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ABSTRACT

A highly parallel computing system capable of computing
transcendental functions, matrix operations and iterative
calculations has been devised and a typical cell has been
implemented. The system consists of an array of cells, a
control unit, a PDP-11 computer and an interface unit. The
array uses modified SOLOMON type of communication between
cells, Each cell consists of 15 words and arithmetic hardware.
Arithmetic and logic operations, on words or bytes, may be
performed serially between pairs of tﬁese words., Division and
floating-point arithmetic are under software control, Parallel
‘algorithms have been developed. A set of instructions and
mnemonics permits a practical use of the system. The possibil-
ity of using the array as an associative-memory processor is
also.considered. The system has been tested by using the
software package prepared. Although only one cell has actually
been constructed a complete array hés been simulated on a

PDP-~11 computer,
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CHAPTER 1

Introduction

1.1 Background

Since the advent of the first commercial electronic computer, a
great deal of improvement has been realizéd. The technological develop-
ments’ in semiconductors and magnetic materials have allowed an increase
in speed, reliability and versatility of the digital computer, together
with a reduction in phvsical size and cost.

On the other hand, architectural changes have been introduced
in order to improve the computation speed. The efforts have been
mainly directed to process information in a parallel fashion. The

different degrees of parallelism that have been used are:

MULTIPLE BIT PROCESSING PARALLRLISM
The multiple bit processing parallelism consists in considering each
word as a unit of information so that all the bits of a word are
processed simultaneously. The idea is used in most of the modern
computers. Some of them use this feature only for addition,
subtraction and logical operations. The more sophisticated machines
use the same principle also in multiplication, division and even

floating~roint operations.

MULTIPLE FUNCTION PROCESSIMG PARALLELISM
The multiple function processing parallelism consists in transferring

the information between the units under device and channel control,



while the CPU is processing data. The functional relationship
among the units is optimized and a high degree of overlapping is
obtained, especially between the I/0 devices and the CPU. The

"third-generation” computers make use of this feature.

MULTIPLE FUNCTION STREAM PROCESSING PARALLELISM

The multiple function stream processing parallelism consists in
distributing a sequence of instrﬁctions over a sequence of "small
computers' so‘that many subprograms can be simultaneously executed,
as suggested by Holland [1]. Many "small computers" or modules,
each with their own processor unit, a bank of memory and a control
unit ére interconnected among themselves forming an array. Because
the complexity of efficient programming and prohibitive cost, no

practical application of the Folland machine has vet been found.

HIGHLY PARALLEL COMPUTING SYSTEM (HPCS)
The HPCS makes use of single instruction stream which is executed
simultaneously by many identical arithmetic-logic processors, each
operating with a different set of parametric values of the same
data type. It seems to be an approach to the solution for problems
in which a very large set of data should be processed in a given

time or for problems with inherent parallelism.

The concept of HPCS was sugeested by Unger [2]. His machine has
been conceived as a means of dota manipulation where spatial
configuration has significance (e.g., identification of edges,

corners, curvatures and closed resions, solution of Karnaugh maps, 2tc.).



Lee and Paull [3] make use of a particular form of content-
addresséble memory; They developed a machine which is very useful
whenever data must be identified by its contents rather than by

its location in memory (e.g., go find identical patterns, to search
for values between certain specified limits or to find an item

closest to a given one, etc.).

The SOLOMON (Simultaneous Operation.Linked Ordinal Modular Network)
machine [4] is~a general purpose parallel computer which has more
practical applications than any of its predecessors., It can be
used in weafherforecasting, nuclear physics problems, large hvdro-

dynamics problems, character recognition, optimization, and so ferth.

Different versions of this computer have been constructed by Knapp [3],
Litton [6] and Della Torre and Ho [7]. The most sophisticated versicn,
the Il1liac IV [8) is now under advanced construction. The machine
proposed in this thesis is also a modified version of the SOLOMON

computer,

Many other parallel machines have been suggested and/or constructed
but a sharp classification cannot be made. For example, the Berkeley
Array Processor [9] is a special purpose computer designed to perform the
operations of correlation, convolution, recursive filtering, matrix
manipulations, etc. The modified Holland machine [10] is an improvement
over the basic Holland machine while the Davies-Associative Processor {11]
and the Goodyear's Associative Processor [12] can be considered a

further step on the lLee and Paull machine [3].



1.2 Philosophy of the Proposed System

In an attempt to build a highly parallel computing system, it
has been found that the SOLOMON structure is a good starting point

because:

a) it is a general purpose computer;

b) the development of the integrated semiconductor electronics in the
past few years may 1egd to the construction of a large number of
identical cells at low cost, using the LSI techniques; and the
cylindrical magnetic domains (bubbles) in certain uniaxial magnetic
materials [13], seem to have natural applications in performing

memory and logic functions for large quantities of data, at very

Tow ecnst and nhyaical gize;

c) most of the large scale computing jobs are generated from the
repetitive execution of the same algorithm over and over on different

pieces of dataj;

d) only one control unit is needed, regardless of the number of cells
used, therefore the computing power is increased with a comparatively

small increase in hardware;
e) associative-memory capabilities can be easily introduced.

The range of the degree of complexity of the cells in the
different versions of SOLOMON computer is very wide. It varies from
the relatively simple Della Torre and Ho's cell[7], with 3, 12-bit

memory words and single-bit processing, to the scophisticated Illiac IV (8]



with 2048, 64-bit memory words and a very elaborate multiple-bit

arithmetic unit. The greater the degree of complexity of the cells,

the fewer of them that can be built for a given price. A compromise

has been made in this thesis.

As a base for the design, the following specifications must be

satisfied.

a)

b)

c)

d)

e)

f)

2)

The svstem should be compatible with existing minicomputers,

particularly with the PDP-11 available.
The structure of the array must allow easy handling of matrices.

Each cell should be the simplest possible but complex enough for
performing any arithmetic or logic operation. It should he =zble
to perform floating-point arithmetic and compute transcendental

functions under software control.

Fach cell should have some degree of autonomy in the way that they

can accept cf reject the common instruction, according to local tests.

Each cell must be able to communicate to the control unit that some

¥

degree of "convergence' between certain particular data under

processing has been ohtained.
The system should have some content-addressable memory capabilities.

The contrel unit and the instruction set should allow a practical

use of the array.



1.3 Outline of the Thesis

The aim of this thesis is to present a new HPCS suitable for
solving problems in which a matrix or mesh of numerical values as well
as information retrieval are involved. Such operations are encountered
in communication, character recognition, hydrodynamics, heat flow,
optimization, weather forecasting and air traffic problems.

The general organization of the system as well as the array
architecture are presented in Chapter 2,

Chapter 3 deals with the philosophy of the cell design and
its configuration., It includes a discussion of the data representation
systems used, the-techniques for doing arithmetic operations and the
conditional branch capabilities. The Chapter ends with a section in
which a description of the cell is made.

The operation of the cell, from the operands seleption point
of view is described in Chapter 4. The instruction set and a mnemonic
" language are also proposed in this Chapter.

In Chapter 5, the implementation of the Control Unit is

~ discussed, 'Design considerations of the individual subunits (instruction
decoder, control pulses generator and cell addressing system) are
treated.

The interface between the computer and the rest of the system
is described in Chapter 6.

The software used in this project is described in Chapter 7,
where several algorithms are proposed. A program to control the cell

and the microprogramming of the algorithms are discussed. Finally, a



routine which allows the PDP-11 to simulate an array of cells is also
presented in this Chapter.

The possibility of using the array as an associative memory
processor is discussed in Chapter 8., A technique for carrying out
the comparison and the detection of the cell addresses is proposed,

Cﬁapter 9 summarizes the contents of the preceding Chapters

and suggests future improvement of the system proposed in this work.



2.1

CHAPTER 2

General Organization

System Organization

The general organization of the system is shown in Fig. 2.1.

It consists of four main parts:

l'

A PDP-11 COMPUTER

The PDP-11 computer is assigned the following functions.

ay

b)
c)
d)

Storage of data and instructions.
Executive control of the execution of array programs.
External I/0 processing and supervision.

Compilation of programs.

AN INTERFACE UNIT

The interface unit makes possible the communication between the

PDP-11 and the rest of the system by

a)

b)

solving some compatibility problems, and

acting as a temporary. storage of information.

A CONTROL UNIT (CU)

The CU has the following functions.

a)

b)

To receive instructions from the computer, to decode them and
to generate enable signals which are broadcast to all the cells
in the arrav.

To penerate the control pulses transmitted to the cells for
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c)

d)

e)

£)

10

instruction execution.

To receive and compare convergence information from the array

- of cells.

To address the particular cell (or cells) in which transfer

of information as well as arithmetic and logic operatioms (ALO)
are enabled.

To notify the compuger (by setting a flag) about the convergence
condition. of the system.

To notify the computer (by setting a flag) that the execution

of the instruction has finished.

4. THE ARRAY OF CELLS

The array consists of a set of cells interconnected among themselves

by data intercharge lines. Every cell can store and process

information. The execution of any arithmetic or logic operation in

the enabled cells depends upon:

a)

b)

c)

the level of the control lines during the execution of the
operation,

the presence or absence of appropriate pulses in the control
pulses lines in the precise moment, and

the state of the control bits of the cell.

Whereas the control bits depend on the historv of that particular

cell, the other levels and pulses are ¢enerated in the CU and applied to

all the cells simultaneonslv,

The cells are enabled by the cell address lines. Information

about the convergence condition of every cell is sent to the CU where
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the inequality signals are OR-ed, giving a convergence state for the

whole array.

2,2 Array Architecture

2.2,1 Geometrical configuration

Similar fo the SOLOMON organization, from the data transference
point of view, the cells are interconnected forming a basic two
dimensional rectangular matrix in which each cell is an element of it.
Each cell is comnnected by serial data busses to its four nearest
neighbors: the cell immediately to the nqrth, N; south, S; east, E;
and west, W.

Different neighbourhood relationships can be assumed for the
"edge" elements of the basic two dimensional rectangular matrix, and

the array can be geometrically

a) a planar rectangular matrix, assuming no N neighbors for the first

row; no S neighbors for the last one; no E neighbors for the last

column; and no W neighbors for the first onme.

b) a horizontal cylinder, considering the elements of the first and

last rows as adjacent.

¢) a vertical cylinder, considering the elements of the first and

last columns as adjacent,

d) a torus, assuming that conditions b) and ¢) are verified simultan-

eously.
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The configuration a) has been selected for this thesis.
However, the user can change from one configuration to another by
simple wiring of the "edge” elements. It would be possible to
incorporate in the system a circuit vhich allows changes of geometrical

configuration under program control.

2.2.2 Row and Colurm Buffers

The mathematical operations in which matrix manipulations ar:z
involved can be greatly simplified bv adding a row and a columm buffar
to the basic geometrical configuration.

The buffers are cells like the other ones, but with different

n2ighbourhood intarconnections. Tach cell of the row (column) buf

has bidirectional communication with the correspondine cells in ail fn-

rows {(colunns). So the buffers become the fifth and sixth neighbore of

each cell.
Suppose we wish to transpose an nxn matrix, where every eleoont
of it ig the word x «f a cell of the arrav. The pouseible gstaps are

illustrated in the flowchart of Figz. 2.2. Step [ could he skiopn

if a unique cell can simultansously he an element of the row and the
column buffers,

Transfer of data between the matrix of cells and both huffers
is never nerisrmad sirultanczeouslv. fo, bv using 2 commen row and
column huffer, a hicher dezree of parallelism efficiency can he

obtained,
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2.2.3 Central Buffer

There are many calculations in which all the cells use a common
operand. Memory space can be saved if these operands are stored in a
central buffer (CB), instead of being stored in each cell., The CB is
a register located in the interface unit and it is loaded directly
from the CPU, It has connection with all the cells of the array and

it can be considered the cell's seventh neighbor.

In conclusion, each cell can operate with:
a) its own data;
b) the four nearest neighbors data;
c) the corresponding row or column buffer data; and
d) the central buffer data.

The cells data communication is illustrated in Fig. 2.3.

2.3 Control Bus

The control bus is a unidirectional bus carrying the control
levels and pulses from the CU to all the cells. The CU sends a common
instruction to every cell of the array. However, the cell addressing
system allows certain degree of exclusiveness in a particular cell or
set of them. Each cell operates with its own data and.in accordance

with the required inhibit conditions.
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CHAPTER 3

The Cell

3.1 Philosophy of the Design

In order to have a practical array several cells should be
built. Because of cost limitations, it will be possible to do so only
by using LSI technology, but this problem is out of the scope of this
thesis. The cell discussed here is intended to be a feasibility study
rather than a commercial unit so small and medium scale integration
technology is used.

