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PREFACE

During the brief 1life of the High Altitude Research
Project (H.A.R.P.) at McGill University, considerable
effort was directed towards the development of filament
wound fibreglass rocket motor cases capable of withstanding
gun launch, Initial motor case designs in this program
were based upon traditional strength of materials design
formulas but it soon became apparent that a completely new
gpproach was required in order to derive maximum benefits
from this anistropic composite material.

Fibreglass motor case development work, however,
was only a part of the overall H.A.R.P. program; there were
not sufficient funds available for an in depth study of
compesite materials analysis techniques. Following a
rather sterile literature search for information on this
sub ject, it was decided theat a more empirical approach
would have to be taken towards the development of
operational hardware until better analytical methcds becams
available. The search for these methods continued
thereafter but only on a spare time basis.

At the time of project cancellation in 1967,
censiderable progress had besn made theoretically as well

as practically, howsver, By then it had been learned that
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a layer of filament wound fibreglass could generally be
treated as a planar orthotropic material and that the
elastic properties of such a layer were predictable., Thus
it became possible, through application of the strain ‘
compatibility condition, to determine theoretically the
effective elastic constants of any filament wound laminate.
The structural analysis reported by O'Connell (1) indicates
the manner in which these new concepts were applied in
conjunction with conventional plate.and shell theory to
study the behaviour of the rocket motor case during léunch.
On the practical side, rocket motor cases loaded with
solid rocket propellants in both end and centre burning
configurations were being successfully launched from 155
and 175 millimetre smooth bore guns at accelerations of up
to 10,000 g.

Unfortunately, the analytical approach outlined
above could still not be considered entirely satisfactory.
O'Connell's assumption that conventional sﬁell deformation
equations (which were developed for isotropic structures)“ﬂ
could be applied to the analysis of non-isotropic structures
was questionable, to say the least. Further, although hoop
and axial layer stresses were predicted by the analysis, no
serious attempt was made to identify a condition of

structural failure.

A similar concern over the adequacy of available
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design methods was apparent in the FRP (Fibre Reinforced
Plastic) industry at that time. The consensus of opinion
among knowledgeable FRP designers and manufacturers
contacted seemed to be that the growth of the industry was
being severely constrained by a lack of knowledge in the
area of FRP design, Numerous structural failures of FRP
products, caused primarily by improper design, were being
attributed to the material itself; as a result, the
reputation of FRP as a structural material was being
severely damaged.

Accordingly, when Fiberglas Canada Limited was
approached in 1967, with a suggestion that they sponsor a
study of this problem, their response was immediately
favourable. The objective of this study was quite simple:
to carry out a thorough study of the available methods for
analyzing structures composed of fibre reinforced materials
and to determine which of these afforded the best
opportunity for circumventing the limitations of those
methods generally employed. It was particularly hoped
that an analytical technique would be found which would
enable a more rational analysis of H.A.R.P. rocket motor
cases,

This thesis describes the results of this study.
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INTRODUCTION

4

The primarj ob jective of this thesis is to
demonstrate to structural designers that a recently
developed theory - the theory of laminated composites - has
at last made it possible to approach the design of fibre;v
reinforced composite structures on an entirely rational
basis.

In Section 1, the fundamentals of reinforcement are
briefly reviewed in order to establish a reference point
for subsequent analytical discussions. Though other forms
of reinforcement are considered herein, the emphasis is on
fibre reinforcement. The effects of key variables, e.g. |
constituent material properties, fibre length, yolume
fraction and orientation, on the perfofmance of the
composite are analyzed andlrough guidelines are presented
for estimatirig the strength and stiffness properties of
unidirectionally reinforced materials.

The design methods which prevailed prior to the
development of the aforementioned theory are reviewed in
Section 2. Relative strengths and weaknesses of each
method are discussed and specific design limitations
indicated. Towards the end of the section, the theory of

‘laminated -composites is itself introduced.



One of the basic premises of this theory is that
a laminete is comprised of a number of thin isotropic
and / or orthotreopic layers. Section 3 comprises a
detailed development of layer or lamina stress-strain
relationships. The development starts with the generalized
Hooke's Law (which describes the behaviour of a completely
anisotropic material) and proceeds through the introduction
of transformation relationships, material symmetry
coasiderations and the plane stress assumption, to the
lamina constitutive equations. In addition, commonly used
lamina failure criteria are reviewed and methods of
determining principal lamina properties are discussed.

The objective of Section )} is to demonstrate the
interrelationship between gross laminate behaviour and the
response characteristics of the individual layers. It is
shown that laminate constitutive equations are derived by
following exactly the same procedure as is employed in the
establishment of the force and moment resultant equations
in conventional plate and shell theory. The only
significant difference is that in this instance, the
constituent material, i.e., lamina, streSS—strain
relationships vary from layer to layer. It is further
revealed that these laminate constitutive equations are,
in effect, a2 more general form of the force and moment

resultant equations and that they can in fact be used in



place of them in the analysis of laminated plate or shell
structures.

Another important topic dealt with in Section 4 is
laminate failure analysis. This simply involves working |
backwards from gross laminate deformations to individual
layer strains and stresses to determine whether or not
failure has occurréd, according to the selected failure
criterion.

To demonstrate the application of the theory, a
particular shell problem is studied in Section 5. A
vertical cylindrical storage tank is analyzed and equations
are developed for predicting wall deflections, mid-plane
strains and shell curvatures at any point in the structure.
These. equations; it is pointed out, can be used to provide
the necessary input for a completg stress (failure)
analysis of the tank. |

A secondary objective of this investigation is also
realized in this section. It is clearly shown, through a
series bf design stﬁdies of one of the H.A.R.P. gun-
launched rockets, that the tank analysis developed
according to the theory of laminated composites is a
-considerable improvement over the one originally used in
the H.A.R.P. program.

Section 6 concludes the main body of the thesis.

It contains general comments concerning the study as &



whole, a number of specific conclusions relative to the
design of FRP cylindrical storage tanks (or gun-launched '
rocket motor cases) and several suggestions for future
work.

There are, in addition, four appendices. Appendix A
contains a listing of a computer program for calculating |
the lamina stiffness coefficients of a generally orthotropic

layer. It is one of two programs developed during the
course of this study. The second, which is listed in
Appendix D, performs a stress anglysis at any point of
interest in a laminated cylindrical tank in accordance
with the theoretical analysis presented in Section 5. Yet
another computer program listing is included in Appendix B.
This program, which is capable of computing laminate
stiffnesses and performing a laminate strength analysis

is not original, however; it is included herein for the
sake of completepess. In Appendix C, the mathematical
details of solving the governing differential equation of

displacement are pfovided.



SECTION 1
AN INTRODUCTION TO

FIBRE-REINFORCED COMPOSITE MATERIALS

Fibre-reinforced composites are, without doubt,
the most attractive of the many new materials that have
become available to structural designers in recent years.
Many are stiffer, stronger and lighter than any of the
structural materials previously known to man. |

A particularly interesting feature of these new
materials is that the fibres can be oriented within the
composite, thus enabling their optimum positioning
relative to anticipated load conditions. This means
that a new dimension - design of the material itself -
has been introduced to the traditional problem of
structural design. It will be advantageous, therefore,
to review some of the fundamentals of reinforcement
before proceeding to discussions relating to structural

design with these new materials,

1.1 COMPOSITE MATERIALS

Composite materials are not new; reinforced
materials have been with us since man first constructed

crude huts from mixtures of mud and straw. They also



abound in nature, wood being a prime example.

The modern science of composite materials,
however, did not evolve until this century. It is
therefore worthwhile to differentiate between these
traditional materials and the modern composites that
have been developed through scientific understanding.

A reasonable definition for a modern composite
material has been suggested by Broutman and Krock (2):

1) the composite material must be man-made

2) the composite must be a combination of at least
two chemically distinct materials with a distinct
interface separating the components

3) the separate materials forming the composite must
be combined three-dimensionally (clad metals and
honeycomb sandwiches are not considered to be
basic composite materials)

) the composite material should be created to obtain
properties which would not be achieved by any of
the components acting alone. |

Composites can generally be classified according
to the basic forms of reinforcement:

a) particle - the orthogonal dimensions of the
reinforcement are approximately equal

b) flake - two orthogonal dimensions of the
reinforcement are much greater than the third

¢c) rfibre - one dimension of the reinforcement is much



greater than the other two orthogonal dimensions,
The highest performance composite materials
developed to date, i.e., those with the greatest strength
and stiffness-to-weight ratios, fall into the fibre-
reinforced category, and it is to this general class of

materials that subsequent discussion will be limited.

1.2 THEORY OF FIBRE REINFORCEMENT

Fibre-reinforced composite materials usually
consist of fibres, which are the primary load bearing'
constituent, and a matrix, whose principal role, apart
from holding the fibres together, is to diétribute the
abplied loads evenly among the fibres. Their properties
are dependent upon a number of factors including: ’

1) the physical properties of the fibres
2) the physical properties of the matrix
3) fibre length
L4) the volume fraction of the fibre material relative
to the total volume |
5) fibre orientation
Each of these will be considered in the following

subsections.

1.2.1 Fibres

The principal role of the fibres is to carry load.

Accordingly, their mechanical properties such as strength



and modulus are of'primary importance. Table 1.1 lists
some of the fibre reinforcements that are currently
available and their most significant mechanical properties.
Since in many structural applications the weight of the
structure itself must be considered, the specific strengths
and moduli of these materials are also provided for
reference.

Disregarding asbestos fibres and whiskers which are
available only in a discontinuous form, it is apparent from
the table that the most interesting reinforcing materials
are the boron and carbon fibres. Unfortunately, at this
time their costs are prohibitive and they are generally
limited to aerospace applications where weight saving is
of the utmost importance, Of the remaining more economical
materials, glass fibres offer very high strengths but
relatively low modulﬁs values in comparison to steel. On
a specific basis, however, they appear to be the superior
reinforcing material. Nylon fibres are not often
considered for structural applications due to their
extremely low modulus.

Additional fibre properties to be considered are
thermal stability, i.e., effect of temperature on strength
and stiffness, and chemical reactiveness. The latter
property determines the effectiveness of the bond betweeh

the fibres and the matrix and is of extreme importance.



TABLE 1.1

FIBRE REINFORCEMENTS

Material Specific Tensile Specific Modulus Specific
Gravity Strength Strength Modulus
P (103;1) '(1064531) (1o§ps1) (1%46’31)
p
Drawn nylon 6/6 1.1 i120 110 0.7 0.6
High tensile steel wire 7.87 190 24 30 3.8
E glass fibre 2.54 250 98 10.5 3.9
S glass fibre 2.5 380 150 12 h.7
Asbestos fibre 2.5 Lu0 180 23 9.3
Boron fibre 2,65 500 188 50 18.8
Carbon fibre, Type 2 1.74 430 250 33 19
Carbon fibre, Type 1 2.0 300 150 60 30
SiC whiskers 3.21 3000 935 70-125 23-38

A1,0, whiskers 3.96 6200 1565 70-330 18-83
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1.2.2 Matrices

The role of the matrix is an extremely demanding
one. It must have mechanical properties compatible with
the requirements stated earlier (Section 1.2), ductility
| to deter crack propogation, corrosion resistance (in many
applications) and, occasionally, the ability to withstand

high temperatures.

Metals are ideally suited for this role,
principally because alloy compositions which are able to
resist corrosive environments and high temperatures have
already been developed. However, economical processes are
not yet available to produce large volumes of metal
matrix composite material for general structural
application.

Commonly used plastio matrices and their principal
mechanical properties are listed in Table 1.2. The
so-called advanced composites, i.e., the high performance
composite materials, are almost exclusively based upon
thermosetting plastic matrices and continuous fibres of
boron, carbon or glass, Thermoplastic matrices are mainly
used in conjunction with discontinuous fibre reinforcements.
The resulting composites readily lend themselves to mass
production processes such as injection moulding or
extrusion.

The primary consideration in the selection of a

matrix material for a particular application is environment.



Thermosets

Polyesters
Epoxies

Thermoplastics

ABS

SAN

Polystyrene
Polypropylene
?olyethylene
Nylon 6/6

COMMON PLASTIC MATRIX MATERIALS

TABLE 1.2

Specific
Gravity

P

1.10-1.46
1.11-1.40

1.04
1.08
1.06
0.91
0.96
1.1

Tensile
Strength

]
(10 psi)

6-13
4-13

6.0
9.6
7.5
5.0

L.3
11.8

Specific
Strength

a/
(1035;1)

LI». 1-11-8
2,9-11.8

5.8
8.9
7.1
5.5
4.5
10.4

Modulus

E
(10%psi)

0.3-0.64
0.35

0.32
0.50
0.49
0.18
0.2
0.41

Spscific

Modulus
E/p

(10%psi)

0.2-0.56
0.25-0.32

0.31
0.46
0.46
0.20
0.25
0.36

19
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Temperature and chemical resistance requirements will
usually quickly narrow down the field of applicable
materials. Final decisions are then usually based upon
mechanical property requirements.

A wealth 'of additional information on plastic
matrix materials is available from publications such as
the Modern Plastics Encyclopedia () and manufacturers!

literature.

1l.2.3 Effects of Fibre Length and Volume Fraction

Fibre-reinforced composites are normally classified
as either continuous or discontinuous-fibre reinforced.
Broutman (5) has defined discontinuous-fibre reinforced
plastics as plastics whose reinforcing fibres have length
to diameter (L/dB ratios varying between 100 and 5000,
Accordingly, continuous-fibre reinforced plastics refer to
plastics reinforced by fibres which have length to diameter
ratios of greater than 5000. The effect of the fibre |
length on composite properties is perhaps best understood
by studying the fundamental mechanics of reinforcement of
both continuous and discontinuous-fibre reinforced
materials. Such a study, however, is not possible without
also considering the effects of the volume fraction, as

will soon be apparent.
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1.2.3.1 Continuous-[Fibre Reinforced Materials

Most common continuous-fibre reinforced materials
are reinforced either unidirectionally, bi-axially or
randomly. For the purposes of this discussion, however,
only unidirectional reinforcement will be considered.

The remaining forms will be discussed later in the section
on the effects of orientation. |

Consider the small element of unidirectionally
reinflorced material indiceted in Figure 1.1 and assume the
following conditiona:

1) the fibres all have the same strength, uniform size
and shepes and are fully bonded to the matrix, i.e.,
no slippage can occur at the interface

2) they are aligned parallel to ths tension axis and
are completely surrounded by matrix

3) they are dispersed throughout the composite

l4) both the fibres and the matrix are Hookean
substances.

It is apparent from the figure éhat the total load
or composite load, F., ia shared between the fibres which
carry a load F%, and the matrix which carries a load F,.
Therefore,

Fo = F, + Fy | (1-1)

or, in terms of stresses,

Te Ac = GfAF + crmAm | (1-2)



Yl

thus )

. = 0, (A/A) + o (A/A) (1-3)
where ¢ and A represent stress and area respectively.
However, the area ratios, (Af/A‘) and (A,/A.), are in fact
the volume fractions of the fibre, V#, and of the matrix,

Vins

in the composite. Therefore,
0 - gV, + GV, (1-4)
Since both the fibres and the matrix'are assumed to behave
elastically, |
0. = E.e M + EqeV, (x-5)
where E denotes elastic modulus and € strain.

Also from condition (1),

€ = € = €, - (1-6)
hence, ‘
0. = E eV, + B€eVn (1-7)
or
(O::/ec) = E,‘:V-(: -+ Eme (1-8)

Equation (1-8) indicates that the stress-strain behaviour
of the composite is also linear. Consequently, the equaﬁion

can assume the form
E = E‘V‘ + Eme (1-9)
where E is the elastic modulus of the composite.

Equations (1-4) and (1-9) both follow the so-called

"rule of mixtures'". According to this rule, a particular -
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composite property is dependenﬁ upon that same property of
the fibre and of the matrix and upon their respective
volume fractions, The general form of equations following

this rule is

R =RV, + RV, (1-10)
or,since

V=1 - V‘ (1-11)

k=R +R(1-V) (1-12)

where P represents the particular property of interest
e.8., E.

The effect of fibre volume fraction on the initial
modulus of a theoretical glass fibre/polyester resinb
composite is illustrated graphically in PFigure 1.2.
According to equation (1-9), which is the basis for the
graph, composite modulus is a linear function of.the fibre
volume fraction throughout the range of possible values.
This obviously cannot be true since the maximum volume
fraction of cylindrical fibres which can be packed into a
composite is only approximately 93 percent. Furthermors,
according to Broutman (6), when fibre volume fractions
exceed 0.8, properties are usually found to drop off
because of the inability of the matrix to wet and
infiltrate the bundles of fibres.

In Figure 1.3, the general deformation process for

a unidirectionally reinforced material is shown. It is



commonly accepted (7,8) that the deformation proceeds
in four stages:
Stage I - both the fibres and matrix deform elastically
Stage II - the fibres continue to deform elastically,
but the matrix now deforms plastically
Stage III - the fibres and matrix deform plastically
Stage IV - the fibres fracture followed by composite

fracture.
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The stress-strain behaviour of idealized composites,

such as those assumed earlier in this section, is described

entirely by Stage I of the graph. More typical brittle
fibre/plastic matrix composites go through Stages I and II
before their ultimate failure. It is only with ductile
fibre/ductile matrix composites that ;ll four stages of
deformation are encountered. Glass fibre/polyester
materials are typical of brittle fibre/plastic matrix
composites and steel wire/epoxy of the latter type.
Clearly, unidirectional fibre reinforcement
significantly improves the composite properties in the
direction of the fibres. It must be pointed out, however,
that the fibres have a far less beneficial effect on the
transverse properties, i.e., in the x and z directions
(refer to Figure 1.1). Generally, they tend to increase
the stiffness in these directions without significantly

4improving the related strengths. Thus, composites of this
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type are frequently relatively brittle transverse to

the primary direction of reinforcement.

1.2.3.2 Discontinuous-Fibre Reinforced Materials

In discontinuous-fibre reinforced materials, the
relatively short reinforcing fibres are generally dispersed
randomly throughout the composite. However, to facilitate
understanding, discussions herein will be limited, as in
the previous section, to the case of reinforcing fibres
aligned parallel to each other and to the tensile load axis,

From Figure 1.4, it is apparent that an applied
tensile load is shared by the fibres and the matrix in much
the same way that it was in the continuously feinforced
sample., In this case, however, the maximum load carrying
capability of a given fibre may not be.dependent upon its
breaking strength; it may instead pull out of the matrix
before it is fully stressed.

Consider the load on an individual fibre, such as
the one indicated in the figure. This load, ff’ can be

related to both the fibre streés,

2
f, = oy (nd /4) (1-13)
and to the shear stress at the fibre/matrix interface,
fo = Tdl (1-14)

where 0} is the tensile stress in the fibre

1; is the shear stress at the fibre/resin interface
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d‘ is the fibre diameter
L is the length of the fibre embedded in the matrix.
Thus, the fibre will pull out of the matrix when the load
is less than that which causes tensile failure, but greater
than that which induces a shear failure, i.e., when T,
becomes higher than the allowable shear stress, 'F; , of the
matrix or of the interfacial bonding agent (whichever is
smaller). The load carrying capability of the fibre is
therefore dependent entirely upon the length, L, of fibre
embedded in the matrix, or
f = Twd L (1-15)
This length, L, is limited however to the range of values
o<Llgl (1-16)
where U.represents the value of L at which the fibre
tensile strength, U/, is reached.
At this point where both fibre tensile and matrix

shear failures are possible,

/ / )
£ - o;(wrd;/éf) (1-17)
and
f; - 'C;de.\cl.’ (1-18)
hence,
0, (ﬂd4/4) - ’_c,:Trd{_l o (1-19)
or
" - (1/4)(0}'/1;)cl{_ (1-20)

To attain this condition, the fibre has to be



"
twice this length, i.e., 2l (since it must be embedded to

the same depth in the matrix on both sides of the cross

gaction). The fibre length in this spascial case is termed
’

the critical fibre length, L., and, since L, = 2l , 1is

defined by

4 ’?
L, = (1), /T)d, (1-21)
where L. is the critical fibre length
Of is the fibre tensile strength
T; is the allowable shear stress of the matrix or

of the interconstituent binding agent, whichever
is smaller
&¥ is the fibre diameter.
Kelly and Tyson (9) have derived aﬁ equation

which shows the relationship between the strength of

discontinuous fibre composites and fibre length:

o, = oV (1 - (‘2-353')) +a,(1-Y,) (1-22)
where L is the ratio of the actual fibre length to the |
critical fibre length (L/L.). Due to its obvious
similarity to the "rule of mixtures'" equations developed
earlier for éontinuous-fipre reinforced compogites, it is
frequently referred to as the "modified rule of mixtures".

Equation (1-22) indicates that discontinuous
fibres will not contribute 100 percent of their strength

to the composite. Nevertheless, they should contribute
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almost as much strength as continuous fibre reinforcements
if they are sufficiently long. For example, theoretically
when L/L, = 10, 95 percent of the fibre strength is
contributed; with L/L, = 100, 99.5 percent. This is an
extremely important point as the strongest materials known
at this time are the short single crystals commonly
referred to as whiskers (see Table 1.1). Whiskers
typically have aspect ratios ranging between 150 and 2500.
An additional point of interest arising from this
brief study concerns the breaking of a fibre in a
continuous fibre composite. It is clear from the
foregoing that even when a fibre breaks, it does not stop
being useful as a load carrying member. After breaking,
the remaining portions will take up and carry load in much
the same way as discontinuous fibre reinforcements. Only
in the region of the fracture will the composite strength

decrease slightly.

1.2.4 Fibre Orientation Effects

Fibre orientation has a very pronounced effect on
the properties of both continuous and discontinuocus-fibre
reinforced materials. In particular, it will determine
whether a fibre provides unidirectional, bidimensional
(planar) or tridimensional reinforcement. Various
conditions of fibre orientation are illustrated in

Figure 1.5.
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l1.2.4.1 Unidirectional Reinforcement

The maximum possible composite strength and modulus
are obtained when all of the reinforcing fibres are aligned
rarallel to one another. These maximum properties, however,
are attained only in the fibre axis direction; the composite
strength in the two orthogonal directions is in general no
better than that of the matrix. Unfortunately, there are
relatively few applications for purely unidirectionally
reinforced materials; seldom are uniaxial loads gncountered
in practice.

One way of getting around this problem, at least in
the case of continuous reinforcement, is to combine layers
of unidirectionally reinforced materials to form composite
laminates with biaxial load carrying capabilities. The
advantage of this method is that laminate properties can be
closely tailored to meet the anticipated loading conditions.
For example, in a pressure vessel application, the ratio of
hoop to longitudinal layers would be 2 to 1. In this way,
extremely efficient structures can be achieved. Filament
wound pipes and tanks are two examples of the application
of this principle;

Discontinuous reinforcements, as was pointed out
earlier, are generally oriented randomly in their
composites. Unidirectional reinforcement is occasionallj
encountered in practice, however. For example, an extruded

reinforced thermoplastic rod of limited cross section will



likely have at least the majority, if not all, of its
fibres oriented in the axial direction because the fibres
tend to align themselves in the direction of the melt
flow at the die orifice and are subsequently frozen in
that position. A similar condition is encountered in the
injection-moulding of parts such as bars, rods or

channels of limited cross section.

l.2.4.2 Bidimensional Reinforcement

Bidimensional reinforcement is achieved by

constraining the orientation of the reinforcing fibres to.

a plane rather than to a direction. This results in
composites with improved strength and modulus properties-
in two dimensions compared to one in the unidirectional
case. The out-of-plane dimension remains effectively
unreinforced.

The improvement in planar broperties in this case
can never equal that realized in the direction of the
fibres with unidirectional reinforcement. The composite
strength and modulus properties of planar reinforced
materials will seldom be higher than 50 percent of those
attainable through complete fibre élignment.

Bidimensional, or planar, reinforcement can be
accomplished by using'either continuous of discontinuous

fibres. In the case of continuous fibres, there are two
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ways of obtaining planar reinforcement. The first method
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is to weave the fibres into a fabric and subsequently‘to
combine it with the matrix material. The second is to
orient the fibres randomly in-plane, either during the
manufacture of the composite or in a preforming operation
such as that used in the production of continuous strand
mat. Woven fabric, chopped and continuous strand mat
materials are pictured in Figure 1.6, along with another
form of woven reinforcement commonly known as woven roving.
It is clear from Figure 1.6 that the woven materials
actually provide bidirectional rather than bidimensional
reinforcement.

Discontinuous fibres are generally oriented randomly
in composite materials. In the bidimensional case, the
fibres are oriented randomly in-plane, which yields a
material with planar prbperties which are not directionally
dependent, i.e., they are quasi-isotropic. Composites of
this kind are commonly produced by:

a) spraying up a combination of chopped strand glass and
a thermosetting plastic resin onto a mould surface |

b) laying-up (by hand) a preformed chopped strand mat
material in combination with a thermosetting resin

¢c) sheet extruéion of discontinuous-fibre reinforced
thermoplastic film, and

d) injection-moulding of reinforced thermoplastic parts
having thin, planar sections.

The most widely used fibre-reinforced composites
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today are those which are bidimensionally reinforced.
Storage tanks, boats, cars and a myriad of other products
are produced by laminating together assorted combinations
of woven fabric (or roving), chopped strand mat and

chopped fibre (through the spray-up process).

1.2.4.3 Tridimensional Reinforcement

The most common way of achieving tridimensional
reinforcement is through the use of randomly oriented
discontinuous fibres. It is also possible by using three-
‘dimensionally woven fabrics (10) or continuous fibres
oriented randomly throughout the matrix, but these methods
are seldom employed in practice.

Material properties in this case depend
substantially on the shape of the part being produced and
the manufacturing process involved. For examplé, in the
extrusion of a thick cross section, the properties may
tend to be a little higher in the direction of extrusion
than in the transverse directions, A complex injection-
moulded‘RTP part might even have unidirectional, planar
and quasi-isotropic tridimensional reinforcement, all
within the same part.

Processes for the production of parts reinforced
three-dimensionally include (1) the extrusion of RTP
shapes, (2) the injection-moulding of RTP products, and

(3) the press moulding of bulk moulding compounds



(premixed thermosetting plastic resin and chopped strand

fibres).

1.3 CLOSING

The foregoing brief review of the fundamentals
of reinforcement provides little more than a basis for
discussing the various methods of analyzing composite
structures. It is left to the individual to pursue the

sub ject further in the references noted.
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SECTION 2

STRESS ANALYSIS OF

FIBRE-REINFORCED COMPOSITE STRUCTURES

As Tsai and Adams (11) have stated, many engineers
involved in the design of fibre-reinforced composite
structures "talk about composites but think in terms of
isotropic homogeneous materials®, This quotation aptly
describes the foremost problem of the FRP industry today.
Until more engineers learn to think in terms of the highly
directional effects of fibre reinforcement, the use of
fibrous composites in structural applications will be
severely constrained.

