CRYSTALLOGRAPHY AND PHASE TRANSITIONS OF SOME PYROPHOSPHATES

AN INVESTIGATION OF THE CRYSTAL STRUCTURE AND PHASE TRANSFORMATIONS OF Cu AND Zn PYROPHOSPHATE

By BEVERLY ELLIS ROBERTSON, B.Sc., M.Sc.

A Thesis
Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Doctor of Philosophy

McMaster University
October 1967

DOCTOR OF PHILOSOPHY (1967) (Physics)

McMASTER UNIVERSITY Hamilton, Ontario

TITLE: An Investigation of the Crystal Structure and Phase Transformations of Cu and Zn Pyrophosphate .

AUTHOR: Beverly Ellis Robertson, B.Sc. University of New Brunswick
M.Sc. McMaster University

SUPERVISOR: Professor C. Calvo
NUMBER OF PAGES: $\mathrm{x}, 194$
SCOPE AND CONTENTS:
The crystal structures of the high temperature phase of $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ has been refined by the method of least squares. The structure of the low temperature form was refined using both of the allowed space groups and the centric space group $\mathrm{C} 2 / \mathrm{c}$ is preferred. Diffuse streaks which were found to be associated with the phase transformation were analyzed and used to construct a pseudo one dimensional order-disorder model for the mechanism of the phase transformation. Also the lattice parameters of $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ have been measured and the structure has been refined using the non-centric space group Ic.

PREFACE

Some of the results presented here are an extension of the work described earlier in a Master's thesis (1965) and it has therefore been necessary in the interests of clarity to briefly review that work. Further, since this thesis will describe both the determination of crystal structures and the study of related phase transformations, some repetition has been necessary in order to ensure that each section be complete.

I wish to express my most sincere gratitude to Professor C. Calvo for his guidance and assistance over the past five years. I wish to thank the other members of the crystallography group at McMaster for their advice and discussions. In particular the Fortran least squares and Fourier programs prepared by John Stephens and John Rutherford have been most helpful. The experimental results obtained by Dr. Datars and Dr. Stager and their graduate students has been most valuable since they have complemented the study of the phase transformations by x-rays. In addition, I thank Dr. Stager for his assistance with the experimental arrangement shown in Figure 8.

I wish to express my appreciation for the tolerance and assistance given me by the staff of the Computing Center. I also thank Mrs. Barbara Nichols, Mrs. Carolyn Williams
and my wife for their assistance with the preparation of the thesis. Finally I thank my wife for her endurance and moral support over the past nine years.

I wish to acknowledge the receipt of two Ontario Government Fellowships. This research was made possible through grants-in-aid from the National Research Council to Professor C. Calvo.

I would like to thank Mrs.Kennelly for typing this thesis.

TABLE OF CONTENTS

Page

1. INTRODUCTION

A Pyrophosphate Compounds I
B Methods of Crystal Structure Analysis 5
C Previous Structure Determinations 15
D Space Group Ambiguities 19
E The Pyrophosphate Anion 24
2. DETERMINATION OF THE STRUCTURE OF $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$

A Preliminary Investigation 27
B Preparation of Data 30
C Refinement 33
3. DETERMINATION OF THE STRUCTURE OF $B-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$

A Preliminary Investigation 55
B Preparation of Data 56
C Refinement 57
D Disordered Model 59
4. DETERMINATION OF THE STRUCTURE OF $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$

A Preliminary Investigation 70
B Preparation of Data 72
C Refinement 74
D The Correlation Problem 83
5. CRYSTAL CHEMISTRY OF "SMALL CATION"
PYROPHOSPHATES

A Description of Structures 103
B Comparison of Low Temperature Structures 107
6. DIFFUSE STREAKS IN $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$

A Investigation of the Phase Transformation 122
B Measurement of Intensity Profiles 127
C Derivation of the Intensity Profiles 132
D Fourier Transforms of the Intensity Profiles 135
7. PHASE TRANSFORMATION STUDIES

A Theoretical Aspects 144
$\begin{array}{lll}\text { B The Phase Transformations in } \mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}, & 151 \\ \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7} \text { and } \mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7} & \end{array}$
8. DISCUSSION 166
9. CONCLUSION 179
APPENDIX A. Generalized non-linear least 183
squares analysis.

APPENDIX B. Computer Programs 187
BIBLIOGRAPHY 189

LIST OF TABLES

Page

Table 1 Observed and calculated values of $\sin \theta / \lambda$
 39

 for the Debye-Scherrer lines used to determine the lattice parameters of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$Table 2 Refinement data for $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7} \quad 41$
Table 3 Lattice parameters of structures related 43 to that of thortveitite

Table 4 Observed and calculated structure factors 45 for $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$

Table 5 Atomic coordinates of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
Table 6 Molecular Geometry of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
Table 7 Refinement data for $B-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$63

Table 8 Observed and calculated structure factors 65 for $B-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
Table 9 Atomic coordinates of $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$67

Table 10 Molecular geometry of $B-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7} \quad 68$
Table 11 Comparison of disordered model of $\mathrm{B}_{-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}}$69 with the structure of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$

Table 12 Observed and calculated Bragg angles used 86 to determine the lattice parameters of $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
Table 13 Refinement data for $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ 87
Table 14 Observed and calculated structure 88
factors for $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
Table 15 Atomic coordinates of $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ 96
Table 16 Molecular geometry of $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ 99
Table 17 Molecular geometry of the high temperature 112forms of the "small cation" pyrophosphates.
Table 18 Angles subtended at terminal oxygen atoms 113
Table 19 Molecular geometry of $\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ 116
Table 20 Probability that the layers j and $j+n$ are 138identical
Table 21 Radius ratios of pyrocompounds 177
Table 22 P-O-P angles of some pyrocompounds 178

LIST OF ILLUSTRATIONS

Page
Figure 1 Approximate phase diagrams for pure 26alkaline earth pyrophosphates
Figure 2 The filter system designed for use with 54 the manual diffractometer
Figure 3 Cations in $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ in projection down 102 the a axis
Figure 4 The structure of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ 118
Figure 5 The geometry of the pyrophosphate anion in 119
the low temperature forms of the "small cation" pyrophosphates
Figure 6 The structure of $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ in projection 120 perpendicular to the \underline{b} axis and the $P-P$ vector
Figure 7 The structure of $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ in projection 121down the \underline{b} axis
Figure 8 Experimental arrangement used to record 140 the diffuse streaks.
Figure 9 Appearance of the diffuse streaks. 141
Figure 10 Intensity profiles of the diffuse streaks 142
Figure ll Probabilities that the j^{\prime} th and ($\left.j+n\right)^{\prime}$ th 143layers are the same

Figure 12 The specific heat of $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and 163 $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
Figure 13 The crystal structure of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ 164 showing the disordered layers

Figure 14 Comparison of the disordered model of 165 $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ with the crystal structure of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$

CHAPTER 1: INTRODUCTION

(A) Pyrophosphate Compounds

This study is one of a series directed towards obtaining an understanding of the crystal chemistry of those pyrocompounds involving tetrahedrally bonded anion groups. As with silicate systems, phosphates can be classified in terms of the degree of condensation of a fundamental $\mathrm{XO}_{4}^{-\mathrm{n}}$ tetrahedron. In the orthophosphates the PO_{4}^{-3} groups are isolated from each other and are very nearly regular tetrahedra. They are linked together through the sharing of oxygen atoms with metal cations. The pyrophosphate anion $\mathrm{P}_{2} \mathrm{O}_{7}^{-4}$ is formed from two PO_{4}^{-3} tetrahedra by the sharing of one oxygen atom. The metaphosphates can exist as either rings of $\mathrm{PO}_{4}{ }^{-3}$ tetrahedra such as is found in $\mathrm{Na}_{4} \mathrm{P}_{4} \mathrm{O}_{12} .4 \mathrm{H}_{2} \mathrm{O}$ (Anders, Fischer and Gehring, 1949) or as infinite linear chains such as in RbPO_{3} (Corbridge, 1956). Van Wasser (1958) has discussed extensively the chemistry of phosphate systems.

The research reported here has been primarily a complete crystallographic investigation of the phases of a number of similar pyrophosphates. This thesis will describe the determination and refinement of the crystal structures of the three pyrophosphates $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}, \alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and the phase transformation which relates the latter two. These results will be interpreted in the light of several
other parallel investigations which have been recently carried out at this university.

There had been a small number of crystallographic studies of pyrocompounds prior to the present work. Many of these compounds fall into two distinct crystallographic groups. Among the remainder are $\mathrm{ZrP}_{2} \mathrm{O}_{7}, \mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7} \cdot \mathrm{lOH}_{2} \mathrm{O}$ and $\mathrm{Cd}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. Levi and Peyronel (1935) suggested that the $\mathrm{P}_{2} \mathrm{O}_{7}^{-4}$ ion in zirconium pyrophosphate possessed a threefold axis and that the shared oxygen atom and the two phosphoros atoms were colinear. Lazarev (1964c) has noted a phase transformation in this compound at $300^{\circ} \mathrm{C}$ and therefore this systemshould be restudied. The crystal structure of $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7} \cdot \mathrm{lOH}_{2} \mathrm{O}$ was originally investigated by MacArthur and Beevers (1957) and recently refined by McDonald and Cruickshank (1967). These latter results indicate that in this monoclinic compound the $\mathrm{P}-\mathrm{O}-\mathrm{P}$ groups are bent to an angle of 130° and the anion possesses a twofold axis. Similarly, in $\mathrm{Cd}_{2} \mathrm{P}_{2} \mathrm{O}_{7}(\mathrm{Au}, \mathrm{l} 966)$ where the crystals are triclinic the $P-O-P$ group is bent to an angle of 128°. In detail, the structures of these three compounds are quite dissimilar as can be anticipated from the large amount of water that is accommodated in $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7} \cdot \mathrm{lOH}_{2} \mathrm{O}$ together with the different number of cations in each formula unit.

Almost all of the divalent metal ion pyrophosphates that have been studied in the solid state fall into two distinct families, with both families exhibiting interesting polymorphic behaviour. The members of one group, which is characterized by
relatively large cationic radii, are the "alkaline earth pyrophosphates", consisting of $\mathrm{Ba}_{2} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{Sr}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. Ranby, Mash and Henderson (1955) studied their phase transformations by noting changes in the luminiscent wavelengths and intensity of the emission spectra of Mn^{+2} in solid solutions formed from these alkaline earth pyrophosphates. X-ray powder patterns indicated that some of these changes corresponded to solid state phase transformations. In Figure 1 the phase relations and transformation temperatures of Ranby et al. are summarized. $\mathrm{B}-\mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Corbridge, 1957) and $\beta-\mathrm{Sr}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Hoffmann and Mooney, 1960) have isomorphic structures and the structure of $\beta-\mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is now known.

The crystal structure of $\beta-\mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ has recently been reported by Webb (1966). He finds two crystallographically independent anions with $\mathrm{P}-0-\mathrm{P}$ angles of 131° and 138°. Furthermore the anions are in almost eclipsed configurations; that is, the terminal oxygen atoms overlap when the anion is viewed down the length of the $P-P$ vector. In contrast, in $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7} \cdot \mathrm{lOH}_{2} \mathrm{O}$ the pyrophosphate ions are in the staggered configuration; that is, the terminal oxygen atoms do not overlap when the anion is viewed down the $P-P$ vector. Single crystals of $\alpha-\mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ have been prepared by Hoffmann and its crystal structure is under study here (Calvo, 1967a). At the present time, very little is known of the crystalline character of the δ phase of $\mathrm{Ba}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$.

The family of pyrophosphates which particularly concern us involve cations with radii less than 1.0 A. The pyrophosphates
which have been shown to fall into this category are those of Mg（玉ukaszewicz，1961），Mn（玉ukaszewicz and Smajkiewicz，1961）， Zn（Calvo，1965b）Cu（玉ukaszewicz and Nagler，1961），Co and Ni（Sarver，1966）．Each member of this group has a high temperature form isostructural to the mineral thortveitite， $(\mathrm{Sc}, \mathrm{Y}){ }_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ ．Recently，Cruickshank，Lynton and Barclay（1962） have refined the structure of this compound and in addition they addressed the problem of the space group ambiguity which seems indigenous to most of the＂small cation＂pyrocompounds． They chose the space group $C 2 / \mathrm{m}$ ，as had Zachariasen（1930）in an earlier investigation．In this space group，the central oxygen atom of the $\mathrm{Si}_{2} \mathrm{O}_{7}^{-6}$ group appears to lie on a center of symmetry and thus the Si－O－Si angle must be 180° ．The anion is also forced to have the staggered configuration．The cations have an irregular octahedral environment．These irregular octahedra share edges to form a pseudo－hexagonal network extending in the（001）plane．Only two－thirds of the hexagonal holes，formed by a double layer of close＝packed oxygen atoms， are occupied by cations．Adjacent sheets of these octahedra are joined by sharing oxygen atoms with the pyrosilicate ions． The structure may be described alternatively by a set of layers of separation $\underline{a} / 2(\sim 3.3 \mathrm{~A})$ and which contain the unit cell vectors \underline{b} and $\underset{c}{ }$ ．The layers contain pairs of cation octahedra which share one edge．The two remaining shared edges join adjacent layers．These cation pairs are linked together in the layer by the $\mathrm{Si}_{2} \mathrm{O}_{7}^{-6}$ anions．The shared oxygen atom of the pyro ion has been labelled the＂Ol＂atom．One
of the terminal oxygen atoms at each end of the ion lies in a mirror plane as do the Si atoms. These oxygen atoms are labelled the "O2" atoms and are the oxygen atoms involved in the shared edge. The remaining four oxygen atoms which are related in pairs by that mirror plane are labelled the "O3" atoms. Two cation pairs are connected in the \underline{b} direction by the two 03 atoms at one end of an anion. This pattern is repeated since the central oxygen atom, Ol, lies at a center of symmetry. The layers are joined to one another by additional cation-oxygen bonds.

This description of the structure is entirely applicable to the high temperature forms of all the "small cation" pyrophosphates since they are isostructural to thortveitite. Systems isostructural with thortveitite occur commonly. Lazarev (1961 a and b, 1962) has studied extensively the infrared absorption spectrum of pyrocompounds of interest here. He has inferred that $\mathrm{SC}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}, \mathrm{Er}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ and $\mathrm{Y}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ are similar to the mineral thortveitite which is a Sc rich solid solution of Sc and Y pyrosilicate. The pyroarsenates of Zn and Mg have been shown to be isostructural to thortveitite (Calvo and Neelakantan, 1967; 玉ukaszewicz, 1963) although those of Co and Ni are not (Taylor and Heyding, 1958). In addition the pyrovanadate of Cd (Au and Calvo, 1967) and the pyrogermanate of Sc (Goldschmidt 1931) show the thortveitite structure.
(B) Methods of Crystal Structure Analysis

It is not the purpose of this thesis to present a summary of crystallographic methods. It will be necessary,however, to describe the manner in which the present crystal structures were determined and thus a certain amount of the nomenclature must be defined. For this reason a brief survey of the standard methods, equations and terminology used in crystal structure analysis will be presented.

A crystal may be defined as an array of atoms whose time averaged positions can be described by the operation in three-dimensional space of translational symmetry on an array consisting of a finite number of atoms. If a parallel beam of x-rays is incident upon such a crystal it will interact with the constituent electrons and will exit coherently from the crystal only in well defined directions. If \underline{k} ' and \underline{k} are the wave vectors of the incident and scattered or "diffracted" beams of x-rays respectively, then $\underline{K}=\underline{k}-\underline{k}^{\prime}$ may be used to define the conditions under which diffraction will occur. If a, \underline{b} and \underline{c} are the vectors describing the edges of the repetitive unit or "unit cell" of the translationally symmetric array, then the following relations must be satisfied.

$$
\begin{aligned}
& \underline{\mathrm{a}} \cdot \underline{\mathrm{~K}}=2 \pi \mathrm{~h} \\
& \underline{\mathrm{~b}} \cdot \underline{\mathrm{~K}}=2 \pi \mathrm{k} \\
& \underline{\mathrm{c}} \cdot \underline{\mathrm{~K}}=2 \pi \ell
\end{aligned}
$$

These are the Laue equations (James, 1962). The vector \underline{K} is further limited by the requirement that the sum of the squares of its direction cosines relative to the cell edges be a constant. The only values of the indices h, k and ℓ which are compatible
with these four conditions are integral values.
It is possible to represent the solutions of the
Lave equations as points in a three dimensional space which also has translational symmetry. The basis vectors $\underline{a}^{*} \underline{b}^{*}$ and \underline{c}^{*} of this space, called reciprocal space, are defined by;

$$
\underline{a}^{*}=\frac{\underline{b} \times \underline{c}}{V} ; \underline{b}^{*}=\frac{\underline{c} x \underline{a}}{V} ; \underline{c}^{*}=\frac{\underline{a} \times \underline{b}}{V}
$$

where V is the volume of a unit cell defined by $V=\underline{a} \cdot \underline{b} \underline{c}$. Each point in the reciprocal space is related to the direction of one of the diffracted x-ray beams. The Laue equations may be reduced to the familiar Bragg equation in terms of the distance H from the origin of reciprocal space to the point defined by the indices h, k and ℓ; that is

$$
H=\frac{2 \sin \theta(H)}{\lambda}
$$

where λ is the wavelength of the x-rays used and $\theta(H)$ is the Bragg angle depending on the magnitude of the vector \underline{H} and $\underline{H}=h \underline{a}^{*}+k \underline{b}^{*}+1 \underline{c}^{*}$. It is sometimes advantageous, particularly to elucidate some symmetry operation, to define a unit cell which is not the smallest repetitive unit of the atomic array. The indices which relate to the larger unit cell will then not be able to assume all possible integers and, as a result, certain types of systematic extinctions will occur. Other types of systematic extinctions arise from symmetry operators involving a translation of some fraction of the unit cell edges.

```
+}\mathrm{ note: H = |H
```

The symmetry of the intensity distribution of the diffracted x-rays constitutes the Laue symmetry which, together with the systematic extinctions, may or may not unambiguously define the space group of the unit cell. The intensity of the x-rays diffracted into each beam is determined by the arrangement of atoms in the unit cell. The observed intensity $I(\underline{H})$ of the reflection \underline{H} is, however, dependent on a number of additional parameters. I(H) may be written;

$$
I(\underline{H})=C(L p) A|F(\underline{H})|^{2}
$$

Each of the factors on the right hand side of the equation will be discussed separately.
C is an experimental constant which is dependent on the volume and density of the crystal which is being irradiated, the intensity of the incident beam, the scattering power of an individual electron, and the effeciency with which we can detect the diffracted x-rays. $I(\underline{H})$ is also dependent on the orientation of the incident and diffracted beam relative to the axis of rotation and the manner in which the crystal is swept through the position corresponding to the diffraction conditions. This geometrical dependence of the observed intensity is called the "Lorentz" factor and denoted "L". I(H) also depends on the angle " 2θ " between the incident and diffracted beams because the former contains x-rays randomly polarized in all planes perpendicular to their direction of propagation. This dependence is described by the polarization
factor "p" where $p=\frac{1+\cos ^{2} 2 \theta}{2}$. The Lorentz and polarization effects are usually combined and denoted the "Lp" factor.

As an x-ray beam passes through the crystal, its intensity is depleted because of interactions with the electrons in the crystals. The number of photons lost to the beam, per unit length of the crystal traversed, will be proportional to the number of photons in the beam. This fact gives directly the functional dependence of the beam intensity $I(x)$ on the distance x, travelled by the beam in the crystal, in terms of the absorption per unit distance " μ " and the initial intensity I_{o}. That is

$$
I(x)=I_{o} \exp (-\mu x)
$$

" μ " is normally calculated from the mass absorption coefficients as listed in the International Tables for Crystallography Vol. III (1962) and the density of each constituent atomic species in the crystal. For each reflection, the factor $e^{-\mu \mathrm{x}}$ should be integrated over all paths followed by x-rays in the crystal. This is often a difficult task since the exact geometry of the crystal used is not usually known and difficult to determine for a crystal having dimensions of the order of 0.1 mm . The intensity of the x-ray beam may be depleted by another phenomenon similar to absorption. An actual crystal may be thought of, at least for theoretical purposes, as a conglomeration of domains, each being a perfect crystal nearly
aligned with all other domains. If the volume of a domain is relatively large, the energy of the incident or "primary" beam is depleted by the energy lost into the diffracted beam and the intensity of the primary beam is not uniform over the entire domain. This phenomenon is known as primary extinction. If the average domain volume is made relatively small, the probability increases that the x-rays diffracted from one domain will encounter another domain oriented so as to diffract them back into the main beam. The diffracted or "secondary" beam is then depleted and this phenomenon is known as secondary extinction. The magnitude of the errors caused by primary and secondary extinction are sufficiently small in the case of x-rays that it is usually not necessary to make corrections, although a few very strong reflections may sometimes be affected by them.

The term in the expression for $I(\underline{H})$ which is

sensitive to the details of the atomic arrangement is $|F(\underline{H})|^{2}$ which may be written as a function of the positions of the atoms of one unit cell. Most of the scattering processes take place in the core of the atoms where the electronic density is highest. These cores are approximately spherically symmetric and have approximate Gaussian cross sections. X-rays scattered from different volume increments in an atomic core will not necessarily be in phase with those from other volume increments. The intensity of scattering from one atom is therefore dependent on the scattering angle and the wavelength
of the scattered x-rays and may, in fact, be calculated as a function f of $H . f(H)$ is called the atomic scattering factor. Each atom may then be described by a mathematical point with variable scattering power $f(H)$ which in fact is the Fourier transform of its electron density. The phase of the scattering from one atom relative to an arbitrary origin may be defined by the term $\exp (-2 \pi i \underline{H} \cdot \underline{r})$ where \underline{r} is the vector from the origin of the unit cell to the atom. The calculated structure factor $\mathrm{F}_{\mathrm{C}}(\underline{H})$ may then be written;

$$
F_{C}(\underline{H})=\sum_{j=1}^{n} f_{j}(H) \exp \left(-2 \pi i \underline{H} \cdot \underline{r}_{j}\right)
$$

where the sum is over all n atoms in the unit cell. If the structure contains a center of symmetry the imaginary components of $\mathrm{F}_{\mathrm{C}}(\underline{H})$ cancel.

Since the tabulated f_{j} are for atoms at rest, the expression must be further modified to account for the effects of thermal vibration. If the second order tensor ${\underset{=}{j}}$ describes the anisotropicmotion of the j'th atom, then the contribution of this atom to $\mathrm{F}_{\mathrm{C}}(\underline{H})$ is multiplied by $\exp \left(2 \mathbb{r}^{2} \underline{H} \cdot \underline{U} \underset{j}{ } \cdot \underline{H}\right)$. The square root of the component $U_{i i}$ of $\underline{\underline{U}}$ gives directly the average root mean square displacement of an atom in the direction i. Often the atoms are assumed to undergo isotropic motion which is described by the single parameter B_{j} and is usually called the Debye-Waller factor. In general, it is necessary to determine the six independent components of the tensor ${\underset{\sim}{u}}_{j}$ and the three components of \underline{r}_{j} for all
crystallographically independent atoms in the unit cell; that is, all atoms not related by symmetry. The portion of the unit cell that contains only atoms unrelated by symmetry operators is called the asymmetric unit.

Because of the form of the structure factor, it may be considered as the Fourier transform of the electron density, as defined by the vectors \underline{r}_{j}. Then the appropriate Fourier transform of the observed structure factors, $F_{o}(H)$ should give the electron density in the unit cell; that is,

$$
\rho(r)=\frac{l}{V} \sum_{\underline{H}} F_{O}(\underline{H}) \exp (2 \pi i \underline{H} \cdot \underline{r})
$$

where the sum is over all reflections \underline{H}. We may determine $\left|F_{o}(\underline{H})\right|$ from the observed intensity $I_{o}(\underline{H})$.
$I_{0}(\underline{H})$ may be recorded with a Geiger-Müller tube or scintillation counter. Each reflection will also produce a darkened area when it is incident on a photographic film. $I_{o}(\underline{H})$ is then proportional to the darkening of the spot on the film produced by the reflection \underline{H}. One normally records on a film only those reflections belonging to a plane in reciprocal space. These planes are referred to as layer lines. It is often convenient to choose layer lines with the property that one of the indices h, k and ℓ is constant throughout and if this index has the value n, then the layer line is called the n'th layer line. Layer lines containing the origin of reciprocal space are called zones.

In general $\mathrm{F}_{\mathrm{O}}(\underline{H})$ is a complex quantity and we cannot
measure its phase. We do not then have sufficient information to calculate $\rho(\underline{r})$ directly. In some cases, if the structure contains a center of symmetry, probable values of the phases of the reflections may be inferred directly from the distribution of the magnitudes of $\left|F_{o}(\underline{H})\right|$ (Wooster, 1961) but these methods have not been used here. An alternative procedure is to use the Patterson function (Buerger, 1960); that is,

$$
P(\underline{s})=\frac{1}{\bar{V}} \underset{\underline{H}}{\sum}\left|F_{o}(\underline{H})\right|^{2} \cos (2 \pi \underline{H} \cdot \underline{s})
$$

\underline{s} defines a vector space and P is large only when \underline{s} corresponds to an interatomic vector in the real unit cell and further, when this condition is satisfied $P(\underline{s})$ is proportional to the product of the electron densities of the two atoms defining the interatomic vector.

P(́) may be calculated directly from the experimental data since it uses only $\left|F_{o}(\underline{H})\right|^{2}$. We must next find a set of atomic coordinates consistent with $P(\underline{s})$. The solution to this problem is not always unique. Also $P(\underline{s})$ is usually poorly resolved and we can only find the positions of the heavier atoms. The approximate phases (or "signs" if the structure is centric) calculated for $\mathrm{F}_{\mathrm{C}}(\underline{H})$ from the heavier atom positions may be assigned to $\mathrm{F}_{\mathrm{O}}(\underline{H})$ in order to calculate $\rho(\underline{r})$. Then the positions of the lighter atoms may hopefully be found.

In order to obtain improved or "refined" atomic coordinates we may substitute $\mathrm{F}_{\mathrm{O}}(\underline{\mathrm{H}})-\mathrm{F}_{\mathrm{C}}(\underline{\mathrm{H}})$ for $\mathrm{F}_{\mathrm{O}}(\underline{H})$ in the
equation for $\rho(\underline{r})$ to obtain a difference Fourier synthesis. Atoms are then shifted from areas where the difference synthesis is negative towards areas where it is positive. The advent of fast electronic digital computers in the past few years has made possible refinement by least squares methods. This procedure calculates small adjustments to the parameters describing the crystal structure which will minimize the quantity R_{2} defined by

$$
R_{2}^{2}=\frac{\sum \underline{H} \omega(\underline{H})| | F_{O}(\underline{H})\left|-\left|F_{C}(\underline{H})\right|\right|^{2}}{\sum \underline{H} \omega(\underline{H})\left|F_{O}(\underline{H})\right|^{2}}
$$

where $\omega(\underline{H})$ is a weight assigned to the reflection \underline{H}. Some methods of assigning $\omega(\underline{H})$ are described in Appendix $A . \quad R_{2}$ is the "normalized residue" of the least squares analysis. It is also referred to in the literature as the "weighted R factor". In the past it has been more convenient to use the "R factor" or "unweighted R factor" or "agreement index", R_{1}, to indicate the quality of agreement between $F_{o}(\underline{H})$ and $\mathrm{F}_{\mathrm{C}}(\underline{\mathrm{H}}) . \quad \mathrm{R}_{1}$ is defined by

$$
R_{1}=\frac{\sum \frac{\sum| | F_{O}(\underline{H})\left|-\left|F_{C}(\underline{H})\right|\right|}{\underline{\underline{H}}\left|F_{O}(\underline{H})\right|}}{\underline{\underline{H}} \mid}
$$

If we assume a "normal" distribution of error in $F_{0}(\underline{H})$, we should minimize R_{2} to obtain the optimum model for the crystal structure. (Hamilton, 1964). The method of least squares is discussed further in Appendix A.
(C) Previous Structure Determinations

The first investigation of $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ pertinent to this study was that of Roy, Middleswarth and Hummel (1948). They determined the differential thermal analysis (D.T.A.) curves, the thermal expansion parameters and the Debye-Scherrer patterns of $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ as a function of temperature and they concluded that there was a transformation to a high temperature phase at $68^{\circ} \pm 2^{\circ} \mathrm{C}$. In the present nomenclature this form is called the β phase. Eukaszewicz (1961) reported a preliminary structure analysis of the high temperature phase at $80^{\circ} \mathrm{C}$ which confirmed that $\mathrm{B-Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is an isostructure of thortveitite. However, better resolution was required. Further refinement of this structure was carried out by Calvo (1965c) in order to elucidate the chemical nature of the pyrophosphate ion and to gain some insight into the nature of the phase transformation. The $P-O$ bond distances were in better agreement with the predicted nature of the $\mathrm{P}_{2} \mathrm{O}_{7}{ }^{-4}$ ion. Also, the central O_{1} atom appeared to have a large component of thermal vibration along the \underline{b} direction.

