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PREFACE 

Classically, there exist three theorems 

which relate the two homological dimensions of a 

module over two rings. We deal with the first and 

last of these theorems. J. R. Strecker and L. W. 

Small have significantly generalized the "Third 

Change of Rings Theorem" and we have simply re­

organized their results as Chapter 2. J. M. Cohen 

and C. u. Jensen have generalized the "First Change 

of Rings Theorem", each with hypotheses seemingly 

distinct from the other. However, as Chapter 3 we 

show that by developing new proofs for their theorems 

we can, indeed, generalize their results and by so 

doing show that their hypotheses coincide. Some examples 

due to Small and Cohen make up Chapter 4 as a completion 

to the work. 
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CHAPTER 0 

INTRODUCTION 

The theme of our work will be to relate the 

two possible dimensions of a module in the case that 

it is a module over two rings. Classically, three such 

theorems exist, in which the two rings, R and s, are 

related by the fact that S = R/(x) where (x) is the 

principal ideal generated by a central non-zero divisor, 

x, of R. Two contrasting situations are considered: 

that in which the R-module A is annihilated by x, that 

is, xA = 0 and that in which x acts faithfully on A, 

that is, x is a non-zero divisor for A. Formalizing 

these two concepts we have the following theorems (cf. 

(6) and (5), chapter 4): 

THEOREM A (First Change of Rings Theorem). 

Let R be a ring with unit and x a central element of R 

which is a non-zero divisor. Write S = R/(x). Let A 

be a non-zero S-module with p.dim8A = n < ~. Then 

p.dimRA = n + 1. 

(This may be written 

p. dimRA = p.dim8 (A/xA) + 1 

since xA = 0.) 
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THEOREM A'. Let R be a ring with unit and x 

a central element of R which is a non-zero divisor. 

WriteS= R/(x). Let A be a non-zeroS-module with 

Then 

i.dimRA = n + 1. 

fEhis may be written 

i.dimRA = i.dims(A/xA) + 1.) 

THEOREM B (Second Change of Rings Theorem). 

Let R be a ring with unit and x a central element in R. 

WriteS= R/(x). Let A be an R-module and suppose that 

x is a non-zero divisor both on R and on A. Then 

p.dims(A/xA) ~ p.dimRA. 

THEOREM B'. Let R be a ring with unit and x 

a central element in R. WriteS= R/(x). Let A be 

an R-module and suppose x is a non-zero divisor both 

on R and on A. Then 

i.dims(A/xA) ! i.dimRA - 1 

except when A is R-injective (in which case A= xA). 

THEOREM C (Third Change of Rings Theorem). 

Let R be a left-Noetherian ring, x a central element in 

the Jacobson radical of R. WriteS= R/(x). Let A 

be a finitely generated R-module. Assume x is a non­

zero divisor on both R and A. Then 
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THEOREM C'. Let R be a commutative Noetherian 

ring and x an element in the Jacobson radical of R. 

Write S = R/(x). Let A be a finitely generated non-zero 

R-module with x a non-zero divisor of A. Then 

i.dimRA = i.dimR(A/xA). 

If, further, x is a non-zero divisor of R, then 

i.dimRA = 1 + i.dims(A/xA). 

The Second Change of Rings Theorem adds nothing 

to our discussion since it is incorporated into the 

statement and proof of Theorem c, and we shall not 

consider it here. In the proof of Theorem c, (6), it 

is seen that by a simple induction step one needs 
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consider only the case in which A/xA being R/(x)-projective 

implies A is R-projective. ·Thus Strooker (9) considered 

cases in which R/I-projectives could be lifted to R­

projectives where I is a suitable ideal of R. Strooker's 

main result is somewhat stronger than an auxiliary result 

of Small ((8),Lemma 1) who also introduces a theorem 

concerning global dimension. Prior to proving these 

results (Chapter 2) we shall prove some preliminary 

propositions all of which have some intrinsic interest. 

In Chapter 3 we shall prove the resu~ts of Jensen (4), 

and Cohen (2) concerning a rather wide generalization 

of Theorems A and A' along with a theorem concerning 

weak dimensions. We shall prove, as a conclusion to 



Chapter 3 that, in fact, C ·hen's result and Jensen's 

result are equivalent. Some consequences of these 

change of rings theorems will be discussed in Chapter 4 

by exhibiting several applications and examples. 
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In the following we shall assume all rings have 

units and are not necessarily commutative, and that 

"module" denotes "left module" unless it is otherwise 

stated. Also, unless otherwise stated, all dimensions 

refer to left dimensions. We adopt the convention that 

the dimension of a zero module dim(O) = - 00 • If not so 

stated, the dimension of a module is assumed to be finite. 

The numbering of 'propositions' follows the decimal 

convention in which the first digit indicates the section 

number. tllain theorems are numbered consecutively 

regardless of the section they appear in and Corollaries, 

following the decimal code, have as their first digit 

the number of the theorem to which they are Corollaries. 

All theorems herein hold equally well if "module" were 

taken to mean "right module" throughout although proofs 

would have to be modified accordingly. 



CHAPTER 1 

PRELIMINARIES 

The propositions i n this section will be used 

a great deal later on but are placed here because they 

are interesting in their own right. The following 

proposition can be found with identical proof for pro­

jective dimension in (6), Theorem 1.2. 

PROPOSITION 1.1. Let 

be an exact sequence of R-modules . 

(1) If two of the weak dimerisions 

w.dimRA, w.dimRB, w.dimRC are finite, so is the third. 

(2) If w.dimRA > w.dimRB' then 

w.dimRC = w.dimRA. 

(3) If w.dimRA < w.dimRB' then 

w.dimRC = '\'l. dimRB + 1. 