In the past, very few undergraduate courses in
design or strength of materials did more than acknowledge
the existence of anisotropic materials, let alone teach
the student how to work with them, Further, constituent
material suppliers appear to play down the potential
anisotropy of fibre-reinforced composites in their design
literature for the commercial FRP industry (12, 13, 14).
Instead of pursuing the potential advantages of directional
reinforcement, they create the impression (perhaps for
marketing purposes) that fibre-reinforced plastics are

generally isotropic and that "in moét cases, the standard
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engineering formulas apply" (13, 14).

Only in the aerospace field have the problems of
designing with composite materials been taken seriously.
There, the need for lighter, more efficient structures has
induced numerous government and industry sponsored research
and development programs to study these problems, As a
result, a new method of analysis has evolved in recent
years which makes it relatively easy for an engineer to
"think composites" and hence to design much more efficient

fibrous structures.

2.1 PREVAILING METHODS

The stress analysis of fibre-reinforced composite
structures is generally accomplished by making one of three
fundamental assumptions relative to the composite material
behaviour:

1) that fibre-reinforced composites are not substantialiy
different from other common engineering materials,
i.e., they are isotropic
2) that only the fibres have load carrying capabilities
3) that fibre-reinforced composites generally consist
of a series of homogeneous orthotropic layers.
These assumptions provide the basis for three entirely

different methods of analyzing composite material structures.
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2.1.1 The Strength of Materials Approach

The strength of materials approach, based upon the
use of generally available strength of materials design
formulas, is without doubt the most widely used in the
design of reinforced structures in the FRP industry at the
present time.

Unfortunately, it is also the most imprecise, In
order to make use of these conventional design formulas,
originally developed for homogeneous isotropic materials,
one must accept the first of the assumptions noted aBove.
This, it will soon be seen, can lead to very serious
problems.

Consider the case of an FRP laminate sub jected to
a bending load as is shown in Figure 2.1. Using the
strength of materials approach, the maximum flexural

stresses would be predicted by the flexural formula (15)

Toaax = ‘P_i[g (2-1)
where U;Ax is the maximum resultant stress
M is the applied bending moment
c is the distance from the neutral axis to the
most remote point in the beam at the section
of interest
I is the moment of inertia of the cross section.

The resulting predictions may in fact be
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substantially in error, however, depending upon the
construction of the laminate. For example, if layer 1 of
the laminate shown in Figure 2.1 is somewhat stiffer than

o is twice E“) or Ea), the stress

layers 2 or 3, e6.g., B
at the outer surface will be considerably higher than the
value predicted by equation (2-1). Alternatively, layer 2
might be considerably stiffer than either layers 1 or 3 in
which case it is quite possible that the maximum stresses
would be at the layer interfaces and not at the outer
surfaces at all. |

Similar arguments can be employed to show that
serious errors are possible with many of the commonly used
strength of materials design formulas. The magnitude of
‘the error generally depends upon the variation in the
constituent layer strength and modulus properties. In
quasi-isotropic laminates, e.g., a chopped strand mat
laminate, stresses predicted by the conventional formulas
are probably fairly accurate. However, if the same
formulas were used to compute the equivalent stresses in
similarly loaded laminates comprising layers with
substantially different properties, e.g., mat and
unidirectional reinforcement, errors of 100 percent or
more are possible.

Clearly, the effectiveness of the strength of
materials approach to laminate analysis is substantially

dependent upon the degree of material anisotropy involved,
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i.e., the approach works best for nearly isotropic
laminates. Further, since relatively few commercial
laminates, apart from those produced by the filament
winding process, are significantly anisotropic, this may
perhaps explain in part the continued predominance of this
approach.

Use of the method of equivalent sections (16) in
conjunction with the conventional formulas, as suggested
by the engineers of Gibbs and Cox, Inc. (17) enables a
much more accurate laminate analysié. Unfortunately, this
involves a large number of computations and appears to
have discouraged most designers from using it.

It can thus be concluded that the strength of
méterials approach to the analysis of composite structures
should be employed only if sufficient consideration is
given to the properties of the individual layers and to the

limitations of the particular formulas involved.

2.1.2 Netting Analysis

The development of the filament winding process in'
1947 (18) firmly established the need for improved
banalytieal techniques. It became immediately apparent that
filament wound composites were not isotropic and that
traditional design formulas could no longer be applied. As
a result, a new method known as netting analysis came into

wide use soon after the introduction of the process.
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Netting analysis is based upon the assumption that
only the reinforcing fibres have load cérrying capability;
it is used principally in the analysis of pressure vessels
where all fibres are in tension. The only functions of the
resin, it assumes, are to hold the fibres in position and
to distribute the stress throughout the structure. It
cannot, therefore, be used to determine bending, shear or
discontinuity stresses or resistance to buckling (19) since
in these cases resin properties are of prime importance.

The underlying principles of netting analysis can
be readily demonstrated. Consider the system of forces
acting on the fibres in Figure 2.2. The resultant force or
load carrying capability in the direction gf the fibres is
given by

Fret = FsShetLhel - (em2)
where ﬁwl is the force per inch in the direction of the
fibres
F; 'is the force per strand
Shel is the number of strands per inch per layer
Lhel is the number of helically wound layers
and its components in the hoop and longitudinal directions
are
Fro = FsS, Ly sin© (2-3)
and
Foo= RS, by o5 © (2-4)

respectively.



In a thin walled pressure vessel, the hoop streas

Pd |

0I""oo = —Et_ | (2-5)

is twice the longitudinal stress
- P

O =i | (2-6)
Also,

Fo. = Tt (2-7)
and T

Foo=0.t = Sat (2-8)
therefore,

F

'F?_“ - £ - (2-9)

Substitution of Expressions (2-3) and (2-4) for

F;m and FL respectively yilelds

Fs S—ththeLSanO - 2'

(2-10)
Fy SperL het €050
which immediately reduces to
tan*0 =2 | © (2-11)
thus
0 = 5415 (2-12)

This indicates that, in order to obtain maximum structural

efficiency in a filament wound pressure vessel, a wind
(helix) angle of 5&-750 should be employed. Hydrostatic
tests conducted on pressure vessels so wound have

demonstrated the practical validity of this value (20).
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It is, however, generally easier to manufacture
filament wound pressure vessels by using a combination of a
low helix angle wind pattern and straight hoop winding. In
‘this instance, the analysis proceeds in much the same way as

was demonstrated in the foregoing.
The load carrying capability of the helically wound
layers is once again resolved into hoop and longitudinal

components. Thus
.2 ,
Fro = FeSpetbpesin 0 (2-13)

and

2 :
Foo= FSuabpa s © (2-14)
However, the extra hoop layers now provide an additional

load carrying capability in the hoop direction
s
Fro = FShobne - (2-15)

Therefore, the total resultant force or load carrying

ability of the laminate in the hoop direction is

e = Fio * Fie | (2-16)

. & i
and in the longitudinal direction
. | .
FL = Fsshel.Lhel.cos 0 (2-18)

Clearly, though limited in application, netting analysis

is a relatively easy method with which to work.
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2.1.3 Orthotropic Lamina Approach

This approach (21, 22, 23) is based upon the
previously noted hypothesis that the individual layers of a
laminate are homogeneous and orthotropic. It was used for
many years in the study of plywood structures prior to being
adopted for the analysis of FRP laminates. A prime
reference (23) on this subject issued by the United States
Department of Defense ''as an aid in the design of reinforced
plastic elements for aircraft missiles and other flight
vehicles" was in fact prepared largely by the Forest
Products Laboratory of the Department of Agriculture.

Fischer (21) outlined the principal assumptions of
the method in his paper on the analysis of fibreglass
laminates:

1) a layer of fibreglass is elastic and homogeneous
2) a layer of fibreglass is orthotropic (has different
strength properties parallel to two orthogonal axes
which are the natural axes of the material)
3) layers in a fibreglass laminate are connected by a -
material that has infinite shear rigidity
L) dimensions of the fibreglass laminate are such that
‘buckling will not occur.
Although all of these assumptions refer specifically to
fibreglass, they are equally valid fqr éther forms of fibre
reinforcement, e.g., carbon fibres., Furthermore, the second

of these assumptions does not preclude the analysis of



laminates censisting of isotropic as wsll as orthotropic
layers; the response characteristics of an isotropic layer
are entirely described by orthotropic stress-strain
relationships.

Orthotropic layers within a laminate, comprising
either of ths Tirst two forms of reinforcement shown in
Figure 2.3, have a natural sjstem 6f orthogonal axes
corresponding to the warp and fill directions of the
reinforcing material. The other common forms of
reinforcement shown in the figure do not have a natural
system of axes and, since their in-plane properties are not
directionally dependent, co-ordinate axes can be arbitrarily
selected. The relationship betwsen stfains and stresses
in the natural (or arbitrarily selected) co-ordinate

system of such materials is

\
Et 29'_,. - \)zlg?_-_
E, E,
€, = g?.-. . \)m.gl -  (2-19)
2, {
_ T
2=
Gy i
Also, by solving these equations for the stresses,
\
g = E, , + Var Bi
| = Yio Vo, I = Y2V
0 = —YaF2 e o Ez ¢ (2-20)
= b= VizYer | I = V2 Vz =
721 = C%&sz )




In many cases, however, the natural co-ordinate

system (1,2) of an individual layer does not coincide with

the co-ordinate system (x,y) of the laminated structure of

which

it is a part. This situation is illustrated in

Figure 2.4 where the natural axes (1,2 ) of the layer

material are separated from the laminate axes (x,y) by an

angle 0. The material stress-strain relationship in this

case,

o
H

o
|

3

Sz

i

b
3

i.e., in the (x,y) co-ordinate system is:

T =be+ b ey + b,axxg
0y = b, € + bz?_e + bzs (2-21)
’t’xﬂ= bsnéx"’ bzég + b, b’

¢(E,cos4ﬁ + E?_sin4® +(2V,E, + uXGl?)sinLGcosLG)

= O((E,+ E, - b \G,)sinBcos* O +,E, (cos’O +sin*0))

$((E, -, E, - 2XG,)sin'Ocos O -
(E,-V,E, - 27 6,)sin0cos°0)
b

1z

= O(E,cos ®+n. sin™ 0 + (2 LE, + uRG,?_)sinlO cos 0)

q)( (E, -V, E, - 227G, )sin0 cos’Q -
(E,- V,,E, - 2 KGlz)sin"’Ocos 0)

b,

blb

(P( (E, +E, - 2\‘22|EI )sin“Bcos”® + NG, (cos™® - sin*0)%)

eoeo(2-22)
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and

A= (/) =1 -9V (2-23)

12 2
It must therefore be generally assumed, for
analytical purposes, that the non-alignment condition exists
in all layers. Consider a laminate comprising n orthotropic
layers oriented at angles of ﬁ(‘: 6“’, 9(3), 6‘”---0"",

respectively, relative to the laminate axes, x and y. The

relationships between stresses and strains can be written

Q) 0y « <n o) Wy O) =
= b, €, + b 3 + bls Xxﬂ
a) OJN O (I) ) wy
y = bu €& + b, 3 + bn sz (2-24)
T Y] b W Q) b(') 1)) b (l)x Q)
xy O € + + Dy Oy J
for the first layer, or more generally,
(k () (k) (k) {3 Ky (W 3
=b,€ + b, € b, X
(k (k) (K ® & (k) .
= sz x ¥ bzz 5 + bzs Xxj >' (2-25)'
(k) (k) ) m (k) 0<) ) '
T xy b3 x b 33 X\ts J

for the kth layer.

when such .a laminate is sub jected to normal and
shear stresses (with respect to the x and y axes), the
layers within it must deform together. Thus, in order to

satisfy the strain compatibility condition,

éiﬂ - ex.(z) = . . = ex(k) == e e s e e o2= ex(n) = € :
(n). )
e;n) =€3(z)_____,.=65(k>=,....=53 'e_‘j - (2-26)
@) Q) Loy
X(l) = - c° = X = e v e e = X = X J
xy xy Xy *y J



and hence equations (2-25) simplify to

e (K k) W (R
0; = bu €x + bna 63 + bl3 th

Wy K (K ()
G—j = by €+ by €y ¥ bea Xxg

() (k) (k) (k)
’ch = b, €, + by, €y + by 315
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- (2-27)

J

In addition, from force equilibrium considerations, it is

apparent that

3
- a6 w.e (9, (0 (n)  (n)
ot=0 1t +0 1T+ - --+q t +T 't
- 1,0) @) @ W (k) n), W
Gt =0t + 0T+ - -+ Oyt + - + T  (2-28)
- ¢ 0) @ @ (), (k) ), (n
Tt = Ty Tgt 4 7+ Tyt # o + Tt

' J

or, more concisely,

n
_ W (K
T, =+ Zcrx t
k=1 .
: n
— LW,
Uy = 'EZ“@ t
k=l

2 ')
’Cx = _f XT-‘a -t.
: k=) .
where t is the total laminate thickness and t

" thickness of the kth layer.

- (2-29)

J

(k) is the _

Substitution of the expressions for the layer

stresses given in equations (2-25) then yields

(k)

Al

IERVIRG, ) (W

- :E.kZ;( bu €+ b, €+ b, X"S).t
- VIRG) ) ) (w
T, = %kzl( b, €, + bz.,_“éj + by ?5,‘3)’[

— L ®
Ty = .in( by €, + byey + b;?x,j) t
kal

> (2-30)
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and hence
_ RN w o) T e G, 6]y ]
0, = .. Zbu t E; + _%Z Jéj + _‘fmbxa t 2‘13
— (k) , (W o (), (k)] B (n ;
0’=——ibt6+lb‘t E+Lb'tX 2-31
_ : (k) (k)] Pl = ) _; 1 :
T‘j--- EB Ex+ "EE éj t T E”t X"ﬂ
— ksl k=i J
This can also be written
— - — 3
G =be e3 + bﬁ?{lj
T, = b &+ b €y + b“b’%j > (2-32)
b3,€,+ b, € + b3 .y J
where
ORE )
b, = .}c. ib,, t
k=l .
— b(k) (k) r (2-33)
T }E

etc.

It is evident from the foregoing that laminate
elastic properties are quite predictable when the properties
of the constituent layers and their geometry are known. /
Further, it is possible to obtain a reasonably good estimate
of the strength properties of a laminate in its principal
directions.

In order to determine the load carrying capability

of a laminate in, for example, the x direction, equﬁtions

(2-32) are first solved for the laminate/layer strains
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€ » €j and Xx by assuming the loads in the othsr two

directioné,,ﬁg and T;j , to bs zero. A3 2 result,

expressions for the layer strains are obtained in terms of

the load (; , i.e.,

¢, = [(5.5,- 55 )/0]&,
€, = [(Bebs, - F b,)/ D] T (2-34)
- —
%oy = [(b,b,,~ b,b.)/D] &
where
D = bnbzzb;as bn. bss zz— bnbz b:zbtabu
Then, through the use of the strain transformation
equations, .
(k)
E,(k)= €, CQs?“ﬁk +. 63 Siﬂ.z-e(k) -—X sm.@ Cose(k)
® . 2g® 2 no®...0® |
€, = € sin "'Ey cos + Xxj stn Q" cos F (2-35)
( ; f . i z
Xl:)r. . 2 (e, - :3) sin0 gtasﬁm ¥ Xxj(coszﬁm—&wﬁwh

and the layer constitutive equations (2-20), ths principal
strains and stresses in each layer, i.e., those in the
directions of the natural axes of the material, can be

- defined in terwms of 5; . Subssquent failure analysis of
each layer reveals the minimum value of ﬁ'; at which one

of the layers will fail., This minimum value 1is the maximunm
léad carrying capability of the laminate in the x .direction.
Similar analysss can be used to determine equivalent values
for 5’-3 and 'ﬁj .
Although failure analysis will not be pursued at

‘this time, full details are provided later in Section l.6.

Clearly, this method of analysia is considerably
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better than those described previously. It recognizes not
only that the matrix plays an.impoftant structural role,
but also that the individual layer materials may be
orthotropic rather than isotropic and quite different from
one another.

Nevertheless, there is one major limitation: the
inherent assumption of equations (2-26) (that component
strains are constant through a laminate) precludes the
analysis of laminates sub jected to flexure. As a result,
the method is substantially limited in its scops. Availaple
literature (24, 25, 26) indicates that it is used mainly

in the prediction of laminate tensile properties.

2.2 THE THEORY OF LAMINATED COMPOSITES

The concept of a laminate consisting of a number of
orthotropic layers is quite reasonable. Unfortunately, the
method of analysis generally associated with it-until now,
i.e., that described in the previous section, is too limited
to be of general use, simply because no consideration is
given to the problem of bending.

A powerful new method of analysis which obviates
this problem has evolved in recent years. It is an
extended form of conventional small deflection thin plate
(and shell) theory which takes into account not only lamina
orthotropy but also variations in material properties

through the thickness of the laminate.



This extended form of plate and shell theory,
sometimes referred to as the theory of laminated composiﬁes,
differs from the conventional theory in two-ways. First,
during the development of the force and moment resultant
equations, orthotropic layer stress-strain relationshipq;
similar in form to equations (2-21), are used in place of
the single set of constitutive equations which usually
describe the behaviour of any afbitrarily selected element
in the cross section of an isotropic plate or shell.

The second difference relates to the satress and
failure analysis which ensues once deformations and strains
have been determined. The points of maximum stress are
generally assumed to be located at the outer surfaces of a/'
deformed plate or shell. In the case of a composite |
laminate, however, the maximum stress and henqe the initial
point of failﬁre may be located at almost any location in
the cross section. Thus, strains and stresses must be
determined in each layer in order to carry out a complete
failure analysis. |

Since this new method is, without doubt, the best
currently available, it will be advantageous to study the
underlying theory in some detail. In the next section,
lamina stress-strain relationships previously assumed valid,
i.e., equations (2-20) and (2-21), are developed and
relevant lamina failure criteria discussed. In Section i,

laminate constitutive equations (force and moment resultant



equations) are developed by introducing the lamina stress-

strain relationships into the conventional theory of plates

and shells.
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SECTION 3
LAMINA STRESS-STRAIN RELATIONSHIPS

The response characteristics of any FRP laminate
can be predicted as long as the stress-strain relationships
of the constituent layers, or lamina, are known. Regardless
of the type of reinforcement, these constitutive equations

are all variations of the generalized Hooke's Law.

3.1 HOOKE'S LAW

In the seventeenth century, Robert Hooke proposed
the law now named after him in the words "Ut tensio sic
vis" - the force varies as the stretch (27). This
conclusion was drawn by Hooke as a result of his load-
deformation studies with springs. Today, Hooke's Law is
more commonly associated with the linear stress-strain.
relationship for elastic materials. |

The modern definition of Hooke'!'s Law states that,
within the elastic limits of the material, the stress is
directly proportional to the strain (28). Symbolically;

this may be expressed by the equation

g = E€ (3‘_1)

where the constant of proportionality, E, is called the

elastic modulus, modulus of elasticity or Young's Modulus.

L.
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This equation describes the stress-strain
relationship of a homogeneous isotropic material in a one-
dimensional state of stress. The sé-called generalized
Hooke's Law relates stress and strain in an anisotropic
material subjected to a three-dimensional stress state and
can be expressed: each stress component is directly
proportional to each strain component (27).

The stresses acting on the surface of a body can be
resolved into three components parallel to the axes of an
arbitrary co-ordinate system. Accordingly, the state of
stress on a small cubic element at a point in the body,
such as that shown in Figure 3.1, is completely described
by nine stress components: three normal components - 0} -

e s U3, and six shear components - 0',9_, 0‘13 ’ 0;3 s T2 s

>
Tars Taz-

Strains are associated with the displacement of a
point in the body. If the co-ordinates of a point in the
body change from x,, X,, X, to x, +u,, X, +u,, X, *+ Uy,
as a result of deformation, the u; are the components of
displacement and the strains are defined in terms of the u;

by the equations

o Ljou oy |
€ -z [bx- T a—x‘J (3-2)

J
where &,] = 1,2 or 3.

It can then readlly be seen that there are the same number
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of strain components as there are of stress, i.e., three

normal components - €, €,,, € and six shear components -

33
€., €., €., € €., € .

(I 3 23 21 ? 3 az

The generalized Hooke's Law, in symbolic terms, is

therefore:

0'” = Cuuéu +C llllelz+clll36l5+ Cuu €z|+ C“zzé'ui-C“HEu* Clmell + CIIBZ.GSL+ Cusseia
G:L = Cm ) €+ Clmzelz+ C.u3€rs+ Caai€at Crezeut Cs:23623 0y S+ Cn ¥ C:zsa 633
0 = Coy €+ Capn€at Clz€at Cas €t Criaa €t Craes & + Cagy € ¥ Ciase€ie t Cisns€as
0;.| = Cz;“ €,* Czuzélz.+ Czuaéla"' Cz:zueu + cz:zz€n+ Czuzseza + ClBl & ¥ C&|32.€31+CZ|33€35
0, = Coa 6+ Copia €t Coninbiat Craey 6 ¥ CraoSa ™ Ceranes® Cozmnar + Coaarin + Corns €s
Tes = Cany €t Cone€iat Cona€in® Can €t Conn€ia® Conasont Conni€r * Canain +Crnss S
0;1 = Cau | €,* széw_%- C3n5613+ Csmém-i- Caizzx ™ Caes €5t C3|3|€5| + szezr. +cam€33
0;1 = Csz.uéu ¥ Csuz€'¢+ Caz\a€t3+ Cszzxezx i€ ¥ CnS ¥ C31.5|€3;+ cbuz€;7.+ C:z;;ess
0;3 = C33u€u + Ca3nt€‘l+ 033|3€|3+ C33z|€7~l + Caazzezz + Caszsezs+ Cs’sl &t Cs:sz€31+ Camga

eves (3-3)

In these equations, there are eighty-one strain coefficients
which are termed the elastic stiffnesses.

It can be shown by a thermodynamic argument (27)

that
CZZ\\ = C waz
Clll\ = CIHZ.
CZsll = C 1223

or, in general,

quL= Cmq (3-4)
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Further, the condition for zero rotation of the

element in Figure 3.1 is
J =0, (L #j) (3-5)

since the sum of the moments about axes through the centre
of the cube and parallel to the co-ordinate axes must equal
zero,

From the definition of strain, equation (3-2), it

can also be seen that

or, in general,

€. = € (t#£j) (3-6)

Incorporation of relationships (3-4), (3-5) and
(3-6) into expression (3-3) results in a simplification of

the generalized Hooke's Law to

U\l = CIHI(EH + CIHZ e Cll\3€ + C"ZZ éZZ. Cll?~3 63 + Cll33€33
GIZ. =C 12 e 1 +C IR 6 CIZ(3 E C)zzz ézz + CIZZS e + Cll%& 633
O.;’.‘a =C idH € * Cl%)l € CIBB e CBZZ 67-2 CI315 e M C'333%3
G;z- =C 2211 E + CKZ»(Z. E CZZlB 6‘3 + C2le z + CZZZS 62.5 * 02153 635
0;.3 = Czsu E 3 01512- € Czsls € + c2.327. ezz + CZSZS €7~3 + C €-’t3
qiS =0 3311 E + C33ll € 35&»6!3 + CSSZZEZZ + G 332% 615 + 03333633

cees (3-7)
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A contracted notation is generally adopted for

purposes of engineering analysis, i.e.,

o, = 9 Coiie =€, Cazaz = Css
. =T Chizz = Cip Csazs = Cas
0;3 = U3 Cn33 = C|3 03313 = Css
O = T Ciza = Cu Cui = G
0'13 = Tls Cms = C:S Czszs = C44
O:z. = T, Cinz = Cia Cias = Cas (3-8)
€, =€ Cre22 = Crz Cosiz = Cae
Ezz. = el Czas3 = czs cl3I3 = css
633 = 63 szu = Cz4. sz = Csc.

< €s = Xzs s = Czs Cew = Cec

2€. = ¥, Crore = Cuc

2€, = ¥, )

Thus, the gensralized material constitutive relationships

can also be expressed: .

T - CL € +C,€ +C € + CM-XLS +C¥, *+CX,
0’z. = C,ZG‘ + C?_z Ez. * G Es + Cuxzs + CZ‘SXH * CZGXW-
0, =C,€ + Cu€ +C € +C X, +C X + Oy ¥,
Te = CW€ *+ Cu€ +C € +C % +c ¥ +CJ
T, = Cs€ + C,o€ + G € + G, 0+ C X + Cs;é/,z_
le_ = Cxeél + Cpp€ + Cy €65 + C‘%Xzs + 0567{,3 C“Xw_

veee (3-9)
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It should be noted that engineering shear strains are

equivalent to twice the related tensorial shear strains,’

Frequently, it is more convenient to work with

matrix algebra for computational purposes.

of the generalized Hooke's Law (3-9) is

33

34

35

Q Q Q QO O

E1

4
24

34
44

45

Q Q QO Q < Q

40

{o} - [e]{e}

P =
G‘ C ] C\Z
0; Clz sz
Ua C|3 C13
=
Q; CM- C&$
U; CI‘S Czs
\0’6‘ | Clé CZG
or simply
where
U; = 7;5
0 = 'qa
0—6 = 'f.’u_‘

€. =

m
o
i

15

&5

L1y

45

55

Q Q O O Q O

56

X2’.
Xl
Kl

3

>
&

Q QGO

26

(@]

36

2

46

(2]

56

o2

6

The matrix form

:p\ wﬂ\ N’T\ _E)

'{h
~

> (3-10)

m
\n

(3-11)

(3-12)

A similar expression which relates strain to stress can be

derived:
\ r
rE' S " Slz
61 Stz Sza
€3 _ S|3 82.3
< p , =

4 8)4 S.4
65 st st
\eea _Ste Sz

wn

24
34

44

L v w

45

w

46

L v w

35

45

55

0L n w

56

GGJ

”~

i

; (3-13)
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or
{e} = [s|{e} (311
In this instance, the coefficients of the stress components
are termed the slastic compliances.
An inspection of the matrix equations (3-11) and

(3-14) reveals that the elastic compliance matrix [S] is

simply the inverse of the elastic stiffness matrix [C].
[5]
[¢]

Therefore, a knowledge of the terms in either the stiffness

That is to say,

(c]™ | (3-15)

or

[s]-' (3-16)

or compliance matrix enables computation of the other
through a simple matrix inversion procedure.
Constitutive relationships, (3-10) and (3-13),
interrelate stress and strain in an anisotropic matefial
sub jected to a three-dimensional state of stress; the |
number of independent elastic constants in this most

general case is twenty-one,

3.2 TRANSFORMATION OF PROPERTIES

3.2.1 Transformation of Stress Compdnents

The component stresses at a point, defined with
reference to a co-ordinate system (x, y, z), are related to

those referenced to a second co-ordinate system (1, 2, 3)
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with a common origin by the cosines of the angles between
the six co-ordinate axes (29). In Figure 3.2, typical
relative positions of the two co-ordinate systems are
illustrated along with a table of direction cosines.