The structure of the room temperature magnesium pyrophosphate, that is $\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, has also been reported by 玉ukaszewicz (1966). A more complete investigation of $\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ has been carried out by Calvo (1967d). The differences between the atomic coordinates determined by these workers are in most cases less than the combined errors as reported for the two structure determinations. Here the
length of the \underline{a} and \underline{c} axes are roughly double those of $\beta-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, and the space group is $\mathrm{B} 2{ }_{1} / \mathrm{C}$. This non-standard space group was chosen to facilitate a comparison of this crystal structure with that of the high temperature form. The structures are similar but the α form contains two independent Mg^{+2} cations, one with octahędral coordination as in $\beta-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ but the other with only five ligands. The structure of $\mathrm{Mn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ has been reported by玉ukaszewicz and Nagler (1961). They used 72 observed structure factors and obtained an R factor of approximately 0.18 . The structure is similar to that of thortveitite but the $\mathrm{P}-\mathrm{O}$ bond distances are unrealistic. The two symmetry independent terminal P-O distances were 1.74 and 1.60 A . The longest possible P-O distances would have a bond order of "one" and this corresponds to a bond length of 1.71 A (Cruickshank, 1961).

A study of this crystal structure is now in progress at this University for the purpose of obtaining better resolution (Calvo, 1967b). No crystallographic evidence of a phase transformation has been observed for this crystal. Also Lazarev (1962) has observed the infrared absorption at various temperatures down to $-150^{\circ} \mathrm{C}$ and has found no major changes in the spectrum.

Sarver (1966) has investigated the D.T.A. curves of $\mathrm{Ni}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{Co}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and he observed rapidly reversible phase transformations at $575 \pm 5^{\circ} \mathrm{C}$ and $304 \pm 5^{\circ} \mathrm{C}$ respectively. He examined the lower temperature phase of each compound by
powder diffractometry and concluded that their structures were similar to that of $\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. The structure of $\alpha-\mathrm{Ni}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ was reported by mukaszewicz (1966) and it is indeed almost identical to that of $\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. Any discrepancies are probably not significant since relatively small amounts of data were used. Preliminary results on the structure of $\alpha-\mathrm{Co}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, which is under investigation at this laboratory,indicate that its structure is also very similar to that of $\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Calvo, 1967c). The first crystallographic study of $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ was reported by 玉ukaszewicz and Nagler (1961). They found at room temperature the Laue symmetry and extinctions were consistent with either of the space groups $\mathrm{C} 2 / \mathrm{c}$ or Cc. The unit cell dimensions were similar to those of the other pyrophosphates although the \underline{c} axis was approximately double that
 a high temperature form although Roy et.al.had mentioned some evidence of a phase transformation from D.T.A. results. A phase transformation has since been found (Robertson, 1965) near $70^{\circ} \mathrm{C}$ by x-ray methods. The crystal structure of the high temperature form, $B-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and the room temperature form, $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ were also studied with x-rays. The β form is isomorphic to $\mathrm{B}-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. This thesis will describe more accurate refinements of these structures which were necessary in order to draw conclusions about the nature of the phase transformation.

A phase transition was first reported in $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ by Katnack and Hummel (1955). They found an endothermic peak in their D.T.A. results centred at $132^{\circ} \mathrm{C}$. The electron paramagnetic resonance (e.p.r.) results of Chambers, Datars ana Caivo (1964) on Mn^{+2} in $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ indicates an additional phase transition, probably of second order, extending from $132^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$. The structure of $\mathrm{\beta}-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ has been resolved above $155^{\circ} \mathrm{C}$ by Calvo (1965b) and was found to be isomorphic to the other high temperature forms in this series. The lattice parameters of the low temperature form, $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ have been reported by DeWolff (1958). If an I centred unit cell is chosen, the length of the a axes will be roughly three times that of the β phase and, as in all the other α phases of the series, the c axis is roughly double that of the conjugate B phase. The structure exhibits the characteristic c glide plane and the space group must be one of Ic or $I 2 / c$. The elucidation of the manner in which a pseudo-symmetric structure such as this deviates from the higher symmetry is definitely a nontrivial problem.
(D) Space Group Ambiguities

The symmetry of the pattern of diffracted x-rays permits one to determine the Laue class to which the crystal belongs. The information regarding the actual space group resides in the intensity distribution. Some components of the space group symmetry, but generally not all, can be determined from the class of those reflections having rigorously zero intensity. This class is said to be systematically extinct. Unfortunately, two or more space groups are sometimes consistent with the Laue class and the systematic extinctions.

In some cases one answers the question of the space group ambiguity by refining the structure in the lower symmetry space group (or space groups) and noting whether the final atomic positions found are consistent, within the estimated standard deviations (e.s.d.'s), with the higher symmetry space group. This method has been notably unsuccessful in the case of thortveitite and the pyrophosphates considered here. One reason for this is that the e.s.d's of the atomic coordinates obtained in the non-central space groups are probably unrealistically low because of the high degree of pseudosymmetry. Atomic coordinates which would be related by symmetry in the β phase are strongly interdependent and the e.s.d.'s given by the statistics of the least squares treatment are probably smaller than the actual errors. Beyond this, the question of the proper
criteria for an adequate trial structure in the lower symmetry space group is not clear.

The Laue symmetry and systematic extinctions of thortveitite and all the β forms of the pyrophosphates (including $\mathrm{Mn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$) allows the space group to be one of $\mathrm{Cm}, \mathrm{C} 2$ or $\mathrm{C} 2 / \mathrm{m}$. Cruickshank et.al. refined the structure of thortveitite in all three space groups but the atomic coordinates obtained in both of the non-centric cases were significantly different from those obtained in the centric space group $\mathrm{C} 2 / \mathrm{m}$. However, they noted that those bond lengths that should be chemically equivalent were significantly dissimilar. Any differences in these bond lengths could be caused only by the environment of the anion and therefore should be small since the two halves of the anion see nearly identical environments. For this reason, they rejected the non-centric space groups and chose $\mathrm{c} 2 / \mathrm{m}$ as the proper space group of thortveitite.

In any least square refinement of a set of data the discrepancy can be reduced by increasing the number of adjustable parameters. For this reason, the agreement between observed structure factors and calculated structure factors should be improved when additional parameters, permitted by a reduction in symmetry, are introduced. If the lower symmetry space group is the correct one, the improvement should be significant, and further, the deviations of the parameters from their high symmetry values should be
significant. The relation between the degree of improvement and the probability that the additional parameters are proper variables can be discussed quantitatively (Hamilton, 1965). The ratio of the agreement factor R_{2} obtained before the extra variables are added to the refinement, to R_{2} obtained with the inclusion of the extra variables is compared with an analysis-of-variance ratio corresponding to some significance level. If the ratio is greater, the extra variables can be said to be valid at that significance level. Hamilton used thortveitite as an example of the application of his significance tables and concluded that the extra variables needed to define the structure in the space groups Cm or C 2 did not provide a better model at the 25% level of significance.

The symmetry of a crystal is reflected in its physical properties including the structure. Paramagnetic ions in a crystal are subjected to internal fields and therefore the splitting of energy levels depends not only on the strength of an external field, but on internal ones as well. In an electron paramagnetic resonance (e.p.r.) experiment, electromagnetic radiation corresponding to microwave frequencies is absorbed in the process of exciting transitions in the paramagnetic ions corresponding to changes in the effective spin quantum number S_{z}. If two paramagnetic ions are in crystallographically independent sites they will not be subject to identical internal fields and thus their e.p.r.
absorption spectra will also not be identical. Since the energy levels are in general nonisotropic, the tensorial properties of $\underline{\underline{g}}$ which defines the relation between the magnetic moment $\underline{\mu}$ and the spin vector $\underline{S}(\underline{\mu}=\beta \underline{\underline{g}} \cdot \underline{S})$ may also be determined. Using e.p.r. techniques, it is often possible to determine the maximum point group symmetry at the paramagnetic ion and, second, the number of signals, that is sites, in the crystal that are not equivalent.

This technique has been applied to Cu^{+2} and Mn^{+2} doped $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Chambers, Datars and Calvo, 1964), Mn^{+2} doped $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Calvo, Leung and Datars, 1967), and to thortveitite (Datars and Calvo, 1967) which occurs naturally with both Fe^{+3} and Mn^{+2} impurities. In all cases the spectra are consistent only with the $C 2 / m$ space group, but as yet the sensitivity of the method has not been investigated theoretically.
$\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{Mn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ are themselves paramagnetic materials and the e.p.r. method is not applicable. The technique of anomalous dispersion has been used to determine the space group of $\mathrm{Mn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. If the energy of the incident x-rays is near the energy required to excite the electrons of one of the atomic species, then the phase change upon scattering can differ from the normal 180° and if the crystal is non-centrosymmetric, the scattering from planes defined by \underline{H} will no longer be the same as the scattering from planes defined by $-\underline{H}$. No systematic differences between such
reflections could be seen in $\mathrm{Mn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ with CoK α radiation (Calvo, l967b) which implies that the space group is $\mathrm{C} 2 / \mathrm{m}$. It should be mentioned here that this technique and the method ofe.p.r. measures the symmetry of the paramagnetic impurity which is assumed identical to that of the cations and only indirectly infers the symmetry of the other atomic species in the crystal.
(E) The Pyrophosphate Anion

Cruickshank (1961) has discussed the nature of the bonding about a tetrahedrally coordinated X atom where X can equal Si, $S, C l$ or P atoms. In an isolated tetrahedron four o bonds to four oxygen atoms, for example, are constructed from the hybridized sp^{3} orbitals of the x atom. The two π bonding systems are formed from the $d \gamma$ orbitals of the central atom and the oxygen $2 p \pi$ orbitals. A o lone pair is left at the back of each oxygen atom, which may be used to bond with other atoms. If we now join two tetrahedra by the sharing of one oxygen atom to form a pyrogroup, the degree of π bonding becomes dependent on the hybridization of the central oxygen atom. If the angle subtended at the central 01 atom of the anion by the two X atoms is the tetrahedral angle of $109^{\circ} 25^{\prime}$, the Ol atom would be $s p^{3}$ hybridized and unable to sufficiently overlap with the 3 d orbitals of the X atom to support any significant π bonding. If the shared oxygen atom is sp^{2} hybridized, the subtended angle becomes 120° and one of the two π bonding systems in each tetrahedra is joined across the atom. When the subtended angle is 180°, the central oxygen atom is sp hybridized and both π bonding systems are joined. As the amount of π bonding to the shared oxygen atom increases, its bond distances to the X atoms are decreased and the bond lengths to the terminal oxygen atoms are increased.

Upon assuming a linear bond distance versus bond
length relationship together with $a \operatorname{bond}$ order of one half
for an isolated PO_{4}^{-3} tetrahedron and Shoemaker and Stephenson's (1941) calculated single bond length, Cruickshank has predicted bond lengths from valence bond theory for the $\mathrm{P}-\mathrm{O}(-\mathrm{P})$ and terminal $\mathrm{P}-\mathrm{O}$ bonds for each of these hybridization schemes. He obtains 1.64 A and 1.51 A for the $\mathrm{P}-\mathrm{O}(-\mathrm{P})$ and $\mathrm{P}-\mathrm{O}$ bond lengths respectively when the $\mathrm{P}-\mathrm{O}-\mathrm{P}$ angle is 120° and 1.58 A and 1.53 A when the $\mathrm{P}-0-\mathrm{P}$ angle is 180°. These considerations necessarily neglect the effect of the environment. The group of pyrophoshpates under consideration here permit an observation of the manner in which the cations perturb the $\mathrm{P}_{2} \mathrm{O}_{7}^{-4}$ group. In particular, electrons from the anion may be attracted by the positive cation which would cause the bond lengths between the atoms in the anion to increase, and the $\mathrm{P}-\mathrm{O}-\mathrm{P}$ angle to deviate further from 180°.

Approximate phase diagram for pure (Alkaline earth) pyrophosphates
(From Ranby, Mash and Henderson, 1955)

Figure 1

CHAPTER 2: DETERMINATION OF THE STRUCTURE OF $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$

(A) Preliminary Investigations

The first crystallographic investigation of $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ was reported by 玉ukaszewicz andNagler (1961). They examined its powder pattern at room temperature and concluded that the structure must be similar to thortveitite. The unit cell volume was about twice that found for thortveitite (Cruickshank, Lynton and Barclay (1962)) with similar lattice parameters except for a doubled \underline{c} axis.

The systematically extinct reflections, that is, those with $\mathrm{h}+\mathrm{k}$ odd in addition to those with $\mathrm{k}=0$ and ℓ odd, indicate that the space group is either C2/c or Cc. Roy, Middleswarth and Hummel (1948) had examined $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ by D.T.A. and reported some evidence for a phase transformation but gave no further information.

Since $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (五ukaszewicz, 1961) and $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Calvo, 1965b) undergo phase transformations above room temperature to a form isostructural to thortveitite, it was decided that $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ should be investigated for evidence of a high temperature (β) polymorph. A phase transformation was found at about $70^{\circ} \mathrm{C}$ (Robertson, 1965) by x-ray examination. In this transformation the c axis halves by the disappearance of the reflections with ℓ odd and the space group is transformed to one of $\mathrm{C} 2, \mathrm{Cm}$ or $\mathrm{C} 2 / \mathrm{m}$.

The structure of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ had been partially refined (Robertson, 1965). In the present work, this refinement is completed. Additional datahave been recorded with an accuracy sufficient for a resolution of the space group anomaly in the α phase and as a result, the geometry for the $\mathrm{P}_{2} \mathrm{O}_{7}^{-4}$ anion is in better agreement with predictions basca on chemical considerations. Iukaszewicz (1966) has also recently refined the structure of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. using 230 reflections of the hk0, h0l and hll type. He has obtained substantially the same structure as reported here but with much larger errors in the atomic positions. Also, he did not consider the problem of the space group ambiguity.

The crystals used here were prepared by the reaction of a slight excess of an aqueous solution of $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ with an aqueous solution of CuSO_{4}. The precipitate was filtered, washed and dried. The sample was then heated to $1200^{\circ} \mathrm{C}$ and allowed to cool slowly across the melting temperature, reported to be $1140^{\circ} \mathrm{C}$ by 玉ukaszewicz and Nagler (1961). Some of the small blue-green crystals obtained were found to be twinned on their [ll0] faces but single crystals could easily be selected.

Lattice parameters were determined from a DebyeScherrer photograph obtained from a powdered portion of these crystals. Thirty-nine lines were identified and the quantity "sinө/ λ " was used in a least squares fit of the lattice parameters. The computer programs used here are
described in Appendix B. The reflections used, together with their measured and calculated $" \sin \theta / \lambda$ " values, are shown in Table l. These lattice parameters are compared with those of similar pyrophosphates in Table 2.
(B) Preparation of Data

A crystal having the approximate dimensions 0.08×0.08 $\mathrm{x} 0.40 \mathrm{~mm}^{3}$ was glued to a fiber with its long dimension parallel to the goniometer's rotation axis. Weissenberg photographs of the type hk0, hkl and hk2 were recorded with Cu $\mathrm{K} \alpha$ radiation. The hk0 reflections were also recorded on a Supper single crys \quad manual diffractometer using Mo K_{α} radiation. This crystal was also used to record $0 k \ell$ data using the precession camera with Mo $\mathrm{K} \alpha$ radiation. A second crystal was used to collect data of the type hnl, $n=0,1,2,3,4$, using a Weissenberg camera and Mo $\mathrm{K} \alpha$ radiation. The approximate dimensions of this crystal were $0.10 \times 0.10 \times 0.05 \mathrm{~mm}^{3}$.

In order to measure accurate data with the diffractometer a system was designed (Figure 2) to be attached to the front of the counter so that dead time corrections could be reduced to less than 15% of the total number of counts by the insertion of filters in the path of the incident x-ray beam. For Mo radiation, zirconium filters were used. The integrated intensity was measured by rocking the crystal while holding the counter fixed. This method is usually referred to as an " ω " scan. The background was measured at approximately 3° in ω on either side of the Bragg reflection. The integrated intensity of each reflection was corrected for background, variation in scanning rate, filter attenuation and variation in incident beam intensity as monitored by the periodic measurement of a standard reflection. In order to apply corrections for dead
time, the intensity profile of each reflection was approximated by the sum of two Gaussian curves corresponding to the $K \alpha_{1}$ and $K \alpha_{2}$ spectral lines. The relative separation of the peaks is proportional to the tangent of the Bragg angle. The constant o: proportionality and also the width of the two Gaussian curves were found graphically by curve fitting at high angles where the peaks were well resolved and then extrapolating to low angles. In order to apply the dead time corrections, the reflection profile was broken into 100 strips and the height of each strip was individually corrected for dead time.

The integrated intensity of the photographic data was visually estimated using the logarithmic method (Robertson, 1965). In the previous refinement, the data of type $0 k \ell$; hkn, $n=0,1,2$; and hnl, $n=0,1$ were used. For the present refinement the data indexed as $h n l, n=2,3,4$ were added. All of the data were corrected for the effects of Lorentz. and polarization. The estimated standard deviations (e.s.d.'s) for the visually estimated data were initially assigned as 10\% of the magnitude of the structure factor except for very weak or moderately strong reflections in which case the e.s.d.'s were multiplied by l.5. The e.s.d.'s of the reflections recorded with the diffractometer were assigned as a constant times $1 / \sqrt{N}$ where N is the total number of counts used to record the integrated intensity of a given reflection. Since the linear absorption coefficients are $160 \mathrm{~cm}^{-1}$ for $\mathrm{Cu} \mathrm{K} \alpha$ radiation and $100 \mathrm{~cm}^{-1}$ for $\mathrm{Mo} \mathrm{K} \alpha$ radiation approximate
absorption corrections were applied. The crystals were approximated by spheres or cylinders, where appropriate, whose volumes were made equal to those estimated for the crystals. In addition, the length of the cyinder was set equal to the crystal length along the rotation axis. The changes in the value of the structure factors arising from these corrections varied by a maximum of 10% over the range of θ used to record this data. Thus errors caused by the assumed idealized crystal shape should be of the order of only 2 or 3%. These corrections were not applied until the structure was partially refined. In addition to the corrections for linear absorption, the data measured with $\mathrm{Cu} \mathrm{K} \alpha$ radiation was approximately corrected for the effects of anomalous absorption. A constant factor of 2.0 was subtracted from the Cu^{+2} scattering curve. (International Tables, Volume III, 1962). A correction for the phase shift upon scattering must also be applied if the space group is noncentric. However, in the case of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, if the space group is indeed non-centric, the Cu^{+2} atoms, the only anomalous scatterers, are nearly centrically related and therefore this correction should be suitable.
(C) Refinement

The reflections indexed with an odd value of ℓ in $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ do not occur in the β phase. The x-rays diffracted into these reflections are scattered only by electrons which are not consistent with the symmetry of the β phase. The intensities of the reflections with ℓ odd are weak which then implies that the two half unit cells of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, which become full unit cells above the transformation temperature are very similar. As is generally the case with any structure having pseudo-symmetry, the Patterson function (Chapter l(B)) showed only the average positions consistent with the more symmetric phase since it is dominated by the stronger reflections. The deviations from the structure of higher symmetry could not be easily inferred from the normal Patterson diagram. The peak broadening, however, showed the directions of the deviations from the β phase for the positions of the cations.

The partial refinement of $\mathrm{B}-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ reported previously (Robertson, 1965) was used as a starting point for the $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ refinement. The thermal ellipsoids associated with the atoms of the β structure were considerably elongated. Cu^{+2} ions were situated on twofold rotation axes parallel to the \underline{b} axis and showed high thermal motion approximately in the a direction. In addition the central oxygen atom was found from electron density maps to be elongated in the \underline{b} direction. In order to infer the relationship between the thermal ellipsoids of the
β phase and the coordinates of the α phase, it will be necessary to give a more complete description of the change in symmetry which occurs at the phase transformation from the β to α polymorph. This change results from the loss of translational symmetry relating two unit cells adjacent to each other in the c direction. This is manifest by the loss of the mirror plane of the β phase and its replacement by a \subseteq glide plane.

Refinement was initially done in the space group Cc. It was assumed that the displacements of the Cu^{+2} and Ol atoms were in the directions of the principal axis of thermal motion of each atom in the β phase. The origin of the unit cell is necessarily on the \underline{c} glide plane. The position of the \underline{c} glide plane in the structure was fixed by placing an Ol atom at $\mathrm{x} / \mathrm{a}=0$ and $\mathrm{z} / \mathrm{c}=1 / 4$. The origin was fixed by the sign of the displacements of the cations. There remains a choice as to the direction of the displacement of the aforementioned Ol atom up or down the \underline{b} axis. This determines the relationship between the direction of the bending of the anion and the direction of the displacements of the cations from their positions in $B-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. A displacement down the \underline{b} axis was arbitrarily chosen. The displacement involves only a y coordinate and furthermore, a negative and positive displacement are superimposed in the projection on the (001) face. Therefore only reflections from the $\{100\}$ zone are sensitive to the sign of the displacement. The other phosphorus and oxygen atoms were assigned coordinates directly from their positions in the
$\mathrm{B}-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ structure. The structure was refined in the space group Cc using electron density maps with individual isotropic temperature factors assigned to the atoms. The R factors were lowered to 0.27 and 0.24 for the $\{001\}$ and $\{010\}$ zones respectively. The atoms were assigned anisotropic temperature factors and the structure was refined by the method of least squares (Appendix A). Unit weights were assigned to each reflection and the overall R factor was lowered to 0.18 .

The data indexed as $0 k \ell, h k l$ and $h k 2$ were added to the refinement and further cycles of least squares lowered the R factor to 0.16. The greatest discrepancies between the observed and calculated structure factors occurred among the hkl reflections. These are all absent in the β phase and are most sensitive to the sign of the displacement of the central oxygen atom. The sign of the displacement was made positive and two more cycles of refinement lowered the R factor to 0.13 . Of particular significance is the fact that the agreement between the observed and calculated structure factors of the hkl data had improved considerably.

The molecular geometry of the structure was calculated and it was found that a number of bond lengths were not chemically realistic. For example, the two $P-O(-P)$ bond lengths were 1.80 and 1.38 A . Therefore, all the atomic positions were arranged such that the results were consistent with the space group $\mathrm{C} 2 / \mathrm{C}$. The Cu^{+2} ions were now related by a center of symmetry and the two halves of the $\mathrm{P}_{2} \mathrm{O}_{7}^{-4}$ anion were
related by a twofold rotation axis. Initially the R factor was now higher than that obtained in the noncentric refinement but three cycles of refinement in this space group lowered the R factor back to 0.13 . All the $P-O$ bond lengths had improved and were consistent with chemical considerations.

The data of type $h 1 \ell, h 2 \ell, h 3 \ell$ and $h 4 \ell$ were now added to that already in use and the structure was further refined by least squares with a $(1 / \sigma)^{2}$ weighting scheme (Appendix A). Absorption corrections and anomalous dispersion corrections were now applied to the data. Parallel refinements were then carried out in both the centric and non-centric space groups. The weighting scheme suggested by Cruickshank et. al. (1961) was used (Appendix A). The weight " ω " was set as

$$
\omega^{-1}(\underline{H})=A+B\left|F_{O}(\underline{H})\right|+C\left|F_{O}(\underline{H})\right|^{2}+D\left|F_{O}(\underline{H})\right|^{3}
$$

where $F_{0}(\underline{H})$ is the observed structure factor and the values of A, B, C and D are given in Table 3. The structures were refined until no appreciable changes occurred in the values of the R factors. Reflections which were too weak to be observed and whose calculated structure factors were less than the minimum observable value were assigned zero weight in the refinement. Otherwise, F_{o} for these reflections was replaced by 0.70 times the ninimum observable value. The final value of the agreement factors R_{1} and R_{2}, defined in Chapter $l(B)$
were 0.107 and 0.104 respectively for the space group $C 2 / c$ and 0.107 and 0.100 respectively for the space group Cc. An attempt was made to assess the reliability of the higher symmetry space group using the criteria of Hamilton.

The atomic parameters obtained for both space groups are compared in Table 5. All of the eleven atoms in the lower symmetry space group have non-positive definite thermal parameters, Table 4 lists the 1112 recorded independent structure factors together with their calculated values. The column headed FC(l) are absolute values of the structure factor obtained in the space group $C C$ and that headed $F C(2)$ are the structure factors obtained in the space group C2/c. The molecular geometries calculated from the atomic parameters obtained in both space groups are given in Table 6.

The results of these refinements seem to favor the space group C2/c. This choice has been supported by the nuclear magnetic resonance (n.m.r.) studies of Stager and Atkinson (1967). This technique is similar to e.p.r. except that the energy level splittings of the nuclear spin are observed and radio frequency electromagnetic radiation is used instead of microwaves. The $15^{\mathrm{P}^{31}}$ nucleus has a spin of $1 / 2$ whose levels are split in a magnetic field. Transitions between these levels are induced by bathing the nuclei in electromagnetic radiation of the proper frequency. In $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, the $15^{P^{31}}$ nuclei are also subject to the local magnetic field generated by the paramagnetic Cu^{+2} cations and thus the
environment of the $15^{P^{31}}$ nucleus will shift its absorption frequency. This effect is known as the chemical shift. If the space group of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is Cc the unit cell must contain two independent P atoms which would give rise to two n.m.r. absorption signals. If the space group were $C 2 / c$, only one signal should be seen. Stager and Atkinson have only seen one signal. Furthermore, the shift in absorption frequency was isotropic over a wide range of temperature. It is unlikely that the chemical shifts of two independent $15^{P^{31}}$ atoms would accidentally superimpose over such a temperature range. Also, at low temperatures, the spectral lines are very sharp and any doubling of the $15^{P^{31}}$ absorption line should be observable. These experiments support the choice of the space group C2/c although the accuracy of this method has not yet been evaluated. Thus although there may be still some uncertainty as to the space group of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, at worse it can not differ very greatly from C2/c.

