ment, closure under union would imply closure under inter-

section, contradicting Theorem 2.10.

THEOREM 2.21: For all k ~ 1, ~k is closed

under ngsm maps.

PROOF: Let L ~ ik and G = (N' T, s, P, k)

a k-rlg for L. Let s = (Q, T, h., 0, A, qo, F) be

ngsm. We qive an E-krlg for S (L) which shows

S(L)E. t_E
k = ..t k" Let G' = (N' , h. , S, pI' k) where

N' = (Q x N x Q) u (Q x N) U {S} and P' contains:

(1) S+z if Z€."*(q0 , x) and S+xE.P, XET*.

(2) S+[q0 , x1 , q1 J [q1 , x 2 , q 2J. .• [qk-l' xkJ for all

sequences q1 , •.• , qk-l of. members of Q if

be

an

54

s-.x1 ••• xk € P, x. E: N 1 < i < k.
l. - -

(3) [qi' X, qj]-.z[o*(qi' y), Y, qj] if x-.yYEP, yf.T*,

X, YEN, qi, qj€0 and zt:~*(qi' y):

[qi' X]-.z(o*(qi' y), Y.] if x-.yYt:P, yt.T*,

X, YE:N, qiE: Q and zt:A*(qi' y).

(4) [q. , X, q. J-.z if x-.x € p, X e: T*, X € N, 6* (q., X) = q.
"1. J l. J

and Z€A*(qi' X) : [qi, x]-.z if x-.x t p, + X E T ,

X E.. N, o*(qi' x) C:::: F and zE">.*(q . ,
l.

X) •

G' generates all of 5 (x) fior each x € T*

generated trivially by G (point 1). If a word x is

generated non-trivially by G, each word in S(x) is

qenerated by G' which deposits the "translation" of a

word deposited by G, and keeps track of the state of S

in its first component. The third component is used to

match states at the boundaries corresponding to a factoris-

ation of the word according to the non-terminal from which

it is generated (points 2- 4). The detailed proof that

S(L) = L(G') follows the method of Theorem 2.16 and is

ommitted.

COROLLARY 2 • 2 2 : ~ is closed under non-deterministic

gsm maps.

We are now in a position to qive a characterisation

55

of the family ~k in terms of a closure property . The

languages Lk defined above play a fundamental role in

the theory of k-parallel right-linear languages so we

{ n n nl } recall that Lk = a 1a 2 •.• ak n ~ 1 .

THEORE~1 2. 2 3. ~ k is the smallest family of

languages containinq Lk and closed under non-determin

istic gsm mappings for all k > 1.

PROOF: Let -:y k be the smallest family of

lap~uages containing Lk and closed under non det. qsm

maps. Since LkE.: i.k we have ~k £,lk by Theorem 2.21.

To show the reverse inclusion let L E :l k, and

G=(N, T, s, P, k) be a k-rlg for L. We will construct

an ngsm M = (Q, rk' T, o, q 0 , F) such that L = M(Lk).

We first construct G' = (N', T, S, P', k) with

L = L(G') where N' = .(N x {1, 2, ••• , k }) U{S} and P'

contains

(1) S+x if S+x E P and x E T*

(2) S+(X1 , l][X2 , 2). •• [Xk' k] if S+X1 ••. Xk P

X.EN,l<i<k.
~

(3) [X, i]+y[Y, i] if X+yY E.P, X, YEN, yE.T*, 1 < i < k.

(4) (X, i] +x if + X +x E. P , X E: N , x € T , 1 < i < k •

Note that each non-terminal in G' carries

I

56

with it information specifying from which of the k

original non-terminals it is qenerated.

Next we number the initial productions lettinq

the first n be the non-trivial initial productions

and productions numbered from n + 1 to m be the

trivial ones.

Now we can construct M. r k = {a1 , a 2 , ••• , ak}'

Q == 'N' x {1, 2, ••• , n}U{q0 , qn+l'"""' qm' qf} and

F = {qn+l' ••• , qm' qf}. Next we specify J:

(1) o (q0 , a 1) = { (qi, x) IS+xE: P, xE: T* is the ith production}

U { ([Y, 1, j], y) IS+ [x
1

, 1] ••• [Xk, k] is the

jth production and x1+yY E. P, y E. T*}

is the j 'th production and x1 +x E. P,

X E.T*}.

(2) o (qi, aj) = { (qi, £:)} n + 1 < i < m, 1 < j < k·

(3) 6 ([X, i, j], a.) = { ([Y, i, j] ,y)l [X,i]+y[Y,i] €P',
~

y E' T* , X, Y E: N}

U{ ([Y, i+l, jl,v>l [X,il+yE.P', yET+,

Y is i+lst non-terminal in

initial production j J

for 1 < j < n , 1 < i < k - 1 •

57

(4) o((X, k, j], ak) = {((Y, k, j], y)j(X, k]-+y[Y, k]E.P',

y €. T*}

{ (q f , y) I [X , k 1 -+y £ p I , v E: T + }

(5) o (q, a) = 4> otherwise for all q ~ O, a E: rk.

M operates by either (1) outputting the result

of a trivial derivation and reading the remainder of an

input word in a final state with no output (1 and 2)

or (2) using the states of M to keep track of a non

terminal in the first component, the position of the non

terminal in the second component, and which initial pro

duction was used in the third com?onent. Reading an

input symbol causes M to write any terminals deposited

by a oroduction from the non-terminal in the first com

ponent of the present state, and to change state so that the

non-terminal on the right side of the production used

appears as the first component of the new state (3).

If a terminating production is oossible its right side

is written and the first component of the new state is

the non-terminal in the next slot on the right side of

the initial production identified in the third component

(3). At the same time the second component is incre-

mented by one. Note that ~ is allowed ·to procede only

if the subscript of the input letter beinq read and the

58

second component of the state agree. The input word is

used to ensure that the derivation has the same length

in each position. (1, 3, 4). An output word is in

M(Lk) if and only if it is the result of a terminating

derivation by G' • There fore L = M (Lk) , [k s; ':J k

and the result follows.