The specific relationships between the component

stresses in the two systems are given by:

z 2 2

g =1 g + m, 0’5+ n g+ 2Zmn Tt 2nl, T+ 2lm 'E,j
2 2

q = g + ™, G+ n:0;+ 2w, n, Tt enl, T+ &l ij

2 2
= Lo + my Q, + ny O, + 2mn, Tyt Enly T+ 2Rlm, Ty

oA

.Tza = l.,'go’x + mlmaqj * nl-n30-1 + (mzn3+ mbr'l.)TBE+ (l'?.n3+ [Snl)‘["‘i*' (l"'m3 +l3Ml)T,’
Ts= L, La Wt M,Ms% +NN,Q, + (mn,+ msn)T31+ (Lngr Ln)T + (Limy + L'm3)T"‘j :
T= L.Ll(];_ + m,m,.(s'j + N0+ (MmN + mln)t3i+ (L.ﬁ;*' Lz".)'t;%*' (L,mg + l,,m,)ij

cees (3-17)

which can also be expressed in matrix notation by

rOj \ LY m At 2mn, 2nl, 2Lm, ] r(]; \
a, l.: M, ne 2myn, 2nl,  2lwm, 0,
q, _ L: m2 ny Z2wmyng 2n,l, 2 Lym, J 0,

1Tzzs u l'zls Mg, RNy mtgamgn,  Lngrlgn, Limgs Um, | Te »
Ts Ll mm, nn, mp +mn, Ly +Lyn, Ly + Lm, | (T,
o _l., L mm, nn, mngeman Unsln Lmosim, | :‘;54

eoaew (3-18)

{o}-[T1] {“;} (3-19)

or
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3.2.2 Transformation of Strain Components

Strain transformation relationships are quite
similar to those for stress; the tensorial strain

relationships are, in fact, identical in form:

€ = u@,+ mf€j+'f€;+ 2mn, €?+ 2n\, Gt 2Lm, GW
€ = L: €.+ M: 63 +n £, * Zw.n, 63{" anl, €.+ 2lm, éij
€, = L: €, #* m;' €+ n: €. * & myn, g 2nly, €.+ Rlym, Q‘B
€y = LLE T mm€y+nn€ + (mpnrmn)e + (Lnglnde, + (Lmy+ l.,,tﬂ,,)E,“j
€, = LLg+ mme, +nng, + (mny+mne + (Lngrln)E + (Lm, +hamie,

€, = LLEF mme +nn €+ (mnarmn)e, + (Lng Ln)g+ (Lmy+Lm)€

*3
® e o o (3-20)
Since engineering strains and tensorial strains are
not always the same, however, (see equation (3-8)) the
engineering strain transformation relationships assume a

slightly different form:

2 2 z

€ = L €&+ m, €+ Mg mn, th+ A Xlﬂ
2 7 z

€ = Lz_ €+ m, €j+ h, €+ m;n, X31+ n,,t,_ XK; lzm,_ ij
2 2

€, = L3 €.+ m, ej+ n_:'et+ m,n, Xﬂt+ n,l, X“+ l5m3 Xxj

%, " el e+ 2mym e, + Znyn,€ + (m ny+ wxanl)lﬂﬂg (LL+ Latl)XM+ (Lmg+ mea)‘&2L5

¥,

14

L3

w

2LLE, + 2mmye + 2ninye +(mny+ mbn,)XBJ(L,L; LY+ (Limy+ lsmt)}{":j
2LLE+ 2mme€ + 2nn€ +(mpn+ mln,)KBJ(L,Lg L,_L,)Xu+(le,_+ {,m)¥, g

»

J

eees (3-21)
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This can also be expressed in matrix notation:

(Q\’ Lf m? nf mn, ﬂﬂ, Lm, €,
€, L M, n: m,n, nle ,m, 65
) €, . L m-  n, m,n, n,l, (ym, ﬁ N
3, 2Ll 2mmy 2npy mngsmn, Ungeln, Lmorlim, ‘(31
3, 2L, 2Zmmy 2an,  magmn, bngln Lmgeln |13,
LX“ ] _2 (L, 2mm, ZV’\‘ n, mogtmn Lngeln Lme Lzm‘_ :51”

ceee (3-22)

A= 0-23)

3.2.3 Transformation of Stiffnesses and Compliances

or

The matrix form of the generalized Hooke's Law

relating stresses and strains in the (l, 2, 3) co-ordinate

{cr} -[c|{¢} )

Also, within the (x, y, 2) co-ordinate system

{o} - [c){<} (3-25)

Substitution of relations (3-19) and (3-23) into

system is

equation (3-24) yields

[THo}-[c]THel (3-26)

-1
and by premultiplying both sides of this equation by [TJ
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/
& new expression for ‘ﬁT} is obtained:

- T

By comparing equations (3-25) and (3-27), it can
readily be seen that stiffnesses can be transformed

according to the expression:

(T - [T le ] (3-26)

In a similar way, it can be shown that the

compliance transformation equation is .
$)-0T60 ] (3-29)

3.3 EFFECTS OF MATERIAL SYMMETRY

Few materials are completely anisotropic and, in
most structural materials, special kinds of symmetry exist,

i.e., the elastic constants remain invariant under certsain

co-ordinate transformations.

3.3.1 Materials Possessing One Plane of Elastic Symmetry

In certain structural materials, the elastic
constants remain invariant under a co-ordinate transformation
l1-+x, 2>-y, 3+ -2, These materials are said to possess

one plane of elastic symmetry. The direction cosines for

this transformation are:



L,
mZ.= 5= -1
LZ.

— 3

5=m=m

3

n=n

3

= 0

55

(3-30)

and the stress and strain transformation metrices, [T] and

[T], defined by equations (3-18) and (3-22), are:

1

0

(=] =[] 0

0

LO

o o o o + O

o o o + o O

© © + O O O

o © o O

0

~ O O © O O

-

(3-31)

The transformed elastic constants can then be

determined by operating on the original stiffness matrix

in accordance with equation (3-28).

.
Q
'
u

-CIS -

-G

UQ
'S

CM-

Cz4

Cag

=Cys

-Cag

Thus,
-
-Cs -G
-Cs -Cu
-Cs -C5¢
=Cus ‘Qm '
Css Gy
Cse Q@

(3-32)

In addition, if the material is rotated 180° about the 1

axis, the new co-ordinate axes (x, y, z) will coincide with

the original system (1, 2, 3).

Due to the symmetry, the
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materlial response characteristics will then be identical to
those defined for the material in its original position by
equation (3-24), i.e., [Cj = [C] .

A comparison of the two stiffness matrices reveals

that this is possible only when

y v R
Cs = —C|s = Cls = 0 e = 'Cu = C|6 = 0

/ . V4

Cre = -Cpe = Cpg = O C, = -Cpo= = 0

y p » (3-33)
Cas = =Cys= G =10 Cag= =Cy = Cie= 0

7/ /

Cos = ~Gg = G = 0 Cae = =Cpq = G = O J

Therefore, the elastic constants for a material possessing

a plane of elastic symmetry are summarized by the matrix.

¢, €z G, G, O O
Cio Caz Czy Gre O 0
[c] - N (3-34)
Ce Cas Cip Cp O O
0o 0 0 0 Cy C
0 0 0 0 ¢ Ce
L .

3.3.2 Two Planes of Elastic Symmetry

In the foregoing, it has been shown that the
stiffness matrix for a material possessing one plane of
elastic symmetry, i.e., the (1, 2) plane, is comprised of
the elements shown in expression (3-34). Had the plane of

symmetry been tie¢ (2, 3) plane instead of the (1, 2) plane,
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it could just as easily have been shown, following the
identical procedure, that the elastic constant ﬁatrix would

have reduced to

C, Gz Cs O 0 Cg ,,
Ciz.. sz Cl3 0 0 CZ6

[C] = Cl3 C2.5 053 0 0 056 (3-35 )
0 0 0 C Gg ©
0O 0 0 G Gy O
G G € 0 0. Gy

Clearly, if the material possesses both of these planes of
elastic symmetry, the matrix relating the stress and strain
components will be comprised of only the non-zero elements
common to the two matrices described by.expressions (3-34)

and (3-35):

-’l —
Cy Co G O 0 0
Chb Gz GCm O 0 0
[C] = CIS Cl?a 033 0 0 Y (3-36)
0O 0 0 G O ©
0 0 0 0 Gy O
o 0 0 0 0 Gy

The same arguments may be employed to establish the validity
of this matrix construction, regardless of which two planesl'
of elastic symmetry the material possesses. In general,

therefore, any material possessing two mutually orthogonsal
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planes of symmetry responds according to the relationship

s -
q, c, ¢, ¢, 0 o0 o] f[€)
q, Chp Caz G ©O O 01§
0; Cls Czs Csa 0 0 0 63 "
l P iy T (3-37)
T o o o ¢, 0 0]]l%
T, o o o 0o ¢ o]/l
T 0O 0 0 0 0 G kX,,.‘

The number of independent elastic constants in this case is
reduced to nine.
A corresponding strain-stress relationship can be

obtained by utilizing equations (3-13) and (3-15). Since

(1 "

then
b —-1 b
¢ s, s, s, o o olf«
62 Slz. Szz st Y 0 0 U;.
esL _ S;z. Sza Sss 0 0 0 0'3 (3 38)
12§ - 0 0 0 S 0 o | el )
23 44 ‘ 23
¥, o 0 0 0 s, O0]]|%,
:&‘,.J K 0 0 0 0 s62 :C'S

'3.3.3 Three Planes of Elastic Symmetry - Orthotropic

Materials
Materials which have three mutually perpendicular
"~ planes of elastic symmetry are termed orthotropic. The

matrix of elastic constants for such materials assumes a
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form identical to that for materials possessing only two
planes of symmetry.

The underlying reason for this was provided in the
previous section. It was pointed out that, regardless of
which pair of mutually orthogonal planes is symmetrical,
the matrix of elastic constants remains the same.
Therefore, it is obvious that the number of independent
elastic constants is the same for orthotropic materials as

it is for materials possessing only two planes'of elastic

symmetry.

3.4 THE PLANE STRESS ASSUMPTION

3.4.1 The Stress-Strain Relationships for a Specially

Orthotropic Layer

The lateral dimensions of fibre-reinforced laminates
are generally large in comparison with the thickness, and a
state of stress which is approximately plane can be assumed,
i.e, _

g, = Tzs = 7:,5 =0 (3-39)
through the thickness of the material.

Most lamina materials are orthotropic and behave
‘according to the special forms ofvthe generalized Hooke's
Law given in equations (3-37) and (3-38). These
constitutive relationships can be simplified further when
a state of plane stress is agssumed. Introduction of

relations (3-39) into (3-38) yields
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£ . ) [ - (
€, S, S, S8, © 0 0 cﬂ
el Slz. SZL Sl% 0 0 0 O’Z
€ S S S 0 0 0 0
y 3r = 13 23 33 d r (3-“‘0)
4 o 0 o s, 0 0 0
4l o o o0 0 s, O 0
'lJ 0 0 0 0 0 S| [T.
- - ——d \ /
which can be simplified to
€, rs" S, O g
& = Siz S O G (3-41)
¥, | 0 0 5] T,
and
€, = S,0, + S,,G, | (3-42)
since
8y =8, =0 (3-43)

Due to the fact that the in-plane stresses, ¥, and C, ,
are independent of 63 , equation (3-42) can generally be
ignored in plane-stress analyses.

In terms of engineering constants

[ 42]
i

u E
S =_,\£&_|=_;K3|.
= Eu. Eu '(3-uu)

|

S E
22
!

Sge = 2
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Therefore,

_ | Yz
el - f: (Tl - E:z ql
= - 2= g+ Z—q (3-45)
' 62' Eu ! E’zl 2 ‘
_ |
g,= G,
From equations {(3-45), it can be shown that
' - Eu V@Ezz.
0:— I"vaz.l €'+l" 12y 6"
v, B E
= —vabp 2 2.
% TV ST TV & (3-ho)
Tﬁ== Gmlz
or, in matrix form,
q PEN g, o |(e |
or = |3, T, o |1 (3-47)
Tll _o Y .C-GEJ : 1Z
where
, 5“ = —
= Vuzyzl
5 o= Yefe VB |
& I - vlzy:u = VY ' (3-48)
~ = Ell
22 | - Yn_ )
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It should be particularly noted that the new matrix
coefficients are not the material stiffness coefficients,

i.e., -

Gy # G (3-49)

though they are directly related:

- (Co)*

Cu = C“ - Ca:

- C,.C

C. =06 - 13423

S (3-50)
: 2

5 =, - LCa)

22 22 Caa

Cee = Cee

Since the plane-stress assumption is adopted, however,
fundamental material stiffnesses are no longer utilized in
the analysis, Thus, it is possible_to revert to the use of
CH for the effective stiffness matrix coefficients. This
simplifies equation (3-47) to

0: r C I Ciz. O Ex (3 51 )
G'L = C,z sz. 0 €z, ,
T:z | 0 0 Cec X:z.
where '
_ Ey
C“ T - szvzl

c = V»?.Ezz_ - VuEn
& | - er.yzx I - Vnz‘/zz
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N |
22 I - V”._Y;‘
Coe = G

eese (3-52)

Equation (3-51) describes the in-plane stress-strain
behaviour of a specially orthotropic lamina and is the

foundation upon which laminate analysis is built.

3.4.2 The Reduced Stress and Strain Transformation Matrices

The assumption of rlane stress also leads to
substantial simplification of the stress and strain
transformation matrices. The direction cosines of
transformation when a state of plane stress exists in the

(1,2) plane (refer to Figure 3.3) are:

1, =mz=cosﬁ=m

lz_ = . gin0= - n

m, = sinO0=n (3-53)
n, = 1 |

n, = ni =1, =m, =0

Consequently, the stress and strain transformation matrices

given in expressions (3-18) and (3-22) become, respectively,



and

3
—
I

0
-2mn

b

Since the only transformation

o © o B8

2mn

© O o +» O O

© o o + o O

6l

0 0 2mn
0 0 -2nmn
0 0 0
(3-54)
m -n 0
n m 0
0 (m*-n*%)
0 0 mn N
0 0 -mn
0 0 0
(3-55)
m -N 0
n m 0
(mz -pa )

coefficients of

interest in this case are those interrelating in-plane

stresses and strains, these matrices can be reduced to

(7]

and

m

n

%

&

Z

n 2mn

m* -2mn (3-56)
mn (m*-n%)

n® mn

m*  -mn (3-57)

-2mn  2mn (m*-n*)
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Thus, the reduced stress and strain transformation

equations for planar analysis are:

q [ n* 2* 2mn | a,
QL= n® m* -2mn Uy (3-58)
T, -mn  mn (m°-n°) Tg
- aad
and
€,  m® n* mn | €
€} = n* m* -mn € | (3-59)
Xm h--Zmn 2mn (mz-nF)d Kﬂ

3.4.3 The Generalized Hooke's Law for an Orthotropic Layer

Quite often, the natural axes (1,2) of the layers
within a laminate do not coincide with those chosen for
analysis of the laminate. For example, in Figure 3.4, the
principal material directions in the helically wound layers
are at angles of + © relative to the co-ordinate system
which would normally be chosen for structural analysis. It
is therefore essential that stress-strain relationships be
established which describe the response of the layer
materials in the structural co-ordinate system.

The transformed stress-strain relationship, (3-25),
and the coefficient transformation equation, (3-28), aﬁply
not only to completely anisotropic materials but also to

planar orthotropic orthotropic materials, though in the
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planar case, the transformation and elastic constant

matrices are in their reduced forms. Now, since

[t @] = [r (0] (3-60)

then

/ 1 10 7 ]
E“ Co Cle m* n* -2mn C, C.0 B m° n° mn

Ch Ciz Co|l =|0n* m™ 2mn Ciz Cyp O n" m° -mn

:‘ CZI‘ C"Iﬂ mn -mn (m®-nd _l 0 0 CG,‘_J -2mn  2mn  (m® -nd)

and hence it can readily be shown that

¢, = m‘C, +n'c, +m'n® (2C, + 4G

Cz’z = m'n® (Cy + Cpp - LG + (m* + n*) Cia

Cfe = mn (C, - Cjp = 2Cg) - mn® (Cpp = Cip = 2Gg)
C;’z = n"C” + m4sz + o n® (2C,, + 4C,,)

Cse = mn® (C, - Cp- 2C) -mn (Cpy- Cp - 2C)
Ce = m'n" (G, + G,y - 2C,) + (n* - n*)* G

es e (3-62)

These expressions are identical to those derived separately
by Hearmon (27) and Faupel (22) when account is taken of
the difference in sign convention for angular rotation
adopted by these authors.

Therefore, in the case of general orthotropy, i.e.,

off-axis loading,



67

q IR R
ot = Cho Co Col <€ | (3-63)
Txg __Cile Czle CGIEJ Xy |
or, in algebraic form,
O = Cl,l & * C:z € + Cl,exxg _
Oy = Ch &+ Ch €y * Ok (3-64)
Ty= O & * Cyy €y + Cgg Yoy

where the elastic constants, C% , are related to the

principal elastic constants, , and the co-ordinate

C4
system rotation, by equations (3-62). Both of these
equations describe the stress-strain behaviour of a

homogeneous generally orthotropic layer. /

3.4.4 Simplifications in Stress-Strain Relationships

Resulting from Material Isotropy

Before leaving the subject of layer stress-strain
relationships, it will prove interesting to investigate the

special case of material isotropy. In an isotropic

material,
\
" =EZZ. =
Y, = =
12 Zl . (3-65)
o E
G =G 2(1 + V) J

Therefore, from relations (3-52),



Substitution of these expressions for Ci:

3.

(3-62) yields

or, in algebraic

q,

X

0'j=

i
(9]

0 I 1 [ i
Q [ Q Q Q

2(1+V)

~ =
Cll CIZ, O €x
Cl?. 22 0 <€j>'
0 0 Cg F‘%

form,

_ E

= o (éx-;- \)Ej)

E

l_\)Z. (vex ¥ ej)

= G Y

g (3-66)

J

in equations

;

. (3-67)
(3-68)

o (3-69)
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Relations (3-69) are, as will be readily recognized, the
well-known stress-strain relationships for an isotropic
material in a state of plane stress. It is apparent,
therefore, that equation (3-63) is equally valid for both

orthotropic and isotropic layer materials.

3.5 FAILURE CRITERIA

It was pointed out earlier (Section 2.1.1) that
laminate failure can originate in any of the layers. Thus,
the strength of a laminated composite is necessarily
related to the failure of an individual ply (or lamina).

The most accepted lamina failure criterion at the
present time appears to be the distortional energy
condition which, as applied to a composite lamina, is a
variation of the origimnal condition proposed for isotropic
materials by Von Mises. Hill (30) postulated a generalized
form for anisotropic materials in 1948 and Tsai (31)
subsequently adapted this to the special case of an
orthotropic lamina in a state of plane stress. The reduced

condition, according to Tsai, is

(oY _ Lo e (%Y 1.‘&)2 .

&) = 5% % ==l =1 (3-70)
where |
o X
+* X

@, , 0, and T, are the applied stresses in the natural
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co-ordinate system of the lamina.

X and Y are the tensile or compressive yield strengths
of the lamina in the 1 and 2 directions,
respectively. Tensile values are employed when
the corresponding applied stress is tensile and
compressive values when it is compressive.

S is the allowable lamina shear stress.

Lamina failure is assumed to occur when the sum of the
terms on the left side of the equation becomes equal to one.
Unfortunately, as Grinius and Noyes (32) have
pointed out, this criterion provides no indication of the
manner in which a layer has failed. To overcome this
limitation, they suggested that an indirect determination
of the type of failure could be made by comparing the
ratios of longitudinal and transverse stresses in a layer

at failure. Specifically, if the inequalities

tan"(%> < 'tan"(;\) A

and

tan"( E) < tuc'(é)

G, X (3-72)

are not satisfied simultaneously, then either transverse
tension or compression, or longitudinal shear failure will
be indicated.

Another failure criterion, which is quite similar
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to the distortional energy condition, takes the form:

B %% - (9 -0
(-S(—_')L= i r (3-73)
[§)-

This criterion, developed by Norris (33) and commonly
called the "Interacﬁion Formula", has two restrictions:

1) no distinction is made between homogeneous and laminated
composites, and 2) shear strength is not treated as an
independent strength property. Neither of these
restrictions applies in the case of the distortional energy
criterion.

Stowell and Liu (34) have suggested a three mode
maximum stress failure criterion associated with (a) fibre
failure, (b) matrix shear failure, and (c) transverse
matrix failure. This criterion has received only limited
verification to date, however, and is not widely used.

Finally, the maximum strain yield criterion is
based upon the use of the maximum principal strain
properties of a composite lamina (35). By inserting the
principal yield strains of the lamina (which are determined
experimentally) into equations (3-41), an envelope of the
stresses which produce the yield strains can be produced.

For example, if it is assumed that T, = 0,
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€ = S5,0 + S,q
j i 22 (3-7)*)
Ezj = 5,0 + S5,.0;
or, by rearranging,
g =% _Sg
I
S Sm
- (3-75)

Q

I

lﬁ'm
W

- % (T
2z i
Szz 2z

Y,

These eduations can then be plotted in the 0, - U, co-ordinate
system to obtain a yield surface similar to the one shown in
Figure 3.5. The principal problem with this method appears
to be the substantial amount of testing required to account
fully for the effects of shear strain, i.e., for cases

where "Cn_yé 0.

3.6 DETERMINATION OF LAMINA PROPERTIES

It has been shown that the elastic response of an
orthotropic lamina to applied loads and conditions of
failure are completely predictablebas long as four elastic
E

constants, E V,, and Gu, and five allowable stresses,

e 227 "2

U,t, 0’:, G'lc, O’; and T, , are known. The question at this
point is how best to determine these properties for the
commonly used lamina or ply materials.

Though considerable effort has been expended in the
development of theories for predicting lamina properties,

they continue to be determined primarily by testing. There



73

are numerous reasons for this, but perhaps the most
important is that too many unrealistic simpiifications of
the physical state of the materials have to be made in
order to arrive at a mathematically viable model.

Numerous micromechanics theories for predicting
the thermoelastic properties of unidirectional composites
have been proposed in recent years (35). Unfortunaﬁéiy,
however, as Chamis and Sendeckyj (36) have stated in their
excellent critique on the sub ject, "until ‘a breakthr?ugh in
the statistical epproach is made, where all possible
factors influencing ply thermocelastic behaviour are
properly accounted for, the ply thermoelastic properties
can be described most reliably by semiempirical equations."
The need for testing in order to determine properties is
implicit in this statement.

Far less effort has gone into the development of
theories for predicting the thermoelastic properties of
randomly reinforced or woven material plies probably
because of the increased difficulties in arriving at a
workable model. As a result, the need for testing of these
materials is even greater.

The situation is not much better when it comes to
the prediction of strength properties. Socme of the
techniques employed in the prediction of elastic properties,
e.g., exact methods (elasticity) (37, 38) and the discrete

element method (39), also yield strength predictions.
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Unfortunately, these are based upon rather questionable
assumptions from a strength standpoint, such as (a) no
voids in the matrix, or (b) perfect adhesion between the
fibre and the matrix, which can lead to quite substantial
errors. Strength predictions are therefore generally less
reliable than those for eléstic constants.,

When one considers the foregoing factors, it'is
really not surprising that ply properties are still
determined primarily by testing. A further advantagé of
testing is that full stress-strain curves can be obtained
for the various types of loading and these are most
valuable to a designer attempting to achieve an optimum
design.

Five tests are required to characterize a lamina
or ply material. Two separate tensile tests conducted on
samples cut from the composite lamina at 0° and 90°
relative to the principal direction of reinforcement yield

t t

%
E. %: and (ﬂt, and Emland d, respectively. Compression

tests on similarly prepared samples, i.e., cut from lamina

C

at 0° and 90°, provide equivalent compressive data, E,,

'ﬁ: and (ﬂc, and Eﬁiand 0}?. Finally, the in-plane shear
properties are obtained by conducting some form of in-plane
shear test, e.g., the rail shear test, again on samples cut
from the lamina in both of the principal directions.

Actual testing procedures are generally quite

similar to those used in measuring the comparable
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properties of conventional isotropic materials. There are,
however, numerous fine points associated with the testing
of composite materials which cannot be discussed herein.
References (40, 41 and 42) are all excellent sources of
~additional information on this sub ject. |
The use of tests to determine composite lamina
response characteristics is not so different from the case
of metals. What is different, however, is that there are
no industrial standards for composite materials. Each
fabricator must therefore himsself determine the propefties
of those combinations of resin and reinforcement with which
he will be working. Until the FRP industry develops
workable standards comparable to those which exist in, for
example, the iron and steel industry, the determination cof

material properties will remain as a most serious problem.

3.7 CLOSING

A computer program which calculates the principal
lamina stiffness coefficients through the use of equations
(3-52) and then transforms them to any other co-ordinate
system by employing equations (3-62) is included as

Appendix A.



SECTION 4

LAMINATE CONSTITUTIVE EQUATIONS

Laminate constitutive equations are obtained by.
following derivational procedures that are virtually
identical to those used in the development of force and
moment resultant equations in plate and shell theory. The
only significant difference is that material stress-strain
relationships generally vary through the thickness of a
laminate while they remain invariant in isotropic plates

or shells.

L.l LAMINATE DISPLACEMENT RELATIONSHIPS

As in plate and shell theory, the surface that
bisects the thickness of the laminate is called the middle
surface or midplane. The entire geometry of the laminate
can then be defined by specifying the form of the middle
surface and the thickness of the laminate at each point.

Consider the infinitely small element of a deformed
laminate shown in Figure 4.l. It is formed by two adjacent
planes which are normal to the middle surface of the
laminate and which contain its principal curvatures. A
co-ordinate axis system can be established whereby x and y

are tangent, at O, to the lines of principal curvature and

76
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the z axis is normal to the middle surface.