Table 1

Observed and calculated values of $\sin \theta / \lambda$ for the DebyeScherrer lines used to determine the lattice parameters of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
h \underline{k} 气
002
1 12
021
200
202
022
2 21
220
130
$\overline{2} 04$
310
132
222
2 24
042
i 34
इ 32
330
134
2. 06

224
332
060
i 36
350
$\overline{4} 26$
$\overline{2} 62$
$\underline{\sin \theta / \lambda(o b s)}$
0.05406
0.06850
0.07436
0.09553
0.10111
0.11488
0.14563
0.15527
0.15976
0.21362
0.22990
0.23798
0.25748
0.27516
0.29734
0.32758
0.33383
0.33169
0.35103
0.34998
0.42273
0.43307
0.46560
0.47539
0.54761
0.57080
0.59336
0.63432
0.64798

Table 1 (continued)

$\frac{\mathrm{h}}{\mathrm{3}}$	$\frac{\mathrm{k}}{2}$	$\frac{\ell}{4}$	$\frac{\sin \theta / \lambda(\mathrm{obs})}{0.66497}$	$\frac{\sin \theta / \lambda(\mathrm{calc})}{0.66392}$
5	1	1	0.68309	0.68035
1	9	4	1.51671	1.51796
3	3	8	1.49633	1.49439
1	5	8	1.35743	1.35678
5	7	0	1.33986	1.33724
2	8	4	1.18702	1.18669
2	8	2	1.16847	1.16970
1	3	8	0.95723	1.11339
1	5	6		0.95788

TABLE 2
Refinement Data for $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
$\mu(\mathrm{MO})=100 \mathrm{~cm}^{-1} \quad \mu(\mathrm{Cu})=160 \mathrm{~cm}^{-1}$

Number of observed reflections 715
Total number of reflections 1112
(a) Space group C2/C

Weighting curve constants
$A=11.91319$
$B=-0.99401$
$C=0.03397$
$D=-0.00018$

| R_{1} (observed reflections only) | 0.0976 |
| :--- | :--- | :--- |
| R_{1} (all reflections) | 0.1069 |
| R_{2} (observed reflections only | 0.1017 |
| R_{2} (all reflections) | 0.1045 |

(b) Space group Cc Weighting curve constants $A=11.69711$ $B=-1.02278$ $C=0.03653$
$D=-0.00019$

TABLE 2 (continued)

R_{1} (observed reflections only)	0.0946
R_{1} (all reflections)	0.1075
R_{2} (observed reflections only)	0.0950
R_{2} (all reflections)	0.0999

Unobserved reflections whose calculated values were greater than the minimum observable value, $F(m i n)$ in that area were replaced by $0.70 \mathrm{~F}(\mathrm{~min})$. Otherwise their weight was set at zero.

Lattice parameters of structures related to that of thortveitite (e.s.d.'s in parantheses)

	Ref.	a (A)	b (A)	c (A)	β	Z	Space Group	Range of Stability
$\mathrm{B}-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$		$6.827(6)$	8.118(6)	4.567(6)	$108.85(10)^{\circ}$	2	C $2 / \mathrm{m}$	above $71{ }^{\circ} \mathrm{C}$
$\beta-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	(a)	6.494 (7)	8.28 (1)	4.522 (5)	$103.8(1)^{\circ}$	2	C $2 / \mathrm{m}$	above $68{ }^{\circ} \mathrm{C}$
$\mathrm{B-Zn} 2_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	(b)	6.61 (1)	8.30 (1)	4.51 (1)	$105.4(1)^{\circ}$	2	C $2 / \mathrm{m}$	above $155^{\circ} \mathrm{C}$
$\mathrm{Mn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	(c)	6.63	8.58	4.54	102.66°	2	C $2 / \mathrm{m}$	at least above $150^{\circ} \mathrm{C}$
$\mathrm{Sc}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$	(d)	6.542(5)	8.519 (5)	4.669 (5)	102.5 (2) ${ }^{\circ}$	2	C $2 / \mathrm{m}$	
$\mathrm{Mg}_{2} \mathrm{As}_{2} \mathrm{O}_{7}$	(e)	6.584	8.509	4.761	103.9°	2	C $2 / \mathrm{m}$	
$\mathrm{Zn}_{2} \mathrm{As}_{2} \mathrm{O}_{7}$	(f)	6.66	8.36	4.75	104°	2	C $2 / \mathrm{m}$	
$\mathrm{Cd}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$	(g)	7.088	9.091	4.963	103.3°	2	C $2 / \mathrm{m}$	
$\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$		6.877 (4)	8.113(4)	9.162(10)	$109.54(6)^{0}$	4	C 2/c	below $71{ }^{\circ}$
$\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	(h)	13.198(5)	8.295 (5)	9.072 (5)	$104.9(1)^{\circ}$	8	B $2_{1} / \mathrm{C}$	below $68{ }^{\circ} \mathrm{C}$
$\mathrm{a}^{-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}}$		20.068(15)	8.259 (6)	9.099 (8)	106.35 (8) ${ }^{\circ}$	12	I c	below $132{ }^{\circ} \mathrm{C}$
	(i)	13.093(7)	8.275 (5)	8.974 (5)	104.9(1) ${ }^{\circ}$	8	$\text { B } 2_{1} / \mathrm{C}$	below $575{ }^{\circ} \mathrm{C}$
$\alpha-\mathrm{Co}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	(j)	13.23 (1)	8,318 (8)	8.983(8)	104.3(1) ${ }^{\circ}$	8	$\text { B } 2{ }_{1} / \mathrm{C}$	below $304{ }^{\circ} \mathrm{C}$

References for Table 3

(a) Calvo (1965a)
(b) Calvo (1965b)
(c) Eukaszewicz and Smajkiewicz (1961)
(d) Cruickshank, Lynton and Barclay (1962)
(e) 玉ukaszewicz (1963)
(f) Calvo and Neelakantan (1967)
(g) Au (1966)
(h) Calvo (1967d)
(i) Calvo (1967c)
(j) £ukaszewicz (1967a)

TABLE 4

Observed and calculated structure factors of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. The columns headed $\mathrm{FC}(1)$ are the absolute values of the structure factors obtained in the space group Cc. The columns headed FC(2) are the structure factors obtained in the space group C2/c. Reflections which were too weak to be observed are marked with an asterisk. The structure factors divided by ten refer to one unit cell.

FFIFCIIIFCIZI

 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

 －

 がごッル゙

 ミロ\＆

ค官

If:1) f(1) f(12) Cabrinute, \times.

TABLE 5

Atomic coordinates of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (e.s.d.'s in parantheses)
(a) Space group C2/C

Configuration coordinates

	x / a	y / b	z / c
Cu	$-0.0178(2)$	$0.3133(2)$	$0.5068(1)$
P	$0.1977(3)$	$0.0076(4)$	$0.2059(2)$
01	0	$0.0484(22)$	$1 / 4$
02	$0.3767(8)$	$-0.0027(11)$	$0.3630(7)$
$03(\mathrm{C})$	$0.2218(8)$	$0.1562(9)$	$0.1134(6)$
$03(T)$	$0.1783(11)$	$-0.1530(10)$	$0.1187(8)$

Thermal coordinates $\left(A^{2} \times 10^{4}\right)$

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Cu	$56(3)$	$68(5)$	$59(2)$	$4(4)$	$-34(18)$	$9(6)$
P	$10(4)$	$81(11)$	$35(5)$	$-13(7)$	$3(3)$	$13(9)$
01	$72(26)$	$439(91)$	$255(46)$	0	$76(29)$	0
02	$33(13)$	$188(35)$	$112(18)$	$1(24)$	$-32(13)$	$5(33)$
$03(C)$	$114(16)$	$9(22)$	$75(15)$	$-10(21)$	$15(14)$	$67(29)$
$03(T)$	$190(23)$	$65(31)$	$109(4)$	$-23(17)$	$-42(28)$	$3(35)$

* non positive definite.

TABLE 5 (continued)

(a) Space group Cc

Configuration coordinates

$\mathrm{Cu}(\mathrm{I})$	-0.0178	$0.3120(5)$	0.2520
Cu (II)	0.0175 (4)	-0.3146(5)	0.2386 (3)
$\mathrm{P}(\mathrm{I})$	$0.1921(11)$	0.0085 (11)	-0.0489 (8)
P (II)	-0.2029 (10)	$0.0067(10)$	$0.0395(7)$
O1	$0.0000(42)$	$0.0471(26)$	$0.0000(42)$
02 (I)	-0.3873(29)	-0.0037(33)	-0.1236(27)
O2 (II)	$0.3674(23)$	-0.0032 (24)	0.1042 (17)
03 (CI)	-0.2206(29)	$0.1634(23)$	0.1315 (12)
O3 (CII)	0.2229 (29)	$0.1509(23)$	-0.1418(23)
O3(TI)	-0.1750(24)	-0.1530 (20)	$0.1257(21)$
O3(TII)	0.1840 (38)	-0.1540(33)	-0.1369 (22)

TABLE 5 (continued)
Thermal coordinates $\left(x 10^{4}\right)$ *

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{Cu}(\mathrm{I})$	57 (9)	80 (17)	129(13)	-11(20)	-34(10)	-96(26)
Cu (II)	55 (8)	$64(15)$	26 (6)	25 (17)	$-33(7)$	85 (22)
$\mathrm{P}(\mathrm{I})$	14(18)	86(32)	33 (13)	88(28)	-34(13)	-92(38)
P(II)	12 (17)	112 (38)	56 (15)	32 (35)	29 (14)	-82(38)
01	105 (30)	549 (109)	267 (60)	-235 (114)	114(35)	-107(177)
O2(I)	54(45)	320 (131)	170 (67)	14(125)	105 (43)	73 (170)
O2(II)	$1(31)$	76 (65)	23 (270)	-31(76)	-61 (25)	17(104)
O3(CI)	164 (53)	-7(4I)	-27(23)	101 (54)	18(29)	-50 (66)
O3(CII)	$73(42)$	$-23(43)$	247(74)	81 (58)	33 (47)	44 (99)
O3(TI)	$134(42)$	-11 (42)	114 (52)	-93(48)	-67(38)	$-193(77)$
O3(TII)	425 (61)	525 (87)	116(52)	-586 (56)	137 (53)	-470(87)

* All thermal ellipsoids are non-positive definite in this space group.

TABLE 6

Molecular geometry of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. (e.s.d's in parentheses)
(a) Space group C2/C

Bond distances (A)

$\mathrm{P}-\mathrm{O} 1$	$1.577(5)$	$01-02$	$2.482(15)$
$\mathrm{P}-\mathrm{O} 2$	$1.552(10)$	$01-03(\mathrm{C})$	$2.436(15)$
$\mathrm{P}-\mathrm{O} 3(\mathrm{C})$	$1.515(10)$	$01-03(\mathrm{~T})$	$2.570(15)$
$\mathrm{P}-\mathrm{O} 3(\mathrm{~T})$	$1.511(10)$	$02-03(\mathrm{C})$	$2.530(20)$
		$02-03(\mathrm{~T})$	$2.513(20)$
		$03(\mathrm{C})-03(\mathrm{~T})$	$2.529(20)$

$\mathrm{Cu}-\mathrm{O} 2$	$1.962(10)$
$\mathrm{Cu}-02^{\prime}$	$1.988(10)$
$\mathrm{Cu}-03(\mathrm{C})$	$1.942(10)$
$\mathrm{Cu}-03^{\prime}(\mathrm{C})$	$2.322(10)$
$\mathrm{Cu}-03(\mathrm{~T})$	$1.907(10)$
$\mathrm{Cu}^{\prime} \mathrm{OH}^{\prime}(\mathrm{T})$	$2.940(10)$

Angles

P-O1-P	$155.8{ }^{\circ}$	O2-P-O3 (C)	111.2°
$\mathrm{Ol}-\mathrm{P}-\mathrm{O} 2$	105.0°	O2-P-03 (T)	110.3°
Ol-P-O3 (C)	104.0°	O3 (C) -P-03 (T)	$113.4{ }^{\circ}$
O1-P-O3 (T)	$112.6{ }^{\circ}$		

TABLE 6 (continued)
(b) Space group Cc

Bond distances (A)

P (I) -Ol	1.59 (3)	O1-O2 (I)	2.55 (4)
P (II) -OI	1.57 (3)	Ol-O2 (II)	2.42(4)
P(I) -O2 (I)	1.61 (3)	Ol-O3 (CI)	2.42 (4)
P(II)-O2 (II)	1.52 (3)	O1-03 (CII)	2.47(4)
P(I) -O3 (CI)	1.55 (3)	Ol-O3 (TI)	2.51(4)
P(II) -O3 (CII)	1.49 (3)	O1-O3 (TII)	2.63 (4)
$\mathrm{P}(\mathrm{I})-\mathrm{O}$ (TI)	1.50 (3)	O2 (I) -O3 (CI)	2.61 (4)
P(II)-03 (TII)	1.54 (3)	O2 (II)-O3 (CII)	2.48 (4)
		O2 (I) - 03 (TI)	2.57 (4)
		O2 (II)-O3 (TII)	2.47 (4)
		O3 (CI)-03 (TI)	2.59 (4)
		O3 (CII)-O3 (TII	$) 2.49$ (4

$\mathrm{Cu}(\mathrm{I})-\mathrm{O} 2(\mathrm{I})$	$1.96(2)$	$\mathrm{Cu}(\mathrm{II})-\mathrm{O} 2(\mathrm{I})$	$1.91(2)$
$\mathrm{Cu}(\mathrm{I})-\mathrm{O} 2(\mathrm{II})$	$2.00(2)$	$\mathrm{Cu}(\mathrm{II})-\mathrm{O} 2(\mathrm{II})$	$2.02(2)$
$\mathrm{Cu}(\mathrm{I})-03(\mathrm{CI})$	$1.89(2)$	$\mathrm{Cu}(\mathrm{II})-\mathrm{O}(\mathrm{CI})$	$1.90(2)$
$\mathrm{Cu}(\mathrm{I})-03(\mathrm{CII})$	$2.32(2)$	$\mathrm{Cu}(\mathrm{II})-03(\mathrm{CII})$	$2.33(2)$
$\mathrm{Cu}(\mathrm{I})-03(\mathrm{TI})$	$2.97(3)$	$\mathrm{Cu}(\mathrm{II})-03(\mathrm{TI})$	$2.89(3)$
$\mathrm{Cu}(\mathrm{I})-03(\mathrm{TII})$	$1.91(2)$	$\mathrm{Cu}(\mathrm{II})-03(\mathrm{TII})$	$1.98(2)$

Angles

P(I) -Ol-P (II)	156°
Ol-P (I)-O2 (I)	106°
Ol-P (II)-O2 (II)	103°
Ol-P(I)-O3 (CI)	101°
Ol-P (II)-O3 (CII)	108°
Ol-P(I)-O3 (TI)	109°
Ol-P (II)-O3 (TII)	116°
O2 (I) -P (I) -03 (CI)	112°
O2 (II)-P (II) - 03 (CII)	111°
O2 (I) -P (I) -03 (TI)	112°
O2(II)-P (II) -O3 (TII)	108°
O3 (CI) -P (I) -O3 (TI)	116°
O3 (CII) -P (II)-03 (TII)	111°

Figure 2

The filter system designed for use with the manual diffractometer

CHAPTER 3: DETERMINATION OF THE STRUCTURE OF $B-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$

(A) Preliminary Investigations

A comparison of x-ray photographs of $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ with those of $\mathrm{B}-\mathrm{Zn} \mathrm{P}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{B-Mg} \mathrm{P}_{2} \mathrm{O}_{7}$ suggested that their structures were similar. However, in order to gain some insight into the changes in the atomic positions and molecular geometries during the phase transformation, the detailed structure of the high temperature phase must be resolved. In the earlier refinement of the $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ structure (Robertson, 1965), the degree of resolution was not sufficient for these proposed purposes.

As is the case for the other high temperature phases of this group of crystals, the Lave symmetry and extinctions limit the space group to one of $\mathrm{C} 2, \mathrm{Cm}$ or $\mathrm{C} 2 / \mathrm{m}$. The space group was assumed to be $\mathrm{C} 2 / \mathrm{m}$ for this refinement. This assumption will be explored in the discussion. The lattice parameters were taken from an earlier determination (Robertson, 1965). These were measured at $100^{\circ} \mathrm{C}$ by comparison with the room temperature lattice parameters of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$.
(B) Preparation of Data

The same crystals were used to collect data for the study of $\mathrm{B}-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ as for the study of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. The first crystal ($0.08 \times 0.08 \times 0.40 \mathrm{~mm}^{3}$) was used to collect data of the type hk0 with Mo $\mathrm{K} \alpha$ radiation and the manual diffractometer. A pair of hair dryers was used to heat the crystal while the diffractometer data were recorded. The temperature was monitored by a Chromel-Alumel thermocouple placed within a few millimeters of the crystal and supported by the collimator. The temperature was maintained at $100 \pm 8^{\circ} \mathrm{C}$. Because of the difficulty in maintaining a constant temperature with the " "open" geometry of the precession camera, no precession photographs of the β phase were taken. The second crystal ($0.10 \times 0.10 \times 0.05 \mathrm{~mm}^{3}$) was used to collect additional data of the type hnl, $n=0,1,2,3,4,5$ with a Nonius Weissenberg camera using Mo $\mathrm{K} \alpha$ radiation. The crystal was heated with a high temperature attachment supplied with the camera. The crystal was maintained at $100 \pm 3^{\circ} \mathrm{C}$ and the temperature was monitored by a thermocouple on the collimator.

The integrated intensities recorded with the diffractometer were corrected for background, sweep rate, incident beam intensity, dead time and filter attenuation in the same manner as described in Chapter 2.

All of the data were corrected for the effects of Lorentz and polarization. The same absorption corrections were applied as in the case of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$.
(C) Refinement

Since the intensities of the reflections of the (010) zone were similar to those of $\beta-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, the atomic coordinates of $\mathrm{B}-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Calvo, 1965b) were used as trial parameters to calculate the structure factors of this zone. The R factor obtained in this manner was 0.30 . Changes in atomic positional coordinates and individual isotropic temperature factors were estimated from an electron density map and were used to determine a new trial structure whose calculated structure factors led to an R value of 0.26 . Difference synthesis maps suggested that the Cu^{+2} and Ol atoms should be assigned large thermal parameters. This caused a drop in the R factor to 0.20 . The x coordinates obtained for the atoms in this way were used with the y atomic coordinates from $\beta-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ to calculate an R factor of 0.51 for the data from the (001) zone. Using new coordinates derived from two successive electron density maps the agreement for this zone was lowered to 0.21. All the data were then entered into a full matrix least squares calculation using a $(1 / \sigma)^{2}$ weighting scheme. When anisotropic temperature factors were varied the R value was lowered to 0.135 . Absorption corrections were now applied. The details of these corrections are presented in Chapter 2. The structure was again refined by the method of least squares until a minimum value of R_{2} (as defined in Chapter 1) was obtained. It was found that the convergence of the refinement was improved by applying only half the
calculated shifts to the atomic coordinates. The weighting scheme proposed by Cruickshank et. al. (1961) was now applied. This weighting scheme endeavors to account for the effects of systematic errors inherent in the method of measurement of the integrated intensities. It is reasonable to expect that these systematic errors in the case of data recorded with a diffractometer would not necessarily be the same as those associated with data recorded on film and measured visually. For this reason the data were separated into two groups such that the coefficients in the expression (Appendix A)

$$
\omega^{-1}(\underline{H})=A+B\left|F_{O}(\underline{H})\right|+C\left|F_{o}(\underline{H})\right|^{2}+D\left|F_{O}(\underline{H})\right|^{3}
$$

could be calculated separately for the film and diffractometer data. The two sets of coefficients are listed in Table 7. The refinement was now continued using weights calculated from the above coefficients. The final values of R_{1} and R_{2} were 0.149 and 0.130 respectively. Unobserved reflections were treated as described in Chapter $2(C)$. The final atomic positional and thermal parameters are listed in Table 9. The magnitude of the observed structure factors $\mathrm{FO}\left(=\mathrm{F}_{\mathrm{O}}(\underline{\mathrm{H}})\right.$) and the calculated structure factors $\mathrm{FC}(\mathrm{A})\left(=\mathrm{F}_{\mathrm{C}}(\underline{H})\right.$) based on these final least squares parameters are given in Table 8. The bond lengths and interatomic angles were calculated from the atomic coordinates and are listed in Table 10.
(D) Disordered Model

During the investigation of the phase transformation in $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ it was observed that some diffuse scattering occurred in the temperature region of the transformation. The detailed nature of this phenomenon will be discussed in Chapter 6 . However, this diffuse scattering suggests that the high temperature form of $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ might be disordered. A comparison of the atomic coordinates of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{B}-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ indicates that the disordering could be caused by very small atomic displacements. In a completely disordered crystal, the mathematical model used to describe the $\mathrm{B}-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ unit cell would consist of the superposition of two halves of an $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ unit cell when one half has the normal origin and the other has its origin shifted by $\underline{c} / 2$. If this description of the high temperature phase is correct, then it should be possible to describe the structure of $\mathrm{B}-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ by replacing each atom by two half atoms whose atomic positions are derived from those of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$.

The structure factors can be calculated by the general expression given in Chapter 1. By the use of the symmetry of the unit cell this can be reduced to an expression which is summed over only the asymmetric zone. If $\mathrm{F}_{\mathrm{C}}(\underline{H})$ is the calculated structure factor then

$$
F_{C}(\underline{H})=\sum_{j} m_{j} f_{j}(H) \cos 2 \pi\left(h x_{j}+\ell z_{j}\right) \cos 2 \pi k y_{j}
$$

where m_{j} is the number of equivalent atoms. Now we may modify
this expression to describe two half atoms in each atomic position by replacing the vector \underline{r} whose components are $x_{j} \underline{a}, y_{j} b$ and $z_{j} \underline{c}$ by the vectors $\underline{r}_{j}+\underline{\delta}_{j}$ where the components of $\frac{\delta}{-j}$ are $\delta x_{j}, \underline{a}, \delta y_{j} b$ and $\delta z_{j} \underline{c}$. Then
$F_{O}(\underline{H})=\Sigma m_{j} f_{j}(H) \quad\left\{\cos 2 \pi\left(h x_{j}+\ell z_{j}\right) \cos 2 \pi\left(h \delta x_{j}+\ell \delta z_{j}\right) \cos 2 \pi k y_{j}\right.$ $\left.\cos 2 \pi k \delta y_{j}+\sin 2 \pi\left(h x_{j}+\ell z_{j}\right) \sin 2 \pi\left(h \delta x_{j}+\ell \delta z_{j}\right) \sin 2 \pi k y_{j} \sin 2 \pi k \delta y_{j}\right\}$ Effectively each atom is now described by the three components of the vector \underline{r}_{j}; the three components of the vector δ_{j} and one isotropic temperature factor. In contrast, the atoms were formerly described by the components of \underline{r}_{j} and six anisotropic thermal parameters.

Each atom was modified in the above manner and the components of \underline{r}_{j} and δ_{j} and the individual isotropic temperature factors were varied by the method of least squares. The components of the vector describing the terminal oxygen atoms, that is O 2 and 03 , were found to vary randomly. Attempts were made to find a least squares minimum corresponding to these parameters by applying only a small fraction of the calculated changes to those coordinates but to no avail. Apparently we do not have sufficient and precise enough data to describe these vectors. The oxygen atoms are the weakest scatterers in the structure and the $\underline{\delta}$ vectors for the terminal oxygen atoms would be expected to be rather short in comparison, for example, to those of the $O l$ atom. It was necessary to revert back to the original description of the terminal oxygen
atoms in terms of whole atoms with anisotropic thermal parameters. As indicated previously, two sets of coefficients were used in a "Cruickshank" weighting scheme. The components of the vectors \underline{r}_{j} and $\underline{\delta}_{j}$ describing the $O 1, P$ and Cu^{+2} atoms and their isotropic temperature factors were varied together with the positional and anisotropic thermal parameters describing the terminal oxygen atoms. This model was then refined until a least squares minimum was obtained. The coordinates of the half-atoms representing the Cu and P atoms corresponded, within their e.s.d.'s, with the equivalent positions of the $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ structure. However, the y coordinate of the $O l$ atom was approximately one-half the corresponding value in $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. Attempts were made to fix this atom at the desired position. Small fractions of the calculated changes were applied to the y coordinate and its thermal parameters were varied anisotropically but the only least squares minimum that was found was at $\mathrm{y} / \mathrm{a}=$ 0.0256 .

The final values of R_{1} and R_{2} for this model were 0.150 and 0.121 respectively. The atomic coordinates, based on this disordered model of $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ are listed in Table ll. In order to facilitate a comparison with $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, the low temperature structure was refined in the space group C2/c with isotropic thermal parameters assigned to the $\mathrm{Cu}^{+2}, \mathrm{P}$ and Ol atoms. These results are also presented in Table ll. It should be noted that the anisotropic thermal parameters of
the terminal oxygen atoms in the disordered model of $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ should not necessarily be identical to those of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ since the former may be averaged over two displaced half atoms. The calculated structure factors based on the disordered model of $B-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ are listed in Table 8 under the heading FC(D).

TABLE 7
Refinement data for $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
$\mu(\mathrm{MO})=100 \mathrm{~cm}^{-1}$
Number of observed reflections 371
Total number of reflections

Space group C2/m 613
(a) Fully anistropic model

Weighting curve coefficients
Diffractometer data
Visually estimated data
$A=3.70778$
$A=32.75002$
$\mathrm{B}=0.31990$
$B=-2.94330$
$C=-0.03560$
$C=0.06882$
$D=0.00065$
$D=0.00013$

R1 (observed reflections only) 0.1352
R1 (all reflections)
0.1493

R2 (observed reflections only) 0.1393
R2 (all reflections)
0.1202
(b) Disordered model

Diffractometer data
$A=4.99565$
Visually measured data
$A=28.14925$
$B=0.03330$
$B=-2.38407$
$C=-0.02077$
$C=0.05130$
$D=0.00041$
$D=0.00027$

TABLE 7 (continued)

R1 (observed reflections only)	0.1363
R1 (all reflections)	0.1505
R2 (observed reflections only)	0.1432
R2 (all reflections	0.1215

Unobserved reflections whose calculated values were greater than the minimum of observable value $F(m i n)$, in that area were replaced by $0.70 \times \mathrm{F}(\mathrm{min})$. Otherwise their weight was set at zero.

TABLE 8

Observed and calculated structure factors for $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. The columns headed $\mathrm{FC}(\mathrm{A})$ are the structure factors based on the disordered model. The reflections which were too weak to be observed are marked with an asterisk. The structure factors divided by ten refer to the contents of one unit cell.
tfet f（A）FC（D）

IFEI FC（A）FC（D） $\begin{array}{rrrrr}14 & -5 & : 118 & 14 & 74 \\ 14 & -4 & 119 & 59 & 72 \\ 14 & -3 & 119 & 11 & 71 \\ 14 & -2 & 119 & 114 & 76 \\ 14 & -1 & : 118 & 44 & 78 \\ 14 & 0 & 116 & 13 & 50 \\ 14 & 1 & 112 & -46 & -80 \\ 16 & 2 & 1105 & 23 & 2 \\ 16 & -3 & 106 & -0 & -95 \\ 16 & -7 & : 105 & -48 & -88 \\ 16 & -1 & 101 & -12 & -80 \\ 16 & 0 & : 46 & 61 & 15\end{array}$

IFBI FC（A）FCIO

－

 $\begin{array}{rrrr}-5 & 194 & -38 & -10 \\ -4 & 190 & -16 & -69 \\ -3 & 198 & -206 & -706 \\ -2 & 187 & -28 & -27 \\ -1 & 189 & -47 & -38 \\ 0 & 165 & 165 & 155 \\ 1 & 197 & -71 & -67\end{array}$

$$
\text { 1111 } 1
$$

シーローニーニ
IFOI FC（A）FC（D） 00000000～ン

2
3
-4
-3
-2
-1
0
1
IFRI FC（A）FCID $\begin{array}{rrrr}2 & : 308 & -150 & -145 \\ 3 & : 331 & 309 & 301 \\ 4 & : 322 & -52 & 229 \\ 3 & : 313 & 235 & 237 \\ 2 & 310 & 52 & 58 \\ 1 & 330 & 280 & 286 \\ 0 & 134 & -138 & -134 \\ 1 & 634 & 104 & 104\end{array}$

 3
35
13
17
13
33
80
88
43
93
I

！！

$$
\begin{aligned}
& \text { Nよ } \\
& \text { N, }
\end{aligned}
$$

TABLE 9

Atomic coordinates of $\mathrm{B}-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (anisotropic model) (e.s.d's in parantheses)

	x / a	y / b	z / c
Cu	0	$0.3122(2)$	$1 / 2$
P	$0.1998(4)$	0	$-0.0883(6)$
01	0	0	0
02	$0.3759(9)$	0	$0.2161(17)$
03	$0.2035(10)$	$0.1533(7)$	$-0.2708(15)$

Thermal coordinates $\left(A^{2} \times 10^{4}\right)$

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Cu	$188(5)$	$65(4)$	$92(6)$	0	$-73(4)$	0
P	$84(7)$	$92(7)$	$62(8)$	0	$18(7)$	0
O1	$104(35)$	$1197(226) 292(78)$	0	$126(50)$	0	
O2	$75(15)$	$87(16)$	$71(20)$	0	$10(18)$	0
03	$296(24)$	$91(12)$	$121(19)$	$45(17)$	$23(20)$	$126(36)$

TABLE 10
Molecular geometry of $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (e.s.d's in parentheses)

Bond lengths (A)

$\mathrm{P}-\mathrm{O} 1$	$1.542(4)$	$\mathrm{Ol-O2}$	$2.43(3)$
$\mathrm{P}-\mathrm{O} 2$	$1.516(15)$	$01-03$	$2.47(3)$
$\mathrm{P}-03$	$1.503(15)$	$02-03$	$2.49(3)$
		$03-03^{\prime}$	$2.49(3)$

$\mathrm{Cu}-\mathrm{O} 2$	$2.003(15)$
$\mathrm{Cu}-03$	$1.937(15)$
$\mathrm{Cu}^{\prime}-03^{\prime}$	$2.577(15)$

Angles

$\mathrm{P}-\mathrm{O}-\mathrm{P}$	180°
$\mathrm{O} 1-\mathrm{P}-\mathrm{O} 2$	105.5°
O1-P-O3	108.7°
O2-P-O3	111.0°
O3-P-O3	111.8°

TABLE 11
Comparison of disordered model of $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ with the structure of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$.
(a) Configurational coordinates. The coordinates of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ are referred to the $\mathrm{B}-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ unit cell (e.s.d's in parantheses)

		x/a	y / b	z/c	B
Cu	β	0.0162 (2)	0.3122 (1)	-0.0144 (5)	0.40(2)
	α	0.0183 (2)	0.3134 (2)	-0.0138(3)	$0.39(2)$
P	β	0.1997 (3)	0.0073 (8)	-0.0886 (6)	0.48 (4)
	α	0.1979 (4)	0.0086 (4)	-0.0878(5)	0.13 (3)
01	β	0	0.0256 (23)	0	1.69 (24)
	α	0	0.0480 (24)	0	1.19 (19)
02	B	0.3760 (8)	0	0.2165 (17)	-
	α	0.3768 (10)	-0.0019(15)	0.2254 (18)	-
03	β	0.2043 (10)	0.1544 (7)	-0.2714(15)	-
	α	0.2223 (11)	0.1556 (12)	-0.2714(18)	-
		0.1782 (15)	$0.1530(14)$	-0.2834(10)	-

(b) Anisotropic thermal coordinates ($\mathrm{A}^{2} \times 10^{4}$)

		U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
02	β	$75(16)$	$86(17)$	$60(20)$	0	$4(18)$	0
O_{3}	β	$12(16)$	$180(47)$	$86(22)$	$-1(32)$	$-52(16)$	$41(45)$

* non-positive definite

CHAPTER 4: DETERMINATION OF THE CRYSTAL STRUCTURE OF $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
(A) Preliminary Investigation
$\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ shows the \underline{c} glide plane and doubled \underline{c} axis with respect to the β phase which are characteristic of the other phases of the family of "small cation" pyrophosphates. It is unique however in that the length of its a axis is triple that of the corresponding β phase. Studies of the phase transformation have shown that it is probably the most complex of the series. (Chambers, Datars and Calvo, 1964).