REMARK: We can define an operator GSM on

families of languages ~ (over a fixed countably infinite

alphab!t) by GSH (~) = n 011.1 m_? 'J, 'On closed under

non-det. qsm maps}. It is easy to verify that GSM

is a closure operator. In this notation Theorem 2.23

reads [k = GSM ({ Lk}) •

In the next section we show one more closure

property of the families £ k, namely that they are

closed under mirror image.

§5. k-PARALLEL LEFT LINEAR LANGUAGES.

In this section we define k-parallel left-

linear grammars and show that they generate the same

class of languages as k-rlg's.

DEPINITION 2.5: A k-parallel left-linear grammar

(k-llg) is a 5-tuple G = (N, T, s, P, k) satisfvinq

(1), (2) and (4) of Definition 2.1 and

3t) X-+x p and implies + xE:NT*UT.

As for k-rlq's we can define the class of lang
.p».

uages generated by k-llg's which we denote by ~ k

and call members of this class k-parallel left-linear

languages (k-lll's).

EXAMPLE 2.6. Consider G~ = ({S, A, B, C},

{a, h, c}, s, P, 3) where P contains:

S-+ABC

A-+Aaja

B-+Bbjb

C-+Ccjc.

- 59 -

60

which (recall Example 2.1) is also a 3-rll. We see

from this example that Lk E ;(~ for all k > 1, by

modifying t
G3 to t

Gk.

Our aim is to show that tk =!~. To do this

we will use Theorem 2.23.

THEOREM 2. 24: ;{ ~ is the smallest family of

languages containing Lk and closed under non-deterministic

qsm maopinqs for all k > 1.

PROOF: l~e let ~k denote the smallest family.

We know that Lk(t ~· Next we show that t:t
k is closed

under non-deterministic gsm maps.

CLAIM 1: Allowing E-rules in 3!) of Definition

2.5 does not change the generative capacity of k-llg's.

PROOF: We observe that is closed under

union (nroof similar to Lemma 2.10), then the claim follows

bv the right-left dual of the proof of Theorem 2.11.

CLAIM 2: t._t
k is closed under nqsm mappings.

PROOF: Let Lt:f_t
k and G = (N, T, s, P, k) be

a k-llq for L . Let M = (Q, T, !::., 6, qo, F) be a

non-deterministic gsm. Ne construct a new k-llg G'

for M(L). Let G' = (N', !::., s, P', k) where

61

N' = (0 x N x Q) U (N x Q) U{S} and P' contains:

(1) S+[X1 , q
1

J [q1 , x 2 , q 2 J ••• [qk-l' xk' qkJ for all sequ

ences q 1 , ••• , qk-l of members of Q if

S+X1 •.• xk E: P, xi E: N, 1 < i < k, and qk €. F.

(2) [q., X, q.]+[q., Y, q]z if X+Yy€P, y€.T*, X, Y€.N,
~ J ~ t

and (q j , z) € tS * (q t , y) •

(3) [qi, X, qj]+z if

(qj, z)E:tS*(qi' x).

+ X+x € P, X €. N, X E. T and

(4) [X, qj]+{Y, q 1Jz if X+YyCP, X, Y E.N, y€T* and

(qj ' z) E: tS * (q t' y) •

(5) [X, qj]+z if X+xE:.P, XE.N, x€.T+ and (qj' z)f:.l5*(q0 , x).

The operation of G' is similar to that of the grammar

constructed in Theorem 2.21. Here however, since genera-

tion procedes from right to left we insist that the

matching of states in terminal productions take place from

right to left (3), that the final state reached be terminal

(1) and that the machine started operation from the initial

state (5). We conclude that M(L) = L(G') and this com-

pletes Claim 2.

We now conclude since contains

Lk and is closed under nqsm maps.

62

Next we show the reverse inclusion. Let LE:;f.!
k

and G = (N, T, s·, P, k) a k-llg for L. Since

:tk<=~k) is closed under union, we can number the initial

productions of G from 1 to n say and let K.
~

be

the language generated by G when all initial productions

but the ith are deleted from P. Clearly L = K1 U ••• U Kn.

If the ith initial production is trivial then K.
~

has

only one member and Kif :fk since 3 k contains all

regular sets. Otherwise let the i-th production be

S+x1 ••• xk say. We construct an nqsm

Mi = (Q, Ek' T, oi' q 0 , F) so that Mi(Lk) = Ki.

Let Q = {q
0

}UN' where N' = N X {1, 2, • • • I

F = {[Xk' k]} and 6. is given by:
~

(1) 6i<qo, { ([X' 11 , x) I X+x C P, +
al) = X €. N, xE.T }.

k},

(2) 6.([Y, j1, a.)= {([X, j1, y)IX+YyEP, X, YEN, yE.T*}
~ J

for 1 ~ j < k.

(3) 6 . ([X . , j], a . +
1

) = { ([X , i + 1 1 , x) I X +x E. P , X E. N , x €. T + }
~ J J

for 1 ~ j < k - 1.

(4) 6i(q, aj) = 4> otherwise qEQ, 1 < j < k.

~i uses the input word to count steps and gives what

G would deposit as output in a manner similar to the

63

construction of Theorem 2.23. An output word is in

Mi (Lk) if and only if it is the result of a generation

from the i-th initial production of G. Hence

L =

t~
k

k
u
i=l

K. •
~

Hence in this case as well

We conclude Ki E: 3 k 1 ~ i < k and so

K.€ Jk.
~

-r.JJ c_ ~
Thus ~k Yk and therefore

= ~k.

COROLLARY 2. 25: t:~ = t k.

COROLLARY 2.26: ;Ck is closed under mirror

image.