In Figure li.2, the x-z plane of the laminate before
and after deformation due to a particular loading condition
is illustrated. It is assumed that as a result of loading
the point M at the middle surface of the material is
displaced by a distance u, in the x direction and that the
normal to the middle surface, BMC, undergoes a rotation
relative to the normal axis, z. It is also assumed, as in
plate and shell theory, that the normal, BMC, remains
straight and normal to the deformed midplane which is
equivalent to neglecting the shearing deformations, sz
and XS*'

The displacement of a point P on the normal BMC,

in the x direction, can therefore be expressed simply by

u'p = u'o - E)?(">< (Ll-"l)

where z 1is the z co-ordinate of the point P measured from
the midplane, and
X 1is the angular rotation of BMC relative to the 2z
axis,
It is readily apparent from the geometry, however,
that CC is the change in slope of the midplane with respect
to the z co-ordinate axis, or

= oW
X = O X “-l»"z)

Hence, by combining equations (4-1) and (4-2),

W= U, - w L (4=3)
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or, in general,

U= u —z 2= (4-4)

A similar relationship,

oW
V=V — Z=— =
: - (4-5)
can be obtained through an equivalent study of deformations
in the y-z plane of the laminate. In this case, v is the

displacement, in the y direction, of any arbitrary point at

a distance z from the midplane.

.2 STRAIN-DISPLACEMENT RELATIONSHIPS

Tensoriel strains have been previously defined in

terms of displacements (equation 3-2):

- __I_ _BLL;_ Bu.;
6'“]— 2 (be M bxi) g

where L,j =1, 2, 3

Thus, in a cartesian co-ordinate system (x,y,z) in which

the co-ordinates and displacements are respectively:

-

X = X

y =% - (4-7)
and = X3 7

W= W,

Vo= u, . (4-8)

w =_L,1.3 )

the tensorial strains are:
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Cyy = %
Cee = %% 1 (4-9)
€= 7 (%\é " %\g-)
{2
€= _%T(%_L; * ._g_;/(.) !
and the engineering strains are:
€ = %“i‘ \
€ = %\;-
€, = o
- (Z ) _a__»i) : (4-10)
gz 0% oy
= (3 &)
h (% ’ %—:) J

Expressions (4-3), (4-4), (4-5) and (4-10) enable
strain definition in terms of the midplane displacements,
U,, vV, and w, for any point in the laminate. However,
since it has already been assumed that the effects of the
strains éa, XB*- and X;; are negligible, only those

relating to deformation in the x-y plane need be considered



any further.

Substituti

the relationships

on of equation (4-3) into the first of

given in (4-10) yields

80

- Su
& = o%
= O [y - zow
- 6x(u“ % ax)
o  Oule z O°w (4-11)
X ox*? |
Similarly,
= OV
€5 0y
= 9 [y —z.09w
as(v" ias)
= OV _ o %W (4-12)
3y 3 y*
and
_ ow . dv
‘&ﬂ - oy T X
= [ —zdw) L9 (y _z8W
) atj(‘“ *ax)" ax("° zbg)
due , OVa\ _  dw (4-13)
~ \oy * bx) ez d%xdy

The displacement terms in these last three equations are

directly related to the midplane strains, however:

;

oo/
» |~
o

|

y (4-14)
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Also, by definition,

2 3\
K= - 3o
&
Xy = _55;; y (4-15)
5%
. = B
K"j Bxaj i

where X,, Ky and )(,(:l denote changes of the plate curvature.

Thus, the strain-displacement relationships can be

expressed:
. . \
EX = ex + z Kx
Ej = €& * 2 )<:j > (4-16)
i K
3;5 ELai- z Ky

7/

The equivalent matrix forms of these equations are:

w 3 \

L€ K
éﬂ: 6:2 -+ Xj} | (4-17)
o )

B O e 4

L.3 FORCE AND MOMENT RESULTANTS

Stresses acting on the plane faces of an elemental
cube cut from a laminate can be resolved in the directions
of the co-ordinate axes as has been described previously
in Section 3.1. In the most general case,}the stress

components are: 0, , 03, o » T» Ty, and TSI° However,

3
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since 1t is generally assumed that laminates are in a state
of plane stress, only.the components 0, qs and T;j (='T§x)
need be considered in this anaiysis.

In Figure L.3, another view of the x-z plane of a
deformed laminate is provided. As a result of deformation,
a stress, U, , is induced on an infinitesimal area, dA, of
the laminate cross section at a distance z from the
geometric midplane. If a unit width is assumed for the
laminate in the y-direction, this can be replaced by a

force,

=0,dz (4-19)
and a bending moment

dM, = ¢, zdA
=Q, zdz (4-20)

acting at the geometric midplane.

Clearly, then, the entire stress distribution can
be replaced by an equivalent force and bending moment
acting at the midplane. The equivalent force, N,, is the

integral, or sum, of all the elemental forces, dN,:

~h/2
N = | dN,
J-h/z

hh/Z.
0 d=

-h/2

i

(4-21)

(&
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and the esquivalent bending moment is obtained by integrating

the elemental bending moments, dM :
h/z

M, - | dM,

-h/lz
h/fz.
=J0‘x zdz -
s (4-22) |

Similarly, it can be shown that

~h/z
N, = 7y dz (4-23)
-h/z
»sh/a
0,z dz (4-24)
~J-h/z,
~h/z
Ty iz (4-25)

J-h/a

C

o
I

—
I

~hla
Tls't dz (4-26)
-h/2

M

N

The stresses, 0, 0'3 and ij , Wwhich are generated
within a laminate during deformation can therefore be
replaced (for analvytical purposes) by a system of three
forces and thres moments acting at the geometric midplane,

as is shown in Figure L.l.
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lt.l, CONSTITUTIVE EQUATIONS

k.ly.1 Force Resultant Considerations

Consider initially the force resultant, N,. From

equation (4-21),
h/2

N, = | o dz

-hiz
However, the stress in a laminate does not vary linearly
across the thickness as it does in the case of isotropic
materials. There may, in fact, be substantial variation
in the stress pattern from one layer, or lamina, to the
next. For example, in a laminate containing a high modulus
material immediately adjacent to another of low modulus,
the stresses would have to be much higher in the higher
modulus material since the strains at the interface would
have to be identical (strain compatibility condition);
Accordingly, since the stress variation cannot be described
by a single continuous function, the integration must be

carried out in parts, i.se.,

(=ha)
h, h, K h/2
N, =Jo;"’&z +J0’f’di PR T TS F T
é:cs h, hkﬂ L
or
n . h, |
Ny =§J ez (4-27)
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where Cd” is the stress in the kth layer of the laminate
which can be described by a continucus function,

From equations (3-6l), the stress, 0;“% in the kth
layer is related to the strains in that layer by the

expression

k) (k) /(K ) /(k)
S R T 5,‘5. (4-28)

Also from equations (4-16),

. € + zX,
E:j = €j° + Z.K;
blxj = Y, * 2 X"D

m
n

hence,

/(n ° 1 (k)

’ Q)
a® . C(k)é°+AC COOX +C zX + C zX5+Cl:1X‘j

% no Sx
v, (4=29)

Substitution of this expression into equation

(4=-27) then yields

n_hy
/ o o / ) '( ()
N;EJ(C““‘)ENC‘:H # Gty v Cek,r Caky v X,y Jde
k=1 hkrl

ceee (4=30)

or, by rearranging terms,
hy

NEJ( e + c'“"e + Y )de ijc SO RN DA
k= h, k= -
' e e ceee (4-31)

W) LK) 1K)
In the range of integration, however, C, , Cm and C,
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o o
are constants., Further, the midplane strains, €,, €3, Xxj,

and the plate curvatures, Kx, X X’j are also independent

of z. Hencse,

n hk
N, =Z(c’“° e e 5 <:"“’;{J )sz
k=l hy-
n hy
) [ %ex, ey v 2 X, )Jidi (4-32)
Then, k=1 hk—l
N ” () o (k) _ o '(k)x [ ]hk
’L= (Cu é'& ¥ Cl?. e:’ j) h
kel *!
n h,
Zc e X, + G2 X, + c’“‘iz.xj)[j (4-33)
~and k=1 l"k-l
n
/() _o 1K) o 7 (k)
Nx ‘E(Cu 6" * Clz 63 * c“: X"j)(h ‘hk—l)
k=1 '
n
/(K +(K) 1 (k) | 12 (% .
i(c“ 2K, + Oy + G ) L (R ) (e300
k=1
By rewriting equation (4-34) in the form
3 / ’ (W °
N,=| ) €, (b, ECMh - Ec (b [ +
P
3 /(k)l l(k)‘ l(k)
4 Ec e ) | +Zc "L
k=1
. (4-35)

it becomes apparent that the bracketed terms are constants,
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dependent only upon the constituent elastic constants and
the laminate geometry. The equation can therefore be

expressed in the relatively simple form:

N Au€ * Aaz 3 B AIGXXj * Buxx +B|z)(j + Bu'. Kxj “""36)
where
n 3
A, =§c'“"(h -h,.)
l(k}
A= E ¢, k k-)
e
(k)
A =}L C hk k)
e f (4-37)
(k) 1 z 2
6“ -E ¢ hk-t)
7} i ?. 2
}Lc he-h )
Bﬁiclm' (%4
kel

/
Similar relationships can be developed for N . and

J

ij by starting with the relationships

- h/z
~hlz

. Nx3= Ty oz
“htz .
and repeating the procedure outlined in the foregoing.

The resulting laminate constitutive relationships -
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are.:

Ne = Avel  Apeg+ A+ BX, + B + B, Xy

N3 = A, €+ Aue; + Au,Xx; * B Xu+ By + B X, (4-38)
ij", A & + A“€;+ A¥uy * BoXe+ BXy+ B X

66 xy (33 "J
where
A (4-39)
=) % (heh) 439
k:]
and
» (k) ‘
’ ] 2 2-_ ‘
By =§Cg _Z.—(hk-hk-a) (L-40)
K= i

L.l.2 Moment Resultant Consideretions

Equations reslating the moment resultants, M., Mj‘

and M to the laminate midplane strains and plate

s

curvatures are obtained in a similar way to the force
resultant relationships.
In this case, the starting point is the moment

resultant-planar stress relationships

~hlz )
M, = | T zd=

v-h/2

~h/2

M, = (Tszd.z s
J-h/z
~h/z

M.=| T, zdz
- B P J

(4-41)

Following the procedure outlined in the previous section,

it can be shown that the squivalent expressions for
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equations (4-27) and (4-32) are, respectively,

n h/e

M, =§ o;“‘)z dz (4-42)
k=1 -h/z
and
C ( () (x) "
/ kI o !
M,‘:E(c"w&o + G, €y + C, XXS)J 2 oz
k=l hy
C W » tx; i
/ o ‘
+Z(C“ X, + C Xy + G X‘E)J dz  (4-43)
h
k=| K

Integration of this expression then yields an

‘equation similar in form to (4-36):

— - — —

n n

W e . /(k) & (k) -4 2 °
e Yo 6 ;z )6 ) 5
L k=1 o — Lk’
P 7] ]
t(k)| (x) l(k)‘ 3 3
+ EF ) X;+ ;8;1 ; 4w) Xj* }%;53 h bl‘xﬂ
k=l 4 e

ceve (b-lilk)

Once again, it 1s readily apparent that the bracketed terms
are constants, dependent only upon the constituent layer

elastic and geometric properties. Thus,

M, = B.& +B.& + B, Y.+ DX, + DX, + D, X,  (4-43)

16 7‘5 2 j 6 'Kj

Similarly,

My = B& + By€y + Bt + DXy + DXy # D Xy (4-6)

3
j (TS 22 267y
and
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y = B 6 + BEy + B““éxj + D“')(x - ch)(j + D“X"_'j (4-47)

Therefore, the moment resultant constitutive equations are:

= B, €, + B,€y + angxg + DXy + D Xy + DIG)(":j )

=
i

o

M, =B,E + B,y + B“?s',; + D) * DXy * DXy » (4-48)

My, =B & ¥ B & + B“X,j +D X, + DXy * Dy, 5
where
n
7 (k) | 3 3
DtJ = E CLJ S(hk- hk-l) (4-49)
K=l

and Bcj was defined previously in equation (4-40).

The response of a laminate to externally applied
loads is fully described by equations (4-38) and (4-48).
Thus, the full set of laminate constitutive equations is:

° e =

Ny = A6 + A6 + R B, X« + BpXy 5 By Kay

Nﬁ = A|z€: i Azzeg o Azag"; v B'Zx“ ¥ Buxj " BZ‘X"ﬂ

ij = A, € + A“é; + A“?')',; B Ky * ByKy ¥ B‘GXuLS L (4-50)
M, =B,¢& + B,€§ + Bigday *+ Dula + DXy + DicXay

Mﬂ =Bo& + Bzzé; ¥ Bzex“; * DX + Dzzxj " D%ij

M,‘:j = Bme: + 32‘6; 2 Bq,‘,xx; + D Ke ¥ Dzsxj ¥ Dcaxxj J

which can also be expressed in matrix form:
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( 3 B 1€ )
N" Au Alz, ABG B\l Blz Bm €7‘
Nj Al?.- AZL Al6 Biz. BZK BZG €j
N A A, A B, B, B °

x 6 26 6b V6 o 66
QL - ' : 4L (y-s1)

Mx B“ Blz B|6 Du Dnz. Dm )(1
My B. B, B, Dy Du Dyl |Xy
M"jJ Be B B D, D De Lx‘j

. - - 7

weakis (4-52)

By inverting this equation, another form of the
constitutive equations, particularly useful in plate and

shell énalysis, is obtained:

R G P B (4-53)
M H* | D*| | X |
where
ERRA
B® = -[a]” [B:l
v (4-54)
(= BB
[6] = []-[] [a]" []
Finally, the fully inverted form of equation (4-52)
is:
¢’ A1 B N -
- - --;4--«;J - ) (4-55)
X B | D M
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where

]

(47 - [0 [+
5] - [0 (4-56)
0] [o7"

It is commonly utilized in the determination of midplane

[+]

H

strains and curvatures when the applied laminate loads,

N and M, are known.

4.5 COUPLING BETWEEN BENDING AND STRETCHING

It is interesting to note from equations (4-53)
that coupling may exist between bending and stretching in
fibre-reinforced composite laminates. That is to say, for
certain laminate constructions, the application of
stretching loads (N) will result in bending moments (M)

being induced in the laminate (or vice versa), since

- [ - Bl e

The degree of coupling, as indicated by this
equation, is dependent upon the value of the terms in the
matrix [Hﬂ . However, from equations (4-54), it is also
clear that these terms are in turn dependent upon the
values of the terms of the [A] and [B] matrices. It will
therefore be necessary to study some of the effects of
laminate construction of the value of [A} and [B} in order

to obtain a better understanding of the coupling phenomenon.

4 4

12? C

It is evident from equations (3-62) that C;, C 22
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’ 2 3
and C,  are always positive and greater than zero. Thus,

according to equation (4-39), A,, A,, A,,and A, must also

i 2d

be similarly valued since the lamina thickness terms

(h, - hkd) can never be less than or equal to zero. The

K
situation is quite different for the A and A, terms,
however. Depending upon lamina orientation, C; and q;
can be negative, zero or positive according to equations
(3-62). Thus, A, and 4, are not limited in value as are
the other A .

Consider a laminate constructed in such a way that
for each lamina with a po$itivé orientation, there is
another with similar properties at an identical neggtive
orientation. It can readily be shown through equation
(4-39) that in this special case, A, = 4, = 0. Such
laminates are generally termed specially orthotropic.

Of far more importance are laminates which are
midplane symmetric. In these, for every lamina above the
midplane, there is another of similar properties and
orientation located at an identical distance below it.
Coupling is eliminated in laminates constructed in this
way as can be shown from equations (4-40) and (4-54)

since all Bg and hence H = 0., There are two principal

*
g
advantages to constructing midplane symmetric laminates:
1) laminate analysis is considerably simplified, and
2) warping due to inplane loads, particularly thermal

forces, is avoided.



Through judicious laminate design, therefore, it
is possible to produce a laminate with constitutive
equations which are identical in form to those for an

isotropic plate or shell:

FN — s
Nx AH AS?. O €x
{Ng b= A, A, O | <4€5p (4-58)
N o o A ¥
\ xﬂJ e 6,6_,, \ XBJ
and
() — al R
M, w Dz O X,
Mg r = Dy By @ Xy r (4L-59)
tM,SJ 3 0 0 D, 1 }(,SJ

where, in the isotropic cass,

:
E

All = Azz, = l_hv?..
A, =VYA,
s = _Eh

- ERe \ (4-60)

_ _ __ER

Po =P T Ao
D, = VYD,
R =

¢ T 24(i+v) |

and, in the orthotropic cass, all A{j and Dﬁ are as

previously defined.

ol
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.6 LAMINATE FAILURE ANALYSIS

Laminate failure is usually associated with the
initial failure of a constituent layer. It is therefore
necessary to ascertain individual layer strains and/or
stresses before an appropriate failure criterion can be
applied to determiné structural adequacy.

The first step in a failure analysis 1s to determine
the midplane strains and curvatures for the particular
loading condition under consideration. This is usually
accomplished by employing equations (4-55). Next,
individual layer strain cdmponents in the co-ordinate system
of the structure are obtained through the use of equations
(4=17). These are in turn transformed into strain
components in the natural co-ordinate system of the layer
materials in accordance with the strain transformation
relationships (3-59). The principal layer stresses can then
be computed, if necessary, from the lamina constitutive
equations k3-51). The final step in the analysis is to
substitute the principal layer strains or stresses
(whichever is appropriate) into the selected failure
criterion to find out whether or not any of the layers, ahd
hence the leminate, has failed. |

Although most structural design is based upon the
initial failure condition, the ultimate load carrying
capability of a laminate is also an important consideration,

especially in the case of life critical structures, e.g.,



96

aircraft. A degradation-of-layers approach (31, 43, 4b) is
usually employed to determine the ultimate strength of a
laminate. In this approcach, as & layer fails, the type of
failure is observed and its effect on the components of the
stiffness matrix of that layer determined. New effedtive
laminate stiffnesses are then established and the failure
analysis is repeated to resolve which layer or layers will
fail next and at what load. The process is then repeated

until all layers have failed.

L.7 CLOSING

" Occasionally, it is necessary to go through a full
plate or shell analysis in order to ascertain structural
behaviour. In such cases, as was indicated in Section 2.2,
the analysis closely follows conventional plate or shell
analysis procedures, the only difference being that
laminate constitutive equations are used in place of the
conventional force and moment resultant equations. This
procedure is fully demonstrated in the next section which
deals with a specific shell problem: the analysis of a

laminated composite liquid storage tank.



SECTION &5

CYLINDRICAL TANK ANALYSIS

. The problem of a cylindriéal tank subjectéd to the
action of internal pressure, as shown in Figure 5.1, has
been studied previously by Timoshenko and Woinowsky-Krieger
(4ly) . Unfortunately, their analysis is applicable only in
cases where isotropic materials of construction are
employed. In this section, revised aeflection, sirain'and
stress equations are developed for laﬁinated composite
tanks.

Displacement equations are derived first by
following the approach outlined previously, i.e., by
subgtituting laminate constitutive relationships for the
usual force and moment resultant equations in the
conventional shell analysis and re-solving the equations.
Once these havé been obtained, it becomes a relatively
simple ﬁatter to use the strain-displacement relationships
to determine mid-plane strains and shell curvatures and
hence individual lamina stralns and stresses (see Section
l}.6). Full details of the theorétical development are
included in order to demonstrate thoroughly this new
approach to the analysis of laminated composite plate or

shell structures.

97
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5.1 STRAIN-DISPLACEMENT RELATIONSHIPS

According to Timoshenko and Woinowsky-Krieger (L4),
components at a point are related to the middle surface
strains and changes in shell curvature by the expressions

€ = €.- z2X, |

Co= € -2X, - (5-1)

f,= 422,

Ao /

where €,, €, , ¥ are the component strains at the point,

%0
G:, 6;, 3;; are the middle surface strains,
Xx’j(a’)(xe are the éhanges in shell curvature.

| Also, the middle surface strains and the changes in
curvature can be represented in terms of the displacements

in the x,8, and z directions, i.e., u, v and w,

respectively, as follows:

. B )
&% o
. LoV w
Co = r 26 T
° -y >y
b ¥ 36 T ox
X, = Ow ?‘ (5-2)
xX aXE'
Loy Pw
o= T?"(a@ - aa‘)
_ 1 [ov . W
Xo= (35 + 535) |

Hence, the generalized strain-displacement relationships
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are: u . \
6= Sx - xS
R
EEES A e s U
or . 2 w
€e=7',l-§)%\-g-—¥-—%—:z glé"z W
L= + 55 *('"%)%Vf‘%% a?:ge )
Neglecting the small quantities .f%?.} in comparison with
unity, ,, ] \
SR
N
. . 2
o= T35 T 5 2 E s J

Due to the general form of the laminate constitutive
relationship, however, it will be more convenient to use a

slightly different form of equation (5-1), i.e.,
€, = €, + X,

€= €o+ 2X, - (5-6)

= Xxe-r z X, .,

*x0

where
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~
o
]

Y= 0 - (5-7)

J

In the particular problem at hand, the strain-
displacement relationships can be simplified somewhat since,

due to symmetry,

2ut . | dw _ g
06 00 00
'w - W _ 0 [ (5-8)
B@?’ bxée » J :
hence,
€ = du )
x dx
Dw
KJC == axzv
° = W -
€e - T ? (5 9)
X, = 0
° _ OV
an ax
X;G:: O J
Thus, the strain-displacement relationships (5-6) simplify
to :
o 2 3
R O LY
dx L x*
= - W ‘ -
€ = - = - r (5-10)
¥ o= <y’
x6 d?( | )
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5.2 THE EQUATIONS OF EQUILIBRIUM

Typical loads encountered by an element of a
c¢ylindrical shell are indicated in Figure 5.2. Force and
moment equilibrium considerations, in the most general case,

yield three equations of equilibrium (U4l):

T O Nx - aN@; = (

oy T - (5-11)
%%‘g . %_[;!ﬂ =0 (5-12)

Zyg e z
N, + rge ab;k - axgée L %_%43 #Zr=0 (5-13)

Due to symmetry, however, the force and moment
resultants are independent of @,; therefore, these equations

reduce to

d Ny

=0 (5-14)
d.x u”

dNe g (5-15)
d x

and
;1

N + v <M £y =0 (5-16)
oLx '

Equations (5-1l) and (5-15) indicate that both N,
and N, xg have constant values and, since it has been assumed
that there is no external loading at the top of the tank,

it must be concluded that

N,=N,=0 . o (5-17)
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Equilibrium can therefore be represented by the single

equation

2
d My + 4
d x* ¥

Ne = -2  (5-18)

The lateral load Z in this problem is defined by the

'equation
£ =-pld-x) (5-19)

where O is the density of the_contéined liquid
d is the overall height of the tank
X 1is the distance fr§m the base of the tank.

In cases where N, and/or N, are different from
zero, the deformations and stresses‘corresponding to such
constant forces can be calculated separately and superﬁosed
on the deformations and stresses determined in this

analysis (4k4).

5.3 LAMINATE COKNSTITUTIVE RELATIONSHIPS

The constitutive relationships for thin laminated
cylindrical shells are developed in an identical manner to
" those for flat plates. The only.significant change in the
final equations is the subscript notation, i.e., c¢ylindrical
co-ordinate system notation is adopted in place of cartesian.

Thus, their normal form is:
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() — T e
Nx ‘A‘“ Atz, Ate Bu Blz Bxe Gn
N, A’L A, A, B, B, B,, €,
N A, A_ A, B, B, B b, | '
(4 2 66 x8
ﬁ xer - 16 26 ¢ 16 6 p - (5-20)
R B“ B By Dy, Do Dy | X
Mg B 1z Bzz. B_ze D Dzz. Dy Xe
\Mxej L_B'G B% B, D“; D, D“—J \Xxej

In this analysis, however, it will be more
" convenient to start with the paftially inverted form of

the constitutive relationshipé:

€>n An sz Ang Bu Btz. an NJL
° * * ¥ 3% * *
€ 0 A 12 A 22 Aze. Btz Bzz. Bzc, N ]
° % * * % % *
XN} _ | A% AL AL B By B N, (5-21)
4 - * % % * * | 3 f 5-
M, H“ hlz. Hs; Du Dn. D¢ )(x.
a6 * % * * *
Me le, sz ‘ H26 D iz Dzz D&G X—e
* * +* t3 * X
SO E-E S W g I U

By introducing relations (5-9) and (5-17),

() [ % * * * % <1 (~ )
Gx Ay A:z Aw, B” By, Bie 0
° % ¥ e * ¥ *
66 Arz. Azz A“ B,?_ Bzz st Ne
e * * L H #* # *
XXB - Ay Azs “¢6 B«c By Beg 4 0 . (5-22)
) m, [ B u* ®*¥ Dp* »p¥ p¥ X i
* I 1z T3 T % 16 b3
* % ¥ * * *
Me ) Hn. sz. Hzc, D D ch 0
% * * i * w

and hence the constitutive equations finally reduce to:
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’
[~ ¥~ . »
€, = A, Ky + B )(x
o _ 3t *
— * »T ‘*‘
bo = 4.8 + B} X,L (5.23)
M, = H N, + DX " )
x iz 70 oo
- * ' ¥
Mg = E Ny + DJK
- * *
Mg = H Ny + DX ]

5.4 THE COMPATIBILITY CONDITION

The compatibllity condition in the case of general

deformation of a cylindrical shell is:

1 e % 1w |1 ¥
TE 365 T owt T T 3xE T T w00

(5-24)

However, due to symmetry in the problem under consideration,
€x and Bxe are both independent of 0. Thus, the equation
is considerably simplified to:
2
d € , |
dx* T

“’ =0 (5-25)

5.5 THE GOVERNING DIFFEREKRTIAL EQUATION OF DISPLACEMENT

The governing equation of displacement is obtained
by utilizing the compatibility condition, equation (5-25),
in conjunction with the final form of the partially
inverted constitutive relationships (5-23), the strain-
displacement relationships (5-9) and (5-10) and the
equation of equilibrium (5-18).