( 4) If w.dimRA = w.dimRB' then 

w.dimRC < w.dimRA + 1. -

PROOF. If any of A, B, C are zero, the results are 

trivial. Suppose, therefore, that A, B, C are non- zero 

and let A be flat. Then w.dimRB ~ w.dimRA and obviously 

w.dimRC = w.dimRB + 1 unless B is flat in which case 



w.dimRC = 1 satisfying (4). Suppose C is flat. Then 

w. dimRB = w.dimRA = 0 whi ch satisfies (4). We proceed, 

therefore, under the assumption that A, C are not flat. 

Write A = P/D with P flat. Then B has the form E/D, 
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where DC E c P, and C ~ PIE. Thus w.dimRE = w. dimRC - 1, 

w.dimRD = w.dimRA - 1, w.dimR(E/D) = w.dimRB. We have 

the exact sequence 

By using it and induc tion on the sum of the two finite 

dimensions we get (1) of the theorem. Hence we assume 

all three dimensions are finite and we do induction on 

their sum. The induction a ssumption on D, E, B gives 

the following info~nation when translated back to A, B, C: 

(a) If w.dimRC > w.dimRA' then 

w.dimRB = w.dimRC - 1, 

(b) If w.dimRC < w.dimRA' then 

w.dimRB = w.dimRA' 

(c) If w.dimRC = w.dimRA, then 

w.dimRB ! w.dimRA. 

But these are just a logical rearrangement of the 

statements of the theorem so we are finished. 

PROPOSITION 1.2. Let 

be an exact sequence of R-modules. 

(1) If two of the dimensions i.dimRA' 
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i.dimRB' i.dimRC are finite, so is the third. 

( 2) If i.dimRA > i.dimRB' then 

i.dimRC = i.dimRA. 

(3) If i.dimRB > i.dimRA' then 

i.dimRC = i.dimRB + 1. 

( 4) If i.dirnRB = i.dimRA' then 

i.dimRC < i.dimRB + 1. -

The proof of Proposition 1.2 is exactly dual 

to that of Proposition 1.1 and will be omitted. 

PROPOSITION 1.3.t Let RandS be two rings and 

let e: : R---. S be a unitary homomorphism. Let B be 

any S-rnodule. Then 

p.dimRB ~ p.dim8 B + dimRS. 

PROOF. If B = 0, the result is trivial since p.dimRB = - 00 

Suppose B I 0 and let p.dim8 B = h < oo, p.dimRS = k < oo 

Let C be any R-module and let 

(*) Qo Q l 
o-c-~ - - ... 

be an R-injective resolution of c. Now, applying the 

functor HomR(S,_) to (* ) we have the sequence 

0-HomR ( S, C) -+ HomR ( S, Q 0 
) -+ ••• - HomR ( S, Qk) ~ 

k+l 
HomR(S,Q )--•••• 

k+l . ( **) 
The sequence 0-Im ¢-HomR(S,Q )-.. ••• 

m is exact since p.dimRS = k yielding ExtR(S,A) = 0 

for all R-modules A and all m > k. Also by (1), pg. 30, 

t. The Propositions 1.3, 1.4 and 1.5 are due to Jensen (4). 



Proposit~on 6.1, HomR(S,Qj) isS-injective for all j 

yielding (**) an S-injective resolution of Im ¢ = D. 

Apply the functor Homs(B,_) to (**) giving the sequence 

k+l 
0-HornS(B,D)-HomS(B,HomR(S,Q ))- ••• -t 

h+k+l 
--Horns ( B, HornR ( S, Q ) )__.. ••• 

which is exact after h steps because p.dimsB = h 

yielding Ext~(B,A) = 0 for all S-modules A and all m > h. 

Thus the homology group at 

1 h+k+l h+k+l Hom3 ,B,HomR(S,Q )) ~ HomR(B,Q ), 

Ext~+k+l(B,C) = 0 for any R-module c. Hence 

p.dimRB ~ h + k. 

PROPOSITION 1.4. Let R and S be two rings and 

let e: : R- S be · a unitary homomorphism. Let B be 

any S-module. Then 

PROOF. < 00 Let 

C be any R-module and let 

( *) 

be an R-projective resolution of C. Now, applying 

the functor S @rl _ to ( *) we obtain the sequence 

The sequence 
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is exact since r.w.dimRS = k yielding Tor~(S,A) = 0 

for all R-modules A and all m > k. Also, by (1) pg. 30 

Proposition 6.1, S~Pj is S-projective for all j 

yielding (**) an R-projective resolution of Coker ~ = D. 

Apply, now, the functor Homs(_,B) to the sequence (**) 

giving the sequence 

which becomes exact after h steps since i.dimSB = h 

yielding Ext~(A,B) = 0 for all S-modules A and all 

m > h. Thus the homology group at 

HomS(S <2%Pk+h+l'B) :! HomR(Pk+h+l'B), 

Ext~+h+l(C,B) = 0 for any R-module c. Hence 

PROPOSITION 1.5. Let R and S be two rings and 

let £ : R-+S be a unitary homomorphism. Let B be any 

S-module. rrhen 

PROOF. We first show that if P is R-right-flat, then 

P ®Rs is S-right-flat: let 

be an exact sequence of left S-modules. Apply the 

functor (P @rlS) Q%_ to obtain the sequence 

0---..(P @.t\S) @.::;A-(P ®rlS) ~B-(P ~tS) Q)SC -0 (*) 
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which is isomorphic to the sequence 

0- P ~A-P ~B-P ~c-o. 
r.w ( .... ) 

But P is R-right-flat implying that (**) is exact 

which means (*) is exact, proving that PQ%S is 

S-right-flat. Let C be an arbitrary rig~t R-module 

and let 

be an R-flat resolution of c. Applying the functor 

_ ~S we obtain the exact sequence 

since w.dimRS = k. As we have seen Pj Q9BS is S-right­

flat so {***) is an S-flat resolution of Coker ¢. Apply 

the functor _ ~B to obtain the sequence 

¢' 
••• - Ph+k+ 2 Q)Rs ®sB~ P h+k+l ~s (i)3B-coker ¢ '- o 

which is exact since w.dimSB = h. But this means the 

homology group of 

R 
Torh+k+l(C,B) = o. Since C was arbitrary we have 

The .following theorem is due to Small and 

may be found as Lemma 1, (8). 