PROOF: Let L E: £
k

and ~ = (N, T, S, P, k)

be a k-rlq for L. We construct a k-llq

R = (N I T, s I p I k) for mi (L) • contains:

(1) S-+mi (x) if S-+x f. P, x f. T*.

(3) X-+Ymi(y) if X-+yY E: P, X, Y € N, y E. T*.

(4) X-+mi(x) if + X -+x E: P , X €. N , x E: T •

It is easv to verify that L(GR) = mi(L).

§6. DECIDABILITY QUESTIONS

In this section we consider two decidability

questions relating k-rlg's and the generated languages

which have a positive answer. We recall that in

Lemma 2.2 we showed membership problem is decidable

for k-rlg's.

Let G = (N, T, S, P, k) be a k-rlg. We recall

that in Theorem 2.12 we defined a relation "+" on Nk

by (X1 , ••• , Xk)+(Yl 1 ••• , Yk),Xi' Yif.N 1 < i < k iff

there exist X. +y . Y. E: P, y. ~ T* 1 1 < i < k.
1 1 1 1 - -

DEFINITION 2.7: An N-sequence for G is a finite

sequence of members of k ~ n N = (s.) .
1

such that s . +~ . 1 1 1= 1 1+

1 < i < n - 1.

Note that we can always associate an N-sequence

with a non-trivially generated word x E L (G). If D

is a derivation of X by G we denote the associated

N-sequence by) (DI x) and the i-th member of this

sequence by si (D, x) • We call a repetition

s . (D I x) = s . (D I x) j > i in an N-sequence associated
1 J

with a word x "trivial" if there are no terminals

- 64 -

65

deposited in intervening steps. We can now show that

the "emptiness problem" is decidable for k-rlg's.

THEOREM 2.27: Given a k-rlq G = (N, T, S, P, k)

there is an algorithm to decide whether L(G) = ¢ or

not.

PROOF: Since L(G) is recursive by Lemma 2.2

we have only to give an upper bound for the shortest

non-trivially generated word in L(G). Suppose

t(N)=t and max{lxiiX+xE.P,XE::N}=m.

CLAn-1: L (G) ~ ¢ iff there exists x E L (G)

such that lxl < mktk + mk or there exists a production

S+x E:. P with x € T* .

PROOF: if: obvious.

only if: Suppose G has no rules of the form S+x,

x€T* and there does not exist xEL(G) with

lxl 2 mktk + mk, but that L(G) ~ ¢. This implies

there exists a shortest y E:L(G) with IYI > mktk + mk.

There exists a derivation D: S = P0~>P1==> ••• ~>Pn+l = Y

for y and an N-sequence ;$<n, y) = (si(D, y))~=l·

Ne may suppose) (D, y) has no trivial repetitions

(for if it has we may find a shorter derivation for y

with no trivial repetitions). Since each application of

k non- terminating productions can deposit at most

(m - l)k terminals, it is clear that

r < n. Thus lvl ~ (n + l)mk and so

1Pr1 ~ rmk,
k n > t • Hence

66

there must be a repetition (non-trivial!) in ~(D , y) ,

say sp(D, y) = sq(D, y). Then s 1 (n, v>~s 2 (D, y)~ •.•

~s (D, y)~s +l(D, y)~ .•. ~s (D, y) is an P q n N-sequence

associated to a word y' L(G) and since s (D, y) = p .

is non-trivial, we have lv'l < lvl con t radic-

ting the minimality of lvl. Hence no such y exists

and we condlud~ L(G) = ~. This completes the claim

and so we are done.

By a similar method we can show that the

"finiteness-infiniteness problem" is decidable for

k-rlg's.

THEOREM 2.28: Given a k-rlg G = (N, T, S, P, k),

there is an algorithm to decide whether or not

-:i\: (L(G)) = oo.

PROOF: We again use the fact that L(G) is

recursive. Let m and Q be as above and p = mk~
(cf. Theorem 2.5). We claim that L(G) is infinite iff

there exists a non-trivially generated x E. L (G) with

p ~ lxl ~ p + mktk If L(G) is not infinite there

cannot exist x € L (G) with I x I ~ p (otherwise by

67

Theorem 2.5 there are infinitely many words in L(G)) .

If L(G) is infinite, then there exists a shortest

x E:L(G) with lx I > p. If lxl > p + mk!k an argument

similar to that · of Theorem 2.27 shows that we can find an

x' E L(G) with p ~ lx' I < lxl contradicting the minim

ality of lxl. Thus if L(G) is infinite there exists

x E. L (G) with P < lxl
k < p + mkt •

CHAPTER 3

REGULATED REWRITING

§1. k-PARALLEL RIGHT-LINEAR WITH REGULAR CONTROL LANGUAGES.

In this chapter we add a control device to

k-parallel right-linear grammars, namely a regular

control language. We show that the language families

generated are the same as both the k-tuple languages

of Kuich and Maurer [5] with a right-linear restric

tion and the k-right-linear simple matrix languages of

Ibarra (4] •

t.ole wish to define "control word" for a derivation

by a k-rlg. Since productions are applied k at a

time except in the initial step, the labelling of deriva

tion steps must take this fact into account.

DEFINITION 3.1: Let G = (N, T, S, P, k) be a

k-rlg. A lahelling of productions from G is a 1-1

correspondence Lab: ~--+Lab(P) where Lab (P) is a

finite set of "labels" and

- 68 -

69

DEFINITION 3.2: Let G = (N, T, S, P, k) be a

k-rlg and Lab (P) a set of labels for productions from

~. Let D be a derivation by G. Then u is a control

word for D if one of the following holds (i) D is

o0==>Q1 , u = aE Lab (P) and a is the label of the

production applied in Q0==>Q1 , or (ii) D is

* 0 =>Q ··o ·n

u = and is the control word of

* and is the control word of Q = >0 • n ·-m

With these definitions we can assign to a pair

(D i x) , where D is a derivation by G of x, a control

word denoted u(D, x).

