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I INTRODUCTION 

Insight into the nature of the nuclear interaction 

potential of the neut~on-proton system may be derived by 

analysis of neutron-proton scattering data and the properties 

of the deuteron, in·particular the deutron binding energy, 

photodisintegration cross sections, and neutron capture cross 

sections. 

The present investigation is based on the expru1sion 

of a quantity closely allied to the phase shift in a power 

series in the kinetic energy of the system. The phase shift, 

usually denoted by 8 , is the difference in phase between 

the asymptotic form of the radial wave function in the 

absence of a scattering potential and the actual wave function 

of the state describing the interacting. neutron and proton. 

In principle since a power series has infinitely many terms, 

definition of the expansion requires the specification of 

infinitely many parameters, the coefficients of every power 

of the energy. In fact, however, the present experimental 

data is not su£ficiently accurate to determine more than 

the first three coefficients of the expansion. Having de­

termined, by at least squares procedure, the best experimental 

values of these parameters, the goal is to find by trial 

theoretical~.nuclear potentials which yield these values. 

Specifically we shall subject to trial "repulsive 

1 



core" potentials, characterized by a short range repulsive 

force interior to an attractive well, defined by 

V = ao for r < r core (1.1) 

V. -Vol(f~) for r> r core 

It will be realized that for V negative the force between the 

neutron and proton is attractive, and that for V positive the 

2 

force between the nucleous is repulsive. It should be mentioned 

that the repulsive core potential was selected as our subject 

of study because it has been shown (J2) that such a potential 

adequately accounts for the qualitative features of the neutron­

proton scattering data at intermediate and high energies, and 

the question arises as to whether the repulsive core gives an 

acceptable fit to the low energy data. Although calculations 

based on the neutron-proton scatteri~ cross section for 

neutrons of energy 4.75 Mev have recently been carried out 

which support the validity of the repulsive core hypothesis 

(H2), this question has not yet been resolved; the pursuit 

of a partial answer is our present concern. 

By restricting our discussion to low energy neutron­

proton systems we reduce the complexity of the problem in that 

S states, only, enter the considerations ana tensor forces 

may be neglected. The singlet S state and the deuteron ground 

state, a combination of the triplet S and triplet D, will, then, 

be the two basic states dealt with. It is to be expected that 

the potentials describing the interaction in these two states 



vrlll have different values of the parameters. 

The phase snift expansion for the neutron-proton 

system in the S state may be ~~itten, (BlO), 

kcot ~ = -l + l r 0 k2 - Pr0 3k4 + Qr0 5k6 
a 2 

(1.2} 

where k is the wave number in the centre of gravity system. 
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Since the quantities a, r 0 , P, Q, in (1.2) are fun­

damental in this method of analysis their significance needs 

elaboration. The first term, a, is Fermi~ scattering length 

at zero energy; geometrically it is the radial intercept of 

the asymptotic wav~ function. It follows tl~t negative values 

of, a, characterize potentials which have no bound states, 

and positive values potentials which have bound states. 

JtcOI. ---- --
·- ,..,.., . -­----

I '\4UL\ • 

1- 1\. 
~ &. ..... 

Fig. 1. Typical zero energy wave functions u0 (r) for wells 

with zero core. In (a) the scattering length a is negative, 

characteristic of an unbound state; in (b) the scattering 

length is positive, characteristic of a bound state. 



The parameter r 0 is called the "effective range" since it has 

the dimensions of length and is of the same magnitude as the 

width of the potential. The pioneers of this uork (BlO) 

designated the potentials by two parameters, fixing the width 

and depth of the well. Obviously it is possible to choose 

two parameters for arty reasonable shape which yield the de­

sired values of the scattering length and effective range. 

For this reason the approximation for k cotS given by the 

first two terms of (1.2) is called the shape independent 

approximation. Now the most resent data is good enough to 

define the third term within meaningful limits. Therefore it 

is to be hoped that information about the detailed sh~pe of 
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the potential can be gained from the parameter P. The value of 

Q turns out to be so small that the fourth term is negligible. 

~~pansion (1.2} has been rigorously established using 

a variational method (BlO); just as rigorous but a less 

complicated derivation was given by Bathe (B5). He considers 

.the neutron-proton system with kinetic energy, E1 in the 

laboratory system and potential V(r), and ~~ites the Schr8dinger 

equation in the form, 

d2u1 + k!u1 - 2jU V{r)ul ::: 0 

dr2 ii2 
where ru, is the radial wave function,)K the -reduced mass, 

M~ ]11, and k the wave nuraber of the system equal to 
~il+- -.n. .L 

(
2 M··· E )t. 
t:,.zP ~+1~ 1 

(1.3) 
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For a second energy E2 it follows that 

2 2 ( ) d u2 + k2 u2 - 2 )J. V r u 2 = 0 
~ 1i2 

(1.4) 

Manipulation of (1.3) and (1.4) gives 

u2uf, -u1u~J ~: (k~ - ki>J! u1u2 dr (1.5) 

R is an arbitrary integration limit. Subscript 1 refers to 

the first energy, subscript 2 to the second. The asymptotic' 

representations of u1 and u2 norn~lized to unity at the 

origin are, 

~ ,,.q..1: sin (kl r + b 1) 
sin\ 1 

q.,2 = sin (k2r + ~ 2 ) 
sin~ 2 

Analogous to (1.5) we may write ··-a 
..., lq]R 2 2 s 

\V2 \1'1 - '-IJ l'V ~ = (k2 - k1) \j.J 1 o/2 dr 
0 (} 

(1.6) 

(1.7) 

Since each u equals its asymptotic form '/J for r greater than 

the arbitrary value R, and since u(o) : 0, by substracting 

(1.5) from (1.7) we obtain 
00 

l - 2 2 (' 
\jJ 1\fl2 - \II 2 «vi] r:o ·= ( k2 - kl ) ~ ('Ill \V2 - i.ll u2 ) dr (1.8) 

From {1.6) and (1.8) we deduce that .. . 

k2 cote\ 2 - k1 cot~ 1 : (k~ - ki_)J ('fll\fJ2 - ·u1u2 ) dr (1.9) 
f) 

Equation (1.9) enables us to express explicitly the 

parame·ters of (1.2) in terms of quantities intimately related 

to the wave function. For k1 : 0 we obtain immediately £rom 

(1.2) the Fermi scattering length 

· k1 cot ~ : -~ : -· ·0 
. a 

(1.10) 
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For any energy E, (1.9) may be rewritten 

k ·cot% : -1 + l k 2 p (OE) 
a 2 

{1.11) 

where 
oO 

~ p {O,E) : J {tp0 4J- u 0u) dr 
0 

(1.12) 

and u0 is the wave function at zero energy with asymptotic 

form ~o· For two different energies E1 and E2 it is useful 

to define 
oO 

~p{ElE2) = J<'Pl\fl2- ulu2) dr 
0 

(1.13) 

It is to be noticed that in the range of energies considered 

the quantity (1.13) is not sensitive to changes in energy. 

This is because the potential is much larger than the kinetic 

energy inside the range of the nuclear force, the only region 

where ~ and u are .appreciably different. The effective range 

,r
0

, is defined to be 
o!/J 

r 0 : 2£ { '41~ - u~) dr : p {o,o) 
0 

(1.14) 

\ile have observed that r 0 , p (O,E), p<E1E2 ) are all very nearly 

equal. 

In order to evaluate P we. expand the wave function 

u and its asymptotic form "' in terms of the energy 

u : u0 + k2v1 + k4v2+ · · 

'V= \Vo+k2 xl + k4 x2-'-· • 
The functions v1 , v2 , etc. satisfy differential equations 

obtained by expanding the Schrgdinger equationr.in a power 

series in k2 • For example v1 satisfies 

(1.15) 

(1.16) 



d2v1 - 2 }A V(r )v1 -

dr2 h2 

-u 
0 
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(1.17) 

The func-tions 'IJ 0 , X1, x2 , etc·~-~ ar~ the asymptotic forms 

of u0 , v1 v2 , etc. and satisfy the boundary conditions 

: o at r = rc• Hence 

tl• -1- r - 1- ~ ,.o - - - ""r a 

x1 : 1 r(r0 - r) + 1 '!! 
· 2 · 'b a 

From the basic expansion (1.2) the difference, 

k2 cot ' 2 - k1 'cot' 1 to terms of order k4 is given by 

! r0 (k~ - kf) - Pr~ (k~ - ~) . 

Therefore, using (1.9) we may. 1~ite 
- 3' 2 2 p(E1E2 ) : r 0 ···-· 2Pr0 {k2 + k1 ) 

(1.18) 

(1.19) 

(1.20) 

We obtain the desired integral for P by ~~iting ~ . Joo l 2S (1.21) ! p (EO)-~ p (o, o): L \II 0 ('I'- 'f'0 )- u 0 (u-u0 ) dr:k <'i'oX1-u0 v1 )dr 
0 0 

From (1.21) and (1.20) with E2 : o, we obtain .. 
r~ P : J (u0 v1 - '#J 0 :JS_) dr (1.22) 

0 
By similar reasoning the coefficients of the higher 

terms in (1.2) may be derived. In particular the fourth 

coefficient Qr0
5 is given by ~ 

Qr0 5: ~'( ~ 0X2 - u 0 v2 )dr: ·~<xi- vi)dr, (J.l) (1.23) 
0 ~ 

The expansion (1.2) is applicable to the negative 

energy state• The ~und state wave function is given by 

IIJ - rr Tg = e (1.24) 



Where "( - 1 , the "deuteron radius'' is related to the binding 

energy of the deuteron E. by E: : 112 -( 2 • Taking state 2 
. 2 

in (1.8) to be the ground state we obtain 
a . 

ol : '( -t T ftO,·E) (1.25) 

Equation (1.25) provides a good value for p (o, -& ) since 

d. and~ are vrell known. Hereafter the subscripts s and t. 

will be used to distinguish the parmneters of the unbound 

singlet state, and the bound triplet state respectively. 

