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PART I
FUNDAMENTALS OF GALOIS THEORY



CHAPTER I

LINEAR ALGEBRA

1.1 Fields and Vector Spaces.

- In the notation (l.isi), (2.3.11), etc., the first
number will denote the chapter, the second number the art-
10le, and the third number the lemma or theorem as it oo-
curs in the article. A.similar notation will be used with
equations. A

Qggggggigg: A set of at least two elements forms a
field with respect to two‘operations called addition and
multiplication if (a) the set is closed with respect to
eddition and multiplication; (b) the set forms a commuta- -
tive group with respect to addition whose identity 1s
- called the zero element; (c¢) the nonzero elements of the
set form a group with respect to multiplication, whose
1dentity 1s called the unity element; {d) the distributive
laws hold: alb + ¢) = ab + ac, {(a + b)c = ac + be. If
multiplication in the field is commutative then we shall
say the elements form a commutative fleld.

Definition: If V is an additive abelian group with
elements A,B,..., eand F is a fleld with elements a,b,...;
and if for each a of F and A of V the product aA denotes
an element of V, then V 1s called a leftlvector space over

F if the following assumptions hold:
1



(1) a(A + B) = aA + aB,

(2) (a + b)A = ah + bA,

(3) al(vA) = (ab)a,

(4) 1A = A,
Similarly when multiplication by field elements is from the
right we shall call V & right vector space.

If o is the zero element of F and O the zero ele-

ment of V then from these assumptions wWe see that oA = 0
and a0 = 0. The first relation follows from the equations:
8A = (a + 0)A = aA + oA. Similarly the second relation
follows from: eA = a(A + 0) = aA + 0.

1.2 Linear Equations.

If we have a set of equations:

| = 811% + a12x2;+ cee + B X, = O,
(1.2.1) teesssececacassssesreassosrransanens

Ip = 8p3% + BppXp + --0 4 g% = O,
whgre the aij,li =1,2,.00,my, j=1,2,...,n, are m.n ele-
ments belonging to F, a fleld, we will need to know condit-
ions such that elements in F exist to satisfy the equations.
Equations (1.2.1) are called linear homogeneous equations,
and a set of elements, X]»Xpseee,Xy OF F for which all the
SequationSA(l.B.l) are true is called a solution of the sy-
“stem; If.all the elements x; ,Xp,...,X, are zero then the
solution 1s trivial; otherwise it 15 called non-trivial.

THEOREM 1.2.1: A sjgtem of linear homogeneous egua-




tiong always has a non-trivial solution if the number of

unknowns_exceeds the number of equations.

Proof: We see that one homogeneous equation a,,x; +
aizx2+ ~1—amxn = 0, n> 1, has a non-trivial solution

] : — —
for if one of the aij g is zero, say 81 = 9 then X = 1,

X, = Xg= ee0 =X =0 will serve as a solution. We con-
tinue using the induction method of proof. We assume that
each system of equations, k in pnumber, in more than k un-
knowns has a non-trivial solution when k < m. In the sys-
tem of equations (1.2.1) we assume n >m. We wish to find
‘elements XypecesX not all zero such that L].: L,= ...'—:.
Lm: 0. If 8y =0 for each 1 and J then any choice of Xy,
RETE N will serve as & solution. If not all 843 are zero,
then we may assume’ a,, # 0. We can find a non-trivial sol-
ution to equations (1.2.1), if and only if we cean find a

non-trivial solution to the following system:

Ll: 0,
L,-8.,.L, =0
2 =21"1 ’
‘(1.2.2) ay]
Lm" gmlLICO-
11

For, if XysXgreee X is a solution to (1.2.2) then, since

Ll:: o, thp second term in each of the remaining equations .
is zero and hence, L2= L5: cae = Lm: 0. Conversely, if
(1.2.1) is satisfied, then the new system is clearly satis-

fied. The new system was set up so as to eliminate Xy from



the last m - 1 equations. The last m - 1 equations have a
non-trivial solution by our inductive essumption which
proves the theorem.

Definition: In a vector space V over a field F the

vectors Al,...,An are called dependent if there exist ele-
ments xl,...,xh not all o of F such that xlA1-+ szz-f s
+ thn:= 0. If the vectors Al,...,An are not dependent,
they are called independent.

a field ¥ is the maximum number of independent elements in
V. Thus we see that the dimension of V is n if there are n

independent elements in V and no set of more than n elements

are independent.

Definition: A system A;,...,A of elements in V is
called a generating system of V if each element A of V can
be expressed linearly in terms of Al""'Am’ that is, A=
é?aiAi for a suitable choice of 8y i=1l,...,m, in a
field F.

THEOREM 1.2.2: In_any gzenerating system the maximum

number of independent _vectors_is egual to_the dimension of

the vector space.

Proof: Let p be the maximum number of independent
vectors in the generating system S ::(Al,...,Aq) of V and
assume that Al,...,AP are p independent veotqrs of S.
Since p is the maximum number of independent vectors then

the p + 1 vectors Al”"’Ap’Ak’ where p< k & q, are lin-



early dependent. Thus,
+ L N N
aIAl 4—apAp-+ aKAk 0,
where not all ai =0, 1i=1,...,p,k, and further, where a

#£ o; for if a = o then’Al,...,Ap would be dependent.

k

Therefore,

A= -1 (a1A1+ cee + apAp)f

%k

Thus severy Akze S is then a linear combination of Al,...,Ap.

Since every vector B of V is a linear combination of Al,...,
Aq, B is also a linear combination of Al,...,Ap. Converse-
ly, since every linear combination of these p vectors also

belongs to V, V consists of all linear combinations of Al'

...,Ap. Consider t vectors BJ of V, where t > p and let BJ

= ij i, J = l,oo.,to Let Xl,doo’xt be a non-triVial

solution of the p <« t equations fsa i=1,...,p

iJJ
(cf. Theorem 1.2.1). Then

J1jj_ zx(ﬁaiin)‘ g(ia x)A = 0.

Thus Bl?""Bt are linearly dependent whenever t > p.
Since p linearly independent vectors of V do exist, for ex-
ample Al,...,Ap, we see that p is the dimension of V and
that Al,...,Ap forms a generating system for the vector
space V. This proves our theprem.

Definition: Any set of linearly independent vectors
'whioh generates V is callzd a basis.

THEOREM 1.2.3: Let A peessh be a basis of a vector

1
space V and let B be any element of V. Then the represen-

tation B = Cjh) + CoA, 4 . + c A is unigue.



Proof: If
: * 0 + c A : d A + * e o d A
clA1+ nn 11 +" nn
where ,ci7£ di’ for some 1 = 1,...,n, tgen iﬁ:q(ci - di)Ai=
0. Since A:,L are independent, this is a contradiction, which

proves the theorem.

THEOREM 1.2.4: Let Al,...,An be_a_basis of V_and let

-
t ch th = =a, A
Bl’ ,Bn be a set of n vectors su at Bi ety

i =1,...,0. Then the B, form & bagis if and only if |a

i,jl

i

#0.
Proof: Let

=xB, = = A= == = o.

=x,B, jalxi\)fz;'aiJ 3 g(gaijxim" 0
Thus ﬁiaijxi: 0, §J=1,...,n. These equations have a non~

‘1:

1 .

trivial solution if and only if )aijl = 0, and thus B, are

independent if and only if ‘aij‘ # o.

Definition: A subset of a vector space is called a

subspace if it is & subgroup of the vector space and if the
multiplication of any élement in the subset by any element
of the field is also in the subset. An s-tuple of elements
A= [al,...,as] in a field F will be called a row vector.
All s-tuples will form a vector space if,

(1) [al,...,as] = [b,eeeub ] 1 and only if a, = b, 1=

R R
1,...,3,
{2) [al,...,as] + fol,...,bs] = [al+ bl,...,as+ bs]’
{3) b[al,...,as] = [bal,...,basl, for b an element of F.

a

1
When the s-tuples are written vertically |. = Al they will
a

8

LA, A. Albert, Solid and Analybical Geometry, McGraw-Hill, 1949, p. 95.



be called column vectors.

THEOREM 1.2.5: The row (column) vector space Fn_of

all n-tuples from a field F_1s a vector space of dimension

n_over F.
Proof: The n elements,
e, = (1,0,0,...,0),
o, = (0,1,0,...,0),

e S S & OO P S e PR e NS e

o, = (0,0,0,...,1),
are independent and generate F2. This is true since (al,ag,
o.o’an) = alel+ 3262 + " e ‘\‘ &nen 3 %ﬂiei, 1 = 1,2,...,]&.

Definition: VWe call a rectangular array,
[ ]
8112127 %1n

8p185p0 -8
o= lyg)s |

® o %" 88000080 oe

%91 %m2° * * %mn |

where. 1 = 1,2,...,m, J = 1;2,...,n, of elements of a field
F, a matrix. By the right row rank of a matrix, we mean the
maximum number of independent row vectors among the rows
(ail""’ain) of the matrix when multiplication by field
elements is from the right. Similarly, we define left row
rank, right column rank and left column rank.

THEOREM 1.2.6: In any matrix with elements in a

field the right (left) column rank equals the left (right)

row_rank.

Proof: We call the column vectors of the matrix C(l)



(n)
eeeyC and the row vectors R(l)""’R(m)' The column

o]

vector O is and any right dependence C‘l)xi + C(z)xz +

Oe o 0o OOOCO

J

eee T C(n)gn:: 0 is equivalent to a solution of the equations

allxl + a12x2-+ O alnxh:: 0,

(1,2.3) sesnessssessssanasrssescnacse s

amlxl-+ am2x2-+ «ae +~amnx£ = 0,
‘Any change in the order in which the rows are written still
gives us the same set of equations and does not change the
column rank of the matrix, but also does not change the row
‘rank since the chenged matrix would have the same set of
row vectors. Let the right column rank be ¢ and let the
left row rank be r. We may assume the first r rows to be
independent row vectors. The row vector space generated by
all the rows of the matrix has, by Theorem 1.2.2, the dimen-
sion r and is generated by the first r rows. Thus, each row
after the r-th is linearly expressible in terms of the first
T rows. Thus, any solution of the first r equations in the
set (1.2.3) will be a solution of the entire system since
any of the remaining n - r equations can be represented as
a linear ooﬁbination of the first r. Conversely, any sol-
ution of equetions (1.2.3) will élso be a solution of the

first r equations. Therefore the matrix,



8118150 8,
(1.2.4)
8 18pg ?
of the first r rows of the original matrix has the same
riéht column rank as the original. It also has the same
left row rank since the r rows chosen were independent.
But the column rank of matrix‘(l.2.4) cannot exceed r by
Theorem 1.2.5. Therefore ¢ £ r. Similarly, calling c¢' the
left column rank and r' the right row renk, then c¢' &£ rt.
If we form the transpose of the original matrix, that is,
replace rows by columns and vice versa, then the left row
rank of the transposed matrix equalé the left column raﬁk of
the original. Now apply the above relations to the tran-

sposed matfix and we see that r £ ¢ end r' € o'. Therefore

r =c¢ and r' = ¢' which was to be proved.

Corollary: In a commutative fleld the row and col-

um renks are equal.

Definition: The rank of a matrix over a commutative

- o o g

"field is 1ts row or column rank.

THEOREM 1.2.7: The set of non-homogeneous_linear

eguations,
817% Y 8%t e T A K =800
(1.2.5) Bp1%y Tt 8% T oeee T8 X, Z 8500

L B B B B B BN R IR B CBE 2N BN R BRI B R R B R B K B B R BN IR N BN

%t am2x2-+ T *~amnxn:= Bnon+l?

with coefficients in s fleld, has a solution if and only if
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the left row rank of the augmented matrix AE*I is equal to

the left row rank of the coefficient matrix A:.

Proof: The set (1.2.5) has a solution if and only

®1'n¢1
1f the column vector a{B¥l) = |’ lies in the space
am’n+l_ i
| | 11 12
generated by the vectors A(l) = 1. , A(z) = 1. yeesy
®m1 _amz
?ln
A(n’ = 1. . Since the vector space generated by the
a
mn

columns of A; must be the seme as the Vector space gener-
ated by those of AE*l there is a solution if and only if
the right column rank of the matrix'Ag is the same as the
right column rank of the augmented matrix AE*I, i.e., by
Theorem 1.2.6, if and only if the left row ranks are equal.
Conversely, if the left row rank of A:+l is equal to the
left row rank of A;, the right column ranks will be equal
and the equations will have & solution. If the equations
(1.2.5) have a solution, then any relation among the rows
of A; exists among the rows of.Aﬁ*l. For equations (1.2.5)
this means that like combinations of equals are equal.
Conversely, if each relation which exists among the réws
of AE*l also exlsts among the rows of A;, then the left

(right) row rank of Ag*l is the same as the left (right)
1l

n+l n+l
Am = Eﬁ;A( )], {efe Pe? and line 4:p.l10)



11

row rank of g:. This proves the theorem.

THEOREM 1.2.8: If in ecuations (1.2.5) m = n, then

there exists a unigue solution to (1.2.5) if and only if

the corresponding homogeneous_eguations,

a + .. = 0
81171 % 810% A e

(10206) .....l.'...‘..“‘...............

a Xx. +a X 4+ ... +a x =0
nll n2"2 nn ' n ’

have only the trivial solution.

Proof: (1) Assume that the equations (1.2.6) have
only the trivial solution. Then the column vectors of Ag
are independent and Aﬁ has rank n. Thus the rank of Aﬁ*l
is equal to the rank of Ag and by Theorem 1.2.7 equations
(1.2.5) have at least one solution. If A(l)x14' ;.. +-A(n)
x = A(n+l) has two distinct solutions X, and Yi then

Al (x. -y + ... +afnl(x -y ) =0,

1 1l n n

~and X_ - Yi is a non-trivial solution of equations {1.2.8)

eontr;ry to our assumption. Thus equations (1.2.5) have
exactly one =olution.

(2) Now suppose that equations (1.2.%) have a
unique solution X ;. Then %A“’Xi = p(n¥1) | 1¢ Y, is a
solution of (1.2.6), then %A“’Yi:‘- 0. Thus %A(i)(xi+
Yi)==<A(n+1). But (1.2.5) has only one solution and thus
Y = 0. Therefore (1.2.6) has only a trivial solution

i
which completes the proof.



CHAPTER II

FIELD THEORY
2.1 Extension Fields.

Definition: If E 1s a field and F a subset of E

which is & subfield of E then we call E an extension of F,
designated by F C E.

Definition: If «,8,..., are elements of E, let
Fkg,g,...) be the set of elements in E whioch can be express-
ed as quotienté of polynomiaels in «,8,..., with coefficients
in F. Fl«,B,...) is called the field obtained after the ad-
Junetion of thé elements «, $,... to F, or the field genera-
ted out of F by the elements «,f,... .

Obviously Fl«,P,... ) is a field end is the small-
est extension of F which cohtains the elements «, B,... .
Henceforth, all fields will be assﬁmed to be commutative
’fields.. If F CE, then ignoring the multiplication opera-
tion defined between the elements in E, we may consider E
4s a vector space over F,
is the dimension of the vector space & over F. If (E/F) is

finite, E 18 called a finite extension.

‘THEOREM_2.1.1: If F, B, E are three flelds such

that F C B C E, then (E/F) = (E/B).(B/F).
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bl’bz""’bs be a basis of B over F. Thus

= = £
By= byt e A1, b = b,

where bi is any element of B. Also let el,ea,...,er be &

basis of E over B, that 1s, for any e belonging to E,
e = blel+ cee + brer = ‘Lé"f_biei'
Thus any e belonging to F has the representation
; g
e= (= ble. +ueo + (1 b)e = ==t
g ry§or

b.e..
Jg=1 i1 IO ET S S R A |
Therefore every element e of E can be expressed as a linear

: S
combination of the rs elements b¢ei. Now let “%-'.f.a‘f b ,e

J =1 1 137371
= 0, where fij € F. Thus
éfbe-\-..'. é'fbe::o.
(J=1 1] J) 1 N (Jﬂ rd j) s
Since the e are independent then ‘%fijbj = O where 1 = 1,
. J"l
«veyT. But the bj are independent over F and therefore rij:'

0. Therefore the rs elements bjei are Independent over F
and they form a basis of E over F. Thus (E/F) = (E/B).(B/F)
which was to be established. |

Corollary: IfFCF,C F,C... CF, then (F /F)
=AF/F _VAF _JF ) e (F/R).(F/F). |
2.2 Polynomials.

Defipition: An expression of the form aoxn + alxn"l

T oo + a, is called a polynomial in F of degree n if the

coeffioients a ,...,a are elements of the field F and a,
~is not zero.
Definition: A polynomial in F is ocelled reduoible

in F if it is equal to the product of two polynomials in F

each of degree at least one. Polynomials which are not re-
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ducible in F are called irreducible in F.

Multiplication and addition of polynomials are per-
formed in the same manner as with field elements. In the
set of all polynomisls of degree lower then n, we include
the zero polynomials, although they have no aegree.' |
holds between the polynomialé f(x), g(x), h{(x) in a field F,
then we say that g(x) divides f(x) in F.

We see that the degree of f(x), inrthe relation
£{x) = g(x).h{x), 1s equal to the sum of the degrees of
g({x) and h(x). If neither g(x) nor h{zx) is a conétant theﬁ
each has a degree less than the degrge of f(x). The divis-
ion algorithml holds for any two polynomials f(x) and g(x),
that is, f{x) = q{x)glx) 4+ r(x), where q{(x)}) and r(x) are
uniquea
ﬁhat of g{x). Also r(x), the remainder of f(x), 1s the uni-
queiy determinedkpolynomial of a degree less than that of‘

- g(x) such that £( x) —'f(x) is divisible by g{x). It follows
from the identity f{x) = (x - a)al{x) + r(x) that if e 1s a

| root of the polynomial f(x) in F then r(x)= 0 and x - a is

a factor of f(x). As'a.consequence 2 polynomiel in a field

cannot have more roots in the fileld than its degree.

lyarie J. Welss, Higher Algebra for the Undergradu-
ate, ed. John Wiley and Sons (New York:1949), pg. 70.

Z1f F is not commutative f(x) = g{x)q,(x) + r,(x) ,
gnd q,(x) and r;(x) need not equal q(x) and r{x), respect-
vely.3 :

A A.Albert, University of Chicago Press, (Chicago)
1947, pg. 24. ‘

polynomials in F and the degree of r{(x) is less than
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Lemma £.2.1: The set S: r{x)f(x) + s{x)glx) where

£(x), glx) are fixed, consists of multiples of & fixed poly-

pomial m{x).

Proof: Let m(x) be a polynomial of least degree
such that r{x)f(x) + s(x)g(x) = m{x) for a suitable choice
of r(x) and s(x). Let

r (x)£{x) + s,(x)g(x) = p(x) = m(x)q(x) + r(x),
where r{x) has degree less than the degree of m{x). Then
[r(x) - r(x)a(x)£(x) + foy(x) - s(x)q(x)]g (x) = r(x).

Thus r{x) = 0, which proves the lemma.

Lemma 2.2.2: If (r(x),e(x)) = d(x) there exist poly-
nomials r(x), s(x) such that r(x)f{x) + s(x)gl{x) = d{x).

Proof: As in Lemma 2.2.1 there exist an r(x) and
s{x) such that r{x)f(x) + s{x)g(x) = m{x). The set S con-
tains f(x) and g¢(x) and hence m(x) divides\f(x) and m(x)
 divides g({x). Since d(x) divides f(x) and d(x) divides
g(x), therefore d(x) divides m{x). Thus d(x) equals m(x)
which completes the pfoof.

THEOREM 2.2.3: If p{x) is an irreducible polynomial

over a field F and if p(x) divides the product f{x).g{x) of

two polynomials over F, then p(x) divides f{x) or p{x)

divides gl{x).

Proof: Suppose p(x) does not divide f(x). Since
p(x) is irreducible over F, its only divisors are its asso-
clatesland the units®of the field. Thus (p(x),f(x» =1,

By Lemma 2.2.2 there exist polynorials r{x), s{(x) such that

lTwo elements of a ring are called assoclates if each divides the othere

2 unit is any associate of le
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if 1 is the unity element of F then

(2.2.1) = r(x)f(x) + s(x)p(x).

Multiply equation (2.2.1) by g(x). Then

(2.2.2) glx) = r(x)f(x)elx) + s(x)plx)elx).

Since p(x) divides the right side of equation (2.2.2), p(x)
divides g(x). Similarly, if p(x) does not divide g(x) then
p(i) divides f(x), which completes the proof.

We see that if p(x) is an irreducible polynomial
over F, then p(x) does not divide the product of two poly~-
nomials over F, each of whose degree is less than the de-
gree of p(x), since the only diiisors of p(x) would be its
assoclates and units df‘the field F. |

THEOREM 2.2.4: A polynomial f(x) of positive degree

over a fisld F_can be expressed as_san element of F times a

product of moniclirreducible'polynomials over F. This de-

composition is _unigue except for the order in which the

factors_occur.

accomplished. Now let f{x) = g(x).h{x). Then g(x) snd h(x)
are polynomlials of degree less than the degree of f(x). We
make the Inductive assumption that the decomposition is
possible for all polynomlals of degree less than that of
f{x). Thus

8(3) =cpl(x)-p2(x)- eee op (X)),

r

h( x) =dql(x)-q2(x). .qs(i),

anxp-+ a 14 ...+ a is moniec if a = 1.
n=l 0 n
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where c¢,d are in F and where pi(x) and qj(x) are monic irre-
ducible polynomials over F. Ve have then
f(x) = g(x)h(x) = cdpl(X) pr(x)ql(x) qs('x).
Thus the induction is completed and the decomposition is
accomplished. Now to show that the decomposition is unigque
suppose there exists two decompositions
f(x) = cpl(x) cos pn(x).= dql(x) oo qm(x).