DEFINITION 3. 3: L ~ T* is a k-parallel right

linear with regular control language (k-rrll) iff there

exists a k-rlq G = (N, T, s, P, k), a labelling of

productions from G Lab, and a regular language C over

Lab (P) such that L = L (G, C) = {x € L (G) ! there exists

a derivation D for x, and u E.C with u = u(D, x)}.

We denote the family of k-rrl's by 11Lk.

EXAMPLE 3.1: We consider the 2-rlg

G = (N' T, s, P, z) where N = {S, A, X, B, C},

T = {a, b, c} and p contains:

S+AX

A+aAIB

B+bBib

x~xlc

C+cCjc.

70

It is easy to show that L(G) ~ {aibjckli + j ~ k, i,j,k ~ 1).

We qive labels to production pairs which will be allowed:

S+AX: e

(A, X)+(aA, X): a

(A, X)+ (B, C): b

(B, C)+(hB, cC): c

(B, C)+(b, c): d.

Let D ~ ea*bc*d, then L(G, D) ~ {anbmcm!n, m > 1}

L(G, D) is a 2-rrll, hut apparently not a 2-rll.

Example 3.1 may be generalized to give

Lk ~ { n m m ml > ,r a a 1a 2 ••• ak n, m 1} which is a k-rrll, but

apparently not a k-rll for k > 2. When k ~ 1 we

have ;(1 = 11(_ 1 (by Salomaa [9]) • For k > 1 we have

J:k~ ?R,k since qiven a k-rlg G = ' (N' T, s, P, k) we

may take C = Lab (P) * and then L(G) = L(G, C) •

The first result we shall need is that the

families ~k form a hierarchy.

THEOREM 3.1: For all k > 1, -a?_k <:=_ iek+l"

PROOF: The method is to construct a k+l-rlg

71

as in Theorem 2.3 and to construct a new control language.

Let L€ ~k' G = (N, T, S, P, k) a k-rlg and

M = (Q, r, o, q 0 , F) an fsa such that L = L(G, T(M))

where r is a set of labels for productions of G.

We apply the construction of Theorem 2.3 to give a k+l-rlq

G' such that L(G) = L(G'). We will construct an nfsa

M' such that L = L(G', T(M')). The idea is to associate

to a control word of a derivation by G a control word

of a derivation by G' in such a way that the new control

word is accepted by M' iff the old word was accepted

by M. In view of the fact that, except for a finite

number of short words, derivations precede in G' in

essentially the same way as they did in G, we can

construct M'. (Note that G1 = (N 1
, T, S, P', k + 1) .)

Let M' = (Q', r•, o', q 0 , F') where Q 1 = Q U{q1 },

q 1 f Q, r 1 is a set of labels for productions of G 1
,

F' = FU{q1 } and o' is constructed as follows:

72

(1) cS'(q0 , a)= q
1

if s ~ xt:P', xET* (we again use

the notation X ! x to mean that a is the label

for the production X+x.)

(2) o• (q0 , a)"= q' if S ~ x1 ••• Yc[Xi' c] ••• Xk in C";'

and cS(q0 , b) = q' where s ~ x 1 ••• xi .•. xk in G.

(3) ~'(q, a)= q' if {X
1

, ••• , Yc, [Xi' c], ••• , Xk) ~

where y . E T* , Y . E. N
J J

1 < j < i - 1 and i + 1 < j < k, where either - - -
y = yY, y E: T*' y €. N or -y = [Y' c] and

:::

(Xl' . . . , Xk) ~ (y 1 y 1, ... , y, . . . , ykYk) in

= = and 0 {q, where either y = cyY or y = y

(4) o'(q, a)= q• if X. ' • • • ' l.

(y1Y1 , ..• , Yc, yiYi' ~ •• , ykYk) where

{X1 , •.• , Xk) ~ (y1Y1 , ••• , ykYk) in G and

o(q, b)= q'.

b)

{5) ~' (q, a) = q• 1.' £ {x Y X X) ~ u 1' •••r C' i' •••t k

G

= q I •

. . . , c, xi, ••• , xk) where . . . ,
Cx

1
, ••• , cxi, ••• , xk) in G and o(q, b)= q'.

{6) o'(q, a)= <P otherwise.

By the construction, X € L(G 1
, T{M')) iff x € L{G, T{M)).

Hence L € VG k+l and we conclude 'Ot k c; (£ k+l.

We also need

73

LEMMA 3.2: lGk is closed under union for all

k > 1.

PROOF: Let Ll' L2E 1(k' say Ll = L(G1 , cl >

and L2 = L(G2 , C2) • We construct G3 so that L (G 3) =

L(G1)UL(G2) (as in Lemma 2.10). We label productions

of G3 by the labels of the corresponding productions of

,.

§2. RIGHT-LINEAR TUPLE LANGUAGES.

Kuich and Maurer [5] have defined "Tuple

Languages" with context-free productions. We specialise

this notion to allow only riqht-linear productions.

DEFINITION 3.4: Let T be a finite set of

terminal symbols. Then we denote T* x ••• x T* (k times)

by T~, the set of k-tuples of words over T. Let

ci: Tk_,T* be the homomorphism defined by ci ((x1 , ••. , xk)} = xi

for 1 < i < k. If x, y E T~ then

xy = (c1 (x) c (y) , ••• , ck (x) ck (y)). lie define

ll: Tk~T* by · 1J (z) = c 1 (z)c 2 (z) ••• ck (z), z E. Tk. Denote

the k-tuple of £'s by£.

DEFINITION 3.5: A right-linear k-tuple grammar

(k-tlg) is a 5-tuple G = (k, N, T, s, P) where

(1) k > 1 is an inteqer.

(2) N is a finite set (of non-terminal symbols).

(3) T is a finite set (of terminal symbols) with TnN = ~.

(4) S~N.

(5) p is a finite set of productions of the form x~x

with X € N and x e: TkN U Tk.

- 74 -

The "yields" relation => for words over NUT* k i s

defined by x=>y if x = uXv, y = uzv and X+z E P.

