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CHAPTER 1

INTRODUCTION

Ever increasing demands of high performance together
with reliability of operation, long life and light weight,
necessitate a constant development of almost every part of
a gas turbine. Blades form a vital part of a turbomachine.
Apart from their shape and geometry, on which the perfor-
mance characteristics of the engine largely depend, their
dynamic strength is of considerable importance as far as
the reliability of operation and the life of the engine are
concerned. In an axial engine there may be about 2000 fixed
and rotating blades accounting for approximately 30 percent
of the cost of the engine. Failure of even one of the blades
can cause the shut down of the machine.

The main cause of failure of compressor blades and
the blades of lower temperature stages of a turbine is
fatigue. Such failures are,naturally, a result of mechanical
vibrations resulting in high alternating stresses. These
cyclicstresses, superimposed upon the mean steady stresses
in the blades, cause fatigue failure. While an evaluation
of the steady state stresses due to the aerodynamic and the
centrifugal forces is also necessary, the major task, however,

is to estimate accurately the vibration characteristics



of the blades.

The most important modes of vibration, from practi-
cal considerations, are known to be the first three flapwise
bending modes, the first chordwise bending mode and the
first two torsional modes. The presence of initial twist
in the blade causes a coupling between the flapwise and the
chordwise bending motions. The noncoincidence of the shear
centre and the centroid in an aerofoil cross-section couples
the bending and the torsional vibrations.

In the last twenty years a large number of technical
papers have appeared, describing the different approaches
for the vibration analysis of turbomachinery blades. The
first objective of the present investigation is to review
and make a systematic presentation of most of the sig-
nificant methods.

For vibration analysis, the blades are generally
idealized as pretwisted cantilever beams. This beam type
of analysis, although good enough for long blades, cannot
be expected to give accurate results for low aspect ratio
blades. Such blades ought to be treated as shells. For
a complex structure like a twisted, tapered, cambered
blade of aerofoil cross-section, the exact analysis based
on shallow shell theory is rather a formidable task.
However, the recent advances in the finite element tech-

nique make such an analysis feasible. The second objective



of the present investigation is to develop a method> based
on the finite element technique, for the bending and the
vibration analysis of rotating and nonrotating low aspect
ratio blades.

The finite element method of treating the shell as
an assembly of a large number of flat triangular elements,
introduces several physical and mathematical approximations.
It is, therefore, necessary to test the rate of convergence
and the accuracy of the method. This is achieved by ap-
plying the method to obtain solutions to several problems
for which analytical or experimental results are available.

The third objective of the present investigation is

to carry out the numerical computations in order to study,

(1) the effect of increasing pretwist on the natural

frequencies and the mode shapes,

(ii) the effect of.the speed of rotation, the radius
of the disc and the setting angle at which the
blade is mounted on the disc, on the natural
frequencies and the mode shapes, and

(iii) the manner in which the well known results for
long blades based on beam type analysis are
approached, with the increase in the aspect ratio.

For the purpose of these computations, the blade is treated

as a pretwisted cantilever plate,



The present analysis assumes that the blades are
fixed at their roots and there is no damping present in the
system. The disc on which the blades are mounted is assumed
to be rigid and, therefore, no coupling of the vibratory

motion between the blades in the same row takes place.



CHAPTER 2
REVIEW OF ANALYTICAL METHODS FOR VIBRATION
ANALYSIS OF TURBOMACHINERY BLADES

The blades have an aerofoil cross-section and
possess, in addition to camber and longitudinal taper, a
pretwist to allow for the variation in tangential velocity
along the length. The method of mounting the blades on the
disc varies considerably in different types of engines. The
root of a blade is neither hinged nor fixed. Also, the root
fixidity is considerably altered when the blades are rotating -
the centrifugal forces causing additional fixidity at the
root. The elasticity of the disc and the shroud couples
the vibratory motion of the blades of the same row. A
certain amount of damping is also inherently present in the
system, arising from material inelasticity, friction at
the root, aerodynamic sources etc. An accurate determina-
tion of the vibration characteristics of such a system, in
centrifugal force field and subjected to aerodynamic exci-
tations, is, no doubt, a challenging task.

Many papers dealing with the analytical and the
experimental studies of the problem have appeared in the
cpen literature. The different techniques for the experi-

mental investigation of turbomachinery blade vibrations
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have, recently, been reviewed by Dokainish and Jagannath (1)*.