In our notat·ion the trial potentials are specified 

by three parameters V0 , rb, and rc. V0 and rb determine 

the depth and compactness of the well. The relation of the 

parameters V0 and rb to the well depth parameter s and 

intrinsic range b used by Blatt and Jackson (BlO) should 

be clarified. In (BlO) b and s are defined for potent~als 

V~r) with zero cores. Usually the scattering .length is 

finite. However the \<Jell depth may be adjusted.to give an 

infinite scattering length, that is to give a wave function 

having.an asymptotic representation parallel to the r axis. 

The adjusted potential is denoted by vR(r} and the correspond-
R 

ing wave function by U0 • The following two relations then 

define s and b 

V(r) = s~r)· (1.26) 

b = 2J
110 

( 1- .u~~f-) 2 ) dr (1.27) 
0 

From ('1.27) it· is obvious that in the case of the uncored 

potentialb equals the effective range r 0 when s equals one. 

We prove in section IV that the wave function of the cored 



potential at r is.equal to the wave function of the uncored 

potential at (r-rc) that is uc(r) : u(r-~~}. Hence 

b = 2 J: ..o[ 1-u~+ rc>
2

] dr which is not the effective 
0 • ' 

range. In the notation of section !v, ·b : r 0 for s : 1. 

For the four conventional shapes vdthout cores the relations 

bet'{llleen b, lb ' 
s and V0 are as follows, 

Square rb = b 

vo = 102.276 s 
·~ 

Gaussian I02 - b2 - 2.0604 

9 

Vo - c229.208 !L (1.28) -
b2 

Exponential rb - b - 3•5412 

Vo - 751.541 s - bZ 
Yukawa Ib - b - 2.1196 

Vo - 313.404 §..... - b2 
The application of equation (1.2) in utilizing the 

neutron-proton scattering data to gain knowledge of the 

potential shape is straight forward. The variational parameters 

a, r 0 , P, provide a link between the experimental cross 

sections and the theoretical potentials in that kcot 8 can 

be evaluated at various energies from the experimental cross 

sections, providing a set of experimental values which can 

be compared to values of the variational. parameters calculated 



for arbitrarily selected potentials. The cross section 

is 

10 

(1.29) 

In the case of the photoelectric effe~t it is 

sho~rn by Bathe and Longmpire (B6) that the dependence 

of the cross section on the variational parameters is con-

tained in the factor 1 which arises from the 
1- p t {- E: ' - £ ) 

normalization of the ground state wave function and ~lso 

that the photomagnetic cross section involves the effective 

range quantities p t ( -E .. , - e ) and Ps (E,E). 

It has already been remarked that the available experimental 

data is adequate to determine only the first three coefficients 

of expansion (1.2). Potentials which lead to the same values 

for these coefficients are equivalent fits although the 

coefficients of the higher terms may be different. 

It is well to realize the limitations of the theoretic-

al possibilities of finding the interaction potential from the 

phase shift by the method described. Although the potential 

defines a unique phase shift, it has not been satisfactorily 

established that the·converse is true. In fact Bargmann 

(Bla) showed, for the case of central forces, that it was 

possible to choose t'tl'fO different potentials and obtain the 

same phase shift. In fact he has derived families of phase 

equivalent potentials. (Blb). Nevertheless Levinson, (11},' 



(L2), in a mathematically rigorous treatment, proved that 

the phase shi£t defines the potential uniquely in the S 

state provided V(r) is of a constant sign. If V(r)~ 0 
oO 

and continuous, we must also have J rV(r) dr <. oo and if 
., 0 

V(r) ~ 0 and continuous, Jr \ V(r)\ dr + J;2\V(r)\ 
0 

dr < ctJ • This does not therefore prove that 
0 

repulsive 

core potentials are uniquely defined. 

11 

In sections II to IV, P is evaluated for ·the four 

conventional shapes at representative values of the possible 

values of rc:: for both the singlet and triplet states, with 

parameters having the values in units of lo-13cm. as:-23.68 

r 08 : 2.6; at : 5.28 r 0 t : 1.56. In section V a plot of 

Q against r 0 is found for the square and Yukawa shapes in 

the singlet state with parameters a 5 = -23.68 and r 08: 2.6. 

Section VI constitutes a determination of the values of the 

variational parameters r 0 ,P, by a least squares analysis o£ 

the data and contains conclusions resulting from comparison 

of these with the shape dependent values • 

• 



II SINGLET SQUARE t·JELLS CONSISTENT ~li{ITH a5 : -23 .68xlo-13 em., 

r 08 : 2.·6 x 1Q-13 em. AND THE SHAPE DEPENDENT PARA£.1ETER FOR 

A SELECTED WELL 

The square well potentials V(r), defined by V0 , ~' 

and rc are of the form, 

v = 00 r <: rc 

v - -Vo rc< r·; < rb (2.1) -
v - 0 r>.rb -
We proceed to derive sets of parameters V0 , rb, rc 

consistent with the chosen values of a
8 

and r 08 • 

To find r 08 it is necessary to know- u0• From equation 

(1.3). we see that Uo. satisfies 

" 2 u,0 + D t:lo = o · r 0 <:r<rb 

" r>rb Uo - 0 -
\rfuere n2 

=~ Vo 
11 

Consequently 

uo - 0 r< re -
u_Q .= A sin (Dr··+ E ) 

uo - c/Jo - 1-L - - as 

Since u is ·everyv1here continuous and has a continuous 

derivative except at r: rc, we have 

12 

{2.2) 

(2.3) 



1 - ::£ : A sin ( Drb + e ) 
as 

-.L= AD cos {Dzo + E ) 
as 

0 : A sin (Drc + & } 

These equations yield 

A~ ={l-.:J?.)2 + ~2 
a 8 D 

Drc +' : n 11 

Now r 05 can be liritten 

r 05 : 2 J!b(l-!:_}2 dr - 2 Jib A2 sin 2(Dr + E ) dr 
. o as . r . c 

13 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

: 2a8 {1-y3)-(y2 + 1 .. )(rb-rc-sin 2s\ (2.5) 
3 (asD)2 2D J 

Where Drb+E : IJ + n.,-

1-:!?_ = y 
as 

From (2.4a), (2.4d), and (2.7) we deduce that 

(2.6) 

(2.7) 

y2=(Y2+ 1 )sin. 2e or y = ltanel (2.8) 
(asn)2 lasJD 

.Also (2.9) 

Substitution of (2.8) and (2.9) in (2.5) gives 

a~n3=(32, \tan 3el - f)sec
29 -t tans\.;- (r0-~a5 )- ,F(~} (2.lO) 

} ;J r 0 -2a .. ' .... s' . .J . 

The value of the angle Bin (2.10) is restricted. Because 

the wave function does not vanish between rc and rb, and 

~' .' '· .JO A "• • 
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because Drc +f: : n1T, we see that DIQ +~ : (n -t 1)1T • 

. Q.f" course, rb :> r c, therefore 0 < 9 < -11" ·• More explicitly 

it can be seen by using (2.7) and {2.8) that the inequality 

IO ~ e requires that n . 
D ._: lad -1 ( \tan 9\ - 8 ) : L (2.11) 

Equations (2.10), {2.8), {2.7), (2.9), were applied 

to calculate sets of parameters D, rb, rc, listed in table 1, 

corresponding to different values of 9 satisfying the in­

equality (2.11) \T.lth ros=2.6xlo-13 em. an~ as = 23.68xlo-13 em. 

TABLE I VALUES OBTAINED FOR THE SQUARE ~JELL PAR~mTERS 

D, IQ, and r 0 , co~:IPATIBLE 1iliTH r 08 = 2.6xlo-13 em. and 

a5 : -23.6Sx10~13 em • 

e . rc (lo-13cm'•} rb(lo-13cm) ·n{lol3cm-l) l, { lo13 cm-1) 

1.51 .04516 2.4466 .62879 .62998 
1.53 .43691 2.0433 .95242 .96997 
1.54 ~63195 1.8428 1.2719 1.3057 
1.55 .82743 1.6439 1.8985 1.96i9 1.57 1.2200 1.2512 50.366 52.95 
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. The variational parameter P is defined in (1.22) by 
f~ . 

r 0 3P : J (u0 v1-11' 0 \)dr. We recall that X1: lr(r0 -rl,j. :ri# :! 
o ~ ·-' :O:~a-···' s 

For the square well the equation (1.17) for v1 is 

(2.12) 

Therefore 

v1 : 0 ;_:.::;rc > r 

v1 : Bsin(Dr.+g >t ~ rcos(Dr+e ) rc< r<rb (2.13) 

The continuity conditions .on v1 and vi yield the following 

equations for~ and B 

103 A 
tan (Drb-t-~ ): (IQ(r0-zo)+3a';- IT zocos~ )D 

r 0 - 2rb + rb 
2 + Arbsine -Acos B 

- ]J as 

B- -A r 0 cos(S -e ) - ~ 

(2.14) 

(2.16) 

Substituting the functions Uo, v, cfo' xl into equation (1.22) 

we obtain for P8 

r
0
s3ps: (rb(A sin (Dr+e )(Bsin(Dr +S) +A r cos(:Or+f)Lr Jrc ~ r 

.- f'~l-~) flr(r0 -r)t 1 .2_1 dr: I1 + l2- ~ (2.16) 
Jo a 2 o a 8 

Where I 1 , I 2 , r 3 are defined by 

~ I1 : 4D r\in (Dr-+ 6 ) sin (Dr + S )dr: 2 6 cos ( ~ + ~ )-sin(20 -~ -Er ) 
Jrc 

"'\" sin ( 8 - E- ) (2.17) 
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(2.19) 

The constants A, B, C , \ , and the integrals I 1' I 2 , I 3 , 

essential in the calculation of P fore: 1.55, are listed 

together with the value obtained in table II. 

