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DIRECT TENSOR ALGEBRA

A Tensor of the second order is defined by

T=Tijeiej

whereéékdenotes the rectangular unit base vectors, and

K

designates the rectangular components of the tensor. The direct, or
dot product of a Tensor T and a vector ¥ is defined by
T‘V—-ri‘j ei (EJ'V)

The Double Direct Product, or double dot product between two tensors
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CHAPTER I

INTRODUCTION

Many stress analyses of segmental shells, such as those by
DISCHINGER in 1935:PUCHERin1939andCSONKAin 1955 have been carried
out by means of analytical methods which disregard the transverse
flexural stiffness of the shell, The present study was undertaken for
the purpose of carrying out an experimental and analytical investiga=-
tion of a thin shallow calotte shell over hexagonal base,

The aluminum shell of spherical middle surface was supported on
members forming a hexagonal boundary which was free to expand in its
own plane under applied forces, The external impressed loading repre-
sented a rotationally symmetric normal pressure applied to the upper
surface of the shell, Extensive strain gauge measurements were carried
out in order to evaluate the direct and flexural stress resultants at
various locations on the shell surface, The effect of transverse
flexure of the sheli constituted the central feature of the investiga=-
tion, since the stress couple determines, to a certain extent, the
critical phase of the stress distribution.

Simultaneously, an analytical study of this type of shell was
carried out by means of an approximate solution developed for thin
segmental shells of spherical middle surface ( ORAVAS in 1957),
This solution is obtained from the system of fundamental differ-
ential equations formulated for shallow shells by DONNELL in 1933,

MUSHTARI in 1938, MARGUERRE in 1939, and VLASOV in 1949, The particular
*References are given chronologically in the BIBLIOGRAPHY,
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truncated series form of the solution is dictated by the geometric
configuration of the shell boundary which does not exhibit rotational
symmetry, but rather rotational periodicity. Since the boundary of the
shell does not coincide with the cylindrical co-ordinate system used in
the solution of the otherwise rotationally symmetric field problem,

TOLKE' S Boundary Collocation Method was employed which satisfies the

imposed boundary conditions at discrete points on the boundary rather than

along it s entire length that is the true coundition of the support

TOLKE in 1934),This type of finite degrees of freedom solution of TOLKE

-

e

for a closed spherical shell at the apex requires a knowledge of Kelvin
Functions bern(x), bein(x) and their derivatives for large integral
orders (n) which descrive the effect of the outer boundary of the shell
upon the interiof of the shell surface. A literature survey revealed that
tabulated values for integer orders (n) greater than ten were not avail-
able (see tables by YOUNG in 1964). Therefore it was necessary to

calculate the higher order hilVin lunctions using the BACKWARD RECURRENCE

TECHNIQUE, The basic solution to the problem, as well as the functional
calculations, were made utilizing the I.B.M., 7040 computer at McMaster
University. This investigation was initiated in 1958, but it was carried
to its conclusion only in 1963/64 due to the lack of suitable computer
facilities,

In both the e;perimental and the analytical procedure, the
distribution of direct stress resultants and flexural stress resultants
or siress couples along the radial distance from the shell apex are
graphically depicted, thus facilitating the visualization of the influence

of this type of boundary disturbance upon the interior of the shell.



CHAPTER II

PHYSICAL ASSEMBLY AND TESTING PROCEDURE

II - 1 Construction of the Shell Structure

The main structure used in this experimental test was a
segmental shell resting on edge beams forming a hexagonal boundary in
the base plane, Such a segmental shell of double curvature represents
a calotte shell, The middle surface of this calotte shell is of
spherical configuration with a maximum ratio of rise to base diameter of
1/8.6 .

The shell was formed from 3/8" plate aluminum alloy 65S-Th

rocess at the TORCNTO IRON WORKS LTD, t was machined

v

to a hexagonal plan shape at the McMaster University Engineering Machine

)

hop and then sent to AVRO AIXCRAFT LID, to have the 2" x 6" edge beams

w

y!

shown in Figure 3 metal bonded to the shell, Each beam wxs
bolted to steel supports which rested on rollers to permit freedom of
lateral movement., The edge beams were not continuous since a small slit
was provided at each corner of the hexagonal boundary in order to further
facilitate movement of the boundary member,

The base structure consisted of three main component parts, The
base ring, on which the edge beam rollers rested, was made of 1/2" steel
plate and rested on six equidistant vertical legs of circular cross-

section, The suppcrt ring, raised from the base ring by eighteen tie

S

)

rods and flush witz the outer edge of the shell, was machined to

3
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hexagonal inner shape to allow a 1/8" gap between the shell and the ring
in order to permit the shell to expand under load. The pressure head
was formed from 1/8'" steel plate by a spinning process and bolted in

96 locations to the support ring., A rubber diaphragm was placed over
the aluminum shell before the pressure head was bolted in place. The cell
space between the pressure head and the rubber diaphragm was partially
filled with water to cover the shell and subsequently air pressure was
applied to this cell., Figure 1, Figure 2, and Figure 7 illustrate the

physical layout of the experiment,

IT - 2 Strain Gauge Installation

Though the applied load was rotationally symmetric in character,
the hexagonal boundary, which is rotationally periodic, brings about a
certain degree of unsymmetry. The strain gauges were located in two
sectors of the shell, in such a manner that at each station both the
meridianal and circumferential strains could be recorded., In addition,
the strain gauges were located on the upper and lower surfaces of the
shell along its surface normal; this permitted the evaluation of the
direct and flexural strains for various loads at each of the 84 locations
in the shell shown in Figure 4, Careful installation of the strain
gauges in the vicinity of the slit corner was necessary to investigate
flexure in this region. Figure 5 and Figure 6 illustrate the installa-
tion of strain gauges on the surface of the shell,

Tatnall strain gauges Cl2-121 with a gauge factor 2.09 and with
temperature compensation for aluminum were located on the shell; In

total, 168 gauges were used, of which 84 were located on the upper



surface and 84 on the lower surface of the shell, Some difficulties
were encountered in mounting the gauges near the slit corner of the
shell, but the small gauge length of 1/4" permitted 5 gauges to be
placed side by side, A detail of the corner layout of strain gauges

is shown in Figure 8, The connections from the strain gauges to the
external installation were made using polystrip cable containing

twelve conductors side by side, These cables can be seen in Figure 5,
The strain measuring assembly is shown in Figure 9 and depicts the
switching unit through which the 168 gauges were connected, One of the
difficulties in the operation of this unit was the corrosion of the
switch contacts, which had t o be silver plated in order to render
consistency to the strain readings, The strains were measured using

the half-bridge of the digital strain indicator (D. S, I,) with a temp-
erature compensating gauge on 65S-T4 alloy, The strain readings were
printed out on tape with a "Victormatic'" print-out recorder. Using this
layout, both the zero strain readings and the strain readings at various

pressures were measured, as a null balancing apparatus was not available,

II - 3 Pressure Measuring Instrumentation

The applied load was measured using ; MARTIN-DECKER precision
test gauge with a range of O to 60 p.s.i., an accuracy of t 0,15% of
full scale and a sensitivity of 0,1% (see Figure 2). The seal between
the pressure head and the support ring was such that only 35 p.s,i. pressure
could be maintained without fhe leakage of water between the bolted
connections, It was felt that 0-30 p.s.i. was an appropriate range of

pressures to maintain linear strains throughout the shell,



11 - 4 Deflection Measurements

In order to record the boundary movement of the shell under load,
dial gauges of 0.00flscale division were located at each of the six
boundary edges to measure the horizontal movement, This arrangement also
provided an important check for the symmetry condition of the deformation
of the shell,

In addition to the strain gauges, dial gauges were located as
near as possible to each strain station on the radial line extending from
corner to corner to record the vertical displacement of the shell, It was
only possible to place the displacement indicators within 11 in, of the
boundary due to the lack of space in the vicinity of the shell edge. How-
ever, a satisfactory displacement pattern could be obtained with the 5

gauges used,

11 - 5 Experimental Proccedure

In order to check the consistency of D,S.I, readings, several
preliminary test runs were made at various pressures, Lach run consisted
of printing out a set bf strain readings at zero load, of locading the
shell to prescribed pressure and then printing out the final strain read-
ings. The difference in strain readings represents the strain in micro-
inches per inch at the prescribed pressure, In addition, another record
of zero readings was taken upon unloading in order to check the drift in
the indicator., It was found that certain adjustments were necessary
in the D. 8, I,; moreover, switch contacts had to be cleaned to
yield reliable results. These preliminary runs indicated tﬁat a
precision of I one unit of strain could be achieved, Since a scale

factor of four was used throughout, the precision in any strain reading
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became £ four micro-inches per inch, The total time elapsed to complete
a set of readings for each pressure was approximately thirty minutes.

The increment of loading used in the sequence of tests was 5 p.s.i.
Zero readings were initially taken with the shell unloaded, and then
readings were taken in 5 p.s.,i. increments from 5 p.s.i. to 30 p.s.i.

Contemporaneously, horizontal boundary movements were measured
for each pressure increment using dial gauges fastened to the base ring,
The dial gauges were located approximately in the middle of each of the
edges and were recorded to the nearest thousandth of an inch, These
measurements gave another check on the degree of symmetry of deformation
that prevailed in the shell,

lso a series of more precise gauges of 0.000S“scale division
were located on the lower surface of the shell, as close as physically
possible to the strain gauges, in order to measure the vertical displace-
ment of shell under load, These dial gauges were situated at the strain
gauges along the radial corner to cormer lin e , but only 5 gauges
closest to the apex could be utilized because of the space requirements.
Again displacement readings were recorded for each pressure from 5 p.s.i.
to 30 p.s,.i.

