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INTRODUCTION

Let G be a locally compact group (= locally compact Hausdorff
topological group). By the measure algebra of G we mean the Banach
*.algebra M(G) of bounded regular Borel measures on G. The major re-
sults of this work are a structure theorem for norm decreasing isovmnor-
phisas of measure algebras, and a characterization of those Banach
algebras which are isometric and isomorphic to the measure algebra of
some locally compact group. We also obtain some results on subalgebras
of M(G) and on representations of G.

The first chapter of this work is composed of those definitions
and results from the theory of topological vector spaces, integration,
topological algebras etc., which are needed in future chapters. In
this introduction frequent use of the contents of Chapter I is made
without explicit reference,

In addition to ‘the norm topology on M(G) there are other topol-
ogies on M(G) which have to some extent been investigated. In sections
1 and 2 of Chapter IT of this work we study two of these, namely the
a(M(G),C,(G))~topology and the so-~topology (see Chapter II for the
definitions). .Using these topologies on M(G) a number of results on
M(G) and 11(G) are obtained.

The first of these concerns a problem raised by A. B. Simon
in (21). Let S be a Borel subset of a locally compact group G and
let L(S) be the subspace of L1(c) consisting of functions which are zero

1.



almost everywhere outside S. If S is a semigroup it is not difficult
to show that L(S) is a subalgebra., Simon asked the following question:
If L(S) is a subalgebra of Ll(G), is there a semigroup T such that L(S)=
L(T)? We have been able to give an affimative answer in a number of
special‘cases (theorems 3, 4 and 5 of Chapter II)., These results are
thon used to genoralize another result due to Simon (theorem 7 of chap-
ter II).

In the thirxd chapter we prove a structure theorem for nomm
decreasing isomorphisus of measure algebras, Let F and G be locally
compact groups, o an isomorphism and homeomorphism of F onte G and
Y a continuous character on F. For p in M(F) and £ in C,(G), let
Tp(f) = p(y(foa)). Then the mapping p - Tp is an isometric *.iso-
morphism of M(F) onto M(G) (Chapter III, lemma 2). The main result
(theorem 2) of this chaptor is that every norm decreasing isomorphisn
of M(F) onto M(G) is of the above form and therefore it an isometric
*aisomorphism, A number of other results follow from this, including
a theorem due to Wendel on isomorphisms of Ll(F) onto Ll(G) (theorem
3 of Chapter III),

In view of the isomorphism theorem of Chapter III, one would
expect in principle to be able to characterize those Banach algebras
which are isometric and isomorphic to the measure algebra of some
locally compact group. In Chapter IV.we obtain such a characterization.
This characterization is largely in terms of properties of the extreme
points of the unit ball, This is to be expected since the extreme
points of the unit ball of M(G) are scalar multiples (of absolute value 1)

of the Dirac measures, and the Dirac measures play a spscial role in
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the proof of the isomorphism theorom.

The problem of characterizing L1(G) and M(G) has been the
subject of recent papers by Greenleaf (10) and Rieffel (18), Rieffel
had identified those abelian Banach algebreas which sre isometrically
isomorphic to M(G) for some locally compact abelian group G. He
also obtained a characterization of Ll(G) for G locally compact
abelian, His work is largely based on properties of multiplicative
lineay functionals on the algebra. Greenleafl characterizes those
Banach algebras which are isometric and isomorphic to Ll(G) for G
compact., His approach to the problem is similar to the one we have
used, In fact it was his characterization of M(G) for G finite which
motivated our work (theorem 1.5.1 of (10)).

The final chapter of this work is concerned with direct
integral decompositions of the lefit regular representation of certein
locally compact groups.

There is a general theorem due to Mautner on direct integral
decompositions of representations of a locally compact group having a
countsble basis for the open sets on a separable Hilbert space, Each
decomposition of a given representation is in a sense detemined by
an abelian W¥-zlgebra of the commutant of the representation (for the
precise statement see theorems 10 and 11 of Chapter I).‘ If this sube
algebra is meximal abelian then Mautner!s theorem states that the
decomposition is into irreducibles. The existence of a maximal abelian
W*esubalgebra of the commutent of a given representation is a cdnsequence
of the axiom of choice. Thus the uniqueness of the decemposition can

- be questioned., Examples have been given by Mackey (16) and Yoshizawa



(25) that show that these decompositions may not be unique.

If a discrete group G has an abelian subgroup S, then the
left regular representation of G can be expressed as a direct integrai
of representetions induced by the characters on S. This has been
shown by Godement in (8). (Also see Mackey (16)). Godement also
found necessary and sufficient conditions on the group G and sub.
group S for these representations to be irreducible.

The relationship of this construction to the decomposition
obtained via Mautner's theorem is the subject of Chapter IV. Ve
show that if S is an open abelian subgroup of a separable 1€cally
compact unimodular group then one can shoose an abelian W*.algebra
‘R.(8) (depending on S) of the commutant of the left regular represen.
tation such that the corresponding direct integral decomposition
gives representations which are (eguivalent to) the representations
induced by charscters on S, We also find necessary and sufficient
conditions on G and S so that W(S) is a maxinal abelian W¥w.sub-

algebra.



CHAPTER I

PRELIMINARTES

1. Topological vector spaces

1.1 Convex sets. By a real (resp. complex) TVS we shall

mean a Hausdorff topological vector space over the real (resp.
complex) field, A subset C of a real or complex vector space E is
said to be convex if x, y € C implies ax + (1 - a)y ¢C, 0 < a <1,
An element x of a convex set C is said to be an extreme point of C
if x=2ay+ (L ~-a)za, vy, 2€C, 0 <a<1linplies x =y = 2. The
convex hull of a subset C of E is the intersection of all convex
subsets of E which contain C., The convex hull is a convex set and
coincides with {ax 4+ (1 - a)y : x,y ¢ C, O <a<g 1}. A real (resp.
complex) locally convex space E is a real (resp.complex.) TVS, which
"has a fundamental system of convex neighborhoods of the origin of
E. In the following whenever we speak of a vector space without
specifying the field we shall mean that the field may be either the

real or complex field,

Theoren 1, (Krein - Milman) Let E be a locally convex space,
and let XK be a compact convex subset of E. Then K is the closure

of the convex hull of its extreme points,

5.



6.

Proof: A proof may be found in (2)(Chapitre II, §4, théordune 1)
or in (6)(Chapter V, $8.4).

The next lemma is in a sense a converse to the theorem of Kreinw

Milman,

Lemma 1, Lel K be a compact subset of a locally convex space
E.whose closed convex hull is compact. Then the only extreme points of
the closure of the convex hull of K are the points in K.

A proof may be found in (2)(Chapitre II, §4, proposition 4) or
in (6)(Chapter V, §8.4).

1.2 Unifors spaces and completeness. Let E be a topological

vector space and let 10} be a fundamental system of neighborhoods

of 0 in E., For each U ¢ {U}, let L(U) = f(x,y) ¢EXE : x~y ¢ ui.
Then {L(U) : U ¢ {U}} is a base for a uniformity on E, and E becomes

a uniform space. Thus E has a unigue completion £ and E is said to be
complete if E = E. A Banach space is a normed vector space which is
complete. Each linear continuous mapping of a topological &ector space
into a topological vector space is uniformly continuous. In a complete
. space the closure of the convex hull of a compact set is compact,

((2), Chapitre II, $4).

1.3 Subsets of a TVS, A subset C of a vector space E is said

to be circled if aC ¢ C for all |a| < 1. C is absorbing if for each

x € E, there is an a > 0 such that bx € C for all 0 < |b| < a. Any
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TVS E has a fundamentsal system of closed, circled, absorbing neighbor-
hoods of the origin. Let E be a locally convex space, a closed, convex
circled and absorbing subset of E is called a barrel; If each barrel
of E is a neighborhood of 0 ¢ E, then E is said to be barrelled.

A subset C of a vector gpace E is bounded if and only if for
any nelghborhood U of 0 ¢ E, there is a a > 0 such that for all 0 < Ib[
<a, bCC U, ATVS is said to be quasi-complete if every closed and

bounded subset is complets.

1.4 Function spaces and equicontinuous sets, Let E, F be

topological vector spaces and let C(E,F) be the space of all continuous

linear mappingé of E into F given the topology of simpie convergence

i.e. the coarsest topology such that for each x ¢ E the mapping £ — f(x)

is continuous, If E is a barrelled space and F a quasi-complete locally

convex space, then C(E,F) is quasi-complete ((2) Chapitre III, §3 No. 7).
A subset H ¢ C(E,F) is said to be eguicontinuous if for each

neighborhood U of 0 ¢ F, G:;T} £=1(U) is a neighborhood of 0 in E.

Let H be an equicontinuous subset of C(E,F) where E and F are locally
convex spaces. Then : (a) H is equicontinuous, (b) the convex circled

hull of H is equicontinuous (c¢) H is relatively compact if and only

if for each x € E, H(x) = {f(x): f ¢ H} is relatively compact in F,

(d) if in addition E is barrelled then every bounded subset of C(E,F)

is equicontinuous, ((2) Chapitre III, §3, No..5 ahd No. 6).

Theorem 2. Let E be a barrelled space and let F be a complete



locelly convex space. If H g:C(E,F) is compact, then the closure
of the convex hull of H is compact.

Proof: Since H is compact, H is bounded and therefore equi.
continmuous by (d). By (e), H(x) is relatively compact in F so that
the convex hull of H(x) is relatively compact since F is complete.
Again by (c), the convex hull of H is relatively compact and this

proves the theorenm.

1.5 The dusl of a TVS, Let E be a TVS, then the dual of E

written E!' is the set of all continucus linear functionals on E. The
coarsest topology on E! such that for each x € E the mapping x'e» x!'(x)
is continuous, is called the weak topology or the g(E',E)-topology.

If E is a normed vector space, then we define a norm on E!
by {|x*|]| = sup {{x'(x)| : ||x|| <1} and with respect to this norm
E' becomes a Banach space. The unit sphere (i.e. Ix' : ||x'{] <17
of the dual of a Banach space is compact in the g(E!,E)-topology.
It follows from this that the nomm is lower semicontinuous in the weak
topology.

Let A be a subset of a locally convex space E. Let
A° = Yxt £ E' & |x'(x)| <1 for all x ¢ A}, and for each subset B C E!
let B = { x ¢ Bz |x'(x)|< 1 for a1l x'¢ B . If B is a subset of E!
which contains 0 € Ef, then B°C is the 0(E!,E)~closure of the convex
hull of B.

Let ¥ be the family of all bounded subsets of E, then there
is a Hausdorff locally convex topology on E' having { A° : A ¢ Y-}

as a subbase, This topology is called the strong topology on E', If
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E is nomed, then the topology induced by the norm on E! coincides

with the strong topology. If E is barrelled then each weakly bounded
subset of E' is strongly bounded, and (E'), is quasi.complete ((2) Chap-
itre IV, €2 No. 2).

Let N be a subspace of E. Then NO is a 0(E',E)-closed sube
space of E', Each x! ¢ E! when restricted to N defines an element of
N', and if x!' - y! ¢ N° then < n,x' > = < n,y!' > for each n & N. Thus
we may define a mapping T : E'/N® w3 N' by putting < n,Tx! > = < n,x! >

vhere x' ¢ E'/N°,

Theorem 3. The mapping T defined above is a one-one linear
mapping of E'/Nb onto N', If E is a normed space then.T is an isometry,
and if N is closed then the G{E!'/N°,N)-topology equals the quotient
weak topology on E'/1°,

Proof: See ((2) Chapitre IV, §5, No. 4 proposition 10, and

1, No. 5 proposition 7).

1,6 The adjoint of a linear mapping, Let E, F be locally

convex spaces and let T be a continuous linear mapping of E into F,
For each y!' in F! we define a linear functional T!y! on E by T'y'(x) =
y'(Tx).  Then T!'y! € E!' and the mapping T' : y! -» T'y! is a linear
mapping which is continuous for the weak and strong topologies. For
T(E) to be dense in F it is necessary and sufficient that T! be a one-
one mapping of F! into E', ((2) Chapitre IV, $4 No. 1). If E and F

are normed spaces, then "T'[f = |[T‘l. ((2) Chapitre IV, §5 No. 3).
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2. Semitopological groups and topological groups.

2.1 Definitions., A semitopological group G is a group given

a topology such that for each y ¢ G, the mappings x «» yx and X = Xy

are continuous., A topological group G is a group given a topology such

that the mapping (x,y) -y.xy'l is a continuous mapping of G x G onto G.
If G is a locally compact Hausdorff semitopological group,

then G is a topological group ((7) theorem 2 or (13) Exercise B2, p. 41).

2.2 Neighborhood systems of a topological groun. - A subset U

of a topological group G is called symmetric if U-1 = U vhere UL =
{x:x-1¢ul, Each topological group G has a fundamental system {U}
of closed neighborhoods of the identity e such that:
(i) each U is symmetric
(i1) for each U in {U} there is 2 V in {U] such that V2 c U,
(ii1) for each U in {U} and x in G there is a V in {U} such
that V ¢ x~1Ux

((13) 820, theorem 3 or (12) 4.5, 4.6 and 4.7).

For any subset A C G and any nsighborhood U of the identity
A C AU, in fact & =/ \AU = N\ UA where the intersection is over the
family of all neighborhoods of the identity. Consequently any open
subgroup of a topological group is closed., For any compact set K and
any open set U such that KCU there is a neighborhood V of the identity

such that KV € U. ((13) §20 proposition 4, or (12) 4.10).



2.3 Uniform structures. Let G be a topological group with

fU} as the system of all neighborhoods of e. For U in {U]} define
{xy) « x=ly € U]
{(x,7) :+ xy~1 ¢ U]

The family {L(U) : U ¢ {Ul} (vesp. {R(U) : U ¢ {U}} forms a base for

L(u)

it

R(U)

1l

a uniformity called the left (resp. right) uniform structure on G.
With respect to either the right or left uniform structure, G is a
uniform space.

Let G be a locally compact group (= locally compact Hausdorff
topological group). Then G is complete in either the right or left
uniform structuresi((IB) §26 theovem 3). It follows from this that
a subgroup of a locally compact group is locally compadt if and only
if it is closed.

If £ is a complex valued function on a locally compact group
G , which "vanishes at infinity", then £ is right and left uniformly

contimious ((12) Chapter IV, 15.4).

2.4 The character group. Let G be a locally compact group.

A character t on G is a homomorphisa of G into the group
Z of complex numbers of absolute value 1,

Let G be a locally compact abelian group and let G be the set of all
continuous characters onG Wedefine a group operation in a'by tltz(x) =
tl(x)tz(x). It follows that t(e) = 1 and t(x-1) = €I§) for t ¢ G and
x € G. For every compact set F C G and every € > 0 let T(f,s) =
{t €G: [t(x) -1] <e for all x & F}. Then {T(F,e) : F is compact

and £ > O} is & baslis at e for a topology on E, and 6~given this topology



is a locally compact abelian group called the character group of G

((13) Chapter 8, (12) Chapter VI, §23)

Throughout the remainder of this work all topological spaces

are to be taken as Hausdorff.

3. Measure Theory

3.1 Definitions. Let X be a set and M a T-algebra of sub..

sets of X. A positive measure p on YR is a function on M into the
extended reals such that
(1) n(@)

(2) n(A) 2 0 for any A ¢ W%

0

ti

(3) p(kj:;l A3) = zz;l p(A;) if Ay €N% for all i, and
AN\Ay = $ for i £ .

A complex measure p on Y is a complex-valued function on Yit
satisfying (1) and (3) above. We shall frequently use the word
measure to mean either a positive measure or a complex measure.

The total variation of a measure p is the measure 1p!

defined for each A ¢t by [p|(A) = sup £ |p(ay)| thebsupremum being

over all finite disjoint unions A =\U/Ai, A5 €Y% The totel variation

of a measure p is a positive measure. If p is itself a positive

rieasure then p = [n]. The totzl mass of a measure p is |p1(X).

Let f be any nomnegative function on X, Then the integral

fxf(x)dp(x) (or fxfdp or [fdp) is defined as

12'
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sup{.g;‘:l [4nf(£(x) = x € A)) Tp(ay) + X=\US ) A5 » ANAy =
whenever 1 £ j, and Ay ¢V}, If £ is any extended real-valued function,
let £+ = max(£,0) £~ = - min(£,0), and if [fYdp or Jf“dp is finite we put
Jfap = Jftdn - [£7dp. If f is complex-valued, then there are real-valued
functions fy, fp with f = £ + ifp. If Jf4ap, [fodp are defined and finite,
we put Sfdp = [fydp + iffydn.

Let X be a set and 7¥(X) the set of all subsets of X, A Carathe
éodory outer measure p is a function on 1¥(X) into the extended reals such
that (1) p(#) =0 , (2) n(a) 20 for all A ¢ P(X)

3) mU2, &) < z:_l pay) Ao dgusseeseeees € PO

A set A & P(X) is said to be p.measurable if for every S ¢ (X)
we have nr(S) > p(sNA) + p(sN(XN4))

The set of all p-measurable subsets of X is aAa«algobra N and
p is a positive measure on M. ((11) Chapter II, $11).

Let X be a locally compact space. The Borel subsets of X are
the elements of the o=-2lgebra generated by the closed sets of X.1
A measure p is called a Borel measurs if its domain is the Borel subsets
of X, and if |n(K)| < o for each compact sét K.

A measurs p on a g-algebra YU whose domain includes the Borel
sots of X is said to be outer regular if for every A ¢ 1t

p(A) = inf {p(U) : U is open and A C U,
ji 1s said to be inner regular if for every A ¢ M

p(A) = sup [p(K) : K is compact and K ¢ Al

1. This definition and the definition of a regular measure differ

~from that in Halmos (11), but is the definition used in Hewitt and Ross
(12), and a number of other authors.



A measure p is said to be regular if it is outer regular and if for
each open set V,

p(V) = sup {n(K) : X is compact and K E:VA}.
If p is a regular measure and A ¢M with {p(a)| <, then

n(a) = sup { p(K) : K is compact and K ¢ A} ((12) Chapter III,
11.34).

3.2 Co(X) and M(X). Let X be a locally compact space and

let C(X) be the collection of 21l bounded continuous complex-valued
functions on X. C(X) is a Banach space with norm given by !lf]{ =
sup {]f(x)i : x ¢ X}, K(X) is the subspace of C(X) consisting of
functions whose‘support is compact, and C,(X) is the closure of K(X)
in C(X). C,(X) consists of all functions £ such that for given ¢ > 0
there is a compact set K such that |[f(x)]| < e for x ¢ XNK, CH(X)

is the set of positive functions in C(X). Cg(X), Kt(X) are defined
similarly,

Let y ¢ X .and let V be an open neighborhood of ¥ whose closure
is compact., By the complete regularity of X, there is a continuous
function £, 0 < f£(x) < 1 such that f(y) = 1 and £f(X\V) = O, Thus
f ¢ K'(X). Consequently K(X), Co(X) and C(X) separate the points of X,

Let Co(X)! be the dusl of Co(X). Then since C (X) is a Ban-
ach space, C (X)' is also a Banach space, and the nomm of an element
I¢Co(X) is given by ||I{| = sup {{T(£)] + ||£{] <213.

Let M(X) be the set of all regular Borel measures on X having

finite total mass. Thore is a natural isomorphism between C_(X)* and

M(X). This isomorphism is a consequence of the fact that each positive

L,



linear functional I on K(X) can be extended to a linear functional on
a much larger class of functions. We now outline this extension, and
once this is done we shall outline the proof of the above mentioned
isomorphism between CO(X)' and M(X). For the details we refer the
reader to (12)(Chapter III, §11 and §13).

3.3 Extension of a positive linsar functional. Let I be a

positive linear functional on K(X), i.e. 2 linear functional such
that £ > 0 implies I(f) > 0. We define a functional T on a class M
of all positive lower semicontinuous functions f on X by

I(£) = sup{I(g) : g € K'(X) and g S £ Jueeeeronnnnasena()
Then: | |

(1) I(£) = I(£) if £ ¢ K'(X)

(2) I(f+ g) = I(£) + I(g) £, gént

(3) I(af) = aI(f) a>0, f &M

(%) f<ega I(f) <We) f, géit

(5) if D is a subset of M¥, directed by <, then

I(sup{f : £ ¢D}) =sup{I(f) : £¢DJ.

Ll

is then extended to the set F* of all positive functions f

on X by

I(£) = int {T(g) : g 6 M and g> £,
Then:

(1) I(g) = 1(g) if g €

(2) I(f+g) <I(f)+ Ig) £, géF

(3) I(af) = al(f) a>0 f &FF

15,



(L}') If ‘f }w CF*' andf <f <l...00....000l.<f <O...,
n’ n-l = 1 ="2a =

then T(Lim £.) = lim I(f,).

Ny N 2

For any subset A of X, let X, be its characteristic function,
Define a set function yp by p(A) = T(ZKA). Then p is a Carathéodary
outer measure.

A subset A of X is said to be p-null if p(4) = 0, If A[\K is
p-null for each compact set K then A is said to be locally p-null.

It can be shown that a set A is locally p.null if and only if each x
in X has a neighborhood V such that p(ANV) = 0.

Let Yﬂp be the g-algebra of p-measurable subsets of X. Then
nlp»contains every Borel set and every locally null set. The following
properiies of n can be shown.

(1) p is a positive regular meassure on Tﬁﬁe

(i11) p(K) is finite for each compact set K.

(1) p(X) = sup {I(£) : £ ¢ K'(x), £ <17,

(iv) the functional I is bounded if and only if p(X) < o
and then ||I]]| = p(x)

(v) for each nonnegative function f on X, E(f) = [fdp.

(vi) if A is a regular measure on X; YN, the g-algebra of
A-measurable subsets and A(K) is finite for each compact set K, then
JfdX = [fdp for all £ € K'(X) implies A(A) = p(A) for all A € m)\mnp.

For £ ¢ Cy(X) let [I[(£) = sup { |I(e)| : g € Co(x), el < ¢
and extend |I| by linearity to Co(X). Then ‘Ii is a positive linear

functional on C (X}; [I| = I if and only if I is positive; and
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AT = 11Z]] ((312) Chapter III, 14.5).