75

DEFINITION 3. 6: L <; T* is a riqht linear k - tl!ple

language (k-tll) iff there exists a k-tlg G = (k , N,T,S,P)

* such that L = L (G) = {lJ (x) I S=>x, x E Tk}.

We denote the family of right-linear k-tuple

languages by :J k" We observe immediately that

'Jl = t'l.

THEOREM 3.3: For all k > 1, :J' k = i< k.

PROOF: CLAIM 1: 1(_k. <;]' k •

PROOF: Let L ~ ~k' then there exists a k-rlg

G = (N, T, s, P, k) and an fsa M = (Q,!, ~, q 0 , F)

such that E is a set of labels for productions of G

and L = L(G, T(M)). We construct a

G' = (k, N', T, [S, q 0 J, P') where

and P' contains:

k-tlg

N' = { [S ,q
0

]} U (NkxQ)

(1) [S] () l.• f S ~ X <"' P , X r T* and . , qo -+ x, e: ' ••• ' e: ~ <:.

~(q0 , a)E.F.

(2) [s, q 0 J-..rx1 , •.• , xk' q'J if s ~ x1 ••. xkf..P, xiEN

1 < i < k and o(q0 , a) = q'.

76

(3) [Xl' . . . , xk ,q 1 + (y 1, . . . , yk) [Yl, . . . ' yk' q I 1 if

(Xl' . . . , Xk) ~ (yl y 1, ... , ykYk) with X., yi € N,
l.

(yl, . . . , yk) € Tk and o(q, a) = q'.

(4) [Xl' . . . , xk, q] + (yl' . . . , yk) if (yl, ••• , yk)f.Tk,

(Xl' . . . , Xk) ~ (yl' ... , yk) and o(q, a) e F.

Now G' is a k-tlq which imitates a derivation by

G while keeping track of the state of M in the last

component of its non-terminals. A derivation by G'

is allowed to terminate iff the control word of the

corresponding derivation by G is in T(M). Thus

L = L(G, T(M)) = L(G') f :Tk and we have 1£k <; Jk.

CLAIM 2 : 'J k <;; (1G k.

PROOF: We use a technique similar to that used

in Theorem 2.11. First, let L E 'J k' say L = L(G)

for the k-tlg G = (k, N, T, s, P). We again consider

the sets of functions &i' and note that the notion

'If. (D, x) for a derivation D of a word x E:L(G) makes
l.

sense for 1 < i < k. We define

L~ = {x E:. Llnj (D,x) #£ all jf imr,nj (D, x) = £ otherwise},

k
L = U L. if € fL

i=l].

k
U. Li U{€} otherwise.

l.=l

Using the method used in Theorem 2.11 to construct

the i-rlg Gi, we construct an i-tlg

77

Gl = (i, Nr, T, S, Pl) for L! with the property that if

X+ (Xl, ••• , X.) E P:, X . E T*].]. J

xj ~ € 1 ~ j < i. Usinq Gr

and X ~ s, we have

we will show L '! E it.
].].

by

constructing an i-rlg G. = (N. , T, S' , P. , i) and a
].].].

control language. -q> N.
].

= N{ x {1, ••• , i}U{S'}. PJ contains:

if S+ (Xl, ••• ,x.) €. P~.
].].

(2) S'+[S, 1] ••• [S, i].

(3) [X, j]+yj[Y,j] for

X, Y E:. Ni, y j E.. T*, 1 < j < i.

(4) [X, j 1 +x.
J

X E N'f and
].

for 1 < j < i if

X. E. T+ 1 < j < i.
J - -

if X+ (yl, •.. , y.) Y E p:' , . .].].

We now suppose a set of labels for productions of
-cp
Gi has

been introduced and define

A= {a! (X, .•. ,X)~ (y
1

Y, ••• ,y.Y) and X+(y
1
' , ..• ,y.)Y€ P'!}

].].].

U {a! (X, ... , X) ~
1
(x1 , ... ,xi), X+(x 1 , ... , xi) E P~,xj E:. T+}

78

B == {b!S' ~ x, xeT*}

and we suppose c is the label for S'+[S, 1] •.• [S, i].

Define C == B u c.A.* which is a regular language over the

set of labels for productions of -cp
G ••

].

-cp xEL(G., C)
].

iff X has a derivation

Now we have

D by -q> Gi with a

control word in c iff D is either trivial, or it

uses productions after the initial one with labels from

'A iff there is a derivation of X by
cp

(;.
].

iff - Cf
X E' Li.

Thus L 'f' == c-q> C) and so L~ E lti. By Lemma 3.2 L G.,
].].].

L. = u ~€t\. ~
E \1(i 1 < i < k and by Theorem 3.1 r •.

].].
].

L. E -o:(k'].
so we have LE: 1(k. Thus Jk ~ "£k.

Combining the two results we have '3 k = l1t k.

§3. RIGHT-LINEAR SIMPLE MATRIX LANGUAGES

Ibarra [4] has introduced the notions of simple

matrix language and right-linear simple matrix lanquaqe

and studied their properties extensively. In this sec-

tion we relate the second .of these concepts to the

families 71? k.

DEFINITION 3.7: A k-riqht-linear simple matrix

grammar (k-rlmg) is a (k+3)-tuple ~ = (N1 , ••• ,Nk, T, S, P)

where

are pairwise disjoint finite sets

of non-terminals.

(2) T is a finite set of terminals and T ()N. = cf> l.

1 < i < k.

k
(3) s is the stal!'t symbol and S ¢ U N . UT.

. 1 l. l.=

(4) P is a finite set of matrix rewriting rules of the

form

(i) [S-+x], x E T*

(ii) [S-+xll xllx12xl2 • • .xlnxln • • · xkl xkl • • .xknxkny]

where n ~ 1 , y € T* and 1 < i < k, 1 < j < n

X . . E N. and x .. E. T* •
l.) l. l.)