A series of tests were made to evaluate the agreement existing between
experimentally observed boundary conditionsand the theoretical boundary
conditions in the form of zero edge rotations. Two dial gauges of 0,0005"
scale division measuring horizontal displacements were located vertically
above one another at a distance of 3,75" and attached by "C" clamps to
the base ring. This permitted evaluation of any boundary rotation in

radians by computing the difference between the readings of the two



8

gauges positioned above one another and dividing it by the vertical gauge
length (3,75"). These tests were carried out at each terminus of the six
boundary members in order to check the uniformity of rotation along the
edges of the shell, Each of these measurements was carried out for the

entire range of test pressures,



SHELL ASSEMBLY BEFORE STRAIN
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SHELL ASSEMBLY WITH PRESSURE HEAD

AND MEASURING GAUGE IN PLACE

FIGURE 2
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DETAIL OF BOUNDARY MEMBER, SLIT CORNER,

AND EDGE SUPPORT

FIGURE 3
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Dimensions Shown Are Horizontal.
2.Radial Distances Refer to Middle Surface.Corrections Were Applied to Locate Strain Gauges.

3.Strain Gauge Type- TATNALL CI2 121 for Aluminum,Gauge Factor 2.09
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LOCATION OF STRAIN GAUGE STATIONS ON SHELL

Figure 4
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SHELL ASSEMBLY AFTER STRAIN GAUGING AND BEFORE PRESSURE

HEAD ATTACHEMENT

FIGURE 5
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LOWER SURFACE OF SHELL SHOWING

RADIAL AND CIRCUMFERENTIAL STRAIN GAUGES

FIGURE 6
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DETAIL OF SLIT CORNER SHOWING

CIRCUMFERENTIAL STRAIN GAUGES

FIGURE 8
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SHELL ASSEMBLY WITH DIGITAL STRAIN INDICATOR, PRINT-OUT RECORDER,
SWITCHING UNIT

FIGURE 9
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CHAPTER TII

ANALYSIS OF EXFERIMENTAL RESULTS

IITI - 1 Resolution of the State of Strain

The measured strains were resolved into direct and flexural
strains, In all strain expressions, the strain was assumed to be posi-
tive, or tensile. In the derivation of the flexural stress resultants,
or stress couples, the strain in the top surface was assumed to be
larger than the strain in the bottom surface., The strain was assumed to
be a linear function of the thickness of the shell, Figure 10a and Fig-
ure 10b depict the resolution of the state of strain of the infinitesimal

free body into its direct and flexural components,

III - 2 Direct Stress Resultants for Thin Shallow Shells

Figures lla, b show the free body diagram with it§ impressed
direct stress resultants, stress couples and applied load. It should be
noted that the expressions for the direct stress resultants agree with
those of other authors, while the expressions for the flexural stress
couples differ from those of other authors, The reason for the latter
discrepancy lies in the fact that direct kinematical methods are not
used by other writers forlstress couples and curvatures, The re-
{:33 .,Eggé at each station and at each pressure

were used to evaluate the direct stress resultants shown in Figures

solved direct strains &

(12 to 19), Figure 28, and Figure 29, Figure 11 ¢ shows

18



19
the lines where the strains were measured, These figures indicate the -
distribution of direct stress resultants for varying pressures along
the horizontal distance r measured from the shell apex, The
expressions used to calculate the stress resultants are easily derived
from the tensorial stress-strain relations as follows:

The Hookean Stress-Strain Relation is given in its direct

tensorial form

== -~ == ., =.= =- — oy —
o =2HeE+A(E:L)1=22¢ +F e, 1
where
7 I
A= Z0 D
= _ 2/_7:"1/
Aj -2V
designate CAUCHY-LAME elastic constants, the strain tensor of the middle surface
= e _l— CBE + MEE ==
E=E€,. 8.8, =] € e,,e,-:— ra Crts + O 6,8,

_—:-OE,‘E + 0€,§, +e§f‘,: ge,

Imposing

T n=€,8,:0=0

ql

from the plane stress condition in the stress-strain relation yields

Ern=E,8 E
- (d) )
-2V [6 eee

By definition

~h/z2
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{a) Infinitesimal Free Body of Shell Showing Strain on
Element

h
ess3

(b) Infinitesimal Free Body of Shell Showing Resolution

-

into Direct and Flexural Strains

FIGURE 10(q,b)
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Substitution of the stress-strain relation delivers

whil2 d d
£ z/uie“” r gl e+ -ty (e ]fas,

-hi2
+h/2
d) u ,4d) (d)
[6 4 ( +€ ]dah

E Ld) « Hhie
hlz
Finally
Flo)= )y yed))
. ~ {d) Py (d) Y ¢ 11
since & . 7\E3 are postulated to be constant with respect to the

thickness of the shell as shown in the graphical resolution of strain,

Similarly

+h/2 = E h
» Y ==l @) ,4d)
) j_meeee.o—dd,, =l (62) wed)

e @ g (@
rr

The direct strains 3 56 were inserted in the above equations

to yield the stress resultants at most of the strain recording stations

shown in Fi.gure L, A value of Eh ..4_2[)”0 was used corresponding
to the properties of aluminum alLoy 653 = T4 of E = 10 x 106 and

Poisson's Ratio v = 1/3.
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IITI - 3 Flexural Stress Resultants or Stress Couples

Referring to Figure 10, the kinematic expression for flexural
stress resultant,or stress couple,can be derived, Postuldtlnger z)>

-%)which is equivalent to imposing a positive increment(ierrwith

0

respect to &in for the co-ordinate system shown, the kinematic changes

in curvature are easily established from the.kinematics of deformation

SR, = SK.8, =2 T,

— T) -
&= Coold)
§K. = SH? r heee S
The kinematic curvature variations and stress couples are postulated to be
positive dependent variables which undergo positive rates of change over posi-

tive increments of the independent variables, The variation of curvature

SKg= SKeCs

is accompanied by a positive stress couple M (o‘)@%, If the infinitesi-
re

mal shell element is a free body, then the curwature variation
Sﬂrr‘ gl"{p. er
would cause a lateral POISSON's effect
- s Oy
SH - Ué“re@

in the curvature of the surface. However, the continuity in the shell

requires the development of a constraining curvature
o SR e s =
SKg=—U SK €,
which is accompanied by a constraining stress couple
(G’)=-DUSH

Consequently the flexural stress resultant or stress couplehﬂﬁrhnll be

given by the expression
M(s1Zg= D[SHG- USH,.] g,

%
Eh

where D = m

denotes the flexural rigidity of the



2k
shell.

Similarly
M(e)8, = D[ 8K - v sk ]E,

The scalar components of these Kinematic Stress Couple-Curvature Rela-

tions are

M) = D[§K, - v 8k, ]

and

M(c)= DLS§K,-v §K,]

Substitution for Sr‘ 8}(6 in the relations above gives the

resultant stress couple in terms of the strains (P)a) €<P)6h)

gw)'a,_uz) [ €(P}( Beveseldl]

M) 2 S e gveda]

Inserting the appropriate flexural strains from the test results in the
above relations yield the stress couple distributions shown in Figures
(20 - 27), Figure 30 and Figure 31. A value of G(I uz) = D.288 % lO
was used in the calculations.

A formal derivation of the previous stress couple-strain rela-

tions can be achieved by utilizing the results of General Theory of

Shallow Shells in Appendix A,

For shallow shells, a Kinematic Moment Tensor M(U) can be

constructed such that

Me)= 8, M.(e)
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As
_§= _e_,'_ 6:;'
then the stress couple for shallow shells

— + f\Iz

M{e)ds; = |, 7 x& dA; (dAi= dapnds; )

which per unit length

+hiz _  — dﬁa +hiz ey e
Migo)=§7 % Bx&; 55 = [, #n(EaxT) da,
since for infinitesimal free-bodies _.L A e o lMoreover,
M.(o)= E;. M(c rhlg {Tx8,) da

where the stress can be expressed in terms of strain by HOOKE Law
2 UE +%
- €2

Substituting the strain tensor due to flexure for shallow shells from

qQl

l-—*ll

Appendix A yields the moment tensor

-

S

Merg| o (860~ 6K5) 8.8, +15a( 5K - usHD)EE
SR, s SR

The components of this kinematic moment tensor are

3
== . 3. Eh (n) )
M(c)=88y* Mlo)=ggpg( SKg - V6K
and
- = T EF
M(0)=868, : | ?(U)=ii(;-v“){ VEKS)
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The flexural strains can be related to the variations

{£) (£)
E%r 7 e@e

in curvature by the relations (7.6) in Appendix A,

" _ i Y- nL, =
Epp =+, EKg = T (8K €, x4,8,,)

%) (n)—

) —
€ee=—dh SKF =ee'(QK xd eh)

The variation of curvature can be extracted from these relations by

setting dvﬁ%

)
SK(:'-':-— ) )

Skg =+ e

JIn

The final results for the stress couples are

| Fi ¢
Mo )—6(1 u‘)[ SREEEE (@)(‘-)]

Mie)=52 Tl Si)eve )

III - 4 Stress Distribution

The extent of transverse flexure in the thin shell can be clearly
seen if the total stresses are tabulated. The comparative state of
direct and flexural stresses in the exterior of the shell surface illus-
trate the stfain deviations from the desirable extensional state of
strain and its concomitant state of direct stress.

