RESTRICTED PARALLELISM AND REGULAR GRAMMARS

RESTRICTED PARALLELISM AND REGULAR GRAMMARS

By

ROBERT DOUGLAS ROSEBRUGH, B.SC.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Master of Science

McMaster University

November 1972

MASTER OF SCIENCE (1972) McMASTER UNIVERSITY
(Mathematics) Hamilton, Ontario.

TITLE: Restricted Parallelism and Regular Grammars

AUTHOR: Robert Douglas Rosebrugh, B.Sc. (McMaster University)

SUPERVISOR: Dr. Derick Wood

NUMBER OF PAGES: vi, 89

SCOPE AND CONTENTS:

This thesis studies the properties of k-parallel
right-linear lanquages. An infinite hierachy of lanauage
families is found and closure properties of these families
are studied. The language families are characterised
in terms of simple languages and non-deterministic general-
ised sequential machine mapvoings. In addition a character-
isation of k-right-linear simple matrix languages by
k-parallel right-linear lanquages with a control device

is given.

- ii -

ACKNOWLEDGEMENTS

The author wishes to express his deep grati-
tude to his supervisor, Dr. Derick Wood, whose encour-
agement and criticism were of great value in the prepar-
ation of this thesis. Thanks are also due to Dr. Arto
Saloma of the University ot Turku, Finland, whose
enlightening presentation of a graduate course on

Formal Languages was most helpful.

The author also wishes to acknowledge the
financial support of the National Research Council and
express his appreciation to Ms. Carolyn Sheeler for

)

her prompt and efficient typing of the manuscript.

- 431 -

Chapter 1:
§1.

§2.

Chapter 2:
51,

52

53.
§4,
§5.

§6.

Chapter 3:

51,

§2.,
83,

§4,

Bibliography

TABLE OF CONTENTS

Introduction
Lanquage and Grammar

Accepters and Machines

k-Parallel Right Linear Languages
Introduction

The Infinite Hierarchy and Related
Results

€e-Rules and Factor Landguages
Closure Properties
k-Parallel Left Linear Languages

Decidability Questions

Regulated Rewriting

k-Parallel Right-Linear with Reqular
Control Lanquages

Right-Linear Tuple Languages
Right-Linear Simple Matrix Lanauages

Another Restriction on Derivations

- iv -

13

18
18

24

39
47
59

64

68

68

74
79

86

88

PREFACE

In recent years several studies have been made
of phrase-structure grammars with rewriting methods
which are "parallel" in that more than one rewriting
rule is applied at each derivation step. This parallel-
ism greatly increases the generative cavacity of context-
free productions in the case of scattered context lana-
uages as defined by Greibach and Hopcroft [2], and simple
matrix languages, tuple lanqguages and equal matrix
languages as defined by Ibarra [4], Kuich and Mauer [5],
and Siromoney [l10] respectively. The absolutely parallel
grammars of Rajlich [6] generate a smaller class of
languages than the context-free lanquages. Rozenberg
and Doucet [7] have studied 0-L systems which employ

parallel rewriting without terminals.

This thesis arose from the notion of placing
a "k - at a time" restriction on 0-L systems. In
the prresent form it is more closely related to [4],

[5) and QO].

Chapter 1 gives preliminary definitions and

states some well-known results from Language Theory.

Proofs of these may be found in Hopcroft and Ullman

[3], or in Saloma [9].

In Chapter 2 we define k-parallel right linear
grammars and study the properties of the families Ai,k
which are generated by them. In §2 we show that the
families éiik form a proper infinite hierarchy of
language families. In §4 we consider closure properties
of these families and give a characterisation of each
by a simple language and non-deterministic generalised
sequential machine mappings. 1In §5 we consider k-parallel
left-linear lanquages and in 56 the decision prOperties

of the families OCk‘

Chapter 3 is devoted to giving a new character-
isation of k-right-linear simple matrix languages by

k-parallel right-linear languages with a control device.

As far as the author knows, the families ZK K
are new, so all of Chapter 2 is original, although some
of the proofs are standard. Except for Theorem 3.5
which was pointed out by Seymour Ginsburg [1], Chapter 3

is also new material.

- vi -

CHAPTER 1

INTRODUCTION

§1. LANGUAGE AND GRAMMAR,

A non-empty finite set is called an alphabet

or vocabulary. Elements of an alphabet are called

letters or symbols. If V is an alphabet we denote

by V* the free monoid generated by V. Elements

of V* are called words or strings of symbols. The

operation in V* is called catenation and is denoted

by juxtavosition i.e. if x, y€V*, their product is
written xv. The neutral element of V* (which is

the string with no syvmbols) is called the emptv word

and is denoted by £€ . We denote by V+ the set

v* - {eg}. If x, veV*¥, then y is a subword of x
if there exist 2z, weV* such that x = zyw; if z = ¢
then vy is an initial subword, and if w = € then

y 1is a final subword. If x€V* then the mirror
image of x, denoted mi(x), is the element of V*
obtained by writing x backwards e.q. if VvV = {a, b}
and x = ahab, then mi(x) = baba. By convention

mi(e) = €.

We define a length function | - |: Vv*» N U {0}
by (i) |le|] =0, |a] =1 for all aeV
(ii) |xy| = [x| + |y| for all x, yeVv*,

Intuitively, the length of a word is just the number

of symbols occurring in it.

Let V be an alphabet. A language over V

is a subset of V*, A family of languages is a pair

(z ,X£) where #(f) = » and £ is a family of subsets
of I* satisfving
(i) there exists L € Z such that L # ¢.
(1i) for all L € £ there exists XL € ¥ with
tt(ZL) <o and L < Zi.
In the sequel we will speak of a family of languages

without mentioning the first component of the pair.

Given a family of languages £ it is natural to

ask if Zf is closed under operations which can be

defined on £ . For example, since the members of
are sets, we can ask if,qiven Ll’ L2 €(i?, whether

Lis WYL L. OV I L are in af . We now define

1YLy L,AL, and L; ~ L,

several language-theoretic operations:

- L

(1) the catenation (or product)of two languages Ll

and L, is defined by L,L, = {xlee;Ll and vy €L,}

(2)

(3)

(4)

(5)

for a language L we define L} i#=1 to be
the language obtained by catenating i copies of

L (catenation is associative!), and L0 = e}

oo A
The catenation closure of L is ©L* = () 5.
i=0

the left quotient of a language L1 by a language

L, is defined by L,\L, = {x|yxeL, for some

2 1
yE€L,}. The right quotient is similarly defined:

L,/L, = {x[xy eL, for some yé€EL,}.

the mirror image of a language L 1is the collection

of mirror images of its words i.e. mi(L) = {mi(x)|xe€ L}

let V be an alphabet and for each acV, let

v be an alphabet. Let o(a) be a language over

a

vV, for each a¢V. Define oal(e) = {e} ana

o(xy) = o(x)oly) for x, yeV*., Letting V = U V.
ac Vv

¢ defines a mapping of V* into V" which is

called a substitution. For a lanquage L over V

we define o0(L) = {x|x eo(y) for some ye€L}. A
family of languages 55 is closed under substitution
if whenever L€ £ is a language over V and o
is a substitution such that o(a)ecf for all acV

then o() € L .

(6) a substitution such that “#(g(a)) = 1 for all

a€V 1is called a homomorphism. (Thus a homomor-

phism maps V* into ¥V* and is a homomorphism

of free monoids.)

We will define other closure operations below.
We now define the four basic types of phrase-structure

grammars and the associated language families.

DEFINITION 1.1: A generative grammar (of

Type 0) is an ordered quadruple G = (N, T, S, P) where
N and T are disjoint alphabets, SEN and P is a
finite set of pairs (u, v) such that u €(NUT)*N(NUT)*

and v E(NUT)*,

Elements of N are called non-terminals,

elements of T are called terminals and S 1is called

the sentence symbol. Elements (u, v) of P are

called rewriting rules or productions and are written

u+v,

DEFINITION 1.2: Let G = (N, T, S, P) be a

generative grammar. We define a binary relation &>

3

("yields") on (NUT)* by x ??y' iff there exist
& * = =
Xyr X5, U, V e(NuT) such that x Xqux,, v Xy VX,

*
and u*v€P. We denote by ﬂ;> (ﬁ%>) the reflexive,
» J 2

transitive closure (transitive closure) of ﬂF> i.e.
' |

*
X=2>y iff either (1) x = y or (2) there exist
Xgr Xqr eeey X such that x = Xgr ¥ = X and

. ko
X, 1 =@>%; for 1 <i<n (x=g>y iff 2 holds).

When no confusion can arise we will write
" * + : * C+
simply =>(==>, ==>) insgtead of =z>(=z>, ==>). We
G G G
note that later in this chapter, and especially in
Chapters 2 and 3, the symbol —=> will have different
meanings as different types of grammars are defined.

The distinctions should be clear from the context.

A derivation by G, where G = (N, T, S, P)

is a generative grammar is a finite sequence

D: Qo, Ql’ e g On (n > 0) satisfving Oﬁ—lﬁ8>oi

-

1 €4 £ n.

DEFINITION 1.3: Let G = (N, T, S, P) be a

generative grammar. The language generated by G 1is

*
L(G) = {x eT*|s=z>x}.

Again, as several types of grammars are intro-
duced below, the notation L(G) will take on several
meanings, but its meaning will always be clear from the

context. We say two generative grammars Gl and G2

are equivalent if L(Gl) = L(G,). We denote by IZRE

the family of languages generated bv generative grammars

of Type 0 and state

THEOREM 1.1: JC, equals the family of

RE

recursively enumerable sets.

DEFINITION 1.,4: A generative grammar

G= (N, T, S, P) is context-sensitive (or Type 1)

iff each production in P is of the form x1Xx2~>xlyx2
where XEN, Xyr X900 ¥ E(NUT)* and v # € with the
possible exception of the production S+e whose occur-

rence in P implies that S does not occur on the

right side of any production in P,

A lanquage L 1is context-sensitive if there

exists a context sensitive grammar (csg) G such
that L = L(G). We denote the family of context-sensitive

languages by chs = {L|L = L(G) for some csqg G}.

DEFINITION 1.5: A context-free grammar (or

Type 2 grammar) is a generative grammar G = (N, T, S, P)

such that for each production u+véEP we have u€EN.

A language L 1is a context-free lanquage

(cfl) if there exists a cfg G such that L = L(G).

We denote the family of context-free languages by

£

CF*

Since the application of a rewritina rule in a

a derivation by a context-free grammar depends only
on one non-terminal (independent of context - hence

the name) we can assign a derivation tree to a deriva-

tion by a cfg. A tree is a directed graph satisfying

(1) there is exactly one node (the vertex) which no
edge enters.
(2) there is exactly one path from the vertex to each

other node.

A derivation by a c¢fg is leftmost if at each step the
leftmost non-terminal is the one replaced. It is easy
to show that every word in the language generated by a
cfg has a leftmost derivation. To a leftmost derivation
by a cfg it is possible to assign a unique"derivation

tree. We give an example to illustrate this process.

EXAMPLE 1.1: Let G = ({s, X, Y}, {a, b}, s, P)

where P contains:

S+XY
X+XX|aY|a (we use this notation as an abbreviation for
X+XX, X+aY, X-+a)

Y-+b

G 1is clearly a cfg. Some sample leftmost derivations

by G are:

(1) S==>XY=—>a¥==>ab

(2) S==>XY==>XXY==>aXY==>aaYY=—=>aabY==>aabb.

The tree associated with (1) is

S

FIGURE 1.1

The tree associated with (2) is:

)

FIGURE 1.2

Note thatvthe "leaves" (the nodes from which
no edges emanate) are labelled by terminals, all other
nodes are labelled by non-terminals, and the vertex is
always labelled by S. The word generated can be read

from the leaves from left to right.

DEFINITION 1.6: A right-linear grammar (rlg) (regqular

grammar, Type 3 grammar) is a context-free grammar

G= (N, T, S, P) such that if X*x€P then xe&T*NUT*.

A language L is a regqular language (regular set, finite-

state language) if there exists an rlg G such that

L = L(G). We denote the family of regular languages
by ‘ifRFG' Regular languages have been characterised
in many ways. We give one which will introduce useful

notation for the sequel.

DEFINITION 1.7: Let T and V= {u, *, ¢, €& ()}

be disjoint alphébets. A word over T UV 1is a reqular

expression over T if

(1) xeV or x = ¢, or
(2) x is one of the forms (yuvz), (vyz) or vy* where

y and 2z are reqular expressions over T.

Each regular expression x over T denotes a

language 2(x) according to the following conventions:

10

(1) the language denoted by ¢ 1is the empty language.
(2) the language denoted by aeT is {al.
(3) for regular expressions x and y over T,

Lixuy) = 2(x)UL(y), 2((xy)) = 2(x)2(y), 2(x*) = L(x)*.

It is well known that a language is denoted by a reqular

expression iff it is reqular.