For the theoretical analysis of blade vibration problem,
many simplifying assumptions are generally introduced. In most
of the analytical work that has appeared in this field, the
blade is idealized as a tapered, pretwisted cantilever beam.
The effect of root flexibility, disc elasticity, shrouding and
damping have not usually been included in such analysis.
However, the effect of these parameters on the vibration charac-
teristics has been studied separately by some investigators.
In such investigations several other assumptions are generally
made, e.g. neglecting the pretwist, assuming the cross-section
to be'rectangular, treating the blade as a single degree of
freedom system, etc.

The methods of analysis that have been used for blade
vibration problems vary considerably - from the exact
solution of differential equations of motion on the one ex-
treme to the empirical relations based on experience on the
other. The majority of the investigators, however, have
used one or the other approximate numerical methods such
as the Rayleigh-Ritz energy approach, the Myklestad type lumped
mass technique, the Stodola method, the matrix displacement
analysis, the numerical solution of differential or integral
equations, etc.

For the sake of convenience, this review of the

analytical methods is subdivided into several sections;

*
Numbers in parantheses designate references at the end.



in such a manner, that in each section a different aspect

of the problem is discussed.

2.1 Steady State Deformation

The aerodynamic and the centrifugal forces acting
on rotating turbomachinery blades produce steady state de-
formation and stresses. In the case of compressor blades,
these stresses may be small as compared to large alternating
stresses set up by the vibratory motion. However, the
blades of the initial stages of a turbine operate in a creep
régime and‘the steady stresses play an important role under
these conditions.

The basic theory of EulerBernoulli and the Timoshenko
beam theory, wherein the shear effects are also included,
form the basis for the bending analysis of the blades.
However, due to the presence of initial twist, the defor-
mation along both principal axes of inertia of cross-section
of a blade occurs simultaneously. This results in a system
of coupled equations for deflections.

The differential equations for bending of a pre-
twisted beam are derived by Zickel (2,3) by assuming it to
consist of a large number of longitudinal fibres. The
expressions for fibre stress, after linearization, are shown
to consist of five components resulting from compression,

bending along each principal direction, warping of the cross-



section and interaction of the initial and the additional
twist. The shear stresses are those given by the

Saint Venant's theory of torsion and those which are de-
veloped as a result of the variation of fibre stress along
the length of the beam. Stresé couples and stress re-
sultants are calculated from these stresses by integrating
over the cross-section and the equilibrium equations are
obtained. The equations are solved for a beam with sym-
metric cruciform cross-section subjected to bending
couples. This particular cross-section has symmetry not
only about the principal axes, but also about the lines

at 45° to the principal axes. For other types of cross-
section, including other doubly symmetric cross-sections
such as rectangular, the equations do not permit an easy
analytical solution. Mainly the effect of large pretwists
(up to 107) is investigated. It is shown that the beams
with equal flexibility in all directions simply become more
flexible with the initial twist, a fact that corresponds

" with earlier observations made by Den Hartog (4).

An important effect of the inclination of longitudi-
nal fibres to the axis of a beam, due to initial twist, is
pointed out. Not only does this inclination have the effect
of producing a smaller strain due to a given curvature,
but in addition the fibre stress is concentrated more to-

wards the centre than in an untwisted beam. The resisting



moment is thus decreased considerably for a given curvature.
At the same time the resistance to torsion is increased with
increasing pretwist.

The equilibrium equations for the particular problems
of pretwisted cantilever beam subjected either to tip load
or uniformly distributed load are obtained by Carnegie (5).
For the derivation of these equations, the variational method
of applying Euler characteristic equations to the integral
expression for potential energy is used. This method fulfills
bthe requirement for stationary value of potential energy
and hence for the eguilibrium. However, the second varia-
tion deciding the stability or otherwise of the equilibrium
conditions is not considered, the stability being assumed.
The coupling between the deflections along the two principal
axes of cross-section, produced by pretwist, is clearly
indicated by the equations. The effects of inclination of
the longitudinal fibres due to initial twisting are not con-
sidered in the derivation. However, these effects are taken
into account in a latter péper (6). For a pretwisted canti-
liver of rectangular cross-section sufficient agreement is
shown to exist between the calculated and the measured vélues
of deflections.

In the case of rotating beams, the additional bending
moments caused by the centrifugal forces are functions of

displacements and the resulting equations do not permit an
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easy analytical solution, especially when the cross-section
is not wuniform. Apart from the classical approximate
methods such as the Collocation method, the Rayleigh method,
the Galerkin's method, etc., various other numerical methods
appeared around 1945 for the bending analysis of rotor blades.
A comparative study of these earlier approximate methods has
been done by Flax (7) in 1947.

