GALOIS THEORY

GALOIS THEORY
AND
ITS APPLICATION TO THE PROBLEM OF SOLVABILITY BY RADICALS OF AN EQUATION OVER A FIELD OF PRIME OR ZERO CHARACTERISTIC

By
RUPERT GEORGE RONALD, E.A.

A Thesis
Submitted to the Faculty of Arts and Science in Partial Fulfilment of the Requirements for the Degree Master of Arts

MASTER OF ARTS (1954) (Mathematics)

McMASTER UNIVERSITY Hamilton, Ontario

TITLE: Galois Theory and its Application to the Problem of Solvability by Radicals of an Equation over a Field of Prime or Zero Characteristic

AUTHOR: Rupert George Ronald, B.A.
(McMaster University)
SUPERVISOR: Professor N.D. Lane
NUMBER OF PAGES: 119
SCOPE AND CONTENTS:
In Part I of the thesis an account is given of the basic algebra of extension fields which is required for the understanding of Galois theory. The fundamental theorem states the relationships of the subgroups of a permutation group of the root field of an equation to the subfields which are left invariant by these subgroups. Extensions of the basic theorem conclude Part I. In Part II the solvability of equatIons by radicals is discussed, for fields of characteristic zero. A discussion of finite fields and primitive roots leads to a oriterion for the solvability by radicals of equations over fields of prime characteristic. Finally, a method for determining the Galois group of any equation is discussed. Most of the material in the introductory chapters is taken from Artin's: Galois Theory [cf. p. 120].
TABLE OF CONTENTS
PART IFUNDAMENTALS OF GALOIS THEORY
CHAPTER PAGE
I LINEAR ALGEBRA 1
II FIFLD THEORY 12
III GALOIS THEORY 24
IV ROOTS OF UNITY 51
V EXTENSIONS AND INTERSECTIONS OF FIELDS 63
PART II
\therefore APPLICATIONS OF THE GALOIS THEORY
VI A CRITERION FOR SOLVABILITY BY RADICALS IN FIELDS OF CHARACTERISTIC ZERO 68
VII A METHOD OF DETERMINING THE GALOIS GROUP 84
VIII GALOIS FIELDS 91
IX A CRITERION FOR SOLVABILITY BY RADICALS IN
A FIELD OF PRIME CHARACTERISTIC 104
BIBLIOGRAPHY 120

PART I
FUNDAMENTALS OF GALOIS THEORY

CHAPGER I

LINEAR ALGEBRA

1.1 Fields andVector Spaces.

In the notation (1.1.1), (2.3.11), eto., the first number will denote the chapter, the second number the art1ole, and the third number the lema or theorem as it oocurs in the article. A.similar notation will be used with equations.

Definition: A set of at least two elements forms a field with respect to two operations called addition and multiplication if (a) the set is closed with respect to addition and multiplication; (b) the set forms a commutative group with respect to addition whose identity is called the zero element; (c) the nonzero elements of the set form a group with respect to multiplioation, whose identity is called the unity element; (d) the distributive laws hold: $a(b+c)=a b+a c,(a+b) c=a c+b c$. If multiplication in the field is commutative then we shall say the elements form a commutative fleld.

Definition: If V is an additive abelian group with elements A, B, \ldots and F is a fleld with elements $a, b, \ldots ;$ and if for each a of F and A of V the product aA denotes an element of V, then V is called a left vector space over F if the following assumptions hold:

> (1) $a(A+B)=a A+a B$,
> (2) $(a+b) A=a A+b A$,
> (3) $a(b A)=(a b) A$,
> (4) $1 A=A$.

Similarly when multiplication by field elements is from the right we shall call V a right vector space.

If O is the zero element of F and O the zero element of V then from these assumptions we see that $o A=0$ and $\mathrm{aO}=0$. The first relation follows from the equations: $a A=(a+o) A=a A+o A$. Similarly the second relation follows from: $B A=a(A+0)=a A+80$.
1.2Linear_Equations.

If we have a set of equations:

$$
L_{1} \equiv a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=0,
$$

(1.2.1)

$$
I_{m} \equiv a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=0,
$$

where the $a_{1 j}, i=1,2, \ldots, m ; j=1,2, \ldots, n$, are m.n elements belonging to F, a field, we will need to know conditions such that elements in F exist to satisfy the equations. Equations (1.2.1) are called linear homogeneous equations, and a set of elements, $x_{1}, x_{2}, \ldots, x_{n}$ of F for which all the equations (1.2.1) are true is called a solution of the system. If all the elements $x_{1}, x_{2}, \ldots, x_{1}$ are zero then the solution is trivial; otherwise it is called non-trivial.

THEOREM_1.2.1: A system of linear homogeneous equa-
tions_always has a non-trivial solution if the number of unknowns_exceeds the number of equations.

Proof: We see that one homogeneous equation $a_{11} x_{1}+$ $a_{i 2} x_{2}+\cdots+a_{i n} x_{n}=0, n>1$, has a non-trivial solution for if one of the $a_{i j}$'s is zero, say $a_{i 1}=0$, then $x_{1}=1$, $x_{2}=x_{3}=\cdots=x_{n}=0$ will serve as a solution. We continue using the induction method of proof. We assume that each system of equations, k in number, in more than k unknowns has a non-trivial solution when $k<m$. In the system of equations (1.2.1) we assume $n>m$. We wish to find elements x_{1}, \ldots, x_{n} not all zero such that $L_{1}=L_{2}=\ldots=$ $L_{m}=0$. If $a_{i j}=0$ for each i and j then any choice of x_{1}, \ldots, x_{n} will serve as a solution. If not all $a_{i j}$ are zero, then we may assume $a_{11} \neq 0$. We can find a non-trivial solution to equations (1.2.1), if and only if we can find a non-trivial solution to the following system:
(1.2.2)

$$
\begin{aligned}
& L_{1}=0, \\
& L_{2}-\frac{\theta}{a} 21_{1}=0, \\
& \ldots \ldots \ldots \ldots \ldots \\
& L_{m}-\frac{a}{a} \frac{m_{11}}{L_{1}}=0 .
\end{aligned}
$$

For, if $x_{1}, x_{2}, \ldots, x_{n}$ is a solution to (1.2.2) then, since $L_{1}=0$, the second term in each of the remaining equations is zero and hence, $\mathrm{L}_{2}=\mathrm{L}_{3}=\ldots=\mathrm{L}_{\mathrm{m}}=0$. Conversely, if (1.2.1) is satisfied, then the new system is clearly satisfied. The new system was set up so as to eliminate x_{1} from
the last m - 1 equations. The last $m-1$ equations have a non-trivial solution by our inductive assumption whioh proves the theorem.

Definition: In a vector space V over a field F the vectors A_{1}, \ldots, A_{n} are called dependent if there exist elements x_{1}, \ldots, x_{n} not all of F such that $x_{1} A_{1}+x_{2} A_{2}+\ldots$ $+x_{n} A_{n}=0$. If the vectors A_{1}, \ldots, A_{n} are not dependent, they are called independent.

Definition: The dimension of a vector space V over a fleld F is the maximum number of independent elements in V. Thus we see that the dimension of V is n if there are n independent elements in V and no set of more than n elements are independent.

Definition: A system A_{1}, \ldots, A_{m} of elements in V is called a generating system of V if each element A of V can be expressed linearly in terms of A_{1}, \ldots, A_{m}, that is, $A=$ $\sum_{i=1}^{m} a_{i} A_{i}$ for a suitable choice of $a_{i}, i=1, \ldots, m$, in a field F.

THEOREM_1.2.2: In_any_zenerating_system_the maximum number of indeqendent vectors_is equel to the dimension of the_vector space.

Proof: Let p be the maximum number of independent vectors in the generating system $S=\left(A_{1}, \ldots, A_{q}\right)$ of V and assume that A_{1}, \ldots, A_{p} are p independent vectors of S. Since p is the maximum number of independent vectors then the $p+1$ vectors $A_{1}, \ldots, A_{p}, A_{k}$, where $p<k \leq q$, are in-
early dependent. Thus,

$$
a_{1} A_{1}+\ldots+a_{p} A_{p}+a_{k} A_{k}=0
$$

where not all $a_{i}=0, i=1, \ldots, p, k$, and further, where a_{k} $\neq 0$; for if $a_{k}=o$ then A_{1}, \ldots, A_{p} would be dependent. Therefore,

$$
A_{k}=-\frac{1}{a_{k}}\left(a_{1} A_{1}+\cdots+a_{p} A_{p}\right)
$$

Thus every $A_{k} \in S$ is then a linear combination of A_{1}, \ldots, A_{p}. Since every vector B of V is a linear combination of A_{1}, \ldots, A_{q}, B is also a linear combination of A_{1}, \ldots, A_{p}. Conversely, since every linear combination of these p vectors also. belongs to V, V consists of all linear combinations of A_{1}, \ldots, A_{p}. Consider t vectors B_{j} of ∇, where $t>p$ and let B_{j} $=\sum_{i=1}^{p} a_{1 j} A_{i}, j=1, \ldots, t$. Let x_{1}, \ldots, x_{t} be a non-trivial solution of the $p<t$ equations $\sum_{j=1}^{t} a_{i j} x_{j}=0, i=1, \ldots, p$ (cf. Theorem 1.2.1). Then

$$
\sum_{j=1}^{t} x_{j} B_{j}=\sum_{j=1}^{t} x_{j}\left(\sum_{i=1}^{p} a_{1 j} A_{i}\right)=\sum_{i=1}^{p}\left(\sum_{j=1}^{t} a_{i j} x_{j}\right) A_{i}=0 .
$$

Thus B_{1}, \ldots, B_{t} are linearly dependent whenever $t>p$. Since p linearly independent vectors of V do exist, for example A_{1}, \ldots, A_{p}, we see that p is the dimension of V and that A_{1}, \ldots, A_{p} forms a generating system for the vector space V. This proves our theorem.

Definition: Any set of linearly independent vectors whioh generates V is called a basis.

THEOREM_1.2.3: Let A_{1}, \ldots, A_{n} be a basis of a vector space V and let B be any element of V. Then the representation $B=c_{1} A_{1}+c_{2} A_{2}+\cdots+c_{n} A_{n}$ is unique.

Proof: If

$$
B=c_{1} A_{1}+\cdots+c_{n} A_{n}=d_{1} A_{1}+\ldots+d_{n} A_{n}
$$

where $c_{i} \neq d_{i}$, for some $1=1, \ldots, n$, then $\sum_{i=1}^{n}\left(c_{i}-d_{i}\right) A_{i}=$ 0. Since A_{i} are independent, this is a contradiction, which proves the theorem.

THEOREM_1.2.4: Let A_{1}, \ldots, A_{n} be a basig_of V_and let

 $\neq 0$.

Proof: Let

$$
\sum_{i=1}^{n} x_{i} B_{i}=\sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} a_{i j} A_{j}=\sum_{j=1}^{n}\left(\sum_{i=1}^{n} a_{i j} x_{i}\right) A_{j}=0
$$

Thus $\sum_{i=1}^{n} a_{i j} X_{i}=0, j=1, \ldots, n$. These equations have a nontrivial solution if and only if $\left|a_{i j}\right|=0$, and thus B_{i} are independent if and only if $\left.\right|_{a_{i j}} \mid \neq 0$.

Definition: A subset of a vector space is called a subspace if it is a subgroup of the vector space and if the multiplication of any element in the subset by any element of the field is also in the subset. An s-tuple of elements $A=\left[a_{1}, \ldots, a_{S}\right]$ in a field F will be called a row vector. All s-tuples will form a vector space if,
(1) $\left[a_{1}, \ldots, a_{s}\right]=\left[b_{1}, \ldots, b_{s}\right]$ if and only if $a_{1}=b_{1}, 1=$ $1, \ldots, s$,
(2) $\left[a_{1}, \ldots, a_{s}\right]+\left[b_{1}, \ldots, b_{s}\right]=\left[a_{1}+b_{1}, \ldots, a_{s}+b_{s}\right]$,
(3) $b\left[a_{1}, \ldots, a_{s}\right]=\left[b a_{1}, \ldots, b a_{s}\right]$, for b an element of F.

When the s-tuples are written vertically $\left[\begin{array}{l}a_{1} \\ l_{1} \\ \cdot \\ a_{s}\end{array}\right]=A^{l}$ they will
be called column vectors.

THEOREM_1.2.5: The row (column) Vector space F^{n} of

Qll_n-tuples from a field Fis_a_Vector_space of dimension n_over_F.

Proof: The n elements,

$$
\begin{aligned}
& e_{1}=(1,0,0, \ldots, 0) \\
& \theta_{2}=(0,1,0, \ldots, 0) \\
& \ldots \ldots \ldots . \ldots . \ldots, \\
& \theta_{n}=(0,0,0, \ldots, 1)
\end{aligned}
$$

are independent and generate F^{n}. This is true since $\left(a_{1}, a_{2}\right.$, $\begin{aligned}\left.\ldots, a_{n}\right)= & a_{1} e_{1}+a_{2} \theta_{2}+\ldots+a_{n} e_{n}=\sum_{i=1}^{\pi} a_{1} e_{1}, i=1,2, \ldots, n . \\ & \text { Definition: we call a rectangular array, }\end{aligned}$

$$
A_{m}^{n}=\left[a_{1 j}\right]=\left[\begin{array}{l}
a_{11} a_{12} \ldots a_{1 n} \\
a_{21} a_{22} \\
\ldots a_{2 n} \\
\cdots \cdots \cdots \cdot \ldots \\
a_{m 1} a_{m 2} \cdots a_{m n}
\end{array}\right]
$$

where $i=1,2, \ldots, m, j=1,2, \ldots, n$, of elements of a field F, a matrix. By the right row rank of a matrix, we mean the maximum number of independent row vectors among the rows ($a_{i 1}, \ldots, a_{i n}$) of the matrix when multiplication by field elements is from the right. Similarly, we define left row rank, right column rank and left column rank.

THEORER 1.2.6: In any matrix with_elementsina
field the right (left) column rank eguals_the left_(right) row_rank.

Proof: We call the column vectors of the matrix $c^{(1)}$
$\ldots, C^{(n)}$ and the row vectors $R(1), \ldots, R(m)$. The column Vector 0 is $\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$ and any right dependence $c^{(1)} x_{1}+c^{(2)} x_{2}+$
$\ldots+c^{(n)} x_{n}=0$ is equivalent to a solution of the equations

$$
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0,
$$

(1.2.3)

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=0
$$

Any change in the order in which the rows are written still gives us the same set of equations and does not change the column rank of the matrix, but also does not change the row rank since the ohenged matrix would have the same set of row vectors. Let the right column rank be c and let the left row rank be r . We may assume the first r rows to be independent row vectors. The row vector space generated by all the rows of the matrix has, by Theorem 1.2.2, the dimension r and is generated by the first r rows. Thus, each row after the r-th is linearly expressible in terms of the first r rows. Thus, any solution of the first r equations in the set (1.2.3) will be a solution of the entire system since any of the remaining $n-r$ equations can be represented as a linear combination of the first r. Conversely, any solution of equations (1.2.3) will also be a solution of the ifrst r equations. Therefore the matrix,
(1.2.4)

$$
\left[\begin{array}{l}
a_{11} a_{12} \cdots a_{1 n} \\
\cdots \cdots \cdots \cdots \cdots \\
a_{r 1} a_{r 2} \cdots a_{r n}
\end{array}\right]
$$

of the first r rows of the original matrix has the same right column rank as the original. It also has the same left row rank since the r rows chosen were independent. But the colum rank of matrix (1.2.4) cannot exceed r by
 left column rank and r^{\prime} the right row rank, then $c^{\prime} \leq r^{\prime}$. If we form the transpose of the original matrix, that is, replace rows by columns and vice versa, then the left row rank of the transposed matrix equals the left column rank of the original. Now apply the above relations to the transposed matrix and we see that $r \leq c$ and $r^{\prime} \leq o^{\prime}$. Therefore $r=c$ and $r^{\prime}=c^{\prime}$ which was to be proved.

Corollary: In a oommutative fleld_the row end_column ranks are_equal.

Definition: The rank of a matrix over a commutative field is its row or column rank.

THEOREM_1.2.7: The_set_of_non=homogeneous_linear equations,

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=a_{1} n_{n+1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=a_{2} n_{n+1} \tag{1.2.5}
\end{align*}
$$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=a_{m} n_{n+1},
$$

with coefficients in_a field has a solution if ond only if
the left row rank of the augmented ${ }^{1}$ matrix A_{m}^{n+1} is equel to the left row renk of the coefficient matrix A_{m}^{n}.

Proof: The set (1.2.5) has a solution if and only
if the column vector $A(n+1)=\left[\begin{array}{l}a_{1} n+1 \\ 1^{\prime} n+1 \\ \vdots \\ a_{m^{\prime} n+1}\end{array}\right]$ lies in the space generated by the vectors $A^{(1)}=\left[\begin{array}{l}a_{11} \\ \dot{D}^{11} \\ \dot{a_{m 1}}\end{array}\right], A^{(2)}=\left[\begin{array}{l}a_{12} \\ \dot{b}^{2} \\ \dot{a}_{m 2}\end{array}\right], \ldots$, $A(n)=\left[\begin{array}{l}a_{1 n} \\ \dot{0} \\ \dot{a} \\ m n\end{array}\right]$. Since the vector space generated by the columns of A_{m}^{n} must be the same as the vector space generated by those of A_{m}^{n+1} there is a solution if and only if the right column rank of the matrix A_{m}^{n} is the same as the right column rank of the augmented matrix A_{m}^{n+1}, i.e., by Theorem 1.2.6, if and only if the left row renks are equal. Conversely, if the left row rank of A_{m}^{n+1} is equal to the left row rank of A_{m}, the right column ranks will be equal and the equations will have a solution. If the equations (1.2.5) have a solution, then any relation among the rows of A_{m}^{n} exists among the rows of A_{m}^{n+1}. Por equations (1.2.5) this means that like combinations of equals are equal. Conversely, if each relation which exists among the rows of A_{m}^{n+1} also exists among the rows of A_{m}^{n}, then the left $\frac{\text { (right) row rank of } A_{m}^{n+1} \text { is the same as the left (right) }}{1 A_{m}^{n+1}=\left[A_{m}^{n} A^{(n+1)}\right] \text {, (ef. p.7 and line 4:p.10) }}$
row rank of A_{m}^{n}. This proves the theorem.
THEORFM_1.2.8: If in equations (1.2.5) m_n_then there exists a unique solution to (11.2.5) if and only if the corresponding homogeneous equations,

$$
\begin{equation*}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=0, \tag{1.2.6}
\end{equation*}
$$

$$
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=0
$$

have only the trivial solution.
Proof: (1) Assume that the equations (1.2.6) have only the trivial solution. Then the column vectors of A_{n}^{n} are independent and A_{n}^{n} has rank n. Thus the rank of A_{n}^{n+1} is equal to the rank of A_{n}^{n} and by Theorem 1.2 .7 equations (1.2.5) have at least one solution. If $A(1)_{X_{1}}+\ldots+A^{(n)}$ $x_{n}=A(n+1)$ has two distinct solutions X_{i} and Y_{i} then

$$
A^{(1)}\left(X_{1}-Y_{1}\right)+\ldots+A^{(n)}\left(X_{n}-Y_{n}\right)=0
$$

and $X_{i}-Y_{i}$ is a non-trivial solution of equations (1.2.6) contrary to our assumption. Thus equations (1.2.5) have exactly one solution.
(2) Now suppose that equations (1.2.5) have a unique solution X_{i}. Then $\sum_{i=1}^{\eta}(1)_{X_{i}}=A(n+1)$. If Y_{i} is a solution of (1.2.6), then $\sum_{i=1}^{n} A(1)_{Y_{i}}=0$. Thus $\sum_{i=1}^{n} A(1)\left(X_{i}+\right.$ $\left.Y_{i}\right)=A^{(n+1)}$. But (1.2.5) has only one solution and thus $Y_{i}=0$. Therefore (1.2.6) has only a trivial solution which completes the proof.

CHAPTER II

FIELD THEORY

2.1_Extension Fields.

Definition: If E is a field and F a subset of E which is a subfield of E then we call E an extension of F, designated by FCE.

Definition: If α, β, \ldots, are elements of E, let
$F(\alpha, \beta, \ldots)$ be the set of elements in E which can be expressed as quotients of polynomials in α, β, \ldots, with coefficients in F. $F(\alpha, \beta, \ldots)$ is called the field obtained after the adjunction of the elements α, β, \ldots to F, or the fleld generated out of F by the elements α, β, \ldots.

Obviously $F(\alpha, \beta, \ldots)$ is a field and is the smallest extension of F which contains the elements α, β, \ldots. Henceforth, all fields will be assumed to be commutative fields. If $F \subset \mathbb{E}$, then ignoring the multiplication operation defined between the elements in E, we may consider \mathbb{E} as a vector space over F.

Definition: The degree of E over F, written ($E / F)$, is the dimension of the vector space E over F. If ($E / F)$ is finite, \mathbb{E} is called a finite extension.

TGEOREM_2.1.1: If F_B_E_Ere three fields_such
that $F \subset B \subset E$ then $(E / F)=(E / B)$ ($B / F)$.
Proof: Let (E / B) be r and let (B / F) be s . Now let. 12
$b_{1}, b_{2}, \ldots, b_{s}$ be a basis of B over F. Thus

$$
b_{i}=f_{i 1} b_{1}+\ldots+f_{i s} b_{s}=\sum_{j=1}^{S} f_{i j} b_{j}
$$

where b_{1} is any element of B. Also let $e_{1}, e_{2}, \ldots, e_{r}$ be a basis of E over B, that is, for any e belonging to E,

$$
e=b_{1} e_{1}+\cdots+b_{r} e_{r}=\sum_{i=1}^{y} b_{1} \theta_{i}
$$

Thus any e belonging to E has the representation

$$
e=\left(\sum_{j=1}^{s} f_{1 j} b_{j}\right) e_{i}+\ldots+\left(\sum_{j=1}^{S} f_{r j} b_{j}\right) e_{r}=\sum_{j=1}^{s} \sum_{i=1}^{x} f_{i j} b_{j} e_{i}
$$

Therefore every element e of E can be expressed as a linear combination of the rs elements $b_{j} e_{i}$. Now let $\sum_{i=1}^{n} \sum_{j=1}^{s} f_{i j} b_{j} e_{i}$ $=0$, where $f_{i j} \in F$. Thus

$$
\left(\sum_{j=1}^{\stackrel{E}{c}} f_{1 j} b_{j}\right) e_{1}+\ldots+\left(\sum_{j=1}^{s} f_{r j} b_{j}\right) e_{s}=0
$$

Since the e are independent then $\sum_{j=1}^{s} f_{i j} b_{j}=0$ where $i=1$, \ldots, r. But the b_{j} are independent over F and therefore $f_{1 j}=$ 0 . Therefore the rs elements $b_{j} e_{i}$ are independent over F and they form a basis of E over F. Thus $(E / F)=(E / B) \cdot(B / F)$ which was to be established.

$$
\begin{aligned}
& \quad \text { Corollary: If } F \subset F_{1} \subset F_{2} \subset \ldots C F_{n} \text {, then }\left(F_{n} / F\right) \\
& =\left(F_{n} / F_{n-1}\right) \cdot\left(F_{n-1} / F_{n-2}\right) \cdots\left(F_{2} / F_{1}\right) \cdot\left(F_{1} / F\right) .
\end{aligned}
$$

2.2 Polynomials.

Definition: An expression of the form $a_{0} x^{n}+a_{1} x^{n-1}$ $+\ldots+a_{n}$ is called a polynomial in F of degree n if the coeffioients a_{0}, \ldots, a_{n} are elements of the field F and a_{0} is not zero.

Definition: A polynomial in F is oalled reduoible in F if it is equal to the product of two polynomials in F each of degree at least one. Polynomials which are not re-
ducible in F are called irreducible in F.
Multiplication and addition of polynomials are performed in the same menner as with field elements. In the set of all polynomials of degree lower than n, we include the zero polynomials, although they have no degree.

Definition: If $f(x)=g(x) \cdot h(x)$ is a relation which holds between the polynomisls $f(x), g(x), h(x)$ in a field F, then we say that $g(x)$ divides $f(x)$ in F.

We see that the degree of $f(x)$, in the relation $f(x)=g(x) \cdot h(x)$, is equal to the sum of the degrees of $g(x)$ and $h(x)$. If neither $g(x)$ nor $h(x)$ is a constant then each has a degree less then the degree of $f(x)$. The division algorithm ${ }^{I}$ holds for any two polynomials $f(x)$ and $g(x)$, that is, $f(x)=q(x) g(x)+r(x)$, where $q(x)$ and $r(x)$ are unique ${ }^{2}$ polynomials in F and the degree of $r(x)$ is less then that of $g(x)$. Also $r(x)$, the remainder of $f(x)$, is the uniquely determined polynomial of a degree less than that of $g(x)$ such that $f(x)-r(x)$ is divisible by $g(x)$. It follows from the identity $f(x)=(x-a) q(x)+r(x)$ that if a is a root of the polynomial $f(x)$ in F then $r(x) \equiv 0$ and $x-a$ is a factor of $f(x)$. As a consequence a polynomial in a field oannot have more roots in the field than its degree.
${ }^{2}$ Marie J. Weiss, Higher Algebra for the Undergraduate, ed. John wiley and Sons (New York: 1949), pg. 70.
iIf F is not commutative $f(x)=g(x) q_{1}(x)+r_{1}(x)$ and $q_{1}(x)$ and $r_{1}(x)$ need not equal $q(x)$ and $r(x)$, respectively. 3
${ }^{3}$ A.A.Albert, University of Chicago Press, (Chicago) 1947, pg. 24.

Lemma_z.2.1: The set $s: r(x) f(x)+s(x) g(\underline{x})$ where $f(x)_{2} g(x)$ are fixed, consists_of multiples_of a fixed polynomial_m(x).

Proof: Let $m(x)$ be a polynomial of least derree such that $r(x) f(x)+s(x) g(x)=m(x)$ for a suitable choice of $r(x)$ and $s(x)$. Let

$$
r_{1}(x) f(x)+s_{1}(x) g(x)=p(x)=m(x) q(x)+r(x)
$$

where $r(x)$ has degree less than the decree of $m(x)$. Then

$$
\left[r_{1}(x)-r(x) q(x)\right] f(x)+\left[s_{1}(x)-s(x) q(x)\right] g(x)=r(x)
$$

Thus $r(x) \equiv 0$, which proves the lemma.
Lemma_2.2.2: If $\left.\int f(x)_{\mu} g(x)\right)=d(x)$ there exist polynomials $r(x)_{2} s(\underline{x})$ such thet $r(x) r(x)+s(x) g(x) \equiv d(x)$.

Proof: As in Lemma 2.2.1 there exist on $r(x)$ and $s(x)$ such that $r(x) f(x)+s(x) \varepsilon(x)=r(x)$. The set S contains $f(x)$ and $\varepsilon(x)$ and hence $m(x)$ divides $f(x)$ and $m(x)$ divides $g(x)$. Since $d(x)$ divides $f(x)$ and $d(x)$ divides $g(x)$, therefore $d(x)$ divides $m(x)$. Thus $d(x)$ equals $m(x)$ which completes the proof.

$$
\text { THEORFM 2.2.3: If } p(x) \text { is_an irreducible polynomiel }
$$ over a field F and if $p(x)$ divides the product_ $f(x) \cdot g(x)$ of two polynomigls_over F, then $p(x)$ divides_f(x)_or_p(x) divides_g (x).

Proof: Suppose $p(x)$ does not divide $f(x)$. Since $p(x)$ is irreducible over F, its only divisors are its associates ${ }^{1}$ and the units ${ }^{2}$ of the field. Thus $(p(x), f(x))=1$. By Lemma 2.2.2 there exist polynorials $r(x), g(x)$ such that
$1_{\text {Two elements of a ring are called associates if each divides the other. }}$ 2_{A} unit is any associate of 1.
if 1 is the unity element of F then (2.2.1) $\quad 1=r(x) f(x)+s(x) p(x)$.

Multiply equation (2.2.1) by $g(x)$. Then (2.2.2)

$$
g(x)=r(x) f(x) g(x)+s(x) p(x) g(x)
$$

Since $p(x)$ divides the right side of equation (2.2.2), $p(x)$ divides $g(x)$. Similarly, if $g(x)$ does not divide $g(x)$ then $p(x)$ divides $f(x)$, which completes the proof.

We see that if $p(x)$ is an irreducible polynomial
over f, then $p(x)$ does not divide the product of two polynomials over F, each of whose degree is less than the degree of $p(x)$, since the only divisors of $p(x)$ would be its associates and units of the field F.

THEOREM 2.2.4: A polymomial f(x) of positive degree over a field F cen be expressed as an element of F times a product of monicilrreducible_polynomialsover.f. This decomposition is unigue except for the order in which the foctors occur.