A cfgG= (N, T, S, P) is left-linear if

X+x €P implies x€NT*uU T*, The family of languages
generated by left-linear grammars is gi’REG‘ Given

a rlgG= (N, T, S, P) we say that a non-terminal Y

is reachable from a non-terminal X if there exists

a derivation by G D: X = Qor-ﬁ>c)1-~=~-->...'—=m>0,n = yY where

n >1 and yET*,

We use the notion of reqular set to define a new
closure operation. A family of languages éf is closed

under intersection with a regular set if whenever Led

and RGJSREG then L(\Répg.

The four families of lanquages we have defined

are called the Chomsky Hierarchy and play a fundamental

role in language theory. They are linked by:

THEOREM 1.2: X .. & ?(CF # o&pcs # olmRE.

1l

The lanquage families of the Chomsky Hierarchy
are obtained by restricting the form of productions.
It is also possible to restrict the manner of genera-
tion allowed. Several types of 'regulated rewriting'
have been defined. We now introduce a type of restricted

derivation which will be used in the sequel.

Consider a grammar G = (N, T, S, P} with

production set P. A labelling of productions is a

one-one correspondence Lab: P—>Lab(P) where Lab(P)
is an alphabet. To each derivation by G there corr-

esponds a control word over Lab(P) consisting of the

labels of productions applied in D in the order of their
application. The language generated bv G with control
lanquage C 1is the subset of L(G) which consists of
words having a derivation with a control word in C. We
denote L(G, C) = {xeT*| J a derivation D: S=:->x

and ueC such that u is a control word of D}.

.

The study of grammars with control languages has
been mainly restricted to the case where C is a reqular
language. It can be shown that if G 1is of Type O,
context-sensitive or reqular then L(G, C) (where C
is a regular set) is also Type 0, context-sensitive or
reqular respectively. We shall have occasion to use
the last case in Theorem 2.12, 1In fact the most inter-

esting case of grammars with control lanquages are context-

12

free grammars, for in this case the generative cavacity

is greatly increased by the addition of a control language.

§2. ACCEPTERS AND MACHINES,

In this section we define the language accept-
ing and translating devices which we will use in

Chapters 2 and 3.

DEFINITION 1.8: A finite state accepter

(fsa) is an 5-tuple M = (0, I, §, dg Onp) where
0 and I are finite non-empty sets, &: Q x I—>0,

ap€0 and Qp<0.

We call O the set of states, I the input

alphabet, 6 the transition function, g the initial

state and QP the final states. We can extend 6 to

§* defined on QO x £* by

(1) 6*(g, €)

(ii) 6*(q, x) = 6*(8*(q, v), a) for all qe€0Q where

g for all qe€O

ya = er+ and acZI.

The lanquage accepted by M is T(M) = {x € I*|

5*(q0, x) € QF}' We denote the family of languages accepted

by fsa's by Ji £sa®

DEFINITION 1.9: A nondeterministic finite state

accepter (nfsa) 1is a 5-tuple M = (0, I, §, A QF)

where Q, I, dq and Q. are as in Definition 1.8 and

§: Q x Z——>zQ.

- 1% =

14
Again, & can be extended to &* defined on
0 x £* and the lanquage accepted by an nfsa M is
defined by T(M) = {xéiT*lG*(qo, x) N Op #6}. The family
of languages acceoted by nfsa's is denoted by éi .

The result linking these two language families to the

Chomsky Hierarchy is

THEOREM 1,3: djj = f

fsa

-4

nfsa REG"®

If L 1is a language over T, we denote
F(L) = {acT|ax€L for some x€T*}. If L is a
reqular lanquage specified by an fsa, regular grammar
or reqgular expression, there is an algorithm to find

F(L).

In §2 of Chapter 2 we will agive a generalisa-

tion of the following well-known theorem on reqular sets.

THEOREM 1.4: (Iterating Factor Theorem) Let

L. bhe a regular set. There exist natural numbers p and
g such that if x€L and |x| > p then x = uvw with

g > |v] >0 and for all i > 0, uv'we L.

DEFINITION 1.10: A nondeterministic generalised

sequential machine (ngsm) is an ordered 6-tuple

S= (0, £, A, §, dgr QF) where 0O, I and A are

OxA*
alphabets, qoe.o, QF€=Q and 6: 0 x T—>2

(finite subsets only).

15

We call O the set of states, I the input

alphabet, A the output alphabet, ¢ the transition

function, dg the initial state and Op the final
states. As for fsa's and nfsa's, & can be extended
to O x I*, For x€ELIL* we denote

S(x) = {y€A*|(q, Y)G,G*(qo, x) for some qELQF}.

If L is a language over I we denote

S(L) = {yeEA*|y €S(x) for some xEL}. We call S(L)

an ngsm mapping. If Jf is a fzmily of lanquages, then

z is closed under ngsm mappings if whenever L€ f:

and S 1is an ngsm, then S(L)E€E KZ.

We also note that an ngsm can also be defined
as a 7-tuple S = (Q, L, A, §, A, dgr QF) where
Q. L, A, dq and OF are as above, and §: 0 x I—>0

A*
and \: Q x I—>2

(finite subsets only). In this
notation S(x) = {veA*lyél*(qo, x)} and s(L) is
as above. We shall use whichever formalism is more

convenient in the sequel.

DEFINITION 1.11: A push-down accepter (pda) 1is

an ordered 7-tuple M = (Q, L, T, 6, A zo, QF) where

0, L and T are alphabets, qp€ 0, ZOE.F, Op < Q0 and

OxT*

§: Q x(XU{e})x I'—p2 (finite subsets only).

16

We call QO the set of states, I the input

alphabet, T the set of pushdown symbols, § the

transition function, dq the initial state, Zg the

bottom of pushdown marker, and QF the final states.

A configuration of a pda M 1is a pair (q, Y)

where qeQ and yeT*, If ac(tuf{el), v, vy'cr*,
Z2€T, and (g', v')E S8(g, a, 2) then we write

a: (q, ZY)¥-(q', Y'y). We can extend this notation in
the obvious way to cover strings of symbols over

Y U{e}l} and we then write x: (q,y)}f (q', v') for x

a word over I U{el, q, '€ 0 and y,y'€eT*,

For a pda M we defined the language accepted

*
by final state to be TM) = {x€I*|x: (agr Zg) = (a, ¥)

for some q€OQp, Y€ r*}., We denote by O‘dea the

family of languages accepted by final state by a pda.

For a pda M, we define the language accepted

*
by empty store to be N(M) = {x €Z*|x: (agr 24) (a, €)

for some g€ Q}. We denote by a?as the family
of lanquages accepted by empty store by a pda. We have
the following theorem linking these two types of acceptance

by pda's and the Chomsky Hierarchy.

THEOREM 1.5: fpda = ‘/ﬁes = ”gcr

17

Before we go on to the study of parallelism
and reqular grammars we make one more remark. The proofs
in Chapters 2 and 3 involve many constructions of new
grammars and machines from given ones. In these con-
structions new symbols are added to given alphabets,
and new symbols are constructed from old ones. We make
the convention that any new symbols introduced are
really new symbols i.e. they do not occur in any alphabet
already'qiven. In addition, abstract symbols will often
be introduced as pairs of members from given alphabets.
We use square brackets instead of round brackets for
convenience of notation and to aid the reader e.g. given
alphabets X and Y we form the new alphabet

X xY= {[x, yYl|xeXx, ye¥Yl.

CHAPTER 2

k-PARALLEL RIGHT LINEAR LANGUAGES

§1, INTRODUCTION

In this chapter we introduce the notion of
k-parallel right-linear grammar and study the families
of languages generated by them. These grammars differ
from conventional phrase-structure grammars in that k
productions are applied at each derivation step with a

resulting increase in generative capacity.

DEFINITION 2.1l: For kelN , a k-parallel right-

linear grammar (k-rlg) is a S5-tuple G = (N, T, S, P, k)

where

(1) (N, T, S, P) 1is a context-free grammar
(2) S+=x e P implies xeNkuT*
(3) X*x ¢P and X # S implies xe T*NUT'

(4) X+x€ P implies x # ySz for all y, z€ (NUT)*,

Points (2) and (4) of the definition mean that
productions from S generate k non-terminals or a
terminal word and that S can never appear on the right

side of a production. Point (3) means that all other

w 1 =

19

rules are right-linear rules.

DEFINITION 2.2: Let G = (N, T, S, P, k) be a

k-parallel right linear grammar. The yield relation

G
if (1) x =S and S+ye P or (2) x = x1x1x2"'xkxk and

—===> 1is defined on (NUT)* x (NUT)* by x =Y

Y = X ZX5e e Xy 2y, and Xi+zi€ P for 1= 1, 2; sssyr Ks
*
=ﬁ§=>(==é=>) is the reflexive, transitive closure (transi-

tive closure) of =E=>

When no confusion can arise we will write >

G
simply as =>.

DEFINITION 2.3. A language L<ST* is called a

k-parallel right-linear language (k-rll) iff there exists

a k-rlg G= (N, T, S, P, k) such that L = L(G) =

*
{x e T*|s =Fn>x}. We denote L’k = {L|L is a k-rll and

< t;i.lik°

EXAMPLE 2.1: Consider the 3-rlg G3 =

({s, x, ¥, 2z}, {a, b, ¢}, S, P, 3) where P contains:

S+XYZ
X+aX|a
Y+bY|b

z+cZ|c.

Some examples of derivations by G3 are:

20

S==>XYZ==sabc

S==>XYZ====>aXbYcZ=-=->a2b2c2

2igal 333

S==>XYZ==>aXbYcZ==>a2Xb Yc©“Z—=—>a"b c".

From these it should be evident (and it is easy to show
by induction) that L(G,) = {anbncnln > 1}. This language

is context-sensitive, but it is not context-free.

EXAMPLE 2.2: Consider the 2-rlg

G= ({s, x, Y, w, 2}, {a, b, ¢, d}, S, P, 2) where P

contains:

S+XY
X+aX|x|z|a
2+bZ|b
Y+cY|W

w-+dw|d.

Some sample derivations by G are:

S—==>XY==>aXcY—=—=>aZcW—>abcd
S==>XY=5>aXcY==>a2wa=ﬂ>a3cd

s==>XY=m>axwm=>aZdw=n>abd2.
Again an induction shows that

L(G) = {xy|x € a*bb*uU aa*, yve c*dd* and
|x| < |y] 4if x ea*bb*, [x| < |v| + 1 if

X ¢ aa*}.

21

L]
L(G) 1is context-free (as are all 2-rll's, see

Lemma 2.7) but is clearly not regular.

LEMMA 2.1: The family of regular languages

equals }:1‘

PROOF: First, it is clear that any language

in ’tl

free grammar with only right-linear productions. Next

is reqgular since it is generated by a context-

let L&ST* be a regular language and G = (N, T, S, P)
¥
be a right-linear grammar for L. If P contains no

productions of the form X-+¢ then

G, = (NU{s'}, T, 8', pu{s'+»s}, 1) is a 1-rlg for L.

1
Otherwise1 we construct G2 = (NZ’ T, 5, Pz, 1) where

N, = NU{S'}U{X_|XEN, aeT}. For each XEN let

2
L(X) be the regular language generated by Gx = (N, T, X, P)
and recall that we can decide if ¢ €L(X) or not. P2

contains:

(1) s'+»s, and S'+e if eelL

(2) X+yy if X+yY€P, yeT*, X, YEN and € ¢L(Y)

l. It is well known that every regular set can be generated
by a right-linear grammar without e-rules. We give a
construction to show this fact in order to introduce the
notion L(X), for X ¢N (see Theorem 2.3 and Theorem
2.12) and to give an example of a type of construction

used in Theorem 2.11 and Theorem 3.3.

22

(3) X+yYa if X+»yaYEP, yE€T*, aeT, X, YEN and
€ € L(Y)
(4) xa"Ya if X+YepP, X, YEN, for all acT

(5) xa*ayY if X+ybYEP, yeT™, beT, X, Y,€N and

b
e€L(Y), for all aeT

(6) X_»ayY if XsyYe P, vert, X, YeN and e ¢ L(Y),
for all aeT

(7) X +ay if X+y€P, yeT*, XEN for all acT

(8) X»y if X+ye€P, yET', XeEN.

G, imitates derivations by G. When G, detects
that the corresponding G-derivation may end without
further deposit of terminals, it attaches the last symbol
which is deposited by G to its non-terminal (point 3)
as a subscript. This terminal is carried along (4) and
is deposited when the e-rule would be applied in the
corresponding G-derivation (7), or, if a non-trivial word
could also be generated, before the next deposit of term-
inals takes place in the corresponding G-derivation
(5 and 6). Note that the new sentence symbol guarantees
that initial productions will be of the correct form

for G to be a 1l-rlg. Now L = L(Gz) so each reg-

2

ular set is in }Cl and we are done.

LEMMA 2.2: Given a word x &T*, there is an
algorithm to decide if x €L(G) where G = (N, T, S, P, k)

is a k-rlg.

23

PROOF: By the definition of k=-rlg it is obvious
that e €L(G) iff the production S-+¢ is in P. Thus

we may assume x % ¢ and consider sequences of the form

(1) S = YO' Yyr soey Ypoqr ¥ = X

where n > 1, y; are pairwise distinct words over

NUT and for 0 < i <n - 1 we have |yi| < vyl
Clearly the number of such sequences is finite. Moreover

xe L(G) iff for some sequence (1) we have
(2) S=Y,@¥E - F Y178 Yn = ¥

Thus it suffices to check, for each of the finitely many
sequences (1), whether or not (2) is satisfied. This can
be done since for any two words zy and z, and a k-rlg
G we can decide by checking through productions of G

whether or not zl=5> z, holds.