A matrix method for the calculation of deflections
and moments of a pretwisted blade is given by Plunket (8).
In this analysis the blade is considered as being made of
several masses joined by rigid rods, the elasticity being
concentrated at the mass stations. From the given loading
the bending moment at each station is calculated and resolved
along the principal axes of inertia of the cross-section.
The deflections at each station are calculated by assuming
that a bending moment M acting at a station would cause an
abrupt change of slope of magnitude M{/EI at that station
(2 = length of the beam segment). The calculated deflections
are along the principal axes which vary along the length of
the beam due to pretwisting and are transformed to common
axes. For rotating blades a method of successive approxi-
mations is suggested. It is pointed out that the successive
substitution process results in continually oscillating

values. An averaging technique, whereby the new value to
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be used is the average of the previous value and the

corrected value, is recommended to overcome this difficulty.

2.2 Vibration of Nonrotating Blades Without Pretwist

For vibration analysis, blades are generally treated
as cantilever rods. An untwisted rod can vibrate in four
distinct types of modes - longitudinal, torsional and
bending along each of the principal axes of inertia of the
cross-section. In each type there can exist the fundamental
as well as the higher_tones. The longitudinal frequencies
- are not generally of great practical importance in blade
analysis. The most important, from practical considerations,
are the first three flapwise bending modes, the first
chordwise bending mode and the first two torsional modes.

If the cross-section of a blade is such that its shear
centre and the centroid do not coincide, coupling between
bending and torsional vibrations takes place. The uncoupled
bending and torsion are first discussed, followed by the
methods for locating the shear centre and the analysis

of coupled vibrations.

2.2.1 Bending Vibrations

For cantilever beams of uniform cross-section the
natural frequencies can be determined by classical methods,

and are given by

2
w, = — YEL/Y (2.1)
n L2
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where EI is the flexural rigidity, y the mass per unit
length and L the length of the beam. The values of a for the
first four modes are 1.875, 4.694, 7.855 and 10.996.

For tapered beams it is more convenient to use
numerical methods. The tabular method of Myklestad (9)
is, probably, the most widely used. In this method the beam
mass is lumped at a number of discrete stations along the
beam. A certain value of natural frequency is assumed and
starting from one end, the shear, moment, slope and deflec-
tion at each successive station are calculated from the
values at the previous station, till the other end is reached.
As in the Holzer method, at the correct frequency the
" shaking force must vanish. A discussion of different
methods available for forming the lumped parameter systems
is given by Minhinnick (10).

When a continuous system is represented by a lumped
mass system, obviously, a large number of stations must
be used to get reliable results. The extent of error in-
volved in this method of solving a continuous system haé
been studied by Duncan (11), in relation to a uniform
cantilever beam. He has suggested an extrapolation for-
mula by which accurate values can be predicted from the
values obtained for a few mass stations. Further study

of the effect of lumped parameters has been done by Leckie
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and Lindberg (12) who have indicated a method for deriving
the dynamic stiffness matrix by considering the actual mass
distribution. The derivation consists of assuming a cubic
expression for the deflection within an element and applying
the principle of consistency of virtual work done by
distributed and edge inertia loading. An extensive review
of the various approximate methods, for determining the
natural frequencies and the mode shapes, is carried out

by Siddall and Isakson (13). A comparative study of various
methods is made by carrying out computations for a tapered

cantilever beam.

2.2.2 Torsional Vibrations

The classical method for the analysis of torsional
vibrations of circular section rods results in a differential
equation of motion of the second order, similar to the one for
the longitudinal vibrations. For cantilever rods the
substitution of the boundary conditions of zero twist at
the fixed end and zero torque at the free end yields the

expression for torsional frequencies in the form

L4 =
wo = 5% Cg Ic.g. (n 1, 3y 5 sun) (2.2)
where C is the torsional rigidity, L the length and I, g the

polar moment of inertia per unit length of the rod. Some-

times this expression is also used to give approximate
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frequencies for non-circular rods by using the value of C
given by the Saint Venant's theory of torsion.