Proof: If $f(x)$ is irreducible, the decomposition is accomplished. Now let $f(x)=g(x) \cdot h(x)$. Then $g(x)$ and $h(x)$ are polynomials of degree less than the degree of $f(x)$. We make the inductive assumption that the decomposition is possible for all polynomials of degree less than that of $f(x)$. Thus

$$
g(x)=c p_{1}(x) \cdot p_{2}(x) \cdot \cdots \cdot p_{r}(x)
$$

and

$$
h(x)=d q_{1}(x) \cdot q_{2}(x) \cdot \ldots \cdot q_{g}(x)
$$

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0} \text { is monic if } a_{n}=1
$$

where c, d are in F and where $p_{i}(x)$ and $q_{j}(x)$ are monic irreducible polynomials over F. We have then

$$
f(x)=g(x) h(x)=\operatorname{cdp}_{1}(x) \quad \cdots p_{r}(x) q_{1}(x) \quad \cdots q_{s}(x)
$$

Thus the induction is completed and the decomposition is accomplished. Now to show that the decomposition is unique suppose there exists two decompositions

$$
f(x)=c p_{1}(x) \quad \ldots p_{n}(x)=d q_{1}(x) \quad \cdots q_{m}(x)
$$

Since the irreducible polynomials are monic then cequals d. Since $p_{1}(x)$ is irreducible it divides some $q_{j}(x)$. As both $p_{l}(x)$ and $q_{j}(x)$ are monic their quotient is the unity element of F, and hence $p_{1}(x)=q_{f}(x)$. Thus we obtain.

$$
f_{1}(x)=p_{2}(x) \ldots p_{n}(x)=q_{1}(x) \ldots q_{j-1}(x) \cdot q_{j+1}(x) \ldots q_{m}(x)
$$ Now $f_{1}(x)$ is of degree less than the degree of $f(x)$. We make the inductive assumption that all polynomials of dearee less than that of $f(x)$ have a unique decomposition. Thus $f_{1}(x)$ has a unique decomposition, $m=n$, and therefore $f(x)$ has a unique decomposition into the product of irreducible polynomials which proves the theorem.

Lerma 2.2.5: With regard to division by $f(x)$, the remainder_of_the_product_of the remainders_of_two polynomials is the remainder of the product of these two polynomials.

Proof: Let $g_{1}(x)=q_{1}(x) f(x)+r_{1}(x)$ and $g_{2}(x)=$ $q_{2}(x) f(x)+r_{2}(x)$ be the two polynomials. Then $r_{1}(x) r_{2}(x)=\left[q_{1}(x) q_{2}(x) f(x)-g_{1}(x) q_{2}(x)\right.$ $\left.-g_{2}(x) g_{1}(x)\right] f(x)+E_{1}(x) g_{2}(x)$.

Let $g_{1}(x) g_{2}(x)=q(x) f(x)+r(x)$. Thus

$$
\begin{aligned}
r_{1}(x) r_{2}(x)=\left[q_{1}(x) q_{2}(x) f(x)\right. & -g_{1}(x) q_{2}(x) \\
& \left.-g_{2}(x) q_{1}(x)+q(x)\right] f(x)+r(x)
\end{aligned}
$$

2. 3 Alsebraic Elements.

Definition: If α is an element of an extension field of F, and if there are polynomials with coefficients in F which have α as root then α is called aleebraic with respect to F. If α is not algebreic it is called transcendental with respect to F.

Lemma 2.3.1: Let α be alcebraic and select gmong all monic polyomials_in F which have α as root, one, $f(x)$, of least degree. Then $f(x)$ is uniguely determined, is_irreducible, and each qolyomial in F with the root α is diVigible_by_f(x).

Proof: Let $g(x)$ be any polynomial in F with $g(\alpha)=$ 0. We may divide $g(x)$ by. $f(x)$, and write $g(x)=f(x) q(x)$ $f r(x)$ where the degree of $r(x)$ is less than that of $f(x)$. Substituting $x=\alpha$ we get $r(\alpha)=0$. Since the degree of $r(x)$ is less than the degree of $f(x), r(x) \equiv 0$, and $g(x)$ is divisible by $f(x)$. This also shows that $f(x)$ is unique. If $f(x)$ were reducible, one of the factors would have to vanish for $x=\alpha$ contradicting again the choice of $f(x)$.

We consider now the subset E_{0} of the following elements θ of E :

$$
\theta=g(\alpha)=c_{0}+c_{1} \alpha+c_{2} \alpha^{2}+\ldots+c_{n-1} \alpha^{n-1}
$$

where $g(x)$ is a polynomial in F of degree less than n, the
degree of $f(x)$. We note that the constants $o_{0}, c_{1}, \ldots, c_{n-1}$ are uniquely determined by the element θ, since two expressions for the same θ would lead after subtracting to an equation for α of lower degree than n.

Lemma_2.3.2: Eois_efield.

Proof: Let $g(x)$ and $h(x)$ be two polynomials of degree less than n. Thus

$$
\begin{aligned}
& g(\alpha)+n(\alpha)=\left(c_{0}+c_{1} \alpha+\ldots+c_{n-1} \alpha^{n-1}\right)+\left(d_{0}+d_{1} \alpha\right. \\
& \left.\quad+\ldots+d_{n-1} \alpha^{n-1}\right)=b_{0}+b_{1} \alpha+\ldots+b_{n-1}{ }^{n-1}=k(\alpha)
\end{aligned}
$$

which is also a polynomial of degree less than n. Thus E_{o} is closed under addition. Now considering $g(x)$ and $h(x)$ again we put $g(x) h(x)=q(x) f(x)+r(x)$ and hence $g(\alpha) h(\alpha)=r(\alpha)$. Therefore E_{o} is closed under multiplication. Now let $h(\alpha) \neq 0$ so that $(\mathrm{h}(\mathrm{x}), \mathrm{f}(\mathrm{x}))=1$. By Lemma 2.2.2 there exist polynomials $a(x), b(x)$ such that $a(x) h(x)+b(x) f(x)=1$. Thus $a(\alpha) h(\alpha)=1$ and we may assume that the degree of $a(x)$ is less than n for we may replace $a(x)$ by its remainder after division by $f(x)$. Hence, $h(\alpha)$ has an inverse $a(\alpha)$. Thus E_{0} is a field, whioh completes the proof.

Since the space $F(\alpha)$ is generated by the linearly independent $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}$ the degree $[F(\alpha) / F]$ is n. We shall see that the internal structure of the field $\mathrm{E}_{0}=$ $F(\alpha)$ depends not on the nature of α but only on the irreducible $f(x)$.
$\mathrm{P}(\mathrm{x})$ with_coefficients_in_a_field_E_there exists_an_extension_field $E \supseteq F$ in which $p(x)=0$ has_a_root.

Proof: Let $f(x)=x^{n}+b_{n-1} x^{n-1}+\ldots+b_{0}$ be an irreducible polynomial of $p(x)$. we select a symbol s and let E_{1} be the set of all formal polynomials $g(s)=c_{0}+c_{1} s$ $+\ldots+c_{n-1} s^{n-1}$ of a degree lower than n. This set forms a group under addition. Besides the ordinary multiplication we introduce a new multiplication (*) of two elements $g(s)$ and $h(s)$ of E_{1} denoted by $g(s) \otimes h(s)$. It is defined as the remainder $r(s)$ of the ordinary product $g(s) h(s)$ under division by $f(s)$. Also the product of m terms $E_{1}(s), B_{2}(s), \ldots$, $g_{m}(s)$ is again the remainder of the ordinary product $g_{1}(s)$ $g_{2}(s) \ldots g_{m}(s)$ by Lemma 2.2.5. This shows that our new product is associative and commutative and that the new product $g_{1}(s) \otimes g_{2}(s) \otimes \ldots \otimes g_{m}(s)$ will coincide with the old product $g_{1}(s) g_{2}(s) \cdots g_{m}(s)$ if the latter does not exceed n in degree.

The set \mathbb{E}_{j} contains our field F and our multiplication in \mathbb{E}_{1} has for F the meaning of the old multiplication. One of the polynomials of E_{1} is s. The product of i factors each of which is s will lead to s^{i} if $i<n$. For $i=n$ this is not the case since it leads to the remainder of the polynomial s^{n}. This remainder is

$$
s^{n}-f(s)=-b_{n-1} s^{n-1}-b_{n-2^{s}} s^{n-2}-\cdots-b_{o}
$$

We now give up our old multiplication altogether and keep only the new one. We also change our notation,
using the point as a symbol for the new multiplication. Computing in this sense we can construct the element

$$
c_{0}+c_{1} \cdot s+c_{2} \cdot s^{2}+\ldots+\cdot c_{n-1} \cdot s^{n-1}
$$

since all the degrees involved are below n. But

$$
s^{n}=-b_{n-1} \cdot s^{n-1}-b_{n-2} \cdot s^{n-2}-\ldots-b_{0}
$$

Transposing we see that $f(s)=0$.
We thus have constructed a set E_{1} and an addition and multiplication in E_{1}. Now E_{1} contains F as subfield and s satisfies the equation $f(s)=0$. We have to show that if $\mathrm{g}(\mathrm{s}) \neq 0$ and $\mathrm{h}(\mathrm{s})$ are given elements of E_{l}, there is an element

$$
x(s)=x_{0}+x_{1} \cdot s+\ldots+x_{n-1} \cdot s^{n-1}
$$

in E_{1} such that

$$
g(s) \cdot X(s)=h(s)
$$

To prove this we consider the coefficients x_{i} of $X(s)$ as unknowns and compute the product on the left side, always reducing higher powers of s to lower ones. The result is an expression $L_{0}+L_{1} \cdot s+\ldots+L_{n-1} \cdot s^{n-1}$ where each L_{i} is a linear combination of the X_{i} with coefficients in F. This expression is to be equal to $h(s)$. This leads to the n equations with n unknowns:

$$
L_{0}=d_{0}, L_{1}=d_{1}, \ldots, L_{n-1}=d_{n-1}
$$

where the d_{i} are the coefficients of $h(s)$. By Theorem 1.2.7 this system will be uniquely solvable if the corresponding homogeneous equations

$$
L_{0}=0, L_{1}=0, \ldots, L_{n-1}=0
$$

have only the triviel solution.
The homogeneous problem would occur if we should ask for the set of elements $X(s)$ satisfying $g(s) \cdot X(s)=0$. Considering the old multiplication this would mean that the product $g(s) X(s)$ had the remainder zero, and is thus divisible by $f(s)$. By Theorem 2.2 .3 this is only possible for $X(s)=0$. Therefore E_{1} is a field. Thus we have constructed an extension field $E_{1}=F(s)$ in which an irreducible factor $f(x)$ of $p(x)$ has a root. This completes the proof of our theorem.

Now consider our old extension E with a root α of $f(x)$, leading to the set E_{0}. $W e$ see that E_{0} has, in a certain sense, the same structure as F_{1}, if we map the element $g(s)$ of E_{1} onto the element $g(\alpha)$ of E_{0}. This mapping will have the property that the image of a sum of elements is the sum of their images, and the image of a product is the product of their images.

2. 4 Homomorphism, Isomorphism, Automorphism.

Definition: By a homomorphism of a multiplicative group we mean a (possibly many-to-one) mapping T such that for a, b any two elements of $G, T(a) \cdot T(b)=T(a \cdot b)$.

Definition: A mapping T of one field on another which is one-to-one such that $T(a+b)=T(a)+T(b)$ and $T(a \cdot b)=T(a) \cdot T(b)$ is called an isomorphism.

Definition: The isomorphism T of a field on itself is called an automorphism.

Definition: If not every element of the image field is the image under T of an element in the firgt field, then T is called an isomorphism of the first field into the second.

We will consistently use the term "mapping of F on F'" when every element of $F^{\prime \prime}$ is the image of an element of F, and the term "mapping of F into $F{ }^{\prime \prime \prime}$ if at least one element of F^{\prime} is not the image of an element of F.

THEOREM_2.4.1: Let T be an isomorphism mapping a
field F on a figld F^{\prime}. Let fixl be an irreducible polynomial in F and $f^{\prime}(x)$ the corresponding polyomial in $F^{\prime} \cdot$ If
 ively, where $f(\alpha)=0$ in E and $f^{\prime}\left(\alpha^{\prime}\right)=0$ in E^{\prime} _then T can be extended to an isomorphism between E and E.

Proof: Since isomorphisms are transitive and E and E' are both isomorphic to E_{1}, (cf . Theorem 2.3.3), therefore, E is isomorphic to E^{\prime}.

CHAPTER III

GALOIS THEORY

3.1.Splitting Fields.

Definition: If F, B, Eare three fields such that $F \subset B \subset E$, then we call B an intermediate field.

Definition: If E is an extension of a field F in whion a polynomial $p(x)$ can be factored into linear factors, and if $p(x)$ can not be so factored in any intermediate field, then E is called a splitting field for $p(x)$.

Lemma 3.1.1: If Eisa splitting field of p(x) the rootg_of $p(x)$ generate E_{2} where the ooefficients of $p(x)$ belong to a field F.

Proof: If $p(x)$ of degree n splits in E then $p(x)$ splits into linear factors $\left(x-p_{1}\right)\left(x-p_{2}\right) \ldots\left(x-p_{n}\right)$. If only one root of $p(x)$, say p_{1} lies outside F then $E=F\left(p_{1}\right)$ and thus p_{1} would generate E. Similarly if $p_{1}, p_{2}, \ldots, p_{n}$ are outside F then $F\left(p_{1}, p_{2}, \ldots, p_{n}\right)=E$. Thus the roots of $p(x)$ generate E.

Iemma 3.1.2: A splitting_fiela Ensof finite degree.

Proof: Since E is constructed by a finite number of adjunctions of algebraic elements, each defining an extension field of finite degree, by the Corollary to Theorem 2.1.1, the total degree of E is finite.

THEOREM 3.1.3: If $p(x)$ is a polynomial in a_field F, there_exists a splitting field E of $p(x)$.

Proof: We factor $p(x)$ in F into irreducible factors $f_{1}(x) \cdot f_{2}(x) \cdot \ldots \cdot f_{r}(x)=p(x)$. If each of these factors is of the first degree then F itself is the required splitting field. Suppose then that $f_{1}(x)$ is of degree higher then the first. By Theorem 2.3.3 there is an extension F_{1} of F in which $f_{1}(x)$ has a root. Factor each of the factors $f_{1}(x)$, $\ldots, f_{r}(x)$ into irreducible factors in F_{1} and proceed as before. We finally arrive at a field in which $p(x)$ can be split into linear factors. The field generated out of F by the roots of $p(x)$ is the required splitting field.

Lemma 3.1.4: If $f(x)$ is an irreducible factor of
$\mathrm{p}(\underline{x})$ in $\mathrm{F}_{\text {e then }}$ E contains_a root_of_f(x).
Proof: Let $p(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{s}\right)$ be the splitting of $p(x)$ in E. Then $\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{s}\right)$ $=f(x) g(x)$. We consider $f(x)$ as a polynomial in E and construct the extension field $B=\mathbb{E}(\alpha)$ in which $f(\alpha)=0$. Then $\left(\alpha-\alpha_{1}\right)\left(\alpha-\alpha_{2}\right) \ldots\left(\alpha-\alpha_{s}\right)=f(\alpha) \cdot g(\alpha)=0$ and $\alpha-\alpha_{1}$ being elements of the field B can have a product equal to zero only if for one of the factors, say the first, we have $\alpha-\alpha_{i}=0$. Thus $\alpha=\alpha_{1}$, and α_{1} is a root of $f(x)$. THEORM 3.1.5: Let T be an isomorphic mapping of
the field F on the field $F^{\prime} \cdot$ Let $p(x)$ be a polynomial in F and $p^{\prime}(x)$ the polynomial in F^{\prime} with_coefficiente corcesponding to those of $\mathrm{p}(\underline{x})$ under_T. Finally, let E be a splitting
field_of $\mathrm{P}(\underline{x})$ gna_E'_splitting field_of_p'(x). Under these_conditions_the_isomorphism_T_ogn_be_extended to on isomorphism_between_E_and_E' •

Proof: In case all roots of $p(x)$ are in F, then $\mathbf{E}=F$ and $p(x)$ can be split in F. This factored form has an image in F^{\prime} which is a splitting of $\mathrm{P}^{\prime}(\mathrm{x})$, since the isomorphism T preserves all operations of addition and multiplication in the process of multiplying out the factors of $p(x)$ and collecting to get the original form. Since $p^{\prime}(x)$ can be split in F^{\prime}, we must have $F^{\prime}=E^{\prime}$. In this case, T itself is the required extension and the theorem is proved if all the roots of $p(x)$ are in F. We proceed by induction. We suppose the theorem proved for all cases in which the number of roots of $p(x)$ outside F is less than $n>1$, and we also suppose that $p(x)$ is a polynomial having n roots outside F. We factor $p(x)$ into irreducible factors in F; $p(x)=f_{1}(x) \cdot f_{2}(x) \ldots f_{m}(x)$. Not all of these factors can be of degree 1 , since in this case $p(x)$ would split in F, contrary to our assumption. Hence, we may suppose the degree of $f_{1}(x)$ to be $r>1$. Let $f_{1}^{\prime}(x) . f_{2}^{\prime}(x) \ldots f_{m}^{\prime}(x)=p^{\prime}(x)$ be the factorization of $p^{\prime}(x)$ into the polynomials corresponding to $f_{1}(x), \ldots, f_{m}(x)$ under T. Now $f^{\prime}(x)$ is irreducible in F^{\prime}, for a factorization of $f^{\prime}(x)$ in F^{\prime} would induce under T^{-1}, the inverse of T, a factorization of $f_{1}(x)$, which was taken to be irreducible. By Lemma 3.1.4, E contains a root α of $f_{1}(x)$ and E^{\prime} contains a root α^{\prime} of $f^{\prime}(x)$.

By Theorem 2.4.1, the isomorphism T can be extended to an isomorphism T_{1}, between the fields $F(\alpha)$ and $F^{\prime}\left(\alpha^{\prime}\right)$. Since $F \subset F(\alpha), p(x)$ is a polynomial in $F(\alpha)$ and E is a splitting field for $p(x)$ in $F^{\prime}(\alpha)$. Similarly for $p^{\prime}(x)$. There are now less than n roots of $p(x)$ outside the new ground field $F(\alpha)$. Hence by our inductive assumption T_{1} can be extended from on isomorphism between $F(\alpha)$ and $F^{\prime}\left(\alpha^{\prime}\right)$ to an isomorphism T_{2} between E and E^{\prime}. Since T_{1} is an extension of T, and T_{2} is an extension of T_{1}, we conclude that T_{2} is an extension of T and the theorem follows.

Gorollary: If $D(x)$ is a polyomial in anield F, then any two splitting fields for $p(x)$ are isomorphic.

Proof: From Theorem 3.1.5 take $F=F^{\prime}$ and T to be the identity mapping, that is, $T(x)=x$.

From this corollary we may use the expression "the splitting field of $p(x)$ " since any two differ only by an isomorphism. Thus, if $p(x)$ has repeated roots in one splitting field, it will have repeated roots in any other splitting field.
3.2 Finite Fields ${ }^{1}$

Definition: A field which has a finite number of elements is called a finite field.

Definition: The order of an element A of a finite group G is the least positive integer a such that $A^{a}=e$,
${ }^{1}$ A further discussion of the algebra of finite fields is to be found in Chapter VIII.
where e is the unity element of G.
Lemma 3.2.1: Let A have order_a, then $A^{c}=$ onplies s Le.

Proof: Let $c=a q+r, 0 \leqslant r<a . \quad$ Then $A^{c}=A^{a q+r}$ $=\left(A^{8}\right) q_{A^{r}}=(e)^{q^{r}}=A^{r}$. Thus if $A^{c}=e, r=0$ and therefore $=\mathrm{aq}$.
 order b, then $A B$ has order $a b$.

Proof: Let $A B=C$, have order c. Suppose $c=a q+$ $r, 0 \leqslant r<a$. Then $e^{b}=C^{c b}=C^{(a q+r) b}=A^{(a q+r) b_{B}(a q+r) b}$ $=A^{r b}$. Thus by Lema 3.2.1 a $\mid \mathrm{rb}$. But, since $(a, b)=1$, a|r. Therefore $r=0$. Thus a |c. Similarly $b \mid c$ and therefore $a b$ lo. $B u t(C)^{a b}=(A B)^{a b}=A^{a b} B^{a b}=\left(A^{a}\right)^{b}\left(B^{b}\right)^{a}$ $=$ e. Thus 0 /ab. Therefore $c=a b$.

Lemma 3.2.3: If in an_abelian_group A and_Bare two elements of orders a and be gnd if_o_is_the least comon multiple_of a_and be_then there is an_element_C_oforder c in the_group.

Proof: If α divides a, we have an element $A^{a / d}$ which is an element of order d in the group. Let p_{1}, p_{2}, \ldots, p_{r} be the prime numbers dividing either a or b and let $a=$ $p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{r}^{n_{r}}, b=p^{m_{1}} p^{m_{2}} \ldots p^{m_{r}}$. Now call t_{i} the larger of n_{i} and m_{1}. Then $c=p_{1}^{t_{2}} p_{2}^{t_{2}} \ldots p_{r}^{t_{r}}$. We can find in the group an element of order $p_{i}^{n_{i}}$ and one of order $p_{i} m_{i}$. Thus there is one of order $p_{i}^{t_{i}}$. Lemma 3.2.2 shows that the product of these elements will have the desired order 0 .

Lemma 3.2.4: If there is an element C in an_abelian group whose order c is maximal then the order a of every element_A in the group divides_c. Hence $x^{c}=\theta$ is setisfied by each element in the group.

Proof: If a does not divide c, the greatest common multiple of a and c would be larger than c and by Lemma 3.2 .3 we could find an element of that order, thus contradicting the choice of c.

THEOREM 3.2.5: If S.is_efinite subset $(\neq 0)$ ofa field_Ewhich_is_a_group under multiplication in Fs then S is_a_cyolic_group.

Progi: Let n be the number of distinct elements of S and r the largest order occurring in S. Then $x^{r}-1=0$ is satisfied for all elements of S. Since this polynomial of degree r in the field cannot have more then r roots, it follows that $r \geq n$. Each element of S generates a cyclic subgroup of S whose order divides n, and since the order of each element of the group divides $n, r \leq n$. Thus $r=n$. Therefore S is a cyclic group consisting of $1, a^{1}, a^{2}, \ldots$, a^{n-1} where $a^{n}=1$, which proves our theorem.

Corollary: The nonzzero elements_of_a_finitefield Eformacyclic group.

Proof: Since the non-zero elements of a finite field F form a finite group under multiplication in F then by Theorem 3.2.5 they form a cyclic group.

Definition: If G is an additive abelian group (with
group operation written +) then the elements g_{1}, \ldots, g_{k} will be said to generate G if each element g of G can be written as sum of multiples of $g_{1}, \ldots, g_{k}, g=n_{1} g_{1}+\ldots+n_{k} g_{k}$.

Definition: If no set of fewer than k elements generate G, then g_{1}, \ldots, g_{k} is called a minimal generating system.

Any group which has a finite generating system will have a minimal generating system. A finite group always has a minimal generating system. Since

$$
n_{1} g_{1}+n_{2} g_{2}=n_{1}\left(g_{1}+m g_{2}\right)+\left(n_{2}-n_{1} m\right)_{2}
$$

it follows that if $g_{1}, g_{2}, \ldots, g_{k}$ generate G, then also $g_{1}+\operatorname{mg}_{2}, g_{2}, \ldots, g_{k}$ generate G.

Definition: An equation $m_{1} E_{1}+m_{2} g_{2}+\ldots+m_{k} E_{k}=0$
will be called a relation among the generators where m_{1}, \ldots, m_{k} are called coefficients in the relation.

Definition: We say that the abelian group G is the direct product of its subgroups $G_{1}, G_{2}, \ldots, G_{k}$ if each $g \in G$ is uniquely representable as a sum $g=x_{1}+x_{2}+\ldots+x_{k}$, where $x_{i} \in G_{i}, i=1, \ldots, k$.

THEOREM 3.2.6: Each abelian group havingafinite number of generators is the direct product of cyclic subgroups G_{1}, \ldots, G_{n} wheren is the number of elements_in a minimal_generating_system, and where $o\left(G_{i}\right)$ divides $O\left(G_{i+1}\right)$

Proof: We assume the theorem true for all groups having minimal generating systems of $\mathrm{k}-1$ elements. If
$\mathrm{n}=1$ the group is cyclic and the theorem is trivial. Now suppose G is an abelian group having a minimal generating system of k elements. If every minimal generating system satisfies only a trivial relation, then let $g_{1}, g_{2}, \ldots, g_{k}$ be a minimal generating system and let G_{1}, be the cyclic group generated by g_{1}. For each $g \in G, g=n_{1} g_{1}+\ldots+n_{k} g_{k}$ where the expression is unique; otherwise we should obtain a non-trivial relation. Moreover, the cyclic groups G are all infinite, since $\mathrm{ng}_{\mathrm{i}}=0$ would yield a non-trivial relation. Thus the theorem would be true. We assume now that a non-trivial relation holds for some minimal generating system. Of all the relations belonging to minimal generating systems, let
(3.2.1)

$$
m_{1} g_{1}+\cdots+m_{k} g_{k}=0
$$

be a relation in which the smallest positive coefficient occurs. After a reordering of the generators we may suppose m_{1} to be this coeffioient. In any other relation between g_{1}, \ldots, g_{k},
(3.2.2) $\quad n_{1} g_{1}+\ldots+n_{k} g_{k}=0$
we must have $m_{1} \mid n_{1}$. Otherwise $n_{1}=m_{1}+r, 0<r<m_{1}$, and q times relation (3.2.1) subtracted from relation (3.2.2) would give a relation with a positive coefficient $r<m_{1}$. Also in the relation (3.2.1) we must have $m_{1} \mid m_{i}$, $1=2, \ldots, k$. For if m_{1} does not divide one coefficient, say m_{2}, then $m_{2}=\dot{q}_{2} m_{1}+r, 0<r<m_{1}$. In the generating system $g_{1}+q_{2} g_{2}, g_{2}, \ldots, g_{k}$ we would then have a relation
$m_{1}\left(g_{1}+q_{2} g_{2}\right)+r g_{2}+m_{3} g_{3}+\ldots+m_{k} g_{k}=0$ where the coefficient r contradicts the choice of m_{1}. Hence $m_{2}=q_{2} m_{1}$, $m_{3}=q_{3} m_{1}, \ldots, m_{k}=q_{k} m_{1}$. The system

$$
\bar{g}_{1}=g_{1}+q_{2} g_{2}+\cdots+q_{k} g_{k}, g_{2}, g_{3}, \cdots, g_{k}
$$

is minimal generating, and $m_{1} \bar{E}_{1}=0$. In any relation $0=n_{1} \bar{g}_{1}+n_{2} g_{2}+\cdots+n_{k} g_{k}$, since n_{1} is a coeffioient in a relation between $\bar{g}_{1}, g_{2}, \ldots, g_{k}$, our previous areument eives $m_{1} \mid n_{1}$, and hence $n_{1} \bar{g}_{1}=0$. Let G^{\prime} be the subgroup of G generated by g_{2}, \ldots, g_{k} and G_{1} the cyclic eroup of order m_{1} generated by \bar{g}_{1}. Then G is the direct product of G_{1} and G '. Fach element g of G can be written

$$
g=n_{1} \bar{g}_{1}+n_{2} g_{2}+\ldots+n_{k} g_{k}=n_{1} \bar{g}_{1}+g^{\prime}, 0 \leq n_{1}<m_{1}
$$

This representation is unique, since $n_{1} \bar{g}_{1}+g^{\prime}=n_{1}^{\prime} \bar{g}_{1}+g^{\prime \prime}$ implies the relation $\left(n_{1}-n_{1}^{\prime}\right) \bar{g}_{1}+\left(g^{\prime}-g^{\prime \prime}\right)=0$, hence $\left(n_{1}-n_{1}\right) \bar{g}_{1}=0$, so that $n_{1}-n_{i}^{\prime}=0$ and also $g^{\prime}=g^{\prime \prime}$. By our induction assumption, G ' is the direct product of $k-1$ cyclic groups \bar{G}_{1} generated by elements $\bar{g}_{2}, \bar{g}_{3}, \ldots, \bar{g}_{k}$. Moreover, if $\bar{G}_{2}, \bar{G}_{3}, \ldots, \bar{G}_{r}$ are finite, and $3 \leq r \leq k-1$, their respective orders t_{2}, \ldots, t_{r} satisfy $t_{i} \mid t_{i+1}, i=2$, ...,r-1. If $\overline{\mathrm{G}}_{2}$ is finite the preceding argument applied to the generators $\bar{g}_{1}, \bar{g}_{2}, \ldots, \bar{g}_{k}$ gives $m_{1} \mid t_{2}$, from which the theorem follows.