Crystals of $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ were prepared by the crystallization from the melt obtained from the decomposition of precipitated zinc ammonium phosphate. These crystals had their (110), (001) and (l0̄) faces (based on the β unit cell) sufficiently developed to permit optical alignment. Preliminary single crystal photographs showed the extinction conditions $h+k+\ell=2 n$ and for $k=0, \ell=2 n$ and thus the space group must be one of Ic or I2/c. All refinements reported here have been carried out in the noncentrosymmetric space group Ic. This non-primitive cell is chosen to preserve the same approximate unit cell axial directions as in the β phase.

Lattice parameters obtained from powder diffractometry have been reported by DeWolff (1958) for $\alpha-Z n_{2} P_{2} O_{7}$ for the C centered cell. These were converted to the the body centred unit
cell and used in the early stages of refinement. Since the accuracy of DeWolff's unit cell parameters was not known, they have been redetermined. The unit cell of $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is relatively large and it was therefore necessary to obtain well resolved powder lines if lattice parameters were to be obtained from Debye-Scherrer photographs. Some crystals were ground to a very fine powder and mixed with a solution of acetone and fingernail polish. When the mixture had partially dried it could be pulled into the shape of thin fibers. One of these fibers was used to obtaina four day Debye-Scherrer photograph. Sixteen powder lines were identified by comparing their θ values and intensities with θ values calculated from the lattice parameters of DeWolff and the intensities calculated from the partially resolved crystal structure. New lattice parameters were obtained from a least squares fit of the observed and calculated θ values. The observed and calculated values of θ and their indices are listed in Table l2. The lattice parameters obtained in this way are, $a=20.068 \pm .015 A$; $\mathrm{b}=8.259 \mathrm{~A} \pm .006 \mathrm{~A} ; \mathrm{c}=9.099 \mathrm{~A} \pm .008 \mathrm{~A}$, and $\beta=106.35^{\circ}$. These results differ by as much as 2% from those reported by DeWolff.
(B) Preparation of Data

A crystal of dimensions $0.13 \times 0.13 \times 0.35 \mathrm{~mm}^{3}$ was used to obtain photographs of the type hk0, hkl, hk2, $0 \mathrm{k} \ell$ and $h, k, k-h / 3$ with $M o k \alpha$ radiation and an integrating precession camera (Buerger, 1960). The intensities of the integrated reflections recorded in this manner were measured with a Leeds and Northrup Gl microdensitometer. Where possible, all equivalent reflections were measured and the averaged intensity used.

A second crystal of approximate dimensions $0.06 \times 0.06 \times 0.11 \mathrm{~mm}^{3}$ was glued to the end of a glass fibre and used to obtain Weissenberg photographs of the type hnl, $\mathrm{n}=1,2,3,4,5$ with Mo $\mathrm{K} \alpha$ radiation. Because of the wide variation in the intensities of the reflections, exposures of 27 hours were normally used and an additional photograph was taken of the (010) zone for 81 hours. The intensities of these reflections were measured by visual comparison using the logarithmic method (Robertson, 1965).

All of the data were corrected for the effects of Lorentz and polarization. Also, approximate corrections were made for the effects of absorption. The absorption coefficient for Mo $\mathrm{K} \alpha$ radiation in $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is $110 \mathrm{~cm}^{-1}$. In order to apply the absorption corrections, the first crystal was approximated by a sphere and the second crystal by a cylinder. No corrections were made for the effects of anomalous absorption. The standard errors of those reflections measured with the densitometer
were assigned as a constant fraction of the intensity divided by the square root of the number of times it was observed. The standard errors of the reflections measured visually were also assigned as a constant fraction of the intensity except that the errors of weak or very strong reflections was made between 50% and 100% larger depending on the accuracy with which the intensity could be observed.
(C) Refinement

The unit cell of $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ contains twelve formula units but the asymmetric unit contains three if the space group is Ic. Each of the three crystallographically independent formula units can be taken as defining one "layer" of the type described in Chapter $1(A)$. For convenience the three layers have been labelled successively A, B and C. Those reflections which were characteristic of the $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ unit cell in contrast to that of $\beta-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ were weak. This implies, as was the case in $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, that the α and β phases differ by modest atomic displacements. It should be possible then to generate the structure of $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ by making small perturbations to the structure of $\beta-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. For the same reasons as discussed in Chapter 3, these perturbations could not easily be found by direct interpretation of the normal Patterson function.

It is to be noted that the anisotropic thermal parameters of the atoms in $\mathrm{B}-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ are qualitatively similar to those of $\mathrm{B}-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. The only notable exceptions are the U_{33} components of the Ol atom. It was then assumed that the perturbation of the $\alpha-Z_{2} P_{2} O_{7}$ structure from the high symmetry form were similar in nature to the perturbations found in $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. It was observed of the crystal structure of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ which were partially resolved when this refinement was started, that the $\mathrm{P}-\mathrm{O}-\mathrm{P}$ group bends and both the cations in the same layer are displaced so as to
relieve the distortions introduced. That is, the cation that would now be nearest to the central oxygen atom is found to be moved from its β phase position such as to enlarge its Zn-Ol distance while the other cation in the layer moves so as to reduce its $\mathrm{Zn}-\mathrm{Ol}$ distance. The displacement of the cations was found to be in the a, c plane and that of the central oxygen atom primarily along the \underline{b} axis.

Crystallographically the cation displacements were easier to find and these were investigated first. Thus we must decide the relative sense of the displacement of the pair of Zn^{+2} ions in each layer since this determines the direction of the displacement of the central oxygen atoms in that layer. It was clear from the cationic thermal parameters in $\beta-Z n_{2} P_{2} O_{7}$ that this major displacement component should be in the $\underline{a}, \underline{c}$ plane. Since the direction of the displacement from their β phase positions of the pair of cations in one layer, if assumed equal and opposite, suffices to fix the origin, there remain four possible models involving the relative sense of the displacements of the cations in the two additional layers. In order to obtain a trial structure the pair of cations in layer A was displaced in the $\underline{a}, \underline{c}$ plane from colinearity with the \underline{b} axis the same distance as had been found in $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and the remaining cations were split into half atoms and these positioned so as to generate in superposition all four models. The weight attributed to the split cations at each of these positions were varied
by the method of least squares using data of the type hk0, hkl, hk2 and h0l. Where this weight or multiplicity was found to increase for one of the half atoms it was taken to mean that the cation should be placed there and the conjugate split cation in the same $\underline{a}, \underline{c}$ plane representing the other option for this cationic displacement should be eliminated. The positions of the cations in layer C were found in this manner. Those in layer B could not be found by this method, probably because the magnitude of their displacements was wrong.

The displacements from the β structure imposed upon the cations, and in addition the remainder of the structure, had to satisfy a constraint derived from the fact that in addition to the $0 k \ell$ reflections with $\mathrm{k}+\ell$ odd, absent due to space group requirements, almost all reflections with k odd and ℓ odd were also absent. This means that the unit cell when viewed in projection down the a axis appears to be halved in both the \underline{b} and \underline{c} directions. The structure in this projection,assumed closely related to that of the β phase, consists of three molecules superimposed near $\mathrm{y}=0$, $z=0 ; y=0, z=1 / 2 ; y=1 / 2, z=0$ and $y=1 / 2, z=1 / 2$. Thus the results of the body centering and the \subset glide plane operations on one of these groups of three molecules must result, or nearly so, in groups which in projection are related by a translation of $\underline{b} / 2$. An easy way to satisfy this constraint is for two of the pyrophosphate anions to be bent
equal and opposite along the \underline{b} direction and the third to have its entire bending within the $\underline{\text { a }}$, plane in such a fashion that the projected group itself has a mirror plane. The sign of the displacement of the first two was made consistent with the displacement of the cations as indicated above. The cations in layer B were left at the positions in which they are found in $\beta-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. The appearance of the cations when viewed down the a axis of this trial structure is shown in Figure 3.

The $0 k$ k data were added to that already in use and full matrix least squares refinement was attempted. The calculations diverged; that is, the agreement factors increased rather than decreased as would be expected if the proper trial structure had been chosen. An electron density map was prepared using data from the h0 $\begin{aligned} & \text { zone and small }\end{aligned}$ corrections were estimated for the x and z atomic coordinates of most of the atoms. The agreement factors with all the data measured to this point could now be lowered by successive cycles of least squares to about 0.20 .

The $h \mathrm{k} k-\mathrm{h} / 3$ and $\mathrm{hl} \ell$ layer lines were added and the data now numbered about 1800 reflections. Further refinement lowered the agreement index R_{1} to about 0.085. However, the molecular geometry calculated with the atomic coordinates at this point was not satisfactory. In particular, the $\mathrm{P}-0$ bond lengths varied from 1.45 to l. 65 A. The largest e.s.d's were those associated with the y coordinates. Also the effects
of pseudosymmetry probably made all the e.s.d's unrealistically small. The hnl data contain information about the nature of the deviations from the symmetry of the β phase and are most useful in reducing the effect of pseudosymmetry on the e.s.d's. The data of type hnl, $n=2,3,4,5$ were measured and added to the refinement. The molecular geometry was improved but still was not completely satisfactory. The data now numbered 3740 independent reflections. The twelve Zn^{+2} and P atoms were described by anisotropic thermal parameters and the twenty-one oxygen atoms were described by individual anisotropic temperature parameters. The structure was refined through several cycles of least squares calculations and after each cycle some atoms were moved so as to improve the molecular geometry.

The structure still displayed the pseudo mirror plane in projection down the \underline{a} axis but the manner in which atoms had been related by this operation in the model used to start the refinement was now completely changed. The Zn^{+2} and P atoms were still related in pairs, but the atoms contributing to these pairs were not those initially used in the trial structure. The relationship between the cations in the final structure is shown in Figure 3. The lighter oxygen atoms formed an approximate sphere of low electron density in projection down the \underline{a} axis, with no obvious relation between individual pairs of atoms. Only four Zn^{+2} atoms were significantly displaced from the twofold rotation axis which
passes through them in the β phase but all the $\mathrm{P}_{2} \mathrm{O}_{7}{ }^{-4}$ groups were bent out of the plane of the \underline{c} glide operation. The possibility that the space group was I2/c now had to be considered. In this space group there are two sets of centers of symmetry. One set is at the origin and the positions generaṭed from the origin by symmetry operators of the space group and the other set is displaced by $\frac{1}{4} \frac{1}{4} 0$ from these. A twofold screw axis passes through the point $\mathrm{x}=0$ and $\mathrm{z}=1 / 4$ and a two fold rotation axis passes through the point $\mathrm{x}=1 / 4$ and $\mathrm{z}=1 / 4$. In the β phase structure, referred to the α phase cell, centers of symmetry in $\mathrm{a} z=0$ plane are related by the translation $1 / 12,1 / 4,0$. An additional set is generated by adding $z=1 / 4$. The central oxygen atoms of the anion lie on alternate centers which are related by the C centering of the β phase. In $\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Calvo, 1967d), some of the centers relating adjacent anions remain but none of those within a given anion do. In the structure of $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ with the space group I2/C, since its centers of symmetry are not commensurate with those of $\mathrm{B}-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ some of these centers would have to relate different anions while some would lie within an anion. In fact this would mean that one-third of the anions would be constrained by symmetry to have linear $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bonds. Further, one pair of cations would then lie on'a twofold axis. Since this is contrary to the e.s.r. results reported by Chambers et.al. (1964), in that no principal axis is found to lie along
the \underline{b} axis at room temperature, this model can be rejected. In $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ the cations were found to be related by a center of symmetry whereas the anion possesses a twofold axis. In the analogous model for $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ one-third of the cations pairs that lie on the same twofold axis and are mirror plane related in the β phase, would now be related by a center of symmetry and one-third of the anions would have their central oxygen atom lying on a twofold axis. The model, together with the near absences of reflections with k or ℓ odd in the (100) zone would suggest that the two remaining anions should be bent in the $\underline{a}, \underline{c}$ plane. However this result is not consistent with the directions of apparent thermal motion found for the central oxygen atom in the high temperature phase, since the components U_{22} and U_{33} of the tensor $\underline{\underline{U}}$ are nearly equal.

The possibility that some of the pyrophosphate groups might be disordered was also considered. This would produce an effective statistical center of symmetry. It was noted that all the terminal oxygen atoms had moved such that the four oxygen atoms surrounding one phosphorous atom retained nearly tetrahedral symmetry. This also occurred in both $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. If the central Ol atom were disordered then the terminal oxygen atoms would also be disordered since their positions are constrained by the efforts of each half of the $\mathrm{P}_{2} \mathrm{O}_{7}^{-4}$ ion to retain tetrahedral symmetry. The manner in which the structure was refined could
have possibly given coordinates corresponding to only one of the two disordered positions. However, if this is the case, then the isotropic temperature factors of these disordered atoms should be large since their atomic positional coordinates only represent "half" an atom. This was not found to be true. Further, if the terminal oxygen atoms are assigned anisotropic temperature factors and refined by least squares, an ellipsoid of thermal vibration with a large principal axis should be generated. The thermal ellipsoid would encompass both "half" atoms, of the disordered atom if they are as close together as the halves of the disordered terminal oxygen atoms would be expected to be. This type of refinement was carried out but no such thermal ellipsoids were generated. It appears most unlikely then that the space group of $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ could be I2/C.

Subsequent refinements were carried out for the trial structure in space group Ic. The weighting scheme described by Cruickshank et. al.(1961) was now adopted. Separate coefficients in the expression

$$
\omega^{-1}(\underline{H})=A+B\left|F_{0}(\underline{H})\right|+C\left|F_{0}(\underline{H})\right|^{2}+D\left|F_{0}(\underline{H})\right|^{3}
$$

were used to describe the data measured visually and that measured with the aid of the microdensitometer. These coefficients are given in Table 13. The structure was refined until the corrections calculated for the least square variables were less than the estimated standard deviations. The magnitude of the observed and calculated structure factors
are given in Table 14. The final values of R_{1} and R_{2} defined in Chapter 1 were 0.082 and 0.098 respectively. Unobserved reflections were treated as described in Chapter 2(C). The final atomic configurational and thermal coordinates are given in Table 15. The bond length and bond angles calculated from these coordinates are given in Table 16 with the estimated errors obtained from the least squares analysis.
(D) The Correlation Problem

3740 reflections of which 1945 were recorded as observable have been used in this refinement, and the agreement factors are as low as would be expected from the accuracy with which the data was recorded. However, a number of bond lengths still do not appear satisfactory. In particular some of the phosphorus oxygen bond lengths, which should be similar since they would be chemically identical in an isolated $\mathrm{P}_{2} \mathrm{O}_{7}^{-4}$ ion , are widely divergent. Furthermore, the changes in the atomic positions which would be necessary to bring these bond lengths within reasonable agreement with each other are up to twice the combined e.s.d's of the atoms involved. The relatively inferior results of this refinement may arise from the pseudosymmetry which was mentioned earlier. Each atom of the $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ crystal structure (except the O_{1} atoms) is related to six other atoms in the assymetric unit by a pseudosymmetric operator which becomes a proper symmetry operator in the β phase. In particular, the three layers labelled A, B and C are all quite similar. A more quantitative understanding of this effect may be gained by the investigation of the correlation matrix defined in Appendix A. The off diagonal terms of the correlation matrix indicate the extent to which the i'th least square variables is dependent on the value of the j'th least square variable. The diagonal terms which describe the self correlation of a variable is 1.0. If the coordinates of an atom are related by pseudosymmetry
to the coordinates of other atoms, their off diagonal elements may be nearly as large. In $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, the off diagonal components of the correlation matrix showed that the position of each atom was highly correlated with the position of one other atom. Some of these non-diagonal elements were as high as 0.90 . The coordinates of each atom in layer A was correlated to coordinates of the atom in the same layer to which it would be related by the symmetry operators of the β phase. The atoms in layer B were correlated to the corresponding atom in layer C. There was no apparent relation between the high correlations and the aforementioned pseudo mirror plane in projection down the a axis.

One might expect that the least squares procedure would be inapplicable to this problem. In the derivation of the normal equations of the least squares analysis, we have assumed that these correlations are zero. Scheringer (1965) has discussed the problem and proposes that in a case such as this it may be necessary to use least squares variables which are only functionally dependent on the coordinates of the atoms describing the structure and such that they are independent of each other. One reason that the present analysis has apparently converged, may be that we have applied only one half of the calculated change to the coordinates after each least square cycle. The e.s.d's obtained from an analysis such as this are not realistic and thus the discrepancies in the molecular geometry are more likely to
arise from this circumstance than from a gross error in the location of individual atoms. The possibility of such a mistake was explored by calculating electron density and difference Fourier synthesis in projection down the \underline{b} and \underline{c} axis. No evidence was found for such a mistake. As will be discussed later, the accuracy of this structure analysis has been sufficient to determine information concerning the nature of the phase transformation in $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$.

It is to be noted that the occurrence of the correlation problem is not dependent on the absence of a center of symmetry in the structure since a similar effect has been found by Calvo (1967c) in $\alpha-\mathrm{Co}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, in which case the centric space group is unique.

TABLE 12

Observed and calculated Bragg angles used to determine the lattice parameters of $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$

h k ℓ	θ (obs)	$\theta($ calc)
$\overline{2} 11$	7.8887	7.9100
310	8.7405	8.7490
400	9.1889	9.2144
211	9.4594	9.4395
$0 \quad 0$	10.1684	10.1705
$\overline{4} 11$	10.6494	10.6557
$\begin{array}{lll}\overline{3} & 1\end{array}$	11.8819	11.8797
121	12.4205	12.4174
600	13.9011	13.8981
$\overline{4} 0.2$	11.6590	11.6683
$\overline{2} 13$	15.7198	15.7126
330	17.7365	17.7399
$\overline{8} 11$	18.7485	18.7343
$\overline{7} 21$	19.1268	19.1161
602	19.6178	19.6202
622	22.5889	22.5935

TABLE 13

Refinement data for $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$

$\mu=110 \mathrm{~cm}^{-1} \quad$ Space Group Ic
Number of observed reflections 1945
Total number of reflections 3740
Weighting curve coefficients

Densitometer data
$A=-47.13304$
$B=4.03539$
$C=-0.04548$
$D=0.00016$
R_{1} (observed reflections only)
0.0750
R_{1} (all reflections) 0.0816
R_{2} (observed reflections only) 0.0954
R_{2} (all reflections)
$A=56.57090$
$B=-1.36986$
$C=0.01498$
$D \stackrel{-0.00001}{ }=-1$

Visually measured data

Unobserved reflections whose calculated values were greater than the minimum observable value, $F(\min)$, in that area were replaced by $0.70 \times \mathrm{F}(\mathrm{min})$. Otherwise their weight was set as zero.

TABLE 14

Magnitudes of the observed and calculated structure factor for $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. The reflections which were too weak to be observed are marked with an asterisk. The structure factors divided by ten refer to the contents of one unit cell.

IFOI

IFEI IFC

ござ
？
－

FEI 1
CI

IF
$\stackrel{\square}{\square}$

IFCI

1101
IFCI

 ぶがー

[^0]FEI IFCI

IFQI IF
IFCI ～～～～

IF
IFCI
いごった

$1 F{ }^{2} \mathrm{HCl}$

IFCI IF
$31+c$

茳

 こavベッー

?

TABLE 15

Atomic coordinates of $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (e.s.d's in parentheses)
(a) Layer A

Configurated coordinates

	x / a	y / b	z / c	B
Zn(I)	$-0.0130(1)$	$-0.3122(5)$	$0.0232(2)$	-
Zn (II)	0.0130	$0.3117(6)$	-0.0232	-
P(I)	$-0.0661(2)$	$0.0153(12)$	$0.2940(6)$	-
P(II)	$0.0660(4)$	$0.0256(14)$	$0.2026(9)$	-
O1	$0.0010(12)$	$0.0874(15)$	$0.2437(27)$	$0.81(14)$
O2(I)	$-0.1242(10)$	$-0.0003(36)$	$0.1405(26)$	$1.08(29)$
O2(II)	$0.1233(7)$	$0.0103(30)$	$0.3537(18)$	$0.26(17)$
O3(CI)	$-0.0827(10)$	$0.1655(31)$	$0.3869(22)$	$1.13(27)$
O3(CII)	$0.0836(6)$	$0.1512(24)$	$0.1024(13)$	$-0.01(11) *$
O3(TI)	$-0.0461(6)$	$-0.1375(22)$	$0.3760(13)$	$0.35(13)$
O3(TII)	$0.0577(7)$	$-0.1416(24)$	$0.1152(15)$	$0.71(17)$

Anisotropicthermal coordinates ($\mathrm{A}^{2} \times 10^{4}$)

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{Zn}(\mathrm{I})$	$124(10)$	$1(20)$	$24(8)$	$-28(13)$	$6(7)$	$-34(14)$

TABLE 15 (continued)

(b) Layer B

Configurational coordinates

	x / a	y / b	z / c	B
Zn(I)	$0.1641(2)$	$0.1838(5)$	$0.0008(4)$	-
Zn(II)	$0.1829(2)$	$0.8112(5)$	$-0.0251(5)$	-
P(I)	$0.1016(3)$	$0.5075(12)$	$0.2824(7)$	-
P(II)	$0.2400(3)$	$0.5203(12)$	$0.2000(7)$	-
O1	$0.1648(6)$	$0.5607(24)$	$0.2134(13)$	$0.05(12)$
O2 (I)	$0.0399(8)$	$0.4969(33)$	$0.1414(19)$	$0.21(18)$
O2(II)	$0.2935(5)$	$0.5094(23)$	$0.3570(10)$	$-0.04(10)$
O3(CI)	$0.0969(7)$	$0.6509(29)$	$0.3852(17)$	$0.31(17)$
O3(CII)	$0.2530(11)$	$0.6575(42)$	$0.1055(26)$	$1.35(32)$
O3(TI)	$0.1197(8)$	$0.3535(29)$	$0.3696(17)$	$0.50(19)$
O3(TII)	$0.2372(11)$	$0.3627(35)$	$0.1153(26)$	$1.01(29)$

Anisotropicthermal coordinates ($A^{2} \times 10^{4}$)

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{Zn}(\mathrm{I})$	$101(10)$	$25(21)$	$41(11)$	$6(14)$	$-20(8)$	$-31(15)$
$\mathrm{Zn}(\mathrm{II})$	$47(9)$	$70(21)$	$75(12)$	$-34(12)$	$5(9)$	$-13(15)$
$\mathrm{P}(\mathrm{I})$	$96(17)$	$-32(35)$	$29(19)$	$-31(26)$	$34(15)$	$-126(25)$
P(II)	$-13(10)$	$65(38)$	$18(17)$	$-4(24)$	$14(12)$	$62(26)$

TABLE 15 (continued)

(c) Layer C

Configurational coordinates

	x / a	y / b	z / c	B
Zn (I)	$0.3181(2)$	$0.3106(5)$	$0.0228(5)$	-
Zn(II)	$0.3371(2)$	$0.3511(5)$	$-0.0011(5)$	-
P(I)	$0.2629(3)$	$-0.0156(14)$	$0.2964(8)$	
P(II)	$0.3980(3)$	$-0.0064(14)$	$0.2138(7)$	-
O1	$0.3352(11)$	$-0.0542(36)$	$0.2755(26)$	$1.56(32)$
O2(I)	$0.2156(6)$	$-0.0103(27)$	$0.1334(14)$	$0.50(15)$
O2(II)	$0.4596(9)$	$0.0075(34)$	$0.3568(22)$	$0.51(22)$
O3(CI)	$0.2457(7)$	$-0.1615(32)$	$0.3884(16)$	$0.22(15)$
O3(CII)	$0.4094(7)$	$-0.1531(20)$	$0.1221(18)$	$0.48(19)$
O3(TI)	$0.2668(10)$	$0.1465(35)$	$0.3817(25)$	$0.94(29)$
O3(TII)	$0.3848(10)$	$0.1429(37)$	$0.1179(23)$	$1.31(31)$

Anisotropicthermal coordinates $\left(A^{2} \times 10^{4}\right)$

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{Zn}(\mathrm{I})$	$109(11)$	$23(21)$	$54(12)$	$-40(12)$	$-34(9)$	$-8(15)$
$\mathrm{Zn}(\mathrm{II})$	$34(8)$	$104(23)$	$78(11)$	$-9(13)$	$26(7)$	$-40(16)$
$\mathrm{P}(\mathrm{I})$	$113(20)$	$71(41)$	$38(22)$	$15(33)$	$-10(18)$	$97(32)$
P(II)	$24(14)$	$175(55)$	$35(19)$	$31(27)$	$-27(13)$	$151(27)$

TABLE 16
Molecular geometry of $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$

Bond lengths (A)

	Layer A	Layer B	Layer C
P (I) -O1	1.65	1.63	1.55
P(II) -OI	1.54	1.58	1.57
P(I) -02 (I)	1.55	1.51	1.52
P(II) -02 (II)	1.53	1.53	1.53
$\mathrm{P}(\mathrm{I})-03$ (CI)	1.59	1.53	1.56
P(II) -03 (CII)	1.49	1.51	1.53
P(I) -03 (TI)	1.46	1.49	1.54
P(II)-03 (TII)	1.58	1.49	1.49
(average error 0.04 A)			
O1-02 (I)	2.53	2.46	2.41
Ol-O2 (II)	2.46	2.58	2.45
O1-O3(CI)	2.48	2.46	2.47
Ol-O3 (CII)	2.43	2.39	2.46
Ol-O3 (TI)	2.54	2.55	2.51
Ol-O3 (TII)	2.64	2.51	2.55
O2 (I) -03 (CI)	2.54	2.53	2.55
O3 (II)-03 (CII)	2.49	2.53	2.48
O2 (I) -03 (TI)	2.54	2.52	2.47
O2 (II)-03 (TII)	2.53	2.49	2.53
O3 (CI) -O3 (TI)	2.62	2.51	2.57
O3 (CII)-03 (TII)	2.48	2.46	2.49
(average error 0.07A)			

TABLE 16 (continued)

Note: Primed 03 atoms are in adjacent layers to cations

$\mathrm{Zn}(\mathrm{I})-\mathrm{O} 2$ (I)	2.03	2.09	2.06
$\mathrm{Zn}(\mathrm{I})-\mathrm{O} 2$ (II)	2.08	2.10	2.08
$\mathrm{Zn}(\mathrm{I})-03(1)$	2.00	2.00	1.95
$\mathrm{Zn}(\mathrm{I})-\mathrm{O3}(2)$	2.01	2.14	2.03
$\mathrm{Zn}(\mathrm{I})-03^{\prime}$ (1)	2.02	2.09	2.07
$\mathrm{Zn}(\mathrm{I})-03^{\prime}$ (2)	3.35	2.17	3.32
$\mathrm{Zn}(\mathrm{I})-\mathrm{Ol}$	3.22	3.36	3.18
Zn(II) -O2 (I)	2.10	2.04	1.99
Zn(II)-O2 (II)	2.07	2.02	2.07
Zn (II) -03 (1)	1.93	1.92	2.07
Zn (II) -03 (2)	2.04	2.02	2.07
$\mathrm{Zn}(\mathrm{II})-03^{\prime}$ (1)	2.10	2.12	2.14
$\mathrm{Zn}(\mathrm{II})-03^{\prime}$ (2)	3.21	3.15	2.18
Zn (II) - Ol	3.12	3.09	3.34

(average error 0.06 A)
Angles

	Layer A	Layer B	Layer C
P(I)-O1-P (II)	139°	147°	150°
O1-P (I)-O2 (I)	104°	103°	104°
O1-P(II)-O2(II)	106°	112°	105°
O1-P (I)-O3(CI)	100°	102°	105°
O1-P(II)-O3(CII)	106°	102°	105°

TABLE 16 (continued)

Ol-P (I)-O3 (TI)	109°	110°	109°
Ol-P (II)-03 (TII)	116°	109°	113°
O 2 (I) - P (I) - O 3 (CI)	109°	113°	112°
O2 (II) -P (II) -O3 (CII)	111°	113°	$109{ }^{\circ}$
O2 (I) -P (I) -O3 (TI)	115°	115°	113°
O2 (II) -P (II)-O3 (TII)	109°	110°	114°
O3 (CI) -P (I) -O3 (TI)	118°	113°	113°
O3 (CII) -P (II)-03 (TII)	108°	110°	111°

Figure 3
Schematic representation of the appearance of the cations of in projection down the a axis in the "trial" and "final" structures

CHAPTER 5: CRYSTAL CHEMISTRY OF "SMALL CATION" PYROPHOSPHATES

(A) Description of Structures

The general description of the structure of thortveitite was given in Chapter $1(A)$. This description applies to $B-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ as it does to the other high temperature members of this series, and the structures of the low temperature forms are similar. Here we shall compare the small differences between the high temperature structures and in turn compare them with the structures of the low temperature forms of $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, and $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. Of particular interest are the nature of the differences in the distortion of the environment of the cation, the thermal motion of the central oxygen atom in the β phase and the $P-O-P$ angle of the α phase. The pertinent bond lengths and interatomic angles of the structures of $\mathrm{B}-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{~B}-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{Mn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ are compared with those of $B-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ in Table 17.