- 79 -

< i v > [x 1 +y 1 Y 1 ' · · · ' xk +y k Y kJ

v. E T* 1 < i < k.
·].

where

80

X., Y.EN.
l. l. l.

and

DEFINITION 3.8: Let G = (N1 , .•• , Nk' T, S, P)

be a k-rlmg. We define the yield relation for
~

x, Yf(U N.UTU{S})*by X= >y iff
. 1 l. l.=

(1) x = S and [S+y 1 tZ P or ,

(2) There exist y 1 , .•. , yk £ T*, w1 , .•• , wk, z 1 , ..• , zk

with Wi , z . € (N • U T) *
l. l.

and x1 , ••• , xk with X. € N.
l. l.

such that x = y 1x 1 z 1 ... ykXkzk' y = y 1w1 z1 ... ykwkzk

* and [X1+w1 , ••• , Xk+wk] E P. ==> is the reflexive

transitive closure of ~>. (Note that this is a

"leftmost" derivation.)

DEFINITION 3. 9: L <; T* is a k-right-linear

simple matrix language (k-rlml) iff there exists a k-rlmg

* G = (N1 , •.. , Nk' T, S, P) such that L = L(G) = {xE:T*!S-==>x}.

We denote the family of k-rlml's by Oflk.

Before we qive the main result of this section we need

LF:~1MA 3. 4: If L E ffi k then L can be qenera ted

by a k-rlmq havinq rewriting rules onlv of the forms

(i), (iii), (iv) and (ii'): [S+x1 x
1

x 2x 2 •.. xkXky] with

x. , yET* and X. E N. 1 < i < k.
1 1 l. - -

81

PROOF: Let G = (N1 , ••• , Nk' T, S, P) be a

k-rlrng for L. If G has rewriting rules only of forms

(i), (iii), (iv) and (ii') we are done. Otherwise let

Let

G =

- 2 ~..rn N. = N . UN. U ••• UN.
].].].].

(N1' ••• , Nk' T, s, P)

1 < i < k

where P

(1) [S+xJ if [S+x] €. P and x € T*.

and

contains:

(2) [S+xl1[Xl1' x12' ••• , x1t]x2l"""xk1[Xk1'

[S+xl1 x11" •. x1txlt ••• xktxkty] E P where

and X . . E. N . 1 < i _< k , 1 _< j < t.

• • ·' xkt1Yl

y, X •• E T*
l.J

l.J].

(3) r [z1' xl1' • • • I xlj]+yl[Yl' x11' . . . , xlj J '

[Zk, xkl' ... , xkj]+yk[Yk' xkl' . . . , xkjll if

[Zl+y1Y1' ... , zk +ykYkl t: p' j E {1, . . . , rn - 1}

X. €N. 0 _< q < j. l.q].

(4) [[z1 ,j_1 , Xlj' ••• x 11 J+w1x 1 j[Xlj' .•• , X1), ••• ,

[zk,j-1' Xkj' ••• , Xkt]+wkxkj[Xkj' ••• , Xkt]) if

rz1 ,j_1+w1 , ••• , zk,j-l+wk] E P and

[S+x11 x 11 ••• x 1 jxlj ••• x 11x 11 ••• xktxkt 1 E P where

and

Xi p, Xi E T* , z i , j -1 , Xi p E N i 1 < i < k ' 1 < p < t .

(5) [X1+x1 , ••• , Xk+xk] if [X1+x1 , ••• , Xk+xk] €P

and X. E:. N. , x ~ E: T* , 1 < i < k.
].]. ...

if

82

G simply imitates a derivation by G while keeping

track of any unused non-terminals which resulted from

its initial production in the components of its non-

terminals. We conclude L(G)= L(G) and G has only

productions of the desired types.

THEOREM 3.5: For all k > 1, J" k = mk. -
PROOF: Let LEJ'k and G = (k, N, T, s, P)

a k-tlg for L. Let Ni = { [X' i] I X EN - {S}} and

G = (Nl, . . . , Nk' T, s, P) a k-rlmg where p contains:

(3) [[X, l]+yl [Y, 1], ••• , [X, k]+yk [Y, k]] if

X+(y1 , •.• , yk)Y€P where X, Y€N, yi€T*.

(4) [[X, l]+x1 , ••• , [X, k]+xk] if X+(x1 , ••• , xk) E. P,

X E. N , x . €. T* •
1

Clearly L (G) = L (G) = L. Hence L E: mk and we have

Jk ~ ffik.

To show the reverse inclusion let L E OYLk and

G = (N1 , ••• , Nk, T, S, P) be a k-rlmg for L normal

ized as in Lemma 3. 4. Let W = {y E T* I [S+x1 x1 ••• xkXky] E. P}

and N = {S} U (N
1

x N
2

x ••• x Nk x W). Define

G = (k, N, T, s, P) where P contains:

(1) S () ~f [S+w] ~ P . +W, e:, ••• , e::;

83

(2) S+(x1 , ••• , xk)[X1 , ••• , xk,Y1 if [S+x1x 1 ••• xkxk,y)EP

where y, x. E. T*, X. E.. N. 1 < i < k.
~ ~ ~

< 3 > r x 1 ' ••• , xk 'Y J .. < Y 1 , ••• , Y k > [Y 1 , ••• ' Y k , Y 1 if

[Xl+ylYl' ••• , Xk+ykYk]€.P,yi£ T*, yE..W, Xi' YiE:Ni.

(4) [X1 , ••• , Xk' y]+(x1 , ••• , x0') if [X 1+x1 , ••• ,Xk+xk) E. P,

y E. W, x . E T* , X . E N . 1 < i < k •
~ ~ ~

Now G is clearly a k-tlg such that L(~) = L(G) = L.

Hence L (.:J k and O(L k ~ :f k. This completes the proof.