Definition: If a is an element of a field F, we denote the n-fold of a, that is, the sum of n terms, each of which is a, by n.a.

$$
\text { Now } n \cdot(m \cdot a)=(n m) \cdot a \text { and }(n \cdot a)(m \cdot b)=n m \cdot a b \text {. If }
$$

for one element $a \neq 0$, there is an inteser n such that n.a $=0$ then $n \cdot b=0$ for each b in F, since $n \cdot b=(n \cdot a)\left(a^{-1} b\right)$ $=0\left(a^{-1} b\right)=0$:

Definition: If there is a positive integer p such that $p . a=0$ for each a in F, and if p is the smallest integer with this property, then F is said to have the characteristic p, but if no such positive, integer p exists then we say F has the characteristic 0 or ∞.

Lemma 3.2.7: The_characteristic p of afinite field F is_always_a_prime_number which_divides_the_order_of any non-zero a of F.

Proof: If $p=r s$ then p.a $=$ rs.a $=r .(s . \dot{a})$. But $s \cdot a=b \neq 0$ if $a \neq 0$ and $r \cdot b \neq 0$ since r and s are less than p, so that $p . a \neq 0$ contrary to the definition of the characteristic. If $n \cdot a=0$ for $a \neq 0$, then p divides n, for $n=q p$ $+r$ where $0 \leq r<p$ and $n \cdot a=(q p+r) \cdot a=q \cdot(p \cdot a)+r \cdot a$. Hence $n \cdot a=0$ implies $r-a=0$, and since $r_{1}<p$, we must have $r=0$.

Lemma 3.2.8: If F is_afinite field heving q elements and E gn extension of F such thet $(E / F)=n$, then E has q^{π} elements.

Proof: If $w_{1}, w_{2}, \ldots, w_{n}$ is a basis of E over F, each element of E can be uniquely represented as a linear combination

$$
x_{1} w_{1}+x_{2} w_{2}+\cdots+x_{n} w_{n}
$$

where the x_{i} belong to F. Since each x_{i} can assume q values
in F, there are q^{n} distinct possible choices of x_{1}, \ldots, x_{n} and hence q^{η} distinct elements of E.

Lemma 3.2.9: If Fis_a_finitefieldand $(E / F)=n$, there is_an element α of E so that $E=F(\alpha)$.

Proof: Since E is finite, Theorem 3.2 .5 shows that the non-zero elements of E form a cyclic group generated by some element α. This completes the proof.

Lemma 3.2.10: The order of any finite field Fis a power of its_characteristic.

Proof: Let $P \equiv[0,1,2, \ldots, p-1]$ denote the set of multiples of the unit element in a field F of characteristic p. Then P is a subfield of F having p distinct elements, and P is isomorphic to the field of integers reduced modulo p. Let $(F / P)=n$, then by Lemma 3.2 .8 F contains p^{π} elements.

THEOREM 3.2.11: Two finite_fields_having_the_same number of elements_are_isomorphic.

Proof: If F and F^{\prime} are two finite fields having the same order q, then by Lemma 3.2.10, they have the same characteristic since q is a power of the characteristic. The multiples of the units in F and F^{\prime} form two fields P and P^{\prime} which are isomorphic. The non-zero elements of F and F. form a group of order $q-1$ and, thus, satisfy $x^{q-1}-1=0$. The fields F and F^{\prime} are splitting fields of the equation $x^{q-1}=1$ considered as lying in P and P^{\prime} respectively. By Theorem 3.1.5 the isomorphism between P and P^{\prime} can be ex-
tended to an isomorphism between F and F^{\prime} which proves the theorem.

Definition: If $f(x)=a_{0}+a_{1} x^{l}+\ldots+a_{n} x^{n}$ is a polynomial in a field F, then the formal derivative of f is $f^{\prime}=a_{1}+2 \cdot a_{2} x^{1}+\cdots+n \cdot a_{n} x^{n-1}$.

For each pair of polynomials f and g we show that
(i) $(f+g)^{\prime}=f^{\prime}+g^{\prime}$,
(ii) $\left(f_{g}\right)^{\prime}=f_{g}+g f^{\prime}$,
(iii) $\left(f^{n}\right)=n f^{n-1} f^{\prime}$.

For (i) if $f=a_{0}+a_{1} x^{1}+\ldots+a_{n} x^{n}$ and $g=b_{0}+$ $b_{1} x^{1}+\ldots+b_{m} x^{m}$ then if $n>m$ we have $(f+g)=\left[\left(a_{0}+b_{0}\right)+\left(\varepsilon_{1}+b_{1}\right) x+\ldots\right.$

$$
\left.+\left(a_{m}+b_{m}\right) x^{\frac{1}{m}}+a_{m+1} x^{m+1}+\ldots+a_{n} x^{n}\right]
$$

Now

$$
\begin{aligned}
& (f+g)^{\prime}=\left(a_{1}+b_{1}\right)+2\left(a_{2}+b_{2}\right) x+\ldots+m\left(a_{m}+b_{m}\right) x^{m-1}+ \\
& \ldots+n a_{n} x^{n-1}=a_{1}+2 a_{2}+\ldots+n a_{n} x^{n-1}+b_{1}+2 b_{2} x+\ldots+ \\
& m b_{m} x^{m-1}=f^{\prime}+g^{\prime} .
\end{aligned}
$$

For (ii) let $f=\sum_{i=0}^{m} a_{i} x^{i}, g=\sum_{j=0}^{n} b_{j} x^{j}$. Then $(f g)=$

$$
\sum_{i=0}^{\pi} \sum_{j=0}^{n} a_{i} b_{j} x^{i+j} . \operatorname{NOW}\left(f^{\prime} g\right)^{i=0}=\left(\sum_{i=0}^{m} \sum_{j=0}^{n} a_{i} b_{j} x^{j+j}\right)^{j}=\sum_{i=0}^{m} \sum_{j=0}^{n}
$$

$$
(i+j) a_{i} b_{j} x^{i+j-1} . \quad \text { Also } f^{\prime} \varepsilon+f g^{\prime}=\sum_{i=0}^{m} \sum_{j=0}^{n} i a_{i} x^{i-1} b_{j} x^{j}+
$$

$$
\sum_{i=0}^{m} \sum_{j=0}^{m} j a_{i} x^{i} b_{j} x^{j-1}=\sum_{i=0}^{m} \sum_{j=0}^{m}(i+j) a_{i} b_{j} x^{i+j-1} \text {. Therefore }
$$

$$
(f g)^{\prime}=f^{\prime} g+f g^{\prime}
$$

For (iii) $\left(f^{n}\right)^{\prime}=n f^{n-1} f^{\prime}$ is true for $n=1$. Pro-
ceeding by induction, we assume it is true for $n=k$, that is, $\left(f^{k}\right)^{\prime}=\mathrm{kf}^{k-1} f^{\prime}$. We wish to show thet_(iii)_holds_for $l_{\text {We will }}$ write na for na from now on.
$\mathrm{n}=\mathrm{k}+1$. $\operatorname{Now}\left(\mathrm{f}^{\mathrm{k}+1}\right)^{\prime}=\left(\mathrm{ff}^{\mathrm{k}}\right)^{\prime}=\mathrm{f}\left(\mathrm{f}^{\mathrm{k}}\right)^{\prime}+\mathrm{f}^{\mathrm{k}} \mathrm{f}^{\prime}=\mathrm{fkf} \mathrm{f}^{\mathrm{k}-\mathrm{I}_{\mathrm{f}}} \mathrm{f}^{\prime}$ $+\mathrm{f}^{k^{\prime}} \mathrm{f}^{\prime}=(k+1) \mathrm{f}^{k^{\prime}} \mathrm{f}^{\prime}$. Thus by induction $\left(\mathrm{f}^{\mathrm{n}}\right)^{\prime}=\mathrm{nf} \mathrm{f}^{\mathrm{n}-1} \mathrm{f}^{\prime}$. Definition: If $f(x)$ is a polynôial in F, then $f(x)$ is called separable if its irreducible factors do not have repeated roots.

Definition: If E is an extension of the fiela F, the element α of E is called separable if it is a root of a separable polynomial $f(x)$ in F, and E is called a separable extension if each element of E is separable.

THEOREM 3.2.12: The polynomial f has_repested_roots if_gnd_only_if in the splitting field E the polynomiels_f and f' heve a common rooti_or equivalently, if_and_only if f and f' have a common factor of degree greater then zero in F .

Proof: If α is a root of multiplicity k of $f(x)$ then $P=(x-\alpha)^{k_{Q}}(x)$ where $Q(\alpha) \neq 0$. This gives $f^{\prime}=(x-\alpha)^{k_{Q^{\prime}}}(x)+k(x-\alpha)^{k-1} Q(x)=(x-\alpha)^{k-1}\left[(x-\alpha) Q^{\prime}(x)+k Q(x)\right]$. If $k>1$, then α is a root of f of multiplicity at least $k-1$. If $k=1$, then $f^{\prime}(x)=Q(x)+(x-\alpha) Q^{\prime}(x)$ and $f^{\prime}(\alpha)=$ $Q(\alpha) \neq 0$. Thus, f and f^{\prime} have a root α in common if and only if α is a root of f of multiplicity greater then 1 . If f and f ' have a root α in common then the irreducible polynomial in F having α as root divides both f and f^{\prime}. Conversely, any root of a factor common to both f and f is a root of f and f^{\prime} which proves the theorem.

Corollary: If Fisafield of gharacteristic_zero
then each_irreducible polynomial in_F_is_separable.
Proof: Suppose the irreducible polynomial $f(x)$ has a root α of multiplicity greater than 1 . Then, $f^{\prime}(x)$ is a polynomial which is not identically zero for its leading coefficient is a multiple of the leading coefficient of $f(x)$ and is not zero since the characteristic is 0 . Also $f^{\prime}(x)$ is of degree 1 less then the degree of $f(x)$. But α is also a root of $\mathrm{f}^{\prime}(\mathrm{x})$ which contradicts the irreducibility of $\mathrm{f}(\mathrm{x})$. 3.3Group Characters.

Definition: If G is a multiplicative group, F a field and T a homomorphism mapping G into $F\left(i . e ., G \rightarrow G^{\prime} C\right.$ F), then T is called a character of G in F.

Let $a \in G, a \neq 0$. If $T_{1}(a)=0, T_{1}(e)=T_{1}(a) T_{1}\left(a^{-1}\right)$
$=0$. Therefore $T_{1}(g)=T_{1}(e) T_{1}(g)=0$ for all \& of G. We will assume $\mathrm{T}_{1}(\mathrm{a}) \neq 0$ in the following discussion, i.e., T_{1} is a non-trivial mapping.

Definition: The characters $T_{1}, T_{2}, \ldots, T_{n}$ are called dependent if there exist elements $b_{1}, b_{2}, \ldots, b_{n}$, not all zero, in F such that
(3.3.1) $\quad b_{1} T_{1}(x)+b_{2} T_{2}(x)+\ldots+b_{n} T_{n}(x)=0$
for each x belonging to G. The dependence relation (3.3.1) is called non-trivial. If the characters are not dependent they are called independent.

THEOREM_3.3.1: If Gis_a_Eroupand $T_{1}, T_{2}, \ldots, T_{n}$ are n_mutually distinct chartacters_of G_into F_{2} the $\mathrm{T}_{1}, \mathrm{~T}_{2}, \cdots, \mathrm{~T}_{\mathrm{n}}$ are independent.

Proof: One character cannot be dependent, since $b_{1} T_{1}(x)=0$ implies $b_{1}=0$ due to the assumption that $T_{1}(a)$ $\neq 0$. Suppose $\mathrm{n}>1$. We make the inductive assumption that no set of less then n distinct characters is dependent and we wish to show that n characters are independent. For each a in $G, l \theta t$

$$
\begin{equation*}
\sum_{i=1}^{n} b_{i} T_{i}(x)=0 \tag{3.3.1}
\end{equation*}
$$

where b_{i} and $T_{i}(x)$ belong to F. If $b_{n}=0$ then by our inductive assumption $b_{1}=b_{2}=b_{3}=\ldots=b_{n-1}=b_{n}=0$. In (3.3.1) if $b_{n} \neq 0$ we replace x by ax where a is any element of G such that $T_{n-1}(a) \neq T_{n}(a)$.
Then
$b_{1} T_{1}(a) T_{1}(x)+\ldots+b_{n-1} T_{n-1}(a) T_{n-1}(x)+b_{n} T_{n}(a) T_{n}(x)=0$ while
$b_{1} T_{n}(a) T_{1}(x)+\ldots+b_{n-1} T_{n}(a) T_{n-1}(x)+b_{n} T_{n}(a) T_{n}(x)=0$. By our induction assumption, the coefficient of $T_{n-1}(x)$, i.e. $b_{n-1}\left[T_{n-1}(a)-T_{n}(a)\right]$, in the difference of these two equations will be zero. Thus $b_{n-1}=0$. But then the relation $b_{1} T_{1}(x)+\ldots+b_{n-2} T_{n-2}(x)+b_{n} T_{n}(x)=0$ implies $b_{1}=b_{2}=\ldots=b_{n-2}=b_{n}=0$, too. Thus the T_{i} are independent, and the theorem is proved.

Corollary: If E_gnd E^{\prime} are two fields and T_{1}, T_{2},
\ldots, T_{n} are n muturily distinct isomarphisms_mapping Einto E^{\prime} then $T_{1}, T_{2} \cdots, T_{n}$ areindependent.

Proof: This follows from Theorem 3.3.1, since E without the 0 is a group and the $T^{\prime} s$ defined in this group
are mutually distinct characters.
Definition: If $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{\mathrm{n}}$ are isomorphisms of a field E into a field E^{\prime}, then each element a of E such that $T_{1}(\dot{a})=T_{2}(a)=\ldots=T_{n}(a)$ is called a fixed point of E under $T_{1}, T_{2}, \ldots, T_{n}$. When $E=E$, the T 's are automorphisms, and if T_{1} is the identity, that is, $\mathrm{T}_{1}(x)=x$, we have $\mathrm{T}_{\mathrm{i}}(\mathrm{x})$ $=x, i=1, \ldots, n$, for a fixed point.

Lemma 3.3.2: The set of fixed points of Eunder

Proof: If a and b are fixed points $a, b \in F$, then $T_{i}(a \pm b)=T_{i}(a) \pm T_{i}(b)=T_{j}(a) \pm T_{j}(b)=T_{j}(a \pm b)$ and $a \pm b \in F$. Similarly,

$$
T_{i}(a \cdot b)=T_{i}(a) \cdot T_{i}(b)=T_{j}(a) \cdot T_{j}(b)=T_{j}(a \cdot b)
$$

Finally, we have

$$
T_{i}\left(a^{-1}\right)=\left(T_{i}(a)\right)^{-1}=\left(T_{j}(a)\right)^{-1}=T_{j}\left(a^{-1}\right)
$$

Thus, the sum and product of two fixed points is a fixed point and the inverse of a fixed point is a fixed point. Thus the set of fixed points of E is a field, which is a subfield F of E.

Definition: We call F the fixed field of E under $T_{1}, T_{2}, \cdots, T_{n}$.

THEOREM_3.3.3: If $T_{1}, T_{2}, \cdots, T_{n}$ are_n_mutually_distinct isomorphisms_of a field_Ento anield_E_andif is_the fixed field_of Enthen $(\mathrm{E} / \mathrm{F}) \geqslant \mathrm{n}$.

Proof: Assume $(E / F)=$ r. Let $w_{1}, w_{2}, \ldots, w_{r}$ be a generating system of E over F. Consider the homogeneous linear
equations,

$$
T_{1}\left(w_{1}\right) x_{1}+T_{2}\left(w_{1}\right) x_{2}+\ldots+T_{n}\left(w_{1}\right) x_{n}=0,
$$

$$
\begin{equation*}
T_{1}\left(w_{2}\right) x_{1}+T_{2}\left(w_{2}\right) x_{2}+\ldots+T_{n}\left(w_{2}\right) x_{n}=0 \tag{3.3.2}
\end{equation*}
$$

$$
\mathrm{T}_{1}\left(w_{\mathrm{r}}\right) \mathrm{x}_{1}+\mathrm{T}_{2}\left(w_{\mathrm{r}}\right) \mathrm{x}_{2}+\ldots+\mathrm{T}_{\mathrm{n}}\left(\mathrm{w}_{\mathrm{r}}\right) \mathrm{x}_{\mathrm{n}}=0
$$

For any element α in E there exist $b_{1}, b_{2}, \ldots, b_{r}$ in F such that $\alpha=b_{1} w_{1}+b_{2} w_{2}+\cdots+b_{r} w_{r}$. multiply the first equation of (3.3.2) by $T_{1}\left(b_{1}\right)$, the second by $T_{1}\left(b_{2}\right)$ and so on. The b_{i} belong to F and hence $T_{1}\left(b_{i}\right)=T_{j}\left(b_{i}\right)$. Since also $T_{j}\left(b_{i}\right) \cdot T_{j}\left(w_{i}\right)=T_{j}\left(b_{i} w_{i}\right)$, we obtain,

$$
T_{1}\left(b_{1} w_{1}\right) x_{1}+\ldots+T_{n}\left(b_{1} w_{1}\right) x_{n}=0
$$

(3.3.3)

$$
T_{1}\left(b_{r} w_{r}\right) x_{l}+\ldots+T_{n}\left(b_{r} w_{r}\right) x_{n}=0
$$

Adding equations (3.3.3) and using
$T_{1}\left(b_{1} w_{1}\right)+T_{i}\left(b_{2} w_{2}\right)+\ldots+T_{i}\left(b_{r} w_{r}\right)=T_{i}\left(b_{1} w_{1}+\ldots+b_{r} w_{r}\right)=T_{i}(\alpha)$
we obtain

$$
T_{1}(\alpha) x_{1}+T_{2}(\alpha) x_{2}+\ldots+T_{n}(\alpha) x_{n}=0
$$

Since the $T_{1}, T_{2}, \ldots, T_{n}$ are independent, $x_{i}=0$, thus (3.3.2) has only the trivial solution and so $r \geqslant n$.

Corollary: If T_{1}, \ldots, T_{n} are eutomorphisms of the field E and F is the fixed field, then $(E / F) \geq n$.

Proof: Since the automorphism is an isomorphism of E into E, the proof is imediate.

If F is a subfield of the field E, and T an automorphism of E, we shall say that T leaves F fixed if for each element a of $F, T(a)=a$. If T and S are two automor-
phisms of E, then the mapping $x \rightarrow T(S(x))$ written as $T S$ is an automorphism since $T S(x \cdot y)=T(S(x \cdot y))=T(S(x) \cdot S(y))=$ $T(S(x)) \cdot T(S(y))=T S(x) \cdot T S(y)$, and similarly, $T S(x \pm y)=$ $T S(x) \pm T S(y)$. We call $T S$ the product of T and S. If T is an automorphism $T(x)=y$, then we shall call T^{-1} the mapping of y into x, that is, $\mathrm{T}^{-1}(\mathrm{y})=\mathrm{x}$ the inverse of T . We show that T^{-1} is an automorphism. We have

$$
T\left(x_{1}\right)=y_{1}, T\left(x_{2}\right)=y_{2} \text { and } T^{-1}\left(y_{1}\right)=x_{1}, T^{-1}\left(y_{2}\right)=x_{2} .
$$

We wish to show that
$T^{-1}\left(y_{1} y_{2}\right)=T^{-1}\left(y_{1}\right) T^{-1}\left(y_{2}\right)$ and $T^{-1}\left(y_{1} \pm y_{2}\right)=T^{-1}\left(y_{1}\right) \pm T^{-1}\left(y_{2}\right)$. Now

$$
T^{-1}\left(y_{1} y_{2}\right)=T^{-1}\left[T\left(x_{1}\right) \cdot T\left(x_{2}\right)\right]=T^{-1} T\left(x_{1} x_{2}\right)=x_{1} x_{2}=T^{-1}\left(y_{1}\right) T^{-1}\left(y_{2}\right)
$$

Also

$$
\begin{aligned}
& T^{-1}\left(y_{1} \pm y_{2}\right)=T^{-1}\left[T\left(x_{1}\right) \pm T\left(x_{2}\right)\right]=T^{-1}\left[T \left(x_{1}\right.\right. \\
& \left.\left. \pm x_{2}\right)\right]=x_{1} \pm x_{2}=T^{-1}\left(y_{1}\right) \pm T^{-1}\left(y_{2}\right)
\end{aligned}
$$

Therefore T^{-1} is an automorphism. The automorphism $I(x)=x$ will be called the unit automorphism.

Lemma 3.3.4: If E_is_an extension field_offe_the
get_G of automorphisms which leave_F fixed_1s_a_group.
Proof: The product of two automorphisms which leave F fixed, leaves F fixed. The inverse of an automorphism in G is in G. Therefore the set G is a group.

In regard to Lemma 3.3.4 we may have an element of E not in F which is left fixed by G and therefore the fixed field of G may be larger than F.
3.4_Normel_Extensions.

Definition: An extension field E of a field F is called a normal extension if the group G of automorphisms of E which leave F fixed has F for its fixed field, and (E / F) is finite.

THEOREM 3.4.1: If $T_{1}, T_{2}, \ldots, T_{n}$ is_a_Eroup of qutomorphisms_of a_field_E_and_if_IS_the_fixed_field_of $T_{1}, T_{2}, \ldots, T_{n}$, then $(E / F)=n$.

Proof: If T_{1}, \ldots, T_{n} is a group, then there is an identity, say, $T_{1}=I$. The fixed field consists of those elements x whioh are not moved by any of T_{1}, \ldots, T_{n}. Suppose $(E / F)>n$. Then there exist $n+1$ elements $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n+1}$ of E which are linearly independent with respect to F. By Theorem 1.2.1 there exists a non-trivial solution in E to the system of equations

$$
x_{1} T_{n}\left(\alpha_{1}\right)+x_{2}{ }_{n}\left(\alpha_{2}\right)+\cdots+x_{n+1}{ }_{n}\left(\alpha_{n+1}\right)=0
$$

We note that the solution to (3.4.1) cannot lie in F, otherwise, since T_{1} is the identity, the first equation would be a dependence between $\alpha_{1}, \ldots, \alpha_{n+1}$. Among all non-trivial solutions x_{1}, \ldots, x_{n+1} we choose one which has the most number of elements zero. We may suppose this solution to be $b_{1}, \ldots, b_{r}, 0, \ldots, 0$, where the first r terms are non-zero. Also, $r \neq 1$ because $\left.b_{1} T_{1} \mid \alpha_{1}\right)=0$ implies $b_{1}=0$ since $T_{1}\left(\alpha_{1}\right)=\alpha_{1} \neq 0$. Also, we may suppose $b_{r}=1$, since if we
multiply the given solution by b_{I}^{-1} we obtain a new solution in which the r-th term is 1 . Thus, we have (3.4.2) $b_{1} T_{i}\left(\alpha_{1}\right)+b_{2} T_{i}\left(\alpha_{2}\right)+\ldots+b_{r-1} T_{i}\left(\alpha_{r-1}\right)+T_{i}\left(\alpha_{r}\right)=0$ for $i=1,2, \ldots, n$. Since b_{1}, \ldots, b_{r-1} cannot all belong to F, one of these, say b_{1}, is in E but not in F. There is an qutomorphism T_{k} for which $T_{k}\left(b_{1}\right) \neq b_{1}$. If we use the fact that T_{1}, \ldots, T_{n} form a group, we see that $T_{k} \cdot T_{1}, T_{k} \cdot T_{2}, \ldots$, $T_{k} \cdot T_{n}$ is a permutation of T_{1}, \ldots, T_{n}. Applying T_{k} to the set (3.4.2) we obtain equation (3.4.3) $T_{k}\left(b_{1}\right) \cdot T_{k} T_{j}\left(\alpha_{1}\right)+\ldots$

$$
+T_{k}\left(b_{r-1}\right) \cdot T_{k} T_{j}\left(\alpha_{r-1}\right)+T_{k} T_{j}\left(\alpha_{r}\right)=0
$$

for $j=1,2, \ldots, n$ so that from $T_{k}{ }_{j}=T_{i},(3.4 .3)$ becomes (3.4.4) $\quad T_{k}\left(b_{1}\right) T_{i}\left(\alpha_{1}\right)+\ldots+T_{k}\left(b_{r-1}\right) T_{i}\left(\alpha_{r-1}\right)+T_{i}\left(\alpha_{r}\right)=0$ and if we subtract (3.4.4) from (3.4.2) we have $\left[b_{1}-T_{k}\left(b_{1}\right)\right] \cdot T_{i}\left(\alpha_{1}\right)+\ldots+\left[b_{r-1}-T_{k}\left(b_{r-1}\right)\right] T_{i}\left(\alpha_{r-1}\right)=0$. which is a non-trivial solution to set (3.4.1) having fewer than r elements non-zero, contrary to the choice of r, which proves the theorem.

Corollary 1: If a subfield F of Eis_the fixed field for_efinite_group G _of order_n_ of automorphisms_of_E_then each_automorphism_T that_leaves_F_fixed_must_belone_to_g.

Proof: By Theorem 3.4.1 (E / F) $=$ order of $G=\mathrm{n}$. We assume there is a T not in G which leaves F fixed. Then F would remain fixed under the $n+1$ elements consisting of T and the elements of G, thus $(E / F) \geqslant n+1$ by the Corollary to Theorem 3.3.3. This is a contradiction.

Corollary 2: There are no two finite groups G_{1} and

 G_{2} with the same fixed field.Proof: This follows from the above Corollary 2.
Corollary 3: E is a normal extension of F, if and only if the number of automorphisms of E which leave fixed is (E/F).

Proof: If E is a nomal extension of F, the number of distinct automorphisms of E which leave F fixed is (E / F), by Theorem 3.4.1.

Conversely, suppose that F^{\prime} is the fixed field of all those automorphisms of E which leave F fixed. Then $F \subseteq F^{\prime} \subseteq E . \quad$ By Theorem 3.4.1, the number of automorphisms of E leaving F^{\prime} fixed is (E / F^{\prime}). Assuming that (E / F) automorphisms of E leave F fixed, we have $\left(E / F^{\prime}\right)=(E / F)$. Since $(E / F)=\left(E / F^{\prime}\right)\left(F^{\prime} / F\right),\left(F^{\prime} / F\right)=1$ and $F^{\prime}=F$. Thus E is a normal extension of F.

Lemma 3.4.2: If E is a normal extension of F, then any element of E is_root_of an irreducible, separable equation over F which_splits_completely_in E .

Proof: Let T_{1}, \ldots, T_{s} be the group G of automorphisms of E whose fixed field is F. Let $\alpha \in E, \alpha \notin F$, and let $\alpha=\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{r}$ be the set of distinct elements in the sequence $T_{1}(\alpha), T_{2}(\alpha), \ldots, T_{s}(\alpha)$. Since G is a sroup,

$$
T_{j}\left(\alpha_{i}\right)=T_{j}\left(T_{k}(\alpha)\right)=T_{j} T_{k}(\alpha)=T_{m}(\alpha)=\alpha_{n}
$$

where $n \leq r$. Since the mapping T_{j} is one-to-one, the elements $\alpha, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{r}$ are permuted by each automorphism of G. The
coefficients of the polynomial $f(x)=(x-\alpha)\left(x-\alpha_{2}\right) \ldots$ $\left(x-\alpha_{r}\right)$ are left fixed by each automorphism of G, since in its factored form the factors of $f(x)$ are only permuted. Since the only elements of E which are left fixed by all the automorphisms of $G \in F, f(x)$ is a polynomial in F. If $g(x)$ is any other polynoirial in F which also has α as root, then applying the automorphisms of G to $g(\alpha)=0$ we obtain $g\left(\alpha_{i}\right)=0$, so that the degree of $g(x) \geq r$. Hence $f(x)$ is irreducible, which proves the lemma.

THEOREM 3.4.3: E is a normal extension of F if and only if E is the splitting field of a separable polynomial $\mathrm{p}(\mathrm{x})$ in F .