Since the irreducible polynomials are monic then ¢ equals
d. Since'pl(x) is irreducible it divides some qj(x). As
both pl(x) ?nquj(x) are monic thelir quotient is the unity
element of F, and hence gl(x) = qj(x). Thus we obtain

fl(x)-= pz(x)...pn(x) =?ql(x)... j_l(x).qj;l(x){..%n(x).
Now fl(x) is of dezree less than the degree of f(x). Ve
make the inductive assumption that 21l polynomials of degree
iess than that of f(x) have a unique decomposition. Thus
rl(x) has a unique decomposition, m = n, and therefore f(x)
has a unique decomposition into the product of 1rreducible

polynomials which proves the theorem.

Lemma 2.2.5: with regard to_division by f(x), the

remainder of the product of the remainders of two poly-

nomials is the remainder of the product of these two poly-~

nomials.
Proof: Let g (x) = q(x)f(x) + r;(x) and g,(x) =
qz(x)f(x)-+ rz(x) be the two polynomials. Then
r) (x)ry(x) = [ﬁi(x)qz(x)f(x) - gl(xsqg(x) |
| - gp(x) g (x)] 2(x) + g (X)gp(x).
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Let g (x)g,(x) = a(x)f(x) + r(x). Thus
r (x)r,(x) = (g (N (0(x) - g (x)q,(x)
- g (xdg (x) + q_(x)]f(x) + r(x),

2.3 Algebraic Elements.

Definition: If « 1s an element of an extension field

of F, and if there are polynomials with coefficients in F
(
which have &K as root then o is called algebraic with respect

to F. If « is not algebraic it is called transcendental

with respect to F.

Lemma 2.3.1: Let « be algebraic_and select_ smong

all monic polynomials in'F which have « as root, one, f{(x),

of least degree. Then f(x) is uniquely determined, is ir-

reducible, and each polvnomial in ¥ with the root « is di-

visible by fix). ,
- Proof: Let g(x) be any polynomial in F with gl«)=
0. We may divide g(x) by.f(x),.and write g(x) = f(x)qlx)
+ r{x) where the dezree of r‘(x) is less than that of f(x).
Substituting x =« we cet r{K) = 0. Since the dégree of
r{x) is less than the degree of f(x), r(x) =0, and g(x) is
divisible by f(x). This also shows that f(x) is unique.
If f(x) were reducible, one of the factors would have to
vanish for x -Qo& contradicting again the choice of f(x).
We consider how the subset Eo of the fé;lowing
elements @ of E:
e =glod) = eo—\- e+ ox® 4 ... +c «xB-1

1l 2 n-1
where g(x) is a polynomial in F of degree less than n, the
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degree of f(x). e note that the constants Cp2Cyr=r+2Cpy
are uniquely détermined by the element ©, since two express-
ions for the same © would lead after subtracting to an
equation for %X of lower degree than n.

Lemma 2.3.2: Eo _is_a fisld.

Proof: Let g(x) and h(x) be two polynomials of de-

———— e

grese less than n. Thus
.. +¢ b=l o
=t C o ) ¥ (d,+ 44
n~-1

+ooo n-l - . e -
* dn-f( ) b0 ¥ bl<>< l + bn-f‘ k(=)

which is also a polynomial of degree less than n. Thus Eo

g{t) + hix) = (co+ e

is closed under addition. Now considering g(x) and h(x)
again we put g(x)h(x) = qf x)£{x) + r(x) and hence
glet)h{x) = r(x). Therefore Eo is closed under multipli-
cation. Now let h{(x) # 0 so that (h(x) ,f(x)) =1. By
Lemma 2.2.2 there exist polynomials a(x), b(x) such that
a{x)h(x) + b(x)f(x) = 1. Thus al«)h{() = 1 and we may
agsume that the dezree of a(x) is less than n for we may
replace a{x) by its remainder after division by f(x).
Hence, h(x) has an‘inverse a{%) . Thus E, is a field, whioch
completes the proof.

Since the space F(x) is generated by the linearly
~independent l,x,oLz,...,«n'l the degree [F(“)/F] is n. Wwe
shall see that the internal structure of the field E =
Fl{e«) depends not on the nature of o but only on the irre-
ducible f(x). |

THEOREM 2.3.3: (Kronecker) Given a polynomial
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p(x) with coefficients in a field F, there exists an_exten-

sion_field E2 F_in which p(x) = 0 has_a_root.

Proof: Let f(x) = =+ bn_lxn-l-\— cee + Dy be an

irreducible polynomial of p(x). We select a symbol s and
let El be the set of all formal polynomials g(s) = o + Cy 8
+ ... + on_lsn'l of a degree lower than n. This set forms
a group under addition. Besides the ordinary multiplication
we introduce a new multiplication ® of two elements g("’s)

and h(s) of E, denoted by g(s) ® h(s). It is defined as the
remainder r(s) of the ordinary product g{s)h(s) under divis-
ion by f(s). Also the product of m terms gy(s), gals),ece,
gm(s) is again the remainder of the ordinary product g;(s)
gz(s)...gm(s) by Lemma 2.2.5. This shows that our new pro-
duct is associative and commutative and that the new product
gl(s) ® g4l s) ® ... @gyls) will coincide with the old pro-
duct gl(s)gz(s)...gm( s) if the latter does not exceed n in
degree.

The set El contains our field F and our multipli-
cation in El has for F the meaning of the old multiplication.
O'ne of the polynomials of £, 1is s. ~The product of i fa,cf.ors
sach of which is s will lead to si if i £ n. For i =n this
is not the case since it leads to the remainder of the poly-
nomial s® This remainder is A

s - £(s) = - bﬁ_lsn-l - bﬁ_zsn-z -~ oo - b
We now give up our old multiplication altogether

and keep only the new one. We alSo change our notation,
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using the point as a symbol for the new multiplication.

Computing in this sense we can construct the element

n-1

. -
¢, + Gy.8 +-cz.s + ... 4—.on 8

-1.
since all the degrees involved are below n. But

I

= -1 n-1 _ 4 n-g

n-1"® n-2°S R bo'
Transposing we see that f(s) = 0.

We thus have constructed a set E, and an addition
and multiplication in El' Now El contains F as subfield
and s satisfies the equation f(s) = 0. We have to show that
if g(s) # O end h(s) are given elements of E» there is an

element

— n-1
X{s) = X, + x,.8 X ... +-xn_l.g

in E, such that

1
g{s).X(s) =n(s).
To prove this we consider the coefficients x, of X{s) as
unknowns and compute the product on the left si&e, always
reducing higher powers of s to lower ones. The result is
en expression L_+ L,.s t ... ﬂ'Ln_l.sg'l where each L is
a linear combination of the Xq with coefficients in F.
This expression is to be equal to h(s). This leads to the
n equations with n unknowns:
Lo: do, Ll:: dl""’ n-l=
where the d; are the coefficients of h(s). By Theorem 1.2.7

L d

n-1
this system will be uniquely solvable if the corresponding.
homogensous equations |

L= 0, L1:: 0;...,1, = 0,

o n~1
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have only‘the triviel solution.

The homogeneous problem would occur if we should
ask for the set of elements X(s) satisfying g(s).X(s):: 0.
Considering the old multiplicetion this would mean that the
product g(s)X(s) had the remainder zero, and is thus divis-
ible by f(s). By Theorem 2.2.3 this is only possible for

X(s) = 0. Therefore El is a field. Thus we have construct-

ed an extension field E, = F(s) in which en irreducible fact-

1l
or f(x) of p(x) has a root. This completes the proof of our

theoren.
Now conslder our old extension E with a root o« of
£(x), leading’ﬂo the set Eo. e see that Eo has, in a cer--

tain sense, the same structure as E if we map the element

1!

g(s) of E, onto the element gle¢) of E . This mapping will

1l
have the property that the image of a sum of elements is the

sum of thelr images, and the image of a product is the pro-
duct of thelr images.

!

2.4 Homomorphism, Isomorphism, Automorphism.

Definition: By a homomorphism of a multiplicative
group we mean a (possibly many-to-one) mapping T such that
for a,b any two elements of G, T(a).T(b) = T(a.b).
Definition: A mapping T of one field on another
which is one-to-one such that T(a + b) = T(a) + T(b) and
T{a.b) = T(a).T(b) is called an isomorphism.
Definition: The isomorphism T of a field on itself

is called an automorphism.
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Definition: If not every element of the image field
is the image under T of an element in the first field, then
T is called an isomorphism of the first field into the
second.

We will consistently use the term "mapping of F on
F'" when every element of F* is the image of an element of
F, and the term "mapping of F into F'" if at least one ele-
ment of F' 1s not the image of an element of F.

THEOREM 2.4.1: Let T be an isomorphism mapping a

fisld F_on_a fleld F'. Let f{x) be an_irreducible polynom-

ial in F end f'(x) the corresponding polynomial in F*'. If

E = Flx) and B' = F'{«t') sre_ extensions of F_eand F', respect-

ively, where}ka):= O in B and f'{x') = O in E', then T can -

be_extended to an lsomorphism between E _and E'.

Proof: Since isomorphisms are transitive and E and

E' are both isomorphic to E_, (ef. Theorem 2.3.3), there-

1
fore, E is isomorphic to E'.



CHAPTER III

GALOIS THEORY
3.1 Splitting Fields.

Definition: If F, B, E are three fields such that

FCB C E, then we call B an intermediate field.
Definition: If E is an extension of & field F in
which a polynomial p(x) can be factored 1qto linear factors,
and if p(x) can not be so factored in any intermediate
field, then E is called a splitting fleld for p(x).
| Lemma 3.1.1: If E is a splitting field of p(x), the

rootg of p(x) generate E, where the coefficients of p(x)

belong to_g field F. | !

Proof: If p(x) of degree n splits in E then p(x)
‘splits into linear factors (x’--pl)(x - Poleee(x - py). If
‘only one root of p(x), say p, lies outside F then E = F(p3)
and thus p1 would generate E. Similarly if P1sPgs-+sPn
are outside F then F(pl,pz,...,pn):= E. Thus the roots of

p(x) generate E.

Lemma S3.1.2: A _splitting field E is of finite
degree.

Proof: Since E is constructed by a finite number
of adjunctions of algebralc elements, each defining an ex-
tension field of finite degree, by the Corollary to Theorem -

2.1.1, the total degree of E is finite.
24
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THEORFM 3.1.3: If p(x) is_a_polynomial in a field

F, there exists a splitting field E of p{x).

Proof: We factor p(x) in F into irreducible factors
fl(x).fgcx). eee of (x) plx). If each of these factors is
of the first degree then F itself is the required splitting
field. Suppose then that fl(x) is of dégree higher than the
first. By Theorem 2.3.3 there,isfan extension Fi of F in
which fl(x) has a root. Factor each of the factors fl(x),

...,rr(x) into irreducible factors in F. end proceed as be-

1l
fore. We finally arrive at a field in which p(x) can be
split into linear factors. The field generatéd out of F by

the roots of p(x) is the required splitting field.

Lemma_3.1.4: If f(x) is an irreducible factor of

p(x) in F, then E'coggains a_root of f(x).

Proof: Let pl(x) = (x -§<l)(x -,«2).‘..(1: -.'o<s) be

, the splitting of p{x) in E. ;’T‘Th‘en {x ;‘XJ_)(X -cxg)...(x -o(s)
'::f(x)g(x). We consider'f(i) as a polyﬂomiél in E and con-
struct the extension field B = E(=) in which f(«<) = O. Then

MK m) e (X - ) = fled)glet) = O and o = ot being

, i
. elements of the field B can have a product equal to zero
"only if for one of the factors, say the first, we have

*-o{ = 0. Thus x=el , andey 1is a‘rootk.o»fv' £(x).

THEOREM 3.1.5: Let T be an isgmorphic mapping of
the rield F on_the field F'. Let p(x) be a polynomial in F

and p'{ x) the polynomial in F' with’coefficients cor;espond—

ing to those of pigl_under T. Finally, let E be-auleitting
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field of p(x) and E' a splitting field of p'(x). Under

b aniy tts ot ———

these conditlons the isomorphism T can be extended to an

igomorphism between E_and E'.

Proof: In case all roots of p(x) are in F, then
E=TF and p(x) can be split in F. This factored form has an
image in F' which 1s a splitting of p'(x), since the isomor-
phism T preserves all operations of addition and multipli-
cation in the process of multiplying out the factors of p(x)
and collecting to get the original form. Since p'(x) can be
split in F', we must have F'= E'. In this case, T itself
is the required extension and the theorem is proved if all
the roots of p{x) are in F. We proceed by induction. We
- suppose the theorem proved for all cases in which the num-
ber of roots of p(x) outside F is less than n > 1, and we
also suppose that p{(x) is a polynomial having n roots out-
'side F. We factor p{x) into irreducible factors in F;
p( x) :rfl(x).rz(x)...fm(x). Not all of these factors can
be of degree 1, since in this case p(x) would split in F,
contrary to our assumption. Hence, we may suppose the de-
gree of fl(x) to ber>1. Let'fi(x).fé(x)...f&(xj = p'(x)
be the factorization of p'(x) into the polynomials corres-
‘ponding to fl(x),...,fm(x) under T. Now f'(x) is irreduc-
.1ble in F', for a factorization of f'(x) in F' would induce

under T'l'

s the inverse of T, a factorization of fl(x),
which was taken to be irreducible. By Lemma 3.1.4, E con-

tains a root « of fl(x) and E' contains a root «' of f'(x).



27

By Theorem 2.4.1, the isomorphism T can be extended to an
isomorphism Tl, between the fields F(«) and F'(«') . Since
F C F(«), p(x) is a polynomial in F(<) and E is a splitting
field for p(x) in F(%). Similarly for p'(x). There are
now less than n roots of p(x) ocutside the new ground field
 F(x). Hence by our inductive assumpiion T, cen be extended
from an isomorphism between F(X) and F'(«') to an. isomor-

.

5 between E and E'. Since Tl is an extension of T,

and T2 is an extension of Tl,.we conclude that Ty is an ex~-

tension of T and the theorem follows.

phism T

Corollary: If p(x) is a polynomial in a_field F,

then any two splitting fields for p(x) are isomorphic.

Proof: From Theorem 3.1.5 take F = F' and T to be
the identity mapping, that is, T(x) = x. |

From this corollary we may use the expression "the
.splitting field of p(x)" since any two differ only by an.
isomorphism. Thus, if p(x) has repeated roots in one splitt-
ing fleld, it will have repeated roots in any other splitt-
ing field. |
3e2 Finite Eields}

" S A P S S

elements is called a finite field.

Definition: The order of an element A of a finite

group G_is the least positive integer a_such that AS = e,

15 further discussion of the algebra of finite
fields is to be found in Chapter VIII.
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where e i1s the unity é_lemeht of G.

Lemma 5.2.1: Let A have order_a, then A®= o implies

Proof: Let ¢ = aq+ r, O £r £&. Then A®= A81T
= (A%) AT = (e) 9T = AT. Thus if A® = e, r = 0 and there-

fore ¢ = aq.

Lemma 35.2.2: If (a,b) = 1, end A has_order_a, B hasg

~order b, then AB has order ab.

Proof: Let AB = C, have order ¢. Suppose ¢ = aq -+
r, 0Lt La. Then &P — ¢¢b — glaa+r)v — 4(agsr)bglaqsr)d
= ATD, Thus by Lemma 3.2.1 a \rb But, since (a,b): 1,
al r. Therefore r = 0. Thus alec. Similarly b | ¢ end
therefore ab | 0. But (C)2P = (4B)8D = 48Ppad — (48)b(pb)a

= 8.  Thus ¢ ! ab. Therefore ¢ — ab.

Lemma 3.2.%: If in an abelian group A and B are two

elements of orders a and b, and if ¢ is the least common

multiple of a_and b, then there is_ sn elez_rg_e_gg C_of order ¢

in the group.

Proof: If 4 divides a, we have an element 28/d
which is an element of order d in the group. Let PysPpscccs
pr be the prime numbers dividing either a or b and let a =

p’i*p’él...p‘;r, b = p®1pP2...p®7, Now call t, the larger of

, : = pYinytz
n1 snd m, . Then ¢ = PP,

an element of order p?'l and one of order p‘f‘-,. Thus there is

i
...p:““. #e can find in the group

. one ofor’deﬂr-pii . Lemma 3.2.2 shows that the product of

these elements will have the desired order o.
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gémma«3.2.4t If there is an element C_in_en abellsan

group whose order ¢ is maximal then the order a of every

element A in the group divides c. Hencg,xczz e 1s satisfied

by each element in the group.

Proof: If & does not divide ¢, the greatest common
multiple of a and c would be larger than ¢ and by Lemma
3.2.3 we could find an element of that order, thus contra-

dicting the choice of c.

THEOREM 3.2.5: If S is_a finite subset (# 0) of a

. ‘ . ) L
field F_which is & group under multiplication in F, then S

is_a_cyolic group.

T s o e

S and r the largest order occurring in S. Then xX -~ 1= O
is satisfled for all elements of S. Sindé this polynomial
of degree r in the field cannot ha&e more than r roots; it
follows‘that r=2 n. Each element of 8 generatés a cyclice
subgroup of S whose order divides n, and since the order

of each element of the group divides n, r £ n. Thus r = n.

Therefore S is a cyclic group consisting of l,al,az,...,

an-l n

where a° = 1, which proves our theorem.

Corollary: The non-zero elements_of_a_ finite field

F form a cyclic group.

gggggz Since the non-zero elements of a finite field
F form a finite group under multiplication in F then by

Theorem 3.2.5 they form a cyclic group.

. o s g D U S i
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group operation written +) then the elements Byseorfy will
be said to generate G if each element g of G can be written
as sum of multiples of By oss28s gr:-nlglﬂ— cee t n,g, .
erate G, then SEEEENY- is called a minimal generating sys-
tem.

Any group which has a finite generating system will
have a minimal generating system. A finite group always
has a minimal generating system. Since

n,8) t 0,8, = ny{e; + mgy) +(n, - mulg,
it follows that if 8118530218 generate G, then also

gl'* mgg,gz,...,gk generate G.

o g S S e W Vs AR S Vet

will be called a relation among the generators where

M sees,m are called coefficients in the relation.

Definition: Ve say that the abelian group G is the
direct product of its subgroups Gl’GZ”"’Gk if each g € G
is uniquely representable as a sum g = xl-f x2-+ cee T X,

where x, € G i=1,...,k.

i 1 :
THEOREM 3.2.6: Each abelian_group having a finite

number of generators is_the direct product of cyclic sub-

groups Gl,...;Gn where n_is the number of elements in a

minimal generating system, and where O(Gi) divides O(G1+l)

' fOI‘ i — 142,..-11‘-1, if Gl’...’Gr’ 2 é‘ r én’ gzg_zlgiﬁgo

Proof: We assume the theorem true for all groups

having minimal generating systems of k-1 elements. If

»



31

n =1 the group is cycllic and the ﬁheorem is trivial. Now
suppose G is an abelian group having a minimal generating
system of k elements. If every minimal generating system
satisfles only a trivial relation, then let 8y 18g3 0018y be

a minimel generating system and let G be the cyclic group

i,

generated by g, - For each g€ G, g = n,g + ...t nE

where the expression 1s unique; otherwise we should obtain

a non-trivial relation. Moreover, the cyclic groups G are
all infinite, since ngi:z 0 Would yield a non-trivial re-
lation. Thus the theorem would be true. We assume now that
a non-trivial relation holds for some minimal generating:
system. Of all the relations belonging to minimal genera-
ting systems, let

(3'201) m + .o‘o‘+ mkgk—:o

1%1
be a relation in which the smallest positive coefficient

ogcurs. After a reordering'éf the generators we may sup-

‘pose m, to be this coefficient. In any other relation be-~

ftween gl,...,gk, | |
(5-202) nlgl+ ‘e o & +nkgk‘:20

‘we must have mll n Otherwise n. = qm. + r, 0 LT 4 m

1 1 1 &My
and q times relation (3.2.1) subtrected from relation '

(3.2.2) would give a relation with a positive coefficient

rdm Also in the relation (3.2.1) we must have ml' m,,

1.

i=2,...,k. For if m, does not divide one coefficient,

1l
- say mz, then m2: Qénl+ r, 0L r& m,. In the generating

system gl-+ ngz,gg,...,gk'we would then have a rélation
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ml(gl + ngz) + rgz + msg:S + ... + uﬁcgk = 0 where the coef-

ficient r contradicts the choice of ml. Hence m, = q m, ,

m:3 = qzml,...,xnK — qkml. The system
gl-": 81+ ngz+ see quk’g?,’gs,...’gk

is minimal generating, and m gl = 0. In any relation

1
0= nl§1+ D g, t o + e, since n, is a coefficient in
a relation between El,gz,...,gk, our previous argument

gives ml\ n, and hence D8, = 0. Let G' be the subgroup

of G generated by BosveosBy and G. the eyclic group of or-

1

der ml generated by :51 Then G 1s the direct product of Gl

and G'. Fach element g of G can be written
— P - —_n o '
g = nlgl+ n2g2+ ces T n, 8, = nlgl+ g's 0 £ n; < m,.
This representation is unique, since nlgl + g8' = niél + g"
implies the relation (nl - ni)gl + (g'" - g" ) = 0, hence

e 'Yy - . A ' R
(nl nl)gl_o, so that n, nl_.Oand also g' —=g" . By

our induction assumption, G' 1s the direct product of k - 1

cyelic groups G—r1 generated by elements Ez,és,....,gk.