The results of the direct stress resultants and stress couples
are utilized in these calculations, The comparative results are pre-

sented only for a pressure of th - 30 PSl . The relations



describing the total stresses are detailed below:

o =F(e)/h

cr(FK i)

and

similarly

and

‘”Gh&)
0) ( hiz)= %‘g)' Y]

rr

; @’u(c')
ro

m(—‘-hlz) = c-;ff’ + o'ifg)(s\—hlz)
o (-hi2)= o - ¥ (+h12)

o) = E(e)/h
f?'( )-- M(e)

w)

é)
Coe*

o (+h/2)
? (+hi2)

Substitution of the appropriate stress resultants yield the total

stresses shown in

pressive stresses

the table below. Also,

27

the maximum tensile and com-

in the shell are indicated for a normal load Pn'—'-BOP-S.i.

j TOTAL STRESS (p.s.i.), LINE ® = O, p = -30 p.s.i.
|
| Radial U1st.i ; E ; ! E i [ ?
F Gin 0 : 6 | 9 f 12 ! 14| 16| 18 | 20 21
T ! ! !
"%fnﬁz) 9 740 + 43 - 873| -2260| -3210| -2930| + 230 +3700
§ c¢ﬂ> j,zo7o -2520 2440 -2500,-2150 -1930| -1620 -13205-1040
| r ! | | , | |
cé (+hi2) §-91094-1780 -2;97'-5173 —L410} =5140| ~4540 -109o§+266o
o (-hi2) ;-2631%-3260§-2485i-1u27 + 110| +1280] +1300 ~1550/ ~4740
] TOTAL STRESS (p.s,i.), LINE 6 = 0°, p = =30 p.s.i,
Il
Radigl Dist.
r(in.) 0 6 9 12 14 16 18 20 21
@ h _
Caolthi2) | - 239+ 311|+ 2521+ 93|~ k27|~ 760!~ 505 # 517|+1640
« ; ,
cﬁ:; -2870| -2530| -2890 |-3020| -3110} -2460| -1050 #1240]+2400
", )
CﬁgoC*5!2) -3109{ -2219| -2638 {-2927| -3537| =3220} -1555 #1757 +L0LO
Gy, : f s
o (- h/2) | -2631] -28L1 | 3142 1-3113] -2683| -1700| + 545 ¢ 725 |+ 760
1 [} |
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The calculated maximum stresses considering all lines © = 0° to 300 are

given below:

STRESS TENSILE COMPRESSIVE
PeSaids
)
T, (+hi2) +2660 -6550
O, ,.(t, (-hi2) +1300 -3660
oo (+hi2) +404O ~3950
oo (- hi2) + 14,220 | ~3185

These tabulated values of stresses illustrate the extent of
transverse flexure that occurs when the boundary conditions are un-
symmetric, It is to be noted that near the edge members the flexural
and direct stresses are of the same order of magnitude; in fact in the
radial direction the flexural stress is approximately three times as
large as the direct stress., In the radial direction on the upper sur=-
face ( A,= +h/2 ) compressive stress predominates except at the sta-
tions closest to the edge member, However, in the lower surface@xﬁz-hﬂg
there .are regions of fluctuating tensile and mmmreésive
stress with the latter predominating near the edge, This condition, in
itself, indicates the extent of flexure at the boundary. In the &
direction, the conditions on the upper and lower surfaces are similar,
as far as the compressive stress extends throughout the shell except
for in the proximity of the boundary members. The maximum tensile
stress of 14,220 p,s.i, exists near the slit corner along the line
© = 300. This magnitude, being much larger than the other maximum

stresses throughout the shell, indicates the high degree of stress



concentration that occurs at the re-entrant corner,
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III - 5 The Degree of Rotational Periodicity of the Deformation

of the Shell Structure

It was necessary to check the degree of symmetry that existed in

the actual structure.

This was attempted in several ways.

- From the location of strain gauges in Figure 4, it can be seen

that four gauges, two radial and two circumferential, were located on

opposite sides of theshell in order to provide strain control,

Assuming

accurate locations of these gauges, the degree of symmetry is indicated

by a comparison of the readings. The results are shown below for two

of the gauges located at a radial distance r = 16",

STRAIN MICRO-INCHES/INCH

GAUGES 10 p.s.i. 20 p.s.i. 30 p.s.i.
Upper Surface - 56 - 264 - Lok
Radial Gauge - 64 - 264 - L4o8
Lower Surface + 32 + 116 + 178
Radial Gauge + 28 + 112 + 184
Upper Surface - 72 - - 136 T | - 220
Circumferential Gauge - 68 - 1h44 - 208
Lower Surface + 16 + 32 + 36
Circumferential Gauge + 12 + 20 + Lb

The tabulated strains indicate that the symmetry in the radial direction
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is more pronounced than in the circumferential direction,

As a further check, the horizontal boundary movements of the
edge beams were recorded for all the test pressures, and are shown
below for the same pressures used in the previous table., These read-
ings were recorded with the dial gauges located in the middle of each

edge beam, See Figure llc for the numbering of the shell edges.

HORIZONTAL  DISPLACEMENT (in,) g
o?“::gz 10 p.s.i, 20 p.s.i. 30 p.s.i.
1 ,0230 0480 .0735
2 .0220 0465 .0710
3 .0215 , 0465 .0720
A .0250 0490 ., 0740
5 .0230 .0480 .0730
6 .0210 L0450 . 0690

From the measurements shown in the table, the boundary movement is seen
to be nonuniform, at least to a certain degree., The strain gauges were
located in sectors 1 and 5 where the boundary movement showed good agree-

ment ,thus indicating that more reliable values of strain would be obtained.

III - 6 Boundary Rotation

The heavy edge members of the shell were mounted on rollers in
order that they would be free to move horizontally and yet inhibit

boundary rotation, This type of a boundary restraint admits a relatively
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simple analytical boundary condition in the theoretical solution.
However, in the actual behaviour of the shell structure, a certain
amount of rotation is likely to occur. A series of tests were carried
out to determine the extent of such rotations. The measurements obtained
by two dial gauges placed vertically above one another at a distance
of 3,75" against the ed ge members of the shell permitted an
evaluation of the rotation of the boundary members, It was established
that the edge members did not rotate uniformly along their lengths, The
various edge beams exhibited rotations of varying magnitudes and even
showed rotations which were nonuniform along any given side, The average

rotations measured by the above method are presented in the table below,

BOUNDARY ROTATION (RADIANS)
e | 10 p.s.i 20 p.s.i. | 30 p.s.i.
1 +,00043 +,00085 +,00110
2 +,00040 +,00053 +,00120
3 +,00091 +,00110 +.00140
4 +,00027 +, 00040 +,00065
5 +,00042 +,00085 +,00054
€ +, 00004 +,00013 +,00013%

The strain gauge stations were located in sectors 1 and 5 and these edges
rotated uniformly up to about 20 p.s.i., The nonuniform character of these

rotations are easily seen from this table,



IIT - 7 Vertical Displacement Measurements

32

The vertical displacements of the lower shell surface procured

from the dial gauge measurements are presented below for the positions

specified in section II - 5,

These experimental vertical displacements

can be compared with the corresponding theoretical values shown in

section IV - 6,

VERTICAL DISPLACEMENT ALONG LINE © = 300 (in.)

' DIAL GAUGE

LOCATIONS r (in.) 10 Pa8uda 25 B Bade 50 Poltaide
0 +0155 .0295 . 04280
6 ,0150 ,0270 ,04030
9 <0153 .0286 .0L225
12 .0167 .0315 . 0L65
14 L0164 .0305 . 0465
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CHAPTER IV

THEORETICAL SOLUTION

IV - 1 Introduction

This chapter is concerned with an approximate solution
applicable to the analysis of thin, shallow, calotte shells of spherical
middle surface, based on the method given by ORAVAS in 1957. Many stress
analyses have been carried out for spherical calotte shells which dis-
regard the transverse flexural stiffness of the shell, In this investi=-
gation the general solution for shallow shells is attempted in which the
shell's flexural stiffness is not ignored. It is postulated that the
shear deformation of the shell is small compared with the flexural and
dilatational deformations of the shell, In this case the type of a

spherical calotte shell investigated encloses a hexagonal base,

IV - 2(a) Formulation and Solution of Fundamental Differential

Equations for Thin Shallow Elastic Shells
The fundamental differential equations for isothermal deformation

of shallow elastic shells expressed in terms of generalized coordinates
and for normal pressu?e P“’ (derived in Appendix A in conformance with
VLASOV's theory) gre: i

V& - EhVou,=0 0]

Vi, +5v 8 =B (2)
with

53
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2_ 1 ¢(a3ar . mA 2 2 T.mA 2
Vg ™ Cad,[K A, 34, +ao\z{K A B

where A., A, denote fundamental magnitudes of the first order for the

I
shell's middle surface and Kl(m) Ka(n)

the co-ordinate lines &, = constant, &, = constant (Figure 32). The

designate normal curvatures of

method of solution will be summarized in the following exposition,

The two coupled differential equations of the form
4 2_2 " .
(v +Avi ) hoFR (i=42)

can be solved by introducing a pseudo-complex dependent variable

a method introduced by Herbert WEBB in 1925 in a problem of torsional
buckling of columns and used in thin shell analysis by Friedrich
TOLKE in 1938, Multiplying equation (1) by iw and adding to equation

(2), while imposing the condition

= YIZZI— v?)

