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PREFACE

Classically, there exist ﬁhree theorems
which relate the two homological dimensions of a
module over two rings. We deal with the first and
last of these theorems. J. R. Strooker and L. W.
Small have significantly generalized the "Third
Change of Rings Theorem" and we have simply re-
organized their results as Chapter 2. J. M. Cohen
and C. U, Jensen have generalized the "First Change
of Rings Theorem", each with hypotheses seemingly
distinct from the other, However, as Chapter 3 we
show that by developing new proofs for their theorems
we can, indeed, generalize their results and by so
doing show that their hypotheses coincide. Some examples
due to Small and Cohen make up Chapter U as a completion

to the work.
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CHAPTER O

INTRODUCTION

The theme of our work will be to relate the
two possible dimensions of a module in the case that
it is a module over two rings. Classically, three such
theorems exist, in which the two rings, R and S, are
related by the fact that S = R/(x) where (x) is the
principal ideal generated by a central non-zero divisor,
x, of R, Two contrasting situations are considered:
that in which the R-module A is annihilated by x, that
" is, xA = 0 and that in which x acts faithfully on A,
that is, x is a non-zero divisor for A. Formalizing
these two concepts we have the following theorems (cf.
(6) and (5), chapter 4):

THEOREM A (First Change of Rings Theorem).
Let R be a ring with unit and x a central element of R
which is a non-zero divisor. Write S = R/(x). Let A
be a non-zero S-module with p.dim,A = n < «, Then

S

p.dimRA =n + 1,

(This may be written
p. dimRA = p.dimS(A/xA) + 1

since xA = 0.)



THEOREM A'. Let R be a ring with unit and x

a central element of R which is a non-zero divisor.

Write S R/(x). Let A be a non-zero S-module with

i.dimSA

it

n < «, Then
1.dimRA =n + 1.
(This may be written

i.dim_ A = i.dimS(A/XA) + 1,)

R
THEOREM B (Second Change of Rings Theorem).

Let R be a ring with unit and x a central element in R,

Write S = R/(x). Let A be an R-module and suppose that

X i1s a non-zero divisor both on R and on A. Then

p.dimg(A/XA) < p.dimpA.,

R
THEOREM B'., Let R be a ring with unit and x

a central element in R. Write S = R/(x). Let A be
an R-module and suppose X is a non-zero divisor both
on R and on A, Then
i.dimS(A/xA) L i.dimRA -1
except when A is R-injective (in which case A = xA).
THEOREM C (Third Change of Rings Theorem).
Let R be a left-~Noetherian ring, x a central élement in
the Jacobson radical of R. Write S = R/(x). Let A
be a finitely generated R-module. Assume x is a non-

zero divisor on both R and A. Then

p.dimRA = p.dimS(A/xA).



THEOREM C'. Let R be a commutative Noetherian

ring and x an element in the Jacobson radical of R.
Write S = R/(x). Let A be a finitely generated non-zero
R-module with x a non-zero divisor of A. Then

1.d1mRA = 1.d1mR(A/xA).
If, further, x is a non-zero divisor of R, then

i.dim A = 1 + i.dimS(A/xA).

R
The Second Change of Rings Theorem adds nothing
to our discussion since it is incorporated into the
statement and proof of Theorem C, and we shall not
consider it here., In the proof of Theorem C, (6), it
is seen that by a simple induction step one needs
consider only the case in which A/xA being R/(x)=-projective
implies A is R-projective. - Thus Strooker (9) considered
cases in which R/I-projectives could be lifted to R-
projectives where I is a suitable ideal of R. Strooker's
main result is somewhat stronger than an auxiliary result
of Small ((8),Lemma 1) who also introduces a theorem
concerning global dimension. Prior to prpving these
results (Chapter 2) we shall prove some preliminary
propositions all of which have some intrinsic interest.
In Chapter 3 we shall prove the resu%ts of Jensen (4),
and Cohen (2) concerning a rather wide generalization
of Theorems A and A' along with a theorem concerning

weak dimensions. We shall prove, as a conclusion to



Chapter 3 that, in fact, C-hen's result and Jensen's
result are equivalent, Some consequences of these
change of rings theorems will be discussed in Chapter U
by exhibiting several applications and examples,

In the following we shall assume all rings have
units and are not necessarily commutativé, and that
"module" denotes "left module" unless it is otherwise
stated. Also, unless otherwise stated, all dimensions
refer to left dimensions. We adopt the convention that
the dimension of a zero module dim(0) = -, If not so
stated, the dimension of a module is assumed to be finite.
The numbering of 'propositions' follows the decimal
convention in which the first digit indicates the section
number, Main theorems are numbered consecutively
regardless of the section they appear in and Corollaries,
following the decimal code, have as their first digit
the number of the theorem to which they are Corollaries,
All theorems herein hold equally well if "module" were
taken to mean "right module" throughout although proofs

would have to be modified accordingly.



CHAPTER 1

PRELIMINARIES

The propositions in this section will be used
a great deal later on but are placed here because they
are interesting in their own right. The following
proposition can be found with identical proof for pro-
jective dimension in (6), Theorem 1.2.

PROPOSITION 1.1. Let

0— B—oA—-C—0
be an exact sequence of R-modules.
(1) If two of the weak dimensions

w.dimRA, w.dim,B, w.dim,C are finite, so is the third.

R R

(2) If w.dim,A > w,dim B, then

R

w.dlmRC = w.dlmRA.

(3) If w.dim A < w.dim

R

R B, then

w.dimRC = w.dlmRB + 1.