The very first point in the design of the cell should concern
its complexity and size. Multiple bit parallelism and floating-point
arithmetic hardware are the cornerstones for anv high-speed scientific
computer but this hardware is very expensive. 1In this feasibility
study and because of cost limitations, it has been decided to use
serial bit arithmetic and to do division and floating-point arithmetic
under software control.

A study of the algorithms necessary to calculate transcendental
functions in both integer and floating-point modes has been done.

It was found that a cell with 15 words memory bank is complex enough
to compute these functions as is shown in Chapter 72. A 16-bit word
memory size has been chosen for this project because it is compatible
with the PDP-11 computer used as well as it is easy to get in the TTL

memory market.
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The arithmetic-logic unit (ALU) should be able to perform the
basic arithmetic and logic operations, in serial fashion, within the
contenté of the memories of thé cell itself or the neighbors.

Several selectors should be able to select, from the memory
bank, the corresponding source and destination word.

In addition to the ALU, the memories and their associated
selectors, other devices such as accumulators and control bits have
been incorporated'in the cell and their use is discussed in the

following paragraphs.

3.2 Representation of Data

The cell is essentially a 16-bit word processor. Each word
represents a logical veriable or an integer.

Three different binary data represeﬁtations are used in electronic
digital computers: 1's complement, 2's complement (TCM) and sign/absolute
value (SAV). The 2's complement data representation was chosen for this
cell, because its arithmetic requires less hardware whenever addition or
subtraction is performed [14].

Sophisticated and equnsive circuits would be required to perform
hardvare division. So the fourth arithmetic operation is done under
software control. Because the SAV representation makes the division
easier, the svstem provides facilities to change from one data represen-
tation to another.

Using 16 bits, TCH representation, the range of an integer is
from -32,768 to +32,767. This is a very restricted interval. In order

to allow the user more flexibility the cell must have the capability of
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performing floating-point operations, under software control. Two
16-bit words are used to represent a floating-point number X, according

to the following scheme:

‘0l ! 7'8 1516 31!
{ EXPONENT MANTTISSA

[J:Exponent sign

Mantissa sign
|-¢—— CELL WORD =l< CELL WORD ———

ONENT
X = .MANTISSA x 2°%F

The mantissa is in SAV representation. After a non-zero
mantissa has been normalized, its absolute value is a fraction in the
range

3 < |MaNTISSA] < 1

The exponent of base 2 is in TCM representation. It is any

integer in the range

From the preceding considerations, it is seen that a cell word

can represent the following types of wvariables:

a string of 16 locical characters. LOGICAL
a two's complement integer. S INTEGER [
a sign/absolute value integer. S INTEGER
a part of the AV of the mantissa. MANTISSA ]
the sign and part of the AV of slsl EXPONENT MANTISSA ]

the mantissa and TCM exronent.
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A set of instructions, a control unit and the cell itself have
been designed in order to be able to manipulate any of these data

representations.

3.3 Integer Arithmetic

3.3.1 Serial Operations

The cell has been structured around the ALU., Because no more
than two operands are involved in any ALO, the ALU has two data inputs,
X and Y; and oneboutput, Z. It can perform the following operations:
addition, subtraction, logical and, logical or, exclusive or, complement,
two's complement, increment, decrement and move (interregister transfer).

The cell operates in serial fashioh, so one operation cycle of
16 bit cycles is necessary to perform any of these integer operations,
one bit at a time. "Shift to the right' is equivalent, in binary
representation, to divide by 2. It is serially performed by 'adding'
‘a number to itself, but’with an operation cvcle running from the most
gsignificant bit (MSB) to the least significant bit (LSRB).

For any of these operations, the data should be serially
accessed from the memory bank. Sixteen-bit TTL memories with direct
address, non-destructive read-out and high speed characteristics have

been chosen. They satisfy the design requireﬁents.

3.3.2 Multiplication

The "add/shift/inhibit" technique is used. It is a modification

of the classic "add/shift’ technique. For the oreration AxR=(C the
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"add/shift" technique consists of the steps shown in the flowchart of
Fig. 3.1. When the "Nth" less significaﬁt bit (LSB) of B is being
interrdgated "N-1" left shifting in A have already been performed.
Therefore, the "N-1" LSB'Q of A are equal to zero and no change is
‘produced in the "N-1" LSB's of C during the add cycle, A+C=C.

The "add/shift/inhibit" technique. consists in inhibiting the
part of the add cycle in which no change occurs in C and to start the
add c&cle in bit N, after the multiplier B interrogation has been
performed. The necessary train of pulses is shown in Fig. 3.2. 1If
parallel shifting can be performed, this algorithm does multiplication
very efficiently, because addition, shifting and multiplier interrogation
can be performed in one operation cycle. The size of the answer cannot
exceed 16 bits, so a multiplier and a multiplicand of 8 bits each are
assumed. Therefore, the complete multipliéation cycle in integer mode
consists of 8 operation cycles.

The operation ''shift B rizht’, shown in the flowchart is done
by shifting the bit gf B being interrogated each cvcle. In order to
perform parallel‘shifting of A, the multiplicand must be in a 16-bit
shift left register. It differs from the others direct-address words

and is called accumulator 1 (ACLl).

3.3.3 Division
The technique used consists of four parts:
1. Conversion of the negative numberé from TCM representation to SAV
representation.

2. Normalizaticn of the divisor.
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3. Restoring division.

4. Conversion of the answer from SAV representation to TCM representation.

The logic used is shown in the flowchart of Fig, 3.3. 1In the first step,
the numbers (except the MSB) must be 2's complemented if they are
negative; otherwise they sﬂould remain unaltered. A '"'sign detector' in
AC1 is incorporated for this purpose. Hardware'for manipulating only
15 of the 16 bits is necessary in order not to change the MSB.

In the normalization part, the divisor rust Ee left shifted
until a 1" reaches the MSB. Again, ACl is utiiized, adding a "1 detector”
in the MSR.

In the division itself, the restoring method is utilized. A
cycle is defined as the processing required to generate a single bhit of

the quotient. For dividing I, & My o= Mo the technique consists of
‘ )

subtracting M\ - M,. If the answer is positive, the subtraction is
¢ D

successful. The answer is the new value of MA for further cycles and

a "1" is obtained as the next MSB of the quotient. On the other hand,

if the subtraction is unsucessful (2\ - M, < o), MA is not chanced and a

jal

70" is obtained as the next MSB of the quotient. Finally, M, is shifted
3

to the right one bit and a new cycle begins.

The number of cycles|should be equal to the number of shifts
during the normalization part. In order to do so one of the registers
acts as a counter. After beiﬁg reset to "0" it is increased by "1"
every shifting performed. Then a "1" is subtracted from the register

everv division cvele until & 0" is detected. A "zero detector’ in

ACl will do the job.
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In addition, a new 16-bit shift register is necessary in order
to store the quotient, which is obtained, one bit per cycle from the
"sign detector'. It is called accumulator 2 (AC2). A ''move sign of
ACl to AC2'" logic will transfer the information available at the "sign
detector' to the AC2.

Unlike the other operations, in division the answer is obtained
starting from the MSB and its absolute value (AV) is shown up inverted
in AC2. An "invert AC2" logic will invert the AV of AC2 and will store
it as an AV in the 15 LSB's of a specified register. If the FEXO of the
dividend and the divisor had been previously stored in this register,
its MSB would contain the sign of the answer and, after the inversion
of AC2, the content of this register would be the SAV of the answer.

The last step in the division consists in the conversion of

the answer from SAV to TCM representation.

Many of the operations discﬁssed so far makevuse of the special
capabilities of ACl. For that reason, the user may wish to transfer
the contents of any word of memory to ACl. Using the "move' operation,
the content of the accumulator would be lost unless it is previously
saved in another word. In order ﬁo save extra memory aﬁd extra number
of steps, an "interchange AC1" logic is included. It interchanges the

contents of any memory word with the contents of ACl.

3.4 Floating-Point Arithmetic

Before any floating-point operation, the number must be normal-

ized. This is accomplished by transferring the 24-bit mantissa to a
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24-bit shift-left accumulator and shifting it until a '"1" is detected
in the MSB. Every left shifting must be accompanied by a subtraction
of "1" in the exponent. On the other hand, every right shifting must
be accompanied by an addition of ''1" in the exponent. Otherwise, the
number would change.

Multiplication between two numbers is performed by multiplying
the mantissas and adding the exponents. The sign of the answer is the
exclusive-or of the two mantissé signs.

Addition is carried out by shifting‘the mantissa of the number
with smaller exponent to the right a number of times so that the
exponents of both addend are equal. The addition of the mantissas is
the mantissa of the answer and the common exponent is the exponent of
the answer. Because the mantissas are represented in SAV, a conversion
to TCM is necessary before the addition.

Division is performed by subtracting the exponents, dividing
the mantissas and EX0O-ing the signs.

All the floating-point operations discussed can be done, under
software control, extending both accumulators, with the same 'zero',
"sign'" and '"1" detectors capabilities to a 24-bit register. Each
accumulator has available two inputs, "integer’” (INT) and "floating"
(FLT) which allow incoming data to use the accumulator as a l1l6-bit or
24-bit register. Aside from this, it is necessary to have a hardware

capable of operating in different modes, as follows:

In multiplication:

a) INTEGER MULTIPLICATION, where bits 0-8 are interrogated, and the

"inhibit/add" cycles last 16 bit cycles.
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FLOATING MULTIPLICATION, where bits 0-8 are interrogated, and the

"inhibit/add" cycles last 24 bit cycles.

the others ALO:

a)
b)
c)

d)

e)

£)

INTEGER, where bits 0-15 are processed and the INT input is used.
FIRST BYTE, where bits 0-7 are processed and the FLT input is used.
SECOWD BYTE, where bitsA8—15 are processed and the FLT input is used.
EXPONENTIAL, Qhere bits 8-14 are normally processed, bit 15 is EXO-ed
and the FLT input is used.

ABSOLUTE VALUE, where bits 0-14 are processed and the IMT input
is.used.

INTEGER FLOATING INPUT, where bits 0-15 are processed and the FLT

input is used.

When an overflow occurs in any arithmetic operation, the carry

flip-flop is set on. Normally it is cleared before any new operation

starts, but when two words operation is required it should be used as

a link between both. This is the case of the mantissas in floating-

point representation. lence, the capability to operate without clear

the carry has also been incorporated to the hardware. This feature

also allows the cell to perform double-precision arithmetic under

software control.

3.5

Conditional Pranch

In a sequential computer, there is an interaction between the

data and the control unit. The conditional branch instructions allow
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the user to alter program flow according to data tests. In a HPCS a
direct interaction is impossible because different sets of data are
operating with the same instruction stream.

The problem has been solved by using the "inhibit" and "conver-
gence' system.

Inhibit is the property of each cell to enable or disable,
according to local tests, local exeéution of a command. Conditional
inhibit permits inhibit of the operation according to-data tests (e.g.,
inhibit if ACl = 0). Unconditional inhibit permits ask for the
inhibition of a cell for its position in the array, independently of
its data content. (e.g., inhibit boundary cells in solving Laplace's
equation).

Convergence is a property of the array. Each cell comnares
newv data being introduced with the content of a particular word. If
thé comparison gives equality in avgiven range in all the cells
simultaneously, a "flag'" is set. The CPU can be microprogrammed to
interrogzate the ''flag', allowing the array, in iterative process to
self-determine the number of passes until a desired convergence is

reached in all the cells.

3.6 Cell Description

The cell, shown in Fig. 3.4, contains the following elements:
Two 24-bit accumulators.
Thirteen 16-bit direct-address memories.
A 1-to-16 lines demultiplexer.

Two 16-to-1 line multiplexers.
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An 8-to-1 line multiplexer

An arithmetic and logic unit.

Two data latch flip-flops.

Four control flip-flops.

A 4-to-1 line inhibit multiplexer.

Several gates.

The characteristics and functions of these elements are described in
the following seétions.

The cell can perform the operations listed in Table 4.1.
Addition, subtraction, and, exclusive-or, logical or, complement, two's
complemenf, increment, decrement, move, shift serially to the right,
invert AC2 and control transfer are performed in serial fashion, bit-
by-bit, through the ALU, Interchange is also done serially, but without
intervention of the ALU. Parallel shiftiné is performed in parallel,
all the bits at a time, in the accumulators, while multiplication is
carried out by combining both, serial and parallel operations.
Computer—-cell communication as well as buffer-array communication are
performed serially, but only in the cells that have been selected bv
the cell addressing system. Finally, move EIEE to AC2 is done by

using the AC2 and a few gates.

3.6.1 Accumulators

Two accumulators, ACl and AC2, have been designed. Their size,
as well as their shifting and testing capabilities are in accordance

to previous discusgiorns. They can also be used like any of the other
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13 words whenever the épecial accumulators capabilities are not
required.