E h*
yields the complex differential equation

[v%- 1 Ehwvﬂv = p,/D

where

@)
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FlosA,de) E(A, e,

f';" (cr;A,dt,)§(A,dd,) 2
';:'(O';Az ddz) e' (Az da, )

F (oA, da (A do PV

(a) DIFFERENTIAL SHELL ELEMENT SHOWING STRESS

RESULTANTS AND SURFACE LOADS
€,

dl see o 2
= (1A, 4t &, (Ada) F (oA, dw,) &, (A, de,)
M (o;Ad o) E(Ada) M (oA, da)E(A; da;)

Mlz(di A da, )€,(Ada)N : MzgviAzd‘*zyél (Az d“z)

(b) DIFFERENTIAL SHELL ELEMENT SHOWING STRESS COUPLES
AND SURFACE LOADS

FIGURE 32
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V=u, +Llwd

The original functions Q and u  can be expressed in terms of the complex
function V as follows

W=z (V+V¥)

-l 3%

g =2 (v-v¥

where the complex conjugate of V is

)

V= U,~twd

For shallow spherical shells the fundamental magnitudes of the first

order become

and the normal curvatures of the middle surfacé
(n A
Ke =7R
(n) | .
==
He R :
where R denotes the radius of curvature, This simplifies the differential

cperators and allows the sectional resultant stress quantities to be exprecced

by 25
| 28 28
F(e) = fi5e *Far ok
_ s
F(e)= 52 ’ (5b)

Féw)i"F;cH"%[-;:*] , (5¢)
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Mr(g)=-D[§2-l-? +u(h ae"a =) (54)
M(o)= D [l +f 2 + az“")] . (se)
Me=-M(e)= D (-u) {5 [543 (5)
B(o)= = D{FS5(V un) (59)
E()=-D{2(v?y,)} (5h)

Equation (3) simplifies to

v*[v*- %}]v v [vi-i ]v =pa/D ()
X=|i2(-v? Rh‘

The solution of (6) can be expressed by superposition of three particu-

where

lar solutions

vV = Vo.+ Vl + V2

where Vo is a solution corresponding to the normal pressure P and Vo'

Vl’ V2 are given by the equations

V[0S ix® ] v= VA [V 18] (Var Vi oV,) = V2 [9% 1 R3],
+[VEAL]VRY, + VP[P, -ix*\,] = p, /D

which can be satisfied by imposing the particular conditions
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vi[v-iX]y,= & (7q)
[v3-12%]v*y,=v2V =0 (7 b)
V2V, - i RV, =0 | (7¢)

Solutions for the type of equations (7b), (7c) can be assumed in Daniel

BERNOULLI's Semi-Direct form,
Qo
- 1,0 3C05(nB6)
Vi= 2 Val{sinine)
2, {cos(ne)
V=S o)
20 N Sin(ne)
which reduces the partial differential equations into ordinary differ-
ential equations, For rotationally periodic deformation problems the

cosine series constitutes the appropriate solutions., Substitution of

V, in equation (7b) yields for n = O a solution

Vp(r)= Ag*B,In(xr)

and for n = m=21 a solution
| — m =
Y (r= G v+ Dyt

The complete solution for Vl related to the cosine term is

V,=A,+B,In(ar) +§' [ Cnr" +DnF "] cos(he) (8)

Inserting the assumed solution V, into (7¢) furnishes the ordinary

differential equation in vn2 as
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2,,2 2 )
r? %rvi" +rde _[i(ar)+n*]vi=0

The solution of this modified Bessels equation is

V2= F,I,(i"ar) + 6, K,(i"Ar)

where Fn’ Gn are integration constants, and In' Kn represent ‘Modified
Bessel Functions (see McLACHLAN in 1955), This solution, in turn, can

be expressed in terms of Kelvin Functions of the n-th order

| V= F, [bern(l") ) be;n(u)] - Gn[Kern(lr)-f i Kein(lr)] (9)

if it is observed that the Modified BESSEL Functions of the First Kind

L{t"ar) ber,ar) + L beipfar)] €7

and the Modified BESSEL Functions of the Second Kind

Kn( L"’).r)=[kern(1r) - keih(kr)] o

The complete solution for V2 is

V, == Vi cos(ne) = Fy[ ber (ar) +i bei (Ar)] +G,[Ker(an+ikei(ar]

+§ g Fi [ber;‘( AR +ibe ln(R.r)] + Gn[kern(lr) » Lkein(lr)]j cos(ne)  (i0)

All arbitrary constants in the solution of V are taken to be complex,

The particular solution can easily be determined for symmetric normal
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pressure p = pnén by assuming Vo to be a complex quadratic polynomial

V,=V.(N= (a,+ap+ ayr)+iw(b,+ br+b,r?)
Then
AV Ty = Vi - i3 vy, =p, /D
and substituting for Vo(r) yields

=L X [4-021-—:-] + A w[4bz+r] Pn/D Pt |2a-u3

which is satisfied if

‘F‘Jz‘+'é?”=(3 o a|?<jz= O
bl Pn . ... Ph = Pnp
by * ¥ D W “B=eH bt IpXw T T4

The solution is

v (e iy PaRA_ PR PaRP?
Ve= Vy(r)= Qo+l wRi=gt +iw g

= Ug+iw @

where for convenience the constant normal displacement for the momentless

theory is used, i.e,

IV - 2(b) General Solution

Insertion of the complex integration constants and particular
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solution into the general solution for V yields
V=V, +V, +V,
; thz ! 2 i p a .
=t En Ao ber(ar + A, bei(Ar +B, Ker(xr)+B; kei (Ar)

+E [In(AR) +E} +§[ A, ber,(ar+A, bei, (ar) +B, Ker(1r)
- 2
+ B, Kei(Ar) + Cor" + D,',r"] Cos(ne)} +1 fw %gﬁ +A,bei(AF)

- A ber (ar) + B, kei(Ar) - B: Ker(ar) +E [n(ar) + E2

-] ) 3~
t2 [ A, beian-Az ber, (Ar)+B, kei (1) - By ker, (AR +CRr™+D,r "]cos(ne)}
The final solution in terms of the basic parameters ua,ﬁ'can be obtained

by imposing the conditions (4).

2
un=B€—E- +A:, ber(Ar) +AZ‘ bei(Ar) + B, Ker(Ar) +BKei (Ar)

+Fg In(Ar) +Eg+ = [Anber,(Ar)+ AL bej(ar) +8, Ker,(2r)

+8 Kej(ar) +Cpr"+ D, r’"] cosfne) (i1a)

—Eﬂ_&ri _!_ I . 2 1 . 2
="+ {Aobe' (Ar) ~ A5 ber (Ar) + B, Kei(ar) - B2 Ker (ar)

+F2 In(ar) +E + g[/\; bei(ar)-Aj ber,(an +B, Kei(An

~ B Ker.(xr) +Car"+Dor " | COS(ne) (11b)
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IV - 3 Boundary Condition Relevant to a Closed Spherical Calotte

Shell Over a Hexagonal Base

It is assumed that an uncoﬁpling of boundary effects is possible
for this thin shell since the shell fossesses no inner boundary., Because
of the singular nature of kerék) kein(x), and r * at the origin, they
are irrelevant for the shell problem under investigation and can be
eliminated from the solution by setting.Bnl = Bn2 = Dn1 - Dn2 = 0, This
shallow spherical shell, which is subjected to rotationally symmetric
loading, encloses a base of a regular hexagonal configuration, and its
state of stress and strain acquires a similar hexagonal periodicity
about the axis of rotation of the shell, Accordingly, the‘stress and

displacement function of such a spherical calotte shell of hexagonal base

exhibit similar characteristics of 6-fold periodicity, Therefore

2
Up =2+ A2 bei(ar) +4] ber () + EL +Z[AZ beiy

+ Acn ber,, (Ar) + oy rsn] cos(ene) (12q)

5 = En4Rr + '& E AL bei (ar) -A2 ber(lr)+§,[/\én bei,,(xr)

_Aezn bersn(lr) = ren] C°$(5“9)3 (12 b)-

IV - 4 Satisfaction of Boundary Conditions by T6LKE's Collocation

Method

An exact solution of the edge restraint for spherical shells over
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polygonal base is for practical purposes quite impossible since the
boundary of tﬁe shell does not coincide with the co-ordinate system, and
therefore it is necessary to use the method of point collocation to
achieve at least point by point satisfaction of the prescribed boun-
dary conditions, This collogation method for surface structures was
originated by . Friedrich TOLKE in 1934 in an approximate solution of the
transverse flexure of a continuous plate directly supported over equi-
distant columns, The following boundary conditions seemed best suited

to describe a reasonable edge behaviour for the calotte shell under

investigation:

at r =¥
Fla)=0 (13)
S gﬁ")=0 - (14)
Up,=0 | (15)
€ss=0 (16)

where

¥ designates the cylindrical radius to the collocation point on

the boundary

and iéés denotes the strain tangential to the boundary member of the

shell,

IV - 4(a) Boundary Condition‘Fun(G') = 0

By definition the stress resultant per unit length of boundary

is
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+h/2 hi2 e
E;(o‘) = Ihlz O by = i‘_hlz AR:& de,
+h/2
=(“°§L)(ﬁ'_ejj) J_\_h/zofj dd,, (17.}. =r>97n)

€)(R.E F(o') +(n. e\(ﬁ E)Fe(c)

Using (see Figure 33a)

|

3
M

o= COS§ =cos(Z-f)=sin§

]

N.€, = cos§, =cos§

r

For the particular boundary under consideration (Figure 33b)
fa-o

Consequently

F n(o‘) = ﬁ;(d—) cos’s -2 Ee(c*) Sinecose +ge(cr) sin‘e

Inserting the fundamental stress function (5) yields

o8

CE

9

@ [ief

+

9\

L
r

‘”l

HORERE

DU )
IV - 4(b) Variation of Boundary Slope 8("3?\' = 0

The kinematic rotation of the co-ordinate lines with L= u

X 2 !
Jcos o +[3 Jsm o+ a,(’;:a )smze=o

B

neaI

(13q)



(b) STRESS RESULTANTS ACTING AT BOUNDARY OF SHELL
OVER HEXAGONAL BASE

NOTE : The Directional Qualities of Vectors in Fig.33 are
Graphically Depicted .