The essential point in the proof is that we may
assume Iyil < |yi+1| for 0 <i <n -1 since k-rlg's
are 'length-increasing'. Lemma 2.2 means that the
'Membership Problem' is decidable for k-rlg's. We will
make extensive use of this fact. Other decision problems

are considered in §6.

§2, THE INFINITE HIERARCHY AND RELATED RESULTS

In this section we show that the families
‘Zk form an infinite proper hierarchy of lanquage
families and present results relating these languaqge

families to the Chomsky Hierarchy.

THEOREM 2.3. For all k> 1, £, < ZL,,;-

REMARKS: The proof of this theorem is quite
involved, but the idea is simple: a derivation by a
k-rlg is mimicked by a derivation of a constructed
k+1l-rlg which uses one of its "slots" to deposit only one
letter of the word in question. We recall that for a
reqular language L ST* the set F(L) = {aeT|3 x eT* with

ax € L} can be found effectively.

PROOF: Let L¢ f,k and G = (N, T, S, P, k)
a k-rlg such that L = L(G). We construct a k+1l-rlqg
G' = (N', T, S, P', k + 1) where N' = NU{[X, al|XE€EN,

aeTiU({Y,|laeT}. Let m = max{|x||X»x€P}. P' contains:

(1) S=X xi-lYa[xi' a]Xi+1...Xk if S+X1...XkEP,

l’.‘
xieN,l < i <k, and aeF(L(Xi)).

(2) S+x if S+xe€P and xe T*,

w Bl

25

(3) S»x if xe€L(G) and |x| < km (this step is
okay by Lemma 2.2).

(4) Y »Y_|a for all a€T.

(5) Z»y¥ 4if XwY¥eP, X, YENR, yeT*,

(6) X»x if X»x€P, XeEN, xeT*,

(7) [x, al»[Y, al] if X+YEP, aeT and X is reachable
by a sequence of chain rules from a non-terminal
occurring on the right side of an initial production.

(8) [X, al»yY if X+ayYe P, X, YEN, YyET*, a€cT.

G' is clearly a k+l-rlg. We now give a descrip-

tion of the operation of G':

(i) all words in L(G) of length <km are generated
by initial productions from S (point 3).

(ii) if a word of length >km is to be generated non-
trivially by G, at least one non-terminal on
the right of an initial production must lead to
at least two deposits of terminals. (This allows
proper operation of 7 and 8). The productions of
1 allow G' to pick one such non-terminal. Pro-
ductions from 3, 5 and 6 allow the derivation by
G' to procede essentially as it did by G except

for the presence of a Y The non-terminal to the

a.

immediate right of the Y, keeps track of . until

26

the first deposit of terminals (7). If the first

terminal deposited by G in the G-derivation is an

Xy

"a", then all terminals except "a" are deposited and
generation now procedes as it did in G(8). When
termination occurs the "a" is devosited in the correct

place by Y, (4).
We now give a detailed proof that L(G) = L(G').
CLAIM 1: L(G) € L(G').

PROOF: Let xeL(G). If |x| < km then x€L(G')

by construction. Otherwise |x| > km and S+x¢ P implies
X €EL(G') by (2), or there exists a derivation

D: § = QO=E>Q1=E>...=E>Qn = x with n > 2. (By the defini-

tion of m, the maximum possible length of Q, is km

and since |x| > km we know n > 2.)

In the second case x can be factored x = xl...xk
where 0, = X;,...X;, and x,€L(Xy;),1 < i < k. Also

each x; can be factored X, = ¥Yy3iY34°++Yni where

xj-l,k*yjixji is the production applied to the i-th

¥

non-terminal in Qj_1==>Qj, 2<j<n-1 and xn-l,i*

ni
is the production applied to the i-th non-terminal in

A, * . 3 -
Qn—l >Qn' Hence yjie;T l1<i<k,2<j<n 1 and

+ ;
ynie.T » 1 <1 <k,

For some 1 there exists a j < n such that

27

€ for otherwise x could have length at most km.
We fix such an i and let 3j be the least j such that

= av v %*
in # €. Suppose yji ayji,ae T, Yj£ET . Clearly

ae.F(L(Xli)). By 7 and 8, we have the following list of

productions in P':

[x 14 a]-’[xzi.r a]

li

Ia] [X.

j=2,1 , al

X j=-1,1

e B R e

Thus we have the following derivation for x in

G':

*
=>¥21°+¥4-1,1%5-1,1° Yal¥y-1,1°81¥2 g41 0 ¥5o1, %541 %
=.===>y21...yj1 Jl...Yayjixji...xjk

X

* LN
>¥a1e ¥t , 10-1,1° *Xa¥4i " Vn-1,4%0-1, 4" Fn-1,%

==>Y210 . .ynl. . .anio . .yni. . Cynk = xo

Thus xeL(G') and we have L(G) € L(G').

Claim 2: L(G') < L(G).

28

PROOF: If xe€L(G') and S+x€P' then xe€L(G)

by construction. Otherwise there exists a non-trivial
derivation»for x by G' which must take at least

three steps. This is because all non-terminating'initial
producﬁions are of the form 1 . A non-terminal of the

[X, al] type can lead to termination only after applica-
tion of a production from 8 and a production from 6.

This requires at least two steps after the initial produc-
tion. Thus the derivation of x must have the form (I)
above. WNow by 7 and 8, the productions used in this
derivation of x at the i + 1 - st non-terminal before
the j-th step were constructed from productions of P

to allow the following derivation of x by G (where x
is factored as before):

Se=3X, 100X

11 1k

*
=>Y21+c¥5-1,1%5-1,10 0 X y-1,1-1%5-1,4Y2, 4400 0 Y51, 68541,k

m>y21..'lele..'xj—l,i—lavjixji'. .Xjk

* s
—1—:>y21...vnl..iyn'i—layji...yni.l.ynk = xl
Thus x €L(G) and L(G') € L(G).

Claim 1 and Claim 2 give L(G) = L(G'), so we have

LE /t’k+1.

29

EXAMPLE 2.3, Consider the 2-rlg

G = ({s, A, B}, {a, b}, S, P, 2) where P contains:

S+AB
A-+aA |A |a

B*bB |b.

Evidently L(G) = {a"p"|m >n > 1}, We apply the construc-
tion of Theorem 2.3 to give a 3-rlg for L(G). First we
note that F(L(A)) = {a} and F(L(B)) = {b}, and that
m=2 so km= 4, The set of non-terminals for the new
grammar is

N' = {s, A, B, [s, a), [s, a], [s, b], [A, a), [A, b],

I8, al, 18, b1, ¥,, %.}.

The new production set P' contains (where numbers below refer

to the construction in Theorem 2.3):

(1) S*Ya[A, alB, S*AYb[B, b]
(3) S*ablazbzlabzlab3

(4) Y »Y_|a, Y, Y, |b

(5), (6) A+aA|A|a, B+bB|b
(7) [Ar a]"[A' a]

(8) [A, al+»A, [B, b]-+B.

Now G' = {N', {a, b}, S, P"3}is a 3-rlg for L(G).

We give some sample derivations by G':

30

S==>Ya[A, a]B===>YaAbB==>a2b2

S==>Ya[A, a]B==>Ya[A, a]bB=m>YaAbbB

3 3, 4

—>Y_aAb B==>a"b

S=ﬂ>AYb[B, b]==>AYbB==>aAYbbB==>a2b3.

Our next result generalizes the iterating factor
theorem for regular languages to 2-rlg's. First, however,
some comments on derivation trees are in order. Since
the grammar underlying a k-rlg is context-free we can
attach a derivation tree to a generation of a word by a
k-rlg. Since the form of productions is restricted and
the manner of generation is "k-parallel" we can be quite
specific about the nature of possible derivation trees.

We first give examples to illustrate:

Example 2.4. Using the grammar G3 from Ex. 2.1

*
we have the derivation S=m>a3b3c3. The tree associated
with this derivation is

S

a

FIGURE 2.1

31

EXAMPLE 2.5, Using the grammar G from Ex. 2.2

*
we had a derivation S==>a3cd. The tree associated with

this derivation is

d
FIGURE 2,2

In general the trees associated with derivation
by a k-rlg look like the tree of Fig. 2.3, i.e. an
initial branching to k subtrees all of which have the

same length and all of which have leaves only to the

left.

7
Zl 22 k
z
%1 %9 | k
note: Some of Xjr Yy 2z, may be labelled €.

FIGURE 2,3

32

THEOREM 2.4: Let Léfifz. There exist positive
integers p, n, r, s such that if xelL and |x| > p
then x = uvwu'v'w' with |v| + |v'| >0, |v|], |v'| <n

1 ,V.si

and for all i > 0 uv ~wu w'e L. where q = lem{r, s}

and T =92, 5§ = g.

PROOF: Let G = (N, T, S, P, 2) be a 2-rlg

such that L = L(G) and suppose #(N) = j and
max {|x||X*xeP} = 2. Let p = 2% and suppose x€L
and |x| > p. Then for some A, BEN we have
S=a>ABﬂ;>x, moreover there exist vy, zerTt such that

* *
A=z> ¥, B—g> z and x = vz. One of |y| and |[z| is
A "B

greater than j& and we conclude that in the correspond-

ing subtree of the derivation tree for x there must

be a repeated node-~-name. Moreover there must be a repeti-
tion of node-name which is "non-trivial" in that term-

inals are deposited between the first and second occurr-
ences (for otherwise j% terminals could never be deposited).
Since the generation of x procedes in parallel the

number of non-terminals appearing in the other subtree is
equal to that of the first, and a node-name must be repeat-

ed there as well.

Now suppose there is a repeated node-name in the
tree for y separated by r - 1 non-terminal nodes,
and a repeated node name in the tree for 2z separated by

s = 1 non-terminal nodes which satisfy the conditions:

33

(1) at least one of the repetitions is non-trivial and
(2) in each case the repeated node-name does not occur

among the names for the separating nodes.

The subtrees thus picked out generate words v and
v' respectively which are not both empty and since

r, s <j we have |v|, |v'| < j2 = n,

Since q is a common multiple of r and s,
a subtree of length g may be inserted in the vy-tree
and the z-tree which generates respectively v; and
v'g. The resulting tree is a tree for a terminating
derivation by G of uvfﬁu'v'EQ' where vy = uvw and
z = u'v'w. We may iterate the insertion of subtrees of

length g to get avt twutv' Stwre L) For all 1 > 0,
We can generalize this result to

THEOREM 2.5: Let LE€ f,k. Then there exist

positive integers p, n, Lyr eeer Ty such that if xe€eL

and |x| > p then x = W ViW e viw , v, not all e,

. Ty Txj
lvi] <nl1l<i<k and for all j > 0 WV T Wil vy oW

1 ké:L

where q = fcm {rl, o8P rk} and Fi = E% , 1€l1, k].
i

PROOF: Take p = kj? and procede as above.

THEOREM 2.6. X, ¢ X,,,; for all k > 1. Thus

the families Ji)< form a proper infinite hierarchy of

34

language families.

PROOF: By Theorem 2.3 we have only to show the
existence of a language in }fk+1 - dik for all k > 1.
When: k = 1 we can use L, = {a"p™|n > 1} for this
language is clearly in Jiz (modify Ex. 2.1 to give a
2-rlg for it) but L, is not regqular, so not in J:l.

When k = 2 we can use L, = L(G3) = {anbncnln * 1t..

3
By Ex. 2.1 L3 € 1% and we apply Theorem 2.4 to show
L3¢ ”62‘ Suppose L3€’€2 and let p, n, r, s be
positive integers satisfying Theorem 2.4 for Ly. Let
q{ be a positive integer so that |a%b%9| > p, then
a%%? = uvwu'v'w' with v and v' not both & .
Neither v nor v' can consist of a single letter for

if it did increasing powers of that letter (those letters)

would occur while the third letter did not increase in
power since uvt twu v St

w'€:L3 all i > 0 by Th. 2.4.
Now if either of v or v' has more than one letter we
should have words in L, containing powers of one of azbm,

azbmck or bmck for integers k, &, m < g. This is

impossible. We conclude L, ¢ atz.

, n_n n
By similar arquments L, , = {alaz...ak+1|n > 1}

is in Xik+ (modify G to G but not in jik

1 3 x)
(by Theorem 2.5) for all k > 0. This completes the

proof.