Moreover, if G_,G G. are finite, and 3£ r £k-1,

. 2! 5""’

thelr respective orders tz,...,tr satisfy til t i= 2,

i+’

seeyr=1. If G. is finite the preceding argument applied

2
to the generators gl,gz,....gk gives ml l t2, from which the

theorem follows.

Definition: If a i1s an element of a field F, we

denote the n-fold of a, that is, the sum of n terms, each

of which is a, by n.a.

Now n.(m.a) = (nm).a and (n.a){m.b) = nm.ab. If
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for one element a % 0, there is an ‘integer n such that n.a

1p)

=0 then n. b =0 for each b in F, since n.b = (n.a)(a”
= 0( a‘lb)

| Definition. If there is a positive intpger p such

that p.a =0 for each a in F, and if p is the smallest in-

teger with this pfoperty, then F is said to have the char-‘
acteristic p, but if no such positivé,integer p exists then
-.we say F has the characteristic O or o0.

Lemma 3.2.7: The charactepistic p of a finlte field

F is always a prime’number which divides the order of any
Eé&:%ﬁro a of F. |

Proof: 1 p = rs then p.a =rTs.a =5r.(s.éi. But
s.a=Db#0 if a# 0 and r.b # O since r and s are less than’
P, 8o that p.a # 0 contrary to the definition of the charact-
~eristic. If n.a =0 fér a'#ro, then p divides n, for n ;'qp"

+7T where 0 £ 4 p and n.a = (gp + r).a't:q((p.afkh r.a.’

Hence n.a = 0 implies T.8 ; o, an@ since rlé-p, we must have

r =0.

Lemma 3.2.8: If F is a finite field having q ele-

ments and E an_extension of F such that (B/F) = n, then E
nas q" elements. R
| gzggf: If\kﬁ,uﬁ,..:,uh'is'a basis of E over F, each
element of E can be uniquely representgd as a linear com-
bination
X ul + X W+ .0 1+ X W

11 2 2 nn’
where the x belong to F. Since each x; can assume g values
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in F, there are q" distinct possible choices of xl',...,x11
and hence dﬁ distinct elements of E.

Lemma_3.2.9: If F is a finite field and (E/F) = n,

there is_san_element ™ of E_so_that E = F(«q.

roof: Since E is finite, Theorem 3.2.5 shows that
the non-zero elements of E form a cyclic group generated by
some element «. This completes the proof.

Lemma 3.2.10: The order of any finite field F is

g;power of its characteristic.

Proof: Let P = [9,1,2,...,p—l] denote the set of
multiples of the unit element in a field F of characteris-
tic p. Then P is a subflield of F having p distinct ele-
ments, and P is isomorphic to the fleld of integers reduced
modulo p. Let (F/P) = n, then by Lemma 3.2.8 F contains
ﬁ“ elements. |

THEOREM 3.2.11: Two finite fields having the_ same

npumber of elements are_iscmorphic.

Proof: If F and F' are two finite fields having the
same order g, then by Lemma 3.2.10, they have the same char-
acteristic since g 1s a power of the characteristic. The
multiples of the units in F and F' form two fields P and P!
which are isomorphic. The non-zero slements of F and F*
form a group of order -1 and, thus, satisfy -1 _ 1= 0.
The flelds F and F' are splitting fields of the equation
x3 1= 1 considered as lylng in P and P' respectively. By

Theorem 3.1.5 the isomorphism between P and P' can be ex-_
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tended to an isomorphism between F and F' which proves the
theorem.

Definition: If f(x) = a + alxl Y oi.o an)dn is a
polynomial in a field F, then the formal derivative of f 1is
£t = a, + 2.a2x1+ cee n.anxn'l.

1
For each pair of polynomials f and g we show that

(1) (£+g)' = £' + g,
(11) (fg)*' = fg' + gf',
(111) (£T)* = nt™lpr,

For (1) irr::ao+ a xl+ cve +anxn and g—_-bo-t

1
byxl + ...+ b x® then if n > m we have

AL+ g) = [(ao+ bo) + (al+ bl)x+
+la + bm)xm+ am+lxm"'l+ cee + anxn].

Now |

(f+8)" = (a + D)+ 2lag+b)x +.c. +mla + b )by
-rnanxn‘l: al+ 8a2+ eee ¥ nanxn'1+ bl+ 8b2x+ et
mb @1 =g 4 g,

m
For (1i) let r = g‘a xt , 8 = .Ji‘.bjxj. Then (fg) =

%‘Za b xi*d, Now (fg)' = %J‘Zaibaxiﬂ)' - = =

(= 04-0 i J £=0 J=e

(1 + jla be“J 1, Also f'g + fg' = zzia x1- lbjxj-r
EoJéja ib._]xj"l_. zé‘(ii— Ja bjxi""j l. Therefore
L= ° i{=o j=o

(rg)'= f'g + fg'.

For (iii) (M) = nfi-lee is true forn = 1. Pro-
ceeding by induction, we assume it is true for n = k, that
is, (£¥)' = kr¥-lev . we wish to_show thet (iii) holds_for

]‘We will write na for n.a from now on.
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—k 4+1. Now (£ — (eeK) 0 = £(£5)r + Ko = xS e

+ t¥pe _ (k +1)£5¢'. Thus by induct.ion (£%) = nf® ler,
Definition' If £(x) is a polynoial in F, then f(x)
is called separable if its irreducible factors do not have
' repeated roots. |
Definition: If E is an extension of the field F, the
element « of £ is called separable if it is a root of & sep-
arable polynomial f(x) in F, and E is called a separable ex-

tension if each element of E is gseparable.

THECREM 5.2.;}_{3:{ The_polynomial f has repeated roots
if eand only if in the splitting field E the polynomials f

and f£' have a common root; or equivalently, if and only if

f and f' bhave a coummon faotor of degree grester then_ zero

- in F.

| Proof' If <X is a root of multiplicity k of f(x)
then £ = (x -« ) Q(x) where Q(«t) # 0. This gives

£ = (x-S0 (1) + k(x-09 ¥ NQ(x) = (-0 7 {(x=d (0) + QU 0)]
If k > 1, then « is a rooﬁ of f' of multiplicity at least
k=l. If k =1, then f'(x) = Q(x) + (x~9Q'(x) and £'(x) =
Q{«x) # 0. Thus, f and f' have a root « in common if and .only
If X is a root of £ of multiplicity g_reatér then 1. If ¢

and f' have a root «¢ in common then the irreducible polynom-
ial in P having « as root divides both vf'and f'. Converse-
1y, any root of a factof common to both f and f' is .a root
of £ and f* which proves the theorem.

Corollary: If F is s field of characteristic Zero
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then_ _each_irreducible polynomisl in F is separable.

Proof: Suppose the irreducible polynomial f(x) has
a root &« of multiplicity greater then 1. Then, f'(x) is a
polynomial which 1s not identically zero for its leading
coefficient is a multiple of the leading coefficlient of f(x)
and is not zero since the characteristic is 0. Also £'(x)
is of degree 1 less then the degree of f{x). But « is also
a root of r'(x) which contradicts the irreducibility of f£(x).

3.3 Group Characters.

Definition: If G is a multiplicative group, F a

field and T a homomorphism mapping G into F{i.e., G—>G'C
F), then T is called a character of G in F.

Let a €G, a #0. IfT,(a) =0, T (e) =T (a)T,(a”})
= 0. Therefore Tl(g):= Ti(e)Tl(g):z O for all g of G. We

will assume Tl(a);é 0 in the‘following discussion, i.e., T,

is a non-triviel mapping.

Definition: The characters Tl’TZ""’Tn are called
‘ggpggdent if there exist elements bl’bZ""'bn’ not all
zero, in F such that _

(3.3.1) blTl(x)<+ bgTz(x)ﬂ- ces +-b&Tn(x):: 0

for each x belonging toc G. The dependence relation (3.3.1)
is cslled non-trivial. If the characters are not dependent
they are called independent.

THEOREM &.3.1: If G is s group and Tl’Ta""’Tn are

n_mutually distinct characters_of G_into F, the T

11Tgre-0Ty

are_independent.
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blTl(x):z 0 implies b1:= 0 due to the assumption that Tl(a)
# 0. Suppose n > 1. We make the inductive assumption that
no set of less than n distinct characters is dependent and
we wish to show that n characters are independent. For each
a in G, let
(3.5.1) | =1, T, (x) =0

=1 11
where bi and Ti(x) belong to F. 1If bn:: O then by our in-
ductive assumption blir bz:: bs:: ce :‘pn-l :-bn = 0. In
(3.3.1) ir bn:# 0 we replace x by ax where & is any element
of G such that T _,(a)# Tn(a).
Then
b Ty (a)Ty (x) ¥ ooo + 5 T (&)T _;(x) + 9n?n(a)Tn<X)f: 0
while
,blTn(a)Tl(X)'* oo + bn_lTn(a)Tn_l(x)-+ bnTn(a)Tn(x)-z 0.
By our induction assumption, the coefficient of T _,(x), '
i.e. bn_lfrn_l(a) - Tn(a)], in the difference of these two
equations will be zero. Thus bn-l = 0. But then the rela-

+ ' =
tion blTl(x)‘* .e. ' b (x) + bﬁTn(x) 0 implies

n-2'n-2
1= b2 = e ::bn_2 :—bn = 0, too. Thus the Ti are inde-

pendent, and the theorem 1s proved.

b

Corollary: If E _and E'! are two fields, and T,,T

102
-++,T  are n mutually distinet isemarphisms mapping E_into

E!, tben T,,T 5...,T are independent.

Proof: This follows from Theorem 3.3.1, since E

without the 0 is a group and the T’s defined in this group
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are mutually distinct characters.

Definition: If T1sTg,..+,T, are isomorphisms of a

n
fleld E into a field E', then each element a of F such that

Tl(é):: Tz(a)== cee = Tn(a) is called a fixed point of E
under T,,T,,...,T . When E = E', the T7’s are automorphisms,
and if T1 is the identity, that is, Tl(x):= X, we have Ti(x)
-—x,1=1,...,n, for a fixed point.

Lemma 3.3.2: The_set_of fixed points_of E_under

Tl""’Tn is a subfield F of E.

Proof: If a and b are fixed points a,b € F, then
+ —_ 4+ = + — +
and a X b € F. Similarly,
Ti(&'b) = Ti(a) .'I‘i(b) = Tj(a) .Tj(b) :Tj(a.b).
Finally, we have
-1, _ -1 _ = -1
T,(a ") = (T4(a)) —-(Tj(a)) /-TJ(a ).
Thus, the sum and product of two fixed points is a fixed
point and the inverse of a fixed point is a fixed point.
Thus the set of fixed points of F is a field, which is &
subfield F of E.

Definition: We call F the fixed field of E under

Tl,Ta’ LR 2 ’Tna

THEOREM 3.3.3: If Tl’TZ""’Tn are n mutually dis-

tinct isomorphisms of a field E into a field E', and if F

is_the fixed field of E, then (E/F) = n.

Proof: Assume (E/F}) = r. Let Wi,Wgyeee,W , be & gen-

erating system of E over F. Consider the homogeneous linear
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equations, v
Tl(wl)xl+ Tz(wl)x2 ¥ ... -\-'I.‘n(wl)xn =0,
(5.5.2) Tl(wz)xl+ Tz(wz)xz 4 ... ‘k"I‘n(WE.‘))&1 =0,

'Tl(wr)xl*' Tz(wr)xz't' eee Tn(wr)% = 0.

For any element ¢ in E there exist bysbgyeee,by in F such
that oc;: blwl + b2w2+ eee t brwr' %e multiply the first
equation of (3.3.2) by Tl(bl)', the second by Tl(bz) and so
on. The bi belong to F and hence Tl(bi) :Tj(bi)° Since also
Tj(bi) 'Tj(wi) = Tj(biwi) , we obtain,

Tl(blwl)xl t .. + Tn(blwl)xn = 0,
(5.3'5) ceevseserssecosessecscsenitssansense

Adding equations (3.3.3) and using
Ti(blwl) T, (bowy) teeatT (b w )=T(bywy+ ... +bw )="T;lx)
we obtain
+ =
Tl(o<)xl+ T2(°<)x2+ cas Tn(oi)xn 0.
2""’Tn are independent, x; = 0, thus (3.3.2)
has only the trivial solution and so r > n.

-Since the T l’T

Corollary: If Tl"“ ,Tn are_ sautonorphisms of the

O et Ynet T

field E, end F is the fixed field, then (E/F) 2 n.

Proof: Since the automorphism is an isomorphism of

E into E, the proof is imrediste.
If F is a subfield of the field E, and T an auto-
morphism of E, we shall say that T leaves F fixed if for

each element a of F, T(a) = a. If T and S are two automor-
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- phisms of E, then the mapping x —T(S(x)) written as TS is
an sutomorphism since TS(x.y) = T(S(x.y)) = T(S(x).8(y)) =
T(s(x)).T(s(y)) = Ts(x).Ts(y), and similarly, TS(x ¥ y) =
TS(x) * TS{y). We call TS the product of T and S. If T is
an automorphism T(x) = y, then we shall call -1 the mapping
of y into x, that is, T'l(y):: x the inverse of T. We show
that T~! is an sutomorphism. We have
oy _ -1 _ -1 _
T(x;) = vy, Tx,) =y, amd T77(y;) = x;, T (y,) = x,.

We wish to show that ‘

-1 =l -1 -1 =l + m=1
Ty Y,) = Ty T y,) and T7Hy, £ y,) = T70(yy) 2270 (y,).
Now

-1 —m=-1 ] —m- _ —m=l -1
T 7 {yyp) =T {P(xl)-'r(xz) =T lT(xlxz)_xx =Ty )T y,) .

172
" Also

T'l(yl Ty, = T'l[‘l‘(xl) s T(xz)] = -1 [‘I‘(xl
i’xz)]': 5t x,= T"l(yl) x T’l(yz).
Therefore T'l is an automorphism. The automorphism I(x) = x
will be called the unit automorphism.
Lemma 3.3.4: If E 1s an extension field of F, the

Proof: The product of two automorphisms which leave
F fiied, leaves F fixed. The inverse of an automorpﬁism.in
G is in G. Therefore the set G is a group.
| In regard to Lemma 3.3.4 we may have anvelement of
E not in F which is left fixed by G and therefore the fixed
fleld of G may be larger than F.

5.4 Normal Extensions. :
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s e e s

called a normal extension 1f the group G of automorphlsms

of E which leave F fixed has F for its fixed field, and (E/F)
is finite. |
THEORFM 3.4.1: If Tl,Tz,...,‘Ifn is 8 _group of suto~-

morphisms of a field E and if F_is the fixed field of

| Tl ,Tg,...,Tn, then (E/F) = n.
Proof: If Tl”"’Tn is a group, then there 1s an
identity, say, Tlr=fI. The fixed field consists of those

elements x whioh are not moved by any of Tl""’Tn' Suppose f
(8/F) > n. Then there exist n + 1 elements Xy rolgser 1y g
of E which are linearly independent with respect to F. By
Theorem 1.2.1 there exists a non-trivial solution in E to

the system of equations

| xTyleg) + x Ty {) + een Axp (T (o ) = 0,
(3-4.1?1'1‘2(«1) + szz(dz) + ... + xn+lT2(°(n+l) =0,

L R I B BN L INE BN B NE B N DN O B B BN B BN BN NN I B BN 2N B RE N L BN BN BN BN BN BN B B R 2R I 2

xf&“ﬁ—fxgﬁugi"”’*ﬁnﬂéund):o'

We note that the solution to (3.4.1) cannot lie in F, other-

wise, since T, is the ldentity, the first equation would be

1l
a dependencs between yl""’“h+l° Among all non-trivial

solutions x we choose one which has the most num-

1’...’Xn+l ' '
ber of elements zero. We may suppose this solution to be
bl""’b 4O0y+¢+¢,0, where the first r terms are non-zero.

T
Also, r # 1 because blTl(dl)::»O implies b = 0 since
Tl(ocl):oal;é 0. Also, we may suppose br:= 1, since if we
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. -1 .
. multiply the given solution by br we obtain a new solution
in which the r-th term is 1. Thus, we have

(3.4.2) b T (x)) + b Tl )+ voo D Tt ) +T (o )=0

fori=1,2,...,n. Since b b cannot all belong to

l,...’ r_l
F, one of these, say b,, is in E but not in F. There is an
automorphism T, for which Tk(bl)=¢ b, If we use the fact

that Tl""’Tn form a group, we see’ that Tk'Tl’Tk'Tz""’

kaTn is a permutation of Tl""’Tn’ Applying Tk to the set
(3.4.2) we obtain equation
(3.4.3) Tk( bl) .Tij(cx l) + ...
+ . =
Tlp g )Ty Tyl ) + T, Tyl ) =0

for j =1,2,...,n so that from T Ti’ (3.4.3) becomes

K§=
(3.4.4) T (b IT, () + coe +T (b Tl ) + Tl ) = 0

and if we subtract (3.4.4) from (3.4.2) we have

(o - myop Jorgie ) cee b [y T lo DTl ) =0

which 1s a non-trivial solution to set (3.4.1) having fewer

than r elements non-zero, contrary to the choice of r, which

proves the theorem.

Corollary 1: If a subfield F of E is the fixed field

for a finite group G of order n, of automorphisms of E, then

each automorphism T that leaves F fixed must belong to G.

Proof: By Theorem 3.4.1 (E/F) = order of G = n. ie
assume there is a T not in G which leaves F fixed. Then F
would remain fixed under the n + 1 elements consisting of T
and the elements of G, thus (E/F) 2 n + 1 by the Corollary

to Theorem 3.3.3. This is a contradiction.
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Corollary 2: There are no two finite groups Gl and

G, with the same fixed field.

e e ma e

Corollary 3: E is a normal extension of F, if and

only if the number of automorphlisms of E which leave F fixed

is (B/F).

Proof: If E is a normal extension of F, the number
of distinct automorphisms of E which leave P fixed is (E/F),
by Theorem 3.4.1.

Conversely, suppose that F' is the fixed field of
all those asutomorphisms of E which leave F fixed. Then
FS F'S E. By Theorem 3.4.1, the number of automorphisms
of E leaving F' fixed is (E/F'). Assuming that (E/F) auto-
morphisms of E leave F fixed, we have (E/F') = (E/F).
Since (E/F) = (E/F')(F'/F), (F'/F) = 1 and F'= F. Thus
E is a normal extension of F.

Lemma 3.4.2: If E is a normal extension of F, then

any element of E is root_of an_irreducible, separable

eguation_over F which splits completely in E.

Proof: Let Ty,...,T  be the group G of automorphisms
of E whose fixed field is F. LetoL € E, o(# F, and let
K = 0ly 20l s{z s+ + = 4K, be the set of distinct elements in the
sequence Tl(o() ,‘I‘z(o() ,...,Ts(o() . Since G is a group,

Tilxs) = T5(Tylee)) = TiTyle) = Tpls) = o,
where n .‘: T. Sin.ce the mapping TJ' is one-to-one, the elements

K30l 50(z 5 = o = 0l BT permuted by each automorphism of G. The
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coefficients of the polynomial f(x) = (x - ){x - xg).--

(x —‘xr) are left fixed by each automorphism of G, since in
its factored form the factors of f(x) are only permuted.
Since the only elements of E which are left fixed by all
the automorphisms of GE€ F, f(x) is a polynomial in F. It
g{x) is any other polynomial in F which also has « as root,
then applying the automorphisms of G to g{x) = 0 we obtain
gle(;) = 0, so that the degree of g(x) = r. Hence f(x) 1s
irreducible, which proves the‘lemma.

THEOREM 3.4.3: E igs s normal extension of F if and

only if E i1s the splitting field of a separable polynomial

p(x) in F.