(a) STRESS RESULTANTS ACTING AT BOUNDARY OF SHELL

FIGURE 33
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is

ar
du, =
or ¢

and

Fes LW _=,10Uh= . = , U35
Q=8 xr 3= &XF526n t S XF 5
= .= \9Uy
=( Sxen ae
_ 1 %un
“F3e ot

for

For the shell under investigation §= ol

66
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8(%—:") = —%‘;“ Cos6 + 4 S5 sine (t4q)

IV - 4(c) Strain Tangential to Boundary €s =0
=)

Since the edge members of the boundary of the shell have quite
substantial cross sections in comparison with the shell, it was assumed
that very little strain would develop in the Ei direction at the
boundary membe;, where the shell and edge beam were metal-bonded to-
gether,

The middle surface strain tensor is

EM)=|€,. €€ +E,EE

¥ eereeer L eeeeeeeJ

where (see Appendix A)

ee [h ‘ee re
g, =R B
then
€,=8% 8 = & | €,5(E.9)+6, 5 (5.7)

| 6.5 )€ 8, (BoB)

.J.
N

= €,.(8.8+2¢, J(E-BIET) +E,,(E.

e°

oD

-~
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where = for shallow shells,
el"e eer

Substituting for é% yields

2 2
Egs= Ep SIN§ + EgoCOS™( —2€,,SIN§ Cos§
Again, for the shell under investigation f='9, thus

; 2 2
€sc= €, SIN"B +€,55IN26 +€,,C0S° O

Expressing strains in terms of stress resultants and utilizing VLASOV's

Force Function @ (5) yields

IV - 4(d) Collective Boundary Conditions

Substituting the fundamental solutions of w and Q (12a, 12b)
in the boundary conditions 13%a, lbka, 15 and 16a delivers the linear

equations

A‘; YieAYar g[Asln Yy + A:n v, M C:,, Ws] =_P'3_—R'
Ao Vet A: V7 g[Aa.n Ve "'Aezn Wg* c;nw,o ] =0

2
Acl> Y |+A§ Wiz Eo+:‘§a[A6'ﬂ Wyt A:n Wia* C:hucs ' "Eh

(13b)

(14b)

(15b)
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1 e i P,R
APiet AWy ¢,%[Aem Yis* Aazn(ple * C:n Lpzo}=-('—u) 2 (1ee)

The coefficients in the boundary conditions are given by

1\ 2 L .
W= U)(T‘-} bei{s) COS°8 + 7o bei (4) SIn"®

= ~ ( )ber (4) COS*B +%5 ber (u)SIn°8

: 2 2 u
L;);{[m’(%) bei (w) -z:;(%:ﬂ) beisg‘,a)} cos’s+ {-&;beie,,{/x)]smz'e"ECOSGH'é

o+ {[_ Eﬂ(?)be, (u) + %7‘:: bei (#)]szé}sm end

(1 [A b ._( )+_,_(gn)2b Coszé_lzb u( 2 co -
[4)4- [ (7 ber$H T (F) ezn(,u) w ber, (4)SIn"63COS 6n6
"{[E (.%:) be,..e ) e %’;‘:’—z bezn(/u_)] smz“e’gsmen’e’

- ~6h=2 gn(6nh-!
Y= ¥ —{U—l[(sm -C05%8 ) cosan® - smzesmsneJ
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Y.= ~Aber'(y) cos®

Y,= — A bej (u) cosT

a . _ ~ T
Wg= -~ 2 beren(/u.) cose] cosené - -‘%P—bezn(/:) Sin ’é’]sm 6né

r r~
Wo=~ b>\bei6'r§,u) cos’e’]cosen’e‘- 5;;:" 8 ]smen’é’

-
-

~ 6N=I ) -
U,o=- f;nr cos’e’]cosane ~ lenF®"

b

"sm’é’] sin6nd
V,= ber(u)
Y,,= beilu)

Y= ber (cosens

q)‘ "o be-'s n( u)cosens

Y= 7°"cosens

l#,;“()beu(/;) e be.(,u)]smzé Fbe:(,u) (v})bei'(ﬂ)]cosz’é'

2
. U— ber"(,a) -‘éj%) ber‘(/;)]smze +[&@?) ber‘(,u)- (—)I,'ber'?,u)]cos’é'

I 2 i 1
Wie™ E[L'U bei ,{,u) ( 2) bei_(u) - vE be‘g}#)_ cin%s

2 2 7
+[3) be) (,u)——(—)be: (pa) +—(6") bei, (u) cosﬁsg cosend

+§(:+u) wl:( )beu (,a) beér(‘/.c)}smz‘ég sinen’
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(ber (u)+ v & ber(w| sn’8

én

Wi E['z’a %) ber, {4+

*[ ber (u) + 0

o El-

) be r;'g,u) st (%)2 ber ( ,u)] cosz’e“} cosend

"""\
~1

{(H—U)én "'rz ber (,u) + ber (,u)]smz’é}smen’é

W, = Y enn-)F " z[cos &5-5In*6)cosend + sin2® smen'e“]

~

For shells of arbitrary boundary set §=-'é and Kng=6n86 ,
Here (/U=7\?{ ) ¥, © are the co-ordinates of collocation points and
bers'n(,u), bers‘.ln(,u) indicate first and second derivatives of KELVIN

functions of 6n-th order with respect to ., Second derivatives of

KELVIN Functions can be expressed by

bersi;(,u) -% ber, (,u) +( ) ber (u) - bei, (u)

2
bei'(u) = -2 bei (s +(50) bej (x) +be ()
The sectional stress resultants (5) can be expressed in terms of the

fundamental solutions 1l2a, 12b, Only the results for F(D‘), [-;(Q—) 7M(o')
rr )

and M(o‘) are given hereg
er

Fe)= BB A;[%'F bei‘m)] - AZ [%-'F ber'(xr)]

+%{A;n[-&,(%-) bei_ (Ar +wael (’M‘)] * A [Lw(,p)zbegn(kr)
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: & e
—%D—-;r beren(lr)] o -g%%n—')-rsn 2} cosene (17)

— - 1¥ h r)\2 I o) 2 .
géo—) =£ZR - AO[T»‘ bei (Ar)] o Aj[_’w ber ()\_r)]-l-'% {As,n [—&,— be'sr@‘")]

én h

- 2B bergan)] + c2 [0 rs“'z]g cos 6ne e)

Nirgcr)= D{-A:, [12 ber (ar) + v —,l.— ber'(xr)]-Ai [A’bei"(xr) +u% bei '(zr)]

& 0 £ 2
+> [Af (-* ber, (Ar) + u(%.'l) ber,,(ar) - U%berm:(lr))

ne= en
" 2
+ Al (=% beil (a0 + U (8) bei, (Ar) - v} bei,! (1)

- Cs'n (:-u)en(snﬂ)re"'z} cos ene} (19)
M(e)=D {A; [%— ber(An +uX* ber"(xr)]+ A [% bei'(ar) +VA* bei {’m]

2 ! en\? A t 2 n
t= [ﬁfan(-(_T’—) bel (ar) +F berg(xr) + VX beren(lr))

+ AL (—?;'—')2bei6'§lr) +%‘ beisn(lr) + U beig';(kr))

A2 N g N 6N=2 .
C.,(=v)en(en-i)r }cos_snez (20)
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IV - 5 Numerical Solution

In order to determine the number of terms to be used in any
solution, the pattern of collocation points on the shell boundary must
be established. It seems reasonable to assume that an increase in the
number of boundary collocation points, with the corresponding satis-
faction of all prescribed boundary conditions, increases the accuracy of
the ultimate solution, yet this assertion is not strictly correct.
Figure 34 illustrates the pattern of collocation points on the hexagonal
boundary that was used in the approximate solution, It is to be noted
that only half the boundary need be considered due to the symmetry about

o

the radial line © = O  of the cosine series solution in each sector.

From equations 13b to 16b, the number of terms in the solution
series corresponding to three collocation points can be determined., It
was decided to impose four boundary conditions for all the collocation
points except the point located by © = 300, where only three conditions

(o)

would be used, The strain €__,being uncertain at the point © = 30

ss?

because of the boundary discontinuity (slit corner), certainly would

not be negligible, TOLKE's Boundary Collocation Method requires the

use of the truncated series solution with n = O, 1, 2 which contains
eleven unknown coefficients, thus converting the boundary conditions
1%0 to 16b, into eleven simultaneous linear equations with eleven unknown
constants, Since extensive numerical work was involved in the solution
of this problem, it was expedient to resort to the use of
the I.B,M, 7040 computer at the University.

The first difficulty was encountered in the evaluation of the

KELVIN functions of higher orders. For instance, using three collocation
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points, KELVIN functions up to order twelve were required., DWIGHT in
1957 gave the forward recurrence formulas for the calculation of KELVIN
functions of any order, which can be readily set up on the computer and
tabulated, but the accuracy of the values obtained was questionable espe-
cially for low arguments such as Qpsl., The range of Ar in this shell was
approximately O « Ar « 10, It was found that by recurring to higher
orders for the KELVIN functions bern(x), bein(x) with arguments Ar <1,
a linear combination of bern 2y kern X and bein X, kei n X resulted. The
reason for this peculiar behaviour lies in the nature of the function
Jn(iB/EZ) where z = x + iy, which decreases exponentially for n 2> z,
MICHELS in 1964 indicated that only for n{ 2z can good accuracy be ob-
tained from forward recurrence techniques, As a result, reliable KELVIN
functions of any given order could not be obtained from forward recurrence
methods for the entire range of arguments., APPENDIX B describes MILLER's
Method of Backward Recurrence by means of which this difficulty was over-
come, It was found that the Backward Recurrence Method yielded consistent
results for the entire scope of functional orders and arguments necessary
for the number of collbcation points used, The upper limit for the orders
of KELVIN functions that could be calculated is determined by the capacity
of the computer. Using single precision, KELVIN functions of order 25
could be accurately evaluated before floating point overflow occurred, i.e,
before a number 1038. occurred in the calculations. Thus, the computer
capacity established a practical limit on the number of collocation points
that could be used in this method of solution, withih which all functional
values would still be reliable, |

A program was initiated for the evaluation of the co-efficients
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h%to‘#zo’ the solution of the simultaneous linear boundary equations for
the unknown coefficients of the truncated series solution, and, subseguent
ly the evaluation of the stress resultants and stress couples given by
Equations (17) to (20). Values of KELVIN functions for arguments
could not be tabulated because of floating point overflow, thus the stress
resultants and stress couples were calculated for a lower limit of Ar = 1.

