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ABSTRACT

This research programme has the general objective of
establishing analytical techniques for analysis of indeterminate
spatial frames and shells under dynamic loading. Although techniqugs
developed should have wide applicability, emphasis will be placed,
for experimental and illustrative purposes on structural configurations

commnon to machine structures.

The present work is concerned with the dynamic analysis which
is an extension of the static analysis, performed in the first stage

[39] of the programme.

For the initial stage of the project a highly redundant
oblique four bar space frame was selected to investigate the nature
of problems involved in the optimisation of generalized space frames

subject to dynamic constraints.

For establishing the inertial characteristics of the system,
the discrete mass method has been used. The response of the system

has been investigated under free and forced vibrations.

In the free vibration analysis six ascending computed natural
frequencies were in agreement within 15 percent of the measured
frequéncies. The amplitudes of vibration measured at different

points away from the natural frequencies, were also in agreement.
Related studies [40] will examine the optimisation problems.

VI



INTRODUCTION

This research programme has the general objective of establish-
ing analytical techniques for analysis of indeterminate spatial
frames and shells under dynamic loading, and the design optimisation
of these structures under the constraints of dynamic loading. Although
the techniques developed should have wide app]iéability, emphasis will
be placed, for experimental and illustrative purposes, on structural

configurations common to machine structures.

The present work relates to the second phase of the programme
in which the problem is explored by discretizing the structure into
a Tumped mass system, with each mass connected by springs. The first
phase of this programme i.e. the static analysis has already been
completed. More specifically, this thesis is concerned with dynamic
analysis. The structure is studied experimentally and analytically
under free vibrations. The effect of rigid body inertia is also
investigated. Vibration response under steady state sinusoidal
excitation is studied analytically and experimentally, with and without
structural damping. Related studies will examine the optimisation

probiem. The following discussion reviews the overall programme.

Design synthesis essentially is an evolutionary spiral process
involving a complex feed back interrelating the fields of creativity,
past experience and tools of analysis. The role of the designer
is to optimise the value of a synthesis on the basis of some criteria

established through a balanced exploitation of the evergrowing information
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from all three fields. The basic techniques and the criteria of
evaluation themselves need refinement from time to time in the light

of achievements in the foregoing areas.

The process has been marked with rather slow progress in the
field of mechanical engineering structures, mainiy due to their complex
nature. These have not received the intensive investigation that
civil and aerospace engineering configurations have. Analysis of
mechanical engineering structures has perhaps lagged behind because
they are much more difficult to categorise than structures in the
other fields where a few highly typical configurations can be recognised,
modelled and studied in a concentrated way. In addition, the

analytical tools available until Tately have had their own limitations.

These methods can be broadly classified into two divisions
(1) and (2).

1. Methods based on exact solution of the differential equations

describing the structure.

Apart from the difficulties in setting up and solving the
equations subject often to awkward conditions, the basic
assumptions regarding complex structures have proved to be too
restrictive for accurate solution.

2. Approximate methods involving mathematical approximations

can be subclassified into -



(a) Those based on finite difference procedures.
These are unsatisfactory in their formulation of boundary

conditions and convergence characteristics, and

(b) Those which approximate stress or displacement distribution
by a series of analytical expressions and hence are

unsuited for complex structures.

The classical analytical tools are thus incapable of providing an
integrated approach even for structures of moderate complexity. Hence
it is not surprising that the practical design of mechanical engineering
structures has relied more on past practical experience, supported by

rough analytical checks wherever possible, rather than on the analytical

© tools.

The need for a tool well suited to complex configurations was most
acute. in the aircraft industry where the designer had to work within
extremely narrow margins of practiéal expediency [3].” Extensive efforts
over the years by numerous, and often isolated workers, culminated in

the finite element approach which is a major breakthrough from the past.

Based on structural as against mathematical approximation, the
method essentially seeks to idealize the structure into an assembly of
a finite number of discrete elements connected at a finite number of
points, and then proceeds to solve for the system response on an exact
mathematical basis. The basis of the technique is finite connect-

ivity which permits a complex continuous structure to be analysed by

*  Numbers in brackets refer to references.



a system of algebraic equations. Although earlier work was
restricted to the field of areonautical engineering, recently results
of applications to nonaeronautical problems [4], [5], [6] and
extensions to three dimensional discrete elements [7] have been

reported.

It is realized that, although the finite element technique is
still being developed, it provides a unified approach to the analysis
of any type of structural assembly, from any field and with any
combination of one, two or three dimensional elements of different
characteristics [4]. It thus provides a reliable analytical tool

which is prerequisite to design synthesis.

A rather limited amount of work appears to have been done on
the general problem of elastic vibrations of structures and the problem
of optimisation under vibrational constraints, although techniques for
calculating the natural modes and frequencies of Tumped mass spatial
structures are fairly well established for essentially beam-1ike
aircraft structures, and to a lesser extent the rectangular frames
of civil engineering. V. H. Neubert [34], [35] investigated a
symmetric foundation like structure under free and transient loadings.
The significance of rigid body inertia and structural damping in
spatial frames does not appear to have been studied. Archer [8], [9],
has provided two useful new papers in this field and has related it to
the finite element stiffness matrix technique. In an attempt to

improve the accuracy of dynamic analysis as it is affected by the mass



matrix; a consistent mass matrix construction is investigated that
accounts for the actual distribution of mass throughout the structure

in a manner similar to Rayleigh-Ritz formulation.

Another method of analysis has grown out of the well known
methods of Holzer, Myklestad and Thomson [38]. It has been generalized
by Pestel and Associates and is described as a method of transfer
matrices. The computations require the trial values of frequency

in the transfer matrices.

Another powerful method of analysis has been applied to frames
by Bishop [36],.[37]° This is also a trail-and-error method.
Hurty [10] has developed a method for analysing complex structrual
systems. In this method of analysis, the elastic and inertial
properties of each component are ¢etermined seperately. And then the
properties of the entire system é}e synthesized. Unlike Rayleigh-
Ritz [38] method, the mode shapes applicable to the entire system are
ndt defined at the outset. Instead, they are synthesized from mode

shapes that are selected for the seperate elements of the system.

The concept of optimum design has registered a drastic change
since the advent of high speed digital computers. Earlier, the
magnitude of computation involved acted as a deterent, and a feasible
solution was accepted in lieu of the optimum. With computers to

handle the arithmetic, systemic design synthesis has become a reality.