35

Before we summarize the known relationships
between the families ‘fk and f, and the Chomsky

Hierarchy we give a relevant lemma.
. C
Lemma 2.7: ,fz "JiCF’

PROOF: Letting L € ,;fz implies there exists
a 2-rlg G= (N, T, S, P, 2) such that L = L(G). We
construct a pda M such that L = N(M). We let
M= (o, T, §, {A, B}, S, B, ¢) where 0O = {S} uU(V x(Nu{el))

and

V=NU{xX|xeT", XeN, 3 Y+zxXeP, zc T*}

Ulx eT"| JyszxeP, zeT*, YEN) U (e}.
§ 1is constructed as follows:

(1) 8(s, e, B) = {([x), x,]1, B)[S+X;X,e P}(U{(S, €)} if
Eve € P)
§(s, a, B) = {(ly,e]l, B)|s+ayepP, yeT+}(u{(S, €} if

S+a € P)
(2) 8([%Xy, X,1, a, B) = {(lyy, X,1, AB)|X1+ayYeP, v € T*}
WIE T, X2], AB)IXl*av epP, ye'r+}
(U{([X,, €], AB)} if X;-+a €P)

§(I[X x2], a, A) = {(lyy, X,1, AA)lxl-»ayi'eP, y € T*}

1’

Ul(ly, X,], AA)|X +ay€P, ye T'}

(U{([xz, €], AA)} if X,*>a €P)

36

§([Xy, X,1, €, B) = {(lY, X,], AB)|X1->Y€P, Y € N}

§([Xy, X1, €, A) = {([¥, X,], AA)[X;»YEP, YEN]

(3) 8(IxX;, X,1, a, A) = {([lyX,, X,], A)|x = ay, yeT*}

1'

(4) §(ly, X,1, a, &) = {([z, X,], A)|y = az, zeT'}

§(la, X,1, a, A)

{(1x,, €1, A)}

(5) &([x,, €1, a, A) = {(lyY, €], e) |[Xy>ayY € P, y€ T*, YEN}
{(ly, €1, e)|X,*ayeP, yec T*}

6([x2, el, €, A)

{(W,e],eﬂxfﬂep,YeN}

(6) 6([yx, €1, a, A) {([zX, €], A) |y = az, z € T*}

(7) 6(ly, €1, a, B) = {([z, €], B)|y = az, zeT'}
§([a, €], a, B) = {(le , €1, €)}

(8) 6(q, b, c) = ¢ ce{A, B}, q€Q, be Tu{e} in all

other cases.

While the construction of M is quite complex its
operation is simply described. M adds one symbol to

the pushdown store each time a production is found in

the tree resulting from the first non-terminal of an
initial production (point 2) . The second non-terminal
of this initial production is "remembered" in the second
component of the state. When the derivation in the first
tree terminates this initial non-terminal is moved to the

first component of the state (point 4) and the productions

37

used are counted off as they are found (point 5). If an
equal number of productions have been found when this
derivation terminates (point 7), the input word is
accepted by empty store. Note that words in L(G)

by an S+x production, where x € T*, are accepted by

operation of 1 and 7.
Finally, L = N(M) so Le€Z ..

COROLLARY 2.8: Jiz is contained in the family

of one-counter languages.

PROOF: We used only a bottom-marker and one other

push-down symbol (the "counter") in our construction.

THEOREM 2,9,

(1) The family ‘i’l equals the family of regqular sets

and for every k > 2, Zik contains non-reqular

languages.
(2) 112 $XLop and for every k > B,Jﬁk contains non-

context free lanquages.
L L.
(4) There exist context-free languages not in Zi (and so

not in Jﬁ,{ for any k).

PROOF :
(1) The first part is by Lemma 2.1. L2 = {anbnln > 1}
is a non-reqular language in Jﬂz and hence in

Jik for all k > 2,

(2)

(3)

(4)

38

The first part is by Lemma 2.7 and 4 below.

L, = {anbncnln > 1} is a non-context-free language

3
in ‘£3 and hence in sz for all k > 3.
This follows from I’kERk and Corollary 3.6
below, and Theorem 1.3 of Ibarra [4].

This is from Corollary 3.7 below.

§3. €-RULES AND FACTOR LANGUAGES

In this section we show that allowing e-rules
does not change the generative capacity of k-rlg's
and that the'language of i-th factors' of a k-rll is

regular.

LEMMA 2,10: The family ;(“k is closed under

union for all k > 1.

PROOF: Let Ll’ Lze.jik and let

be such that Ll = L(Gl) and Ly = L(GZ). We assume

le\Nz

where P contains:

= ¢ and S¢N;UN,. Let G = (NyUN,U({s},T,s,P,k)

(1) S+X,...X +X. .. .X, €EP 1<

A

=
IA

~

goasty & Dytiyesela BFy 5 3 BN

S-*Yl...Y if B8,+Y €Pp Y. &N

X p*¥ oo Yy €Py , Y EN,, 1

| A
P
A
~

(2) S+x « 1f 8By*x% epl, X € T*

:

S+y if Sz*yGPz, y € T*

(3) X*yY if X+*yYEP UPy, YET and X,Y€N1 or

1
X, Y€N2.

(4) X»x if X+xeP UPZ, XET*, XEN,UN

| | 2°

- 50 =

40

Clearly L(G) = L(Gl)LJL(Gz) =L L/Lz, therefore

1
L,UL, €)Ck.

NOTATION: In what follows we denote for

1<ic<k
<Ei = {?: [1, il=[1, k]‘ ¢ is one-one and n < me=> ?(n)< ?(m)

for all n, me (1, il}.

We define a k-parallel right-linear grammar with

e-rules (e- krlg) exactly as in Dfn. 2.1 except that

point (3) is modified to (3') X+x €P implies x € T*NUT*,
This means we allow terminating rules of the form X-»e.

We define the yield relation for an e-krlg exactly as

in Dfn. 2.2 and denote the family of languages generated

by € -krlg's by li;. It is immediate from Lemma 2.1

that Jfl = Jii = ILREG’ We also note that a slight
modification of Lemma 2.2 shows that the membership problem

is decidable for languages specified by e-krlg's.

Definition 2.4: Let LE ot; and x €L. Fix

an €-krlg G for L. Then ni(D, %) 1 €1 <k is
defined to be the subword of x generated by the i'th
non-terminal on the right side of the initial production

of some derivation D of x by G.

Note that ni(D, x) 1is defined only if there is

41

a non-trivial derivation of x by G and in this
case x = nl(D, x)ﬂz(D, x)...ﬂk(D, x) for all deriva-

tions D of x by G.

THEOREM 2.11. ka = JC;

PROOF: Each language L in jik is generated
by a k-rlg which is trivially an e-krlg, so LEIZ?E.

Thus ;CkE 18(

The reverse inclusion is more interesting: let

L€ Ii; and G = (N, T, S, P, k) be an e-krlg such

that L = L(G). PFor all i€ [l, k], for all ?e(ﬁi we

define
L? = {x€L| 3 a derivation D of x by G satisfying

wj(D, x) # ¢ for all jeimeo, nj(D, x) = € otherwisel.

Define L, = (U

i 1<ic<k and L, = {xeT*|s+xeP}.

9
Liis
?eﬁi i 0

Then

k
_J L, if e4L
{m
k

L J L,U{e} if eeL.

i=0

We next claim Li € in for all C{>€ &“i' To see this we

P
i’

N' = NU{[X, al]|XEN, a€T} and P. contains:

construct G§ = (N', T, S, P i) where

42

(1) S"xcp(l)"‘x?(k) whenever S+X1...Xk€P.

(2) X+yY whenever X+yYEP, yeT*, X, YEN and

e ¢L(Y).

(3) X+y[Y, a] whenever X+yaYEP, acT, y€ T*,

X, YEN and ¢ e€L(Y).
(4) For all aeT, [X, al+[Y, al] whenever X+YeP, X, YEN,

(5) For all ae¢T, [X, al+aylY,b] whenever X+ybYeP,

beT, yeT™ X, YEN and e€L(Y).

(6) For all a€T, [X, al+ayY whenever X+yYE€P, y€ T*,

X, YEN and e¢L(Y).

(7) For all ae€T, [X, al+ay whenever X»y€P, XEN,
vV ET*,

(8) X+y whenever X»y €P, y€T+.

The construction of G; is essentially similar
to that in Lemma 2.l1. Since for all x GL:’ vj(D, X) F €
for all j€ im ¢ we know that at least one terminal
letter is devosited in the j'th subword of x. A termin-
al letter which is potentially the last one deposited

is carried through the derivation (points 3 and 4) until
either more terminals are deposited (5 and 6) or the

derivation terminates (7). The other productions are as

43

before (2 and 8) except that the initial productions pick
out only the productive non-terminals (1). Thus Gz

is an 1i-rlg which generates L;. By Lemma 2.10,

L E;Ci 1 <ic<k. Ly € f’l since it is finite. Thus

Lie iik, 0 < i<k (by Theorem 2.3) and since we can
decide if €€ L or not, we have LGEJfk (another applica-

€
tion of 2.10). Thus ch S‘i%. This completes the proof.

REMARK: This theorem leads to the question
'Why not allow X+€ rules in the first place?' for then
the analogue of Theorem 2.3 would be a triviality. The
answer is that Theorem 2.11, which is a most desirable
result in either case, does not follow without heavy

use of Theorem 2.3 for k-rlg's as we have defined them.

DEFINITION 2.5: Let L€ f,k and G be a

k-rlg for L. For 1 < i <k, XEN we define

ii(x) = {vi(D, z) | Jaderivation D: S==3X e Xp =20 o2

where X, = X}
and ii =) ii(x).
X €N
This means ii(x) is the language consisting of

i'th factors of words generated when X is the i'th non-terminal

44

on the right side of an initial production. Li is the
language consisting of all i'th factors of non-trivially

generated words.

EXAMPLE 2.5: Consider G = ({Ss,A,B,C,D},{a,b},s,p,2)

where P is given by:
S+AB ArC B+bB| b
C+D D+aA|a.

Clearly L(G) = {anb3n|n > 1} but here
b* = L(B) # £,(8) =%, = (6>|n > 1}. Thus while L(X)
is reqular for all X €N (X # S), we have to consider

i(X) and so ii separately.

THEOREM 2.12. Let L€X, and fix a k-rlg

G= (N, T, S, P, k) for L. Then ii is reqular

1= d,euny K

PROOF: We will show that each Li is generated
by a right-linear grammar with a regular control lanquage
and so [by Salomaa [9]) is reqular. First let Lab(P)
be a set of labels for productions in P, sav
Lab(P) = {ajll < j < n} and we denote by X ii> X that

aj is a label for X+x¢€P.

We say a k-tuple of non-terminals (Xl,...,Xk)éZ.Nk

"terminates" if there is an xj€.T+ such that Xj+xj€,P

45
1'<3 <k,
We say a k-tuple of non-terminals (xl,...,xk)
"vields" another k-tuple (Yl,...,Yk) (written as
(Xl,...,Xk)+(Y1,...,Yk)) if there exist productions

in P: X . +y.Y. LET* 1l 2 4 € Kk,
]yjj'yje b [

We now construct k nfsa's My 1 <i<k by

Mi = (Nku{S}\J{F}, Lab(P), ei, S, {F}) where ai

is defined by:

| K| 29 :
(1) 8;(s, ay) = {(Xy,e0e,X) ENT|S-IoX ..., P},1 <3 <n.
k
(2) 8, ((Xg,000sX), aj) = {‘(Yl,..., Y)EN |(xl,..., X)+ (Y peee,¥y)

a

and xi—iain some yeT*}(U{F} if (X;,..., X))
a.

terminates and Xi ~da for some xGZT+) 1 23 % n,

(3) 6, (qa, aj) = ¢ otherwise for all qéiNk&J{S}kJ{F},

1 <3 < n.

We now define k right-linear grammars Gi

by G, = (N, T, S, P,) where P, = (P - {s+%x|s+x € P})

U {S+X; |S+X,...X, € P, Xy €N, 1 < j < k}. We now label

1 k
the productions of Pi by using the same labels as above
for productions of P and giving the new productions

the label of the production of P from which they were
aj ai

constructed (i.e. S ——>xi if S _;>x1...xk).

46

" A ~
We claim that Li = L(G T(Mi)). Now xie.'L:.L

il
iff there exists x €1, such that x = xl...xk and

xj 633 1 <j <niff there exists a derivation

sﬁ=>x1...xka=>...~m>x with the productions at the i-th
place labelled so that the control word is in T(Mi)
iff xiEIL(Gi, T(Mi))' Thus ii is generated by a

right-linear grammar Gi' with regular control lang-

uage T(Mi) and therefore ﬁi is a regular set.

§4, CLOSURE PROPERTIES

In this section we consider closure properties
of the families Xik and we then give a simple character-

ization of ;Ck‘

THEOREM 2.13: For all k > 1, iik is closed

under union and finite substitution.

PROOF: Closure under union is by Lemma 2.10.

Next let L €Jﬁk and G = (N, T, S, P, k) be a
k-rlg for L. Let ¢£f: T+22* be a finite substitution.
We define an e€-krlg Gf = (N, £, S, Pg, k) for f£(L)

where Pf contains:

liﬂ.xk
(2) X+2Y if =z cf(y), X»yYEP, yET*, X, YEN.

(3) X+z if z Ef(x), X+xEP, X €T, X EN.

Clearly L(Gg) = £(L), hence £(L)€ L and,

by Theorem 2.11, f(L)€5€k.

COROLLARY 2.14: Qf is closed under union and

finite substitution.

