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PART I 

FUND.AM:ENTALS OF GALOIS THEORY 



CHAPTER I 

LINEAR ALGEBRA 

!:.1 F!!J:.gJL~!!~~r-2£!!£.!§. 

In the notation (1.1.1), (2.3.11), etc., the first 

number will denote the chapter, the second number the art­

icle, and the third number the lemma or theorem as it oc­

curs in· the arti ole. A· similar notati-on will be used with 

equations. 

Definition: A set of at least two elements for.ms a _______ ,... __ 
field with respect to two operations called addition and 

multiplication if (a) the set is. closed with respect to 

addition and multiplication; (b) the set forms a commuta- · 

tive group with respect to addition whose identity is 

called the zero element; (c) the nonzero elements of the 

set form a group with respect to multipli~ation, whose 

identity is called the unity element; (d) the distributive 

laws hold: a(b +c) = ab + ac, (a+ b)c = ac +be. If 

multiplication in the field is commutative then we shall 

say the elements form a commutative field. 

~.!f!Y!~i.Q!!: If V is an additive abelian group w1 th 

elements A,B, .•• , and F is a field with elements a,b, ••• ; 

and if for each a of F and A of V the product aA denotes 

an element of V, then Vis called a left vector space over 

F if the following assumptions hold: 
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(1) a(A+B) =aA+aB, 

(2) (a+ b)A- aA + bA, 

(3) a(bA) : (ab)A, 

( 4) 1A = A. 
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Similarly when multiplication by field elements is from the 

right we shall call V a right vector space. 

If o is the zero element of F and 0 the zero ele-

ment of V then from these assumptions we see that oA = 0 

and aO = 0. The fir$t relation follows from the equations: 

aA = {a + o)A -== aA + oA. Similarly the second relation 

follows from: aA = a( A + 0) :::: aA + aO. 

1~E-~~~!!_~~~~!2~· 

If we have a set of equations: 

Ll = a1lxl + al2~·+ • • • + a1n:!ri == 0 • 

(1.2.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Lzn = Bml xl + E\n2 x2 + • · • + Bum~ -== 0 • 

where the flj_j, i = 1,2, ••• ,m, j:::: 1,2, ••• ,n, are m.n ele-

ments belonging to F, a field, we will need to know condit­

ions such that elements in F exist to satisfy the equations. 

Equations {1.2.1) are called linear homogeneous equations, 

and a set of elements, x1 ,x2 , ••• ,:xn ofF for which all the 

equations-(1.2.1) are :true is called a solution of the sy-

. stem. If all the elements x1 ,x2 , ••• ,:xn are zero then the 

solution is trivial; otherwise it is called non-trivial. 

~t!~QE~_b,bl: !..n~§~--2! 1!~.r_!}omqg~!!!QYS_~gy~-



!!2e!_!l!~~~-~!-~-B9n=l£!!1~!_!Q!~io~-!!-!~BY!£~2! 

unknown_§_§,!.2~.!-.]l!.!LB~!2.§!...2L~.9~a~~ • 
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~!22!= We see that one homogeneous equation ail x1 + 
ai 2x2 ~ •.. + ainxn = o, n > 1, has a non-trivial solution 

for if one or the aij's is zero, sat a11 = o, then x1 = 1, 

x
2

-= x
3 

= ... = :xn == o will serve as a solution. We con­

tinue using the induction method of proof. We assume that 

each system of equations, k in number, in more than k un­

knowns has a non-trivial solution when k ~ m. In the sys­

tem of equations (1.2.1) we assume n >m. We wish to find 

elements x
1

, ••• ,xn not all zero such that L 1 = L 2 = ••• -:.:: 

Lm ::=. 0. If aiJ = o for each i and j then any choice of x1 , 

••• ,xn will serve as a solution. If not all aij are zero, 

then we may assume· a11 f. o. We can find a non-trivial sol­

ution to equations (1.2.1), if and only if we can find a 

non-trivial solution to the following system: 

(1.2.2) 

L 1 -::. O, 

L 2 - ! 2f 1 -= O ' 
all . . . . . . . . . . . . . . 

Lm- ~mlL 1::::0. 
all 

For, if x
1
,x

2
, ••• ,xn is a solution to {1.2.2) then, since 

L 1 = 0, the second term in eaoh of the remaining equations 

is zero and hence, L 2= L 3 -::::::. ••• = Lm-= 0. Conversely, if 

(1.2.1) is satisfied, then the new system is clearly satis­

fied. The new system was set up so as to eliminate x1 from 



the last m - 1 equations. The last m - 1 equations have a 

non-trivial solution by our inductive assumption which 

proves the theorem. 

~~!!~1~12n: In a vector space V over a field F the 

vectors A1 , ••• ,An are called dependent if there exist ele­

ments ~, ••• ,xn not all o of F such that x1A1 + x2A2 + ... 
+ xnAn = 0. If the _vectors A

1
, ••• ,An are not dependent, 

they are called independent. 
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~~f!a!1!2a: The dimension of a vector space V over 

a field F is the maximum number of independent elements in 

v. Thus we see that the dimension of V is n if there are n 

independent elements in V and no set of more than n elements 

are independent. 

~~!.!!!!~!2!!: A system A1 , ••• ,Am of elements in V is 

called a generating system of V if each element A of V can 

be expressed linearly in terms of A1 , ••• ,Am, that is, A= 

~~Ai for a suitable choice of ai' i:: l, ••• ,m, in a 

field F. 

!~QE~1~E~§: ~ll-~l-E~~r~tigg_§I§~-!h~m!!!!Y! 

g~Q~I_2£_!ng~E~ll~!U]_y~Q!~-1~~~~1~2-~h!_g!!~B~2~-2f 

~~~-!§£~£!_§£!£!~ 

f!22!= Let p be the maximum number of independent 

vectors in the generating system S = (Al' ••• ,Aq) of V and 

assume that A1 , ••• ,Ap are p independent vectors of s. 
Since p is the maximum number of independent vectors then 

the p + 1 vectors A1 , ••• ,Ap,Ak' where p ~ k f: q, are lin-



early dependent. Thus, 

a1A1 -+ • • • + aPAP + akAk = o, 

where not all ai = o, i = 1, ••. ,p,k, and further, where ak 

:f. o; for if ak = o then A
1

, ••• ,AP would be dependent. 

Therefore, 
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Thus every AkE Sis then a linear combination of A1 , ••• ,Ap. 

Since every vector B of Vis a linear combination of A1 , ••• , 

Aq, B is also a linear combination of A1 , ••• ,AP. Converse-

ly, since every linear combination of these p vectors also 

belongs to V, V consists of all linear combinations of A1 , 

••• ,Ap. Consider t vectors Bj of V, where t ~ p and let Bj 

= ~ijAi, j = l, ••• ,t. Let x1 , ••• ,xt be a non-trivial 
1: 

solution of the p ~ t equations f=1a1 j x3 
= 0, i = 1, ..• , p 

(cr. Theorem 1.2.1). Then 
'C t p p 1: 

~xjBj = ~xj( ;E:aijAi) = ~( ~aijxj)Ai = o. 
J-1 J=1. l=-1 w J=1 

Thus B
1

, ••• ,Bt are linearly dependent whenever t > p. 

Since p linearly independent vectors of V do exist, for ex­

ample A1 , ... ,Ap' we see that pis the dimension of V and 

that A1 , ••• ,AP forms a generating system for the vector 

space v. This proves our theorem. 

Q~~!~!ga: Any set of linearly independent vectors 

which generates V is called a basis. 

!!!~OR»!_!.=.!:_~: ~~:!! A1 , • • • ,An ~~-~-~~~l!-2!-~~~! 

~~~!_y_~-!~~~~-~1-~1~~~~-2!_!· !h~-~B~-!~!~£­

~!!!!2!! B :::;; o1A1 + c2A2 + .... + c
0

An !§_!!!!!SlY!· 
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Proof: If ----
B:cA + ... +cA =d

1
A -T- ••• +dA 

1 1 n n 1 n n 
where o -/:. d , for some 1 = 1, ••• ,n, then ~( c

1 
- d

1
)A

1 
= 

i i ' 1.=1 

o. Since A are independent, this is a contradiction, which 
i 

proves the theorem. 

THEOREM 1.2.4: Let A , ••• ,A be a basis of V and let 
------------- --- 1 n -------------------~ ., 

B1 , ••• ,Bn be_!_~!-,Q!_!L!§,g!,Q~_!!Y.Q!L~!!!l Bi == ~aijAj, 

!_;:_!.l.:.:..:..a.S · !!!~!L~S~ B i !2!!!L!L~~!.!-1!-~-2!!!L!! f a1 j l 
=I 0. 

~!22!: Let 

;£x
1
Bi-=- ~x ~a A = ~( ~aijx1 )AJ = o. 

l='l ia1. i j=1 ij j J==1. l="i 
Thus ~a1jxi:::: 0, j -:::: 1, ... ,n. These equations have a non-

1 
trivial solution if and only if )aijl -= 0, and thus Bi are 

independent if and only if laij I =I 0. 

Qef!~!!!2~: A subset of a vector space is called a 
subspace if it is a subgroup of the vector space and if the 

multiplication of any element in the subset by any element 

of the field is also in the subset. An a-tuple of elements 

A: ~ , ... ,a] in a field F will be called a row vector. 
1 s 

All s-tuples will form a vector space if, 

(1) [a
1

, ••• ,as]- [b1 , ••• ,b
8

] if and only if a1 = b1, 1::::. 

l, •.• ,s, 

( 2) [a 1 ' • • • • as 1 + [b 1' • •• 'b s J :: (a 1 + b 1' • •• ' a a + b s], 
(3) b[a

1
, ••• ,a

8
] = ("ba

1
, ••• ,ba

8
1, forb an element ot F. 

al 
• 
• ::: A1 they will When the a-tuples are written vertically 
• 

1 A. A. Albert, Solid and Analyj;ical Geometry, McGraw-Hill, 1949, p. 95. 
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be called column vectors. 

!~~E_EM_!;&~E= !h!-IB~_i££!~1-Y~£]££_~£~£~-~-2! 

!!!_a=~~!!§_frg~_!_!!~!1_E_!~_!_Y~£!2!~£!~2l_g!~~g~!2£ 

~!22f: The n elements, 

e1 = (l,o,o, ..• ,o), 

e2 = ( 0,1,0, ••• ,0), 

. . . . . . . . . . . . . . . . . . 
e = (o,o,o, ••• ,l), 
n 

are independent and generate ~. This is true since (a1 ,a2 , 

••• ,an) = a1 e1 + a2e2 + .•. * an en = ~a1 e1 , 1 ::. 1,2, ••• ,n. 

~~finit!Qg: We call a rectangular array, 

all al2 • • • aln 

a21a22···a2n 

. . . . . . . . . . . . 
~l ~2· • • amn 

where. i = 1,2, ••• ,m, j = 1,2, ••• ,n, of elements of a field 

F, a matrix. By the right row rank of a matrix, we mean the 

maximum number of independent row vectors among the rows 

(ai1 , ••• ,ain) of the matrix when multiplication by field 

elements is from the right. Similarly, we define left row 

rank, right column rank and left column rank. 

~Q.!i@vl_J.~&:,.§: !.!L~~!!~!!L!!~!!~!!-1!!-.! 

!i~lg ~g~_!!SB1-t!~!~l-221~mll-!~~~!!.§_~he !~!!_i!!Sh!) 

row rank. -------
~£2!: We call the column vectors of the matrix C{l), 



••• ,c(n) and the row vectors R(l) , ••• ,R(m)" The column 

0 
0 
0 

vector 0 is 0 and any right dependence c(l)~ + c< 2)x2 + 
0 
• 

• 
0 
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•.• + c(n) x = 0 is equivalent to a solution of the equations 
n 

(1.2.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
aml xl + am2x2 + · • • + amnxn = o. 

Any change in the order in which the rows are written still 

gives us the same set of equations and does not change the 

column rank of the matrix, but also does not change the row 

rank since the changed matrix would have the same set of 

row vectors. Let the right column rank be c and let the 

left row rank be r. We may assume the first r rows to be 

independent row vectors. The row vector space generated by 

all the rows of the matrix has, by Theorem 1.2.2, the dimen-

sion r and is generated by the first r rows. Thus, each row 

after the r-th is linearly expressible in terms of the first 

r rows. Thus, any solution of the first r equations in the 

set (1.2.3) will be a solution of the entire system since 

any of the remaining n - r equat~ons can be represented as 

a linear combination of the first r. Conversely, any sol­

ution of equations (1.2.3) will also be a solution of the 

first r equations. Therefore the matrix, 
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( 1.2.4) • • • • • • • • • • • • 

a 
1

a 2 ••. a 
r r rn 

of the first r rows of the original matrix has the same 

right column rank as the original. It also has the same 

left row rank since the r rows chosen wer.e independent. 

But the column rank of matrix (1.2.4) cannot exceed r by 

Theorem 1. 2. 5. Therefore c ~ r. Similarly, calling c' the 

left column rank and r' the right row rank, then c• ~ r'. 

If we form the transpose of the original matrix, that is, 

replace rows by columns and vice versa, then the left row 

rank of tbe transposed matrix equals the left column rank of 

the original. Now apply the above relations to the tran­

sposed matrix and we see that r ~ c and r' ~ c'. Therefore 

r = o and r' : o' which was to be proved. 

£2I£11!!1: ~~-~-22~~~~!!~_!!~!~-1h~-tQ~_!q~_£Q!­

~-!~~~~!~-~~~· 

Q~!!g!]!2B= The rank of a matrix over a commutative 

·field is its row or column rank. 

!~~QE~-l~E~: !hf_§~~-2t-B£n=h2mQ£§S~Q~§_1!B~!! 

!.9.!!!!12!!~. 

(1.2.5) 

all xl + 8 12x2 + · • · + 8 ln xn ::::. al 'ntl' 

8 21 xl + a22x2 + · · · + a2nxn = a2 'n+1' 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

a 1 x1 t a 2x2 + . . . + a x ::::: a , 1 , m m mn n m n+ 
~itb c~f!E~~-1ll-~-!!~l?._~§-!-§21~~12n-!!_!O-S-2n1z_!£ 
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th~-!~ft_!.2.!!_.r!£!!L.Qf_~~~P..Y!g1mat ri_! A~+l is_ e,gp.~!_!g 
the left row rank of the coefficient matrix A0

• 
------------------------------------------- m 

~!oof: The set (1.2.5) has a solution if and only 

if the column vector A(ntl) = 

generated by the vectors A(l) 

a m'n+l 

all 
0 

lies in the space 

' . . . , 
• 

Since the vector space generated by the 
• 
a 
mn 

columns of An must be the same as the vector space gener­
m 

ated by those of An+l there is a solution if and only if m 
the right column rank of the matrix An is the same as the 

m 
right column rank of the augmented matrix A:~l, i.e., by 

Theorem 1.2.5, if and only if the left row ranks are equal. 

Conversely, if the left row rank of An+l is equal to the m 
left row rank of A0 , the right column ranks will be equal 

m 

and the equations will have a solution. If the equations 

(1.2.5) have a solution, then any relation among the rows 

of An exists among the rows of AnTl. For equations (1.2.5) 
m m 

this means that like combinations of equals are equal. 

Conversely, if each relation which exists among the rows 

of A~tl also exists among the rows of A~, then the left 

(right) row rank of An~l is the same as the left (right) 
1 m --------------------------~~~~--

n+l r II. (n+ll] Am =LAmA , (cr. p.'l and line 4:p.l0) 



row rank of JP. This proves the theorem. 
m 
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!tl~QB~-l~E~: If_!g_~~~~!Qa§_i1~~l_m_~-n~-~b~ 

~B~-!~1!~!-~unlgy~Ql~~!og ~2-il~g~l_!!_!Bg_gg!z_!! 

~b§ .2£!!!.!!R£Bding_h.Q!£gg~g§£.Y!L e_gua~!g!!.§, 

a
1 

x
1 

+ a x + . . • + a
1 

x = 0, 
1 12 2 n n 

(1.2.6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
a x

1 
+ a x + . . . + a x = · 0, 

nl n2 2 nn n 
s~ve.qg1~~-1!!vial so~ut!gg. 

f!22f: (1) Assume that the equations (1.2.6) have· 

only the trivial solution. Then the column veotors of An 
n 

are independent and An has rank n. Thus the rank of An~l 
n n 

is equal to the rank of An and by Theorem 1.2.7 equations 
n 

(1.2.5) have at least one solution. If A(l)x
1 
+ .•. + A(n) 

xn = A(ntl) has two distinct solutions x
1 

and Yi then 

A(l)(x -Y)-t- ••• +A(n){x -Y)=O, 
1 1 n n 

and Xi - Yi is a non-trivial solution of equations (1.2.6) 

contrary to our assumption. Thus equations (1.2.5} have 

exactly one solution. 

(2) Now suppose that equations (1.2.5) have a 

unique solution X .• Then ~A(i)x. = A(n-+1). If Yi is a 
l. l=1 l 

solution of ( 1. 2. 5) , then S::A ( 1 )y = 0. Thus :EA ( i) (X + 
i.=l i ~"" l i 

Y ) = A(n+l). But (1.2.5) has only one solution and.thus 
i 

Y = 0. Therefore (1.2.5) has only a trivial solution 
1 

which completes the proof. 



CHAPTER II 

FIELD THEORY 

2.1 Extension Fields. 
----~-~-~-----·~~~ 

~~!1B!liQn: If E is a field and F a subset of E 

which is a subfield of E then we call E an extension ofF, 

designated by F C E. 

~ef!n!liQn: If~,~, ••• , are elements of E, let 

F(o<.,~, ••• ) be the set of elements in E which can be express­

ed as quotients of polynomials in~.~, ••• , with coefficients 
. 

in F. F(~,~ •••• ) is called the field obtained after the ad-

junction of the elements «,p, ••• ~oF, or the field genera­

ted out ofF by the elements «,p, .... 

Obviously F(«,~, ••• ) is a field and is the small­

est extension ofF which contains the elements~.~, •••• 

Henceforth, all fields will be assumed to be commutative 

fields. If F C E, then ignoring the multiplication opera­

tion defined between the elements in E, we may consider E 

as a vector space over F. 

!2~.!.!!!.!1!2!!: The degree of E ?ver F, written (E/F), 

is the dimension of the vector space E o-ver F. If (E/F) is 

finite, E is called a finite extension. 

THEOREM 2.1.1: IfF B E are three fields such 
--~---------~ ----~--~-----------~~-~~-------

!g2!_E_~_fi_~-E~_!h~B-i~~l-=-i~L~l~i~~l· 

~!22£: Let (E/B) be r and let (B/F) be s. Now let 
12 



b 1 , b 
2

, ••• , b s be a basis of B over F. Thus 

bi:::. :filbl + ··· -tfisbs= f;irijbj 

where bi is any element of B. Also let e
1
,e

2
, ••• ,er be a 

basis of E over B, that is, for any e belonging toE, 

e = b 1e 1 -t • • • + b e = £ b 1e 
1

• r r &.::=:t 

Thus any e belonging to E has the representation 

e = ( ~r1 .. bj)e1 + ... -t ( ~f jbj)e = -:l:;~r 1 Jbje 1 . 
J=-1 _, .,J-1 r r j=t ..,.l 

13 

Therefore every element e of E can be expressed as a linear 

combination of the rs elements b· e.. Now let k.£r b e 
J l L:l j•1 ij j i 

= 0, where f ij E. F. Thus 

( J~f ljb J) e 1 + . :. + (fir rjb j) e s := o. 
Since the e are independent then !if ijb j = 0 where i == 1, 

••• , r. But the b j are independent over F and therefore f ij = 

0. Therefore the rs elements b .e. are independent over F 
J l 

and they form a basis of E over F. Thus ( E/F) = ( E/B). (B/F) 

which was to be established. 

f£r2lli.U: !.! F C F l C F 2 ·c ••• C. F n' ~!!.~1! (F r/F) 

:;;:; (F /F 
1
).(F ,/F 

2
) ••• (F IF

1
).(.F',/F). 

n: n- n-... n- Z ... 

&:,2 Polmgm.!!!J.:§· 

~~!1£!1!gn: An expression bf the form a
0
xn + a

1
xn-1 

+ ... + an is called a polynomial in F of degree n if the 

coefficients a , ••• ,a are elements of the field F and a
0 o n 

is not zero. 

Definition: A polynomial in F is oall~d reducible ---.....-.----
in F if it is equal to the product of two polynomials in F 

each of degree at least one. Polynomials which are not re-
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dUcible in F are called irreducible in F. 

Multiplication and addition of polynomials are per­

formed in the same manner as with field elements. In the 

set of all polynomials of degree lower than n, we include 

the zero polynomials, although they have no degree.· 

Definition: If f(x) ~ g(x).h(x) is a relation which ---------- ' 

hold~ between the polynonisls f(x), g(x), h(x) in a field F, 

then we say that g( x) divides f( x) in F·. · 

We see that the degree of f(x), in the relation 

f( x) =- g( x) .h( x), is equal to the sum of the degrees of 

g(x) and h(x). If neither g(x) nor h(x) is a constant then 

each has a degree less than the degree of f(x). The divis­

ion algorithm1 holds for any two polynomials f(x) and g(x), 

that is, f(x) = q(x)g(x) + r(x), where q(x) end r(x) are 

unique2 polynomials in F and the degree of r(x) is less than 

that of g( x). Also r( x) , the remainder of f( x), is the uni­

quely determined polynomial of a degree less than that of 

· g(x) such that f(x) - r(x) is divisible by g(x). It follows 

from the identity f(x) = (x- a)q(x) + r(x) that if a is a 

root of the polynomial f(x) in F then r(x)~ 0 and x- a is 

a factor of f(x). As a consequence a polynomial in a field 

~!BB2!_~~-ID2I~!QQ~_!y_~£~_!1~ld_~a~_!!§_~gr~~~-------

\tarie J. Weiss, Higher Algebra for the Undergradu­
ate, ed. John Wiley and Sons (New York:l949), p. 8• 70. 

ti f F 1 s not oommutati ve f( x) = g( x) q~( x) + rj,. ( x) 
and q 1 (x) and r 1 (x) need not equal q(x) and r(x), respect­
ively. 11 

JA.A.Albert, University of Chicago Press, (Chicago) 
1947, pg. 24. 
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~~~-~~E~!= The_~~~-§l-I1~lfi!l_t_§i!l£izl_~h2!~ 

!i!l~-Bi!l-~!~_!!~Q~~-gQB§!§~§_Qf_~~1~!~1~§_Qf_~f!!~£-~21I­

!!£m!!!!~izl· 

E!22!: Let m(x) be a polynomial of least degree 

such that r(x)f(x) + s(x)g(x) = m(x) for a suitable choice 

of r(x) and s(x). Let 

r 1 ( x) f( x) + s
1 

( x) g( x) = p( x) = m( x) q( x) + r( x) , 

where r(x) has degree less than the decree of m(x). Then 

(r1(x) - r(x)q(x))f(x) + ~ 1 (x) - s{x)q(x)Jg(x) = r(x). 

Thus r( x) = 0, which proves the lemma. 

&~~~-&~&~: If J!i!l~sizll_~_Bi!l_]h~!~~!~~ £O!l­

!!2~!!!~-!i!l~-~i~~£Q_~g~~-!i~lfi!l_!_§i!lBi#l--~g~. 

Proof: As in Lemma 2.2.1 there exist an r(x) and ---
s(x) such that r(x)f(x) + s(x)g{x) = m(x). The setS con­

tains f(x) and g(x) and hence m(x) divides f(x) and m(x) 

divides g(x). Since d(x) divides f(x) and d(x) divides 

g(x), therefore d(x) divides m(x). Thus d(x) equals m(x) 

which completes the proof. 

!!!EO B.~_g~_g.:.£: ~f-£l!l_!§_~.J:!~~!!£!l!.!!Ll?2!lr!2ID!!!! 

2!~!-~_f!Q!£_r_~£_!f-Ei!l_£!!!£~-~g~_E£.Qdug~_fizl~izl_2f 

~-1?2!zn_.Q~!~_.Q!~!-~-~h2B-~L!l_£!!!S~E-!i!l_.Q!_~l!l_ 

g,!vig~§-Bi!l· 

E!22f: Suppose p(x) does not divide f{x). Since 

p(x) is irreducible over F, its only divisors are its asso­

ciates1and the uni ts 2or the field. 'rhus ( p( x), f( x)) :: 1 . 

By Lemma 2.2.2 there exist polynor:ials r(x), s(x) such that 

1~wo elements of a ring are called associates if each divides the other. 

2A unit is any associate of 1. 
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if 1 is the unity element of F then 

( 2.2.1) 1 = r(x)f(x) + s(x)p(x). 

Multiply equation (2.2.1) by g(x). Then 

( 2.2.2) g(x) = r(x)f(x)g(x) + s(x)p(x)g(x). 

Since p(x) divides the right side of equation (2.2.2), p(x) 

divides g(x). Similarly, if p(x) does not divide g(x) then 

p(x) divides f(x), which completes the proof. 

We see that if p(x) is an irreducible polynomial 

over F, then p(x) does not divide the product of two poly­

nomials over F, each of whose degree is less·than the de-

gree or p(x), since the only divisors of p(x) would be its 

associAtes and units of the field F. 