THEOREM 1. Let R be a ring and I a two-sided 

ideal contained in the Jacobson radical of R. Write 

10 



S = R/I. Let A be a finitely generated R-module such 

that A possesses a free resolution of finitely generated 

modules and with Tor~(S,A) = 0 for all p > 0. Then 
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PROOF. Suppose A ~ 0 since otherwise the result is trivial. 

Let F be a free R-module and let 

(*) 

be exact. Since Tor~(S,A) = 0 for all p > 0 we have from 

the long exact sequence of (*) that TorR(S,L) = 0 for 
p 

all p > 0. We shall leave to the last the proof that 

A/IA is S-projective if and only if A is R-projective. 

We proceed by induction on n = p.dimRA < oo. From (*) 

we see that p.dimRL = n - 1 and since Tor~(S,A) = 0 

(and for any R-module c, S~C ~ C/IC) we have the exact 

sequence 

0-L/IL-F/IF-A/IA -o. 

But F/IF is S-free and TorR(S,L) = 0 for all p > 0 so 
p 

by the induction hypothesis p.dims(L/IL) = n - 1 giving 

p.dims(A/IA) = n. It remains to start off the induction 

at n = o. Obviously if A is R-projective, then A/IA 

is S-projective. Suppose A/IA is S-free. Let {e } J a a e: 

be elements of A whose images under the natural map 

n : A-+A/IA are the basis for A/IA. Let E be the sub-

module of A generated by {e } 
3

• Now E + IA = A 
a. a e: 



so \'le have I(A/E) =AlE which means A= E by Nakayama.t 

Let F' be the free R-module with basis {xa}a E J and let 

g : F'--A be the map such that g(x ) = e • a a 
Then we have 

an exact sequence 

0--+L'--F'-A~o. 

Since Tor~(S,A) = 0 we have, from the lon8 exact 

sequence, the sequence 

Now l~g is an isomorphism of the S-free modules 

F'/IF' and A/IA since generators are mapped onto 

generators, giving L'/IL' = 0 or L' = IL' in which 

case by Nakayamat L' = 0. Hence A is R-free. Suppose 

now A/IA is S-projective. We have an exact sequence 

0-L/IL-F/IP-A/IA -.0 

which splits yielding 

F/IF ~ L/IL (31 A/IA ~ (L@ A)/I (L@ A), 

which is S-free so that L <±> A is R-free which implies 

that A is R-projective. Hence the theorem holds at 

n = 0 and it is proved. 

REMARKS. (1) If R is left-Noetherian, then any 

finitely generated R-module possesses a free resolution 

of finitely generated modules. 

(2) We use the fact that I is contained 

in the radical of R and that A is finitely generated 
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only at the points marked t in the proof to satisfy 

Nakayama's Lemma which yields that IB = B implies 

B = 0 for all finitely generated R-modules B. We 

can drop the restriction on A by assuming that 

(i) R is left-perfect in which case 

IB = B implies B = 0 for all R-modules B, where I 

is contained in the radical of R, or 

(ii) I is nilpotent in which case 

IB = B implies B = 0 for all R-modules B. 
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CHAPTER 2 

THE THIRD CHANGE OF RINGS THEOREM 

In the proof of the classical third change of 

rings theorem, as in the proof of Theorem 1, the 

R induction step is easy when Tor1 (S,A) = 0 for A an 

R-module, S = R/I where I is a suitable ideal of the 

ring R. The difficulty arises at n = 0. That is, if 

A/IA is S-projective, is A R-projective? Strooker dealt, 

therefore, with the problem of when such S-projectives 

could be lifted to R-projectives. The main result of 

Strooker's paper (9) uses the following lemma (Lemma 0, 

(9)). First we need a definition. In any category, an 

epimorphism f A~B is called a cover if any morphism 

g : X--A such that fg is an epimorphism, must needs be 

an epimorphism. Sloppily we say that A is a cover of B. 

LEMMA 2.1. Let R be a ring and I a two-sided 

ideal of R. Write S = R/I. Let A be a finitely 

generated non-zero S-module. If E is an R-cover of 

A, then E is finitely generated. If A is S-projective 

then E/IE ~ A. 

PROOF. Let t denote the natural map X-+X/IX and if 
X 

-
f : X-.Y let f denote the map X/IX--Y/IY for X, Y 

R-modules. Let f' : L~A be an epimorphism where L 
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is a finitely generated S-free module. Let B be a free 

R-module on the same number of generators as L and 

define g : B~L by mapping generators to generators; 

g is an epimorphism. Let s : E- A be an R-cover of 

A and let f : B-.E be such that sf = f'g. Now f'g 

is an epimorphism and by the cover property of s we 

have that f is an epimorphism. Thus E is finitely 

generated. Now suppose A is S-projective. Then since 

s : E/IE-A is onto there exists a map h : A-E/IE 

with sh = lA. 
1 . 