Proof: Sufficiency: We assume that E splits p(x),

and prove that E is a normal extension of F. If all the
roots of p{x) are in F, then E= F and only the unit auto-
morphism leaves F fixed and our proposition would hold.
Suppose p{x) has n > 1 roots in E but not in F. Ve make the
inductive assumption that for all pairs of fields with fewer
than n roots of p(x) outside F our proposition holds. Let
p(x) = py(x). ... .pr( x) be a factorization in F of p(x)
into irreducible factors. Ve may suppose one of these to
have a degree greater than one, for otherwise p(x} would
split in F. Suppose deg. py(x) = s > 1. Let &, be a root
of pl(x). Then (F(o(l)/F) = deg. py{x) = s (cf. paragraph
after Lemma 2.3.2). If we consider F(x;) as the new ground

field, fewer roots of p(x) than n are outside. Since plx)
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lies in F(o(l) and # is a splitting field of p(x) over F(“l)"
~then by our inductive assumption it follows that E is a
normal extension of F{( ). Thus, each element in E which
is not in F(le) is moved by at least one automorphism which
leaves F(o(l) fixed. Since p(x) is separable, the roots

A s eve sy OF p,(x) are s distinct elements of E. By Theorem
2.4.1 there exist isomorphisms/ T sTgrees, Ty mapping F(xi)

on F(o(l) ,F(ocz) "'."F(«s’ , respectively, which are each the
identity on F and map o4 on &l,uz,...,xs respectively. We
now apply Theorem 3.1.5. E is a splitting field of p{x) in
F(o(l) and 1s also a splitting field of p(x) in F(oci). Hence
the isomorphism Ty» which makes p(x) in F(o(l) correspond to
the same p(x) in F(oci), can be extended to an isomorphic‘
‘mapping of E onto E, that is, to an automorphism of E that
we denote again by Ti' Hence, Tl,Tz,...,TS are automor-
phisms of E that leave F fixed and map g onto 0y sX g5 o o v 5y o
Now let B be any element of E that remains fixed under all
automorphisms of E that leave F fixed. Thus B remains fixed
under the subset of all automorphisms of E that leave F(o(l)
fixed. Since E is a normal extension of Flx;), @ must lie

in F(otl). Thus

s-1
l ?

where the c, are in F. If we apply Ti to (3.4.5) we get,
since Ti(B) =B,

- 2
(3.4.5) B =c_ + e+ coety + oon + o X

- £ s-1
Bz=cy 4oty + e+ oo *o (¢ 7

s-1 s-2
The polynomial c__,x + Cg_oX + ..t eyx (c0 -B)
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has therefore the s distinct roots &y ,&g, ..., . There are
more than its degree. So all coefficients of it must vanish,
among them Cy -B, which shows PBis in F. Thus E is a normal
extension of F.

Necessity: If E is a normal extension of F, we wish
to show that E is the splitting field of a separable poly-
nomial p(x). Let w sWo,...,Wy be a generating system for
the vector space E over F. By Theorem 3.4.2 there exists an
irreducibvle, separablé polynomial fy(x) in F which splits
in B and has w; as a root. Then E is the splitting field
of the separable polynomial p(x) = fy(x).fo(x)...f4(x).

This proves Theorem 3.4.3.

Definition: If f(x) is a polynomial in a field F,

eand E the splitting field of f(x), then we shall call the

group of automorphisms of ¥ over F the group of the eguation

£f{x) = O.
In the Theorems 3.4.4, 3.4.%5, 3.4.8 and Lemmas
Se4.6, 3.4.7 we will assume that |
(1) p(x) is a separable polynomial in a field F,
(2) E is the splitting field of p(x) and,
(3) G 1s the group of p{x) = O over F.

TEEOREM 3.4.4: Fach _intermediate ficeld, B, i.e.,

FCBCE, 1s the fixed field for a subgroup Gy of G, and

distinet subgroups have distinct fixed fields.

Proof: Consider p(x) as lying in some intermediate

field B. E is still the splitting field of p{(x) in B. Thus,
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E is a normal extension of each field B, so that B is the

fixed field of the subgroup G_ of G made up of those auto-

B
morphisms of T which leave B fixed. By Corollary 2 of

Theorem 3.4.1 distinct subgroups have distinct fixed fields.
Definition: If G is the group of automorphisms of E

over F and'GB is the subgroup of automorphisms of G which

have B for its fixed field then B and G_ are said to belong

B
to each other.

THEOREM 3.4.5: If B is_an intermediate field,

(F<BCE), and G

B
and (2) (B/F) = index of G

belongs to B, then (1) (E/B) = order of

G in G.

B’ B

Proof: (1). Since B € E is the fixed field of GB’
Theorem 3.4.1 implies that (E/B) = order of Gy ==O(GB).

(2) - (B/F){E/B) = (E/F) = 0(G) = i(GB).O(GB) = i(GB)(E/B),

where i(GB) is the index of G Therefore (B/F) ::i(GB).

B.
Lemma 3.4.6: The number of distinct isomorphisms of

B which leave F fixed 1s egual to the number of cosets of
GB in G.
Proof: By Theorem 3.4.5, (B/F) is equal to the num-

ber of cosets of G, = O(G)/O(GB). Since the elements of G

B
are automorphisms of E they map B isomorphically into some

other subfield of E and are the identity on F. The elements

»

of G in any one coset of G, map B in the same way. For let

B
. . €
T Tl and T Tz, where T G, Tl’Tz (3 GB, be two elements of
the coset T.GB. Since Tl and T, leave B fixed, for each

o of B we ’have T.Tl(&) = Tla) = T.T2(°<). Also elements of
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different cosets give different isomorphisms, for if T and
S give the same isomorphism, T{x) = S{«) for each « in B,

1l

then T™1S(«) =« for each e in B. Thus T 15 = T,, where T,

is in GB. But then S :'T.T1 and S.GB:: T.TlGBrz T.GB SO

- that T and S belong to the same coset. Also each isomor-
phism of B which is the identity on F is induced by an
automorphism of G. For let T be an isomorphism mapping B

on B' and the identity on F. Then under T, p(x) corresponds
to p{x), and E is the splitting field of p(x) in B and of
p(x) in B'. By Theorem 3.1.5, T can be extended to an auto-
morphism T' of ¥, and since T' leaves F fixed it belongs to

G. This proves the lemma.

Lemma 3.4.7: B is a normal extension of F if and

only if each isomorphism of B is_an sutomorphism of B which

leaves F fixed.

Proof: By Lemma 3.4.5 and Lemma 3.4.6, the number of
distinct isomorphisms of B ==i(GB)'= (B/F). By Theorem
3.4.1, Corollary 3, B is normal over F, if and only if the
number of distinct automorphisms of B which leave F fixed
is also (B/F), i.e. if and only if the number of distinct
isomorphisms of B is equal to the number of distinet auto-
morphisms of B which leave F fixed. Since each automor-
phism of B is an isomorphism of B, our lemma is proved.

THEQOREM 2.4.8: An intermediate field B, (F ¢ B € E),

is a normal extension of F if snd only if the subgroup GB

is a normal subszroup of G.
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Proof: This theorem is an immediate consequence of

Lemma 3.4.7 once we have proved that: GB is normal in G if

and only if each isomorphism of B is_an_ sutomorphism of B,

which leaves F fixed.

Now, if T is any automorphism of E, TGBT'1 is a
subgroup of G, and TG_T~1 [T(B)] = T6y (_T"LI‘(B)] =TG5 (B) = T(B).

B
Then, if TGBT’l(oc)=o< , Gy [-1«)] = 77x), T7H«) € B ana
so ® < T(B). Thus T(B) is the fixed field for TGBT‘l. If

GB is normal in G, then TGBT°1 = GB, hence T(B) = B, and

every lsomorphism of B is an automorphism of B.
Conversely, if T(B) = B, for every isomorphi;m T

‘of B, then T"lGBT = Gy, and Gy is normal in G. |
Theorems 3.4.4, 3.4.5, and 3.4.8 are_the Fundamental

theorems of the Galois theory.

In Lemma 3.4.7, when B is normal over ¥, and each
isomorphism of B is an automorphism of B which leaves F
‘fixed, the cosets of GB, each of which describes an isomor-
phism of B (cf. Lemma 3.4.6),‘are elements of the factor
group (G/GB). Thus each automorphism of B corresponds
uniguely to an element of (G/GB) and conversely. Since
multiplication in (G/GB) is obtained by repeating the map-

pings, the correspondence is an isomorphism between (G/GB)

and the group of automorphisms of B which leave F fixed.



CHAPTER IV

ROOTS OF UNITY

4.1 Roots of Unity in the Complex Field.
| The n n-th roots of unity are found solving the

equation Z2=1. If we let U= p(cos® + i sin®) and 1=
ricosd + 1 sind). Suppose U® = p?(cos n® +1 sin nb) = 1.
Thus p = rl/n; ® = ¢/n + 2kW/n, where k = 0,1,...,n-1. We
have r= 1, and ¢ =0 and therefore p = 1, and 8 = 2k™/n.
Thus the n n-th roots of unity can be represented by R,Rz,
..-,R® where R = cos 2Wn + i sin 21/n.

Definition: An n-th root U of 1 is a _Qg_i__@iilgg n~th

root of 1 if U =1 end U® # 1, when 0 < m < n.

THEOKREM 4.1.1: Let R = cos 2M/n + 1 sin 2Wn. If

(k,n) = 4, then RS

is a primitive (n/d)-th root of unity.

Proof: Let k = k;d, n = nyd so that (ky,n;) = 1.

K _ cos zkldﬂ/nld +1 sin 2k,dWn;d = cos 2k;Wn +

k) N,

Then R
i sin zklﬁ/nl. Thus (R = cos 2k T +1 sin 2k;7M =1 so
that R¥ is an n, = (n/d)-th root of unity. Also, Rk is a
primitive (n/d)-th root of unity, for if (Rk)m =1 =

cos 2klm11/nl'+ i sin 2klm‘n'/nl, km/ny is an 1nteger.‘ Since
'(nl,kl) =1, oy divides m, but the least positive multiple
of n, is n, itself.

Corollary 1: Those and only those n-th roots of
- v

n

- unity R,R%,...,R

are primitive n-th roots of unity whose

Sl
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exponents are relativelv prime to n.
k

Proof: From Theorem 4.1.1 R is a primitive n-th
root of unity if and only if (n,k) = &=1.

Corollary 2: If U is any primitive n-th root of

unity end (k,n) = 4, then u¥ ig a'primitive n/d-th root of

unity.

Proof: Let U = Rt, where (t,n) = 1. Hence UK =R
and (tk,n);: d. Thus we may apply Theorem 4.1.1 ﬁo RtK
from which the proof is immediate.

Corollary 3: The n n-th roots of unlity include all

the m-th roots of unity if and only if m divides n.

Proof: If m divides n, n = mk, and (n,k) = k. Then
by Corollary 2 aboveiRk is a primitive n/k = m-th root of
unity send hence all the m-th roots of unity are included
among the powers of (Rk) which are alsé n-th roots. If all
‘the m-th roots of gnity are included awong thé n-th roots,
then the primitive m-th root cos 2Wm + i sin 2%Wm =R".
Again by Corollary 2, if (v,n) = d, RY is a primitive
n/d-th root of unity. Hence n/d =m and n =md, which

completes the proof.

4.2 Roots of unity in fields of prime characterisgtic.

If &a fiéld F has éharacteristic p, and ® is the
splitting %ield of the polynomial =2 -1 where p does not
divide n, then E is the fleld generated out of F by the
adjunction of a primitive n-th root of unity.k The polynom-

ial ¥® - 1 does not have. repeated roots in E, since its de-



53

rivative, nxn’l, has only the root O and has, thus, no roots

in common with x® - 1. Therefore, E_is a_normal_ extension
of F by Theorém 3.4,3. It el,ez,.;.,en are the roots of
xB -'lvin E, they form a group under multiplication and by
Theorem 3.2.5 this group wiil be cyclic. Let e be a gen-

n-l1 are the elements

erator of the group so that 1,e,e2,...,e
of the group. Since the smallest power of e which is 1 is
the n-th, we see that e is a primitive n-th root of unity.
The order of any n-th root of unity ig a divisor of n, since
each n-th root of uanity generates a cyclic subgrouplof the
group of all the roots. If e is a primitive n-th root of

unity, evidently en/f is a primitiﬁe r-th root of unity.
THEOREM 4.2.1: If B 1s_the field generated from F

by & _primitive n-th root_of unity, then the group G of E

over F is abelian for any n and cyclic if n is_prime.
Proof: We have E = F(e), since the roots of x¥ - 1

are powers‘of e.v Thus, if S and T are distinct elements of
G, S(e)'# T(e). But S(e) is a root of x® - 1 and, thus, a
power of e. Thus, S(e) = eBs where nS'is an integer 1 é»ns
£Zn. Also, TS{e) = T(e™s) = (T(e))PS = ePr'Ds = sST(e) =
e’8sT. Thus G is abeiian, and ngm = nghq{mod n). Hence,
the mapping of S on ns‘is é homomonphism of G into a multi-
plicative subgroup of the intergers mod n. Since T # S
implies T(e) # S{e), it follows that T#S implies nsié«
nT(mod n).‘ Hence, the homomorphism is an isomorphism. If!®

n is prime, the multiplicative.group of integers mod no



forms a cyclic group.

4.3 Noether Equations.

S it Y e o W Wi

group of automorphisms of E, any set of elements X("XT""
[
in E will be said to provide a solution of Noether's

ot . - s . .
eguetions if xg S(IT) Xgp for each S and T in G

As T traces G, ST assumes all values in G, and in

the equation X‘S'S(XT) = = 0 when x_, = 0. Thus, in

Espr Xgp S

any solution of the Noether equations no element Xg = 0 un-

less the solution is completely trivial. In the following

we assume the trivial solution has been excluded.

THEOREM 4.3.1: The system XgsXqpsees is a solution

of Noether's equations if and only if there exists an ele-

ment « in F, such that x, = */S(«) for_ each S.

Proof: If Xy = <fs{}), for some <, then X is a sol-
ution of the equations, since X’S'S(X‘I‘): {_x/s(x)]. [S(«/T(oc))] ,
= [°</S(°4)]- [S(ﬁ)/ST(fx)] = o(/ST(x) = S

Conversely, we let Xy sXpaees be a non-trivial sol-
ution. Since the automorphisms S,T,... are distinct they
are linearly independenf by Theorem 3.3.1, and the equation
xS.S(z) + X.I.T(z) + ... = 0 does not hold identically.
Hence, there is an element e in E such that xSS(a) + xTT(a)
+ ... = K # 0. Applying S to K gives
(4.3.1) slx) = %s(xr).s'r(a).

Multiplying (4.3.1) by Xy gives
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(4.3.2) xS.S(ot) = %XSS(XT).ST(&) .

Replecing xS.S(xT) by Xgm in (4.3.2) and observing :that ST

assumes 8ll values in G when T does, then (4.3.2) becomes
| XS.S(d) = ﬁxr‘l‘(a) =

so that

X, = %/s{«),

S
completing the proof.

THEOREM 4.3.2: If G is_the group of the normel field

E over F, then for each character C of G into F there_exists

of elements of G, then «f € F.

Proof: Let x_ = «/S{«)}. By Theorem 4.2.1, xg is a

=522 s

solution of the Noether equations and ylelds a mapping C of

G into E, namely C(S) = x,. If F is the fixed field of G,

S
and the elements Xg lie in F, then C is a charscter of G, for
C(ST) = Xgp = xS.S(xT) = XgXp -:-C’(S).C(T)

sinoe S(XT) = X if X‘I‘e F. Conversely, each character C of
G into F provides a solution of the Noether equations, for
if we call C(8) =

then, since x, € F, we have S(xT) =Xq.

g T
- Thus,

IS'S.‘(XT) = XX =C(o).C(T) = C(ST) = Xoqe
For the last part of the theorem we need only show that
S{aF) = oF for cach S € G. Now,

o« T/8(«T) = (/s()) T = (xg) T = (C(5)) T= ¢c(sT) = ¢(I) = 1,
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which proves the theoren.

4.4 Kummer's Fields.

Y et et e e S0 e S Sttt

unity,‘any‘splitting field E of a polynomlal (& - &l).
(2 —v&z).“... Nl aT)vwhere ai €F for i =1,2,...,r

‘will be called a Kummer extension of F, or a Kummer field.

THEOREM 4.4.1: If E is a Kummer field then: (i) E

is_a normel’ extension of F, (i1) the_group G of E over F is

abelisn, (1ii) the least common multiple of the orders_of

the elements of G is a divisor of n, where n is the order of

the primitive root of unity in F.

Proof' If F contains a primitive n-th root | of unity,

we prove tnat nis not divisible by tne characteristic of F.
For, suppose F has_characteristic p and n = qp.‘ Then yp,-.l

=(y - 1)P since. in the expansion of (y - 1)P each doef-
ficlent other than the first and last is divislble by p and
thus is equal to zero. Thus

Ao 1=(xYP - 1= (x2- 1P

end x* - 1 cannot have more than q diStinct roots. But we
assumed that F has a primitive n-th root of uﬁity and so

n-1 are n distinct roots of x® - 1. It follows

I,e,ez,...,e
that n is not divisible by the characteristic of F. For a

Kummer field E, none of the factors x° - 2, # 0 has re-

il
peated roots since the derivative, nxn'l, has only the. root
0 and has therefore no roots in common with x° —'ai. Thus,

the irreducible factors of X2 - ai are separéblé,;so that E
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is a normal extension of F.

Leto(i be a root of X8 - di in BE. If el,ez,...,e‘r1

are the n distinct n-th roots of unity in F, then oLiel,o(ieg,

...,dien will be n distinet roots of x? - di’ and hence

‘will be the roots of x® - a,, so that E = Fle) ety nneyo ).

i’
Let S and T be two autororphisms in the group G of E over

‘'F. For eachd« both 5 and T map oki on sowe other root of

i)
n - = ) = .

di' ‘Thus T(o(i) sr%s and S(di) €55+ %; Where e,
and eyp 8T n-th roots of unity in the basic field F. It
follows that

T(S(X,)) = Tle, o) = e, T, ) = e e nct; = S(Tlo¢g)).

Since S and T are commutative over the generators of E,

they commute over each element of E. Hence, G is abelian.

If S € G then Slty) = e, ., 5%ug) = 0% 1, aen
Thus, SBi{x ): « for n, such that erils = 1. Since the

’ order of an n-th root of unity is a divisor of n, we havé

n1 a divisor of n and the least common multiple m of n,,n

eeeshl is a divisor of n. Since Sm(o(i) =« for i =1,2,

2’

eeeyr it follows that m is the 6rder of S. Hence, the or-
der of each element 6f G is a divisor of n, and thus, the
least common multiple of the orders of the elements of G
is a divisor of n. This proves (iii}.

Corollary: If E is the_splitting field ofvxp -4,

where p is_a prime, and F contains a primitlve p-th root

of unity, then elther E=F and ¥ -a splits_in F, or

¥ -a& is irreducible over F and the group of E over F is



cyelic of order p.

4.4.1, a divisor of p sand, hénce, if the element is not the
identity its order must be p. If &K is a root of xP - a,

1. are all roots of ¥ -& so that Flt) = B

then «,ex,...,eP”
and (E/F) £ p. Hence, the order of G does not exceed p so
that if G has one element different from the unit, it and
its powers must constitute all of G. Since G has.p distinct
elements and their behavior is determined by their effect
ono, then o must have p distinct images. Hence,‘the irre-
duciblekequation in F for « must be of degree p and is

therefore xP -a = 0. This completes the proof.

Definition: Let C, and C_ be characters mapping a

—————————— 1 2
group G into a field E. If Cl maps S on agq and 02 maps S
on bS’ then Cicz is the charescter which maps S on aSbS.

Lemmsa_4.4.2: If F is_a normal extension of a field

F, whose group G over F is abelian, and F contains_a_prim-

itive r-th_root of unity where r is the least common_mult-

iple_of the orders of elements_of G, then_the group of_ char-

acters X of G into the group of r-th _roots of unity is is-~

o c—— "

omorphic to G, and to_sach S of G, if S # I, there 2xists

——— e S e i Yo, M S At e e

a_character C of X such_that C(S) # 1.

Proof: As in Theorem 3.2.6 we may express G as the
direct product of the cyclic groups Gl’GZ""’Gt of orders
ml,mz,...,mt such that ml|m2| .o lmt. Fach & of G may»be

- aVaaVy Ve .
written S = Sl 82 "'St where Si is a generator of G;.
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We will denote by C, the charascter which sends Si into €5

i

a primitive m,-th root of unity, and Sj into 1 for j not

i
equal to 1. Let C be any character. Now
m _ My - -
[c(s)]™ = c(sfh) = c(1) = 1,
= Wi C = wio WVJZ. ces o V.’t. -
hence C(Si) &5t and we have C Cl Co . Ct Con

versely, CYi...Cgt defines a character. Since the order

of C, is m the character group X of G is isomorphic to G.

i i’

If S is not equal to I, then in S = iibzi...szt at least

one v., say v is not divisivle by m Thus C ( = vi#

1’ 1°

1, which proves the lemma.
"Now suppose we have the conditions of Lemma 4.4.1.
Let A denote the set of those non-zero elements o« of T for

which T € F and let Fl denote the non-zero elements of F.

We see that A is a multiplicative group and Fl is a sub-

group of A. Let AT denote the set of r-th powers of ele-

r
1

With these conditions we have in the following theorem a

ments in A and F, the set of r-th powers of elements of F

l.

metnod for computing G.

