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INTRODUCTION 

Let G be a locally compact group (= locally compact Hausdorff 

topological group). By the measure alc;ebra of G we mean the Benach 

*-algebra M(G) of bounded regular Borel measures on G. The major re-· 

sults of this \vork are a structure theorem for norm decreasing isomor­

phisms of measure algebras, and a characterization of those Banach 

algebras v1hich are iso·:;letric and isomorphic to the measure algebra of 

some locally compact group. We also obtain some results on sub algebras 

of H(G) and on representations of G. 

The first chapter of this vmrk is composed of those definitions 

and results from the theory of topological vector spaces, integration, 

topologice.l algebras etc., which are needed in future chapters. In 

this introduction frequent use of the contents of Chapter I is made 

without explicit reference. 

In addition to the norm topology on H(G) there are other topol­

ogies on H(G) which have to some extent been investigated. In sections 

1 and 2 of Chapter II of this vrork we study t-vro of these, na..111ely the 

a(H(G),C0 (G))-topology and the so-topology (see Chapter II for the 

definitions). Using these topologies on M(G) a number of results on 

H(G) and Ll(G) are obtained. 

The first of these concerns a problem raised by A. B. S~non 

in (21). LetS be a Borel subset of a locally compact group G and 

let L(S) be the subspace of Ll(G) consisting of functions which are zero 

1. 



almost evel'J'1<ihere outside s. If S is a semigroup it is not difficult 

to sho1~ that L(S) is a subalgebra. Simon asked tho following question: 

2. 

If L(S) is a subalgebra of Ll(G), is there a semigroup T such that L(S)::: 

L(T)? We have been able to give an affinnative answer in a number of 

special cases (theorems 3, 4 and 5 of Chapter II). These results are 

then used to generalize another result due to Simon (theora~ 7 of chap­

ter II). 

In the third chapter lore prove a structure theorem for norm 

decreasing iso:uorphisms of measure algebras. Let F and G be locally 

compact groups, a. an isomorphism and homeomorphism of F onto G and 

y a continuous character on F. For }1 in }l(F) and f in C0 (G), let 

T}l(f) ::: Jl(y(foa.)). Then the mapping }1 _,.,. T}l is an isometric *-iso­

morphism of H(F) onto H(G) (Chapter III, lenuna 2). The main result 

(theorem 2) of this chapter is that every norm decreasing isomorphistn 

of H(F) onto H(G) is of the above form and therefore is an isometric 

*-isomorphism. A number of other results follotv from this, including 

a theora~ due to Wendel on isomorphisms of Ll(F) onto L1 (G) (theorem 

3 of Chapter III). 

In view of the isomorphism theorem of Chapter III, one would 

expect in principle to be able to characterize those Banach algebras 

which are isometric and isomorphic to the measure algebra of some 

locally compact group. In Chapt,er IV we obtain such a characterization. 

This char<wterization is largely in terms of properties of' the extreme 

points of the unit ball. This is to be expected since the extreme 

points of the unit ball of H(G) are scalar multiples (of absolute· value 1) 

of the Dirac measures 1 and the Dirac measures play a special role in 



the proof of the isomorphism theorom. 

The problem of characteri?..ing Ll(G) and H(G) has been the 

subject of recent papers by Greonloaf (10) and Rioffel (18). Rieffel 

had identified those abelian Banach algebre.s whicb are 'isometrically 

isomorphic to H(G) for some locally compact abelian group G. He 

also obtained a chl'.racterhation of Ll(G) for G locally compact 

sbelian. His l-rork is largely based on properties of multiplicative 

linear functiorwls on the aleebra. Greenleaf characterizes those 

Banach algebras Hhich are :i.sometric and isomorphic to L1 (G) for G 

compe.ct. His approach to the problem is similar to the one we have 

used. In fact it vms his characterization of H(G) for G finite \vhich 

motivated our work (theore~ 1.).1 of (10)). 

The final chapter of this work is concerned 't·rith direct 

integral decompositions of the left regule.r representation of certain 

locally compact groups. 

There is B. general theorem due to Hautner on direct integral 

decompositions of representations of a locally compact group having a 

countable basis for the open sets on a separable Hilbert space. Each 

decomposition of a given representation is in a sense determined by 

an abelian \-1*-algeb:ra of the commutant of the representation (for the 

precise statement see theorems 10 and 11 of Chapter I). If this sub­

algebra is maximal abelian then Mautner's theor&'ll sta.tes that the 

decomposition is into irreducibles. The existence of a maximal abelian 

W*-subalgebra of the commutant of a given representation is a consequence 

of the axion of choice. Thus the uniqueness of the decomposition can 

be qnestioned. Examples have been given by Hackey (16) and Yosh1.zawa 



(25) that show that these decompositions rrwy not be unique. 

If a discrete group G has an abelian subg:t•oup S, then the 

left regular representation of G can be expressed as a direct integral 

of representations induced by the characters on s. This has been 

shown by Godement in (8). (Also see Hackey (16)). Godement also 

found necessary and sufficient conditions on the group G and sub­

group S for these repressnta.tions to be irreduc:i.ble. 

The relationship of this construction to the decomposition 

obtained via Mautner's theorem is the subject of Chapter IV. VIe 

shovT that if S is an open abelian subgroup of a separable locally 

compact unimodular group then one can shoose an abelie.n W*-algebra 

o"t(S) (dependj.ng on S) of the commutant of the left regular represen­

tation such that the corresponding direct integral decomposition 

gives representations which are (equivalent to) the representations 

induced by characters on s. vie also find necessary and sufficient 

conditions on G and S so that o1(S) is a maxinal abelian l!J'*-sub­

algebra. 

4. 



CHAPTER I 

fREJ"'~:iiNARJ~ 

1.1 Convex sets. By a real (resp. complex) TVS we shall 

mean a Hausdorff topological ve.ctor space over the real ( resp. 

complex) fieldo A subset C of a real or complex vector space E is 

said to be convex if x, y t c implies ax+ (1 - a)y f C, o=sa:;::l. 

An element x of a convex set c is saj_d to be an extreme point of C 

if x = ay + (1 - a)z, YT 
.:t f z f C, 0 <a <1 implies x = Y= z. The 

convex hull of a subset C of E is the intersection of all convex 

subsets of E which contain C. The convex hull is a convex set and 

coincides 1-1ith [ax + (1 - a)y : x,y f C, 0 S a :;::: 1} • A real (resp. 

complex) locally convex space E is a real ( resp. comp]ex ) TVS, which 

has a funda~ental system of convex neighborhoods of the origin of 

E. In the follow·ing whenever we speak of a vector space without 

specifying the field lve shall mean t.l)at the field may be either the 

real o:r complex field. 

Theorem. 1. (Krein - !1ilman) Let E be a locally convex spa.ce, 

and let K be a compact convex subset of E. Then K is the closure 

of the convex hull of its extreme points. 



6. 

E,r.2,?_~: A proof may be found in (2)(Chapitre II, §4, theorerae 1) 

or in (6)(Chapter V, ~8.4). 

The next lcrn.~.11a is in a sense a converse to the theorem of Krein ... 

Hilman. 

~~a 1. Let K be a compact subset of a locally convex space 

E whose closed convex hull is compact. Then the only extreme points of 

the closure of the convex hull of K are the points in K. 

A proof may be found in (2) (Chapitre II, § 4, proposition L~) or 

in (6) (Chapter V, § 8.4). 

kL Unifol:'£~ -~pac_e~<,! .cor:J.Pl;'ltene.s~. Let E be a topological 

vector space and let ! U} be a fundamental system of neighborhoods 

of 0 in E. For each U f t U), let L(U) = r (x,y) f E x E : x - y ~ U l. 
Then [L(U) : U f t u1} is a base for a uniformity on E, and E becomes 

,..... 
a uniform space. Thus E has a unique completion E and E is said to be 

complete if E = E. A Banach space is a nor:ned vector space which is 

complete. Each linear continuous mapping of a topological vector space 

into a topological vector space is unifonuly continuous. In a complete 

space the closure of the convex hull of a compact set is compact, 

( (2), Chapitre II, § 4). 

1.3 Subsets of a T!£. A subset C of a vector space E is said 

to be circled if aC ~ C for all lal ~ 1. C is absorbing if for each 

x f E, there is an a > 0 such that bx f C for all 0 < jbj ~ a. Any 



TVS E has a fundamental system of closed, circled, absorbing neighbor-

hoods of the origin. Let E be a locally convex space, a closed, convex 

circled and absorbing subset of E is called a barrel. If each barrel 

of E is a neighborl1ood of 0 f E, then E is said to be barrelled. 

A subset C of a vector ~pace E is bounded if and only if for 

any neighborhood U of 0 f E, there is a a> 0 such that for all 0 :S jbl 

:;: a, bC S. U. A TVS is said to be quasi-complete if every closed and 

bounded subset is complete. 

1.4 Funct_ion seaces __ a,n:;i_J:.;£Uic~mtinuous sets. Let E, F be 

topological vector spaces and let C(E,F) be the space of all continuous 

linear mappings of E into F given the topology of s~nple convergence 

i.e. the coarsest topology such that for each x f E the mapping f ~ f(x) 

is continuous. If E is a barrelled space and F a quasi-complete locally 

convex space, then C(E,F) is quasi-complete ( (2) Chapitre III, §"3 No. 7). 

A subset H £. C(E,F) is said to be equicontinuous if for each 

neighborhood U of 0 f F, ~ f-1 (u) is a neighborhood of 0 in E. 

Let H be an equicontinuous subset of C(E,F) where E and F are locally 

convex spaces. Then : (a) H is equicontinuous, (b) the convex circled 

hull of H is equicontinuous (c) H is relatively compact if and only 

if for each x f E, H(x) = [f(x): f f H} is relatively compact in F, 

(d) if in addition E is barrelled then every bounded subset of C(E,F) 

is equicontinuous, ((2) Chapitre III, g3, No.-5 and No. 6). 

Theorem 2. Let E be a barrelled space and let F be a complete 



locBlly convex space. If H f C(E,F) is compact, then the closure 

of the convex hull of H is compact. 

Proof: Since H is compact, H is bounded and therefore equi­

continuous by (d). By (c), H(x) is relatively compact in F so that 

the convex hull of H(x) is rel2.tively compact since F is complete. 

Again by (c), the convex hull of H is relatively compact and th:ts 

proves the theorem. 

1.5__1g~~~1 of a !VS. Let E be a TVS, then the dual of E 

'VTritten E' is the set of all continuous linear functionals on E. The 

coorsest topology on E1 such that for each x f E the mapping x'~ x 1 (x) 

is continuous, is called the '\veak topology or the a(E' ,E)-topology. 

If E is a normed vector space, then 't-Ie define a norm on E' 

by llx'll = sup f lx' (x) I : llxll :S 1} and vlith respect to this norm 

E' becomes a Banach space. The unit sphere (i.e. tx' : llx•jj ~ lJ 

of the dual of a Banach space is compact j_n the cr(E' ,E)-topology. 

It follows from this that the no:rm is lower semicontinuous in the l-mak 

topology. 

Let A be a subset of a locally convex space E. Let 

A0 = l x 1 t E' : lx' (x) I :S 1 for all x f A 1 , and for each subset B £- E1 

let E0 = f x f E : lx' (x)l :S 1 for all x1 t B J • If B is a subset of. E1 

which contains 0 f E1 , then B00 is the a(E1 , E)-closure of the convex 

hull of B. 

Let 1r be the family of all bounded subsets of E, then there 

is a Hausdorff locally convex topology on E' having { A0 : A f '("] 

as a subbase. This topology is called the strong topology on E•. If 

8. 



E is nonned, then tho topology induced by the nonn on E1 coincides 

with the strong topology. If E is bari•elled then each weakly bounded 

subset of E1 is strongly bounded, and (Et)0 is quasi-complete ((2) Chap­

itre IV, 52 No. 2)o 

Let N be a subspace of E. Then N° is a a(E•,E)-closed subM 

space of E1 e Each x 1 f E1 ¥men restricted to N defines an element of 

N1 , and if x 1 - y' f N° then< n,x1 >:::: < n,y1 >for each n f No Thus 

we may define a mapping T : E1 /N° ->- N' by putting < n, Tx' > = < n,x' > 

Hhere x 1 f E1 /H0
• 

Theore1nw2.~ The mapping T defined above is a one-one linoar 

mapping of E1 /N° onto N 1 • If E is a normed space then T is an isometry, 

and if N is closed then the o(E 1 /N° ,N)-topology equals the quotient 

weak topology on E' /N°. 

Eroo~: See ((2) Chapitre IV, §5, No. 4 proposition 10, and 

§ 1, No. 5 proposition 7). 

1.6 The a2-_join~ of a linear ma.,E..ning. Let E, F be locally 

convex spaces and letT be a continuous linear mapping of E into F. 

For each y' in F' we define a linear functional T1y 1 onE by T1y 1 (x) = 
y'(Tx). Then T1y 1 f E1 and the mapping T1 : y 1 -?- T1y 1 is a linear 

mapping which is continuous for the weak and strong topologies. For 

T(E) to be dense in F it is necessar,y and sufficient that T 1 be a one­

one mapping of F1 into E'. ((2) Chapitre lV, §4 No. 1). If E and F 

are normed spaces, then liT' II = jjTjj. ((2) Chapitre IV, §5 No. 3)~ 



~1 Defi~~· A semitopological group G is a group given 

a topology such that for each y f G, the mappings x -~yx and x ~·xy 

are continuous. A topological group G is a group given a topology such 

that the mapping (x,y) ~ xy-1 is a continuous mapping of G x G onto G. 

If G is a locally compact Hausdorff serlitopological group, 

10. 

then G j_s a topological group ( (?) theorem 2 or (13) Exercise B2, p. 41). 

2.2 ~ Neighborho2~s..t!"!1!P of .~J·.O.RQlo_g=!;,c'!_l._g_t£1l!?.. A subset U 

of a topological group G is called s~~~otric if u-1 = U where u-1 = 
[x : x-1 f U}. Each topological group G has a funda~ental system fU} 

of closed neighborl1oods of the identity e such that: 

(i) each U is s~mnetric 

(ii) for each U in t U1 there is a V in ftJ] such that v2 S u. 

(iii) for each U in { U 1 and x in G there is a V in tu 1 such 

that V s_ x-lux 

((13) §20, theorem 3 or (12) 4.5, 4.6 and 4.7). 

For any subset A f G and any n~ighborhood U of the identity 

A S AU, in fact A =(\AU = (\ UA where the intersection is over the 

family of all neighborhoods of the identity. Consequently any open 

subgroup of a topological group is closed. For any compact set K and 

any open set U such that K c U there is a neighborhood V of the identity 

such that KV £ U. ( (13) § 20 proposition 4, or (12) 4.10). 



b.J..._ Uniform structures. Let G be a topological group \-lith 

t U} as the system of all neighborhoods of e. For U in (U] define 

L(U) = ( (x,y) x-ly f U J 
R(U) = f (x,y) xy-1 f U] 

The fal1lily [ L(U) : U f tUn ( resp. f R (U) U t tul} fonns a base for 

a uniformity called the left (resp. right) uniform structure on G. 

With respect to either the right or left uniforn structure, G is a 

unifonn space. 

Let G be a locally compact group (:::: locally compa.ct Hausdorff 

topological g1~up). Then G is complete in either the right or left 

uniform structures,((l3) §26 theorem 3). It follows from this that 

a subgroup of a locally compact group is locally compact if and only 

if it is closed. 

If f is a complex valued function on a locally compact group 

G , which "vanisher$ at infinity", then f is right and left unifonnly 

contin11ous ((12) Chapter IV, 15.4). 

2.4 The char!!£i!::t.~· Let G be a locally compact group • 

.A character t on G is a homomorphis:n of G into the group 

Z of complex numbers of absolute value 1. 

11. 

,.... 
Let G be a locally compact abelian group and let G be the set of all 

continuous characters on G. 1tle define a group operation in G by t1 t2 (x) = 

t 1 (x)t2 (x). It follows that t(e) = 1 and t(x-1) = t(x) fort f G and 

x f G. For every compact set F S G and every £ > 0 let T(F,r) = 

£t f G: jt(x)- lj <£for all x t F]. Then fT(F,£) : F is compact 

1 
/'- /'-. 

and £ > 0 is a basis at e for a topology on G, and G given this topology 



12. 

is a locally compact abelian group called the character group of G 

( (13) Chapter 3, (12) Chapter VI, § 23) 

3. ~easur~1~ 

J.l Pefini,tio_ns. Let X be a set and }]t a a-algebra of sub-

sets of X. A positive measure p. on l'R is a function on nt into the 

extended reals such that 

(1) }1(¢) - 0 

(2) }l(A) > 0 for any A f rrt 

(3) ~(lJ~ Ai) = ~~ }l(Ai) if A. f n1 for all i, and 
J.::l :G:l 1 

Aif\Aj = ¢ for i .J j. 

A complex measure p. on Yl1 is a complex-valued function on Wt 

satisfying (1) and (3) above. We shall frequently use the word 

measure to mean either a positive measure or a complex measure. 

The total variation of a measure }1 is the measure llll 
defined for each A f rn by Ill! (A) = sup ~ j)l(Ai) j the SUpl.'flmUm being 

over all fin1 te disjoint unions A ::: U A1 , Ai ~ )1(. The total varietion 

of a measure }l is a positive measure. If p. is itself a positive 

Measure then }.1 == hd. The total mess of a measure p. is j}lj(X). 

Let f be any nonnegative function on X. Then the integral 

fxf(x)d)l(x) (or fxfd)l or /fdp) is defined as 



13. 

sup t ;fl [ inf(f(x) : x f A1) }r(Ai) : X.::: \.):l Ai , Ai !\ Aj = ¢ 
:bl 

whenever i /: j, and Ai f ·m J. If f is any extended real-valued function, 

let r+ = max(f,O) f- = - min(f,O), and if jrt'd',l or ff~dJ.l is finite l<Te put 

jfd}l = jrt'dp. - jf-dp.. If f is complex-valued, then there are real-valued 

functions f 1 , fz "1ith f ::: f1 + ifz. If ff1dp., ffzdp. are defined and finite, 

we put jfdp. = ffldJ.l + iffzd)l. 

Let X be a set and P'(X) the set of all subsets of X. A Carath-

eodory outer measure p. is a function on "P(X) into the extended reals such 

that (1) ;u(¢) = 0 ,, (2) p.(A) ~ 0 for all A f 1)~(x) 

(3) p.(l):l Ai) :S s.::l ~(~) Al• Az, • • • • • eo • • • f ·JY(X) 

A set A f p~(X) is said to be ~-measurable if for every S f ·'}P(X) 

we have p.(S) ~ p.(Sf\A) + p.(Sr\(X,A)) 

The set of. all 11-measurable subsets of X is a a-algebra ~~ and 

~ is a positive measure on ln. ((11) Chapter II, Jll). 

Let X be a loca~ly compact space. The Borel subsets of X are 

1 
the elements of the a-algebra generated by the closed sets of X. 

A measure p is called a Borel measure if its domain is the Borel subsets 

of X, and if j)l(K)j < oo for each compact set K. 

A measure 11 on a a-algebra m whose domain includes the Borel 

sets of X is said to be outer regular if for every A f 11l 

p.(A) = inf f11(U) : U is open and AS u}. 

ji is said to be inner regular if for every A f m 
p(A) = sup [ )l(K) : K is compact and K ~ A J. 

1. This definition and the definition of a regular measure differ 
from that in Halrnos (11), but is the definition used in Hewitt and Ross 
(12), and a nurnber of other authors. 



A measure 11 is sa.id to be regular if it is outer reg;1.1lar e.nd if for 

each open set V, 

p(V) = sup f p(K) : K is compact and K C V }. 

If 11 is a regular measure and A f ')}(_ with lv(A) I < ""• then 

p.(A) = sup~ p(K) : K is compact and K f. A 1 ( (12) Chapter III, 

11.34). 

).2 f~1J·1QQ_. Lot X be a locally compact space and 

let C(X) be the collection of all bound(~ continuous complex··valued 

functions on X. C(X) is Et Banach space uith norm given by jjfjj = 

sup r I f(x) I : X f X 1 • K(X) is the subspace of C(X) consisting of 

functions ivhose support is compact, .::md C0 (X) is the closure of K(X) 

in C(X). C
0

(X) consists of all functions f such that for given e > 0 

there is a compa.ct set K such that jf(x)l < e for x f X"-K. c+(x) 

is the set of positive functions in C(X). C~(X), ~(X) are defined 

simila:dy. 

Let y f X .and let V be an open neighbo!··hood of Y 1-rhose closure 

is compact. By the complete regularity of X, there is a continuous 

function f, 0 ~ f(x) :S 1 such that f(y) = 1 and f(X' V) = 0. Thus 

f f t+(X). Consequently K(X), C0 (X) and C(X) separate the points of X. 

Let C0 (X) 1 be the dual of C0 (X). Then since C
0

(X) is a Ban­

ach space, C
0

(X)' is also a Banach space, and the norm of an element 

If C0 (X)' is given by jjrjj = sup [ji(f)j : jjfjj ~ 1 J. 

14. 

Let H(X) be the set of all regular Borel measures on X having 

finite total mass. There is a natural isomorphism between C
0

(X)' and 

N(X). This isomorphism is a conse-quence of the fact that each positive 



linear functional I on K(X) can be extended to a linoar functional on 

a much lare;er class of functions. VIe noH outline this extension, and 

once this is done we shall outline the proof of the above mentioned 

isomorphism bet~v-een C
0 

(X) 1 and H(X). For the details vle refer the 

reader- to (12) (Chapter III, ~ 11 and § 13). 

)...J Ext~pE._ion. of a_"P2..SJ-tiy_~ b._~~Ecti,on-?1.• Let I be a 

positive linear functional on K(X), i.e. e. linear functional such 

that f ~ 0 implies I(f) ~ 0. We define a functional I on a class J.rt 

of all positive lo-vrer semicontinuous functions f on X by 

I(f) = sup t I(g) : g f r(X) and g :sf 1 ........•..•.•.. (1) 

Then: 

(1) I(f) = I(f) if f f Ir-(x) 

(2) I(f + g) = I(f) + I(g) f, g f l-rt-

(3) I(af) = ai(f) a > 0, f f M+ 

(4) f:Sg=? I(f) :s I(g) f, g f :t-rt 

(5) if D is a subset of N+, directed by :S• then 

I(sup f f : f f D 1 ) = sup { I(f) : f f D J • 

I is then extended to the set F+ of all positive functious f 

on X by 

r(f) = inf fr(g) gf~andg~f]. 

Then: 

(1) I(g) = I(g) if g f r-r-
- -

(2) i(f + g) < r(r) + I(g) f, g fF 

(3) I(af) = ai(f) a> 0 f f F'-

15. 
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then I(lim fn) = llin I(fn)• 
n--,.oo n..:>oo 

For any subset A of X, letxA be its characteristic function. 

Define a set function p. by }l(A) = I( X. A). Then }1 is a Caratheodary 

outer measure. 

A subset A of X is said to be }l-null if p.(A) = 0. If A(\K is 

p.-null for each compact set K then A is said to be locally }l-null. 

It can be shown that a set A is locally p.-null if and only if each x 

in X has a neighborhood V such that }l(A/\ V) = 0. 

Let l1I}l be the a-algebra of )1-measurable subsets of X. Then 

1'11:.}1 contains every Borel set and every locally null set. The follm·ring 

prope:r·ties of ll can be shmm. 

(i) p. is a positive regular measure on ~p.• 

(ii) p.(K) is finite for each compact set K. 

(iii) }l(X) = sup [ I(f) : f f K+(x), f :S 11. 
(iv) the functional I is bounded if and only if p.(X) < oo 

and then I III I = v(X) 

(v) for each nonnegative function f on X, I(f) = ffdp.. 

(vi) if .\. is a regular measure on X; mA. the a-algebra of 

.\.-measurable subsets and A.(K) is finite for each compact set K, then 

jfdl.. = jfd}l for all f f J0-(X) implies .\(A) = }l(A) for all A f mA.(\)ytll. 