!!!£!Q.fil!t • .&.:.&:.!: A_J20!I!!£IDi~1-fi.!ULJ29S:!!!!.YL~S£~ 

2!~£-~-11~1&-E-~~~-~~re~g-~§-~_f!~~R~-2!-l time~ 

This de----
factors occur. ______ .... _____ _ 

~rggf: If f(x) is irreducible, the decomposition is 

accomplished. Now let f(x) = g(x}.h(x). Then g(x} and h(x) 

are polynomials of degree less than the degree of f(x). We 

make the inductive assumption that the decomposition is 

possible for all polynomials of degree less than that of 

f( x). Thus 

and 
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where c,d are in F and where pi(x) and qj(x) are monic irre­

ducible polynomials over F. We have then 

f(x) = g(x)h(x) = cdp1(x) p ( x) q
1 

( x) • • • q ( x) • 
r s 

Thus the induction is completed and the decomposition is 

accomplished. Now to show that the decomposition is unique 

suppose there exists two decompositions 

f( x) ::- cp1 ( x) • • • pn ( x) = dq1 ( x) • • • ~ ( x) • 

Since the irreducible polynomials are monic then c equals 

d. Since-p1 (x) is irreducible it divides some qj(x). As 

both p1 (x) ~d qj(x) are monic their quotient is the unity 

element ofF, and hence P!(x) = qj(x). Thus we obtain 

f 1 ( x) = p2 ( x) ••• Pn ( x) ::::. q 1 ( x) ••• qj _1 ( x) • qj +l ( x) ••• ~ ( x) • 

Now f1 ( x) is of degree less than the degree of f( x). We 

make the inductive assur:tption that all polynomials of degree 

less than that of f(x) have a unique decomposition. Thus 

t 1 (x) has a unique decomposition, m = n, and therefore f(x) 

has a unique decomposition into the product of irreducible 

polynomials which proves the theorem. 

~~~_&~~~~= ~itg_~g~rd_!Q_~xis1£n_£z_!i~-~~ 

I~ID~!~~I-2!-~h~_£!QQY£~_gf_~h~_!~~~!gg~!~-2!-~2-£21~­

Q2!i~!~_is_~B~-!~ill~!ng~!-2!_1h~_E!Qg~£1_Q!_~h~~-~~2-R£!~­

!!£2!!!!~.!§· 

f££2.f: Let SJ. ( x) = q1 ( x) f( x) + r1 ( x) and g2 ( x) == 

~(x)f(x) ~ r2 (x) be the two polynomials. Then 

r 1 ( x) r 2 ( x) :; [<1:.1. ( x) q2 ( x) f( x) - g1 ( x) q2 ( x) 

~ ( x) q1 ( x)J f( x) + g1 ( x) ~ ( x) • 
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Let g_ ( x} g ( x) = q( x) f( x) ;- r( x) • Thus 
.-~ 2 

r
1 

( x) r
2 

( x) == ( ~ ( x) ~ ( x) f( x) - ~ ( x) ~ ( x) 

- ~ ( x} ~ ( x) t q( x)) f( x) + r( x) , 

~.3 Ale2~!a~q El~ments. 

Definition: If« is an element of an extension field ............ -
ofF, and if there are polynomials with coefficients in F 

i 
which have o< as root then oJ.. is called ~g~~!!!.!£ vri th respect 

to F. If~ is not algebraic it is called ~~g~ng~~ 

with respect to F. 

~e!!~ &~~~ ~~~~~~~~~g-~!~.am?~S 

~11_~!£_££1~~1§-lB-E-!n!£b_~Y~-~~~~~2~-fi!l, 

2U~~§:L~~g.r~! · 'Ih2n_ti.!l_1E_ua~~~¥-£2:!!~!n~~!§ !r­

:r~.Qy£.!~~~-Nl2-2~~!L££1m2!!!!~!-1!LL!!.ti!Ll~!2~-~-!lLi!!-

1"112!:2!2-~.I-!Ul· 

Proof: Let g( x) be any polynomial in F w1 th g(-<) == 
--~--

0. We may divide g(x) by.f{x), and write g(x) :f(x)q(x) 

+ r( x) where the degree of r( x) is less than that of f{ x). 

Substituting x :«. we get r(«) ::. 0. Since the degree of 

r( x) ~s less than the degree of f( x) , r( x) ;;: 0, and g( x) is 

divisible by f( x). This also shows that f( x} is unique. 

If f(x) were reducible, on~ of the factors would have to 

vanish for x =~contradicting again the choice of f(x). 

We consider now the subset E of the following 
0 

elements 9 of E: 

Q ::::: g(<X.) ; C -T ClC(.-\- C2o(.2 + • • • + C o(n-1 
o n-1 

where g(x) is a polynomial in F of degree less than n, the 
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degree of f( x) • Vie note that the constants c
0

, c1 , ... , cn-l 

are uniquely determined by the element Q, since two express­

ions for the same Q would lead after subtracting to an 

equation for~ of lower degree than n. 

~~~.!LE.!.~.!._g: ~.e._.!.§_~_fi~ld. 

f_!ggf: Let g{x} and h(x) be two polynomials of de­

gree less than n. Thus 

g(o~-) + h(O() = ( c + c
1

oe. + ... + c 1o~..n-l) o n-
+ •.. + d 1?<. n-1) = b + b 10( + ... n- o 

-+(do+dlc:K. 

+ b ~ n-1 =:: k(o<.) 
n-1 

which is also a polynomial of degree less than n. Thus E
0 

is closed under addition. Now considering g(x) and b(x) 

again we put g{x)h(x) = q(x)f(x) + r(x) and hence 

g(oC.) h(c<) = r(o<). Therefore E is closed under mul tipli-o 
cation. Now let h(Co£) -:;. 0 so that (h( x) , f( x)) == 1 . By 

Lemma 2.2.2 there exist polynomials a(x), b(x) such that 

a( x) h( x) + b( x) f( x) ::: 1. Thus a(od h(o() ::::. 1 and we may 

assume that the degree of a(x) is less than n for we may 

replace a(x) by its remainder after division by f(x). 

Hence, h(o<..) bas an inverse a(oC..). Thus E
0 

is a field, which 

completes the proof. 

Since the space F(~) is generated by the linearly 

1 l 2 n-1 [ ( ) 1 .1 ndependent ,o(,ot.. , ••• ,«. the degree F • FJ is n. We 

shall see that the internal structure of the field E 0 = 
F(o<..) depends not on the nature of ex. but only on the irre­

ducible f(x). 

!.!!.~~-~=-~: Uft<2.ll.~2.!~L-~!.!!.l!_~..:e.<l!.~~!.~~ 
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~i~l-~1~h-~2~!!1£!~ll~§_!n_~_f!~1g_~-~B~!§_§~!§~§_!ll_~~§B­

§!£n_!!§!£_~~-E-!n_~£!£h_~iil_~_Q_h~§-~_!QQ~· 

P f L f( ) Xn + b n-1 b b _!:QQ_: et x = n-l x + ... + 0 e an 

irreducible polynomial of p( x). 'vie select a symbol s and 

let E1 be the set of all formal polynomials g( s) = c0 + cl s 

+ n-1 ... + c 1 s of a degree lower than n. This set forms n-
a group under addition. Besides the ordinary multiplication 

we introduce a new multiplication ®of two elements g( s) 

and h{s) of E1 denoted by g(s) ® h(s). It is defined as the 

remainder r(s) of the ordinary product g(s)h(s) under divis­

ion by f(s). Also the product of m terms g1(s), g 2(s) , ••• , 

gm(s) is again the remainder of the ordinary product g1(s) 

g 2( s) ••• gm( s) by Lemma 2. 2. 5. Thie shows that our new pro­

duct is associative end commutative and that the new product 

g1(s) ® g 2(s) ® ..• ®gm(s) will coincide with the old pro­

duct g 1( a) g 2( s) ••• gm( s) if the latter does not exceed n in 

degree. 

The set Ei contains our field F and our multipli­

cation in E1 has for F the meaning of the old multiplication. 

One of the polynomials of E 1 is s. 'I'he product of i factors 

each of which is s will lead to s 1 if i L n. For i = n this 

is not the case since it leads to the remainder of the poly­

nomial s n. This remainder is 
n n-1 n-2 · s - f( s) = - b ,s - b .... q · - • • • - b,..... n-.L n-c v 

We now give up our old multiplication altogether 

and keep only the new one. We also change our notation, 



using the point as a symbol for the new multiplication. 

Computing in this sense we can construct the element 

2 + i_ n-1 c
0 

+ a1 .s + c2·.s ••• -,-- .cn_1 .s 

since all the degrees involved are below n. But 

Sn b n-1 b n-2 b 
~ - n-1" 8 - n-2" 8 - ••• - o· 

Transposing we see that f(s) =.0. 

We thus have constructed a set E1 and an addition 

and multiplication in E1 • Now E1 contains F as subfield 
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and s satisfies the equation f( s) == o. 'ive have to show that 

if g( s) =f. 0 and h( s) are given elements of E1 , there is an 

element 

X( s) 

in E1 suob that 

x
0 

+ x1 • s -1- • • • + x • en -l 
n-1 . 

g( s) .X( s) ::::: h( e) • 

To prove this we consider the coefficients xi of X(s) as 

unknowns and compute the product on the left side, always 

reducing higher powers of s to lower ones. The result is 

+ + n-1 an expression L
0 

+ L1 .s ••• Ln_1.s where each Li is 

a linear combination of the xi with coefficients in F. 

This'expression is to be equal to h(s). This leads to the 

n equations with n unkno~ns: 

Lo ==do, Ll == dl, ••• , Ln-1 = dtJ-1 

where the dL are the coefficients of h(s). By Theorem 1.2.7 

this system will be uniquely solvable if the corresponding 

homogeneous equations 

L0 : 0, L1 = 0, ••• , L'l1-t. = 0, 
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have only the trivial solution. 

The homogeneous problem would occur if we should 

ask for the set of elements X( s) satisfying g( s) .X( s) .:::: 0. 

Considering the old multiplication this would mean that the 

product g(s)X(s) had the remainder zero, and is thus divis­

ible by f(s). By Theorem 2.2.3 this is only possible for 

X( s) = 0. Therefore E1 is a field. Thus we have construct­

ed an extension field E1 = F(s) in which an irreducible fact­

or f(x) of p(x) has a root. This completes the proof of our 

theorem. 

Now consider our old extension E with a root Qti.. of 

f(x), leading to the s~t E. We see that E has, in a. cer-
o 0 

tain sense, the same structure as E1 , if we map the element 

g(s) of E
1 

onto the element g(~) of E
0

• This mapping will 

have the property that the image of a sum of elements is the 

sum of their images, and the image of a product is ~he pro­

duct of their images. 

2. 4 HQ!!1Qm.Q.!Eh!~_,_ I SQ!.Q.!~l.m!!.a...A!!~Qm.Q!l2llim· 

~!ll!l!£S: By a homomorphism of a multiplicative 

group we mean a (possibly many-to-one) mapping T such that 

tor a,b any two elements of G, T(a).T(b) = T(a.b). 

~~!!B!!.!2B= A mapping T of one field .Q~ another 

which is im2::!2=2!!~ such that T(at- b)= T(a) 1-T(b) and 

T( a. b)= T( a) .T( b) is called an isomorphism. 

~~!!n!11QB: The isomorphism T of a field on itself 

is called an .automorphism. 
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~!init!gg: If not every element of the image field 

is the image under T of an element in the first field, then 

T is called an isomorphism of the first field !£~2 the 

second. 

We will consistently use the term "mapping of F 2n 

F'" when every element ofF' is the image of an element of 

F. and the term "mapping ofF 1~ F'" if at least one ele­

ment of F' is not the image of an element of F. 

I!!!QB~_g.:..i:J:: &.!l..'LB~_!Il-ll.2m2.!~h.!.§!!L~!ID1!~ 

!!~!.S_f_2JLL!!~!d F.'· tt.~:t.J:i.!l_b~ ~..!!.!.§gy.Q.!J2~~-R2lmm!­

!!!_in f_~g_!~i!l-!n~_gQ£re§R9BS1US-R2lin2m!~1-!a_~·· i! 

~-=-~l-!Bg~~~-!!i~l-!!~-!!]~a!!2a~!_r_~g-~~-I!~~~­

!!§!~--~~!~_.r~l-~2-!B-!_!Bg_~~~l~-2-!a_~~~-~h~~-I-~ 

Q~~!~~B,g~~2-!B..il.Q!!!.QrR.t!!.§!P..J2~~~!L~-~g-~. 

figQ!: Since isomorphisms are transitive and E and 

E' are both isomorphic to E
1

, (of. Theorem 2.3.3), there­

fore, E is isomorphic toE'. 



CH.APrER III 

GALOIS THEORY 

~~!~l!~]!ss_E!!~· 

!2!!in1S!gg: If' F, B, E ·are three fields such that 

F c B c E, then we call B an intermediate field. 

Definition: If E is an extension of a field F in ------------
which a polynomial p(x) can be factored into linear factors, 

and if p(x) can not be so factored in any intermediate 

field, then E is called a splitting field for p(x). 

l!!!!!!a 3.1,:.!: il_L! s §_ ~l?JJ:lli!!Llli!_g_g£_.£1..&,._~~ 

!2~!!-2LR.i.!LB~~~~.J.-w~n-11! e co!Zlli.9!.!!nt s of ..Ri.il 
!!!!2!!S-!£L!_!!ill..!· 

~I.QQ!: If p(x) of degree n splits in E then p(x) 

splits into linear factors (x- p1)(x- p2) ••• (x- p0 ). If 

only one root of p( x), say p1 lies outside F then E == F( Pl) 

and thus p1 would generate E. Similarly if P1•P2•···•Pn 

are outside F then F( Pp p 2, ••• , p
0

) := E. Thus the roots of 

p(x) generate E. 

~~a 3 • !.· e: ~..!.2!1~l!!HL!!!.!£Jl_!L.2L!.!!l1~ 

Proof: Since E is constructed by a finite number ......, __ _ 
of adjunctions of algebraic elements, each defining an ex­

tension field of fin! te degree, by, the Corol,lary to Theorem · 

2.1.1, the total degree ot E is finite. 

24 
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!tl~!l~~.!..L.~: !..f-l?Ul..!JL!!_R.2!.l!l-2!i al .!!L!!_f.!ill 

E~ae.r~-~~~~-~11~~1~-~g_E_g!_R~l· 

Proof: We factor p(x) in F into irreducible factors -w-w 
f 1 (x).f2(-x) ••••• fr(x) ~ p(x). If each of these factors is 

ot the first degree then F itself is the required splitting 

field. Suppose then that f
1

(x) is of degree higher than the 

first. By Theorem 2.3.3 there is·an extension Fi ?f Fin 

which f 1 { x) has a root. Factor each of the factors f 1 ( x), 

•.• ,f'r(x) into irreducible factors in F1 and proceed as be­

fore.· We finally arrive at a field in which p(x) can be 
split into linear factors. The field generated out ofF by 

the roots ot p(x) is the required splitting field. 

~~~.:.i: !L!Ul..!.§_~_!I!~£!!21:2~.1~.Q~2£_.2.f . . 

~i!l-.!!LL-~~-~_.QQI!£!!!n s a_£2Qj!_ of _fi.!l· 

~IQ.Qf: Let p(x)::: (x -c<1 )(x -""
2

) ••• (x -:0<
8

) be 

the splitting of p( x) in E. -~~'l'hen ·( x ;- Q(,l) ( x - o<-2 ) •• • ( x - o<s) 

= f( x) g( x). We consider f( x) as a polynomial in E and con­

struct the extension field B :::::: E(o<.) in which f(e><) == 0 •. Then 

(o£. -~)(o<.-o<2 ) ••• (o< -o(
8

) == f(~).g{o<.) = 0 and o<:-o<:i being 
' , elements of the field B can have a product ~qual to zero 

· only if for one of the factors, say the first, we ·hav~ 

t;£-~i::::: 0. Thuso<:::~1 , and~X1 is a root_ of' f(x).· 

!~OREM ~1~: ~!~-£~-~-1§g!£r£h!£_m~EE!UB-Qf 

!h!L!!.!!!.LL2!L.!h~!.!~l d F t • k~~-l2.L!.LJ~~-~-E2lz!!Q!E~L!!L! 

~ug-E~!l-ln~!la2m~_!g_~~-~~g_gg~ffi£!~~~~Q!~~~ong-.. . . . 

!!!s_!.Q_!!!iU!~-.2Ll2uL~!.r-X :• ll!!~11z.~,_!~~-~!!R1i t :ll!lS 

.. 



Under ......... --
~~§~-22BSi!!2B~-la~_!§£!2!~!~!_!_ggg_~~-~~~~-12-!B 

11!2!!!2IR!!!.§!.J2~§B-1;-~g_!'. 

f!gg!: In case all roots of p(x) are in F, then 
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E = F and p(x) can be split in F. This factored form nas an 

image in F' which is a splitting of p'(x), since the isomor­

phism T preserves all operations of addition and multipli­

cation in the process of multiplying out the factors of p(x) 

and collecting to get the original form. Since p'(x) can be 

split in F' , we must have F' = E'. In this case, T itself 

is the required extension and the theorem is proved if all 

the roots of p(x) are in F. We proceed by induction. We 

suppose the theorem proved for all cases in which the num­

ber of roots of p(x) outside F is less than n ~ 1, and we 

also suppose that p(x) is a polynomial having n roots out­

side F. We factor p(x) into irreducible factors in F; 

p(x) ::::- r 1(x).f2(x) ••• fm(x). Not all of these factors can 

be of degree 1, since in this case p(x) would split in F, 

contrary to our assumption. Hence, we may suppose the de-

gree of f 1 ( x) to be r > 1. Let fi ( x} • f2( x) ••• r:n< x) :::: p' ( x) 

be the factorization of p'(x) into the polynomials corres­

ponding to r 1(x) , ••• ,fm(x) under T. Now·f•(x) is irreduc­

ible in F', for a factorization of f'(x) in F' would induce 

under T-l,, the inverse ofT, a factorization of r1(x), 

which was taken to be irreducible. By Lemma 3.1.4, E con­

tains a root~ of r1(x) and E' contains a root~· of f'(x). 
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By Theorem 2.4.1, the isomorphism T can be extended to an 

isomorphism T1 , between the fields F(-') and F' (Qo(.') • Since 

F c F(~), p(x) is a polynomial in F(~) and Eisa splitting 

field for p(x) in F(~). Similarly for p'(x). There are 

now less than n roots of p(x) outside the new ground field 

F(o(). Hence by our induoti ve assumption 'F 1 oan be extended 

from an isomorphism between F(o<.) and F' (o<.') to an isomor-
. 

phism T 2 between E and E'. Since T1 is an extension of T, 

and T 2 is an extension of T 1 , .we conclude that T 2 is an ex­

tension of T and the theorem follows. 

22!2ll~.u: !LRlli-~-E2!m2~~1.J:a_~_!!~!£! £:, 

!h!m_8.!U~~.Q..§l2!! t t i!!£i_ fi.f!!~§_fgr_rul_!!!L!!s:!mo r .Ell!.£· 

f.rgg!: From Theorem 3.1.5 take F = F' and T to be 

the identity mapping, that is, T(x) = x. 

From this corollary we may use the expression "the 

. splitting field of p(x}" since any two differ only by an 

isomorphirun. Thus, if p(x) has repeated roots in one splitt­

ing field, it will have repeated roots in any other splitt­

ing field. 

3.2 Finite Fields! - ..,.___ -
~~!~!~gn: A field which has a finite number of 

elements is called a !illll llil,g. 

~n.e_f_u_l~!gg: The ~r_Qf__an_~l~~n~ A of a finite 
a 

grouE G-~-1Q~-l~!!§~~!~iv~_!nteg~!-~_§Y£g_~h!!~-A-~-~' 
1A further discussion of the algebra of finite 

fields is to be found in Chapter VIXI. 
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Where e is the unity element of G. 

~~!L~~.:.!: ~~L~!.!L~!!-L-~h~=..::..L!mRli:~.§ 

~J_£• 
f,I.Q.Q.f: Let o = aq + r, 0 b r t.. a. Then A 0 -::= A aqtr 

:= (Aa)qAr == (e)qAr:::::: Ar. Thus if A0 ::::: e, r ::::::0 and there-

fore. c = aq. 

It.emma 3. &..:..,g: !.L.i.!..a..!?L _ _!..._!!},g_!_!ll!.§_£!£1.§£_!!.-l B has 

Qrder_£~-lB-en_AB __ h~~.grdei-!]· 

!:.!22!: Let AB = C, have order c. Suppose c ::::. aq + 
r, 0 !::- r La. Then eb =cob~ C(aq+r)b == A(aq-tr)bB(aq+r)b 

~Arb. '.fhus by Lemma 3.2.1 a \rb. But, since (a,b)::::: 1, 

a\ r. Therefgre r ::: 0. Thus a \ c. Similarly b \ c and 

therefore ab \c. But (c)ab = (AB)ab::::: A8 bBab ==- (Aa)b(Bb)a 

::= e. · Thus o t ab. Therefore c = ab. 

&Lznm!~.:..a:.~: I.f_i~_!!J2el.!!!!!-&:2!l!LA-!a.!!_~-!!!U!!.Q 

~~~-2!-2!!1§!.§..! !!!.!!_Jh~.!! !f_g_!!!-~~-~.§L£2~ 

!!!Yl ~l~.!.~L.Q!_!!-~!!...12.&-~~!L~h e !!!L!§_aa_!J&m!m~Q.-2L.2.t~!-.2 

.!!l_:ta~_s!.QY12· 

fr£2!= If d divides a, we have an element Aa/d 

which is an element of order din the group. Let p1 ,p2 ••.• , 

p be the prime numbers· dividing either a or b and let a = 
r 

p~s.p~z. ••• ~r, b := ~1pm:t ••• pmr. Now call t
1 

the larger of 

6~d m Th. ~ t~ t~ tr fi d i t ni u.u. i. ~n c - p1 p2 ••• pr • We can n n he group 

1an element of order p~~ and one of ~rder p~L. Thus there is 

one of ord~r pi(. Lemma 3.2.2 shows that the product·of 

these elements will. have the desired order o. 
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B!Q~Q_~2~-2!Q~_£_!§_~xi~!_!~~-~g~_g£g~£_!_£f_~Y~!l 

~!§!!!~~-a_!!L~!!~g£.Q~lL,g:i v,!g~§....2. ~.9~· xc -:::: e is .§!!ll.§!i e_g 

BZw~~g~-!1!!!!~1-ln-~a2-£!2YE· 

Proof': If a does not divide c, the greatest common ---- . 

multiple of' a and c would be larger than c and by Lemma . 

3.2.3 we could find an element of that order, thus contra­

dicting the choice of' c. 

!!!~Q!LEM~.:.&.:..2: !f_§.;_!.!L~-!.!!!!].2...§~12~~ ( j o) £!_!! 
I • 

fie,!g_f_~h!~h-!~~-S!£YE-YB.!l~!_~~1~!!~]1QU in_E~h~§ 

!~-~-£~~!!~_£!2YE• 

f!22.f: Let n be the number of distinct elements of 

Sand r the largest order occurring ins. Then xr- 1= 0 

is satisfied for all elements of S. Since this polynomial 

ot degree r in the field cannot have more th~ r roots, it 

follows that r ~ n. Each element of S generates a cyclio 

subgroup of S whose order divides n, and since the order 

of' each element of the group divides n, r Ln. Thus r ~ n. 

Therefore Sis a cyclic group consisting of l,a1 ,a2 , ••• , 

an-l where an= 1, which proves our theorem. 

£2!21l~!I: TI!!L!!.2B=Ei.!.2 !!~IB~!U.§_ of ~-f!!!ll!L.f~!,g 

L!2!EL~£Z.£1!£-B!£1!12 • 

~!QQf: Since the non-zero elements of a finite field 

F form a finite group under multiplication in F then by 

Theorem 3. 2. 5 they form a cyclic group. 

~§!!g!i!Qn: If G is an ·additive abelian group (with 
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group operation written+) then the elements g1 , •.. ,~ will 

be said to generate G if eaoh element g of G can be written 

as sum of multiples of g1 , •.. ,gk, g-==- n1 g1 + · • • + nk~· 
Definition: If no set of fewer than k elements gen-------

erate G, then g1 , ••• ,gk is called a minimal generating sys­

tem. 

Any group which has a finite generating system will 

have a minimal generating system. A finite group always 

has a minimal generating system. Since 

nl gl + n2g2 = nl ( gl + mg2} + (n2 - nlm)g2 

it follows that if g1 ,g2 , ••• ,gk generate G, then also 

g1 + mg2 ,g2 , ••• ,gk generate G. 

!2~!1!!!~12!!: An equation m1 g1 + m2g2 + ... + ~gk-:::: 0 

will be called a relation among the generators where 

m
1

, •.• ,~ are called coefficients in the relation. 

~ill12!!: We say that the abelian group G is the 

direct product of its subgroups a1 ,c2 , ••• ,Gk if each g ~ G 

is uniquely representable as a sum g = x1 + x2 + ... t xk, 

where x1 E. Gi, i :::: 1, ••• ,k. 

!~Q~-~.:.§: £!!!.£!L~£~!!~.S£2YR-B!:.!lnfi...!_£!~ 

!~B!I-2!-S!B~~Q£§_is_~£!§_~!~§~-E££gY.£1-£f_£I.£li.£~­

S£2Y~~ G1 , ••• ,Gn ~~_!~-~B§_!!~~I-2!-~~~~!!~~-1!!-! 

!f!!!!~~!-B!!!§I!!!l!!B..!.Y.§~~-'-~.2-!!!!.!lr~ 0 ( G i) m~ 0 ( G i -t-1) 

f2!-~-!~~~~~~~r=!~_1!_G1 , ... ,Gr' 2 b r ~n, !!~!D1~· 

~!2£!: We assume the theorem true for all groups . 

having minima~ generating systems of k-1 elements. If 
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n ~ 1 the group is cyclic and the theorem is trivial. Now 

suppose G is an abelian group having a minimal generating 

system or k elements. If every minimal generating system 

satisfies only a trivial relation, then let g1 , g2 , ••• ·, gk be . 

a minimal generating system and let Gi, be the cyclic group 

generated by gi. For each g E: G, g === n1 g1 + • • · + ~gk 
where the expression is unique; otherwise we should obtain 

a non-trivial relation. Moreover, the cyclic groups G are 

all infinite, since ngi = 0 would yield a non-trivial re­

lation. Thus the theorem would be true. We assume now that 

a non-trivial relation holds. for some minimal generating 

system. Of all the relations belonging to minimal genera­

ting systems, let 

( 3.2.1) 

be a relation in which the smallest positive coefficient 

occurs. After a reordering of the generators we may sup­

p¢se m
1 

to be this coefficient. In any other relation be­

tween g
1

, ••. ,gk, 

( 3.2.2) n 1g 1 + ••• + n~k::: 0 

yre must have m1 l n1• Otherwise n1 ::::. qm1 + r, 0 L r L m1, 

and q times relation (3.2.1) s~btracted from relation 

(3.2.2) would give a relation with a positive coefficient 

r .( m1• Also in the relation ( 3. 2.1) we must have m1 J m i' 

i = 2, ••• ,k. For if m1 does not divide one coefficient, 

say m2, then m2 ::: qgn1 + r, 0 £. r '- m1• In the generating 

system g 1 + q~ 2,g 2 , ••• ,gk we would then have a relation 
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m
1 

( 8
1 

+ q
2

g
2

) + rg
2 

+ m
3

g3 + ... + ~~ == 0 where the coef­

ficient r contradicts the choice of m
1

• Hence m2 ~ ~m1 , 

m
5 

/ %m
1

, ••• ,~ = \:m1 • The system 
-
gl == gl + q2g2 + ... + qk~ 'g2 ' 83' ••• '~ 

is minimal generating, and m
1
g

1 
~ 0. In any relation 

0 == n
1 
s

1 
+ n

2
g

2 
-t .•• + nk~, since n

1 
is a coefficient in 

a relation between g
1

,g
2

, •.• ,gk, our previous arfument 

gives m
1 

\ n
1

, and hence n1g
1 

= 0. Let G' be the subgroup 

of G generated by g2 , ••• ,gk and G
1 

the cyclic group of or­

der m
1 

generated by g
1

• Then G is the direct product of G1 
and G'. Each element g of G can be written 

g::: 0 lgl + n2g2 + ··· + nkgk.= nlgl + g', 0 '= n1- L.. ml-. 