Proof: Sufficiency: We assume that E splits $p(x)$, and prove that E is a normal extension of F. If all the roots of $p(x)$ are in F, then $E=F$ and only the unit automorphism leaves F fixed and our proposition would hold. Suppose $p(x)$ has $n>1$ roots in E but not in F. We make the inductive assumption that for all pairs of fields with fewer than n roots of $p(x)$ outside F our proposition holds. Let $p(x)=p_{1}(x) \cdot \ldots \cdot p_{r}(x)$ be a factorization in F of $p(x)$ into irreducible factors. We may suppose one of these to have a degree greater than one, for otherwise $p(x)$ would split in F. Suppose deg. $p_{1}(x)=s>1$. Let α_{1} be a root of $p_{1}(x)$. Then $\left(F\left(\alpha_{1}\right) / F\right)=$ deg. $p_{1}(x)=s$ (cf. paragraph after Lemma 2.3.2). If we consider $F\left(\alpha_{1}\right)$ as the new ground field, fewer roots of $p(x)$ than n are outside. Since $p(x)$
lies in $F\left(\alpha_{1}\right)$ and E is a splitting field of $p(x)$ over $F\left(\alpha_{1}\right)$, then by our inductive assumption it follows that E is a normal extension of $F\left(\alpha_{1}\right)$. Thus, each element in E which is not in $F\left(\alpha_{1}\right)$ is moved by at least one automorphism which leaves $F\left(\alpha_{1}\right)$ fixed. Since $p(x)$ is separable, the roots $\alpha_{1}, \ldots, \alpha_{s}$ of $p_{1}(x)$ are s distinct elements of E. By Theorem 2.4 .1 there exist isomorphisms $T_{1}, T_{2}, \ldots, T_{S}$ mapping $F\left(\alpha_{1}\right)$ on $F\left(\alpha_{1}\right), F\left(\alpha_{2}\right), \ldots, F\left(\alpha_{s}\right)$, respectively, which are each the identity on F and $\operatorname{map} \alpha_{1}$ on $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}$ respectively. We now apply Theorem 3.1.5. E is a splitting field of $p(x)$ in $F\left(\alpha_{1}\right)$ and is also a splitting field of $p(x)$ in $F\left(\alpha_{i}\right)$. Hence the isomorphism T_{i}, which makes $p(x)$ in $F\left(\alpha_{1}\right)$ correspond to the same $p(x)$ in $F\left(\alpha_{i}\right)$, can be extended to an isomorphic mapping of E onto E, that is, to an automorphism of E that we denote again by T_{1}. Hence, $T_{1}, T_{2}, \ldots, T_{S}$ are automorphisms of E that leave F fixed and map α_{1} onto $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. Now let β be any element of E that remains fixed under all automorphisms of E that leave F fixed. Thus β remains fixed under the subset of all automorphisms of E that leave $F\left(\alpha_{1}\right)$ fixed. Since E is a normal extension of $F\left(\alpha_{1}\right)$, β must lie in $F\left(\alpha_{1}\right)$. Thus
(3.4.5)

$$
\beta=c_{0}+c_{1} \alpha_{1}+c_{2} \alpha_{1}^{2}+\ldots+c_{s-1} \alpha_{1}^{s-1}
$$

where the c_{i} are in F. If we apply T_{i} to (3.4.5) we get, since $T_{i}(\beta)=\beta$,

$$
\beta=c_{0}+c_{1} \alpha_{i}+c_{2} \alpha_{i}^{2}+\ldots+c_{s-1} \alpha_{i}^{s-1}
$$

The polynomial $c_{s-1} x^{s-1}+c_{s-2} x^{s-2}+\ldots+c_{1} x+\left(c_{0}-\beta\right)$
has therefore the s distinct roots $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}$. There are more than its degree. So all coefficients of it must vanish, among them $c_{0}-\beta$, which shows β is in F. Thus E is a normal extension of F .

Necessity: If E is a normal extension of F, we wish to show that E is the splitting field of a separable polynomial $p(x)$. Let $w_{1}, w_{2}, \ldots, w_{t}$ be a generating system for the vector space E over F. By Theorem 3.4.2 there exists an irreducible, separable polynomial $f_{i}(x)$ in F which splits in E and has w_{i} as a root. Then E is the splitting field of the separable polynomial $p(x)=f_{1}(x) \cdot f_{2}(x) \ldots f_{t}(x)$. This proves Theorem 3.4.3.

Definition: If $f(x)$ is a polynomial in a field F, and E the splitting field of $f(x)$, then we shall call the group of automorphisms of E over F the group of the equation $f(x)=0$.

In the Theorems 3.4.4, 3.4.5, 3.4.8 and Lemmas 3.4.6, 3.4.7 we will assume that (1) $p(x)$ is a separable polynomial in a field F, (2) E is the splitting field of $p(x)$ and, (3) G is the group of $p(x)=0$ over F.

THEOREM 3.4.4: Each intermediate field, B, i.e., $F \subset B \subset E$, is the fixed field_for a_subgroup G_{B} of G, and distinct subgroups have distinct fixed_fields.

Proof: Consider $p(x)$ as lying in some intermediate field B. E is still the splitting field of $p(x)$ in B. Thus,

E is a normal extension of each field B, so that B is the fixed field of the subgroup G_{B} of G made up of those automorphisms of E which leave B fixed. By Corollary 2 of Theorem 3.4.1 distinct subgroups have distinct fixed fields. Definition: If G is the group of automorphisms of E over F and G_{B} is the subgroup of automorphisms of G which have B for its fixed field then B and G_{B} are said to belong to e日ch other.

THEOREM_3.4.5: If B is an intermedigte field, $(F \subset B \subset E)$, and $G B$ belongs to B, then (1) (E/B) = order_of G_{B}, and (2) $(B / F)=$ index of G_{B} in G.

Proof: (1). Since $B \subset E$ is the fixed field of G_{B}, Theorem 3.4.1 implies that $(E / B)=$ order of $G_{B}=O\left(G_{B}\right)$. (2). $(B / F)(E / B)=(E / F)=O(G)=i\left(G_{B}\right) \cdot O\left(G_{B}\right)=i\left(G_{B}\right)(E / B)$, where $i\left(G_{B}\right)$ is the index of G_{B}. Therefore $(B / F)=i\left(G_{B}\right)$. Lemma 3.4.6: The number of distinctisomorphisms_of B which_leave F fixed is_equal to the number of cosets of G_{B} in G.

Proof: By Theorem 3.4.5, (B/F) is equal to the number of cosets of $G_{B}=O(G) / O\left(G_{B}\right)$. Since the elements of G are automorphisms of E they map B isomorphically into some other subfield of E and are the identity on F. The elements of G in any one coset of G_{B} map B in the same way. For let $T_{1} T_{1}$ and T_{2}, where $T \in G, T_{1}, T_{2} \in G_{B}$, be two elements of the coset T. G_{B}. Since T_{1} and T_{2} leave B fixed, for each α of B we have $T \cdot T_{1}(\alpha)=T(\alpha)=T \cdot T_{2}(\alpha)$. Also elements of
different cosets give different isomorphisms, for if T and S give the same isomorphism, $T(\alpha)=S(\alpha)$ for each α in B, then $T^{-1} S(\alpha)=\alpha$ for each α in B. Thus $T^{-1} S=T_{1}$, where T_{1} is in G_{B}. But then $S=T \cdot T_{1}$ and $S \cdot G_{B}=T \cdot T_{1} G_{B}=T \cdot G_{B}$ so that T and S belong to the same coset. Also each isomorphism of B which is the identity on F is induced by an automorphism of G. For let T be an isomorphism mapping B on B^{\prime} and the identity on F. Then under $T, p(x)$ corresponds to $p(x)$, and E is the splitting field of $p(x)$ in B and of $\mathrm{p}(\mathrm{x})$ in B^{\prime}. By Theorem 3.1.5, T can be extended to an automorphism T^{\prime} of E, and since T^{\prime} leaves F fixed it belongs to G. This proves the lemma.

Lemma 3.4.7: B is a normal extension of F if and only if each_isomorphism of B is_an automorphism_of B which leaves F fixed.

Proof: By Lemma 3.4 .5 and Lemma 3.4.6, the number of distinct isomorphisms of $B=i\left(G_{B}\right)=(B / F)$. By Theorem 3.4.1, Corollary 3, B is normal over F, if and only if the number of distinct automorphisms of B which leave F fixed is also (B / F), i.e. if and only if the number of distinct isomorphisms of B is equal to the number of distinct automorphisms of B which leave F fixed. Since each automorphism of B is an isomorphism of B, our lemma is proved. THEOREM 3.4.8: An intermediate field $B,(F \subset B C E)$, is_a_normal_extension of F if and only if the suberoup G_{B} is a normal subgroup of G.

Proof: This theorem is an immediate consequence of Lema 3.4 .7 once we have proved that: G_{B} is normal in G if gnd_only if each_isomorphism_of B is_an automorphism of B, which_leaves F fixed.

Now, if T is any automorphism of $E, T G_{B} T^{-1}$ is a subgroup of G, and $T G_{B} T^{-1}[T(B)]=T G_{B}\left[T^{-1} T(B)\right]=T G_{B}(B)=T(B)$. Then, if $T G_{B} T^{-1}(\alpha)=\alpha, G_{B}\left[T^{-1}(\alpha)\right]=T^{-1}(\alpha), T^{-1}(\alpha) \subset B$ and so $\alpha \subset T(B)$. Thus $T(B)$ is the fixed field for $T G_{B} T^{-1}$. If G_{B} is normal in G, then $T G^{T-1}=G_{B}$, hence $T(B)=B$, and every isomorphism of B is an automorphism of B.

Conversely, if $T(B)=B$, for every isomorphism T of B, then $T^{-1} \mathcal{I}_{B} T=G_{B}$, and G_{B} is normal in G.

Theorems 3.4.423.4.5, and 3.4.8 are the Fundamental

theorems of the Galois theory.

In Lemma 3.4.7, when B is normal over F, and each isomorphism of B is an automorphism of B which leaves F fixed, the cosets of G_{B}, each of which describes an isomorphism of B (cf. Lemm 3.4.6), are elements of the factor group (G / G_{B}). Thus each qutomorphism of B corresponds uniquely to an element of (G / G_{B}) and conversely. Since multiplication in $\left(G / G_{B}\right)$ is obtained by repeating the mappings, the correspondence is an isomorphism between (G / G_{B}) and the group of autonorphisms of B which leave F fixed.

CHAPTER IV

ROOTS OF UNITY

4.1 Roots of Unity in the Complex Field.

The n n-th roots of unity are found solving the equation $Z^{n}=1$. If we let $0=p(\cos \theta+i \sin \theta)$ and $1=$ $r(\cos \phi+i \sin \phi)$. Suppose $U^{n}=p^{n}(\cos n \theta+i \sin n \theta)=1$. Thus $p=r^{1 / n} ; \theta=\phi / n+2 k \pi / n$, where $k=0,1, \ldots, n-1$. We have $r=1$, and $\phi=0$ and therefore $p=1$, and $\theta=2 k \pi / n$. Thus the n n-th roots of unity can be represented by R, R^{2}, \ldots, R^{n} where $R=\cos 2 \pi / n+i \sin 2 \pi / n$.

Definition: An n-th root U of 1 is a primitive $n-t h$ root of 1 if $U^{n}=1$ and $U^{m} \neq 1$, when $0<m<n$.

THEOKEM 4.1.1: Let $R=\cos 2 \pi / n+i \sin 2 \pi / n$. If $(k, n)=d$, then R^{k} is a primitive (n / d)-th rootof unity.

Proof: Let $k=k_{1} d, n=n_{1} d$ so that $\left(k_{1}, n_{1}\right)=1$. Then $R^{k}=\cos 2 k_{1} d \pi / n_{1} d+i \sin 2 k_{1} d \pi / n_{1} d=\cos 2 k_{1} \pi / n+$ $i \sin 2 k_{1} \pi / n_{1}$. Thus $\left(R^{k_{1}}\right)^{n_{1}}=\cos 2 k_{1} \pi+i \sin 2 k_{1} \pi=1$ so that R^{k} is an $n_{1}=(n / d)-$ th root of unity. Also, R^{k} is a primitive $(n / d)-t h$ root of unity, for if $\left(R^{k}\right)^{m}=1=$ $\cos 2 k_{1} m \pi / n_{1}+i \sin 2 k_{1} m \pi / n_{1}, k_{1} m / n_{1}$ is an integer. Since $\left(n_{1}, k_{1}\right)=1, n_{1}$ divides m, but the least positive multiple of n_{1} is n_{1} itself.

Corollary 1: Those and only those n-th roots of unity R, R^{2}, \ldots, R^{n} are primitive $n-t h$ roots of unity whose
exponents are relatively prime to n.
Proof: From Theorem $4.1 .1 \mathrm{R}^{\mathrm{k}}$ is a primitive n -th root of unity if and only if $(n, k)=d=1$.

Corollary $2:$ If U is_eny primitive $n-t h$ root of unity and $(k, n)=d$, then U^{k} is a primitive $n / d-t h$ root of unity.

Proof: Let $U=R^{t}$, where $(t, n)=1$. Hence $U^{k}=R^{t k}$ and $(t k, n)=d$. Thus we may apply Theorem 4.1 .1 to $R^{t k}$ from which the proof is immediate.

Corollary 3: The n n-th roots of unity include all the m-th roots of unity if and onlyif m divides n.

Proof: If m divides $n, n=m k$, and $(n, k)=k$. Then by Corollary 2 above R^{k} is a primitive $n / k=m-t h$ root of unity and hence all the m-th roots of unity are included among the powers of $\left(\mathrm{R}^{\mathrm{k}}\right)$ which are also n -th roots. If all the m-th roots of unity are included aloone the $n-t h$ roots, then the primitive $m-t h$ root $\cos 2 \pi / m+i \sin 2 \pi / m=R^{V}$. Again by Corollary 2 , if $(v, n)=d, R^{V}$ is a primitive n / d-th root of unity. Hence $\mathrm{n} / \mathrm{d}=\mathrm{m}$ and $\mathrm{n}=\mathrm{md}$, which completes the proof.
4.2 Roots of unity in fields of prime oharacteristic.

If a field F has characteristic p, and E is the splitting field of the polymomial $x^{n}-1$ where p does not divide n, then E is the field generated out of F by the adjunction of a primitive $n-t h$ root of unity. The polynomial $x^{n}-1$ does not have repeated roots in E, since its de-
rivative, $n x^{n-1}$, has only the root 0 and has, thus, no roots in common with $x^{n}-1$. Therefore, Eis_anormel extension of F by Theorem 3.4.3. If $e_{1}, e_{2}, \ldots, e_{n}$ are the roots of $x^{n}-1$ in \mathbb{E}, they form a group under multiplication and by Theorem 3.2.5 this group will be cyclic. Let e be a generator of the group so that $l, e, e^{2}, \ldots, e^{n-1}$ are the elements of the group. Since the smallest power of e which is 1 is the n-th, we see that e is a primitive $n-t h$ root of unity. The order of any n-th root of unity is a divisor of n, since each n-th root of mity generates a cyciic subgroup of the group of all the roots. If e is a primitive n-th root of unity, evidently $e^{n / r}$ is a primitive r-th root of unity. THEOREA 4.2.1: If E is the field generated from F by a primitive n-th root of unity, then the group G of E over F is abelian for any n and cyclic if n is prime.

Proof: We have $E=F(e)$, since the roots of $x^{n}-1$ are powers of e. Thus, if S and T are distinct elements of $G, S(e) \neq T(e)$. But $S(e)$ is a root of $x^{n}-1$ and, thus, a power of e. Thus, $S(e)=e^{n_{S}}$ where n_{s} is an integer $1 \leqslant n_{s}$ $<\mathrm{n}$. Also, $\operatorname{TS}(\mathrm{e})=T\left(\mathrm{e}^{\mathrm{n}_{S}}\right)=(\mathrm{T}(\mathrm{e}))^{\mathrm{n}_{S}}=\mathrm{e}^{\mathrm{n}_{T} \cdot \mathrm{n}_{S}}=\operatorname{ST}(\mathrm{e})=$ $e^{n_{S T}}$. Thus G is abelian, and $n_{S T} \equiv n_{S} n_{T}(\bmod n)$. Hence, the mapping of S on n_{s} is a homomorphism of G into a multiplicative subgroup of the intergers mod n. Since $T \neq s$ implies $T(e) \neq S(e)$, it follows that $T \neq S$ implies $n_{S} \neq$ $n_{T}(\bmod n)$. Hence, the homomorphism is an isomorphism. If: n is prime, the multiplicative group of integers mod n
forms a cyclic group.
4.3 Noether_Equations.

Definition: If E is a field, and $G=(S, T, \ldots)$ any Eroup of automorphisms of E, any set of elements x_{S}, x_{T}, \ldots in E will be said to provide a solution of Noether's equations if $x_{S} \cdot S\left(x_{T}\right)=x_{S T}$ for each S and T in G.

As T traces G, $S T$ assumes all values in G, and in the equation $x_{S} \cdot S\left(x_{T}\right)=x_{S T}, x_{S T}=0$ when $x_{S}=0$. Thus, in any solution of the Noether equations no element $x_{S}=0$ unless the solution is completely trivial. In the following we assume the trivial solution has been excluded.

THEOREM 4.3.1: The system x_{S}, x_{T}, \ldots is a solution of Noether's equations if and_only if there exists an_element α in E, such that $x_{S}=\alpha / S(\alpha)$ for each S.

Proof: If $x_{S}=\alpha / S(\alpha)$, for some α, then x_{S} is a solution of the equations, since $x_{S} \cdot s\left(x_{T}\right)=[\alpha / S(\alpha)] \cdot[S(\alpha / T(\alpha))]$.

$$
=[\alpha / \mathrm{S}(\alpha)] \cdot[\mathrm{S}(\alpha) / \mathrm{ST}(\alpha)]=\alpha / \mathrm{ST}(\alpha)=\mathrm{x}_{\mathrm{ST}}
$$

Conversely, we let x_{S}, x_{T}, \ldots be a non-trivial solution. Since the automorphisms S,T,... are distinct they are linearly independent by Theorem 3.3.1, and the equation $x_{S} \cdot s(z)+x_{T} T(z)+\ldots=0$ does not hold identically. Hence, there is an element a in E such that $x_{S} S(a)+x_{T} T(a)$ $+\ldots=\alpha \neq 0$. Applying S to α gives
(4.3.1) $\quad S(\alpha)=\sum_{T \in G} S\left(x_{T}\right) \cdot \operatorname{ST}(a)$.

Multiplying (4.3.1) by x_{S} gives
(4.3.2)

$$
x_{S} \cdot S(\alpha)=\sum_{T \in G} x_{S} S\left(x_{T}\right) \cdot S T(a) .
$$

Replacine, $x_{S} . S\left(x_{T}\right)$ by $x_{S T}$ in (4.3.2) and observing that $S T$ assumes all values in G when T does, then (4.3.2) becomes

$$
x_{S} \cdot S(\alpha)=\sum_{T \in G} x_{T} T(a)=\alpha
$$

so that

$$
x_{S}=\alpha / S(\alpha)
$$

completing the proof.
THEOREM_4.3.2: If G is the Group of the normel field E ouer F, then for each character C of G into F there exists an element α in E such that $C(S)=\alpha / S(\alpha)$ ond, conversely, if $\alpha / S(\alpha)$ is_in F for each S, then $C(S)=\alpha / S(\alpha)$ is_a_charecter of G. If r is the least common multiple_of_the orders of elements_of G, then $\alpha^{r} \in F$.

Proof: Let $x_{S}=\alpha / S(\alpha)$. By Theorem 4.2.1, x_{S} is a solution of the Noether equations and yields a mapping C of G into E, namely $C(S)=X_{S}$. If F is the fixed field of G, and the elements x_{S} lie in F, then C is a character of G, for

$$
C(S T)=x_{S T}=x_{S} \cdot S\left(x_{T}\right)=x_{S} x_{T}=C(S) \cdot C(T)
$$

since $S\left(x_{T}\right)=x_{T}$ if $X_{T} \in F$. Conversely, each character C of G into F provides a solution of the Noether equations, for if we call $C(S)=x_{S}$, then, since $x_{T} \in F$, we have $S\left(x_{T}\right)=x_{T}$. Thus,

$$
x_{S} \cdot S\left(x_{T}\right)=x_{S} \cdot x_{T}=c(S) \cdot C(T)=c(S T)=x_{S T} .
$$

For the last part of the theorem we need only show that $S\left(\alpha^{r}\right)=\alpha^{r}$ for each $S \in G$. Now, $\alpha^{r} / S\left(\alpha^{r}\right)=(\alpha / S(\alpha))^{r}=\left(x_{S}\right)^{r}=(C(S))^{r}=C\left(S^{r}\right)=C(I)=1$,
which proves the theorem.
4.4 Kummer's_Fields.

Definition: If F contains a primitive $n-t h$ root of unity, any splitting field E of a polynomial $\left(x^{n}-a_{1}\right)$. $\left(x^{n}-a_{2}\right) \cdot \ldots \cdot\left(x^{n}-a_{1}\right)$ where $a_{i} \in E$ for $i=1,2, \ldots, r$ will be called a Kummer extension of F, or a Kummer field.

THEOREM 4.4.1: If E is a Kummer field then: (i) E is a normal extension of F, (ii) the group G of E over F is abelien, (iii) the least common multiple of the orders of the elements_of G is a divisor of n, where n is the order of the primitive root of unity_in F.

Proof: If F contains a primitive n-th root of unity, we prove that n is not divisible by the characteristic of F. For, suppose F has characteristic p and $n=q p$. Then $y^{p}-1$ $=(y-1)^{p}$ since in the expansion of $(y-1)^{p}$ each coefficient other than the first and.last is divisible by p and thus is equel to zero. Thus

$$
x^{n}-1=\left(x^{q}\right)^{p}-1=\left(x^{q}-1\right)^{p}
$$

and $\frac{n}{L^{n}}-1$ cannot have more than q distinct roots. But we assumed that F has a primitive n-th root of unity and so $1, e, e^{2}, \ldots, e^{n-1}$ are n distinct roots of $x^{n}-1$. It follows that n is not divisible by the characteristic of F. For a Kummer field E, none of the factors $x^{n}-a_{i}, a_{i} \neq 0$ has repeated roots since the derivative, $n x^{n-1}$, has only the root 0 and has therefore no roots in common with $x^{n}-a_{i}$. Thus, the irreducible factors of $x^{n}-a_{i}$ are separable, so that E
is a normal extension of F.
Let α_{i} be a root of $x^{n}-a_{i}$ in E. If $e_{1}, e_{2}, \ldots, e_{n}$ are the n distinct $n-t h$ roots of unity in F, then $\alpha_{i}{ }_{1}, \alpha_{i} e_{2}$, $\ldots, \alpha_{i} e_{n}$ will be n distinct roots of $x^{n}-\alpha_{i}$, and hence will be the roots of $x^{n}-a_{i}$, so that $E=F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$. Let S and T be two automorphisms in the group G of E over F. For each α_{i}, both S and $T \operatorname{map} \alpha_{1}$ on sole other root of $x^{n}-a_{i}$. Thus $T\left(\alpha_{i}\right)=e_{i T} \alpha_{i}$ and $S\left(\alpha_{i}\right)=e_{i S} \cdot \alpha_{i}$ where $e_{i S}$ and $e_{i T}$ are $n-t h$ roots of unity in the basic field F. It follows that

$$
T\left(S\left(\alpha_{i}\right)\right)=T\left(e_{i S} \alpha_{i}\right)=e_{i S} T\left(\alpha_{i}\right)=e_{i S} e_{i T} \alpha_{i}=S\left(T\left(\alpha_{i}\right)\right)
$$ Since S and T are commutative over the generators of E, they comaute over each element of E. Hence, G is abelian. If $S \in G$ then $S\left(\alpha_{i}\right)=e_{i S} \alpha_{i}, S^{2}\left(\alpha_{i}\right)=e_{i S}^{2}, \ldots$. Thus, $s^{n_{i}}\left(\alpha_{i}\right)=\alpha_{i}$ for n_{i} such that $e_{i S}^{n}=1$. since the order of an n-th root of unity is a divisor of n, we have n_{i} a divisor of n and the least common multiple m of n_{1}, n_{2}, \ldots, n_{r} is a divisor of n. since $\mathbb{S}^{m}\left(\alpha_{i}\right)=\alpha_{i}$ for $i=1,2$, ..., it follows that m is the order of s. Hence, the order of each element of G is a divisor of n, and thus, the least common multiple of the orders of the elements of G is a divisor of n. This proves (iii).

Corollary: If E is the splitting fieldof $x^{p}-a$, where p is a prime and F contains a primitive p-th root of unity, then either $E=F$ and $x^{p}-a$ splits_in F, or $x^{p}-a$ is irreducible over F and the group of E over F is
cyclic oforder p.
Proof: The order of each element of G is, by Theorem 4.4.1, a divisor of p and, hence, if the element is not the identity its order must be p . If α is a root of $\mathrm{x}^{\mathrm{p}}-\alpha$, then $\alpha, e \alpha, \ldots, e^{p-l} \alpha$ are all roots of $x^{p}-\alpha$ so that $F(\alpha)=E$ and $(E / F) \leq p$. Hence, the order of G does not exceed p so that if G has one element different from the unit, it and its powers must constitute all of G. Since G has p distinct elements and their behavior is determined by their effect on α, then α must have p distinct images. Hence, the irreducible equation in F for α must be of degree p and is therefore $x^{p}-a=0$. This completes the proof.

Definition: Let C_{1} and C_{2} be characters mapping a group G into a field E. If C_{1} maps S on a_{S} and C_{2} maps S on b_{S}, then $C_{1} C_{2}$ is the character which maps S on $a_{S} b_{S}$.

Lemme 4.4.2: If E is_n_normal extension of a field F, whose group G over F is_abelian, and F contains_a_primitive r-th_root of unity where r is the least common_multiple_of the orders of elements_of G, then the_eroup_of chergeterg X of G into the group of r-th roots of unity is_isogorphic to G, and to egeh S of G, if $S \neq I$, there exists a_character C of X such that $C(S) \neq 1$.

Proof: As in Theorem 3.2 .6 we may express G as the direct product of the cyclic groups $G_{1}, G_{2}, \ldots, G_{t}$ of orders $m_{1}, m_{2}, \ldots, m_{t}$ such that $m_{1}\left|m_{2}\right| \ldots \mid m_{t}$. Each s of G may be written $S=S_{1}^{\nabla_{1}} S_{2}^{V_{2}} \ldots S_{t}^{V_{t}}$ where S_{i} is a generator of G_{i}.

We will denote by C_{i} the oharacter which sends S_{i} into e_{i}, a primitive $m_{i}-t h$ root of unity, and S_{j} into 1 for j not equal to 1 . Let C be any character. Now

$$
\left[c\left(s_{i}\right)\right]^{m_{i}}=c\left(s_{i}^{m i}\right)=c(I)=1
$$

hence $C\left(S_{i}\right)=e_{i}^{w_{i}}$, and we have $C=C_{1}^{w_{1}} \cdot C_{2}^{W_{2}} . \ldots . C_{t}^{W_{t}}$. Conversely, $C_{1}^{W_{1}} \ldots C_{t}^{W_{t}}$ defines a character. Since the order of C_{i} is m_{i}, the character group X of G is isomorphic to G. If S is not equal to I, then in $S=S_{1}^{v_{1}} S_{2}^{v_{2}} \ldots S_{t}^{v_{t}}$ at least one ∇_{i}, say V_{1}, is not divisible by m_{1}. Thus $C_{1}(S)=e_{1}^{\nabla_{1}} \neq$ 1, which proves the lemma.

Now suppose we have the conditions of Lemma 4.4.1. Let A denote the set of those non-zero elements α of \mathbb{E} for which $\alpha^{r} \in F$ and let F_{1} denote the non-zero elements of F. We see that A is a multiplicative group and F_{1} is a subgroup of A. Let A^{r} denote the set of r-th powers of elements in A and F_{1}^{r} the set of r-th powers of elements of F_{1}. With these conditions we have in the following theorem a metnod for computing G.

THEOREM 4.4.3: The factor roups $\left(A / F_{1}\right)$ and $\left(A r / F_{1}^{r}\right)$ are isomorphic to each_other_and to the groups G and X.