The sectional quantities given by Equations (17) to (20), and the
normal displacement function given by Equation 12a were calculated for the
prescribed boundary conditions using the three and four collocation points
shown in Figure 34. Initially, it was planned to try more collocation
points, but due to floating point overflow in the computer for several of
the coefficients pertaining to five collocation points, it was necessary

to concentrate on various combinations of three and four points. All these

calculations were based on a normal pressure < Py 20 p.s.i.

IV- 6 Discussion of Results

The plan of the pattern of collocation points considered in the
analysis of the calotte shell is shown in Figure 34, Comparative representa-
tions for the theoretical solution employing three collocation points and the
experimental results are depicted in Figure 35 to Figure 38.

Figure 35 describes the distributions of experimental and theoretical
stress resultant Fg? along the line € = 20°. For a pattern of four colloca-
tion points a slightl& better agreement is obtained near the boundary of
the shell; this distribution has been inserted in Figure 35 for the sake of
comparison,

Figure 36 illustrates the distribution of experimental and theoretical
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stress resultant Fég)along the line 6 = 200. The similarities in the
functional distributions of the theoretical and experimental results
are observable.

Figure 37 represents the distribution of experimental and

0°. All these

It

theoretical stress couple Mg? along the line ©
distributions are applicable for a normal load P, = 20 p.s.i.

A greater discrepancy between the experimental and theoretical
stress couples exists, and is due to the greater sensitivity of the
theoretical solution to the truncation errors of the fundamental
solution, as well as to the physical limitations of the experimental
shell. The characteristics of the distributions of the theoretical
and experimental curves are similar, yet their differences may be due
to both the geometric imperfections in the experimental shell as well
as to the finite character in the Boundary Collocation Procedure. In
fact, throughout this analysis, it was found that the stress resultant system
along the line © = 300 was cénsiderably influenced by any change in
the distribution of a given number of boundary points. A change in
the location of collocation points seems to affect the circumferential
stress resultant g%ﬂto a greater extent than the radial stress resultant
F%;% as would be expected for this type of calotte shell. It can be
observed that as the apex of the shell (axis of rotational symmetry) is
approached the n = O terms, which are independent of the circumferential co-
ordinate ©, begin to aominate the solution of the calotte shell problem, thus
indicating the prevalence of rotationally symmetric behaviour of the shell in

the proximity of the apex. This characteristic feature in the deformation
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of the calotte shell is quite logical, for its periodically deviating boundary
from the circular boundary is the direct cause of the disturbance from the
rotationally symmetric behaviour of the spherical shell.

Greater variations in the stress resultants were obtained from
redistributions of four collocation points than of three collocation
points. For instance at the boundary, along the radial line © = O°, the
redistribution of three collocation points induced a variation in the radial
stress resultant from =60 1lb/in to = &0 1lb/in., while a redistribution of
four collocation points exhibited a corresponding variation from + 20 1b/in.
to =85 1lb/in. In general, this larger variation due to the redistribution
of four, rather than three collocation points, is true for both stress
resultants ng)and Fg%h Again, the largest variation in the stress
resultants and stress couples for four collocation points occurs for the
radial line & = BOO.

In general, the location of collocation points has a more pronounced

fect upon the stress couple distributions than on the stress resultant

-y

<

<
distributions,especially for the radial line © = 30 . At the boundary of

) A . - . . . . 5
the radial line ©& = O the variation in the stress couple M(v)due to a
re

'
redistribution of three collocation points is from + 91 1b in/in. to + 92
1b in/in., while due to a redistribution of four collocation points, the
corresponding variation is considerably higher. A similar trend is

noted in the stress couple ﬂggh This would seem to indicate that an
increase in the number.of collocation points does not necessarily increase
the accuracy of any particular solution, since occasionally the location,

rather than the number, of the collocation points can have a more critical

influence upon the accuracy of the solution. The stress couples and stress
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resultants corresponding to the solution employing three collocation points
are shown in Figure 39 to Figure 42.

If the location of the collocation points are fixed, then the
effect of an increase in the number of collocation points upon the solution
can be considered. It was found that closer agreement to the experimental
stresé couple distributions was obtained by using three, rather than
four, collocation points. Figure 27 shows the distribution of the
experimental stress couplefgf)along the radial line © = 300; this
distribution was not closely matched by the theoretical solution shown
in Figure 42. The stress couple %ﬁ?) along this line for either three
four collocation points remained negative at the boundary. This would
seem to indicate that the stress concentration in the vicinity of the
re-entrant slit corner affected the distribution of stress couple in a
pronounced manner. Such was not the case for the stress couple Mﬁgﬂ
where the distribution along the radial line © = 30° had similar
characteristics for experimental and theoretical solutions (see
Figure 26 and Figure 41). The particular procedure of the collocation
method seems to have a greater influence upon the solution in -ég
direction, than on the solution in_é'rdirection. In view of the
nature of the solution which replaces an infinite number of degrees
of freedom system by a finite number of degrees of freedom system,
this property of the solution is to be expected. In general, the
effect of increasing the number of collocation points was not as
pronounced on the solution of the direct stress resultants as on

the solution of the stress couples.
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Since the experimental results indicated a rotation of the edge
member, it was decided to modify the previous calculations by including
the rotational effect. In boundary condition (14) the right hand side
was replaced by the angle of rotation in radians. The tendency of
this rotation evidently reduces the magnitudes of the positive stress
couples Mﬁg)and Még?at the boundary. The distributions for the
modified stress couples Mgg)and Még)are shown in Figure 43 and
Figure 44 and can be compared with the corresponding stress couple
distributions for a non-rotating boundary shown in Figure 41 and
Figure 42. The direct stress resultants Fﬁg), Fég9were not affected
to the same extent by a boundary rotation. The largest change in
the radial stress resultant Fgg?was 9%and in the circumferential
stress resultant was 202; Again it can be observed that the effect
of a boundary rotation upon the circumferential quantities is more
pronounced than upon the radial quantities. The sensitivity of

TdLKHH;Point Collocation Method on the accuracy of the solution for

the distributions of the physical quantities in the circumferential
direction lies at the very root of the method, and its truncated
series form of solution is in itself quite sensitive to the number
of terms included in the series.

The normal displacement function u given by Equation (12a)
was calculated for various normal load intensities P, and compares
favourably with the e#perimental measurements taken on the shell by
means of dial gauges (see Chapter III — 6). Figure 45 illustrates
the normal displacement distribution u obtainéd from the theoretical

solution based on a pattern of three collocation points. Along the
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radial line © = 300, the normal displacement in the vicinity of the
boundary is larger than at the. apex of the shell. This condition
appears to be at variance with the physical tests and may again be
due to the presence of the slit corner in the éxperimental shell

structure.
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CHAPTER 5

SUMMARY

The purpose of this investigation consisted of the experimental
and theoretical study of the étate of stress and strain in a shallow
spherical calotte shell over a hexagonal base. The effect of the
rotationally periodic boundary on the stress and strain distribution

in the shell, which was subjected to a rotationally symmetric applied

!

oading, represented an integral part of this investigation, As far
as 1t is known, no experimental study has been carried out on such a
calotte shell, Moreover, the analytical solution has not been exten-
sively studied because KELVIN Functions of higher order have not been
.tabulated, and computational difficulties are encountered in their
evaluation. In the theoretical solution, the application of TOLKE's

toundary Collocation Procedure for the approximate pointwise satisfac-

tion of the support conditions for the rotationally periodic boundary
of the shell, constitute an importaht part of the solution,

The results of this investigation can be examined in the light
of the limitations of the experimental and theoretical procedure. The
geometric configuration of the manufactured shell could not be brought
into a perfect harmony with the mathematical configuration of the shell.
The unavoidable deviations from the uniform thickness and from the
spherical configuration of the shell, as well as the presence of slit

corners in the shell structure, contributed to some discrepancy between

93
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the experimental and theoretical results. Also, the theoretical criter-
ion of zero variation in boundary rotations was not quite achieved in
the experimental shell and corrections had to be introduced in the boun-
dary value problen, The base of the assembled shell was not perfectly
plane and consequently it did not receive perfectly uniform support
from the rollers, therefore a completely rotationally periodic state of
stress and strain could not be obtained in the experiment. The experi-
mental shell structure was not primarily constructed for the purpose of
simulating an actual structure but it rather served as a testing vehicle
providing experimental results for the state of strain and stress which
could be compared to corresponding theoretical results as the "actual"
solution, It served as the first stage of a study on the structural
behaviour of this type of éhell under various boundary conditions, This
work endeavoured to investigate the spherical calotte shell under such
boundary conditions which inhibit boundary rotations, normal boundary
displacements and horizontal reactions against the léteral movements of
the boundary members, As it turned out, the boundary members did actually
rotate, which had to be taken into account in the theoretical solution,
and it seems that the rolling friction could have brought about a hor-
izontal boundary force which, in all probability, might have had some
effect on the experimental results, The presence of the slit in the re-
entrant corners of the shell exerted an unpredictable effect on the state
cf strain and stress in the shell, which could not be quite gdequately
matched in the theoretical solution. Therefore, the experimental results
were not as accurate as had initially been hoped, Better experimental
results can probably be obtained for this shell if its boundary is com-

pletely clamped against lateral displacement and rotation, which represents



the second stage of this study,

This shallow spherical calotte shell over a hexagonal base with
rotationally periodic boundary and subjected to rotationally symmetric
normal loading tended to exhibit a rotationally periodic state of sthain
and stress,

The flexural strains at the boundary were of the same order of
magnitude as the direct strains. The rotationally periodic disturbance
of the state of strain and stress tended to attenuate with the radial
distance from the shell's boundary and emerged essentially as a rota-
tionally symmetric state of strain and stress in the proximity of the
shell's apex.