THEOREM 4.4.3: The factor :roups (#/F,) znd (AP/F{)

Pl T .ot

Proof: We map A on AT by making «of & correbpond

to ot of aT. Ir al € Ar, where a € A, then b € A is mapped

on af if and only if b¥ equals al, that is, if b is a solu-

tion to the equation xr' - a¥ = 0. But a,ea,ega,...,er-la

are distinct solutions to this equation and since e € Fl

and a belong to A, it follows that b must be one of these
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elements and must belong to the coset aF Thus, the set

1
of elements of A which map onto the subsroup F{ of AT is Fi»
so that the factor groups (A/Fl) and (AT/F{) are isomorphic.
If A Is an elsment of A, then
[o/Tlet)] T = oT/T(«T) = /T = 1,
for every automorphism T of G. Hence, /T(x) is an r-th

root bf unity and is in F By Theorem 4.3.2, o defines a

1
character Cu Of G into F such that Cu{T) = «/T(¢}). e map
o¢ on the corresponding character Cq. Each character C is,
by Theorem 4.3.2, the image of some X. Also, x.«' defines
the character Cuy' such that Coy'(T) = ««/Tl. ') =

Koo /T(K).Tlet'). By definition, Couw'(T) = Cou(T).Cu*(T),
so that the mapping is a homomorphism. The kernel of this
homomorphism is the set of those elements « for which

«/T(«) = 1 for each T, hence is F Thus, (A/Fl) is is-

l.
omorphic to X under the mapping of the coset «F,, of (A/Fl)
on the character Cy defined by CuT) = o/T(x). By Lemma
4.4.2 X is isomorphic to G. This proves the theorem.

THEOREM 4.4.4: If E is_an_extension field over F,

then E is a Kummer field if and only if E is normal, its

group G is abelien and F contains a primitive r-th_root e

of unity where r is the least common multiple of the orders

of _the elemsents of G.

Proof: The necessity is proved in Theorem 4.4.1.
We prove the sufficiency. Relative to the group A, let

) Fl,o(

1 Fl,...,d F, be the cosets of F

<
o &1 uinge di belong

l.
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to A, we have oai' =a, €& F. Thus, oLy is & root of the

equation xT - ai:-' 0 and since ea(i,e‘?'oti,...,er’laci are

also roots, x¥ - a, must split in E. we prove that E is

the splitting field of (xT - a )(Xr - az)...(xr - at),

that is, we must show that F(o{l,o(z,...,o( ) = E. Suppose

that F(o(l,dz,...,o(t) + E. Then/F(cxl,...,o(t) is an inter-
mediate field between F and E, and since E is normal over
F(otl,...,qt) where [E/F(o(l"”’dt)] >1 ’ there exists an
automorphism T of G, T # I, which lsaves F(o(l,... ,o(t)
fixed. By Lemma 4.4.2 there exists a character C of X
corresponding to an element T € G for which C(T) =+ 1.
Finally, there exists an element « in E such that C(T)

=of/T(x) # 1. . But «T belongs to F_. by Theorem 4.3.2,

hence « belongs to A. Also, A is c(::ntained in F(e< ,...,o(t)
since all the cosets ociFl are contained in F(ocl,...,o()
Sinoe Pl ,...,o( ) is by assumption left fixed by T,

T(o()"o( which contradicts o(/T(°<) # 1. Thus, F(ocl,...,qt)
= F which completes the prooi‘.

Corollary: If £ is a normal extension of F, of

prime order p, and if F contains a primitive p-th root of

unity, then E 1s_the splitting field of an_irreduclble

vpoivi;bmial xP - a in F.
Proof: E is generated by elements o(l,...,oL where
“’f belong to F. Let oy be not in F. Then xp‘- a is ir-

: reducible, for otherwise F(otl) would be an intermediate
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field between F and E of degree less than p, and by Theorem

2.1.1, p would not be a prime number, contrary to assump-

tion. Thus, E = F(okl) is the splitting field of %P - a.



CHAPTER V

EXTENSIONS AND INTERSECTIONS OF FIELDS

5.1 Primitive Extensions.
Definition: If an extension E of F is generated

by a single element, it is called a primitive extension.

THEOREM 5.1.1: A finite extension E of F is primi-

tive over F if and only if there are only a finite number

of intermediate fislds.

Proof: (a) Let E= F(«) and let f(x) = 0 be the
irreducible equation for « in F. Let B be an intermed-
iate field and g(x) the irr;ducible'equation forcx'in B.
The coefficlents of g({x) adjoined to F will generate a
field B' between F and B. Since g(x) is irreducible in B
‘1t is also irredueible in B'. Since E = B'(«} we see that
" {(E/B) = (E/B*). Thus B = B', so that B is uniquely deter-
mined Sy the polynomial g(x). But g(x)Ais a divigsor of
£(x) in E, and there are only a finite number of possible
'diﬁisors of f£{x) in E. Thus, there are only a finite num-
‘ber of possible B s. |

| ’(5) Now we assume there are only a finite number of
fields between E and F; It F ednéists”only'of a finite
number of elements, then E,is.generated'by one element (of.
Corollary to Theorem 3.2.5). Thu§,iwe may assume F has an
inrinity of elements. We prbve:»To any two elements «, B

63
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in E there is a ¥ in E such that F(x,P) = F(¥). Let Y =
+ aP with a in F. Conslder all the fields F(¥) obtained
in this way. Since we have an inﬁnity of a's, there exist
two, say a, and a,, such that the corrésponding ¥Y's, Xl =k
+ alﬁ andezz A + azﬁ, give the same field F( Yl) = F(Xa).
Since both 7¥1 and Xz are in :.F(Xl), their difference 1s in
the field F(XI) and thus P is in the same field. Therefo:»e,ﬁ;_
Y, - 8P = lies in FIY¥)). 8o F(«,p) 1s contained in F(X')‘”
But F( X ) is contained in F(«X,P) and therefore F(x,B) = F( Xl). .
Select now 7 in E in such a way that [F(T])/F] is as large as
possible. Every element A of E must be in F(T) or else We
could find an element 3 such that F(§) = F(y,A) contains
‘both 7 and A and [F(§)/F] = [F(6)/R(Y)] [FOq)/E] > [Fh])/?]
Thus, E = F(y) which proves the theorem.

THEOREM 5.1.2: If EZF(ot y X ,...,o(h) is a finite

‘extension of the field F, end Hypeeesct BTE seperable ele-

ments in B then there exists a primitive © of E sugh that
E = F(9).

i
in F and let B be an extension of E that splits r,{x)f(x).

Proof: Let fi( x) be,thé' irreducible equation of o

..fn( x). Then by Theorem 3.4.3 B is normal over F and con- -»
tains only a finite number of intermediate fields. So the
 subfield E contains only a fi}nit.e number of intermedlate

- £i{elds. Theorem 5.1.1 now completes the proof. '(,  :
THEORE 5.1.3: If E is a normal extension of F and

Tl’Tz""’Tn are the _e;ements of its group G, there 1is an_
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element B in E such that the n elements Tl'(B) T (B) ..,

Tn(@) are linearly independent with respect to F.

Proof: Since E is normal over F, E is a finite ex-
tension of F, end by Theorem 5.1.2 there 18 an o such that
E =Fl). Let f(x) be the separable equation for «, put
Ti‘(d):—.. eai, where oni# O(J when i ;é j. Let f£{x) :..- (x -e¢)h(x)s
Then £'(x) = (x -ot)h*{x) + h(x) and £'(«) = hi(x) #* 0. Let
g(x) = f(x)/(x - )P (x) and gi(X) = Ti[g(x)] =
f(x)/(x - o(i) t'(o(i). Now gi(z) is a polynomial in E having
L root for k # 1 and thus _

- {5.1.1) gi(x)gk(x) = O[mod f(x)]

for i # k. In the equation

(5.1.2) gl(x)+g2(x)+ ...‘+gn(x) -1=0 ‘

the left side 1s of degree at most n - 1. If equation
(5.1.2) is true for n different values of x, the left side
must be identically 0. Such n vélues are o(l, 0(2,...,o<n,
since gi(o(i) = 1 and gk(o(i) = 0 for k# i. Multiplying
(5.1.2) by gi(x), and using (5.1.1), we see that

(5.1.3) [gi(x)]z = gi( x)[mod f(x)] .
We next compute the determinant )
(5.1.4) D(x) = ‘TiTk[g(x)] \, 1,k =1,2,...n,

and prove that D(x) # 0. If we square D{(x) by multiplying
column by column and compute its value [mod £( x)] we get
rrom(s.l.l),(s.l.z);(5.1.3) ,a‘déterminant that has { in

the diagonal and O elsewhere. Therefore [D(x)] 2= {(mod £{x}).

D(x) can have only & rfinite number of roots in F. Avoiding
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these finite roots in F we cen find a valus a for x such
that D(a) # 0. Now set P = gla). Then the determinant
(5.1.5) |T1Tk(s3), = lTiTk {g(a)] = D{a) = o. -
Consider any linear relation xiTl(P) + 5T, (B) + cee t

;h?n(P):z 0 where the x, are in F. Applying the automor-

phisms T1 to it would lead to n homogeneous equations for
the n unknowns X . Equation (5.1.5) shows that xi== 0 and

our theorem is proved.

5.2 Intersections of Fields.

| Let F be a field, p(x) a polynomiel in F whose ir-

reducible factors are separable, and let E be a splitting
field for p(x). Let B be an arbitrary extension of F, and
let Eg be the splitting field of p(x) when p{x) is taken to
{i? in B. If(xl,dé,...,og are the roots of p(x)vin By,
then F(Dtl,...,ots) is a subfield of EB which is a splitting
field for p(x) in F. By Theorem 3.1.5, E and Pl yeeesot)
are isomorphic. In the following work we teke E:=?thl,...,¥s)
end assume that E is a subfield of EB. Also, EB:= thl,...,og),

Definition: E N B denotes the intersection of the
fields E and B. | |

Now ENB forms a field, for if a,b belong to E and

-

to B then ab belongs to E and ab belongs to B and thus be-
longs to BN B. Also if a,b belong to E,B then a'l,b'l
belong to E,B and therefore belong to E N B. Thus E NB
is a field which is intermediate to E and F.

THEORIM 5.2.1: If G is the group of automorphisms -
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of F over F, and H the group of E, over B, thep H is iso-
morphic to_the subgroup of G having EN B as_1ts fixed field.

Proof: Each automorphlism of EB over B simply permutes

ql,...,u, in some way and leaves B fixed, and thus also
F C B fixed. Sinee the elements of 33 are quotients of poly-

nomial axpressions in « ,...,« with coefflelents in B, the

1l
automorphism is oompletely determined by the permutation
it effects on«xl,...,o(., Thus, each automorphism of EB overv:'
B defines an automorphism of E = F( 1,...,db) which leaves

F fixed. Distinet automorphisms, since « T belong to

1l

+B, have different effects on E. Thus, the group H of EB
over B can be conaidered as a subgroﬁp of thé group G of B
over F. Each element of H leaves EN B fixed since it
leaves even all of B fixed. But, any element of .E which is
not in EN B is not in B, and‘heqpe would be moved by at

'vleast one automorphism of H. Therefore EN B 1s the fixed
field of B, which proves thé theorem.

Corollsry: If, under the conditions of Theorem 5.1.2,

~ the group G 1s of prime order p, then either H =G or H con-

sists of the unit_element alone.

Proof: Since the order of H divides the order of G

which is of prime order, then the order of H must be p or 1. .
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CHAPTER VI

A CRITERION FOR SOLVABILITY BY R4DICALS IN FIELDS OF
CHARACTERISTIC O

6.1 Solvable Groups.

For our discussion on solvability we need the follow-
ing group theoretic results.

THEOREM 6.1.1: If N 1s & normal subgroup of the

group G, then the mapping g->¢gN 1s_sa homomorphism of G on

the factor group G/N called the natural homomorphism.

Proof: If N 1s a normal subgroup of G, then
gN:-. Ng for all g 1n'G. Let g,h € G. Ir g —>gN end h —shlN,
then gh—>(gN)(nN) = g(NhJN = (gh)N. Thus g —gN is a homo-
morphism of G om the factor group G/N. IfN is s proper
subgroup of G, the mapping is a many-to-one mepping.

THEOREM 6.1.2: The image snd_the inverse image of

a normal subgroup under a group homomorphism G —>G' is a nor-

) mal subgroup.

Proof: Let ¢ ¢ G where G is a group, and let n € N
where N 'is a normal subgroup of G. Then gN = Ng or gig"l = N.
Let g —>g', where g ¢ G and g‘ ¢ G'. Since the mapping 1s
homomorphic, g*'{g™1)" = (gg™1)! = (e)' = e', and hence
(g'l)' = (g')'l, i.e., g"l..-)g' -l 1n pérticular; N —N?*,
where N' is a subgroup of G'. Now g —>g'N'. But gN = Ng —>
N'z'. Therefore g'N'= N'g' and N' is a normal subgroup of

68
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G*. Convers'ely,‘ if N* is a normal subgroup of G', we ‘wish
to show that N is a normal subgroup of G. Let N be the set
of elements which map on N'. Now e, the identity of G is
mapped on e'. But e' € N',/thus e is in N. If n is 1n N,
then n~!—»(n~1)* = (n*) "1 ¢ N', so that n"le N. Thus N
is a group of G. Let g be any element of G. Then gNg"l-‘--z
g'N'g’ -1 =N'. Thus gNg'l < N. Simi‘larly, g'lNgS N, and
this implies that N & gNg"l. Thus gNg"l::N and N 1s a nor-
mal subgroup of G.

THEOREM 6.1.3: If g —»g' 1s_a homomorphism of thé

group G on G', N is sny normal subgroup of G, N—N', and

T is the mapping: &N —g'N', where g € G, g' € G', then T

1s_a homomorphism of the factor zroup G/N on_the factor
group G'/N'. -
Proof: If gN —-)g'N'; hN —h'N', then
(eN)(nN) = ghN —»(gh)'N* = g"h'N" = (g'N"}(n'N').
Thus the factor group G/N is mapp’ed homomorphically on the
factor group G'/N'.

Corollary: If the inverse image of N' is N, the

homomorphism G/N —G'/N' is an_ isomorphism. ‘

Proof: Let gl —g'N', hN—-#h"N' = g'N'. Then
(g')'lh'N' = N' and (g')"lh' lies in N'. Thus g"lh is in N,
and h is in gN. Therefore gN = hN.

Definition: If U and V are subgroups of G, UV is
the set of all products uv, with u€ U and ve V. .

Definition: By (U A V) we denote the distinct



elements of U which also belong to V.
THEOREM 6.1.4: If U and V are subgroups_of a group

G, Ul and V1 normal subgroups of U and V, respectively,

then_ the goliowim three factor_ groups_are isomorphic:

Ul(q r\V)/Ul(Uf\Vl) ,vl(u f\V)/Vl(Ul/\ v),(U nV)/(Ulf\ V) (vln U).

‘Proof: If a € UN V, then alUN vi)a’l SUNV,.
But a”l(U N V,)a €UANT, implies that (UNV,) € a(U nvi)-a-l,/

Thus a~1(0 N Vl)a =0 nvl, and U NV, 1s a normal subgroup

1l

of UN V. Let S map U on U/U We call S(UN V)= H and

siunvy ) =K. Then S~1(8) =1U L8N v)® and s‘l(x) =

“U (Un V ) from which it follows from the Corollary to

‘ Theorem 6.1.3 that U (U V)/U (v N V ) is isomorphic to

H/K. But if S is defined only over U N V, then (cf.@
s-}(k) = (U N v)(u NV)) so that [(UNV)/(B AV )]
is also isomorphic to H/x{. Thus the,firot and third factor
groups above -are isomorphic to each other. Similarly, the

second and third factor groups are isomorphic.

Coi'ollary 1: If H is & subgroup and N a normal sub=-

group of the group G, then H/H NN is isomorphic to HN/N, -

a subgroup of G/N.

Proof: Set G=0U, N=U =V and the ldentity

l’

e ::Vl in Theorem 6.1.4 and the proof is immediate.

Corollary 2: Under the conditions of Corollary 1,
if G/N _is abelian, so also is A/H A _N.

@Suppose u—»ul, < H. Thus u}J, = ul where u, < (U NnV).

1°?

Since ul, > u,' u = um,, where u ol and thus u c UlkU,nV)].

1’
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Proof: By Corollary 1, if G/N is abelian so is
HN/N, a subgroup of G/N. But H/H.f\N is isomorphic to
HN/N, so then also-is H/HA N abelian.

Definition: We call a group G solvable if it con- |
tains a sequence of subgroups G = Go > Gl Deee D G‘s= e,
each =a hormal subgroup of the_preceding; and with Gi—l/Gi »

tabelian.

THEOREM_6.1.5: Any subgroup H of_a_solvable_group

G 1s solvable. -

Proof: Let A, = HNG,. IfG, . =G, G, =N,

i i i-1 i .

ai-l:= H of Corollary 2, Theorem_G.l.é then Hi—l/Hi is abe%gan,

THEOREM 6.1.6: The homomorphic image of a_solveble
k ggggp_ig_gglvable. |

| Proof: Let S(G) = ', and define s(Gi) = G}, where -
Gi belongs to a sequence exhibiting the solvabllity of G.

By Theorem 6.1.3 there exists s homorphism mapping Gi-l/Gi

on Gi l/G'i. But the homomorphic image of an abelian group
i1s abelian so that the groups Gi exhibit the solvablility
of G' which completes the proof.

Definition: Any one-to-one mapping of a set of n

objects on itself is called a germutatioh where the product

of such permutations is a sﬁccessive apﬁlication of the
mappings.
ments forms a group, called the gymmetric group of degree n.

We will let the n objects'be the numbers 1;2,...,n;
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We will let (123...n) be the mapping S such that S(i) =

1 + 1(mod n) and generally (ij...m) is the mapping T such
that T(1) = Jpsee,T{m) = i. If (1j...m) has k numbers, 'theﬁ
we call (ij...m) a‘k—cycle. ITT = (1j...s) then we see
that 71 = (s...31).

Lemma 6.1.7: If a subgroup U of the symmetric group

of degree n > 4 contains every 3-eycle of the symmetric

group of degree n, and if U

1 is a_normal subgroup of U such

that U/Ul 1s ebelian, then U. contains every 3-cycle.

1l
Proof: Consider the natural homomorphism U -'-"U/Ul's ur,

and let u = (ijk) and v = (krs) be two elements of U where
i,J,k,r,s are five distinet integers < n. If u—u',
v—>v', then uwlv-luy -—-r_u"'lv' “lyryr = e', since U' is

abelian. Thus u~lv~luv belongs to U But

l.
a~lvluy :.(kji)(srk_)(ijk)(krs) = (kri)
. and for each k,r,i, we have (kri) belongs to Ul' 4
THROREM 6.1.8: The symmetric_group G of dezsree n

is not_solvable for n > 4.

Proof: If there were a sequence exhibiting the sol-

vability ova, since G contains. ever_'y 3-cycle so would each-

‘ . succeedlng group, by Lemma 6.1.7, and the sequence could -

not end with the unit.

6.2 Solution of eé;ugtions by Radicals.

Definition: The extension field E over F is called

an extension by radicels if there exlst intermediate fields

F:-:.BOCB CB2C... CBr:—E adeisB

1 i-i (°<1) where



n .
lof the form x * - a =0,

i1s a root of an equation 1-1=

eachc-(1

where ai-l i{is in Bi-l’

Definition: A polynomial f{x) in a field F is said

1 end 1,2,...,1'.

to be solvable by radicals if its splitting field lies in
an extension of F by»radicais.
In the remainder of this article We_assume, unless

stated otherwise, that the base field F has characteristic -

~zero, and that P contains as many roots of unity as are
needed. ‘

Lemma 6.2.1: Any extension of F by radicals can

always be extended to an extension of F by radicals which :

~1s normal over F.

: L = 3 ... DB, = P« = F.
Proof: Let E Br > Br-l ) : D Bl R { 1) > BQ
B1 containsul and also eotl,ez-(l,...,eni’locl, where e is

any n_-th root of unity. Thus Bl is the splitting field of

! -lao,‘aoe F end by Theorem 3.4.3 is therefore a normal
~ v‘extension of B . Iff(x) TT[x - T(a )], (aleBl),
where T takes all values of the group of automorphisms of
B. over Bo’ then f. is in Bo" and 1f we adjoln successively

1 1l

to B, the roots of x 2 - T(al) for each T we get en exten- -
sion of Bz which is normal over F. Continuing in this way
we arrive at an extension of E by radicals which will be
normal over F. | N

. THEOREM 6.2.2: The polynomial £{x) is salvable by

‘radicals if and only if its group 1is solvable.

