MINIMAL BASIS CALCULATIONS FOR

SOME SUCPMUR COMPOUNDS

PARTICIPATION OF d ORBITALS
 IN BONDING OF SULPHUR
 BY MINIMAL BASIS CALCULATIONS

By

HELEN OLGA OHORODNYK, B.Sc.

A Thesis
Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements
for the Degree
Master of Science

McMaster University
November, 1971

```
MASTER OF SCIENCE (1971)
```

McMASTER UNIVERSITY
(Chemistry)

TITLE:	Participation of d Orbitals in Bonding of Sulphur by Minimal Basis Calculations.
AUTHOR:	Helen Olga Ohorodnyk, B.Sc. (McMaster University)
SUPERVISOR:	Dr. D. P. Santry
NUMBER OF PAGES:	
SCOPE AND CONTENTS:	

The involvement of orbitals in the coordination of sulphur in three simple sulphur compounds is investigated using an ab initio approach. Comparison of minimal and extended basis set results for molecular properties such as dipole moment, molecular geometry, and force constants provides a means of establishing the importance of d orbitals in sulphur compounds and probably other second row compounds. Excited states of sulphur dioxide and ozone are studied in the hope of elucidating the respective spectra on a theoretical basis. These investigations also provide initial data for the parametrization of the semi-empirical CNDO approach for second row atoms.

ACKNOWLEDGEMENTS

I wish to thank my supervisor, Dr. D. P. Santry for his continued interest in this project and his patient guidance and encouragement throughout its duration.

I am very grateful to Dr. M. Keeton for his many suggestions and discussions concerning this work. Thanks also to Dr. A. J. Duke for assistance with programming as well as supplying modified versions of the POLYATOM programme.

I wish to acknowledge the financial assistance provided by the National Research Council in the form of a post graduate scholarship during my second year of study.

TABLE OF CONTENTS

Page
LIST OF TABLES vi
LIST OF FIGURES viii
INTRODUCTION 1
CHAPTER I: THEORETICAL BACKGROUND. 6

1. Roothaan's equations and self consistent field 6theory.
2. Basis Sets: Gaussian versus Slater functions. 15
3. Semi empirical methods. 18
GHAPTER II: COMPARISON OF MINIMAL AND EXTENDED BASIS SET 23
CALCULATIONS FOR THE SERIES OF COMPOUNDS: HYDROGEN SULPHIDE, CARBON MONOSULPHIDE, AND SULPHUR DIOXIDE.
4. Basis Set 23
5. Orbital Exponents 29
6. Geometry 37
7. Dipole Moment 39
8. Force Constants. 50
CHAPTER 1II: SULPHUR DIOXIDE: A STUDY OF THE MOLECULE, THE 55 RADICAL ANION AND SOME EXCITED STATES: A COMPARISON WITH OZONE.
9. Electronic Spectrum of Sulphur Dioxide 55
10. Ground State Calculations for Sulphur Dloxide 56
11. Excited Triplet States of Sulphur Dioxide. 61
12. Sulphur Dioxide Radical Anion - Ground State and 67Lowest Energy Excited States.
13. Ozone - Ground and Excited States. 71
CHAPTER IV: CONCLUDING SUMMARY 84
APPENDIX 87
APPENDIX 11 97
Page
APPENDIX 111 107
LIST OF REFERENCES 113

LIST OF TABLES

Table Page
1 Zeta Values for Exponentiol Parameters 25
11 Optimum Computed Single and Split d Zeta Values 27
111 Comparison of Molecular Propertiss Calculated for two 34 Eypes of dorbital Exponent.
14Molecular Geomerries of $\mathrm{H}_{2} \mathrm{~S}_{3} \mathrm{SO}_{2}$ and CS36
v Hydrogen Sulphide Results and Comparison with other 38 Calculations
VI Capbon Monosulphide Results 40
W1 Comparison of Carbon Monosulphide Results with 41 Ocher Calculations
WII
Comparison of Energiss Computed for Sulphur Dioxide 44
18 Molecular Properties Galculaced for Sulphur Dioxide 45
Effects of Modification of Gussian Ser on Molccular47Properties of Hydrogen Sulphide
Compred and Experimental Foree Constents 52
XII Excited Stare calcularions for Sulphur Cioxide 64
$\times 11$Calculations for ${ }^{2}$ Be $_{1},{ }^{2} \operatorname{man}_{2},{ }^{2}$ A $_{1}$ Steres of the70Sulphur Oioxide Redical Anion
XBY Minime and Extended Basis Fnergios for Ozone 76
8 V Molecular Properties Calculaced for Ozone 78
XV1 Minimal and Extended Basis Set Cacularions for 80 Ozone and Sulphur DioxideXVICNOO Charge Densicies For Garbon Monosuiphide108
XV818 CNDO Charge Densities for Hydrogen Sulphide 109
Table Page
XIX CNDO Charge Densities for Sulphur Dioxide 110
XX CNDO Charge Densities for Ozone 111

LIST OF FIGURES

Figure Page
1 Dependence of molecular energy on nature of 3d 28 orbital in Hydrogen Sulphide
II Dependence of molecular energy on nature of 3d 30 orbital in Carbon Monosulphide
111 Dependence of molecular energy on nature of 3d 33 orbital in Sulphure Dioxide.
IV Orbital energies as a function of $S=0$ bond distance 57 in Sulphur Dioxide, without d orbitals.
V Comparison of molecular orbital orderings obtained 59 for Sulphur Dioxide by various workers.
VI Orbital energies as a function of $S-0$ bond distance 60 in Sulphur Dioxide, with d orbitals.
VII State energy diagram for Sulphur Dioxide. 62
VIII State energy diagram for Sulphur Dioxide Radical 68 Anion.
$1 \times \quad$ State energy diagram for 0zone. 73
\& Reduction of product of gaussians to a single gaussian 88 function.

INTRODUCTION

To date, numerous ab initio studies of first row atom containing molecules have been performed. One of the objectives of these calculations has been the determination of an optimum basis set for use in further studies. Since ab initio calculations involve large numbers of complex integrals, the use of gaussian expansions of Slater type orbitals has evolved ${ }^{1-5}$. The main advantage of gaussian functions is the relative ease of integral evaluation in this basis as compared with Slater orbitals. The validity of such expansions has been judged on the basis of agreement between theoretically calculated molecular properties and experimental values.

Of the many ab initio calculations involving first row atoms, a fair proportion has involved the use of minimal basis set. Such a basis set is defined ${ }^{6}$ to consist of only those atomic orbitals which are occupied in the ground state of each atom constituting the molecule. Pople and various co-workers ${ }^{2,7-9}$ have been responsible for a significant portion of the exploratory work in this field. Their investigations have been focused on first row molecules in an attempt to extend $a b$ initio calculations to relatively large organic systems. An immediate problem encountered in such an extension is the choice of a suitable gaussian expansion for the basis set. Some investigators have used fairly large gaussian representations and have consequently been limited to small molecular systems. Pople and co-workers have
optimised the site of expansion appropriate for future work with large molecules and have found that the minimum size required for an adequate Pepresentation in such calculations consists of three gaussian functions per slater orbital. These findings provided the basic incentive for the calculations to be reported in this thesis.

A notural extension of these minimal basis calculations is to second row atom containing molecules. In this work the use of a minimal basis for second row molecule calculations has been investigated. Preliminary calculations have been limited to three sulphur containing molecules - carbon monosulphicde, hydrogen sulphide, and sulphur dioxide - with the assumption that these molecules should be fairly representative of the behaviour of second ron atoms in general.

There exists an everoincreasing need for the exiension of theoretical salculations to second rom syetems. since the majority of molecules of bialagical and gealogical significance contain elments such as phosphorus, sulphur, chlorine, and silicon. Ab initio calcu= lations are impractical where large molecular systems are concerned. simce the size of system which may be studied is limited both by the nature of computing facitities required and financial considerations. Consequently, ab initio satculations are often not appropriate for the large biologically important molecules or large silicate molecules which are of interest to the geologist. However, porentially rather attractive method of molecular orbital studies applicable to these classes of compounds is available in the form of the semi-empirical treatment wich has proven guite successpu for large first pous
molecules ${ }^{10}$. Although an attempt has been made to extend methods such as CNDO and INDO to second row atoms, ${ }^{11}$ initial results have been discouraging. There exists an obvious need for improved parametrization in such calculations. This could be achieved if a variety of reference ab initio wave functions for second row molecules were available for comparison. One of the aims of the present series of calculations is to provide at least fraction of such reference wave functions. Those wave functions obtained in the course of this work are for minimal basis, and minimal basis extended to include d, ab initio calculations.

An additional factor of considerable interest in this type of computation is the effect of extension of the minimal basis to include 3d functions centred on the second row atom. Some preliminary calculations have been attempted ${ }^{12}$ in an effort to ascertain the suitability of the minimal basis set for second row molecules. These however, made no consideration of the effects of $3 d$ functions. It is nevertheless Widely believed that these orbitals are probably required, even in the most naive treatments, for a satisfactory description of the electronic properties of second row molecules.

In order to assess the importance of dorbitals in the molecular bonding of some sulphur compounds, it was decided to compare results of two series of calculations. One series involved only the minimal basis set, the other an extended set in which the exponents of the included d orbitals had been optimised. The criterion chosen for assessing the involvement of d functions was the agreement between theoretically computed molecular properties - such as dipole moment, ionization
potential, optimum bond lengths and bond stretching force constants and the experimentally observed values.

The results presented in this work should be of particular interest, as for some time there has existed a dispute pertaining to the exact nature of the contribution made by dorbitals to the molecular bonding. This problem has been studied theoretically by both electro static and molecular orbital approaches. Using a point charge model, Craig ${ }^{13}$ determined that d orbitals do contract in the presence of a potential field due to ligand charges. The extent of contraction found is considered sufficient to make plausible the participation of these functions in the molecular bonding of second row molecules. More recently, there has been considerable effort made to determine whether d functions are utilized in bonding and also to establish more definitely the nature of their role. Several ab initio studies have indicated that d orbitals are indeed essential to bonding of second row atoms ${ }^{14-18}$.

The major source of dissension has been provided by results of various experimental investigations concerned with aromatic sulphides and heteroatomic compounds of divalent sulphur. For instance, the interpretation of the hyperfine splitting constants obtained in electron spin resonance studies of the dibenzothiophene, dibenzoselenophene and dibenzofuran radical anions has been made using two models ${ }^{19}$. It was found that the correct interpretation of the spectrum for both dibenzofuran and dibenzothiophene could be obtained without inclusion of d orbitals. In fact, the model in which d orbitals of π symmetry were considered produced incorrect spin distributions.

A more extensive spectroscopic study of this type of sulphur compound ${ }^{20}$ has indicated that $3 d$ orbital participation, if it exists at all, does not modify the molecular properties significantly. One notable exception is thiophene, in which the sulphur 3d orbitals ape thought to be involved in the π system. However, ab initio calculations ${ }^{21}$ in which the effects of inclusion of d orbitals on sulphur in thiophene were studied, have indicated that the role of d orbitals is a minor one, which in fact is probably overestimated by the nature of the basis set.

It is hoped that the present series of calculations will provide further insight into the resolution of this dichotomy.

CHAPTER

THEORETICAL BACKGROUND

Theoretical calculations presenty in use for the investigation of molecular properties by the molecular orbital method fall into one of two categories - designeted as ab initio and semi-mpirical. in ab initio calculations, all electrons are considered simultaneously and the exact non relativistic Hamiltonfan is used to obtein a solution to the Schradinger equation. Those incegrals involved in obraining solution are evaluated itner explicitiy or by mumerical methods, but this appromeh entails the evalution of all integrals, both one- and two-electron. In semi-empirical catculations, only the lectrons considered co be the most important to the molecular bonding are considered explicitly. Integral evaluation is simplified by use of various approximations. Certain integrals may be neglected altogether. while others are assigned values On the basis of experimental data. Thus. although the fundemental ideology is the same in these two approaches, the mathemotical treatment differs in both complexity and scope. These differences should become apparent est methods are described in the following outline.
1.1. ROOTHAN'S EQUATIONS AND SELF CONS ISTEST FIELD TUEORY

The purpose of any molecular orbital calculation is to obtain a solution or Schrodingers equation, which is normally stated in its time independent form as:

$$
\begin{equation*}
\notin \Psi=E \Psi \tag{1.1}
\end{equation*}
$$

In this equation, f is the Hamiltonian operator, which consists of a sum of one and two electron contributions, ψ is the wave function, depending on the electronic co-ordinates and E is the energy.

The method of solution in the case of a polyatomic, multi-electron molecular system is based on Fock's procedure for solving a multielectron closed shell atomic problem. An outline of the derivation of Fock's equations is given in Roothaan's classical paper ${ }^{22}$ which presents a mathematical formulation of the linear combination of atomic orbitals approach within the Hartree-Fock method.

In the derivation of the Hartree-Fock equations, the molecular wave function is represented by an antisymmetrized product of one electron molecular spin orbitals. The usual notation for the wave function is:

$$
\begin{equation*}
\Psi=(N!)^{-1 / 2}\left|\phi_{1}(1) \bar{\phi}_{1}(2) \phi_{2}(3) \bar{\phi}_{2}(4) \ldots \phi_{n}(2 n-1) \bar{\phi}_{n}(2 n)\right| \tag{1.2}
\end{equation*}
$$

where $N=2 n$ is the total number of electrons and the ϕ_{i} are molecular orbitals, with $\overline{\phi_{i}}$ denoting a β spin.
\& , the total Hamiltonian operator occurring in equation (1.1) is given by the sum of one and two electron contributions, \mathscr{l}_{1} and \mathscr{f}_{2} respectively; in atomic units:

$$
\begin{gather*}
\mathcal{H}=\mathcal{H}_{1}+\mathscr{H}_{2} \\
H=\left[-\sum_{q}\left(\frac{1}{2} \nabla_{q}^{2}\right)-\sum_{A} \sum_{q} \frac{Z_{A}}{r_{A q}}\right]+\sum_{q>5} \sum_{q S}^{-1} \tag{1.3}
\end{gather*}
$$

The one electron contributions consist of kinetic energy and nuclear electronic attraction terms, and the two electron term represents electronic repulsions. ∇^{2} is the differential operator for kinetic energy, Z_{A} refers to nuclear charge on centre $A, r_{A q}$ and $r_{q s}$ represent nucleus to electron and inter-electron distances.

To calculate the total energy of the system it is necessary to evaluate the integral, over both space and spin coordinates of all the electrons:

$$
\begin{equation*}
\int \Psi^{*}\left(f_{1}+f_{2}\right) \Psi d \tau \tag{1.4}
\end{equation*}
$$

Considering first the one electron contributions:

$$
\begin{gather*}
\mathcal{H L}_{1}=\sum_{q}\left(-\frac{1}{2} \nabla_{q}^{2}-\frac{Z_{A}}{r_{A q}}\right)=\sum_{q} H(q) \tag{1.5}\\
\int \Psi^{*} H(q) \Psi d \tau=\frac{1}{(2 n)!} \sum_{P} \sum_{P^{\prime}}(-1)^{P}(-1)^{P^{\prime}} \quad P\left\{\phi_{1}(1) \overline{\phi_{1}}(2) \ldots\right. \tag{1.6}\\
\left.\ldots \bar{\phi}_{n}(2 n)\right\} H(q) P^{\prime}\left\{\phi_{1}(1) \overline{\phi_{1}}(2) \ldots \overline{\phi_{n}}(2 n)\right\} d \tau
\end{gather*}
$$

where $P_{,} P^{0}$ are operatops which permute electrons among the molecular orbitals.

Since it is simpler to work with an orthonormal set, it may be assumed without loss of generality that the M0 satisfy the following condition:

$$
\begin{equation*}
\int \phi_{i}^{*} \phi_{j} d \tau=\delta_{i j} \text {, the Kronecker delta } \tag{1.7}
\end{equation*}
$$

Because of this condition, the only non zero contributions to the one electron terms are those for which P and P^{\prime} are identical, and since the electrons are indistinguishable, the value of this integral is identical for all 2 n electrons:

$$
\begin{align*}
\int \Psi^{*} H(1) \Psi d \tau=\frac{2 n}{(2 n)!} & \underset{P}{\Sigma} \int P\left\{\phi_{1}(1) \bar{\phi}_{1}(2) \ldots \overline{\phi_{n}}(2 n)\right\} \tag{1.8}\\
& \times H(1) P\left\{\phi_{1}(1) \overline{\phi_{1}}(2) \ldots \bar{\phi}_{n}(2 n)\right\} d \tau
\end{align*}
$$

$$
\begin{equation*}
\int \Psi^{*} \mathcal{H}_{1} \Psi d \tau=2 \sum_{i=1}^{n} H_{i i} \tag{1.9}
\end{equation*}
$$

where $H_{i i}=\int \phi_{i}^{*}(1) H \phi_{i}(1) d \tau_{1}$

Similarly for the two electron terms, because of indistinguishability of electrons, each contribution is identical and the total number of these terms is $\frac{1}{2}(2 n)(2 n-1)$

$$
\begin{align*}
\int \Psi^{*} \mathcal{H}_{2} \Psi d \tau & =\frac{(2 n)(2 n-1)}{(2 n)!} \sum_{P P^{\prime}} \sum_{1}(-1)^{P}(-1)^{P^{\prime}} \int P_{\left\{\phi_{1}\right.}(1) \overline{\phi_{1}}(2) \ldots \tag{1.11}\\
\ldots & \left.\ldots \bar{\phi}_{n}(2 n)\right\} r_{12}^{-1} P^{\prime}\left\{\phi_{1}(1) \Phi_{1}(2) \ldots \bar{\phi}_{n}(2 n)\right\} d \tau
\end{align*}
$$

This integral evaluation is more complicated than that for the single electron terms since now the non zero terms include permutations which differ by the interchange of two electrons.

For the case where the two electrons are assigned to the same orbitals in both permutations = that is where the permutations are identical, there are four contributions in total:

$$
\begin{equation*}
\iint \bar{\phi}_{i}^{*}(1) \bar{\phi}_{j}^{*}(2) r_{12}^{-1} \bar{\phi}_{i}(1) \bar{\phi}_{j}(2) d \tau_{1} d \tau_{2} \tag{1,12}
\end{equation*}
$$

and the corresponding α spin integral, and:

$$
\begin{align*}
& \iint \Phi_{i}^{*}(1) \phi_{j}^{*}(2) r_{12}^{-1} \bar{\phi}_{i}(1) \phi_{j}(2) d \tau_{1} d \tau_{2} \tag{1.13}\\
& \iint \phi_{i}^{*}(1){\phi_{j}^{*}}^{*}(2) r_{12}^{-1} \phi_{i}(1) \bar{\phi}_{j}(2) d \tau_{1} d \tau_{2} \tag{1.14}
\end{align*}
$$

Integrals of this kind are coulomb integrals and generally denoted:

$$
\begin{equation*}
J_{i j}=\iint \phi_{i}^{*}(1) \phi_{j}^{*}(2) r_{12}^{-1} \phi_{i}(1) \phi_{j}(2) d \tau_{1} d \tau_{2} \tag{1.15}
\end{equation*}
$$

If the two electrons are assigned to the same molecular orbital, their spins must be different, and only two of the above contributions occur.

The other type of non zero two electron integral occurs when the spatial orbitals of electrons i and j are interchanged in the two permutations. Here only two contributions arise:

$$
\begin{align*}
& \iint \phi_{i}^{*}(1) \phi_{j}^{*}(2) r_{12}^{-1} \phi_{j}(1) \phi_{i}(2) d \tau_{1} d \tau_{2} \tag{1.16}\\
& \text { and } \iint \bar{\phi}_{i}^{*}(1) \phi_{j}^{*}(2) r_{12}^{-1} \bar{\phi}_{j}(1) \bar{\phi}_{i}(2) d \tau_{1} d \tau_{2}
\end{align*}
$$

These are the exchange integrals, symbolized by $K_{i j}$; these always occur with a negative sign since the two permutations are of different parity.

The complete expression for the electronic energy becomes:
$\varepsilon=2 \sum_{i=1}^{n} H_{i i}+\sum_{i} J_{i i}+\sum_{i \neq j}\left(2 J_{i j}-K_{i j}\right)$

$$
\begin{equation*}
\text { or } \varepsilon=2 \sum_{i=1}^{n} H_{i j}+\sum_{i}^{n} \sum_{j}^{n}\left(2 J_{i j}-K_{i j}\right) \tag{1.18}
\end{equation*}
$$

Now that the energy expression has been derived, the variational method is applied, and the energy is minimized with respect to the molecular orbitals ϕ_{i} by use of the method of undetermined multipliers. This procedure results in a set of differential equations:

$$
\begin{equation*}
\left[H^{\text {core }}+\sum_{j}\left(2 J_{j}-K_{j}\right)\right] \phi_{i}=\sum_{j} \varepsilon_{i j} \phi_{j} i=1,2 \ldots, n \tag{1.19}
\end{equation*}
$$

where $H^{\text {core }}$ is the $H(q)$ defined by equation (1.5),
and $\quad J_{j} \phi_{i}(\mu)=\left[\int \frac{\phi_{j}^{*}(\nu) \phi_{j}(\nu)}{r_{\mu \nu}} d \tau\right] \phi_{i}(\mu)$

$$
K_{j} \phi_{i}(\mu)=\left[\int \frac{\phi_{i}^{*}(\nu) \phi_{j}(\nu)}{r_{\mu \nu}} d \tau\right] \phi_{j}(\mu)
$$

The quantity represented by the square brackets in equation (1.19) is the Fock operator F and the equations themselves are known as the Hartree-Fock equations.

