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CHAPTER 1: INTRODUCTION 

(A) Pyrophosphate Compounds 

This study is one of a series directed towards obtaining 

an understanding of the crystal chemistry of those pyrocompounds 

involving tetrahedrally bonded anion groups. As with silicate 

systems, phosphates can be classified in terms of the degree of 

condensation of -n a fundamental xo4 tetrahedron. In the 

orthophosphates -3 the P0 4 groups are isolated from each other and 

are very nearly regular tetrahedra. They are linked together 

through the sharing 

pyrophosphate anion 

of oxygen 

-4 P2o7 is 

atoms with metal cations. The 

-3 formed from two P04 tetrahedra 

by the sharing of one oxygen atom. The metaphosphates can 

-3 exist as either rings of P04 tetrahedra such as is found in 

Na 4P 4o12 .4H
2
o (Anders, Fischer and Gehring, 1949) or as infinite 

linear chains such as in RbP0 3 {Corbridge, 1956). Van Wasser 

(1958) has discussed extensively the chemistry of phosphate 

systems. 

The research reported here has been primarily a 

complete crystallographic investigation of the phases of a 

number of similar pyrophosphates. This thesis will describe 

the determination and refinement of the crystal structures of 

t h e three pyrophosphates a-zn2P 2o7 , a-cu2P 2o7 and S-Cu2P 2o7 

and the phase transformation which relates the latter two. 

These results will be interpreted in the light of several 
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other parallel investigations which have been recently carried 

out at this university . 

There had been n small number of crystallographic studies 

o f py r ocomp ounds p rio r to the present work. Many o f these 

compounds fall into two distinct crystallographic groups. Among 

the remainder are ZrP 2o7 , Na 4P 2o7 ·10H 2o and Cd2P
2
o

7
. Levi 

-4 and Peyronel (1935) suggested that the P2o
7 

ion in zi r c onium 

py r opho sphate possessed a threefold axis and that the shared 

oxygen atom and the two phosphoros atoms were colinear. Lazarev 

(1964c) has noted a phase transformation in this compound at 

0 300 C and therefore this systemshould be restudied. The 

crystal structure of Na 4P 20 7 ·10H 20 was originally investigated 

by MacArthur and Beevers (1957) and recently refined by 

McDonald and Cruickshank (1967). These latter results indicate 

that in this monoclinic compound the P-0-P groups are bent to 

an angle of 130° and the anion possesses a twofold axis . 

Similarly, in Cd2P 2o7 (Au, 1966) where the crystals are triclinic 

the P-0-P group is bent to an angle of 128°. In detail, the 

structures ofthese three compounds are quite dissimilar as can 

be anticipated from the large amount of water that is accommodated 

in Na 4P 2o7 ·10H 2o together with the different number of cations 

in each formula unit. 

Almost all of the divalent metal ion pyrophosphates 

t h at h ave been studied in the solid state fall into two distinct 

f amil i es, with both famil i es exhibiting int~resting polymorphic 

behaviour. The members of one group, which is characterized by 
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relatively large cationic radii, are the "alkaline earth 

pyrophosphates", consisting of Ba 2P 2o7 , ca2P 2o
7 

and Sr2P2o
7

• 

Ranby, Mash and Henderson (1955) studied their phase 

transformations by noting changes in the luminiscent 

wavelengths and intensity of the emission spectra of Mn+2 

in solid solutions formed from these alkaline earth pyrophosphates. 

X-ray powder patterns indicated that some of these changes 

corresponded to solid state phase transformations. In Figure 

1 the phase relations and transformation temperatures of Ranby 

et al. are summarized. s-ca2P 2o 7 (Corbridge, 1957) and 

S-Sr 2P 2o 7 (Hoffmann and Mooney, 1960) have isomorphic structures 

and the structure of e-ca 2P 2o
7 

is now known. 

The crystal structure of s-ca2P 2o 7 has recently been 

reported by Webb (1966). He finds two crystallographically 

0 0 independent anions with P-0-P angles of 131 and 138 . 

Furthermore the anions are in almost eclipsed configurations; 

that is, the terminal oxygen atoms overlap when the anion is 

viewed down the length of the P-P vector. In contrast, in 

Na 4P 2o 7 ·loH 2o the pyrophosphate ions are in the staggered 

configuration; that is, the terminal oxygen atoms do not 

overlap when the anion is viewed down the P-P vector. Single 

crystals of a-ca
2

P 2o 7 have been prepared by Hoffmann and its 

crystal structure is under study here (Calvo, 1967a). At the 

present time, very little is known of the crystalline character 

of the o phase of Ba2P 2o 7 . 

The family of pyrophosphates which particularly concern 

us involve cations with radii less than 1.0 A. The pyrophosphates 
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which have been shown to fall into this category are those of 

Mg (hukaszewicz, 1961), Mn (hukaszewicz and Smajkiewicz, 1961), 

Zn (Calvo, 1965b) Cu (hukaszewicz and Nagler, 1961), Co and 

Ni (Sarver, 1966). Each member of this group has a high 

temperature form isostructural to the mineral thortveitite, 

(Sc,Y) 2si 2o7 • Recently, Cruickshank, Lynton and Barclay (1962) 

have refined the st.ructure of this compound and in addition 

they addressed the problem of the space group ambiguity which 

seems indige.nous to most of the "small cation" pyrocompounds. 

They chose the space group C2/m, as had Zachariasen (1930) in 

an earlier investigation. In this space group, the central 

oxygen atom of the si 2o
7

- 6 group appears to lie on a center 

of symmetry and thus the Si-0-Si angle must be 180°. The anion 

is also forced to have the staggered configuration. The cations 

have an irregular octahedral environment. These irregular 

octahedra share edges to form a pseudo-hexagonal network 

extending in the (001) plane. Only two-thirds of the hexagonal 

holes, formed by a double layer of close=packed oxygen atoms, 

are occupied by cations. Adjacent sheets of these octahedra 

are joined by sharing oxygen atoms with the pyrosilicate ions. 

The structure may be described alternatively by a 

set of layers of separation ~2 ( -3 .3 A) and which contain the 

unit cell vectors b and c. The layers contain pairs of cation 

octahedra which share one edge. The two remaining shared 

edges join adjacent layers. These cation pairs are linked 

together in the layer by the si 2o7- 6 anions. The shared oxygen 

atom of the pyro ion has been labelled the "01" atom. One 
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of the terminal oxygen atoms at each end of the ion lies in a 

mirror plane as do the Si atoms. These oxygen atoms are 

labelled the "02" atoms and are the oxygen atoms involved in 

the s h ared edge . The remaining four oxygen atoms which are · 

related in pairs by that mirror plane are labelled the "03" 

atoms. Two cation pairs are connected in the b direction by 

t h e wo 03 atoms at one end of an anion. This patte rn i ~ 

repeated since the central oxygen atom, 01, lies at a center 

of symmetry. The layers are joined to one another by additional 

cation-oxygen bonds. 

This description of the structure is entirely applicable 

to the high temperature forms of all the "small cation" 

pyrophosphates since they are isostructural to thortveitite. 

Systems isostructural with thortveitite occur commonly. 

Lazarev (1961 a and b, 1962) has studied extensively the 

infrared absorption spectrum of pyrocompounds of interest here. 

He has inferred that sc2si
2
o

7
, Er2si 2o

7 
and Y

2
si 2o

7 
are similar 

to the mineral thortveitite which is a Sc rich solid solution 

of Sc and Y pyrosilicate. The pyroarsenates of Zn and Mg have 

been shown to be isostructural to thortveitite (Calvo and 

Neelakantan, 1967; bUkaszewicz, 1963) although those of Co 

and Ni are not (Taylor and Heyding, 1958). In addition the 

pyrovanadate of Cd • (Au and Calvo, 1967) and the pyrogermanate 

of Sc (Goldschmidt 1931) show the thortveitite structure. 
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(B) Methods of Crystal Structure Analysis 

It is not the purpose of this thesis to present a summary 

of crystallographic methods. It will be necessary,however, to 

describe the manner in which the present crystal structures were 

determined and thus a certain amount of the nomenclature must 

be defined. For this reason a brief survey of the standard 

methods, equations and terminology used in crystal structure 

analysis will be presented. 

A crystal may be defined as an array of atoms whose 

time averaged positions can be described by the operation in 

three-dimensional space of translational symmetry on an 

array consisting of a finite number of atoms. "If a parallel 

beam of x-rays is incident upon such a crystal it will interact 

with the constituent electrons and will exit coherently from 

the crystal only in well defined directions. If k' and k are 

the wave vectors of the incident and scattered or "diffracted" 

beams of x-rays respectively, then K = k-k' may be used to 

define the conditions under which diffraction will occur. If 

a, b and c are the vectors describing the edges of the repetitive 

unit or "unit cell" of th~ translationally symmetric array, 

then the following relations must be satisfied. 

a.K = 27Th 

b.K = 2Tik 

c.K = 27T£. 

These are the Laue equations (James, 1962). The vector K is further 

l imited by the requirement that the sum of the squares of its 

direction cosines relative to the cell edges be a constant. 

The only values of the indices h, k and £. which are compatible 
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with these four conditions are integral values. 

It is possible to represent the solutions of the 

Laue equations as points in a three dimensional space which also 

* * * has t ranslational symmetry. The basis vectors a, b and c of 

this space, called reciprocal space, are defined by; 

* a = 
b X C 

v * b 
c x a 

= v * c = 
ax b 

v 

where V is the volume of a unit cell defined by V = a · b x c. 

Each point in the reciprocal space is related to the direction 

o f one of the diffracted x-ray beams. The Laue equations may 

be reduced to the familiar Bragg equation in terms of the 

distance H from the origin of reciprocal space to the point 

defined by the indices h, k and ~; that is 

H = 2 sin 0(H) 
A 

where A is the wavelength of the x-rays used and 0 (H) is the 

Bragg angle depending on the magnitude of the vector H and 

* * *t 
H = ha + kb + lc . It is sometimes advantageous, particularly 

to elucidate some symmetry operation, to define a unit cell 

which is not the smallest repetitive unit of the atomic array. 

The indices which relate to the larger unit cell will then not 

be able to assume all possible integers .and, as a result, certain 

types of systematic extinctions will occur. Other types of 

systematic extinctions arise from symmetry operators involving 

a translation of some fraction of the unit cell edges. 

t note: H = I ~ ~ 
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The symmetry of the intensity distribution of the 

diffracted x-rays constitutes the Laue symmetry which, 

together with the systematic extinctions, may or may not 

unambiguously define the space group of the unit cell. The 

intensity of the x-rays diffracted into each beam is 

determined by the arrangement of atoms in the unit cell. 

The observed intensity I(~) of the reflection H i s, 

however, dependent on a number of additional parameters. 

I (H) may be written; 

2 
I(~) = c (Lp) A IF(~) I 

Each of the factors on the right hand side of the equation 

will be discussed separately. 

C is an experimental constant which is dependent on 

the volume and density of the crystal which is being 

irradiated, the intensity of the incident beam, the scattering 

power of an individual electron, and the effeciency with which we 

can detect the diffracted x-rays. I(~) is also dependent on 

the orientation of the incident and diffracted beam relative 

to the axis of rotation and the manner in which the crystal is 

swept through the position corresponding to the diffraction 

conditions. This geometrical dependence of the observed 

intensity is called the "Lorentz" factor and denoted "L". 

I(~) also depends on the angle "20" between the incident and 

diffracted beams because the former contains x-rays randomly 

polarized in all planes perpendicular to their direction of 

propagation. This dependence is described by the polarization 



1 + cos 22e factor "p" where p = 
2 

9 

The Lorentz and 

polarization effects' are usually combined and denoted the 

"Lp" factor. 

As an x-ray beam passes through the crystal, its 

intensity is depleted because of interactions with the 

electrons in the .crystals. The number of photons lost to 

the beam, pe r unit length of the crystal traversed, wi ll be 

proportional to the number of photons in the beam. This fact 

gives directly the functional dependence of the beam intensity 

I(x) on the distance x, travelled by the beam in the crystal, 

in terms of the absorption per unit distance "p" and the 

initial intensity I
0

• That is 

I(x) = I exp(-px) 
0 

"p" is normally calculated from the mass absorption coefficients 

as listed in the International Tables for Crystallography Vol. 

III (196~) and the density of each constituent atomic species 

in the crystal. -px For each reflection, the factor e should 
_) 

be integrated over all paths followed by x-rays in the crystal. 

This is often a difficult task sirice the exact geometry of the 

crystal used is not usually known and difficult to determine 

for a crystal having dimensions of the order of 0.1 mm. 

The intensity of the x-ray beam may be depleted by 

another phenomenon similar to absorption. An actual crystal 

may be thought of, at least for theoretical purposes, as a 

conglomeration of domains, each being a perfect crystal nearly 
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aligned with all other domains. If the volume of a domain 

is relat i vely large, the energy of the incident or ''primary" 

beam is depleted by the energy lost into the diffracted beam 

and the intensity of the primary beam is not uniform over 

the entire domain. This phenomenon is known as primary 

extinction. If the average domain volume is made relatively 

sma l l, the probability increases that the x-rays diffracted 

from one domain will encounter another domain oriented so 

as to diffract them back into the main beam. The diffracted 

or ''secondary" beam is then depleted and this phenomenon is 

known as secondary extinction. The magnitude of the errors 

caused by primary and secondary extinction are sufficiently 

small in the case of x-rays that it is usually not necessary 

to make corrections, although a few very strong reflections 

may sometimes be affected by them. 

rhe term in the expression for I(H) which is 

sensitive to the details of the atomic arrangement is IF(H) 1
2 

which may be written as a function of the positions of the 

atoms of one unit cell. Most of the scattering processes 

take place in the core of the atoms where the electronic 

density is highest. These cores are approximately spherically 

symmetric and have approximate Gaussian cross sections. X-rays 

scattered from different volume increments in an atomic core 

will not necessarily be in phase with those from other volume 

increments. The intensity of scattering from one atom is 

therefore dependent on the scattering angle and the wavelength 
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of the scattered x-rays and may, in fact, be calculated as 

a function f of H. f(H) is called the atomic scattering 

factor. Each atom may then be described by a mathematical 

point with variable scattering power f(H) which in fact is 

the Fourier transform of its electron density. The phase 

of the scattering from one atom relative to an arbitrary 

origin may be defined by the term exp(-2niH·~) where r is the 

vector from the origin of the unit cell to the atom. The 

calculated structure factor F {H) may then be written; c-

F (H) = c-

n 
E fJ. (H)exp(-2niH·r.) 

j=l - -J 

where the sum is over all n atoms in the unit cell. If the 

structure contains a center of symmetry the imaginary components 

of F (H) cancel. c-

Since the tabulated ~ are for atoms at rest, the 

expression must be further modified to account for the effects 

of thermal vibration. If the second order tensor u. describes 
=J 

the anisotropicmotion of the j'th atom, then the contribution 

of this atom to F (H) is multiplied by exp(2~ 2H·U.•H). The 
c - - =J - . 

square root of the component u .. of _u gives directly the 
1.1. 

average root mean square displacement of an atom in the 

direction i. Often the atoms are assumed to undergo isotropic 

motion which is described by the single parameter B. and is 
J 

usually called the Debye-Waller factor. In general, it is 

necessary to determine the six independent components of the 

tensor u. and the three components of r. for all 
~ -J 
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crystallographically independent atoms in the unit cell; 

t hat is, all atoms not related by symmetry. The portion of 

t he unit cell that contains only atoms unrelated by symmetry 

operators is called the asymmetric unit. 

Because of the form of the structure factor, it may 

be considered as the Fourier transform of the electron 

density, as defined by the vectors r .. Then the appropriate 
- J 

Fouri e r transform of the observed structure factors, F
0

(H) 

should give the electron density in the unit cell; that is, 

p(r) =! E F (H)exp(2wiH·r) 
VH o- --

where the sum is over all reflections H. We may determine 

IF (H) I from the observed intensity I (H). 
0- 0-

I (H) may be recorded with a Geiger-Muller tube or 
0-

scintillation counter. Each reflection will also produce a 

darkened area when it is incident on a photographic film. 

I (H) is then proportional to the darkening of the spot on 
0-

the film produced by the reflection H . One normally records 

on a film only those reflections belonging to a plane in 

reciprocal space. These planes are referred to as layer lines. 

It is often convenient to choose layer lines with the property 

that one of the indices h, k and t is constant throughout and 

if this index has the value n, then the layer line is called 

t he n'th layer line. Layer lines containing the origin of 

reciprocal space are called zones. 

In general F (H) is a complex quantity and we cannot 
0-
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measure its phase. We do not then have sufficient information 

to calculate p(£) directly. In some cases, if the structure 

contains a center of symmetry, probable values of the phases 

of the reflections may be inferred directly from the 

distribution of the magnitudes of IF (H) I (Wooster, 1961) 
0-

but these methods have not been used here. An alternative 

procedure is to use the Patterson function (Buerger , 1960); 

t hat is, 

1 2 
P(~) = V E IF

0
(!:!) I cos(21TH·~) 

H -

s defines a vector space and P is large only when s 

corresponds to an interatomic vector in the real unit eel~ 

and further, when this condition is satisfied P(~) is 

proportional to the product of the electron densities of the 

two atoms defining the interatomic vector. 

P(~) may be calculated directly from the experimental 

data since it uses only IF (H) 1
2 . We must next find a set 

0 -

of atomic coordinates consistent with P(s). The solution to 

this problem is not always unique. Also P(s) is usually 

poorly resolve~ and we can only find the positions of the 

heavier atoms. The approximate phases (or "signs" if the 

structure is centric) calculated for F (H) from the heavier c -

atom positions may be assigned to F (H) in order to calculate 
0-

p(r) . Then the positions of the lighter atoms may hopefully 

be found. 

In order to obtain improved or "refined" atomic 

coordinates we may substitute F (H)-F (H) for F (H) in the 
0 - c - 0 -
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equation for p(r) to obtain a difference Fourier synthesis. 

Atoms are then shifted from areas where the difference 

synthesis is negative towards areas where it is positive. 

Th e advent of fast electronic digital computers in the past 

few years has made possible refinement by least squares 

methods. This procedure calculates small adjustments to the 

parameters describing the crystal structure which will minimize 

the quantity R2 defined by 

E w(H) 
H 

I IF (H) I - IF (H) I 1
2 

0- c-

E w (H) 
H 

IF (H) 12 
0 -

where w(H) is a weight assigned to the reflection H. Some 

methods of assigning w(!!) are described in Appendix A. R2 

is the "normalized residue" of the least squares analysis. 

It is also referred to in the literature as the "weighted 

R factor". In the past it has been more convenient to use 
) 

the "R factor" or "unweighted R factor" or "agreement index", 

R
1

, to indicate the quality of agreement between ~ (H) and 
0-

F (H) • .c- R
1 

is defined by 

E IIF
0

(!!) I - IFc(H) II 
H 

If we assume a "normal" distribution of error in F (H), we 
0-

should minimize R2 to obtain the optimum model for the 

crystal structure. (Hamilton, 1964). The method of least 

squares is discussed further in Appendix A. 



15 

(C) Previous Structure Determinations 

The f irst investigation of Mg 2P 2o7 pertinent to this 

study was that of Roy,Middleswarth and Hummel (1948). They 

dete~mined the differential thermal a nalysis (D.T. A. ) curves , 

the thermal expansion parameters and the Debye-Scherrer 

patterns of Mg 2P 2o7 as a function of temperature and they 

concluded that there was a transformation to a high temperature 

. 68° + 2° h 1 h. f . pnase at C. In t e present nomenc ature t lS orm lS 

called the 8 phase. hukaszewicz (1961) reported a preliminary 

structure analysis of the high temperature phase at 80°C 

which confirmed that S-Mg 2P 2o
7 

is an isostructure of 

thortveitite. However, better resolution was required. 

Further refinement of this structure was carried out by Calvo 

(1965c) in order to elucidate the chemical nature of the 

pyrophosphate ion and to gain some insight into the nature 

of the phase transformation. The P-O bond distances were in 

better agreement with the predicted nature of the P 2o7- 4 

ion. Also, the central o1 atom appeared to have a large 

component of thermal vibration along the b direction. 

The structure of the room temperature magnesium 

pyrophosphate, that is a-Mg 2P 2o7 , has also been reported 

by hukaszewicz (1966). A more complete investigation of 

a-Mg 2P 2o
7 

has been carried out by Calvo (1967d). The differences 

between the atomic coordinates determined by these workers 

are in most cases less than the combined errors as 

reported for the two structure determinations. Here the 



16 

length of the a and £ axes are roughly double those of 

S-Mg 2P 2o7 , and the space group is B2
1
;c. This non-standard 

space group was chosen to facilitate a comparison of this 

crystal structure with that of the high temperature form. 

The structures are similar but the a form contains two 

independent Mg+ 2 cations, one with octah~dral coordination 

as in S-Mg 2P 2o7 but the other with only five ligands . 

The structure of Mn 2P 2o7 has been reported by 

~ukaszewicz andNagler (1961). They used 72 observed structure 

factors and obtained an R factor of approximately 0.18. 

The structure is similar to that of thortveitite but the ~-0 

bond distances are unrealistic. The two symmetry independent 

terminal P-O distances were 1.74 and 1.60 A. The longest 

possible P-O distances would have a bond order of ''one" and 

this corresponds to a bond length of 1.71 A (Cruickshank, 1961). 

A study of this crystal structure is now in progress at this 

University for the purpose of obtaining better resolution 

(Calvo, 1967b). No crystallographic evidence of a phase 

transformation has been observed for this crystal. Also 

Lazarev (1962) has observed the infrared absorption at various 

temperatures down to -1S0°C and has found no major changes 

in the spectrum. 

Sarver (1966) has investigated the D.T.A. curves of 

Ni 2P 2o7 and Co 2P 2o7 and he observed rapidly reversible phase 

transformations at S7S ± S°C and 304 ± S°C respectively. He 

examined the lower temperature phase of each compound by 
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powder diffractometry and concluded that their structures 

were similar to that of a-Mg 2P 2o
7

• The structure of 

a-Ni 2P 2o7 was reported by hukaszewicz (1966) and it is 

indeed almost identical to that of a-Mg 2P 2o7 . Any 

discrepancies are probably not significant since relatively 

small amounts of data were used • Preliminary 

results on the structure of a-co 2P 2o7 ,which is under 

investigation at this laboratory,indicate that its structure 

is also very similar to that of a-Mg 2P 2o7 (Calvo, 1967c). 

The first crystallographic study of cu2P 2o7 was 

reported by hukaszewicz and Nagler (1961) . They found at 

room temperature the Laue symmetry and extinctions were 

consistent with either of the· space groups C2/c or Cc. The 

unit cell dimensions were similar to those of the other 

pyrophosphates although the c axis was approximately double that 

of 8-Mg
2

P 2o
7 

. They did not investigate the possibility of 

a high temperature form although Roy et.al.had mentioned 

some evidence of a phase transformation from D.T.A. results. 

A phase transformation has since been found (Robertson, 1965) 

0 
~ear 70 C by x-ray methods. The crystal structure of the 

high temperature form, s-cu2P 2o7 and the room temperature 

form, a-cu2P 2o7 were also studied with x-rays. The 8 form 

is isomorphLc to S-Mg2P 2o7 . This thesis will describe more 

accurate refinements of these structures which were necessary 

in order to draw conclusions about the nature of the phase 

transformation. 
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A phase transition was first reported in zn2P 2o
7 

by 

Katnack and Hummel (1955). They found an endothermic peak 

in their D.T.A. results centred at 132°C. The electron 

paramagnetic resonance (e.p.r.) results of Chambers, Da tars 

' . 9 r 4 ) + 2 . P 0 • d • dd • • 1 ~Ju ~&~vo \ o on Mn ln zn 2 2 7 
ln 1cates an a 1t1ona 

phase transition, probably of second order,extending from 

132°C to 155°C. The structure of 8-Zn2P 2o
7 

has been re co lved 

a · o a :55°C by Calvo (1965b) a .d was found to be isomorphic 

to the other high temperature forms in this series. The 

lattice parameters of the low temperature form, a-zn 2P 2o7 

have been reported by DeWolff (1958). If an I centred unit cell 

is chosen, the length of the a axes will be roughly three times 

that of the S phase and, as in all the other a phases of the 

serie s, the c axis is roughly double that of the conjugate 

8 phase. The structure exhibits the characteristic c glide plane 

and the space group must be one of Ic or I2 / c. The elucidation 

of the manner in which a pseudo-symmetric structure such as 

this deviates from the higher symmetry is definitely a non-

trivial problem. 
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(D) Space Group Ambiguities 

The symmetry of the pattern of diffracted x-rays 

permits one to determine the Laue class to which the crystal 

belongs. The information rega.rding the actual space group 

resides in the intensity distribution. Some components of 

the space group symmetry, but generally not all, can be 

determined from the class of those reflections having 

rigorously zero intensity. This class is said to be 

systematically extinct. Unfortunately, two or more space 

groups are sometimes consistent with the Laue class and the 

systematic extinctions. 

