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I INTRODUCTION

Insight into the nature of the nuclear interaction
potential of the neutron-proton system may be derived by
analysis of neutron-proton scattering data and the properties
of the deuteron, in'pérticular the deutron binding energy,
photodisintegration cross sections, and neutron capture cross
sections.

The present investigation is based on the expansion
of a quantity closely allied to the phase shift in a power
series in the kinetic energy of the system. The phase shift,
usually denoted by 8 , is the difference in phase between
the asymptotic form of the radial wave function in the
absence of a scattéring potential and the actual wave function
of the state describing the interacting neutron and proton.
In principle since a power series has infinitely many terms,
definition of the expansion requires the specification of
infinitely many parameters, the coefficients of every power
of the energy. In fact, however, the present experimental
data is not suffiiciently accurate to determine more than
the first three coefficients of the expansion. 'Having de~
termined, by at least squares procedure, the best experimental
values of these parameters, the goal is to find by trial
theoretical. nuclear potentials which yield these values,

Specifically we shall subject to trial Mrepulsive



core” potentials, characterized by a short range repulsive
force interior to an attractive well, defined by
V=0 forr< r core | (1.1)
Voa -Vaf(g_;f_) for r $ r core
Ty

It will be realized that for V negative the force between the

neutron and proton is attractive, and that for V positive the

force between the nucleous is repulsive. It should be mentioned
that the repulsive core potential was selected as our subject
of study because it has been shown (J2) ﬁhat such a potentiél
adequately accounts for the qualitative features of the neutron-
proton scattering data at intermediate and high energies, and
the question arises as to whether the repulsive core gives an
.acceptable fit to the low energy data. Although calculations
based on the neutron-proton scattering cross section for
neutrons of energy 4.75 Mev have recently been carried out
which support the validity of the repulsive core hypothesis
(HZ), this question has not yet been resolved; the pursuit
of a partial answer is our present concerne.

By restricting our discussion to low energy neutron-
proton systems we reduce the complexity of the problem in that
S states, only, enter the considerations and tensor forces
may be neglected. The singlet S state and the deuteron ground
state, a combination of the triplet S énd triplet D, will, then,
be the two basic states dealt with. It is to be expected that

the potentials describing the interaction in these two states



will have different values of the parameters.
The phase shift expansion for the neutron-proton
system in the S state may be written, (B10O),
keot® = -1 4 L rok? - Prodkk + Qr,JKd (1.2)
a

where k is the wave number in the centre of gravity systenm.

Since the quantities a, ry,, P, Q, in (1.2) are fun-
damental in this method of analysis their significance needs
elaboration. The first term, a, is Fermis scattering length
at zero energy; geometrically it is the radial intercept of
the asymptotic wave function. It follows that negative values
of, a, characterize potentials which have no bound states,

and positive values potentials which have bound states.

Tugm P wgm
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Fig. 1. Typical zero energy wave functions uy(r) for wells
with zero core. In (a) the scattering length a is negative,
characteristic of an unbound state; in (b) the scattering

length is positive, characteristic of a bound state.



The parameter r, is called the "effective range"™ since it has

the dimensions ofAlength and is of the same magnitude as the

width of the potential. The pioneers of this work (B1O)

designated the potentials by two\parameters, fixing the width

and depth of the well. Obviously it is possible to choose

two parameters for any reasonable shape which yield the de-

sired values of the scattering length and effective range.

For this reason the approximation for k cot® given by the

first two terms of (1.2) is called the shape independent

approximation. Now the most resent data is good enough to

define the third term within meaningful limits. Therefore it

is to be hoped that information about the detailed shape of

the potential caﬁ be gained from the parameter P. The value of

Q turns out to be sé small that the fourth term is negligible,
Expansion (l.2) has been rigorously established using

a variational method (Bl0); just as rigorous but a less

complicated derivation was given by Bethe (B5). He considers

- the neutron-proton éystem‘with kinetic energy, Ej in the

laboratory system and potential V(r), and writes the Schrgdinger

equation in the form,

dzil]_ + k_%ul - Zﬂv(r)u]_ =0 (1.3)
dr? 'E§ ’

where ru, is the radial wave function,/u the reduced mass,

M§ ﬂ%, and k the wave number of the system equal to
B

*
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Fof a second energy E, it follows that

dr? B?

Manipulation of (1.3) and (1.4) gives

u2u11~-u1ué] ng (k% - ki)JLE Uju, dr (1.5)
R is an arbitrary integration limit. Subscript 1 refers to
the first energy, subscript 2 to the second. The asymptotic
representations of Uy and U, normalized to unity at the

origin are,

- “"\Pl: sin (kj_r'\‘ % 1) \Pz = sin (kzr+% 5) (1.6)
sing 1 | sin § 2

Analogous to (1.5) we may write ‘R
: i 1B .2 2\5‘
WZWl'qulz]o:(kz’kl)G VRN TR (2.7)

Since each u equals its asymptotic forﬁlq)for r greater than
the arbitrary value R, and since u(o) = O, by substracting

(L.5) from (1.7) we obtain o «
Yiys -y zwi] reo = (e - kf)f (Wi, - wuy) dr (1.8)
(0]

From (1.6) and (1.8) we deduce that -

ko cots 5 = kq cots 1= (k% - k%)f (Wi -.'ulu'z) dr (1.9)
Equation (1.9) enables us toeexpress explicitly the
parameters of (l.2) in terms of quantities intimately related
to the wave function. For kl = O we obtain immediately from
(L.2) the Fermi scattering length
Ky cot § = Ll=-o (1.10)



For any energy E, (1.9) may be rewritten

| - =141k (OB | 1.11)
k cotd = §_+.§ f) (OE) (
where oo |
%_P(O,E) = {(wow- ugu) dr (1.12)

and u, is the wave function at zero energy with asymptotic
form q)o. For two different energies Ej and Ep it is useful
to define 00

%-P(ElEz) = 'S;( WY1y - wup) dr (1.13)
It is to be noticed that in the range of energies considered
the quantity (1.13) is not sensitive to changes in energy.
This is because the potential is much larger than the kinetic
energy inside the range of the nuclear force, the only region
where P and u are appreciably different. The effective range
sTys is defined to be o

roz2f (92 -ud)ar = P (o,0) (1.14)
We have observed thai? Yo, P (0,E), ?(E]_Ez) are all very nearly
equal.

In order to evaluate P we expand the wave function

u and its asymptotic form QJ in terms of the energy
u =z upd KPvy 4 Kk ©(1.15)
Wz Wotk? X+ kb xt° (1.16)
The functions vy, v,, etc. satisfy differential equations

obtained by expanding the Schrgdinger equation.in a power

series in k%, For example v; satisfies



d2v1 -2 p V(r)vy = -u, (1.17)
dr?®  n?

The functions 4‘ o» X1, X5, etc. are the asymptotic forms
of u,, vy Vo, etc. and satisfy the boundary conditions

\yd.-_-latrgo X = X = X3 zoatr=r,. Hence

\’[o =1l=- g_ = l-gp (1.18)
X = % r{rg - r) +%§3 (1.19)

From the basic expansion (1.2) the difference,

k, cot -} 2 = kg 'cots 1 to terms of order k* is given by

2 2 3 (ke
%ro(kz - kl) - Pro (k2 - kgt) .

Therefore, using (1.9) we may write
. 1.2 2
P (E1Ey) = g -~ 2Prd{kj 4 k7) (1.20)
We obtain the desired integral for P by writing

| oo | L0, (1.21)
%P(EO)-%P(0,0): J:[_\po(q,-\yo)-uo(u-uo)] drgkj; (IPOXl-uovl)dr
From (1.21) and (1.20) with E, = o, we obtain

3 o
rg Pz J; (ugvy - .poxl) dr (1.22)
By similar reasoning the coefficients of the higher

terms in (1.2) may be derived. In particular the fourth

5

coefficient Qr,

o0
Qro5 - J. ( 'POX2 - uOVZ)dr :l ‘ré (X§ - vi)dr, (Jcl) (1023)
(o]

is given by

The expansion (1.2) is applicable to the negative

energy state. The gound state wave function is given bjr

Peouoo-TT (1.24)