For f f C~(X) let jrj(f) =sup f ji(g)j : g f C
0

(X), jgl :Sf 

and extend jij by linearity to C0 (X). Then jij is a positive linear 

functional on C0 (X); jij =I j_f and only if I is positive; and 



jj(jij)!j = !III I ((12) Chapter III, 14.5) • 

.b!.L...,:,rpe §~.al_o!....£0iX2. If I is in C0 (X) 1 then there are 

positive linear functionals I1, Iz, I3• I4 t C0 (X) 1 such that I = 

I 1 - Iz + I3 - Il}. We may apply the construction of the preceeding 

section to each Ii and obtain a positive regular measure 'Pi (i = 1, 2, 

3, 4) such that Ii(f) = ffd~i for each f t C0 (X). The restriction of 

llj_ to the Bo1•el subsets of X is a Borel measure, lvhich we again de­

note by ~i. Let }1 :.: 'Ill - 112 +i(p.3 ~ \14). Thus V-re have for each 

I f C0 (X)' a Borel measure p. such that I(f) = jfdp. }foreover by (\T) 

this measure is uniquely detennined. 

Theorem 4. The mapping I + p. given by the above is a one-

one linear mapping of C0 (X) 1 onto M(X) such that 

(i) I(f) = fxfdp for all f f C0 (X) 

(ii) 

(iii) 

jjijj = fpj(X) 

For a proof see (12)(Chapter III, 14.20 and 14.14). 

In view of the above theora~ we now drop the distinction 

between elements of C0 (X) 1 and elements of .H(X). In particular for 

p f M(X). f f C0 (X) the symbols p(f), !fd~, fxf(x)d}l(x) etc. ell 

have the same meaning, 5 .• e. each is eq_ual to I(f), where p corres­

ponds to I uniquely. 

;3. 5 The support of a meap'llJ'-2• The support of a. measure p., 

written Supp(p) is the smallest cl('sed set l-mose complement is p.-null. 
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Equivalently, Supp(}l) is the set of all x such thnt for any noighborhood 

V of x, there is an f f K(X), vrith f(X-...... V) = 0 and }l(f) {: 0. If ltd is 

the total variation of p, then Supp(p.) = Supp(jp.j) (( J) Chapitre III, 

§2 No. 2). 

Let x f X, tl1en the linear functjDnal Ex on C0 (X) defined by 

Ex(.f) :: f(x), for f in C0 (X) 5 is called the Dirac measure at the point x. 

Clearly Supp(cx) = fx}. Conversely if p. is a measure and Supp(p) = (x) 

then there is a scal8.r a such that }1- = nex• 

A measure p. is sa.id to be discrete or purely discontinuous if 

j_ts support is a countable subset of X. A mee.sure p is said to 

be continuous if p.((x}) ::: 0 for all x t X. Each measure p. t H(X) has 

a unique decomposition, p = }ld + pc '\vheL"e Jld is purely d:iscontinuous 

and Pc is continuous. Each purely discontinuous measure 11 f H(X) has 

the form p. = ~ l axex where Ex is the Dirac measure at the point x, 
X, X 

and ax is a complex number, ( the number of x such that ax :f, 0 is countable) 

and I IIlii = l:Xt X I ax I ( (12) Chapter V • §19). 

).6 Dirac measu,res and extreme .E.<?1!tt.s of the,Eclt baJ~. The 

following theoren:s give the rel8.tior1ship between Dirac measureson a 

locally compact space X and extreme points of the unit ball of H(X). 

Theo:t-em 5 belm-r is taken from Dunford and Schmtrtz (6) p.441. Theorem 

6 for the special case of X compact also appears in Dunford and Schwartz. 

The proof given here is an easy adaptation of thei:t-s. 

Theorem 5,. Let X be a compact space and let N be a closed sub­

space of C(X). Then every extreme point of the unit ball of N' is of 



the fo:rm ae:x where I a I = 1 and x f X. 

Proof: Let S (rasp. S t) be the unit ball of N ( resp. N 1 ) and 

let A be the subset of N 1 of all ele.ments ae:x '\-Jhe:re I a I = 1 and 

x f X, together vrith the zero measure. Then 

A 0 = { f f N I ae:x (f) I S 1 for all x f X 1 
= { f f N I f(x) I :S 1 for all x f X 1 

= s 
Therefore A00 = S' and by §1.5 the cr(N' ,N)-closure of the convex hull 

of A is s• ·which is a a(N' ,N)-compact sot by §1.5. Since each f f N 

is continuous, the mapping x -r ex is a continuous mappir1g of X into 

(N' )a, therefore fe:x : X f x} is a(N' ,N)-compact. Consequently 

19. 

A== [ae:x: x f X, lal = l}V{O) is a(N•,N)-compact since it is the 

product of a compact set of cornplex numbers and a a(N' ,N)-compact sub­

set of N'. Thus lem1na 1 of §1.1 applies and He have that every extreme 

point of S 1 is an element of A. Clearly 0 is not an extreme point of 

S', so that each ~xtreme point is of the form ae:x, x f X and I a I = 1. 

If X is a locally compact non-compact space, let X~ be its 

one-point compactification. Then C0 (X) may be identified with a sub­

space of C(X~) and C0 (X) is closed in C(X00
) since C

0
(X) is complete. 

Hence the above theorem applies and we have that every extreme point 

of the unit ball of H(X) = C0 (X) 1 has the fona ae:x, I al = 1, x f X
00

• 

Theoram 6. Let X be a locally compact space. The extrame 

points of the unit ball of H(X) are the measures tu~x• I a I :: 1, x f X. 

Proof: By the above remarks if )l f H(X) is such an extreme 



point then there is an x f X
00 

and an a, I a I = 1 such that p. = aex• 

If' x = r.ro (i.e. x f X
00

' X) then e:x is 0 on C0 (X) and therefore is 

the zero measure. Since 0 = 1/2 >... + 1/2 ( - A.) for any A f H(X), 

0 cannot be the extreme point of' t.he unit ball. To prove the 

theore.'ll it remains to shm·l that for given x f X, I a! = 1, ae:x is 

an extreme point of the unit ball. For this first vre sholv that ex 

is an extreme point. Let Ex = ay + (1 - a)A. where 0 < a < 1 and 

liP.! I ~ 1, 11>-11 ~ l. Then ue have to sholf that }l = A = e:x• Let 

f' f C0 (X), llfll ~ 1, and f(x) = O. For each integer n > 0 let 

Wn = [Y : jf(y)j < 1/n} and let Vn be a compact neighborhood of' 

x such that Vn ~ W
11

• There is a gn f K(X) such that 0 ~ gn(y) ~ 1 

for ally f X and gn(y) = 1, y f Vn, gn(y) = 0 for y ~W11 • Let 

f'n = f - gnf, then fn ~ f in the nonn of' C0 (X) and fn(V~) = o. 

If' y f Wn then jfn(y) + ~(y) j = lf'(y) l ~ 1 and if' y f Hn then 

lfn(y) + gn(y) I = jf'(y) - gn(y)f'(y) + gn(y) I 
~ lf(y) I (1 - gn(y)) + gn(y) 

~ 1. 

Consequently II f'11 + gn II ~ 1. 

Now ex(~) = 1 and ex(f'n) = 0 so that 

ap.(f11 + g11 ) + (1 - a)A.(f11 + ~) = 1. 

Since llrn + ~II ~ 1 we have jp.(f'11 + ~.) l :S 1 and jA.(f'11 + g
11

) I ~ 1 

so that p(f'11 + ~) = >..(f'11 + ~) = 1 •. Similarly since II gnll ~ 1 

we obtain p(gn) = >..(gn) = 1. Therefore p(f
11

) = >..(f
11

) = 0. Since 

f 11 ~ f' we have p(f') = >..(f) = 0. Therefore ker ex ~ ker p. and 

ker ex ~ ker A.. Consequently there are scalars a, ~ such that 

P. = nex,>.. = ~ex, and lnl ~ 1, 1~1 ~ 1. Thus a= ~ = 1, since · 

20. 
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aa + (1 - n)p = 1. 

Let a be a scalar with jaj = 1 and let x f X. If ae:x = 

bp. + (1 - b);l. with 0 < b < 1 af\.d liP.! I :S 1, II.\! I ~· 1, then multiplying 

by a ne have, F:x = bap. + (1 - b)a.\ and since !lap.! I = llvll :s 1, 

llu II = II.\ II :s 1 the above applies and \-10 have Ex = av = a.\ l-7hich 

gives ae:x = p. = .\. Thus ae:x is an extr&ue poll1t of the unit ball. 

Throughout this section X is a locally co!llpact space; I a 

positive linear functional on K(X) and p. the measure constructed from 

I as in §3.3. 

4.1 . Defi,!J)-tions and ole:mentary facts. A function f is said to 

be p.-null (resp. locally v-null) if there is a p.-null (resp. locally }1-

null) set N such that f(x) = Q, x E- X' N. When no confusion will arise 

we shall drop the Jl• We shall also say that f(x) = 0 almost eve:ryvrhere 

in place of saying that f is null. 

If f is locally null but not null then for each p, 1 :S p < oo, 

JjfjPdp. = oo ((12) Chapter III, 12.2). In particular if N is a locally 

p.Mnull set then p.(N) = oo or p.(N) = 0. 

For each positive real number p, let tjp(X,~) be the set of 

all complex ve.lued measurable functions on X such that !jfjPdll < oo. 

Let n be the set of all p.-null functions on X, and put JP(X,p.) = 'f.Y(X,p.)/rt 

When no confusion can arise we write LP(x) for LP(X,p). We shall also 

allow ourselves the luxury of being imprecise and calling elements of 
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LP(x,r) functions. For 1 ~ p < ~. LP(X) is a Banach space with norm 

p ]1/p 2 given by 11rllp = [ /jfj dp. • L (X) is a Hilbert space,~~tl1 the 

inner product of f,g f L2 (X) given by (f, g) = ffgdp.. 

Let ~~ be the set of all measurable bounded functions on X 

and let e· be tl1e subset of '£- consisting of all locally null functions 

on X. '£, is a Banach space with nona given by II fjj = sup [I f(x) j : x f X} 

ar1d {)- is a closed subspace of ~. Thus 'ir / e- is a Banach space ,,rhich 

we denote by L~(X,p.) or simply L~(X). We feel obligated to point out 

that this definition of L~(X) differs from that used by many writers. 

However this definition is the one used by He1dtt and Ross (12) and 

N. Bourbaki (3). It is clear that K(X) ~LP(X) fo1· all p =: 1. 

For given p, 1 < p < oo, let q = p/ (1 - p), for p = 1 let 

q = ~and for p = oo lot q = 1. We shall need the following facts about 

LP(x) and Lq(X): 

(i) for f f r.P(X), HrJ lp = sup (!Jfgd~ll : g f K(X), llgJjq ::S 1). 
(ii) (Holder's inequality) if f f LP(x) and g ~ Lq{X) then 

fg f L
1(x) and Jjfgjdll S llfllpllgjjq. 

(iii) K(X) is nonn dense in LP(X), 1 S p < ~. 

4.2 Absolute continuit~. Let J be a positive linear functional 

on K(X) and let .\. be the measure constructed from J as in §3.3. A. is 

said to be absolutely continuous with resp€,ct to p. if each locally 

J.l-null set is locally A.-null. If A. is absolutely continuous with respect 

to p. then there is a positive p.~easurable function g such that 

/fdA. = /fgd~ for all f f K(X) (Lebes~e- Radon- Nikodym Theorem (12) 

Chapter III, 12.17). 



The measures A and p. are said to be equivalent if they are ab­

solutely continuous lvith respect to eech other. 

Let A be any regular measure on X. Then A is said to be ab­

solutely continuous with respect top. if I~I(F) = 0 for every compact 

set F s1,1ch that p.(F) :: 0. If ~ f H(X) and A is absolutely continuous 

with respect to p., then there is an f {- L1 (X,}.t) such that >..(A) = J Afdp. 

for each Borel sot A and II f'j h = II>.. II ((12) Chapter III, 14.1? and 

14.19). The function f is called the Radon- Nikodym derivative of >.. 

with respect to p., and will sometimes be denoted by ~· 

4.3 The~-d~ct of a fun~~nd a measure. Let f f L1(X,p.) 

then we define fp. to be the measure defined l'or each Borel set A by . 

fp.(A) = ! Afdp.. Then fp. t M(X), fp. is abGolutely continuous with respect 

top. and llf)lll = llrllr 

i• M(G) and Ll(G). 

5.1 The measure alRebra. Let G be a locally compact group. 

For any function f on G and each y 4 G, yf is the function define'<! by 

yf(x) = f(yx). Since for given y the mapping x ~~~is a homeomor­

phism of G onto itself it follo\IS that f f C0 (G) implies yf f C
0

(G). 

For p f M(G), and f f C
0

(G) we may thus define a function ji(f) by 

~(f)(x) = p.(xf). !hen p(f) f C0 (G) ((12) Chapter V, 19.5). For 

p., >.. f H(G) we define the convolution J.l*A by J.l*A(f) = p(~(f)). 

Proposition 1. M(G) is a Banach !llgebr1 r1ith convolution as 

1. See §6.3 for the definitions of Banach algebra and Banach *-algebra. 



multiplication. 

Proof: M(G) is a Banach space since it is the dual of the 

Banach space C
0

(G) (~3.4}. \ve now sho'tf that for p, .\. f H(G) 

IIP.*AII ;S IIlli I IIAII· Let r f Co(G). Then 

111*>-<r> I = llt(>:(f)) I :s ll11ll I r~<f) II = IIP.ll i(:RIA<xf) I 

~ II rll II A II sup II xr II :s II llll II A II II f II · 
Consequently IIP.*All ~ ll11ll IIAjj. 

To prove associativity first note that for x, y f G we have 

i(xf)(y) = A( ( f)) = A( f) = l(r)(xy) = x<~f)(y) .. y X xy 

so that l(xf) = x<Xf). 

Now (p.*.\.)(f)(y) = Jl*A(yf) = }l(l(yf)) = p(Y(if)) 

= }l(X(f)) (y). 

Let v f M(G) then 

(v*(}l*A))(f) = V'(}l*A(f)) = v(}l(X(f))) = (V*ll)(X(f)) 

= ( (v*ll)*A)(f). 

Thus convolution is associative. It is easily seen that for any 

complex nu:nber c we have }l*(c.\.) = c(p.*.\.) = (cp)*A and that the dis-

tributive laws hold. 

If f is any function on G we define a function f .... by f"" (x) = 
f(x-1). Since the mapping x -+ x-1 is a homeomorphism of G, 

f f C0 (G) implies f.-v f C0 (G). We now define fl mapping }l ~ }l* of 

M(G) onto itself by Jl*(f) = Jl(f~) where - is the complex conjugate. 

Theorem Z· M(G) is a Banach *-algebra. 

Proof: It is straightforward to verify that (1) (p. + .\.)* = 

24. 



p. * + A* , ( 2) ( ap.) * = frp* , ( 3) }1* .. ~ = P. and that 1111 * II = II P.ll • 
For the proof that (p.*A.)* = A**~* see (12)(Chapter V, 20.22). 

1'hc a.lgeb_ra M(G) is £8J-.l2£ j-he meoa.~t:.r~ alg~l:a ~f tp~ loc~ly 

com:eact .J;.:t:!?UJLQ;. 

For each x f G, let Ex be the Dirac measure at x, and let 

Ge be the collection of all Dirac measures. 

Proposition 2. Ge is a group and the mapping x ~Ex is a 

homomorphism. 

~2f: For x, y t G, f t C0 (G), Ex(f)(y) = ex(yf) = yf(x) = 

f(yx) = fx(y). Thus Ex*Ey(f) = ex(fy) = f(xy) = exy(f). Thus ex*Ey = 
Exy• From this it follovrs that ex_1*ex = ex*ex-l = ee where e is the 

identity of G. Thus to shovl ex -1 exists and ex -1 = e _1 it suffices 
X 

to show that Ee*P. = P.*Ee = p. for all p. t M(G). Now 

(e6 *p.)(f) = ee(~(f)) = ~(f)(o) = p.(f) and 

(p.*ee)(f) = p.(€e(f)) = p.(f). 

Thus ee is tl1e identity of M(G). 

j. 2 Haar measut§:_. Let G be a locally compact group. There 

exists a positive regular measure m on G finit~ for each compact set, 

which is not identically zero and is left translation invariant, i.e. for 

each x f G and each Borel set A <; G, m(xA) = m(A). The measure m is 

called the Haar measure on G and is unique to within a positive con-

stant factor. 



The idea of the proof is to construct a positive translation 

invariant linear functional I on K(G) (by translation invariant we 

mean I(xf) = I(f) for each x f G) and then apply the extension pro­

cedure outlined in 93.3. For the construction of such a linear 

functional the reader is referred to He~ntt and Ross ((12) Chapter IV~ 

1.5)~ Husain ((13) Chapter VI) or I..oornis ((15) Chapter VI). 

For x f G, consider the measure mx defined for each Borel set 

A by mx(A) = m(Ax). Then 1nx. is a left invariant measure so there is 

a real munber 6 (x) > 0 such that m(Ax) = A (x)m(A). The function 

~ : x -+ .6-(x) is a continuous homomorphism of G into the positive 

reals ((12) Chapter IV, 1,5.11) and is called the modular function. 

26. 

G is said to be unimodular if ~(x) = 1 for all x f G. If G is compact 

then .6(G) is a compact subgroup of the positive reals and consequently 

.6 (G) = { 1] so that every compact group is unimodular. Clearly every 

abelian locally compact group is also un~nodular. 

5.3 Ha(G) and L1 (G2. Let Ma(G) be the subspace of M(G) consist-

ing of all measures p. which are absolutely continuous 'Hi th respect to 

the Haar measure m on G. Let h f Ll(G) = L1 (G,m) then the measure hm 

is in Ha(G~ and the mapping h -?-hm is a linear one-one mapping of 

L1 (G) into Ha(G) which preserves nonns (94.3). If 11 ~ Ha(G) then by 

the Radon- Nikodym theor~n there is an h f Ll(G) such that hm = ~· 
Consequently the above mapping is an isometry. Thus we may identify 

L1 (G) with Ma(G). It turns out that Ma(G) is a closed two sided ideal 

in M(G) ((12) Chapter V, 19.18). Thus if }l ~ M(G) and h f Ll(G), 

P.*hm and hm*P. are absolutely continuous with respect to m. We define 



ll*h (resp. h*}l) to be the Radon- Nikodym derivative of Jl*hlll (resp. 

htn*Jl) with respect to m. Then the follol-Ting formulas hold for g, 

h f Ll(G), and ll f H(G). 

(i) P.*h(x) = 1h(y-lx)d}l(y) 

(ii) h*p.(x) = 1 ~(y-l)h(xy-l)dp.(y) 

(iii) h*g(x) = 1h(xy)g(y-l)&n(y) 

= 1h(y)g(y-lx)dm(y) 

= 1 6(y-l)h(y-l)g(yx)run(y) 

= 1 6(y-1)h(xy-l)g(y)&n(y) 

((12) Chapter V, 20.9 and 20.10). 

For each p. f M(G) we define a mapping Tp. of L1(G) ontO 

itself by Tllh = }l*h, h f Ll(G). The mapping }1 ~TJl is a one-one 

ntapping of H(G) into C(L1(G),L\G)) (see §1.3 for the definition). 

Theora~ 8. (Wendel). The image of M(G) in C(L1(G),L1(G)) by 

the mapping ll _.,.. Tll is closed. 

For the proof see (24) theorem 2. 

The so-topology on M(G) is the coarsest topology such that 

the above elllbedding H(G) ~ C(L1(G) ,L 1(G)) is continuous. It follows 

.from theorem 8 an<i. §1 that H(G)so is a locally convex space which is 

quasi-complete. 

2·4 The LP{G) sEace. Let .f f LP(G) (1 ·~ p ~~)and let p. be 

a measure in M(G). Thon j.f(y-lx)d~(y) exists and is .finite .for all 
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x f N where N £ G is m ... null if 1 ~ p < 00• If we define a function 

ll*f by p.*f(x) = jf(y-lx)dp.(y), x ~ N and p*f(x) = 0, x f N then we 

have II'Jl*fll p :s llrll II rjjp ((12) Chapter v 20.12). 

Let 1 ~ p ~ oo, and let q = pf(p - 1) if p ~ 1 or oo, q = 1 

if p = oo and q = oo if p = 1. Let 11 be in M(G) and suppose that . 

J L\(y)- l/q dill! (y) is finiteo Let f be in r.P(G). Then the integral 

J ~(y-l)f(xy-l)dp.(y) = f*}l(X)••••~••••o••••••••••••••••••(l) 
exists and is finite for all x f G'N where N is m-null if 1 S p < 00 

and locally m-null if p = oo. Equation (1) defines a function in LP(G) 

for which 

llf*plj < llflj 1 A(y)- l/q djlll (y) 
p- p G 

( (12) Chapter V, 20.1.3). In particular if G is uni."llodular then the 

convolution f*ll exists for each f f LP(G), )l f H(G) and jjf*p.ljp:::: 

llfiiPIIllll· 

If 1 < p < oo and q = p/(p - 1) then for f f LP(G), g- f Lq(G), 

the integral JGf(xy)g(y-l)dy = f*g(x) exists for all x f G and defines 

a function in C0 (G). ((12) Chapter V, 20.16). From this it follows 

that if A is a set of positive finite measure then AA-1 is a neighbor­

hood of e t G. Consequently if S is a subgroup of G which contains· a 

set of positive measure then S is open and hence closed. 

In a later section we shall need the following lemma which is 

given in Hewitt and Ross (12)(Chapter V, 20.15). 

Lemma 2. Let f be in LP(G) (1 .::;; p < oo) and £ a positive num­

ber. There is a neighborhood U of the identity e in G such that 
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for all positive measures }l in M(G) such that }l(G) = 1 and p.(G'- U) = o. 

There is also a neighborhood V of e such that 

(ii)" II f*¥ - f II P < e 

for all positive measures p. in M(G) such that p(G) = 1 and }l ( G 'V) = o. 

6.1 Definitions anj. el,6~entar;y facts. · By an algebra ue mea.n 

a linear associative algebra over the complex field. An algebra A is 

called a *-algebra if there is a mapping x ~x* of A onto itself such 

that for x, y f A and any complex number c 

(i) x** = x 

(ii) (ex)* = ex* where c is the complex conjugate of c 

(iii) (x + y)* = x* + y* 

(iv) (xy)* = y*x* 

A topological algebra is an algebra A given a topology u 

such that Au is a TVS and such that for each y f A the mappings 

1 
x _,.. xy and x ~ yx. are continuous. 

A topological *-algebra A is a topological algebra which is 

a *-algebra and such that the mapping x ~ x* is continuous. 

We new state a nu~ber of elementary facts concerning top-

ological algebras and *-algebras. Let A be a topological algebra 

(resp. topological *-algebra) then 

1. It should be noted that soma authors require multiplication to 
be jointly continuous. 
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(a) the closure of a subalgebra (rasp. *~subalgebra) of A 

is a subalgebra (resp. *-subalgebra) of A. 

(b) the closure of an abelian subalgebra (rasp. abelian 

*-subalgebra) of A is an abelian subalgebra (rasp. abelian *-sub­

algebra) of A. 

(c) if N is a closed t'tvo ·sided ideal of A then A/N is a 

topological algebra. 

£.2 The Jacobson radical and semi-simp~icity. Let A be an 

algebra and let x t A. An alement y in A is called a left (resp. 

right) quasi-inverSe for X if X+ y - yx = 0 (resp. X+ y - xy = 0). 

If y is both a left and a right quasi-inverse for x then y is called 

a quasi-inverse for x. 

The Jacobson radical of A is the set of all y f A such that 

for each x in A, and each scalar a, ay + xy has a left quasi-inverse. 

A is said to be semi-simple if the Jacobson radical of A consists of 

only the zero element. There are various characterizations of the 

Jacobson radical, -we refer the reader to (l?)(Chapter II, )7) for 

these. 

~. Banach algebras and W*-algebtas. A Banach algebra A is 

an algebra whose underlying vector space is a Banach space and whose 

norm satisfies the inequality II'XYII ~ llxll IIYII for each x, y f A. 