(4) 1If w.dimRA = w.dimR

wedimpC < w.dimpA + 1,

PROOF, If any of A, B, C are zero, the results are

R

B, then

trivial. Suppose, therefore, that A, B, C are non-zero

and let A be flat. Then w.dim_ B > w.dim,A and obviously

R R

w.dim.C = w,dim B + 1 unless B is flat in which case

R R

\n



w.dimpC = 1 satlsfying (4). Suppose C is flat. Then

w, dimpB = w.dimpA = 0 which satisfies (k). We proceed,

therefore, under the assumption that A, C are not flat.

Write A = P/D with P flat. Then B has the form E/D,

where DC E ¢ P, and C = P/E. Thus w.dimRE = w, dim,C -

R

w.dimRD = w.,dim,A - 1, w.dimR(E/D) = w.,dim_B. We have

R
the exact sequence

R

0— D—E—B-—-0.
By using it and induction on the sum of the two finite
dimensions we get (1) of the theorem., Hence we assume
all three dimensions are finite and we do induction on

their sum., The induction assumption on D, E, B gives

1,

the following information when translated back to A, B, C:

(a) If w.dim_C > w.dimRA, then

R

w.dimRB = w.dim C‘— L

R

(b) If w.dim,C < w.dim_A, then

R

w.dlmRB = w.dlmR

(e¢) If w.dlmRC = w.dlmR

B < w.dim,A.

R
A’

A, then
w.dlmR R
But these are just a logical rearrangement of the

statements of the theorem so we are finished.

PROPOSITION 1.,2. Let

0—C-—A—B—0
be an exact sequence of R-modules.

(1) If two of the dimensions 1.dimgA,



1.8im. B, 1.dim.C gre finlte, so is the third.

R R

(2) If 1.d1mRA > i.dimR

1.d1mRC = 1.d1mRA.

(3) If i.dim,B > i.dimgA, then

B, then

R
1.d1mRB +-1,

i.dimRC

(4) 1r i.dimRB = i,.dim

i.dimpC < i.dimeB + 1.

RA, then
The proof of Proposition 1.2 is exactly dual
to that of Proposition 1.1 and will be omitted.

PROPOSITION 1.3.+ Let R and S be two rings and

let ¢ ¢ R—» S be a unitary homomorphism. Let B be

any S-module., Then

R SB + dlmRS.

PROOF. If B = 0, the result is trivial since p.dimRB B0,

p.dim,B < p.dim

Suppose B % 0 and let p.dimSB = h < », p,dim,S = k < =,

R
Let C be any R-module and let
be an R-injective resolution of C. Now, applying the

functor HomR(S,ﬁ) to (¥) we have the sequence

0—Homy (8,C)—Hom (S,Q° )= ... —Hom, (5,0") %+

k+1
)

* o o L]

HomR(S,Q
ktly_, A

The sequence O0—Im ¢-+HomR(S,Q
is exact since p.dimpS = k yielding Extg(S,A) = 0
for all R-modules A and all m > k, Also by (1), pg. 30,

+., The Propositions 1.3, 1.4 and 1.5 are due to Jensen (4).



Proposition 6.1, HomH(S,QJ) is S-injective for all j
yielding (¥%) an S-injective resclution of Im ¢ = D,
Apply the functor HomS(B,*) to (¥#%) giving the sequence

0— Homg (B, D) Homg (B, Hom (5,Q**!

)= e —

h+k+1

))—seen

-—+HomS(B,HomR(S,Q

which is exact after h steps because p.dimSB = h

yielding Extg(B,A) = 0 for all S~-modules A and all m > h.

Thus the homology group at

h+k+ +k+
HomS(B,HomR(S,Q 1)) = HomR(B,Qh - l),
Extg+k+l(B,C) = 0 for any R-module C. Hence
p.dimRB < h + k.

PROPOSITION 1.4, Let R and S be two rings and

let € : R—=S be a unitary homomorphism. Let B be

any S-module. Then

B+ r.w.dim_S.

1.d1mRB < 1.dimg R

PROOF. Let i.dimSB = h < », w.dimRS = k < =, Let

C be any R-module and let

(*)
eee—Py3—P1—Py—C—0
be an R-projective resolution of C. Now, applying

the functor S(:& _ to (¥) we obtain the sequence

@ .
...-——*S ®RP1{+1—’S ®I{Pk"—‘..._’s ®HP0—‘S ®RC_'O‘

The sequence

Lo (5%)



is exact since r.w.dim_S = k yielding Torﬁ(S,A) =0

R
for all R-modules A and all m > k., Also, by (1) pg. 30
Proposifion 6.1, S(:th is S-projective for all |J
yielding (#%) an R-projective resolution of Coker ¢ = D.
Apply, now, the functor Homs(_,B) to the sequence (#%)

giving the sequence

O—*HomS(D,B)—oHomS(S @{Pk_'_l,B)—- .o

which becomes exact after h steps since i.dimSB = h

yielding Extg(A,B) = 0 for all S-modules A and all

m > h., Thus the homology group at

HomS(S(gth+h+l,B) = HomH(Pk+h+1’B)’

cpkHhtl

Extp

(C,B) = 0 for any R-module C. Hence
i.dimB < h + k,

PROPOSITION 1.5. Let R and S be two rings and

let € : R—S be a unitary homomorphism., Let B be any

SQmodule. Then

B + w,dim_S.

w.dim 3 R

RB < w.dim

PROOF., We first show that if P is R-right-flat, then
P@RS is S-right-flat: let

0—+A->B—>C->0
be an exact sequence of left S-modules. Apply the

functor (P @,.S) ®,_ to obtain the sequence

0—(P @,3) @A—(P ®,S) @;B—(P @;5) @,C—0 )
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which is isomorphic to the sequence

