
A PARALLEL COMPUTING SYSTEM

A PARALLEL COMPUTING SYSTEM

by

JORGE V. ROITMAN, B.Eng.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Engineering

McMaster University

April 1972

MASTER OF ENGINEERING (1972)

(Electrical Engineering)

McMASTER UNIVERSITY

Hamilton, Ontario

TITLE: A PARALLEL COMPUTING SYSTEM

AUTHOR: JORGE V. ROITMAN, B. Eng.
(Universidad Nacional de La Plata, Argentina)

SUPERVISOR: Dr. E. DELLA TORRE

NUMBER OF PAGES: xiv, 120.

SCOPE AND CONTENTS:

The philosophy of parallel computation is

discussed. A parallel computing system has been devised and a

typical cell has been implemented. Supporting systems such as

mnemonic language, parallel algorithms and computer programs

to operate the array have been developed. The possibility of

using the parallel processor as an associative-memory is also

considered. A multi-cell system has been simulated on the

PDP-11 computer.

ii

ABSTRACT

A highly parallel computing system capable of computing

transcendental functions, matrix operations and iterative

calculations has been devised and a typical cell has been

implemented. The system consists of an array of cells, a

control unit, a PDP-11 computer and an interface unit. The

array uses modified SOLOMON type of communication between

cells. Each cell consists of 15 words and arithmetic hardware.

Arithmetic and logic operations, on words or bytes, may be

performed serially between pairs of these words. Division and

floating-point arithmetic are under software control. Parallel

·algorithms have been developed. A set of instructions and

mnemonics permits a practical use of the system. The possibil

ity of using the array as an associative-memory processor is

also considered. The system has been tested by using the

software package prepared. Although only one cell has actually

been constructed a complete array has been simulated on a

PDP-11 computer.

iii

ACKNOWLEDGEMENTS

The author particularly wishes to thank Dr. E. Della

Torre for his guidance and encouragement in the preparation

of this thesis.

Special thanks are also due to T. V. Srinivasan and

H. Debruin for their invaluable assistance in writing this

thesis.

The financial assistance provided by the Department

of Electrical· Engineering is gratefully acknowledged.

iv

TABLE OF CONTENTS

CHAPTER 1. Introduction

1.1 Background

1.2 Philosophy of the Proposed System

1.3 Outline of the Thesis

CHAPTER 2. General Organization

2.1 System Organization

2.2 Array Architecture

2.2.1 Geometrical Configuration

2.2.2 Row and Column Buffers

2.2.3 Central Buffer

2.3 Control Bus

CHAPTER 3. The Cell

3.1 Philosophy of the Design

3.2 Representation of Data

3.3 Integer Arithmetic

3.3.1 Serial Operations

3.3.2 Multiplication

3.3.3 Division

3.4 Floating-Point Arithmetic

3.5 Conditional Branch

3.6 Cell Description

3.6.1 Accumulators

v

1

4

6

8

11

11

12

14

14

16

17

19

19

19

21

24

26

27

29

3.6.2 Direct Address Memories

3.6.3 Demultiplexer

3.6.4.Multiplexers A and B

3.6.5 Multiplexer C

3.6.6 Data Latch Flip-Flops

3.6.7 Arithmetic-Logic Unit

3.6.8 Control Bits

3.6.9 Inhibit System

3. 6.10 Convergence

33

33

35

35

35

36

41

42

43

CHAPTER 4. Operation of the Cell

4.1

4.2

Operands Selection

4.1.1 Triple-Address Instructions

4.1.2 Double-Address Instructions

4.1. 3 Single-Address Ins true tions ·

4.1.4 Operate Instructions

Instruction Set

44

44

44

46

46

47

4.2.1 Arithmetic and Logic Operations 48

4.2.2 Computer-Cell Communication Operations 51

4.2.3 Control Transfer Operations 51

4.2.4 Buffer-Array Communication Operations 51

4.3 Mnemonic Language 52

4.3.1 Serial Arithmetic and Logic Operations 52

4.3.2 Parallel Shifting Operations 54

4.3.3 Special Operations 55

4.3.4 Computer-Cell Communication Operations 55

vi

4.3.5 Control Transfer Operations 56

4.3.6 Buffer-Array Communication Operations 57

CHAPTER 5. The Control Unit 58

5.1 The Instruction Decoder 60

5.2 The Clock Unit

5.3 The Sequencer

5.4 The Cell Addressing System

63

69

73

5.4.1 Computer-Cell Communication Operations 77

.5.4.2 Buffer-Cell Communication Operations 81

5.4.3 Half Array Operations 82

5.4.4 Specific Cell, Row or Column Operations 83

5.4.5 Cell Addressing Hardware 83

5.4.6 Cell Enable Circuits 87

CHAPTER 6. The Interface

6.1 Generalities

6.2 The Address Selector D.E.C. - M105

6.3 The Gating Control Circuits

6.4 The Driver to the Unibus

CHAPTER 7. Programming the System

7.1 Control Program

7.1.1 Microprogramming

7.1.2 Integer Division

7.1.3 Floating-Point Operations

7.2 Simulation Program

vii

90

91

93

93

95

96

97

97

104

CHAPTER 8. Associative Memory

8.1 Introduction

8.2 Search Key Comparison

8.3 Cell Addresses Detection

CHAPTER 9. Conclusion

REFERENCES

viii

108

109

110

114

119

LIST OF FIGURES

2.1 System Organization

2.2 Transposition of an n x n matrix

2.3 Cells Data Communication

3.1 Multiplication. "Add/Shift" technique

3.2 Multiplication. Train of pulses

3.3 Integer pivision flowchart

3.4 The Cell

3.5 Accumulator 1 and Control Bits

3 •. 6. Accumulator 2. Inhibit system.
Convergence system

3.7 Demultiplexer

3.8 The Arithmetic and Logic Unit

5.1 The Control Unit. Block Diagram

5.2 The Control Unit. Instruction Decoder

5.3 The Control Unit. Instruction Decoder

5.4 The Control Unit. Instruction Decoder

5.5 The Control Unit. Instruction Decoder

5.6 The Clock Unit

5.7 The Clock Unit. The Sequencer

5.8 The Sequencer

5.9 Pulse Trains and State of Counters

5.10 The Array as an Matrix of sectors

5.11 Automatic Addressing. Loading of
Boundary Conditions

5.12 Half Array Operations

ix

9

13

15

20

20

23

28

31

32

34

37

59

64

65

66

67

68

70

71

74

75

80

80

5.13 Cell Addressing Circuits 84

5.14 Cell Addressing System 86

5.15 Cell Enable Circuits 88

6.1 Interface Unit. Block Diagram 92

6.2 Interface Unit Circuits 94

7.1 Integer Division Routine 98

7.2 Sine Routine. Flowchart 102

7.3 Sine Routine. Memory Mapping 103

7.4 Simula Program. Addition Flowchart 106

8.1 Associative Memory. Cell Addresses Detector Ill

X

LIST OF TABLES

4.1 Instruction Set

5.1 Logical Levels of the Control Unit Lines

xi

49

61

LIST OF ABBREVIATIONS

ACl accumulator 1

AC2 accumulator 2

ADD addition

ALO arithmetic and logic operation

ALU arithmetic - logic unit

AUT automatic

AV absolute value

BAR basic address register

B/F busy/free

CAR carry

CAS cell addressing sytem

CB central buffer

CCC computer-cell communication

CEI cell enable input

CEO cell enable output

CI conditional inhibit

CIN control in

CL clock

CLR clear

CMR cell mode register

CNT counter

CNV convergence

COB column buffer

COL column

COM complement

CONC concatenation

COU control out

CPG control pulses generator

CPU central processor unit

CTR control transfer

CU control unit

DEC decrement

xii

D.E.C. Digital Equipment Corporation

DIN data in

DMPX

DOU

DR

DSR

E

ENB

EX

EXO

EXT

FB

FF

FLT

HPCS

ICH

ID

INC

INF

INH

INP

INT

IR

LOR

LSB

LSI

MAI

MOV

MPX

MPY

MSB

MSG

N

demultiplexer

data out

data register

device status register

east

enable

exponential

exclusive or

external

first byte

flip-flop

floating

highly parallel computing system

interchange

instruction decoder

increment

integer, floating input

inhibit

input

integer

instruction register

logical or

least significant bit

large scale integration

move AC2 inverted

move

multiplexer

multiplication

most significant bit

move Sign to AC2

north

xiii

NS negative sign

NZ no zero

OD one detected

OUT output

PR preset

PS positive sign

ROB row buffer

ROT rotate

RST reset

S south

SAV sign/absolute value

SB second byte

SEL selector

SHF shift

SHR shift or rotate

SPe special operation

SSR shift serially to the right,

SUB subtraction

TCM two's complement

TFB transfer from buffer

TTB transfer to buffer

TTL transistor-transitor logic

UI unconditional inhibit

W west

wee without clear carry

WR write

YZ yes zero

ZD zero detected

xiv

CHAPTER 1

Introduction

1.1 Background

Since the advent of the first commercial electronic computer, a

great deal of improvement has been realized. The technological develop

ments' in semicond~ctors and magnetic materials have allowed an increase

in speed, reliability and versatility of the digital computer, together

t-Tith a reduction in physical size and cost.

On the other hand, architectural changes have been introduced

in order to improve the computation speed. The efforts have been

mainly directed to process information in a parallel fashion. The

different degrees of parallelism that have been userl are:

HULTIPLE BIT PROCESSING PARALLELISH

The multiple bit processing parallelism consists in considering each

t-Tord as a unit of information so that all the bits of a Hard are

processed simultaneously. The idea is used in most of the modern

computers. So~e of them use this feature only for addition,

subtraction and logical operations. The more sophisticated machines

use the same principle also in multiplication, division and even

floating-point operations.

?-fUL TIPLB FlDJCTiml PROCESSI'!G PARALLELISM

The multiple function processing parallelism consists in transferring

the information bett.,reen the units under device and channel control,

2

while the CPU is processing data. The functional relationship

among the units is optimized and a high degree of overlapping is

obtained, especially bet,V'een the I/O devices and the CPU. The

"third-generation".computers make use of this feature.

~IDLTIPLE FUNCTION STREAH PROCESSING PARALLELISM

The multiple function stream processing parallelism consists in

distributing a sequence of instructions over a sequence of nsmall

computers" so that many subprograms can be simultaneously executed,

as suggested by Holland [1]. Nany ''small cor1puters" or modules,

each 'dth their mm processor unit, a bank of memory and a control

unit are interconnected ar1ong themselves forming an array. Because

the complexity of efficient pro::;ramming and prohibitive cost, no

practical application of the Polland machine has yet been found.

HIGHLY PAHALLEL CmfPUTING SYSTEH (HPCS)

The HPCS makes use of single instruction stream vhich is executed

simultaneously by many identical arithmetic-logic processors, each

operating with a different set of parametric values of the same

data type. It seems to be an approach to the solution for problems

in tV'hich a very large set of data should be processed in a given

time or for problems Hith inherent parallelism.

The concept of HPCS 'vas sur,gested by Unger [2]. His machine has

been conceived as a means of d:Jt.:t manipulati.on ,.,here spatial

configuration has significance (e.g., identification of edges,

corners, curvatures and closed regions, solution of Karnau::;h n:aps, •?.tc.).

3

Lee and Paull [3] make use of a particular form of content

addressable memory. They developed a machine which is very useful

whenever data must be identified by its contents rather than by

its location in memory (e.g., to find identical patterns, to search

for values between certain specified limits or to find an item

closest to a given one, etc.).

The SOLOMON (Simultaneous Operation Linked Ordinal Modular Network)

machine [4] is a general purpose parallel computer which has more

practical applications than any of its predecessors. It can be

used in \oreather forecnsting, nuclear physiC'S problems, large hydro

dynamics prohlems, character recognition, optimization, and so forth.

Different versions of this compute~ have been constructed by Knapp [5],

Litton [6] and Della Torre and Ho [7]. The most sophisticated version,

the Illiac IV [81 is nmv- under advanced construction. T~e machine

proposed in this thesis is also a modified version of the SOLOHO!I

computer.

Many other parallel machines have been suggested and/or constructed

but a sharp classification cannot be made. For example, the Berkeley

Array Processor [9] is a special purpose computer designed to perform the

operations of correlation, convolution, recursive filtering, matrix

manipulations, etc. The modified Holland machine [10] is an improvement

over the basic Holland machine while the Davies-Associative Processor [11]

and the Goodyear's Associative Processor [12] can be consid~red a

further step on the Lee and PauH machine [3].

4

1.2 Philosophy of the Proposed System

In an attempt to build a highly parallel computing system, it

has been found that the SOLOMON structure is a good starting point

because:

a) it is a general purpose computer;

b) the development of the integrated semiconductor electronics in the

past few years may lead to the construction of a large number of

identical cells at low cost, using the LSI techniques; and the

cylindrical magnetic domains (bubbles) in certain uniaxial magnetic

materials [13], seem to have natural applications in performing

memory and logic functions for large quantities of data, at very

c) most of the large scale computing jobs are generated from the

repetitive execution of the same algorithm over and over on different

pieces of data;

d) only one control unit is needed, regardless of the number of cells

used, therefore the computing power is increased with a-comparatively

small increase in hardware;

e) associative-memory capabilities can be easily introduced.

The range of the degree of complexity of the cells in the

different versions of SOLOMON computer is very wide. It varies from

the relatively simple Della Torre and Ho's cell[7], with 3, 12-bit

memory words and single-bit processing, to the sophisticated Illiac IV [8]

5

lvith 2048, 64-bit memory words and a very elaborate multiple-bit

arithmetic unit. The greater the degree of complexity of the cells,

the fewer of them that can be built for a given price. A compromise

has been made in this thesis.

As a base for the design, the follmving specifications must be

satisfied.

a) The system should be compatible with existinr; minicomputers,

particularly ~vith the PDP-11 available.

b) The structure of the array must allmv easy handling of matrices.

c) Each cell should he the simplest possible but complex enough for

performing any arithm~tic or lo{jic operatinn. It should be ~ble

to perform floating-point arithmetic and compute transcendental

functions under software control.

d) Fach cell should have some degree of autonomy in the way that they

can accept of reject the com~ou instruction, according to local tests.

e) Each cell must be able to communicate to the control unit that some

degree of "convergence" het~·reen certain particular data under

processing has been obtained.

f) The system should have som.e content-addressable memory capabilities.

g) T!:e control unit and the ir:.struction set slwuld allm11 a practical

usc of the array.

6

1.3 Outline of the Thesis

The aim of this thesis is to present a new HPCS suitable for

solving problems in which a matrix or mesh of numerical values as well

as information retrieval are involved. Such operations are encountered

in communication, character recognition, hydrodynamics, heat flow,

optimization, weather forecasting and air traffic problems.

The general organization of the system as well as the array

architecture are presented in Chapter 2.

Chapter 3 deals with the philosophy of the cell design and

its configuration. It includes a discussion of the data representation

systems used, the-techniques for doing arithmetic operations and the

conditional branch capabilities. The Chapter ends with a section in

which a description of the cell is made.

The operation of the cell, from the operands selection point

of view is described in Chapter 4. The instruction set and a mnemonic

-language are also proposed in this Chapter.

In Chapter 5, the implementation of the Control Unit is

discussed. Design considerations of the individual subunits (instruction

decoder, control pulses generator and cell addressing system) are

treated.

The interface between the computer and the rest of the system

is described in Chapter 6.

The software used in this project is described in Chapter 7,

where several algorithms are proposed. A program to control the cell

and the microprogramming of the algorithms are discussed. Finally, a

7

routine which allows the PDP-11 to simulate an array of cells is also

presented in this Chapter.

The possibility of using the array as an associative memory

processor is discussed in Chapter 8. A technique for carrying out

the comparison and the detection of the cell addresses is proposed.

Chapter 9 summarizes the contents of the preceding Chapters

and suggests future improvement of the system proposed in this work.

8

CHAPTER 2

General Organization

2.1 System Organization

The general organization of the system is sho~m in Fig. 2.1.

It consists of four main parts:

1. A PDP-11 CO:t>IPUTER

The PDP-11 computer is assigned the following functions.

a)" Storage of data and instructions.

b) Executive control of the execution of array programs.

c) External I/O processing and supervision.

d) Compilation of programs.

2. M~ INTEP~ACE UNIT

The interface unit makes possible the communication bet,veen the

PDP-11 and the rest of the system by

a) solving some compatibility problems, and

b) acting as a temporary, storage of information.

3. A CO?~TROL UNIT (CU)

The CU has the folloving functions.

a) To receive instructions fro:n the computer, to decode ::hem and

to generate enahle si~:.nals ~.;hich are broadcast to all the cells

in the array.

b) To Renerate the control pulses transmitted to the cells for

9

PCRIPEE!!,AL
DEVICES

<
E-<
<
0

' CPU
(PDP-ll)

~' -' f.

~·;t:-1

H r~ (/) y r _'i

INTERFACE DATA ARRAY OF
CELLS

~ ~ ~ A ·~/. 0 :!)

"' R ;: cCr [:ilt;l

~ rsr- ~~ f"'......j ~- !--4
~ u ::..- ;c:;44

,<... Cl f.L: 0 p ~--~ ~ ~ ~

.. ~, u lp... r.:.::!H (/) < > ;;.:.:; H z
"~ 0 ;.:J f::.l

CONTROL
,...,, u p...

t-l
....4

UNIT w
u

FIGURE 2.!. SYSTEM ORGANIZATION

10

instruction execution.

c) To receive and compare convergence information from the array

of cells.

d) To address the. particular cell (or cells) in ~.;hich transfer

of information as 'irell as arithmetic and logic operations (ALO)

are enabled.

e) To notify the computer (by setting a flag) about the convergence

condition.of the system.

f) To notify the computer (by setting a flag) that the execution

of the instruction has finished.

lf. THE ARRi\Y OF CELLS

The array consists of a set of cells interconnected among themselves

by d:1ta interchan~e lines. Every cell can store and process

information. The execution of any arithmetic or logic operation in

the enabled cells depends upon:

a) the level of the control lines during the execution of the

operation,

b) the presence or absence of appropriate pulses in the control

pulses lines in the precise moment, and

c) the state of the control bits of the cell.