If in addition A has a unit u then we shall require I lull= 1. A 

Banach *-algebra is a *-algebra which is a Banach algebra such that 

llx*ll = llxll for each x in A. A C*-algebra is a Banach *-algc';)ra 
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in -w'hich llx*xll = llxll
2 

is satisfied for all x in A. 

If p is a multiplicative linear functional on a Banach al­

gebra A, then IIPII ~ 1. If A has a unit u then llPII = 1 ((12) c.21, 

note that commutivity 1.s not used in the proof). 

Theorem 9...-_ (Kakutani). Let A be a Banach algebra having a 

unit u. Then u is an extreme point of the unit ball of A. 

Proof: Let A1 be the dual of A and let S 1 be the unit ball 

of A 1 • Nou suppose u = ax + (1 - a)y, 0 < a < 1, llxll :S 1, IIYil :S 1. 

We shall now show that x = y = u. Let x' be an extreme point of s•. 
Let xi be defined by xi(z) = x'(xz) and xz(z) = x 1 (yz) for any z fA. 

Then axi(z) + (1 - a)x2(z) = x 1 (ax + (1 - a)y)z) = x 1 (z) and since x 1 

is an extreme point and llxill :S 1, llx211 :S 1 we have xi = xz = x'. 

'l'herefore x 1 (z) = x 1 (xz) = x 1 (yz) for any z f A and any extreme point 

x 1 of s•. For a given z in A, the mapping x'~ x'(z- xz) of A' into 

the complex numbers is a o(A•,A)-continuous linear functional on A'. 

By the above, this mapping is zero on the extreme points of S'. Con­

sequently it is zero on the o(A 1 ,A)-closure of the convex span of the 

extreme points of s•. By the Krein- Milman theorem (~1.1), S' is the 

o(A 1 ,A)-closure of the extreme points of S 1 • Therefore x'(z- xz) = 0 

for all x' f s•, and thus z = xz for all z f A. Taking z = u we have 

x = u, and then y = u. This completes the proof. 

Let H be a Hilbert space and let B(H) be the algebra of all 

bounded operators on H. Then B(H) is a C*-algebra where the nor:n of 

an element T is given by II Til = sup {II Txjl : llxll :S 1}. T* is the 
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conjugate ofT defined by (Tx,y) = (x,T*y) for x, y f H. 

In addition to the norm topology on B(H) a number of other 

topologies are commonly used. \ve nill use only one of these, the weak 

operator or \.r-topology. For x, y f H define a semi-nonn p (A) = x,y 

I (Ax,y) I, Hhere (x,y) is the scalar product of x, y t H. Then the 

w-topology is th~ topology given by the family fPx,y : x,y t H} of 

semi-no:rms. A H*-algebra (also called a vonNeumann algebra) is a 

*-subalgebra of B(H) vmich is w-closed. 

Let 01. be a subset of B(H), then the commutant of Ot, denoted 

by ot0 is the subset of B(H) consisting of B.ll operators S such that 

ST = TS for all T in Ol e The vl*-algebre, generated by Ot is the 

smallest \.V*-algebra containing (J'l • If T f 01. ~ T* f {j{_ for all T f Ul, 

then the \<!*-algebra generated by Ol.equals 01.cc( = (R 0
)

0
) ((17) Chap­

terVJL 34). In particular if Ct. is a W*-algebra then Ot = OL-cc. 

?.1 Defini~ions. Let G be a locally compact group. A rep­

resentation of G is a pair (L,H) where H is a. Hilbert space and L is 

a homomorphism x ~ Lx_ of G into the group of unita:cy operators on H, 

such that for each f f H, x ~ ~f is s. continuous function from G in-

to H. 

A subspace V~ His said to be ll1Variant under L if Lx_V ~ V 

for all x f G. A representation is said to be irreducible if the only 

closed invariant subspaces of H are {Ot and H. 



7.2 Th.e. regu.lar repre.sentFJ-iRns. Let p be a real number 

1 :S p < oo, then for f -~ I,P(G) the ma.pping x _,.. xf is rip;ht uniformly 

continuous, ( (12) Chapter V, 20.4) and the mapping x -? fx is contin­

uous. Let 1x be the operator on L2(G) defined by Lxf = 1f and let L 
x-

be the mapping x ~ Lx• Then (L,L2 (G)) is a representation of G which 
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we call the loft ref.,tUla:r representation. Let fSc be the operator on L2 (G) 

defined by ~f = fx and let R be the mapping x ~ R:x· Then (R,L2 (G)) is 

a re1presentation of G which He call the right regular representation 

of G. 

Let G be a locally compact unimodular g1~up. For each ~ f M(G), 

let l)I be the operator on L2 (G) defined by l)If = f*Jl for f f L2 (G). 

Then each ~ is in the commutant of { Lx : x f G } • Let ·if{_ be the W*­

algebra generated by {R_ : p. f H(G)} • Note that Re f = f*Ex = f 
1

.,= v. x x-
R 1f. 
x-

It folloioiS that the \-!*-algebra generated by f R;x : x f G 1 is ~. 

It is known that J{ is the commutant of fLx : x f GJ ((20) theorem). 

Z.·2.. Induced rep~esep;!:!J-tio~. Let G be a locally compact uni-

modular group and let S be an open abelian subgroup of Go Then S is 

also closed and locally compact. Let t be aAcharacter of s. We define 

a representation (Lt,H) of G as follows. Let K be the vector space of 

all functions f on G such that f(xs) = t(s)f(x) for all x in G and s 

in s. Choose an element from each left coset of S and let G/S be 

the set obtained in this manner. For f f K we define ll fll 2 = .E L / 
x,G s 

jf(x)j
2

• Let H be the set of all f f K such that llfll < 00• Then His 

a Hilbert space with the inner product given by (f,g) ; .E / f(x)g(x). 
xfG s 

For each x f G we defil1e an operator ~ on H by L:!'f(y) = f(x-ly), and 



let Lt be the mapping x ~ L!. Then (Lt,H) is a representation of 

G which is called the representation indue~~ by the character t. A 

more general treatment of the above construction can be found in (16) 

(Chapter III). 

B. Direct I~r~l~~t Spaces. and ~epr~en~ations. 

In this section l're shall outline the theory of direct in-

tegrals of Hilbert spaces and of representations. Unless another 

reference is given, tho proof of any assertion we make can be found 

in (4)(Chapitre II). 

Let~ be a locally compact space, and ~ a positive regular 

measure on X. Let {H(t) : t f X} be a family of Hil'Lert spaces nnd 

let fi = 7/H(t). An element f f ./1 is called a vector field on X. 
t~X 

Definiti~: A fsmily tH(t) t f X} of Hilbert spaces is 

said to be ~-measurable if there is a subspace ~ f ~ such that 

(i) for each f f f!, the function t ~ II f(t) II of X into 

the positive reals is measurable. 

(ii) if g f ..:F is such that for each f_ f f), the function 

t ~ (g(t),f(t)) is ~-measurable then g f ~ , where (g(t),f(t)) is 

the inner product in H(t) for each t. 

(iii) there exists a sequence of elements (fl, fz, ••••••• ) 

of~ such that (fl(t), fz(t) •••••••• ) is total in H(t), for each 

t f x. 
The elements of ~ are called p-measurable vector fields. 



If there exists in .ft a sequence (f1 , fz, ••••• ) of vector 

fields such that (1) the functions t ~ (fi(t), fj(t)) are measur­

able for i,j = 1, 2 •••• and (2) (fl(t), fz(t) •••• ) is total in H(t) 

for each t f X, t.."J.en there exists a unique tj} f :}:.,· satisfying (i), (ii) 

and (iii) above. A necessar.y and sufficient condition for a vector 

field g to bo }l .. measurable is that t ~ (g(t),fi(t)) be p.-measurable 

for each i = 1, 2 ...... 

Let u be the subset of Cj consisting of all }l-moasurable 

vector fields f such that fllf(t)jj 2d}l(t) < oo, and let ffi-.0 be the 

subset of ii of all vector fields f such that Jjjf(t)jj
2
dp.(t) = 0. 

Define an inner product in ~/~0 by (f,g) = /(f(t),g(t))dp(t), and 

then 'f1/"iP
0 

becomes a Hilbert space which we denote by JXH(t)dv(t). We 

shall write H in place of fxH(t)d~t(t). The space H is called tho dir­

ect integral of the family {H(t) : t f X 1 . 
Suppose that for each t f X, Tt is a bounded linear operator 

on H(t). If t ~ (Ttf(t),g(t)) is p-~easurable for each f, g f ~­

then t ~ Tt is said to be a p-measurable operator field. A necessar,y 

and sufficient condition for t ~ Tt to be ~-measurable is that 

t ~ '(Ttfi(t),fj(t)) be p-measurable for each i and j. 

If t ~ Tt is a }l-measurable operator field and if supjiTtjj < oo 
t 

then there is a unique bounded linear operator T on H such that for 

each f in H (Tf)(t) = Ttf(t) almost eve~ere. It can then be shown 

that liT! I = supjjTtll. In particular if h f L
00

(X,p.) then there is a 
t 

unique operator Th on H such that (Thf)(t) = h(t)f(t) almost everywhere 

for each f f H. Let ·~ = { Th : ht L00(X, p)] then } is a W*-algebra 

called the algebra of diagonalizable operators. If T is a bounded linear 



operator on H then T is said to be decomposable if there exists a p­

measurable operator field t ~ Tt such that for each f f H, (Tf)(t) = 
Ttf(t) ~~ost eve1J~era. A bounded operator T on H is decomposable 

if and only if TTh = ThT for all h f L
00(X,p). 

If '\<TO are given a Hilbert space H, an:l an abelian W*-algabra 

a- • then there exists a locally compact space x. a positive measure 

p on X, a p.-maasurable family {H(t) : t f x} of Hilbert spaces and an 

isometry V of H' = JH(t)dp(t) onto H such that the mapping T -+ VTV-1 

maps the algebra of diagonalizable operators on H1 onto i}• 

We nmv define the direct integral of representations. l,et 

X be a locally compact space, }1 a positive ree,'Ular measure on X. J>.. 

family {(Lt,H(t)) : t f x} of representations of a group G is said 

to be p.measurable if the family tH(t) : t f x1 of Hilbert spaces is 

p-measurable and if for each x f G, the operator field t -? ti is 

p-measurable. Since I IL!II = 1 for all t, there exists a linear 

operator L,c on H = JH(t)dp(t) such that (Lxf)(t) = Lif(t) almost 

ever,ywhere. The mapping x ~ Lx is denoted by JLtd}l(t), and the 

pair (JLtdp(t), JH(t)dp(t)) is a representation of G called the direct 

integral of the representations \(Lt,H(t)) : t f Xf. 

Theore.m 10. (Hautner). Let G be a locally compact group 

having a countable basis for the open sets, and let (L,H) be a rep-

resentation of G on the separable Hilbert space H. Let O't be the 

commutant of {LX : x f G J and let } be an abelian W*-subalgebra of 
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01.. Then there is a compact subset I of the real 1:\.ne, a positive 

regular measure p. on I, and a v--measurable family of :r-epresentations 

{(Lt,H(t)) : t f I} of G, and an isometr,y V of /H(t)dv(t) onto H such 

that 

(i) v-1LxV = /~dv(t) for each x f G. 

(ii) A ~ VAv-1 maps the algebra of diagonalizable operators 

on /H(t)d~(t) onto ~ • 

If } is a maximal abelian W*-subalgebra of Crf., then there is 

)?. 

a set N S I of p-measure zero such that for t f I·,N, Lt is irreducible. 

Proof: See (17) §41, theor€a11 ). 

We shall close this section l·1ith a theorem conccerning the 

uniqueness of such decompositions. 

Theorem 11. Let G be a locally compact g1~up having a countable 

basis for the open sets, X a locally compact space having a countable 

basis for the open sets, v- a positive measure on X, {(L\H(t)) : t f X} 

a p-measurable family of representations of G, 

H = /H(t)dp(t) and L = JLtd~(t) 
and let } be the algebra of diagonalizable operators on H. Define in 

. tl ( 
an analagous fashion x1 , P.l' tLl ,Hl(~)) : t 1 f XJ) ,Hl'~ and ~1" 

If there exists an isometr,y U of H onto H1 such that the mapping 

A ~ UAu-1 maps ;} onto J-1 and Ix to La for each x f G, then there 

exists: 

( i) a set N £; X of p-measure zero, a set N'1 f x1 of p.1-mea.sure 

zero, 



(ii) a Borel isomorphism 9 of x·-..... N onto Xl'' Nl which maps p. 

to a measure Fl equivalent to v1: 

(iii) an isometry V(t) for each t f X'N of H(t) onto H1 (e(t)) 
t e(t) 

such that V(t)~ = ~ V(t) for each x f G and t f X'- N. 

Proof: Note that a locally compact space having a countable 

basis for the opon sets is a separable complete metric space and there-

fore in tho terminology of (5), the measure spaces (Z,ll) and(X1 , ,1.1 ) 

are standard. The proof of the above theorem is almost identical to 

tho p:t•oof of 8.2.4 of (5). (8.2.4 is proven for representations of 

C*-algebras, the proof for representations of locally compact groups 

is an easy modification of the proof given). 
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CHAPTER II 

THE so-TOPOLOGY AND ITS APPLICATIONS 

Throughout this chapter G is a locally compact Hausdorff 

topological group. The weak topology on H(G) is the o(H(G),C0 (G))­

topology, i.e. the coarsest topology such that for each f in C
0

(G) 

the mapping }l ..,. p.(f) of H(G) into the complex numbers is continuous. 

We shall frequently write (J in place of o(H(G),C0 (G)). 

ProQosition 1. G is isomorphic and homeomorphic to G~. 

Proof: By proposition 2, §5, Chapter I, the mapping x ~ ex is 

a homomorphism of G onto Ge:, and since C0 (G) separates points, this map­

ping is an isomorphism. Since each f f C0 (G) is continuous, x ~ ex is 

€ a continuous mapping of G onto Gq• Let V be a compact neighborhood of 

the identity e in G. Then there is an f f C~(G), 0 ~ f(x) ~ 1, such that 

f(e) = 1 and f(x) = 0 for x f V. Let W = [x: jf(x)- f(e)j < 1~ then 

W ~ V and W is the image of the neighborhood {ex : j e:x(f) - e:e(f) j < 1} 

of the identity e:e of Ge: under the mapping e:x .-,. x. 

Proposition 2. The mappings }l ~ }l*~• }l ~ ~*}l and }l ~ p*, 

of H(G) into itself are weakly continuous. 
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Proof: (~*A)(f) = ~(X(f)) so that~ -+~*A is weakly con­

tinuous. Since ~*(f) = ~(~), ~ ~ ~* is weakly continuous. The 

mapping ~ -?A*~ may be written as ~ ~~**A* ~ (~**A*)* = A*~, 
so that it is continuous. 

Corollary 1. M(G)a is a topological *-algebra. 

f£.2.2...f: H(G)a is a locally convex space since it is the 

dual of a Banach space and thus in view of the above proposition 

H(G)a is a topological *-algebra. 

~laEX 2. The weak closure of a subalgebra (resp. *sub­

algebra) of II( G) is a subalgebra (resp. *-subalgebra) of l•I(G). 

Proof: This is true for any topological *-algebra. (Chap­

terl, §6). 

Definition: Let S be a Borel subset of G and let H(S) = 

{ll f M(G) : illl (G-S) = 0}. 

Lemma 1. Let S be a closed subset of G, and let~ ~ M(G). 

Then ~ f M(S) if and only if }l(f) = 0 for each f f K(G) such that 

Supp(f)f'\S = ¢. 

Proof: Since Sis closed, G ...... S is open so that jvj(G-s) = 0 

9 Supp ( lllj) S s. Since Supp (iv I) = Supp(~) we have Supp (}l) S s. 

Consequently if Supp(f)()S = ¢ then }l(f) = 0. 

For the other part note that S closed implies that ~'S 

(the characteristic function of G....._ S) _ is lower semicontinuous. Thus 
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by Chapter 1, §J.J 

hdCG-S) = supfh.lj(f): f f JS.+(G) and f ~ -xG-..s}. 

Recall (Chapter I, §J.J) that for f f Cb(G) 

Ill I (f) = sup Cl11(g) I : I gj :S f, g f C0 (G)}. 

Therefore if 11(f) = 0 for all f such that f f K(G) and Supp(f)(\S = ¢, 

then ll11(f) = 0 for all f f t+(G) with Supp(f)(\S = ¢. Then I11ICf) = 0 

for all f f K+(G) \vith f :S X G ...... s so that l11l (G-... S) == 0. Hence 

lltM(S). 

Pr9~~ition J. (i) M(S) is a no~n closed subspace of M(G). 

(ii). H(S) is weakly closed if and only if S is closed. 

Proof: (i) Jl,~ f H(S) :} jp(A) + ~(A) I ~ l11l (A) + 1~1 (A) = 0 

for all Borel sets A £ G-.. S :} ll + .\. f H(S). For any ll .f H(G) and 

any complex number c, j Clll = I c lllll so that ll .f H(S) i.."11plies CJl f M(S). 

Hence M(S) is a subspace of M(G). Now to show that M(S) is norm 

closed suppose (lln) is a sequence in H(S) and I llln - ll! I ~ O. 

Then for any Borel set A S. G ...... S 

fll(A) I = llln(A) - 11(A) I ~ l11n - lll (A) ~ lllln - llll 

hence I11!(G -....s) = 0 so that ll f M(S). 

(ii) Suppose S is closed. Let f f K(G) be such that 

Supp(f)f\ S = ¢. Then if Jl is in the weak closure of 1'1(S) we l!lust 

have }l(f) = 0, thus by lemma 1, Jl f M(S). 

Now suppose H(S) is weakly closed. Let a f S then since the 

mapping x ~ Ex is a continuous mapping of G into N(G)a, Ea f M(S). 

Therefore Ea (G ...... S) = I Eal (G ...... S) = 0 so that a f S, and S is closed. 



CorollaEY• Let K be a closed subset of G. Then T = 
{~ f M(G) : Supp(~) £ K} is a weakly closed subspace of M(G). 

Proof: It is clear that T f M(K). If~ f M(K), then 

I~! (G--K) = 0 and G-... K open implies Supp( Ill!) S. K. This means 

p. f T since Supp(ll) = Supp( 1111). Therefore T = M(K) which is 

weakly closed by the above proposition since K is closed. 

Remark. It is worth noting that if K is not closed then 

1~1 (G ........ K) = 0 does not mean that Supp( I11D £ K. To see this let 

p. be a nonzero continuous measure, and let x f Supp('ll)• Put 

K = G-fx), then Supp(jllj) J. K, but h.tj(G-...K) = 0 since 
"j 

G- K = fx) and 11 and therefore 1111 is continuous. 

Proposition 4. Let V be the linear span of the set of 

Dirac measures. Then for any }1 t M(G), }l f Clq t ~ f V : I j>..f j S 111111 

and Supp(>..) £. Supp(ll)J. 

Proof: PUt A=[>.. f V: 11>..11 :S ll11ll and Supp(~) £ Supp(p.~. 

Since A is convex and contains 0, it suffices to show that }1 f A00 

(Chapter I, §1, 5) where A0 is the polar of A in C
0

(G) and A00 

is the polar of A0 in H(G). If 11 = 0, then the proposition is 

clear. Assume 11 J 0, let r f A0 then in particular IEx(f)j ~ 1/l IP.II 

for all x t Supp(}l). i.e. jr(x)l ~ 1/11111 I for x f Supp(ll). Thus 

lll(f) I :S J jf(x) ldl11l (x) :S(l/11111 j) J dj11l (x) ~ l. Thus 11 f A00 • 

Corollary 1. G€ is total in H(G)a• 
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£2...:r:ollary 2. Given any p. f N(G) there is a net (11j : j f J) 

in A= [J... f V : Supp(J...) £ Supp(p.), IIJ...j I :S ll11ll} such that 11j 4- ll 

and ll11ll = lim IIP.jl I. 
Proof: By proposition 4 there is a net (11J· : j f J) S A 
~ 

such that 11j ~ ll• Since 11 -+ ll11l I is loi-Ter semicontinuous in 

the l-Teak topology, we have that lim inf II 11 j I I ~ !Ill j j. Since ll j f A 

for each j, we have ll11jll :S llllll· Therefore lim sup lllljll :S IIlli!. 
Thus lim llllj II exists and lim I l11j II = IIlli I· 

2. The so-topolo~. 

The so-topology was defined in Chapter I, §5.), it is the 

coarsest topology such that for each f in L1(G), the mapping p. ~ 11*f 

of M(G) into L1 (G) is continuous. As in chapter I, §5, Ma(G) is 

the subset of M(G) of measures that are absolutely continuous l-rith 

respect to the Haar measure m on G, and we know that Ma(G) is iso­

metric and isomorphic to L1 (G) via the mapping p. ·~ £l!• In this 
dm 

section we show that propositions 1, J and 4 remain true if one 

replaces the a(M(G),C0 (G))-topology by the so-topology, and that a 

weakened version of proposition 2 holds. 

Proposition 5. The mapping x ,.. £x is a continuous mapping 

of G into M(G)so• 

Proof: Let f be in L1 (G), we shall show the mapping x ~ Ex*f 

is a continuous mapping of G into Ll(G). First note that 

Ex*f(y) = J f(z-ly)d£x(z) = f(x-ly) = 1f(y), hence £ *f = 
1
f. 

x- x x-

4). 



The mapping x ~ xf is continuous from G into L 1 (G) (Chapter I, § 7. 2), 

and since G is a topological group x -? x-1 is a continuous map. 

Therefore x ~ x-1f = ex*f is continuous since it is the composite 

of continuous maps. 

Proposition ~· .H(G) so is a topological algebra. 

Proof: By chapter I, §.5~ 3 H(G) so is a locally convex 

space, so it remains to shoH that multiplication is continuous in 

each variable separately. For this let (llj : j f J) be a net in H(G) 

and suppose that ~j so~ Jl• Let~ be in H(G) and f be in L1 (G). 

Then since A.*f is in L1 (G), (Chapter I, §.5.3), we have that 

II llj*A.*f - Jl*A.*rjj --)" 0 so that llj*A. §.S4. ll*A• Horeover 

IIA*Jlj*f - A*Jl*fll :s II>..! I llllj*f - Jl*fll ~ 0 

so that A*llj ~,. A*Jl• This proves the proposition. · 

44. 

Lemma 2. Let f t C0 (G) and e > 0 be given. Then there is a 

positive measure A in Ma(G), 11~1 I= 1, such that I! f(xy)dA(y)- f(x)j ~ e 

for all x in G. If in addition V is a given neighborhood of the 

identity e of G, then we may choose A such that Supp(A.) £ V. 

Proof: Since f is in C0 (G), f is left uniformly continuous 

(Chapter I, §7 .2), thus there is a neighborhood U of e in G such that 

jf(xy) - f(x)j ~ .e. for yin U and any x in G. Let A be any positive 

measure in Ha(G) such that Supp(A) S U and II.>..! I = 1. Then 

I ! f(xy)dA(y) - f(x) 1 = 1! f(xy)dA.(y) - ! f(x)dA(y) 1 

~ fulf(xy) - f(x)jdA.(y) 

~e:IIAII=e:. 



If we are given a neighborhood V of e in G, then \-Te choose .\. such 

that Supp(.\) £ unv, 11"-ll = 1, and the second assertion follmvs 

in the same manner as above. 

Proposition z. Let S be a Borel subset of G. S is closed 

if and only if H(S) is so-closed. 

Proof: First suppose that H(S) is so-closed and that a f S. 

The mapping x -?- £x is so-continuous by proposition 5, so that 

e:a f Cls
0

M(S) = H(S). By the definition of M(S), we have e:a (G'- S) = 0. 

Therefore a i~ in S, and S is closed. 

Now suppose S is closed and let¥ f Cls0 M(S). Then there 

is a ~et (~j : j f J) in M(S) such that ~j ~~and Supp(~j) ~ S 

since S is closed. Let f .J 0 be in K(G) and suppose tlv•.t Supl)(f)f\ 3 = ¢. 