3.4 The dual of Co(X). If I is in C,(X)! then there are

positive linear functionals Iy, Iz, I3, Iy ¢ Co(X)! such that I =

I ~ Iz + I3 ~ Iy. We may apply the construction of the preceeding
section to each I; and obtain a positive fegulax'measure pg (=1, 2,
3, 4) such that I;(f) = [fdpg for each £ & Cy(X). The restriction of
By to the Borel subsets of X is a Borel measure, which we again de-
note by pj. Let j = 1y = pp +i(pg « wyl. Thus we have for each

I € Co(X)! a Borel measure p such that I(f) = [fdp. Moreover by (V)

this measure is uniguely determined.

Theorem 4, The mapping I ~» p given by the above.is a cne-
one linear mapping of Co,(X)' onto M(X) such that

(1) () = fxfdp for all £ ¢ Cy(X)

(11) {HI{] = fnlx)

(111) |I{(£) = Jed|n| for a1l £ ¢ C (X)

For a proof see (12)(Chepter III, 14,10 and 14.14),

In view of the above theorem we now drop the distinction
between elements of C,(X)' and elements of M(X). In particular for
R € M(X), £ € Cy(X) the symbols p(f), [fdp, Jxf(x)dn(x) ete. 211
have the same meaning, i.e. each is equal to I(f), where B corres-

ponds to I uniguely.

3.5 The support of a measure. The support of a measure p,

written Supp(p) is the smallest clesed set whose complement is p-null,
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Equivalently, Supp(p) is the set of 211 x such that for any neighborhood
V of x, there is an £ € K(X), with £(X~V) = 0 and p(£) £ 0. If |p| is
the totzl variation of p, then Supp(p) = Supp({p{) (( 3) Chapitre III,
§2 No. 2). |
Let x ¢ X, then the linear functional ey on C,(X) defined by
e () = £(x), for £ in'Co(X), is called the Dirsc measﬁre at the point x,
Clearly Supp(ey) = {x). Conversely if p is a measure and Supp(p) = {x}
then there is a scalar a such that p = ae,.
A measure p is said to be discrete or purely discontinuous if
its support is a countable subset of X. A measure p is sald to
be continuous if u({x}) = 0 for 21l x £ X, Each measure p ¢ M(X) has
a unique decomposition, p = py + Yo vhere p, is purelyvdiscontinuous
and p, is continuous. Each purely discontirmous measure n ¢ M(X) hes
the form p = Exé x,axex where &, is the Dirac measure at the point x,

and ay is a complex number, ( the number of x such that ay 4 0 is countable)

ard |{|p}] = zx ((12) Chapter V, §19).

¢ 1l

3.6 Dirac measures and extreme points of the unit ball. The

following theorems give the relationship between Dirac measureson a
locally compact space X and extreme points of the unit ball of M(X).
Theorem 5 below is taken from Dunford and Schwartz (6) p.44l. Theorem

6 for the special case of X compact also appears in Dunford and Schwartz,

The proof given here is an ezsy adaptation of theirs.

Theorem 5. Let X be a compact space and lst N be a closed sub-

space of C(X)., Then every extreme point of the unit ball of N' is of
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the form aey where |a] = 1 and x ¢ X,

Proof: Let S (resp. S') be the unit ball of N (resp. N') and
let A be the subset of N! of all elements aey where |a] = 1 and
x ¢ X, together with the zero measure. Then

A° = {f ¢ M : lagg(£)] <1 for a2 x € X}

{f €N : |f(x)] <1forallxé¢X]

=S
Therefore A®° = S' and by §1.5 the g(li',N)~closure of the convex hull
of A is S! which is a o(l!,N)-compact set by §1l.5. Since each £ ¢ N
is continuous, the mapping X -»-e, is a continuous mapping of X inte
(N1)y, therefore {ey : x ¢ X} is G(N',N)-compact..Consequently
A = {asx : x € X, la] = l}\J{O} is o(N',N)-compact since it is the
product of a compact set of complex numbers and a g(N',N)-compact sub-
set of Nt, Thus lemma 1 of §1.) applies and we have that every extrenme
point of S! is an element of A, Clearly 0 is not an extreme point of

S', so that each gxtreme point is of the fom aey, x € X and |a| = 1.

If X is a locally compact non-compact space, let X™ be its
one-point compactification, Then C (X) may be identified with a sub-
space of C(X™) and Co(X) is closed in C(X™) since C,(X) is complete.
Hence the zbove theorem applies and we have that every extreme point

of the unit ball of M(X) = C,(X)! has the fom aey, |a] =1, x ¢ x°,

Theorem 6. Let X be a locally compact space. The extreme
points of the unit ball of M(X) are the measures aty, la] =1, x € Xo

Proof: By the above remarks if p € M(X) is such an extreme
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point then there is an x ¢ X~ and an a, [a| = 1 such that p = 2y
If x = © (f.0. X ¢ X~ X) then €y 1s 0 on C (X) and therefore is
the zero measure. Since 0 = 1/2 A + 1/2 ( = A) for any A ¢ M(X),
0 cannot be the extreme point of the unit ball. To prove the
theoram it remains to show that for given x ¢ X, [a] = 1, aey is
én extreme point of the unit ball, For this first we show that ey
is an extreme point. Letl ex = ap + (1L - a)\ where 0 < a <1 and
flpif <2, [{All £ 1. Then we have to show that p = A = e,. Let
£ €C(X), |{fl] €1, and £(x) = 0. For each integer n > 0 let
Wy ={y : [£(y)| <1/n} and let V, be a compact neighborhood of
x such that V, C Wn'. There is a g, ¢ K(X) such that 0 < gn(y) <1
for all y ¢ X and gn(y) =1,y ¢ Vs g,(y) = 0 for y f’w . Let
fn = £ - g,f, then £}, = £ in the nom of C,(X) and £,(V,) = 0.
If y § Wy then |£,(y) + g,(7)] = {£(y)| <1 and if y € W, then

1£,) + ey = 1£(x) = g,(NE) + g,(N]

SHEMIQ = go(3) + g,(y)
<1.

Consequently ||f, + g, < 1.

Now ex(gn) = 1 and ex(f,) = 0 so that

ap(fy + gy) + (1 - 2)A(f, + g) = 1.
since ||f, + g || <1 we have [n(f, + gl <1and [A(f, + )] g1
so that p(f, + g) = AMf, + g)) = 1. . Simidlarly since {|g,|| <1
we obtain p(gn) = Ag,) = 1. Therefore r(f,) = }\(fn) = 0. Since
T, => f we have p(f) = A(f) = 0. Therefore ker ex C ker p ard
ker e, C ker A, Consequently there are scalars a, 8 such that

B = aex,d = Bey, and |a] €1, |B] 1. Thus a = B = 1, since -
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ao 4+ (1 - Q)B = l.

Let a be a scalar with |a] = 1 and let x ¢ X. If aey =
b+ (1 - b)A with 0 <b<1land {{n|| <1, {{al]l €1, then mltiplying
by & we have, ey = bER + (1 - b)ax and since ||&p|| = |{nll <1,
{1ax]] = |{x]| €1 the above applies and we have ex = ;p = @\ which
gives aey = P = A. Thus aey is an exireme point of the unit ball.

=

L, The LP(X) Spaces.

Throughout this section X is a locally compact space; I a
positive linear functional on K(X) and p the measure constructed from

I as in §3.3.

L.,) Definitions and elementary facts. A function f is said to

be p-mull (resp. locally p-mull) if there is a p-mull (resp. locally p-
rull) set N such that £(x) = 0, x¢ X~N, When no confusion will arise
we shall drop the p. We shall also say that f(x) = 0 almost everywhere
in place of saying that f is null. | |
If £ is locally null but not null then for each p, 1 < p < e,
f‘fipdp = o ((12) Chapter III, 12.2), In particular if N is a locslly
p~null set then n(N) = = or p(N) = 0,
For each positive real rumber p, let P (X,1n) be the set of
21l complex vslued measurable functions on X such that [{f{Pdp < e,
Let Tt be the sect of 21l p-rull functions on X, and put IP(X,n) = XP&X,p)/ 7
When no confusion can arise we write LP(X) for Lp(X,p). We shall also

allow ourselves the luxury of being imprecise and calling elements of
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IP(X,p) functions. For 1 < p <, LP(X) is a Banach space with nom
given by {{f]{, = [ J1£{Pap ]1/p. 12(X) is a Hilbert space.with the
inner product of f,g € L2(X) given by (f, g) = [fEdp.
Let % be the set of 2ll measurable bounded functions on X
and let & be the subset of € consisting of all locally null functions
on X, Y is a Banach spsce with nom given by {{f{| = sup {|£(x)] : x ¢ XJ
and & is a closed subspace of ¥. Thus %[O is a Banach space which
we denote by L°(X,p) or simply L°(X). We feel obligated to point cut
that this definition of lfYX) differs from that used by many writers.
However this definition is the one used by Hewitt and Ross (12) and
N. Bourbaki (3). It is clear that K(X)CIP(X) for all p > 1.
For given p, 1 <p <, let q = p/ (1 ~ p), forlp = 1 let
q =wand for p = @ et q = 1. We shall need the folleowing facts about
1P(x) and L3(X):
(1) for £ ¢ IP(X), {iffl, = sup { [/fecn] : & € KO, |lglly < 1},
(11) (H3lder's inequality) 4if £ € LP(X) and g ¢ L9(X) then
£g ¢ LX) and [|fgldn < el Hell -

(i11) K(X) is norm dense in LP(X), 1 < p < <o,

L,2 Absolute continuity. Let J be a positive linear functional

on K(X) and let A be the measure constructed from J as in §3.3. A is

said to be absolutely continuous with respect to n if each locally
p-mull set is locally A-null. If A is absolutely continucus with respect
to p then there is a positive p-measurable function g such that |
ffdk-= Jfgdu for all f ¢ K(X) (Lebesgue- Radon- Nikodym Theorem (12)
Chapter III, 12,17).



The measures A and p are said to be equivalent if they are ab-
solutely continuous with respect to each other.

Let A be any regular measure on X, Then A is said to be ab-
solutely continuous with respect to p if {X|(F) = 0 for every compact
set F such that p(F) = 0, If A € M(X) and A is absolutoly continuous
with respect to j, then there is an £ ¢ Ll(X,p) such that A(A) = fAfdp
for each Borel sot A and ||f]||y = ||A][((12) Chapter III, 14.17 and
14,19). The fuﬁction f is called the Radon. Nikodym derivative of A

with respect to p, and will sometimes be denoted by %%.

L,3 The product of a function énd a measure, Let f € Ll(X.p)
then we define fp to be the measure defined for each Borel set A by .
m(a) = Jpfdp.  Then fp ¢ M(X), fp is absolutely continucus with respect

to pand [{tu|{ = [I£]];.

5, M(3) and L1(G).

5.1 The measure algebra, Let G be a locally compact group.

For any function f on G and each y ¢ G, yf is the function defined by
yf(x) = f(yx). Since for given y the mapping X «» yx is a homeomor-
phism of G onto itself it follows that f ¢ C,(G) implies yf € c(6).
For p ¢ M(G), and £ ¢ CO(G) we may thus define a function p(f) by
() (x) = p(,£). Then f(f) € C,(G) ((12) Chapter V, 19.5). For

By A € M(G) we define the convolution pxd by pxA(f) = p(X(f)).

Proposition 1. M(G) is a Banach glgebrai with convolution as

1. See 86.3 for the definitions of Banach algebra and Banach *-algebra,
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multiplication.
Proof: M(G) is a Banach space since it is the dual of the
Banach space CO(G) ($3.4). We now show that for p, A € M(G)

[l f] < 1nll {Ixl]s Let £ € Co(G)e Then

()] = [nEEN] < Hrll HR@ = HrH iggll(xf)l
< Hptl P swel el < Hiedd AT HEL
Consequently Hped ] < el AL

To prove associativity first note that for x, y & G we have

AE () = AGGE) = A D) = A Gy) = x(AN()
so that AMyE) = x(Af).

Now (D) = ) = D) = n(R)

= p(A(£))(¥).

Lot » € M(G) then

(e (pAr) ) (£) = v (s (£)) = v (p(X(£))) = (ven)(X(£))

= ((v#p)=2)(£).

Thus convolution is associative, It is easily seen that for any

complex number ¢ we have px(cd) = e(p*d) = (ep)*A and that the dis-
tributive laws hold.

If £ is any function on G we define a function £~ by £~ (x) =
£(x~1), Since the mapping x ~» x~! is a homeomorphism of G,
f € Co(G) implies £7 € C,(G). We now define # mapping p -» p* of

—

M(G) onto itself by p*(f) = p(fz) where ~ is the complex tonjugate.

Theorem 7. M(G) is a Banach *-algebra.

Proof: It is straightforward to verify that (1) (p + A)* =
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pr e A%, (2)  (op)* = Gp*, (3) p** = poand that |[p*]] = [[n]].
For the proof that (pxd)* = X*xu* see (12)(Chapter V, 20,22).

The algebra M(G) is called the measure algebra of the locally

compact group G,

For each x ¢ G, let e4 be the Dirac measure at x, and let

G% be the colloction of all Dirac measures.

Proposition 2, G is a group and the mapping X -» ¢, is a

homomorphism,

s}

Proof: Forx, y € G,

¢ Co(6), E(D)(F) = ex(f) = 4F(x) =
f(YX) = fx(}’). Thus EX*Sy(f) = Sx(fy) = f(xy) = €xy(f). Thus ex*ey =

€ From this it follows that e 1%FEx = EFE

xy* x X Tyel

identity of G. Thus to show ex-l exists and ex“l = €

= g4 where e is the

1 it suffices
e

to show that e #p = pxey = p for all p € M(G). Now
(e ) (£) = e (R(£)) = A(£)(e) = n(f) and
(preg) (£) = W(EL(D)) = n(£).

Thus e, is the identity of HM(G).

5.2 Haar measure. Let G be a locally compact group. There

exlists a positive regular measure m on G finite for each compact set,
which is not identically zero and is left translation invariant, i.e. for
each x € G and each Borel set A C G, m(xA) = m(A)., The measure m is

called the Haar measure on G and is unique to within a positive con-

stant factor.
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The idea of the proof is te construct a positive translation
invariant linear functional I on K(G) (by translation invariant we
mean I(,f) = I(f) for each x ¢ G) and then apply the extension pro-
cedure outlined in §3.3. For the construction of such a linear
functional the reader is referred to Hewitt and Ross ((12) Chapter IV,
15), Husain ((13) Chapter VI) or Loomis ((15) Chapter VI).

For x € G, consider the measure n, defined for each Borel set
A by ng(a) = n(Ax). Then n, is a left invariant measure so there is
a real number A(x) > 0 such that m(Ax) = A(x)m(A), The function
D 1 X -3 A(x) is a continuous homonorphism of G into the positive
reals ((12) Chapter IV, 15.11) and is called the modular function,
G is said to be unimodular if A(x) = 1 for all x € G. If G is compact
then A(G) is a compact subgroup of the positive reals and conseguently
A(G) ='{13 so that every compact group is unimodular, Clearly every

abelian locally compact group is also unimodular.

5.3 Ma(G) and Ll(G). Let M (G) be the subspace of M(G) consist-

ing of all measures p which are absolutely continuous with respect to
the Haar measure m on G, Let h € Ll(G) = Ll(G,m) then the measure hm
is in M,(G) and the mapping h ~»-hm is a linear one-one mapping of
Ll(G) into M,(G) which preserves norms (84.3). If p € M, (G) then by

. the Radon- Nikodym theorem there is an h € L1(G) such that hm = Re
Consequently the above mapping is an isometry. Thus we may identify
Ll(G) with M,(G). It turns out that M,(G) is a closed two sided ideal
in M(G) ((12) Chapter V, 19.18). Thus if € M(G) and h ¢ L1(G),

p*hm and hm*p are absolutely continuous with respect to m. We define



psh (resp. h#) to be the Radon- Nikodym derivative of pshm (resp.
hm#p) with respect to m. Then the following formulas hold for g,
h ¢ LY(G), and n €& M(G).
(1) pxh(x) = Jh(y=*x)dn(y)
(i1) hep(x) = J aly=Dh(xy=1)dn(y)
(111) heg(x) = Jh(xy)g(y=1)dn(y)
= Jh(y)g(y=1x)dn(y)
= J aly=bn(y=1)g(yx)dn(y)
= J 8y=Dh =1 e(y)an(y)

((12) Chapter V, 20.9 and 20.10),

For each p € M(G) we define a mapping Ty of 1Y(G) onto
itself by T,h = psh, h ¢ L}(G). The mapping p —» T, is a one-one

mapping of M(G) into C(Ll(G),Ll(G)) (see §1.3 for the definition).

Theorem 8, (Wendel). The image of M(G) in C(Ll(G),Ll(G)) by
the mapping p -» Tu is closed,

For the proof see (24) theorem 2.

The so-topology on M(G) is the coarsest topology such that
the above embedding M(G) -» C(L1(G),L}(G)) is continuous, It follows
from theorem 8 and §1 that M(G)g, is a locally convex space which is

quasi-complete,

5.4 The LP(G) space. Let f € LP(G) (1L < p £ ) and let p be

a measure in M(G). Thon Jf(y=2x)du(y) exists and is finite for all

27.



x f{ N where N C G is merm]l if 1 < p <, If we define a function
p*'f by pxf(x) = jf(y“lx)dp(y)g b'e Ié N and p*f(x) = 0, x £ N then we
have Hp.*f“p < | pil Hpr ((12) Chapter V 20.12).
Let 1 <p< and let q = pf(p - 1) ifpflorw, g=1

if p=cand q = @ if p = 1. Let p be in M(G) énd suppose that
J Ay~ /a d{n{(y) is finite, Let f be in LP(G). Then the integral

J A D)Ey=Y)an(y) = £ (X) vececraroscorcsssossessassos(l)
exists and 1is finite for all x & G~N where N is m.null if 1 <p<e»
and locally m~null if p = «. Equation (1) defines a function in 1P(G)
for which

el < el fae™ Y9 alulo
((12) Chapter V, 20.13). In particular if G is unimodular then the
convolution f»p exists for each £ ¢ LP(G), p ¢ M(G) and Hf*ng <
el tlle

If 1<p<wand q=p/(p - 1) then for £ ¢ IP(G), g~ ¢ L3(q),
the integral J'Gf(xy)g(y"l)dy = fxg(x) exists for all x ¢ G and defines
a function in C(G). ((12) Chapter V, 20.16). From this it follows
that if A is a set of positive finite measure then AA-L is o neighbor-
hood of e ¢ G. Consequently if S is a subgroup of G which contains a
set of positive measure then S is open and hence closed.

In a later section we shall need the following lemma which is

given in Hewitt and Ross (12)(Chapter V, 20,15).

Lomma 2, Let £ be in LP(G) (L < p <) and & a positive num-
ber. There is a neighborhood U of the identity e in G such that

(1) ||p*f - pr< €

28.



for all positive measures p in M(G) such that p(G) = 1 and p(G~U) = O.

There is also a neighborhocd V of e such that
(11). ||fp - ft'p <e

for all positive measures p in M(G) such that p(G) = 1 and p(G~V) = O.

6. Algebras, *-alpebras and topological algebras.

6.1 Definitions and elementary facts. By an algebra we mean

a linear associative algebra over the complex field. An algebra A& is
called a *-algebra if there is a mapping x «» x* of A onto itself such
that for x, y ¢ A and any complex number ¢ |
(1) x** = x
(i1i) (ex)* = 8x* where ¢ 1is the complex conjugate of ¢
(111) (x+ y)* = x* + y*

(iv) (xy)* = y*x*

A topological algebra is an algebra A given a topology u
such that A, is a TVS and‘such that for each y ¢ A the mappings
X =» Xy and X =» yx are continuous,

A topological *-algebra A is a topological algebra which is
a *-algebra and such that the mapping x - x* is continuous.

We ncw state a number of elementary facts concerning top-
ological algebras and *-algebras, Let A be a topological algebra

(resp. topological *-algebra) then

1. It should be noted that some authors require multiplication to
be jointly continuous,

29. ..:A:
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(2) the closure of a subalgebra (resp. *=.subalgebra) of A
is a subalgebra (resp. *-subalgebra) of A.

(b) the closure of an abelian subalgebra (resp. abelian
*_subalgebra) of A is an abelian subalgebra_(resp. abelian *-sube
algebra) of A,

(¢) if N is a closed two sided ideal of A then A/N is a

topological algebra.

6.2 The Jacobson radical and semi~simplicity. Let A be an

algebra and let x ¢ A. An alement y in A is called a left (resp.
right) quasi.inverse for X if X + ¥y « yX = O (resp. X + y = Xy = 0).
If y is both a left and a right quasiinverse for x then y is called
a quasi-inverse for x.

The Jacobson radical of A is the set of all y € A such that
for each x in A, and each scalar a, ay + xy has a left quasi-inverse.
A is said to be semi-simple if the Jacobson radical of A consists of
only the zero element, There are various characterizations of the
Jacobson radical, - we refer the reader to (l?)(Chapter 1I, §7) for

these,

6,3 Banach algebras and W*.alegebras, A Banach algebra A is

an algebra whose underlying vector space is a Banach space and whose
norn satisfies the inequality ||xy|| < l|x|| |lyl] for each x, y ¢ A.
If in addition A has a unit u then we shall require {|u|| = 1. A
Banach *.algebra is a *-algebr# which is a Banach algebra such that

[{x*|{ = |Ix|| for each x in A. A C*-algebra is a Banach *algebra
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in which |[|x*x{| = ||x] ‘2 is satisfied for all x in A,
If p is a multiplicative linear functional on a Banach al-

gebra A, then {|p|{| £ 1. If A has a unit u then {{p]| = 1 ((12) c.21,

note that commutivity is not used in the proof).

Theorem 9. (Kakutani). Let A be a Banach algebra having a
unit u, Then u is an extreme point of the unit ball of A.