The maximum measured tensile circumferential stress occurred at
the re-entrant corner, where the state of stress was intensified by the
presence of the slit, The resolution of strain measurements indicated
that over 50% of the tensile stress at this location was caused by trans-
verse flexure,

The limitations of the theoretical solution emanate from the
finite degrees of freedom approximation inherent in the truncated series
solution in the circumferential diréctionéig, and from the approximate
orocedure of satisfaction of the boundary conditions only at a finite
number of discrete points,

The distribution of the stress resultants and stress couples
exhibited satisfactory, rather than exceptioﬁél agreement in the exper-
imental and theoretical comparisons. The largest discrepancy between
theoretical and experimental results existed along the line 6 = 300,

for which both the slit boundary in the experimental results and the

sensitivity of the theoretical solution to the truncation of the series
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with respect to the © co-ordinate were the contributing factors.

This investigation indicated that an increase in the number of
collocation points on the boundary does not necessarily improve the
accuracy of every facet of the solution. For instance, it appeared that
the location of the collocation points had as crucial an influence upon
the solution as their number, The investigation seemed to assert that
a variation in the location of a given number of collocation points has
the least effect upon the distribution of direct stress resultants. The
reduced boundary conditions imposed upon the collocation point in the re-
entrant corner of the shell seemed to exert a strong influence upon the
solution in general.TéLKE‘s Method of Collocation in its application to
this spherical calotte shell problem was quite successful, but further
study is indicated in order to obtain a more definitive evaluation of the
relative merits in the number andilocation of the boundary collocation
points, which seems to be the temperamental feature of this theoretical
procedure,

It is necessary to attempt to use more than four collocation points
in the theoretical solution to evaluate the functional and boundary accur-

acy of the solution series. Also, it seems that a study of a calotte shell
with completely fixed boundaries would yield better experimental and theor-

etical agreement,



APPENDIX A

GENERAL THEORY OF SHALLOW SHELLS

A - 1 Introduction

This section proposes to develop the fundamental equations of
DONNELL, MARGUERRE, MUSHTARI and VLASOV using the direct kinematic
method of analysis. The kinematic tensorial method to-
gether with its direct notation is used throughout this work, which
emphasizes the intuitive physico-~geometric content of the subject

matter,

A - 2 Statical Equilibrium Conditions

(a) Force Equilibrium

Figure 46 illustrates the free body diagram used in the formuia-
tion of the moment and force equilibrium conditions,
The VECTORIAL force equilibrium equation for the infinitesimal

shell element is

- -
% F (o= ‘F(o‘d)ds(d\— F'CO'd )ds(d) +F'(c-'ok +dd)dsa(d +dd,)

+ F-Ckf dr*dez)CiS'GX +-ddz}4.P‘J$(d 4,_J?ds Gf‘fdd')=

Expanding the quantities above into TAYLOR series and supressing terms
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F'(o',q, +d d,)

M'(O',d."' da,)

.r
....
-

?'(cr) = R ()& +F () §z+r;;(c)5,
Flo)= E(e)& +F 2(cr)E"j- [:'('er)é 4
M(o)= M(0)&,+ M(cr)é'2

) u [}
M z(c:r)= M(e)e+Mlc) e,

P=RE
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FLEXURAL

+ D&+pE,

ELEMENT SHOWING
STRESS RESULTANTS
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E( 0,0, +det;)

M;(cr, d,+ dd,)

DIRECT AND
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of higher order yields the direct form of the force equilibrium equation
3 [ das2[E 5 s de ()=
5a, i (ya) dsy(a)|da,t 52 [ F (o )ds (@) dey + P ds@dds,(a)=0 ()

In order to establish equivalent rectangular forms of this equation, it
is necessary to resort to the theory of differential geometry of surfaces
in order to establish the unit surface vectors constituting the mobile

RIBAUCOUR Triad (see NOVOZHILOV in 1941). Using

F (o) = FiE, + FYE, «~F(»g,

F-; (o) = chr)e + F'(v)?? + F(«)e

P Pnél * Pz-éz * Pnen
ds,(a;)= A, da,
ds, () =A,da,

and the derivatives of unit vectors of the RIBAUCOUR Triad, the force

equilibrium equations can be expressed in its component form

2= (AF ) FIg: R NACL AT 2 (AEW)-E@Z2 +p AAso  (20)

-5+ S (AFE+ E@33 + 5 (A S A A B KD +p AR =0 (2b)

ao\,_

(n) hy, 2 3
~AAFOH, +A AR+ (A F@) + 5= (A FE) +p A =0 @)

21

(b) Moment Egquilibrium

The vectorial moment equilibrium equation is

= M= - M (55a)ds ) - N (o ) ds e, + M, (5,0 ds ) s, (¢ da)

+ ML (e, h,# da,)ds, (dptda,) + LT [ ~F (o5 )ds(dz)]ﬁ-

-
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— = (o, +d
% dsz(d.) € x[— E(o"‘*l) ds,(d 'i"" (ds,(d,_) &+ éﬁ_ﬁ;_dﬁgbx[ﬁ-(ojdﬁdd.) ds, (e d&,)]
+(dsz(os,)§2+ _d_sl%*_d‘*zl'é,) X[}—:: (O",a\z-i- ddz) ds‘(o(zd-do(z)]

Expanding this equation into TAYLOR series and neglecting terms of

higher order delivers

%( M,(o)A, da,)dd, + -a%_ (M)A dalda, + [ B, x F)|AA, dd, da,
e [-él X—F?«")] A,Azdd,ddz =0 ' ' (3)
Setting

M, (@)= M(=)E, + M,

M, ()= M ()&, + M (013,

the equation (3) resolves into its components

_ ) 9Az L 9 _
an(")géz + 2 (M (@)A,) = M5 +5 (MO )+ F (A, A =0 (40)

5 M, 3 2A
55 (AME) - MGISE + 5= (AMEN + M52 ~E@A Az  @b)
~M K e MK E(o) + Ffo) =0 @)

where the middle surface curvature tensor can be given in the form

R =K =R, = K;; &F) (15 j=ctte)
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A - 3 Deformation of the Middle Surface of the Shell

The strain tensor for any arbitrary point in the shell can be

derived using the fundamental KIRCHOFF's Hypothe sis and the Direct

Kinematic Deformation Theory (SCHROEDER in 1964), It is

. B e i :J’)______ (4] SK(‘M e
B Elrr) | S F,  Aragron (S - ——‘-m)}ee

€=

Si&, SKCI{" \__ _ & _dth(n)
hs ]

I
= {( A8 I+ o (‘"‘n“{.") T Tl 26 TS

@

This tensor can be resolved into the middle surface strain tensor

and the strain tensor due to flexure 25({? , that is

E(F)-E%E®

where
B 'anTfRTzT §8, + L(y+y)E5,]
: -é.- ( Xl"'xz)ézé: * r%?;ﬁ)-ézézd
and
E(P);%é.é, +%(‘_S;::§m ’idz;‘;’)é'-éz "
a %El(l-fifzﬁv = .4.5:?z§u)5%ﬁ§, * ,;?:niggigéiiz

;
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with
Sam i3 A Ew KT
e sinl-£ (3 25 - 22 4{3)
sy~ S 5% - w)a Bk 50 w) v
| ou =
s =gy (A 8 )+ SR ) s
e i S B S - -5 A s
S R 5wty Sl Bt B i )

This tensor will be used to derive the stress resultants for the middle
surface of the shell (modified to include the case of plane stress ¢ = 0).
The expanded strain tensor ??(F) for points which are not in the middle
surface will be used to establish the compatability equations for the
shell, which are Subséquently reduced to the middle surface compatability

condition by setting o(n = 0,
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A - 4 Compatibility Eguation

The SAINT - VENANT Compatibility Equation is

d & d
aF X (r)xdr

which can formally be deduced using the symbolic equation for the strain

tensor
= s, ] JLL ud
G{F)-— | — ._:T

It can be shown that the strain tensor? which satisfies the compatability
equation is a necessary and sufficient condition for a continuous dis-
placement field U(F). The strain tensor_e—-(F) is used in the above com-
patibility relation and c&n is set equal to zero, thus generating three
distinct compatibility equations for the middle surface, The compati-
bile deformation of any other parallel surface atcanSn is identically

satisfied due to the nature of Q(F). Only the third relation con-

stituting the &,&, component of the RIEMANN - CHRISTOFFEL Curvature
Tensor will be employed here, The first two equations are used to
simplify the expressions f?r transverse shear stress resultants ﬁécr) 3
Eﬁgcr) . The third compatébility equation will be used to deliver the
second fundamental differential equation of the fourth order for thin

shallow shells, This compatibility condition becomes

K™ 8K~ KT SK™ + 2 , 24 4 26a _ 24,
Sk, — K, 8K AA{ao\A 2341 3o (€ -€,)-A B adze]
9 I [)26 24 (0. ae _ . 9Aa _
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A - 5 Simplified Theory For Thin Shallow Shells by DONNELL - MUSHTARI -

VLASOV
In order to derive the two fundamental fourth order differential

equations for thin shallow shells, the following assumptions are made:

(1) For shallow shells Hg?ﬁ;(oﬁ,H?”Ede are neglected in the

first two force equilibrium equations 2(a), 2(b).
@) E@=F(e) e K<<l o KD <<
(3) w, U, are negligibly small compared to .u ,i.e. U=Uu,€, in the
expressions for variations in curvature and in torsion,

(4) Due to rapidly changing functions, it is assumed that lower

order derivatives can be neglected in comparison with higher

2*%u d
derivatives, i.e, —=—8 > Up
e 5aE 22 %a
These assumptions yield simplified expressions for the components of the

curvature tensor ﬁ_—_ é—l gHi = SHU -éléJ of the middle
surface
L. 19 _;'au.,) I DA, duy
8"‘2 - A|ad.(A, Ao, A,A: 2oy Jdky & 2
) o _:__a (L'au,,)_*! 9Ax 9Un _
KV = * 1 Sa\ A S| TREE, 3%, 2, - O Ha
., L3 _l_Bu.,)_ | _ 2A/3un _
SKI AI ad,(Az 80\2 AleZ ad\‘zad, SK"

. _ L2 | QU { BA}..@EA:
8k, = ) Az A, 94, 94, Kz

Introducing.