Each accumulator consists of a 24-bit shift register although
only 16 bits are enabled when the FLT input is not used, as is shown
in Figs. 3.5 and 3.6. The "'writing' is done serially through the left
side (write 1 line) and the "reading' is performed serially through
the right side (read line). The ROT line controls the flowv of
information into the input., If ROT is high, the output is fed-back
to the input and the information is recalled in non~destructive mode.
This allows the accumulators to be used for reading without losing
their contents, like in the other 13 words. This also enables the
accumulators to perform circular shifting, vhere the empty places
produced by the shifting are replaced by the bits that fall off the end.
On the other hand, when ROT is activated neﬁ information can be written
in the accumulators whenever one of them has been chosen by the de-
multiplexer (DMPX) for storing the ans&er of an operation or new data.
Also, logical shifting, where the empty places are replaced by 0's are
performed with ROT control high. In that case, SUIFT (SHF) line
should be held high to make sure that the empty places are filled with
0's.

The accumulator 1 can be left or right shifted, according to
the level of tho SIR DIRECTION line. Clock (CL) ACl is activated every
time ACl is selected for operations (read, write, shift) but it cannot
reach the accumulator clock whenever ihe cell is inhibited. Information
from the output line is sent directly to the 16 LSB's of ACl, whenever

interchange (ICH) line is held high.



?

oL

IR 8 BITS
SHIFT L/ﬁL

DTR

CR

CL

FOd >
FLT RIGUT

®

ROT

WR 1

[:>C ACl

OUT LEFT

OUT
RIGYT
: N
16 BITS SHIFT L/R [ ;bpf-"1" ; /
DIRECTION cL

<FLT

o SHR DIRECTION

l

ZERO
FT

e
INH

FF

b

FF

@’

Q
CNV

ONTROL

¢fOU

(L

SIGN CL

- TRANSFER CL

CLR TO ZERO

FIGURE 3.5.

ZERO CL
ACCUMULATOR 1 AND CONTROL BITS

READ

| ————cL ACl

ann
\__——

I_:::::>4-To OUTPUT
C

1



8 BIIS SH REG —'_I_LJ_

o

[_)-oee—

SHF

'-( ROT AC2
- | oQ—- INH MPY

8 BITS SH REG

8 BITS SH REG

CONDITION

TSEL0
|

INH
DMPX

SIGN

1§ @@57

UNCONDITIONAL ENB

FLT Q) FLT

FIGURE 3.6.

ACCUMULATOR 2,

=
IO Do By

INHIBIT SYSTEM,.

Dc READ

— L AC2
D INH

Dg,:}"—“ CNV PULSES
Z

CONVERGENCE SYSTEM

)



33

The accumulator 2 can only be shifted to the right. No
applications for both directions shifting have been found and therefore
considerable amounts of hardware can be saved., It works with an
independent clock which is activated whenever AC2 is seiected for
operations, but it cannot clock it when the cell is'inhibited. The
value of the sign of ACl is written in AC2 using ﬁhe control line

move sign to AC2 (MSG).

3.6.2 Direct Address Memories

Sixteen-bit active-element memories arranged in a 4 by 4 matrix
are uséd., Four X and four Y lines permit the addressing of one bit
at a time. The memories have non-destructive read-out.. "Write 0" and
"Write 1" are independent inputs which are accessible when the word has
been selected for writing. Information can be written or read in any
bit, changing the bit address. The memories cahnot be used to provide
information of the state of a bit while writing .in the same bit is

performed,

3.6.3 Demultiplexer (DMPX)

'

The DMPX selects the word in which the information is being

written. The decoding function is performed by using 4 control lines
to address the 16 output lines,'as is shown in.Fig. 3.7. The "write
0" or "write 1" pulses are sent to the selected word through any of
the two AND gates that the decoder output lines maintain available,
If ACl or AC2 are selected, only the "write 1" line is used because

the absence of write pulses during a bit cycle is equivalent to write



5V
T
SELECTORS
A BCD

AtL
ACID
acib
M3
Hh

5:3 M5 b
M6 PO

é M7 b
s b

2 M3 b
Hic
M
M2
130
ko
Mk,

ENB

WR PULSES®

aNE

MPY INH

iived

34

WR 1
_ WR 1
AC2 IN AC2
‘ ‘ WR
f WR 1 IN
WR
c | TR 1 IN
M& IN M4
- WR
WR 1 IN
M5  —— IN M5
WR 1 IN
M6 ——é ; —___D‘IN M6
: ! WR
© ! _WR 1 IN
M7 — IN M7
: )____WR
M8 IN M8 —
| __WR
. WR 1 = IN.
M9  —— > IN MO
t WR
_ WR 1 IN
M10 —— IN M1
: WR
L™\ w1 > IN
M1l — . J—IN M1Y
WR
- i WR 1 IN
M12 — IN M13 :
N . WR
M13 - IN M13
— > O B
_UR 1 IN
M14 — IN M14

0
M3

Ny

FIGURE 3.7, DEMULTIPLEXER




35

a "0" in the accumulators. When the output O is selected by the decoder,
the information is sent to all the words. This can be particularly
useful in clearing the cell.

If any of the inhibit condition occurs, the DMPX produces no
output and no change of the contents of the memories are possible,
It is also inhibited, using the DENB line, in operations in which the

DMPX is not involwed.

3.6.4 Multiplexers A and B (MPX A, MPX B)

The multiplexers select one of the 15 words that are sent to
the data latch flip-flops, bit-by-bit (Fig. 3.4). A selection of "0
means that none of the words are selected. For some operations in
which the multiplexers are not involved, their operations are inhibited

by using the corresponding ENB lines.

3.6.5 Multiplexer C (MPX C)

The MPX C is the input selector. Three control lines select
the information available in DB of the cell itself or any of its four
neighbours (W, S, E or W), the ROV or COL buffers, or the central
buffer. The output c¢f this MPX is directed to the Y input of the ALU.
In operations in which ¥PX C is not involved, its output is inhibited

by the C ENRB line.

3.6.6 DNata Latch Flip-Flops (0, and D,)

The data latch flip-flops are used as a temporary storage of

information. It is possible to take information from a word and write
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the answer in another word almosﬁ simultaneously. But the character-
istics.of the memories do not allow one to write new information in
the same word which is simultaneously being read. The problem is
solved by dividing the.bit cycle into a read and a write subcycle.
During the read subcycle, the information available at the outputs of
the MPX A and MPX B are latched by the "data latch' clock in the
corresponding flip-flops. While the write subcycle is performed the
data is taken frog the data latch flip-flops rather than from the
memories themselves and new data can be entered into the selected
memory word.

Tﬁe information available in Dy can be sent to the Y input
of the ALU of the same cell, its four neighbors, the row or columm
buffers or to the CB. However DA output i; only sent to the X input
of -the ALU or to the MPY INH line of the same cell.

When MPY is performed, DA holds the multiplier during the add

cycle. When the cycle finishes, reset (RST D&) clock is activated

Dp
and the flip-flop (FF) remains in "'zero' during the inhibit cycle,

until a new interrogation is performed by the MPY clock. The output

of DA controls the MPY INH line level.

3.6.7 Arithmetic-Lonic Unit (ALU)

The ALU is the heart of the cell because all the serial
arithmetic and logic operations (ALO) are performed there. The
operations are carried out in serial fashion, one bit at a time.

The ALU, as is shown in Fig. 3.8, is composed of:
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a) A l-bit binary full adder, that performs the addition of the three
inputs; A, B and carry in (Cn). Two outputs are available:

).

sum (Z) and carry out @n+1

b) An exclusive-or gate that transfer the Y input of the ALU to the B
input of the adder in "true'" or "complement' form, according to the

level of the COM line.

¢) A carry flip-flop, controlled by the carry clock (CAR CL), that

holds the output Cn+ in order to be used as the input Cn in the

1
next bit cycle. It can be preset and cleared, according to the

desired operation.

d) A 2-to-1 output selector, that selects the adder output to be

transferred to the Z output of the ALU.

Assuming no carry is present in Cn (Cn=0), the l-bit binary

full adder gives the following outputs:

Y= AWB C, =AAB

The output selector can select anv of these outputs to send to the 2
output line.
The following arithmetic and logic operations can be performed

in the ALU:

EXCLUSIVE-OR OPERATION (EXO)
Transferring the Y input of the ALU to B in "true” form and selecting

the ] output (DUT SEL 1 = 1, OUT SEL 2 = 0), the output 7 is:
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Z=)=A¥B=3XX¥Y
e Z=XNY (3.

AND OPERATION (AND)

In the same conditions, but selecting the Cn+l output:

Z=XAY (3.2)

OR OPERATION (LOR)

Selecting both z and Cn+1 outputs, the Z output is the OR-ing of

them:
Z = XVY)V(XAY) = (XADV (XAY) V (XAY)
= XAY) V XAXVY) = X VY
Z=XVY (3.3)

MOVE OPERATION (MOV)

Performing and exclusive-or, but with the X input inhibited:

OY =Y

N
]

Z=Y (3.4)

COMPLEMENT OPERATION (COM)

In the same conditions, but complementing the Y input:

N
L

0OPY =Y

o Z =Y (3.5)



ADDITION OPERATION (ADD)

By using a CAR CL pulse the carry Cn+ is fed back to Ch-

1
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It is

added in the next bit and ) gives the arithmetic addition of A

and B. Selecting the z output:
Z7=X+Y
INCREMENT OPERATION (INC)
Presetting the carrv flip-flop and inhibiting the X input:
Z=Y+ 1

THO's COMPLEMENT OPERATION (TCM)

In the same condition, but complementing the Y input:

SURTRACTION OPERATION (SUB)

Adding the ¥ input to the last operation, 7 becomes:

Z=X+Y+1=3X-Y

DECRELENT OPERATION (DEC)

(3.6)

(3.7)

(3.8)

(3.9)

Inhibiting the Y input and holding COM line high, the B input is

equal to 111 ...1. In two's complement representation, this is

the number -1. Addinz A + B, the Z output is:

.

(3.10)

In conciusion, the ALO that the ALU performs deperds upon:

a)  the level of COY, OUT SFL 1 and OUT SFL 2 durins the cvele.
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b) the absence or presence of the carry pulses (preset, clear and clock)
in the proper moment.

c) the enable inputs.

These conditions are indicated in the table of Fig. 3.8, where
a 1 indicates; level high, pulse present and input enable; and a O
indicates the complementary conditions. The enable input lines are

controlled by the enable lines of MPX A and MPX C.

3.6.8 Control Bits

Thgre are four control bits (Fig. 3.5). Two of them,''zero"
and "sign" are set automatically. They give an indication of the zero/
non zero and sign of the last data written in ACl. On the otherAhand,
"iphibit" and "convergence' bits are unconditionally preset in the
chosen cells from the CPU during the loading.

New data enters ACl through its ‘'write 1" line and a sample
of this information is sent to the inputs of the sign and zero FF's.
~ When ACl has heen selected as a destination\word and before the operation
cvcle starts, a ''clear to zero' pulse is generated and the zero FF is
reset. The '"zero clock' interrogates every bit being written in ACl.
If a '1' is detected, the zero FF goes to 'l' and no further changes
are allowed during the operation cycle. It can remain in '0' only if
all the bits that have been written are equal to '0', that means, AC1=0,

it

While the bit 15 is being written, “sign clock’ is generated
latching its value in the sign FF. Because 2's complement representation

is used, bit 15 contains the sign information (0 positive, 1 negative).
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In exponential mode of operation, bit 14 is interrogated, because it
is the MSB of the exponent and it contains the exponent sign.

Loading new data from the computer and transferring from the
neighbors cells are performed through the "write" line. Read out and
transfer to the neighbors are carried out through the "output" line.
In both cases, the "control” level must be high, and four 'transfer
clock" pulses must be generated, allowing.the shifting of information.
In addition, ''control out’ (COU) must be high whenever read out is
performed, so the information is fed back to the input and non-

destructive reading is done.

3.6.9 Inhibit System

The inhibit system selects the inhibit conditions which should
be applied to the cell. The inhibit control levels are available at
thé output of the three first control flip-flops. When their levels
are high, they indicate (Fig., 3.5):

(:) that the last number written in ACl is negative.
(:) that the last number written in ACl is non-zero.

(:) that unconditional inhibit can be performed in the cell.