Where ‘f "l, the "deuteron radius™ is related to the binding
energy of the deuteron € ‘py € = 'h_._2 “( 2, Taking state 2
in (1.8) to be the ground state wezobtain
o = T-%_Taflo,’e). (1.25)
Equation (1.25) provides a good value for P (o, =€ ) since
dkand'r are well known. Hereafter the subscripts s and t
will be used to distinguish the parameters of the unbound
singlet state, and the bound triplet state respectively.
In our notation 4the trial potentials are specified
by three parameters Vg, ry, and ro. V, and ry determine
the depth and compactness of the well. The relation of the
parameters V, and ry to the well depth parameter s and
intrinsic range b used by Blatt and Jackson (B10) should
be clarified. In (BJ.O) b and s are defined for potentiéls
V(r) with zero cores. UsuallyA‘che scattering length is
finite. However the well depth may be adjusted to give an
infinite scattering length, that is to give a wave function
- having an asymptotic representation parallel to the r axis.
The adjusted potential is denoted by vR¥) and the correspond-
ing wave function by UOR. .The following two relations then
define s and b
V(r) = s¥r) (1.26)
oo T
b=2f (1-u8#)2) ar  (1.27)
From (1.27) it is obvio%s that in the case of~'the uncored

potential b equals the effective range ry when s equals one,

We prove in section IVthat the wave function of the cored



potential at r is equal to the wave function of the uncored
potential at (r-ry) that is ug(r) = u(r-r,), Hence
o0 o 2
b = Z‘Y [ l-ugfrﬁ-rc) ] dr which is not the effective
o ° .
range. In the notation of section Iy, b = ré for s = 1.
For the four conventional shapes without cores the relations

between b, r, , s and V, are as follows,

Square : r, =Db
V, = 102.276 s
° o2
. 2 2
Gaussian = b
, i - 2.060
v - c229.208 S
) = (1.28)
Exponential T, = b
35412
Vo = 751.541 s
° b2
Yukawa r, = b
2.1196
Vo = 313.404 s_
b2

The application of equation (l.2) in utilizing the
neutron-proton scéttering data to gain knowledge of the
potential shape is straight forward. The variational parameters
a, rq, P, provide a link between the experimental cross
sections and the theoretical potentiala in that kcot8 can
be evaluated at various energies from the experimental cross
sections, providing a set\of experimental values which can .,

be compared to values of the variational parameters calculated
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for arbitrarily selected potentials. The cross section

is

o= i%rsinzs (s1) (1.29)

In the case of the photoelectric effect it is
shown by Bethe and Longqﬁire (B6) that the dependence
of the cross section on the variational parameters is con-

tained in the factor 1 which arises from the
l-Pt("e y =€ )

normalization of the ground state wave function and also

that the photomagnetic cross section involves the effective
range quantities Pt( -€ , -¢ ) and Ps (E,E). .

It has already been remarked that the available experimental
data is.adequate to determine only the first three coefficients
of expansibn (L.2). Potentials which lead to the same values
for these coefficients are equivalent fits although the
coefficients of the higher terms’may be different,

It is well to realize the limitations of the theoretic-
al possibilities of finding the interaction potential from the
phase shift by the method described. Although the potential
defines a unique phase shift, it has not been satisfactorily
established that the converse is true. In fact Bargmann
(Bla) showed, for the case of central forces, that it was
possible to choose two different potentials and obtain the
same phase shift. In fact he has derived families of phase

equivalent potentials (Blb). Nevertheless Levinson, (L1),
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(L2), in a mathematically rigorous treatment, proved that
the phase shift defines the potential uniquely in the S
state provided V(r) is of a constant 51gn. If V(ir)2 O
and continuous, we must also have J rV(r) dr< @ and if
V(r) £ 0 and continuous, Sr } v( 1?)\ dr + [ r? | Vir)
dr < €0 , This does not therexore prove that repu151ve
core potentials.are uniquely defined.

In sections II to IV, P is evaluated for the four
conventional shapes at representative values of the possible
values of Ty for both the singlet and triplet states, with
parameters having the values in units of lO‘chm. as=—23.68
Tog = R¢6; ay = 5.28 1oy = 1.56. In section V a plot of
Q against ry is found for the square and Yukawa shapes in
the singlet state with parameters ag = -23.68.and Tog= 2.6.
Section VI constitutes a determination of the values of the
variational parameters r,,P, by a least squares analysis of

the data and contains conclusions resulting from comparison

of these with the shape dependent values.



IT SINGLET SQUARE WELLS CONSISTENT WITH as - -23.68x10"%3 cm.,
Tos = 2.6 x 1013 cm, 4ND THE SHAPE DEPENDENT PARAMETER FOR
A SELECTED WELL |

The square well potentials V(r), defined by V,, ryp,

and r, are of the form,

Vv = 09 r < rc
V = --Vo re< I < Iy - (2.1)
V=0 r>.rb

We proceed to derive sets of parameters V,, ry, T,
consistent with the chosen values of ag and ryg.
To find rog it is necessary to know ug. From equation

(1.3) we see that v, satisfies

1'5,3 + Ezug_: o T, Tr<Iy

«39 - o "r>rb | (2.2)
: ; 2
Where D* = %# Vo
Consequently

Uy = © r< rg

u5,=Asin (Dr-4+ € ) re< I Iy

Uy = Po = .l-,g_; r> Ty (2.3)

Since u is everywhere continuous and has a continuous

derivative except at r= r,, we have

12
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1-ryzAsin (Dry+€ )  (2.4a)
% .
-1 = AD cos (Drb-l-e ) (2.4b)
ag
O = A sin (Drc-l- € ) , (2.4¢)

These equations yleld

{l-rb) + f (2.4d)

Drc"'e =Snv

Now rog can be written

r r ’
Tog = 2 f b(l-g_)z dr - 2 J D 42 sin 2(Dr+€ ) dr
as rc ' .
= 2a,(1-y3)-[y? 1 rp=ro-sin 20 (2.5)
3 ° ( + (aD)2 b e 5=
1Ty =7 | | (2.7)
as

From (2.4a), (2. L,d) and (2.7) we deduce that

y2= (y + )sin‘za ory = Itanel (2.8)
| (agD)? las) D ,
| Also Tp=Te= g ’ (2.9)

Substitution of (2.8) and (2.9) in (2.5) gives

21)3 (§ \tan %8| - @sec’y + tane) (ro-gas).___F_Le_). (2.10)

The value of the angle @ in (2.10) is restricted. Because

the wave function does not vanish between rg and ry, and

- -4
e

. . . »
R Ay - oy B 5 ' ; P . .
P N ‘: W T S . . e £ s - .
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because Dr, +& = nT, we see that Drp+e = (n+ 1),
Of coursé, ryp> Iy, therefore 0<@<1 , DMore explicitly
it can be seen by using (2.7) and (2.8) that the inequélity
ry > % requires that
D<= lad -1{{tan €l-8)z L (2.11)

Equations (2.,10), (2.8), (2.7}, (2.9), were applied
to calculate sets of parameters D, ry, Tg, listed in table 1,
corresponding to different values of © satisfying the in-

equality (2.11) with ros:2.6x10'13 cii. and ag = 23,68x10~13 cm,

TABLE I VALUES OBTAINED FOR THE SQUARE WELL PARAMETERS
D, ry, and re, COMPATIBLE WITH r g = 2.6x10"13 cm. and
ag = -23.68x10713 cm,

ram— — s—e———
o —— — ———roa,

e ,rc(lO"J-3cmi.) rp(10-13em) D(10Y3eml) 1 (1013cm™t)
i.g% .ouglé 2. 44,66 .62879 .62998

. 43091 2.0433 295242 «96
i..511- 63195 1.8428 1,2719 1.20237
l.gg 82743 . 1.6439 1.8985 1'9689

1.2200 - 1.2512 . 50,366 52.95
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The variational parameter P is defined in (1.22) by

r-°3P - S (ugvy - q)oli)dr. We recall that Xj= lr(r -r).‘. l:e?
° ! as
For the square well the equation (1.17) for vy is

V1 + Dvq = -y, (2.12)
Therefore

vy = Bsin(Dn+8 )f%ﬁrcos(nr-&e ) rg<r<ry (2.13)

V]_:Xl r> Ty

The continuity conditions on vy and v]'_ yield the following

equations for® and B

tan (Br, + ® )= (rp(r -rb)+i - D rycos@ )D
b o 3ag (2.14)
ro = 2ry 4+ rb2 + Arysine -Acos @
Eo D
B- -A r, cos(8 -¢€ ) (2.18)
- ?D [+]

Substituting the functions u,, v, '[’0’ X; into equation (1.22)
we obtain for Pg

rb
rosBPs = Src[A sin (Dr+ € )(Bsin(Dr +9) + %ﬁ r cos(Dr + é)}dr

b
- - - 3 - -
~f:(l %)[%_r(ro r).r%g_;} dr= I 4 L- L (2.16)

Where Il, 12, I3 are defined by
Q-Il = 4D r%ln (Dr+ € )sin(Dr + §)dr= 2@0cos(e +9 )=sin(26 -9 -e)
C .
xsin(8 -€) (2.17)
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(2.18)
16D3‘12 = 8D r sin (Dr+ € Jcos{Dr + & )dI‘:lpDI‘bSinze -28 sin2@
Az . rc .

b
Tae Xdr = rory? - L(1 S Lwh
3= jox}/o 147 = %grb & +§_<.;. Ty 4 LTy - r (2.19)

ag 30ag
The constants A, B, € ,% , and the integrals I3, I,, 13,

essential in the calculation of P forg- 1,55, are listed

together with the value obtained in table II.