Hhereas the control bits depend on the hiRtorv of th"tt particular

cell, the other levels and pulses are ~~nerated in ~_he ~·' ~ d 1 • ~ ~ _ . -u a.n apfi_J.eu ... o

all the cells sin.n1t:meonslv.

The cells arP. en3bled hy the cell address lines. Information

about the convergence condition of every cell is sent to the CU \vhere

11

the inequality signals are OR-ed, giving a convergence state for the

whole array.

2.2 Array Architecture

2.2.1 Geometrical configuration

Similar to the SOLOMON organization, from the data transference

point of view, the cells are interconnected forming a basic two

dimensional rectangular matrix in which each cell is an element of it.

Each cell is connected by serial data busses to its four nearest

neighbors: the cell immediately to the north, N; south, S; east, E;

and west, W.

Different neighbourhood relationships can be assumed for the

"edge" elements of the basic two dimensional rectangular matrix, and

the array can be geometrically

a) a planar rectangular matrix, assuming no N neighbors for the first

row; no S neighbors for the last one; no E neighbors for the last

column; and no W neighbors for the first one.

b) a horizontal cylinder, considering the elements of the first and

last rows as adjacent.

c) a vertical cylinder, considering the elements of the first and

last columns as adjacent.

d) a torus, assuming that conditions b) and c) are verified simultan

eously.

12

The configuration a) has been selected for this thesis.

However, the user can change from one configuration to another by

simple lviring of the ''edge" elements. It tvould be possible to

incorporate in the system a circuit Hhich allows changes of geomntdcal

configuration under ?ro9:ram control.

2.2.2 Row and Colun~ Buffers

The mathematical operations in t·Jhich matrix manipulations ac ~

involved can be greatly simplified by adding a rm.J and a colunn buff·'r

to the basic geometrical configuration.

The buffers are cells like the other ones, hut with different

mdghbourhood int.~rcf'lnnections. r.:ach cell of the ro\·7 (colur:m) 1ntff,~:r

has bidirectional comnuni.c;.tion ,,,; th the rorre>snondin~ cells in aU t::: ·.

rows (columns). So the buff~rs become the fifth and sixth neighbors of

each cell.

Suppose \ve wisb to tranf)OSe a.n nxn matrix, ~,·here every elcr •;:t

of it is the ~:ord x c•f a cell of tite arr:.1y. Tl,e DO~>sible st('t'S ;' L"<

illustrated in the flowchart of Fi~. 2.2. Step n could Se skip~ed

if a unique cell can simultan-?.ously he an element of the rm.; and t:'~.,

coJ ur:m buffers.

Transfer of data bct~ ... fcen thE~ r.:atrix of cells and both h~Jff.~-rs

colmc.n buffer, a hir:her degree of narallel is111 ef ficicncy can r;~;.o

obtai.ned.

START

i=l

--
1

~ TRANSFER INFO
FRm1 ix ROH
TO THE ROiv
BUFFER

!ID TRANSFER INFO
FROi·I ROi{ BUl'F
TO COL BUFFER

f© TRA~SFER INFO
FP..OH COL BUFF
TO iy COLm1N

i=N

?

YES

@TRANS:'ER INFO
FROH iv TO ix
OF THE. SANE
CELL

NO

Nb. ix stands for word x of i
iy stands for word y of i

i=i+l

·STOP

FIGURE 2.2. TRANSPOSITION OF AN n· x n MATRIX

13

14

2.2.3 Central Buffer

There are many calculations in which all the cells use a common

operand. Memory space can be saved if these operands are stored in a

central buffer (CB), instead of being stored in each cell. The CB is

a register located in the interface unit and it is loaded directly

from the CPU. It has connection with all the cells of the array and

it can be considered the cell's seventh neighbor.

In conclusion, each cell can operate with:

a) its own data;

b) the four nearest neighbors data;

c) the corresponding row or column buffer data; and

d) the C'entr:-11 hnffer dat:-1.

The cells data communication is illustrated in Fig. 2.3.

2.3 Control Bus

The control bus is a unidirectional bus carrying the control

levels and pulses from the CU to all the cells. The CU sends a common

instruction to every cell of the array. However, the cell addressing

system allows certain degree of exclusiveness in a particular cell or

set of them. Each cell operates with its own data and in accordance

with the required inhibit conditions.

I

c:J rj
• !

I
I

' I

0

-·-.
I

! '---·-·--' I

.
.... . :
I

!
I
I .
I

I .
I 1 •-·-·-·-·-·-·-·-·-·-·-

1 j I
• ·-·-·-·-· -· -·-· -· -· -·-. -· -·-· -· -· -· -~2 • I I ·-· -·-· -·-·-· -·-·-·-·-·-·-·-·-·-· -·-· -·-·-·-·-·-· -·-

--- CELLS COHMUNICATION

15

-·-·-·- COLID-1N BUFFER - CELLS COHHUNICATION

------ ROW BUFFER - CELLS COHHUNICATION

Nb. The connection of all the cells to a CB is not shown.

FIGURE 2.3. CELLS DATA COMMUNICATION

CHAPTER 3

The Cell

3.1 Philosophy of the Design

16

In order to have a practical array several cells should be

built. Because of cost limitations, it will be possible to do so only

by using LSI technology, but this problem is out of the scope of this

thesis. The cell discussed here is intended to be a feasibility study

rather than a commercial unit so small and medium scale integration

technology is used.

The very first point in the design of the cell should concern

its complexity and size. lli1ltiple bit parallelism and floating-point

arithmetic hardware are the cornerstones for any high-speed scientific

computer but this hard~.,rare is very expensive. In this feasibility

study and because of cost limitations, it has been decided to use

serial bit arith1~etic and to do division and floating-~oint arithmetic

under software control.

A study of the algorith~q necessary to calculate transcendental

functions in both integer and floating-point modes has been d,one.

It was found that a cell with 15 words memory bank is complex enough

to compute these functions as is shmm in Chapter 7. A 16-bit word

memory size has been chosen for this project because it is compatible

with the PDP-11 computer used as well as it is easy to get in the TTL

memory market.

17

The arithmetic-logic unit (ALU) should be able to perform the

basic arithmetic and logic operations, in serial fashion, within the

contents of the memories of the cell itself or the neighbors.

Several selectors should be able to select, from the memory

bank, the corresponding source and destination word.

In addition to the ALU, the memories and their associated

selectors, other devices such as accumulators and control bits have

been incorporated.in the cell and their use is discussed in the

following paragraphs.

3.2 ~epresentation of D~ta

The cell is essentially a 16-bit word processor. Each t-'ord

represents a logical v~riabl~ or an integer.

Three different binary data representations are used in electronic

digital computers: l's complement, 2's complement (TCM) and sign/absolute

value (SAV). The 2 's complement data representation ~"as chosen for this

cell, because its arithmetic requires less hard~"are tvhenever addition or

subtraction is performed [14].

Sophisticated and exp~nsive circuits would be required to perform

hardHare division. So the fourth arithmetic operation is done under

soft~"are control. Because the SAV representation makes the division

easier, the svstem provides facilities to change from one data represen

tation to another.

Using 16 bits, TCN representation, the range of an integer is

from -32,768 to +32,767. This is a verv restricted interval. In order

to allm·l the user more flexibility the cell must have the capability of

18

performing floating-point operations, under software control. Two

16-bit words are used to represent a floating-point number X, according

to the following scheme:

,
15: 16

M A N T I S S A

Exponent sign
~~Mantissa sign
r-- CELL WORD ---••+1 ~----- CELL \-lORD--~ .. ~~

X = .MANTISSA X 2EXPONENT

The mantissa is in SAV representation. After a non-zero

mantissa has been normalized, its absolute value is a fraction in the

range

1~ < I HA'·HISSA I < 1
- I

The exponent of base 2 is in TCH representation. It is any

integer in the range

-64 < r::xrmm:n < 6 3

From the precedin~ considerations, it is seen that a cell word

can represent the follm·ring types of variables:

a string of ·16 lo~ical characters.

a two's complement inte~er.

a sign/absolute value inteser.

a part of the AV of the mantissa·

the sign and part of the AV of
th0 mantissa and TCM exponent.

lsi
lsi
I
Isis I

LOGICAL

INTEGER

INTEGER

MANTISSA

EXPONENT MANTISSA

79

A set of instructions, a control unit and the cell itself have

been designed in order to he able to manipulate any of these data

representations.

3.3 Integer Arithmetic

3.3.1 Serial Operations

The cell has been structured around the ALD. Because no more

than t-wo operands are involved in any ALO, the ALU has t\vo data inputs,

X and Y; and one output, Z. It can perform the following operations:

addition, subtraction, logical and, lor;ical or, exclusive or, complement,

tHo's complement, ·increment, decrement and move (interregister transfer).

The cell operates in serial fashion, so one operation cycle of

16 bit cycles is necessary to perform any of these integer operations,

one bit at a time. nshift to the right" is equivalent, in binary

representation, to divide by 2. It is serially performed by 'adding'

a number to itself, but with an operation cycle running from the most

significant bit (?~Sl3) to the least significant_ bit (LSB).

For any of these operations, the data should be serially

accessed from the memory bank. Sixteen-bit TTL memories 'vith direct

address, non-destructive read-out and high speed characteristics have

been chosen. TI1ey satisfy the design requirements.