0—P ®RA—->P ®RB—>P @RC-—>O. (%%)
But P is R-right-flat implying that (#%¥) is exact
which means (¥) is exact, proving that P(JRS is
S-right-flat. Let C be an arbitrary right R-module
and let '
eee—>P3-5P,—-P;-—-Py—-C—>0
be an R-flat resolution of C. Applying the functor

_@S we obtain the exact sequence
—P .. @52 S—Coker ¢—0 ¢ 00)
te k+2 ¥R k+l Q%

since w.dimRS = k. As we have seen Pj<:hs is S-right-

flat so (¥%#%) is an S-flat resolution of Coker ¢. Apply

the functor _ (@B to obtain the sequence

N ',
oo Priken ®RS @;B— Pak+1 @48 @B—>coker ¢'—0

which is exact since w.dimSB = h, But this means the

homology group of

Prae1 GRS @B = Py @B,

R (C,B) = 0, Since C was arbitrary we have

Torh+k+1

w.dim.B < h + k.

R
The.following theorem is due to Small and

may be found as Lemma 1, (8).
THEOREM 1. Let R be a ring and I a two-sided

ideal contained in the Jacobson radical}of R. Write
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S = R/I. Let A be a finitely generated R-module such
that A possesses a free resolution of finitely generated

modules and with Torg(S,A) = 0 for all p > 0. Then
p.dimpA = p.dlmS(A/IA).

PROOF. Suppose A # 0 since otherwise the result is trivial.
Let F be a free R-module and let

0—-L—2F-—+A—>0 (£)
be exact. Since Torg(S,A) = 0 for all p > 0 we have from
the long exact sequence of (#) that TorS(S,L) = 0 for
all p > 0., We shall leave to the last the proof that
A/IA is S-projective if and only if A is R-projective.

We proceed by induction on n = p.dim,A < «, From (¥)

R

we see that p.dim,L = n - 1 and since Tor?(S,A) =0

R
(and for any R-module C, SC@RC =~ C/IC) we have the exact
sequence

0—L/IL—>F/IF-A/IA—0.
But F/IF is S-free and Torg(S,L) = 0 for all p > 0 so
by the induction hypothesis p.dimS(L/IL) = n - 1 giving
p.dimS(A/IA) = n., It remains to start off the induction
at n = 0., Obviously if A is R-projective, then A/IA
is S-projective. Suppose A/IA is S-free., Let {ea}a e J
be elements of A whose images under the natural map
n : A-—A/TA are the basis for A/IA. Let E be the sub-

module of A generated by {ea}a Now E + IA = A

e J°



so we have I(A/E) = A/E which means A = E by Nakayama.’r
Let F' be the free R-module with basis {xa}a ¢ g and let
g : F' A be the map such that g(xa) =e,- Then we have
an exact sequence

0—»L'—-F'—- A0,

Since Tor?(S,A) = 0 we have, from the long exact

sequence, the sequence

1 g
0—S @,L'—S @.F' __S@‘—. S @A—0.

Now 1§:kg is an isomorphism of the S-free modules
F*/IF' and A/IA since generators are mapped onto
generators, giving L'/IL' = 0 or L' = IL' in which
- case by Nakayama-I~ L' = 0., Hence A is R-free. Suppose
now A/IA is S-projective. We have an exact sequence
0—L/IL—-F/IF-A/IA -0
which splits yielding
F/IF = L/ZIL @ A/IA = (L @ A)/I(L @ A),

which is S-free so that L@ A is R-free which implies
that A is R-projective., Hence the theorem holds at
n = 0 and it is proved.
REMARKS, (1) If R is left-Noetherian, then any
finitely generated R-module possesses a free resolution
of finitely generated modules.

(2) We use the fact that I is contained

in the radical of R and that A is finitely generated

\

12
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only at the points marked * in the proof to satisfy
Nakayama's Lemma which yields that IB = B implies
B = 0 for all finitely generated R-modules B. We
can drop the restriction on A by assuming that

(i) R is left-perfect in which case
IB = B implies B = 0 for all R-modules B, where I
is contained in the radical of R, or

(ii) I is nilpotent in which case

IB = B implies B = 0 for all R-modules B,



CHAPTER 2

THE THIRD CHANGE OF RINGS THEOREM

In the proof of the classical third change of
rings theorem, as in the proof of Theorem 1, the
induction step is easy when Tor?(S,A) = 0 for A an
R-module, S = R/I where I is a suitable ideal of the
ring R. The difficulty arises at n = 0, That is, if
A/IA is S-projective, is A R-projective? Strooker dealt,
therefore, with the problem of when such S-projectives
could be lifted to R-projectives. The main result of
Strooker's paper (9) uses the following lemma (Lemma 0,
(9)). First we need a definition. In any category, an
epimorphism f : A—B is called a cover if any morphism
g ¢ X—A such that fg 1s an epimorphism, must needs be
an epimorphism. Sloppily we say that A is a cover of B.

LEMMA 2.1. Let R be a ring and I a two-sided
ideal of R. Write S = R/I. Let A be a finitely
generated non-zero S-module. If E is an R-cover of
A, then E is finitely generated., If A is S-projective
then E/IE ='A.