TABLE II Pg AND QUANTITIES ON WHICH ITS VALUE
DEPENDS FOR A SELECTED © OF 1.55

A B € S I1 Iz i P

1.0696 .78585 =1.5708 1.8721 .25766 .09842 1.0452 -,039210




III CALCULATIONS OF THE VARIATIONAL PARAMETERS r,o AND
P, FOR AN EXPONENTIAL WELL WITH A CORE OF L575%10-13 cm.

The exponential potential is of the form

V- o0 re€r,
—P=I
V = -Vo s I, (3.1)
The calculation of Tos involves sélving the differential

equation

2
d~u - v -0 R
(8] T_lé' (r)uo = (3 )

dr2

with the boundary conditions uy(ry)= O and uo(r):quor
r > Ia=)\To Where A is an arbitrarily selected number. The
solution requires the application of a numerical method;

Milne's method (M3) has been chosen. By means of the sub-

stitutions r
x? = e Tb (3.3)
» Le
e
w= AKY A (3.5)

equation (3.2) can be written in terms of the dimensionless
quantity x as

*Y (1 L. = 0 (3.6)
dx~ T l,.x2+

17
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The boundary conditions become

u (Xc):o (307)
-A T
U (x)= (1-222 log x) fX for x< e ;% (3.8)

as
We fit ag by ﬁsing as starting values in the‘integration of
(3.6) the asymptotic values given by (3.8) which depend only
on the scattering length. According to the substitution (3.3)
integrating in with respect to r is equivalent to integrating
out with respect to x, that is from smaller to larger values

of x. The substitution is advantageous because dr_= =21y,
‘ dx X

which means that for a fixed increment, h, in x the correspond-
ingrchange in v decreases ag x increéses, so that the substit-
ution provides an automatic refining of the interval of in-
tegration in r inside the effective range, the region in

which the wave function changes most rapidly. Five approx-
imate starting values were obtained from (3.8) and were used

in {3.16) to calculate approximate values of d2¥ » These
dx

values of the second derivative were used in Milne's formulae,
(appendix I) to derive values of the first derivative.
Milne's formulae were used again with the known values of

dll to .derive better starting values of § at the five points.

The process was repeated until the values of © at some stage

were the same as those of the pregious stage. Having obtained

the starting values the' value of the general U is predicted by
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~ : 2 2 - (6
Un4 1= 2Un-l, = Un-3 tih (U'}l_l*‘%-.g u" n-ﬂﬁ'%%_f? y (&) (3.9)

This predicted value is corrected by

" 1
(™ Q2 6 15 (6)
U =RU, ~gp-1T0° ( O5Up) ~h U 2!
ny1= “%n "Un-1 Un+=43 250 (3.10)
where Sztﬂj’qun is defined by

4 o v o :
820", 2Uhq1 = 2U p+U 41 (3.11)

‘The error of 3,10 is about

i

predicted and the corrected value; therefore, this differ-

L the difference between the
17

ence provides a check on the accuracy. _
With V, = 295.2 Me.v., To=.4575x10713 em., rgz.4400x10"1en,
chosen because this set of parameters was known to give

reasonable values of ag and ry (B7), equations (3.6) and (3.8)

become
4%y 4 (L_415.583) y= O (3.12)
dx? Lx2
U (x) = (1-.037162 1n x)N'X (3.13)

The starting values are recorded in table III.

TABLE III STARTING VALUES USED IN THE INTEGRATION OF

42Ul +15.583) =0 with y(x)=(1-.037162 1n x) NX for x 4£.02
dx?  Lx? ' '

x .02 .03 .0l .05 .06
U (x) .16198 .19563 .2233 .24705 .26789
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U(x) was evaluated at intervals, h, equal to .OL from X=.07
to X = '.176 and at intervals, h; equal to .04k from x=z .16 to
.60'U(x) was found to vanish at x = xc = .5962 or at

P e To = #4553 x 10-13 cm. For r = Ty = 3.443 x 10713 cm.,

u, equals its asymptotic form. The asymptotic integral
T, ‘ ' ,
Sa\'yi(r) dr equals 3.9673 x 10713, The integral of u02 from
Jo
. %q
the origin to the asymptotic value of r equals -2rp S Uzéx) dx
X x

We obtain for this integral, by numerical integration using
Gregor?'s formula and Simpson's formula (appendix I), 2.6090
and 2,691 fespectively. Finally we obtain for rqg,
‘Tog = 2.553 x 10713 ca, "

To form the integrand vy "‘Po X required in the
calculation of Pg equation (1.17) must be solved numerically.
Making the substitution

V=¥V (3.14)
T

and using (3.3) and (3.4) equation (1.17) reduces to

A%V o (1 k) V= b U (3.15)
a7V oy (L__4 = - .
dxz ll'xz TXT

Ve g X = yx(2lnxinx,g - 21n°x - %_r_'_h 1n3x) r7r, 7 (3.16)
b ) dg .

Equation (3.15) was solved by the method used in obtaining
~ the solution of (3.6). V was found to vanish at x = Xe=e5972

giving rc=.4536 x lO“:l-3 cm. We observe that the two values
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of r, obtained from (3.6) and (3.15) agree to within 0.5%.
Recalling the definition we evaluate Py by writing

R o :
ros3Ps = S (uovy - ¥ oX1) dr+jRa (ugvy =YoXy) dr (3.17)

(o]

The integral for Pg has been separaﬁed into two parts o to R,
and R to ry, to gain accuracy since bboth préducts u,v, and
qui, in the integrand, are large for r:} R, although the
integral of their difference can be accurately evaluated
using numerical integration formulas. The calculation of

P now requires the calculation of three integrals,

e o R *R
e S _Uizf. dx, Io= 5 P oXy dr, I3:j (_11\2{ -LVOX]_) dx.
X v VX Ry
Xp 0 X, Ty X
- The second can be integrated explicitly, the other two
numerically using Weddle's and Simpson's formulae; their

values are tabulated with the final result in table IV,

3 3 (%e R 3( *R
TABLE IV Tos PS - 2rb Sx _U__g. dx - g q}oder+2rb (_U’g -gJOXl\ dx
: RX ) : X' x ;;2&

’Pg = 2P (T + 1) - I

Tos 's

Tos rp R ro 1 I I3 Pg

2.553  LLWOO 2,223 4550 L4.3634L 11,3456 ,03974 -.02571
' The unit.of length is 10-13 cm,




IV THE SHAPE DEPENDENT PARAMETER, P, FOR SINGLET AND TRIPLET
STATES WITH rog=2.6, ag=-23.68, roy=l.56, ag=5.28 IN UNITS
OF 1013 cm., AS A FUNCTION OF THE CORE RADIUS FOR THE
SQUARE, GAUSSIAN, EXPONENTIAL, YUKAWA. WELL SHAPES,

S T U GRS » ‘
If P is known for a given shape of potential without
a core it is possible to find P for a potential of the same

shape with a core. Let V(r) be any potential without a core.

Define the "cored" potential by

Volr) = oo r<r,
Volr) = Vir-rg) r >r, (4.1)
Let Y(r)=sin(kr + & ) be the asymptotic férm of the solution of
diuér} + (K% - V(r))u(p) = O (4.2)
n ,

with u(o): 0
Make a change of variable r' = r4r,. Then, of course,

u(r) = u(r'-rc). In the variable r' equation (4.2) are

ulr') + PV (r")ulr') = 0
u(r,) = 0

where V' (r') - V(rf-rg),that is V' is the potential V moved
out a distance r,. Also, since u{rg) = O, Vf éan be assumed
infinite for rﬂ( r.. HNow the wave function of the cored

potential satisfies

22
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4 2‘-10 +(k2 - Volr)lu, = 0

dr2 ,
uc(rc) - 0 (IPOIP)

But Vc(r) = V'(r). Hence equation (4.h) is identical with
(k.3) except that the variable is called r rather than r!,
Consequently

ug(r) = ulr-re)  (L.5)
and ‘

‘,’c(r) = sin (kr +§c) :c[l(r-rc) - sin(kr-krc-l-s ) (4.6)
Therefore | Sc =8 ~krg (4a7)
In the following analysis we shall use unprimed letters
S 'R, g, P,Q, to refer to quantities determined by the
cored potential and primed letters §', d', r, ', P!, Q",

" to refer to the potential without a core. |

Using relation (4.7) and expansion (l.2) expressions
for ', ro' can be found in terms of &, rg andv re; also P
can be expressed as a function of «', ro', and P!, Blatt and
Jackson (BlO) give expansions for P! in terms of (atryt) for
the four shapes. Therefore we are able to find P at various
values of r, for each of the four shapes.