Very many general techniques of optimisation appear in the
literature that might be applied to structural optimisation. Most
promising are the Direct Search Method first suggested by Hooke
and Jeeves and further developed by Flood and Leon [11], the Method
of Successive Linear Approximation due to Griffith and Stewart [12],

and the Random Method of Dickinson [13].

Minimisation of weight, weight stiffness ratio, cost, volume for
homogeneous structures, etc. have been suggested as criteria for
optimisation of structures. But, minimisation of weight appears to

have been accepted as the most satisfactory one, even though the

minimum weight design is not always the minimum cost design.

The optimisation of a §tatica11y determinate truss subjected
to a single loading is a problem in analysis rather than synthesis.
For strength design, member cross sections are proportioned to develop
maximum allowable stress for the requived failure mode. For optimum
stiffness design based on minimization of weight per unit stiffness,
(stiffness being defined as the reciprocal of strain energy) the
members should carry stresses proportional to the square rcot of the
product of the modulus of elasticity and specific weight. The constant

of proportionality is based on stiffness requirements [14].

For a given determinate truss under multiple load condition the
problem essentially remains the same. A1l the member cross sections
carry the maximum allowable stress, based on strength or stiffness design,

under at least one load condition. The optimum desfgn has come to



be recognised as a fully stressed design.

In the case of indeterminate trusses, for a given configuration,
applied loading and allowable stress, the cross sectional area of the
members and hence the weight of the structure are functions of forces
in the redundant members. Sved [15] has shown analytically that
under single load conditions the minimum weight structure is always

determinate.

Using the Lagrange multiplier technique, L. C. Schmidt [16] has
shown that under alternate loads numerous fully stressed designs of
an indeterminate truss exist. Due to the prohibitive nature of
computations involved in arriving at the minimum weight he has suggested
two complementary relaxation methods to arrive at a fully stressed

design.

The beginning.of the present decade marked a radical departure
in the approach to structural optimisation. It came to be accepted
as a problem in mathematical programming with Schmit [17] as the
pioneer. Utilizing the joint force and displacement formulation of
structural analysis as first proposed by Klein [18], he has optimised
a fixed configuration three bar truss subject to three alternate loads.
He treated it as a problem in nonlinear programming by adopting a
modified steepest descent method designated as the method of alternate
steps. . On encountering an inequality constraint, which must be convex,
the search moves along a constant weight plane in the feasible region

until the constraint is again contacted. It then steps back halfway,




and then continues to move along the steepest siope. On the basis
of numerical results he concludes that in terms of design parameter

space the minimum weight design need not be a fully stressed design

lying at the apex of constraint hyperplanes.

Subsequently [19], [20] in collaboration with Mallett and
Kicher he extended the above to the problem of selecting a suitable
configuration and material for the three bar truss. Various optimum
designs were compiled by changing the material or configuration, -
one at a time in discrete steps. The best of all these designs was
chosen.

Dorn et al [21] have proposed a linear programming method which

selects the optimum combination of configuration and member cross
section from wide classes of admfssible trusses defined by a given
number of admissible joints connected in all possible ways by Tinear
members. The optimisation is based on modified simpiex method
capable of handling large number of equations. The results provide
an interesting study in the behaviour of optima due to change in Toad
and the height-span ratio of the truss. The configuration remains the
same for the load for a certain change in height-span ratio e, and
then alters, as a continues to change. Thus a continuous spectrum

is provided from which the value of a giving the absolute minimum

weight truss and the configuration itself could be selected.




Best [22] has optimised a cantilever box beam by the steepest
descent method. It has one uhique feature. The partial
derivations of stress and deflections with respect to the design
parameters are calculated by the finite difference approximation using
the stiffness matrix, which must be inverted to obtain the deflections.
To avoid the time consuming process of inversion at every step he
adopts an iterative scheme to obtain the deflections. Only the
incremental stiffness matrix for a given change in design parameter is
calculated which, in conjunction with the previously inverted stiffness
matrix, rapidly converges to the required displacements on iterations.
This feature is said to substantially reduce the calculation time.
Constraints on stresses and deflections are handied by a version of
the reduced gradient method. His solution is a maximum stress solution,

and thus forced to be on a boundary.

The presentation of the structural synthesis as an unconstrained
minimisation problem by Schmit and Fox [23] is unique. It i§ based
on the method of solving Tinear simultaneous equations by minimising
the sum of squares of the residuals to zero. This expression is set
up for the equality constraint defining the stresses. To this is
added penalty terms for violated inequality constraints, which are all
simple upper and lower bounds. The actual quantity to be optimised,
the weight, is treated as an inequality constraint, requiring that the
weight be less than an arbitrarily defined draw down weight. The

problem is now an unconstrained optimisation problem solved by a
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gradient method. It is repeated using progressively lower

draw-down weights until the optimisation function can not be made

zero. This indicates that the draw-down weight is lower than the
inherent minimum weight. The method thus actually requires a series
of optimisations. It does not seem too appiicable to complex probiems;
as the constraints must be expressed explicitly in order to set up

the residuals. The implicit matrix form of equality constraints are

ruled out.

Razani [24] has proposed an unconventional approach using an
iterative technique in which areas are changed by successive increments
from an initial feasible solution so that each member is fully stressed
in at least one of the several possible load conditions. This gives
a feasible solution forced to be on a boundary. The true minimum may

not be on a boundary if the stress is indeterminate.

The gradient projection technique has been successfully adopted
by Brown and Alfredo [25] to optimise a portal frame and a two storey
single bay frame. The search being at a feasible starting point
until constraints are encountered. At this point the constraint
hypersurfaces are approximated by hyperplanes and the gradient of the
objective function is projected on the line of intersection of these
planes. After a move along the indicated direction a correction is
indicated due to the nonlinearity of the constraint hypersurfaces.
The authors have proposed the use of only one design parameter for a

member as variable, while the rest of the parameters for the same
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member, are expressed as functions of the selected one. As moment
of inertia of the members has a predominant effect on the behaviour
of the structure, other parameters are expressed as functions of
moment of inertia. Inspite of thisvsimplification the procedure

seems too involved for complex structures.

Young and Christiansen [14] have provided the first known optimal
structural design technique using vibrational constraints using an
jterative technique. Adjustment of the member area to achieve a
fully stressed design simultaneously with the required resonant
frequency characteristic is the main feature. An application to pin

jointed space truss is included.
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THE PHYSICAL MODEL

For the first stage of project it was decided to examine a
simple but highly redundant space frame with generalized characteristics.
An oblique and asymmetric four bar frame was selected see Figure 1.
The four bars, spaced on 24 inch centres, are welded at their base to
a half inch thick aluminium plate. At the other end the bars are
spaced on two and a half inch centres and welded to a half inch thick
aluminium plate. To avoid deflection of the base plate {as compared
to the deflection of members) it in turn was boited to a steel plate.
The structure was excited on the top p1ate’in the three orthogonal

X, y and z directions.