PROOF. Let t  denote the natural map X—X/IX and if
f : X—Y let T denote the map X/IX—Y/IY for X, Y

R-modules., Let f' : L—A be an epimorphism where L

14



is a finitely generated S-free module. Let B be a free
R-module on the same number of generators as L and
define g : B—sL by mapping generators to generators;

g 1s an epimorphism. Let s : E—~A be an R-cover of

A and let f : B—E be such that sf = f'g. Now f'g

is an epimorphism and by the cover property of s we
have that f is an epimorphism. Thus E is finitely
generated. Now suppose A is S-projective. Then since
s : E/IE—A is onto there exists a map h : A—E/IE

with 5h = 1,. Let F = tEl(h(A)). Then s(F) = 5ty (F)

A.
= S(h(A)) = A. But s is a cover so F = E and hence
A = E/IE.

The main result of Strooker's paper is the following

PROPOSITION 2.2 (Strooker). Let R be a left-

Noetherian ring and I a two-sided ideal contained in

the Jacobson radical of R. Let A be a finitely

generated projective non-zero S R/I-module. Suppose

the R-module E is an R-cover of A and that Tor?(S,E) = 0.
Then E is uniquely determined up to isomorphism and is
finitely generated projective. Moréover, E/IE = A.

PROOF. By Lemma 2.1, we have that E is finitely generated
and that E/IE = A, Let f be an epimqrphism of a finitely
generated free module I, onto E and let g : D—L be the
kernel of f, Since Tor?(S,E) = 0 the bottom row in the

commutative diagram



0—p B, 1, _f.,5 >0

o, Jee ) |

0— D/ID EaL/IL Lo E/TE — 0

is also exact. Since E/IE is S-projective the bottom
row splits and we have a map h : L/IL—D/ID such

that hg = lD/ID' Since L 1s projective we have a

map h : L—sD such that t h = EtL.
to be an automorphism of D we will have split the top

If we can show hg

row and so E would be projective, The commutative

hg = ht_.g = hgt, = ¢

D L8 D~ D
is Noetherian, D is finitely generated, so tD is a

cover.and hg is surjective. (The lemma of Nakayama

diagram shows that t Since R

states that £ : A—»B is a cover if A is finitely

generated and ker £ ¢ J(R)A.) Thus hg is an epimorphism

of the Noetherian module D onto itself and so'it is an
auﬁomorphism (N. Bourbaki, Eléments de’Mathématique,
Algebre, Chap. 8, Lemma 3, pg. 23). Hence E is a
projective cover of E/IE and so is uniquely determined

up to isomorphism.

16

REMARKS. (1) We remark at this point that Proposition

2.2 generalizes Remark (1) of Theorem 1 since f : A—A/IA

is a cover by Nakayama since I ¢ J(R) and Torg(S,A) = 0

for all p > 0 gives, in particular, Tor?(S,A) = 0,

Proposition 2.2 gives that if A/IA is S=-projective, A

is R-projective and by the familiar induction argument’
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we have p.dimRA = p.dimS(A/IA) which is the result of
Theorem 1.

(2) Proposition 2.2 yields the classical
third change of rings theorem for x a central non-
zero divisor in the radical of R which acts faithfully
on A and I = (x), that is A/xA being S = R/(x)~projective
implies A is R-projective.
EBQQE. By Nakayama the natural map A—A/xA is a cover
since x € J(R)., Also, from the short exact sequence

0—» XR->R -5 -0

we have the long exact sequence
0 —»Torfl{(S,A)—» xR ®RA - R @RA—»S ®RA—w0
or, isomorphically,

0- Tor?(S,A)—* xR ®RA-—»A—vA/XA—>O.

n

Since x acts faithfully on A, xR @A xA (x Qq{emxe)
and so the sequence

0+xA->A->A/XA->0
is exact yielding Tor?(S,A) = 0., Now Proposition 2.2
applies and the result follows,

(3) In Proposition 2.2 we can drop the

requirement that R be Noetherian if we assume that

E is finitely presented.
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PROOF., Using the latter part of the proof
of Theorem 1 we have an exact sequence

0> L'—-F'—+E-0
where E replaces the A of Theorem ). Since E
is finitely presented we have that L' is finitely
generated. Also, since Tor?(S,E) = 0 the proof
moves to its conclusion. Since E/IE = A is
S-projective, we have that E is R-projective., Thus
E 1s uniquely determined up to isomorphism and we
have the result of Proposition 2.2.

Strooker showed that he could remove the
requirement that R be left-Noetherian by requiring
that E be finitely presented and that R be a direct
limit of a directed set of left-Noetherian rings.

We have shown that by Theorem 1, we need only the
assumption that E is finitely presented and hence
we may drop the Noetherian requirement entirely,
assuming R to be an arbitrary ring.

We turn our attention now to a change of rings
theorem concerning global dimensions which is due to

Small ((8), Theorem 1).
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THEOREM 2 (Small). Let R be a ring and I a
two-sided ideal in the radical of R. Write S = R/I.
Suppose (1) I is nilpotent, or

(2) R is left-Noetherian, or
(3) R is left-perfect.

Then

l.gl.dim R < l.gl.dim S + r.w.dim,S.

R
PROOF. (1) Suppose I is»nilpotent. Let A be

an arbitrary non-zero R-module and suppose r.w.dimRS =n <
Consider an R-free resolution of A

0—)Xn——>Fn-1—-> s s e -—DFO —DA —50

where the Fi are R-free. By shifting along this sequence
R _ R

we have Torp(S,Xn) = Torn+p(S,A) for all p > 0.

Since r.w.dimR

Hence Xn satisfies the hypothesis of Theorem 1 (Remark

= R =
S = n, Torn+p(S,A) = 0 for all p > 0.

(2), (i1)), so that

p.dimpX = p.dlmS(Xn/IXn) 2 l.gl.dim S.
Now by "tacking" on a resolution of Xn onto

oo.'-’F —’...—’Fo'—'A""O

n-1

we see that

p.dim,A < p.dim Xn + r.w.dim,S < r.w.dim,S + l.gl.dim S.

