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ABSTRACT 

Internal friction, in the region of the 
grain boundary peaks, has been examined in nominally 
pure zirconium and dilute zirconium alloys. Exper i­
mental observations were made using both torsion and 
reed internal friction pendulums. The effect of various 
heat treatments on the peaks were investigated. Strain 
amplitude dependent damping in the region of the Low 
Temperature Peak was observed. A qualitative model 
is presented to explain the experimental observations. 
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INTRODUCTION 

Since the first identification by Ke 1 of maxima in 

high temperature internal friction experiments, due to the 

presence of grain boundaries, a large number of similar 

observations have been reported. However, a detailed explana-

tion of the basic mechanism has not yet been developed. In 

this report, we further investigate the occurrence of high 

temperature damping maxima. 

It should be noted that as many as three distinct 

peaks in the internal friction spectrum have been attributed 

to grain boundaries. They are usually referred to as a L.T.P. 

(low temperature peak) between 0.3 and 0.4Tm (where Tm is the 

melting temperature) an I.T . P. (intermediate temperature peak) 

at 0.5Tm and, in some cases, a H.T.P. (high temperature peak) 

around 0.8Tm . In conjunction with the peaks, a monotonically 

increasing background has also been observed . The size and 

position of these peaks have been found to be sensitive to 

the grain size, the purity of the metal, and the prior heat 

and me chanical treatments of the specimens used in the tests . 

Subsequent to these observations, a number of mode ls 

have been postulated. A grain boundary sliding model was 

2 3 4 first presented by Zener and Ke ' to account for these 

phe nomena. 
5 

This model was later modified by Raj and Ashby , 



and by Mosher and Raj
6 

to explain the effect of impurities on 

the peaks. Several qualitative models have also been suggested 

which include the following various effects: the migration 

of grain boundary protrusions
7

, damping by dislocations at 

. b d . 8 d . b d .. 9 gra1n oun ar1es , an gra1n oun ary m1grat1on . A quanti-

ta ti ve model involving. the reversible climb and glide of 

dislocations in the grain boundaries and lattice has also 

been postulated. 10 

In this report, internal friction in the region of 

the grain boundary peaks in nominally pure zirconium and dilute 

zirconium alloys is examined. The experimental observations 

present in this report have been made using both torsion and 

reed internal friction pendulums similar to those described 

in references 13 and 14. The effects of various heat treatments 

on the peaks have been investigated. In particular, strain 

amplitude dependent damping in the region of the. peaks was 

o b served. It should be noted that strain amplitude dependent 

damping peaks were observed throughout the entire temperature 

range investigated. These peaks are interpreted in terms of 

a dislocation unpinning model . 

2 
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2. REVIEW OF THEORY 

2.1 The Grain Boundary Peaks 

Experimental evidence of an internal friction (I.F . ) 

peak peculiar to polycrystalline materials was first obtained 

by Ke (1947a) 1 in his work on single crystal and polycrystalline 

aluminum. A maximum in the I.F . was observed by Ke in the 

vicinity of 300°C during a testing of polycrystalline aluminum 

in torsional bivrations at 0 . 8Hz. This peak was not present 

in "Single Crystal" aluminum. Ke attributed this peak to the 

relaxation of shear stress across a viscous grain boundary. 

The model used by Ke assumes a flat boundary of thick­

ness b and area of order d 2 where d is the grain diameter 

with a characteristic viscosity n . Such a boundary is shown 

schematically in fig . 2 . 1. With the onset of a stress across 

the boundary , the crystal lattice initially deforms elas tically. 

However , since the grain boundary mat erial is assumed to be 

viscous, grain 1 starts to s l ide over grain 2 under the influence 

of the applied shear stress to build up opposing stresses at 

the ends of the boundaries and into grains 3 and 4. This 

relaxation proce ss comes to a halt when the shear stre ss has 

dropped to zero across most of the length of the boundary. 

This process produc e s the offset ~X between grain 1 and grain 2 . 

At low stress levels, the distortion at the edges is assumed 

3 
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to be purely elastic. This distortion at the edges provides 

the necessal~ elastic-restoring force to reduce 6X to zero 

upon removal of the applied stress.· This process is anelastic 

since it is recoverable upon the removal of the applied stress 

and since the additional strain from sliding is ac:cumulated 

and discharged with a characteristic relaxation time. This 

sliding process then produces an elastic after-effect and 

indicates that an idealized sample containing a collection of 

identical boundaries would correspond to the standard anelastic 

solid. Thus, this process should exhibit a relaxation peak 

in the damping spectrum with a characteristic relaxation time T. 

The relaxatio~ time T can be determined by consider-

ing the kinetics of the relaxation process to be dependent on 

an effective viscosity co-efficient n at the grain boundary . 

By analogy with the standard anelastic solid, the rate of change 

of the slip distance 6X, with time, will be proportional to 

its deviation from its final equil i brium slip distance 6 X so, 

d( 6 X) = (6 X 
dt 

6 X) I 2 . 1 
T 

where T is the characteristic relaxation time, the initial 

slip velocity for 6 X = 0 is then: 

v(O) = 6 X/ 
T 

2.2 
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For a boundry of width b under an initially uniform shear 

stress a , v(O) may also be written as: 

v(O) = crb/ n 2. 3 

To reduce the shear streas at the boundary to 

zero, the local anelastic strain at the boundary 6X/d must 

relieve the elastic strains; therefor, we have; 

6X=a/G 2.4 
d 

Where G is the elastic modulus. From equations 2.2, 2.3, 

and 2.4, we obtain; 

2.5 

If one then assumes a simple Arhenius type relationship9 

for the dependence of the viscosity with t emperature i.e. 

n= n 0 exp(Q/kT) 2.6 

then the temperature dependence of T is; 

T =~exp(Q/RT) 2.7 
dG 

Whe re Q is the activation energy of the process and n
0 

is 

the viscosity at absolute ze ro t emperature . 
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Determination of the activation energy for equa-

tion 2.7 depends on the atomistic processes involved in 

sliding at the grain boundary. Ke considered the boundary 

to consist of islands of atoms of good fit and islands of 

disordered atoms . Thus, the sliding process would be that 

of forcing disordered atoms past the islands of good fit. 

The activation :energy of this simplified process is then 

that of self-diffusion since Ke does not differentiate 

between the type and concentration of imperfections in 

the boundary and in the grain. Mott (1948)
15 

also consider-

ed the boundary to be a transition region consisting of 

islands of good lattice fit between the adjacent grains 

seperated by regions of . Lad lattice fit between the adja-

cent grains . However, slip, according to Mott, would ln-

volve the disordering of atoms around each of the islands. 

If n atoms are disordered around each island, Mott showed 

that the activation energy of the process would be; 

Q = nL 2. 8 

where L is the latent heat of fusion per atom. Ke found 

some agreement between the activation ene r g y of self-diff-

usion and the activation energy measured from the shift 

of the peak with frequency. If Ke's results are interpreted 

using 2.8 ann 6f approximately 14 is obtained. 

It is not clear how the simple model used by 

6 



Ke would explain the effect of impurities on the so-called 

grain boundary peaks. The addition of both substitutional 

and interstitial impurities have caused marked changes 

in the so - called pure peak (L.T .P.) an~ evolution of a 

second anct sometimes third impure peak (I.T . P. and H.T.P.) 16 ' 17 

The height and position of all these peaks have been shown to 

be very sensitive to impurity concentrationl6, 17. 

An attempt at including the effect of impurities 

on the grain boundary peaks using a modif i ed sliding model 

has been made by Mosher and Raj 6 . They incorporated some of 

the theoretical results obtained from the paper of Raj and 

Ashby5 into their own sliding model for grain boundary I . F. 

They considered a polycrystal containing inclusions in the 

grain boundaries as shown in fig. 2.2 . The inclusions were 

assumed to be particles of precipitated impurities at the 

boundaries. As in Ke's model upon onset of the stress, 

the grains elastica l ly deform and start to slide. However , 

due to the presence of impurity precipitate particles , the 

resistance to sliding is greater than in the pure metal cas e 

since the boundary has to elastically deform to accommodate 

sliding across the particles . Mosher and Raj postulate that 

this elastic defornation is accomplished by the diffusive flux 

of pure lattice atoms around the particJes either by a route 

through the lattice or along the grain boundary as shown in 

fig . 2.2. A spring-dashpot model in fig. 2.3 describes the 

7 
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various parameters which are relevant to the Mosher and Raj 

model. The spring stiffness describes the total sliding 

strain available for a given applied stress. The three 

dashpots describe the viscosities which control the rate at 

which the sliding can accumulate. nB is the intrinsic 

viscosity of a particle-free planar boundary and corr e s ponds 

to the pure metal grain boundary viscosity measured by Ke 

in his experiments. nBDIFF and nvniFF are the additional 

resistance to sliding introduced by accommodating sliding 

across the particles by diffusion of atoms. nBDIFF and 

nvniFF were calculated by Raj and Ashby 5 and shown to be 

valid for sliding of bi-crystals 18 . For particles impermeable 

to diffusion of diameter p and with inte rparticle spacing A, 

the sliding viscosities are given by: 

n =bKTp4. l 
BDIFF 8Q A 2 bDb 

2.9 

n = b.KT .p3.1 
VDIFF 1~6~ ~2 Dv 

2.10 

where b is the grain boundary thickness, ~ is the atomic volume ; 

and DB and Dv are the self-diffusion coefficients for grain 

boundary and volume diffusion. Mosher and Raj have shown that 

the relaxation time T is given by: 

T = n/b B 2.11 
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for a boundary of a general sliding viscosity n where B for 

an equiaxed grain structure is given by: 

B = l . E .l 
l. 14 ( 1-vz) d 

2.12 

where E and vare Young's Modulus and Poisson's Ratio, respectively 

and d is the grain size of the polycrystal. For the model 

shown in fig. 2.3, the dashpot with the highest viscosity will 

be the rate-controlling step for the relaxation process. 

Mosher and Raj showed, by using appropriate numbers for DB, 

Dv, and ~ ' that the viscosity nBDIFF and nvoiFF per boundary 

thickness (b) is much greater than the pure viscosity nB for 

copper. The particle size p and spacing A was determined 

metallographically from oxidated Ca-Ge and Cu-S alloys used 

as specimens in their internal friction experiments. They also 

showed that in copper nBDIFF is much greater than nvoiFF· 

They, therefore, used nvoiFP in 2.11 with equation 2.12 and 

obtained the following: 

T = O.l4.KT(l-v 2 ) 
E ~ 

In summary, the model of Mosher and Raj predicts 

2.13 

that a grain boundary peak will occur at a higher temperature 

in an i~pure metal rather than at the pure metal peak, and 

this peak will shift in position with particle size, particle 

spacing, and grain size in accordance with equation 2.13 

since T determines the position of this anelastic peak. If 



10 

grain boundary diffusion is the rate c ontrolling step, the 

activation energy for the peak will be that of grain boundary 

diffusion; and consequently, the activation energy for the 

peak will be that of self-diffusion if volume diffusion is 

dominant. Mosher and Raj found agreement between their model 

and their e xperimental data. 

Leak 9 (1961) found a correlation between the activation 

energy of the grain boundary peak in pure iron and that of 

grain boundary self-diffusion. From this observation, he 

postulated that the grain boundary damping could be associated 

with grain boundary migration in the form of sub-microscopic 

grain growth. Qualitatively, this process could lead to an-

elastic phenomena; however, the necessary elastic-restoring 

force was not made clear by Leak. 

At an elevated temperature, it appears that dis­

locations travel along grain boundaries (Weirtman 1955 19 , 

Ishida and McLean 196720 , Ashby 1969 21 , Ishida and Liu 1970 22 ). 

As such movement is usually a mixture of glide and climb, 

sliding of one grain with respect to the other and emission 

or absorption of vacancies is the r es ult. 
8 Roberts and Barrand 

introduced a dislocation model to explain the L.T.P. in F.C.C. 

metals and the ir observed relationship between peak relaxation 

stre ngth ~a peak activation energy Q , and d0 the width of the 
p 

dissociated dislocation. They postuldted that the relaxa tion 

peak was due to the reversible motion of dislocations in grain 
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boundaries. Roberts and Barrand8 also attempted to explain 

the influence of grain size and impurities on the L.T.P. in 

terms of their model. However, the actual elastic-restoring 

force to create the reversible motion is not clear, and their 

model is only qualitative. 

Recently, a quantitative model for grain boundary 

peaks, involving glide and c l imb of dislocations, has been 

developed by J. Worrigard10 . The elastic-restoring force is 

the line tension of a dislocation bowed out between pinning 

points as shown schematically in fig. 2.4. The anelastic 

strain is created by the dislocation undergoing climb under 

the influence of the applied stress . The rate of climb of the 

disl~cation is controlled by the diffusion of vacancies. Thus, 

the relaxation time would be different if diffusion occurs 

in the grain boundary compared with diffusion in the lattice. 

Worrigard writes the strain rate produced by climb 

and glide of dislocations as follows: 

E = 2.14 

Where: p = dislocation density 

A = half mean spacing between pinning points 

J shear modulus 



b = Burgers Vector 

K Boltzmann constant 

T = absolute temperature 

rl vacancy vol mne 

A factor related to the exact diffusion path and 
contains the diffusion parameter 

S = geometric constanent such that Te 
(Te being the line tension) . 

If we now compare equation 2.13 with the equation of strain 

rate for a standard anelastic solid which is: 

E: =l(E: - a cS G) 
T 

we see that the relaxation stre ngth o G is given by: 
G 

and-· tr.he re laxation time by: 

2.15 

2.16 

12 

for Worrigard,s model. Thus, a r elaxation peak with the relaxa-

tion strength and relaxation time given by 2.16 should occur 

in the I.F. Spectrum. 

One i m9ortant aspect of this model is that no assumption 

is made concerning the nature or position of the dislocations. 

The only assumption is that dislocations of opposite signs 

exchan ge vacancies and are pinned either by poin t defects or 
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by other dislocatjons. The dislocation structure responsible 

for the relaxation peak may not necessarily be in the grain 

boundaries but may be in the lattice structure of the grains. 

This then implies that I.F. peaks, due to dislocation relaxation, 

may occur in single crystal if an appropri ate dislocati on 

structure exists in the crystal. 

The activation energy of the dislocation relaxation 

peaks, however, will change depending on where the diffusion 

of vacancies takes place. For movement of grain boundaries 

dislocations, diffusion of vacancies could take place in the 

boundary. Worrigard has calculated for this case that T is 

given by: 

2.17 

and the relaxation magnitude is: 

2.18 

where b is the boundary width a nd ~ being the mean spacing 

between grain boundary dislocations . ¢ is the angle that the 

Burgers Vectors of the dislocation makes with the boundary. 

In this case, the activation ene rgy would be that of grain 

boundary diffusion since Db, the grain boundary diffusion 

coefficient appears in the expression for T(2.17). 

If, however, dislocatio~s in the grain are responsible 
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for a relaxation process, the vacancies would travel through 

the crystal lattice from a dislocation acting as a source to 

one acting as a sink. This mechanism would have a relaxation 

time given by : 

T = KT . A2 Log R 2.19 
6TI SGrl £b 

where: R is the cut-off parameter and £ is the mean spacing 

between dislocations and Dv is the co-efficient for diffusion 

of vacancies in the crystal lattice (self-diffusion). The 

activation energy in this case is that for self-diffusion. 

All the preceding models developed for grain boundary 

internal friction consider the process to be wholly anelastic 

in origin. Thus, the internal friction observed is expected 

to be amplitude independent . Recently, however, amplitude 

dependent effects have been reported in the vicinity of the 

grain boundary peak in polycrystalline m~gnesium. 23 Thus, if 

the amplitude dependent damping in the region of the grain 

boundary peak is a general effect, re-examination of all 

previous reported data would be necessary. Furthermore, any 

model de ve loped for grain boundary peaks would have to include 

14 

the possibility of amplitude dependence when extended to higher 

strain amplitudes . 

2.2 Background Internal Friction 

The rise in background of internal friction in the high 

temperature region has usually been thought to arise from the 

thermal activation of dislocations. 24 This background has been 

shown to vary exponentially with tempe rature according to an 



Arrheneous relationship of the form: 

Aexp(-H / RT) 2.20 

where: H is the activation energy, R the gas constant, T 

the absolute temperature, and A a structure sensitive term. 

F~rthermore, the frequency dependence of the high temperature 

background damping is thought to be given by: 

6 =A exp(-H/RT) 
In 2.21 

15 

where F lS the frequency and n is usually ln the range of 1 to 2. 
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RESULTS OF EXPERIMENTS USING THE TORSION PENDULUM 

3.1 The Apparatus 

An inverted torsion pendu lum operating in a frequency 

range around 1Hz was used. The apparatus is the same as that 

14 described by Putman, Ritchie and Sprungman In fig. 3.1 

is shown a schematic diagram of the instrumentation used in 

16 

the torsion system. The torsion pendulum and the vacuum chamber 

is shown in fig. 3.2. Vacuum was maintained at less tha n 

lo-3 torr throughout all experiments. 

Damping was measured using two techniques. The electrical 

energy required to maintain the oscillations of the pendulum 

at a constant amplitude was used as one measure of damping. 

Free decay of the oscillations was also used, where the damping 

can be determined from the Log Dec given by: 

Log Dec= ~ = Log (A )= lLog (A ) -o - _o 3.1 
A1 N An 

where Ao, Al, and An are the first, second, and nth amplitude of 

the free decay and N is the number of oscillations in between. 

In the torsion tests, the ~tter method was used chiefly to 

calibrate the drive method. Driving at constant strain amplitude 

is accomplished through use of a pendulum control circuit. It 

is shown in reference 14 that the current supplied to the drive 

coil Io is related to ~ the Log Dec by: 

I O 
K2 EG 

3.2 
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where K2 is a constant, E is the surface shear strain amplitude, 

and G is the shear modulus. This equation shows that if the 

pendulum is driven at a constant strain amplitude, the drive 

current is directly proportional to 6 through the constant 

K2 EG. This constant can then be determined through calibration 

of drive results against free - decay results . The strain 

amplitude in the drive mode is controlled by a reference voltage 

level (V
0

) with nominal values from 0 to lOV. Each level 

corresponds to approximately 0.001 of an inch displacement of 

the inertia arm at the transducer . The strain ampli t ude of the 

specimen is then given byl 4: 

3 • 3 

3 .4 

and where r is the radius of the specimen, £ is its length , 

and R is the radial displacement of the transducer from the 

axis of the pendulum . X
0 

is the displacement of the inertia 

arm at the transducer and c is the conversion constant between 

the reference voltage level V and X . Thus, E can then be 
0 0 

given by: 

3. 5 

17 



where: for a given test K3 is a constant. 

3.2 The Experiments 

The samples teste] are listed in table l along with 

their composition and grain size. Micrographs are shown of 

specimen 1 before and after testing ln fig. 3.3. A typical 

chemical analysis of the marz grade Zr supplied by the manu­

facturer is shown in table 2 . The alloys are prepared from 

marz grade Zr alloyed with pu~elements. These specimens 

were oxidized to 1% by weigh t and annealed at 1050°C for 

18 

5.2 days. This was thought sufficient for complete homogenization . 

The marz grade Zr specimen, 6 . 03 inches in length with 

an average diameter of . 0343 inches, was mounted and annealed 

in situ at 750° for 2 hours to reduce handling strains. 

Temperature of the specimen was changed and controlled by the 

apparatus outlined ln ref~re c e 14 . Less than 1° fluctuations 

along the length were detected below 600°C. Above 6oooc, ~1e 

temperature differential was slightly larger. The pendulum 

was driven at a V
0 

equal to 4V. This amounts to a constant 

strain amplitude of 5.0 X 10 - 6 . The drive current and temperature 

was monitored on an X-Y recorder yielding a continuous reading for 

the damping as a function of temperature. 

In fig. 3.4, the resulting damping spectrum is shown 

in a typical warm-up to 750°C. The Log Dec was obtained from 

the drive current through equations 3.2. The experimental 
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curve obtained is curve A of fig. 3 . 4. To estimate a back -

ground of the form given by equation 2.20 , a plot of ln (~T) 

vs. 1/T was done for curve A of fig. 3.4. This plot is shown 

in fig . 3.5 . A straight l i ne was drawn tangent to several 

points at low temperatures outside the peak regions . The slope 

of this line is then the activation energy in equation 2.20 and 

is equal to 18. kcal./mole in this case . This i s then the 

extrapolated background used in fig . 3.4 t o resolve the peaks . 

This is the procedure used in estimating backgrounds in all 

experimental curves . 

h . f 12 . h In t e experlments o Gacoungnole Wlt Zr , there 

was evidence of two peaks appearing in the temperature range 

from 400°C to 800°C, a L.T.P . and .an I . T.P. Thus, the experi-

mental curve obtained in these studies was analyzed accordingly . 

In fig . 3 . 4, the maximum of the L . T.P . was taken as the maximum 

of the spectrum after background subtraction. The low temperature 

side of this maximum was symmetrically refl~ted to the higher 

temperature side . Thus, peak C of fig . 3. 4 was first obtained, 

then both peak C and the background were suqtracted from curve A. 

This produced a peak D at 680°C. This procedure is justified 

since the ccntribution of the I . T.P. is minimal at the L.T.P . 

maximum as is the case with fig. 3. 4. 

The shape · of curve A, in fig. 3 . 4 was that which was 

generally observed in sever a 1 warm- ups to · 7 40°C . However , the 

height of peak C appeared to slightly diminish with each succeeding 



20 

.. 

run. Also, after an in situ anneal at 780°C for 2 hours 

and cooling to room temperature, the subsequent warm-up revealed 

a damping spectrum as shown in curve A of fig. 3.6. Subtraction 

of a much lower background but with same activation energy 

and the use of the same resolution technique as before revealed 

an L.T.P. greatly diminished in height. The peak at higher 

temperature remained at approximately the same height but was 

shifted in temperature. 

A test of the Zr-Mo-0 alloy sample revealed the damping 

spectrum shown as curve A of fig. 3.7. After subtraction of 

the background curve B, a peak at 482°C was resolved, shown 

by curve C of fig. 3.7, there was no evidence of a I.T.P. 

The value of the damping at the peak is .0217 in terms of 

Log Dec which is much smaller than the peak in the marz grade 

specimen at a similar temperature. The sample was not subjected 

to an in situ anneal before the recording of curve A. However, 

after an anneal for 2 hours of 750°C, the peak at 482°C has all 

but disappe~red as shown by curves D and Fin fig. 3.7. There 

appeared to be the emergence of a second peak at higher temp­

eratures (800°C) i.e. above the limit of the .experimental 

apparatus. 

The testing of the Zr-Y-0 specimen resulted ln experi­

mental curve A in fig. 2.8. A peak was observed at 580°C at 

a frequency of l.68Hz. No prior in situ anneal was done; and 

after recording of curve A, the sample was rapidly coole d to 
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room temperature. Weights were installed on the inertia arm 

of the pendulum to reduce the frequency of oscillations to 0. 46Hz at 

room temperature.In the subsequent warm-up, the damping spectrum 

recorded is shown in fig. 3.9. Two major differences were noted 

in this warm-up in comparison to the previous one at higher 

frequency. The background subtracted was higher by a factor 

of approximately 3.3 and the peak, although approximately the 

same height , was shifted. From a shift with frequency, the 

relaxation time ( T) for a relaxation peak can be determined 

by the following method: T the relaxation time is given by: 

T =± 
w 

T 0 exp (Q/RT ) 
p 

3.6 

where Q is the activation energy, R is the gas constant, and Tp 

the absolute temperature at the peak position. Then, for w1 

at Tp 1and w2 at Tp 2 we have from 3.6: 

1 
wl T oeXl) (Q/RTpl) 

-1- Toexp (Q/RTP2} 
3. 8 

W2 

or 

Q Rln~2 { _! 1 -1 = } 
wl Tpl Tp2 

3.9 

where T0 is assumed independent of w. For the shift in temper-

ature of the L.T.P. for l.68Hz and 0.461Hz an activation 

energy of 63 kcal. / mole was found . If the peak is a true 

Debye peak (i.e. the standard anelastic solid model holds), 
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the peak will have a single relaxation time T. For such a 

peak, the activation energy can be calculated from the peak 

half width by: 

= 2 . 635 R 
~ (T 1) 

3.10 

where ~ (T- 1 ) is the peak half width in the inverse absolute 

temperature spectrum. Using 3.10 a QHW of 25 kcal./mole was 

22 

obtained from the peak in 2.8 and QHW of 32. kcal./mole for the 

peak in fig. 2.9. The difference between the two activation 

energies is within experimental error. However, both activation 

energi~s are significantly lower than 63 kcal./mole obtain 

from the peak shift. This difference between QHW and Q peak 

shift indicates that this process does not have a single 

relaxation time, but a distribution of relaxation times. 

This point i s discussed further in the next section . The acti-

vation energy of the background in both cases was approximately 

22 kcal./mole. In addition, there was evidence of a peak around 

400°C which is thought to be the oxygen s - i peak as predicted 

b . . h' 1 25 y Rl tc l e e t . a . . 

3.3 Discussion of Torsion Results 
Grain Boundary Peaks. 

As can be seen ln figs . 3.1 , 3 . 2 , 3 . 4, after subtraction 

of a suitable background, a peak in the 500 to 600° region was 

found in all specimens tested. This peak was present regardless 

of the purity of the material . However, the peak height is 
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diminished in alloy specimens. In specimens l and 3, as a 

result of a high temperature anneal, the peak is greatly 

reduced. 

No detectable change in the grain size bsfore and 

after testing was found in the alloys. However, slight grain 

growth did occur in the Marz Grade sample. Specimen 2 was not 

subjected to a high temperature anneal to ensure that the 

minimum change took place in the peak in order to determine 

the activation energy with minimum error. 

Ke 1 showed that the height of the peak predicted by 

the sliding model, is independent of grain size as long as the 

grain size was less than the specimens ' dimensions. Since 
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only minimal grain growth occurred in the pure specimen, and_ 

since the grain size was much less than the specimen's dimension, 

the peak heights should have been of constant height. Thus, 

the drastic reduction in the L.T.P. of pure Zr after a high 

temperature anneal is difficult to explain in terms of the 

sliding modeL Furthermore, appearance of a peak in a similar 

temperature region in the alloy samples behaving in a similar 

manner as in the pure Zr sample suggests that the alloy peaks 

are of the same origin as the so-called pure .peak. This also 

contradicts the extended sliding model of Mosher and Raj 6 

since the G.B. peaks predicted for impure samples with precipitate 

particle s at· the boundary should occur at a much higher temper-

ature than the pure peaks. It appears then that neither the 
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original sliding model nor the extended sliding model can be 

used as an explanation for the L.T.P. observed in this study. 

In his thesis, 10 Gacougnolle found a similar peak at 

530°C in commercial zirconium as was found in specimen 1. 

The activation energy of that peak was given by him to be 

60 ±10 kcal./mole which agrees well with the activation energy 

of the peak in specimen 2 in this temperature region. He also 

found the peak diminishs after annealing in the beta phase . 

He postulated that the peak was due to a dislocation relaxation 

similar to that predicted by the Worrigard model. However, 

because the activation energy was that close to volume self­

diffusion10 for pure Zr, he concluded that the dislocation 

structure responsible occurred in the lattice. Thus, the 

heat treatment changed the peak characteristics since it changed 

the dislocation structure responsible for the peak. 

A similar explanation seems acceptable for the L.T.P . 

observed in this study on Zr and Zr alloys. The L . T.P. then 

is not necessarily present due to grain boundaries although 

the presence of grain boundaries may effect the density and 

characteristic of the dislocation structure in the grains. 

The dislocation structure responsible seems to be stable below 

750°C but prolonged annealing at a higher temperature drastically 

changes the structure ; thus , changing the nature of the peaks. 

Mechanically induced strains on the solid would also tend to 

change the dislocation structure. This is probably why even 
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0 after an anneal at 1050 C for 5.2 days the alloys showed an 

L.T.P. since handling strains were introduced upon mounting 

of the specimen and no in situ anneal was done prior to initial 

testing. The distribution in , , found earlier, is probably 

due to the distribution of dislocation .lengths in the dislocation 

structure since the relaxation time for a dislocation relaxation 

lS governed by equation 2.16 which contains a A3 term. 

The I.T.P. in marz grade zirconium, however, does not 

seem sensiti ve to heat treatment. This peak was not present 

in the alloys. The emergence of a high temperature peak 780°C 

was present in the spectrum of specimen 3. These peaks could 

be the grain boundary precipitate peaks predicted by the Mosher 

and Raj's 6 sliding model. Some shift was found in the I.T.P. 

(700°C) in specimen 1, which could possibly be due to the 

slight grai n growth that occurred; this is predicted by the 

sliding model. However, not enough experimental evidence is 

present to specify the nature of these higher temperature peaks. 

3.4 Background 

A plot of ln (~T) vs. 1/T yields a straight line which 

is tangent to the experimental curves at a low temperature 

outside the p e ak area. The activiation energies from the 

slope of the line ranged from 18 kcal./mole to 22 kcal . /mole. 

This is similar to the activation energy obtained by Gacougnolle 10 

in his thesis from use of eq uation 2.20. The 1/fn dependence 
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predicted by equation 2.21 also seems to hold since the back -

ground change is a factor of 3 . 3 which is approximately t.he 

same ratio of the two freq uencies 3. 0 3 . Thus , n would be 

approximately 1 which is similar to what has been observed 

elsewhere . 2 4 
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4. REED PENDULUM EXPERH1ENTS 

4.1 The Apparatus 

The reed pendulum apparatus used is described in detail 

b . h' l 13 y Rltc 1e et. a . A schematic diagram of the system is shown 

1n fig. 4.1 and 4 . 2. Damping can be measured at a constant 

strain amplitude through monitoring the drive current needed 

to sustain constant amplitude. Damping can also be measured 

from the Log Dec given in equation 3 . 1 from free decay. Data 

logging in free decay is facilitated through the use of a 

small computer with amplitude and period monitoring capabilities. 

The amplitude and period of each cycle of a free decay can 

be measured accurately. Thus, the damping and modulus defect 

can be obtained as a function of nominal strain amplitude of 

free decay (V0 ) . The nominal strain amplitude can be converted 

to real strain amplitude through. equ tion 3. 5 re-written here 

for convenience as: s =V0 K3 . 

where K
3 

is 1 . 361 X 10-6 for specimen 4 and 1.255 X 10-6 for 

specimen 5. The above is the method employed in experiments 

throughout this report where damping is measured as a function 

of strain amplitude. 

4.2 Experiment 

Marz grade zirconium specimens, 1n the form of rectangular 

reeds of approximately 3 em. in length, were tested using the 

reed pendulum. The frequency of operation was in the region of 4Hz. 
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The specimens are listed in table 1 as specimens 4 and 5 . 

Specimen 5 contained a fairly uniform grain structure . However, 

there existed a large d i stribution of grain sizes in specimen 4 

containing some fairly large grains. Thus, the grain size in 

table 1 for specimen 4 is only an approximate average . 

The specimens were heated at a rate of 2°C per minute , 

and free - decay measurements were t aken every 10 minutes after 

the specimen temperature was allowed to stabalize at each temper-

ature for 15 minutes. Less than 1° temperature difference 

throughout the length of the specimens was maintained . Vibration 

of the specimens was maintained at a constant nominal strain 

amplitude of V0 = 4 throughout the warm- up and the stabilisation 

period. However, for free - decay measurements, the amplitude 

was increased to V
0 

= 9 using the drive system . The amplitude 

was allowed to stabilise at V
0 

= 9 before the drive was switched 

off, and the ensuing decay monitored as described above . 

The result of one such warm-up of specimen 5 is shown 

1n figs. 4.3 through 4. 7. A plot of damping vs. strain ampli -
0 

tude 1n the temperature range of 413 C to 644°C is shown in figs. 

4 . 3 , 4 . 4 , 4 . 5 , and 4 . 6 . Amplitude dependence of the damping 

is apparent throughout his temperature range . 

Amp litude dependent damping was also encountered in the 

testing of specimen 4. Damping vs. strain amplitude curves 

for specimen 4 are shown in fig. 4 . 8 . 

In both specimens, the damping vs . strain amplitude 

curves changes with t emperature , and at some temperatures a 
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peak is clearly evident in these plots. For specimen 5, an 

amplitude independent region seems to exist at lower strain 

amplitude. A plot of the damping for nominal strain amplitude 

of 1 vs. temperature is shown in fig. 4.7 . A curve similar 

to that obtained in the torsion test for marz grade zirconium 

lS obtained . A similar plot for specimen 4 is shown in fig.4.9 

although an amplitude independent region is not clearly 

established . 

4.3 Discuss i on of Reed Pendul um Experiments . 

From figs . 4.3 , 4 . 4, and 4 . 5, it is seen that the Log 

Dec was highly amplitude dependent in the strain range investigated. 

Specifically in the temperature range of t he L.T.P. in zirconium 

(500°C - 650°C), strong amplitude dependence is encountered. 

There appears , however, to be an amplitude independent region 

at low strain amplitude ( <1.4 X 10-6 ). The damping in this 

region is plotted as a function of temperature as curve A in 

fig. 4.7 . This plot yields a damping curve similar to that seen 

in the torsion experiments . A similar plot for specimen 5 is 

shown in figs. 4.8 and 4 . 9 . 

At h igher strain amplitudes ( >2 X 10-6 ), the damping 

tends to rise steeply at first but then peaks, and in some 

cases, starts to fall again. A plot of one such peak at 550°C 

is shown in fig. 4 . 6. The modulus defect 6 M is also shown as 

the dotted curve of fig . 4 . 6 . 6 M is calculated from : 

M = 1 4 . 1 
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where: f
0 

is the average frequency at low strain amplitude 

in the amplitude independent region, and f
1 

is the oscillation 

frequency at the given strain amplitude in the amplitude dependent 

region. Peaks in damping, as a function of strain amplitude, 

have been predicted by the Granalo-Lucke 26 model for unpinning 

of dislocations . This model, however, is for unpinning at 

zero absolute temperature. 

It was shown by Lucke ~nd Schlipf27 , however, that 

at elevated temperature, the zero temperature model could be 

used if one replaces the critical mechanical stress for dis -

location unpinning by the thermal breakaway stress. In fig . 4.6, 

the modulus defect6M, as a function of strain amplitude, rises 

through the peak to approximately 1/2 the Log Dec at the peak, 

and then tends to flatten out. This is in agreement with 

theories of temperature assisted unpinning and not in agreement 

with zero absolute temperature models. The strain amplitude 

where these peaks occur is indicative of the critical stress 

needed for breakaway. 

The Granato-Lucke theory yields the following expression: 

3 3' = T6 0 ~Ln . __ ._r _exp=I_ 4.2 
nLc RM Eo RM Eo 

for low strain amplitudes. An extension of the Granato- Lucke 

theory to the high strain side of the unpinning peak has been 

made by Rogers 29 and recently modified by Ritchie 30 et . al. 



.. 

to give the following expression : 

6BA = T6oA Ln 2 .3! r 2 g(n) 
(-)-2 

'TT RE E.:o 
4 . 3 

for high strain amplitude. In these equations, T and R are 

orientation factors, M is the appropriate elastic modulus for 

the test (M is Young,s modulus in this case), Ln is the dis-

location density,t: 0 the characteristic stress for unpinning, 

and 6 0 = 8~fu 2 / 3T where b is the Burgers vector of the dis­

locations and T the line tension given by T = l/2Gb 2 . 6 BA 
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and t:
0 

are the corresponding values of the logarithmic decrement 

and the strain amplitude respectively on the breakaway or 

unpinning peak. n is the average number of pins and g(n) is a 

function which has been determined numerically by Ritchie et a1. 30 

Equation 4.2 shows tha~ plots of ln 6BA E.: o vs. l/t:0 for 

low t: 0 values should give a straight line of slope m1 =- f/RE 

and intercept lnA1 ln (T6 
0

ALn 33 ! f) /(nLcRE). Similarly 

2 
equation 4.3 shows that a plot of6BA vs. l/ t: 0 at high values of 

t: o should give a straight line of slope m2 = (T 6o ALn 2 3 ! f 2g(n)) / (rrREf 

and intercept A2 0. Such plots have been done for the peak 

in fig. 4.6 and is shown in figs. 4 .1 0 and 4.11. From these 

-6 -plots, we obtained Al = 3.37 X 10 , m
1 

= 11.33 X 10 6 and 

m2 = 3 . 205 X l0-13 It is also shown in reference (30) that 

the following relationship holds : 

4 . 4 
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Where: n+l/g(n) was determind numerically in ref. (30) as 

a function of n, the number of pinning points. Using our 

parameters n+l/g(n) was calculated to be 119 from the plot ln 

ref. (30) an n of approximately 8 was obtained. 
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Although 8 pinning points per dislocation is reasonable, 

it is slightly low and is close to the region where the numerical 

approximation in ref. (30) cease to be good approximations. 

One reason for obtaining a rather low number of pinning points 

from the method outlined above could be that the slope m2 , from 

the plot of ~BA vs. l/E 0 , may not be completely due to unpinning 

even if the plot appears liniar. One possible source of error 

is that the high strain side of the peak may be superimposed 

on an increasing background due to microplastic generation 

of dislocations at high strain amplitude. Thus, n = 8 can 

be treated as a lower limit to the number of breakable pins 

per dislocation. This calculation, however, supports the 

validity of the procedure outlined in ref. (30) 

The peaks in damping vs. strain amplitude can then be 

interpreted using the Granato-Lucke model. The peak positions, 

however, are not constant and tend to shift with temperature. 

When a plot of the strain amplitude where the peak occurs 

(which is indicative of the critical breakaway stress) against 

temperature is superimposed on the low strain damping curve, 

as done in fig. 4.7, several interesting features become apparent. 

Three consecutive peaks evolve and sweep through the strain 
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range moving to lower strain amplitudes at increasing temperature. 

At low strain amplitude, the first two peaks seem to disappear while 

the ne x t evolves. This process is seen most clearly in the 

curve for free decay at 444°C and 493°C of fig. 4.3. However, 

the last peak does not disappear but starts to move back to 

higher strain amplitudes after reaching a minimum. From exam-

ination of fig. 4.7, this effect appraently co-incides with the 

peak in damping at low strain amplitude. This effect then appears 

to possess some intrinsic relationship with the LT.P. 

The movement of breakaway peaks to lower strain ampli­

tude can be explained by the sophisticated model of Blair, 

Hutchison, and Rogers 28 . It can also be explained if one simply 

assumes that the thernal breakaway stress decreases with increas-

ing temperature, which seems intuitively obvious. However , the 

return to higher strain amplitudes cannot be accounted for by 

either model. Thus, curve Band C of fig. 3.7 can be explained 

by a thermally assisted unpinning model, of one assumes that the 

dislocation structure responsible for the peaks in curve B 

is different t han that responsible for curve c . Curve D is 

difficult to explain since the gradual movement of the peak 

to higher s t rain amp.litude with increasing temperature is a 

contradiction of thermally assisted unpinning theories. 

If the breakaway peak damping height above background 

( 6BAP ) is ploted as a function of temperature, as done in 

fig. 4.12, several important features emerge . 6BAP decreases 
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as one goes through the low strain amplitude peak region 

(500 - 650°C) and this decrease tends to co-incide with the 

return of the breakaway peak to higher strain amplitude at 

these temperatures. 

given by: 

~BAP is given by breakaway theories to be 

~BAP 4.5 

where: Ln is the network loop length , p the dislocation 
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density and K
0 

is a constant. Therefore, for a gradual decrease 

in ~BAP' either P or Ln would have to decrease gradually . It 

seems unlikely, however, that a decrease in the density of 

dislocation is responsible since annealing of dislocat~~ns, 

although possible at these temperatures (500 - 650°C), would 

be small over the time span the measurements were taken in. 

It seems then that Ln the network loop length is decreasing 

in this temperature region . The fact that this shortening 

of Ln is taking place in the temperature region of the low 

amplitude relaxation peak suggest the effects are related . 

A shortening of the network loop lengths could conceivably 

reduce the average pinned loop lengths and would cause the 

breakaway peak to move to higher critical stress or strain 

amplitude which is what is observed in our experiments (fig. 4 . 12) 

Thus, the movement of the strain amplitude dependent 

peaks to h i gher strain amplitude with highe r temperature which 

seems to be a contradiction of thermally assisted unpinning 

theories can be explained in light of the apparent r eduction 

in network loop lengths. 
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If the relaxation of dislocation predicted by Worrigard's 

model as presented earlier, is responsible for the low-amplitude 

peak; this relaxation may be related to the change in Ln. The 

actual relationship is not clear but several possibilities 

exist. Upon becoming unpinned, a dislocation undergoing climb 

as well as glide as predicted by Worrigard~s model, may become 

dissociated and the dislocation outside the plane of glide may 

be free to move and interact with other dislocations. Thus, 

new dislocations are generated which may act as new network 

pinning points, shortening the network loop length. 

It is also possible that the climbing portions of the 

dislocation may become so large at higher strain amplitudes 

in the unpinned state that they interact with other dislocations, 

undergoing the same process in a manner which shortens Ln, i.e . 

through pinning. However, any further elaboration on the actual 

mechanism will have to await further experimental tests. 

Amplitude dependent effects in the grain boundary peak 

area of magnesium has been reported by Smith and Leak 23. The 

amplitude dependent damping curves are somewhat similar to the 

ones obtained by us on the low amplitude side of the peaks. 

No peaks were detected in Smith and Leak's experiments, which 

may only be because the strain range investigated was not 

sufficient to reveal peaks in magnesium. 



5. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

1. The L.T.P. ln zirconium and zirconium alloys has 

been shown to be very sensitive to thermal heat treatments. 

The grain diffusion controlled viscous boundary sliding 

model cannot account for this effect without variation in 

grain size. A dislocation model involving the reversible 

climb and glide of dislocations in a lattice network can be 

used to explain this phenomena. 

2. Strong amplitude dependence in the region of the 

L.T.P. has been observed. This effect can be explained by 

a dislocation unpinning model similar to that of Granato & 

Lucke. 

3. The number of breakable pinning points per dis-

location obtained was approximately 8. This number was 

calculated using · an extention of the Granato & Lucke theory 

36 

to high strain amplitudes modified by Ritchie et al. Although 

the number 8 is reasonable for the number of pins, the calculation 

may be only a lower limit, due to possible interference in 

the high strain amplitude side of the peak from an increasing 

background. 

4. The movement of the strain amplitude dependent 

damping peaks to lower strain amplitude with t emperature 

can be explained by the thermally assisted unpinning model. 

However, the movement to higher strain amp litudes with increasing 



temperature can be explained only by a reduction of the 

network loop lengths Ln. Further evidence of a reduction 

1n loop lengths in this temperature region, Ln was obtained 

by a decrease in the dislocation unpinning peak heights in 

the same temperature region. The temperature region of this 

apparent reduction in Ln coincides with the relaxation peak 

at low strain amplitude . Therefore, it is postulated that 

the effects are related, and several possible explanations 

were advanced using an extension of a dislocation relaxation 

model similar to that presented by Worrigard in his thesis. 

5 • If the model developed in this paper is a general 

one for L.~.P. in zirconium, one should see the same general 

effect in single crystals of marz grade material. A low 

strain amplitude peak in damping should occur in the same 

approximate temperature position in single crystals as in 

polycrystalline materials as long as the same dislocation 

structure exists. Accompanied with this peak should be the 

same type of characteristic unpinning strain amplitude peaks . 

6. A L. T . P . in damping at low strain amplitude has 

been observed in single crystal F.C.C. materials 22 , slightly 

strained. A similar experiment should be carried out on 

zirconium with particular attention being given to amplitude 

dependent damping in the L.T.P. region. 
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Figure Captions 

Fig. 2.1 - Relaxation of an initially uniform shear stress 
distribution by grain boundary sliding. 

Fig. 2.2 -Sliding by elastic accommodation results in an­
elasticity. The rate of sliding is controlled by 
diffusive accommodation of sliding across the 
particles. 

ho 

Fig. 2.3- Spring dashpot model representing the Raj and Ashby 
model for I . F. due to impurities at grain boundaries. 

Fig. 2.4 -Dislocation bowing out through a combination of 
glide and climb as predicted in the model of Worrigard. 

Fig. 3.1 - The torsion pendulum instrumentation. 

Fig. 3.2 - The torsion pendulum and vacuum chamber. 

Fig. 3.3- Typical Micrographs. 

Fig. 3.4 - Curve A is the experimental damping spectrum taken 
from the X - y plotter (specimen #4) . Curve B 
is the subtracted background. Peaks c and o are 
the resulting curves after background subtraction. 

Fig. 3.5 -The top dotted curve is a plot of ln ( 6) vs. 1/T 
using the data of curve A of fig. 2.4. The straight 
line is the extrapolated background which transforms 
to curve B of fig. 2.4. 

Fig. ;3. 6 - Curve A is the experimental damping spectrum for 
specimen 1 after an in situ anneal at 780°C. 
Curve B is the background , and D and C are the 
resulting peaks . 

Fig . 3.7- A is the experimental spectrum for damping, and B 
is the background, and C the resolved peak before 
in situ anneal. D, E, F, and G are similar curves 
but after an in situ anneal for the Zr-Mo-0 (speci ­
men #3). 

Fig. 3.8 - Damping spectrum for Zr - Y-0 (specimen #4) at 
1.68Hz, A, B,andC are as indicated before. 

Fig. 3 . 9 - Da~ping spectrum for Zr-Y-0 (speci men #4) a t 
.554Hz. A, B, and Care as indicated before. 
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Fig. 4.1 - Reed Pendulum apparatus. -detail 

Fig . 4.2 -Reed Pendulum apparatus. -schematic 

Fig. 4.3 -Strain amplitude dependent damping curves taken 
from free decay of specimen #5 in the temperature 
range of 413°C to 493°C. 

Fig. 4.4 - Strain amplitude dependent damping curves taken 
from free decay of specimen #5 in the temperature 
range of 512°C to 580°c. 

Fig . 4.5 -Strain amplitude dependent damping curves taken 
from free decay of specimen #5 in the temperature 
range of 596°C to 644°C. 

Fig. 4.6 -Strain amplitude dependent damping curve (solid 
line) and modulus defect f-·1 given by equation 3.1 
(dotted line) . All taken at 550°C. 

Fig . 4.7 - A is the curve obtained from damping at nominal 
strain amplitude 1 in figs . 3.3, 3 . 4, and 3.5. 
B, C, and D are the strain amplitudes for maximum 
damping ( ~BAP ) from figs. 3.3, 3.4, and 3.5. 

Fig. 4.8 - Amplitude dependent ::lamping curves for specimen #4. 

Fig. 4.9 -The lower curve is the damping at nominal strain 
amplitude of 1 for specimen #4 . The top curve 
is. str2in a mp litude at ~ BAP (approximate) . 

Fig. 4 . 10- A Granato-Lucke plot of ln ( ~ BA s ) as a function of 
1/s . 

Fig. 4.11- A plot of ~ BAas a function of l/ s 2 for high strain 
amplitudes. 

Fig . 4.12- ~BAP is plotted with the nominal 1 strain amplitude 
curve and strain amplitude at ~BAP in the region of 
the L.T.P . of fig . 3.7. 
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Grain Size* Grain Size* 
Method of Before Testing After 

No. Specimen Test (mm) (mm) 

l. Zr (Marz Grade) Torsion . 0 76 .084 

2. Zr-.lwt/%Y-l.wt/%0 Torsion .0 605 . 0 49 

3. Zr-l.wt/%Mo-l.wt/%0 Torsion . 0 26 .026 

4 . Zr (Marz Grade) Reed .162 

5 . Zr (Marz Grade) Reed . 0 6 3 

*determined by the intersection method 

Table 1 

Element 0 H Fe HF Al Cl Mo y 

)l g/ g 30.0 16.0 o 30.0 200.0 10.0 15.0 1.0 1.0 

Table 2 
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