Proof: Let A' be the dual of A and let S' be the unit ball
of A', Now suppose u = ax+ (1 - a)y, 0 <a<1, |{x{{ <1, {|lylf <1.
We shall now show that X = y = u, Let x' be an extreme point of St,
Let xi be defined by xi(z) = x'(xz) and xé(z) = x!'(yz) for any z & A,
Then axi(z) + (1 - a)xé(z) = x'(ax + (1 - a)y)z) = x*(z) and since x!
is an extreme point and ||xj|| <1, i}xé]{ < 1 we have xi = X} = x!,
Therefore x'(z) = x'(x2) = x'(yz) for any z € A and any extreme point
x! of S', For a given z in A, the mapping x'—» x'(z - xz) of A! into
the complex numbers is a g(At,A)-continuous linear functional on At,
By the above, this mapping is zero on the extreme points of S'. Con-
sequently it is zero on the g(A',A)-closure of the convex span of the
extreme points of S!, By the Krein. Milman theorem ($1.1), S*' is the
o(A',A)-closure of the extreme points of S!'. Therefore x'(z - xz) = 0
for all x' ¢ S', and thus z = xz for 2ll z € A, Taking z = u we have

X = u, and then y = u, This completes the proof,

Let H be a Hilbert space and let B(H) be the algebra of all
bounded operators on H. Then B(H) is a C*-algebra where the norm of

an element T is given by ||T|{ = sup {|{Tx{| ¢ {|x]| <1}, T* is the



52,

conjugate of T defined by (Tx,y) = (x,T*y) for x, y ¢ H.

In addition to the nomm topology on B(H) a rumber of other
topologies are commonly used., We will use only one of these, the weak
‘operator or w-topology. For x, y ¢ H define a seni-nom px,y<A) =
| (ax,¥y)|, where (x,y) is the scalar product of x, y € H. Then the
_watopology is thértopology given by the family {px,y : X,y € H} of
semi-noims. A W*ealgebra (also called a vonNeumann algebra) is a
*wsubalgebra of B(H) which is w-closed. |

Let CL be a subset of B(H), then the commutant of ¢, denoted
by (€ is the subset of B(H) consisting of all operators S such tbat
ST = TS for all T in (1, The W*.algebra generated By 0C is the
smallest W*.algebra containing (1, If T &€ (l 5 T* € (C for all T &0,
then the W*.zlgebra generated by (T equals ¢1°°( = (£¢®)%) ((17) Chap-

tervIin, 3 ). In particular if 6T is a W*-algebra then (U = (U°°.

7. Representations of locally compact groups,

7.1 Definitions, Let G be a locally compact group. A rep=-

resentation of G is a pair (L,H) where H is a Hilbert space and L is
‘a2 homomorphism x = L, of G inte the group of unitary operators on H,
such that for each £ € H, x = fo is a continuous funcliion from G in-
to H,

A subspace VC H is said to be invariant under L if I,V C V
for all x € G. A representation is said to be irreducible if the only

closed invariant subspaces of H are {0} and H,
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7.2 The repulay representations, Let p be a real number

1 < p <, then for f £ ILP(G) the mapping x =5 ,f is right uniformly

continuous, ((12) Chapter V, 20.4) and the mapping X =» f, is contine
2 .

wous, Let Ly be the operator on L°(G) defined by L,f = 1

be the mapping x = Ly. Then (L,12(G)) is a representation of G which

f and let L

we cell the lefi reguler representation. Let R, be the operator on L2(G)
defined by R f = fy and let R be the mapping x —» R,. Then (R,LZ(G)) is
a representation of G which we call the right regular representation
of G.

Let G be a locally compact unimodulsr group. For each p € M(G),
let Rp be the operator on Lz(G) defined by Rpf = fap for £ € Lz(G).
Then each ky is in the commutent of {Iy : x € G}. Let W be the W*-
x = fx_laz

f. Tt follows that the Wr.algebra generated by {R, : x ¢ G} is R.

algebra generated by {Rp :n € M(G)} . Note that Re f = fxe
Ri“l
It is known that R is the commutant of fo : x € G} ((20) theorem). .

7.3 Induced representations. Let G be a locally compact uni-

modular group and let S be an open abelian subgroup of G. Then S is
also closed and locally compact. Let t be :féﬁg;zgler of S. We define
a representation (LY,H) of G as follows. Let K be tﬁe vector space of
all functions £ on G such that f(xs) = t(s)f(x) for a1 x in G and s

in S. Choose an element from each left coset of S and let G/S be
the set obtained in this manner. For £ & K we define {|f]|? = %o/
lf(x)'z. Let H be the set of all f ¢ K such that |[f]|]| <., Then H is
a Hilbert space with the inner product given by (f,g) = ExéG/S f(x)g(x).
. For each x ¢ G we define an operator L; on H by L;T(y) = £(x-ly), and



1et LY ve the mapping X e L:. Then (LY,H) is a representation of
G which is called the representation irduced by the charscter t. A
more general treatment of the shove construction can be found in (16)

(Chapter III).

8. Direet Integrals of Hilbert Spaces and Representations.

In this section we shailvoutline the theory of direct ina-
tegrals of Hilbert spaces and of representations., Unless another
reference is given, the proof of any assertion we make cen be found
in (4)(Chapitre II).

Let Z be a locally compact space, and p a positive regular
measure on X, Let {H(t) : t € X} be a family of Hilbert spaces and

let 5 = ;Q;H(t). An element £ € J/ is called a vector field on X,

Definition: A family {H(t) : t ¢ X] of Hilbert spaces is
said to be p-measurable if there is s subspace g C F such that
(1) for each f & /7, the function t - {{£(t){] of X into
the positive reals is measurable.
(ii) if g € o5 is such that for each f £ gz. the function
t o> (g(t),f(t)) is p.measurable then g ¢ %} » where (g(t),f(t)) is
the inner product in H(t) for each t. '
(111) there exists a sequence of elements (£, £2,.000040)
of gl such that (f7(t), f2(t)esessees) is total in H(t), for each
t ¢ X, |

The elements of gﬁ are called p-measurable vector fields,
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If there exists in J a seguence (fl, fz,.....) of vector
fields such that (1) the functions t «» (f3(%t), fj(t)) are measure
able for i,j =1, 2..., and (2) (£1(t), fp(t)....) is total in H(t)
for each t € X, then theres exists a unique glg Fi satisfying (i), (ii)
and (iii) above. A necessary and sufficient condition for a vector
field g to bo pemeasurable is that t < (g(t),f;(t)) be p-measurable
for each 1 = 1, 2.0c0es

Let © be the subset of g consisting of all p-measurable
vector fields f such that [||f£(t)] lzdp(t) <o, and let &, be the
subset of B of all vector fields f such that [||f(t)] fzdp(t) = 0,
Define an inner product in B/ﬁo by (£f,2) = J(£(t),g(t))ap(t), and
then %./%  becomes a Hilbsrt space which we denote by 'fXH(t)dp(t). We
shall write H in place of fXH(t)dp.(t). The space H is called the dir-
ect integral of the family {H(t) : t ¢ X} .

Suppose that for each t € X, T is a bounded linear operator
on H(t). If t = (th(t),g(t)) is pmmeasurable for each f, g ¢ g?i
then t = TU is said to be a p-measurable operator field. A necessary
and sufficient condition for t « T to be p-measurable is that
t - (T%;(t),£(t)) be p-measursble for each i and j.

If t - TV is a p-measurable operator field and if s%pf{Tti' <
then there is a unique bounded linear operator T on H such that for
each f in H (T£)(t) = TYf(t) almost everywhere. It can then be shown
that {|7(] = syp| |T¥|. 1In particwlar if h ¢ L™(X,n) then there is a
unique operator T, on H such that (TLE)(t) = h(t)f(t) almost everywhere
for each f ¢ H.v Let 3 = {Th :hé L°°(X,p)3 then 3 is a W*.algebra

called the algebra of diagonalizable operators. If T is a bounded linear
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operator on H then T is said to be decomposable if there exists a p-
measurable operator field t o Tt such that for each f £ R, (Tf)(t) =
TY£(t) almost everywhere, A bounded operator T on H is decomposable

if and only if TTy, = T,T for a1l h ¢ L (X.p).

If we are given a Hilbert space H,andan abelian W*ealgabra
3,, then there exists a locally compact space X, a positive measure
p on X, a p-measurable family {H(t) : t € X} of Hilbert spaces and an
isometry V of H' = JH(t)dp(t) onte H such that the mapping T = vIv-1

maps the algebra of diagonalizable operators on H!' onto g—.

We now define the direct integral of representations, Let
X be a locally compact space, p a positive regular measure on X. A
family {(Lt,H(t)) : t € X} of representations of a2 group G is said
to be pumeasursble if the family {H(t) : t 6 X} of Hilbert spaces is
p-measurable and if for each x ¢ G, the operator field t - L§ is
p-measurable. Since llL;i‘ = 1 for all t, there exists a linear
operator L, on K = [H(t)dn(t) such that (L£)(t) = LYE(t) almost
everywhore. The mapping X - Ly is denoted by [LYdp(t), and the
pair (JLYp(t), [H(t)dp(t)) is a representation of G called the direct

integral of the representations.&(Lt.H(t)) : t € X?v.

Theorem 10, (Mautner). Let G be a locally compact group
having a countable basis for the open sets, and let (L,H) be a rep-
resentation of G on the separable Hilbert space H. Lat OU be the

commutant of {Lx : x € G} and let E} be an abelian W*=subalgsbra of

LT
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0t. Then there is & compact subset I of the real line, a bositive
regular measure j on I, and a p-measurable family of representations
§LH(L)) + t € I} of G, and en isometry V of JH(t)dp(t) onto H such
that

(1) VLV = SLiap(t) for each x € G.

(i1) A = VAV'l maps the algebra of diagonalizable operators
on [H(t)du(t) onto 3-. ‘

Ir g_is a maximal abelian W¥wsubalgebra of (7, then there is
a set N C I of p-measure zero such that for t & INN, LY is irreducibile.

Proof: See (17) §41, theorem 3.

We shall close this section with a theorem conccerning the

uniqueness of such decompositions,

Theorem 11, Let G be a locally compact group having a countable
basis for the open sets, X a locally compact space having a countable
basis for the open sets, p a positive measure on X, {(Lt,H(t)) : t € X}
a p-measurable family of representations of G,

H= [H(t)dp(t) and L = [LYap(t)
and let 3. be the algebra of diagonalizable operators on H.' Define in
an analagous fashion Xy, Py, iLIl,Hl(tl)) Pty € X)Ly and ..

If there exists an isometry U of H onto Hj; such that the mapping
A = UAU-Y maps 3 onto 3, and L, to Ly, for each x ¢ G, then there
exists:

(1) a set N C X of p-measure zero, a set Ny € X5 of py-measure

zero,



(1i) a Borel isomorphism 6 of X~ N onto X3~ Ny which maps p
to a measure J1j equivalent to py: )

(111) an isometry V(t) for each t € XN of H(t) onto Hy(6(t))
such that V(t)Li = Liit)V(t) for each x € G and t ¢ X\ N,

Proof: Note that a locally éompact space having a countable
basis for the opon sets is a separable complete metric space and there-
fore in the terminology of (5), the measure spaces (X,p) and (X3, )
are standard. The proof of the above theorem is elmost identical to
the proof of 8.2.4 of (5). (8.2.4 is proven for representations of

C*«2lgebras, the proof for representations of locally compact groups

is an easy modification of the proof given).



CHAPTER II

THE s0.-TOPOLOGY AND ITS APPLICATIONS

1. The weak topology

Throughout this chapter G is a locally compact Hausdorff
topological group. The weak topology on M(G) is the o(M(G),Cy(G))-
topology, i.e. the coarsest topology such that for each f in CO(G)
the mapping p - u(f) of M(G) into the complex numbers is continuous.,

We shall frequently write ¢ in place of &(M(G),C,(G)).

Proposition 1., G is isomorphic and homeomorphic to Gg.

Proof: By proposition 2, §5, Chapter I, the mapping x —» e, is
a homomorphism of G onto GE, and since CO(G) separates points, this map-
ping is an isomorphism. Since each f € C,(G) is continuocus, x ~» g, is
a continuous mapping of G onto G;, Let V be a compact neighborhood of
the identity e in G. Then there is an f ¢ C:(G), 0 < f(x) <1, such that
f(e) = 1 and £(x) = 0 for x f V. Let W={x : [£(x) - f(e)]| < 1} then
WC V and W is the image of the neighborhood {ey : {e, (f) - ee(f)i <1}

of the identity e, of 6% under the mapping e, -> X.

Proposition 2. The mappings p — pxX, B -» A*p and p = p*,
of M(G) into itself are weakly continuous,

39.



Proof: (WA)(f) = p(A(f)) so that p —» p*A is weakly con-

tinuous. Since u*(f) = n(f~ ), p ~» p* is weakly continuous. The
mapping p =» A*p may be written as p s p¥sd* ca (R*¥xA*)* = A¥p,

so that it is continuous,

Corollary 1. M(G); is a topological *-algebra.
Proof: M(G)y is a locally convex space since it is the
dual of a Banach space and thus in view of the above proposition

M(G), is a topological *-algebra.

Corollary 2. The weak closure of a subalgebra (resp. *sub-

algebra) of [(G) is a subalgebra (resp. *-subalgebra) of H(G).
Proof: This is true for any topological *-algebra., (Chap-

ter 1, §6).

Definition: Let S be a Borel subset of G and let M(S) =

{n € 4(G) : |n{(G~8) = 0}

Lemma 1, Let S be a closed subset of G, and let p & M(G).
Then n § M(S) if and only if pu(f) = O for each £ € K(G) such that
Supp(£IN\S = p.

Proof: Since S is closed, G~S is open so that fni(G~s) = 0
= Supp ({n}) ¢ S. Since Supp (|p|) = Supp(n) we have Supp (p) < S.
Consequently if Supp(f)\S = § then p(f) = 0.

For the other part note that S closed implies that x5, g

(the characteristic function of G~S). is lower semicontinuous. Thus

Lo,



by Chapter 1, §3.3

[n](G~8) = sup{{n|{(£) : £ € XK*(G) and £ < Xg~3sl
Recall (Chapter I, §3.3) that for f ¢ C§(G)

(i (£) = sup {fu(e)| = lel < £, g € Co(B)].
Therefore if p(f) = 0 for all f such that £ ¢ K(G) and Supp(£)NS = #,
then {p{(£) = 0 for all £ ¢ K'(G) with Supp(£f)N\S = §. Then |n{(f) = 0
for a1l f ¢ K'(G) with £ < Xg_g so that {u{(G~S) = 0. Hence

n € M(8).

Proposition 3. (i) M(S) is a norm closed subspace of M(G).
(i1). M(S) is weakly closed if and only if S is closed.

Proof: (i) mA € M(S) = {n(A) + A(a)| < [nf(a) + {x|(A) =0
for all Borel sets A C G~S =2 n+ A € M(S). For any n £ M(G) and
any complex number ¢, [en| = [e]{n]| so that p ¢ M(S) implies cp ¢ M(S).
Hence M(S) is a subspace of M(G). Now to show that M(S) is nomrm
closed suppose (1,) is a sequence in M(S) and ||n, - n{| = 0.

Then for any Borel set A C G~S

(R(a)| = Ira(8) = n(A) < |ny, - nl(A) < {in, - il
hence {p[(G~S) = 0 so that n € M(S).

(ii) Suppose S is closed, Let f & K(G) be such that
Supp(£)\S = f. Then if p is in the weak closure of M(S) we must
have p(f) = 0, thus by lemma 1, p € M(S).

Now suppose M(S) is weakly closed. Let a € S then since the
mapping X -» €4 is a continuous mapping of G into M(G)g, £, € M(S).

Therefore £,(G~S) = |ey{(G~S) = 0 so that a € S, and S is closed.
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Corollary. Let K be a closed subset of G. Then T =
{n € M(G) : Supp(p) C K} is a weakly closed subspace of M(G).
Proof: It is clear that T ¢ M(K). If u € M(K), then
[} (G~K) = 0 and G~X open implies Supp(|p|) € K. This means
p € T since Supp(p) = Supp({n|). Therefore T = M(K) which is

weakly closed by the above proposition since K is closed.

Remark. It is wortﬁ noting that if K is not closed then
|| (G~K) = 0 does not mean that Supp( |n{) C K. To see this let
B be a nonzero continuous measure, and let x € Supp(p). Puf
K = G~{x}, then Supp(]ﬁ{) é_K, but |{p{(G~K) = 0 since

G~K = {x} and p and therefore |{n| is continuous.

Proposition 4, Let V be the linear span of the set of

Dirac measures, Then for any p € M(G), p € CLz{ X €V : [{A|] < {{nll
and Supp(A) C Supp(n)),

Proof: Put A={A €V : {|A|] < |{n{| and Supp(A) ¢ Supp(p)}
Since A is convex and contains 0, it suffices to show that p ¢ A%
(Chapter I, §1,5) where A° is the polar of A in Co(G) and A°°
is the polar of A° in M(G). If p = 0, then the proposition is
clear. Assume p £ 0, let £ ¢ A% then in particular |e (£)| < 1/|{nl||
for all x ¢ Supp(n). i.e. |£(x)| <1/||n|| for x ¢ Suﬁp(u). Thus

I </ [£G)falp] () <@/ [nlDS afnf(x) < 3. Thus n € 4°°,

Corollary 1. G® is total in M(G) .



Corollary 2. Given any p € M(G) there is a net (uj : j €J)
in A = {X €V : supp(X) C Supp(p), [{A|l < {[n{|} such that p; & n
and [n] [ = 14m {lg]1.

gggggz By proposition 4 there is a net (nj : j & J) € A
such that pj &> p. Since n = |{n|| is lower semicontinuous in
the weak topology, we have that lim inf |{uj]1 > {{nll. sSince By €A
for each j, we have {{uj]] < {{n{|. Therefore lim sup ]lpjii < IHult.
Thus lim ]1pj1l exists and lim |{u;i| = {|n{{.

2, The so-topology.

The so-topology was defined in Chapter I, £5,3, it is the
coarsest topoiogy such that for each f in Ll(G), the mapping p = pxf
of M(G) into Ll(G) is continuous. As in chapter I, §5, M,(G) is
the subset of M(G) of measures that are absolutely continuous with
respect to the Haar measure m on G, and we know that Ma(G) is iso-
metric and isomorphic to 11(G) via the mapping p - %%o In this
section we show that propositions 1, 3 and 4 remain true if one
replaces the g(M(G),C,(G))~topology by the so-topology, and that a

weakened version of proposition 2 holds,

Proposition 5. The mapping X -~ e4 is a continuous mapping

of G into M(G)g,.

Proof: Let f be in Ll(G), we shall show the mapping x -;-ex*f

is a continuous mapping of G into L1(G). First note that

ex*f(y) =/ f(z‘ly)dex(z) = f(x’ly) = x‘lf(Y)' hence e *f = lf.
<=

L3,
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The mapping X -» ,f is continuous from G into Li(G) (Chapter I, §7.2),

and since G is a topological group x - x-1

is a continuous map.
Therefore x = x-if = eyxf 1s continuous since it is the composite

of continuous maps.

Proposition 6. M(G)so is a topological algebra.

Proof: By chapter I, §5f3 M(G)So is a locally convex
space, so it remains to show that multiplication is continuous in
each variable separately. For this let (uj 2 j ¢ J) be a net in M(G)
and suppose that pj £2» p. Let A be in M(G) and f be in 11(c).
Then since Asf is in L1(G), (Chapter I, §5.3), we have that
{ Pyxraf - psrsf|| ~=> 0 so that Ryxd 22> pxd.  Moreover

Hamgef = dxf | < (M} [{ngef - paf]] — 0

so that Axpy 52, Asp. This proves the proposition.

Lemma 2, Let f € CO(G) and € > 0 be given., Then there is a
positive measure A in M (G), [{x{] = 1, such that | f(xy)dA(y) - £(x)| < ¢
for all x in G. If in addition V is a given neighbofhood of the
identity e of G, then we may choose A such that Supp(i) C V.

Proof: Since f is in Cy(G), f is left uniformly continuous
(Chapter I, §7.2), thus there is a neighborhood U of e in G such that
|f(xy) - £(x)| < € for y in U and any x in G. Let A be any positive
measure in M,(G) such that Supp(A) ¢ U and ||{X|| = 1. Then

| § £Gx)ak(y) = £(x)| = [ £CGey)dh(y) - [ £(x)dA(y)|

< [ylt0) - £(x)]anty)

<elldf = e
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If we are given a neighborhood V of e in G, then we choose A such
that Supp(A) € UNnV, {{A]| = 1, and the second assertion follows

in the same manner as above.

Proposition 7. Let S be a Borel subset of G. ‘ S is closed
if and only if M(S) is so~closed. |

Proof: First suppose that M(S) is so-closed and that a ¢ S.
The mapping x -» ¢4 1s so-continuous by proposition 5, so that
eq € CL  M(S) = M(S). By the definition of M(8), we have e,(G~8) = O.
Therefore a is in S, and S is closed.

Now suppose S is closed and lot p € CL  M(S). Then there
is a net (pj : j € J) in M(S) such that V3 505 1 and Supp(pj) C S
since S is closed. Let £ £ 0 be in K(G) and suppose that Supp(fINS = P,
Then since Supp(f) € G~S which is open, there is & symmetric neigh-
borhood V of e in G such that (Supp(£))VNS = # (Chapter I, §2.2).
Let ¢ > 0 be given., By lemma 2 there is a X in M (G) with Supp(A) ¢ V
and ||{A]] = 1, such that

[/ £Gay)an(y) - £(x)| < /2 [{n]| for all x in G.
If y is in V and £(xy) £ O then xy € Supp(f) so that x ¢ Supp(£)v-1 =
Supp(f)V. Therefore J'v f(xy)dA(y) = O vhenever x is in S, Then,
since Supp(p.j) C S, we have

(ry*d)(£) = J £Gy)dn(y)dpy(x) = 0 and

lea(£) - w()| < IS £y)dd(y) - £Gdfn|(x)

< ef2.

Since p 595 p and A € M (G) there is a Jo such that j > Jo implies

e = wel| < ef2]{2]].
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Thus for j = Jj,
] < (E) = pe (D) + [ryA () = pk(D)] + |nyea(D)]
< ez 4 [y - pal{{{£]] + 0
<ef2 4+ ef2=ce.
We must therefore have n(f) = 0 for any £ ¢ K(G) with Supp(£)N\S = f.
Thus lemma 1 epplies and we have n ¢ M(S).