R R R R

Since A was arbitrary,

l.gl.dim R < row.dimg

S + l.gl.dim S.



(2) If R is left-Noetherian and A is

finitely generated the X F esay Fp may all be

n-12

taken to be finitely generated and Theorem 1, Remark

n’

(1) applies.
(3) If R is left-perfect then Theorem 1,

Remark (2) (i) applies and the theorem ié proved.

20



CHAPTER 3

THE FIRST CHANGE OF RINGS THEOREM

Propositions 1.3, 1.4 and 1.5 give inequalities
regarding dimensions involving a change of rings. We
wish now to look at conditions on the ideal I which
will yield equality. Theorems A and A' give one particular
case in which equality holds but both Jensen (4)
and Cohen (2) developed rather wide generalizations of
these., Before considering these results we need three
lemmas:

"LEMMA 3.1. Let R be a ring and I a two-sided
ideal of R. Write S = R/I. If B is any S~module with

p.dimgB = 1 and p.dimgB < 2 then I(:kB is S-projective.

S
PROOF., From the exact sequence

0—=I—-R—-S-0
we obtain the exact sequence

R f | ¥
0->Tory (S,B) =1 @B =R @B~S @;B-0. (¥)

But R@B = B so that for i®b e I@B, f(1@b) = ib = 0
since B is an S-module. Hence f = 0 ‘and Tor?(S,B) = I(ZhB.
(1 @B is an S-module since I(I ®HB) = I@RIB = 0 since

IB = 0,) We now let F be an R~free module so that

0—X—F->B-0

21
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is exact. But p.dim_ B = 1 which means K is R-projective.

R
Now applying the functor S(:&_ we have the exact sequence

R ' (%%)
0—Tory (S,B)—S @;K—S @zF =S @;B~0.

These are all S-modules and, in fact, S®RK and S@RF
are S-projective ((1)). Since (¥%) is an S-exact
sequence of projeetives, by dimension shifting we

see that Tor?(S,B) is also S-projective since p.dimSB < 2.

1 R R .
(ExtS(Torl(S,B),C) = Extg(B,C) since S<ZhB = B by (¥).)

But I @B = Torh(S,B) and so I @B is S-projective.

LEMMA 3.2, Let R be a fing and I a two-sided
ideal of R. Write S= R/I. If B is any S-module with
i.dimRB = 1 and i.dimgB < 2 then HomR(I,B) is S-injective,
PROOF. From the exact sequence

0—I—+R—»S—0

we obtain the exact sequence

0~ Homy (S, B)—Hom, (R, B) - Hom (I,B)—Ext}(s,B)—»0, )

But HomR(R,B) ~ B and f is Jjust the restriction of

o € HomR(R,B) to I. But o(i) = i0(l) = ib = 0 for i € I
and b = 0(1) € B, Thus f = 0 and HomR(S,B) ~ B and
HomR(I,B) = Ext%(S,B). (HomR(I,B) is an S-module since

for o ¢ HomR(I,B), jo(i') = ib = o for i, i' € I and b € B.)
We let Q be R-injective so that

0—+B—=>Q—=K—0
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is exact. But i.dimRB =.1 so K is R-injective. Now
applying the functor HomR(S,‘) we obtain the S-exact

sequence
O—+HomR(S,B)—+HomR(S,Q)—*HomR(S,K)—*ExtR(S,B)—+O.

But HomR(S,Q)_and HomR(S,K) are S-injective (1) so by
a shifting argument ExtR(S,B) is S-injective since
i.dimcB < 2 and so Hom, (I,B) is S-injective.

LEMMA 3.3. Let R be a ring and I a two-sided
ideal of R. Write S = R/I. If B is any S-module with
w.dimpB = 1 and w.dimgB < 2 then I @B is S-flat.
PROOF. From the exact sequence

0—»I—=>R—5—0

we obtain the exact sequence
O—»TorR(S B)—IQ® B—I;R®RB—*S &®,B—0
17?2 R R

where f(i ® b) = ib = 0 so Tor?(s;B) ~ T @%B and
S @%B = B, Let P be R-flat so that
0—-K—P-B=-0
is an R-flat resolution of B, But w.dimRB =1
so K is R-flat. Now applying the functor S(Ch_ we

obtain the S-exact sequence
PR i '
O-’ior'l(S,B)—*S ®RK—*S @I{P—»B—vo

and since S @%K, S @%P are S-flat we have Tor?(S,B)

is S-flat since w.dim.B < 2. Hence I<ZhB = Tor?(S,B)

S
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The following result was proved by Jensen
((4), Theorem 1) for R a commutative ring, but we shall
prove it for an arbitrary ring.

THEOREM 3 (Jensen). Let R be a ring and I a
two-sided ideal of R such that R is a bidirect summand
of a bidirect sum of copies of RIR' Write S = R/I.

If B is any S-module with finite S-dimension then:

(1) irf RI is R-projective then
p.dimRB = p.dimSB + 1 ;
(2) if I, is R~-flat then

R

i.dim B = i.dim.B + 13

S
(3) if gl is R-flat then

w.dimRB = w.dimSB + 1,

PROOF, Suppose A # 0 since otherwise the results are
trivial. (1) From the short exact sequence
0-—=I—-+R-»3S-—0

we have the exact sequence
0—Tor (s,B)—I @B B—S ®,B—0
1o @RB-= B—S @B —0.

¥ B is R-projective, then Tori(S,B) = 0 ylelding
1(2%8 = 0 since f = 0 as B is an S-module. Thus
I'®),B
summand of a direct sum of copies of I,

QI @B = (KAR) @B = (K@;B) @B

il

0 for all m > 0 and since R is a bidirect

.
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where K is some R-~-bimodule, Thus B = 0. Therefore,

no non-zero S-module is R-projective and for 0 = n = p.dim.B,

S
p.dimRB = 1 by Proposition 1l.3. We now do induction

on n, Let F be S=free so that
O~—sK—F -8B —0 (*)

is exact. Then p.dimSK =n - 1 so by the induction

hypothesis p.dimRK = n, By Proposition 1.1 for

projective dimension we have for n > 1, p.dimRB =n+ 1

where (¥#) is now considered as an R-exact sequence and

p.dimpF = 1 from above. If n = 1 we obtain p.dim,B < 2.

R

Suppose, therefore, that p.dim_B = 1 (p.dimRB # 0

R

since B is an S-module) and from p.dim.,B = 1 we shall

S

show the contradiction that p.dim B = 0. By Lemma 3.1

S
we have I(Z&B is S-projective. Hence for all m > O,
quhB is S-projective. But there exists an R-bimodule
K with @I = K ® R (as above). Thus

@I@B = (KOR) @B = (K@B) @ (R@B) = (K@B) @ B.

Thus B is a direct summand of an S-projective module
C)]I(}g&and s0 is S-projective. Therefore we have

p.dimRB = 2 when p.dim,B = 1 and the proof is finished.

S
(2) From the short exact sequence
0—I—-R—>S—-0

we have the exact sequence

o»HomR(s,B)—»HomR(R,B)—g Homp (I,B) —~Ext (8,B)—0.
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If B is R-injective, then Exté(S,B) = 0 and since
f = 0 for B an S-module, we have HomR(I,B) = 0,
Hence HomR(&H,B) = 0, Since HomR«:E,B) = HomR(K(D R,B)

we have
HomR(K,B) ©) Homp (R,B) = Homp(K,B) @B = 0

which implies B = 0. Hence no non-zero S-module is

R-injective and by Proposition 1.4 we have i.dim B = 1,

R
that is i.dimRB = i.dimSB + 1, where 0 = n = i.dimSB.
By induction and Proposition 1.2 it 1is sufficient to
consider the case in which i.dimRB = 1 and i.dimSB = 1,
By Lemma 3.2 we have HomR(I,B) is S-injective. Since
there exists an R-bimodule K with @ I = K@ R we see
that since HomR«:)I,B) = I HomR(I,B) is S-injective,
B is S-injective which is a contradiction. Therefore,
we have i.dimRB = 2 when i.dimSB = 1 and the proof is
finished.,
(3) From the exact sequence
0—I—R-»S—0

we obtalin the exact sequence
O—-»TorR(S B)—1I ®RB—LR®RB—~S @ B—0
1+ R *

If B is R-flat then by an argument similar to that
in part (1) B must be zero. Hence no non~zero flat
R~-module is an S-module and by Propostion 1.5 we have

w.dim.B = 1 = w.dim.B + 1 where 0 = n = w.dim

R g B. By

S
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induction and Proposition L,1 it is sufficient to consider
the case in which w.dimRB = 1 and w.dimSB = 1, By

Lemma 3.3 we have that I %B is S-flat and so @ I®RB

is S~-flat. Since there exists an R-bimodule K with

@I =KO®R, we have@IQQRB = (K@R)@RB = (K@RR) @ B
in which case B is a direct summand of ah S-flat module
and so 1is S-~flat which 1s a contradiction. This finishes

the proof.

COROLLARY 3.1 (Jensen), Let I be generated by

an R-sequence of two-sided ideals in R (I ¢ I»C... C Im = 1)
of length m such that R/Ii_l is a bidirect summand of

a bidirect sum of copies of Ii/Ii_ for all 1 < i < m.

1
Then for any S-module B
(1) if IJ./Ii_1 is projective as a left
R/Ii—module then p.dlmRB = p.dlms
(2) if Ii/Iinl is flat as a right R/Ii—

B + m;

module then i.dimRB = 1.dimgB + mj

(3) if Ii/Ii-l is flat as a left R/Ii—

module then w.dimRB = w.dimSB + m.

PROOF. I, has the properties of I in Theorem 3, so

by the theorem p.dlmRB = p‘dlmR/I.B + 1. Now

1

p.dim B = p'dlmR/IzB + 1

R/I,

since R/I, = R/I:/I2/I1. By induction it is easily
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seen that p.dimRB = p.dimSB + m. Similarly parts (2)

and (3) are proved.
We now look at a rather interesting result due
to Jensen ((4), Theorem 3).

PROPOSITION 3.,4. Let R be a ring and I a

two-sided ideal of R such that R is a bidirect summand
of a bidirect sum of a finite number of copies of RIR'

If i.dim_R < 1, then S = R/I is self-injective.

R
PROOF. From the short exact sequence
0—I—-R—->5—->0

we obtain the exact sequence
0—sHom, (8 ,R)— Hom,, (R,R)—> Hom,_ (I,R)—Exti(S,R)—0
R R R*™? TYRYY *

Thus Exté(S,R) = Coker f. For some n > 0 there exists
an R-bimodule K with I" = K @ R and so there exists

R~R-homomorphisms i, p such that

«——R

i

with pi =1 We then have

Rl
n 0 n 1%
HomR(R ,R)——»HomR(I ,R)-—aHomR(R,R) = R
where i%® is the dual of i, Since 1 is a restriction
map and since elements of HomR(Rn,R) are determined by
how they act on the unit vectors (0, ..., 1, 0, ..., 0)
we see that Im (i*fn) € I. We therefore have the map

¥ : Coker f"—S. Now p € HomR(In,R), represents an element
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hond n 2 . g -
p € Coker f and i¥#(p) =p' =1 Thus i#(p) = 1

R* S

which means T% is an S—-epimorphism. But S is S-projective

and so S is a direct summand of Coker f". We now show

Coker f is S-injective. Consider the exact'sequence
0—R—»Q—>K—0

where Q is R-injective. K is R-injective since i.dim.R < 1.

R
This gives rise to the sequence

0—Hor, (S,R)— Hom, (S,Q) —Hom, (S,K) —Ext (S,R)— 0.

Now HomR(S,R) = 0 since otherwise for 0 # s € HomR(S,R),
j(s(I)) = s(j) = 0 but if s(I) = r € R, jr # 0 for

I=1+1Iandje I. We therefore have the exact sequence
0—Horm (S,Q) — Homy (S ,K) = Ext & (S,R) —0

and since HomR(S,Q) is S-injective the sequence splits
yielding Ext%(S,R) a direct summand of HomR(S,K) which
is S-injective. Thus Exté(S,R) = Coker f is S-injective
and since S is a direct summand of Coker fn, S is self-
injective.

THEOREM 4 (Cohen). Let R be a ring and let I
be a two—sided ideal of R such that there exists an
R~bimodule I' which is bidirect in a bidirect sum of
copies of R and such that R is a bidirect summand of
I'<JRI‘ Write S = R/I. If A is any S-module with
finite S-dimension, then

(1) irf gl 1s R-projective then

p.dim_A = p.dim

R A+ 1;

S
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(2) if I, is R-flat then

R

A+ 1

i.dims

1.d1mRA

(3) if I is R-flat then
w.dim A = w,dim A + 1.

R S
PROOF, If A = 0 the results are trivial. Hence

suppose A ¥ 0, (1) By part (1) of Theorem 3 we
need only consider the case in which p.dimRA = 1
and p.dimgA = 1. By Lemma 3.1 we have that I®,A is

S-projective., Let K =@ R with I' a bidirect summand.
Since R is a bidirect summand of I' C%I we have

. . . s . .
A I{C%A is a bidirct summand of (I Q%ﬂﬂ @hA

I'C}JIIC%A) which is a bidirect summand of
K®,(I ®RA) = @ R®R(I ®HA) =@ (I @A)

which is S-projective. Hence A is S-projective and
we are finished, Parts (2) and (3) are proved similarly.

COROLLARY 4.1. Let I be generated by an R-

sequence of two~sided ideals of R (I, I,C ... C Im = 1)
of length m such that for each i there exists an

R/%i1
of copies of R/Ii—

~bimodule Ii which is bidirect in a bidirect sum

and such that R/Ii_ is a bidirect

1
1 m
summand of Iic>h(Ii/Ii—1)' Then

1

(1) if Ii/Ii_ is left-projective as an

1

R/I., .-module then p.dimRB = p.dimSB + m;

i-1
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(2) if Ii/Ii—l is right-flat as an

R/Ii_l-module then 1.d1mRB = 1.dlmSB + m;
(3) if Ii/Ii-l is left-flat as an
R/Ii_l-module then w.dimRB = w.dimSB + 1,

PROOF. The proof is identical to that of Corollary 3.1l.

COROLLARY 4.2 (Cohen). If

(1) T = (x), x € R a central non-zero
divisor or
(2) I is finitely generated rank 1

projective (for every maximal ideal M € R, IM = RM),

R commutative,

then for every S-module B, p.dim.B = p.dim.B + 1 (also

R

for injective and weak dimensions).

S

PROOF, (1) Let I' = R in the theorem. Then
' o T =
I®RI I =R
where x : R—I = xR is the isomorphism. The theorem
applies.
(2) Let I be finitely generated. Then

HomR(I,R)IVI = Homp (IM’RM) = R

M M

since IIvI = RM’ I is of rank 1. Therefore, the evaluation
map I @RHomR(I,R)——»R is locally an isomorphism at
each maximal ideal M € R, hence is an isomorphism.

Thus we let I' = HomR(I,R) and the theorem applies.
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(The distinction between left and right dimensions
dissappears under the assumption that R is commutative.)
REMARK., Let R be commutative and let I be invertible.

Then we let I' = I~7%

in which case I' @I = "1 =« R
and the theorem applies. Notealso that I invertilble
means I is finitely generated rank 1 projective in

which case (2) applies. But Bourbaki in Algébre Cbmmutative

chapters 1-2, pg. 179, Exercise 12 gives an example of
a finitely generated rank 1 projective which is not
invertible and so (2) is strictly stronger.

PROPOSITION 3.5. If R is any ring, then I is

a two-sided ideal of R such that R is a bidirect summand

of a bidirect sum of copies of RIR if and only 1if there
exits an R-bimodule I' such that I' is a bidirect sum-
mand of a bidirect sum of copies of R and so that R is

a bidirect summand of I'C}J-
PROOF, Since R is bidirect summand of ® I and I = R@I
we have DI = @ (R@I) =@ R@I. Let I' =@ R.
Conversely, we have K@ I' =@ R for some R-bimodule K.
Hence (K @,I) @ (I' @;I) = @R @I = ®I. sSince R

is a bidirect summand of I'(}giwe have R is a bidirect
summand of @ I.

Although Theorems 3 and 4 are attributed to

Jensen and Cohen, respectively, we have significantly

changed the hypotheses required to prove them. In
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Jensen's original result he required that R be commutative
and I be an ideal of R which is a faithfully projective
R-module (Pis a faithfully projective R-module if and
only if HomR(P,_) is a faithfully exact functor). By
((3), Proposition 2.4) we note that if I is faithfully
projective then there exists a positive integer n
such that I" = T@I® ... ® I has a direct summand
isomorphic to R, thus satisfying the hypotheses of Theorem 3.
Therefore, Theorem 3 is a significant generalization of
Jensen's result.