THEORETICAL ANALYSIS

As the stiffness matrix was obtained from the previous work [39],
it was necessary to derive the mass matrix to investigate the dynamic
behaviour of the structure. For deriving the mass matrix, the decision
was made to gross lumping of masses. Techniques for calculating
the natural modes and frequencies of complex structure by Tumping the

masses are well established, but the Tabour involved was too much.

THE MATHEMATICAL MODEL

The analytical procedure uses two mathematical models - static
and dynamic, The latter is ugua11y an extension of the previous one.
Accuracy of analytical results depends upon the number of mass points
selected, but it increases the labour involved. As a compromise

each member was discretised into three equal lengths.
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For the whole analysis, the top plate was treated as being rigid
due to its relatively small size and comparatively large thickness.
The plate ﬁass was lumped at its centre and four corners. The mass of
each span was lumped at its ends} - The analysis was performed by
considering the rigid body -inertia:. Thus the mass of the whole
structure was Tumped at thirteen discrete points, which from hereafter
will be referred as nodes or stations. The various node positions

are shown in Figure 1.

ANALYSIS

The analysis was restricted to motions of small amplitudes. In
the theoretical analysis, the elastic and inertial properties of each
element are determined seperately. Lagrange's equations are written
for each component. As related to each separate component,
Lagrange's equations constitute a set of independent equations of
motion. However, when the components are attached to each other
to form a structural system, it is necessary that the displacements
of connected components be compatible at their point of connection.
This compatibility requirement'gives rise to a set of constraint equations
which serve to relate the coordinate system. Through the use of these
equations of constraints a set of system - generalized coordinates is
determined. The number of system generalized coordinates is equal
to the total number of component coordinates minus the number of

constraint equations.
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The objective of the analysis is to formulate and solve a
system of equations of motion, the so]utiqn of which yields the
dynamic response of the system. Written in matrix form and using
the generalized coordinates, these equations appear as follows for an

undamped structural system:

[M1(q} + [K}Mq} = {Q(t)} (1)
where:
{q} = a column matrix of generalized displacements
fﬁ} = a column matrix of generalized accelerations
[M] = a square symmetric matrix of generalized masses
[K] = a square symmetric matrix of generalized stiffnesses
{Q(t)} = a column matrix of time-dependent generalized forces

For a damped system, this matrix equation will be modified by the
addition of a damping term. Two different concepts are freguently
used in describing linear damping in structures, the “structural”

damping concept and the "viscous" damping concept. For structural

damping, Equation ( 1) is modified as follows:

[Ml{a} + (1 + ig) [Kl{g} = {Q(t)} (2)
where:

structural damping factor

it

g

i

the unit imaginary number

The analysis has been classified into three categories as foliows:
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(1) Response of the structure to free vibrations

(2) Response of the undamped structure to steady-staté
sinusoidal excitation. |

(3) Response of the damped structure to steady-state

sinusoidal excitation.

FREE VIBRATIONS

For undamped free vibrations Equation { 2 ) reduces to:

[M1{gq) + [K]{q} = O | (2a)

These equations are derived from similar equations formulated
for each one of the components seperately.'_ Consider, for example,
the sth component of a system. The equation for this component

under free vibrations is written as follows:

[mlgtd}g + [kl {d}, =0 (3)
where
{d}S {d}S = column matrices of time-dependent displacements
and accelerations, respectively, in system coordinates
[m]S’ [k]s = square symmetric matrices of generalized mass and

stiffness coefficients, respectively, pertaining

_to sth component in system coordinates

Equations similar to Equation ( 3) may be written for all components

of the system. A1l of these equations may then be written compactly
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in the following uncoupled form for a system having an arbitrary

number of components.

[m]{d} + [k}{d} = O (4)
where
= R
[m]]
[m],
N
N
N
m] = [m]n\
~
[m]s\
~
L Y
[k,
[k] =
|
tdh
{d}
{d} = 2
{d}r
{d}s

Equation (4) can be considered as a set of equations of motion for

a group of components not connected together. These equations of motion {
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various members are connected to each other to form the system
equations by using displacement compatibility conditions. These
displacement compatibility relationships are thought of as equations
which introduce kinematic constraints among the components of displace-
ment vector {d}, so that these may no longer be regarded as generalized
displacements in the connected system. If there are g components in
the vector {d} and if there exists f constraint equations then there
will be h = g - f equations which will be independent. In general,

if each mass has 6 degrees of freedom, a system of n masses will have
6n degrees of freedom. As, the system has been discretised into
thirteen masses, the vector {d} will have 78 components. However,

all these displacements are not independent. So {d} and {qg} can

be related by a transformation matrix [B], as follows,

{d} = [B]{q} (5)
Substituting Equation (5) into Equation (4) we get

[m1[B1{g} + [KI[Bl{q} =0

Premultiplying the above equation by the transpose of the

transformation matrix, [B]T, gives

[81 [mI[B1{a} + [BI[KI[BI(q} = O

This equation is compared with Equation (1). The following
identities are clearly shown:
[M] = [B]"[m]LB]

[X1 = [B][KI[B] (6)
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As already indicated, the generalized stiffness matrix was
obtained from the first phase, so the generalized mass matrix was
derived in this way. Since the plate is regarded as being rigid,
the motion of the five plate masses are not independent of each other.
Their displacements are related by an equilibrium matrix [31]. Motion
of the corner masses is defined in terms of the central mass dis-

placements.

If vector {d}p has displacement of any corner mass, and the

vector {d}c has displacements of the central mass, then

= T
{d}p [H] {d}c

where:

[H]T = transpose of equilibrium matrix

In this way thirty displacemehts of five masses are represented
by six displacements of the central mass. By using these constraints
we derive a [B] matrix of the order of 78 x 54. So the column vector
{d}, which had 78 components, reduces to column vector {q}, which has
54 components. And the transformation matrix will be of the following
form: EI]V
(81—

where
[I] = is the identity matrix.
Finally the generalized mass matrix is derived from Equation (6).