A 

TABLE II P8 AND QUANTITIES ON WHICH ITS VALUE 

DEPENDS FOR A SELECTED 9 OF 1.55 

B 6 p 

1.0696 .?8585 -1.5708 1.8721 .25766 .09842 1.0452 -.039210 



III CALCULATIONS OF THE VARIATIONAL PAillUJlliTERS r 05 AND 

P
8 

FOR AN EXPONENTIAL 'WELL WITH A CORE OF .4575xlo-13 em. 

The exponential potential is of the form 

v = tiC 

V V. -r-rc · = - oe b 

The calculation of r 05 involves solving the differential 

equation 

with the boundary conditions u0 (rc>= 0 and u0 (r):~for 

(3.1) 

(3.2) 

r .> ra:)\ r 0 where f.. is an arbitrarily selected number. The 

solution requires the application of a numerical method; 

Milne's method {MJ) has been chosen. By means of the sub-

stitutions 

x2 : 
-!: 

(3.3) eT'b 

2f-!_g_ ~ 
rc 

v = eFb (3.4) 
n2 

_TJL : 1/X uo (3.5) 

equation (3.2} can be written in terms of the dimensionless 

quantity x as 

d 2 li1 't ( 1 t- 4 v )U. : 0 
~ 4x2 

17 

(3 .6) 
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The boundary conditions become 

-t- ro 
U (x)= (1-2:::2. log x) fX for xc=:. e i=b 

(3.7) 

(3.8) 
as 

We fit a 6 by using as starting values in the integration of 

{3.6) the asymptotic values given by (3.8) which depend only 

on the scattering length. According to the substitution (3.3) 

integrating in with respect to r is equivalent to int~egrating 

out with respect to x, that is from smaller to larger values 

of x. The substitution is advantageous because dr : -2~ 
dx r-

which means that for a fixed increment, h, in x the correspond­

ing change in r decreases aw X increases, SO that the substit­

ution provides an automatic refining of the interval of in­

tegration in r inside the effective range, the region in 

which the wave function changes most rapidly. ~ive approx­

imate starting values were obtained from (3.8) and were used 

in (3.16) to calculate approximate values of ~ • These 
dx 

values of the second derivative were used in Milne's formulae, 

(appendix I) to derive values of the first derivative. 

1\llilne' s formulae were used again \-vith the knovm values of 

d U to . derive better starting values of' U at the five points. ax 
The process was repeated until the values of 11 at some stage_ 

were the same as those of the pregious stage. Having obtained 

the starting values _the' value of the general U is predicted by 
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This predicted value is corrected by 

2 '" (' 2 tt' UnT1= 2_Un -un-l .. th ( Un+O· U n} 
12 (3.10) 

w.here b 2 u'~ is defined by 

~" rl ft ti'' 
~ 2u·" -uu 2u +u o n - n;-1 - n - n-1 • (3.11) 

-The error of 3.10 is about a;:~.~ the differe11ce between the 
I7 

predicted and the corrected value; therefore, this differ­

ence provides a check on the accuracy. 

With V
0 

= 295.2 Me.v., r 0 :.4575Jdo-13 em., r 9 :.4400xl0-13cm, 

chosen because this set of parameters was kno\in to give 

reasonable values of as and r
0 

(B7), equations (3.6) and {3.8) 

become 

d 
2 u t- C ... ! ... 1-15. 5 83 > u = o 

dx2 4x2 

U (x) = (1-.037162 ln x)~ 

The starting values are recorded in table III. 

TABLE III STARTING VALUES USED IN THE INTEGRATION OF 

(3.12) 

(3 .13) 

. d2Ut(!. +15.583) :0 with u(x):(1-.037162 ln x) 6 for x4..02 
dx2 4x2 -

X 
U (x) 

.02 
.16198 

.03 
.19563 

.04 
.2233 

.05 
.24705 

.o6 
.26789 



U(x) was evaluated at intervals, h, equal to .01 from x:.07 

to x : .16 and at intervals, h, equal to .04 from X: .16 to 

.60 U(x) was found to vanish at x = x0 : .5962 or at ". . 

r ~- r 0 = .4553 x lo-13 em. For r. ra = 3.443 x lo-13 em., 

u0 equals its asymptotic form. The asymptotic integral 

fr~ 2 (r) dr equals 3.9673 X lo-13. The integral of u0
2 from 

Jo o 
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the origin to the asymptotic value of r equals -2rc, u~(x) dx JiKa . 2 

Xc~ 
We obtain for this integral, by numerical integration using 

Gregory's formula and Simpson's formula {appendix I), 2.6090 

and 2.691 respectively. Finally we obtain for r 05 , 

r 08 = 2.553 x lo-13 em. 

To form the integrand -U 0 vl - tfo xl requir.ed in the 

calculation of P6 equation (1.17) must be solved numerically. 

Making the substitution 

V =IX vl (3.14) 
rb2 

and using (3.3} and (3.4) equation (1.17) reduces to 

d
2
V + (L1-4v) v =-4 u (3.15) 

dx2 4x2 .7 
V:..JE. X1 : tfX(21nxlnx05 - 21n2x - l:t Ib ln3x) r ~ra. . {3.16) 
~-~ 3 a; 

Equation (3.15) was solved by the method used in obtaining 

the solution of (3.6}. V was found to vanish at x: Xc=•5972 

giving rc:-4536 x lo-13 em. We observe that the two values 
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of rc obtained from (3.6) and (3.15) agree to \iithin 0.5%. 

Recalling 

ros3Ps = 
f~e definition we e~aluate P5 by writing 
Jo (Uovl-o/oXl)drtJRa (uovl-lf!oXl) dr (3.17) 

The integral for P5 has b.een separated into two parts o to R, 

and R to ra, to gain accuracy since bboth products u0v, and 

~0X1, in the integrand, are large for r~ R, although the 

integral of their difference can be accurately evaluated 

using numerical integration formulas. The calculation of 

::=nr~cr~u:::s1::e1li~:::a:::n ::=}:;{e~;n::;:i:;·dx. . xR . o Xa rb x 

The second can be integrated explicitly, the other two 

numerically using Weddle's and Simpson's formulae; their 

values are ~abulated \vith the final result in table IV. 

TABLE IV 3 ros Ps 

3 ros Ps 

R 

2.553 .4400 2.223 .4550 4.3634 1.3456 .03974 -.02571 

The unit.of length is ·1o-13 em.· 



IV THE SHAPE DEPENDENT PARM~TER, P, FOR SINGLET AND TRIPLET 

STATES WITH r 05:2.6, a5 :-23.68, r 0 t:l.56, at:5.28 IN UNITS 

OF lo-13 em., AS A FUNCTION OF THE CORE RADIUS FOR THE 

SQUARE, GAUSSIAN, EXPONENTIAL, YliKAWA" WELL SHAPES. 

···-· . 

If P is kno~m for a given shape of potential without 

a core it is possible to find· P for a potential of the same 

shape with a core. Let V(r) be any potential -vli. thout a core. 

Define the "cored" potential by 

Vc(r) : oo r < rc 

Vc(r) : V(r-r0 ) r > r 0 (4.1) 

Let 4J(r):sin(kr + ~ ) be the asymptot~c form of the solution of 

d2u(r) + (k2 - V(r))u(r) = 0 (4.2) 
dr2 

with u(o}: 0 

:Make a change of variable r' = r+r0 • Then, of course, 

u(r) : u(r'-r0 ). In the variable r' equation (4.2) are 

~u ( r' ) + ( k 2- V' ( r' ) ) u( r' l = 0 
, '2 
d~ (4.3) 

u(rc) = 0 

Where V1 (r') = V(r'-rE),that is v' is the potential v moved 

out a distance r 0 • 

infinite for r'< rc• 

potential satisfies 

t 
Also, since u{rc) = 0, V dan be assumed 

No't'IJ the wave function of the cored 
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2~ ( 2 ( )) .d. uc + k - V c r · u 0 = 0 

dr2 

But Vc(r) = V'(r). Hence equation (4.4) is identical with 

(4.3) except that the variable is called r rather than r'. 

Consequently 
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(4.5) 

and 

'}lc(r) : sin (kr + ~ 0 ) : o/(r-r0 ) : sin(kr-krc+ ~ ) (4.6) 

Therefore ~c :b-kr0 (4.7) 

In the following analysi·s we shall use unprimed letters 

~ ,~ , r 0 , P,.Q , to refer to quantities determined by the 

cored potential and primed letters S', d.', r 0 ', P', Q ', 

to refer to the potential without a core. 

Using relation (4.7) and expansion (1.2) expressions 

forOl', r 0 ' can be found in terms or~, r 0 and r 0 ; alsoP 

can be expressed as a function of~', r 0 ', and P•. Blatt and 

Jackson (BlO) give expansions for P' in terms of ( Ol 1r 0 ') for 

the four s_hapes. Therefore we are able to find P at various 

values of r 0 for each of the four shapes. 