From the strain-displacement relationships (5-9)
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and (5-10) and the reduced form of the constitutive

equations (5-23), it can be shown that

o * * Z.
€g = €p =~ 'y—rq— = AN, - le'i_:lz (5-26)
and
"y z
M, = H*N, - D;‘%T"g (5-27)
Therefore, by differentiating,
de, _ A% dEN, dw
dxt An‘"d.xz’ - B?" dx* (5-28)
ar_nd
dM, _ Ny _ p* diw
= - > -2
d x* T L (5-29)
Also, from equation (5-26),
2
Ng =y W , By dw (5-30)
A, + Ag dx*

Substitution of equation (5-28) into the

compatibility equation (5-25) then yields

* J* * dh L1 dPw |
Azz, d.xz_’q‘ le At +—F.I;Z-O o3
and hence
z * 4
d'N, _ BY d'Ww _ 1 1 d*w (5-32)

dx®  AX dt AL T

Accordingly, equation (5-29) can be rewritten in the form:

My - BiHe dfw _ Ho 1 dw _ p*dte

d <= Ap dat AL T A Lo (5-33)
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hence

o (5-34)

dZMx _ (D* _ B:H.:) dw
d x* § A
RZ

Equations (5-19), (5-30) and (5-34) can then be

combined with the equation of egquilibrium (5-18) to yield

% * A . * * |
) (D*_ BUH(L) dh (BN-HQ>_L dhw _ L1 _ o(d-x) (5-35)

AL At Ad /T F AFT
hence
o _< B -H )_i_ d'w | W
Pt Xy % z »* %® Z
d']f ALLDn"Banz. T dx 'A;:DH'B:HlL L

Az |
== A*DX— Tg*H-x— P (d.-X) (5-36)

Furthermore, from equations (4-5i),

By = - Hx (5-37)
thus

dfw 2HE 1 dA 1 "
T *
dx4 AzzD” +(Hl7‘: J

r dxr AXDT+ (Hz ) +*

_ As - (5-38)
AFDr. (op P40

This is the governing differential equation of a cylindrical
tank sub jected to the action of uniformly varying

hydrostatic pressure in the axial direction.
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5.6 GENERAL SOLUTION OF THE GOVERNING DIFFERENTIAL EQUATION

Equation (5-39) is & standard fourth order linear
differential equation which can readily be solved by the
technique indicated in Appendix C. The general solution of

the equation, as determined in the Appendix, is:

W = e“*(Cl sun ﬁx + CaCOSﬁX)-x- e—OO((CbsLnﬁx + C4cos ng)+ WP
cose (5=39)
where —_— '
, 1Y
X = | o He ] ( l el (5-40)
| L 2T AnDi+ -(Hx:)z *D% ( l?-) :
F o v
. | 4
- I an + 1 ( | > /Z it )
P = 2 A=A 2 A (R
C,» C,» C and G, are constants of 1ntegration which

must be determined from boundary conditions, and
Wp is & "particular" solution of the governing
differential equation.

One particular solution of equation (5-38) is
%_2 '
WF = - Au'r P(d— )L) (5-42)

which represents the radial expansion of a cylindrical
shell with free edges under the action of a uniform internal

pressure. Accordingly, the complete general solution is:

W = e“"(Cl sLnPK + CLcos }SX) + G—KX(C sm?x % C@wsﬁx) '
- AgTip(d-x) (5-1:3)

In most cases, however, the wall thickness is small
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compared to the structure dimensions r and d, and the shell

can be considered to be infinitely long. Thus, C, and C,

are equal to zero (L44) and equation (5-43) reduces to

- XX

w =& (CssLn?x + C4cospx> - A:;rz'[)(q{_ -x) el

The remaining constants of integration, C, and ,C4, are

3

determined from the boundary conditions.

5.7 APPLICATION OF BOUNDARY CONDITIONS

In this study, it is assumed that the base of the

tank is rigidly constrainéd; thus, the boundary conditions

are:
w = 0 at x = O (5-45)
and .
™ _ 5 et x = O (5-146)
dx

From equation (5-4ly), when x = O,

0 = (,-A T pd (5-47)

i\ﬁ. = - o(e-“x(cssf.npx. +C‘§_C05P1) +
(Qe.ux<cs cosﬁx & Qstnﬁx) + AthLF (5-48)

and hence

0=-«xC, +gC+ Ajleo (5-49)
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By solving equations (5-47) and (5-48), it can be
determined that:
C, - Ast'p ("‘ d- 3 (5-50)

and
Co=Agrpd 550

Therefore, equation (5-4l) becomes

W = - zzf’ {d. x- e [dcosﬁx+(°<d.-——)smf’>x]} (5-52)

This is the deflection equation for a laminated
composite vertical storage tank., It is obviously quite
similar to that derived by Timoshenko and Woinowsky-Krieger

(L4) for tanks constructed of isotropic materials:

W= - __Pr{d % - &P [dcosﬁx + (c{- ——-)SmF ]} (5-53)

It can in fact be shown that for the special case of a
laminate comprised of a number of similar isotropic layers,
i.e.,_ in the isotropic case,

AL - 'ELK (5-54)

and
l

o= p - [——-z——z’f,‘z;,"z)] ’ (5-55)

Therefore, equation (5-52) is actually a more general

solution to the problem,
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5.8 FAILURE ANALYSIS
As was indicated in Section L.6, the first step in
& laminate failure analysis is to determine mid-plane

strains and shell curvatures. From equations (5-9),

€= -
K o= - Cw
x d x* (5-56)
Ke:: O
Kx6= O
and, from equations (5-23) -and (5-30),
o_ Al _ AZBa) JdPw
€= - Buu <B _ AuBi (5-57)
= . T & Au) o x*
and |
ve _ AR * AnBa) diw )
éxe - Az.%. '\:N:- (BGI— Az: d.xz‘l (5 58)

Thus, the mid-plane strains and shell curvatures

are fgnctiona solely of the tank well deflection, w, and

2
the wall curvature in the axial direction, ii“i.
%

By differentiating equation (5-52),

—ii:— = A;P’r’z{l - e-“x[cosF)x - [« ge’ d - ﬁ)SmPX]} (5-59)

and

Lfiiz = - A'::Fr‘ '“x{[(oc - p)d - Zoc] cos Bx
[o\\ Bezyd _)u;smfgx}

ce.e (5-60)
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Therefore, all of the mid-plane strains and shell
curvatures at a given point (defined by x).Can be
determined by applying equations (5-52), (5-56), (5-57),
(5-58) and (5-60). Once these values have been
established, the failure analysis proceeds as outlined

previously in Section 4.6.

5.9 COMPUTER PROGRAM

The theory presented in the foregoing provided the
basis for a computer program which was developed for
analyzing laminated compdsite storage tanks, A listing of
this program, code-named CYLTAN, is provided in Appendix D.
The distortional energy condition was adqpted as the

criterion of failurs.

5.10 GUN-LAUNCHED ROCKET MOTOR CASE ANALYSIS

5.10.1 Background Information

As a gun-launched rocket exits the barrel, the
motor case wall is sub jected to internal pressures which
are dus to extremely high inertial forces acting upon the
structurally weak solid rocket propellant. As can be seen
from Figure 5.3, the rocket motor case may therefore be
assumed to perform instantaneocusly as & storage tank
filled with an enormously dense fluid. The effect of this

loading on the case wall can be predicted by utilizing
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the tank analysis developed earlier in this section.

OtConnell (1), in his analysis of the HARP seven
inch fibreglass rocket motor case, adopted the storage tank
model but did not use the theory of laminated composites
(it was not then available to him). Instead, he assumed
that the analysis developed by Timoshenko for isotropic
tanks could be modified to take into account the orthotropy
of the fibreglass simply by substituting orthotropic
elastic constants for the equivalent isotropic properties
at the appropriate places in the equations.

It was therefore décided thaﬁ this problem would
provide an ideal test for the newly developed analytical
procedure. By utilizing Of'Connell!s input ‘data, the
results of the two approaches can be directly compared and,
hopefully, some direct evaluation made of the newly derived
equations, |

Rocket motor case, i.e., "tank" data utilized in
the analysis was as follows:

1) r = tank radius = 3.412 inches

2) 4 = tank depth = §3.00 inches
3) P = fluid density = 98.0 1b./ cu. in.
L) t = wall thickness = 0.325 inches

5) laminate construction:

a) outer layer (hoop wound)

(
? thickness = 0,1625 inches

i} &
ii) 6(‘)

]

orientation = 90°
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b) inner layer (helically wound)

i) £@ = 0;1625 inches
()

o

i1) 0 =33
6) .lamina elastic properties (Vk = 0,8):
a) E, = 8.88 x 10°pst

b) E, =1.75 x 10°psi
c) G, = 0,66 x 10°psi
a) Vo = 0.24
7) Allowable lamina stresses, required for the failure
analysis, were taken from a report by Tsai
(O'Connell did not analyze for failures).
a) @,° = +150,000 psi
b) 0,° = -150,000 psi
c) G;t = +12,000 psi
i) G¢ = -20,000 psi
e) T.

10,000 psi

5.10.2 Computational Procedurs

Computations were carried out in three phases.
Firast, lamina stiffness coefficients were determined from
the known slastic constants and layer orientations through
the use of computer program STIFCO. Next, the laminate

% B* B* H—:‘e

*
26 By » Bg s Hy and Q) wors

constants A,: 5 Az:, A
determined by employing program MN CM. Finally, program
CYLTAN was run to complete the analysis. The outputs

from all three programs are provided in Appendices A, B
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and D respectively. Unfortunately, due to its volume,
the tank analysis program output had to be limited to the
two main points of interest:

a) the base
and

b) the point of maximum deflection

5.10.3 Results of Initial Study

The predicted tank, i.e., rocket motor case,
deflection curve is illustrated graphically in Figure 5.4.
This plot tends to exaggerate the tank curvatures, however,
and it was deemed necessary to provide also a full scale
representation - Figure 5.5 - of the bottom five inches of
the deformed structure to put the deflection pattern into
proper perspective.

The computed maximum wall deflection is 0.0285
inches which compares favourably with that predicted by
OtConnell - 0.0281 inches; the location of the point of
maximum deflection is.not the same, however. Computer
results indicate that it is 2.0 inches from the base of
the tank comparsd with O!'Connell's value of 2.5 inches.
This could perhaps be construed as an indication of the
existence of more severe curvatures near the base of the
tank than would be predicted by the approximate method used
by O'Conneli. However, since he calculated neither

curvatures nor stresses dus to bending, this cannot be
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verified.

Laminate bending stresses due to curvature at the
base of the cylinder are nevertheless a primary design
consideration. In both the 90°/+33° and 90°/f33° laminate
analyses, the laminates were much.more highly stressed
(failure criterion =~ 4.5) due to bending at the cylinder
base than they were due to the maximum radial deflection
(failure criterion =~ 1.05). In particular, the hoop layers
on the outside of the cylinder were found to be critically
stressed in the transverse directioh (approximately 42,000
psi compressive stress versus 20,0CO psi allowable).

The only other direct comparison possible between
the two approaches pertains to the predicted stresses in
the wall at the point of maximuﬁ deflection. These are
tabulated in Table 5.1 along with those determined when a
more typical 90°/f33° laminate is assumed. In general, they
appear to be quite comparable although the revised analysis
does indicate that the critical transverseltensile stress in
the helically wound layer(s) is 20 to L2 percent higher than

was predicted by O!'Connell's method.

5.10.4L, Additional Parametric Studies

To further illustrate the value of the newly
developed composite tank analysis, three additional computer
studies were made to investigate the effects of:

1) layer sequence
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TABLE 5.1

COMPARISON OF STRESSES AT MAXIMUM DEFLECTION

O'CONNELL  CASE 1 CASE 2
(90/+33) (90/+33) (90/#33)
MAXIMUM DEFLECTION (INCHES) 0.0281 0.0285 0.0285

LOCATION OF MAXIMUM DEFLECTION 245 2.0 20
(INCHES ABOVE BASE)

LAYER STRESSES:
OUTSIDE - LAYER 1

g, (=0, ) - KSI 74.01 T4.69 74.59
g, (= 0o ) - KST ~0.52 -1.59 -1.50
T, (= T{j) - KSI «-2,78 -0.30 -0.03
MIDPLANE - LAYER 1
G (= G ) - KSI 7h4.01 h.17 74.03
0 (=0, ) - K8Y .-0.52 -0.54 -0.77
T, (= tﬁ) - KSI . =278 0.30 0.03
MIDPLANE - LAYER 2
0, - KSI 0.52 2.68 2.93
0y - KSI 13.22 15.05 15.17
’Cx:, - KSI 2078 oS 1-69 2.28
g’ <« KSI (6.83) 7.90 8.65
g, - KSI (6.91) 9.83 9.46
T, - KsSI (6.93) 6.34 6.52
INSIDE - LAYER™
T, - KSI 0.52 3.72 -3.66
0y - KSI 13.22 12.70 12.78
Txy - KSI 2.78 -1.09 0.47
g, «~ K31 (6.83) 0.15 0.79
0, - KSI (6.91) 8.83 8.33
s - KSI (6.93) 7.06 «Ts32

Brecketed numbers indicate transformed stresses not
resented in original work.

The inside layer is layer 2 in the 90/+33 laminates
and layer 1l in the 90/+33 laminate.

So, A
W
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2) the hoop layer thickness, énd
3) the wind angle'of the helical layers
on the structural performance of the rocket motor case wall
constant wall thickness was maintained throughout.
The elastic properties assumed originally by
O'Connell and used heretofore were unrealistically high. 1In
these latter studies, more representative lamina properties

were adopted (37). The revised elastic constants are:

a) E, = 7.80 x 10° psi
b) E, = 2.60 x 10° psi
¢c) G, =1.25 x_lO6 psi
a) VY, = 0.25

A summary of the various wall constructions
investigated is provided in Table 5;2. Cases 1 and 2
indicate the wall constructions assumed in the comparative
study described previously. The next three pertain to the
layer sequence study and cases 6 through 11 comprise the
hoop layer thickness investigation. The remaining cases
constitute the wind angle study.

Critical layer principal stresses and failure
criteria values at the point of maximum deflection and at
the base of the structure are tabulated in Tables 5.3a
and 5.3b respectively. Maximum deflections are also
included in Table 5.3a as are axial curvatures in.Table
5.3b. In addition, relevant laminate information is

provided in both tables for ready reference.



TABLE 5.2

SUMMARY OF LAMINATES ANALYZED

CASE NUMBER ' HELIX PERCENT LAYER THICKNESSES
OF LAMINATE CONSTRUCT ION ANGLE  HOOP HOOP HEL ICAL

LAYERS LAYER(S) LAYER(S)

(DEG) (INCHES) (INCHES)
1 2 90 / +33 33 50 0.16250 0.16250
2 11 90 VATV A EVEVEVE VENEKY' 50 0.16250 0.01625
3 11 90 /)= =S/ =/ -+~ 33 50 0.16250 0.01625
I 12 +/-/ 90  /J+/-/%/-/+/-/ 90 /+/- 33 50 0.08125 0.01625
5 12 +/-/+/-/ 90 /+/ -/ 90  /+/-/+/- 33 50 0.08125 0.01625
6 20 )] S SN S L= -/+ 33 0 - 0.01625
7 17 )/ =)= 90 [=/¥/~/+/-/+/-/+ 33 20 0.06500 0.01625
8 13 +/ /) =/+/-/ 90 [-/+/-/+/~/+ 33 1,0 0.13000 0.01625
9 9 ATV 90 /-/+/-/+ 33 60 0.19500 0.01625
10 5 +/-/ - 90 /-/+ 33 - 80 0.26000 0.01625

11 1 90 . 100 0.32500 -

12 12 +/-/+/-/ 90 /+/~/ 90  /+/-/+/- 15 50 0.08125 0.01625
13 12 +/-/+/-/ 90 /+/-/ 90  /+/-/+/- 60 50 0.08125 0.01625
1L 12 +/-/+/-/ 90 /+/~/ 90 /+/-/+/- L5 50 0.08125 0.01625
15 12 +/-/+/-/ 90 /+/ -/ 90 /+/-/+/- 15 50 0.08125 0.01625
16 12 +/-/+/-/ 90 /+/-/ 90 /+/-/+/- O 50 0.08125 0.01625

QTIl



TABLE 5.3-a

SUMMARY OF RESULTS - THE POINT OF MAXIMUY DEFLECTION

CASE NUMBER HELIX PERCENT Awi MAXIMUM  CRITICAL PRINCIPAL LAYER VALUE OF
OF ANGLE  HOOP DEFLECTION  LAYER STRESSES FAILURE

LAYERS ' U, 2 A e, CRITERION

(DEG) (x10°IN/LB) (INCHES) (KSI) (KSI) (KSI)

1 2 33 50 0.5823 0.0285 2 o*  -3.78  7.97 7:.53 1.072
2 11 33 50 0.5812 0.0285 2 o 8.65 9.46 6.52 1.046
3 11 33 50 0.575l 0.0280 11 i 6.37 13.27 -12.72 2.839
Iy 12 33 50 0.575L 0.0279 12 i 5.06 12,96 -12.95 2.810
5 12 33 50 0.575L 0.0279 12 i .35 12.77 -13.05 2.835
6 20 33 0 1.06l 0.0510 20 i 10.72 24,.03  23.29 9.429
T 17 33 20 0.7942 0.0382 17 i 6.83 17.76 17.70 5.318
8 13 33 1,0 0.6336 0.0306 13 i 6.66 1Lh.47 13.93 3.393
9 9 33 60 0.5271 0.0256 g i L.38 11.8L 11.87 2.3681
10 5 33 80 0.4512 0.0219 5 i 2.42 9.88  10.46 1.771
11 1 = 100 0.3945 0.0193 1o 43.41 -3.12 0.00 0.151
12 12 75 50 0.,4148 0.0203 12 i 40.95 -2.95 -5.62 0.417
13 12 60 50 0.4,727 0.0231 12 i 33.1 0.52 -11.00 1.260
1l 12 L5 50 0.541] 0.0263 12 i 18.4y  7.06 -13.96 2.303
15 12 15 50 0.5887 0.028) 1o 5.36 20.56 5«54 3.2440
16 12 0 50 0.5886 0.028 1o " 3.69 21.94 0.00 3.338

3t =

i - denotes inside of layer L

0 - denotes outside of layer



CASE NUMBER HELIX

" .
OV N GO\VVEFE WO

e
o =

OF
LAYERS

11
11
12
12
20
17
13

12
12
12
12
12

ANGLE

(DEG)

TABLE 5.3-b

SUMMARY OF RESULTS - THE BASE OF THE STRUCTURE

PERCENT
HOOP

()"

(x10°1B™") (INCHES™)

-J
@

OO
SO WwWE
DO~ =

dfw
d x*
AT BASE

-0.1190

-0.10%2
-0,0988
-0.0906

-0.1157

-0.1003
-0.0911
-0.0868
-0.088Y
-0.1021
-0.1034
-0.1039
-0.0972
-0.080L
-0 07Tl

CRITICAL
LAYER

O

be o Ite e e (e [e e fde ke bt pie e O O O

PRINCIPAL LAYER

g,
(KSI)

-10.12
-10.45
-13.20
8.52
8l,. 25
109.05
94.58
85.83
81.79
7.63
11.02
19.26
41.149
68.01
5.20
5.01

STRESSES
0;.

(KSI)

-41.0L8
L2, 82
-52.79
34.10
18.79
23.59
20.146
18.56
17.69
30.50
4L .07
42,10
36.59
26.87
20, 80
20,03

T

12,
(KST)

3.72
-0,52
-0.50
-0.48
17.00

-21.447
18.62
16.90

-16.10
-0.00
-0.00
10.43
18.18
20,02
-0.33
-0.00

VALUE OF
FAILURE
CRITERION

125
571
.96
. 066
.586
.888
685
.505
.999

o F ool o O

12.611
9.14l
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It is immediately apparent from these tables that
(a) the wall thickness is inadequate for the assumed
loading and (b) the bending stresses induced at the base of
the cylinder must be the primary design consideration. 1In
all cases but three (6, 15 and 16), the layer stresses are
considerably more critical at the base than they are at the
point of maximum deflection. However, since there were
cases in which the critical point in the structure was the
point of maximum deflection, layer stresses at this
location must also be carefully considered.

A closer scrutiny of the results reveals that
failure is primarily related to layer treansverse and shear
stresses rather than to the stresses in the direction of the
reinforcing fibres. Oniy in cases 11 and 12 do the
principal stresses represent more than ten percent of the
failure criterion value. In these cases, at the poinﬁ of
maximum deflection, the fibres are largely aligned in the
primary direction of loading, i.e., in the hoop direction,
which explains why they are substantially stressed. Even
then, the principal stress represents less than sixty
percent of the value of the failure criterion, however. At
the base, where bending is the primary consideration, the
principal stress never represents more than six pefcent of,
this value.

It is also interesting to note that in cases 15 and

16 the most severely stressed layer in the twelve layer
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laminate is the eighth., This confirms the statements made
earlier on this subject in Section 2.1.1, i.e., that even in
the case of puré bending, the most critically stressed layer
in an orthotropic laminate is not aiways at one of the outer
surfaces,

A comparison of the results of cases 2 and 3 reveals
that the individual layer stiffness properties substantially
effect the structural performance of the complete laminate.
By introducing lower material constants (case 3), the values
for the failure criterion at the point of maximum deflection
rose from 1.046 to 2.839 and at the base from 4.571 to 6.946
even though an identical laminate construction was assumed
in both cases.

Layer sequence is shown to have a most significant
effect on the flexural load carrying capabilities of a
laminate in cases 3, 4 and 5. At the base of the structure,
where flexure is the sole consideration, the value of the
failure criterion ig lowest when the hoop layers are located
closest to the centre of the laminate. It is also clear
from the results that the layer sequence has virtually no
effect on the ability of the laminate to withstand tensile
loads, e.g., hoop stresses. Although both of these
conclusions seem entirely logical and obviocus now, such was
certainly not the case at the time of the development of the
HARP rocket motor case. Little consideration was given to

the effect of layer sequence on structural performance at
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that time and the sequence was in fact determined by
manufacturing considerations: it was easier to wind first
all of the helical layers and then the hoop layers. This
example clearly points out the significance of “thinking
composites” and how lamination theory helps us do this.

In Figure 5.6, computed maximum wall deflections
are plotted against related values of the laminate

stiffness coefficient A*

22 + From this graph, which includes

data from all of the cases analyzed, it is clear that an
almost perfectly linear relationship exists between the
maxinum deflection and the laminate constant. This is
somewhat surprising,perhaps, since it has already been
demonstrated (Figure 5.l4) that the deflection pattern is
substantially affected by end constraint. The fact that
the graph is linear cannot be ignored, however; indeed,
this can actually be an advantage from an analytical
standpoint. Since the slope of the curve is within three
percent of the value that would be obtained by assuming
that the base was unconstrained, the maximum wall defléction
" can be quite accurately predicted simply by employing the
relationship

Wory = —A:;_frz'd | (5-61)

where all symbols are as defined previously.
By ignoring cross-coupling stiffness coefficients,

it can also be shown, from equations (5-40), (5-41) and
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(5-52), that when x = 0, i.e., at the base of the tank,

Y
dw _ _ <’£> ?‘Prd (5-62)

This approximate relationship is demonstrated to be quite
accurate in Figure 5.7 where the computed axial curvatures
at the base (all cases) are plotted against their related

* )l/g_

laminate constants (A::_ /D

. The calculated slope of the
graph is within one percent of the value of (Frd). 1%
would therefore seem possible, once the formula has been
experimentally verified, to use it to predict axial
curvature and hence lamina strains and stresses at the base
of the tank without going through a full scale tank
analysis.

The results of the study into the effect of the
hoop wound layer thickness on structural performance (cases
6 through 11) are presented graphically in PFigures 5.8 and
5.9. In Figure 5.8, the laminate elastic properties A;_
and (A}i/Df )2 ape plotted against the thickness of the
hoop wound layer (presented as a percentage of the total
wall thickness) which is in all cases located at the centre
of the laminate. Figure 5.9 shows the effect of hoop wound
layer thickness on the values of the distortional energy
failure criterion at both the base and the point of maximum
deflection. It is quite clear from Figure 5.9 that the

best structural performance is obtained when approximately



60 percent of the wall thickness is hoop wound. Further,
according to Figure 5.8, this percentage very nearly
.coincides with the minimum value of the laminate constant
(4% /n* )",

The two distinct portions of the failure criterion
"at base' curve reflect two quite different modes of |
laminate failure. From zero to approximately 72 percent,
the maximum value of the failure criterion is found to be
at the inner surface of the cylinder. Beyond this point,
the most critically stressed point is the inner surface of
the hoop layer. Once again it is demonstratsd that failure
in a fibre-reinforced composite laminate does not
necessarily occur at the extreme ribres.

The effect of the helical wind angle on the elastic
properties of a laminate in which one half of the thickness
is hoop wound (cases 11 through 16) is shoun in Figure 5.10.
In addition, its effects on the structural performance of
the laminate are shown in Figures 5.1l-a and 5.11-b. It
should be noted that, due to filament winding limitations,
the hoop wound layers in all of these cases are located
close to but not at the centre of the laminate (see Table
5.2).

From Figure 5.1l-a end -b, it is clear that any one
of threo different failure modes may bs encountered
depending upon the angle at which the helical layers are

wound. When wind angles of between 0 and approximately 20
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degrees are employed, the analysis indicates that the
initial failure will occur at the outer surface of the
shell in the vicinity of the point of maximum deflection.
Next, in motor cases with helical layers wound in the 20
to 25 degree range, failure is initiated at the inner
surface of the eighth layer of the laminate at the base

of the structure. Finally, for larger helix angles the
initial failure is also at the base of the structure.
However, this time it is at the inner surface of the shell.
It is also apparent that the value of the failure criterion
is lowest when the helical wind angle is approximately 20
degrees. Thus the study shows that, for a motor case in
which one half the wall thickness is hoop wound, the most
effective laminate is one in which the helical layers are

wound at an angle of approximately 20 degrees.

5.10.5 Closing Remarks

The foregoing studies have amply demonstrated the
advantages of using lamination thedry in conjunction with
conventional shell theory. In addition to providing a much
clearer picture of the inter-relationship between bending
and stretching, they also showed the vital role of bending
at the base of the structure and the significance of layerx
sequence, hoop layer thickness and the helical layer wind
angle.

The studies also provided an indication of the
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validity of the newly derived deflection equation (5-52)
for & laminated composite storage tank, In particular, it
was shown (in study 1) that the computed maximum deflection
was within two percent of the value determined separately
by Of'Connell (1) in his investigation of this same problemn.
Theoretical studies still leave some meaéure of doubt,
however; only through an experimental program can the
validity of these equations be properly‘confirmed.

Finally, some new guidelines relative to the design
of the wall of a gun-launched FRP rocket motor case have
evolved as a result of these investigations. It was shown
that the wall of the structure should consist of a hoop
layer, located between two identical helical layers.
Although the optimum combination of hoop layer thickness
and wind angle was not established for the particular case
analysed, the results indicated that in all likelihood,
between fifty to seventy percent of the total wall
thickness should be hoop wound and that the helical layers
should be wound at a relatively shallow angle, probably
less than thirty degrees. These guidelines appear to be
equally applicable to the design of fibre-reinforced

cylindrical storage tanks.