The equation of motion
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[M1{q} + [Kl{q} = O (7)
for free vibrations can also be written in an alternate form
by premultiplying Equation (7) by [8] = flexibility matrix

Equation (7) reduces to:

[51[M]{q} + {q} = O

or (8)
tq} = -[s1[MI{a)
An alternate form of equation (7) can also be written és:
@ =M1 (K1) (9)
Assuming a solution of the form
{q} = {U} sin wt, (10)

equations (7), (8) and (9) yield alternate forms of frequency
equations. Substituting Equation (10) into Equation (7) we get
W2IMI{U} - [KIUY = O (1)
This is an eigenvalue problem. The solution for mz is
obtained by the JACOBI rotation method [14]. This method diagonaiizes
the symmetric positive definite matrix by applying successive rotations
So [M] is diagonalised in the following form
M = [vICoICv)' (12)
where:

[D] = a diagonal matrix

[V] = modal matrix
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Substituting Equation (12) in Equation (11) we obtain,

[KJ{U} = «2OVIEDIEVIT U (13)

Premultiplying both sides of Equation (13) by’[v]T, we obtain:
vITkIur = W2LvITVIEDILVIY U3
Noting, for an orthogonal transformation

[VIVIT = unity,
so the above equation can be written as,

vITLKIVIOVY vy = W2E0I0vY (v
If
[H] = [VI'[KI[V], and
[¥] = [vI'(u}  then
[HI(Y} = W2[D1CY} (14)
[D] is factorised as
[p] = [G][G]
Equation (14) reduces to,
[H](Y} = W2[6[G1MY} (15)

Premultiplying equation (15) by the inverse of matrix [G], we

have
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[G]‘][H][G]"‘[G]{Y} = Ww2[G1{Y}

If [61-'tHIt61™! = [Ql, and
[G]{Y} = {Z}, then
[Ql{Z} = wl(Z}

The eigenvalues so obtained are true eigenvalues but true

eigenvectors are obtained from the following equation

wy = el (16)

So in this way mode shapes and natural frequencies were obtained.

Equation (&) can also be solved, in a similar way. After

substituting Equation (10) into Equation (8) we get

[s1[MI{U} - lé [11U} = © (17)

w

If [M] is factored so [M] = [L1T[LF3%3nd Equation (17) is
premultiplied by [L], Equation (17) becomes
[LI0sIEL1TILICUS - lé (LIUY = 0

(] .
If we write [L]{U} = {P}, and [L][G][L]T = [R] then the problem
reduces to simple eigenvalue problem;

(RICP] = LIP)

Here matrix [R] is essentially a symmtric matrix, hence can be

diagonalised by JACOBI plane rotations. The diagonal elements will
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be the inverse of the natural frequencies. Again, natural frequencies

so obtained will be true, but mode shapes have to be obtained

from

wy = (LT Ve

Similarly the eigenvalue problem of equation (9) was solved
by using library subroutine EBERVC. It is interesting to note
that the time taken by the computer in three different cases was very
much different. Solution of Equation (7) took 17 minutes of time,
while solution of Equation (8) and Equation (9) took 6 minutes and
29 minutes respectively. The form resulting from Equation (8)

is usually preferred in calculating lower frequencies {35]

STEADY-STATE ANALYSIS

Equation (1) is for an undamped structural system under steady-state
excitation.

Consider again the equation
[M]{a} + [K]{q} = {Q(t)}

In analysing the system, the classical normal mode approach will be
adopted and it will be referred as modal analysis. It should be
observed that the excitation functions Q(t) are arbitrary functions

of time. The above equation can be re-written as follows:

[s1MI{4} + {q} = [s]{Q(t)} (18)
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To use the modal analysis the eigenvalue problem resulting from

Equation (8) will be utilized.
Again factorising [M] = [L1'[L] and on substitution in
Equation (18)
[sICLTTILIMa) + {q} = [s14Q(t)) (19)

Premultiplying Equation (19) by [L]

[LICSICLTILIe) + [LI4q} = [LILs]{0(t)} (19a)
Substituting [L][G][L]T = [R]

Equation (19a) becomes
[RI{¥} + (¥} = [LI[s1€Q(t)} (20)
Assuming the transformatiqn,
vl -= [VI{n}
where:

[v]
{n}

modal matrix

column matrix consisting of a set of time dependent
generalised coordinates

Substituting above transformation in Equation (20)

[RI[VIEHY + [VI{n} = [LIC61{Q(t))
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Premultiplying the above equations by {V]T
[vITERICVIGHY + [VITTVIEn) = [VITLLIC6D4Q(t)}
Noting that [V]T[V] = unity,

and putting [VI'[LI[s14Q(t)} = &N},

the above equation reduces to

(VITERILVIGH) + (n} = (N) (21)

In view of its eigenvalue problem, Equation (21) can be re-written

Loty + ) = M
o?

which represents a set of uncoupled differential equations of the type

lz R(t) + nu(t) = N (t) r=1,2....,n, (22)

“p
which have precisely the form of the differential equation describing
the motion of an undamped single-degree-of-freedom system. Hence modal
analysis uncouples the equations of motion by means of a linear trans-

formation; the transformation matrix is just the modal matrix.
Assuming sinusoidal excitation

N(t) = N sin ut
each equation is solved in n coordinates and then displacements are

transformed to q coordinates by the following transformation
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{q} = [u]"[v]{n} (23)

The Steady-state solution of Equation (20) in original coordinates is

[ -(u/)?]

where w is frequency of excitation.

STEADY-STATE VIBRATIONS WITH STRUCTURAL DAMPING

When structural damping is considered then the equations of motion

of the system are given by Equation (2), which is written below.
[MI{g} + (1 + ig)[K1{q} = {Q(t)} (25)
It is customary to assume that the hysteretic damping matrix is

porportional to the stiffness matrix [41], implying that all the

coefficients of g have the same value.

The structural damping concept, as considered here, is valid only

in dealing with steady state harmonic response. The reason for this

is that the damping force is considered to be proportional in magnitude

to the amplitude [38], but 90° out of phase with it. Since the
damping force is 180° out of phase with velocity, this means that the
concept of structural damping holds rigorously for motion in which

velocity and displacement differ by 90°. This is true in harmonic

motion. Therefore, one is interested in solving Equation (25) to
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obtain the steady state response to a harmonic exciting force

Again dividing Equation (25) by [K] and applying the linear
transformation of Equation (23), it will be uncoupled into the
following form.