Then since Supp(f) f G'-S which is open, there is a symmetric nEdgh­

borhood V of e in G such that (Supp(f) )V(\S = ¢ (Chapter I, § 2.2). 

Let e: ~ 0 be given. By lelllnla 2 there is a .\. in Ma (G) l>Ti th Supp(-A.) £. V 

and II"- I j = 1, such that 

I! f(xy)dA.(y) - f(x)j ~ e:/2 I 1~1 I for all x in G. 

If y is in V and f(xy) .J 0 then xy f Supp(f) so that x f Supp(f)v-1 = 
Supp(f)V. Therefore fy f(xy)dA.(y) = 0 wnenever xis ins. Then, 

since Supp(Jlj) £ S, l'Te have 

(p.j*.\)(f) = JJ f(xy)d.\(y)dllj(x) = 0 And 

jp.*.\(f) - }l(f)j Sill f(xy)d-A.(y) - f(x)jdj~!(x) 

~ e:/2. 

Since }1 j 50~ p. and .\. f Ha (G) there is a j
0 

such that j ::: j
0 

implies 

llllj*"- - ~*"II ::: e:/2jjfjj. 
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Thus for j ~ j 0 

jp(f)j ~ j~(f) - P*A(f)j + ~~j*A(f) - P*A(f)j + lPj*A(f)j 

~ rJ 2 + II P j *A - ~*;\. i I j I f II + o 

< e/2 + e/2 = e. 

We must therefore have p(f) = 0 for any f f K(G) with Supp(f)(\S = ¢. 

Thus lemma 1 applies and w·e have 11 f ?-1(S). 

The next proposition is due to Greenlea~ (9). 

Proposition 8. On norm bounded subsets of !1(G) ,o(N(G), C0 (G)) c sci. 

Proof: Let (~j : j f J) be a no:nn bounded net and suppose 

~j ~ ~. Put H = max (supjj~jll, 111111), then~ is finite. Given 

e.> 0 and f f C0 (G)(f /:. 0), then by lemma 2 there is a>.. in H8 (G), 

II>-! I = 1 and such that 

IJ f(xy)d>..(y) - f(x) j ~ £/3H for all x in G. 

Since Pj*A(f) = Jjf(A~)dA(y)d~j(x) we have 

jp.j(f) - llj*l..(f) I = U f(x)dp.j(x) - J J f(xy)d>..(y)dllj(x) I 
~I jf(x)- J f(xy)dA(y)jdllljj(x) 

~ IIJljll e/JM ~ e/3 

Similarly j}l(f) - ~*A(f)j ~ £/3. 

Thus lllj(f) - p.(f)j ~ lllj(f) - llj*A(f)j + l'llj*A.(f) - Jl*A.(f)j 

+ IP.*>..Cf) - p.(f)j 

~ e/3 + IIP.j*>.. - Jl*>..llllrll + e/3 

Since Jl j _
50 > ~ there is a j

0 
such that j ~ j

0 
implies 

llllj*A - P.*>..ll :5 e/3llfjj. Then for j ~ j 0 , 

jp.j(f) - p.(f) I ~ e/3 + e/3 + e/3 = e. 

This shows that p. j 4'\l. 



CoroJla.ry,J.,• The ma.ppj.ng p. ~ jjp.j j of H(G) into the reals 

is lovrer semi-continuous in the so-topology. 

Proof: Let a > 0 then{11 : jjp.jj :S a} is clearly nonn 

bounded and o"(N(G) ,C0 (G) )-closed, hence by proposition 8, so-

closed. 

Corollar;y 2. On Ge:, so::: o-(H(G),C0 (G)). 

Proof: If x f G, then j le:xll = 1 and hence Ge: is a no1m 

bounded subset of M(G), so that proposition f3 applies and -vre have 

a(H(G) ,C0 (G)) c so on Ge:. To show that so c a(M(G) ,C
0

(G)) on Ge:, 

note that the identity mapping G~ ~ Ge: is the composite of the . ' so 

mappings e:x ~x and x ~ e:x• The first of these is continuous by 

proposition 1, and the second by proposition 5. 

Corolla1:y 3. € G is homeomorphic and isomorphic to G
80

• 

P~oposition 2• Let V be the linear span of Ge:. For any 

p. f M(G) we have ll f Cl50 [ .\ f V : Supp(>..) ~ Supp(l1) and j 1>.. ll ::S 

llvll} · 
Proof: It is clear that for p. = 0 the result is easy. 

First suppose p. J 0 and that Supp(p.) is compact. Let Z be the set 

of complex numbers of absolute value less than or equal to 1. Put 

A= f jjp.jjze:x : x f Supp(p)} and B = [ .\ f V : Supp(>..) ~ Supp(-~1), 

and 11>..11 ::S IIlli I} • 
Let convA be the convex hull of A, we first show that 

convA = B. n 
Let.\ f convA, then>..=~ al.·ll11l jz.e: , a.> 0, 

1 l. Xi l. 
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n 
l: eti = 1, so that !!All ~ jjp.jjt Clj_::::: I jp.jj. Clearly A f V and Supp(A) S. 

Supp(p.), so that A ~ B. If A f B and>..= 0 then A f A. Suppose 
n 

A~ 0 and A= l: Pie:x
1

, xi f Supp(p.), f3i /:. 0, t.~en II>..! I = t I.Sil 

(Chapter 1. §3.5). Put eti = l13il/ll>..ll, Zi = 11Afli3i/(j13il jjp.jj) 
n 

then for all i, we have 0 < eti :S 1; f et1 = 1; jzil ~ 1, and 
n 

A = ~ etij jp.jl zl.. £ so that A f convA. Thus we conclude B = convA. 
1 xi 

Observe that A ;:;. CD, Hhere D = { Ex :; x f Supp(p.)} which is 

a(H(G),C0 (G)) ... compact by proposition 1, and is therefore so-compact 

by corollary 2 to proposition 8, and C = [ II p.jj z : z complex j z I ~ 1 J 
which is a compact set of complex numbers. Thus A is so-compact. 

By theorems 2 and 8 of Chapter I, Cl50 convA is so-compact and sj_nco 

on nonn bounded sets ocso,-Clso convA is a(M(G),C0 (G))-ccmpact and 

therefore a(M(G),C0 (G))-closed. Thus Clso convA = Cl0 convA so that 

Cls0 B = ClaB and now the result follows from proposition 4 if Supp('~l) 

is compact. 

If Supp(p.) is not compact then let 0 /:. f f L1 (G) and e > 0 be 

given. Since each p. f M(G) is inner regular, there is a compact set 

K such that Ill! (G'- K) ~ e:/211 fj j. Let 111 be the measure such that 

P. = lll on K and IP.1I (G'-K) = O. Then I Ill - ll1 11 ~ e:/2jjrjj. By the 

above there is a ll2 f {>.. f V : Supp(>..) £ Supp(lJ.1 ), IIAII ~ llll1ll } 

E [A f V : Supp(A) £ Supp(lJ.), II>.. II ~ IIlli I} such that 

ll111 *r - ll2*rll ~ e:/2. Thus 

llll*f - ll2*rll ~ ll11*r - ll1 *rll + llll-1 *r - ll2*rll ~ e 

and this proves the proposition. 

Corolla:ry 1. Ge: is total in H(G) so• 



Corollary 2. Let S be a closed subset of G. Then {.\ f V 

Supp(A.) s:_ S] is dense in M(S)so• 

Proof: Since S is closed we have M(S) = { A Supp(A.) £ SJ# 
Let }1 f M(S), then by proposition 9, }l f Clso {A f V Supp(A) S. Supp()l), 

jj.l.jj S ll¥11} ~ Cls0 t A f V: Supp(.l.) S S J. 

DefD1ition. An approx~nate unit in a topological algebra 

A is a net (xj : j f J) such that for each y f A, y = lim yxj = l~n XjY• 

It is kno,·m that Ha (G) has an approximate unit ( (12) Chapter V, 20.27). 

Pro12osition 10. Let )1 f M(G), then )l f Cl80 t.).. f Ma(G) : 

11>..11 s llll111· 
Proof: Let (ej : j f J) be an approximate unit of nonn 1 in 

Ha(G), then for any )1 f H(G), }l*ej !iP!> )1 ; P.*ej f Ha(G) and I jp.*ejj j S lllliJ. 

Proposition 11. Let F and G be locally compact groups and 

let T be a nonu continuous isomorphism of M(F) onto H(G). Then T is 

continuous on norm bounded sets as a mapping of M(F) 50 onto M(G)0 , 

where a= o(M(G),C0 (G)). 

Proof: Let (p.j: j f J) be a' norm bounded net in M(F) and 

suppose P.j ~ u. Let M = sup [ IIT'fljll, IITJlll} , then M is finite since 

T is bounded. Since K(G) is norm dense in C
0

(G) it suffices to show that 

TJlj(f) ~ T)l(f) for nonzero f f K(G), (for f = 0 it is obvious). 

For given f f K(G) and e > 0 by the argument used in Lemma 2 

. and proposition 8, there is a g f Ll(G)f\L2(G), g f 0 such that 

I (TJlj*g) (f) - Tp.j(f) I S e/3 and} 

j(Tp*g)(f) - T)l(f)j S e/3 •••••••••••••••••••••••••••(l) 
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Since g f L2(G), we have that Tvj*g f L2(G) for each j (Chapter 1, §5.4) 

and that TF*g f L2(G). The Schwarz inequality yields .that 

I CTrj*g) (f) - <TJI*g)(f) I :s II 'l)lj*g - T}l*gll 2 11 fll 2 
We claim that there is a .\. t Ha(F) such that 

jjg- Tl.*glj2 ;S e/9I·ijlfjj2••••• •••••••••••••••••••••••• •••• ••• (2) 

To prove this let E be the clos~re of the subspace ~TI.*g : .\. f Ma(F)] of 

L2(G) and let Ei be the orthogonal compl~~ent of E. Then g = g1 + g2 
J. where ~ f E and g2 f E • Then we have 

0 = (g2,Tt.*g) = (~,TA*g1) + (g2,Tt.*g2) for all A f Ma(F) 

(where ( ) is the inner product in L2(G)). Since g1 f E, we have 

Tt.*gl f E for all I. f Ha(F) and therefore (g2,TA*g2) = 0 for all A t l1a(F). 

Since Ha(F) is an ideal in M(F) we have (g2,T(T-l(TI.)**A)*g2) = 0 for all 

A. f Ha(F). Since (1;*g2,))*g2) = (g2,v**i/*g2) for any v f M(G) ((12) Chapter 

V, 20.20), we have 

!jTI.*g2 11~ = (TA.*g2,TA*g2) = (g2,(TI.)**T.\.*g2) = (g2,T(T-1(TI.)**.\.)*g2) = 0 

for all A f Ma(F). Thus TA*g2 = 0 for all A f Ma(F). To show· that g2 = 0, 

let e' > 0 be given. Since K(G) is dense in L2(G) there is an h f K(G) 

· such that II g2 - h 11 2 ~ e'. Then II T.\.*h II = II TA*h - TA*g2 11 S II Tt. II e'. 

Therefore TA*h = 0 for all A -f Ha(F). Let m be the Haar measure on G, then 

hm t Ma(G), and Tl.*hm = 0 for all A f Ha(F) (Chapter I,§ 5.3). Therefore 

A*T-1hm = 0 for all A f Ma(G), this means that h = 0 and therefore g2 = 0. 

Thus g = ~ f E, so that (2) holds. 

Since Fj !2r~ there is a j
0 

such that j ~ j
0 

implies 

llllj*A. - v.*A-11 ~ e/9IITII llgll 2 llfll 2• 

Thus for J. > j , we have 
- 0 

IITllj*g - TJl*gll 2 ~ llrp.j*g - Tllj*TA*gll 2 + IITllj*T>.*g - 'l)l*TA*giJ
2 

+ IIT~*TA*g - T}l*gll 
2 



< IITp.jl I jjg- T>.*gl 12 + jj'l)lj*TA.- Tv*T.A.j I jjgjj2 

+ ll'l).tll 11n.*g - gll 2 

s e/31 jfj lz ••••••••••••••••••••••••••••••••••••••• (3) 

We now have using (1) and (3), for j ~ j
0 

~~j(f) - ~(f)j S jTp.j(f) - (T¥j*g)(f)j + ~~j*g(f) - T~*g(f)j 

+ l~*g(f) - Tp.(f)j 

S e/3 + !ITp.j*g - ~*gll 2 11fll 2 + e/3 

Remark. The foll01o~ing example shot-rs that the requirement 

that T be an isomorphism is essential. Let F be any nondiscrete 

locally compact group and let G be the group having only one element. 

For Jl f N(F), let Jl = Jld + ¥c where p.d is a purely discontinuous 

measure and llc is a continuous measure (see Chapter 1, §" 3.5). Then 

for any x f F, }l([x0 = lld(fxD so that 

~xfFjp((x1)1 = l:xfFj}ld({x})l = I illdj j < 00 (Chapter 1,§3.5) 

Thus we may defi?e a mapping T M(F) -? M(G) by 

1)1 = (l:xfF)l( {x1)] Ee ll f M(F), e f G 

and we have llTull = ll11dl j S 111111. We now show that T is a 

homomorphism. Let lJ., ).. f M(F) and let a, b be scalars. 

Then 

T(aA + blJ.) = [I: 1 (a).+ bll)({x1)] E 
x~F e 

= i:xfFaA.([x!)Ee + l:xfFb}l( fx\)ee 

= aTA. + bT\l 

Now let A. = Ad + "-c where "-c is a continuous measure and Ad is purely 

discontinuous. Then }l*A is a continuous measure since c 
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Thus 

~*A({x1) = (~*Ad)({x)) = fF((xy-lJ)d.Ad(y) 

= ~y~FF([xy-l}).Ad(fy)) 

= l:y~Fp(fxy-1} )A.( {y)) 

Thus T(F*A) = (I:xtF J;ytF}1(fxy-1}).A(fy1))ee 

= (l:yfF (I:xtFp([xy-l}).A({y})))ee 

= ~~F (~tFJl((x})).A((y})ee 
= J;xfF}1({x1)(~yfF.A({y}))£e 
=~xtFJ1(£x}))ee*(~Yt~((y}))ee 

= TJl*T.A 

Thus we have shown that T : M(F) "".J.- H(G) in a continuous homomorphism. 

From the definition of T 1 and the requiretnent. that F is not 
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a discrete group we have Tp = 0 if }1 f Ma(F). Now let }1 f M(F) be such 

that ~xtF}l({x}) t 0 and let (ej : j ~ J) be an approximate unit in 

Ma(F). Then }l*ej ~-> Jl• jjp*ejll ~ ll1lll~ and T(Jl*ej) = 0 for all 

j t J since }l*e j f Ha (F) 1 but T]l ~ 0. 

3. Subalgebras of Ma(G) 

Definitions. Let S be a Borel subset of G. Then we define 

L(S) = Ma (G)(\H(S). If m is the Haar measure on G, then D(S) is 

defined to be the set of all x in G such that each m-measurable neigh-

borhood of x meets S in a set of positive Haar measure. 

Observe that L(S) is a norm closed subspace of Ma(G). 



Remati£. The operator D defined above was first used by Simon 

( 1 ). The next proposition is a SUllllUary of the p:ropel'ties of D(S), 

some of \rhich were first demonstrated by Simon in (20). 

Proposition 1~. Let S be a Borel subset of a locally compact 

group G and let m be the Haar measure in G. then 

(i) D(S) is closed and D(S) C s. 
(ii) D(S) :: ~ ~> S is locally m-null <F> SrlD(S) = ¢ 

(iii) S ~ T ~ D(S) ~ D(T) 

(iv) S-.... D(S) is locally null. 

(v) L(S) ~ L(D(S)) 

Proof: Let x t D(S), and let U be an open neighborhood of x, 

then there is a y f D(S~'\U and U is an open neighborhood of y, so 

that m(S(\U) > 0. Thus x f D(S). It is clear that D(S) £ s. 
(ii) D(S) = ¢ # each x f G has a mea.surable neighborhood U 

such that m(Sf\U) = 0*) S is locally null. (Chapter I, §J.J). Since 

D(S) = ~ 9 S(\D(S) = ~' to complete the_proof of (ii) it suffices to 

show that S(\D(S) = ~ :;;) S is locally null. Let K be a compact sub-
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set of G, and for each x in S let Ux be a neighborhood of x such that 

m(Ux(\S) = 0. Then { Ux : x f S] is an open covering of K so that there 

are xl.. f S (1 < i < n) such that KnS ~C) U (\ s. Thus m(Kt')S) = 0 so 
- - i:l xi 

that S is locally null. 

The proof of (iii) is very simple. 

(iv) S'D(S) f;S so that D(S'-D(S)) .f.D(S) by (iii). Thus it is 

clear thit (s-....D(S))(\D(S D(S)) =¢so by (ii) S'-D(S) is locally null • .. 
(v) Note that G'D(s) f. (G-... s)v (s--...n(s)) thus for A. f M(G) 



we have p,j (G'-D(S)) ~ p .. j (G'-. S) + jA.j (S '-D(S)). If A f L(S) then 

lA-1 (G"-S) = 0. By (iv) S '-D(S) is locally m.;.null, so that 

A f L(S) => jA.! (G '- D(S)) = 0 and then ~ f L(D(S)). 

Corollary 1• Let K be any compact subset, then m(KfiS) = 
m(K.f\SI\D(S)). 

Proof: Clearly m(KrtS.'\D(S)) < m(Kf\S). By (iv) of the 

above proposition S '- D(S) is locally null, thus 

m(KrtS,Kr'ISr'lD(S)) = m(Kf\(S,D(S))) = 0 so that 

m(Kt\S) = m(K(\Sr.D(S)). 

CorollaEY 2. D(D(S)) = D(S) 

Proof: Since D(S) is closed, D(D(S)) £ D(S) by (i) of the 

proposition. Now suppose x f D(D(S)) then there is a compact neigh­

borhood V of x such that m(Vf"\ D(S)) = 0. By Corollary 1, m(Vl\ S) = 
m(Vt\Sr\D(S)) :S m(Vf\D(S)) = 0, so that x f D(S). 

Proposition 13. Let S and T be Borel subsets of G and sup­

pose that L(S) = L(T). Then S'T and T'Sare locally m-null. 

Proof: Let K be a compact subset of G, put F = (S'- T)I\K 

and let~F be the characteristic function of F. We shall show that 

m(F) = 0. If m(F) > 0, then ~Fm is a nonzero measure which is in 

L(S) but not in L(T) and this is a contradiction. Thus for any com­

pact subset K of G, m(Kf\(S 'T)) = 0, which means that S 'T is locally 

m-null. Similarly T 'S is locally m-null. 



Corollary 1. Let S be a Borel subset of G. L(S) = {o) if 

and only if S is locally null. 

Proof: Suppose L(S) = {0}. Then L(¢) = {01 = L(S). By 

proposition 13, S must be locally null. Now suppose that S is 

locally null, then l~j(s) = 0 for any~ f Ma(G), so that L(S) = {o). 

CorollaEY 2. Let S be a Borel subset of G. L(S) = {O) if 

and only if D(S) = ¢. 

Proof: By proposition 12(ii) S is locally null if and only 

if D(S) = ¢. Thus corollary 2 follows from corollar.y 1. 

Theorem 1. L(S) and L(D(S)) are dense in .H(D(S) )0 • 

Proof: Since D(S) is closed, M(D(S)) is ~;eakly closed by 

proposition 3. Moreover L(S) f.L(D(S)) by proposition 12(v) so that 

it suffices to show that M(D(S)) ~ ClaL(S). If D(S) = ¢, then L(S) 

and M(D(S)) both consist only of the zero measure so that we may 

assume D(S) J ¢. To prove the theorem it suffices in virtue of 

proposition 4 to show that for x f D(S), f f C0 (G) and £ > 0 there 
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is a~ f L(S) such that j~(f) - Ex(f)j ~ £. Let U = (y : jf(y) - f(x)j ~ £}, 
then U is a closed neighborhood of x so that m(Uf\S) > 0 where m is 

the Haar measure in G. Let "Xun s be the characteristic function of 

U fl S, and define .1. by 

~(g) = (1/m(UI\ s)) J Gg'llAsdm, for g f C0 (G). 

Then by putting g = XG, S in the definition of X, we see that 

.1. is in L(S). Now 

j~(f) - £x(f)j = (1/m(UI\S))j !Gf XUf\Sdm- f(x)m(Ur\S)j 

~ 1/m(Uf\S) J0 (\ 5 jf(y) - f(x)jdm(y) ~ e:. 



pprollaEY 2. (Simon) Let S be a Borel set in G. If L(S) is 

an algebra then D(S)is a semigroup (possibly empty if S is locally 

null). If D(S) ~ ¢ and L(S) is a *-algebra then D(S) is a subgroup. 

Proof: If L(S) is an algebra then M(D(S)) is an algebra by 

theorem I and corollary 2 to proposition 2. Nol-1 since the mapping 

E -? x of GE onto G is an isomorphism by proposition 1 and since 
X 

{Ex : x f D(S)} is a semigroup in M(D(S)) under convolution, D(S) is 

a semigroup. If L(S) is a *-algebra, and if D(S) ~ ¢, then M(D(S)) 

is a *-algebra (Corollary 2 to proposition 2 and theorem 1) and hence 

D(S) is a subgroup since E* = e 1 • 
x x-

Remark. In (20) Simon showed that if there is a semigroup T 

such that L(S) = L'(T) then L(S) is an algebra. As Simon has noted 

the above result yields a partial converse of this statement: If for 

a closed subset S of G, L(S) is an algebra then there is a semigroup 

T such that L(S) = L(T). (Proof: Take T = D(S) which is a semigroup 

by Corollary 2. ~proposition 12(v), L(S) £ L(D(S)). Since S is 

closed, D(S) ~ S (proposition 12(i), consequently L(D(S)) = L(S).). 