Let F = ti (h(A)). Then s(F) = stE(F) 

= s(h(A)) = A. But s is a cover so F = E and hence 

A = E/IE. 

The main result of Strooker's paper is the following 

PROPOSITION 2.2 (Strooker). Let R be a left-

Noetherian ring and I a two-sided ideal contained in 

the Jacobson radical of R. Let A be a finitely 

generated projective non-zero S = R/I-module. Suppose 

R the R-module E is an R-eaver of A and that Tor1 (S,E) = 0. 

Then E is uniquely determined up to isomorphism and is 

finitely generated projective. Moreover, E/IE ~ A. 

PROOF. By Lemma 2.1, we have that E is finitely generated 

and that E/IE ~ A. Let f be an epimorphism of a finitely 

generated free module L onto E and let g : D~L be the 

R kernel of f. Since Tor1 (S,E) = 0 the bottom row in the 

commutative diagram 



o-D ~L f E-O 

ltD - jtL - ltE 
o-- D/ID i4L/IL LE/IE-- o 

is also exact. Since E/IE is S-projective the bottom 

row splits and we have a map h : L/IL~D/ID such 

that h~ = lD/ID" Since L is projective we have a 

map h L--+D such that tDh = htL. If we can show hg 

to be an automorphism of D we will have split the top 

row and so E would be projective. The commutative 

diagram shows that t hg = ht g = h~t = tD. Since R D L D 

is Noether~an, D is finitely generated, so tD is a 

cover and hg is surjective. (The lemma of Nakayama 

states that f A--+B is a cover if A is finitely 

generated and kerf c J(R)A.) Thus hg is an epimorphism 

of the Noetherian module D onto itself and so it is an 

automorphism (N. Bourbaki, i1~ments de Math~matique, 

Algebre, Chap. 8, Lemma 3, pg. 23). Hence E is a 

projective cover of E/IE and so is uniquely determined 

up to isomorphism. 
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RElVIARKS. (1) We remark at this point that Proposition 

2.2 generalizes Remark (1) of Theorem 1 since f : A--A/IA 

is a cover by 

for all p > 0 

Nakayama since I c J(R) and TorR(S,A) 
p 

gives, in particular, Tor~(S,A) = o. 

= 0 

Proposition 2.2 gives that if A/IA isS-projective, A 

is R-projective and by the familiar induction argument 



we have p.dimRA = p.dim8 (A/IA) which is the result of 

Theorem 1. 

(2) Proposition 2.2 yields the classical 

third change of rings theorem for x a central non-

zero divisor in the radical of R which acts faithfully 
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on A and I= (x), that is A/xA beingS= R/(x)-projective 

implies A is R-projective. 

PROOF. By Nakayama the natural map A-+A/xA is a cover 

since x E J(R). Also, from the short exact sequence 

o-xR-+R~S-+0 

we have the long exact sequence 

R 
0 -Tor1 (S,A)- xR ~A--. R ~A-S ~A-0 

or, isomorphically, 

R o- Tor1 (S,A)- xR Q%A-A-A/xA-+ 0. 

Since x acts faithfully on A, xR ~A ~ xA (x ~e-xe) 

and so the sequence 

o- xA-A --.A/xA-0 

is exact yielding Tor~(S,A) = 0. Now Proposition 2.2 

applies and the result follows. 

(3) In Proposition 2.2 we can drop the 

requirement that R be Noetherian if we assume that 

E is finitely presented. 



PROOF. Using the latter part of the proof 

of Theorem 1 we have an exact sequence 

o-L'-F'-~E-0 

where E replaces the A of Theorem 1. Since E 

is finitely presented we have that L' is finitely 

R generated. Also, since Tor1 (s,E) = 0 the proof 

moves to its conclusion. Since E/IE ~ A is 

S-projective, we have that E is R-projective. Thus 

E is uniquely determined up to isomorphism and we 

have the result of Proposition 2.2. 

Strecker showed that he could remove the 

requirement that R be left-Noetherian by requiring 

that E be finitely presented and that R be a direct 

limit of a directed set of left-Noetherian rings. 

We have shown that by Theorem 1, we need only the 

assumption that E is finitely presented and hence 

we may drop the Noetherian requirement entirely, 

assuming R to be an arbitrary ring. 

We turn our attention now to a change of rings 

theorem concerning global dimensions which is due to 

Small ((8), Theorem 1). 
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THEOREM 2 (Small). Let R be a ring and I a 

two-sided ideal in the radical of R. Write S = R/I. 

Suppose 

Then 

PROOF. 

(1) I is nilpotent, or 

(2) R is left-Noetherian, or 

(3) R is left-perfect. 

l.gl.dim R ~ l.gl.dim S + r.w.dimRS. 

(1) Suppose I is nilpotent. Let A be 
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an arbitrary non-zero R-module and suppose r.w.dimRS = n < oo 

Consider an R-free resolution of A 

o-x -F 1- .•• -Fo -A -o n n- · 

where the F. are R-free. 
1 

By shifting along this sequence 

we have TorR(s,x ) = TorR+ (S,A) 
p n n p 

for all p > o. 
R Since r.w.dimRS = n, Torn+p(S,A) = 0 for all p > 0. 

Hence Xn satisfies the hypothesis of Theorem 1 (Remark 

(2), (ii)), so that 

p.dimRXn = p.dim3 (Xn/IXn) ~ l.gl.dim s. 

Now by "tacking" on a resolution of Xn onto 

••• -F 1- ••• -Fo -A -0 n- . 

we see that 

Since A was arbitrary, 

l.gl.dim R ~ r.w.dimRS + l.gl.dim S. 



(2) If R is left-Noetherian and A is 

finitely generated the X , F 1 , ••• , F 0 may all be n n-
taken to be finitely generated and Theorem 1, Remark 

(1) applies. 