PROOF: Let L L G?ii, then L.€ 76 and
el 2 i kl

l’
L2€ Xikz for some kyr k,o Let k = max {kl, kz} and

- §7 =

48

we have Ll' L2€ ;Ck’ so Llu Lzéik and thus
LlL/LZE,Z . Similarly we have closure under finite

substitution.

COROLLARY 2.15. fk shil " L awe oleked

under homomorphism.

THEOREM 2.16: For all k > 1, Jfk is closed

under intersection with a regular set.

PROOF: Let L be a k-rll and G = (N,T,S,P,k)
be a k-rlg for L. Let R be a regular set
and M= (Q, T, 6, Sqr F) an fsa such that
R=T(M)., We will construct a new k-rlg for LANR,
Let G' = (N', T, S, P', k) where N' = {S} U(QxNxQ)U (QxN).

P' contains:
(1) S»x if S+xcP, XET* and x €R.

(2) S+[sq, Xy, 87185, X5, s5leeuls, 4, X1 for all
sequences S;,..., Sp_; of members of O if

S+X;...X, €P, X, €N 1 < i < k.

k

(3) [s;, X, sjl*ylé*(si. Y), ¥, sj] if X»yYEP,

veT*, X, YEN and S;» S € Q.

-j

(4) [si, - sj]-vx if X+*xecP,X €N - {s}, xeT™ and

* =
§ (si, X) sj.

49

(5) sy, X]-»y[sj, Y] if X+yYEP, yET*, X, YEN

* - C
and $§*(s;, v) Syr Sy st.Q.

(6) [s;, X]»x if X»x€P, X€N - (s}, xeT, s;€0

and 6*(si, X)) € P,

In point 1 all words generated trivially by G
that are in R are generated by G'. A word is gener-
ated non-trivially by G' if it is generated by G (the
cores of productions from points 3-6) and is accepted by
M (the state components of non-terminals in productions
from points 3-6 contain information as to the state of
M as it processes a word generated by G. If M is
in a final state at the end of a word generated by G,
then G' is allowed to generate it.) Since this type of
construction will be used again below we give a detailed

proof that L(G') = LNR,
CLAIM 1: L(G') &€ LANR,

PROOF: Let x €L(G'), then either S+xcP'
and so X €LNR or there exists a derivation

D: S = Pom>Pl

then have P1 = [so, Xl’ slllsl, Xz, 52]...[sk_1, Xk]

for some xl,..., xke_N and Sl' %55 sk_lelo. Moreover

mdy » DR, W X in G' and n > 2. We

X = X1X5...X where xiEjL([si_l, xi, si]) l1c<i<k~-1,

k

50

and xkerL([sk_l, xk]). Thus, by points 3-6 of the
construction, xieL(xi) 1 <i< k and there is a
derivation of Xy of length n -1 from Xi. Hence

* . 3 3 .
S=E>x1"‘xk=§°xl"'xk = x (utilizing also point 2
for the initial production) and so x€L(G) = L.

Also, by points 3 and 4,

0_<_i_<_k—2 and 6%*(s k)€F

§*(s5, X549) = 8541 -1 ¥

(bhy 5 and 6), hence 6*(30, X) = 6*(50, xl...xk)é F and

X €ER. Thus xXx €ELNR which proves Claim 1.
CLAIM 2: LNRESL(G').

PROOF: Let x€LNR, then either S+xcP
and 6*(50, X) EF giving x€L(G') by point 1 or
6*(50, X) € F and there exists a derivation
D: S = Po-—~---—->P1—w>...w—->Pn = X 1in G where n > 2. We
can factor x for this derivation D as we did in the
proof of Theorem 2.3 i.e. x = XqeooXy and for 1 < i < k

+
e 3 * - -

x4 Yai++Yni with yjie,T 2<3j<n l1 and y_.€T .
We denote the corresponding productions of P by
X

1£3<n~2 and X 1 <41 <Kk,

§iTV4y+1,i%541,1 n-1,i"Yni

There exist sie 01 & i <k = 1 such that
6*(30, x1)= Sy 6*(51_1, xi) = g, and 6*(sk_1, xk)GEF.

i
We also have sjiE,Q 1 <4ic<k, 2 < 5, <n such that

* = 3 =
$ (Sj-l,i' va 844 2 <j<n, sy; =s; ; and

51

Baq %8y 1 <i< k. Now by construction we have
3]

S»[so, xll' sll[sl, X12’ 52]...[sk_1, xlk] in P'.

[

and [s

r Xisy Si]*y

j+1,108541,17 X441,17 B4
n-1,1i’ Xn-l,i' si]-wni i P LEIE R~ L

by points 3 and 4 ., We also have
[Sjk’ xjk]*vj+1,k [sj+l,k’ Xj+1,k] for 1 <j<n-=-2

and (s in P' Dby points 5 and 6.

n~-1,k '/ xn—l,k]*ynk

Thus we have the following derivation of x by

G':

Sm>[so, Xll, 81]...[sk@l’ xlk]

X

*
—;—=>y21...yn_1,1[sn-l'l, xn_l'lp 81]...yn-llklsn-l'k,xn—l’k]

T?¥21°++¥n-1,1¥n,1***Yn-1,k¥nk T *:

Thus x €L(G') which completes the proof of Claim 2.

Claim 1 and Claim 2 give L(G') = LNR, so LANR €.fk.

COROLLARY 2.17. 11 is closed under intersec-

tion with a reqular set.

COROLLARY 2.18: X, for all k > 1 and L

are closed under right quotient with a reqular set.

PROOF: Lemma 9.5 pmage 131 of Hopcroft and

Ullman [3].

Next we show that, while Ji is closed under

1

52

intersection (this is well-known by Lemma 2.1), none
of the other families under consideration are closed

under intersection.

" is not closed

THEOREM 2.19: For all k > 2,,f

under intersection.

PROOF: We first consider k = 2 to make the
argument clear: let T, = {(aub)zn cnln > 1}, that is
the language consisting of all words of length 3n
whose first 2n letters consist of a's and b's and
whbse last n letters are c. Let L = {an(b\)c)znln > 1},

‘Both Lc and La are in sz. Lc is generated by

G = ({s, x, ¢, D}, {a, b, ¢}, S, P, 2) where P contains:

S+XC
C-+D
D+cC|c

X+aX|bX|a|b.

A similar 2-rlg generates La. Now we consider

LA L,. Let xGZch\La then for some n > 1 x = alyc"
where |y| = n and ye(aubuc)*. Now y has no
occurrence of ¢ since x €Lb and the first 2n letters
,0of x must be a or b. Similarly vy has no occur-

rence of a. Hence y = b™. fThus Lc(\La Qianbncnln > 1}.

53

n.n_n - _
Clearly {abc |n > 1} < L,OL,, so L. NL_ =
{anbncnln > 1} = Ly. But in Theorem 2.6 we showed that

:L3¢ }iz. Hence iiz is not closed under intersection.

We can generalize this counterexample by‘consid-

. _ 2n _n n
ering L., = {(alL)az) a3...ak+l|n > l}E»ﬁik and

_ n_n n 2n ;
L, = {alaz...ak_l(aktJak+l) |n > 1}€’€’k and noting

_ n_n n
that Lklf\r.k2 = {alaz...ak+l|n > 1}4‘2 fk.
COROLLARY 2.20: For all k > 2, i/ is not

k

closed under complement.

PROOF: If some Zik were closed under comple-
ment, closure under union would implv closure under inter-

section, contradicting Theorem 2.10.

THEOREM 2.21: For all k > 1, li}q is closed

under ngsm maps.

PROOF: Let Leik and G= (N, T, S, P, X) be
a k-rlg for L. Let S = (Q, T, A, 6, A, dgr F) be an
ngsm., We give an ¢e-krlg for S(L) which shows

£
S(L)€ :Ck f,k.

N' = (0 x Nx QuU(Q x N)U{S} and P' contains:

Let G' = (N',A,S, P', k) where

(1) S+»z 1if zek*(qo, x) and S+x €P, x € T*,

(2) S+[q0, xl, q1][ql, Xo0 q2]...[qk_1, Xk] for all

sequences q;, «s.s Qy_q of members of Q if

54

(3) [qir X, Qj]*zlé*(qir Y)' p qJ] if X+yYEP, YcT*,
X, YEN, A qje‘,Q and ze)*(qi, 2 X
[qi' x]+z[6*(qi, y), Y] if X+yYE P, yeT*,

X, YEN, q,€ 0 and zeAi*(q,, V).

(4) [a,- X, q,]+z if X+x€P, x€T*, XE€N, §*(q;, x) = q,

j j

and z€k*(qi, X): [qi, X]+z if X»xe€pP, xeT+,

XEN, 6*(qi, Xx) €EF and z€k*(qi, X).

G' generates all of S(x) fior each x €T*
generated trivially by G (point 1). If a word x is
generated non-trivially by G, each word in S(x) 1is
generated by G' which deposits the "translation" of a
word deposited by G, and keeps track of the state of S
in its first component. The third component is used to
match states at the boundaries corresponding to a factoris-
ation of the word according to the non-terminal from which
it is generated (points 2 - 4)., The detailed proof that
S(L) = L(G') follows the method of Theorem 2.16 and is

ommitted.

COROLLARY 2.22: li is closed under non-deterministic

gsm maps.

We are now in a position to give a characterisation

55

of the family Jf in terms of a closure property. The

k
lanquages Lk defined above play a fundamental role in

the theory of k-parallel right-linear languages so we

. AN n
recall that L, = {alaz...akln > 1}.

THEOREM 2,23, ,fk is the smallest family of

languages containing Lk and closed under non-determin-

istic gsm mappings for all k > 1.

PROOF: Let t;k: be the smallest family of
lanquages containing Lk and closed under non det. gsm
maps. Since Lkéilik we have ‘t;k Q}fk by Theorem 2.21.
To show the reverse inclusion let LGEJfk, and
G=(N, T, S, P, k) be a k-rlg for L. We will construct

an ngsm M = (0, Zk, T, ¢, Y F) such that L = M(Lk).

We first construct G' = (N', T, S, P', k) with
L = L(G') where N' = (N x {1, 2,..., k}D)uU{s} and p'
contains

(1) S»x 1if S+x€P and x¢g T*

(2) S*[Xl, l][Xz, 2]...[Xk, k]- if S+Xl...Xk P

xiéer.ii.ik°
(3) (X, 1)+y[¥, i] 4if X+y¥Y<cP, X, YEN, yE€T*, 1 < { < k.
(4) [X, il»x if X+x€P, X€EN, x€T', 1 < i < k.

Note that each non-terminal in G' carries

56

with it information specifying from which of the k

original non-terminals it is generated.

Next we number the initial productions letting
the first n be the non-trivial initial productions
and productions numbered from n + 1 to m be the

trivial ones.

Now we can construct M, I k= {al, Bns vees ak},
0,=-N' x {1' 2' s e 0 g n}U{q0, qn+1’ooo, qm' qf} and

F = {qn+l' ceer Qpy qf}. Next we specify J :
(1) §(aq, ay) = {(qi' x)|S+x€ P, xe€ T* is the ith production}
vicy, 1, 31, y)ls+Ix;, 11...0%,, k] is the
jth production and X;*yY€P, y € T*}
O (Xy, 2, 31,%x)]85> [X;,11(X,, 2]...0X K]
is the j'th production and Xl+x &P,
X € T*} .,
(2) G(qi, aj) = {(qi, e)}) n+l<icm 1<3c< ke
(3) §(Ix, i, 31, a;) = {(I¥, 1, i1.9)| X,il+y(¥,i]l ep’,
y €T*, X, YN}

: i ; +
U{([YI 1+, J]rV)I[pr]*YEP'r veT ,
Y is i+lst non-terminal in

initial production 3j }

for 1< 3 <€n, 1<i<k-=-1.

57
(4) 8(I%, k, 31, a,) = {(l¥, k, 31, y)| (X, kl=y(¥, kleP',
¥ €Ph}
{(qg, ¥)|[X, XI*yePR', veT')

(5) 86(q, a) = ¢ otherwise for all qe€O, ac€ Zk.

M operates by either (1) outputting‘the result
of a trivial derivation and reading the remainder of an
input word in a final state with no output (1 and 2)
or (2) using the states of M to keep track of a non-
terminal in the first component, the position of the non-
terminal in the second component, and which initial pro-
duction was used in the third component. Reading an
input symbol causes M to write any terminals deposited
by a production from the non-terminal in the first com-
ponent of the present state, and to change state so that the
non-terminal on the right side of the production used
appears as the first component of the new state (3).

If a terminating production is possible its right side
is written and the first component of the new state is
the non-terminal in the next slot on the right side of
the initial production identified in the third component
(3). At the same time the second component is incre-
mented by one. Note that M is allowed to procede only

if the subscript of the input letter being read and the

58

second component of the state agree. The input word is
used to ensure that the derivation has the same length
in each position. (1, 3, 4). An output word is in
M(Lk) if and only if it is the result of a terminating
derivation by G'. Therefore L = M(L,), "ik < E"rk

and the result follows.