In some cases one answers the question of the space 

group ambiguity by refining the structure in the lower 

symmetry space group (or space groups) and noting whether 

the final atomic positions found are consistent, within the 

estimated standard deviations (e.s.d. 's), with the higher 

symmetry space group. This method has been notably 

unsuccessful in the case of thortveitite and the pyrophosphates 

considered here. One reason for this is that the e.s.d's 

o~ the atomic coordinates obtained in the non-central space 
\ 

groups are probably unrealistically low because of the high 

degree of pseudosymmetry. Atomic coordinates which would 

be related by symmetry in the S phase are strongly 

interdependent and the e.s.d. 's given by the statistics of 

the least squares treatment are probably smaller than the 

actual errors. Beyond this, the question of the proper 



c ri teria for an adequate trial structure in the lower 

symmetry space group is not clear. 

The Laue symmetry and systematic extinctions of 

tho r tveitite and all the e forms of the pyrophosphates 

(including ~2P 2o7 ) allows the space group to be one of 
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Cm, C2 or C2/m. Cruickshank et.al. refined the structure 

of tho r tveitite in all three space groups but the atomic 

coordinates obtained in both of the non-centric cases were 

s i gni f i cantly different from those obtained in the centric 

space group C2/m. However, they noted that those bond 

lengths that should be chemically equivalent were 

significantly dissimilar. Any differences in these bond 

lengths could be caused only by the environment of the anion 

and therefore should be small since the two halves of the 

ani on see nearly identical environments. For this reason, 

they rejected the non-centric space groups and chose C2/m 

as the proper space group of thortveitite. 

In any least square refinement of a set of data 

the discrepancy can be reduced by increasing the number of 

a djustable parameters. For this reason , the agreement between 

observed structure factors and calculated structure factors 

should be improved when additional parameters, permitted by 

a reduc t ion in symmetry, are introduced. If the lower 

symmetr y space group is the correct one, the improvement 

shoul d be significant, and further, the deviations of the 

parameters from their high symmetry values should be 
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significant. The r elation between the degree of improvement 

and the probability that the additional parameters are proper 

variables can be discussed quantitatively (Hamilton, 1965). 

Tho ra ~o of the agreement factor R2 obtained for t h 

extra variables are added to the refinement, to R2 obtained 

with the inclusion of the extra variables is compared with 

an analysis-of-variance ratio corresponding to some 

s i .• iiicance level. If the ratio is greater, the extra 

vari ables can be said to be valid at that significance level. 

Hamilton used thortveitite as an example of the application 

of his significance tables and concluded that the extra 

variables needed to define the structure in the space groups 

Cm or C2 did not provide a better model at the 25% level of 

significance. 

The symmetry of a crystal is reflected in its physical 

properties including the structure. Paramagnetic ions in a 

crystal are subjected to internal fields and therefore the 

splitting of energy levels dependsnotonly on the strength of 

an external field, but on internal ones as well. In an 

electron paramagnetic resonance (e.p.r.) experiment, 

electromagnetic radiation corresponding to microwave 

frequencies is absorbed in the process of exciting transitions 

in the paramagnetic ions corresponding to changes in the 

effective spin quantum number S . If two paramagnetic ions z 

are in crystallographically independent sites they will 

not be subject to identical internal fields and thus their e.p.r. 
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absorption spectra will also not be identical. Since the 

energy levels are in general nonisotropic, the tensorial 

properties of 2 which defines the relation between the 

magnetic moment~ and the spin vectorS (R = s2·S) may also 

be determined. Using e.p.r. techniques, it is often possible 

to determine the maximum point group symmetry at the paramagnetic 

ion and, second, the number of signals, that is sites, in the 

crystal that are not equivalent. 

This technique has been applied to Cu+ 2 and Mn+2 

+2 doped Zn 2P 2o7 (Chambers, Datars and Calvo, 1964), Mn doped 

Mg2P 2o7 (Calvo, Leung and Datars, 1967), and to thortveitite 1 

(Datars and Calvo, 1967) which occurs naturally with both 

+3 d +2 . •t• Fe an Mn 1mpur1 1es. In all cases the spectra are 

consistent only with the C2/m space group, but as yet the 

sensitivity of the method has not been investigated 

theoretically. 

cu2P 2o7 and Mn 2P 2o7 are themselves paramagnetic 

materials and the e.p.r. method is not applicable. The 

technique of anomalous dispersion has been used to determine 

the space group of Mn 2P 2o7 . If the energy of the incident 

x-rays is near the energy required to excite the electrons of 

one of the atomic species, then the phase change upon 

scattering can differ from the normal 180° and if the crystal 

is non-centrosymmetric, the scattering from planes defined by 

H will no longer be the same as the scattering from planes 

defined by -H. No systematic differences between such 
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reflections could be seen in Mn2P 2o
7 

with CoKa radiation 

(Calvo, 1967b) which implies that the space group is C2/m. 

It s hould be mentioned here that this technique and the method 

o :::: e. ? . ~ . • 1easures the symmetry of the paramagnetic impur ity 

which is assumed identical to that of the cations and only 

indi r ectly infers the symmetry of the other atomic species 

i r. -;: .. 3 c~ystal. 
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(E) The Pyrophosphate Anion 

Cruickshank (1961) has discussed the nature of 

t he bonding about a tetrahedrally coordinated X atom where X 

c a n equal Si, S, Cl or P atoms. In an isolated tetrahedron 

f our a bonds to four oxygen atoms, for example, are 

constructed from the hybridized sp3 orbitals of the X atom. 

The two n bonding systems are formed from the dy orbitals 

of the central atom and the oxygen 2pn orbitals. A a lone 

pair is left at the back of each oxygen atom, which may 

be used to bond with other atoms. If we now join two 

tetrahedra by the sharing of one oxygen atom to form a pyro-

group, the degree of n bonding becomes dependent on the 

hybridization of the central oxygen atom. If the angle 

subtended at the central 01 atom of the anion by the two 

0 I 

X atoms is the tetrahedral angle of 109 25 , the 01 atom 

would be sp 3 hybridized and unable to sufficiently overlap 

with the 3d orbitals of the X atom to support any significant 

n bonding. If the shared oxygen atom is sp2 hybridized 

the subtended angle becomes 120° and one of the two n bonding 

systems in each tetrahedra is joined across the atom. When 

the subtended angle is 180°, the central oxygen atom is sp 

hybridized and both n bonding systems are joined. As the 

amount of n bonding to the shared oxygen atom increases, its 

bond distances to the X atoms are decreased and the bond 

lengths to the terminal oxygen atoms are increased. 

Upon assuming a linear bond distance versus bond 

length relationship together with a n bond order of one half 
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-3 for an isolated P04 tetrahedron and Shoemaker and 

Stephenson's (1941) calculated single bond length, Cruickshank 

has predicted bond lengths from valence bond theory for the 

P-0(-P) and terminal P-0 bonds for each of these hybridization 

schemes. He obtains 1.64 A and 1.51 A for the P-0(-P) and 

P-0 bond lengths respectively when the P-0-P angle is 120° 

and 1.58 A and 1.53 A when the P-0-P angle is 180°. These 

cons ideration~ necessarily neglect the effect of the environment. 

The group of pyrophoshpates under consideration here permit 

an observation of the manner in which the cations perturb 

-4 the P
2
o

7 
group. In particular, electrons from the anion 

may be attracted by the positive cation which would cause 

the bond lengths between the atoms in the anion to increase, 

and the P-0-P angle to deviate further from 180°. 



26 

Bo ~--------~--------~--------------------

550 :50 
~Bo:S r ~--------+---------~--~-----+---------4 

V) 

0 a... 
:::E 

8 
' \ 
' \ 

\ 

5 sr~----~--+---------4---------~--------~ 
t-
::> 
_J 

0· 
V) 

0 
<)50:50 
~ca:Sr~--------+-~------4---------~---------4 

Co Y 
bOO 700, 800 qoo tOOO 1100 1200 1300 1400 

' TEMPERATURE °C 

Approximate phase diagram for pure 
(Al k al i ne earth) pyrophosphateS . 

(From Ranby, Mash and Henderson, 1955) 

Figure 1 



CHAPTER 2: DETERMINATION OF THE STRUCTURE OF a-Cu
2

P
2
o

7 

(A) Preliminary Investigations 

The first crystallographic investigation of cu2P 2o
7 

was reported by bUkaszewicz andNagler (1961) . They examined 

its powder pattern at room temperature and concluded that 

the structure must be similar to thortveitite. The unit 

cell volume was about twice that found for thortveitite 

(Cruickshank, Lynton and Barclay (1962)) with similar lattice 

parameters except for a doubled ~axis. 

The systematically extinct reflections, that is, those 

with h + k odd in addition to those with k = 0 and t odd, 

indicate that the space group is either C2/c or Cc. Roy, 

Middleswarth and Hummel (1948) had examined cu2P 2o7 by D.T.A. 

and reported some evidence for a phase transformation but 

gave no further information. 

Since Mg 2P 2o7 (bukaszewicz,l96l) and zn 2P 2o7 (Calvo, 

1965b) undergo phase transformations above room temperature 

to a form isostructural to thortveitite, it was decided that 

cu2P 2o
7 

should be investigated for evidence of a high 

temperature (8) polymorph. A phase transformation was found 

at about 70°C (Robertson, 1965) by x-ray examination. In this 

transformation the c axis halves by the disappearance of the 

reflections with t odd and the space group is transformed to 

one of C2, Cm or C2/m. 

27 



The structure of a-cu2P 2o 7 had been partially 

refined (Robertson, 1965). In the present work, this 
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refinement is completed. Additional data have been recorded 

wit~ a~ acc~racy sufficient for a resolutio n of the space 

group anomaly in the a phase and as a result, the geometry 

-4 for the P 2o 7 anion is in better agreement with predictions 

b &: ~ on chemical considerations. hukaszewicz (1966) h as 

also recently refined the structure of a-Cu 2P 2o
7

. using 230 

reflections of the hkO, hO~ and hl~ type. He has obtained 

subs t antially the same structure as reported here but with 

much larger errors in the atomic positions. Also, he did 

not consider the problem of the space group ambiguity. 

The crystals used here were prepared by the reaction 

o f a slight excess of an aqueous solution of Na 4P 2o 7 with an 

aqueous solution of cuso 4 . The precipitate was filtered, 

washed and dried . The sample was then heated to 1200°C and 

allowed to cool slowly across the melting temperature, 

reported to be 1140°C by hukaszewicz and Nagler (1961) . Some 

of the small blue-green crystals obtained were found to be 

twinned on their [110] faces but single crystals could 

easily be selected. 

Lattice parameters were determined from a Debye-

Scherrer photograph obtained from a powdered portion of 

these crystals. Thirty-nine lines were identified and the 

quantity "sinG/A'' was used in a least squares fit of the 

lattice parameters . The computer programs used here are 
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described in Appendix B. The reflections used, together 

with their measured and calculated ''sinG/A" values, are 
I 

shown in Table 1. These lattice parameters are compared 

with those of similar pyrophosphates in Table 2. 
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(B) Preparation of Data 

A crystal having the approximate dimensions 0.08 x 0.08 

x 0. 40 mm3 was glued to a fiber with its long dimension parallel 

to t~c so~io~eter 's rotation axis. Weissenberg photogr aphs of 

the type hkO , hkl and hk2 were recorded with Cu Ka radiation. 

The hkO reflections were also recorded on a Supper single 

' ~anual diffractometer using Mo Ka radiation. Thi < 

crys tal was also used to record Ok~ data using tne precession 

camer a with Mo Ka radiation. A second crystal was used to 

collect data o f the type hn~, n = 0,1,2,3,4, using a 

Weiss enberg c amera and Mo Ka radiation. The approx~mate 

dimensions of this crystal were 0.10 x 0.10 x 0.05 mm3 . 

In order to measure accurate data with the dif f ractometer 

a sys tem was designed (Figure 2) to be attached to the front 

of the counter so that dead time corrections could be reduced 

to less than 15% of the total number of counts by the insertion 

of filters in the path of the incident x-ray beam. For Mo 

radiation, zirconium 'filters were used. The integrated intensity 

was measured by rocking the crystal while holding the counter 

fixed. This method is usually referred to as an "w" scan. 

The background was measured at approximately 3° in w on either 

side of the Bragg reflection. The integrated intensity of 

each reflection was corrected for background, variation in 

scanning rate, filter attenuation and variation in incident 

beam intensity as monitored by the periodic measurement of 

a standard reflection. In order to apply corrections for dead 
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time, the intensity profile of each reflection was approximated 

by the sum of two Gaussian curves corresponding to the Ka
1 

and 

Ka 2 spectral lines. The relative separation of the pea ks is 

propo rtional to the tangent of the Bragg angle. The c onstant 

o~ prvportio,ality and also the width of the two GaussLan 

curves were found graphically by curve fitting at high angles 

where the peaks were well resolved and then ext~apolatins t o 

low c..~1gles . In order to apply the dead time corrections, the 

r eflection profile was broken into 100 strips and the height 

o f each strip was individually corrected for dead time. 

Th e integrated intensity of the photographic data was 

visually estimated using the logarithmic method (Robertson, 

1965). In the previous refinement, the data of type Ok~; 

hkn, n = 0,1,2; and hn~, n = 0,1 were used. For the present 

refinement the data indexed as hn~, n = 2,3,4 were added~ 

All of the data were corrected for the effects of Lorentz 

and polarization. The estimated standard deviations (e.s.d. 's) 

for the visually estimated data were initially assigned as 10% 

of the magnitude of the structure factor except for very weak 

or moderately strong reflections in which case the e.s.d. 's 

were multiplied by 1.5. The e.s.d. 's of the reflections 

recorded with the diffractometer were assigned as a constant 

times 1/IN where N is the total number of counts used to 

record the integrated intensity of a given reflection. 

Since the linear absorption coefficients are 160 cm-l 

for Cu Ka radiation and 100 cm-l for Mo Ka radiation approximate 
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absorption corrections were applied. The crystals were 

a pproximated by spheres or cylinders, where appropriate, whose 

vo l umes were made equal to those estimated for the crystals. 

!n addition , the lengt h o f the e y linde r was set equal to the 

c rystal l engtq along the rotation axis. The changes i n the 

val ue of the structure factors arising from these corrections 

varied by a maximum of 10% over the range of 0 used to record 

this d a ta. Thus errors caused by the assumed idealized crystal 

sha pe should be of the order of only 2 or 3%. These corrections 

were not applied until the structure was partially refined. 

I n addition to the corrections for linear absorption, 

the data measured with Cu Ka radiation was approximately 

corrected for the effects of anomalous absorption. A constant 

f a c to r o f 2.0 was subtracted from the Cu+ 2 scattering curve. 

( I nternati onal Tables, Volume III, 1962). A correction for 

the phase shift upon scattering must also be applied if the 

space group is noncentric. However, in the case of a-cu2P 2o7 , 

if the space group is indeed non-centric, the Cu+2 atoms, the 

only anomalous .scatterers,are nearly centrically related and 

th'erefore this correction should be sui table. 
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{C) Refinement 

The reflections indexed with an odd value of t in 

a-cu2P 2o
7 

do not occur in the S phase. The x-rays diffracte ' 

into these reflections are scattered only by electrons which 

are not consistent with the symmetry of the S phase. The 

intensities of the reflections with t odd are weak which thel 

implies that the two half unit cells of a-cu2P 2o
7

, which 

become full unit cells above the transformation temperature 

are very similar. As is generally the case with any structur e 

having pseudo-symmetry, the Patterson function {Chapter lW) 

showed only the average positions consistent with the more 

symmetric phase since it is dominated by the stronger 

reflections. The deviations from the structure of higher 

symmetry could not be easily inferred from the normal Patter on 

diagram. The peak broadening, however, showed the direction ! 

of the deviations from the S phase for the positions of the 

cations. 

The partial refinement of s-cu2P 2o7 reported previo~j ly 

{Robertson, 1965) was used as a starting point for the a-cu2~ 2o7 
re~inement. The thermal ellipsoids associated with the atom1 

of the S structure were considerably elongated. Cu+ 2 ions 

were situated on twofold rotation axes parallel to the b axi j 

and showed high thermal motion approximately in the a direct i on. 

In addition the central oxygen atom was found from electron 

density maps to be elongated in the b direction. In order t , 

infer the relationship between the thermal ellipsoids of the 
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S phase and the coordinates of the a phase, it will be necessary 

to give a more complete description of the change in symmetry 

which occurs at t h e phase transformation from the s to a polymorph . 

Thi s change results from the loss of translational symmetry 

::-.:.::.c-. -:.::.::g t wo uni t cells adjacent to each other in the c direction. 

Th is i s manifest by the loss of the mirror plane of the S phase 

and i ts rep lacement by a £ glide plane. 

Re f inement was initially done in the space group Cc. 

+2 I t wa s assumed that the displacements of the Cu and Ol atoms 

were in the directions of the principal axis of thermal motion 

o f e a ch atom in the S phase. The origin of the unit cell is 

neces sarily on the £ glide plane. The position of the c glide 

p lane in the structure was fixed by placing an 01 atom at 

xja = 0 and z/c = l/4. The origin was fixed by the sign of 

the d ispl acements of the cations. There remains a choice as 

to t h e direction of the displacement of the aforementioned 01 

atom up or down the b axis. This determines the relationship 

b e t we en the direction of the bending of the anion and the 

direction of the displacements of the cations from their 

posi t ions in S-Cu2P 2o7 . A displacement down the £ axis was 

arbi t rarily chosen. The displacement involves only a y 

coord inate and furthermore, a negative and positive displacement 

are superimposed in the projection on the (001) face. Therefore , 

only re f lections from the {100} zone are sensitive to the sign 

o f the disp lacement. The other phosphorus and oxygen atoms 

were a ssigned coordinates directly from t heir positions in the 
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s-cu
2

P
2
o

7 
structure. The structure was refined in the space 

group Cc using electron density maps with individual isotropic 

temperature factors assigned to the atoms. The R factors were 

lowered to 0.27 and 0.24 for the {_OOl} and {010} zones 

respectively. The atoms were assigned anisotropic temperature 

factors and the structure was refined by the method of least 

squares (Appendix A). Unit weights were assigned to each 

reflection and the overall R factor was low.ered to 0.18. 

The data indexed as Okt, hkl and hk2 were added to 

the refinement and further cycles of least squares lowered the 

R factor to 0.16. The greatest discrepancies between the 

observed and calculated structure factors occurred among the 

hkl reflections. These are all absent in the s phase and are 

most sensitive to the sign of the displacement of the central 

oxygen atom. The sign of the displacement was made positive 

and two more cycles of refinement lowered the R factor to 0.13. 

Of particular significance is the fact that the agreement between 

the observed and calc~lated structure factors of the hkl data 

had improved considerably. 

The molecular geometry of the structure was calculated 

and it was found that a number of bond lengths were not 

chemically realistic. For example, the two P-0(-P) bond 

lengths were 1.80 and 1.38 A. Therefore, all the atomic positions 

were arranged such that the results were consistent with the 

space group C2/c. The Cu+2 ions were now related by a center 

-4 of symmetry and the two halves ·of the P2o
7 

anion were 
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re l ated by a twofold rotation axis. Initially the R factor 

wa s now higher than that obtained in the noncentric 

refinement but three cycles of refinement in this space 

g r oup l owered the R factor back to 0.13. All the P-0 bond 

lengths had improved and were consistent with chemical 

cons i derat i ons. 

Th e data of type hlt, h2£, h3£ and h4£ were now 

a dded to that already in use and the structure was further 

r efined by least squares with a (l/cr) 2 weighting scheme 

(Appendix A) • Absorption corrections and anomalous dispersion 

corrections were now applied to the data. Parallel refinements 

were then carried out in both the centric and non-centric 

space groups. The weight i ng scheme suggested by Cruickshank 

et . al. (1961) was used (Appendix A). The weight "w" was 

set as 

w -l (H) = A + B IF (H) I + c IF (H) 1
2 + D IF (H) 1

3 
0 - 0 - 0 -

where F (H) is the observed structure factor and the values 
0-

of A, B, C and D are given in Table 3. The structures were 

refined until no appreciable changes occurred in the values of 

the R factors . Reflections which were too weak to be observed 

and whose calculated structure factors were less than the 

minimum observable value were assigned zero weight in the 

r efi nement . Otherwise, F for these r eflections was replaced 
' 0 

by 0.70 times the rinimum observable value. The final value 

o f t he agreement factors R
1 

and R2 , defined in Chapter l(B) 
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were 0.107 and 0.104 respectively for the space group C2/c and 

0.107 and 0.100 respectively for the space group Cc. An 

attempt was made to assess the reliability of the higher 

symmetry space group using the criteria of Hamilton. 

The atomic parameters obtained for both space groups 

are compared in Table 5. All of the eleven atoms in the lower 

symmetry space group have non-positive definite thermal parameters, 

Table 4 lists the 1112 recorded independent structure factors 

together with their calculated values. The column headed 

FC(l) are absolute values of the structure factor obtained 

in the space group Cc and that headed FC(2) are the structure 

factors obtained in the space group C2/c. The molecular 

geometries calculated from the atomic parameters obtained in 

both space groups are given in Table 6. 

The results of these refinements seem to favor the 

space group C2/c. This choice · has been supported by the 

nuclear magnetic resonance (n.m.r.) studies of Stager and 

Atkinson (1967). This technique is similar to e.p.r. except 

that the energy level splittings of the nuclear spin are 

observed and radio frequency electromagnetic radiation is used 

. t d f . h 31 1 h . f 1/2 1ns ea o m1crowaves. T e 15P nuc eus as a sp1n o 

whose levels are split in a magnetic field. Transitions 

between these levels are induced by bathing the nuclei in 

electromagnetic radiation of the proper frequency. In cu2P 2o
7

, 

the 15P 31 nuclei are also subject to the local magnetic 

field generated by the paramagnetic Cu+ 2 cations and thus the 
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environment of the 15P 31 nucleus will shift its absorption 

frequency. This effect is known as the chemical shift. If the 

space group of a-cu2P 2o7 is Cc the unit cell must contain two 

independent P atoms which would give rise to two n.m.r. 

absorption signals. If the space group were C2/c, only one 

signal should be seen. Stager and Atkinson have only seen one 

signal. Furthermore, the shift in absorption frequency was 

isotropic over a wide range of temperature. It is unlikely 

31 t hat t he chemical shifts of two independent 15P atoms would 

accidentally superimpose over such a temperature range. Also, 

at low temperatures, the spectral lines are very sharp and 

any doubling of the 
15

P 31 absorption line should be observable. 

These experiments support the choice of the space group C2/c 

although the accuracy of this method has not yet been evaluated. 

Thus although there may be still some uncertainty as to the 

space group of a-cu2P 2o7 ,at worse it can not differ very 

greatly from C2/c. 
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Table 1 

Observed and calculated values of sin 8/"A for the Debye-

Scherrer lines used to determine the lattice parameters 

of a-cu2P 2o7 

h k R, sinG//.. (obs) sinG/"A(calc) ---
0 0 2 0.05406 0.05356 
-
1 1 2 0.06850 0.06850 

0 2 1 0.07436 0.07424 

2 0 0 0.09553 0.09470 
-
2 0 2 0.10111 0.10036 

0 2 2 0.11488 0.11441 
-
2 2 1 0.14563 0.14499 

2 2 0 0.15527 0.15555 

1 3 0 0.15976 0.16058 
-
2 0 4 0.21362 0.21315 

3 1 0 0.22990 0.22829 

1 3 2 0.23798 0.23809 

2 2 2 0.25748 0.25701 
-
2 2 4 0.27516 0.27400 

0 4 2 0.29734 0.29695 
-
1 3 4 0.32758 0.32693 
-
3 3 2 0.33383 0.33169 

3 3 0 0.35103 0.34998 

1 3 4 0.42370 0.42273 
-
2· 0 6 0.43425 0.43307 

2 2 4 0.46688 0.46560 

3 3 2 0.47684 0.47539 

0 6 0 0.54664 0.54761 
-
1 3 6 0.57243 0.57080 

3 5 0 0.59325 0.59336 
-
4 2 6 0.63758 0.63432 
-
2 6 2 0.64863 0.64798 

(continued) 
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Table 1 (continued) 

h k Q. sin0/ >- (obs) sin0/ l- (calc) ---
3 5 4 0.66497 0.66392 

5 1 1 0.68309 0.68035 

1 9 4 1.51671 1.51796 

3 3 8 1. 49633 1.49439 

1 5 8 1.35743 1.35678 

5 7 0 1.33986 1.33724 

2 8 4 1.18702 1.18669 

2 8 2 1.16847 1.16970 

1 3 8 1.114 77 1.11339 

1 5 6 0.95723 0.95788 



TABLE 2 

f.l(Mo) = 100 
-1 em f.l(Cu) = 160 

-1 
em 

Number of observed reflections 715 

Total number of reflections 1112 

(a) Space group C2/c 

Weighting curve constants 

Rl 

Rl 

R2 

R2 

A = 11.91319 

B = -0.99401 

c = 0.03397 

D = -0.00018 

(observed reflections 

(all reflections) 

(observed reflections 

(all reflections) 

(b) Space group Cc 

Weighting curve constants 

A = 11.69711 

B = -1.02278 

c = 0.03653 

D = -0.00019 

only) 

only 

0.0976 

0.1069 

0.1017 

0.1045 

41 
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TABLE 2 (continued) 

Rl (observed reflections o nly) 0.0946 

Rl (all reflections) 0.1075 

R2 (observed reflections only) 0 . 0950 

R2 (all reflections) 0.0999 

Unobserved reflections whose calculated values 

were greater than the minimum observable value, F(min ) 

in that area were replaced by 0.70 F(min) . Otherwise 

their weight was set at zero. 



TABLE 3 

Lattice parameters of structures related to that of thortveitite (e.s . d. ' s in paranthes es ) 

Ref. a (A) b (A) c (A) s z Space Range of 
Group Stability 

S-Cu2P 2o7 
6.827(6) 8.118(6) 4.567(6) 108. 85 (10) 0 2 C 2/rn 0 above 71 C 

S-Mg 2P 2o7 (a) 6.494(7) 8.28 ( 1) 4.522(5) 103.8 (1)0 2 C 2/rn 0 above 68 C 

S-Zn2P 2o7 
(b) 6.61 (1) 8.30 (1) 4.51 (1) 105.4 (1)0 2 C 2/rn 0 above 155 C 

Mn 2P 2o7 
(c) 6.63 8.58 4.54 102.66° 2 C 2/rn at l east 0 above 150 C 

Sc 2si 2o
7 

(d) 6.542(5) 8.519 (5) 4.669(5) 102.5 (2)0 2 C 2/rn 

Mg 2As
2
o

7 
(e) 6.584 8.509 4.761 103.9° 2 C 2/rn 

zn
2

As
2
o

7 
(f) 6.66 8.36 4.75 104° 2 C 2/rn 

Cd 2v2o
7 

(g) 7.088 9.091 4.963 103.3° 2 C 2/rn 

a-cu2P 2o7 
6.877(4) 8.113(4) 9.162(10) 109.54(6) 0 4 C 2/c below 71° 

a-Mg 2P 2o
7 

(h) 13.198(5) 8.295(5) 9.072(5) 104.9(1) 0 8 B 21;c 0 below 68 C 

a-zn
2

P
2
o

7 
20.068(15) 8.259(6) 9.099(8) 106.35(8) 0 12 I c 0 below 132 C 

a-Ni 2P 2o7 
(i) 13.093(7) 8.275(5) 8.97 4 (5) 104.9(1) 0 8 B 21/c 0 below 575 C 

a-co 2P 2o7 
( j) 13.23 (1) 8,318(8) 8.9 fl3 (8) 104,3(1) 0 8 B 21;c below 304°C 

""" w 



References for Table 3 

(a) Calvo (l965a) 

(b) Calvo (l965b) 

(c) f:.ukaszewicz and Smajkiewicz (1961) 

(d) Cruickshank, Lynton and Barclay (1962) 

(e) f:.ukaszewi cz (1963) 

(f) Calvo and Neelakantan (1967) 

(g) Au (196 6) 

(h) Calvo ( l9 67d) 

(i) Calvo (l967c) 

(j) hukaszewicz (l96 7a) 

44 



TABLE 4 

Observed and calculated structure factors of 

a-cu2P 2o
7

. The columns headed FC(l) are the absolute 

values of the structure factors obtained in the space 

group Cc. The columns headed FC(2) are the s"tructure 

factors obtained in the space group C2/c. Reflections 

which were too weak to be observed are marked with an 

asterisk. The structure factors divided by ten refer 

to one unit cell. 
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TABLE 5 

Atomi c coordinates of o-cu2P 2o7 
( " I e.s . a. s in parantheses) 

(a) s ~:)ace group C2/c 

Configuration coordinates 

x/a y/b z/c 

Cu -0.0178(2) 0.3133(2) 0.5068(1) 

p 0.1977(3) 0.0076(4) 0.2059(2) 

Ol 0 0.0484(22) l/4 

0 2 0.3767( 8 ) -0.0027(11) 0.3630(7) 

0 3 {C) 0.2218(8) 0.1562(9) 0.1134(6) 

03 (T) 0.1783(11) -0.1530(10) 0.1187(8) 

Thermal coordinates (A2 
X 10 4 ) 

ull u22 u33 u12 ul3 u23 

Cu 56 ( 3) 6 8 ( 5) 59(2) 4 ( 4) -3 4(18) 9 ( 6) 

p 10(4) 81(11) 35(5) -13(7) 3 ( 3) 13(9) 

Ol 72(26) 439 (91) 255(46) 0 76(29) 0 

0 2 33(13) i88(35) 112(18) 1(24) -32(13) 5 ( 33) 

03 (C) 114 (16) 9 ( 22) 75(15)-10(21) 15(14) 67(29) * 

03 (T) 190(23) 65(31) 109(4) -23 (17) - 42(28) 3(35) 

* non positive definite . 
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TABLE 5 (continued) 

(a) Space group Cc 

Configuration coordinates 

x/a y/b z/c 

Cu(I) - 0 . 0178 0.3120(5) 0.2520 

Cu(II) 0 . 0175(4) - 0 . 3146(5) 0 . 2386(3) 

P(I) 0 . 1921(11) 0 . 0085(11) - 0 . 0489( 8) 

P (II) - 0 . 2029(10) 0 . 0067(10) 0.0395(7) 

01 0.0000(42) 0 . 0471(26) 0 . 0000( 4 2) 

02(I) -0 . 3873(29) - 0 . 0037(33) - 0 . 1236(27) 

02(II) 0.3674(23) - 0 . 0032(24) 0 . 1042( 1 7) 

03 ( CI) - 0 . 2206(29) 0 . 1634(23) 0.1315(12) 

03 (CII ) 0 . 2229(29) 0.1509(23) - 0.1418(23) 

03 (TI) - 0 . 1750(24) - 0 . 1530(20) 0 . 125 7 (21) 

03(TII) 0 . 1840(38) - 0 . 1 540(33) - 0.1369(22) 
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.TABLE 5 (continued) 

Th ermal coordinates (x 10 4 )* 

ull u22 u33 ul2 ul3 u23 

Cu(I) 57(9) 80(1 7 ) 129(13) - 11(20) - 34(10) - 96(26) 

Cu (II) 55 ( 8) 64 (15) 26 ( 6) 25(17) - 33(7) 85(22) 

P ( I) 1 4 (18) 86(32) 33 (13) 88(28) - 34(13) - 92(38) 

P(II) 12(17) 112(38) 56(15) 32 ( 35) 29(14) - 82(38) 

0 105(30) 549(109) 267(60) -2 35(114) 114(35) - 107(1 77) 

0 2 (I ) 5 4 ( 4 5) 320(131) 1 7 0(6 7 ) 14(125) - 105(43) 73 (170) 

0 2 (II) 1 ( 31) 76(65) 23 ( 27 0) - 31( 76) - 61(25) 1 7 (104) 

0 3 ( CI) 164(53) - 7 (41) - 27 (23) 101(54) 18(29) - 50(66) 

0 3 ( CII) 73( 42 ) -23(43) 24 7 (74) 81(58) 33(47) 44(99) 

0 3 (TI ) 13 4(4 2) -11(42) 114(52) - 93(48) - 67(38) - 193 ( 77) 

03(TII) 425 (61) 525(8 7 ) 116 (52) -586(56) 137(53) - 470(8 7 ) 

* All thermal ellipsoi~are n o n - p o sitive defini t e in 

this space gro up . 
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TABLE 6 

Molecular geometry of a-cu2P 2o7 . (e. s. d 1 s in parentheses ) 

(a) Space group C2/c 

Bond distances (A) 

P-Ol 1. 577 (5) 01-02 2.482 (15) 

P-02 1.552(10) Ol-03(C) 2.436(15) 

~-03 (C) 1.515(10) Ol-03(T) 2.570(15) 

P--03 (T) 1.511(10) 02-03(C) 2.530(20) 

02-03(T) 2.513(20) 

03(C)-03(T) 2.529(20) 

Cu-02 1.962(10) 

Cu-02 1.988(10) 

Cu-03 (C) 1.942(10) 
I 

Cu-03 (C) 2.322(10) 

·- --- Cu-03(T) 1.~07(10) 

I 

Cu-03 (T) 2.940(10) 

Angles 

P-01-P 155.8° 02-P-03(C) 111.2° 

01-P-02 105.0° 02-P-03(T) 110.3° 

Ol-P-03(C) 104.0° 03(C)-P-03(T) 113.4° 

Ol-P-03(T) 112.6° 
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TABLE 6 (continued) 

(b) Space group Cc 

Bond distances (A) 

P(I)-01 

P(II)-01 

P(I)-02(!) 

P(II}-02(!!} 

P(I}-03(CI) 

P(II)-03(CII) 

P(I}-03(TI) 

P(II)-03(TII) 

Cu(I)-02(!) 

Cu(I)-02(!!) 

Cu(I)-03(CI) 

Cu(I)-03(CII) 

Cu(I)-03(TI) 

Cu(I)-03(TII) 

1.59(3} 

1.57(3) 

1.61(3) 

1.52(3) 

1.55(3} 

1.49(3) 

1.50(3) 

1.54(3) 

1.96(2) 

2.00(2) 

1.89(2) 

2.32(2) 

2.97(3) 

1.91(2) 

01-02(!) 

01-02(!!} 

01-03 (CI) 

01-03(CII} 

2.55(4) 

2.42(4} 

2.42(4) 

2.47(4} 

01-03(TI} 2.51(4} 

01-03(TII} 2.63(4} 

02(I}-03(CI) 2.61(4) 

02(II)-03(CII)2.48(4) 

02(I)-03(TI) 2.57(4} 

02(II}-03(TII)2.47(4} 

03(CI)-03(TI) 2.59(4) 

03(CII)-03(TII)2.49(4} 

Cu(II)-02(!) 

Cu(II}-02(!!) 

Cu(II}-03(CI) 

Cu(II)-03(CII) 

Cu(II) -03 (TI) 

Cu(II)-03(TII) 

1.91(2) 

2.02(2} 

1.90(2) 

2.33(2) 

2.89(3) 

1.98(2) 
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Angles 

P(I}-01-P(II} 156° 

01-P(I}-02(!} 106° 

01-P(II}-02(!!) 103° 

Ol-P(I}-03(CI} 101° 

Ol-P(II}-03(CII} 108° 

Ol-P(I}-03(TI} 109° 

Ol-P(II}-03(TII} 116° 

02(I)-P(I)-03(CI) 112° 

02(II)-P(II}-03(CII} 111° 

02(I}-P(I}-03(TI} 112° 

02(II}-P(II}-03(TII} 108° 

03(CI}-P(I}-03(TI} 116° 

03(CII}-P(II)-03(TII) 111° 
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CHAPTER 3: DETERMINATION OF THE STRUCTURE OF S-Cu2P2o
7 

(A) Preliminary Investigations 

A comparison of x-ray photographs of s-cu2P 2o7 with 

those of s-zn 2P 2o
7 

and S-Mg2P 2o
7 

suggested that their 

structures were similar. However, in order to gain some 

insight into the changes in the atomic positions and molecular 

geometries during the phase transformation, the detailed 

structure of the high temperature phase must be resolved. 

In the earlier refinement of the s-cu2P2o7 structure 

(Robertson, 1965) , the degree of resolution was not 

sufficient for these proposed purposes. 

As is the case for the other high temperature phases 

of this group of crystals, the Laue symmetry and extinctions 

limit the space group to one of C2, Cm or C2/m. The space 

group was assumed to be C2/m for this refinement. This 

assumption will be explored in the discussion. The lattice 

parameters were taken from an earlier determination 

(Robertson, 1965). These were measured at 100°C by 

comparison with the room temperature lattice parameters of 

a-cu2P 2o7 . 
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(B) Preparation of Data 

The same crystals were used to collect data for the 

study of B-cu2P 2o7 as for the study of a-cu2P 2o
7

. The first 

crysta l (0.08 x 0.08 x 0.40 mm3 ) was used to collect d a ta 

of the type hkO with Mo Ka radiation and the manual 

diffractometer. A pair of hair dryers was used to heat the 

crystal while the diffractometer data were recorded. The 

temperature was monitored by a Chromel-Alumel thermocouple 

placed within a few millimeters of the crystal and supported 

by the collimator. The temperature was maintained at 100 ± 8°C. 

Because of the difficulty in maintaining a constant temperature with 

the · "open" geometry of the precession camera, no precession 

photographs of the B phase were taken. 

3 The second crystal (0.10 x 0.10 x 0.05 mm ) was used 

to collect additional data of the type hnt, n=O,l,2,3,4,5 with 

a Nonius Weissenberg camera using Mo Ka radiation. The 

crystal was heated with a high temperature attachment supplied 

with the camera. The crystal was maintained at 100 ± 3°C 

and the temperature was monitored by a thermocouple on the 

collimator. 

The integrated intensities recorded with the 

diffractometer were corrected for background, sweep rate, 

incident beam intensity, dead time and filter attenuation 

in the same manner as described in Chapter 2. 

All of the data were corrected for the effects of 

. Lorentz and polarization. Th~ same absorption corrections 

were applied as .in the case of a-cu2P 2o7 • 
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(C) Refinement 

Since the intensities of the reflections of the (010) 

zone were similar to those of s-zn2P 2o7 , the atomic coordinates 

of s-zn2P 2o7 (Calvo,l965b) were used as trial parameters to 

calculate the structure factors of this zone. The R factor 

obtained in this manner was 0.30. Changes in atomic 

positional coordinates and individual isotropic temperature 

factors were estimated from an electron density map and were 

used to determine a new trial structure whose calculated 

structure factors led to an R value of 0.26. Difference 

synthesis maps suggested that the Cu+2 and 01 atoms should 

be assigned large thermal parameters. This caused a drop in 

the R factor to 0 . 20. The x coordinates obtained for the 

atoms in this way were used with the y atomic coordinates 

from s-zn2P 2o7 to calculate an R factor of 0.51 for the data 

from the (001) zone. Using new coordinates derived from two 

successive electron density maps the agreement for . this zone 

was lowered to 0.21. All the data were then entered into a 

full matrix least squares calculation using a (l/cr) 2 weighting 

scheme. When anisotropic temperature factors were varied the 

R value was lowered to 0.135. Absorption corrections were 

now applied. The details of these corrections are presented 

in Chapter 2. The structure was again refined by the method 

of least squares until a minimum value of R2 . (as defined in 

Chapter 1) was obtained. It was found that the convergence 

of the refinement was improved by applying only half the 
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calculated shifts to the atomic coordinates. The weighting 

scheme proposed by Cruickshank et. al. (1961) was now applied. 

Thi s weighting scheme endeavors to account for the effects of 

systematic errors inherent in the method of measure ment of 

the integrated intensities. It is reasonable to expect that 

these systematic errors in the case of data recorded with a 

d iffractometer would not necessarily be the same as those 

associated with data recorded on film and measured visually. 

For this reason the data were separated into two groups such 

that the coefficients in the expression (Appendix A) 

w-l (H) = A + B IF (H) I + C IF (H) 1
2 + D IF (H) 1

3 
- o- o- o-

could be calculated separately for the film and diffractometer 

data. The two sets of coefficients are listed in Table 7. 

The refinement was now continued using weights calculated from 

the above coefficients. The final values of R1 and R2 were 

0.149 and 0.130 respectively. Unobserved reflections were 

treated as described in Chapter 2(C) The final atomic 

positional and thermal parameters are listed in Table 9. The 

magnitude of the observed structure factors FO(=F (H)) and 
0 -

the calculated structure factors FC(A) (=F (H)) based on c -

these final least squares parameters are given in Table 8. The 

bond lengths and interatomic angles were calculated from the 

atomic coordinates and are listed in Table 10. 



59 

(D) Disordered Model 

During the investigation of the phase transformation 

in cu2P 2o7 it was observed that some diffuse scattering occurred 

i n the temperature region of the transformation. The detailed 

nature of this phenomenon will be discussed in Chapter 6. 

However, this diffuse scattering suggests that the high 

temperature form of cu2P 2o7 might be disordered. A comparison 

of the atomic coordinates of a-cu2P 2o
7 

and B-Cu2P 2o7 indicates 

that the disordering could be caused by very small atomic 

displacements. In a completely disordered crystal, the 

mathematical model used to describe the B-Cu2P 2o7 unit cell 

would consist of the superposition of two halves of an 

a-cu2P 2o
7 

unit cell when one half has the normal origin and 

the other has its origin shifted by c/2. If this description 

of the high temperature phase is correct, then it should be 

possible to describe the structure of s-cu2P 2o7 by replacing 

each atom by two half atoms whose atomic positions are 

derived from those of a-cu2P 2o7 . 

The structure factors can be calculated by the 

general expression given in Chapter 1. By the use of the 

symmetry of the unit cell this can be reduced to an expression 

which is summed over only the asymmetric zone. 

calculat ed structure factor then 

If F (H) is the 
c -

F (H) = E m.f.(H)cos2n(hx. + tz.)cos2nky. 
c - . J J J J J 

J 

where m. is the number of equivalent atoms. Now we may modify 
J 
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this expression to describe two half atoms in each atomic 

position by replacing the vector r whose components are 

x.a, y.b and z.c by the vectors r . + o. where the components 
J- J- J- -J -J 

of o, are ox.a, oy.b and oz.c. Then 
- J J- J- J~ 

F (H)= I: m.f.(H) {cos2TI(hx.+R.z.)cos2TI(hox.+R. o z . )cos2 Tiky. 
0 - J J J J J J J 

cos2Tikoy.+s~n2TI(hx.+1z.)sin2TI(hox.+~oz.)sin2Tiky.sin2Tikoy ; } 
J J J J J J J 

Effectively each atom is now described by the three components 

of the vector r . ; the three components of the vector o . 
-J -J 

and one i sotropic temperature factor. In contrast, the atoms 

were formerly described by the components of r . and six 
-J 

anisotropic thermal parameters. 

Each atom was modified in the above manner and the 

components of r. and o. and the individual isotropic temperature 
-J -J 

factors were varieq by the method of least squares. The 

components of the vector describing the terminal oxygen atoms, 

that is 02 and 03, were found to vary randomly. Attempts 

were made to find a least squares minimum corresponding to 

these parameters by applying only a small fraction of the 

calculated changes to those coordinates but to no avail. 

Apparently we do not have sufficient and precise enough data 

to describe these vectors. The oxygen atoms are the weakest 

scatterers in the structure and the o vectors for the terminal 

oxygen atoms would be expected to be rather short in comparison, 

for example, to those of the 01 atom. It was necessary to 

revert back to the original description of the terminal oxygen 
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atoms in terms of whole atoms with anisotropic thermal 

parameters. As indicated previously, two sets of coefficients 

were used in a "Cruickshank" weighting scheme. The components 

+2 of the vectors r. and o. describing the 01, P and Cu atoms 
-J -J 

and their isotropic temperature factors were varied together 

with the positional and anisotropic thermal parameters 

describing the terminal oxygen atoms. This model was then 

refined until a least squares minimum was obtained. The 

coordinates of the half-atoms representing the Cu and P 

atoms corresponded, within their e.s.d. 's, with the 

equivalent positions of the ~-cu2P 2o 7 structure. However, 

the y coordinate of the 01 atom was approximately one-half 

the corresponding value in ~-cu2P 2o 7 . Attempts were made 

to fix this atom at the desired position. Small fractions 

of the calculated change~ were applied to the y coordinate 

and its thermal parameters were varied anisotropically but 

the only least squares minimum that was found was at y/a = 

0.0256. 

The final values of R1 and R2 for this model were 0.150 

and 0.121 respectively. The atomic coordinates, based on 

this disordered model of 8-Cu2P 2o7 are listed in Table 11. 

In order to facilitate a comparison with ~-cu2P 2o 7 , the low 

temperature structure was refined in the space group C2/c 

with isotropic thermal parameters assigned to the Cu+
2

, P 

and 01 atoms. These results are also presented in Table 11. 

It should be noted that the anisotropic thermal parameters of 
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the terminal oxygen atoms in the disordered model of a-cu2P 2o
7 

should not necessarily be identical to those of a-Cu2P 2o
7 

since the former may be averaged over two. displaced half atoms. 

The calculated structure factors based on the disordered 

model of a-cu2P 2o7 are listed in Table 8 under the heading 

FC (D) • 



TABLE 7 

Refinement data for S-Cu2P2o7 

J.l (M o) = 100 -1 em Space group C2/m 

Number of observed reflections 371 

Total number of reflections 613 

(a) Fully anistropic model 

Weighting curve coefficients 

Diffractometer data 

A= 3.70778 

B = 0.31990 

c =-0.03560 

D = 0.00065 

Visually estimated data 

A= 32.75002 

B =-2.94330 

c = 0.06882 

D = 0.00013 

Rl (observed reflections only) 0.1352 

Rl (all reflections) 0.1493 

R2 (observed reflections only) · 0.1393 

R2 (all reflections) 0.1202 

(b) Disordered model 

Diffractometer data Visually measured data 

A = 4.99565 A = 28.14925 

B = 0.03330 B = -2.38407 

c =-0.02077 c = 0.05130 

D = 0.00041 D = 0.00027 
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TABLE 7 (continued) 

Rl (observed reflections only) 

Rl (all reflections) 

R2 (observed reflections only) 

R2 (all reflections 

0.1363 

0.1505 

0.1432 

0.1215 

64 

Unobserved reflections whose calculated values were 

greater than the minimum of observable value F(min), in 

that area were replaced by 0.70 x F(min). Otherwise their 

we i ght was set a t zero . 



TABLE 8 

Observed and calculated structure factors for 

S-Cu2P 2o
7

. The columns headed FC(A)are the structure 

factors based on the disordered model. The reflections 

which were too weak to be observed are marked with an 

asterisk. The structure factors divided by ten refer 

to the contents of one . unit cell. 
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TABLE 9 

Atomic coordinates of s-cu2P 2o7 (anisotropic model) (e.s.d's 

in paranthese$) 

x/a y/b z/c 

Cu 0 0.3122(2) 1/2 

p 0.1998(4) 0 -0.0883(6) 

01 0 0 0 

02 0.3759(9) 0 0.2161(17) 

03 0.2035(10) 0.1533(7) -0.2708(15) 

Thermal coordinates (A2 X 10 4 ) 

u11 u22 u33 u12 ul3 u23 

Cu 188(5) 65(4) 92 ( 6) 0 -73(4) 0 

p 84 ( 7) 9 2 ( 7) 62 ( 8) 0 18 ( 7) 0 

01 104 (35) 1197(226)292(78) 0 126(50) 0 

02 75 (15) 87(16) 71(20) 0 10(18) 0 

03 296(24) 91(12) 121(19) 45(17) 23(20) 126(36) 
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TABLE 10 

Molecular geometry of S-Cu2P 2o7 (e.s.d 1 s in parentheses) 

Bond lengths {A) 

P-Ol 1.542{4) 

P-02 

P-03 

Cu-02 

Cu-03 

cu-03 
I 

Angles 

P-0-P 

01-P-02 

01-P- .03 

02-P-03 

03-P-03 

1.516{15) 

1.503{15) 

2.003{15) 

1.937{15) 

2.577{15) 

180° . 

105.5° 

108-7° 

111.0° 

111.8° 

01-02 

01-03 

02-03 

03-03 
I 

2.43(3) 

2.47{3) 

2.49{3) 

2.49 {3) 
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TABLE 11 

Comparison of disorde·red model of s-cu2P 2o7 with the structure 

of a-cu2P2o7 . 

(a) Configurational coordinates. The coordinates of 

a-cu
2

P 2o7 are referred to the s-cu2P 2o7 unit cell 

(e.s.d's in parantheses) 

Cu 

p 

a 

01 

a 

02 

a 

03 

a 

x/a y/b 

0.0162(2) 0.3122(1) 

0.0183(2) 0.3134(2) 

0.1997(3) 0.0073(8) 

0.1979(4) 0.0086(4) 

0 

0 

0.3760(8) 

0.0256(23) 

0.0480(24) 

0 

0.3768(10)-0.0019(15) 

z/c 

-0.0144(5) 

-0.0138(3) 

-0.0886(6) 

-0.0878(5) 

0 

0 

0.2165(17) 

0.2254(18) 

0.2043(10) 0.1544(7) -0.2714(15) 

0.2223(11) 0.1556(12) -0.2714(18) 

o . 17 8 2 ( 15) o • 15 3 o < 14) - o . i8 3 4 < 1 o > 

(b) Anisotropic thermal coordinates (A2 x 10 4) 

02 

* 

a 

75(16) 86(17) 60(20) 

12(16) 180(47) 86(22) 

13 268(22) 92(12) 120(20) 

aS 84(21) 

ll64 < 30) 

-2(29) 

41(38) 

non-positive definite 

72(20) 

84(24) 

0 4 ( 18) 0 

-1(32) -52(16) 41(45) * 

47(17) 24(20) 121(36) * 

-6(27) 

-3(38) 

3 ( 18) 

-45(23) 

64(41) * 

7(46) 

B 

0.40(2) 

0.39(2) 

0.48(4) 

0.13(3) 

1.69(24) 

1.19(19) 



CHAPTER 4: DETERMINATION OF THE CRYSTAL STRUCTURE OF a-zn2P 2o
7 

(A) Preliminary Investigation 

a-zn2P 2o7 shows the c glide plane and doubled c axis 

with respect to the S phase which are characteristic of the 

other phases of the family of "small cation" pyrophosphates. 

It is unique however in that the length of its a axis is triple 

that of the corresponding S phase. Studies of the phase 

transformation have shown that it is probably the most complex-. 

of the series. (Chambers, Datars and Calvo, 1964). 

Crystals of zn 2P 2o
7 

were prepared by the crystallization 

from the melt obtained from the decomposition of precipitated 

zinc ammonium phosphate. These crystals .had their (110), (001) 

and (lOl) faces (based on the S unit cell) sufficiently 

developed to permit optical alignment. Preliminary single 

crystal photographs showed the extinction conditions 

h + k + t = 2n and for k = 0, t = 2n and thus the space group 

must be one of Ic or I2/c. All refinements reported here 

have been carried out in the noncentrosymmetric space group 

Ic. This non-primitive cell is chosen to preserve the same 

approximate unit cell axial directions as in the S phase. 

Lattice parameters obtained from powder diffractometry 

have been reported by DeWolff (1958) for a-zn2P 2o7 for the 

c centered cell. These were converted to the the body centred unit 
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cell and used in the early stages of refinement. Since the 

accuracy of DeWolff's unit cell parameters was not known, 

they have been redetermined. The unit cell of a-zn2P 2o
7 

is relatively large and it was therefore necessary to obtain 

well resolved powder lines if lattice parameters were to be 

obtained from Debye-Scherrer photographs . Some crystals were 

ground to a very fine powder and mixed with a solution of 

acetone and fingernail polish. When the mixture had partially 

dried it could be pulled into the shape of thin fibers. One 

of these fibers was used to obtaina tour day Debye-Scherrer 

photograph. Sixteen powder lines were identified by comparing 

their e values and intensities with e values calculated from 

the lattice parameters of DeWolff and the intensities calculated 

from the partially resolved crystal structure. New lattice 

parameters were obtained from a least squares fit of the 

observed and calculated e values. The observed and calculated 

values of e and their indices are listed in Table 12. The 

lattice parameters obtained in this way are, a = 20.068 ! .Ol5A; 

b = ~.259A ± .006A; c = 9.099A ± .008A, and 8 = 106.35°. 

These results differ by as much as 2% from those reported by 

DeWolff. 
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(B) Preparation of Data 

A crystal of dimensions 0.13 x 0.13 x 0.35 mm3 was 

used to obtain photographs of the type hkO, hkl, hk2, Ok~ 

and h, k, k-h/3 with Mo Ka radiation and an integrating 

precession camera (Buerger, 1960). The intensities of the 

integrated reflections recorded in this manner were measured 

with a Leeds and Northrup Gl microdensitometer. Where possible, 

all equivalent reflections were measured and the averaged 

intensity used. 

A second crystal of approximate dimensions 

0.06 x 0.06 x 0.11 mm3 was glued to the end of a glass fibre 

and used to obtain Weissenberg photographs of the type hn~, 

n = 1,2,3,4,5 with Mo Ka radiation. Because of the wide 

variation in the intensities of the reflections, exposures 

of 27 hours were normally used and an additional photograph 

was taken of the (010) zone for 81 hours. The intensities 

of these reflections were measured by visual comparison using 

the logarithmic method (Robertson, 1965). 

All of the data were corrected for the effects of 

Lorent~ and polarization. Also, approximate corrections were 

made for the effects of absorption. The absorption coefficient 

for Mo Ka radiation in zn2P 2o7 is 110 cm- 1 . In order to apply 

the absorption corrections, the first crystal was approximated 

by a sphere and the second crystal by a cylinder. No corrections 

were made for the effects of anomalous absorption. The 

standard errors of those reflections measured with the densitometer 
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were assigned as a constant fraction of the intensity divided 

by the square root of the number of times it was observed. 

The standard errors of the reflections measured visually were 

also assigned as a constant fraction of the intensity except 

that the errors of weak or very strong reflections was 

made between 50% ·and 100% larger depending on the accuracy 

with which the intensity could be observed. 
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(C) Refinement 

The unit cell of ~-zn2P 2o7 contains twelve formula 

units but the asymmetric unit contains three if the space 

group is Ic. Each of the three crystallographically 

independent formula units can be taken as defining one "layer" 

of the type described in Chapter l(A). Fo~ convenience the 

three layers have been labelled successively A, B and C. Those 

reflections which were characteristic of the ~-zn2P 2o7 unit 

cell in contrast to that of s-zn2P 2o7 were weak. This implies, 

as was the case in cu2P 2o7 , that the ~ and B phases differ by 

modest atomic displacements. It should be possible then to 

generate the structure of ~-zn2P 2o7 by making small 

perturbations to the structure of~Zn2P 2o 7 . For the same 

reasons as d iscussed in Chapter 3, these perturbations could 

not easily be found by direct interpretation of the normal 

Patterson function. 

It is to be noted that the anisotropic thermal 

parameters of the atoms in B-zn2P 2o7 are qualitatively similar 

to those of B-cu2P 2o7 . The only notable exceptions are the 

u33 components of the Ol atom. It was then assumed that the 

perturbation of the ~zn2P2o 7 structure from the high symmetry 

form were similar in nature to the perturbations found in 

~cu2P 2o7 . It was observed of the crystal structure of 

~cu2P 2o 7 and ~-Mg2P 2o 7 whichwere partially resolved when 

this refinement was started, that the P-0-P group bends and 

both the cations in the same layer are displaced so as to 
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relieve the distortions introduced. That is, the cation 

that would now be nearest to the central oxygen atom is found 

to be moved from its 8 phase position such as to enlarge its 

Zn-01 distance while the other cation in the layer moves so 

as to reduce its Zn-01 distance. The displacement of 

the cations was found to be in the ~,~ plane and that of 

the central oxygen atom primarily along the b axis. 

Crystallographically the cation displacements were 

easier to find and these were investigated first. Thus we 

must decide the relative sense of the displacement of the 

pair of Zn+2 ions in each layer since this determines the 

direction of the displacement of the central oxygen atoms in 

that layer. It was clear from the cationic thermal parameters 

in 8-Zn2P 2o7 that this major displacement component should 

be in the a,c plane. Since the direction of the displacement 

from their 8 phase positions of the pair of cations in one 

layer, if assumed equal and opposite, suffices to fix the 

origin , there remain four possible models involving the 

relative sense of the displacements of the cations in the 

two additional layers. I n order to obtain a trial structure 

the pair of cations in layer A was displaced in the ~,c 

plane from colinearity with the b axis the same distance as 

had been found in a-cu2P2o
7 

and the remaining cations were 

split i nto half atoms and these positioned so as to generate 

in superposition all four models. The weight attributed to 

· t he split cations at each of these positions were varied 



76 

by the method of least squares using data of the type hkO, 

hkl, hk2 and hOt. Where this weight or multiplicity was 

found to increase for one of the half atoms it was taken to 

mean that the cation should be placed there and the conjugate 

split cation in the same ~~£ plane representing the other 

option for this cationic displacement should be eliminated. 

The positions of the cations in layer C were found in this 

manner . Those in layer B could not be found by this method, 

probably because the magnitude of their displacements was 

wrong. 

The displacementsfrom the s structure imposed upon 

the cations, and in addition the remainder of the structure, 

had to satisfy a constraint derived from the fact that in 

addition to the Okt reflections with k + t odd, absent 

due to space group requirements, almost all reflections with 

k odd and t odd were also absent. This means that the unit 

cell when viewed in projection down the a axis appears to 

be halved in both the b and c directions. The structure in 

this projection,assumed closely related to that of the s 

phase, consists of three molecules superimposed near y = 0, 

z = 0; y = 0, z = 1/2; y = 1/2, z = 0 andy = 1/2, z = 1/2 . 

Thus the results of the body centering and the £ glide plane 

operations on one of these groups of three molecules must 

result, or nearly so, in groups which in projection are related 

by a translation of b/2. An easy way to satisfy this 

constraint is for two of the pyrophosphate anions to be bent 
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equal and opposite along the £ direction and the third to 

have its entire bending within the ~~~ plane in such a 

fashion that the projected group itself has a mirror plane. 

The sign of the displacement of the first two was made 

consistent with the displacement of the cations as indicated 

above. The cations in layer B were left at the positions 

in which they are found in s-zn2P 2o
7

. The appearance of the 

cations when viewed down the a axis of this trial structure 

is shown in Figure 3. 

The Okt data were added to that already in use and 

full matrix least squares refinement was attempted. The 

calculations diverged; that is, the agreement factors 

increased rather than decreased as would be expected if the 

proper trial structure had been chosen. An electron density 

map was prepared using data from the hO~ zone and small 

corrections were estimated for the x and z atomic coordinates 

of most of the atoms. The agreement factors with all the data 

measured to this point could now be lowered by successive 

cycles of least squares to about 0.20. 

The h k k-h/3 and hlt layer lines were added and the 

data now numbered about 1800 reflections. Further refinement 

lowered the agreement index R1 to about 0.085. However, 

the molecular geometry calculated with the atomic coordinates 

at this point was not satisfactory. In particular, the P-O 

bond lengths varied from 1.45 to 1.65 A. The largest e.s.d's 

were those associated with the y coordinates. Also the effects 
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of pseudosyrnmetry probably made all the e.s.d's unrealistically 

small. The hnt data contain information about the nature of 

t h e deviations from the symmetry of the 8 phase and are most 

useful in reducing the effect of pseudosyrnmetry on the e.s.d's. 

Th e data of type hnt, n = 2,3,4,5 were measured and added to 

t h e refinement. The molecular geometry was improved but 

still was not completely satisfactory. The data now numbered 

+2 3740 independent reflections. The twelve Zn and P atoms 

were described by anisotropic thermal parameters and the 

twenty-one oxygen atoms were described by individual 

anisotropic temperature parameters. _The structure was refined 

through several cycles of least squares calculations and after 

each cycle some atoms were moved so as to improve the molecular 

geometry. 

The structure still displayed the pseudo mirror plane 

in projection down the ~ axis but the manner in which atoms 

had been related by this operation in the model used to start 

the refinement was now completely changed. The Zn+ 2 and P 

a t oms were still related in pairs, but the atoms contributing 

to these pairs were not those initially used in the trial 

s t ructure. The relationship between the cations in the final 

s t ructure is shown in Figure 3. The lighter oxygen atoms 

formed an approximate sphere of low electron density in 

p r ojection down the a axis, - with no obvious relation between 

individual pairs of atoms. Only four Zn +2 atoms were 

significantly displaced from the twofold rotation axis which 



79 

passes through them in the S phase but all the P2o
7

- 4 

groups were bent out of the plane of the c glide operation. 

The possibility that the space group was I2/c now 

had to be considered. In this space group there are two sets 

of cente rs of symmetry. One set is at the origin and the 

positions generated from the origin by symm~try operators 

of the space group and the other set is displaced by ! ! 0 
4. 4 

from thes e . A twofold screw axis passes through the point 

x = 0 and z = ]/4 and a two fold rotation axis passes 

through the point x = 1/4 and z = lj4. In the S phase 

structure, referred to the a phase cell, centers of symmetry 

in a z = 0 plane are related by the translation 1/12, 1/4, 0. 

An additional set is generated by adding z = 1/4. The 

central oxygen atoms of the anion lie on alternate centers 

which are related by the C centering of the S phase. In 

a-Mg 2P 2o7 (Calvo, 1967d), some of the centers relating 

adjacent anions remain but none of those within a given anion 

do . In t he structure of a-zn 2P 2o7 with the space group I2/c, 

since i ts centers of symmetry are not commensurate with those 

of S-zn2P 2o
7 

some of these centers would have to relate 

different anions while some would lie within an anion . In 

f act this would mean that one-third of the anions would be 

constrained by symmetry to have linear P-0-P bonds. Further, 

one pair of cations would then lie on • a twofold axis. Since 

t his is contrary to the e.s.r. results reported by Chambers 

et.al. (1 964) , in that no principal axis is found to lie along 
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the b axis at room temperature, this model can be rejected. 

In a-cu2P 2o7 the cations were found to be related by 

a center of symmetry whereas the anion possesses a twofold 

axis. In the analogous model for a-zn2P 2o7 one-third of 

the cations pairs that lie on the same twofold axis and are 

mirror plane related in the B phase, would now be related 

by a center of symmetry and one-third of the anions would have 

the i r central oxygen atom lying on a twofold axis. The 

model, together with the near absences of reflections with 

k or t odd in the (100) zone would suggest that the two 

remaining anions should be bent in the ~~£ plane. However 

this result is not consistent with the directions of apparent 

thermal motion found for the central oxygen atom in the high 

temperature phase, since the components u22 and u33 of the 

tensor g are nearly equal. 

The possibility that some of the pyrophosphate groups 

might be disordered was also considered. This would produce 

an effective statistical center of symmetry. It was noted 

that all the terminal oxygen atoms had moved such that the 

four oxygen atoms surrounding one phosphorous atom retained 

nearly tetrahedral symmetry. This also occurred in both 

a-cu2P 2o7 and a-Mg 2P 2o7 . If the central 01 atom were 

disordered then the terminal oxygen atoms would also be 

disordered 

efforts of 

symmetry. 

since their positions are constrained by the 

-4 each half of the P 2o7 ion to retain tetrahedral 

The manner in which the structure was refined could 
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have possibly given coordinates corresponding to only one 

of the two disordered positions. However, if this is the 

case, then the isotropic temperature factors of these 

dieo~de~ d atoms shoul d be l arge since t heir atomic 

positional coordinates only represent "half" an atom. This 

was not found to be true. Further, if the terminal oxygen 

atoms are assigned anisotropic temperature factors and 

r efine d by least squares, an ellipsoid of thermal vibration 

with a large principal axis should be generated. The thermal 

ellipsoid would encompass both "half" atoms, of the disordered 

atom if they are as close together as the halves of the 

disordered terminal oxygen atoms would be expected to be. 

This type of refinement was carried out but no such thermal 

ellipsoids were generated. It appears most unlikely then 

that the space group of a-zn2P 2o7 could be I2/c . 

Subsequent refinements were carried out for the trial 

structure in space group Ic. The weighting scheme described 

by Cruickshank et. al . (1961) was now adopted. Separate 

coefficients in the expression 

were used to describe the data measured visually and that 
J 

measured with the aid of the microdensitometer. These 

coefficients are given in Table 13. The structure was 

refined unti l the corrections calculated for the least square 

variables were less than the estimated standard deviations. 

The magnitude of the observed and calculated structure factors 
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are given in Table 14. The _final values of R1 and R2 

defined in Chapter 1 were 0.082 and 0.098 respectively. 

Unobserved reflections were treated as described in Chapter 

2(C). The final atomic configurational and thermal 

coordinates are given in Table 15. The bond length and bond 

angles calculated from these coordinates are given in Table 

16 with the estimated errors obtained from the least squares 

analysis. 
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(D) The Correlation Problem 

3740 reflections of which 1945 were recorded as 

observable have been used in this refinement, and the 

agreement factors are as low as would be expected from the 

accuracy with which the data was recorded. However, a number 

of bond lengths still do not appear satisfactory. In particular 

some of the phosphorus oxygen bond lengths, which should be 

similar since they would be chemically identical in an isolated 

-4 
P 2o7 ion , are widely divergent. Furthermore, the changes 

in the atomic positions which would be necessary to bring 

these bond lengths within reasonable agreement with each other 

are up to twice the combined e.s.d's of the atoms involved. 

The relatively inferior results of this refinement may 

arise from the pseudosymmetry which was mentioned earlier. 

Each atom of the a-zn2P 2o7 crystal structure (except the 01 

atoms) is related to six other atoms in the assymetric unit 

by a pseudosymmetric operator which becomes a proper symmetry 

operator in the S phase. In particular, the three layers 

labelled A, B and C are all quite similar. A more quantitative 

understanding of this effect may be gained by the investigation 

of the correlation matrix defined in Appendix A. The off 

diagonal terms of the correlation matrix indicate the extent 

to which the i'th least square variables is dependent on the 

value of the j'th least square variable. The diagonal terms 

which describe the self correlation of a variable is 1.0. 

If the coordinates of an atom are related by pseudosymmetry 



84 

to the coordinates of other atoms, their off diagonal 

elements may be nearly as large. In a-zn
2

P
2
o

7
, the off 

diagonal components of the correlation matrix showed that 

the position of each atom was highly correlated with the 

position of one other atom. Some of these non-diagonal 

elements were as high as 0.90. The coordinates of each atom 

in layer A was correlated to coordinates of the atom in the 

same layer to which it would be related by the symmetry 

operators of the s phase. The atoms in layer B were correlated 

to the corresponding atom in layer C. There was no apparent 

relation between the high correlations and the aforementioned 

pseudo mirror pl~ne in projection down the a axis. 

One might expect that the least squares procedure would 

be inapplicable to this problem. In the derivation of the 

normal equations of the least squares analysis, we have 

assumed that these correlations are zero. Scheringer (1965) 

has discussed the problem and proposes that in a case such 

as this it may be necessary to use least squares variables which 

are only functionally dependent on the coordinates of the 

atoms describing the structure and such that they are 

independent of each other. One reason that the present analysis 

has apparently converged, may be that we have applied only 

one half of the calculated change to the coordinates after 

each least square cycle. The e.s.d's obtained from ·an 

analysis such as this are not realistic and thus the 

"discrepancies in the molecular geometry are more likely to 
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arise from this circumstance than from a gross error in the 

location of individual atoms. The possibility of such a mistake 

was explored by calculating electron density and difference 

Fourie r synthesis in projection down the b and c axis. 

No evidence was found for such a mistake. As will be 

discussed later, the accuracy of this structure analysis has 

been sufficient to determine information concerning the 

nature of the phase transformation in zn2P2o7 • 

It is to be noted that the occurrence of the correlation 

problem is not dependent on the absence of a center of symmetry 

in the structure since a similar effect has been found by 

Calvo (1967c) in a-co 2P2o
7

, in which case the centric 

space group is unique. 
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TABLE 12 

Observed and calculated Bragg angles used to determine the 
lattice parameters of a-Zn2P2o7 

h k R. 0 (obs) 0(ca1c) ---
2 1 1 7.8887 7.9100 

3 1 0 8.7405 8.7490 

4 0 0 9.1889 9.2144 

2 1 1 9.4594 9.4395 

0 0 2 10.1684 10.1705 

4 1 1 10.6494 10.6557 

3 1 2 11.8819 11.8797 

1 2 1 12.4205 12.4174 

6 0 0 13.9011 13.8981 

4 0 2 11.6590 11.6683 

2 1 3 15.7198 15.7126 

3 3 0 17.7365 17.7399 

8 1 1 18.7485 18.7343 

7 2 .1 19.1268 19.1161 

6 0 2 19.6178 19.6202 

6 2 2 22.5889 22.5935 



TABLE 13 

~ = 110 
-1 

em Space Group Ic 

Number of observed reflections 

Total number of reflections 

Weighting curve coefficients 
\ . 

Densitometer data . 
A= -47.13304 

B = 4.03539 

c = -0.045-48 

D = 0.00016 

Rl (observed reflections only) 

Rl (all reflections) 

R2 (observed reflections only) 

R2 (all reflections) 

1945 

3740 

Visually measured 

A = 56.57090 

B = -1.36986 

c = 0.01498 

D ~ -0.00001 

0.0750 

0.0816 

0.0954 

0.0977 

87 

data 

Unobserved reflections whose calculated values were greater 

than the minimum observable value, F(min), in that area were 

replaced by 0.70 x F(min). Otherwise their weight was set 

as zero. 
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TABLE 14 

Magnitudes of the observed and calculated structure 

factor for a-zn2P 2o7 . The reflections which were too weak 

to be observed are marked with an asterisk. Th~ structure 

factors divided by ten refer to the contents of one unit 

cel l. 
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TABLE 15 

Atomic coordinates of a-zn2P 2o7 ( e.s.d's in parentheses) 

(a) Layer A 

Configurated coordinates 

Zn(I) 

Zn(II) 

P (I ) 

P(II) 

01 

02(I) 

02(II) 

03(CI) 

03 (CII) 

03(TI) 

03 (TII) 

x/a y/b 

-0.0130(1) 

0.0130 

-0.0661(2) 

0.0660(4) 

0.0010(12) 

-0.1242(10) 

0.1233(7) 

-0. 0827-(10) 

0.0836(6) 

-0.0461(6) 

0.0577(7) 

-0.3122(5) 

0.3117(6) 

0.0153(12) 

0.0256(14) 

0.0874(15) 

-0.0003(36) 

0.0103(30) 

0.1655(31) 

0.1512(24) 

-0.1375(22) 

-0.1416(24) 

Anisotropictherrna1 coordinates (A2 x 10 4 ) 

011 

124 (10) 

0 22 

1 ( 20) 

0 33 

24 ( 8) 

012 

-28 (13) 

z/c 

0.0232(2) 

-0.0232 

0.2940(6) 

0.2026(9) 

0.2437(27) 

0.1405(26) 

0.3537(18) 

0.3869(22) 

0.1024(13) 

0.3760(13) 

0.1152(15) 

0 23 

B 

0.81(14) 

1.08(29) 

0.26(17) 

1.13(27) 

-0.01(11)* 

0.35(13) 

0.71(17) 

013 

6 ( 7) -34 (14) * Zn(I) 

Zn(II) 22(7) 130(28) 98(12) 26(12) -10(7) 46 (16) 

P(I) 

P (II) 

-17(10) 8 (34) -11 (13) -2 (21) -10 (10) -18 (25) * 

154(23) 36(44) 78(24) -34(31) -8(20) -23(36) 



TABLE 15 (continued) 

(b) Layer B 

Configurational coordinates 

Zn( I ) 

Zn(II) 

P(I) 

P( II ) 

01 

02(I) 

02(II) 

03(CI) 

03(CII) 

03(TI) 

03(TII) 

x/a 

0.1641(2) 

0.1829(2) 

0.1016(3) 

0.2400(3) 

0.1648(6) 

0.0399 (8) 

0.2935(5) 

0.0969(7) 

0.2530(11) 

0.1197(8) 

0.2372(11) 

y/b 

0.1838(5) 

0.8112(5) 

0.5075(12) 

0.5203(12) 

0.5607(24) 

0.4969(33) 

0.5094(23) 

0.6509(29) 

0.6575(42) 

0.3535(29) 

0.3627(35) 

' An.i~.otropic thermal coordinates (A 2 x 10 4) 

z/c 

0.0008(4) 

-0.0251(5) 

0.2824(7) 

0.2000(7) 

97 

B 

0.2134(13) 0.05(12) 

0.1414(19) 0.21(18) 

0.3570(10) -0.04(10) * 

0.3852(17) 0.31(17) 

0.1055(26) 1.35(32) 

0.3696(17) 0.50(19) 

0.1153(26) 1.01(29) 

u11 

Zn(I) 101(10) 

u22 

25(21) 

u33 u12 ul3 u23 

-31 (15) 

Zn(II) 47(9) 70(21) 

P(I) 

P(II) 

96(17) -32(35) 

-13(10) 65(38) 

41(11) 6(14) -20(8) 

75 (12) -34 (12) 5 (9) -13 (15) 

29(19) -31(26) 

18(17) -4(24) 

34(15) -126(25) * 

14(12) 62 (26) * 



TABLE 15 (continued) 

(c) Layer C 

Configurational coordinates 

x/a y/b z/c 

Zn (I) . 0.3181(2) 0.3106(5) 0.0228(5) 

Zn(II) 0.3371(2) 0.3511(5) -0.0011(5) 

P(I) 0.2629(3) -0.0156(14) 0.2964(8) 

P (II) 0.3980(3) -0.0064(14) 0.2138(7) 

01 0.3352(11) -0.0542(36) 0.2755(26) 

02(I) 0.2156(6) -0.0103(27) 0.1334(14) 

02(II) 0.4596(9) 0.0075(34) 0.3568(22) 

03(CI) 0.2457(7) -0.1615(32) 0.3884(16) 

03(CII) 0.4094(7) -0.1531(20) 0.1221(18) 

03(TI) 0.2668(10) 0.1465(35) 0.3817(25) 

03(TII) 0.3848(10) 0.1429(37) 0.1179(23) 

Anisotropic thermal coordinates (A2 X 10 4 ) 

u11 u22 u33 u12 ul3 

Zn(I) 109(11) 23(21) 54(12) -40(12) -34(9) 

Zn(II) 34 ( 8) 104(23) 78(11) . -9 (13) 26 ( 7) 

P(I) 113(20) 71(41) 38(22) 15(33) -10(18) 

P(II) 24(14) 175(55) 35(19) 31(27) -27(13) 

* Non positive definite 

w 

98 

B 

1.56(32) 

0.50(15) 

0.51(22) 

0.22(15) 

0.48(19) 

0.94(29) 

1.31(31) 

u23 

-8(15) 

-40 (16) 

97 (32) * 
151(27) * 
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TABLE 16 

Molecular geometry of a-zn 2P 2o
7 

Bond lengths (A) 

Layer A Layer B Layer c 

P(I)-01 1.65 1.63 1.55 

P(II)-01 1.54 1. 58 1.57 

P(I)-02(I) 1. 55 1.51 1.52 

P(II)-02(II) 1. 53 1. 53 1.53 

P(I)-03(CI) 1.59 1.53 1.56 

P(II)-03(CII) 1. 49 1.51 1. 53 

P(I)-03(TI) 1.46 1. 49 ' 1.54 · 

P(II)-03(TII) 1. 58 ' 1.49 1. 49 ' 

(average error 0. 0 4 A) 

Ol-02(I) 2.53 2.46 2.41 

Ol-02(II) 2.46 2.58 2.45 

01 - 03(CI) 2.48 2.46 2.47 

Ol-03(CII) 2.43 2.39 2.46 

Ol-03(TI) 2.54 2.55 2.51 

Ol-03(TII) 2.64 2.51 2.55 

02 (I) -03 (CI) 2.54 2.53 2.55 

03(II)-03(CII) 2 :'-4 9 2.53 2.48 

02(I)-03(TI) 2.54 2.52 2.47 

02(II)-03(TII) 2.53 2.49 2.53 

03(CI)-03(TI) 2.62 2.51 2.57 

03(CII)-03(TII) 2.48 2.46 2.49 

(average error 0.07A) 



TABLE 16 (continued) 

Note: Primed 03 atoms are in adjacent layers 

Zn(I)-02(I) 2.03 2.09 

Zn(I)-02(I I ) 2.08 2.10 

Zn(I)-03(1) 2.00 2.00 

Zn(I)-03(2) 2.01 2.14 
I 

Zn(I)-03 ( 1 ) 2.02 2.09 
I 

Zn(I)-03 (2) 3.35 2 . 17 

Zn(I)-01 3.22 3.36 

Zn(II)-02( I ) 2.10 2.04 

Zn(II)-02( I I) 2.07 2.02 

Zn(II)-03(1) 1.93 1.92 

Zn(II)-03(2) 2.04 2.02 
I 

Zn(II)-03 ( 1) 2.10 2.12 

Zn(II)-03 (2) 3.21 3.15 

Zn(II)-01 3.12 3.09 

(average error 0. 06 A) 

Angles 

Layer A Layer B 

P(I)-01-P(II) 139° 147° 

Ol-P(I)-02(I) 104° \103° 

Ol-P(II)-02(II) 106° 112° 

Ol-P(I)-03(CI) 100° 102° 

Ol-P(II)-03(CII) 106° 102° 

100 

to cations 

2.06 

2.08 

1.95 

2.03 

2.07 

3.32 

3.18 

1.99 

2.07 

2.07 

2.07 

2.14 

2.18 

3.34 

Layer c 

150° . 

104° 

105° 

105° 

105° 

MILLS MEMORIAL LIBRARY. · 
McMASTER UNIVERSITY. 
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TABLE 16 (continued} 

01-P(I}-03(TI} 109° 110° 109° 

01-P(II}-03(TII} 116° 109° 113° 

02(I}-P(I}-03(CI} 109° 113° 112° 

02(II}-P(II}-03(CII} 111° 113° 109° 

02(I}-P(I}-03(TI} 115° 115° 113° 

02(II}-P(II}-03(TII} 109° 110° 114° 

03(CI}-P(I}-03(TI} 118° 113° 113° 

03(CII}-P(II}-03(TII} 108° 110° 111° 
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CHAPTER 5: CRYSTAL CHEMISTRY OF "SMALL CATION" PYROPHOSPHATES 

. (A) Description of Structures 

The general description of the structure of thortveitite 

was given in Chapter 1~). This description applies to 

8-Cu2P 2o7 as it does to the other high temperature members of 

this series, and the structures of the low temperature forms 

are similar. Here we shall compare the small differences 

between the high temperature structures and in turn compare 

them with the structures of the low temperature forms of 

cu2P 2o
7

, Zn 2P 2o
7

, and Mg 2P 2o7 • Of particular interest are 

the nature of the differences ' in the distortion of the 

environment of the cation, the thermal motion of the central 

oxygen atom in the 8 phase and the P-0-P angle of the a phase. 

The pertinent bond lengths and interatomic angles of the 

structures of 8-Mg2P 2o7 , 8-Zn2P2o7 and Mn 2P 2o7 are compared 

with those of 8-Cu2P 2o7 in Table 17. 

In the 8 phase, the distortion of the octahedral 

environment of the cations consists of (a) an elongation of 
I 

the bonds to two oxygen ligands ''O 3 11on opposite sides of the 

cation and (b) a rotation of the pair of 03 ligands about 

0 the twofold axis by angles of the order of 25 from the 

positions they would occupy if the octahedron were regular. 

The significance of the long bonds, to be referred to as the 
I 

M-03 bonds, in all the 8 phases may be further understood 

103 
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by comparing their structure with that of PbSb
2
o

6 

(Magneli, 1941). If we replace the X-0-X group, in compounds 

with the formula M2x2o7 , by the single Pb+ 2 ion, the structures 

are now similar and the octahedra of oxygen atoms surrounding 

the Sb+ 5ions are nearly regular. It is then easily seen from 

Figure 4 that the structure of M2x2o7 must accommodate the 

strain caused by the anisotropic shape of the X-0-X group, 

rather than the spherical Pb+2 ion, by elongating the M-OJ 

bonds. All the s phase structures show longer axial cation 
I 

oxygen bond lengths, that is the M-03 bonds, than equatorial 

bonds. The case of s-cu2P 2o7 is, however, extreme. Here 

the axial bond lengths are 2.58 A and the equatorial average 

1.9 A. This extra distortion is manifested in an anomalous 

ratio of the a to b axial lengths as compared to other 

structures having the thortveitite structure (Au and Calvo, 

1967). These long bonds are nearly parallel to the P-Ol 
I 

bonds. Other effects of the long M-03 bonds are to decrease 

the length of these P-Ol bonds in S-Cu2P 2o7 and to increase 

the length of the vector ~-~ as may be seen by inspection 

of Tables 17 and 2. Cruickshank's curve predicts P-0(-P) and 

P-O bond length of 1.58 A and 1.53 A respectively for a 

linear P-0-P group. All of the P-0(-P) bond lengths in 

Table 17 are shorter than their predicted value by 0.01 to 

0.04 A. However, these are not necessarily the true time 

averaged bond lengths because the 01 atoms of each structure 

shows a large component of motion perpendicular to the P-P 
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vector. In order to make the proper correction, it is 

necessary to know the manner in which the motion of the 01 

atoms is correlated with the motion of the P atoms. 

However, we can make a minimum correction without such 

knowledge (Busing and Levy, 1964). This correction increases 

the P-0(-P) distance in s-cu2P 2o7 to 1.564 A. Minimum 

corrections for 'thermal motion calculated for the terminal 

P-O bond lengths are not significant. In Mn 2P 2o7,s-Mg 2P 2o7 

and s-zn2P 2o7 , the average length of the P-O 

bonds in the anion is 

average of 1.53 A for 

significantly greater than 

-4 the isolated P 2o
7 

group. 

the predicted 

This suggests 

some delocalization of · electrons toward the cation. One would 

not expect the behaviour of s-cu2P2o7 to be different from 

the other members of the group. However, the proper 

corrections for thermal motion would possibly bring s-cu2P 2o7 

more in line with the others. For instance, corrections based 

on an "uncorrelated model" increase the P-02 and P-03 bond 

lengths to 1.528 and 1.526 A respectively. 

A further indication of the dependence of the chemistry 

of the anion on its crystalline environment is provided by 

an examination of the manner in which two cations and one 

phosphorus atom are bonded to each terminal oxygen atom. 

In Table 18 are tabulated the three angles subtended by its 

three ligands ·at each independent terminal oxygen atom of 

some of the pertinent structures. In each case the sum of 

-the angles tot~l nearly 360°, indicating a nearly planar 
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d i s t ribution of the four atoms. The terminal oxygen atom 

would then be expected to have some sp2 hybridization 

although the individual angles deviate considerably from the 

ideal 12 0° . If the terminal oxyqen atoms a r e p a rti a lly sp2 

hybridized, t he total number of electrons in the anion 

would be affected. It appears then that the deviations from 

t h e predicted bond lengths arise from the effects of the 

environment, which were not considered by Cruickshank, and 

the fact that the P-0-P angle is not necessarily 180°. 
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(B) Comparison of Low Temperature Structures 

The ~ glide plane and the doubled £ axis is common to 

all the low temperature structures of the ''small ion" 

pyrophosphates. Further, in each case they only contain bent 

P-0-P groups in the anions. Thus the c glide plane might be 

closely related to the bending of the pyrophosphate ion. 

For the purpose of discussion the structures may be considered 

* to consist of layers perpendicular to the a vector and 

1 cutting the unit cell at x = 0 and 2 . The cations and 01 

atoms lie nearly at the middle of these layers. 

The £ glide plane in the a-cu2P 2o7 structure may now 

be constructed from the mirror plane in the B-Cu2P 2o7 

structure in the following way. One central oxygen atom is 

first displaced alorig the positive ~direction by 0.39 R 

(#1 in Figure 4). In order to retain pseudo-tetrahedral 

symmetry about the phosphorus atoms, the terminal oxygen 

atoms must be rotated about an axis perpendicular to the P-P 

vector and the ~ axis, and which also passes through the P 

atom. The largest effect of this operation is to move the m 

atoms about 0.16 A in the ~- £direction (#2 in Figure 4). 

At one end of the anion each member of the pair of 03 atoms 

moves in opposite directions by an equal amount. These 

+2 oxygen atoms are each bonded to one Cu cation in the same 

layer . The cations are then moved by almost equal amounts 

in the same direction as their respective 03 atoms (#3 in 

Figure 4). The 03 atoms bonded to the other side of the 
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cations must also be moved in the same direction and by an 

equal amount (#4 in Figure 4) . This rotates one end of the 

-4 
removed from the first by c/2 but in the P207 groups 

opposite sense. This displaces the 01 atoms of these anions 

in the oppos~te direction to the displacement of the first 

(#5 in Figure 4). This mechanism generates the ~glide 

plane and the double periodicity in the c direction. The 

octahedra of ligands surrounding the two cation bonded 

through the 03 atoms of one anion, share edges with two other 

octahedra. The cations of these octahedra are each displaced 

in the opposite direction from the direction of displacement 

of those cations in the first two octahedra (Figure · 13) . The 

displacements of all atoms in one layer are then interdependent. 

The displacements of the cations and the 03 atoms are 

both in the same direction as those of the long Cu+ 2-o3 
bonds, which is nearly the a - £direction, and have a very 

marked effect on these bonds. The two atoms which make up 

each of these bonds are moved in opposite directions such 

that half of the bonds are shortened from 2.58 A to 2.32 A 

and the other half are lengthened to 2.94 A. This is an 

abnormally long distance for a Cu+ 2-o bond. Since there is 

1 . d d . +2 . . 0 h t' on y one 1n epen ent Cu s1te 1n a-cu2P 2 7 , eac ca 1on 

has five ligands within 2.32 A ~nd one at 2.94 A. 

The P-0(-P) distance of 1.577 A in a-cu2P 2o7 is 

slightly longer than in the high temperature form. The P-02 

bond length has increased significantly from 1.516 A in 
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S-Cu2P 2o7 to 1.552 in a-Cu2P2o7 • This change is not 

generated by the bending of the anion from its configuration 

in S-Cu2P
2
o

7
• It involves a shift of the 02 atom in the c 

direction a distance of 0.05 A towards the Cu+ 2 cation. This 

is the largest atomic shift not associated with the bent 

anion and its explanation may be in the different temperature 

at which the structures were observed. Since the P-0-P 

angle in a-cu2P 2o7 is 156° the P-0(-P) separations, according 

to Cruickshanks curve, should lie between 1.58 and 1.£4 A 

which correspond to P-0-P angles of 180° and 120° respectively~ 

~imilarly the P-O separations should be between 1.51 and 1.53 A 

respectively~ If corrections for thermal motion could be 

made to the data, all of these bond lengths except that of 

the P-02 bond would probably lie within their predicted 

limits. 

The structure of a-Mg 2P 2o7 as reported by Calvo 

(1967d) is similar to that of a-cu2P 2o7 . The pertinent bond 
I 

angles and interatomic angles of a-Mg 2P 2o7 are presented in 

Table 19. The space group B2 1/c is centrosymmetric. The 

anions are bent but the displacement of the ,central oxygen 

atom from its centric position in S-Mg 2P 2o7 is not restricted 

to lie along a twofold rotation axis in the b direction as 

in a-cu2P 2o7 . Nevertheless, the component of this displacement 

in the ~,c plane is small. The doubling of the ~ axis and 

the change in symmetry gives rise to two independent cation 

sites. One cation maintains octahedral coordination with 
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nearest neighbour distances ranging from 2.062 to 2.150 A. 

The other Mg+ 2 ion is five coordinated. One of the ligands 

+2 I 
bonded to this cation by one of the long Mg -03 bonds of 

length 2.15 A in 8-Mg2P 2o7 is 3.35 A away in a-Mg 2P 2o
7

. The 

sixt h nearest neighbour to this cation is, in fact, an 01 

atom at a distance of 3.057 A. The a phase may obtain some 

degr ee of stabilization from the interaction of the 01 atom 

and the cation. The other five bonds to the five coordinated 

cations range from 1.985 to 2.120 A. The bonding between 
I 

the cation and the 03 atom at a distance o~ 3~354 A is eithe~ 

non-existent or severely weakened. This should allow the 
I I 

other bonds to the 03 atom to be strengthened. Its P-03 

bond length and the nearest cation distance are 1.469 A and 

1.985 A respectively. These are the shortest phosphorous 

oxygen and cation oxygen distances in a-Mg 2P 2o7 . In contrast, 

there is no short terminal P-O bond length in a-cu2P 2o7 . 

The P-0-P angle in a-Mg 2P 2o7 is 144°. One would 

expect the P-0(-P) distances to be slightly greater than in 

a ~cu2P 2o 7 • They are 1.610 A and 1.571 A as opposed to 
I 

1.577 A in 8-cu2P 2o7 . Except for the short P-03 bond length 

of 1.469 A; the P-O bonds do not deviate significantly from 

the predicted range of 1.51 A to 1.53 A. The structures of 

a -Ni 2P 2o
7 

(~ukaszewicz, 1967a) and a-co2P 2o
7 

(Calvo , 1967c) 

are very similar to that of a-Mg 2P 2o7 . Both structures are 

only partially refined and will not be discussed here. 

As is the case in the low temperature structures 
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described above, the c glide plane in a-zn 2P 2o7 is generated 

-4 by bent P 2o
7 

anions and is transmitted throughout the 

crystal by the displaced cation octahedra. Two of the six 

independent cations have octahedral coordination with Zn+2-o 

bond lengths ranging from 1.99 A to 2.18 A. The four other 

cations are five coordinated with bond lengths ranging from 

+2 ' 1.92 A to 2.12 A and each has a long Zn -03 bond which would 

be 2.28 A long in 8-Zn 2P 2o7 and which has been lengthened 

to about 3.25 ~ 0.10 A in a-zn 2P 2o7 . Also an 01 atom is 

within 3.16 + 0.06 A ofthese cations.a-zn2P 2o7 has the smallest 

fraction of octahedrally coordinated cations. Because of 

correlation problems discussed in Chapter 4, the resolution 

of the oxygen atoms in a-zn2P 2o7 is not sufficient to make 

a meaningful comparison of the individual P-0 bond lengths 

and the predicted values. However, the average P-0(-P) 

and P-O bond lengths which are 1.58 A and 1.53 A, agree well. 

The three independent P-0-P angles are 139°, 147° and 150°. 

If the effects of thermal vibrations are ignored, the 

low temperature structures would appear to be in better 

agreement with Cruickshank's predictions than the high 

temperature structures. The main differences between the 

structures of the a forms of zn2P 2o7, Mg 2P 2o7 and cu2P 2o7 

are associated with the way they transform to the 8 phase 

and will be discussed further in Chapter 8. The geometries 

of the anions as found in each of these structures are 

compared in Figure 5. 
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TABLE 17 

Molecular geometry of the high temperature forms of the 

"small cation" pyrophosphates, M2P2o7 (e.s.d's in paranth~ses) 

(a) Bond lengths (A) 

M 

M-02 

M-03 
I 

M-03 

P-Ol 

P-02 

P-03 

(b) Angles 

01-P-02 

01-P-03 

02-P-03 

03-P-03 

- Source 

Mn+2 

2.14 

2.11 

2.27 

1.57 

1.57 

1.54 

104.8° 

108.2° 

113.0° 

109.1° 

Mg+2 

2.05 

2.02 

2.15 

1.557(2) 

1.534 (10) 

1.542(9) 

103.3° 

106.8° 

113.3° 

112.6° 

. Zn + 2 Cu + 2 

2.061 2.003(15) 

2.001 ' 1.936(15) 

2.275 1.577(15) 

1.569(5) 1.542(4) 

1.556(19) 1.516(15) 

1.554(13) 1.503(15) 

102.1° 105.5° 

110.0° 108.7° 

110.9° 111.0° 

112.6° 111.8° 

Further refinement of the results of 

hukaszewicz and Smajkiewicz (1961) with some additional data 
J 

added . 

f3-Mg2P207 

f3-Zn 2P2o7 

Calvo 1965c 

Calvo 1965b 
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TABLE 18 

Sums of angles subtended at terminal oxygen atoms of the 

pyrophosphate ion in some "small cation" pyrophosphates. 

(a) 8-Cu2P 
2
o

7 

P-02-Cu 
I 

P-02-Cu 
I 

Cu - 02-Cu 

(b) a-cu2P 2o
7 

P-02 - Cu 
I 

P-02-Cu 
• I 

Cu-02-Cu 

P-032-Cu 
I 

P-032-Cu 

. Cu-032-Cu 

(c) a-Mg 2P 2o7 

I 

129.6° 

129.6° 

99.8° 

359.0° 

126.2° 

131.6° 

100.9° 

358.7° 

110.2° 

142.6° 

103.7° 

356.5° 

P(I)-02(I)-Mg(II) 128.6° 

P(I)-02(I)-Mg(I) 132.1° 

Mg(I ) -02(I)-Mg(II) 98.8° 

359.5° 
I 

128.7° P(I)-03(CI)-Mg (I) 

P(I)-03(CI)-Mg(I) 127.9° 
I 

102.4° Mg(I)-03(CI)-Mg (I) 

359.0° 

P-03-Cu 
I 

P-03-Cu 
I 

Cu-03-Cu 

P-031-Cu 
I 

P-031-Cu 

cu-031-Cu 
I 

118.1° 

135.6° 

103.2° 

356.9° 

124.4° 

130.3° 

101.8° 

356.5° 

128.1° 

132.6° 

97.8° 

358.5° 

P(II)-03(CII)-Mg(II) 124.2° 

P(II)-02(II)-Mg(II) 

P(II)-02(II)-Mg(I) 

Mg(I)-02(II)-Mg(II) 

P(II)-03(CII)-Mg(I) 129.6° 

Mg(I)-03(CII)-Mg(II) 102.1° 

355.9° 
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TABLE 18 (continued) 

I 

164.4° 113.9° P(II)-03(TI)-Mg (II) P(II)-03(TII)-Mg(II) 

P(II)-03(TI)-Mg(II) 94.2° P(II)-03(TII)-Mg(I) 144.8° 
I 

100.0° 98.5° Mg(II)-03(TI)-Mg (II) Mg(I)-03(TII)-Mg(II) 

358.6° 357.2° 

(d) et-Zn2P 2o7 Layer A Layer B Layer C 

P(I)-02(I)-Zn(I) 134.7° 125.8° 131.1° 

P(I)-02(I)-Zn(II) 125.1° . 129.1° 131.0° 

Zn(I)-02(I)-Zn(II) 100.2° 101.3° 97.9° 

-360.0 0 356.2° 360.0° 

P(II)-02(II)-Zn(I) 134.1° 126.7° 131.1° 

P(II)-02(II)-Zn(II) 127.6° 133.6° 124.4° 

Zn(I)-02(II)-Zn(II) 98.3° 97.0° 100.5° 

360.0° 357.3° 356.0° 
. ------._ 

P(I)-03(CI)-Zn(I) 126.1° 134.7° 129.0° 

P(I)-03(CI)-Zn(II) 127.1° 123.4° 124.3° 

Zn(I)-03(CI)-Zn(II) 98.9° 100.8° -99.9 0 

352.1° 358.9° 353.2° 

P(II)-03(CII)-Zn(I) 135.0° 127.7° 128.7° 

P(II)-03(CII)-Zn(II) 123.3° 127.8° 127.6° 

Zn(I)-03(CII)-Zn(II) 99.8° 100.3° 100.4° 

358.1° 355.8 356.7° 

P(I)-03(TI)-Zn(I) 159.0° 101.9° 141.7° 

P(I)-03(TI)-Zn(II) 100.1° 154.0° 114.4° 

Zn(I)-03(TI)-Zn(II) 100.0° 102.1° 100.6° ---
359.1° 358.0° 356.7° 
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TABLE 18 (continued) 

P (II )-03(TII )-Zn(I) 135.0° 140.3° 127.6° 

P( II )-03(TII)-Zn(II) 123.3° 117.9° 128.7° 

Zn( I )-03(TII)-Zn(II) .99. 8 0 99.6° 100.4° 

358.1° 357.8° 356.7° 

f 

. I 



TABLE 19 

Molecular geometry of a-Mg 2P2o7 (from Calvo, 1967d) 

(a) Bond lengths (A) 

P (I )-01 l.G l O 

P( I I)-01 1.571 

P(I)-02(I) 1.533 

P(II)-02(II) 1.532 

P(I)-03(CI) 1.502 

P(II)-03(CII) 1.525 

P (I) -03 (TI) 1. 469 

P(II)-03(TII) 1.517 

Mg(I)-02(I) 2.066 

Mg(I)-02(II) 2.086 

Mg(I)-03(CI) 2.062 
I 

Mg(I)-03 (CI) 2.140 

Mg(I)-03(CII) 2.129 

Mg(I)-03(TII) 2.150 

Ol·O~ Ct) 

Ol-02(II) 

Ol-03(CI) 

Ol-03(CII) 

Ol-03(TI) 

Ol-03(TII) 

02(I)-03(CI) 

02(II)-03(CII) 

2.4 6 

2.51 

2.47 

2.41 

2.51 

2.53 

2.52 

2.55 

02(I)-03(TI) 2.53 

02(I)-03(TII) 2.52 

03 (CI) -03 (TI) 2. 46 

03(CII)-03(TII) 2.51 

Mg(II)-02(I) 

Mg(II)-02(II) 

Mg(II)-03(CII) 

Mg(II)-03(TI) 
I 

Mg (II) -03 (TI) 

Mg(II)-03(TII) 

Mg(II)-01 

2.047 

2.057 

2.026 

3.354 

1. 985 

2.120 

3.057 

116 
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TABLE 19 {continued) 

b Angles 

P{I)-ol-P{II) 144.1° 

Ol - P {I)-02(I) 102.8° 02(I)-P(I)-03(CI) 114.8° 

Ol-P(II)-02(II) 107.8° 02(II)-P(II)-03(CII) 111.2° 

Ol-P(I)-03(CI) 105.8° 02(I)-P(I)-03(TI) 112.0° 

01-P (II)-03(CII) 102.4° 02(II)-P(II)-03(TII) 113.3° 

01-P{I)-03(!!) 109.3° 03(CI)-P(I)-03(TI) 111.9° 

Ol-P(II)-03(TII) 110.2° 03(CII)-P(II)-03(TII) 111.5° 
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Figure 4 

The structure of a-cu2P 2o
7 

showing the . generation 

of the £ glide plane. The large open circles 

represent oxygen atoms, the small open circles 

represent the c~tions and the small solid spheres. 
'\ 

are . the phosphorus atoms. 
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C tUOC 

o;r.; . 

B 

~igure 5 

The geometry of the pyropho~phate anion in the low 

temperature forms of the "small cation" pyrophosphates. 

The atoms are repr~e~ted as in Figure 4. The two-fold 
' axis through 01 in a-cu2P 2o7 is indicated. 
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Figure 6 
The structure of a-zn 2P2o

7 
in projecti~n d~wn the b axis ·.The atoms 

are represented as 1n F1gure 4 
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N 
0 



cP 

cP 
c 

a 

c A B c 
0,0 

cP 

0,1 

f,l 
A B c A 

Figure 7 

The structure of a-zn2P 2o7 in projection down the b axis. 

The atoms are represented as in Figure 4. 
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(A) Investigation of the Phase Transformation 

The occurrence of a phase transformation in cu2P 2o7 

was originally mentioned by Roy et. al. (1948). The details 

of the transformation as reported here were found by 

observing its single crystal diffraction pattern as a 

function of temperature which indicated that the unit cell 

0 halved along the £ axis at about 70 C (Robertson, 1965). 

This phase change is manifested by a disappearance of those 

reflections having indices with £ odd when referred to the 

a unit cell. It should be noted that because of the 

doubled c axis, these reflections would have half integral 

values of £ when referred to the 8 unit cell. 

The heating apparatus in these experiments consisted 

of a coil of nichrome wire mounted in the end of a layer 

line screen and the current was supplied by a "powerstat" 

transformer. With this apparatus, it was difficult to 

maintain a constant temperature and to accurately monitor 

the absolute temperature. Further experiments, overcoming 

these difficulties, have been carried out using a Nonius 

''Hi-Lo" Weissenberg camera. This camera is fitted with an 

attachment consisting of a double-walled silvered glass 

cylinder which is inserted inside the layer line screen and 

adjusted to be within a few millimeters of the crystal. An 
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inert gas is flushed down the axis of the cylinder and 

heated by a resistance coil coaxialwith and within the dewar. A 

A copperconstantan thermocouple extends slightly beyond the 

axis of the cylinder. It was found that this thermocouple 

gave temperature readings which were approximately 10% too 

high. In order to calibrate the system another thermocouple 

was substituted at the position of the crystal and the 

temperature difference recorded as the overall temperature 

was changed. It was found that the thermocouples differed by 

about 12°C in the temperature region of interest with the 

thermocouple in the dewar reading higher. Later experiments 

with a crystal in thermal contact with a thermocouple showed 

that the readings taken with the thermocouple located in 

the dewar were, in fact, about 8° higher than the actual 

temperature of the crystal. The errors in temperature were 

assumed to be caused by thermal conduction in the large 

thermocouple leads which caused the thermocouples to act as 

heat sinks. The thermocouple _in the dewar was heated by 

radiation from the resistance coil in the dewar. Temperatures 

quoted below have been measured at the crystal or were corrected 

by the subtraction of roughly 8°C from the temperature as 

measured with the thermocouple in the dewar . 

A crystal was mounted on a glass fiber with Stycast 

2651 high temperature cement and aligned about the [lll] axis. 

In this orientation only the odd layer lines contain reflections 

with t odd. In order to ensure that the proper conditions for 
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diffraction existed and to observe reflections which were 

sensitive to the phase transformation, both the o'th and 

first layer lines were allowed to pass through the layer line 

screen to the recording film. 

It was observed on a twenty hour exposure taken at 

77 ± 3°C that the first layer line had disappeared and all of 

the reflections of that layer line had been replaced by very 

faint streaks. Further study of these streaks was warranted 

but their low intensity made it necessary to optimize the 

experimental situation. Since their relative intensity 

appeared to be proportional to the intensity of the Bragg 

peak which they replaced, it was desirable to choose an 

area of reciprocal space containing a number of relatively 

strong reflections with odd l. Further, in order to decrease 

the necessary exposure time and to minimize temperature 

drift the oscillation range of the camera spindle angle was 

limited to about 60°. Photographs were taken at several 

temperatures ranging from room temperature to 120°C. 

The general nature of the streaks could be determined 

from these photographs. By 50°C the intensity of those 

reflections with odd values of l had begun to decrease in 

relation to those with even l. The streaks first appeared 

0 at about 70 C. The Bragg peak remained, however, until the 

temperature was raised a few degrees further. Beyond 73°C 

the intensity of the streaks decreased mohotonically as the 

temperature was raised further and could still be seen as a 
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faint smudge on a 24 hour exposure at 120°c. The intensity 

distribution was remarkably flat along their length and did 

not blend into the Bra9g peak. There was a marked 

discontinuity in intensity between the peak and the streaks. 

Photographs of the streaks taken with the crystal 

aligned in several orientations showed that the length of the 

* streaks paralleled the a direction. 

X-rays which are not scattered into a region within 

a few minutes of arc of the direction defined by the Laue 

equations, arise because of some imperfections in the three~ 

dimensional translational symmetry of the crystal. One 

source of such imperfections is the thermal vibration of 

atoms. This type of diffuse scattering has been well documented 

(Guinier, 1963; Wooster, 1961; and Ramachandran, 1963) but 

can not explain these diffuse streaks in cu2P 2o7 . Another 

class of imperfection in the translational symmetry is caused 

by a positional disordering of the atoms. Since the streaks 

* extend only in the ~ directiqn the disordering must produce 

a loss of translational symmetry only in that direction. 

The resolved structures of the a and S phases afford 

an opportunity to speculate on the details of how planes 

* perpendicular to the a vector become disordered. The layers 

* perpendicular to a , as mentioned in Chapter I, should be 

able to maintain a high degree of order because of the manner 

in which the non-linear anions are joined by the cation 

octahedra but the layers themselves might be susceptible to a 
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particular type of disordering. If the direction of bending 

of all the anions in one layer is reversed, that is, if their 

sense of the displacement of the central oxygen atoms from 

the y = constant plane of P atoms is reversed, then the 

bonding between layers will not be disrupted since only small 

changes in the primary bonding sphere are necessary. The 

structural implications of this operation will be discussed 

in detail in Chapter 7. The generation of the ''disordered" 

layer is equivalent to the translation of the origin of 

that layer by c/2. If half of these layers are reversed 

with no long range correlations between them, then the atoms 

in the two halves of the unit cell related by the c glide 

plane will appear to be superimposed into an "average" unit 

cell with the length of the c axis halved. Also, in place 

of the £ glide operation, there will now be a mirror plane. 

For convenience, we shall define a normal layer on a-cu 2P 2o7 

as a type I layer and the reversed or disordered layer will 

be defined as type II. 

· ; . 
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(B) Measurement of Intensity Profiles 

An apparatus was set up to provide better control 

of the temperature of the crystal. The experimental arrangement 

is shown in Figure 8. When the e.m.f. generated by the copper

constantan thermocouple falls below a predetermined value on 

the temperature control device, the relay is closed and the 

an impedance is by-passed. The voltage across the heater coils 

is then increased by 20% and the temperature increases. A 

standard Croyden P4 thermocouple potentiometer was used to 

measure the e.m.f. from the chromel-alumel thermocouple 

mounted on the side of the collimator. The galvanometer leads 

were connected to a Leeds and Northrup 2430D galvanometer 

whi ch greatly enhanced the sensitivity of the instrument. The 

0.8°C variations in temperature could easily be measured as 

the relay switched on and off and an additional 0.1°C variation 

in temperature could be observed as the Weissenberg film . 

holder moved back and forth on its track. It was found that 

var iations in the temperature of the crystal due to changes 

in room temperature and the gradual heating of the entire 

camera could be decreased by increasing the rate of flow of 

the inert gas bathing the crystal. 

A crystal was carefully selected and affixed to a 

g l ass fiber with modelling clay. Several photographs were 

taken to find the direction of the c axis. A copper-constantan 

thermocouple consisting of 0.0036 gauge wire was inserted 

into a ceramic rod which was mounted on a goniometer head. 
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The crystal was remounted on the thermocouple junction with 

Stycast cement so that the£ axis was nearly - coincident with 

the goniometer's rotation axis. The crystal was now aligned 

about the c axis and photographs were taken in the temperature 

range of the phase transition which contained both the hkO 

and hkl layer lines. In all these experiments, a region near 

* the a axis was photographed since here the first layer line 

contained a number of strong reflections. 

This mounting of the crystal proved inadequate for 

the collection of intensity distribution data because the 

scattering from the thermocouple raised the background level 

on the film to such an extent that the streaks were not well 

defined. However, this arrangement was useful in establishing 

the absolute temperature at which the various phenomena occurred. 

The variation in temperature during each exposure of this series 

was kept to within 2°C. Thus from the large number of exposures 

recorded with overlapping t~mperature ranges it was possible to 

assign the temperature at which the streaks first appeared 

+ 0 as 71.0 - 1.0 C and the temperature at which the Bragg peak 

disappeared as 74.0 ± l . 0°c. 

The original crystal used to study the nature of the 

streaks was now used to collect data for the intensity 

distribution. This crystal had been mounted on a thin fiber 

with a minimum amount of glue and the background on the 

photographs obtained was very low. It could also be re-

aligned about the c axis. The temperature was monitored by 
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the chromel-alumel thermocouple as shown in Figure 8. 

Photographs were taken over the entire range of temperatures 

associated with the phase transition but only five photographs 

were used for detailed analysis . Two strong peaks were chosen 

which had a relatively smooth background. A tracing of the 

intensity of each streak was obtained with a Joyce-Loebl 

MKIIIC densitometer. The background level and coarse grain 

of the film was still such that the high sensitivity of the 

densitometer produced very erratic fluctuations in the 

intensity tracings. The rough outline of the streaks was 

drawn by hand through the fluctuations. A photograph taken 

at 69° and showing only the Bragg peaks and background was 

used to subtract the background from each of the other tracings 

in the transitiop region. The normal white radiation streaks 

associated with the Bragg peaks appeared in the photographs 

and passed through the diffuse streaks. However, they 

decreased in intensity as the Bragg peaks decreased in intensity ' 

+ 0 and therefore the background above 71.0 - 1.0 C was markedly 

different than on the photograph at 69°C. In order to 

complete the background curve above this temperature, a smooth 

line was drawn which joined the background curves in the 

regions not affected by the white radiation streaks. The 

height of the intensity profile and the associated background 

was noted at intervals of 0.05 a*. Each diffuse streak 

extends on either side of a Bragg peak and the intensity 

profile of each half must b e nearly identical although they 

will register slightly different on a photographic film because 
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of the effects of absorption and the Lp factor. It was 

assumed, however, that these effects were linear with sin0/A 

over the small range of 0 through which each streak appears. 

Then they may be cancelled by averaging the two halves of 

each streak. The curves obtained from the two streaks in 

this way were then themselves averaged. A further correction 

is required to account for the fact that the streaks have 

been convoluted by the mosaic spread and size of the crystal, 

the divergence and dispersion of the x-ray beam and the 

width of the light beam used to measure the intensity of the 

streaks. The width of the tracing of the Bragg peak provides 

a rough estimate of the magnitude of the effect of 

convolutions. This width was observed. to be 0.05 ± O.Ola* 

The intensity profiles were observed to have two portions that 

were linear within experimental error. These were at the 

points when the streaks faded into the background and · near 

the Bragg peak. These two ~inear parts were extended 0.05 a* 

towards each other and then joined by a continuous curve with 

the same general character as the uncorrected curve. These 

corrections are illustrated in Figure 10. The dashed lines 

are the corrected intensity profiles used to analyse the 

disorder. The intensity is plotted against the dimensionless 

quantity s describing the fractional distance in reciprocal 
- > 

space between the reflectio~~s hk9. Cl..~d (h+l) kR,. 

The first curve shows the streaks as they first appear 

+ 0 at 71.0 - 1.0 c. On the scale shown, the Bragg peak extends 
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to 280 units along the ordinate. The curve representing 

the profile of the streak at 74.0 + 1.0°C has a central peak 

extending to 55 units and at 75.0 + 1.0°C there are no 

central peaks. The photographs from which these curves were 

obtained were taken over a finite range of temperature and 

therefore they probably contain some additional error, 

particularly at 71.0 ± 1.0°C where the experimental 

conditions under which the profile was measured extend 

into a temperature region where the streaks may not exist. 

The other three curves are flat within experimental error 

from the origin out to 0.125a*. They then fall off to zero 

intensity with approximate Gaussian character. Beyond 74°C 

the only apparent change is an overall decrease in intensity. 
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(C) Derivation of the Intensity Profiles 

A derivation of the relation between the distribution 

of intensity in the streak and the nature of the disorder 

may be found in Wilson (1949). An alternate discussion of 

the relationship will be presented here which will be better 

suited to the case of cu2P2o
7

• 
I 

Let F (hkt) represent the structure factor of one 

layer of type I (see Chapter 6A) made up of the contents 

of a half unit cell extending from x = 0 to x = a/2 and 

from -oo to +oo in both they and z directions. The structure 
I 

factor of the entire crystal is obtained by summing the F (hkt) 

of all the layers with the appropriate phase factor depending 

on the displacement of the layer from an arbitrary origin. 

Adjacent layers in the a phase,or the pure S phase, since ' it 

is described by an averaged unit cell, are C centered .However, 

in the transformation region, adjacent layers of opposite 

type are I centered. We can then define the structure factor 

of the n 1 th layer An(hk~) ,with its appropriate phase factors 

as 

k/2)exp(2ni y 
n ~/2) 

where v is a selector factor which is 0 if the layer is 
n 

type I and 1 if the layer is of type II, and yn is 0 if n 

is odd and 1 if n is even. We may now write the structure 

of the entire crystal in terms of the An(hk~) . However, we 

shall be interested in the scattering of x-rays in the 

vicinity of the Bragg peaks where h is not integral. We 
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I I 

therefore define a new quantity h such that h a* = ha* + ~~*· 

Then the structure factor of a crystal consisting of N layers 

is 

I 

F. (hk £.) = 
N 
E 

n=l 
I 

The measured intensity I(hk£.) as recorded on a 
I I 

photographic film, will be proportional to F(hkt)F*(hk£.). 

The product may be written 

.. 

' ' 2 1 N N-n . ' . + * ' ' 
I{h k£.) aN{ IF{h k£.) I + N E E AJ (h kt)AJ n (h kt)exp(-1rinh )+(C. 

n=l j=l 

where C.C. is the complex conjugate of the second term in the 

brackets. If we now substitute for Aj(h
1

k£.) and Aj+n*(h
1

k£.) 

and consider the behaviour of the exponentials, we find that 

their value depends only on the evenness of k or £.. We also 
I 

---- substitute for h and obtain 

I(h
1

k£.) aN IF(h
1

k£.) 12 { 1+~ ~ N~n (-)n(h+k) [(-) vj(-) vj+n]t cosn1r~} 
n=l j=l 

v . v . +n 
The quantity [(-) J(-) J ] is 1 if the layers j and 

j+n are the same type (ie, both type I or both type II) and 

-1 if they are different. It is reasonable to assume that the 

probability that the two layers are different depends on their 

separation nand not on the running index j. The second 

summation may then be averaged and the average value of 
v . v . +n 

[(-) J(-) J ] will be denoted by s . Consider the case when 
n 

~ = 0, t is even and h + k is odd. Then 

N-1 
I{hk£.) aN IF' (hkt) 1

2 {1 + ~ E (N-n) (-)n} 
N n=l 
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If we assume the crystal contains only complete unit cells, 

N is even and the summation gives directly -N/2 and I(hkt) 

is zero. The values of S depend on the degree of disorder n 

and thus I(hkt) is not necessarily zero if both t and h + k 

are odd. The area of reciprocal space corresponding to these 

reflections were studied in the temperature region where the 

crystal is partially disordered but no scattered x-rays 

were observed. 

In order to obtain an expression which is independent 

of the integrated intensity of each diffuse streak, we shall 

define the quantity I(~) as 

I I I 

We shall further assume that F (h kt) = F (hkt) throughout 

the region of a diffuse streak. The appearance of the streaks 

suggests that this is a good approximation and the averaging 

of four "half" streaks should minimize any errors arising 

from this approximation. Then 

N-1 N-n 
I(~) = 1 + 2 E ~ Sn cosnn~ 

n=l 
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(D) Fourier Transforms of the Intensity Profiles 

We have measured I(~) and now wish to find 8 . From 
n 

the form of the expression for I(~) we may express 8 as the 
n 

Fourier transform of I(~). It is then desirable to describe 

I(~) analytically. The central peak in the ideal case is a 

delta function and the streak contains a flat part and appears 

to decay to zero approximately as a Gaussian of half width a 

Thus 

( -x < ~ < x) 

I ( S) 

where c
1 

and c2 are constants and x is the value of ~ where the 

intensity of the streaks begins to decrease. I ( S) is an 

even function and the period of integration will be 2. 

Therefore, if the expression for I(~) may be written 

a 

2° + a1cosn~ + a 2 cos2n~ + ..... 

then a is given by 
n 

1 

f I(~)cos nn~d~ 
-1 

I(~) has been measured in arbitrary units, but 

an a 2 (N~n) 8n and since 8
0 

= [<-) vj] 2
, 8

0 
= 1 

Furthermore, if n is much less than the total number of 

layers in the crystal (N-n) is nearly equal to N. 

Then 

8 = a /a n n o 
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Also, if a is the probability that the j'th and (j+n) 'th 
n 

layers are the same type, S = (+l)a + (-1) (1-a) n n n 

Therefore 

0. • 
n 

s + 1 n 
2 

We mus't now evaluate a for any n, where 
n 

+1 
J sin(n~x) 

an= -l I(~)cos(nn~)d~ = c 1 + 2c2 nn 

-x 
}cos (nn ~) d~ + c2 J 

-1 cos (nn ~) d~ 

For convenience the limits of integration will be changed to 

±"" The contribution to the integrals when 1~ 1 >111 will be 

negligible . Also the cosines will be changed to exponentials. 

In the first integral, we shall substitute t = (~-x)/(/2a) 

and in the second t = -(~+x)j(/2a). Then the integrals 

become 

00 

2 . 2 
exp-{t -nin(/2at+x)} dt + J exp-{t +nin(/2at+x)}dt] 

0 0 

These integrals may be evaluated by completing the square of 

the arguments of the integrands. The substitutions 

U = t-ninaj/2 and U = t+nina;/2 

will now be made in the first and second integrals respectively. 

Then we have 
2 2 2 00 

l2ac
2 
exp ( _ .n n 

2 
a ) [exp ( n inx) { J 2 o -u2 

e-u dU+ J e du}+exp(-ninx) 

nina 
-nina 

0 
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The integrals from o to oo both give /IT/2. In the other 

integrals we replace U by -iy and +iy. Then the expression 

becomes 
2 2 2 

r;:; -1T n a t2crC 2exp( 2 )cos(n1rx) 

where erf(Z) is the error function of z. We only require · the 

real part of a . 
n 

Therefore 

The quantities a , 8 and an were calculated for n n 

n = 1, 2 •.•. 100 and at temperature of 71! 1°C, 73! 1°C and 

75 ! 1°C. The results depend only on the shape of the curve 

defining the streaks and not the height. Only the height 

0 of the curve changes above 75 C so there was no additional 

information to be gained .from the a above this temperature. 
n 

Strictly speaking, the model for the transition as has been 

presented cannot account for a change in the total number of 

photons diffracted into one Bragg peak and its associated 

diffuse streak. This point·,will be discussed in Chapter 7. 

The width "cr" of the Gaussian part of the intensity 

distribution was estimated from the curves in Figure 10. The 

values of cr, x (the length of the flat portion of the streak), 

c1 (the height of the Bragg peak), c2 (the height of the 

flat portion of the peak), and a , n = 0,1,2 ••. 50 are listed 
n 

in Table 20, as determined at the three temperatures mentioned 

previously. Also a is plo t t ed as a function of n for n = 0,1 
n 

...• 20 in Figure 11. 
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TABLE 20 

Probability a (T) that the layers j and j+n are 
n 

identical as a function of n and the temperature T. 

Height of central peak 

Length of flat portion 

Height of flat portion 

Half width of Gaussian 

n 

o . 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

+ 0 T = 71-1 C 

200.0 

0.025 a* 

80.0 

0.110 a* 

a 
n 

1.0000 

0.9970 

0.9891 

0.9789 

0.9690 

0.9611 

0.9560 

0.9530 

0.9515 

0.9507 

0.9504 

0.9501 

0.9500 

0.9498 

0.9495 

0.9493 

0.9490 

0.9488 

0.9485 

0.9483 

0.9480 

0 . 9477 

0. 9474 

0.9471 

20.0 

0.125 a* 

36.0 

0.100 a* 

a 
n 

1. 0000 

0.9827 

0.9384 

0.8849 

0.8383 

0.8055 

0.7843 

0.7697 

0.7580 

0.7482 

0.7411 

0.7376 

0.7379 

0.7416 

0.7478 

0.7553 

0.7630 

0.7698 

0.7748 

0.7776 

0.7781 

0.7763 

0.7727 

0.7680 

0.0 

0.125 a* 

32.0 

0.100 a* 

a 
n 

1.0000 

0.9634 

0.8701 

0.7572 

0.6589 

0.5896 

0.5450 

0.5142 

0.4894 

0.4687 

0.4538 

0.4464 

0.4470 

0.4548 

0.4679 

0.4838 

0.5000 

0.5143 

0.5250 

0.5309 

0.5318 

0.5280 

0.5204 

0.5106 
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TABLE 20 (continued) 

24 0.9468 0.7630 0.5000 

25 0.9465 0 . 7584 0.4903 

26 0.9462 0.7548 0.4827 

27 0.9459 0.7527 0.4782 

28 0.9456 0.7522 0.4773 

29 0.9453 0.7534 0.4797 

30 0.9450 0.7559 0.4850 

31 0.9447 0.7593 0.4922 

32 0.9444 0.7630 0.5000 

33 0.9441 0.7665 0.5074 

34 0.9439 0.7693 0.5132 

35 0.9436 0.7709 0.5168 

36 0.9433 0.7714 0.5177 

37 0.9431 0.7705 0.5159 

38 0.9428 0.7686 0.5118 

39 0.9426 0.7660 0.5062 

40 0.9424 0.7630 0.5000 

41 0.9421 0.7602 0.4941 

42 0.9419 0.7579 0.4893 

43 0.9418 0.7565 0.4863 

44 0.9416 0.7561 0.4856 
'-

45 0.9414 0.7568 0.4869 

46 0.9413 0.7584 0.4902 

47 0.9411 0.7605 0.4948 

[ 48 0.9410 0.7630 0.5000 

49 0.9409 0.7653 0.5050 

50 0.9408 0.7673 0.5090 
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CHAPTER 7: PHASE TRANSFORMATION STUDIES 

(A) Theoretical Aspects 

''Phases" are usually defined only in terms of two states 

of a system which are related by a "phase" transformation. A 

more general definition is provided by Guggenheim (1950). "If 

a s stem is not homogeneous, in order to describe its 

thermodynamic state we have to consider it as composed of a 

number, small or large, of homogeneous parts called phases, 

each of which is described by specifying its contents and 

a sufficient number of other properties." In addition to 

the more common phase changes which involve a change of 

state, a phase change may involve two liquid phases such as 

normal Helium I and the superfluid Helium II or two solid 

phases. Haas (1965) has classified the changes which may 

occur in a solid as follows. 

(I) A continuous change without a change of 

symmetry. In this case there is no phase 

transition. (It should be noted that the 

change from the normal to superconducting 

state of a crystal is one case of a second 

order phase transition in a solid where there 

is no symmetry change.) 

(ii) An abrupt change by a first order transition. 

At the transition temperature there are two 

phases in equilibrium with each other. There 

are no symmetry requirements for a first order 

144 



145 

phase transition to be possible. 