(3) If R is left-perfect then Theorem 1, 

Remark (2) (i) applies and the theorem is proved. 
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CHAPTER 3 

THE FIRST CHANGE OF RINGS THEOREM 

Propositions 1.3, 1.4 and 1.5 give inequalities 

regarding dimensions involving a change of rings. We 

wish now to look at conditions on the ideal I which 

will yield equality. Theorems A and A' give one particular 

case in which equality holds but both Jensen (4) 

and Cohen (2) developed rather wide generalizations of 

these. Before considering these results we need three 

lemmas: 

LEMMA 3.1. Let R be a ring and I a two-sided 

ideal of R. Write S = R/I. If B is any S-module with 

p.dimRB = 1 and p.dim8B ~ 2 then I~B isS-projective. 

PROOF. From the exact sequence 

o-r-R-s-o 

we obtain the exact sequence 

o-Tor~(S,B)- I ®RB L R %B-+ s ®nB-o. (*) 

But R~B ~ B so that fori Q9 b £ I~B, f(i <g) b)= ib = 0 

since B is an S-module. R Hence f = 0 'and Tor1 (S,B) ~ I ~B. 

(I ~B is an S-module since I (I ~B) = I (2%IB = 0 since 

IB = 0.) We now let F be an R-free module so that 
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is exact. But p.dimRB = 1 which means K is R-projective. 

Now applying the functor S ~- we have the exact sequence 

R (**) 
o-Tor1 (S,B)-s ~K-s G%F-s ~tB-o. 

These are all S-modules and, in fact, S ~K and S ~F 

areS-projective ((1)). Since (**) is an S-exact 

sequence of projectives, by dimension shifting we 

see that Tor~(S,B) is also S-projective since p.dim8 B ~ 2. 

(Ext~(Tor~(S,B),C) = Ext~(B,C) since SQq1B = B by (*).) 

But I ~B = Tor~(S,B) and so I ~B is S-projective. 

LEMMA 3.2. Let R be a ring and I a two-sided 

ideal of R. Write S= R/I. If B is any S-module with 

i.dimRB = 1 and i.dim8B ~ 2 then HomR(I,B) is S-injective. 

PROOF. From the exact sequence 

o-r-R -s-o 

we obtain the exact sequence 

f 1 ( *) 
o-HomR(S ,B)-HomR (R,B)- HomR(I ,B)- ExtR (S ,B)- 0. 

But HomR(R,B) = B and f is just the restriction of 

a E HomR(R,B) to I. But a(i) = ia(l) = ib = 0 for i E I 

and b = a(l) E B. Thus f = 0 and HomR(S,B) = B and 

1 HomR(I,B) = ExtR(S,B). (HomR(I,B) is an S-module since 

for a E HomR(I,B), ia(i') = ib = o fori, i' E I and bE B.) 

We let Q be R-injective so that 



is exact. But i.dirnRB = 1 so K is R-injective. Now 

applying the functor HornR(S,_) we obtain the S-exact 

sequence 

But HomR(S,Q) and HomR(S,K) are S-injective (1) so by 

a shiftine argument ExtR(S,B) is S-injective since 

i.dirn3B ~ 2 and so HomR(I,B) is S-injective. 

LEMMA 3.3. Let R be a ring and I a two-sided 

ideal of R. Write S = R/I. If B is any S-module with 

w.dimRB = 1 and w.dim8B ~ 2 then I ~B is S-flat. 

PROOF. From the exact sequence 

0--+I-R-s-o 

we obtain the exact sequence 

0-+Tor~(S ,B)-I ®-rlB L R G1tB-+S ®rlB-+0 

where f(i ®b) = ib = 0 so Tor~(S,B) ~ I ~B and 

S ~B ~ B. Let P be R-flat so that 

is an R-flat resolution of B. But w.dimRB = 1 

so K is R-flat. Nmv applying the functor S @rl- we 

obtain the S-exact sequence 

R O-Tor1 (S,B)-S G%K-+S ~P---.B ---.o 

and since S C9.RK' S ~P are S-flat we have Tor~(S,B) 

is S-flat since w.dim3B ~ 2. Hence I ~B ~ Tor~(S,B) 

is S-flat. 
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The following result was proved by Jensen 

((4), Theorem 1) for R a commutative ring, but we shall 

prove it for an arbitrary ring. 

THEOREM 3 (Jensen). Let R be a ring and I a 

t"v'lo-sided ideal of R such that R is a bidirect summand 

of a bidirect sum of copies of RIR. Write S = R/I. 

If B is any S-module with finite S-dimension then: 

(1) if RI is R-projective then . 

p.dim B = p.dimsB + 1 . 
R ' 

(2) if IR is R-flat then 

i.dimRB = i.dim3B + 1 • , 

(3) if RI is R-flat then 

PROOF. Suppose A ~ 0 since otherwise the results are 

trivial. (1) From the short exact sequence 

o-r-R-s-o 

we have the exact sequence 

R f 0 -+Tor1 (S ,B) ---.I ~B---t B -s ~B ~o. 

ITB is R-projective, then Tor~(S,B) = 0 yielding 

I @rlB = 0 since f = 0 as B is an S-module. Thus 

I~\B = 0 for all m > 0 and since R is a bidirect 

summand of a direct sum of copies of I, 
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where K is some R-bimodule. Thus B = 0. Therefore, 

no non-zero S-module is R-projective and for 0 = n = p.dimSB, 

p.dimRB = 1 by Proposition 1.3. We now do induction 

on n. Let F be S-free so that 
(*) 

is exact. Then p.dimSK = n - 1 so by the induction 

hypothesis p.dimRK = n. By Proposition 1.1 for 

projective dimension we have for n > 1, p.dirnRB = n + 1 

where (*) is now considered as an R-exact sequence and 

p.dimRF = 1 from above. If n = 1 we obtain p.dimRB ~ 2. 

Suppose, therefore, that p.dimRB = 1 (p.dimRB ~ 0 

since B is an S-module) and from p.dimSB = 1 we shall 

show the contradiction that p.dimSB = 0. By Lemma 3.1 

we have I ~B is S-projective. Hence for all m > 0, 

I~B is S-projective. But there exists an R-bimodule 

K with Ei)I = K @ R (as above). Thus 

(£>I ~B = (K (f) R) ~B = (K C%B) G) (R ®RB) ::: (K G%B) (±)B. 

Thus B is a direct summand of an S-projective module 

@ I ~B and so is S-proj ecti ve. Therefore we have 

p.dimRB = 2 when p.dimSB = 1 and the proof is finished. 

(2) From the short exact sequence 

we have the exact sequence 

f 0- HomR (S ,B)- HomR (R,B)-+ HomR (I,B) -ExtR (S ,B)- 0. 



If B is R-injective, then Ext~(S,B) = 0 and since 

f = 0 for B an S-module, we have HomR(I,B) = 0. 

Hence HomR(<!)I,B) = 0. Since HomR((£>I,B) = HomR(K (±) R,B) 

we have 

which implies B = 0. Hence no non-zero S-module is 

R-injective and by Proposition 1.4 we have i.dimRB = 1, 

that is i.dimRB = i.dimSB + 1, where 0 = n = i.dimsB· 

By induction and Proposition 1.2 it is sufficient to 

consider the case in which i.dimRB = 1 and i.dimsB = 1. 

By Lemma 3.2 we have HomR(I,B) is S-injective. Since 

there exists an R-bimodule K with @ I = K@ R we see 

that since HomR (<±) I ,B) == n HomR ( I,B) is S-inj ecti ve, 

B is S-injective which is a contradiction. Therefore, 

we have i.dimRB = 2 when i.dimSB = 1 and the proof is 

finished. 

(3) From the exact sequence 

we obtain the exact sequence 

If B is R-flat then by an ar8ument similar to that 

in part (1) B must be zero. Hence no non-zero flat 

R-module is an S-module and by Propostion 1.5 we have 

w.dimRB = 1 = w.dimSB + 1 where 6 = n = w.dimsB• By 
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induction and Proposition ~.1 it is sufficient to consider 

the case in which w.dimRB = 1 and w.dimSB = 1. By 

Lemma 3.3 ,.,,re have that I ~B is S-flat and so G} I @.B.B 

is S-flat. Since there exists an R-bimodule K with 

G:) I = K (1) R, we have e I ~ B = ( K (±) R) ®R B := ( K @R R) (£> B 

in which case B is a direct surmnand of an S-flat module 

and so is S-flat which is a contradiction. This finishes 

the proof. 

COROLLARY 3.1 (Jensen). Let I be generated by 

an R-sequence of two-sided ideals in R (I 1 c I 2 C ••• C I = I) m 

of length m such that R/I. 
1 

is a bidirect summand of 
1-

a bidirect sum of copies of Ii/Ii-l for all l ~ i < rn. 

Then for any S-module B 

{1) if I./I. 1 is projective as a left 
J. 1-

R/Ii-module then p.dimRB = p.dimSB + m; 

(2) if I./I. 
1 

is flat as a right R/I.-
1 1- l 

module then i.dimRB = i.dimSB + m; 

(3) if I./I. 1 is flat as a left R/I.-
1 l- l 

module then w.dimRB = w.dimSB + m. 

PROOF. I 1 has the properties of I in Theorem 3, so 

by the theor·ern p. dimHB == p. dimR/I. B + 1. Novi 
l 

since R/Iz = R/I1/Iz/I1. By induction it is easily 



seen that p.dimRB = p.dimSB + m. Similarly parts (2) 

and (3) are proved. 

We now look at a rather interesting result due 

to Jensen ((4), Theorem 3). 

PROPOSITION 3.4. Let R be a ring and I a 

two-sided ideal of R such that R is a bidirect summand 

of a bidirect sum of a finite number of copies of RIR. 

If i.dimRR ~ 1, then S = R/I is self-injective. 

PROOF. From the short exact sequence 

we obtain the exact sequence 

f 1 
o~HomR(S,R)-.HomR(R,R)--HomR(I,R)-.ExtR(S,R)~o. 

1 Thus ExtR(S,R) ~ Coker f. For some n > 0 there exists 

an R-bimodule K with Im = KID R and so there exists 

R-R-homomorphisms i, p such that 

p 
In~~R 

i 

with pi = lR. We then have 

where i* is the dual of i. Since fn is a restriction 

map and since elements of HomR(Rn,R) are determined by 

how they act on the unit vectors (0, . . . ' 1, o, ... , 0) 

we see that Im (i*fn) ~ I. We therefore have the map 
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i : Coker fn--s. Now p E HomR(In,R), represents an element 



_____, 
Thus i*(p) = 1 s 
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~ E Coker fn and i*(p) = p~ = lR. 

which means ~ is an S-epimorphism. But S is S-projective 

and so S is a direct summand of Coker fn. We now show 

Coker fn is S-injective. Consider the exact sequence 

o-R-Q-K-0 

where Q is R-injective. K is R-injective since i.dimRR ~ 1. 

This gives rise to the sequence 

1 o-HomR (S ,R)- HomR (S ,Q)-HomR (S ,K) -ExtR (S ,R)- 0. 

Now HomR(S,R) = 0 since otherwise for 0 ~ s E HomR(S,R), 

j(s(I)) = s(j) = 0 but if s(I) = r E R, jr ~ 0 for 

I = 1 + I and j E I. We therefore have the exact sequence 

0 -HomR (S ,Q)- HomR(S ,K)- Ext~ (S ,R) -o 

and since HomR(S,Q) is S-injective the sequence splits 

yielding Ext~(S,R) a direct summand of HomR(S,K) which 
1 is S-injective. Thus ExtR(S,R) ~ Coker f is S-injective 

and since S is a direct summand of Coker fn, S is self-

injective. 

THEOREM 4 (Cohen). Let R be a ring and let I 

be a two-sided ideal of R such that there exists an 

R-bimodule I' which is bidirect in a bidirect sum of 

copies of R and such that R is a bidirect summand of 

I' (2%I. Wri'te S = R/I. If A is any S-module with 

finite S-dimension, then 

(1) if RI is R-projective then 

p.dimRA = p.dim3A + 1; 



(2) if IR is R-flat then 

i.dimRA = i.dim8A + 1; 

(3) if HI is R-flat then 

w.dimRA = w.dim8A + 1. 

PROOF. If A = 0 the results are trivial. Hence 

suppose A I 0. (1) By part (1) of Theorem 3 we 

need only consider the case in which p.dimRA = 1 

and p.dim8 A = 1. By Lemma 3.1 vle have that I ~A is 

S-projective. Let K ::::: (j) H with I' a bidirect summand. 

Since R is a bidirect summand of I' G%I we have 

A ::::: R ~A is a bidirct summand of (I' ~I) QDRA -­

I' <ZhCI ®.hA) which is a bidirect summand of 

which is S-projective. Hence A is S-projective and 

we are finished. Parts (2) and (3) are proved similarly. 

COROLLARY 4.1. Let I be generated by an R-

sequence of two-sided ideals of R CI1C I 2 C ••. c I =I) m 

of length m such that for each i there exists an 

R/I. 
1
-bimodule I! which is bidirect in a bidirect sum 

l- l 

of copies of R/I. 
1 

and such that R/I. 
1 

is a bidirect 
l- l-

summand of I! @J(I./I. 
1
). Then 

l n l l-

(1) if I./I. 1 is left-projective as an 
l l-
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(2) if Ii/Ii-l is right-flat as an 

R/Ii_1-module then i.dimRB = i.dim8B + m; 

(3) if I./I. 1 is left-flat as an 
J_ J_-

R/Ii_1-module then w.dimRB = w.dim8B + 1. 

PROOF. The proof is identical to that of Corollary 3.1. 

COROLLARY 4.2 (Cohen). If 

(1) I = (x), x £ R a central non-zero 

divisor or 

(2) I is finitely generated rank 1 

projective (for every maximal ideal M c R, IH:::: Rr
4
), 

R commutative, 

then for every S-module B, p.dimRB = p.dim8B + 1 (also 

for injective and weak dimensions). 

PROOF. (1) Let I' = R in the theorem. Then 

I' @.rli :::: I :::: R 

where x : R-I = xR is the isomorphism. 'rhe theorem 

applies. 

(2) Let I be finitely generated. Then 
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since IM :::: RM, I is of rank 1. Therefore, the evaluation 

map I <RkHomR(I,R)-- R is locally an isomorphism at 

each maximal ideal M c R, hence is an isomorphism. 

Thus we let I' :::: HomR(I,R) and the theorem applies. 
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(The distinction between left and right dimensions 

dissappears under the assumption that R is commutative.) 

REMARK. Let R be commutative and let I be invertible. 

-1 lY) -1 Then we let I' = I in which case I' ~I = I I = R 

and the theorem applies. No~also that I invertible 

means I is finitely generated rank 1 projective in 

which case (2) applies. But Bourbaki in Alg~bre Commutative 

chapters 1-2, pg. 179, Exercise 12 gives an example of 

a finitely generated rank 1 projective which is not 

invertible and so (2) is strictly stronger. 

PROPOSITION 3.5. If R is any ring, then I is 

a two-sided ideal of R such that R is a bidirect summand 

of a bidirect sum of copies of RIR if and only if there 

exits an R-bimodule I' such that I' is a bidirect sum-

mand of a bidirect sum of copies of R and so that R is 

a bidirect summand of I' ~I. 

PROOF. Since R is bidirect summand of@ I and I= R~I 

we have@I =(±) (RQ%I) =~R®rli. Let I' =(±)R. 

Conversely, we have K (t) I' = (±) R for some R-bimodule K. 

Hence ( K ®rli) ~ (I' ~I) = (£) R (2%I = (±) I. Since R 

is a bidirect summand of I' {2%I we have R is a bidirect 

summand of (f) I. 

Although Theorems 3 and 4 are attributed to 

Jensen and Cohen, respectively, we have significantly 

changed the hypotheses required to prove them. In 
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Jensen's original result he required that R be commutative 

and I be an ideal of R which is a faithfully projective 

R-module (Pis a faithfully projective R-module if and 

only if HomR(P,_) is a faithfully exact functor). By 

((3), Proposition 2.4) we note that if I is faithfully 

projective then there exists a positive integer n 

such that In= I® I~ ••• ~ I has a direct summand 

isomorphic to R, thus satisfying the hypotheses of Theorem 3. 

Therefore, Theorem 3 is a significant generalization of 

Jensen's result. 