REMARK: We can define an operator GSM on
families of languages JF (over a fixed countably infinite
alphabgt) by GsM(F) =N{M| MM 2F ,¥T closed under
non-det. gsm maps}. It is easy to verify that GSM
is a closure operator. In this notation Theorem 2.23

reads Jfk = GSM({Lk}).

In the next section we show one more closure
property of the families J€)<, namely that they are

closed under mirror image.

§5, k-PARALLEL LEFT LINEAR LANGUAGES.

In this section we define k-parallel left-

linear grammars and show that they generate the same

class of languages as k-rlg's.

DEFINITION 2.5: A k-parallel left-linear grammar

(k-11lq) 4is a 5-tuple G = (N, T, S, P, k) satisfying

(1), (2) and (4) of Definition 2.1 and
32) X»x P and X # S implies x ENT*uUTT,

As for k-rlg's we can define the class of lang-

'}
uages generated by k-1llg's which we denote by f "

and call members of this class k-parallel left-linear

languages (k-11l1's).

EXAMPLE 2.6, Consider Gg = ({s, A, B, C},

{a, b, ¢}, s, P, 3) where P contains:

S+ABC
A+Aala
B+Bb|b

C+Cc]c.

It should be clear that L(Gg) =L, = {a"p"c™|n > 1}

- 59 -

60

which (recall Example 2.1) is also a 3-rll. We see
from this example that Lkeilii for all k > 1, by

modifying Gg to Gi.

Our aim is to show that Ik =f,i To do this

we will use Theorem 2.23.

THEOREM 2,24: Zii is the smallest family of

languages containing Lk and closed under non-deterministic

gsm maopings for all k > 1.

PROOF: We let {} denote the smallest familv.
e k
We know that Lk€ in. Next we show that Iii is closed

under non-deterministic gsm maps.

CLAIM 1: Allowing e-rules in 32) of Definition

2.5 does not change the generative capacity of k-1llg's.

PROOF: We observe that Jﬁi is closed under
union (nroof similar to Lemma 2.10), then the claim follows

by the right-left dual of the proof of Theorem 2.11.
Jil ' ;
CLAIM 2: X is closed under ngsm mappings.

PROOF: Let L€ ff; and G = (N, T, S, P, k) be
a k-llg for L. Let M= (0, T, A, §, dgr F) be a
non-deterministic gsm. We construct a new k-1llg G’

for M(L). Let G' = (N', A, S, P', k) where

61

N' = (0 x Nx QU (N x Q) U{S} and P' contains:

(1) S+[Xl, qll[ql, X q2]...[qk_l, Xpr qk] for all sequ-
ences gy, ..., 9y of members of Q if

S-»Xl...X EP, Xi€N, 1< i < k, and qkeF.

k

(2) [q;, X, qj]+[qi, ¥, qzlz if X+Yy€EP, yET*, X, YEN,

*
and (qj, z)E § (qu ¥,

(3) [qi, - qj]+z if X+x €P, XEN, xeTh and

(qj, z) €6*(q;, x).

(4) [X, qj]+[Y, qzlz if X»*YyeP, X, YEN, yET* and

(qj, Z)€6*(q2" Y)-
(5) I[X, qj]+z if X+x€EP, XEN, x €Tt and (qj, z)€6*(qo, X).

The operation of G' 1is similar to that of the grammar
constructed in Theorem 2.21. Here however, since genera-
tion procedes from right to left we insist that the
matching of states in terminal productions take place from
right to left (3), that the final state reached be terminal
(1) and that the machine started operation from the initial
state (5). We conclude that M(L) = L(G') and this com-

pletes Claim 2.

We now conclude ’3}(c of}t since af)ﬁ contains

Lk and is closed under ngsm maps.

62

Next we show the reverse inclusion. Let Lefi
and G = (N, T, S, P, k) a k-=1llg for L. Since
f}k(=fik) is closed under union, we can number the initial
productions of G from 1 to n say and let Ki be
the language generated by G when all initial productions
but the ith are deleted from P. Clearly L = KlLJ.--LJKn-
If the ith initial production is trivial then L has
only one member and Kie'i;k since & , contains all
regular sets. Otherwise let the i~th production be
S-»Xl...xk say. We construct an ngsm

M, = (0, I, T, §,, q5, F) so that M, (L) = K,.

Let Q = {q,}UN' where N' =N x {1, 2, ..., K},

F = {[Xk, k]l]} and Gi is given by:

(1) 6,(qa, a;) = {([X, 1], x)[X*x€P, X€EN, x €T},

(2) §; (¥, 31, a5) = {(1x, 31, y) |X+Yy€P, X, YEN, y € T*}
for 1 < j < k.

(3) 8, (IX;, 31, a;,,) = {([X, i*l], x)|X+x €P, XEN, xeT")

j j
for 1 <3 <k - 1.

(4) 6. (q, a.) ¢ otherwise g€Q, 1 < j < k.

M; uses the input word to count steps and gives what

G would deposit as output in a manner similar to the

63

construction of Theorem 2.23. An output word is in
Mi(Lk) if and only if it is the result of a generation
from the i-th initial production of G. Hence

Mi(Lk) = Ki' Hence in this case as well Ki€ Eﬁk.

We conclude Kietf}k 1 <i<k and so

k 2

L=/ K, € '3'k’ Thus ;C = ?'k and therefore

i=1 * -
2

5 B,

COROLLARY 2,25: Jii = Jfk'

COROLLARY 2.26: ;i is closed under mirror

k
image.
PROOF: Let Le;ﬁk and G = (N, T, S, P, k)
be a k-rlg for L. We construct a k-llg
R = (v, 7, s, P}, X) for mi(L). P} contains:

(1) S»mi(x) if S+xe€P, x €T*,

(2) S+X X, if S+X;...X, €P, X, €N, 1 < i < k.

kxk-’l... 1 1..0 k

(3) X+*¥Ymi(y) if X+yYEP, X, YEN, y €T*,
(4) X»mi(x) if X+x€P, XEN, x €T,

It is easvy to verify that L(GR) = mi(L).

§6. DECIDABILITY QUESTIONS

In this section we consider two decidability
questions relating k-rlg's and the generated languages
which have a positive answer. We recall that in
Lemma 2.2 we showed membership problem is decidable

for k-rlg's.

Let G= (N, T, S, P, k) be a k-rlg. We recall
that in Theorem 2.12 we defined a relation "+" on Nk
by (Xl’ siEE Xk)»(Yl, s B w Yk),xi, Y.EN1 < i & X A1ff

i
g " g
there exist xi+ini€:P, inZT e 1 €4 % k.

DEFINITION 2.7: An N-sequence for G is a finite

sequence of members of Nk ‘,3= (si)2=l such that s »s, ;

1 <31<n-1.

Note that we can always associate an N-sequence
with a non-trivially generated word xe€L(G). If D
is a derivation of x by G we denote the associated
N-sequence by)X(D, x) and the i-th member of this
sequence by Si(D’ X). We call a repetition
Si(D’ X) = sj(D, Xx) 3 > i in an N-sequence associated

with a word x "trivial" if there are no terminals

- B =

65

deposited in intervening steps. We can now show that

the "emptiness problem" is decidable for k-rlg's.

THEOREM 2,27: Given a k-rlg G = (N, T, S, P, k)

there is an algorithm to decide whether L(G) = ¢ or

not.

PROOF: Since L(G) 1is recursive by Lemma 2.2
we have only to give an upper bound for the shortest
non-trivially generated word in L(G). Suppose

#(N) = 2 and max {|x]||X*x€P, XEN} = m.

CLAIM: L(G) # ¢ 1iff there exists xcL(G)

k

such that |x]| < mkf&" + mk or there exists a production

S+x EP with x € T*,

PROOF: if: obvious.
only if: Suppose G has no rules of the form S-x,
x €T* and there does not exist x €L(G) with
x| < mkeX + mk, but that L(G) # ¢. This implies

k

there exists a shortest y €L(G) with |y| > mke" + mk.

There exists a derivation D: S = 1>0v—m>1>l—-—--=>...m——->Pn_’_l =y
n

for vy and an N-sequence)X(D, y) = (si(D, y))i=l.

We may suppose 4}8(D, v) has no trivial repetitions

(for if it has we may find a shorter derivation for v

with no trivial repetitions). Since each application of

k non-terminating productions can deposit at most

66

(m - 1)k terminals, it is clear that IPrl < rmk,

r<n, Thus |y| < (n + 1)mk and so n > X, Hence
there must be a repetition (non-trivial!) in /;g(D, V),
say SD(D' V) = sq(D, y). Then Sl(D, y)*s,(D, y)*...
+sp(D, y)*sq+l(D, y)+...*sn(D, y) 1is an N-sequence
associated to a word y' L(G) and since sp(D, v) =
sq(D, y) is non-trivial, we have |y'| < |y| contradic-
ting the minimality of |y|. Hence no such y exists

and we condlude L(G) = ¢. This completes the claim

and so we are done.

By a similar method we can show that the
"finiteness-infiniteness problem" is decidable for

k-rlq ' 8.

THEOREM 2,28: Given a k-rlg G = (N, T, S, P, k),

there is an algorithm to decide whether or not

4(L(G)) = =,

PROOF: We again use the fact that L(G) is
recursive. Let m and £ be as above and p = mk{
(cf. Theorem 2,5). We claim that L(G) is infinite iff
there exists a non-trivially generated x€L(G) with
p < |x| <p+ mkeK, 1f L(G) is not infinite there

cannot exist x€L(G) with |x| > p (otherwise by

67

Theorem 2.5 there are infinitely many words in L(G)).

If L(G) is infinite, then there exists a shortest

x €L(G) with |[x| >p. If [x| > p + mkeX an argument
similar to that of Theorem 2.27 shows that we can find an
x'€ L(G) with p < [x'| < |x| contradicting the minim-
ality of |x|. Thus if L(G) is infinite there exists

XEL(G) with p < | x| <p+ mkzk.

CHAPTER 3

REGULATED REWRITING

§1. k-PARALLEL RIGHT-LINEAR WITH REGULAR CONTROL LANGUAGES.

In this chapter we add a control device to
k-parallel right-linear grammars, namely a reqular
control language. We show that the lanquage families
generated are the same as both the k-tuple languages
of Kuich and Maurer [5] with a right-linear restric-
tion and the k-right-linear simple matrix lanquages of

Ibarra [4].

We wish to define "control word" for a derivation
by a k-rlg. Since productions are applied k at a
time except in the initial step, the labelling of deriva-

tion steps must take this fact into account.

DEFINITION 3.1: Let G = (N, T, S, P, k) be a

k-rlg. A labelling of productions from G is a 1-1

correspondence Lab: P -—Lab(P) where Lab (P) is a

finite set of "labels" and

P = {s+x|S+xe€P}lU {(xl,...,xk)-»(yl,...,vk) |xi+_vie P,i=1,...,k}.

= BB =

69

DEFINITION 3.2: Let G = (N, T, S, P, k) be a

k-rlg and Lab (P) a set of labels for productions from
G. Let D be a derivation by G. Then u is a control

word for D if one of the following holds (i) D is

0p=>Q;, u = a€ Lab (P) and a is the label of the
production applied in 0p=>Q,, or (ii) D is

* *
Qoﬂ=>Qn=z>Qm, u = uyu, and u; is the control word of

* . *
00===—=>Qn and U, is the control word of Qn_“>Qm'

With these definitions we can assign to a pair

(D, x) , where D 1is a derivation by G of x, a control

word denoted u(D, x).

DEFINITION 3.3: L<&T* is a k-parallel right-

linear with reqular control language (k-rrll) iff there

exists a k-rlg G= (N, T, S, P, k), a labelling of
productions from G Lab, and a regular language C over
Lab (P) such that L = L(G, C) = {x€L(G)|there exists

a derivation D for x, and ueC with u = u(D, x)}.
We denote the family of k-rrl's by 'ﬁlk.

EXAMPLE 3.1: We consider the 2-rlg

G= (N, T, S, P, 2) where N = {S, A, X, B, C},

T= {a, b, ¢} and P contains:

70

S+AX
A+aA|B
B+bB|b
X>X|C

C+cC|ec.,

It is easy to show that L(G) = {albjckli +3 >k, i,j,k > 1}.

We give labels to production pairs which will be allowed:

S+AX: e

(A, X)+(ar, X): a
(p, X)»(B, C): b
(B, C)+(bB, ¢C): ¢

(B, €)*(b, a)s: 4.

Let D = ea*bc*d, then L(G, D) = {anbmcmln, m > 1}

L(G, D) is a 2-rrll, _but apparently not a 2-rll.

Example 3.1 may be generalized to give
. n_m_m m " ; _
Lk,r = {a alaz...ak|n, m > 1} which is a k-rrll, but
apparently not a k-rll for k > 2. When k =1 we
have 111 = ﬁll (by Salomaa [9]). For k > 1 we have
ptké Rk since given a k-rlg G = (N, T, S, P, k) we

may take C = Lab (P)* and then L(G) = L(G, C).

i §

The first result we shall need is that the

families G&k form a hierarchy.

. C
THEOREM 3.1: For all k> 1, ®, ST, ..

PROOF: The method is to construct a k+l-rlg

as in Theorem 2.3 and to construct a new control language.