We have, to terms of order k4, 

k .cot 8' : -a.'+ ik2r0 ' - P 1 k4r0 ,3 

Also 

= k cot ( b + rc) _ k cotS k cot krc - k2 
- k cotS+ k cot kr0 

k cotS = -~ + ~ k2r0 - Pk4r0 3 

k cot krc = .!.... (l-k2rc2 - k4rc4 ) 
r 0 3 45 

(4.8) 

(4.9) 
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Substitution of (4.9) into (4.8l and equating the coefficients 

of successive powers of k2 gives 

(4.10a} 

(l-x) 2r 0 ': r0-~(x2-3x+ 3)rc where X::U.rc · (4.10b) 

{l-x)3P 1r 0 '3:Pr0 3 (l-x)-rc3 (x3-6x2+ 15x-15)-rcro (3-x) + rcro2 
. ~5 6 4 

In <an:- analogous way we obtain from the equation 

k cotS =. k cot ( 8 ' - kr c } 

the relations 

(1 -t x' )2ro = where x 1 : cl.' rc 

(1 +x' )3Pr0 3:P 1 r 0
13(1-t-x' )-rc3(x'3+ 6x 12+ 15x~-t- 15) 

45 
-ro 'rc 2(3 +x' )-rcro ,2 

6 4 

(4.10c) 

(4.11) 

(4.12a) 

(4.12b) 

{4.12c) 

The values of (~'s r
0

1
5 ), P8

1 , and P
5 

are given in table V 

and in Fig. 2 and Fig. 3, and the values of (~t'rot'), Pt', 

Pt in table VI and Fig. 4 and Fig. 5, for various core radii, 

for square, gaussian, exponential, and Yukawa shapes and 

in every case for the "experimental" values, in units of 

lo-13 em., a8 : -23.68, r 05:2.6, at: 5.28, rot= 1.56 



.re 

0000 
.2000 
.43691 
.82743 

1.0000 
1.2345 

. TABLE V ~s'ro5 ', P8 ' and P5 at VARIOUS VALUES OF re FOR FOUR SHAPES 

as = -2),68 (~o-13 em.} ras= 2.6 {1o-13 em.) 

~ 'ro' Ps' Ps 

Square Gaussian Exp~~~Yukawa Square Gaussian Eqonentuu Yukawa 

-.10980 -.0)0679 -.0176~ ,009813 .05445 -.03068 -.01764 .009813 .05445 
-.09043 -.03103 -.0177 .01018 .05628 -.03438 -.02664 -~01035 .01654 
-.06836 -.00801 -.01789 .01060 .05836 -.03721 -.03362 -.02609 -.01274 
-.03377 -.03208 -.01810 .01126 .Ob162 -.03923 -.03876 -.03745 -.03601 
-.01919 -.03234 -.01818 .01154 .06299 ..,.03950 -.03940 -.03921 -.03887 

.oooo -.0327 -.0183 .0119 .0648 -.03951 -.0.3951 -.03951 -.03951 

l\) 
\Jt 



TABLE vr· Olt'rot', Pt' AND Pt AT VARIOUS V.ALUES OF r 0 F6R FOUR SHAPES 

at : 5.28(lo-13 em.) r 0 t : 1.56{1o-13 em.) 
--

. rc . d..'ro' Pt t pt 

Square Gauss- Expon- Yukawa Square Gauss- Expon- Yukawa 
ian entia1 ian entia1 

0 .2954 -.0381.3 -.02007 .01751 .09262· -.03813 -.02007 .01751 .09262 
.1 .2734 -.03773 -.01994 .01709 .09055 -.04155 -.02872 -.00202 .05454 
.2 .2498 . -.03729 -.01979 .01664 .08833 -.04L~o21 -.03547 -.01759 .01848 
.3 .• 2245 -.03683 -.01964 .01616 .08594 -.04625 -.04062 -.02889 -.00603 
.4 .1972 -.03632 -.01948 .01564 .08337 -.04781 -.04443 -.03739 -.02380 
.6 .136~ -.03520 -.01911 .01449 .07764 -.05007 -.04920 -.04740 -.04401 
.7 .102 -.0345 -.0189 .0138 .0744 -.05107 -.05073 -.05007 -.04883 .a .0666 -.0339 -.0186 .0131 .0710 -.05205 -.05197 -.05184 -.05154 
.9 .0028 -.0327 -.0184 .0119 .0650 -.04958 -.04958 -.04958 -.04958 

TABLE VII A CO~~ARISON OF THE VALUES OF P8 FOR A SQUARE WELL WITH 

r 0 : .8274(10-13cm.) AND AN EXPONENTIAL WELL WITH r 0 :.4550(1Q-13cm) 

s:qape:~: r 0 (10-13cm.) 

Square .8274 

Exponential .4550 

From Section II 
-.03921 
From Section III 
-.02571 

Ps 

From Section IV 
-.03923 
From Section IV 
-.02570 . 

N 
()'\ : 
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In table VII a comparison of the values ·or Ps for the 

square well and exponential well with core radii of 

.8274 (lo-13cm.) and .4550 {lo-13cm.) respectively obtained 

from equation {4.12c) is made with the corresponding values· 

from section II and section III. The good agreement supports 

the validity of the independent determinations. 

Included in Fig. 5, for the sake of comparison, is a 

plot, from (H2), of Pt versus rc for a Hulth~n potential, 

potential similar to the Yukawa, namely of the form 

V(r) : 0o 

-r-rc 
: -Voe ro 

a 

-r-rc r>rc 
1 -e·rb 

(4.13} 

However in obtaining this plot r 0 t was not held constant; the 

potential was adjusted at each value or r 0 to give the 

experimental values o£ at andp'·t(O,-&o). ThenfJt(-e, -e) 

andr_0 t were calculated from their definitions and the equation 

(4.14) 

was solved for Pt. Because of the difference in the forms 

of the Hulth&n and Yukawa potentials and the fact that in 

the ease of the Hulhhen tpe constant value 2.6(lo-13cm.) 

was not taken for. r 0 t, although in section VI we show that 

dPt is small, the small dif-ferences in the corresponding 
dr0 

values of Pt f'or the two potentials are justifiable. 
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As an immediate consequence of equation {4.12c) we 

see that as the core radius approaches its limiting value, 

P approaches a limiting value independent of the potential 

shape. Since r
0

' must be positive it follows from (4.10b) 

that the maximum value of the core radius, rc max' is 

28 

(4.15) 

For rc = rc max' that is for r 0
1:0, we obtain from 

... (4.12c) the limiting, shape independent, value of P, 

3 
P = -(-rr

0

c) 15 tl5:X:1 1- 6xt2i-x•3 
45 {1;-x' )3 

(4.16) 

~iTe remark that the effect of the core is to decrease 

the dependence of P on the shape, so that, for example, all 

shapes considered have P negative in the triplet state for 

rc ~ .30 (lo-13cm.) 

It should also be pointed out that the shapes con­

sidered here are not "cut orrn at rc, but are displaced from 

the origin. Thus in considering the Yukawa potential we are 

considering an attractive potential which has an infinity 

just at rc where the infinite repulsive potential starts. 

Since potentials deduced from·~son theories would be ex-

pected to cut off ·with a finite (though possibly large) value 

at the core, the potentials considered here may be said to 

cover the r~ge of reasonable shapes. 

.• 
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V INVESTIGATION OF THE ~l~GNITUDE OF THE VARIATIONAL PARAWIETER Q 

In order to justify the use of the first three terms 

in expru1sion (1.2) as an approximation for k cotS it is 

necessary to have a knowledge of the magnitude of the neg~ected 

terms. The ratio of the fourth to the third term is 

Q (kr )2 (5.1} p 0 

At the low energies considered kr0 < 1. To test the validity 

of the approximation we must know the magnitude of Q • Ex­

tending the procedure of section IV we equate the coefficients 

of k6 in _equation (4.11) to obtain 

Q = x'y5 [ -.014:81 - .02481 + (x' '~-1 )(xt,.. 6) 
( 1 T X f J 2 1 1- X t { 1 +X jf 13 5X 1 1 + X t J · 

-t-.002116 (1-t- x 1 ) + .00528] 

-+ 1 [(3x 1 2T 18x1 T30) y6z+x'+ It y3z2t- x.2g3) 
(l-t-xt)4 9 12 

(5.2) 

ir~lhere x' - _, 'r 
- ~ C' y = rc, z = r 0

1 - -·ro ro 

It can be seen from (5.4) that the limiting values of Qfor 

maximum core radius are, like those of P, independent of 

shape and given by 

:Q rc max: x' y5 [-.01481 - .03481 + (x 1 + tHx'+ 6) 
(1 +x' )2 1+ x' (1 i-X' )2 135x' 1-t- x') 

+ .0021164(1+ x') + .00528) (5.3) 



--

The limiting values of Q for the singlet and triplet states 

are compared in table VIII with the corresponding limiting 

values of P ; we see that in· the limit of maximum rc the 

ratio of Q to P is about 1 to 10. 

Using (5.2) we have determined the behaviout of Q 
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as a function of rc for the singlet state and for two sh~pes, 

the square and Yukawa. In using (5.2) to evaluate Q at any 

value of r c it is, of course, essential to know Q ' as a 

:f.'unction of rc; all the other quantities in (5.2) are known 

functions of r
0

• In appendix II we show that Q' as well as 

P' , is a function only of ( l"l' r 0 ' ) ; a plot of Ql! r 0 ' against 

rc is given in Fig. 2. Since ( ~r0 ') is small we may write 

approximately 

( 5.4) 

and the problem of finding the functional relation between Q ' 

and rc becomes the problem of finding the constants a and b. 

Different procedures were used to find a and b for the two 

shapes dealt with. 

TABLE VIII RATIO QjP FOR MAXIIVIUJYI CORE RADIUS 

State p Q QjP 

Singlet _ 1 - -.03951 .00375 -.094 
a 5 :-2J.68(1e- 3cm.) 
r 0 e:2.6{10-13cm.) 
Tr~plet· 
at 5 .28{lo-13cm.) -.04958 .• 00618 -.124 
r 0 t 1.56(10-13cm.) 
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The constant, a, is.thevalue ofQ forol and r 0 

both equal to zero. For the square well, with~: r 0 = 0, 

equations (2.3), (2.13} reduce to 
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u 0 : sin 1i .r.._ , : o/ o= 1 
2r

0 

(5.5a) 

xl - i r(r -r) 
- 0 

(5.5b) 

·Exact integration of (1.23), using the functions {5.5b) 

gives 

Q =· .001713 = a (5.6) 

Also, a·s we shall show immediately, it is possible by exact 

integration of (1.~3} with finite values of~ and rc, to 

obtain Q for a square well. Consequently using the values 
-

of Q obtained from integration, Q ' can be calculated at 

different values of r 0 , that is at different values of 

( c;..rr0 '), from (5.2}. Then the slo.pe b can· be found from 

Q ' : b ·t ( d..' r 0 ' } ( 5 • 7 ) 

Substituting (1.19), (2.13), in ·(1.23). and integrat-

ing we obtain 

(5.8) 

u'Vhere 

Il: [ro2-ro rb T (l T ro)rb2-rb3 -t 1 'rb41rb3 (5.9a) 
· 12 8 '20 30€1es 36e5 '2"5"2' a5 2 

I2:B2(rb - r 0 ;- 1._ (sin 2(l -E) -sin 2f )1 (5.9b) 
2 2D j 

2n I 3:sin ( S - E- )J.b2-r c 2 t- l...(r c cos ( 8 -E ) -rb cos ( 0'"·+ 4:>) 1 
AB . 2 2D 

+ l {sin(e + cp )-sin( 8 -e >1 (5.9c) 
4D2 
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(rb cos 29 -rc)-sin 2~ 
z..n3 
(5.9d) 

Q was obtained by integration at five different values of 

. r 0 ; 'Q·' was evalua.:'ced at two values of rc and b was calculated. 

·The expansion (5.4) for·Q' was then used together with (5.2) 

1 

to obtain Q at various values of r 0 • The results are given 

in table IX and Fig. 6. The best value for b was taken as 

.0020, so that 

Q': .001713-t .• 0020( ~'r0 ') (5.10) 

The agreement between the values ofQ at ·the core radii 

.8274(le-13cm.) and 1.220(io-13cm.) obtained from direct 

integration and the values obtained using (5.4) and {5.2) 

checks the accuracy of the ca~culation. 

TABLE IX t 
VALUES OF Q 8 and Q 

5 
USED TO. OBTAIN b AND VALUES 

OF Q s OBTAINED FROIVI (5.2) ~VITH Q 5 ':.001713 + ~0020{~5 
1
r 05 ') 

rc <ls'ros' 
..; Qs:.. Qt,, b:Q• -a Q 
from inte-

(1.23) 
s·, tX.s'ros' from(5.2) gration of' 

0 -.10979 .00149 .04516 -.10538 .001'764 .00164 .1 -.09973 .00165 
.2 -.09042 .00196 
.3 -.03236 .00243 
.4369 -.06835 .003152 .00154 .00248 

.00276 
.5 -.06262 .00311 
.6 -.05364 .00323 
.63195 -.05081 .003483 .00161 .00197 

.00354 
.8274 -.03377 .003644. .00364 

.00368 -o0191S 
1.2200 -.. ~ .003743 
1.2345 -.. eO .00375 



Because the analytic form of the function v1 is 

unknown the derivation of expansion (5.4) for the YuJ:<:awa 

potential is more laborious and in fact requires the nwn­

erical solution of four differential equations. Equation 

(5.4) can be v~itten 

Q'= Qt\ . +d Q' ... 1 (ck 1r 0
1 ). 

. J~ :O ~ (~' ro' )} 
· Cll:.o 

From differentiation of (5.2) we have atd: 0, 

r 0 'z5 dQ' . :(.37555 y5..- .2. y3z2 -t iy2z3 - :3(yz4-t- !tf2z3 )P' 
d cl 'r

0
' · 4 · 3 

-t2z5Q1 lrc -t <-a y5 f' .0942(yz4t y2z3 l )r0 
1 

t(z_y5-t !:ty4z +Y3z2+ y2z3 - (yz4+2y2z3)p') 
3 3 
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- (t4 + ~ y3z + 1 y2z2 - (4yz3 + 3y2z2 ) P 1 + 5z4Qt )..1.!. _ag_ { 5 .12) 
3 3 8 ·'()~ ... ~ 

·To obtain (5.11) it is therefore necessary to calculate 

Q', L a ro, and a Q at~= o 
ro ~"" 'a~ 

Consider, first, Q'~o· From (5.2) we obtain withct.: 0, 

z5Qt : Q - y2 ( .l~y3 1- .Jyz2-r .jyz2 + •. 125i)) + {yz4-r y2z3 )P' ( 5.13) 

Hence Vie require Q, • we·· re~all )that:~ . _:_~~ «- \..'···· 

"=0 
d:l oO 

ro5Q = 1 x;dr - r vidr 
o }rc 

(5.14) 

Numerical integration formUlas can only be applied with 

accuracy to obtain the i.ntegrals of slowly changing functi.ons. 
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Consequently although xi can be i~tegrated exactly, since 

the increments in vi for a fixed increment in r at asymptotic 

values of r, are relatively large Q cannot be obtained with 

sufficient accuracy from the difference of the two integrals 

in {5.14). Hence rather than solving a differential equation 

for v1 we write Q in the form 

ro5Q = J:<Xi - vl) (Xl -t Vj)dr 

We make the substitutions 

X: r_ 
IO 

U
0 
= Tx U.(; ;~.~ 

vi= rx "rb2~.,; 

y = lnx 

In terms of X, V, andy defined in (5.16), from (5.15) Q 

may be written in the form 

. ·· . r
0

5Q : s~(X- V) (X t V)dy 
·-dO 

·Also in terms of the quantities defined in { 5.16) the 

differential equations for vl and X1 take the form 
a _x2 2 {9JL - !v >-t Ke x V: -x u 

dy2 x-.xc 

).. R rc 
dX - !X : -x2'P where K = 2IO~ V o e-d;2 nz- I1l 

Eqaat~ons(5.18) can be combined to give an equat~on for 

(X - V) namely, 

~ (X -V ) +· (Kx2e-x - l;) (X -· V): Kx2e-x X - x2(i' -U} 
dy2 x-xc x-xc 

{5.16a) 

{5.16b) 

(5.16c) 

(5.17) 

{5.18) 

(5.19) 

(5.20) 



In a like manner the differential equations for ~ 0 and .u 0 

provide an equation for cp - U, namely 
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~ (lp- U)+(K~e-x- i){qJ-U): Kx2e-x'P {5.21) 
dy2 · x-xc x-xc 

In both (5.20) and (5.21) we have the boundary condition 

X - V:~- U = 0 for asymptotic values of r. To find Q1 0 ~-

then, we solve {5.21) for ~·-U, form the R.H.S. of (5.20), 

and solve for (X-V). From (5.16c) and the definition of 

xl 'it follows that 

X = tJX {x0 - x) 
~ 

(5.22) 

We can, therefore, obtain (X -T V), form the integrand of 

{5.17) and integrate to obtain Q. Specifically we choose 

the set of numbers, r
0

: 2.7(lo-13cm.) r
0

: .21432 (10~13cm.) 

rb= 1.0716(l0-13cm.). With this set of values Xc= .2, 

and r 0 t : 2.2714(1o-13cm.). Consequently from the definition 

of' V0 in (1 •. 28) and the definition of K in (5.19} we have 

K : 2.05171. The differential equations (5.20) and (5.21) 

were solved by Milne's method; the equations were integrated 

in from an asymptotic value of r about five times r
0

, insuring 

accurate starting val~es. U and V were found to vanish at 

values of r equal to .2i4l(lo-13cm.) and .2142{lo-13cm.) 

respectiyely; the significance is that, since the selected 

value of the core radius is .2143(lo-13cm.), the obtained 

functions~ -U and X-V, are reliable to within about .5%. 
From integFation of (5.17) we obtain for Q, 



Q 6..:0= .009526 

and from (5.13} 

Qt = .0113 
. ~=0 

To evaluate, l_ aro , we write 
r 0 ~~1(l:O 
oQ 

aro = -~t.f (ro/o+u 0 'd-uo)dr 
1(fd\ 0 . n-

We obtain d 1¥0 from the differential equation n-
~ 3 U6 - V(r) a Uo : Uo '()V(r) 

· dr2 ~ · ~ '?> 0\. 
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(5.23) 

(5.24) 

(5.25) 

Realizing that the dependence of V(r} on~ is contained in 

the quantity s, defined in (1.26), we may l'Trite 

'OV(r): ~V as 
'()~ Ts ~ 

For the Yukawa, Blatt and Jackson (B10}, give 

s = 1.0 + .6361 { ol 'b) 

Therefore, 

oV : .6361 bV 
~ 

(5.26) 

(5.27) 

{5.28) 

To carry out the integration (5.24) we again use the substit-

utions (5.16a) and {5.16c) and v~ite the integral in the form 

~o : -4 r dr- 4rb (rbx2+x U ~) dy · ~rc ta 2 
a~ o c 't)~ 

The differential equation (5.25) takes the form 

d
2 

_ ~ + \Kx2
e-x - *' C>U = -1.445 .Kx2e-X _U. 

dy2 C>d\. l x-x0 J c.>~ x-xc 

Milnes method is used to solve (5.30); starting values 

are given by 

(5.29) 

(5.30) 



(5.31) 

Again the accuracy of the calculation is supported by the 

fact that au vanishes at r- .2180(1o-13 >; that is at a value a;: - . 
which differs from r 0 by about.2%. We obtain by integration 

L ~ · = -2.0410 (lo-13cm.) (5 • .32) 
ro ~ '14.=0 

Lastly to evaluate ~Q 
8ck1c:l :0 

, differentiation of 

(5.17) yields, 

r
0
5aQ-t5r

0
4flro Q: ere~ ax1 dr-t-rb5r'"a[x2(X-V) ~ (X+V) 

aQ. ~ lo '8ct Jyc ~ 
~x2(XTV) ~ (X-V)}dy (5.33) 

Analogous to equation (5.30} we obtain an equation for 

_a_(X-V} by differentiating equation (5.20), which we solve 
a~ 

by Milne's method. or course 

a (X+ V} - 2.i_X - 8 (X-V) u. - ~"'- ~ 

Hence, we can form the integrand in C5 .33) and, knowing 

aro and Q, we can obtain a Q. The result is 
~~ ~~ 

3Q, - .08546 
aa: "'.o -

( 5 .34) 

(5.35) 

In this case it is found by interpolation that av vanishes 
()~ 

at r:· .240(lo-13em.). rather than at r 
0
:.2143 {lo-13cm.). 

This discrepancy, 1r1hich can be attributed to accumulated 

round off error, has however no appreciable significance in 

--,1 
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the final result since the integral in {5.33} contributes only 

a~out 10% of the value of 1LQ , the main c~ntribution, .09721, 
~~ 

coming from the term 2_ oro Q. Inserted in equation {5.12) 
ro~ 

the values obtained for Qt, !_oro' and oQ give 
ro a~ 0~ 

..2.S' =' .1134 
acltro' 'd.. :0 

Finally the linear expansion for Qt is 

Q' : • 0113 t- .113 ( "'' r 0 ' ) ( 5 • 3 7) 

Values of Q' from {5.37) and of Q from (~.2) are listed in 

table X and a plot of Q against rc is given in Fig. 6• 

TABLE X Q~ and Q5 t FOR AYUKAWA SHAPE 

a8 · = -23.68(lo-13cm.), r 05 = 2.6(lo-13cm.) 

rc Ql Q 

0 -.0012 -.0012 
.1 .oooo -.0014 
.2 .0010 -.0014 
.3 .0020 -.0009 
-4369 .0035 .0001 
.5 .0042 .ooo6 
.6 .0052 .0016 
.8274 .0075 .0029 

1 .0091 •. 0035 
1.235 .0113 .0037 



In section III the function v1 w~s calculated for the 

particular exponential, V0 : 295.2 Mev, r 0 = .4575(lo-13cm.) 

~ = ·.4400(lo-13cm.). Therefore, Q can be calculated for 

this exponential directly from its definition .(1.23). For 

accuracy the range of integration, from the origin to the 

asymptotic value of r, has been divi4ed into two parts 0 to R 

and R to ra, as in Section III. The integral for Q, in the 

notation of Section III, is written in the form 

r
0
11'Q=fR xi c1r - 2rb 5 fxc v2 dx,. 2zo5 ~R (x1

2 _ ~)dx 
Jo . JxR ~ ~xa . =--z; x2 

. . xrb 

The calculated value .00187 is plotted on Fig. 6; as one would 

expect, because of the shape of the exponential, the Q for 

the exponential is seen to be between the square and Yukawa 

values at this core radius. 

From Fig 3·· and Fig. 6 we see that the ratio Q for the 
P" 

square wmll decreases monotomically from its shape independent 

value, .09, at maximum r 0 to .04 at r 0 : 0. For the Yukawa at 

r 0:0, Q: .02. Of course, for the Yukawa P:O at r 0 : .325; 
p. 

but for P:O a measure of the accuracy of·(5.2} is given by 

the ratio of the fourth term to the second, that is by 

2Qro5t6 not Q. For an energy of 5 M.ev. the ratio 
rk2. ' F 

0 

2Q(r0 k)4 : 2.3 x lo-4. Therefore, from our investigation of 

Q for the square and Yukawa wells, which are representative 

-of the reasonable well shapes, we conclude that its magnitude 

is small enough to make the first three terms in the expansion 



for k cotS a valid approximation. 

Jackson and Blatt (Jl), using the wave function for 

proton-proton scattering have calculated Q5 ·1 for the four 

conventional shapes. The values quoted are: square .00179, 

gaussian -.00073, exponential .00089, Yukawa .019. It 1rJill 

be observed that their square well value agrees "trd. th ours, 

while their Yukawa Q8
1 is·an order of magnitude larger than 

ours and their other three. 



VI EXPERIMENTAL VALUES OF THE VARIATIONAL PAlliU~TERS 

The experiments which determine the unknovin r 08 , r 0 t, 

P8 and Pt, do not measure the unknolms directly but rather 

functions of th~n. Four exact equations are sufficient, of 

course, to determine four unknowns. The experiments, however, 

yield a set of N equations, 

Fn(r05 , r 0 t, P8 , Pt) : An (6.1) 

The number of equations is greater than the number of un­

knowns and the right hand sides of the equations, being 

experimental numbers are not exact. Hence the quest for the 

best set of values does not involve simply the solution of 

four exact, simultaneous, equations, but rather some unbiased 

analytic technique. To find the best values we apply the 

method of least squares in a manner analogous to that used 

by J. DuMond and E. Co~en (D2). In order to understand the 

method of application, let us cons-ider the general case of 

q unknO\"lS, X1, X2, 

equations, 

Xq, overdetermined by a set of N 

Fn(X1••• Xq) : An n : 1 to N (6.2) 

The equations (6.2) are linearized by choosing a set of 

origin values X1o, X2o, Xq0 , sufficiently close to the 

anticipated solution X1, X2, Xq so that when the equations 

(6-.2-l---are w·ritten in terms of the small dimensionless 



quantities xl : X1 - X10 , 
X1o 

xq : Xq - Xqo , second order 
Xqo 

terms in these quantities may be neglected. The observation­

al _equations ("6.2), then take the form 

(6.3) 

Let us denote the true values of the unknowns by xl, x2, • • xq. 

Substitution of these ·values in {6.3) would not. give the 

numeric an, since an is a measurement subject to error. 

Hot-rever l'le may ~.rrite alnXJ.i- a2nx2+ • • • _. .. aqnXq : an{l-rn) (6.1.,.) 

where rn is the actual relative error in the measured 

quantity. We assume that the probability distribution or 

the error, rn, is Gaussian. Hence cr n' being the standard 

deviation, the probability that the error rn lies between 

rand r+-dr is 

Pn(r<rn<r+dr): 1 exp(-r2 )dr (6.5) 
21T 'i (T" n 2 '\/" n 2 

Introduction·or the factors {1-rn) in (6.4) increases the 

number of ~nknowns from q to q -t- N so that the system is no 

longer overdetermined but in fact can be satisfied by any 
I 

one of infinitely many combinations of the unknowns 

X1•••Xq, r1···rn• The Axiom of Maximum Likelihood provides 

us with the condition which provides a means of finding the 

best solution. The axiom states that "of all the possible 

choices for the set of residuals rn, the best choice is that 

whose probability of occurence is maximum". The probability 



of obtaining a set of residuals r1,• • rN is 

P(IJ.,r2,r3, .. ):211'-i-N( IT11T 2 •• ·ITN)-1 exp( -i(r1
2 

T r/ + •• )) 
q- .2 -o::-2 

1 2 
(6.6) 

The probability, P:·~' is a maximum when the exponent in (6.6) 

is a minimum. The function to be minimized is, therefore, 
. 2 . 

Q = · I: (rn ) and the minimum condition is obtained by 
--z n 

equating to zero .the partial derivatives of Q with respe_ct 

to each variable x1 • • Xq• The equations which express the 

minimum conditions are called the "normal equations''. The 

normal equations are 

bql~ + bq~x2 +. · -t bqqxq : c q 

The quantities h·. are given by 
~J 2 

\i = Z. pn ain 
n 

(6.7) 

(6.8) 

Where Pn is the weight of the nth equation· and is related 

to the standard deviation of an by an arbitrary constant c. 
The quantities b . are SYlru.netric, that is b. . : b.. • 

. ~J 1J J1 
The well known solution of (6.7) is 



f,f, 
.q.Lf 

(6.9) 

where the element dij is the minor bji in the determinant 

of the bs divided by the determinant itself. A measure of 

the consistency of the set. of values is given by the 

minimum value of Q, which is usually denoted by 
2 2 

?( =~~ 
n2 

(6.10) 

Rn is the residual rn for the solution (6.9). 

The mean square error in x1 is given by Cdii. "A priori" 

the value o.f C is takBn to be 
- 2 

Cr = Pntcrn (6.11) 

If X 2 is different from the expected value one, "a posteriori 11 

N.:q-

(6.12) 

and the mean square error in x. must be adjusted accordingly. 
J_ 

If X 2 is very much larger than one, the consistency of' the 
N-q 

equations is to be suspected. In this case~2 could be 

evaluated for different sets of equations selected from the 

inconsistent ~et in order to ascertain which of the equations 

of the set .contains the concealed error. 
. ; 

Before proceeding further with the application of 

the method to our problem, it is advantageous to discuss some 
... I 



quantities which will be needed in the observational equatio11s. 

We require D, defined by 

(6.13) 

Dis introduced in evaluating.the matrix element of the 

magnetic dipole transition to ls state of energy E. The 

matrix element is proportional to 
00 

MM : NgNs I ugu8 dr (6.14) 
. 0 

where Ng and N
8 

are the normalizing factors for the ground 

and smnglet states. From elementary integration of the 

wave functions 
OlD . 