SKY - K@
9) = 2 i
5}{() 3

(7)
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then

=th _ ' Y- = =
=| &, K, EE, + &,8KYEE,

ol = ol =
L*dh SKTEE, - &, SK(, &8,

A-6 Formulation of Fundamental Differential Equation for Thin Shallow

Shells

As in the theory of plates, the mixed method used to establish
the two fundamental differential equations of thin shallow shell problems
consists of replacing the stress resultants and stress couples in the
equilibrium equation by their equivalent expressions in terms of dis-
placement, supplemented by the third compatibility equation expressed
in terms.  of stress resultants and stress couples., If the simplifications
accruing out of the thinness and shallowness criteria of the shell are

imposed, and VLASOV's Force Function @

-

which can express the direct

stress resultants ﬁ}(@r)) (ihj=l$2) and approximately satisfy the
force equilibrium equations in the middle surface, is introduced, the
fundamental differential equations can be established as functions of

u_ and .

(a) First Differential Equation

The first two moment equilibrium equations 4(a), 4(b) can be

solved for the transverse shear stress resultants F (o ), (o),

in Fon

and substituting for the stress couples their equivalent expressions
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in terms SKl(n), SKZ(n), SK(t)

, and utilizing the first two compatibility
’ t
equations in the expressions for terms involving BK( )

, the resulting

expressions for the transverse shear stress resultants become

_L___a__ m_ o N m/_ 3 aAz
F(«) lz(l-uz) {A'a ( A2 SH‘,) A A, K ( od, (4, “) A4, E")}
(8)
En €1 2 (Y, 1=v 2D A, )
F;_n(c')'l?.(l—uz} ('A; de(g -8K ) A,Az K, (;:' {Aleu)-éjfzezz
Using the Directed Derivative in the surface
d - =139 = 13
—— i oy e I a———
dr, S ‘A, O, 2 A, Qo
it can be shown that
m_c Mo d . d.
SKY - SK'=~(5" 5] (9)
Substituting (9) into (8), expanding the last expression of (8), and
using assumption (4) of the simplified theory delivers
+_ER 1 3 (.é__.
ln(O‘) ,2“..“2) A' ad, dFo d}; Un
(10)
3
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If relations (10) are inserted in the Force Equilibrium Equation (2¢) and

]‘Tn(c')K(g) and Fz_n(g-) H(?) are neglected in (2a), (2b)

-E(O‘)Hg,)+ EZCC")H(?) zz(: u*) gaa.[A 'a‘;, )u"]
2 (A2 (d 4 -
+3dz[Azao(2 (dif, da)uhB *Pn=0 n

Equation (11) can be condensed to

n m_ ER (d . d\d . d ) -
...Fl‘i(c_)K(Z)_', ’;—;(O,)HT 'm(di—; d?‘;)(da dFo Un"l"Pn (0] (’2)

To solve the three Force Equilibrium equations, VLASOV introduced the

force function é such that

__t 9 (1 2% | _JA, 1 28
TS ERy S (s ad\z) AR, 34, B, 9

_ l ] 99 | DA, 1 37
(e)=—7 d,(A oo, | TR A e, A, 3%, (13)

It can be shown that the first two Force Equilibrium equations are
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approximately satisfied by these functions, at least to the extent con-
sistent with terms previously discarded as negligible; the third equation
of equilibrium along the normal of the shell yields the differential

equation

3
lzl(-:n-huz)[(d%'jFo)(dda'ja)“"] A,!A [ a( "(m/?zaaa—(z ) *Za;( “‘mﬁé‘ %&JJQ Pn

Setting

werg iR g S a

Thus the fundamental differential equation becomes

_u-Tﬂ)‘V "u,) —9,(3)=pn (14)

(v) Second Differential Equation

A second relation between the same functions was obtained by

VLASOV from the third condition of compatibility (GOL’ DENVEIZER in 1939),
(n) (n)
, 8K,

Here the variations of normal curvatures SKl are expressed by



€

(7) and the middle surface strains € 209 12

terms of the force function @. Using the stress resultant tensor

h iy

The first invariant of the Stress Resultant Tensor |s

E(s)= Fo)1 = h(28+32)e,

from which

()
T h(za+3%)

Hence

= Flo) AR T
24h 2ph(2 +37)

mj

This relation can be simplified by substltutlng for

=y
1-2v

hence

€ are expressed in

109
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Consequently

Utilizing ( 6) and neglecting lower order derivatives of @ for thin
shallow shells yields the second partial differential equation of fourth

order

EhV,(u,) =V (8)=0 (\7)

The two coupled partial differential equations (14) and (17) inu and
@ are used in deriving the solution for shallow calotte shells in

Chapter IV,



APPENDIX B

THE BACKWARD RECURRENCE METHOD FOR

COMPUTING KELVIN FUNCTIONS

BER (w), BEI (w)
——n 0 " e

B - 1 This method is chiefly an outline and an extension of the paper by

MICHELS in 1964, whose personal advice by correspondence is acknowledged,

For the BESSEL equation

dy ady _ /o0y,
Eﬂﬁ%'fgga"-'<L'ngi))’— 0

McLACHLAN gives the linearly independent solutions for integer orders of n
3/2 A2
y= AT (i) +BK (wi")

. 3/2)

The function :rn(\w/L is of importance for disturbances from the

external boundary of the shell and can be expressed by

J (z)=J,(wi*®)= ber (W) +1 bei,(w)

It is well known that“Jn(z), with 2z complex, satisfies the recurrence

relationship

(z)+F (z)= %{-‘ F (=)

¥l h=i n

P

If the recurrence is started from Jo(z), Jl(z),good accuracy is obtained
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for n< {z]. However for n>{z}, accuracy is lost very rapidly, since
Jn(Z) decreases exponentially in this region (forward recurrence yields

accurate results for Yn(z) as this function increases exponentially for

n >|zZ|.

B - 2 Statement of MILLER's Method

A scheme was devised by J. C, P, MILLER whereby the recurrence
formula could be used and accuracy still maintained throughout the entire

range of n values., Imposing, at some n = m, the arbitrary conditions

Frgb] = © )
F.(zl=qa @)

where "a'"' is any constant, and using the recurrence formula for increas-
ing values of Fm(z3 but with decreasing integers n, a series of functions

Fq(z), F . E2) sens Fo(z) at some n < m are generated from

n-1

F(2)= L F(2)-F,(2)

all of which constitute constant multiples of the regular BESSEL function,
i,e.

F,(z)=aJ,(2)
This relation introduces a new unknown constant &K whose evaluation is a

central theme of this problem, BESSEL functions of complex argument

F(2)= FL (W)= F (W W) =F (i)
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where

ze Wit eoLlwe

ﬁl~
S
]
>
+
2;

A
=

and
=W o Y,
. » vz

produce a recurrence relation

F_ &= =20-F(2) —F(2)

=200 £ (2) -F, ()

N+l

The recurrence procedure is started on the computer by imposing the

initial conditions (1), (2) and is continued until Fo(z) is reached

1t was necessary to resolve the complex function Fn(z) into its real

QRF (z) and imaginary E¥Fn(z) components and these had to be calculated
n

individually as the complex FORTRAN Package was not available, In the

functional calculations, the value of a = lO-'jO

was used throughout,

BE - 3 To calculate the complex constant A= A& +L fo d , the known

expressions for Jn(z) had to be used

J(wi*?)= berfw) + i beiw)
then

Fo(z) _ Falx+iy) _RIFz])+ [E(2)
A= A LA =2 TZ) T L WD ber,(witibeitw)
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where
F(2)= R[F,(2)] + i 3[F.(2)]
_ . - m[ﬁ;(z)} bero(w) +%-[E)(z)]be!;(wv)} : ESEE(Z)]bero(w)-&[E(Zﬂbeg
A= By L By {tbero(w)z-;- bei Z(w) e berZ(w)+beijw)
consequently

_ rIE@]bern.w) + M E@]bei(w)

A

r ber?(w) + beiZw)
_ S[R.(2)]bertw) - RIF]bei,(w)
g berZ(w) + beiZ(w)

These relations give the constant values ofcxr, aﬂi for various arguments
w. Using these values, the final expressions for bern(w), bein(w) can be

found in terms of the computed Fn(z) from

E'n(z) =d J,(2)
R[F, (2) +13[F,(2)] = (4, +ia;)[ ber,(z)+ 1 bei (2)]

Hence

— o * RIF, (2] + &, 3[F(Z)]

2 2
Ap + K

bei (z)=
n

Arkell _ 2 e (2)

ber (z) =
n

For z complex, as in this case, MICHELS states that downward recurrence
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can begin anywhere in the range of integers n as long as the condition

FalZ)

-5
Fz)| ~°

is met to give eight figure accuracy in Jn(z). Values for bern(lO)’
bein(lO), bern(l)’ bein(l), were tabulated and it was found thatvthe
above criterion could be met to give reliable functions up to order
25 if the recurrence started at F33(z) for any arguments in the range
1< w < 10, As stated earlier, attempts to tabulate higher order
functions Fn(z) for small arguments caused floating point overflow,
This method was used to evaluate the functions bern(w), bein(w)
required in the calculations of the sectional resultants of the shell,

It was felt that these values were reliable and reasonable for the range

of arguments 1<w<1l0 and for integer orders up to 25,
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