SECTION 6

CONCLUSION

The original object of the study has been realized.
An extensive literature survey has unearthed a recently
developed theory which provides the basis for a new
rational approach to the analysis of laminated composite
structures. This objective was not easily achieved,
however.

The initial phase of the literature survey proved
fo be most‘disappointing. Although numerous books,
reports and papers were encountered on the fundamentals
and general uses of reinforcemént, relatively few could be
found dealing specifically with the design or analysis of
composite material structures. Further, those which did
invariably pertained to one of the approaches outlined in
Section 2; none seemed to offer any hope of a significant
analytical breakthrough.

Fortunately, the theory of laminated composites
was discovered a few months later. It became immediately
apparent that this was the breakthrough that had been .
anticipated and the theory was promptly utilized to resolve
the composite tank analysis problem (Section 5).

The literature also indicated that no single
publication adequately covered all phases of composite

128
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structural analysis, Accordingly, since the aﬁerage
designer has little time for searching out references,

it is felt that this thesis is a significant contribution
as it is a comprehensive, self-contained introduction

to the sub ject.

Another important contribution of this work is the
cylindrical tank analysis revision which enables a thorough
stress analysis of tanks constructed of laminated
orthotropic and/or isotropic materials. The revised
deflection equation appears to be correct in form and does,
in fact, simplify down to the equation derived by
Timoshenko (Ll) for the isotropic case. An extensive test
program is essential, however, before this equation, and
others developed in the analysis, can be verified.

Two computer programs were developed during the
course of the study. The first of these computes the
stiffness coefficients of a generally orthotropic layer in
~accordance with the theory presented in Section 3. The
second, which is based upon the theoretical equations
developed in Section 5, performs a complete stress analysis
at any number of points in a composite cylindrical storage
tank. |

The value of the tank analysis program was realized
in a series of studies conducted on a H.A.R.P. gun-launched

rocket. As a result of these studies, some new guidelines



130

for the design of filament wound storage tanks were
established (for the loading condition considered):

1) The cylinder wall should consist-of three filament
wound layers: a hoop wound layer sandwiched
between two identical helical layers. Further,
though no attempt was made to optimize, the results
suggest that the helical layers should be wound
at a relatively shallow angle, e.g., 20 degrees and
that approximately 60 percent of the total wall
thickness should be hoop wound.

2) The maximum wall deflection is strongly dependent
upon the laminate elastic constant, A::. According
to the results, the maximum tank deflection can be
approximated to within three percent by using the
relationship‘

- AL prtd (6-1)

MAX
%

A,, 1is approximately inversely proportional to the
effective modulus of the laminate in the hoop
direction and is comparable to the term (1/Eh)
commonly encountered in the analysis of isotropic
plates or shells.

3) The curvature at the base of the tank can be closely

estimated from the expression

d‘«l = \ézﬁ ‘D‘f' | (6-2)
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where Df is effectively, the flexural rigidity of the
wall in the axial direction. This suggests that the
laminate should be constructed in such a way that the
value of the laminate constant (A, /D, )% 1

minimized. In this way, the stresses due to bending,

at the base, should also be minimized.

In addition, two conclusions were drawn concerning the

design of laminates generally.

1)

Layer sequence has a substantial effect on the load
carrying capabilities of a laminate in flexure but
has little effect on simple tension, compression or
in-plane shear performance. This suggests that where
possible, laminates should be balanced and symmetrical
with the outer layers oriented according to the
particular stiffness requirements of the application.
Failure can be expected to originate within the
matrix in most instances. It is usually due to the
transverse and/or in-plane shear stresses within .

a particular layer; seldom is the stress in the
direction of the fibres the primary facfor.

Though obviously superior to any of the analytical

approaches previously available, the theory of laminated

composites does have some limitations. In particular, it

does not take into account either interlaminar shear or

transverse (out of plane) stresses. In some instances,
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e.g. laminates containing woven materials, these limitations
can be quite serious as delaminaticn is a fairly common
mode of failure. For the most part, however, these stresses
are of secondary importance and the theory can be employed
with a much higher degree of confidence than was possible
with any of the methods previously available.

The limitations in the theory, noted above, suggest
ocne potentially fertile area for future work. Of more
cohcern, however, is the industrial need for new analytical
solutions to the many fundamental plate and shell problems
which have previously been considered from an isotropic
standpoint only. It is suggested that, by introducing the
theory of laminated compeosites into the conventional plate
or shell analysis (as was done in the cylindrical tank
analysis presented herein) many of these problems can
quite readily be re-solved. Further work is also needed
relative to the design of cylindrical tanks. In particular,
studies could be undertaken to consider:

a) new boundary conditions at the base of the tank (rigid
constraint is not commonly encountered in practice).
b) tapered wall construction
c) the effect of circumferential stiffening rings
(or joints)
d) buckling

and, finally
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e) structural optimization
Hopefully, this thesis will prove to be of use in some of

these future studies.



APPENDIX A |
COMPUTER PROGRAM FOR DETERMINING

LAMINA STIFFNESS COEFFICIENTS

A.1 DESCRIPTION OF PROGRAM

Program STIFCO computes lamina stiffness
coefficients, C% , in accordance with the theory presénted
in Section 3. Coefficients can be determined for any
reasonable number of isotropic or orthotropic layers
oriented at various angles relative to the co-ordinate

axes of the structure.

A.2 INPUT PARAMETER DEFINITION

Parameter Definition

THETA (K) is the angle of rotation between the co-ordinate
system of interest and the natural axes of ths

layer material

E11(K) are the principal elastic properties of the kth

E22(K) layer: E, , E,,, G, and '%z respectively

G12(K)

V12(K)

CIJ(K) are the lamina stiffness coefficients, Cij» in
the natural co-ordinate system of the kth layer

CPIJ(K) are the transformed lamina stiffness

, _
coefficients C,. of the kth layer.

J
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A.3 TYPICAL INPUT
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A data input deck for the determination of the

stiffness coefficients of a particular orthotropic layer

material at three different orientations is shown below.

Parameter
THETA (1)
THETA(2)

THETA(3)

E11(1)
E22(1)
Gl2(1)
V12(1)

E11(2)
E22(2)
Gl2(2)
vi2(2)

E11(3)
E22(3)

612(3)

V1i2(3)

Value
33.0

-33.0
90.0

0.888000E+07
0.175000E+07
0.660000E+06

0.244

0.888000E+07
0.175000E+07
0.660000E+06

0.244

0.888000E+07
0.175000E+07
0.660000E+06
0.244

Format

(12F6.0)

(3E12.6,F6.0)

(3E12.6,F6.0)

(3E12.6,F6.0)
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A.ly TYPICAL OUTPUT
The output corresponding to the above input deck

is shown in the next two pages.



LAYER
NO.

LN

LAYER
NO.

W N -

ELASTIIC CONSTAN

Ell E22 G12

{10+ 6 LB./SQ.IN.)
&.88000 1.7500 D.660
8&.8800 1.7%500 0.660
8.8800 1.7500 0.660
STIFFNES|S COEFFICI
(10+6] LB./SQIN
C11 Cif2

8.98%5/4 0.4321 1
8.985/4 0.4(321 1
8.985/4 0.4321 1

ENTS
o)

cz2

L7708

.7708
1708

viz

0.2440
D.2440
0D.2440

Cé66

0.6600
0.6600
0.6600

LET



LAYER
NO .

W -

OgIENTATIOH
(DEGREES)

THETA (K)

33.00
-33.00
Q0.00

CchP11

5.3323
5.3323
1.7708

TRANSFO

CP12

1.9451
1.9451
0.4321

RMED STIFFNESS COEFF

(10+6 LB.l/so.1n.)

CP 16

2.3214
'"2.3214

’"CGOOC‘Q

cp22

2.3978
2.3978
8.9854

ICIENTS

CP26

0.9741
-0.9741
0.0000

CP66

2.1731
2.1731
0.6600

9ET
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A.5 PROGRAM LISTING

A complete listing of the Fortran IV program is

included in the following pages.



CCOC

CREY C Oy

0

PRUGKAM STIFCU
PRUGRAM FLK CALCULATING PRAINCIPAL LAYcR STIFEFNESS bUtfrIL&cth AND ruR

TRANSFURMING THLM TU CTHeR CU—URDILINATE SYSTEMS

UIMENSICN THETA(ZLS) yELL(ZD)9ELL(LD)1306120£5)9VL2129)9CLL(LZ5)4012(5
L)gLl2l(25)yLEOLILH) s ANGLE(LZS) 7LPLL(£5)1(.')1&(&9))LPLb‘LD),CP&Z(‘ﬁ) 'k.P
L20(25)9yCPo00GI(e5) ‘

N = 1
i 1S Tre NUMoER UF LAYERS
, KEAU (291Ul ) (THETA(K) 3K=143N)
LOL FURMAT (12F6.C)
ITHETA(K) US THt ANoLt UF RUTATIGN BeiwEEN THE CU—URDINATE SYSTEM INTU
wilCH THE STIFFNESS CUEFFICIENTS ARE vbEiaNG TKANSFURMEU AND Tht NATUhAL
MATERLIAL AXLS SYSTeM UF THE KTH LAYER

READ (55310c) (LLli(K)yel2(K)g0hetK)yVIZIK) gK=1LoN)

L0Z2 FURMAT (3ELLe6yF660)

wkiTEt (651C0)

105 FURMAT (1lHLsl1lXsDhLAYERgLBAyLIHELASTILL LuNb]ANTS/LéA,JHNU.///lwA,L'
1hKyllA95Hblly7A1JHL441IkyjﬁbldyléKanVLA/AVX,lfﬁ‘lU*é Lﬂ./SQ.ANo)/
1/77) '

VL LU K = 14N
10 WKRITE (691U04) KyolliK)yclel{K)sGl2{n)yVIL(K)
104 FURMAT (L3XygiZ2ybR9y—0PFLUe%9—0PFLlUa43—6PFLl0s495X30PFLUC4 )
wRITE (645105)

L05 FURMAT {LHU//LZXyS5HLAYER/ L3A 9 5HNU S 9LOAR92HSTLIFFNESS LucrrILLtNTbla
AOoXy1TH{1U+6 LB /5&-“*‘.)//1‘1)‘,lHl\le)\g.ﬂH(,1199X15HL1&Q"X9JHL&C#SXQJH
1Ccou///)

UL 20 K = 19N
Vol = (B22(n) / ELL(K)) * ViZ2(K)

Cli(tK) = ell{K) / (1.0 = (Vi2(K) * V1))

Cl2(Kk) = (Vid(RK) * EZ22URK)) / (Le0U — (ViZ(K) * V1))
L2 (K) = £22(K) / (1e0 — (VIZI(K) * V1))

Loo(K) = GleiK)

20 wikITE (69106) KeCLli(R)yULlaetK)CL2{K)3COOLIK)
100 FURMAT (125X 9il94Xxs—0PFLl2e49—6PFL2 a4 9—06PFlce4y—0PFLLo4)
wRITE (6,1017)

LO7 rurRMAT (LHL,LX,SHLAYtK/ax,jHNU.,aA LIRURKLENTAT LONy L3X 3 34HTRANSFURM
LED STIFFNESS CUEFFICIENTS/LOX y9H(UEGREES ) 922X 91 TH(L0+6 LBe/SWweiNed
L/74X g LHK 9y DA g BHTHETA(K) 95X 94 HUPLLj6A4HCP Ly 6X94HCPLOyOX, 4HuP&A,6A,
L4nLP2GyonyaHL Pou///)

LU 30 K = 1y¢N

ANGLE(K) = (THETA(K) / 180.0 ) * 3.14159¢7

RM = CUS (ANGLE(K))

KN = SIN (ANGLE(K)) 1

CPLL(K) = ((RM %% 4) % CLI(K)I) + ((RN *x 4) % C22(K)) + {{({(RM %% ¢
L) % (RN %% 2)) % {(2e0 * C1l2tK)) + (4.0 ¥ Coo(K)III

CPLZIK) = (({RM % 2) % (RN =% 2)) * (CLi{K) + LcciK) = (4.0 ¥ CLob
LIKIDII) + (KM %% 4) 4 (RN %% 4)) * CLL(K))

CPLO(K) = (({RM *% 3) % RKN) * (CLLI(K) — Cid(K) = (2eU * COOIKIII)
L= ({RM % (KN %% 3)) % (C2J(K) — CidlK) = {240 * COO(KI) I

LP22IK) = ((RN %% 4) % CL1I(K)) + ((RM *x 4) * C22(K)) + (({RM *% ¢
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L) ¥ (RN ¥ £)) * ((ceU * LlelKi) + (4,0 ¥ Coo(R))))

LPLu(K) = ( (KM % (RN *% 3)) % (CLLIRN) = C12(K) = (2.0 * Co6(K))))
L= CO(RM %% 5) % RiN) % (Cd2(K) = CLe(K) = (ceU * CLOO{(KIIII
CPOGIK) = (((RM *®3x 2) % (R %% ¢2)) % (CLLI(K) + L24(K) = (260 * (12

LOK)ID D) + ({CIRM % 2) = (RN *% 2)) %% 2) % L66(K))

30 wiklik (69108) KylTHETA(K) yCPLLIIK) gCP LK) yCPLO(K)yCPL2IK)sCPLOIK)HC
LPE6(K) ¥

L1008 FURMAT (A3 1c 19X 3 UPFr6Oel 98X 9—0PFLU 4 y=0PFLUe4y=0PFLUe49—6PFLUs4y—0P
iFlUe4y-6PFLUL4) '
wRITE (€4109)

109 FURMAT (1lARL/Z/7)
STuP
END



 APPENDIX B
DETERMINATION OF LAMINATE STIFFNESS COEFFICIENTS

B.1 DESCRIPTION OF PROGRAM

A computer program, developed originally by Tsai

et al (37), is used in the determination of laminate

*
stiffness coefficients: ALj " Bi.j y D.ij, A; ’ B-:; s H:}; D.'.J' ’
/ /

Aq " BH and Dé . This program, which consists of two parts

MN CM ie, Main Composite Materials, for computing laminate
stiffness coefficient matrices, and Subroutine PARTWO for
determining laminate load carrying capabilities, is not
described in detail herein as full documentation is
available in (37). However, sufficient input/output
information is provided in the following for normal usage
of MN CM. The underlying theory for this part of the

program is described in Section L.

B.2 INPUT PARAMETER DEFINITION

Parameter Definition
N is the total number of layers
THTA is the fibre orientation or lamination angle

in degrees (defined for angle-ply composites)
LPP defines the particular case under consideration:

LPP=1 implies a cylinder or a pressure vessel

12



Parameter

LKL

H(K)
¢(1,J,K)

ALPHA(I,K)

THETA (K)

143

Definition

LPP=2 implies a plate.

is a format control which defines the heading
to be printed:

J=1 implies cross-ply

=2 implies angle-ply

J=3 implies general laminate
is the cross-ply ratio (total thickness of the
odd layers divided by that 6f the even layers).
is a format control which defines the heading
to be printed:
LKL=0 implies all layers intact
LKL=1 implies all layers degraded

indicates whether or not the laminate under
consideration is balanced and symmetric.

JB=0 implies laminate is not balanced and

symmetric |

JB=1 impliés laminate is balanced and symmetric
is the thickness (in.) of the kth layer.

are the transformed stiffness coefficients, Cg ’
(psi) of the kth layer. -
is the thermal coefficient of expansion ¢
(in./in./ F) of the kth layer.
is the fibre orientation or lamination angle

(radians) for the kth layer.



B.3 TYPICAL INPUT

1k

A data input deck for computing the stiffness

coefficients of a two layer 90°/33° laminate is shown below.

Parameter

N
THTA
LPP

LKL

H(1)
H(2)

c(1,1,1)
c(1,2,1)
6{2,2,1)
g3, 1.1}
c(3,2,1)
c(3,3,1)

g(l,1,2)
c(1,2,2)
¢{2,2,2)
c(3,1,2)

Value

0.1625
0.1625

0.177080E+07
0.432100E+06
0.8985L0E+07
0.000000E+00
0.000000E+00
0.660000E+06

0.533230E+07
0.194510E+07
0.239780E+07
0.232140E+07

Format

 (12,F5.0,2I1,F12.0,211)

(6F12.0)

(6E12.6)

(6E12.6)



. 105

Paraﬁeter Value Format
¢(3,2,2) 0.974100E+06

c(3,3,2) 0.217310E+06

ALPHA(1,1) 0.000000E+00 (6E12.6)
ALPHA(2,1) 0.000000E+00

ALPHA(3,1) 0.000000E+00

ALPHA(1,2) 0.000000E+00

ALPHA(2,2) 0.000000E+00

ALPHA(3,2) 0.000000E+0Q0

THETA (1) 0.157080E+01

THETA (2) 0.575959E+00

B.4 TYPICAL OUTPUT

The output corresponding to the foregoing input

deck is shown in the following pages.



LAYER
NG .

THICKNESS
QF LAYERS
JINCHES)

H{K)

D.1625

0.1625

GENERAL

LAMINATE
2 LAYERS

COORDINATHS OF
LAYER SURHAACES

(1NCHE Y
(K 71
0.1625
0.0000. 1

)

K+1)

L0000

.1625

C(l

1,
£

v 1)

7708
3323

2
<

LAYERS INTACT

dqoeFs. OF 9

(10+6 U

Clld2)  C(2.2
0.4321 . 9454
1.9451  2.3478

TIFFNESS WATRIX
Be/INeSQ.)

C(6,1)

0.0000
23244

Cles2)

0.0000
0.9741

(@]

C(6,6)
|
0.5500%
L 2.1731%

oht



0.1154¢
0.3863H

~-D.3772F

6.47028
0.1998H
0D.306959

cc

I~

D.1016F
~0.34006€

0.3320H

A

(LR./T
07 0.38¢
06 D.189
06  0.154

(LB

65 0.199
OS —0086‘;
05 0.128
EF. OF THE
(LB./IN.

N1-T UUUl
SN2-T UUUL
N3-T UUUL

D

~(LBaT
05 0.340
04 0,162
D4 0.139

Na. )

3B 06 0.7
0E D7 0.1
3e-D6 0.4
)

88 05 0.7
8E 05 . 0.1
()E OS O-l
RMAL FORCEH
DEG. Fa )

Uyuuguuuy
uJsuJIyJIuy
Uy uuuyJuy

0E 84 0.3
8E 05 0.1
3f B4 0.4

T72E 06
583E 06
604E D6

Q65E 05

286E 05
998E 05

320E 04

393E 04
052 D4

 0.25434

- 0424528

0.1237¢4
-0.9527H

-0.2543€

027834
0.16606

0.7547¢€

0.1618¢

=05
-086

-06

-01
~02
-01

%

(IN/|LB.)

-0.L748E-06
0.5823E-06
=0.5535E<01

. BH
(IN.)

_p.27d3e-01

-0.2400E-01

0.1642E-02
-0.5489E-01
dsc-03

ALBeIN.)

0.2492€ 04
0.1044E 05
0.7647E 03

-0.9527E-06
-8.9535E~07
0.4972E-05

-0.1660€-01
-0.9546E-03

400€-01
S46E-01

DO
L] . .
DN D

618E 04
.1667E 03

o0

1518E-0Q1 -

4542E 04

LNt



_.D.1405€E
-0.27338
-0e7014H

 -0.1873H
-0.18868

cal

T 0.1597H
,-:Oo 31052

A PRIME
(IN./HB.)
“05 =0<2743E=06 0.7
-06 0.8940E-06 -0.4
06 -0.8321E-07 0,3
B PRIIME
(1/LB.)
~05 -0.1866E-05 -0.4
05 0.5646E-05 -0.7
‘GS —0-76205-96 '917

EFe QF THH
(LB./DH

M1-T UUUL
M2-T Juul
M3-T UUUJ

D PRI
{(1/0L B8
-03 =0.310

-64 0,101

RMAL MOMEN
Bl

UUUUULUY
UUUUUULU
UJUUUULU

ME
INe)
5504 -0, 7

8E-03 -9.9
3e~-05 0.3

014E-06
321E-07
399E-05

121E-D5

620E-D6
547TE-05

T

968F-04
453E-05
861E-3

oht
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B.5 PROGRAM LISTING

A complete listing of the program, which is written

in Fortran IV, is included overleaf.
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C PRUGRAM MN UM
G

CUMMUN THETAIZLS ) g NgTM(393)9LPPyLLyPUNGID92D92 )9 RkB(392Y92) 9 PCNT( 3294
Loy d s PUNTRU3 92592 )09PLMUL 392599209 PUMT (392092 ) s PUMIR(LD9eD 9 yRL({D925
Ly ) s PUT (552092 ) 1sRS(3y2) s RU(393)9AAILD) 950D )y AP (LO) s YA(LS ) YP D),y
LUVSLa) g VPL4) s LTS (4 o NMpSUL w9299 ) 9T (22 9SIOMA(Z)yS510MY () ylwUAUL
l“,cj,é)yPND(chD},bNU(J,ZD)’CNTK(B'LD)be](B,CD)1PKL‘5!Z5),CT‘3'¢5
L)ysTdTLe(LU)sdhsllou)

ULMENSIUN ALPHA(LS ) ) 9y HILZD) s A( 3900 y0 (3930903920901 393929)905125)
LHb(dD),AN‘J)O),A(JiJ‘,ASTAh(byb))US]AK(J'ﬁ)yhb]AK(b,J),bbTAK(J)j)y
LUPKL(JDBJ;DPK‘(j;JJ’APKA(Jyj)ySUM(bydﬁ),TSbM‘3})TAUU‘B‘IRNT(B)vRMT
L) 9SASKL2) sUSUNMIDByoU) s LSUMII 925921

C
1u REAL (953101) Ny THTAYyLPPyJyRMyLKLyuB
101 FURMAT (129FDe0y2llyFice0,4211)
G N = NUe UF LAYEKS
MAALMUM VeLUE WF N IS N = 25
lnlA IMPLicS ANuLE—-PLY
LPP = 1 1IMPLIES PRESSURE VESSch UR CYLINUER
LPP = 2 LMPLLIES PLATE
J L IMPLIES CRLSS—PLY
J < IMPLLIES ANGLE-PLY
J 3 IMPLLIES GelNernAL LAMINATE
KM = CLKUSS PLY RATIU
LKL = O IMPLIES ALL LAYLRS INTACT
LKL = 1 amMPLIES ALL LAYERS UCEGRAULD

Jo = 0 IMPLIES LAMINATLE 1S NUT BALANCED AND SYMMETRIC

Job = 1 IMPLIES LAMINATE IS OALANCEU ANU SYMMETKIC

REAU (5510¢) (iR} yK=19N)
LUZ FURMAT (6rlcaC) .