COROLLARY 3.6: For all k ·~ 1, 'fil.k = ~ k"

We now note that we.could alter the definition of k-tlq

to demand that if X+(x1 , .•. , xk) is a production and

X # s then x. ~ e: 1 < i < k. Similarly, in the defini
~

tion of k-rlmg we could demand that if

is a rewriting rule, then x. ~ e:
~

1 < i < k. We denote the family of languages generated

by k-rlmg t s with this restriction by m~' and similar

ly define ~ ~· Now we can extend the definition of

k-rrlg to allow the base grammar to be an e:-k-rlg and

we denote the family of languages so obtained by 1t~.

COROLLARY 3.7: For all k > 1

(i) 'Jk = J'~ and mk = m~.

(ii) fflk = 1?.~.

84

PROOF: (i) It is clear that :J ~ ~ :Jk. Since

J k = 1?, k, we have the reverse inclusion when we note

that in the construction of a right-linear k-tuple

grammar from a k-rrll (Theorem 3.3) no terminating

k-tuples contain E's.

The second equality follows from Corollary 3.6

by a similar argument.

(ii) The family YOL k is closed under homo

morphism, hence so is 11?.- k. Now let L E. -0?, ~ with a base

grammar G = (N, T, S, P, k) • Let a ¢ T then the

grammar obtained by substituting x~a for all rules of the

form x~E with X # s is a k-rlg. Let La be the

language obtained by making this substitution and using the

same control language. Then La € ~ k" Define

h: TU{a}~T* by hiT= idT and h(a) = E. Clearly

L = h (La) , so L E: iGk. Therefore ""6t ~ ~ 7R k. The reverse

inclusion is obvious and the result follows.

COROLLARY 3.8: There exist context-free languages

which are not in 1?. k for any k, hence not in ;f k

for any k, or in ;t:_, •

85

PROOF: This is from Corollary 3.6 and Theorem

4. 7 of Ibarra [4 J •

§4. ANOTHER RESTRICTION ON DERIVATIONS.

In this section we define another form of req-

ulated rewriting for k-rlq's. As is the case for

context-free qrammars, periodically time varying k-rlg's

and k-rlg's with regular control have the same genera-

tive capacity.

DEFINITION 3.10: A k-parallel right linear

periodically time-varying grammar (k-rlg) is a pair (G,~)

where G = (N, T, s, P, k) is a k-rlg and <p: i)J --2P

(P as in Definition 3.1!) with the property that there

exists p E: fN such that Cf (j + o) = 'f (j) for all j E IN •

DEFINITION 3.11: Let (G, Cf) be a k-rlpg

where G = (N, T, s, P, k). We define the yields relation

on pairs from (N u T*) x fN by

either (1) j 1 = 1, j 2 = 2, P = s

(2) j2 = jl + 1, P = zlxl •.• zkxk

(p , j 1) = > (Q , j 2)

and S+Q E <pCl)

iff

or

and 0 = z 1y 1 •.. zkyk

with z . € T* , X . €. N 1 < i < k and
1 1 - (X 1 ' • • • 'Xk) + (y 1 ' • • • 'y k) E cp (j 1) •

DEFINITION 3.12: L s; T* is a k-parallel right

linear periodically time-varying lanquage (k-rlpl) if

there exists a k-rlpg (G,~) where G = (N, T, S, P, k)

- 86 -

87

* such that L = L(G, Cf>) = {xE T*l (S, l)=>(x, j) for some

j~IN}.

We denote the family of k-rlpl's by

Since the methods used to show the main result of this

section have been developed above, and since they

involve somewhat lengthy constructions, we simply state

the result and sketch its proof.

THEOREM 3.8: For all k ~ 1, -c£k = "U\.

PROOF: The first step is to show t/k ~ lfk+l

and u k is closed ·under union for all k > 1. This is

achieved by the methods of Theorem 3.1 and Lemma 3.2.

Next we show 7 k ~ U k. Given L = L(G)E :J k

it is easv to construct a k-rlg G1 and q> with period i~

sothat L=L(Gl 1 'f)· Finallyweshow '(/k~1(_k. Given

L =- L (G, q>) E: V k, we define an fsa which counts modulo

p and accepts any control word of a derivation by G

such that at the i-th step the productions used form a

member of cp (i) •

BIBLIOGRAPHY

1. Ginsburg, s., Review of "The Structure Generating

Function and Entropy of Tuple Languages" by

Kuich, w. and Maurer, H., Computing Reviews,

13(2), 1972, [22, 680].

2. Greibach, s. A., and Hoproft, J. E., Scattered Context

Grammars, Journal of Computer and System Sciences,

3 (1969), 233-247.

3. Hoproft, J. E., and Ullman, J.D., Formal Languages

and their Relation to Automata, Addison Wesley

(1969) • .

4. Ibarra, o. H., Simple Matrix Languages, Information

and Control 17 (1970)~ 359-394.

5. Maurer, H., and Kuich, w., Tuple Languages, Proceedings

of the A.C.M. International Computing Symposium,

1970, Bonn, 882-891.

6. Rajlich, v., Absolutely Parallel Grammars and Two-Way

Deterministic Finite State Transducers, Proceedings

of the Third SIGACT Conference, 1971, 132-137.

- 88 -

89

7. Rozenberg, G. and Doucet, P., On 0-L Languages, Infor

mation· and Control, 19 (1971), ~02-318.

8. Salomaa, A., Formal Lanquages, accepted for publica

tion by Academic Press.

9. Salomaa, A., On Grammars with Restricted Use of

Productions, Ann. Academiae Scientiarum Fennicre,

Series A, 454, 1969.

10. Siromoney, R., On Equal Matrix Languages, Information

and Control, 14 (1969), 135-151.

11. Wood, D., Bibliography 23, Formal Language and Automata

Theory, Computing Reviews, 11 (7), 1970, pp. 417-430.