We have, to terms of order k¥,
"k cot8' = _q:_!.%erot - P*kLPro'B

. k cotS k cot krn, - k?
k cot (§+rc) = k cot§+4 k cot krg (4.8)

Also

k cotd = - +3 Kr, - Pkhrg>
1 (1-kre? - khrgk) (4.9)

k cot ”krc = —_—t
o 3 L5
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Substitution of (4.9) into (4.8) and equating the coefficients

of successive powers of k2 gives

t o A
g = -&XT, (4.10a)
(:L..x)zro": ro-%(xz-Bx-lv 3)r, where x=@kr, (4.10b)
(1-x)3P'r°'3=Pro3 (l-::)-:l:'c,3 (x3-6x24 l5x-15)-rcro(3-x)+ relo?
5 6 A
(4.10¢)
In 4n° analogous way we obtain from the equation
k Cots = k cot (8‘ - krc) (l('oll)
the relations '
| L | , (h.12a)
1 +'r, :
(l+x')2ro - rof+ %(x'2+ 3x43)r, where x' - d'r, (4.12b)
(14x1)3Pr 32Prrgt3 (14 x1)-r3(xt 34 6x'2%+ 15x14 15)
, _rolrcz(3 "'X' )_rcrolz (4.12c)

The values of (&'g r,'g), Pg', and Py are given in table V
‘and in Fig. 2 and Fig. 3, and the values of (G y'roy'), Py,
Py in table VI and Fig. 4 and Fig. 5, for various core radii,
. for square, gaussian, exponential, and Yukawa sha.pés and
in every case for the "experimental™ values, in units of

10-13 cm., agz -23.68, rog=2.6, apz 5.28, rog= 1.56



 _TABLE V. A 'rog', Pg' and Py at VARIOUS VALUES OF r. FOR FOUR SHAPES

ag = =23.68 (30713 cm.) rgg= 2.6 (10713 cm,)

a'ry! Pg' - Pg

Square Gaussian Expmential.Yukawa Square Gaussian Exponential Yukawa

+2000 -.09043 =,03103 -.0177 .01018 .05628 =,03438 -.02664 -.01035 01654 -
43691 -,06836 -,00801 -.01789 ,01060 .05836 -.,03721 -.03362 ~.02609 -.0L274
.8274,3 -.03377 -.03208 -,01810 ,01126 06162 ~,03923 ~.03876 -.0374L5 -.03601

- 1.,0000 -.01919 -,03234 -.,01818 ,011l54  .06299 03950 =-.03940 -,03921 -.03887

1.2345 .0000 =,0327 -.0183 .0119 .0648  -,03951 -.03951 =-,03951 =~,03951

6z



TABLE VI

a = 5.28(10°13 cm,)

rog = 1.56(10713 cm,)

ot 'rot', P! AND Py AT VARIOUS VALUES OF r, FOR FOUR SHAPES

|

c . d'I‘o' P«b Pt
Square Gauss- Expon- Yukawa Square Gauss- Eprn- Yukawa
‘ ian ential ‘ ian ‘ ential ~
0 «R29hL -.,03813 - 02007 01751 .09262 -,03813 -.02007 01751 . 09262
ol 2734 -.03773 -,01994 ,01709 ,09055 -,04155 -.02872 -.00202 05454
3 #2245 -.,03683 -.01964 0161 08594 -.04625 -,04062 -,02889 ~,00603
A L1972 -,03632 -,01948  ,01564 ,08337 =.04781 -.OL44L3 -.03739 ~,02380
.6 «136 -.03520 -.01911 J01449 ,07764 -.05007 -.04920 ~,047L0 ~-,0LL0L
o7 102 -.0345 -,0189 .0138 0744 -.05107 -.05073 -.05007 -.04883
;] .0666 -.0339 -,0186 0131 .0710 -,05205 -.05197 =,05184 -,05154
09 00028 -.0327 "'10181} 00119 .0650 -004958 "'0014'958 "'.OLI'958 -.04958 '
TABLE VII A COMPARISON OF THE VALUES OF Ps FOR A SQUARE WELL WITH
| .8274(10-13¢m, ) AND AN EXPONENTIAL WELL WITH rc_.4550(1o~13cm)
‘Shape: ro(10-13cm. ) Pg
From Secion II From Section IV
Square 8274 -.03921 -.03923
: From Section III From Section IV
Exponential .4550 ~.02571 -,02570 -

92
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In table VII a comparison of the values of.Ps for the
square well and exponential well with core radii of
8274 (10~13cm.) and .4550 (i0'13cm.)‘respectively obtained
from equation (4.12c) is made with the corresponding values
from section II and section III. The good agreement supports
the validity of the independent determinations.

Included in Fig. 5, for the sake of comparison, is a
plot, from (H2), of P, versus r, for a Hulthén potential, a

potential similar to the Yukawa, namely of the form

V(r) = oo r< e
==
= -Voe Iy
"""fr—_'i':;’" r>r, (4.13)

However in.obtaining this plot ryy was not held constant; the

potential was adjusted at each value of r, to give the

experimental values of ay and p(0,-€). Then Py(-€, -€)

andr oy were calculated from their definitions and the equation
Pul-€, -€) z pp(0,-€ V¥ 2Pg rog®Y2  (4.14)

was solved for Py. Because of the difference in the forms

of the Hulthén and Yukawa potentials and the fact that in

the case of the Hulthén the constant value 2.6(10'13cm.)

was not taken for r,y, although in section VI we show that

d Py is small, the small differences in the corresponding
dl"o '

values of Py for the two potentials are justifiable,
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As an immediate consequence of equation (4.l2c) we
see that as the core‘radius approaches its limiting value,
P approaches a limiting value indeéendent of the potential
‘shape., Since ro' must be p051t1ve it follows from (4.1l0b)
that the maximum value of the core radius, r, pgx, 1s

Te max = %—30——— (4.15)
x2-3%x+ 3
For ry = e gaxs that is for r,'=0, we obtain from

~(4e1l2¢) the limiting, shape independent, value of P,

3
P = -(_r_c) 15 415%' 4 6x12+x13 . (4.16)
o L5 (L4+x')3 -

We remark that the effect of the core is to decrease
the dependence of P on the shape, so that, for eXample, all
shapes considered‘have’P negative in the triplet state for
rc>.3o (10-13cm. )

It should also be pointed out that the shapes con-
sidered.here are not "cut off" at r,, but are displaced from
the origin. Thus in considering the Yukawa potential we are
considering an attractive potential»whiéh has an infinity
just at r, where the infinite repulsive potential starts.
Since potentials deduced from meson theories would be ex-
‘pected to cut off with a finite (though péssibly}large) value
at the core, the potentials considered here-may be said to

cover the range of reasonable shapes.
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V INVESTIGATION OF THE MAGHITUDE OF THE VARIATIONAL PARAMETER Q

In order to justify the use of the first three terms
in expansion (1.2) as an approximation for k cot8 it is
necessary to have a knowledge of the magnitude of the neglected

terms. The ratio of the fourth to the third term is
4 (kry)? | (5.1)

At the low energies considered kr,< l. To test the validity
of the approximation we must know the magnitude of Q . Ex-
tending the procedure of section IV we equate the coefficients

of k0 in equation (4.l11) to obtain

Q = x'y? -.01481 - .03481 4 (x'+ 3)(x'+ 6
'(l-rX’)4 l+x' (1L +xP L_—%u—__)_l]_35xl T4 %1
£.002116 (1+x') + .00528 )
x'24 18x' + 30) le .,_x'-t- L y3z%4 1223] (5.2)

1
ﬁmmtf”

- (2 +2+X..'yz3) Pt 4 St
(1+x:)3 (1 4\-::*):2 v

Where x' =d'ry, ¥V = Tey = To'
T ro

Tt can be seen from (5.2) that the limiting values of Q for

maximum core radius are, like those of P, independent of

shape and given by

Q0 pe max = X' yo | -.0148]1 - .03481 gx'+%z§x'+ 6)
Q rc max (1 +xr)2 [ 1+ xt Tl+x')2+ 135t {1+ x?

+ 0021164 (1+ x) + .00528) (5.3)
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The limiting values of g for the singlet and triplet states
are compared in table ViII with the corresponding limiting
| values of P ; We‘see that in the limit of maximum ry the
ratio of Q to P is about 1 to 10,
Using (5.2) we have determined the behaviour of Q@
as a function of rs for the singlet state and for two shapes,
the square and Yukawa. In using (5.2) to evaluate Q@ at any

value of r, it is, of course, essential to know Q' as a

c
function of rg; all the other quantities in (5.2)‘are known
functions of re. In appendix II we show that Q! as well as
P1, is a i‘ﬁnction only of ( O'ry'); a plot of alr,' against
ré‘is given in Fig. 2. Since ( &r,') is small we may write
approximately

Q' = a+ b{ d'r,") (5.4)

and the problem of finding the functional relation betweenQ !
and r, becomes the problem of finding the constants a and b.
Different procedures were used to find a and b for the two

shapes dealt with.