Proof: We map A on A by makjng α of A correspond to α^{r} of A^{r}. If $a^{r} \in A^{r}$, where $a \in A$, then $b \in A$ is mapped on a^{r} if and only if b^{r} equels a^{r}, that is, if b is a solution to the equation $x^{r}-a^{r}=0$. But $a, e a, e^{2}, \ldots, e^{r-1} a$ are distinct solutions to this equation and since $e \in F_{1}$ and a belong to A, it follows that b must be one of these
elements and must belong to the coset $a F_{1}$. Thus, the set of elements of A which map onto the subrroup F_{1} of A^{r} is F_{1}, so that the factor groups $\left(A / F_{1}\right)$ and ($\left.A{ }^{r} / F_{1}^{r}\right)$ are ismorphic. If α is an element of A, then

$$
[\alpha / \mathrm{T}(\alpha)] \mathrm{r}=\alpha^{\mathrm{r}} / \mathrm{T}\left(\alpha^{\mathrm{r}}\right)=\alpha^{\mathrm{r}} / \alpha^{\mathrm{r}}=1
$$

for every automorphism T of G. Hence, $\alpha / T(\alpha)$ is an r-th root of unity and is in F_{1}. By Theorem 4.3.2, α defines a character C_{α} of G into F such that $C_{\alpha}(T)=\alpha / T(\alpha)$. We map α on the corresponding character C_{α}. Each character C is, by Theorem 4.3.2, the image of some α. Also, $\alpha . \alpha^{\prime}$ defines the character $C_{\alpha \alpha^{\prime}}$ such thet $C_{\alpha \alpha^{\prime}}(\mathrm{T})=\alpha \alpha^{\prime} / T\left(\alpha \cdot \alpha^{\prime}\right)=$ $\alpha \cdot \alpha^{\prime} / T(\alpha) \cdot T\left(\alpha^{\prime}\right)$. By definition, $C_{\alpha} \alpha^{\prime}(T)=C_{\alpha}(T) \cdot C_{\alpha^{\prime}}(T)$, so that the mapping is a homomorphism. The kernel of this homomorphism is the set of those elements α for which $\alpha / T(\alpha)=1$ for each T, hence is F_{1}. Thus, (\dot{A} / F_{1}) is isomorphic to X under the mapping of the $\operatorname{coset} \alpha F_{1}$, of $\left(A / F_{1}\right)$ on the character C_{α} defined by $C_{\alpha}(T)=\alpha / T(\alpha)$. By Lemma 4.4.2 X is isomorphic to G. This proves the theorem. THEORTM 4.4.4: If E is an extension_fieldover F, then E is a Kummer field if and only if E is normal_ its group G is abelian and F contains_anigitive r-th_root_e of unity where r is the least_common_multiple of the orders of the_elements_of G.

Proof: The necessity is proved in Theorem 4.4.1. We prove the sufficiency. Relative to the group A, let $\alpha_{1} F_{1}, \alpha_{2} F_{1}, \ldots, \alpha_{t} F_{1}$ be the cosets of F_{1}. Since α_{i} belong
to A, we have $\alpha_{i}^{\Gamma}=a_{i} \in F$. Thus, α_{i} is a root of the equation $x^{r}-a_{i}=0$ and since $e \alpha_{1}, e^{2} \alpha_{1}, \ldots, e^{r-1} \alpha_{i}$ are also roots, $x^{r}-a_{i}$ must split in E. We prove that E is the splitting field of $\left(x^{r}-a_{1}\right)\left(x^{r}-a_{2}\right) \ldots\left(x^{r}-a_{t}\right)$, that is, we must show that $F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right)=E$. Suppose that $F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right) \neq E$. Then $P\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ is an intermediate field between F and E, and since E is normal over $F\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ where $\left[E / F\left(\alpha_{1}, \ldots, \alpha_{t}\right)\right]>1$, there exists an automorphism T of $G, T \neq I$, which leaves $F\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ fixed. By Lemma 4.4.2 there exists a character C of X corresponding to on element $T \in G$ for which $C(T) \neq 1$. Finally, there exists an element α in E such that $C(T)$ $=\alpha / T(\alpha) \neq 1$. But α^{r} belongs to F_{1} by Theorem 4.3.2, hence α belongs to A. Also, A is contained in $F\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ since all the cosets $\alpha_{i} F_{1}$ are contained in $F\left(\alpha_{1}, \ldots, \alpha_{t}\right)$. Since $F\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ is by assumption left fixed by T, $T(\alpha)=\alpha$ which contradicts $\alpha / T(\alpha) \neq 1$. Thus, $F\left(\alpha_{1}, \ldots, \alpha_{t}\right)$
$=\mathrm{E}$ which completes the proof.
Corollary: If E is_a_normal extension of F, of prime order p, and if F contains a primitive p-th root_of unity, then E is the splitting field of an irreducible polyomial $x^{p}-a$ in F.

Proof: E is generated by elements $\alpha_{1}, \ldots, \alpha_{n}$ where α_{1}^{P} belong to F. Let α_{1} be not in F. Then x^{P}, a is irreducible, for otherwise $F\left(\alpha_{1}\right)$ would be an intermediate
field between F and E of degree less than p, and by Theorem 2.1.1, p would not be a prime number, contrary to assumption. Thus, $E=F\left(\alpha_{1}\right)$ is the splitting field of $x^{p}-$ a.

CHAPTER V

EXTENSIONS AND INTERSECTIONS OP FIELDS

5.1 Primitive Extensions.

Definition: If on extension E of F is generated by a single element, it is called a primitive extengion.

THEOREM 5.1.1: A finite extension E of F is_primitive over F if and only if there are only a finite number of intermediate fields.

Proof: (a) Let $E=F(\alpha)$ and let $f(x)=0$ be the irreducible equation for α in F. Let B be on intermediate field and $g(x)$ the irreducible equation for α in B. The coefficients of $g(x)$ adjoined to F will generate a field B^{\prime} between F and B. Since $g(x)$ is irreducible in B it is also irreducible in B^{\prime}. Since $E=B^{\prime}(\alpha)$ we see that $(E / B)=\left(E / B^{\prime}\right)$. Thus $B=B^{\prime}$, so that B is uniquely determined by the polynomial $g(x)$. But $g(x)$ is a divisor of $f(x)$ in E, and there are only a finite number of possible divisors of $f(x)$ in E. Thus, there are only a finite number of possible $\mathrm{B}^{7} \mathrm{~s}$.
(b) Now we assume there are only a finite number of fields between E and F. If F consists only of a finite number of elements, then E is generated by one element (of. Corollary to Theorem 3.2.5). Thus, we may assume F has an infinity of elements. We prove: To any two elements α, β
in E there is a γ in E such that $F(\alpha, \beta)=F(\gamma)$. Let $\gamma=\alpha$ $+a \beta$ with a in F. Consider all the fields $F(\gamma)$ obtained in this way. Since we have an infinity of a's, there exist two, say a_{1} and a_{2}, such that the corresponding $\gamma, s, \gamma_{1}=\alpha$ $+a_{1} \beta$ and $\gamma_{2}=\alpha+a_{2} \beta$, give the same field $\mathbb{F}\left(\gamma_{1}\right)=\mathbb{P}\left(\gamma_{2}\right)$. Since both γ_{1} and γ_{2} are in $F\left(\gamma_{1}\right)$, their difference is in the field $F\left(\gamma_{1}\right)$ and thus β is in the same field. Therefore $\gamma_{1}-a_{1} \beta=\alpha$ lies in $F\left(\gamma_{1}\right)$. So $F(\alpha, \beta)$ is contained in $F\left(\gamma_{1}\right)$. But $F\left(\gamma_{1}\right)$ is contained in $F(\alpha, \beta)$ and therefore $F(\alpha, \beta)=F\left(\gamma_{1}\right)$. Select now η in E in such a way that $[F(\eta) / F]$ is as large as possible. Every element λ of E must be in $P(\eta)$ or else we could find an element δ such that $F(\delta)=P(\eta, \lambda)$ contains both η and λ and $[F(\delta) / F]=[F(\delta) / F(\eta)][F(\eta) / F]>[F(\eta) / F]$. Thus, $E=P(\eta)$ which proves the theorem.

$$
\text { THEORTM 5.1.2: If } E=F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{h}\right) \text { is a finite }
$$ extenaion of the field F, and $\alpha_{1}, \ldots, \alpha_{n}$ are separable elements in E then there exists a primitive θ of E such that $E=F(\theta)$.

Proof: Let $f_{1}(x)$ be the irreducible equation of α_{1} in F and let B be an extension of E that splits $f_{1}(x) f_{2}(x)$. .. $\mathrm{P}_{\mathrm{n}}(x)$. Then by Theorem 3.4.3 B is normal over F and contains only a finite number of intermediate fields. So the subfield E contains only a finite number of intermediate fields. Theorem 5.1.1 now completes the proof. THMORTM 5.1.3: If E is a normal extension of P and $T_{1}, T_{2}, \cdots, T_{n}$ are the elements of its group G, there is an.
element β in E such that the n elements $T_{1}(\beta), T_{2}(\beta), \ldots$, $T_{n}(\beta)$ arelinearly independent with respect to F.

Proof: Since E is normal over F, E is a finite extension of P_{T} and by Theorem 5.1.2 there is an α such that $B=F(\alpha)$. Let $f(x)$ be the separable equation for α, put $T_{i}(\alpha)=\alpha_{i}$, where $\alpha_{i} \neq \alpha_{j}$ when $i \neq j$. Let $f(x)=(x-\alpha) h(x)$. Then $f^{\prime}(x)=(x-\alpha) h^{\prime}(x)+h(x)$ and $f^{\prime}(\alpha)=h(\alpha) \neq 0$. Let $g(x)=f(x) /(x-\alpha) f^{\prime}(\alpha)$ and $g_{i}(x)=T_{i}[g(x)]=$ $f(x) /\left(x-\alpha_{1}\right) f^{\prime}\left(\alpha_{i}\right)$. Now $g_{i}(x)$ is a polymomial in E having α_{k} as root for $k \neq 1$ and thus
(5.1.1) $\quad g_{1}(x) g_{k}(x) \equiv 0[\bmod f(x)]$
for $i \neq k$. In the equation
(5.1.2) $g_{1}(x)+g_{2}(x)+\ldots+g_{n}(x)-1=0$
the left side is of degree at most $n-1$. If equation (5.1.2) is true for n different values of x, the left side must be identically 0 . Such n values are $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, since $g_{1}\left(\alpha_{1}\right)=1$ and $g_{k}\left(\alpha_{i}\right)=0$ for $k \neq i$. Multiplying (5.1.2) by $g_{i}(x)$, and using (5.1.1), we see that

$$
\begin{equation*}
\left[g_{1}(x)\right]^{2} \equiv g_{i}(x)[\bmod f(x)] . \tag{5.1.3}
\end{equation*}
$$

We next compute the determinant

$$
\begin{equation*}
D(x)=\left|T_{i} T_{k}[g(x)]\right|, \quad i, k=1,2, \ldots n, \tag{5.1.4}
\end{equation*}
$$ and prove that $D(x) \neq 0$. If we square $D(x)$ by multiplying column by column and compute its value $[\bmod f(x)]$ we get from (5.1.1),(5.1.2),(5.1.3) a determinant that has 1 in the diagonal and 0 elsewhere. Therefore $[D(x)]^{2} \equiv 1(\bmod f(x))$. $D(x)$ can have only a finite number of roots in F. Avoiding

these finite roots in F we can find a value a for x such that $D(a) \neq 0$. Now set $\beta=g(a)$. Then the determinant

$$
\begin{equation*}
\left|T_{i} T_{k}(\beta)\right|=\left|T_{i} T_{k}[g(a)]\right|=D(a) \neq 0 \tag{5.1.5}
\end{equation*}
$$

Consider any linear relation $x_{1} T_{1}(\beta)+x_{2} T_{2}(\beta)+\ldots+$ $x_{n} T_{n}(\beta)=0$ where the x_{1} are in F. Applying the automorphisms T_{i} to it would lead to n homogeneous equations for the n unknown x_{i}. Equation (5.1.5) shows that $x_{1}=0$ and our theorem is proved.
5.2 Intersections of Fields.

Let F be a field, $p(x)$ a polynomial in F whose irreducible factors are separable, and let E be a splitting field for $p(x)$. Let B be an arbitrary extension of F, and let E_{B} be the splitting field of $p(x)$ when $p(x)$ is taken to ly in B. If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}$ are the roots of $p(x)$ in E_{B}, then $F\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ is a subfield of E_{B} which is a splitting field for $p(x)$ in F. By Theorem 3.1.5, B and $F\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ are isomorphic. In the following work we take $E=F\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ and assume that E is a subfield of E_{B}. Also, $E_{B}=B\left(\alpha_{1}, \ldots, \alpha_{s}\right)$. Definition: $E \cap B$ denotes the intersection of the fields E and B.

Now $E \cap B$ forms a field, for if a, b belong to E and to B then $a b$ belongs to E and $a b$ belongs to B and thus belongs to $E \cap B$. Also if a, b belong to E, B then a^{-1}, b^{-1} belong to E, B and therefore belong to $E \cap B$. Thus $E \cap B$ is a field whioh is intermediate to E and F.

$$
\text { THEOREM 5.2.1: If } G \text { is the group of automorphisms . }
$$

of E over F, and H the_group of F_{B} over B, then H is isomorphic to the gubgroup of G having $E \cap B$ asits fixed fleld.

Proof: Each automorphism of E_{B} over B simply permutes $\alpha_{1}, \ldots, \alpha_{s}$ in some way and leaves B fixed, and thus also FC B fixed. Since the elements of F_{B} are quotients of polynomial expressions in $\alpha_{1}, \ldots, \alpha_{s}$ with coefficients in B, the automorphism is oompletely determined by the permutation it effects on $\alpha_{1}, \ldots, \alpha_{s}$. Thus, each automorphism of F_{B} over B defines an automorphism of $E=F\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ which leaves F fixed. Distinct automorphisms, since $\alpha_{1}, \ldots, \alpha_{s}$ belong to W, have different effects on E. Thus, the group H of E_{B} over B can be considered as a subgroup of the group G of E over F. Each element of H leaves $\mathrm{E} \cap \mathrm{B}$ fixed since it leaves even all of B fixed. But, any element of.E which is not in $E \cap B$ is not in B, and hence would be moved by at least one automorphism of H. Therefore $E \cap B$ is the fixed field of B , which proves the theorem.

Corollary: If, under the conditions of Theorem 5.1.2, the group G is of prime order p, then either $H=G$ or H consists of the unit element alone.

Proof: Since the order of H divides the order of G which is of prime order, then the order of H must be p or 1.

PART II

APPIICATIONS OF THE GALOIS THEORY

A CRITERION FOR SOLVABILITY BY RADICALS IN FIELDS OF CHARACTERISTIC O

6.1 SolvableGroups.

Fer our discussion on solvability we need the following group theoretic results.

THEORY 6.1.1: If N is a normal subgroup of the group G, then the mapping $B \rightarrow$ g is a homomorphism of G on the factor_yroup G / N called the natural homomorphism.

Proof: If N is a normal subgroup of G, then $g N=N g$ for $a l l g$ in G. Let $g, h \in G$. If $g \rightarrow$ aN and $h \rightarrow h N$, then $g h \rightarrow(g N)(h N)=g(N h) N=(g h) N$. Thus $g \rightarrow g N$ is a homomorphism of G on the factor group G / N. If N is a proper subgroup of G, the mapping is a many-to-one mapping.

THEOREM 6.1.2: The image and the inverse imese of g normal suberoup under a group homomorphism $G \rightarrow G$ is a normal subgroup.

Proof: Let $g \in G$ where G is a group, and let $n \in N$ where N is a normal subgroup of G. Then $g N=N g$ or $\operatorname{gig}^{-1}=N$. Let $g \rightarrow g^{\prime}$, where $g \in G$ and $g^{\prime} \in G^{\prime}$. Since the mapping is homomorphic, $g^{\prime}\left(g^{-1}\right)^{\prime}=\left(\mathrm{gg}^{-1}\right)^{\prime}=(\mathrm{e})^{\prime}=\mathrm{e}^{\prime}$, and hence $\left(g^{-1}\right)^{\prime}=\left(g^{\prime}\right)^{-1}$, i.e., $g^{-1} \rightarrow g^{-1}$. In particular, $N \rightarrow N^{*}$, where N^{\prime} is a subgroup of G^{\prime}. Now $g \mathrm{gN}^{\prime} \rightarrow \mathrm{g}^{\prime} \mathrm{N}^{\prime}$. But $\mathrm{gN}=\mathrm{Ng} \rightarrow$ $N^{\prime} g^{\prime}$. Therefore $g^{\prime} N^{\prime}=N^{\prime} g^{\prime}$ and N^{\prime} is a nomal subgroup of

G'. Conversely, if N^{\prime} is a normal subgroup of G^{\prime}, we wish to show that N is a normal subgroup of G. Let N be the set of elements which map on N^{\prime}. Now e, the identity of G is mapped on e^{\prime}. But $e^{\prime} \in N^{\prime}$, thus e is in N. If n is in N, tren $n^{-1} \rightarrow\left(n^{-1}\right)^{\prime}=\left(n^{r}\right)^{-1} \in N^{r}$, so that $n^{-1} \in N$. Thus N is a group of G. Let g be any element of G. Then $\mathrm{aN}^{-1} \longrightarrow$. $g^{\prime} N^{\prime} g^{\prime-1}=N^{\prime}$. Thus $\mathrm{gNg}^{-1} \subseteq \mathrm{~N}$. Similarly, $g^{-1} \mathrm{Ng} \subseteq \mathrm{N}$, and this implies that $N \subseteq \operatorname{sNg}^{-1}$. Thus $\operatorname{col}^{-1}=N$ and N is a normal subgroup of G.

THEOREM 6.1.3: If $\mathrm{g} \rightarrow \mathrm{g}^{\prime}$ is a homomorphism of the group G on G^{\prime}, N is gny normal subgroup of $G, N \rightarrow N^{\prime}$, and T is the mapping: $g N \rightarrow g^{\prime} N^{\prime}$, where $g \in G, g^{\prime} \in G^{\prime}$, then T is a homomorphism of the factor group G / N on the factor group G^{\prime} / N^{\prime} 。

Proof: If $\rightarrow g^{\prime} N^{\prime}, \mathrm{HN}_{\mathrm{N}} \rightarrow \mathrm{h}^{\prime} \mathrm{N}^{\prime}$, then
$(\mathrm{gN})(\mathrm{hN})=\mathrm{ghN} \rightarrow(\mathrm{gh})^{\prime} \mathrm{N}^{\prime}=\mathrm{g}^{\prime} \mathrm{h}^{\prime} \mathrm{N}^{\prime}=\left(\mathrm{g}^{\prime} \mathrm{N}^{\prime}\right)\left(\mathrm{h}^{\prime} \mathrm{N}^{\prime}\right)$.
Thus the factor group G / N is mapped homomorphically on the factor group G'/N'.

Corollary: If the inverse image of N ' is N, the homomorphism $G / N \rightarrow G^{\prime} / N^{\prime}$ is an isomorphism.

Proof: Let $g_{N} \rightarrow g^{\prime} N^{\prime}, h N \longrightarrow h^{\prime} N^{\prime}=g^{\prime} N^{\prime}$. Then $\left(g^{\prime}\right)^{-1} h^{\prime} N^{\prime}=N^{\prime}$ and $\left(g^{\prime}\right)^{-1} h^{\prime}$ lies in N^{\prime}. Thus $g^{-1} h$ is in N, and h is in gN . Therefore $\mathcal{N}=\mathrm{hN}$.

Definition: If O and V are subgroups of G, $O V$ is the set of all products $u v$, with $u \in U$ and $v \in V$.

$$
\text { Definition: By }(U \sim V) \text { we denote the distinct }
$$

elements of U which also belong to V.
THEOHEM 6.1.4: If U and V are subgroups of a group
G, U_{1} and V_{1} normal subgroups of O and V, respectively,
then the following three factor groups are isomorphic:
$\mathrm{U}_{1}(\mathrm{U} \cap \mathrm{V}) / \mathrm{U}_{1}\left(\mathrm{U} \cap \mathrm{V}_{1}\right), \mathrm{V}_{1}(\mathrm{U} \cap \mathrm{V}) / \mathrm{V}_{1}\left(\mathrm{U}_{1} \cap \mathrm{~V}\right),(\mathrm{U} \cap \mathrm{V}) /\left(\mathrm{U}_{1} \cap \mathrm{~V}\right)\left(\mathrm{V}_{1} \cap 0\right)$.
Proof: If $a \in U \cap V$, then $a\left(U \cap V_{1}\right) a^{-1} \subseteq U \cap V_{1}$.
Bút $a^{-1}\left(U \cap V_{1}\right) a \subseteq U \cap \nabla_{1}$ implies that $\left(U \cap V_{1}\right) \subseteq a\left(U \cap \nabla_{1}\right) a^{-1}$.
Thus $a^{-1}\left(U \cap V_{1}\right) a=U \cap V_{1}$, and $U \cap V_{1}$ is a normal subgroup of $U \cap V$. Let $S \operatorname{map} U$ on U / O_{1}. We call $S(U \cap V)=H$ and $S\left(U \cap V_{1}\right)=K . \quad T h e n S^{-1}(H)=U_{1}(D \cap V)$ and $S^{-1}(K)=$ $0_{1}\left(0 \cap V_{1}\right)$ from which it follows from the Corollary to Theorem 6.1.3 that $U_{1}(U \cap V) / U_{1}\left(U \cap V_{1}\right)$ is isomorphic to H / K. But if S is defined only over $\mathrm{U} \cap \mathrm{V}$, then (of. (1) $S^{-1}(\mathrm{~K})=\left(\mathrm{U}_{1} \cap \mathrm{~V}\right)\left(0 \cap \mathrm{~V}_{1}\right)$ so $\operatorname{that}\left[(\mathrm{U} \cap \mathrm{V}) /\left(\mathrm{U}_{1} \cap \mathrm{~V}\right)\left(\mathrm{U} \cap \mathrm{V}_{1}\right)\right]$ is also isomorphic to H / K. Thus the first and third factor groups above are isomorphic to each other. Similarly, the second and third factor groups are isomorphic.

Corollary 1: If H is a subgroup and N a normal subgroup of the group G, then $H / H \cap N$ ig_isomorphic to $H N / N$, a subgroup of G / N.

Proof: Set $G=0, N=U_{1}, H=V$ and the identity $e=V_{1}$ in Theorem 6.1.4 and the proof is immediate. Corollary 2: Under the conditions of Corollary 1,
if G / N is abelian, so also is $\mathrm{H} / \mathrm{H} \cap \mathrm{N}$.
(1) Suppose $u \rightarrow U_{1} \subset H$. Thus $u D_{1}=u_{v} U_{1}$, where $u_{v} \subset(U \cap v)$. Since ${u u_{1}} \supset u, u=u_{v} u_{1}$, where $u_{1} \subset U_{1}$, and thus $u \subset U_{1}[(U \cap \nabla)]$.

Proof: By Corollary l, if G / N is abelian so is HN / N, a subgroup of G / N. But $\mathrm{H} / \mathrm{H} \cap \mathrm{N}$ is isomorphic to HN / N, so then also is $\mathrm{H} / \mathrm{B} \cap \mathrm{N}$ abelian.

Definition: We call a eroup G solvable if it contains a sequence of subgroups $G=G_{0} \supset G_{1} \supset \ldots \supset G_{s}=e$, each a normal subgroup of the preceding, and with G_{i-1} / G_{i} abelian.

THEOREM 6.1.5: Any subgroup H of a solvable_group G is solyable.

Proof: Let $H_{i}=\mathrm{H} \cap G_{i}$. If $G_{i-1}=G, G_{i}=N$, $H_{i-1}=H$ of Corollary 2, Theorem 6.1.4 then H_{i-1} / H_{i} is abelian.

THEOREM 6.1.6: The homomorphic_image of a solvable

Eroup is solvable.

Proof: Let $S(G)=G^{\prime}$, and define $S\left(G_{i}\right)=G_{i}$ where G_{i} belongs to a sequence exhibiting the solvability of G. By Theorem 6.1.3 there exists a homorphism mapping G_{i-1} / G_{i} on G_{i-1} / G_{i}. But the homomorphic image of an abelian group is abelian so that the groups G_{i} exhibit the solvability of G ' whioh completes the proof.

Definition: Any one-to-one mapping of a set of n objects on itself is called a permutation where the product of such permutations is a successive application of the mappings.

Definition: The set of all such mappings of n elements forms a group, called the symetric group of degree n. We will let the n objects be the numbers $1,2, \ldots, n$.

We will let (123...n) be the mapping S such that $S(i) \equiv$ $1+1(\bmod n)$ and generally $(i j . . . m)$ is the mapping T such that $T(i)=j, \ldots, T(m)=i$. If (ij...m) hes k numbers, then we call (ij...m) a k-cycle. If $T=(i j \ldots s)$ then we see that $T^{-1}=(s . \ldots j 1)$.

Leman 6.1.7: If a subgroup U of the symetric_group of degree $n>4$ contgins every 3 -cycle of the symmetric group of degree n, and if U_{1} is an normal subgroup of U such that $0 / U_{1}$ is abelian then U_{1} contains every 3 -cycle. Proof: Consider the natural homomorphism $U \rightarrow U_{0} / J_{1}=U^{\prime}$, and let $u=(i j k)$ and $v=(k r s)$ be two elements of u where i, j, k, r, s are five distinct integers $\leq n$. If $u \rightarrow u^{\prime}$, $\nabla \rightarrow \nabla^{\prime}$, then $u^{-1} \dot{v}^{-1} u \nabla \rightarrow u^{\prime-1} \nabla^{\prime-1} u^{\prime} v^{\prime}=e^{\prime}$, since ∇^{\prime} is abelian. Thus $u^{-1} v^{-1} u v$ belongs to U_{1}. But

$$
u^{-1} \nabla^{-1} u \nabla=(k j i)(s r k)(i j k)(k r s)=(k r i)
$$

and for each k, r, i, we have ($k r i$) belongs to U_{1}.
THEOREM 6.1.8: The symmetric group G of degree n is not solvable for $n>4$.

Proof: If there were a sequence exhibiting the solvability of G, since G contains every 3 -cycle so would each succeeding group, by Lemma 6.1.7, and the sequence could not end with the unit.
6.2 Solution of equations by Radicals.

Definition: The extension field E over F is called an extension by radicals if there exist intermediate fields $F=B_{0} \subset B_{1} \subset B_{2} \subset \ldots C B_{r}=E$ and $B_{i}=B_{i-1}\left(\alpha_{i}\right)$ where
each α_{1} is a root of an equation ${ }^{l}$ of the form $x^{n_{1}}-a_{i-1}=0$, where a_{i-1} is in $B_{i-1}, i=1,2, \ldots, r$.

Definition: A polynomial $f(x)$ in a field F is said to be solvable by radicals if its splitting field iies in an extension of F by radicals.

In the remainder of this article we assume, unless stated otherwise, that the base field F has characteristic zero, and that F contains as many roots of unity as are needed.

Lemma 6.2.1: Any extension_of F by radicals con always be extended to an extension of F by radicals which is normal over F.

Proof: Lat $E=B_{r}>B_{r-1} \supset \ldots>B_{1}=F\left(\alpha_{1}\right)>B_{0}=F$. B_{1} contains α_{1} and also $\theta \alpha_{1}, e^{2} \alpha_{1}, \ldots, \theta^{n_{1}-1} \alpha_{1}$, where e is any n_{1}-th root of unity. Thus B_{1} is the splitting field of $x^{n_{1}}-a_{0}, a_{0} \in F$ and by Theorem 3.4 .3 is therefore a normal extension of B. If $f_{1}(x)=\prod_{T}\left[x^{n_{2}}-T\left(a_{1}\right)\right],\left(a_{1} \in B_{1}\right)$, where T takes all values of the group of automorphisms of B_{1} over B_{0}, then I_{1} is in B_{0}, and if we adjoin successively to B_{1} the roots of $x^{n_{2}}-T\left(a_{1}\right)$ for each T we get an extension of B_{2} which is normal over F. Continuing in this way we arrive at an extension of E by radicals which will be normel over F.

THEOREA 6.2.2: The polynomial $f(x)$ is solvable by radicals if and only if its eroup is solvable.

Proor: Suppose $f(x)$ is solvable by radicals. Let
$l_{\text {We say that }} B_{i}$ is a pure extension of B_{1-1} if $x^{n_{1}}-a_{1-1}$ $=0$ is irreducible.
E be a normal extension of F by radicals containing the splitting field B of $f(x)$, and call G the group of E over F. Since for each $1, B_{i}$ is a Kummer extension of B_{i-1}, the group of B_{i} over B_{i-1} is abelian by Theorem 4.4.1. Since $G_{B_{i-1}}$ is the group of E over B_{i-1} and B_{i} is a normal extension of B_{i-1} then in the sequence of groups $G=G_{B_{0}}>$ $G_{B_{1}} \supset \ldots \supset G_{B_{r}}=1$ each is a normal subgroup of the pre-
ceding. But $G_{B_{i-1}} / G_{B_{i}}$ is isomorphic to the group of B_{i} over B_{1-1} and hence is abelian. Thus G is solvable. Now G_{B} is a normal subgroup of G, and G / G_{B} is isomorphic to the group of B over F, and is therefore the group of the polynomial $f(x)$. But G / G_{B} is a homomorphic image of the solvable group G and hence is itself solvable.

Conversely, let the group G of $f(x)$ be solvable, and E be the splitting field of $f(x)$. Let $G=G_{0} \supset G_{1} \supset \ldots>G_{r}=1$ be a sequence with abelian factor groups. Let B_{i} be the fixed field for G_{i}. Since G_{i-1} is the group of E over B_{i-1} and G_{i} is a normal subgroup of G_{i-1}, then B_{i} by Theorem 3.4 .8 is normal over B_{i-1} and the group G_{1-1} / G_{i} is abelian. By Theorem 4.4.4 B_{1} is a Kummer extension of B_{1-1}, and by definition it is a splitting field of a polynomial of the form $\left(x^{n}-a_{1}\right)\left(x^{n}-a_{2}\right) \ldots\left(x^{n}-a_{3}\right)$. By forming the successive splitting fields of the $x^{n}-a_{k}$ we see that B_{i} is an extension of B_{i-1} by radicals. Therefore E is an extengion by radicals of P which completes the proof.

6. 3_The General Equation of Degree n.

If F is a field, the totality of rational expressions in the indeterminates $u_{1}, u_{2}, \ldots, u_{n}$ with coefficionts in F is a field $F\left(u_{1}, u_{2}, \ldots, u_{n}\right)$. That is, every element in $F\left(u_{1}, \ldots, u_{n}\right)$ is the quotient $Q\left(u_{1}, \ldots, u_{n}\right)$ of two polynomials $R\left(u_{1}, \ldots, u_{n}\right) / S\left(u_{1}, \ldots, u_{n}\right)$ with coefficients in F.

Definition: We define the general polynomial of
degree n as

$$
\begin{equation*}
f(x)=x^{n}-u_{1} x^{n-1}+\ldots+(-1)^{n_{n}} u_{n} \tag{6.3.1}
\end{equation*}
$$

THEOREM 6.3.1: If E is the splitting_field of the polynomial $f(x)$ in (6.3.1) over $F\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ then the group of E over $F\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is the symmetric_group.

Proof: If $v_{1}, \ldots ; v_{n}$ are the roots of $f(x)$ in E, then $u_{1}=v_{1}+v_{2}+\ldots+v_{n}, u_{2}=v_{1} v_{2}+v_{1} v_{3}+\ldots+v_{n-1} \nabla_{n}$, $\ldots, u_{n}=v_{1} v_{2} \ldots v_{n}$. We let $F\left(x_{1}, \ldots, x_{n}\right)$ be the field generated from F by the variables x_{1}, \ldots, x_{n}. Also we let $\alpha_{1}=x_{1}+\ldots+x_{n}, \alpha_{2}=x_{1} x_{2}+x_{1} x_{3}+\ldots+x_{n-1} x_{n}, \ldots$, $\alpha_{n}=x_{1} x_{2} \cdots x_{n}$ be the elementary symmetric functions, that is, $\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)=x^{n}-\alpha_{1} x^{n-1}+\ldots+$ $(-1)^{n_{\alpha_{n}}}=f^{*}(x)$. If $g\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a polynomial in α_{1}, α_{2}, \cdots, α_{n} and if we have
(6.3.2)

$$
h\left(x_{1}, \ldots, x_{n}\right)=g\left(\sum_{i}^{n} x_{1}, \sum_{i<k}^{n} x_{i} x_{k}, \ldots\right)=0
$$

then relation (6.3.2) would still hold if the x_{i} were replaced by the v_{i}. That is, $g\left(\sum_{c}^{n} v_{i}, \sum_{i<k}^{n} v_{i} \nabla_{k}, \ldots\right)$ would equal zero or $g\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ would equal zero which implies g is identically zero. Thus $g\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=0$ only if g is the zero polynomial.

We set up the following correspondence between $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $F\left(u_{1}, u_{2}, \ldots, u_{n}\right)$. Let $f\left(u_{1}, \ldots, u_{n}\right) / g\left(u_{1}, \ldots, u_{n}\right)$, an element of $F\left(u_{1}, u_{2}, \ldots, u_{n}\right)$, correspond to $f\left(\alpha_{1}, \ldots, \alpha_{n}\right) /$ $g\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. This correspondence is a mapping of $F\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ on all of $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Now if
(6.3.3) $f\left(\alpha_{1}, \ldots, \alpha_{n}\right) / g\left(\alpha_{1}, \ldots, \alpha_{n}\right)=f_{1}\left(\alpha_{1}, \ldots, \alpha_{n}\right) / g_{1}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, then $\mathrm{fg}_{1}-\mathrm{gf}_{1}=0$. But, by the above discussion, equation (6.3.3) implies that
$f\left(u_{1}, \ldots, u_{n}\right) \cdot g_{1}\left(u_{1}, \ldots, u_{n}\right)-g\left(u_{1}, \ldots, u_{n}\right) \cdot f_{1}\left(u_{1}, \ldots, u_{n}\right)=0$ so that

$$
f\left(u_{1}, \ldots, u_{n}\right) / g\left(u_{1}, \ldots, u_{n}\right)=f_{1}\left(u_{1}, \ldots, u_{n}\right) / g_{1}\left(u_{1}, \ldots, u_{n}\right)
$$

Thus we have a one-to-one correspondence and thus the mapping of $F\left(u_{1}, \ldots, u_{n}\right)$ onto $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is an isomorphism., But under this correspondence $f(x)$ corresponds to $f^{*}(x)$. Since E and $P\left(x_{1}, \ldots, x_{n}\right)$ are respectively splitting fields of $f(x)$ and $f^{*}(x)$, by Theorem 3.1.5 the isomorphism between $F\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ can be extended to an isomorphism between E and $F\left(x_{1}, \ldots, x_{n}\right)$. Therefore, the group of E over $F\left(u_{1}, \ldots, u_{n}\right)$ is isomorphic to the group of $F\left(x_{1}, \ldots, x_{n}\right)$ over $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Each permutation of x_{1}, \ldots, x_{n} leaves $\alpha_{1}, \ldots, \alpha_{n}$ fixed and, thus, induces an automorphism of $P\left(x_{1}, \ldots, x_{n}\right)$ which leaves $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ fixed. Conversely, each automorphism of $F\left(x_{1}, \ldots, x_{n}\right)$ which leaves $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ fixed must permute the roots x_{1}, \ldots, x_{n} of $f^{*}(x)$ and is completely determined by the permutation it effects on x_{1}, \ldots, x_{n}.

Thus, the group of $F\left(x_{1}, \ldots, x_{n}\right)$ over $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is the symmetric group on n letters. But the group of $F\left(x_{1}, \ldots, x_{n}\right)$ over $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is isomorphic to the group of E over $F\left(u_{1}, \ldots, u_{n}\right)$. Therefore the group of E over $F\left(u_{1}, \ldots, u_{n}\right)$ is the symmetric group which was to be proved.

Corollary: The general equation of degree n is not solvable by radicels_if $n>4$.

Proof: By Theorem 6.1.8 the symmetric Eroup for $n>4$ is not solvable. Then by Theorem 0.3 .1 above, the general equation of degree n is not solvable by radicals if n >4. This completes the proof.
6.4 Solvable Equations of Prime Desree.

If $f(x)$ is a polynomial in a field F, let $\alpha_{1}, \ldots, \alpha_{n}$ be the roots of $f(x)$ in the splitting field $E=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Then each automorphism of E over F maps each root of $f(x)$ into a root of $f(x)$, that is, permutes the roots. Since E is generated by the roots of $f(x)$, different automorphisms must effect distinct permutations. Therefore the group of an equation or the group of E over F is a permutation group acting on the roots $\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}$ of $f(x)$.

Definition: A transformation group G acting on a set S is said to be transitive in S if for $s_{1}, s_{2} \in S$, there is an element $g \in G$ such that $g s_{1}=s_{2}$.

For an irreducible equation $p(x)$ the group of automorphisms is always transitive in the roots. For let α and α^{\prime} be any two roots of $p(x)$, then $F(\alpha)$ and $F\left(\alpha^{\prime}\right)$ are isomor-
phic where the isomorphism is the identity on F. This isomorphism can be extended to an automorphism of E by Theorem 3.1.5. Thus, there is an automorphism sending any given root into any other root, which establishes the transitiVity of the group.

Definition: A permutation T of the numbers $1,2, \ldots, q$ is called a linear substitution modulo q if there exist fixed numbers $b, c,(b \neq 0 \bmod q)$, such that $T(i) \equiv b i+c(\bmod q)$, $1=1,2, \ldots, q$.

Suppose we let G be a transitive substitution group on the numbers $1,2, \ldots, q$ and let G_{1} be a normal subgroup of G. Also let $1,2, \ldots, k$ be the images of one of the numbers, say, 1 , under the permutations of G_{1}. We say that $D_{1}=(1,2, \ldots, k)$ is a domain of transitivity of G_{1} relative to 1. If $i \leq q$ is any number not in this domain of transitivity, there is a T of G which maps 1 on 1 . Then $T G_{1} T^{-1}(i)=T G_{1}(1)=T\left(D_{1}\right)$. Thus $T\left(D_{1}\right)=T(1,2, \ldots, k)$ is a domain of transitivity of $T G_{1} T^{-1}$ relative to i. Since G_{1} is a normal subgroup of G, we have $G_{1}=T G_{1} T^{-1}$. Thus $G_{1}(1)$ $=T\left(D_{1}\right.$) is again a domain of transitivity of G_{1} which contains the integer i and has k elements. Since i was arbitrary, the domains of transitivity of G_{1} all contain k elements. Suppose $g_{1}(1)=h_{1}(i)$, where $g_{1}, h_{1} \in G_{1}$. Then $h_{1}^{-1} g_{1}(1)=1$, which contradicts our assumption that no element of G_{1} maps 1 on 1 . Thus the numbers $1,2, \ldots, q$ are divided into a collection of mutually éxclusive sets, each
containing k elements, so that k is a divisor of q. Therefore if q is a prime, either $k=1$ and G_{1} consists of the identity element alone, or $k=q$ and G_{1} is also transitive.

THEORFM 6.4.1: Let $p(x)$ be an_irreducible equation of prime degree q in a field F. The group G of $p(x)$ which is a permutation group of the roots, or the integers $1,2,$. \ldots, q, is solvable if and only if, after a suitable_change in the numbering of the roots, G is a group of linear substitutions T, where $T(i) \equiv b i+c(\bmod q), i=1,2, \ldots, q$, and in the group G all the substitutions with $b=1$, $T(1) \equiv 1+c,(c=1,2, \ldots, q)$ ocour.

Proof: First we let G be solvable and let

$$
G=G_{0}>G_{1} \supset \ldots>G_{\mathbf{r}} \supset G_{\mathbf{r}}=1
$$

be a sequence exhibiting the solvability of G. If G_{r} is not oyclic, we can choose a cyclic subgroup of the abolian group $G_{r}=G_{r} / G_{r}$, and then we can insert this new cyclic subgroup into the original sequence. We then consider the new sequence in which this cyclic group is the term before the last. Thus there is no loss in generality if we assume that the penultimate term G_{r} is cyclic.

If T is a generator of G_{r}, we can show that T consists of a cycle containing all q of the numbers $1,2, \ldots, q$. For if $T=(1 i j \ldots m)(n \ldots p)$ then the powers of T would map 1 into only $1, i, j, \ldots, m$, contradicting the transitivity of ${ }^{G} r^{-}$We can number the permutation letters in such a fashion that $T(i) \equiv i+1(\bmod q)$ and $T^{c}(i) \equiv i+c(\bmod q)$. Now let
S be any element of G_{r-1}. Since G_{r} is a normal subgroup of G_{r-1}, $S T S^{-1}$ is an element of G_{r}, say, $S T S^{-1}=T^{b}$. Let $s(i)=j$ or $s^{-1}(j)=i$. Then

$$
S T(i)=\operatorname{STS}^{-1}(j)=T^{b}(j) \equiv j+b(\bmod q) .
$$

Therefore $S T(i) \equiv S(i)+b(\bmod q)$, or $S(i+1) \equiv S(i)+b(\bmod q)$ for each i. Thus, setting $S(0)=c$, we have $S(1) \equiv c+b$, $s(2) \equiv s(1)+b=c+2 b$, and, in general, $s(i) \equiv c+i b(\bmod q)$. Thus each substitution in G_{r-1} is a linear substitution. Also, the only elements of G_{r-1} which leave no 1 fixed, $i=1, \ldots, q$ are in G_{r}, since for each $b \neq 1$, we can take 1 such that $(b-1) 1 \equiv-c(\bmod q)$, and this implies that $\mathrm{bi}+\mathrm{c} \equiv i(\bmod q)$, and i is left fixed by S. Thus if no i is feft fixed $b \equiv 1$ and thus the element S of G_{r-1} must be in G_{r}. By induction, we prove that the elements of G are all linear substitutions, and that the only cycles of q letters are in G_{r}. Suppose the assertion is true of G_{r-n}. Let S be in G_{r-n-1} and let T be a cycle in G_{r} and bence in ${ }^{G}{ }_{r-n}$. Since the transform of a cycle is a cycle, ${ }^{1}$, STS $^{-1}$ is a cycle in G_{r-n} and is even in G_{r} since G_{r} is a normal subgroup of G. Thus $S T S^{-1}=T^{b}$ for some b. By the preceding argument, S is a linear substitution $b i+c$ and if S itself is not in G_{r}, then S leaves one integer fixed and hence is not a cyole of gelements.

$$
{ }^{1} \operatorname{If} T=(i, j, \ldots, m), \operatorname{STS}^{-1}[S(i)]=\operatorname{ST}(i)=S(j),
$$

while if $k \neq i, j, \ldots, m, \operatorname{STS}^{-1}[S(k)]=\operatorname{ST}(h)=S(k)$. Thus $S T S^{-1}$ is the cycle $[s(i), S(j), \ldots, S(m)]$.

Conversely, let G be a group of linear substitutions which contains a subgroup N of the form $T(i) \equiv i+c(\bmod q)$. Since the only linear substitutions which do not leave on integer fixed are in N, and since the transform of a cycle of q elements is again a cycle of q elements, N is a normal subgroup of G. In each coset NS where $S(i) \equiv b i+c(\bmod q)$ the substitution $T^{-1} S$ occurs where $T(i) \equiv i+c(\bmod q)$. But $\mathrm{T}^{-1} \mathrm{~S}(\mathrm{i}) \equiv(\mathrm{bi}+\mathrm{c})-\mathrm{c}=\mathrm{bi}(\bmod \mathrm{q})$. Also, if $\mathrm{S}(\mathrm{i}) \equiv$ bi(mod q) and $S^{\prime}(i) \equiv b^{\prime} 1(\bmod q)$ then $S^{\prime}(i) \equiv b^{\prime} 1(\bmod q)$. Thus, the factor group (G / N) is isomorphic to a multiplicative subgroup of the numbers $1,2, \ldots, q-1(\bmod q)$ and is therefore abelian. Since (G / N) and N are both abelian, G is solvable which completes the proof.

Corollary 1: If G is a solvable transitive substitution group on q letters where q is prime, then the only substitution of G which leaves_two or more_letters fixed is the identity.

Proof: Each substitution is linear modulo q. Now the congruence $b i+c \equiv i(\bmod q)$ has no solution in the case $\mathrm{b} \equiv 1, \mathrm{c} \neq 0$ and it has exactly one solution in the case $\mathrm{b} \equiv 1$. Finally, if $\mathrm{b} \equiv 1, \mathrm{c} \equiv 0$ the substitution is the identity and thus Corollary 1 is proved.

Corollary 2: A solvable_ irreducible equation of prime degree in a field which is a subset of the real numbers has either one real root or all its roots are real.

Proof: By Theorem 6.4.1 the group of the equation,

G, is a solvable, transitive, substitution group on q
letters where q is prime. In the splitting field, E, of the equation, which is contained in the field of omplex numbers, the automorphism which maps a number into its complex conjugate would leave fixed all the real numbers. By Corollary 1, if two roots are left fixed, then all the roots are left fixed, so that if the equation has two real roots all its roots are real. This proves Corollary 2.

CHAPTER VII

A METHOD OF DETERMINING TEE GALOIS GROUP ${ }^{1}$

7.1 Finding the Galois Group of an Eguation.

We will show how to find the Galois group of a polynomial, after a finite number of operations, which consist of finding the rational roots of certain induced equations. We determine successively whether the Galois group is, or is not, contained in each of the subgroups of the symetric group, S_{n}, of degree equal to the degree of the given equation.

In this chapter we will assume that the equation under consideration is of the form

$$
p(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0
$$

where the coefficients belong to a separable field P of characteristic 0 . We let G denote the group of $p(x)$ relative to F, and we let H, of order m, denote any fixed subgroup of the symmetric group S_{n} of degree n, G and H can be considered to be permutation subgroups on n symbols. We let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be the roots of $g(x)=0$. We construct a function, $f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, of the n indeterminants $x_{1}, x_{2}, \ldots, x_{n}$, which is invariant under the permutations of H. We pirst define a_{1} to be the function ${ }^{1}$ Cf. Wilson, R.L., A Method for the Determination of the Galois Group. Duke Math. Journal, Vol.17(1950), p. 403-8.
(7.1.1)

$$
q_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x_{1}^{n-1} x_{2}^{n-2} \cdots x_{n-1} .
$$

We next define $q_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right), i=1,2, \ldots, m$, to be the functions

$$
q_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=q_{1}\left[h_{i}\left(x_{1}\right), h_{i}\left(x_{2}\right), \ldots, h_{i}\left(x_{n}\right)\right]
$$

where h_{i} are the permutations of H. We finally define $f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to be the function
(7.1.2)

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{m} q_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right) .
$$

Since the m permutations of H form a group, any permutation of H applied to $f_{1}\left(x_{1}, \ldots, x_{n}\right)$ will simply permute the $q_{i}\left(x_{1}, \ldots, x_{n}\right)$. Thus f_{1} is left invariant under the permutations of H . But any permutation of S_{n} not in H will not leave f_{1} invariant, for such a' permutation will carry q_{1} into some function not contained in f_{1}. Upon permuting the indeterminents by a permutation not in H, we obtain a second function $f_{2}\left(x_{1}, \ldots, x_{n}\right)$ which is distinct from $f_{1}\left(x_{1}, \ldots, x_{n}\right)$. By using all of the permutations s_{i} of S_{n} we obtain, say, k distinct polynomials $(7.1 .3) f_{j}\left(x_{i}, \ldots, x_{n}\right)=s_{i}\left[f_{1}\left(x_{1}, \ldots, x_{n}\right)\right], j=1,2, \ldots, k$. If s_{1} and s_{2} are two distinct elements of the same coset of H in S_{n}, then $s_{1}=s_{2} h$, where $h \in H$. Since $s_{1}\left[r_{1}\right]=$ $s_{2} h\left[f_{1}\right]=s_{2}\left[\mathrm{f}_{1}\right], s_{1}$ and s_{2} map r_{1} in the same way. Conversely, if $s_{1}\left[f_{1}\right]=s_{2}\left[f_{1}\right], s_{1}^{-1} s_{2}\left[f_{1}\right]=f_{2}$ and $s_{1}^{-1} s_{2} \in \mathrm{H}$. Thus $s_{2} \in s_{1}{ }^{H}$. Finally, $k=n!/ m$, the index of k in s_{n}. Definition: We define the equation

$$
\begin{equation*}
\Phi(y)=\prod_{j=1}^{x}\left[y-f_{i}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)\right]=0 \tag{7.1.4}
\end{equation*}
$$

to be the induced equation of A . Since the coefficients
of $\Phi(y)$ are symmetric in the roots of $p(x)=0$, they are in F. Since the functions f_{j} are not necessarily the only functions of n indeterminates which are invariant under H, $\Phi(x)$ is not necessarily unique. We can easily determine if any of the roots of $\Phi(y)=0$ lie in F.

THEOREM 7.1.1: The Galois_group G relative to the coefficient field F of a separable equation $p(x)=0$ is uniguely defined by the following_properties: (1) Every rational function, with coefficients in F, of the_roots of $p(x)=0$ which is invariant under G is equal to an element of F, (2) Every rational function with coefficients in F of the roots of $p(x)=0$ which is equal to a number in F is invariant under G.

Proof: The rational functions, with coefficients in F, of the roots of $p(x)=0$ are elements of the splitting field E of $p(x)=0$. The elements of F are precisely those elements of E which are invariant under the Galois group of E relative to F.

If none of the roots of $\Phi(y)$ is in F, then $f_{1}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ is a rational function of the roots of $p(x)=0$ with coefficients in F, invariant under H, which is not equal to an element in F. By Theorem 7.1.1, part (1), G is not contained in H . Also, if at least one non-repeated root of $\Phi(y)$ belongs to F, then this root is invariant under G, by Theorem 7.1.1, part (2). Since this is a non-repeated root, it is invariant under precisely the permutations of
H, for permutations not in H do not leave a particular f_{j} invariant. Therefore in this latter case G must be contained in H. Thus we have established the following theorem: THEOREM 7.1.2: If the eguation induced by H has no roots in F, then the Galois group G is not contained in H. - If the equation induced by A has at least one non-repeated root_in F, then G is oither H, or a proper subgroupof H. If $\Phi(y)=0$ has only multiple roots in F, conclusions similar to those above can not be drawn, since the functions f_{j} are then invariant under H and also under permutations which are not in H. In this case, we consider the n! functions,

$$
q_{1}^{(j)}=\alpha_{1}^{r_{1}} \alpha_{2}^{r} \cdots \alpha_{n-1}^{r} n_{i}, \quad 0 \leq r_{i} \leq n-i
$$

where the r_{i} are integers and $j=1,2, \ldots, n!$ is some labeling of these functions. Since the r_{i} are such that $0 \leqslant r_{i} \leqslant$ $n-i$, this will give n ! functions $q_{1}^{(j)}$. Now α_{1} is a root of $p(x)$ of degree $n ; \alpha_{2}$ is a root of $p(x) /\left(x-\alpha_{1}\right)$ of degree $n-1 ; \alpha_{i}$ is a root of $p(x) /\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{i-1}\right)$ of degree $n-i+1$, etc. Therefore, $\alpha \frac{k_{1}}{1}$ can be reduced to $\alpha \frac{r_{1}}{1}$, $0 \leq r_{1} \leq n-1 ; \alpha_{2}^{k_{2}}$ can be reduced to $\alpha_{2}^{r_{2}}, 0 \leq r_{2} \leq n-2$; and so on. Thus all the elements of the field I can be expressed rationally in terms of the $n!$ elements $q_{1}^{(j)}$. The $q_{1}^{(j)}$ therefore form a generating system for the root field E. Since the $q_{1}^{(1)}$ are not necessarily distinct, they do not necessarily form a minimal generating system. If H is contained in G, there is an intermediate field B belonging to
the group H , such that F is contained in B by Theorem 3.4.4. Since B is a subfield of the splitting field, E, of $p(x)=0$, any element b_{1} of B is of the form

$$
b_{1}=\sum_{j=1}^{\pi!} c_{j} q_{1}^{(j)}, c_{j} \in F .
$$

Let

$$
q_{i}^{(j)}=n_{i}\left[q_{1}^{(j)}\right], i=1,2, \ldots, m ; n_{i} \in H,
$$

denote the m elements we obtain from $q_{1}^{(j)}$ by applying the m permutations h_{i} of R to the α_{i}, and denote by

$$
b_{i}=\sum_{j=1}^{n!} c_{j} q_{i}^{(j)}, i=1,2, \ldots m
$$

the m functions which we obtain from b_{1} by applying these m permutations to b_{1}. Since B is the fixed field for H,

$$
\begin{aligned}
& b_{1}=b_{2}=\ldots=b_{m} \text { and hence } \\
& \quad b_{1}=\frac{1}{m} \sum_{i=1}^{m} b_{i}=\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n!} c_{j} q_{i}^{(j)}=\sum_{j=1}^{n!} c\left\{\frac{1}{m} \sum_{i=1}^{m} q_{i}(j)\right\} .
\end{aligned}
$$

We define

$$
r_{1}^{(j)}=\frac{1}{m} \sum_{i=1}^{m} q_{i}(j), j=1,2, \ldots, n!.
$$

Now $f_{1}^{(j)}$ is invariant under H, since the $q_{i}^{(j)}$ are permuted by the elements of H. Hence the $f_{1}^{(j)}$ belong to B, the fixed field of H. Thus the $f_{i}^{(j)}$ form a generating system for B. If F is properly contained in B, at least one of the $f_{i}^{(j)}$ is not in F. (7.1.5)

$$
f_{1}(a)=\sum_{j=1}^{n l} a^{j-1} f_{1}(j)
$$

where a is a parameter. Since the $f_{1}^{(j)}$ are invariant under the permutations of H, then $f_{1}(a)$ is invarient under H. Now using (7.1.5), instead of (7.1.2), we form the induced equation $\Phi(y, a)=0$, as in (7.1.4):

$$
\Phi(y, a)=\prod_{i=1}^{K}\left[y-f_{i}(a)\right]
$$

where $f_{i}(a)=s_{i}\left[f_{1}(a)\right]=\sum_{j}^{n / a j-1}\left\{s_{i}\left[f_{1}(j)\right]\right\}, s_{i} \in S_{n}$. The induced equation now depends upon the parameter a. If we choose $[c(n!-1)+1]$ distinct values of a in F, we have $[o(n!-1)+1]$ induced equations, one for each value of the parameter if each of these induced equations has a root in F, then one of the $f_{i}(a)$ must belong to F for at least n ! distinct values of a in F. If we denote these values of a by $a_{t}, t=1,2, \ldots, n$, and the corresponding values of $f_{1}(a)$ by d_{t}, we have, from (7.1.5), the system of equations (7.1.6) $\sum_{j=1}^{n_{i}^{l}} a_{t}^{j-1} f_{i}^{(j)}=a_{t},(t=1,2, \ldots, n)$.
Gramer's rule gives each of the $f_{i}(j)$ in F, since the coefficients of (7.1.6) are in F, and the determinant of the coefficients of the $f_{i}^{(j)}$ is the Vandermonde determinant, and hence non-vanishing. But if $H \subset G, B \supset F$, and at least one $f_{i}^{(j)}$ is not in F. Therefore if $G \subset G$ there are only a finite number of values of a such that $\Phi(y, a)=0$ has roots in F. Also, any such equation having roots in F will have only multiple roots in F by Theorem 7.1.2. Now, if $G \subseteq H$, at least one $f_{i}(a)$ will be in F for every value of a in F, by Theorem 7.1.2. If $f_{u}(a)=f_{v}(a)$ for n ! distinct values of a, we will have the system of equations

$$
\sum_{j=1}^{n!} a_{t}^{j-1}\left[f_{u}(j)-f_{v}^{(j)}\right]=0, t=1,2, \ldots, n!
$$

Since, as before, the Vandermonde determinant is not equal to zero, we have $f_{u}^{(j)}=f_{v}^{(j)}, j=1,2, \ldots, n!$. But this implies that s_{u} and s_{v} belong to the same coset of H in S_{n},
and even in H the hypothesis (compare with the discussion following equation (7.1.3)) that ${\underset{u}{u}}_{H}^{f} \neq \mathrm{s}_{\mathrm{V}} \mathrm{H}$. Thus no two $f_{i}(a)$ can be equal for more than $(n!-1)$ distinct values of a. Therefore, there are only a finite number of a in F such that $\Phi(y, a)=0$ has multiple roots in F. Hence by a suitable choice of a, it will be possible in every case to apply Theorem 7.1.2. This proves the following theorem. THEOREM 7.1.3: For any given polynomial equation and an arbitrary group H, which is a subgroup of the symmetric group S_{n} of degree n, it is possible to obtain after a finite number of steps an induced equation which has either no roots in F or has_non-repeated roots in F.

By using Theorem 7.1.2 we have a means for sifting the possible choices of H for a given equation. If, for a given $H, G C H$, but G is contained in no subgroup of H, then $G=H$. If G is in no subgroup of the symmetric group of degree n, then G is the symmetric group of degree n. 7.2_An_Example of the Method of 7.l.

As an illustration of Theorem 7.1.3 we consider the polynomial

$$
p(x)=x^{3}-a_{1} x^{2}+a_{2}-a_{1}=x^{3}-x^{2}+x-1=0
$$

Now $q_{1}=x_{1}^{2} x_{2}(c f .(7.1 .1)) . \operatorname{Let} H_{1}$ be (1)(2)(3), (123), (132). Then by applying each permutation of H_{1} in turn to q_{1} we get $f_{1}=x_{1}^{2} x_{2}+x_{2}^{2} x_{3}+x_{3}^{2} x_{1}$. Now apply the permutation (12), which is not in H_{1}, to each element of f_{1}. Phus we get $f_{2}=x_{2}^{2} x_{1}+x_{1}^{2} x_{3}+x_{3}^{2} x_{1}$. Replace x_{i} by α_{i}. our
induced equation is

$$
\begin{aligned}
\Phi(y) & =\left(y-f_{1}\right)\left(y-f_{2}\right) \\
& =y^{2}-\left(a_{1} a_{2}-3 a_{3}\right) y+\left(a_{2}^{3}+a_{1}^{3} a_{3}+9 a_{3}^{2}-6 a_{1} a_{2} a_{3}\right) \\
& =y^{2}+2 y+5=0 .
\end{aligned}
$$

But this equation has no roots in F, thus G is not contained in H_{1}

$$
\text { Next, let } \begin{aligned}
\mathrm{H}_{2} & =(1)(2)(3),(13) . \text { Then we get } \\
\mathrm{f}_{1} & =\mathrm{x}_{1}^{2} \mathrm{x}_{2}+\mathrm{x}_{3}^{2} \mathrm{x}_{2} \\
\mathrm{f}_{2} & =\mathrm{x}_{2}^{2} \mathrm{x}_{1}+\mathrm{x}_{3}^{2} \mathrm{x}_{1} \\
\mathrm{f}_{3} & =\mathrm{x}_{1}^{2} \mathrm{x}_{2}+\mathrm{x}_{2}^{2} \mathrm{x}_{3}
\end{aligned}
$$

Replace x_{i} by α_{i}. Now

$$
\begin{aligned}
\Phi\left(y_{1}\right) & =y_{1}^{3}-\left(f_{1}+f_{2}+f_{3}\right) y_{1}^{2}+\left(f_{1} f_{2}+f_{2} f_{3}+f_{3} f_{1}\right) y_{1}-f_{1} f_{2} f_{3} \\
& =y_{1}^{3}+2 y_{1}^{2}
\end{aligned}
$$

after simplification. Since this equation has a multiple root in F, no conclusions can be drawn.

$$
\begin{aligned}
& \text { Let us consider } \mathrm{H}_{3}=(1)(2)(3) \text {, (12). Then we get } \\
& f_{1}=x_{1}^{2} x_{2}+x_{2}^{2} x_{1} \\
& f_{2}=x_{3}^{2} x_{1}+x_{2}^{2} x_{3} \\
& f_{3}=x_{1}^{2} x_{3}+x_{3}^{2} x_{1} .
\end{aligned}
$$

Replacing x_{i} by α_{i},

$$
\begin{aligned}
\Phi\left(y_{2}\right) & =y_{2}^{3}-\left(f_{1}+f_{2}+f_{3}\right) y_{2}^{2}+\left(f_{1} f_{2}+f_{2} f_{3}+f_{3} f_{1}\right) y_{2}-f_{1} f_{2} f_{3} \\
& =y_{2}^{3}+2 y_{2}^{2}+2 y_{2}
\end{aligned}
$$

after simplification. This equation has a non-repeated root in F. But H_{3} has no proper suberoups. Therefore H_{3} is the Galois group of our equation.

Galois fields

8.1 Further Discussion of Finite Fields.

We will discuss further some general properties of finite fields (cf. 3.2) with particular attention to the cyclotomic polynomial. It was shown in Lemma 2.2.2 that if $F(x)$ and $P(x)$ are relatively prime polymomials over a field K, there exist polynomials $A(x)$ and $B(x)$ such that

$$
A(x) P(x)+B(x) P(x)=1
$$

This holds, in particular, for a Galois field G.F. (p^{n}), i.e. a finite field of characteristic p containing p^{n} elements. When $n=1$ this means

$$
A(x) F(x)+B(x) P(x) \equiv I(\bmod p)
$$

which can also be expressed in the form

$$
A(x) F(x) \equiv 1[\bmod p, P(x)]
$$

Definition: A polynomial $F(x)$ of degree m belongIng to and irreducible in the G.F. (p^{n}) will be denoted by I. G. (m, p^{n}).

THEOREM_8.1.1: Every I.Q. (m, $\left.\mathrm{p}^{\mathrm{n}}\right)$ divides .

$$
x^{p^{n m}}-x
$$

Proof: Upon dividing any polynomial $G(x)$ belonging to the G.F. $\left(p^{I}\right)$ by $F(x)$ we obtain a remainder of the form

$$
a_{0}+a_{1} x+\ldots+a_{m-1} x^{m-1}
$$

where the a^{\prime} s are elements of the G.F. (p^{n}). We denote the $p^{n m}$ distinct residues of the above form by (8.1.1)

$$
Y_{i}, i=0,1, \ldots, p^{n m}-1
$$

and in particular, by Y_{0}, the residue 0 . Consider the products by a fix:d residue $Y_{j} \neq Y_{o}$,
(8.1.2) $\quad Y_{j} Y_{i}\left(i=1, \ldots, p^{n m}-1\right)$.

If $Y_{j} Y_{i} \equiv Y_{j} Y_{k}[\bmod F(x)]$, then $Y_{j}\left(Y_{i}-Y_{k}\right) \equiv O[\bmod F(x)]$. By Theorem 2.2.5 $Y_{i}=Y_{k}$, and nence the products (8.1.2) are all distinct and different from Y_{0}. Thus the residues obtained on dividing them by $F(x)$ must coincide, apart from their order, with the non-zero residues in (8.1.1). We form the products of the non-zero residues in (8.1.1) and - (8.1.2),

$$
\prod_{i=1}^{n m}\left(Y_{j} Y_{i}\right) \equiv \prod_{i=1}^{n m} Y_{i}[\bmod F(x)]
$$

Since $\prod_{i=1}^{p_{i}^{n m} Y_{i}} \neq 0[\bmod F(x)]$, by Theorem 2.2 .3 we have

$$
\begin{equation*}
Y_{j}^{p^{n n}-1}-1 \equiv 0[\bmod F(x)] \tag{8.1.3}
\end{equation*}
$$

In particular, this is true when Y_{j} is the residue x.
THEOREM_8.1.2: If $f(x)$ 1s_a_polynomial_in G.F. (p^{n})
and t is a non-negative integer,

$$
f\left(x^{p^{n t}}\right)=[f(x)]^{p^{n t}}
$$

Proof: Let

$$
f(x)=c_{0}+c_{1} x+\ldots+c_{k} x^{k}
$$

where the $c^{\prime} s$ belong to the G.F. $\left(p^{n}\right)$. From the Corollary
to Theorem 3.2.5,

$$
\begin{equation*}
c_{i}^{p^{n}}=c_{i}(i=0,1, \ldots, k) \tag{8.1.4}
\end{equation*}
$$

Raising $f(x)$ to the power p, and noting that the multinomial coefficients of those product terms which are not p-th powers are multiples of p, and hence equal to zero, in G.F. (p^{n}), we have

$$
[f(x)]]^{p}=c_{0}^{p}+c_{1}^{p} x^{p}+\cdots+c_{k}^{p} x^{p}
$$

By induction, we obtain

$$
[f(x)]^{p^{s}}=c_{o}^{p^{s}}+c_{1}^{p^{s}} x^{p^{s}}+\ldots+c_{k}^{p^{s}} x^{p^{s}} .
$$

Applying (8.1.4) we get, for $s=n$,

$$
[f(x)]^{p^{n}}=c_{o}+c_{1} x^{p^{n}}+\cdots+c_{k} x^{p^{n}}
$$

Theorem 8.1.2 now follows from a simple induction argument.

$$
\text { THEOREM 8.1.3: An I.Q. }\left(m, p^{n}\right) \text { divides } x^{p^{n t}}-x \text { in }
$$ the field if and only if t is_日_multiple of m.

Proof: If $t=m s$, a multiple of m, it follows directly from Theorem 8.1.1 that if $F(x)$ is an I.Q. $\left(m, p^{n}\right)$, (8.1.5) $x^{p^{n t}}=x^{p^{n m s}}=x^{p^{n m}} p^{n m} \cdots p^{n m} \equiv x[\bmod F(x)]$.

Next, suppose that $t=m s+r$, where $0 \leq r<m$. By (8.1.5),

$$
x^{p^{n t}}-x_{n t}=\left[x^{p^{n m s}}\right] p^{n r}-x \equiv x^{p^{n r}}-x[\bmod F(x)]
$$

Hence if $x^{p^{n t}}-x$ is divisible by $F(x)$ in the G.F. $\left(p^{n}\right)$

$$
\begin{equation*}
x^{p^{n r}} \equiv x[\bmod F(x)] \tag{8.1.6}
\end{equation*}
$$

By $f(x)$ we denote any one of the p^{nm} expressions

$$
c_{o}+c_{1} x+\cdots+c_{m-1} x^{m-1}
$$

where the $c^{\prime} s$ are elements of the G.F. (p^{n}). If (8.1.6) holds, then by Theorem 8.1.2,

$$
[f(x)] p^{n r}=f\left(x^{p^{n r}}\right) \equiv f(x)[\bmod F(x)]
$$

in other words, the equation

$$
(8.1 .7)
$$

$$
\mathrm{Y}^{\mathrm{nr}}-\mathrm{Y} \equiv 0[\bmod F(x)]
$$

has p^{nm} distinct solutions $[\bmod F(x)]$. However, an algebraic equation cannot have more distinct solutions than its degree, (compare with the discussion on pg .14) and hence (8.1.7) is an identity and $r=0$.

$$
\text { THEOREM 8.1.4: If } F(x) \text { is an } I . Q .\left(m, p^{n}\right) \text { and } M(x)
$$ 1s an I.Q. $\left(h, p^{n}\right)$, where k divides m, then the roots_of

(8.1.8)

$$
M(Y) \equiv O[\bmod F(X)]
$$

are

$$
\begin{equation*}
q_{1}, Y_{1}^{p^{n}}, \ldots, q_{1}^{n(n-1)} \tag{8.1.9}
\end{equation*}
$$

where Y_{1} is_any root of (8.1.8) necessarily belonging to a G.F. ($p^{n m}$).

Proof: By Theorem 8.1.2,

$$
\left.M\left(Y p^{n r}\right)=[M(Y)]\right]^{n r} .
$$

Hence if Y_{1} is a root of (8.1.8), so is $Y_{1} p^{n r}$. Since $M(x)$ is an I. G. $\left(\mathrm{h}, \mathrm{p}^{\mathrm{n}}\right)$, we have by Theorem 8.1.1, with $\mathrm{x}=\mathrm{Y}_{1}$,

$$
Y_{1}^{p^{n h}}-Y_{1} \equiv M\left(Y_{1}\right) \cdot Q\left(Y_{1}\right) \equiv 0[\bmod F(x)]
$$

Since m is a multiple of $h(c f .(8.1 .5)$),
(8.1.10)

$$
\mathrm{Y}_{1}^{\mathrm{pm}} \equiv \mathrm{Y}_{1}[\bmod F(x)]
$$

If

$$
\begin{equation*}
\mathrm{Y}_{1}^{\mathrm{p}}{ }^{\mathrm{na}} \equiv \mathrm{Y}_{1}^{\mathrm{p}}{ }^{\mathrm{nb}}[\bmod F(x)] \tag{8.1.11}
\end{equation*}
$$

for $a<b<h$, we would have from (8.1.10), after raising (8.1.11) to the power $\mathrm{p}^{\mathrm{n}(\mathrm{m}-a)}$,

$$
Y_{1}^{\mathrm{p}}{ }^{\mathrm{nm}} \equiv Y_{1} \equiv Y_{1}^{p^{n(m-a+b)}}[\bmod F(x)]
$$

and by Theorem $8.1 .3 \mathrm{~m}-\mathrm{a}+\mathrm{b}$ would be divisible by m . Finally $b-a=0$, so that any two of the roots (8.1.9) are incongruent $\bmod F(x)$.

Corollary: In_a G.F. (phm , $M(Y)$ has the decomposi-
tion

$$
M(Y)=\left(Y-Y_{1}\right)\left(Y-Y p_{1}^{n}\right) \ldots\left(Y-Y p_{1}^{(h-1) n}\right)
$$

In particular (cf. Theorem 2. 3.3 . with x for s), $F(Y)=0$ has_the distinct_roots

$$
x, x^{p^{n}}, \ldots, x^{p^{(m-1) n}}
$$

THEOREM 8.1.5: An I.Q. $\left(\mathrm{m}, \mathrm{p}^{\mathrm{n}}\right)$ remaing irreducible in_the $G \cdot F \cdot\left(p^{n k}\right)$ if k is_prime_to m.

Proof: The roots of an equation $F(Y)=0$ of degree m in a G.F.(p^{n}) are

$$
x, x^{p^{n}}, x^{p^{2 n}}, \ldots, x^{p^{(m-1) n}}
$$

all belonging to the G.F. $\left(\mathrm{p}^{\mathrm{nm}}\right)$. If $F(Y)$ is reducible in the G.F. $\left(p^{k n}\right)$, the root x will satisfy on I.Q. (t, $\left.p^{k n}\right)$, $t<m$, of the form
(8.1.12) $(Y-x)\left(Y-x^{p^{k n}}\right) \ldots\left(Y-x^{\left.p^{k n(t-1)}\right)}=0\right.$.

The constant term of (8.1.12) must be an element of the G.F. (p^{kn}) so that by the Corollary to Theorem 3.2.5

$$
\left[x^{\left.1+p^{k n}+p^{2 k n}+\cdots+p^{(t-1) k n}\right]\left(p^{k n}-1\right)=x^{t k n}-1}=1\right.
$$

in the G.F. (p^{kn}). By Theorem 8.1.3, tk is a multiple of m, and therefore t is a multiple of m which contradicts $t<m$.

THEOREM_8.1.6: An I.Q. (m, p^{n}) decomposes_in the G.F. ($p^{n k}$) into d factors each_of which is_an I.Q.(m/d, $\left.p^{n k}\right)$, where $(m, k)=d$.

Proof: Given $F(x)$, the roots of $F(Y)=0$ in the G.F. (p^{nm}) are

$$
x, x^{p^{n}}, x^{p^{2 n}}, \ldots, x^{x^{(m-1) n}},\left[x^{p^{n m}}=x \text { in the G.F. }\left(p^{n m}\right)\right]
$$

They may be separated into d sets of m / d roots each,

$$
x^{p^{n i}}, x^{n(d+i)}, x^{p^{n(2 d+1)}}, \ldots, x^{\left.p^{n[(m / d-1)+i}\right]}
$$

for $i=0,1, \ldots, d-1$. From Theorem 8.1.2 a symmetric function of the roots in one set is unaltered upon being ralsed to the power $\mathrm{p}^{\text {nd }}$ and therefore belongs to the G.F.($\left.p^{\text {nd }}\right)$. The roots of the general set therefore satisfy an equation

$$
\begin{gathered}
F_{i}(Y)=\left(Y-x^{p^{n i}}\right)\left(Y-x^{p^{n(d+i)}}\right) \ldots=0 . \\
\text { Let } x=\alpha_{1}, x^{n d}=\alpha_{2}, \ldots, x^{p\left(\frac{m-1) d}{d}\right.}=\alpha_{\frac{m}{d}}
\end{gathered}
$$

with coefficients belonging to the G.F.($\left.\mathrm{p}^{\text {d }}\right)$ and thus to the G.F. $\left(\mathrm{p}^{\mathrm{nk}}\right)$. If
$\begin{aligned}(8.1 .13) F_{0}(Y) & =\left(Y-\alpha_{1}\right)\left(Y-\alpha_{2}\right) \ldots\left(Y-\alpha_{m}\right) \\ & =Y^{\frac{m}{\bar{d}}}-a_{1} Y^{\frac{m}{\bar{d}}-1}+\ldots+(-1)^{\frac{m}{d} / a^{m}} \frac{m}{\bar{d}}\end{aligned}$
then

$$
a_{1}=\sum \alpha_{r}, a_{2}=\sum \alpha_{r} \alpha_{s}, \ldots
$$

Let
so that

$$
\begin{aligned}
F_{i}(Y) & =\left(Y-\alpha_{1}^{p^{n i}}\right)\left(Y-\alpha_{2}^{p^{n i}}\right) \ldots\left(Y-\alpha_{\frac{p}{n i}}^{n i}\right) \\
& =Y^{\frac{\bar{d}}{d}}-a_{1}^{(i)} Y^{\frac{m}{d}-1}+\ldots+(-1)^{\frac{m}{d}}{ }_{\frac{m}{d}(i)}^{\frac{m}{d}}
\end{aligned}
$$

$$
a_{1}^{(i)}=\sum \alpha_{r}^{p^{n i}}, a_{2}^{(i)}=\sum_{r}^{p} \alpha_{r}^{n i} \alpha_{s}^{n i}, \ldots
$$

Now

$$
\begin{aligned}
& a_{1}^{(1)}=\sum \alpha_{r}^{p^{n i}}=\left(\sum \alpha_{r}\right)^{n i}=a_{1}^{p^{n i}}, \\
& a_{2}^{(i)}=\sum \alpha_{r}^{p^{n i}} \alpha_{s}^{p^{n i}}=\left(\sum \alpha_{r} \alpha_{s}\right)^{p^{n i}}=a_{2}^{p^{n i}}, \ldots .
\end{aligned}
$$

Thus
(8.1.14) $F_{i}(Y) \equiv Y^{\frac{m}{\bar{d}}}-a_{1}^{p^{n i} Y^{\frac{m}{d}-1}+\ldots+(-1)^{\frac{m}{\bar{d}}} a_{m / d} p^{n i} .}$

We next prove that the $F_{i}(Y)$ are irreducible in the G.F.($p^{n d}$). Suppose on the contrary, that in the latter field

$$
F_{o}(Y)=P_{0}(Y) X_{0}(Y) .
$$

Then

$$
F_{i}(Y)=P_{i}(Y) M_{i}(Y),
$$

each coefficient of $f_{i+1}(Y)$ being the power p^{n} of the corresponding one of $f_{i}(Y)$, and each coefficient of f_{0}
being the power p^{n} of the corresponding one of f_{d-1}. The coefficients of the product $f_{0} f_{1} \ldots f_{d-1}$ are consequently unchanged when we replace the coefficients of each f_{i} by their p^{n}-th powers. Therefore the coefficients of the product $f_{o} f_{1} \ldots f_{d-1}$ are unaltered upon being raised to the power p^{n}. Hence that product belongs to the G.F. $\left(p^{n}\right)$, so that $F(x)$ would be reducible in that field, contrary to our hypothesis. Since the degree, m / d, of $F_{i}(Y)$; an I. Q. $\left(m / d, p^{n d}\right)$, is relgtively prime to $k / d, F_{i}(Y)$, is irreducible in the G.F. ($p^{n k}$) by Theorem 8.1.5. This completes the proof.

8.2_Primitive roots_of Unity.

Let F be a $G . F \cdot(m), m=p^{n}$, and let s be an indeterminate. We consider the field $K=F(s)$, of all rational functions of s with coefficients in F. By the Corollary to Theorem 3.2.5, the non-zero elements of $F=G . F \cdot\left(p^{n}\right)$ form a cyclic group of order $m-1=p^{n}-1$, generated by some element a.

Let q be a prime number. Let e be a primitive q-th root of unity, so that (8.2.1) $\quad e^{q}-1=0$.

Let $K_{q}=K(e)$. If $q=p, x^{p}-1=(x-1)^{p}$, and all the roots of $x^{q}-1=0$ are equal to e. In the following, we consider the case $q \neq p$. Any primitive q-th root e of unity satisfies the cyclotomic equation
$(8.2 .2) C(x)=\left(x^{q}-1\right) /(x-1)=x^{q-1}+x^{q-2}+\ldots+1=0$.

The remaining roots of (8.2.2) are $e^{2}, e^{3}, \ldots, e^{q-1}$.
THEOREM_8.2:1: All_the_primitive q-th roots of unity belong to K if and_only_if $q \neq p$ is_a divisor_of $m-1=p^{\mathrm{n}}-1$.

Proof: The problem of determining the primitive q-th roots of unity in K is equivalent to that of determining the reducibility of $\mathrm{C}(\mathrm{x})$ in K. Consider any polynomial $f(x)$ whose coefficients lie in F and hence in K also. Suppose we have a decomposition of $f(x)$ into irreducible factors in F. Then, a further decomposition of $f(x)$ in K is not possible. For if $Q(x)$, with coefficients in F is irreducible in F, while $Q(x)=Q_{1}(x) Q_{2}(x)$ in K, then at least one of the factors $\varepsilon_{1}(x), Q_{2}(x)$ must contain s. But then their product $\varepsilon_{1}(x) \varepsilon_{2}(x)$ contains s. Thus all the questions relative to the reducibility of $f(x)$ in K reduce to those in F.

Now, $f(x)$ is completely reducible in F (and hence also in K) if and only if one (and hence every) primitive q-th root of unity e exists in F.

We determine the condition under which (8.2.1) has a root $e \neq 1$ in F. Now $x=a^{t}$ is a solution of $x^{q}-1$ $=0$, if and only if $a^{t q}=1$, i.e., $t q \equiv 0(\bmod m-1)$. If $(q, m-1)=1$, then $t \equiv O(\bmod m-1)$ is the only solution of this congruence, and accordingly $x=1$ is the only root of (8.2.1). On the other hand, if $(q, m-1)=q$, the congruence has a non-trivial solution $t \equiv 0(\bmod m-1 / q)$, and we can
take $x=a^{m-1 / q}$ as a primitive root of (8.2.1). This proves Theorem 8.2.1.

In general, the question of the reducibility of . $C(x)$ is answered by the following theorem.

THEOREM 8.2.2: If k is the smallest exponent for which $\mathrm{m}^{\mathrm{k}} \equiv 1(\bmod \mathrm{q})$, then $C(x)$ in (8.2.2) decomposes in $F=G . F \cdot(m)$ (and hence in K also) into irreducible_factors of degree k.

Proof: Let

(8.2.3)

$$
\begin{aligned}
f(x) & =x^{k}-a_{1} x^{k-1}+\ldots+(-1)^{k_{a_{k}}} \\
& =\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{k}\right)
\end{aligned}
$$

be any polynomial with coefficients in F. As in (8.1.13) and (8.1.14)

$$
\begin{aligned}
f^{*}(x) & =\left(x-\alpha_{1}^{m^{t}}\right)\left(x-\alpha_{2}^{m^{t}}\right) \ldots\left(x-\alpha_{k}^{m^{t}}\right) \\
& =x^{k}-a^{m^{t}}{ }^{t} x^{k-1}+\ldots+(-1)^{k_{\varepsilon} m^{t}} .
\end{aligned}
$$

$=x^{k}-a^{m^{t}} x^{k-1}+\ldots+(-1)^{k_{\varepsilon_{k}}{ }_{k}^{t}}$.
As in (0.1.4) $c^{m^{t}}=c^{p^{t}}=$ c for every element c in F. In particular, $a_{1}^{m^{t}}=a_{1}, a_{2}^{m^{t}}=a_{2}, \ldots$ and hence (8.2.4) $\quad f^{*}(x)=f(x)$.

Thus if α is any root of $f(x)=0$, then $\alpha^{m}, \alpha^{m^{2}}, \ldots$ are also roots. Let $f(x)$ be an irreducible factor of $C(x)$. If $c \neq 1$ is a root of $f(x)$, then e is automatically a primitive q-th root of unity, and, from (8.2.4), $e^{m}, e^{m^{2}}$, \ldots... are also roots of $f(x)$. Since $f(x)$ has degree $\leqslant q-1$, $f(x)$ has at most $q-1$ roots. If the residues $m, m^{2}, \ldots, m^{q-1}$ $\equiv 1(\bmod q)$ are all distinct, $e^{m}, e^{m^{2}}, \ldots, e^{m^{q-1}}=$ e are $q-1$
distinct primitive q-th roots of unity which are also roots of $f(x)$. Hence $f(x)$ is divisible by the linear factors corresponding to all the primitive q-th roots of unity. Thus $f(x)=C(x)$, that is, $C(x)$ is irreducible.

However, if $k<q-1$ is the least integer, for which

$$
\mathrm{m}^{\mathrm{k}} \equiv 1(\bmod \mathrm{q})
$$

then $f(x)$ is divisible by the product

$$
\begin{aligned}
f_{1}(x) & =(x-e)\left(x-e^{m}\right) \ldots\left(x-e^{m^{k-1}}\right) \\
& =x^{k}-b_{1} x^{k-1}+\ldots+(-1)^{k_{b}} k_{k} \text { say }
\end{aligned}
$$

Since the b^{\prime} s are elementary symmetric functions of the roots,

$$
\begin{aligned}
b_{i}^{m} & =\left[b_{i}\left(e, e^{m}, e^{m}, \ldots, e^{m}\right)\right]^{m-1} \\
& =b_{i}\left(e^{m}, e^{m}, \ldots, e\right) \\
& =b_{i}\left(e, e^{m}, e^{m}, \ldots, e^{m}\right) \\
& =b_{i}
\end{aligned}
$$

Thus the b_{i} are all roots of the equation

$$
Y^{m}-Y=0 .
$$

Every element of F satisfies this equation and the $m=p^{n}$ elements of F are its only roots, since an equation of degree m cannot have more than m roots. Thus every b_{i} is an element of F. Since $f_{1}(x)$ is a factor of the irreducible polynomial $f(x)$, we have

$$
f_{1}(x)=f(x)
$$

Thus every irreducible factor of $f(x)$ is of degree k, and so k is a divisor of $q-1$, say $k h=q-1$. All the primitive
roots of unity can be arranged in h rows; each contãining k conjugate roots:

$$
\begin{aligned}
& e_{1}, e_{1}^{m}, \ldots, e_{1}^{m_{1}^{k-1}} \\
& \ldots \ldots \ldots, \ldots e_{h}^{m_{h}^{k-1}} .
\end{aligned}
$$

This proves Theorem 8.2.2.
Let $(r, p)=1$. To K adjoin an r-th root of unity, e_{r}, and let $K_{r}=K\left(e_{r}\right)$. Thus e_{r} satisfies the equation $X^{r}-1$ $=0$. Let

$$
c_{r}(x)=x^{r-1}+x^{r-2}+\ldots+1
$$

THEOREM B.2.3: If $\mathrm{F}=\mathrm{G} . \mathrm{F} .\left(\mathrm{p}^{\mathrm{n}}\right)$, then $\mathrm{C}_{\mathrm{r}}(\mathrm{x})$ factors in F (and also in $K=F(s)$) into_irreducible_factors of degree k, where k is_the least positive_integer for which (8.2.5)

$$
m^{k} \equiv 1(\bmod r)
$$

Proof: Let

$$
f(x)=x^{h}+a_{1} x^{h-1}+\cdots+a_{h}
$$

be an irreducible factor of $C_{r}(x)$ in F and let e_{r} be any root of $f(x)=0$. After raising $f(x)$ to the power m^{t}, we have (cf.(8.1.4))

$$
[f(x)]^{m^{t}}=x^{n m^{t}}+a_{1} x^{(h-1) m^{t}}+\cdots+a_{n}
$$

 also as roots of $f(x)=0$. Thus $f(x)$ is divisible by the product

$$
g(x)=\left(x-e_{r}\right)\left(x-e_{r}^{m}\right) \ldots\left(x-e_{r}^{\frac{m-1}{m}}\right)
$$

The $e_{r}, e_{r}^{m}, e_{r}^{m^{2}}, \ldots, e_{r}^{m^{k-1}}$ are distinct primitive r-th 'roots of unity. Letting

$$
g(x)=x^{k}+a_{1} x^{k-1}+\ldots+a_{k}
$$

it follows that the a's are symmetric functions of $e_{r}, e_{r}^{m}, \ldots, e_{r}^{m}$, and hence

$$
\begin{aligned}
a_{i}^{m} & =\left[a_{i}\left(e_{r}, e_{r}^{m}, \ldots, e_{r}^{m^{k-1}}\right)\right]^{m} \\
& =a_{i}\left(e_{r}^{m}, e_{r}^{m^{2}}, \ldots, e_{r}\right) \\
& =a_{i}\left(e_{r}, e_{r}^{m}, \ldots, e_{r}^{m^{k-1}}\right)=a_{i}
\end{aligned}
$$

Thus the a_{i} is a root of the equation

$$
\mathrm{Y}^{\mathrm{m}}=\mathrm{Y}
$$

of degree m whose roots are precisely the m elements of F. Thus the $a^{\prime} s$ belong to F and, consequently, $g(x)=f(x)$. Therefore $h=k$, and the theorem is proved.

CHAPTER IX

A CRITERION FOR SOLVABILITY BY RADICALS

IN A FIELD OF PRIME CHARACTERISTIC ${ }^{1}$
The Galois criterion for solvability by radicals given in Chapter VI is valid for fields of characteristic zero, but not in those of prime characteristic. The criterion which we now consider is valid in any field and emphasizes further the importance of primitive roots of unity and the cyclotomic polynomial in the theory of solvability by radicals.
9.1_Absolutely_Algebraic. ${ }^{\text {Pieldg. }}$

Definition: A field which has no proper subfields is called a prime field P.
P is either isomorphic to the field of rational numbers or to a field of residues(mod p), where p is a prime? When we are considering a simple extension $F(x)$ of a field F, we have two cases to consider. The first corresponds to the assumption that two elements $\sum_{a_{k}} x^{k}$, $\sum_{k} x^{k}$ of $F(x)$ are equal only when for every $k, a_{k}=b_{k}$, while in the second case the two elements may be equal when $a_{k} \neq b_{k}$ for some k. In the first case, the element x_is_called transcendental over F_ while in the second

IR.L.Brewer, Amer. J1. of Math. vol. 63,1941 p.119-126. $_{\text {p. }}$
${ }^{2}$ C.C.Macduffee, An Introduction to Abstract Algebra, p.157.
case it is called algebraic overf(cf. 2.3). When an element α of a field E is algebraic over a subfield F, it is naturally also algebraic over every intermediate field between E and F. In particular, if α is aleebrsic over the prime field P contained in E, then α is algebraic over every subfield of E. Such an element is called absolutely algebraic. Similarly, we call a field absolutely_algebrajc. when it is algebraic over its prime field P, or, in other words, when all its elements are absolutely algebraic.