For an aerofoil section the torsional rigidity cannot
be calculated easily and recourse is generally made to
experimental and empirical methods. Jaswon and Ponter (14)
have suggested a method for calculating the torsional rigidity
of any arbitrary cross-section. In this method the classical
torsion problem of Saint Venant is formulated mathematically
as a Neumann boundary value probelm for the warping function,
which can be found numerically on the boundary by means of
an integral equation method. Several cross-sections have
been analyzed in the paper and it is indicated that the
torsional rigidity to an accuracy of 1 percent can be ob-
tained.

A more accurate analysis of the torsional vibrations,
taking into account warping of the cross-section, yields a
fourth order differential equation given by Gere (15). The
equation of motion, with a slight change of notation is

32¢
2

2

C
L C.g. at2

- ECw
oX

where E is the Young's Modulus, Cw‘the warping constant for
the section and ¢ the twist at a distance x along the beam
at time t. If the warping is zero, as in a circular section;
this equation reduces to the classical equation of the second

order. The boundary conditions at the built-in end are
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¢ = 0 and %% = 0 and at the free end R 0 and
-
C 3¢ 9% _ ! o
= - —X = 0, These boundary conditions ensure com-

—E_(-:—w ax ax3
plete warping restraint at the fixed end and the vanishing

of O, at the free end, in addition to zero twist at the
fixed end and zero torque at the free end. Computations of
the natural frequencies for these and the other boundary
conditions are given in the paper (15).

Carnegie (16,17) has also derived a similar fourth
order equation for the torsional vibrations of a cantilever
beam of narrow rectangular cross-section by considering the
bending of longitudinal fibres produced by torsion. Varia-
tional principle is used for the derivation. For a narrow
section with breadth b and thickness t, the corrected formula
for the natural frequencies is shown to be

2 2 3Ih3
w =80 [ €T \/l+r_1__11__E_t__b_ m=1, 3 ...) (2.4)
-1 576 CL?

The problem of torsional vibrations of a cantilever
beam of thin-walled open section has also been studied by
Hanawa and Koshide (18) by using trial functions in the direct
application of variational calculus. The results compare well

with those of Gere (15).

2.2.3 Shear Centre

When an untapered cantilever beam is loaded at its

tip by surface tractions, their resultant would act through a
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point S on the tip cross-section perpendicular to the axis
of the beam. If this force does not cause any twist at the
centroid of the cross-section, then the point S is called
the 'Shear Centre' of the section. Many other names e.g.
'flexural centre'’, ‘'centre of flexure','elastic centrum'
etc. are also commonly used for the same point. A different
point on the cross-section, generally known as 'centre of
least strain', has been sometimes called the shear centre.
This is a point S' on the cross-section such that when the
resultant of surface forces at the free end of the canti-
lever acts at that point, the aggregate work done by the
torsional surface traction is zero. These two points S
and S' coincide only if Poisson's ratio of the material is
zero. Washizu (19) has claimed thatwith S' as the definition
for centre of shear, the extension to a naturally curved and
twisted slender bar is straight-forward.

For cross-sections having one axis of symmetry,
different formulae for the location of the shear centre have
been proposed in the past. Most of these earliier methods
are reviewed by Duncan (20) in 1953. In the same paper an
expression in terms of Prandtl torsion function, is also
given for locating the shear centre of sections with one
axis of symmetry. For any arbitrary section, Jacobs (21)
has developed expressions for the coordinates of the

shear centre in terms of torsion function. These expressions
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are used in the paper to calculate the shear centre location
of a particular aerofoil section. The torsion problem for
the section is first solved by relaxation methods. For a
section bounded by two circular arcs, the torsion function
is well known in analytical form. Whitehead and McQuillin
(22) have used this torsion function to f£ind the shear centre
of such a cross-section, when the inner arc has its centre on
the circumference of the circle of which the outer arc forms
a part. By varying the angle subtended by the arcs at the
centre of the inner arc, the effect of camber and the thickness
variation on the location of shear centre are investigated.

A computer programme based on the method of solving
the torsion problems given by Jaswon and Ponter (14), has
been developed by Cowper (23) to calculate the shear centre

of any arbitrary cross-section.

2.2.4 Coupled Bending-Torsion Vibrations

When the shear centre of the cross-section does not
coincide with its centroid, the bending and the torsional
vibrations are coupled and must be considered together.
Myklestad (24) has extended his earlier tabular method (9)
to the case of coupled bending-torsion vibrations. Here
the variables at each station are taken to be shear, bending
moment, slope, deflection, twist and torque. Myklestad's

method has been somewhat modified by Targoff (25). In this
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approach, after relating the variables of two consecutive
stations by a matrix relation, successive matrix multipli-
cation is carried out. Thus the guantities at one end of

the beam are related directly to those at the other end of
the beam. The correct frequency is obtained as in the Holzer
approach.