Jo\flg'l's dr: "Y"+k cot~ s 

12-t- k2 

(6.15) 

(6.16) 

The third integral in (6.16) proves to be negligible (B6), 

(S2), so .that the matrix. element can be written in terms 

of Din the for~ (6.13). 

~\Te require the difference bet\"teen the magnetic 

moments of the proton, and neutron, )Up -~n· From Sachs', 

Nuclear Theory, (Sl) 

P.,p·: 2.7955 erg/gauss 

)J.n = -1.91280erg/gauss {6.17) 



~ve requi:re the scattering lengths a
8 

and at; the 

values are obtained from measurements of the epithermal cross 

section,cr
0

, and the coherent scattering.amp~itude.f. 

<r 
0

: ~·:Mi1T at 2 ) + li:(4 Vas 2 ) ( 6.18) 

From the weighted averages of the most recent determinations 

ofo-0 and f, listed in table XI, we find 

as = -23.71 ( 1 t • 00059) xlo-13 em. 

at : 5.383 (1 ~ .0015) x 1o-13cm. 

k2 is defined by 

k2 : 2 u.. Ec.g. ·fir 

(6.19) 

{6.20) 

\Vhere Ec.g. is the energy in the centre of mass system. In 

the scattering experiments 

Ec.g. =·MP E, where E is the energy measured 

Mn+Mp 

in the laboratory system. In the photodisintegration the 

centre of mass is at rest, hence Ec.g. : E. In this case 

E is the total kinetic energy after disintegration and 

equals the difference between the garmna ray energy and the 

TABLE XI . RECENT VALUES OF (J~, THE EPITHERMAL CROSS SECTION 
AND f , THE SCATT~RING AllilPLITUDE• 

o-0 
20.36 + .10 
20.41 + .14 

Reference 

(M2) 
{S6) 

£ 
1' 

-3.78 + .02 
-3.80 ; .05 

Reference 

(H5l (36 



binding energy of the deuteron. The conversion factors from 

E to k2 in the scattering and photodisintegration are therefore, 

respectively 

~ Mp = .012052x10 26cm-2Mev-1 

1'1 ~+Mp 
(6.21) 

~ : .02412x10 

We denote the binding energy of the deuteron by e 

and take according to ( S2) , & = 2.226 M. ev. 

Hence, y- 2 
: :('i .. is .05369 x 10 26cm-2 • Also we use 

the quantity p1 = -1_, in the observational equations. 
as 

In our problem we have a total of thirteen observ-

ational equations which fall into four groups, namely: 

(a) a single equation in which the measured quantity ~ is 

the binding energy of the deuteron. 
. . 

(b) four equations in which An are the total neutron-proton 

scattering cross section at four energies from 

1 Mev to 14 Mey. 

' 

(c) five equations in which An are the total photodisintegra­

tion cross sections for five different gamma rays. 

{d) three equations in which An_ are the ratios of the 

photomagnetic t·o the photoelectric cross section for 

three different gamma rays. 

These equations can be written in the form, 

(a) r 0 t + 2Ptrot3-( 2: f (0, - e ) (6.22) 



'. 

{b) 31T' [ k2-t- {ELt -1-! E' t (O,E)k2)2] -1 -to 1r(k2+ (as -1-!e s (O,E) 

xk2 }
2

] - 1 : \JlE) ~.3:!.::, (S2), (6.23) 

(c) a-e(E) +IT"m(E) :<T(E4 where 

a-e = 8 Tr e2 Ii2 e iE . 1 
T nc M (E + e )3 -

1
_-f..-t_1_r_ 

G'm = m~ (li~ (fop-JLnl 2 ~k _.....,1.........---
3 lie Mel -rz + k2 1-ft 1 

k2 2 
xtr+/J 1 - r 2n+ 'i1. P {oE)-k2nl (B6), (s2), <~~24) 

k2+ ( p 1+ 1£2 (' ( O,E) )2 
2 

1 ft = ft (-6 ' -e ) 

{d)<[!!! = photomagnetic cross section (6.25) 
~e photoelectric cross section 

We define the origin values r 0 so and roto by 

r 0 ·s= r 050 (1+ s) rot= r 0 t 0 (1+ t) (6.26) 

The observational equations (6.22) to (6.25) can now be 

expressed in terms of the four small dimensionless quantities 

s, t, P8 , Pt in the linearized form, 

(a) rotoi+2Pt roto3r-2 :f(0,-1.)-roto (6.27) 

(b) J~roto(~-l-!rotok2)k2 t- 61froto3k4(~-l-!rotok2) Pt 

(k2 + (B.t -l-~rotok2>) 2 [ k2 + (~ -l-~rotok2)21 2 

{ -l ~ k2 )k2 3 4 + TT roso as -2roso s - 2;rr
050 

k {a
8 
-1-~r080k2 ) p · 

s 

~ ' 

[k2~ (as-l~lrosok2)2) 2 [k2~ (as-l-lrosok2)2) 2 , 

: o-(E) - 311' _kZ,.,---t-_.( ...... a ___ l~'-_-.o:.-.t.-r--k~2~) ..,.2 
t 2 oto k~( -1 1 k2)2 as -2roso 

(6.28) 



(c) {:MA+ EF)t -tf!IIBs or (MC -..EG)Pt T MDP8 : O'"(E)-(E t-M) 

O""'m: M(lt-At-t-Bst-CPt-rDP8 ) 

<r 6 : E ( 1 T Ft T GP t ) 

M :211" e2 (!i_\ 2 ( )(p -)"'n)2 r k 
3 he Mc'J 1- yr oto T2 + k2 

'1 ,..-2 2 1 2 
{"l'" +(3 -4 (roto +roso>+ ~ (roso-roto> 

X-----------------------------------2 cal 1 2)2 k + ,- t' ~ r osok 

1- 'Y""rot·o 

k2( 1 k2 ll 1) - roso zroso~ ~~ 

k2~ ({J 1+ roso k2)2 

-r-
c .: 4Y3roto3 - 2T2( r2-t k2) roto3 

(6.29) 

1 -rroto 2 
T + fJ 1

- "f-<roto~roso>+ t<roso - roto> 

D : 2 T 2k 2
roso3 

T-tfb
1

- r 2 
(rotot" roso)~ k2 (roso-roto) T 1; 

- roso30(2P 1+ rosok2) +----------
k2t (roso k2 .,_(3 1 >

2 

2 

E - SIT e2 · r k3 1 
- T ire 2 2 3 ~1--;-,.;;;;,._r o-t-o 

(T + k ) 



(d) 

F :: rotol' 
1 - ~roto 

G = 4roto3Y 3 

1-rroto 

[ (A-F) t + Bs t- ( C-G) P t + DP 5) 1-1 - r m - lJl 
E- qe' E 

{6.30} 

The experimental numbers which ~~e use in (6.27) to (6.30) to 

obtain the thirteen observational equations are tabulated in 

table XII. The resulting thirteen equations are given in 

table XIII. In accordance with the previous notation the 

coefficients of t, s, Pt, and P8 , are denoted by a1n, a2n' 

a3n; a4n• The probable error of the R.H.S. of each equation 

has been adjusted to take into account the probable error 

in the energies. The adjustment is small, and in equations 

6 to 13 is ignorable. The weight taken for each equation was 

1 , so that "a priori" CI= 1 and the 
(Probable error)2 (.675)2 

. .! 
probable error of Xi 1s dii 2 • The normal equations (6.7) 

were formed; the "best" values were calculated from (6.9) 

and were used to calculate~?C 2 • The probable errors were 

adjusted according to (6.12). The results are in table XIV. 

The large value ofX2 leads us to suspect inconsistency in 

the set of equations. The inconsistency is found to lie in 

the photodisintegration equations. Equations 11, 12, and 13, 

may be written in the form 



TABLE XII - EXPERIMENTAL. NEUTRON-PROTON SCATTERING CROSS SECTIONS, DEUTERON f ~-
PHOTODISINTEGRATION CROSS SECTIONS, AND THE RATIO OF PHOTOMAGNETIC 
TO PHOTOELECTRIC CROSS SECTIONS 

Photodisin-
Enerry Scattering <r Refer- tegration Refer- Ratio 
(Mev (Barns) ence <re+Cim ence ~ ( .,--26 .,. 2 

0"" ..... • 10~ ·· -"Cm.) 