Lo+ (1% g) n. = N (t)

Uy

The force Nr(t) is represented as follows:

_ et
N(t) = Nore
where:
Nor = magnitude of force
w = frequency of excitation

The steady-state solution is written in the following form

nr(t) ) Nor eiwt (26)
2
2 24172
0 - 8% + 0.2

where the response lags behind the force by phase angle . This is

given by following relationship:
9
tan P = _r
w \2
1 - ;;)

(27)
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As in the case of undamped motion, the generalized response
vector {q} may be found using transformation Equation (23), from
the separate responses expressed in normal coordinates as determined

from Equations (26) and (27).
The following computer programmes were used in the analysis:

SUBROUTINE GMASM

This subroutine calculates the generalized mass matrix.

SUBROUTINE EVERVC

This subroutine calculates the eigenvalues and eigenvectors of
a unsymmetric matrix resulted from the eigenvalue problem of

Equation (9).

SUBROUTINE JACOBI

This subroutine was used in the eigenvalue problem of Equations
(7) and (8). This diagonalizes a real symmetric and positive

definite matrix.

MAIN PROGRAMME

Three different main programmes were written corresponding to
Equations (7), (8) and (9) for predicting the response of system
under free vibrations. However, for predicting the steady state
the response with and without damping, the programme corresponding

to Equation (8) was used because it was more expedient.
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EXPERIMENTAL ANALYSIS

Concurrent with the theoretical analysis, the system behaviour
was also investigated experimentally. Initially the structure was
mounted on a square channel framework. Excitation at higher
frequencies resulted in excessive vibration of the base plate. Cross
stiffeners were added to the frame work to eliminate this vibration
and the base plate was bolted down onto them. However, during
the static test it was observed that the base plate still had some
deflection.  Further improvements resulted in the base being

supported on two steel bars of 6" x 6" cross section.

For determining the natural frequencies of the structure it was
excited by a sinusoidal force in three orthogonal x, y and z directions.
A 30 pound electromagnetic vibration exciter was used as the force
generator. Soft mounting was chosen. For exciting in the x and y
directions, the shaker was supported on a square aluminum plate, which
in turn was suspended by nylon strings from the pipe- superstructure,
Figures 4 and 5. For the z direction, the shaker was mounted on the

tripod which carried an inflated inner tube, Figures 6 and 7.

Thirty two strain gauges were mounted on the four pipes near
each node point, Figures 3 and 4. Al1 the strain gauges were
connected to a switch and balance unit. Output from the switch and
balance unit was connected to a cathode ray oscilloscope. The shaker

was powered through a power amplifier which in turn was connected to
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an R. C. generator. An ammeter was connected in series with

the shaker to keep the current constant. This ensured constant
amplitude of the exciting force. The amplitude and freguency

of excitation was regulated on the control panel of the power
amplifier. Due to the complex nature of the structure experimental

determination of the mode shape was not possible.

A capacitance type proximity transducer, coupled through an
oscillator and reactance converter to a cathode ray oscilloscope was
adopted to measure the amplitude. The system of measurement is
based on frequency modulation of a carrier wave. The transducer
consists of a fixed electrode. Any flat conducting surface
parallel to the fixed electrode can act as the moving electrode. The
capacitance of the electrodes is in parallel with another fixed
capacitance. The combination forms a series resonant circuit with
an inductance. The change in distance between the electrodes, due
to vibration of structure caused a change in reactance in the resonant
circuit which is used to change the frequency of the signal delivered
by the oscillator. The signal is:amplified and detected to provide
a proportional D. C. voltage which was metered on the oscilloscope.
The transducer was calibrated for each setting of observations, by
the integral micrometer. The calibration enabled the displacement

to be evaluated. The least count of the micrometer was 0.01 mm.

The force gauge, piezoelectric type, was employed to measure the

excitation amplitude. The force gauge was mounted in between the
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shaker and the steel rod which is bolted to the structure,

Figures 8 and 9. Force app]ied.to the Force Link is converted

by the quartz crystal sensor to an electrostatic charge signal.

This charge signal is proportional to the force applied along the
sensitive force axis of the load cell. A charge amplifier is used
to convert the electrostatic charge signal from the force link to

a useful voltage signal corresponding in magnitude and polarity to

the charge input. The electronics of the charge amplifier utilizes
a feedback capacitor and feedback'resistor to determine the time
constant, frequency response, and gain characteristics of the charge
amplifier. The calibration of the measuring system was accompiished
by applying known static loads. The output of the charge amplifier

was displayed on the screen of the cathode ray oscilloscope.

Amplitudes of vibration were recorded corresponding to two
values of excitation. A force of 15.8 pounds amplitude was applied
to take the observations away from the resonance. Near resonance
observations were taken by applying the excitation force of 3.32 pounds
amplitude. The force was kept constant by keeping the ammeter
current to the required value, while changing the frequency. Amplitudes
of vibration were recorded on different stations, in different
directions and under varying directions of excitafions. The trans-
ducer was oriented along the system axes and the observations were

recorded. It was possible to measure the linear displacement only.
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The effect of rotations in the measurement of linear displacements
could not be accounted for. Linear displacements were measured
in the coordinate directions where magnitude of rotations was

comparatively small.
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RESULTS AND CONCLUSIONS

A comparative study of analytically calculated and experimentally
measured natural frequencies is made in Table I of Appendix I. It
can be seen that theoretical and experimental values of natural

frequencies are in agreement.

Table II of Appendix I shows the values of six natural freg-
uencies in ascending order, when rigid body inertia was completely
neglected and when it was included on only plate station. Comparing
the values of Tables I and II of Appendix I, it can be concluded that
rigid body inertia plays an important role. This is because the
magnitude of angular influence coefficients was comparable to the
Tinear ones. The values of natural frequencies when rigid body
inertia was considered on (a) all stations, (b) on plate only,

(c) neglected all together, are in ascending order.

The graphs (see Appendix II) are plotted to study the steady-
state response of the structure. Each graph illustrates the

theoretical and experimental response of undamped and damped structure.

It can be observed that, away from resonance, the theoretically
calculated and experimentally measured values of amplitude are very
close. But, at the resonance no fixed pattern is observed. At some
points experimental values are higher than the theoretical values,
(see Graphs 5, 7, 12). And at other points the experimental

values are lower than the theoretical values. The reason could
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be that near resonance angular displacements are comparable in

magnitude to linear ones. It is interesting to note that in all
graphs there is no peak corresponding to second natural frequency.
This is because the first and second natural frequencies are very

close and the system response overlaps considerably.