Differential equations of motion for the coupled
bending-torsion vibrations, resulting from the eccentricity
of shear centre, are derived by Gere and Lin (26). 1In
general there are three coupled fourth order eguations for
the deflections along each principal axis and the twist. A
variable separation method for the solution of these partial
differential equations is suggested. This reduces them to
ordinary differential equations which are then combined
into a single 1l2th order differential equation. The method
is very laborious especially if the edges are not simply
supported. The Rayleigh-Ritz method is used for deter-
mining the fundamental frequency. The analysis is directed
mainly towards thin-walled open sections.

Gere's equations of motion (26) do not take into
account the effects of deformation due to shear strain.

Tso (27) has obtained the equation taking into account the
shear strain effects. This higher order theory is derived

using the variational formulation, and treating the thin-walled
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beam as a special case of thin prismatic shell. Comparison
of this higher order theory with Gere's theory is carried
out on the basis of the natural frequencies obtained for

a beam of circular split ring type cross-section. It is
concluded that for long beams both theories give the same
results. For medium length beams the non-inclusion of

shear effects does not appreciably affect the frequencies

of torsion-predominant modes but the natural frequencies of
bending-predominant modes are over estimated. For very short
beams, however, it is pointed out that even the higher order
theory is not satisfactory and shell type analysis is called

for.

2.3 Vibration of Nonrotating Pretwisted Blades

Figure (1) shows the end view of a pretwisted blade
looking from the tip towards the root. For convenience the
section has been shown as rectangular instead of aerofoil.
The x-axis is along the length of the beam joining the
centroids, while the y and the z axes are in the direction of
the principal axes of inertia at the root section. At any
intermediate section the principal axes are taken in the §
and n directions. The torsional stiffness of a blade of
length L, breadth b, thickness t and having an initial twist

Y is denoted by Cw. This common nomenclature is used to
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facilitate the discussion of various papers in this field.
When a beam is initially twisted about its longitu-
dinal axis bending along the y and the z direction occur
simultaneously. Torsion occurs independent of bending
provided that the centroid and shear centre coincide. Thus
if the pretwisted beam has a doubly symmetric cross-section,
such as a rectangle, one is faced with the problem of coupled
bending-bending vibrations and of torsicnal vibrations. How-
ever in a pretwisted beam of aerofoil section, coupled
bending-bending-torsion problem is to be considered. The
results presented in almost all the papers are for linear
variation of pretwist along the length of the cantilever

blade.

2.3.1 Coupled Bending-Bending Vibrations

The effect of pretwist on the bending frequencies of
a cantilever beam of rectangular section has been investi-
gated by Rosard (28). In this analysis the beam is divided
into a number of segments; the mass as well as the elasticity
are concentrated at the stations. The bending variables
(shear, moment, slope, and deflection) of two consecutive
stations are related, for each plane of bending; and by
successive elimination the values of displacements at the
fixed end are found in terms of those at the free end.

The boundary conditions of fixed and free end necessitate
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the determinant of a relating matrix to vanish, giving the
natural frequencies. The equations used for relating the
variables of two stations are not as refined as those of
Myklestad. This is justified in the paper on the ground

that the purpose of the investigation is to study only
gualitatively the effect of pretwist on frequencies. Variation
§f the first three bending frequencies with pretwist is
studied for the breadth to depth ratio of the beam varying
from 4 to 12. It is shown that the fundamental frequency

is not greatly affected by pretwist. Coupling between the
second flapwise frequency and the first chordwise frequency
is produced by pretwist. The lower of these two frequencies
is further reduced by pretwist whereas the higher one is
increased. Hence, if the b/t ratio is less than 6.36 (at
this ratio the éecond flapwise frequency is egual to the
first chordwise frequency in an uncoupled case) the chord-
wise frequency decreases with pretwist while the second
flapwise frequency increases. However for a b/t ratio larger
than 6.36, the effect is reversed.