KEALU (59103) (C{LlyleR)yUllyploK)ypC (29 sKIgUi3gLlaK)gUL{3929K)IyCL3y34K

LiyK=1,yN)
105 FURMAT (oEleoG)

ReAu (29103) ((ALPRA(GTL 9K ) 9yl=192) 9K=L NI}

REAL (991uU3) (TheTA(K)yK=19iN)

1UTAL = 0.0

it

2l alslal sk al ak st sk sl of 5

bu ¢U K = 1yN

Clcydsk) = CllycyK)

Cllys9K) = C(34919K)

Clle3sR) = L(3y929n) :
<u TUTAL = TUTAL + A(R)

Zil) = — TuTAL / 2.0

M o= N+ |
Du 30 K = ggMNM
KM = K - 1
30 Z(K) = (M) + HIKM)
IF (U obtWe Z) LU TU 40
IF (J oEWe 3) GU TU 06U
WRITE (691C4) RKMygivgN
LU4 FURMAT (LHLp3 /A 9HURUSS—PLY 94Xy3HM =y3F%e3 3L 7/HALL LAYEKS INTACT/LUX
Ly l2odlXylZHLAYERS (N = ylcyln) ‘
Gu TU T10C
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91

92
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LDU lt‘ (_L‘\L .L’\uo L) OU ](J b(-
nRKEITeE (0ylU5) THTAyINg N

LUY FURMAT (1.”‘. 1Jj/\g9hANULC"’PLY 9‘*/\'6'1TH&TA = v";body L)\plnutbkﬁtb"'x, L7TH
LALL LAYERS INTACT/22Ay 129 inay LSHLAYERS (N = 431y iH))

ou Tu TG
HU wRiTe (€49106) THTAyNyN

100 FURMAT (LHL 332X 9HANGLE=PLY y4Ay8HTHETA = yF5e291 Xy THUEUREES 94Xy 19h

LALL LAYLERS UEORAULCU/ODZA L2y LXyLdHLAYERS (N = 4y1241H)1
Gu TU 7¢
oU wirlidt (cedlC7) NN

LUl rURMAT (Llidly4iXylonGeiNERAL LAMINATE y4 XL /HALL LAYERS ANfALT/)UA,Ld

Loy dlA g LZHLAYERS (N = 431241H))
{0 wklTE (6y10&)

L08 FURMAT (LHU//Z2A3OHLAYER § 2Ay9HTHICRNES Sy 2A 3 L4HCUURDLINATES LF/JA,JnN'
LUe 93X 99RUF LAYERSpZAplaHLAYER SURFACESyLOXylurlEerSe UE STIFENESS
LMATRL Ay LAy Z2lhLuctSe UF THERMAL EXPANSLUN/9Xy GHILNCHES) yOAbH(INCH
LES) 924XK9LTHILC+0 Lo o/ LineSWe ) 922K921H(10=6 INe/INo/UDLGF o)/ /74X y1HK,
LoXy 4HH{K) 99X 4l (K) '4‘10(1[(1\"’1)1.‘)A,0HL(L,1)’3)\1()HL(114)pjlﬂyoﬁb‘d'é'
li9JA,CHL(611)93%10HL(012)yJAyUHC(OyC)yZK,ﬁHALPHA(L)vlhyUHALPHA(ng
LiIXyoHALPHA(CI/ /)

Ud {5 K = LN
KNP = K + 1 : : '

{9 wRilke (GyluY) hyH(h}vl(K)1L(KPJ1C(L|Lrﬂ)1C(LIZPK)vL(Z'Z)K},C‘JiL'K
L) ol i399I ULy 39 KIgALPHA(LYK) yALPHA(Z oK) yALPHAL S yR)

LOY FURMAT (5A3il 90X 1 FY9e43F9e4ytrTedy—0Pr9e. 4,—oPr9.4,-oPr9.4, 6PFYe4y—0
IPFY9e49—6PF94490PFrSe4y0PFYe406PFY64)

bu 80 K = 19N
P = K o+ 1

AIS(IK) = (Z(KP) %% 2) = (LIK) *%x Z)
B0 MLIK) = (L(KP) *% 3) — {LI(K) **% 3)
VU L6C [ = L9353
LU LuC Jd = L1yp3
A{lyd) = (UeC
B(lsd) = 0.0 |
ullisd) = 0.0
NK=1

ulb 92 K=1gN
IF({KReEWeU) GU TuU 90
KP=(K+1)/2

nNK=U

oL Tu 91l

P=N—(K=-¢21/¢

KR=1
AlLydd = AlLeJd)+tiC(lodskPI®A(RP))
Ullsd) = Uldgydd+(ClLydy&P)I*¥HCIKP I )

tF{Jdbeckes) LL Tu 9<

Bllaedd = 0llypdd + (ClLgJdoRPI®HS(KP I
CUNTINUE
ollygd) = Blledd / <ZeV

Ullyd) = Ullsd) / 2.0
100 CUNTINUE

L = G

Uu 200 1 = 1,3



pAVY;
Ziu

<20

43U

235
110

240

260

< (0

2840
Lil

<90

300

152

UU 200 J = 143
AN{Lyd) = AlLyJ)
DU 220 |1 = 1,3
DL 2¢0 Jd = 4,40
AN(Lyd) = 0Ol

LU 230 1 = 1,3

Jd = 1 + >

AN(L9d) = 1leC

Iy (L eEwe i) GU Tu £7C

CAaLL MATS (ANgK 393 9MATERRKY)

Ir (MATERR ) £4Uy24U4235

WRITE (0y9L10) ((AlLgd)sdl=l93)9d=Ly3)

FURMAT (LtHUg2UHMATRIA A IS SINGULAR/Z/Z(3(-0PFBe4a)di

U TG LU

CALL MATMPY (XybBgsuSTARy39393) : 1
LU ¢50C 1 = Ly3

Lu 25C J = 1,3

ASTAR(L yd) = xl19d)

OSTAR(L9d) = = B8STAR(Lyd)

CALL MATNMPY (EeayHSTAR 393931
LALL MATMPY (HSTARyLByUSTARyD9393)
CALL MATSBT (LCs0STARy 34934

bu 26C I = Ly3

DU 260 J 1,3
AN(Lgd) = ULSTAR(L )
L = 1

bu TU 21u

CALL MATS {ANyDPKlprJ)MATtKK)

e (MATERR) 25092903200

WRITE (O9all) ((USTARLLyJ) 9 dl=Ly3)9d=143)

FURMAT (1HU924HMATRIX USTAR 1S SINGULARZZ(S5(—0PFbe4) i)
GU TO 10

CALL MATMPY (ESTARyUPRL42PR19393493)

CALL MATMPY (cPRIJHSTAR APKi939393)

CALL MATSBT (ASTAR;APRIs3931)

uu 30C 1 = 142
Lu 300 K = 1yN
SUM(Lyn) = CaC
Uu 340 J = L3
SUMITgK) = SUMILyK) + (CLLadeK) * ALPHA(JIR))
Uu 24C 1 = l'J
FSuM( L) 0eU

TAUL(L) = 040 _
DU 31C Kk = LN |

TSuM(L) = TSUMIL)Y + (SUMliexK) X H(K))
TAULULL) = TAuL(L) + (SUMLLYK) * RHSINIDI
RNT (L) TSuMil) ' |

KMT(I) = TALL(Ll) / 2.0
LF (LPP etEWwe ¢) GL Tu 5170

LU 33C K = 1yN
UL 33C 1 = 1,3
CNU(L)K) = CoC
CNT(IyK) = 0.0



350

350
30V

210

315

CANTR(LyK) = 0.0

Ul 33C u = Lg3
ChNUCLyR) = CNCLIsk) + (LUIyJdyK) * ASTAK{(Us i)
CNTULaK) = UNTULyK) + (CllyusK) * ASTAR(Jy<))

CNTREE9®R) = CNTROL9RK) + (Clledek) *x ASTAR(J93))
Lu 240 1 lys '

SASK(L) = Uedl

UL 34U J = 1,3

SASRI(II) = SASRUL) + (ASTAR{Isdd * KNT(U))
Lu 36C K = LyN

uu J60 I = 1,3

CI(lyK) = U0

uU 350 Jd = 193

CTLLyK) = CilagK) + (C{lsJdsR) *SASK(J))
CTlLyK) = LT(LyK) = SUM(L K

LU Tu 4240

bu 375 K = LN

Uuu o5 | = l,j

vu 379 LR = 14«
PUNU(LsKyLK) = 0o0
PUNT(LlaKyLR) = 060
PUNTRULyKyLR) = UeU
PLMU(LsKyLR) = Ul
PCMTILlyKyLr) = 0.0
PCMTR(LyKyebLk) = 060
Uu 360 K = 1sN

DU 560 I = 143

Uu 360 J = 143

DU 380 LK = 1lyc

KP = K

IF (LR obwe 2) KP = KP + 1
PUnNuUllyKyLR)
AR1IGJy L) D))
PUNT(LynobLR)
IRI{Jdy2d )

PUNTLoRKyk) + (ClLydyK) * (APRI(J92)

PONULLasRoLR) + (CllgdeR) * (CAPRLI(IL) +

+

PUNTR(LyJyLR) = PONTR{LIyKouR) + (CllydpK) % (APKI(J93)

LoPr1I(Jdy2)))
HLNU(‘;K!LK)
IR1(usy 1) D))

i

PUMT{LyKyLR) = PUMT(lsRelR) + (CllydrK) ¥ (BPRI(JIrZ)

Lididyc)idd)

PUMUGLoKyLR) + (L1 dsK) ¥ (BPRI(JN1) *

+

' 153

(LAKP)

(L(KP)

X

3

+ (Z(KP)

{L(KP)

(LiKP)

%

%*

560 PUMTR{IydyLK) = PCMTR(IgKpLR) + (ClhydyK) ¥ (BPREGJ93) + (LZIKP)

390

LOPRI(JL30)1))

MM = N+ L

DU 390 K = 14MM
DU 39C I = Ly

USUMILleK) = U0
vbu 39C J = 143

3*

USUM( L9K) = DSUMGLsK) + ((APKIGLyJd) + (LUK * BPRI(IyJ)I2 * RNT(J)

1) + ((BPRICLydd + (L(K) * DPRILIgJII) * RMT{J
VU 4106 K = LN

DU 4106 1 = 193

CSUMILyKel) = Ued
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CSUM(LyRy2) = Vel
UU 40 Jd = 193

COUMI L eKel) = COUMILyKyL) + (ClleJdyK) * DSUM(J9K)) i
KP = K + | i
400 CLSUMIUTsKyZ2) = LOSUM(ILyRyZ2) + (LlIgJdyK) * DSUMIJIKPI)
PLT(LeKyl) = CSUMIL9Kyl) = SUMiiyR)
41U PLT (LK) = COUMILIyKy2) = SUMIL4K)
420 wWRITE (0giL2)
Ll FURAAT (LAU/ /77 LoXxy LHA 939Ay2AA¥9395A 9y (HA PRIME/L4AyGHILB o/ INe) 1 ILAy
LIA( AN/ LB ) 33CAsSRUING/ LU/ )
wR1ITe (Gellos) (ACLyL)9AlLec)yAlL, J))ASTAK(L’L"Ab‘AK(i'&JQASTAK(Iy
Lo)snPRLICLy L)y APR I Ly ) sAPRLCL 923D 9i=143)
L1l FURMAT (iApobldes4RXyobldet9yaArydblletld)
wikl e (Gylia)
L14 FURMAT (olU// LOAs LHB 9y 39A3 LHO® 930K (1D PKIMt/LOApbh(Lo.)ybe,thiN.
L) g3axyln(i/iLBed//)
wR1TE (Gylis) (D(LvllyU(Avé)pd(lyJ)ybb]AK(l,Ll;deAR(lyé),bbTAK(I'
L3)yBPRI(LpL)yoPRI(GLyZ)sBPRLILy3)yi=1y2)
LID FURMAT (LlX93ELlZe494Xr95EL2e%94X93E1Le4%)
wRiTE (6yLlei
1l FURMAT (lHu//B8Ayelhicublre UF THERMAL - FURULE 9 £8X 9 2HH*3 28Xy 23HCUEF. UF
L THERNMAL MUMENT/ LeA s b5H(LBe/ LNeDEGelF e )9 29K35H(ING) 932A942R(LEBL/LLEG
LetFael//)
wWhITt (69Lll7) (LyRNT(L)oHSTAR(ILI o L) sHSTAR(I92) 9 RASTARIL 93) 91 sRMTI(1)y
Li=143)
017 FURMAT (llAasibHNgyilyoH=T yELeb4sloXsdELlZe4ylaXyiHMy ll,bh—T sEldded)
nRITE (6y91lt)
L1148 FURMAT (1HO//LloXyiHU9 39X 92H0UF 335 Ay {nu PRIME/ZLOSK,8H(LE 1m.),3¢x,tﬂ(
LLBelNe) 90l XylCr(Ll/LBeINS)// )
k1Tt (69119) (U(Irllyd‘tyd‘yU(113)9U5[AK(I’L"U)TAK“9Z)1U5‘AK‘19
L3)yOPRI(LI L) sUPRICIsZIsUPRI(Ly3)91=1y231
L19 FURMAT (lAystidedrybArsscllded94Xgdlcok)
IF (LPP ebwe L) ol Tu 450
wRITE (691dCQ) '
ieU FURMAT (LrU// 1Ay LHLy0 A3 GHOTRESSy 35Xy LiHCUEFe UfF NLgcAglLIHULEFS UF
Ldy2AhgllinLlilre UF NOgZAgiiHCUEFe UF MLlydAyLLIHCUEF. UF MdydAy LiHLGET
ie Ur MOy XylbHLULKFe UF TEMPe/5AsOHIING) 94Xy IYHCUMPONENT 94X 971/ 1IN
L)syoAs TH{L/ING)yOA9 THLL/ ING) 94A) LOH(L/INGSWe) 9 3X9LOHIL/LIiNaSWe) 93Ky 1
LUR(L/INeSwe ) 93X 905H{ LB/ INeSW/F /)
UU 430 K = 1N
KP = K + 1L
wKilTE (Gyeldl) K
14k FURMAT (S5UAy9E=—— LAYER si2y3H ——//)
WRITE (691c2) LRI p (PUNUTLyRgL)pPUNT UL yKep L) 9 PUNTREL 9K 9L g PUMU(L 9Ky
Ll sPUMTULyKg1l) 9 PCHTRUL KoL) 9 PUTULyKyLl)9i=193)9LIKP) 9 ({PUNU(LyKy2)yP
LOUNT(T 9K g2 ) g POUNTROL 9K 9209 PUMULT oK 9 2)9PUMT I LyR92) 9 PUMTRITyK92)9PLT (i
LyRgllgl=193)
led FURMAT ‘JK,P&.Q'4A91H51GMA Ly QA Yy FUe49yOF L3ehy6Ay fu-“l&lh'lH£'4X1fdo
L499F Ll 3e490A1F8e@/LlXgilHO 4R FB 4,5*11.4 6XyFBe4/ )
450 CUNTINUE
440 LaLL PARTWU
Gu Tu «1/0
450 wkITE (64123)
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1253 FURMAT (1HU/Z/ 2LA4EHSTREDSS 93A9 LIHCUEFe UF NLydAy LIHCUCFe UF INZy< Xy ]
LiHLUelte UF NOyZXypLl4HCUbFe UF TEMP o/ 29A99YHCUMPUNENT 94Xy TH(L/ IiNS) 906)
Ly dRCL/ING )y Ay (HIL/INe) 94Ay LOHILB e/ iNeSWe/be)//)
DU 4900 K = 1ygN
wiklTE (Geldd) W
124 FURMAT (55A99h—— LAYER yicdy 3t —=//)
WRLTE (G9l25) (CNCOLgK)gUNTULpK)9gUNTRELYyKIgUT(LyRK)gI=1y3)
LeH FURMAT (DUX9THOSLOMA 194K 9yFr0ehylb Llie4r1C6Art B8ea/30K91H294A9FBe492F 15,
L4y ORI FG o4/ 30X g LHO 94 A1 FOea92F13e49GXsF8eb/) !
400 CUNTINUJE
ou TU 440
440 CLUnTiINUE
STGP
ENU
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SUBRUUT INE MATS (A& yNyMyMATERR)
DIMENSICN A(3,00sX(313)
MATLRR = O

MM = N + M '
bu 50 I = 4N ;
it = 4 -1

UU 20 J = 1411 i
IF (A{lsd) eble Ue0) LU TU HU !
IE (LABS(A(JsJd) ) — ABS(ALL,d)d) oLTe 0s0) GO Tu 160 .
K Aliyd) / Aldyd) v ‘ :
ou Tu 30 ' ;
LO R = AlJdyd) / Alld)
Uu ¢0 K = LyMM ;
b = A(JyK) ‘ ’

AlJdyK) = A(l4K) : :
¢ nllyK) = B ‘

30 yd = J + 1 ;
DL 40 K = JJdyM¥ : ,
40 A{lsK) = AligKI — (R *A{J,K))
50 CUNTLNUE i
IF ((ABSTAINYNI) - L1L.0E-=10}) «GTe 0Us0) GU TU TO :
oU WRITE (69101 ) NoN ‘
101 FURMAT (co6n( ELEMENT (9129 lHyol29iH)938H VERY SMALL
lo CASE ULELETED BY MATS ) :
MATERR = 1
GGL TG 1CO
70 VU 90 J = L¢M
KK = §© J
AlNyJd) AINgKK) /7 ALNN)
BL 90 [ = 24N
Juo = N -1 + 1
B = 0.0
if = N-1 + 2
Uu 80 K = 114N . .
BU 8 = B + (A(JJsK) * K(KyJd)) : ' j
L (LABSIA(JU9dJd) ) = LeuUE=LU) oLte Uel) LU TU 60
U X({JJdsdd = (A(JIeKK) — 81 /7 AlJJdsdd)
LOU RETURN .
eND

n <+



iV
Z0

SUbRUUT INE MATMPY (A
ULMENSLIUN A(3493)90LE1L3
bu 20 I lyL

Du 20 J LeN

SuM = 0.C

UU L0 LL = 14M

SUM = SUM + (A(LyLL) * E(LLsd )
Cliyd) = SUM

RETURN :

ciND

18, C
1910
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SUBRUUTINE MATSGET (AsB9MeNI
UIMENSLIUN Al293)yB(343)

Du LU0 1 = 1M

DU LC J = 1yN

C = B(Iy9)

Blled) = A(led) = L

RETURN

END
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cCOCOOCC OO C OO0 C OO

SUBRUUT INE PARTwWU i
CUMMUN THtIA(dJ))hrTM(J,J)1LPP,LL,PLNb(§1259&),hb(91£59£}beNT‘J,A

L2 s PCINTRUD9 D92 ) PUMU(392542)sPCMTL392592)9PUMTRI39¢D9209KE(35,425
19&’1PCT(J,&D,Z),KS(Byj)yRU(J)3)1KA(&5)'5(25)yXP(Z§)1YA‘25)!YP(Z5)1
LUVS gl gCVP(4) 2LTola) sNMySULL 4925920 9T (29) 9S16MAL2)9S1GMY(2)yiWUADL
L492592) 9 PROLGD D) 9CiNUL3 9D ) sUNTR( 392510 LNT(J:Z5)vPRL(39£5)1LT(Jv¢b
Lo TITLEC(LU) 9JdKyey2(30) . ; .
LU KEAU (249101) KuKsblLjyJKoiNM ' -

lOL FURMAT (3il.12)

AR = 0 LMPLIEYS SUBKULTINE &S TU CONTINUE READING

Kk = L INPLIES RETURN Tu THE MAIN PRGGRAM

LL IMPLIES CASE UNUER COUNSIDERATICN

i

]
i
FUK PLATE !
LL = L1 LIMPLIES N1 NCT EQUAL TO 0.0 ;
LL = 2 IMPLIicES Ne NGT EWQUAL Tu 0.0 1
LL = 3 IMPLIES No NCT EWUAL Tu 0.0 {
LL = 4 IMPLIES ML NUT EWUAL TG 0.0 ?
LL = 5 iMPLIES MZ NUT EWUAL TUO 0.0 f
LL = 6 IMPLIES M6 NCT EQUAL TG 0.0
FUR CYLINUER :
LL = 1 IMPLIES N1 NCT EWQUAL TU GC.0 :
LL = 2 IMPLIES No NGT EQUAL TU 0.0 ’
LL = 3 IMPLIES 2Nl = N&
JK = 1 1MPLIES CASES Ni GR M1 ' _
JK = 2 IMPLIES CASES N2 UR M/
JK = 6 IMPLIES CASES NG UK M6
NM = NU. CF INPUT VALUES GF TEMPERATURE

MAXIMUM VALULE UF NM = 50 : | 1
LF (KGR +EGe 1) GL TO 970
READ (551021 (T(K)sK=LyAM) . : - , ,

102 FGRMAT (oFllet) ‘ . '
KEAL (5,103) (XA(K)sK=1yN)

105 FURMAT (LELZ.€)
REAU (5,103) (YA(K)yK=1,yN)
KEAD (5,1C03) (XP(K) gk=14N)
REAL (591030 (YPIK) 9K=1yN)
KEAU (59103) (S(K)IpK=1sN)
READ(5,104) TIILE

104 FGRMAT (L10Aoy

20 wKITE (641C5)

LUS FURMAT (iHLlAedHZy3As22HAALAL TeNSILE bTRtNuTH,‘X.Z6HAx1AL LLMPKE
LSSIVE STRENGTH3X g2 THTKANSVERSE TENSILE STRENGTHy 2493 LHTRANSVERSE.
LCUMPRESSIVE 5rktNu1h/1x,4h(1N),9A.bn(PsL),4¢x,)H(P51),z:x,bH(P>1).
léox,oh(PbI)//) . o

L 3C K = 1 y¢N f
WRITE (691001 Z(K)pXALR) 9 XP LRI JYALKI 9 YP(R) g

P00 FURMAT (F8Be493K9EL340912X1EL3ebyloX9EL3e0918X9EL346)

30 CUNTINUE

T wRITE (691070 (S(K)sK=1, N).

107 FURMAT (LHG 952Xy L4RSHEAR sTKthTH/b7x.bn(PSI)//(bzx,tls.b))
WRITE (6y108) T1ITLE

108 FURMAT (lH1ly47Ky {RCASE.  410A6) /
TEMP = =1.CE-175 ‘



110

(e]V]

70
ol

YU
100

24U
220

<30
24U

250
200
210
260

290

200

21U
320

20U
340

35V
LYY
310
360

DU 56C K = 14N

RM = CUS(THETA(KI))
KN = SINTHETA(K))
TM{Lyl) = RM * RM
TM{Llys2) = KN ¥ RN

RPMN = RM % RN

TM{Lly2) = 2.0 % KPMN
TMlZyl) = TM(Ly2)

TiM{cdyc) = TM{dyl)

TM(Z93) = = TN(1ly3)

TM(3yL) = — KPMN

TM(29¢) = KPMN

AM(293) = TMLLyL) - TM(Ly2)

wRiTe (€9110) K

FURMAT(1RL ¢953&K99H=— LAYEKR 312¢3H —=/)
VU 55C J = iy ;

iF (LPP JEwe 1 GUL TU 5CC

GU TU (5047C990921092309250)9LL

DU G6U L = 1ly5

RedlyKed) = PCNULIsKyJ)
oL TC 27¢

LU 80 1 = 143

RB{LlsKed) = PCNT{I9eKyJd)
Gu Tu 217¢C

DU 10C 1 = Ly3

RB{LyKyd) = POCNTR(LyKyd)
GU T4 ¢10

DU 220 1 = 143

Kbl{lsKyd) = PCMO(IKed)

GU TU 270

Ul 24C 1 = 1y
RollsKed) = PCMTLLeKyJ)
Gu TU 2740

DU 20C I = 143
RollgsKsd) = PCMTR{LyKeJ)
DU 280 1 = 1,3
RULLaKed) = PCT(I9Kyd)
DU 29C 1 = 1,3

KS{Llsel) = RB(LyKyJ)
RS{L1y2) = RCellsRKypd)

oL TU 4CC

IF (J «EQs 2) GC TO 1550
GU TU (3109330, 35C2,LL

Lu 34C 1 = 143 _

PROB(LyK) = CNC{ILgK)

Gu TU 370

Uu 340 1 = 1y3

PRO(LsK) = CNTREL9K)

Gu TU 3170

VU 36C 1 = lyo

PRO(LIgK) = (Ueb * UNU(LyK)I) + CNT(LoK)
bu 360 I = 143

PRC{LyK) = CT(IyK)

160



bu 34C 1
RS([y1) =

193
PRB(14K)

¥ Rully2)

161

¥ RU(29sl)) + (RU(Ler) * RD(Z92))

¥ RU(Z21:2)

390 RS(1y2) = PRU(I4K)

400 CALL MATMPY (TMyRKSyRU939392)
S1L = RO(LyL) %% 2
Sc = RD(1lyl)d * RULZyl)
53 = RUI(Z2y1l) *%x 2
S4 = RD(341) *x 2
bb = ZeU ¥ RU(L,L)
56 = {Rullyz)
ST = 2.0 * RUO(gyi)
S8 = 2.0 % RU(391) * RU({342)
SY = RU(Ly2) *x 2
SLU = RU{Le2) * RULZy2)
S1i = ROU(gyd) *x ¢
Ske = RU(3y92) %% (¢
RL = XA(K) / YA(K)
K = xP(K) / YA{K)
K3 = XP(K) / YP(K)
K4 = XA(K) / YPI(K)
SW = S(K) *% ¢
YAS = YA(K) %% ¢
AAS = AA(K) %% 2
YPS = YP(K) *x (¢
APS = AP(K) *x [
XY = XA(K) * YA(K)

XPYP = XP{K} * YP(K)
An{K) * YP(K])

AYP
APY
CVvS(i)
CVSi(c)
CVSt3i
CvSi4)
LvP (L)
LvP(2)
CVP{3)
CVP (4)
CT5¢(1)
LLTS(2)
1)
C1S(3)
lq)
Cist4) =
1)

bu a4fu |
bu 41710 Ju

XP{

[T A O {1 [ A TR LA

1]

visCc = ((LvP(l)

K) * YA(K)
{s1 / XAS)
(51 /7 »xPS)
{51 / APS)
{51 / XAS)
(S5 4/ XAS)
(S5 / XPS)
(S5 / APS)
{S5 / XAS)
{SS / RAS)
(SS 7/ xPS)
{SS / XPS)
{S9 7/ XAS)
= ly4

= LgN\M

Lxx d) - 1eUd)

410 LF (UIlSC
SuL(isdly
Sutllgdly
GL TUL 430

420 SUL(LgdlLy

oL T
1)
2}

1)

L}

(S2
{(S<
(52
{SZ
(So
{56
(So
{S6
{S5L0 /
(Si0 /

NN NN NSNS

{51C 7/

(K1
{RZ
(K3
(K4
(K1
{R<
(R3S
{ka

¥ 3¢ 3 3 ¥ X & #

XY)) + (53 /7 YAS) + (5S4 / 5Q)
XPY)) + (S3 / YAS) + (54 / Su)
APYPI) + (S3 /7 YPS) + (5S4 / SUI
XYP)) + (S3 /7 YPS) + (S4 /7 SQ
AY) ) + (ST / YAS) + (S8 /7 SQ)
XPY)) + (S{ 7 YAS) + (S& / SwW)
APYP)) + (ST / YPS) + (S8 / SW)
AKYP)) + (S7 /7 ¥YPS) + (S8 / SWi

(RL * XY)s + (S11 / YAS) + (Slc / Sw)
IRZ * XPY)) + {Sli /. .YAS) # ﬂSLZ / Sd

{(R3 * XPYP)} + (S11 / YPS) + (512 /7 S

(S10 / (R4 * AYP)) + (S14 / YPS) + (Slc / SW

Ve0) GL TL 420
(= (CvPla) *= T(JL))
(= (CvP (L) * T(JL)) — SGRTLDISCI) / (2.C * CvsS(I1))

TeEMP

* TlJdL)) *xx 2)

(4.0 * LVS (L) * (CTSHD) * (TLJL)

+ SGRTHLDISC)) 7/ (2.0 * CVS(1))
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SubL(lydby2) = TEMP
430 DU 41C 1L Ly

SIGMACLL) (RUCGLy L) * SUL(GLyJdLyd L)) + (KO(Legd * THJLI)
S1IGHMY{IL) (RUCZy L) * SCLGLydLydL)) + (RL(2y2) * THJL))
LE (SIoMX(LL) «GEe UeU oANUe SIUMY(IL) «GEte UeQJ) GU TUL 440
I (SIUMALLL) ebLTe OeU oANDe SIUMY(IL) «0lTe CGaU) GU TU 450
IE ASIGMALIL) eLlTe 0e0 oANUe SIGMY(IL) «LTe 040) GU TU 460
IQUAUDI(TL yuLyIL) = 4

b unn

Gu Tu 4170 :
440 LWUAU(LJLylL) = 1 i
Gu Tu 4170
450 1QUAG(LsJLylL) = £ !
GU TUG 410 !

400 L WUADI(L yulglL) = 3 %
470 CUNTINUE ‘ f

IF(J «EGe 21 GU TG 4b6C

It (LFP ostwe 1) GU TU 490

wRITE (€9lil) LK)
Lil FURMAT (4X94HL = 3FbBe4)

ou TU 494
450 KNP = K + |

wRI1TE (69LL2) L(KP)
112 FURMAT (LHLy3X94HL = 9F8e4) )
490 DU %40 1 = 144 Foy

Ir (LPP .EGe 1) GL TO 500

IF (LL «6Te 3) Gu TCU 51C
SOU wRITE (69LL3) [sLVSUI)eJdKeCVP L)y JKeyLTS(L)
Lis FURMAT (LHU 354X SHQUAURANT 11/ /20Xy EL3e09dH¥Ny 1L y4H*%2 yELl3e0920%

LNy LLg3H*T yE13.0ylon*xTx**2 = L = U//) ;

Gu Td %24
510 wKRITE (6y1l1l4) 19CVSUL)oJdRsCVPITL)sJK,CTS(I
Li4 FURMAT (LHUp54Ay9HWUADRANT 21 L//20A9EL13.692H%Mgllg4H*%2 3ElBe6ydH*

AMel Ly3H*T yEL3.0913H*XTX®%2 - L = Q//)
52U wWRITE (eyilhs)
115 FURMAT (YA9L1hTEMPERATURE 9y 13X 3 i0OHSOLUTIUN Lly8Xy BHUUADRANT lA,lObe

LLUTIUN 238A98H&QUADRANT/LUXyoH{LEGS F)/ /)

LU 530 JL = lsivM

WRLITE (6910160 T(JLIsSCL L yulyl)yiGUALLLyJLyL)ySUL(LgJbL g2y quaucx,

LdLy2)
116 FURMAT (LAXgFTelyl3X9yEl30609l0X9dlley9XeEL3e6,10X911) :
930 CUNTINUE ‘ !
24U CUNTINJUE
550 CONTINUE
560 LUNTINUE
570 RETURN

ENU



APPENDIX C

SOLUTION OF THE

GOVERNING DIFFERENTIAL EQUATION OF DISPLACEMENT

The general solution of @(D)w = F(x) can be
obtained by finding a particular‘solution, Wy, of this
equation and adaing it to the complementary solution, w,,
which is the general solution of @(D)w = 0 (45).