TABLE VIII RATIO Q/P FOR MAXIMUM CORE RADIUS

State P Q - /P

Slnglet
s==23.68(16" l3cm )
-2 6 (10-13 Cile )
Trlplet '
ay 5 8(10‘13cm.) -.04958 00618 ~o124
‘ro 1.56(10-13cm.)

-.03951 .00375 -.094
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The constant, a, is'the-value of Q forX and r,

both equal to zero. For the square well, witho= re = O,

equations (2.3), (2,13) reduce to

Up=sin T , .Yo=1 (5.52)
T
To

V1= Ty r cos(T r),, X =zr(ry-r)  (5.50)

"Exact integration of (1l.23), using the functions (5.5b)
gives ' |
Q= .001713 = a : (5.6)
Also, as we shall show immediately, it is ?ossible by exact
integration of (1.23) with finite values of e and r,, to
.obtain Qkfor a square well. Consequently using the values
of Q obtained from integration, Q' can be calculated at
different values of rq, that is at different values 9f
(k'rgt), from (5.2). Then the slope b can' be found from
Q '=b+ (&ryt) (5.7)
Substituting (1.19), (2.13), in (1.23) and integrat-

ing we obtain

Q o’ = I-(Tp+ I3+ 1) (5.8)
Where :
Ty = [ro?-, i'b + (LsTolrp?ry? 4 1 r’bh‘kr 2 (5.9a)
- [TZ- ] 20 76@.3 36as 2 gl_S.?. °

Iz:_g_z[rb - Te+ 1 (sin 2(8 -¢) - sin ch!] (5.9b)

i_g 13=sin(8 f-G )Jbz-rc2+%._ﬁ[rc cos(d -€ )-ry cos(T+ ]

+£,b?[sin(9+O )-sin(8 -€ N (5.9¢)
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A 3 ‘ 4D3
(P=38+0r) | (5.94)

Q was obtained'by integratioh at five different values of

§_2D_% Ia:l(rb3-rc3,)+]2+ﬁ rb2 sin 26+ _]2._132 (ry, cos 20 -rc)-sigl 20

, T 'Q' was evaluated at two values of r, and b was calculated.

¢
- The expansion (5.4) for Q' was then used together with (5.2)
to obtain Q at various values of Toe The results'are givén
in table IX and Fig. 6. The best value for b was taken as
.0020, so that
Q'z »001713 +.0020( a'ry") ' (5.10)
The agreement between the values ofQ at the core radii
.8274(16'136m.) and 1.220(10"13cm.) obtained from direct

integration and the values obtained using (5.4) and (5.2)

checks the accuracy of the calculation,

TABLE IX VALUES OF Qg and Q' USED TO OBTAIN b AND VALUES
OF Q  OBTAINED FROM (5.2) WITHQ g'=.001713 4 .0020(&g'r q")

2-;- Q - 1 b:Q' =) Q
i %s'Tos' gﬁg%?iéﬁtgf (1.23) B *s Tos' from(5.2)
0 -.10979 | A
0516  _. .00Y’ g4 371
.11,5 _:.'(L)gg%g . 001764 .00164 . .00165
3 --09972 .00195
.2369 -.02336 '883%2
4369 ::gézgg .003152 .00154 ,00248  .0QO031l
- ]
. -.05081 003483 00161 .00197  .0036
% -0 | . . 0036
1 _noigzg . 003644 .00368
1.2200 . .003743

1.2345 . 0 | .00375
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Because the analytic form of the function vi is

" unknown the derivation of expansion (5.4) for the Yukawa'
potential is more laborious and in fact requires ihe num-
erical solution of four differential equations. Equation

(5.4) can be written

Q= Q +3 Q! \ (hrrgt) (5.11)
= Vo), (4
From differentiation of (5.2) we have ata= O,
ro'z? 4@ =(.37555 yo+ g 73z 4 3y223 - 3(yzk+ 8y223)P
T Trgt | | | 3

+229Q1 )¢ + (% 2 + +0942(yz+ yR23) )ryt

R

+(2754 Lybz 47322+ y223 - (yzh+2y223)P') L 7o
3 3 YN

(g, 2 Y3243 7252 - (hysd +37222) Pr4524Q1) 23z, 29 (5.12)
Fregyineg e - eyt pesdangg, g )

To obtain (5.11) it is therefore necessary to calculate

Q', 1 QYo, and 9Q at = O
T'o DA G

Consider, first, Q'q___:o. From (5.2) we QBtain withg= O,
25Q' = Q - yR(.13y3 +.3y22+ 3yzR 4 .12583) + (yz*+ y22z3)P' (5.13)
Hence we require Q, o We regall that: 1. ... .3
k=0 ,
o) oo
o Te

Numerical integration formulas can only be applied with

accuracy to obtain the integrals of slowly changing functions,
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) Consequently although X% can be integrated exactly, since

the increments in v§ for a fixed increment in r at asymptotic
values of r, are relatlvely large Q cannot be obtained with
sufficient accuracy from the difference of the two integrals
in (5.14). Hence rather than solving a differential equation

for vy we write Q in the form

ry2Q YO(X]_ - v ) (X + v)dr (5.15)
e make the substitutions |
X-r Y = Inx | | (5.16a)
Th
upz VX S Yoz VX Y ~ (5.16b)
vi= §E o v Xy= fFrp°X © (5.16¢)

In terms of X, V, and y defined in (5.16), from (5.15) Q

may be written in the form

| r,°Q = _!.xz(X- V) (X + V)dy | (5.17)
Also in terms of ’che quantities defined in (5.16) the

differential equatlons for vy and X; take the form

X2
(&Y - 3V )4 Ke™x vz -x2U B (5.18)
dy’2 X=X
X 2 R r¢
_@@2 - #X = -x*gp where K = Zrb/.o. Yo . €Ty (5.19)
dy

Bquatdons(5.18) can be combined to give an equation for
(X - V) namely,

R (X -V) 4 (Ke2e™® - 1) (X - V)= Ke2e™® X - x2( -U)  (5.20)
- dy? X=Xe X=Xq
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In a like manner the differential equations for Y, and u,

ﬁrovide- an equation for ¢ - U, namely

2 (g- U)+ (KxZe™® - 3)(¥ -V)z Kxfe™ g (5.21)
dy? | X=X, X=Xo

In both (5.20) and (5.21) we have the boundary condition
X - V:qg- U = 0 for asymptotic values of r., To find Qa‘_o

theﬁ, we solve (5.21) for @ -U, form the R,H.S. of (5.20),
and solve for (X~ V). Frdm (5.,16c) and the definition of
Xi’it féllows that , :
X =_ﬁ£§ (xg - x) ‘ (5.22)

We can, therefore, obtain (X + V), form the integrand of
(5.17) and integraté>to obtain Q. Specifically we choose
the set of numbers, To= 2.7(10"13¢m, ) 21432 (lOfl3cm.)
1.0716(10-13cm,). With this set of values Xo= 2,

b
and ryt = 2.271@(10'13cm,). Conséquently from the definition
of V, in (1.28) and the definition of K in (5.19) we have |

K = 2.05171, The differential equations (5.20) and (5.21)
were solved by Milne's method; the equations were integrated
in from an asymptotié value of r about five times r,, insuring
accurate startihg values. U and V were found to vanish at
values of r equal to .2141(10-13cm.) and .2142(10~13cm.)
respectively; the significance is that, since the selected
value of ﬁhe core radius iS‘.21h3(lO“13cm.), the obtained
functions@P‘-U and X - V, are reliable to within about «5%s

From integration of (5.17) we obtain for Q,



Q07 .009526 (5.224)
and from (5.13)
Qe = 0113 (5.23)
.oh=0
To evaluate, 1_ ©To , We write
I‘o '00\(1'0
3T = =4\ (rPo+u o 'b uo)dr (5.24)
3zt
We obtain ,g_uo from the differential equation
2
d¢ Qup - V(r) 9 Uo = o QV(r (5.25)
dr? 0K T %'é\—)'

Realizing that the dependence of V(r) ond is contained in

the quantity s, defined in (1,26), we may write

BVo\r = _%% %g (5.26)
For the Yukawa, Blatt and Jackson (BlO), give
| = 1.0+ .6361 (R 1b) (5.27)
Therefore,
AV = 6361 bV (5.28)
oA

To carry out the integration (5.24) we again use the substit-
utions (5 16a) and (5.16c¢c) and write the integral in the form

_Of0 = =4 S °radr - Ly Sy (rpx +x2U 2[U) day  (5.29)
oA (o} DA\

The differential equation (5.25) takes the form

inz e=% 'aU = =l.445 KxRe X U (5.30)
X=X, X~Xg

Milnes method is used to solve (5.30); starting values

are given by



QY = -1 'F3 (5.31)
& |

Again the accuracy of the calculation is supported by the

fact that _QU vanishes at r - .2180(10‘13); that is at a value

4
which differs from r, by about 2%. We obtain by integration
1 8ry ° = -2,0410 (10~13cm.) (5.32)
ro & :&.—.-0
Lastly to evaluate _8Q , differentiation of

“ dd’a =0
(5.17) yields,

53Q 450 %310 Q = f’c 2x, 0X1 gr r5ga x2(X-V)_Q (X+V)
o gt o e Tl g ) L %

+x2(X+ V) L (X-V)]dy (5.33)
Analogous to equation (5.30) we obtain an equation for

9 (X-V) by differentiating equation (5.20), which we solve
DA

by Milne's method. Of course
9 (X+V) = 29X -2 (X-V) (5.34)
a T = 2% -2

Hence, we can form the integrand in (5.33) and, knowing

Oro and Q, we can obtain 9Q. The result is
KXY . 3k SR

9Q - .085L6 (5.35)
oA a0

In this case it is found by interpolation that 9V vanishes
Ok

at r= .2&0(10'13cm.).rather than at r =.2143(10~13cm.).

c=*
This discrepancy, which can be attributed to accumulated

round off error, has however no appreciable significance in
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the final result since the integral in (5.33) contributes only
about 10% of the value of 3 Q , the main contribution, .09721,

ETS
coming from the term 5 3 To Q. Inserted in equation (5,12)
o o &
the values obtained for Q', 1 STYo , and 2Q give
Ty 0 r-X
24 = .1134 (5.36)

dd'rot s =0

Finally the linear expansion for Q' is
, Q! = 0113+ .113( &', ') (5.37)
Values of Q' from (5;37) and of Q from (5.2) are listed in

table X and >a plot of Q against r, is given in Fig. 6.

TABLE X Qg and Qg! FOR A YUKAWA SHAPE
as'= -23.68(10—133m.), ros = 2'6(10-130m.)

re Q! Q
0 - =.0012 -.0012
ol .0000 , -.001L
2 .0010 -.0014
03 ) .OOZO -00009
4369 .0035 0001
05 .OOhZ 00006
. .0052 .0016
« 8274 0075 «0029
1 0091 »0035

1.235 .0113 .0037
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In section III the function vy ﬁas calculated for the
particular exponential, Vo= 295.2 Mev, T = .4575(10~13cm.)
rp = o4400(10=13cm.), Therefore, Q can be calculated for
this exponential directly from its definition (1.23). For
accuracy the range of integration, from the origin to the
asymptotic value of r, has been divided into two parts O to R
and R to ry, as in Section III. The integral for Q, in the
ﬁotation of Section III is written in the form
r65Q=S xl dr - 2rb5 v’2 dxrrZrb5 Sx (Xl Vz)dx (5.38)

o XR X 2

The calculated value ,00187 is plotted on Fig. 6; as one would
expecf, because of the shape of the‘exponential, the Q for
the exponential is seen to be between the square and Yukawa
values at this core radius. ‘ |

From Fig'}=;nd Fig. 6 we see that the ratio %,for the
_'sQuare Wéll'decreases monotomically from its_shape iﬁdependent
value, .09, at maximum r, to 0L at Toz 0. For the Yukawa at
Tes0, Qs 402, Of course, for the Yukawa Pz0 at To= .325;
but for Pz0 a measure of the accuracy of-(5.2) is given by

the ratio of the fourth term to the second, that is by

] L 2 g 5 . ” h r l
I Ok ;

2Q(r0k)h': 2.3 x 10-k, Therefore, from our investigation of
Q for the square and Yukawa Wells, which are representative
-0f the reasonable well shapes, we conclude that its magnitude

is small enough to make the first three terms in the expansion



for k cot® a valid approxima’cioﬂ.

Jackson and Blatt (Jl); using the wave function for
proton-proton scattering have calculated Q4! for.the four
conventional shapes. The values quoted arei square .00179,
gaussian -.00073, exponential ,00089, Yukawa .019. It will
be observed that their square well value agrees with ours,
while their Yukawa QS' is ‘an order of magnitude larger than

ours and their other three,.



VI ‘EXPERIMENTAL VALUES OF THE VARIATIONAL PARAMETERS

£4v iy Togy Tots Pg and Pg.

; The experiments which determine the unknown Toss Tots
P; and Pi, do not measure the unknowns direétly but rather
functions of them. Four exact equations are sufficient, of
course, to determine four unknowns, The experiments, however,
yield a set of N equations,

Fnlros, Tots Pgs Pg) = An (6.1)
The number of equations is greater than the number of un-
knowns and the right hand sides of the equations, being
experimental numbers are not exact. Hence the quest for the
best set of values does not involve simply the solution of
four exact, simultaneous, equations, but rather some unbiased
analytic technique. To find the best values we apply the
method of least squares in a manner analogous to ﬁhat used
by J. DulMond and E. Cohen (D2). In order to understand the
method of application, let us consider the general case of
q unknows, Xy, X5, Xgq, overdetermined by a set of N
equations,

Fn(Xlu' Xq) = Ap n=1toN (6.2)
The equations (6.2) are linearized by choosing a set of
origin values Xj0, X0, Xq0» sufficiently close to the
anticipated solution Xj, Xp, Xq so that when the equations

i (642) are written in terms of the small dimensionless



quantities %) = ¥ - X190, xq = Xq - Xgo , second order
' -bi_—- Xqgo :

terms in these quantities may be neglected. The observation-
al equations (6.2), thent ake the form

alnxl +anXp+t ¢ ¢+ +agn¥p = 3y | (6.3)
Let us denote the true values of the unlcnowﬁs by %, :Tc'z,c; 3c'q,
Substitution of fhese values in (6.3) would not give the
numeric L since a, is a measurement subject to error.
However we may write ajnX¥]+ agnp¥p+: ¢+ ¥agn¥q = apn(l-ry)(6.4)
where r, is the actual relative error in the measured
quantity. We assume that the probability distribution of

the error, r,, is Gaussian. Hence O being the standard

n’
deviation, the probability that the error r, lies between

r and r+dr is

P.(r<r <r+dr)= 1 ex:p(--'r2 6.
n n ﬁ—:ér-&-,; ;&?)dr ( 5)

Introduction of the factors (l-r,) in (6.k4) increases the
number of unknowns from g to q+ N so that the system is no
longer overdetermined but in fact can be satisfied by any
one of{infinitely many combinations of the unknowns

Xje++Xq, T1** Tpe The Axiom of Maximum Likelihood provides
us with the condition which provides a means of finding the
best solution. The axiom states that "of all the possible
choices for the set of residuals r,, the best choice is that

whose probability of occurence is maximum", The probability
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of obtaining a set of residuals rjy,.. ry is
' 1 - 2 2

- —>
Tt 9

(6.6)
The probability, P, is a maximum when the exponent in (6.6)

is a minimum, The function to be minimized is, therefore,

4 2 )
. Q= 3 (ry°) and the minimum condition is obtained by

n
equating to zero the partial derivatives of Q with respect

to each variable xy¢ - Xqe The equatidns which express the
minimum conditions are called the "normal equations™. The
normal equations are

bllxl-r b12X2+ .o s '\'bquq = C 1

b21x1+b22x2* . ~+b2qxq =c2 : (607)

bg1%; + bgeXp +- . tbyg%q =c q
The quantities‘g&j are given by
Ri = Zn Pn ainz
%3 = L Pn 2y | (6.8)
Where P, is the weight of the nth equation and is related

to the standard deviation of a, by an arbitrary constant C.

*

The quantities b, are symmetric, that is b, = b..
1j ‘ ij 3i

‘The well known solution of (6.7) is



Xq = dql ©3 +dg2Ca+ -+ +dgqCq (6.9)

where the element dij is the minor bji in the determinant
of the bs divided by the determinant itself. A measure of
the consistency of the‘set>of values is given by the
minimum value of Q, which is usually denoted by
AR 3 | (6.10)
n?

R, is the residual ry for the solution (6.9).

The mean square error in x; is given by Cyg33 "A priori"
. L]

i
the value of C is taksn to be
- 2
C; = P, (6.11)
If X2 is different from the expected value one, "a'posteriori"
N-q
8 = Op X2
| N-q (6.12)

and the mean square error in X must be adjusted accordinglye.

If X2 is very much larger than one, the consistencyvof the
N-q

equations is to be suspected. In this case X? could be
evaluated for different sets of equations selected from the
inconéistent,ﬁet in order to ascertain which bf the equations
of the set contains the concealed error.

f Befofe proceeding further with the application of

the methdd to our problem, it is advantageous to discuss some

-y
.