Simon raised the following question: If S is a Borel subset 

of G, such that L(S) is an algebra, then is there a semigroup T such 

that L(S) = L(T)? We shall return to this question later and provide 

an (affirmative) answer in a number of special cases. 

~~~a). LetS be a Borel subset of G, and let x f D(S). 



For any f f Lp(G) (1 ~ p < ~) and any e: > 0 there is a neighborhood 

U of x such that 

IIJl*f - t::x*fiiP ~ t:: 

for all positive measures )l in .H(G) such that llp.jj = 1 and 

p.(G" (U n S)) = 0. There is also a neighborhood V of x such that 

II f*}l - f*e:x II P :s e: 

for all positive measures }l in H(G) such that ll11ll = 1 and 

p.(G '(Yrl S)) = O. 

Proof: By Lemma 2, Chapter I, §5.4, there is a neighborhood 

u1 of e in G such that IIJ-'·*f - fj I ~ t:: for every positive measure 

p. in H(G) such that jjp.jj = 1 and }l(G 'U1) = O. Let U = xu1 , then 

U is a neighborhood of x. Let )l t l1(G) be such that lll-111 = 1 and 

}l(G' (Sf\ U)) = O. Then 

£_ -l *}l(G-.... u1 ) = p(x(G' u1)) 
X 

= \l(G-.... U) 

~ }l(G'- (Sf'\ U)) = 0. 

Moreover lle:x-l*P.II = llllll = 1. Therefore lle:x_l*p.*f- fjj ~E. 

Consequently jjp.*f - e:x*flj ~ e:. 

The second assertion follolvs similarly from the second assor-

tion of Le~~a 2, Chapter I, 95.4. 

Corollary 1. Let S be a Borel subset of G and let x f D(S). 
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Given). f Na(G) and t:: > 0 there is a }l f L(S) such that jjp.*). - Ex*>..! I ~ e:. 

There is also a).) in L(S) such that II>..*}.)- A*e:xll ~ e:. 

Proof: Let f be the Radon-Nikodym derivative of >.. with respect 

to the Haar measure m on G. Then f is in Ll(G), and by the lemma there 



is a neighborhood U of x such that 

llv*f- Ex*fj 11 ~ E 

for all positive measures~ in M(G) such that llvl j = 1 and 

v(G-.... (Uf\S)) = 0. Let K be a compact neighborhood of x such that 

K S U, then p. = (1/m(Kf'IS)) ·xKf\Sm is in L(S) and satisfies the 

requirements of the le~na. Therefore IIP.*f- Ex*fjj 1 ~E. Now since 

Ll(G) is isometric and isomo1~hic to Ma(G) we have I IP.*A- Ex*AII S E. 

The second assertion follows s~1ilarly. 

Corolla1x~. Let S be a Borel subset of G and let x f D(S). 

Let x t D(S), f t L2(G) and E > 0 be given. Then there is an 

h f L2(G) with hm f L(S) such that llf*h - f*Exl k~ E •. 

Proof: The proof is similar to the proof of Corollary 1. 

Theorem 2. L(S) and L(D(S)) are dense ~n M(D(S))
50

• 
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Proof: Since D(S) is closed, M(D(S)) is so-closed by proposition 

7• By proposition 12(v), L(S) C L(D(S)) so that it suffices to show 

that M(D(S)) f. Cl50L(S). If D(S) = ¢ then N(D(S)) and L(S) both 

consist of only the zero measure (proposition 13, corollary 2) so 

that we may assume D(S) ~ ¢. For any x f D(S), ~ f Ma(G) and E > 0 

there is by corollar,y 1 to lemma J, a p in L(S) such that 

IIEx*A- P.*AII ~E. The theorem now follows from corollar.y 2 to prop­

osition 9. 

Corollary. Let S be a Borel subset of G. If L(S) is a sub­

algebra of M8 (G), then for any p. f M(D(S)) and a~y ~ t L(S) we have 



P*A f L(S). 

Proof: By the above theorem there is a net (llj : j f J) 

in L(S) such that llj ~ 11. thus 1111j*l.. - }l*Ajj _.;.. 0. Since L(S) 

is an algebra, llj*A f L(S) and since L(S) is nom closed, 't>Te have 

P.*A f L(S). 

Remark. If L(S) is a subalgebra of Ha(G), then it is a 

subalgebra of 11(G). Moreover whenever L(S) is a subalgebra of M(G), 

M(D(S)) is also a subalgebra of M(G) (see the proof of corollar,y 2 

of theorem 1). Thecorollar.y says that if L(S) is a subalgebra of 

M(G) then it is a left ideal in H(D(S)). 

Lemma 4. Let S be a Borel subset of G. If L(S) is an al-

gebra and if e ~ D(S), then L(D(S)) = L(S). 

Proof: By proposition 12(v) we have L(S) ~ L(D(S)). To 

shol-T the reverse inclusion, let A f L(D(S)) and £ > 0 be ·given. By 

corollar,y 1 to lemma 3, there is a 11 f L(S) such that IIA*V- t..jj ~e. 

By corollar,y 1 to theorem 2, A*P. f L(S). Since L(S) is no!m closed, 

A. f L(S). Thus L(S) = L(D(S)). 

We now proceed to generalize a number of results of Simon (21). 

In the remainder of this section we identify Ha (G) with L1 (G). Thus 

for a Borel set S, we identify L(S) with a subspace of tl(G). From 

the definition of L(S) it is clear that a given f f Ll(G) is in L(S) 

if and only if 1 G'- sl fjdm = O. 
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Theorem 2_. Let S be a nonempty Borel subset of G. If L(S) 

is a *-algebra then there is a closed subgroup T such that L(S) = L(T). 

If D(S) ~ ¢ then we may take T = D(S). 

Proof: If D(S) = ¢, then L(S) :{0} (proposition 13, corollery 

2), and since S is nonempty G cannot be discrete, so if we take T = {e), 

then L(T) = { 0} = L(S). If D(S) ~ ¢, and if L(S) is a *-algebra then 

D(S) is a subgroup by corollary 2 to theorem 1. Thus e ~ D(S) and by 

lemma 4, L(S) = L(D(S)). Taking T = D(S) (which is a subgroup) we 

have that T rs closed (proposition 12(i)) and L(S) = L(T). 

Lemma_.2.. Let ScG be a Borel semigroup and T £: G a Borel 

subgroup. If L(S) = L(T) ~ { 0} then S = T. 

Proof: First suppose that T 4; s. Then T' Sf\ T ~ ¢. Let 

y f T'- S(\T and let x f Sf\T. Since T is a subgroup and S is a 

semigroup, yx-1 f T, yx-1 f SI\T so that yx-1 f T'Sf\T. Therefore 

y(S(\ T)-l C T., S.r\T. Since L(S) ~ f ol , there is a compact set K in 

S with m(K) > 0 and since L(S) = L(T), the measure ·xKID is in L(T). 

Thus Xtn(G·, T) = 0 and since 'XK_lll ~ 0 we must have m(Kf\T) ~ 0. 

Consequently S(\ T contains a set of nonzero Haar measure so that 

(SI\T)-1 contains a set or nonzero measure. By the left invariance 

of the Haar measure, T' S(\ T contains a set of nonzero measure, and 

this contradicts the fact that T'S is locally null (proposition 13) 

because T' S = T....,. S() T. Therefore T f.- s. To show the roverse inclu-

sion suppose that s,T ~ ¢. Let y f S' T and x ~ T S: s. Then 

yx-1 ~ S 'T so that yT c:. S 'T. Thus S '-T is not locally null which 

is a contradiction (proposition 13). Therefore S ~ T and we have 



shown S = T. 

Definitions. Let S be a Borel subset of G, if L(S) is a 

subalgebra of Ll(G) we shall call L(S) a vanishing algebra. A 

vanishi11g algebra L(S) is called a maximal vanishing algebra if it is 

proper and if for ever,y vanishing algebra L(T) where T is a Borel 

set, L(S) ~ L(T) =') L(S) = L(T) or L(T) = Ll(G). 

Theorem 4. Let S be a Borel subset of G. If L(S) is a non-
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zero maximal vanishing algebra then there is a maximal proper closed semi-

group T ~ G such that L(S) = L(T). 

Proof: Since L(S) C L(D(S)) (proposition 12(v)), by the 

maximality of L(S) we must have that L(D(S)) = L1 (G) or L(D(S)) = L(S). 

By corollary 2 to theorem 1, D(S) is a semigroup, thus if L(D(S)) = 
L1 (G) then D(S) = G by lel1lllta 5. Hence by lemma 4 L(S) = L(D(S)) = Ll(G) 

which contradicts the maximality of L(S). Therefore we have L(S) = 

L(D(S)). LetT be a max~al proper closed semigroup containing D(S), 

then T is a Borel set and L(D(S)) ~ L(T) by proposition 12(iii), so 
( \:>~cc;;.s~ <.> , • ., ~- Scm•·;Jr<>w.(>) 

that L(S) £- L(T). Since L(T) is a subalgebraj; either L(T) = L(S) or 

L(T) = Ll(G) by the maximality of L(S). If L(T) = L1 (G) then T = G 

by lemma 5 so that we must have L(S) = L(T). 

Theorem 5. Let G be a compact group, and let S be a Borel 

subset of G. If L(S) is a nonzero subalgebra of tl(G) then D(S) 

is an open and closed subgroup and L(S) = L(D(S)). 

Proof: If L(S) is a nonzero subalgebra then D(S) ~ ¢ and 



D(S) is therefore a closed and hence compact semigroup (corollar,y 2 

to theorem 1). Since D(S) S:: G, D(S) is a compact semigroup satis-

fying the left and right cancellation laws, and therefore is a group 

«12)Chapter II, 9.16). L~nma 4 applies and we have L(S) = L(D(S)). 

Since L(S) J to1, D(S) must contain a set of positive measure and 

is therefore open (Chapter 1, § 5.4). 

CoroJ~a!Y 1. If G is compact then ever,y vanishing algebra 

is a *-algebra. 

CorollabY ~· If G is compact then G is connected if and 

only if there are no proper nonzero vanishing algebras in L1 (G)'. 

Theorem 6. (Beck, Corson and Simon (1)) LetS be a Borel 
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subsemigroup of a compact group G. If S contains a set of nonzero finite 

measure then S is an open and closed subgroup of G. 

Proof: Since S is a semigroup, L(S) is an algebra and if 
'-' 

S contains a set of nonzero measure then L(S) J io1 • Thus by ' 

theorem 5, D(S) is an open and closed subgroup of G and L(S) = L(D(S)). 

By lemma 5, D(S) = s. 

Remarks. Simon (21) proved theorem 3 for S a closed sub-

set of G. He obtained a weaker version of theorem 4 in the same 

paper. (cf. 3.19, and 3120 of (21)). Theorem 5 and its corollaries 

were also obtained by him with the restriction that G be abelian as 

well as compact. Theorem 4 can be used to strengthen another result 



of Simon (22). 

Theorem z. (Simon). LetS be a measurable semigroup of a 

locally compact abelian group G. If L(S) is a maximal proper closed 

subalgebra of L1(G), then G is (isomorphic and homeomorphic to) either 

a discrete subgroup of the reals or the real line itself. 

For a proof see (19) theorems 9.2.5 and 8.1.6. 

Theorem 8. Let S be a Borel subset of a locally compact 

abelian group G. If L(S) is a maximal proper closed subalgebra of 

Ll(G), then G is (isomorphic and hoDleomorphic to) either a discrete 

subgroup of the reals or the :real line itself. 

Proof: Since L1(G) always contains a nonzero proper sub­

algebra, the maximality of L(S) implies that L(S) t 0. By theorem 

4, there is a closed (and therefore measurable) semigroup T such 

that L(S) = L(T). Theorem 8 now follows from theorem 7 applied to T. 

63. 



CHAPTER III 

NORH DECREASING ISOHORPHISHS OF HEASURE ALGEBRAS 

The main result (theorem 2) of this chapter concerns isomor­

phisms of measure algebras. The proof of this theorem requires a 

characterization of the Dirac measures in M(G). This character-

ization is given in Theorem 1. It should be noted that theorem 1 

could be easily derived from a theorem of. \vendel (24). It is only 

for the sake of completeness that we have included an independent 

proof. 

Lemma 1. Let X be a locally compact space and let p. be a 

measure in H(X). Then p. is a Dirac measure if and only if jjp.jj = 1 

and jp.(f)j = v(jfj) for all fin C0 (X). 

Proof: Clearly any Dirac measure satisfies the stated 

properties. Now suppose Jl is such that I h1ll = 1 and hl(f) I = 

p(jfj). Assume there are x0 ,y0 f Supp(p), x
0 
~ y

0
• Since X is 

locally compact there is a real valued f f C0 (X) such that f(x
0

) < 0, 

f(y0 ) > O. Clearly jfj + f ~ 0, jfl - f ~ 0 ; and jfj + f ~ 0, 

lfl - f ~ 0 on Supp(~). Therefore Jl positive implies Jl(jfj) >- u(f), 

and p.( I fj) > p.(f) so that p.( I fj) > lv(f) I which is a contradiction. 

Thus Supp(p.) consists of a single point x. Since u is positive and 

since I h1ll = 1 we have u = e:x• 
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Pronosition 1. Let X be a locally compact space and let 

ll be in H(X). Then p. == yr.x for son1e x in X and some complex nu.mber 

y. lvl = 1 if and only if llvll = 1 and jp.(f)j = jp.j(jfj) for all 

f in C
0

(X). , 

Proof: 11If part": Let f f C0 (X) be such that f:;: o. and 

p.(f) j o. Put yf = lvl(f)/p.(f). clearly lvfl = 1. Let g ~ C0 (X), 

g > 0 be such that jp.j(g) = jp.j(f), then 

y f+gll(f + g) = 2jp.j (f) = 2y f)l(f)' 

and yfp.(f) == vgr(g), so we have that 

Yf+g(l + Y/Yg)p.(f) = 2yfp.(f) 

and hence jl + Y/Y gj = 2 which means yf = y g" For any a> 0, 

y = y so that yf:: y for any pair f,g f c+(x) with ~(f) t 0 ag g g o 

and p.(g) j 0. Thus putting y = yf for some f f ~(X) with ¥(f) t 0 

we have yjp.j(f) = p.(f) for any f f GtCX). Then by the linearity 

of jp.j and p. we have yjp.j(f) = p.(f) for any f f C
0

(X). Thus we 

have shown that there is a y with I yj = 1 such that yjp.j = ll• 

Clearly jp.j satisfies the conditions of lamma 1. Hence jp.j is a 

Dirac measure. 

T'l prove the "only if 11 part suppose that 11 f !-1(X) and there 

is a y, lvl = 1 and an x in X such that p. = Yex• Then 

i l11ll = hill r.xll = 1 and for any f f C0 (X), jp.(f) I = lvll Ex( f) I = 

jf(x)j = Ex(jfj) = lr.xl<lrj) = jyexl<lfl) = jp.j(jfj). 

Theorem 1. Let G be a locally compact group and let 11 f H(G). 

Then }l = Yex for some x in G and some complex number y, I yj = 1 

if and only if I hl*>..j f = jj>..jj for all A. in M(G). 



Proof: (~) (ye:x*~)(f) = y1J f(uv)dex(u)dA.(v) = y1 f(xv)dA(v) 

yA.(xf). Thus 

jjye: *All= supjye:x*"-(f)j = supj.A..(xf)j = suJ?jl..(f)j = jj.A..jl. 
x llfll$1 llfl!:9- llfl1:9-

((=). First observe that for any 11 f H(G), llll*AII = II>..! I for all 
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>.. in M(G) implies that 11111 j = 1, because 111111 = 1111*£9 11 = II e9 l j = 1. 

Now let f f K(G) and let m be the Haar measure on G. Then since 

fm f Ma (G) we have by hypothesis llll*fm II = II fm jj. Horeover 

ll*fm f Ha(G) and Ma(G) is isometric to L1(G) (Chapter I, §5.3) so 

that IIJl*fmll = lliinll implies llll*fll 1 = llfllr Clearly 

we have 

llll*fl1 1 = 1 h1*f(x) jdm(x) 

= 1 I 1 f(y-lx)d}l(y)jdm(x) (Chapter I, §5.3), 

1 j J f(y-lx)d}l(y)jdm(x) = 1 I f(x)jdm(x) 

= J(f(y-lx)ldm(x) (by the left invariance of Haar measure) 

= Jlf(y-1x) jdm(x)/dllll (y) ' (since IIlli j = 1djp.j (y) = 1) 

Now using Fubini's theorem we obtain 

so that 

JIJ f(y-lx)dp.(y)jdm(x) = 111f(y-~)dl111(y)dm(x) ••••••• ~ •• (1) 

Since for any f in K(G), l!fdlll ~ Jjfjdj11j always, for any x in G 

we have jp.(x_1f)j ~ 11ll<lx_1fj). Now suppose lll(x_1f)j < llll<lx_1fl) 

on some set of positive measure. Then 

Replacing f by the function f"'" where f"' (x) = f(x~l) we see that (1) 



is violated. Thus 1¥<x_1f)l = l~l<lx_1fj) almost ever,ywhere. But 

since both sides of this equation are continuous, (Chapter I, §5.1), 

equality holds everywhere. Putting x = e we have l~(f) I = 1111 (I fj). 

The theorem now follo;.rs from proposition 1. 

Le~na~. Let F and G be locally compact groups, n an iso-

morphism and homeomorphism of F onto G and y a continuous character 

on F. Let T be the mapping of H(F) into H(G) defined by 

Tv(f) = \l(y(fcn)) 

then T is an isometric *-isomorphism of H(F) onto H(G), and T is a 

bicontinuous mapping of M(F) with the a(H(F) ,C0 (F) )-topology onto 

M(G) with the a(H(G),C0 (G))-topology. 

Proof: LetS be the mapping of C0 (G) into C0 (F), defined 

by Sf= y(focr). Clearly S is well defined and linear. Since IYI = 1 

we have 

flstll = jjy(fon)jj = jjfcnjj = suplf(n(x))j = suplf(n(x))j 
x~G n(x)~F 

= jjfjj, since n is a homeomorphism. 

For any g t C0 (F), gcn-1 ~ C0 (G) and yon-1 is continuous so 

that (yc·n-l)(gcn-1) ~ C
0

(G). Furthermore, since 

S(yon-l)(gcn-1) = y(((yon-l)(gon-l))~n) = y(yg) = jyjg = g 

we have that S is onto. Let S1 be the adjoint of s. Then s• is an 

isometry of M(F) onto .H(G), and sr is a bicontinuous mapping of H(F)0 

onto M(G) 0 (Chapter 1, § 1.6). For any \l f M(F) and f f C0 (G) we have 

S'p(f) = p(Sf) = p(y(fon)) = Tp(f) 

hence sr = T so we have that Tis an isometry of H(F) onto H(G), To 
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show T(A*~) = TA*~ for p,A t M(F), let f t C
0

(G), then we have 

(T(A*V))(f) = (A*p)(y(fca)) 

= A(¥(y(foa)), where ~(f)(x) = ¥(xf). 

On the other hand 

(TA*~)(f) = TA(1~(f)) 

= A(Y(1\l(f)oa) ). 

Thus to show that T(A*~) = TA*~ it suffices to show that ~(y(foa)) = 
y(Tr(f)oa). For x f F we have 

~(y(foa))(x) = p(xYx(fca)) 

= y(x)~(y(x(foa))) since xY(y) = y(x)y(y) 

= y(x)v(Y(a(x)f)oa)) since a is an isomorphism 

= y(x)Tv(a(x)f) by the definition of T 

= y(x)~(f)(a(x)) where ~(f)(y) = Tr(yf) for yin G 

= y(x)(T)l(f)oa)(x) 

- and thus ji(y(foa)) = y(Tp(f)oa). 

To complete the proof it remains to show that '1)1* = (T)l)*. Let 

~ t M(F), f f C0 (G), then 

Tp*(f) = ~*(y(foa)) = p((y(f.:.a))"-). 

But (y(f.,a)}(x) = y(x-l)f(a(x-1)) = y(x)f((a(x))-1) = y(x)(f~ca)(x). 
Thus ('I)l*)(f) = v(y(foa)) = 'I)l(f') = ('I)l)*(f), i.e. Tp* = (Tp)*. 

Theorem 2 below is a converse to this theore..m; that every 

norm decreasing isomorphism of M(F) onto M(G) has the form of T. 

Lemma J. Let F, G be locally compact groups and let T be a 

norm decreasing isomorphism of M(F) onto }!(G). Then for each x in F 



IIT£x*1111 = 111111 for all 11 in H(G). 

Proof: Let Lx be the operator on M(G) defined by Lxv = 
Tex*ll• To show that Lx -l = L x-l we note that T is a homomorphism 

of M(F) onto t1(G) and therefore it maps the unit of H(F) to the 

unit of M(G). Moreover 

L 
1
L F = (Te l*T£ )*V = T(e l*ex)*]l = Tee*ll = 11• 

x- x x- x x-
Hence L _1Lx = I. SL~ilarly LxL 1 = I. Now since T is nonn 

x x-
decreasing, 

ll!xllll = jjTEx*PII :S IITexll ll11ll :S liP! I 

and II Ix -~II = II T £ :-1 *PI I ::: II T £ -111 llvll ::: llvll . 
X X 

Hence Lx and L 1 are norm decreasing operators on M(G). If 11 is 
x-

such that IILxPII < ! jp.jj, then 

llllll = jjL 1Lxvll ::: IILx11l I < IIlli I. a contradiction. 
x-

Then we must have 

IILxP.II = jjp.jj i.e. IITex*¥11 = I jp.jj for each 11 f H(G). 

We now give the main result of this chapter. 

Theor~n 2. Let F and G be locally compacttgroups and let 

T be a norm decreasing isomorphism of M(F) onto M(G). Then there is 

an isomorphism and homeomorphism a of F onto G, and a continuous 

character y on F such that 

(T]l)(f) = p.(y(fca)) p f M(F), f f C0 (G). 

Proof: For x f F, we have by lemma .3, IITex*llll = I lvl I 
for all p. f H(G). Thus by. theorem 1, there is a complex number 

y(x) depending upon x with jy(x)j = 1, and an element a(x) of G 
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such that Tex = y(x)ea(x)• Consider the mappings 

y : x ~ y(x) and a : x ~ a(x). 

We first show that a is a homomorphism of F into G, and y is a homomor-

phism of F into the complex numbers of absolute value 1. 

Clearly Texy = y(xy)ea(xy)' 

and Ttx*Tty = y(x)y(y)ea(x)*Ea(y) = y(x)y(y)ea(x)a(y)• 

Since Ttx*Tt = T(e *E ) = Te , we have y x y xy 

y(xy)ea(xy) = y(x)y(y)ea(x)a(y): 

and since the Dirac measure are pairwise linearly independent, we have 

y(xy) = y(x)y(y) 

and a(xy) = a(x)a(y). 

Since T is an isomorphism, T maps the unit of .H(F) onto the unit of 

M(G), so that 

y(e) = 1 

and a(e) = e 1 

where e (resp. e 1 ) is the unit of F (rasp. G). Thus a is a homorphism 

of F into G, and y is a homomorphism of F into the complex numbers. 

We now sho\i that y is continuous. Since Tex = y(x)ea(x) we 

have for f f C~(X), jTex(f)l = jy(x)jjea(x)(f)j = ea(x)(f). Consequently 

y(x)ea(x)(f) = y(x)ITex(f)l = Tex(f). Thus it suffices to show that 

the mapping x -~ Tex(f) is continuous at e in F where f is such 

that Tee(f) I= O. By the definition of the weak topology the mapping 

Tex ~ Tex(f) is continuous from M(G)a to C (the complex numbers). 

The mapping x -+ t_x is continuous from F to F~ by proposition 1, 

of Chapter II and the m~pping t ~ Tex is continuous from Fe into 
X SO 

M(G)a by proposition 11 of Chapter II. Since by coroll~r,y 2 to prop-



osition 8 of Chapter II, F~0 = F~, we have that y is continuous. 

The continuity of a follo'~>rs by considering the mappings. 

x ~ ~x -+ T~x = y(x) ~a(x) ..,. Ea.(x) ~ a.(x) . 

The only mapping we have to check is the mapping y(x) Ea(x) -? Ea(x), 

of a subset of H(G)0 into H(G)0 • But since this mapping is multi­

plication by the continuous character x ~ y(x), it is continuous. 

Thus a. is continuous since it may be written as a composite of 

continuous mappings. Horeover since each of the above mappings is 

one to one we have that a. is a continuous one to one homomorphism. 

Now consider T-1. By the open mapping theorem ((14) Chapter 3, 92) 

T-1 is a bounded isomorphism of M(G) onto H(F). Thus proposition 11 

of Chapter II applies and we have that ~a.(x) ~ T-lEa(x) = y(x)Ex is 

continuous from G;0 into M(F)a~ The continuity of a-1 restricted 

to a(F) now follows by considering the mappings 

1 ·-
a(x) ~ Ea.(x) -r T- Ea.(x) = y(x)Ex -? Ex ~ x. 

Thus F is homeomorphic to a(F) and since a locally compact group is 

complete (Chapter I, § 2.3) a.(F) is complete and therefore closed. 

Now suppose a. is not onto, then there is a y in G' a.( F) 

and a compact neighborhood V of y such that Vr\a.(F) = ¢ because a.(F) 

is closed. Since T-ley is in M(F), by proposition 9 of Chapter II, 