This representation is unique, since n1 i 1 + g' = nig1 + g" 

implies the relation (n1 - ni)g1 + (g' - g" ) ~ 0, hence 

(n1 - npg1 = O, so that n1 - ni:: 0 and also g'::::::. g" • By 

our induction assumption, G' is the direct product of k - 1 

cyclic groups Gi generated by elements g2 ,g3 , •••• ,gk. 
Moreover, if c2 ,53 , ••• ,Gr are finite, and 3~ r ~ k-1, 

their respective orders t 2, ••• ,tr satisfy ti I t 1~1 , i = 2, 

-••• ,r-1. If G
2 

is finite the preceding argument ap9lied 

to the generators g
1

,g
2

, ••• ,gk gives m
1 

f t
2

, from which the 

theorem follows. 

Q~!n!tiQ!!: If a is an element of a field F, we 

denote the n-fold of a, that is, the sum of n terms, each 

of which is a, by n.a. 

Now n.(m.a) = (nm).a and (n.a)(m.b) = nm.ab. If 
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for one element a"# 0, there is an integer n such tllat n.a 

=-0 then n.b =0 for each bin F_, sine~ ~.b = (n.a)'(a-.-1 b) 

= 0( a-1 b) = 0!-

~init12B= If there is a positive integer p such 

that p.a ==0 for each a in F, and if p is the smallest in­

teger with this property, then F is said to have the char­

acteristic p, but if no such positive. integer p exists then 

·.we say F has the characteristic 0 or: dJ. 

F !§_~!~~!§_~_Eri~-g_~bei __ Whi~h_gi~!~_1h~2££~£-2f-~l 

!!:Q!l:~~£.2 a 2! F. 

~!22f: If p == rs then p. a :::::. . .rs. a ::= r. ( s. a) • But 

s.a = b ::/= 0 if a-# 0 an~ r.b ::/=. 0 since r and s are less than· 
' ' 

p, so that p.a :/=- 0 contrary to the definition of the charact-

eristic. If n.a =- 0 r.or a =1: 0, then p divides n, for n ==- qp 
. . ~ 

+ r where 0 f: r '- p and n.a _-;:: ( qp + r) .a:::: q.(p.a) ~. r.a. · 

Hence n.a:::::: 0 implies r .. a = 0, and since r ,~ p, we must have 

r ::::::::.·0. 
• 

Lamma~~~: !f F i§_~_f!n!~f!~1£_h~X!gg q ele­

!2!U~B!!.£ E ~~~!!§ion 2! F Q}.!Ch_~£!!1 (E/F) = n, th,!lli E 

~.§ q-n ~~~!!~.§· 
~!22f: If w

1 
,~, ••• ,wn ·is 'a basis of E over F, each 

' element of E can be uniquely represented as a linear com- · 

bination. 
. 

xlwl + x2w2 + • • • + xnwn' 

where the x. belong ·to F. Since each x. can assume q values 
1 1 



in F, there are q~ distinct possible choices of x~, ... ,x~ 
11 and hence q distinct elements of E. 
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Lemma 3.2.9: IfF is a finite field and (E/F) = n, --------- ________________ _..,.. _____ _ 
there is an element()( of E so that E = F(c:4. 
________ ..,..._ _______________ _........ __ _ 

Proof: Since E is finite, Theorem 3.2.5 $hows that ---
the non-zero elements of E form a cyclic group generated by 

some element o(.. This completes the proof. 

~~!~~12: ~-2I£~.r-21-~n~_!1n!~~-f!§!£_f_!~ 

!LJ2.2!!~L2!_ it !L.Q!H!.D!Qi!~.r.!§.tlg • 

'f.!.22!= Let P = [o, 1, 2, ••• , p-11 denote the set of 

multiples of the unit element in a field F of characteris­

tic p. Then P is a subfield of F having p distinct ele­

ments, and P is isomorphic to the field of integers reduced · 

modulo p. Let (F/P) = n, then by Lemma 3. 2.8 F contains 

p11 elements. 

!~EEM--~~~~1: !~2-!!n!!~-!!~l§§_h~!!BB_!h§_§!m~ 

~~R~! 2!~!~~~§~£§_!§£ID2!12h!£· 

Proof: If F and F' are two finite fields having the --
same order q, then by Lemma 3.2.10, they have the same char­

acteristic since q is a power of the characteristic. The 

multiples or the units in F and F' form two fields P and P' 

which are isomorphic. The non-zero element~ of F and F' 
~-1 form a group of order q-1 and, thus, satisfy x - 1 = 0. 

The fields F and F' are splitting fields of the equation 
'1. -1 

~ · = 1 considered as lying' in P and P' respect! vely. By 

Theorem 3.1.5 the isomorphism between P and P' can be ex-
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tended to an isomorphism between F and F' which proves the 

theorem. 

12~!ill.!.2n: If f( x) :=:: a
0 

+ a1 x
1 + ... + an~ is a 

polynomial in a field F, then the formal derivative off is 
1 11 

f' =: a
1 

+ 2.a2x- + ... -t n.an~- • 

For each pair of polynomials f and g we shov; that 

( i) ( f + g)' = f' + g' t 

( 11) ( fg)' ::::. fg' + gf' ' 

(iii) ( r"")' =- nf""-l. f' • 

For ( i) if f = a
0 

+ a1 x
1 + ... +an~ and g == b

0 
-t 

b
1 

:xl + •.. + bm:x!Il then if n ~ m we have 

(t';-g)= nao+bo)+(al+bl)x+··· 

. + (am+ bm) xm + am+1:xiD1"1 + ... + an~]. 
Now 

( f t g)' = ( a1 + b1 ) + 2( a2 + b
2

) x + ... + m( am+ bm) J(ll-l + 
~ -~-1 _n-1 • • • , nan x- = a1 + 2a2 + ... + nan x + b 1 + ~b 2x + ... -t 

mb rn-1 = f' + g' • m 
For (ii) let 

For (iii) { f
11
)' .= nfn-lr, is true for n = 1. Pro-

ceeding by induction, we assume it is true for n = k, that 

!~-1r~~~--!!~t~~-~§-~!~_lg_§h2~-~~~-1!!1l_n£1~-!2I 
1we will write na for n.a from now on. 
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n -=== k + 1. Now ( ~~l)' :=. ( ffk)' :::. f( fk)' + ~f' :::= tkfk-lf' 

+ rkf' == ( k -t 1} rkr•. Thus by induction { fl)' ::::: n~-1r•. 
"'" Definition: If f(x) is a polyn~ial in F, then f(x) 

_..._ ---
is called separable if its irreducible factors do not have 

repeated roots. 

Definition: If E is an extension of the field F, the ...._ ____ ...,..__ 

element ~of E is called separable if it is a root of a sep­

arable polynomial f(x) in F, and E is called a separable ex­

tension if each element of E is separable. 
{ 

~~QE~--~~E~l§: !h!-P£!1n-Em!~1-!_E~§_!~P!s~~~-!22~! 

!!_~~-2B1X-!f_!a_1£!-~1!~1!ag_f!~l~~-~h!_poljg2!!~1§_f_ 

~~-!~~~-!-£2!!2B-!22ll-2!~!~~1~~~lz~_!!_~~-2alz_!! 

!_§B~f~§!!-~-£2~2B_f~~~2!-2!-~!£!~~-E!!!~!!_~h!n_3~!2 

in F. ---
Proof: If~ is a root of multiplicity k of f(x) --

then f == ( x - ~) kQ,( x) where Q(Q() :f. 0. This gives 

ft = ( x-«.) ~ 1 (X} + k( X-o<.) k-lQ,( X) -=: ( X-cX) k-l & X-«) Q, 1 (X)+ kQ( X) J • 
If k > 1, then~ is a root of f' of multiplicity at least 

k-1. If k ::::: 1, then f' ( x) = Q.( x) + ( x-o<)Q.' { x) and f' (oc) :::: 

Q.(P<) f: o. Thus, r and f' have a root o< in common if and .only 

if C>( is a root of f of multiplicity greater than 1. If f 

and f' have a root ~ in common then the irreducible polynom­

ial in F having~ as root divides both f and f'. Converse-

:ly, any root of a factor common to both f and f' is,a root 

Of f and f' Which proves the theorem. 

g2Iill~:rz: !!_l_!!L.!L!t~!!!...2!_£:!!!!!~~.ri§~!_e_~~!'.Q 
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]~g~~~-!!!~£~!~!~_B21Zll2ID!~!-!n_l_!§_~~P~!E~1~~ 

Pr.Q.Q!: Suppose the irreducible polynomial f(x) has 

a root~ or multiplicity greater than 1. Then, f'(x) is a 

polynomial which is not identically zero for its leading 

coefficient is a multiple of the leading coefficient of f(x) 

and is not zero since the characteristic is 0. Also f'(x) 

is of degree 1 less than the degree of f(x). But~ is also 

a root of f'(x) which contradicts the irreducibility of f(x). 

~~~-~~2-Qh!I~~l~~· 

Q~!!a!~!gg: If G is a multiplicative group, F a 

field and T a homomorphism mapping G into F( i.e., G ~G' c 

F) • then T is called a .£!!.arac]~!' of G in F. 

Let a E. G , a f. 0. I f T 1 ( a} == 0 , T 
1 

( e) = T 
1 

( a) T 
1 

( a -l) 

= 0. Therefore T1 (g) = T
1 

( e)T
1 

(g) == 0 for all g of G. We 

will assume T1 (a) :j: 0 in the following discussion, i.e., T
1 

is a non-trivial mapping. 

~B!~!2g: The characters T1 ,T2, ••• ,Tn are called 

~R!a~ if there exist elements b1 ,b2 , ••• ,bn' not all 

zero, in F such that 

( 3.3.1) 

for each x belonging to G. The dependence relation (3.3.1) 

is called non-trivial. If the characters are not dependent 

they are called !B£~§!ldenjt. 

!tl~B~-~~.:.!: !_,t:_g_!~~-B!.Qlll2. !!!f! T1 ,T2 , • • • ,Tn !~ 

!!_!!!Y!!!l!!!L£!§!!B.Q!....Q!!!1!~£1!1!§._Qf_~_!ll]2-l a. ;tg~ T 1 , T 2 , • • • , Tn 

!!!L.!n£~~B~!1n~. 
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f!22!i One character cannot be dependent, since 

b1 T1 ( x) = 0 implies b1 = 0 due to the assumption that T1 (a) 

* 0. Suppose n > 1. We make the inductive assumption that 

no set of less than n distinct characters is dependent and 

we wish to show that n characters are independent. For each 

a in G, let 

( 3.3.1) 

where bi and T1 (x) belong to F. If bn = 0 then by our in­

duoti ve assumption b1 = b2 = b3 == ••. =- bn-l == bn = 0. In 

( 3.3.1) if bn =f. 0 we replace x by ax where a is any element 

of G such that T 
1 

(a) =1=- T (a) • 
n- n 

Then 

b1T
1 

( a)T
1 

( x) -t ••• + b 
1

T 
1 

( a)T 
1 

( x) + b T ( a)T ( x) 0 
n- n- n- n n n 

while 

blTn ( a) T l ( X) + . . . + b 1T ( a) T l ( x) + b T ( a) T ( x) = 0 • n- n n- n n n 
By our induction assumption, the coefficient ofT 

1
(x}, n-

i. e. b 1 [T 1 ( a) - T (a)] , in the difference of these two n- n- n 

equations will be zero. Thus b 
1 

::: 0. But then the rela-n-
tion b

1
T

1
( x} + ... + b 

2
T 

2
( x) + b T ( x) .:::. 0 implies 

n- n- n n 

b1 = b 2 == ••• = bn_ 2 := bn = 0, too. Thus the T i are inde-

pendent, and the theorem is p~oved. 

<2.£r.o.l!._ar.l: itL~..i.~~r.~ .. t:~Q. .. t~J..a§.&-~~ T 1 ,T 2 , 

• • • , T n '!~-IL~t'.!~U-4.ilt!.ll~ .... .!.§.Q~Q!l.{Q~!L!!ll!.12£!!!£LL1!l~ 

~!..~.-.:H~~ Tl ,T 2 ••• ,Tn ~.re_J!!~~!!~~· 

f!22f: This follows from Theorem 3.3.1, since E 

without the 0 is a group and the T.,s defined in this group 
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are mutually distinct characters. 

~a!~!gg: If T1 ,T 2 , ••• ,Tn are isomorphisms of a 

field E !g~£ a field E' , then each element a of E such that 

T1 (a) = T 2( a) == ••• == Tn( a) is called a .f!.!~-.122!!1] of E 

under T 1 ,T 2 , ••• ,Tn. When E == E', the T' s- are automorphisms, 

and if T1 is the identity, that is, T1 (x) == x, we have T 1(x) 

= x, i ~ l, ••• ,n, for a fixed point. 

~~..!!2.:.~_g: T,he S.§~2f-~!L .. E.2.!£]..§_.Qf-L.w.!~ 

T1 , ••• ,Tn !§~Y£1!~1g_E_2f-~· 

~!2Qf: If a and b·are fixed points a,b ~ F, then 

Ti(a:!: b)= T 1 (a) ± T 1(b) = TJ(a) + Tj(b) = Tj(a +b) 

and a± b ~F. Similarly, 

Ti(a.b) = Ti(a).T 1(b) ::= Tj(a).Tj(b) -=Tj{a.b). 

Finally, we have 

T
1
(a-1) ;=: (T

1
(a))-l == (Tj(a))-1 ::::::-Tj{a-1). 

Thus, the sum and product of two fixed points is a fixed 

point and the inverse of a fixed point is a fixed point. 

Thus the set of fixed points of E is a field, which is a 

subfield F of E. 

!2~!~!2£: We call F the !!!~_!!~1.!! of E under 

Tl,T2, ••• ,Tn. 

!£!£WR~-~.:.~~: If T l'T 2 , ••• ,Tn ~~-!!-!!!]Y~1.!I_gis­

!!S~]_!~2lli2!Eh!§!~-2!~-!!~1g_~_!g!£_~_!!21£_~!~g_if_E 

.t~L~J:!~_f!~g_£!!2J:£ .. 2f-~.a-~lm ( E/ F) ~ n • 

~IQ.Qf: Assume (E/F} ~ r. Let w1 ,w 2, ••• ,wr be a gen­

er'ating system of E over F. Consider the homogeneous linear 
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equations, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
T1 (wr)x1 -r T2 (wr}x2 + ... + T

0
(wr):xn::::: 0. 

For any element~ in E there exist b1 ,b2 , ••. ,br in F such 

that o<.= b1w1 + b 2w2 + ..• + brwr. 'i:e multiply the first 

equation of (3.3.2) by T1 (b1 ), the second by T1(t2 ) and so 

on. The b1 belong to F and hence T1 (bi) .=::. Tj(bi). Since also 

T j(b1) .T j(w1) = T j(b1w1), we obtain, 

Tl(blwl):xl + ••. + Tn(blwl)~ = O, 

( 3.3.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
T1(brwr)x1 + ••• + Tn(brwr)xn == 0. 

Adding equations (3.3.3) and using 

T 1(b1w1 ) +T i(b 2w2) + ... tT i(brwr) = T 1(t1w1 + .•. +brwr) =Ti(o<) 

we obtain 

T
1

(o()x
1 

+ T
2

(e>()x 2 -r .•• -+ Tn(Q(.)x
0
= 0. 

Since the TpT 2, ••• ,Tn are independent, xi= O, thus (3.3.2) 

has only the trivial solution and so r ~ n. 

Q.Q.!oll~!I: I! T l, ••• , T n !!!~-,g~~!r:.Q.r.I?.hi§!!!.§_.Q!_!.h~ 

!!~S! E a ag_g_I_!Llh~. !.!.!~g_f!§1£.,~._~.h~!! ( E/F) ~ n • 
. 

f!.Q.Qf: Since the automorphism is an isomorphism of 

E into E, the proof is immediate. 

IfF is a subfield of the field E, and T an auto­

morphism of E, we shall say that T leaves F fixed if for 

each element a of F, T( a) = a. If T m1d s are two automor-
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phisms of E, then the mapping x ___,.T( S( x)) written as TS is 

an automorphism since TS( x. y) ::= T( S( x.y)) = T( S( x). S( y)) = 

T(S(x)).T(S(y)) = TS(x).TS(y), and similarly, TS(x :t y) = 
TS( x) ± TS( y). We call TS the product of T and s. If T is 

an automorphism T(x) ~ y, then we shall call T-l the mapping 

of y into x, that is, T-1(y) = x the inverse ofT. We show 

that T-l is an automorphism. We have 

T(xl) == yl, T(x2)::::: y2 and T-l(yl) xl' T-l(y2) = x2. 

We wish to show that 

T-l(yly2) :=: T-l(yl)T ... l(y2) and T-l(yl ± y2) == T-l(yl) + T-l(y2} • 

Now 

T-1( yly 2) = T-1 ~( xl) .T( x2>] . T-~( xl x2) = xl x2 =T-1( yl)T-1( y 2) • 

Also 

T-1 (y
1 

::t: y2 ):::: T-1 (T(x
1

) ± T(x
2

)] = T-1 [T(x
1 

±x2>J= xl + x2 = T-l(yl) :t T-l(y2). 

Therefore T-l is an automorphism. The automorphism I ( x) = x 

will be called the unit automorphism. 

1~a 3 .!.2.:..1: !f_l_.!!L~~~~!! sism..f!.!!.9_gLL_]ill! 

2§~_g_2!_~Yl2!2!Rh!~m§_~S,!~~Y~-l-!!~Q_!§_~-B!2~~· 

f!92!: The product of two automorphisms which leave 

F fixed, leaves F fixed. The inverse of an automorphism in 

G is in G. Therefore the set G is a group. 

In regard to Lemma 3.3.4 we may have an element of 

E not in F which is left fixed by G and therefore the fixed 

field of G may be larger than F. 

3. 4 Normal Extensions. 
-----------~----~----
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Definition: An extension field E of a field F is --------------
called a n2!!~1-§~B~!£B if the group G of automorphisms 

of E which leave F fixed has F for its tixed field, and (E/J) 

is finite. 

n!!Q.RPA_.§:.4.:.!: U Tl ,T2, • •. ,Tn .!JL!L.S!.Q!!lL2! .... aB:E.Q­

!~!§!~_g!-~-!ield_!~g_lf_l~~h~-!1!~£_£!~1£_Q! 

T ,T , •••. T , then (E/F) = n. 
1 2 · n ----

Proof: If T
1

, ••• ,T is a group, then there is an 
----- n 

identity, say, T
1 

:::::.· I. The fi:led field consists of those 

elements x whioh are not moved by any of T
1

, ••• ,Tn. Suppose 

(E/F) > n. Then there exist n +- 1 elements o<1 ,o{2 , ••• ,~tl 

of E which are linearly independent with respect to F. BY 

Theorem 1.2.1 there exists a non-trivial solution in E to 

the system of equations 

• • • -+ X lTl(o<. 1) :::: O, n+ n+ 
-t X 

1
T 

2
(cX 

1
) == 0, 

n-t n-r 
... 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

x
1
T (o(l) -t x

2
T (£X

2
) -t ••• -t- x 

1
T (O<. 

1
) ::= 0. n n n~ n n+ 

We note that the solution to (3.4.1) cannot lie in F, other-

wise, since T
1 

is the identity, the first equation would be 

a dependence between ~····•~n+l" Among all non-trivial 

solutions x
1

, ... , xn+l we choose one which has the most num­

ber of elements zero. We may suppose this solution to be 

b
1

, .•. ,br,o, ••• ,O, where the first r terms are non-zero. 

Also, r f 1 because b1T1 {~1 ) ~ 0 implies b1 = 0 since 

T1 (<x
1

):: <X.
1 

=f 0. Also, we may suppose br = 1, since if we 
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-1 
multiply the given solution by br we obtain a new solution 

in which the r-th term is 1. Thus, we have 

( 3 • 4 • 2) blTi(o<l) +b2Ti(Q(2)+ .-•• -tbr-1Ti(O(r-l}+Ti(O(r)==O 

for i == 1, 2, ••• ,n. Since b1 , ••• , br-l cannot all belong to 

F, one of these, say b1 , is in E but not in F. There is an 

automorphism Tk for which Tk(b1 ) =P b1 . If we use the fact 

that T1 , ••• ,Tn form a group, we see'that Tk.T1 ,Tk.T 2, ••• , 

Tk.Tn is a permutation ofT1 , ... ,Tn. ApplyingTk to the set 

(3.4.2) we obtain equation 

( 3.4.3) Tk(b
1

) .TkT j(e<
1

) + ... 
+ Tk( br-1) .TkT j(o<.r-1) + TkT j(o<r) ::= 0 

for j .::: 1, 2, ••• ,n so that: from TkT j = T i, ( 3. 4. 3) becomes 

(3.4.4) Tk(bl)Ti(o<.l) + ••• +Tk{br-l}Ti(o(r-1) + Ti(o<r)-:::: 0 

and if we subtract (3.4.4) from (3.4.2) we have 

(bl- Tk(bl)].Ti(o(l) + ••• + [br-1 -Tk(br-l)]Ti(D<r-1}::::: O. # 

which is a non-trivial solution to set (3.4.1) having fewer 

than r elements non-zero, contrary to the choice of r, which 

proves the theorem. 

£.2!211~.rL1: !L!L.§!!E.f!el£_jt_gf_E i.§L~h!Lf!!~Q_f!~ld 

f2!_~fin!~~-grou£_Q_Qf_2I1~£_n~_gf_~~~2m2£~h~-2f_~h~n 

~~h-~!!~2m2!Ehism_!~h~~-b~ay~~-E-f!~ed_m~.§~_£elQgg_!g_~. 

!:.!.Q.Qf: By Theorem 3.4.1 (E/F) ::= order of G :::=. n. We 

assume there is a T not in G which leaves F ffxed. Then F 

would remain fixed under the n + 1 elements consisting of T 

and the elements of G, thus ( E/F) ~ n + l by the Corollary 

to Theorem 3.3.3. This is a contradiction. 
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QQ,r.Q.!lan_,g: !~.!L~.!~B.2~!'Q_f!!!! te_g.r.Q}:!l2.§ G1 ~ 

G2 ~!1h-~h~-~~~~g_!ie1g. 

frggf: This follows from the above Corollary 2. 

Q.Q.r21l!!!l~: E !~~~ll.!d~M!Q!LQ! F, !! .~!! 

gnlz_!!~h~-U~E~£_Qf_~morQhi§~§_Qf E ~h~~~~ F !!zed 

!.§ ( E/F). 

f.!Qgf: If E is a normal extension of F, the number 

of distinct automorphisms of E which leave F fixed is (E/F), 

by Theorem 3.4.1. 

Converse~y, suppose that F' is the fixed field of 

all those automorphisms of E which leave F fixed. Then 

F <;; F' <;;: E. By Theorem 3.4.1, the number of automorphisms 

of E leaving F' fixed is (E/F'}. Assuming that (E/F) auto­

morphisms of E leave F fixed, we have (E/F') == (E/F). 

Since (E/F) = (E/F') (F' /F), (F' /F) ::::: 1 and F' :::= F. Thus 

E is a normal extension of F. 

1~rom~hl.:.,&: If E !~-!!.21:!!!~1-~.!~!!§!.Q!L2.f F , ~he!! 

~l-~1~!~!!~_2! E !~_.!:22~-2!-~!rr~!!Y~!bl~~-~~~~]le 

~gE~~!2£_2Y~! F ~hi£h_~~!!~~-Q2~£1~~~1I_!!! E. 

f!Qgf: Let T1 , ••• ,T
8 

be the group G of automorphisms 

of E whose fixeti field 1 s F. Let cl.. e E, ~ ~ F, and let 

o< =o(l ,o<2 ,o<3 , ••• ,o<r be the set of distinct elements in the 

sequence T1 («.} ,T2 (()(), ••• ,Ts(O(). Since G is a group, 

Tj {()(.) = T. (Tk(o<:)} ::: T .Tk(o<..) == T (k) =eX , 
. J. J J m n 

where n !:= r. Since the mapping Tj is one-to-one, th~.elements 

o<.,ol2 ,o(3 , ••• ,ol.r are permuted by each automorphism of G. Tbe 
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coefficients of the polynomial f( :x) = { x - 0() ( x - o<2) ••• 

(x -~r) are left fixed by each automorphism of G, since in 

its factored form the factors of f(x) are only permuted. 

Since the only elements of E which are left fixed by all 

the automorphisms of G E F, f(x) is a polynomial in F. If 

g(x) is any other polynomial in F Which also has «as root, 

then applying the automor~hisms of G to g(CX:} = 0 we obtain 

g(CX:i) = 0, so that the degree of g(x} ~.r. Hence f(x) is 

irreducible, which proves the lemma. 

THEOREM 3.4.3: E is a normal extension of F if and -----....... ------- ...,._._- -.... _........_______ ---
£Blz if E !§ th~!!~ting field gf_~ ~~~~Iabl~-~QllnQID_!al 

p{ x) .!!! F. 

Prop[: §~fficienol: We assume that E splits p(x), 

and prove that E is a normal extension of F. If all the 

roots of p(x) are in F, then E= F and only the unit auto­

morphism leaves F fixed and our proposition would hold. 

Suppose p(x) has n > 1 roots in E but not in F. We make the 

inductive assumption that for all pairs of fields with fewer 

than n roots of p(x) outside F our proposition holds. Let 

p(x) ~ p1(x) •••• •Pr(x) be a factorization in F of p(x) 

into irreducible factors. Ne may suppose one of these to 

have a degree greater than one, for otherwise p(x} would 

split in F. Suppose deg. p1(x) = s ;,- 1. Leto<.1 be a root 

of p1 ( x) • Then ( F(~ 1} /F) = deg. p1 ( x) .= s ( cf. paragraph 

after Lemma 2. 3. 2). If we consider F(CI( 1) as the new ground 

field, fewer roots of p(x) than n are outside. Since p(x) 
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lies in F(~1 ) and ~ is a splitting field of p(x) over F(«1 ), 

then by our inductive assumption it follows that E is a 

normal extension of F(o<.
1
). Thus, each element in E which 

is not in F(~} is moved by at least one automorphism which 

leaves F(~1 ) fixed. Since p{x) is separable, the roots 

~, ••• ,~s of p1 (x} are s distinct elements of E. By Theorem 

2.4.1 there exist isomorphisms T1 ,T 2 , ••• ,Ts mapping F(o<i) 

on F(o<
1

) ,F(c:X.
2
), ••• ,F(o<s), respectively, which are each the 

identity on F and map 0( 1 on o( 1 ,0(2 , ••• ,o<s respect! vely. We 

now apply Theorem 3.1.5. E is a splitting field of p{x) in 

F(o(
1

) and is also a splitting field of p(x) in F(~i). Hence 

the isomorphism Ti, which makes p(x) in F(~1 ) correspond to 

the same p(x) in F~i), can be extended to an isomorphic 

mapping of E onto E, that is, to an automorphism of E that 

we denote again by T i. Hence, T1 ,T 2 , ••• ,Ts are automor-

phisms of E that leave F fixed and map e><.1 onto 0(1 ,0(2 , ••• '~n. 

Now let ~ be any element of E that remains fixed under all 

automorphisms of E that leave F fixed. Thus ~remains fixed 

under the subset of all automorphisms of E that le~ve F(«1 } 

fixed. Since E is a normal extension of F(~1 ), ~ must lie 

in F(QI..
1
). Thus 

( ) 0 2 s-1 
:3. 4 • 5 {~ :: CO + ClO(l + C2o(l + • • • + C S-lo(l ' 

where the c1 are in F. If we apply Ti to (3.4.5) we get, 

since T i ( ~) = ~ , 

~ = C 0 + Clo<.i + 
The polynomial c 1xs-l + 

s-

s-1 
+ cs-la<.i • 

... + c1 x -+ ( c
0 
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has therefore the s distinct roots o<.1 ,~, ••. ,~. There are 

more than its degree. So all coefficients of it must vanish, 

a'Ilong them c
0 

- ~, which shows ~is in F. Thus E is a normal 

extension of F. 

li~~~§i!I: If E is a normal extension ofF, we wish 

to show that E is the splitting field of a separable poly­

nomial p(x). Let w1 ,w2 , •.. ,wt be a generating system for 

the vector space E over F. By Theorem 3.4.2 there exists an 

irreducible, separable polynomial fi(x) in F which splits 

in E and has wi as a root. Then E is the splitting field 

of the separable polynomial p(x) = t 1{x).f2(x) ••• f't(x). 

This proves Theorem 3.4.3. 

Q~fi£11!gg: If f(x) is a polynomial in a field F, 

and E the splitting field of f(x), then we shall call the 

group of automorphisms of E over F the £!O£R-2f-!&~-~Quat!£g 

f(x);:: 0. 

In the Theorems 3.4.4, 3.4.5, 3.4.8 and Lemmas 

3.4.6, 3.4.7 we ;.cill assume that 

(1) p(x) is a separable polynomial in a field F, 

(2) E is the splitting field of p(x) and, 

{ 3) G is the group of p( x) = 0 over F. 

!tlE.Q.R~2. 4. i: ~!a£hJ.ul e !!!!.§s!ill!Lf!..§.l d, B , !.~.:.., 

F c. B C E, i&_th.§._fiA~g_!i,~19..1.Q.L§_~Q.gJ:Qill! GB Q! G, !IDQ 

2i§tinct_~Qg~£§_h~~~~!g£1_!1!~2-!1~1Q§• 

~g!: Consider p(x) as lying in some intermediate 

field B. E is still the splitting field of p(x) in B. Thus, 
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E is a normal extension of each field B, so that B is the 

fixed field of the subgroup GB of G made·_ up of those auto­

morphisms of E which leave B fixed. By Corollary 2 of 

Theorem 3.4.1 distinct subgroups have distinct fixed fields. 

~efinitios: If G is the group of automorphisms of E 

over F and GB is the subgroup of automorphisms of G which 

have B for its fixed field then B and GB are said to be!Qgg 

~2-!!~£!L.2~lli· 

'ftlEOE~~.:.1.:..§: If B .!.~L!!!L!!!.!!~!!!!~£!!~~~-fi~1.1, 

{F C B C E), ~ GB £f!lO!!.B.!L!.2 B, th!!!! ( 1) ( E/B) :::: Q.!~ of 

GB, ~ ( 2) (B/F) :: index_2! GB !g G. 

EI2.2!= (1). Since B c E is the fixed field of G8 , 

Theorem 3.4.1 implies that (E/B) = order of GB ~ O(GB). 

(2). (B/F)(E/B) := (E/F}-::: O(G}:: i(GB).O(GB) ::= i(G
8

)(E/B), 

where i(GB) is the index of GB. Therefore (B/F) ~ i(GB). 

~~~.:.1.:.§: !h~-!!YIDbe£_.Q!_Q!~g~~!§2ffi2!Eh!§~_Q! 

B which !~~ F .fg~d_!§~~!Q_!he_!!BP.!Q.§_!_Of~.Q.§et.§_Of 

GB .!£ G. 

~!QQ£: By Theorem 3.4.5, (B/F} is equal to the num­

ber of cosets of GB ~ O(G)/O(GB). Since the elements of G 

are automorphisms of E they map B isomorphically into some 

other subfield of E and are the identity on F. The elements 

of G in any one coset of GB map B in the same way. For let 

T.T
1 

and ~.T 2 , where T e G, T
1

,T 2 e; GB, be two elements of 

the coset T.GB. Since T 1 and T 2 leave B fixed, for each 

cl. of B we have T.T
1

(CI(_) = T(«) = T.T 2(o<.). Also elements of 
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different cosets give different isomorphisms, for if T and 

S give the same isomorphism, T(~) = S(~) for each ~in B, 

then T-1s(cx::) == o< for each o<. in B. Thus T-1s == T1 , where T1 
is in GB. But then S = T.T 1 and S.GB = T.T 1GB::::. T.GB so 

that T and S belong to the same coset. Also each isomor­

phism of B which is the identity on F is induced by an 

automorphism of G. For letT be an isomorphism mapping B 

on B' and the identity on F. Then under T, p(x) corresponds 

to p(x), and E is the splitting field of p(x) in Band of 

p(x) in B'. By Theorem 3.1.5, T can be extended to an auto-

morphism T' of E, and since T' leaves F fixed it belongs to 

G. This proves the lemma. 

Lemma 3.4.7: B is a normal extension of F if and --------- ------------------ -------
.Qnlz_if_~~ch_!.§.2!E.2.!lilll-~f B is !ill-~:!t~.2E.Q£phism_2f B 1!h!sm 

1~~:!~ F .f1!~· 

~!2.2.f: By Lemma 3.4.5 and Lemma 3.4.6, the number of 

distinct isomorphisms of B ::::: i(GB) = (B/.F). By Theorem 

3.4.1, Corollary 3, B is normal over F, if and only if the 

number of distinct automorphisms of B which leave F fixed 

is also (B/F), i.e. if and only if the number of distinct 

isomorphisms of B is equal to the number of distinct auto-

morphisms of B which leave F fixed. Since each automor­

phism of B is an isomorphism of B, our lemma is proved. 

!!:lliQEEM~..:.±.:.§: [:g_,!gte,rmedi!!~~-fie,!,1 B, (F c B c. E), 

1~-~-ll2Im81_~~~~§i.Qg_2£ F 1f_~g£_£ll1~-1!~£~_§}t~B£2~E GB 

1.§-~_!!Q,!!!!al s}!!!&Q~JL of G. 
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~!£2!: This theorem is an immediate consequence of 

Lemma 3.4.? once we have proved that: GB !~ID!.!1_!g G !! 

~g_gg!L.!f~ch_i§.2!!!.2!.12~-.Q! B ~...mL~!!tomprJilli§!!LQ!: B, 

~hi£h_!~~~ F !!xed. 

Now, if T is any automorphism of E, TGBT-l is a 

subgroup of G, and TG8T-l [T{B)) := TGB (T-~(B)] :=. TGB (B)= T(B). 

Then, if TGBT-1 (o<.) = c-<. , GB [T-1 (o<)] ::: T-1 (0(.), T-1 (oe) C: B and 

so o<. c. T(B). Thus T(B) is the fixed field for TGBT-l. If 

GB is normal in G, then TGBT-1 = GB' hence T(B) = B, and 

every isomorphism of B is an automorphism of B. 

Conversely, if T(B) = B, for every isomorphism T 

of B, then T-~BT = G8 , and GB is normal in G. 

Theorems 3.1~3.4.5~-~~ 3-!~§_!!~~~~yg~~B!~ 

!.!!~2!.~1L..2.f_~he G,!!!gi s theorz. 

In Lemma 3.4.7, when B is normal over F, and each 

isomorphism of B is an automorphism of B which leaves F 

fixed, the cosets of GB' each of which describes an isomor­

phism of B (cf. Lemma 3.4.6), are elements of the factor 

group (G/GB). Thus each automorphism of B corresponds 

uniquely to an element of (G/GB) and conversely. Since 

multiplication in (G/GB) is obtained by repeating the map­

pings, the correspondence is an isomorphism between (G/GB) 

and the group of automorphisms of B which leave F fixed. 



CHAPTER IV 

ROOTS OF UNITY 

!:l_ggg1§..g!_Unia.!!l th~.Jl2ml21~.!11!t!.!a· 

The n n-th roots of unity are found solving the 

equation Z0 = 1. If we let 0 = p( cos e + i sine) and 1 = 

r( cos <f> + i sin <P). Suppose un = pn( cos n B + i sin ne) = 1. 

Thus p = rl/n; 9 = <P/n + 2k1T/n, where k ::: 0,1, ••• ,n-1. We 

have r = 1, flUld <t> ::::: 0 and therefore p :::::: 1, and e = 2k1'1'/n. 
2 

Thus the n n-th roots of unity can be represented by R,R , 

••• ,Rn where R =cos 2tVn r i sin 2rr/n. 

~~tinitig~: An n-th root U of 1 is a Qrim!~!~ n-th 

.!.Q.Ql or 1 if un = 1 and um -:f: 1, when 0 ~ m Ln. 

THEORp4 !~.1_.1: !":!~ R = cos 2Tr/n -t i sin 27r/n. U 

(k,n) :::: d, 1!!~!! Rk !.§_.LJ!rimi~ (n/d)-th !.Q.Q!-2L!ID1-ll• 

!:r,Qg[: Let k == k 1d, n-::::: n1d so that (k1 ,n1) == 1. 

Then Rk :::: cos 2k1drr/n 1d + i sin 2k1dty'n 1d == cos 2k1n;'n + 
i sin 2k

1
1'r/n 

1
• Thus ( R k) n,_ := cos 2k111 -r i sin 2k1 rr == l so 

that Rk is an n 1 = (n/d)-th root of unity. Also, Rk is a 

primitive (n/d)-th root of unity, for if {Rk}m = 1 =: 

cos 2k1m TV'n 1 + i sin 2k1m1f/n1 , k 1m/n1 is an integer. Since 

(n1 ,k1 ) = 1, n 1 divides m, but the least positive multiple 

of n 1 is n 1 itself. 

Q.Q£o!lar3_l: TI!.Qs~ 8!!.!a.J2!!1L~h.Q§~ n-th rool.§...Q[ 
2 n 

yg~z R,R , ••• ,R are ~rimi~!Y~ n-th !.QOt§_.Q[_YQ!!z whose 
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~on en~.!L~.!~~1: at 1~1:,x__£!i'!!'e_12_!!. 

E.!.22f: From Theorem 4.1.1 Rk is a primitive n-th 

root of unity if and only if (n,k) ::=: d;::::. 1. 

52 

Q2£21:1:~~~l !f u 1~-~X-E.rim!~!x~ n-th !221 2! 

uni tz_~ ( k ,n) -::::=: d, ~ uk ll-!L.E.!!!!!i t!!.§ ·n/ d-th !.Q2~_.Qf 

:gnitz. 

E,!Qgf: Let U = R t, where ( t ,n) = 1. Hence uk := R tk 

and (tk,n) == d. Thus we may apply Theorem 4.1.1 to Rtk 

fro~ which the proof is immediate. 

£.2.!.2!J:arz_~: !h~ n n-th .!Q.Q~Qf_l!f!.!~_il!£1!!.1~-1!!1 

~b! m-th !22~§_.Qf~!!z_if_~g_gg1z_if m Q!Xi1~2 n. 

Prgof: If m divides n, n = mk, and (n,k) ~ k. Then 

by Corollary 2 above Rk is a primitive n/k ::.. m-th root of 

unity and hence all the m-th roots of unity are included 

among the powers of (Rk) which are also n-th roots. If all 

the m-th roots of unity are included runong the n-th roots, 

then the primitiv.e m-th root cos 21T/m -r i sin 211'/m ::::..Rv. 

Again by Corollary 2, if (v,n) = d, Rv is a primitive 

n/d-th root of unity. Hence n/d =.m and n :md, which 

oomplet~es the proof • 

.i:.~,2l.§_.Q f u!l!.tl_!!L.ll~12L.Qf_.EJ:im~_.Q.h~.!~.Q.!:.:ll'illi£ · 

If a field F has characteristic p, and E is the 

splitting field of the polynomial xll - l where p does not 

divide n, then E is the field generated out of F by the 

adjunction of a .primitive n-th root of unity. The polynom­

ial -J!1- 1 does not have.repeated roots in E, since its de-
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rivative, nxn-1, has only the root 0 and has, thus, no roots 

in common with x0 
- 1. Therefore, L!.§_.!L!!.Q£ID.Jl.1_~~teg.§.!2!! 

2!_! by Theorem 3.A.3. If e
1

,e
2

, ••• ,en are the roots of 

x0 - 1 in E, they form a group under multiplication and by 

Theorem 3.2.5 this group will be cyclic. Let e be a gen­

erator of the group so that l,e,e2 , ••• ,en-l are the elements 

of the group. Since the smallest power of e which is 1 is 

the n-th, we see that e is a primitive n-th root of unity. 

The order of any n-th root of unity is a divisor of n, since 

each n-th root of ~ity generates a cyclic subgroup of the 

group of all the roots. If e is a,primitive n-th root of 

unity, evidently en/r is a primitive r-th root of unity. 

T!!~QE!M_h_&..:l: !f E .!.!Llih~_J:!~!g_g~~.t~~fr£!!! F 

QL!!;...]I.!m! ti:Y§ n-th root ow!!!.!::.Yd~!L.!:h~_g.rou:g G of E 

Q~I F ~..!!£~liillLfQr anz n ~d cyclic_i.f n !.§_12£!~· 

E!ggf: We have E ~F(e), since the roots of xll- 1 

are powers of e. Thus, if S and T are distinct elements of 

G, S(e)~ T(e). But S(e) is a root of xll- 1 and, thus, a 

:povver of e. Thus, S( e) = ens where n is an integer 1 ~ n 
s s 

L n" Also, TS(e) = T(ens):::: (T(e)) 0 S = en,....ns = ST(e) = 
eDsrr. Thus G is abelian, and n5 7' = n3 n,.< mod n) • Hence, 

the mapping of Son n is a homomo~phism of G into a multi-
s 

plicative subgroup of the intergers mod n. Since T iS 
implies T( e) i= S( e), it follows that T i S implies n5 $ 
n'r(mod n). Hence, 'the homomorphism is an isomorphism. If~ 

n is prime, the multiplicative group of integers mod n 

, . . . 
~· ·-
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forms a cyclic group. 

~~~-No~~h~-~2Y2!12B§· 

~ef,!git,iQn: If Eisa field, and G-::: (S,T, ••• ) any 

group of automorphisms of E, any set of elements x3 ,~, ••• 

in E will be said to provide a solution of N2£~he.r~§ 

~.ill!!!.:t12!!.§ if x 8 .s( Xr_r} = xST for each s and T in G. 

As T traces G, ST assumes all values in G, and in 

the equation x8 .S( ~) :::: x8T, x
8

T-== 0 when :Xs == 0. Thus, in 

any solution of the Noether equations no element x
8 

= 0 un­

less the solution is completely trivial. In the following 

we assume the trivial solution has been excluded. 

!tl~Q.E~_!~!h!: ThjL§.l.§~~!!! xs, XT, • • • 1!L!L.§.Q1Y~12!! 
2!-~.:!2h~.~.JL§gu~~!2n.!L.!L~d_Qplx_!!_lli.r~-~xi~1~L~-§lf}­

~~!ll ex. !.!! E, m!9h-~hat x8 ::::: o</S(o<.) !.Q~!!£!! S. 

!:IQ.Q.f: If ~ =: ()(/S{«.), for some()(., then x
8 

is a sol­

ution-of the equations, since x
8

.s(XT)::: [cX./s(o<)J. [s(o</T(co<))] 

= (o(/S(oq ]· (s{ot..)/ST(o<)] = o</ST(c><) = x
8
T. 

Conversely, we let XS,~, ... be a non-trivial sol­

ution. Since the automorphisms S,T, ••• are disti~ct they 

are linearly independent by Theorem 3.3.1, and the equation 

~ .s{ z) t" ~T( z) + ••. :=. 0 does not hold identically. 

Hence, there is an element a in E such that ~S(a} ~ ~T(a) 

+ ... -= tA =/: 0. Applying S to oo< gives 

(4.3.1) S(«)= ~S(~).ST(a). 

Multiplying (4.3.1) by ~ gives 
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(4.3.2) x
8

.s(o<.) == ~x8s<x.r>.sT(a). 
Replacing x8 .s(~) by x8T in (4.3.2) and observing that ST 

assumes all values in G when T does, then (4.3.2) becomes 

so that 

x
8

.S(O() == ~x...T( a) = o<. 
-rw-Gr '1' 

completing the proof. 

!§~QE~-!~~~~: !! G is ~Q~_£££~~-Q!_th~-~2!mQ1_fie1£ 

E over F, then for each character C of G into F there exists ---- ----------------- _._ ---- ----------
!YL~.!~~!i!!l~ o< in E .§!!.QfL~ha,:t C ( S) :=: o<./ S ( o<.) ~,!h_.QQ~.Y~I~X, 

!f o</ s (ex:) !.§_!n F f2.!-~£h s , .!!!!~ c ( s > ~ o</ s ( o() i.§_!!_£!illr­

~£~~r_Qf G. ~! r i~-~~~-1~~§~_.QQ~_my.!~!~~-Qf_1Q~_£!Q~£§ 

2f_~.!~m~g~§_Qf G, ~g~g ~rEF • 

.frgof: Let x
8

::::cx:/S(o<.). By Theorem 4.2.1, x
8 

is a 

solution of the Noether equations and yields a mapping C of 

G in~Q E, namely C(S) = x8 • If F is the fixed field of G, 

and the elements x
8 

lie in F, then C is a character of G, .for 

C(ST):::: xST = x
8

.s( ~) :::= x8~ -::::. C_(S) .C(T) 

since S( xT) :::: :x.r if ~E. F. Conversely, each character C of 

G into F provides a solution of the Noether equations, for 

if we call C(S) = x
8

, then, since xT € F, we have S( x.r> =xT. 

Thus, 

x
8

.s( xT) :=. x8.~ = C(S) .C(T) :: C(ST) = xST. 

For the. last part of the theorem we need only show that 

S(o<..r) == ot...r for each S E: G. Now, 

C{I) = 1, 
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which proves the theorem. 

4.4 Kummer's Fields. ---------------
~ef.!!!.!~.!.Q!!: If E contains a primitive n-th root of 

unity, any splitting field E of a polynomial(~~ a 1 ). 

( -yf1 ,... '\.2) • • ( x? - <\.) Wh~re ai € f' for i :::" 1, 2, ~ •'•, r 

will be called a Kumm&r_~~~!!§iQB_.Q!_E, or a ~~illm~I-f!eld. 

THEOREM 4.4.1: If E is a Kummer field then: (1) E --- - __ _....._ - ---------------
!~ a !!.Q,nnal. ~!.!£!!§!2!L.Q.f F , ( i 1} lli_g r9YI? G 2£ E 2Y~ F ,!;~· 

~:2!=1l:!M!, (iii) :!!he leaf1LQ~Q!L!!!.!:!l t.!I?ie_2f_.:tl!!L2!Q§!.§_Qf 

!!!e ele~!tl.§_2! G is a di viso.r_gf n, wher~ n !§_j:!.Q~_.QI£~£-2! 

~~.!~!~~-!22~2!-~~1-.!!! F. 

~2£: If~ contains a primitive n-th root.of unity, 

we prove that n is not divisible by the characteristic of-F. 

For, suppose F has characteristic p and n = qp. Th·en yP - 1 

= ( y - 1) p since. in the expansion of ( y - l) I? -each coef­

ficient other than the first and.last is divisible. by p and 

thus is equal to zero. Thus 

and 7!1 - 1 cannot have more than q distinct roots. But we 

assumed that F has a primitive n-th root of unity and so 
· 2 n-1 n l,e,e , ••• ,e are n distinct roots of x - 1. It follows 

that n is not divisible by the characteristic of F. For a 

Kummer field E, none of the factors :rt - ~i, ~ i i= 0 has· re­

peated roots since the derivative, n~-l, has only tha ._root 

0 and has therefore no roots in common with -yf1 - a. . Thus, 
~ 

the irreducible factors of x? - ai are separable, so that E 
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is a normal extension of F. 

Leto<i be a root of :x? - ct.i in E. If e1 ,e
2

, ••• ,e
0 

are the n distinct n-th roots of unity in F, then ol..i e1 ,o<1 e 2 , 

••• ,~1en will ben distinct roots of xn- ~1 , and hence 

will be the roots of :x:Il- a
1

, so that E:::: F(o(
1

,«
2

, ••• ,oc:r). 

Let S and T be two auton:orphisms in the group G of E over 

·F. For each o(.. i, both S and T map «..
1 

on sot:"e other root of 

x0 
- a.

1
• Thus T(o<..1) ::: eiTo<i and S(o<: 1) -:::: e18 .tll..i where eiS 

and e
1
T are n-th roots of unity in the b~sic field F. It 

follows that 

T(S(o<i}) ::::- T( 6 iSo(i) = eiST(o<.i) ~ eiSeiTo(i = S(T(cX'i)) • 

Since S and T are commutative over the generators of E, 

they commute over each element of E. Hence, G is abelian. 

If S E G then S(o{i) = eiSc<i, S
2

(0(i) :::::: e~S i' • • • • 

Thus, s 0 t(D(i} = o( i for ni such that e~8 -= 1. Since the 

order of an n-th root of unity is a divisor of n, we have 

n
1 

a divisor of n and the least comffion multiple m of n
1

,n 2, 

••• ,nr is a divisor of n. Since 3m(o<
1

) = O(i fori= 1,2, 

••• ,r it follows that m is the order of S. Hence, the or-

der of each element of G is a divisor of n, and thus, the 

least common multiple of the or.llers of the elements of G 

is a divisor of n. This proves (iii). 

<l£!:ol~rl: lt E !.L,~e_iill.!_it_t!:Q.fL.!:!.§.ld 2.!: xP - d, 

~~£ p !.2._~_E.r_im§..a..~9-. F Q.Q!!.iBill§...§._R!:imi tiy~ p-~Q !22:!! 

2!_!!ni ty.a._:!!h~~her E :: F !!!l_C! xP -a .§2];i t§_in F, or 

xP - 0.. is ~!T.§dU£!£J&_2~ F .!!!!S_:!!£~_£r,Ql:!JL of E Q!~.!: F is 
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£X£11£_.Qf_Q£g~£ P· 

~I.QQf: The order of each element of G is, by Theorem 

4.4.1, a divisor of p and, hence, if the element is not the 

identity its order must be p. If~ is a root of xP -a, 

then o<,eQ(., ••• ,eP-1ot are all roots of xP -a so that F(Q(.) = E 

and ( E/F) !:: p. Hence, the order of G does not exceed p so 

that if G has one element different from the unit, it and 

its powers must constitute all of G. Since G has,p distinct 

elements and their behavior is determined by their effect 

on o(, then o( must have p distinct images. Hence, the irre-

ducible equation in F for«... must be of \iegree p and is 

therefore xP - ~ = 0. This completes the proof. 

~~f!B1~12ll: Let c1 and c2 be ~har8cters mapping a 

group G ig~ a field E. If c
1 

maps S on a
8 

and c2 maps S 

on b
8

, then C·
1
c

2 
is the character which rna!Js s on a

8
b

8
• 

1~~~-1~~~E= ~! E 1§_~_ll.Q!m~1-~~~§ll§12B-.Q!_~_f1§1£ 

F, ~!!.Q~~-££QEE G Q!~ F i.§_ab§J:iag..l_~g F .QQntaig.§_!L.2£im-

1~iY~ r-~h-I.QQ!_Qf_~n1~1-~h§£§ r !§_~he le~£1_££mmQll_ill~1~-

1£!~_2f-~h~_.Q!Q~£.§_.Qf_~1~ill~!!!.§_Q! G, ~h§!!_~g~_gr~]_Qf_£har­

~.Qter~ X of G in!Q_!h§_BKQ~]_Qf r-th_rgot§_.Qf_~ni!x_i8_l.§­

Q~2!.2hi!L!.Q G , ~.s!_!Q_.§~.Qh S of G , if S j I , ~h~~.:eE12~.§­

~£h~£.§.Qter c 2f x .§~£h_.!:n&! c{ s) =t 1. 

Prggf: As in Theorem 3.2.6 we may express G as the 

direct product of the cyclic groups G1 ,G 2 , ••. ,Gt of orders 

m1 ,m2 , ••• ,mt such that m1 lm2 l ... I mt. Each S of G may be 

written S = sr1.s~:t ... S~t where Si is a generator of Gi. 
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We will denote by Ci the character which sends Si into ei, 

a primitive m1-th root of unity, and Sj into 1 for j not 

equal to i. Let C be any character. Now 

[c(s
1

>]mt-::::: c(s~L): c{I) = 1, 

hence C(S1} = e~~, and we have C = cr~.C~2 ..... C~t. Con­

versely, Crl ... C~t defines a character. Since the order 

of c1 is mi, the character group X of G is isomorphic to G. 

If S is not equal to I, then in S =::: sr1.s~~ ... s~t at least 

one vi, say v1 , is not divisible by m1 • Thus c 1 (s} = er1 f 
l, which proves the lemma. 

Now suppose we have the conditions of Lemma 4.4.1. 

Let A denote the set of those non-zero elements ~ of £ for 

which oJ. r E. F and let F 1 denote the non-zero elements of F. 

We see that A is a multiplicative group and F1 is a sub­

group of A. Let Ar denote the set of r-th powers of ele­

ments in A and Ff the set of r-th powers of elements of F 1 • 

With these conditions we have in the follo'.ving theorem a 

method for computing Q. 

!~§QE~-1.:..1:.:.~: !h~ .. f~.Q~2I-~22d12.§ L;./.F'1 l ~£ (Ar/Fp 

~!~-1~2m2!~h1£~Q-~.Qh_2!h~£-~d-~2-1h~-~£2~£,§ G QU£ X. 

P f W, . , r b , • -1 f . d _£QQ_: e map A on 11. y maKJ.ng ....._ o A correspon 

toO(.r of Ar. If arE: Ar, where a~A, then bE. A is mapped 

on ar if and only if br equals ~r, that is, if b is a solu­

tion to the equation xr- ar= 0. But a,ea,e2a, ..• ,er-la 

are distinct solutions to this equation and since e e F1 
and a belong to A, it follows that b must be one of these 
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elements llllcl must belong to the coset aF 
1

. Thus, the set 

of elements of A which map onto the subsroup Ff of Ar is F
1

, 

so that the factor groups (A/F
1

) an~ (Ar/Ff} are isomorphic. 

If~ is an element of A, then 

[o</T(oq] r:::: o<.r/T(o<.r}:: o~..r/oJ..r = 1, 

for every automorphism T of G. Hence, ~T(~) is an r-th 

root of unity and is in F 
1

• By Theorem 4. 3. 2, o<.. defines a 

character c.,__ of G into F such that C«(T) == CI(/T(cx:). vie map 

~on the corresponding character C«. E~ch character Cis, 

by Theorem 4.3.2, the image of someo<.. Also, cx.Q(1 defines 

the character col.c(• such tha.t co(.ot•('l'} = o(o<.1T{at.o<. 1
) = 

o(.o<'/T(o<).T(o<. 1). By definition, Co(oc.•(T)::::: Co((T).Co( 1 (T), 

so that the mapping is a homomorphism. The kernel of this 

homomorphism is the set of those elements « for which 

~/T(«) = 1 for each T, hence is F1• Thus, (A/F1) is is­

omorphic to X under the mapping of the coset o<F 
1

, of (A/F 
1

) 

on the cha.racter Co< defined by Col(T) =~/T(o<'). By Lemma 

4.4.2 X is isomorphic to G. This proves the theorem. 

!gEog~~-1~1~1= I! E !§_~_§!~~g§!gg_f!~!g_QY~£ F, 

~g~~ E !E-~~~~f-f1~!g_if_~g_Qll1l_!f E i§_llQ!m~l~-!~§ 

BfQ~E G l§_~£~1!~-~Q F £2ll1~!ll§_~~rim!~iY~ r-th_£22~-e 

2f-~n11l_~g~~ r 1~~g~-1~~~-£2-IDillQll_ffi~1ti~!~_2f_~he_grg~~ 

2f-~h!L~1~~~~!L2f G • 

EI22!= The necessity is proved in Theorem 4.4.1. 

We prove the sufficiency. Relative to the group A, let 

Since o1... belong 
~ 



to A, we have o<.f == ai €:. F. Thus, oli is a root of the 

equation xr - a
1

-:::: 0 and since eo(i, e 2 o(.i, .•• , er-la<.i are 

al~o roots, xr - a must split in E. :,~e prove that .E is 
i 

the splitting field of (xr- a
1
)(xr- a

2
) ••. (xr- at), 
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that is, we must show that F(~ 1 ,0('2 , ••• ,Q(t) ==E. Suppose 

that F(o( , o< , ••• ,o< ) =/= E. Then F(o<
1

, ••• , o<t) is an inter-
1 2 t 

mediate field between F and E, and since E is normal over 

F(ot.
1

, ••• ,a<t) where [E/F(o<
1

, ••• ,o<'t)] > 1, there exists an 

automorphism T of G, T :f. I, which leaves F(o<. 
1

, ••• ,oc't) 

fixed. By Lemma 4. 4 .• 2 there exists a character C of X 

corresponding to an element T E G for which C(T) -::/= 1. 

Finally, there exists an element ~in E such that C(T) 

-::::o</T(o<) =f 1 •. But o<r·belongs to F
1 

by Theorem 4.3.2, 

hence o<. belongs to A. Also, A is contained in F(o<.
1

, ••• ,o(t) 

si~ce all the cosets ~iF l are contained in F(~, ••• ,o(.t). 

Since F(~ , •••• ~) is by assumption left fixed by T, 
. 1 . t 

T (0() = o<. which contradicts o</T(«) =/= 1. Thus, F{ot
1

, ••• ,o(t) 

= E which completes the proof •. 

Q£!2ll£!!I: !! E .!.§_!!~.Q!I!lal ~xten~.!2!!~.2! F, .2! 

J2Iime ord~r p, ~_!! F .22!!~1!l!L!LJ2Iimill,y~ p-~!L!2~-2t 

Ynitz~ t~a E ~-the_spliS~!ns_!~l~ o1 ~-!rred~!]l! 

pQll!!Oll'f~!! X P - a !!! F. 

E!Qg!: E is generated by elements ~1 ••.. ,~n where 

QC.f belong to F. Let o£.
1 

be not in F. Then xP.- a is i r­

reducible, for otherwise F(ol
1

) would be an intermediate 
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'field between F and E of degree less than p, and by Theorem 

2.1.1, p would not be a prime number, contrary to assump­

tion. Thus, E = F(~1 ) is the· splitting field of xp - a. 



CHAPTER V 

' .·EXTENSIONS AND INTERSECTIONS Of FIELDS 

5.1 Primitive ~~!ension~. 

Def\p!!!Qs: If an extension E of F is generated 

by a single element, it is called a 2r~it!v§_§~sion. 

'l;'t!EQRg_5.l~l: U.!!l!!L§.!tens!2!l E Q! F !.!LR.r~m!­

ti ve over F !! yd only if th§re an-2!!±I .L!!u!te !L~ 

of intermediate fi~. 

Proof: (a) Let E = F(o() and let f( x) ::::. 0 be the 

irreducible equation for o<. in F. Let B be an 'intermed­

iate field and g(x) the irreducible eq~ation foroe in B. 

The coefficients of g{x) adjoined to F Ydll generate a . 
field B' between F and B. Since g(x) is irreducible in B 

it is also irreducible in B'. Since E = B1 (~} we see that 

(E/B) = (E/B'). Thus B = B', so that B is uniquely deter­

mined by the polynomial g(x). But g(x) is a divi~or of 

f'(x) in E, and there are only a finite number of possible 

divisors of f(x) in E. Thus, there are only a finite num­

ber of possible B~s. 

(b) Now we assume there are only a finite number of 

fields between E and F. IfF consists only of a finite 

number of elements, then E is generated by one element (of. 

Corollary to Theorem 3. 2. 5). Thus, we may assume F has an 

infinity of elements. We prove: To any two elements «, ~ 
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in E there is a '( in E such tliat F(o< ;p) = F(¥). Let Y :: ()(. 

+ a~ w1 th a in F. Consider all the fields F( lS') obtained 

in this way. Since we have an infinity of a•s, there exist 

two, say a
1 

and a
2

, such that the corresponding ~·s, ¥1 = ol 

+ a1~ and -;
2 

:=. ~ + a2~, give the same field 1( ¥1 ) :::: .F( t 2). 
" 

Since both:¥
1 

and ~2 are in,F(c¥'
1
), their difference is in 

the field F(¥
1

) and thus ~is in the same field. Therefore. 

¥
1 

- a
1 
~ = o<. lies in F( V

1
). So F(cX, Pl is contained in F( ~1). 

But F( l'
1

) is contained in J'(c(,p) and therefore F{o<.,/3) :::; F( ¥
1
). 

Select now 7J in E in suoh a we.y that [IPt-., )/:F] is as large as 

posai ble. Every element "A of E must be in F(1')) or erse 'W$ .. 

could find an element S such that F($) = F(,,~) contains 

both 'f1 and A and [F(I)/F] = [F(i)/F(1Jl] [:rt-rrl/F] -> ~(lJ)/.FJ. 
Thus, E = F(~) which proves the theorem. 

!fliQRDI 5.1.2: U E = .F(c:X1,«
2

, ••• ,~) is a finite 

ntansion of t.Q!it fie+gl, ~ c:X1 , ••• ,o(n are se~J!.!'.le ele­

ments in X ~}!en_ll!§re, exists. ,!__Rrimi ti ve 9 Sl! E .§Y~.l.Ll!!~ 

E :::: F( 9). 

Proqi[: Let t 
1
( x) be the irreducible equation· of o<i 

in F and let B be an extension of E that splits t 1( x) t J x) • 

•• r (x). Then by Theorem 3.4.3 B is normal over F and con­
n 

'tains only a finite number of intermediate fields. So tbe 

subt1e1d E contains only a finite number or intermediate 

fields. Theorem 5.1.1 now completes the proof. 

'l'HEORDI 5.1.3: If E is a nomal extension of F and - . ...... ... ... _........,_._ ---- ___.... 

'!' T ••• '1' are the element& of its grou_p G • there is an_ • 
1' 2' ' n -= •• • ·- · -=·· ...... 



.!lem!~ ~ ,!B E §!!.2h that. ttl~ n ~lemen1§ T
1 
(~) ,T2 ( ~) , ••• , 

Tn {~) ~!!~.r.!Lindependent w,!!h ,r~~~~-1:.2 F. 
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Pro£!: Since E is normal over F, E is a finite ex­

tension or F:..,. and by Theorem 5 .1. 2 there 1 s an CJ{ such that 

E = F(~). Let f(x) be the separable equation for~, put 

T (cC):::. C(. , where o. =f oe when 1 f: j. Let f( :x) ::::: { x -a<) h( x) • 
i i i j 

Then "f'(:x) = (x -oC.)h'(x) + h(x) and f'(o(.) = h(«) ;j= 0. Let 

g(x) = f(x)/(x -o<.)"f'(o<) and gi(x) = T
1

(g(x)] ·= 
f(x)/(x- ~ )f'(~ ). Now g (x) is a polynomial in E having 

1 i i 
« as root 

k 
( 5.1.1) 

t:or k f=. 1 and thus 

for 1 :f: k. In the equation 

{ 5 .1. 2) g ( x) + g ( x) + . . . + g ( x) - 1 == 0 
1 2 . n 

the left side is of degree at most n - 1. If equation 

(5.1.2) is true for n different values of x, the left side 

must be identically 0. Such n values are ~1,~, ••• ,~, 

since s 1<o~..1):::: 1 and gk{ot..
1
) = 0 for k:j.: i. Multiplying 

(5.1.2) by g
1
(:x), and using (5.1.1), we see that 

( 5.1.3) (s i( xq2 = g 1( x) r mod f{ x)]. 

We next compute the determinant 

(5.1.4) D(:x) := 'TiTk(g(x)] \, i,k = 1,2, ••• n, 

and prove that D(x)~ 0. If we square D(x) by multiplying 

column by column and compute its value (mod f(xij we get 

from (5.1.1),(5.1.2),(5.1.3) a determinant that bas 1 in 

the diagonal and 0 elseWhere. Therefore (n{ x) 12 ::: 1 (mod f'( x)) • 

D(x) can have only a finite number of roots in F. Avoiding 



these finite roots in F we can find a value a for x such 

that D( a) j 0. Now set ~ :=. g( a). Then the detenninant 

(5.1.5) lTiTk((3)';:::: l'l'iTk (g(a)1 \:: D(a) ==/: 0. _ 

Consider any linear relation "X)_ T1 <PJ + ~T2 ([3) + ... + 
:x T ( ~) := 0 where the x

1 
are in F. Applying the autoDJor-

nn 
phisms Ti to it would lead to n homogeneous equations for 
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then unknowns xi. Equation (5.1.5) shows that ~ =- 0 and 

our theorem is proved • 

.-.5_. 2;;..;::I_n_t§rs~~!.Qlli!...QL~~. 

Let F be a field, p(x) a polynomial in F whose ir­

reducible factors are separable, and let E be a splitting 

field for p(x). Let B be an arbitrary extension ofF, and 

let Ea be the splitting field of p(x) when p(x) is··taken to 

~t in B. If Q(l ,"'2 , ••• ,~ are the roots or p( x) in Ea, 
then F(C(

1
, ... ,c<.

8
) is a subfield of~ which is a splitting 

field for p(x) in F. By Theorem 3.1.5, E and F(~1 , ••• ,~s) 

are isomorphic. In the following work we take E -:::: F(o<.1 , ••• ,«
8

) 

and assume that Eisa subfield of EB. Also, EB= B(~1 , ••• ,~8). 
Definition: E f'\ B denotes the intersection of the .....,__...._ _____ 

fields E and B. 

Now E 1'\ B forms a field, for if a, b belong to E and 

to B then ab belongs to E and ab belongs to B and thus be­

longs toE A B. Also if a,b belong to E,B then a-1,b-l 

belong to E,B and therefore belong to E 1'\ B. Thus E .A B 

is a field whiob is intermediate to E and F. 

THEORJ!14 5. 2.1: !! G !§ _ _t.Q~_grO:BL2Ll!Y~.t'Qhism§ · 
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. g! E gver 1!, ~ H jt~ B.IQY1L.2! ~ ~ B, lli!! H .!~i§.Q­

morphio l2_!B!_~B£r0Up of G bav!PS EA Bas its fixed field. 

:Pro.2!: Each automorphi·sm of EB over B simply permute-s 

~, ••• ,~8 in some way and leaves B fixed, ~d thus also 

F C B fixed. Since the elements of ~ are quotients of poly­

nomial expressions inQ(
1

, ••• ,oc. with coetf'ioients in B, the . s 
automorphism is oompletely determined by the permutation 

it ef'feots on~1 •••• ,~. Thus, each automorphism ot ~over 

B defines an automorphism of E ~Fc~1 , ••• ,~) which leaves 

F fixed. Distinct e.utomorphisms, since o'l, ••• ,Q{s belong to 

_,,E, have different effects on E. Thus, the group H of ~ 

over B em be considered as a subgroup of the group G of :B 

over F. Eaoh element of H leaves E (\ B fixed since 1 t 

leaves even all of B ri~ed. But, any element of.E which is 

not in E A B is not in B, and hence would be moved by at 

least one automorphism of H. Therefore E fl B is the fixed 

field or H, which proves the-theorem. 

Q.Q,ro~l!l.rz: !L U!!W-!!:!!_con~.!lions of_!!:!,!!2r~ 5.1.:&, 

~&:Sml2 G .!!t . .9.!_R.r!!~...Q.rg!£ p, l!!~~!the_r H = G 2.r H .Q.2!1-

s1sts of-!a~-BB!~-~~~ent alog~. 

f!2£!: Since the order of H divides the order or G 

which is of prime order, then the order of H must be p or 1. · 



PART II 

APPLICATIONS OF THE GALOIS THEORY 



Cfl.AP'rER VI 

A CRITERION~FOR SOLVABILITY BY RADICALS IN FIELDS OF 

CHARACTERISTIC 0 

6.1 Solvable Grou~s. 

For our-discussion on solvability we need the follow­

ing group theoretic results. 

TI!&'OR~_.§.:..!.:.!: !! N is ~ norm~!....ID!!?sr.ouR of tae 

~2Yl2 G 7 th§!l th~__m!!~l?!!!.S g 4~ is a homo!!2!l!hism of G gn 

~ge factQ~-~~g~ G/N call~g the_aatural_~g!omor~41.~. 

~!.Qg!: If N 1 s a normal subgroup of G , then 

g1l::. Ng for all g in G. Let g,h € G. If g_.~ and b ..-,bN, 

then gh_.(~)(bN) = g(Nh)N == (gh)N. Thus g~gN is a homo­

morphism of G on· the factor group G/N. If N is a proper 

subgroup of G, the mapping is a many-to-one mapping. 

TflEORI!}.i 6 .1. 2: TI!.!L.!~£!L~ the i!!.!~.!L!m~~.!LQ! 

, ~-!l2I!r!§:.! suberoup !!nder a group_hom.Q!!!.Q!:Rh!~ G -+G' ,!s a n.Q!­

mal sub.sro!!J2. 

Proof: Let g e G where G is a group, and let n € N 

where N is a normal subgroup of G. Then gJi = N-g or gtig-1 .::::: N. 

Let g-+ g 1 
, where g ~ G and g 1 f:. G 

1 
• Since the mapping is 

homomorphic, g' ( g-1)' = ( gg-1)' = (e)' = e' , and hence 

( -1 ( ) -1 -1 t -1 I i 1 N N' g ) ' ;::;: g' , i.e., g ..--=,. g • n part cu ar, ~ , 

where N' is a subgroup of G'. Now fffS ~g'N'. But gN = Ng .--. 

N'g'. Therefore g'N'::::: N'g' and N' is a normal subgroup of 
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G'. Conversely, if N' is a normal subgroup or G', we .wish 

to show that N is a normal subgroup or G. Let N be the set 

of elements which map on N'. Now e, the identity of G is 

mapped one'. But e'eN', thus e is inN. If nisin N, 

then n-l ......... (n-1) • = (n') -l ~ N', so tbat n-1 ~ N. Thus N 

is a group of G. Let g·be any element or G. Then gtij"g-l___._ 

g'N' g' -l = N'. Thus gNg-l 5,; N. Simi-larly, g-1Ng ~ N, and 

this implies that N £ gNg-1 • Thus g]ig-1 ::= N and N is a nor­

mal subgroup of G. 

!!illQRE~L2.:.k~: !! g ~g' !!_!!_hom,g!!!,g.!:i?.h!§E_.2f the 

£r.2YR G .2!! .G', N !.§__~ normal s1!]grg_up of G, N -+N', ~ 

T 1~ ~he mapping: gt: -+g'N' , !"!!er~ g E. G, g' E. G' , 1illm T 

f~ a homgmorphism of tg~ fa£!.Q~group G/N on the factor 

e;rou:2 G' /N'. 

Proof: If f!JSi ~g'N' bN --;.h'N' then 
- - t , 

(gN)(hN) = ghN ..-.(gh)'N' = g'h'N' = (g'N')(h'N'). 

Thus the factor group G/N is mapped homomorphically on the 

factor group G'/N'. 

9.2!2llarx: !Llhe !a.Y..t£~!!~.6!L£! N' !§ N, ~ 

!!2!!!2!!tQ!I?f11§!!! G/N ~G' /N' _!s an !~!J2!!1sm. 

!:rgQf: Let ~ -+g'N', hN ~h'N' = g'N'. Then 

( g') -Jn'N' = N' end ( g') -lh' lies in N'. Thus g-1h is in N, 

and h is in ~. Therefore gN = hN. 

Definitio~: If U and V are subgroups of G, UV is 

the set of all products uv, with u e U and v E V. 

Definition: By (U A V) we denote the distinct -- -
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elements of U which also belong to v. 
THEQ.~_§.!l;~: !.! U ~g V ~~g,ro~~_2.!-~ .. grouR 

G, 01 ~ v 1 norma! ~ubg!.Q:!!~! u ~,g v, m:2~£j1U!4' 
' . 

j1h!!l.the to!lmY!ruLj1h,r~facto,r_gr.QyM~.!U~~.2.!Rh!.g: 

u 
1 

( ~ "v) /u 
1 

c u " v 
1

) , v 
1 

( u f\ v) ;v 1 { u1
n v > , ( u n v > 1 ( u 

1
n v > ( v 1 f1 u l • 

. f.!.Q.Qf: If a E U f't V, then a(U 11 V
1

)a-1 .£ U 11 v
1

• 

But a-l(u n v
1

)a ~ u r. v
1 

implies that (U I)V
1

) ~ a(UI\Vi)a-1 • 

Thus a-1(u f\V
1
)a= U AV

1
, and u ll v

1 
is a normal subgroup 

o-r U 11 V. Let S map U on U/U 
1

• We call S(U I) V) .:: H and 

S(U " V ) = K. Then s-l(H) : u
1

(U 1'\ vfi) and s-1 (K) = 1 . 

U (U 1'\ V ) from whioh it follows from the Corollary to 
1 1 . 

·Theorem 6.1.3 that u
1

(u A V)/U
1

(u AV
1

) is isomorphic to 

H/K. But if s is defined only ove.r U () V, then {of. (9 
s-l(K) = (U

1 
() V)(U 11 V

1
) so that ((u fl V)/(U

1
/\ V}(U I) V

1
)J . 

is also isomorphic to H/K. Thus the first and third factor 

groups aboveoare isomorphic to each other. Similarly, the 

second and third factor groups are isomorphic. 

22!21!!!I-1:.!! H !~~-2~B!2EE~d N ~-B~~!_~­

s.roup OL1l!.!L£!2l!l! G , ~.!m H/H (\ N !§_~or.12!!~2 BN/N , · 

!LE~Sr2ElL2! G/N • 

!!.!:22!: Set G -:: U, N :: U 
1

, H = V and the identity 

e =V
1 

in Theorem 6.1.4 and the proof is imffiedi~te. 

9.2!2.llYz-E: gng~.r th!_£2S.i!.!.:!:!2!!]-2!_Q2£21!ari_!, 

!!.GfN !§~~!1!§ll~_§2_al§Q_is HLH~~--------------------­
<Dsuppose u -...uu1 c. H. Thus uU2 = u~U1 , where uv c. (U "V). 

Since uUs. :> u, u : u"u,_, where u1 c. U1 , and thus u c 01 ~U 1\ V~. 

fl 
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E!QQ!: By Corollary 1, if G/N is abelian so is 

HN/N, a subgroup of G/N. But H/H AN is isomorphic to 

BN/N, so then also· is H/H AN abelian. 
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~[igi~!2n: We call a group G solvable if it con­

tains a sequence of subgroups G ::. G ;, G
1 

:> ••• ;J G = e, 0 . s 

each a normal subgroup of the preceding, and with Gi_
1
/Gi 

·abelian. 

!g~QR~-§~!~£: ~I-~Es!2~] R 2!_!-~2!Y~!~_sroup 

G is solvable. _____ _..,.. ___ 

Hi-l = H of Corollary 2, Theorem 6.1.4 then Ri_
1
/Hi is abelian. 

~~~§~: IB~gegm2rR£!£_!ma~_of ~-~qlva~!§ 

S!2~1~ solvable. 

Pro2!: Let S(G): G', and define S(-Gi)::: Gi, where 

Gi belongs to a sequence exhibiting the solvability of G. 

By Theorem 6.1.3 there exists a homorphism mapping Gi_
1
/Gi 

on Gl_
1
/Gi· But the homomorphic image of an abelian group 

is abelian so that the groups Gl exhibit the solvability 

of G' whioh complet~s the proof. 

~!B!!12n: Any one-to-one mapping of a set of n 

objects on itself is called a ;g~rml!~!!l12!! where the pro9-u.~ 
. 

of such permutations is a successive application of the 

mappings. 

Y§!.!n1ti2n: The set of all such mappings of n ele­

ments forms a group, called the ~etric group of degree n. 

We will let then objects be the numbers 1,2, ••• ,n. 

-.... ;. 
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We will let (123 ••• n) be the mappingS such that S(i) := 
1 ~ l(mod n) ·and generally {ij ••• m) is the mapping T such 

that T(i);: j, ••• ,T(m) = i •. If (ij .... m) has k numbers, then 

we call ( ij ••• m) a k-cycle. If T = ( ij ••• s) then we see 

that T-1 ~ (s ••• ji). 

~~~6.l..:..Z: !L.!L§UbgrouJ2 U .2L~~_§J:!!!~~!!.Q..s.!.QYJ2 

Q!_des!~! n > 4 £2B~~!£g_~!~I 3~zq~~-2f-~-!~~ 

grqy£-2!_.2!8~ n, ~,g i! U 1 !.§~~-!!.Q!B!!:!..:~lli:5!.2BJL • .Q! U §!:!.£}! 

th~~ U/U1 !.!L~lim!.L-~~E: u1 .Q~!!!!!!L.!!!!!.!I 3-~le. 

Prg.Q!: Consider the natural homomorphism U ....... U/U
1
= U', 

and let u ::= ( ijk) and v -::: ( krs) be two elements of U where 

i,j,k,r,s are five distinct integers ~ n. If u---t>u', 

v .....,.v, , then u-1~-1uv ~u' - 1v• - 1u• v' ;::: e' , since U' is 

abelian. Thus u-1 v-1uv belongs to u
1

. But 

u-lv-luv :::.(kji)(srk){ijk)(krs) :::: (kri) 

and for each k,r,i, we have (kri) belongs to ul. 

!§!O_fi!M 6.1.8: The SY!ffi~~ric_B!OU~ G .Q!_g~e~ n 

i~~~~hle fQ! n ~ 4. 

Pr.Q_2.f: If there were a sequenc.e exhibiting the sol­

vability of G, since G contains every 3-cyc1e so would each 

succeeding group, by Lemma 6.1.7, and the sequence could·. 

not end with the unit. 

~..:.~ So1ution_o!_~guations ~I-~~~~· 

QefinitiQg: The extension field E over F is called 

an extension by radicals if there exist intermediate fields 

F::: B
0 

C B1 C. B! C ••• C. Br :=. E and B1 =:: B
1

_
1 
(~) where 
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eachc<
1 

is a root of an· equation1or the form xn1 - a
1

_
1

:: 0, 

where a1_1 is in B1_1 , 1 = 1,2,:-·•r. 

~!nitiog: A polynomial f{x) in a field F is said 

to be solvable by radicals if its splitting field lies in 
' 

an extension or F by radicals. 

In the remainder of this article !~-~~Ym!• unless 

stated otherwise, ~j!~§..B~!UL!!!M F )!!!!L£B!!!acterl!!!£ · 

~' and that F contains as many !Qg1!._gf' uniy as are 

needed. 

~!!!!.!!....2~.:.!: !!!L~!l~!2!!-2f F :QLrad~£!1!!. can 

!!~Is b!!_ID~.!!!.1_~~~ .. ~Jt!!ill:2!! or F Jl.Lradiclli. 't!hi~g 

is normal over F. ___ ...._ __ _ 
Proof': Le..t E ~ B :> B l, ••• ~ B

1 
::::= F(-<-

1
) ';:) B . =.F. 

----- r r- : o 
B

1 
contains.-

1 
and also eoc.

1
,e2-)_,····A-li, where e is 

any n
1
-th root of unity. Thus B

1 
is the splitting field,. of 

A - a ,, a E F and by Theorem 3.4.3 is therefore a normal 
0 0 

extension of B •. If r
1

(x) = 1J (x02 
- T(a

1
>], (a

1
' E: B

1
), 

where T takes all values of the group of automorphisms of 

B
1 

over B 
0

, then r
1 

is in B 
0

, and if we adjoin succe·ssi very 

to B
1 

the roots of xn2 - T(a
1

) for each T we get an exten­

sion of B
2 

which is normal over F. Continuing in this way 

we arrive at an extension of E by radicals Which will be 

normal over F. 

!f!!QR!1d_§~.=.,g: !h!LR21z!!omi!!l f( x) !.§_sg!vabl~ 

!!!.!.U.£!1!..1!-~d_QB~l !!_!~_t£up is sol!~· 

------- Proo:r~~~~E~!l!l_!!_£2lv~~1~-by r~~~!~~-~!~ 
1 n· We say that B is a pure extension of Bi-l if x 1- ai-l = 0 is irreducible. i 
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E be a normal extension or F by radicals containing the 

splitting field B of f(x), and call G the group of E over 

F. Since for each 1, Bi is a Kummer extension of Bi-l' 

the group of Bi over Bi-l is abelian by Theorem 4.4.1. 

Since G is the group of E over Bi. _
1 

and B
1 

is a normal 
8 i-l 

extension of Bi-l then in the sequence of groups G = GB ~ 
0 

G :::> ••• :::> G ::. 1 each is a normal subgroup of the pre-
Bl Br . 

ceding. But G /G is isomorphic to the group of B
1 

over 
. 8 i-l Bi -··· . 

s
1

_
1 

and hence is abelian. Thus G is solvable. Now c8 is 

a normal subgroup of G, and G/G
8 

is isomorphic to the group 

of B over F, and is therefore the grpup of the polynomial 

f(x}. But G/GB is a homomorphic image of the solvable group 

G and hence is itself solvable • 

. Conversely, let the group G of f(x) be solvaple, and 

E be the splitting field of f(x). Let G = G :::> G
1 

? ••• )G = 1 o r 
be a sequence with abelian factor groups. Let B

1 
be the 

f-ixed field for Gi. Since Gi-l is the group ot E over Bi-l 

and Gi is a normal subgroup of Gi-l' then Bi by Theorem 

3.4.8 is normal over Bi-l and the group Gi_rfGi is abelian. 

By Theorem 4.4.4 Bi is a Kummer extensio~ of Bi-l' and by 

definition it is a splitting field of a polynomial of the 

form ( xll - a1) ( :x:I1 - a~) ••• ( :xll - a~) • By forming the suc­

cessive splitting fields or the :xl1 - ak we see that Bi is 

an extension of Bi-l by radicals. Therefore E is an exten-

.slon by radicals ofF which completes the proof. 

§.:.~_';t'he_g~~~-~.9\!B~i.Q!! 2!..!2~B!~~ n. 
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If F is a field, the totality of rational expres­

sioBs in the indeterminates u
1

,u
2

, •.• ,un with coefficients 

in F is a field F(u
1

,u2, ••• ,un). That is, every element in 

F(u
1

, ••• ,un) is the quotient Q(u1 , ••• ,ttn} of two polynomials 

R ( u1 , ••• , un) /S( u1 , ••• , utt) with coefficients in F. 

Q~!!!i!llgn: We define the ~!!~~!-R.2.!l!!Q~!~L2! 

~!S!~ n aS' 

(6.3.1) 
. -1 

f( x) = :xD. - ulxll ;- ••• + ( -1) nun. 
!~Q~-~~~~: !! E !~_th~-~Q!!~~B-!!~!Q_gf_!!!~ 

· B211!!2Pl!!!! f( x) !n .< 6. 3.1) .Q.!~.! F( u 1 , u 2 , ••• , un) !!'!~!L!!'!~ 

B:r:<>UJL.9! E .QY!rr F(u1 ,u 2, ••• ,un) is th~~~t!!.2-Bi.2~~· 

!:!.gg!: If v
1

, ••• ;vn are.the roots of f(x) in E, 

then u1= v1 + v 2 + ••• + vn, u 2 -:::v1v 2 +v1v3 + ••• +vn-lvn' 

••• , un = v
1
v2 ••• vn. We let F(x1 , •.• ,xn) be the field gen~ 

erated from F by the variables x1, .. ~,xn. Also we let 

~ = xl + ... + xn' ~2 =- xlxZ. + xr3 + ... + :xn-lxn' ••• , 

~ = x1x 2 .•• xn be the elementary symmetric functions, that 

is, ( x - x
1
)( x - x

2
) ••• ( x - ~n) .:::. :xn - o<1xn-l + ... + 

( -l)n~ = f*( x). If g(e>)_, ••• ,~) is a polynomial in o(l •"'2, 
••• ,~ and if we have 

n 
( 6.3.2) h(x

1
, ••• ,xn) = g( $xi, ~x1xk, ••• ) = O, 

then relation (6.3.2) would still hold if the xi were re-
, Tl 

placed by the vi. That is, g(~v.,~vivk, ••• ) would· 
' l. 1.'-<-k. 

equal zero or g(u
1

,u2, ••• ,un) would equal zero which im-

plies g is identically zero. Thus g(cx1 ,o(2 , ••• 'o(n) ~ 0 

only if g is the zero polynomial • 

• 
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We set up the following correspondence between 

.Ftx1 , ••• ,o<n) and F('\,u2 , ••• ,un). Let f(~, ••• ,un)/g(,~, ••• ,un)' 

an element of F( ~, u2 , ••• , un) , correspond to r(c(1 , ••• ·~) / 

g(Q{l, ••• ,oin). This ·correspondence is a mapping of .F(u
1 

,u2 , ~ •• ,un) 

on all of F(o(
1

, ••• ,~). Now if 

(6.3.3) f(c£
1

, ••• ,~)/g(ol1 , ..... o(n)=f1 (ot1 , ••• ,~)/g1 (oc1 , ••• ,otn)' 

then f~ - gf
1 

== 0. But, by the above discussion, equation 

(6.3.3) implies that 

f( u
1

, ... , un) • g
1 

( u
1

, •.• , un) - g( u
1

, ... , un) • f 1 ( ~, ••• , un) = 0 

so that 

f(~, ••• ,un)/g(ul, ••• ,un) = fl(~, ••• ,un)/gl(ul, ••• ,~). 

Thus we have a one-to-one correspondence and thus the map-

ping of F(u
1

, ••• ,un) onto .!'(oe-
1

, ••• ,~) is an isomorphism.• 

. But under this correspondence f( x) corresponds to r*l x) • 

Since E 'llld F( x
1

, ••• ,xn) are respectively splitting fields 

of f(x) and t*(x), by Theorem 3.1.5 the isomorphism between 

F(u1 ,u2, ••• ,un) and F(~1 ,•2 , ••• ,~n) can be extended to an 

isomorphism,between E and F(x1 , ••• ,xn). Therefore, the 

group of E. over F( u
1

, ••• ,un) is isomorphic to the group 

of F(:x_, .... ,x ) over F(«
1

, ••• ,D( ) • 
. i n n 

Each permutation of x1 , •.. ,xn leaves~1 , •.. ,~ 

fixed and, thus, induces an automorphism of J'( x1 , ••• ,:xn) 

which leaves ·F(o<.
1

, ••• ,o<n) fixed. Conversely, .. each auto­

morphism of F( ~, ••• , xn) which leaves F(o<.
1

, ••• , «nl f'lxed 

"* of r (x) and is completely must per.mute the roots x1 , ••• ,x . n 

determined by the permutation it effects on x1 , •• ,xn. 
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Thu_s, the group of F( X]_, ••• ,xn) over F(~1 , ••• ,~) is the 

symmetric group on n letters. But the group of F(x1 , ••• ,xn) 

over F(<x.
1

, ••• ,'\) is isomorphic to the group of E over 

F(~, .•. ,un). Therefore the group of E over F(u1 , .•. ,un) 

is -the symmetric group which was to be proved. 

Q.QI.QjJgn: Th.!LE,;~~.n!-L~guat1Q!!_Qf deB!~ n is n~ 

·§Q!!~ble.bz radi.Q!ll.§_if n> 4. 

_ .frggf: By Theorem 6.1.8 the symmetric group for 

n> 4 is not solvable. Then by Theorem 6.3.1 above, the 

general equation of degree n is not solv~ble by radicals if 

n > 4. This completes the proof. 

£~ Sol!~~_!gua1!2~!_f£!~~~!§~· 

If f( x) is a polynomial in a field F, 1 et <X
1

, ••• , «:n 

be the roots of f(x} in the splitting field E = F~1 , ... ,~). 

Then each automorphism of E over F maps each root of f(x) 

into a root of f(x), that is, permutes the roots. Since 

E is generated by the roots of f(x), different automorphisms 

must effect distinct permutations. Th-erefore the group of 

an equation or the group of E over F is a permutation group 

acting on the roots 0(
1 
,~, ••• cin of' f( x) • 

Q~!n!~!gn: A transformation group G acting on a 

set S is said to be transitive in S if for sl,s2 e; s, there 

is an element g E G such that gs
1 

== s2. 

For an irreducible equation p( x) the group of auto-

morphisms is always transitive in the roots. For let~ and 

ot.' be any two roots of p( x), then F(C>C) and F{oe.') are isomor-
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phio where the isomorphism is the identity on F. This iso­

morphism can be extended to an automorphism of E by Theorem 

;3.1.5. Thus, there is an automorphism sending any given 

root into any other root, which establishes the transiti­

vity of the group. 

De!,!!!!tio!!: A permutation T of the numbers 1,2, ••• ,q 

is called a li!!~!!L~J2st!~:Yll2!! modulo q if there exist 

fixed numbers b, c, { b =j. 0 mod q) , such that T( i) ::!' bi -t- c( mod q) , 

1;::: 1,2, ••• ,q. 

Suppose we let G be a transitive substitution group 

on the numbers 1,2, ••• ,q and let G
1 

be a normal subgroup_ 

of G. Also let 1,2, ••• ,k be the images of one of the num-

bers, say, 1, under the permutations of G1 • Vie say that 

n1 = (1,2, ••• ,k) is a domain of transitivity of G1 relative 

to 1. If i ~ q is any number not in this domain of tran­

sitivity, there is a T of G which maps 1 on 1. Then 

. TG 1T-1( 1):: TG 1( 1) = T(D
1
). Thus T(D

1
) = T( 1,2, ••• ,k) is 

a domain of transitivity of TG 1T-1 relative to i. Since G1 
is a normal subgroup of G, we have G1 ::TG1T-1 • Thus G1(i) 

:T(D1) is again a domain of transitivity of G1 which con­

tains the integer i and has k elements. Since i was arbi­

trary, the domains of transitivity of G1 all contain k 

elements. Suppose g1 ( 1) = h1 ( i) , where g1 ,h1 G. a1• Then 

hl1g1(1) = i, which contradicts our as~umption that no 

element of G 1 maps 1 on i. Thus the numbers 1, 2, ••• , q are 

divided into a colleotton of mutually exclusive sets, each 
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containing k elements. so that k is a divisor of q. T~ere­

fore if q is a prime, either k = 1 and G
1 

consists of the 

identity element alone, or k = q and G
1 

is also transitive. 

!fiEOREM 6.~: Let p(x) be an irreducib!e_equat~on 

2LEr.im.!_gesrCi~ q !!! ~ fielg F. !h!!_srgup G 2:!. p( x) !fhlog 

!!L!LE.!_!!~a~i2J!...SE.QYP o,!_the rggts 1 2L~!!!L.!!U!Sers 1,2, • 

•• ,q, !!_§2lvable if agg_~li if, afte! a suitable_cqanse 

!use n~berins ot_]!!§_.rgru, G !L!_sroup or linear sub­

,!l!titutions T, ~!! T(i)::!!! bi-t c(mod q)' i:::::. 1,2, ••• ,q, 

!lD-d ~B :!!!!e grOUJ2 G !!1 ~a! subsill~t,!g~!..!ll!! b = l, 
T(i)~ i ~ c, (c = 1,2, ••• ,q) 22~· 

Prg2f: First we let G be solvable and let 

G= Go:> GI::> ••• ';:)Gr':;:)Gr 1~ 1 

be a sequence exhibiting the solvability of G. If G !s 
r 

not cyclic, we can choose a cyclic subgroup or the abelian 

group G = G/G 
1

, and then we can insert this new cyclic 
r r -

subgroup into the original sequence. We then consider the 

new sequence in which this cyclic grou,p is the term before 

.. - the last. Thus there is no loss in generality if we assume 

that the penultimate term Gr is cyclic. 

If T is a generator of G , we can show that T can-
r 

slats of a cycle containing all q of the numbers ·1, 2, ••• , q. 

For if T = ( 1ij ••• m) ( n ••• p) then the powers of T would map 

1 into only 1,1,j, ••• ,m, contradicting the transitivity of 

G • r 
We can number the permutation letters in such a fashion 

that T(i} ~ i + l(mod q) and T 0 (i) .= 1 + c(mod q). Now let 
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S be any element of G 
1

• Since G is a normal subgroup 
r- r 

of G 
1

, STs-1 is an element of G , say, STs-1 == Tb. Let 
r- r 

S( i) := J or s-1( j) == i. Then 

ST( i) = STs-1( j} ::=. Tb( j) ;::= j -1- b(mod q). 

Therefore ST( i) = S( i) t- b{mod q), or S( i + 1) ~ S( i) + b{mod q) 

for each i. Thus, setting S(o) ::= c, we have S(1) = c ;- b, 

8(2)5 S(l)+ b=· c + 2b, and-, in general, S(i)= c + ib(mod q). 

Thus each s~pstitution in Gr-l is a linear substitution. 

Also, the only elements of Gr-l which leave no i fixed, 

1 =- 1, ••• , q are in G r' since f-or each b j= 1, we owi take 1 

such that (b- 1)i~ -c(mod q), and this implies that 

bi + c := i(mod q), and i is left rixed by s. -Thus if no i 

is feft fixed b a 1 and thus the element S of G 
1 

must be 
r-

in G • 
r 

By induction, we prove that the elements of G are 

all linear substitutions, and that the only cycles of q 

letters are in G • 
r 

Suppose the assertion is true of G • 
r-n 

Let s be in G 
1 

and let T be 
r-n-

a cycle in G and hence in 
. r 

G • 
r-n 

Since the transform of a cycle 1s a cycle;· sTs-1 

is a cycle in G and is even in G since G is a normal 
r-n r r 

subgroup of G. Thus sTs-1 = Tb for some b. By the preced-:-

ing argument, S is a linear substitution bi + c and if S ·· 

itself is not in G , then ~ leaves one integer fixed and 
r 

hence is not a O;lOl~_Q.t_g_~~~!!ts. --------

1Ir T = (i,j, ••• ,m), S'l's-1 (s(i)] .= ST(i) =S(j), 

while if k =f:. 1, j, ••• ~m, STs-1 [s (k)] = ST( h) = s(Jc). Thus 

sTs-1 is the cycle (s< i) ,s( j), ••• ,s( m)] • 

,;. 
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Conversely, let G be a group or linear substitutions 

which contains a subgroup N of the form T ( i) := i + c( mod q) • 

Since the only linear substitutions which. do not leave an 

integer fixed are inN, and since the trans~orm of a cycle 

o'f q elements is again a cycle of q elements, N is a normal 

subgroup of G. In each coset NS where 8 ( i) := bi + c( mod q) 

the substitution T-ls occurs where T(i) =: i + c(mod q). 

But !f-ls( i);:: (bi -r c) - o == bi(mod q). Also, if S( i) :::= 
bi(mod q) and S'(i) ~ b'i(mod q) than SS'(i)~ bb'i(mod q). 

Thus, the factor group (G/N) is isomorphic to a multipli• 

oative subgroup of the numbers 1,2, ••• ,q-l(mod q) and is 

·therefore abelian.- Since (G/N) and N are both abelian, G 

is solvable which completes the proo'f .. 

Coroll~z_l: !! G ~ solvabl!_~~§!!!~e sub­

!!itution gro~p on q l§tte!]_~~-q 1s.Rri~e~-~e~~~ 

,9~ly ,SYE.!!ll:!!~ll.2!L2f G :!!!!.2h leaves_~!!.Q..£,t_!r!Q!,!!_l~!~§ 

r!x~~ i§_!h~i~~ll· 

ftQg!: Each substitution is linear modulo q •. Now 

the congruence bi + c ~i{mod q) has no solution in the case 

b := 1, c :/= 0 and 1 t has exactly one solution in the oase 

b := 1. Finally, if b ~ 1, c 2 0 the substitution is the 

identity and thus Corollary 1 is proved. 

QQ!.Q!lary £: !...§.2il!E~.~-!!.£~3!2!El!-~guaysm~ 

~1~~-g!st~~ in~!!~ which_i~~bset of the £!!1 nBm­

~-~-J.!!!!L§ll!lllL.2!ULF.fJ~.!- r_oot_2,r aJ,l_i ts_!.22lL!.r.!L!!l!!!. 

~!.2.2!: By Theorem 6.4.1 the group of the equation, 
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G, is a solvable, transitive·, substitution group on q 

letters where q ie prime. In th.e splitting field, E, of 

the equation, which ie contained 1n the tiel~ of complex 

numbers, the automorphism wbioh Jllaps a nUDlber into its com­

plex conJugate woUld leave fixed all the real numbers. By 
,, 

Corollary 1, if two roots are left fixed, then all the 

roots are left fixed, so that if the equation has two real 

roots all its roots are real. This proves Corollary 2 • 

• 



CHAPTER VII 

A METHOD OF DETERMINING THE GALOIS GROUPl 

z~!-r1B~1BE-~B~_Q~Qi~_gzoyp, P! an E~!~· 

We will show how to fin~ the Galois group of' 'a 

polynomial, after a finite number of operations, which con• 

sist of finding the rational roots of certain induced 

equations. We determine sucoessive+y whether the Galois 

group is, or is not, contained in each of the subgroups of' 

~e symmetric group, S , of degree equal to the degree of 
n 

the given equation. 

In this chapter we will assume that the equation 

under consideration is of the form 

p( x) ::: xn + a
1 

:xn-1 + • .. . + an = 0 

where the coefficients belong to a separable field F of 

characteristic 0. We let G-denote the group of p(x) rela­

tive to F, and we letH, of order m, denote any fixed sub.;.; 

group of the symmetric group S of degree n. G and H can 
n 

be considered to be permutation subgroups on n symbols. 

We let o<. ,oC, ••• ,o( be the roots of p( x) = 0. We construct 
1 z n 

a function,· f1. ( x
1

,x
2

, ••• ,xn), of the n indeterminants 

x ,x , ••• ,x , which is invariant under the permutations of 
1 2 n 

!!.:.__!.Lf!~:L~ine. 'll _.tQ_.Q,!L!illL.fu!!ill2!!--------

lcr. Wilson, R.L., A Method for the Determination of 

the Galois Group. Duke Math. Journal, Vol.l7(1950) ,p.403...S. 

83 
• 
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(7.1.1) 

We next define ~ ( XJ. ,x
2

, ••• ,xn), i = 1,2, ••• ,m, to be the 

functions 

qi ( xl, x2, • •• , xn) = '\ [hi ( ~) ,"hi ( x2) , ••• ,hi ( xn)] 

where h. are the permutations of H. We finally define 
]. 

f (x ,x , ••• ,x) to be the function 
1 l 2 n 

(7.1.2) f (x
1

, ••• ,x) = :E;Q_-\x.. ,x
2

, ••. ,x ). 
1 n &.=1 ,_ l n 

Since the m permutations of H form a group, any 

permutation of H applied to f1~~, ••• ,xn) will simply per­

mute the qi ( x
1

, • · •• , x n) • Thus fi.. is 1 eft invariant under 

the permutations of R. But any permutation of S not in R 
n 

will not leave f
1 

invariant, for su~h a' permutation will 

carry q
1 

into some function not contained in f
1

• Upon 

permuting the indeter.minants by a permutation not in H, we 

obtain a second function f
2
(x

1
, ••. ,xn) which is distinct 

from f (x
1

, ••• ,x ). By using all of the permutations s1 1 · n · 
or s we obtain, say, k distinct polynomials 

n 
(7.1.3) f'j(x

1
, ••• ,xn):=si[:r

1
(x

1
, ••• ,xn)], J•1,2, ••• ,k. 

If s and s are two drstinct elements of' the same coset 
l 2 

of H in Sn' then s
1 
= s

2
h, where hE H. Since s1 [r1 ] = 

s
2
h[f

1
l = s

2
[f

1
l, s

1 
and s

2 
map t

1 
in the same way. Con­

versely, if s
1

[r
1
1 == s

2
lr

1
], sl1 s

2
(r1l = r2 and sj?·s 2 E. H. 

Thus s
2 

E. s
1
H. Finally, k = nt/m, the index of k in sn •. 

!l!!!!l! tj.pp: We define the equation 

( 7 .1.4) ¥( y) = ~1(y - r i (c:<
1 

,«-2 , ••• ,«-n>1 = o 
J-

to be the !!!_gy.!!§iL!Sl!.!!li.Qn of. R. Since the coefficients 

· .. .: 
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of ~ y) are symmetric in the roots of p( x) = 0, they are in 

F. Since the functions fj are not necessarily the only 

functions of n indeterminates which are invariant under H, 

~ x) is not. necessarily unique. ·vve can easily determine if 

any of the roots of ~(y) = 0 lie in F. 

!HEQB!!J_.Z.:.l·1: Th ~~!!.li!.!~_sro~ G ~1~ ti !~_lQ_lli 

~!!!f!_2~nt_f!~!~ F 2!~~~.2!!.!!!:!2le_!.9!!!!!2!! p( :x:) =- 0 !~ 

~!guelx~~fi!!~.!L.£I_!h~_!2lliwins_E.!2:2!.rti ~: ( 1) ~~!l 

!!!1.2!!!!1-~.2~! O!!.J._~!~!!....£2~f!!.2.!~~,!!_!!! F ' 2~~-!2.2~!L2! 

p( x) -= 0 ~!£!!_1s_!!!!!!r.!!!!tl_und~! G !.s_.~!!!!!!Lto_!!!_~!!:!!!'!:!! 

2! F, (2) ~!~l-~!~!_fyg£~!.2!!-~!:!!~-.2~!!1£!~!!!~_.!!! F 

2!__:!!~~-!QQts_Qf p(x) ~ o ~h!2B~_!SY!1_!2-!_a~:!2!r_!a F 

!~_!nY!.!!~t~a~!.! G. 

Proof: The rational functions, with coefficients· ----- '-

in F, of the roots or p(x} = 0 are elements of the splitting 

field E of p(x) == o. The elements ofF are precisely those 

elements of E which are invariant under the Galois group 

of E relative to F. 

If none of the roots of p(y) is in F, then 

f 
1

(o(1 ,o<.
2

, • •• ,~) is a rational function of the roots of 

p( :x) .= 0 w1 th coefficients in F, invariant undet" R, which 

is not equal 'to an element in F. By Theorem 7.1.1, part (1), 

G is not contained in H. Also, if at least one non-repeated 

root of <{>( y) belongs to F, then this root is invariant under 

G, by Theorem 7.1.1, part (2). Since this is a non-repeated 

root, it is invariant under precisely the permutations of 

• 
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H, for permutations not in H do not leave a particular ~ 

invariant. Therefore in this latter case G must be contain-

ed in H. .Thus we have established the following tlieorem: 

~QREM_2.:l:.:._g: ll_!!,!~_.§.9_ll!!!i.2n__!nd!!.£~]1' H ~lLB-2 

!.22l!L!!! F, ~!!_lhe_Ga.lQ!s groYR G 1.§.J.!~_.Q.Q!!!!!!!!~~!!! H • 

. I!-~ge e~atiou_!B~~~£_£z H h~§~l-1~~§!_Q!!~_n.Q!!=!~~~!ed 

!.Q2!_!!! F , ~h eg G !~.!~!!~! H , .Q!_.!!_J2£.2.E~_§!!EB£2~-2! H • 

If cP( y) ::::: 0 has only multiple roots in F, conclus­

ions similar to those above can not be drawn, since the 

functions fj are then invariant under H and also under perm­

utations which are not in·a. In this case, we consider the 

n! functions, 

q
1
( j) - «rloC2 • • ·t<rn-l, 0 L r ~ n-i, · 

- 1 ~ n-1 i 
where· the r. 

]. 
are integers and j ~ 1,2, ••• ,~J is some label-

ing of the,se .functions. Since the r i are such that 0 ~ r 
1 
~ 

n-i, this will given~ functions qij). Now ~1 is a root of 

p( x) of degree n; t;)(2 is a root of p{ x)/(·x - « 1) of degree 

n-1; o(i is a root of p(x)/(x -«1){x- o<'2) ••• (x -o<:i-l) of 

degree n-i+l, etc. Therefore,o(~-1 can be reduced too(ri, 

0 ~ r 1 ~ n-1; o( ~% can be reduced too(~%, 0 .t.. t-2 L n-2; and 

so on. Thus all the elements of the field E can be express­

ed rationally in terms of then! elements qli}. The qlj) 

therefore form a generating system for the root field E. 

Since the qij) are not necessarily distinct, they do not 

necessarily form a minimal generating system. If H is con­

tained in G, there is an intermediate field B belonging to 

• 
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the group H, such that F is contained in B by Theorem 3.4.4. 

Since B is a subfield of the splitting field, E, of p(x):: 0, 

any element b
1 

of B is of the form 
..,., ( ") 

Let 

b .= £c q J , cj e F. 
1 J.:=1 j 1 

qt j) ;=:= hi [ qi j)), i :::: 1, 2, ••• ,m; hi E H,"·· 

denote the m elements we obtain from qlj) by applying the 

m permutations hi of H to the o(i, and denote by 
. -nl ( • ) . 

bi ::::. ~c . qi J , i = 1 , 2 , ••• m , 
,J==1 J . 

the m functions which we obtain from b
1 

by applying these 

m permutations to b
1

• Since B is the fixed field for H, 

We define 

••• .= b and hence · 
-m m .,., -nl ( ) 

1 :Eb ::. 1 Z £c . a. j -m ""'1 i m ~=1 j::.l J -J. -

r(J)= 1 £q~j), J ==-1,2, ••• ,nL 
1 m i=l 1 

Now r(j) is invariant under H, since the q~j) are permuted 
1 1 

by the elements of H. Hence the fij)_belong to B, the 

fixed field of H. Thus the rij) form a generating system 

for B. If F is properly contained in B, at le-"'st one of 

the fij) is not in F. 
,.,I 

(7.1.5) f (a)= ~aj-lf(j) 
1 J==l. 1 

where a is a parameter. Since the r(J} are invariant under 
1 

the permutations of H, then r
1

(a) is invariant under H. 

Now using (7.1.5), ins~ead of {7.1.2), we form the induced 

equation ~(y,a):::: 0, as in (7.1.4): 
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The 

induced equation now depends upon the parameter a. If we 

choose [c( n! - 1) + 1] distinct values of a in F., we have 

[c(n! - 1) + 1] induced equations, one for each value of 

the parameter if each of these induced equations has a root 

in F, then one of the fi(a) must belong to F for at least 

n! distinct values of a in F. If we denote these values 

of a by at' t = 1,2, ••• ,n , and the corresponding values of 

fi(a) by d, we have, from (7.1.5), the system of equations 
t l 

(7.1.6) $':atj-lr{ij) = dt' (t :::=.1,2, ••• ,n ) • 
.J=l 

Cramer's rule gives each of the r(j) in F since the coer- • 
i ' 

ficients of (7.1.6t are in F, and the determinant of the 

coefficients of the f(j) is the Vandermonde determinant, 
1 

and hence non-vanishing. But if H c G, B ~ F, and at least 

one fij) is not in F. Therefore if H c G there are only a 

finite number of values of a such that 4)< y, a) = 0 has roots 

in F. Also, any such equation having roots in F will have 

only multiple roots in F by Theorem 7.1.2. Now, if G ~ H, 

at least. one fi(a) will be in F for every value of a in F, 

by Theorem 7.1.2. Iff (a)= f (a). for n! distinct values 
u v 

of a, we will have the system of equations 

if:e.J-lrf(j) - f<J>] = o. t =·l,a, ... ,nL 
J=1 t tu v ' 

Since, as before, the Vandermonde determinant is not equal 

to zero, we have r(J) :=. f{j}, j =1,2, ••• ,n!. But this im-
u v 

plies that s and s belong to· the same coset of H 1n s , u v n 
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and even in H the hypothesis (compare with the discussion 

following equation (7.1.3)) that s HI s H. Thus no two 
u v 

f. (a) can 
1 

be equal for more than ( n! - l) distinct values 

of a. Therefore, there are only a finite number of a in 

F such that ~ y ,a) = 0 has multiple roots in F. Hence by 

a suitable choice of a,·vit will be possible in every case 

to apply Theorem 7.1.2. This proves tr1e following theorem. 

!g~QE~-1~!~~:. E££~~-eiv~~-~olinomi~1-~£E~~12n 

and an -~.rE_!~~!L.8!.Q:!:!J2 H , .!h1Eh...!.§_!!_.§~!?.B!.Q~JL.Q.f_~h~_§~­

~~~ric_s;£.Q:!:!J? sn 2L~~J;;!!2~ n, ,!,!!_i£J2£§.§.!£.!~-~2-212!~in_~!!~ 

~-f_!ni~~-~~b~_r_E!_.§~~~-~-1B~~ ~gu~~l~~hich_ha§_~!!h~! 