1.311 3.675 .... 020 {F2) 
2.532 T .006 2.525 .; .009 {Fl) 
4.749-; .009 1.69o ~ .oo66 (H2~ 

14.12 -; .04 .686 1"' .007 {B4 
14.10 -:; .os .689: .005. (P1) 
14.12 -; .ooa .688 ;: .0095 Average 

2.508 :! .003 .119 -r .ooa (B8) .600 .±. .02 
.107 :; .01 (S4) 
.115 :; .0074 Average 

2.6143 '1" .005 .13$0-:.. .0038 (Hl) .3600 -4- .oos 
2.754 :r.-.005 .145 ... -.015 f~~~· .247 .-.007 

.159 :; .ooo-- .317 -; .012 

.157 :t: .0056 Average .295 :;: .036 
4.45 + .04 .243.,. .017- ~~§} .264 ..t. .00$9 
6.14 :;: .01 .219 :; .01 

.215 :; .012 (B2 

.21s z .ooa Average 

Refer-
ence 

(B8) 

(B8) 
(B8) 
(~D.) 
(G1) 
Average 

\11 (_,.. 
~ 0 ... ) 



TABLE XIII THE LINEARIZED OBSERVATIONAL EQUATIONS AND THE 
DETEill4INANT OF THE NORMAL EQUATIONS 

y 

51 

Probable 
Equation aln a2n 13n a4n Bon error in 

a 

1 1.70 0 .5276 0 .0102 .014 
2 21.07 -21.64 -1.925 i-992 2.1 2.93 

·3 2L1-.86 -15.37 -4.389 .846 .6 1.57 
4 21.73 -11.34 -7.197 9.471 1.2 1.19 g 3.786 -6.651 -3·728 16.35 1.1 1.00 

.05481 -.01546 .03402 .003006 .0163 .007 
7 .06876 -.01318 .04268 .003625 .0193 .0038 
8 .08625 -·011004 .05353 .00~246 .013 .0056 
9 .15512 -.002448 .09628 .oo 765 -.002 .017 10 .13618 -.000673 .08452 .007348 .004 .0078 11 -.1578 -.2606 -.09793 .05068 -.0644 .03 12 -.09911 -.1556 -.06151 .04279 -.0415 .008 13 -.06516 -.0955 -.04044 .03684 .012 .oo6 

16.6049 5.2031 -.060365 .19901 
B : 

5.2031 1.9860 -~32998 -.17828 X 1012 
-.060365 .32998 1.0141 -.46275 

.19901 -.17828 -.46275 .42610 

TABLE XIV "BEl:Sfr" VALUES vJITH THEIR PROBABLE ERRORS~- FROM 
THE NO~~ EQUATIONS 

t s Pt Ps rot ros 

Value: -.04415 .06649 .1964 .21697 1.625 2.880 
Probable 
Error . .0394 .0767 .117 .123 .066 .207 . -

X 2 : 2.788 
l\J-q . 
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t + .6206 Pt + 1.6514s -.3212P5 = -.3612 .t .19 

t + .6206 Pt + 1.5700s -.4317P5 : -.3531 !_ .08 

t + .6206 Pt +1.466s -.5654P5 = .2609 j; .092 

(6.31) 

The L.H.S 1 s are very nearly identical, so eliminating t, Pt 

w~ll give two almost .identical L.H.S's but quite different 

R.H.S 1 s. Hence if these equations are taken seriously, large 

values of s and P5 arise. However we suspect one of the 

experimental residuals on the R.H.S.'s. Moreover, apart from 

this inconsistency, the values obtained could not be taken 

as the nbest" values because Pt and P8 are so large that 

neglecting second order terms involving them in lineariz-

ing the observational equations would introduce an appreci­

able error. 

Consequently a second least squares analysis was 

executed using the first five equations. T4e values ob-

tained are 

t - .00129 :!: .0077 rot - 1.702!. .013 - -
s - -.03633 .! .0722 ros - 2.60 .! .19 - -
Pt: .00932 .t .078 x2 .223 --
P8 : .0347 ± .032 

The small value of)(2 substantiates the consistency of the 

equations and the unkno1rms are sufficien~ly small to make 

the approximation introduced by the linearization a valid 

one. However upon substitution into equation 6 to 13 it 

is found that the resi4uals of equations 6, 7, 8, 11, and 12, 

exceed the probable error of their R.H.S's by 1, 4, 1, 2, 
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and 7, probable errors respectively, after the residuals had 

been made as small as possible by taking into account the 

error in the L.H.S's due to the errors in s, t, P5 , and Pt. 

By inspection of the equations and comparison of 

these values with those in table XIV, another set·was 

selected which proved to be more consistent. 

itJith the set 

t = -.008 !. .05 

s = -.05 j;_ .05 

Pt: .05 .± .01 

P5 : .03 .t .05 

r 0 t = 1.686 ! .085 

r 05 : 2.56 !. .13 

only the residuals of equations 7, and 12, exceed their 

probable error by more than one probable error and in these 

two cases the probable errors given by the experimenters, 

in comparison with those of the other equations, are small. 

The capture cross section for thermal neutrons is given by 

~ v = 2 lf e2 rt (.!.. ~· ~ ( }' p-,P-n) 2 1:. 'Y" + fJ 1 - Y 2D J" ( 6. 3 2 ) 
. ~ Me Mc

2 
(1- f t 1'Y") (112 

With the chosen set of values we. obtain 

,.,. 6 n3 ... T ,Fe::- 10 20 3/ . ..... .,v = .o ... --..,~~ - em. sec. 

A recent value for the cross section for neutrons with 

velocity 2200 metres/second is .321 t .005 barns (Dl) giving 

cr;v· : 7 .o6·: !. ~11 x lo-20cm. 3 /sec. 

The set of values is in agreement with the experimental 

capture cross section. 
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We are able, then, to draw conclusions in connection 

with the shape of the potential, since the experiments in­

dicate that Pt and P
5 

are positive. However, the values of 

r
0
t and r 06 used in the calculations of section IV differ 

slightly from those dictated by experiment. Therefore in 

order to compare the calculated values with the experimental 

results it is necessary to have an estimate of the derivative 
-(, 

of P with respect to ra. From (4.12c), since;:!~ is small, 

'ti'e have 
. 3 • 3 

Pro = pt:.rol (6.33) 

It follows that 

ro3 a p ; 3#rol 
aro 

rc2 - i r cro L - 3Pr0
2 + ri,l

3 AP'-
4 
'!_(~r0'-) 

2 - .d~o-aro 

(6.34) 

For the triplet set of values rot : 1.56 · (lo-13cm) 

Clt = 5.28(lo-13cm.) and rc = .4(lo-13cm.), for the Yukawa 

a Pt is approximately .034. For ~ r 0 t : .13, the difference 
orot 

between the experimental value and the value used, ~ Pt for 

the Vukawa is .004. For the other shapes ~ is smaller 
a rot 

and particularly for the square well equals approximately 

.018. Hence, we can justifiably compare the calculated 

values of Pt and P5 of section IV with the experimental 

values. 
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From Fig. 5 we see that Pt <: .05 for all values of 

rc ·except in the case of the Yukawa potential where Pt ::> .05 

provided the core ~ .110xl0-13cm. Also from Fig. 3 we see 

that the.Yukawa is the only shape of the four investigated 

which gives P5 /' .03 and for this rc <..ll5x1Q-13cm. Now, the 

"best" values for Pt and Ps, although not very ~rell fixed, 

are respectively .05 and .03. Consequently the conclusion 

is that a static repulsive core potential exists which 

gives an acceptable fit to the experimentally observed 

properties of the neutron-proton system at low energies but 

that unless this potential is more singular than the Yukawa, 

(l), the core must be small, of the order 0.1 or 0.2xlo-13cm. 
r 

In an investigation of the charge independence of repulsive 

core potentials, J. Shapiro (S3) found, in agreement with 

our conclusion, that it is possible to obtain a potential 

which explains both the neutron-proton, and proton-proton 

scattering data, provided the potential posses a strong 

singularity at the origin (1 ) and that the singularity is 
r2 

cut off by a core of very small radius. 



APPENDIX I 

1. Five point formulas used to .obtain starting values in 

2. Formulas used to obtain the numerical integrals: vveddle 's 

-h7y(7)_ 9h6y(9} 
140 1400 

Simpson's Formula (~~) 
1 1 1 5 (5) 

Y2-Yo : h(y0 + 4y1 tY2 )- h y(s) 
j . 90 

Gregory's Formula (J3) 
rXoT nh 

~ ~ . f (x)dxd r(x0 ) + r(x0 +h)+ • · • t.r (x0 .,. n:lh) 

Xo 
+i r(xo+ nh} 

- 1 ( V £ ( X 0 t nh)- A f { x0 } } .;. 1 ( V 2 f ( x
0 
+ nh) +A 2 f ( x0 ) ) 

~ ~ . 

-1
7
9
20

(V J r(x0 i- nh)- A3 t£~~dJ-i __ (.Q)4 t(~0t Jh) (+··4:·1+ f(x
0
)). 

•'""···. IOO" 
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APPENDIX II 

_, -uo ( ~·· 2v 1} ] d ( ~ ' r) 
= ___ 1 ___ . 

{ Gl'r6)3 
I ( ( 1-.fo )( d. ' 2 JS_ ) -u0 ( d. r 2v 1 ) 1 d )3 • 
0 

Hence it need only be sho'tm that d..' 2x1 , u 0 , CA.' 2v1 , are 

functions of 0: r 0 '. 

We have immediately 

·2 a.'. x1 = 

Consider u
0 

{ r) • From · 

d_2u 0 t V(r)u0 : 0 

dr2 

it follows that 

u 0 ( 6 ):~ .. 0 

' · lJ.Io : 1- Cl. r 

d2uo<P >+ __L uo(P ) = 0 
dP2 ~·2 . 

(1) 

(2) 

(3} 

(4) 

We may \vrite _}[__: f(jJ, c1 , C2) .v~here c1 and C2 are the 
. ~·2 . 

two constants specifying the potential. Then from (4}, 

u0 : u0 (Cl, C2, A, B). But A, B, and c1 are fixed by 

the two equations, u0 {o): 0 and C/)0 :1-/J. Hence 

Uo: Uo ( .fl' C2) 

The definition of rb serves to fix c2 • ~·.Je have 
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: ?a L [(1- p )2-u/(jL c2 ) 1 dp (5) 

From vlhich C2a g( ~'rb) 

Hence both ___:{__ and u0 are functions only of { tA 1 r6). 
. </(t2 

Consider vl(r). The equation for v1 (r) can be v1ritten 

in the form 

(6) 

Since u0 and ~ 2x1 are functions only of ~r6, it follows 

that d...'2v1 is a function only of ~r6. 

2. It follows immediately that Qt is a function only of 

(7) 
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