Definition: The absolute degree_ofarield E is its degree over its prime field P. Thus, if the absolute degree of a field E is m, then $(E / P)=m$.

9.2G-adic Numbers.

Suppose p is any fixed prime number. we consider the absolutely elgebraic fields of prime characteristic p. These include all the finite extensions of P, 1.e., every finite extension of P is an absolutely algebraic field, for example G.F. (p^{n}).

Consider all the prime numbers q_{i} in their natural order:

$$
q_{1}=2, q_{2}=3, q_{3}=5, \ldots
$$

Then every positive integer can be represented as on infinite product

$$
\begin{equation*}
m=\prod_{i=1}^{\infty} q_{i}^{x} \tag{9.2.1}
\end{equation*}
$$

where the exponents x_{1} are positive integers, ond only a

$$
I_{\text {German }}: \text { Grad }=\text { degree }
$$

finite number of them are different from zero. More generally, we now consider, symbolically, all expressions of the form (9.2.1) in which every exponent x_{i} is a fixed non-negative integer, or ∞. We call this expression a G-number.

The class of all G-numbers includes the natural numbers, and in agrement with the laws of integers, we postulate the following laws: Two G-numbers

$$
m=\pi q_{i}{ }^{\mathrm{x}}, \mathrm{n}=\pi q_{i}{ }_{i}
$$

are equal if and only if $x_{i}=y_{i}$ for every i. Also m is divisible by n if and only if for every $i, y_{i} \leqslant x_{i}$. If mis divisible by n, we define the guotient

$$
m / n=\pi q_{i}^{x_{i}-y}
$$

where $x_{i}-y_{i}$ is set equal to zero when $x_{i}=\infty, y_{i}=\infty$, and $x_{i}{ }^{-y_{i}}$ is set equal to ∞ when $x_{i}=\infty$ and y_{i} is finite. Thus all G-numbers are divisible by 1 , and all divide that G-number which has the general exponent $x_{i}=\infty$.

Every(finite or infinite) set of G-numbers has always a ereatest comon divisor d, which contains all the common divisors, and a least common multiple v which is contained in all the common multiples. The exponent of q_{i} in d is the same as the least exponent of q_{i} which occurs in any G-number of the set, and the exponent of q_{i} in ∇, is the same as the greatest of these exponents. Now, in case the latter does not exist(consider, for example,
the set of pasitive even integers), the exponent of q_{i} is taken to be ∞.

If m is any G-number, then the set S of natural numbers which are contained in m have the following properties:
(1) If n is a number of S, then every divisor of n belongs to S.
(2) If n_{1}, n_{2} are numbers of S, then their least common multiple is also a number in S.

Thus in every case, the G-number m is the least coman multiple of all the numbers of S, and is therefore entirely determined by the system S. Conversely, if any system S of natural numbers has the properties (1) and (2), above, and if m is the least common multiple of all the numbers of S, then S is the set of positive integers which are contained in m.

Now let E be any absolutely algebraic field of characteristic p. The degree of ony finite field which is contained in E belongs to a system S of natural numbers which has the properties (1) and (2) above. Let m be the least common multiple of the numbers of S. If mis a natural number, then E is a finite field of degree m. Conversely, if E is a finite field, then S represents the set of degrees of the subfields of E. We shall denote by m the absolute degree of E in cases where E is not finite and m is not a natural number. Thus every absolutely alge-
graic field Eof characteristic_g has a determined degree m which is a G-number, and which is called the absolute degree of E.

We shall denote by $A(p, n)$ the absolutely algebraic field of prime characteristic p and absolute degree n. Thus when n is finite $A(p, n)=G . F \cdot\left(p^{n}\right)$, is the Galois field containing p^{n} elements.

THEORGM 9.2.1: An irreducible polynouial $F(x)$ of degree m in the $A(p, n)$ factors in the $A(p, n k)$ into distinct irreducible factors_each of degree m / d where $(m, k)=d$.

Proof: The coefficients of $F(X)$ are all algebraic over the prime field $P=G . F \cdot(p)$, and hence they belong to some G.F. (p^{h}), where h is a divisor of n. Since dis a divisor of $k, G . F .\left(p^{h d}\right) \subseteq A(p, n k)$. By Theorem 8.1.6 $F(x)$ factors in the G.F.($p^{h d}$) into distinct irreducible factors
(9.2.1) $\quad F(x)=F_{0}(x) F_{1}(x) \ldots F_{d-1}(x)$
each of degree m / d. We wish to show that these are the irreducible factors of $F(x)$ in the $A(p, n k)$. Let
(9.2.2) $\quad \dot{F}(x)=f_{0}(x) f_{1}(x) \ldots f_{s-1}(x)$
where the $f_{i}(x)$ are irreducible in the $A(p, n k)$. The coefficients of the $f_{i}(x)$ belong to some $G \cdot F \cdot\left(p^{c}\right) \subseteq A(p, n k)$. Thus c is a divisor of $n k$. Let $c=a b$, where a is a divisor of n and b is \dot{a} divisor of k; let $v_{1} h$ be the l.c.m. of a and h, and let $\nabla_{2} d$ be the l.c.m. of b and d. Since n is a common multiple of a and $h, v_{1} h$ divides n. Since k is
a common multiple of b and $d, v_{2} d$ divides k. Thus

$$
\text { G.F. }\left(p^{c}\right)=G \cdot F \cdot\left(p^{g b}\right) \subseteq G \cdot F \cdot\left(p_{1} h v_{2} d\right) \subseteq A(p, n k) .
$$

Therefore G.F. (p^{h}) and G.F. ($p^{h v_{1}}$) are subfields of $A(p, n)$, $F(x)$ is irreducible in these fields, and by Theorem 8.1.6 $\left(v_{1}, m\right)=1$. Since v_{2} is a fsctor of k / d, and $(k / d, m)=1$, $\left(\mathrm{v}_{2}, \mathrm{~m}\right)=1$. Finally, $\left(\mathrm{v}_{1} \mathrm{v}_{2}, \mathrm{~m}\right)=1$. Applying Theorem 8.1.5, to the $F_{i}(x)$ in (9.2.1) which are irreducible in the G.F. ($p^{d h}$), we conclude that they are irreducible in the G.F. $\left(p^{d h v_{1}} V_{2}\right)$. Thus $F(x)$ has at most d distinct irreducible factors in the subfield G.F. (p^{c}) of G.F. ($p^{d h} \nabla_{1} \nabla_{2}$). Thus the factorization (9.2.2) in the $\hat{A}(p, n k)$ is the same as the factorization (9.2.1) in the G.F. (p^{dh}).
9.3 The Solvability_Criterion.

We shall first prove that the set of all absolutely algebraic elements of a field E of prime characteristic is an absolutely algebraic field. Let G.F.(p) $=P$, and let α and β be eny two absolutely aleebraic elements of E. Now $1 / \alpha$ and $\alpha \beta$ belong to the finite extension $P(\alpha, \beta)$ of P, and hence $1 / \alpha$ and $\alpha \beta$ satisfy equations(of decrees $(P(\alpha, \beta): P))$ with coefficients in P. Thus $1 / \alpha$ and $\alpha \beta$ are absolutely algebraic(cf. Theorem 1.2.2, and p.12).

Definition: The field of all absolutely algebraic elements of a field F of prime characteristic p is called the maximal absolutely algebraic subfield of F and will be denoted by M.A. (p, m), where m is its absolutedegree.

Definition: The number of residue classes prime to
n is denoted by $\phi(n)$ and is called the euler ϕ-function ${ }^{1}$.
Let $\phi(n)=k$, and let r_{1}, \ldots, r_{k} be the set of distinct residues prime to n. If $(p, n)=1$, then $\left(p r_{i}, n\right)=1$. Since $\mathrm{pr}_{i} \not \equiv \mathrm{pr} \mathrm{f}_{\mathrm{j}}(\bmod n)$, if $\mathrm{r}_{i} \not \equiv \mathrm{r}_{\mathrm{j}}(\bmod n)$, then $p r_{1}, \ldots, p r_{k}$ is also a set of distinct residues prime to n. Hence
$\pi\left(\mathrm{pr}_{i}\right) \equiv \pi r_{i}(\bmod n)$ from which we get
(9.3.1) $\quad p^{\phi}(n) \equiv I(\bmod n) \quad$ (Euler's Theorem).

If $n \equiv 0(\bmod p)$, say $n=p q$, then

$$
x^{n}-1=\left(x^{q}\right)^{p}-1=\left(x^{q}-1\right)^{p}
$$

(as in the discussion in Theorem 4.4.1) and no root of unity has an order greater than q. In particular, there_are_no primitive n-th roots of unity.

If $n \not \equiv O(\bmod p)$ the polynomial $x^{n}-1$ is separable, since the only root of its formal derivative function $n x^{n-1}$ is $x=0(c f$. Theorem 3.2.12); consequently, as in the introductory remarks in 4.2 , there exists a primitive n-th root of unity e, and $e, e^{2}, e^{3}, \ldots, e^{n-1}, e^{n}=1$, are the n distinct $n-t h$ roots of unity.

- Let e^{k} have the order $r, r \leqslant n$, so that r is the least integer for which $e^{k r}=1$. Since e has order $n, n / k r$ by Lemma 3.2.1. Thus $r=n$ if and only if $(k, n)=1$. Hence the cyclotomic polynomial

$$
c_{n}(x)=x^{n-1}+x^{n-2}+\cdots+1
$$

has precisely $\phi(n)$ distinct primitive $n-t h$ roots of unity, if n_is_not a multiple_of p.
${ }^{1}$ Cf. MadDuffee, Intro. to Abstract Alg., p.32-35.

We shall assume in the following discussion that n is not a multiple of p, and we shall denote by E_{n} the splitting field of $C_{n}(x)$ over F.

THEOREM 9.2.2: Let F be a field_of chargcteristic p gnd let $F \geq$ M.A. (p, m). Let $n \neq 0(\bmod p)$. Then

$$
c_{n}(x)=x^{n-1}+x^{n-2}+\ldots+1
$$

factors in F into $\phi(n) / a$ distinct irreduciblelseparablel factors_each of degree a, where $(\phi(n), m)=d$ and a is the least exponent for which $p^{d a} \equiv 1(\bmod n)$. Further_the Galois_group of $C_{n}(x)$ over F is cyclic of order a.

Proof: Since d is a divisor of m, the G.F. $\left(p^{d}\right) \subseteq$ $A(p, m)$. By Theorem B. $2.3, C_{n}(x)$ factors in the G.F. $\left(p^{d}\right)$ into irreducible factors of degree a. Letting $\phi(n)=d r$ and $m=d k$, we have $(r, k)=1$. By (9.3.1) $p^{\phi(n)}=p^{d r} \equiv$ $1(\bmod n)$, and since a is the least integer for which $\mathbf{p}^{\mathrm{da}} \equiv 1(\bmod \mathrm{n})$, we have a|r. Thus $(a, k)=1$. By Theorem 9.2.1, the irreducible factors of degree a of $C_{n}(x)$ in the G.F. $\left(p^{d}\right)=A(p, d)$ remain irreducible in the $A(p, k d)=A(p, m)$. Now these are the irreducible factors of $C_{n}(x)$ in F, since the coefficients of the irreducible factors of $C_{n}(x)$ in F are symetric functions of certain of the primitive n-th roots of unity(which are themselves absolutely algebraic) and hence elements of the $A(p, m) \subseteq F$. Since the Galois group H of $C_{n}(x)$ relative to the G.F. (p^{d}) is cyclic(cf. the discussion in Theorem 4.2.1) and of order a, and the common degree of the irreducible factors of $C_{n}(x)$ in F is a, it
follows from the properties of the cyclotomic polymial that H is the Galois eroup of $C_{n}(x)$ relative to F, which proves the theorem.

From Theorem 9.2.2 we have the following:
Corollary: Let F be a field of grime characteristic $p, A_{F}=A(p, m) \leq F \cdot$ Then $C_{n}(x), n \neq 0(\bmod p)$, is irreducible_in F, if_snd_only_if $(\phi(n), m)=1$, and $\phi(n)$ is the least exponent for which $p \phi(n) \equiv 1(\bmod n)$.

THEOREM 9.2.3: Let F be field of prime_characteristic p, and_let m be_composite, $p \not \mathcal{m}_{\mathrm{m}}$. Then $F \subseteq E_{d} \subseteq E_{n}$ $\left(E_{n}\right.$ is the splitting fieldof $\left.{ }^{\circ} c_{n}(x)\right)$, where d is a divigor of n. Moreover, if $d={ }_{q_{1}} q_{2} \cdots q_{r}$ is the productof distinct primes then $\left(E_{n} / E_{d}\right) \mid n$.

Proof: Let $n=k d$. Now any root of $C_{d}(x)$ is a root $\neq 1$ of $x^{d}-1=0$, and hence of $x^{d k}-1=0$, and finally, of $C_{d k}(x)=C_{n}(x)$. Hence $F \subseteq E_{d} \subseteq E_{n^{\prime}}$

Let $A_{F}=A(p, m)$. If $n=p_{1}^{r_{1}} \ldots p_{r}^{r_{r}}$ then

$$
\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{r}}\right)
$$

from which it follows that $\phi(d) \mid \phi(n)$ whenever $d \mid n$. Since $\phi(d) \mid \phi(n)$, it follows from Theorem 9.2 .2 that $(E / F)=a$ where a is the least exponent for which $p^{d a} \equiv 1(\bmod d)$ and $d=(\phi(n), m)$. Now if a and b are reletively prime positive integers such that $a \equiv 1(\bmod b)$, then $a^{b^{s-1}} \equiv 1\left(\bmod b^{s}\right)$, for any positive integer s. Thus it follows that
$1_{\text {See MacDuffee, }}$ Intro. to Abstract Alg. p. 23.

$$
\left(p^{d}\right)^{e(n / d)} \equiv 1(\bmod n) .
$$

Therefore, if

$$
\mathrm{n}=\mathrm{q}_{1}^{\mathbf{k}_{1}}{ }_{\mathrm{q}_{2}}^{k_{2}} \cdots{ }^{k_{r}} \mathrm{k}_{\mathrm{r}},
$$

the exponent to which p^{d} belongs $(\bmod n)$ is $e q_{1}{ }^{1} \cdots q_{r}{ }_{r}$. where $0 \leq s_{i} \leq k_{i}(i=1,2, \ldots, r)$. Thus from Theorem 9.2.2
 divisor of n.
9.3. Solvability by Radicals.

Both the fact that primitive n-th roots of unity exist and the fact that $C_{n}(x)$ is solvable by radicals over a field of characteristic zero for every positive integer n is made use of in the Galois criterion(cf. p.75). However, primitive roots of unity do not exist over a field F of prime characteristic p if $n \equiv O(\bmod p)$, and if $\mathrm{n} \neq \mathrm{O}(\bmod \mathrm{p}), \mathrm{C}_{\mathrm{n}}(\mathrm{x})$ may not be solvable by radicals. The recognition of these facts leads to the criterion of Theorem 9.3.1 for solvability by radicals over any field. In the following we let E be a normal extension of F. By Theorem 3.4.3 E is the splitting field of a separable polynomial $f(x)$ in F.

Let K be any extension of F and let N be the splitting field of $f(x)$ in K. The root field N is independent of the particular choice of $f(x)$, and is uniquely deterained by F, E, and K. We shall denote it by $N=\{E, K\}$. Now $E \subseteq\{E, K\}$, and $K \leq\{E, K\}$. Finally, M will denote the
maximal separable extension of F contained in E. As usual, G is the group of E over F, and G is isomorphic to the group of M over F, so that ${ }^{1}(M: F)=n$.

THEOREM 9.3.1: Let $f(x)$ be_a polynomigl_in_a_ield F, and let n be the order of the Galois group of $f(x)$ relative to anfield F. Then $f(x)$ is_solvable by_radicals over F if and only if:
(1) G is solvable,
(2) Primitive n-th roots_of unity exist_over F,
(3) $C_{n}(x)$ is_solvable by redicals_over F.

Proof: Sufficiency: Suppose (1), (2), (3) hold.
From (2) there exists a chain of fields

$$
\mathrm{F} \subset \mathrm{~F}_{1} \subset \ldots \subset \mathrm{~F}_{\mathrm{r}}, \mathrm{~F}_{\mathrm{r}} \supseteq \mathrm{E}_{\mathrm{n}}
$$

where each F_{j} is pure and of prime degree over F_{j-1}. From (1), H is solvable and hence there exists a chain of fields

$$
F_{r} \subseteq F_{r+1} \subseteq \ldots \subseteq F_{r+S}=\left\{M_{r}, F_{r}\right\}, F_{r+S} \geq M
$$

where each F_{r+1} is normal and of prime degree q_{i} over F_{r+i-1}. Since $F_{r} \supseteq E_{n}$, and $n \equiv O\left(\bmod q_{i}\right)$ it follows that $F_{r} \geq E_{q_{i}}$ and hence F_{r+i} is pure over $F_{r+i-1},(i=1,2, \ldots, s)$. If $M=E$ then $f(x)$ is solvable by radicals over F : If $M \neq E$, then F is of prime characteristic p, and there exists a chain of fields

$$
M=K \subset K_{1} \subset \ldots \subset K_{V}=E
$$

where $K_{j}=K_{j-1}\left(\alpha_{i}\right), \alpha_{i}$ being a root of an irreducible 1B.L.van der faerden, Noderne Algebra, vol.l, sec. ed. Berlin, Julius Springer, 1937, p.125-129.
binomial $x^{p}-a_{j}, a_{j}$ in K_{j-1}. Let $K=F_{r+s}, K_{1}=K\left(\alpha_{1}\right)$, $\ldots, K_{j}=K_{j-1}\left(\alpha_{j}\right)$. Then either $K_{j}=K_{j-1}$ or K_{j} is pure and of prime degree p over $K_{j-1},(j=1,2, \ldots, v)$. Therefore there exists a chain of fields
$F \subset F_{1} \subset \ldots \subset F_{r} \subset F_{r+1} \subset \ldots \subset F_{r_{+S}} \subset F_{r+S+1} \subset \ldots \subset F_{r+s+t}$,
where $F_{r+S+t} \geqslant E$ where each F_{i} is pure and of prime degree over $F_{i-1},(i=1,2, \ldots, r+s+t)$. Hence $f(x)$ is solvable by radicals over F.

Necessity: Suppose $f(x)$ is solvable by radicals over F. If $n=1$, it is clear that (1), (2), and (3) hold. Suppose $n \neq 1$, and let p_{1}, \ldots, p_{r} be the distinct prime factors of n. By our assumption, there exists a chain of fields
(9.3.1) $\mathrm{F} \subset \mathrm{F}_{1} \subset \ldots \subset \mathrm{~F}_{\mathrm{S}}, \mathrm{F}_{\mathrm{S}} \geq \mathrm{E}$,
where $F_{i}=F_{i-1}\left(\beta_{i}\right), \beta_{i}$ being a root of an irreducible binomial $x^{i}-b_{i}$ of prime degree q_{i} in $F_{i-1},(i=1,2, \ldots, s)$. Let $q_{i_{1}}, q_{i_{2}}, \ldots, q_{i_{g}}$ be those primes found among $q_{1}, q_{2}, \ldots, q_{s}$ whioh are not equal to the characteristic of F. Then if $m=q_{i_{1}} q_{i_{2}} \cdots q_{i_{g}}$, primitive m-th roots of unity exist over F. Now $\mathbb{E}_{\boldsymbol{m}}$ is metacyolic ${ }^{l}$ over F and hence there exists a chain of fields

$$
I_{A} \text { normal field } N \text { over } F \text { is called metacyclic if }
$$ there exists a chain of subfields

$$
F=N_{0}<N_{1} \subset \ldots \subset N_{t}=N
$$

where N_{i} is cyclic of prime degree p_{i} over $N_{i-1},(i=1,$. .., t)

$$
F=K \subset K_{l} \subset \ldots \subset K_{t}=E_{m}
$$

where K_{i} is normal and of prime degree over $K_{i-1},(i=1,2$, $\ldots, t) . \operatorname{Let} L=K_{t}, L_{1}=L(\beta), \ldots, L_{i}=L_{i-1}\left(\beta_{i}\right),(i=1$, $2, \ldots, s)$. Then since $E_{q_{i}} \subseteq K_{t}(j=1,2, \ldots, g)$, it follows from (9.3.1) that either $L_{i}=L_{i-1}$ or L_{i} is pure and of prime degree over $L_{i-1}(i=1,2, \ldots, s)$. Hence there exists a chain of fields

$$
F=K \subset K_{1} \subset \ldots \subset K_{t} \subset K_{t+1} \subset \ldots \subset K_{t+u}, K_{t+u}>m
$$

where each K_{i} is normal and of prime degree over K_{i-1}. Hence H is solvable and likewise G.

If F is of characteristic zero, it is clear that (2) and (3) hold. Suppose F is of characteristic p. Since from (9.3.1) $F_{S} \supseteq E$, there exists for each p_{i}, $(i=1,2, \ldots, r)$ a $q_{j_{i}}=p_{i}$ such that $\left[\left\{M, F_{j_{i}-1}\right\}, F_{j_{i}}\right]=F_{j_{i}}$. Moreover, since M is separable over $F,\left[\left\{M, F{ }_{j-1}\right\}, F_{j_{1}}\right]$ is separable over $F_{j_{i}-1}$, and being pure over $F_{j_{i}-1}$ cannot be of degree p over $F_{j_{1}-1}$. Hence $p_{i} \neq p(i=1, \ldots, r)$, and thus primitive $n-t h$ roots of unity exist over F. Since $F_{j_{i}}=F_{j_{i}-1}\left(\beta_{j_{i}}\right) \subseteq\left\{M, F_{j_{i}-1}\right\}$ and $\left\{M, F_{j_{i}-1}\right\}$ is normal over $F_{j_{i}-1}, \mathbf{x}^{p_{i}-b_{j_{i}}}$ has all of its roots in $\left\{M_{j_{j}} \mathcal{F}_{j_{1}}\right\}$, a subfield of $F_{s}(i=1,2, \ldots, r)$. This implies that $E_{p_{i}} \subset F_{s}$, $(i=1,2, \ldots, r)$, and hence $E_{d} \subseteq F_{s}$, where $d=p_{1} p_{2} \ldots p_{r}$ If $\left\{\mathbb{F}_{\mathrm{n}}, \mathrm{F}_{\mathrm{s}}\right\}=\mathrm{F}_{\mathrm{s}}$, then $\mathrm{C}_{\mathrm{n}}(\mathrm{x})$ is solvable by radicals and
the proof is complete. If $\left\{E_{n}, F\right\} \neq F_{s}$, it follows from Theorem 9.2.3 that $\left[\left\{E_{n}, F_{s}\right\}: F_{s}\right]$ is a divisor of n. Thus, since $\left\{\mathbb{E}_{n}, F_{S}\right\}$ is cyclic over F_{s}, and $E_{p_{i}} \subseteq F_{s}(i=1,2, \ldots, r)$,
there exists a chain of fields

$$
F_{s} \subset F_{s+1} \subset \ldots \subset F_{s+t}=\left\{E_{n}, F_{s}\right\}
$$

where each F_{S+i} is pure and of prime degree over F_{s+i-1}. But $E_{n} \subseteq\left\{E_{n}, F_{s}\right\}$; and hence $C_{n}(x)$ is solvable by radicals over F, and (3) holds. This completes the proof of Theorem 9.3.1.

If F is of characteristic zero, Theorem 9.3.1 is a classical Galois criterion which is equivalent to a num-ber-theoretic condition on the index series of G. If F is of prime characteristic, we will show by means of the next two theorems concerning the cyclotomic polynomial, that the above Theorem 9.3.1 is equivalent to a similar condition. on the index series of G.

THEOREM 9.3.2: If n is composite, $n \neq 0(\bmod p)$, $c_{n}(x)$ is solvable by radicals over F of characteristic p, it and_only_if $C_{d}(x)$ is solvable by radicals_over F for every prime divisor d of n.

Proof: From the definition of solvability by radicals and Theorem 9.2.4 the condition is necessary.

To show that the condition is sufficient, let $p_{1}, p_{2}, \ldots, p_{r}$ be the distinct prime factors of n, and suppose that $C_{p_{i}}(x)$ is solvable by radicals over $F,(i=1,2, \ldots, r)$.

Then there exists a sequence of fields

$$
\mathrm{F} \subset \mathrm{~F}_{1} \subset \mathrm{~F}_{2} \subset \ldots \subset \mathrm{~F}_{\mathrm{S}}
$$

where $F_{s} \supseteq E_{p_{i}}(i=1,2, \ldots, r)$ and where F_{j} is pure and of prime degree over $\mathrm{F}_{\mathrm{j}-1}$. As in Theorem 9.3.1, this implies that $C_{n}(x)$ is solvable by radicals over F.

Let $F \supseteq$ M.A. (p, m). We define a class $C(p, m)$ of primes recursively as follows: Let q be any prime(including l).

1. If $q<p$, then $q \in C(p, m)$,
2. $\mathrm{p} \notin \mathrm{C}(\mathrm{p}, \mathrm{m})$,
3. If $q>p$, let k be the least exponent such that ${ }_{p}(\phi(q), m) \dot{k} \equiv 1(\bmod q)$, and let $k=q_{1}^{v_{1}} q_{q_{2}}^{v_{2}} \ldots q_{s}{ }^{\mathbf{v}_{s}}$. Then $q_{1}<q$, and $q \in C(p, m)$ if and only if $q_{i} \in C(p, m)$.

THEOREM 9.3.3: Let F ? $M . A .(p, m)$ If q is_a_prime $\neq p, c_{q}(x)$ is solvable by_radicals over F, if and only if $q \in C(p, m)$.

Proof: This follows from Theorems 9.2.2, 9.3.1, and 9.3.2.

THEOREM 9.3.4: Let $F \supseteq$ M.A. (p, m). Then $f(x)$ over Fis solvable by radicals if end only if the index series of the Galois group of $f(x)$ relative to F consistsof prime numbers belonging to $C(p, m)$.

Proof: It follows from Theorems 9.3.2, and 9.3 .3 that this result is equivalent to Theorem 9.3.1 when F has prime characteristic.

THEOREM 9.3.5: Let $F \geq$ M.A. (p, m). A neccesgary
and sufficient condition that $C_{n}(x)$ in F whoserootsare the $\phi(n)$ distinct_primitive $n-t h$ roots_of_unity be_solvable by radicalg over F for every $n \not \equiv O(\bmod p)$ is that $p^{\infty} \mid \mathrm{m}$.

Proof: Neoegsity: Suppose $C_{n}(x)$ is solvable by radicals over F for every $n \not \equiv 0(\bmod p)$. Suppose that the exponent d of p in the factorization of m is finite. Let $k=p^{d+1}-1$, so that $(k, p)=1$. Then p is the least exponent such that $p(\phi(k), m) p \equiv 1(\bmod k)$. From Theorems 9.2 .2 and $9.3 .4, C_{n}(x)$ is not solvable by radicals over F. Sufficiency: By Theorems 9.3.2 and 9.3.3, if $p^{\infty} \mid m$, every prime $\neq p$ belongs to the class $C(p, m)$.

Albert, A.A., Modern Higher Algebra. Chicago: University of Chicago Press, 1947.

Artin, E., Galois Theory. Ann Arbor: Edwards Brothers, 1948.

Birkoff, G., and Maclane S., A Survey of Modern_Algebra. New York: Mackillan, 1948.

Brewer, B. W., A Criterion for Solvability by Radicals. American Journal of Mathematics, $\overline{\mathrm{V} .63(1941), ~ p .119-126 . ~}$ Dickson, L.E., Linear_Groups. Leipzig: Teubner, 1901. Jacobson, N., Lectures_in íbstrect_Algebra. New York: Von Nostrand, 1951.

MacDuffee, C.C., An Introduction to Abstract Algebra. New York: Wiley, 1940 .

Rauter, H., HBhere KreiskBrper. Journal flur die reine und angewandte Mathematik, V.159(1928), p.220-227.

Steinitz, E., Algebrajsche Theorie der Korper. New York: Chelsea, 1950 .

Van der Weerden, B.L., ModemeAlgebra. Berlin: Springer, 1937.

Weiss, M.J., Higher Algebra for the Undergraduate. New York: Wiley, 1952 .

Wilson, R.L., A Method for the Determination of the Galois Group. Duke Math. Journal, V.17(1950), p.403-408.