Proof: Suppose _f(x) is ‘solvéble by radicals. Let

, lwe say that By is a pure extension of By, if i vai_i
=0 is irreducibdble. _ : '
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E be a normal extension of F by radicals containing the
splitting field B of f(x), and call G the group of E over

.F. Since for each i1, B, is a Kummer extension of B

i-1’
i1s abelian by Theorem 4.4.1.

i

B
N over 1-1

Since G is the group of E over B, . and B, is a normal
By_1 1-1 i

-1 then in the sequence of groups G = GB;>
GBID cee D GBP;-. 1 each is a normal s.upgroup of tI}e pre-
ceding. But GBi-l/GB is isomorphic to the grou_xiovai
Bi—l and hence is abelian. Thus G is solvable. Now Gg 1s

a normal subgroup of G, and G/GB‘is isomorphic to the group

the group of B
extension of Bi

over

of B over F; and is therefore the group of the polynomial
f(x). But G/GB is a homomorphic image of the solvable group
G and hence 1is 1tself solvable. ‘ |

- Conversely, lét the group G of f(x) be solvable, andﬁ_

 E be the splitting field of f(x). Let G = G D G 2.6 =1

1

be é‘sequence with abelian factor groups. Let B1 be the

5" Since Gi-l i1s the group of E over B

and G, is & normal subgroup of G

3.4.8 is normal over B

fixed field for G 1-1
-1 then B1 by Theorem o
and the group Gi;l/Gi is abelien.

i-1

By Theorem 4.4.4 B, is a Kummer extension of B, ., and by

i » i-1
definition it is a splitting field of a polynomial of the

form (x2 - al)(xn - az)...(-xn - a). By forming the suc-

cessive splitting fields of the x* - a_we see that B, 1is

k 1
by radicals. Therefore E is an exten-

1-1.
‘sion by redicals of ¥ which completes the proof.

an extension ole

6.3 The General Egustion of Degrée‘n,r
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IfF is a field, the totality of rational expres-
sions in the indeteminates“ul,uz,...,un with coefﬁcient.s
"in F is a field F(ul,uz,...,un). That is, every element in
‘F(ul,...,un) is the quotient Q(ul,.‘..,un) of two polynomials

_R(‘u‘l_,.;..,u“)/S(ul,...,uﬂ) with coefficients in F.

‘Definition: We define the general polynomial of
dogres n os o
(6.3.1) f(x) = xB - \i‘ixn’l + o.eo ¥ (—1)nun.
THEORFEM 6.3.1: If E is the splitting field of the

— o ————

~group of E over F(u ,...,un) is the symmetric group.

1'%
Proof: If vl,...;vn- are.the roots of f(x) in E,

then . = V. + V_ + «.. TV, U=V V4V Vet

2 12 ™V1%3 n-1"n’

v ey un = vlvzooovno Ne let F(Xl,...,xn) be the fleld gen’-

erated from F by the variavles x,...,x . -Also we let’
o& = x1+ eee + xn, ogz =xlx‘z +?(lx3 +—... + xn-lxn"}"’
= X.X_...X Dbe the elementary symmetric functions, that
°‘n 12 n -
- R T = L0 _ n-1 4
is, (x xl)(x xz)...(x ?n) x %yX + .00t
‘ " . | »
(--l)nc-(n =f({x). If g(o(l,...,un) is & polynomial in (0%,
BEFL and if we have
- ,
(6.3.2) h('xl""’xn) = g %xi,%xixk,... ) =0,
then relation (6.3.2) would still hold if the X; were re-
placed by the V5.
equal zero or g(u

n ) n
Tl;at is, g(?vi,%vivk,... ) would

1*"
plies g is identically zero. Thus g(«l,o(z,...,«n) =0

2»,...,un) would eqﬁal‘zero'which im-

only if g is the zero polynomial.
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We set up the following correspondence between
. Ebl"..-,dn) and F(t]l’uz,of-’un}o Let f(\ll.-.o,un)’/g(.ul,...’un)’ ‘.
an element of F(u1 sUpseee st )+ correspond to fkil,...,a%)/
gkil,...fxn). This correspondence is a mapping of F( 2,;..,uh)‘
on all of Flely,.er% ). Now if | |
(6.3.3) r(.x seeat )/g(o( ,...,o( ) =¢, (dl,...,o(!l)/gl(dl,...,un),
then fgl —-gfl-e 0. But, by the above discussion, equation
{6.3.3) implies that

r(ul,...,u ). gl(ul,...,u ) -‘g(gl,...,un).fl(ul,...,uh):='Q

8o that A

| f(ul,...,un)/g(ul,...,gn):= fl(ulf""un)/gl(ul""’nn)f

" Thus we have a one-to-one correspondence and thus the map-
ping of F(“l""’un) onto F«*l""'°§) is an isomorphism.-:

Bub under this correspondence f(x) corresponds to £ x).

" Sinoe E and F(xi,...,xh) are respectively splitting fields

of f(x) and f*(x), by Theorem 3.1.5 the isomorphism between
F(ul,u TN ) and F(o&

2’ 2’
isomorphism between E and F(x,,...,Xx ). Therefore, the
S n

...,«ﬁ) can be extended to an

group of E over F(ul,...,un) is isomorphic to the group
of F(xl,...,x ) over F(et yeee s ).

Each permutation of xl,...,xn leavascxl,...gxh

- fixed and, thus, 1nduces an automorphism of F(xl,...,x )

which leaves T ;xn) fixed. Conversely,‘each auto- -

1,... V
morphism of F(xl,...,xn) which leaves thl,...,o%) tixe§
- must permute the roots Xl""'xh of f*(x) and is completely o

determined by the permutation itreffects On Xj,s05X,.
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Thus, the group of F(xl,...,xn) over Fk!l""’ui) is the
symmetric group on n letters. But the group of F(xl,...,xh)
over Fkxl,...,«h) is isomorphic to the group of E over
-F(ul,...,un). Therefore the group of E over F(ul,...,un)
- is the symmetric group which was to be proved.

Corollary: The general eguation of degrée n is not

"solvable by radicals if n> 4.

_Proof: By Theorem 6.1.8 the symmetric group for
n> 4 is‘not solvable. Then by Theorem 6.3.1 above, the
general equation of degree n is not solvable by radicals if
n > 4.- This completes the proof.

6.4 Solvable Fguations of Prime Degree.

If f(x) is a polynomial in a field F, let oﬁ)..-,vg

“be the roots of f(x) in the splitting field E = F(u o).

100 1%,
Then each automorphism of E over F maps each root of f(x)
into a root of f(x), that is, permutes the roots. Since

E is génerated by the roots of f(x), different automorphisms
must effeét‘distinct permutations. Therefore the group of
an equation or the group of E over F is a permutation group

~acting on the rootscxl,o%,...dﬁ of f(x).

Definition: A transformation group G acting on a

set S is said to be transitive in S if for’sl,sz € S, there

is an element g € G such that gs s

1~ %2
For an irreducible equation p(x) the group of auto-
morphisms is always transitive in thebroots. For let o and

o! be any two roots of p(x), then F(x) and Fl«') are isomor-
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phic where the isomorphism is the identity on F. This iso-
mérphism can be extended to an autdmorphism of E by Theorem
3.1.5. Thus, there is an automorphism sending eny given '
root into any other root, which establishes the transiti-
vity of the group.

. S g - S ettt

is called a linear éubstitution modulo q if there exisat

fixed numbers b,c,(b# 0 mod q), such that T(i)= bi + c¢{mod q),
1i=1,2,...,q.
| Suppose we let G be a transitive substitution group

on the numbers 1,2,...,q and let G, be a normal subgroup

1
of G. Also let 1,2,...,k be the images of one of the num-

bers, say, 1, under the permutations of G We say that

1'

lez (1,2,...,k) is a domain of transitivity of G, relative

1
to 1l. If i € q is any number not in this domain of tran-
sitivity, there is a T of G whiech maps 1 on i. Then

76 17N(1) = 6 (1) = T(D)). Thus T(D) =1,2,...,k) 1s
a domain of transitivity of TG.T™1 relative to i. SincelG

1 1
is a normal subgroup of G, we have G1_==TGinl. Thus Gl(i)
::T(Dl) is again a domain of tramsitivity of Gy which con-

tains the integer i and has k elements. Since i was arbi-

trary, the domains of transitivity of G, all contain k

elements. Suppose gl(l) — hl(i) ’ wherg gl,hl C G,y. Then
hilgl(l):: i, which contradicts our assumption that no

element of Gl maps 1 on 1. Thus the numbers 1,2,...,q are
~dlivided into a collection of mutually exclusive sets, each
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containing k elements, so that k is a divisor of gq. There~
fore if q is a prime, either k= 1 and Gl consists of the
jdentity element alone, or k = q and Gl is also transitive.

THEOREM 6.4.1: Let p(x) be an irreducible egquation

of prime degree q in_a field F. The group G of p(x) which

is_a permutation group of the roots, or the integers 1,2,.

..,q, i® solvable if and only 1f, after a suitable change

in_the numbering of the roots, G is _a group of linear sub- -

stitutions T, where T(1i) = bi + c¢(mod g}, 1 =1,2,...,q,

and in the group G all the substitutions with b =1,

T(i)= 1 4 ¢, (¢ = 1,2,...,q) occur.

Proof: First we let G be solvable and let

'G=G°:> Gla...bar:crl:l |

be a sequence expibiting the solvability of G. If Gr is
not oycllic, we can choose a cyclic subgroup of the abelian
group G‘r:‘ Gr/Gr 1’ and then we can msert this néw oyc‘lic,v -
subgroup into the original sequence. Ve then consider the
~new sequence in which this cyclic groupfis the term before
- the last. Thus there 1s no loss 1n generality if we assume
that the penultimate term G, ié cyclic.

If T is a generator or.Gr, we can show that T con-
slsts of a cycle containing all .q of the numbers 1,2,...,q.
For if T = (11j...m)(n...p) then the powefs dr T would map -
1 into only 1,1,j,...,m, contrédicting-the transitivity off"

Gr' ~We can number the permutation letters in such a fashion

~thet (1) =1+ 1('mod q) and T%(1)= 1 4 c{mod q). Now let
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S be any element of Gr 1 Since Gr is a normael subgroup

of G sTs-1 is an element of ¢_, say, sTs~l= TP. Let

-1’
S(1) = J or s~1(3j) = i. Then

sT(1) = sTS™1(§) = TP(J) = J + blmod q). | |
Therefore ST(i) = S(1) + blmod q), or S({i+ 1)= s(i) + blmod q)
for each i. Thus, setting S(o) = ¢, we have S{1)= ¢ + b,
s(2)= s{1)+ b= ¢ + 2b, and, in general, S(i) = ¢ + ib(mod q).

Thus each substitution in Gr 3 is a linear substitution.

Also, the only elements of Gr which leave no 1 fixed,

-1
i=1l,...,q are in Gr’ since for each b;é 1, we can take i

such that (b - 1)1 = -c{mod g), and this implies that
bi + ¢ = i(mod q}, and 1 is left fixed by S. Thus if no i

is feft fixed P = 1 and thus the element S of Gr 1 must be

| in Gr. By induction, we prove that the elements of G are
all linear substitutions, and that the only cycles of q
letters are in Gr.  Suppose the assertion is true of Gr " '

‘Let S be in Gr n-1 and let T be a cycle in Gr and hence in

, 'Gr '’ Since the transform of a cycle is a oycle1,' sTs~1

is a ckycle in G and 1= even in Gr since Gr is a normal

~subgroup of G. Thus S'I‘S’.':L = TP for some b. By the preced-
ing argument, S is a linear substitution bi + c¢ and 1r’fs
itself is not in Gr’ then S leaves one integer fixed and
hence is not a cycle of g_elements.

12 T = (1,§,...,m), sr87L[s(1)] = s1(1) =5s(9),

while if k # 1,J,...,m, STS"}[s(k)] = sT(n) =s(k). Thus
sTs™! is the cyéle [S(i),S(j),...,S(m)] . |
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Conversely, let G be a group of linear substitutions
which contains a subgroup N of the form T(i)= i +4 c¢(mod q).
Since the only linear substitutions which do not leave an
integer fixed are in N, and since the transform of a cycle
of q elements 1s again a cycle of q elements, N is a normal
subgroup of G. In each coset NS where S(i)= bi 4 e¢{mod q)’
the substitution T-1S occurs where T(i)= i + c¢{mod q).
But T-1S(i) = (bi + ¢) - o = bi(mod q). Also, if S(1)=
bi{mod q) end S'(i) = b'i{mod q) then SS'(i)= bb'i{mod q).
Thus, the factor group (G/N) is isomorphic to a multipli- -
'cative subgroup of the numbers 1,2,...,q-1(mod q) snd is
_therefore abelian. Since (G/N) and N are both abelian, G
is solvable which completes_fhe proof.

Corollary 1: If G is & solvable transitive sub-

stitution group on q letters where'q is_prime, then the

only substitution of G which leaves two or more letters

_fixed is the identity.

Proof: Each substitution 1s linear ﬁodulo g. .Now
the congruence bi + ¢ Esi(mod q) haé no sélution in the case
b=1, c 3‘:‘0 and it has exactly one solution in the oase
b= 1. Finally, if b=1, ¢ = 0 the substitution is the
1dentity and thus Cordllary'l‘is proved;

Corollary 2: A solvable, irreducible egqusation of

prime degree in a field which 1s a subset of the real num-:f};

‘bers has either one real root_or all its roots_are real.
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G, is a solvable, transitive, substitution group onm q
letters where q is prime. In the splitting field, E, of
the equation, which is contained in the field of complex
numbers, the automorphism which maps a number into its com-
plex conjugate woild leave fixed all the real numbers. By
‘Corollary 1, if two roots are left fixéd, then all the |
roots are left fixed, s6 that if the equation has two real

roots all its roots are real. This proves Corollary 2.



CHAPTER VII

A METHOD OF DETERMINING THE GALOIS GRoUPL
7:1 Finding the Galois Group of en Eguation.

We will show how to find the Galois group of a
polynomial, after a finite number of operations, which con-
sist of finding the rational roots of certaiﬁ induced
equations. We determine sucoessively whether the Galois
- group 1s, or is not, contained in eacﬁ of the subgroups of
'g the symmetric group, Sn’ of degree equal to the degree of

“the given equation. i A‘
In this chapter we wililassume that the equation
- under consideration is.of the form

: n -1 L 2N 2N J =
plx) x —»1-&1an + -\-an 0

3"] where the coefficients belong to & separable field F of

characteristic 0. We let G-denote the group of p(x) rela-
~tive to F, and we let H, of order ﬁ, denote any fixed sub~
group of.the symmetriéygroup Sn of degree n. G}and H can

be considered to be permutetion subgroups on n symbols.

We let xl,o(z,...,o(n be the roots of plx) = 0. We construct
a function,‘fi(xl,x ,...,xn), of the n indeterminants |

i ,...;xn, which is invariant under the permutations of -

x
1" 2 .
- H._ We first define 4 to_be the function

icr. Wilson,.R.L., A Method for the Determination of
the Galois Group. Duke Math. Journal, Vol.17{(1950),p.403-8.
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(7.1.1) ql(xl'x2’°"’xn) = Iq-l]%'z”'xn-l'

We next define qi(yl,xz,...,xn), i=1,2,...,m, to be the

functions .
qi(xl,xz,... ,xn) — ql[hi(xl) ,hi(xz) ""’hi(xn)]
where h, are the permutations of H. We finally define
fl( xl,xz,...,xn) to be the f“unc_tion
(7.1.2) fl(xl,.-..,xn) = %qifrl,xz,...,xn).
Since the m permutations of H form a group, any
permutation of H applied to fl('xl""’xn) will simply per-

mute the q (x. ,+...,x ). Thus f, is left invariant under
i 71 n 1

the permutations of H. But any pemutation of Sn not in H

will not leave f. inveriant, for such a permutation will

1

earry ql into some function not contained in f. . Upon

, 1
permuting the indeterminants by a permutation not in H, we

obtaein a second function rz( xl,...,xn) which is distinct

from rl(x_ ,...,xn). By using all of the permutations s

, 1
of Sn we obtain, say, k distinct polynomizls

i

(7.1.3) T (xl,...,xn)=:si[fl(xl,...,xn)], J=1,2,...,k.

J

If sl and sz are two distinct elements of the same coset

‘of H in Sn’ then 8, = sah, where h € H. Since sl[fl]z
szh[fl-] = sz[f1] ’ Sl end 52 map 1‘1 in the same way. Con-
— -1 ] = -1
versely, if sl[fl'l = .sz(fl], 81 sz[rl] = 1‘2 and sl s, € H.
Thus s, € sla. 'Finally, k = nt/m, the index of k in Sn"
Definition: We define the equation

. p S ‘ ‘ ‘
 (‘7-1-4) bly) = ;l;fl{y - fi(otlsdz,---.otn)] =0
to be the induced eguation of H. Since the coefficients
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of iXy) are symmetric in the roots of p(x) = 0, they are in
F. Since the functions f} are not necessariiy the only
functions of n indeterminates which are invariant under H,
4?1)413 not necessarily unique. We can easily determine if
any of the roots of @(y):: 0 lie in F. P |
THEOREM 7.1.1: The Galols group G relative to the

coefficient field F of a separable equation p(x) = O is

uniguely defined by the following properties: (1) Every

raticnal function, with coeffliclients in F, of the roots of

p(x) = O which is invarient under G is equal to an element

of F, (2) Every rational function with coefficlents in F

of _the_roots_of p(x) = O which is equal to_a number in F

is invariant under G.

——— o

in F, of the roots of p(x) = 0 are elements of the splitting
field E of p(x) = 0. The elements of F are precisely those
elements of E which are invariant under the Galois group
of E relative to F.
If none of the roots of @(y) is in F, then
fylXyeety ,
p{x) = 0 with coefficients in F, invariant under H, which

""’“h) is a rational function ef the roots of

is not equal to en element in F. By Theorem 7.1.1, part (1),
G is not contained in H. Also, if at least ohe non—repeated}‘
root ofiﬁ(Y) belongs to F, then this root is 1nVariant under
G, by Theorem 7.1.1, part {(2). Since this is a non—repeated

root, it is invariant under precisely the permutations of
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H, for permutations not in H do not leave a particular fj ‘

inverisnt. Therefore in this latter case G must be contain-

ed in H. -Thus we have established the following tlieorem:
THEQREM 7.1.2: If the eguation induced by H has no

T e t——— Vi e Gt S T TS s S

. If the equation induced by H has st least_one non-repecated

root in F, then G is either H, or_a proper subgroup of H.

If $y) =0 has only multiple roots in F, conclus-
ions similar to those above can not be drawn, since the
f\mcpi.oﬁs fj are then invariant under H and also under perm-
utations which are not in H. In this case, we consider the
n! functions,

q(l.i) = ofloge- - fngl, 0 €1, £ n-i,
where the 1‘i are integers and j = 1,2,...,n] is some label-
“ing of th?se functions. Since the ri are such that 0 £ rié
n-i, this will give n! functions q(lj) . Now oél is a root of
p(x) of degree n; e(z is a root of pl x)/(‘x -«l) of degree
n-l; oy is & root' of plx)/(x —oﬂl)(x - 0(2)...(1: -xi_l) of
1

0 £ ry < n-l;«gz can be reduced tow 2, 0 £ i'z 4 n-2; and
s0o on. Thus all the elements of the field E can be express-b

degrse n-i+l, etc. Tl:ter-efore,o(l‘:’l can be reduced tod{i ’

ed rationally in terms of the n! elements qis). The q:(l_j)
therefore form =a generating. system for the root field E.
Since the qgj) are not necessarily distinct, they do not |
necessarily form ay minimal generating system. If H is con-

tained in G, there is an intermediate field B belonging to
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the group H, such that F is contained in B by Theorem 3.4.4.
Since B is a subfield of the splitting field, E, of p{x)= O

any element b, of B is of the form,

1
ot 3)
b= “—4“1’0:} » oy € F
Let .
qgj);z hi[qij)]’ i=1,2,...,m; hi

denote the m elements we obtain from q(j) by applying the

€ H.,’,

m pemutations h

[N

of H to the o(i, and denote by

d%caq(a) 1= 1,2,...m,

the m functlons which we obtain from b, by applying these

1

m permutations to b Since B is the fixed field for H,

l.
b, = b. = ... =b and hence

L3

We define
m
r(i) 1 =4

Now f{-ﬂ is invariant under H, since the q(ij) are permuted
| by the elements of H. Hence the f{j)xbelong to B, the
fixed field of H. Thus the f('l-ﬂ form a generating system
for B. If F is properly contained in B, at least one of
the f(j) is not in F.

('7.1.5) £,(a) = :Z‘aj lf(j)

where a 1s a parameter. Since ‘the I‘ij) are invariant under
the permutations of H, then fl(a) is invarient under H.
Now using (7.1.5); instead of (7.1.2), we form the induced
equation @(y,a) =0, as in (7.1.4):
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X
$ly,a) = [T{y - fi(a)],
=1 , N
=31y [0
where fi(a) = 8, [fl(a)]:: < a (Si [fl ]}, sie Sn. The
induced equation now depends upon the parameter a. If we
choose [6(n! - 1) + l] distinct values of a in F, we have
[e(nf - 1) + l] induced equations, one for each value of
the parameter if each of these induced equations has a root
in F,’then one of the fi(a) must belong to F for at least
n! distinct values of a in F. 1If we denote these values
of a by at, t=1,2,...,n , and the corresponding valuesvof_

fi(a) by 4., we have, from (7.1.5), the system of equations

£
(7.1.6) %&%'lf(ij) =4, (t=1,2,.c.m ).
Crgmerfs rule gives each of the f§3) in F, since the coef-
ficients of (7.1.6} are in F, and the determinant of the
coefficients of the f§j) is the Vandermonde determinant,
and hence non-vanishing. But if H ¢ G, B > F, end at least
one fgj) is not in F. fherefore if B c G there are only =a
finite number of values of a such that ;Xy,a):= O has roots
in F. Also, any such equation having roots in F wili have
only multiple roots in F by Theorem‘;.l.z. Now, if G € H,
at least one fi(a) will be in F for every value of a in F,
by Theorém 7.1.2. If fu(a):= fv(a),for n! distinct values
of a, we will have the system of equations

%aj‘l[f(i) - f(J)] =0, t =1,2,...,n!.