Cohen, on the other hand, assumes R to be an 

arbitrary ring, not necessarily commutative, but he 

requires that the ideal I be right flat and left projective 

such that there exists an R-bimodule I' which is a bidirect 

summand of I' ~I. Cohen considers only part (1) of 

Theorem 4 and as can be seen our proof eliminates the 

necessity of assuming I to be right flat. Since Theorems 

3 and 4 include the results of Jensen and Cohen, respectively, 

Proposition 3.5 shows that, indeed, Jensen's result and 

Cohen's result coincide. 



CHAPTER 4 

APPLICATIONS AND EXAMPLES 

M. Auslander and D. Buchsbaum in their note 

"Homolog ical Dimension in Noetherian Rings II", Trans. 

Amer. Math. Soc., 88(1958). pp. 194-206 showed that if 

R is a commutative Noetherian ring of global dimension 

n then R ([x11 has glob al dimension n + 1. Small shows 

that the assumption of commutivity may be dropped. 

PROPOSITION 4.1 (Small). If R is a right 

Noetherian ring and gl. dim R = n, then gl. dim R [(x11 = n + 1. 

PROOF. Since X is a central non-zero divisor in R ([x)1 , 

we have (X) :::: R ([x1} and so is projective. Thus 

r.w.dimR [[xll R [tx11 /(X) ~ 1. 

But X E J(R) so by Theorem 2 we have 

l.gl.dim R [(xl) ;:, 1 + l.gl.dim R l[XJ1 /(X) = n + 1. 

However, by Kaplansky, (6) Theorem 1.3 

l.gl.dim R ~(x]] /(X) > n + 1 

and so the result. 

EXAMPLE 4.2 (Small). Let R be the integers 

localized at a prime and Q be the rationals. Consider 

the ring S consisting of a ll 2 X 2 matrices 
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r 

0 

with r £ R, q1, qz £ Q. S is right-Noetherian but 

not left-Noetherian, and 

J(S)={(: :)laoJ(R),q<QJ. 

Now l.w.dimSJ(S) = 0 but l.p.dimSJ(S) = 1 since RQ 

is flat but not projective. Since S/J(S) ,;::: R/J(R) (£) Q, 

a direct sum of fields, r.gl.dim S/J(S) = 0. By 

Theorem 2, therefore, r.gl.dim S = 1. However, 

l.gl.dim S = 2, for, l.p.dimSJ(S) = l so l.gl.dim S > 2. 

Now R$ Q is Noetherian on both sides so we have 

l.gl.dim (R(±) Q) = r .. gl.dim (R@Q) ::._ l. 
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Using the inequality of Theorem 2 and r.w.dimR(R (±) Q) ~ l 

we have l.gl.dim S < l + l = 2. (R@ Q ,;::: S/N(S) where = 
N(S) is the maximal nilpotent ideal of S.) However, if 

we tried to apply the ineQuality of Theorem 2 to S 

with I = J(S) we would obtain l.gl.dim S = l which 

is false. Thus Theorem 2 cannot be generalized in this 

direction. Suppose we now apply the inequality of 

Theorem 2 w~th S and I = N(S) . Since S/N(S) ,;::: R@ Q 

and l.w.dimSS/N(S) = r.w.dimSS/N(S) = l we obtain 

r.gl.dim S < 2 and l.gl.dim S ~ 2. 
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Thus, in the former case the inequality is strict while 

in the latter it is not. Therefore, the inequalities 

are the best possible (for small dimensions). 

EXAMPLE 4.3. Let the ideal I be contained 

in the radical of a ring R where I satisfies the hypotheses 

of Theorem 3, (2) and either let I be nilpotent or let 

R be left-Noetherian or left-perfect. Suppose l.gl.dim S 

is finite. Then by Theorem 2 we have that 

l.gl.dim R ~ l.gl.dim S + 1 

since I is right-flat. But by Theorem 3 we have for 

any S-module B, 

and so 

l.gl.dim R = l.gl.dim S + 1. 

EXAMPLE 4.4 (Cohen). We wish to show that 

for the hypotheses of Theorem 3,(1), in the case 

where R is commutative, that I faithful and projective 

is not sufficient. 

Let S = { f : I- R 1 continuous} vrhere I is the 

unit interval ~'~ and R1 is the real line. Let 

J = {f £ S I there exists an£ > 0 and f (O,c) = O}. 

Then J is projective let 

0 < t < 1/(n + l) 
= = 

f (t) = 
n + l)(t - 1/(n + 1)) 1/(n + 1) < t < 1/n = = 

1/n 2 t ~ l. 



Define e : 

Then 

n 
l giz = fn+l' gl.. £ J. 

i=O 
n 
L S-.J by e(ao, 

i=O 

n 
al, ••• ) = L aigi. 

i=O 
Given 

h £ J observe that for some N, hf = h for all n ~ N, n 

hence hg = 0 for almost all n. So we can define 
H 

a: J~t S by a(h) =(hgo, hg1, ••• ). Then 
i=O 

00 

ea(h) = l 
i=O 

n 
hg. = l hg. 

l. i=O l. 

n 
= h l g. = 

i=O l. 
hfn+l = h, 

for n sufficiently large. Thus J is projective. J 
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is clearly faithful. Let sw = S/J, the ring of evaluations 

at 0 (that is, constant terms). Let a £ S be given by 

a(t) = t, t £ I. Let A = (a). Let M = S/A. A2 ~ A 

so p.dim8M = 1. (If M is left-flat, then 

S/ A Q,A ~ S/ A • A = 0. 

But S/ A (2%A = 0 implies A = A 2 .) Observe that J c A 

and a is a non-zero divisor of S*. Thus 

M = S/A ~ S*/(A/J) ~ S*/aS* 

so p.dim8 *M = 1. Thus p.dim8M = p.dim8 *M = 1. 

Thus faithful and projective is not sufficient. 
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