The bending vibrations of a twisted beam lead to two
fourth order differential equations. A method of solving
these two coupled fourth order equations is given by Troesch
et al. (29). By taking the solution for the deflection

in the y and the z directions of the form AeAX and Bekx, an
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eighth order characteristic equation in A is derived. The
solution of the problem is obtained for a particular case
when the flexural rigidity of the section in one of the
principal directions is infinitely large (e.g. narrow
rectangular cross-section) and the pretwist per unit length
is constant. The variation of the first fcour bending fre-
quencies for pretwist varying from 0° to 1000° is computed
in the paper. It is shown that the fundamental freguency
_rises with pretwist whereas the higher bending frequencies
decrease with pretwist. When the pretwist tends to infinity,
the first and the second frequency tend to the same value
and this corresponds to the fundamental frequency of an un-
twisted beam of flexural rigidity twice that of the given
narrow rectangular section. A somewhat different approach
has been given in a latter paper (30). DiPrima and
Handleman (31) have given the differential equations of
motion for pretwisted beams in vectorial notations and indi-
cated a method of obtaining eigenvalues from variational
principles. The method is too involved from computational
point of view. In the paper, only the fundamental frequency
has been computed.

An approximate method of calculating the effect of
pretwist on the bending frequencies of a cantilever beam is
given by Martin (32). The effect of twist is taken as a

first order perturbation. The twist per unit length is
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assumed constant (k = Y/L). The ratio of the natural
frequency of a twisted beam to the corresponding frequency
of an untwisted beam is assumed to be given by 1 + P(kL)Z.
The aim of the paper is to determine the correction factor
P. As a further approximation certain expressions for
deflections along the principal axes of inertia of cross-
sections are assumed which contain the parameter Kk
(¢ = go + kzgl, and n = knl). By substituting these in
the equations of motion and equating like powers of k the
values of Eo,gl,nl etc., and the value of p are obtained.
The values of p for the first four bending modes for various
values of breadth to thickness ratio are tabulated in the
paper. It is pointed out that if the breadth to thickness
ratio of a slightly twisted beam is such that a chordwise
frequency and a flapwise frequency are equal, then an exci-
tation in the flapwise direction can produce resonance in
the other direction. The analysis presented does not give
full justification for the assumed expressions. It is well
known that the first frequency is not greatly affected by
twist and this fact is not fully borne out by the values
of the derived correction factor.

Carnegie (16) has used the Rayleigh energy method to

calculate the first natural frequency in bending of a pretwisted

cantilever beam. In this type of analysis an assumption re-
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garding the deflected shape of the beam is necessary. 1In
the paper the static deflection curves obtained earlier (5)
are used. It is shown that for a narrow rectangular section,
a pretwist of 90° increases the fundamental frequency by
about 3.5% and for a square section it is unaltered by twist.
Experimental values of the frequencies for rectangular
cantilever beams with pretwist ranging from 0° to 920° are
also presented in the paper for a particular breadth to
thickness ratio.

The Rayleigh method used by Carnegie (16) gives
only the fundamental bending frequency. Dawson (33) has
extended the method for calculating the higher bending
frequencies by use of the Rayleigh-Ritz approach. The
.characteristic functions representing the normal modes of
vibration of straight beams in simple flexure are used as
approximating functions for the bending displacements. A
discussion of the mode shapes is given in a later paper (34).

The effect of the depth taper and the width taper in
a pretwisted cantilever beam has been investigated by
Carnegie et al. in the first part of Reference (35). 1In
this analysis the equations of motion are converted to a
set of linear algebraic equations by finite difference
technique. It has been shown that for a fixed value of
pretwist, the coupling between the bending modes increases

with an increase in the ratio of width taper and the depth
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taper.

Isakson and Eisley (36) have used Targoff-Myklestad
type analysis for calculating bending frequencies of pre-
twisted beams. Although the method is mainly devised for
rotating blades, nonrotating blades have been treated as
a special case. In this method the beam is divided into
segments and the mass of each segment is lumped at its centre.
The flexural rigidity in Both the principal directions is
assumed to remain constant between the adjacent masses.

The total pretwist of a segment is assumed to occur at the mass
station. The vectors {A} of 8 bending variables (shear, moment,
slope ahd deflection along each bending direction) of two
adjacent masses n and (n + 1) are related to each other by

the matrix relation {A}n+l = [R][E][F}{A}n. The matrices

[F]1, [E] and [R] correspond to the variations involved in
movement across the mass, the weightless rod and the concen-
trated pretwist, respectively, and are given explicitly in

the paper. Successive matrix multiplication relates the
vectors of the two ends of the beam. By substituting

boundary conditions and trying various values of natural
frequency the correct values are obtained.