In operator notation, equation (5-38) may be
written

(b* + k,0* + x,)w = F(x) (c-1)'
thus

d(D)w = (D* + k, D" + k,)w (c-2)

The complementary or reduced differential equation is
therefore

(D* + k,D* + k,)w = 0 | (c-3)
Letting w = emn, the auxiliary equation
m* + kn® +k, =0 (C-i4)

is obtained. If it is then assumed that this equation has

roots of the form
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m=0(+pi
m = X - ﬁi
m=-<X+Fi
m= -

®X - Fi

equation (C-l4) should be obtainable from

m - (O&+(35.) n - (- {31) m - (—tx+f’>i) m - (-o<-Fi) =0

(C-5)

(c-6)

Multiplication of the factors in equation (C-6) yields .

n* - 2(o- pEIm® + (s %) =0

(C-7)

Then, the roots assumed in (C-5) can only be true roots of

the auxiliary equation (C-L) if

or,

k, = -2(x - (5")
Kk = ((XL_'_ Pz.)z.
" '/z._
k k
O(Z.= __,_.l_ + _7:
b 2
~ ‘/z,j
b &

Then, since O(i'ﬁ)L and - F)'L are all roots of the

auxiliary equation,

~KX
e

Therefore, the complete solution to the complementary

( Csstmﬁ x + C4Cos|8x)

o ™™ CsmfBx + CLCOSP x)

and

are both valid solutions.

(c-8)

(C-9)

16l
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equation is
W, = ew‘(Cls'u\Px + Clcospx) + e'ux(C35Lnfo + C4Cos‘5x) (C-10)

and hence the general solution to the governing differential

equation is

or
W = e“x(c's'm_.px + Clcospx) + e'“x(csstmpx + C4cospx) + W,

- (C-11)



APPENDIX D
PROGRAM FOR ANALYZING CYLINDRICAL STORAGE TANKS

D.1 DESCRIPTION OF PROGRAM

The computer progranmn, CYLTAN, i.e., Cylindrical
Tank Analysis, enablesg a complete layer-by-layer stress
analysis at any number of points in a vertical storage tank
constructed of either isotropic or fibre-reinforced
compoaite materials., It is based upon the theoretical
analysis presented in Section 5 which assumes that the

tank is rigidly constrained at its base,

D.2 INPUT PARAMETER DEFINITIONS

Parameter Definition

R is the tank radius (in.).

DPTH - is depth (in.) of the contained fluid.
RHO is the density (1lb./cu.in.,) of the

contained fluid.

N is the number of layers within the
laminate.

H(K) is the thickness (in.) of the kth layer.

c(I,J,K) is the elastic stiffness, CU (psi), of

the kth layer.

ASTR12,ASTR22 are elements of the intermediate in-plane
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Parameter Definition

ASTR26,BSTR11 matrix A® (in./1b.), the intermediate
BSTR61,HSTR12 coupling matrices B ¥ (in.) and H ¥ (in.),
DSTR11 and the intermediate flexural matrix

D *(1b.-in. ).

THETA(K) is the fibre orientation or lamination
angle (degrees) of the kth layer.

XA(K) is the axial tensile strength (psi) of
the kth layer.

YA(K) is the transverse tensile strength (psi)
of the kth layer.

XP(K) is the axial compressive strength (psi)
of the kth layer.

YP(X) is the transverse compressive strength
(psi) of the kth layer.

S(K) is the in-plane shear strength (psi) of
fhe kth layer.

D.3 TYPICAL INPUT

A data input deck for determining the inertial
effects of the contained fuel on a gun-launched rocket
motor case as it exits from the muzzle is provided below.
The problem is described in detail in Section 5.10.
Parameter Value Format
R 3. (3F6.0,13)
DPTH 43.00



Parameter

RHO
N

H(1)
H(2)

c(1,1,1)
c(1,2,1)
c(2,2,1)
c(3,3,1)

c(1,1,2

c(1,2,2)
c(2,2,2)
¢(3,3,2)

ASTR12
ASTR22
ASTR26
BSTR11

BSTR61
'HSTR12

DSTR11

Value

98.00

0.1625
0.1625

0.8985L0E+07
0.432100E+06
0.177080E+07
0.660000E+06

0.8985L0E+07
0.432100E+06
0.177080E+07
0.660000E+06

~0.176800E-06

0.582300E-06
-0.553500E-07
-0.25,300E-01

-0.451800E-01
0.162200E-02
0.754700E-0L

Format

(6F12,0)

(4E12.6)

(4E12.6)

(4E12.6)

(4E12.6)
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Parameter

THETA (1)
THETA(2)

XA(1)
XA(2)

YA(1)
YA(2)

XP(1)
XP(2)

YP(1)
¥r(2)

S(1)
s(2)

D.4 TYPICAL OUTPUT

input deck, is shown in the following pages.

Value
20.0
33.0

150000.0
150000.0

12000.0
12000.0

150000.0
150000.0

20000.0
20000.0

-10000.0
10000.0

Format

(6F12.0)

(6F12.0)

(6F12.0)

(6F12.0)

(6F12.0)

(6F12.0)

A typical output, corresponding to the foregoing

Included are
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complete stress analyses at the two main points of interest:

the base and the point of maximum deflection.



Lo e T
L
¥y

R T

'HSTAR12 =

~DSTARTT

[FANK RADIU

[ANK HELGH

FLUID DENS

ASTAR1Z =

B & 5 3
N([STA§22“ =

\STAR26 =

"BSTAR11 =

~BSTAR6T =[

| "CYLINDR

70.5823E
" =0.5535E
=0.2543E
~0.4518E
T T0U1622E
"~ T0.7547E

L

FESU OO —

0000 LB./CU

b06 IN./L

06 IN./L
L07  IN./L

01 INCHE

01 INCHE

=02 "INCHE

04 LB.IN

S

L00 INCHES|
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|
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LAYER
~NO.

THICKNESS
OF LAYERS
(INCHES)

1625
1625

| (LK)

D.0000
0.0000
P-1625

D. 1625

R

COORDINATE
LAYER SURF
(INCHES

Z (K) Z
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L
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b OF STIFr
(10+6 LB./

c(1,2)

0.4321
0.4321

NESS MATRI
5Q.1IN.)

(2,2),

1.7708.
1.7708

SHEAR

(KSI)

10.00
10.00
10.00
. 10.00

C(6,6)

0.6600
0.6630

LT



DIST
RADI

- CHAN
(

-LAYER
NO.

K

NN -

3+« DIST

~ “RADI

~ CHAN
(

"LAYER
) No.

.-

b -

NN

NCE FROH
L DEFLECT
GE OF CURV
X-DIRECTIO
EPSX E
2.342 -0Q0
0.322 =00
0.322 -00
1.698 -00
ﬁNCE FROM
L DEFLECT
GE OF CURV
X-DIRECTIO
EPSX Ef
D.115 0
D.235 0
0.235 -0
0.355 0

BASE OF TA
ION

ATURE

N)

- r. - — S—
PSY AGA
.OOO '—o.c
0000 "Oe
.000 -0
-000 -Oo

] O SO
BASE»Q? $A
ON i
TUBE
)

PSY ~ GA
-837 “"ore
0837 .. =0,
.837 0.
0837 ) ».-00

NK = 0.0
= 0.0

" LAYER ST
(PERCE

MXY EPS
564 -0.0
564  -0.4
564 0.9
N K =y WZ.O
= <-0.0

= 0.7

" LAYER ST
 (PERCE
MXY  EPS
D46 0.8
D4~ 0.8
bue 0.0
D46 -0.0

D INCH
D0000 INCH
24307E 00

RATNS

NT)

1 EPS2
00  -2.34
00  -0.32
84  0.16
37 0.76
b 1nek
28548 INCH
39925E-02

RATNS

NT)

1 EPS2
37 -0.11
37 -0.23
62 0.54
23 0.50

£S

P
2
2
L

FETTUTuUT

GAM12

0.564
0.564
0.065

-1.780

0.046
0.046

e

11.070

PRINC
(1

- s1

T =10.12

-1 039
87.46

- PRINC

_ 4

L.

- 74.69

s 111

7.90
0.15

IPAL LAYER
O+3 LB./SQ

L.

TPAL LAYER
0+3 LB./SQ

L4

M 2,
9.83

- 1.59)

- 8.83

STRESSES
.IN.)

312

3. 12
3.72
0.43

=11.75

STRESSES
+IN.)

~0.30

6. 34
~7.06

312 |

9.30,

FAILURE
CRITERIA

4.425
0.219
0.089
3.785

FAILURE
CRITERIA

0.261
0.248

1.072
1.040

-

ot



?'.1

D.5 PROGRAM LISTING

A complete listing of the program CYLTAN, which is
written in FORTRAN IV language, follows.
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PRUGKAM CYLTAN

CSTRESS ANALYSIES OF A VERTICAL CYLINDKICAL TANK CUNTALNING LIGULD

MATERIAL CF CUNSTRUCTIUN CAN BL URTHUTRUFIC UK ISUTRUPIC
THE TANK IS ASSUMEL TG BE RIGIULY CUNSTRAINEL AT LTS BASt

UIMENSIUN H(éb)'b(jyjydﬁl,THtTA(db):XA(Zﬁ),YA(&b)pxP(25)yYP(25),5(
Léb) 9 (30) 9w 431)y02W{431),TM(3,43)

CINPUT

ReEAD (5510L) RyDPTHRHU #N \

101 FURMAT (3F6.0,13) f

R 1S THE TANK KRADIUS '

UPTH IS ThE utPTH GF THE TANK

RHU IS THE UENSLTY UF THE CUNTAINED LIQUILE

N = NUMBEK CF LAYEKS

wRITE (691U2) KyuPTHyRHU *

102 FURMAT (LHL//23Xy25HCYLINURICAL TANK ANALYSIES///10X, l]HTANK RADIUS
1 = s FO e s 1 Xy ORINCAHES// LUKy LTHTANK hElLGHT = 1FGe. dplA'lehLHts
1//710XK,L6HFLUID CENSITY = 4F 1443 1A91l0HLB/CULING//)

READ (591i00) (HIK)yK=LyN)

105 FOKMAT (6FLle¢eC) '

REAU (59104) (LiLgleh) s CllyleKlol(29ldsKIgClp33KIsK=LoN)

104 FURMAT (4Elcec)

READ (59104) ASTRLIZyASTRZ2Z3ASTRZ0yB8STRLLyBOSTRGLyHSTRLZyUSTRILIL
ASTKLZy ASTRZZ2y ASTRZ6y BSTRiIly UODTROLy HSTREZ ANU USTRLIL ARE OUBTAINED
FRUM THE cLASTIC CUNSTANT MATRIX ASSUCIATEU wiTH THE PARTIALLY
INVERTEDL FGRM UF THE LAMINATE CUNSTITUTIVE EQUATION

WRKITE (691005) ASTRLZIASTRZ224A5TRK26+BSTRLLybSTRULyHSTR1IZ»USTREL
105 FURMAT (LHO/L0XK, LIHASTARLE = yEL12e%492AKy THINS/LB//10X, LLHASTAKZZ
' L = yEl2edycXoglidlNG/LBe//1UXILLHASTARLG = 1ELLe%slAsTHINC/LB//10K

Ly LIHBSTARLL = yELL oD A 6HINCHES// 10Xy L1IHBOSTARGL = yElledylXyoiil

LNCHES//LUXs LLHHSTARLY = 9E12.47ZX96H‘NCHES//10X9llHUSTARll? = 4El

Leedy2XothlBelNG//) !

REALC (54103) (TnETAIK) yK=19N) ' !
THETA(K) INPUT VALUES AKE IN UEGREES i

READ (H49103) (AA(K) 9 K=LyN) - o

READ (59103) (YA(K) sK=1yN) '

REAU (59103) (XP(K}sK=1yN)

CREAD (55103} LYPLIKIsK=19N)
’ KEAD (591030 (5{K) k=L yN)

AALK)y YA(R)y XP{K)) YP(K); S{K) ARE ALLUWABLE PRINLIPLE STRtSStS

TUTAL = 0.0 . ~ !

DU L0 K = 1yi -
10 TuTaL = TUTAL + H(K) |

LLl) = — (TGTAL / 2.0).
MM = N + 1

DU 20 K = 29 MM
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KM = K = 1
20 ¢} = LZ{KM) + HU{KM)
WRITE {6y lU6)

LOb FURMAT (LHO/Z/ /2R s SHLAYEK 9 2K g YRTHICKNESS 9 e X9 L4RLUURULIINATES UF/3X 9 3H
LNUe 93 Xe 9HUF LAYERS ) ZAyLAHLAYER SURFACES 95 A9 LAHURIENTATIUNST Ay 26HCU
LEES. UF STLIFFINESS MATRIX/9A28HIINCHES ) 106Xy bH(INLHLb):7A,9h(UtuKtLS
L)gL3XylTH{LC4+6 Lbe/SuiadiNed//4XglHRKgUXsaHH(K) OX94HL(K) 94 Xs0HL(K+L)
Lyan s BHTHETA(K) 95X yoHC L Lly b ) saAyoHU L 9294 X6HL292) y4Xy0HC(0O90)// )

DG 30 K = 14N
KP = K + 1
30 wKITE (691007) KyH{K) 9y ZUK) 9 ZLIKP) 9 THETA(K) 9CLLoleK)yClLg29K)gll2y92yK"
L1 aC(3934K)
LT FURMAT (3A,1¢,4X,F9.9'LX,r9.4yf9 492X FY9e292X9=6PFLlUedy—6PFLOo4,~6
LPFLC.49=6PF10e4)
wKITE (641C8)
LU FURMAT (LHL///734X 3 LBHALLGWABLE STRESSES// 13Xy LHL9ORySHAXLAL 9 TXy 5HA
LKIALy6X 9y LOHTKANSVERSE 94X 9 LUHTRANSVERSE 95X 9 SHSHEAR/L9Xy THTENSLILE 9 3X
Ly LLHCUMPRESSIVE p4Xy THTENSILE 95X 9 LIHCOMPRESSIVE/ LLXy 4HUIN) bX,bH(KS
LL) g 7XpOHIKSL) 98X 9SHIKS L) 99K yOHIKS L) 98X 9SHIKS 1)/ /)
C by
U 7C K = 1,N |
Du €0 J = 142 ;
LE (J otGe 1) GU TU 40 ;
KP = K + 1 -
ou Tu 5U
40 KP = K
50 WRITE {(69109) L(KF)aAALK)I gAP(K) s YA(K)IJYPLKI»SIK)
LUY FURMAT (8XsF84492Xs=3PFT0295X9=3PFT02y6X4=3PFT, £:7X9-39F7.d.bx.—jP
L LFTe2)
60 CUNTINUE
70 CUNTINUE -
C
C CUMPUTATICN PHASE
o , ,
D = G.0 ' !
1 =1 - ‘ f
DEN = (ASTRZ2 * USTRLIL) + ( HSTRLZ2 #% 2)
Ci = (2.0 % HSTRLz) /7 (LEN * k) ‘ ,
Ce = 1e0 / (DEN * (R %% 2))
ALPHAZ = = (Ll / 4.U) + (U5 * (L2 ** (1. 0 / Ze 0)))
BETAZ = ALPHAZ + (CL / 2.0) '
ALPHA = ALPHAZ *% (1.0 / ¢.0)
bETA = BLTal *% (l.0 / 2.0)
Cs = — (ASTRZ2 * RHO * (R *% 2)) , ‘
75 C4 = - (ALPRA * () ' ;
CY = ((ALPHA * DPTH) = 1l.0) / BETA :
Lo = EETA * L . '
Wll) = C3 * (UPTH = U - (EXP(C4) * ((DOPTH * CGSLC6)) + (L5 % SIN(C
Le)idn : ' : ' ' ‘
C

C wll) IS THE RACIAL DEFLtLleN AT A DISTANCE U FRUM THE BASE OF IHE
C TANK N
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Lo

ven

1))

Hn

(ALP
- (2
1)

1 '~I’"

H
{

A2 -
U x
(L3

BeTAZ) -
ALPRA #*
%*

LALPHA * *®0
BETA) + (BETA % {(ALPhAZ + BET
)

LxP{C4dd / bETA) * ({L7T * SIN(CO)
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(ALPHAZ + ULTAZ) )

¥ OPTH)

PTH
A2) ‘
+ (Cy * CUSICo)

C Lew(l) 1S ThHt CURVATUKE CHANGE IN ThHt X UIRECTIUN AT A UISTANCE U FRUM
C THE BASE UF THE TANK

LASE UF TANK = Fbe299Ky GHINCHESZ

L/GAyLINRAUIAL UEFLECTLUNY LOAylH=9FlLleGp X yOHLINCHES/ /6Ky LIRUHANGE U
yEl3aU/ 99Xy LIHAA—UIRELCTIUNI/ /72Xy OHLAVYER 925Xy L5H
LLAYER STRAINS 92UXyZ4HPRINCIPAL LAYER STRESSESs4Xy THFALLURE/ 3X 9 3HNU
Le g 28Xy 9HIPEKCENT ) y¢S5ApLIH{LU+3 LBe/SuelNe )'7K16HCKlTLR‘A//4K11HK,5

C
WRITE (6o LLlLl) Lew(I)ybewt)
L1l FURMAT (LHU//CA25HULSTANCE FRUM
1F CURVATURE yoAyoii=
LS1e9xe2HS2yTXy3HS12/7)
UU 15C K = 14N
RTHETA =
RM = CUS(RTHETA)
~ikiv = SINIRTHETA)
TM{Lyel) = KM * KM
TM(ly2) = RN * KN
TM{ls3) = KM #* KN
TM{Z41) = TML lyci
.TM(Z,Z) = Tﬁ(l,l,
TM(Z293) = — TM(1ly3)
TM{390d = = (Z.C % TM({Lly3))
TM{342) = — TM(3,+1)
TMl393) = TMlLel) - TMILeZ)
DL 14C U = 1y2
Ir (J «tde 1) GC TU 80
KP = K + 1
ou TG 90
80 KP = K
90 £X = = ({ASTRL1Z2 /
LTRid) /7 ASTRe2) + L{KP)) % DZ2w(l))
tY = = (wil) / R)
EXY = = {(ASTReO6 /
isTRL12) /7 ASTRZ2c)) * 02wl i))

(ASTR2Z % R)) * w(ll)) -

(ASTRZZ * K)) * w(I)) -

LAy 4HEPS Xy DXy 4aHEPSY, bA,bHGAMXY,4Xy4HtPSlberQHtPSZ95XprbAMl£p6Xde

(561415927 *# THETA(K)) / 160.0 : : [

({BSTRLL + ((ASTR1Z % H5

({BSTRé6L + ((ASTRZ6 * H

C EXsEY ANL EXY ARE THE LAYER STRAIN LUMPUNLNTb IN THE STKULTURh LU-
C GRUINATE SYSTEM

y1l)

Jel)

* EX
(TM(2y13 * EX)
* Al + (TM{342)
(ClLlyl9K) * EL) + (ClLlgdak) * EZ)
{C{lycoK) * EL1) +

+ (TM(1s2)

= C(3934K) * Elc

el = ATkM{1L
£Ed =
Ele = (TML
Sl =
"S82 =
514

C

¢

C

C

' iF (Sl Gk

S1AL = XP(

K)

LleEd AND ELZ ARE THE LAYER STRAILN
PRINULIPAL CU-URDINATE SYSTEM UF THE MATEKIAL IN

S1¢82 ANDL 512 ARE ThE CURRESPUNDING STRESSES,
e 0.0) GU TU

100

¥ EY) + (TM(Lg3) % EXY) ' i

+ (TM{2920) * EY) + (TM(Z2,3) * EXY)

* BEY) + (TM(34+3) * EXY)

(Clco2eK) * EZ)

CUMPUNENTS TKANSFURMED Tu THE
THE KTH LAYER
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GO tu L1Q
LOU LLIAL = AA(K)

LIO I (52 oGLe UU) LU Tu 12U
SZAL = YP(K)
Gu TU 130

120 SZAL = YA(K)

1350 S1z2AL = S(K)
FC = ((SL / SLAL) %% 2) = ((S¢AL / SL1AL) * (SL / SLAL) * (S¢ / Sc¢A
LL)) + ((S2 / ScAL) #*% ) + ((S1l2 / SlcAL) *%* 2)

FC IS THE DISTURTIUGNAL ENEKGY FALLUKE CRITERICN VALUL

I FC IS LESS THAN Ly THE LAYER IS LAPABLE UF wiiHSTANDING THE LUAU

I FC IS GREATER THAN UK LQUAL TU Ly THE LAYEKR HAS FAILLEU

wklTe (69lll) KeEXgEY EAY bELlyEZ2ybELLySLySZeS124FC
11 FURMAT (3X91cd 9l R 9 dPFY9e39dPF9e392PFTe392PFY94592PF94394PFTe j,qJPFlU.
ley—3PF1Cedy=3PF1lUelyUPFSe3)
140 CUNTINUE
150 CUNTINULE
LF (U «GTe Ze?5) GU TC 152
IF (D «GTe Cel9) GU TC 151
U = U + 0.0625
oL TU 160
15L U = D + (.25
Gu Tu Lé0
152 v =D ¢+ 5.0
160 IF (U «GTe DPTH) GU TGO 1lel
1 =1+ 1 : 1
6L TU 75 ‘ :
161 CUNTLINUE
STuP
END
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MODEL OF CONTINOUS FIBER COMPOSITE

FIGURE 1.1
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MODEL OF DISCONTINUQOUS FIBRE COMPOSITE

FIGURE 1.4
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Reinforcing mats are made of either chopped
strands or continuous swirl strands laid down in a
random pattern. Strands are held together by
adhesive resinous binders. While lower in cost
than woven materials, mats are slightly more
expensive than bulk chopped strands or roving.
Chapped and continuous swirl strand mat weight
varies from % to 3 ounces per square foot. Rein-
forcing mats are used for medium strength parts
with uniform cross section.
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Fabrics are woven from yarns of various twist
and ply construction into a wide range of
types, weights and widths. Fabrics are
selected by a number of factors, but primarily
thickness and weight. Weights vary from 2v%
to 40 ounces a square yard. Thickness of fabrics
varies from .003 inches to .045 inches. These
same yarns are also fabricated into non-woven
fabrics similar to cloth. Both materials come
close to duplicating strength properties achieved
in the use of continuous parallel strands. Maxi-
mum glass content is from 65 to 75 per cent.
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Continuous or spun rovings are woven into coarse,
heavy drapeable fabrics called “woven roving”,
They give high strengths to a part and are lower in
cost than conventional fabrics. Weight of woven
roving varies from 15 to 27 ounces a square yard.
Thickness varies from 0.035 to 0.048 inches.
Woven roving is used mainly in the manufacture
of large structural objects such as boats and
swimming pools. It is also employed to make
heavy-duty plastic tooling for the metal-stamping
industry. A newer form of woven roving, called
“woven spun roving”, produces laminates with
superior inter-laminar shear strength. In addition,
woven spun roving improves adhesion to other
materials, and the drapeability of the reinforce-
ment.
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FF-AXIS LOADING

OF AN ORTHOTROPIC LAYER

FIGURE 2.4
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STRESSES ACTING ON A CUBIC ELEMENT

FIGURE 3.1
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TRANSFORMATION OF STRESS COMPONENTS (29)

FIGURE 3.2
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Table of Dirsesction Cosines

1 2 3
x Cos®d giné 0
y -sIln® cos®d 0
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TRANSFORMATION OF STRESSES

IN THE CASE OF PLANE STRESS

FIGURE 3.3
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FILAMENT WOUND CYLINDER

FIGURE 3.4
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ELEMENT OF A DEFORMED

TWO LAYER LAMINATE

FIGURE 4.1
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DEFORMATION IN THE X-Z PLANE

FIGURE .2
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FORCE AND MOMENT RESULTANTS

ACTING AT THE GEOMETRIC MIDPLANE

FIGURE .l
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CYLINDRICAL STORAGE TANK

FIGURE 5.1
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LOADS ACTING ON AN ELEMENT OF A SHELL

FIGURE 5.2
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Hydrostatic pressure
generated by launch
acceleration

ROCKET AT GUN MUZZLE

FIGURE 5.3
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DISTANCE FROM BASE OF TANK - INCHES
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MAXIMUM DEFLECTION - INCHES
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(a®*w/dx*) - INCHES
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FIGURE 5.8

THE EFFECT OF HOOP WOUND LAYER THICKNESS ON

LAMINATE ELASTIC PROPERTIES
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MAXIMUM VALUE OF THE DISTORTIONAL ENERGY FAILURE CRITERION
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FIGURE 5.9
THE EFFECT OF HOOP WOUND LAYER THICKNESS ON

LAMINATE STRUCTURAL PERFORMANCE
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FIGURE 5.10

THE EFFECT OF THE HELICAL WIND ANGLE ON

LAMINATE ELASTIC PROPERTIES
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MAXIMUM VALUE OF THE DISTORTIONAL ENERGY FAILURE CRITERION
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FIGURE 5.1l-a

THE EFFECT OF THE HELICAL WIND ANGLE ON

LAMINATE STRUCTURAL PERFORMANCE AT THE BASE

/;Z///Fhilura curve - inner
surface of the hoop layer

Failure curve - inner
surface of the eighth layer
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Initial structural failure occurs
at the base of ths structure
(refer to Figure 5.11-b)
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MAXIMUM VALUE OF THE DISTORTIONAL ENERGY FAILURE CRITERION
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FIGURE 5.11-b

THE EFFECT OF THE HELICAL WIND ANGLE ON

LAMINATE STRUCTURAL PERFORMANCE

AT THE POINT OF MAXIMUM DEFLECTION

Initial structural failure occurs
at the point of maximum deflection
(refer to Figure 5.1l-a)
Failure curve - outer surface of
the cylinder
- Failure curve - inner
surface
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