The graphs also show the response of the damped structure.
The value of the damping coefficient was assumed to be .07. Away
from the resonance, the effect of damping is negligible, so the
response of undamped and damped structure overlaps, except near the
resonance. It can be seen (Graphs 1 through 12) that at and near
the resonance experimental and theoretical values of vibration
amplitudes do not follow any fixed pattern. In some of the graphs
(nos. 4, 10, 11) the experimental values of the amplitudes of
oscillation are lower than corresponding values of the amplitude of
damped oscillation, while in others they are higher. This is
because of the unpredictable behaviour of angular displacements, due
to their random nature of variations and the actual value of damping

is not known.

It is concluded that the discrete lumping of masses gives
satisfactory results. Due to the obliquity and assymetry of the
structure the rigid body inertia played an important role. Away from
the resonance, experimental and theoretical values of the amplitude

of oscillation are in agreement.
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FIGURE 3.

OVERALL PICTURE OF SET UP
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Figure 4. General View of Horizontal Excitation

Figure 5. Detail of Horizontal Excitation
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Figure 6.

Figure 7.

General View of Vertical Excitation

Detail of Vertical Excitation
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FIGURE 9. DETAIL OF AMPLITUDE MEASUREMENT
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FREQUENCIES

MODE

THEORETICAL
NATURAL
FREQUENCIES
C.P.S,

41.74 49.3 58.3 61.68 73.4 77.2

84.9

EXPERIMENTAL
NATRUAL
FREQUENCIES

C.p.s.

42,1 43.2 62.6 66.5 73.5 77.5

88.0

TABLE 1

FREQUENCIES

NEGLECTING
RIGID BODY
INERTIA ON
ALL NODES

C.P.S.

L.

76.0 89.0 91.0 119.0 120.0

131.0

CONSIDERING
RIGID BODY
INERTIA ONLY
ON PLATE NODE
C.P.S.

58.3 64.8 85.0 89.5 102.5

110.8

TABLE 2
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(@)

i}

aq
OMEGA
ZAT
TERR
NS
WORK
o1

N

M

)

J

TRASM

PARAMFTFRS OF MAIN PROGRAN'F
TEMPORARY STORAGE LOCATION

MATRIX ORTATNED FROM FACTORTSATION

OF GENERALISEN MASS MATRIX

TRANSPOSE OF MATRIX

PRODUCT OF MATRIX § FLEXIRILITY MATRTXAND MATRIX
MODAL MATRIX

AMPLITUDF OF GENERALISED FORCES

FOARCE AMPLITUDE IN NOPMAL COOPDIMATFS
FREQUENCY

DISPLACEMENT TN MNORMAL COORPRTMATES

MINVSF LLTRRARY SUPRAUTINE DARAMETFR

MIMVSE LIRRAPY SURROUTIMFE PARAWETER

MINVEE LIBRARY SUBRNUTIMF PARAWETER
DISPLACEMENT IN GRIGIUAL CCORDINATES

STZE OF FLEXTIRILITY AMD MASS MATRTCRS

SURROQUTIME CMASM PARAMETERS

TRANSPOSF OF TRAMNSFORMATION MATRIX
TEMPORARY STORAGE LOCATION

DISCRETE MASS MATRIY

TRANSFORMATION MATRIX

UMCOUPLFD DISCRETE MASS MATRIX
TRANSFORMATIOM MATRIX TO ORTAIMN GEMFRALTSED

MASS MATRIX



TJOR 002725 RAGHAVA RS 100 nrn n20

SIRJOR NODECK

$IBFTC EIG
COMMOM ALBLs54) sR(BL 54 ) 9 (5454 Y e ST(BAGELY) oV (BhAoE4)
ISTP(BR4s54)501(54) s0N(B4) s ZAT(54) sNSIB4L) s WNARK (B4 )
PEITReT78) s TRASM(TOoR4) o ALIN(RL4T70) oM (BA o B4 )

C MATN PROGRAWMME
C INPUT OF GENFRALTSFD MASS MATRTX
c
READ(5s1) N
CALL GMASM(A)
C
c NEXT 23 STATEMENTS FACTORISE THFE GENERALISED
1MASS MATRIX
C

DO 5 T=1aM
DO 5 J=1eN

5 S(T1J)Y=0,0
S(11)=SQRT(A(141))
DO 10 J=2sN

10 S{1eJ)=A(16J)/S(151)
DO 20 I=2.0
StUM=Ce0

LL=1-1
C
DO 21 L=1oLL
SUM=SUM+S (Lo T Y2
ITF(SUMeGToA(TILI))GD TO 80
21 CONTINUE
S{TIeI)=SNRT(A(T I )=SUM)
I[I1=1+1
IF(IFO.N) GO TO 20
C
DD 22 JU=11sN
SUM=0s0
KK=T=1
DO 22 K=1sKK
SUM=SIMES K s T)#5(K s J)
22 S(Ted)=(AlT e J)=SUM) /S(T.1)
20 CONTINUE
V
C TRAMSPOSE OF S MATRIX NeTATNED
C
DO 110 T=1eN
DO 110 UJ=1eN
110 ST(Js1)=S(1s)
C
C FLEXIRTILITY MATRIX 1S READ
e

DO 150 TI=1sN
150 READ(R9201) (A(Tad)od=1sT)



TRANSPOSTITION NF LOWER TRTAMGLE OF
TFLEXTIRILITY MATRIYX

W]

PO 160 1
DO 160G J
160 AL Jol )

TopM

nomon

o
Al Ta4 )

N

MATRICES AMD FLEXIBTILTITY MULTIPLIER

aNaNe!

FVW?O IT=1eN
BlIsd)=0eD
DO 170 K=1.N
70 PlTod)=B(Teld)+S(Tok)*AlKrs)

NFEXT & STATEHENTS MULTIPLY PREVINAUS PRANICT

O IO I E I

DO 180 I=1eN
DO 180 J=1eN
STP(IsJ)=0.0
PO 180 K=1sM

180 STPUTsJ)=STP(TsJ)+R (T oK )*ST(KsJ)
C

CALL TO SURROUTIMF JACORI FOR TIAGAMALTSATION
C

CALL JACORI(MsSTPs1aMRsV)
DO 190 J=1sN
190 STP(JeJ) =760/ (444 0%SORT(STP(Js ) })

ouUT PUT
C
PO 200 I=1sN
WRITE(7+210) STP(Is1)
C
WRITE(7s205)
200 WRITE(72220)1(V(JoT)ed=1ah)
C

DO 260 I=1sM
DO 260 J=T1sN
Bllel)=0e0
DO 260 =1 N
2A0 BUTsJ)=P(Te)+VI(KeI)¥S(¥oed)
PO 270 T=7sN
NO 270 J=1sM
ST{IoJ)=0,0
DO 270 K=1eM
270 ST(I9J)=ST(I9J)+P(T9K)*A(K9J)
DO 290 I=1.eN