3. 3. 2 Nu~_t_~.P_licati~n

The "add/shift/inhibit" technique is used. It: is a modification

BIT
PULSES

20

FIGURE 3.1. MULTIPLICATION.
"ADD/SHIFT" TECHNIQUE

1 2 3 4 16 1 2 3 16 1 2 3 4 16 1 2 3 4 5
JLJLJLJL ______ --- JLfLfLSL _______ JULfLJLn_ __ .. JULfL.JLJLfl

~~~~~OG:_n..._ ___________ _rL_ _______ ___n_ _________ ll_ 

SHIFT 
PULSES -------.-.-_11'---- .. ---- _n___ __ -- _fl'------

ADD ADD ADD INH .,.., 

FIGURE 3.2. MULTIPLICATION. 
TRAIN OF PULSES 



21 

"add/shift" technique consists of the steps shmm in the flm-rchart of 

Fig. 3.1. When the "Nth" less significant bit (LSB) of B is being 

interrogated "N-1" left shifting in A have already been performed. 

Therefore, the "N-1" LSB's of A are equal to zero and no change is 

produced in the "N-1" LSB's of C during the add cycle, A+C=C. 

The "add/shift/inhibit" technique consists in inhibiting the 

Part of the add cycle in t17hich no change occurs in C and to start the 

add cycle in bit N, after the multiplier B interrogation has been 

performed. The necessary train of pulses is shown in Fig. 3.2. If 

parallel shifting can be performed, this algorithm does multiplication 

very efficiently, because addition, shifting and multiplier interrogation 

can be performed in one operation cycle-. The size of the anS\ITer cannot 

exceed 16 bits, so a multiplier and a multiplicand of 8 bits each are 

assumed. Therefore, the complete multiplication cycle in integer mode 

consists of 8 operation cycles. 

The operation "shift B ri.;ht", sh01m in the floHchart is done 

by shifting the bit g.f B being interro;;at0d each cycle. In order to 

perform parallel shifting of A, the multiplicand must be in a 16-bit 

shift left register. It differs from the others direct-address words 

and is called accumulator 1 (ACl). 

3.3.3 Division 

The technique used consists of four parts: 

1. Conversion of the ne~ative numbers from TCH representation to SAV 

representation. 

2. Normalization of the divisor. 



22 

3·. Restoring division. 

4. Conversion of the answer from SAV representation to TCM representation. 

The logic used is shmm in the flm-1chart of Fig. 3. 3. In the first step, 

the numbers (except the MSB) must be 2's complemented if they are 

negative; othen-1ise they should remain unaltered. A "sign detector" in 

ACl is incorporated for this purpose. Hard>-Jare for manipulating only 

15 of the 16 bits is necessary in order not to change the HSB. 

In the normalization part, the divisor must be left shifted 

until a n.ln reaches the NSB. Again, AC1 is utilized, adding a trl detc.ctor 1
' 

in .the HSB. 

In the division itself, the restoring method is utilized. A 

cycle is defined as the processing required to generate a single bit of 

the quotient. 

subtracting NA 

F d · · d · 'f • 'f " h t I . . t f or 1.Vl. 1.ng ,., - ''n = .tC t e ·ec m1.que cons1.s s o 

- 1-L"\. 
b 

.:\. • 1) 

If the ans1ver is positive, the subtraction is 

successful~ The ans't-1er is the ne'v value of ~IA for further cycles and 

a "1" is obtained as the next HSB of the quotient. On the other hand, 

if the subtraction is tmsuces3ful C·: . .\ - ~~R < 0), ~rA is not d:.::m:e(1 and a 

"0" is obtained as the next ~ISB of the quotient. Finally, HB is shifted 

to the right one bit and a ne1v cycle begins. 

The number of cycles should be equal to the number of shifts 

during the normalization part. In order to do so one of the registers 

acts as a counter. After being reset to "On it is increased by "1" 

every shifting performed. Then a "1" is subtracted from the register 

ever: cliv'c.;ion ryc-l0 unti.l ;: "()" :i.s detected. A "zero detector" jn 

ACl ,,,ill do the joh. 



H AND~ 
.Tbi.+S/AV 

M=l 
N=O 

INC N 

INC M 

YES 

N=O 

INC N 

M=M-1 

YES 

SHF HB LEFT 

SET A '1 I IN 
QUOTIENT 

SHF MB RIGHT 

FIGURE 3.3. INTEGER DIVISION FLOWCHART 
(MA+MB=Mc) 

YES 

NO 

23 

M 
S/AVQ_TCM 

SET A 'O' IN 
QUOTIENT 



24 

In addition, a new 16-bit shift register is necessary in order 

to store the quotient, ~vhich is obtained, one bit per cycle from the 

"sign detector". It is called accumulator 2 (AC2). A 11move sign of 

ACl to AC2" logic will transfer the information available at the "sign 

detector" to the AC2. 

Unlike the other operations, in division the ans~ver is obtained 

starting from the HSB and its absolute value (AV) is sho~vn up inverted 

in AC2. An "invert AC2" logic \vill invert the AV of AC2 and \vill store 

it as an AV in the 15 LSB's of a specified register. If the EXO of the 

dividend and the divisor had been previously stored in this register, 

its MSB would contain the sign of the answer and, after the inversion 

of AC2, the content of this register would be the SAV of the anstver. 

The last step in the division consists in the conversion of 

the ans~ver from SAV to TCH representation. 

Many of the operations discussed so far make use of the special 

capabilities of ACl. For that reason, the user may ~vish to transfer 

the contents of any word of memory to ACl. l!sing the "move" operation_, 

the content of the accumulator would be lost unle~s it is previously 

saved in anotY,er \vord. In order to save extra memory and extra number 

of steps, an "interchange ACl" logic is included. It interchanges the 

contents of any memory word with the contents of ACl. 

3.4 Floating-Point Arithmetic 

Before any floating-point operation, the number must be normal

ized. This is accomplished by transferring the ~4-bit mantissa to a 



25 

24-bit shift-left accumulator and shifting it until a "1" is detected 

in the MSB. Every left shifting must be accompanied by a subtraction 

of "1" in the exponent. On the other hand, every right shifting must 

be accompanied by an addition of "1" in the exponent. Otherwise, the 

number would change. 

Multiplication between two numbers is performed by multiplying 

the mantissas and adding the exponents. The sign of the answer is the 

exclusive-or of the t~.;ro mantissa signs. 

Addition is carried out by shifting the mantissa of the number 

with smaller exponent to the right a number of times so that the 

exponents of both addend are equal. The addition of the mantissas is 

the mantissa of the answer and the common exponent is the exponent of 

the answer. Because the mantissas are represented in SAV, a conversion 

to TCM is necessary before the addition. 

Division is performed by subtracting the exponents, dividing 

the mantissas and EXO-in?, the signs. 

All the floating-point operations discussed can be done, under 

software control, extending both accumulators, <.vith the same "zero 17
, 

"sign" and "1" detectors capabilities to a 24-bit register. Each 

accumulator has available tHo inputs, "integer" (INT) and "floating11 

(FLT) which allaH incoming data to use the accumulator as a 16-bit or 

24-bit rceister. Aside from this, it is necessary to have a hardware 

capable of operating in different modes, as follows: 

In _ll_1.~]_J:ip_l_i_c_a_t.:_~on: 

a) INTEGER HllLTIPLICATIO~, tvhere bits 0-8 are interrogated, and the 

"inhibit/add" cycles last 16 bit cycles. 



26 

b) FLOATING }lliLTIPLICATION, where bits 0-8 are interrogated, and the 

"inhibit/add" cycles last 24 bit cycles. 

In the others ALO: 

a) INTEGER, \.;rhere bits 0-15 are processed and the INT input is used. 

b) FIRST BYTE, where bits 0-7 are processed and the FLT input is used. 

c) SECOND BYTE, ~.;rhere bits 8-15 are processed and the FLT input is used. 

d) EXPONENTIAL, \.;rhere bits 8-ll1 are normally processed, bit 15 is EXO-ed 

and the FLT input is us~d. 

e) ABSOLUTE VALUE, where bits 0-14 nre processed and the H1T input 

is used. 

f) INTEGER FLOATUm INPUT, where bits 0-15 are processed and the FLT 

input is used. 

~~'hen an overflmv occurs in any arithmetic operation, the carry 

flip-flop is set on. Normally it is cleared hefore any new operation 

starts, but \vhen tHo words operation is required it should be used as 

a link betHeen both. This is the case of the mantissas in floating-

point representation. Hence, the capability to operate uithout clear 

the carry has also been incorporated to the hard\vare. This feature 

also allm·m the cell to perform double-precision arithmetic under 

software control. 

3. 5 Conditional P,nnch 

In a sequential computer, there is an interaction hett-1een the 

data and the control unit. The conditional branch instructions allow 



27 

the user to alter program flow according to data tests. In a HPCS a 

direct interaction is impossible because different sets of data are 

operating with the same instruction stream. 

The problem has been solved by using the ''inhibit" and "conver

gence" system. 

Inhibit is the property of each cell to enable or disable, 

according to local tests, local execution of a command. Conditional 

inhibit permits inhibit of the operation according to-data tests (e.g., 

inhibit if ACl = 0). Unconditional inhibit permits ask for the 

inhibition of a cell for its position in the array, independently of 

its data content (e.g., inhibit boundary cells in solving Laplace's 

equation). 

Convergence is a property of the array. Each cell comnares 

ne~v data being introduced ~·lith the content ·of a particular ~vord. If 

the comparison gives e1uality in a given range in all the cells 

simultaneously, a "flag" is set. The CPU can be microprogrammed to 

interro;;ate the "flag", allmving the array, in iterative process to 

self-deternine the number of passes until a desired convergence is 

reached in all the cells. 

3.6 Cell Descriptio~ 

The cell, shmm in Fig. 3.4, contains the following elements: 

Ttvo 24-bi t accunulators. 

Thirteen 16-bit direct-address memories. 

A 1-to-16 lines demultiplexer. 

Two 16-to-1 line multiplexers. 



I)Q 
(N 

A ENB DATA 

r ACl r. H ACl h. 

JfU LATCH r 

I )J-1 p I~H rl AC2 AC2 ... 
f==~ --

t---
I f--

0 p-ro- --1--
I N3 DB 
•) ) .. I-<: 

~I N4 - t- MPXB My c 

trr1 N5 

N6 I 
ICH 

r- N7 

J N8 f--= NP¥ 
M9 

"r-:-~d 
MIO DMPX 
HI 1 ,._ 

r-0- ~ Hl2 1-
----t- L>"DA Ml3 

l 0 HPX A 
I Mll+ 

E~~CEI 
0 
I MIS 

llxll II) I INH IIIII RST HH ENB 
BIT ADDRESS 

l-1PY-
ENB 

MPY CL 

CONTROL - CNV 
1---1--CNV PULSES 

INH
1
SEL -

FIGURE 3.4. THE CELL 

~UTPUT 
r-

y 
CONTROL 
OUTPUT 

:u. 
Z.fPY INH 

~ 'l INPL 

,._q; 
-oS 
f-cf 
1--cl-; 

MPX C H 
f--oE 

I 
ENB 

y 

X A L U 

~ 

\ 

TS 

ow 
OL 
XT 



29 

An 8-to-1 line multiplexer 

An arithmetic and logic unit. 

Two data latch flip-flops. 

Four control flip~flops. 

A 4-to-1 line inhibit multiplexer. 

Several .gates • 

The characteristics and functions of these elements are described in 

the following sections. 

The c~ll can perform the operations listed in Table 4.1. 

Addition, subtraction, and,exclusive-or, logical or, complement, avo's 

complement, increment, decrement, move, shift serially to the right, 

invert ACZ and control transfer are performed in serial fashion, bit-

by-bit, through the ALU. Interchange is also done serially, but Hithout 

intervention of the ALU. Parallel shifting is performed in parallel, 

all the bits at a time, in the accumulators, Hhile multiplic:1tion is 

carried out by combining both, serial and parallel operations. 

Computer-cell communication as v:ell as buffer-array communication are 

perforMed serially, but only in the cells that have been selected bv 

the cell addressing system. Finally, move sign to ACZ is done by 

using the AC2 anc:1 a fe\v gates. 

3.6.1 Accumulators 

1\ro accmnulators, ACl and AC2, have been designed. Their size, 

as ~,,ell as their shifting and testing: capabilities are in accordance 

to previous dis~uss:i.ors. Tl1ey c:>n also he used Like any of the other 



13 words whenever the special accumulators capabilities are not 

required. 

30 

Each accumulator consists of a 24-bit shift register although 

only l6 bits are enabled v1hen the FLT input is not used, as is shmvn 

in Figs. 3.5 and 3.6. The "writing" is done serially through the left 

side (~vri te 1 line) and the "reading" is performed serially through 

the right side (read line). The ROT line controls the flov of 

information into the input. If ROT is high, the outpnt is fed-back 

to the input and the information is recalled in non-destructive mode. 

This allmvs the accumulators to be used for reading Hithout losing 

their contents, like in the other 13 r-rords. This also enables the 

accumulators to perForm circular shiftin~;, uhere the empty places 

produced by the shifting are replaced hy the bits that fall off the end. 

On the other hand, ~.;hen ROT is activated neH information can be tvri. tten 

in the accumulators ~·:henever one of them has been chosen by the de

multiplexer (DNPX) for storing the answer of an operation or neiv data. 

Also, logical s11ifting, tvhere the enpty places are replaced by o' s are 

performed Hith P.OT control high. In that case, SIUFT (SllF) line 

should be held high to make sure that the empty places are filled with 

O's. 

The accumulator 1 can be left or right shifted, aecording to 

the 1evel of th::- SPR T)I~F:CTIO\' line. Clock (CL) :\Cl is a~tivated every 

time ACl is selected for operations (read, ,.,rite, shift) but it cannot 

reach the accumulator clock ~vheneYer the cell is inhibited. Information 

from the out~It line is sent directly to the 16 LSB's of ACl, whenever 

interchange (ICH) line is held high. 



lz 

OL OR 

IR 8 BITS 
SHIFT L/~1 

DTR CL 

c 

SIGN 
FF 

SIGN CL TRANSFER CL 

D Q·
ZERO 

' Cl FF 

c 

CLR TO ZERO 

WR 1 

r-'1 "--r=: ROT 
0 AC1 

:>o READ 

OUT 
RIG~T 

~· ) 16 BITS SHIFT L/R t-.I, "1" LEFTt-

D.1J3F.CTION CL 
I 

ZERO CL 

D Q 
INH 

FF 

c 

D Q 
CNV 

FF 

c 

' t-j-- CL ACl 

~"'fN'Ir 

0 OUTPUT 

v.:. .... 

FIGURE 3.5. ACCUMULATOR 1 AND CONTROL BITS 



8 lUIS SH REG 

FLT 

CONDITION 

INH 
DHPX 

SHF 

SIGN 

1--- \-JR. 1 

" r--oMsG 
.___j--@ 

.... /"1_ ROT AC2 
~INH MPY 

8 BITS SH REG I I 8 BITS SH REG ~ READ 

CL AC2 
INH 

I MlS ·-r~D 

INH _£Z 
CNV PULSES 

FIGURE 3.6. ACCUMULATOR 2. INHIBIT SYSTEM. CONVERGENCE SYSTEM 

(J.3 
!'.:) 



33 

The accumulator 2 can only be shifted to the right. No 

applications for both directions shifting have been found and therefore 

considerable amounts of hardware can be saved. It works with an 

independent clock which is activated whenever AC2 is selected for 

operations, but it cannot clock it when the cell is inhibited. The 

value of the sign of AC1 is written in AC2 using the control line 

move sign to AC2 (MSG). 

3.6.2 Direct Address Memories 

Sixteen-bit active-element memories arranged in a 4 by 4 matrix 

are used. Four X and four Y lines permit the addressing of one bit 

at a time. The memories have non-destructive read-out •. "Write O" and 

"Write 1" are independent inputs which are accessible when the word has 

been selected for writing. Information can be written or read in any 

bit, changing the bit address. The memories cannot be used to provide 

information of the state of a bit while writing.in the same bit is 

performed. 

3.6.3 Demultiplexer (DMPX) 

The DMPX selects the word in which the information is being 

written. The decoding function is performed by using 4 control lin~s 

to address the 16 output lines, as is shown in Fig. 3.7. The "write 

0" or "write 1" pulses are sent to the selected word through any of 

the two AND gates that the decoder output lines maintain available. 

If AC1 or AC2 are selected, only the "write 1" line is used because 

the absence of write pulses during a bit cycle is equivalent to write 



SELECTORS 
A B C D 

sv 
T ACl 

AC2 

M3 

M4 

MS 

Hl5 

WR 1 
---IN ACl 

34 

-----------L----------2 

FIGURE 3.7. DEMULTIPLEXER 



35 

a 110 11 in the accumulators. ~fuen the output 0 is selected by the decoder, 

the information is sent to all the l-lords. This can be particularly 

useful in clearing the. cell. 

If any of the inhibit condition occurs, the DMPX produces no 

output and no change of the contents of the memories are possible. 

It is also inhibited, using the D ENB line, in operations in which the 

DNPX is not involved. 

3.6.4 Multiplexers A and B (~WX A, MPX B) 

The multiplexers select one of the 15 words that are sent to 

the data latch flip-flops, bit-by-bit (Fig. 3.4). A selection of "0" 

means that none of the \o7ords are selected. For some operations in 

tvhich the multiplexers are not involved, their operations are inhibited 

by using the corresponding ENB lines. 

The HPX C is the input selector. Three control lines select 

the information available in Dn of ti1e cell itself or any of its four 
j) 

neighbours (N, S, E or H), the ROH or COL buffers, or the central 

buffer. The output cf this ~-fPX is directed to the Y input of the ALU. 

In operations in which :·PX C is not involved, its output is inhibited 

by the C E~B line. 

The data latch flip-flops are used as a temporary storage of 

information. It is possible to take information from a ,,rord and \vrite 



36 

the answer in another word almost simultaneously. But the character

istics of the memories do not allo1:o7 one to write new information in 

the same word t1hich is simultaneously being read. The problem is 

solved by dividing the bit cycle into a read and a w·rite subcycle. 

During the read subcycle, the information available at the outputs of 

the HPX A and HPX B are latched by the "data latch" clock in the 

correpponding flip-flops. ~,fuile the 1:vrite sub cycle is performed the 

data is taken from the data latch flip-flops rather than from the 

memories themselves and new data can be entered into the selected 

memory Hard. 

The information available in D8 can be sent to the Y input 

of the ALU of the same cell, its four neighbors, the row or column 

buffers or to the CB. Hm-1ever D A output is only sent to the X input 

of the ALU or to the '!PY nm line of the same cell. 

Hhen UPY is performed, DA holds the multiplier during the add 

cycle. ~~1en the cycle finishes, reset DA (RST DA) clock is activated 

and the flip-flop (FF) remains in "zero" during the inhibit cycle, 

until a ne1:-1 interrogation is performed by the r!PY clock. The output 

of D A controls the r!PY INH line level. 

3.6. 7 Arithmeti_s_-Lo;:ic Unit_ (ALU) 

The ALU is the heart of the cell because all the serial 

arithmetic a~d logic operationq (ALO) are performed there. The 

operations are carried out in serial fashion, one bit at a time. 

The ALU, as is shmm in fig. 3.8, is composed of: 



y 

~COM 

B 

FULL 
X ~ Cn 

ADDER I I 1--o PR 
I: Cn+1 

OUT SEL Ill 

z 

CAR 
FF 

'-----o CLR 
'--------o CAR 

OUT SEL 112 

LEVEL 
CONTROL 

CARRY 
PULSES 

INPUTS 

or:ooo~;::::::;:;uu:> 
~o~~oouz~o 

UJ W.....:lUHHO~ 

CONPLEHENT 0 1 0 0 0 1 1 0 1 0 
OUT SEL Ill 1 1 0 1 1 1 1 1 1 1 
OUT SEL 112 0 0 1 0 1 0 0 0 0 0 

PRESET 0 1 0 0 0 0 1 1 0 0 
CLEAR 1 1 1 1 1 1 1 1 1 1 
CLOCK 11000011101 

X 1 1 1 1 1 0 0 0 1 0 
y 1 1 1 1 1 1 1 1 0 1 

------ ·- ------- ---- -

FIGURE 3.8. THE ARITHMETIC AND LOGIC UNIT 

U3 
'-I 



38 

a) A 1-bit binary full adder, that performs the addition of the three 

inputs; A, B and carry in (C ) • 1'1-ro outputs are available: n 

sum (L) and carry out ~n+l). 

b) An exclusive-or gate that transfer the Y input of the ALU to the B 

input of the adder in "true" or "complemene' f0rm, according to the 

level of the COM line. 

c) A'carry flip-flop, controlled by the carry clock (CAR CL), that 

holds the output Cn+l in order to be used as the input Cn in the 

next bit cycle. It can be preset and cleared, accordi.ng to t 11e 

desired operation. 

d) A 2-to-1 output selector, that selects the adder output to be 

transferred to the Z output of the ALU. 

Assuming no carry is present inC (C =0), the 1-bit binary 
n n 

full adder rives the follmdng outputs: 

cn+l = A 1\ B 

The output selector can select any of these outputs to send to the 2 

output line. 

The follmving aritlmetic and logic operations can be performed 

in the ALU: 

EXCLUSIVE-OR OPE~\TION (EXO) 

Transferring the Y input of the ALU to B in "true" form and selecting 

the L output (OUT SEL 1 = 1, OUT SEL 2 = 0), the output Z is: 



39 

z=I=A\l(B=X>v'Y 

Z=Xll;fY (3.1) 

AND OPERATIO~ (A~D) 

In the same conditions, but selecting the Cn+l output: 

Z = C n+ 1 = A 1\ B = X 1\ Y 

(3. 2) 

OR OPERATION (LOR) 

Selecting both L and Cn+l outputs, the Z output is the OR-ing of 

them: 

Z = (XVY)V(X/\Y) = (X/\Y)V(X/\Y)V(X/\Y) 

= (X/\Y) V X/\(YVY) = XV Y 

Z=XVY 

POVE OPERATION (!-.fOV) 

Performing and exclusive-or, but ~.ri.th the X input inhibited: 

z = o>r;t.Y = Y 

z = y 

COl'fPLEHE~n OPERATION (CO:!) 

In the same conditions, but cor.:IJle"lenting the Y input: 

7=0'\J'Y=Y 

z = y 

(3. 3) 

(3.4) 

(3.5) 



40 

ADDITION OPERATIO'N (ADD) 

By using a CAR CL pulse the carry Cn+l is fed back to en. It is 

added in the next bit and L gives the arithmetic addition of A 

and B. Selecting the L output: 

Z = X + Y (3 .6) 

INCREHENT OPERATION (INC) 

Presetting the carry flip-flop and inhibiting the X input: 

z = y + 1 (3. 7) 

THO's CO!AJ:>LE1'-f£NT OPERA.TIO~~ (TCM) 

In the same condition, but complementing the Y input: 

z = y + 1 (3. 8) 

SUBTRACTION OPERATIO~ (SUB) 

Adding the X input to the last operation, Z becomes: 

Z = X + Y + 1 = X - Y (3.9) 

DECRE: rE;.JT OPER \ TIO~J (DEC) 

Inhibiti.ng the Y input and holding COH line high, the B input :is 

equal to 111 ... 1. In t~·JO's complement representation, this is 

the number -1. Addin2 A + B, the Z output is: 

z = y - 1 (3 .10) 

1'1 conc~usi:;n, tlie .\LO that thP. ALF perforr-:s depe:rcrl:,: unon: 



41 

b) the absence or presence of the carry pulses (preset, clear and clock) 

in the proper moment. 

c) the enable inputs. 

These conditions are indicated in the table of Fig. 3.8, t>"here 

a 1 indicates; level high, pulse present and input enable; and a 0 

indicates the complementary conditions. The enable input lines are 

controlled by the enable lines of }!PX A and ~!PX C. 

3.6.8 Control Bits 

There are four control bits (Fig. 3.5). Tiw of them, "zero" 

and "sign" are set autonatically~ They give an indication of the zero/ 

non zero and sig,n of the last data '.>"ritten in ACl. On the other hand, 

"inhibit 11 and "convergence'' bits are unconditionally preset in the 

chosen cells from the CPU during the loading. 

Ne'" data enters ACl through its "',;rrite 1" line and a sample 

of this information is sent to the inputs of the sign and zero FF's. 

Hhen ACl has been selected as a destination \Wrd and before the operation 

cycle starts, a "clear to zero" pulse is generated and the zero FF is 

reset. The "zero clock" interrogates every bit being written in ACl. 

If a '1' is detected, the zer0 FF goes to '1' and no further chan3es 

arc allm.;ed during the operation cycle. It can remain in 'o' only if 

all the bits that have been t>"ritten are equal to 'O', that means, ACl=O. 

Hhile the bit 15 is being >;.Jritten, "sign clock" is generated 

latching its va]ue in the sign FF. Because 2's complement representation 

i:, used, bit 15 contains the sign information (0 positive, 1 nesatiye). 



42 

In exponential mode of operation, bit 14 is interrogated, because it 

is the MSB of the exponent and it contains the exponent sign. 

Loading ne~-7 data from the computer and transferrin::; from the 

neighbors cells are performed through the "write" line. Read out and 

transfer to the neighbors are carried out through the "output" line. 

In both cases, the "control11 level must be high, and four "transfer 

clock" pulses must be generated, allowing the shifting of information. 

In adaition, "control out" (COU) must be high ~vhenever read out is 

performed, so the information is fed back to the input and non

destructive reading is done. 

3.6.9 Inhibit System 

The inhibit system selects the inhibit conditions which should 

be applied to the cell. The inhibit control levels are available at 

the output of the three first control flip-flops. \.Jhen their levels 

are high, they indicate (Fig. 3.5): 

® that the last number Hritten in ACl is negative. 

® tlvtt the last number "Vlritten in ACl is non-zero. 

@ that unconditional inhibit can he performed in the cell. 

The "1 detectors" of ACl are also part of the inhibit system 

and they indicate: 

@ that a '1' has been detected at the MSB of ACl, ~vhen FLT mode 

operation is performed. 

@ that a '1' has been detected at the MSB of ACl, when FLT mode 

operation is performed. 



43 

One of the conditional inhibit lines, B (A in FLT mode), S, or 

Z, can be selected using the 4-to-1 inhibit multiplexer (INH ~ll'X) for 

performing conditional inhibit (Fig. 3.6). An EXO gate at the output 

of the INH :t-ll'X, controlled by the "sign" line, permits the user to 

complement the inhibit condition, i.e., inhibit when @ or ® detects 

a 'o', or when ACl ~ 0, or when ACl = 0. 

If INH }WX selects the 0 input line, no conditional inhibition 

is allo~ved. 

Unconditional inhibit flip-flop can be interrogated simultaneously 

with any of the conditional ones. 1be INH line is the OR-ing of the 

conditional and unconditional inhibit. It disables changing of 

information in memories and shifting of accumulators. The INli HPY line 

also inhibits the change of information in memories, but the accumulators 

are enabled for shifting. 

All incoming data are compared with the ccrresponding bit sterad 

in ~1 1 "' in the EXO convergence (C~'V) gate (Fig. 3.6). If they differ and 
~.) 

the cell has been selected for convergence tests (i.e., C~N FF=l), 

convergr~nce pulses are sent to the CU, ~vhere they may or may not be 

interrogated, according to program control. 



44 

CHAPTER 4 

Operation of the Cell 

4.1 QEerand Selection 

According to the number of operands involved in the operations, 

the cell can be considered as a triple, double, or single-address 

machine. 

4.1.1 Trinle-Address Instructions 
-~ - ------

In the operations ADO, SUB, A:':'D, LOR and EXO, t~vo operands 

(X and Y) are involved, according to the characteristics of the 

operations themselves. Both source operands and the destination -vwrd 

are selected by the pro~ra~mer and therefore three addresses must be 

specified in the instruction. 

The X operand is selected from the bank of memory by :t-IPX A. 

The Y operand is selected from the bank of memory of the cell or its 

neighbors by a combination of NPX B and _HPX C. Hm.Jever, when HPX C 

selects the EXT input, theY operand is taken directly.from the CB, 

without intervention of ~WX B. The answer Z can be directed to any of 

the words or all of them, according to the selection performed by DMPX. 

From the operands selection point of view, both accumulators are 

considered like any one of the other ,.mrds. 

4 .1. 2 Daub le-Address Ir.s tructions 



45 

a) Complement, two's complement, increment and move. 

b) Shift serially to the right (SSR). 

c) Decrement. 

d) Multiplication. 

In groups a), b) and c), only one operand is involved, according 

to the characteristics of the operations themselves. Therefore, the 

operand and the destination Hord must be specified in the instruction. 

In operations of the group a), the operand is selected by the 

combination of }~X B and MPX C in a similar f2shion to that for triple

addres.s instructions, and the s<1me selective capability is available. 

However, t-~X A is inhibited and no signal in the X input of t·he ALU 

is obtained. 

In SSR operat:!on (group b), although only one operand is 

involved, the technique used consists in adding the number to itself, 

but starti~g from the MSB. Both multiplexers, }WX A and ~~X B, must 

select simultaneously the word to be shifted, and ~1PX C has to select 

the internal (D:T) input. Only ''in-cell'' operations are allmved. 

In DEC (group c), ?-~X C is inhibited. The Hord is selected 

''in-cell" by ~!PX A and it is directed to the X input of the ALU. 

In the three ~roups (a, band c), DMPX selects.the destination 

~'lord. 

Although llPY (group d) is an oneration in which t~vo operands 

(multiplicand and multiplier) are involved, the cell is limited to 

operations in which ACl is the rr.ultiplicand. The programmer must 

specify solelv the multiplier and the pl3ces he wishes to store the 



46 

answer. The MPX's and the D~WX will perform the selection. 

Suppose it is t-Tished to perform the multiplication ACl x HX = :r-ry. 

\~en MPY line is activated, the multiplicand ACl is sent directly to the 

X input of the ALU (Fig. 3.4). The ~PX A selects the multiplier, MX· 
It is interrogated and latched in DA during the add cycle, for inhibit 

purposes. The }PX B selects automatically the same word that has been 

chosen by DMPX for storing the ans\ver, and thus allows the cell to 

perform ACl + t-Iy = "-ly• during the add cycle. \wether the addition is 

performed or inhibited, depends on the state of DA FF. 

4.1.3 Single-Addr~~Inst~~~ion~ 

Parallel shiftings are included in this category. Only one 

operand is involved (fCl or AC2) and the ansHer is stored in the same 

operand. These operations are carried out in the accumulators, r:lithout 

using any of the multiplexers or demultiplexers of the cell. 

The operations "Intt~rchange ACl'' and ''Invert AC2'' are also 

single-address instructions. Because one of the operand is implicit 

in the instruction its~lf, the programmer has dte freedom to choose 

the other operand. The selcc~ion is physically realized bv the n;rrx. 

Finally, "Control transfer" is a one-address instruction, but 

the neighbor, rather than the r.mrd, should be chosen <1s an oper:>nd. 

The selection is done hv ~WX c. 

4.1J r}ncratc I.,structiuns 
~ ----·---



47 

specified. The special operation "~·rove sign to AC2" is the only one 

in that category. 

The "Co:nputer-cell communication" (CCC) and "Buffer-array 

communication" instructions have not been included in any of the 

preceding groups because the cell addressing system is involved in 

the selection. 

4.2 Instruction Set 

The minicomputer used is a 16-bit ,.;ord machine. Its interface 

characteristics make it possible to transfer instructions from the CPU 

to the interface unit in parallel fashion, 16 bits simultaneously. 

But because of the diversity of the functions the array must perform, 

bvo computer uords are necessary for coding most of the operations. 

A 32-'oi.t instruction re:dster (IR) in the interface unit is provided. 

The complete instruction is stored there and it is available for 

decoding. 

The IR is loaded in t~vo halves by the CPU, in the follmving 

sequence: 

1st) 

2nd) 

hits 16 - 31 

bits 0 - 15 

(second half) 

(first half) 

Simultaneous1y ,.,ith the lo::<ding of the first half, a "st.1rt" pulse is 

generated and ~~e array operation begins. 

Rut it has been found that for some operations, no more than 

16 bits of the TR content change frorry· one i'1str•!ction to the next 

one. In tl-,.at c<Jse, t~vo cycles would be spent to fill un the 32 bits of 



48 

the IR \\'hen actually only half of them have changed. It is a waste 

of time and storage capacity of the minicomputer. The problem has been 

solved \\lith an efficient design of the instruction set such that the 

part of the instruction that most frequently remains unchanged from one 

operation to the next one is in the second half. The part of the 

instruction corresponding to neighbors, mode, inhibit, convergence 

and carry has been placed there. Hence, if during a particular 

operation, the second half of the instruction should be the same as 

that of the preceding instruction, only the first part should be loaded. 

A particular but frequent case is \vhen the operation must be 

perf o'rmed 11 in cell" , in integer mode, clearing the carry, and \vi thou t. 

inhibit or convergence test. In our instruction set it corresponds to 

all the bits of the second half equal to zero, making easier the 

program"lin~, and shortening the compiling time. 

In the operations for \vhich flm_-, of information between the 

computer and the cells are involved, only 16-bit instructions are 

required. They are distinguished from the ALO by the value of bit 16. 

The complete instruction set, shown in Table 4.1, is described 

in the following sections. 

4. 2.1 Arithmetic and Lo~;ic _ _9_perations 

The bit 16 = 0 indicates ALO. In that case: 

Bits 0-3, OPCODE; select the desired operation. 

Bits 4-7, m:srr:,JATIO~l; select the word in Hhich the anstver of the 

operation is stored. 



00 01 02 03 04 OS 06 07 08 09 10 11 12 13 14 15 

0 P C 0 D E DF.STINATION SOURCE A SOURCE B 

Cll z 
0 
H 01 ADDITION 00 ALL 00 NONE 00 NONE .... 
;;! 02 SUBTRACTION 01 AC1 01 AC1 01 ACI 
lz.l OS OR 02 AC2 02 AC2 p.. 
0 06 EXCL-OR 03 }13 OJ M3 . 
u 07 AND 04 M4 IS MIS 04 M4 H 

g 09 COMPLEMENT 

/ 
. 

o-1 10 2'S COMPL. 
~ 11 INCREMENT 
< 12 MOVE IS MIS 
u 03 SHIFT RIGHT 00 NONE H .... 04 DECREMENT 01 ACI 
~ 
~ 08 MULTIPLY IS MIS 1S MIS .... 
H 

~ PARALLEL 1 AC2R LOG IBT JNT 13 SHIFTING 2 AClR I I I 
3 AC1L ROT 8BT FLT 

SPECIAL ~fSG 0 o I 14 OPERATIONS OPERATOR 0 lCH MAil 
z 1 DATA IN 

1/ 
DESTINATION ADDRESS ROW COLUMN 0 

I H ~lODE a: .... 2 DATA OUT SOURCE lzlo-~< 0 DIREC ADDRESS ADDRESS 
!:;o-~~ 
~~:.-: 

~_./" 
I CONC 

0 ~ 3 CONT IN v NO UP v NO UP u ... 3 AUT I I I I 0 4 CONT OUT u YES DWN YES DWN 
S CONTROL 

TRANSFER 
BUFFER TO v ROW 

6 ARRAY I DESTINATION I SOURCE 
COMMUNIC FR COL 

TABLE 4.1. 

16 17 18 19 20 21 22 23 24 2S 26 
~ 

I N H I B I T 
NEIGHBOR M 0 D E 

ACI STATE UNC CONDITION 
0 

0 INTERNAL 0 INTEGER o No nm. NO I NORTH 1 1st RYTE 
I 

1 INHIBIT 
2 SOUTH 2 2nd BYTE 2 ACI,tO 

YES 3 EAST 3 EXPONENT. 3 ACI=O 
4 WEST 4 ABSOLUTE 4 ACI<O 
5 ROW VALUE 5 ACI~O 
6 COLUMN S INTEGER 6 ®or @-1 
7 EXTERNAL FLOT INP. 7 ® or~O 

0 0 0 
0 INTEGER 
1 FLOATING 

1 

NEIGHBOR 

~-----

INSTRUCTION SET 

27 28 29 30 

CONVERGENCE 

00 NO CHECK 
01 BITS 1-IS 
02 BITS 2-IS 
03 BITS 3-1S 
04 BITS 4-IS 

. 
14 BITS 14-IS 
1S BIT IS 

31 

CLR 
CAR 

YES 
I 

NO 

4::.. 
~ 



Bits 12-15, SOURCE B; select the other operand. 

Bits 17-19, NEIGHBOR; select the neighbor cell. 

50 

Bits 20-22, HODE; select the mode of operation, as it was discussed 

in section 3.4. 

Bit 23, UNCONDITIONAL INHIBIT; selects lvhether the unconditional INH 

control bit is interrogated or not. 

Bits 24-26, CONDITIONAL INHIBIT; select the ACl state condition 

being interrogated. 

Bits 27-30, CONVERGENCE; select the range of c:w interrogation. 

Bit 31, CLEAR CARRY; selects whether the carry should be cleared 

or not before the operation cycle starts. 

Hhen OPCODE = 13, PARALLEL SHIFTI~JG is performed. In that case: 

\\:l1en 

Bits 4-5 select accumulator and shifting direction. 

Bit 6 selects logi~al shifting or rotation. 

Bit 7 selects the shifting of 1 or 8 bits. 

Bit 8 selects the DJT or FLT input. 

Bits 23-26, INHBIT; select the inhibit condition. 

The other cits Gre meaningless. 

OPCODE = 14, SPfCIAL IJP:CR.\TIO~::S are performed. In that case: 

Rit 8 selects the ?!SG operation 

Bit 9 selects t}-,.e ICP operation 

Bit 10 s•"lects the. N"\I operation. 

Bits 4-7 select the operator word. 



4.2.2 Computer-Cell Communication Oy~-~~ions 

For CCC operations, should be bit 16=1. 

Bits 0-2, OPCODE; select the desired operation. 

51 

Bits 4-7, select the desired Hard, in the case of Data in (DIN) 

or Data out (DOU) operation. 

Bits 8-15, CELL ADDRESS; select the cell, as l·lill be dis cussed 

in Chapter 5. 

4.2.3 Control Transfer Operations 

For control transfer operations, should be bit 16=1 and 

bits 0-2=5. In that case: 

Bits 17-19, ~;EIGHROR; select the neighbor from ~.;rhere the transfer 

is produced. 

Although bits 3-15 are not used, it is convenient to maintain the same 

bits used in ALO for neighbor selection. This is because the control 

transfer operation usually follous a data transfer ('·fOV operation). 

In that case it is not necessary to change the neig-hbor bit from one 

instruction to the next one. 

4.2.4 Buffer-Arr;ry_S:cmnunication Oneraticns 

For buffer-array communication operations, should be hit 16=1 

and bits 0-2=6. In that case: 

Bit 3 selects transfer to or from buffer. 

Bits 4-7 select the destination ~.;rord. 

Bit 11 selects the row or column buffer. 

Bit 12-15 select the source word. 



52 

4.3 Hnemonic Language 

In an attempt to facilitate the communication bebveen the user 

and the array, a set of nmemonics is proposed. 

where 

4.3.1 Serial Arithmetic and Logic Operations 

For serial ALO the instructions have the format: 

OPCODE, D, A, B, N, M, UI, Cl, V, W 

OPCODE indicates the desired operation. It is a three 

characters mnemonic, and can be any of the 

follm.ring: 

ADD, 

SUB, 

EXO, 

LOR, 

A.!'m, 

COH, 

TCH, 

DEC, 

INC, 

HOV, 

SSR, 

?'lPY, 

addition 

subtraction 

exclusive-or 

logical-or 

logical-and 

complement 

ttvo' s complement 

decrement 

increment 

move 

shift serially to the right 

multi plication 



53 

D indicates the "destination" ~10rd address. A "O" stands for all of 

the words of the cell and H1 (or ACl), Mz (or AC2), M3, H4 ••• M15 

indicate a particular word selected. 

A indicates the "source A" tvord address. A "O" stands for none operand, 

and H1 (or ACl), M2 (or AC2), M3 , M4 , ••• ,H15 select the particular 

word. 

B indicates the "source B" tvord address. Analogously than A, it can 

have the values 0, ~\, H2 , ••• ,H15 • (A or B are skipped in the 

double-address instructions, according to the table 4.1). 

C indicates the neighbor selected. It can b~ 

o, in-cell· 

N, north 

s, south 

E, east 

Hy west 

ROlV, row 

COL, column 

EXT, external 

H defines the mode of operation. It can he: 

0, integer 

FB, first byte 

SB, second byte 

EX, exponential 

AV, nbsolute value 

TNF) integer uith f1 oatinr-; input 

FJ.'T'' flo.R tin~ r11ul t:h 1 i_cn. tion 



UI indicates that unconditional inhibit bit is checked. 

CI indicates the conditional inhibit. Its value can be 

0 (none), 

YZ (yes zero), 

NZ (non zero), 

PS (positive sign), 

NS (negative sign), 

ZD (zero detected), 

OD (one detected), 

no inhibit required 

inhibit if (ACl)=O 

inhibit if (ACl)~O 

inhibit if (ACl)~O 

inhibit if (ACl)<O 

inhibit if a '0' in 

inhibit if a '1' in 

"1 detector" 

"1 detector 11 

V indicates the convergence range. Its value can be 

0, no convergence required. 

Ci\Tifl, CNV2, ••• ,CNV15, selects the convergence range. 

54 

H indicates \vhether the carry is cleared or not before the operation 

starts. Hhen it assumes the value HCC, operation uithout clear 

the carry is assumed. Otherwise, the carry is cleared. 

4. 3. 2 Para ll~_l_ Sh j_f:_tj_~f'-C!...~~ra t_i.ons 