J



quantities which ﬁill be needed in the observational equationse.
We require D, defined by

=t (Pgl-€, -€ )+ @ (E, E)) (6.13)
D is introduced in evaluating the matrix element of the
magnetic dipole transition to ls state of energy E. The

" matrix element is proportional to

L | o
My = Nl jougusdr (6.1%)

where Ng and I\IS are the normalizing factors for the ground
and singlet states. From elementary integration of the

wave functions

S\qu} dr = Y3k cots (6.15)
We wrlte
2D-25 (y q}s-ugus)dr- g(kvg -Ug )dr+ SD(\V z_u )dr
i, jgwg- q)s)2-(ug-u$)2] @ (6.16)

The third integral in (6.16) proves to be negligible (B6),
(323 , S0 that the matrix element can be written in terms
of D in the form (6,13). N

We require the difference between the magnetic
moments of the proton, and neutron, }‘p /"n' From Sachs?,

Nuclear Theory, (S1)

Mp
Mn

2.7955 epg J B2USS
-1.91280erg/gauss . (6.17)
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We require the scattering lengths ag and ag s the
values are obtained from measurements of the epithermal cross
secfion,o‘o, and the coherent scattering~amplitude f.

T o= %ﬁiﬁrat2)+¢%(41rasz) ' (6.18)

f =z 2(Rap+ %ag)
- From the weighted averages of the most recent detérminations
of ", and f, listed in table XTI, we find
ag = =23.71(1 £ .00059) x10-13cm. (6.19)
ay = 5.383(1 + .0015) x 10713cm.
 K? is defined by
KR =2E_,2u_ Eog. -  (6.20)

Where Ec.g. is the energy in the centre of mass system. In

the scattering experiments

Ec.g. = M, E, where E is the energy measured

- in the laboratory system. In the photodisintegration the
centre of mass is at rest, hence Ec.g. = E. In this case
E is the total kinetic energy after disintegration and A

equals the difference between the gamma ray energy and the

TABLE XI RECENT VALUES OF 7, THE EPITHERMAL CROSS SECTION
AND £ , THE SCATTRRING AMPLITUDE.,

S Reference £ Reference
20,36 + .10 (M2) ~3.78 + .02 éH'j;
20.41 ¥ 1L (S6) -3.80 + .05 S6
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binding energy of the deuteron. The conversion factors from

E to k? in the scattering and photodisintegration are therefore,

respectively
géﬁ Mp - .012052x10 26 co2pieyL
T
‘ (6.21)
25? - .02412x10 26cm-2Mey—1L
R

We denote the binding energy of the deuteron by € ,
and take according to (S2), & = 2,226 M.ev.

Hence, 1’2 = giﬂit is .05369 x 10 26cm"z. AMso we use

) = )
the quantity /;1': -%_, in the observational equations.
S
- In our problem we have a total of thirteen observ-
ational equations which fall into four groups, namely:

(a) a single equation in which the measured quantity An is
the binding energy of the deuteron.

(b) four eguations in which A, are the total neutron-proton
scattering cross seétion at four energiés from

"1 Mev to 14 Mev.

(¢) five equations in which A, are the total photodisintegra-
tion cross sections for five different gamma rays;

(d) three equations in which A, are the ratios of the
photomagnetic to the photoelectric cross section for
three different gamma rays.

These equations can be written in the form,
(a) rot+ 2Ptrot31‘ . e (0, -¢e) (6.22)

¢
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)3 02 (g d e, 0,807 L v Ty (o, Ld (0,0

x2)?] "1 qE) |
(c) golE) +U’m(E) —(T'(E% where

32, (s2), (6.23)

oo = 8L & 52 € 55 1
RATETRE 1-peT
Om = _g_r_; (“c)2 (/"p'/"n)sz 1

T24x2 1-;0-?-

12 2
X +B1-v2p+2 P (om)-K?p] (B6), (S2), (6524)
P+ (pLe kP (0,8))? ~

f’tl= Pt(-e , =€)

(d)q.—.ﬁl.! - photomagnetic cross section (6.25)
Te photoelectric cross section

We define the origin values rpgo and ryp, by

Tog= Togollt s) Totz Totollt t) (6.26)
The observational equations (6.22) to (6.25) can now be
expressed in terms of the four small dimensionless Quantities

s, t, Pg, Py in the linearized form,

(8) ToyoB+2Py Topo ¥ 2 = P(0,= €)-Top, (6.27)
(b) 31!' roto(at-l"%rotokz)kz t _}‘6_“-r0t03kh(at-l-%rotokz) Pt
2 - 211 2 | 2
62+ (ag~tedrgok®) ) [P+ (ay-Ludroy k2)?]
-1 2112
+ T Tosolas  =2Togok k™ o 21Tr0303kl"(as'1 %rosokz) P,
[k2+ (as'l--lrosol'z)z) (k2+ (ag™ -zrosok2)2]
=q(E) - 3T - T (6.28)
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(c) (MA+EF)t +MBs + (MC +EG)P, + MDPg = O(E)-(E + 1) (6.29)
T = M(1+ At + Bs + CP + pPS)
do= E(LYFL+GP.)

M2w e? (B\ *(Mp - )° T K
3 He (Mc\ AL =~ Yroto T2+ K2
2

2 2
fr+e 1_'5' (Toto +Togo)+ -E- (roso"rot’o)]
o
K24 (BLl+d rogk%)?

A= TToto -3 (v24 1“2)"""0130 ‘
1- Treto T+ @ l.Y2(
L

oso'rOtO)

2
oto’ ros'o)“'ll:— (r

2 2
Pogolk =T )

1
2 T 27 )

T+p - E—(Qroto*’ Tosolt -z% (Foso=Toto)
- rosokz(%rosokz* B 1)

Ky (P l'l' Toso K?)?
2

- 273124 K°) rop,

R 3

T ~¥rroeo

T+pL Tl-;i(roto*ﬁroso)‘f %Z(I'oso - Toto!)

D - 27 Proso>

T+pL-T2 (r_, +r. )+ K (Togo-Toro)
T oto 0S80 E- 0S80~ oto

rOSOBkA(zﬁ 1y 1'osokz)

+
K+ (roso k2 +B1)?
2
" E-8T §E T X3 1
3 c l-rr



F = TotoY
1 "11roto

l*’-"oﬂ:.os'l/'3
l-7r

(on]
]

oto

(@) [(A-F)t +Bs +(C-G)P;+DPg] M= Tm - M (6.30)
: B Te I

The expérimental numbers which we use in (6.27) to (6.30) %o
obtain the thirteen observational equations are tabulated in
table XII. The resulting thirteen equations are given in
table XITI. In accordance with the previous notation the
Eoefficients of ¢+, s, Py, and Pg, are denoted by ajp, azp,

, ajn9~a4n' The probable error of the R.H.S. of each equation
has been adjusted to take into account the probable error

in the energies. The adjustment is small, and in equations

6 to 13 is ignorable. The weight taken for each equation was

' 1 so that "a priori" Cy= __1 and the
(Probable error)?2 | (.675)°

probable error of x; is di; %, The normal equations (6.7)
were formed; ﬁhe "pest" values were calculated from (6.9)

and were used to calculateﬁ5(2. The probable errors were
adjusted according to (6.12). The results are in table XIV,
The large value of X? leads us to suspect inconsistency in
the set of equations. The inconsisteﬁcy is found to lie in
the photodisintegration equations. Equations 11, 12, and 13,

may be written in the form



TABLE XII EXPERIMENTAL NEUTRON-PROTON SCATTERING CROSS SECTIONS, DEUTERON % -
PHOTODISINTEGRATION CROSS SECTIONS, AND THE RATIO OF PHOTOMAGNETIC
TO PHOTOELECTRIC CROSS SECTIONS

‘ Photodisin- ’ ' '
Ener Scattering @ Refer- tegration Refer- Ratio Refer=-
(Lerv%y (Barns) ence Te+0m ence Orm ence
. (10‘26em.) | O
1.311 3.675 + .,020 (F2)
2.532 + ,006 2.525 + .009 (F1)
L.7L9 x 009 1.690 5 .0066 (Hzi
14.12 + .04 686 . ,007 (B4
14,10 + L05 .689 » ,005 (P1)
14,12 > ,008 .688 + 0095 Average
2,508 + .003 : 119 + ,008 (B8) .600 + ,02 (B8)
o115 4 + o007k Average :
2,6143 + ,005 .1380 +.0038 .3600 4 .008 (B8)
2.754 » .005 145 + .015 { g} o247 + 4007 (B8)
45 + Ok .2&3 .017 . 253 264 + 0059 Average
6.14 » .01 «219 ¥ JOL B3
215 + 012 (B2