290

O NN

220

210

INPUT OF GEMNERALTISED FORCE

N(I)=0,0
READ(542) QI
nO 280 I=1sN
NO(T)=0,N

NEXT 2 STATEMENRS TO QBTATIN FORCES IN NORMAL CONRNIMNATES

DO 280 K=1sN
00(T)=0Q(T)+ST (1K) %*0(K)

CALL TO LIBRARY SURROUTINE MIMYSF TO IMVERT MATRIX S
CALL MIMVET (S954 5441 ,0F=08, IFPR NC,LINDIKY

MEXT & STATEMENTS ASSEMRLE TRAMSFORMATICN MATRIX

DO 230 I=1sN

DG 230 J=1sN

AlTsJ)=0e0

pN 230 kK=1sN
A(TeaJ)=AL{T o)V +S5(T ek )%V K ))

NEXT & STATEMENTS OBRTAIN DISPLACEMEMTS IN MORMAL COORDIMATFS

OMEGA=0.0

NO 320 T=1,90

OMEGA=0OMEGA+140

PO 310 J=lsN

ZAT () =00(J)/SORTI(1 0= (OMFGA/STP(JeJ) ) #%#2)%%24(D,N123%%2))
CONTINUE

NEXT 4 STATEMENTS QRTAINM DISPLACEMENT TN ORTIGTIMAL COORMIMATFES

DO 340 L=1sM

QI{L})=0a0

DO 340 M=1eN

QIILY=0I (LY+A(Lo™M)*ZAT (M)

OUTPUT

WRITE(5.2) (QOT(T)sI=1s524)
CONTINUE

STOP

FORMAT (1HO10H AMPLTITLNE/)
FORMAT(1Xs6E1045)

FORMAT (1XsAF1345)
WRITE(696)



FORMAT(1Xs22H MATRIX TS NOT DASITIVE RESTNITE)
FORMAT(I10)

FARMAT (6F1345)

FARMAT (1XsAE20,5)

206 FORPYAT(/30Xs 10HFONE SHAPE /)

210  FORFAT(/18Xs10H FREQUFNCY 251505 42X s4H €PS)

220 FORVAT(2Xs3ED0,5)

sToP

END

S )



SIBFTC  JAC

C

OEe!

1C

N

o

Y= O o

— NN

DO~
(o]

AN O =N

SURPROGRAMME FOR DIAGOMALTISATION OF MATRIX O 2Y
SUCCESSIVE ROTATINNS ,

SUBROUTINE JACOBI(NeNe JYFC ot aV)

DIMENSION QO(84 R4 )V (RA«BAYeX(RAYsTH{RL)

=

MNEXT e STATEMENTS RF SETTING IMTTIAL VALIIES OF MATRIX V
IF(JVEC) 1091510

DO14  I=1.M

DO 14 J=14N

IF(I=J) 12211,22

V{TeJ)=1,0

GC TO 14

V{TseJ)=0s0

CONTINUE

MEXT & STATEMEMTS SCAMN FOR LARPGEST OFF NDIAGONAL
TELEMENT IN EACH ROW
X(I) CONTAINS LARGESTS FLEM, IM ITH ROW

THUI) HOLDS SFECOND SUBSCRIPTS DEFINING POSITINANM OF FELFM,

MT=N=1

DO 30 I=1sMI

X{I)=0,

Md=T1+1

DO 30 J=MJNM
IF(X(T)Y=ARS(R(TsJ)Y) 20620420
X{I)=ARS(Q(T-J))

TH(TY=J

COMTINUE

MEXT 7 STATEMENTS FIND FOR MAXIMUMS OF X(I)S
1FOR PIVOT ELEMEMT

DO 70 I=1eM]
IF(I=-1)ANsE0 45
TF(XMAX=X(T)Y)A0sT70570
XMAX=X(1)

IP=1

JP=TH(I)

CONTINUE

NEXT TWO STATEMENTS TEST FNOR XMAX
EPSI=1,E-012
TF(XMAX<EPST) 1000,1000,124R

M=M+1

NEXT 11 STATEMENTS FOR COMPUTIMG TANGeSIMeCO5eN(TsI)eN{JsJ)




IF(GUIPIP)=0(JPsJP)Y) 1501575151
150 TANG==2,0%#0(1Ds JP) /(ARS(N(TIPIP)=0(JP:JPY) +
1SORTIIQUIPsIRP)=Q(JIP o JP ) ) #¥ 244 00D ( TP s JP)%%2))
GO TO 160
151 TANG=+2,0%Q(IPs JP)/(ARS(N(IPIP)=Q(JPsJP)) +
TSORT(IQUIRs IPY=0(UPoJPIVX#2+4,0%Q(IP o JP)#%2))
160 COSN=1o/SORT(1oN+TANGH*2)
SINE=TANG*COSN
OIT=0(IPsIP)
DUIPe IP)=COSN®#2%{(QTTH+TAMAR (2, ¥0( IR s JPIYHTANGHD (P JP) YY)
QUIP o P )=COSN#X2X (D (P s JP ) =TANGH (2, # O (TP o JP)=TANG*QTT))

C

DUIRPsJP)I=0,0
C MEXT 4 FSTATFMEMTS FOR PSEUDRD RANK THF FIGFENVALIIES
C

TF(Q(IPIP)=R(JUPsJP)) 182 5153,152
152 TEMP=Q{IPsIP)

N(IP+IDYI=N(JP s JD)

Q(IP«JPY=TEMP

C NEXT 6 STATEMENTS ADJUST SIME AND COSINE FOR
1COMPUTATION DOF Q{TeK)eV(Isk)
IF(SINE)1Hh491504155

1584 TEMP=+CNSN
GO TN 170

155 TEMP==C0OSM

170 COSMN=ABS(SINE)

SINE=TEMP

153 DO 350 I=1sMI
IF(I=IP) 2106350s200N
20N IF(I-JP)210:280,210
210 IF(IH(I)=IP)230+240+230
230 IF(TH(T)=JP)250+240,250
240 K=IH(I) ’
250 TEMP=0Q (1K)
NIk )=0,0
MJ=T+1
X{I1=0,

NEXT 5 STATEMEMTS SEARCH IN DEPLETEPR ROW FOR NEW MAXTIMI

O ANS!

DO 320 J=MJeN
IF(X{I)=ARS(O(T
200 X(I)=ABS(Q(I»J)
IH(IY=U
270 CONTIMUE
D(IsK)=TEMP
50 COMTINUE

sJ))) 230Ns30N.320
)



X{IP)Y=0e
X(Jp)zoo

MEXT 20 STATEMENTS FOP CHANDING THF QOTHER FLEMEMTS OF O

SN ANe!

DO 520 T=7.M

@]

IF(I=-TIP)Y2705306420
370 TEMP=N{T1,1P)
O(T«IPY=COSNH*TFMP+STINF#N(T 5 JP)
TF(X(I)=ARS({O{TsTP))) RaNHs20N,20N0
200 X{I)1=ARS{Q(I.,1P))
R(1)=1P
290 DT e JPY==SINF#TEMDLCOSNEN (T4 JD)
ITF(X(T)=ARS(Q{I+JP))I)I40Ns 530530
400 X{I)1=ARS(O(I+JP))
TH(I)Y=UP
GO TO 530

420  IF(I=JP)42055305400

430  TEMP=0(IP,1)
QUIPsT)=COSNATEVP+STINF*0(140P)
[E(X{IPY=ARS(Q(IPsI))) 440450850

440 X(IP)Y=ARS(N(IPsT))
TH(IP) =]

45D O(TsJP)==STINF#TENDLCOSM®N (T 5JP)
TF(X(T)I=ARS(N(TsJP))) ANNsERN,E20

&a0 TEMP=N{IPa1)
DUIPs T)=COSNETEFMPESTNF*N (UP s 1)
TF(X(IP)I=ARS(D(IPsT)1)) 490500500
490 X(IP)Y=ARS(N(IPs1))
IH(IP)Y =T
500 O(JP e I ) ==SINFXTFMP+COSM2I{UP 1)
TFIX(JP)=ARS (N (P T)))IB1INa520sH2N
510 X{JIP)Y=ARSIR(JPsTY))
TH{JP)Y=1
520 COMTIMNUE

C
C NEXT & STATEMEMTS TEST FOR COMPUTATION OF EIGENCTORS
C

IF(JVECYBL0 0,540
540 NN B850 I=1.N
TEMP=V(I.IP)
VIT2IP)=COSM*TEMPASTINERV (T 4102)
550 V{TeJP)==STMEXTEMPLCASMEV (T s JP)
GO TO 40
1060 RETURM
EMD
SENTRY



IJ;NObE'

7_,Vt54g=a. o
K (54 ,1_:~‘~f

2F(7a,78>,TRA5Mt78 54 ) s A
*“lDIMENSION A(é 6isR(ess

‘ SUBROUTINE GM SM1GM)

| ;00100 1= 1,78
©.DO100 - J=1,78
;'F(I:J} O O

waéoozo M'i,a _
‘IF(KK.EQ.sllGOTOZ

3019021560 12196)

 EIGHT DISCRETE MASSES .

"Vfé(i;Ja-o o
e h'fDOS K=ls6. . %
-,;:C(I;J1=t(1sJ)+A<1.

Ti= I#KK+1

.D0200  J=MMsN
S JJSJ=MMAL .

»»CF(I;J)“E(II’J
TF€I+249J+24;




20

OO N

15

(e ]
2

BREARAR"

NS}

LL=LL+A
MAM MM -G
NN =MNN+6
CONTIMUE
KK=49

prM =49
LL=%"4
MM=54

MEXT 24 STATEMEMTS ASSEMARLE PLATE MASSES

DO3N  M=1s5

RFEAN(Es2)Y({(A(Ted) e =TohR)eIl=T12A)

1({N(TeJ)od=1s8)sl=166H)

DNO1I5  I=1e6

DO15  J=1s6

ClTIeJ)=0,0

D015 K=1s6
C{ToJ)=C{ToJ)+A(TsK)FR(KoJ)
DO4O  I=1e¢6

NO4N  J=1e6

E(lad)=060

DOLD K=1eA
FlTleJ)=F(TeJ)+C(TeK)#N{Ke)
DO320 I=¥KslL

II=]~KK+1

DO320  J=MMe NN

Jd=J=MM+1

F{led)=F({T1sJJ)

K =KK+6

LL=L.L+6

MM=MM+E

NMN=MN+6

CONTINMNUE

READ{S5s101) (PM({T)eI=49,78)
DO102 1=49.78
F(IoI)=F(IsI)+PM(T)

GENFRATF RRANSFORMATICMN MATRIX

DO210  I=1.78
DO210  J=l.%4
TRASM{(Is)=0,0
DO330 I=1s48
TRASM(TIsI)=1e0

INPUT OF EQUILIBRIUM MATRIX

s ((P{ToJ)seJ=ToR)oT=1074)

TRASH

PEAD(59230) ({TRASK(Is.J) s J=b0e52)sI=L0s78)

AUX=TRANSPOSE OF TRASM#IASS

MATRIX



M

250

101
220
400
280
203
306
502

MEXT 11 STATEMEMTS CALCULATE GENERALTSED tASS

DN250 I=19FQ

DO25C  J=1.7

AUX(TsJ)=0,0

DO250 K=17%

AUX(T o) =AUX(T s J)+TRASM(K s TIHF (I o
GENERATE GENERALISED MASS MATQIK
DO260  I=1s54

D0O260  JU=1s54

CM{TsJ)=0o0

DD 260 K=1s78

CMATed)=GM(T oJ)+AUX{T ok I#TRASM{K 5.J)
DO 240 I=1.54
WRTITE(69502)Y(GM(TsJ)od=1e54)

sSTOP

FORMAT(AF12,5)

FORMAT(F12,5)

FORMAT(6F1205)

FORMAT(AE12.5)

FORMAT(3CXs22HMATRIX FNR  ITFRATINN.//)
FORMAT(1X96F2065)

FORMAT(1HO)

FORMAT(6E13.5)

RETUPRN

END

MATRIX



APPENDIX - IV:

(LIST OF EQUIPMENT)
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LIST OF EQUIPMENT

SPACE FRAME

Goodman's Vibration Shaker (Model V.390A/200).
Vibration Shaker Amplifier

R. C. Generator

Strain Gauges and Allied Equipment

Switch and Balance Unit (Type 20SB4-2)

Kistler Quartz Force Transducer (Model No. 932A,
Serial No. 26452)

Kistler Universal Dial Calibration Charge Amplifier
Micrometer Proximity Transducer (Type DISA 51D11)
Oscillator (Type DISA 51E02 462)

Reactance Converter (Type DISA 51E01)

Strain Indicator (Type Budd Model P-350)

Storage Oscilloscope (Type Tektronix 564)
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