Roothaan, in order to simplify the solution of these equations proposed the use of the linear combination of atomic orbitals $\left(\chi_{\mu}\right)$ to represent molecular orbitals $\left(\phi_{i}\right)$.

$$
\begin{equation*}
\phi_{i}=\sum_{\mu} X_{\mu} c_{\mu i} \tag{1.20}
\end{equation*}
$$

The $c_{\mu i}$ refer to the coefficients of the μ th atomic orbital in the i th molecular orbital. In this approach the energy is expressed in terms of the set of coefficients $\left\{e_{\mu i}\right\}$ and the energy is minimized in accordance with the variational method, with respect to the coefficients. The energy expression in the LCAO-MO SCF procedure is:

$$
\begin{align*}
& \varepsilon=\sum_{\mu \nu} P_{\mu \nu} H_{\mu \nu}-\frac{1}{2} \sum_{\mu \nu \lambda \sigma} P_{\mu \nu} P_{\lambda \sigma}\left[(\mu \nu / \lambda \sigma)-\frac{1}{2}(\mu \lambda / \nu \sigma)\right] \\
& P_{\mu \nu}=2 \sum_{i=1}^{o c c} c_{\mu i} \varepsilon_{\nu i} \\
& H_{\mu \nu}=\int x_{\mu}(1) H^{c o r e} x_{\nu}(1) d \tau_{1} \tag{1.21}\\
& (\mu \nu / \lambda \sigma)=\int x_{\mu}(1) x_{\nu}(1) \frac{1}{r_{12}} x_{\lambda}(2) x_{\sigma}(2) d \tau_{1} d \tau_{2}
\end{align*}
$$

Upon application of the variational method to the above energy expression, the set of resulting equations in the LCAO-MO SCF procedure is:

$$
\begin{equation*}
\sum_{\nu}\left(F_{\mu \nu}-\varepsilon_{i} s_{\mu \nu}\right) c_{\nu i}=0 \tag{1.22}
\end{equation*}
$$

where $\quad F_{\mu \nu}$, the Fock operator:

$$
\begin{equation*}
F_{\mu \nu}=H_{\mu \nu}+\sum_{\lambda \sigma} P_{\lambda \sigma}\left[(\mu \nu / \lambda \sigma)-\frac{2}{2}(\mu \lambda / \nu \sigma)\right] \tag{1,23}
\end{equation*}
$$

In order that solution exist the secular determinant must equal zero:

$$
\begin{equation*}
|F-S \varepsilon|=0 \tag{1.24}
\end{equation*}
$$

Therefore, the problem consists of solving a set of equations non-linesp in c_{j} for both the ε_{i} and ε_{i}. The usual procedure involves assumption of an initial set of ci to be used in evaluation of the initial Fock matrix. This Fock matrix is then used to solve the secular equations for a new set of e_{i}. This series of operations is repeated until the new set of coefficients yields an mergy which agrees with that from the previous cycle within the limits of specified cricerion. The molecular orbitals are then said to have reached seff consistency and the procedure is thererore knom as the self consistent field method. It is usual to use as an hivital guess. the one electron Hamitronian matrix elements.

This cype of calculation applies to all closed shell ground state configurations and may be extended to exciced states. Roothamn ${ }^{22}$ explains the differences between the two types of calculztion and presents Formulae for the triplet and singlet state energies.

Pople and Nesber ${ }^{23}$ have developed an open shell theory applicable to the ground states of padical ions as well as to excited stares; the wave function used for this calculation is of the unrestricted type one in wich the alphe and ber spin electrons are assigned to independent
sets of molecular orbitals, $\left\{\phi_{i}^{\alpha}\right\}$ and $\left\{\phi_{i}^{\beta}\right\}$. For M alpha spin electrons and N beta spin electrons the wave function is given as:

$$
\begin{gather*}
\Psi^{\circ}=[(M+N)!]^{-\frac{1}{2}} \sum_{P}(-1)^{P} P\left\{\phi_{1}^{\alpha}(1) \alpha(1) \phi_{2}^{\alpha}(2) \alpha(2) \ldots \phi_{M}^{\alpha}(M)\right. \tag{1.25}\\
\left.\alpha(M) \phi_{M+1}^{\beta}(M+1) \beta(M+1) \ldots \phi_{M+N}^{\beta}(M+N) \beta(M+N)\right\}
\end{gather*}
$$

By applying the standard procedure, as outlined for closed shell ground states, to this type of wave function, it may be shown that the energy for the open shell system of $(M+N)$ electrons is given by:

$$
\begin{equation*}
E=\sum_{i}^{\alpha} H_{i}+\sum_{i}^{\beta} H_{i}+\frac{7}{2}\left(\sum_{i}^{\alpha+\beta} \sum_{j}^{\alpha+\beta} j_{i j}\right)=\frac{1}{2}\left(\sum_{i}^{\alpha} \sum_{j}^{\alpha}+\sum_{i}^{\beta} \sum_{j}^{\beta}\right) K_{i j} \tag{1.26}
\end{equation*}
$$

Then, by use of the variation theorem, it is found that a solution for the open shell case is dependent on two sets of matrix equations:

$$
\begin{align*}
& \left(F^{\alpha}-\varepsilon_{i}^{\alpha} S\right) \underline{C}_{i}^{\alpha}=0 \\
& \left(F^{\beta}-\varepsilon_{i}^{\beta} s\right){\underset{c}{c}}_{\beta}^{\beta}=0 \tag{1.27}
\end{align*}
$$

where

$$
\begin{align*}
& F^{\alpha}=\underline{H}+\underline{J}-\underline{K}^{\alpha} \\
& \underline{E}^{\beta}=\underline{H}+\mathcal{J}-\underline{K}^{\beta} \tag{1.28}
\end{align*}
$$

The results reported in this thesis were for ab initio calculations using the POLYATOM ${ }^{24}$ system of programmes; the open shell calculations were of the unrestricted type.

1.2 BASIS SETS:- GAUSSIAN VERSUS SLATER FUNCTIONS:

Two types of function are most often used to comprise the basis set in the LCAO approach; one possible choice is the set consisting of nodeless Slater type exponential functions, having the general form:

$$
\begin{equation*}
s_{i}=r^{n-1} Y_{I m}(\theta, \phi) e^{-\alpha_{i} r} \tag{1.29}
\end{equation*}
$$

where $Y_{1 m}(\theta, \phi)$ are spherical harmonics, r the radial distance, $1, m$, n the quantum numbers and α_{i} the exponential parameter which may be optimized within the molecular calculation or assigned an a priori value on the basis of Slater's rules ${ }^{25}$. These functions have been widely used since their analytical form represents adequately the atomic orbital, the cusp condition being reproduced at the nucleus. Furthermore, calculations using a Slater basis converge fairly rapidly. The major disadvantage of these STO is the intractable nature of the complex multielectron, multi-centre integral evaluation.

Boys, ${ }^{26}$ in 1950 first suggested and formulated the use of gaussian type functions as an alternative basis set. In his work, he derived equations necessary for evaluation of integrals over gaussian functions.

A gaussian type function, on a centre A is normally represented:

$$
\begin{equation*}
g_{i}\left(r_{A}\right)=x^{l} y^{m} z^{n} \exp \left(-\alpha_{i} r_{A}^{2}\right) \tag{1.30}
\end{equation*}
$$

where α_{i} is the exponential parameter, either chosen on the basis of previous atomic calculations or else optimized within the calculation.

$$
\begin{align*}
r_{A}^{2} & =\left(x_{A}^{2}+y_{A}^{2}+z_{A}^{2}\right) \\
& =\left(x-A_{x}\right)^{2}+\left(y-A_{y}\right)^{2}+\left(z-A_{z}\right)^{2} \tag{1.31}
\end{align*}
$$

(x, y, z) representing co-ordinates of an arbitrary point in space, and (A_{x}, A_{y}, A_{z}) the co-ordinates of centre A.
$1, m, n$ are parameters, the value of which is determined by the orbital type:
s type: $\quad l=m=n=0$
p type: $\quad 1=1 ; m=n=0$ etc.
d type: $\quad 1=2 ; \quad m=n=0$ etc.

With recent advances in computing facilities, Boys' approach has since been extended and applied to various problems, including molecular calculations. In his review article, Shavitt ${ }^{27}$ discusses the methods used to implement this approach and presents the formulae required for integral evaluations in a more comprehensible form. The great advantage of these gaussian functions over Slater type functions is realized in the comparative ease with which multi-centre integrals may be evaluated. The simplification is due to the fundamental property of gaussian functions which permits reduction of a product of two gaussians $g_{i}\left(r_{A}\right)$ and $g_{j}\left(r_{B}\right)$ centred on atoms A and B, respectively, to a single gaussian with centre C on the line segment between A and B.

$$
\begin{align*}
g_{i}\left(r_{A}\right) g_{j}\left(r_{B}\right) & =\exp \left(-\alpha_{i} r_{A}^{2}-\alpha_{j} r_{B}^{2}\right) \\
& =\exp \left\{-\frac{\alpha_{j} \alpha_{j}}{\alpha_{i}+\alpha_{j}} \overline{A B}^{2}=\left(\alpha_{i}+\alpha_{j}\right) r_{C}^{2}\right\} \tag{1.32}\\
& \equiv K \exp \left(-\alpha_{k} r_{C}^{2}\right)=K_{g_{k}}\left(r_{C}\right)
\end{align*}
$$

where

$$
\overline{A B}=\left[\left(B_{x}-A_{x}\right)^{2}+\left(B_{y}-A_{y}\right)^{2}+\left(B_{z}-A_{z}\right)^{2}\right]^{\frac{3}{2}}
$$

The usefulness of this and other characteristic properties of the gaussian function is illustrated in appendix where the necessary formulae for the computation of dipole moments are derived.

Although gaussians are mathematically superior to slater functions for these computations carly calculations by Boys ${ }^{26}$ using a basis set consisting of gaussian functions proved that such a representation is inferior to the analogous Slater representation. This deficiency results from the inadequacy of single gaussians to reproduce the radial distribution of the atomic orbital. The representation using gaussians is especially poor at the nucleus, where the cusp behaviour is not obtained and also at large distances from the nucleus where the gaussian function drops off too rapidiy. To improve the gaussian to Slater fit. the use of linear combinations of gaussian type functions (LG GTF) has been proposed. This approach requires an optimizacion of the gaussian function coefficients and exponentiel parameters which occur in the linear combination fitting the gaussian functions to either an atomic slater type function or a Hartreemock atomic orbital. One method used for these optimizations is the leasi squares fit, which has been applied by several workers who have tabulated their results in the literature ${ }^{3,4,5}$.

By use of this LCGTF-AO approximation, it is possible to simulate the radial behaviour of Slater type functions and therefore approximate the exact orbitals to the same degree of accuracy. This procedure introduces a large number of additional integrals, increasing both the length of time required for evaluation of molecular integrals and also the complexity of the programming. In addition it has been found that the wave function obtained with a gaussian basis set exhibits much poorer convergence properties than does a comparable Slater basis set wave function. However, these difficulties are more than compensated for by the facility of multi-centre integral evaluation.

The computations to be reported in this work are results of ab initio molecular orbital calculations for gaussian expansions of Slater type orbitals. The programmes involved are versions of POLYATOM ${ }^{24}$ modified for use at McMaster University.

From the discussion presented above, it may be seen that such a calculation provides a potentially powerful technique for theoretical investigation of small polyatomic molecules. Whether these calculations may be successfully extended to larger systems and the changes required to make such studies possible are questions which remain to be settled.

1.3 SEMI-EMPIRICAL METHODS

Semi-empirical methods avoid the problem of evaluation of complex multi-centre integrals but at the same time provide a means of studying larger polyatomic systems. This approach usually involves a series of approximations made in the process of setting up the problem, coupled with the incorporation of experimentally obtained parameters. To date,
methods depending on a wide range of approximations have been developed; their success has been determined by the reliability of the calculated molecular properties. The various semi-empirical methods available to the experimentalist and the nature of approximations encompassed by each of these have been described in a recent review article ${ }^{28}$.

One such semi-empirical method, perhaps the most widely applied, is the CNDO or complete neglect of differential overlap approximation developed by Pople and co-workers $10,11,29$. Although this approach has been quite successful and therefore widely applied for first row molecules, extension to second row atoms has been neglected because of the lack of experimental data required for parametrization. The calculations performed in the course of this work were designed with the objective of contributing towards the parametrization of $C N D O / 2$ for second row atoms. Consequently, it seems appropriate to present briefly the concepts involved in this approximation. Further details are available in a recently published monograph by Pople and Beveridge ${ }^{30}$.

The fundamental approximation made in CNDO theory involves neglect of all integrals in which products $x_{\mu}(1) x_{\nu}$ (1) occur, $\mu \neq v$, for a basis set consisting of valence shell orbitals only. This approximation imposes the following constraint on single centre overlap integrals:

$$
\begin{equation*}
S_{\mu \nu}=\int x_{\mu}(1) x_{\nu}(1) d \tau=\delta_{\mu \nu} \tag{1.33}
\end{equation*}
$$

The constraint of neglect of differential overlap eliminates contribution from all two electron integrals ($\mu \nu / \lambda \sigma$), as defined by equation (1.21), except those in which $\mu=\nu$ and $\lambda=\sigma$.

Furthermore, those two electron integrals which do make a contribution depend not on the type of atomic orbital, but rather on the atom on which the orbital is centred. These two electron integrals are evaluated explicitly for s type functions, on the two atomic centres:

$$
\begin{align*}
(\mu \mu / \lambda \lambda) & =\gamma_{A B}, \text { the coulomb integral } \\
& =\int x_{s}^{A}(1) x_{s}^{B}(2) r_{12}^{-1} x_{s}^{A}(1) x_{s}^{B}(2) d \tau_{1} d \tau_{2} \tag{1.34}
\end{align*}
$$

In the case of one electron integrals, differential overlap is not neglected since it is essentially a measure of the extent of bonding due to overlap of electron distribution on adjacent atoms. The contributions to single electron energy are the following:
where

$$
\begin{equation*}
H_{\mu \mu}=U_{\mu \mu}-\sum_{B \neq A}\left(\mu / V_{B} / \mu\right) \tag{1.35}
\end{equation*}
$$

$U_{\mu \mu}$ represents the energy of an electron in the orbital ϕ_{μ} in the presence of its own core, the quantity $\left(-\frac{1}{2} \nabla^{2}\right)$ being the kinetic energy and V_{A} the potential due to the core of atom A.
$H_{\mu \nu}$ is zero if μ and ν are on the same centre. Otherwise, the one electron contribution to the electronic energy is given by:

$$
\begin{align*}
H_{\mu \nu} & =\left(\mu /-\frac{1}{2} \nabla^{2}-V_{A}-V_{B} / \nu\right) \tag{1.36}\\
& =\beta_{\mu \nu}=\beta_{A B}^{0} S_{\mu \nu}
\end{align*}
$$

which is effectively the energy of an electron moving simultaneously in
the field of two nuclei. This contribution is termed the resonance integral and given the symbol $\beta_{\mu \nu}$. The contributing overlap integrals, $S_{\mu \nu}$ are evaluated according to standard formulae ${ }^{31}$.

Both $\beta_{\mu \nu}$ and $U_{\mu \mu}$ are assigned numerical values dependent on experimental data and are not obtained directly through integral evaluation. These are the parameters in this semi-empirical method. In CNDO/2, the $U_{\mu \mu}$ values are assigned as explained elsewhere ${ }^{30}$ on the basis of atomic spectroscopic data ${ }^{32}$. The resonance integrals $\beta_{A B}^{\circ}$ are approximated by:

$$
\begin{equation*}
\beta_{A B}^{\circ}=\frac{1}{2}\left(\beta_{A}^{\circ}+\beta_{B}^{\circ}\right) \tag{1.37}
\end{equation*}
$$

where the β_{A}° are optimized by fitting CNDO wave functions to more accurate self consistent field calculations. In CNDO/2, the final expression for the Fock operator is:

$$
\begin{align*}
& F_{\mu \mu}=U_{\mu \mu}+\left(P_{A A}=\frac{1 / 2}{2} P_{\mu \mu}\right) \gamma_{A A}+\sum_{\substack{B \neq A \\
\mu \neq \nu}}^{\sum\left[-Q_{B} \gamma_{A B}+\left(Z_{B} \gamma_{A B}-V_{A B}\right)\right]} \\
& P_{A A}=\sum_{\mu}^{A} P_{\mu \mu} \quad \text { and } \quad P_{\mu \nu}=2 \sum_{i=1}^{\text {OCC }} C_{\mu i} C_{V i} \\
& Q_{B}=Z_{B}-P_{B B} \quad Q_{B} \text { being the net charge on atom } B \tag{1.38}\\
& Z_{B} \text {, the core charge on } B \\
& V_{A B}=Z_{B} \int x^{A^{2}}(1) r_{1 B}^{-1} d \tau_{1} \\
& F_{\mu \nu}=\beta_{A B}^{\circ} S_{\mu \nu}=\frac{1}{2} P_{\mu \nu} \gamma_{A B}
\end{align*}
$$

In the CNDO/R approximation, and similar related methods, the mejor problem is the lack of more accurate wave functions which are essential to the parametrization for second ron and heavier atoms. it is hoped that this work will at least partially alleviate chis difficulty.

CHAPTER II

COMPARISON OF MINIMAL AND EXTENDED BASIS SET CALCULATIONS FOR THE SERIES OF COMPOUNDS: HYDROGEN SULPHIDE, CARBON MONOSULPHIDE AND SULPHUR DIOXIDE

The purpose of this work was to determine whether the minimal basis set is adequate for second row atoms or whether it requires extension to include d orbitals. This question was investigated by an $a b$ initio study of the molecular properties of three sulphur containing compounds. The effects of inclusion of 3d orbitals on sulphur were determined by performing two parallel studies:- one without d functions, that is the minimal basis set, and the other with d functions - here referred to as the extended basis set computation. The importance of d functions was evaluated by a comparison of the computed values of bond lengths, dipole moments and force constants for the two series. Agree= ment of calculated values with experimentally determined ones was also an important factor in deciding the extent of d orbital participation.

11.1 BASIS SET:

The type of basis set used in these calculations was chosen so as to provide reasonably accurate description of the molecular situation and at the same time remain economically viable. This basis set consisted of linear combinations of gaussian type functions to effect a representation of Slater type orbitals. The core orbitals ls, in the case of first row atoms, and $1 \mathrm{~s}, 2 \mathrm{~s}$ and 2 p for second row were represented
by two gaussians each, and the valence orbitals - $2 s$ and $2 p$ for first row atoms and $3 s$ and $3 p$ for second row atoms, were each represented by four gaussians. Hydrogen is orbitals were represented by four gaussians, and the 3 d orbitals by 2 gaussians. This basis is similar in constitution to that used in other calculations for $\mathrm{CS}, \mathrm{H}_{2} \mathrm{~S}$ and SO_{2} which consisted of three gaussian functions for the representation of each Slater type function ${ }^{16,43}$. However, both the basis set used in these calculations and the 3 gaussian set are inferior in magnitude to the set used in most ab initio calculations. For instance, results have been reported ${ }^{15}$ for SO_{2} calculations in which the sulphur atom is represented by 12 s - type and $9 p$ - type gaussians and the oxygen atom by 10 s -type and 5 p -type gaussians.

An abbreviated notation is used throughout for the gaussian representation; for example, for the sulphur dioxide molecule: (244/224242). This notation specifies that the basis on the atom of lower atomic number consists of 2 gaussians for the 1 s orbital, four gaussians for the 2 s , and 4 gaussians for each of the three $2 p$ orbitals. Similarly for the centre of higher atomic number- where the basis is comprised of 15,25 , 3s, 2p, 3p and 3d functions in that order.

Use of the linear combination of gaussian type functions for representation of Slater type orbitals (LCGTF-STO) approximation requires the specification of gaussian orbital exponents and combination coefficients. From among the several possible sources of expansion data available $3,5,33,34$, the set of parameters selected for these calculations was taken from Stewart ${ }^{4}$. This work reports expansions, consisting of one to six gaussian functions, for the Slater type orbitals 1 s through 5 g . This expansion

TABLE 1
ZETA VALUES ${ }^{(a)}$ USED IN DETERMINATION OF EXPONENTIAL PARAMETERS

ATOM	15	25	$2 p$	35	$3 p$	3 p
C	5.6727	1.6083	1.5679			
0	7.6579	2.2458	2.2266			
5	15.5409	5.3144	5.9885	2.1223	1.8273	$1.78(\mathrm{c})$ 1.58
H	$1.2(\mathrm{~b})$					

(a) All values except 3d taken from Reference 36.
(b) This value was chosen on the basis of previous calculations.
(c) Taken from Reference 37: 1.78 used in $\mathrm{H}_{2} \mathrm{~S}$ and 1.58 for SO_{2}.
data was obtained by a least squares fit of gaussian functions to Slater orbitals. Using Stewart's notation, the mathematical representation of the Slater type function is:

$$
\phi_{n_{s} I m}=\left[\frac{(2 \zeta)^{2 n_{s}+1}}{\left(2 n_{s}\right)!}\right]^{\frac{1}{2}} r^{n_{s}^{-1}} \exp (-\zeta r) Y_{1 m}(\theta, \phi)
$$

or in terms of a linear combination of gaussians,

$$
\begin{aligned}
& x_{n_{g} I m}= {\left[\frac{\left(\frac{2}{\pi}\right)^{1 / 2} 2^{2 n_{g}+1}}{\left(2 n_{g}+1\right)!!}\right]^{\frac{1}{2}} r^{n^{-1}} v_{1 m}(\theta, \phi) } \\
& \times \sum_{k=1}^{N} d_{k} \alpha_{k}\left(2 n_{g}+1\right) / 4 \\
& \exp \left(-\alpha_{k} r^{2}\right)
\end{aligned}
$$

where N refers to the number of gaussians in the expansion, and d_{k}, α_{k} are the sets of expansion coefficients and exponential parameters. The exponential zeta parameters appearing in Slater orbitals may be assigned values according co Slater's rules for atoms ${ }^{35}$, or alternatively. optimised within the calculation. Secs of α_{k} appearing in the literature have been obtained for gaussian fit to a Slater type function in which zeta is assumed to be unity. Prior to their use in calculations, these values are appropriately rescaled by a factor ζ^{2} in the manner required by the scaling cheorem as reported by 0-0hata ${ }^{34}$.