For pretwisted beams the condition of orthogonality
for the normal modes has been derived by White (37) using
Green's functions. Slyper (38) has proved this condition

using the Maxwell reciprocal theorem and has used it for the
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determination of coupled bending frequencies by the Stodola
process. In this analysis a certain deflection curve is
assumed for the fundamental mode and the inertia loading for
a unit angular frequency is calculated. This inertia loading
is taken as the static loading to calculate a new deflection
curve., Repeating the process would ultimately give the
correct fundamental mode shape. The ratio of the initial

and the new deflection of the beam, in the final iteration,
gives the square of the angular frequency. To calculate
higher modes, the condition of orthogonality is used to
remove the traces of all the lower modes of vibration already
determined. Due to bending-bending coupling produced by

the pretwist, the deflection shape is taken as y + jz, the j
notation indicating that the deflection in the z-direction

is at right angles to that in the y-direction. The results

of computations for cantilever blades with breadth to
thickness ratio from 2 to 16 and for pretwists varying

from 0° to 180° are presented in the paper. They are shown
to be in agreement with those obtained experimentally by
Carnegie (16) and Rosard (28).

Dokumaci et al. (39) have used the finite element
technique with matrix displacement type analysis for the
determination of the bending frequencies of a pretwisted
cantilever beam. The beam is divided longitudinally into

small elements. At each end of the element four degrees of
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freedom are assigned (slope and deflection along each
principal axis of inertia of the cross~section). Within

an element the deflection along each of the two directions
is assumed in the form ay Foanx + a3x2 + a4x3. Stiffness
and mass matrices for each element are formed by calculating
the energy expressions in terms cf the displacements at

the ends of each element and by the application of the
Lagrange equations of motion. The explicit expressions for
the mass and the stiffness matrices are given in the paper.
Natural frequencies and mode shapes are obtained from the
resulting eigenvalue problem. Computations are carried out
for pretwist angles of 30°, 60° and 90° and for breadth

to thickness ratios varying froﬁ 2 to 16. An extrapolation
formula is suggested, by which, knowing the natural fre-
quencies for the subdivision into n and n + 1 elements,
accurate values of the frequencies may be estimated.

It may be worthwhile here to comment briefly on the
different methods available for calculating the bending
frequencies of a pretwisted beam of rectangular section.
The analytical methods of Troesch et al. (22,30) and DiPrima
et al. (31) aim at the solution of coupled differential
equations. These methods can not be easily extended to
general cases where taper may be present or pretwist per

unit length may not be constant. Approximate methods are

thus important from practical considerations. The correction
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factor for twist given by Martin (32) is based on rather
unproven approximations, and the results obtained do not
coincide very well with those cbtained later by other authors,
especially for the fundamental frequency. The Rayleigh method
used by Carnegie (16) gives only the fundamental frequency.
The method uzed by Rosard (28) involves the lumping of both
mass and elasticity and the equations relating the variables
of the adjacent stations are not very refined. Better
results can be expected if the elasticity of the beam is
considered distributed as used by Isakon et al. (36).

The Rayleigh-Ritz method (33), the finite difference trans-
formation method (35), the Stodola method (38) and the

finite element technique (3%) give almost identical results.

A comparison of the results obtained by various methods is
given in Reference (33).

From the results obtained by various investigators,
certain general conclusions can be drawn regarding the coupled
bending frequencies of pretwisted cantilever beams of
rectangular cross-section. The conclusions are valid for
the magnitudes of pretwist usually encountered in turbomachinery
blading. The fundamental frequency is affected very little
by the pretwist. If a chordwise frequency and a flapwise
frequency are very close to each other, the effect of pre-
twist is to separate them more. If the breadth to thickness

ratio is very large (say more than 20) the second and the
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third bending frequencies decrease with pretwist. The effect
of twist on the natural frequencies is less in tapered

beams than in the beams of uniform cross-section.

2.3.2 Torsional Vibrations

For a pretwisted blade of rectangular section the
torsion and the bending deformations remain uncoupled. The
torsional stiffness, however, is very much increased due to
pretwist, resulting in an increase in the torsional frequen-
cies. The main cause of the increase in the torsional stiff-
ness,.over and abcove that given by the Saint Venant theory
is due to the inclination of the blade longitudinal fibres
which become helical due to the initial twist. When elastic
twisting takes place in an initially twisted beam, the force
acting along the fibre has a component along the longitudinal
axis of the beam as well as a lateral component in the plane
of the cross-section. This lateral component of the fibre
force has a moment about the centre of torsion, resulting
in the increased torsional stiffness. An explicit expression
for the torsional stiffness of a beam of narrow rectangular
cross-section, with a small magnitude of pretwist, is given
by Chen-Chu (40) and also by Carnegie (16) following somewhat

different approaches. The expression

l
cefian e
C =Cl|1 + g zL, J (2.5)
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The first term is the Saint Venant torsional stiffness, while
the second term is the additional stiffness due to the
pretwist ., For thin blades this additional rigidity may
even be the dominant term.

The problem of torsional vibrations of pretwisted rods
has been investigated by Reissner and Washizu (41). The
differential equation of motion is derived from shallow shell
equations using variational principles. The torsion of a
pretwisted rod causes a decrease in its length, resulting
in a coupling between the torsional and the longitudinal
vibrations. DiPrima (42) has considered this problem of
coupled vibrations. It is shown that the longitudinal
frequencies are not significantly affected by pretwist, but
the torsional frequencies increase considerably. The per-
centage increase is higher for higher b/t ratio. An expres-
sion is derived for the effective torsional stiffness of a

pretwisted rod in the form

r EIzlpz EIOprz l

c, =C|l1 + - 5 (2.6)
v CL2 CL"A
4 " 2 . .
where I = /, ¥ dA and I, = [, r"dA, r being the distance
2

from the centroid to any point on the cross-section of area
A. For a bar of very narrow rectangular cross-section this

reduces to

6
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where y is the Poisson's ratio.

A similar expression has also been obtained by
Reissner and Washizu (41) by neglecting the coupling between
the torsional and the longitudinal motions. The only difference
being that instead of (1 + u) in the numerator they have ob-

tained (1 - u) in the denominator.

2.3.3 Coupled Bending-Bending-.Torsion Vibrations

In a blade of aerofoil cross-section, apart from the
coupling between the bending modes produced by pretwist, the
torsional vibrations are also coupled. Mendelson and Gendler
(43) have suggested a method for obtaining the natural fre-
guencies using the concept of station functions. In this
approach, a continuous loading function for the blade is
obtained from the displacements at a finite number of stations
along its length. From this the method of deducing the
frequency equaticon is presented. Dunham (44) has derived the
equations of motion in a twisted coordinate system following
ﬁhe blade length and has used them for the determination of
the first natural frequency. Certain coupling terms have
not been included in these equations and are pointed out
later in his discussion of Reference (16). Carnegie (16)
has used Rayleigh method to find an expression for determining
the fundamental frequency of pretwisted cantilevers of aero-

foil section. Although his equations are for the coupled
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case, in the calculations the coupling between torsion and
bending is neglected. Static deflection curves are used as
mode shapes for calculating the energy expressions. In his
discussion of this paper Dawson has pointed out that the
coupling between the torsion and the chordwise bending is
significant and should not be overlooked. The equations of
motion for a pretwisted blade of general aerofoil section
are modified later by Carnegie (17,45) to include the
additional effects due to torsion, shear and rotary inertia.
Belgaumkar et al. (46) have calculated the first four
bending frequencies and the first three torsional frequencies
of five typical blades. They, too, have neglected the
coupling between the bending and the torsion and have used
the methods discussed for the rectangular sections. Compu-
tations are carried out using several of these methods and
the results are compared with experimentally cbserved natural
frequencies. This provides a basis for investigating the
relative accuracy that could be expected from these methods.
Isakson and Eisley (47) have extended their method
(36) to take into account the coupling between the bending
and the torsion. Although this paper deals mainly with the
rotating blades, nonrotating blades are considered as a
special case. The vector of station unknowns, in addition to
shears, moments, slopes and deflections, also includes the

torque and the twist as variables.
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In the second part of Reference (35) Carnegie et al.
have given a method for solving the coupled bending-bending
tersion differential equations by the Runga-Kutta numerical
procedure. This approach converts the differential equations
to ten equations of the first order. The method of solution
consists of assigning, in turn, a unit value to one of the
unknowns at the fixed end keeping the others zero, and
determining the values of these quantities at the free end.
The values found at the free end are then combined linearly.
All this work is carried out for each test value for the
frequency. For satisfying the boundary conditions at the
free end, the determinant of these eguations must vanish
at the correct frequency. Computations are carried out for
a typical blade taking into account the pretwist and the

eccentricity of the shear centre.

2.4 Vibration of Rotating Blades Without Pretwist

A rotating blade is subjected to a distributed
centrifugal force which incre