· !!.2_!2.2.!:~!!! F 2Lh~.§-!!.QB.=I~J2e8.!ed_,!.2.Q.!:.§_,!g F. 

By using Theorem 7.1.2 we htlVe a means for sifting 

the possible choices of H for a given equation. If, for a 

given H, G ~ H, but G is contained in no subgroup of R, 

then G = H. If G is in no subgroup of the symmetric group 

of degree n, then G is the symmetric group of degree n. 

1~g_!g_~~~121~Q£_.!:h~-~hog_.Qf_1~1· 

As an illustration of Theorem ?.1.3 we consider 

the polynomial 

p( x) :::= x 3 - a x 2 -t- a x l 2 - a
1 
= x 3 - :x 2 -t- x -1 = 0. 

Now q
1 

::=xft:
2
(cf.(7.l.l)). Let a

1 
be { 1)( 2)( 3), ( 123), ( 132). 

Then by applying each· permutsthm. of a
1 

ln . turn to q
1 

we :: 

~et r1 = :xix2 -t- x~x3 -r· ~~. Now apply the-permutation·' 
4. 

( 12), which is not· in a
1

,. to each element of f
1

• ·Thus we· ·"· 

get f 
2 

= ~x1 + xix
3 

+ ;x~x1 • Replace x1 by o<.i. Our 



induced equation is 

~y) = (y- fl)(y- f2) 

== y2 - ( a1 a2 - 3a3) y + (a~ + a~a3 -r 9a~ - 6a1 a2a 3) 

= y2 +- 2y -t- 5 == o. 
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But this equation has no roots in F, thus G is not contained 

in H
1

• 

Next, let H
2 

== ( 1) ( 2) ( 3), (13). Then 'Ne get 

· f ::::. x2x + x2x 
1 1 2 3 2 

2 ' 2 
f 2 :::::: x2xl -t x3xl 

f 3 ::::= xix2 T x~x3. 
Repl'ace x

1 
by o(i. Now 

~y 1) ~ yi - ( f 1 + f 2 + f 3) yi -t ( f 1 f 2 t- f 2f 3 + f 3f 1) y 1 - f 1 t 2f' 3 

.:= yi +- 2yi 
after simplification. Since this equation has a multiple 

root in F, no conclusions can be dravm. 

Let us consider H3 =- ( 1) ( 2) ( 3), ( 12}. Then we get 

r 1 ::::. xix2 + x~x1 
f 2 :::: x~x1 + x~x3 
f 3 == xfx3 -t- x;x1 • 

Replacing x1 by ~i' 

~y2)=y~- (f'l+f2-t-f3)y~-t(fif2-t-f2f3-tf3f'l)y2- flf'2f3 

. ::= y3 -t- 2y2 -t- 2y 
2 2 2 

after simplification. This equation has a non-repeated 

root in F. But H3 has no proper subt-:~roups. Therefore a
3 

is the Galois group of our equation. 
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CHAPTER VIII 

GALOIS FIELDS 

8.1 Further Discussion of Finite Fields. 
____________________________ ..._ 

WEL __ ·.vill discuss further some general properties of 

finite fields (cr. 3.2) with particular attention to the 

cyclotomic polynomial. It was shown in Lemma 2.2.2 that if 

F(x) and P(x) are relatively prime polynomials over a field 

K, there exist polynomials A( x) and B( x) such that 

A( x)F( x) + B( x}P( x) =- 1. 

This holds, in particular, for a Galois field G.F.(pn}, i.e. 

a finite field of characteristic p containing pn elements. 

When n == 1 this means 

A( x)F( x) + B( x}P{ x) ==. l{mod p), 

which can also be expressed in the form 

A( x)F( x) .:::= l[rood p,P( x)]. 

Q~!!Git!Qg: A polynomial F(x) of degree m belong­

ing to and irreducible in the G.F.(pn) vdll be denoted by 

I . Q. ( m , p0 ) • 

T!illQE!!!_§.:..b.!: Itn~u I • Q.. ( m, P0
) ~!Q~§ 

nm 
. xP - x •. 

frog!: Upon dividing any polynomial G(x) belonging 

to the G.F.(pn) by F(x) we obtain a remainder of the form 

+ L + a xm-1 a o alx -r • • • . m-1 ' 
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where the a's are elements of the G.F. (pn). We denote the 

pnm distinct residues of the above form by 

{8.1.1) Y., i = O,l, ••• ,pnm- 1, 
1 

and in particular, by Y , the residue 0. Consider the pro­
o 

ducts by a fix·~d residue Y. =I= Y , 
J 0 

(8.1.2) y y (i = l, ••• ,piliil- 1). 
j i 

If yjyi=:= YjYk[mod F{x)], then Yj(Yi- Yk) := o(mod F(x)]. 

By Theorem 2.2.~5 Y = Y , and hence the products (8.1.2) 
i ~ 

are all distinct and different from Y • Thus the residues 
0 

obtained on dividing them by F(x) must coincide, apart from 

their order, with the non-zero residues in (8.1.1}. We 

form the products or the non-zero residues in (8.1.1) and 

"(8.1.2), 
nm 

1 
nm 

1 p - p - 1 n ( YjY.) .:= T\ Yi [mod F( x) • 
i=l 1 i=l 

nm p -1 . 
Since 1T Y =/= o[mod F(x)], by Theorem 2.2.3 we have 

i= 1 i 

(8.1.3) Y~nm-l - 1 =: 0 [mod F{ xl] . 
In particular, this is true when Yj is the residue x. 

!~~g~_§.!l._g: !f f(x) 1s.J!_.£2!..Y!!.2!!!!al_!!! G.F.(pn) . 

nt ( ) nt f(xP ) = f(x) p • 

f!22!: Let 

f(x) = c
0 

+ c
1

x + ... -t okxk 

where the c's belong to the G.F.(pn). From the Corollary 



93 

to Theorem 3.2.5, 

(8.1.4) 
Pn 

ci _ ci (i == O,l, ••• ,k). 

Raising f(x) to the power p, and noting that the multinomial 

coefficients of those product terms which are not p-th pow­

ers are multiples of p, and hence equal to zero, in G.F.(pn), 

we have 

[r< xijP == oP -t- cPxP -t­
.. 0 1 

By induction, we obtain 

• • • -T 

... 
Applying (8.1.4) we get, for s:::: n, 

oPxP • 
k 

n n n 
[f(x)1P = c

0 
t- c1 xP + .•. + ckxP • 

Theorem 8.1.2 now follows from a simple induction argument. 

P
nt 

ru9.B~J~L§.:.1.:.~: !!! I. Q.. ( m' pn) !!!.Y!~§ X - X !!! 

~~_!!~!g_!!_~1-2!!1Y~!! t !§~-IDY!1i~l&_Q! m. 

f!Qof: If t ~ms, a multiple of m, it follows dir­

ectly from Theorem 8.1.1 that if F{x) is an I.Q.(m,pn), 
, 

nt nms nm nm nm 
(8.1.5) xP = xP =-xP P ···P ::=. x[mod F(x)]. 

Next, suppose that t = ms 1- r, where 0 ~ r '- m. 

By (8.1.5), 

nt ( nmsl nr nr 
xP - x == xP P -. x := .x.P - x(mod F( x)l • 

nt 
Hence if xP -x is divisible by F( x) in the G.F. ( pn) 

nr · · 
(8.1.6) xP =::=x(mod.F(x)]. 

By f(x) we denote any one of the pnm expressions 
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+ C 
_m-1 

co+ cl x + · · · m-1 x-

where the c's are elements of the G.F.(pn). If (8.1.6) 

holds, then by Theorem 8.1.2, 

r 1 nr nr l f( x) P = f( xP ) ::::=. f( x) [mod F ( x)] , 
- ... 

in other words, the equation 

nr 
- Y := o(mod F(x)l (8.1.7) yP 

has pDlB distinct solutions [mod F( x) 1· However, an algebraic 

equation cannot have more distinct· solutions than its degree, 

(compare with the discussion on pg. 14) and hence (8.1.7) 

is an identity and r = 0. 

!!!~QR[JL~!.:.!= U F ( x) !!L!Y.! I. Q. ( m, pn) ~ M ( x) 

!.§_ag I.Q. ( h,pn), ,!'!!!~~ k .91!~ m, ,lh~_lhe_ro_Q!§-2! 

(8.1.8) M( Y) =:- 0 (mod F( x)] 

( 8 .1. 9) 

!1!~!!: Y1. .!.§_ani.-I.QQ~-.2! (8.1.8) !!~MYi!.Y l>e.J.png~!!8 .to_a 

G.F.(pnm). 

Er2£!: By Theorem 8.1. 2, 

nr [ j nr 
M ( Y P ) = · M ( Y ~p • 

nr 
Hence if Y1 is a root of (~.1.8), so is Yl Since M(x) 

is an I.~.(h,pn), we have by Theorem 8.1.1, with x~ Y1 , 

nh . J 
Yi - Y

1 
:= M(Y

1
) .Q( Y

1
) ;:; 0 (mod F( x) • 

Since m is a multiple of h (cr. {8.1.5)), 



(8.1.10) 

If 

na nb 
(8.1.11) Yi :: Yi [mod F(x)J, . 
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for a< b < h, we would have from (.8.1.10), after raising 

(8.1.11) to the power pn(m-a), 

nm n(m-atb) Yl ::::y
1

=Yi (modF(x)], 

and by Theorem 8.1.3 m-a+b would be divisible by m. Finally 

b-a ~o, so that any two of the roots (8.1.9) are incon­

gruent mod F{x). 

Q2!2!l~.r,;r: !.!!--!! G.F. ( pnm), M( Y) !!~~~2!!!~2§!-

n 
• M(Y) = (Y- Y

1
)(Y- Yi ) ••• (Y 

(h-l)n 
yP ) • 

1 

!!L.Q~ rt i C!;!J:!!!:_l £f:._'!'.!!~2.!§!!L£.:.!2.:.~.J.-w!_t!! X f2! S) , F ( Y ) ~ 0 

h~~-~h~_g1§tig£~_!£Q~~ 

n (m-l)n 
x,xP , ••• ,.xP 

!tl~QB~§.:.1~= An I.Q.(m,pn) .r~~1n~_!!!§gy~!Q!§ 

1£-~h~ G.F.(pnk) !! k is_Q!Im~-~2 m. 

Pr2Q!: The roots of an equation E(Y) = 0 of degree 

min a G.F.(pn) are 

n 2n (m-l)n 
x, xP , x:P , •• '~·,-xP 

all belonging to the G•F.(pPm). If F(Y) is reducible in 

the G.F. (pkn), the root x will satisfy an I.Q.. (t,pkn), 

t < m, of. the form 
• 



kn lm( t-1) 
(8.1.12) (Y - x) (Y - xP ) ••• (Y - xP ) .:: 0. 

The constant term of (e.l.l2) must be an element of the 

G.F.(pkn) so that by the Corollary to Theorem 3.2.5 

( ~+Pkn-+P2kn + ···tP(t-l)kn] (pkn-1) .= xPtkn_l := 1 

96 

in the G.F.(pkn). By Theorem 8.1.3, tk is a multiple of ...... 
m, and therefore t ie tt multiple of m which contradicts 

t < m. 

TH~O R~_§:.!.:..§: An I. Q,. ( m, pn) g~.QQID.Q~.§_!rL~!!§ . 

G.F.(pnk) !ll~Q d ~.Q~Qr.§_~~£h_Q!_~£!£h_!~-~ I.Q.(m/d,pPk), 

!!!!~!~ (m,k) == d. 

~!'QQf: Given F( x), the roots of• F( Y) ::= 0 in the 

G.F.(tfUD) are 

n 2n (m-l)n ( run ] 
:x,xP ,xP , ••• ,xP , lxP ::: x in the G.F.(~ID) • 

They may be separated into d sets of m/d roots each, 

ni n( d+i) n( 2dti) n (( m/ d -1)+ 1] 
xP , xP ' xP . ' ••• , xP ' 

fori= O,l, ••• ,d-1. From Theorem 8.1.2 a symmetric 

function of the roots in one set is unaltered upon being 

raised to the power pnd and therefore belongs to the 

G.F.(pnd). The roots of the general set therefore satisfy 

an equation 

ni n( d+i) 
Fi(Y) .= (Y- xP )(Y- xP. ) ••• .::0. 

ntm-l)d 
nd d 

Let x := ~ ,xP = Q(2 , ••• ,:xP :=o(', 
m 
d 
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with coefficients belonging to the G.F.(~d) and thus to 

the G. F. ( plk}. If 

(8.1.13) F
0

(Y) = (Y -ot
1

)(Y -ci
2

) ••• (Y -~) 

then 

Let 

m m -1 . d 
== ~ - 8._t yd + ... -t- ( -1 }ry'~m 

d 

a
1 
= :;;Eo( , a ::::: :E;Q(. ot , • • • • r 2 r s 

ni ni ni 
F 1 ( y) = ( y - Q(l ) ( y - ol ~ } •. • ( y - o<~ ) 

so that 

Now 

m m -1 m d 
==Yd _ a(i)yd + ... +(-l)da(l) 

1 m ' 

ni ni 
a(i)_.z~P =(£o( )P 

1 - r r 

d 

J • • • • 

ni 
aP 

1 
, 

ni ni ni ni a< 1)--=:::- .-JP o<P = (~-/ __,) p 2 - ~~r s ~~~s a p 
- 2 

Thus 

m ni ! -1 
(8.1.14) F i(Y) = yd- af yd + 

' . . . . . 

We next prove that the F
1

(Y) are irreducible in the 

G.F.(plld). Suppose on the contre.:ry, that in the latter field 

F (Y) = f (Y)M (Y}. 
0 0 0 

Then 

Fi(Y) = f
1

(Y)M
1

(Y), 

each coef'ficient of fi-t'l(Y) being the power pn of the 

corresponding one of f i(Y), and each coefficient of f 
0 

• 
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being the power pP of the corresponding one of fd-l" The 

coefficients of the product f
0

f 1 ••• fd-l are conseQuently 

unchanged when we replace the coefficients of each f. by 
l. 

their pil-th powers. Therefore the coefficients of the 

product f f
1 
•.. r 

1 
are unaltered upon being raised to 

0 d-
the power pn. Hence that product belongs to the G.F.(pn), 

so that F(x) would be reducible in that field, contrary 

to our hypothesis. Since the degree, m/d, of F
1

(Y)', an 

I.Q.(m/d,pnd), is rel~tively prime to k/d, Fi{Y), is ir­

reducible in the G.F.(pnk) by Theorem 8.1.5. This com-

pletes the proof. 
. 

§~_E!!~i!!~-I22~§_£f_~nit~. 

Let F be a G.F.(m), m= pn, and lets be an inde­

terminate. We consider the field K .:= F( s}, of all rational 

functions of s with coefficients in F. By the Corollary 

to Theorem 3. 2. 5, the non-zero elements of F = G.F. ( pn) 

fo.rm a cyclic group of order m-1::::: pn-1, generated by some 

element a. 

Let q be ~ prime number. Let e be a primitive 

q-th root of unity, so that 

(8.2.1) eq - 1 ::: 0. 

Let K = K(e). If q= p, xP- 1 = {x- l)P, ahd all the 
q 

roots of xq - 1 = 0 are equal to e. In the following, we 

consider the case q =f:. p. Any primitive q-th root e of 

unity satisfies the cyclotomic equation 

(8.2.2) C(x) = (xq- 1)/{x- l) = xq-l + xq-2 + ... + 1 = 0. 

.. 



The remaining roots of (8.2.2) are e2,e3, ••• ,eq-l. 

!tl~QE~-§~El!: a!!_~h~_Qrim1!1Y~ q-th_rg£~§_2! 

~ni~I_~Qgg_to K i£~£_£g1y_if q* p 1§-~-~!yiBQI_Q! 

m - 1 = I~ - 1. 
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Proof: The problem of determining the primitive 

q-th roots of unity inK is equivalent to that of determin­

ing the reduci bill ty of c{ x} in K. Consider any polynom­

ial f(x) whose coefficients lie in F and hence inK also. 

Suppose we have a decomposition of f( x) into irredu.cible 

factors in F. Then, a further clecortposition of f{x) inK 

is not possible. For if ~(x)~ with coefficients in F is 

irreducible in F, while Q.( x) = Q
1 

( x) Q
2

( x) in K, then at 

least one of the factors Q (x) ,Q (x} must contains. But 
1 2 . . 

then their product ~1 (x}~ 1(x) contains s. Thus all the 

questions relative to the reducibility of f(x) inK reduce 

to thq_se in F. 

Now, f( x) is com}Jletely ret1ucible in F (and hence 

also inK) if and only if one (and hence every) primitive 

q-th root of unity e exists in F. 

We determine the condition under which (8.2.1) 

haf! a root e ::f 1 in F. Now x :=. at is a solution of xq - 1 

.::=o, if and only if atq= 1, i.e., tqsO(mod m-1). If 

(q,m-1) ::= 1, then t;::O(mod m-1) is the only solution of 
• 

this congruence, and accordingly x= 1 is the only root of 

(8.2.1). On th8 other hand, if (q,m-1) = q, the congruence 

has a non-trivial solution t :=. O(,mod m-1/ q) , and we can 
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take x == r:JU-1/ q as a primitive root of ( 8. 2.1). This 

proves Theorem 8.2.1. 

In ge~eral, the question of the reducibility of ; 

C(x) is answered by the following theorem. 

!gmQE~-~£.2: If k !~-~~-~m~11~§1_~!E2B~~~-f2! 

wh1_ch mk::= l(mod q_), th~ C(x) in.(8.2.2) de~l!.Q~lt_in 

F :::: G. F. ( m) ( !¥.!9. l} egQ.§_ in K ~1.§£!) !g to _1!~:!:!.2!12!~_!!!.£~!.§ 

Qf degr~~ k. 

~!22!= Let 

(8.2.3) f( x) == :x.k - a
1 

:xk-1 -t ... ;- ( -1) k~ 

= ( X - co(l) ( X - o(2) • • • ( X - o(k) 

be any polyno~ial with coefficients in F. As in (8.1.13) 

and {8.1.14) 

r*( x) 
t t t 

== (X -o(m )(x -o<~ ) ••• (x - ~m ) 
1 k 

=xk 
t 

... + (-l)ka~ 
t 

_.am xk-1 + . 
t nt 

As in (8.1.4) em = cP c for every element o in F. 

t t 
particular, a~ - a1 ,a~ = a 2 , ••• and hence 

(8.2.4l r'''·(x} = f{x). 
2 

T.hus if o(_ is any root of f( x) = 0, then o/.m ,o~...m , • • • are 

also roots. Let r(x) be an irreducible factor of C(x}. 

If c 1= 1 is a root of f{x), then e is automatically a 
2 

primitive q-th root of unity, and, from (8.2.4), em,em • 

In 

. . . ' are also roots of f(x). Since f(x) has degree £ q-1, 

f(x) has at most q-1 roots. 

:= l(mod q) are all distinct, 

If h id 2 q-1 teres ues m,m , ••• ,m 
2 q-1 

m m m 1 e ,e , •• ~,e ~ e are q-
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distinct primitive q-th roots of unity which are also 

roots of f( x) • Hence f( x} _is divisible by the linear fact­

ors corresponding to all the primitive q-th roots of unity. 

Thus f(x) ~ C(x), that is, C(x) i~ irreducible. 

However, if k < q-1 is the least integer, for which 

mk .== 1( mod q) 

then f(x) is divisible by the product 

k-1 
f l (X) :::: (X - e){ X - em) ••. (X - eiil ) 

;:;= xk b
1
xk-1 + ... + ( -1) kbk, say. 

Since the b's are elementary symmetric funbtions of the 

roots, 

2 k-1 ]m 
b~ = [ b 1 ( e , em' ~m ' ••• ' em ) 

bi(em,em , .•• ,e) 

2 k-1 
__ bi(e,em,em , ••• ,em ) 

== bi. 

Thus the bi are all roots of the equation 

ym - Y ;::;: o. 

Every element of F satisfies this equation and the m = pn 

elements of F are its only roots, since a.n equ·:1tion of 

degree m cannot have more than m roots. Thus every b. is 
~ 

en element of F. Since f
1

(x) is a factor of the irreducible 

polynomial f(x), we have 
• 

f 
1 

( x) = f( x) • 

Thus every irreducible :factor of f(x) is of degree k, and 

so k is a divisor of q-1, say kh = q-1. All the primitive 
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roots of unity can be arranged in h rows; each containing 

k conjugate roots: 

. . . . . . . . . . . . 
k-1 

m m eh,eh ' ••• ,eh 

This proves Theorem 8.2.2. 

Let ( r,p)::: 1. To K adjoin an r-th root of unity, 

and let K ~ K(e ). Thus e satisfies the e~uation xr- l 
r r r 

= 0. Let 

c ( x) = xr-1 + xr-2 + ... + 1. 
r 

THEO fi~_§..!_g~: !.! F := G. F. ( pn) , .:!ill~!! C r ( x) .f§.Q;!i.Q.!§ 

!!! .F ( ~d a,!.Q.Q_!B K = F( s)) in,!.Q_!.IT~Q~.£!£1~Lfa,g_!g,r~_.Qf 

~gr~ . k, ·whe!~ k i s_1!1~_!~.§.!-1!.2.§!.!!!.!!L!~~g.§.r_fg.r_Y!h!£h 

(8.2.5) mk:= l(mod r). 

Prggf: Let 

f(x) ::= xh +a
1
xh-l + ... + ah 

be an irreducible factor of C (x) in F and let e be any 
r r 

root of f(x);; o. After raising f(x) to the power mt, ~e 

have (cf.(8.1.4)) 

t t t 
(r(x)lm =xhm +a1x(h-l)m + ... +ah. 

2 k-1 
This implies that along with e ; we have 

r 
em em , • •. 'em . 
r' r r 

.also as roots of f( x) :::: 0. Thus f( x) is divisible by the 

product 

g( x) 
k-1 

:::: ( x - e ) ( x - em) ••• ( x - em ) • 
r r · r 

e ' r 
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2 k-1 ' m m m The e , e , e , ••• , e r r r r 
tire distinct primitive r-th roots 

of unity. Letting 

k k-1 g( x) :::: x -+ a1 x + ... + ak 

it follows that the a's are symmetric functions of 

k-1 
e ,em, ... ,em and hence 

r r r 

m ~ k-l]m a. :::: a. ( e , em, ••• , em ) 
1. 1. r·r r 

2 
ai(em,em , ••• ,e) r r r 

k-1 
= ai( e , em, ••• , em ) :::::: ai. 

r r r 

Thus the ai is a root of the equation 

ym= y 

of degree m whose roots are precisely the m elements of F. 

Thus the a's belong to F and, consequently, g( x) = f( x). 

Therefore h == k·, and the theorem is proved • 

• 



CH.APTER IX 

A CRITERION FOR SOLVABILITY BY RADICALS 

IN A FIELD OF PRIME CHARACTERI~TIC1 

The Galois criterion for solvability by radicals 

given in Chapter VI is valid for fields of characteristic 

zero, but not in those of prime characteristic. The crit-

erion which we now consider is va~id in any field and em­

phasizes further the importance of primitive roots of unity 

and the cyclotomic polynomial in the theory of solvability 

by radicals. 

~~-~£§2!~~~1l-~1~~~1£_l!~ld~. 

· Q~!!gi!12n: A field which has no proper subfields 

is called a ~rim~_t!~!g P. 