For parallel shifting, the general forna.t is: 

0PCODF, ~m, ;.J. :-r. UI, CI 

VJhere 

OPCODE indicates the desin:>d operation. The mneMonics Are 

SHF - for logical shifting 

~OT - for rotation. 

RD indicates ::egister and shifting direction, as follmvs: 



55 

AC2R, accumulator 2 to the right. 

AClR, accumulator 1 to the right. 

AClL, accumulator 1 to the left. 

N indicates the number of bits, as follm.;s: 

0, shift 1 bit. 

BIT8, shift 8 bits. 

M indicates the mode of shifting, as follm·TS: 

0, integei (using 16-bit accunulators). 

FLT, floating (using 24-bit accumulators). 

UI indicates unconditional inhibit, as in the ALO. 

CI indicates the conditional inhihit, as in the ALO. 

4.3.3 Suecial Onerations 

For special operations, the follmring for~ats are used: 

~!SG indicates move sign to AC~. 

nAI, T) indicates ~ovc (;\C2) inverted to 1
) (ui th D varying bet':·.reet: 

All the inhibit rnnerc-::-nics used for serial ALO are also valid 

for special operations. 

For CCC operations, tl:e r.r;eneral fornat is: 

\:here: 



56 

OPCODE indicates the desired operation. The mnemonics are: 

DIN, data in. 

DOU, data out. 

CIN, control in. 

COU, control out. 

l.J indicates the ~vord selected. It indicates the destination ~.;rord in 

DIN and the source Hard in DOU operations, and it is not specified 

in CIN and COU operations. 

Ht indicates the cell addressing mode, as folloHs: 

0, direct. 

CONC, concntenation. 

AUT, automatic. 

RA indicates: 

the rm·r address (0 to 7) in direct or CONC mode; 

the AUT increment (ROH UP or ROH DOHN) in AUT mode. 

CA :indicates: 

the column address (0 to 7) in direct or CONC mode; 

the AUT increment (COL UP or COL DO Hi~) in AUT mode. 

4.3.5 Control Transfer Ouerations -- -·--·--·_ .... ____ _ 
For control transfer, the format is: 

CTR, N 

where 

--------------------------- -------------------
~!, RA and CA are re 1 a ted to the CAS and the detai 1 '~ of them 

will be discussed in section 5.4. 



CTR is the opcode for the operation, and 

N indicates the neighbor source selected. 

4.3.6 Buffer-Array Communication Operations 

For buffer-array communication, the general format is: 

OPCODE, D, S, B 

where 

OPCODE indicates the desired operation. The mnemonics are: 

TTB, transfer to buffer 

TFB, transfer from buffer. 

D indicates the destination word (as in ALO). 

S indicates the source t·Tord (as in ALO). 

B indicates the selected buffer, as follmvs: 

ROH, row buffer 

COL, column buffer. 

57 



58 

CHAPTER 5 

The Control Unit 

The aim of the Control Unit (CU) has been pointed out in 

Chapter 2. The CU is composed of three subunits, as is shm.m in 

Fig. 5.1. 

1. The Instruction Decoder (ID) 

The ID has the task of decoding the 32-bit instruction loaded in 

the Instruction Register (IR) and generating all the necessary 

control levels; which are broadcast to the array of cells, the 

other CU subunits and the Interface Unit. 

2. The Control Pu_~e~qenerator (CPG) 

The CPG has the task of generating all the necessary trains of 

pulses. It is divided into t~vo main parts: 

a) The Clock Unit. The Clock Unit receives information from the 

Device Status Register (DSR) about the "busy/free" (B/F) 

condition of the system; and it keeps sending pulses to the 

Sequencer as long as the DSR remains in "busy" state. 

b) The Seguencer. The Sequencer receives the clock pulses, as 

well as the decoded levels from the ID, and according to the 

desired operation it generates the required trains of pulses. 

Tl1ey are transmitted to all the cells in parallel. In addition, 

the Sequencer receives information ahout the convergence 

condition of every cell and it sends the general convergence 



cell 
cdressing 

system 

I busy /free 

coded 

instructions 

control 

level 

instruction -
decoder 

\ 1 
control level 

FIGURE 5.1. THE CONTROL UNIT 
BLOCK DIAGRAM 

control 
pulse 

generator 

59 



60 

condition of the system as a whole to the DSR. Finally, the 

Sequencer controls how long the operation should last, by 

sending "end" pulses to the DSR. 

3. The Cell Addressing Svstern (CAS) 

TI1e CAS has the task of selecting a particular cell (or cells), 

whenever it is required by the operation. The necessary 

information is taken from the ID, the Basic Address Register (BAR) 

and the Cell Node Register (CNR). Selective control levels are 

sent to the cells of the array, allowing certain degree of 

exclusiveness in some operations. 

The operation of the CF subunits, as Hell as the actual 

implementation are described in the following paragraphs. 

5.1 The Instructi0n Decoder 

Once the 32-bit IR is loaded Hith the corresponding coded 

instruction, certain logic levels in the control lines should be 

created in order to perform the actual instruction. 

According to the discussion of Chapter 3, about the logic of 

the cells, the Table 5.1 has been constructed. The lo~ical levels of 

the control lines for any possible operation are shmm there. The 

following convention has been adopted. 

a 0 indicates lo'" level or l)ulse ahsence, 

a 1 indicates hi~h level or oulse pr0sence, 

an S indicates that the level or pulse presence are selected 



U) 

w z 
H 
...:I 

WEfv\TION 

ADD 

SUB 

LOR 

Exr, 

AND 

cmt 
TCM 

INC 

HOV 

SSR 

DEC 

HPY. q/s 

SHR 

nsG 
ICH 

!·!AI 

DIN 

DOU 

CIN 

cou 
CTR 

,.,..-, ,...--, ,r" ,.-, • 
~~M~ V. ~~ 
'-' '-' '-' '-' ...-l N H • -.:t ~ 

r:o p:) ~ ~ ...:~ ...:~ ~ ,:::: Q ~ ..._, ..._, , c·· ;:..:; z ;..--; r:o w ~4 ~'-l ...:~ E-< ~ 1t.~ CLO .r,S 
.x.:ww:<:~U)UJU)~ ...:1.-Jet....-l .... N .... NHPlp:).-J ..:: :>-<:>-<o.. .-J.-J 

w oo w w :;-.~ o o o o o I=Q :.-~ :.-~ o ,.... o n.. P... o ru r.t.l ~ o:: 
<1!~0 ..t;rctU UltnH•:; • .;.:;~t;•::;...-l!JI~,J~~ Ut::) >;;:; tflU) -1!:,:: 

X X H 4. W 0 U 
~ X X 0.. X >~ X r:... :>-< ;:;~ E-< E-< H V. E-< E-< V. r~ r-: .-< r:--1 ; i :::> E-< C> H i-< H ;::::: I> ;::::: ~ 2:: P.. P., ;;:.: P.. p, P. ;:..~ ;:t, 0 ;:J ;:J o-l ;_; 0 0 :.;:.; ;...: ;J! V U 0 0 p:; ;,-~ VJ :.-:': ... ~ ;:..... CQ :,..~ :.?~ X :> 0 C·~ <.; ~ 

.. L.:_z: >::! Q ::<. ;;-; ;:.-; Q ;;-; 0 0 0 !J., Ul 0:: 0:: Ul U1 lfl •t; ~- U U "·: U ~.; H f<< 1::) f...; H U W 4, H P,.. U l:?_ 

1 1.1 1 s s s s o o 1 o s o s s o o o s s o o s o o o·o s s s s s so o 1 s 
1 1 1 1 s s s s 0 1 1 0 s 0 s s 0 0 0 s s 0 0 s 0 0 0 0 s s s s s s 0 1 1 s 
1 1 1 1 s s s s 0 0 1 1 s 0 s s 0 0 0 s s 0 0 s 0 0 0 0 s s s s s s 0 0 0 s 
1 1 1 1 s s s s 0 0 1 0 s 0 s s 0 0 0 s s () 0 s 0 0 0 0 s s s s 0 s 0 0 0 s 
1 1 1 1 s s s s 0 0 0 1 s 0 s s 0 0 0 s s 0 0 s 0 0 0 0 s s s s s s 0 0 0 s 
0 1 1 1 s s s 0 1 1 0 s 0 s s 0 0 0 s s 0 0 s 0 0 0 0 s s s s 0 s 0 0 0 s 
0 1 1 1 s s s 0 1 1 0 s 0 s s 0 0 0 s s 0 0 s 0 0 0 0 s s s s 0 s 0 1 1 s 
o 1 1 1 s s s·o o 1 o so s so o o s so o so o o o s s s so so 1 1 s 
0 1 1 1 s s s -0 0 1 0 s 0 s s 0 0 0 s s 0 0 s 0 0 0 0 s s s s 0 s 0 0 0 s 
1 1 1 1 S =A I S 0 0 1 0 S 0 S S 0 0 0 S S 0 0 S 1 0 0 0 S S S S 0 S 0 0 1 S 

1 0 0 1 s s 0 1 1 0 s 0 s s 0 0 0 s s 0 0 s 0 0 0 0 s s s s 0 s 0 0 1 s 
1 1 1 1 S =D I S 1 0 1 0 S Q'l 1 S 0'1 0 0 1 S 0 0 0 0 0 S S 0 0 S S 0 0 0 0 1 S 

0 0 0 0 0 s s s s s s s 0 0 0 0 0 0 0 0 s 0 

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 s 0 

0 1 1 

1 1 2 

0 0 1 1 

0 1 0 0 

0 0 1 0 

0 0 0 0 

0 0 1 0 

o::D S 0 0 0 0 0 0 1 

s 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 

E s o·o 1 o o o o o o o o s so o so o o o . . 
s 0 0 0 s s 0 0 0 s s 0 0 0 0 0 0 

E 0 0 1. 0 0 0 0 0 0 1 0 0 

0 0 0 0 0·0 1 1 0 

s 0 0 0 0 0 0 1 0 0 

TABLE 5.1 

S ·S 0 

1 

0 0 0 s 
0 0 s 
0 

0 0 

0 

0 

LOGICAL LEVELS OF THE CONTROL UNIT 
LINES 

~~: 0, low level or pulse absence 
1, high level or pulse presence 
S, selected by the user 
I, 'intern~l' input 

•A, ~PX A selection 
=D, DMPX selection 
·E, 'external'input 
2, AC2 selected 



6'2. 

by the user, either directly or indirectly, and 

a "blank" indicates that the level of this particular line does 

not affect the operation. 

During the HPY cycle, a line can assume two different levels - one 

during the INH/ADD cycle and another during the shifting. This 

condition is also indicated in the table by 0/1. The 2, INT and EXT 

are fixed values .that the corresponding multiplexers selector lines 

assume during the ope~ation. Finally, the table shows that in ICH, MPY 

and SSR, the }WX B selector lines are set equal to the value of the 

selector lines of D~WX or tWX A. That means that although the value 

is selected by the user, it is done indirectly. Thus one can select 

the value of DHPX or IWX A selector lines, and tWX B a11to!!1atically 

takes these values for its selector lines. 

An example Hill clarify the use of the table. Let us suppose 

an ~ddition is being carried out. The three multiplexers and the 

D~WX are enabled. The value of their control lines are selected by 

the user in his instruction. .All the lines indicated by "0" must 

be held lovr during the o:)eration, while the "output selector r• (OUT 

SEL 1) line should be held high. The CAR CL should appear in the 

precise moment. The user can choose directly the level of the "b:·te 

operation", FB, FLT INP, I~m, C}iV, AV and EX lines, as ~vell as the 

presence or ahsence of the "clear carry" (CLR CAR) pulses. The 

selection should he done in accordance with the characteristics of the 

addition the programmer Hishes to perform. The other lines marked by 

"S" are indirect!? chosen. For ex;,mple ,.\vrite ACl" or '1vrite AC2'' are 

set automatically at '' 111 whenever ACl or AC~ are respectively selected 



63 

by the DMPX; othen1ise they are equal to "0". Similarly, ACl ENB and 

AC2 ENB are set automatically at 111" \·Thenever the corresponding 

accumulator has been selected as a source or destination word. 

The set of instructions (Table 4.1) gives the values of the 

decoder input levels, tvhile the Table 5.1 gives the output levels 

desired. The combinational logic circuits that produce these output 

levels· have been designed and are illustrated in Figs. 5.2, 5.3, 5.4 

and 5.5. 

5.2 The Clock Unit 

The Clock Unit generates the basic trains of pulses that are 

used by the Sequencer. Because the characteristics of the cell, as 

~·Jere discussed in Chapter 3, tHo trains of pulses, shifted 180° in 

phase are necessary to comulete a cell operation. Basically, one of 

the trains produces the ''Read 11 sub cycles (clock A) and the other one, 

the 11Hrite" stlbcycles (clock B). Both are derived from a Haster Clock 

train of pulses. During the part of an operation in ~vhich no delay 

betHeen read and urite is required, the computation is S?eeded up by 

using the ~iaster Clock. 

T1~e three tr? ins of rulses as uell as the circuit used to 

~!enerate them are i111lstrc::.ted in Fi;r. 5.(;. The pulses are alloued 

to reach the Sequencer uhem~ver the system is in "busy" state. 

The primary source of pulses is a n.E.C.-M401 Variable Clock 

uhich is runninf, at 4.5 M:Iz. 



r~ ~ 

~ :,:, ILl 
64 0 p:: 

~ c..> r:Q 
<!W z 
~~ ILl 
<!O 

< ~~ 

I 

S E L E C T 0 R S '1' 

l 

I I 

CNT DOWN 

iJOU-D-[>o---oB ENB 

ENB 

II t----:---,..---:-----DIN 

L-_:_---;.._--,-----~. ~ COM 

I I 

SHR SPC 

CLR 
CAR 

PR 
CAR A 

OUT -----o SELI/2 

OUT 
JO---+---c SEL/11 

FIGURE 5.2. THE CONTROL UNIT. INSTRUCTION DECODER 



< 
H 

j:Q ~ 
;.r.l - N ....:l 

~ ~ ~ ::r: ::r: ::r: 
C/) C/) C/) 

< < 
H 
H 
~ ..... N ..... 00 < 

(.!) 

I~ ::r: 
H H ~ ~ H ~ u 
0 0 ::r: ::r: ....:j ,.,. ..-~ H 
~ ~ C/) C/) ~ 

I 
• 

l 
SHR 

D ENB 
A ENB 

---· 2 ENB A ROT 1 B--

FIGURE 5.3. THE CONTROL UNIT. INSTRUCTION DECODER 

I~ 

~~H ::::o (l)p::: 

B 
..___., ---ROT 2 B 

o-. 
I..N 



ICH 
MPY 

6 10 I 7 11 

M P X M P X 

B ENB 

ROT 1 cq1ENB C 2 

1 ENB A ENB A 

G 88 
-1 1-,-~Cf.T DOWN 

..-'--J-. . ~~NPY 

""-m 

A B c 
M P X C 

·-ROT 2 C 

FIGURE 5.4. THE CONTROL UNIT. INSTRUCtiON DECODER 

(3-, 
(3-, 



BIT CNT OUTPUTS 

COMPARATOR A>B 

CNV~ 
PULSE~O--L__... 

FIGURE 5.5. 

c 

1 ENB A 

MPY 

=i2:!>. 
1 E~!P. B~ 
1 ENB ~~ACl ENB 

ICH 

FLTA-~-
FLT B-~FLT 

AC2 ENB 
2 ENB C 

C}..TV 
FF 

CLR CAR 

,_0 DSR 

THE CONTROL UNIT. 

-MAl 

ROT 1 
ROT 1 
ROT 1 

A 
B ----

-~C =r:D-V-OT ACI 
MPY _fl _! 

RCi•' , A 
~Bf ~ ~~=:~ -~ , f-o f ~-~~ROT ACZ 

O' __L --' 

SiiRl.A"-<D-
RsT DA -o SHR AC1 

SHR 2 B=D-NSG - , SHR AC2 

SHRLEFT~ 
SHR DIRECTION 

RST DA 

- -u SHR 
SHR liHT D-

NSG -c: 
lBIT 

INSTRUCTION DECODER 

(3-. 

'I 



END I 1 I 

~!ASTER 

CLOCK 

CLOCK A 
(READ) 

CLOCK B 
(h'lUTE) 

MASTER CLOCK 

(DSR) 

_II 1---J 

_,, ll------'1 ~~~~J"---
1~..-__ -Jf '~~!EI.._ 
t f t t 

CURRENT LATCH ~·JRITE CHANGE 
PROCESSED ADDRESS TO BIT DATA 

ADDRESS INFOID-IATION NEXT BIT , ... 
1 BIT CYCLE 

..., 

FIGURE 5.6 THE CLOCK UNIT 



69 

5.3 The Sequencer 

The Sequencer receives the three trains of pulses from the Clock 

Unit and distributes them over the clock lines, in accordance to the 

operation decoded. 

Before starting tht operation cycle, a preset cycle is performed. 

It lasts for three master clock cycles (1)5. bit cycles) and it is 

necessary in order to clear the preset flip-flops and counters. 

A Pre-counter (counter-to-4), a decoder and several gates 

control the preset cycle (Fig. 5. 7). The ~~aster CL pulses are used 

to clock the Pre-counter, 1-1hi.ch in effect controls the decoder. 

Sequentially, pulses to clear the carry flip-flop and to load the bit

counter, and to reset DA, to clear to zero and to preset the carry 

flip-flop are generated during the first tHo r::aster cloc:: pulses 

received. After the third pulse arrives, the Pre-counter stops and 

CL B pulses are allotved to propagate to the tvrite pulses 1 ines and to 

clock the T>,it-counter. If the ID has enablecl the corresponding gntcs, 

CL B performs other tasks, activating thi~ CT. AC'l, CL f..C2, Z'=ro CL, 

CAR CL and transfer CL lines. In control trar..sferrin!S and shifting 

operations, CL B is directed to the corresponding lines, Hithout 

waiting for the preset cycle. 

The Bit-counter (counter-to-16), and the Eit-decoder (Fig. 5.8) 

have bvo main tasks: 

a) to address hit by bit the 16 flip-flops of the memories; and 

b) to count the number of CL B pulses that h.:lVe reached the enable 

1 ines in ort1er to de teet ~·~hen the operation should finish and '.vhen 

sign interro~ation pulses must be produced. 



MASTER CL 

RST CNT 4 

--- lENBA 
CLR LOAD --CAR B CNT RST DA 

CL B 

CONTROL-

~~- , 1 ENB A
~NTCL 

--vPR CAR 
CLR CAR

A 

CLR TO 
ZERO 

I 15 I 

COMPARATOR 

CYCLE CNT 

CL A MPYD-" · -- --
MPY FF=O 

FIGURE 5.7. THE CLOCK UNIT. THE SEQUENCER 

TRANSFER CL 

WR PULSES 

CAR CL 

WR PULSES 

CL DATA REG 

""--' 
c::, 



CNT DOWN 

CNT CL 

LOAD 
CNT 

CNT 
I I I DOWN 

BIT CNT 

CL DOHNOUTPUTS 

FH v·l-1 ,_ "----
INPUTS 

BIT DECODER 
OUTPUTS 

¢ 0 6 (> 

BIT ADDRESS 

E''D''-.:b l~ !'>-

i=? -ST--==-~RST c:IT 4 
'l'-;1 CNT4 A~ 

FF=l 

) HPY 1----r--\._ 
FF=O 

END F 

END A 

Et--.1) B 

END C 

mmu 

!~~~ HPY 

RST CNT 4 

CYCLE 
CNT 

c 

RST CNT4 A 

"")()-END E 

SIGN CL 

RST DA 
Ek~ B~LR CAR 

FIGURE 5.8. THE SEQUENCER 

"'-1 



72 

Several detectors have been set in this part of the circuit. Thus, 

1, 4, 8 and IS-detectors are activated whenever SHF 1 bit, control, 

SHF 8 bits and AV operations, respectively, are performed. The aim 

of all of them is to send an "end" pulse whenever the corresponding 

conditions are detected. 

~~enever EX operations are performed, the 15-detector has an 

additional task; to clear the carry in order to exclusive-or the 15 bit 

and to generate a "sign interrogation" pulse. Since in .t-fAI operation, 

bit 15 (sign bit) must not change, the 15-detector is also used to 

inhibit momentarily the generation of write pulses. 

If none of the previous detectors have produced an "end 11 pulse, 

then the Bit-counter finally overflo"rs and a "carry" pulse is generated. 

It indicates the end of the operation, besid~s interrogates the si.gn. 

If the cell is operating in the byte mode, the Bit-counter 

is preset to 8, producing the "carry" pulse after only eight CL B 

pulses; otherwise it is generated after 16. In FB mode an additional 

gate keeps the HSB of the decoder "lm·r", allowing the addressing of 

the 8 LSB's of the memories, although the counter is running from 8 

to 15. 

Hhen the Bit-counter is counting dm-m, it is preset to 15 as 

an initial value and the "borrow'' pulse, instead of the ''carry'' one, 

becomes the "end" pulse. This allm·rs the vriting of information 

starting from the MSB. 

In "integer multiplication 71
, the flcarry" indicates the end of 

the addition cycle, rather than the end of the operation. It increases 

the Cycle-counter (counter-to-8), resets DA and shifts ACl to the left. 



73 

In "floating multiplication" the addition cycle lasts 24 bits. The HPY 

FF and the 8-detector extend to 24 the range of the Bit-counter. After 

8 cycles, the HPY is completed. The Cycle-counter overflmvs and it 

produces an 11 end" pulse. The HPY CL pulses are produced ,.,henever both 

Bit and Cycle-counters, have the same value. A magnitude comparator 

is used to detect that condition (Fig. 5. 7). 

The Fig. ~.9 illustrates the output of the Clock Unit, the 

I 

pulses produced by the Sequencer and the value of the three counters 

during the preset and the operation cycle. It should be noticed that 

the preset. cycle is omitted in sone functions and that tl1e operative 

cycle can start with the Bit-counter in 0 or 8. The pulses drmm in 

continuous lines correspond to an integer operation, \vhile the puJses 

drmm in dotted lines correspond to alternative r.todes of operation. 

5.4 The Cell Addressin~t..:S.Y_~_tem (CAS) 

Although the control bus sends the same signal to all the cells 

of the array, there are operations in ~·1hich a particnlar cell (or ce '!..ls) 

is involved. TI-ese operations are: 

- Computer-cell communication operations 

- Buffer-cell cormnunication operations 

- Half array operations 

- Specific cell, rou or column operations. 

The C,..'\S has been designed such that it can address, in a 63x63 

cell matrix: 



MASTER CLOCK 

CLOCK A 

CLOCK B 

PRESET CNT 

BIT CNT 

WRITE PULSES 

LOAD BIT CNT 

CLEAR CARRY 

SHF AC1 LEFT 

SIGN INTERR. -

CYCLE CNT 

HPY CLOCK 

PR CAR FF 

END 

STARTING POINTS 

j-- MPY ONLY_,__ 

0 1 1 12 I 3 ~--- ~~ _ _ __ ___ 9, 1 12 I 3 r-- r 

00 I 01 I 02 I 03 I 04 I 05 I 06 I 07 I 08 I 09 I 10 I 11 I 12 I 13 I 14 I 15 I 00 LQ_!_l____ 
------------,------r-----,------r-----,------r-----,------r-----,-----,------y-----,,-----y-----,------r-----,,-~--~-,-~--~ 

~------------------------------------------------------------~!-~ 

-------------------------------'~···L.fl~..--_____ _ 

--- -- _r·,~· ~-

t 4 

FIGURE 5.9. 

00 01 

r' _____ : .. m* .._ ___ _ 

PULSE TRAINS AND 
STATE OF COUNTERS 

Nb. * Except in MPY 
-Integer operation 
·····No integer operation 

'-1 
~ 



75 

a) a cell 

b) a row 

c) a column 

d) all the even rous 

e) all the odd rows 

f) all the cells of the array. 

For cell selection, the ~rray can be considered as an 8x8 matrix of 

sectors. Each sector is composed of a sub-matrix of 8x8 cells, except 

the sectors of the left edge, upper edge and upper left corner, \·lhich 

are composed of su!:l matrices of 7x8, 8x7 and 7x7 cells respectively 

(Fig. 5.10). 

The CAS consists of: 

7 
~~~~~~~~~~4 

8 ~~+-+--t___,t--+--t--1
8 ~-+--+-+--t--it--+--t--1
8
~~+-+--t--t--+--t--1

8~o.J--+----1-+--+--+---if-f
8~.J-+-+--t___,t--+--t--t
8~-+---+-+-+--t--t---t--t
8~~~~~--~._~~

FIG. 5.10

a 12-bit Basic Address R.:·glster:- (TIN~)

a 12-bit Cell Hode Register (CHR)

a 6-to-64 Row Decoder

a 6-to-64 Column Decoder

a Cell Enable Input (CF.I) circuit in each cell

a Cell Enable Output (CEO) circuit in each cell

76

The Row and Column Decoders select theY and X coordinates,

respectively. A pair of these values (i,j) defines a unique point

in a 64x64 matrix as is shown in Fig. 5.13. If the first row (0) and

the first column (0) of this matrix are not considered, a 63x63 matrix

is obtained, in 't-Jhich each point of it, represents a unique cell of the

array. Hhen a "0" is selected by the Column Decoder, any point of the

set (0, Yj) can be selected by the Ro~..r Decoder. That addresses all the

cells of the n j ' 1 rm.; simultaneously. SiT"lilarly, for address in~ a

col"plete nin column, a "On is selected by the Rov Decod~r and the 11 in

column by the Column Decoder. If the point (0,0) is selected, all

the rells of the array are enabled to operate and information can be

sent to all of them simultaneously.

The Basic Address Register is an index register that selects

a C£'11 (or cells) ley a combination of its contents and the IR contents.

It also can address a cell directly. The BAR is composed of tva 6-bit

counters, Hith preset and count up/doun capabilities. One is the Rm.;

Counter and the other one, the Column Counter. It is loaded directly

from the CPU. The 2-bit Cell Hade Register controls the set of cells

in t..rhich any ALO is performed. It c::~n assume any of the following

four values:

77

0; operation in all the cells

1; operation in the cell (or cells) selected by the BAR

2; operation in all the even row cells, and

3; operation in all the odd rmv cells.

The Cell Enable Input circuits in each cell allmv the cell (or

cells) selected by the CAS to change the contents of its memory bank

\vith the answer of. an operation or ne\-r data. To inhibit the change

of the contents of the memory bank in a cell is equivalent to inhibit

its operation. The CEI also allm.rs the broadcasting of new control bits.

The Cell Enable Output circuits in each cell allmr the output

of the cell selected to flm.;r either to the CB or to the rm-r or colu:.~n

buffers.

5.4.1 Comnuter-Cell Communication Onerations _-.j ___________ ~ _________ _:, ____ _

It is necessary to distincuish clearly hett.;reen seouential and

parallel operation. The P~W-11 is a sequential machine if a '·70rd is

considered as a unit of infomation, but it is a parallel machine from

the 16 bits point of vieH. That means that although the 16 bits are

processed and, most important for our purpose, are available in the

Unibus [15] simultar.eously onl;' one word is present at a time.

Analogously, the cor'puter can read into its re:-;isters 16 1)its at a

time, but uord 1::· Hord.

hut ead~ cell is :1 sPr~irrl mac)dne. ;\lthou·~11 a11 the cells operate

simul taneousl;:, each cell precesses infor'1a tion in serial fashion,

78

bit by bit.

Obviously some incompatibilities are involved whenever communica

tion between the computer and the array is required. This problem is

solved using a Data Register (DR). It acts as a temporary storage of

information for parallel-to-serial, serial-to-parallel conversion of

the ~.;rord. It is a shift register Hhich is loaded in parallel •.vith data

or control bits from the CPU. From there, changing the state of its

control line, serial read out is obtained at the output and the data

are broadcast to the EXT input of the HPX C's of all the cells of the

array. But tl1e CEI circuits in each cell allov! the information to

reach the memorv bank only in the cell (or cells) that has been

select0d by the CAS. On the other ham1., the DR receives serial

information from the cell selected hv the CEO circuits. Infor~ation

remains there, available in parallel, for further transft::rring to the

CPU.

In addition, the DR is also used as a central buffer for

arithmetic-lozic o~erations, as has b2en de~crihed in Cha?ter 2.

Because the DR is acting as an intermediate bet::een the CPU

and the array, it has been included as a part of the Interface Unit,

rather than that of the CU.

The CCC instructions h.:we the format shmm in the corresponcing

part of t 11e Table 4.1. Fhen a CCC instruction is detected in the I;{,

three a~dressin~ alternatives are possible, according to the Address

~~de selected. They are:

1. DIRECT ADDRESSING. Tl1c cells of tht fi.rst sector (douhle shade>d

in Fig. 5.10) are selected directly by the instruction. Three

79

bits for the rmv and three bits for the column permits one to

select any point of an 8x8 matrix. But because lines X=O and Y=O

have a special purpose, the set of cells directly addressed is

reduced to a 7x7 matrix. This mode permits a faster addressing

in that set.

2. CONCATENATION ADDRESSING. The three LSB's of the rmv and column

cfecoders are controlled by th.~ current instruction, ~vhile the 3

NSB's are controlled by the BAR. This is very useful because the

3 HSB's of the BAR select the sector. Once the desired sector

address is set in the BAR, it is possible to address a particular

cell in this set directly by one instruction, in similar fashion

to that in direct addressing.

3. AUTOHATIC ADDRESSING. The address of the cell is taken directly

from the BAR. It is set initially to the starting address. From

that point, the address is automatically increased or decreased

by 1 in either rmv or column direction or both.

This mode of addressing is very useful Hhenever loading of

succe~sive points of the array are required. For example, if it is

required to load some boundary conditions for solving Laplace 1 s

equation, the BAR is set to the starting address of A (Fig. 5.11).

By setting in theIR the i.'1struction nAutomatic-Column Up 11
, cells of

the sa~e ro~ are addressed, step by step, until a point B is reached.

The number of steps is controlled by the number of pulses sent by

the CPU. A new instruction, "Automatic-Rmv Dmvn" is loaded and the

80

c

D

FIGURE 5.11. AUTOMATIC ADDRESSING.
LOADING OF BOUNDARY CONDITIONS

STORAGE ROW

PROCESSOR

STORAGE RO\J

PROCESSOR ROH

FIGURE 5.12. HALF ARRAY OPERATIONS

81

cells of that column are sequentially addressed until the point C is

reached. Finally, an instruction "Automatic-Row· Up-Column Up" is

loaded; and, automatically, all the cells between the points C and D

are sequentially enabled.

An interesting feature is used. When the Row (or Column)

selector reaches "63" it jumps to "0" at the next step and the Column

(or Row) selector is increased by "1". An exploratory scanning is

performed automatically and it allous the loading or reading out of

the whole array.

If DIU or DOU operations are performed, vJhatever is the mode

for cell addressing being used, the word selection is controlled in

similar fashion to that in the ALO; L e., D?!PX for loading and :·rPX B

for reading out.

5.4.2 Buffer-Cell Communication Onerations
-----------------~·-----...i:.---------

The aim of the buffer-cell communication operations is to

transfer information from a specifi.~ uord of an entire rou or col·n:m

to a specific \vord of the correspondirtg buffers and vice versa.

In the instruction Transfer to "Suffer (TTB) the ~.rord address

of the source and the destination are spocified as in any double-

address instruction, but in addition, the ro'7 or column number must

be spedficd too. This is carricod out by specifying the desired ro-:J

or colurnn in th2 BAR. If a rm.r is transferred, the rmv counter of the

BAR is J oaded '"ith the rmv nunber and tho. colur.m counter of the BAR

is loaded \vi th ''0". If .1. colt~nn is tran:;ferred, the colun:n counter

of the BAR is loaded uith the column number and the row counter of the

82

BAR is loaded with "0". The CEO circuits enable the cell output to

reach the buffers only in the cells of the rm..r or column selected by

the CAS (Fig. 5.15). By setting C~ffi=l, the CAS selects the cell or

cells specified by the BAR, i.e., the rm..r or column selected.

The Transference from Buffer (TFB) is a HOV operation in which

the HPX C selects the ROH or COL input. The row or column selection

is done in similar fashion as that for TTB. The CAS, operating over

the CEI circuits allows the transfer only to the selected cells.

5.4.3 Half Arrav Onerations

For some operations in ~..rhich the 15 ~tTOrd capacity of a cell

is not enough, it is possible to extend the range to a 30-\vord memory,

joining t~·TO cells together. One tvould be the processor cell and the

other one tvould be used exclusively for storage. Obviously, the

number of processors available tvould be reduced to half. This can

be done assuming that the array is divided into "processor1
' and

11Storage" rows. ~.,o neighbor cells, one in the storage rovT and

another in the processor rm..r car- be considered as a unit or "pseudo

cell" as is shown in Fig. 5.12 in solid circle. The data floH from

storage to processor is done in a similar way to that in normal

operation, through the ~'"PX C but the CEI circuits in the storage

cells must be inhibited. Thic: Hill prevent the transfer from processor

to storage rm..r to the neighbor 11 !>seudo-cell". Analot:;ously, 'lvhen it

is wished to t".'"ansfer inforrr,ation from the processor to the stora;::e

cells, the CEI in the processor cells Must be inhibited. Hhen an

ALO is performed, oaly the processor cells are enabled.

83

The operations are controlled by the 2-bit CMR. Usually it is

in "0" and the ALO instruction fetched in the IR is performed in all

the cells of the array. When it is in "2n, the operations are performed

only in the even rows (the odd rm..rs are inhibited) and in "3" only the

odd rows are enabled (the even rmvs are inhibited).

Notice that the row that is considered as a storage can be

switched to processor and vice versa, according to the instruction

and the contents of the CHR. Similarly, the structure of the "pseudo

cell" can be changed joining a processor rmv ,,,ith tht other storage

rm-1 neighbor, as is sho~m by dotted circles in Fig. 5.12.

5.4.4 Specific Cell, Rm..r or Col_~~ O;:erations

The CNR gives a great deal of flexibility to the programmer.

When its·contents are :'1' 1 only the cell (or cells) specified by the

BAR is enabled. This allm11s the user to perform ALO in only one cell

or one rm..r or column, as is required in certain sequential algorithms.

The C:IR=l is also used for transferring information bet~:een

the buffer and the cells, as has been described earlier.

5.4 .5 Cell Addressing Hard,·mre

The Fig. 5.13 illustrates the configuration for the CAS. The

BAR and the CMR are loaded together, as a unique register, directly

from the Unibus of the PDP-11 using the same interface techniques as

for the H',. \·!hen a CCC instruction is detected in the Il\., bits 8-9

indic<Jte the nddressin~ mode, hits 10-12 the rmT selected and hits 13-15

CHR

0 1 2 3

C··'T' .. ~

c-cc

n

---,---y-
1 •
I I
I
I
I
I
I

r-•
1 r-·'
I .

I I .

PDP - 11

-,-.

··-·-·-·-·-·-1

'O'

j_

COLU:i"N DECODER
2

OPCODE

0
1 CONC
2 AUT

I

r---------------'

E~:B
- fi3

N 1--- --r-- --.---1=-r-------------
1

0:::1
w r.c;wz
01
0
Ul
w
01

I
;:?;
01
p::

I

I

I

84

E-1
u
r:rlU
~ZE-1
HO;::>tll
ou<E-1

H
:::>
u
~
H
u

85
/

Because of the similarity between the COL SEL and the ROH

SEL systems, only the former one is described (Fig. 5 .14). ·h1hen bits

8 and 9 are equal to "O", direct addressing mode has been selected

and bits 13-15 are able to reach the 3 LSB's of the decoder, through

the SEL 1. At the same time, the 3 NSB 's of the decoder are set

to 110 11
, through the SEL 2.

If concatenation addressing mode is selected, the 3 LSR's are

still controlled bv bits 13-15 of the IR, but the control of the 3 t!SB 1 s

is s~.;ritched to the 3 ;.rsB' s of the COL C:"TT.

If automatic addressinc; r:1ode is selected, th.e 11 control lines

of the decoder are tied to the outnut of the BAR. The counters are

ahle to receive start clock pulses fror:o. the CPU. Hits 14-15 h::we a

co:-".trol fun.ction. T'het~1er the pulse?s reaclc the particular counter or

not, is up to the state of bit 14, ~·;hile bit 15 controls the countinz

direction.

For performing an exploratory scanning of the array, a "carry"

of the r:mJ c:T p.rocuces a'1 incre:;~ent in the COL C:-J'f. Si:":ilar1y,

Hhen ROl-l CiT is countin(C dmm, t'1e ''borrou" pulse decrement hy ''1··

the contents of tl:.e COL c:\TT.

Once both decoders have selected the proper line, a unique

point is determined hy the intersection of these lines. A matrix of

A:::0 3ates rerforrns this tas1: and a 64xn4 selection rnatri:~ is finally

ohtain~d (Fir. 5.13).

The Cell Node Register is a single 2-to-4 decoder with outputs

be performed in the cell (or cells) selected by the BAR (as in AUT mode).

START

I
\ """---1 I CARRY

ROW CNT

1 0
2 TO 1 SEL · ~3) 2 '[0 1 SEL

:...l

COLu""XN DECODER

FIGURE 5.14. CELL ADIIRESSING SYSTEM

e

-co
............ 0

::.> C"H:::I
C::OH
~Z:;>::1
OCJti1
S:>CJ
>~~
~t'I1
HZ n>

.--3
ti1
t:l

c::
"'d

018 §

~

CJ
0

i

~
ti1

<X\
~

/ 87

Both (3) 2-to-1 selectors are set to 11 1" by the corresponding gates

allowing the output of the BAR to control the decoder.

\Vhen CCC operations are performed, the cell selection should

be independent of the CHR; hence its decoder is not enabled.

If neither CCC operations, nor operations with CMR=l are being

performed, the decoders are inhibited and no selection through the

selection matrix is carried out. In that case, the cells are chosen

in accordance to the GHR contents only, as folloHs:

For C}ffi=O, "All Cells" line is activated and all the cells are

enabled.

For CHR=2, "Even 11 line is activated and all the cells that '"elong

to an even rmv are enabled.

For CHR=3, "Odd" line is activat0d and all the cells that belong

to an odd rotv are enabled.

5.4.6 Cell Enable Circuits

With all the previous considerations we conclude that a cell

(Xi,Yj) is selected for an arithmetic-logic or transfer operation

whenever the cell itself, the corresponding rmv or column, all the

cells of the array or all the even (odd) cells have been selected.

On the other hand, the unique DR can receive information from

only one cell at a tb,e. So the output to this register is done on

the basis of a uniq'le cell selection, '-thile in the TTB operations, a

complete roH or column is selected.

The table of Fig. 5.15 shous the input and output conditioPs,

the corresponding point in the selection matrix and the value that

CL AC2 ----1

DHPX

r-------,

I

I ALL
:EVEN
1 (ODD)
I COLUNN
I
I

I
I

I

I
I
I

CELt
I

I
I
I

, __________ 1

CELL ENABLE
INPUT

H
::J
D-1
z
H

H
::J
Cl..
H
::J
0

INFORHATION
LINE

SELECTED

CELL (X.' y.)
J. J

Rmv Y.
J

COLUMN X.
l.

ALL CELLS

ALL EVEN (ODD)

CELL (X.' y.)
l. J

TTB ROW

TTB COLUNN

88

TO AC2

TO AC1

CONTROL BITS

,- - - - - - - - - - - - - - - - - - - l TO

COL TTB : ·IEIGHBOR

TO COL TO ROH TO DR

I

I
I
I

. I
I
I
I
I

L _!iU[l']:]i_S _BQ:U~R~ ______ _. .

CELL ENABLE OUTPUT

POINT CMR

i,j 1

O,j 1

i,O 1
X X 0
0,0 1
X X 2 (3)

i,j 1

O,j 1

1 '0 1

FIGURE 5.15. CELL ENABLE CIRCUITS

89

should be assigned to the Clffi. It should be remembered that in CCC

operations, the selection is made solely on the basis of the selection

matrix, independent of the C}ffi.

Each of the five input conditions correspond to an enable line

selected. The five lines are OR-ing in each cell in the corresponding

CEI circuit, as is shm-m in the Fig. 5.15. \·!hen the cell is selected,

throush any of its five enable lines, the "Hrite Pulses" can reach

the DNPX, the accumulators can be clocked and control information can

reach the control bits register. If none of the five lines are

activated, the cell is locked and no possible change of its information

is alloHed.

The Cell Enable Output (CEO) circuits control the flow of

information of the output of each cell.

Because only one cell has actually been constructed, the

addressing system is not built, but it has been des:ir,ned as an example

foreseeing the construction of a 63x63 cells array (3,069 cells).

Further expansion can he easily ohtained by simply using a lar~er BAR.

90

CHAPTER 6

The Interface

6.1 Generalities

All communication between the PDP-,.11 and any external device

is accomplished hy a single high-speed bus called the Unibus [15].

The Unibus is composed o~ 56 linP.s (51 are bidirectional) - 16 data

lines, 18 address lines and 22 control, synchronization, priority

transfer and r1iscellaneous 1 ines. All flo,,: of information bet,Jecn

a device logic and the Unibus is throug11 the registers. Fach register

is assigned a bus address at uhich the CPU can interrogate and/or load.

From ti:te PDP-11 point of vievJ the array is an external device

with four registers (Fig. 6.1). A device register address has heen

assigned to everyone of them, in accordance with the Digital

Equipment Corporation (D.E.C.) specification. They are:

First 16 bits of the IP. (IRl) f!16 7770

Second 16 bits of the IR (IR2) #167772

Data Register (DR) ~fl6 7774

Device Status Register (DSR) f/167776

The instruction re;isters are urite-only registers; the DSR is a read

only re;:sister e1nd the DR is a re"tdhvrite rep-:ister.

The IR is a 32-bit TJarallel register in ~.:rhich the coded

instruction is loacL?d fror.1 the CPU and fron ~·hich the ID takes the

information to be decoded.

97

The DR is a 16-bit register that acts as an intermediate

serial-to-parallel, parallel-to-serial data converter, as well as

the CB, as has been described in Chapter 5.

The DSR is a 2~bit register that contains information on the

Busy/Free and convergence consition of the system, according to the

follmdng format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I I I I I I I I ~/F~mi I I I I I
Both CNV and B/F flip-flops have been included in the diagrar!s of

the CU, in Fig. 5.5 and 5.6. 1~~enever it is required by the program,

the CPU can interrogate the DSR for further actions.

In addition to the registers and the Unibus, the interface

is composed of an Address Selector n.E.C.-}!105, a Gating Control

circuit and a Driver to the Unibus, as is shorm in Fig. 6.1.

6.2 The Address Selector D.E.C.-Nl05

The address selector is used to provide gating signals for up

to four device registers. The selector decodes the 18-bit bus address,

where:

A <00> is used for 'byte control.

A <02:01> ic; dec0ded to provide one of four addresses.

A <12:03> is determined hy jumpers in the unit.

A <17:13> mnst all be in l's.

In our ca"e, tf>e ~um:ers have b.::en set in 0777, so that one of the

four selection lines is activated tvhenever the CPU sets in the arldress

bus th2 corresponding register addresses.

r-

DATA BUS

SEL 0
SEL 2

(/)

SEL 4 ADDRESS _ ...
:::>

[ADDR. ;:Q SELECTOR SEL 6 GATING
H BUS M 105 OUT H CONTROL z
:::> OUT L _..

IN

~

FIGURE 6.1.

~ATE _lliU DRIVE I
i

le.LOCK llPJ DR
I

CL IRl J IRl
I I

CL IR2 J IR2 I

GATE OS DRIVE ---
t

I DSR

INTERFACE UNIT.
BLOCK DIAGRAM

I
J

I
I

I
J

I
J

I
J

I
I

START

r--

END
CNV

CONTROL

UNIT

-

-.o
~

93

Four select signals (SEL 0, 2, 4 and 6), correspondin~ to the

four device registers are supplied by the selector. In addition, it

also supplies three gating control signals:

OUT HIGH; which permits the loading of the high byte data bus.

OUT LOVJ; which permits the loading of the low byte data bus.

IN; which permits the reading of the register on data bus.

6.3 The Gating Control Circuits

The gating control circuits take the output of the address

selector and provide the clock pulses to load the selected Hrite

register (IRl, IR2 or DR) with the value present in the data bu?.

It also supplies the gatin2 signnls to read the selected read

register (DSR or DR) on the datn hus.

The same pulse used to clock the I~l is also used as the

"start" pulse. It changes the state of the Busy/Free flip-flop.

6.4 The Driver to the T!nibns

The driver to the unibus has the task of maintaining the

transMission-line characteris~ics of the Unibus. Information trans-

nutted on the bus must be driven by open-collector drivers.

The Fig. 6.2 shm;s th0 interface bonrd. The Address Selector

D.E.C.-~UOS has not been included. It is an additional card supplied

by Di ['i tal EquiJ?me!~t Cor;Joration. Tf, in the future, the Cell ,"<duress

System is constructed, a neH register (!3:\"R.-C~{P,.) ~.;auld be necessary to

be adde~ at the interface.

START

SEL~TT ,. 0 1 2 3 4 ~) 6 7

r r r 1 r r r r 1 f I I HO no L~ LO
J I IJ I

IRl
l INPUTS I ~-nT -l I -,

r I I
I

I l I I I f I I I t
OUT L

l H2 1 18 I~ Is I§ IS 18 18 lr
I I I I H2 I I I L2 ...:I H2 ...:I

w
u
..... ~ I Ld I Ld I La I IR2 ..,.
0
~

SEL 2.. I I J. 1
~

I<
H

~ I~ 18 1l~ 1l~ 18 19
20 21 22 23

18 18 18 'f: Is 1216 I~ 18 1~ 18 18
, ~ r 1 1 1 , l=l==l== F: =='= F: t t t f j, MODE

DATA REG
HODE o- I

b.--,. ____
l__J "---1 _j 1.__1 _j k_____j _I b._L.CL DR

OUT H \ I "-. H4 _I I I L_ I ___j I I I I _I I I I__ I I I I I TO -
£fiLL

OUTL . [~
IN~~

s:~F ~J-I>Jl
CNV ' u;
TEST~~

SEL

~
DOO Cll

~
H s

FIGURE 6.2. INTERFACE UNIT CIRCUITS

95

CHAPTER 1

Programming the System

7.1 Control Program

The PDP-11, acting as a control element, has been programmed to

run the array. Several subroutines vlhich are called from a main program

allow the user to load the registers with the corresponding instruction

(instruction register) and data (data register). The subroutines also

test the state of the DS?-. and give operative coT'lmands, uc;ing simple

nmemonic instructions. All the subroutines .qre grouped in a program

called CO~JTROL and are written in PAL-11.

The array user can Hrite the rrain program using very simple

subroutine calls and the mnemonic l.nnz,uage discussed in Chapter 4.

The CONTROL program compiles the instruction, translating the mnemonic

to the corresponding binary value of the 32-hit instruction register

and storing it in a tuo tvords instruction b1.1ffer. It then remajns in

a Haiting loop checking the DSR until the previous operation has

finished. Once the B/F flip-flop of the DSR is in rrfree" state, the

contents of the buffer are loaded into the instruction regis~er and

the array operation starts. Hhile the array is performing the actual

operation, the computer is compiling the next instruction.

The computer is also programmed to interrogate the convergence

fl:i.p-fl0p of tt1e DS", 1-hen iterntive micr"'progrnnnnin~ is hein!'; perfon·ccr.

In adrlition to the basic operations, several standard routtnes

96

unique subroutine (e.g., division subroutine). This allows these

subroutines to be called by a single instruction. All the subroutine

calls by the main program are carried out through the same general

register, R5.

Let us suppose the programmer wishes to add, in absolute value

mode, (M3) plus (M5) of the north cell, store the answer in M7, inhibit

the operation if (ACl) < 0, not check convergence, and clear the carry.

The instruction in the main program should therefore be:

JSR 5, SUBADD ; calling the addition subroutine

M7, M3, MS, N, AV, 0, NS, O, 0

Subroutines to load entirely the cell, to clear the cell, to

unload the cell into the output buffer, and to dump the content of the

output buffer into ·the teletype are also provided in the CONTROL

program.

7.1.1 Microprogramming

As it has been pointed out earlier, division, floating point

operations and transcendental functions can be computed entirely in

the cell under microprogramming control. This is also a task of the

CONTROL program.

It should be considered that the same algorithms used in

sequential computers cannot be applied directly in a parallel processor,

due to the need of operating with several sets of data under a unique

control. Several parallel algorithms have been developed and tested.

They are described in the following sections.

97

7.1.2 Integer Division

The set of instructions necessary to divide HA ; ~!B = ~!c is

shmm in Fig. 7 .1. The iterative repetition of loops are under micro

programming control and the corresponding instructions have not been

shotm in the figure. The opcode mnemonic has been used, but in the

real program, a subroutine call should he used instead. The algorithm

shmm jn the flotvchart of Fig. 3.3 has been used. The contents of ~IA

are lost after the operation, Hhile PB rer:ains unaltered.

7 .1. 3 FJ-'?_<~tin:_:Toint_...:~~at_ion~

A floating-point number is represented by 4 hytes (2 Hords).

One of tltem represents the exponent and sign of the mantissa and the

other three the mantissa absolute value.

Tn a floatinf-point operation, 6 words, representing 3 flontin~

point nuMbers, and hoth accumulators are involved, according to the

follmdng scheme:

AOl

BOl

COl

AO

BO

co

Al .~.....-_A_2 _ __;:..-_A_3 _--.~1 A23

Bl B2 B3 B23

Cl ' C2 C3 C23

ACl

AC2

In any f1oatinr.::-~""~r'int 0pcr<>.tion, the acctmulatnrs are nsecl as

a tcmnorary re7ister and therefore, their original contents are lost

EXO,N2,MA,HB
SUB,HC,Hl5,Hl5

MOV ,MI ,HA
TCH,NA,Hl,PS
ADD,HA,~lA,MA

MOV ,HI ,HB
TCH,HB,Ml,PS

NOV ,Hl ,MB
15 ~SHF,ACIL,OD

times L IN'C ,NC ,HC, OD
. SHF ,AClR

MOV,MB,Hl

15
times

SUB,~1l ,HA,HB
HSG
XOV ,~1A,Hl ,NS
DEC ,Nl ,HC
HOV ,HC ,~11
SSR,HB,HB,YZ

ROT,AC2R
AND,HC,H2,HC
HOV·,Hl ,HB

· SHF,AClL
15 DADD ,}12 .~·!2 ,~12 'YZ
. SHF,AClR

t 1 mes HOV,Ml,Hl

}1AI ,NC

HOV ,Hl ,HC
TCH,HC,NC,AV,PS

;SET SIGN IN AC2
;CLEAR MC

98

;CONVERSION TO ABSOLUTE VALUE

;NORNALIZATION OF HB

;DIVISION LOOP. IT STORE THE
; INVERTED ANS~;ER IN AC2

· ; SET PROPER iwr·ffiER OF 0' s IN
;THE SOLUTION

;STORE ANSHER IN HC (IN ABSOLUTE
;VALUE)

;CONVERT ABSOLUTE VALUE TO
;2's COHPLENENT

FIGURE 7,1. INTEGER DIVISION ROUTINE (MA . MB = MC)

99

ADDITION. The addition algorithm consists of equating both exponents

~vith the value of the larger and then, adding the mantissas. In

adding A + B = X, one addend is saved \vhile the other is lost after

the addition. The steps are:

a) put the larger exponent addend in X,

b) put the smaller exponent addend in A,

c) convert X and A to 2's complement representation,

d) ali~n exponents,

e) add mantissas, and

f) convert 2' s compler:ent ansver into SAV representation.

~fi'JLTIPLICATIO:T. The r.mltiplication is carried out by adding exponents

together and the~ perfor~ing a multiplication of mantissas.

Floating multiplication hardHare performs 2 byte x 1 hvte multiplica

tion, storinR the 3 bytes ansHer in AC2. Successive shifting,

additions and multiplications allaH 3 byte x 3 byte r.1ultiplication.

Ilmrever, only the .3 most si:;nificant bytes of th E ans\ver are kept.

Both operands are saved and the answer is obtained in ACl (exponent

and mantissa sign) and AC2 (mantissa absolute value).

DIVISION. The division is accomplished by subtracting the exponent

of the divisor from the exponent of the dividend, and dividing

mantissas. The divisor is lost after the operation.

SQUARE R()OT. The square root alr;orithm uses ~~e\vton 1 s method in which

an initial approximation is made and then each succeding approxi-

700

between two successive approxim:ttions in all the cells has been

obtained. The follmdng floHchart illustrates the routine:

For X > 0

i=i+l

X e

NO

= 2N+F =

l<There N is an integer; 0 < F < 1, and

l + _______ 2_F~·-------
A - B + BF2 C

- D+F2

where A, B, C, D are fixed parameters.

For X < 0

X 1
e = --x e

LOGARITHH. The logarithm routine uses the identities:

1 < F < 2

log X = N log 2 + log F

(7 .1)

(7. 2)

(7. 3)

(7. 4)

1 01

IfY = F-1 (0 < y < 1)

8
log F = log (l+Y) = I Ai Yi (7. 5)

n=l

where Ai are fixed parameters.

SINE. To calculate sin a the steps are as follm~s:

Reduce a to a 1 0 < al < 2TI - -
Reduce al to a

2
0 < 0.2 < rr/2 - -

Consider sign a -TI/2 < a3 < TI/2 - -

Compute y
2a

3 -1 < y < 1 =--
7r - -

Compute

sin a ClYl + c y3 +
5 + c y7 = c5Y

3 7
(7 .6)

\·7here Cl, C
3

, C
5

and C
7

are fixed parameters. 'i'11iS routine is

shmvn \vi th more detail in Figs. 7. 2 and 7. 3. The flm.;rchart of

Fig. 7. 2 shm·lS hm·l the inhibit and convergence capabilities of

the cell are ~ddely used to reduee t"1e ori;:inal argument o. to

-rr/2 :: a
3

:::, rr/2. The Fig. 7.3 shaHs the succ.essive steps in

calculatinr, sin rt once a 3 is l:nmm, and the mapping of the mer1ory

\vords in each step. The final ansuer is oh tained in ?r
11

and N
12

and the original value of N. is saved j n ?r
3

and ~\. lture preeis.ion

can be ohtnined by adding terms to the formula.

COST~E. The following identity is used:

cos a sin(-rr/2

; . ('

a.)

... ' ' ~ ...

(7.7)

YES

NO

M3-4=a AC1=2rr-H5-6

CLR MIS & M7

HS-6=-H3-4 HS-6:::H5-6-2Tr

H7==1 ACl=rr-MS-6

H5-6=M3-4 H5-6=H5-6-rr

102

ACl=JL-HS-6

YES

H5-6=rr-H5-6

AC1=M7

YES

MS-6=-115~

(EY!ri)

FIGURE 7 .2. SINE ROUTINE. FLOWCHART

103

N ""' 0 ...-1 ...-1

""' \,C) CX) .-4 I I
I I I I .-4 (") Ll)

C"'l Ll) !::: 0\ .-4 ...-1
;::;:: ;::;:: ;:.:: ;::;::

"'" "'" "'"
INITIAL VALUE a

AFTER REDUCING a as

MOV,M7-8,2/TI a al 2/lT

MPY ,H9-10 ,l-15-6 ,H7-8 a a3 2/lT y

MOV,H7-8,C1 a al c, y

.MPY,H5-6,H7-8,N9-10 a C,Y c, y

MOV,H7-8,M9-10 a C1Y y y

MPY,Mll-12,M7-8,M9-10 .GY y y 1 .
a y

HPY,H7-8,H12-13,N9-10 a C.Y yl y y1

MOV ,Mll-12 ,c3 a <1Y yl y cl
HPY,Ml3-14,M12-13,N7-8 a C,Y y3 y cl C}3

ADD ,Hll-12 ,Ml3-14 ,HS-6 a C,Y y3 y LrJ

MPY,H5-6,H7-8,H9-10 a y4 yl y r.,
M!'Y ,M7 -~,~~5-6 ,~19-1 0 yS y En a I

HOV,M5-6,C5 a Cs yS y E,

NPY,Hl3-14,M5-6,H7-8 a C; yS y En ~yS

ADD ,HS-6 ,Hl3-14 ,Hll-12 a r.l~ yS y [,3

MPY,Mll-12,M7-8,M9-10 a EllS yS y y'

MPY,M7-8,M11-12,M9-10 a Lns y7 y y6

MOV,H11-12,C 7 a Ens y1 y c,
MPY,Hl3-14,Mll-12,M7-8 a Lns y1 y Cr c;t 1

ADD ,Hll-12 ,Ml3-14 ,MS-6 a Ells y7 y Lnst

FIGURE 7.3. SINE ROUTINE. --- MEMORY MAPPING

104

7.2 Simulation Pros_ram

Having built one cell, it was possible to test its behaviour,

as ~vell as the performance of the algorithms described earlier. This

~vas done using the CO:!TROL routines and several test programs. Hm.;rever,

in order .to test the full capabilities of the array such as the inter

connection bebveen cells, algorithns to solve problems involving matrix

manipulations, etc., a conplete array should he used.