In the β phase, the distortion of the octahedral environment of the cations consists of (a) an elongation of the bonds to two oxygen ligands "O'3"on opposite sides of the cation and (b) a rotation of the pair of 03 ligands about the twofold axis by angles of the order of 25° from the positions they would occupy if the octahedron were regular. The significance of the long bonds, to be referred to as the M-O' 3 bonds, in all the β phases may be further understood
by comparing their structure with that of $\mathrm{PbSb}_{2} \mathrm{O}_{6}$
(Magneli, 1941). If we replace the $\mathrm{x}-\mathrm{O}-\mathrm{X}$ group, in compounds with the formula $\mathrm{M}_{2} \mathrm{X}_{2} \mathrm{O}_{7}$, by the single Pb^{+2} ion, the structures are now similar and the octahedra of oxygen atoms surrounding the Sb^{+5} ions are nearly regular. It is then easily seen from Figure 4 that the structure of $\mathrm{M}_{2} \mathrm{X}_{2} \mathrm{O}_{7}$ must accommodate the strain caused by the anisotropic shape of the $\mathrm{x}-\mathrm{O}-\mathrm{x}$ group, rather than the spherical Pb^{+2} ion, by elongating the $\mathrm{M}-\mathrm{O} 3^{\prime}$ bonds. All the β phase structures show longer axial cation oxygen bond lengths, that is the M -o' ${ }^{\prime}$ bonds, than equatorial bonds. The case of $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is, however, extreme. Here the axial bond lengths are 2.58 A and the equatorial average 1.9 A. This extra distortion is manifested in an anomalous ratio of the a to b axial lengths as compared to other structures having the thortveitite structure (Au and Calvo, 1967). These long bonds are nearly parallel to the P-Ol bonds. Other effects of the long $\mathrm{M}-\mathrm{O}_{3}^{\prime}$ bonds are to decrease the length of these P -Ol bonds in $\mathrm{B}-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and to increase the length of the vector $\underline{a}-\underline{c}$ as may be seen by inspection of Tables 17 and 2. Cruickshank's curve predicts $P-O(-P)$ and P-O bond length of 1.58 A and 1.53 A respectively for a linear $\mathrm{P}-\mathrm{O}-\mathrm{P}$ group. All of the $\mathrm{P}-\mathrm{O}(-\mathrm{P})$ bond lengths in Table 17 are shorter than their predicted value by 0.01 to 0.04 A . However, these are not necessarily the true time averaged bond lengths because the 01 atoms of each structure shows a large component of motion perpendicular to the $\mathrm{P}-\mathrm{P}$
vector. In order to make the proper correction, it is necessary to know the manner in which the motion of the Ol atoms is correlated with the motion of the P atoms.

However, we can make a minimum correction without such knowledge (Busing and Levy, 1964). This correction increases the $\mathrm{P}-\mathrm{O}(-\mathrm{P})$ distance in $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ to 1.564 A . Minimum corrections for thermal motion calculated for the terminal $\mathrm{P}-\mathrm{O}$ bond lengths are not significant. In $\mathrm{Mn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}, \beta-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{B}-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, the average length of the $\mathrm{P}-\mathrm{O}$ bonds in the anion is significantly greater than the predicted average of 1.53 A for the isolated $\mathrm{P}_{2} \mathrm{O}_{7}^{-4}$ group. This suggests some delocalization of electrons toward the cation. One would not expect the behaviour of $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ to be different from the other members of the group. However, the proper corrections for thermal motion would possibly bring $B-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ more in line with the others. For instance, corrections based on an "uncorrelated model" increase the P-O2 and P-O3 bond lengths to 1.528 and 1.526 A respectively.

A further indication of the dependence of the chemistry of the anion on its crystalline environment is provided by an examination of the manner in which two cations and one phosphorus atom are bonded to each terminal oxygen atom. In Table 18 are tabulated the three angles subtended by its three ligands at each independent terminal oxygen atom of some of the pertinent structures. In each case the sum of the angles total nearly 360°, indicating a nearly planar
distribution of the four atoms. The terminal oxygen atom would then be expected to have some sp^{2} hybridization although the individual angles deviate considerably from the ideal 120°. If the terminal oxygen atoms are partially sp^{2} hybridized, the total number of electrons in the anion would be affected. It appears then that the deviations from the predicted bond lengths arise from the effects of the environment, which were not considered by Cruickshank, and the fact that the $P-0-P$ angle is not necessarily 180°.
(B) Comparison of Low Temperature Structures The c glide plane and the doubled c axis is common to all the low temperature structures of the "small ion" pyrophosphates. Further, in each case they only contain bent P-O-P groups in the anions. Thus the \subset glide plane might be closely related to the bending of the pyrophosphate ion. For the purpose of discussion the structures may be considered to consist of layers perpendicular to the \underline{a}^{*} vector and cutting the unit cell at $x=0$ and $\frac{1}{2}$. The cations and 01 atoms lie nearly at the middle of these layers.

The c glide plane in the $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ structure may now be constructed from the mirror plane in the $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ structure in the following way. One central oxygen atom is first displaced along the positive \underline{b} direction by $0.39 \AA$ (\#1 in Figure 4). In order to retain pseudo-tetrahedral symmetry about the phosphorus atoms, the terminal oxygen atoms must be rotated about an axis perpendicular to the $\mathrm{P}-\mathrm{P}$ vector and the \underline{b} axis, and which also passes through the P atom. The largest effect of this operation is to move the \mathbb{O} atoms about 0.16 A in the $\underline{a}-\underline{c}$ direction (\#2 in Figure 4). At one end of the anion each member of the pair of 03 atoms moves in opposite directions by an equal amount. These oxygen atoms are each bonded to one Cu^{+2} cation in the same layer. The cations are then moved by almost equal amounts in the same direction as their respective 03 atoms (\#3 in Figure 4). The 03 atoms bonded to the other side of the
cations must also be moved in the same direction and by an equal amount (\#4 in Figure 4). This rotates one end of the $\mathrm{P}_{2} \mathrm{O}_{7}{ }^{-4}$ groups removed from the first by $\mathrm{c} / 2$ but in the opposite sense. This displaces the $O l$ atoms of these anions in the opposite direction to the displacement of the first (\#5 in Figure 4). This mechanism generates the c glide plane and the double periodicity in the c direction. The octahedra of ligands surrounding the two cation bonded through the 03 atoms of one anion, share edges with two other octahedra. The cations of these octahedra are each displaced in the opposite direction from the direction of displacement of those cations in the first two octahedra (Figure 13). The displacements of all atoms in one layer are then interdependent. The displacements of the cations and the 03 atoms are both in the same direction as those of the long $\mathrm{Cu}^{+2}-\mathrm{O}^{\frac{1}{3}}$ bonds, which is nearly the \underline{a} - c direction, and have a very marked effect on these bonds. The two atoms which make up each of these bonds are moved in opposite directions such that half of the bonds are shortened from 2.58 A to 2.32 A and the other half are lengthened to 2.94 A . This is an abnormally long distance for a $\mathrm{Cu}^{+2}-\mathrm{O}$ bond. Since there is only one independent Cu^{+2} site in $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, each cation has five ligands within 2.32 A and one at 2.94 A . The $\mathrm{P}-\mathrm{O}(-\mathrm{P})$ distance of 1.577 A in $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is slightly longer than in the high temperature form. The $\mathrm{P}-\mathrm{O} 2$ bond length has increased significantly from 1.516 A in
$B-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ to 1.552 in $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. This change is not generated by the bending of the anion from its configuration in $B-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. It involves a shift of the 02 atom in the C direction a distance of 0.05 A towards the Cu^{+2} cation. This is the largest atomic shift not associated with the bent anion and its explanation may be in the different temperature at which the structures were observed. Since the $P-0-P$ angle in $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is 156° the $\mathrm{P}-\mathrm{O}(-\mathrm{P})$ separations, according to Cruickshanks curve, should lie between 1.58 and 1.64 A which correspond to $\mathrm{P}-0-\mathrm{P}$ angles of 180° and 120° respectively, Similarly the P-O separations should be between 1.51 and 1.53 A respectively. If corrections for thermal motion could be made to the data, all of these bond lengths except that of the $\mathrm{P}-02$ bond would probably lie within their predicted limits.

The structure of $\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ as reported by Calvo (1967d) is similar to that of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. The pertinent bond angles and interatomic angles of $\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ are presented in Table 19. The space group $B 2_{1} / \mathrm{c}$ is centrosymmetric. The anions are bent but the displacement of the central oxygen atom from its centric position in $\beta-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is not restricted to lie along a twofold rotation axis in the \underline{b} direction as in $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. Nevertheless, the component of this displacement in the $\underline{a}, \underline{c}$ plane is small. The doubling of the \underline{a} axis and the change in symmetry gives rise to two independent cation sites. One cation maintains octahedral coordination with
nearest neighbour distances ranging from 2.062 to 2.150 A . The other Mg^{+2} ion is five coordinated. One of the ligands bonded to this cation by one of the long $\mathrm{Mg}^{+2}-\mathrm{O} 3$ bonds of length 2.15 A in $\beta-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is 3.35 A away in $\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. The sixth nearest neighbour to this cation is, in fact, an Ol atom at a distance of 3.057 A . The α phase may obtain some degree of stabilization from the interaction of the Ol atom and the cation. The other five bonds to the five coordinated cations range from 1.985 to 2.120 A . The bonding between the cation and the 0 ' 3 atom at a distance of 3.354 A is either non-existent or severely weakened. This should allow the other bonds to the O'3 atom to be strengthened. Its P-O'3 bond length and the nearest cation distance are 1.469 A and 1.985 A respectively. These are the shortest phosphorous oxygen and cation oxygen distances in $\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. In contrast, there is no short terminal $\mathrm{P}-\mathrm{O}$ bond length in $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. The $\mathrm{P}-\mathrm{O}-\mathrm{P}$ angle in $\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is 144°. One would expect the $P-O(-P)$ distances to be slightly greater than in $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. They are 1.610 A and 1.571 A as opposed to 1.577 A in $\mathrm{B}-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. Except for the short $\mathrm{P}-\mathrm{O}_{3}$ bond length of 1.469 A , the $\mathrm{P}-0$ bonds do not deviate significantly from the predicted range of 1.51 A to 1.53 A . The structures of $\alpha-\mathrm{Ni}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Eukaszewicz, 1967a) and $\alpha-\mathrm{Co}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Calvo, 1967c) are very similar to that of $\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. Both structures are only partially refined and will not be discussed here.

As is the case in the low temperature structures
described above, the \underline{c} glide plane in $\alpha-Z n_{2} P_{2} O_{7}$ is generated by bent $\mathrm{P}_{2} \mathrm{O}_{7}^{-4}$ anions and is transmitted throughout the crystal by the displaced cation octahedra. Two of the six independent cations have octahedral coordination with $\mathrm{Zn}^{+2}-0$ bond lengths ranging from 1.99 A to 2.18 A . The four other cations are five coordinated with bond lengths ranging from 1.92 A to 2.12 A and each has a long $\mathrm{Zn}^{+2}-03$ bond which would be 2.28 A long in $\beta-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and which has been lengthened to about $3.25 \pm 0.10 \mathrm{~A}$ in $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. Also an O atom is within $3.16 \pm 0.06 \mathrm{~A}$ of these cations. $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ has the smallest fraction of octahedrally coordinated cations. Because of correlation problems discussed in Chapter 4, the resolution of the oxygen atoms in $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is not sufficient to make a meaningful comparison of the individual $\mathrm{P}-\mathrm{O}$ bond lengths and the predicted values. However, the average $\mathrm{P}-\mathrm{O}(-\mathrm{P})$ and $\mathrm{P}-\mathrm{O}$ bond lengths which are 1.58 A and 1.53 A , agree well. The three independent $\mathrm{P}-\mathrm{O}-\mathrm{P}$ angles are $139^{\circ}, 147^{\circ}$ and 150°. If the effects of thermal vibrations are ignored, the low temperature structures would appear to be in better agreement with Cruickshank's predictions than the high temperature structures. The main differences between the structures of the α forms of $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ are associated with the way they transform to the β phase and will be discussed further in Chapter 8. The geometries of the anions as found in each of these structures are compared in Figure 5.

TABLE 17

Molecular geometry of the high temperature forms of the "small cation" pyrophosphates, $\mathrm{M}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (e.s.d's in parantheses)
(a) Bond lengths (A)

M	Mn^{+2}	Mg^{+2}	Zn^{+2}	Cu^{+2}
$\mathrm{M-O2}$	2.14	2.05	2.061	$2.003(15)$
M^{+03}	2.11	2.02	2.001	$1.936(15)$
M-O3 $^{\prime}$	2.27	2.15	2.275	$2.577(15)$

$\mathrm{P}-\mathrm{O1}$	1.57	$1.557(2)$	$1.569(5)$	$1.542(4)$
$\mathrm{P}-02$	1.57	$1.534(10)$	$1.556(19)$	$1.516(15)$
$\mathrm{P}-03$	1.54	$1.542(9)$	$1.554(13)$	$1.503(15)$

(b) Angles

O1-P-O2	104.8°	103.3°	102.1°	105.5°
O1-P-O3	108.2°	106.8°	110.0°	108.7°
O2-P-O3	113.0°	113.3°	110.9°	111.0°
O3-P-O3	109.1°	112.6°	112.6°	111.8°

Source
$\mathrm{Mn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ - Further refinement of the results of छukaszewicz and Smajkiewicz (1961) with some additional data added.
$B-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ - Calvo 1965c
$\beta-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7} \quad$ - Calvo 1965 b

TABLE 18

Sums of angles subtended at terminal oxygen atoms of the pyrophosphate ion in some "small cation" pyrophosphates.
(a) $\mathrm{B}-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$

$\mathrm{P}-\mathrm{O} 2-\mathrm{Cu}$	129.6°	$\mathrm{P}-03-\mathrm{Cu}$	118.1°
$\mathrm{P}-\mathrm{O} 2-\mathrm{Cu}^{\prime}$	129.6°	$\mathrm{P}-03-\mathrm{Cu}^{\prime}$	135.6°
$\mathrm{Cu}-\mathrm{O} 2-\mathrm{Cu}^{\prime}$	$\frac{99.8^{\circ}}{359.0^{\circ}}$	$\mathrm{Cu}-03-\mathrm{Cu}^{\prime}$	$\frac{103.2^{\circ}}{356.9^{\circ}}$

(b) $\quad \alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$

$\mathrm{P}-\mathrm{C} 2-\mathrm{Cu}$	126.2°	$\mathrm{P}-031-\mathrm{Cu}$	124.4°
$\mathrm{P}-02-\mathrm{Cu}^{\prime}$	131.6°	$\mathrm{P}-031-\mathrm{Cu}^{\prime}$	130.3°
$\mathrm{Cu}-\mathrm{O} 2-\mathrm{Cu}^{\prime}$	$\frac{100.9^{\circ}}{358.7^{\circ}}$	$\mathrm{Cu}-031-\mathrm{Cu}^{\prime}$	$\frac{101.8^{\circ}}{}$
	356.5°		

$\mathrm{P}-032-\mathrm{Cu} \quad 110.2^{\mathrm{O}}$
P-032-Cu $\quad 142.6^{\circ}$
$\begin{array}{cc}\mathrm{Cu}-032-\mathrm{Cu}^{\prime} \quad & \frac{103.7^{\circ}}{356.5^{\circ}}\end{array}$
(c) $\quad \alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{I})-\mathrm{O} 2(\mathrm{I})-\mathrm{Mg}(\mathrm{II}) \quad 128.6^{\circ} \quad \mathrm{P}(\mathrm{II})-\mathrm{O}(\mathrm{II})-\mathrm{Mg}(\mathrm{II}) \quad 128.1^{\circ} \\
& P(I)-02(I)-M g(I) \quad 132.1^{\circ} \quad P(I I)-O 2(I I)-M g(I) \quad 132.6^{\circ} \\
& \operatorname{Mg}(I)-O 2(I)-M g(I I) \frac{98.8^{\circ}}{359.5^{\circ}} \quad \operatorname{Mg}(I)-O 2(I I)-M g(I I) \quad \frac{97.8^{\circ}}{358.5^{\circ}} \\
& P(I)-03(C I)-\mathrm{Mg}^{\prime}(\mathrm{I}) \quad 128.7^{\circ} \quad \mathrm{P}(\mathrm{II})-\mathrm{O}(\mathrm{CII})-\mathrm{Mg}(\mathrm{II}) \quad 124.2^{\circ} \\
& \mathrm{P}(\mathrm{I})-\mathrm{O}(\mathrm{CI})-\mathrm{Mg}(\mathrm{I}) \quad 127.9^{\circ} \\
& P(I I)-03(C I I)-M g(I) \quad 129.6^{\circ} \\
& \operatorname{Mg}(I)-O 3(C I)-\mathrm{Mg}^{\prime}(\mathrm{I}) \frac{102.4^{\circ}}{359.0^{\circ}} \quad \mathrm{Mg}(\mathrm{I})-\mathrm{O}(\mathrm{CII})-\mathrm{Mg}(\mathrm{II}) \frac{102.1^{\circ}}{355.9^{\circ}}
\end{aligned}
$$

TABLE 18 (continued)
$\mathrm{P}(\mathrm{II})-\mathrm{O}(\mathrm{TI})-\mathrm{Mg}^{\prime}(\mathrm{II})$
$\mathrm{P}(\mathrm{II})-03(\mathrm{TI})-\mathrm{Mg}(\mathrm{II})$
$\mathrm{Mg}(I I)-03(T I)-\mathrm{Mg}^{\prime}(I I)$
(d) $\quad \alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
$\mathrm{P}(\mathrm{I})-\mathrm{O} 2(\mathrm{I})-\mathrm{Zn}(\mathrm{I})$
P(I) -O2 (I) $-\mathrm{Zn}(\mathrm{II})$
$\mathrm{Zn}(\mathrm{I})-\mathrm{O} 2(\mathrm{I})-\mathrm{Zn}(\mathrm{II})$
$P(I I)-O 2(I I)-\mathrm{Zn}(I)$
$P(I I)-O 2(I I)-\mathrm{Zn}(I I)$
$\mathrm{Zn}(I)-02(I I)-\mathrm{Zn}(I I)$
$\mathrm{P}(I I)-02(I I)-\mathrm{Zn}(I)$
$\mathrm{P}(I I)-02(I I)-\mathrm{Zn}(I I)$
$\mathrm{Zn}(I)-02(I I)-\mathrm{Zn}(I I)$
$\mathrm{P}(I I)-02(I I)-\mathrm{Zn}(I)$
$\mathrm{P}(I I)-02(I I)-\mathrm{Zn}(I I)$
$\mathrm{Zn}(I)-02(I I)-\mathrm{Zn}(I I)$
$P(I)-03(C I)-\mathrm{Zn}(I)$
P(I) -03 (CI) -Zn (II)
$\mathrm{Zn}(\mathrm{I})-\mathrm{O} 3(\mathrm{CI})-\mathrm{Zn}(\mathrm{II})$

P(II)-03(CII)-Zn(I)
P(II)-03(CII)-Zn(II)
$\mathrm{Zn}(\mathrm{I})-03$ (CII)-Zn(II)
$P(I)-03(T I)-\mathrm{Zn}(I)$
$\mathrm{P}(\mathrm{I})-\mathrm{O}(\mathrm{TI})-\mathrm{Zn}(\mathrm{II})$
$\mathrm{Zn}(\mathrm{I})-03(T I)-\mathrm{Zn}(I I)$
$164.4^{\circ} \mathrm{P}(\mathrm{II})-03(\mathrm{TII})-\mathrm{Mg}(\mathrm{II})$
113.9°
94.2°
P(II) -03 (TII) -Mg (I)
144.8°
$\frac{100.0^{\circ}}{358.6^{\circ}}$
$\operatorname{Mg}(\mathrm{I})-\mathrm{O} 3(\mathrm{TII})-\mathrm{Mg}($ II $) \frac{98.5^{\circ}}{357.2^{\circ}}$

Layer A	Layer B	Layer C
134.7°	125.8°	131.1°
$125.1{ }^{\circ}$	$129.1{ }^{\circ}$	131.0°
100.2°	101.3°	97.9°
360.0°	356.2°	360.0°
134.1°	126.7°	131.1°
127.6°	133.6°	$124.4{ }^{\circ}$
$98.3{ }^{\circ}$	97.0°	100.5°
360.0°	357.3°	356.0°
126.1°	134.7°	129.0°
127.1°	123.4°	124.3°
98.9°	$\underline{100.8}{ }^{\circ}$	99.9°
352.1°	358.9°	353.2°
135.0°	127.7°	128.7°
123.3°	127.8°	127.6°
$99.8{ }^{\circ}$	$\underline{100.3}{ }^{\circ}$	$\underline{100.4}{ }^{\circ}$
358.1°	355.8	356.7°
159.0°	101.9°	141.7°
100.1°	154.0°	$114.4{ }^{\circ}$
100.0°	102.1^{0}	100.6°
359.1°	358.0°	356.7°

TABLE 18 (continued)

$P(I I)-03(T I I)-\mathrm{Zn}(I)$	135.0°	140.3°	127.6°
$P(I I)-03(T I I)-\mathrm{Zn}(I I)$	123.3°	117.9°	128.7°
$\mathrm{Zn}(\mathrm{I})-03(\mathrm{TII})-\mathrm{Zn}(I I)$	$\underline{99.8^{\circ}}$	$\underline{99.6}^{\circ}$	$\underline{100.4^{\circ}}$
	358.1°	357.8°	356.7°

TABLE 19
Molecular geometry of $\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (from Calvo, 1967d)
(a) Bond lengths (A)

P (I) -O1	1.610	O1-02 (I)	2.46
P(II) -OI	1.571	O1-O2 (II)	2.51
$\mathrm{P}(\mathrm{I})-02(\mathrm{I})$	1.533	O1-O3 (CI)	2.47
P(II) -O2 (II)	1.532	O1-03 (CII)	2.41
P(I)-03 (CI)	1.502	Ol-O3 (TI)	2.51
P(II)-03 (CII)	1.525	Ol-O3 (TII)	2.53
P(I) -03 (TI)	1.469	O2 (I) -03 (CI)	2.52
P(II)-03 (TII)	1.517	O2 (II)-03 (CII)	2.55
		O2 (I) -03 (TI)	2.53
		O2 (I) -03 (TII)	2.52
		O3 (CI)-03 (TI)	2.46
		O3 (CII)-O3 (TII)	2.51
$\mathrm{Mg}(\mathrm{I})-\mathrm{O} 2(\mathrm{I})$	2.066	Mg (II)-O2 (I)	2.047
Mg (I) - O 2 (II)	2.086	Mg (II) - O2 (II)	2.057
$\mathrm{Mg}(\mathrm{I})-\mathrm{O}$ (CI)	2.062	Mg (II) -03 (CII)	2.026
$\mathrm{Mg}(\mathrm{I})-\mathrm{O} 3^{\prime}$ (CI)	2.140	Mg (II)-03 (TI)	3.354
Mg (I)-03 (CII)	2.129	Mg (II)-03 ${ }^{\prime}$ (TI)	1.985
Mg (I) -O3 (TII)	2.150	$\mathrm{Mg}(\mathrm{II})-03$ (TII)	2.120
		Mg (II) - Ol	3.057

TABLE 19 (continued)

b Angles

$$
\begin{array}{ll}
\mathrm{P}(\mathrm{I})-\mathrm{Ol-P}(\mathrm{II}) & 144.1^{\circ} \\
\mathrm{Ol-P}(\mathrm{I})-\mathrm{O}(\mathrm{I}) & 102.8^{\circ} \\
\mathrm{Ol-P}(\mathrm{II})-\mathrm{O2}(\mathrm{II}) & 107.8^{\circ} \\
\text { Ol-P (I)-O3(CI) } & 105.8^{\circ} \\
\text { O1-P (II)-O3(CII) } & 102.4^{\circ} \\
\text { Ol-P (I)-O3(II) } & 109.3^{\circ} \\
\text { O1-P (II)-O3(TII) } & 110.2^{\circ}
\end{array}
$$

$\mathrm{O} 2(\mathrm{I})-\mathrm{P}(\mathrm{I})-\mathrm{O}(\mathrm{CI}) \quad 114.8^{\mathrm{O}}$
O2 (II) -P (II) -O3 (CII) 111.2°
$\mathrm{O} 2(\mathrm{I})-\mathrm{P}(\mathrm{I})-\mathrm{O}(\mathrm{TI}) \quad 112.0^{\circ}$ 02 (II) -P (II) -O3 (TII) 113.3°
$\mathrm{O} 3(\mathrm{CI})-\mathrm{P}(\mathrm{I})-\mathrm{O} 3(\mathrm{TI}) \quad 111.9^{\circ}$
03 (CII) -P (II) -03 (TII) 111.5°

Figure 4
The structure of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ showing the generation of the \underline{c} glide plane. The large open circles represent oxygen atoms, the small open circles represent the cations and the small solid spheres are the phosphorus atoms.
$\mathrm{Or} \mathrm{Cu}_{2} \mathrm{RHO}_{7}$

Figure 5
The geometry of the pyrophosphate anion in the low temperature forms of the "small cation" pyrophosphates. The atoms are represented as in Figure 4. The two-fold axis through Ol in $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is indicated.