The "1 detectors' of ACl are also part of the inhibit system
and thev indicate:
(:) that a '1' has been detecfed at the MSB of ACl, when FLT mode
operation is performed.
(:) that a 'l' has been detected at the MSB of AC1, Qhen FLT mode

operation is performed.
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One of the conditional inhibit lines, B (A in FLT mode), S, or
Z, can be selected using the 4-to-1 inhibit multiplexer (INH MPX) for
performing conditional inhibit (Fig. 3.6). An EXO gate at the output
of the INH MPX, controlled by the "sign" line, permits the user to
complement the inhibit condition, i.e., inhibit when @ or detects
a '0', or when ACl > 0, or when ACl = O,

If INH MPX selects the O input liﬁe, no conditional inhibition
is allowed.

Unconditional inhibit flip-flop can be interrogated simultaneously
with any of the conditional ones, The INH line is the OR~ing of the
conditional and unconditional inhibit. It disables changing of
information in memories and shifting of accumulators. The INH }PY line
also inhibits the change of information in memories, but the accumulators
are enabled for shifting.

3.6.10 Convergence

All incoming data are compared with the cerresponding bit stored
in HlS in the EXO convergence (CNV) gate (Fig. 3.6). If they differ and
the cell has been selected for convergence tests (i.e., CMNV FF=1),
convergnnce pulses are sent to the CU, where they may or may not be

interrogated, according to program control.
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CHAPTER 4

Operation of the Cell

4.1 Operand Selection

According to the number of operands involved in the operations,
the cell can be considered as a triple, double, or single—address

machine.

4.1.1 Triple-Address Instructions

In the operations ADD, SUB, AND, LOR and X0, two operands
(X and Y) are involved, according to the characteristics of the
operations themselves. Doth source operands and the destination word
are selected by the prograrmer and therefore three addresses nust be
specified in the instruction.

The X operand is selected from the bank of memory by MPX A.
The Y operand is selected from the bank of memory of the cell or its
ﬁeighbors by a combination of MPX B and MPX C. However, when MPX C
selects the EXT input, the Y operand is taken directly from the CB,
without intervention of MPX B. The answer Z can be directed to any of
the words or all of them, according to the selection performed by DMPX.
From the operands selection point of view, both accumulators are

considered like any one of the other words.

4.1.2 Double-Address Instructions

T irye rramgn e e oy O [ 2O SUN PR 1 VYT SSURTIT S S SR SOV U
TOUT PTouns oL epevrallone o8t be Ulstinonisaed In Lont Catinory
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a) Complement, two's complement, increment and move.
b) Shift serially to the right (SSR).
¢) Decrement.

d) Multiplication.

In groups a), b) and c), only one operand is involved, according
to the characteristics of the éperations themselves. Therefore, the
operand and the destination word must be specified in the instruction.

In operations of the group a), the operand is selected by the
combination of MPX P and MPX C in a similar fashion to that for triple-
address instructions, and the same éelective capability is available.
However, MPX A is inhibited and no signal in the X input of the ALU
is obtained.

In SSR operation (group b), although only one operand is
involved, the technique used consists in adding the number to itself,
but starting from the MSB. Both multiplexers, MPX A and MPX B, must
select simultaneously the word to be shifted, and MPX C has to select
the internal (IXT) input. Only "in-cell" operations are allowed.

In DEC (group ¢), MPX C is inhibited. The word is selected
"in-cell"” by MPX A and it is directed to the X input of the ALU.

In the three groups (a, b and ¢), DMPX selects the destination
word.

Although MNPY (group d) is an overation in which two cperands
(multipliéand and multiplier) are involved, the cell is limited to
operations in which ACl ig the multiplicand. The programmer must

specify solelv the multiplier and the places he wishes to store the
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answer. The MPX's and the DMPX will perform the selection.

Suppose it is wished to perform the multiplication ACIl x MX = MY.
When MPY line is activated, the multiplicand ACl is sent directly to the
X input of the ALU (Fig. 3.4). The MPX A selects the multiplier, MX.
It is interrogated and latched in DA during the add cycle, for inhibit
purposes. The MPX B selects automatically the same word that has been
chosen by DMPX for storing the answer, and thus allows the cell to
perform AC1l + MY = MY, during the add cycle. Whether the addition is

performed or inhibited, depends on the state of DA FF.

4.,1.3 Single-Address Instructions

Parallel shiftings are included in this category. Only one
operand is involved (ACl or AC2) andvthe answer is stored in the same
operand. These operations are carried out in the accumulators, without
using any of the multiplexers or demultiplexers of the cell.

The operations "'Interchange AC1” and "Invert AC2" are also
single-address instructions. Because one of the operand is implicit
in the instruction itsalf, the programmer has the freedom to choose
the other operand. The selectien is physically realized by the IMIX.

Finally, 'Control transfer” is a one-address instruction, but
the neighbor, rather than the word, should be chosen as an operand.

The selection i« done bv MPY C.

4.1.4 Ovperate Instructions

Operate instructicas are those in which ne eperconds nesd to be
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specified. The special operation 'Move sign tb AC2" is the only one
in that category.

The "Computer-cell communication' (CCC) and "Buffer-array
communication' instructions have not been included in any of the
preceding groups becauge the cell addressing system is involved in

the selection.

4.2 . Instruction Set

The minicomputer used is a 16-bit word machine. Its interface
characteristics make it possible to transfer instructions from the CPU
to the interface unit in parallel fashion, 16 bits simultaneously.
But because of the diversity of the functions the array must perform,
two computer words are necessary for coding most of the operations.
A 32-bit instruction rezister (IR) in the interface unit is provided.
The complete instruction is stored there and it is available for
decoding.

The IR is loaded in two halves by the CPU, in the following
sequence:

1lst) hits 16 - 31 (second half)

2nd) bits 0 - 15 (first half)

Simultanecusly with the loading of the first half, a "start' pulse is
generated and the array operation hegins.

But it has been found that for some operations, no more than
16 bits of the IR content change from one instruction to the next

ocne. In that case, two cycles would be spent to fill up the 32 bits of
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the IR when actually only half of them have changed. It is a waste
of time and storage capacity of the minicomputer. The problem has been
solved with an efficient design of the instruction set such that the
part of the instruction that most frequently remains uﬁchanged from one
operation to the next one is in the second half. 'The part of the
instruction corresponding to neighbors, mode, iﬁhibit, convergence
and carry has been placed there. Hence, if duringba particular
operation, the second half of the instruction should'be the same as
that of the preceding instruction, only the firét part should be loaded.
A particular but frequent case is when the opération must be
performed "in cell", in integer mode, clearing the carry, and without.
inhibit or convergence test. In our instruction set it corresponds to
all the bits of the second half equal to zero, making easier Ehe
programning, and shortening the cempiling time.
In the operations for which flow of iﬁformation between the
computer and the cells are involved, only 16-bit instructions are
required. They are distinguished from the ALO by the value of bit 16.

The complete instruction set, shown in Table 4.1, is described

in the following sections.

4,2.1 Arithmetic and Logic Operations

The bit 16 = 0 indicages ALO. In that case:
Bits 0-3, OPCODE; select the desired operation,
Bits 4-~7, DESTINATION; select the word in which the answer of the
operation is stored.

Y

Bits d-11, SGURCE A select one of the oprrana.
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Bits 12-15, SOURCE B; select the other operand.

Bits 17-19, NEIGHBOR; select the neighbor cell.

Bits 20-22, MODE; select the mode of operation, as it was discussed
in section 3.4.

Bit 23, UNCONDITIdNAL INHIBIT; selects whether the unconditional INH
control bit is interrogated or not.

Bits 24-26, CONDITIONAL INHIBIT; select the ACl state condition
being interrogated.

Bits 27-30, CONVERGENCE; select the range of CNV interrogation.

Bit 31, CLEAR CARRY; selects whether the carry should be cleared

or not before the operation cycle starts.

When OPCODE = 13, PARALLEL SHIFTIMNG is performed. In that case:

Bits 4-5 select accumulator and shifting direction.

Bit 6 selects logical shifting or rotation.
Bit 7 selects the shifting of 1 or 8 bits.
Bit 8 selects the INT or FLT input.

Bits 23-26, INHIBIT; select the inhibit condition.

The other tits are meaningless.

When OPCODE = 14, SPLCIAL OPERATIONS are performed. 1In that case:
Bit 8 selects the !SG operation
Bit 9 selects the ICH operation
Bit 10 selects the MAI operation.
In the last two cases;

Bits 4-7 select the operator word.
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4,2.2 Computer-Cell Communication Operations

For CCC operations, should be bit 16=1.
Bits 0-2, OPCODE; select the desired opefation.
Bits 4-7, select the desired word, in the case of Data in (DIN)
or Data out (DOU) operation.
Bits 8-15, CELL ADDRESS; select the cell, as will be discussed

in Chapter 5.

4.2.3 Control Transfer Operations

For control transfer operations, should be bit 16=1 and
bits 0-2=5. 1In that case:
Bits 17-19, NEIGHBOR; select the neighbor from where the transfer
is produced.
Although bits 3-15 are not used, it is convenient to maintain the same
bits used in ALO for neighbor seleétion. This is because the control
transfer operation usually féllows a data transfer (MOV operation).
In that case it is not necessary to change the neichhor bit from one

instruction to the next one.

4.2,4 Buffer-Array Coemmunication Operations

For bhuffer-array communication operations, should be bit 16=1
and bits 0-2=6. In that case:
Bit 3 selects transfer to or from buffer.
Bits 4-7 select the destination Qord.
Bit 11 selects the row or column buffer.

Bit 12-15 select the source word.
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4.3 Mnemonic Language

In an attempt to facilitate the communication between the user

and the array, a set of mnemonicsis proposed.

4.3.1 Serial Arithmetic and Logic Operations

For serial ALO the instructions have the format:

OPCODE, D, A, B, N, M, UI, CI, V, W

where

OPCODE indicates the desired operation. It is a three
characters mnemonic, and can be any of the
following:

ADD, addition

SUB, subtraction

EXO, exclusive-or

LOR, logical-or

AND, logical-and

COM, complement

TCM, two's complement

DEC, decrement

INC, increment

MOV, move

SSR, shift serially to the right

MPY, multiplication
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D indicates the "destination' word address. A "Q0" stands for all of
the words of the cell and M1 (or ACl), M2 (or AC2), M3, M4...M15
indicate a particular word selected.

A indicates the "source A" word address. A "O" stands for none operand,
and‘M1 (or ACl), M, (or AC2), MB’ M4,...,M15 selgct the particular
word.

B indicates the "source B" word address. Analogously than A, it can

have the values 0, M,, MZ""’MIS' (A or B are skipped in the

1
double~address instructions, according to the table 4.1).
C indicates the neighbor selected. It can be

0, in-cell-

N, north

S, south : .
E, east

Wy west

POW, row

COL, column
EXT, external
M defines the mode of operation. It can be:
o, integer
FB, first byte
SB, second byte
EX, exponential
AV, absolute value
TNF, intecer with floating inﬁut

FI.T, floatine multinlication
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Ul indicates that unconditional inhibit bit is checked.

CI indicates the conditional inhibit. 1Its value can be

0 (none), no inhibit required
YZ (yes zero), ~ inhibit if (AC1)=0
NZ (non zero), inhibit if (AC1)#0

PS (positive sign), inhibit if (AC1)20
NS (negative sign), inhibit if (AC1)<0
YD (zero detected), inhibit if a '0' in "1 detector”
OD (one detected), inhibit if a 'l' in "1 detector"”
V indicates the convergence range, Its value can be
0, no convergence required.
CNvl, Cwv2,...,CNV15, selects the convergence range.
W indicates whether the carry is cleared or not before the operation
starts. When it assumes the value WCC, operation without clear

the carry is assumed. Otherwise, the carry is cleared.

4.3.2 Parallel Shifting Operations

For parallel shifting, the general format is:

QPCODE, ®Dh, &, M, UI, CI

where

OPCODE indicates the desired coperation. The mnemonics are
SHF - for logical shifting
20T -~ for rotation.

RD indicates register and shifting direction, as follows:
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AC2R, accumulator 2 to the right.
AC1R, accumulator 1 to the right.
AClL, accumulator 1 to the left.

N indicates the number of bits, as follows:
o, shift 1 bit.

BIT8, shift 8 bits.

M indicates the mode of shifting, as follows:
6, integer'(using 16-bit accurmulators).
FLT, floating (using 24-bit accumulators).

UI indicates unconditional inhibit, as in the ALO.

CI indicates the conditienal inhibit, as in the ALO.

4.3.3 Special Onerations

For special operations, the following formats are used:
MSG indicates move sign to AC2.

MAI, D dindicates move (AC2) inverted to D (with D varving between

o
Ll

3

o

and M .
- 15)
All the inhibit mnenonics used for serial ALO are also valid

for special operations.

4.3.4 Computer-Cell Communication Operations

For CCC operations, the general format is:
OPCODE, 17, M, RA, CA

where:
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OPCODE indicates the desired operation. The mnemonics are:
DIN, data in.
DOU, data out.
CIN, control in.
COU, control out.