	Rosenbrugh_Robert_D_1972_11_master0001
	Rosenbrugh_Robert_D_1972_11_master0002
	Rosenbrugh_Robert_D_1972_11_master0003
	Rosenbrugh_Robert_D_1972_11_master0004
	Rosenbrugh_Robert_D_1972_11_master0005
	Rosenbrugh_Robert_D_1972_11_master0006
	Rosenbrugh_Robert_D_1972_11_master0007
	Rosenbrugh_Robert_D_1972_11_master0008
	Rosenbrugh_Robert_D_1972_11_master0009
	Rosenbrugh_Robert_D_1972_11_master0010
	Rosenbrugh_Robert_D_1972_11_master0011
	Rosenbrugh_Robert_D_1972_11_master0012
	Rosenbrugh_Robert_D_1972_11_master0013
	Rosenbrugh_Robert_D_1972_11_master0014
	Rosenbrugh_Robert_D_1972_11_master0015
	Rosenbrugh_Robert_D_1972_11_master0016
	Rosenbrugh_Robert_D_1972_11_master0017
	Rosenbrugh_Robert_D_1972_11_master0018
	Rosenbrugh_Robert_D_1972_11_master0019
	Rosenbrugh_Robert_D_1972_11_master0020
	Rosenbrugh_Robert_D_1972_11_master0021
	Rosenbrugh_Robert_D_1972_11_master0022
	Rosenbrugh_Robert_D_1972_11_master0023
	Rosenbrugh_Robert_D_1972_11_master0024
	Rosenbrugh_Robert_D_1972_11_master0025
	Rosenbrugh_Robert_D_1972_11_master0026
	Rosenbrugh_Robert_D_1972_11_master0027
	Rosenbrugh_Robert_D_1972_11_master0028
	Rosenbrugh_Robert_D_1972_11_master0029
	Rosenbrugh_Robert_D_1972_11_master0030
	Rosenbrugh_Robert_D_1972_11_master0031
	Rosenbrugh_Robert_D_1972_11_master0032
	Rosenbrugh_Robert_D_1972_11_master0033
	Rosenbrugh_Robert_D_1972_11_master0034
	Rosenbrugh_Robert_D_1972_11_master0035
	Rosenbrugh_Robert_D_1972_11_master0036
	Rosenbrugh_Robert_D_1972_11_master0037
	Rosenbrugh_Robert_D_1972_11_master0038
	Rosenbrugh_Robert_D_1972_11_master0039
	Rosenbrugh_Robert_D_1972_11_master0040
	Rosenbrugh_Robert_D_1972_11_master0041
	Rosenbrugh_Robert_D_1972_11_master0042
	Rosenbrugh_Robert_D_1972_11_master0043
	Rosenbrugh_Robert_D_1972_11_master0044
	Rosenbrugh_Robert_D_1972_11_master0045
	Rosenbrugh_Robert_D_1972_11_master0046
	Rosenbrugh_Robert_D_1972_11_master0047
	Rosenbrugh_Robert_D_1972_11_master0048
	Rosenbrugh_Robert_D_1972_11_master0049
	Rosenbrugh_Robert_D_1972_11_master0050
	Rosenbrugh_Robert_D_1972_11_master0051
	Rosenbrugh_Robert_D_1972_11_master0052
	Rosenbrugh_Robert_D_1972_11_master0053
	Rosenbrugh_Robert_D_1972_11_master0054
	Rosenbrugh_Robert_D_1972_11_master0055
	Rosenbrugh_Robert_D_1972_11_master0056
	Rosenbrugh_Robert_D_1972_11_master0057
	Rosenbrugh_Robert_D_1972_11_master0058
	Rosenbrugh_Robert_D_1972_11_master0059
	Rosenbrugh_Robert_D_1972_11_master0060
	Rosenbrugh_Robert_D_1972_11_master0061
	Rosenbrugh_Robert_D_1972_11_master0062
	Rosenbrugh_Robert_D_1972_11_master0063
	Rosenbrugh_Robert_D_1972_11_master0064
	Rosenbrugh_Robert_D_1972_11_master0065
	Rosenbrugh_Robert_D_1972_11_master0066
	Rosenbrugh_Robert_D_1972_11_master0067
	Rosenbrugh_Robert_D_1972_11_master0068
	Rosenbrugh_Robert_D_1972_11_master0069
	Rosenbrugh_Robert_D_1972_11_master0070
	Rosenbrugh_Robert_D_1972_11_master0071
	Rosenbrugh_Robert_D_1972_11_master0072
	Rosenbrugh_Robert_D_1972_11_master0073
	Rosenbrugh_Robert_D_1972_11_master0074
	Rosenbrugh_Robert_D_1972_11_master0075
	Rosenbrugh_Robert_D_1972_11_master0076
	Rosenbrugh_Robert_D_1972_11_master0077
	Rosenbrugh_Robert_D_1972_11_master0078
	Rosenbrugh_Robert_D_1972_11_master0079
	Rosenbrugh_Robert_D_1972_11_master0080
	Rosenbrugh_Robert_D_1972_11_master0081
	Rosenbrugh_Robert_D_1972_11_master0082
	Rosenbrugh_Robert_D_1972_11_master0083
	Rosenbrugh_Robert_D_1972_11_master0084
	Rosenbrugh_Robert_D_1972_11_master0085
	Rosenbrugh_Robert_D_1972_11_master0086
	Rosenbrugh_Robert_D_1972_11_master0087
	Rosenbrugh_Robert_D_1972_11_master0088
	Rosenbrugh_Robert_D_1972_11_master0089
	Rosenbrugh_Robert_D_1972_11_master0090
	Rosenbrugh_Robert_D_1972_11_master0091
	Rosenbrugh_Robert_D_1972_11_master0092
	Rosenbrugh_Robert_D_1972_11_master0093
	Rosenbrugh_Robert_D_1972_11_master0094
	Rosenbrugh_Robert_D_1972_11_master0095
	Rosenbrugh_Robert_D_1972_11_master0096
	Rosenbrugh_Robert_D_1972_11_master0097