The structure of $\begin{array}{r}a-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7} \text { in projection down the } b \text { axis. The atoms } \\ \text { are represented as in Figure } 4\end{array}$

The structure of $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ in projection down the \underline{b} axis.
The atoms are represented as in Figure 4.

CHAPTER 6: DIFFUSE STREAKS IN $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$

(A) Investigation of the Phase Transformation

The occurrence of a phase transformation in $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ was originally mentioned by Roy et. al. (1948). The details of the transformation as reported here were found by observing its single crystal diffraction pattern as a function of temperature which indicated that the unit cell halved along the c axis at about $70^{\circ} \mathrm{C}$ (Robertson, 1965). This phase change is manifested by a disappearance of those reflections having indices with ℓ odd when referred to the α unit cell. It should be noted that because of the doubled \subset axis, these reflections would have half integral values of ℓ when referred to the β unit cell.

The heating apparatus in these experiments consisted of a coil of nichrome wire mounted in the end of a layer line screen and the current was supplied by a "powerstat" transformer. With this apparatus, it was difficult to maintain a constant temperature and to accurately monitor the absolute temperature. Further experiments, overcoming these difficulties, have been carried out using a Nonius "Hi-Lo" Weissenberg camera. This camera is fitted with an attachment consisting of a double-walled silvered glass cylinder which is inserted inside the layer line screen and adjusted to be within a few millimeters of the crystal. An
inert gas is flushed down the axis of the cylinder and heated by a resistance coil coaxial with and within the dewar. A A copper constantan thermocouple extends slightly beyond the axis of the cylinder. It was found that this thermocouple gave temperature readings which were approximately 10% too high. In order to calibrate the system another thermocouple was substituted at the position of the crystal and the temperature difference recorded as the overall temperature was changed. It was found that the thermocouples differed by about $12^{\circ} \mathrm{C}$ in the temperature region of interest with the thermocouple in the dewar reading higher. Later experiments with a crystal in thermal contact with a thermocouple showed that the readings taken with the thermocouple located in the dewar were, in fact, about 8° higher than the actual temperature of the crystal. The errors in temperature were assumed to be caused by thermal conduction in the large thermocouple leads which caused the thermocouples to act as heat sinks. The thermocouple in the dewar was heated by radiation from the resistance coil in the dewar. Temperatures quoted below have been measured at the crystal or were corrected by the subtraction of roughly $8^{\circ} \mathrm{C}$ from the temperature as measured with the thermocouple in the dewar.

A crystal was mounted on a glass fiber with Stycast 2651 high temperature cement and aligned about the [ill] axis. In this orientation only the odd layer lines contain reflections with ℓ odd. In order to ensure that the proper conditions for
diffraction existed and to observe reflections which were sensitive to the phase transformation, both the o'th and first layer lines were allowed to pass through the layer line screen to the recording film.

It was observed on a twenty hour exposure taken at $77 \pm 3^{\circ} \mathrm{C}$ that the first layer line had disappeared and all of the reflections of that layer line had been replaced by very faint streaks. Further study of these streaks was warranted but their low intensity made it necessary to optimize the experimental situation. Since their relative intensity appeared to be proportional to the intensity of the Bragg peak which they replaced, it was desirable to choose an area of reciprocal space containing a number of relatively strong reflections with odd ℓ. Further, in order to decrease the necessary exposure time and to minimize temperature drift the oscillation range of the camera spindle angle was limited to about 60°. Photographs were taken at several temperatures ranging from room temperature to $120^{\circ} \mathrm{C}$.

The general nature of the streaks could be determined from these photographs. By $50^{\circ} \mathrm{C}$ the intensity of those reflections with odd values of ℓ had begun to decrease in relation to those with even ℓ. The streaks first appeared at about $70^{\circ} \mathrm{C}$. The Bragg peak remained, however, until the temperature was raised a few degrees further. Beyond $73^{\circ} \mathrm{C}$ the intensity of the streaks decreased monotonically as the temperature was raised further and could still be seen as a
faint smudge on a 24 hour exposure at $120^{\circ} \mathrm{C}$. The intensity distribution was remarkably flat along their length and did not blend into the Bragg peak. There was a marked discontinuity in intensity between the peak and the streaks. Photographs of the streaks taken with the crystal aligned in several orientations showed that the length of the streaks paralleled the a ${ }^{*}$ direction.

X -rays which are not scattered into a region within a few minutes of arc of the direction defined by the Laue equations, arise because of some imperfections in the three. dimensional translational symmetry of the crystal. One source of such imperfections is the thermal vibration of atoms. This type of diffuse scattering has been well documented (Guinier, 1963; Wooster, 1961; and Ramachandran, 1963) but can not explain these diffuse streaks in $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. Another class of imperfection in the translational symmetry is caused by a positional disordering of the atoms. Since the streaks extend only in the a* direction the disordering must produce a loss of translational symmetry only in that direction. The resolved structures of the α and β phases afford an opportunity to speculate on the details of how planes perpendicular to the \underline{a}^{*} vector become disordered. The layers perpendicular to \underline{a}^{*}, as mentioned in Chapter I, should be able to maintain a high degree of order because of the manner in which the non-linear anions are joined by the cation octahedra but the layers themselves might be susceptible to a
particular type of disordering. If the direction of bending of all the anions in one layer is reversed, that is, if their sense of the displacement of the central oxygen atoms from the $y=$ constant plane of P atoms is reversed, then the bonding between layers will not be disrupted since only small changes in the primary bonding sphere are necessary. The structural implications of this operation will be discussed in detail in Chapter 7. The generation of the "disordered" layer is equivalent to the translation of the origin of that layer by $\underline{c} / 2$. If half of these layers are reversed with no long range correlations between them, then the atoms in the two halves of the unit cell related by the c glide plane will appear to be superimposed into an "average" unit cell with the length of the c axis halved. Also, in place of the \underline{c} glide operation, there will now be a mirror plane. For convenience, we shall define a normal layer on $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ as a type I layer and the reversed or disordered layer will be defined as type II.
(B) Measurement of Intensity Profiles

An apparatus was set up to provide better control
of the temperature of the crystal. The experimental arrangement is shown in Figure 8. When the e.m.f. generated by the copperconstantan thermocouple falls below a predetermined value on the temperature control device, the relay is closed and the 8Ω impedance is by-passed. The voltage across the heater coils is then increased by 20% and the temperature increases. A standard Croyden P4 thermocouple potentiometer was used to measure the e.m.f. from the chromel-alumel thermocouple mounted on the side of the collimator. The galvanometer leads were connected to a Leeds and Northrup 2430D galvanometer which greatly enhanced the sensitivity of the instrument. The $0.8^{\circ} \mathrm{C}$ variations in temperature could easily be measured as the relay switched on and off and an additional $0.1^{\circ} \mathrm{C}$ variation in temperature could be observed as the Weissenberg film holder moved back and forth on its track. It was found that variations in the temperature of the crystal due to changes in room temperature and the gradual heating of the entire camera could be decreased by increasing the rate of flow of the inert gas bathing the crystal.

A crystal was carefully selected and affixed to a glass fiber with modelling clay. Several photographs were taken to find the direction of the \underline{c} axis. A copper-constantan thermocouple consisting of 0.0036 gauge wire was inserted into a ceramic rod which was mounted on a goniometer head.

The crystal was remounted on the thermocouple junction with Stycast cement so that the c axis was nearly coincident with the goniometer's rotation axis. The crystal was now aligned about the \underline{C} axis and photographs were taken in the temperature range of the phase transition which contained both the hk0 and hkl layer lines. In all these experiments, a region near the a^{*} axis was photographed since here the first layer line contained a number of strong reflections.

This mounting of the crystal proved inadequate for the collection of intensity distribution data because the scattering from the thermocouple raised the background level on the film to such an extent that the streaks were not well defined. However, this arrangement was useful in establishing the absolute temperature at which the various phenomena occurred. The variation in temperature during each exposure of this series was kept to within $2^{\circ} \mathrm{C}$. Thus from the large number of exposures recorded with overlapping temperature ranges it was possible to assign the temperature at which the streaks first appeared as $71.0 \pm 1.0^{\circ} \mathrm{C}$ and the temperature at which the Bragg peak disappeared as $74.0 \pm 1.0^{\circ} \mathrm{C}$ 。

The original crystal used to study the nature of the streaks was now used to collect data for the intensity distribution. This crystal had been mounted on a thin fiber with a minimum amount of glue and the background on the photographs obtained was very low. It could also be realigned about the \underline{c} axis. The temperature was monitored by
the chromel-alumel thermocouple as shown in Figure 8. Photographs were taken over the entire range of temperatures associated with the phase transition but only five photographs were used for detailed analysis. Two strong peaks were chosen which had a relatively smooth background. A tracing of the intensity of each streak was obtained with a Joyce-Loebl MKIIIC densitometer. The background level and coarse grain of the film was still such that the high sensitivity of the densitometer produced very erratic fluctuations in the intensity tracings. The rough outline of the streaks was drawn by hand through the fluctuations. A photograph taken at 69° and showing only the Bragg peaks and background was used to subtract the background from each of the other tracings in the transition region. The normal white radiation streaks associated with the Bragg peaks appeared in the photographs and passed through the diffuse streaks. However, they decreased in intensity as the Bragg peaks decreased in intensity and therefore the background above $71.0 \pm 1.0^{\circ} \mathrm{C}$ was markedly different than on the photograph at $69^{\circ} \mathrm{C}$. In order to complete the background curve above this temperature, a smooth line was drawn which joined the background curves in the regions not affected by the white radiation streaks. The height of the intensity profile and the associated background was noted at intervals of 0.05 a*. Each * diffuse streak extends on either side of a Bragg peak and the intensity profile of each half must be nearly identical although they will register slightly different on a photographic film because
of the effects of absorption and the Lp factor. It was assumed, however, that these effects were linear with sin θ / λ over the small range of θ through which each streak appears. Then they may be cancelled by averaging the two halves of each streak. The curves obtained from the two streaks in this way were then themselves averaged. A further correction is required to account for the fact that the streaks have been convoluted by the mosaic spread and size of the crystal, the divergence and dispersion of the x-ray beam and the width of the light beam used to measure the intensity of the streaks. The width of the tracing of the Bragg peak provides a rough estimate of the magnitude of the effect of convolutions. This width was observed to be 0.05 ± 0.01 a* The intensity profiles were observed to have two portions that were linear within experimental error. These were at the points when the streaks faded into the background and near the Bragg peak. These two linear parts were extended 0.05 a * towards each other and then joined by a continuous curve with the same general character as the uncorrected curve. These corrections are illustrated in Figure 10. The dashed lines are the corrected intensity profiles used to analyse the disorder. The intensity is plotted against the dimensionless quantity ξ describing the fractional distance in reciprocal space between the reflections $h k \ell$ and $(h+l) k \ell$.

The first curve shows the streaks as they first appear at $71.0 \pm 1.0^{\circ} \mathrm{C}$. On the scale shown, the Bragg peak extends
to 280 units along the ordinate. The curve representing the profile of the streak at $74.0 \pm 1.0^{\circ} \mathrm{C}$ has a central peak extending to 55 units and at $75.0 \pm 1.0^{\circ} \mathrm{C}$ there are no central peaks. The photographs from which these curves were obtained were taken over a finite range of temperature and therefore they probably contain some additional error, particularly at $71.0 \pm 1.0^{\circ} \mathrm{C}$ where the experimental conditions under which the profile was measured extend into a temperature region where the streaks may not exist. The other three curves are flat within experimental error from the origin out to $0.125 \underline{a}^{*}$. They then fall off to zero intensity with approximate Gaussian character. Beyond $74^{\circ} \mathrm{C}$ the only apparent change is an overall decrease in intensity.
(C) Derivation of the Intensity Profiles

A derivation of the relation between the distribution of intensity in the streak and the nature of the disorder may be found in Wilson (1949). An alternate discussion of the relationship will be presented here which will be better suited to the case of $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$.

Let $F^{\prime}(h k l)$ represent the structure factor of one layer of type I (see Chapter 6A) made up of the contents of a half unit cell extending from $x=0$ to $x=a / 2$ and from $-\infty$ to $+\infty$ in both the y and z directions. The structure factor of the entire crystal is obtained by summing the F^{\prime} (hkl) of all the layers with the appropriate phase factor depending on the displacement of the layer from an arbitrary origin. Adjacent layers in the α phase, or the pure β phase, since it is described by an averaged unit cell, are C centered. However, in the transformation region, adjacent layers of opposite type are I centered. We can then define the structure factor of the n^{\prime} th layer $A^{n}(h k l)$, with its appropriate phase factors as

$$
A^{n}(h k \ell)=F^{\prime}(h k \ell) \exp \left(2 \pi i \quad v_{n} k / 2\right) \exp \left(2 \pi i \quad \gamma_{n} \ell / 2\right)
$$

where v_{n} is a selector factor which is 0 if the layer is type I and 1 if the layer is of type $I I$, and γ_{n} is 0 if n is odd and 1 if n is even. We may now write the structure of the entire crystal in terms of the $A^{n}(h k l)$. However, we shall be interested in the scattering of x-rays in the vicinity of the Bragg peaks where h is not integral. We
therefore define a new quantity h^{\prime} such that $h^{\prime} \underline{a} \underline{*}^{*}=$ ha* $+\xi \underline{a}$ *. Then the structure factor of a crystal consisting of N layers is

$$
F\left(h^{\prime} k \ell\right)=\sum_{n=1}^{N} A^{n}\left(h^{\prime} k \ell\right) \exp \left(2 \pi i n h^{\prime} / 2\right)
$$

The measured intensity $I\left(h^{\prime} k \ell\right)$ as recorded on a photographic film, will be proportional to $F\left(h^{\prime} k \ell\right) F^{*}\left(h^{\prime} k \ell\right)$. The product may be written

where C.C. is the complex conjugate of the second term in the brackets. If we now substitute for $A^{j}\left(h^{\prime} k \ell\right)$ and $A^{j+n *}\left(h{ }^{\prime} k \ell\right)$ and consider the behaviour of the exponentials, we find that their value depends only on the evenness of k or ℓ. We also substitute for h^{\prime} and obtain
 The quantity $\left[(-)^{\nu}{ }_{j}(-)^{\nu}{ }^{j+n}\right]$ is l if the layers j and $j+n$ are the same type (ie, both type I or both type II) and -l if they are different. It is reasonable to assume that the probability that the two layers are different depends on their separation n and not on the running index j. The second summation may then be averaged and the average value of $\left[(-)^{\nu_{j}}(-)^{\nu_{j}+n_{]}}\right.$will be denoted by β_{n}. Consider the case when $\xi=0, \quad \ell$ is even and $h+k$ is odd. Then

$$
I(h k \ell) \alpha N\left|F^{\prime}(h k \ell)\right|^{2}\left\{1+\frac{2}{N} \sum_{n=1}^{N-1}(N-n)(-)^{n}\right\}
$$

If we assume the crystal contains only complete unit cells, N is even and the summation gives directly $-N / 2$ and $I(h k \ell)$ is zero. The values of β_{n} depend on the degree of disorder and thus $I(h k \ell)$ is not necessarily zero if both ℓ and $h+k$ are odd. The area of reciprocal space corresponding to these reflections were studied in the temperature region where the crystal is partially disordered but no scattered x-rays were observed.

In order to obtain an expression which is independent of the integrated intensity of each diffuse streak, we shall define the quantity $I(\xi)$ as

$$
I(\xi)=\frac{I\left(h^{\prime} k \ell\right)}{N\left|F\left(h^{\prime} k \ell\right)\right|^{2}}
$$

We shall further assume that $F^{\prime}\left(h^{\prime} k \ell\right)=F^{\prime}(h k \ell)$ throughout the region of a diffuse streak. The appearance of the streaks suggests that this is a good approximation and the averaging of four "half" streaks should minimize any errors arising from this approximation. Then

$$
I(\xi)=1+2 \sum_{n=1}^{N-1} \frac{N-n}{N} \beta_{n} \cos n \pi \xi
$$

(D) Fourier Transforms of the Intensity Profiles

We have measured $I(\xi)$ and now wish to find β_{n}. From the form of the expression for $I(\xi)$ we may express β_{n} as the Fourier transform of $I(\xi)$. It is then desirable to describe I(ξ) analytically. The central peak in the ideal case is a delta function and the streak contains a flat part and appears to decay to zero approximately as a Gaussian of half width o Thus

$$
I(\xi)=\left\{\begin{array}{l}
C_{1} \delta(\xi-0)+C_{2} \quad(-x<\xi<x) \\
C_{2} \exp \left\{-(\xi-|x|) / 2 \sigma^{2}\right\} \quad(\xi \geqslant|x|)
\end{array}\right.
$$

where C_{1} and C_{2} are constants and x is the value of ξ where the intensity of the streaks begins to decrease. $I(\xi)$ is an even function and the period of integration will be 2 . Therefore, if the expression for $I(\xi)$ may be written

$$
\frac{a_{0}}{2}+a_{1} \cos \pi \xi+a_{2} \cos 2 \pi \xi+\ldots .
$$

then a_{n} is given by

$$
a_{n}=\int_{-1}^{1} I(\xi) \cos n \pi \xi d \xi
$$

$I(\xi)$ has been measured in arbitrary units, but

$$
a_{n} \alpha \frac{2(N-n)}{N} \beta_{n} \text { and since } \beta_{o}=\left[(-)^{\nu_{j}}\right]^{2}, \beta_{o}=1
$$

Furthermore, if n is much less than the total number of layers in the crystal $(N-n)$ is nearly equal to N. Then

$$
\beta_{n}=a_{n} / a_{0}
$$

Also, if α_{n} is the probability that the j^{\prime} th and $(j+n)$ 'th layers are the same type, $\beta_{n}=(+1) \alpha_{n}+(-1)\left(1-\alpha_{n}\right)$ Therefore

$$
\alpha_{n}-\frac{\beta_{n}+1}{2}
$$

We must now evaluate a_{n} for any n, where

$$
a_{n}=\int_{-1}^{+1} I(\xi) \cos (n \pi \xi) d \xi=C_{1}+2 C_{2} \frac{\sin (n \pi \cdot x)}{n \pi}
$$

$+C_{2} \int_{x}^{+1} \exp \left\{-\frac{(\xi-x)^{2}}{2 \sigma^{2}}\right\} \cos (n \pi \xi) d \xi+C_{2} \int_{-1}^{-x} \exp \left\{\frac{(\xi+x)^{2}}{2 \sigma^{2}} \cos (n \pi \xi) d \xi\right.$
For convenience the limits of integration will be changed to $\pm \infty$. The contribution to the integrals when $|\xi|>|1|$ will be negligible. Also the cosines will be changed to exponentials. In the first integral, we shall substitute $t=(\xi-x) /(\sqrt{2} \sigma)$ and in the second $t=-(\xi+x) /(\sqrt{2} \sigma)$. Then the integrals become
$\sqrt{2} \sigma C_{2}\left[\int_{0}^{\infty} \exp -\left\{t^{2}-\pi i n(\sqrt{2} \sigma t+x)\right\} d t+\int_{0}^{\infty} \exp -\left\{t^{2}+\pi i n(\sqrt{2} \sigma t+x)\right\} d t\right]$
These integrals may be evaluated by completing the square of the arguments of the integrands. The substitutions

$$
U=t-\pi i n \sigma / \sqrt{2} \text { and } U=t+\pi i n \sigma / \sqrt{2}
$$

will now be made in the first and second integrals respectively. Then we have

$$
\begin{gathered}
\sqrt{2} \sigma C_{2} \exp \left(-\frac{\pi^{2} n^{2} \sigma^{2}}{2}\right)\left[\exp (\pi i n x)\left\{\int_{0}^{\infty} e^{-U^{2}} d U+\int_{\frac{-\pi i n \sigma}{}}^{0} e^{-U^{2}} d U\right\}+\exp (-\pi i n x)\right. \\
\left\{\int_{0}^{\infty} e^{-U^{2} d U}-\int_{0}^{\sqrt{2}} e^{\left.\left.-U^{2} d U\right\}\right]}\right.
\end{gathered}
$$

The integrals from o to ∞ both give $\sqrt{\pi} / 2$. In the other integrals we replace U by $-i y$ and +iy. Then the expression becomes

$$
\sqrt{2} \sigma C_{2} \exp \left(\frac{-\pi^{2} n^{2} \sigma^{2}}{2}\right) \cos (n \pi x) \quad\left[\sqrt{\pi}+\frac{\sqrt{2} i}{\pi} \operatorname{erf}\left(\frac{\pi n \sigma}{\sqrt{2}}\right)\right]
$$

where $\operatorname{erf}(Z)$ is the error function of Z. We only require the real part of a_{n}. Therefore

$$
a_{n}=C_{1}+2 C \frac{\sin (n \pi x)}{n \pi}+\sqrt{2 \pi} \sigma C_{2} \exp \left(\frac{-\pi^{2} n^{2} \sigma^{2}}{2}\right) \cos (n \pi x)
$$

The quantities a_{n}, β_{n} and α_{n} were calculated for $\mathrm{n}=1,2 \ldots .100$ and at temperature of $71 \pm 1^{\circ} \mathrm{C}, 73 \pm 1^{\circ} \mathrm{C}$ and $75 \pm 1^{\circ} \mathrm{C}$. The results depend only on the shape of the curve defining the streaks and not the height. Only the height of the curve changes above $75^{\circ} \mathrm{C}$ so there was no additional information to be gained from the α_{n} above this temperature. Strictly speaking, the model for the transition as has been presented cannot account for a change in the total number of photons diffracted into one Bragg peak and its associated diffuse streak. This point will be discussed in Chapter 7. The width " σ " of the Gaussian part of the intensity distribution was estimated from the curves in Figure 10. The values of σ, x (the length of the flat portion of the streak), C_{1} (the height of the Bragg peak), C_{2} (the height of the flat portion of the peak), and $\alpha_{n}, n=0,1,2 \ldots 50$ are listed in Table 20, as determined at the three temperatures mentioned previously. Also α_{n} is plotted as a function of n for $n=0,1$ 20 in Figure 11.

TABLE 20
Probability $\alpha_{n}(T)$ that the layers j and $j+n$ are identical as a function of n and the temperature T .

$$
\mathrm{T}=71 \pm{ }^{\circ}{ }^{\circ} \mathrm{C} \quad \mathrm{~T}=74 \pm_{-}{ }^{\circ} \mathrm{C} \quad \mathrm{~T}=75 \pm_{1}{ }^{\circ} \mathrm{C}
$$

Height of central peak Length of flat portion Height of flat portion Half width of Gaussian n
0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
0.9483
0.9480
0.9477
0.9474
0.9471
0.9483
0.9480
0.9477
0.9474
0.9471
0.9485
0.9483
0.7748
0.5250

20
0.9480
0.7781
0.5318
0.7763
0.5280
0.7727
0.5204
0.7680
0.5106

TABLE 20 (continued)

24	0.9468	0.7630	0.5000
25	0.9465	0.7584	0.4903
26	0.9462	0.7548	0.4827
27	0.9459	0.7527	0.4782
28	0.9456	0.7522	0.4773
29	0.9453	0.7534	0.4797
30	0.9450	0.7559	0.4850
31	0.9447	0.7593	0.4922
32	0.9444	0.7630	0.5000
33	0.9441	0.7665	0.5074
34	0.9439	0.7693	0.5132
35	0.9436	0.7709	0.5168
36	0.9433	0.7714	0.5177
37	0.9431	0.7705	0.5159
38	0.9428	0.7686	0.5118
39	0.9424	0.7660	0.5062
40	0.9421	0.7630	0.5000
41	0.9419	0.7602	0.4941
42	0.9418	0.7579	0.4893
43	0.9416	0.7565	0.4863
44	0.9414	0.7561	0.4856
45	0.9413	0.7584	0.4902
46	0.9411	0.7605	0.4948
47	0.7630	0.5000	
48	0.7653	0.5050	
49	0.7673	0.5090	

FILM

Figure 8
Experimental arrangement used to record diffuse streaks

Probability $\alpha^{(T)}$ calculated from the intensity profiles of the diffuse streaks.

CHAPTER 7: PHASE TRANSFORMATION STUDIES

(A) Theoretical Aspects
"Phases" are usually defined only in terms of two states of a system which are related by a "phase" transformation. A more general definition is provided by Guggenheim (1950). "If a system is not homogeneous, in order to describe its thermodynamic state we have to consider it as composed of a number, small or large, of homogeneous parts called phases, each of which is described by specifying its contents and a sufficient number of other properties." In addition to the more common phase changes which involve a change of state, a phase change may involve two liquid phases such as normal Helium I and the superfluid Helium II or two solid phases. Haas (1965) has classified the changes which may occur in a solid as follows.
(I) A continuous change without a change of symmetry. In this case there is no phase transition. (It should be noted that the change from the normal to superconducting state of a crystal is one case of a second order phase transition in a solid where there is no symmetry change.)
(ii) An abrupt change by a first order transition. At the transition temperature there are two phases in equilibrium with each other. There are no symmetry requirements for a first order
phase transition to be possible.
(III) In a second order phase transition the properties of the crystal change gradually until at a certain transition temperature the change is complete. This type of transition is only possible if certain stringent conditions for the symmetry above and below the transition point are fulfilled.

Unless an energy barrier inhibits the transformation from one phase to another, a system will be found in the phase having the lowest Gibbs free energy at a given temperature and pressure. A transformation corresponds then to the intersection of the Gibbs free energy curves of two different phases of a system since at the transformation temperature the two phases coexist in equilibrium and therefore have the same Gibbs free energy density. The Gibbs free energy of one phase G_{i} is given by

$$
G_{i}=U_{i}-T S_{i}+P V_{i}
$$

where U_{i} is the internal energy of the system in the phase i, T is the temperature, S_{i} the entropy, P the pressure and V_{i} the volume of the system.

Ehrenfest (1933) has classified phase transitions according to the behaviour of the derivations of the Gibbs free energy. If at least one of the first derivatives of G, for example, $-\left(\frac{\partial G}{\partial T}\right)_{P}$ and $\left(\frac{\partial G}{\partial P}\right)_{T}$ are discontinuous the transition
is denoted as "first order". These derivatives are respectively equal to the entropy and volume. If at least one of the second derivatives of G, notably the specific heat at constant pressure $\left(C_{p}=T\left(\frac{\partial S}{\partial T}\right)_{p}\right)$ and/or the coefficient of thermal expansion $\left(\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}\right)$ are discontinuous, while the first derivatives are not, the phase transition is denoted as "second order". Higher order transitions would be similarly defined but none have been observed in nature.

Most of the second order phase transitions which have been studied exhibit infinite changes in the second derivatives which are not analogous to the finite changes accompanying a first order transition. Callen (1960) has remarked that the phase transition of metals to the superconducting state in zero magnetic field appears to be the only second order phase transition exhibiting a single finite change in the second derivatives of G.