Cohen, on the other hand, assumes R to be an
arbitrary ring, not necessarily commutative, but he
requires that the ideal I be right flat and left projective
such that there exists an R-bimodule I' which is a bidirect
summand of I'C}QL Cohen considers only part (1) of
Theorem U4 and as can be seen our proof eliminates the
necessity of assuming I to be right flat. Since Theorems
3 and 4 include the results of Jensen and Cohen, respectively,
Proposition 3.5 shows that, indeed, Jensen's result and

Cohen's result coincide.



CHAPTER 4

APPLICATIONS AND EXAMPLES

M. Auslander and D. Buchsbaum in their note
"Homological Dimension in Noetherian Rings II", Trans.
Amer, Math. Soc., 88(1958). pp. 194-206 showed that if
R is a commutative Noetherian ring of global dimension
n then B[[XY} has global dimension n + 1. Small shows
that the assumption of commutivity may be dropped.

PROPOSITION 4.1 (Small)., If R is a right

Noetherian ring and gl.dim R = n, then gl. dim R HXn =n + 1.
PROOF. Since X is a central non-zero divisor in R HXH 2

we have (X) = R[[Xu and so 1s projective. Thus
row.dimg gy R HXﬂ /(X) < 1.
But X € J(R) so by Theorem 2 we have
l.gl.dim R[[X]] <1 + 1.gl.dim R[] /(X) = n + 1.
However, by Kaplansky, (6) Theorem 1.3
l.gl.dim R{[{] /(X) > n + 1

and so the result.

EXAMPLE 4,2 (Small). Let R be the integers

localized at a prime and Q be the rationals. Consider

the ring S consisting of all 2 X 2 matrices

34
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with r € R, q1, 92 € Q. S 1is right-Noetherian but

not left-Noetherian, and

o-{(2 )

Now l.w.dim,J(S) = 0 but l.p.dimSJ(S) = 1 since RQ

ae J(R), aeQf.

is flat but not projective. Since S/J(S) = R/J(R) @ Q,

a direct sum of fields, r.gl.dim S/J(S) = 0. By

Theorem 2, therefore, r.gl.dim S = 1., However,

l.gl.dim 8 = 2, for, 1.p.dimSJ(S) = 1 so l.gl.dim S > 2.

Now R® Q is Noetherian on both sides so we have
l.gl.dim (R®Q) = r.gl.dim (R®Q) < 1.

Using the inequality of Theorem 2 and r.w.dimR(RCB Q) % 1

we have l.gl.dim S <1+ 1 =2, (R@Q = S/N(S) where

N(S) is the maximal nilpotent ideal of S.) However, if

we tried to apply the inequality of Theorem 2 to S

with I = J(S) we would obtain l.gl.dim S = 1 which

is false. Thus Theorem 2 cannot be generalized in this

direction. Suppose we now apply the inequality of

Theorem 2 with S and I = N(S). Since S/N(S) = R@ Q

and l.w.dimSS/N(S) = r.w.dimSS/N(S) = 1 we obtain

r.gl.dim S < 2 and l.gl.dim S < 2.
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Thus, in the former case the inequality is strict while
in the latter it 1is not. Therefore, the inequalities
are the best possible (for small dimensions).

EXAMPLE 4.3, Let the ideal I be contained

in the radical of a ring R where I satisfies the hypotheses
of Theorem 3, (2) and either let I be nilpotent or let
R be left-Noetherian or left-perfect. Suppose l.gl.dim S
is finite. Then by Theorem 2 we have that

l.gl.dim R £ l.gl.dim S + 1
since I 1s right-flat. But by Theorem 3‘we have for

any S-~module B,

i.dimRB

i.dimSB + 1

and so
l.gl.dim R = l.gl.dim S + 1.

EXAMPLE 4.4 (Cohen). We wish to show that

for the hypotheses of Theorem 3,(1), in the case
where R is commutative, that I faithful and projective
is not sufficient.

Lk § = {F ¢ T~R' comtinuons) wheve T 45 bhe
unit interval [0,1] and R! is the real line. Let

J = {f € S | there exists an € > 0 and f [0,€] = 0},

Then J is projective : 1let
0 0<t<1/(n+ 1)
£(t) = {n(n+ 1)(t -1/(n+1)) 1/(n+1) <t<1/m

1 | 1/n <t < 1.
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1 1
- _ 2 = 3
Jet=t
g; = F s . € J.
1=0 i n+1l i
n n
Define 6 : [ S—J by 6(ao, a1, «..) = ] a;g;. Given
i=0 i=0

h e J observe that for some N, hf = h for all n 2 N,
hence hg = 0 for almost all n. So we can define

6 : J—) S by o(h) =(hge, hg1y ...). Then
i=0

6o(h) =

Il ~1.8
=
[}

1

I~
=2
o]

L}
oy

o~

g

fl
oy
L)

|
lny

-

1=0 1 1
for n sufficiently large. Thus J is projective. J

is clearly faithful. Let S% = S/J, the ring of evaluations
at 0 (that is, constant terms). Let o € S be given by

a(t) = t, t € I. Let A = (a). Let M = S/A. A% # A

s0 p.dimgM = 1. (If M is left-flat, then

s/A®SA = S/A*A = 0,

But S/A @SA = 0 implies A = A2%,) Observe that Jc A

and o is a non-zero divisor of S%, Thus

M S/A = S%¥/(A/J) = S%*/aS%
1.

so p.dim, .M = Thus p.dim M = p.dimg .M = 1.

S S S
Thus faithful and projective is not sufficient.
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