The next proposition is due to Greenleaf (9).

Proposition 8. On norm bounded subsets of M(G),q(M(G),Co(G))csé,
Proof: Let (nj : J € J) be a norm bounded net and suppose
nj 50, p., Put M = max ("sup‘ hljt [,11nl{), then ¥ is finite. Given
e >0 and f € Co(G)(f £ 0), then by lemma 2 there is a A in M,(G),
[|Al] = 1 and such that
|/ £Gv)an(y) = £(x)| < e/34 for all x in G,
Since pj*)\(f) = jff(:qr)d)\(y)dpj(x) we have
[n3(£) = ugA ()| = |J £(x)any(x) - [/ £(xy)dA(y)dn 5(x) |
<7 i) - rGydanx) {dlpgl (x)
< Hnsll e/3M < e/3
Similarly |np(f) - p*A(f)| < ¢/3.
Thus {p3(f) = n(£)| < [r5(F) = uyA(D)] + [pyea(f) - pa(£)]
+ |per(e) - n()|
<ef3+ [lngn - pex[{]I2]] + €/3
Since B3 -_§2-> r there is a 'jo such that j > j, implies
Hpj*,\ - || < ¢/3]|£[|. Then for j > i,
[ny(£) - n(0)| <e/3+ /34 ¢/3=c.
This shows that nj L n.



Corollary 1. The mapping p = | |nf| of M(G) into the reals
is lower semi-continuous in the so~topology.

Proof: Let a >0 then{u : il < a} is clearly norm
bounded and ¢ (M(G),Co(G))~closed, hence by proposition 8, so-

closed.

Corollary 2. On G®, so = o(M(G),C,(G)).

Proof: If x ¢ G, then ||ey ]| = 1 2nd hence G® is a nom
bounded subset of M(G), so that proposition 8 applies and we have
a(¥(G),Co(G)) < so on G%. To show that so < a(M(G),C,(G)) on G%,
note that the identity mapping G;‘—> G:o is the composite of the

mappings €, «» X and X ~» €,. The first of these is continuous by

X X

proposition 1, and the second by proposition 5.

Corollary 3, G is homeomorphic and isomorphic to Gzo’

Proposition 9. Let V be the linear span of G%., For any

n € M(G) we have n € Clso{ A €V : Supp(r) € Supp(u) and ||af| <
Hnll}. |

Proof: It is clear that for n = O the result is easy.
First suppose p £ 0 and that Supp(n) is compact. Let Z be the set
of complex numbers of absolute value less than or equal to 1. Put
A= {'lp[]st s x € Supp(p)} and B = {A €V : Supp(A) < Supp(n),
ard [|Al] < |[uf}.

Let ConvA be the convex hull of A, we first show that

n
convA = B, Let X ¢ convA, then A = % ail{uflziexi » 0y >0,

L7,
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Loy =1, so that {[a]] < HHH?E oy = [{nl{. Clearly A ¢ V and Supp(d) ¢
Supp(n), so that A ¢ B, If A ¢ B and A = O then A ¢ A; Suppose

A4 O endd=EBgey, %3 € Supp(R), B3 40, then []A]] = § N

(Chapter 1. §3.5). Put ay = |BgI/1IAll » 25 = {{ad{ss/ (B3l 1InlD)

then for all i, we have 0 <04 < 1; % ay = 1; 1211 <1, and

A= aiiiulﬁzigxi so that A € convA, Thus we conclude B = convA,

ol =]

Observe that A = CD, where D = { e, :'x € Supp(p)] which is
a(M(G),Co(G))~compact by proposition 1, and is therefore so-compact
by corollary 2 to proposition 8, and C = {]‘p{fz : 2z complex |z| < l}
which is a compact set of complex numbers. Thus‘A is so-compact,

By theorems 2 and 8 of Chapter I, Clg, convA is so-compact and since
on norm bounded sets o cso, Clg, convA is a(M(G),Cy(G))~compact and
therefore d(M(G),C,(G))~closed. Thus Clg, convA = Cl; convA so that
ClgeB = C1 B and now the result follows from proposition 4 if Supp(p)
is compact.,

If Supp(p) is not compact then let 0 £ f ¢ Ll(G) and € > 0 be
given. Since each’u € M(G) is inner regular, there is a compact set
K such that |n|(G~K) < ¢/2|{f||. Let pj be the measure such that
R =1 on K and lplﬂ(G‘~K) = 0. Then [Hw = nyl] < ¢/2]if]]. By the
above there is 2 py ¢ {X ¢ V : Supp(x) C Supp(py), || < {Ingll}
<{A ¢V : supp(A) € supp(w), [[A{] < |{n][} such that
[Ing*f = woef|| < e/2. Thus

Huxs < wpxt]| < [{ref = sl + [ugef - prt|| < 6

and this proves the proposition,

Corollary 1, G® is total in M(G)g,.



49-

Corollary 2. Let S be a closed subset of G, Then{X ¢V :
Supp(A) ¢ S} 1is dense in M(S)go.

Proof: Since S is closed we have M(S) ={ X : Supp(A) g;s},
Let p € M(S), then by proposition 9, p € Clgg{ A € V : Supp(X) < Supp(n),

Hall < Hpll] ¢oro{a €V s suppa) €8}

Definition. An approximate unit in a topological algebra
A is a net (xj t j € J) such that for each y ¢ 4, y = lim yxy = Lim Xsy.
It is known that M, (G) has an approximate unit ((12) Chapter V, 20.27).

Proposition 10, Let p € M(G), then p € Clg { X € Ma(G) :

HAL < Hplfd .

Proof: Let (ej : j € J) be an approximate unit of nom 1 in

ﬁa(G), then for any np € M(G), e 5 205 1 ; pres € M,(G) and lip*ejli < nll.

Proposition 11, Let F and G be locally compact groups and

let T be a2 nom continuous isomorphism of M(F) onto M(G). Then T is
continuous on normm bounded sets as a mapping of M(F)g, onto M(G)g,
where ¢ = G(M(G),C,(G)).

Proof: Let (pj : j € J) be 2 norm bounded net in M(F) and
suppose py £2y u, Let M = sup {llijfl, [{Th{|} , then M is finite since
T is bounded, Since K(G) is nomm dense in CO(G) it suffices to show that
ij(f) ~» Tp(f) for nonzero £ € K(G), (for f = 0 it is obvious).

For given £ € K(G) and ¢ > 0 by the argument used in Lemma 2

. and proposition 8, there is a g ¢ Ll(G)f\Lz(G), g £ 0 such that
|(Tuj*g)(f) - ij(f)l < ¢f3 and

[(Tpeg) (£) = T(£)| < /3
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Since g ¢ LZ(G), we have that Tpj*g ¢ 12(G) for each j (Chapter 1, §5.4)
and that Tpxg € L2(G). The Schwarz inequality yields that |

[(Tpyxe)(£) = (Tpee)(D)|< |{Tpy*e - Trgl 11211,
We claim that there is a A & M (F) such that

g - Tx*gtlz < s/9M]1f112....................................(2)
To prove this let E be the closure of the subspace {TAxg : A € Ma(F)z of
LZ(G) and let E' be the orthogonal complement of E. Then g = g; + g,
where g ¢ E and g 4 EJ'. Thén we have

0 = (g, Th*g) = (g, TA*g)) + (g, Thxgy) for all A € Ma(F)
(where ( , ) is the inner product in 12(G)). Since g ¢ E, we have
TAxgy € E for all A ¢ ﬁa(F) and therefore (gz,Tk*gz) = 0 for a1l A € M_(F).
Since My (F) is an ideal in M(F) we have (gz,T(T"l(Tk)**l)*gz) = 0 for all
A€ Ma(F); Since (w*gz,y*gz) = (gz,p**y*gz) for any v & M(G) ((12) Chapter
V, 20.20), we have

gy |12 = (Thogy Thrgy) = (g, ()*Trgy) = (g, TIH(I)ad)vgy) = 0

for all A ¢ My(F). Thus TX*gz = 0 for all A ¢ M ;(F). To show that g, = 0,
let €' > 0 be given., Since K(G) is dense in LZ(G) there is an h € K(G)
- such that 1|g2 - h[iz < e's Then ||TAsh{| = ||TAh = Taxgy || < [{Ta[{et.
Therefore TAxh = 0 for all A € Ma(F). Let m be the Haar measure on G, then
hm € M,(G), and Th+hm = O for all A & My(F) (Chapter I, §5.3). Therefore
Ty = 0 for all A ¢ M (G), this means that h = 0 and therefore»g2 = 0,
Thus g = g ¢ E, so that (2) holds.

Since B £9, n there is a j such that j 2 Jj, implies

Hrged - pll < e/91ITHL el HELL
Thus for j > j,,» we have

ke - Torell, < [[Thgee - TogeTang| |, + | [TagThng - TunTang] |,

+ || ToTasg - Tuxgl |,



< Hmsll (le - Tasgll, + [mgemr - mema{ ] {lell;

+ [l T - el

< ¢f/311fll, (3)
We now have using (1) and (3), for j 2 Jo

[Tny(£) = TR < {TRy(2) ~ (Tugre)(£)] + [Tnyxe(f) - Tnre(s)|

+ |Tprg(£) = To(D)|
58/3+ |iT}lj*g--Tn*gH2HfH2+ 9/3
< €. ‘ )

Remark. The following example shows that the requirement
that T be an isomorphism is essential., Let F be any nondiscrete
locally compact group and let G be the group having only one element.
For p ¢ M(F), let n = pg + R, where Bq is a purely discontinuous
measure and R is a continuous measure (see Chapter»i, §3.5. Then

for any x € F, n({x}) = ng({x}) so that

e P = I plrg (D] = gl = (Chapter 1,53.5)
Thus we may define a mapping T : M(F) -» M(G) by

T = {zxéFn({x})] €q n€ME), e ¢G
and we have ||{Tu{| = l{udi‘ < {{n}{l. We now show that T is a

homemorphism. Let yp, A € M(F) and let a,b be scalars.
Then

T(ax 4+ bp) [;xéF(ak + bu)({xﬁ)}se
ZxéFal({XX)se + Exépb}l( xe

= aTA 4 bTu

i}

Now let A = kd + ké where kc is a continuous measure and Ad is purely

discontinuous. Then pxA, is a continuous measure since



p*lc({x}) = J Ac({y'lx})dp(y) = 0, for each x ¢ F.

Thus :
e ({x3) = (uedg) (Ix3) = fu(ixy=13)dn,(y)
= ;yéFp({xy'l})Ad({y})
= (D= 1DAly))
Thus T(ed) = (2 o ;YQFP({xy‘l})A({y?))ee

i}

(T p (G IHAD)e,
Toer (Begrr(Ex3IAUyd)e,
ZxéFp({x})(EyéFl({y}))ee

= xéFP({X}))ee*(EyQFA({y})>8e
= TpsTA

Thus we have shown that T : M(F) < M(G) in a continuous homomorphisa.
From the definition of T, and the regquirement. that F is not

a discrete group we have Tp = 0 if pn ¢ Ma(F). Now let n € M(F) be such

that zxéFP({x}) 4 0 and let (ej : j € J) be an approximate unit in

4P, Thon proy 22 po |[jrosl| < {[pl1, and T(proy) = 0 for an1

j € J since pxe ¢ Ma(F), but Ta £ 0.

3. Subalgebras of Ma(G)

Definitions. Let S be a Borel subset of G. Then we define
L(5S) = M (G)N\M(S). If m is the Haar measure on G, then D(S) is
defined to be the set of 211 x in G such that each m-measurable neigh-
borhood of x meets S in a set of positive Haar measure.

Observe that L(S) is a norm closed subspace of M,(G).



Remark., The operator D defined above was first used by Simon
(1). The next proposition is a sumary of the properties of D(S),

some of vhich were first demonstrated by Simon in (20).

Proposition 12. Let S be a Borel subset of a locally compact

group G and let m be the Haar measure in G, then
(1) D(S) is closed and D(S) C S,
(11) D(S) = § & S is locally menull ¢ SNAD(S) = f
(111) s < T =5 D(S) ¢ D(T)

(iv) S~D(S) is locally null,

(v) L(S) ¢ L(D(5))

Proof: Let x ¢ D(S), and let U be an open neighborhood of x,
then there is a y € D(S)\U and U is an open neighborhood of y, so
that m(SN\U) > 0. Thus x € D(S). It is clear that D(S) C S.

(11) D(S) = P & each x € G has a measurable neighborhood U
such that m(SN\U) = 0& S is locally nmill., (Chapter I, §3.3). Since
D(S) = f = SND(S) = f, to complete the proof of (ii) it suffices to
show that SND(S) = f = S is locally null, Let K be a compact sub-

set of G, and for each x in S let U, be a neighborhood of x such that

5

n(UyN\S) = 0, Then {Uy : x € S} 4s an open covering of K so that there

are x; € S (1 <1 <n) such that KnS<\) U M5, Thus mK1S)= 0 so
h S

that S is locally null,

The proof of (iii) is very simple.

(iv) S~D(S) € S so that D(S\D(S)) cD(S) by (4ii). Thus it is

clear that (SND(S))N\D(S D(S)) = § so by (1i) S\D(S) is locally null,

(v) Note that G~D(S) € (G~S)U (S~D(S)) thus for A ¢ M(G)



we have {A[(G~D(8)) < [A{(GN\S) + [A{(S~D(S8)). If A € L(S) then
{A1(G~5) = 0. By (iv) S~D(S) is locally m-null, so that

A € L(S) = |A{(G~D(S)) = 0 and then X ¢ L(D(s)).

Corollary 1. Let K be any compact subset, then m(KNS) =
m(KnSND(S)).

Proof: Clearly m(KNSND(S)) < m(KNS). By (iv) of the
above proposition S}D(S) is locally null, thus

m(K/\S\KI‘\S(\D(S)) = m(EN(S~D(8))) = 0 so that

n{KNS) = m(KNSND(S)).

Corolla'_z:z 2, D(D(S)) = D(s)

Proof: Since D(S) is closed, D(D(S)) C D(S) by (i) of the
proposition. Now suppose x f D(D(S)) then there is a compact neigh-
borhood V of x such that m(VND(S)) = 0. By Corollary 1, m(VNS) =

n(VASND(S)) < m(VAD(S)) = 0, so that x fn(s).

Proposition 13. Let S and T be Borel subsets of G and sup-
pose that L(S) = L(T). Then S~T and T\ S are locally m-null, |

Proof: Let K be a compact subset of G, put F = (SNT)NK
and let Xy be the characteristic function of F. We shall show that
m(F) = 0, If m(F) > 0, then Xpm is a nonzero measuré which is in

L(S) but not in L(T) and this is a contradiction. Thus for any com-

pact subset K of G, m(KN(SN\T)) = 0, which means that S\T is locally

me-null, Similarly T\S is locally m-—mull.
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Corollary 1. Let S be a Borel subset of G. L(S) = {0} if
and only if S is locally nuli.
Proof: Suppose L(S) = {0}. Then L(f) = {0} = L(S). By
proposition 13, S must be locally null. Now suppose that S is

locally mull, then |A{(S) = O for any A € M,(G), so that L(S) = {o}.

Corollary 2. Let S be a Borel subset of G. L(S) = {0} if
and only if D(S) = f.
Proof: By proposition 12(ii) S is locally mull if and only

if D(S) = f. Thus corollary 2 follows from corollary 1.

Theorem 1. L(S) and L(D(S)) are dense in M(D(S)),.

Proof: Since D(S8) is closed, M(D(S)) is weakly closed by
proposition 3. Moreover L(S) C L(D(S)) by proposition 12(v) so that
it suffices to show that M(D(S)) C C1,L(S8). If D(S) = f, then L(S)
and M(D(S)) both consist only of the - zero measure so that we may
assume D(S) £ #. To prove the theorem it suffices in virtue of
proposition 4 to show that for x € D(S), f € Co(G) and ¢ > O there
is a A € L(S) such that [A(f) = ex(f)‘ <e. LetU={y: {£(y) - £(x)| < el
then U is a closed neighborhood of x so that n(UNS) > 0 where m is
the Haar measure in G. Let Xy~ g be the characteristic function of
UNS, and define A by

A(g) = (1/m(uns)) ng)h/\Sdm, for g € C,(G).

Then by putting g = )<G\\S in the definition of X, we ses that

A is in L(S). Now
() = e (D) = (1/m(UNS))| Jof Xyngdn - T(x)m(UNs)|

S Un(UNS) fyAglEG) - £6) |an(y) < e



Corollary 1. M,(G) is dense in M(G)g.

Corollary 2. (Simon) Let S be a Borel set in G. If L(S) is
an algebra then D(S)is a semigroup (possibly empty if S is locally
nll), If D(S) £ p and L(S) is a *-algebra then D(S) is a subgroup.

Proof: If L(S) is an algebra then M(D(S)) is an algebra by
theorem I and corollary 2 to proposition 2. Now since the mapping
€, > X of G® onto G is an isomorphism by proposition 1 and since
{eg t X ¢ D(S)} is a semigroup in M(D(S)) under convolution, D(S) is
a semigroup. If L(S) is a *-algebra, and if D(S) £ f, then M(D(S))
is a *.algebra (Corollary 2 to proposition 2 and theorem 1) and hence

D(S) is a subgroup since e = ¢

x-1

Remark. In (20) Simon showed that if there is a semigroup T
such that L(S) = L(T) theh L(S) is an algebra. As Simon has noted
the above result yields a partial converse of this statement: If for
a closed subset S of G, L(S) is an algebra then there is a semigroup
T such that L(S) = L(T). (Proof: Take T = D(S) which is a semigroup
by Corollary 2, By proposition 12(v), L(S) C L(D(S)). Since S is
closed, D(S) C S (proposition 12(i), consequently L(D(S)) = L(S).).

Simon raised the following question: If S is a Borel subset
of G, such that L(S) is an algebra, then is there a semigroup T such
that L(S) = L(T)? We shall return to this question later and provide

an (affimative) answer in a number of special cases,

Lemma 3, Let S be a Borel subset of G, and let x ¢ D(S).
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For any f & Lp(G) (1 <p <) and any ¢ > 0 there is a neighborhood
U of x such that

[Ipef = exxtl] <
for all positive measures p in M(G) such that ﬂip’f = 1 and
p(G\\(Uf\S)) = 0., There is also a neighborhood V of x such that

HEwm - fxe || < e
for all positive measures p in M(G) such that {{p|| = 1 and
n(G ~(vns)) = 0. |

Proof: By Lemma 2, Chapter I, §5.4, there is a neighborhood
U; of e in G such that ]1ﬁ*f - £ < e for every positive measure
W in M(G) such that |{n|]| = 1 and p(G\Uy) = 0. Let U = xU;, then
U is a neighborhood of x. Let yn ¢ M(G) be such that |{p|] = 1 and

p(G~ (8NU)) = 0. Then

e*_l*p(G~\U1) p(x(GN\Tq))
w(G~1)

< p(e~(SnU)) = 0.

Moresover ‘lsx_l*pil = ‘{P‘l

1. Therefore ||e et - £l <e.
x
Consequently ||psf - e *f|| < e.
The second assertion follows similarly from the second asser~

tion of Lemma 2, Chapter I, §5.k4.

Corollary 1, Let S be a Borel subset of G and let x € D(S).
Given A € M (G) and € > 0 there is a p € L(S) such that i‘p*k - ex*&'! < e.
There is also a1 in L(S) such that ||A#1 = dxey|| < e

Proof: Let f be the Radon-Nikodym derivative of \ with respect

to the Haar measure m on G. Then £ is in Ll(G), and by the lemma there



is a neighborhood U of x such that

[{v*f - ex*f1il Se€
for all positive measures »/ in M(G) such that |{{y|| = 1 and
v(G~ (UNS)) = 0. Let K be 2 compact neighborhood of x such that
KC U, then p = (l/m(Kr\S))',\‘Kﬂsm is in L(S) and satisfies the
requirements of the lemma., Therefors ||[psf - sx*fiil < e. Now since
11(G) is isometric and isomorphic to M (G) we have ||p*d = ex*d|| < e,

$he'second assertion follows similarly.

Corollary 2. Let S be a Borel subset of G and let x ¢ D(S).
Let x € D(S), f ¢ L2(G) and € > 0 be given., Then there is an
h € I2(G) with hm € L(S) such that ||f+h - frexl| < e

Proof: The proof is similar to the proof of Corollayry 1.

Theorem 2. L(S) and L(D(S)) are dense in M(D(S))so.
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Proof: Since D(S) is closed, M(D(S)) is so-closed by proposition

7. By proposition 12(v), L(8) € L(D(S)) so that it suffices to show
that M(D(S)) C ClgL(S). If D(S) = § then M(D(S)) and L(S) both
consist of only the zero measure (proposition 13, corollary 2) so
that we may assume D(S) £ . For any x ¢ D(S), A € M(G) and € > 0
there is by corollary 1 to lemma 3, a p in L(S) such that

‘fsx*l - prd || < €. The theorem now follows from corollary 2 to prop-

osition 9.

Corollary. Let S be a Borel subset of G, If L(S) is a sub-

algebra of M (G), then for any n ¢ M(D(S)) and any A & L(S) we have



€ L(S).

Proof: By the above theorem there is a net (pj : J €J)
in L(5) such that ps 225 p, thus |{pg*A - prA[| = 0. Since L(5)
is an algebra, pj*l ¢ L(S) and since L(S) is nomm closed, we have

pEA € L(s).

Remark, If L(S) is a subalgebra of M,(G), then it is a
subalgebra of M(G). Méreover whenever L(S) is a subalgebra of M(G),
M(D(S)) is also a subalgebra of M(G) (see the proof of éorollary 2
of theorem 1). The corollary says that if L(S) is a subalgebra of

M(G) then it is a left ideal in M(D(S)).

Lemma 4, Let S be a Borel subset of G, If L(S) is an 2l
gebra and if e € D(S), then L(D(S)) = L(S).

22223‘ By proposition 12(v) we have L(S) C L(D(5)). To
show the reverse inclusion, let A € L(D(S)) and € > 0 be given, By
corollary 1 to lemma 3, there is a p € L(S) such that ||asp - A|| < e.
By corollary 1 to theorem 2, A*p € L(S). Since L(S) is nomrm closed,
A € L(S). Thus L(8) = L(D(s)).