there is a net (~j : j f J) such that 

bi,j complex, 

1111 j II :5. II T-1eyll 
and P.j ~ T-lEy• Thus by proposition 11 of Chapter II, Tp.j ~ ey• 

Note that ~ex = y(x)ea.(x) (shown above) implies 

.. 
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Since G is locally compact there is a function f in C0 (G) such that 

f(y) = 1 and f(G' V) = 0 and 0 ::; f(x) :S 1 for all x t G. 

-l. Since T}l j 4 ey we have 

n . 
.E J bi J.y(xi J.)e:a.(x· ·)(f) -r f(y). 

:i::l ' ' ~.J 

But since a.(xi,j) f a.(F)(\(G'-V), e:cx(xi,j)(f) = f(cx(xi,j)) = 0, 

so that f(y) = 0, a contradiction. Thus ex is onto. 

All that remains now is to establish the formula 

(Tr)(f) = ~(y(foa.)). 
Let T1 be the mapping defined by 

By lemma 2 we have that T1 is an isomorphism and isometry from M(F) 

onto M(G). Hence in view of proposition 11 of Chapter II, T1 is 

continuous on norm bounded sets from M(F)so onto M(G) 0 • Now observe 

that 

Tle:x(f) = e:x(y(focx)) = y(x)f(cx(x)) = y(x)e:cx(x)(f) 

= Te:x(f) 

Thus T and T1 coincide on Fe:, and by proposition 9 of Chapter II 

each p t M(F) is a so-adherence point of a norm bounded set of linear 

combinations of Dirac measures so we have T = T1• This completes 

the proof. 

Corollabl 1. Every norm decreasing isomorphism of M(F) 

onto H(G) is an isometric *-isomorphisro. 
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Proof: This follows from lemma 2 and the above theorem. 

CorollarY 2. Let T be a nonn decreasing isomorphism of 

M(F) onto M(G), then T is a bicontinuous mapping of M(F) with the 

a(H(F),C0 (F))-topology onto H(G) with the a(11(G),C0 (G))-topology. 

Proof: This follows from lemma 2 and the above theorem. 

Corollaty J. Each norm decreasing isomorphism of M(F) 

onto H(G) maps Ma(F) onto Ma(G). 

Proof: Let m (resp. m1 ) be the left invariant Haar measure 

on F (resp. G) and let a(m) be the measure defined by a(m)(f) = 

m(foa), f f K(G) ~mere a is the homomorphism of F onto G given in 

theorem 2. Then a(m) is a left invariant Haar measure consequently 

a(m) = cm1 for some c > 0. Now let A .f Ha(F) and put h =·d>../dm, 

then h f Ll(F) and hoa~f L1 (G). For f f C0 (G) 

T~(f) = Thm(f) = hm(y(fca)) = m(yh(fca)) 

= cm1((y~a-1)(hoa-l)f) ••••••••••••••••••••••••••• (l) 

So that TA f Ma(G). The reverse inclusion follows similarly by 

considering T-1, since it is an isometric isomorphism of M(G) onto 

M(F), (Corolla~ 1.). 

~orollar-1 4. Ma(G) is invariant under nonn decreasil1g 

automorphisms.of H(G). 

The following example shows that a *-isomorphism of H(F) 

onto M(G) need not be norm decreasing. Let F and G be finite 
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abelian groups of order n, and suppose that F and G are not iso-

morphic. Let yl' y2 , •••••••••••• yn be then characters ofF and 

define functions fj, j = 1, 2, ••••••••• n on F by 

X f F. 

Proposition 2. fj*fk = 0 for j ~ k; fj*fj = fj, for all 

j, and fj = f j• 

Proof: (fj*fk)(x) = ~yfGfj(y)fk(y-1x) 

= (1/nf)~ L y.(y)yk(y-lx) .. y,G J 

= (1/n)yk(x)((l/n)~ f y.(y)yk(y)) 
y G J 

So that the first two assertions follow from the well known ortho-

gonality relations for characters on abelian groups. 

Since f~(x) = f.(x-1) = (1/n)y.(x-1) = (1/n)yJ.(x) = fJ~(x) 
J J J 

the last assertion follows. 

Let Yi• Y2••••••Y~ be then characters on G, and define 

functions gj, j = 1, ?, ••••• n by 

g. (x) = (1/n)Y'.(x) 
J J 

X f G 

It follo\-tS as above that gj*gk = 0 for j /: k, gj*gj = gj, and 

gj = gj. 

Since M(F) (resp. M(G)) has dimension n, it follows from 

the above that (fj : j = 1, 2, •••• n) (resp. (gj : j = 1, 2, •••• n)) 

algebraically generate 1-f(F) (resp.H(G)). Thus the mapping T 

defined by Tfj = gj can be extended to an isomorphism of M(F) onto 

M(G). We now show that T is a *-isomorphism. Let f f M(F), then 
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f = Enc .fj , ~md Tf = 'J!:c .g.. Thus 
1 J 1 J J 

Tf* = T(Zcjfj)* = T(kcjfj) = kCjgj = Eejgj = (Zcjgj)* = (Tf)* 

By theorem 2, if T were nonu decreasing then F and G would be iso-

morphic. 

This example was first considered by ~endel (23) in a slightly 

different context. 

One can hm•ever show the follo\-ring: 

Proposition )• If T is a *-isomorphism of M(F) onto M(G), 

then T is bounded. 

Proof: Let (LiL2 (G)) be the:left,regular representation of 

M(G) (Chapter I,§ 7.2). Since LeT is a *-representation of H(F) by 

operators on a Hilbert space, LeT is bounded ((12) Chapter V, 21.22) 

so that if Pn 4 }l and 1)ln !4 >., then 

L(T}l) = lim(L o T)(pn) = L(limTpn) = L(~). 
n n 

Since L is 1 : 1, Tp = ~ i.e. the graph of T is closed so that T is 

contir.uous by the closed graph theorem ( (14) Chapter 3, § 2). 

As a further consequence we shall derive a theorem due to 

Wendel (24) on isomorphisms of L1 (F). First we need the following 

lemma. 

Lemma 4. Let T be a bounded iso~r,phism of 1-fa(F) onto Ma(G). 

Then there is a unique bounded isomorphism T of M(F) onto M(G) which 

extends T. Horeover !I Til = l jTI f • 

Proof: Clearly T is continuous as a mapping of Ma (F) 
50 

onto 
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Ma(G)
50

• Since M(G) 50 is quasi-complete (Chapter I, §5.3) and since 

each p. in M(:B') is a so-adherence point of a bounded set in Ha (F) 

(Chapter II proposition 10), T has a unique extension T to a contin­

uous linear mapping of M(F)s0 onto M(G)so ( (2) Chapitre III, § 2, No. 5). 

To show that T(p.*A.) = T}l*TA. for p., A. in M(F), let ( )l j : j f J) 

and (> .. k : k f K) be nets in Ma(F) such that P.j so) p. and Aj ~A. 

Then since multiplication is separately continuous in M(F)so (Chapter 

II proposition 6) we have 

p.*A. = 1~(1~ P.j*Ak), 

Therefore the so-continuity ofT implies that 

T(p.*A) = l~(lkm T(J.lj*Ak)). 

Since T ~ T on Ma(F) we have T(Fj*A.k) = Tpj*TA.k • Now using the fact 

that multiplication is separately continuous in M(G) 50 we have 

lr(lfin Tuj*TAk) = Tv*TA.. 

Combining the above we have T(p.*J..) = ~*TA. 
To show that T is one-one, let J.., ¥ t M(F) and suppose Tp. = 

TA. If A /:. 11 then there is a v in Ha (F) such that A*V /:. Jl* v. Then 

T(A*).)) = TJ..*Tv = 1)l*T·v = T(p.*J)) which contradicts the assertion that T 

is an isomorphism because A*)J and \l*)} are in Ma (F). Therefore T is one-

one. 

We now show that Tis onto. Let~~ f M(G), by proposition 10 

of chapter II there is a net (p.j: j f J) in Ma(G) such that P.j ~P.' 
and II p. j II ~ II p.' II· By the open mapping theorem ( (14) Chapt-er 3, § 2) 

T-1 is bounded, so that (T-~j : j t J) is a bounded Cauchy net in 

Ma(F) 50 • Since M(F)so is quasi-complete there is a ~ in M(F) such 

that T-~j ~ Jl• Then T(T-~j) ~ Tp so that 



ifu = p. 1 and T is onto. 

We next show llifll = II Tjj. Clearly jjTjj :S IITjj. To show 

the reverse inequality let~ f M(F) be,given. By pl~position 10 of 

Chapter II there is a net (llj : j f J) in Ha (F) such that llj ~ p. 

and ll11jll :S ll11ll so that TP-j so_,. Tp.. Since the mapping ~ -. jj~jj 

is lower semicontinuous in the so-topology (corollary 1 to proposition 
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8), we have 111\tll ~lim inf jjTp.jjl :Slim inf IITIIlllljll :S liT! j ll11l I • 
Therefore jjTjj :S !!Til and hence ll'i'll = j jTjj. 

Finally we show that T is unique as a nonn bounded isomorphism 

which extends T. LetS be any norm bounded isomorphism of M(F) .onto 

M(G) such that S = T on Ma(F). By proposition 11 of Chapter II,, S 

and T are continuous on norm bounded sets as a mapping of H(F)so onto 

M(G) 0 • Since each p. in H(F) is an so-adherence point of a nonn bound­

ed net in Ma(F) (proposition 10 of Chapter II) we have Sp. = Tr • ie. 

s = T. 

Theorem 3. (Wendel) Let T be a norm decreasing isomorphism 

of Ll(F) onto Ll(G)e Then there is a homeomorphism and isomorphism 

a of F onto G, a continuous character y on G and a constant c such 

that 

Tg = cygoa.-1 

Proof: 

For~ in Ma(F) 

Let m (resp. m1) be the Haar measure on F (resp. G). 

let dA. be the Radon-Nikodym derivative of A with res­
din 

pect to m. Then the mapping A ~ d>.. is an isometric *-isomorphism 
drn 

of Ha (F) onto Ll(F) (Chapter I, §5.3). If h t Ll(G) then hm1 is in 

Ma(G) and the mapping h ~ hm1 is an isometric *-isomorphism of Ll(G) 



Define a mapping S of Ha(F) into Ma(G) by SA. = (T.Ql)m1 , 
drn 

then S is a norm decreasing isomorphism of Ha(F) onto 1-1a(G) since it 

is the composite of A. -r ~ -+ ~ ~ (~)m1 ; the first and last of 

these are isometriesand the middle mapping is no1m decreasing. By 

lemma 4, S has a unique extension S to a norm decreasing isomorphism 

of M(F) onto H(G). Let g f Ll(F), and consider the measure gm. By 

theorem 2, Sgm(f) = gm(y' (foa)) for all f f C0 (G), Where Y' is a 

continuous character on F and a is an isomorphism and homeomorphism 

of F onto G given by lei11ma 2. Put y = yto a., define c as in corollary 

3 of theorem 2, then (1) of corollary 3 becomes 

Sgm = cy(gca-l)m1 = (Tg)ml 

Therefore Tg = cygca-1, and this proves the theorem. 

Remark. Recently Greenleaf (9) has shown that if T is a 

norm decreasing homomorphism (not necessarily an isomorphism) of 

Na(F) onto Ha(G) then there is a closed normal subgroup F0 ~ F, 

an isometric isomorphism T1 of 11a(F/F0 ) onto Ma(G) and a norm decreas­

ing homorphism T2 of Ma(F) onto Ha(F/F0 ) such that T = T1oT2• 

T2 is the mapping defined by T2ll(f) = p.(fo rr), }1 f Ha (F) , f f C0 (F/F 
0

) 

and TT is the canonical map F ~ F/F
0

• 

To show that the analogous result does not hold for norm 

decreasing homomorphisms of M(F) onto M(G), consider the example 

following proposition 11 of Chapter II. Here G is the group having 

only 1 element, F is any nondiscrete locally compact group and T 

is the mapping defined by 

T\1 = ~ 1 y.({x1)e: 11 f H(F) 
X'\F e 
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We have shown that T is a homomorphism and that jjTjj :::; 1 (see the 

remark after proposition 11 of Chapter II). If there were a closed 

nonnal subgroup F
0 

SF and an isometric isomorphism T1 of H(F/F0 ) 

onto M(G), then F/F0 must be isomorphic to G by theorem 2, consequent­

ly F/F0 consists of a single element so that F0 = F. If T2 is the 

mapping of H(G) given Tz}l(l) = }l(lon) where n is the canonical map: 

F -;. F/F 0 , then T2 has the fol:'n Tz}l ::: p.(F) ee for p. f H(F). If p is · 

a continuous measure such that }l(F) J 0, then T}l = 0, Tzll J 0 and 

since T1 is an isometr,y T1oTz¥ J 0. Thus T J TloTz. 
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CHAPTER IV 

CHARACTERIZATIONS OF H(G) 

In this chapter we show that certain of the properties of 

H(G) which we developed in the precaeding parts of this work char­

acterizes those Banach algebras which are isometrically isomorphic 

to M(G) for some locally compact group G. 

Definitions. An element x of a Banach algebra A is called 

a left (resp. right) inner translator of A if the mapping y ~xy 

(resp. y ~ yx) is an isometry of A onto itself. If x is both a 

left and right inner translator of A, then x is said to be an inner 

translator. 

An element z 'of A is called a left (resp. right) annihilator 

of A if zx = 0 (resp. xz = O),for all x in A. 

Re~arks. It is clear that the product of two left (resp. 

right) inner translators is a left (resp. right) inner translator. 

The zero element is never a left. or right inner translator. 

If a Banach algebra has a unit u, then we shall always re­

quire I lull= 1. Thus if xis left (resp. right) inner translator 

llxll = llxull = I lull = 1. 
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ProEosition 1. If a Banach algebra A has a left inner trans­

lator x, and if 0 is the only left annihilator of A, then A has a 

unit u, x-1 exists,and x, x-1 are inner translators. 

Proof: Let Tx be the mapping y ..:;. xy. By hypothesis Tx 

is an isometry of A onto itself, hence T;1 exists. Let u = T~~~ 
then for any y f A, uy = y so that u is a left unit. For y, z f A 

we have 

) -1 (zu - z y = zTx TxY - zy = 0, so that zu - z is a left 

annihilator. Thus by hypothesis we have zu = z for all z f A, so 

that u 

and 

is also a right unit and hence a unit. Put y = T;1u, then 

-1 yx = Tx ux = u 

-1 -1 1 
xy = xTx u = TxTx u = u. Hence y = x- • 

Finally to show that x and x-1 are inner translators we 

observe the following. Since Tx is an isometry of A onto itself, 

T;
1 

is also an isometry of A onto itself and T~1 = Tx-l' so that 

x-1 is a left inner translator. Since liTxll = 1, we have 

llxll = IITxull = l so that .for each y in A, ljyxjj :S jjyj j. Sim­

ilarly llx-1 11 = l and jjyx-1 11 :S jjyjj. Now suppose x is not a 

right inner translator, that means for some y, jjyxjl < IIYII since 

y ~ yx is onto. But then jjyjj = jjyxx-ljj ~ jjyxlj < j jyjj a 

contradiction. Hence x is an inner translator. Si.'llilarly for 

x-1. 

Corollary 1. I.f a Banach algebra A has an inner translator, 

x, then A has a unit, x-1 exists, and x-1 is an inner translator of A. 

Proof: If A has an inner translator, then 0 is the only 
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left annihilator. Hence the corollar.y follows from proposition 1. 

C,?rolla!Y 2. If A is a semi-simple Banach algebra, and if 

A has a left inner translator x, then A has a unit u, x-1 exists, 

and x and x-1 are inner translators. 

Proof: If y is a left annihilator, then for any scalar a 

and any x in A, ay + xy has·-(ay + xy) as a quasi-inverse, thus by 

Chapter I, §6.2, y is in the Jacobson radical and hence y = 0 by 

hYPothesis. Therefore 0 is the ohly left annihilator so that the 

corollar,y follows from proposition 1. 

Proposition 2. Let A be a Banach algebra. A necessary 

and sufficient condition for any element x of A to be an inner trans­

lator of A is that A has a unit u, x-1 exists and jjxjj ::; 1, 

llx-lj I ::; 1. 

Proof: Necessity follows frotll corollary 1 above and the 

remark preceeding proposition 1. To prove sufficiency, note that 

since x-1 exists, the mappings y ~ yx and y ~ xy are one-one and 

onto. If the first mapping, say, is not an isometry, there is a 
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y in A such that j jxyj j < jjyj j. Hence jjyjj = jjx-1xyjj ::; jjxyjj < jjyjj 

which is a contradiction. Thus jjxyjj = l jyjj and similarly jjyxjj = 

jjyj I· Therefore x is an inner translator. 

Corollary. Let A and B be Banach algebras and suppose T 

is a norm decreasing homomorphism of A onto B. If x is an inner 



translator of A, then Tx is an inner translator of B. 

Proof: By proposition 2, A has a unit u, x-1 exists,and 

II x II :S 1, II x-ljj :S 1. Since T is a homomorphism onto, Tu is the 

unit in B and (Tx)-1 = Tx-1. Since j jTjj :S 1 we have j jTxjj :S 1, 

and I j (Tx)-ljj = I jTx-ljj :S jjx-1 11 :S 1. Thus by proposition 2, 

Tx is an inner translator. 

Proposition 2· Let A be a Banach algebra, having 0 as its 

only left annihilator and let x be a left inner translator of A. 

Then x is an extreme point of the unit ball of A. 

Proof: By proposition 1 above, A has a unit u, x-1 exists, 

and llx-ljj :S 1 by proposition 2. Now suppose 

then 

and 

x = ay + (1 - a) z , 0 < a < 1 jj y II :S 1 

u = ax-ly + (1 - a)x-lz 

I jx-lyjj :S 1, jjx-1zjj :S 1. 

j lzll :S 1 

Now by Theorem 9, Chapter 1, u is an extreme point of the unit ball 

so that we must have x = y = z, i.e. x is an extreme point. 

Remark. In an arbitrary Banach algebra an extreme point of 

the unit ball need not be an inner translator. We now give an example 

of a Banach algebra having a unit and an extreme point of the unit 

ball which is not an inner translator. 

Let H be an infinite dimensional separable Hilbert space, and 

let (en : n = 1, 2, ••••• ) be an orthononnal basis in H. We define a 

linear operator T on H by means of the equations 

n = 1, 2, ), ••••••• 
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Let ( ) denote the inner product in H. For x f H we have ((2) 

Chapitre V, §2 No. 3) 

jjxll
2 

= J:;j(x,en)1 2~ 
Therefore 

11Txjj
2 

= ~~j (Tx,en) j
2 

. ()() 2 
= l:ll(x,T*en)j •, 

Note that T* satisfies the equations 

if n = 2, 3, •••• ~. 

T*e1 = 0. 

Thus 

jjTxjj
2 

= 2:;1 (x, en-l) 12 

= I:~ I (x, en) 1
2 

= llxll
2 

Consequently II T II = 1. 

Let B(H) be the Banach *-algebra of all bounded linear op-

erators on H. By the above we have that T is an element of the unit 

ball of B(H). We now show that T is an extra~e point of the unit ball 

of B(H). For this, suppose that 

T = aR + (1 -a)S , 0 < a < 1, , jjRjj !: 1 

Not~ that T*T = I (the unit of B(H)). Therefore 

I = aT*R + (1 - a)T*S '. 

II s II ::: 1. 

Now IIT*Rll !: IIT*IIIIRII = IITIIIIRjj !: 1 and IIT*Sjj !: 1, we 

have I = T*R = T*S because I is an extreme point of the unit ball 

(Chapter I, theorem 9). We also have 

T* = aR* + (1 - a)S* 

which gives 
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T*R = aR*R + (1 - a)S*R 

Since I = T*R and I is an extreme point of the unit ball, we have 

I = R*R = S*R. 

Consequently since we also have T*R = I = R*T 

R*R - R*TT*R = 0 

Thus R*(I - TT*)R = O. 

Observe that 

(I - TT*)*(I - TT*) = I - TT* 

So that 

((I- TT*)R)*(I- TT*)R = R*(I- TT*)R = O. 

In virtue of the equality IIV*Vjj = jjvj j2 for any V in B(H) we must 

have 

{I - TT*)R = 0. 

Therefore R = TT*R = T. So that we have R = T = S which shows that 

T is an extreme point. To show that T is not an inner translator 

let P be the operator defined by the equations 

Pel= e1 and Pen= 0 n = 2, 3, ••••• 

Then P is in B(H) and PT = o. Therefore T is not a right inner trans­

lator and hence not an inner translator. Thus the Banach *-algebra 

B(H) is the desired example. 

Lemma 1. Let A be a Banach algebra and suppose that A 

satisfies the conditions, 

(1) 0 is the only left annihilator of A 

(2) each extreme point of the unit ball S of A is a left 

inner translator. 



Then the extreme points S£ of S form a group. 

Proof: Conditions (1), (2) and proposition 3 imply that 

an element of A is a left inner translator if and only if j.t is an 

extreme point of the unit ball. The product of left inner trans­

lators is a left u1ner translator and this together with proposition 

1 implies that the set of all left inner translators is closed under 

multiplication ahd :inverses. Clearly u is a left inner translator and 

thus s£ is a group. 

Theorem 1. Let A be a Banach algebra, S its unit ball and 

s£ the set of extreme points of s. Suppose that 

(1) there is a Banach space E such that A is the dual of E, 

(2) multiplication is o(A,E)-continuous in each variable 

separately, 

on A, 

(3) 0 is the only left annihilator of A, 

(4) each x in S£ is a left inner translator of A, 

(5) s£v{01 is a(A,E)-closed, 

(6) there is a nonzero multiplicative linear functional p 

(?) let G = {x f S£ : p(x) = 1) where p is the nonzero multi­

plicative linear functional given by (6). Then 

(i) for each f in E, there is a g in E:such that x(f) = x(g) 

for each x in G, and 

(ii) for f and g in E there is an h in E such that x(h) = 
x(f)x(g). 

Then G is a locally compact group and A is isometric and 

86. 



isomorphic to M(G). If se is closed then G is compact. G is unique 

to within isomorphism and hor.1eomorphism. Conversely if G is a locally 

compact group then M(G) satisfies (1) to (7). 

Proof: Conditions (3), (4) and larr~a 1 imply that sE is a 

group and A has a unit u (Proposition 1). Since p is multiplicative, 

it follows that G is a subgroup of se. We divide the proof into a 

number of assertions. 

I. For any x f sE, p(x) = p(x-1) and jp(x)j = 1. 

Since p is a nonzero multiplicative linear functional on 

a Banach algebra with a unit u we have p(u) = 1 and jjpjj = 1 (Chapter 

I, §6). Let x f se, then jp(x)j :S: 1 and jp(x-l)j :S: 1. If for some 

x f se we have lp(x)j < 1 

1 = p(u) = jp(x-lx)l= jp(x-1 )p(x)j = jp(x-l)jjp(x)j < 1, 

which is an absurdity, thus we must have jp(x)j = 1. Then 

p(x)p(x) = 1 = p(u) = p(x-lx) = p(x-l)p(x) we also have p(x) = p(x-1). 

Let C be the complex numbers and Z the complex numbers of 

absolute value 1. Let g be the mapping ofCxA onto A given by 

g(a,x) = ax, and let g1 be its restriction to Z x G. 

II. g1 is a homeomorphism of Z x G onto se. 

If x is an element of Se:, and a f Z then ax is an extreme point 

so that gl maps z X G into se:. Let X f se: then p(x) t 0, x/p(x) f G, 

and p(x) f Z by I, so that g1 is onto. To sho"YT that g1 is one-one, 

let x,y f G, a,b f Z and suppose ax= by, ~~en 



a = ap(x) = p(ax) = p(by) = bp(y) = b. 

Hence x = y. Since g is continuous and open so is gl. 

III. G is a locally compact group, and if se: is a(A,E)-closed, G 

is compact. 

By {5), se:\J{01 is a cr(A,E)-closed subset of the unit ball 

S, hence se:v{o] is o(A,E)-compact since Sis. Therefore se: is 

locally compact. By II Z x G is homeomorphic to se: and this means 

that G is locally compact. If se: is o(A,E)-closed then Z x G is 

homeomorphic to a compact space and consequently G is compact. By 

(2) multiplica.tion is 1-makly continuous in each variable separately 

so that G is a locally compact Hausdorff semitopological group. It 

is known (cf. Chapter I,§ 2) that a locally compact semi topological 

group is a topological group. Thus G is a locally compact group. 

For f t E, let f be the function on G defined by f(x) = x(f), 

where x f G. 

IV. 
,... ~-~ 

f ~ f is a norm decreasing linear mapping of E into C
0

(G). 

It is clear that this mapping is linear and since jjxjj ~ 1, 

we have jf(x) I ~ llfll so that f is bounded, and lltll = sup Ur(x) I 
x f G];S jjrjj, consequently f ~ 1 is norm decreasing. By the def-

...... 
inition of the weak topology we have that f is continuous. To show 

that f is in C0 (G), first note that if se: is compact, G is compact 

and hence C0 (G) = C(G) so that f f C0 (G). If G is not compact, then 

se: is not compact so that 0 is a o(A,E)-adherence point of se: since 
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SEV{ o} is o(A, E)-compact. NovT let € > 0 be given and suppose f ~ o. 

Clearly U == { x f A : jx(f) I < £ 1(\(SEvtO}) is an open o(A,E)-neigh­

borhood of 0 in SEU\OJ so that H == sE ...... u is compact in sE. Since 

z X G is homeomorphic to sE, ~1(w) is compact in z X G. Let K be 

the image of ~1(W) by the projection mapping Z x G ~ G, then K is 

compact in G. Thus for f f E, l-Te have found a compact set K such 

that jf(x) j < £ for x f K because G-.....K S U. 

V. Let E be the image of E in C0 (G) under the mapping f -,..?. E 

is dense in C0 (G). 

If for x,y f G, f(x) = f(y) for all f f E then x(f) == y(f) 

for all f f E, hence x = y, so that E separates the points of G. 

If x f G, then x ~ 0, so there is an f f E such that x(f) ~ 0. 

i.e. f(x) ~ o. 
,.... ,.... 

Thus given x f G, 't'Te can find an f t E such that 

i(x) ~ 0. Further, for any f f E, by (7 )(i). there is a g f E such 

that x(g) = x(f). i.e. g(x) = f(x) for all x f G. By (7)(ii) E 

is a subalgebra of C0 (G). Thus E is a subalgebra of C0 (G) which 

separates the points of G, does not vanish at any point of G, a.nd 

is closed under complex conjugation, hence the Stone-Weierstrass 
,.. 

theorem applies, e.nd we may conclude that E is dense in C
0

(G). 

Let T be the adjoint of the mapping of f ~ r. i.e. 

Tp.(f) = p.(f) for p. f C0 (G) 1 = H(G) and f f E. Note that TEx :: x, 

so that by the linearity of T we have 



VI. T is a norm decr·easing one-one linear mapping of M(G) into A, 

and T is continuouso.as a mapping of M(G)v into A0 • 

This follows from IV, V, and the general properties of ad-

joint mappings (cf.Chatpor I, .§ 1.6 ). 

Let SM be the unit ball of H( G). 

VII. (sH)
0 

is homeomorphic to S0 , and T is an isometry of H(G) onto 

A. 

Since (SH)
0 

is compact, and T is one-one and continuous, 

to prove the first assertion, it suffices to sho1v that T(SH) = s. 

By VI, T(SH) S S so it suffices to show that T(sN) 2 s. For this 

let x t S, then s~1ce S is convex and a(A,E)-compact, the Krein­

!filman theorem (Chapter.'l.- § 1.1) applies and there is a net 

a n· 
(xj : j f J) such that xj ~x and xj = f:tai,jxi,j wnere 
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> 0 and the xi,j are extreme points<hence are ~ S€) 

of the unit ball in A. Putting yi . = x1. J. / p(x. .) , we have y. . f G ,J ' J.,J l.,J 
for any i,j. Considering 

n· 
Vj = ~ J ai .p(x. .)e we see that VJ· is an element of 

1:1 ,J J.,J Yi,j 

the unit ball sH of M(G) for each j and ~j = xj by (*). Since sM 

is weakly compact, there is a ~ t sM and there is a subnet (~j{i)) S (¥j) 

such that ~j(i) 4 ~· Since T is continuous as a map of H(G)a into 

A0 we have that Tv-j(i) 4 T}l. (xj(i)) f. (xj), and l)lj(i) = xj(i) 4 x, 

it follows that Tp = x. This shows T maps sM onto S and hence is a 

homeomorphism because sM and S are compact. Hence T maps M(G) onto A. 
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To show that T is an isometry suppose there is a p. f H(G) 

such that j jTpjj < llllll· Since sH is mapped onto S and T is one­

to-one, j I T-1 11 < 1. Thus II llll = II T-1Tp.lj ~ II TJ.l II < llvJJ • a 

contradiction. 

Finally in o:txier to show that A is isometric and isomorphic 

to H(G), lore have to show the follow·ing: 

VIII. For }1,.\ f H(G), T(}l*A.) = T}lT..\. 

First let v,..\. f V (the linear span of the Dirac measures). 

Then 

and 
m 

~ = .:£.; b. e: where a1,~are complex 
i:l l. yi 

numbers. We have 

...n ...-m n ~m p. *.A = ~~ J.. a . b . £ * e: = J; L; a . b . e: 
1:1 j::l l. J xi y j 1:1 j::l l. J xiy j 

(by proposit-

ion 2 of Chapter I). Thus using (*) 

Now let ¥• ..\. ~ M(G) then by corollary 1 to proposition 4 there 

are nets (}lj: j ~ J), (..\.k: k t K) in V such that Pj 4P and ..\.k 4-J... 

Then since multiplication in M(G) is separately weakly continuous, 

(proposition 2, Chapter II) we have 

Since T is continuous M(G)q ~ Aa we have 

T(~*J..) =lim T (lim PJ·*..\.k) =lim (lim T(p.*.\ )) 
j k j k J k 

= 1~ (1~ Tp.jT.>.k) by the (;) above. By hYPothesis 
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(2) of the theorem multiplication in A is weakly continuous in each 

.variable separately, thus 

Thus A is isometric and isomrophic to H(G). By theorem 2 of 

Chapter III, G is unique to "t-tithin isomm:phism and homeomorphism. 

This completes the proof of the first part of the theorem. 

For the converse part of the theorem let G be a locally compact 

group. Then we have in our previous notation A= H(G), E = C0 (G). 

Clearly N(G) satisfies (1) and (3). By proposition 2 of Chapter II, 

H(G) satisfies (2). Let Z be the complex numbers of absolute value 1, 

then ZGe: is the set of extreme points of the unit sphere of H(G) 

(Chapter 1, §J, theorem 6). Thus theorem 1 of Chapter III shows that 

M(G) satisfies (4). If G is compact then Ge: is o(H(G),C0 (G))-compact 

so that ZGe: = se: is cr(11(G) ,C0 (G) )-compact, since it is the continuous 

image of the compact set Z X G~ and therefore (5) is satisfied, because 

a(A,E) is Hausdorff. 
00 

If G is not compact, let G be the one point 

compactification of G. If (xj j t J) is a net in G which converges 

tooo, then f(xj) -7 0 for each f t C0 (G) so that e:x . .2;,.. 0. Thus the 
J 

mapping x ~ e:x has a continuous extension to G
00 

and this extension is 

one to one (because 0 / Ge:) and therefore a homeomorphism of G
00 

onto 

(Gvt o1 )a. Thus (G€\J [OJ )a is compact, so that Z(G€\J ( 0 Da = se:v {0} 

is compact, and therefore a(M(G),C0 (G)))-closed because a(H(G),C0 (G)) 

is Hausdorff, and (5) is satisfied • 

. We now show that. (6) & (7) are satisfied. For this define a 

linear functional p by p(~) = p(G) = jdp. Now 



(\l*A)(G) = Jfdpd.A. (by Chapter I, §5.1) 

= Jdp!dA by Fubini's theorem 

= p(G)A(G) 

So that p(}l*A) = p(p.)p(A). Note that G€ = t p t S€ : p(\1) = lJ, l>lhich 

corresponds to G in 7·( i). Since f t C0 (G) =) f (the complex conjugate 
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€ - -of f) is in C0 (G), it follows that for any f f C0 (G), p f G , p(f) = p(f) 

because p. is real. Thus choosing f for g, 7 (i) is satisfied. 7 (ii) is 

satisfied since C0 (G) is an algebra. 

This completes the proof of the theorem. 

The next proposition is due to Greenleaf, and has appeared in 

(10) in a less general fo~. 

Proposition 4. Let E be a Banach space and let N be a o(E 1 ,E)~ 

closed subspace of the dual E'. of E. .Let TT be the canonical mapping 

E' ~ E•/N then TT maps the unit ball of E1 onto the unit ball of E1/N. 

Proof: Since N is a(E 1 ,E)-closed, N is norm closed so that 

E'/N is a Banach space with the norm of an element rr(x) given by 

II rr(x) II = inf {I I x + n II : n f N J ~ II xj (. • •••••••••••••••• (1) 

Hence llxl I =:: 1 implies II rr(x) II =:: 1, i.e. '(T maps the unit ball of E• 

into the unit ball of E1/N. To show that TT is onto. let rr(x) f E1/N 

with jjrr(x)jj ~ 1. By (1) there are xj f x + N such that 

I lxjll =:: llrr(x)jj + 1/jjjxll j = 1, 2. •••••••••••••••• 

the sequence (xj : j = 1, 2 •••••• ) is then norm bounded and therefore 

contained in a o(E 1 ,E) compact subset of E1 • Thus there is a y f E' 

and a subsequence (xj(i)) £. (xj) such that xj(i) 4 y. Since N and 



hence x + N are a(E 1 ,E)-closed y f x + N and therefore rr(y) = rr(x). 

Since the nonn is o(E 1 ,E) lower semicontinuous , we have jjy'jj :S 

lim inf llxj(i) II :S jjrr(x) II :S 1. Thus for each element rr(x) of the 

unit ball of E1/N the~e is an element y of the unit ball of E1 such 

that rr(y) = rr(x). 

The next proposition is also due to Greenleaf (10) in the 

case that G is a compact group. It should be noted that our proof is 

new, and somelvhat simpler than his •. 
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Proposition 5. Let G be a locally compact group; N a weakly 

closed tuo sided ideal in H(G); Se (resp. sTT) the set of extreme points 

of the unit sphBre of M(G) (resp. M(G)/N), and TT the canonical mapping 

M(G) ~ M(G)/N. Then rr(SE) = STT. 

Proof: We first show that sTT £. rr(SE). Recall that M(G)/N 

can be identified with the dual of N° the polar of N in C0 (G) (Chapter 

I, § 1.5). If G is not compact, let G00 be the one point compactification 

of G, and if G is compact put G00 = G. Consider N° f C (d'
0

) ; N° is 

a(C0 (G),M(G))-closed and hence norm closed. Let¥ f sTT, then by theorem 

5 of chapter I, there is a complex number c, lei = 1 and an x in G such 

that ~(f) = cex(f) for f in N°, and this means that CEx f ~1(¥) by 

theorem 6 of Chapter I, CEx f s€, thus sTT f rr(S€). 

If J1 f se, then }l is an inner translator (theorem I) so that 

by corollar,y 1 to proposition 2, rr(~) is an inner translator because TT 

is norm decreasing. By proposition 3. TT(¥) is in sTT. Thus rr(SE) = srr. 

Theorem 2. Let A be a Banach algebra which satisfies conditions 



(1) to (5) of theorem 1. Then there is a locally compact group G, 

and a weakly closed two-sided ideal N in H(G) such that A is iso­

metric and isomorphic to H(G)/N. Conversely if N is a rTeakly closed 

two-sided ideal in H(G), then H(G)/N satisfies (1) to (5). 

Proof: Let S and s£ be as in theorem 1, and take G to be 

s£, then G is a locally compact group (see the proof of theore11 1). 

For f in E, let f be thefunction on G given by f(x) = x(f). Then 

f ~ 1 is a norm decreasing linear mapping of E into C
0

(G)(see the 

proof of IV in theorem 1). ""' LetT be the adjoint of f ~ f, then we 

have that T is a nonn decreasing and continuous linear mapping of .H(G).0 cmto Aa• 

The arguments to shm-1 that T(Jl*A.) = Tp.T.A. and T(sM) = S are similar 

(and easier) than those used in the proofs of VII and VIII of theorem 

1. Now let N = kerT, then N is a weakly closed tvro-sided ideal in 

M(G). Let n be the canonical mapping M(G) ~ M(G)/N and let T1 be 

the mapping H(G)/N ~ A such that T = T1 on. Clearly T1 is one-one 

and onto. We now show that T1 is an isometr,y. By proposition 4, 

n(sM) is the unit sphere in H(G)/'f:.! and since T(SH) = S we have 

T1(n(sM)) = s. i.e. T1 maps the unit sphere of l1(G)/H onto the unit 

sphere of A. Thus II T1ll ~ 1 and II Ti1 11 ~ 1 and this means that 

T1 is an isometr,y (see the calculation used in the proof of proposition 

1). This completes the proof of the first assertion. 

Now let N be a weakly closed two sided ideal in H(G). We 

shall show that M(G)/N satisfies (1) to (5) of theorem 1. H(G)/N 

may be identified with the dual of N°. Since N° is a(C
0

(G) ,H(G) )­

closed in C0 (G), N° is norm closed and therefore a Banach space. Thus 

(1) is satisfied. To show that (2) is satisfied note that since N° 



is o(C0 (G),M(G))-closed and since N°0 = N, the o(M(G)/N,N°)-topology 

equals the quotient weak topology on M(G)/N (Chapter 1, §1.5). Thus 

it suffices to show that for ~ f M(G)/N, the mapping ~ ~ i~ is con­

tinuous in tl1e quotient weak topology and this is true because the 

quotient of a topological algebra is a topological algebra. Let s£ 

(rasp. srr) be the set of extreme points of the unit ball of M(G) 

~esp. M(G)/N). Let p t srr, then by proposition 5 there is a ~ f s£ 

such that rr(~) = ~. Since p is an inner translator, we have by the 

corollar,y to proposition 2 that n(p) is an inner translator hence 

(3) and (4) are satisfied. To show that srrv{o] is o(M(G)/N,N°)­

closed, note that rr is weakly continuous, hence since s£v{O} is 

weakly compact, and since rr(SE) = srr (proposition 5), n(s£v{O}) = 

Srr\J{O] is o(M(G)/N,N°)-compact and hence o(M(G)/N,N°)-closed, so 

that (5) is satisfied. 
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CHAPTER V 

ABELIAN *-SUBALGEBRAS OF Ll(G) AND REPRESENTATION THEORY 

1. Maximal a~lian *-subalgebras of L1(G). 

Definitions: Let A be a *-algebra and let B be an abelian 

*-subalgebra of A. B is said to be a maximal abelian *-subalgebra 

of A, if for each abelian *-subalgebra B1 such that B £. B1 ~ A we 

have~= B. 

An element x of a *-algebra A is called normal if xx* = x*x. 

Remarks. Note that we do not require a maximal abelian 

*-subalgebra to be a proper subalgebra. Thus if A is an abelian 

*-algebra then the only maximal abelian *-subalgebra of A is A itself. 

Let A be a *-algebra, then for any x f A, the set of all 

finite linear combinations of elP~ents of the form x*x, (x*x)2, 

(x*x)J, •••••••••• is a nonzero abelian *-subalgebra of A, consequently 

a maximal abelian *-subalgebra is always nonzero. Moreover it is 

a consequence of Zorn's lemma that any abelian *-subalgebra is con­

tained in a maximal abelian *-subalgebra. 

Proposition 1. Let A be a *-algebra and let B be an abelian 

*~subalgebra of A. Then B is a maximal abelian *-subalgebra of A 
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if and only if for each normal element y t A; xy = yx for all 

x f B implies y f B. 

Proof: First note that xy = yx for all x f B implies 

yx* = x*y so that by applying * to each side we have xy* = y*x. 

Thus if y corr~utes with B, so does y*. If y is nonnal, then the 

*-algebra generated by fy 1 v B is an abelian *-subalgebra which 

contains B. Thus if y is not in B, B is not maximal. Conversely 

if B is not maximal then there is an abelian *-subalgebra B1 £: A 

such that Be~· Let y f Bf'" B, then y is normal and y commutes 

with every element of B. The violates the condition of the prop­

osition. 

Let S be a Borel subset of a locally compact group G. Let 

L(S) be the subset of Ll(G) which consists of functions which vanish 

almost ever,ywhere outside of S, and D(S) the set of all x t G such 

that evezy measurable neighborhood of x meets S in a set of positive 

Haar measure (see Chapter II, ~ J). 

If S is an open and closed subset of G, then S is locally 

compact and each function f E K(S) can be extended to a function on 
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G by simply putting f(x) = 0 for x f s. In this way we identify K(S) 

with a subspace of K(G). If p is a regular measure on G, then its 

restriction to S is a regular measure on s. Moreover since S. is· closed, 

f1Very regular measure on S is obtained in this way ( (J) Chapitre III, 

§2, No. 1 and Chapitre V, § 7, No. 2). If S is an open subgroup of G, 

then S is also closed, consequently we may identify K(S) with a sub­

space of K(G) and M(S) with a subspace of M(G). In addition the 

restriction of the Haar measure on G to S is the Haar measure on s. 



Thus we may identify L(S) with L1 (s). 

Lemma 1. Let G be a unimodular locally compact group and 

letS be an open abelian subgroup of G. Let f t LP(G) (1 ~ p ~ ro), 

then a necessary and sufficient condition for f to commute with L(S) 

is that there exist a subset N of G, having Haar measure zero and 

such that 

f(x) = f(y-lxy) for all y f S"-N. 

Proof: Since K(S) is dense in L(S) = L1 (s) we have that f 

commutes with L(S) if and only if f*g = g*f for all g f K(S). Since 

f*g is continuous (Chapter I, §5.4) a necessary and sufficient 

condition for f*g = g*f is that f*g(x) = g*f(x) for all x t G. 

Nolf f*g(x) = ft(xy)g(y-1 )dm(y) and since G is unimodular, 

ff(xy)g(y-l)dm(y) = ff(xy-l)g(y)dm(y). 

Thus f*g(x) = g*f(x) gives 

Jr(xy-l)g(y)dm(y) = Jg(y)f(y-lx)dm(y). 

Then 

Jr(xy-1) - f(y-lx)g(y)dm(y) = 0 for all x f G, and any 

g f K(S) if and only if there is a set N of measure zero such that 

f(xy-1) - f(y-lx) = 0 for y f s' N. 

Putting z = xy-1 we have 

f(z) = f(y-lzy) for y f S' N. 

Definitions: If S is a subset of G, put F(A) = Vtx-lAx: 

x f D(S)J if D(S) ~ ¢ and F(A) = ¢ if D(S) = ¢, for any subset A<;; G 
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Proposition 2. If S and A are Borel subsets, then F(A) is 

a Haar measurable set. 

Proof: D(S) is closed and therefore a Borel set,thus 

A x D(S) is a Borel set. Let g be the mapping of G x G into itself 

defined by g((x,y)) = (y-lxy,y), then g is a homeomorphism of G x G 

onto itself. Le~ p1 be the projection (x,y) o+ x. Observe that 

F(A) = P)." g(A x D(S)). Since a homeomorphism takes Borel sets to 

Borel sets and since p
1 

takes Borel sets to Haar measurable sets, 

we have that F(A) is measurable. 

Theorem 1. Let G be a locally compact unimodular group, 

S a Borel subset of G, and suppose that L(S) is a subalgebra. A 

necessar.y and sufficient condition for L(S)tobea maximal abelian 

*-subalgebra of L1(G) is that D(S) be an open abelian subgroup with 

the property that m(F(A)) =~for ever,y Borel subset of A satisfying 

(i) m(Af\S) = 0 where m is the Haar measure on .G. 

(ii) 0 < m(A) < ~. 

Proof: We first show that the condition is necessar.y. 

If L(S) is a maximal abelian *-subalgebra then L(S) /= t 0). Thus 
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by theor~n 3 of Chapter II, D(S) is a closed subgroup of G and L(D(S)) = 

L(S). Since L(D(S)) I= {0} , D(S) contains a set of positive measure 

and is therefore open (Chapter I, §5.4). Since we can identify 

L(D(S)) with Ll(D(S)) and since L1(G) is abelian if and only if G 

is abelian it follows that D(S) is abelian. Now suppose there is a 

Borel set A satisfying (i) and (ii) but such that m(F(A)) < ~. Define 

a function f on G by f(x) = 1 for x f F(A)UF(A)-1 and f(x) = 0 other-
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wise. Since G is unimodular m(F(A)-1 ) = m(F(A)) < ~. and since F(A) 

and F(A)-1 are measurable subsets, f f L1(G). If x f F(A)\JF(A)-1 

then for any y f D(S), y-1xy f F(A)vF(A)-1• If for any x f G, 
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y-lxy t F(A)\JF(A)-l for some y f D(S), then x = yy-lxyy-1 f F(A)~F(A)-1 • 

This means that f(x) = f(y-lxy) for all y f D(S) and any x f G. 

Thus lemma 1 applies to D(S) and f commutes with L(D(S)) = L(S). By 

condition (ii) above f is not the zero element of L1(G) because 

A ~F(A), and by condition (i), f f L(S). Moreover f(x) = f(x-1) = f*(x) 

so that f is normal. Thus proposition 1 applies and L(S) cannot be 

maximal. Therefore we have shown the necessity of the condition. 

We now show sufficiency. If D(S) is an open abelian sub-

group, then e f D(S) so that lemma 4 of Chapter II applies and we have 

L(S) = L(D(S)). Thus L(S) is an abelian *-subalgebra of tl(G) since 

L(D(S)) is an abelian *-subalgebra of L1(G). To show that L(S) is 

maximal let f f t 1(G) and suppose that f commutes with L(S) = L(D(S)). 

We will show that f f L(S) i.e. f = 0 almost ever,ywhere outside S. 

Let c = sup[lf(x)j: x t G'-.S]. If c = 0 there is nothing to prove. 

Suppose that c ~ 0. Let a be chosen such that 0 < a < c and let 

B = { x f G"- S : I f(x) I :! a}, then B is not locally null and therefore 

contains a compact set A such that 0 < rn(A) < ~. Clearly m(Af\S) = 0 

so that A satisfies (i) and (ii). Since f commutes with L(D(S)), by 

lemma 1 we have that there is a subset N of S such that f(x) = f(y-lxy) 

for all y f S' N. Consequently j f(x) l ~ a almost everywhere for 

X f F(A). Then 