+218 + ,008 Average

0¢
AY
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. TABLE XIII THE LINEARIZED OBSERVATIONAL EQUATIONS AND THE
DETERMINANT OF THE NORMAL EQUATIONS
Probable
Equation ajn asn as, arn an error in
an
1 1.70 0O .5276 0 .0102  .014
2 21007 "21:6[]- "'10925 g.992 2.1 2093
3 21,86 ~15.37 -4.389 846 .6 1.57
6 .05481 -.01546 .03402 .003006 .0163  .007
7 .06876 -.01318 .0L268 .003625 ,0193 ,0038
8 .08625 -,011.004 .05353 .004246  .013 .0056
9 .15512 -.002448 .09628 .006765 -.002 .017
10 .13618 -,000673 .08452 .007348  .OOL .0078
11 -.1578 -.2606 -,09793 .05068 -.064L .03
12 -.09911 -.1556 -,06151 ,04279 =-.0415 .008
13 -.06516 -.0955 -,040L4 .0368kL .012 .006
16,6049 5,2031 ~.060365 .19901
5 .| 5-2031 1.9860 - ,32998 -.17828| {012
-.060365 .32998  1.0L41 -.16275
19901 -.17828  -.4,6275 L2610

TABLE XIV "BEST" VALUES WITH THEIR PROBABLE ERRORS, FROM
THE NORMAL EQUATIONS

t S Py Pg Tot Tos
Value: -.0L415 .066L9 .196L4  .21697 1.625 2.880
Probable
Error - 0394 .0767 «117 «123 .066 207
X 2 - 2,788




t+.6206 Py +1.6514s -.3212Pg = -.3612 t .19
t +.6206 Py +1.5700s -.4317Pg = -.3531 + .08 | (6.31)
t +.6206 Py +1.466s -.5654Pg = 2609 t .092

The L,H.S's are very nearly identical; so eliminating t, Py
will give‘two almost identical L.H.S's but quite different
R.H.S's. Hence if these equations are taken seriously, large
values of s and Pg arise. However we suspect one of the
experimental residuals on the R.H.S.'s. Moreover, apart from
this dinconsistency, the values obtaiﬁed could not be taken
as the "best" values because P, and Ps are so large that
neglecting second order terms involving them in lineariz-
ing the observational equations would introduce an appreci-
able error. |

Consequently a second least squares analysis was
executed using the first five equations. The values ob-

tained are

t = .00129 + .0077 rog = 1.702 + ,013
s = -.03633 + .0722 ros = 2.60 x .19
Pg= .00932 1 .078

© - X2 2 .223

Pg= 0347 £ .032
The small value offtz substantiates the consistency of the
equations and the unknowns are sufficiently small to make
the approkimation introduced by the linearization a valid
one, However upon substitution into equation 6 to 13 it
is found that the residuvals of equations 6, 7, 8, 11, and 12,
exceed the probable error of their R.H.S's by 1, 4, 1, 2,
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and 7, probable errors fespectively, after the residuals had
been made as small as possible by ﬁaking into account the
error in the L,H.S's due to the erroré in s, t, Pg, and Py,

| By inspection of the equations and comparison of

these values with those in table XIV, another set was

selected which proved to be more consistent,

With the set
t = -.008 £ .05 Tot
s = -.05 1,.05'
Pg= .05 1 01 Tos
Pg= .03 + .05

1.686 + .085

2,56 + .13

only ﬁhe residuals of equations 7, and 12, exceed their

probable error by more than one probable error and in these

two cases the probable errors given by the experimenters,

in comparison with those_of’the other equations, are small,

The Captufe-cross section for thermal neutroﬁs is glven by

q Vo= zrr%i n (m—z) 3(/*13-/111)2 Lr+pl T30 (6.32)
(l_/o lfr‘) /312

With the chosen set of values we obtain

= 6.83 X35 10-20cm, 3 /sec.

A recent value for the cross section for néutrdns with

velocity 2200 metres/second is .321 + .005 barns‘(Dl) giving
Tv = 7.060 + .11 x 10~20cm, 3/sec. |

The set of values is in’agreement with the experimental

capture cross section,
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- We are able, then, to draw conclusions in connection
with the shape of the potential, since the experiments in-
dicate that P and Ps are positive., However, the values of

r and Tos used in the calculations of section IV differ

ot
slightly from those dictated by experiment. Therefore in
order to compare the calculated values wi"ch the experimental
results it is necessary to have an estimate of the' derivative
of P with respect to ry. From (4.l2¢), since /xl ‘is-&small,

we have |

3 3 L2 2

It follows that

o) . ’ o-ory
|  (6.34)

For the triplet set of values roy = 1.56 (10~13cm)
ap = 5,28(10-13cm.) and re = 4(10-13c¢m, ), for the Yukawa

O Pt is approximately .034. For Ar,. = .13, the difference
9 ot

between the experimental value and the value used, AP for

the Wukawa is ,004. For the other shapes BP;; is smaller
oTot

‘and particularly for the square well equals approximately
.018., Hence, we can justifiably compare the calculated
values of P. and Pg of section IV with the experimental

values.
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From Fig. 5 we see thaﬁ Py < .05 for all values of
rc except in the case of the Yukawa potential where Py > .05
provided the core <:.110x10'13cm. Also from Fig. 3 we see
that the Yukawa is the only shape of the four investigated
which gives Pg>.03 and for this r,<.l15x10-13cm. Now, the
"best" values for Py and Pg, although not very well fixed,
are respectively .05 and .03. Consequently the conclusion
is that a static repulsive core potential exists which
gives an acceptable fit to the experimentally observed
properties of the neutron-proton system at low energies but
that unless this potential is more singular than the Yukawa,
(1), the core must be small, of the order 0.l or 0.2x10-13cm,
Ii an investigation of the charge independence of repulsive
core potentials, J. Shapiro (S3) found, in agreement with
our conclusion, that it is possible to obtain a potential
which explains both the neutron-proton, and proton-proton
scattering data, provided the potential posses a strong
singularity at the origin (1 ) and that the singularity is

cut off by a core of very sﬁall radius.
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¥3Y0 = & (2771 + 102y, 1+ 727, 4 syt -3y, 3711_61!5.).

APPENDIX I
Five point formulas used to obtain starting values in

the numerical solution of differential equations (13)

1
710 =k (25174 4+ 646y1" = 26hy," +106y5L - 19y, %)

6. (6)
1 1 1 1 1 6 (6)
Y2-¥o =.h (29yo" +124y1™ + 2by, + by3~ - v, ) +16h y(s)

30

, 1
Y,~Yo = %% (7Yol‘*32Y11"12Y214'32Y31 +7Y41)—ngs s

Formulas used to obtain the numerical integrals:Weddle's

Formula (M3)
y6-y°=11011(yol+ sy10e vt byy™ + v," 575" +vgh)

w77 gubu(9)
i o —

Simpson's Formula (IM3)

(5)
¥2=¥o = %(Yol+ éyll'?yzl)' Q;%iﬁl

Gregory's Formula (J3)'
Xo+ nh —
%‘( plx)dx=3 £(xy) + £lxo*h)+ .+ -« 3£(xy+n-1h)

x
+2 £(xo+ nh)

-3( elxo+nh)- Af<xo));2;5(v2 £lx,+mnh) +& % £(x,))

19 (73 fxgr nh)-A3veleg)-3_ (W (xgt ah) ¥4% £(x)).

5



APPENDIX IT

To verlfy that Pt is a function only of k' r ! write

Pt - 1 ( Xl-uv)dr= 1 («'X)
;??X% BTN gW '

o o
o0 ~ug (o 2"1)] (atr) _
1 s[u-ﬁ)(asfle).uo (dr?v)) af. ()
(Atry)3 '

Hence it need only be shown that oL'zXl, Ug, o\'zvl, are
functions of 0\' ro'.

We have immediately

B AE Y ALY IR O
Consider u,(r). From
d,zuo.,.v(r)uo: 0 uy(0)=_0 (3)
dr? . Y = 1_0L'I'
it follows that
Puy(Bly _T_uy(f) =0  uglo) = 0 ()

KV:E L  Yo=1p

We may- write V_ = ﬁ Cl, 02) where Cl and C, are the
o 1%

two constants specifying the potential. Then from (14,)
uyz ugl{C1, Cp, 4, B). But 4, B, and Cy are fixed by
the two equations, uy(o)z O and Wozl-ﬂ. Hence

Up= uo(ﬁ: Cz)

The definition of r§ serves to fix Cz. e have
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-
«r3 = % & La-pr2u 2(p, c)Vap (5)

o

From which Cog g( A'rd)

Hence both _V_ and u, are functions only of ( A'r}).
Ar?
Consider vy(r). The equation for vy(r) can be written
in the form
2 2.
d“( a' vl) +—1—=§ ( &Zvl) = -u, (6)

.d ﬂz d‘

Since u, and o\'le are functions only of o('r(') , 1t follows

that oL'zvl is a function only of «rd,
It follows immediately that Q! is a function only of
a'rd, becoeg;se

Q= _1 g(}(lz-vlz)dr - _1 S [(Pap)2a (a2 7] B
rg? : ( Atry)

(7)
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