W indicates the word selected. It indicates the destination word in
DIN and the source word in DOU operations, and it is not specified
in CIN and COU operations.

M+ indicates the cell addressing mode, as follows:

o, direct.
CONc; concatenation.
AUT, automatic.

RA indicates:
the row address (0 to 7) in direct or CONC mode;
the AUT increment (ROY UP or ROW DOWN) in AUT mode.

CA iundicates:
the column address (0 to 7) in direct or CONC mode;

the AUT increment (COL UP or COL DOWN) in AUT mode.

4.3.5 Control Transfer Operations

For control transfer, the format is:

CTR, N

where

TM, PA and CA are related to the CAS and the details of them
will be discussed in section 5.4.



CTR is the opcode for the operation, and

N indicates the neighbor source selected.

4,3.6 Buffer-Array Communication Operations

For buffer-array communication, the general format is:
OPCODE, D, S, B

where

OPCODE indicates the desired operation. The mnemonics are:
TTB, transfer to buffer
TFB,-transfer from buffer.

D indicates the destination word (as in ALO).

S indicates the source word (as in ALO).

B indicates the selected buffer, as follows:
ROW, row buffer

COL, column buffer.

57
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CHAPTER 5

The Control Unit

The aim of the Control Unit (CU) has been pointed out in

Chapter 2. The CU is composed of three subunits, as is shown in

Fig. 5.1.

1'

The Instruction Decoder (ID)

The ID has the task of decoding the 32-bit instruction loaded in
the Instruction Register (IR) and generating all the necessary
control levels; which are broadcast to the array of cells, the

other CU subunits and the Interface Unit.

The Control Pulses Generator (CPG)

The CPG has the task of generating all the necessary trains of
pulses. It is divided into two main parts:

a) The Clock Unit. The Clock Unit receives information from the

Device Status Register (DSR) about the “'busy/free' (B/F)
condition of the system; and it keeps sending pulses to the
Sequencer as long as the DSR remains in 'busy’ state.

b) The Sequencer. The Sequencer receives the clock pulses, as

well as the decoded levels from the ID, and according to the

desired operation it generates the required trains of pulses,

They are transmitted to all the cells in parallel. In addition,

the Sequencer receives information about the convergence

condition of every cell and it sends the general convergence
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condition of the system as a whole to the DSR. Finally, the
Sequencer controls how long the operation should last, by

sending ""end” pulses to the DSR.

3. The Cell Addressing System (CAS)

The CAS has the task of selecting a particular cell (or cells),
whenever it is required by the operation. The necessary
information is taken from the ID, the Basic Address Register (BAR)
and the Cell Mode Register (CMR). Selective control levels are
sent to the cells of the array, allowing certain degree of

exclusiveness in some operations.

The operation of the CU subunits, as well as the actual

implementation are described in the following paragraphs.

5.1 The Instruction Decoder

Once the 32-bit IR is loaded with the corresponding coded
instruction, certain logic levels in the control lines should be
created in order to perform the actual instruction.

According to the discussion of Chapter 3, about the logic of
the cells, the Table 5.1 has been constructed. The logical levels of
the control lines for any possihble operation are shown there. The
following convention has been adopted.

a (0 indicates low level or nulse ahsence,

a 1 indicates high level orvpulse prasence,

an S indicates that the level or pulse presence are selected
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SUB 11115SSS0110S0SS000SS00S8S00008SSSSs011s
LOR 11118SSSS8S0011S0SS000sSS8S00SsS0000sSsSSsSSSSO00O0S
EXG 11115S8SSsSS00108S0SS000sSsS00s0000s8s8sS8S0s00GO0s
AWD 1111885838 000180sSS000SsS00s0000s5SS8SS8Sss00¢O0S
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cou 0000 0 0000011 0 0
CTR 6010 S 0 0000010 O 0
Nb: 0, low level or pulse absence =A, NPX A selection
TABLE 5.1 1, high level or pulse presence =D, DMNPX selection
LOGICAL LEVELS OF THE CONTROL UNIT S, sclected by the user 'E, 'external'input
I, "internal' input 2, AC2 selected
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by the user, either directly or indirectly, and
a '"blank" indicates that the level of this particular line does

not affec; the operation.
During the MPY cycle, a line can assume two different levels - one
during the INH/ADD cycle and another during the shifting. This
condition is also indicated in the table By 0/1. The 2, INT and EXT
are fixed values that the corresponding multiplexers selector lines
assume during the operation. Finally, the table shows that in ICH, MPY
and SSR, the MPX B selector lines are set equal to the value of the
selector lines of DMPX or MPX A. That means that although the value
is selected by the user, it is done indirectly. Thus one can select
the value of DMPX or MPX A selector lines, and MPX B anutomatically
takes these values for its selector lines.

An example will clarify the use of the table. Let us suppose
an addition is being carried out. The three multiplexers and the
DMPX are enabled. The value of their control lines are selected by
the user in his instruction. All the lines indicated by "0' must
be held low during the operation, while the "output selector 1" (OUT
SEL 1) line should be held high. The CAR CL should appear in the
precise moment. The user can choose directly the level of the 'brte
operation', FB, FLT INP, INH, CNV, AV and EX lines, as well as the
presence or ahsence of the 'clear carrv"” (CLR CAR) pulses. The
selection should he done in accordance with the characteristics of the
addition the prosrammer wishes to perform. The other lines marked by
“S" are indirectlv chosen. For example 'write AC1" or ‘write AC2" are

set automatically at ""1" whenever ACl or AC? are respectively selected
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by the DMPX; otherwise they are equal to "0". Similarly, ACl1 ENB and
AC2 ENB are set automatically at '1'" whenever the corresponding
accumulator has been selected as a source or destination word.

The set of instructions (Table 4.1) gives the values of the
decoder input levels, while the Table 5.1 gives the output levels
desired. The combinational logic circuits that produce these output
levels have been designed and are illustrated in Figs. 5.2, 5.3, 5.4

and 5.5.

5.2 The Clock Unit

The Clock Unit generates the basic trains of pulses that are
used by the Sequencer. Because the characteristics of the cell, as
were discussed in Chapter 3, two trains of pulses, shifted 180° in
phase are necessarv to complete a cell operation. Basically, one of
the trains produces the ""Read' subecycles (clock A) and the other one,
the "Write” subcycles (clock B). Both are derived from a Master Clock
train of pulses. During the part of an operation in which no delay
between read and write is required, the computation is sneeded up by
using the Master Clock.

The three trains of pulses as well as the circuit used to
zenerate them are illustrated in Fig. 5.6. The pulses are allowed
to reach the Sequencer vhenever the svstem is in "busy” state.

The primarv source of pulses is a D.E.C.-M401 Variable Cloclk

vhich is running at 4.5 Miz.
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5.3 The Sequencer

The Sequencer receives the three trains of pulses from the Clock
Unit and distributes them over the clock lines, in accordance to the
operation decoded.

Before starting tht operation cycle, a preset cycle is performed.
It lasts for three master clock cycles (1% bit cycles) and it is
necessary in order to clear the preset flip-flops and counters.

A Pre-counter (counter-to-4), a decoder and several gates
control the preset cvele (Fig. 5.7). The Master CL pulses are used
to clock the Pre-counter, which in effect controls the decoder.
Sequentially, pulses to clear the carry flip-flop and to load the bit-
counter, and to reset D,, to clear to zero and to preset the carry
flip-flop are generated during the first two master cloclk pulses
received. After the third pulse arrives, the Pre-counter stops and
CL B pulses are allowed to propagate to the write pulses lines and to
clock the Bit-counter. If the ID has enabled the corresponding gates,
CL B performs other tasks, activating the CL ACl, CL AC2, z=ro CL,
CAR CL and transfer CL lines. In control transferring and shifting
operations, CL B is directed to the corresponding lines, without
waiting for the preset cycle.

The Bit-counter (counter-to-16), and the Bit-decoder (Fig. 5.8)
have two main tasks:
a) to address bit bv bit the 16 flip-flops of the memories; and
b) to count the number of CL B pulseé that have reached the enable

lines in order to datect when the operation should finish and when

sign interrogation pulses must be produced.
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Several detectors have been set in this part of the circuit. Thus,
1, 4, 8 and 15-detectors are activated whenever SHF 1 bit, control,
SHF 8 bits and AV operations, respectively, are performed. The aim
of all of them isto seﬁd an "end" pulse whenever the corresponding

conditions are detected.

Whenever EX operations are performed, the 15-detector has an
additional task; to clear the carry in order to exclusive-or the 15 bit
and to generate a ''sign interrogation’ pulse. Since in MAI operation,
bit 15 (sign bit) must not change, the 15-detector is also used to
inhibit momentarily the generation of write pulses.

If none of the previous detectors have produced an "'end’ pulse,
then the Bit-counter finally overflows and a "carry"” pulse is generated.
It indicates the end of the operation, besides interrogates the sign.

If the cell is operating in the byte mode, the Bit-counter
is preset to 8, producing the "carry'" pulse after only eight CL B
pulses; otherwise it is generated after 16. In FB mode an additional
gate keeps the MSB of the decoder ''low', allowing the addressing of
the 8 LSB's of the memories, although the counter is running from §
to 15.

When the Bit-counter is counting down, it is preset to 15 as
an initial value and the "borrow” pulse, instead of the “carry’ one,
becomes the ‘"'end”" pulse. This allows the vwriting of information
starting from the MSB.

In "integer multiplication’, the "carry' indicates the end of
the addition cycle, rather than the end of the operation. It increascs

the Cycle-counter (counter-to-8), resets Dp and shifts ACl to the left.
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In "floating multiplication' the addition cycle lasts 24 bits. The MPY
FF and the 8-detector extend to 24 the range of the Bit-counter. After
8 cycles, the MPY is cqmpleted. The Cycle-counter overflows and it
produces an "end" pulse. The MPY CL pulses are produced whenever both
Bit and Cycle~counters, have the same value. A magnitude comparator

is used to detect that condition (Fig. 5.7).

The Fig. 5.9 illustrates the output of the Clock Unit, the
pulées produced by the Sequencer and the value of the three counters
during the preset and the operation cycle. It should be noticed that
the preset cycle is omitted in sowme functions and that the operative
cycle can start with the Bit-counter in 0 or 8. The pulses drawvn in
continucus lines correspond to an integer operation, while the pulses

dravn in dotted lines correspond to alternative modes of operation.

5.4 The Cell Addressing Svstem (CAS)

Although the control bus sends the same signal to all the cells
of the array, there are operations in which a particular cell (or cells)
is involved. These operations are:

- Computer-cell communication operations

|

Buffer-cell communication operations
- Half array operations

- Specific cell, row or column operations.

The CAS has been designed such that it can address, in a 63x63

cell matrix:
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a) a cell

b) a row

¢c) a columm

d) all the even rous
e) all the odd rows

f) all the cells of the array.

For céll selection, the array can be considered as an 8x8 matrix of
sectors. FEach sector is composed of a sub-matrix of 8x8 cells, except
the sectors of the left edge, upper edge and uprer left corner, which
are composed of sub matrices of 7x8, 8x7 and 7x7 cells respectively

(Fig. 5.10).

7 8 8 8 8 8 8 8

00074

o 00 00 0 00 0 0

UDAUHL L%

FIG. 5.10

The CAS consists of:
a 12-bit Basic Address Register (BAR)

a 12-bit Cell Mode Register (CMR)
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a 6-to-64 Row Decoder
a 6-to-64 Column Decoder
a Cell Enable Input (CFI) circuit in each cell

a Cell Enable Output (CEO) circuit in each cell

The Row and Columm Decoders select the Y and X coordinates,
respectively. A pair of these values (i,j) defines a unique point
in a 64x64 matrix‘as is shown in Fig. 5.13. If the first row (0) and
the first column (0) of this matrix are not considered, a 63x63 matrix
is obtained, in which each point of it, represents a unique cell of the
array. When a "0" is selected by the Column Decoder, any point of the
set (O,Yj) can be selected by the Row Decoder. That addresses all the
cells of the "j" row simultaneously. Similarly, for addressing a

11t

complete "i" columm, a "0" is selected by the Row Decod2r and the "i"
column by the Column Decoder. If the point (0,0) is selected, all
the rells of the array are enabled to operate and information can be
sent to all of them simultaneously.

The Basic Address legister is an index register that selects
a cell (or cells) »v a combination of its contents and the IR contents.
It also can address a cell directly. The BAR is composed of two 6~bit
counters, with preset and count up/down capabilities. One is the Rovw
Counter and the other one, the Column Counter. It is loaded directly
from the CPU. The 2-bit Cell Mode Register controls the set of cells

in which anv ALO is performed, It can assume any of the following

four values:
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0; operation in all the cells
1; operation in the cell (or cells) selected by the BAR
2; operation in all the even row cells, and

3; operation in all the odd row cells.

The Cell Enable Input circuits in each cell allow the cell (or
cells) selected by the CAS to change the contents of its memory bank
with the answer of.an operation or new data. To inhibit the change
of the contents of the memory bank in a cell is equivalent to inhibit
its operation. The CEI also allows the broadcasting of new control bits.

The Cell Enable Output circuits in each cell allow the output
of the cell selected to flow either to the CB or to the row or column

buffers.

5.4.1 Computer-Cell Communication Operations

It is necessary to distinguish clearly hetween segquential and
parallel operation. The PDP-11 is a sequential machine if a word is
considered as a unit of information, but it is a parallel machine from
the 16 bits point of view. That means that although the 16 bits are
processed and, most important for our purpose, are available in the
Unibus [15] simultaneously onlv one word is present at a time.
Analogously, the corputer can read into its registers 16 bits at a
time, but word hr word.

L]
1

On the other hand, the array is 2 hichly narallel processor,
but each cell is a serial machine. Althoush all the cells onerate

simultanecusly, each cell processes information in serial fashion,
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bit by bit.

Obviously some incompatibilities are involved whenever communica-
tion between the computer and the array is required. This problem is
solved using a Data Register (DR). It acts as a temporary storage of
information for parallel-to-serial, serial-to-parallel conversion of
the word. It is a shift register which is loaded in parallel with data
or control bits from the CPU. From there, changing the state of its
contrél line, serial read out is obtained at the output and the data
are broadcast to the EXT input of the MPX C's of all the cells of the
array. Dut the CEI circuits in each cell allow the information to
reach the memorv bank only in the cell (or cells) that has been
selected by the CAS. On the other hand, the DR receives serial
information from the cell selected by the CFEQ circuits. Information
remains there, available in parallel, for further transferring to the
CPU.

In addition, the TR is also used as a central buffer for
arithmetic-logic onerations, as has bzen described in Chanter 2.

Because the DR is acting as an intermediate between the CPU
and the array, it has been included as a part of the Interface Unit,
rather than that of the CU.

The CCC instructioms have the format shown in the corresponding
part of the Table 4.1. Then a CCC instruction is detected in the IR,
three addressing alternatives are possible, according to the Address
Mode selected. They are:

1. DIRECT ADDRESSING. The cells of tht first sector (deuble shaded

in Fig. 5.10) are selected directly by the instruction. Three
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bits for the row and three bits for the column permits one to
select any point of an 8x8 matrix. But because lines X=0 and Y=0
have a special purpose, the set of cells directly addressed is
reduced to a 7x7 matrix. This mode permits a faster addressing

in that set.

2., CONCATENATION ADDRESSING. The three iSB's of the row and column
decoders are controlled by th: current instruction, while the 3
MSB's are controlled by the BAR. This is very useful because the
3 MSB's of the BAR select the sector. Once the desired sector
address is set in the BAR, it is possible to address a particular
cell in this set directly by one instruction, in similar fashion

to that in direct addressing.

3.. AUTOMATIC ADDRESSING. The address of the cell is taken directly
from the BAR. It is set initially to the starting address. From
that point, the address is automatically increased or decreased

by 1 in either row or column direction or both.

This mode of addressing is very useful whenever loading of
successive points of the array are required. TFor example, if it is
required to load some boundarv conditions for solving Laplace's
equation, the BAR is set to the starting address of A (Fig. 5.11).

By setting in the IR the instruction "Automatic-Column Up"', cells of
the same row are addressed, step by step, until a point B is reached.
The number of steps is controlled by the number of pulses sent by

the CPU. A new instruction, “Automatic-Row Down” is loaded and the
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cells of that column are sequentially addressed until the point C is
reached. Finally, an instruction "Automatic-Row Up-Column Up" is
loaded; and, automatically, all the cells between the points C and D
are sequentially enabled.

An interesting feature is used. When the Row (or Column)
selector reaches "63" it jumps to 0" at the next step and the Column
(or Row) selector is increased by ""1". An exploratory scanning is
performed automatically and it allows the loading or reading out of
the whole array.

If DIY or DOU operations are performed, whatever is the mode
for cell éddressing being used, the word selection is controlled in
similar fashion to that in the ALG; i.e., DMPX for loading and *PX B

for reading out,

5.4.2 Buffer-Cell Communication Operations

The aim of the buffer-cell communication operations is to
transfer information from a specific word of ar entire row or columm
to a specific word of the corresponding buffers and vice versa.

In the instruction Transfer to Buffer (TTR) the word address
of the source and the destination are gpecified as in any double-
address instruction, but in addition, the row or column number must
be specified too. This is carried out by specifving the desired row
or column in the BAR. If a row is transferred, the row counter of the
BAR is loaded with the row number and.tho column counter of the BAR

is loaded with '"0". If a column is transferred, the column counter

of the BAR is loaded with the column number and the row counter of the



82

BAR is loaded with ""0". The CEO circuits enable the cell output to
reach the buffers only in the cells of the row or column selected by
the CAS (Fig. 5.15). By setting CMR=1, the CAS selects the cell or
cells specified by the BAR, i.e., the row or column selected.

The Transference from Buffer (TFB) ié a MOV operation in which
the MPX C selects the ROW or COL input. The row orvcolumn selection
is done in similar fashion as that for TTQ. The CAS, operating over

the CEI circuits allows the transfer only to the selected cells.

5.4.3 Half Array Operations

For some operations in which the 15 word capacity of a cell
is not enough, it is possible to extend the range to a 30-word memory,
joining two cells together. One would be the processor cell and the
other one would be used exclusively for storage. Obviously, the
number of processors available would be reduced to half. This can
be done assuming that the array is divided into '“‘processor’ and
storage' rows. Two neighbor cells, one in the storage row and
another in the processor row car be considered as a unit or ''pseudo-
cell”™ as is shown in Fig. 5.12 in solid circle. The data flow from
storage to processor is done in a similar way to that in normal
operation, through the MPX C but the CEI circuits in the storage
cells must be inhibited., This will prevent the transfer frem processor
to storage row to the neighbor "nseudo-cell™. Analosously, when it
is wished to tvansfer information from the processcor to the storage
cells, the CEI in the processor cellé must be inhihited. Uhen an

ALO is performed, only the processor cells are enabled.
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The operations are controlled by the 2-bit CMR. Usually it is
in "0" and the ALO instruction fetched in the IR is performed in all
the cells of the array. When it is in "2", the operations are performed
only in the even rows (the odd rows are inhibited) and in "3" only the
odd rows are enabled (the even rows are inhibited).

Notice that the row that is considered as a storage can be
switched to processor and vice versa, according to the instruction
and. the contents of the CMR. Similarly, the structure of the "pseudo-
cell” can be changed joining a processor row with tht other storage

row neighbor, as is shown by dotted circles in Fig. 5.12.

5.4.4 Specific Cell, Row or Column Operations

The CMR gives a great deal of flexibility to the programmer.
When its:contents are "1 only the cell (or cells) specified by the
BAR is enabled. This allows the user to perform ALO in only one cell
or one row or column, as is required in certain sequential algorithms.

The CMR=1 is alsc used for transferring information between

the buffer and the cells, as has heen described earlier.

5.4.5 Cell Addressing Hardware

The Fig. 5.13 illustrates the configuration for the CAS. The
BAR and the CMR are loaded together, as a unique register, directly
from the Unibus of the PDP-11 using the same interface techniques as
for the IR, When a CCC instruction is detected in the IR, bits 8-9
indicate the addressing mode, hits 10-12 tﬁe rov selected and bits 13-15

the column selectnd,
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Because of the similarity between the COL SEL and the ROW
SEL systems, only the former one is described (Fig. 5.14). When bits
8 and 9 are equal to '"0", direct addressing mode has been selected
and bits 13-15 are able to reach the 3 LSB's of the decoder, through
the SEL 1. At the same time, the 3 MSB's of the decoder are set
to "0', through the SEL 2.

If concatenation addressing mode is selected, the 3 LSR's are
still controlled ﬁy bits 13-15 of the IR, but the control of the 3 MSB's
is switched to the 3 MSB's of the COL CNT.

If automatic addressing mode is selected, the 6 control lines
of the deéoder are tied to the output of the BAR. The counters are
able to receive start clock pulses frem the CPU, Bits 14-15 have a
control function. Thether the pulses reach the particular counter or
not, is up to the state of bit 14, while bit 15 controls the counting
direction.

For performing an exploratory scamming of the array, a “carry’”
of the ROY CMNT produces an increment in the COL CNT. Similarly,
when ROW CNT is counting down, the 'borrovw’ pulse decrement by 17
the contents of the COL CNT.

Once both decoders have selected the proper line, a unique
point is determined by the intersection of these lines. A matrix of
AD gates performs this tas® and a 64x64 selection matrix is finally
ohtainad (Fig. 5.132).

The Cell Mode Register is a single 2-to~4 decoder with outputs
Cr=n; CP=1, O'M=2 and OMP=3. Vhen CMR=1, any arrav cneration should

be performed in the cell (or cells) selected by the BAR (as in AUT mode).
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Both (3) 2-to-1 selectors are set to 1" by the corresponding gates
allowing the output of the BAR to control the decoder.

When CCC operations are performed, the cell selection should
be independent of the CMR; hence its decoder is not enabled.

If neither CCC operations, nor operationé with CMR=1 are being
performed, the decoders are inhibited and no selection through the
selection matrix is carried ouﬁ. In that case, the cells are chosen
in accordance to ghe CMR contents only, as follows:

For CMR=0, ""All Cells" line is activated and all the cells are
enabled.

For CMﬁ=2, "Even'' line is activated and all the cells that “elong
to an even row arz enabled.

For CMR=3, ''0dd" line is activated and all the cells that belong

to an odd row are enabled.

5.4.6 Cell Enable Circuits

With all the previous considerations we conclude that a cell
(Xi’Yj) is selected for an arithmetic-logic or transfer operation
whenever the cell itself, the corresponding row or column, all the
cells of the array or all the even (odd) cells have been selected.

On the other hand, the unique DR can receive information from
only one cell at a time. So the output to this register is done on
the basis of a unique cell selection,_ while in the TTB operations, a
complete row or column is selected.

The table of Fig. 5.15 shous the input and output conditiors,

the corresponding point in the selection matrix and the value that
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should be assigned to the CMR. It should be remembered that in CCC
operations, the selection is made solely on the basis of the selection
matrix, independent of the CMR.

Fach of the five input conditions correspond to an enable line
selected. The five lines are OR-ing in each cell in the corresponding
CEI circuit, as is shown in the Fig. 5.15. .When the cell is selected,
througﬁ any of its five enable lines, the '"Write Pulses' can reach
the DMPX, the accumulators can be clocked and control information can
reach the control bits register. If none of the five lines are
activated, the cell is locked and no possible change of its information
is allowed.

The Cell Enable Output (CEQ) circuits control the flow of

information of the output of each cell.

Because only one cell has actuallyv been constructed, the
addressing system is not built, but it has been designed as an example
foreseeing the construction of a 63x63 cells array (3,969 cells).

Further expansion can be easily ohtained by simply using a larger BAR.
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CHAPTER 6

The Interface

6.1 Generalities

All communication between the PDP-11 and any external device
is accomplished by a single bigh—speed bus called the Unibus [15].
The U;ibus is composed of 54 lines (51 are bidircectional) — 16 data
lines, 18 address lines and 22 control, synchronization, priority
transfer and miscellaneous lines. All flow of information between
a device logic and the Unibus is through the registers. Fach register
is assigned a bus address at which the CPU can interrogate and/or 1oad;
From the PDP-11 point of view the array is an exteranal device
with four registers (Fig, 6.1). A device register address has heen
assigned to everyone of them, in accordance with the Digital
Tquipment Corporation (D.FE.C.) specification. They are:
First 16 bits of the IR (IrR1) #167770
Second 16 bits of the IR (IrR2) #167772
Data Register {DR) #167774
Device Status Register (DSR)  #1677746
The instruction registers are write-only registers; the DSR is a read
only recister and the DR is a read/write recister.
The IR is a 32-bit narallel register in which the coded
instruction is loadad from the CPU and from which the ID takes the

information to be decoded.
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The DR is a 16~bit register that acts as an intermediate
serial-to-parallel, parallel~to-serial data converter, as well as
the CB, as has been described in Chapter 5.

The DSR is a 2-bit register that contains information on ;he
Busy/Free and convergence consition of the system, according to the

following format: . :
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
B/FCNV

Both CNV and B/F flip-flops have been included in the diagrams of

the CU, in Fig. 5.5 and 5.6. Whenever it is required by the program,
the CPU can interrogate the DSR for further actions.

In addition to the registers and the Unibus, the interface
is composed of an Address Selector D.E.C.-MLO5, a Gating Control

circuit and a Driver to the Unibus, as is shown in Fig. 6.1.

6.2 The Address Selector D.E.C.-M105

The address selector is used to provide gating signals for up
to fogr device registers. The selector decodes the 18-bit bus address,
where:

A <00> is used for bvte control.
A <02:01> is decoded to provide one of four addresses.
A <12:03> is determined by jumpers in the unit.

A <17:13> must all be in 1's.

In our ca=e, the jumrers have baen set in 0777, so that one of the
four selection lines is activated whenever the CPU sets in the address

bus the corresponding regzister addresses.
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Four select signals (SEL 0, 2, 4 and 6), corresponding to the
four device registers are supplied by the selector. In addition, it
also supplies three gating control signals:

" OUT HIGH; which permits the loading of the high byte data bus.
OUT LOW; which permits the loading of the low byte data bus.

IN; which permits the reading of the register on data bus.

6.3 The Gatiné Control Circuits

The gating control circuits take the output of the address
selector and provide the clock pulses to load the selected write
regist;r (IR1, IR2 or DR) with the value present in the data bus,
It also supplies the gatinz signals to read the selected read
register (DSR or DR) on the data bus;

The same pulse used to clock the IRl is also used as the

"start' pulse. It changes the state of the Busy/Free flip-flop.

6.4 The Driver to the Tmibus

The driver to the unibus has the task of maintaining the
transmission~-line characteristics of the Unibus. Information trans-

mitted on the bus must be driven by open-collector drivers.

The Fig. 6.2 shows the interface hoard. The Address Selector
D.E.C.=-M105 has ﬁot been included. It is an additional card supplied
by Digital Eauipment Corporation. Tf, in the future, the Cell Address
System is constructed, a new register (BAR-CMR) would be necessarv to

be added at the interface.
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CHAPTER 7

Programming the System

7.1 Control Program

The PDP-11, acting as a control element, has been programmed to
run the array. Several subroutines which are called from a main program
allow the user to load the registers with the corresponding instruction
(instruction register) and data (data register). The subroutines also
test the state of the DSR and give operative commands, using simple
memonic instructions. All the subroutines are grouped in a program
called CONTROL and are written in PAL-11.

The array user can write the main program using very simple
subroutine calls and the mnemonic language discussed in Chapter 4,

The CONTROL program compiles the instruction, translating the mneronic
_ to the corresponding binary value of the 32-hit instruction register
and storing it in a two words instruction buffer. Tt then remains in
a waiting loop checking the DSR until the previous operation has
finished. Once the B/¥ flip-flop of the DSR is in "free' state, the
contents of the buffer are loaded into the instruction register and
the array operation starts. While the array 1s performing the actual
operation, the computer is compiling the next instruction.

The computer is also programmed to interrogate the convergence
flip-flop of the DS™ when iterative microprogramming is being performed.

In addition to the basic operations, several standard routines

P FR S B
arher uncor D
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unique subroutine (e.g., division subroutine). This allows these
subroutines to be called by a single instruction. All the subroutine
calls by the main program are carried out through the same general
register, R5,

Let us suppose the programmer wishes to add, in absolute value
mode, (M3) plus (M5) of the north cell, store the answer in My, inhibit
the operation if (ACl) < 0, not check convergence, and clear the carry.
The instruction in the main program should therefore be:

JSR 5, SUBADD ; calling the addition subroutine

M7, M3, M5, N, AV, 0, NS, 0, O

Subroutines to load entirely the cell, to clear the cell, to
unload the cell into the output buffer, and to dump the content of the
output buffer into -the teletype are also provided in the CONTROL

program,

7.1.1 Microprogramming

As it has been pointed out earlier, division, floating point
operations and transcendental functions can be computed entirely in
the cell under microprogramming control. This is also a task of the
CONTROL program.

It should be considered that the same -algorithms used in
sequential computers cannot be applied directly in a parallel pfocessor,
due to the need of operating with several sets of data under a unique
control. Several parallel algorithms have been developed and tested.

They are described in the following sectioms.
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7.1.2 Integer Division

The set of instructions necessary to divide Mp = My =M is
shovm in Fig. 7.1. The iterative repetition of loops are under micro-
programming control and the corresponding instructions.have not been
shown in the figure. The opcode mnemonic has heen used, but in the
real program, a subroutine call should he used instead. The algorithm

shown in the flowchart of Fig. 3.3 has becen used. The contents of 1,

are lost after the operation, while ', remains unaltered.

B

7.1.3. TFloatin~-Point Operations

A floating-point number is represented by 4 bvtes (2 words).
One_of them represents the exponent and sign of the mantissa and the
other three the mantissa absolute value.

Tn a floating-point operation, 6 words, representing 3 floatino-
point numbers, and hoth accumulators are invol§ed, according to the

following scheme:

A01 A0 Al A2 i A3 A23
BO1 BO | Bl B2 | B3 B23
co1 o | c1 I c23
AC1
AC2

In any floatins-neoint operation, the accumulateors are used as

a temvorarv register and therefore, their original contents are lost

s .
‘\'717'-;-1 AR R L S R R sl At L
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times

15
times

15
) times

EXO0,M2,MA,MB

SUB,MC,M15,M15

MOV, M1 ,MA
TCM,MA,M1,PS
ADD,MA,MA,MA
MOV, M1 ,MB
TCM,MB,M1,PS

MOV,M1,MB

[TSHF,ACIL,OD

INC,MC,MC,OD
SHF ,ACIR
MOV ,MB M1

PSUB, M1, MA,MB
MSG

MOV, MA,M1,NS
DEC,M1,MC
MOV, MC, M1

| SSR,MB,MB,YZ

ROT,AC2R
AND ,MC,M2 ,MC

MOV, M1, MB

SHF,ACIL

ADD, M2 ,M2,M2,YZ

SHF,ACIR
MOV, M1, M1

MAI ,MC

MOV, M1 ,MC

98

:SET SIGN IN AC2
;CLEAR MC

;CONVERSION TO ABSOLUTE VALUE

s NORMALIZATION OF MB

3;DIVISION LOOP., IT STORE THE
s INVERTED ANSWER IN AC2

" ;SET FROPER RUMBER OF G's IN

;THE SOLUTION

;STORE ANSWER IN MC (IN ABSOLUTE
; VALUE)

s CONVERT ABSOLUTE VALUE TO

TCM,MC,MC,AV, PS ;2's COMPLEMENT

FIGURE 7.1, INTEGER DIVISION ROUTINE (MA # MB = MC)
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ADDITION. The addition algorithm consists of equating both exponents
with the value of the larger and then, adding the mantissas. In
adding A + B = X, one addend is saved while the other is lost after
the addition. The steps are:

a) put the larger exponent addend in X,

b) put the smaller exponent addend in A,

c) convert X and A to 2's complement representation,
d) align exponents,

e) add mantissas, and

f) convert 2's complement answer into SAV representation.

MULTTPLICATION, The multiplication is carried out by adding exponents
together and then performing a multiplication of mantissas.
Floating multiplication hardware performs 2 bvte x 1 bvte multipiica—
tion, storing the 3 bytes answer in AC2. -Successive shifting,
additions and multiplications allow 3 byte x 3 byte multiplication.
However, only the 3 most significant bytesyof th € answver are kept.
Both operands are saved and the answer is obtained in AC1l (exponent

and mantissa sign) and AC2 (mantissa absolute value).

1

DIVISION., The division is accomplished by subtracting the exponent
of the divisor from the exponent of the dividend, and dividing

mantissas. The divisor is lost after the operation.

SQUARE RONT. The square root alsorithm uses Yewton's method in which

an initial approximation is made and then each succeding approxi-

mation e caleunlnred., Thoe roantine exits when the desived convereoence
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between two successive approximations in all the cells has been

obtained. The following flowchart illustrates the routine:

START
\
i=1
X1=N
~ X, K
1+l 2 Xy
i=i+] [0 B (CEIT

* o e e e T S P ) (3R] FRR AT 4 )
LaAUNOGHY ann. 1€ eXponeniial (outinge uses lue rdaenitiiles:

where N is an integer; 0 < F < 1, and

F 2F .

A—B+BF2—‘-(-:'—-2—
D+F

where A, B, C, D are fixed parameters.

For X < 0

LOGARITHM. The logarithm routine uses the identities:
Z = log X X=2TF H l1<F<2

. log X =N log 2 + log F

(7.1)

(7.2)

(7.3)

(7.4)



IfY=F-1 (0<Y<1)

. log F = log (1+Y) = ALY

[N

i o~100

n=1

where Ai are fixed parameters.

SINE. To calculate sin o the steps are as follows:

101

(7.5)

(7.6)

Reduce a to ay 0 < ay < 2m
< 2
Reduce o, to a, 0<a, s w/2
Consider sign a -/2 < ay < /2
- 2a3
Compute Y = p -1 <Y <1
Compute
. _ 3 5 7
sin a = ClYl + C3Y + CSY + C7Y
vhere Cl’ C3, CS and C7 are fixed parameters, This routine is

shown with more detail in Figs. 7.2 and 7.3. The flowchart of

Fig. 7.2 shows how the inhibit and convergence capabilities of

the cell are widely used to reduce the oricinal argument o to

-n/2 < a

3 < w/2. The Fig. 7.3 shows the successive steps in

calculating sin « once ty is known, and the mapping of the memory

1

words in each step. The final answer is obtained in ¥,, and M

and the original value of ~ is saved in ”3 and H&'

can be obtained by adding terms to the formula.

COSTYE. The following identity is used:

cos o = sin(n/2 - o)

11 12

Moure precision

(7.7)
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M3-4=q
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CLR M15 & M7

M5-6=-M3-4
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o~ L g
¢ v o = T 7
h o £ a o 2 34
= = b = = = =
INITIAL VALUE a
AFTER REDUCING a o
MOV,M7-8,2/w a ay 2/w
MPY ,M9-10,¥5-6 ,M7-8 a oz 2/7 Y
MOV,M7—8,C1 @ oy C Y
. MPY,M5-6,M7-8,M9-10 e . CY ¢ Y
MOV ,M7-8,M9-10 a GY Y Y
MPY,M11-12 ,M7-8,49-10 « Y Yy Y
MPY,M7-8,M12-13,M9-10 e CY Y Y :
MOV,M11-12,C, @« GY Y Y cC,
MPY,M13-14,M12-13,M7-8 a ¢t Y Y ¢ ¢
ADD,M11-12 M13~14,M5-6 « Y Y Y I,
MPY ,M5-6 ,M7-8,M9~10 o Y Y Y I,
MPY M7-8 M5-6 MO-10 o ITOY Y I
MOV, M5-6,C, a Cs Y Y I,
MPY,M13-14,M5~6 ,M7-8 a G Y Y I, ¢
ADD,M5-6,M13-14,M11-12 @ I YO Y I,
MPY,M11-12,M7-8,49-10 @ Ly Y Y y¢
MPY,M7-8,M11-12,M9-10 o s YY Y
MOV,M11-12,C., o Lnug Y Y Gy
MPY,M13-14,411-12 M7-8 @« Las Y Y ¢ Y
ADD,M11-12,M13-14,M5-6 ¢ Ins ¥ Y I,

FIGURE 7.3.

SINE ROUTINE.
MEMORY MAPPING
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7.2 Simulation Program

Having built one cell, it was possible to test its behaviour,
as well as the performance of the algorithms described earlier. This
was done using the CONTROL routines and several test programs. Iowever,
in order to test the full capabilities of the array such as the inter-
connection betwsen cells, algorithms to solve problems involving matrix
manipulations, etc., a complete array should he used.

Although economic limitations have made impossible the physical
~construction of such an array, it has bcen simulated in the PDP-11
computer 5y means of a program called SIMULA, which has been writteon
in PAL~11. A 10x10 cell array plus 10 buffer cells, each with 18
computer words has been simulated and tested. O0Of the 18 computer words,
15 correspend to the 15 integer words of the cell, 2 to the additional
extension of ACl and AC2 and the other cne contains the control bits
and carry state of this cell. All the simulated cells share a common
"central bufferf and a "'convergence flip-flop" word. The arithmetic
extended hardwvare facilities of our PDP-11 are used to perform multipli-
cation, division and floating shifting at ver& high speeds.

SIMULA routines are called from a main program using the same
instructions and mnemonic that would he used to call CONTROL routines.
The prosram bésically tests in every cell the inhibit condition of
the instruction and compares it with the state of the corresponding
control bit. If this cell should be inhibited, it jumps to the next
cell., Otherwise, it finds the proper operands and the desired operation

is performed., If convergence test is asked, SIMULA compares the

srep with (My5) in the anecified ranre and the cenvertence flip-ficn
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is set or not set. Then it sets the control bits provided the destination
word address is ACl. Finally, before SIMULA jumps to the next simulated
cell, it stores the bits of the answer corresponding to the ''mode"
selected in the specified destination word. The same sequence is
repeated, cell by cell until the last one is processed. At that point,
the program starts again with the first cell, executing the next
instrﬁction.

The sequence used for the operation MZ = MX + M& is illustrated,
as an example, in the flowchart of Fig. 7.4. The same logic, with
minor modifications is applied to any array operation.

Several routines which are part of the SIMULA program can load
or unload the comnlete arrav. a comnlete cell. or a partiqj;yar word
address in all the cells. A routine to dump the content of the whole
array or the output buffer into the teletype has also been included in
the program.

Several programs, running in conjunction with SIMULA have been
tested. These include programs fpr general testing and programs to
solve Laplace's equation and transpose matrices. The Laplace's
equation program makes full use of the neighborhood relationship of
the cells as well as the inhibit and convergence capabilities of the
system. On the other hand, the matrix transposition program makes
use of the row column/buffer as a temporary storage of information.

The simulation program and the control program are compatible
in the sense that they can share a common main program. This proves

that the performance of a real array can be identically imitated by
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| sET AcTUAL
”]OPERAND ADDRES

SET BIAS
ADDRESS

Y

INH 7
ASKED=INHNNO |
BLTS -
5 M, =M, +M +CAR
) ADDRESS
1 NEXT CELL
CHANGE TO
NEXT INSTRUC.
[ YES
¥ ki
CEXIT MASK M_ & M. _
WITH G4 RANGH
CHANGE M ‘
Z SET CONTROL
ACCORDING TO {< BITS
MODE
YES
X0 SET CNV FF
v

FIGURE 7.4, SIMULA PROGRAM.
ADDITICN FLOWCHART
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using the simulation program. YHowever, this assumption is not valid
when the time factor should be considered. The simulation program is
running in a sequential machine and the operations are performed
"pseudo-cell"” by "pseudo-cell”.

All the tests realized by using CONTROL associated with
several test programs have given cell performance in accordance with
the specifications. Very good results have also been obtained for

the programs that have been run in conjunction with SITIULA.
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CHAPTER 8

Associative Memory

8.1 Introduction

The possibility of using the array as an associative memory
system is discussed in this Chapter.

Alt [16] defines an associative memory as a storage device
in yhich‘sufficient lozic is associated with each word of memory to
ailow"a parallel comparison of all the words in menorv with a sincle
search key, In other words, an associative memorv is a system in
which a word can be identified by its contents rather fhan by its
address (i.e., content addressable capabilitv).

The highly parallel computing svstem seems to be very adequate
for that purpose because a set of words shares an ALU in which
comparison can be carried out. TLecause only oﬁe call has been

comstructed, no attermpt to incorrnorate associative

capabilities

in the proposed arrayv has heey

-1

made, VPowever, the following
paragraphs will show how, with very little increase in hardware, this
interesting feature can be incorporated into the system.

Although in this array a comparison between the search key‘and
all the words of the array cannot be achieved simultaneously the search
key can be compared with one selected word in all the cells. So
following the Alt definition, this array is a set of 15 matrices of

1

associntive ~emorics, with ore matriy »er wrord . rather than one
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associative memory processor. Compariscn between a search key and all

the words of any of these matrices can be performed.

8.2 Search Key Comparison

The 16-bit search key is loaded into the DR and the comparison
is done using the ALU and inhibit control bits. Some examples will

illustrate this better:

Example 1. To detect the cells in which the contents of word 13 are

equal to ¥; (search key).

-~

The DR is leoaded with Xl and the dinstruction SUB, M1, EXT,
M13; is performed by the entire array. In the cells in which the
values are equal, the zero flip—floﬁ will be set. All the words of
the matrix "word 13" are simultaneously compared with the search key

and the zero flip-flop indicates, in each cell, whether the required

condition has been satisfied or not.

Fxample 2. To detect the cells in which (N7) > Xl'

After loading X, in the DR, the instruction SUP, M1, EXT, M7

is performed. In the cells in which the condition (My) > EXT is

satisfied, the sirn flip-flop will indicate negative.
Example 3. To detect the cells in which Xl < (MS) < Xz.

The search can be done in four steps.

1. Set X9 in DR
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3. Set X; in DR
4. SUB, M1, EXT, M5, 0, 0, O, PS (inhibit if (Mg) £ Xp)
In the cells in which the sign flip-flop indicates negative, the
condition is satisfied.

In addition to the preceding examples, many different
combinations are possible, such as comparing two arraYs of associative

memories, comparing a word with a word of the neighbors, etc.

v8.3 Cell Addresses Detection

Once the control flip-flop is set, the next step is the
detection of the cells in which the desired condition is satisfied.
The required condition for the control flip-flops are selected by the
same logic used for inhibit, but only four conditions are of interest
now. They are called the content addressable conditions, and are as
follows: ACl = 0; ACL # 0; AC2 > 0; AC2 < 0.

The inhibit demultiplexer, under instruction control, selects
the desired condition and the information required is available at the
‘inhibit output, where an associative flip—floﬁ is set to 17 if the
condition is satisfied or to "0 otherwise.

The problem is reduced now to detecting in which cells the
associative flip-flops are equal to "1, and reading these addresses
into the CPU for further processing. Because more than one cell at a
time can satisfy the condition, a priority system for read out must be
desioned.,

A possible configuration is partially shown iﬁ_Fiﬂ. 8.1. A

priovity svetew detector is shown for an 8x8 nmatrix which can be
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easily extended to our 63x63 array. The priority is established on
the basis_of higher priority for lower row number and in case of
the same row number, for lower column number.

The TMS 2801 is an "Eight Level Priority Encoder', manufactured
by Texas Instruments. It generates an output according to the priority
levels present at its inputs. Each input corresponds to a priority
level. The hichest priority level that is "true’ produces its
characteristic output code, regardless of the state of the lower
priority input lines.

The outputs of the associative flip-flops of all the cells are
comnected to an OR gate in the "Row Address Encoder', while in the
"Column Address Iacoder®, it is done through AND cgates.

Suppose the cells that are in the intersection of row 001 and
column 110 [110:;0011 and in the intersection of row 101 and column N10
[010;101] have the associative flip-flops "high'". The '"'Column Address
Encoder' does not have any input because the AND gates are inhibited.

The THS 2801 row, !

s

as activated the two input lines corresponding to
rows 001 and 101, but it produces an output 001 (highest priority)
which is available as a '"Row Address''. This output is decoded and
all the AND gates of row 001 are activated, allowing the "Column
Address Encoder'" to identify the hichest priority columm in that row.
In this case 110 is the only one., The darker lines in Fig. 8.1
represent the lines that are "true' at that moment.

The information present at both outputs of the TMS 2801's

can be read into the CPU, giving a direct identification of the highest

R T TS IR B O B O ST S A TR N L PRt
EE T S S Y PO OSSR A B TE R S R S PRt o
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Once it is read, the computer could generate a pulse to reset the
corresponding associative flip-flop and the next highest priority
address can then be detected. In this example, the associative flip-
flop of the cell [110;001] must be reset and the system will detect

the cell [010;101] as a second highest priority.
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CHAPTER 9

Conclusion

Much work has heen done in the last few vears in the field of
parallel computers. llowever, no commercial parallel processor is as
yet available in the market. It is ewpected that the availability
of LST functional.-units and memories will make parallelism economicallw
attractive.

Tesides cost, the main problem that has delayed a rapid

development of the nrarallel processor has heen the lack of adequate

languages and narallel alsorithms., Although some work is boing carried
out in this field [171, it is exnected that more elaborate algovithms
will nermit more efficient use of the parallel processor, =ven in
problers where «sith the prdsént softvare state-oi-art, it recuires a
sequential solution [187. Although the hirh level lanpuages used in
SOLOMON structures such as Illiac TV [12] are wverv oriented towards a
particular machine, some wsork in the area of zereral hish level
language has been started,

According to the discussion in Chapter 1, there are several
degrees of paralielism. This project has heen directed toward the
desicn and econstruction of an HPCS, and the SOLOMON tvpe of structuve
has heen chosen. Although most of the present wvor® is heing directed
towvard this confinsuration, it dis »nessihle that furthar develenment in
softwara will =make the challenging Volland machine [1] realizahle, once

thie formidable prohlem of coordination between cells is solved.
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The general organization of the system - composed of a PDP-11
computer, an interface unit, a control unit and the array of cells -
and the functional relationships and characteristics of the units have
been discussed in Chapter 2. Concerning the array architecture, the
cells have been organized in a planér rectangular matrix with additional
row, column and central buffer. Tach cell is related to the corresponding
buffers and the four nearest neighbors., However, it is possible that
becauée of some future problem requirements, a further expansion of
the cell relationship to the eight nearest neighbors may be implemented.
The extension of the present planar SOLOMON structure to a three-
dimensiondl arrav could open a new area of research.

Computation speed and versatility of the arrayv micht be improved
by using a more sophisticated and bigger cell. Wowever, the size of
the cell discussed in Chapter 3 seems to be very adequate. It is big
enough to perform fleoating-point arithmetic as well as to corpute
transcendental functions, but small enough to allow an economic
construction of a large number of cells.

The "inhibit" syvstem permits flexibility in the control of the
operations at the cell level, whereas the ‘'convergence’ svstem is very
useful for micronrogramming purposes.

Although operations in the cell are carried out bit~-by-bhit, the
incorporation of accumulators and several detectors allows the use of
techniques for performing arithmetic operations at relatively high
speeds using inexpensive hardware. Héwever, it is expected that the
next step in an attempt to impnrove the cell itself could be the

incorporation of multiple bit arithmetic.
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The set of instructions and mnemonic presented in Chapter 4
works very satisfactorily in accordance with the purpose of the array
and the characteristics of the minicomputer. Any operation can be
easily programmed and quickly assembled by the software supplied.

The Control Unit discussed in Chapter 5 performs its task of
decoding the information from the CPU and generating the control level
and pulses. However, the possibility of incorporating hardware
microprogramming éhould be considered in further improvements. Many
basic operations, such as division and floating-point arithmetic are
now under software control, but they could be incorporated in the
hardware of the system. This feature would allow the CPU to be
available for other operations while array computations are being
executed besides saving computer storage.

The cell addressing system proposed would incorporate more
flexibility in the array. The different addressing modes, in
accordance with the nature of the problem, would allow a higher cell
selection speed. The ability to operate in a half array seems to be
very advantageous because a more powerful system can be obtained
without hardware complications. If the nature of problems to be solved
with the array would require further extension, the same principle
could be used to join more than two cells together.

The system has been interfaced to a PDP-11 computer through
the Interface Unit presented in Chapter 6. The unit has been designed
in accordance with the computer specifications and it works satis-

factorily.
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The software package used in this project has been discussed
in Chapter 7. The CONTROL ﬁrogram permits a practical use of the
array. Several tests have been made using this set of routines and
the perfomance of the system -hardware and software- seems to be
in accordance with the specifications. The SIMULA program simulates
an array of cells in the PDP-11 computer. Some pafallel algorithms
have been tested using this program. It is expected that further
research in the developments of algorithms suitable for the proposed
array or, more generally, for any parallel processor, will be made
with the SIMULA programs.

| The possibility of using the array as an "associative-memory"
processor with very little increase in hardware has been pointed out
in Chapter 8., Although some content-addressable memories are now
available in the market, the increasing needs of information retrieval
in business, air traffic control and the applied sciences require a
more sophisticated associative-memory processor. The proposal made
in this Chapter seems to be adequate and powerfﬁl enough because of
the great flexibility in information comparison, as well as the very
efficient system of priority address detection, without need of scanning

or searching the full array. °

The Interface, the Control Unit (without the addressing syétem)
and one cell have been constructed and interfaced with the PDP-11
computer, One board per unit has been used. With this structure, the

system coul be expanded by simply wiring-in more cell boards.
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All the logical functions have been implemented by using
integrated ciréuits, mainly from series 74/ and 74H/ manufactured by
Texas Instruments. It was necessary to use 64 chips for the Control
Unit, 29 for the Interface and 67 for the Cell. A D.E.C.-M401 variable
clock, funning at 4.5 MHz and a D.E.C.—MlOS Address Selector have also
been connected as part of the system. A 5 Volts Power Supplv provides
the necessary 3.2 Amperes for all the circuits.

The distr;bution 5f chips on the boards and a complete wiring
diagram, not included in this thesis, are available in a "Technical
Report''. The report also includes the complete listing of computer

programs used in this work.
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