J=1 t u v ‘
Since, as before, the Vandermonde determinant is not equal
to zero, we have rgi) = fij), i=1,2,...,0!. But this im-

plies that s and s_ belong to the same coset of H in S
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and even in H the hypothesis (compare with the discussion
following equation (7.1.3)) that suﬁ.#'svﬁ. Thus no two
fi(a) can be equal for more than (n! - 1) distinct values
of a. Therefore, there are only a finite number of a in

F such that iiy,a):: 0 has multiple roots in F. Hence by

a suitable choice of a, it will be possible in every case
to apply Theorem 7.1.2. This proves the following theorem.

THEORIM, 7.1.3:. For any «iven polynomial eguation

and an arbitrary group H, which is a subgroup of the sym-

metric_group Sn of degree n, it _is possible to obtain after

a finite number of steps an induced equation which has either

.

-no roots in F or has non-répeated roots in F.

By using Theorem 7.1.2 we huve a means for sifting
the possibie choices of H for a given equation. If, for a
given H, G EEEi,.but«S is contained in no subgroup of H{,
then G = H. If G is in no subgroup of the symmetric grohpzf_
of degree n, then G is the symmetric group of degree n.

7.2 An_Example of the Method of 7.1.

As an illustration‘of Theorem 7.1.3 we consider

the polynomial

x2+ax-a xls-—xz‘{-x—l:-‘-o.

1 2 17
Now q, :x%xz( cf.(7.1.1)). Let H

p(x) = x° - a

1
Then by applying each permutation of H

ve (1)(2)(3), (123), (152).

1 in turm to q, we -

get flz x%xzf xgxs-‘—f xgxl. Now apply the permutation .-

1.

- 2 2y  Renlac
xgxi-+ xlxs—f xgxl. ’Replaee Ii by‘xi. Our

A{12), which is not.in H., to each element of f

T e g
8ot I,

“Phus we- * .
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induced equation is

By) =(y - £y - 1)

- _ 3
y (ala2 5&5)y+(a2+a

=y%+ 2y +5 =0.

- 6a_a_a )

3*983 1%2%3

1

But this equation has no roots in F, thus G is not contained

in H..

1l \
Next, let Hz = (1}(2)(3), (13). Then we get
L 2
fl._ xlxz—{- x5x2
2 2

fz ,..xle ~+ xsxl
f3: x2 x + x2 3°

Replace xi byo( . Now

&;(yl = yl - (f e, )y1+(f f2+f Pt f,0 )y - £,0,0,

— 2

after simplification. Since this equation has a multiple

root in F, no conclusions can be drawn.

Let us consider H 3 = (1)(2)(3), (12). Then we get
—- 2
£ = XX, + X5,
— x® 2
fz = le + xzx5
— x%x 2
Ty = X1%5 ¥ X%y
Replacing xi by <, ,
by )=vy3 - (1, +E,tf )y2+(f £, +E,00)Y, - £1.8,

3
f-Yz ‘\’2Y2 L 3}'2

after simplification. This equation has a non-repeated

root in F. But Ha has no proper subgroups. Therefore H

3

is the Galois group of our equation.



CHAPTER VIII

GaLOIS FIELDS

8.1 Further Discussion of Finite Fields.

We will discuss further some general properties of
finite fields (cf. 3.2) with particular attention to the
cyelotomic polynomial. It was shown in Lemma 2.2.2 that if
F{x) and P( x) are relatively prime polynomials over a field
K, there exist polynowials A(x) and B{x) such that

A(x)F(x) + B(x)P(x) = 1.
This holds, in particulear, for a Galois field G.F.(p®), i.e.
a finite field of characteristic p containing p2 elements.
When n = 1 this means
Al(x)F(x) + B(x)P(x} = 1l{mod p),
which can also be expressed in_ the form
A(x)F(x) = 1{moa p,P(x}].

s o> S gt o ey e

ing to and irreducible in the G.F.(p") will be denoted by

I.G¢.(m,pB). ‘
THEOREM 8.1.1: Every I.0.(m,p?) divides

nm.

Proof: Upon dividing any polynomial G(x) belonginé -

to the G.F.(pB) by F(x) we obtain a remainder of the form

+ vee = m-l
ao+ a,x toa X

91
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where the a's are elements of the G.F.(pR). We denote the
p?® distinet residues of the above form by
(8.101) ; Yi, i= O,l’...”pnm - l’
and in particular, by Yo, the residue 0. Consider the pro-
ducts by a fix:d residue ¥ Y
y j% o’
(8-1.2) YjYi (i:l,oo-’pnm - 1).
IfYY =Y Y {mod F(x then Y (Y, - Y )= Olmod F(x}|.
£y = 1Y [moa ®(n)], {4y - 1) = ofmoa F(x)]

By Theorem 2.2.% Y, = Y , and hence the products (8.1.2)

i

are all distinct and di?farent from Yo. Thus the residues
obtained on dividingtthem by F(x) must colncide, apart from
their order, with the non-zero résidues in (8.1.1). We
form the producfs of the non-zero fesidues in (8.1.1) andb
"(8.1.2),

. nm
nml

b b -1
iTle (iji) = irjl Yi, [mod F(x)].

PPy | | ,
Since [T Yigé O(@od F(x)], by Theorem 2.2.3 we have
i=1

nm
(8.1.3) 1} "1 _ 1= 0fmoa Fix)].
In particular, this is true when Y,6K is the residue x.

THEOREM_8.1.2: If f{x) is_a polynomial in G.F.(pR)

‘and t is a.non-negative_integer,

o) = [e) P

Proof: Let ‘
f(x) = e + ¢ X + ens +okxk

where the c's belong to the G.F.(p®). From the Corollary
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to Theorem 3.2.5,
n

(8.1.4) cf L (1=0,1,...,K).

Raising f(x) to the power p, and noting that the multinomial
coefficlents of those product terms which are not p-th pow-
ers are multiples of p, and hence equal to zero, in G.F.(p1),
we have

(f(x)p = ‘pg + cil)xp 4 eee cixp.
By induction, we obtain

8 8 s s s _s
[f(x)]p_: cg "rcfxp + aee T ci < .

Applying (8.1.4) we get, for s= n,

_ n n n
{f(x)]p = c_ _t.clxp + eee +ckxP .

Theorem 8.1.2 now follows from a simple induction argument.

nt
THEOREM 8.1.3: An I.Q. (m,pn) divides x* - x in

the field if and only if ¢t is a multiple of m.

Proof: If t = ms, a multiple of m, it follows dir-
ectly from Theorem 8.1.1 that if F(x) is an I.Q.(m,p%),

nt nms mﬂ nm nm
(8.1.5) xP = xP =xP P ---P Ex[mod F(x)].

Next, suppose that t = ms + r, where O £ r < m.

By (8.1.5),

nt nms ) or nr
* -x= [xp P - x=xP - x[mod F(x)] .
nt
Hence if xP -x is divisible by F(x) in the G.F.(p®)
: nr o
(8.1.6) ® = x{woa r(xm].

‘By f{x) we denote any one of thevpnm expressions
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v -1
°o+ clx+... +cm_lxm |
‘where the c's are elements of the G.F.(p®). If (8.1.6)
holds, then by Theorem 8.1.2,

[f( x)] pnr = o xpnr

in other words, the equation

) = £(x) [mod F(x)] ,

nr
(8.1.7) ¥® - ¥ = 0[moa F(x)]

has pP® distinct solutions [mod F(x)]. However, an algebraic
equation cennot have more distinet solutions than its degree,v
(compare with the discussion on pg. 14) and hence (8.1.7)

A ]

"is an identity and r = O.

THEOREM 8.1.4: If F(x) is an I.Q.(m,p") and M(x)

is an I.Q.(h,p"), where k divides m, then_the roots of

(8.1.8) M(¥) = 0(wod F(x)]
are

P | pn(h-l')
(8.1.9) 2 ¢ SN £

where ¥, is any root of (8.1.8) necessarily belonging to_a
G.F.(p2™). ‘

Proof: By Theorem 8.1.2,

nr nr
M(YP ) = [M(Y P
_ - nr o -
Hence if Yl is 8 root of (8.1.8), 80 is Yi’ . Since M{x)
is'.an I.G.{h,p®), we have by Theorem 8.1.1, with x = Yl"
pnh » R R L
- Esnay) = 0 [moa F(x)].
Since m is a multiple of h {éf. (8.1.5)),
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nm

.1, p = F .
(8.1.10) o=y, [mod (x)] ‘
If

na nb
(8.1.11) Y2 =vP [mod F(x)], .

for a < b < h, we would have from (8.1.10), after raising
(8.1.11) to the power poim-a)

pnm pn(m-afb)
¥ o=y =7vP [moa F(x)],

and by Theorem 8.1.3 m-a+b would be divisible by m. Finally

I}

b-a = 0, so that any two of the roots (8.1.9) are incon-

gruent mod F(x).

S VS Sy i LD A i T gt T Wrots e TS Y e W

tion

(h-1)n

n
. — - - - YP
M(Y) = (Y YlHY Y{ JeoolY 7 BE

In particular (cf. Theorem 2.3.3, with x for s), F(¥) = 0

has_the distinct roots

n (m-1)n
x,xP ,...,xP .

THUEOREM 8.1.5: An I.Q.{m,p®) remains irreducible

Proof: The roots of an equation F(Y) = O of degrese
m in a G.F.(pR) are

n 2n (m-1)n
X,Xp ,X‘p -"'L.;‘x

all belonging to the G.F.(p®™®). If F(Y) is redueidble in
~ the G.F.(p*®), the root x will satisfy an 1.Q.(t,p ),

t < m, of the form
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kn kn(t-1)
(8.1.12) (Y - x)(Y - xP )...(¢x - xP ) = o.
The constant term of (8.1.12) must be an element of the

G.F.(pX™) so that by the Corollary to Theorem 3.2.5
kn 2kn t-1) kn kn tkn
[xn—p 2 ! ](p -1) =x -1_-3
in the G.F.(pkn). By Theorem 8.1.3, tk is a multiple of
m, and therefore t is a multiple of m which contradicts

t < m.
THEOREN 8.1.6: An I.Q.(m,p?) decomposes_in_the

G.F.(pnk) into d factors each of which is an I.Q,(m/d,pnk),

- — -

G.F.(p?™®) are

n _2n (m-1)n nm \
x, ¥ , @ ,...,xP ’{%p = x in the G.F.(pnm)].

They may be separated into d4 sets of m/d roots each,

ni pn(d+1) pn(2d+1) n[(m/d -1)+1]

X , X » X P

PR ¢
for i = 0,1,...,4-1. From Theorem 8.1.2 a symmetric
function of the roots in one set is unaltered ﬁpon being
ralsed to the power pﬂd and therefore belongs to the.
G.F.(ﬁnd)Q The roots of the generai set therefore satiafy
an equationv | | |

ni n(d+i)
F(Y) =(Y - )y - & )oer =0
| n(m-1)d
nd a
Letv X::O(l,xp :dg,c-o’xp :dm’
4
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with coefficients belonging to the G.F.(ﬂ“i) and thus to
the G.F.(K). 1r

(8.1.13) F (¥) = (¥ =o )Y =0 )eeelY =)
: o) 1 e

Q
m m -1 9,,
=Yd - ale +-00 +( l) da
then 3
—._-'Z‘dr,az__—: Ze(ro(s,... .
Let
pni pni pni
Fi(Y)z (Y —«1 (Y - o) JeoolY oty )
m -1 m d
so that a
ni ni ni
a(li)z 20‘? ,&( ) ﬁol 0(1; 3o o
Now ' .
(1) pn pmi pni
al :zo(r —‘(20(1.) = 31 )
(1) p i pnl Pni pni
| 8 = =y K = (Zorpe )t =25 ,... .
- Thus '
: z ol z -1 -a ni
(8114)F(Y) Y - af Y& + ... (-1)% m/d -

We next prove that the Fi(Y) are irreducible in the
‘G.F.(pRd). Suppose on the contrary, that in the latter fleld
F (Y)= ¢ (Y)M (¥). -
o) o o
Then _
Fi(Y):: £ (Y)M (Y),
‘each coefficient of f (Y) being the power p® of the

i+l
corresponding one of fi(Y), end esch coefficlent of 1358
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being the power p@ of the corresponding one of f The

a-1"

coefficientsvof}the product fofl"'fd-l are conseguently
unchanged.when wNe replace the cogfficients of each fi by
their pB-th powers. Therefore the coefficients of the
product fofl...fd_l are unaltered upon being raised to
the power p?. Hence that product belongs to the G.F.(p%),
so that F(x) would be reducible in that field, contrary
to our hypothesis. Since the degree, m/d, of Fi(Y); an
I.Q.(m/d,pd), is relatively prime to k/d, Fi(Y)’ is ir-
reducible in the G.F.(pB¥) by Theorem 8.1.5. This com-
pletes the proof.

8.2 Primitive roots of Unity:

Let F be a G.F.(m), m= p®, and let s be an inde-
terminate. We consider the field K = F(s), of all rational
functions of s with'coefficients in F. By the Corollary
to Theorem 3.2.5, the non-zero elements of F= G.F.(p"?)
form a cyclic group of order m-l = pB-1, generated by some
element a.-

Let q be a prime number. Let e be a primitive
q-th root of unity, so that
(8.2.1) el -1=o0.

Let Kq: K(e). If g=p, xP - 1 =1(x - 1)P, and all the
roots of x4 - 1 = 0 are equal to e. In the following, we
consider the case q # p. Any primitive gq-th root e of

unity satisfies the cyclotomic equation

(8.2.2) ¢{x) = {x%-1)/(x - 1) =x3L %32 ¢ . 4+ 1=o0.
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The remaining roots of (8.2.2) are e2,eS,...,ed 1,

THEOREM 8.2:1: All the primitive q-th roots of

unity belong to K if_send only if g p is_a_divisor of

m-1=pl -1,

Proof: The problem of determining the primitive
g-th roots of unity in K is—equivalent to that of determin-
ing the reducibility of C{x) in K. Consider any polynom-
ial f(x) whose coefficients lie in F and hence in K also.
Suppose we have a decompoéition of f(x) into irreducible
factors in F. Then, a further decomposition of f(x) in K
is not possible. For if Q(x), with coefficients in F 1is
irreducible in F, while Q(x) = Ql(x)Qz(x) in K, then at
least one of the factors Ql(x),QZ(;) must contain s. But
ﬁhen their product Qi(x)Qz(x) containé S. Thus all the
questions relative to the reducibility of f(x) in X reduce
' to those in F.

~ Now, f(x) is completely réducible in F (and hence
also in K) if and only if one (and,hénce every) primitive
q-th root of unity e exists in F. A

| We determine the condition under which (8.2.1)

has a root e ¥ 1 in F. Now x = al is a solution of x% - 1
=0, if and only if at9=1, i.e., tq= O(mod m-1). If
(q,m=-1) = 1, then t = 0(mod m-1) is the only solution of
this congruence, and accordingly x =1 is the only root of
(8.2.1). On the other hand, if (q,m-1) = q, the congruence

has a non-trivial solution t = O(mod m-1/q), and we can

-
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take x = aB-1/Q a5 g primitive root of (8.2.1). This
proves Theorem 8.2.1.

In general, the question of the reducibility of |
C(x) is answered by the following theorem. |

THEOREM 8.2.2: If k is the smallest exponent_ for

which ™ = 1{mod a), then C(x) in (8.2.2) decomposes in

F=G.F.(m) (and hence in K also) into irreducibls factors

of degree k.
Proof: Let
(8.2.3) flx)= K - a1 4 ... —q—(-l)kaK
1
= (x —ocl)(x = o) e (X - )
be any polynomial with coefficients in F. As in (8.1.13)
and (8.1.14)

mt n® m’
(x) = (x - oy Mx =g Jeeelx =t )
t t
=xK - gl K-l 4 (-l)kai .
t  nt
As in {8.1.4) ¢® =cP = c¢ for every element ¢ in F. 1In
' t t
partigular, a‘{' = al,anz‘ = 8,,.-. and hence
(8.2.4) (%) = (%),
’ 2

Thus if « is any root of f(x} =0, then «%,of ,... are
also roots. Let f{x) be an irreducible factor of C(x).

If ¢c# 1 is a root of f(x), then e is automaticelly a

: primitive q-th root of unity, and, from (8.2.4), el ,e 2, ‘
«c«., 8Tre also roots of f{x). Since f(x) has degree <£ g-1,
f(x) has at most q-1 roots. If the residues m,mz,...,mq'l

2 g-1
= 1(mod q) sre all distinct, e®,e® ,...,e® = e are g-1
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distinct primitive g-th roots of unity which are also
roots of f(x). Hence f(x) is di&isible by the linear fact-
ors corresponding to all the primitive g-th roots of unity.
Thus f(x) = C(x), that is, C(x) is irreducibdle.
However, if k ¢ q-1 is the least integer, for which
| m¥ = 1(mod q)
then f{x) is divisible by the product

- k-1
fl(x) =(x -e)(x - e®)...(x - B )
= xK - blxk‘l + ... +-(-l)kbk, say.
Since the b's are elementary symmetric funttions of the
Troots,
2 k-1 qm
bl = [bi((-z,em,e‘,n A )]
: 2

--':‘bi(em,em yooes€)

2 k-1
= bi(e,em,em yeee 8l )

= bi.
Thus the bi are all roots of the equation
YR - v =0.

'Every element of F satisfies thisfequation and the m = pf
elements of F are its only roots, since an eyuation of
degree m canﬁot have more than m roots. Thus every bi is
‘en element of F. Since fl(x) is & factor of the irreducible
~polynomial f(x), we have
| 2 () = 1(x).
Thus every irreducible factor of f{x) is of degree k, and

so k 1s a divisor of q-1, say kh = g-1. All the primitive

o
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roots of unity can be arranged in h rows; each containing

k conjugate roots:

el,eg“1 ,...,e’i‘

SRLREREEELTN
eh,elﬁ ,...,eﬁ
This proves Theorem 8.2.2.

~ Let (r,p) = 1. To K adjoin an r-th root of unity, e
and let Kr== K(er). Thus e. satisfies the equation xT - 1
= 0. Let

¢ (x) = xT-1 ¢ xT-2 4 ... +1.

in P (end also in K = F(s)) into_irreducible factors of

‘degree k, where k is_the least positive integer for which

(8.2.5) mK= 1(mod r).

Proof: Let .
f{x) = xB + alxh'l

. be an irreducible factor of Cr(x) in F and lst er be any

root of f£(x) = O. After raising f(x) to the power mP, we

4+ ... +-ah

have (ef.(8.1.4))

| t t t
[f(x)}m — xhm 4 alx(h"l)m + .. + 8.
?,8?2,..-,9 k-l

This implies that along with er,- we have e
~ also as roots of f(x) = O. bThus f(x}) is divisible by the
product

: k-1
glx) = (x - er)(x - e?)..,.(z_t - e? ).
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k-1

The er,e{f.,eg ,...,e? ‘are distinct primitive r-th roots

of unity. Letting

— K k-1
glx)= x + 8% + ... toay

it follows that the a's are symmetric functions of

mk—l
er,e?_,...,er , and hence
m o ' mk-l]m
a; = (ai(er,,er,...,er )
m m2
= ai(er,er ,...,er)
n mk—l
= ai(er,er,...,er ) = a.

Thus the ay is & root of the equation

YOy | ]
- of dégree m whose Toots are precisely the m elements of F.
Thus the a's belong to F and, consequently, g(x) = f(x).

Therefore h= k, and the theorem is proved.



CHAPTER 1IX

A CRITERION FOR SOLVABILITY BY RADICALS
IN A FIELD OF PRIME CHARACTERISTIC!

The Galois eriterion for solvablility by radicals
given in Chapter VI is valid for fiélds of characteristic
zero, but not in those of prime characteristic. The crit-
erion which we now consider is valid in any field and em-
phasizes further the importance of primitive roots of unity
end the cyclotomic polynomial in the theory of solvability
by radicals.

9.1 Absolutely Algebraic Fields.

— " — - ——" S -

is called a prime field P.

P is either isomorphic to the field of rational

numbers or to a field of residues(mod p), where p is a prime?'

When we are considering a simple extension F(x) of

a field F, we have two cases to consider. The first cor-

responds to the assumption that two elements :EBakxk,

: :Efbkxk of F(x) are equal only when for every k, 8, = bk’

while in the second case the two elements msy be equal

when ak;# b, for some k. In the first case, the element

k
x_i1s called transcendental over F, while in the second

1g.L.Brewer, Amer. J1. of Math. vol. 63, 1941 p.119-126.
ZC.C.Macduffee, An Introduction to Abstract Algebrs, p.157.
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case it is called algebraic over F(ef. 2.3). Vhen an el-

ement o of a field E is algebraic over a subfield F, it is
naturally also algebraic dvér every intermediate field
between E and F. In particular, if o is algebrsic over
the prime field P contained in E, then o ig algebralic over

every subfield of E. Such an element is called gbsolutely

algebreic. Similariy, we call a field absolutely algebraic
when 1t is algebraic over its prime field P, or, in other
words, when all its elements are absolutely algebraic.