By hypothesis m(F(A)) =~and we have a contradiction. Therefore 

c = o. Then f(x) = 0 almost ever,ywhere for X f s. i.e. f f L(S). 



By proposition 1, L(S) is maximal. · 

CorollarY• Let G,S be as in theorem 1 and suppose that L(S) 

is a maximal abelian *-subalgebra of Ll(G). If f f LP(G)(l ~ p< ro) 

and f(x) = f(y-lxy) almost ever,ywhere for y f S and x f G, then 

f(x) = 0 almost everywhere for x f s. 

Proof: Let c = supfjr(x)jP: x f G'S] and suppose c * 0. 

Let B = t x f G'- S : jf(x) lp =:: a} where 0 < a < c. Then there is a 

compact set A ~ B satisfying conditions (i) and (ii) of the theorem. 

Thus since L(S) is a maximal abelian *-subalgebra, m(F(A)) = ro. 

Consequently Jjfjpdm ~ JF(A)tflpdm 2: a m(F(A)) = ro. Thus we must 

have c = 0~ 

Examples. We now give examples of groups G having an abelian 

subgroup S such that L(S) is a maximal abelian *-subalgebra of Ll(G). 

For this first note that if G is discrete, and S is an abelian sub-

group of G then by theorem 1, a necessar,y and sufficient condition 
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for L(S) to be a maximal abelian *-subalgebra of Ll(G) is that for each 

y f S, the set l x-lyx : x f S} be infinite. 

Let G = t (a, b) : a, b real, a > 0} and give G' the discrete 

topology. Define (a,b)(a 1 ,b') = (aa', ab' +b), then (a,b)-1 = 
(1/ a, .- b/ a) and G is a group. Moreover since G is discrete, G is 

unimodular. Let S be the subset of G of all elements of the form 

(l,c), then S is an abelian subgroup. For (a,b) f G, a* 1 we have 

(l,c)-1(a,b)(l,c) = (1, - c)(a,ac + b) 



· = (a,(a- l)c +b) 

Consequently [(l,c)-1 (a, b) (l,c) : (l,c) f S ]is infinite and L(S) is 

a maximal abelian *-subalgebra of L1(G). 

A second example is the free group on two generators. If 

we take S to be the subgroup generated by one generator then it is 

easily seen that txyx-1: x f S 1 is infinite for any y f s. By the 

above L(S) is max~nal in Ll(G). 

2. Max~al abeli~n *-subalgebras of 0\.. 
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Throughout this section G denotes a locally compact unimodular 

group. Let(L,L2(G)) be the left regular representation of G, i.e. for 

each x f G, Lx is the operator on L2(G) defined by Lxf(y) = f(x-ly) for 

each f in L2(G). For each x f G, let Rx be the operator on L2(G) 

defined by Rxf = fx for f f L2(G), and for ~ ~ M(G) let ~ be the oper­

ator defined by ~f = f*Jl• If h f Ll(G), then hm f M(G) and put ~ = Ibm• 

Let N. be the W*-algebra generated by t~ : ll ~ M(G)], then it is known 

that ll. is the commutant of {Lx : x f G), and that lt is generated by 

~Rx : x f G], (cf. Chapter I, §?.2). 

If H is a Hilbert space and B(H) is the algebra of all bounded 

operators on H, recall that the w-topology on B(H) is the weak op~rator 

topology; i.e. the topology defined by the semi-norms A -?- I (Af,g) j 

f,g f t
2(G), where (f,g) is the scalar product of f,g f L2(G). 

Proposition 3. The mapping ~ ~ ~ is a linear continuous 



mapping of M(G)~ into ~· 

Proof: .Clearly 1.1 ~ ~ is linear. To show continuity let 

f,g f t 2(G) and~ f M(G). Then since G is unimodular the convolution 

f**g exists and is an element of C0 (G) (Chapter I, §5), to prove 

the proposition it clearly suffices to show that (~f,g) = ¥(f**g). 

Using the unimodularity of G we have 

(Rpf,g) = J(Jf(xy-l)d~(y))g(x)dm(x) 
= J]f(xy-l)g(x)dm(x)d~(y) 

= ]]f•(yx-l)g(x)dm(x)d~(y) 

= ](f*•g)(y)d~(y) 

= ¥(f*•g). 

by Fubini•s theorem 

Proposition 4. Let S be an open subgroup of G, and "5t(S) 

be the W*-algebra generated by (Rx : X ~ s]. Then the w-closure of 

f Rf : f f L(S)(\ L2(G)1 e:tuals 0\(S). 
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Proof: If f f L(S)f\L2(G) then Supp(fm) £ s since S is an open 

subgroup and is therefore closed. Thus by proposition 4 of Chapter 

II, we have[f.m: f f L(S)f\L2 (G)1 ~ Cl~f4 f V: Supp(~) £ s] (where 

V is the linear span of the Dirac measures). By proposition 3, the 

mapping 1.1 _,. Rp is a continuous map of M(G)a into mw, so that 

f ~ : ll ~ Cla{~ f V : Supp(.\.) S S n f; ll.(S) 

Thus rRf : f f L(S)(\ L2(G)] £ )'{(S) and since ~(S) is w-closed, we 

have Clw~Rf : f f L(S)"L2(G)} ~ ~(s). For the reverse inclusion 

note that {f : f f L(S)f\L2 (G)} is nonn dense in L(S) (Chapter I, § 4.1) 

so that Cla ~ fin : f f L(S) (\L2(G) 1 = Cl0 f fin : f f L(S)] • By theorem 

1 of Chapter II, {ex : x f S} f Cla ( :fm : f ~ L(S~= Cl0 [fm : f ~ L(S)(\L2(G)}. 
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(S = D(S) because S is open). Thus the continuity of ~ ~ Bp as a 

map of M(G)a into m.w implies that l Rx : x f S 1 ~ Cly { Rr : f f L(S)f\L2(G)}. 

Thus Clw t Rr : f f L(S)(lL2(G)J contains a set of generators for Ol(S) 

and consequently 0\.(S) = Clw t Rr : f f L(S)f\L2(G) 1 since this latter 

set is a W*-algebra, because L(S) is an algebra. 

Proposition 5. Let S be an open subgroup of G and let L2(s) be 

the subset of L2(G) consisting of functions which vanish almost ever,y­

Where outside s. For any f t Ll(G), f f L(S) if and only if 

Rt(L2(s)) S L2(s). 

Proof: If f t L(S) and g t L(S)(\L2(G) then Rrg f L(S)(\ L2(G) S 

L2(s) since L(S) is an algebra • L(S)(\L2(G) is dense in L2(s), thus 

by the continuity of Rr we have Rr(L2(s)) S L2(s) since L2(s) is closed. 

Now suppose L2(S)•f£ L2(s). Let e > 0 be given, then by 

corollary 2 to lenuna 3 of Chapter II there is an h f L(S)(\ L2(G) such 

that llh*f- filS e since e t D(S) = s. Thus f t L(S) since L(S) is a 

norm closed algebra. 

Theorem 2. Let S be an ~pen abelian subgroup of G. Then R(S) 

is a maximal abelian *-subalgebra of R if and only if L(S) is a maximal 

abelian *-subalgebra of L1 (G). 

Proof: Suppose that 1\t(S) is a max:im.al abelian *-subalgebra 

of Ot. Let f t L1 CG) and suppose that f is normal and connnutes with 

L(S). Since thew-closure of (Rg : g t L(s)1 is ~(S) (proposition 4), 

we have that Rr commutes with ~(S). Since 'R(S) is maximal, and since 

• Rt = Rt*• Rt is normal, and therefore Rr f Gt(S) (proposition 1). Since 



L 2 (s) is invariant under ~(S) because S is a subgroup, lore have 

by proposition 5, f f L(S). By proposition 1, L(S) is maximal. 

Suppose that L(S) is maximal. To show that ~(S) is maximal 
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it is sufficient in view of proposition 1 to show that OlA~(S) 1 f ~(S) 

(where &l(s)•· is the commutant of 0\(S)). LetT f Otf\b\.(S)', then 

for any f t L(S)f\L2(G) and any g f K(G) £ L2 (G) we have 

TRfg = T(g*f) = TLgf = LgTf 

= g*Tf 

Let ~f be the bounded linear extension to L2 (G) of the operator 

defined on K(G) by Rrfg = g*Tf. The above shows that Rrf = TRf• Thus 

~f f ~(Y1K(S)' since T and Rr are elements of '-'..()m_(s)' and 

~(\ m.. (S)' is an algebra. Let g f K(G) and h f L(S) then 

Rrfl\g = 1\tRrfe 

Which gives g*(h*Tf) = g*(Tf*h). 

i.e. Rh*Tf _ Tf*hg = 0 for g f K(G) 

By lemma 1 we have that there is a set N of measure zero such that 

Tf(x) = Tf(y-lxy) for all y f S' N and any x f G. By corolla:ry to 

theorem 1 we therefore haveTf(x) = 0 almost everywhere for x f s. 

It follows that TRf = Rrf f ~(S) Whenever Rf f a.l(S). Let g,f f L2(G) 

and £ > 0 be given. By corolla:ry 2 to lemma 3 of Chapter II, there 

is an h f L(S)I\L2 (G) such that 

II g*h - g 11 2 ~ e/11 T II II f II 
By the above T~ f "¥\..(S) since Rn f ~(S), 

and l((T- TRh)g,f)l SliT! I llg- g*hll
2 

llfll S £. 

i.e. T f R(S), since "R(S) is w-closed. Thus ~I\ "f\.(S)' S; ~ (S) so 



that ~(S) is maximal. 

3. Decomposition of the Left Regular ReRresentation. 

Throughout this section G is a locally compact unimodular 

group with a countable basis for the open sets and S is an open 

(and therefore closed) abelian subgroup of G. Let (L,L2(G)), ~(S) 

and ~ be as in §" 2. The commutant of ~ Lx : x t G 1 is R (Chapter I, 

§ 7.2) thus by applying Hautner's theorem (Chapter I,§ 8 theorem 10) 

taking ~(S) as 3- we obtain a compact subset I of the real line, 

a positive regular measure ~ on I, a A~easurable family t (Lt,H(t)) 

t t I} of representations of G, and an isometry V of jH(t)dA(t) 

onto L2(G) such that 

1° v-ltxv = ~dA(t) 
2° A..,.VAv-1 maps the algebra of diagonalizable operators 

onto lt(S) 

)
0 if ~(S) is a maximal abelian *-subalgebra of )1., then 

there is a set N ~I of ~-measure zero such that fort f r·,N, Lt 

is an irreducible representation. 
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The purpose of this section is to identify the representations 

Lt. Note that there are groups G having open abelian subgroups 

such that the decomposition of the left regular representation G 

is not unique (cr. (16) Chapter III, and (25)) • 
..... 

Let S be the character group of s. For each t f S' we define 

a linear functional Pt on Ll(G) by 

Pt(r) = J5r(x)t(x)dm(x) ••••••••••••••••••••••••••••••••••• (l) 



""" on s. 

Lemma 2. Let )1 be the Haar measure on 'S. Then 

(i) for each f t L1 (G), t ~ Pt(f) is a continuous function 

(ii) for f, g t L1(G)f\L2(G) and any x t G, we have 

cr,g) = 1sPt<g**f)d~(t) 

Proof: (i) follows by noting t ~ Pt(f) is the Fourier 

transform of f restricted to s. 

To prove (ii) first note that if f t Ll(G)(\L2(G) then f**f 

is a positive definite function which is in tl(G), consequently the 

Fourier inversion formula ( (13) § 47 theorem 5) applies and we have 

for x f S 

f**f(x) = 1~Pt(f**f)t(x)d~(t) . s 
In particular putting x = e 

t**f(e) = 1spt(r**f)dp(t). 

But f*•f(e) = 1 f*(y-l)f(y)dm(y) 
G 

= 1 f(y)f(y)dm(y) 
G 

2 
= lltll2· 

Consequently llfll~ = 15 pt(f*•f)d~(t) ••••••••••••••••••••••••••• (2) 

Now given f, g f L1(G)nL2(G) 
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2 2 2 2 
4(f,g) =lit+ gjl 2 - jjf- gjl + iltr + igjj - ijjr- igll 

2 2 2 

Applying (2) we have that 
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...... 
where h is the Fourier transform of h. 

Proof: By lemma 2 we have 

(f•h,g) = 1g Pt(g**f*h)d~(t) thus it is sufficient to 

show that pt(g**f*h) = Pt(g**f*h)h(t). Now 

pt(g*•f)h(t) = 1 S (g**f)( x) t(x)dm(x) 1 S h(y)t(y)dm(y) 

= 1s (g**f)(xy-l)t(xy-1)dm(x) is h(y)t(y)dm(y) 

=is 1s (g**f)(xy~l)h(y)t(x)dm(x)dm(y) by Fubini's 
. theorem 

Choose an element from each left coset of s, and let G/S 

be the collection of elements so obtained. Then for any f f L1(G) 

we have by (14) 9 33 

JG fdm = ~x f G/S /S f(xy)dm(y) ••••••••••••••••••••••••••• (l) 

Lemma 4. For r f L
1

(G), we have Pt(f•.r) = ~ I jpt( r)j 2 
X t G S X 

Proof: f**f(x) = / f*(y)f(y-lx)dm(y) 
G 

= 1 f(y)f(yx)dm(y) 



Hence 

= l: I Is f(zy).fx(zy)dm(y) 
z f G S 

by (3). 

Pt(r•.r) = J ~ L I J f(zy)fx(zy)dm(y)t(x)dm(x) 
S z ~ G S S 

= ~ L I 1 J f(zy)fx(zy)t(yx)t(y)dm(y)dm(x) 
z ~ G S S S 

= I:z f GIS Is zf(y)t(y)dm(y) /S zf(yx)t(yx)dm(yx) 

= l:z f GIS Pt(zf)pt(zf) 

= zz t GIS fpt(zf)l 
2 

Corollaty. pt is a positive linear functional on L1(G) and 

lpt(.f)j S l!fjj, for f t L1(G). 

Proof: By lemma 4, Pt (.f**.f) ~ o. The inequality IPt (f)/ S 

I I til, is immediate from formula (1). 

no. 

Let (f1 , f2 , ••••• ) be a countable subset of L1(G)(\L2(G) which 
2 is an orthonormal basis of L (G). Such a set always exists since G 

has a countable basis for the open sets and K(G) is dense in t 2(G). 

Since S is open and closed in G, S also has a countable basis, so there 

is a countable subset (g1 , g2, ••••••• ) in L1(s)(\L2(s) which is dense in 

L2(s). Let M =fRg/'j : i,j = 1,2 ••••••• ]. We retain these notations 

throughout. 



Le.'1111la 5. M is total in L 2 (G). 

Proof: Since (fl• f?•••••••) is dense in L2(G) to prove the 

theorem it suffices to show that for given fk and e > O,there is a 

gj f t 2 (s) such that IIRgj fk - fkll
2 
~ e. By corollary 2 to lemma J 

of Chapter II, there is a 1.. t L(S)(\L2 (s) such that 

liR>..fk - rkt I ~ e/2 

Since (g1 , g2 , ••••• ) is dense in L2 (s) 

I lgj - >-11 2 ~ e/2 lltkl tr Then 

there is a g. such that 
J 

llfk - Rg fkll < IIR rk - R>/kll + IIR>.fk - rk{ 12 
. j 2- gj 2 

This proves the lemma. . 

~ tlfk*(gj - >..) 112 + e/2 

~ llfkll
1

11gj - >..{ 12 + e/2 

~ e/2 + e/2 = e 

A t f } 2 ] For each t f S let N = tf t L (G)(\L (G) : pt(f**f) = 0 , 

lll. 

and let H•(t) be the quotient space L1(G)/\L2(G)/Nt. For f(t), g(t) t 

H1 (t) we put 

g t g(t) f t f(t) ••••••••••• (4) 

It follows from the corollary to lemma 4 and 21.17 of (12) that (4) 

defines an inner product in H'(t). It follows from the invariance of 

the Haar measure on G, that yt £ Nt for each x t G. Thus we may 

define an operator L•! on H'(t) by L'!f(t) = (Lxf)(t). If we now 

complete H•(t) relative to the inner product we obtain a Hilbert space 

H(t) and a representation Lt of G on H(t). Note that for each t f ~. 



{fi_(t): i= 1, 2, •••• )is a total subset of H(t). 

,... 
Proposition ?. Let ¥ be the Haar measure on s. Then 

{<tt,ft(t)) ; t f s] is a ~~easurable .family of representations. 

Proof: Let {fi ; i = 1, 2, ••• ~ be the subset of TTR<t) 

such that for each i, f~(t) = fi(t). Then tf~(t) ; i = 1, 2, •••• 1 
is total L~ H(t) for each t and the function t ~ (~f~(t),fj(t)) = 

pt(fj**Lxfi) is p~easurable since it is continuous by lemma 2. 

In view of proposition 7 we may construct the direct integral 

of the representations ~(L\H(t)) : t f 'Sj using the measure \1 (see 
. r.. ,.. 

Chapter I, 98). Let H = fg H(t)dp(t). 

For any Hilbert space H, B(H) denotes the algebra of all 

bounded operators on H. 

Theorem 3. There is an isometry W of H onto L2 (G) such 

that 

(i) for each x f G, w--11xw = J5~d¥(t) 
(ii) the mapping A ~ WAw-1 of B(H) onto B(L2(G)) maps the 

algebra of diagonalizable operators onto ~(s). 
,... 

Proof: Let Tgk be the operator on H defined by 

(Tgkf1 )(t) = gk(t)f•(t) for any f' f H. 
Let K1 be the subset of H consisting of elements of the form T~ fi, 

gk . 
i,k = 1, 2, ••••• where fi is as in proposition 7. We first show 

that the linear span K of K1 is dense in H, for this it suffices 

to show that the orthogonal complement K~ of K is zero. Let h' f Kl. 
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then 

(Tg fi,h') = 0 for all i,k = 11 21•••••• • 
k 

Thus for any fixed i 1 

I gk(t)(fi(t)~h•(t))d~(t) = 01 k = 1, 21 •••••• 

Since (g1, g21 •••••• ) is dense in L2(s), we have by the Plancherel 

theorem ((13) §471 theorem 6) that (g1 , i 2, ••••• ) is dense in 12(~). 

This implies that there is a set N1 of ~~easure zero such that 

(f~(t), h 1 (t)) = 0 fort 4 N1• 

Putting N = C{ = ~ N1 we have 

( f ~ ( t) , h 1 
( t)) = 0, i = 1 1 2, • • • • • • &nd t f N. 

Since tf~ (t) : i = 1, 2, •••• 1 is dense in H(t) for each ,t, we 

have h' ( t) = 0 almost everywhere. Thus h r = 0. This proves that 

"" K is dense in H. 

We now define a mapping W' of K into L2(G). For h' f K 

we have 

h ' P f' = ~ ciTg i 1 ci complex numbers, and we put 
1 = 1 ~i 

'~ 
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= Z cicj(R * •gn fi,fj) 1 since g ~ R~ is a represent-
11j gn 1 ation of L(S) 
~ = ~ c1cj /(~ ·~ ){t)(f1(t),fJ.(t)d~(t) b,y lemma) 

i,j j i 

= I: cicj I~ (t)'~ (t) (f1(t),fj(t))dp(t) , since the 
i,j j i 

Fourier transform is multiplicative 
= t 1,j cicj I (~i(t)r~(t),~ (t)fj(t))d~(t) . 

j 



Consequently, jj't-11h 1 11 2 = llh' jj
2 

which shows that W1 is well defined 

and an isometry of K into L 2 (G). Thus W• has an extension W v1hich is 

an isometry of H into L2(G). Since the range of W contains the set M 

which is total in L2(G) by lemma 5, and since W(H) is complete and 

hence closed in L2(G), we have that vl is onto. 
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We now show that (i) of the ~eorem holds. Since (f1 , f2•••••) 

is total in t 2(G), (fi, f~, •••••• ) is tot~ in H, since w-lr1 = f~ 
and w-1 is an isometry. Thus to show (i) it suffices to show that 

(w-ltxWfi,tj) = (, 1 tia~(t)f~,rj) because w-lLxW and 1 Lid~(t) are 

bounded operators and {r1J, {rj1 are respectively total in the spaces. 

Now 

( I t!d~(t)f~,t~) = 1 (Ltfi(t),fj(t))d~(t) by the definition 
x of I L~~(t) 

= I ((1xf1)(t),rJ.(t))du(t) by the definition 
ot tt and r' 

X i 

= cw-lt wr' r') 
X i' j 

by lemma 2 (ii) 

, since Wtj = rj 



We now shm-r (ii). Let g f L(S). Then T~ is a diagonal-g . 

izable operator and 

<Tgfi,rj> = 1 (g(t)f~<t>,rj<t))d~(t) 

= (Rgfi,fj) 

= (w-lR Wf1 f~) 
g i' J 

by lemma 3 

so that Tg = w-1RgW. The mapping A ~ vlA\.r-1 is a continuous mapping 

of B(H)w into B(L2(G))w• Therefore ClwfT : g f L(S)] is mapped g 

onto Clw{Rg : f L(S)1. By proposition 4, ClwfRg : g f L(S) 1 = iR(S). 

Therefore to complete the proof is suffices to show that the algebra 

. of diagonalizable operators is the w-closure of tT~ : g f L(S) 1 • 
Since the algebra of diagonalizable operators is f Th : h f L00(S)] it 

suffices to show the following: 

1° the mapping h ~ Th of L00(S) into B(H) is continuous when 

one gives 100(~) the a(L00(S),L1(S)) topology and B(H) thew-topology. 

2° fg : g f L(s)} is a(L00(S),L1(s)) dense in L00(S). 

1° follows from the formula (Thf,g) =I h(t)(f(t),g(t))dF(t) 

ll5. 

by observing that the function t + (f(t),g(t)) is in tl(s). 2° follows 

by noting that fg : g f L(s)] is norm dense in C0 (S) ((19) Chapter I, 

1.2.4) and that C0 (S) is a(L00(S),L1(s)) dense in L
00(S). This latter 

fact follows by noting that the polar of C0 (S) in tl(s) is the zero 

elentent. This completes the proof. 

t Theorem 4. Let I, .\, L , N, V and H(t) be as in the beginning 



116. 

-of this section. There is a set N1 c I of ).-measure zero, a set N2c S 

"" of \1-measure zero, a one-one mapping e of I "'Nl onto S'- N2 and for each 

t f I'- N1 there is an isometry T(t) of H(t) onto H(e(t)) such that 

~(t)T(t) = T(t)L! for all x t G. 

Proof: Let U = w-1v, then in view of theorem J and (2°) of 

paragraph I, § 3, U is an isometry of 1 IH( t)cU.( t) onto H = J 5H( t)d\l( t), 

and the mapping A ~ UAu-1 maps the algebra of diagonalizable operators 

"" of JIH(t)d).(t) onto the algebra of diagonalizable operators of H, and 

/Ltd).(t) onto /Ltd\l(t) for each x t G. Thus by theorem 11 of Chapter 
X X 

I,~ 8 the theorem follows. 

To complete the identification of the representations Lt, we 
.... t 

now show that the representations L are "equivalent" to representations 

induced by characters on s. (The definition of induced representations 

is given in Chapter I, § 7 .J). 

Proposition ?. Let (Ut,H(t)) be the representation of G induced 

by a character t of s. Then there is an isometry vt of H(t) onto H(t) 

such that Vtt~ = u!vt for all X f G. 

Proof: We define a mapping vt of H(t) into H(t) by 

(Vtf(t))(x) = Pt(xf) x f G , f(t) f Ll(G)f\L2(G)/Nt 

To show that vtr(t) f H(t) we must show 

1° (Vtf(t))(xy) = t{y)Vtf(t)(x) X f G, y f S 

2° llvtr(t) II < oo , where llvtr(t) 11 2 = !: L I lvtf(t)(x) 1
2

• 
x~GS 

To show 1°, let x f G, y f S, then 

vtr(t)(xy) = pt(xyf) = /sf(xyz)t(z)dm(z) 



= 1 f(xyz)t(y)t(yz)dm(z) s 

= t(y) 1 f(xyz)t(yz)dm(z) s 

= t(y)pt (xf) 

= t(y)(Vtf(t))(x) 
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To show 2° we shall show IIVtf(t)jj = jjf(t)jj. This follOivS 

immediately from lemma 4, since llf(t)jj
2 = pt{f**f) and 11Vtf(t)l1

2 = 

.Ex f G/S jpt(xf)j
2

• Clearly vt is linear, so that IIVtf(t)jj = jj:f'(t)jj 

llnplies tl1at yt is well defined. 

Let K = L1 (G)/\L2 (G)/Nt, '\>re now· show that vt(K) is dense in 

H(t). For this it suffices to show (Vt(K)).l = O. Let g t (Vt(K))..L, 

then ~ t / Vtf(t)(x)g(x) = 0 for all f(t) f K. To sho'tv that g = 0 
x GS 

it suffices to shoH that for given x
0 

f G/S there is an f f Ll(G)()L2 (G) 

such that y J x • Let V be a compact neighborhood of e f G such that 
0 

V £ S {recall. that S is open). Let h be the characteristic function 

of x
0
V. Let t 1 be the function on G given by t'(y) = t(y) for y t S, 

and t 1 (y) = 0 othe~Iise. Put f(y) = t•(x~1y)h(y). Then 

pt(x
0
f) = J

5
t(y)h(x

0
y)t(y)dm(y) = 15h(x

0
y)dm(y) ~ o. 

'• 

{'. 

If y f G/S and y J x
0

, then yS(\ x
0
S = ¢ so that ySf\x0 V = ¢ since h(yS) = 0, 

pt(yf) = J5t•(yx~1z)h{yz)t(z)dm(z) = o. 

Thus g = 0 and vt(K) is dense in H(t). Since Kis dense in H(t) we 

have that Vt can be extended to an isometry (which we again denote 

by vt) of H(t) onto H(t). Now to complete the proof of the theorem l-Ie 

show that for f(t) t K we have V~f(t) = U~tf(t). For y f G, we have 

Lt t 
v~Lxf(t)(y) = v (Lxf)(t)(y) = Pt(y(Lxf)) = Pt<x-lyf) 



= V~f(t)(x-ly) = u!vtr(t)(y). 

and this proves the proposition. 

118. 
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