We now proceed to generalize a number of results of Simon (21).

In the remainder of this section we identify M, (G) with Ll(G). Thus
for a Borel set S, we identify L(S) with a subspace of I1(G). From
the definition of L(S) it is clear that a given £ ¢ I1(G) is in L(S)

if and only if [, glfldm = O.
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Theorem 3. Let S be a nonempty Borel subset of G, If L(S)
is a *-algebra then there is a closed subgrolip T such tha’t L(S) = I(T).
If D(S) £ § then we may take T = D(S).
| Proof: If D(S) = f, then L(S) ={0}(proposition 13, corollary
2), and since S is nonempty G cannot be discrete, so if we take T = {e],
then L(T) = {0} = L(S). If D(S) £ #, and if L(S) is a *-algebra then
D(S) is a subgroup by corollary 2 to theorem 1. Thus e & D(S) and by
lemma &, L(S) = L(D(8)). Taking T = D(S) (which is a subgroup) we

have that T is closed (proposition 12(i)) and L(S) = L(T).

Lemma 5. Let SCGbe a Borel semigroup and T C G a Borel
subgroup, If L(S) = L(T) £ {0} then S = T.

Proof: First suppose that T ¢ S. Then TN\SNT £ f. Let
¥y € TNSNT and let x ¢ SN\T. Since T is a subgroup and S is a
semigroup, yx-L ¢ T, yx"l fo\T so that yx=1 ¢ T~SNT. Therefore
y(sSn T)'l C. T~SNT., Since L(S) £{ 0}, %there is a compact set K in
S with m(K) > 0 and since L(S) = L(T), the measure X is in L(T).
Thus xm(GN\T) = 0 and since xgm £ 0 we must have m(KNT) £ 0,
Consequently SNT contains a set of nonzero Haar measure so that
(S/\T)"l contains a set of nonzero measure. By the left invariance
of the Haar measure, T~SNT contains a set of nonzero measure, and
this contradicts the fact that T~ S is locally null (proposition 13)
because T~S = T~SNT. Therefors T CS. To show the reverse inclu-
sion suppose that S~T £ f. Let y ¢ S\T and x ¢ TC S, Then
yx-1 € ST so thaﬁ ¥T € SN\T. Thus S~T is not locally null which

is a contradiction (proposition 13). Therefore SCT and we have
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shown S = T,

Definitions. Let S be a Borel subset of G, if L(S) is a
subalgebra of 11(G) we shall call L(S) a vanishing algebra. A
vanishing algebra L(S) is called a maximal vanishing algebra if it is
proper and if for every vanishing algebra L(T) where T is a Borel

sot, L(S) C L(T) = L(5) = L(T) or L(T) = I1(a).

Theorem 4. Let S be a Borel subset of G, If L(S) is a non-
zero maximal venishing algebra then there is a maximal proper closed semie
group T C G such that L(8) = L(T).

Proof: Since L(S) ¢ L(D(S)) (proposition 12(v)), by the
maximality of L(S) we must have that L(D(S)) = Ll(G) or L(D(S)) = L(s).
By corollary 2 to theorem 1, D(S) is a semigroup, thus if L(D(S)) =
Ll(G) then D(S) = G by lemma 5. Hence by lemma L L(S) = L(D(s)) = 11(c)
vhich contradicts the maximality of L(S). Therefore we have L(S) =
L(D(S)). Let T be a maximal proper closed semigroup containing D(S),
then T is a Borel set and L(D(S)) C L(T) by proposition 12(iii), so
that L(S) C L(T). Since L(T) is a subalgebrgfﬁbﬁéaiﬁe: ’f(%)sznf€§3p)or
L(T) = I1(G) by the maximality of L(S)., If L(T) = I}(G) then T = G

by lemma 5 so that we must have L(S) = L(T).

Theorem 5. Let G be a compact group, and let S be a Borel
subset of G, If L(S) is a nonzero subalgebra of IY(G) then D(S)
is an open and closed subgroup and L(S) = L(D(S)).

Proof: If L(S) is a nonzero subalgebra then D(S) £ p and
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D(S) is therefore a closed and hence compact semigroup (corollary 2
to fheorem 1). Since D(S) C G, D(S) is a compact semigroup satis-
fying the left and right cancellation laws, and therefore is a group
((12)Chapter II, 9.16). Lemma 4 applies and we have L(S) = L(D(S)).
Since L(S) £ 10}, D(S) must contain a set of positive measure and

is therefore open (Chapter 1, §5.4).

Corollary 1. If G is compact then every venishing algebra

is a *-algebra.

Corollary 2. If G is compact then G is comnected if and

only if there are no proper nonzero vanishing algebras in Ll(G)Z

Theorem 6. (Beck, Corson and Simon (1)) Let S be a2 Borel
subsemigroup of a compact group G, If S contaiﬁs a set of nonzero finite
measure then S is an open and closed subgroup of G,

Proof: Since S is a semigroup, L(S) is an algebra and if
S contains a set of nonzero measure then L(S) £ {Oj'; Thus by
theorem 5, D(S) is an open and closed subgroup of G and L(S) = L(D(S)).

By lemma 5, D(S) = S.

Remarks., Simon (21) proved theorem 3 for S a closed sub-
set of G. He obtained a weaker version of theorem 4 in the same
paper. (ef. 3.19, and 3120 of (21)). Theorem 5 and its corollaries
were also obtained by him with the restriction that G be abelian as

. well as compact. Theorem 44 can be used to strengthen another result



of Simon (22).

Theorem 7. (Simon)., Let S be a measurable semigroup of a
locally compact abelian group G, If L(S) is a maximal proper closed
subalgebra of Ll(G), then G is(isomorphic and homeomorphic to) either
a discrete subgroﬁp of the reals or the real line itself,

For a proof see (19) theorems 9.2.5 and 8.1.6.

Theorem 8, Let S be a Borel subset of a locally cémpact
abelian group G, If L(S) is a meximal proper closed subalgebra of
Ll(G), then G is (isomorphic and homeomorphic to) either a discrete
subgroup of thé reals or the real line itself, |

Proof: Since Ll(G) always contains a nonzero proper sub-
algebra, the maximality of L(S) implies that L(S) £ 0. By theorem
L, there is a closed (and therefore measurable) semigroup T such

that L(S) = L(T). Theorem 8 now follows from theorem 7 applied to T.
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CHAPTER IIIX

NORM DECREASING ISOMORPHISMS OF MEASURE ALGEBRAS

The main result (theorem 2) of this chapter concerns isomor-
phisms of measure algebras. The proof of this theorem requires a
characterization of the Dirac measures in M(G). This character-
jzation is given in Theorem 1. It should be noted that theorem 1
could be easily derived from a theorem of Wendel (24). It is only

for the sske of completeness that we have included an independent

proof,
Lemma ). Let X be a locally compact space and let n be a
measure in M(X). Then n is a Dirac measure if and only if {|u|] = 1

and |p(£)| = p({£]) for 211 £ in C, (X).

Proof: Clearly any Dirac measure satisfies the stated
properties. Now suppose p is such that {{u|| = 1 and {n(f)]| =
r({£]). Assume there are Xo1¥p € Supp(n), x, # ¥,- Since X is
locally compact there is a real valued f € C,(X) such that f(xo) <0,
£(y,) > 0. Clearly [f| + £>0, |f| ~£>0 ; and {f| + £ £ 0,
|f] - £ 4 0 on Supp(p). Therefore p positive implies p(|f|) > - nu(f),
and p(|f|) > p(f) so that n(|f]) > |p(f)| which is a contradiction. |
Thus Supp(wn) consists of a single point x. Since n is positive and

since ||n}| = 1 we have n = €.
64,
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Proposition 1. Let X be a locally compact space and let

R be in M(X), Then pn = Yex for some x in X and some complex number
Y, |y} = 1 if and only if |{p|{{ = 1 and [p(e)| = {pi({£]) for all
f in C,(X). -

Proof: M"If part": Let f ¢ C,(X) be such that f > 0, and
p(£) # 0. Put vp = |n{(£)/p(£), clearly |vg| = 1. Let g & Co(X),
g > 0 be such that {p|(g) = {p[(£), then

Ve, (T + 8) = 2{ul(f) = 2vpu(1),
and Yfp(f) = ng(g), so we have that
| Yf+g(l + Yf/\'g)}l(f) = 2ygp(f)
and hence |1 + Yf/Yg‘= 2 which means Yo = Yg' For any a > 0,

Y Yg so that v

ag = £ = Yg for any pair f,g ¢ Cz(X) with p(f) £ 0
and p(g) £ 0. Thus putting vy ='7} for some f ¢ C:(X) with pu(f) £ 0
we have Y{u|(f) = p(£) for any f ¢ Ct(X). Then by the linearity
of |p| and p we have y|p{(f) = p(£) for any f ¢ CO(X). Thus we
have shown that there is a y with |y| = 1 such that yip| = n.
Clearly {pi satisfies the conditions of lemma 1. Hence |p| is a
Dirac measure. |

To prove the "only if" part suppose that u € M(X) and there
is 2y, |v| =1 and an x in X such that p = Yeyx. Then
flnll = Ivllle d] = 1 and for any £ € Co(X), ()] = {v|[ex ()] =

£ = e (le]) = e dUL]) = [ye dUED) = IniCie]).

Theorem 1. Let G be a locally compact group and let p € M(G).
Then p = Ye, for some x in G and some complex number vy, ‘Y‘ =1

if and only if {{psx|| = ||A{]| for all A in M(G).
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Proof: () (ye ) (f) = v/J £(uv)de (w)dr(v) = v/ f(xv)di(v)

Yl(xf). Thus

e dl| = suplye A (£)] = sup|a( £)| = sup|A(£)] = {[al].
R T e T TR TH
(¢=). First observe that for any p € M(G), flwsa ]| = ||A]] for all
A in M(G) implies that {{n|{ = 1, because {|n|| = {‘p*ee‘i = 1‘6911 = 1.

Now let f ¢ K(G) and let m be the Haar measure on G, Then since
fm € M,(G) we have by hypothesis {|pxfm|| = ||fm||. Moreover
prfm € M, (G) and M,(G) is isometric to L'(G) (Chapter I, §5.3) so
that |{psfm|| = ||fu|| implies |{psf||; = ||£]];. Clearly
[fwrelly = 1 [y £(x) {dm(x)
= [ | J £(y=2x)an(y) |an(x)  (Chapter I, §5.3),
we have
I T £(y-1x)ap(y) {an(x) = | | £(x){dm(x)
= [|£(y=1x){dn(x) (by the left invariance of Haar measure)
= J{£(y=Yx) [am(x)Jd{p| (¥) - (since ||n|] = faln| () = 1)
Now using Fubinit!s theorem we obtain
HEG ) an(x)fdlul (7) = JI1£G™2x) [d]p] (y)an(x)
so that
F1F 2 50dr() [ante) = [F12Gm 50 [p] (1)) +eeererien(D)
Since for any f in K(G), |/fap| < J|f|d|u| always, for any x in G
£])

we have |n( -1f)l < Inl(} 1f‘). Now suppose |p( lf)l < {ni(
X - X~ x™

x 1

on some set of positive measure., Then
It Yy)ap(y) lam(x) < JH £ty Ydfn] (7)dn(x).
Replacing f by the function £” where £™ (x) = £(x~1) we see that (1)



is violated. Thus |u( _1f)] = {nl(| lf]) almost everywhere. Put
X x

since both sides of this equation are continuous, (Chapter I, §5.1),

equality holds everywhere. Putting x = e we have |u(f)| = lnldeD.

The theorem now follows from proposition 1.

Lemma 2. Let F and G be locally compact groups, a an iso-
morphism and homeomorphism of F onto G and y a continuous character
on F. Let T be the mapping of M(F) into M(G) defined by

T(e) = w(y(fe0)) A €H(E), £ € (0),
then T is an isometric *-isomorphism of M(F) onto M(G), and T is a
bicontinuous mapping of M(F) with the o(M(F),C (F))-topology onto
M(G) with the O(M(G) Co(G))~topology.

Proof: Let S be the mapping of Cy(G) into C,(F), defined
by Sf = y(foe). Clearly S is well defined and linear. Since |y| =
we have

(el = Hveeoad (| = [[£:al] = suple(@(x))| = sup|£(a(x))]
x4G a(x)éF

= |I£ll, since  is a homeomorphisn.

For any g € C,(F), goa~l ¢ Co(G) and Yoo~ is continuous so
that (Yea~1)(gea-l) ¢ Co(G). Furthermore, since

s(Yoorl) (gea-l) = y(((Foo1)(goa=1))-a) = v(Ve) = {v|e = &g
we have that S is onto, Let S! be the adjoint of S. Then St is an
isometry of M(F) onto M(G), and S' is a bicontinuous mapping of M(F)g,
onto M(G)y (Chapter 1, §1.6). For any nu ¢ M(F) and £ € C,(G) we have

Stu(f) = p(Sf) = n(y(fea)) = Tr(f)

hence S' = T so we have that T is an isometry of M(F) onto M(G), To
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show T(Asp) = TA*Tp for p,A € M(F), let £ € C_(G), then we have
(T(p))(£) = (Axp) (y(foa))
= AR(y(fea)), where (L) (x) = p(f).
On the other hand
(DT (£) = TATR(E))
= A(y(Ta(f)ea)).
Thus to show that T(A+p) = TA*Tp it suffices to show that T(y(foa)) =
v(Ta(f)ea)., For x ¢ F we have

R(y(fea)){x)

p{xYy(fea))

Y(xIp(v(,(fea)))  since xy(y) = v(x)v(y)

1

y(x)p(y(a(x)f)oa)) since O is an isomorphisn

= Y()TR(g () ) by the definition of T
= Y(x)Tp(f)(a(x)) where Ta(£)(y) = Ta(yf) for y in G
= Y{x)(Tp(£)oa) (x)

- and thus p(y(fea)) = y(Tp(f)ea).

To’qomplete the proof it remains to show that Tp* = (Tp)*. Let
B € M(F), £ € Co(G), then

Tp*(£) = p*(y(foa)) = n((v(fea))").
But  (v(£e0))(x) = v(xD)f(a(x"1)) = yE£((a(x))™) = y(x) (£=a)(x).

Thus (Tp*)(fj = wy(foa)) = T(E™) = (Tp)*(£), d.e. Tp* = (Tp)*.

Theoren 2 below is a converse to this theorem; that every

norm decreasing isomorphism of M(F) onto M(G) has the form of T.

Lemma 3. Let F, G be locally compact groups and let T be a

nom decreasing isomorphism of M(F) onto M(G). Then for each x in F



[{Texqul] = |{pl] for all p in M(G).
Proof: Let Ly be the operator on M(G) defined by L,y =
Te,*p. To show that Lx'l = Lx'l we note that T is a homomorphism

of M(F) onto M(G) and therefore it maps the unit of M(F) to the

unit of M(G). Moreover
L -1L p= (Te 1 *Tsx)*p = T(s 1 ex)*p = Te *p = 1.
Hence Lx'le = I. Similarly LXLx-l = I. Now since T is nomrm

decreasing,
HLgnl | = HTegrnll < [Teyd| l{uli {nll
and  |{B,"Ml = Hze yerll < Hre 01 Heil < Tl

Hence Ly and L are nom decreasing operators on M(G). If p is

x-1
such that I!pr]‘ < {{n{{, then

eld = 11 _yEnlt < il ] < [l o contradiction,
Then we must have

Higll = Hndl dcee {Teemi] = [l for each w € M(G).

We now give the main result of this chapter.

Theorem 2. Let F and G be locally compactt groups and let

T be a nom decreasing isomorphism of M(F) onto M(G). Then there is

an isomorphism and homeomorphism a of F onto G, and a continuous
character vy on F such that
(TR)(£) = ply(fea)) ® € M(F), £ € Co(G).
Proof: For x ¢ F, we have by lemma 3, ‘]Tex*pli = {1l
for all p € M(G). Thus by theorem 1, there is a complex number

v(x) depending upon x with |y(x)| = 1, and an element a(x) of G
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such that Te, = Y(x)sa(x). Consider the mappings
Yt X = y(x) and O : X - a(x).
We first show that o is a homomorphism of F into G, and y is a homomor
phism of F into the complex numbsrs of absolute value 1.
Clearly Texy = Y(xy)ea(xy)’

and Te *Te = Y(X)Y(Y)Ea(x)*ca(y) = Y(X)Y(y)ecr.(x)oa(y)'

y

Since Tex*Ta

y

= T(ex*ey) = Texy’ we have

v(xy)e y = y(x)v(y)e

a(xy a(x)aly)’ |
and since the Dirac measure are pairwise linearly independent, we have

Y(xy) = Y(x)v(y)
and a(xy) = a(x)a(y).
Since T is an isomorphism, T maps the unit of M(F) onto the unit of
M(G), so that |
y(e) =1
and afe) = e!
where e (resp., e') is the unit of F (resp. G). Thus & is a homorphism
of F into G, and y is a homomorphism of F into the complex numbers,
We now show that y is continuocus. Since‘Tex = Y(x)sa(x) we
have for f ¢ c:(x), [Te (£)] = {y(x)iiea(x)(f)t = ea(x)(f). Consequently
Y(x)ea(x)(f) = Y(x)]Tex(f)! = Tsx(f). Thus it suffices to show that .
the mapping x - Tex(f) is continuous at e in F where f is such
that Te (f) 4 0. By the definition of the weak topology the mapping
Te, —> Tex(f) is continuous from M(G); to C (the complex numbers),
The mapping x - ¢, is continuous from F to Fg by proposition 1,

of Chapter II and the mapping ¢ - Te, 15 continuous from on into

~ M(G), by proposition 11 of Chapter II. Since by corollary 2 to prop-



7.
osition 8 of Chapter II, Fgo = Fg, we have that y is continuous.,
The contimuity of « follows by considering the mappings.

X - £y =5 Tex = y(x)ea(x) > £y(x) -> a(x) .

The only mapping we have to check is the mapping Y(X)Sa(x) -» Eq(x)*
of a subset of M(G)g into M(G)g . But since this mapping is multi-
plication by the coniinuous character x - ?Z;B, it is continuous,
Thus o is contimuous since it may be written as a composite of
continuous mappings., Moreover since each of the above mappings is
one to one we have that a is a continuous one to one homomorphism,
Now consider T=L. By the open mapping theorem ((1%4) Chapter 3, §2)
7-1 is a bounded isomorphism of M(G) onto M(F). Thus proposition 11
of Chapter II applies and we have that €a(x) = T'lea(x) = §Z;3€x is
continuous from Ggo into M(F)g. The continuity of a~1 restricted

to o(F) now follows by considering the mappings

lea(x) = ;Z;BSX > £x =» X,

a(x) - ga(x) = T=
Thus F is homeomorphic to a(F) and since a locally compact group is
complete (Chapter I, §2.3) a(F) is complete and therefore closed.
Now suppose a is not onto, then there is a y in G\ a(F)
and a compact neighborhood V of y such that VNa(F) = § because a(F)
is closed., Since T’ley is in M(F), by proposition 9 of Chapter II,

there is a net (pj : j € J) such that

n.
- 5 .
Pj = Zi=l bi,jexi,j v X4 3 ¢F bi,j complex,

sl | < [z-tey |

and Pj SO, T-lsy. Thus by proposition 11 of Chapter II, ij 25 ¢

Note that Tey = Y(x)sa(x) (shown above) implies

y
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"
ij = Zi=1 bi'jY(xi,j)ea(xi,j)

Since G is locally compact there is a function f in Cy(G) such that
f(y) = 1 and £(G\NV) = 0 and 0 < f(x) <1 for all x ¢ G.

Since ij Zs ey We have

n.
J

But since a(x ;) ¢ a(F)N(GNV), Sa(xi,j)(f) = flalx; 3)) = O,
so that £(y) = 0, a contradiction. Thus a is onto.

A1l that remains now is to establish the formula

(TR)(£) = p(y(£eq)).

Let Ty be the mapping defined by

(Tp)(£) = p(y(fea)) . p € M(F) , £ € Cy(G).
By lemma 2 we have that Ty is an isomorphism and isometry from M(F)
onto M(G). Hence in view of proposition 11 of Chapter II, Ty is
continuous on norm bounded sets from M(F)So onto M(G)g. Now observe
that

Tlex(f)

ex(Y(foa)) = Y(x)f(a(x)) = v(x)ey(x)(£)
Tex(f)

Thus T and T; coincide on F®, and by proposition 9 of Chapter II
each p € M(F) is a so-adherence point of a norm bounded set of linear
combinations of Dirac measures so we have T = Ty. This completes

the proof.

*

Corollary 1. Every normm decreasing isomorphism of M(F)

onto M(G) is an isometric *-isomorphisnm.
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Proof: This follows from lemma 2 and the above theorsm.

Corollary 2. Let T be a norm decreasing isomorphism of
M(F) onto M(G), then T is a bicontinuous mapping of M(F) with the
&(4(F),Co(F))-topology onto M(G) with the o(¥(G),Co(G))~topology.

Proof: This follows from lemma 2 and the above theorem.

Corollary 3. Each nora decreasing isomorphism of M(F)
onto M(G) maps M (F) onto M,(G).

Proof: Let m (resp. my) be the left invariant Haar measure
on F (resp. G) and let a(m) be the measure defined by a(m)(f) =
m(foa), £ € K(G) vhere 0 is the homomorphism of F onto‘G given in
theorem 2. Then a(m) is a left invariant Haar measure consequently
o(m) = cmy for some ¢ > 0. Now let A € M,(F) and put h = d\/dm,
then h € Ll(Fj and hoat'é L1(G). For £ ¢ C4(G)

TA(L) = Thn(f) = hm(y(fea)) = m(yh(fea))

CMl((Y’da-l)(h°a.l)f).ooooooooonooooo.oooooooooo(l)

]

So that TA € Mz(G). The reverse inclusion follows similarly by
considering T-1, since it is an isométric isomorphism of M(G) onto
M(F), (Corollary 1.).

Corollary 4., M,(G) is invariant under norm decreasing
automorphisms.of M(G).

The following example shows that a *-isomorphism of M(F)

onto M(G) need not be norm decreasing., Let F and G be finite
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abelian groups of order n, and suppose that F and G are not iso-
morphic. Let Y1 YoreeoeoeecccceYy be the n characters of F and
define functions fj. J=1, 2,i00eseesen on F by

£5(x) = (I/n)yy(x) , x €T

Proposition 2. fi*fy = 0 for j £ k; £.xf: = £, for all

J s Bl

j, and f’S = fjo

Proof': (fj*fk)(x)

]

gyéij(Y)fk(Y'lX)

CLRRRACANC S

1/n x)((1/n)Z . \ (
| A/ (AmE v T)
So that the first two assertions follow from the well known ortho-

gonality relations for characters on abelian groups.

Since f’g(x) = fj(x"l) = (1/n)Yj(x'1) = (1/n)?j“(‘£) = fj(x)

the last assertion follows.

Let Yi’ Yé,.....Y; be the n characters on G, and define

functions g5 J=1, 2yee0een by

8j(x) = (I/H)YB(X) x €G
It follows as above that E4%8) = 0 for j £ k, B5*85 = By and
* = .
%578

| Since M(F) (resp. M(G)) has dimension n, it follows from
~ the above that (fj : 3=1, 2,00een) (resp. (gj : j=1, 2,,eeen))
algebraically generate M(F) (resp.M(G)). Thus the mapping T
defined by Tfj = g4 can be extended to an isomorphism of M(F) onto
| M(G). We now show that T is a *~isomorphism. Let £ ¢ M(F), then
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£ - z;‘cjfj , end Tf = Zesg,. Thus
Tf* = T(Ecjfj)* = T(EEjfj) = Zéjgj = Zéjg3 = (chgj)* = (Tf)*
By theorem 2, if T were nom decreasing then F and G would be iso-
morphic.
This example was first considered by Wendel (23) in a slightly
different context, |

One can however show the following:

Proposition 3. If T is a *-iscmorphism of M(F¥) onto M(G), |
then T is bounded,.

Proof: Lét*(L,‘L?‘(G))»be the left regular representation of
M(G) (Chapter I, §7.2). Since LeT is a *-representation of M(F) by
operators on a Hilbert space, LeT is 1bounded ((12) Chapter V, 21.22)
so that if p, 2o p and Tp, 25 A, then

L(Tp) = 1rilm(L°T)(}1n) = L(lng}ln) = L(d).
Since L 45 1 : 1, Tn = A i.e. the graph of T is closed so that T is

continuous by the closed graph theorem ((1%4) Chapter 3, §2).

As a further consequence we shall derive a theorem dus to
Wendel (24) on isomorphisms of Ll(F). First we need the following

lemma,

Lemma 4, Let T be & bounded isomorphism of M,(F) onto M,(G).
Then there 1s a unique bounded isomorphism T of M(F) onto M(G) which
extends T. Moreover ||T{| = {|T{].

Proof: Clearly T is continuous as a mapping of Ma(F)so cnto
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Mg(G)goe Since M(G)so is quasi-complete (Chapter I, §5.3) and since
each n in M(F) is a so-adherence point of a bounded set in M, (F)
(Chapter II proposition 10), T has a unique extension T to a contin.
uous linear mapping of M(F)g, onto M(G)g, ((2) Chapitre III, 52, No. 5).

To show that T(p*A) = Tp*TA for w, A in M(F), let (pj : Jj € J)
and (A : k € K) be nets in My(F) such that Ry S0, p and Ay 52, 2.
Then since multiplication is sepérately continuous in M(F)g, (Chapter
II proposition 6) we have

P\ = 13m(1§m Ry*AK), i
Therefore the so-continuity of T implies that

T(psd) = 1%.\“(11-‘?11 T(Pj*)‘k))'

Since T = T on Ma(F) we have ‘—I‘-(pj*}\k) = T'pj*TJLk . Now using the fact
that multiplication is separately continuous in M(G)g, we have

13:»(1@ Tuy*TAy) = TpxTA.

Combining the above we have ?r‘(ﬁ*a) = TpsTA.

To show that T is one-one, let A, p € M(F) and suppose T‘p =
TA. If X ¢4 p then there is a v in M_(F) such that A*w £ psu. Then =
T(A*Y) = TA*T¥ = Tp*T» = T(p*») which contradicts the assertion that T
is an isomorphism because A*Y and p*¥ are in My(F). Therefore T is one-
one.

We now show that T is onto, Let p' € M(G), by propésition 10
of chapter II there is a net (ps : 3 €J) in M (G) such that psf—o—) nt
and Hp.3“ < ||p*{|. By the open mapping theorem ((14) Chapter 3, § 2)
T-1 is bounded, so that ('r"]w,l.'j : J € J) is a bounded Cauchy net in
Ma(F)so. Since M(F)so'is quasi-complete there is a p in M(F) such

 that T'1p3 22> . Then NT"1p}) 225 Ty so that
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Tu=np' and T is onto.

We next show |{T{| = {|T|{. Cleaxdy [|T{| < ||T||. To show
the reverse inequality let p € M(F) be given., By proposition 10 of
Chapter II there is a net (pj : j € J) in M (F) such that M3 50, n
and lluj‘| < [{n{] so that ij 59, Tp. Since the mapping A —» {1&[1

is lower semicontimuous in the so-topology (corollary 1 to proposition
8), wo have ||Tal| < 1am st |13l < 1am st (7] {1l < Hzl{]Inl].
Therefore ||T|| < {|T|| and hence {{T|{| = ilTl‘.

Finally we show that T is unique as a norm bounded iscmorphism
which extends T, Let S be any norm bounded isomorphism of M(F).onto
M(G) such that S = T on M,(F). By proposition 11 of Chapter II, S
and T are continuous on norm bounded sets as a mapping of M(F)so onto
M(G)g. Since each p in M(F) is an so-adherence point of a nom bound.
ed net in M,(F) (proposition 10 of Chapter II) we have Sp = Tw , ie.
S=T. |

Theorem 3. (Wendel) Let T be a norm decreasing isomorphism
of Ll(F) onto Ll(G). Then there is a homeomorphism and isomorphism
a of F onto G, a continuous character vy on G and a constant ¢ such

that

Tg = cygea=t g ¢ LX(F)

Proof: Letm (resp. ml) be the Haar messure on F (resP. G).
For A in Ma(F) let %% be the Radon-Nikodym derivative of A with res-
pect to m. Then the mapping A — %% is an isometric *-isomorphism
of M,(F) onto L1(F) (Chapter I, §5.3). If h € L1(G) then hmy is in

M, (G) and the mapping h => hmy is an isometric *~isomorphism of 11(G)
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onto M,(G). Define a mapping S of M,(F) into M (G) by S = (T%%)ml,
then S is a nomm decreasing isomorphism of M, (F) onto M,(G) since it
is the composite of A = g% - T%% - (T%%)ml ; the first and last of
these are isometriesand the middle mapping is nomm decreasing. By
lemma 4, S has a unique extension S to a nomm decreasing isomorphism
of M(F) onto M(G). Let g ¢ 11(F), and consider the measure gn. By
theorem 2, Sgn(f) = gn(y'(fea)) for all £ & C,(G), where y! is a
continuous character on F and o is an isomorphism and homeomorphism
of F onto G given by lemma 2. Put y = y'o, define ¢ as in corollary
3 of theorem 2, then (1) of corollary 3 becomes

Sgn = CY(gca‘l)ml = (Tg)mq

Therefore Tg = cygca“l, and this proves the theorenm.

Remark. Recently Greenleaf (9) has shown that if T is a
norm decreasing homomorphism (not necessarily an isomorphism) of
Ma(F) onto M (G) then there is a closed normal subgroup F, €F,
an isometric isomorxphism Ty of Ma(F/Fo) onfo M,(G) and a norm decreas-
ing homorphism T, of M,(F) onto M,(F/F,) such that T = T1°75.

T, is the mapping defined by Ton(f) = p(fem),p € My(F) , £ ¢ Co(F/Fo)
and 1 is the canonical map F < F/Fo.

To show that the analogous result does not hold for nom
decreasing homomorphisms of M(F) onto M(G), consider the example
following proposition 11 of Chapter II. Here G is the group having
only 1 element, F is any nondiscrete locally compact group and T

is the mapping defined by

™= T w{xle, w4 H(F)
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We have shown that T is a homomorphism and that {{T{]| <1 (see the
remark after proposition 11 of Chapter II). If there were a closed
normal subgroup Fy € F and an isometric isomorphism Ty of M(F/F,)

onto M(G), then F/Fo must be isomorphic to G by theorem 2, consequent-
1y F‘/Fo consists of a single element so that Fy = F. If T, is the
mapping of M(G) given Top(1) = p(lem) where T is the canonical map:

F -5 F/F,, then T, has the form Top = p(F)e, for p ¢ M(F), If p is-

a continuous measure such that p(F) £ 0, then Tp = 0, Top £ 0 and

since Ty is an isometry TjeTou £ 0. Thus T # ToTp.



CHAPTER IV

CHARACTERIZATIONS OF M(G)

In this chapter we show that certain of the properties of
M(G) which we developed in the precseding parts of this work char-
acterizes those Banach algebras which are isometrically isomorphiec

to M(G) for some locally compact group G.

Definitions., An element x of a Banach algebra A is called
a left (resp. right) inner translator of A if the mapping ¥ —» Xy
(resp. y = yx) is an isometry of A onto itself., If x is both a
left and right inner translator of A, then x is said to be an inner.
translator,

An element z of A is called a left (resp. right) annihilator

of A if zx = 0 (resp. xz = 0).for all x in A.

Remarks, It is clear that the product of two left (resp.
right) inner translators is a left (resp. right) inner translator.
The zero element is never>a left or right imner translator.

If a Banach algebra has a unit u, then we shall always re-

quire ||u]| = 1. Thus if x is left (resp. right) inner translator

Hxll = {=ufl = {|uf] = 1.
80,



Proposition 1. If a Banach algebra A has a left inner trans-

lator x, and if 0 is the only left annihilator of A, then A has a

unit u, x=1 exists, and X, x~1 are inner translators.

Proof:

Let Ty be the mapping y -» xy. By hypothesis Tx

is an isometry of A onto itself, hence T;l exists, Let u = T;lx,

then for any y € A, uy = y so that u is a left unit, Fory, z € A

we have

(zu - 2)y = zT;1 Tu¥ = 2y = 0, so that zu - 2 is a left

annihilator.

Thus by hypothesis we have zu = 2z for a1l z € 4, so

1

that u 1s also a right unit and hence a unit, Put y = T; u, then

1

=T ux=1u
yx x

and Xy = xTx u

1 -1 -1
TxTx u = u, Hence y = x"",

Finally to show that x and x-1 are inner translators we

observe the following. Since Ty is an isometry of A onto itself,

T; is also an isometry of A onto itself and To' = T ., so that
x-1 is a left inner translator. Since {lTx1| =1, wz have

Hxll = [ITf] = 1 so that for each y in A, ||yx|| < {|y{]. sim-
larly ||x=1|{ = 3 and ||yx=1|| < {|y]|. Now suppose x is not a

right inner translator, that means for some y, ||yx{| < {|y|| since

¥ - yx is onto. But then ||y|| = [|yx"Y| < [[yx|] < |I5l] 2

contradiction. Hence x is an inner translator. Similarly for

x‘l.

Corollary 1. If a Banach algebra A has an inner translator,

X, then A has a unit, x-1 exists, and x~1 is an inner translator of A.

Proof:

If A has an inner translator, then 0 is the only

81. .
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left annihilator. Hence the corollary follows from proposition 1.

Corollary 2. If A is a semi-simple Banach algebra, and if
A has a left inner translator x, then A has a unit u, x~1 exists,
and x and x~! are inner translators.

Proof: If y is a left annihilator, then for any scalar a
and any x in A, Oy + Xy has -(ay + Xy) as a quasi-inverse, thus by
Chapter I, §6.2, y is in the Jacobson radical and hence y = 0 by
hypothesis, Therefore O is the only left ammihilator so that the

corollary follows from proposition 1.

Proposition 2. Let A be a Banach algebra. A neéessany

and sufficient condition for any element x of A to be an inner trans-
lator of A is that A has a unit u, x-1 exists and ||{x]| <1,
2] < 1. |
Proof: Necessity follows from corollary 1 above and the
remark preceeding proposition 1. To prove sufficiency, note that
since x-1 exists, the mappings y = yx and y - Xy are one-one and
onto, If the first mapping, say,-is not an isometry, there is a
¥ in A such that {|xy|| < ||y[|. Hence ||y|| = |Ix"Lxy|| < [Ixwl| < |{xl!
which is a contradiction. Thus |[xy|| = ||y]| and similarly ||yx{| =

{{yl|. Therefore x is an inner translator.

Corollary. Let A and B be Banach algebras and suppose T

is a norm decreasing homomorphism of A onto B, If x is an imner



translator of A, then Tx is an inner translator of B.

Proof: By proposition 2, A has a unit u, x-1 exists.and
[x{{ <1, {|x1|{| £ 1. Since T is a homomorphism onto, Tu is the
unit in B and (Tx)~1 = Tx-1. Since |{T{| <1 we have ||Tx|| <1,
and {{(tx)-1{{ = |{Tx"}{| < {{x~}{{ < 1. Thus by proposition 2,

Tx is an inner translator.

Proposition 3., Let A be a Banach algebra, paving 0 as its

only left annihilator and let x be a left inner translator of A.
Then x is an extreme point of the unit ball of A,

Proof: By proposition 1l above, A has a unit u, x=1 exists,
and ]‘x'lii < 1 by proposition 2. Now suppose

X

ay+ (L-a)z, 0<a<l [{yff <1 , {fz]] g1
then u= ax=ly + (1 - a)x~1lz

and  |fxlyl| <1, flxlef 22

Now by Theorem 9, Chapter 1, u is an extreme point of the unit ball

so that we must have x = y = 2, i.e. x is an extreme point.

Remark., In an arbitrary Banach algebra an extreme point of
the unit ball need not be an inner translator. We now give an example
of a Banach .algebra having a unit and an extreme point of the unit
ball which is not an‘inner translator,

Let H be an infinite dimensional separable Hilbert space, and
let (en tn=1, 2,.esss) be an orthonormal basis in H, We define a
linear operator T on H by means of the equations

Ten= en+1 n = 1, 2, 3,...00-0



Let ( , ) denote the inner product in H. For x € H we have ((2)
Chapitre V, §2 No. 3)

17 = e %,
Therefore

{|Tx] ‘z 5:‘;1' (Tx,en)12

5] (x,T*ey) | %)

i}

Note that T* satisfies the equations

Tre, = o 1 if D=2, 3eeens.
T*ep = O,
Thus A
l‘Tinz = Z;{(x,en_l)]z :
= f;‘(x,en)lz
= |1xl(®
Consequently ||T|{ = 1.

Let B(H) be the Banach.*-algebra of all bounded linear op~
erators on H., By the above we have that T is an element of the unit
ball of B(H). We now show that T is an extreme point of the unit ball
of B(H). For this, suppose that

T=aR+ (1 -a)s , 0<a<1l., {|Rl|{<2 , [Isl| <1
Note that T*T = I (the wiit of B(H)). Therefore

- I=al*R+ (1-a)I*s,
Now  [{T*RI| < (TR = HTHIIRII 21 and [{T*8]| <1, we
have I = T*R = T*S because I is an extreme point of the unit ball
(Chapter I, theorem 9). We also have
T* = aR* 4+ (1 - a)s*

which gives
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T*R = aR*R + (1 -~ a)S*R
Since I = T*R and I is an extreme point of the unit ball, we have

I = R*R = S*R,
Consequently since we also have T*R = I = R*T

| R*R - R*TTfR =0

Thus R*(I - TT*)R = O,
Observe that

(I - TT*)*(I - TT*) = I - TT*
So that

((T - TT*)R)*(I - TT*)R = R*(I - TT*)R = 0.
In virtue of the equality |[V*V|| = [{V||? for any V in B(H) we must
have

{I - TT*)R = 0.
Therefore R = TT*R = T, So that we have R = T = S which shows that
T is an extreme point., To show that T is not an inner traenslator
let P be the operator defined by the equations

Pep = ey and Pe, = 0 =2, 300000
Then P is in B(H) and PT = O. Therefore T is not a right inner trans-
lator and hence not an inner translator. Thus the Banach *-algebra

B(H) is the desired example.

Lemma 1, Let A be a Banach algebra and suppose that A
satisfies the conditions,

(1) 0 is the only left annihilator of A

(2) each extreme point of the unit ball S of A is a left

inner translator.



Then the extreme points S€ of S form a group.

Proof: Conditions (1), (2) and proposition 3 imply that
an element of A is a left inner translator if and only if it is an
extreme point of the unit ball. The product of left inner trans-
lators is a left inner traﬁslator and this together with proposition
1 implies that the set of all left inner translators is closed under
multiplication snd inverses, Clearly u is a left inner translator ahd

thus s® is a group.

Theorem 1, Let A be a Banach algebra, S its unit ball and
S® the set of extreme points of S. Suppose that

(1) there is a Banach space E sueh that A is the dual of E,

(2) multiplication is g(A,E)-continuous in each variable
separately,

(3) 0 is the only left annihilator of A,

(4) each x in SE is a left inner translator of A4,

(5) SE&yU{0} is o(A,E)=-closed,

(6) there is a nonzerc multiplicative linear functional p
on A,

(7) let G = {x € s¢ : p(x) = l} where p is the nonzero multi-
plicative linear functional given by (6). Then

(1) for each f in E, there is a g in E.such that x(f) = x(g)
for each x in G, and A

(i1) for f and g in E there is an h..in E such that x(h) =
x(£)x(g).

Then G is a locally compact group and A is isometric and
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isomorphic to'M(G). If S® is closed then G is compact. G is unique
to within isomorphism and homeomorphism, Conversely if G is a locally
compact group then M(G) satisfies (1) to (7).

Proof: Conditions (3), (4) and lemma 1 imply that St is a
group and A has a unit u (Proposition 1). Since p is multiplicative,
it follows that G is a subgroup of S®, We divide the proof into a

number of assertions.

I. For any x ¢ S%, p(x) = p(x~1) and |p(x){ = 1.
Since p is a nonzero multiplicative linear functional on
a Banach algebra with a unit u we have p(u) = 1 and {lp]i = 1 (Chapter
I, §6). Let x € S®, then |p(x)| <1 and {p(x-1)| < 1.' If for some
x € S® we have |p(x)] <1
1=p) = [pGx-1x)|= [p(xp(x)| = [p(xDp(x)] <1,
which is an absurdity, thus we must have |p(x)| = 1. Then

p(x)p(x) = 1 = p(u) = p(x~1x) = p(x~1)p(x) we also have p(x) = p(x~1).

Let C be the complex numbers and Z the complex numbers of
absolute value 1, ILet g be the mapping ofCxA onto A given by

gla,x) = ax, and let gy be its restriction to Z x G.

II. g; is a homeomorphisnm of Z x G onto SE,

If x is an element of S%, and a € Z then axis an extreme point
so that g; maps Z x G into Sé. Let x ¢ 5% then p(x) £ 0, x/p(x) ¢ G,
and p(x) € Z by I, so that g, is onto. To show that g, is one-one,

let x,y € G, a,b € Z and suppose ax = by, then
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é = ap(x) = p(ax) = p(by) = bp(y) = b.

Hence x = y. Since g is continuous and open so is gy.

III, G is a locally éompact group, and if S€ is @(A,E)-closed, G
is compact., |

By (5), S®U{0} is a o(A,E)-closed subset of the unit ball
S, hence 58U {0} is 0(A,E)-compact since S is, Therefore S€ is
locally compact. By II Z x G is homeomorphic to Se and this means
that G is locally compact. If S% is G(A,E)-closed then Z x G is
homeomorphic to a compact Space and consequently G is compact. By
(2) multiplication is weakly continuocus in each variable separately
so that G is a iocally compact Fausdorff semitopologicél group., It
is known (cf. Chapter I, §2) that a locally compact semitopological

group is a topological group. Thus G is a locally compact group.

For £ ¢ E, let T be the function on G defined by T(x) = x(£f),

vhere x ¢ G.

IV, f - T is a nom decreasing linear mapping of E into Co(G).

It is clear that this mapping is linear and since ||x|] <1,
we have |T(x)| < {|f|]| so that T is bounded, and ||¥{]| = sup iif(x)] :
x ¢ é}g {{£]], consequently £ - F is nom decreasing. By the def-
inition of the weak topology we have that f is continuous. To show
that f is in C,(G), first note that if S® is compact, G is compact
and hence CO(G) = C(G) so that f ¢ Co(G). If G is not compact, then

% is not compact so that 0 is a o(A,E)-adherence point of S® since



s®U{0} is o(A,E)-compact. Now let € > 0O be given and suppose f £ 0.
Clearly U={x ¢ A : [x(£)| < e}N\(s€U{0}) is an open G(A,E)-neigh-
borhood of 0 in S®UL0} so that W = S?-U is compact in S%, Since

Z x G is homeomorphic to SE, gil(W) is compact in Z x G, Let K be
the image of g11(W) by the projection mapping Z x G =» G, then K is
compact in G. Thus for f ¢ E, we have found a compact set K such

that |F(x)| < & for x £ K because GNK ¢ U,

V. Let E be the image of E in C,(G) under the mapping f -» T. £
is dense in C,(G). |

If for x,y € G, ?(x) = f(y) for 211 ¢ £ then x(f) = y(f)
for all £ ( B, hence X =y, so that E separates the pointé of G,
If x ¢ G, then x £ 0, so there is an f ¢ E such that x(f) £ 0.
i,e. f(x) £ 6. Thus given x € G, we can find an T ¢ E such that
F(x) 4 0. PFurther, for any £ € E, by (7)(i), there is a g ¢ E such
that x(g) = ;?E). i.e, g2(x) = ?z;s‘for all x € G. -By (?)(ii)'ﬁ
is a subalgebra of C,(G). Thus E is a subalgebra of C4(G) which
separates the points of G, does not vanish at any point of G, and
is closed under complex conjugation, hence the Stone-Weierstrass

theorem applies, and we may conclude that E is dense in CO(G).

Let T be the adjoint of the mapping of £ — F. i.e. =
(L) = r(F) for p € Co(G)! = M(G) and £ € E. Note that Te, = x,

so that by the linearity of T we have

T(L‘;aiexi) T T P PP 60

89.



90,

VI. T is a norm decreasing one-one linear mapping of M(G) into A,
and T is continucus.as a mapping of M(G)s into Aj.
This follows from IV, V, and the general properties of ad-

joint mappings (ef.Chatper I, §1.6).

Lot S be the unit ball of M(G).
VII. (SM)o is homeomorphic to Sy, and T is an isometry of M(G) onto
A, |

Since (SM)G is compact, and T is one~one and continuous,
to prove the first assertion, it suffices to show that T(SM) =S
By VI, T(SM) € 5 so it suffices to show that T(SM) 2 S. For this
let x € S, then since S is convex and g(4,E)~compact, the Krein.
Milman theorem (Chapter:l, §1.1) applies and there is a net

.G J
(xJ : j € J) such that x x and X: 2 aijlaw‘nere

J JT 33
}:nja. s =1, a, > 0 and the x are extreme points(hence are in s%)
T-173,3° 7 "1, i

' J

of the unit ball in A, Putting y, j=% / p(x ), we have y, . ¢ G
14

i,J i3

for any i,j. Considering

n; '
By = z9Ja p( e we see that p.: is an element of
i1 1 J |

1,3”%y, 4

the unit ball ¥ of M(G) for each j and Tpy = X by (*). Since st

is weakly compact, there is a pn ¢ s¥ and there is a subnet (pj(i)) < (pj)
such that R3(4) Z5 p, Since T is continuous as a map of M(G)4 into

A, we have that ij(i) Zy Ty, (xj(i)) < (xj), and ij(i) = xj(i) 2, x,
it follows that Tp = x. This shows T maps st onto S and hence is a

- homeomorphism because s and s are compact, Hence T maps M(G) onto A,
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To show that T is an is§metry suppose there is a p € M(G)
such that ‘iTp]i < ||pll. since st is mapped onto S and T is one-
to-one, {|T"1|| 1. Thus {{nl| = {|7tn|| < {ITe{] < {|nll, =
contradiction. ‘

Finally in order to show that A is isometric and isomorphic

to M(G), we have to show the following:

VIII. For p,A € M(G), T(p*d) = TpTA

First let y,A € V (the linear span of the Dirac measures).,

Then
n m -
B = Zi=1aiexi and A= Ei:lbieyi where a4,bjare complex
numbers, We have
n m
A= o o _abe x_ =5 %, _a;b.e (by proposite-
s R e RN T S R

ion 2 of Chapter I). Thus using (*)

T(P*A) - 2:=1 ijzlaibjxiyj = (Eaixi)(Xbiyi) = (T}l)(T&)..o.ooooooo(i)

Now let p, A & M(G) then by corollary 1 to proposition U4 there
are nets (pj : J€J), (A : k € K) in V such that B 2. and Ay Z5 .
Then since multiplication in M(G) is separately weakly continuous,
(proposition 2, Chapter II) we have

pAA = 1§m (llign Py*h)e

Since T is continuous M(G)g; = A, we have

T(p*X)

im i . = i
lj T (lim pJ*kk) = 1§m (lim T(pj*kk))

i

1§m (lim ijTkk) by the (%) above. By hypothesis
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(2) of the theorem multiplication in A is weakly continuous in each
variable separately, thus

lgm(lim ijTAk) = lém TpsTA = TpTA which proves the assertion.

Thus A is isometric and isomrophic to M(G). By theorem 2 of
Chapter III, G is unique to within isomoxphism and homeomorphism,
This completes the proof of the first part of the theorem.

For the converse part of the theorem let G be a locally compact
group. Then we have in our previous notation A = M(G), E = C,(G).
Clearly M(G) satisfies (1) and (3). By proposition 2 of Chapter II,
M(G) satisfies (2). Lef Z be the complex numbers of absolute value 1,
then 2G% is the set of extreme points of the unit sphere of M(G)
(Chapter 1, §3, theorem 6). Thus theorem 1 of Chapter III shows that
M(G) satisfies (4)., If G is compact then GF is G(M(G);CO(G))-compactJ
so that ZG%® = S% is a(1(G),Co(G))~compact, since it is the continuous
image of the compact set Z x G; and therefore (5) is satisfied, because
o(A,E) is Hausdorff., If G is not compact, let G be the one point
compactification of G, If (xj : jJ €J) is 2 net in G which converges
tow, then f(x5) - O for each £ ¢ Co(G) so that x4 -2 0. Thus the
mapping x -» €y has a continuous extension to G and this extension is
one to one (because 0 f G®) and therefore a homeomorphism of G onto
(65 0})g. Thus (GEU{0}), is compact, so that Z(GSU(0}); = s®v {0}
is compact, and therefore g(M(G),Cy(G)))-closed because o(M(G),C,(G))
is Hausdorff, and (5) is satisfied.

We now show that.(6) & (7) are satisfied. For this define a

linear functional p by p(n) = p(G) = fdp. Now
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(P ) (G) = JSdpda (by Chapter I, §5.1)

= JdpSdx by Fubinits theorem

= p(G)A(G)
So that p(p#A) = p(p)p(A). Note that G® ={p € S® : p(p) = 1}, which
corresponds to G in 7( 1). Since f € C,(G) = f (the complex conjugate
of f) is in C4(G), it follows that for any f € Co(@), 1 € G°, p(f‘) .—._}1’(?)
because p is real, Thus choosing f for g, 7(i) is satisfied, 7(ii) is
satisfied since C,(G) is an algebra,

This completes the proof of the theorem.

The next ‘proposition is due to Greenleaf, and has appeared in

(10) in a less general fomrm,

Proposition 4. Let E be 2 Banach space and let N be a ¢(E',E)-

closed subspace of the dual E! of E, Let 1 be the canonical mapping
E' = E!/N then 7 maps the unit ball of E! onto the unit ball of E!/N.

Proof: Since N is g(E!',E)-closed, N is norm closed so that
E'/N is a Banach sbace with the nom of an element m(x) given by

()| = inf“‘x +nl] :n¢ N} < Hx{ ﬂ.. N ¢ D |
Hence ||x|{| < 1 implies ||m(x)|{| <1, i.e. T maps the unit ball of E!
into the unit ball of E!/N. To show that m is onto. let m(x) ¢ E!/N
with ||m(x)|| < 1. By (1) there are x5 € x + N such that

ijH < ] + 1/ 51 x| J= 1, 2, cececcceccncescs
the sequence (xj t 3=1, 2.400s.) is then norm bounded and therefore
contained in a g(E',E) compact subset of Ef, .Thus there is a y ¢ E!

g
~ and a subsequence (xj(i)) - (xj) such that X5(3) =¥ Ve Since N and



hence x + N are o(E',E)-closed y ¢ x 4+ N and therefore m(y) = m(x).
Since the nom is o(E!,E) lower semicontinuous , we havé Hyll <
1im inf 4‘xj(i)1’ < ||mx)|| £ 1. Thus for each element T(x) of the
unit ball of E'/N there is an element y of the unit ball of E' such
that n(y) = m(x).

The next proposition is also due to Greenleaf (10) in the
case that G is a compact group. ‘It should be noted that our proof is

new, and somewhat simpler than his.

Proposition 5. Let G be a locally compact group; N a weakly‘

closed two sided ideal in M(G); S® (resp. S"') the set of extreme points
of the unit sphere of M(G)(resp. M(G)/N), and 7 the canonical mapping
M(G) - M(G)/N. Then m(s®) = s".

Proof: We first show that S" ¢ m(S%®). Recall that M(G)/N
can be identified with the dual of K° the polar of N in Co(G) (Chapter
I,81.5). If G is not compact, let G” be the one point compactification
of G, and if G is compact put G°= G. Consider N° ¢ C(6™) ; KO is
o(C,(G),M(G))~closed and hence norm closed. Let p ¢ S, then by theorem
5 of chapter I, there is a complex number c, {e] = 1 and an x in G such
that p(f) = ce (f) for £ in N°, and this means that ce, ¢ n’l(p) by
theorem 6 of Chapter I, cey € s€, thus 8" < n(s€).

If p € S, then B is an inner translator (theorem I} so that
by ecorollary 1 to proposition 2, m(p) is an inner translator because T

is nom decreasing, By proposition 3, m(p) is in s", Thus m(8%) = S,

Theorem 2. Let A be a Banach algebra which satisfies conditions
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(1) to (5) of theorem 1. Then there is a locally compact group G,
and a weakly closed two-sided ideal N in M(G) such that A is iso-
metric and isomorphic to M(G)/N, Conversely if N is a weakly closed
two-sided ideal in M(G), then M(G)/N satisfies (1) to (5).

Proof: Let S and S® be as in theorem 1, and take G to be
S€, then G is a locally compact group (see the proof of theorem 1).
For f in E, let T be thefunction on G given by £(x) = x(f). Then
f - T is a nom decreasing linear mapping of E into CO(G)(see the
proof of IV in theorem 1), Let T be the adjoint of f - T, then we
have that T is a nom decreasing and continuous linear mépping of M(G}a onto 4.
The arguments to show that T(psd) = TpTA and (M) = S are similar
(and easier) than those used in the proofs of VII and VIIT of theorem
1, Now let N = kerT, then N is a weakly closed two-sided ideal in
M(G). Let T be the canonical mapping M(G) = M(G)/N and let T, be
the mapping M(G)/N - A such that T = Tyem. Clearly Ty is one-one
and onto, We now show that T is an isometry. By proposition L,
m(s¥) is the unit sphere in M(G)/K and since T(SY) = S we have
Tl(n(SM)) = S, i.e. Ty maps the unit sphere of M(G)/¥ onto the unit
sphere of A. Thus {|Ty{| <1 and {‘Tilii < 1 and this means that
Ty is an isometry (see the calculation used in the proof of proposition
1). This completes the proof of the first assertion.

Now let N be a weakly closed two sided ideal in M(G). We
shall show that M(G)/N satisfies (1) to (5) of theorem 1. M(G)/X
may be idéntified with the dual of N°, Since N° is U(CO(G),M(G))-
closed in C,(G), N° is norm closed and therefore a Banach space. Thus

(1) is satisfied. To show that (2) is satisfied note that since N°
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is 0(C,(G),M(G))~closed and since N°° = N, the o(M(G)/N,N°)-topology
equals the quotient weak topology on M(G)/N (Chapter 1, §1.5). Thus
it suffices to show that for A € M(G)/N, the mapping j ~» Ajt is con-
tinuous in the quotient weak topology and this is true because the
quotient of a topologlcel algebra is a topological algebra, Let Sf
(resé. S™) be the set of extreme points of the unit ball of M(G)
@esp. M(G)/N). Let p € ST, then by proposition 5 there is a p € S
such that m(n) = p. Since p is an inner translator, we have by the
corollary to proposition 2 that m(p) is an inner tramnslator hence
(3) and (4) are satisfied, To show that sTu{0] is o(M(G)/N,N°)-
closed, note that 1 is weakly continuous, hence since SEU {0} is
weakly compact, and since T(S€) = ST (proposition 5), n(S®u{0}) =
sTUjol is d(M(G)/N,N°)-compact and hence g(M(G)/N,N°)-closed, so

that (5) is satisfied.



CHAPTER V

ABELIAN *.SUBALGEBRAS OF Ll(G) AND REPRESENTATION THEORY

1, Maximsl abelian *-subalgebras of Ll(G).

Definitions: Let A be a *-algebra and let B be an abelian
*.subalgebra of A, B is sald to be a maximal abelian *-subalgebra
of A, if for each sbelian *-subalgebra B} such that B¢ By € A we
have B; = B.

An element x of a *walgebra A is called nomal if xx* = x*X.

Remarks. Note that we do not require a maximal abelian
*.subalgebra to be a proper subalgebra. Thus if A 1s an abelian
*.algebra then the only maximal abelian *-subalgebra of A is A itself,

Let A be a *-algebra, then for any x ¢ A, the set of 2all
finite linear combinations of elements of the form x*x, (x*x)Z,
(x*x)a,.......... is a nonzero abelian *-subalgebra of A, consequently
a maximal abelian *~subalgebra is always nonzero., Moreover it is
a consequence of Zorn's lemma that any abelian *.subalgebra is con-

tained in a maximal abelian *-subalgebra,

Proposition 1. Let A be a *-algebra and let B be an abelian

*subalgebra of A. Then B is a maximal abelian *-subalgebra of A
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if and only if for each normal element y & A; xy = yx for all

x & B implies y € B.

Proof: First note that xy = yx for all x & B implies
yx* = x*y so that by applying * to each side we have xy* = y*x,
Thus if y commutes with B, so does y*, If y is nommal, then the
*.algebra generated by {y}UB is an abelian *-subalgebra which
contains B, Thus if y is not in B, B is not maximal. Conversely
if B is not maximal then there is an abelian *-subalgebra By C A
such that BC By, Let y ¢ By~ B, then y is nomal and y commutes
with every element of B, The violates the condition of the prop-
osition, }

Let S be a Borel subset of a locally compact group G. Let
L(S) be the subset of 11(G) which consists of functions ﬁhich vanish
almost everywhere outside of S, and D(S) the set of all x ¢ G such
that every measurable neighborhood of x meets S in a set of positive
Haar measure (see Chapter II, §3).

If S is an open and closed subset of G, then S is loceally
compact and each function £ € K(S) can be extended to a function on
G by simply putting f(x) = 0 for x f S. In this way we identify K(S)

with a subspace of K(G). If p is a regular measure on G, then its
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restriction to S is & regular measure on S, Moreover since S is ¢losed,

every regular measure on S is obtained in this way ((3) Chapitre III,
§2, No. 1 and Chapitre V, 87, No. 2), If 5 is an open subgroup of G,
then S is also closed, consequently we may ideﬁtify K(S) with a sub-
space of K(G) and M(S) with a subspace of M(G). In addition the

restriction of the Haar measure on G to 5 is the Haar measure on S.
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Thus we may identify L(S) with Ll(S).

Lemma 1., Let G be a unimodular locally compact group and
let S be an open abelian subgroup of G. Let £ ¢ LP(G) (1 < p < =),
then a necessary and sufficient condition for f to commute with L(S)
is that there exist a subset N of G, having Haar measure zero and
such that

£(x) = f(y‘lxy) for all y € SN,

Proof: Since K(S) is dense in L(S) = L}(S) we have that £
commutes with L(S) if and only if f*g = g»f for all g ¢ K(S), Since
f*g is contimuous (Chapter I, §5.4) a necessary and sufficient
condition for f*g = g*f is that f*g(x) = gxf(x) for allrx € G,

Now f*g(x) = [f(xy)g(y=1)dm(y) and since G is unimodular,

J£(y)e(y-D)an(y) = [£(xy=1)g(y)dn(y).

Thus f*g(x) = g*xf(x) gives

I£(xy-L)e(y)an(y) = Je(y)f(y-1x)dm(y).
Then

Ie(xy=L) - £(y=1x)g(y)dm(y) = 0 for all x € G, and any
g € K(S) if and only if there is a set N of measure zero such that

£(xy~1) - £(y=1x) = 0 for y ¢ S\N.

Putting z = xy‘l we have -

£(z) = £(y-lzy) for y € S\N. |

ot

Definitions: If S is a subset of G, put F(A) =\/{x~1ax:

x € D(S)] 4f D(S) £ f and F(A) = § 4if D(S) = ¢, for any subset ACG
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Proposition 2, If S and A are Borel subsets, then F(4) is

a Haar measurable set,

Proof: D(S) is closed and therefore a Borel set,thus
A x D(S) is a Borel set, Let g be the mapping of G x G into itself
defined by g((x,y)) = (y'lxy,y), then g is a homeomorphism of G x G
onto itself. Let p; be the projection (x,y) =» x. Observe that
F(A) = pI>g(A x D(8)). Since a homeomorphism takes Borel ssts to
Borel sets and since Py takes Borel sets to Haar measurable s?ts,

we have that F(A) is measurable,

Theorem 1. Lot G be a locally compact unimodular group,
S & Borel subset of G, and suppose that L(S) is a subaigebra. A
necessary and sufficient condition for L(S)tobea maximal abelian
*_subalgebra of L1(G) is that D(S) be an open abelian subgroup with
the property that m(F(A)) = = for every Borel subset of A satisfying

(1) m(ANS) = 0 where m is the Haar measure on G.

(i1) 0 < m(A) <o, |

Proof: We first show that the condition is necessary.
If L(S) is a maximal abelian *-subalgebra then L(S) £ iO}. Thus
by theorem 3 of Chapter II, D(S) is a closed subgroup of G and L(D(S)) =
L(S). Since L(D(S)) £‘{O} » D(S) contains a set of positive measure
and is therefore open (Chapter I, §5.4), Since we can identify
L(D(S)) with L1(D(S)) and since L1(G) is abelian if and only if G
is abelian it follows that D(S) is abelian. Now suppose there is a
Borel set A satisfying (i) and (ii) but such that m(F(A)) < e, Define
@ function £ on G by £(x) = 1 for x € F(A)UF(A)"L and £(x) = 0 other-

MILLS MEMORIAL LIBRARY
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wise. Since G is unimodular m(F(A)"l) = n(F(4)) < e, and since F(A)

and F(A)'l are measurable subsets, f ¢ Ll(G). If x ¢ F(A)L)F(A)’l

then for any y € D(S), y-ixy ¢ F(A)\/F(A)'l. If for any x € G,

yIxy ¢ F‘(A)\/F(A)"1 for some y ¢ D(S), then x = yy'lxyy'l ¢ F(A)\/F(A)'l.
This means that f(x)v= f(y=txy) for all y € D(S) and any x € G,

Thus lemma 1 applies to D(S) and f commutes with L(D(S)) = L(S). By
condition (ii) above f is not the zero element of Ll(G) because

A CF(A), and by condition (i), £ § L(S). Moreover f(x) = f(x=1) = £*(x)
so that £ is nomal. Thus proposition 1 applies and L(S) cannot be
maximal, Therefore we have shown the necessity of the condition,

We now show sufficiency. If D(S) is an open abelian sub-
group, then e € D(S) so that lemma 4 of Chapter II appiies and we have
L(S) = L(D(S)). Thus L(S) is an abelian *-subalgebra of L1(G) since
1L(D(S)) is an abelian-*-subalgebra of Ll(G). To show that L(S) is
maximal let f ¢ Ll(G) and suppose that f commutes with L(S) = L(D(S)).
We will show that £ € L(S) i.e. f = 0 almost everywhere outside S.

Let ¢ = sup{|f(x)| : x ¢ G\S]. If ¢ = O there is nothing to prove.
Suppose that ¢ £ 0, Let a be chosen such that 0 < a < ¢ and let

B ={‘x € G~S : ]f(x){ g»a}, then B is not locally null and therefore
contains a compact set A such that 0 < m(A) < o, Clearly m(ANS) = 0
so that A satisfies (i) and (ii). Since £ commutes with L(D(S)), by
lemma 1 we have that thers is a subset N of S such that fi(x) = f(y’lxy)
for &1l y € S\ N, Consequently |f(x)| > a almost everywhere for

x € F(A), Then  Jglfldn > fpsylfldm > a m(F(4)).

By hypothesis m(F(A)) = « and we have a contradiction., Therefore

¢ = 0. Then f(x) = 0 almost everywhere for x f S. 1i.e. £ € L(S).
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By proposition 1, L(S) is maximal, -

Corollary, Let G,S be as in theorem 1 and suppose that L(S)
is a maximal abelian *-subalgebra of AG). Iff ¢ PG)Q < p< )
and £(x) = f(y’lxy) almost everywhere for y € S and x € G, then
f(x) = 0 almost éverywhere for x f S.

Proof: Let ¢ = supi|f(x)|P : x € G~ 5] and suppose ¢ £ O.
Let B =flx € G\S : lf(x)ip > ajwhere 0 < a < c, Then there is a
compact set A C B satisfying conditions (i) and (ii) of the theorem,
Thus since L(S) is a maximal abelian *.subalgebra, m(F(A)) = o,
Consequently f]f‘pdm > IF(A)ifipdm > a m(F(A)) = ., Thus we must

have ¢ = O,

Examples. We now give examples of groups G having an abelian
subgroup S such that L(S) is a maximal abelian *-subalgebra of Ll(G).
For this first note that if G ié discrete, and S is an abelian sub-
group of G then by theorem 1, a necessary and sufficient condition
for L(S) to be a maximal abelian *-subalgebra of Ll(G) is that for each
y f S, the set{ x~lyx : x ¢ S} be infinite. |

Let G =§_(a,b) ¢ a,b real, a > d}and give G the discrete
topology. Define (a,b)(a!,b?') = (aa', ab' + b), then (a,b)’l =
(1/a, - bfa) and G is a group. Moreover since G is discrete, G is
unimodular. Let S be the subset of G of all elements of the form

(1,¢), then S is an abelian subgroup. For (a,b) € G, a £ 1 we have

(1,e)" (a,b)(L,e) = (1, - ¢)(a,ac + b)
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= (a,(a ~ 1)c + b)
Consequently{tl,c)‘l(a,b)(l.c) : (1,e) € S} is infinite and L(S) is

a maxinal abelian *.subalgebra of Ll(G).

A second example is the free group on two generators., If
we take S to be the subgroup generated by one generator then it is
easily seen that {xyx: x ¢ S} is infinite for any y 4 S. By the

above L(S) is maximal in Ll(G).

2.> Maximal abeliazl*-subalgebras of M.,

Throughout this section G denotes a locally compact uinimodular
group. Let(L,Lz(G)) be the left regular representation of.G, i,e, for'
each x € G, L. is the operator on L%(G) defined by L f(y) = f(x-ly) for
each £ in LZ(G). For each x € G, let R, be the operator on 12(G)
defined by R, f = f, for £ ¢ LZ(G), and for p & M(G) let RP be the oper-
ator defined by R,f = fxu. If h € 11(G), then hm € M(G) and put Ry = Ry
Let R be the W*.algebra gensrated by {RP R T 4 M(G)}, then it is knowm
that ¥ is the commutant of {Lx : X € G}, and that R isvgenerated by |
{Re : x € G}, (cf. Chapter I, §7.2).

If H is a Hilbert space and B(H) is the algebra of all bounded
operators on H, recall that the w-topology on B(H) is the weak operator
- topology; i.e. the topology defined by the semi-norms A =» |(Af,g)| ;
f.g € LZ(G), where (f,g) is the scalar product of f,g ¢ LZ(G).

Proposition 3. The mapping p -» Rp is a linear continuous
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rﬁapping of M(G)y into R .

Proof: Clearly u —» Ru is linear, To show continuity let
. £,z € Lz(G) and p € M(G). Then since G is unimodular the convolution
f*xg exists and is an element of C,(G) (Chapter I, §5), to prove
the proposition it clearly suffices to show that (Rpf,g) = p(i-‘T":é).
Using the unimodularity of G we have |
(Ryf.g) = JUT(xy=D)an(y))a(x)dn(x)

= [ (xy=D) g(x)an(x)dn(y) by Fubini's theorem

= JIf*(yx=1)g(x)dm(x)dn(y)

= (%) (y)an(y)

= 'P«(f;——*g)o

Proposition 4., Let S be an open subgroup of G, and WY(S)

be the W*-alge;ora generated by {Rx : x ¢ S]. Then the w-closure of

{Re : £ ¢ L(SYNLA(G)] equals W(S). |
| Proof: If £ ¢ L(S)NL2(G) then Supp(fm) C S since S is an open
subgroup and is therefore closed. Thus by proposition 4 of Chapter
11, we have {fm : £ ¢ L(S)f\Lz(G)} C Clq{){. €V : Supp(d) € S} (where
V is the linear span of the Dirac measures). By proposition 3, the
mapping p -» R, is a continuous map of M(G)g into Wi, so that

{Ry s m & Clga €V & supp(d) ¢ 51} < W(s)

Thus {Re : £ € L(S)N L2(G)} C "R(S) and since W(S) is w=-closed, we
- have Cl"{Rf : £ € L(S)f\LZ(G)} C R(S). For the reverse inclusion
note that {f : £ ¢ L(S)/\LZ(G)} is norm dense in L(S) (Chapter I, §4.1)
g0 that Clg{fm : £ ¢ L(S)NL%(G)] = Cly {fm : £ ¢ L(S)} . By theoren

1 of Chapter II, {e, : x € S} CClg {fm : £ € L(S)]= Clgitm : £ ¢ L(S)NLZ(G)].
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(8 = D(S) because S is open). Thus the continuity of p - Ry as a

map of M(G)g into R, implies that {Ry : x € S} € Cl, {Rp : £ € L(S)NIZ(G)].
Thus C1, { Ry : £ € L(S)NL?(G)} contains a set of generators for W(S)

and conséquently N(S) = Clw{ Re : £ & L(S)(\LZ(G)} since this latter

set is a W*.algebra, because L(S) is an algebra.

Proposition 5. Let S be an open subgroup of G and let LZ(S) be

the subset of L2(G) consisting of functions which vanish almost every-
where outside S. For any £ ¢ L1(G), £ ¢ L(S) if and only if
Re(12(s)) € 13(8).
Proof: If £ ¢ L(S) and g € L(S)NIZ(G) then Reg ¢ L(S)N13(G)
12(S) since L(S) is an algebra . L(S)NL2(G) is dense in L3(S), thus
by the continuity of Ry we have R.f(Lz(S)) C 12(S) since L2—(S) is closed,
Now suppose L2(S)*f§_ LZ(S). let € >0 be given, then by
corollary 2 to lemma 3 of Chapter II there is an h ¢ L(S)N\L2(G) such
that ||h*f - £|| < ¢ since e € D(S) = S. Thus £ € L(S) since L(5) is a

norm closed algebra,

Theorem 2, Let S be an open abelian subgroup of G, Then R(S)
is a maximal abelian *asubalgebra of W if and only if L(S) is a maximal
abelian *.subalgebra of Ll(G).

Proof: Suppose that W(S) is a maximal abelian *-subalgebra

of R, Let £ ¢ LY(G) and suppose that f is normal and commutes with
1(S), Since the w~closure of {Rg r g € L(S)} is W(S) (proposition 4),
we have that Ry commutes with R(S). Since R(S) is max:hnai, and since

_ R} = Rp*, Ry is normal, and therefore Rp ¢ W (S) (proposition 1), Since
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‘Lz(S) is invariant under R(S) because S is a subgroup, we have
by proposition 5, f € L(S). By proposition 1, L(S) is maximal.
Suppose that L(S) is maximal. To show that W(S) is maximal
it is sufficient in view of proposition 1 to show that WNAR(S)' C R(S)
(where M (S)V is the commutant of WV(S)). Iet T € WNRQR(S)!, then
for any £ & L(S)f\Lz(G) and any g ¢ K(G) C LZ(G) we have
T(g#f) = TL

n

f= Lng

TReg g

= gxTf

Let Rpp be the bounded linear extension to 12(G) of the operator
defined on K(G) by Rpeg = g+Tf. The above shows that Rpp = TRp. Thus
Rpr € WNR(S)* since T and Ry are elements of W.NW(S)! and
BRAOANR(S)? is an algebra. Let g ¢ K(G) ahd h € L(S) then

RpeRpg = RyRrre
which gives gx(h*Tf) = g*(Tfxh).
i.6. BnsTf . TE+h8 = 0 for g € K(G)
therefore h*Tf = Tfxh,
By lemma 1 we have that there is a set N of measure zero such that
T£(x) = Tf(y=lxy) for all y ¢ S~N and any x ¢ G. By corollary to
theorem 1 we therefore haveTf(x) = 0 almost everywhere for x € S,
It follows that TRy = Rpp € TR(S) whenever Ry ¢ W(S). Let g,f ¢ L2(G)
and € > 0 be given. By corollary 2 to lemma 3 of Chapter II, there
is an h ¢ L(S)NL?(G) such that

[lesh - ell, < </lITi |I£]]

By the above TR, € “A(S) since R, ¢ WR(S),
and (T - TRy)e,D)| < LTI (e - esnll, 1If]] <.

i.e. T € W(S), since W(S) is w-closed, Thus WNW(S)' € V(S) so



that R (S) is maximal,

3., Decomposition of the Left Regular Representation.

Throughout this section G is a locally compact unimodular
group with a countable basis for the open sets and S 1s an open
(and therefore closed) abelian subgroup of G. Let (L,L12(G)), R(S)
and R be as in §2, The commutant of {Lx : X € G} is ¥ (Chapter I,
§ 7.2) thus by applying Mautner's theorem (Chapter I, &8 theorem 10)
taking W(S) as‘3 we obtain a compact subset I of the real line,

a positive regular measure A on I, a A-measursble family i(Lt,H(t))
t € I} of representations of G, and an isometry V of JH(t)dA(t)
onto 12(G) such that

1° v-lLv = friaa(t)

2° A-VAV-Y maps the algebra of diagonalizable operators
onto W(S) '

3% if R(S) is a maximal abelian *-subalgebra of W, then
there is a set N ( I of A-measure zero such that for t € I~N, Lt

is an irreducible representation.
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The purpose of this section is to identify the representations

Lt. Note that there are groups G having open abelian subgroups

such that the decomposition of the left regular representatioh G
 1s not unique (cf. (16) Chapter III, and (25)).

Let § be the character group of S, For each t ¢ 5 we define

a linear functional Pt on Ll(G) by

pt(f) = jsf(x){-(—};)dm(x)aooooooooooooo.ooco--oo.oo'oonoouo-(l)
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Lemma 2. Let p be the Haar measure on S. Then

(1) for each T ¢ Ll(G), t > pt(f) is a continuous function
on S, '

(i) for f, g ¢ Ll(G)/“\Lz(G) and any x € G, we have

(£,8) = J4p,(g*sf)ap(t)

Proof: (i) follows by noting t - pt(f) is the Fourier
transform of £ restricted to S.

To prove (ii) first note that if £ ¢ LI(G)N\L%(G) then f*«f
is a positive definite function which is in Ll(G), consequentl& the
Fourier inversion formula ((13) §47 theorem 5) applies and we have
for x €S |

£af(x) = fgpt(f**f)t(x)dp(t)

In particular putting x = e

£*.£(e) = f,spt(f**f)dp(t).

But  f*af(e) = [ £2(y~1)E(y)dn(y)

fGiT(—ﬁf(y)dm(y)

2
el (2.

Consequently “f“z = I§ pt(f*#f)d‘l(t)ooooq-o.ooooo.oooooooéootoo(z)
Now given £, g ¢ Ll(G)ﬂ LZ(G) : v

2 2 2 2
Wtig) = 112+ elly - Hf - ell, + 2112+ el - 3]If - se]l
Applying (2) we have that

(£,8) = .l'3 p (g*+f)dp(t).
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Lema 3. Let h € L(S), then (R.f,g) = /g pt(g**f)‘ﬁ?t)dp(t) ,
where h is the Fourier transfom of h,

Proof: By lemma 2 we have

(f+h,g) = [3 pt(g**f*h)dp(t) thus it is sufficient to

- show that py(g*+f¥h) = py(grsfsn)h(t),  Now
py(g*sDR(t) = [g (g%£)(x) Exdn(x) [g h(y)E3)dn(y)
= Jg (g% Gy )ty -Dan(x) g h(x)EF)an(y)
= f Is (e*+£) Gy~L)h(y)t(x)dm(x)dm(y) by Fubini's
theorem

- fs(fG (g*+0) yL)h(y)an(y) ) E(x)dn(x)
=g (g*++h) (x) t(x)dn(x)
= pt(g**f*h).

7 Choose an element from each left coset of S, and let G/S

be the collection of elements so obtained, Then for ahy ¢ Ll(G)
we have by (14) §33

f fdm- 2 GG/S f f(xy)dm(y)OOOIOOOQ..... [ EX RN KX 2 N ....0(1)

Lemma 4, For f ¢ L (G), we have pt(f «f) = 'pt( f)l

x €& G/s
Proof: f£*.f(x) = fG f*(y)f(y"lx)dm(y)
= [ £G"1) 2y x)dn(y)

= | 2(x)£(yx)dm(y)
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I §3)E, ()dn(y)

n

=z ¢ o/s Iq £(zy) £ (zy)dn(y) by (3).
Honos py(f%ef) = [g o oo Jo T ty(en)an(y)Ex)n(x)
= %, o5 s U £(zy) £, (2y) £ (x)dn(y)dm(x)

= cysis s £(zy)L, (zy) t(yx)t(y)dm(y)dm(x)

z.z ¢ 6/s IS z@t(y)&u(y) jS zf(yx)t(yX)dm(yx)

EZ ¢ 'G/S pt(zf)Pt(zf)

2
zz ¢ G/S 'Pt(zf)‘ |

Corollary, Py is a positive linear functional on 11(G) and
Ip (0] < [l£l], for £ ¢ 11(c).
Proof: By lemma 4, pt(f**f) > 0. The inequality ipt(f)]s

11£]], is immediate from formula (1).

Let (fl, f2......) be a countable subset of Ll(G)f\Lz(G) which
is an orthonormal basis of LZ(G). Such a set always exists since G
has a countable basis for the open sets and K(G) is dense in L2(G).
Since S 1is open and closed in G, S also has a countable basis, so there
is a countable subset (gl' gz,.......) in Ll(S)f\Lz(S) which is dense in

Lz(S). Let M ={R 1, = 1.2......;}. We retain these notations

£.:
8y J
throughout.
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Lema 5. M is total in L?(G).
Proof: Since (f, fp,eceses) is dense in 12(G) to prove the
theoren it suffices to show that for given f} and € > 0, there is a

g5 ¢ 12(5) such that ||R, fi - fktlz < e. By corollary 2 to lemna 3
J

of Chapter II, there is a A ¢ L(S)(\LZ(S) such that
ryty - 20| < of2
Since (gl, gz,.....) is dense in Lz(s) there is a g5 such that

H%-kﬂzsdzuﬁur Then
185 - 2 &1, < 115 i - AL + 1Rt - 51,
< ey - 0 + gf2
< “kaIng - le + €f2
<ef2 4+ ¢ef2=¢

This proves the lemma, .

For each t ¢ § 1ot N* = {£ ¢ LMGINLZ(G) : p (£*s1) = 0],
and let H'(t) be the quotient space Ll(G)_/\Lz(G)/Nt. For f£(t), g(t) 6‘
"H'(t) we put

(£(£),(t)) = p (*1) g€ E(t) £ € L(ernrersaall)
It follows from the corollary to lemma 4 and 21.17 of (12) that (4)
defines an inner product in H'(t). It follows from <,the‘ invariance of
the Haar measure on G, that Lth - N for each x ¢ G. Thus we may
define an operator L': on H'(t) by L';f(t) = (Lef)(t). If we now
complete H'(t) relative to the inner product we obtain a Hilbert space

H(t) ard a representation It of G on H(t). Note that for each t ¢5,
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{£;(8) : 121, 2, ...} 15 a total subset of fi(t).

Proposition 7. Let p be the Haar measure on §. Then

{(it,ﬁ(t)) 1 b€ ’s‘} is a p-measurable family of representations,
Proof: Let {fj ; i =1, 2,...J be the subset of [[H(t)

such that for each i, £3(t) = £,(t). Then {£i(t) ; 4 =1, 2,....]

is total in H(t) for each t and the function t = (‘f;f;(t),fg(t)) =

pt(f j**fo i) is p-measurable since it is continuous by lemma 2,

In view of proposition 7 we may construct the direct integral
of the representations i(it’ H(t) : t ¢ S} using the measure yu (see
Chapter I, §8)., Let = I4 f)ap(e),

For any Hilbert space H, B(H) denotes the algebra of all

bounded operators on H,

Theorem 3. There is an isometry W of f onto LZ(G) such
that

(1) for each x € G, W‘lIxW i) Lxdp(t)

(11) the mapping A o> Wwaw-L of B(H) onto B(LZ(G)) maps the
algebra of diagonalizable operators onto W(S).

Proof: Let Tgk be the operator on H defined by

(Tg £1)(8) = (DE'(Y) for any £* ¢ .
- Let K' be the subset of H consisting of elements of the fom Tgkfi,
1,k =1, 2,,.... where f; is as in proposition 7. We first show
that the linear span K of K' is dense in H, for this it suffices

to show that the orthogonal complement K™ of K is zero. Let h! ¢ K'



then
(Tog\kfi,h') =0 for a1l 3,k =1, 2,¢0000¢ &
Thus for any fixed i,
I ()(F3(£), 01 (£))dn(t) = 0, k=1, 2,00000 &
Since (g;, B2reeeese) is dense in LZ(S), we have by the Plancherel
theorem ((13) §47, theorem 6) that (E), Baseve..) is dense in 12(8),
This implies that there is a set Ni of p.measure zero such that
(£3(), h'(t)) = 0 for t ¢ Ny,

Putting N = U/ 7 Nj we have

i=

(E3(E),h'(£)) = 0, 1=1, 2,ueeers end & £ N
Since {f;(t) :4=1, 2, vese } is dense in fi(t) for each t, we
have h'(t) = 0 almost everywhere. Thus h! = 0. This proves that
K is dense in f.

We now define a mapping W! of K into 12(G). For h! ¢ K
we have

ht = Zﬁ N °iT§n fi » ¢4 complex numbers, and we put

!
| I yo} .
Wh = Z c,R, £, .
1=1 ignii
Then
2 ‘
P P - *
b c,R, £ = = e,c (R, R f.,f.
“1:1 ignii“ 1,j=1 ica( gnignii' 5
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= zi,j cicJ(Rg* *%nifi’fj) » since g -» R, is a represent-

n ation 8f L(S)

¥y

o~
APRILY f(gnj*gni)<t)(fi(t>,fj<t)dn<t) by lemma 3

B S ——
N

= I ey [ gnj(t)t@ni(t)‘ (£3(£),£,(£))dp(t) , since the

i, ]

Fourier transform is multiplicative

508 1 (E;i(t)f;(t).é;j(t)fj(t>)dn(t)
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i) (‘ 21 ciTgnifi(t), zj c Tg jf (t))dp(t)

J 2P ety (0 “ap(t)
1

cy7g, 13117

Hzp

1in12.

Consequently, ||W'h!| |2 = Hh'Hz which shows that W' is well defined
and an isometry of K into LZ(G). Thus W' has an extension W which is
an isometry of H into LZ(G). Since the range of W contains the set M
which is total in 1L2(G) by lemma 5, and since W(f) is complete and
hence closed in LZ(G), we have that W is onto, ‘
We now show that (i) of the theorem holds, Since (f., £or000e)

1s total in L2(G), (£], £3,+0e0a) is total in H, since W-lf, = f}

and W"l is an isometry. Thus to show (i) it suffices to show ‘thaf

(-lr, el £3) = (f Lian(e)£],£]) because WL and [ Llan(t) are

bounded operators and { fi}, {f'.‘i are respectively total in the spaces.

J
Now

I ("t £5(t),f! (t))dp(t) by the definition
of [ Lban(t)

§ (L £3) (%), £, (t))du(t) by the definition

tand fi

QRO HES)

J py(£] #L Fyddn(t)

(foi’fj) by lemma 2 (ii)

(W"lefi,W'lfj) s Since WLl is an isometry

= (w-lewi,fé) , since Wf3 = £
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We now show (ii). ILet g € L(S). Then T,é is a diagonal-
izable operator and

(T£5,£3) = [ (BO)L5(1),£5(4))an(t)
= f é(t)(fl(t),fj(t)dp(t)

by lemma 3

'] '
= (W" Rg Wfi

£3)
so that TE = W"leW. The mapping A o WAW-1 is a continuous mapping
of B(H)y; into B(LZ(G))w. Therefore Clw{Tg : g € L(S)] is mapped
onto Clw{Rg : € L(S)&. By propositioﬁ b, CZl,,,{Rg 1 g € L(S)z = R.(8).
Therefore to complete the proof is suffices to show that the aslgebra
| of diagonalizable operators is the w-closure of iTg 1 g € L(S)Z .
Since the algebra of diagonalizable operators is {Th : h ¢ L°°(§)} it
suffices to show the following: |

1° the mapping h = ’I‘hwof I(S) into B(H) is continuous when
one gives L7(8) the G(L°°(§),Ll(3)) topology and B(E) the w-topology.

20 {g:géL(s)] is o(r°(5),11(8)) dense in I°(8).

1° follows from the formula (T, f,g) = J h(t)(£(t),e(t))dp(t)
by observing that the function t = (£(t),g(t)) is in I1(8). 2° follows
by noting that {Z : g € L(S)} is nomm dense in C,(8) ((19) Chapter I,
1.2.%) and that Co(8) is o(1°(8),11(8)) dense in L(§). This latter
fact follows by noting that the polar of Co(§) in Ll(g) is the zero
element. This completes the proof, |

Theorem 4. Let I, A, L%, N, V and H(t) be as in the beginning
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of this section. There is a set NjC I of A-measure zero, a set Nyc g
of p-measure zero, & one-one mapping € of I\N; onto S\ N, and for each
t € I\ Ny there is an isometry T(t) of H(t) onto H(8(t)) such that
18®) ey = p(e)t for a11 x € G,

Proof: Let U= W™V, then in view of theorem 3 and (2°) of
paragraph I, §3, U is an isometry of J7H(t)dA(t) onto H = fsﬁ(t)du(t),
and the mapping A = vau-t maps the algebra of diagonalizable operators
of [ IH(t)dk(t) onto the algebra of diagonalizable operators of fl, and
fL;dA(t) onto ff,:dp.(t) for each x ¢ G. Thus by theorem 11 of Chapter
I, §8 the theorem follows, _'

To complete the identification of the representations Lt', we
now show that the representations A are 'equivalent! to representations
 induced by characters on S, (The definition of induced representations
is given in Chapter I, §7.3). |

Proposition 7. Let (Ut.H(t)) be the representation of G induced

by a character t of S, Then thers is an isometry vt oof ﬁ(t) onto H(t)
such that VALY = UlvY for a11 x € G,
Proof: We define a mapping vt of H(t) into H(t) by
(VE(1))(x) = py(xf) x € G , £(t) ¢ LH(ENLZ(G)/NY
To show that Vif(t) ¢ H(t) we must show
10 (e () = tHTH)(x) x €6, y €S

2° ||vie(e) || <o, where ||VEiE(E)[|? = T

¢ o/ RO

To show 1°, let x € G, y € S, then

V(L) (1) = py(xy?) = JECyz)t(z)dn(z)



fsf(xyz)‘t(:s')ff(—y?)dm(Z)

L}

t(y) fsf(WZ)W)dm(Z)

= t(y)p, (xf)

= () (Vie(£)) (x)
To show 2° we shall show ||[Vie(t)|| = {|£(t)|]. This follows
immediately from lemma &4, since Hf(t)“2 = p, (£*xf) and [{vie(e)] |2 =
% ¢ ofs ‘pt(xf)fz. Clearly VP is linear, so that ||Vis(t)|| = |{£(¢)]]

implies that V' is well defined.
Let X = L1(6)NL?(6)/NY, we now show that VE(K) is dense in
H(t). For this it suffices to show (V'l"(K))"L =0, Let g ¢ (V‘t’(K))‘L .

then & vi(t) (x)g(x) = O for all £(t) € K. To show that g = 0

x ¢ G/S

it suffi:es/to show that for given- X, € G/S there is an f ¢ Ll(G)/\Lz(G)

such that y £ x,» Lot V be a compact neighborhood of e ¢ G such that

V C 8 (recall that S is open). Let h be the characteristic function

of x V. Let t! be the function on G given by t'(y) = t(y) for y ¢ 5,

and t'(y) = O otherwise. Put f£(y) = t'(x5 y)h(y). Then
py(%,1) = [t (x MEFan(y) = [gh(xy)dn(y) 4 0.

If y € G/S and y £ X,» then ySNx S = p so that ySN\x V = § since h(yS) = 0,
p(yf) = S5t (x5 ta)n(y2)t(z)dn(z) = o.

Thus g = 0 and VP(K) is dense in H(t). Since Kis dense in H(t) we

have that V¥ can be extended to an isometry (which we again denote

by Vt) of H(t) onto H(t). Now to complete the proof of the theorem we

show that for £(t) ¢ K we have VEEI£(t) = USv®s(t), Fory ¢ G, wo have

VELE(6)() = VLG = Pyl (L) = pylea, D)
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= vite(t) (xly) = lvle) ().
and this proves the proposition.
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