Although economic limitations have made impossible the physical

construction of such an array, it has been simulated in the PDP-11

computer by means of a proijram called SPfULA,_ '>vhich has been \-.'rittcn

in PAL-ll. A]Jlx:).O cell array plus 10 buffer cells, each ~-!ith 18

computer Hords has been simulated and tested. Of the 18 computer \lords,

15 correspond to t~e 15 inte8er words of the cell, 2 to the additional

extension of ACl and AC2 and the oe1er one contains the control hits

and ca~ry state of this cell. All the simulated cells share a common

"central buffern and a "converzence flip-flop'' \vord. The arithmetic

exten~ed hardware facilities of nur rnP-11 are use~ to perform nultipli-

cation, clivision and floatinr; s~lifti.ng at very high speeds.

SI~illLA routines are called from a main proAram using the same

instructions and mnemonic that ~wuld he use.d to call CO~TTROL routines.

The pro7-ram basically tests in every cell the inhibit condition of

the instruction and compares it with the state of the corresponding

control bit. If this cell shouJd be inhibited, it ju1'1.ps to the next

c~ll. Otherwise, it finds the proper operands and the desired operation

is performed. If convergence test is asked, SHnJLA CO\llpares the

105

is set or not set. Then it sets the control bits provided the destination

word address is ACl. Finally, before SIMULA jumps to the next simulated

cell, it stores the bits of the ans\ver corresponding to the "mode"

selected in the specified destination word. The same sequence is

repeated, cell by cell until the last one is processed. At that point,

the prorram starts again with the first cell, executing the next

instruction.

The sequence used for the operation M2 = HX + 1-'fy is illustrated,

as an example, in the flm·7chart of Fig. 7.4. The same logic, Ylith

minor modifications is applied to any array operation.

Several routines which are part of the SIMULA program can load

Ol" ~ n~l"f"; ,.,,,~,. t.rnl"rl - - ~ - - - - . --

address in all the cells. A routine to dump the content of the whole

array or the output buffer into the teletype has also been included in

the program.

Several programs, running in conjunction \vith SINULA have been

tested. These include programs for gen·eral testing and programs to

solve Laplace's equation and transpose matrices. The Laplace's

equation program makes full use of the neighborhood relationship of

the cells as well as the inhibit and convergence capaoilities of the

system. On the other hand, the matrix transposition program makes

use of the row coluw~/buffer as a temporary storage of information.

The simulation program and the control program are compatible

in the sense that they can share a common main program. This proves

that the performance of a real array can be identically imitated by

SET BIAS
ADDRESS

CHANGE TO
NEXT INSTRUC.

NO

CHANGE Mz
ACCORDING TO -'-..-----1

M DE

ADDRESS
NEXT CELL

SET CONTROL
BITS

SET ACTUAL
OPERAKD ADDRES

106

CAR= 1 CAR = 0

SET CNV FF

FIGURE 7.4. SIMULA PROGRAM.
ADDITION FLOWCHART

107

using the simulation pro~ram. However, this assumption is not valid

,.,hen the time factor should be considered. The simulation program is

running in a sequential machine and the operations are performed

11pseudo-cell'' by "pseudo-cell".

All the tests reali:>:ed by using cmnROL associated Hith

several test programs have given cell performance in accordance Hith

the specifications. Very good results have also been obtained for

the prograns that have been run in conjunction ~·7ith Sl:'~l'LA.

108

CHAPTER 8

Associative Hemory

8.1 Introduction

The possibility of using the array as an associative memory

system is discussed in this Chapter.

Alt [16] defines an associative memory as a storase device

in :vhich sufficient lo.:;ic is associated ui th each •Jord of memory to

allou a parallel cor1pnrison of all the Hords in me;1ory uith a sin~le

searcl1 key. In other words, an associative rnernor~ is a syste~ in

whicl1 a word can be identified by its contents rather than by its

address (i.e., content addressable capability).

The highly par3llel computin~ system ~eems to be very adequate

for that purpose l)ecause a set of words shares an ALP in Hhich

ccn:::>.'Hisop can be carr:lc·:1 ont. Lecause only one cell ho.s ceen

cocstructcd, no atte~~t to incornor8te assorintive r~~ory cnpa~ilities

in t~c proposed array has been 'f"ade. Pm1ever, the follmdng

paragraphs will show how, with very little increase in hard~are, this

interesting feature can be incorporated into the system.

Althour,h in this array a comparison bet'-"een tt"-e searc:1 key and

all the Hords of the array cannot h~ achieved simultaneously the search

key can be co~pared with one selected word in all the cells. So

following the Alt definition, this array is a set of 15 matrices of

109

associative memory processor. Comparison between a search key and all

the words of any of these matrices can be performed.

8. 2 Searc~ Ke_y__Somparison

The 16-bit search key is loaded into the DR and the comparison

is done usinz the ALU and inhibit control bits. Some examples ~;rill

illustrate this better:

Example 1. To cletect the cells in which the contents of \vord 13 are

equal to xl (search key).

The DR is loncled uith x1 and the instruction STJTI, Y1, EXT,

lH3; is performed by the entire array. In the cells in \vhich the

values are equal, the zero flip-floc will he set. All the words of

th-e matrix "1vord 13'' are simultaneously compared with the search kev

and the zero flip-flop indicates, in each cell, Hhether the required

condition has been satisfied or not.

Exar1ple 2. To detect the cells in \Jhich (H
7

) > x
1

.

After loading x1 in the DR, the jnstruction SUR, Hl, EXT, N7

is performed. In the cells in which the condition (N7) > EXT is

satisfied, the si~n flip-flop will indicate negative.

Example 3. To detect the cells in \vhich X1 < (Hs) < X2.

The search can be done in four steps.

1. Set X2 in DR

110

3. Set x1 in DR

4. SUB, Hl, EXT, N5, 0, 0, 0, PS (inhibit if (Hs) f. X2)

In the cells in \vhich the sign flip-flop indicates negative, the

condition is satisfied.

In addition to the preceding examples, many different

combinations are possible, such as comparing tHo arrays of associative

memories, comparing a ~mrd 'vith a word of the neighbors, etc.

8.3 Cell Addresses Detection

Once the control flip-flop is set, the next step is the

detection of the ~ells i.n which the desired condition is satisfied.

The required condition for the control flip-flops are selected by the

same logic used for inhibit, bnt only four conditions are of interest

no',J. They are called the content addressable conditions, and are as

follows: ACl = 0; Ar:l :f. 0; AC2 ~ 0; AC2 < 0.

The inhibit demultiplexer, under instruction control, selects

the desired condition and the inforr-!<1tion required is available at the

inhibit output, where an a!'lsociative flip-flop is set to nl" if the

condition is satisfied or to "O" othenv-ise.

The problem is reduced now to detecting in ~vhich cells the

associative flip-flops are equal to ~'1'', and reading these addresses

into the CPU for further processing. Because more than one cell at a

time can satisfy the condition, a priority system for read out must be

desi~nr:d.

A possible confi~uration is partially sho~ro in. Fig. 8 .1. A

000

001

010

~ 011

0

ex:
100

101

110

111

C 0 L U M N

000 001 010 011 100 101 u_p ___ lll ___________ ~--~- -------,

,.....-:- ~ QJSIQLU -=•w....,.~rM"'11,. ·~·,.=------ --·------· I

r I __r I .--1: I --=:-I ~=1-===t----~-l=-=4~ -D-
'". I '. I ' I Bf 6f-BF·Btl1J==D-

0-----

COL ADDRESS (110)

D,_

gf
·:~ ;~~.lim DECODER

=::::::;.=~ I' I Rmv ADDRESS
(001)

ROW
ADDRESS
ENCODER

COLUHN
ADDRESS
ENCODER

FIGURE 8.1. ASSOCIATIVE MEMORY.
CELL ADDRESSES DETECTOR

11Z

easily extended to our 63x63 array. The priority is established on

the basis of higher priority for lm.;rer row number and in case of

the same row number, for lover column number.

The THS 2801 is an "Eight Level Priority Encoder", manufactured

by Texas Instruments. It generates an output according to the priority

levels present at its inputs. Each input corresponds to a priority

level. The highest priority level that is 11 true:' produces its

characteristic output code, regardless of the state of the lm.;rer

priority input lines.

The outputs of the associative flin-flors of all the cells arc

connected to an OP, zate in the "Rmv Address Encoder", uhile in the

"Column Address E""tcoder::, it is done throur:,h A~JD gates.

Suppose the cells that are in the intersection of rm·l 001 and

column 110 fllO; 001] and jn thP. intersection of ro\v 101 a:1d column 010

[010;101] have the associative flip-flops "high". The "Column Address

Encoder" does not have any input because the AJ';'J) gates are inhibited.

T!1e '2.'~rs 2WJJ. roH, has activated the trw input lines correspondin; to

roHs 001 and 101, but it produces an output 001 (highest priority)

Hhich is available as a "Ilorv Address". This output is decoded and

all the A~m gates of rm1 001 are activated, allm-1ing the "Column

Address Encoder' 1 to identify the hirhest priority column in that rmv.

In this case llO is the only one. The darker lines in Fis. 8.1

represent the lines that are "true" at that moment.

The information present at hoth outputs of the T'fS ~8n1' s

can be read into the CPU, givin:"?: a direct identification of the highest

l ~ ,;: 1")I :~ c

113

Once it is read, the computer could generate a pulse to reset the

corresponding associative flip-flop and the next highest priority

address can then be detected. In this example, the associative flip

flop of the cell [llO;OOl] must be reset and the system will detect

tne cell [010;101] as a second highest priority.

114

CHAPTER 9

Conclusion

Huch ~vork has been done in the last fet·l years in the field of

parallel compt~ters. Ilm:ever, no comr.1ercial parallel processor is as

yet available in the marl:et. It is expected that the availability

of LSI f11nctional·•mits anrl memories ~111 make pnrallelism economically

attractive.

Besides cost, the nain problem that has delayed a raj)id

developnent of t1v:~ rarEJll . ..,l processor has heen the lac1·: of adequate

out in this field f17l, it is ex~ecterl thHt more elahorate Ell~orith~s

Hill nermit ~,ore eff:!~io~1t use of t 1'C para1lc.l pr0ccssor, '"ven in

sequential solution fl91.

SOI/)''0~; structures such as Illiac TV [lf'l e1re vary orie;:ted tm;r.'l.rds a

pnrticu1 ar rr.achi::.e, son;E~ 'JOr1: in the area of ;-::er:eral hi ;h lew~ 1

lan.r;uage has been s tarte(l.

According to the discussion in Chapter 1, there are several

degree:; of p.::.n:-tl1e1ism. This project has ~ee:1 directed to';ard t:le

desi:;n ~me con.st:ruction of an l!PCS, nnd the SOTJ)"()~T tvp~ of strtlctm-e

has heen chosen. .\~ thOUf,}l T'lOSt of the present ~ror!'. is r:eing d4_rected

soft~<l":::r·?. \ljJl "'-:> 1:"' the c11al1end.n::; rolland mar:hine [J] reaJ.i?a};.le, once

t~1e formida111e pro1,lem of coordination het\·Jeen cells is solved.

115

The general organization of the system - composed of a PDP-11

computer, an interface unit, a control unit and the array of cells -

and the functional relationships and characteristics of the units have

been discussed in Chapter 2. Concerning the array architecture, the

cells have been organized in a pl3nar rectangular matrix with additional

row, column and central buffer. ~ach cell is related to the corresponding

buffers and the four nearest neighbors. Hm-1ever, it, is possible that

because of some future problem requirements, a further expansion of

the cell relationship to the eight nearest neighbors may he implemented.

The extension of the present planar SOLO}~N structure to a three

dimensional array could open a new area of research.

Computatjon sneed <>-nd versatility of the array mir;ht be improved

by using a more sophisticated and bigger cell. Hm·lever, the size of

the cell discussed in Chapter 3 seems to be very adequate. It is big

enough to perform floating-point arithmetic as well as to corpute

transcendent,<tl functions, but small enough to allotv an economic

construction of a large numher of cells.

The ninhihit" qyste111 permits flexibility in the control of the

operations at the cell level, vlhereas the "convergence" system is very

usef•tl for mi cronrogramming purposes.

Although operations in the cell are carried out bit-by-bit, the

incorporation of accumulators and several detectors alloHs the use. of

techniques for performing arithnetic operations at relatively high

speeds using inexpensive hardware. Hmvever, it is expected that thP

next step in an attempt to imnrove the cell itself could he the

incorporation of multiple bit arithmetic.

116

The set of instructions and mnemonic presented in Chapter 4

works very satisfactorily in accordance with the purpose of the array

and the characteristics of the minicomputer. Any operation can be

easily programmed and quickly assembled by the software supplied.

The Control Unit discussed in Chapter 5 performs its task of

decoding the information from the CPU and generating the control level

and pulses. However, the possibility of incorporating hardware

microprogramming should be considered in further improvements. Many

basic operations, such as division and floating-point arithmetic are

now under software control, but they could be incorporated in the

hardware of the system. This feature would allow the CPU to be

available for other operations while array computations are being

executed besides saving computer storage.

The cell addressing system proposed would incorporate more

flexibility in the array. The different addressing modes, in

accordance with the nature of the problem, would allow a higher cell

selection speed. The ability to operate in a half array seems to be

very advantageous because a more powerful system can be obtained

without hardware complications. If the nature of problems to be solved

with the array would require further extension, the same principle

could be used to join more than two cells together.

The system has been interfaced to a PDP-11 computer through

the Interface Unit presented in Chapter 6. The unit has been designed

in accordance with the computer specifications and it works satis

factorily.

117

The software package used in this project has been discussed

in Chapter 7. The CONTROL program permits a practical use of the

array. Several tests have been made using this set of routines and

the perfomance of the system -hardware and software- seems to be

in accordance with the specifications. The SIMULA program simulates

an array of cells in the PDP-11 computer. Some parallel algorithms

have been tested using this program. It is expected that further

research in the developments of algorithms suitable for the proposed

array or, more generally, for any parallel processor, will be made

with the SIMULA programs.

The possibility of using the array as an "associative-memory"

processor with very little increase in hardware has been pointed out

in Chapter 8. Although some content-addressable memories are now

available in the market, the increasing needs of information retrieval

in business, air traffic control and the applied sciences require a

more sophisticated associative-memory processor. The proposal made

in this Chapter seems to be adequate and powerful enough because of

the great flexibility in information comparison, as well as the very

efficient system of priority address detection, without need of scanning

or searching the full array. ·

The Interface, the Control Unit (without· the addressing system)

and one cell have been constructed and interfaced with the PDP-11

computer. One board per unit has been used. With this structure, the

system coul be expanded by simply wiring-in more cell boards.

118

All the logical functions have been implemented by using

integrated circuits, mainly from series 74/ and 74H/ manufactured by

Texas Instruments. It ~vas necessary to use 64 chips for the Control

Unit, 29 for the Interf<'lce and 67 for the Cell. A D.E.C.-M401 variable

clock, running at 4.5 }!Hz and a D.E.C.-!-1105 Address Selector have also

been connected as part of the system. A 5 Volts Pover Supph· provides

the necessarv 3.2 Amperes for all the circuits.
' /

The distribution nf chips on the boards and a complete ~viring

diagram, not included in this thesis, are available in a "Technic31

Report". The report also includes the complete listing of computer

programs used in this work.

779

REFERENCES

1. J. H. Holland; "A Universal Computer Capable of Executing an

Arbitrary Number of Subprograms Simultaneously", Proc. AFIPS,

Eastern Joint Computer Conf., 1959, pp.108-113.

2. S. H. Unger; "A Computer Oriented Toward Spatial Problems",

Proc. IRE, Vol. 46, Oct. 1958, pp.l744-1750.

3. C. Y. Lee and M. C. Paull; "A Content Addressable Distributed

Memory with Applications to Information Retrieval", Proc. IEEE

Vol. 51, June 1963, pp.924-932.

4. D. L. Slotnick, W. c. Bark and R. C. Me Reynolds; "The Solomon

Computer", Proc. AFIPS, Fall Joint Computer Conf., 1962,

pp.97-107.

5. M. A. Knapp; "Parallel Processing Computer System", Rome Air

Development .Center, Report No. RADC-TR-66-567, AD803485, Nov.

1966.

6. J. 0. Campeau; "The Block Oriented Computer", IEEE Computer

Group Conference Digest, June 1968, pp.57-60.

7. E. Della Torre and F. K. W. Ho; "Implementation of a Computing

Memory Cell", Symposium on Computers and Automata, New York,

April 1971.

8. G. H. Barnes, et al.; "The Illiac IV Computer", IEEE Transac.

on Computers, August 1968, pp.746-757.

9. W. Y. Dere and D. J. Sakrison; "Berkeley Array Processor",

IEEE Transactions on Computers, Vol.C-19,May 1970, pp.444-447.

10. W. T. Comfort; "A Modified Holland Machine", Proc. AFIPS,Fall

Joint Computer Conference, 1963, pp.481-488.

11. P. M. Davies and R. G. Ewing; "An Associative Processor",

Proc. AFIPS Fall Joint Computer Conf., 1964, pp.l47-158.

120

12. J. A. Rudolph, L. C. Fulner and W. C. Meilander, "The coming

of age of the associative processor", Electronics, February

15, 1971, pp.91-96.

13. A. H. Bobeck and H. E. D. Scovil; "Magnetic Bubbles",

Scientific American, Vol. 224, No.6, June 1971, pp.78-98.

14. I. Flores; "The Logic of Computer Arithmetic", Prentice-Hall,

Englewood Cliffs, N.J., 1963.

15. PDP-11 Interface Manual, Digital Equipment Corporation,

Mayna~d, Mass.,1971.

16. F. Alt and M. Rubinoff; "Advanced in Computers", Vol. 7,

Academic Press, New York, 1966.

17. J. L. Baer and E. C. Russell; "Preparation and Evaluation of

Computer Programs for Parallel Processing Systems", L. C.

Hobbs et al., "Parallel Processor Systems, Technologies, and

Applications", Spartan Books, New York, 1970, pp.375-415.

18. J. 0. Campeau; "Communication and Sequential Problems in the

Parallel Processor", L. C. Hobbs et al., "Parallel Processor

Systems, Technologies and Applications", Spartan Books, New

York, 1970, pp.215-234.

19. David J. Kuck; "ILLIAC IV Software and Application Programming",

IEEE Transactions on Computers, Vol.C-17,No.8, August 1968,

pp.758-770.