(III) In a second order phase transition the 

properties of the crystal change gradually 

until at a certain transition temperature 

the change is complete. This type of 

transition is only possible if certain 

stringent conditions for the symmetry 

above and below the transition point 

are fulfilled. 

Unless an energy barrier inhibits the transformation 

from one phase to another, a system will be found in the 

phase having the lowest Gibbs free energy at a given temperature 

and pressure. A transformation corresponds then to .the 

intersection of the Gibbs free energy curves of two different 

phases of a system since at the transformation temperature 

the two phases coexist in equilibrium and therefore have the 

same Gibbs free energy density. The Gibbs free energy of one 

phase G. is given by 
l. 

G. = U. - TS. + PV. 
l. l. l. l. 

where U. is the internal energy of the system in the phase i, 
l. 

T is the temperature , S . the entropy, P the pressure and V. 
l. l. 

the volume of the system. 

Ehrenfest (1933) has classified phase transitions 

according to the behaviour of the derivations of the Gibbs 

free energy. If at least one of the first derivatives of G, 

aG aG 
for example, - (aT)p and (aP)T are discontinuous the transition 
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is denoted as "first order". These derivatives are 

respectively equal to the entropy and volume. If at least 

one of the second derivatives of G, notably the specific 

heat at constant pressure (C = T(asT) ) and/or the 
P a P 

coefficient of thermal expansion (a = !(avT) ) are v a p 

discontinuous, while the first derivatives are not, the 

phase transition is denoted as "second order''. Higher order 

transitions would be similarly defined but none have been 

observed in nature. 

Most of the second order phase transitions which have 

been studied exhibit infinite changes in the second derivatives 

which are not analogous to the finite changes accompanying 

a first order transition. Callen (1960) has remarked that 

the phase transition of metals to the superconducting state 

in zero magnetic field appears to be the only second order 

phase transition exhibiting a single finite change in the 

second derivatives of G. 

A more complete phenomenological description of 

second order phase transitions has been presented by Tisza 

(Smoluchowski, Mayer and Weyl, 1951). This description applies 

to second order phase transitions involving infinite changes 

in the second derivatives including some order-disorder 

phenomena. According to Tisza's theory, if U is the internal 

energy of the system and x . are the set of t~ariables 
l 

defining the system, then a second order phase transition 

occurs if the quadratic form 
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is positive semidefinite; ie. d 2u may be only zero or 

positive and the second order transition occurs when d 2u 

becomes zero. If d
2

U is allowed to become negative a first 

order transition will occur. If the inflect ion point is 

d 2u 
such that dSdx. = 0 where S is the entropy and xi is any 

~ 

other variable or linear combination of them, then the 

transformation is an order-disorder phenomenon . Tisza 

has called this a transformation of the second kind to 

distinguish his theory from that of Ehrenfes t. Because of 

the fact that the curvature of the energy surface is changing 

sign or going to zero, that is, going from absolute stability 

to absolute iristability, the transformation has also been 

called a critical phenomenon. 

Both of the aforementioned treatments of second order 

phase transformations are essentially macroscopic in nature . 

Landau (Landau and Lifshitz, 1962) has formu lated a set of 

necessary conditions for the existence of a second order 

phase transformation which relates to the microscopic 

processes involved. Haas (1965) has recently presented a 

discussion of Landau's theory and applied it to the phase 

changes in ferromagnetic and ferroelectr ic materials. 

Following Haas, Landau's theory may be summariz ed as follows: 

(I) In order for a second order trans formation 
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to occur, the change of symmetry 

between two phases is such that the space 

group of one phase of the crystal is a 

subgroup of that of ~he other phase. 

(II) · Further, the symmetry operators corresponding 

to only one irreducible representation of the 

more symmetric phase may be lost in the 

change of phase. 

(III) The change in electron density caused by 

the transformation may be described by a set 

of n functions belonging to the representation 

of order n associated with the transformation. 

If each of these n functions ~· contribute a 
~ 

fractional amount yi to the change in electron 

density then the free energy G may be expanded 

about G
0 

at the transformation temperature in 

terms of homogeneous functions f(j) of order 

j in the y.. That is, 
~ 

G = G + Af(l) + Bf( 2 ) + Cf( 3) + Df( 4 ) + 
0 

The free energy must be invariant to the operations 

of the group of the high symmetry phase which 

transforms the coefficients y. into each other. 
. ~ 

In order for the free energy to be invariant, 

the first and third order terms must vanish. 

Landau and Lifshitz have derived a fourth condition 

for a second order phase transformation arising from the 
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requirement that the crystal be stable against spatial 

inhomogeneity. The necessity of the fourth condition is a 

matter of current debate and in particular a number of second 

order phase transformations have been studied which are not 

homogeneous. Landau's theory is similar to that of Ehrenfest 

in that it cannot account for infinities in the specific 

heat curves. 

First order phase transformations incovalent crystals 

areusually charac~erized by the breaking of bonds and 

volume discontinuities. I:p elemental crystals or ordered 

alloys the first order transition involves a rearrangement 

of packing, for instance, from face centered cubic to 

hexagonal close packed. Second order transformations are 

best exemplified by the ordering of alloys or cooperative 

phenomena such as the transformation to ferromagnetic or 

ferroelectric states in some solid state systems. A number 

of second order phase transformations involve entropy as 

one of the critical variables in the internal energy u. 

In the expression for G, the PV term is relatively 

unimportant in second order transformations of condensed 

phases since the volume is continuous across the phase change. 

At high temperatures the term TS is dominant and the 

·additional entropy of disorder makes the disordered phase 

energetically more favorable even though the internal energy 

U of the disordered phase may be greater. At lower temperatures 

the internal energy term beco~es dominant and the ordered 

phase is stable. The specific heat of most second order 
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transformations seems to diverge logarithmically _in contrast 

to the simple discontinuity suggested by Ehrenfest. This 

specific heat curve is often broadened or "diffuse" with a 

tail above the critical or transformation temperatur e and 

hence is called a "A" curve. The present understanding of 

phase transformations is best illustrated by a statement of 

Smol chowski (Condon and Odishaw, 1958) which still rem~ ·ns 

true. "The field of phase transformations in solids is 

characterized by a huge amount of experimental (often only 

quantitatively significant) material and by a relative 

scarcity of satisfactory theories. This is particularly 

true of theories of the atomic mechanism and of kinetics 

of transformations." 
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The transformation in cu2P
2
o

7 
is the easiest to 

un<i r t nc:l n Will b oon ia. · r d fir t ine .it m ':1 h c1 

some light on the transformations in Mg
2

P
2
o

7 
and zn

2
P

2
o

7
. 

The specific heat Cp of Cu 2P 2o7 has been investigated 

by Melkvi, Stager and Calvo (1967a) . They used a c n tinuous 

heating method to measure the heat capacity. Th e sample 

was suspended inside an adiabatic heat shield and the 

energy supplied to the sample and its temperature were 

monitored . The results of these experiments are shown in 

Figure 12. Because of the limited sensitivity of the 

equipment, the results for cu
2

P 2o
7 

were difficult to obtain 

and should not be considered conclusive. The Cp curve for cu
2

P
2
o

7 

has a broad peak centered about 75°C with two additional 

0 0 discontinuities at 54 C and 85 C, although the discontinuity 

0 at 54 C may not be significant . 

The height of the peak above the base line,which may 

be obtained by joining the curve below 54°C to the curve 

0 above 85 C by a smooth line,is only about 2.0 cal/mole-degree. 

X-ray photographs show that the intensity of the 

reflections with odd values of t in the a phase start to weaken 

with respect t o the intensity of reflections with t even 

as the temperature is raised above 50 or 60°C. It is 

difficult to fix the exact temperature at which this 

occurs because the magnitude of the change is very small in 
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this region but the rate of intensity change increases with 

the temperature. Above 74.0 ± 1.0°C the Bragg peak is no 

longer observable. The streaks were first observed at 

71.0 :!:: 1 . 0°C and their intensity decreased mono t on ical l y as 

the temperature was raised further. The di ff use s t reaks 

indicate that the crystal has become disordered. The 

spec ific heat anomally represents the energy reg 1i r e d to 

p r od uce the disordering and the shape of the Cp curve could 

suggest that the disordering takes place over the wider 

temperature region between 54°C and 85°C with the maximum 

rate of disordering appearing at 75°C. In their n.m.r. 

experiments, Stager and Atkinson (1967) hav~ observed a 

change in the slope of the chemical shift of the P 31 
15 

nucleus plotted against temperature at 80 ± s0 c. 

The lattice parameters of cu2P 2o7 have been measured 

at room temperature and 100°C .and show no large differences 

at the two temperatures. The photographs used to study 

the transformation were all taken over a small range of 

temperatures which overlap and cover the entire temperature 

range of the transformation. No broadening of the Bragg 

peaks was observed on these photographs. This evidence 

would seem to discount the possibi,li ty of a volume 

discontinuity associated with the phase transformation 

in cu2P 2o7 . 

The direction of the streaks in reciprocal space 

is perpendicular to the layers of the strudture as defined 
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in Chapter l(A). These layers must then be disordered; 

i.e.there is a loss of the translational symmetry between 

these layers. Such an inhomogeneity may occur either by a 

variation in the distance between the layers or a variation 

in the atomic arrangement in individual layers. Also, 

because the diffuse streaks appear only at reflections with 

t odd, the variation in the atomic arrangements must 

correspond to a shift ~/2 of some layers from their positions 

in a-cu2P2o7 . The resolved structures of the high and low 

temperature structures of cu2P 2o7 permit one to speculate 

as to what is the nature of the disordering mechanism. 

In Chapter S(A) the manner in which the £glide plane 

was generated throughout one layer was discussed. The layers 

are joined to one another by the bonding of terminal oxygen 

atoms of an anion in one layer to the cations in an adjacent 

layer. The terminal oxygen atoms are the 03 and 02 atoms. 

The major component of the displacement of the 02 atoms from 

their positions in a-Cu2P2o7 to their positions in S-Cu2P 2o7 

is in the c direction and is independent of the sign of the 

displacement of the central oxygen atoms; ie the sense of 

bending of the anion. As a result of the bending of the anion, 

the 03 atoms are displaced in the same direction as that of 

their bonds to the cations in neighbouring layers. If a layer 

of one type is situated between two layers of opposite type, 

then the most significant change from the bonding which would 

occur if all the layers were of the same type is that the long 
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I 

Cu-03 bonds that were of length 2.322 A and 2.946 A in 

a-cu2P 2o7 now have lengths of 2.629 A and 2.632 A respectively. 

The two crystallographically independent cu-02 bond lengths 

are changed only from 1.962 A and 1.988 A to 1.954 A and 

1 . 9 96 A respectively by the operation. 

In a disordered or type II layer, we have assumed 

that all the anions have reversed their direction of bending 

and the cations have been moved such that their coordinates 

are consistent with those of the anions. The model for the 

phase transformation is illustrated in Figure 13. The cross 

hatched atoms belong to a type II layer. The type II layer 

appears the same as if it had been translated by ~/2. When 

hal f of the layers have become type II, an arbitrarily chosen 

atom has equal probability of being in either type of layer, 

which is defined with respect to some fixed layer of type I, 

and therefore the effective length of the c axis appears to 

be halved. However the layers as seen by x-rays do not have 

full translational symmetry in the a direction. 

The refinement of the structure of s-cu2P2o7 with the dis

ordered model wasan attempt to verify this picture for 
. 

s-cu2P 2o7 . The R factors obtained in this way were slightly 

higher than those obtained with the fully anisotropic model 

although the latter contains more least squares variables. 

The weighted R factors were analysed using Hamilton's (1965) 

significance tables which showed a preference for the 

an i sotropic model. These results are not conclusive, however, 
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because of the problems encountered in the refinement of the 

disordered model. Also the unweighted R factors are nearly 

equal. The atomic positions given by this analysis are 

similar to those obtained by adding the root mean square of 

the principal axis of the thermal ellipsoid to the 

configurational coordinates of the completely anisotropic 

model of the structure . It is also noteworthy that the 

Cu-0~ distance in a-cu2P2o7 is 2 . 58 ~ 0.02 A and the average 
I 

Cu-03 distance between two layers of different types is 

+ 2.63 - 0.02 A. 

The functional dependence of bond energy on bond lengths 

is not known and therefore the difference between the energy 

of all inter-layer bonds between two given layers before and 

after one of them has been ''disordered" can not be explicitly 

evaluated. However, the average bond length is not changed 

drastically and therefore the magnitude of the energy 

difference particularly for the cation should be small since 

it arises mainly from non-linearities in the energy versus 
I 

bond length function since the average Cu-03 bond length in 

the 8 phase is the mean of those in the a phase. 

The decrease in intensity of the reflections with odd 

t implies that there is a decrease in the deviations from the 

symmetry of the 8 phase at a lower temperature than that at 

which the streaks appear. Some disordering may take place 

at these temperatures such that the resultant streaks would 

be too weak to be observed. In addition there can be changes 



156 

in the geometry of the anion. In particular the P-0-P angle 

may decrease as a function of temperature. In a-cu2P 2o
7 

the 

displacement of the central 01 atom out of the c glide 

plane, is 0.39 A. The structure of s-cu2P 2o
7 

as resolved 

at 1 00°C gives a value of 0.21 ± 0.02 A for this displacement 

for both the disordered model and the root mean square 

displacement as determined from the thermal parameter of the 

anisotropic model. This displacement is a measure of the 

P-0-P angle. Although it has only been measured at two 

points it would appear that the p-Q~P angle 

decreases with temperature. Further, the thermal expansion 

parameters of the crystal as measured at room temperature 

and l00°c show that the crystal expands as the temperature 

increases primarily by increasing the length o f the a-c 

vector which is, in fact, nearly paral lel to the P-P vector 

of the anion. The expansion in the crystal might be 

accommodated by an increase . in the P-P dis tance or an increase 
I 

in the long Cu-03 bonds but if the former is the case, the 

P-0-P angle will tend to approach nearer to 180°. The 

possible change in the anion geometry is illustrated in 

Figure 14 where the atomic coordinates obtained from the 

disordered model of s-cu2P 2o7 are compared with those of 

a-cu2P 2o7 . 

The apparent magnitude of the change in the P-0-P angle 

as indicated by the crystal structure of a - and s-cu2P 20j 

seems rather large. This effect may be magnified by the 
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the r mal behaviour of the anion. The total area under the 

di ffuse streaks and the Bragg peaks varies monot oni c ally 

with temperature as may be seen by inspection o f Figure 1 0. 

This is not consistent with the model of the phas e 

transformation as has been presented at th i s point . When 

the layers are completely disordered the probability that 

a given layer is type I or type II will be completely 

independent of its environment and the quantities B· di scuss ed 
n 

in Chapter 7(D) would only be non-zero when n = 0. The 

intensity profile I(~) will then be a constant i ndependent 

of ~ and at high temperatures we should find streaks o f 

nearly constant intensity running along rows or rec iprocal 

space for which k and t are constant and extendi ng in t he 

a* direction. Attempts were made to observe streaks o f thi s 

nature but they did not appear to exist. Also f rom Figure 

10 it may be seen that the total integrated intensi ty o f 

the streaks decreases as the temperature is raised . 

As the temperature is raised above the r e g i on o f t h e 

transformation, the anions should find less hindranc es to 

changing their sense of bending and individual layers 

would be able to change more rapidly from type I t o type II 

configurations. It might then be expected that there would 

b e some loss of homogeneity within the individual l ayers. 

This disorder would consist of a partial loss o f the ~ glide 

operati on and the b translation. There is some e v idenc e f o r 

disorder within layers in that the diffuse streak s become 
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broader as the temperature is raised. It would then appear 

most likely that the diffuse scattering from the disordered 

lattice is spread over all of reciprocal space and is 

therefore not observable. As the temperature is raised 

still further, the anion might assume a state of enhanced 

thermal motion with the central 01 oscillating anharmonically 

across a multi-well potential . This effect would cause the 

Ol atom to appear nearer the c glide plane than in a model 

based on a disordering of the a-cu2P2o7 structure at room 

temperature. 

The Fourier transform of the diffuse streaks permits 

one to speculate as to the distribution of the two types of 

layers. Table II list~ the probabilities an(T), that at the 

temperature T, the layers m and m + n are of the same type. 

Since the shape of the intensity profiles of the streaks does 

not change above 75°C the transforms are only listed at 

71 ± 1°C, 74 ± 1°C and 75 ± 1°C. This analysis has not 

taken into account the effects of the aforementioned 

disordering within the layers .and therefore cannot account 

for the changes in the total integrated intensity of the 

streaks. The simplest approximation to the profile of the 

streaks is a step function and therefore a might be 
n 

expected to be oscillatory. This then suggests that the 

layers form small groups of the same type. 
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The an curves fall off smoothly and then perform 

small oscillations about an average value determined by the 

height of the Bragg peak. If the height of the Bragg peak 

is zero, the oscillations are about the value 0.50. If we 

postulate a model for the layer distribution consisting of 

groups of layers of the same type imbedded in a sea of 

completely disordered layers, we can estimate the average 

number of layers in each group by noting the number "n" 

where the an curve first reaches the value about which it 

oscillates. These numbers are then 40 at 71 ± 1°C and 7 

at both 74 ± 1°C and 75 + 1°C. There must still be some 

long range order in the crystal above that implied by the 

width of the aforementioned groups of layers since they 

are not large enough to prevent broadening of the central 

peak. 

The phase transformation in Mg 2P 2o7 has been studied 

by a number of workers. Roy, Middleswarth and Hummel (1948) 

found evidence of a volume discontinuity near 70°C. Their 

study of the Debye-Scherrer pattern of Mg 2P2o7 also indicated 

that in contrast to cu2P 2o7 the high and low temperature 

phases were distinct and coexisted over a small temperature 

range. Calvo, Leung and Datars (1967) have also observed 

the coexistance phenomenon in the e.p.r spectrum and the 

single crystal diffraction pattern of Mg 2P2o7 . It appears 

that there is a continuous change in the relative amounts 

of each phase and the size of the a and S phase regions in 
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the crystal are macroscopic since there appears to be no 

line broadening of the e.p.r. spectra. Calvo (1967d) has 

observed index of refraction discontinuities in crystals of 

Mg 2P 2o7 near the transformation region with a hot stage 

microscope. These discontinuities moved laterally in a 

direction perpendicular to the layers which are involved in 

the disordering mechanism in the case of cu2P 2
o

7
. These 

striations are a manifestation of the volume discontinuity 

in Mg
2

P
2
o

7
, and this behaviour would suggest some similarity 

between the transformations in Mg 2P 2o7 and cu2P2o
7

. However, 

the volume discontinuity would suggest that there is a more 

significant change in the interatomic bonding than in 

cu2P2o7 . This in fact is the case since not only does the 

P-0-P angle in a -Mg 2P 2o
7 

deviate further from linearity than 

in a-cu2P 2o
7 

but the change in the length of the long cation

oxygen bonds is more pronounced. One interatomic distance 

to one of the two crystallographically independent cations 

is decreased in length from 3.35 A to 2.15 A in going from 

the a · to the S form of Mg 2P 2o
7

. 

The specific heat at constant pressure Cp of Mg 2P2o
7 

has been recently measured by Melkvi, Stager and Calvo 

(l967b). They found a large peak at 66.5°c of height greater 

than 500 cal/mole-degree which is roughly 250 times the 

height of the peak in cu2P2o
7

. The enthalpy of the 

transformation 6H is obtained by integrating the area 

under the peaks of the Cp curves. The accuracy of the 

curve associated with the transformation in cu
2

P
2
o

7 
does 



. not permit a realistic assessment of ~H but it would 

appear to be considerably less than the ~H of 729 ~ 4 

cal/mole determined by Oetting and McDonald (1963) . 

From the evidence presented above this phase 
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transformation must be first order although high and low 

temperature phases coexist over a finite range .of 

temperature. Mayer and Streeter (1939) have introduced 

the term ''diffuse first order" to describe a transformation 

such as this. 

The e.p.r. parameters of Cu+ 2 and Mn+ 2 ions in solid 

solution in zn2P 2o7 have been studied in detail by Chambers, 

Datars and Calvo (1964). Above 155°C only one e.p.r. site 

appears but below this temperature there are two sites. 

At 1 32°c there is an abrupt change in the spectra with the 

appearance of at least one more nonequivalent site. 

Furthermore the axial splitting parameter D, which describes 

the interaction of the effective spin component S with 
z 

external fields, was found to assume two values at 155° which 

diverged continuously as the temperature was lowered to 

132° where the discontinuity occurred. 

The discontinuous e.p.r. parameters at 132° must 

result from a discontinuous change in electron density which 

is characteristic of a first order phase transformation. 

The possibility of a volume discontinuity in zn2P2o7 at 132° 

has not been investigated although the lattice parameters at 
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room temperature referred to the S unit cell are 

considerably different from those of the s phase above 155°c. 

The crystal structure of a-zn 2P2o
7 

shows larger deviations 
I 

from that of S-zn 2P 2o7 . In particular four Zn-03 interatomic 

distances have been increased by approximately one angstrom. 

A volume discontinuity would then not be unexpected. The 

appearance of two crystallographically independent cation 

sites between 132° and 155° is not consistent with the 

space group C2/m although the single crystal x-ray pattern 

does not show any definitive change from that of s -zn2P2o7 

in this temperature region. The principal axis of the magnetic 

moment tensor which is constrained to lie along the b axis in 

s-zn2P 2o7 was observed to be slightly removed from 

colinearity with this axis in the intermediate phase region. 

These results are not consistent with the space group c2. 

Also the observed e.p.r. spectrum is not consistent with 

the symmetry imposed on the cations by the mirror plane if 

the space group were Cm These, however, are the only 

space groups allowed by the Laue symmetry and extinctions. 
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(From Melkvi et.al. 1967a and b) 
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The crystal structure of a-cu2p o in projection down the b axis. The shaded atoms 
2 7 

belon~ to a disordered layer. The atoms are represented as in F~gure 4. 
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CHAPTER 8: DISCUSSION 

The small specific heat anornally, the absence of 

a volume discontinuity and the proposed interpretation of 

the diffuse streaks in cu2P 2o
7 

are all indicative of a 

second order transformation. It would also appear that 

during the transformation the crystal has ordered regions 

of various sizes and therefore the transformation must 

then be classed as a non-homogeneous one. The change in 

space groups which accompanies the transformation are 

.consistent with the restrictions imposed by Landau's criteria 

for a second order phase transformation. Since two phases 

coexist in Mg 2P 2o7 , the transformation must also be 

non-homogeneous. However the large specific heat anornally, 

the volume discontinuity, the e.p.r. and x-ray studies 

show that this transformation is diffuse first order. Here, 

Landau's criteria for a second order transformation, in 

terms of the relationship between the space groups of a 

and S phases, is violated. The e.p.r. experiments with Mn++ 

and Cu++ doped zn
2

P
2
o

7 
indicates that the transformation 

at 132°c is first order and is accompanied by a second 

order transformation extending to 155°C. The space group 

of the intermediate phase between 132°C and 155°C according 

to the e.p.r. results cannot be any of C2, Crn or C2/rn but the 

Laue symmetry and extinctions give only these as the 

possible space group. This would suggest that the intermediate 

166 
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phase may be non-homogeneous but the e.p.r. results should 

be re-examined. 

The obvious question must now be asked as to 

whether or not all the S phase structure are disordered as 

is the proposed structure of S-Cu2P2o7 . No evidence for 

diffuse streaks has been found in S-Mg
2

P
2
o

7
, S-zn

2
P 2o

7 

or Mn 2P 2o7 . Further, in order to be similar to s-cu2P 2o
7

, 

the S phases of Mg 2P 2o
7 

and zn 2P 2o
7 

would have to have a 

unit cell at some stage of their tra.nsformations which has 

the same relative dimensions and symmetry as a-cu2P 2o7 . 

It is not possible for either Mg
2

P
2
o

7 
or zn

2
P 2o

7 
to do this 

by adding additional symmetry operators to those of their 

space groups in the a form. Also, because of the large 

changes in bond lengths associated with the first order 

transformations in Mg 2P2o7 and zn2P 2o7 their S structures 

cannot be constructed as averages of the a structures. 

However, the magnitude of the changes in bond length may 

not be as large as that indicated by a comparison of the 

room temperature and S structures since the a forms at the 

transformation temperature are not necessarily identical 

to the room temperature structure. All of the phase 

transformations involve the loss of a c glide plane which 

becomes a mirror plane in the S phase. Also, all of the 

structures isostructural to thortveitite which have been 

refined with anisotropic temperature factors show large 

anisotropic components associated with the central 01 atom 
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of the anion. It appears quite probable then that the 

behaviour of the anion in these compounds is in some ways 

similar to that in 8-Cu2P 2o7 , but it cannot be stated 

whether their structures are disordered or undergo i ng 

extreme anharmonic thermal motion. The anion in 8-Cu2P 2o7 

may also begin to vibrate anharmonically as t h e temperature 

is raised beyond t?e transformation region. The existenc e 

of linear X-0-X groups in x2o
7
-n anions has been ques t ioned 

by Li ebau (1961) . 