For the present series of computations the optimised atomic zeta values reported by Raimondi and Clementi ${ }^{36}$ have been used; these are listed in Table 1.

TABLE $\|$
OPTIMIZED VALUES OF SINGLE AND SPLIT-d ZETA FOR ORBITAL EXPONENTS

Molecule	Single ZetaValue	Split Zeta Value (a)	
	1.66	1.66	1.65
$\mathrm{H}_{2} \mathrm{~S}$	1.68	1.63	1.75
CS	$1.58^{(\mathrm{b})}$	1.40	1.63
SO_{2}			

(a) In $\mathrm{H}_{2} S$ and $\mathrm{CS} \zeta_{1}$ value refers to $d_{x^{2}-y^{2}, d_{z^{2}}}$ and ζ_{2} to $d x y d x z d y z$.
In $\mathrm{SO}_{2} \zeta_{1}$ refers to only the dxy exponent, remaining exponents being decermined by value of ζ_{2}.
(b) Not optimized in these calculations but taken from Reference 37.

Figure 1

Variation of Molecular Energy as a function of 3d orbital exponent for Hydrogen Sulphide for a
single exponent, for ζ_{2} with constant ζ_{1} and for ζ_{1} with constant ζ_{2}.

I(b) is simply a repetition of $I(a)$ on an expanded scale.

11.2 ORBITAL EXPONENTS

Prior to the investigation of molecular properties for the series of sulphur compounds in the extended basis set, the sulphur atom d orbical exponents were optimized for each molecular environment. This procedure involved a variation of the single d orbital exponent and also an energy minimization for the split zeta-d exponent. In the latter case, the d orbitals were divided into two groups - one consisting of $d_{x^{2}-y^{2}}$ and $d_{z^{2}}$, each with exponent ζ_{1}, and the other of $d x y, d x z$ and $d y z$ for which the exponent was 52 . This division conforms with qualitative chemical ideas concerning involvement of d orbitals in bonding. The calculated sets of optimum zeta values are presented for $\mathrm{H}_{2} \mathrm{~S}$, CS and SO_{2} in Table II.

According to the results of these calculations, for the hydrogen sulphide molecule, the atomic dorbitals centred on the sulphur atom are not greatly perturbed by the bonded hydrogen atoms. This is reflected by the result that the single zeta value is equal to both components of the split zeta exponent. Furthermore, very little variation in energy occurs over a wide range of d orbital exponents ζ_{1} and $\zeta_{2}=$ as is indicated by the plots in figure la. However, when the energy scale is expanded, as in figure $1 b$, for the purpose of comparison of the variation in the two zeta components, it is apparent that response of ζ_{2} is more pronounced than that of ζ_{1}. This may indicare that in hydrogen sulphide, the bonding is much more sensitive to expansion or contraction of the $d x y, d x z, d y z$ set of orbitals. Since in this case, the dyz orbital has the correct spatial orientation to interact appreciably with the hydrogen

Figure 11

Variation of Molecular Energy as a function of 3d
orbital exponent for Carbon Monosulphide
for a single exponent, for ζ_{2} with constant ζ_{1}
and for ζ_{1} with constant ζ_{2}.

atoms, this result is not unexpected. As the split zeta component values are identical, it may be presumed that in hydrogen sulphide interaction of one set of d functions is not predominant over that of the other.

The situation for carbon monosulphide and sulphur dioxide differs from that for hydrogen suiphide in that the sulphur atom is bonded to first row atoms in these molecules. This means that included in the basis set are functions with symmetry conducive to more extensive interaction with the sulphur atom orbitals. It might be expected therefore, that the d orbital exponent values would be appreciably different for these molecules.

For carbon monosulphide, as may be seen upon referring to figure II, the variation in energy with change in the dorbital exponent is again quite gradual. However, the plots are more sharply inflected than those for hydrogen sulphide. The optimum split zeta values are no longer equal: ζ_{1} for $d_{x^{2}-y^{2}}$ and $d_{z^{2}}$ has a value of 1.63 and ζ_{2} for the remaining participating d functions, $d y z$ and $d x z$, is 1.75 . There is no contribution to molecular bonding from the $d x y$ function because the symmetry of this orbital prohibits interaction with any of the carbon functions. The optimum single zeta exponent was found to be 1.68 , a value which is equal to the weighted average of the split zeta components.

The smaller magnitude of the $d_{z}, d_{x^{2}-y^{2}}$ exponent indicates that the radial maximum for these functions occurs at a larger distance from the sulphur atom than for the $d x z, d y z$ orbitals. The contraction of the $d x z$ and $d y z$ is greater chan that of the remaining d orbitals indicating a greater sensitivity of these orbitals to the electron density at the
bonded oxygen atoms.
Interactions which might be operative between the p orbitais of any bonded first row atom and the sulphur atom d orbitals are usually referred to as the synergic effect ${ }^{39}$. The σ contribution to bonding consists of the normal s and p type combinations, but is enhanced by the po - do interactions which are possible. In addition to the donation of electronic charge from the carbon to the sulphur, a back donation may occur via the d orbitals, $d x z$ and dyz, on sulphur to vacant p orbitals of appropriate symmetry on carbon. This mechanism is analogous to the simultaneous σ-acceptor, π donor capabilities attributed to transition metals when bonded to π-acid ligands.

The greater degree of contraction found for the $d x z$ and $d y z$ orbitals might be an indication of the removal of electron density from these orbitals compared to an increase in electron density localized in the d_{z} orbital.

For the third molecule studied, sulphur dioxide, the division of d orbitals did not conform to that used for the other two molecules. The dxy component was optimised alone as ζ_{1} and the other four d orbitals were treated as a single group with exponent ζ_{2}. This choice was based on the unique role which the dxy orbital plays in sulphur dioxide - being the only atomic orbital with a_{2} symmetry. Such a symmetry orbital is capable of participation in π type bonding in the molecule. Furthermore, a grouping of this kind would provide a more economical route to d orbital optimisation than one involving three categories of d functions.

Figure $1 / 1$

Variation of Molecular Energy as a function of 3d orbital exponent for Sulphur Dioxide for ζ_{1} with a constant ζ_{2} and for ζ_{2} with a constant ζ_{1}.

TABLE 111

COMPARISON OF MOLECULAR ENERGIES AND DIPOLE MOMENTS FOR CALCULATIONS USING OPTIMUM SPLIT ZETA AND SINGLE ZETA d ORBITAL EXPONENTS

Molecule	Energy (a.u)		Dipole Moment (D)	
	Single Zeta	Split Zeta	Single Zeta	Split Zeta
$\mathrm{H}_{2} \mathrm{~S}$	-384.7015	-384.7015	0.466	0.466
CS	-419.8687	-419.8689	2.53	2.52
SO_{2}	-527.7653	-527.7699	1.28	1.26

The single zeta exponent was not optimised in the case of sulphur dioxide, but was assumed to have the value found ${ }^{37}$ using a much more extensive basis set. Once again, the weighted average of the optimum split zeta exponents was found to be equal to the single zeta value. However, for sulphur dioxide, the difference between the components of the split zeta exponent was greater than that found for carbon monosulphide. Furthermore, the variation of energy with change in d orbital exponent is much greater than for carbon monosulphide, as indicated by the curves in figure lll. This increased sensitivity might be a reflection of increased participation in molecular bonding by the d orbitals. Another interesting feature which emerges upon examination of the results, is the decreased magnitude of the dxy orbital exponent. This could be interpreted as an indication that this particular dorbital is more involved in the molecular bonding than the remaining less diffuse d functions. An explanation of chis kind would correlate with the unique quality possessed by the dxy orbital - namely its symmetry - which distinguishes it from the remaining d functions. This symmetry property allows a $p \pi=d \pi$ interaction, so creating an additional contribution to the bonding through π type molecular orbitals in sulphur dioxide.

The merits of the use of split zeta d exponents may be established by a comparison of molecular properties calculated for the double exponent with those obtained for a single exponent. Such a comparison is presented in Table lil. Split zeta exponents are expected to lower the energy since additional freedom is introduced into the wave function by their use. However, upon examination of the computed dipole moments,

TABLE IV
EXPERIMENTAL GEOMETRIES FOR $H_{2} S, \mathrm{SO}_{2}$, CS WITH MOLECULAR CO-ORDINATES IN ATOMIC UNITS

Molecule	Bond $\frac{1}{\AA}$ ength	Bond Angle	Centre	\times	Y	Z
$\mathrm{H}_{2} \mathrm{~S}$	1.328	$92.2{ }^{(a)}$	H_{1} H_{2} S	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{gathered} -1.808296 \\ +1.808296 \\ 0.0 \end{gathered}$	$\begin{gathered} 1.740163 \\ 1.740163 \\ 0.0 \end{gathered}$
CS	$1.5349^{(b)}$		C S	0.0 0.0	0.0 0.0	$\begin{gathered} 2.900596 \\ 0.0 \end{gathered}$
SO_{2}	1.4321	$119.5^{\text {(c) }}$	$\begin{aligned} & 0_{1} \\ & 0_{2} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{gathered} -2.337823 \\ +2.337823 \\ 0.0 \end{gathered}$	$\begin{gathered} 1.363378 \\ 1.363378 \\ 0.0 \end{gathered}$

(a) Reference 40
(b) Reference 42
(c) Reference 41
it is seen that incorporation of split zeta d exponents does not produce significant improvements over the values obtained using single zeta d functions.

11.3 GEOMETRY:

The investigation of geometry for the three molecules included an optimisation of bond lengths in both of the basis sets considered, but not of bond angles. This neglect of bond angle optimisation was just= ifiable on the basis of previous investigation by other workers in the group. Their results ${ }^{37}$ indicate that the inclusion of d orbitals does not greatly affect the bond angle. The pertinent experimental geometries, together with the cartesian coordinates calculated using these values are presented in Table IV. Results of bond length optimisation are included in Table V for $H_{2} S$, Tables VI, VII for CS and Tables VIII, IX for SO_{2}. In each case the optimum bond length reported for the 'with d' calculations have been obtained using the optimum theoretical d orbital exponents.

For hydrogen sulphide, it was found that the computed optimum bond length was only slightly improved by the addition of d functions to the molecular basis. Without d orbitals, the theoretical $\mathrm{H}-\mathrm{S}$ bond length was $1.36 \AA$ in fair agreement with the experimental value of $1.328 \AA^{40}$. When d functions were added, the computed bond length improved to a value of $1.33 \AA$.

Again, as for hydrogen sulphide, the agreement of calculated optimum geometry with experimental observation for carbon monosulphide is improved by the inclusion of d functions in the basis set. The decrease of the $C-S$ bond length from $1.63 \AA$ to $1.56 \AA$ which was observed

TABLE V
HYDROGEN SULPHIDE RESULTS OF CALCULATIONS COMPARED WITH PREVIOUS WORK

| | This Work Without d | This Work with d | Calculation 11
 Without d (a) | ```Calculation \|/ With d (a)``` | ```Calculation \||I With d (b)``` | Experimental Values |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gaussian Primitive Set | (4/22.424) | (4/224242) | (3/33333) | (3/333333) | $\begin{gathered} (41,1 / 62,11,11, \\ 61,11,1) \end{gathered}$ | |
| Orbital Energies | $\begin{array}{r} -87.7324 \\ -8.4083 \\ -6.1377 \\ -6.1363 \\ -6.1324 \\ -0.9208 \\ -0.5396 \\ -0.4375 \\ -0.3412 \end{array}$ | $\begin{array}{r} -87.7250 \\ -8.3948 \\ -6.1283 \\ -6.1263 \\ -6.1206 \\ -0.9133 \\ -0.5529 \\ -0.4533 \\ -0.3342 \end{array}$ | | | $\begin{array}{r} -91.9744 \\ -8.9617 \\ -6.6520 \\ -6.6510 \\ -6.6487 \\ -0.9859 \\ -0.5940 \\ -0.5008 \\ -0.3834 \end{array}$ | |
| $\begin{aligned} & \text { Total Energy } \\ & (\text { a.u) } \end{aligned}$ | -384.6498 | -384.7015 | -394.463 | -394.516 | -398.68624 | |
| $-V / T$ | 2.022 | 2.022 | | | 2.00019 | |
| Optimized Bond Length \AA | 1.38 | 1.33 | | | | |
| d Orbital Exponents | | 1.66 | | | 0.6 | |
| $\begin{aligned} & \text { Ist Ionizat'n } \\ & \text { Potent'l }(\mathrm{a} . \mathrm{u}) \end{aligned}$ | 0.3412 | 0.3342 | 0.356 | 0.343 | 0.3833 | $0.384^{(a)}$ |
| Dipole
 Moment (D) | 1.55 | 0.469 | 1.74 | 0.66 | 1.3345 | $0.937^{(c)}$ |

∞
(a) Reference 43
(b) Reference 1
(c) Reference 38
upon addition of dorbitals is to be expected as a result of the sulphur atom's capacity for participation in $p \pi-d \pi$ bonding. Agreement of the optimum theoretical bond length of $1.56 \AA$, with the experimental value of $1.5349 \AA^{42}$ is quite good.

Optimisation of the sulphur-oxygen bond length was also influenced by the addition of d functions. For the minimal basis, an optimum bond length of $1.60 \AA$ was obtained and was improved to a value of $1.46 \AA$ upon extension of the basis set. This latter result agrees fairly well with experiment at $1.4321 \AA^{4}$. Addition of d orbitals increases the bonding between sulphur and oxygen through a $d \pi$ - $p \pi$ mechanism and a consequent decrease in the sulphur-oxygen bond distance is observed.

11.4 DIPOLE MOMENT

The effects of d orbitals included in the basis set on the calculated dipole moment were also studied. A prerequisite for this study was the compilation of new version of the dipole moment programe which could be appended to the POLYATOM package. Details of the required integral formulae are given in appendix 1 and a copy of the programme itself constitutes appendix $\|$ of this work.

On the basis of the results obtained in this set of calculations, it may be concluded that the dipole moment is a molecular property which is extremely sensitive both to molecular geometry and the nature of the basis set. To illustrate this sensitivity, it was found in the extended basis hydrogen sulphide calculations that a bond length change of $0.1 \AA$ produced a difference of 0.120 in the dipole moment. Dependence of dipole moment on bond length, and also bond angle, is to be expected since

TABLE VI

CARBON MONOSULPHIDE: RESULTS OF CALCULATIONS

	This Work With d	This Work Without d
Gaussian Primitive Set	(244/224242)	(244/22424)
Orbital Energies	$\begin{array}{r} -87.7982 \\ -10.7413 \\ -8.4670 \\ -6.2033 \\ -6.1932 \\ -6.1932 \\ -1.0390 \\ -0.6339 \\ -0.4282 \\ -0.4282 \\ -0.4007 \end{array}$	$\begin{array}{r} -87.7986 \\ -10.7659 \\ -8.4748 \\ -6.2053 \\ -6.1990 \\ -6.1990 \\ -1.0493 \\ -0.6290 \\ -0.4240 \\ -0.4240 \\ -0.4117 \end{array}$
Total Energy (a.u)	-419.8689	-419.8099
Optimized Bond Length. (\AA)	1.56	1.60
$-V / T$	2.022	2.022

COMPARISON OF PRESENT CARBON MONOSULPHIDE CALCULATIONS WITH PREVIOUS WORK

	This Work Without d	This Work With d	Calculation 11 Without d (a)	Calculation 11 With d (a)	Experimental Values
Gaussian Primitive Set	(244/22424)	(244/224242)	(333/33333)	(333/333333)	
Total Energy (a.u)	-419.8099	-419.8689	-430.617	-430.679	
d Orbital Exponents		$\begin{aligned} & \zeta_{1}=1.63 \\ & \zeta_{2}=1.75 \end{aligned}$		1.60	
Ist Ionization Potential (a.u)	0.4117	0.4007	0.425	0.417	$0.393{ }^{\text {(a) }}$
Dipole Moment	1.05	2.52	0.97	2.23	1.97 (b)

(a) Reference 43
(b) Reference 38
geometry determines the charge distribution and hence the polarity in the molecule. However, the effect of incorporation of d functions into the minimal basis set was to produce a large change in the dipole moment. For the experimental equilibrium geometry of hydrogen sulphide, the minimal basis dipole moment was 1.550 and the extended basis value 0.5530 . The difference could be an indication of participation by dorbitals in the molecular bonding. This participation is made possible by the ability of these orbitals to alter the charge distribution in the molecule by behaving as polarizing functions.

On comparison of the calculated dipole moment (0.553D) of $\mathrm{H}_{2} \mathrm{~S}$ with the experimental value ${ }^{38}$ of 0.9370 it is evident that the addition of d functions produces an improvement, in the correct sense, from the value obtained without d functions (1.55D). Despite the improvement on addition of d orbitals, a discrepancy in dipole moment of approximately forty per cent still remains to be accounted for. To obtain better agreement, further modifications to the basis set seem to be necessary.

In order to explore in more detail the influence of basis set upon dipole moment, a series of calculations in which the primitive composition of the set was varied, was performed. The results of this study for $\mathrm{H}_{2} \mathrm{~S}$ are presented in Table X and seem on the whole to indicate that the molecular properties are intrinsically dependent on the size of the gaussian set chosen to represent she functions constituting the minimal basis set. According to these calculations, although the molecular wave function and molecular energy both improve upon increased gaussian specification of the s type functions, the dipole moment computed
deteriorates. Furthermore, it is evident that the most influential factor in the determination of dipole moment is the nature of the gaussian representation of the p functions in the set. As the number of p type gaussian primitives used for the expansion of Slater p orbitals is augmented, the dipole moment improves. especially if the s type functions remain unaltered. Also, the dipole moment does not seem to be greatly influenced by inclusion of additional d type gaussians in the set. Hence, it would seem that the critical factor in determining the value of dipole moment is the quality of the gaussian expansion used for the representation of the polarizable pype Slater orbitals. This evaluation of the effect of the nature of gassian primitive set on molecular properties was performed exclusively for $\mathrm{H}_{2} \mathrm{~S}$ and not repeated for the other two molecules. However, it is reasonable that similar results could be obrained for sulphur dioxide and carbon monosulphide, and in fact be extended to all second row molecule calculations which pely on Stewart's expansions of Slater type orbitals.

Calculations for the equilibrium geonetry of carbon monosulphide also indicate that adition of orbitals to the minimal basis set improves the dipole moment in the desired sense but tends to overcompensate by creating soo large correction. The dipole moment obtained without dorbitals was 1.360 and this value increased to 2.520 upon addition of orbitals, whereas the experimental dipole moment is quoted as 1.970^{38}. Since the experimental value is almost the mean of the two calculations, a significant improvemenc obtained by extension of basis set cannot in this case be justifiably claimed. Mowever, the fact that

TABLE VIII
SULPHUR DIOXIDE: COMPARISON OF ENERGIES FOUNO IN PRESENT CALCULATION WITH PREVIOUS RESULTS

	This Work Wi thout d	This Work with d	Calculation 11 Without d (a)	```Calculation II with d (a)```	Calculation 111 With d (b)
Gaussian Primitive Set	(244/22424)	(244/224242)	(333/33333)	(333/333333)	$\begin{aligned} & (34,21,41,1 / 62 \\ & 11,11,61,11,1) \end{aligned}$
Orbital Energies (a.u)	$\begin{array}{ll} -87.9532 & 1 a_{1} \\ -19.4331 & 1 b_{2} \\ -19.4327 & 2 a_{1} \\ -8.6094 & 3 a_{1} \\ -6.3417 & 2 b_{2} \\ -6.3366 & 4 a_{1} \\ -6.3363 & 1 b_{1} \\ -1.3003 & 5 a_{1} \\ -1.1999 & 3 b_{2} \\ -0.7850 & 6 a_{1} \\ -0.5465 & 7 a_{1} \\ -0.5250 & 4 b_{2} \\ -0.5250 & 2 b_{1} \\ -0.3948 & 5 b_{2} \\ -0.3481 & 8 a_{1} \\ -0.3002 & 1 a_{2} \\ +0.2203 & 3 b_{1} \end{array}$	$\begin{aligned} & -88.0647 \\ & -19.6136 \\ & -19.6118 \\ & -8.6772 \\ & -6.4204 \\ & -6.4095 \\ & -6.4091 \\ & -1.4447 \\ & -1.3364 \\ & -0.7838 \\ & -0.6513 \\ & -0.6265 \\ & -0.6208 \\ & -0 b_{1} \\ & -0.4786 \\ & -0.4614 \end{aligned} \frac{1 b_{2}}{}$	$\begin{aligned} & -90.9994 \\ & -20.2615 \\ & -20.2614 \\ & -8.9846 \\ & -6.609 \\ & -6.6538 \\ & -6.6537 \\ & -1.4533 \\ & -1.3244 \\ & -0.7910 \\ & -0.6046 \\ & -0.6019 \\ & -0.5572 \\ & -0.3963 \\ & -0.3319 \\ & -0.3184 \\ & \hline a_{1} \\ & \end{aligned}$	$\begin{aligned} & -91.1017 \\ & -20.5120 \\ & -20.5116 \\ & -9.0565 \\ & -6.7371 \\ & -6.7287 \\ & -6.7289 \\ & -1.5329 \\ & -1.4244 \\ & -0.8541 \\ & -0.6878 \\ & -0.6628 \\ & -0.6603 \\ & -0.5016 \\ & -0.4838 \\ & -0.4437 \end{aligned}$	-92.1961 $l a_{1}$ -20.6134 $1 b_{2}$ -20.6134 $2 a_{1}$ -9.1632 $3 a_{1}$ -6.8532 $2 b_{2}$ -6.8519 $1 b_{1}$ -6.8500 $4 a_{1}$ -1.5095 $5 a_{1}$ -1.4038 $3 b_{2}$ -0.8695 $6 a_{1}$ -0.6986 $4 b_{2}$ -0.6959 $7 a_{1}$ -0.6665 $2 b_{1}$ -0.5400 $5 b_{2}$ -0.5161 $1 a_{2}$ -0.4917 $8 a_{1}$ +0.0740 $3 b_{1}$
Total Energy (a.u)	-527.4034	-527.7699	-540.648	-541.008	-547.2089
$-W / T$	2.019	2.025			2.00026

(a) Reference 16,43
(b) Reference 15

MOLECULAR PROPERTIES OF SULPHUR DIOXIDE: COMPARISON OF PRESENT WORK WITH PREVIOUS CALCULATIONS

	This Work Without d	This Work With d	Calc. 11 Without d (a)	Calc. 11 With d (a)	Calc. 111 Without d (b)	Calc. 111 With d (b)	Experimental Values
Optimized Bond Length (A)	1.60	1.46					$1.4321^{\text {(d) }}$
d Orbital Exponents		$\zeta_{2}=1.63$ $\zeta_{1}=1.40$		1.20		$\begin{array}{ll} s: & 0.6 \\ 0: & 0.8 \end{array}$	
Ist lonization Potential (a.u)	0.3002	0.4280	0.318	0.444	0.4928	0.4917	0.454 (a)
Dipole Moment (D)	1.12	1.26	1.24	0.81	2.83	2.28	1.61 (c)

(a) Reference 16, 43
(b) Reference 15
(c) Reference 38
(d) Reference 41
the addition of orbitals produces an increase in value of dipole moment, in agreement with required change, while in $\mathrm{H}_{2} \mathrm{~S}$ this process results in a decrease, as desired, seems to indicate the necessity of inclusion of d orbitals in these compounds. It appears that d orbitals are definitely required for an accurate description of bonding in sulphur compounds, and presumably also those involving other second row elements.

An additional calculation was performed for carbon monosulphide with the purpose of investigating the contribution made by the core orbitals to the dipole moment of this molecule. It was found that the sum of the electronic and balancing nuclear components of the dipole moment was only $6.56 \times 10^{-3} \mathrm{D}$, approximately 0.3% of the total. Consequently, it would appear the dipole moment is determined almost completely by the effectiveness of the valence orbital representation. In these calculations however, the valence representation is affected by improvement to core atomic orbitals. This is a consequence of the non orthogonality of the core and valence functions comprising the basis sets used in these calculations. The relatively small proportion of the dipole moment attributable to the core orbitals is not surprising since the dipole moment is a property dependent on the electron distribution within a molecule. As the core orbitals are quite tightly associated with the nucleus, and not extensively delocalized, their contribution to the polarization within the molecule will be negligible. Therefore, in carbon monosulphide, as most probably in all molecules, the dipole moment is largely determined by the valence electron distribution.

TABLE X
EFFECTS OF VARIATION OF CONTRACTION IN THE GAUSSIAN REPRESENTATION OF THE BASIS SET ON COMPUTED DIPOLE MOMENT FOR HYDROGEN SULPHIDE *

Bas is	$-\mathrm{V} / \mathrm{T}$	Energy (a.u)	Dipole Moment (D)
$(4 / 224242)$	2.02	-384.7015	0.466
$(5 / 335242)$	2.00	-392.3561	0.392
$(5 / 335352)$	2.00	-394.5211	0.627
$(5 / 335353)$	2.00	-394.5229	0.603
$(5 / 225252)$	2.02	-384.7022	0.466
$(4 / 224352)$	2.02	-386.8755	0.698
$(4 / 224452)$	2.02	-387.3098	0.744

\% at the experimental equilibrium geometry

Concrary to the trend emerging for the other two molecules studied, the dipole moment of sulphur dioxide deteriorated upon extension of the minimal basis set to include functions. Theoretical dipole moments calculated for the experimental equilibrium geometry were 1.540 without d and 1.260 with d compared to an experimental literature value of 1.610^{38}. In this case then, the best computed value was for the basis set in which orbitals were not included. A possible explanation of this unexpected result is disclosed if the calculation is compared to that for the hydrogen sulphide molecule.

For the series of calculations for $\mathrm{H}_{2} \mathrm{~S}$, in which the natupe of the gaussian primitive set was varied, it wes found that the magnitude of dipole moment was decreased when additional s components were included in the gaussian primitive set. A similar effect was produced by the addition of d orbitals, a modification which also served to improve the qually of the molecular wave function. The improvement was indicated by the decresse in the deviation of theoretical dipole moment value from the experimental value. Atthough the same improvements in wave function were produced in the case of sulphur dioxide when op opitals were added. the theoretical value of dipole moment was not improved. The minimal basis dipole moment seemed to agree so well with experiment that the additional functions produced an effect opposite to the one desired the deviation from the experimental value being increased. However, this effect does not necessarily imply that functions are not required for second row atoms. The interpretation atcributed to data available from this type of calculation is extremely subjective, in that it depends upon
choice of experimental data for comparison. For example, two microwave values for dipole moment quoted in the tables ${ }^{38}$ are 1.470 and 1.59D. This difference is fairly important in the comparison with calculated theoretical results. To illustrate this point it only requires comparison of this work with a similar type of calculation recently reported ${ }^{16}$, in which three gaussian functions were used for each Slater orbital. In that work, an evaluation of the use of minimal basis as opposed to extended basis (d orbital exponent 1.20) calculations was based on the theoretical values found for various molecular properties including dipole moment. The dipole moments reported are 1.2440 without $d, 0.8060$ with d and 1.470 experimental. Although the general trend obtained is analogous to that found in this series of computations, the quoted experimental value is quite difference from that used here (1.610) but was taken from the same reference ${ }^{38}$. So it would seem that part of the difficulty in evaluating theoretical results is the fairly wide variation of experimental values available for comparison. If the present theoretical results were compared to an experimental value of 1.470 , then the two basis sets would appear almost equally suited for the prediction of dipole moment. Despite the conclusion of the authors in the above reference that the results obtained with the minimal basis calculations might be fortuitous, this pattern has been repeated in the present computation and cannot so readily be dismissed. It is believed that the most likely explanation is the inadequacy of the gaussian representation used in both of the calculations. As discussed in the case of hydrogen sulphide, the present basis set would require extensive modification in
order to produce the optimum gaussian representation of the minimal basis which would be appropriate for an evaluation of the participation made by d orbitals in bonding.

11.5 FORCE CONSTANTS:

Although this molecular property could be readily determined on the basis of the data already obtained in the course of these computations, the significance of such a procedure is questionable. There are at least two reasons for such a statement. The first is the aura of uncertainty connected with experimental data available for comparison with theoretical results in the case of all molecules, except diatomics.

To obtain the appropriate experimentally determined values would require an investigation of the mathematical analysis used by the various experimentalists to calculate these constants from spectroscopic data. Once this had been established, then a transformation of the experimental force constants would most probably be necessary to ensure that both experimental and theoretical calculations were referred to the same coordinate system. The main problem for polyatomic molecules is obtaining the correct experimentally derived value of the force constant for comparison with the theoretically computed second derivative.

The second reason for doubting the significance of a comparison between theory and experiment is the fact that there exists a marked dependence of theoretically computed values on the nature of the computational technique used. The mathematical concepts pertaining to three possible computational methods available for calculation of force constants within the abitio approach are discussed in the literature ${ }^{46}$.

The force method, which involves initial analytical differentiation followed by numerical differentiztion. is concluded to be superior to the alternative approach requiring two successive dipect numerical differm entiations. Economically, this latter procedure is less suitable since it requires computation of molecular wave functions for a series of geamerries. Another disadvantage is chat additional numerical inaccuracy is introduced by this rechnique. lt is also pointed out that ab initio calculations which do mot predict accurate bond dissociation energies will naturally not yield accurate results but are found to overestimate bond stretching force constants. This problem is often encountered in ab initio calculations and will partially account for the poor theoretical results obtained in force constant evaluation.

In this work, the force constants of carbon monosulphide, hydrogen sulphide, and sulphur dioxide were computed. However. the method used Was comparatively straightformard, since force constant yolues were determined directly by double differentiation despite the previously mentioned disadvantages of such procedure. To evaluate this secondary molecular property, it wes simply necessary to fit the energy as a function of bond length data to quadraitic equation pepresenting a parabolic curve:

$$
E(r)=a r^{2}+b r+c
$$

If $E(r)$ is the energy, r the bond length and a. bo are constants. then the force constant is given by the second derivative of E(r) with respect co r and in this notation is equal to 2a.

TABLE XI
FORCE CONSTANTS CALCULATED USING BOTH A QUADRATIC AND CUBIC FIT OF BOND LENGTH DATA FOR $\mathrm{H}_{2} \mathrm{~S}$, CS AND SO_{2} MOLECULES

Molecule	Force Constants (mdyn/Å)		
	Quadratic	Cubic	Experimental (a)
H_{2} S minimal basis	4.78	5.32	4.14
H_{2} S with d	6.78	5.53	
CS minimal basis	12.8	10.8	$8.48{ }^{(b)}$
CS with d	15.6	11.8	
SO_{2} minimal basis	8.61	37.5	
SO_{2} with d	13.9	15.4	

(a) Reference 44
(b) Calculated according to formula and data given in Reference 47

As well as the quadratic fit, a cubic fit of the data was also attempted in order to determine whether any improvement in the force constants could be achieved by including the third order term; in this case, the force constants were evaluated for the computed optimum bond length, in accordance with the equation:

$$
f=\frac{d^{2} E(r)}{d r^{2}}=6 a r_{0}+2 b
$$

However, as a comparison of the results presented in Table XI will indicate, no advantage is gained by use of the cubic fit for the available computational data.

It will be observed that in the calculation of force constants, contrary to the trend obtained for other molecular properties, the inclusion of d functions was found to cause an increase in the discrepancy between experimental and theoretical values. The experimental force constants ${ }^{44}$ which are listed in Table XI are not strictly the correct values for comparison with calculations. The reasons for this have been discussed earlier in this section. An additional factor which should be taken into consideration in making such a comparison is the nature of the assumptions made regarding the molecular system in the process of computation of the force constants. In the present calculations, the force constants of the triatomic molecules have been computed for the symmetric stretch of two bond lengths simultaneously. Values tabulated in the literature refer to the stretch of one bond of the molecule only. Consequently, on account of the existing arbitrariness, the agreement of
computed force constants with experimental observation cannot be used as an effective criterion in determining the importance of orbitals.

To complete this section concerned with the effects of orbitals on the molecular properties of some sulphur compounds it remains to summarize the scope and significance of these ab initio calculations. This is partially accomplished in an extensive presentation of results in Tables V through ix, where the calculations are also compared with similar work by other investigators. Several of the results quoted from other sources are for calculations in which the basis set was much more elaborate than that used in the present work. For example, one series of calculations involved a basis set which had been extended to include p sype functions on hydrogen and d functions on oxygen atoms. Although such differences in basis set achieve significant improvement in the molecular energy, it will be noted that molecular propertiss computed using the present minimal basis set are comparable to those obtained by other workers using their elaborate basis sets. In this sense then, the necessity of a very large basis is dubious and it would appear that minimal basis sets are relevant for calculations of second row molecules.

CHAPTER 111

SULPHUR DIOXIDE: A STUDY OF THE MOLECULE, THE RADICAL ANION; AND SOME EXCITED STATES;
 A COMPARISON WITH OZONE

Since to date much interest has been expressed in the electronic spectrum of sulphur dioxide, it was decided to attempt an extended basis $a b$ initio calculation for the purpose of investigating some of the excited states. It was hoped chat such a study would provide a theoretical comparison for experimental results, and at the same time determine whether some of the spectral features could be interpreted. In this chapter are presented results of calculations for the ground state and lowest excited triplet states of suiphur dioxide. Comparable calculations were run for ozone in order to obtain an estimate of the importance of d orbitals in sulphur compounds. The sulphur dioxide radical anion was also considered since this ion might prove to be important in the study of atmospheric pollutants.

III. 1 ELEGTRONIC SPECTRUM OF SULPHUR DIOXIDE

In order to provide a frame of reference for theoretical results, a brief description of the electronic spectrum of sulphur dioxide will be presented here. The details have been taken from one of the several available sources ${ }^{48}$ which provide a fairly extensive description of the electronic spectrum together with numerous references to the original experimental data.

The sulphur dioxide spectrum consists of a series of discrete absorption bands, of which the lowest energy occurs at $3900 \AA-3400 \AA$ and is also the weakest band. This band, and that immediately adjacent to it, ($3400 \AA-2600 \AA$) have been shown to correspond to separate transitions. The extensive band structure associated with these absorptions is explained by the Franck-Condon principle ${ }^{49}$ to be a result of a change in both bond angle and bond length occurring during excitation. The intensity of some of the bands is greater than that expected on the basis of the Franck-Condon principle. To account for this, Mulliken ${ }^{50}$ has suggested that the geometry of the lowest energy excited state is asymmetric. Furthermore it is thought, on the evidence of a strong Zeeman splitting ${ }^{61}$, that the upper state for the lowest energy band has a triplet multiplicity and that the transition involved corresponds to ${ }^{3} B_{1}-{ }^{-1} A_{1}$. Although such a transition is spin forbidden, it occurs as a result of spin orbit coupling, perhaps borrowing intensity from the neighboring ${ }^{1} B_{1}-{ }^{1} A_{1}$ transition ${ }^{48}$.

111.2 GROUND STATE CALCULATIONS FOR SULPHUR DIOXIDE

In Chapter II, the results of an investigation using minimal and extended basis calculations, of several of the ground state properties of sulphur dioxide have been reported. During the minimal basis sulphuroxygen bond length optimisation procedure a discontinuity in behaviour was encountered. It was found that for the 'free' calculation - one in which the orbital occupancy is determined by the self consistent field procedure rather than being specified by input data - the orbital occupancy for $S-0$

Figure IV

Energy of the $8 a_{1}, 1 a_{2}$ and $3 b_{1}$ symmetry orbitals as a function of S-O bond length in Sulphur Dioxide without d orbitals. The curves at short $\mathrm{S}-\mathrm{O}$ distances are for free occupancy.

bond distances shorter than $1.52 \AA$ differed from that for longer distances. The occupancy determined for the short bond length calculation was:

$$
\ldots\left(7 a_{1}\right)^{2}\left(4 b_{2}\right)^{2}\left(1 a_{2}\right)^{2}\left(5 b_{2}\right)^{2}\left(3 b_{1}\right)^{2}
$$

compared to that for the longer s-0 distances which was:

$$
\ldots\left(2 b_{1}\right)^{2}\left(5 b_{2}\right)^{2}\left(8 a_{1}\right)^{2}\left(1 a_{2}\right)^{2}
$$

For the short $\mathrm{s}-\mathrm{O}$ bond lengths, the calculation without d functions appeared to converge naturally on an excited state of sulphur dioxide. The results obtained for the calculations without d functions are summarized in figure iV where the variation of orbital energies is presented as a function of bond distance. It will be noted that the rearrangement of orbitals is drastic enough, for the free calculation, to result in the apparent discontinuity caused by the calculation being trapped in a local minimum. Once the orbital occupancy had been specified in accordance with that found by other workers ${ }^{51}$ this discontinuity in results was removed.

No such complication occurred for calculations with the extended basis set. The free calculation in this instance yielded an orbital occupancy which agreed with other results ${ }^{15,51}$. However, as seen in the comparison presented in figure V, the ordering of orbitals obtained for the basis set used in this computation differs from that qualitatively suggested by Walsh ${ }^{51}$ for non linear 18-electron $A B_{2}$ systems. More important, the present ordering is also different from that found by Rothenberg and Schaefer ${ }^{15}$ in their fairly detailed and extensive ab initio

Figure V

ORDERING OF MOLECULAR ORBITALS IN SULPHUR DIOXIDE

WALSH: ${ }^{51}$

$$
\ldots\left(a_{1}\right)^{2}\left(b_{1}\right)^{2}\left(b_{2}\right)^{2}\left(a_{1}\right)^{2}\left(a_{2}\right)^{2}\left(b_{2}\right)^{2}\left(a_{1}\right)^{2} / b_{1}
$$

ROTHENBERG AND SCHAEFER ${ }^{15}$

$$
\begin{aligned}
& \left(1 a_{1}\right)^{2}\left(1 b_{2}\right)^{2}\left(2 a_{1}\right)^{2}\left(3 a_{1}\right)^{2}\left(2 b_{2}\right)^{2}\left(1 b_{1}\right)^{2}\left(4 a_{1}\right)^{2}\left(5 a_{1}\right)^{2}\left(3 b_{2}\right)^{2} \\
& \left(6 a_{1}\right)^{2}\left(4 b_{2}\right)^{2}\left(7 a_{1}\right)^{2}\left(2 b_{1}\right)^{2}\left(5 b_{2}\right)^{2}\left(1 a_{2}\right)^{2}\left(8 a_{1}\right)^{2} / 3 b_{1}
\end{aligned}
$$

HILLIER AND SAUNDERS: ${ }^{16}$
$\left(1 a_{2}\right)^{2}\left(1 b_{2}\right)^{2}\left(2 a_{1}\right)^{2}\left(3 a_{1}\right)^{2}\left(2 b_{2}\right)^{2}\left(4 a_{1}\right)^{2}\left(1 b_{1}\right)^{2}\left(5 a_{1}\right)^{2}\left(3 b_{2}\right)^{2}$
$\left(6 a_{1}\right)^{2}\left(7 a_{1}\right)^{2}\left(2 b_{1}\right)^{2}\left(4 b_{2}\right)^{2}\left(5 b_{2}\right)^{2}\left(1 a_{2}\right)^{2}\left(8 a_{1}\right)^{2} / 3 b_{1}$

PRESENT EXTENDED BASIS CALCULATION:
$\left(1 a_{1}\right)^{2}\left(1 b_{2}\right)^{2}\left(2 a_{1}\right)^{2}\left(3 a_{1}\right)^{2}\left(2 b_{2}\right)^{2}\left(4 a_{1}\right)^{2}\left(1 b_{1}\right)^{2}\left(5 a_{1}\right)^{2}\left(3 b_{2}\right)^{2}$
$\left(6 a_{1}\right)^{2}\left(7 a_{1}\right)^{2}\left(2 b_{1}\right)^{2}\left(4 b_{2}\right)^{2}\left(5 b_{2}\right)^{2}\left(1 a_{2}\right)^{2}\left(8 a_{1}\right)^{2} / 3 b_{1}$

Figure VI
 as a funcion of soo bond length for the ground stexe of sulphur ©iozide with or oritals.

calculations. The difference is only minor since the three molecular orbitals which are out of order have very similar energies, in this calculation $-0.6514 \mathrm{a} \cdot \mathrm{u} .\left(7 \mathrm{a}_{1}\right),-0.6265\left(2 \mathrm{~b}_{1}\right)$, and $-0.6029\left(4 b_{2}\right)$. The energy variation of the two highest occupied and of the lowest vacant molecular orbitals in sulphur dioxide as a function of bond length is presented in figure VI. It is seen that for S-0 bond distances greater than $1.53 \AA$, the highest occupied molecular orbital is one of a 2 symmetry, a result also obtained in the minimal basis calculations. However, at both the theoretical and experimental equilibrium S-0 bond distances, $1.46 \AA$ and 1.4321 A respectively, the orbital of a 2 symmetry is stabilized relative to the a_{1}. This relative stabilisation is understandable if the composition of these symmetry orbitals is considered. The al symmetry orbital consists mainly of p_{z} components on the three nuclei, whereas the a_{2} orbital is composed of P_{x} functions on the oxygen atoms and dxy function on the sulphur atom. At short internuelear distances, the $d \pi-p \pi$ interaction is much more extensive than the po contribution to bonding through the a_{1} symmetry molecular orbital. This explanation also accounts for the more rapid destabilimation of the a_{2} symmetry orbital.

111.3 EXCITED TRIPLET STATES OF SULPHUR DIOXIDE

Since the results of the sulphur dioxide computation for the basis set which included d functions seemed reliable, it was decided to use this basis for the study of the two lowest energy excited triplet states of sulphur dioxide. The lowest energy triplet studied was the ${ }^{3} B_{1}$ state, corresponding to the excitation of an electron from the highest occupied molecular orbital in the ground state calculacion one

Figure VII

Energy of the ground state (A_{1}). and the two lowest energy excited triplet stetes (${ }^{3} \mathrm{~B}_{2}$ 。 $^{3} \mathrm{~B}_{\mathrm{B}}$) of

Suiphur 10 ioxide as er funclon of sal bond lenget Por constant oso bond angle or 119.5°.

of a symmetry - to she lowest vacant molecular orbital which wes of bl symmetry:

$$
\ldots\left(5 b_{2}\right)^{2}\left(1 a_{2}\right)^{2}\left(8 a_{2}\right)^{1}\left(3 a_{1}\right)^{1} \quad 3 B_{1}
$$

Also, the ${ }^{3}{ }^{3}{ }_{2}$ stemte, resulting from promotion of an electron from the second highest energy occupied moleculap orbitel, symmery 2 . to the lowest vacant molecular orbital, included in this study:

$$
\cdots\left(50_{2}\right)^{2}\left(1 a_{2}\right)^{1}\left(8 a_{1}\right)^{2}\left(30_{1}\right)^{1} \quad 38_{2}
$$

The results deseribed in this work for the excited triplet states are based on calculations performed using PA400-a *erion of the unrestricted Harcreempock open shell programme included in the Polbatom compendium.

The theoretical ordering of steres found as well as comparison or the energy dependence or the axcited states on the Sol bond distance with that observed for the ground stere is presented in figupe 4 if.

An important feature of the depencence of state energies on bond distance, as presented in figure VII. is thet oit bond lengits close to the theoretical optimum ground state value, the ${ }^{3} g_{2}$ and 3^{3} excited states hawe the seme energy. At the experimental cquil ibrium geomety the ordering of states, in order of increasing energy, is ${ }^{1} A_{1}$. ${ }^{3} 8_{1},{ }^{3} B_{2}$
 In addition, the optimm Sm0 bond distance calculated for the ${ }^{3} B_{1}$ state (1.51A) is longer tham that obtained for the ground state but shorter than the ${ }^{3} B_{2}$ state bond lengith (1.60A). These pesuits are summarized in Table X18.

TABLE XII
RESULTS OF CALCULATIONS FOR EXCITED STATES OF SULPHUR DIOXIDE

State	Nature of Excitation	Theoretical Bond Length (\AA)	Minimum Energy (a.u)	Excitation Energy (e.v)	Wave Leggth (A)	Experimental Wave Length (A) (a)
${ }^{1} A_{1}\left(C_{2 v}\right)$	ground	1.46	-527.7717			
${ }^{3} B_{1}\left(C_{2 V}\right)$	$\mathrm{b}_{1} \longleftarrow \mathrm{a}_{1}$	1.51	-527.6940	2.30	5382	3800
${ }^{3} B_{2}\left(C_{2 v}\right)$	$\mathrm{b}_{1} \longleftarrow \mathrm{a}_{2}$	1.60	-527.7260	2.36	5243	2900
${ }^{1} A_{I}\left(C_{s}\right)$	ground	1.46/1.56	-527.7534			.
${ }^{3} \mathrm{~B}_{1}\left(\mathrm{C}_{5}\right)$	$\mathrm{b}_{1} \longleftarrow \mathrm{a}_{1}$	1.46/1.56	-527.714	1.57	7898	

(a) Reference 46

Again referring to figure Wil, and assuming vertical excication in accordance with the franck Condon principle, the excitation nergies may be calculated. At the equllibrium internuclear distance of $1.4321 A^{\circ}$, these are 2.30 ev for the ${ }^{3} B_{1}$ stete and 2.34 ov for the ${ }^{3} \mathbb{B}_{2}$ state. These excitarion enargies would correspond to spectral bands at 5382 And 5243A respectively. Both these values occur at lower energy than any of the bands comprising the sulphur dioxide spectrum ${ }^{48}$. The corresponding experimental results ${ }^{50}$ indigate that the two lowest energy eransitions in suiphur dioxide occur at 3.3 ev and 4.4 oy for the B_{1} and 8_{2} states respectively, giving rise to spectrel bands at $3800{ }^{\circ}$ and $2900{ }^{\circ}$. Furthermore, xperimentelists have conciuded that an increese in the $5-0$ bond distance of close $400.06 \mathrm{~A}^{52,53}$ occurs in the excitation producing the B_{1} state and that this value increases further to $1.53 A^{48}$ in the next excited singlet state. Although the thooretcal ordering of stexe, as well as the geometricil chmages involved in the excited states, are in agrement with expermental observetion the theoretical values for excisetion energies are much too small. Such results are however typical of unrestricted open shell calculations.

In the unrestricted HartreeFock method. lectron corplations not included in the closed shell ground state calculations are introduced for the excited states with the result that the excited state energiss are too low relative to the ground state. Hence the theoretical excitation anergies calculated in this menner tend co be coo low. In order to characterime with more relimbility the excited states of sulphur dioxide, further investigecion inciuding configuretion interection and
a bond angle optimization would seem to be required.
To complete the present study of the excited states of sulphur dioxide, a few calculations were performed in order to test Mulliken's 50 suggestion that the lowest excited state of B_{1} symmetry is asymmetric. These calculations consisted of a computation for a typical asymmetric geometry - the ground state equilibrium bond angle of 119.5° and $r_{S O_{1}}=1.46 \mathrm{~A}^{\circ}, \mathrm{r}_{\mathrm{SO}_{2}}=1.56 \mathrm{~A}$. This particular geometry was selected since it was thought to be typically representative of an asymmetric stretch from the optimum configuration calculated for the ${ }^{3} B_{1}$ state. The ground state for this configuration was less stable than the symmetric ground state configuration at bond length of $1.51 \mathrm{~A}^{\circ}$. However, the lowest energy triplet excited state produced by an electronic transition from the highest occupied molecular orbital of a' symmetry to the lowest vacant molecular orbital of $a^{\prime \prime}$ symmetry, working in the appropriate C_{s} symmetry group, has a total energy of - 527.714 a.u. Comparing this value with the ${ }^{3} \mathrm{~B}_{1}$ (symmetric) energy of $=527.684 \mathrm{a} . \mathrm{u}$., it appears that the lowest energy B_{1} excited state of sulphur dioxide is indeed asymmetric.

Except for a comparison of these results with a series of analogous calculations for ozone, which remains to be discussed later in this chapter, this concludes the examination of the triplet excited states of sulphur dioxide.
111.4 SULPHUR DIOXIDE RADICAL ANION - GROUND STATE AND LOWEST ENERGY EXCITED STATES
Recently, electron spin resonance spectra 54,55 of the sulphur dioxide radical anion in both the solld and liquid state have been studied, in the hope of elucidating the electronic structure of this radical anion. A similar theoretical Investigation was undertaken in order to provide a comparison for experimental results and so perhaps to aid in the interpretation of future experimental observations. The comparison of ground and excited states for the radical involves two open shell calculations and therefore the theoretically computed excitation energies should corpespond more closely to the experimental values than those found for sulphur dioxide.

Since no experimental data was avallable, the geomerty assumed for the radical ion was the equilibrium geometry of sulphur dioxide: 050 angle of 119.5° and 5-0 bond length of 1.4321A. The integrais required for this series of computations had previously been evaluated in the sulphur dioxide calculations. Just as for the excited states of sulphur dioxide, the extended basis set, in which the split zeta d exponents had been optimized was used in the sulphur dioxide radical calculations.

Three states of the sulphur dioxide radical anion were studied to determine the energy dependence on $S-0$ bond length. The ${ }^{2} B_{1}$ ground state electronic configuration was the following:

$$
\begin{array}{lll}
\alpha \text { spin: } & \ldots\left(4 b_{2}\right)^{1}\left(1 a_{2}\right)^{1}\left(5 b_{2}\right)^{1}\left(8 a_{1}\right)^{1}\left(3 b_{1}\right)^{1} \\
\beta \text { spin: } & \ldots\left(4 b_{2}\right)^{1}\left(2 b_{1}\right)^{1}\left(5 b_{2}\right)^{1}\left(1 a_{2}\right)^{1}\left(8 a_{1}\right)^{1}
\end{array}
$$

Figure VIII

Energy of the ground state $\left(2 B_{1}\right)$ and the two lowest energy excited states $\left({ }^{2} B_{2},{ }^{2} A_{1}\right)$ of the Sulphur Dioxide Radical Anion as a function of $5-0$ bond length.

and the two excited states:

$$
\begin{aligned}
& { }^{2} A_{1}\left(3 b_{1}+8 a_{1}\right) \\
& \alpha \text { spin: } \quad \ldots .\left(7 a_{1}\right)^{1}\left(4 b_{2}\right)^{1}\left(1 a_{2}\right)^{1}\left(5 b_{2}\right)^{1}\left(3 b_{1}\right)^{1} \\
& \beta \text { spin: } \ldots .\left(2 b_{1}\right)^{1}\left(1 a_{2}\right)^{1}\left(5 b_{2}\right)^{1}\left(8 a_{1}\right)^{1}\left(3 b_{1}\right)^{1} \\
& { }^{2} B_{2}\left(3 b_{1} \leftarrow 5 b_{2}\right) \\
& \alpha \text { spin: } \ldots\left(4 b_{2}\right)^{1}\left(1 a_{2}\right)^{1}\left(7 a_{1}\right)^{1}\left(8 a_{1}\right)^{1}\left(3 b_{1}\right)^{1} \\
& \beta \text { spin: } \ldots .\left(2 b_{2}\right)^{1}\left(5 b_{2}\right)^{1}\left(1 a_{2}\right)^{1}\left(8 a_{1}\right)^{1}\left(3 b_{1}\right)^{1}
\end{aligned}
$$

Not surprisingly, the ordering of the alpha and beta spin molecular orbitals is found to vary considerably depending on the occupancy. The variation in energy as a function of change in $5-0$ bond length is presented in figure Vill. For the radical ion, it was found that the ground state lies well below the lowest excited doublet state, and that the two lowest energy excited doublet states respond quite similarly to change in s-0 bond length. An intersection of the energy curves for the ${ }^{2} B_{2}$ and ${ }^{2} A_{1}$ states occurs at an 5-0 distance of $1.53 A^{\circ}$, the ${ }^{2} B_{2}$ state becoming the lower energy excited state of the two at internuclear distances larger than this. For the ground state of the sulphur dioxide radical anion, an optimum $S-0$ distance of $1.50 \AA$ was found, with the excited state values being $1.59 \AA$ for the ${ }^{2} A_{1}$ and $1.62 \AA$ for the ${ }^{2} B_{2}$ states. These results, in addition to excitation energies and spectral band locations are summarized in Table XIII.

The calculations performed in the course of the study of this radical species are capable of providing useful information for the

TABLE XIII
RESULTS OF CALCULATIONS FOR THE ${ }^{2} B_{1}$ GROUND STATE AND ${ }^{2} B_{2}{ }^{2}{ }^{2} A_{1}$ EXCITED STATES OF THE SULPHUR DIOXIDE RADICAL ANION:

State	Optimum Bond Length (A)	Minimum Energy $(\mathrm{a} . \mathrm{u})$	Excitation Energy $(\mathrm{e} . \mathrm{v})$	Band Locgtion (A)
${ }^{2} \mathrm{~B}_{1}$	1.50	-527.698		
${ }^{2} \mathrm{~A}_{1}$	1.59	-527.570	3.89	3186
${ }^{2} \mathrm{~B}_{2}$	1.62	-527.581	4.08	3037

(a) Calculated for vertical excitation at the optimum ground state bond distance.
experimental chemist. For instance Green ${ }^{56}$ has postulated that the dimerization process leading to the formation of dithionate ion $\mathrm{S}_{2} \mathrm{O}_{4}$ in some way involves an excited state of the $\mathrm{SO}_{2}{ }^{\text {- }}$ species. According so the present results, a minimum activation energy of 3.89 ev would be required for such a process, if the lowest energy excited state were involved. Since this excitation energy is quite high, and the dimerization is known to occur readily, it is unlikely that either of the two doublet states studied here are involved in this process.

111.5 OZONE - GROUND AND EXCITED STATES

The final stage in these calculations consisted of an attempt to evaluate the extent of participation by orbitals in the bonding of second row atoms. From the experimental point of view, 3d orbitals are thought to play a significant role in the bonding of second row atoms but this does not extend to first row atoms. In theoretical treatments 3d orbitals are included in the basis set of both first and second row atoms for the purpose of expanding the basis set and so increasing the flexibility of the wave function. No special importance is assigned these functions as regards their contribution to bonding.

In order to elucidate the role of 3 orbitals it was decided to perform a series of minimal and extended basis set calculations for ozone, comparable to those previously reported for sulphur dioxide. The extent of d orbital involvement in bonding of first and second row atoms was judged on the basis of three factors: the diffuseness of the $3 d$ functions as determined by the optimum orbital exponent, the contribution made by the 3 d orbitals to the bonding molecular orbitals, and the effect of the

3d orbitals on the molecular properties.
In addition to these ground state calculations for ozone, the lowest energy excited triplet states were also studied. It was thought that such a comparison might prove interesting since the electronic spectra of these two molecules are quite dissimilar despite the fact that their valence shells are isoelectronic. The spectrum of ozone is quite diffuse whereas that of sulphur dioxide consists of sharp discrete bands. Furthermore, ozone shows absorption ${ }^{57}$ at very long wave lengths, the lowest energy of these occuring at $10000 \AA$ compared with $3900 \AA$ for sulphur dioxide. Mulliken ${ }^{50}$ assigns the band at wavelength 6000 A to a B_{1} state $\left(2 b_{1} \leftarrow 4 a_{1}\right)$, with an excitation energy of 2.1 ev. The next excited state is a B_{2} state $\left(2 b_{1} \leftarrow 1 a_{2}\right)$, (which is assigned to a band at wavelength $2550{ }^{\circ}$) with an excitation energy of 4.86 . ev. On the whole the assignments of the ozone spectrum are tentative and thought to require further study.

In the course of investigation, the ground state equilibrium geometry bond angle of 116.8° was assumed and the 000 bond length, for which the experimental value is $1.278{ }^{\circ}$, was optimlzed using the same minimal basis set as reported in Chapter II for the other molecules studied. Initially, only the minimal basis calculations were performed for the study of ground state and swo excited states of ozone, since the orbitals, because of their high energy relative to the valence orbitals of axygen are thought not to participate strongly in bonding. Then the one d orbital which was found to be most important in sulphur dioxide - the dxy orbital - introduced into the basis; the effect

Figure $1 X$

Energy of the ground state $\left({ }^{1} A_{1}\right)$ and the two lowest energy excited triplet states $\left({ }^{3} B_{1},{ }^{3} B_{2}\right)$ of ozone as function of $0-0$ bond length.

of this function was determined by a comparison of the two sets of calculations. Also, the exponent of this single d function was optimized in order to establish and compare the orbital contraction with that found for sulphur dioxide.

The electronic configuration found for the ground state minimal basis ozone calculation was:

$$
\begin{gathered}
\left(1 a_{1}\right)^{2}\left(2 a_{1}\right)^{2}\left(1 b_{2}\right)^{2}\left(3 a_{1}\right)^{2}\left(2 b_{2}\right)^{2}\left(4 a_{1}\right)^{2}\left(5 a_{1}\right)^{2} \\
\left(1 b_{1}\right)^{2}\left(3 b_{2}\right)^{2}\left(4 b_{2}\right)^{2}\left(6 a_{1}\right)^{2}\left(1 a_{2}\right)^{2} /\left(2 b_{1}\right)
\end{gathered}
$$

This configuration has a different ordering from that suggested for the ground state by Heraberg ${ }^{57}$:

$$
\ldots\left(5 a_{1}\right)^{2}\left(4 b_{2}\right)^{2}\left(6 a_{1}\right)^{2}\left(1 a_{2}\right)^{2}
$$

However, in either case, the two lowest energy triplet excited states are the ${ }^{3} B_{2}\left(b_{1} \leftarrow a_{2}\right)$ and the ${ }^{3} B_{1}\left(b_{1}+a_{1}\right)$ as was also found for the sulphur dioxide minimal basis calculation.

A graphic presentation of the results for bond length optimisation in ${ }^{1} A_{1},{ }^{3} B_{1}$ and ${ }^{3} B_{2}$ states is given in figure $1 x$. Immediately obvious is the unexpected energy ordering of the states; both the ${ }^{3} B_{1}$ and ${ }^{3} B_{2}$ states are found to be energetically more stable than the ${ }^{1} A_{1}$ ground state. This ordering is not so surprising if the electronic spectrum of ozone is considered. The transition producing the lowest energy excited state occurs at $10000 A^{\circ}$ - an unusually long wave length. - The corresponding transition energy is $0.0455 \mathrm{a} .4 .$, value which easily lies within the range of uncercainty in this sype of calculation involving a comparison
of closed and open shell Hartree-Fock pesults.
One important result of these excited state calculations, was the optimization of the $0-0$ bond length in the tpiplet states studied. Although at the experimental internuclear distance the ${ }^{1} A_{1}$ and ${ }^{3} B_{1}$ states have almost identical energy, the ${ }^{3} B_{2}$ state is 0.12 a.u. lower in energy than the ${ }^{1} A_{1}$. The $0-0$ bond length increases in going from ${ }^{1} A_{1}\left(1.30 A^{\circ}\right)$ to ${ }^{3} B_{1}(1.32 \mathrm{~A})$ and ${ }^{3} B_{2}(1.36 \AA)$. No excitation energies could be determined on the basis of these results.

The theoretical behaviour of the excited states of ozone could be improved by one, or combination, of the following factors: a configuration interaction calculation, an improvement in basis sec, and a complete geometry optimlzation. As explained in the discussion of results for the sulphur dioxide calculations, it is an inherent property of the unrestricted Haptree~Fock method used in the excited state computations that the computed energies are too low relative to the corresponding closed shell ground state calculation. The ground state energy could be improved by configuration interaction calculation; this would also serve to improve the ordering of the excited 5 tates and their energies relative to the ground state since such @ calculation would take into account the interaction between low and higher energy states of the same symmetry. However, a configuration interaction calculation alone would possibly not produce a difference in energies of 0.12 a. W. Furcher complications could be due to an incomplete geometry optimization. Afthough such a possibility was not extensively investigated, brief bond angle optimization procedure indicated that for the minimal basis

TABLE XIV
MINIMAL AND. EXTENDED BASIS ENERGIES FOR OZONE - COMPARISON WITH OTHER WORK

	Minimal Basis Calculation	Extended Basis Calculation	Calculation 11	$\begin{gathered} \text { Calculation } \\ \text { Ill } \end{gathered}$
Nature of Basis Set	(244)	(244/244/2442)	Whitten's gaussian lobe functions	Slater orbital basis
Orbital Energies	$\begin{array}{ll} -19.8387 & 1 a_{1} \\ -19.5410 & 2 a_{1} \\ -19.5410 & 1 b_{2} \\ -1.6214 & 3 a_{1} \\ -1.2893 & 2 b_{2} \\ -0.9416 & 4 a_{1} \\ -0.7078 & 5 a_{1} \\ -0.6847 & 1 b_{1} \\ -0.6603 & 3 b_{2} \\ -0.4404 & 4 b_{2} \\ -0.4157 & 6 a_{1} \\ -0.3458 & 1 a_{2} \\ +0.0767 & 2 b_{1} \end{array}$	$\begin{aligned} & -19.8848 \\ & -19.6344 \\ & -19.6348 \\ & -1.6546 \\ & -1.3297 \\ & -0.9758 \\ & -0.7418 \\ & -0.7099 \\ & -0.7002 \\ & -0.4872 \\ & -0.4569 \\ & -0.4041 \\ & -0.0573 \end{aligned}$	-20.8896 $1 a_{1}$ -20.7255 $1 b_{2}$ -20.7255 $2 a_{1}$ -1.7233 $3 a_{1}$ -1.4263 $2 b_{2}$ -1.1108 $4 a_{1}$ -0.8168 $5 a_{1}$ -0.7808 $3 b_{2}$ -0.7602 $1 b_{1}$ -0.5807 $4 b_{2}$ -0.5657 $6 a_{1}$ -0.4906 $\frac{1}{2} a_{2}$ -0.0839 $2 b_{1}$	-20.9597 $1 b_{2}$ -20.6773 $1 a_{1}$ -20.6773 $2 a_{1}$ -1.6677 $3 a_{1}$ -1.3361 $2 b_{2}$ -1.0063 $4 a_{1}$ -0.7115 $5 a_{1}$ -0.6800 $1 b_{1}$ -0.6725 $3 b_{2}$ -0.4410 $4 b_{2}$ -0.4184 $1 a_{2}$ -0.3495 $6 a_{1}$
Total Energy (a.u)	-216.0161	-216.0834	-224.1618	-223.4790
$-V / T$	2.019	2.023		2.005

(a) Reference 58
(b) Reference 59
(c) Reference 60
set, and an $0-0$ bond distance of $1.278 \mathrm{~A}_{\text {, }}$ the minimum energy configuration is one in which the bond angle is 117° - a value close to the experimental angle. A final source of discrepancy could be the nature of the basis set, the minimal basis set chosen being inadequate for an accurate molecular orbital description of ozone. This possibility becomes unlikely when the results of this calculation are compared in Tables XIV and XV with those of other workers. The molecular orbital energies and computed molecular properties are simllar to those obtained for different types of basis set ${ }^{58,59}$. That the present molecular energy is higher than that for other calculations is due to the comparatively poor is representation. Although any one of these factors might not cause vast improvement in the ozone calculations, it seems likely that a combination of these and other less obvious modifications would yield theoretical results in better agreement with experiment.

It was decided to expand these computations designed to assess the role of d functions in sulphur dioxide and ozone by including a third phase. Initially, minimal basis calculations were performed for the two molecules. This was followed by an extended basis calculation in which a single d function had been incorporated into the minimal basis set. Since the results of these two sets of calculations were not conclusive, a third series of calculations involving a comparison of pesults for an ozone basis including the full set of functions seemed appropriate. A comparison of the results obtained for the two types of basis set should provide a clear indication of the advantages associated with the use of an expanded basis set.

TABLE XV
COMPARISON OF MOLECULAR PROPERTIES COMPUTED FOR OZONE WITH OTHER RESULTS

	Minimal Basis Calculation	Extended Basis Calculation	Calculation II (a)	Calculation III (b)	Experimental Results
Ist Ionization Potential (a.u)	0.3458	0.4041	0.4906	0.3495	0.4704
d Orbital Exponent	1.10				
Dipole (D) Moment (D)	0.516	0.044			0.53
Optimum Bond Length (Å)	1.30				1.278
Optimum Bond Angle	117°				116.8°

(a) Reference 58
(b) Reference 59
(c) Reference 60
(d) Reference 38

The next step in the sequence of investigations concerning the influence of basis set on results was to determine the effect of d orbitals on the results of molecular calculations for ozone. As explained previously, in sulphur dioxide the dxy orbital because of its symmetry makes a unique contribution, being the dorbital most involved in the bonding. Therefore, to a good approximation, the contribution of d functions could be represented by addition of only this basis function to the minimal basis set of ozone. The results of these calculations for sulphur dioxide and ozone are presented in Table XVI, together with comparison with full d set calculations.

As part of this investigation, the exponent of the dxy orbital was optimized for both sulphur dioxide and ozone. Optimum values found were 1.10 for O_{3} and 1.40 for SO_{2}, indicating that the dorbital is more diffuse in ozone than in sulphur dioxide.
for the single d calculations, the ratio of $3 d x y$ to $2 p_{x}$ coefficients in the molecular orbital may be considered a measure of the contribution to bonding made by the dxy orbital. This ratio for the lowest a_{2} symmetry molecular orbital was found to be 0.35 in ozone, compared with 0.62 in sulphur dioxide. The dxy orbital charge density was in $\mathrm{SO}_{2} 0.2723$ and in $\mathrm{O}_{3} 0.1862$. Although these calculations may prove that the orbital is more involved, by aimost 80%, in the molecular bonding of sulphur dioxide than in ozone, at the same time they show that the participation of orbitals in ozone is not negligible.

TABLE XVI
COMPARISON OF EXTENDED BASI.S CALCULATIONS FOR OZONE AND SULPHUR DIOXIDE

	Sulphur Dioxide		Ozone	
	Single dxy	Full d set	Single dxy	Full d set
d Orbital Exponent	1.40	$\begin{aligned} & 1.40 \\ & 1.63 \end{aligned}$	1.10	1.10 1.20
Orbital Occupancy	$8 a_{1} \quad 1 a_{2} \quad 2 b_{1} \quad 5 b_{2}$		$6 a_{1} 1 a_{2} \quad 1 b_{1} 4 b_{2}$	
Ordering of Molecular Orbitals	$\begin{gathered} \left(5 b_{2}\right)^{2}\left(l a_{2}\right)^{2} \\ \left(8 a_{1}\right)^{2} / 3 b_{1} \end{gathered}$		$\begin{gathered} \left(4 \mathrm{~b}_{2}\right)^{2}\left(6 \mathrm{a}_{1}\right)^{2} \\ \left(1 \mathrm{a}_{2}\right)^{2} / 2 \mathrm{~b}_{1} \end{gathered}$	
Total Molecular Energy (a.u)	-527.5152	-527.7709	-216.0834	-216.1431
Dipole Moment (debyes)	0.76	1.26	0.06	0.11
$\begin{aligned} & 1 a_{2} \text { M.O. } \\ & \text { Coefficients } \\ & 2 p x \\ & 3 \mathrm{dxy} \end{aligned}$	$\begin{aligned} & 0.5627 \\ & 0.3597 \end{aligned}$	$\begin{aligned} & 0.5832 \\ & 0.3240 \end{aligned}$	$\begin{aligned} & 0.6201 \\ & 0.2293 \end{aligned}$	$\begin{aligned} & 0.6280 \\ & 0.2119 \end{aligned}$
Density in dxy Orbital	0.2723	0.2436	0.1862	0.1742

As indicated in Table XVI, the expansion of basis from the single d set to the full d set did not greatly alter the results. In both ozone and sulphur dioxide, the best theoretical value of dipole moment was obtained for the minimal basis set. However, the full set substantially modified the energies of ground and excited states of ozone. At the experimental equillbrium geometry of ozone, the various state energies computed for the full d set were: $-216.1431 \mathrm{a} . \mathrm{u}_{\mathrm{o}}$ for ${ }^{1} \mathrm{~A}_{1},-216.1998 \mathrm{a} . \mathrm{u}_{\mathrm{o}}$ for ${ }^{3} B_{2}$, and -216.1301 a.u. for ${ }^{3} B_{1}$. Although the ${ }^{3} B_{2}$ excited state is still lower in energy shan the ground state, the discrepancy is now only $0.05 \mathrm{a} . \mathrm{u}$. as compared with a minimal basis set difference of 0.12 a.u. For difference of the magnitude of $0.05 \mathrm{a} . \mathrm{u}$. , it is quite likely that the improvements suggested previously for these calculations would produce more reasonable pesults. Thus, d functions in the case of ozone as well as sulphur dioxide seem to improve the theoretical results obtained for the excited state study considerably.

These findings are another point of evidence concerning the validity of the use of a minimal basis set. The ordering of states for ozone seems to be much improved by simple expansion of the basis set co include d functions on the central oxygen atom. It would certainly be of interest to study the effects of other modifications made to the basis set, since ic seems quite probable that expansion achieved by inclusion of extrafunctions other than should have important consequences.

An additional problem which has to be resolved is whether the d functions are necessary in moleculap orbital calculations of ozone
since on qualitative basis, $3 d$ functions are thought to be of special importance only in the bonding of second row atoms. The difference found between the optimum orbital exponents in the present calculations for oxygen and sulphup was not as large as might be anticipated. Tris result tends to indicate a surprisingly large participation of orbitals in bonding of ozone. In addition, a good theoretical bond length was calculated for ozone without the use of d functions, whereas for sulphur dioxide the bond length was considerably improved upon addition of d functions. Yet on the other hand, good theoretical values of dipole moment were calculated for the minimal basis set in both O_{3} and SO_{2}. Since agreement between experimental and theoretical values of dipole moment for both CS and $\mathrm{H}_{2} \mathrm{~S}$ is poor, the results found for minimal basis sulphup dioxide may be spurious.

Given this variety of theoretical results. it is difficult to assess the involvement of dorbitals in bonding. Furthermore, it seems on the basis of these calculations that the d functions do not play a special role in the bonding of sulphur and other second row atoms. Had this comparative ozone-sulphur dioxide study revealed only a minor contribution by the dorbitals in ozone, then conclusions concerming che use of d orbitals would have been obvious. As they stand, the results for the minimal basis calculations are unfortunately too nebulous to provide indisputable evidence that participation by orbitals in bonding is property exclusive to second row atoms.

The fact that the addition of d functions in ozone effects considerable improvement probably is indicative of the poor quality of
basis set. Although these calculations for sulphur dioxide were greatly improved by addition of d functions to the basis set, the analogous calculations for ozone seem to establish the necessity for improved gaussian representation of the minimal basis and even perhaps a necessity for extension of basis set to include higher energy atomic orbitals prior to an investigation of the use of d functions in bonding of first and second row molecules. Thus an optimization of the basis set should have been the first consideration in a study of this nature. Once this had been accomplished, the effects of addition of d orbitals could be established without the ambiguity which has arisen in the present computations.

CHAPTER IV

CONCLUDING SUMMARY

The investigations performed in the course of this work have served to indicate the necessity for further study in this area, rather than establishing conclusively the role of d orbitals in bonding. Although the present calculations have produced numerous interesting results, they constitute merely the initial stage of a potentially illuminating, lengthy and complex study.

One purpose of the work described in this thesis was to ascertain the contribution made by d functions to the bonding in second row atoms. The problem was investigated by observing the effect of addition of d functions to minimal basis set on certain molecular properties such as bond lengths, dipole moment and force constants. It was found that theoretical bond lengths improve upon addition of d functions. However, the results of dipole moment and force constant calculations are not so straightforward. Although in the case of carbon monosulphide and hydrogen sulphide the calculated dipole moment values improved upon inclusion of d orbitals, no similar improvement was obtained for sulphur dioxide, perhaps the most interesting molecule in the series studied. It is believed that these pesults are unreliable since the gaussian expansions used in the calculations have been proven inadequate - especially for pmtype functions. A major improvement, and indeed an essential one, in this type of study is the optimisation of basis set prior to further
calculation. The results of force constant calculations are not especially meaningful since this property is always difficult to calculate, as it depends on the second derivative of the energy. On the basis of these results alone, it is impossible to arrive at definite conclusions concerning involvement of d orbitals in bonding of second row atoms.

A more interesting and meaningful aspect of this work was the study of the ground and excited states of sulphur dioxide, which ied to a theoretical description of the electronic spectrum of this molecule. it was found that d orbitals were required in order to obtain reasonable results. However, once these functions were added, the spectral features observed experimentally were also predicted theoretically. The theoretical ordering of states as well as the varlation in geometry among these states, was found to agree well with experimental observation. The low excitation energies calculated did not detract from the importance of these results, as it was realized that such a discrepancy is inherent in a molecular orbital investigation based on the unrestricted Hartree-Fock method.

Another interesting feature of this work, perhaps the most relevant to the study of the role of d functions in the bonding of second row atoms, is the comparative calculation performed for ozone. The results of these calculations seem to indicate that d functions are not especially significant in the bonding of second row molecules, but may be incorporated, with almost equivalent repercussions, in the basis of analogous first row molecules. Indeed, the extent of involvement of d functions in ozone relative to that in sulphur dioxide is surprisingly large. These calculations tend to cast some doubt on Cruickshank's ${ }^{62}$ recent conclusions
that d orbitals are essential to an accurate theoretical description of bonding in fluorosilanes and fluarogermanes. The fallacy in making such a general conclusion is caused by a complate peliance on success of theoretical peproduction of experimentelly determined molecular properties. To obtain a complece assessment of the extent of involvement of d orbitals, scudy of this natupe should include a parallel evaluation for first pow analoghes.

Although such an approach wess adopeed in this work, the scope of the project was much too naprow co allow formultion of general. all inclusive conclusions. If would sem, on the basis of this restricted study, that the opbitals do not play anique pole in bonding of second row acoms. However, such a statement pemains to be confipmed by much more extensive research which should include large range of second row molacules and their first pou analoguss. Also, as mentioned earlier. such a study should be preceded by an optimisation of basis set to be used in the course of the calculations.

Unfortunately. these factors were discovered late in the course of the reported investigations with the consequence that the study has disappointingly been cerminaced without further explopation in the proposed directions.

APPENDIX 1

FORMULATION OF THE EQUATIONS REQUIRED FOR THE DIPOLE MOMENT
ROUTINE WHICH MAY BE INCORPORATED INTO POLYATOM PACKAGE

To obtain all the necessary integrals for evaluation of dipole moments, only the following integral need be evaluated:

$$
\left\langle x_{s}^{A}\right| \hat{r}_{i}\left|x_{s}^{B}\right\rangle \equiv \iint_{-\infty}^{\infty} \int_{s} x_{s}^{A} \hat{r}_{i} \chi_{s}^{B} d x d y d z
$$

In this notation, \hat{r}_{i} is the ith component of the dipole moment operator and X_{s}^{A}, X_{s}^{B} are s type functions on centres A and B respectively.

All other integrals for higher order functions may be obtained by simple differentiation of this integrand with respect to the appropriate parameter.

In figure X, a pictorial representation of the situation considered in a typical integration is presented. Referring to this diagram for definition of the variables occurring in the process of integral evaluation, the procedure is as follows:

$$
\begin{aligned}
& x_{S}^{A}=\exp \left(-\alpha_{A} r_{A}^{2}\right) \\
& x_{s}^{B}=\exp \left(-\alpha_{B} r_{B}^{2}\right)
\end{aligned}
$$

Expanding the product $\left(X_{s}^{A} X_{s}^{B}\right)$ about the point c :

Figure X

lllustration of reduction of a product of two gaussian functions, centres at A and 8 to a single gaussian function centred at C.

$$
x_{s}^{A} x_{s}^{B}=\exp \left(-\frac{\alpha_{A} \alpha_{B}}{\left(\alpha_{A}+\alpha_{B}\right)} R_{A B}^{2}\right) \exp \left(-\alpha_{A B} r_{C}^{2}\right)
$$

where $R_{A B}$ is the distance between points A and B, and

$$
\begin{aligned}
r_{C}^{2} & =\left(x-C_{x}\right)^{2}+\left(y-c_{y}\right)^{2}+\left(z-C_{z}\right)^{2} \\
C_{x} & =\frac{\alpha_{A} A_{x}+\alpha_{B} B_{x}}{\alpha_{A}+\alpha_{B}} \text { etc. } \\
\alpha_{A B} & =\left(\alpha_{A}+\alpha_{B}\right)
\end{aligned}
$$

Taking the \times component of the dipole moment as a specific example, the integral becomes:

$$
\left\langle x_{s}^{A}\right| \hat{x}\left|x_{s}^{B}\right\rangle=\int_{-\infty}^{\infty} \int_{-\infty} \int_{s}^{A} x_{s}^{B} x d x d y d z
$$

Transforming from the origin of the coordinate system, to a local origin at centre C :

$$
\begin{aligned}
& x=x^{\prime}+C_{x} \\
& y=y^{\prime}+C_{y} \\
& z=z^{\prime}+C_{z}
\end{aligned}
$$

$\left\langle x_{s}^{A}\right| \hat{x}\left|x_{s}^{B}\right\rangle$
$=\exp \left(-\frac{\alpha_{A} \alpha_{B}}{\left({ }^{\alpha_{A}+\alpha_{B}}\right.} R_{A B}^{2}\right) \iint_{-\infty}^{\infty} \int_{-\infty} \exp \left[-\alpha_{A B}\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)\right]\left(C_{x}+x^{\prime}\right) d x^{\prime} d y^{\prime} d z^{\prime}$

$$
\begin{gathered}
=\exp \left(-\frac{\alpha_{A} \alpha_{B}}{\alpha_{A}+\alpha_{B}} R_{A B}^{2}\right)\left\{\iint_{-\infty}^{\infty} \int_{x^{\prime}} \exp \left[-\alpha_{A B}\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)\right] d x^{\prime} d y^{\prime} d z^{\prime}\right. \\
\left.+\iint_{-\infty}^{\infty} \int_{x} C_{x} \exp \left[-\alpha_{A B}\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)\right] d x^{\prime} d y^{\prime} d z^{\prime}\right\} \\
=\frac{\pi}{\alpha_{A B}^{3 / 2}} \quad C_{x} \exp \left(-\frac{\alpha_{B} \alpha_{A}}{\alpha_{A}+\alpha_{B}} R_{A B}^{2}\right)
\end{gathered}
$$

that is:

$$
\left\langle x_{s}^{A}\right| \hat{x}\left|x_{s}^{B}\right\rangle=-\left(\frac{\pi}{\alpha_{A}+\alpha_{B}}\right)^{3 / 2}\left(\frac{\alpha_{A} A_{x}+\alpha_{B} B_{x}}{\alpha_{A}+\alpha_{B}}\right) \exp \left(-\frac{\alpha_{A} \alpha_{B}}{\alpha_{A}+\alpha_{B}} R_{A B}^{2}\right)
$$

Now X_{s}^{A} may be written:

$$
x_{s}^{A}=\exp \left\{-\alpha_{A}\left[\left(x-A_{x}\right)^{2}+\left(y-A_{y}\right)^{2}+\left(z-A_{z}\right)^{2}\right]\right\}
$$

Differentiating with respect to A_{x}, one obtains the gaussian p function:

$$
\begin{aligned}
\frac{\partial}{\partial A_{x}}\left(x_{s}^{A}\right) & \equiv \frac{\partial}{\partial A_{x}}\left[\exp \left(-\alpha_{A} r_{A}^{2}\right)\right] \\
& =2 \alpha_{A}\left(x-A_{x}\right) \exp \left(-\alpha_{A} r_{A}^{2}\right) \\
\frac{\partial}{\partial A_{x}}\left(x_{s}^{A}\right) & =2 \alpha_{A} x_{A} \exp \left(-\alpha_{A} r_{A}^{2}\right)
\end{aligned}
$$

or:

$$
p_{x}=x_{A} \exp \left(-\alpha_{A} r_{A}^{2}\right)
$$

$$
p_{x}=\left(2 \alpha_{A}\right)^{-1} \frac{\partial}{\partial A_{x}}\left[\exp \left(-\alpha_{A} \cdot r_{A}^{2}\right)\right]
$$

Thus a p_{x} function may be obtained from an stype function; similarly for p_{y} and p_{z}. For the series of d functions, a double differentiation with respect to the appropriate variables is required.

It is now obvious that the dipole moment integrals for p and d type functions may be obtained with relative ease from the s formula by differentiation.

For example, the formula for the x component due to the inter action of an sorbital on centre A and a P_{x} orbital on centre B is obtained in the following manner:

$$
\begin{aligned}
& \quad\left\langle x_{s}^{A}\right| \hat{x}\left|x_{p_{x}}^{B}\right\rangle=\frac{1}{2 \alpha_{B}} \frac{\partial}{\partial B_{x}}\left\langle x_{s}^{A}\right| \hat{x}\left|x_{s}^{B}\right\rangle \\
& =\quad \frac{1}{2 \alpha_{B}} \frac{\partial}{\partial{ }_{x}^{B}}\left\{\left(\frac{\pi}{\alpha_{A B}}\right)^{3 / 2}\left(\frac{\alpha_{A} A_{x}+\alpha_{B} B_{x}}{\alpha_{A}+\alpha_{B}}\right) \exp \left(-\frac{\alpha_{A} \alpha_{B}}{\left(\alpha_{A}+\alpha_{B}\right)} R_{A B}^{2}\right)\right\} \\
& =\frac{1}{2 \alpha_{B}}\left(\frac{\pi}{\alpha_{A B}}\right)^{3 / 2} \exp \left(-\frac{\alpha_{A} \alpha_{B} R_{A B}^{2}}{\alpha_{A}+\alpha_{B}}\left\{\frac{\alpha_{B}}{\alpha_{A}+\alpha_{B}}-\frac{\alpha_{A} \alpha_{B}}{\alpha_{A}+\alpha_{B}}\left[-2\left(B_{x}-A_{x}\right)\right]\right\}\right. \\
& =\frac{n^{3 / 2}}{2 \alpha_{B} \cdot \alpha_{A B}^{3 / 2}}\left[\frac{\alpha_{B}}{\alpha_{A}+\alpha_{B}}+\left(2 \frac{\alpha_{A} \alpha_{B}}{\alpha_{A}+\alpha_{B}}\right)\left(B_{x}-A_{x}\right)\right] \exp \left(-\frac{\alpha_{A} \alpha_{B}}{\alpha_{A}+\alpha_{B}} R_{A B}^{2}\right)
\end{aligned}
$$

In the remaining formulae which are presented below, the same procedure has been followed. The only difference is the introduction of a more efficient notation:

$$
\begin{aligned}
& C_{i}=\left(\alpha_{A} A_{i}+\alpha_{B} B_{i}\right) \\
& s=\left(\frac{\pi}{\alpha_{A B}}\right)^{3 / 2} \cdot\left(\frac{1}{\alpha_{A}+\alpha_{B}}\right) \\
& \alpha_{C}=\frac{\alpha_{A} \alpha_{B}}{\alpha_{A}+\alpha_{B}}
\end{aligned}
$$

Subscripts ($i, j, k, 1, q$) are used to designate che various components $(x, y$, or $z)$ and $\delta_{i j}$ is the Kronecker delta function.
$1 \quad\left\langle S^{A}\right| \hat{r}_{i}\left|S^{B}\right\rangle=S c_{i} \exp \left(-\alpha_{C} R_{A B}^{2}\right)$

11

$$
\begin{aligned}
&\left\langle p_{j}^{A}\right| \hat{r}_{i}\left|p_{k}^{B}\right\rangle=\frac{1 / 2}{2} \exp \left(-\alpha_{C} R_{A B}^{2}\right) \times\left\{\frac{\alpha_{C}}{\alpha_{A}}\left(B_{j}-A_{j}\right) \delta_{i k}\right. \\
&-\frac{\alpha_{C}}{\alpha_{B}}\left(B_{k}-A_{k}\right) \delta_{i j}+\frac{\alpha_{C}}{\alpha_{A} \alpha_{B}} c_{i} \delta_{j k} \\
&\left.-\frac{2 \alpha_{C}^{2}}{\alpha_{A} \alpha_{B}} c_{i}\left(B_{j}-A_{j}\right)\left(B_{k}-A_{k}\right)\right\}
\end{aligned}
$$

111

IV

$$
\begin{aligned}
& \left\langle s^{A}\right| \hat{r}_{i}\left|d_{j j}^{B}\right\rangle \\
& = \\
& \quad \frac{s \exp \left(-\alpha_{c} R_{A B}^{2}\right)}{2 \alpha_{B}}\left\{\left[c_{i}-\frac{\alpha_{c}}{\alpha_{B}} c_{i}-2 \alpha_{C}\left(B_{j}-A_{j}\right) \delta_{i j}\right.\right. \\
& \\
& \left.\left.\quad+2 \frac{\alpha_{C}^{2}}{\alpha_{B}}\left(B_{j}-A_{j}\right)^{2} c_{i}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
v\left\langle p_{j}^{A}\right| & \hat{r}_{i}\left|d_{k k}^{B}\right\rangle \\
& =\frac{S \exp \left(-\alpha_{C} R_{A B}^{2}\right)}{4 \alpha_{A} \alpha_{B}}\left[\alpha_{A} \delta_{i j}-\frac{\alpha_{A} \alpha_{C}}{\alpha_{B}} \delta_{i j}+2 \alpha_{C} \delta_{i j} \delta_{i k}\right. \\
& -4 \frac{\alpha_{C}^{2}}{\alpha_{B}}\left(B_{k}-A_{k}\right) C_{i} \delta_{j k}+2 \alpha_{C}^{2} \frac{\alpha_{A}}{\alpha_{B}}\left(B_{k}-A_{k}\right)^{2} \delta_{i j} \\
& +4 \frac{\alpha_{C}^{3}}{\alpha_{B}}\left(B_{k}-A_{k}\right)^{2}\left(B_{j}-A_{j}\right) C_{i}-4 \alpha_{C}^{2}\left(B{ }_{j}-A_{j}\right)\left(B_{k}-A_{k}\right) \delta_{i k}
\end{aligned}
$$

$$
\left.+2 \alpha_{C} C_{i}\left(B_{j}-A_{j}\right)-\frac{\alpha_{C}^{2}}{\alpha_{B}} c_{i}\left(B_{j}-A_{j}\right)\right]
$$

v1 $\left\langle s^{A}\right| \hat{r}_{j}\left|d_{k 1}^{B}\right\rangle=\frac{S \exp \left(-\alpha_{C} R_{A B}^{2}\right)}{2 \alpha_{B}}\left[-\alpha_{C}\left(B_{k}-A_{k}\right) \delta_{i 1}\right.$

$$
\left.-\alpha_{C}\left(B_{1}-A_{1}\right) \delta_{i k}+2 \frac{\alpha_{C}^{2}}{\alpha_{B}} C_{i}\left(B_{k}-A_{k}\right)\left(B_{1}-A_{1}\right)\right]
$$

$V 11\left\langle p_{j}^{A}\right| \hat{r}_{i}\left|d_{k l}^{B}\right\rangle$

$$
\begin{aligned}
& =\frac{5 \exp \left(-\alpha_{C} R_{A B}^{2}\right)}{4 \alpha_{A} \alpha_{B}}\left[-2 \alpha_{C}^{2}\left(B_{j}-A_{j}\right)\left(B_{k}-A_{k}\right) \delta_{i 1}\right. \\
& =2 \alpha_{C}^{2}\left(B_{j}-A_{j}\right)\left(B_{i}-A_{1}\right) \delta_{i k}+4 \frac{\alpha_{C}^{3}}{\alpha_{B}} C_{j}\left(B_{j}-A_{j}\right) \\
& \times\left(B_{k}-A_{k}\right)\left(B_{1}-A_{i}\right)+\alpha_{C} \delta_{i l} \delta_{j k}+\alpha_{C} \delta_{i k} \delta_{1 j} \\
& +2 \alpha_{C}^{2} \frac{\alpha_{A}}{\alpha_{B}}\left(B_{k}-A_{k}\right)\left(B_{j}-A_{1}\right) \delta_{i j}-2 \frac{\alpha_{C}^{2}}{\alpha_{B}} C_{i}\left(B_{j}-A_{p}\right) \delta_{j k} \\
& \left.=2 \frac{\alpha_{C}^{2}}{\alpha_{B}} C_{i}\left(B_{k}-A_{k}\right) \delta_{j j}\right]
\end{aligned}
$$

$V 111\left\langle d_{k k}^{A}\right| \hat{r}_{i}\left|d_{j j}^{B}\right\rangle$

$$
\begin{aligned}
& =\frac{S \exp \left(-\alpha_{C} R_{A B}^{2}\right)}{4 \alpha_{A}^{2} \alpha_{B}^{2}}\left[\alpha_{A} \alpha_{B} C_{i}-\alpha_{A} \alpha_{C} C_{i}-\alpha_{B} \alpha_{C} C_{i}\right. \\
& +2 \alpha_{C}^{2} C_{i} \delta_{j k}-\alpha_{C}^{2} C_{i}+2 \alpha_{A} \alpha_{B} \alpha_{C}\left(B_{k}-A_{k}\right) \delta_{i k} \\
& =2 \alpha_{A} \alpha_{B} \alpha_{C}\left(B_{j}-A_{j}\right) \delta_{i j}+2 \alpha_{B} \alpha_{C}^{2}\left(B_{j}-A_{j}\right) \delta_{i j}
\end{aligned}
$$

$$
\begin{aligned}
& -2 \alpha_{A} \alpha_{C}^{2}\left(B_{k}-A_{k}\right) \delta_{i k}-2 \alpha_{A} \alpha_{C}^{2}\left(B_{j}-A_{j}\right) \delta_{i k} \delta_{i j} \\
& +2 \alpha_{B} \alpha_{C}^{2}\left(B_{k}-A_{k}\right) \delta_{j k} \delta_{i j}-2 \alpha_{A} \alpha_{C}^{2}\left(B_{j}-A_{j}\right) \delta_{i k} \delta_{j k} \\
& +2 \alpha_{B} \alpha_{C}^{2}\left(B_{k}-A_{k}\right) \delta_{j k} \delta_{i j}+2 \alpha_{B} \alpha_{C}^{2} C_{i}\left(B_{k}-A_{k}\right)^{2} \\
& +2 \alpha_{A} \alpha_{C}^{2} C_{i}\left(B_{j}-A_{j}\right)^{2}-8 \alpha_{C}^{3} C_{i}\left(B_{j}-A_{j}\right)\left(B_{k}-A_{k}\right) \delta_{j k} \\
& -2 \alpha_{C}^{3} C_{i}\left(B_{j}-A_{j}\right)^{2}-2 \alpha_{C}^{3} C_{i}\left(B_{k}-A_{k}\right)^{2} \\
& -4 \alpha_{C}^{3} \alpha_{B}\left(B_{k}-A_{k}\right)^{2}\left(B_{j}-A_{j}\right) \delta_{i j} \\
& +4 \alpha_{C}^{3} \alpha_{A}\left(B_{j}-A_{j}\right)^{2}\left(B_{k}-A_{k}\right) \delta_{i k} \\
& +4 \alpha_{C}^{4} C_{j}\left(B_{j}-A_{j}\right)^{\left.2\left(B_{k}-A_{k}\right)^{2}\right]}
\end{aligned}
$$

$$
\begin{aligned}
1 x\left\langle d_{j 1}^{A}\right. & \left.\left|\hat{r}_{i}\right| d_{k k}^{B}\right\rangle \\
& =\frac{S \exp \left(-\alpha_{C} R_{A B}^{2}\right)}{8 \alpha_{A}^{2} \alpha_{B}^{2}}\left[4 \alpha_{C}^{2} \alpha_{B}\left(B_{j}-A_{j}\right) \delta_{i k} \delta_{k 1}\right. \\
& +2 \alpha_{C} \alpha_{B} \alpha_{A}\left(B_{j}-A_{j}\right) \delta_{i 1}-2 \alpha_{C}^{2} \alpha_{A}\left(B_{j}-A_{j}\right) \delta_{i 1} \\
& -4 \alpha_{C}^{2} \alpha_{A}\left(B_{k}-A_{k}\right) \delta_{i j} \delta_{k i}-4 \alpha_{C}^{2} \alpha_{A}\left(B_{k}-A_{k}\right) \delta_{i 1} \delta_{j k} \\
& +4 \alpha_{C}^{2} \alpha_{B}\left(B_{1}-A_{1}\right) \delta_{i j} \delta_{i k}+2 \alpha_{A} \alpha_{B} \alpha_{C}\left(B_{1}-A_{1}\right) \delta_{i j} \\
& -2 \alpha_{A} \alpha_{C}^{2}\left(B_{1}-A_{1}\right) \delta_{i j}-8 \alpha_{C}^{3}\left(B_{k}-A_{k}\right)\left(B_{1}-A_{1}\right) C_{i} \delta_{j k} \\
& +4 \alpha_{C}^{2} \alpha_{B} C_{i}\left(B_{j}-A_{j}\right)\left(B_{1}-A_{1}\right)-4 \alpha_{C}^{3}\left(B_{j}-A_{j}\right) \\
& \times\left(B_{1}-A_{1}\right) C_{i}-8 \alpha_{C}^{3}\left(B_{k}-A_{k}\right)\left(B_{j}-A_{j}\right) C_{i} \delta_{1 k} \\
& +4 \alpha_{C}^{3} \alpha_{A}\left(B_{k}-A_{k}\right){ }^{2}\left(B_{1}-A_{1}\right) \delta_{i j} \\
& 8 \alpha_{C}^{3} \alpha_{B}\left(B_{j}-A_{j}\right)\left(B_{1}-A_{1}\right)\left(B_{k}-A_{k}\right) \delta_{i k}
\end{aligned}
$$

$$
\begin{aligned}
& +4 \alpha_{C}^{3} \alpha_{A}\left(B_{k}-A_{k}\right)^{2}\left(B_{j}-A_{j}\right) \delta_{i 1} \\
& +8 \alpha_{C}^{4}\left(B_{j}-A_{j}\right)\left(B_{1}-A_{1}\right)\left(B_{k}-A_{k}\right)^{2} C_{i} 1 \\
& x\left\langle\begin{array}{l|l|}
d_{k 1}^{A} & \hat{r}_{i}\left|d_{j p}^{B}\right\rangle
\end{array}\right. \\
& =\frac{S \exp \left(-\alpha_{C} R_{A B}^{2}\right)}{8 \alpha_{A}^{2} \alpha_{B}^{2}}\left[2 \alpha_{C}^{2} C_{i} \delta_{p}\right] \delta_{j k}+2 \alpha_{C}^{2} C_{i} \delta_{1 j} \delta_{p k} \\
& +2 \alpha_{C}^{2} \alpha_{B}\left(B_{k}-A_{k}\right) \delta_{1 j} \delta_{i p}+2 \alpha_{C}^{2} \alpha_{B}\left(B_{i}-A_{1}\right) \delta_{j k} \delta_{i p} \\
& +2 \alpha_{C}^{2} \alpha_{B}\left(B_{1}-A_{1}\right) \delta_{i j} \delta_{k p}+2 \alpha_{C}^{2} \alpha_{B}\left(B_{k}-A_{k}\right) \delta_{i j} \delta_{1 p} \\
& -2 \alpha_{C}^{2} \alpha_{A}\left(B_{j}-A_{j}\right) \delta_{i l} \delta_{p k}-2 \alpha_{C}^{2} \alpha_{A}\left(B_{j}-A_{j}\right) \delta_{i k} \delta_{p l} \\
& -2 \alpha_{C}^{2} \alpha_{A}\left(B_{P}-A_{p}\right) \delta_{i 1} \delta_{j k}-2 \alpha_{C}^{2} \alpha_{A}\left(B_{p}-A_{p}\right) \delta_{i k} \delta_{j 1} \\
& -4 \alpha_{C}^{3} C_{i}\left(B_{j}-A_{j}\right)\left(B_{1}-A_{j}\right) \delta_{k p}-4 \alpha_{C}^{3} C_{i}\left(B_{j}-A_{j}\right) \\
& X\left(B_{k}-A_{k}\right) \delta_{p l}=4 \alpha_{c}^{3} C_{i}\left(B_{p}-A_{p}\right)\left(B_{1}-A_{1}\right) \delta_{j k} \\
& -4 \alpha_{C}^{3} C_{i}\left(B_{k}-A_{k}\right)\left(B_{p}-A_{p}\right) \delta_{i j}-4 \alpha_{C}^{3} \alpha_{B}\left(B_{j}-A_{j}\right) \\
& X\left(B_{k}-A_{k}\right)\left(B_{1}-A_{1}\right) \delta_{i p}-4 \alpha_{C}^{3} \alpha_{B}\left(B_{p}-A_{p}\right)\left(B_{k}-A_{k}\right) \\
& \times\left(B_{1}-A_{1}\right) \delta_{i j}+4 \alpha_{G}^{3} \alpha_{A}\left(B_{p}-A_{p}\right)\left(B_{j}-A_{j}\right)\left(B_{j}-A_{i}\right) \delta_{i k} \\
& +4 \alpha_{C}^{3} \alpha_{A}\left(B_{p}-A_{p}\right)\left(B_{j}-A_{j}\right)\left(B_{k}-A_{k}\right) \delta_{i 1} \\
& \left.+8 \alpha_{C}^{4} C_{i}\left(B_{j}=A_{j}\right)\left(B_{k}-A_{k}\right)\left(B_{i}-A_{1}\right)\left(B_{p}=A_{p}\right)\right]
\end{aligned}
$$

APPENDIX 11

PROGRA：DIFUGE（INPUT，OUTPUT，（AFE4）

1 DI（3，3），X（4，，4～），NB

ARE READ FROA THE PA 3 W I IALGRAL TAPL（TAPA4）
CALL SECOND（T1）
PRINT Llow，rl
NORX $=40$
$P I=3.14150265359$
REWINO4
READ（4）

READ（4）$\because G,($（ETA $(1, J), j=1,5),!=1$ ，NG）

REWIND4
DO $1005 \quad 1=1$ ，NB
DO 1uッj $J=1$ ，iv 3
（に）
$D(I, j)=$ ．．．
$1.005 Y([9, j)=$ U．u
READ luts HR，NC

DO lưt $\mathrm{i}=\mathrm{I}$ ，SR
1004 READ 1 WUG，（（1）J）：J＝1，NC）

00 lul．j 1：i， 6
$001 \cup 10$ I－1，
DO lUlO $\leqslant=1, \% 3$

PRTAT lu：

GINT 1 ．

FRET 1 6
PRTMT aw
W）2ui i ital

PRINT ：：
ror 30 i ： 10
が何 j i．
日I（i，j）：

```
    IF(I.NE.J) GO TO 30
```

 \(D I(I, I)=1.0\)
 30 CONTINUE
 THE DIPOLE GOMENT INTEGRALS P PRIOR TO WULTIPLICATIGA BY UFMSITY
 MATRIX ARE STORED IN ARZAY X
 DO 5 U IV \(=1,3\)
 CALL DINTS
 PRINT 1UB
 PRINT 1]OGV
 CALL PRNT(X,NB,NBNX)
 DM(IV) \(=0.0\)
 DO \(60 \quad I=1\), ine
 DO 6U \(J=1\), NB
 6(DM (IV) \(=\) DH(IV) - 2.U*D(I,J)*x(I,J)
 50 continue
 THE NUGLEAR CONTRIBUTIONE TO THE DIPULE -ONEGT ARE BEXT
 CALCULATED
 RNI \(=0.0\)
 RN2 \(=0.0\)
 RiN3 \(=0.0\)
 DO \(160 \quad 1=1\), NOC
 RNI \(=\) RNI + VLIST(I, 1)*VLIST(I, \& \()\)
 RN2 \(=\) RN? + VLIST \((1,2) * V L I S I(1,4)\)

2N1 - RN: ! D!!!!
$0 \times 2=R 12+D M(2)$
DN3 $=\operatorname{Rn} 3+\mathrm{DN}(3)$
DOM $=\operatorname{SORT}(0 \% 1 * * 2+D * 2 * 2+D 03 * * 2) * 2.5415$
PRINT 204
PRINT 2U1, DR(1), $\operatorname{OM}(2), D M(3)$
PRINT 2U2, RN1,RN2,RN3
PRINT 2.7, DM1, DV29DM3
PRINT 2U3, DPF
CALL SECOND(T2)
PRMT 11H: T2
$T \mathrm{~T}=\mathrm{T} 2-\mathrm{Tl}$
PREAT IIUZ, TT

1いる ト OR゙か1 (1/

$1 \times Y \%, 9 X, *: \%: 11$

```
    OU7 FOR`AI(8X,*RFSLLTANT*,3X,3F1-.6.//1
    21U FORजAT(lUX,I?,3X,'(3x,Flu.G))
    1000 FORMAT(4EE15.8)
    1006 FORVAT(3I5)
    1007 FORMAT(12F5.0)
```



```
    1 //1
```



```
        CALL EXIT
        END
        SUFRROUTINE DINTS
        COMMON/DIPI/PI,IV,ETA(12U,5),NTYPE(12U),AFIRST(170:9NLM.2I(T2U),
    1 D (3,3),X(40,4U),N!B
```



```
        THE INTEGRAL. PACKASE AND PGOTAULTIPLIFO l|E DIPGLE MGGGO
        INTEGRALS EY THE APPROPRIATE MORNAEIZEL GOFFFICIGNI%
        DO lUU I= l,NH
    MT = NTYPE(I)
    LL = NLAST(I) - NFIROT(I) + I
    DO IUC J=I,NB
    NL = NFIRST(I)
    NT = NTYPE(J)
```



```
    X(I,J)=u.v
    DO 11v }\because=1,L
    NL = NFIRST(J)
    DO 111 N=1gMN
    DI = DIDI(NL,NL,NT,NT)
    DD = ETG(*LL,5)*FTA(NL,5)*CT
    X(I,J)= X([,J) + D5
    111 NL = NL + 1
    110 \becauseL=ML+1
    X(J,I) = X([,J)
    luO CONTINUE
    200 FORMAT(6X,6I6,6X,F15.8,1.2.,!15.3)
```



```
    PGTURM
    FND
```

FUNCTION DIPI(ML, IIL, M, N)

$1 D(3,3), \times(40,4 U), N B$
© this function evaluates ihe dipole moent inirgralo
IITTEGER P

1 (ETA (ML, 3) - ETA (NL, 3)) * $\% 2$
$A C=E T A(N L, 4) * E T A(N L, 4) /(E T A(: L, 4)+F(A(N L, i+))$
$E R=(E X P(-A C R A B 2)) *(P I * * 1.5) /(E T M(\ldots L, 4)+E I A(N L, 4)) * ?$
GO TO $(1,2,2,2,3,2,3,4,6,5)$, ,
$160 \mathrm{TO}(11,12,12,12,23,23,23,241,241,242), \mathrm{M}$
2. GOTO $(14915,15,15,25,25,25 \cdot 261,26 ?, 262), N$

3 GOTO $(31,32,32,32,351,351,351,352,352,362), \mathrm{N}$
$460 \mathrm{TO}(41,42,42,42,352,352,252,363,363,365), N$
5 GOTO (51,52,52,52,352,352,352,363,363,363), iv
6 GOTO $(4,1,62,62,62,352,352,352,363,363,363), \mathrm{N}$
c
(P/R/S).....EOUATION 3 IN FORFULA LİI
$14 \mathrm{AA}=\mathrm{ETA}\left(N L, 9^{\prime}\right)$
$A B=$ ETA (NL, 4)
$J=M-1$
$A J=E T A(N L, J)$
$\mathrm{F} J=\mathbb{E T A}(\cdots \mathrm{L}, \mathrm{J})$
$C I=A A * F T A(N L I)+A 3 * E T A(N L, I)$

C (S/R/P).....ECUNIION 3 IN FORMDA I.1ST
$12 \mathrm{AA}=\mathrm{ETA}($ inL, 4$)$
$A B=E T A(N L, 4)$
$J=N-1$
$A J=E T A(M L, J)$
$B J=E T A(N L ; J)$
$C I=A A * E T A(N L, T)+A B E T A(N L, I)$
$18 D I P I=E R *(D(I, J) / 2.0-A C *(1 *(: J-A J) / A:)$
RETURA

$11 \mathrm{AA}=\mathrm{ETA}(\mu \mathrm{L}, 4)$
$A B=E T A(N, 4)$
$\mathrm{AI}=\mathrm{FTA}(\mathrm{H}, \mathrm{I})$
$B I=E T A(B L, I)$

RETURN
C
$15 \mathrm{AA}=\mathrm{F}$ TA(BL, 4)
$A R=$ ETA(M1.t)
$J=M-$?
$k=N-!$
$\wedge J=\{1(A, J)$
$A K=E[A(\therefore L$ g K)

(S.) - ETA(NL, J)

```
        BK=ETA(NL,K)
```

 \(B I=\operatorname{ETA}(N L, I)\)
 \(C I=(A A * A I+A B * D I)\)

RETURN
C ($5 / R / D J J) \ldots$....FQUATIOA 4 IN FOR..ULA LIST
$23 \mathrm{AA}=\mathrm{ETA}(\mathrm{ML}, 4)$
$A B=\operatorname{ETA}(N L, 4)$
$J=N-4$
$A J=E T A(: i L, J)$
$B J=E T A(N L, J)$
$C I=A A * E T A(N L, I)+A Z E E T A(N L O I)$

$1 * * 2 *(P J-A J) \div 2 * C I / A(3) / A B$
RETURN
C (DJJ/R/S)....EQUATION 4 IN FORMULA LIST
$31 \mathrm{AA}=\mathrm{ETA}(\mathrm{NL}, 4)$
$A B=E T A(M L, 4)$
$J=F-4$
$A J=E T A(N L, J)$
$B J=E T A(M L, J)$
$C I=$ MAKFTA(ML, I $)+A B E E T A(B L$, ! $)$
ron Tn AK

$241 \mathrm{~J}=\mathrm{M}$
$K=N-6$
GO TO 24
$242 \mathrm{~J}=\mathrm{M}+1$
$K=N-7$
$2 \% A A=E T A(: L, 4)$
$A B=E T A(N L, 4)$
$A J=E T A(M L, J)$
$B J=E T A(N L, J)$
$A K=E T A(N L, K)$
$B K=E T A(N L, K)$
$C I=A A * F T A(B L, I)+A F \% E T A(N L, I)$

RETURN

$\begin{aligned} 41 J & =N \\ k & =i . \\ & =10\end{aligned}$
6010400
$\zeta 1 J=N+1$
$K=N \quad-7$
$400 \mathrm{AA}=\mathrm{ETA}(\mathrm{ML}, 4)$
$A B=E T A(M L 9)$
$A J=G A(N L, J)$

```
        PJ=ETA(ML,J)
        AK = ETA(NL,K)
        PK = ETA(ML,N)
        CI = AA #FTA(NL,I) + AB*ETA(ML,I)
        GO TO 2UO
    C (PJ/R/DKK)....EQUATION 5 IN FORivilla LIST
        25AA = ETA(ML,4)
        AB=ETA(NL,4)
        J=M-1
        K=N-4
        AJ=ETA(ML,J)
        EJ=ETA(NL,J)
        AK=ETA(NVL,K)
        BK = ETA(NL,K)
        CI = AA*ETA(ML,I) + ABNETA(NL,I)
    250DIPI = U. 25*EP*(AA*O(I,J) - AA*AC*D(I,J)/AB + ?.U*AC*O(I,J)*
```



```
        ? ** *D(I,J)/AR + &,O* A(**2*(DK-AK)**つ*(PJ-AJ)*(I/NQ - A**AC**?
```



```
        4(BJ-AJ)/AB)/(AA*AB)
            RETURN
C. (PJ/R/DKL)
    261K=N-7
        & :! E
        GO 10 260
    262 K=N-B
        L=N-6
        GO TO 260
    263K=N-8
        L=N-7
    260 J = N
        AA=ETA(ML,4)
        AP=ETA(NL,4)
        AJ=ETA(ML,J)
        AK=FTA(NL,K)
        AL = ETA(ML,L)
        B.J=ETN(NL,J)
        BK=ETA(NL.gK)
        BL=ETN(NL,L)
        C! \becauseETA(\becauseL,I)*AA + ETA(NL,I)*AF
```



```
        & *(I#(PK-AK) &G(J,L)/AE)/(AA:A!)
            RたIURN
C (DKK/P/PJ)....EZVATILNF [NFOK.NU!ALISI
    32 J = N - 1
            K=M-4
```

```
            AA = ETA(NL,4)
            AB = ETA(ML,4)
            AJ = ETA(NL,J)
            BJ = ETA(ML,J)
            AK = ETA(NL,K)
            BK = ETA(ML,K)
            CI = ETA(MAL,I)*AB + ETA(NL,I)*AA
            GO TO 250
C (DKL/R/PJ).....EQUATION 7 IN FORMULALLSI
        62 J = N - 1
            K=M-8
            L=M-6
            GO TO 500
        42 J = N - 1
            K=N-7
            L =M-6
            GO TO 5u0
        52 J = N - 1
            k=M-8
            L=M-7
    500 AA = FTA(NL,4)
            AF= ETA(ML,4)
            AJ = ETA(NL,J)
            8コ-ET^!!`!-こ!
            AK = E{A(NL,K)
            BK = ETA(F,L,K)
            AL=ETA(ML,L)
            BL = ETA(ML,O.)
            CI= ETA(NL,I)*AA + ETA(MLOI)*AB
            gO TO GUO
                (DKK/R/OJJ).....EOUATION 3 IN FORmULA LISI
            351 AA = ETA(NL,4)
            AB=EYA(NL,4)
            J=N-4
    K = N N - 4
    AJ= ETA(ML,J)
    RJ=ETA(NL,J)
    AK : FTA(ML,O)
    BK = FTA(NH,O)
    C.I = AN*FTA(U,I) + AS*ETA(ML,I)
```



```
    7(BK-AK)*D(I,R)-4.U*AC**3*AES*(BK-AK)**2*(BJ-AJ)*O(I,J) + 4.U*AC
    8 **4*CI*(BJ-AJ)**2*(BK-AK)**2)/(4.0*AA**2*AR**2)
    RETURN
C. (DJL/R/DKK).....EOLATION 9 IN FORV:JLA LIST
    352 IF(M.LT.8) GO TO 370
    K = N-4
    IF(N-9) 371,372,373
370 K = in - 4
    IF(N-9) 371,372,373
371 J = 1
    L = 2
    GO TO 375
372 J = 1
    L=3
    GO TO 375
373 J = 2
    L=3
375 IF(M.LT.8) GO TO 376
    AA = ETA(ML,4)
    AB = ETA(NL,G)
    AJ= F.TA(NI,J)
    EJ= ETA(NL,J)
    AK = ETA(ML,K)
    OY - ETA!M!-:%!
    AL = EIA(NAL,L.)
    SL = ETA(NL,L)
    CI = ETA(ML,I)*AA + ETA(NL,I)*AB
    GO TO 91
376 AA = ETA(NL,4)
    AB=ETA(ML,4)
    AJ = ETA(NL,J)
    BJ = ETA(ML,J)
    AK = ETA(ML,K)
    EK = ETA(ML, K.)
    AL= ETA(NL,L)
    RL = ETA(ML,L)
    CII=FT^(ML,I)*AR + ET^(NL,I)*AA
O! CONTIMUF
```



```
    9**2*AS**2)
```


RETURN

(- (DJK/R/D!P).....EEOLATION IL IN FORAULA LIOT
$363 \mathrm{IF}(\mathrm{M}-9) 39 \mathrm{O}, 391,392$
$390 \mathrm{~K}=1$
$L=2$
GO 10403
$391 \mathrm{~K}=1$
$L=3$
GO TO 4v3
$392 K=2$
$L=3$
403 IF $(N-9) 393,394,395$
$393 \mathrm{~J}=1$
$P=2$
0010401
$394 \mathrm{~J}=1$
$p=3$
GO TO LUl
$395 \mathrm{~J}=2$
$P=3$
$401 \mathrm{AA}=\mathrm{ETA}(\mathrm{ML}, 4)$
$A F=E T A\left(N L, L_{4}\right)$
$C I=A A \approx E T A(V L, I)+A B E E T A(N L, I)$
$\therefore \dot{\prime}$ - ETA!: :
OJ $=$ ETA(NL, J)
$A K=E T A(M L, K)$
$B K=E T A(N L, K)$
$A L=E T A(M L, L$.
$B L=E T A(N L, L)$
$A P=E T A(M L, P)$
$Q P=E T A(N L, P)$

ETTVRA

EDD

GuRnOUTINE PQ:T(Y, NB, MH)
DIGMEICN Y(\because O, ME)
$\mathrm{M} \geqslant=0$

```
    DO 71U M3=1,10
    M1=M2+1
    M2=M2+12
    IF(M2-NH)711,712,712
712 M2=NB
    M3=10
711 PRINT G:05,(., J=M1,M2)
        PRINT I\cup8
        DO 505 I= 1,NB
5U5 PRIN「5u,I,(Y(I,J),J=MI,M2)
710 PRINT 1U7
107 FORIMAT (//)
103 FORMAT (/)
    50 FORNAT(1X,12,1X,12F1U.6)
6005 FORMAT(4X,I7,11IIU)
    RETURN
    END
```

APPENDIX III
TRANSFORMATION OF AB INITIO MOLECULAR
ORBITALS TO CNDO FORMAT

The self consistent field equations which are solved in ab initio molecular orbital studies are generally expressed in matrix notation as:

$$
\begin{equation*}
F C=S C E \tag{1}
\end{equation*}
$$

where F is the Fock matrix, S the overlap matrix, C the matrix of molecular orbital coefficients and E the eigenvalue matrix. The difference between these equations and the semi-empirical analogues is due to the inclusion of atomic overlap in the former case.

In the CNDO approach, the Hartree-Fock equations reduce to:

$$
\begin{equation*}
F^{\prime} C^{\prime}=C^{\prime} E \tag{11}
\end{equation*}
$$

Prior to their use in the process of parametrization of CNDO, the $a b$ initio wave functions must be transformed so that the coefficients correlate with those obtained in the semi-empirical method. This transformation is quite straightforward consisting of a single mathematical manoeuvre - namely left multiplication of equation (1) by $\mathrm{S}^{-\frac{1}{2}}$ to give:

$$
\begin{equation*}
S^{-1 / 2} \mathrm{FS}^{-1 / 2} S^{1 / 2} C=S^{1 / 2} C E \tag{111}
\end{equation*}
$$

TABLE XVII

ORBITAL CHARGE DENSITIES FOR CARBON MONOSULPHIDE

Function	Charge Density	
	Without $d^{(a)}$	With $\mathrm{d}^{(\mathrm{b})}$
C is	0.9983	0.9977
2 S	0.8554	0.7548
2px	0.2899	0.2701
y	0.2899	0.2701
z	0.6688	0.6614
515	0.9997	0.9992
2 S	0.9990	0.9930
35	0.8664	0.5006
2 px	0.9913	0.9912
$3 p x$	0.7186	0.7141
2py	0.9913	0.9912
3 py	0.7186	0.7141
2pz	0.9884	0.9880
$3 p z$	0.6236	0.6321
3dxx		0.1337
yy		0.1337
zz		0.2052
xy		0.
xz		0.0244
$y z$		0.0244

(a) $r_{C S}=1.5349 \AA$
(b) $r_{C S}=1.5349 \mathrm{~A} ; \quad \zeta_{1}=1.63, \quad \zeta_{2}=1.75$

TABLE XVIII
ORBITAL CHARGE DENSITIES FOR HYDROGEN SULPHIDE

Function	Charge Densities		
	No d ${ }^{(c)}$	With $d^{(a)}$	With d ${ }^{(b)}$
H 1S	0.4934	0.4247	0.4110
$\begin{array}{ll}S \quad 1 S \\ & 2 S \\ & 3 S \\ & 2 p x \\ 3 \\ & 2 p y \\ 3 \\ & 2 p z \\ & 3\end{array}$	$\begin{aligned} & 0.9995 \\ & 0.9980 \\ & 0.8460 \\ & 1.0 \\ & 1.0 \\ & 0.9836 \\ & 0.5103 \\ & 0.9888 \\ & 0.6857 \end{aligned}$	$\begin{aligned} & 0.9992 \\ & 0.9925 \\ & 0.4803 \\ & 0.9999 \\ & 0.9988 \\ & 0.9829 \\ & 0.5125 \\ & 0.9886 \\ & 0.6745 \end{aligned}$	0.9992 0.9924 0.4754 0.9999 0.9986 0.9885 0.5251 0.9925 0.6898
$\begin{array}{r} 3 \mathrm{dxx} \\ y y \\ z z \\ x y \\ x z \\ y z \end{array}$		$\begin{aligned} & 0.1429 \\ & 0.1570 \\ & 0.1514 \\ & 0 . \\ & 0.0011 \\ & 0.0681 \end{aligned}$	0.1405 0.1579 0.1514 0. 0.0013 0.0646

(a) $r_{S H}=1.328 \mathrm{~A}, \quad<H S H=92.2^{\circ} ; \quad \zeta=1.66 ;(4 / 224242)$
(b) $r_{S-H}=1.328 \mathrm{~A}, \angle H S H=92.2^{\circ} ; \zeta=1.66 ;(4 / 224562)$
(c) $r_{S-H}=1.328 \AA$, $\angle H S H=92.2^{\circ}$.

TABLE XIX

ORBITAL CHARGE DENSITIES FOR SULPHUR DIOXIDE

(a) $\angle O S O=119.5^{\circ}, \quad r_{S O}=1.4321 \mathrm{~A}$.
(b) $\quad<050=119.5^{\circ}, \quad r_{S-0}=1.4321 \mathrm{~A} ; \quad \zeta_{x y}=1.40$
(c) $\quad<0 S 0=119.5^{\circ}, \quad r_{S O}=1.4321 \mathrm{~A} ; \quad \zeta_{1}=1.40, \quad \zeta_{2}=1.53$

TABLE XX
ORBITAL CHARGE DENSITIES FOR OZONE

Functions	Charge Density		
	Single dxy ${ }^{(a)}$	Fall d.Set ${ }^{\text {(b) }}$	Without d (c)
$\begin{array}{cc} 0 & 1 s \\ & 2 S \\ & 2 p x \\ & y \\ & y \\ & \\ & \end{array}$	$\begin{aligned} & 0.9987 \\ & 0.9405 \\ & 0.5801 \\ & 0.6031 \\ & 0.8547 \end{aligned}$	$\begin{aligned} & 0.9984 \\ & 0.8174 \\ & 0.5910 \\ & 0.5904 \\ & 0.7880 \end{aligned}$	$\begin{aligned} & 0.9987 \\ & 0.9417 \\ & 0.6708 \\ & 0.5925 \\ & 0.8516 \end{aligned}$
$\begin{array}{rr} 0^{\prime} & 15 \\ & 25 \\ & 2 p x \\ & y \\ & z \end{array}$	$\begin{aligned} & 0.9970 \\ & 0.8470 \\ & 0.6533 \\ & 0.5582 \\ & 0.8035 \end{aligned}$	$\begin{aligned} & 0.9954 \\ & 0.7975 \\ & 0.6263 \\ & 0.5544 \\ & 0.7957 \end{aligned}$	0.9970 0.8480 0.6582 0.5733 0.8122
$\begin{array}{r} 3 \mathrm{dxx} \\ y y \\ z z \\ x y \\ x z \\ y z \end{array}$	0.1862	$\begin{aligned} & 0.0242 \\ & 0.1961 \\ & 0.1049 \\ & 0.1742 \\ & 0.0171 \\ & 0.1425 \end{aligned}$	

(a) $r_{0-0}=1.278 \AA, \quad<000=116.8^{\circ} ; \quad \zeta_{x y}=1.10$
(b) $r_{0-0}=1.278 \AA,<000=116.8^{\circ} ; \quad \zeta_{1}=1.10, \quad \zeta_{2}=1.20$
(c) $r_{0-0}=1.278 \AA, \quad<000=116.8^{\circ}$

On comparison of equations (11) and (111), it is seen that the following relationships hold:

$$
\begin{aligned}
& \mathrm{F}^{\prime}=\mathrm{S}^{-\frac{1}{2}} \mathrm{FS}^{-\frac{1}{2}} \\
& \mathrm{C}^{\prime}=\mathrm{S}^{\frac{1}{2} C}
\end{aligned}
$$

so that the ab initio molecular orbital coefficient matrix need only be premultiplied by the square root of the overlap matrix to effect a transformation to molecular orbital coefficients of the CNDO type.

Such a procedure was applied to the molecular wave functions obtained for the series of molecules studied in this work. The transformed molecular orbitals were then used to calculate the CNDO bond order-charge density matrix. It is a property of these transformed molecular orbitals that the total charge density is equal to the total number of electrons in the system.

The results of bond order calculations, and hence of the molecular orbital transformations, constitute the first stage in the CNDO parametrization. The transformed molecular orbitals are available for future reference if required. In this appendix, a brief summary of the calculations is presented in the form of a tabulation of charge densities for the various molecules studied. It would be one of the objectives of the procedure of parametrizing CNDO for second row to replicate these charge densities, and in fact the bond orders, as closely as possible.

REFERENCES

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.

R. F. Stewart and W. doHehre, J. Chem. Phys., 52, 5243 (1970).
R. Ditchfiel
5001 (1970).
A. Veillard, Theor. Chim. Acta., 12, 405 (1968).
R. F. Stewart, J. Chem. Phys., 52, 431 (1970).
S. Huzinaga, J. Chem. Phys., 42, 1293 (1965).
R. S. Mulliken, J. Chem. Phys., 36, 3428 (1962)。
J. A. Pople, J. Chem. Phys., 51, 2657 (1969).
R. Ditchfield, D. P. Miller, and d. A. Pople, J. Chem. Phys., 53. 613 (1970).
R. Ditchfield, D. P. Miller, and J。A. Pople, J. Chem. Phys., 53. 932 (1970).
J. A. Pople, D. P. Santry, and G. A. Segal, J.Chem. Phys. 43, S129 (1965).
D. P. Santry and G.A. Segal, d. Chem. Phys. 47 , 158 (1967).
W. J. Hehre, R. Ditchfield, R. F. Stewart, and d. A. Pople, d. Chem. Phys. 52, 2769 (1970).
D. P. Graig and C. Zauli, J. Chem. Phys., 37, 601 (1962). F. P. Boer and W. N. Lipscomb, J. Chem. Phys., 50, 989 (1969).
S. Rothenberg and H. F. Schaefer 111, J. Chem. Phys., 53, 3014, (1970).
1.H. Hillier and V. R. Saunders, Trans. Far. Soc. 66, 1544 (1970).
S. Rothenberg, R. H. Young, and H. F. Schaefer III, \&. Am. Chem. Soc., 92, 3243 (1970).
18. D. B. Boyd and W. N. Lipscomb, do Chem. Phys., 46, 910 (1967).
19. R. Gerdil and L. A. C. Lucken, J. Am. Chem. Soc. 87, 213 (1965).
20. A. Mangini, Molecular Structure and Spectroscopy, (Butcerworths, London, 1963), p. 103.
21.
22.
D. T. Clark and D. R. Armstrong, Chem. Comm. 5, 319 (1970).
23. J. A. Pople and R. K. Nesbet, J. Chem. Phys., 22, 571 (1954).
24. I. G. Csizmadia, J. W. Moskowitz, M. C. Harrison and B. T. Sutcliffe, Theor. Chim. Acta, 6, 191 (1966).
25. H. Eyring, J. Walter and G. E. Kimball, Quantum Chemistry (John Wiley and Sons, Inc., New York, 1944), p. 162.
26.
S. F. Boys, Proc. Roy. Soc., A200, 542 (1950).
27. I. Shavitt, Methods in Computational Physics, (Academic Press Inc., New York, 1963), Vol. 2, p1.
28.
29.
H. H. Jaffe, Acc. Chem. Res., 2, 136 (1969).
30.
31.
R. S. Mulliken, C. A. Rieke, D. Orloff and H. Orloff, J. Chem. Phys. . 17. 1248 (1949).
32. C. E. Moore, Atomic Energy Levels, (National Bureau of Standards, Circular No. 467, 1952).
33. J. L. Whitten, J. Chem. Phys. 39, 349 (1963).
34. K. O-Ohata, H. Taketa and S. Huzinaga, J. Phys. Soc. Jap. 21, 2306 (1966).
35. H. Eyring, J. Walter and G. E. Kimball, Quantum Chemistry, (John Wiley and Sons, Inc., New York, 1944), p. 162.
36. E. Clementi and D. L. Raimondi, J. Chem. Phys., 38, 2686 (1963).
37. M. Keeton and D. P. Santry, Chem. Phys., Lett., 17, 105 (1970).
38. A. L. McClellan, Tables of Experimental Dipole Moments, (W. H. Freeman and Co., San Francisco, 1963).
39. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, (Interscience, New York, 1966), p.728.
40. H. C. Allen Jr. and E. K. Plyler, J. Chem. Phys., 25, 1132 (1956).
41. D. Kivelson, J. Chem. Phys., 22, 904 (1954).
42. R.C. Mockler and G.R.Bird, Phys. Rev. 98, 1837 (1955).
43. I. H. Hillier and V. R. Saunders, Chem. Phys. Lett., 4, 163 (1969).
44. G. Herzberg, Molecular Spectra and Molecular Structure II, Infrared and Raman Spectra of Polyatomic Molecules, (Van Nosirand Co. Inc., New York, 1945), p.161.
45. T. Shimanouchi, Physical Chemistry, An Advanced Treatise, Volume IV, Molecular Properties - H. Eyring, D. Henderson and W. Jost, editors (Academic Press, New York, 1970), p. 233.
46. P. Pulay, Mol. Phys., 17, 197 (1969).
47. G. Herzberg, Molecular Spectra and Molecular Structure 1, Diatomic Molecules, (Van Nostrand Co. Inc., New York, 1950).
48. G. Herzberg, Molecular Spectra and Molecular Structure III, Electronic Spectra and Eiectronic Structure of Polyatomic Molecules (Van Nostrand Co. Inc., New York, 1966), p. 511, 605.
49. G. Herzberg, Molecular Spectra and Molecular Structure 1, Diatomic Molecules (Van Nostrand Co. Inc., New York, 1950), p. 213.
50. R.S.Mulliken, Can. J. Chem., 36, 10 (1958).
51. A. D. Walsh, J. Chem. Soc., 2260 (1953).
52. J. C. D. Brand, C. di Lauro and V. T. Jones, J. Am. Chem. Soc., 92, 6095 (1970).
53. A. J. Merer, Disc. Far. Soc., 35, 127 (1963).
54. A. Reuveni and Z. Luz, J. Chem. Phys., 53, 4619 (1970).
55. D. C. McCain. J. Chem. Phys., 53, 1297 (1970).
56. M. Green, d. Chem. Soc. 2819 (1962).
57. G. Herzberg, Molecular Spectra and Molecular Structure III, Electronic Spectra and Electronic Structure of Polyatomic Molecules, (Van Nostran Co. Inc., New York, 1966), p. 510, 604.
58. S. D. Peyerimhoff and R. J. Buenker, J. Chem. Phys., 47, 1953 (1967).
59. C. Petrongolo, E. Scrocco and J. Tomasi, J. Chem. Phys., 48, 407, (1968).
60. J.L. Whitten, J. Chem. Phys., 44, 359 (1966).
61. A. E. Douglas, Can. J. Phys.; 36, 147 (1958).
62. A. Breeze.G. A. D. Collins, and D. W. J. Cruickshank, Chem. Comm., 2, 445 (1971).