Let LE®R, , G= (N, T, S, P, k) a k-rlg and

K’
M= (0, Z, 6, Sy F) an fsa such that L = L(G, T(M))
where I 1is a set of labels for productions of G.

We apply the construction of Theorem 2.3 to give a k+l-rlg
G' such that L(G) = L(G'). We will construct an nfsa

M' such that L = L(G', T(M')). The idea is to associate
to a control word of a derivation by G a control word

of a derivation by G' in such a way that the new control
word is accepted by M' iff the old word was accepted

by M. In view of the fact that, except for a finite
number of short words, derivations procede in G' 1in
essentially the same way as they did in G, we can

construct M', (Note that G' = (N', T, S, P', k + 1).)

Let M' = ', v, 4', g F') where Q' = 0 U{ql},
q1¢‘Q' L' 1is a set of labels for productions of G',

F' = FKJ{ql} and &' 1is constructed as follows:

72

(1) 6'(q0, a) = dy if s % XEP', XxET* (we again use
the notation X ® x to mean that a is the label

for the production X=x.)

(2) §'(q,, a) = q' if s 3 x Y [X;, cl...X, in G

lo.o k
and G(qo, b) = q' where S R xl"'xi"'xk in G.

(3) 8'(q, a) = q' if (Xy, .eop Y, (X5, €], oouy Xp) g

Cc

]
l1<j<i-1 and i+ 1< 3j <k, where either

(v, Yir eeer Yo Yo sosy kak) where yje;T*, Y. N

.;;= vY, yET*, yeEN or §= ¥, ¢l and

(xll L N xk) k (lel’ e o0 g -_‘.,, e o0 g kak) in G

where either ; = cyY or ; =Y and §&8(g, b) = q'.

X,

(4) 6'(g, &) = @" AE (s sewr ¥ r wang Bl B

cl
(Y1Y1I L Yc’ ini' e s p YkYk) Where

2 in G
(Xl r e e 0o xk) (lel r e e 0 p kak) ln C and

§(a, b) = q'.

(5) 6'(q’ a) = q' if (Xl, e o0y Yc’ p. G

l' ...,X

x)

(xl, ceer Cp Xiy eeny xk) where (Xl, Saelly M ® w0 Xk) L

l’

(xl, ooy OX o g in G and 6(q, b) = qgq'.

il k)

(6) 8'(g, a) = ¢ otherwise.

By the construction, X€L(G', TM')) iff xe€L(G, T(M)).

Hence LeRk+l and we conclude (R " 9& k+1°

We also need

73

LEMMA 3,.2: '?ik is closed under union for all

PROOF: Let Ly, L,€ fik, say L. = L(G

1 ¢ Gy
and L2 = L(Gz, Cz). We construct G, so that L(G3) =
L(Gl)L)L(Gz) (as in Lemma 2.10). We label oroductions

of G3 by the labels of the corresponding productions of

Gl and GZ’ Then Llu L2 = L(G3, clu Cz).

§2, RIGHT-LINEAR TUPLE LANGUAGES.

Kuich and Maurer [5] have defined "Tuple
Languages" with context-free productions. We specialise

this notion to allow only right-linear productions.

DEFINITION 3.4: Let T be a finite set of

terminal symbols. Then we denote T* x ,,, x T* (k times)

by T*, the set of k-tuples of words over T. Let

c;* Ti—#r* be the homomorphism defined by ci((xl' P xk)) = X
for 1 < i < k. If x, yeETi then
xy = (cy(x)e(y), «.., cp(x)cy (y)). We define

W Tl’é—sT* by " u(z) = cl(z)cz(z)...ck(z), ze-r;;. Denote

the k-tuple of ¢€'s by €.

DEFINITION 3.5: A right-linear k-tuple grammar

(k-tlg) is a 5-tuple G = (k, N, T, S, P) where

(1) X > 1 is an integer.

(2) N is a finite set (of non-terminal symbols).

(3) T is a finite set (of terminal symbols) with TNN = ¢.
(4) SEN.

(5) P is a finite set of productions of the form X-x

with X€N and xeT}:NuT]:.

o Bl =

75

The "yields" relation _..» for words over NL)Ti is

defined by x==>y i#— Xx = uXv, vy = uzv and X-»z €P.

DEFINITION 3.6: L<T* is a right linear k-tuple

language (k-tll) iff there exists a k-tlg G = (k,N,T,S,P)

such that L = L(G) = {u(x)|S=;>x, xe'r;;}.

We denote the family of right-linear k-tuple

languages by tTk' We observe immediately that

b i

THEOREM 3.3: For all k > 1,), = (.

PROOF: CLAIM 1: R, < TJ,.

PROOF: Let L €'ﬂ2k, then there exists a k-rlg
G= (N, T, S, P, k) and an fsa M = (Q,%, §, g F)
such that I is a set of labels for productions of G
and L = L(G, T(M)). We construct a k-tlg
G'= (k, N*', T, [S, q4], P') where N' = {[S,qO]}LJ(NkXQ)

and P' contains:

(1) s, gqpl>(x, €, ..., €) if 8 $ xeP, xe€T* and

G(qo, a)er,

(2) (S, qgl+[Xy, «.cs X, q') if S g x,...X

5 L EP, X EN

1 <i<k and G(qo, a) = q'.

76

(3) [Xys vvny X @120y, weny W)Yy, oony Yy, @'l if

(X 2.0 % tyy¥ye seer 7Yy with X, Y, €N,

l' ® e 0 p
(Vs «eer ¥, JETE and 6(q, a) = q'.

(4) [xli LS xk'q]-’(yl' L yk) if (yl'o..' yk)e—T;’
(Rye sran X 3 (Yyr ++-r v,) and 6(q, a) €F.

Now G' is a k=-tlg which imitates a derivation by

G while keeping track of the state of M in the last
component of its non-terminals. A derivation by G'
is allowed to terminate iff the control word of the
corresponding derivation by G is in T(M). Thus

L=L(G, T(M)) = L(G") € jk and we have YRk c jk'

CLAIM 2: J, < zRJk.

PROOF: We use a technique similar to that used
in Theorem 2.11. First, let L € :Tk' say L = L(G)
for the k-tlg G = (k, N, T, S, P). We again consider
the sets of functions &i’ and note that the notion
"i(D' x) for a derivation D of a word x e€L(G) makes

sense for 1 < i < k. We define

ﬁ; = {xe;Lle(D,x) #e all j€ im?,ﬂj(D, x) = £ otherwise},

P
L; = u?eii L;. Then

77

k
L = L) L, if e¢lL
i=1 f
k
U L,U{e} otherwise.
i=1

Using the method used in Theorem 2.11 to construct

the i-rlg GI, we construct an i-tlg

P

GI = (i, N., T, S, Pz) for Li with the property that if

@
X+(xl, 08 xi)e‘Pi,xje.T* and X # S, we have
x., #e 1 <3 <i. Using G; we will show Lze 1{i by

]
constructing an i-rlg

G, = (ﬁi, T, S', ﬁi' i) and a
N

g M

control language. ﬁ; = ® Sy sawe i}L){S'}.Ff contains:
(1) S'sxy%y...x; Af S»(xy,...,%5)€ .

(2) S'#[8, 1} +u« I8, 4],

3 X, j]+yj[Y.j] for 1 <3 <i if X+(yy,..., yi)Yéspz,

x,yeuz,yjewn 1 &9 2 4,

(4) (X, §l+xg for 1 <j <i if X>(x;, ..., x)€ Py,

XENi'P and xj€T+ 1 <3 <i.

We now suppose a set of labels for productions of 5; has

been introduced and define

A= {a|](X, ...,X) 3 (le,...,in) and X+(yl,...,vi)Y€.Pi}

+
L){aI(X,..., X) 3 (xl,...,xi), X+(xl,..., xi)e;Pz,xje.T }

78

B = {b|s'® x, xeT*)

and we suppose c¢ 1is the label for S'»[S, 1]...[S, il.
Define C = BUCcCA* which is a regular lanquage over the
set of labels for productions of 5;. Now we have
x<EL(§f, C) iff x has a derivation D by §f with a
control word in C iff D 1is either trivial, or it

uses productions after the initial one with labels from

@

A iff there is a derivation of x by Gf ife x<5Li.

Thus L‘*i’ B L(?;‘i‘?, C) and so L;’ € R;. By Lemma 3.2
_ ®
L, € 'ﬂk, so we have L € Tfek. Thus Jk < ﬁk.

€ ﬁ{i 1 <i < k and by Theorem 3.1

Combining the two results we have ffk =Zﬁ,k.

§3. RIGHT-LINEAR SIMPLE MATRIX LANGUAGES

Ibarra [4] has introduced the notions of simple
matrix language and right-linear simple matrix language
and studied their properties extensively. In this sec-
tion we relate the second of these concepts to the

families ZEk'

DEFINITION 3,7: A k-right-linear simple matrix

grammar (k-rlmg) is a (k+3)~-tuple G = (Nl,...,Nk, T, S, P)

where

(1) Ny, N,y ..., N are pairwise disjoint finite sets

of non-terminals. 4

(2) T is a finite set of terminals and TAN, = $
1 ¢4 < k.
k
(3) S is the start symbol and s¢ U N, UT.
i=1
(4) P is a finite set of matrix rewriting rules of the
form
(1) [8+x], x&T*
(ii) [S*xllxllx12x12"'xlnx1n°'°xklxk1°"xknxkny]

where n > 1, y€T* and 1 <i <k, 1< 3j<n

*
XijENi and xijeT v

- TG -

80

(iv) [xl*lel""'xk*kaﬁj Where Xi' Yie Ni and

yieT*lf_if_k.

DEFINITION 3.8: Let G = (Nl, ceoy Nk' T, 8, P}

be a k-rlmg. We define the yield relation for

¥
x, ye(U

N, UT U{sh*by x=-=>y iff
i=1

(1) x =S and ([S+yl€eP or,

(2) There exist Yir seer yke.T*, Wir eeer Wpo Zygeees Zy
with Wi 25 e(NiLJT)* and Xpreoor Xp with X, €N,
such that x = ylxlz1 e ykxkzk’ y = ylwlzl...ykwkzk
and [X1+wl,..., xk+wk]e P. m;> is the reflexive
transitive closure of —>. (Note that this is a

"leftmost" derivation.)

DEFINITION 3.9: L&T* is a k-right-linear

simple matrix language (k-rlml) iff there exists a k-rlmg

*
G= (Ny, ..., N, T, S, P) such that L = L(G) = {x € T*|S==>x}.

We denote the family of k-rlml's by XTLk.

Before we give the main result of this section we need

LEMMA 3.4: If LGXTLk then L can be generated
by a k-rlmg having rewriting rules only of the forms
.] . s 4N u :
(i), (1ii), (iv) and (ii’): [S+xlxlx2X2...xkxky] with

& .
X;r YET and XieNi1_<_1_<_k.

81

PROOF: Let G = (N;, ..., N, T, S, P) bea

k-rlmg for L. If G has rewriting rules only of forms

(i), (iii), (iv) and (ii')we are done. Otherwise let

m = max{2| [S+x) Xy - Xy9Xqgeee XXVl €P}.

2

Let N, = NUNU...UNT" 1 <3i < k and
1 b 1 h — —

Z|

G = (R ﬁk' T, S, P) where P contains:

l'

(1) [S+x] if [S+x]E€P and x E€T*,

(2) [S+%xy7[Xy90 X0 weer XyplXogeneXpq [Xpyy ooy Xy plyl

*
[S"xllxll'"xllez"'xkzxsz] € P where vy, xije T

and xijeNi l1<i<k,1<3 <.

(3) [[le xll’ LI I 4 xlj]-’vl[Yl' x11' o e 0 g xlj]’ L

[Zk' xkl' s e 8 g ij]*vk[yk' Xkl' LR A ij]] lf

[Zl*ylyl' ceey zk"YkYk] €EP, j€{1, esee, Mm = 1} and
Ay

g€y 0 2@z,

(4) [[Zl,j—l' xlj, X12]+w1xlj[xlj' . R Xl Vounai

[2 WL ey Zk'j_l-»wk] €P and

lrj-l

[s*xllxll’ . ’xljxlj g .xllel. . ’xklxkzl € P where

& :
Xip" x, € T*, Zi,j—l' xipe N, 1 <i<k, 1<pc<t.

(5) [X wnwy XK if [X1+xl, ceey Xk-*xk] EP

17%y x¥k!
- * :
and xiCNi' xieT » 1 <1 < k.

ig

82

G simply imitates a derivation by G while keeping
track of any unused non-terminals which resulted from
its initial production in the components of its non-
terminals. We conclude L(G)= L(G) and G has only

productions of the desired types.

THEOREM 3.5: For all k > 1, J, =70,.

PROOF: Let I.eijk and G = (k, N, T, S, P)
a k-tlg for L. Let N, = {[x, il1|X€N - {s}} and

G = Ny, ooey N, T, S, P) a k-rlmg where P contains:
(1) [S+w1w2...wk] if S+(wl, @ wk)EEP,wie.T*, 1 <ic<k,
(2) [5+x1[x, 1]...xk[x, k1] if S*(Xyreeey X)JX€P, XEN.

(3) [Ix, 11+vl[Y, 11, ss+5 IE, k]»yk[y, kl] if

x-»(yl, dhashe yk)Y€P where X, YEN , vieT*.

(4) [I[X, 1]+x1, sus s LBs k]*xk] if X+(x1, 5 Wi xk)e,P,

XEN, xiG,'I‘*.

Clearly L(G) = L(G) = L. Hence I.efﬂk and we have

<-4

To show the reverse inclusion let L GKYLk and
G = (Nl, «eer Ny, T, S, P) be a k-rlmg for L normal-

ized as in Lemma 3.4, Let W = {yéiT*I[S*xlxl...xkxky]G.P}

83

and N = {S}U(N1 x Ny x oo X Nk x W). Define

G=(k, N, 7, s, P) where P contains:
(1) S+(w, €,¢ee., €) 1if [S+w]leE P,

(2) S+(x1, i xk)[xl, P xk'y] if [S+x.X,...X

1% xk’y]ep

k
where v, xieT*, xié‘_Ni 1 <i<k.

(3) [Xl' e o 0 xk'y]"(yl’ ® e 0 g Yk) [Yl' ® e o Yk' Y] if

[Xl+y1Yl, . xk-bkak]GP, yie T*, YEW, Xi, YiC—Z N..

(4) [Xy, eevy Xy YI*(xy, coey xy) if (X 9%y,...,X 9%] €P,

* A
YEW, xie'r ’ xiGNi 1 <1<k,

Now G is clearly a k-tlg such that L(G) = L(G) = L.

Hence L€ J, and m, < CTk‘ This completes the proof.

COROLLARY 3.6: For all k = 1, M, = R,.
We now note that we could alter the definition of k-tlg

to demand that if X*(xl, e xk) is a production and

X # S then Xy # € 1 <i < k. Similarly, in the defini-
tion of k-rlmg we could demand that if

[Xl*xl, . s Xk*xk] is a rewriting rule, then X4 # €

1 <i < k. We denote the family of languages generated
by k-rlmg's with this restriction by KTLE, and similar-
ly define :S;. Now we can extend the definition of
k-rrlg to allow the base grammar to be an €-k-rlg and

we denote the family of languages so obtained by ‘6&§.

84

COROLLARY 3.7: For all k >))
& £
(i) 7](= jk and mk =mk.

5 €
un‘ﬂkz_ﬂr

PROOF: (i) It is clear that j; ij. Since
:Tk = ?ak, we have the reverse inclusion when we note
that in the construction of a right-linear k-tuple
grammar from a k-rrll (Theorem 3.3) no terminating
k-tuples contain e€'s.
The second equality follows from Corollary 3.6

by a similar argument.

(ii) The family YVl y is closed under homo-
morphism, hence so is ‘ﬁik. Now let L GﬂZE with a base
grammar G = (N, T, S, P, k). Let a¢T then the
grammar obtained by substituting X+a for all rules of the
form X+e with X # S is a k-rlg. Let L, be the
language obtained by making this substitution and using the
same control language. Then L, € W@ * Define
h: TU{a}+T* by h|T = id,, and h(a) = e. Clearly
L = h(L,), so L€‘ﬁk. Therefore Yﬁi Q'ﬁk. The reverse

inclusion is obvious and the result follows.

COROLLARY 3.8: There exist context-free languages

which are not in 'ﬂfk for any k, hence not in Zf "

for any k, or in XL .

85

PROOF: This is from Corollary 3.6 and Theorem

4,7 of Ibarra [4].

§4. ANOTHER RESTRICTION ON DERIVATIONS.

In this section we define another form of req-
ulated rewriting for k-rlg's. As is the case for
context-free grammars, periodically time varying k-rlg's
and k-rlg's with reqular control have the same genera-

tive capacity.

DEFINITION 3,10: A k-parallel right linear

periodically time-varying grammar (k-rlg) 1is a pair (G,?)

where G = (N, T, S, P, k) 1is a k-rlg and q>:ﬂl—*2p
(P as in Definition 3.1!) with the property that there

exists peMN such that @(j + o) = P(3) for all jFeMN.

DEFINITION 3.11: Let (G,<?) be a k-rlpg

where G = (N, T, S, P, k). We define the yields relation

on pairs from (NUT*)x N by (P, j,)=>(0Q, J,) iff

either (1) jl =1, j2 =2, P=S and S*QGEQ(I) or

(2) j2 = j1 +1, p= Z1X) 002y Xy and Q = Z1Yy -2 Yy

With Zie T*, Xie N 1 i i f_ k and (xlpuo-’xk)"(ylyuuu,yk)e?(jl)o

DEFINITION 3.12: L<ST* is a k-parallel right-

linear periodically time-varying lanquage (k-rlpl) if

there exists a k-rlpg (G,?) where G = (N, T, S, P, k)

- 86 =

87

*
such that L = L(G, ¢) = {x€ T*|(S, 1)=>(x, j) for some

€N},

We denote the family of k-rlpl's by ka.
Since the methods used to show the main result of this
section have been developed above, and since they
involve somewhat lengthy constructions, we simply state

the result and sketch its proof.

THEOREM 3.8: For all k =1, ®, = -"U"k.

PROOF: The first step is to show U, < U,

and ‘Lfk is closed under union for all k > 1. This is

achieved by the methods of Theorem 3.1 and Lemma 3.2,

Next we show tTk é-lfk. Giveh L = L(G)E ifk
it is easv to construct a k-rlg G, and ¢ with period 14
so that L = L(G,,9). Finally we show ka = ﬁﬂk. Given
L =’L(G,?) € ka, we define an fsa which counts modulo
p and accepts any control word of a derivation by G
such that at the i-th step the productions used form a

member of q>(i).

BIBLIOGRAPHY

Ginsburg, S., Review of "The Structure Generating
Function and Entropy of Tuple Languages" by
Kuich, W. and Maurer, H., Computing Reviews,

13(2), 1972, [22, 680].

Greibach, S. A., and Hoproft, J. E., Scattered Context
Grammars, Journal of Computer and System Sciences,

3 (1969), 233-247,

Hoproft, J. E., and Ullman, J. D., Formal Languages
and their Relation to Automata, Addison Wesley

{1969) . .

Ibarra, 0. H., Simple Matrix Languages, Information

and Control 17 (1970), 359-394,

Maurer, H., and Kuich, W., Tuple Languages, Proceedings
of the A.C.M, International Computing Symposium,

1970, Bonn, 882-891.

Rajlich, V., Absolutely Parallel Grammars and Two-Way
Deterministic Finite State Transducers, Proceedings

of the Third SIGACT Conference, 1971, 132-137.

- B8 s

19,

e 5

89

Rozenberg, G. and Doucet, P., On 0-L Languages, Infor-

mation and Control, 19 (1971), 302-318.

Salomaa, A., Formal Languages, accepted for publica-

tion by Academic Press.

Salomaa, A., On Grammars with Restricted Use of
Productions, Ann. Academiae Scientiarum Fennicae,

Series A, 454, 1969.

Siromoney, R., On Equal Matrix Languages, Information

and Control, 14 (1969), 135-151.

Wood, D., Bibliography 23, Formal Language and Automata

Theory, Computing Reviews, 11 (7), 1970, pp. 417-430.

	Rosenbrugh_Robert_D_1972_11_master0001
	Rosenbrugh_Robert_D_1972_11_master0002
	Rosenbrugh_Robert_D_1972_11_master0003
	Rosenbrugh_Robert_D_1972_11_master0004
	Rosenbrugh_Robert_D_1972_11_master0005
	Rosenbrugh_Robert_D_1972_11_master0006
	Rosenbrugh_Robert_D_1972_11_master0007
	Rosenbrugh_Robert_D_1972_11_master0008
	Rosenbrugh_Robert_D_1972_11_master0009
	Rosenbrugh_Robert_D_1972_11_master0010
	Rosenbrugh_Robert_D_1972_11_master0011
	Rosenbrugh_Robert_D_1972_11_master0012
	Rosenbrugh_Robert_D_1972_11_master0013
	Rosenbrugh_Robert_D_1972_11_master0014
	Rosenbrugh_Robert_D_1972_11_master0015
	Rosenbrugh_Robert_D_1972_11_master0016
	Rosenbrugh_Robert_D_1972_11_master0017
	Rosenbrugh_Robert_D_1972_11_master0018
	Rosenbrugh_Robert_D_1972_11_master0019
	Rosenbrugh_Robert_D_1972_11_master0020
	Rosenbrugh_Robert_D_1972_11_master0021
	Rosenbrugh_Robert_D_1972_11_master0022
	Rosenbrugh_Robert_D_1972_11_master0023
	Rosenbrugh_Robert_D_1972_11_master0024
	Rosenbrugh_Robert_D_1972_11_master0025
	Rosenbrugh_Robert_D_1972_11_master0026
	Rosenbrugh_Robert_D_1972_11_master0027
	Rosenbrugh_Robert_D_1972_11_master0028
	Rosenbrugh_Robert_D_1972_11_master0029
	Rosenbrugh_Robert_D_1972_11_master0030
	Rosenbrugh_Robert_D_1972_11_master0031
	Rosenbrugh_Robert_D_1972_11_master0032
	Rosenbrugh_Robert_D_1972_11_master0033
	Rosenbrugh_Robert_D_1972_11_master0034
	Rosenbrugh_Robert_D_1972_11_master0035
	Rosenbrugh_Robert_D_1972_11_master0036
	Rosenbrugh_Robert_D_1972_11_master0037
	Rosenbrugh_Robert_D_1972_11_master0038
	Rosenbrugh_Robert_D_1972_11_master0039
	Rosenbrugh_Robert_D_1972_11_master0040
	Rosenbrugh_Robert_D_1972_11_master0041
	Rosenbrugh_Robert_D_1972_11_master0042
	Rosenbrugh_Robert_D_1972_11_master0043
	Rosenbrugh_Robert_D_1972_11_master0044
	Rosenbrugh_Robert_D_1972_11_master0045
	Rosenbrugh_Robert_D_1972_11_master0046
	Rosenbrugh_Robert_D_1972_11_master0047
	Rosenbrugh_Robert_D_1972_11_master0048
	Rosenbrugh_Robert_D_1972_11_master0049
	Rosenbrugh_Robert_D_1972_11_master0050
	Rosenbrugh_Robert_D_1972_11_master0051
	Rosenbrugh_Robert_D_1972_11_master0052
	Rosenbrugh_Robert_D_1972_11_master0053
	Rosenbrugh_Robert_D_1972_11_master0054
	Rosenbrugh_Robert_D_1972_11_master0055
	Rosenbrugh_Robert_D_1972_11_master0056
	Rosenbrugh_Robert_D_1972_11_master0057
	Rosenbrugh_Robert_D_1972_11_master0058
	Rosenbrugh_Robert_D_1972_11_master0059
	Rosenbrugh_Robert_D_1972_11_master0060
	Rosenbrugh_Robert_D_1972_11_master0061
	Rosenbrugh_Robert_D_1972_11_master0062
	Rosenbrugh_Robert_D_1972_11_master0063
	Rosenbrugh_Robert_D_1972_11_master0064
	Rosenbrugh_Robert_D_1972_11_master0065
	Rosenbrugh_Robert_D_1972_11_master0066
	Rosenbrugh_Robert_D_1972_11_master0067
	Rosenbrugh_Robert_D_1972_11_master0068
	Rosenbrugh_Robert_D_1972_11_master0069
	Rosenbrugh_Robert_D_1972_11_master0070
	Rosenbrugh_Robert_D_1972_11_master0071
	Rosenbrugh_Robert_D_1972_11_master0072
	Rosenbrugh_Robert_D_1972_11_master0073
	Rosenbrugh_Robert_D_1972_11_master0074
	Rosenbrugh_Robert_D_1972_11_master0075
	Rosenbrugh_Robert_D_1972_11_master0076
	Rosenbrugh_Robert_D_1972_11_master0077
	Rosenbrugh_Robert_D_1972_11_master0078
	Rosenbrugh_Robert_D_1972_11_master0079
	Rosenbrugh_Robert_D_1972_11_master0080
	Rosenbrugh_Robert_D_1972_11_master0081
	Rosenbrugh_Robert_D_1972_11_master0082
	Rosenbrugh_Robert_D_1972_11_master0083
	Rosenbrugh_Robert_D_1972_11_master0084
	Rosenbrugh_Robert_D_1972_11_master0085
	Rosenbrugh_Robert_D_1972_11_master0086
	Rosenbrugh_Robert_D_1972_11_master0087
	Rosenbrugh_Robert_D_1972_11_master0088
	Rosenbrugh_Robert_D_1972_11_master0089
	Rosenbrugh_Robert_D_1972_11_master0090
	Rosenbrugh_Robert_D_1972_11_master0091
	Rosenbrugh_Robert_D_1972_11_master0092
	Rosenbrugh_Robert_D_1972_11_master0093
	Rosenbrugh_Robert_D_1972_11_master0094
	Rosenbrugh_Robert_D_1972_11_master0095
	Rosenbrugh_Robert_D_1972_11_master0096
	Rosenbrugh_Robert_D_1972_11_master0097