The structure of the a-zn2P 2o7 shows 2/3 o f t he 

cations with only five fold coordination. Lazarev, 

Tenisheva and Petrova (1965) investigated the i nfrared 

spectrum of a-zn2P2o7 and proposed that the cations 

were in octahedral environments as opposed t o tetrahedral . 

They apparently did not consider the possibili t y o f the 

fi ve fold coordination. Paoletti and Ciampol i n i ( 1967) 

have recently studied the heat of formation of fi v e 

coordinated complexes of the first transition serie s 

(Mn+2 - Zn+ 2) compared with that of four and six coordin ated 

c ompounds. They find that Zn+ 2 differs from t h e other 

members of the series in that five fold coordin a tion appears 

s light l y more energetically favorable than six coordination . 

Al so the four coordinated (ZnBr4 )- 2 ion has app r oximately 

the same heat of formation as the six coordinated i o n used 

in comparison. All of these results are referred to a zero 

h e at of formation for Mn+ 2 with each coordination number . 

Zi nc is also the only member of the series that i s five 
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coordinated as opposed to six coordinated in the elemental 

solid (Wells, 1962). A preference of zinc for lower 

coordinated sites has been noted in some recent x-ray 

studies of orthophosphates. 

Calvo, 1967a) shows a lower average cation oxygen 
I I 

coordination than . does 8 -Mn 3 (P0 4 ) 2 or 8 -Cd
3

(P04 ) 2 (Stephens 

and Calvo, 1967b) which have similar structures to e-zn3 (P0 4 ) 2 . 

Also in y-zn3 (P0 4 ) 2 (Calvo, 1963) which has octahedrally 

and tetrahedrally coordinated cation sites, the luminescent 

wavelength suggests that Mn+ 2 ions substitute preferentially 

in the octahedral site although the correlation between 

luminescent wavelength and coordination number has been 

questioned by Calvo, Van Nest and Datars (1967). They 

studied the emission of Mn+ 2 in solid solutions in zn 2P 2o
7 

and found no marked change in the emission wavelength through 

the region of the phase transformations discussed earlier. 
I 

The difference in the length of the long M-03 bonds 

from the average length of the shorter equatorial bonds is 

significantly greater in e-cu2P 2o7 than in the other 

isostructures of thortveitite. The lengthening of two trans 

bonds of an octahedrally ligated ion is referred to as a 

tetragonal distortion and is a relatively common occurrence 

in the case of Cu+ 2 cations (Pake, 1962). If the octahedron 

is otherwise regular this phenomenon may be explained by 

the "Jahn-Teller" effect (Ballhausen, 1962). The electronic 

states of an ion must be consistent with the symmetry of 
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its ligands which is taken to be cubic . 

conditions the ground state of 3d9 2o
512 

Under these 

++. 
Cu 1s a degenerate 

e state. A tetragonal distortion of the ligand positions 
g 

removes the degeneracy of the ground state and the new 

ground state will be that of lowest energy arising from the 

former degenerate . ground state. The difference in energy 

between the new ground state and the parent e state will 
g 

depend on the magnitude of the tetragonal distortion. 

The position of the oxygen ligands will ·be altered from 

octah edral symmetry to a point where the difference between 

the energy gained from the removal of the degeneracy and 

the energy required to distort the cubic symmetry of the 

cation sites is a maximum. The symmetry of the Cu+ 2 site 

in either a-cu2P 2o7 or 8-Cu2P 2o7 cannot be described as 

tetragonally distorted from cubic and this analysis cannot 

be applied directly. However, we might speculate that the 
I 

unusual length of the Cu-03 bonds is related to the 

behaviour of the ground state of a Cu+ 2 ion in an octahedral 

environment. Further, the dependence of bond energy on the 

length of the trans Cu-03 bonds may be relatively weak 

for long bond distances. The sum of the lengths of the trans 

bonds in a-cu2P
2
o

7 
is 5.26 A. This is roughly the same as 

the sum of the lengths of the two analagous cation-oxygen 

interatomic separations in a-Mg 2P 2o7 a.nd a-zn
2

P 
2
o

7 
which 

become the two trans bonds of equal length in the 8 forms. 
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As was discussed earlier in Chapter 5 the elongated 

cati on-oxygen bonds in the B phase of all these structures 

may be explained by a comparison with the structure of 

PbSb 2o6 • It would appear that cu2P 2o7 accommodates the 

stress in the a-c direction by allowing one bond to 

increase in length to 2.322 A while the other, presumably much 

weaker, is 2.940 A long. In the other compounds only one 

bond is changed to accommodate the stress and this one is 

increased in length by over 1. 0 A. It is not surprising then 

that the phase transformation in cu2P 2o7 is somewhat unique. 

The justification of the choice of space groups of 

a-cu2P 2o7 and a-zn2P 2o7 have been discussed earlier. It is 

now possible to discuss the choice of the space group of 

8-Cu2P 2o7 . It is unlikely that the two fold axis of the 

a phase would be lost in transforming to the high temperature 

form and therefore the space group Cm is unlikely. Also the 

mechanism postulated for the phase transformation requires 
I 

that the B phase have a mirror plane which is generated 

from the c glide plane. The space group C2/m is the only 

one which is consistent with Landau's criteria for the 

existence of a second order phase transformation. 

The .proposed mechanism of the phase transformation 

involves the motion of the central oxygen atom across the 

barrier of a multi-well potential. We may gain some 

further insight into the nature of the phase transformation 

-n by the following .considerations. If a pyro ion x2o7 with 
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the staggered configuration is viewed down the length of 

the X-X vector, the oxygen atoms appear as a hexagonal 

arrangement about the X atoms. We now wish to consider the 

potential energy required to displace the central 01 atom 

from colinearity with the X-X vector as a function of the 

rotation angle about the X-X vector. This curve will have 

six minima corresponding to the six positions between the 

terminal oxygen atoms as they appear in projection. The 

environment of the anion in the structures of the "small 

cation" pyrocompounds causes two of these minima, which 

correspond to the direction of the ~ axis, to be deeper 

than the others. Further, in the low temperature 

structures of cu2P 2o7 and Mg 2P 2o7 one of these is slightly 

deeper than the other by some amount 6.a-zn2P 2o7 may be 

more complicated because the displacement of the central QL 

atom from colinearity with the P-P vector deviates significantly 

from the b direction. The energy 6 may be considered as 

the ''activation energy" of the transformation. As the 

temperature is raised 6 may decrease slightly and when 

the contribution of the entropy term to the Gibbs free energy 

becomes sufficiently large near 71°C, the central 01 atom 

may cross to the second lowest energy minimum on the other 

side of the c glide plane. It should be understood that 

the motion of the ol atom involves the bending of the 

entire anion since it is bonded to the two tetrahedrally 

coordinated P atoms. The energy 6 must still be finite up to 
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74°c where the Bragg peak disappears. Above this temperature 

neither minimum in the potential energy function is preferred 

and o is small in comparison with the entropy contribution. 

The photographs used ·to study the transformation show 

no hysteresis effects and since the crystal develops some 

long range order as the temperature is lowered, the non-zero 

0 . 0 
value of o between 71 C and 74 C must be a cooperative 

phenomenon and this implies some long range interaction 

between layers. The model of the phase transformation as 

has been presented is based only on the nature of the 

bonding between adjacent layers. The model is, in effect, 

a pseudo-one dimensional Ising model. Tobolsky,Kozak and 

Canter (1965) have discussed in detail the application of 

a one-dimensional Ising model in order to describe a phase 

transformation such as this. 

It is instructive to compare the intensity profile 

of the streaks associated with the phase transformation of 

cu
2

P 2o
7 

with those arising from growth disorder. If each 

layer has the probability a of going into the "wrong" 

position during the growth of a crystal, then the intensity 

profile of the reflections affected by the disorder is 

proportional to a/(a 2 + 1r
2

t;;
2 ) (Wilson, 1949). . This is a 

Lorentzian curve centred about the point l; = 0 which 

corresponds ·to the Bragg peak. In this case the streaks 

blend continuously into the Bragg peak an~ background. 

This is a manifestation of the breakdown of long range order 
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which tends to produce diffuse scattering at small values 

of ~ since such values correspond to long interlayer 

distances in the ·real crystal . This is in marked contrast 

to the diffuse scattering in cu2P 2o7 which remains 

distinct from the Bragg peak at all temperatures. This in 

turn is a manifestation of the loss of short range order 

in cu2P2o7 • 

The pyrophosphates of the alkaline earths Ba, Ca and 

Sr do not assume the thortveitite structure. Mg+ 2 is a 

member of the alkaline earths but it has the thortveitite 

structure, probably because it has a small ionic radius. 

The ionic radius of Cd+2 is larger than tho se of the cations 

belonging to thortveitite family of pyrophosphates and 

Cd2P2o
7 

does not have the thortveitite structure (Au, 1966) 

while Cd
2
v2o

7 
does (Au and Calvo, 1967). 

The radii and radius ratios of M and X in M2x2o7 are given 

in Table 21 for some compounds. The radii of P, As and Si 

are the covalent radii and are taken from Pauling (1960). The 

radius assigned to V is also the covalent radius and is 

taken from Bachmann and Barnes (1962). None of these radii 

are particularly accurate since they were obtained from 

several structural types and involve several assumptions, 

but they do show a definite trend. Except for Ni 2As 2o7 and 

co2As 2o7 , these compounds assume the thortveitite structure 

if the ratio of the radius of M to the radius of X does not exceed 

roughly 0.85. 
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An increase in the cationic radius would decrease 

the magnitude of the perturbation from the idealized 

PbSb 2o6 structure and the explanation for the limiting 

effect of the radius must be found elsewhere. The terminal 

oxygen atoms labelled 03 at one end of an anion are 

each bonded to one X atom and two M atoms whose octahedral 

arrangement of ligands share one edge formed by the 02 

atoms. The maximum separation of the 03. atoms is limited by 

the size of the anion and their minimum separation is 

limited by the minimum separation of the cations. It is 

therefore evident that if the ratio of the radius of M to that 

of X exceeds some value the compound might find it 

energetically more favourable to adopt some other packing 

arrangement such as that of the alkaline earth pyrophosphates 

or cd2P2o
7

. 

Table 22 shows the average P-0-P angles of all the 

pyrophosphate structures wh~ch have been studied to date 

and in which the P-0-P angles are not restricted by 

0 -4 symmetry to be 180 . The P 2o7 groups are bent further 

from the linear configuration in the rare earth pyrophosphate 

Na 4P 2o7 • lOH 2o and in the alkaline earth pyrophosphate 

B-Ca2P 2o7 than in the three "small cation'' pyrophosphates 

whose cations are transition metal ions. This would suggest 

that the Na+ and Ca+ 2 cations which are less electronegative 

than Zn+ 2 , Mg+ 2 or Cu+2 produce more charge delocalization 

which in turn causes the P-0-P angle to deviate further 
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0 from 180 . However the P-0-P angle of Cd 2P 2o7 should be 

similar to that of the transition metal compounds. The 

amount of bending of the P-0-P angle cannot then be 

predicted solely on the basis of charge delocalization and 

presumably such factors as the molecular packing significantly 

-4 influence the character of the P 2o7 group. 
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TABLE 21 

Radius ratios of pyro compounds, M2X207 (see text for 

references) 

M Radius X Radius Ratio 

Mg+2 0.65 p 1.10 0.59 (thortveitite structure) 

Mn+2 0.82 p 1.10 0.75 (thortveitite structure) 

Zn+ 2 0.74 p 1.10 0.67 (thortveitite structure) 

Ni+2 0.68 p 1.10 0.62 (thortveitite structure) 

Cu+2 0.72 p 1.10 0.65 (thortveitite structure) 

Ba+ 2 1.35 p 1.10 1.23 

Ca+ 2 0.99 p 1.10 0.90 

Sr+ 2 1.13 p 1.10 1.03 

Cd+ 2 0.97 p 1.10 0.88 

Cd+ 2 0.97 v 1.20 0.81 (thortveitite structure) 

Zn+ 2 0.74 As 1.21 0.61 (thortveitite structure) 

Mg+2 0.65 As 1.21 0.54 (thortveitite structure) 

Sc +3 0.69 Si 1.17 0.59 (thortveitite structure) 

Co+2 0.72 As 1.21 0.59 

Ni+2 0.68 As 1.21 0.56 



TABLE 22 

P-0-P angles o f some pyrocompounds 

Reference 

Na 4P2o 7 .loH20 (a) 

Cd2P2o7 (b) 

(3-Cu2P2o 7 (c) 

a-Mg 2P 2o7 (d) 

a-zn2P 2o7 

a-cu2P2o 7 

(a) MacArthur and Beevers (1957) 

(b) Au and Calvo (1967) 

(c) Webb (1966) 

(d) Calvo (1967d) 

P-0-P angle 

130° 

128° 

131° 1138° 

144° 

139° 137° 
I I 

150° 

156° 
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Average 

130° 

128° 

134.5° 

144° 

145° 

156° 
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CHAPTER 9: CONCLUSION 

The solid state phase transformations which occur 

in these compounds have been shown to be associated with 

the bent pyrophosphate anion and the c glide plane which 

is generated by this bent anion. 

One half of the cations in the low temperature (a) 

form of Mg 2P2o7 are five coordinated and the other half are 

six coordinated as in the high temperature (S) form. Two

thirds of the cations in the a phase of zn2P 2o7 are five 

coordinated and the remainder are six coordinated. The 

cations in ~he a phase of cu2P 2o7 are bonded to four 

oxygen atoms with normal Cu-0 interatomic separations and 

two other oxygen atoms are 2. 322 A and 2, 940 A from 

each cation. The phosphorus- oxygen distances in the "small 

cation" pyrophosphates which have been discussed 

previously show some variations because of the affects of 

the environment but they are nearly in agreement with the 

predictions of Cruickshank (1961). The phase transformation 

in cu2P 2o7 indicates that the S form is disordered and the 

other high temperature forms, at least of Mg 2P 2o7 and 

zn
2

P
2
o

7
, may be similar. This suggests that the anions 

in t he structures isostructural to thortveitite may only 

appear linear either because of a statistical disordering 

or enhanced thermal motion across a multi well potential. 



-- ---.. .... _ 

180 

The order-disorder phenomenon in cu2P 2o7 is one-dimensional 

and may be described as primarily a loss of short~range 

order although some long-range effects are implied by the 

behaviour of the Bragg peaks. In this respect it is quite un

common since most one-dimensional disorders are related 

to growth defects and therefore are temperature independent. 

The method used to refine the structure of the 

disordered model of 8-Cu2P 2o7 is in essence the refinement 

of a rigid group with one least square variable defining 

the geometry of the group. This method should be applicable 

to any structure in which some of the atoms undergo enhanced 

thermal motion. If the root mean square displacement of an 

atom from its equilibrium position (due to thermal vibration) 

is of the same order of magnitude as the atomic radius, 

its time averaged electron density may be less at its center 

than at the point where it reverses the direction of its 

oscillatory motion. Its elec.tron density distribution is no 

longer ellipsoidal and should not be approximated by an 

anisotropic thermal tensor. 

In the light of the above results, a number of 

interesting questions may now be posed, most of which are, 

in fact , amenable to solution. It has been suggested that 

the structures of the low temperature forms of the "small 

cation" pyrophosphates near the phase transformation might 

be slightly different from their structures at room 

temperature. Also the structure of a-zn2P2o7 as it stands at 
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the moment is not completely satisfactory. It should be 

possible to collect data suitable for these purposes as a 

function of temperature using a diffractometer and a 

variable temperature control device. If the intensity of 

each reflection were measured at a number of temperatures 

while the other experimental variables were held constant, 

the relative errors in the resultant structures should be 

sufficiently small to permit an analysis as to how the 

structure changes as a function of temperature even though 

the absolute errors may be much larger. This information would 

shed more light on the nature of the phase transformations. 

However, it may be necessary to collect data for the 

structure of a-zn2P 2o7 at liquid nitrogen temperatures in 

order to surmount the correlation problems discussed 

previously. 

A similar· experimental arrangement could be used to 

investigate the structure of the intermediate phase of 

zn2P2o7 as a function of temperature. The results of such 

an analysis would be useful, not only to answer questions 

concerning the phase transformation, but to elucidate the 

relationship between the changes in electron density and 

changes in the e.p.r. parameters as measured by Chambers 

et. al. (1964). 

The thortveitite structure and structures similar 

to thortveitite appear to occur quite commonly. It would .be 

of i nterest to . find the extent to which the structure does 
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occur and the limiting factors which determine whether 

or not it is stable, since the radius ratio of M to X in 

M2x2o7 has not proven to be a sufficient limiting condition. 

In particular the structures of co 2As 2o7 and Ni 2As 2o
7 

should be investigated in order to determine, if possible, 

why they do not assume the thortveitite structure since 

their cations have small radii. Also, the resolution of 

t .he structures of the alkaline earth pyrophospha..tes 
1 

_;ln 

particular, that of a-ca 2P 2o7 will help to elucidate 

the nature of a series of phase transformations which are 
. . 

quite different from those found in ~he «small cation" 

pyrophosphates. 

There remain a number of questions concerning the 

phase transitions in the compounds studied here. The 

behaviour of the volume of the unit cell of zn2P 20 7 in 

the transformation region is not known. Also the Cp 

curves of zn2P 2o7 should be studied in detail. The diffuse 

streaks were only observed with crystals obtained from one 

"batch" of cu2P 2o
7 

crystals. It is not unlikely that the 

behaviour of these streaks and the transformation temperature 

is dependent on the method of preparation of the crystals 

and the concentration of impurities in the crystals since 

entropy plays an important role in the transformation. 

Finally the treatment of one dimensional disordering 

mechanisms presented by Tobolsky et.al.(l965) should be 

applied in detail . to the case of cu2P 2o7 • 
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APPENDIX A: GENERALIZED NON-LINEAR LEAST SQUARES ANALYSIS 

Let s. 0 be a set of quantities which may be observed 
]. 

and measured. Let S.c (p) be a member of a set of known 
]. -

functions of the vector n having n components p. in a given 
L . J 

basis. Then if the si0 can be measured accurately and p 

0 c is accurately known, S. = S. (p) exactly for all i. 
]. ]. -

In practice, however, S. 0 will be measured with some error 
]. 

a., but a sufficient number m of the quantities S. 0 can be 
]. ]. 

measured such that the problem is overdetermined; that is 

m>>n. If approximate trial values are known for the 

components of _P and the errors cr. are such that S. 0 is 
]. ]. 

normally distributed, then the best values of the 

components p. are obtained by minimizing the quantity R 
J 

defined in terms 

to be applied to 

of p. + ~p. where ~p. is a small correction 
J J J 

the trial value p .. R is then given by 
J 

m 1 
= ~ --2 

i=l a. 
]. 

We must now find values of ~p such that R(E + ~) < R(£) 

c We may first expand Si (E.+~) that is, 

n 
E) = Sic(p_) + ~ 

j 



184 

=s. 0
- s.c(p) and drop terms of order 

~ ~ -
greater than one in ~p. Then 

m 
R(E_ + ~) = E 

i 

1 

~ 
i 

2 

~p .I 
J 

Now to find a minimum in R we set the variation of R with 

respect t o ~p. for all j equal to zero. If the components p. 
J J 

are i ndependent , we may write 

m 
aR(p + ~ p ) 2 E 

a(~pk) 
= i 

In matrix form this 

where 

and 

c 

~2 I Di (;e_) 

n as i (E) 
':"' E ap. AP ·I J 

i j J 

equation becomes 

B (~p) = A 

m 
= E 

1 
c c 

asi (p_) asi (E) 

i 

m 
= E 

i 

i 
apj apk 

c 
as i (£) 

0 = 
apk 

These are the "normal" equations of the least square 

refinement. In order to find the components of ~P , B-l is 

determined and multiplied into A. New trial parameters are 

obtained by adding ~p to E and the entire procedure may be 

. repeated several times since the expansion is not exact. The 

standar d deviation o. in p. may be estimated from the matrix B-l 
J J 

Tha t is 
-1 

B . . 

0 j = { rr2-?i-

1/2 
m 1 2 
E - 2 Di (E_ + flP)} 

i=l CJ. 
~ 
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The interdependence or "correlation" est between the components 

s and t of £ is given by 

-1/2 

est = B~~ (B~; B~~) 
The last two equations are derived by Hamilton (1964). 

This procedure may be applied to the (i) analysis 

i i of a crystal structure in which case the S and S (n)are 
0 C L 

the magnitudes of the observed and calculated structure 

fac t ors and the components of £ are the configurational 

and thermal parameters defining the structure, or (ii) 

to t he determination of the unit cell parameters in which 

i i case the S
0 

and Sc (E)are the Bragg angles. 

The errors in the magnitude of the observed structure 

factors IF (H) !are usually estimated according to the 
0-

However, it is not known manner in which I (H) is measured. 
0-

1 2 
how certain systematic errors contribute to cr(H) and (cr(H)) 

may be replaced by a weight w(~) which is then evaluated in 
1 2 

one of four ways, one of which is to let w(H) be (cr(H)) . 

Since cr(H)is usually proportional to IF (H) !for most 
0-

refl ections, it may be set as a constant times IF (H) !for all 
0-

refl ections. During the first few cycles of least squares, 

the phases (or signs if the structure is centric) of the 

weaker reflections are not well known and the stronger reflections 

are then the most useful in calculating C!p. If all the w(H) 

are set as unity then these stronger reflections are emphasized 

which may be necessary in order for the refinement to converge; 
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that ·is to insure R(£ + 6£) < R(£) The unknown errors are 

often a function of jF
0

(!!) I • Cruickshank et . al. (1961) 

have proposed that it is possible to account for these 

errors by insuring that the average value of 

2 
w(H)IIF

0
(!!)1- IFc(H)II 

is not a function of IF (H) I· This may be done by fitting 
0 -

a power series to a curve of the average value of 

coefficients of the power series are A, B, C and D then the 

weight is set as 

w -1 (!!_) 
2 

= A + B IF (H) I + c IF (H) I 
0- 0-

3 
+ D IF (H) I 

0-
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APPENDIX B: COMPUTER PROGRAMS 

The following is a list of the major programs used 

in this research. 

1. FOTDIS (Fourier transforms of diffuse streaks; B. 

Robertson) . Used to calculate the a (T) curves from the n 

profile of the diffuse streaks using the equations 

developed in Chapter 6. 

2. DESLID (Debye-Scherrer line identication; B. Robertson) 

Used to identify the powder lines in order to calculate 

the unit cell parameters of a-cu2P 2o7 and a-zn2P 2o
7 

by 

comparison of observed and calculated line position 

and intensity. 

3. DESLS (Debye-Scherrer least squares; B. Robertson) 

Used to find a least square fit of lattice parameters 

to observed Bragg angles with the procedure outlined in 

Appendix A. 

4. DIC (Dead time corrections; B. Robertson) 

Corrects intensities measured with a diffractometer for 

dead time, filter attenuation, background, sweep rate 

and incident beam intensity. 

5. PRELP (Precession "Lp"; A. K. Das and I. D. Brown) 

Applies "Lp" corrections to data obtained with a precession 

camera. 
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6. WEILP (Weissenberg "Lp"; A. K. Das and I. D. Brown) 

Applies "Lp" corrections to data obtained with a 

Weissenberg camera. 

7. SCAB (Spherical and cylindrical absorption; B.Robertson) 

Applies absorption correction to jF (H) jobtained from 
0-

a crystal which is approximated by a sphere or cylinder. 

8. MACFOU (McMaster Fourier; J. s. Rutherford) 

Calculates Patterson functions, generalized Patterson 

functions, Harker sections, electron density projections, 

generalized electron density projections, difference 

synthesis and non-axial projections in two or · thre~ 

dimensions. 

9. MACLS (McMaster least squares; J. S. Stephens) 

Refines crystal structures using the method outlined 

in Appendix A with complex scattering curves and u.sers 

weighting subroutine. 

10. BAT (Bonds, angles and temperature factors; (I.D.Brown) 
'·r , • " 

Calculates bond lengths and directions, corrections for 

thermal effects, interatomic angles and principal axes 

of thermal ellipsoids. 

11. CROOK (Cruickshank weighting curve; B. Robertson) 

Calculates the coefficients A, B, C and D as described 

in Appendix A. 
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