Definition: The absolute degree of & field E is

its degree over its prime field P. Thus, if the absolute
degree of a field E is m, then (E/P) = m. |

9.2 G-adic Numbers%

Suppose p is any fixed prime number.  Ne consider
the absclutely slgebraic fields of prime characteristic p.
These include all the finite extensions of P, i.e., every |
finite extension of P is an absolutely algebralc field,
for example G.F.(ph). |

Consider all the prime numbefs ay in their natursal
order:

q, = 2,q2: 5,q3—:.5,... .

Then every positive integer can be represented as -an infin-

ite product
@ x,
(9.2.1) m = ﬂqii :

~where the exponents x; are positive integers, and only a

1German: Grad = degree.
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finite number of them aré different from zero. More gen-
er&lly, we now consider, symbolically, all expressions of
the form (9.2.1) in which every exponent X, is a Pixed ]

non-negative integer, or o . Ve call this expression a

- G-number.

‘The class of all G-numbers inéludes the natural
numbers, and in agréement with the laws of integers, we

postulate the following laws: Two G-numbers

%y Yy

m = qui y = TTqi
are egual if and only if xi:: yi for every 1. Also m is
divisible by n if and only if for every i, yi_L_ Xy ir

x.-yi

m/n ='7Tq11

-where xi-yi is set equal to zero when Xy =00, y; =, and
:xi-yi is set equal to oo when Xy = o0 and ¥y is finite.
Thus all G-nurbers are divisible by 1, and all divide that
G-number which has the general exponent X;= o0 « |

| Ejery(finite or infinite) set of G-numbers has
always a greatest common divisor d, which contains all the
common divisors, and a least common multiple v which is
contained in all the commor multiples. The exponent of
qi in d is the same as the least exponent of qj which oc-
curs in any G-number of the set, and the exponent of qi in

v, is the same as the greatest of these exponents. Now,

in case the latter does not exist(consider, for example,
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" the set of positive even integers), the exponent of qi‘is
teken to be .
If m is any G-number, then the set S of natural

numbers which are contained in m have the following prop-

erties:

(1) If n is a number of S, then every divisor of

n belongs to S.

(2) 1Ir n ,n, are numbers of S; then their least
common multiple is also a number in S.

Thus in every case, the G-number m ie the least common
multiple of all the numbers of 5, and is therefore eantirely
determined by the system S. ¢Conversely, if any system S

of natural numbers has the properties (1) and (2), above,:
and if m 1s the least common multiple of all the nﬁmbers

- of S5, then S is the set of positive integers which are con-
’tained in m.

Now let E be any absoclutely algebraié field of
characteristic p. The degree of any finite field which is
contained in E belongs to a system S of naturalknumbers
which has the properties (1) and (2) above. Let m be the
least common multiple of the numbers of S. If m is & nat-
‘ural number, then E is a finite field of degree m. Con-
versely, if E is a finite fie}d, then S represents the set
of degrees of the subfields of E. e shall denote by m

the absolute’degree of E in cases where E is not finite

and m is not a natural number. Thus every absolutelx»alge-
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bralc field ¥ of charscteristic p has a determined degree

— — W ot w—

e shall Jdenote by A(p,n) the absolutély algebraic
field of prime charscteristic p and absolute degree n.
Thus when n is finite A(p,n) = G.F.(pB), is the Galois
field containing p“ elements.

THEOREM 9.2.1: An irreducible polynouial F(x) of

degree m in_the A(p,n) factors in the A(p,nk) into d dis-

tinct_irreducible factors_each of degree m/d where (m,k);= d.

Proof: The coefficients of F(x) are all algebfaic
over the prime field P = G.F.(p), and hence they belong
to some G.F.(ph), where h is a divisor of n. Since 4 is
a divisor of k, G.F.(phd) _C_A( p',nk). By Theorem 8.1.6
F(x) factors in the G.F.(phd) into d distinct irreducible
factors
(8.2.1) F(x) =:F0(X)Fl(¥)".Fd—l(X)
each of degree m/d. #e wish to show that these are the
irreducible factors of F(x) in the A(p,nk). Let
(9.2.2) F(x):; £ ()t (%)
where the fi(x) are irreducible in the A(p,nk). The coef-
ficients of the fi(x) belong to some G.F.{pC¢ < Al{p,nk).
Thus ¢ is a divisor of nk. Let ¢ = ab, where a is a divisor

of n and b is a divisor of k; let vih be the l.c.m. of a

and h, and let v2d be the l.c.m. of b and d. Since n is

a common multiple of a and h, vlh divides n. Since k 1s

-
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a comrzon multiple of b sand 4, vzd divides k. Thus
G.F.(p€) = G.F.(p9P) € G.F.(p¥ahVad) < 4(p,nk).
Therefore G.F.(pl) and G.F.(phVi) are subfields of Alp,n),
F(x) is irreducible in these fields, and by Theorem 8.1.6.
(vl,m) = 1. Since v, is a fector of k/d, and (k/d,m) = 1,
(vz,m)-= 1. PFinally, (vlvz,m):z 1. Applying Theorem
8.1.5, to the Fi(x) in (9.2.1) which are irreducible in
the G.F.(pdh), we conclude that they are irreducible in
the G.F.(pd1%aV2), Thus F(x) has at most d distinct ir;
reducible factors in the subfield G.F.(p®) of G.F.{pdhviVz),
Thus the factorization (9.2.2) in the 4(p,nk) igkthe same
as the factorization (9.2.1) in the G.F.(pdh). |

9.3 The Solvability Criterion.

We shall first prove that the set of all absolutely
algebraic elements’bf a Tfield E of prime characteristic 1s
an absolutely algebraic field. Let G.F.(p) = P, and let
o and P be any two absolutely algebraic elements of E.

Now iﬁx and «3 belong to the finite extension P(«,P) of P;
and hence l/« and «f satisfy equations{of degrees
(P(<,f);P)) with coefficients in P. Thus 1/« and «f are
abSolutély algebraic(cf. Theorem 1.2.2, and p.l2).
Definition: The rield of all absolutely algebraic
elements of a field F of prime characteriétic p is called -

the maximal absolutely algebraic subfield of F and will be

denoted by M.A.{p,m), where m is its absolute-degrsee.

Definition: The number of residue classes prime to
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~n is denoted bY‘#(n) and is called the euler4>-functionl.

Let ¢{n) = k, snd let rl,..'.,rk be the set of dis-
tinct residues prime to n. If (p,n)= 1, then (pri ,n) = 1.
Since pri";réprj(mod n), if ri¢ rj(mod(n), then PTy 5 ey PTy
is also a set of distinct residuves prime to n. Hence
7T(pr1) = ﬁri(mod n) from which we geot
(9.3.1) p¢(n) = 1l{(mod n) (Fuler's Theorem).

If n =0(mod p), say n = pa, then

x0 - 1= (Xq)P -1 =(x4 - l)p,

(as in the discussion in Theorem 4.4.1) and no root of unity

has an order greater than ¢. In particular, there are no

primitive n-th _roots of unity.

If nz O(mod p) the polynomial xP - 1 is separable,
since the ohly root of its formal derivative function
nxb-1 irs X =0(' c¢f. Theorem 3.2.12) ; consequently, as in the
introductory remarks in 4.2, there exists a primitive n-th
root of unity e, and e,e?,e%,...,eR"1 eB = 1 are the n
distinet n-th roots of unity.

. Let eK nave the order r, r £ n, so that r is the
least integer for which eXT = 1. Since e has order n, n' kr
by Lemma 3.2.1. Thus r =n if and only if (k,n) = 1.
Hence the cyclotomic polynomial

rCn(x) = xB-1 4 xB-2 o .. +1 _
has precisely ¢{n) distinet primitive n-th roots of unity,

if n is not a multiple of p.
1l

Cf. MacDuffes, Intro. to Abstract Alg., p.32-35.
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#e shall assume in the following discussion that
n is not a multiple of p, and we shall denote by Eh the
splitting field of Cn(x) over F.

THEOREM 9.2.2: Let F be 8 _field of characteristic

p snd let F 2 M.A.(p,m). Let n = O(mod p). Then
Cn(x):: xn'l—r xn'2-+ eee +1

factors_in F into ¢p(n)/a digtinet irreducible(sepurable)

factors each of degree a, where (P(n),m) = d and a is the

least exponent for which pdags 1{mod n). Further, the Gal-

ols group of Cn(x) over E is cyclic of order a.

Proof: Since d is a divisor of m, the G.F.(pd) =
A{p,m). By Theorem 8.2.3, Gn(x) factors in the G.F.(pd[
into irreducible factors of degree a. Letting ¢(n) = dr
and m = dk, we have (r,k) = 1. By (9.3.1) §¢(n):= pdT =
- 1(mod n), and since a is the léast integer for which
pdazs 1(mod n), we have a 'r.'kThus (a,k) = 1. By Theorenm
9.2.1, the irreducible factors of degree a of Cn(x) in the
| G.F.(p?) = A{p,d) remain irreducible in the A{p,kd)= A(p,m).
Now these are the irreducible factors of Cn(x) in F, since
the coefficients of the irreducible factors 6f Cn(x) in F
are symmetrié functions of certain of the primitive n-th
roots of unity(which are themselveé absolutely algebraic)
and hence elements of the A{p,m) © F. Since the Galois
group H of Cn(x) relative to the G.F.(?) iskcyclic(cf. the
discussion in Theorem 4.2.1) and of order a, and the common

degree of the irreducible factors of Cn(x) in F is a, it
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follows frdm the properties of the cyclotomic polynomial
that H is the Galois group of Cn(x) relative to F, which
proves the theoren.

From Theorem 9.2.2 we have the following:

Corollary: Let F be a field of prime characteristic

P, AF:: A(p,m) € F. Then Cn(x), n # O{mod p), is _irreduc-

ivle in F, if and only if @b(n),,m) =1, and ¢(n) is_the

least exponent for which pﬁn)i‘- 1(mod n}.

THEOREM 9.2.3: Let F be a field of prime charact-

eristic p, and let m be composite, p)’m. Then F C E_ < En

d
(En i1s the splitting field of 'Gn( x)), where 4 is a divisor

of n. Moreover, if 4 = el is_the product of dis-

9%
tinct primes then (En/Ed) ,n.

Proof: Let n = kd. Now any root of Cd(x) is a root
# 1 of x4 - 1 =0, and hence of x3€ - 1 =0, ana finally,

= N C ] C E .
of Cdk( x) Cn(x) Hence F C Ed C hn

Let AF:: A{p,m). Ifn = »p:'l ...p:" 't;hen1

$n) =n(l -1)(1-2)...(1-1) L

pl p2 pr '

from which it follows.-that ¢(d) ' 4(n) whenever d ‘ n. Since

d(4) ‘¢(n), it follows from Theorem 9.2.2 that (_Ed/F) = a

where a is the least exponent for which p3® = 1(mod d) and

d= (d;(n) ,m). Now if a and b are reletively prime positive
s-1

integers such that a = l{mod b), then al = 1(mod bS) ,v

for_any positive integer s. _Thus it follows_that

1see MacDuffee, Intro. to Abstract Alg. p.23.
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a e(n/d)
(p™) = 1{mod n).

Therefore, if

k. k k
1
n - ql qzznnoqrr’

S S

the exponent to which pd belongs(mod n) is eqll...qrr_

where 0 € s, £ ki (i=1,2,e..,7). Thus from Theorem 9.2.2

i
s, 8 s S, S s

1 Sa. - —_— 1%z T
(En/F):: eq, q, ...qrr and thus (nn/Ed)-— Q) Qp e reiip 0 8

divisor of n.

9.3, Solvability by Rgdicals.

Both the fact that primitive n-th roots of unity
exist and the fact that Cn(x) is solvable by radicals over
a field of characteristic zero for every positive integer
n 1s4made use of in the Galois criterion{cf. p.75). How-
ever, primitive roots of unity do not exist over a field F
of prime characteristic p if n = O(mod p), and if
n = 0(mod p), C,(x) may not be solvable by radicals. The
recognition of these facts leads to the criterion of Theorem
9.3.1 for solvability by radicals over any field. In the
following we let E be a normal extension of F. By Theorem
3.4.3 E is the splitting field of a separable polynomial -
£(x) in F. /

Let X be any extension of F and>let N be the split-
ting field of f(x)} in K. The root fleld N is independent
of.the particular choice of f(x), and is uniquely determined
by F, E, and K. Ve shall denote it by N= {E,k}. Now
E < {E,k}, and X ¢ {§,K] . Finally, M will denote the



114

maximal separable extension of F contained in E. As usual,
G is the group of B over F, and G 1s isomorphic to the group
of M over F, so thatd(M:F) = n.

THEOREM 9.3.1: Let f(x) be_a polynomiasl in a field

F, and _let n be the order of the Galols groﬁp of f£(x) re-

lative to a field F. Then f(x) is_solvable by radicals

over F if asnd only if:

(1) G is solvable,

(2) Primitive n-th roots of unity exist over F,

(3) Cn(x) is solvable by radicals over F.

Proof: Sufficiency: Suppose (1), (2), (3) hold.

From (2} there exists a chain of fields

FCPF coe F F 2K
, 1 c c r’ r n

where each Fj is pure and of prime degree over F From

3-1°
(1), H is solvable and hence there exists a chain of fields

F CF c...€F_ ={MF},F_ 2M
r T+l r+s T r+s

where each Frfi is'normal and of prime degree 9y over Fr+i-l'

Since F D E , and n = O(mod q,) it follows that F_2 E
r n i r q1

and hence Fr N is pure over F (i =1,8,00.,8). If
+ .

. r+i-1’
M = E then f(x) is solvable by radicals over F. If M# E,
then F is of prime characteristic p, and there exists a
chain of fields
M==KCK_C ... C K =E
1l - v

wherse Kj== Kj 1@{1), oy being a root of an irreducible

1B.L.van der viaerden, Moderne Algebra, vol.l, sec.

ed. Berlin, Julius Springer, 1937, p.125-129.



115

binomial xP - aj, aj in Kj-l-' Let K= Frfs’ K = K(a(l),
ceey K. = K («¢.)+ Then either K, = K or K, is pure
S R B Gaaf SR £ g eP
and of prime degree p over Kj-l’ (j=1,2,...,v). There-

fore there exists a chain of fields

FCF CoooCF CF Cooo CF CF COOQCF
r '+ r

1 1 +8 r+s+1l Trastt’
where F 2 E where each F, 1s pure and of prime degree
r+s+t i
over Fi 1’ (i= 1,2,...,r+8+t). Hence f(x) is solvable by

radicals over F.

Necessity: Suppose f(x),ié solvable by radicals
over F. If n=1, it is clear that (1), (2}, andb(S) hold.
Suppose n = 1, and let I be the Adistinct prime
factors of n. By our assumption, there exists a chain of
fields
(9.3.1) F CFlC eee C FS, FSQ E,

where F_ = B“i 1( Pi)’ ,’31 being a root of @n irreducible bin-

omial x 1 - b1 of prime degree a in Fi-l’ (i= 1,2,...,8).

Let q, ,q, ,..-5Q

i1 "ip ig
which are not equal to the characteristic of F. Then if

be those primes found among ql,qé,...,qs

m=2gq, q, «.+Qq, , pPrimitive m-th roots of unity exist over
i1 'ip ig
F. Now Eqis metacyclicl over F and hence there exists a

chain of fields

1o normal field N over F is called metacyclic if
there exists a chain of subflelds

F=N CN . CN_ =N
o‘: 1<: c t .
where Ni is cyclic of prime degree Py oveeri_l, (1 =1,.

.oy t)
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?

:KCKC...CK:E
1 t

where Ki is normal and of prime degree over Ki (i=1,2,

1!
ceeyt). Let L = Kt, Llr L(B),..., Li: Li_l(Bi), (1=1,

2,¢0+,8). Then since E C Kt (j =1,2,...,8), it follows
ai

from (9.3.1) that either L, =1L, ; or L, is pure and of

prime degree over Li—l (i= 1,2,...,8). Hence there exists
a chaln of fields

= e w e C Cuoo
F KCch KtCKt+l c K

where each K

, K >M

t+u t+u

1 is normal and of prime degree over Ki-

Hence H is solvable and likewise G.

l.

If F is of characteristic zero, it is clear that
(2) and (3) hold. Suppose F is of characteristic p. Since
from (9.3.1) F, 2> E, there exists for each pi;

(i =1,2,...,7) a qji:: Py such that l}M,Fj{} ,Fji] é Fji.

Moreover, since M 1s separable over F, ({M'FJ~1}’FJ ) is
i

separable over F, , and belng pure over F. cannot be
Jj-1 Ji"l

of degree p over F Hence pi;& p(i=1,...,r), and

31-1.
thus primitive n-th roots of unity exist over F. Since
F, =F, (P, )
Jg -1 Pji

p )
Fj 1’ X i, bj has all of its roots in éM,FJ lz’ a sub-
i~ i i~ ,

S.{M,Fji_l} and {M,Fji_l; is normal over

field of F_ (i=1,2,...,r). This implies that E, CFg,
1

(1=1,2,...,7r), and hence E45 ¢ ¥, where 4 = p;Pg-+-Ppe

It {En,Fs}.::Fs, then Cp(x) is solvable by radicals and
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the proof is complete. If EEn’Fégab FS, it follows from
Theorem 9.2.3 that [{EH,FSK :Fs] is a divisor of n. Thus,

since zEn,FS} is cyeclic over FS,' and E C Fs (i= 1,2,...,1) ,b

Pi
there exists a chain of flelds

FCF .C...cC = {E
s € Yan1 Fs+t n’Fs}’
where each F is pure and of prime degree over F ., ..
s+l s+i-1
But E C {E ,F E; and hence C (x) is solvable by radicals
n n’ s n
over F, and (3) holds. This completes the proof of Theorem
9.3.1. |
If F is of characteristic zero, Tneorem 9.%.1 is
a classical Galois criterion which is equivalent to a num-
ber-theoretic condition on the index series of G.. If F is
of prime characteristic,'we will show by means of the next
two theorems concerning the cyclotomic polynomial, that
the above Theorem 9.3.1 is equivalent to a similar condition

on the index series of G.

THEOREM 9.3.2: If n is tomposite, n FZ O(mod p),

Cn(x)'is solvable by _radicsls over F of charscteristic p,

if and only if Cd(x) is solvable by radicals over F for

every_prime divisor d of n.

Proof: From the definition of solvabllity by rad-
icals and Theorem 9.2.4 the condition is necessary.

To show that the condition is sufficient, let
pl’pz”"’pr be the distinct prime factors of n, and suppose

that Cp (x) is solvable by radicals over F, (1 ::1,2,...,r).
i
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Then there exists a seguence of fields

F C.F1 C.F2

where FSQ Ep (i =1,2,...,r) and where Fj is pure and of
: i

C...CF,
S

prime degree over F, .. As in Theorem 9.3.1, this implies

1
that Cn(x) is solvai)le by radicals over F.
Let F 2 M.A.(p,m). We define a class C(p,m) of
primes I:ecursively as follows: Let g be any prime(including 1).
1. If q ¢ p, then g € C(p,m), ‘
2. p ¢ Clp,m),
3. If q > p, let k be the least exponent such that

~ v, V. v
p(¢'( Q)@ X = 1(mod q), and let k _____qllqg.&.”qss. Then g < q,

and q € C(p,m) if and only if y € C(p,m).

THEOREM 9.3.3: Let F D M.a.{p,m). If q is_a prime

%+ D Cq( x) is_solvable by radicals over F, if and only if
q €C(p,m). v |
| Proof: Thi.s follows from Theorems 9.2.2, 9.3.1,
and 9.3.2.

THEOREM 9.3.4: Let F 2 M.A.(p,m). Then f(x) over

F is_solvable by radicals if and only if the index_series

of the Galois group of f(x) relative to F consists _of prime

numbers_belonging to C{p,m).

Proof: It follows from Theorems 9.3.2, and 9.3.3

that this result is equivalent to Theorem 9.3.1 when F has

-

prime characteristic.

THEOREM 9.3.5: Let F D M.A.(p,m). A _neccessary
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and sufficient condition_ that Cn( x) in F whose_roots_are

the ¢(n) distinct primitive n-th roots of unity be solvable

a0
by radicals over F for every n%O(mod p) is_that p l m.

Proof: Necessity: Suppose Cn( x)} is solvable by

radicals over F for every n z O(mod p). Suppose that the
exponent 4 of p in the factorization of m is finite. Let

d+1 , :
k = pP -1, so that (k,pj.= 1. Then p is the least ex-

ponent such that p(‘b(k) 8P = }(mod k). From Theorems
9.2.2 and 9.3.4, C,(x) is not éolvable by radicals over F.
Sufficiency: By Theorems 9.3.2 and 9.3.3, if

pm m, every prime .—,é p belongs to the class C{p,m).
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