A more complete phenomenological description of second order phase transitions has been presented by Tisza (Smoluchowski, Mayer and Weyl, 1951). This description applies to second order phase transitions involving infinite changes in the second derivatives including some order-disorder phenomena. According to Tisza's theory, if U is the internal energy of the system and x_{i} are the set of t variables defining the system, then a second order phase transition occurs if the quadratic form

$$
d^{2} U=\frac{1}{2} \sum_{j, k}^{t-1} \frac{\partial^{2} U}{\partial x_{j} \partial x_{k}} d x_{j} d x_{k}
$$

is positive semidefinite; ie. $d^{2} U$ may be only zero or positive and the second order transition occurs when $d^{2} U$ becomes zero. If $d^{2} U$ is allowed to become negative a first order transition will occur. If the inflection point is such that $\frac{d^{2} U}{d S d x_{i}}=0$ where S is the entropy and x_{i} is any other variable or linear combination of them, then the transformation is an order-disorder phenomenon. Tisza has called this a transformation of the second kind to distinguish his theory from that of Ehrenfest. Because of the fact that the curvature of the energy surface is changing sign or going to zero, that is, going from absolute stability to absolute instability, the transformation has also been called a critical phenomenon.

Both of the aforementioned treatments of second order phase transformations are essentially macroscopic in nature. Landau (Landau and Lifshitz, 1962) has formulated a set of necessary conditions for the existence of a second order phase transformation which relates to the microscopic processes involved. Haas (1965) has recently presented a discussion of Landau's theory and applied it to the phase changes in ferromagnetic and ferroelectric materials. Following Haas, Landau's theory may be summarized as follows:
(I) In order for a second order transformation
to occur, the change of symmetry
between two phases is such that the space group of one phase of the crystal is a subgroup of that of the other phase.
(II) Further, the symmetry operators corresponding to only one irreducible representation of the more symmetric phase may be lost in the change of phase.
(III) The change in electron density caused by the transformation may be described by a set of n functions belonging to the representation of order n associated with the transformation. If each of these n functions ϕ_{i} contribute a fractional amount γ_{i} to the change in electron density then the free energy G may be expanded about G_{0} at the transformation temperature in terms of homogeneous functions $f^{(j)}$ of order j in the γ_{i}. That is, $\mathrm{G}=\mathrm{G}_{\mathrm{O}}+\mathrm{Af}{ }^{(1)}+\mathrm{Bf} \mathrm{f}^{(2)}+\mathrm{Cf}{ }^{(3)}+\mathrm{Df}{ }^{(4)}+\ldots$. The free energy must be invariant to the operations of the group of the high symmetry phase which transforms the coefficients γ_{i} into each other. In order for the free energy to be invariant, the first and third order terms must vanish. Landau and Lifshitz have derived a fourth condition for a second order phase transformation arising from the
requirement that the crystal be stable against spatial inhomogeneity. The necessity of the fourth condition is a matter of current debate and in particular a number of second order phase transformations have been studied which are not homogeneous. Landau's theory is similar to that of Ehrenfest in that it cannot account for infinities in the specific heat curves.

First order phase transformations in covalent crystals are usually characterized by the breaking of bonds and volume discontinuities. In elemental crystals or ordered alloys the first order transition involves a rearrangement of packing, for instance, from face centered cubic to hexagonal close packed. Second order transformations are best exemplified by the ordering of alloys or cooperative phenomena such as the transformation to ferromagnetic or ferroelectric states in some solid state systems. A number of second order phase transformations involve entropy as one of the critical variables in the internal energy U.

In the expression for G, the $P V$ term is relatively unimportant in second order transformations of condensed phases since the volume is continuous across the phase change. At high temperatures the term $T S$ is dominant and the additional entropy of disorder makes the disordered phase energetically more favorable even though the internal energy U of the disordered phase may be greater. At lower temperatures the internal energy term becomes dominant and the ordered phase is stable. The specific heat of most second order
transformations seems to diverge logarithmically in contrast to the simple discontinuity suggested by Ehrenfest. This specific heat curve is often broadened or "diffuse" with a tail above the critical or transformation temperature and hence is called a " λ " curve. The present understanding of phase transformations is best illustrated by a statement of Smoluchowski (Condon and Odishaw, 1958) which still remains true. "The field of phase transformations in solids is characterized by a huge amount of experimental (often only quantitatively significant) material and by a relative scarcity of satisfactory theories. This is particularly true of theories of the atomic mechanism and of kinetics of transformations."
(B) The Phase Transformations in $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$

The transformation in $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is the easiest to understand and will be considered first since it may shed some light on the transformations in $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$.

The specific heat Cp of $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ has been investigated by Melkvi, Stager and Calvo (1967a). They used a continuous heating method to measure the heat capacity. The sample was suspended inside an adiabatic heat shield and the energy supplied to the sample and its temperature were monitored. The results of these experiments are shown in Figure 12. Because of the limited sensitivity of the equipment, the results for $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ were difficult to obtain and should not be considered conclusive. The Cp curve for $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ has a broad peak centered about $75^{\circ} \mathrm{C}$ with two additional discontinuities at $54^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$, although the discontinuity at $54^{\circ} \mathrm{C}$ may not be significant.

The height of the peak above the base line, which may be obtained by joining the curve below $54^{\circ} \mathrm{C}$ to the curve above $85^{\circ} \mathrm{C}$ by a smooth line,is only about $2.0 \mathrm{cal} / \mathrm{mole}$-degree.

X-ray photographs show that the intensity of the reflections with odd values of ℓ in the α phase start to weaken with respect to the intensity of reflections with ℓ even as the temperature is raised above 50 or $60^{\circ} \mathrm{C}$. It is difficult to fix the exact temperature at which this occurs because the magnitude of the change is very small in
this region but the rate of intensity change increases with the temperature. Above $74.0 \pm 1.0^{\circ} \mathrm{C}$ the Bragg peak is no longer observable. The streaks were first observed at $71.0 \pm 1.0^{\circ} \mathrm{C}$ and theirintensity decreased monotonically as the temperature was raised further. The diffuse streaks indicate that the crystal has become disordered. The specific heat anomally represents the energy required to produce the disordering and the shape of the Cp curve could suggest that the disordering takes place over the wider temperature region between $54^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$ with the maximum rate of disordering appearing at $75^{\circ} \mathrm{C}$. In their n.m.r. experiments, Stager and Atkinson (1967) have observed a change in the slope of the chemical shift of the $15^{P^{31}}$ nucleus plotted against temperature at $80 \pm 5^{\circ} \mathrm{C}$.

The lattice parameters of $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ have been measured at room temperature and $100^{\circ} \mathrm{C}$ and show no large differences at the two temperatures. The photographs used to study the transformation were all taken over a small range of temperatures which overlap and cover the entire temperature range of the transformation. No broadening of the Bragg peaks was observed on these photographs. This evidence would seem to discount the possibility of a volume discontinuity associated with the phase transformation in $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$.

The direction of the streaks in reciprocal space is perpendicular to the layers of the structure as defined
in Chapter l(A). These layers must then be disordered; i.e.there is a loss of the translational symmetry between these layers. Such an inhomogeneity may occur either by a variation in the distance between the layers or a variation in the atomic arrangement in individual layers. Also, because the diffuse streaks appear only at reflections with ℓ odd, the variation in the atomic arrangements must correspond to a shift $\underline{c / 2}$ of some layers from their positions in $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. The resolved structures of the high and low temperature structures of $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ permit one to speculate as to what is the nature of the disordering mechanism.

In Chapter $5(A)$ the manner in which the c glide plane was generated throughout one layer was discussed. The layers are joined to one another by the bonding of terminal oxygen atoms of an anion in one layer to the cations in an adjacent layer. The terminal oxygen atoms are the 03 and 02 atoms. The major component of the displacement of the 02 atoms from their positions in $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ to their positions in $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is in the \underline{c} direction and is independent of the sign of the displacement of the central oxygen atoms; ie the sense of bending of the anion. As a result of the bending of the anion, the 03 atoms are displaced in the same direction as that of their bonds to the cations in neighbouring layers. If a layer of one type is situated between two layers of opposite type, then the most significant change from the bonding which would occur if all the layers were of the same type is that the long

Cu-0'3 bonds that were of length 2.322 A and 2.946 A in $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ now have lengths of 2.629 A and 2.632 A respectively. The two crystallographically independent $\mathrm{Cu}-\mathrm{O}_{2}$ bond lengths are changed only from 1.962 A and 1.988 A to 1.954 A and 1.996 A respectively by the operation.

In a disordered or type II layer, we have assumed that all the anions have reversed their direction of bending and the cations have been moved such that their coordinates are consistent with those of the anions. The model for the phase transformation is illustrated in Figure 13. The cross hatched atoms belong to a type II layer. The type II layer appears the same as if it had been translated by $\underline{c} / 2$. When half of the layers have become type II, an arbitrarily chosen atom has equal probability of being in either type of layer, which is defined with respect to some fixed layer of type I, and therefore the effective length of the \underline{c} axis appears to be halved. However the layers as seen by x-rays do not have full translational symmetry in the a direction.

The refinement of the structure of $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. with the disordered model was an attempt to verify this picture for $B-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. The R factors obtained in this way were slightly higher than those obtained with the fully anisotropic model although the latter contains more least squares variables. The weighted R factors were analysed using Hamilton's (1965) significance tables which showed a preference for the anisotropic model. These results are not conclusive, however,
because of the problems encountered in the refinement of the disordered model. Also the unweighted R factors are nearly equal. The atomic positions given by this analysis are similar to those obtained by adding the root mean square of the principal axis of the thermal ellipsoid to the configurational coordinates of the completely anisotropic model of the structure. It is also noteworthy that the $\mathrm{Cu}-\mathrm{O}_{3}^{\prime}$ distance in $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is $2.58 \pm 0.02 \mathrm{~A}$ and the average Cu-0'3 distance between two layers of different types is $2.63 \pm 0.02 \mathrm{~A}$.

The functional dependence of bond energy on bond lengths is not known and therefore the difference between the energy of all inter-layer bonds between two given layers before and after one of them has been "disordered" can not be explicitly evaluated. However, the average bond length is not changed drastically and therefore the magnitude of the energy difference particularly for the cation should be small since it arises mainly from non-linearities in the energy versus bond length function since the average $C u-0$ '3 bond length in the β phase is the mean of those in the α phase.

The decrease in intensity of the reflections with odd ℓ implies that there is a decrease in the deviations from the symmetry of the β phase at a lower temperature than that at which the streaks appear. Some disordering may take place at these temperatures such that the resultant streaks would be too weak to be observed. In addition there can be changes
in the geometry of the anion. In particular the $P-O-P$ angle may decrease as a function of temperature. In $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ the displacement of the central O_{1} atom out of the c glide plane, is 0.39 A . The structure of $\mathrm{B}-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ as resolved at $100^{\circ} \mathrm{C}$ gives a value of $0.21 \pm 0.02 \mathrm{~A}$ for this displacement for both the disordered model and the root mean square displacement as determined from the thermal parameter of the anisotropic model. This displacement is a measure of the $P-O-P$ angle. Although it has only been measured at two points it would appear that the $P-O-P$ angle decreases with temperature. Further, the thermal expansion parameters of the crystal as measured at room temperature and $100^{\circ} \mathrm{C}$ show that the crystal expands as the temperature increases primarily by increasing the length of the $\underline{a-c}$ vector which is, in fact, nearly parallel to the $P-P$ vector of the anion. The expansion in the crystal might be accommodated by an increase in the $P-P$ distance or an increase in the long Cu-o'3 bonds but if the former is the case, the $\mathrm{P}-\mathrm{O}-\mathrm{P}$ angle will tend to approach nearer to 180°. The possible change in the anion geometry is illustrated in Figure 14 where the atomic coordinates obtained from the disordered model of $\mathrm{B}-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ are compared with those of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$.

The apparent magnitude of the change in the $P-O-P$ angle as indicated by the crystal structure of α - and $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ seems rather large. This effect may be magnified by the
thermal behaviour of the anion. The total area under the diffuse streaks and the Bragg peaks varies monotonically with temperature as may be seen by inspection of Figure 10. This is not consistent with the model of the phase transformation as has been presented at this point. When the layers are completely disordered the probability that a given layer is type I or type II will be completely independent of its environment and the quantities β_{n} discussed in Chapter 7 (D) would only be non-zero when $n=0$. The intensity profile $I(\xi)$ will then be a constant independent of ξ and at high temperatures we should find streaks of nearly constant intensity running along rows or reciprocal space for which k and ℓ are constant and extending in the a* direction. Attempts were made to observe streaks of this nature but they did not appear to exist. Also from Figure 10 it may be seen that the total integrated intensity of the streaks decreases as the temperature is raised.

As the temperature is raised above the region of the transformation, the anions should find less hindrances to changing their sense of bending and individual layers would be able to change more rapidly from type I to type II configurations. It might then be expected that there would be some loss of homogeneity within the individual layers. This disorder would consist of a partial loss of the \underline{c} glide operation and the \underline{b} translation. There is some evidence for disorder within layers in that the diffuse streaks become
broader as the temperature is raised. It would then appear most likely that the diffuse scattering from the disordered lattice is spread over all of reciprocal space and is therefore not observable. As the temperature is raised still further, the anion might assume a state of enhanced thermal motion with the central ol oscillating anharmonically across a multi-well potential. This effect would cause the Ol atom to appear nearer the c glide plane than in a model based on a disordering of the $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ structure at room temperature.

The Fourier transform of the diffuse streaks permits one to speculate as to the distribution of the two types of layers. Table II lists the probabilities $\alpha_{n}(T)$, that at the temperature T, the layers m and $m+n$ are of the same type. Since the shape of the intensity profiles of the streaks does not change above $75^{\circ} \mathrm{C}$ the transforms are only listed at $71 \pm 1^{\circ} \mathrm{C}, 74 \pm 1^{\circ} \mathrm{C}$ and $75 \pm 1^{\circ} \mathrm{C}$. This analysis has not taken into account the effects of the aforementioned disordering within the layers and therefore cannot account for the changes in the total integrated intensity of the streaks. The simplest approximation to the profile of the streaks is a step function and therefore α_{n} might be expected to be oscillatory. This then suggests that the layers form small groups of the same type.

The α_{n} curves fall off smoothly and then perform small oscillations about an average value determined by the height of the Bragg peak. If the height of the Bragg peak is zero, the oscillations are about the value 0.50. If we postulate a model for the layer distribution consisting of groups of layers of the same type imbedded in a sea of completely disordered layers, we can estimate the average number of layers in each group by noting the number "n" where the α_{n} curve first reaches the value about which it oscillates. These numbers are then 40 at $71 \pm 1^{\circ} \mathrm{C}$ and 7 at both $74 \pm 1^{\circ} \mathrm{C}$ and $75 \pm 1^{\circ} \mathrm{C}$. There must still be some long range order in the crystal above that implied by the width of the aforementioned groups of layers since they are not large enough to prevent broadening of the central peak.

The phase transformation in $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ has been studied by a number of workers. Roy, Middleswarth and Hummel (1948) found evidence of a volume discontinuity near $70^{\circ} \mathrm{C}$. Their study of the Debye-Scherrer pattern of $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ also indicated that in contrast to $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ the high and low temperature phases were distinct and coexisted over a small temperature range. Calvo, Leung and Datars (1967) have also observed the coexistance phenomenon in the e.p.r spectrum and the single crystal diffraction pattern of $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. It appears that there is a continuous change in the relative amounts of each phase and the size of the α and β phase regions in
the crystal are m_{a} croscopic since there appears to be no line broadening of the e.p.r. spectra. Calvo (1967d) has observed index of refraction discontinuities in crystals of $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ near the transformation region with a hot stage microscope. These discontinuities moved laterally in a direction perpendicular to the layers which are involved in the disordering mechanism in the case of $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. These striations are a manifestation of the volume discontinuity in $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, and this behaviour would suggest some similarity between the transformations in $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. However, the volume discontinuity would suggest that there is a more significant change in the interatomic bonding than in $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. This in fact is the case since not only does the P-O-P angle in $\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ deviate further from linearity than in $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ but the change in the length of the long cationoxygen bonds is more pronounced. One interatomic distance to one of the two crystallographically independent cations is decreased in length from 3.35 A to 2.15 A in going from the α to the β form of $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$.

The specific heat at constant pressure Cp of $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ has been recently measured by Melkvi, Stager and Calvo (1967b). They found a large peak at $66.5^{\circ} \mathrm{C}$ of height greater than $500 \mathrm{cal} / \mathrm{mole}$-degree which is roughly 250 times the height of the peak in $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. The enthalpy of the transformation ΔH is obtained by integrating the area under the peaks of the Cp curves. The accuracy of the curve associated with the transformation in $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ does
not permit a realistic assessment of ΔH but it would appear to be considerably less than the ΔH of 729 ± 4 cal/mole determined by Oetting and McDonald (1963).

From the evidence presented above this phase transformation must be first order although high and low temperature phases coexist over a finite range of temperature. Mayer and Streeter (1939) have introduced the term "diffuse first order" to describe a transformation such as this.

The e.p.r. parameters of Cu^{+2} and Mn^{+2} ions in solid solution in $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ have been studied in detail by Chambers, Datars and Calvo (1964). Above $155^{\circ} \mathrm{C}$ only one e.p.r. site appears but below this temperature there are two sites. At $132{ }^{\circ} \mathrm{C}$ there is an abrupt change in the spectra with the appearance of at least one more nonequivalent site. Furthermore the axial splitting parameter D, which describes the interaction of the effective spin component S_{z} with external fields, was found to assume two values at 155° which diverged continuously as the temperature was lowered to 132° where the discontinuity occurred.

The discontinuous e.p.r. parameters at 132° must result from a discontinuous change in electron density which is characteristic of a first order phase transformation. The possibility of a volume discontinuity in $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ at 132° has not been investigated although the lattice parameters at
room temperature referred to the β unit cell are considerably different from those of the β phase above $155^{\circ} \mathrm{C}$. The crystal structure of $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ shows larger deviations from that of $\mathrm{B}-\mathrm{Zn} \mathrm{Z}_{2} \mathrm{O}_{7}$. In particular four $\mathrm{Zn}-\mathrm{O} 3^{\prime}$ interatomic distances have been increased by approximately one angstrom. A volume discontinuity would then not be unexpected. The appearance of two crystallographically independent cation sites between 132° and 155° is not consistent with the space group $C 2 / m$ although the single crystal x-ray pattern does not show any definitive change from that of $\beta-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ in this temperature region. The principal axis of the magnetic moment tensor which is constrained to lie along the \underline{b} axis in $\beta-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ was observed to be slightly removed from colinearity with this axis in the intermediate phase region. These results are not consistent with the space group c 2 . Also the observed e.p.r. spectrum is not consistent with the symmetry imposed on the cations by the mirror plane if the space group were Cm . These, however, are the only space groups allowed by the Laue symmetry and extinctions.

$$
\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}
$$

Figure 12
The specific heat at constant pressure of $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ in units of cal/mol-degree (From Melkvi et.al. 1967a and b)

The crystal structure of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ in projection down the \underline{b} axis. The shaded atoms belong to a disordered layer. The atoms are represented as in Figure 4.

Figure 14
Comparison of the disordered model of $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ with the crystal structure of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$

CHAPTER 8: DISCUSSION

The small specific heat anomally, the absence of a volume discontinuity and the proposed interpretation of the diffuse streaks in $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ are all indicative of a second order transformation. It would also appear that during the transformation the crystal has ordered regions of various sizes and therefore the transformation must then be classed as a non-homogeneous one. The change in space groups which accompanies the transformation are consistent with the restrictions imposed by Landau's criteria for a second order phase transformation. Since two phases coexist in $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, the transformation must also be non-homogeneous. However the large specific heat anomally, the volume discontinuity, the e.p.r. and x-ray studies show that this transformation is diffuse first order. Here, Landau's criteria for a second order transformation, in terms of the relationship between the space groups of α and β phases, is violated. The e.p.r. experiments with Mn^{++} and Cu^{++}doped $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ indicates that the transformation at $132^{\circ} \mathrm{C}$ is first order and is accompanied by a second order transformation extending to $155^{\circ} \mathrm{C}$. The space group of the intermediate phase between $132^{\circ} \mathrm{C}$ and $155^{\circ} \mathrm{C}$ according to the e.p.r. results cannot be any of $\mathrm{C} 2, \mathrm{Cm}$ or $\mathrm{C} 2 / \mathrm{m}$ but the Laue symmetry and extinctions give only these as the possible space group. This would suggest that the intermediate
phase may be non-homogeneous but the e.p.r. results should be re-examined.

The obvious question must now be asked as to whether or not all the β phase structure are disordered as is the proposed structure of $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. No evidence for diffuse streaks has been found in $\beta-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}, \beta-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ or $\mathrm{Mn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. Further, in order to be similar to $\mathrm{B}-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, the β phases of $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ would have to have a unit cell at some stage of their transformations which has the same relative dimensions and symmetry as $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. It is not possible for either $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ or $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ to do this by adding additional symmetry operators to those of their space groups in the α form. Also, because of the large changes in bond lengths associated with the first order transformations in $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ their β structures cannot be constructed as averages of the α structures. However, the magnitude of the changes in bond length may not be as large as that indicated by a comparison of the room temperature and β structures since the α forms at the transformation temperature are not necessarily identical to the room temperature structure. All of the phase transformations involve the loss of a \underline{c} glide plane which becomes a mirror plane in the β phase. Also, all of the structures isostructural to thortveitite which have been refined with anisotropic temperature factors show large anisotropic components associated with the central Ol atom
of the anion. It appears quite probable then that the behaviour of the anion in these compounds is in some ways similar to that in $B-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, but it cannot be stated whether their structures are disordered or undergoing extreme anharmonic thermal motion. The anion in $\mathrm{B}-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ may also begin to vibrate anharmonically as the temperature is raised beyond the transformation region. The existence of linear $\mathrm{X}-\mathrm{O}-\mathrm{X}$ groups in $\mathrm{X}_{2} \mathrm{O}_{7}^{-\mathrm{n}}$ anions has been questioned by Liebau (1961).

The structure of the $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ shows $2 / 3$ of the cations with only five fold coordination. Lazarev, Tenisheva and Petrova (1965) investigated the infrared spectrum of $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and proposed that the cations were in octahedral environments as opposed to tetrahedral. They apparently did not consider the possibility of the five fold coordination. Paoletti and Ciampolini (1967) have recently studied the heat of formation of five coordinated complexes of the first transition series $\left(\mathrm{Mn}^{+2}-\mathrm{Zn}^{+2}\right)$ compared with that of four and six coordinated compounds. They find that Zn^{+2} differs from the other members of the series in that five fold coordination appears slightly more energetically favorable than six coordination. Also the four coordinated $\left(\mathrm{ZnBr}_{4}\right)^{-2}$ ion has approximately the same heat of formation as the six coordinated ion used in comparison. All of these results are referred to a zero heat of formation for Mn^{+2} with each coordination number. Zinc is also the only member of the series that is five
coordinated as opposed to six coordinated in the elemental solid (Wells, 1962). A preference of zinc for lower coordinated sites has been noted in some recent x-ray studies of orthophosphates. $\quad B-\mathrm{Zn}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ (Stephens and Calvo, 1967a) shows a lower average cation oxygen coordination than does $\beta^{\prime}-\mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ or $\beta^{\prime}-\mathrm{Cd}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ (Stephens and Calvo, 1967b) which have similar structures to $\beta-\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$. Also in $\gamma-\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ (Calvo, 1963) which has octahedrally and tetrahedrally coordinated cation sites, the luminescent wavelength suggests that Mn^{+2} ions substitute preferentially in the octahedral site although the correlation between luminescent wavelength and coordination number has been questioned by Calvo, Van Nest and Datars (1967). They studied the emission of Mn^{+2} in solid solutions in $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and found no marked change in the emission wavelength through the region of the phase transformations discussed earlier. The difference in the length of the long $M-O 3$ bonds from the average length of the shorter equatorial bonds is significantly greater in $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ than in the other isostructures of thortveitite. The lengthening of two trans bonds of an octahedrally ligated ion is referred to as a tetragonal distortion and is a relatively common occurrence in the case of Cu^{+2} cations (Pake, 1962). If the octahedron is otherwise regular this phenomenon may be explained by the "Jahn-Teller" effect (Ballhausen, 1962). The electronic states of an ion must be consistent with the symmetry of
its ligands which is taken to be cubic. Under these conditions the ground state of $3 d^{9}{ }^{2} D_{5 / 2} \mathrm{Cu}^{++}$is a degenerate e_{g} state. A tetragonal distortion of the ligand positions removes the degeneracy of the ground state and the new ground state will be that of lowest energy arising from the former degenerate ground state. The difference in energy between the new ground state and the parent e_{g} state will depend on the magnitude of the tetragonal distortion. The position of the oxygen ligands will be altered from octahedral symmetry to a point where the difference between the energy gained from the removal of the degeneracy and the energy required to distort the cubic symmetry of the cation sites is a maximum. The symmetry of the Cu^{+2} site in either $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ or $\mathrm{B}-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ cannot be described as tetragonally distorted from cubic and this analysis cannot be applied directly. However, we might speculate that the unusual length of the Cu-O3 bonds is related to the behaviour of the ground state of $\mathrm{a}_{\mathrm{Cu}}{ }^{+2}$ ion in an octahedral environment. Further, the dependence of bond energy on the length of the trans Cu-03' bonds may be relatively weak for long bond distances. The sum of the lengths of the trans bonds in $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is 5.26 A . This is roughly the same as the sum of the lengths of the two analagous cation-oxygen interatomic separations in $\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ which become the two trans bonds of equal length in the β forms.

As was discussed earlier in Chapter 5 the elongated cation-oxygen bonds in the β phase of all these structures may be explained by a comparison with the structure of $\mathrm{PbSb}_{2} \mathrm{O}_{6}$. It would appear that $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ accommodates the stress in the $\underline{a}-\underline{c}$ direction by allowing one bond to increase in length to 2.322 A while the other, presumably much weaker, is 2.940 A long. In the other compounds only one bond is changed to accommodate the stress and this one is increased in length by over 1.0 A. It is not surprising then that the phase transformation in $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is somewhat unique. The justification of the choice of space groups of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ have been discussed earlier. It is now possible to discuss the choice of the space group of $\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. It is unlikely that the two fold axis of the a phase would be lost in transforming to the high temperature form and therefore the space group Cm is unlikely. Also the mechanism postulated for the phase transformation requires that the β phase have a mirror plane which is generated from the \underline{c} glide plane. The space group $\mathrm{C} 2 / \mathrm{m}$ is the only one which is consistent with Landau's criteria for the existence of a second order phase transformation. The proposed mechanism of the phase transformation involves the motion of the central oxygen atom across the barrier of a multi-well potential. We may gain some further insight into the nature of the phase transformation by the following considerations. If a pyro ion $\mathrm{X}_{2} \mathrm{O}_{7}^{-\mathrm{n}}$ with
the staggered configuration is viewed down the length of the $X-X$ vector, the oxygen atoms appear as a hexagonal arrangement about the X atoms. We now wish to consider the potential energy required to displace the central ol atom from colinearity with the $X-X$ vector as a function of the rotation angle about the $X-X$ vector. This curve will have six minima corresponding to the six positions between the terminal oxygen atoms as they appear in projection. The environment of the anion in the structures of the "small cation" pyrocompounds causes two of these minima, which correspond to the direction of the \underline{b} axis, to be deeper than the others. Further, in the low temperature structures of $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ one of these is slightly deeper than the other by some amount $\delta \cdot \alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ may be more complicated because the displacement of the central OI atom from colinearity with the $P-P$ vector deviates significantly from the \underline{b} direction. The energy δ may be considered as the "activation energy" of the transformation. As the temperature is raised δ may decrease slightly and when the contribution of the entropy term to the Gibbs free energy becomes sufficiently large near $71^{\circ} \mathrm{C}$, the central $O 1$ atom may cross to the second lowest energy minimum on the other side of the \underline{c} glide plane. It should be understood that the motion of the $O l$ atom involves the bending of the entire anion since it is bonded to the two tetrahedrally coordinated P atoms. The energy δ must still be finite up to
$74^{\circ} \mathrm{C}$ where the Bragg peak disappears. Above this temperature neither minimum in the potential energy function is preferred and δ is small in comparison with the entropy contribution. The photographs used to study the transformation show no hysteresis effects and since the crystal develops some long range order as the temperature is lowered, the non-zero value of δ between $71^{\circ} \mathrm{C}$ and $74^{\circ} \mathrm{C}$ must be a cooperative phenomenon and this implies some long range interaction between layers. The model of the phase transformation as has been presented is based only on the nature of the bonding between adjacent layers. The model is, in effect, a pseudo-one dimensional Ising model. Tobolsky,Kozak and Canter (1965) have discussed in detail the application of a one-dimensional Ising model in order to describe a phase transformation such as this.