P is either isomorphic to the field of rational 

numbers or to a. field of residues( mod p) , ~vhere p is a prime~· 

When we are considering a simple extension F(x) of 

a field F, we have two cases to consider. The first cor­

responds to the assumption that two.elements ~akxk, 

:Z:bk:xk of F( x) are equal only when for every k, ak = bk' 

while in the second case the two elements may be equal 

when a.k =:/= bk for some k. In the first case, the element 

~_!§_~~!!~g_!ranscendent~!!!-I~~h1le_!g_lh§_§~££n9 __ _ 

lR.L.Brewer, Amer. Jl. of Math. vol. 63, 1941 p.ll9-126. 

fC.C.Macduffee, An Introduction to Abstract Algebra, p.l57. 
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case it is called ~J:~br~!.Q_.Q!~(cf. 2.3). When an el­

ementoZ of a field E is algebraic over a subfield F, it is 

naturally also algebraic over every intermediate field 

between E and F. In particular, if~.o( is algebraic over 

the prime field P contained in E, then o!.. is algebraic over 

every subfield of E. Such an element is called ~~~J:B~§J:~ 

!!J:~l2J:~ic. Similarly, we call a field ~]..§21ill1X_.§J:~.QI~.!L 

when 1 t is algebraic over it::; prime fi.eld P, or, in other 

words, when all it~ elements are absolutely algebraic. 

~f!ni~!Qg: The ~.§.2!B!~_degr~~-2!_~_.!~J:,g. E is 

its degree over its prime field P. Thus, if the absolute 

degree of a field E is m, then (E/P) = m. 

9. 2 G-adic Numbers~ --- ....... ________ _ 
Suppose p is any fixed prime number. de consider 

the absolutely algebraic fields of prime characteristic p. 

These include all the finite extensions of P, i.e., every 

finite extension of P is an absolutely algebraic field, 

for example G.F. ( p n) • 

Consider all the prime numbers Qi in their natural 

order: 

ql = 2,q2 == 3,q3:::: 5, •••• 

Then every positive integer can be represented as·an infin-

ite product 

(9.2.1) 
eD x· 

m:::=Tfq 1 
i=l 1 

~he:~:~~-~~~~~~:~ x1 ~~-~~~~:~-~~:!§~~~~~~_£~~-~ 
1German: Grad = degree. 
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finite number of them are different from zero. More gen-

erally, we now consider, symbolically, all expressions of 

the form (9.2.1) in which every exponent Xt is a fixed 

non-negative integer, or~. ~e call this expression a 

G-number. 

The class of all G-numb8rs includes the natural 

numbers, and in agreement with the laws of integers, we 

postulate the following laws: Two G-numbers 

xi y. 
m = 1T qi ,n = rrqi

1 

are ~~al if and only if x. = y, for every i. Also m is 
]. 1 

g,!y.!,&£1~ by n if and only if for every i, y i L xi. If 

m is divisible by n, we define the ~Q~_!en~ 

x.-y. 
m/n == 7T q 1 1 

i 

where x i-y-
1 

is set equal to zero when xi= co, y i = ao, and 

x i-y 
1 

is set equal to oo when xi= co and y 1 is finite. 

Thus all G-numbers are divisible by 1, and all divide that 

G-number which has the general exponent xi= o0 • 

Every(finite or infinite) set of G-numbers has 

always a €reatest co~~on divisor d, which contains all the 

oommon divisors, and a least common multiple v which is 

contained in all the common multiples. The exponent of 
• 

q in dis the same as ttle least exponent of q. which oo-
i 1 

curs in any G-number of the set, and the exponent of q. in 
1 

v, is the same as the greatest of these exponents. Now, 

in case the latter does not exist(consider, for example, 
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the set of positive even integers), the exponent of ql is 

taken to be oO • 

If m is any G-number, then the set S of natural 

numbers which are contained in m have the follovving prop-

erties: 

(1} If n is a number of S, then every divisor of 

n belongs to S. 

(2) If n
1

,n
2 

are numbers of S, then their least 

common multiple is also a number in S. 

Thus in every case, the G-numb8r m is the least common 

multiple of all the numbers of s, and is therefore entirely 

determined by the systems. Conversely, if any systemS 

of natural numbers has the properties (l) and (2), above, 

and if m is the least common multiple of all the numbers 

of S, then S is the set of positive integers which are con-

tained in m. 

Now let E be any absolutely algebraic field of 

characteristic p. The degree of any finite field which is 

contained in E belongs to a system S of natural numbers 

which has the properties (l) and (2) above. Let m be the 

leaRt common multiple of the numbers o.f S. If m is a nat­

ural number, then E is a finite field of degree m. Con­

versely, if E is a finite field, then S represents the set 

of degrees of the subfields of E. He shall denote by m 

the absolute degree of E in cases where E is not finite 
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E£~!.2_f!~1£_E_gf_£h~~cte_r!E~!£~ has a determined degree 

m which if:l a.G-nurnber, and \vhich is called the ~£.§21J!~~ 

,g~g_r~~ of E. 

~e shall denote by A(p,n) the absolutely algebraic 

field of prime che.rbcteristic v and absolute degree n. 

Thus when n is finite A(p,n) = G.F.(pD), is the Galois 

field containing p11 elements. 

!!!ll;OR~~_:.E~_!: !in__l.r.r~£.!.£1~-.l?.Ol.Y!!.Qd!!]; F( x) g[ 

~B~~ m .!~_t,h~ A( p~n) fa£tO,!.§_in_!!!~ A(p,nk)' _!nj!Q d ~­

~in£.L.!rr~~~E.! bl.§_.f~.2~.9l'.§~.2!L2f_~B.!~~ m/ d ~£~ ( m, k) = d. 

~gf: The coefficients of F(x) are all algebraic 

over the prime field P = G.F.(p), and hence they belong 

to some G.F.(ph), where his a divisor of n. Since dis 

a divisor of k, G.F.(phd) s; A(p,nk}. By Theorem 8.1.6 

F(x) factors in the G.F.(phd) into d distinct irreducible 

factors 

(9.2.1) F(x) =F {x)F (x) ••• F (x) 
0 1 d-1 

each of degree m/ d. ;;Je wish to show that these are the 

irreducible factors of F(x} in the A(p,nk). Let 

(9.2.2) F( x) = f { x) f ( x) ••• f ( x) 
o 1 s-1 

where the fi(x) are irreducible in the A(p,nk). The coer-

f'icients of the f
1

(x) belong to some G.F.(pC) .S..A(p,nk). 

Thus c is a divisor of nk. Let c = ab, where a is a divisor 

of n and b is a divisor of k; let vlh be the l.c.m. of a 

and h, and let v
2
d be the l.c.m. of b and d. Since n is 

a oommon multiple of a and h, v1h divides n. Since k is 
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a comcon multiple of b and d, v d divides k. Thus 
2 

G • F • ( p c ) = G. F. ( p "1 b} .S. G. F. ( p v 1. h V 1.. d) S: A ( p , nk) • 

Therefore G.F.(ph) and G.F.(phv1) are subfields of A(p,n), 

F(x) is irrenucible in these fields, and by Theorem 8.1.6. 

(v
1

,m) - 1. Since v
2 

is a f&ctor of k/d, and ( k/ d ,m) == 1, 

( v 
2 

,m) - 1. Finally, (v
1

v
2

,m) == 1. Applying Theorem 

8.1.5, to the F 
1 

( x) in ( 9. 2 .1) which are irreducible in 

the G.F.(pdh), we conclude that they are irreducible in 

the G. F. ( pdhvs. v2.). Thus F( x) has at most d distinct ir-

reducible factors in the subfield G.F .• ( pC) of G. F. ( pdhv1 V:z.). 

Thus the factorization (9.2.2) in the A(p,nk) i~ the same 

as the factorization (9.2.1) in the G.F.(pdh). 

~!h~_§Qlv~bi!!~l_Qri~§!!Qa~ 

We shall first prove that the set of all abso·lutely 

algebraic elements of a field E of prime characteristic is 

an ab~olutely algebraic field. Let G.F.(p) = P, and let 

~ and p be any two absolutely algebraic elements of E. 

Now 1/o<. and c<(3 belong to the finite extension P(o( ,~) of P, 

and hence 1/« and o<.f3 satisfy equation·s( of degrees 

(P(o<.,~} zl',)) with coefficients in P. Thus 1/o~. and fl(p are 

absolutely algebraic(cf. Theorem 1.2.2, and p.l2). 

Def!ni~!Qg: The field of all absolutely algebraic 

elements of a field F of prime characteristic p is called · 

the maxi~!_!Q§g1~~1~]~!£_subfi!l~-2! F and nill be 

denoted by M.A.(p,m), where m is its absolute-degree. 

!2~!!!!.!~!2!!: The number of residu·e classes prime to 
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n is denoted by·<P(n) and is called the ~~.r<f>-!~!!£.:!!!gg1 • 

Let </>( n) == k, and let r
1

, ••• , rk be the set of dis­

tinct residues prime to n. If ( p,n) = 1, then ( pr. ,n) = 1. 
1 

Since pri =/= prj (mod n), if ri =j:. rj (mod n), then pr1 , ••• ,prk 

is also a set of distinct resid1_;es prime to n. Hence 

1\(pri) = TT.ri(mod n) from which we get 

(9.3.1) pd><n) ::= l(mod n) (Euler•·s Theorem). 

If n =::= 0( mod p) , say n =- pq_, then 

. 
(as in the discussion in Theorem 4.4.1) and no root of unity 

has an .order greater than q. In particular, ~I~-~.r~_llQ 

E.!i~i~i~~-!!=~~-I£2.:!!~_2f-~ni~l· 

If n¢ O(mod p) the polynomial xn- 1 is separable, 

since the only root of its formal derivative ~unction 

nxn-1 is x = O(cf. Theorem 3.2.12); consequently, as in the 

introductory remarks in 4.2, there exists a primitive n-th 

t f 1 d 2 3 n-1 n _ 1 roo o un ty e, an e,e ,e , ••• ,e ,e _ , are then 

distinct n-th roots of unity. 

Let ek have the order r, r ~ n, so that r is the 

least integer for which ekr :::::. 1. Since e has order n, n I kr 

by Lemma 3.2.1. Thus r ~n if and only if (k,n) = 1. 

Hence the cyclotomic polynomial 

C { x) - xn-1 + xn-2 + ... t- 1 
n 

has preciselycp(n) diRtinct primitive n-th roots of unity, 

!f-n_!~_!!£1_~-~~lti]~£!-~------------------------------

1cr. MaoDuffee, Intro. to Abstract Alg., p. 32-35. 
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~e shall assume in the following discussion that 

n is not a multiple of p, and we shall denote by E the 
n 

splitting field of C (x) over F. 
n 

TH~OR:EU_~£.:._g: !!_~_t F Q§_~_il_!?ld_.Q.f_gha.r~£~.§:ri st]:..Q 

p and let F 2 M.A. ( p ,m). ill n :j; O(mod p). Then 

C ( x) ::= xn-l-t- xn-2 + . . . -t 1 
n 

~2!]_!B F into~(n)/a ~stinc~xr~YE1~lei§.!?E~r~Elel 

factor.:~L~~!L of ~egr,!?.!? a, !!!H~r.§: (4>{ n} ,m) = d ~d a !Uh.!? 

least ex£_Qn~nt_£o! !hich pda = l(mod n). lur:t;h~.!.a.-~~g!-

2.:\s gro~~.Qf C n ( x) 2~.! F .!.§.-£.Y.£ll£...2L.Q.!ill a. 

EI2.Qf: Since dis a divisor of m, the G.F.(pd} c 

A(p,m). By Theorem 8.2.3, C (x) factors in the G.F.(pd) 
n , 

into irreducible factors of degree a. Letting~(n) ~ dr 

and m== dk, we have (r,k) = 1. By (9.3.1} p<P(n) = pdr= 

l(mod n), and since a is the least integer for which 

pda := 1( mod n), we h~ve a I r. Thus ( a,k) == 1. By Theorem 

9.2.1, the irreducible factors of degree a of C (x) in the 
n 

G.F.(pd)== A(p,d) remain irreducible in the A(p,kd)== A(p,m). 

Now these are the irreducible factors of C (x} in F, since 
n 

the coefficients of the irreducible factors of C (x) in F 
n 

are symmetric functions of certain of the primitive n-th 

roots of unity(which are themselves absolutely algebraic) 

and hence elements of the A{p,m)~ F. Since the Galois 

group H of C (x) relative to the G.F.(~) is cyclic(cf. the 
n 

discussion in Theorem 4.2.1) and of order a, end the common 

degree of the irreducible factors of Cn ( x} in F is a, _it 
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follows from the properties of the cyclotomic polynomial 

that H is the Galois group of Cn ( x) relative to F, which 

proves the th'eorem. 

From Theorem 9. 2. 2 vie have the following: 

Q~Eol!~Xl ~~! F ]~_!!~!£_of_]£l~-~ha£~E~~£1§~1E 

p, AF == A( p,m) c F. !.!Hill en ( x), n-$ O(;:nod p), !§_!.r.r~Q!!.Q-

1£!~_1!! F , i.f_~!!!J_£U!X.i.f ~ n) , m) :::. 1 , §!!!! tP( n) is _!h~ 
!~.!:~.!1!2!!~!!!_!2£_!& i cg pel>( n) = 1 ( m<;>d n) • 

TH~ 9.:._g.:.~: ~~~ F ],!L~_.f.!el,g_Qf--ll!:im~_.Qh~~ct­

~!!!!1!!£ p, ~d-~ m .Q~_.QQ!E.QO.§!~~' pJ'm. ';£hen F f.: Ed f:. En 

(En k~!!~.§j!.1it~igg_!1el.!L_.Q.f.Cn(x)), ~~.r.s: d is~_giv,!.§QJ: 

2! n. M2£~2Y.§£..~.-if d = .q1 q_2 • • • qr !~_.!!h!LE.!21Y;£.!!_2!-1.!.§­

~!nc1_.2.t!~!L~hen (EjEd} J n. 

PrQof: Let n = kd. Now any root of C d( x) is a root 

::f 1 of xd - 1 == 0, and hence of xdk - 1 = 0, and finally, 

of Cdk(x)= Cn(x). Hence F C. Ed ~En. 

( ) r rr 1 Let A -:;::A p,m. If n == p:L ···:tl then F 1 r 

~( n) = n( 1 - ! ) ( 1 - 1 ) ••• ( 1 - .! ) 
P1 p2 Pr 

from which it follows .. that c;i>{d) J ~(n) when·ever dIn. Since 

<j:J(d) I ~(n), it follows from Theorem 9.2.2 that C.E/F} =a 

wpere a is the least exponent for which pda= l(mod d) and 

d = {c/>(n) ,m). Now if a and b are relatively prime positive 
s-1 

integers such that a.=: l{mod b), then ab :::: l{mod b 5 ), 

£or anx ~.§~-lg~§ger_§.:. __ !h~1_fQ!!2E§_1h~---------­

lsee MacDuffee, Intro. to Abstract Alg.' p.23. 
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the exponent to 

e( n/ d) 
( pd) -=- 1( mod n). 

kl k2 kr 
n = ql q2 • • • qr ' 

which pd belongs(mod 
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where 0 .c:.. s
1

L k
1 

(i= 1,2, ••• ,r). Thus from Theorem 9.2.2 

s1 sQ s ~ _ s1 s 2 sr 
(E/F) = eq1 q2~· ••• qrr and thus (t'./Ed)- q1 q2 •.• q·r , a 

divisor or n. 

2·3~§2!!Q£!1!~I-~X-B~Q!~~1§· 

Both the f~ct that primitive n-th roots of unity 

exist and the fact that C (x) is solvable by radicals over 
n 

a field of characteristic zero for every positive integer 

n is made use of in the Galois criterion( cf. p. ?5). How­

ever,,primitive roots of unity do not exist over a field F 

of prime characteristic p if n :::= O(mod p), a..TJ.d if 

n ::f- 0( mod p) , C n( x) may not be solvable by radicals. The 

recognition of these racts leads to the criterion of Theorem 

9.3.1 for solvability by radicals over any field. In the 

following we let E be a normal extension of F. By Theorem 

3.4.3 E is the splitting field of a separable po~ynomial 

f(x) in F. 

Let K be any extension of F and let N be the split-

ting field of' 1"( x) in K. The root field N is independent 

of the particular choice of f(x), and is uniquely determined 

by F, E, and K. We shall denote it by N :::= {E,KJ. Now 

E ~ {E ,K} , and K c {E ,KJ • Finally, M will denote the 
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maximal separable extension of F contained in E. As usual, 

G is the group of E over F, and G is isomorphic to the group 

of M over F, so that1(M:F) = n. 

!!!~QE~-2~1: 1~! f( x) be_!L_.f!.Qll!!.2!!}~1-1!L!Lf.!el£ 

F, !!!Q_J:et n .Q~th~_.Q.rg~_Qf~!l.~..Q;alois_g.r£YJL.Qf f( x) .r~­

J:at1y~_,12Q_JL!!.~ld F. T!:um f( x) 1.1L.§.21Y~J21~~-.r~gic§;ls 

QY~ F if_§;Qg_Q!!1l_.!f: 

(1} G !~gJ:vabl~, 

(2) f!.!mi1iv~ n-~h__rggts_.Qf_~i~I-~!!.§1_£!~.! F, 

( 3) C n ( x) l_§ _ _§oly~hl!L.!?.IJ.!!£l.2Bl.§_Q!~.r F. 

f£22!= §~!fic!~!!QI: Suppose (1), (2), (3) hold. 

From ( 2} there exists a chain of fi.elds 

.F C F l C • • • C. F r' F r .:> En 

where each Fj is pure and of prime degree over F
3
_1• From 

(1), H is solvable and hence there exists a chain of fields 

F S F ~ ••• ~ F = {M ,F } , F 2 .M 
r r-tl r-ts r r+~ 

where each F is·normal and of prime degree qi 
r+i 

over F i 1• r+ -
Since F 2 E , and n = O(mod q.) it 

r n ~ 

and hence F is pure over F i 1 , 
r~i r~ -

follows that F 2 
r 

( i = 1, 2, ••• , s) • 

M = E then f(x) is solvable by radicals over F; 

E 
qi 

If 

then F is of prime characteristic p, and there exists a 

chain of .fields 

M=KCK C ••• CK =E 
1 . v 

~!!~r~ K j = K j-l(«'i), «i .Qeigg_a root of ~n_!rr~ci:Qk__ 

1B. L. van der \riaerd~n, Mod erne Algebra, vol.l, sec. 

ed. Berlin, Julius Springer, 1937, p.l25-129. 

.. 
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binomial xP - aj , aj 

••• , K • := K (o( ) • 
J j-1 j 

in Kj-l• Let K = Fr-t-s, K1 = K(a(1 ), 

Then either Kj =. Kj-l or Kj is pure 

and of prime degree p over Kj_
1

, (j = 1,2, ••• ,v). There­

fore there exists a chain of fields 

F c F C ••• C. F C F c . . . C F C. F C ••• C F t, 
1 r r-+1 r-ts r+ s-tl .. r-t sr 

where F ~ E where each F is pure and of prime degree 
rts~t i 

over F , (i== 1,2, ••• ,r+s+t). Hence f(x) is solvable by 
i-1 

radicals over F. 

~~~iti: Suypose f(x) is solvable by radicals 

over F. If n = 1, it is clear that {1), (2), and (3) hold. 

Suppose n =/= 1, and let p , ••• , p be the distinct prime 
1 r 

factors of n. By our assumption, tnere exists a chain of 

fields 

(9.3.1) F cF
1

C ••• C F, F :::> E, 
s s 

where F ~ = F i-l( f'i), f3i being a root of an irreducible bin-

omial xi- bi of prime degree q
1 

in F
1

_
1

, {i= 1,2, ••• ,s} .• 

Let q ,q , ••• ,q be those primes found among q
1

,q
2
', ••• ,qs 

il i2 ig 
which are not equal to the characteristic of F~ Then if 

m ~ q q ••• qi , primitive m-th roots of unity exist over 
il i2 g 

F. Now E1nis metaoyo1icl over F and hence there exists a 

chain of fields 
___________________________________ __._ ___ _ 

lA normal field N over F is called metacyclic if 

there exists a chain of subfields 

F:::N CN C··· CN =N 
0 1 t . 

where N i is cyclic of prime degree p 1 over Ni-l' ( 1 = 1, • 

• • 't) 
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F-:::= K CK C ••• CK := E, 
l t m 

where K is normal and of prime degree over K. 
1

, ( i::::: l, 2, 
i - 1-

••• , t) • Let L ::::: K , L :::;- L ( ~) , ••• , L. = L. ~ ( {3. ) , ( i :::::. l, 
t l 1 1-i 1 

2, ••• ,s). Then since E c K (j = l,2, ••• ,g), it follows 
q· t 
1j 

from ( 9.3.1) that either Li == L
1

_
1 

or L 1 is pure and of 

prime degree overLi-l (1== l,2, ••• ,s). Hence there exists 

a chain of fields 

F = K c K
1 

c . • . C:: Kt c. Kt l c. • • • c Kt , Kt ::> M + t-U +U -

where :ach K1 is normal and of prime degree over K1_1 • 

Renee H is solvable and likewise G. 

If F is of ~haracteristic zero, it is clear that 

(2) and (3) hold. Suppose F is of characteristic p. Since 

from (9.3.1) F5 ~ E, there exists for each p 1 , 

(1 =1,2, ••• ,r) a qji.= pi such that [fM,FjiJ ,Fji] = Fji" 

Moreover, since II is separable over F, ([11,F j-lJ,F J
1
J is 

separable over F. 
1

, and being pure over F. 
1 

cannot be 
Ji- Ji-

of degree p over F ji _1 • Hence pi=/= p ( i = 1, ••• , r) , and 

thus primitive n-th roots of unity exist over F. Since 

F ji = Fji _1 ( ~ji) f: [ 14,F ji _1 } and [r~. ,F ji _J is normal over 

Fj
1

_
1

, xpi- bji has all of its roots in lM,Fj
1

_1l, a sub­

field ofF (i::::::-1,2, ••• ,r). This implies that E C F, 
s pi s 

(i.::::.l,2, ••• ,r), and hence Ed cF 8 , where d =P1P 2···Pr• 

If [ En,F s) == F 8 , then C11( x} is solvable by radicals and 



the proof is complete. If fEn,F s~ =/= 

Theorem 9.2.3 thR.t (fEn ,F 
8

\ :F s1 is a 
since fEn ,F s~ is cyclic over F s, and 

there exists a chain of fields 
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F , it follows from 
s 

divisor of n. Thus, 

E C F (i= 1,2, ••• ,r), 
Pi- s 

F C F l c .•• c F === [E ,F 1, s st S+t n sf 
where each F i is pure and of prime degree over F . 1 • 

s~ S+1-

But E C [E ,F 1 ; and hence C ( x) is solvable by radicals 
n- n sS n 

over F, and (3) holds. This completes the proof of Theorem 

9.3.1. 

IfF is of characteristic zero, Theorem 9.3.1 is 

a classical Galois criterion which is equivalent to a num­

ber-theoretic condition on the index series of G.- ·If F is 

ot' prime characteristic, we will st1ow by means of the next 

two theorems concerning the cyclotomic polynomial, that 

the above Theorem 9.3.1 is equivalent to a similar condition 

on the index series of G. 

!fiEOE~-2-:.~.:._g: l.f n is 60ID,i;?.QSi te, n :j 0( mod p) , 

C ( x) !.L.§£!!!!12.!~~-rag_!~l.§_g:y~ F .Q.f_,gm~~ms~,!.Q p, n 

!!~~g_Qn!l_!f Cd(x) ~~ol.Y!~~E~~!.Q~ls_.Q~ F !Q! 

~!~!1_E!!m~_Q!Y1~ d 2! n. 

~!QQ.!: From the definition of solvability by rad­

icals and Theorem 9.2.4 the condition is necessary. 

To show that the condition is s~fficient, let 

p
1

,p
2

, ••• ,pr be the distinct prime factors of n, and suppose 

that C {x) is solvable by radicals over F, (i =1,2, ••• ,r). 
Pi 
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Then there exists a seauence of fields 

F c.F
1 

C. F
2 

C. ••• C F
8

, 

where F ;? E ( i .:::: l, 2, ••• , r) and ·1vhere FJ. is pure and of 
s Pi 

prime degree over F. 1 • As in Theorem 9.3.1, this implies . J-

that C (x) is solvable by radicals over F. 
n 

Let F 2M.A.(p.m). We define a class C(p,m) of 

primes recursively as follows: Let q be any prime(including 1). 

1. If q ( p, then q f: C(p,m), 

2. p¢C(p,m), 

3. If q ) p, let k be the least exponent such that 

p(c;b( q) ,m) k.:: l(mod q), and let k = q~1 q;2 ••• q:s. Then qi < q, 

and q 6 C( p,m) if and only if qi E: C( p,m). 

TI!EOE~.-~.:.~: Let F :> M.A. ( p,m). !f q ~~.Jli!m§ 

=f. p, c q( x) is221!ab!~.Qz_.r~ic~!.§..QV§! F, !LWld_gn!L!! 

q e C( p,m). 

E!QQ.f: This follows from Theorems 9.2.2, 9.3.1, 

and 9.3.2. 

'!'.~!2_R~-~~: !!~~ F ::l M.A. ( p,m). !~!! f( x) ~ 

F .!!!-!!2!!~bl~2l_!~~£~!s !L~d o!!±L.!Dh~!ude!_.§!~ies 

~!-~~-~~!2!~-S!2~-2K f(x) !!!~ive_to F £QDSi§!~Qf_Qti~e 

B~er§_~12a8!~~ C(p,m). 

~.!'QQ!: It follows from Theorems 9.3.2, and 9.3.3 

that this result is equivalent to Theorem 9.3.1 when F has 

prime characteristic. 

TI!~R~ 9.~_§: ~ F ,2 M.A. (p,m). !~.2!-§~.!'Z 
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~ m!ff!.£!~nt_£Qndi t.!.Qll_lliJ! G n ( x) 1!! F ~~-~.!L~ 

!a!~(n) g!~in£l_££1m!!.!!~ n-lh rogt~_.Qf __ ug!tz ]! solva£!! 

~--!~1.2!!!!L2.!~I F f..QI-~!!£1 n ¥. O(mod p) !§~at pea f m. 

f!.Q.Qf: H~~§it~: Suppose Cn(x) is solvable by 

radicals over F for every n :$. 0( mod p). Suppose that the 

exponent d of p in the faotorization of m is finite. Let 

d+l 
k=pP -1, so that (k,pf.:= 1. Then pis the least ex-

ponent such that p(</>(k) ,m) P = l( mod k) • ?rom Theorems 

9.2.2 and 9.3.4, Cn(x) is not solvable by radicals over F. 

§y!f!.2!~z: By Theorems 9.3.2 and 9.3.3, if 
00 

p m, every prime =/= p belongs to the class C(p,m). 
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