It is instructive to compare the intensity profile of the streaks associated with the phase transformation of $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ with those arising from growth disorder. If each layer has the probability α of going into the "wrong" position during the growth of a crystal, then the intensity profile of the reflections affected by the disorder is proportional to $\alpha /\left(\alpha^{2}+\pi^{2} \xi^{2}\right)$ (Wilson, 1949). This is a Lorentzian curve centred about the point $\xi=0$ which corresponds to the Bragg peak. In this case the streaks blend continuously into the Bragg peak and background. This is a manifestation of the breakdown of long range order
which tends to produce diffuse scattering at small values of ξ since such values correspond to long interlayer distances in the real crystal. This is in marked contrast to the diffuse scattering in $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ which remains distinct from the Bragg peak at all temperatures. This in turn is a manifestation of the loss of short range order in $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$.

The pyrophosphates of the alkaline earths Ba, Ca and Sr do not assume the thortveitite structure. Mg^{+2} is a member of the alkaline earths but it has the thortveitite structure, probably because it has a small ionic radius. The ionic radius of Cd^{+2} is larger than those of the cations belonging to thortveitite family of pyrophosphates and $\mathrm{Cd}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ does not have the thortveitite structure (Au, 1966) while $\mathrm{Cd}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ does (Au and Calvo, 1967).

The radii and radius ratios of M and X in $M_{2} X_{2} O_{7}$ are given in Table 21 for some compounds. The radii of $P, A s$ and $S i$ are the covalent radii and are taken from Pauling (1960). The radius assigned to V is also the covalent radius and is taken from Bachmann and Barnes (1962). None of these radii are particularly accurate since they were obtained from several structural types and involve several assumptions, but they do show a definite trend. Except for $\mathrm{Ni}_{2} \mathrm{As}_{2} \mathrm{O}_{7}$ and $\mathrm{Co}_{2} \mathrm{As}_{2} \mathrm{O}_{7}$, these compounds assume the thortveitite structure if the ratio of the radius of M to the radius of X does not exceed roughly 0.85.

An increase in the cationic radius would decrease the magnitude of the perturbation from the idealized $\mathrm{PbSb}_{2} \mathrm{O}_{6}$ structure and the explanation for the limiting effect of the radius must be found elsewhere. The terminal oxygen atoms labelled 03 at one end of an anion are each bonded to one X atom and two M atoms whose octahedral arrangement of ligands share one edge formed by the 02 atoms. The maximum separation of the 03 , atoms is limited by the size of the anion and their minimum separation is limited by the minimum separation of the cations. It is therefore evident that if the ratio of the radius of M to that of X exceeds some value the compound might find it energetically more favourable to adopt some other packing arrangement such as that of the alkaline earth pyrophosphates or $\mathrm{Cd}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$.

Table 22 shows the average $P-O-P$ angles of all the pyrophosphate structures which have been studied to date and in which the $P-O-P$ angles are not restricted by symmetry to be 180°. The $\mathrm{P}_{2} \mathrm{O}_{7}{ }^{-4}$ groups are bent further from the linear configuration in the rare earth pyrophosphate $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7} \cdot \mathrm{lOH}_{2} \mathrm{O}$ and in the alkaline earth pyrophosphate $\beta-\mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ than in the three "small cation" pyrophosphates whose cations are transition metal ions. This would suggest that the Na^{+}and Ca^{+2} cations which are less electronegative than $\mathrm{Zn}^{+2}, \mathrm{Mg}^{+2}$ or Cu^{+2} produce more charge delocalization which in turn causes the $P-O-P$ angle to deviate further
from 180°. However the $\mathrm{P}-\mathrm{O}-\mathrm{P}$ angle of $\mathrm{Cd}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ should be similar to that of the transition metal compounds. The amount of bending of the $P-O-P$ angle cannot then be predicted solely on the basis of charge delocalization and presumably such factors as the molecular packing significantly influence the character of the $\mathrm{P}_{2} \mathrm{O}_{7}^{-4}$ group.

TABLE 21

Radius ratios of pyro compounds, $\mathrm{M}_{2} \mathrm{X}_{2} \mathrm{O}_{7}$ (see text for references)

M	Radius	X	Radius	Ratio	
Mg^{+2}	0.65	P	1.10	0.59	(thortveitite structure)
Mn^{+2}	0.82	P	1.10	0.75	(thortveitite structure)
Zn^{+2}	0.74	P	1.10	0.67	(thortveitite structure)
Ni^{+2}	0.68	P	1.10	0.62	(thortveitite structure)
Cu^{+2}	0.72	P	1.10	0.65	(thortveitite structure)
Ba^{+2}	1.35	P	1.10	1.23	
Ca^{+2}	0.99	P	1.10	0.90	
Sr^{+2}	1.13	P	1.10	1.03	(thortveitite structure)
Cd^{+2}	0.97	P	1.10	0.88	(thortveitite structure)
Cd^{+2}	0.97	V	1.20	0.81	(thortveitite structure)
Zn^{+2}	0.74	As	1.21	0.61	(thortveitite structure)
Mg^{+2}	0.65	As	1.21	0.54	(th
SC^{+3}	0.69	Si	1.17	0.59	0.59

TABLE 22

P-O-P angles of some pyrocompounds

	Reference	$\mathrm{P}-\mathrm{O}-\mathrm{P}$ angle	Average
$\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7} \cdot 1 \mathrm{OH}_{2} \mathrm{O}$	(a)	130°	130°
$\mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	(b)	128°	128°
$\beta-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	(c)	$131^{\circ}, 138^{\circ}$	134.5°
$\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	(d)	144°	144°
$\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$		$139^{\circ}, 137^{\circ}, 150^{\circ}$	145°
$\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$		156°	156°

(a) MacArthur and Beevers (1957)
(b) Au and Calvo (1967)
(c) Webb (1966)
(d) Calvo (1967d)

CHAPTER 9: CONCLUSION

The solid state phase transformations which occur in these compounds have been shown to be associated with the bent pyrophosphate anion and the c glide plane which is generated by this bent anion.

One half of the cations in the low temperature (α) form of $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ are five coordinated and the other half are six coordinated as in the high temperature (β) form. Twothirds of the cations in the α phase of $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ are five coordinated and the remainder are six coordinated. The cations in the α phase of $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ are bonded to four oxygen atoms with normal $\mathrm{Cu}-0$ interatomic separations and two other oxygen atoms are 2.322 A and $2,940 \mathrm{~A}$ from each cation. The phosphorus- oxygen distances in the "small cation" pyrophosphates which have been discussed previously show some variations because of the affects of the environment but they are nearly in agreement with the predictions of Cruickshank (1961). The phase transformation in $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ indicates that the B form is disordered and the other high temperature forms, at least of $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, may be similar. This suggests that the anions in the structures isostructural to thortveitite may only appear linear either because of a statistical disordering or enhanced thermal motion across a multi well potential.

The order-disorder phenomenon in $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is one-dimensional and may be described as primarily a loss of shortmange order although some long-range effects are implied by the behaviour of the Bragg peaks. In this respect it is quite uncommon since most one-dimensional disorders are related to growth defects and therefore are temperature independent.

The method used to refine the structure of the disordered model of $\mathrm{B}-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is in essence the refinement of a rigid group with one least square variable defining the geometry of the group. This method should be applicable to any structure in which some of the atoms undergo enhanced thermal motion. If the root mean square displacement of an atom from its equilibrium position (due to thermal vibration) is of the same order of magnitude as the atomic radius, its time averaged electron density may be less at its center than at the point where it reverses the direction of its oscillatory motion. Its electron density distribution is no longer ellipsoidal and should not be approximated by an anisotropic thermal tensor.

In the light of the above results, a number of interesting questions may now be posed, most of which are, in fact, amenable to solution. It has been suggested that the structures of the low temperature forms of the "small cation" pyrophosphates near the phase transformation might be slightly different from their structures at room temperature. Also the structure of $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ as it stands at
the moment is not completely satisfactory. It should be possible to collect data suitable for these purposes as a function of temperature using a diffractometer and a variable temperature control device. If the intensity of each reflection were measured at a number of temperatures while the other experimental variables were held constant, the relative errors in the resultant structures should be sufficiently small to permit an analysis as to how the structure changes as a function of temperature even though the absolute errors may be much larger. This information would shed more light on the nature of the phase transformations. However, it may be necessary to collect data for the structure of $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ at liquid nitrogen temperatures in order to surmount the correlation problems discussed previously.

A similar experimental arrangement could be used to investigate the structure of the intermediate phase of $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ as a function of temperature. The results of such an analysis would be useful, not only to answer questions concerning the phase transformation, but to elucidate the relationship between the changes in electron density and changes in the e.p.r. parameters as measured by Chambers et. al. (1964).

The thortveitite structure and structures similar to thortveitite appear to occur quite commonly. It would be of interest to find the extent to which the structure does
occur and the limiting factors which determine whether or not it is stable, since the radius ratio of M to X in $\mathrm{M}_{2} \mathrm{X}_{2} \mathrm{O}_{7}$ has not proven to be a sufficient limiting condition, In particular the structures of $\mathrm{Co}_{2} \mathrm{As}_{2} \mathrm{O}_{7}$ and $\mathrm{Ni}_{2} \mathrm{As}_{2} \mathrm{O}_{7}$ should be investigated in order to determine, if possible, why they do not assume the thortveitite structure since their cations have small radii. Also, the resolution of the structures of the alkaline earth pyrophosphates, in particular, that of $\alpha-\mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ will help to elucidate the nature of a series of phase transformations which are quite different from those found in the "small cation" pyrophosphates.

There remain a number of questions concerning the phase transitions in the compounds studied here. The behaviour of the volume of the unit cell of $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ in the transformation region is not known. Also the $C p$ curves of $\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ should be studied in detail. The diffuse streaks were only observed with crystals obtained from one "batch" of $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ crystals. It is not unlikely that the behaviour of these streaks and the transformation temperature is dependent on the method of preparation of the crystals and the concentration of impurities in the crystals since entropy plays an important role in the transformation. Finally the treatment of one dimensional disordering mechanisms presented by Tobolsky et.al.(1965) should be applied in detail to the case of $\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$.

Let $\mathrm{S}_{\mathrm{i}}{ }^{\circ}$ be a set of quantities which may be observed and measured. Let $S_{i}{ }^{C}$ (p) be a member of a set of known functions of the vector p having n components p_{j} in a given basis. Then if the $S_{i}{ }^{\circ}$ can be measured accurately and \underline{p} is accurately known, $S_{i}{ }^{0}=S_{i}{ }^{C}(\underline{p})$ exactly for all i. In practice, however, $\mathrm{S}_{i}{ }^{\circ}$ will be measured with some error σ_{i}, but a sufficient number m of the quantities $S_{i}{ }^{\circ}$ can be measured such that the problem is overdetermined; that is $m \gg n$. If approximate trial values are known for the components of \underline{p} and the errors σ_{i} are such that $S_{i}{ }^{0}$ is normally distributed, then the best values of the components p_{j} are obtained by minimizing the quantity R defined in terms of $p_{j}+\Delta p_{j}$ where Δp_{j} is a small correction to be applied to the trial value $p_{j} . \quad R$ is then given by

$$
R(\underline{p}+\Delta \underline{p})=\sum_{i=1}^{m} \frac{1}{\sigma_{i}^{2}}\left|s_{i}^{\circ}-s_{i}^{c}(\underline{p}+\Delta \underline{p})\right|^{2}
$$

We must now find values of Δp such that $R(p+\Delta p)<R(\underline{p})$ We may first expand $S_{i}{ }^{C}(\underline{p}+\underline{p})$ that is,

$$
S_{i}^{c}(p+p)=S i^{c}(p)+\sum_{j}^{n} \frac{\partial^{S_{i}^{c}}(p)}{\partial p_{j}} \Delta p_{j}+o(\underline{\Delta p})^{2}
$$

We also define $D_{i}(\underline{p}){ }^{\equiv} S_{i}{ }^{\circ}-S_{i}{ }^{C}(\underline{p})$ and drop terms of order greater than one in Δp. Then

$$
R(\underline{p}+\underline{\Delta p})=\sum_{i}^{m} \frac{1}{\sigma_{i}^{2}}\left|D_{i}(\underline{p})-\sum_{j}^{n} \frac{\partial S_{i}{ }^{c}(\underline{p})}{\partial p_{j}} \Delta p_{j}\right|^{2}
$$

Now to find a minimum in R we set the variation of R with respect to Δp_{j} for all j equal to zero. If the components p_{j} are independent, we may write

$$
\frac{\partial R(\underline{p}+\Delta p)}{\partial\left(\Delta p_{k}\right)}=2 \sum_{i}^{m} \frac{l}{{\underset{i}{j}}^{2}}\left|D_{i}(\underline{p})-\sum_{j}^{n} \frac{\partial S_{i}{ }^{c}(\underline{p})}{\partial p_{j}} \Delta p_{j}\right| \frac{\partial S_{i}{ }^{c}(\underline{p})}{\partial p_{k}}=0
$$

In matrix form this equation becomes

$$
\underline{B}(\underline{\Delta p})=\underline{A}
$$

where

$$
B_{j k}=\sum_{i}^{m} \frac{l}{\sigma{ }_{i}^{2}} \frac{\partial S_{i}{ }^{c}(p)}{\partial p_{j}} \frac{\partial S_{i}{ }^{C}(\underline{p})}{\partial p_{k}}
$$

and

$$
A_{k}=\sum_{i}^{m} \frac{1}{\sigma_{i}^{2}} D_{i}(\underline{p}) \frac{\partial S_{i}^{C}(\underline{p})}{\partial p_{k}}
$$

These are the "normal" equations of the least square refinement. In order to find the components of $\underline{\Delta p}, \underline{B}^{-1}$ is determined and multiplied into \underline{A}. New trial parameters are obtained by adding Δp to p and the entire procedure may be repeated several times since the expansion is not exact. The standard deviation δ_{j} in p_{j} may be estimated from the matrix \underline{B}^{-1} That is

$$
\delta_{j}=\left\{\frac{B_{j j}^{-1}}{m-n} \sum_{i=1}^{m} \frac{1}{\sigma_{i}^{2}} D_{i}^{2}(\underline{p}+\underline{\Delta p})\right\}
$$

The interdependence or "correlation" $C_{\text {st }}$ between the components s and t of p is given by

$$
C_{s t}=B_{s t}^{-1}\left(B_{s s}^{-1} B_{t t}^{-1}\right)^{-1 / 2}
$$

The last two equations are derived by Hamilton (1964).
This procedure may be applied to the (i) analysis of a crystal structure in which case the S_{o}^{i} and $S_{C}^{i}(\underline{p})$ are the magnitudes of the observed and calculated structure factors and the components of p are the configurational and thermal parameters defining the structure, or (ii) to the determination of the unit cell parameters in which case the $S_{o}{ }^{i}$ and $S_{C}{ }^{i}(\underline{p})$ are the Bragg angles.

The errors in the magnitude of the observed structure factors $\left|F_{o}(\underline{H})\right|$ are usually estimated according to the manner in which $I_{0}(\underline{H})$ is measured. However, it is not known how certain systematic errors contribute to $\sigma(\underline{H})$ and $\left(\frac{1}{\sigma(\underline{H})}\right)^{2}$ may be replaced by a weight $\omega(\underline{H})$ which is then evaluated in one of four ways, one of which is to let $\omega(\underline{H})$ be $\left(\frac{1}{\sigma(\underline{H})}\right)^{2}$. Since $\sigma(\underline{H})$ is usually proportional to $\left|F_{o}(\underline{H})\right|$ for most reflections, it may be set as a constant times $\left|F_{o}(\underline{H})\right|$ for all reflections. During the first few cycles of least squares, the phases (or signs if the structure is centric) of the weaker reflections are not well known and the stronger reflections are then the most useful in calculating $\Delta \underline{p}$. If all the $\omega(H)$ are set as unity then these stronger reflections are emphasized which may be necessary in order for the refinement to converge;
that is to insure $R(\underline{p}+\Delta \underline{p})<R(\underline{p})$ The unknown errors are often a function of $\left|F_{o}(\underline{H})\right|$. Cruickshank et. al. (1961) have proposed that it is possible to account for these errors by insuring that the average value of

$$
\omega(\underline{H})\left|\left|F_{o}(\underline{H})\right|-\left|F_{C}(\underline{H})\right|^{2}\right.
$$

is not a function of $\left|F_{o}(\underline{H})\right|$. This may be done by fitting a power series to a curve of the average value of $\left|\left|F_{o}(\underline{H})\right|-\left|F_{C}(\underline{H})\right|\right|$ plotted against $\left|F_{o}(\underline{H})\right|$. If the coefficients of the power series are A, B, C and D then the weight is set as

$$
\omega^{-1}(\underline{H})=A+B\left|F_{0}(\underline{H})\right|+C\left|F_{o}(\underline{H})\right|^{2}+D\left|F_{o}(\underline{H})\right|^{3}
$$

APPENDIX B: COMPUTER PROGRAMS

The following is a list of the major programs used in this research.

1. FOTDIS (Fourier transforms of diffuse streaks; B. Robertson) . Used to calculate the $\alpha_{n}(T)$ curves from the profile of the diffuse streaks using the equations developed in Chapter 6 .
2. DESLID (Debye-Scherrer line identication; B. Robertson) Used to identify the powder lines in order to calculate the unit cell parameters of $\alpha-\mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\alpha-\mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ by comparison of observed and calculated line position and intensity.
3. DESLS (Debye-Scherrer least squares; B. Robertson) Used to find a least square fit of lattice parameters to observed Bragg angles with the procedure outlined in Appendix A.
4. DIC (Dead time corrections; B. Robertson)

Corrects intensities measured with a diffractometer for dead time, filter attenuation, background, sweep rate and incident beam intensity.
5. PRELP (Precession "Lp"; A. K. Das and I. D. Brown) Applies "Lp" corrections to data obtained with a precession camera.
6. WEILP (Weissenberg "Lp"; A. K. Das and I. D. Brown) Applies "Lp" corrections to data obtained with a Weissenberg camera.
7. SCAB (Spherical and cylindrical absorption; B.Robertson) Applies absorption correction to $\left|F_{0}(\underline{H})\right|$ obtained from a crystal which is approximated by a sphere or cylinder.
8. MACFOU (MCMaster Fourier; J. S. Rutherford)

Calculates Patterson functions, generalized Patterson functions, Harker sections, electron density projections, generalized electron density projections, difference synthesis and non-axial projections in two or three dimensions.
9. MACLS (McMaster least squares; J. S. Stephens)

Refines crystal structures using the method outlined in Appendix A with complex scattering curves and users weighting subroutine.
10. BAT (Bonds, angles and temperature factors; (I.D.Brown) Calculates bond lengths and directions, corrections for thermal effects, interatomic angles and principal axes of thermal ellipsoids.
ll. CROOK (Cruickshank weighting curve; B. Robertson) Calculates the coefficients A, B, C and D as described in Appendix A.

BIBLIOGRAPHY

Anders, K. R., Fischer, K. and Gehring, W., Z. Anorg. Chem. 260, 331 (1949)

Atkinson, R. J. and Stager, C. V., Physics in Canada 22 44 (1966)

Au, P., Master's Thesis, McMaster University (1966)
Au, P. and Calvo, C. to be published, (1967)
Bachmann, H.G. and Barnes, W.H., Can. Mineralogist 7, 219 (1962)

Ballhausen, C.J., "Ligand Field Theory", McGraw-Hill, Toronto, (1962)

Buerger, M. J., "Crystal-structure Analysis", Wiley, N. Y. Pg. 105 (1960)

Busing, W. R. and Levy, H. A., Acta. Cryst. 17, 142 (1964) Callen, H.B., "Thermodynamics", John Wiley and Son, N.Y. Ch. 9 (1960)

Calvo, C., J. Phys. Chem. Solids 24, 141 (1963)
Calvo, C., Can. J. Chem. 43, 436 (1965a)
Calvo, C., Can. J. Chem. 43, 1147 (1965b)
Calvo, C., Can. J. Chem. 43, 1139 (1965c)
Calvo, C., private communication, (1967a)
Calvo, C., private communication (1967b)
Calvo, C., private communication (1967c)
Calvo, C., Acta. Cryst. (in press),(1967d)
Calvo, C., Leung, J.S. and Datars, W.R., J. Chem. Phys. 46

Calvo, C. and Neelakantan, to be published, (1967)
Calvo, C., Van Nest, J. P. and Datars, W. R., Materials Research Bulletin (in press), (1967)

Chambers, J. G., Datars, W. R. and Calvo, C., J. Chem. Phys. 41, 806 (1964)

Condon,E. A. and Odishaw, H. "Handbook of Physics", McGraw Hill, Toronto Pg (8) 108 (1958)

Corbridge, D.E.C., Acta. Cryst. 9, 308 (1956)
Corbridge, D.E.C., Acta Cryst. 10, 85 (1957)
Cruickshank, D.W.J., J. Chem. Soc., 5486 (1961)
Cruickshank, D.W.J., Pilling, D.E., Bujosa, A., Lowel, F.M. and Truter, M.R., "Computing Methods and the Phase Problem in X-ray Analysis", Pergamon Press, London, Pg. 45 (1961) Cruickshank, D.W.J., Lynton, H. and Barclay, G.A., Acta. Cryst. 15, 491 (1962)

Datars, W. R. and Calvo, C., to be published (1967)
DeWolff, P.M., X-ray Powder Data File, A.S.T.M., Card 8-238/239 (1958)

Ehrenfest, Proc. Amsterdam Acad. Sci. 36, 153 (1933)
Goldschmidt, V. M., Nachr. Ges. Wiss. Gottingen, Math. Physik Klasse, 184 (1931)

Guggenheim, E. A. "Thermodynamics", North Holland, Amsterdam Pg 4 (1950)

Guinier, A., "X-ray Diffraction in Crystals", Freeman, San Francisco, (1963)

Haas, C., Phys. Rev. 140, A863 (1965)
Hamilton, W.C., "Statistics in Physical Science", Ronald Press, N. Y. (1964)

Hamilton, W. C., Acta. Cryst. 18, 502 (1965)
Hoffman, C.W.W. and Mooney, R. W., J. Electrochem. Soc. 107 854 (1960)
"International Tables for X-ray Crystallography, Vol. I", Kynoch Press, Birmingham, England, (1962)
"International Tables for X-ray Crystallography , Vol. II", Kynoch Press Birmingham, England, (1959)
"International Tables for X-ray Crystallography , Vol. III", Kynoch Press, Birmingham England, (1967)

James, R. W., "Optical Principles of the Diffraction of X-rays", Bell, London, Ch. 1 (1962)

Katnack, F. L. and Hummel, F.A., J. Electrochem. Soc. 105, 125 (1955)

Landau, L. D., Physik. Z. Sovietunion 11, 26 (1937)
Landau, L. D. and Lifshitz, E.M.,"Statistical Physics"
Pergamon Press, London, Ch. 14 (1962)
Lazarev, A.N., Kristallografiya 6, 125 (196la)
Lazarev, A.N. and Tenisheva, T.F., Tr. Shestogo Soveshch po Eksperim i Tekn. Mineralog. i Petrogr., 319 (1961b)

Lazarev, A.N., Izv. Akad. Nauk, S.S.S.R. Otd. Khim. Nauk, 1314 (1962)

Lazarev, A.N., Izv. Akad. Nauk SSSR Ser. Khim. 60, 235 (1964a)
Lazarev, A.N., Izv. Akad. Nauk SSSR Ser. Khim, 60, 242 (1964b)

Lazarev，A．N．and Tenisheva，T．F．，Izv．Akad．Nauk SSSR， Ser．Khim．60， 403 （1964c）

Lazarev，A．N．，Tenisheva，T．F．and Bonder，I．A．，Izv．Akad． Nauk SSSR Neorgan．Materialy $\underline{1}(7), 1207$（1965）

Lazarev，A．N．，Tenisheva，T．F．and Petrova，M．A．，Izv．Akad． Nauk SSSR．Neorg．Materialy $\underline{1}$（8） 1379 （1965）

Levi，G．R．and Peyronel，G．，Z．Krist．92， 190 （1935）
Liebau，F．，Acta Cryst．14， 1103 （1961）
玉ukaszewicz，K．，Roczniki Chemii 35， 31 （1961）
玉ukaszewicz，K．and Smajkiewicz，Roczniki Chemii 35， 741 （1961）
玉ukaszewicz，K．and Nagler，E．，Roczniki Chemii 35， 1167 （1961）玉ukaszewicz，K．，Bull．De L＇Academic Polonaise Des Sciences XI 7， 361 （1963）

玉ukaszewicz，K．，＂Bulletin of the Seventh Annual Congress and Symposium on Crystal Growth＂，A64（1966）
£ukaszewicz，K．，private communication，（1967a）
玉ukaszewicz，K．，private communication，（1967b）
MacArthur，D．M．and Beevers，C．A．，Acta．Cryst．10， 428 （1957） Magnéli，A．，Arkiv Kemi，Min．Geol．15B，No． 3 （1941）

Mayer，J．E．and Streeter，S．F．，J．Chem．Phys．7， 1019 （1939）
McDonald，W．S．and Cruickshank，D．W．J．，Acta．Cryst．22， 43 （1967）
Melkvi，Z．，Stager，C．V．and Calvo，C．，private communication， （1967a）

Melkvi，Z．，Stager，C．V．and Calvo，C．，Can．J．Phys．45， 83 （1967b） Oetting，F．L．and McDonald，R．A．，J．Phys．Chem．67， 2737 （1963） Pake，G．E．，＂Paramagnetic Resonance＂，Benjamin，N．Y．（1962）

Paoletti，P．and Ciampolini，M．，Inorg．Chem．6， 64 （1967）

Pauling, L., "The Nature of the Chemical Bond", Cornell University Press, Ithaca, N.Y. (1960)

Ramachandran, G.N., "Crystallography and Crystal Perfection". Academic Press, N.Y. (1963)

Ranby , P.W., Mash, D.H. and Henderson, S.T., Brit. J. Appl. Phys. Supplement 4, 518 (1955)

Robertson, B.E., Master's Thesis, McMaster University, (1965) Robertson, B.E. and Calvo, C., Acta. Cryst., in press (1967a) Robertson, B.E. and Calvo, C., Can. J. Chem., in press (1967b) Roy, R., Middleswarth, E.T. and Hummel, F.A., Am. Mineral. 33, 458 (1948)

Sarver, J.F., Trans. Brit. Ceram. Soc. 65 (4), 191 (1966)
Scheringer, C., Acta. Cryst. 19, 504 (1965)
Schomaker, V. and Stevenson, D. P., JACS 63, 37 (1941)
Smoluchowski, Mayer and Weyl, "Phase Transformations in Solids", Wiley, N.Y., Ch. l (1951)

Stager, C.V. and Atkinson, R.J., private communication, (1967) Stephens, J.S. and Calvo, C., Can. J. Chem., in press, (1967a) Stephens, J.S. and Calvo, C., to be published (1967b)

Taylor, J.B. and Heyding, R.D., Can. J. Chem. 36, 597 (1958) Tobolosky, A.V., Kozak, J.J. and Canter, N.H., Phys. Rev. 138, A651 (1965)

Van Wazer, "Phosphorous and its Compounds" Vol. I, Interscience N.Y.,(1958)

Webb, N.C., Acta. Cryst. 21, 942 (1966)
Wells, A.F., "Structural Inorganic Chemistry", Clarendon Press,

Wilson, A.J.C., "X-ray Optics", Methuen, London (1949)
Wooster, M.M., "Direct Methods in Crystallography", Clarendon Press, Oxford, (1961)

Zachariasen, W. H., Z. Kristallogr. 73, 1 (1930)

[^0]:

