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CHAPTER 1 

I NTROD UC'l'I ON 

Ever increas i ng d emands of high performa nce together 

with reliability o f ope r a t ion, l ong li fe and l i g h t we ight, 

necessitate a constant developmen t of a lmos t every part of 

a gas turbine. Blades form a vital part of a turbomachine. 

Apart from their s hape a nd geometr y , on wh ich t he perfor­

mance characteristics of the e ng ine largely d e pend , their 

dynamic strengt h is of conside rable importance as fa r as 

the reliability o f ope r a tion and t he l ife o f the engine are 

concerned. In an axi al engine there ma y be about 2000 fixed 

and rotating blades a c c o un t i ng f or app r oximate ly 3 0 percent 

of the cost of the engine . Failure of eve n one o f t he b lades 

can cause the shut down o f the machine. 

The ma i n cause of fa ilure of compre s sor b l ade s and 

the blades of lower temperature stages of a t urbi ne is 

fatigue. Such failure s are, natur a lly , a resul t of mechanical 

vibrations resulting in h igh alternating s t resses. Th e se 

cyclic stresses, s upe rimpos ed up on the mean steady stresses 

in the blades, caus e fat igue failure . Whi le a n e valuation 

of the steady s t ate stresses du e t o the aerodynamic a nd the 

centrifugal force s is a lso neces s a ry, t he major task, however, 

is to estimate accurately t he v i b rati on c harac teri s tics 
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of the blades. 

The most important modes of vibration, from practi­

cal considerations, are known to be the first three flapwise 

bending modes, the first chordwise bending mode and the 

first two torsional modes. The presence of initial twist 

in the blade causes a coupling between the f lapwise and the 

chordwise bending motions. The noncoincidence of the shear 

centre and the centroid in an aerofoil cross-section couples 

the bending and the torsional vibrations. 

In the last twenty years a large number of technical 

papers have appeared, describing the d ifferent approaches 

for the vibration analysis of turbomachinery blades. The 

first objective of the present investigation is to review 

and make a systematic presentation of most of the sig­

nificant methods. 

For v~bration analysis, the blades are generally 

idealized as pretwisted cantilever beams. This beam type 

of analysis, although good enough for long blades , cannot 

be expected to give accurate results for low aspect ratio 

blades. Such blades ought to be treated as shells. For 

a complex structure like a twisted, tapered, cambered 

blade of aerofoil cross-section, the exact analysis based 

on shallow shell theory is rather a formidable task. 

However, the recent advances in the finite element tech­

nique make such an analysis feasible. The second objective 



of the present investigation is to develop a method, based 

on the finite element techniquer for the bending and the 

vibration analysis of rotating and nonrotating low aspect 

ratio blades. 
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The finite element method of treating the shell as 

an assembly of a large number of flat tr iangular elements, 

introduces several physical and mathematical approximations . 

It is, therefore, necessary to test the rate of convergence 

and the accuracy of the method. This is achieved by ap­

plying the method to obtain solutions to s everal problems 

for which analytical or experimental results are available. 

The third 9bjective of the present investigation is 

to carry out the numerical comput a tions in order to study , 

(i) the effect of increasing pretwist on the natural 

frequencies and the mode shapes, 

(ii) the effect of the speed of rotation , the radius 

of the disc and the setting angle at which the 

blade is mounted on the disc, on the natural 

frequencies and the mode shapes , and 

(iii) the manner in which the well known results for 

long blades based on beam type analysis are 

approached, with the increase in the aspect ratio. 

For the purpose of these computations, the blade is treated 

as a pretwisted cantilever plate. 
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The present analysis assumes that the blades are 

fixed at their roots and there is no damping present in the 

system. The disc on which the blades are mounted is assumed 

to be rigid and, therefore, no coupling of the vibratory 

motion between the blades in the same row takes place. 



CHAPTER 2 

REVIEW OF ANALYTICAL METHODS FOR VIBRATION 
ANALYSIS OF TURBOMACHINERY BLADES 

The blades have an aerofoil cross-section and 

possess, in addition to camber and longitudinal taper, a 

pretwist to allow for the variation in tangential velocity 

along the length. The method of mounting the blades on the 

disc varies considerably in different types of engines. The 

root of a blade is neither hinged nor fixed. Also, the root 

fixidity is considerably altered when the blades are rotating -

the centrifugal forces causing additional f ixidity at the 

root. The elasticity of the disc and the shroud couples 

the vibratory motion of the blades of the same row. A 

certain amount of damping is also inherently present in the 

system, arising from material inelasticity, friction at 

the root, aerodynamic sources etc. An accurate determina-

tion of the vibration characteristics of such a syste m, in 

centrifugal force field and subjected to aerodynamic exci-

tations, is, no doubt, a challenging task. 

Many papers dealing with the analytical and the 

experimental studies of the problem have appeared in the 

open literature. The different techniques for the experi-

mental investigation of turbomachinery blade vibrations 

5 
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have, recently, been reviewed by Dokainish and Jagannath (l)*. 

For the theoretical analysis of blade vibration problem, 

many simplifying assumptions are generally introduced. In most 

of the analytical work that has appeared in this field, the 

blade is idealized as a tapered, pretwisted cantilever beam. 

The effect of root flexibility, disc elasticity, s h rouding and 

damping have not usually been included in such analysis. 

However, the effect of these parameters on the vibration charac­

teristics has been studied separately by some investigators. 

In such investigations several other assumptions are generally 

made, e.g. neglec'l;ing the pretwist, asswning the cross-section 

to be rectangular, treating the blade as a single degree of 

freedom system, etc. 

The methods of analysis that have been used for blade 

vibration problems vary considerably - from the exact 

solution of differential equations of motion on the one ex­

treme to the empirical relations based on experience on the 

other. The majority of the investigators, however, have 

used one or the other approximate numerical methods such 

as the Rayleigh-Ritz energy approach, the Myklestad type lumped 

mass technique, the Stodola method, the matrix displacement 

analysis, the numerical solution of differential or integral 

equations, etc. 

For the sake of convenience, this review of the 

analytical methods is subdivided into several sections; 

* Numbers in parantheses designate references at the end. 



in such a manner, that in each section a different aspect 

of the problem is discussed. 

2.1 Steady State Deformation 

The a erodynamic and the centrifugal f orces acting 

7 

on rotating turbomachinery blades produce steady state de­

formation and stresses. In the case of c ompr e s s o r b lades, 

these stresses may be small as compared to large alternating 

stresses set up by the vibratory motion. However, the 

blades of the initial stages of a turbine operate i n a creep 

regime and the steady stresses play an important role under 

these conditions. 

The basic theory of Euler-Bernoulli and the Timoshenko 

beam theory, wherein the shear effects are also included, 

form the basis for the bending analysis of the blades . 

However, due to the presence of initial twist, the defor­

mation along both principal axes of inertia of cross-section 

of a blade occurs simultaneously. This resul ts i n a s ystem 

of coupled equations for deflections. 

The differential equations for bendin g of a pre­

twisted beam are derived by Zickel (2,3) by assuming it to 

consist of a large number of longitudinal f i bres. The 

expressions for fibre stress, after linearization, a re shown 

to consist of five components resulting from compre s sion, 

bending along each principal direction, warping of the cross-



section and inter action of the initial and t he a dd itional 

twist. The shear stresses are those given by the 

Saint Venant's theory of torsion and those wh i ch a re de­

veloped as a result of the variation of fibre str ess a l ong 

the length of the beam. Stress couples and stress r e­

sultants are calculated fr.om these stre.sses by integrating 

over the cross-section and the equilibrium e q uations a r e 

obtained. The equations are solved fo r a beam with sym­

metric cruciform cross-section subjected to bendin g 

couples. This particular cross-section has symmetry not 

only about the principal axes, but also about t he lines 

at 45° to the principal axes. For other types of c r oss­

section, including other doubly symmetric cro s s-sections 

such as rectangular, the equations do not permi t an e as y 

analytical solution. Mainly the effect o f large p re twists 

(up to lOn) is investigated. It is shown t ha t the beams 
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with equal fl e xibility in all directions simply be come mor e 

flexible with the initial twist, a fact that correspond s 

with earlier observations made by Den Ha r tog (4 ). 

An important effect of the i nclination o f l ongitudi­

nal fibres to the axis of a beam, due to ini tia l t wi s t , is 

pointed out. Not only does this inclination have the effect 

of producing a smaller strain due to a given curv a t ure , 

but in addition the fibre stress is concen t rated more to­

wards the centre than in an untwisted beam. The r esis t ing 



9 

moment is thus decreased considerably for a given curvature. 

At the same time the resistance to torsion is increased with 

increasing pretwist. 

The equilibrium equations for the particular problems 

of pretwisted cantilever beam subjected either to tip load 

or uniformly distributed load are obtained by Carnegie (5). 

For the derivation of these equations, the variational method 

of applying Euler characteristic equations to the integral 

expression for potential energy is used. This method fulfills 

the requirement for stationary value of potential energy 

and hence for the equilibrium. However, the second varia­

tion deciding the stability or otherwise of the equilibrium 

conditions is not considered, the stability being assumed. 

The coupling between the deflections along the two principal 

axes of cross-section, produced by pretwist, is clearly 

indicated by the equations. The effects of inclination of 

the longitudinal fibres due to initial twisting are not con­

sidered in the derivation. However, these effects are taken 

into account in a latter paper (6). For a pretwisted canti­

liver of rectangular cross-section sufficient agreement is 

shown to exist between the calculated and the measured values 

of deflections. 

In the case of rotating beams, the additional bending 

moments caused by the centrifugal forces are functions of 

displacements and the resulting equations do not permit an 
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easy analytical solution, especially when the cross-section 

is not uniform. Apart from the classical approximate 

methods such as the Collocation method, the Rayleigh method, 

the Galerkin' s method, etc., various other numerical methods 

appeared around 1945 for the bending analysis of rotor blades. 

A comparative study of these earlier approximate methods has 

been done by Flax (7) in 1947. 

A matrix method for the calculation of deflections 

and moments of a pretwisted blade is given by Plunket (8). 

In this analysis the blade is considered as being made of 

several masses joined by rigid rods, the elasticity being 

concentrated at the mass stations. F.rom the given loading 

the bending moment at each station is calculated and resolved 

along the principal axes of inertia of the cross-section. 

The deflections at each station are calculated by assuming 

that a bending moment M acting at a station would cause an 

abrupt change of slope of magnitude M ,~,/EI at tha t station 

(i = length of the beam segment). The calculated deflections 

are along the principal axes which vary along the length of 

the beam due to pretwisting and are transformed to common 

axes. For rotating blades a method of successive approxi­

mations is suggested. It is pointed out that the successive 

substitution process results in continually oscillating 

values. An averaging technique, whereby the new value to 
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be used is the average of the previous value a nd the 

corrected v a lue, is recommended to overcome this difficulty. 

2.2 Vibration of Nonrotating Blades Without Pretwist 

For vibration analysis, blades are generally treated 

as cantilever rods. An untwisted rod can vibrate i n four 

distinct types of modes - longitudinal, torsional and 

bending along each of the principal axes of inertia of the 

cross-section. In each type there can exist the fundamental 

as well as the higher tones. The longitudinal fre quencies 

are not generally of great practical importance i n blade 

analysis. The most important, from practical considerations, 

are the first three flapwise bending modes, the firs t 

chordwise bending mode and the first two torsional modes. 

If the cross-section of a blade is such that its shear 

centre and the centroid do not coincide, coup ling b etween 

bending and torsional vibrations takes place. The uncoupled 

bending and torsion are first discussed, foll owed by the 

methods for locating the shear centre and the analysis 

of coupled vibrations. 

2.2.1 Bending Vibrations 

For cantilever beams of uniform cross-sec tion the 

natural frequencies can be determined by c l ass i cal methods, 

and are given by 

(2 .1) 
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where EI is the flexural rigidity, y the mass per unit 

length and L the length of the beam. The values of a for the 

first four modes are 1.875, 4.694, 7.855 and 10.996. 

For tapered beams it is more convenient to use 

numerical methods. The tabular method of Myklestad (9) 

is, probably, the most widely used. In this method the beam 

mass is lumped at a number of discrete stations along the 

beam. A certain value of natural frequency is assumed and 

starting from one end, the shear, moment, slope and deflec­

tion at each successive station are calculated from the 

values at the previous station, till the other end is reached. 

As in the Holzer method, at the correct frequency the 

shaking force must vanish. A discussion o f d i f ferent 

methods available for forming the lumped parameter systems 

is given by Minhinnick (10). 

When a continuous system is represented by a lumped 

mass system, obviously, a large numbe r of stations must 

be used to get reli~ble results. The extent of error in­

volved in this method of solving a continuous system has 

been studied by Duncan (11) , in relation to a uniform 

cantilever beam. He has suggested an extrapolati on for-

mula by which accurate values can be predicted from the 

values obtained for a few mass stations. Further study 

of the effect of lumped parameters has been done by Leckie 
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and Lindberg (12) who have indicated a method for deriving 

the dynamic stiffness matrix by considering the actual mass 

distribution. The derivation consists of assuming a cubic 

expression for the deflection within an element and applying 

the principle of consistency of virtual work done by 

distributed and edge inertia loading. An extensive review 

of the variou s approximate methods, for determining the 

natural frequencies and the mode shapes, is carried out 

by Siddall and Isakson (13). A comparative study of various 

methods is made by carrying out computations for a tapered 

cantilever beam~ 

2.2.2 Torsional Vibrations 

The classical method for the analysis of torsional 

vibrations of circular section rods results in a differential 

equation of motion of the second order, similar to the one for 

the longitudinal vibrations. For cantilever rods the 

substitution of the boundary conditions of zero twist at 

the fixed end and zero torque at the free end yields the 

expression for torsional frequencies in the form 

w = mr ./ Cg/I 
n 2L e.g. (n = 1 I 3 I 5 • • • ) (2. 2) 

where C is the torsional rigidity, L the length and I the e.g. 

polar moment of inertia per unit length of the rod. Some-

times this expression is also used to give apprqximate 
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frequencies for non-circular rods by using the value of C 

given by the Saint Venant's theory of torsion. 

For an aerofoil section the torsional rigidity cannot 

be calculated eas i ly a nd recourse is generally made to 

experimental and empirical methods. Jaswon a nd Ponter (14) 

have suggested a method for calculating the torsional rigidity 

of any arbitrary cross-section. In thi s method the classical 

torsion problem of Saint Venant is formulated mathematically 

as a Neumann boundary value probelm for the warping function, 

which can be found numerically on the boundary by means of 

an integral equation method. Several cross-sections have 

been analyzed in the paper and it is indicated that the 

torsional rigidity to an accuracy of l percent can be ob-

tained. 

A more accurate analysis of the torsional vibrations, 

taking into account warping of the cross-sect i on , yields a 

fourth order differential equation given by Gere (15). The 

equation of motion, with a slight change of notation is 

a 2,.., a 4,.., 
C ~ - EC ~ = 

ax 2 w ax 4 
I /g a2¢ 
e.g. at2 

( 2. 3) 

where E is the Young's Modulus, C the warping constant for w 

the section and ¢ the twist at a distance x along the beam 

at time t. If the warping is zero, as in a circular section, 

this equation reduces to the classical equation of the second 

order. The boundary conditions at the built-in end are 
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<t> = 0 and ~ = 0 
a2¢ 

and at the free end -- = 0 and 

c 
EC w 

aip a 3 ¢ 
ax - -- ·- 0 • 

ax 2 

These boundary conditions ensure com-
ax3 

plete warping restraint at the fixed end and the vanishing 

of a at the free end, in addition to zero twist at the 
x 

fixed end and zero torque a t t he free end. Computations of 

the natural frequencies for these and the other boundary 

conditions are given in the paper (15) . 

Carnegie (16,17) has also derived a similar fourth 

order equation for the torsional vibrations of a c antilever 

beam of narrow rectangular cross-sectio n by considering the 

bending of longitudinal fibres produced by torsion. Varia-

tional principle is used for the derivati on. For a narrow 

section with breadth b and thickness t, the corrected f ormula 

for the natural frequencies is shown to be 

(n - 1, 3 ... ) ( 2. 4) 

The problem of torsional vibrations of a cantilever 

beam of thin-walled open section has also been studied by 

Hanawa and Koshide (18) by using trial functions in the direct 

application of variational calculus . The results compare well 

with those of Gere (15). 

2.2.3 Shear Centre 

When an untapered cantilever beam is loaded at its 

tip by surface tractions, their resultant woul d act through a 
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point S on the tip cross-section perpendicular to the axis 

of the beam. If this force does not cause any twist at the 

centroid of the cross-section, then the point S is called 

the 'Shear Centre' of the section. Many other names e.g. 

'flexural centre ' , 1 centre of flexure ','elastic centrum' 

etc. are also commonly used for the same point. A different 

point on the cross-section, generally known as 'centre of 

least strain', has been sometimes called the shear centre. 

This is a point S' on the cross-section such that when the 

resultant of surface forces at the free end of the canti ­

lever acts at that point, the aggregate work done by the 

torsional surf ace traction is zero . 'l'hese two points S 

and s• coincide only if Poisson's ratio of the material is 

zero. Washizu (19) has claimed thatwith S' as the definition 

for centre of shear, the extension to a naturally curved and 

twisted slender bar is straight-forward. 

For cross -sections having one a.xis of symmetry, 

different formulae for the location of the shear centre have 

been proposed in the past. Most of these earlier methods 

are reviewed by Duncan (20) in 1953 . In the same paper an 

expression in terms o f Prandtl torsion function, is also 

given for locating the shear centre of sections with one 

axis of symmetry. For any arbitrary section, Jacobs (21) 

has developed expressions for the coordinates of the 

shear centre in terms of tors ion function. These expressions 
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are used in the paper to calculate the shear centre location 

of a particular aerofoil section. The torsion problem for 

the section is first solved by relaxation methods. For a 

section bounded by two circular arcs, the torsion function 

is well known in analytical form. Whitehead and McQuillin 

(22) have used this torsion function to find the shear centre 

of such a cross-section, when the inner arc has its centre on 

the circumference of the circle of which the outer arc forms 

a part. By varying the angle subtended by the arcs at the 

centre of the inner arc, the effect of camber and the thickness 

variation on the location of shear centre are investigated . 

A computer programme based on the method of solving 

the torsion problems given by Jaswon and Ponter (14) , has 

been developed by Cowper (23) to calculate the shear centre 

of any arbitrary cross-section . 

2.2.4 Cou2led Bending-Torsion Vibrations 

When the shear centre of the cross-section does not 

coincide with its centroid, the bending and the torsional 

vibrations are coupled and must be considered together. 

Myklestad (24) has extended his earlier tabular method (9) 

to the case of coupled bending-torsion vibrations. Here 

the variables at each station are taken to be shear, bending 

moment, slope, deflection, twist and torque. Myklestad's 

method has been somewhat modified by Targoff (25). In this 



18 

approach, after relating the variables of two c onsecutive 

stations by a matrix relation, successive matrix multipli­

cation is carried out. Thus the quantities at one end of 

the beam are related directly to those at the other end of 

the beam. The correct frequency is obtained as in the Holzer 

approach. 

Differenti al equations of motion for the coupled 

bending-torsion vibrations, resulting from the eccentricity 

of shear centre, are derived by Gere and Lin (26). In 

general there are three coupled fourth order equations for 

the deflections along each principal axis and the twist. A 

variable separation method for the solution of these partial 

differential equations is sugges ted . This reduces them to 

ordinary differential equations which are then combined 

into a single 12th order differential equation. The method 

is very laborious especially if the edges are not simply 

supported. The Rayleigh-Ritz method is used for deter­

mining the fundamental frequency. The analysis is directed 

mainly towards thin-walled open sections. 

Gere's equations of motion (26) do not take into 

account the effects of deformation due to shear strain. 

Tso (27) has obtained the equation taking into account the 

shear strain effects. This higher order theory is derived 

using the variational formulation, and treating the thin-walled 
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beam as a special case of thin prismatic shell. Comparison 

of this higher order theory with Gere's theory i s carr i ed 

out on the basis of the natural frequenci e s obtained for 

a beam of circular split ring type cross-secti on. It is 

concluded that for long beams both theories g ive t he same 

results. For medium length beams the non-inclusion of 

shear effects does not appreciably affect t he freque ncies 

of torsion-p~edorninant modes but the natura l freque ncies of 

bending-predominant modes are over e stimated. For v e r y short 

beams, however, i t is pointed out that even the highe r order 

theory is not s a tis factory and shell t ype analysis i s called 

for. 

2.3 Vibration o f Nonrotat i ng Pretwisted Bl ades 

Figure (1) shows the end view of a p r etwisted blade 

looking f r om the t ip towards the root. For c onvenienc e the 

section has b e en shown as rectangul ar i nstead of aerofoi l. 

The x-axis i s a long the length o f the be am joining the 

centroids, while the y and the z axes a re in the directi on of 

the principal axes o f inertia at the r oot section. At any 

intermediate section the principal axes a r e taken in the ~ 

and n directions. The torsional stiffness o f a blade of 

length L, breadth b, thickness t and having an initial twist 

~ is denoted by C , . This conunon nomenc l ature is used t o 
~ 
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facilitate the discussion of various papers in this field. 

When a beam is initially twisted about its longitu­

dinal axis bending along the y and the z direction occur 

simultaneously. Torsion occurs independent of bending 

provided that the centroid and shear centre coincide. Thus 

if the pretwi sted beam has a doubly symmetric cross-section, 

such as a rectangle, one is faced with the problem of coupled 

bending-bending vibrations and of torsional vibrations. How­

ever in a pretwisted beam of aerofoil section, coupled 

bending-bending-torsion problem is to be considered. The 

results presented in almost all the papers are for linear 

variation of pretwist along the length of the cantilever 

blade. 

2.3.l Coupled Bending-Bending Vibrations 

The effect of pretwist on the bending frequencies of 

a cantilever beam of rectangular section has been investi­

gated by Rosard (28) • In this analysis the beam is divided 

into a number of segments; the mass as well as the elasticity 

are concentrated at the stations. The bending variables 

(shear, moment, slope, and deflection) of two consecutive 

stations are related, for each plane of bending; and by 

successive elimination the values of displacements at the 

fixed end are found in terms of those at the free end. 

The boundary conditions of fixed and free end necessitate 
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the determinant of a relating matrix to vanish, giving the 

natural frequencies. ~he equations used for relating the 

variables of two stations are not as refined as those of 

Myklestad. This is justified in the paper on the ground 

that the purpose of the investigation is to study only 

qualitatively the effect of pretwist on frequencies. Variation 

of the first three bending frequencies with pretwist is 

studied for the breadth to depth ratio of the beam varying 

from 4 to 12. It is shown that the fundamental frequency 

is not greatly affected by pretwist. Coupling between the 

second f lapwise frequency and the first chordwise frequency 

is produced by pretwist. The lower of these two frequencies 

is further reduced by pretwist whereas the higher one is 

increased. Hence, if the b/t ratio is less than 6.36 (at 

this ratio the second flapwise frequency is equal to the 

first chordwise frequency in an uncoupled case) the chord-

wise frequency decreases with pretwist while the second 

flapwise frequency increases. However for a b/t ratio larger 

than 6.36, the effect is reversed. 

The bending vibrations of a twisted beam lead to two 

fourth order differential equations. A method of solving 

these two coupled fourth order equations is given by Troesch 

et al. (29). By taking the solution for the deflection 

AX AX in the y and the z directions of the form Ae and Be , an 
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eighth order characteristic equation in A is derived. The 

solution of the problem is obtained for a particular case 

when the flexural rigidity of the secti on in one of the 

principal directions is infinitely large (e.g. narrow 

rectangular cross-section) and the pretwist per unit length 

is constant. The varia tion of the first four bending fre­

quencies for pretwist varying from 0° to 1000° is computed 

in the paper. It is shown that the fundamental frequency 

rises with pretwist whereas the higher bending frequencies 

decrease with pretwist. When the pretwist tends to infinity, 

the first and the second frequency tend to the same value 

and this corresponds to the fundamental frequency of an un­

twisted beam of flexural rigidity twice that of the given 

narrow rectangular section. A somewhat different approach 

has been given in a latter paper (30). DiPrima and 

Handleman (31) have given the differential equations of 

motion for pretwisted beams in vectorial notations and indi­

cated a method of obtaining eigenvalues from variational 

principles. The method is too invo l ved from computational 

point of view. In the paper, only the fundamental frequency 

has been computed. 

An approximate method of calculating the effect of 

pretwist on the bending frequencies of a cantilever beam is 

given by Martin (32). The effect of twist is taken as a 

first order perturbation. The twist per unit length is 
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assumed constant (k = ~/L). The ratio of the natural 

frequency of a twisted beam to the correspondin g f requency 

of an untwisted beam is assumed to be given by 1 + P(kL) 2 . 

The aim of the paper is to determine the corre c t ion factor 

p. As a further approximation certain expressions for 

deflections a long the principal axes of inertia of cross­

sections are assumed which contain the paramete r k 

( ~ = ~O + k2 ~ 1 , and n = kn 1 ). By substituti ng t h ese in 

the equations of motion and equating l i ke powers of k the 

values of ~ 0 ,~ 1 , n 1 etc., and the value of p are obtained. 

The values of p for the first four bending modes for various 

values of breadth to thickness ratio are tabulated i n the 

paper. It is pointed out that i f the breadth to thi c kness 

ratio of a slightl y twisted beam is such tha t a chor dwise 

frequency and a flapwise frequency are equal, then an exci­

tation in the flapwise direction can produce r e sonance in 

the other direction. The analysis presente d does not g ive 

full justification for the assumed expressions . I t is well 

known that the first frequency is not greatly affected by 

twist and this fact is not fully borne out by the v alues 

of the derived correction factor. 

Carnegie (16) has used the Rayleigh energy method to 

calculate the first natural frequency in bending of a pretwisted 

cantilever beam. In this type of analysis an assumption re-
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garding the deflected shape of the beam is necessary. In 

the paper the static deflection curves obtained earlier (5) 

are used. It is shown that for a narrow rectangular section, 

a pretwist of 90° increases the fundamental frequency by 

about 3.5% and fo r a square section it is unaltered by twist. 

Experimental values of the frequencies for rectangular 

cantilever beams with pretwist ranging from 0° to 90° are 

also present~d in the paper for a particular breadth to 

thickness ratio. 

The Rayleigh method used by Carnegie (16) gives 

only the fundamental bending frequency. Dawson (33) has 

extended the method for calculating the higher bending 

frequencies by use of the Rayleigh-Ritz approach. The 

characteristic functions representing the normal modes of 

vibration of straight beams in simple flexure are used as 

approximating functions for the bending displacements. A 

discussion of the mode shapes is given in a later paper (34). 

The effect of the depth taper and the width taper in 

a pretwisted cantilever beam has been investigated by 

Carnegie et al. in the first part of Reference (35). In 

this analysis the equations of motion are converted to a 

set of linear algebraic equations by finite difference 

technique. It has been shown that for a fixed value of 

pretwist, the coupling between the bending modes increases 

with an increase in the ratio of width taper and the depth 
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taper. 

Isakson and Eisley (36) have used Targoff-Myklestad 

type analysis for calculating bending frequencies of pre­

twisted beams. Although the method is mainly devised for 

rotating blades, nonrotating blades have been treated as 

a special case. In this method the beam is divided into 

segments and the mass of each segment is lumped at its centre. 

The flexural rigidity in both the principal. directions is 

assumed to remain constant between the adjacent masses. 

The total pretwist of a segment is assumed to occur at the mass 

station. The vectors {6} of 8 bending variables (shear, moment, 

slope and deflection along each bending direction) of two 

adjacent masses n and (n + 1) are related to each other by 

the matrix relation {6}n+l = [R] [E] [F]{6}n. The matrices 

[FJ , [E] and (R] correspond to the variations involved in 

movement across the mass, the weightless rod and the concen­

trated pretwist, respectively, and are given explicitly in 

the paper. Successive matrix multiplication re lates the 

vectors of the two ends of the beam. By substituting 

boundary conditions and trying various values of natural 

frequency the correct values are obtained. 

For pretwisted beams the condition of orthogonality 

for the normal modes has been derived by White (37) using 

Green's functions. Slyper (38) has proved this condition 

using the Maxwell reciprocal theorem and has used it for the 
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determination of coupled bending frequencies by the Stodola 

process. In this analysis a certain deflection curve is 

assumed for the fundamental mode and the inertia loading for 

a unit angular frequency is calculated. This inertia loading 

is taken as the static loading to calculate a new deflection 

curve. Repeating the process would ultimately give the 

correct fundamental mode shape. The ratio of the initial 

and the new deflection of the beam, in the final iteration, 

gives the square of the angular frequency. To calculate 

higher modes, the condition of orthogonality is used to 

remove the traces of all the lower modes of vibration already 

determined. Due to bending-bending coupling produced by 

the pretwist, the deflection shape is taken as y + jz, the j 

notation indicating that the deflection in the z-direction 

is at right angles to that in the y-direction. The results 

of computations for cantilever blades with b r e adth t o 

thickness ratio from 2 to 16 and f or pretwists varyi ng 

from 0° to 180° are presented in the paper. The y are shown 

to be in agreement with thos e obtained e xperime ntally by 

Carnegie (16) and Rosard (28). 

Dokumaci et al. (39) have used the finite element 

technique with matrix displacement type analysis for the 

determination of the bending frequencies of a pretwisted 

cantilever beam. The beam is divided longitudinally into 

small elements. At each end of the element four degrees of 
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freedom are assigned (slope and deflection along each 

principal ax is of inertia of the cross-section) . Within 

an element the deflection along each of the two directions 

. d . h f 2 3 . ff is assume int e orm a. 1 + a 2x + a 3x + a 4x • St1_ ness 

and mass matrices for each e lement are formed by calculating 

the energy expressions in terms of the displacements at 

the ends of each element and by the application of the 

Lagrange equations of motion. The explicit expressions for 

the mass and the stiffness matrices are given in the paper. 

Natural frequencies and mode s hapes are obtained from the 

resulting eigenvalue problem. Computations are carr ied out 

for pretwist angles of 30°, 60° and 90° and for brea dth 

to thickness ratios varying from 2 to 16. An extrapolation 

formula is suggested, by which, knowing the natural fre-

quencies for the subdivision into n and n + l elements, 

accurate value s of the frequencies may be estimated. 

It may be worthwhi le here to comment briefly on the 

different methods availab l e for calcu lating the bending 

frequencies of a pretwisted beam o f rectangular section. 

The analytical methods of Troesch et al. (29,30 ) and DiPrima 

et al. (31) aim at the solution of coupled differential 

equations. These methods can not be easily extended to 

general cases where taper may be present or pretwist per 

unit length may not be constant. Approximate methods are 

thus important from practical considerations. The correction 
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factor f o r t wi st given by Martin (32) is based on rather 

unproven approxima t ions, and the results obtained do not 

c o incide very well with those obtained later by other authors, 

especially f or the fundamenta l frequency. The Rayleigh method 

used by Carn e gie (16) gives only the fundame nta l frequency. 

The method u s ed by Rosard (28) involves the lumping of bo t h 

mass and elastic ity and the equations relating the variables 

of the adjace n t stations are not very refined. Better 

results can b e e xpe cted if the elasticity of the beam is 

considered d i stribut e d a s used by Isakon et al. (36). 

The Rayleigh-Rit z me thod (33) ; the finite difference trans­

formation method (35), the Stodola method (38) and the 

finite element techn ique (39) give almost idehtical r e sult s . 

A comparison o f t he results obtained by various methods is 

given in Refer e nce (33) . 

From the re su l t s obtained by various investigators , 

certa i n general conclusions can be d r awn r e garding t he coupled 

bending freque ncies o f pretwisted cantilever beams of 

rectangular cross-sec tion. The c onclusions are valid for 

the magnitudes of pr etwi s t usually encountered in tur b omachinery 

blading. The fundamental frequency is affected very little 

by the pre twist. If a chordwise frequency and a flapwis e 

frequen cy ar~ v e ry clo se to each other , the effect of pre-

twist i s t o separate them more. If the breadth to thickness 

rat i o is v e ry l arge (say more than 20) the second and the 



29 

third bending frequencies decrease with pretwist. The effect 

of twist on the na tural frequencies is less in tapered 

beams than in the beams of uniform cross-section. 

2.3.2 Torsional Vibrations 

For a pretwisted b lade of rectangular section the 

torsion and the bending deformations remain uncoupled. The 

torsional stiffness, however, is very much increased due to 

pretwist, resulting in an increase in the torsional frequen-

cies. The main cause of the increase in the torsional stiff-

ness, over and above that given by the Saint Venant theory 

is due to the inclination of the blade longitudina l fibres 

which become helica l due to the initial twiE;t . When elastic 

twisting takes place in an initially twisted beam, the force 

acting along the fibre has a component along the longitudinal 

axis of the beam as well as a lateral component in the plane 

of the cross-section. This lateral component of the fibre 

force has a moment about the centre of torsion, resulting 

in the increased torsional stiffness. An explicit expression 

for the torsional stiffness of a beam of narrow rectangular 

cross-section , with a small magnitude of pretwist, is given 

by Chen-Chu (40) and also by Carnegie (16) fol lowing somewhat 

different approaches . The expression is 

c = c 11 + ! I~)' 2 b ~~ 
1fi L 6 \ .;L t~j 

( 2 • 5) 
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The first term is the Saint Venant torsional stiffness, while 

the second term is the additional stiffness due to the 

pretwist ijJ. For thin blades this additional rigidity may 

even be the dominant term. 

The problem of torsional vibrations of pretwis ted rods 

has been investigated by Reissner and Washizu (41) • The 

differential equation of motion is derived from shallow shell 

equations using variational principles . The torsion of a 

pretwisted rod causes a decrease in i ts length, resulting 

in a coupling between the torsional and the longitudinal 

vibrations. DiPrima (42) has considered this problem of 

coupled vibrations. It is shown that the long:Ltudinal 

frequencies are not significantly affected by pretwist, but 

the torsional frequencies increase considerably . The per-

centage increase is higher for higher b/t ratio. An expres-

sion is derived for the effective torsional stiffness of a 

pretwisted rod in the form 

c~ ~ {1 + 

4 
where I = !Ar dA and I 0 2 
from the centroid to any point on the cross-section of area 

A. For a bar of very narrow rectangular cross-section this 

reduces to 

2(1+µ) 
15 

b1+J 2 b2] 
(---} -oo) 

2L t.G 
( 2. 7) 
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where µ is the Poisson's ratio. 

A similar expression has also been obtained by 

Reissner and Washizu (41) by neglecting the coupling between 

the torsional and the longitudinal motions. The only difference 

being that instead of (1 + µ) in the numerator they have ob­

tained (1 - µ) in the denominator. 

2.3.3 Coupled Bending-Bending.Torsion Vibrations 

In a blade of aerofoil cross-section, apart from the 

coupling between the bending modes produced by pretwist, the 

torsional vibrations are also coupled. Mendelson and Gendler 

(43) have suggested a method for obtaining the natural fre-

quencies tising the concept of station functions. In this 

approach, a continuous loading function for the blade is 

obtained from the displacements at a finite number of stations 

along its length. From this the method of deducing the 

frequency equation is presented. Dunham (44) has derived the 

equations of motion in a twisted coordinate system following 

the blade length and has used them for the determination of 

the first natural frequency. Certain coupling terms have 

not been included in these equations and are pointed out 

later in his discussion of Reference (16). Carnegie (16) 

has used Rayleigh method to find an expression for determining 

the fundamental frequency of pretwisted cantilevers of aero­

foil section. Although his equations are for the coupled 
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case, in the calculations the coupling between t ors i on and 

bending is neglected. Static deflection curv es a r e used as 

mode shapes for calculating the energy expre ssions . I n his 

discussion of this paper Dawson has pointed out t hat the 

coupling between the torsion and the chordwi s e bending is 

significant a nd should not be overlooked. The equati ons of 

motion for a pretwisted blade of general aer o f oi l secti on 

are modified later by Carnegie (17,45) to inc l ude the 

additional e f fects due to torsion, shear a nd r otary i nertia. 

Belga umkar et al. (46) have calculat e d the fi rs t four 

bending frequencies and the first three t or s ional frequenci es 

of five typical blades. They, too, have ne g lec ted the 

coupling between the bending and t he tors ion and have used 

the methods discussed for the rectangular s ections . Compu­

tations are carried out using several of t hese methods and 

the results are compared with experiment a l ly observ ed natural 

frequencies. This provides a basis f or investiga ting t h e 

relative accuracy that could be expected f rom these methods. 

Isakson and Eisley (47) have extended their me t hod 

(36) to take into account the coupling between the b ending 

and the torsion. Although this paper deals ma i n l y with the 

rotating blades, nonrotating blades are considered as a 

special case. The vector of station unknowns, in addition to 

shears, moments, slopes and deflections , also includes the 

torque and the twist as variables. 
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In the second part of Reference (35) Carnegie et al. 

have given a method for s olving the coupled bending-bending 

torsion differential equations by the Runga-Kutta numerical 

procedure. This approach converts the differential equations 

to ten equations of the first order. The method of solution 

consists of assigning, in turn, a unit value to one of the 

unknowns at the fixed end keeping the others zero, and 

determining the values of these quantities at the free end. 

The values found at the free end are then combined linearly. 

All this work is carried out for each test value for the 

frequency. For satisfying the boundary conditions at the 

free end, the determinant of these equations must vanish 

at the correct frequency. Computations are car r ied out for 

a typical blade taking into account the pretwi s t a nd the 

eccentricity of t h e shear centre. 

2.4 Vibration of Rotating Blades Without Pr etwist 

A rotating blade is subjected to a d i stribut ed 

centrifugal force which increases from the roo t to the tip. 

The distributed centrifugal forces have a stiffen ing effect 

on the blade and hence the frequencies of the r o t ating 

blades are higher than the corresponding frequenc i es of the 

nonrotating blades. The centrifugal forces induce several 

additional coupling terms in the already complic ated equations 

of motion. In this discussion, the angle subtended by the 
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minor principal axis of inertia of a section of the blade 

with the plane of r otation is called the 'setting angle ' and 

is denoted by 8 . Since no pretwist is cons i dered in this 

section, 8 is constant all along the length of the blade. 

Figure (2) shows the system under investigation and the 

notations used. A brief survey of the earlier me thods for 

this type of analysis has been done by Bi llington (48) in 

1948, and on l y the later developments are included here. 

If a cantilever beam is consider ed executing un-

coupled bending vibrations in a plane perpendicular to the plane 

of rotation (8 = 0°), it is well known, that the natural 

frequency of the rotating beam (w ) is related to the 
r 

corresponding frequency of the nonrotating beam (w) by 

the relation 

( 2. 8) 

Here 0 is the angular speed of rotat ion and the £actor S 

is gene r ally called the Southwell Coe ff icient. The relation 

can be easily established by t he application of the Rayleigh 

energy method of equating the total potential energy of 

the bending and the centrifugal forces at maximum displace-

ment, to the maximum kinetic energy. For the application 

of the Rayleigh method an approximate mode shape, c onsistent 

with the displacement boundary conditions of t he beam, is 

required. If the nonrotating mode shape is used f o r energy 
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evaluation, S is found to be independent of the speed of 

rotation. This, of course, is not strictly true as the mode 

shapes in the rotating and the nonrotating cases are not 

identical. 

When the bending vibra tions occur in a plane perpen­

dicular to the plane o f rotation, the centrifugal forces f orm 

a system of paral le l forces . However, if the r otating blade 

undergoes bending oscillations in the plane of rotation (8=90°), 

the centrifugal forces, in general, are not parallel but act 

in the directions which are radial from the axis of rotation. 

The stiffening effect o f these forces is thus smaller and 

hence the value of the Southwell Coefficient is expected 

to be lower than f or the c ase of e = 0°. 

The effect of rotation on the bending freq ue ncies 

has been considered by Sutherland (49) by using a Myk lestad 

type tabular method of ana lysis . The equations relating 

the shears and the moments of two consecut ive stations are 

suitably modified to take into account the e f fect of the 

centrifugal forces. Computati ons ca.r r ied out for a wedge 

shaped cantilever f or e = 0° and e = 90° have been presented 

in the paper. From the results of the computations it is 

shown that the value of S depends on the setting angle , the 

hub radius and the speed of rotation, although the theoretical 

nature of the dependence has not been established in the 

paper. In his discussion of the paper, Plunket (50) has 
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pointed out that the e quations relating the shear forces of 

two consecutive stations, derived by Sutherland, can be used 

to obtain a general relation between the value of S for B = 0° 

and 8 = 90° . He has shown that 

( 2. 9) 

The case of the bending vibrations in a plane which 

is inclined at any general angle e with the plane of rotation, 

has been investigated by Lo et al. (51). They have observed 

that the equations of motion contain a nonlinear term resul-

ting from the Coriolis acce leration. This term vanishes only 

when e = 0°. By neglecting this nonlinear term a periodic 

solution of the problem is obtained and it is shown that the 

variation of the Southwell Coefficient with e is given by 

. 28 = Q) - SJ. n ( 2. 10) 

The effect of the nonlinear term due to the Coriolis 

acceleration is investigated i n a later paper (52) by con-

sidering a simplified model. The beam is considere d as rigid 

in bending except at the root where a spiral spring is as -

sumed to be present. The resulting equation is the same as 

that for a spring-mass system with a nonlinear viscous damping. 

The damping is of the dissipating energy type for positive 

deflections, but for negative de flections the damping is 

negative. An approximate solution in the phase-plane f or the 
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nonlinear problem is given in the paper. It is shown that 

the importan t parameters affecting the nonlinear solution are 

wr/lt,e and t li e amplitude of vibrations. It is pointed out 

that for the practical values of these parameters, the error 

induced by n~glecting the Coriolis force would be less than 

1%. The effe ct of the Coriolis acceleration on the bending 

vibrations has been further discussed by Marshall {53). 

Bogdanoff (54) has pointed out that when the rate 

of change of the angular momentum, i.e. the gyroscopic action 

of the cross-section is included, certain additional secondary 

inertia terms apFear in the equations of motion. These 

terms couple the lateral and the torsional motions of a ro­

tating beam, even though the cross-section may be doubly 

symmetric. The equations· decouple only for a particular case 

of zero setting angle. From the results of computation, it is 

concluded that the secondary inertia terms ha.ve negligible 

effect on the fundamental fr~quency. The variation of the 

fundamental bending and the fundamental torsional frequencies 

with the rotational speed, when coupling is neglected, are 

presented in the paper. 

The effect of rotation on the fundamental frequency 

of bending vibration has also been investigated by Schilhansl 

(55). The differential equation of motion is derived and 

converted to an ordinary differential equation by imposing 

a periodic solution. The differential equation is of the type 
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d
2 

dw A1 __!!._ + B + C w 
dx2 l dx 'l 

(2.11) 

in which the coefficients A1 and B1 are functions of x. An 

approximate method of finding the fundamental frequency is 

given in the paper. It consists of assuming a solution w
0

(x) 

for the deflection, satisfying the boundary conditions of 

the fixed end. This is substituted in the right hand side 

of the equation and by integration of the resulting equation 

a new value of w(x) is obtained. For an exact solution w(x) 

must be equal to w
0

(x). The best agreement of wand w0 is 

obtained by the equation 

L L 
! wo(x) dx = f w(x) dx 
0 0 

(2.12) 

This equation yields the fundamental frequency. The 

process is repeated by using w(x) as the starting function, 

until convergence is obtained. By starting wi th a simple 

function w
0

(x) it is shown that the expressi on f or the South­

well Coefficient for the fundamental frequency of a canti-

lever beam is given by 

s = 1.184 + 1.564 ~ - sin
2 e (2.13) 

In the derivation, it is assumed that the speed of rotation 

{n) is small compared to the fundamental bending frequency 

of the nonrotating beam. 
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The effect of rotational speed on the fundamental 

bending frequency is further investigated by Kissel (56). 

He has considered the fourth order differential equation in 

w as the EuJer characteristic equation of a variational 

problem, and obtained the corresponding energy function. 

An arbitrary expression for w(x) is assumed which, apart 

from satisfying all the boundary conditions of the cantilever 

beam, has an additional free parameter. This free parameter 

is so chosen as to give a minimum for the energy function. 

the expression for the deflection w(x) thus obtained is 

taken as the correct solution and the Southwell Coefficient 

is obtained. It is shown that 

r . 2 r r 
( 

w ) s = 1.1935 + 1. 5712 L - SJ.n e + f L'r2 (2.14) 

The expression for the last term which depends on the ro-

tational speed (0) is rather lengthy and is given in the 

paper. 

By using the nonrotating modes as an approximation 

for the rotating mode shapes, Yntema (57) has applied the 

Rayleigh principle to obtain the first three bending fre-

quencies, for vibrations perpendicular to the plane of 

rotation. Extensive computations have been carried out in 

.this paper for both the fixed and the hinged root blades 

of constant as well as linearly varying mass and elasticity 

distribution. The case when the blade carries a tip mass is 
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charts for quick estimation of the first three bending 
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frequencies. In this method, for calculating the frequency of 

the nth bending mode of a rotating cantilever, a knowledge 

of the first and the nth natural frequencies and the mode 

shapes of the corresponding nonrotating beam is prerequisite. 

The Southwell Coefficient is divided into two parts, 

S = S + S , where S is proportional to the distance of o r r 

the axis of rotation from the root section. It is pointed 

out that S is appreciably affected by the beam mass distri­o 

bution and to a less extent by the beam elasticity distri-

bution. A more accurate analysis is also presented in the 

paper whereby the rotating mode is taken as the combination 

of the first five modes of a nonrotating beam. By comparing 

the results with the five mode expansion results, it is shown 

that the Rayleigh approach gives reliable results. The maxi-

mum deviation is reported for the fundamental frequency and 

is 5%, at the highest rotating speed (six times the funda-

mental frequency) cons.idered in the paper. The percentage 

increase of frequency due to rotation is found to be highest 

for the fundamental mode and decreases for the higher bending 

modes. 

Equations of motion for a rotating cantilever blade 

using the Hamilton's principle are derived by Carnegie (58). 
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The upper and lower bounds to the fundamental frequency of a 

rotating cantilever beam are considered by Kundu (59) by using 

Rayleigh-Southwell approach. The case of a rotating canti­

lever beam, having a cross-section in which the centroid and 

the shear centre do not .coincide, is considered by Vorb'ev 

(60). A system of six differential equations is derived 

using the Hamilton's principle. It is shown that the well-

known uncoupled equations can be obtained from these equations 

as special cases. 

Summarizing the discussion of the various methods 

available for calculating the natural frequencies of rotating 

untwisted blades, it can be noted that most of the investi­

gations are based on establishing the Southwell Coefficient (S). 

This coefficient gives the correction factor for the effect 

of rotation. For the fundamental frequency the expression 

for S given by Schilhansl (55) and Kissel (56) is almost the 

same and the special cases of Sutherland (49), Plunket (50), 

Lo (51) etc. can be obtained from them. For higher bending 

modes the Rayleigh-Southwell approach used by Ynterna (57) 

appears to be promising. The nonlinear effects due to the 

secondary inertia terms have little influence at least on 

the fundamental frequency, as shown in References (52-54). 
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2.5 Vibration of Rotating Pretwisted Blades 

In the previous section, since the blade is assumed 

to be straight, the bending in one plane only is considered 

and the effect of inclination of this plane to the plane of 

rotation is discussed. When the blade is pretwisted the 

setting angle is no longer constant along the length. The 

effect of the centrifugal forces on the bending in the flap­

wise and the chordwise directions must, therefore,be con­

sidered simultaneously. In most of the investigations the 

twisted blade is replaced by a system of lumped masses 

joined by weightless, untwisted rods. The pretwist of each 

segment is taken to occur at the mass stations. In earlier 

investigations, the segments of the blade between the masses 

are considered rigid and their elasticity is assumed to be 

concentrated at the mass stations. However, in more recent 

investigations the elasticity has been taken to be distri­

buted. The ' physical model thus formed is illustrated in 

Figure (3) • 

Turner and Duke (61.) have analysed the problem of 

vibrations of rotating propellers by replacing the structure 

by an idealized system consisting of lumped masses joined by 

rigid rods. The matrix equations of motion are derived by 

calculating the potential and the kinetic energy of the 

resulting multidegree of freedom system and the application 

of the Lagrange equations. The effect of rotation is accounted 
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for by including in the potential energy, the energy due to the 

opposing acti on of the centrifugal forces. The stiffness 

matrix thus obtained is the sum of the usual stiffness matrix 

for the nonrotating beam and the centrifugal stiffness matrix 

2 whose terms are proportional to n . A somewhat similar approach 

is also used by Plunket (62) who has also idealized the system 

by concentrating the mass and the elasticity of the blade at 

the discrete stations. The effect of the centrifugal forces, 

however, is included by computing the bending moments produced 

by them at different stations and including these in the 

equations for calculating the deflections. In both these 

References (61,62), the matrix equations are first formed for 

deflections along the principal axes of inertia at each section 

and then transformed to common axes. The resulting eigen-

value problem has been formulated in both the papers. 

Jaret and Warner (63) have also idealized the rotating 

blade by a lumped mass system, but unlike References (61,62), 

the elasticity is considered to be distributed rather than 

concentrated at the mass stations. The differential equations 

of motion of a rotating pretwisted blade have been reformulated 

for application to a lumped mass system. These equations relate 

the bending variables of the adjacent stations in a manner 

similar to the Myklestad type approach. As a numerical 

example, the first three bending frequencies of a rotating 

blade of a low pressure steam turbine, with lashing wires, have 
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been obtained in the paper. The mass of the lashing wires is 

assumed conce ntrated at their junction with the blade. 

Targoff (64) has also used lumped mass and distri­

buted elasticity idealization for calculating the bending 

frequencies of pretwisted rotating blades. However,the 

computational scheme is somewhat different. After relating 

the bending variables of the adjacent stations by matrix 

equations, successive matrix multiplication is performed to 

relate directly the unknowns of the two ends of the blade. 

This method of computation has also been used by Isakson and 

Eisley (36) for calculating the bending frequ~ncies of both 

the rotating and the nonrotating blades. From the numerous 

computations carried out by these authors for different values 

of pretwist, setting angle at root, offset of the root from 

the axis of rotation and the rotational speed, they have 

drawn several conclusions regarding the effect of these 

parameters on bending frequencies. Fundamental bending 

frequency of a rotating cantilever is found to depend 

primarily on the setting angle at the root and only secon­

darily on pretwist. It is observed that if the curves of 

rotational speed versus natural frequency, for the untwisted 

blade, cross each other, the effect of pretwist is to yield 

the curves which tend not to cross. At higher modes the 

frequency ratio (frequency of rotating blade/frequency of 

nonrotating blade) is not highly sensitive to twist or the 
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setting angle. The increase in the distance of the root 

from the axis of rotation, increases the frequency ratio. It 

is further pointed out that the Rayleigh-Southwell approach 

of finding the natural frequencies of rotating blades, by 

assuming the nonrotating mode shape as an approximation, 

gives poor results in the case of twisted blades. This is 

claimed to be especially true when the coupling produced 

by the pretwist is large and the speed of rotation is high. 

The centrifugal forces not only affect the bending 

vibrations but also the torsional oscillations of a pretwisted 

beam. The effect on the torsional frequencies has been investi­

gated by Bogdanoff and Horner (65). They have calculated the 

angular velocity of a triad formed by the principal axes and 

hence derived the expression for the angular momentum about 

the centroid of the section. The expression for the torsional 

couple about the longitudinal axis, derived in the earlier 

paper (54) has been simplified by omitting the less i mportant 

secondary terms. Relating the angular momentum with the 

torsional couple, the basic differential equation o f motion 

for torsional oscillations has been derived. Natural fre­

quencies have been obtained by imposing a periodic solution on 

this equation. Computations have been carried out for the first 

three torsional frequencies ~f a rotating blade, for different 

values of pretwist and the blade setting angle at the root. 

The torsional frequencies are found to increase with the 
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rotational speed, the increase being larger for higher 

values of pretwist, especially for the first torsional mode. 

For higher torsional modes, the increase in the frequency 

due to rotation is virtually independent of the pretwist 

present in the blade. Brady and Targoff (66) have used 

an analysis Similar to that used for the bending vibrations 

in the earlier paper (64), to calculate the uncoupled torsional 

vibrations of pretwisted blades. 

When the general case of a rotating pretwisted blade 

of aerofoil cross-section is to be considered, the effect of 

centrifugal forces on the bending and the torsional fre­

quencies cannot be considered separately, as these modes get 

coupled. The analytical treatment of this problem is carried 

out by Houbolt and Brooks (67). They have derived the 

differential equations for the coupled flapwise bending, 

chordwise bending and twisting of a rotating pretwi s ted 

blade. The derivation of the equations is based on "Engineering" 

beam theory and the secondary effects such .as the deformation 

due to shear are not included. The expressions f or the 

longitudinal strain, at any point on the cross-section , 

are first evaluated in terms of the displacements. This 

strain arises from four types of motion: pure displacement 

of the planes towards or away from each other, rotation of 

the planes associated with chordwise bending, rotation of the 

planes associated with f lapwise bending and the rotation of the 
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the planes relative to one another about the elastic axis 

resulting in the twisting of the blade. With the aid of the 

strain equation, the internal elastic moments are derived 

about the principal axes of cross-section. The elastic 

moments are then transformed to a common axes system and the 

equations of equilibrium established, giving the final 

differential equations. The equations contain many coupling 

type terms associated with the centrifugal forces, which 

are not generally accounted for in the approximate analysis. 

A method of solving these equations, for a few simple problems, 

has been indicated. 

For nonrotating blades the Runga-Kutta technique 

of solving the coupled bending-bending-torsion differential 

equation has been given by Carnegie (35). Montoya (68) has 

extended this method to the case of rotating blades of 

aerofoil section. Computations are carried out for an actual 

blade taking into account the pretwist and t h e eccentricity 

of the shear centre. 

The inclusion of the torsional de f ormati on complicates 

the effects of pretwist and rotation considerably. There 

may be a sizable steady-state or "pseudo-static" torsional 

deformation of the rotating blade in some cases. This is 

due to the centrifugal twisting moment which, in the case 

of negative pretwist and positive pitch, tends to twist 

the blade negatively, and also the twisting moment associated 
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with tensile stress in the longitudinal fibres, the so­

called "centrifugal untwisting moment 11
• These two effects 

oppose each other in the normal case, and the extent to which 

one or the other predominates depends primarily upon the 

amount of pretwist and the pitch setting of the blade. 

An analysis of this deformation is given by Brady and 

Targoff (66). 

The torsional stiffness departs considerably from the 

value provided by the Saint Venant theory. The departu~e 

associated with the inclination of the longitudinal fibres 

with the elastic axis, whereby the normal stresses in the 

fibres have a component in the plane of cross-section, is 

already discussed for nonrotating blades. In addition, 

normal stresses associated with centrifugal forces also 

contribute to torsional stiffness. Some of these effects 

have been considered in References (65,66) . 

The effect of the Coriolis forces, or so-called 

11 secondary inertia forces'', on the vibrations of untwisted 

beam is discussed in the previous section. A study of this 

effect for the coupled bending-torsion vibrations is carried 

out by Isakson and Eisley (47). They have analysed a simple 

model with a few degrees of freedom. The model consists 

of a rigid weightless rod on one end of which is mounted a 

mass and the other end of which is connected to a rotating 

shaft. The connection to the shaft is through a hinge with 
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an axis normal to the rod and set at an angle to the shaft. 

A spring, re s training the motion about this hinge, simulates 

the bending stiffness. In addition, the rod is free to 

rotate about its own axis against the action of a spring, 

which simulates the torsional stiffness. The mass is assumed 

to be distributed along a line normal to the rod, simulating 

the major principal axis of the blade cross-section, with 

its centre of gravity displaced from the rod, simulating 

an offset of the mass axis of the blade from the elastic axis. 

An analysis of this simplified model is shown to indicate 

that the presence of the Coriolis forces causes a phase 

difference between the bending and the torsional oscillations; 

whereas the natural frequencies are only slightly affected. 

Krupka and Baumanis (69) have derived the field 

equations for coupled bending-torsion vibrations of a 

rotating blade using Carnegie's formulation of the Lagrange 

equations of motion. They have solved the field equations 

using the Holzer-Myklestad type approach. Numerical compu­

tations of the first two natural frequencies for a typical 

blade have been given in the paper. A method of including 

the effect of rotary inertia and shear deformation in the 

numerical approach has been indicated by them in their later 

paper (70). 
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2.6 Low Aspect Ratio Blades 

In almost all the published work the turbomachinery 

blades have been treated as pretwisted beams. This beam 

type analysis, although good for long blades, cannot be 

expected to give accurate results for low aspect ratio blades. 

Such blades ought to be treated as pretwisted plates rather 

than as pretwisted beams. 

The transition from a beam to a plate, with a resulting 

2 increase of flexural rigidity by a factor of 1/(1-µ ) , where 

µ is the Poisson's ratio, has been considered by Ashwell (71). 

He has based his conclusions on the consideration of the anti-

Clastic curvature that is produced when a bar of rectangular 

section is subjected to pure bending moment. It is shown 

that the important parameter to be considered is the value of 

2 
b /Rt. where b and t are the breadth and the depth of the 

section and R is the radius of curvature of the neutral fibre. 

It is concluded that for b 2/Rt greater than about 100, plate 

type flexural rigidity ought to be used. In this analysis, 

shear effects are not included. The problem has been further 

considered by Gerard (72), who has pointed out that a plate 

or a beam type behaviour is not solely dependent on the 

geometrical parameters. He has shown that a structural 

element of given size behaves initially as a beam and the 

flexural rigidity may grow as the bending progresses. 

A modified bemn theory, taking into account the effects 
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of bending in the transverse direction, has been developed 

by Cowper (73,74). Such effects are important in beams of 

large width. The transverse curvature due to bending appears 

as one of the basic quantities in this theory, and the 

equations relating it to bending deflection, bending moment, 

etc., have been derived. The theory has been applied to a 

number of examples in order to test its accuracy. Deflections, 

natural frequencies and mode shapes of rectangular plates 

have been calculated using the extended beam theory and 

compared with the values based on the classical p l a t e theory. 

The differential equations for beams of thin-walled 

open section given by Gere (26) and Tso (27) do not take into 

account the deformation of the cross-section during bending. 

These theories, therefore, can not predict the mode s of 

vibration with one or more pairs of nodal lines running 

approximately along the length of the beam. Hasan a nd Barr 

(75) have derived the equations of motion for thin-walled 

beams of circular arc section, taking into acc o unt the 

coupling between the ordinary bending motion and t he cross.­

sectional distortion. In deriving the theory the c r o s s­

sectional deformation is assumed to take the form of the 

characteristic functions of a curved beam. For bars of 

thin-walled open section, such as blades, this type of 

analysis may be considered as a bridge between the beam 

theory of Tso (27) and the analysis based on shallow shell theory. 
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For torsional vibrations of cantilever bars, the 

Saint Venant theory does not take into account . the warping 

restraint at the fixed end. If the blade is long these end 

effects, which extend only for a short distance from the fixed 

end, do not greatly affect the results. However, for low 

aspect ratio blades, these could have an appreciable influence. 

If the pretwist of a low aspect ratio blade is 

neglected, it can be considered as a cantilever plate. The 

natural frequencies of cantilever plates, using the Ritz 

energy method, have been obtained by Young (76) and Barton 

(77). Their method and the results are given in many standard 

texts on the subject. The problem of vibrations of cantilever 

plates of uniform and variable thickness has been considered 

by Dawe (78,79) using the finite element technique. In this 

approach, the plate is divided into small rectangular elements. 

To each element 12 degrees of freedom are assigned consisting 

of deflection and two slopes at each of the four nodes (corners) 

of the element. A polynomial expression of the form 

(2.15) 

is assumed for the deflection within an element. The 12 

arbitrary constants (a1 to a 12 ) are evaluated in terms of 

the nodal displacements of the element. The calculation 

of strain energy and the application of Castigliano's 
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principle yields the stiffness matrix for the element. The 

determination of the inertia matrix for the element is based 

on the consistency of the virtual work done by the distri­

buted inertia loading and the equivalent nodal inertia forces, 

during an arbitrary virtual displacement. The assembly of 

the matrices for all the elements and the deletion of the 

rows and the columns corresponding to the fixed end, gives the 

resulting eigenvalue problem for free vibrations of the plate. 

Vibration analysis of a uniform cantilever plate, by 

the finite element technique using triangular elements, is 

carried out by Anderson et al. (80). Three degrees of freedom 

are assigned to each node and a cubic polynomial expression 

with nine arbitrary coefficients is used for representing the 

deflection within a triangular element. The method of deriving 

the mass and the stiffness matrices is similar to the one 

discussed above. 

The static bending of pretwisted rectangular plates, 

subjected to pure bending couples, has been investigated by 

Maunder and Reissner (81). The pretwisted plate is considered 

as a shallow hyperbolic paraboloidal shell. The differential 

equations are expressed as two fourth order equations in the 

deflection and the Airy stress function, as is customary in 

thin shallow shell theory. The final expressions for the 

deflection and the Airy stress function are given, and it is 
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shown that these satisfy the differential equations and the 

boundary cond itions for a plate with two opposite edges free 

and the other pair of edges acted upon by bending couples. 

The basis fo r obtaining the solution is not given in the paper. 

It is shown that the results obtained differ from the pre-

dictions of the elementary beam theory and also from the 

theory of transverse bending of flat plates. The physical 

cause of the difference is attributed to the interaction which 

occurs between the pretwist and the lateral contractions 

induced by bending. 

The differential equations of motion for transverse 

vibrations of thin shallow shells have been given by Reissner 

(82). Nagadhi (83) has characterized the problem of thin 

shallow shells by an exact system of equations containing the 

axial displacement, the stress function and two particular 

integrals. When the nonlinear terms are neglected in these 

equations, the system is still exact within the framework 

of the classical theory of thin shallow shells. The linearized 

system reduces to that of Reissner (82) when the longitudinal 

inertia is neglected. These equations have been successfully 

used for the vibration analysis of shells of revolution. 

Vibration analysis of pretwisted rectangular plates, 

using the linearized equations given by Nagadhi (83), has 

been carried out by Nordgren (84). The equation of the middle 
• 

surface of a pretwisted plate is taken as z = kxy, where k is 
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the pretwist per unit length and the plate is bounded between 

L b x = . ± 2 and y = ± 2. The solution necessitates that the two 

opposite edges of the plate must be simply supported. The 

· method of solution is similar to the well known Levy solution 

for flat plat es. 'l'he condition of two opposite edges being 

simply suppor ted makes it possible to obtain the solution in 

a variable separation form. It is shown that the fundamental 

torsional frequency differs considerably from that calculated 

by considering the structure as pretwisted beam, when the 

aspect ratio is small. For aspect ratio of 2 the difference 

is of the order of 5 percent in the fundamental torsional 

frequency. For aspect ratio of 5, almost complete agreement 

is observed. 

Finite element technique has been used by Olson et 

al. (85) for calculating the natural frequencies of a curved 

fan blade. The blade is considered as a cylindrical shell of 

uniform thickness with one of the curved edges built-in and 

the other edges free. The shell is subdivided into cylindrical 

elements. Seven degrees of freedom are assigned to each node, 

namely, u, v w aw aw au and ~v The x-axis i's taken 
' , ax' ay' ay' ay 

along the length, the y-axis along the circular edge and the 

z-axis is normal to the shell surface. u, v and w are the 

displacements along the x,y and z directions,respectively. 
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2.7 Effects of Root Flexibility 

Although in most of the theoretical investigations, 

the blade is assumed to be completely fixed at the root, in 

actual practice, however, the blade is rather loosely mounted 

on the rotor disc. The vibrations of the blade, therefore, 

~ontinue to some extent into the mounting. This has an 

effect similar to that of increased blade length and results 

in a lower frequency than the one calculated on the fixed 

end assumption. The root flexibility, generally, makes 

the root a nondeflecting end, but not a nonrotating end. 

As a result, the slope at the root is not zero but is 

proportional to the moment acting at the root. The root 

flexibility varies with the speed of rotation, since the 

centrifugal forces tend to tighten the blade in t he disc 

and increase the fixidity. Moreover, var ious types of root 

fixings are used in practice and, therefore, a general 

analytical treatment of this effect is rather difficult. 

Some investigations of this and the other relat ed p roblems 

have, however, been carried out and are discussed here. 

The case of flexural vibrations of a partially 

restrained beam of uniform cross-section is considered by 

Newmark and Veletos (86). They have assumed that both the 

ends are nondeflecting but offer resistance to rotation, 

such that the slope at the ends is proportional to the bending 
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moment. The constant of proportionality is considered 

different for each support. From the numerical computations 

they have suggested an empirical formula for calculating the 

natural frequencies for any given end stiffnesses. A similar 

problem of both ends partially restrained has also been 

considered by Amba Rao (87), when the beam carries masses. 

The effect of root flexibility on the vibrations of 

a cantilever beam of uniform cross-section has been considered 

by Perkins (88). The energy approach is used with the eigen-

functions of a cantilever beam. The resulting solution is 

quite complicated involving sums and series of infinite 

products. 

Traupel (89) has suggested an empirical method of 

taking into account the effect of root flexibility on the 

fundamental natural frequency in bending. He has proposed 

the relation 

w = c w a v 
(2.16) 

where w is the frequency calculated on the f ixed end assump-

tion and w is the actual frequency. He has plotted the value a 

of C against the ratio (\) of the blade length to the radius v . 

of gyration of the root section, which is considered as a 

measure for the flexibility of the root. Baur (90) has 

suggested that the value of C given by Traupel, may also 
v 

be used for the second flexural mode. The variation of C v 
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with A is a~ given in Figure (4). For torsional vibrations, 

Baur has proposed a similar relation, but has pointed out 

that the variation of the correction factor be plotted 

against the nondimensional blade flexibility I /C, where 
p 

Ip and C are the polar moment of inertia and the torsional 

stiffness at the root, respectively. Some additional infor-

mation on the effect of root flexibility has also been 

given by Chaplin (91). 

Vibrations of turbine blades with loose hinge roots, 

in a centrifugal force field, are considered by Niordson (i2). 

After establishing the equatio~s of motion, the solution 

· for the fundamental mode is obtained by a modified Stodola 

method. Oscillations have been shown to be a superposition 

of the pendulum and the bending modes. Several limiting sub-

cases have been evaluated and the variation of the fundamental 

frequency with the rotational speed is investigated. 

The problem of pin-fixed blades is considered in more 

detail by Goatham and Snails (93). The blade is considered 

mounted on the disc through a loosely fitting pin, with a 

clearance (q). The pin tightens when the blade rotates, 

due to the centrifugal forces on the blade. The deflection 

at the tip is composed of two parts: due to bending of the 

blade and due to rolling occurring at the ro6t. An expression is 

derived for the ratio of these two deflections and is shown to 

be directly proportional to the square of the rotational speed 
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and inversely proportional to the clearance (q) . Another 

expression for the moment necessary to cause unit rolling 

at the root is also derived in the paper. The natural fre­

quencies of the pin-fixed blade are obtained by idealizing 

it as a system of lumped masses connected by elastic springs. 

The centrifugal forces are replaced by equivalent transverse 

forces, giving the same bending moment distribution. It is 

pointed out that for the tors ional frequency calculations, 

especially for low aspect ratio blades, the torsional flexi­

bility of a portion of a blade, of length equal to one-fifth 

of the root chord and having root cross-section, be deducted 

from the total torsional flexibility. 

2.8 Effects of Disc Elasticity 

If the disc on which the blades are mounted is con­

sidered 'absolutely rigid, the blade can be treated as a 

separate unit for vibration analysis, as has been done in all 

the references discussed so far. However, the disc has some 

elasticity, and hence the blades and the disc ought to be 

considered as an assembly. Energy from a blade can be 

transferred to the adjacent blades through the disc , which 

modifies the vibration characteristics of the blades. The 

existence of the rotor coupling is demonstrated by tests in 

which a vibration exciter is attached to a blade on a rotor, 

at standstill. Large vibratory amplitudes are observed on 
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blades far from the exciter and connected to it only through 

the rotor. The response of each blade depends not only on 

its own natural frequency, damping and excitation, but also 

on the characteristics of the other blades and the rotor. 

Ellington and Mccallion (94) have investigated the 

effect of elastic coupling through the rim of the disc, on the 

frequencies of vibration of the blades, by analysing a simpli-

fied model. In this model, the blades are replaced by uniform 

beams fixed to the rim at their roots and vibrating in a plane 

parallel to the plane of the disc. This means that the effect 

of twist, taper and obliquity is neglected. The rim is 

considered as a uniform elastic ring, permitting no radial 

displacement at the roots of the blades. The mass of the rim 

is either neglected or considered as being concentrated at 

the roots of the blades. For the analysis, three adjacent 

blades (n + 1, n and n - 1) are assumed to be parallel to 

each other and the portion of the rim joining them is taken 

as a straight continuous beam , as shown in Figure (5). The 

method of analysis used can be summarized as follows: 

The differential equation for the cantilever blade 

(n) is first solved with the boundary conditions of zero 

shear and moment at the free end with zero deflection and a 

bending moment M at the root. An expression for the slope 
n 

(8 ) at the root is thus obtained. The portion of rim between n 

the three adjacent blades is next treated as a continuous 
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beam with zero deflections at the roots of the blades and 

acted upon by the bending couples Mn-l' Mn and Mn+l at these 

points. A relation between the slopes en-l' 8n and en+l is 

thus established for each of the successive blades. Noting 

that the (N + l)th blade is in fact the same as the blade 

numbered zero (as shown in Figure 5), and imposing periodic 

solution for the slopes at the roots, the natural frequencies 

are obtained. 

The analysis has shown that if there are N identical 

blades moun~ed on an elastic rim, the system has N fundamental 

frequencies, N first overtones etc. However, if the stiff-

ness of the rim is large compared to that of the blade, as is 

generally the case, these N frequencies a re very near to the 

corresponding frequency of the individual blade. Thus instead 

of sharp natural frequencies, there are bands of frequencies -

width of the band decreasing with the increasing stiffness 

of the disc. This explains the scatter in the natural fre-

quencies usually observed in vibration tests. The coupling 

effects due to the blade ring, for the cases when either all 

blades have identical frequencies or alternate blades have 

identical frequencies, have been investigated by Sohngen (95). 

Fillipov(96) has considered the problem of the 

tangential vibrations of the blades together with the torsional 

vibrations o f the disc , when all the blades vibrate in phase. 

The effect of the rim is allowed for, by introducing masses 
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and moments at the blade roots. Satisfying the coupling 

conditions, a transcendental equation f or finding the fre ­

quencies is derived. The effect of the centrifugal force 

is accounted for by introducing a longitudinal force at the 

end of each blade. 

A simplifie d model for a row of blades mounted on 

a flexible disc is suggested by Wagner (97) and is illustrated 

in Figure (6). Each blade is represented by a single degree 

of freedom system which has the same natura l frequency and 

damping factor as that of a particular mode o f the blade . 

Each subsystem is attached to a common ring support , re­

presenting the disc periphery. This ring is a ssumed to have 

flexibility and is attached elastically to a fixed f ounda tion 

representing the centre of the disc, where there is assumed 

to be no vibratory deflection. The equations of motion of 

each subsystem are derived. All the subsystems would contri­

bute to the deflection of the flexible support at the point 

of attachment of any subsystem; hence the influe nce factors 

for the flexible ring are necessary. These factors have 

been derived in the paper using the analysis of curved beams 

on elastic foundations. It has been concluded from this 

analysis that multiple resonance peaks and a large variation 

in the peak vibratory stresses, can be produced by the 

differences in the natural frequencie s among the blades and 

the coupling resulting from the flexibility o f the disc . 
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Coupling is also shown to average out the damping present in 

different blades of the same row. 

Consideration of the methods, to account for the 

coupling effects due to disc elasticity, indicates that in 

this type of analysis the blades have either been considered 

as single degree of freedom systems (97), or as untwisted, 

untapered, parallel beams (94). Also, all the possible modes 

of vibration of the disc are not included. Obviously, this 

type of analysis can, at most, be expected to give a quali­

tative nature of the behaviour and a considerable amount of 

further investigation is needed in this area. 

2.9 Effects of Shrouding 

Turbomachinery blades are often joined together, 

either at their tips or at some intermediate location, to 

reduc·e the resonant amplitude. A single shroud ring may 

join all the blades in a row or else a packet of blades 

may be joined together. The shrouding significantly alters 

the natural frequencies and the mode shapes and hence the 

packet of shrouded blades should be analysed as a unit for 

the tangential, axial or torsional vibrations. The shroud 

also causes a coupling between the axial flexural vibrations 

and the torsional vibrations. 

The effect of shrouding on the tangential vibrations 

(vibrations in the plane of the disc) of a packet of blades is 



64 

investigated by Smith (98) using several simplifying assump­

tions. The n blades forming a packet are assumed to be of 

uniform cross-section and parallel to each other. The blades 

are considered fixed at the roots. The shrouding is also 

considered to be of uniform section and attached rigidly to 

each blade at its tip, maintaining a constant pitch between 

the successive tips during small flexural vibrations. The 

mass of the shroud is taken to be concentrated at the blade 

tips. Both the blades and the shroud have elasticity but 

are assumed to be inextensible. The blades are considered 

nonrotating. 

The reactive forces at the junction of the blade tip 

and the shroud are taken to be a bending moment and a force 

transverse to the blade length. Bending of one pitch of 

the shroud is first considered. Since the shroud mass is 

concentrated at the tips, the force-deflection relationships 

at the ends of the shrouding pitch, during vibration, are 

the same as for static deflections. From this analysis 

the relations between the moments and the slopes at the blade 

tips are derived. The condition of constant pitch at the 

blade tips, makes the sum of the transverse reactive forces 

equal to the inertia force due to total shroud mass. The 

bending vibrations of the blades are then considered and 

noting that the moments and the slopes at the tips are identi-
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cal for both the blade and the shroud, the frequency equation 

is derived. The analysis has shown that for a packet of n 

blades, the modes of vibration fall into groups as follows: 

(a) One fundamental mode with the blades of the packet 

iri phase; 

(b) A band of (n - 1) modes with the blades not in 

phase. The frequencies of these modes are very 

near to each other; 

(c) One overtone with the blades in phase, etc. 

The variat~on of the natural frequencies of a packet of six 

blades with the rigidity of shroud are shown in Figure (7), 

for different values of rm - the ratio of the shroud and 

the blade mass. The natural frequencies of the packet are 

expressed as a frequency ratio by dividing them with the 

fundamental frequency of a single blade; whereas the rigidity 

of one pitch of the shroud is expressed as rigidity ratio 

by dividing it with the rigidity of one blade. 

A method of analysing the tangential, the axial and 

the torsional vibrations of a banded group of blades .i s given 

by Prahl (99). In this analysis the blades are considered 

fixed at their roots and firmly attached to the shroud at 

the tips. The blades are assumed to be parallel to each 

other and may be tapered. The shear and the rotary inertia are 

disregarded and the shear centre and the centroid of the 
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cross-section are assumed coincident. The axial and the 

torsional vibrations are coupled through the shroud, whereas 

the tangential vibrations remain uncoupled. The blades are 

assumed inextensible but extension .of shroud during tangential 

vibrations is taken into account. The mass and the torsional 

inertia about the blade axis, of one pitch of the band, is 

concentrated at the blade tip. The distributed mass and 

torsional inertia of each blade is concentrated at several 

discrete stations along its length. A modified Holzer­

Myklestad type analysis is used for the frequency determination. 

A method of finding the natural frequencies of a 

group of shrouded blades, using the perturbation procedure 

is given by 'l'uncel et al. ( 100) . The method is applicable 

for weakly coupled blade and shroud subsystems. The subsys­

tems are dealt with individually in the first step followed 

by a second step accounting for the weak coupling . Fugino 

(101) has considered the effect of shrouding b y tak i ng the 

vibration form of the blades as a linear combination of fixed­

free, fixed-supported and fixed-fixed modes for the tangential 

vibrations. A similar conclusion of (n - 1) modes of nearly 

the same frequency, which coincide when the stiffness of the 

shroud is negligibly small, is arrived at. 

The problem of two adjacent blades, connected at their 

tips by a shroud to form a continuous frame, has been analysed 

by Singh and Nandeeswaraiya (102). The blades are assumed to 



67 

be parallel to each other and have no pretwist or taper. 

The equations of motion have been derived both for the 

tangential and the axial vibrations and the fundamental 

frequency is obtained. For rotating blades, a Southwell 

t ype correction factor is also derived. 

An investigation of the vibrations of a coupled 

disc-blade-shroud assembly is considered by Stargardter (103), 

by experiments on flexible silicon rubber models. It is 

observed that the disc vibrates as a plate, mainly with nodal 

diameters, and the shroud acts as a ring. If the shroud is 

absent and the disc vibrates with two nodal diameters, the 

blades are constrainedto retain their orientation r e lative 

to the disc, at the rim. The blades at the nodes are dis-

placed in pure twist while those at the antinodes ~re 
i : 
I ' 

displaced in pure translation. The other blades undergo a 

combined pitching-translatory motion. It has been observed 

that, in general, the pattern rotates relative to the rotor, 

subjecting all the blades to bending and twisting. The 

shroud forces the tangential deflection of the blade to zero 

at the point of attachment. The axial deformation curve, 

however, is not significantly altered. The observations 

from the study of different sizes and the locations of the 

shroud, on tapered and straight bladed rotors, are reported 

in the paper. The case when the shroud joins only two adjacent 

blades is also presented. The results are of qualitative nature 

and provide an insight into the vibration of the complex system. 
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2.10 Damping 

The principal sources of dissipation of energy from 

the blades are: 

(a) Friction at the blade root and the hub; 

(b) Internal damping due to inelasticity of the 

material; and 

(c) Damping due to the presence of surrounding gas 

(Aerodynamic Damping) . 

In addition, sometimes, special internal friction dampers 

are also included to dissipate energy. 

The dissipation of energy at the root is due to the 

relative motion between the blade and the rotor in the 

mechanical attachments. At lower rotor speed s this energy 

dissipation may be appreciable; however, at v ery high rotor 

speeds the centrifugal force essentially tightens the blade 

sufficiently to eliminate the dissipation. Some analysis of 

this type of damping has been reported in References (104-

106). Goodman and Klump (105) have pointed out that when 

two machine parts, such as a blade root and a hub, are 

joined in press fit, the energy is dissipated by the micro­

scopic slip at the interfaces. By considering the press-fit 

structure in a state of plane stress, they have suggested a 

method of evaluating the energy dissipated per cycle, in a 

simplified model with uniform pressure at the joint. Existence 
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of an optimum contact pressure to get maximum slip damping is 

indicated,and the possibility of corrosion fretting accompany­

ing slip damping is pointed out. An experimental determination 

of the damping at the locking joints, when the turbine blades 

are vibrating, has been carried out by Kozolov (106). In 

these experiments an impulse excitation of the blade of a ro­

tating turbine is affected by firing a rifle. From experi­

mental vibro~rams the logarithmic decrement at various amplitudes 

of stress, centrifugal force levels and temperatures is obtained. 

By investigating the different types of locking joints, the 

important parameters affecting damping have been determined. 

Although these investigations offer some understan­

ding of the phenomenon of root damping, it is very much 

dependent on the type of root, manufacturing tolerances, speed 

of rotation ebc. Hence, it is difficult to account for it in 

the analytical calculations. 

The internal material damping is caused by inelas­

ticity of the material. The stress-strain curve for loading 

and unloading are not generally identical but form a hysteresis 

loop. The area bounded by the loop is a measure of the 

energy dissipated in each cycle. A brief resume of the 

damping capacity of the materials is given by Lazan (107). 

He has pointe~ out that at engineering stress levels, static 

hysteresis can be caused either by magnetoelastic effects 

or by plastic strain. He has further suggested that these 
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effects are a function only of the hysteresis loop and not 

of the strai~ rate. The damping capacity of thin vibrating 

beams from this source should, therefore, be a function of 

maximum stress (or vibration amplitude) but not of frequency. 

He has also indicated that, for a given material, damping 

capacity is proportional to p 
(J , where a is the maximum stress 

during a cycle and the exponent p lies between 2 and 3. 

Some investigation of the effect of internal damping in ro­

tating beams h as been carried out by Morduchow (108). 

An extensive study of the flexural and torsional 

vibrations of beams, with special reference to turbine 

blades, taking into account the internal damping, has been 

carried out by Pisarenko (109). The stress-strain relation 

utilized, chal~cterizes the departure from the Hooke's Law 

and is different for loading and unloading. The basic 

relationships used are 

~ E0 v i; ) n n-1 
t_: on] (J = ( t_: 0 + 2 

n (2.17) 
+ E~ v 

( t_: 0 - t,; ) n n-1 t_:on] (J == + - 2 n 

where E is the average modulus of elasticity f or extension, 

t_: 0 the amplitude of strain and t,; the strain at any instant. 

; and ~ are the corresponding stresses while loading and 

unloading, respectively. v and n are the geometric para-

meters of the hysteresis loop of the material and must be 

evaluated experimentally. 
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With these stress-strain relations, the differential 

equation for the bending of beams takes the form 

EI ::~ + £ 0 ( :) ) ~ M (2.18) 

The second term in the equation is the contribution to the 

bending moment due to the d epa rture from the e lastic behaviour. 

The presence of the small parameter £ indicates that the 

deviation from the elastic momen t is small . The function ¢ 

for loading and unloading can be obtained from the assumed 

stress-strain relations. 

The resulting nonlinear problem is solved using the 

theory of asymptotic expansion i n nonlinear mechanics. This 

consists of assuming the frequency in the f orm 

(2.19) 

where wc is the frequency when the hyste res i s effects are 

neglected and the subsequent terms give the deviati ons of 

the first and second order. The method of evaluating the 

first and the second approximations are illustrated and 

applied to sev

1

eral important problems of transverse vibrations 

of cantilever beams and the torsional vibrations of rods. 

The centrifugal effects and the beam taper are also included. 

Baker et al. {110) have considered the vibrations of 

cantilever beams in surrounding air. The damping arising from 

the air drag as well as from the internal material hysteresis 
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have been taken into account. The equation of transverse 

vibrations is shown to take the form 

(2.20) 

where E1 and c1 are the viscoelastic materia l constants re­

presenting the hysteresis effects and c2 is the parameter of 

the drag forces due to the air damping. The expressions for 

these coefficients have been given in the paper. A method 

of solution has been suggested by a variable separation tech-

nique offering an implicit expression fo r the special case 

of c1 = O. Approximate solutions by energy techniques are 

indicated to obtain the logarithmic decrement. 

The aerodynamic damping is caused by the fact that 

the velocity acquired by a vibrating blade changes the inci-

dence of the air stream. If the cascade characteristics are 

such that an increase of incidence causes an increase in the 

lift force on the blade, damping takes place. However , if 

an increase of incidence causes a decrease in the lift , it 

results in flutter. Pearson (111) has pointed out that in 

the unstalled region, the damping present is almost wholly 

aerodynamic, even when the excitation itself is aerodynamic, 

e.g. from wakes,etc. He has derived an expression for the 

energy removed (e) by the air stream from a vibrating blade 

per unit length in unit time. For compressor blades this 
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ac 
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2 ' "L, p Vea ;:;--L 
l C) CI, 

(2.21 ) 

where a and f are the amplitude and the frequency of vibration, 

c the blade chord, V the air veloc ity with respect to the 

blade at the inlet to the blade, CF the blade lift coefficient 

at right angles to the chordline, a the air angle measured 

from the axial direction and p
1 

the air density. In the deri-

vation it is assumed that the blade i s vibrating in a flexural 

mode and that the blade behaviour is independent of the 
. ' 

fre_quency i.e . the bla.de will give a certain lift at a certain 

incidence, irre~pective of the frequency of vibration. 

pointed out that at low values of frequency parameter 

~f = 2nfc/V, , this is quite true, but for higher values 

(Af > 1), substantial corrections may be expe cted. 

It is 

The idea of the magnitude of aerodynamic damping is 

given by pointing out that for a blade of 2" chord, vibrating 

at 400 cycles /sec with an amplitude of 0.1 inch, in an air 

velocity of 600 ft/sec, the energy removed by the air stream 

is 12 ft-lb per inch of blade length per second. 

2.11 Aerodynamic Excitations _and Design Considerations 

The discussion so far is confined to the methods for 

the calculation of natural frequencies and mode shapes. From 

strength considerat i ons the knowledge of the amplitude of 

vibration is also essential. To be able to calculate the 
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amplitude of vibration, it is necessary to know the nature 

of the excitation forces and the amount of damping . The 

various sources of damping and their nature and magnitude 

have already been discussed in the previous section. In 

this section the aerodynamic exciting forces, the methods 

of calculating deflection amplitudes, stress levels, etc. 

are considered. 

Due to the lack of adequate knowledge about the aero­

dynamics of compressors, especially the axial flow machine, 

the published work regarding the analytical treatment of 

this field is somewhat limited. Most of the uncertainties 

are handled empirically. The practical aspects of design 

and vibration analysis have been reviewed in several papers. 

The more important of these reviews are those by Shanon (112), 

Carter and Kilpatrick (113), Blackwell (114), Armstrong and 

Stevenson (115,116), Lewis Centre Staff (117), etc. These 

references describe, what may be called, the current state of 

art in this area, and a few important points dealt wi th 

in these reviews are considered briefly here. 

2.11.1 Wake Excitation 

In the air flow annulus of the compressor, there are, 

generally, a number of fixed vanes which car ry services to the 

rotor or support the bearings. The air flow over these vanes 

creates wakes of low air velocity, compared to the remainder 
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of the annulus. As the rotor blade passes through these zones, 

the aerodynamic force on the blade is ri:~duced, the frequency 

of the pulses being equal to the number of reductions in the 

air velocity times the speed of rotation. If this frequency, 

or its harmonic, is equal to one of the natural frequencies 

of the rotor blade, a fairly large amplitude can be built up. 

A similar effect occurs in the case of the obstructions in the 

exit annulus of the compressor. In this case, the nose of 

the vane gives rise to an increase in the local static pressure 

which is propagated upstream and causes a variation of the 

force on the blade in a way similar to the downstream wake 

of a vane. 

Pearson (111) has shown that if the wake is regarded 

as a sinusoidal variation of incidence (a ) on the blade, then 
w 

at resonance, the energy (e) imparted to the blade per unit 

length and unit time is given approximately by 

TI fa (1 2\ acF 
(2.22) e = 2 plV J ca --w aa 

whe.re the notation is the same as explained in the previous 

section. The amplitude of vibration due to the wake excitation 

can be assessed by equating the aerodynamic excitation and the 

aerodynamic damping, other damping being negligible. The 

amplitude of vibration obtained from this consideration is 

shown to be 

a = 
a V 

w 
2Tif 

(2.23) 
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It is interesting to note that the value of the amplitude 

times the frequency (af} does not depend on the material of 

the blade or the air density. This, in addition to other 

considerations discussed later, has made it an important 

design factor. Another point mentioned by Pearson (111) 

is that the wakes die out rapidly in a compressor and should 

not affect the blades after, at most, two stages from start 

of the wake. 

2.11.2 Flutter 

The mechanism of this type of vibration is one of 

self excitation and is due to the shape of the aerodynamic 

lift-incidence characteristic. If the variation of the aero-

dynamic force with a change in the incidence is such that 

the force increases for a reduction of incidence, then the 

vibration builds up. Suitable conditions for self excitation 

are in the region of blade stall or in the zone of incidence 

and Mach number where the cascade becomes choked. The 

typical lift curve of a compressor blade in cascade at a 

constant Mach number is shown in Figure (8). As mentioned 

earlier, the energy dissipated by a vibrating blade to 
acF acF 

theair stream is proportional to aa-- If a-a- is negative, 

instead of aerodynamic damping taking place, the blade would 

receive energy from the air stream resulting in flutter. 



As can be observed from Figure (8), this occurs near 

the stalling incidence. By assuming AC = CB = av the 

amplitude of the bending vibration is given by 
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a = (2.24) 

Pearson's analysis has been extended by Carter and 

Kilpatrick (113) by including the mechanical damping. 

Armstrong and Stevenson (115) have pointed out that 

the vibration, which has been identified as flutter, has so 

far occurred either in the fundamental flexure or the 

fundamental torsion mode. The peak amplitudes of different 

blades usually occur at the same speed. Often there is a 

large scatter, greater than 4:1, in the amplitudes of the 

blades on the same disc. Fundamentally, the most important 

parameter, in determini_ng whether a blade is likely to flutter, 

is its operating incidence. Therefore, the amplitude of 

vibration is highly responsive to the inlet guide vane 

(I.G.V.) setting. In making a compressor flutter-free by 

the I.G.V. setting, some loss of performance is inevitable. 

It is pointed out that a change in the rotor tip stagger 

also controls the vibration with less performance penalties. 

Figure (9) illustrates the effect of the I.G.V. setting and 

the tip twisting. 
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2.11.3 Rotating Stall Cell Excitation 

During research testing of an experimental compressor, 

Armstrong and Stevenson (115) have observed the breaking of 

the air flow into a series of stalled and unstalled patches, 

at conditions below the stall conditions. They have further 

observed that the stalled zones rotated in the same direction 

as the rotor but at approximately half the speed. 

Because the stalled zones consist of low velocity 

air, the aerodynamic force on the rotor blade is reduced, 

giving rise to a pulsating force, as the cells pass the rotor 

blade. This can result in the build up of large resonant 

vibrations. The factors which determine the presence of the 

cells and their speed of rotation are not isolated and hence 

the prediction of this type of excitation is difficult. The 

characteristics of a rotating stall fall into two broad 

categories - unsteady and steady stall patterns. A method 

of identifying the unsteady pattern by hot wire a nemometers 

etc. is given in the paper (115). The amplitude of this 

type of vibration is dependent on the blade materia l - steel 

blades giving iess amplitude than aluminum blades; the 

probable reason given is the increased mechanical damping 

and Young's Modulus. At a more positive I.G.V. setting, 

the speed at which the stall cells are eliminated is reduced 

significantly. 
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2.11.4 Random Excitations 

Sometimes moderately large fluctuating amplitudes 

are obtained which are not caused by any of the above mentioned 

excitations. It has been suggested (115) that they are due 

to random disturbances. The mechanical details of the root 

fixing and the material of the blades affect ,these amplitudes 

considerably. 

2.11.5 Design Considerations 

The principal cause of failure of compressor blades 

and the lower temperature stages of turbines is fatigue. 
' 

Armstrong and Stevenson (115) have pointed out that 90 percent 

of these failures can be attributed to the first or the 

second flapwise bending modes, the first torsional mode or the 

first chordwise mode. Therefore, the first step for designing 

the blades against vibration failure, is to calculate accurately 

the natural frequencies of the first four or five modes of 

vibrations, at various speeds of rotation. 

Possible resonances at engine order excitations can 

be predicted from the Campbell diagram for each row. In this 

diagram the engine-order lines are superimposed upon a plot of 

the blade natural frequencies versus the engine speed, as 

indicated in Figure (10). All points of intersection on this 

diagram represent possible resonances, if the appropriate 

engine order excitations are present. The principal causes 
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of the integral engine order excitations are the wakes from 

instream obstructions, blow-off or gas-bleed ports, inlet 

flow nonuniformities potential-flow disturbances propagated 

upstream from obstructions, etc. It is pointed out in 

Reference (118), that n symmetrically arranged disturbances 

within the flow cause n, 2n, 3n ..• engine order vibrations. 

If the same disturbances are arranged asymmetrically, then 

all engine order excitations may be present. The amplitude 

of vibrations for well defined disturbances, such as from 

the fixed obstructions, can be est~mated by Fourier analysis 

of the wakes, by calculating the component of the fluctuation 

having a frequency equ~l to the resonant frequency under 

consideration. 

The severity of vibrations is generally specified in 
' 

terms of the amplitude times frequency (af). In the case of 

a uniform cantilever, vibrating in one of its normal flexural 

modes, it can be shown that the maximum stress at t h e root 

sections is given by 

0 max = 2n ~ /EP (af) 
r 

(2.25) 

where E and p are the Young's modulus and the density of the 

material respectively, y is the distance from the neutral axis 

to the point of maximum stress andK is the radius of gyration r 

of the root section. If the section is rectangular, y/Kr is 

independent of the shape of the rectangle. However, if the 
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section is a typical aerofoil,y/Kr is constant to an accuracy 

of ± 15 percent, as pointed out by Blackwell (114). From 

design considerations the amplitudes of vibration are generally 

considered serious when (af) exceeds 2.0 ft/sec, in case of 

aluminum or steel blading. 

The important factor for checking against flutter 

is the frequency parameter given by wc/V, where w is circular 

frequency, c the blade chord and V the velocity of the gas 

relative to the blade at its tip. The blades are considered 

flutter-free if this frequency parameter is greater than 1.6 

for the fundamental torsion,and greater than 0.3 for the 

fundamental bending, as suggested by Armstrong(ll6). Smith 

(119) has pointed out that these limits are somewhat on the 

conservative side, and has suggested that if they are too 

restrictive a more precise limit on the frequency parameter, 

for unstalled flutter, m~y be obtained from Reference (120). 

Apart from the form failures of blades, the root 

fixing failures are also quite common. At present, the 

design of satisfactory fixings is based mainly on empirical 

rules which have been devised as a result of experience . 

Armstrong (116) has pointed out that, in a number of instances, 

the volume of metal in a fir-tree root required to withstand 

the alternating stresses, is three times that needed for the 

steady centrifugal stresses. A method of optimising the root 

web thickness, for the fundamental flexure mode, has been 
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suggested by Bury (121). Two basic equations for the blade 

are obtained. 'I'he first equation represents the energy 

exchange between the aerodynamic excitation and the aero­

dynamic, mechanical and material damping. The second 

equation gives the total stress at the root of the section. 

The basic model consisting of these two equations is related 

to the fatigue characteristics of the blade ~aterial by a 

modified Goodman diagram to find the optimum root web 

thickness. 



CHAPTER 3 

THEORY FOR NONROTATING LOW ASPECT RATIO BLADES 

In a low aspect ratio blade the length and the 

chord are of the s~me order of magnitude and the thickness 

is considerably smaller than both of them. The blade can, 

therefore, be treated as variable thickness shell. For a 

structure of complicated geometry, such as a blade, the exact 

analysis based on classical shell theory would be too 

difficult. The finite element technique offers a powerful 

method for such an analysis. 

The basic ideas fo~ the application of this technique 

for the bending analysis of a shell, by treating it as an assemb­

ly of small flat elements are outlined in the text by 

Zienkiewicz and Cheung (122). They have also used the 

method for the analysis of arch dams, using rectangular 

elements (123). Most of the shells, which are not surfaces 

of revolution, cannot be subdivided into rectangular 

elements and, therefore,for such structures triangular 

elements must be used. The bending analysis of thin shells, 

using flat triangular elements, has recently been carried 

out by Clough and Johnson (124). As yet, the finite element 

technique has not been used sufficiently for the vibration 

analysis of shells and hence the extent of accuracy that can 

83 
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be achieved and the size of subdivision necessary for con-

vergence are not well known. 

As pointed out by Zienkiewicz and Cheung (122), the 

progress in the application of the method to shell problems 

has been slow, mainly due to the lack of a good bending stiff-

ness matrix for a triangular element. From practical con-

siderations, a good stiffness matrix is not necessari~y the 

one which exhibits a monotonic convergence. A more important 

criterion is that the deviation from the exact result should 

be sm~ll, even when the structure is subdivided rather 

coarsely. This is especially important for shell problems 

where both the bending and the in-plane degrees of freedom 

are assigned t? each node and, therefore, the memory of 

the computer does not permit the use of as fine a mesh as 

can be used in the plate problems. In the present analysis a 

new bending stiffness matrix for triangular element is 

developed and used. 

The middle surface of the blade is subdivided into 

triangular elements, such as ijk, as shown in Figure (lla). 

Each of these elements is assumed to be flat. As the number 

of elements becomes large, the surface built up of small, 

flat elements should adequately represent the behaviour 

of the actual continuously curved surface. 

x,y,z is the system of global coordinate axes; 

(x. , y. , z. ) , 
l. J_ J_ 
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of the vertices i, j and k, respectively. x', y', z' is 

the local coordinate axes system for the element; such 

that the triangle ijk lies in the x'y' plane. The origin 

is chosen at the vertex i and y'-axis along the line ij~ 

as shown in Figure (llb). Hence, the local coordinates 

of the nodes i, j and k are (O,O,O), (O , yj,O) and (xk,yk,O). 

The direction of x' axis is so chosen that xk is always 

positive. Both x,y,z and x' , y',z' are right handed coor-

dinate systems. It can be shown that, 

y j = la1 

yk = (a3 + al - a2)/2 val ( 3. 1) 

and 

where a 1 , a 2 , a
3 

are the squares of the lengths of sides ij, jk 

and ki,respectively. 

3.1 Bending Stiffness Matrix for an Element 

The derivation of bending sti ffness matrix f or a 

triangular plate element, using the displacement method, 

necessitates an assumed express i on for deflection w' normal to 

the plane of the element. Various conforming and nonconfor-

ming expressions have been i n use (125-133) and are constantly 

being added to. The nonconforming fun ctions, although 

ensuring continuity of deflection along the common edges 
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between the adjacent elements, do not s ati s fy t he trans-

verse slope c ontinuity. The conformi n g functions satisfy 

the slope continuity as wel l. The r ate of convergence 

depends on the assumed deflection expres sion . 

For plate problems, probably the fi f th d egree poly-

nomial expression for deflection, recently i ntroduced by 

Cowper et al. (133) shows the best convergence. However, 

this shape function requires six degrees of bending freedom 

(deflection, 2 fi r st derivatives and 3 s econd derivatives) at 

each node. When the tr i angular element is considere d as a 

part of a shell, it i s necessary to a ssign in-plane degrees 

of freedom to each node, in a ddi tion t o the b e nding degree s 

of freedom. Hence, using t he bending stiffnes s matr ix of 

Reference (133) for shel l problems wou ld invo lve a t ota l of, 

at least, 9 degrees of freedom at e a ch n o de. Obviously, 

in that case a much coarser mesh can only be u sed, giv i ng a 

poorer physical representat ion o f the shell . When the bending 

stiffness matrix of a trian gul a r element i s der i ved f or 

subsequent use in the so l u tion of shel l probl e ms, it is, 

therefore, preferable to assign only three deg r ees o f bending 

freedom (w', e• and 8 1
) to each node. e• and e• are the 

x y x y 

rotations about x' and y' axis, respecti vely. A cubic 

polynomial expression for w' may, t herefore, be used. 

The complete cubic polynomial in x' and y' involves 
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ten arbitrary coefficients and since only nine degrees of 

bending freedom are assigned to each element (three to each 

node), certain assumptions must be made regarding one of 

the coefficients. Adini (125) has assumed the coefficient 

of term x'y' to be zero and Tocher (126) has suggested that 

the terms x• 2y• and x'y 12 be assigned the same coefficient. 

However, a better way would be to choose the extra coef-

ficient in such a way as to satisfy the transverse slope 

continuity along one of the sides of the element and hence 

make the expression 'partially conforming' • This is 

achieved by satisfying two conditions; (i) choosing the 

local coordinate axes for the element in such a way that the 

equation of the line, along which the transverse slope 

continuity is to be satisfied, becomes x' = 0 and (ii) making 

2 the coefficient of the term x'y' to be zero. Hence, the 

assumed expression for deflection within the element is taken 

as 

w' = + a x' 
2 

+ a y' + a x• 2 + a x'y' + a y • 2 + a x• 3 
3 4 5 6 7 

( 3. 2) 

This gives for the transverse slope aw'/ ax' along the line 

x' = 0, the expression a2 + asy'. Since the value of the 

slope is specified at the two ends of this line, the expression 

for transverse slope is unique along the line x' = O. Equation 
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(3.2) can be expressed in the matrix form as 

w' = [C] {a} ( 3. 3) 

where 

I I ,2 I I ,2 ,3 ,2 I ,3] 
[ C] = [ l / X I Y IX 1X Y I Y IX IX Y I Y ( 3. 4) 

and {a} is the column vector of coefficients a 1 to a 9 . 

The nine bend ing dispJ.acements of the nodes and the corres-

ponding nodal forces, expressed as vectors, are 

{ 0 I } = [w ~ , e I • I e I • , w ~ 'e I • 'e I • , wk' , e I k 'e I k] T 
, b l Xl yi J XJ YJ . X y ( 3. 5) 

{FI} = [FI MI MI FI MI MI FI MI MI ] T 
b zi' xi' 1

yi' zj' xf yj' zk' xk' yk 

Substituting for w' from equation (3.2) and noting that 

8 1 = aw'/'Oy' 
x 

e• = -aw'/ax' 
y 

the first of equation (3.5) can be written as 

where 

1 0 0 0 0 0 0 

0 0 1 0 0 0 0 

0 -1 0 0 0 0 0 

l 0 y~ 0 0 
, 2 

0 y . 
J J 

[A] 0 0 1 0 0 2y '. 0 = J 

0 -1 0 0 -y ~ 0 0 
J 

1 x' y' I 2 x'y' I 2 I 3 
k k xk k k yk xk 

0 0 1 0 x' k 
2y I 

k 0 

0 -1 0 -2x' 
k -yk 0 -3x' 

k 

( 3. 6 ~ 

(3.7) 

0 0 

0 0 

0 0 

0 
,3 y. 
J 

0 3y~2 
J 

0 0 

2 I ,3 
xk Yk yk 

I 2 
xk 

3 , 2 
yk 

2 -2x'y' 0 k k 

(3.8) 
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Elimination of {a} from equations (3.3) and (3.7) gives 

w' -
0

[C] [A-l] {o I} - b (3. 9) 

, The curvatures can be written as 

{R} 

_ f'a 2w•;ax• 2 

[Cl] [A-1) {ob} - a2w 1 /ay 12 = 

l~a 2w '/a~' ay' 

(3.10) 

where 

0 0 0 2 0 0 6x' 2y I 0 

[Cl] = 0 0 0 0 0 2 0 0 6y' 

0 0 0 0 2 0 0 4X I Q 

(3.11) 

Assuming the material to be isotropic of Young's Modulus E and 

Poisson's ratio µ, the bending strain energy of the element can 

be expressed as 

u = 

where 

E 
2 

24(1-µ ) 

[D] = 

l 

µ 

0 

µ 

1 

0 

0 

0 

1-µ 
2 

(3 .12) 

(3.13) 

and tis the thickness of the element at point (x',y'). 

The integral e x tends over the area of the triangular element. 

S?bstituting for {R } from equation (3 . 10) into equation (3.12), 
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the express i on for strain energy can be written ~s 

u ~ 24(1~µ 2 ) !Ot,JT[A-lJTUJ t3[c1lT[DJ [clJdx'ay] [A-l]{ot,J (3.14) 

Accord i ng to Castigliano's theorem, the partial derivativ e o f 

U with r e spect to any component of {6~} gives the corresponding 

component of {Fb}. Thus 

{FI}= E 

b 12 (1- µ 2 ) 
[A-l]T[JJ 

Compar i ng wi th the definition of stiffne ss matrix 

(3 . 16) 

The bending stiffness matrix for the element is given by 

[K I] = E 
b 12 (1-µ 2 ) 

(3 . 1 7) 

Obviously , e ach t e rm of the matrix [K~] i s of the form 

JI x'my,ndx ' dy' , wi t h t he integration extending over the area 

of the e lement . For ease of computation, the following identity 

is introduced 

JJ x'rn y 'n dx'dy ' 

,rn+l I 
xk y. = -J 
m+n +2 

1 

I ( 1 

0 

- ~)m{ (l - ~)y~ + ~y~} n d ~ 

(3.18 ) 

This can easily be evaluated using Gauss quadrature technique . 

This identity is valid for the chosen system of coordinate 

axes (x' , y ' ) as shown in Figure Qlb) and for (rn+n) t -2 . The 

proof f o llows directly from equation 11.69 of Reference (134) , 

af t er the appropriate change of notati.ons and the evaluation 

of the fir s t integral. 
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If the explicit expression for t(x',y') is not 

available, as is generally the case in turbomachinery blades, 

it may be assumed as a linear function of x' and y' within 

the small element, i.e., 

t "' (c x' + c2yi + c )t 1 3 max 

where t max is the maximum thickness of the 

coefficients cl, c2 and C3 can be obtained 

the thickness at the three nodes. 

When t he thickness of the element 

equation (3.17) reduces to 

3 
[K'] == E_t_· _ fA-l] T[B) [A-1] 

b 12(1-µ 2 ) 

where 

0 

0 0 

(3.19) 

blade. The 

by substituting 

is constant, 

(3.20) 

0 0 0 SYMME'EHIC 

0 0 0 4Cll 

0 0 0 0 2 (1-11)c 11 
[BJ== 0 0 0 4pCll 0 4Cll 

0 0 0 12c 21 0 12µc 21 36c
31 

0 0 0 4C l2 4 (l·- µ)c
21 4µCl2 12c

22 4Cl3+ 

8(1-µ)c 31 

0 0 0 12µc
12 

0 12c12 36µc 22 12µc 13 

(3.21) 

36c13 
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and 

c11 = 1/2 XkYj 
1/6 

2 
c21 = x'kYj 

c31 = 1/12 x'~Yj (3.22) 

c1 2 = 1/6 xky ! (y ~ + y I) 
J J k 

cl3 = 1/12 x'y! (y!2+y!y'+y'2 
kJ J Jk·k 

c22 = 1/24 x 12y~ (y'.+2y') 
k J J k 

3.2 Complete Stiffness Matrix for an Element 

A shell element is, generally, subjected to bending 

as well as in-plane forces. For a flat element these forces 

cause independent deformations and, therefore, the in-plane 

stiffness matrix can be derived independent of the bending 

stiffness matrix. 

At each node of the triangular element two in-plane 

degrees of freedom are assigned. These are the displacements 

u' and v' along the x' and y' axes. The in-plane nodal 

displacements and the forces, expressed as vectors, are 

{ o ' } = ( u ! , v ! , u ! , v ! , uk' , vk' ] T 
p i i J J (3.23) 

{F I } = [ F I . I F I • I F I • , F I • I F I l I F I k] T 
p xi yi XJ YJ xc y 

For the distribution of u' and v', linear expressions are 

assumed, i.e., 
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(3.24) 

v' = 

This gives, for the in-plane stiffness matrix [K'], the 
p 

expression 

where v is e 

- 1 
[Bl]=xkyj 

EV 
IB1]

11
(D] [Bl] [KI] e = --.-2 p 1-µ 

the volume of the eleme nt and 

Yj-Yk 0 y' 
k 

0 

0 x' 
k 

0 -x' 
k 

x' 
k Yj-yk -x' 

k Yk_ 

-y ~ 
J 

0 

0 

(3.25) 

0 

0 (3.26) 

-y ~ 
J 

This follows directly from equations (3.10), (3.18) and (3.26) 

of Reference (122), after appropriate change in notations 

and using the local coordinate axes as shown in Figure (llb) . 

The next step is to combine [K~] and [K~] to obtain 

the complete stiffness matrix [K'] for the element. In doing 
e 

so, it is to be noted that the displacements prescribed for 

in-plane forces do not affect the bending deformations and 

vice-versa ; also that the rotation 8' does not enter as 
z 

a parameter into the definitions of deformation in either mode. 

However, when the transformation to global coordinates ·is 

carried out, it is necessary to have 8 as a parame ter. z 

Hence the term 8~ is introduced at this stage; a fictitious 
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couple M' is associated with it and the appropriate number z 
of zeroes are inserted in the stiffness matrix. The stiffness 

matrix for the element is, thus, given by 

Kll Kl2 K13 
e I e 1. e 

..., - - - -t 

[KI] K21 K22 I K23 = e e e e (3.27) 

- - - -t 

K31 K32 K33 
e e e 

where 

· rs I 0 0 0 0 K 
0 0 0 0 p I 
- - -

0 0 0 

[Krs 1 = 0 0 Krs 0 
e b (3.28) 

0 0 I I 0 

t -t 
0 0 I 0 0 0 0 _J 

[K~5 ] and [K~s] being (2 x 2) and (3 x 3) submatrices, 

respectively, obtained by partitioning the matrices [K'l 
p 

and [Kb] in the same manner as in equation (3.27). The 

order of nodal displacements would be 

{8'} = [u!,v!,w!,B'. ,e•. ,e•. ,u! ••• Bz'k]T e l l l Xl yi Zl J 
(3.29) 

Since each of the stiffness matrices [K'J refers e 

to the local coordinate system of - its element, it must be 

transformed to common global coordinate system x,y,z. The 
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vector of nodal displacements {6~} for an element in local 

coordinates is related to the corresponding vector {o e} 

in global coordinates by the relation 

{6 1
} = [T]{o} e e (3.30) 

and similarly, the vector of nodal forces. Here [T] is 

the 18 x 18 transformation matrix of direction cosines given 

by 

A 0 0 0 0 0 

0 A 0 0 0 0 

0 0 A 0 0 0 
[T] = (3.31) 

0 0 0 A 0 0 

0 0 0 0 ;\ 0 

0 0 0 0 0 ;\ 

where 
1 m n x x x 

[A] = l m n 
y y y 

(3.32) 

1 mz n z z 

(1 ,m ,n ) ~ (1 ,m ,n ) and (1 ,m ,n ) are the direction x x x y y y z z z 

cosines of x', y' and z' axes,respectively,with the global 

x, y and z axes (e.g. m is the cosine of the angle made z 

by z' axis with y-axis). These direction cosines can be 

evaluated from the following equations, 
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A = y .. zk. - yk. z .. J l. l. .1. Jl. 

B = xk. z .. - x .. zk. 
l. J l. J l. 1 

c = x .. yk . - Xk·Y· · J l. 1 l. J l. 

F = /xji 2 + 
2 

+ 
2 y .. z .. 

J l. J l. 

G = - fA2 + B2 + c2 

l = A/G, m = B/G, n = C/G z z z 

1 = x .. /FI m = y . . /F' n = z . . /F y J.1. y Jl. y J l. 
(3.33) 

lx = m n - m2 ny y z 

m = 1 n - n 1 x z y z y 

n = 1 m - m 1 x y z y z 

where 

The complete stiffness matrix for the element, referred t o 

the global axes, is, therefore, given by 

[K ] = [T]T(K'] [T] 
e e ( 3 .34) 

3.3 Equivalent Nodal Forces for Distributed Loads 

Generally, the blade is subjected to distributed 

external loads. The distributed loads, acting on an element, 

must be converted to equivalent nodal forces. The principle 

of finding the equivalent forces is that the work done by 

the two systems of forces, during an arbitrary virtual 

displacement, must be equal. 
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At a point within the element, let the external forces 

along x', y' and z' axes be F' F' and F' and the external x' y z 

moments about the x' and y' axes be M' and M' . The external x y 

bending forces F' , M' and M' can be co.nverted to a vector of z x y 

equivalent nodal forces {Fb'} as follows: eq 

If {ob} denotes the virtual nodal displacement, the 

virtual displacements at any point within the element, from 

equations (3.4) t (3. 6) and ( 3. 9) are 

W* 

8* = [Nb] [A-1] {ob} 
x (3.35) 

8* y 

where 

x' y' I 2 x'y' 2 x'3 . 2 
1 x y' x' y' 

[N ]= 
b 0 0 1 0 x' 2y' 0 x'2 (3.36) 

0 -1 0 -2x' -y' 0 -3x' 2 -2x'y' 0 

Equating the work done by the actual distributed forces and 

the equivalent nodal forces, 

= 

*'T w I F' 
z 

e* 
x 

e* 
y 

M' x 

M' y 

d(vol) (3.37) 

Elimination of W*, e~ and ey from equations (3.35) and (3.37) 

gives 
F' 

z 

M' 
x 

M' 
y 

d (vol) (3.38) 
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Since the virtual displacement {at;} is arbitrary, equation 

(3.38) reduces to F' 

fJ 
z 

{Fb}eq [A-1] T t[Nb]T M' dx'dy' (3.39) 
= x 

M' y 

Similarly the in-plane external loads yield equivalent nodal 

forces {F~}eq given by 

f Jt[Np]T~:~? dx'dy' {FI} = [Q-l]T (3.40) . p eq 

where 

=~ x' y' 0 0 

:.J [N ] (3.41) 
p 0 0 1 x' 

and 

l 0 0 0 0 0 

0 0 0 1 0 0 

1 0 y! 0 0 0 
[Q] = J (3.42) 

0 0 0 l 0 y~ 
J 

l x' k 
y' 

k 
0 0 0 

0 0 0 l x' k yk 

It can also be shown that 

{::~ = [N] [Q-l]{o'} 
p p 

(3.43) 
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This method of finding the equivalent nodal forces 

is known as the 'consistent' method. Another way of dealing 

with the distributed loads is to lump the forces at the nodes 

from simple tributary area considerations. It has been 

suggested in Reference (122) that the lumped load technique 

is preferable in the problems where the shell is treated as 

an assembly of flat elements. However, this is not necessarily 

true in all cases, as would be shown later in Section 5.1.2, 

by carrying out computations for a test problem of a uniformly 

loaded hyperbolic paraboloid shell, using the consistent as 

well as the lumped load technique. When the curved shell 

element is considered f latJ the z coordinate of any point 

within the element is somewhat altered. If the distributed 

load happens to be a function of this z coordinate, it is 

better to lump the· actual loads at the nodes, rather than 

apply the consistent method to a flat surface. For example, 

in a rotating blade the intensity of the centrifugal force 

depends on the coordinates of the point. Hence, for calcu-

lating the stresses and the deformations due to these 

centrifugal forces, lumped load technique is preferable. 

3.4 Calcul~tion of Displacements 

Having calculated the stiffness matrices, [K J for e 

the individual elements, the next step is to combine all 

these matrices, according to the sequence of node numbering 



100 

employed on the structure, to obtain the complete stiffness 

matrix. The method of assembling is illustrated in Figure 

(12) • 

When all the elements joining at a particular node 

are in one plane a difficulty arises. In global coordinates 

six equations that are singular are obtained. This is due 

to the fact that only five of the equations can then be 

independent, due to the omission of the rotation perpendicular 

to the plane. For such nodes the rotations about the local 

x' and y' axes must be retained for assemply. In the type 

of subdivision shown in Figure (12), this is, in fact, 

necessary for node number 30. 

If the boundary conditions specify certain nodal 

displacements to be zero, the rows and the columns corres­

ponding to such displacements must be deleted from the 

complete stiffness matrix to obtain the final stiffness 

matrix [K]. In the present analysis, the nodes along the 

clamped edge are numbered zero and the rows and the columns 

corresponding to these displacements are not assembled at 

all. Thus the final stiffness matrix is directly obtained, 

res.ul ting in considerable saving of computer memory. 

The vectors of the nodal forces for the elements, 

on assembly, give the total force vector {F} • The 

displacements {o} can then be obtained from the equation 

[K]{o} = {F} (3.44) 

Mc MASTER UNIVERSITY LIBRARl 
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3.5 Bending Mass Matrix for an Element 

In the case of free vibrations, the blade is acted 

upon by distributed inertia load. By the application of 

d'Almbert principle, the dynamic p~oblem can be treated as 

the static one, subjected to forces equal to the negative of 

the inertia loads. Since the deflection in the z'-direction 

of any point within the triangular element is w', the inten-

sity of the distributed force F' is given by z 

F' = - pw' z (3.45) 

where w' denotes the second derivative of w' with respect 

to time and p is the mass per unit volume of the blade. 

Substitution for w' from equation (3.9) gives 

F~ = - p[C)[A-l){(Sb} (3.46) 

By use of equation (3.39) this distributed bending force 

can be converted to equivalent nodal forces given by 
. -1 ••I 
-p [CJ [A ] { ob} . 

0 dx'dy' (3.47) 

0 

Since the first row of [Nb) is identical to [CJ (Equations 3.4 

and 3.36), the nodal forces can be expressed in the form 

{F'} = -[M']{o'} 
b eq b b (3.48) 

where, the bending mass matrix is given by 

[14bl - p[A-l]T[JJ t[C]T[C]dx'dyJ [A-l] (3.49) 
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3. 6 Comelete Mass Matrix for an Element 

In addition to the displacement in the z'-direction, 

a point within the element undergoes in-plane displacements u' 

and v'. The corresponding d'Alrnbert forces along the x' and y' 

axes are 

(3.50) 

Substitution for u' and v' from equation (3.43) gives 

p[N )[Q-l]{8 1 } 

p p 
(3.51) 

The equivalent nodal forces for these distributed in-plane 

forces, obtained by the use of equation (3.40), are 

where 

= - [MI) { 8 I} 
p p 

(3.52) 

(3. 53) 

If the thickness of the element is constant, the in-plane 

mass matrix reduces to 

1/2 symmetric 

0 1/2 

[M') 
pVe 1/4 0 = -3-p 

1/2 (3.54) 

0 1/4 0 1/2 

1/4 0 1/4 0 1/2 

0 1/4 0 1/4 0 1/2 
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Assuming that the in-plane forces do not cause any 

bending displacements and vice-versa, and also introducing 
I 

the nodal displacement e~ and corresponding fictitious moment 

M' z' the complete mass matrix of the element is given by 

where 

[MI] = 
e 

[Mrs] 
e = 

Mrs 
p 

0 0 

0 0 

0 0 

0 0 

(3.55) 

j 0 0 0 I 0 
jOOO-i-0 - - - - -
I I 0 

Mrs 
b 

0 (3.56) 

0 

0 0 0 0 

[Mrs] and [Mrs] being (2 x 2) and (3 x 3) submatrices obtained 
p b 

by partitioning the matrices [M~] and [Mb) in the same manner 

as in equation (3.55). 

The element mass matrix [M'] in local coordinates is e 

then transformed to global coordinates by the relation, 

= [T]T[M'] [T] 
e (3.57) 
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3.7 Natu~al Frequencies and Mode Shapes 

The mass matrices [M ] of all the elements are e 

assembled in exactly the same manner as the ·Stiffness matrices, 

to obtain the final mass matrix [M) for the blade. The 

resulting equation of motion is 

[KJ {a} = - [Ml {a} (3.58) 

Assuming harmonic vibrations of circular frequency w, the 

equation of motion becomes 

or 

(CK) - w 
2 

[Ml} {o} = { 0} {3.59) 

, { [K-l] (M] - .:!:__ [I]~ {o} = {O} 
\ w

2 
J 

{ 3. 60) 

-1 
The eigenvalu~s and eigenvectors of the matrix [K ][M] 

2 give the values of l/w and the mode shapes. Since only 

the first few largest values of l/w 2 (lowest natural fre-

quencies) are of practical importance, it is preferable to 

convert equation (3.59) to the form of equation (3.60) and 

apply Power method for the determination of eigenvalues and 

eigenvectors. 

A subroutine 'Power' is especially prepared for 

this purpose and is given in Appendix III. It returns the 

eigenvectors as the columns of the original matrix and is, 

therefore, very economical from computer memory considera­

tions. Also, the multiplication of the matrices [K-l] and [M] 
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is carried out using the core storage. Thus for N degrees 

of freedom problem, the dimensioned arrays necessary are: 

(a) a matrix of size ~xN) , and 

(b} two vectors of size (N) . 



CHAPTER 4 

THEORY FOR ROTATING LOW ASPECT RATIO BLADES 

The natural frequencies of rotating turbomachinery 

blades are known to be significantly higher than those of 

the nonrotating blades. One of the important design con­

siderations is to avoid resonances of the blades near the 

design speed, in the first few modes of vibration. Possible 

resonances at engine order excitations are predicted by 

drawing Campbell diagram (Figure 10) for each row of the 

blades. This diagram, essentially, is a plot of the varia­

tion of the first few natural frequencies of the blades 

with the speed of rotation, with engine order lines 

superimposed over it. The points of intersection on the 

diagram represent possible resonances. Obviously, the 

correct estimation of the natural frequencies of the 

bladesJ at different sp~eds of rotation, is important. 

Various methods are available for the analysis of 

long blades idealized as rotating cantilever beams; as 

discussed in Sections 2.4 and 2.5. In this chapter,the 

finite element technique is extended to the vibration 

analysis of rotating low aspect ratio blades. Essentially, 

the method consists of evaluating the stresses and the 

'pseudo-static deformation' of the blade due to centrifugal 

106 
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forces. These stresses are tpen used to determine the 

increase in the stiffness of the elements; and the blade 

is considered to vibrate about the new deformed configuration. 

For the sake bf convenience of formulation, the theory for 

rotating cantilever plates is first developed, followed by the 

method for the vibration analysis of rotating low aspect 

ratio blades. Another reason for developing the theory for 

the rotating cantilever plates is that the results for rotating 

beams are available in the literature and, therefore, the 

manner in which the beam results are approached, with the 

increase in the aspect ratio, can be · studied. 

4.1 Vibration of Rotating Cantilever Plates 

The cantilever plate is considered mounted on the 

periphery of a rotating disc of radius r in such a manner that 

the plane of the plate is inclined to the plane of rotation 

.of the disc at an angle 8, called the setting angle. x, y, 

z is the system of cartesian global coordinate axes with 

the origin at the mid point of the fixed edge of the plate. 

The x axis is along the length of the plate, the y axis along 

the breadth of the plate and the z axis normal to the plate 

surface, as shown in Figure (2). The coordinate axes x, y, z 

are attached to the rotating disc. The disc is assumed to 

be rigid. The in-plane vibrations of the plate are not 

considered, since the stiffness for the in-plane motion 
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is considerably greater than the stiffness for the bending 

motion. 

If w is the deflection of an arbitrary poi nt on the 

middle surface of the plate, its instantaneous coordinates 

during vibration can be taken as (x, y, w). The components 

of the d'Almbert force per unit volume of the plate along 

the x, y and z axes are given by 

F = p 
x 

n 2 (x + r) + 2 p n • w sin 8 

F y .. = p )1 2 (y cos 2e - w sin 8 cos 8) ( 4 .1) 

n 2 (-y sin 8 8 . 2 ) .. 
F = p cos + w sin 8 - pw z 

The derivation of these equations is given in b ppendix I. 

4.1.l Middle Surface Stresses 

The force F normal to the plate surface does not 
z 

produce stresses in the middle plane of the plate. These 

stresses are solely due to the in-plane forces F and F . x y 

The expressions for these forces (equation 4.1) have t wo 

components, one dependent on the displacement w and the 

other independent o f the displacement. If the v i brations 

are assumed to be of small amplitude, the component of the 

stresses dependent on w may be taken to be small as compared 

to the stresses produced by the forces independent of w. 

Thus, the stresses in the middle plane of the plate are 

those produced by the distributed forces 



109 

2 
F "' p n (x + r) 

x ( 4 • 2) 2 2 
F :::! p n y cos e 

y 

The plate is subdivided into small triangular elements 

and the local x', y', z' axes for an element are chosen as 

shown in Figure (13). It may be pbinted out here that 

for calculating the middle surface stresses in the rotating 

cantilever plate, the use of local axes different from the 

global axes is not essential and, in fact, requires a little 

extra computational work. The reason for doing this is to 

maintain the similarity of formulation with the more complex 

case of rotating low aspect ratio blades, for which it is 

necessary to use different local and global axes. 

The direction cosines of the local axes are obtained 

from equations (3.33). The globa~ coordinates (x,y) of any 

point within the element are related to its local coordinates 

(x',y') by the relation 

~ xl= 
,Y( 

( 4 • 3) 

where 

( 4 • 4) 

and (x1 ,yi) are the global coordinates of the node i. Also, 

the components of the forces F and F along the local axes x y 
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[;\ ] 
p 

110 

(4.5) 

Substituting for F and F from equation (4~2) and using 
x y 

the coordinate transformation relation (equation 4.3), the 

forces F' and F' can be expressed as x y 

1 2 \(4.6) ~ 
x. + r ! 

y i cos ef 

The equivalent nodal forces corresponding to the se distributed 

forces, from equation .(3.40) are 

{FI} 
p eq 2 [>. ]T + 

0 J ~x 'I cos e P y' 

i x . + r I\ 
. 

1 

2 \ dx'dy ' 
· y i cos e(} 

( 4 • 7) 

If the thickness of the element is constant, equation (4.7) 

after some simplification and evaluation of the double 

integral reduces to 

blC21 + b3Cl2 + b4Cll 

b l C31 + b3C22 + b4C21 

{FI } prl 2t[Q-l]T b1c22 + b3Cl3 + b4Cl2 
< 4. a) = p eq 

b3C21 + b2Cl2 + b5Cll 

b3C 31 + b2C22 + b5C21 

b3C22 + b2Cl3 + b5Cl2 
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where c11 , c12 etc. are defined in equation (3.22) and 

b2 = 

b3 = 

b4 = 

bs = 

1 

- m 
x 

- m y 

-m m x y 

1 (x. 
x i 

l (x . 
y i 

. 28 sin 

. 28 sin 

. 2 8 sin 

+ r ) 

+ r) 

+ 

+ 

( 4. 9) 

2 my . cos e x i 
2 m y. CQS 8 y i 

The in-plane stiffness matrix [K'] for an element in the 
p 

local coordinates is given by equation (3.25). The trans-

formation to global axes is accomplished by the relation 

[KP] = [T ] T [KI] [T ] 
p p p 

(4.10) 

where 

A 0 0 
p 

[T ] = 0 ;\ 0 p p 
(4.11) 

0 0 ;\ p 

Similarly the vector of equivalent nodel forces in global axes 

is given by 

{Fp}eq = [T )T{F' } 
p P eq 

(4.12) 

The stiffness matrices [K ] and the force vectors {F } of 
P p eq 

all the elements are assembled together, the rows and the 

columns corresponding to the nodes along the fixed edge are 

deleted, to obtain the final stiffne ss matrix and the force 

vector. The solution of these equations gives the nodal 

displacements. If {o } is the vector of nodal displacements 
p 
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for an element along the global axes, the stresses along the 

local axes are given by 

where 

a ' x 

a ' 
y 

TI 
xy 

E =--
2 

[S]{ o } 
1-µ p 

( 4. 13) 

(4.14) 

The matrices [DJ, [B1 J and [Tp] are defined by equations 

(3.13), (3.26) and (4.11), respectively. Since the assumed 

expressions for the in-plane displacements are linear in x' and 

y I I the stresses a ' x' a ' and T ' , in the middle surface of 
y x y 

the element come out to be constan t. 

4.1.2 Centrifugal Stiffness Matrix 

In the absence of the initial stresses in the plate, 

the bending stiffness matrix [Kb) for a triangular element is 

given by equation (3.17). 

Due to the presence of 

and T I in the middle surface, xy 

the element is higher than the 

by the amount 

u1 = 1/ 2 f [a~ 

the in-plane stres ses a ' a ' x' y 

t he strain energy stored in 

usual bending strain energy 

(aw:) (aw')] d(vol) 
ay ax' 

(4.15) 
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Equation (4.15) can be written as 

ul = 1/2 I I t~i~T r:y :t]~i~: r dx· dy·. (4.lG) 

This energy, due to the centrifugal forces, gives an increase 

in the bending stiffness matrix of the element by the amount 

G
I 

t[G]T x 
TI 

xy 
T 

1 J . xy 

o' y 

where [GJ is defined by the relation 

j ~f = 
[G] 

aw' 
ay' 

[GJ dx 'dy' (4.17) 

(4.18) 

Since [K'] is produced by the centrifugal forces, it may c 

be called the centrifugal stiffness matrix. The proof for 

equation (4.17) is given by ~apoor and Hartz (135) while 

dealing with the problem of stability analysis of plates. 

For the stability analysis, a more refined expression for fK'] 
c 

is given by Przemieniecki(l3~), by starting with nonlinear 

strain displacement relations. In the stability analysis the 

plate is subjected to compressive in-plane stresses resulting 

in large deflections and hence the nonlinear strain displace-

ment relations are called for. In the present problem, 

however, the centrifugal forces produce tensile stresses and 

hence the nonlinearity need not be considered. 
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By taking the partial derivatives of w' from equation (3.9) 

and using equation (3.4), the slopes can be expressed in 

the form 

~~~ ax• [H] [A-l) {ob} 
Clw' 

·-

ay' 

where 

[HJ ~ ~ 1 0 2x' y' 0 3x 12 

0 1 0 x' 2y' 0 

Comparing equations (4.18,) and (4.19) 

[G) = [HJ [A-l] 

(4.19) 

2x'y' 

3:'~ (4.20) 
, 2 x 

....... 

(4.21) 

Substitution for [G] from equation (4.21) into equation 

(4.17) gives 

[A-l]T(ff t[Z] dx'dy •) [KI] = [A -1] 
c 

(4.22) 

where 

~· T ' J [Z] = [H]T T~ 
xy 

a ' [HJ 
xy y 

(4.23) 

The total bending stiffness matrix for the element is, 

therefore, given by 

[K'] = [K'] + [K'] -) 
t b c (4.24) 

4.1.3 Natural Frequencies and Mode Shapes 

The plate is subjected to a distributed force of 

intensity F , given by equation (4.1), in the direction normal z 
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to its plane. The component - pn 2ysin8cos e of this force 

does not depend on the displacement w. This component 

produces only a small initial deformation of the plate 

and does not affect the natural frequencies. For the vibration 

analysis, therefore, the component dependent on w need 

only be considered. The distributed force along the local 

z' axis, at any point within an element is, thus, given by 

From equation (3.39), the equivalent nodal forces correspon-

ding to this a;r-e 

Since the first row of [Nb] is identical to [ ~] (equations 

3.4 and 3.36), equation (4.25) can be written as 

(4.25) 

(4.26) 

Substituting for w' from equation (3.9) 

{F~}eq = [M~]( n 2 sin 2 e { 8 ~ } -{~b}) (4.27) 

where (Mb) is defined by equation (3.49). The stiffness 

matrix (Kt] and the mass matrix [Mb] are now transformed to 

global axes, by the relations 
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[Kt] = [Tb]T [Kt_] [Tb] 
(4.28) 

[Mb] = [Tb] T [Mb] [Tb ] 

where 

Ab 0 0 

[Tb) = 0 Ab 0 (4.29) 

0 0 Ab 

and 

~z 
0 0 

[>.,b] = 1 m x x ( 4. 30) 

~ 1 m 
y y 

The value of n would be +l or -1, depending on the direction 
z 

of z'-axis for the particular element . As pointed out earlier 

in Chapter 3, the direction o f the x' axis is so chosen that 

xk is always positive and x',y',z' axes form a right handed 

system. Equations (3.33), automatically, give the appropriate 

values of the direc tion cosines. 

Carrying out the assembly of the element matri ce s 

and deleting the rows and columns corresponding to the nodes 

along the fixed edge, the final equation of motion is 

obtained in the form 

[KJ {o} = rt
2sin 2

e [MJ {o} - [MJ {6} (4.31) 

If w is the frequency of harmonic vibrations, equation (4.31) 
r 

can be expressed as 
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( (K] - (w; + o2sin 2 8 ) [M]) { cS} == {O } (4.32) 

The eigenvalues and the eigenvectors of the matrix [K-l] [M] , 

2 2 2 therefore, give the values of l / (w + 0 sin 8 ) and the mode 
r 

shapes. 

It ma y be mentioned her e t hat the steady sta te 

centrifugal forces produce a s mall pseudo-static deformation 

of the plate and the vibratory motion takes place about 

this deformed configuration. For more accurate analysis, 

therefore, the stiffness and the inertia l properties must 

be evaluated in the deformed configuration . However , the 

inclusion of this small deformation would necessitate a 

shell type of analysis . This would not only increase the 

computational work, but, s ince the shell would be nearly 

flat, the resulting matrices would be ill-conditioned. This 

may, probably, cause more loss of accuracy than would be 

gained by the inclusion o f pseudo-static deformation . For 

the vibration analysis of the actual b lades, i n the next 

section, this effect has, however, been included. 

4.2 Vibration o f Rotating Low Aspect Ratio Blades 

The blade is considered to be rigidly attached to 

the periphery of a rotating disc of radius r. At the root 

of the blade, the chord makes an angle 8 with the tangential 

direction of the d isc as shown in Fi gure (14). This ang l e 8 

is referred to as the setting angle. x, y, z is the system 
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of cartesian coordinate axe s attached to the rotating disc. 

The origin of this right handed coordinate system is at the 

centroid of the root cross-section of the blade. · The x-

axis is in the radial direction and the y-axis is parallel 

to the root chord. 

If u, v and w are the displacements, along the x, y 

and z axes, of a point on the middle surface of the blade, 

its instantaneous coordinates during vibration are (x+u ~ 

y+v, z+w) . The components of the d'Almbert force per 

unit volume of the blade, along the x, y and z axes are 

given by 

F = Fx1 
+ Fx2 

+ Fx
3 

+ Fx 4 x 

F = Fyl + Fy2 + Fy3 + Fy 
y 4 

(4.33) 

F = Fz 1 + Fz 2 + Fz + Fz 4 z 3 

where 
') 

Fx1 = prl~ (x+r) 

prl2 (y 2 sinecos8) Fyl = cos 8-z ( 4. 34) 

Fz 1 = pD2 (-y sin 8cos8 + z sin 28 ) 

2 
Fx2 = prl u 

Fy2 = prt 2 (v 28 cos -w sin8cos 8 ) (4.35) 

2 ? 
Fz 2 = p rt ( -v sin8cos8+ w sin-8) 
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Fx
3 = - pu 

Fy3 = - pv (4.36) 

Fz 3 = - pw 

. . 
Fx 4 = 2pr.l (w sin8-v cose) 

. 
Fy 4 = 2 pr2u cos e (4.37) 

. 
Fz 4 =-2prtu sine 

The derivation of these equations is g iven in Appendix I. 

4.2.1 Pseudo-Static Deformation 

In the steady state, the blade is subjected to 

distributed forces Fx1 , Fy 1 and Fz 1 along the x, y and z 

axes. These forces c ause a certain pseudo-static deformation 

of the blade and ,also, produce some initial stresses . To 

calculate these, the blade is subdivided into small fla t 

triangular elements. The stiffness matrices for all the 

elements are calculated and.grouped together, to get the 

final stiffness matrix, as explained in Chapter 3. 

The distributed forces at any point are seen to be 

function s of the z coordinate of the point {equation 4.34). 

For the reas ons outlined in the last paragraph of Section 

3.3, the distributed forces Fx1 , Fy 1 and Fz
1 

are lumped at 

the nodes instead o f finding the consistent nodal loading. 

Thus, the total force acting on the area bounded by the 

dotted lines, in Figure (15), is concentrated at the node 
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within that area. 

Once the nodal forces and the stiffness matrix, 

are obtained, the pseudo-static deformation can be calculated. 

The nodal displacements {6 }, along the global axes, for each e 

element are transformed back to the local axes; and the 

vector of in - plane nodal displacements {6~} is obtained. 

The stresse s in the middle plane of the element are given by 

0 I 

x 

O' 
y 

T I 

xy 

(4.38) 

where [D] and [B
1

J are defined by equations (3.13) and (3.26), 

respectively. 

4.2.2 Stiffness Matrix in Deformed Configuration 

The pseudo-static deformation is the deformation 

of the blade due to the steady state centrifugal forces 

Fx1 , Fy 1 and Fz
1

. If initially the coordinates of a 

particular node j are (x. , y . , z . ) and the def orma ti on 
J J J 

at the node is (u., v., w . ), its coordi nate s a f ter defor-
J J J 

mation would be (x. + u., y. + v . , z. + w. ). Since the 
J J J J J J 

vibratory motion occurs about this deformed configuration, 

the element properties are evaluated for this configuration. 
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The bending stiffnes s matr ix [ K~] a nd the in-plane 

sti ffness matr i x [K'] are obtained from equati ons (3.17) 
p 

and (3. 25) ,respective ly. Subst i tuting for the mi ddle 

surface str esses from equati on (4 . 38) , the c entri f uga l 

stiffness matrix [K ' ] i s obtained , u s ing e quati on (4 .2 2) . c 

The total b e nding sti ffness matr ix o f the element is , 

therefore, [Kb ] + [ K~] . The complete sti f fness matr ix f or 

the elemen t is obtained by c ombin i ng the in-plane and 

the to t a l bend ing stif f nes s ma trices, as follows: 

Kll I 12 Kl31 
et I 

Ket I e t 

[ KI ] - 21 I ;22 -;--- (4 . 39) - K2 3 et K -
et ! e t I . et 

., l i · 
<" 

T 
I<3 3 K.;;. 

I 
K~ ""' I et et et 

wher e 
0 0 

Krs 0 0 

p I 0 
I 

0 0 0 

0 - o-f· --- -1-
0 

(Kr s] I r s l<r s I 
= 0 0 K + 0 (4.40) e t I b c I 

0 0 0 

0 
I 

0 0 O ' 0 0 

[Kr s 1 [Kr s ] and [I<rs] 
p b c are the submatrices o b tained by 

partiti oning the s ti f fness matrices [Kp'], [K'] and [K'] 
b c 

respective l y,in the same manner as in equation (4.39) . 
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4.2.3 Centrifugal Mass ~atrix 

The centr i fugal mass matrix result s fr om the 

distributed forces Fx2 , Fy 2 and Fz 2 , given by equation (4.35). 

These forces can be written as 

where 

1 

0 

0 

0 

2 cos e 

- sinecose 

0 l 
-sinecos ejl 

. 2 
sin e 

(4.41) 

(4.42) 

Transformation of t h e for ces and the displacements in 

equation (4.41) to th e local axes gives 

(4. 43) 

where 

and the matrix [ A] is defined by equation (3 .32). These 

distributed force s mu st be converted to equivale nt nodal 

forces { F~} 2 • Sinc e in t his case the forces a re f unctions of, 

both, the in-plane a n d the bending displacements , the equations 
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for equivalent f orces derived in section (3.3) are not 

convenient to apply directly. 

With some rearrangement, equations (3.9) and (3.43) 

can be combined and written as 

u' 

v ' (4.45) 

w' 

where 

[N] (4.46) 

[ t 1 . 1 6' 91 1 t 8' ]T - u..,v . , w . , ., . . ,u.,v . , •. •... , k 
l l l Xl Yl J J y 

(4 .47) 

and 

r~P OJ 
N 

b x'=O 
y '=O 

~p 
i 

OJ 
[P 1 ] 

I 
(4.48) 

I 
Nb 

x I ==O I 
I y '=y j I 

It OJ I p 

I 0 Nb 

l 
x ' =x' 

k 
y'=y' 

k 
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The matrices [Np] , [Nb] and [C] are defined by equations 

(3.41), (3.36) and (3.4), respectively. Let the distributed 

forces given by equation (4.43) be equivalent to a vector of 

15 nodal forces {Fis} corresponding to the displacement 

vector {oi5 }. If {oi5 } denotes the vector of virtual nodal 

displacements, the corresponding virtual displacements at 

a point within the element, from equation (4.45), would be 

u* 

v* (4.49) 

W* 

Equating the work done by the two systems of forces, the 

following equation is obtained 

f u*1T(F•1 
{o* }T{F' } = r lv*~ lF~]I d(vol) 

15 15 J y 
J w* F' 

z 2 

(4.50) 

Elimination of the virtual displacements from equations (4.49) 

and (4.50) gives 

F' x 
F' dx'dy' 

y 

F' z 2 

(4.51) 

Substituting for the force vector from equation (4.43) and 

for the displacement vector from equation (4.45), the fol-

lowing expression for {Fis} 

{FI } = 
15 

is obtained 

(4.52) 
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where 

(4.53) 

Introducing the rotational displacements 8' and the cor­z 

responding fictitious moments M' at each node, the z 

vector of 18 nodal forces is given by 

{F' } = [M' ]{o' } 
e 2 ec e (4.54) 

where 

(4.55) 

and 

0 

0 

0 (4.56) 

0 

0 

0 0 0 0 010 
rs 

[P
2 

] are the sxs submatrices obtained by partiti oning t he 

matrix [P 2 ] of equation (4.53). Since the matrix [M' ] is ec 

due to the centrifugal forces, it is defined as Centrifugal 

Mass Matrix of the element. 
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4.2.4 Natural Frequencies and Mode Shapes 

Each of the distributed forces F , F and F , acting . x y z 

on the blade, are composed of four components (Equation 4.33). 

The forces Fx1 , Fy 1 and Fz 1 produce the deformed configuration 

and the centrifugal stiffness matrix. The components Fx2 , 

Fy 2 and Fz 2 result in centrifugal mass matrix. The effect 

of the remaining two components is now studied. 

The distributed forces Fx 3 , Fy3 and Fz 3 are given by 

equation (4.36). Transformation tq the local axes gives 

F' U I 
x 

F' = y 
- p ·v' (4.57) 

F' \~I 
x 3 

These forces are identical to the d'Almbert forces in the 

case of nonrotating blades. The equivalent nodal forces 

corresponding to these forces are, therefore, given by 

{ F' } = - [MI ] { 6 I } 
e 3 e e (4.58) 

where [M') is the mass matrix for the element given by e 

equation (3.55). 

The forces Fx4 , Fy 4 and Fz 4 given by equation (4.37) 

arise from the Coriolis acceleration and depend on the 

• • • velocities u, v and w. The displacement u is in the direc-

tion of the length of the blade, the d i splacement v is in the 

chordwise direction, and the displacement w is in the flapwise 

direction (Figure 14). 
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Although the equations of motion along the x,y and 

the z direction are coupled, the blade is much more stiff 

in the longitudinal direction than in the flapwise or the 

chordwise directions. In the first few modes of vibration, 

therefore, the displacement u is expected to be considerably 

smaller than the displacements w and v. The force Fz 4 can, 

therefore, be neglected in comparison to the forces Fz 2 and 

Fz
3

. Similarly the force Fy 4 is small in comparison to 

forces Fy2 and Fy 3 . 

Further, since the frequencies corresponding to the 

longitudinal vibrations are very large, the lower frequencies 

corresponding,mainly, to the motion in the y and the z 

directions would be, practically, i nsensitive to the changes 

in the damping type force in the longitudinal direction. 

Hence, the force Fx
4 

would not affect, appreciably, the first 

few natural frequencies of the blade. 

For the reasons outlined above, the Coriolis forces 

are neglected in the present analysis. It may be mentioned 

here that this assumption is made in almost all the investi­

gations for the vibration analysis of long rotating canti­

levers and blades (References 49-51,55-58,62-64). Some 

studies of the effect of including the Coriolis forces 

have been reported in the literature and the conclusions 

reached are given below. 
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Lo (52) has shown that the percentage error in the 

first bending frequency due to the omission of Coriolis 

forces increases with the increase in parameter A, defined 

as 

A= 

-

x Amplitude 
Length (4.59) 

Even for A as high as 0.4, the error introduced is less 

than 0.7%. 

Analysing a simplified model representing a twisted 

blade, Isakson and Eisley (47) have observed that the 

Coriolis forces produce large phase differences between 

the bending and the torsional vibrations but the natural 

frequencies are only slightly affected. This phase difference 

would, of course, be expected since the f o r ces are velocity 

dependent. 

The formulation of the problem, including t he 

Coriolis forces,is given in Appendix II for any further 

extension of the present work. 

The stiffness and t h e mass matrices of the elements 

are transformed to the common globa l a xes , by the relations 

[Ket) = [T)T{K~t] [T] 

[Mee] = [T]T[M' ](T] (4.60) ec 

(M J = [T)T[M'] [T] 
e e 

The transformation matrix (T] is defined by equation (3.31) . 
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These matrices are grouped together, the rows and the columns 

corresponding to the nodes along the fixed edge are deleted, 

to give the final equation of motion in the form 

[K]{o} = [M ]{cS} - [M]{cS} 
c 

(4.61) 

The matrices [K], [Mc] and [M] are the assembled matrices 

corresponding to the element matrices (Ket], [M ] and [M ] , 
ec e 

respectively. Assuming harmonic vibrations of circular 

frequency w 
r 

which gives the natural 

- w; [M] l { 0} = { 0) 

.J 

frequencies and the 

(4.62) 

mode shapes 

of the rotatibg blade. Since in the final equation the matrix 

[Mc] is to be deducted from the matrix [KJ, these matrices 

need not be assembled separately; the subtraction could be 

carried out at the element level. 



CHAPTER 5 

CONVERGENCE AND ACCURACY OF THE METHOD 

The finite element idealization introduces two 

fundamental approximations into the analysis. First, the 

set of flat triangular elements provides only an approxi­

mation to the smoothly curved surface of the blade. Thus 

the structure that is analysed differs slightly from the 

actual blade. Second, the stiffness properties of the 

individual elements are derived on the basis of an assumed 

set of displacement patterns within the elements; thus 

constraints are imposed on the manner of deformation of 

the blade. The chosen displacement functions, although 

satisfying the continuity of displacements along the 

interfaces between the adjacent elements, violate the trans­

verse slope continuity along these interfaces. 

Intuitively, as the size of the subdivision 

decreases, the errors due to both of these approximations 

would tend to vanish and the convergence to accurate results 

must occur. However, the finite element technique has not, 

as yet, been used sufficiently for the solution of practical 

shell vibration problems. It is, therefore, necessary to 

verify that the convergence does,in fact, occur in the present 

130 
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type of problems. Further, a good rate of convergence, by 

itself, is not sufficient. It should, also, be verified 

that the convergence to the correct solution takes place. 

F'or this purpose, the solution to some problems, for which 

the analytical or experimental results are available, must 

be obtained for comparison. 

In the present analysis, a new bending stiffness 

matrix for a triangular plate element is used. It is, 

therefore, necessary to demonstrate that this stiffness 

matrix is somewhat superior to the other existing matrices 

for triangular elements, with the same number of degrees of 

freedom per node. 

In the presentati on of the res u lts the e xpression 

'Mesh' is commonly used. If the length and the breadth of the 

shell are divided into m and n equal parts respectively, 

and the triangular elements are formed by dividing the small 

rectangles along a diagonal, such t y pe of subdivision is 

termed as (mxn) mesh. Also, unless mentioned oth erwise, the 

value of Poisson's ratio i s taken as 0 .3 i n all the compu-

tations. 

The computer programmes (Appendices III and IV) 

are written in terms of nondimensional input and output 

parameters. The natural freque ncy is expre ssed as a non-

dimensional quantity S, defined as 

S = wL 2 lpt /D max 
( 5 .1) 
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where Lis the length and t is the maximum thickness of the max 

shell. D is the maximum flexural rigidity given by 

3 2 D =Et /12(1-µ ) max (5.2) 

The deflections are also expressed as nondimensional para-

meters. Thus the deflection (w) in the z direction is 

expressed as a , defined by z 

= wD/WL
2 (5.3) 

where W is the total applied load. The computations in terms 

of the actual dimensions are carried out only where it is 

necessary for the sake of comparison. 

5.1 Bending Analysis 

The convergence and the accuracy of the method are 

first tested for the deflection analysis of plates and shells. 

Three different problems are investigated, narnely,a simply 

supported plate with central load, a clamped hyperbolic 

paraboloid shell carrying uniformly distributed load and a 

pretwisted cantilever plate subject to tip loads. 

5.1.l Simply Supported Plate 

In order to compare the convergence characteristics 

of the present bending stiffness matrix with those of the other 

existing stiffness matrices for a triangular plate element, 

computations are carried out for a test problem of a square 

simply supported plate. The plate carries a central point 
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load W. The length and the breadth of the plate are divided 

into m equal parts. Due to symmetry only one quarter of the 

plate is considered. Triangular elements are formed by dividing 

each square into two parts along the diagonal which is parallel 

to the portion of the diagonal of the plate in that quarter,as 

shown in Figure (16). mis varied from 2 to 16 and the 

results obtained for the deflection at the point of application 

of the load are shown by the solid curve in Figure (17). The 

curves marked A, T, and Z are those for the nonconforming 

models described in References (125), (126) and (127) ,respec­

tively. The curve marked HCT is for the conforming triangle 

of Reference (128). In all these models the same three degrees 

of freedom are assigned to each node, as in the present analysis. 

It can be observed from Figure (17) that the deviation 

from the exact solution in the case of the present model is 

much les~ than for the other models, with the same number 

of degrees of freedom per element. 

5.1.2 Clamped Hyperbolic Paraboloid Shell 

To verify that the method converges to the exact 

results in the problems of bending of shells, computations are 

carried out for a square hyperbolic paraboloid shell. This 

shape closely resembles a pretwisted plate when the angle of 

pretwist is small. The shell carries a uniformly distributed 

load in the z direction over its entire surface and is clamped 
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all along the boundary. The shell and the method of subdivision 

used are shown in Figure (18). The dimensions considered are 

L = b = 12.92", h = 1.304" and the thickness = 0.25". 

E and µ are taken as 5 x 10 5 psi and 0.39,respectively,and 

the intensity of loading is taken as 1 psi. The equation of 

the middle surface of the shell is z = 4hxy/Lb. For this 

shell the analytical solution based on Bongard's shallow shell 

equations has been given in Reference (137). The shell is 

divided both lengthwise and breadthwise into m equal parts 

and computations carried out form= 4,6,8 and 10. The values 

of the calculated central deflection of the shell are given 

in Table (1), along with the deviation from the exact value. 

It can be observed from this table that the method does tend 

to converge to the exact value. 

As pointed out in the last paragraph of Section 3.3, 

the uniformly distributed load can be converted to nodal loads 

either by lumping or by consistency of virtual work. It has 

b~en mentioned in Reference (122) that for the shell problems 

lumping gives better results. The computations for the 

hyperbolic paraboloid shell are carried out both for the lumped 

and the consistent loads. As can be observed from Table (1), 

the consistent loads give somewhat better results. This is 

because the shell considered is sufficiently shallow and the 

arguments put forward in Reference (122) are valid mainly for 

shells with large rise. 
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6 

8 

10 

TABLE 1 

Central Deflection of Hyperbolic Paraboloid Shell 

Exact value= 8.708 x 10-3 inches 

No. of Nodes Lumped loading Consistent 
Mesh (using symmetry (wl) Loading ! 

along diagonals) (w2) I 
x10 3 

x10
3 I 

I 
x 4 4 I 10.233 10.025 

x 6 9 I 9.628 9.449 

x 8 16 I 9.330 9.160 
I 
I 

x 10 25 
I 

9.190 9.024 i 
j 
j 
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Deviation ; 

of w2 from i 
exact 
value 

15.20% 

8.51% 

5.19% 

3.63% 
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To illustrate further the extent of the accuracy 

achieved, the exact deflection of the shell all along the 

x-axis, is compared with the values obtained by the present 

method, using (10 x 10) mesh. A fairly good agreement between 

the two sets of deflections is observed from Figure (19). 

5.1.3 Pretwisted Cantilever Plate 

The problem of a square cantilever plate, pretwisted 

about the central longitudinal axis, is next considered. The 

pretwist varies uniformly over the length of the plate from 

zero at the fixed edge to a valu~ ~ at the free edge. The 

computations are carried out for ~ varying from 0° to 60° 

in steps df 20°. The ratio of the length to the thickness 

. of the plate is taken as 48. The plate carries two concen­

trated loads, each of magnitude W/2, at the two free corners 

C and Das shown in Figure (20). The method of subdivision 

used is also shown in the figure. 

The deflections are calculated using (mxm) mesh, with 

m increasing from 2 to 6. This corresponds to an increase in 

the number of nodal points from 6 to 42. The deflection 

in the z direction of point D for the different meshes is given 

in Table (2). It may be pointed out that similar convergence 

is obtained for the displacements in the x,y and the z direc­

tions of all the nodes. As is apparent from this table, the 

method gives a good rate of convergence, the change in the 
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TABLE 2 

Nondirnensional Deflection (az)of Point D (a z = wD/ WL 2 ) 

6 12 20 30 42 

(2 x 2) (3 x 3) (4 x 4) (5 x 5) (6 x 6) 

I oo 0.3710 0.3649 0.3619 I 

0.3602 0.3592 I 

i 200 0.3753 0.3634 0.3569 I 0.3538 0. 3 522 
I 

40° 0.3747 0.3565 0.3476 I 0.3433 0.3411 
i 

I 

I ! 60° 0.3726 0.3479 0.3372 0.3321 0.3293 
; 
I I 

I 
I 
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value of the deflection. being 1.53% when the number of nodes 

is increased from 20 to 30, and 0.84% when it is increased 

from 30 to 42, for a pretwist of 60°. For lower values of 

pretwist the convergence is still faster. 

5.2 Vibration Analysis 

Having verified that the present method of analysis 

gives a good rate of convergence and accuracy for the static 

problems, the next step is to carry out similar .verification 

for the vibration problems. Several cases of twisted and 

untwisted cantilever plates, with and without taper, are 

studied. The rate of convergence in the case of rotating 

pretwist~d plates is also investigated. 

5.2.l Nonrotating Cantilever Plates 

For cantilever plates of constant thickness, the 

natural frequencies, using the Ritz energy method, have been 

obtained by Barton (77). The finite element solution for 

this problem, using triangular elements, has been given by 

Anderson et al. (80) and Jagannath (138). The former have 

used the nonconforming displacement function (Z) described 

in Reference (127); while the conforming function (HCT) of 

Reference (128) is used by the latter. The solution of this 

problem would not only test the accuracy of the present 

method but would also provide a comparison for the different 
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bending stiffness l matrices for the triangular elements. Com­

putations are carried out for plates having aspect ratios of 

1 and 2 and · the results are given in Table (3) along with the 

results of References (77,80 and 138). It may be emphasized 

that the present esults and the results of References (80 

and 138) are for identical mesh sizes. 

The valu s obtained by the Ritz energy method provide 

an upper bound fo~ the natural frequencies. A good bending 

stiffness matrix, therefore, should not give the natural fre-

quencies higher t an the corresponding values obtained by the 

Ritz method. A total of 10 natural frequencies, provided by 

the Ritz method, re considered in Table (3). It is observed 

that the results f HCT model are higher than the Ritz method 

values in 7 cases, the maximum overshoot being 3.35%. In the 

case of Z model, l he frequencies exceed the Ritz values in 

2 cases and the maximum ' overshoot is 1.13%. For the present 

model the Ritz value is exceeded in one case and even there 

the overshoot is J nly 0.18%. Further, if the maximum deviation 

(positive or negative) from the Ritz values is compared, 

for HCT model it is 3.37%, for z model it is 2.86%, and for 

the present model it is 1.97%. 

Computati ns are also carried out for three variable 

thickness cantilever plates. In the first case the plate is 

tapered in longitutl inal direction; in the second case the 

cross-section of the plate is a trapezoid and in the third 



140 

TABLE 3 

Nondimensional Frequencies (S) of Cantilever Plates 

(a) Aspect Ratio = l 

Mode Ref .77 I 
I 

Ref .BO Ref .138 Present 

Number Ritz Method I Model ( z) Model (HCT} Method 

I ( 5x 5) ( 5 x 5) ( 5x 5) 

l 3.49 3.469 3.436 3.445 

2 8.55 8.535 8.640* 8.516 

3 21. 44 21.450* 21.779* 21.181 

4 27.46 27.059 28.147* 26.919 
I 

I 5 31.17 32.216* 31.052 

(b) Aspect Ratio = 2 

rde Ref.77 Ref. 80 

I 
Ref.138 Present 

umber Ritz Method Model (Z) Model (HCT) Method 
I I 

i ( 8 x 4) (8x4) ( Sx 4) 
I 

-r-
1 3.47 3.44 I 3.353 3.419 

I 
I 
I 

2 14.93 14.77 I 15.102•: 14.831 
I 

3 21.26 21.50* I 21.133 21.285* 

4 48.71 48.19 I 49.974* 4 8. 318 I 

5 60.54 59.711 

6 94.49 91.79 96.220* 92.929 

* The value is higher than that obtained by Ritz method. 



141 
TABLE 4 

Nondimensional Frequencies (S) of Tapered Cantilever Plates 

Problem 

I 

I 
I / . ' I t / / ·' ( ,. ( t .~~ t 1 ~· 

i I I \l 
l l L I \ i I I I ! 

I I i 1 . ____ ______ h _______ _i L_J 

IL 
I ; 
I I 

· I b i 

_.., ..­
t2 

l : .. ___ ; 
t 1--)1 T !---- --- T t 2 

r 

b 

L/b=2 

!Calculated 
Mode ! Frequency 
Number !' 

(Sc) 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

i 
!Mesh (5 x5) 

I 4.062 

I 6 . 920 
! 
I 
I 15.006 
I 

I I 16 .206 

! 
! 19.437 

I ! Mesh (8 x 4) 
i 

2.506 

10.811 

15.327 

32.105 

39.893 

1 Mesh (8x4) 

2.379 

11.387 

14.621 

29 . 894 

34.866 

I Experimental 

I
! Frequency 

I (Se) 

Ref. ( 79) 

4.069 

7.127 

15.19 

16.39 

19.55 

Ref. (7 9) 

2.536 

10.80 

15.50 

31.92 

39.86 

Ref. ( 139) 

2.47 

10.6 

14 ~ 5 

28.7 

34.4 

% Difference 

1

100((3 - s ) 
c e 

-0.17 

-2.99 

-1.23 

-1.13 

-0.58 

-1.20 

+0.10 

-1.13 

+0.58 

+0 . 08 

-3.83 

+6.91 

+0.83 

+3.99 

+1.34 
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plate the cross-section is an isosceles triangle. The experi­

mental values of the natural frequencies have been obtained 

by Dawe (79) for the first two cases, and by Plunket (139) 

for the third case. The computed frequencies, along with the 

experimental results are given in Table (4). The two sets of 

results show reasonable agreement. The maximum difference 

(6.91%) between the calculated and the experimental frequency 

occurs in the second mode (torsional mode) for the plate with 

the triangular cross-section. 

5.2.2 Nonrotating Pretwisted Cantilever Plates 

The convergence and the accuracy of the method are 

now tested for the problems of free vibrations of pretwisted 

cantilever plates, as this shape c l osely resembles a turbo­

machinery blade. For testing the convergence, the first five 

natural frequencies of a square cantilever plate with a total 

pretwist (~) of 0° , 40° and 80° are calculated. In all the 

three cases the computations are carried out for mesh sizes 

(J x3), (4x4) and (5 x5), i.e. for 12, 20 and 30 nodes, respec­

tively. The results of computation are given in Table (5). 

A good rate of convergence is observed to exist for all the 

pretwist values considered. The largest difference between 

the frequencies obtained f or mesh sizes (4 x 4) and (5 x5) is 

3.5% and occurs in mode three for pretwist of 80°. At lower 

values of pretwist, the deviation is considerably less. 



TABLE 5 

Nondirnensional Frequencies (6) of Pretwisted 
Cantilever Plates 

L/b=l.O , b/t=l6.0 
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~r(~rst 
i 

I 
Mesh(3x3) 

l 
Mesh(4x4) i Mode I Mesh(5x5) t Number_ (12 nodes) : ( 20 nodes) (30 nodes) 

i 
i 

I 
oo I 1 3.418 3.435 3.445 : 

I 
I 

I 

I 
I 

2 8.621 8.546 8.516 
I 
I 

I 3 21.500 21.264 21.181 
I 

I 4 26.713 26.857 26.919 

I 5 31.699 31 . 262 31.052 

r--· 
I 40° 1 3.262 3.296 3.314 
i 

! 2 16.524 16.669 16.676 
I 

I 3 18.426 18.027 17.983 i 
I 

4 28.092 I 28.528 28.151 ' I 
5 35.415 ~6.644 36.675 

: 

80° 1 2.967 3.011 3.034 

2 11.392 11.512 11.530 

3 24.785 25.885 25.016 

4 28.805 30.440 29.775 

5 34.363 37.801 38.684 
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To investigate the accuracy of the results, compu­

tations are carried out for a pretwisted cantilever plate 

of length 6 inches, breadth 1 inch and thickness 0.068 inches. 

For plate of these dimensions, the bending frequencies have 

been experimentally deter mine d by Carnegie (16) for seven 

different values of pretwist angle ranging from 0° to 90°. 

Since the plate is sufficiently long, a mesh size of (10x2) 

is employed. The variation of first three flexural frequencies 

with pretwist is shown in Figur e (21), along with the experi­

mental values. The mater ial c onstants u s ed in the calculations 

are those given by Carnegie and are mentioned in the figure. 

The difference between the calculated and the experi ­

mental values for the first three bending frequencies is 

observed to be less than 5 percen t for all the seven pretwist 

values. The experimental values are observed to be lower 

than the calculated values . This could be attributed to the 

fact that it is very diff i cult, in practice, to obtain a 

completely clampe d edge a n d this would result in lower experi­

mental values for the frequencies. 

To investigate furthe r the accuracy of the method, 

the natural frequencies are calculated for a tapered pre­

twisted c antilever plate. The c r oss-section of the plate is 

a narrow isosceles triangle with an apex angle of 3.7° as 

shown in Figur e (22). The plate has an aspect ratio of 2 

and is pretwisted ab o u t the c e n t ral longitudinal line. The 
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pretwist varies uniformly from zero at the fixed edge of the 

plate to a value ~ at the free edge. For the plate of these 

dimensions, the natural frequencies have been experimentally 

determined by Plunket (139), for four different values of 

~ (0°, 11.6°, 26° and 34.2°). The variation of the first six 

natural frequencies with pretwist is shown in Figure (22), 

along with the experimental results of Plunket. A mesh size 

of (7x3) is used in the computations. 

An examination of Figure (22) suggests that for lower 

values of pretwist the sixth natural frequency and for the 

higher values of pretwist the fifth natural frequency has been 

missed in the experimental investigation. It may be mentioned 

here that the possibility of having missed some of the frequencies 

is indicated in Reference (139). At lower values of pretwist, 

~he sixth mode corresponds to the bending of the plate in the 

stiff direction. With the excitation in the direction normal 

to the plate surface, it is possible to miss this mode of 

vibration. 

The largest difference (14.2%) between the experimental 

and the calculated value of frequency occurs in the third 

mode (fundamental torsion) for a pretwist of 34.2°. In all 

the other frequencies the difference is considerably smaller. 

The possible reasons for the difference between the 

calculated and the experimental results are: (a) it is not 

possible, in practice, to have a completely clamped edge, 
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(b) the actual plate could not possibly have zero thickness 

along one edge, (c) the pretwist per unit length may not be 

constant along the length of the plate, (d) the triangular 

cross-section plate may not have the initial twist about the 

central longitudinal line and (e) the present method of 

analysis is only an approximate one and for more accurate 

results a finer mesh is necessary. Taking into account these 

possible sources of error, the experimental and the calcula.ted 

frequencies compare reasonably well. 

5.2.3 Rotating Cantilever Plates 

In the preceeding two sections, the convergence 

of the method ·has been tested for nonrotating plates. The 

major difference between the method used for the rotating plates 

and the one used for nonrotating Plates is the inclusion of 

the additional stiffness due to the centrifugal effects. The 

centrifugal stiffness matrix depends on the in-plane stresses 

in the middle surface of the plate. In the actual case these 

stresses vary continuously over the plate. In the present 

analysis, however, linear expressions for in-plane displace­

ments are used which yield constant stresses within each 

triangular element. When the number of elements increases, 

the stepped variation of the stresses is expected to correspond 

closely to the actual variation. A good rate of convergence 

can, therefore, be expected in the natural frequencies of the 

rotating plate as well. 
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In order to verify this, the first five natural fre-

quencies of a square rotating cantilever plate are computed 

for mesh sizes (3 x 3), (4x4) and {Sx5) at two different values 

of the rotational speed, the disc radius and the setting angle. 

The results are given in Table (6). Rotational speed and 

disc radius are expressed as nondimensional qua ntiti es ~ and 

r respectively, defined as 

_ Speed of Rotation 
n Fund.Freq.of the Nonrotating Plate 

Radius of the Disc 
r = Length of the Plate 

( 5. 4) 

A good rate of convergence is observed to exist i n both the 

cases. The maximum dif.ference between the values of t h e natural 

frequencies obtained for (4 x 4) and (5x5) mesh is obs erve d to 

be less than 1.6 percent. 

5~2.4 Rotating Pretwisted Cantilever Plates 

The convergence of the method is also teste d for a 

problem of rotating pretwisted cantilever plate . The aspect 

ratio of the plate is taken as 2 and the ratio of the breadth 

to the thickness is taken as 16. The pretwist varies uni-

forrnly from 0° at the root to 30° at the tip. The plate is 

mounted on a disc of radius equal to twice the length of the 

plate. The setting angle is taken as 90°, i.e. the breadth 

of the plate at the root is parallel to the axis of rotation 

of the disc. The natural frequencies are computed for mesh 
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1 

2 

TABLE 6 . 

Nondimensional Frequencies (Br) of a Rotating 
Square Cantilever Plate 
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--
r-~esh (5 x~ -r e Mode Mesh (3 x3) Mesh(4x4) 

(deg) No. (12 nodes) (20 nodes) (30 nodes) 

0 0 1 5.091 5.094 5.097 

2 9.902 9.844 9.824 

3 23.182 23.016 22.913 

4 27.516 27.782 27.849 

5 33.133 32.847 32.735 

1 45 1 10.826 10.790 10.771 

2 13.864 13.810 13.808 

3 29.247 29.212 29.127 

4 34.197 34.0 44 34.58 6 

5 38.12 7 41. 495 41.22 8 

--- ·---' 
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TABLE 7 

Nondimensional Frequencies (Sr) of a Rotating Pretwisted 
Cantilever Plate 

Mode 
Number 

1 

2 

3 

4 

5 

L/b= 2.0,b/t=l6.0,~=30°,r=2.0,~= l.O,e=90° 

Mesh ( 4x2) 
(12 nodes ) 

7.607 

23.056 

24.537 

54.774 

58.535 

Mesh (5 X3 
(20 nodes 

7.650 

22.216 

24.289 

55.331 

60.006 

ivlesh (7 x3 ) 
(28 nodes) 

7.630 

21.600 

23.919 

54.448 

59.853 
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sizes (4x2), (5x3) and (7x3). · For this pretwisted plate the 

fundamental frequency in the nonrotating case is 

3.383 ~ 
wl = L2 Jpt (5.5) 

Computations are carried out for rotational speed equal to 

this fundamental frequency, i.e. for ~ = 1. 

The results of computation are given in Table (7). 

A reasonably good convergence is obtained. The largest dif-

ference between the natural frequencies obtained for (5x3) 

and (7x3) meshes is 2.85%. 

The results for all the different problems considered 

in fhis chapter indicate that the method converges to the 

correct solutions quite rapidly and reliable results are obtained 

when the number of nodes is greater than 25 and the number of 

triangular elements is about 40 or more~ Fu~ther, for good 

results the triangular elements should not be long and narrow; 

i.e. the mesh size must be so chosen that the blade surface 

is divided, approximately, into squares. 



CHAPTER 6 

RESULTS AND DISCUSSION 

The effect of different parameters, such as the 

amount of pretwist, the speed of rotation, the radius of 

the disc and the s e tting angle, on the natural frequencies and 

the mode shapes of a low aspect ratio blade are now investi-

gated. The blade is idealized as a pretwisted cantilever 

plate of constant thickness. The pretwist increases uni-

formly along the length from zero at the root to a value 

~ at the tip. In most of the cases the computations are 

~arried out f or aspect ratios of 1, 2 and 3. A study is 

made of the manne r in which the known iesults for long 

blades, ideal i zed as pretwisted cantilever beams, are 

approached with the increase in the as·pect ratio. The re-

sults of the deformation of a pretwisted cantilever plate 

due to tip loading are also included; as this provides 

some insight into the deflected shape. 

6.1 Deflec t ion of Pretwisted Cantilever Plate due to 
Tip Loading 

The deflections are calculated for a square pre-

twisted can t ileve r plate subjected to two concentrated loads 

W/2 as shown in Figure (20). The breadfh to thickne ss 

ratio of the plate is taken as 48 and a ( 6 x6) mesh is used. 
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Computations are carried out for values of ~ from 0° to 90° 

in steps of 10°. The deflections at the points of application 

of the loads (points C and D) and at the mid point of the 

free edge (point A) are given in Table (8). Two values of 

deflection are given for each point; one is the deflection 

along the i-axis (direction of the loads) and the other is 

the total deflection /u2
+v

2
+w2 of the point. It may be 

pointed out that the slight difference in the values of de-

.f lections of points C and D is, probably, due to the unsyrnmetri-

cal shape of the subdivision used (Figure 20). 

It can be observed from Table (8) that the total de-

flection at the midpoint of the free edge is only slightly 

affected by the pretwist. It increases initially with the 

increase in the pretwist till a maximum occurs at a pretwist 

of approximately 45°. It then decreases with further increase 

in the value of ~. A more important information is obtaine d 

from the results of the total deflections of the points of 

application of the loads. The total deflection is observed 

to increase considerably with the increase in the value of 

~. This suggests that the bending stiffness of the plate 

decreases with the increase in the pretwist. Thus, the first 

few bending frequencies of a. thin pretwisted plate can .be 

expected to be lower than the corresponqing frequencies of 

the untwisted plate. 

The variation of the deflection (w) in the z-direction 



TABLE 8 

Deflections of Pretwisted Cantilever Plate due to Tip Loads 

L/b=l. 0 . b/t=48.0 Mesh (6x6) 

[ Pretwist I 
I 

Deflection of Point C Deflection of Point A Deflection of Point D 
I --· ! I i4J I 
!(Degrees) 

I 
W'D/WL

2 l ; :1. 2 2 2 J 2 I !7+v2+w2 D/WL2 wD/WL 2 / u 2+v2+w2 D/WL 2 . u +v+w D/WI, wD/WL l 

I I I I 

0 0.359 I 0.359 0.333 0.333 0.359 0.359 
1 · 

I 0.357 0.335 0.359 10 0.355 0.335 0.357 

20 0.350 0.357 0.337 0.338 0.352 0.359 

30 0.345 0.359 0.337 0.339 0.347 0.361 

40 I 0.340 0.363 0.336 0.340 0.341 0.365 I 

I 
' 

50 0.334 0.368 0.332 0.339 0.335 0.370 

' 

I 
I 60 0.329 0.375 0.328 I 0.338 . 0.329 0.376 

I 
I 

I 

70 0.323 0.380 I 0.323 0.336 0.323 0. 3.81 . 
I 
I 
I 80 

I 
0.316 0.383 0.316 0.331 0.316 0.383 

I I 
90 0.310 0.385 0.310 I 0.328 0.310 0.385 I 

I I ! 
I I I I I 
I I 

I 

!-' 
ln 

·w 
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along the longitudinal line FD of the plate is shown in 

Figure (23). Figure (24~ is the plot of the deflection w 

along the free edge CD for different pretwist angles; and 

shows the anticlastic curvature obtained. 

6.2 Vibration of Nonrotating Pretwisted Cantilever Plates 

To investigate the effect of variation in pretwist 

and aspect ratio on natural frequencies and mode shapes of 

cantilever plates, computations are carried out for plates 

having aspect ratios of 1, 2 and 3. The total pretwist 

in the plate is varied from 0° to 90° in steps of 10°. A 

linear variation of pretwist along the length of the plate 

is assumed. The ratio of the br~adth to the thickness of 

the plate is taken as 16. For unity aspect ratio, 5x5 

mesh (30 nodes) is used; whereas for aspect ratios of 2 

and 3 a mesh of 7x3 (28 nodes) is employed. The variation 

of the . first five natural frequencies with pretwist is 

shown in Figures (25), (26) and (27) for the three aspect 

rctios considered. Markings B and T on the curves indi­

cate the bending and the torsibnal modes, respectively. 

The curve marked 2L in Figure (25) is for the vibration mode 

. with two longitudinal nodal lines. The variation of the 

first and the second bending frequencies, fo r all the three 

aspect ratios, are .shown on enlarged scale in Figure (28). 

Figure (29) shows the first five mode shapes, obtained for 



155 

unity aspect ratio, at different pretwist values. These 

modes appear in increasing order of frequency. The mode 

shapes are based on displacements in the z-direction alone. 

For convenience of drawing, the plate has been shown as if 

it was unfolded. For pretwist of 40°, the second and the 

third mode shapes may not be very accurate, as the corres­

ponding frequencies are very near to each other (Figure 25) 

and the Power method cannot be expected to give the eigen­

.vectors accurately under these cir~umstances. For the other 

two aspect ratios, the mode shapes resemble closely to 

those of pretwisted beams and are, therefore, not included. 

6.2.1 Mode with Two Longitudinal Nodal Lines 

In the vibration analysis of beams, three types of 

vibration modes are considered - bending along the major 

and the minor principal axes of inertia and torsion. If 

a beam is pretwisted the two bending modes get coupled. 

Examination of the mode shapes, for unity aspect ratio 

(Figure 29_) , shows the presence of an additional mode, 

appearing fourth in order of increasing frequency for all values 

of pretwist considered. This mode has two nodal lines (no dis­

placement in z-direction) almost parallel to the length of 

the plate. This mode cannot be predicted in a beam type 

analysis. The frequency associated with this mode increases 

with an increase in the value of pretwist. For the pretwisted 
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plate of aspect ratio 2, it appears as seventh mode. For an 

aspect ratio greater than 2, the frequency associated with 

this mode is considerably high and, therefore, is not of 

mu.ch practical importance. 

6.2.2 Bending Frequencies 

The variation of the fundamental bending frequency 

for the pretwisted cantilever plates of aspect ratios of 1, 

2 and 3 is shown in Figure (28}. The frequency of the plate 

having aspect ratio equal to 3 is virtually unaffected by 

pretwist; whereas for lower aspect ratios it decreases 

with an increase in the value of ~. Pretwisting the plate 

by 90° decreases the fundamental frequency by 14% when the 

aspect ratio is 1 and by 3.4% when the aspect ratio is 2. 

For aspect ratio of 3 the frequency increases by 0.3%. 

Analysing the fundamental frequency of pretwisted cantilever 

beams by the Rayleigh-Ritz method, Dawson (33) has shown 

that for b/t=l?, this frequency increases by 2% due to an 

increase of _pretwist from 0° to 90°. 

It is observed from Figure (28) that the fundamental 

frequency for ~ = 0° is somewhat higher for the plate of 

aspect ratio of unity. However, as the pretwist increases, 

the frequency of this plate decreases rapidly arid for ~ 

greater than 25° the value falls below the values for aspect 

ratios of 2 and 3. 
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The second bending frequency corresponds to the 

mode with one nodal line parallel to the fixed edge of the 

pretwisted plate. The variation of this frequency with the 

pretwist is shown in Figure (28) ,for all the three aspect 

ratios considered. The second bending frequency is observed 

to decrease considerably with an increase in the pretwist. In-

creasing the value of~from 0° to 90° decreases the second 

bending frequency by 51%, 46% and 45% for aspect ratios of 

1, 2 and 3, respectively. For pretwisted cantilever beam of 

the same breadth to thickness ratio (b/t=l6), Dawson (33) 

has shown that this frequency decreases from 6.36 w to 3.53 w 
0 0 

(44.5%), when the pretwist increases from 0° to 90°. w is 
0 

defined as the fundamental frequency of the beam when ~=0°. 

If an untwisted cantilever beam of breadth to 

thickness ratio of 16 is considered, the third bending mode 

would correspond to the fundamental bending in the stiff 

direction and would have a natural frequency of 16 w
0

• The 

fourth bending frequency would correspond to the third ben-

ding mode in the flexible direction (two nodal lines parallel 

to the fixed edge). The frequency of this mode would be 17.53 

w
0

• Since these two frequencies are close to each other, 

strong coupling occurs between them, when the beam is con-

si.dered pretwisted. The effect of pretwist on the bending 

vibrations of cantilever beams of b/t=l6 has been studied 

by Slyper (38) using the Stodola method and also by Dawson (33) 
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using the Rayleigh-Ritz method. It is shown that the third 

bending frequency decreases with pretwist, whereas the fourth 

bending frequency increases. 

The variation of the third and the fourth bending 

frequencies for the pretwisted cantilever plates is shown 

in Figures (26) and (27), for aspect ratios of 2 and 3, 

respectively. As in the case of cantilever beams, the effect 

of pretwist is to separate the two frequencies farther apart . 

. However, the separation between the two curves is observed 

to be more for the plate with L/b=3 than for the plate with 

L/b=2. The ratio of the fourth to the third bending frequency 

at ~=90° is 1.88 in the case of L/b=2 and 2.00 in the case 

of L/b=3. The corresponding value given by Dawson (33) for 

pretwisted cantilever beams is 1.98 (26.83 w /13.58 w ) , 
. 0 0 

which differs by only l~ from the value for the aspect ratio 

of 3. For the plate having L/b=l, the fourth bending frequen-

cy does not fall within the first six modes that are investi-

gated. 

A comment may be made here about the nature of the 

curve for the third bending frequency for the plate having 

L/b=l (Figure 25). The nature of this curve is observed 

to be different from that of the corresponding curves (3B) 

for the plates having L/b=2 and 3 (Figures 26 and 27). A 

probable reason for this is that the bending in the stiff 

direction of such a wide plate is accompanied by a larger 
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deformation in the flexible direction. This results in a 

much lower value for the frequency. The pretwist tends to 

decrease th~ deformation in the flexible direction and thus 

increases the value of the frequency, till it becomes 

sufficiently high to produce coupling with the fourth bending 

frequ~ncy. Thereafter the behaviour is identical to the one 

exhibited by long plates. In Figures (25), (26) and (27), the 

curves for the third bending frequency are drawn dotted between 

-the pre twist values of 0 ° and 10 °. This is due to the fact 

that this frequency cannot be obtained in the calculations 

for the untwisted plate, because of the deletion of the 

in-plane degrees of freedom when ~=b 0 • 

For pretwisted cantilever beams it is customary to 

express the natural frequencies as 'frequency ratios'. The 

th frequency ratio (f ) for the n bending mode, at a particular 
n 

value of pretwist is defined as 

= Frequency of the nth bending mode 
Fundamental bending frequency for ~=O ( 6 .1) 

In Table (9) the frequency ratios are given for plates having 

aspect ratios of 1, 2 and 3 at ~=60°. The corresponding 

values for the pretwisted cantilever beam are also included 

for comparison. The manner in which the beam values are 

approached with an increase in the aspect ratio is clearly 

indicated by these results. All the frequency ratios are 

observed to decrease with a decrease in the aspect ratio of 



Aspect 
Ratio 

I 1 

2 

3 

Beam* 

Beam** 

* 

** 

TABLE 9 

Bending Frequ~ncy Ratios of Pretwisted Cantilever Plates 

1J!=60° b/t=l6.0 

Freg.of Mode lB Freq.of Mode 2B ' Freq.of Mode 3B ·I Freq.of Mode 4B 
Fund.Freq.for iJ!=O Fund.Freq.for iJ! =~ Fund. Freq.for iJ!=-0 . Fund.Freq.for iJ!=O 

0.924 4.043 12.079 -

0.979 4.256 14.039 21.408 

1.001 4.422 14.934 24.660 

1.01 4.43 14.99 26.61 

1.01 

1 
4.41 15.02 26.59 

Reference (35) 

Reference (33) 

f-' 

°' 0 
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the plate. For L/b=l, the frequency ratios for the first 

and the second bending modes differ from the beam values by 

approximately 9.5%; whereas for the third bending mode the 

difference is about 24%. The frequency ratios for L/b=3 

are,more or less,the same as obtained for the beam, except 

for the fourth mode, where the values differ by approxi­

mately 8%. 

It could, therefore, be concluded that the pre­

twisted cantilever plates having aspect ratio higher than 

three may be treated as pretwisted beams without any 

appreciable error in the first few bending frequencies. 

6 .. 2.3 Torsional Frequencies 

The torsional frequencies increase rapidly with 

pretwist for all the aspect ratios considered; as can be 

seen from Figures (25), (26) and (27). Increasing the value 

of ~ from 0° to 30° increases the first torsional frequency 

by 69.5%, 51.7% and 35.6% for plates having aspect ratios 

of 1, 2 and 3, respectively. The corresponding increase in 

the second torsional frequency is considerably less. The 

increase in the torsional frequencies with pretwist is very 

sensitive to the breadth to thickness ratio of the plate 

and the values given here are for b/t=l6. 

In Figures (25), (26) and (27) the curves for the 

torsional frequencies are drawn so as to cross the bending 
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frequency curves. In the present analysis, the frequencies 

are obtained as eigenvalues of the matrix [K-l] [M] by the 

Power method. Obviously, the computations could not be 

carried out for the exact value of ~ at which the two fre­

quencies are identical. However, computations are carried 

out for points very close to this value of pretwist on 

- either side and natural frequencies differing by as little 

as 0.5% are obtained. Further, the nature of the mode shapes 

obtained on either side of the critical pretwist suggests 

that the two curves cross each other. 

The crossing of the curves for the bending and the 

torsional modes indicates that the coupling between these 

modes is negligible. This would, of course, be expected; 

since the shear centre and the centroid coincide for a 

rectangular section. In the case of pretwisted beams of 

rectangular section, the equations of motion for the 

bending and the torsional vibrations are separate and un­

coupled. For certain values of ~' therefore, the beam 

possesses identical frequencies corresponding to these two 

modes. In the case of plates, there is only a single 

equation of motio!1 involving the deflection normal to the 

plate surface. Even then, for cantilever plates, there 

exist identical frequencies for the bending and the torsional 

modes for certain values of L/b, when the plate is of 

uniform thickness. This has been shown by Plunket (139). 
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Gladwell (140) has shown that in the case of free 

vibration of a system with N degrees of freedom, there are 

always N mutually orthogonal principal modes, whether the 

natural frequencies are all different or not. In the 

present analysis, the finite element technique reduces the 

problem of the pretwisted plate to a multidegree freedom 

system. The ~odes would, therefore, be orthogonal; even 

when the two frequencies are identical. 

In Figure (25) the curve for the first torsional 

frequency (lT), for a plate having L/b=l, is observed to 

flatten out at higher values of pretwist. This is attributed 

to the presence of the additional mode (2L) with two longi­

tudinal nodal lines, in the neighbourhood of the torsional 

frequency. For higher aspect · ratios the mode 2L does not 

occur in the vicinity of the first torsional mode and, 

therefore, no such flattening is observed in Figures (26) and 

(27). Thus for low apsect ratio plates (L/b<2), the torsional 

frequencies cannot be considered as completely uncoupled; 

even when the cross-section is rectangular. Even though there 

is no coupling with the regular bending modes, there is a 

possibility of coupling between a torsional mode (one longi­

tudinal nodal line) and the additional mode with two lopgi­

tudinal nodal lines. As b/t increases, the torsional fre­

quency increases more rapidly with pretwist, resulting in a 

stronger coupling with the mode 2L. 
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In order to study further the coupling between 

the modes lT and 2L, computations are carried out for a 

very thin square cantilever plate (b/t=48). The variation 

of the frequencies with pretwist is shown in Figure (30) and 

the corresponding mode shapes in Figure (31). As in the 

previous case (Figure 29) , the mode shapes are based on the 

deflection in the z direction and the plate is drawn as if 

it was untwisted. Since in this case b/t is large, the 

third bending mode corresponds to two nodal lines parallel 
I 

to the fixed edge. The curves tor the torsional modes are 

observed to cross those for the regular bending modes (2B 

and 3B) . The strong coupling between the modes lT and 2L 

is evident from the fact that the two curves do not cross 

each other. Initially the frequency of _ mode lT increases 

and the frequency of mode 3B decreases with an increase in 

pretwist. This trend continues till the two frequencies 

are close to the value of the frequency for the mode 2L. 

At this point the trend of the frequency curves is observed 

to change rather abruptly. The curve for the mode 3B 

becomes the curve for the first torsional mode and vice-versa. 

In this case the coupling occurs approximately at ~=45°, 

and in that region the mode shapes are too complex to recognize. 

6.3 Vibration of Rotating Cantilever Plates 

The n~tural frequencies and the mode shapes are 

computed for plates of three different aspect ratios (1,2 
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and 3) I for various values of the nondimensional speed of 

rotation en from 0 to 3) I and the nondimensional radius of 

the disc er: from 0 to 5} and the setting angle (8 from oo 

to 90 °} • The nondimensional quantities rl -and r are defined 

by equation (5.4). The mesh sizes used for the plates having 

aspect ratios of 1, 2 and 3 are (Sx5), (8x4) and (10x3), 

respectively. The variation of the first five natural 

frequencies with the speed of rotation is shown in Figures 

(32), (33) and (34) for the three different aspect ratios, 

both for 0° and ~5° setting angle. The variation of the 

natural frequencies with the radius of the disc is shown in 

Figures (35), (36) and (37). The markings B and T on the 

curves indicate the bending and the torsional modes of 

vibration respectively, while the marking 2L is for the mode 

with two longitudinal nodal lines. The mode shapes for the 

plate of unity aspect ratio, at different speeds of rotation, 

are shown in Figure (38). 

All the natural frequencies are observed to increase 

with the speed of rotation and with the increasing radius of 

th~ disc. An increase in the setting angle causes a de-

crease in the natural frequencies. In Figure (34) the curves 

for the bending frequencies are observed to cross the curves 

for the torsional frequencies without any appreciable change 

in their nature. This suggests that the rotating speed does 

not produce any significant coupling between the bending and 
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the torsional modes of vibration. An examination of the 

mode shapes for · the plate· of unity aspect ratio (Figure 38) 

shows that the mode shape corresponding to the second bending 

frequency (2B) and the one with two longitudinal nodal lines 

(2L) are considerably affected by the rotating speed. As 

can be observed from Figure (32), the nature of the curves 

corresponding to these two modes of vibration is also 

appreciably affected when the two frequencies are close to 

each other. This indicates that the rotational speed 

produces significant coupling between these two modes of 

vibration. At higher values of aspect ratio the frequency 

associated with the mode 2L is too high and, hence, is 

not of much practical importance. 

6.3.1 Southwell Coefficients 

The natural frequency of a rotating cantilever beam 

(w ) is generally expressed as a function of the corresponding 
r 

frequency of the nonrotating beam (w) and the speed of ro-

tation, in the form 

w; = w2 + S0
2 = w2 + (SO + Sr + s

8
)n2 ( 6. 2) 

The component S of the Southwell coefficient (S) depends 
r 

only on the radius of the disc and vanishes for r=O. 

Similarly the component s 8 is a function of the setting angle 

only, vani s hing at 8=0. The component s0 is independent of 

rand e. For rotating beams the approximate expressions 

for the Southwell coefficients, for different mode s of 
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vibration, are available in the literature (References 55-58, 

65). These expressions are very useful for the rapid esti­

mation of the natural frequencies of rotating beams. 

In the present analysis the natural frequencies of 

rotating plates are computed for _ numerous values of n, r 

and 8 for aspect ratios of 1, 2 and 3. It is worthwhile 

trying to fit these results of the computed frequencies in 

relations of the form of equation (6.2) and obtain the 

Southwell coefficients for different aspect ratios. The 

results presented in this form should be more useful, from 

practical consideration~, than a long table of natural 

frequencies, at various values of the parameters. Also 

the trend of these computed expressions for S to approach the 

known values for the cantilever beam, when the aspect ratio 

is high, should provide a good test for the reliability of 

the method of analysis and the results. 

Briefly, the method used for determining the ex­

pressions for s is as follows: The values of r and 8 are 

first taken as zero and the natural frequencies are computed 

for various values of n. The value of s
0 

is determined by 

the direct search method in such a manner that the maximum 

percentage difference between the actual computed valu~ of 

wr and the value obtained by using equation (6.2), for any 

of the values of n, should be as small as possible. For 

determining s r' 
the natural frequencies at different values 



of r are calculated keeping 8=0 and n at a fixed value. 

Similarly for finding Se, r and n are kept constant and 

frequencies computed at different values of e. 

The expressions for s0 , Sr and Se for plates 
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of different aspect ratios are given in Tables (10), (11), 

(12), (13) and (14) for modes lB, 2B, 3B, lT and 2T
1 

respectively. The corresponding known expressions for a 

cantilever beam are also included in the tables. to 

illustrate the manner in which the beam values are 

approached with an increase in the aspect ratio. The mode 

(2L) with two longitudinal nodal lines is within the first 

five modes of vibration only for aspect ratio of unity. The 

Southwell coefficient for this case comes out to be 

. -2 
s = 3.985 + 1.544 r + 0.729 r ·- 3.839 . 2e Sln 

(Mode 2L for L/b=l) 

( 6. 3) 

For the bending modes of rotating cantilever beams, 

the values of s
0 

are given as constants, not depending on 

the speed of rotation (References 55 and 58). In the present 

analysis for rotating cantilever plates, this is observed 

to be the case for the second and the third bending 

frequencies, i.e the modes with one and two nodal lines 

parallel to the fixed edge of the plate. However, for ·the 

fundamental bending mode, it is observed that the value 

of s
0 

decreases somewhat with the speed of rotation. For 

this mode, a better fit is obtained by including a small 
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TABLE 10 

Southwell Coefficient for Fundame ntal Bending Mode 

Aspect so s Se 
Ratio r 

1 1.190-0.006902 - -2 -1.0008 . 26 l.57lr-0.0045r sin 

2 1.187-0.006602 - -2 -1.0001 . 2 8 l.560r-0.0045r sin 

3 1.186-0.00660
2 - -2 -1.0000 . 2 8 l.558r-0.0048r sin 

Beam* 1.184 i.s64r 
. 2 

(Ref.SS) -sin e 

Beam** 1.175 i.ss6r . 26 -sin 
(Ref .58) 

* n is assumed to be small in Reference (55) 

** Equation (35) of Reference (58) can be modified to this 
form 

TABLE 11 

Southwell Coe fficient for Second Bending Mode 

Aspect so s Se 
Ratio r 

1 6.61 - -2 -1. 27 3 . 2 8 8.74r-0.754r sin 

2 6.50 - -2 -1.004 . 2 8 B.73r-0.027r 

1 

sin 

3 6.50 - -2 -1.002 . 26 8.65r-0.018r sin 

Beam 

I 
6.5 

8.2r(approxf* . 26 (Ref .57) (approx)* -sin 
-

* Obtaine d from Figure 18 of Reference (5 7) 

** Obtai n ed from Figure 16 of Reference (5 7) 
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TABLE 12 

Southwell Coefficient for Third Bending Mode 

Aspect so s Se 
Ratio r 

1 16.84 - -2 -1.065 . 28 25.27r-0.512r sin 

2 17.11 - -2 -1.037 . 28 24.65r-0.26lr sin 

3 17.58 - -2 -1.021 . 28 24.6lr-0.082r sin 

Beam 18 (approx)* 22.3r (approx)** . 28 
(Ref .57) -sin 

*Obtained from Figure 18 of Reference (57) 

**Obtained from Figure 16 of Reference (57) 

TABLE 13 

Southwell Coefficient for First Torsional Mode 

Aspect so s SS 
Ratio r 

1 2.003 i.46ar -1.979 . 2e sin 

2 2.001 i.5o4r -1.995 . 28 sin 

3 1.967 i.515r -1.997 . 28 sin 

Beam* b2-t2 
1 i. 562r 

b2-t2 
sin

2
e I (Ref 65) + -2 . 

b2+t2 b2+t2 

*Equation (12) of Reference (65) can be expressed in this form 
.for a beam of rectangular cross-section and having no initial 
twist. 
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TABLE 14 

Southwell Coefficient for Second Torsional Frequency 

Aspect so s .se 
Ratio r 

1 7.22 a.3sr -1.907 
. 2 sin e 

2 7.82 9.76r -1.958 
. 2 

sin e 

3 8.14 io.a9r -1.964 
. 2 

sin e 

Beam Not Available Not Available Not Available 
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-2 term proportional to ~ in the expression for S , as given 
0 

in Table (10). It may b~ pointed out that in the analysis 

of rotating cantilever beams given in References (55 and 58), 

n is assumed to be small; 
-2 the quadratic term n , therefore, 

does not appear in such analysis. 

The expression for the component S of the Southwell 
r 

coefficient is given as a linear function of r in the analysis 

for rotating beams (References 55, 57, 58 and 65). For 

the bending modes of rotating cantilever plates, it is 

observed that a much better fit is obtained by taking the 

- -2 expression for Sr in the form s1r + s 2r . The values of 

the constants s
1 

and s
2 

for the different modes are given 

in Tables (10), (11) and (12). 

The value of s
8 

for the bending modes of a rotating 

· 2 
cantilever beam i.s - sin e. For the bending modes of rotating 

cantilever plates, Se is given by -s3sin2 e. The value of s3 

is observed to be somewhat higher than 1 and increases with 

a decrease in the L/b ratio (Tables 10, 11 and 12). For the 

torsional modes the value . of s
3 

is observed to approach 2 

with the increase in the value of L/b (Tables 13 and 14). 

The values of s 0 and Se for the first torsional mode 

of a rotating cantilever beam depend on the b/t ratio of 

the beam (Table 13). As b/t ratio increases, s
0 

and Se 

approach the values 2 and - 2sin2e, respectively. In the 

present analysis for rotating cantilever plates; all the 
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results for the nondimensional frequencies and the Southwell 

coefficients are independent of the b/t ratio of the plate. 

It may be added that the quantity b/t has to be large to 

justify the plate type analysis. 

In all cases the Southwell coefficients for the 

plates of aspect ratio of 3 are very close to the values for 

the cant ilever beams. It can, therefore, be concluded that 

the rotating plates having aspect ratio greater than 3 may 

be treat ed as rotating be~ms without any appreciable error 

in the natural =requencies. 

The Southwell coefficients given in Tables (10) to (14) 

along wi th equation (6.2) can be used for the rapid estimation 

of the natural fiequencies of rotating cantilever plates, 

for any value of the radius of the disc, the setting angle 

and the speed of rotation. Within the range of these para­

meters considered in the present investigation, these approxi­

mate frequencies are observed to be within 2 percent of the 

actual computed frequencies. An exception must, however, 

be made for the modes 2B and 2L for the aspect ratio of unity. 

In this case when the values of r, n and e are such that the 

frequencies corresponding to these two modes are close to each 

other, the approximate values. of frequencies obtained from 

equation (6.2) may show somewhat higher deviation from the 

actual frequencies. The range of the parameters r, n and 6 

investigated here should normally cover all practical cases 
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encountered in the present day turbomachinery blading. 

6.4 Vibration of Rotating Pretwisted Cantilever Plates 

In a rotating pretwisted plate, the centrifugal 

forces produce certain pseudo-static deformation and the 

vibrations of the plate occur about the deformed configura­

tion. The method described in Section 4. 2 is used to 

study the nature and the amount of the pseudo-static 

deformation and the effect of rotation on the natural fre­

quencies of pretwisted cantilever plates. The computations 

are carried out for a plate having L/b=2 and b/t=l6. The 

radius of the disc is taken to be twice the length of the 

plate (r=2) . 

6.4.1 Pseudo-Static Deformation 

To investigate the effect of the pr~twist (~) and 

the setting angle at the root (8) on the deformation produced 

by the centrifugal forces, computations are carried ont for 

values of ~ from -45° to +45° and in each case the 

value of 8 is varied from 45° to 90°. A mesh size of 

(8x4) is used. 

The results fer the pseudo-statid deformation are 

obtained in the form of nodal displacements. Examination 

of these results reveals that the plate, in effect, undergoes 

a torsional deformation through an angle ¢, in addition to a 
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small longitudinal displacement, In the deformed configuration, 

therefore, the plate possesses a total twist of ~+¢. In the 

present analysis the positive directions for ~,e and ¢ are 

as shown in Figure (39). The variation of the pseudo-static 

torsional deformation (©) with the amount of pretwist in 

the plate is shown in Figure (40), for different values of 

the setting angle. Although, the nature of the variation is 

observed to be quite complex, several conclusions can be drawn 

regarding the value of the torsional deformation. 

Except for the case when the magnitude of the pre­

twist is very small (say less than 10°) ,¢ is observed to be 

negative for the positive values of ~ and vice-versa; which 

means that the centrifugal forces tend to untwist the plate. 

The values of ¢ are identical for positive and negative 

values of pretwist only for 8=90°. This would, of course, be 

expected since for 8=90° a change in the sign of ~ does not 

alter the basic problem, for the case of rectangular cross­

section plates. The same would also be true for 8=0°. In 

the range of the values of 8 and ~ considered, the torsional 

deformation is observed to be larger when both 8 and ~ have 

the same sign, than in the case when they have opposite sign. 

Thus, for 6=45° the value of ¢!02 
is approximately -4° .when 

~=20° and the corresponding value for ~=-20° is only about 

1.4°. 

In the case of positive pretwist, the torsional 
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deformat ion is found to increase when e is decreased from 

90° to 45°; also the value of~ at which the maximum occurs 

is obse r ved. to decrea se. For values of pretwist between 

-15° and -45° the torsional deformation is observed to 

be practically the same for values of 8 lying between 45° 

and 75° . Thia may be of some importance, since many of the 

turbomachinery blades .have .values of 8 and ~ in this region. 

The present analysis indicates that under certain 

·combinations of ~ and e, the pseudo-static torsional defor­

mation can be significant and must be accounted for. 

6.4.2 Natural Frequencies 

In order to study the effect of the pretwist and 

the speed of rotation on the natural frequencies, a canti­

lever plate of aspect ratio equal to 2 and b/t=l.6 is analysed. 

The radius of the disc is taken as twice the length of the 

plate (~=2) and the setting angle is taken as 90°. In the 

computations, a mesh size of (7x3)is used. The variation 

of the natural frequencies with the angle of pretwist, for 

a constant speed of rotation (~=l), is shown in Figure (41). 

The effect of changing the speed of rotation on the natural 

frequencies is shown in Figure (42) for a plate having ~=30°. 

The natural frequencies for this plate are also computed 

neglecting the pseudo-static deformation, in order to 

investigate the effect of this deformation on the natural 
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frequencies. 

An examination of Figure (41) shows that the torsio­

nal frequency curves cross the bending frequency curves as 

in the case of nonrotating pretwisted blades. Thus, the 

rotation does not produce any appreciable coupling between 

the torsional and the bending motions when the plate is of 

uniform thickness. This observation is already known to be 

valid for rotating pretwisted beams; where the analysis for 

~he bending and the torsional vibrations is carried out 

separately (References 64 and 66). 

In Table (15), the effect of pretwist on the natural 

frequencies of a rotating plate is compared with the corres­

ponding effect on the frequencies of the nonrotating plate. 

In both the cases, the first two bending frequencies are 

observed to decrease with increasing pretwist; while the 

torsional frequencies increase with the pretwist. With 

an increase in the value of ¢, the fundamental frequency 

decreases faster in the rotating case than in the case of 

the nonrotating plate. The percentage decrease in the second 

bending frequency is observed to be practically the same in 

both the cases. 

With increasing pretwist, the torsional freque~cies 

for the rotating plate do not increase ~s rapidly as for the 

nonrotating plate. An increase in the value of ~ from 0° 

to 40° increases the first torsional frequency by 79.7% and 



TABLE 15 

Effect of Pretwist on Natural Frequencies of 
Rotating and Nonrotating Plates 

L/b=2.0 , b/t=l6.0 

Vibration 
Freq.for ijJ=40°/Freq.for ijJ=QO 
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Mode Nonrotating Plate R~tat~ng Plate 
(D=l,r=2,8=90°) 

First Bending 0.985 0.950 

Second Bending 0.807 0.817 

First Torsional 1.797 1.621 

Second Torsional 1.387 1.318 
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the second torsional freq~ehcy by 38.7% when the plate is 

not rotating. The corresponding values for the rotating 

plate (~ = 1, r = 2, 8 = 90°) are observed to be 62.1% and 

31.8%,respectively. 

In the case of a nonrotating cantilever plate of 

b/t=l6 and ~= 0°, the third and the fourth bending frequencies 

are very close to each other . An increase in the pretwist, 

therefore, produces a strong coupling between these two 

modes (Figure 26). As the speed of rotation increases, the 

values of the frequencies corresponding to the modes 3B and 

4B, at ~=0° , get farther apart. The coupling between these 

two modes; therefore, gets weaker. In the present case the 

speed of rotation considered has separated these two fre­

quencies considerably at ~=0° (Figure 41). Hence, there is 

practically no coupling betwe en the modes 3B and 4B with 

increase in the value of pretwist. The two frequencies in­

crease slightly with increase in the value of ~J. 

The effect of increase in the speed of rotation, on 

the natural frequencies of a pretwisted cantilever plate, 

is shown in Figure (42 ). The dotted curves correspond to the 

case when the pseudo-static deformation is not included. In 

such a case the plate vibrates about its initial confiquration 

and· all the frequencies are observed to increase with the 

speed of rotation. 

For the v alu0s of the parameters considered (~=30°, 
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6=90° and r=2), the pseudo-static deformation tends to un-

twist the plate; as can be observed from Figure (40). The 

effect of including this deformation should therefore, be 

similar to that of decreasing the value of pretwist. Refer­

ring to Figure (41), it is observe d that the frequencies 

for the mode s lT;2T,3B and 4B decrease with a decrease in the 

value of ~. This is reflected in Figure (42) by the fact 

that the solid curves are below the dotted curves. For the 

same reas on the solid curve for the mode 2B is above the 

dotted curve; while the two curves practically coincide for 

the mode lB. 

For the values of the parameters considered, the 

decrease in the torsional frequencies, produced by the 

pseudo-static deformation, is observed to be greater than the 

increase caused by the rotation. The riet effect is that the 

torsional frequencies decrease slightly with increasing speed 

of rotation (Figure 42). In the case of mode 3B, the 

increasing effect of rotational speed dominates the de­

creasing effect of pseudo - static deformation for n less 

than 1.25; but at higher speeds the effect is opposite. 

The low aspect ratio turbomachi:nery blades are, 

generally, very stiff and have a high value for the funda -

. mental frequency. In practice, therefore, the value of n 

may not exceed 1.0. In such cases, the pseudo-static 

deformation does not affect the natural frequencies appreciably. 
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TABLE 16 

Nondimensional Frequencies (Sr) of Rotating Pretwisted 
Plate at Different Values of Disc Radius 

L/b~2.0,b/t=l6.0,~=30°,~=l.0,8=90° 

Vibration Mode r=O 

I 
r=1 r=2 

First Bending 3.632 6.429 7.630 

Second Bending 19.845 21.619 23.919 

Third Bendjng 53.055 53.884 54.447 

Fourth Bending 63.133 63.550 64.560 

First Torsional 22.500 22.337 21.599 

I Second Torf:ional I 60.408 59.785 59.853 I 
I I I 
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This is evide nt from Figure (42). 

The natural fre quencies of the rotating pretwisted 

plate at different values of the disc radius are given in 

Table (16). The first and the second bending frequencies 

are observed to increase substantially with the disc radius. 

The effect on the frequencies of the third and the fourth 

bending modes, as well as on the torsional frequencies is 

small. 

The number of the physical variables, on which the 

natural frequencies of a rotating pretwisted cantilever plate 

depend, is quite large~ In addition, the pseudo-static 

deforma tion introduces further complexities in the manner in 

which the frequencies depend on the physical variables. 

No attempt i s , therefore, made to derive any empirical 

formulae for the nat:ural frequencies of rotating pretwisted 

plates. 



CHAPTER 7 

CONCLUDING REMARKS 

A method based on finite element technique is developed 

for calculating the first few natural frequencies and the cor­

responding mode shapes of rotating and nonrotating low aspect 

ratio turboma chinery blades. The blades are assumed to be 

fixed at the root and the elasticity of the disc is not con­

sidered. The blade is treated as an assembly of small flat 

triangular elements. 

The accurac y of the method is tested by solving severa l 

bending and vibration problems of plates and shells, for which 

analytical or experimental results are available, including 

the p r oblem of a pretwisted tapered cantilever plate. The 

method is observed to give a good rate of convergence. The 

first few frequencies can be obtained quite accurately, whe n 

the number of nodal points is approximately 25 and the number 

of the triangular elements is about 40 or more. 

A new bending stiffness matrix for a triangular 

element is used, based on a partially conforming displacement 

function. This function satisfies transverse slope continuity 

along one of the sides of the element. .The solution of a 

few test problems suggests that this stiffness matrix gives 

183 
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somewhat better results than the other existing stiffness 

matrices with the same number of degrees of freedom for the 

element. 

The effect of variation in the aspect ratio, the 

amount of pretwist, the speed of rotation, the disc radius 

and the setting angle on the natural frequencies and the mode 

shapes are investigated. For this study, the blade is idealized 

as a pretwisted cantilever plate. 

The fundamental frequency of a nonrotating canti-

lever beam is known to increase slightly with pretwist. For 

lower values of aspect ratio (L/b < 3), it is observed that 

this frequency decreases with an increase in the pretwist. 

The deflection analysis of a pretwisted cantilever plate due 

to tip loads shows that the total deflection at the points of 

application of the loads incre~ses with an increase in the value 

of pretwist. Both these results suggest that the bending 

stiffness of a cantilever plate is decreased by pretwisting. 

The torsional stiffness, however, is considerably increased 

and results in a rapid increase of the torsional frequencies 

with pretwist. 

th The frequency ratio (frequency of the n mode/ 

fundame ntal frequency of the untwiste d ~late) , for all the 

bending modes of a pretwisted plate, is observed to be lower 

than the correspo~ding value for a twisted beam. The 

deviation from the beam value decr eases as the aspect ratio 
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increases; and for L/b > 3 the two values are almost identical. 

In a beam type analysis of blades, the flapwise ben­

ding, the chordwise bending and the torsional vibration modes 

are considered. In the case of plates an additional bending 

mode, with two longitudinal nodal lines, is also present. The 

frequency corresponding to this mode is sufficiently low for 

L/b < 2 and is, therefore, of practical importance. 

For pretwisted cantilever beams of rectangular cross­

section the torsional and the bending motions are uncoupled. 

This is also observed to be the case for pretwisted canti­

lever plates of uniform thickness. However, the torsional 

modes exhibit a strong coupling with the additional mode with 

two longi ti.::.dinal nodal lines; when the. values of b/t, l4J 

and L/b are such that the two frequencies are close to each 

other. 

The natural frequencies of rotating cantilever plates 

are observed to increase with the speed of rotation and with 

an increase in the radius of the disc. An increase in the 

setting angle causes a decrease in the natural frequencies. 

For cantilever beams it is customary to express the frequency 

of the rotating beam in terms of the corresponding frequency 

of the nonrotating beam, the speed of rotation and the ,South­

well coefficient. The expressions for the Southwell coefficients 

for cantilever beams are available in the literature. From 

the results of present computations, the expressions for these 
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coefficients are obtaine d for rotating cantilever plates. 

These expressions permit a rapid estimation of the natural 

frequencies · at any speed of rotation, disc radius and the 

setting angle. Within the range of these parameters considered, 

the approxima te values of the frequencies, thus obtained, do 

not differ from the actually computed values by more than two 

percent . 

For rotating cantilever beams the Southwell coefficient 

~ncreases linearly with the radius of the disc. In the case of 

the b e nding frequencies of rotating cantilever plates, the 

coeffici ent contains a quadratic term in the radius, in ad­

dition to the linear term. The bending frequencies of a 

rotating cantilever plate decrease somewhat more with an in­

crease i n the setting angle, as compared to a ro.tating canti­

lever beam. With an increase in the aspect ratio of the plate 

the Southwell coefficients are observed to approach the 

corresponding expressions for the beam. For L/b > 3 the two 

express i ons are practically identical. 

The centrifugal forces produce pseudo-static defor­

mation in a rotating pretwisted cantilever plate; and the 

vibration of the plate should be considered about the deformed 

configuration. For the parameters of the pretwisted plate 

considered (b/t=l6, L/b=2 and r/L=2), this deformation 

tends to untwist the plate when the initial pre t wist is large 

(~ > 15°). The pseudo-static deformation depends not only on 
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the magnitudes of the initial twist and the setting angle, 

but also on their directions relative to each other. 

The effect of rotation on the natural frequencies of 

a pr~twisted cantilever plate can be divided into two parts. 

The first is due to the increased stiffness caused by the 

centrifugal stresses, resulting in an increase in all the 

frequencies. The second effect is due to the change in the 

pretwist of the plate produced by the pseudo-static defor­

mation. This may cause an increase or a decrease in the dif­

ferent frequencies, depending on the direction of the 

deformation and whether the frequency has the tendency to 

increase or decrease with pretwisting. When the speed of 

rotation is small (~ < 1), the pseudo-static deformation does 

not affect the natural frequencies appreciably. If the 

parameters of the pl~te are such that the centrifugal forces 

tend to untwist the plate, the decrease in the torsional 

frequencies due to the second effect may be more than the 

increase due to the first effect. As a result the torsional 

frequencies may even decrease with an increase in the speed 

of rotation. 

From the survey of the analytical methods for the 

vibration analysis of turbomachinery blades, many area~~ in 

which a considerable amount of further investigation is needed, 

can be identified. In addition, the present method of analysis 

can be extended to study several other aspects of the problem. 
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The new developments in t~e finite element technique could 

be incorporated to imp~ove the present method and the results. 

Some of the areas for further research are indicated below: 

(i) The small elements, into which the middle surface 

of the blade is subdivided, are considered flat in 

the present study. Recently, curved shell elements 

have been developed for the finite element method of 

analysis. It would be worthwhile to try these 

elements to investigate the extent of improvement that 

can be obtained in the results. 

(ii) An actual blade is not rigidly attached to the disc. 

The boundary conditions in the present approach may 

be modified by including springs at the root of the 

blade so that the slope at the root is proportional 

to the value of the moment at the root. By changing 

the stiffness of the springs, the effect of root 

flexibility can be studied. 

(iii) Although the formulation of the problem of a rotating 

pretwisted blade, including the Coriolis acceleration 

is given in Appendix II; the present results are ob­

tained by neglecting this acceleration. It would be 

of interest to study the effect of including the 

Coriolis forces on the natural frequencies and the 

mode shapes. Since the Coriolis forces result in a 
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damping type matrix, any viscous damping present in 

the system can also be included in the analysis. 

(iv) A method of reducing the degrees of freedom in the 

vibration problems is given by Anderson et al. (80). 

By applying the method for the vibration analysis 

of a cantilever plate, it is shown that the matrices 

can be considerably reduced in size without appreciably 

affecting the first few natural frequencies. The 

method may be tried for the vibration analysis of 

shells, where the need for this reduction is more 

acute. 

(v) Once the method of reducing the degrees of freedom, 

significantly, is established, the vibration analysis 

of blade-disc assembly can be carried out. The disc 

may be subdivided into elements by drawing concentric 

· circles and radial lines. The properties of the 

elements, thus formed, are given by Olson et al. (141). 
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FIGURES 
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Figure 1 

Side View of Pretwisted Blade of 
Rectangular Section Looking Towards 

Root Section 
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Sketch of a Blade Without Pretwist Mounted 
on Rotating Disc at Setting Angle e 
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Figure 3 

Lumped Mass Model of a Blade 
Showing Two Adjacent Segments 
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Effect of Root Flexibility on 
Flexural Frequency (Ref. 90). 
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A Simp lified Model for Blade-Disc Assembly 
Sugges ted by Ellington and Mccallion (94) . 
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Figure 6 

A Si mplified Model for Blade-Disc 
As s embly Suggested by Wagner (97) . 
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Natural Frequencies and Mode Shapes of a 
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Effect of Inlet Guide Vane Setting Angle 
on Flutter Vibration Amplitude (Ref .115) 
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An Illustration of Campbell Diagram 
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Figure 11 

(a) Subdivision of a Blade Into 
Triangular Elements 

(b) Local Coordinate Axes for an 
Element 
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Figure 12 

An Illustrati on of· the Method of Assembling 
the Element Stiffness Matr i ces. 
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Figure 13 

(a) Subdi~ision of a Cantilever Plate 
Into Trian~ular Eleme~ts 
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(b) Local Coordinate Axes for an Element. 
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Figure 14 

Sketch of a Blade Mounted on Rotating 
Disc at Setting Angle 8 
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An Illustration of the Method of Lumping 
the Centrifugal Forces at the Nodes 
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Figure 16 

Subdivision of Simply Supported 
Plate Into Triangular Elements 

(Me sh 8x8) 
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.Ftgure 21 

Bending Frequencies of a Pretwiste d Cantilever Plate 

L = 6", b = l", t = 0 . 068", E = 30 x10 6 psi, µ = 0.3, 

Density= 0.284 lbs/in3 , Mesh (10 x2 ). 
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Figure 22 

Natural Frequencies of a Tapered Pretwi s ted 
Cantile ver Pla te 

L/b=2, Mesh (7 x3). 
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Deflection (w) along the Line FD of 
Pretwisted Cantil~ver Plate Loaded at 

Free Corners 

L/b=l, b/t=48, Mesh (6x6) 
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Figure 25 

Variation of Natural Frequencies with 
Pretwist for a Nonrotating Plate 

L/b=l, b/t=l6 , Mesh (S xS) 
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Figure 26 

Variation of Natural Freque ncies with 
Pretwist for Nonrotating Plate 

L/b=2, b/t=l6, Mesh (7 x3) 
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Variation of Natural Frequencies with 
Pretwist for a Nonrota.ting Plate 

L/L=3, b/6=16, Mesh (7x3) 
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Mode Shapes of a Nonrotating Pretwisted Canti lever Plate 

L/b=l, b/t=48, Me sh (5 x5 ) 

' 



t 
C\l_J 

3~ 
II 
"-

~ 

50 --~-------

40 -

30 

~~ '"""' ' 

~ 

20 

_ ... 
1T -------10 ---

0 L--------.....L.----·---'--------1 
0 1 2 3 

--t>-
__ .,...,. 8= 45° 

·Figure 32 
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Variation of Natural Freque ncies with 
Speed of Rotation for a Cantilever Plate 

L/b=2, r=O, mesh (8 x 4) 



A 

I 
~ 
(\J_J 

'-

3 
II 
'-

~ 

80 

. 70 . 

60 -

50 

40 -

28 
30 

20 
~~~ 

10 

0 O.__~~~~-~~~-L~~~__,, 
1 2 3 

-n --t>-
~ 6=0° 

Figure 34 
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APPENDIX I 

D'Almbert Forces for a R~!ating Vibrating Blade 

Referring to Figure (43), if XYZ is a system of 

fixed coordina t e a x es and xyz a system of moving coordinate 

axes, the absolute acceleration of a point P can be 

expressed as 

where 

+ 
r - Absolute acce leration of point P 

->-
R = Transl a ti o n a l acceleration of xy z system 

~ = Angular v e locity of xy z system 
• 
5 = Angular acc eleration of xyz system 
• 
+ pr = Veloc i t y of point P relative to xyz system 

(I .1) 

-+ 
pr = Accel8 r a tion of point P relative to xyz system. 

~1e proof of equa t i on (I.l) is given in the texts on 

eleme n tary dynamj.cs . 

Th~ s equat~on can be us e d to d e termine the accelera-

tion of point P (Fj.g u re 14) on the middle surface of the 

rotating a.nd vibrating blade. 
7 -t . -+ 

If i, J and k are the unit 

v e ctors a long the x, y and z a xes,respectively, it can b e 

seen that 

0. = - O(sinO j + cos8 k) (I. 2) 
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If u, v and w are the displacements at point P along the 

x ; y and z axes, then 

-+ -r -t -:+ 
(I. 3) p = (x+u) i + (y+v) J + (z+w) k 

• 
-+ . -r • -t • k (I. 4) Pr = u l. + v J + w 

-+ .. -r .. -t w k (I. 5) Pr = u l + v J + 

The translational acceleration of xyz system is the centri-

petal acceleration, given by 

:;. - "2 -r R = H r l (I. 6) 

Since the disc is assume d to rotate at constant angular 

speed 
• 
0 = b (I. 7) 

Substituting equations (I.2 to I.7) in equation (I.l) 

:;.. 
r = -[o2 (x+r+u) - li + 20(~ sine - ~ cos8}J! 

-(02 { (y+v)cos 2 8-(z+w)sin8cos8}-~ + 20u coseJJ (I. 8) 

-[o2 {-(y+v)sinecose+(z+w)sin2e}- w - 20u sine]k 

The d'Almbert force per unit volume of blade is -p~. 

Its components along x, y and z axes, therefore, are 
2 .. • • 

Fx =pO (x+r+u ) - pu + 2pO(w sine - v case) 

2{ 2 . } .. 2 • =pO (y+v)cos e-(z+w)sinecose ~ pv + pOu case (I. 9) 

=p0 2 {-(y+v)sinecose+(z+w)sin2e}- pw ~2pnu sine 

In the case of vibration analysis of a rotating 

cantilever plate the in-plane moti on is not considered and, 

therefore, u=O and v =O. Also the middle surface of the plate 
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lies in the xy plane and hence z=O. Substituting in equations 

(I.9), the d'Almbert forces per unit volume of the rotating 

plate are 

2 • sine F = prl (x+r) + 2prlw x 
2 2 sinecose} (I. 10) F = prl {y cos e - w y 
2 sin 8cos8 sin2e}- pw Fz = prl {-y + w 
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Formulation of the Problem of Rotating Blade 
Including- the Coriolis Force s 
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When a rotating blade undergoes vibratory motion, 

the Coriolis forces in the x,y and the z direction (Figure 

14) are given by equation (4.37). These can be expressed as 

where 

F x 
• 
u 

(II.l) 

• w 

O cose -sine 

0 0 (II.2) 

sine 0 0 

Transformation of equation (II.l) to the local axes of 

the element gives 

where 

F' 
x 

F' 
y 

F' 
z 4 

u' . 
v' (II. 3) 

• w' 

(II. 4) 

The equivalent nodal for_ces correspondi.ng to these distri-

buted force s can be obtained by chan ging the force vector 



in Equation (4.51). This gives 

u.· 
• v' 

;, I 

dx'dy' 

Substituting for the velocities from equation (4.45) 

where 

[P 3 J ~ 2p0[P~l)T(If t[N)T[e 4 J [N]dx'dy' J[P~l] 
Introducing the rotational displacement s e• and the 

2 
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(II.5) 

(II. 7) 

corresponding fictitious couples M' at each node, the vector . z 

of 18 nodal forces, corresponding to the Coriolis forces , 

is given by 

{F'} = -[C' ){tS1} 
e 4 ed e (II. 8) 

where 
c11 I c12 I 13 

ed 1 _e~ I Ced 
- - -

[CI ) = c21 I c22 I c23 (II. 9) 
ed ed ed ed 

--t---+--
c31 c32 . c33 

ed I ed I ed 

and 

0 

0 
Prs 

[Crs) 3 
0 (II.10) = ed 

0 

0 
- - - +-
0 0 0 0 0 I 0 
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rs [P 3 ] are the S x S subma t rices obtained by partitioning 

the matrix [P
3

] of equation (II.7). Since the matrix 

~~d] is due to the Coriolis forces, it is defined as the 

'Coriolis Matrix ' for the element. 

The transformation to the common global axes is 

accomplished by the relation, 

where the matrix [T] is given by equation (3.31). The 

assembly for these element matrices i.s carried out in 

exactly the same manner as for the stiffness and the mass 

matrices. The final equation of motion would be 

(II.12) 

where [Cd] is the final assembled Coriolis matrix. The 

other matr i ces are the same as in equation (4.61). 

This equat ion is of the standard form encountered in 

the multide gree damped vibration problems and, therefore, 

does not pose any basic problems for solution, except for 

the me mory of the computer. In addition, if the actual 

viscous da~ping forces are also present in the blade, 

these could be added to the matrix [Cd]. 
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c Al\E lJETLi-<l'ilf\lr~LJ· THI::_ i'1i\Tl-\lX lS lf'JITlALLY ScT TU ZEf-<u .. 

c -----------------------------------------------------

c 

RAD I US = ROVERL*AR 
~HE= /\\L 0~-NB-i<-2 

NRP = NL*(NG+ll*2 
f\lr-< = ~,iL~r(NB+lJ4rj 

N~P = NRP*(NRP+ll/2 
1\1 ~.,, = N R ,";- ( N R + 1 I I 2 
QO 3 I = 1 ,f\I \:J 
CK ( I I = U. 
IF(I.u:..r\l\IJPlCkP(ll = Q. 
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c /1WDE NU1 1 l0Ef-=<S (I ,J,Kl M<E GE1\~l::_i-<f\Tlu. P1-<.uPEl--n ll::_S II~ Hit. 
C LOCAL AXlS A/\I:_ UlTi:::.1-<f"-llNc.L! A/Ju STUl{LLJ Ui'J T.L\f'l::. l. 

c -----------------------------------------------------
R. E \.1,/ I ~JD 1 
DO 5 N=l,2 
Ylll = -0.5-1./NB 
1<1-<. = u 
UO 5 L=l,Nb 
Y(ll = Y(ll+l./Ni3 
YIZJ = Ylll+l./NU 
Y(3l = Ylll 
IF(N.EQ.2lY(31 = Y(21 
f<R = KR+l 
LZ = (L-ll*(NL+ll-KR 
LJO 5 M=l,f\jL 
x ( 1 ) = 1V1 ~-MU N L 
XIZl = (~-ll*AR/NL 

X(3l = XUJ 
lF(NeEU.2lX(31 = X(ll 
!JO 4 I= l '3 
Z!Il = o. 
COf\IT I NUE 
LZ = LZ+l 
I = LZ+l 
J = I+NL-1 
lF(;ji.Eu.llJ=O 
K = LZ 
IF(N.Eu.21K=LZ+NL+l 
IFIM.[O.l.AND.N.EU.llK=u 



c 
C TH F: D I 1-.Z EC T I 01\1 C () S I i'l [ S Ur T Hi~- LL! Ci'.. L !\XI::_ S ( /IL, '1 u ) A 1'1 LJ TH I::_ 

C L 0 CAL C 0 0Fff1 Ir~ ,ii T E S U F T H [ l\HJ LJ E .S ( XX , Y Y J !\ R [ u [ T r I? '1 Lff IJ. 

c 

c 

Al = (X(Zl-X(l) )-;,"-l(-2+(Y(2l-y(lJ HH<,:+(ZUl-L_(ll HHi-2 

/-\2 = (X(3J-X(2) h"-;(-2+(y(_:,J-y(i_J J-JH,c,,:+(L(.3i-l(2i i-ii-',<-c: 

I\ 3 = ( x ( 1 J - x ( 3 ) ) 'k * 2 + ( y ( l ) - y ( 3 ) J -l:- -)(- L + ( z ( l I - z ( 3 I ) ',;-if 2 
Y Y ( 2 l = SUR T ( 1\ 1 l 
Y Y ( 3 ) = ( A 3 + t• 1 - /\ 2 l I ( 2 • u -le Y Y ( ? i i 

XX(3) = SURT(ArlS(A3-YY(3J**21 l 
Cf1 L L L flY1 D 11 ( X , Y , Z , A U'i D l 

c COt.FFIClcl'JlS c1,c2,C3(1::_uUf\TlUI~ 3·1'-J iAh:t_ uLTcl-.(1\111\li::_u. 
C Tl-\ATIU = THICfUJt:SS !\T (J1-.(lLili'l/l'iAXl1'IU~·I TrlIU<i'H::~SS 

c 

1 

1 
c 
c 
c 

c 
c 
c 
c 

c 
c 
c 
c 

5 

c 
r 
c 
c 
c 
c 
c 
c 
c 
(' 

H~ = T8 
IF(TR.LT.(2.-TbllTI? = 2.-Tli 
IF(TR.LT.(TL+TU-1.) lTI-< = TL+To-1• 
I F ( TI~ • LT • ( TL - Tf\+ 1 • l ) TR = TL - TH+ 1 • 
TRATIO = le/TR 
C 3 = ( ( TL - 1 • ) -x- X ( l l I AF<+ 2 • -le (T o-1 • H; Y ( 1 J + 1 • Hq I·: 1\T l ·.J 

C 2 = ( ( ( TL -1 • J ->;- X ( 2 J I A 1_;; + 2 • -l< ( Tu -1 ~ i ->i- Y ( .i i + 1 " J '-i-T I\ 1-1 T l u-c 3 i I 
YY(2) 
Cl = ( ( ( TL-1. )-*X ( 3 I I Al-\+2 .-* ( TLi-1_. i -l0 Y ( 3 i +l. J '"-Tl.Ziq I u­
C3-C2*YY ( 3 l l/XX(3l 

CALL AINVRS (XX,YY,AJ 

HIE 1•1/\T1--nx (UlJ) OF UUUbLc I1\JTt::_l.J1=<ALS lS Ut:'.Tilll•Jf:U. 
L!LJ(,.\,l'~l IS THE Vt1LUE UF liHl::_Gl-<AL UF XX->Hi-(1•1-lHcyy-;H<(1i-ll 

CALL DUbINT (XX,YY,DUl 

THC: Pl~OPEl~TIES OF t-_Li::_r',f:1'iTS l-\Euurn1::_u ll'J Ll\TTl::_R 
CALCULATIONS ARE STOREu. 

vi 1;; I TE ( 1 l X ' Y ' Z , I , J ' K , XX ' Y Y ' ;_;,, L 1', u ' \.__ 1 , C 2 , \.__ 3 , n , u t-' 
f-<Ei.AI I ND 1 

TH E I i'l - P LI\ ~1 E ST I FF N ES S i /:A T R I X FU i~ TH E P L 1", T E A ,'·J D 
T H E E Q U I VA LEN T f\J 0 C /'1 L F- Qi-\ C E 5 CU i-\i-,_> l:_ SI-'() 1-HJ I i'; G Tu TH I:: 
UIS H< I SU H:_lJ I l'J-P L/\r-l I::_ CllH i-< I FUlJf\l f u1,ClS /11--<E ut:_ Tt:: 1-\1-iI 1.,I t lJ. 

THE VECTUI-\ UF IKJU/1L 11-J-PU\i~c U I SPL/~CE1 ,1::_1\JTS IS 
CALCULATED. THI::_ ACTUAL UISPLAClMLNT VlCTOk IS THt 
v E c T 0 R D I s f:-J 0 u T f\ I N E I) H lf'\ l:_ ji u L T I f-J L I t u li y ( I,, J\ x I :··1 u IJ 
THICKNESS**2/12.l 



c 

1-\EW I ND 2 
UU 6 L= 1 ,1nE 
READ111x,y,z,1,J,K,xx,yy,AL~U,cl,L2,C3,A,uu 

SPD = IRUTC**2l*lbETAl**~l/IAR**41 

CALL EK PF PS I X , Y , XX , Y Y , AL r·l U , C l , C 2 , C 3 , I~ i-\ u I LJ S , V , T rl LT A , SP U , 
1 Du,o:P;FP,sl 

WRITE121I,J,K,xx,yy,c1,c2,c3,ALMU,A,DD,s 
CALL GROUP(I,J,K,L,NTE,6,EKP,cKP,FP,P,oJ 

6 CONT If~UE 
CALL I l'l VS Y H I CI-'.. P , i ,ii-<. P , I LI< h l 
I F I l E f~ I../. • l\i t_ • u ) i,1J I../. I T E ( 6 , I J l I:_ I../. F~ 

7 Ful~i,1ATl5X,5Hlt:1-\f-<.=,I3l 

IF!IERR.NE.UlSTOP 
DO 8 I= 1 , NI=< P 
UISP( I I = CJ. 
DO 8 1<=1,NRP 
Ir I I .GE.l<l L=I-X-( I-1 I /2+K 
IFII.LT.~lL=K*!K-1)/2+1 

8 0LSP(Il = UISP(ll+CKP!Ll->:-p(r~J 

I< E ~rJ I f\l D 1 
RE \rJ IND 2 

( -----------------------------------------------------
( THE STRESSES Ii\J THE MIDi_)Ll SURFACc OF THE PLATE 
C M<E C/'-1LCULATED. ACTUAL ST1=<ESSC:S 111-\c THOSE Ol:HAil~ED 

C Hl:-1-\E MULTIPLlcL> oY F--u:_xu1\/\L l'lGiulTYfr1AXH•iUI·: THlC1<.1\icSS 
( -----------------------------------------------------

UU 14 L=l,NTE 
Rt A 0 ( 2 J I , J , K , XX , Y Y , C l , C 2 , C 3 , A Livi U , 1-'1 , LJ U , S 
DO 9 M=l,6 
DPl1"il = o. 

9 CONTINUE 
IF(I.EQ.OlGO TO 10 
DP Ill = UISP!2*I-ll 
DP(2l = DISP12*Il 

l~ IF(J.EQ.OlGO TO 11 
DP!3l = DISPl2*J-ll 
DP(4) = DISP!2*J) 

11 IFl~~.EQ.ulGO TD 12 
DP!5l = DISP(2*K-l) 
DPl6) = DISPl2*KI 

12 DO lJ fv:=l,3 
STRESS!ll1J = o. 
uo 13 N=l,6 
ST I~ ES S ( ii1 l = STRESS ( fv1 l + S ( 1•1 , N l * u P ( i ,l l 

13 CONTINUE 
14 0RITE!l)I,J,K,xx,yy,c1,c2,c3,ALMD,A,DD,STRESS 

I=< E\,•II ND 1 
RE\~JI ND 2 



r -----------------------------------------------------
( THE L'.[NUll\IG STirFf'!ESS l•1i'.\Ti~Ix, H:CLUDI11J(j Tnt 
c CUHl-\IFIJl)i'\L STIFf-W::ss 1·11\Tl-.(IX FuR THE cu;·1PLETE PU\TE 
c Is Cl\LCUU\Tcuo TH[ /1flTl·dX IS LJi::.Tt_i-\1liI1kLJ AS CCLU1'1i\J 
C VECTOR. flCTUAL STIFF1ll::.SS l'1,"1H:lX lS uL)T/-'.If1Jt:_D uY 
C.. i"1ULTIPLY!i'JC.J Tht 1•11\Tl-<lX '-"- L:Y FLLXUl-<1-\L 1-\lL-duITY• 
c ---------------------------------------------------~-

c 

UO 16 L=l,NTE: 
I-\ EAU ( 1 l 1 , J , K , XX , Y Y , C 1 , CL'. , L 3 , /--1L1·1 LJ, 1-\ , u lJ , ST R i::. SS 
CALL bENDK ((1,cz,c3,v,A,u~,EKbl 

CALL CENTKCC1,c2,c3,sTR[Ss,A,i)U,Cf-KJ 
DO 15 rl=l,9 
DO 15 f\l = 1, '--J 

tKc\(1'1,~-il = t:~<uC1·1 ,,Nl+CFl'-..(1•-,1-;i 

15 CUJ\ITINUt: 
CAL L HU~ SF.- b ( AL 'I u , l:. K 0 J 

16 CJ\LL GROLJP(I,J,1<.,L,1\JTE,9,t_1<b,Cl<,F,P,li 
R E\r.1 I f\l D 1 

c -----------------------------------------------------
( THE STIFFhESS i''ii\Tl-\IX Cr:. IS li~Vl:.1-<TL.u USli\JG Lir:!1-.::Al-<Y 
c s u [j 1-.( u u T l j\j t I 1\J vs y I 'I • l T I s ~Tu I-< t_ L) \_)I\ T f-\ p L L ' T Ii 1-.( t t 
C C..OLU~NS AT A TI~E:. 

c -----------------------------------------------------

c 

(AL L I N VS Yi 1 ( CK , I\ l-1. , I tr-\ 1-\ i 
I F ( l [_ R 1-\ • f\j E • () ) 1,'./ I-\ I T [:_ ( 6 ' 7 j I L I-\ 1-\ 
IF(lERR.NE.0lSTOP 
IT = NR/3 
DO 1 b K. = 1 ,I T 
rv; = u 
lk = K~<-3 

IH = H,-2 
DO 1 7 I = IM , I K 
r' = M+l 
DO 17 J=1,,~m 

IF(I.GE.JIL=I*CI-ll/2+J 
IF(l.LT.JIL=J*(J-ll/2+I 

17 TY(J,Mi = CKIL) 
lb '•'JI< I TE ( 2 I ( ( TY ( iJ1, r~ J , I\= l , 3 i , 1'1=1 , l\J i-< J 

R C:v!I ND 2 

c -----------------------------------------------------
( THE MASS f'-LL\TR IX FOR Tri E CCJ!\H--'L[ TL PLA Tl::. IS CAL CUL/\ T Eu .. 
c THE liP.nnx ls uC:Ttl~i·!Ii'Jl:.U AS/--\ CULU<>l/\j Vi::.CTUI~ (1''° 
C Tl-IE ACTU/1,L 1V1,1\S2> :·,1ATF<lX IS uuT1-di'jt_L1 uY 1·1ULTil-'LYI:JG 
c Ci( 13 y ( u c: N s I T y "A- 1vi Ax 11v1 uh T H I u, 1\J t s .:-:, ) 8 

c -----------------------------------------------------



c 
c 
c 
c 
c 

c 

UO 19 I= l, f\Jl·I 
Cf~(l) = u. 

19 Cui~TifWE 

2U 

UC 2~1 L=l,NTE 
READl11J,J,K,XX,YY,cl,c2,c3,AL~D,A,DD,STRESS 
CALL bENUMIC1,c2,c3,A,uu,~K0I 

C /\LL TI-< I~ SF fl ( /\, U 1 U , f K 2i I 

CAL L G f-\ 0 UP I I , J , 1( , L , NT C: , 9 , EI', b , C 1( , r: , P , l J 

1-\ E !v I 1\J D 1 

THE 1''1/\S.'.:i 11l/1Tl·dX l.S STUKLU Ui' TAl--'t 1. Trit Fli-<ST PiiASt. 

0 F n I E p r--;rJ C11-\ /\Jl''I F-: [ j\J D s • 

r-\EliJ I ND 3 
DO 2 2 K = 1, IT 
M = 0 

I K = 1(*3 
Hi = I 1(-2 
DO 2 l I = I i''I , I f;:_ 

M = h+l 
DO 21 J=J,/\IR 
IF(I.GE.JlL=I*II-11/2+J 
IFIIeLTeJIL=J*(J-lJ/2+1 

2 l T Y I J , i,~ J = CK I L J 
2 2 VJ R I TE. I l I ( I TY I 1'1 , IJ I , 1\j = 1 , 3 i , I',= 1 , i~ I-< J 

VJ f..Z I T E I 5 l A f-\ , V , b t T A l , I-\ UT C , I\ 0 VI:. I-< L ' T 1 I t:. T ;i, ' T L , T 0 , 1 ~ L , 1'' b , 
1 /\IF~,/\11:.IGEN 

ROVI ND 1 
REl.rJ I ND 3 
END 

64\JU E.NU RECCJRU 
UATA 

64\.JU UJu r.:;t.CUl-\U 

PROGR,1\M TST I I~.IPUT,OUTPUT,T,6PE5=If~PUT,Tt'\PE6=0:.HPUT, 
l TAPE l,T/\PE 2,TAPE 3J 

258 

c -----------------------------------------------------
( THE SECCJi\JU PHJ\Sl: uF hiE P1-<U(.)F<A1•11·lt:. ST/-11-\TS lvITH Fld::.Sll 
c.. 1"1E:•1Ul--<Y. fl'<(Ji'1 THC. FI1·;ST fJ11/1Sl Trit rULLU1"Jl1~lJ I/\ffUl~.1>1\Tlu:: 

C I S !1 V J\I Lf-1 ~i L l 01'1 THE Ti\ PE S • 
C NASS MATRIX/IRHO*TMAXI UN TAPE l 
C HIVE RS E 0 F S TI FF I~ ES S i't A Hd X -l'.-1- LI.::. XU I< /1, L R I G I l.J I TY 0; J TAP l 2 
C PLATE DI i•tc 1\JS I 01\1S Of'J TL\PE 3. 
C f'i1ATl--<ICES Ui\! Tl\PES 1 ,l\~W 2 M<E i\iULTIPLlElJ TU UUTPdf< 
C MATkIX CKMe 

c -----------------------------------------------------



u 11 JI E I~ s 1 u f\J c I<'' I ( l 6 CJ ' 1 6 u ) ' f-' ( 16 0 ) ' u I ::, p ( l 6 0 ) ' s ( l 0 ) 
I-< t: A U ( 3 l Ar~ , V , 8 t. T id , f·W T C , I\ U V i::.i\ L , T H I.:. T i'I , T L , T Li , r~ L , i'l b , 

1 f\1~,NEIGl::.N 

I~ EI·/ I ~j D 3 
IT = NR/3 
[)CJ 2 K=l,IT 
LM=3 
HR = f'Jl\-2 
l F ( 1( • L T • 3 I i-< l.::J\ i) ( ::. ) ( ( ( I'~ I' I ( h ' I~ I ' i 'J = i: 1 I·\ ' j \I I-< I H i = l ' I H\ ) 

I F ( K • GE • 3 J i~ [A u ( l l ( ( C IZ ;v, ( /vi , N J , N = 4 , 6 J , : ·, = l , NI~ i 
DO 1 J=l,IT 
lf\I = 3 
lF(J.EQ.llREWIND 2 
fv',R = NR-5 
l<-R = NR-3 
IF!1<.LT.3l1-<U~D(2l ( (Cr~i'1(1,l,fJl ,1\J=i'il-(,1-::l-<l ,1,,=l,i'~h·J 
ff ( r~ • G i:: o 3 i 1-< U\ Li ( 2 J ( ( (_i<:,)11 ( i'i , [ J I , f\I = l , :;_, J , i,1=1 , f.1 [~ J 
I I<, = ( i< - 1 ) -;~- 3 
UO 1 I=l,LH 
If<.=IK+l 
IJ = (J-1)-:~-3 

L>O 1 N=l,Li'! 
IJ = IJ+l 
CiZM(IJdr(l = J. 
U() l M = l 'f\J I-< 

259 

I F ( K. LT. 3 I C K1JJ ( I J ' I K ) = C K.111 ( I J ' I 1( I + U\/VI ( 1:, , ii11~ - l + i~ J ~'"CK. 1 ( 1 1 ' 
l ~,1R+2+ I l 

c 

I F ( K .. GE • 3 l CK :11 ( I J , I I( l = CI\ :-1 ( I J , I I< J + 0'.i'i ( i-; , /,! i 0~ C 1( 1-'i ( ! : , 3 +I l 
l CON TI NUE 

IF(i(eEUell\•H<ITE(3l ( (CKfil(;1,/\jJ ,N=l,j) ,,,i=l,/\!/-\) 
l F ( i( • EU • 2 1 \1J /~ I Tl ( 3 l ( ( C 1( M ( i I , N J , i'l = 4 , 6 i , i''' = l , [\] i-\ i 

2 CONTINUE 
1-\1::.WIND 3 
REAU(3l ( (CKMUJJ,N) ,/\J=l,3l ,11=1,l'Hd 
Rl1--\U(3l ( (CK1V1(ivi,1'\J) ,N=4,6l ,1·-i=l,f-Ji<l 

( -----------------------------------------------------
( EIGENVALUES OF 1•,/\Tl=\IX o:__:,1 Al~[ DlTEl<:',Ii\cD /\j,JLJ tXP1-:..;ESS[[j 
C AS 1~0NDlHt.NSiu1-~kL UUJ\i'HITIE.S uLTAe THI:. UGt.i'~Vi-\LUt:'.:i 

c ANIJ EI GEf\VEC TOl-\S 1\/-\E v.:rn T TEil OUT" 

c -----------------------------------------------------
(A L L P U W [ R ( C I( l , , i'fr; , f\J [l G E:. 1 ~ , S , 1 • L - Li- , l G u , P , U I S P J 

SN= SIN(THETA*3ol4/180.l 
UO 3 J = 1 , NE I GE I~ 
S(J) = lAR**4/S(Jll-(~tTAl*RUTC*S~l**2 

3 S(J) = SQi~T(S(J) l 
VJ i~ I TE ( 6 ' 4 J AR , V ' I~ 0 TC ' CE TA l , RU Vt r~ L ' 1 ~ L , N t:J , TH t. T !--. , TL , To 
~11 I-< I TE ( 6 , 5 l NE I G tJ~ 
V; 1-U TE ( 6 ' 6 ) ( s ( I ) ' I = 1 ' f\j u 0 Li J I 



c 
c 
c 
c 
( 

c 
( 

c 
c 
c 
c 
c 
c 
c 

L' 6 u 

4 F 0 I~ i ·'i A T ( H 11 , 4 X , -~" /\ S P l l T i:< !\ T I U = -;(- , l 2 X , f- l u • iJ. , I , 5 X , 
l 
2 

-;} P 0 I SS 0 I~ .S 1< /\ T I U = ·k , 1 U X , F l u • L:. , I , ':> X ' ;c 1-\ u T S P L t u I f u i H_, F i-\ t: u = ;~ 
' 5 x ' F l u • Lf ' I ' 5 x ' -~-Nu !'JU 11 ·IE J'J s I l) ,., ML Fu I Ju f- 1-\ t-. 1J = 7'.c ' F l 0 • '+ ' I ' 

3 
Lf 

5 
6 
7 

r= :.; 

6 

:.i X , -l~- HU b r.;; I~ U I US IPL 11 T t. L LI~ ll T 11 = o(- , l X , F l 0 Q 11. , I , S X , 
*LENGTHWISE UIVISIONS=*,4X,IL',/,SX, 
*8RtADTHWISE UlVISIONS=*,3X,I2,;,sx, 
',(- .S E T T I N G MVi U- ! D F G l = ~,(- , F l \ : • L,_ , I , 5 X , >(- U:_ i'k1 T11 TA I-"' E h'. F AC T 0 F< = ->< 

' ':• ;< ' F 1 • 4 ' I , 5 X ' -;~ b F< E /\ lJ T t--1 T P, Pl::. I:;; F fl CT (11~ = -l<- , L1 X , F 1 r1 • 4 J 
FCJR:,1A T (I I, 1UX,6HF I RS T , I 2 'l 7H t I (_:it.1'1 V1\LUi::.S /-\1-\c., I 1 

F01..:;11A T ( 5L,X,E15 • 6 l 
',•JR I T E ( 6 , 1 C l 
UO /3 I = l , 1'1 EI G C: l\J 
\:.' F< I T [ ( 6 , 7 l I 

7 F 0 R i·1 /\ T ! I , '.:i X , 1 6 Ht: I (j E i'l VE C T U .R f\I 0 • , 1 X , I 2 , 1 X , 2 1-1 I S , I l 
8 ~· 11;;_ I T I::: ( 6 , 9 l ( C K. :vi ( J , I l , J = l , f'd\ I 
9 FOR~AT!5!5X,3El6.6,/i l 
1 u I- 0 f-< ,. 1 l-1 T ( 12 X , -i~- 1J-i< , l 2 X , -;q 1-I t T II X -J<- , l u X , -1<-T rl t TA y-i:, J 

STOP 
END 

64GU END OF RECCkU 
64UU ENU FILl 

SUUi~OUT I /\If:. LAhuA ( X, Y ,z, AL1 1i[J i 

THIS SUl-:JROUTlf'Jt: Fif'JUS Ti-1t. IJ11-<t_CT1Ui'< cusI:~ES (Jf Td[ 
LOCAL COO~<L1If-1P.TL:: AXC:S., 

ULSCRIPTIUl\l Or PAl~A1'1tTu,5 

x,y,z 
AU•IU 

GLLlliAL COU1~u 11\JA TtS (Jf 1\Juu1:S 
ilJ\ n..; 1 x o F u I F~ L c T I u , ~ c u s r 1\1 c. s u c. F r 1\! t: ,_, 0 y 
EC'UATION 3.32 

UIMEf\JSIOfJ X(3i,y(3J,Z(3l,f\l :J(3,31 
YJI ==Y(2l-Y(ll 
Y,1I = Y(3l-Y(ll 
XJI = X(2)-X(l) 
x )'I: I x ( 3 ) - x ( 1 ) 
ZJI = Z(2l-Z(ll 
Zi'l I = Z ( 3 l -z ( l l 
A~ YJJ-l:-n:I-Yr:1I·X-ZJI 
b = -XJH:-z,'il+X1 1 1I~~ZJI 



c 
( 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

l 

C = XJI*YMI-X.~I*YJI 

F = SURTIXJI**2+YJI**2+LJl**il 
G=-SURTIA**2+b**2+C**21 
ALMD(2,ll = XJI/F 
/\U1D(2,2l = YJI/F 
AL1"-1D(Z,3l = ZJI/F 
AL r,!1 D ( ~ , 1 ) = A I G 
A L >I U ( 3 , 2 l = l:i I G 
AU· i u ( 3 , 3 i = C I (.J 

l\Lf ... 1LJ ( l' l J = /llht..I ( i, 2 I .;;-AL1··1u ( j, j J -11L1'1LJ ( ::i, L. i -i~i1L,•1LJ ( L., 3 J 

AL,i1cJ ( l '2 i = AlnU ( 3, 1 J -l<-AL1•iLJ ( 2, j l-AL1'1L.i ( 5, ::i J -;ff-IL1·1L.i ( 2, l) 
AL H [) ( l ' 3 i = I\ u ID ( 2 ' 1 ) -x- f\, L :"I u ( 3 ' 2 ) - fl Li'I L) ( j ' l i ';(- /\ U•1 LJ ( L ' 2 ) 
f-\ETURN 
E~ID 

SUBROUTINE AINVkS 1x,y,AJ 

TH I S SU t.:> R 0 U T I N E:: F I f·JU S T H f-_ I 1\l VE 1~ St (J F 1 1 f\ Tl< I X ,l\ A S 
DEFINED bY EQUATION 3.8 

U I:. SC R I P T I 0 f\I U F P A I-\ A 1' 1 t. T t:. 1...: S 

LOCAL COUkDlNATlS ut- THE NUUES 
INVEl~SE OF i•',/\HUX fl (tUU/\TIUf\I 3.Sl 

DI MI::. NS I U ii X ( 3 l , Y ( 3 l , P, I '7 , 9 l , l\l ( '-J J 

DO l I=l,9 
[)0 1 J=l,9 
J1(I,Jl = u. 
CONTIMUE 
A ( l d l = 1. 
A ( 4'1 l 1. 
A(7d) = 1. 
A(3,;2) = -1. 
/\(6,2) = -1. 
/:d 7 ,2) = x (3) 

t\(9,2) = -1. 
/l,(2dl = 1. 
/\(4'3) = y ( 2 ) 
/\(5,3) = l • 
A ( 7 '3 l = y ( 3 ) 
A(odl = l • 
Al7,4l = X (j )-iH-2 

2bl 



A(9,4J = -2.~{->((3) 
A ( 6, :, l = -Y(Zl 
A ( 7, 5) = x (::,) --;:--y ( 3) 

AU:h5l = x (j) 
A(9,5) = -Y(3) 
A(4,6) = y ( 2) ",;---;;--2 

A(5,6l = 2. ;:-y ( 2) 
A(7,6l = Y(3)>H:-2 
AU:l,6) = 2. -i:--y ( ::, ) 
A<7,7) = X(3)--X-->t3 
A ( 9 '7) = - 3 • "k X ( 3 ) --X----:t 2 
A(7,tll = Y ( 3) --ii-X ( 3 l *.;:-;2 
A(8,8l = X(3)-lH,L2 
A(9,8) = -2 .-x--x ( 3 )--)(--y ( 3) 

A(4,9) = Y(2)-lHc3 
A(5,9l = 3a 0<Y(2)--)(--,~--2 

A(7,9) = Y ( 3 )-lH:3 
A(8,9l = 3 .-l<-Y ( 3) --iHf2 

c 
(_ ' 11ATRIX A IS l~UvJ lNVEl-<Tt:..u.lF Trit lrWC:.\;Z::.,Iu,; F1--dLS THc. 
C Pl-<OGF\A1•11,1t: STiJPS. 
c 

(. 

c 
c 
c 
c 
( 

c 
c 
c 
c 
(. 

c 
c 
c 
c 

CALL INVMAT(A,9,9,1.l-~,I,NI 

IFIIoNE.CIWRITE(6,2lI 
2 FOR~AT(5X,5HIERR=,13J 

lf(l.NC:.oul.'.::iTOP 
I< t: T Ul~N 
um 

SUBROUTINE DUGINT (XX,YY,DDl 

THIS SU0ROUTINE FINDS fhL ~ATRlX OF UOUuLE lNTcGRALS 
FOi\ A Tl-< I /\NGUU1I-~ i::_L;::Y1UH. Gu;~ss iJli.~iJl\ATUI=<'.:. FUi~HUL.L\ 

I S USED , \'J I T 11 16 /\ t; SC I SS A P CJ I IH S .. 

LJl::.SG~IPT IOi~ Or- PARAHLTl::.1-<S 

xx,yy 
lJ L) 

LOCAL COUkLJlNATC:.S OF Trlt::. ~uu~S 

1-1 ;~ Hd X Ii'~ ~·J r·i I CH TH [ u U U b L [::_ I 1H LG I-< AL S A I< t. 
RETURNED• DD ( f\I, f'~ l CUl'\i--(C_SPO/\J US TO THE 
INTEGRAL OF XX**(~-ll*YY**(N-11 

DI MENS I ON XX ( 3) , Y Y ( 3 l , IJD ( 9, 9 J , AX ( 16 l , !\ ( 16 l 



c 

uo l l=l,'i 
uu l J=l,':J 
UU( I ,J) = ,Jo 

l cmn I NUE 

C AX M<E THE 16 ABSCISSAt. PUii'lTS P,1~1J A Ai,;t_ ThE 16 
c Vvt::IGHT COlYFICIENTS OF THt GuASS LlUAIJl\i-dURE. F-U1-\i'iULA 
( 

c 

AX(l) = 0.9894uu9J4':J~lb5u 

AX!31 = 0.944575~L3U13i3j 

AX(5) = Ued656312023b/oji 
AX(7) = U.7554U04C8355UU3 
AX!91 = 0.617876244402644 
AX!lll = u.458Ulb7776572i7 
AXC13) = ue2816U355U779259 
AXl15l = u.u95Jl2~09Jj7bJ7 
Alli = u.u27152459411754 
A(J) = u.ub2L5J5ij':JJo64b 
Al51 = u.u':J5l585ll6bi4':J3 
Al71 = 0.124628971255534 
Al9l = U.149595988810517 
Allll = Gol69156519395U03 
A!l3l = 0.182603415044924 
All5) = u.l894Su61U4~5Ubo 
DO 2 I=2,16,2 
AX!ll = -AXII-ll 

2 A!II = A(l-1) 
DO 4 I= 1 , 9 
IJO 4 J=l,9 
SUM = o.o 
DU 3 f( = l, 16 
S = u.S*AX!KJ+U.5 
F = ( l • - S i -x- -l( { I -1 l ->r ( ( l • - S J -i: Y Y ( 3 I +::, -~:-y Y ( i I I -~" .;~- ( J- l J 

3 S U i < = S U M + f\ ( I', I -ir F -1<- U • 5 
UU(l,Jl = SU~*XX!3l**l*YY(21/(l+JJ 

4 corn r NUE 
r~ETUf~N 

Ef\!D 

s u B IW u T If .JI::. c k p F p .s ( x ' y ' x x ' y y ' A L 1 'I LI ' l. l ' (_ 2 ' (_ 3 ' I< / 11.J 1 u ,'.::) ' v ' 
1 THETA,SPD,uD,EKP,FP,~I 

c -------------------------------~~~-------------------

C THIS SULiROUTINl:. FINDS Tht.: Ii'J-PL1-11H... STlr-1-i~t.SS 1'11'\H<IX 
c Aim THC. EuUIVALE:.NT /~UUt\L F\.Jl-<CtS Cui~l\i:.Sf-'uf~lJliJG Tu THL: 
C uL::iTl-\luUTt.u U:.i~H<lF.Uui1L Ful-\lt:.S Fu1-< fl/~ 1.:.Lt1,1t.:1H• 
C /v1ATrUX S UF t.uUATiv1~ 4.,lLf IS 1.\LS0 vt.:.Tt:.1..:1·il1~t:.u .. 
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c -----------------------------------------------------



c 
c 
c 
c 
c 
c 
c 
c 
c 
( 

c 
c 
c 
c 
c 
c 
( 

( 

c 
c 
c 
c 
c 
c 
c 
c 

1 
') 
L_ 

l 

2 

L1 ESCl-<IPTIOJ\l OF Pfll<l-li·1lTtl\S 

x,y 
xx,yy 
/.\U!:U 

c1,c2,c3 
RADIUS 
v 
THl::. T f\ 
2iPu 

[)[) 

GLOb1-1L (UUl-<ul1,1\TtS uF-- i~l1ut.:.::,, 

u:.iCl\L CUOl-<U I I~/\ Tes uF l~UU[S 

~ATRIX OF UlRtCTION CUSINlS UlFINtu LlY 
E 0 U A Tl 0 tJ 3 • 3 2 
!1 S U E F I N E D L~ Y E 0 U ,L\ T I U /' ! 3 • 1 ·i 
RAJIUS OF ThE DISC 
Pu I ::::,::::iui\IS 1,:11 T lu 
StTTING ANGLc (Ut.:.uRLcSl 
I u c l·J S IT Y J -;;- ( J-\ u T. :::_,Pi::: L u-;H;- 2 1 '" ( 1'1 A .x. T 1-11L,.,1·1 L ::::,::::, 1 / 

(fltXUJ:,;,i.:1L 1-dulUlTYJ, cH1Iu-I [S .'.::ih1·1c AS 

IROTC*HETtAll**2/Ak**4 
~!'.A T I~ I X 0 F u 0 U ci L 1:: I /\'. T E GI\ /1 LS • E L !:: H l t\! T ( I , J l 
OF THIS MATkIX IS THt.:. VALU~ OF lNTLu~AL 
OF XX**II-ll*YY**(J-11 
IN-PU\r\lt STlr/-rffSo i'if.'<Tl-<IX Ii~ ljLUo/\L 1\XtS 

1'•1 UL T I P L I l L! o Y A F f-1 L TU 1-< t U Li A L TU l i. • -k 
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FP 
( F LI:: X LJ I-< A L ['( I G l U I T Y J / ( I · 1 AX l 1 •[ 1J, 'I TH I ( I<. I~ [.~ SS cAL -X- L J 

VECTul~ OF /\JUUf'.\L FGl'<CLS tuu I Vi-1Lli~T TU Hie 
UISTRILJUTEU lLNTRIFUGAL FUklES/FLLXURAL 
R I G I I) I Ty • HI [ r·w L i.\ L [-''t._) I~ c L~ s Ar~ E A L 0 i\\ (_j 

GLObf\L /'.1XES• 
s AS lJEFINlD LiY EQUATION 4ol4 

u I 1'11 t.:. i'J s I (j l'J t k p ( 6 ' 6 ) ' F p ( 6 ) ' ::::, ( 3 ' 6 ) ' '1 ( () ' b I ' x. 1\ ( j ) ' y '( l j J ' 
i~ l ( 6 l , J\ Ll·i U ( 3, 3 ) , X ( 3 l , Y ( j J 'I\ ( 6 J , T ( b, 6 1 , ,-1 ( 3 , 6 i , u ( 3 , 3 i , 
LJ1(6,6) ,[)2(6,:?.l ,uD(9,9i 
DO l I= 1, 6 
DO 1 J=l,6 
QI I ,J l = u. 
TI I ,J l = u. 
I F ( l • Lt • 3 J /-1 I I , J l 
DO 2 r=1,s,2 
QI Id l = 
0(1+1,4) 
Q(5,2) = 
0(3 d) = 
u ( 5 '3) = 
l.i ( 6 's) = 
CJ(Lf,6) = 

1 • 
= 1. 
XXl3) 
YYl2l 
YY(3l 
XX(:'.>l 
YY(2l 

U(6,6l = YY(3l 

= U• 

CALL INV~AT (Q,6,6,l.L-8,It:kkR,Nll 
I F ( I E R r=rn • r'H~ • c I ) ',~ r..; I T E ( 6 ' 3 ) I E r.,; !~ I-~ 

3 FOR~AT15X,5HIERk=,I3' 

IFIIERRR.NE.0JSTOP 
ANGLE = ThETA*3.14/lBO. 
o N = S I i'J ( /c1 /\JG LE ) -;(- 0<- 2 
C~ = CUS(ANGLEl**2 



4 

'.:i 

Al = l.-AL~IJ(l,c'.l**2*5N 
Ac'. = l • -AlhLJ ( 2, 2 l >H;-2-;;-51~ 
1\3 = - J\ U· l D ( 1 , 2 l 1:- /°\ Livi D ( 2 , 2 l -lf S I' 1 

A 4 = AL 11i IJ ( 1 , l l ;:- ( X ( 1 J +I-\ AU l US J +A L ;11 u ( 1 , 2 J * Y ( 1 l *CS 
A 5 = A U«i D ( 2 , 1 J *· ( X I 1 l +RA [) I US l +A Li': u I 2 , 2 J -;:- Y I 1 l ;; CS 
Rill = A4*C3*DU(l,ll+IA4*ll+Al*C31*UU(2,li+(A3*C3+A4* 

1 C2l*DD(l,2l+Al*Cl*IJU(3,ll+(A3*ll+Al*C2l*UU(2,2l 
2 +A3-;<-(2-lcL)D ( 1,3) 

[-\ ( 2 ) = A 4 ->,c ( j -;f U u { c'. ' l ) + ( fd li- ( 3 +A Lf -:<-(_ l ) -;;- L..· u ( j , 1 l + ( i-\J -h' L _::,+A ,+-k 

l CZl*Uul2,2i+Al*Cl*lJu(4,li+(Ml*~c'.+~~*~lJ*UU(j,c'.l 
2 + A3*C2*UIJ(2,31 

1-\ ( 3 ) = A 4 ->(- C. 3 ,'(- U U ( l , 2 ) + ( A 4 ·>H._ l +A l -~ l .:i ) -k lJ U ( 2 , c'. l + ( 113 ~;' l 3 + f\ 4 >c 
l C2l*OD(l,3J+Al*Cl*UDIJ,2J+(A3*Cl+~l*l2l*UU(2.,31 
2 +A31,ccz-X·DD ( l ,Lf) 

R(4) = A5*C3*DD(l,ll+IA5*C.l+A3*C3l*DU(2,ll+(A2*C3+A~* 
1 C2l*DD(l,zl+A3*Cl*DD(3,l)+(A2*Cl+A3*C2l*UU(2,zi 
.::. +1-\Z >~c2-::-uu 1l,3 1 

R(5l = A5*C3*UU(2,ll+(AJ*lj+H~*lll*uu(J,lJ+(hc'.*CJ+A5* 
1 C2l*UU(2,zl+A3*Cl*UU(4,ll+(A2*ll+h3*C2l*uu(J,cl 
2 +A2-;;cc_2-)(-0L1(2,3l 

R(6l = A5*C3*DD(l,2l+(A5*Cl+~3*C3l*UU(Z,2i+(A2*Cj+A5* 
1 C2l*DD(l,3l+A3*Cl*DU(3,2l+(A2*Cl+A3*C2l*Uu(2,Jl' 
2 +A2*C2*DD(l,4l 

uo 4 I=l,6 
I~ ( I J = I-\ ( l J -~- S P U 
CUJ\JT 11\JUE 
l)U s 1=1,2 
[)0 5 J=1,2 
T ( I , J l = ALMD(l,Jl 
T ( I +2 ,J+2 l = T ( I , J l 
T!l+4,J+4l = T (I ,J) 

A ( l, 2 l = lo 
AU ,6) = l .. 
Al3dl = lo 
A(3,5l = 1. 
DI l d) = 1 • 
IJ(l,2) = v 
D ( l , 3 l = Uo 

U(2 d) = v 
DI 2, 2 l = 1 • 
u ( 2 ,3) = o. 
l.;(3dl =:; (J. 

D(3,2J = o. 
U(3,3) = (l.-VJ/2e 
DO 6 I=l,6 
DO 6 J=l,6 
Dl (I ,J) = ile 

iJO 6 K=l,6 
Ul(I,Jl = Ul(I,Jl+Tlkdi>ciJ(J,f:,J 

6 CONTINUE 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

DO 7 I= 1, 6 
FP(l) = o. 
DO 7 K= 1, 6 
F P ( I l = F P ( I ) + 0 1 ( I , K i -::-1~ ( I( J 

7 corn If\JUE 
I.JU tl I= l 'b 

DO 8 J=l,3 
D2(J,J) = u. 
DO 8 K=l,6 
D 2 ( I , J ) = D 2 ( I , J ) + D 1 ( I , ~, i -)(- /1 ( J , r~ l 

8 corn r NUE. 
lJO 9 I=l,3 
DO 9 J=l,6 
S(I,Jl = U. 
DO 9 1(=1'3 
S(I,J) = S(J,J)+U(J,kl*UL'.(J,Kl 

9 CONTINUE 
DO lU I=l,6 
DO lU J=l,6 

Ei<:.P(l,J) = u. 
lJO lu K=l'3 
l:.kP( l ,Jl = tl<.r>( I ,Jl +u,: (I ,f:._H<-S(1,,,JI 

l:..J CONTif\ILJE 
DO 11 I= 1 , 6 
DO 11 J= 1, 6 
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EK P ( I , J ) = E I( P ( l , J ) >< ( C l >< G 0 ( 2 , 1 l + C 2 1:- DD ( 1 , 2 J + C 3 -;(- D L' ( 1 , 1 l l 
11 CONTINUE 

RETUl~N 

Ef'.JD 

SUCFWUTif\11:.::_ TRNSFb !ALl'll,,lt:,oi 

1Hl-:i SlJu1<UUTli~L Tf<;'.-1,~:::iru1-<1·1:::.i Tile.. t._;t.1~1 .. i11~u 111-d1\L\ ur f-\1~ 

t.LEi'1E1H FROi·!, LOU--1L TU GLubAL 1\Xl-.:.S ~ 

ALiv1LJ 1·1ATf<lX ur Ld1-<l:.CTlU1~ l.USli~L;:. ut::..rli~t.u :..:iY 

ELlUATION 3e5Le 
AS INPUT Lli:.1•il::.1'\JT 1·11.\Tl-<IX Ir, Lull\L hXr..:.S 
AS OUTPUT t::LL1'1C::l'H i·iil HUX Ii~ GLUuf-IL t-1Xl.'3 • 



c 

[.) I ;vi E f\J S I 0 tJ /\ L > 1 l) ( 3 , ::;, l , c_ (, b ( 9 , 9 ) , r 1 H ( S1 , 9 l , S ( 9 , 9 J 

DO 1 I=l,9 
Uu 1 J=l,Y 
HH ( I , J l = <J. 

1 corn I t.JUt 
HH(l,ll = AL~Li(j,J) 
DO 2 I= 2, 3 
DO 2 J=2,3 
HH (I ,J) = ALHU( I-1,J-l l 

2 CO/\!TINUE 
DO 3 I=l,3 
[_,,() 3 J=l,3 
HH(l+3,J+3i = r-IH(I,Jl 
HH(l+6,J+6l = llH(I,JJ 

3 c.orn 1 NUE:: 
CALL MULTP (EKb,HH,5,9,~,9,0,9,9,yJ 
CALL M0LTP(HH,S,E::KLJ,~,~,9,1,9,~,9J 

r.;;E:. TUl~N 
um 

c -----------------------------------------------------
( THIS SULHWLJTI:H.:: Fif~US Trff Uli~DlNCJ STIFf--M:SS 1iATrdX 
c. u F M\J l L EH E rn .. TH [ i'.\ LT 0 /-\ L l.J uw rn \.J ~ T I r I-' N ls s 11i A T 1:..: I x 
c IS THE i!JAHUX lKtl ObTAl/,lt_u 11~ THIS SlJbl:.;uL;TllH:.~ 

C 1
1

1 UL T I PL I ED E.l Y Tl I [ F L [XU i\ 1\ L I.( I li I U I TY i\ S U E F I 111::. u lJ Y 
C EUUATION 5.2 
( -----------------------------------------------------
( 

c 
C ulSCf<IPTION OF PM~Ai>:tTEl,5 

c 
c1,c2,c3 
v 
A 

/~ S U E F I I~ t:: i_.1 L Y L CJ U A TI u l\l 3 .1 9 
PO I SSONS R.L\ TI 0 
INVERSE CJF MATRIX A (tLlUATION 3e8l 
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c 
c 
c 
c 
c 
c 
c 
c 

D 

1:::.1~0 

MATRIX OF DUUbLE INTt::liRALs. U(l,JJ IS THE 
VALUE OF INTtGRAL UF XX**(I-ll*YY**(J-11, 
WHERE cxx,YY' ARE THL L0CHL CUURLllNHTcS 
Ull 1JUI/\G ST H'r1'~tSS l·11-1HUX/FL1:.:_XUl-\/_:,L ,\IGiul ry 

c. 
D l 1V1 EN S I 0 N I\ ( 9 , 9 l , lJ ( 9 , 9 J , t f~ t.J ( 9 , 9 J , L:i ( 9 , 9 J , l.J 1 ( 9 , 9 J 

DO 1 I= 1, 9 
DO 1 J=l,9 
R(I,Jl = O. 



c 
c 
c 
c 
c 
c 
c 
c 

l 

l F ( I o L T e I+ " /\ j\j L./ o J • L T • Lf I L, 1 ( l ' J ) = ( L l ·X- -i(- :5 I -;_c Li ( l + :) ' J i + 
l (C2**3l*U(I,J+3J+(C3**Jl*u(J,J 1 +(3.*L2*Cl**~'* 
2 D(I+2,J+l1+(3.*Cl*C2**2'*u(l+l,J+;J+(3.*C3*Cl**21* 
3 DII+2,Jl+l3.*Cl*C3**2l*Ull+l,Jl+(3.*C3*C2**2l* 
4 U(I ,J+2}+(3.*C2*(3**2J*u(l,J+1J+(be*C1*C1*C~J* 
5 U(l+l,J+ll 

CUf\!T I 1\JUE 
b(4,41 = 
b(6,4) = 
t}(7,4) = 
8(8,4) = 
[\(9,4) = 
LJ(5,5) = 
lj ( 8 ''.:> ) = 
i:j ( 6 '6) = 
b(7,6l = 
l::',(8,6) = 
I:' ( 9 '6) = 
i:3 ( 7,7) = 
13(8,7) = 
G ( 9 '7) = 
ti(d,ol = 
I:..! ( 9 'b) = 
L(9,9l = 
1(=4 

4.icUl(l,11 
4- • ~ V -::- U l ( 1 , 1 I 

12.,'(·[)1(2,J} 

4 • ->c D 1 ( 1 , 2 l 
12.-)(-v-x-Dl(l,2! 
2.*(l.-Vl*Ul(l,11 
4.*(l.-Vl*Dl(2,JI 
4e""cDl(l,l) 
12. -lcV-><-u 1 ( 2, l I 
4.-:l-v-x-u1t1,2J 
12.*Dl(l,2) 
36.i:·[ll(3,ll 
lZ. 0kD1(2,2l 
j6 .-X-V*-ul ( 2 'i) 
4•*Ul(l,j)+de*(l.-VJ*Ul(5,11 
l 2. -:~ v-~<- u i < r , j 1 

36.-X-Ul( 1,3) 

DO 3 1=4,8 
K. = K.+l 
DO 3 J=K,9 

3 G(J,Jl = l~IJdl 
CALL MULTP 1s,A,u1,9,9,9,u,':J,';),'-)I 
CALL ~ULTP (A,ul,l::.K0,9,'-J,~,l,9,9,9J 

FzcTU1<f\! 
El'W 

Tills SUwi,(OUTif\lt. FI/'WS Trll.:. tlU\\Uli'JG 1i11\SS hATl-UX FUI< 
/\fJ ELEi1cfH.TH[ J\CTIJ,\L dt.l\JUH~lJ 11!\SS /\HUX IS THI::. 
f.1ATl~IX ulJ OUH\HJC:U Fl~Qlv: T1IIS SJUh'.UUTli~c ,viLJLTIPLIEU 
bY A F/\CTUi< bJUnL Tu H1L ~l~CuUCT ur 1...d:_1\'.") ITY /li\Ju 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c1,cz,c3 
f\ 

D 

DD 

/\S Lit:.FifJtL1 0Y LULJ11TI 1J,~ 3.1'';) 
I i\J V C:. I' ~ i::: U r 1 ·I r\ l I\ L\ 1-\ ( L '-'i J /-\ T 1 L< I ·J j • o ) 
r'11'.\Ti~IX OF UULJoU: IIHt:.C:ii-\f\LS.ElbJ;t:_,~f(I,Jl 

OF THIS hATl-\IX lS THI::: Vii.LUE Of- IiHE:Gl-\J\L 
OF XX**(I-ll*YY**(J-11 
BEi'JliING STIFFNESS OF /(Rl-iU':qi,"1AXl 

L) I Mt: l'J s I 0 j\J /1 ( 9 ' 9 ) ' LJ ( 9 ' 9 ) 'u c) ( '-; '') I 't:. "~ lJ ( ';) ' '-) I 

UO l I= 1, ·~ 
[JO l J=l,9 
If (l.Lt:•B•ANU.JeLL.B 1 ~Kb(I ,JJ=C3*U(I,Jl+C~*u( I,J+ll 

1 +CP-l.J(I+l,Jl 
1 CO/'H I i"!UE 

DD(l,l) = EKH(l,l) 
l>D(2,ll = EKo(2,ll 
UU(3,ll 
UU(4,ll 
DD(S,ll 
DD(6,ll 
1)[)(7,11 
DU(tl,ll 
DD(9,ll 
Uu(z,zJ 
uL.!(3,zJ 
Dl>(4,z; 
DD(5,2l 
DD ( 6, 2 l 
DU(7,2l 
Dl>(8,2l 
DO ( 9, 2 l 
[)[;(3,3) 
DU(4'31 
UU(5,3l 
UlJ(6'3l 
DD(7,3l 
Dl>(8,3l 
DD(9'3l 
DD(4,4l 
lJlJ(5,Lf) 
lJD(6,4J 
UU(7,L1.l 
L·D. ( o, 4 l 
[)[;(9,Lf) 
l)iJ(5,5) 
[)[)(6,5) 

DD(7,5l 

= 
= 
= 
= 
= 
= 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

= 
= 

= 
= 
= 
= 
= 
= 
= 

= 
= 
= 

E1<:_o(l,2l 
l::KuU,11 
E f.:. l::i( 2 , 2 l 
EKR(l,3) 
Er::.B(Li-,1 I 
l:_J(b(3,2) 
E r.'..13 ( 1 , 4 l 
EKtJ(3dl 
C1'.L)(2,t:l 
EKIJ(4,ll 
Enl(3,21 
Ekl:3(2dl 
EK8(5,ll 
EKl::l(4,2l 
El<.B(2,4l 
El<J::l(ldl 
Ei<i3(3,2l 
cKo(2d J 

U'..L-3(1,4l 
EKL)(4,2l 
EK1::3(3'3l 
EKD(l,5) 
El<l:3(5dl 
EKiJ(4,21 
ckB(3,3l 
El<o(6,ll 
Ef(b('::>,2l 
EKo(L,_,4) 
EKU(3,3l 
EKl:::'.(2,41 
EKB(5,2J 
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c 

L);:.:: ( 8., 5 } = 
UL:: ( 9,5 } 

lJU(6,6} = 
UU(7,6l = 
L;U ( <J 

u '6) = 
C.:'0('),6 } = 
IJD( 7,7) = 
i)()(() '7) = 
I) Ll ( ':) '7) = 
L;u ( U '3) = 
IJL1 ( ') '3 ) = 
UcJ ( '-) • 9) = 
!<_= l 
UO 2 I= 1, i:l 
f~_ = r:_+l 
UO 2 J=K,9 

f // H ( 4, J 
t: l(f-:l ( 

~, ' :) L 

c r~ o ( l ' '.; 
E kE~~ ( 4,5 
c_ l([J ( -,, 

_) ,4 
[I<. [j ( 1 ,6 J. 

El<:C', ( 7' 1 
E i<. f3 ( 6 '2 
EKL:< ( j ,4 
f::.KI_; ( '.:1 'j 

L I( I_) ( j ') ' -
c_ l<b ( 1 ' 7 

2 DU(I,Jl = UD!J,Il 

} 

} 

) 

) 

) 

} 

} 

) 

) 

) 

) 

) 

CALL MULTP(OU,A,EKb,'-:J,';1,9,~,9,~,~J 

Ci\ LL 1''1UL TP ( i\, 1::1-,c,, uu, '7, '-), '-:J, l, '-:J, ';I ,·;1 J 
1:zc: T Ui~~N 
t: l\j D 

s u t3 I..( 0 u T I 111 E_ /vi u LT p ( A 'L) 'c ' l 'J 'K ' I T ',vj /1 'l•Jo • l·J c ) 

c -----------------------------------------------------
(_ THI'.:i SUul~UuTil'1t::. l:ilVt_S fl--IL P1,u0l.JCT ul"' TiiU 1-:11T1-<ILc::::i 

c -----------------------------------------------------
( 

c 
C DES CF\I P T I 0 /\J 0 I- P /\ I~ ,6, /v1 [ T U-! S 
c 
( 

c 
c 
c 
c 
c 
c 
( 

c 

c 

>11\Tl--<lltS Tu uL 1·1ULTil-'Llt_u. l'li\Ti\I;< t\ l:::; ur 
SI Z t ( l , f'. J I f l T = u • l r-- l T l S 1\1U1•i Z L 1-< u , '' I S u f 
SI Z t: ( I< , I l , >''1 /1 T F: 1. X o I S oJ F S I Z t_ ( f: , J l 
A~<ll (IF IT=CJl 
A(TRANSPOSEl*LJ (IF IT IS NONZi:::RU' 
F I R S T D li--'1 E fvJ S I U [1'. 0 F ,' L I T : <I C t '.:1 !\ , L , C Iii Tl---1 I~ 
DI MENS I Gf1J 5 T /\ H:f:1EN T 

lJ 11-1I:_1\J s 1 u /\j k ( I~ I\ ' l ) 'L< ( i~ b ' l I ' ( ( /-j c ' l J 

DO l M=l,I 
UO 1 N=l,J 
c ( f i, ' /\j } = u .. 
DO 1 L = 1, I< 
I F ( I T • E Q • U l C ( i ·1 , i'J l = C ( 1v1 , 1, ' + ;~ ( , • 1 , L ! '"' U ( L , 11J i 

l IF( lT.Ni:::.CJiC(r-hi~J = C(i''l'l\~1+1-1(L,1·,H:-u(L'1~; 

I-< t T Ul--U~ 
I:_ iii L) 
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( 

c 
c 
c 
c 
c 
c 
l 

c 
c 
( 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
( 

c 
c 

S 1J G i~ 0 U T I N E C E t\J H, ( C l , C 2 , C 3 , S T J.;; i::. S S , /-1 , u , ri i-1 l 

THIS SUbiWUTIIH:. FINL<.) TllL cu~nn1u~Ji1L STIFH-:cSS 
ivlATr\IX FOR MJ C:Lt:1V1Efn. ACTUAL Ct:::i'Hi~IFU\:JAL STIFr"l,Jr::ss 
HATl~IX IS THE ''il\H<IX i/i-1 ObTi\IilJEl.J If\l THIS .SUlH-\DUfIIJ~ 

hULTIPLIEfJ BY 1--LEXUFU\L l\luIL·ITY co1..::r.;;c:sPu,.JUii~G TU 
Jv\A/\ I i'llJl''i Th l CKfH:.S..::i <> 

DESCRIPTION OF PARAMETERS 

c1,cz,c3 
STRESS 

,1\ S fJ E F I ~H:. 0 Li Y [ Q U A T I 0 f'J 3 • l 9 
(SH<ESSE:.S I,\j The ,\dCULC. SUFfri1(cH:(i-1AXI1·iU1'-I 
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T rl I C ~ N l SS l I ( FLEX U 1=< AL h'. I u I u 1 TY J • Tr ll:_ 0 J< u C: I-\ u F 

l 

A 
lJ 

HH 

STRESSES IS SIGMA x,sI~MA Y,TkU XY· 
THi::. STRl::SSlS ARc ALU~~ LOLML AXlS. 
INVi:.1::.:st:. OF l·1f-ITRlX f\ (i::.uUATluf·l 3.SJ 
1'1/\TFdX OF l.JUUbLE IiHL'-:il<1\LS.l::LE1•1t.fH( I ,Jl 
0 F TH I S MA H< I X I S TH I:: V 1\ LUC:: 0 F I f H E GI~ AL 
OF XX**(I-ll*YY**(J-ll 
CENTRIFUGAL STIFFNESS ~AT~IX/FLEXURAL 
RIGIDITY 

L!Ifvlt::NSION STl-\1:.55(3) ,A(9,9J ,LJ(9,9J ,l:.1<.L(9,7J ,ul)('J,'J)' 

1-11-1(9,9) 
SX = STRESS(l) 
SY = STf~ESS ( 2 l 
TXY = STl~ESS(3l 
DO l I= 1, 9 
Du l J=l,9 
HH ( I , JI = u. 
IF(I.LTo6eAND.JsLT.6lDLJ(l,Jl = (Cl*U(l+l,Jl+C2*D(I,J+ll 

l +c3->:-l) (I ,JI l 
l CONT I ~JUE 

HH(2,2l = SX*DD(l,l) 
Hi-1(3,2) = 
1-iH ( 4, 2 I = 
HH(5,2l = 
HH(6,2l = 
HH(7,2i = 
Hl-1(8,2) = 
H!-1(9,21 = 
HH(3,3l = 
f-11-1(4,3) = 
l-1H(:::>,3l = 
nH(6,3l = 

TXY-li-DD(l,ll 
2 • -Ji- s x -li- l.J [! ( 2 ' l J 
SX*Lv(l,2l+TXY*ul!(2,ll 
~ • .;:- T X Y 0:- D L! ( l , .::'. l 
3.~i-sX->i-UlJ( 3'1 J 

2.*SX*ulJ(2,2l+TXY*DLJ(3,ll 
3. ·l<-TXY 0:-DD ( 1, 3) 
S Y>i-Dl.J ( 1, l l 
2 • ~- T X Y -><- u fJ ( 2 , l l 
TXY*LJD(l,zl+SY*LJL!(Z,ll 
2.,-li-SY'~cl!U(l,2) 



c 

HH(7,31 
1-1:-1 ( l:h3 J 

llH ( 9, 3) 

= 3·*TXY*ULJ(j,lJ 
= 2•*TXY*Uu(i,C:.1+~Y*Uu(3,ll 

3 • -J< SY -J'.- UL• ( 1 , ?; l 
1-IH (I+ ,4_ l = 
HH ( 5, 4 l = 
HH ( 6, IJ,) = 
HH(7,4.l = 

Lf .-l!-SX-><-uU ( :3, l l 
2.*(SX*UD(2,2 1 +TXY*UL!(3,ll I 

Lfe'~-TX'(-l(-[_;[) ( 2 ,2) 
6 • -)(- ~ /<. -le lJ LJ ( L;. , J_ ) 

HH ( 8, Lf l = 4&*SX*UU(3,Zl+~·*TXY*Uu(4,ll 
HH(9,4J = 6e*TXY*U0(L,JJ 
r 1 H 1 s , 5 i = s x -* u u ( l , 3 1 + 2 • -J< r x y 0~- ~ u ( 2 , c:. i + s 11 

_,,, u u ( 3 , l J 

HH(6,5l = 2e*(TXY*UU(l,31+SY*UU(2,21 I 
HI-! ( 7 , 5 ) 3 "* ( S X -)', U D ( 3 , 2 ) +TX Y-><- D LJ ( Lf , l ) I 
HH(e,51 = 2o*SX*UU(2,3l+3.*TXY*0u(3,Zl+SY*Uu(4,ll 
f-!H('),5) = ?,.-;qTXY-l(-[)[J(l,Lfl+sv-l(-U[JU,3)) 
HH(6,6) = 4&*SY*UU(l,3i 
Hl-1(7,6l = 6 .. -l<TXY-><-uu(J,<'.'.1 
HH(S,6l = 4e*TXY*Uu(z,31+Zo*SY*UU(j,21 
HH(~,6) = 6e*SY*UU(l,41 
HH(7,7) = 9.*SX*DU(5,ll 
f I H ( 8 ' 7 ) = 6 "-)(- S .X -l(- [JD ( Lf ' 2 ) + 3 o -)(-TX Y -1,c lJ 1_) ( 5 ' 1 ) 
HH(9,7) = 9.-i•TXY-l~DD(3,3l 
HH(8,8l 4e*SX*UD(3,3l+SY*UU(5,ll+4•*TXY*uu(4,2l 
HH(9,8l = 6 .. -~-rxy-~cuu1z,4l+3.-;c5yo<-uu13,3l 
HH(9,9l = 9e*SY*UD(l,5l 
DO 2 I= 1, 9 
LJO 2 J=I ,9 
H H ( 1 , J ) = 1-1 H ( J , I l 

2 CO/\!TINUE 
CALL MULTP(HH,A,t:::~L'~'~'9'v'9'~'~J 
CALL MULTP(A,EKC,HH,~,9,9,1,9,9,~) 

R,ETURf' 
El\JD 

S U t_l, I~ 0 U T I ~.1 t: G R n U P I I , J , ,( , L , fH t: , 1 T , c_:, 1< , C I:' , R , P , I \J c C J 

c -----------------------------------------------------
(_ 1 r-1 Is SUUl-\UUT I l~l l\SStl'ii::·Lt.S Thi::. cLL1'iCl'Jl I'll-In; I Lt:.:::i Tu 
C lilVi::. THI::. (U1>iPLt:.TC: 1J111HdX h_,r-< Trlt: PLr.Tc .. lt- lVt1... lS 
C ll\!PUT AS zu::.:u,THE:. Vt:(Tui-..: UI-' tLc,·'1Ci\JT 1,uuAL FUl<Cl,,:., IS 
C ALSO ASSC:11'1l~LED. 

c -----------------------------------------------------

c 
C lJESCf~H-'TlC/\! OF Pi-'IPl\,."l::_Tl::.i~S 

c 
c 
c 

i\IULJI::. NU11uti-\::O.Hlt::: i\UL,L::- U1'J TriL 1-'J:XtL-• cL•ul_ 

1'1IUST t:E 1HJ1,12't::l-\t:Li Zt::r~u 



c 
c 
c 
c 
c 
(. 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

L 
:\JT E 
IT 
Gr< 

p 
IVC:C 

Tf-\I/'\f\iGUL/\I-\ ELl1·;Ef'JT i'!Untl::.F: 
TOT AL i\!Uii~ l::.I< UF T 1< I Ai\l1L ES 
NIJ,·~r\EI~ OF ULGi.:;:.ElS O.F- F1-\t:c.L:1_Jl•1 PE,~~ lLC:1 EIH 
THC: [ L EhLl\JT l•iA T 1-\I X I I~ Li LULJ ,.'.\ L CuUl\L; I l·'r-1 TL S 
TO UE ASSEnULl::.U 
THt. ASSL1·1uLLLJ i'l•"'Tl-UX 1-ul< Tl1c Plr1JL0 THl.'.:J 
SY',,·1LTl-\IC iviATl-\IX IS i<LTUl<l~Lu l\S f-!.. l.ULU1•,,j 
VLCTURoTHC: lLt:.1·'1Ll'd (1·,,hJ ul=- Hie r-·uLL i·1ATl-<1X 
I S T i-1 E [ L Ei\11 i:_ N T 1v,-Y, ( ; 11- l J I 2 + 1 ~ U F U:_ , \iii ri E.1-\E i~ 

IS LESS Tl-l/\N H 
Vt:::CTUI< OF C.LLHEl\T fWLiAL rOi-:U.S Tu ol 
ASSEIVlbLED 
THt ASSE1'idLLU Vl::.C TUI-\ ur-· l~uu/1L Ful<Ct:.S 
r re rw tu t. 1-..: Lh u; ~Ly Tr-1 c. , 11--1 T 1-< l \,_ c. s t-11-..: L T 1..i u L 
ASSEht::ILEL> 

lJ I !'11E 1\J SI ON Ci< ( l J , GI<.. c IT, I T J , RC IT l , P ( l l 
Il = (l-ll*IT/3+1 
J l = ( J - 1 J ~c I T I 3 + 1 
I'-. 1 = ( K - 1 J ''" I T I 3 + 1 
12 = P-IT/3 
J2 = J-X-IT/3 
K2 = l<'A-lT/3 
IF(L.EO.NTEaAND.IToE0.1BJK2 = K2-l 
H = c,, 
IF(loEO.OlGO TO 2 
UO 1 I I= I 1 , I 2 

c A L L A s s ti., 1 l::l ( I 1 ' I 2 ' J 1 ' J L ' 1<. l ' K 2 ' l I ' I' I ' I T ' G K ' c ;< ' L ' N T t ) 
1 lF(lVtC .. EuoOJP(lll = P(lll+J-((i'iJ 
2 I F ( I • EU • u J fi; = i·I + I T I 3 

IF (J.C.OoUlGO TO 4 
[JO 3 I I= J 1 , J 2 
CALL AS.SE /v18 ( I 1 , I 2 , J 1 , J 2 , \·~ l , K. 2 , l I , 1·1 , I T , GI<. , Cf:, , L , l\l TE l 

3 I F ( I VE C o EU • ~i ) P ( I I l = P ( I I l + r;; ( l'i l 
4 IF(JoELloOlM=~+IT/3 

IF(K.EQ.OlGu TU 6 
UO 5 I I = r~ 1, K2 

c ALL AS s 1:.1-1 b ( I 1 ' I 2 ' J l ' j 2 ' 1', l ' i<. i. ' l l ' I i ' I T ' u 1-, '(. j, ' L ' I~ Ti:. ) 
S l F ( I VE Co tu. u J P ( I I J = P ( l I J +I\ ( ,11 i 

6 l F ( J(" EU o 0 J f'vl = fl+ IT/ 3 
l:.(ETURN 
Ef~D 

s u 1:3 R 0 u T I N E /\ s s L I· i iJ ( I l ' I 2 ,j 1 ' J 2 ' 1d ' 1( c: ' I I ' ;, I ' I T ' lJ i< ' ( i<. 
1 , LL ,iHE l 



c -----------------------------------------------------
( Tri Is SUcl~:uUT I ,jl Is 1\I~ l i~Tl::.G~-\i-\L Pr'li"\ T 01-' Till SUbi·<uUT I ;'d:. 
c G r~ u u P , F o i:;~ A s s r:. , :i::, LI 1\J G Ti 1 L L:. L t.:: 1 , u n , , A T 1 ~ Ic. ... L s • u : \1 t::. c u L u, 11 J 

c OF t.LEHErn 1v1A n; Ix I .s J~SSC.1·il;LtU l:IY HI Is .SUbl""\OUT I Nl::. 0 

c THE PA I-< k r·/1::. Tc 1-< s or=- n 1 t: .::, u b 1~ u u T l r\J r: 1~ 1-< E r, nu:; 1 , 1::_ 0 r 11. TL 
C UUANTITIES OF SULIROUTINE GROU~o 

c -----------------------------------------------------
( 

c 

c 
c 
c 
c 
c 
c 
c 
c 
c 

D Ii''i I:. N S I CJ f\! C \( ( 1 l , G r, ( I T , I T i 
Iii = M+l 
f\J = () 
IF(Il.LT.llGO TO 2 
I.JO l JJ = Il,I2 
N = N+l 
lr(Il.Gl::_.JJiL=ll*(ll-11/L+JJ 
IF (II.LT.JJJGO Tu l 
Cl((L) = CK(LJ+Gr~(fv~,,rJJ 

1 COf\lTif\IUE 
2 lf(Il.LTellN = N+IT/3 

If(Jl.LTellGO TO 4 
l)Q 3 jj = Jl,J2 
l\J = fHl 
l J-- ( I I •Gt. o J J l L = l I * ( I I - l J IL'+ J J 
IF (II.LTuJJ)GU T~ 3 
CK(L) = CK(L)+GK(M,NI 

3 CONTINUE 
4 If(JloLTellN = N+IT/3 

If(KleLT.llGO TO 6 
DO 5 JJ = 1(1,1<2 
N = N+l 
lF(II.bLeJJlL=ll*(ll-l1/2+JJ 
IF (II.LT.JJ)GO TO 5 
Cl" ( Ll = CK ( Ll +GK ( i'1, 1'1 I 

5 COi'H I NUE 
6 IFIKl.LT.llN = N+IT/3 

1-<ETUl~N 

E.ND 

THIS SUBROUTINE FINDS THf:. FIRST Ff:.W nIGHEST Eibf:.N­
VALUES i-\Nu (UF~l-\E.SPUJ~i.Jll\Jb t:.ll>t:.i~Vt.CTUl~S uF M ."ii-IT1-\IX, 
USli\JG POVvEI-< 1viETHOiJ. Trlt. 1<t..uUI1\Lu Ll1..:ii::.1W1-1LUt.S i'iUSl 
t:;[ POSITIVE. At'W lJISTrnCTdHC:. TUTAL 1rn1,il..Jt.I~ UF l:.IGtr\1-
V/\LUl:.S l~:f:.QUil~EO i"1UST NOT lXCt..t:.u 11/\U· THL SlZt:. UF 
THE HATf~IXo 

:::'.74 
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C uESCI~ IP TI 01~ Cf-'" P 111<1\i·iET LhS 
( 

c 
c 
c 
c 
c 
c 
( 

c 
c 
c 
c 
c 
c 
c 

G,.'i 
l\R 
i'J [) I I -'1 

i'i1f\ 
1\LPH/\ 

TOL 

EY,EZ 

:ii,\H<lX ,;llU~i.:. Lll:ili'JVf\LUL'.:J i\1\L l~i::.'-'iUli-\Lu 
SIZE OF i:.1\TRIX C1::_1'I 

Fli\ST Olf·,c1'-JSIUI~ CF 11hTl<L< Ct .. 1: Ii~ THc. 
lJI1·iENSIUl\J STATl1·,i::.l'H 
i~Ui·ilic:I-~ OJ- clGtf\JVl\LUt.S J<[UUlf~t.LJ 

Vi::.(TU1'\ Of-'" ~lZl:. l',i-< l(~ V1ilIUI THt_ Ul:it:/,JVr,LULS 
A I-< i::. I'\ I::. T U 1-\ 1 ~ t. Li 

Pli-\C[fH/\lif.::_ ulf-FU\l:.i'Jlt::. bl HILU" Thl VALULS 
FOi~ HIE l::.IGl.::i\IVALUl II~ H;0 SUCCl:.SSlVL 
I T t I~ A T I 0 I~ S Vint:.{·~ T H L CU 1 ~ V u\l...J UK l Ch i'J Lt L 

ASS U i\i c D T 0 11 f\V t: 0 CCU I\ L lJ 
lJ U ''1~·1 Y VE CT 0 i< S 

Li I i·1t.1·~S I Ui'~ (1\.1•1 ( i'W I 1·1, 1HJ I 1"1 J ;Ly ( l\ii.J 1 i I J 'LZ ( ih) 11'1 I' l\LPH/-\ ( 1•11-< J 

NN=Nl-<+l 
lJ 0 12 L = 1 , fv: R 
i~N=N/'~-1 

DO l I = 1 , f'.Jf'J 
EYCI) = 1.0 

l CONT I fWE 
l5ETA = l.u 

2 IAJ 3 I = l , 1\J l'i 
EL ( I l = 0 • U 
DO 3 1<=1,Nf\l 
El(ll = E.ZCl)+CkM(I,i<J-iH:.YCi(I 

3 corn r NLJE 
ALPHA(L) = O.O 
L!O 4 I=l,NN 
I F ( A b S ( E Z ( I l l e 1:.J T • A L P H !1 ( L J l J-,,. L P 1-1 i-'1 ( L i = i~ b S ( l::. l ( I l l 

~- CU,'\JT HJUE 
I:. i-<R U I-< = l GU • -;; ( /--\LP h ;~ ( L J -b c. T !'\ J I u LT f\ 
lF(/--\bSCERRORloLTQAbS(TOL)lG0 TU 6 
LiETA = /\LPHA!Ll 
DO 5 I=l,f·Jf\l 
c Y ( I ) = E Z ( I ) I ,A, L P i I A ( L l 

5 Cuf\lTINUE 
GO TO 2 

b utTA = LY(lJ 
I.JO 7 I=l,i\li'l 
E Y ( I l = E Y ( I l I l~ t T f, 

7 CO,'H I 1\JUC:. 
!JO 8 J= 1, f]l\l 

EZCJl = Cl<'J1 (1,Jl 
o CO:'JTINUE 

uu 9 I=l,i\IN 
u 0 'J J = 1 , f'Hj 
k=f·~rHl-1 



c 

C:~ I; (I(, J) = C l(i'1 ( r,, J) -LY { 1-. J >;-( i- i; { l, J J 

9 ccrn rr:uE 

11 

IJ U 1 L I = 2 , /1\ /\,I 
~10 1 J= 2, f,J.\I 
r1l=I-l 
N=J-1 

l=J-1 
ll _r,•1 ( 1\1 r,J , I l = l:. Z { ..J l 
IJO 12 I=l,Nl\J 
CK M ( I , /\JN l = E Y { I l 
CONTI r,lLJE 

C IF UNLY THt: EJ11t-l'l\/i\LUt:.S fH<[ i-<'.t::vUll\cL1,TnL Sl_lc:,/--<UUTl1\E 
C ~'L.'.\ Y b E Tf__:: 1:;: 1'1 I N /1, T t:: U H C: 1:.; E 
c 

DU 22 :'•l=l,J,1i\ 
f\1=1Vl~-i•I 

M;\i=ll+l 
L=r,:R-/\l 
DO 13 I::: 1, L 
t L ( l l = CK 1'i ( 1 , L l 

13 corn r rwc: 
If'-'(i~.t::U.Gl GU TU 18 

14 L=f'~F:-f'J 

LL=L+l 
(:::(). 

/\!N = 1\l+ 1 
DO 15 I= 1, L 
C=C+EZ {I J -i(-0~>11 {LL, I) 

15 CO;'H I NUt: 
C= { i\LPH/\ {;ii J -ALP11f\ ( r~ ii /L 
UU 16 I= l, L 
l:Z { I ) = t:.Z { I ) 0~C 

16 corn 1 NUE 
tJO 1 7 I= 1, L 
J=L+2-I 
f'JN=J-1 

17 C:Z(J) EZ{NNl+C~M(J,LLl 

cZ(l) = G>1(l,LLi 
1~=r~-1 

IF(N.GT.Ol GO TO 14 
18 C = A8S(EZ(l) l 

l)(j 19 1=2,f']/:;; 
IF(1\US(EZ( I) l .l]T.Cl C=J'.\t0,5(l:_Z( Ill 

19 corn r r,iui:: 
UO 2U I=l,/1~R 

f::.Z(ll = EZ(ll/C 
2 _J corn r :"WE 

27b 



i:,J = 2-;;-;:1fv1- l 

1<-1< = 2°-t,,11-1 
k I = (I~ I<+ 1 l / 2 
KL = r~ I+ 1 
DO .'.'.l I=l,KI 
GJ:J ( I , i'. J l = E Z ( I l 

21 CO/\ITI~WE 

fJ 0 2 2 I = f~ L , f'-!R 
Cki-'i(l-kI,r.;.r,l = i::.Z(ll 

22 CONTINUl:. 
LIO ZLf i·ii"i=l ,f·.:1=< 
f.:..J = 2·k1,·11v1-1 
K i( = 2 -'A- lvi i·/1 

DO 2 3 I= 1 , i<l 
G;~·1 (I ,~,,ii·~) = (f<i:I (I ,KJ l 

2 3 CO/\JT I /\!LJE 

Cl<11;i ( I , 1\'IH J = C ki'I ( I-KI , 1;.r.:.. 1 

24 CONTINUE 
RETUl-<f'J 
END 

/\JOT t: 
TH IS PIWGl~A!'-1,'11E IS DE-:S I c;;~t.::D F'Of( TUT /\L /\1Ul'-1hlJ\ OF /.!ODES 
GR EA HJ-< THAI~ 5 • 



;\PPE/\1UI.X IV 

CU':PIJTr:::I-~ i-:-i1.;uc1<A:·1·1t. F:Jt\ VIi:i1-<1ITil;1.! /\i·Jl-\LYSI::i UF l'.UTf>.TI1~G 

Pf-~ i_ T v.J I ST t. lJ CA /\1 T I LL: VE I~ P LI'> TC 

!\ Lj. 1 7 6 ' c i !1 l L 4 u c u ' T L I_} • I~/\ l:J TM /'j I S e 

PLJ1\!(Sl 
LGO. 
1;~ E 1'! I /\! D LG 0 • 
RU1\I ( S l 
LCO ~ 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
( 

c 
c 
( 

c 

64UU tNU UF kECuRu 
I-' I~ U u ,\I\ 1 ·1 T ~ T ( I i'H-' LH , u u f I-' u I , T t-\ I-' t. :J = l 1, 1-· UT , f ~I-' t 6 = u UT f-' u T , 

1 TAPt l,TAPt 2,TAPt 31 

1 
2 

U I f·.~ E f.J S I 0 /\] C r( ( 1 ') L· •J L. ) ' P ( 1 6 7 J , lJ I S P ( l 6 7 l ' 1 Y ( l 6 7 , 6 ! 

L) I I 11 E f1J s I u N x ( 3 ) ' y ( 3 ) ' L ( j I ' T ( 3 I ' >\ x ( 3 I ' y y ( j ) ' ML I'' L; ( j ' 3 I • 

A ( 9 , 9 l , U U ( LJ , 'J J , F P ( 6 l , F u ( 9 1 , t_ r~ Ll ( 9 , SI I , t ,:_ fJ ( b , G I ~ 1-· ( l d I , 

Lk(ld,ldl ,~Tl-<.'.::>~i(j) ,Ct-i.:...('7,·:;11 ,Lt-i··1(10,101,yu(jl 

Al'\ 
tJOVEr<T 
T v. I~ T 
v 
TL 

H.UTC 
:)t.Tf\l 
TllETA 
f\OVl::.l".\L 
f'~ L 
No 
/\Jl::.Ir.:Jt./~ 

A S P [ C T F~ /\ T I U 
t:Ji~l:::AUTH/TH I C1<1\Jr::ss ;\ T Ul~'. l lJ l 11J 
TuTAL PRETWlbT (Ut.uRt.t.Sl 
PiJISSUi~S 1.;11TIO 
LE1·iGTh\'ll.'.:il::: ThPLi·; f-n\....Tu1\.T11Iu,i~l::.SS ,1T 
( L ' u ' l l ) I T H I ( i< j'.j E s s ii. T ( ~I ' ! ' u I 

1;1:;:t:.MJTH~1JISE Tf1t:.>t:_f< Fr,C.TUl-\o Tl1IC1,1~L::::,5 1-1T 
(:_1,1:3/2,\Jl/THICi<N[SS l\T (•:J,,1,01 

R 0 T !\ T I O:·J AL s pt E Li I F lJ: \ LJ • llJ u NI-< u T /\T I r·~ 1~j r.:: I-fr u • 
F Ui.JU. /'W 1'J h'.lJ T /H I f'J l:J F 1-< l l,1 • ( t\J CJ ~ U I 1·11 EI JS I U 11 ;\ L i 
Sl:TTlNG ANlJLI::. (ut~RLE::il 
f\AuIUS Cf- UlSL/Ll:i'JliT11 UF PUd[ 
LEriGTHl.>JISI: SUL.L)lVl:::ilu1~::.:i 

bR~AuTHWlSt SULIUIVl~lUN::.:i 

l~U: 1bt:./\ Ur t:.l Gt.IWf'.1LIJlS l\E 1JIJ I 1-<LLJ 

U /\T 1-\ I f\J PUT • I f TH L PL i IT [ I S 1 ~ C11,i I~ u TI' T I ; J ln PUT 1-i ',_)TC ' 
ULTAl,THl::.TA ANu ROVEKL AS ZLkO• 

f\ t Au ( j ' l ) I\ I-=( 'b (j v un ' T ,,' I :::, T ' TL ' Tb '\J 
1-d:. A LJ ( 5 , 1 I I~ U T C , b t T A 1 , T r 1 l T 1-\ , 1.:; VII t 1-< L 
REAU(5,2JNL,N~'NEIGEN 

1 FOR:lAT(6FL!.4l 
2 F0~~:1AT(3I2l 
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c ---------------------------~-------------------------
( .L\ LL L If.J E f\ i-\ lJ I I::., ·J S I iJ /.; S A h:. f~ CJ F~, , ,1\ LI Z t:: D U Y T A::._ I!'< G T H l::. 
C uRcALiTH OF THL PL1HI::. ,1,:_;, U;d TY. THt ,,LJhuLI\ iJF T,;I h\.JULAI\ 
c l::.LE;·iEfH s ( 1'HI::) 'THI:: 1\iUl'1UEI< UF L1 llil~l::.t:s Ur 1"'i\t:.Lu011 ( i·WF)' 
c MJD THE SIZE(f~vn OF Till::. SYi 11 iv1tnnc STHF/\J[S~ i 11ATl~IX 
( (Cr-.:.J STUl-<1:.lJ 1~S CuLU1·i1i VL(L.J1-< Al\L ut:.Tu<1·,l1~LueTnt 

C HAT I-< I X 1 S l N I T II\ LL Y SI:: T Tu Z E 1:;; U. 

c -----------------------------------------------------

c 
( 

c 
c 
c 
(_ 

c 
c 

j 

1-\AL; l US= IWVtl-<L-~"r1I~ 

TORIGN = l./oUVl::.RT 
NTE = l\JU(-i~i:.°,1~2 

NUF = NL*ING+ll*6-l 
NW= NDF*(NDF+ll/2 
l.JO 3 L = l "'H·J 
CK ( L) = 0 • 
CONT I l~UI:. 

Tl·IE GLObAL coo1:;:ulf\JATl:.S(X,Y,ZJuf- Tt-IC: 1·,ULJL::.1,THE r~uiJl::. 

l\JUiV10ERS(l,J,J<) MW Thi::. TiilCl<NE;.,5 /1T Till NOul::.S(Tl Al-<[ 
c:, t: N E I-< I\ T E D F O ;.,; l::.i1 CH E L E Jv1 ~ fH a T H I::. St. M-\ E ST OF< E u 0; ~ T J\ P E 
f~0d. THE i'1iAXI1·1Ur·; THIC,ffrSSIHiAXJ uF Till PLATl IS 
1\LSU Df::.TEl-<:1,rnt.L.·'• 

1-<tvJ 11~0 3 
f;1:1AX = u. 
DO 5 N=l,2 
YUllJ = -0.5-1./NB 
KR = 0 
lJO 5 L = l , IH'.i 
YU(ll YUllJ+!.INU 
YUl2J = YU(l)+l./Nb 
YU('.:)) = YUllJ 
IF(N.EQ.2iYU(3) = YU(ZI 
r;:J~ = KR+l 
Ll = IL-ll*INL+ll-KR 
DO 5 M=l,NL 
X ( l J = 1vi-l(-AR/f~L 
Xl2J = (M-ll*Ak/NL 
X(3) = XU.I 
I F ( l\l • f::. U • 2 J X ( 3 J = X ( l J 

bl = TORIGN*(TL-1.l/AR 
D2 = 2-*TORIGN*ITU-l.l 
E ?· T 0 R. I G 1\1 
1)0 4 I= 1 , 3 
Tiil = LJl*XIIl+~2*YUIIl+~3 
11- ( T ( I l • G T • T YI M( l H':.11 X = T ( l J 

A/~\.Jlt = TvvISP"X(lJ->-c3.142/(lo()e-l<-,~l\i 

Lill= YUIIJ-:(·Sli~(/o.,NGLi:.J 

4 YI I J = YU( I J-:(-(QS(ANGLl::.i 
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c 
( 

c 
c 
c 
( 

c 

c 

LZ = LZ+l 
I = LZ+l 
J = I +t,JL-1 
I F ( ;"1 • [ U • 1 l J = tJ 

I< = LZ 
IF(N.EU.2J~=LZ+NL+l 

I F ( H • E LI • 1 • /\ /\! iJ • ; ~ • [ L, • 1 J 1-. = u 
'.! \ ... 11~ITt(!J)X,Y,!._,/ ,i ,J,K 

i;~ [\rJ I N l.J ':'> 

THE STIFFi\JES5 :<!,TRIX FOi'>'. THC. PL/\Tt II~ HIE li'JITIAL 
c lJ NF I Gu r:.; 1H I'.];~ I s cw T /\I i\J Lu • Ji c Tu J.\ L s T 1 F r lff s ~) i i\ T 1-; I x 
l,'.;, THE ,-1t1T1.;IX Cl< U;Ll.Ulf\Tl:J llt:-<t r'tULTH-'Llt_u L-:>Y Ti-It 
FLEXURl\L 1-UC,IL'ITY OF Tr1L: 1-'Lf',Tt..e 

F~E\'J I rw 1 
f-\E\.1JI ND 2 
DO 6 L=l ,rnE 
REAu(3lx,y,z,T,I,J,K 

C THE UIF;ECTION COSINt:S OF Tl-It LUCl~L AXE.S(!\U 11LiJ /\J~u Hit 
C LlJCil,L COOfWI/\i!ITLS OF T11c.. 1'WUtS (Xx,yyi 1-\l~:t: ucTli~1'ilt>Jtu. 

c 

c 

/\ 1 = ( x ( 2 J - x ( 1 ) ) -)(- -)f- 2 + ( y ( 2 ) - y ( l I I -)f- -);- l. + ( z ( L ) - l ( l ) J .,~ ·k l. 

i'-'12 = (X(3J-X(2) )->Ht2+(Y(3l-Y(2i J-lH(-2+(!._(3'-Z(C.1 J->;-?:-z 
A3 = ( x ( 1 J -x ( :3)) -lH(-2+ ( y ( 1 J -Y ( 3 i) -X--l(-l_+ ( z ( l J -z. ( 3) ) -iH(-2 

YY(2) = SC!fH(All 
YY(31 = (A3+Al-A2J/(2.U*YY(2l' 
XX(3J = SORT(ALIS(A3-YY(3l**Zll 
(.~ L L L A I I [) i\ ( x ' y ' z ' /\ U· 1 [) ) 

l '-- u t. 1- r I '-- i Ll\J T :::i \... I , \._ 2 , c 3 ( t u u h T i u 11J :; & i ';I ' ,, 1-< c. u c T u.; "· I 1 ~ L u e 

c 
C3 = T(ll/TMAX 
C2 = (T(2l/TMAX-C31/YY(2J 
Cl= (T(3l/T~AX-C3-C2*YY(Jil/XX(3i 

c 
c THE INVEl~St. OF ;·,111T1-nx /\ (l:::.UUATIOt'J 3.di IS OLiTiUJIEu. 
c 

CALL AINVRS (XX,YY,Al 
c 
C THE MATRIX (DUJ OF OOUULE INT~GRALS IS UBTAINEL!e 
C DDCi1,NI IS THE V1'\LUE OF IIHCGl-</\L UF XX·)r-:q,v1-1H:-yy-:H'o-(,J-lJ 

c 
Cl-\LL UUl::ll/\JT (XX,YY,UUI 

c 
C THE PFWPt:l-\TIE~S OF t::.LlhEl1iT::J l<t.uUil<t::U 11, LATTt.I~ 

C CALCULATIONS ARE STOkEu. 
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l f ( I\ u T c • Li L 0 1 .. I:: - 0 J v JI'\ i T c. ( <.'. ) /\ ' y ' l ' T ' l ' j ' i ' ' ,\( ;\ ' ( y ' I\ L '~I u 
I r-: ( I w Tc • LT 0 l " [ - 0 J \/ R I TL ( l J [ ' J ' k ' x ;\ ' y y ' ( 1 ' c 2 ' c 3 'f\ L 11 , [) ' /I ' u l.J 

c 
C THE I N-PU.\NE A.r~t_; THL [:jJ:.)';t_, HJG ST I F-TNl:.SS H1\ T\ ICES OF Ai'J 
C EL[,.',EfH ARE iJtTti,;11 ,Ji.'.r:u /,f.Ju CU11LJI11JllJ Tu U[.)T/,J,,1 Thl:. 
C C0,11PLETE STIFFNESS il:l\TldX Ur THC. f::.LE:i1l:.fJT• 
c 

c 
c 
c 
c 
c 
( 

c 

c 
c 
c 
c 
c 
c 
c 
c 

( 

( 

c 
c 
c 
c 

6 

CALL PLANEK 1xx,yv,T~~x,v,c1,c2,L3,E~PJ 

CALL ~ENl.JK 1c1,c2,c3,v,/-\,uu,L~uJ 

CALL SHLLL (l:.KP,t.~~,c~,~p,fo,F,ll 

THE t:Ll: .. •IUH STIFFNt.S.'.:i 1'11\11-<lCt.S Al..ZL Tf</li·JSFUi<,illu TU 
GLOSAL AXt.S. FOR THE LAST NGlJE UF Tri!:. LAST TRIANGLE 
THE fWT1H 1U/1~AL lJEGl-<EtS OF Fl~[LuU1'I /\f-<(: i':ETidi'fr:u 
Al:'..OUT THE LOCAL /\XES· Tri[ tL[,•]t:.;n :·1J1T:nccs kf<l::. G,\UUl--1t:.lJ 
T 0 U b T .t\ I N THE F I i ~AL ST l FF 1 H.'. SS HAT r<l X ( C 1.:. J Fu 1,; TH t_ PL r\ T 1:: • 

CALL TI~ NSF I-< I AU· i u , E ,, , F , 1 J 

IF(L.EUeNTElCALL LAST IAL [),[K,f,ll 
CALL GRUUP (I,J,~,L,NTC:,ld,LK,CK,F,P,ll 

REI,\/ IND 1 
f~El,,JlND 2 
1:.;t:_\,! I /\JD 3 
IF!RUTC.LTole[-8)G0 TO 19 

THt:. CE~TRIFUGAL FORCES GIVEN oY lUUATiuN 4.j7 ARE 
LUMP t C AT TH t: ~W l.J ES , T rl l S T I I Fi 1 t:. SS 1\ 1 A T 1:.c: I X Ck I S 
I NV E RT [ U US I NG HI t Ll L) R /1 1.;; Y SU ti::.; 0 U T Ir~ t:. 1 N VS Y 1 i , 1-lfw 
THE PSEUUO-STf1TIC UEFOR1,i/\TIUN lS C/\LlULATL.Jo IF TllC. 
INVEJ\SIO/\J FAILS THE Pl<Glii:.Z1\,i11·1E STuPS. 

---------------------------------~-------------------

SPLJ = ( f..;(JTUH2 l ><- ( t:it:. T1\l-X-l~,:::) I ( 1-11-P-l~-4 l 
Ti~= TUi~IGN/T;i1A>< 

CA L L L U I· i P ( A 1.;_ , T L , T tl , T h , I-< A u l U :::, , hi I :::, T , H1 C. T A , t~ L , f ·~ l, , S P u , P J 

Cl~ LL INV SY 1·l ( C 1-: 'IJ Li F , I cf.~ 1-< i 

IF!lERR.Nl:.oulWRITE:.(6,7litRR 
7 F 0 R: ·i A T ( 5 X , 5 H I E f~ R = , I 3 i 

lF!lERk.Nt.~lSTOP 
U 0 8 I = 1 , 1\J U F 
UISP(Il = u. 
UO Cl K=l,/\JUF 
IF(l.GE.KIL=I*II-ll/2+K 
IF!leLTeKlL=K*(K-ll/2+1 

t:i UISPIIl = [;lSP(Il+CK(Ll>(-P(:(l 

T H E:. S Tf-< t::. S S t S I I~ T H t 1\ 1 l U u L l SU I-< f- 1-1 t__ c h 1 ··l u Tll l L (J v I~ v I 1·~ A T L S 
OF Tri[ NOULS H~ Thl Ull-ul<1'llu lUi~l-luUl-<ATiui'i Al-<E. 
Ut:.Tll-.(1,,l1~llJ. Tl-ILSl 1\l\L 0TUl'\t:.u U1~ T1-1Pt:; 



c 

UU 14 L= l ,/Ht 
Rt:.AUl2lx,y,z,T,I,J,K,XA,YY.ALMU 
I I = 6"''" ( I-1 ) 
JJ = 6"''"1J-l ) 

f',i< = 6-><( k-1 ) 

DO 9 N=l,9 
FL.Hi'~)= u. 

9 C:IJ1'.JT I f.JUt:. 
I F I l • l:_ Ll • U J Ci U T LI 1 ,_, 
Ft:llll = UISPIII+ll 
FF»(2) = DISPIII+2l 
Fl3(3) = C1 ISP(II+3) 

lu IF(J.EO.ulGO TU 11 
FS(4) = DISPIJJ+ll 
Fci(5) = UISP(JJ+2J 
Fo(6J = UlSP(JJ~jJ 

11 IF(K.EU.UlGO TO 12 
FJl7l = UlSP(KK+ll 
F~(8) = DISP(K(+?l 
FG(9) = DISPIKK+3l 

12 CALL STRt:.SS IXX,YY,ALMu,v,f~,T AX,STRSSJ 
DO 13 rt= 1, 3 
XINJ = XINi+Folj*~-2 1 

Y(/'J) = Y(J~J+fu(jic/~-lJ 

1 3 i ( r\1 l = z ( / ,\ l + F c) I 3 -ic ~1 l 
14 WRITEl3)X,y,z,T,I,J,~,~TR~S 

RF\>IIND 2 
R E \,1 I l1i D :, 

2 r3 z 

r -----------------------------------------------------
( Till:. STifF/'fr_Ss 111-\H'.Ix,11\J(LULJll\[li Trll Ct.:.11Ti~IrUl1ilL STlfF-
c i'itSS /\!'.llJ Ctl'Hl-<lFtJC_,;~L f':ASS :'1f1T1<IX, lrJ THt Ut.FUl".1·,t.u 
c CIJ!~FIGUl-<1~TIU11J 1,1-:t:. U[Ttf\i'li\[_._.,5/\LTu1~1L STlrfi'Jt.':12, 1•,1-1TRI\ 
C: IS THE 111/1hUX Ck C/1LllJL1,T1.:.U ilti~t:_ i1ULTlPLlt.u oY T:-il: 
C FLEXUR1\L FUGIUITY OF T11t. PU'T'~" 

r -----------------------------------------------------
[) 0 1 5 L = 1 , J' l 1:.1 

C:<ILl = c., 
15 C01'H I NUE 

UIJ 1 o L = 1 '1H E 

c 
C TH E U I I-ff C T I U N C Cl S I N E 0; c:1 F T H [ L 0 Ci\ L A X F c; ( i\ L, I ;_l I /\ i\\ [) T H [ 
c L CJ c /\ L c (I 0 ~( f) I i'l i\ T E s 0 F Tri f'. j,J rJ L; [ s ( x x ' y y J fl f\ [ L) !::: T L r;; I· I I r~ L:. l.,• • 

c 
A l = ( X ( 2 J - X ( 1 ) ) -J;' .,'(- 2 + ( Y ( 2 ) - Y ( l J I -le ';f- L + ( Z ( 2 I - Z ( 1 J ) -l< -J< 2 
A2 = (X(31-X(2) l**2+1Y(jJ-Y(211**2+(Z(il-Z(21 J**2 
/\ 3 = ( X ( l J - X ( 3 ) ) .;;- .;;- 2 + ( Y ( l J - Y ( 3 J J -Jf- -Jf- i + ( l ( l 1 - L ( 3 J J -~' -;<- 2 
YY(2) = SUl-<T(/\l) 
YY13l = l.ll..3+Al-A2)/(2.u-J(-YY(2ll 
XX ( 3 ) = SU IH ( AUS ( J\ 3 - Y Y ( 3 J ';H(- 2 J ) 

CALL LAri~A(x,y,z,ALMUI 
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c 
C C.JEFFICll::.NTS Cl,C.::.'.,C...3(b,/U11Tlv1\J J.1'7 J,'\l\L UtTU-\1•d:~cuo 
c 

C 3 = T ( l J I Ti'ii ;, X 
C.2 (T(21/P1AX-C3J/YY(~I 

c l = ( T ( 3 ) I T ;•i /\ x - (. 3 - ( £:'. -;f y y ( j I I I x x ( 3 I 

c 
c THt INVt:..f-\SI::. Ur 1lflH<lX M (LUU1-1TIOI\ 3.01 IS vuThli'~Ll..Jc 
c 

CALL AINVRS (XX,YY,Al 
c 
C T rl E i'"1 A T f-d X ( u U l 0 f- U 0 U LJ L l I fH t u f~ A L .S I S (J t_:. T i\ I f\'. I:::: I) • 

c lJu(,,],j~J lS THl V~LUL uF IrHLLil~r'IL u1~ ;o:~H: (,•,-li><yy~Hf(1·i-ll 

c 
LALL U U t:. I iH ( XX , Y Y , U lJ i 

c 
C Th E PR 0 P I:: 1-\ T I LS G F E Lt: 1"1t1 ·;T 5 Id::_ U U I id:_ u I 1 1 L 1\ T T t ~; 

C CALCULATIONS ARE STOkl::.u. 
c 

11J 1-\ 1 TE ' 1 l I , J , r~ , xx , y Y , c 1 , c:::: , c 3 , A L1 ., u , 1-1 , u u 
c 
c THE bENuI1~u /\/~[) Thi:. Ct:IHi-\IFUlii\L :::.T lf-'1=-i\Jt.SS 1•i1-1T1-\ICl::.S 
C UF AN ELEl·iUH /-\l~E OUTi\li'JlU 1-\IW 1\lJL!t.U~ 

c 

c 
c 
c 
c 
c 
c 

c 
c 
c 
c 

16 

CALL btNUK (C1,c2,c3,v,A,uu,tKUJ 
CALL CENTK(c1,c2,c3,sTkSS,A,uu,cFKI 
DO 16 M=l,9 
DO 16 N=l,9 
t:.1<..1J<1v,,NJ = u.:_0(1'1,hl+cF-r~(;.1,iiJ 

CONT I /\JUE 

HiE:: INPLANi::. STIFFf\JESS 11/\Tr-;:IX ur 1-\1' Eli::>;Lln IS 
UBTAif~ED AND CU1 111Jil\JEU V.JlTr. THC: TUTAL UEf~IJii~G STIFF­
/JESS 1\'1/\H-<IX TO GET Tl1t:. '-U11PLt:.Tt. '.:iTI1-F1~LSS 1·if-;T1...;1x 
FO;~ MJ 1:.LE:•:1EiH .. 

U\ L L P L f'cd~ L I'. ( XX , Y Y , Hit\ X ' \i , C l , ( c:: , L 3 , U, P J 

CALL SHl::.LL IE~~,c~b,t:_~,fP,fD,f ,ll 

Tl-It. CU~Tr\IFUG/\.L 1-11\SS i'-1P.Tl-<1X ut-- f\1'. i:_Lt:.1·11::.i'H IS 0dTAli~Eu 
MW sub HUI c TE i) FI~ 0 M TI i E s T I r~ H·J Ls:::, 1\1 f-\ n,z I x • 

CALL CE IH /,1 ( C 1 'C 2 , C 3 , XX , Y Y , A U•i U , TH t TA , SP U , U U , CI 1·. J 

DO 17 M=ld8 
DO 17 f\l=l ,18 
tl((;,\,/'Jl = U~(:•1,1·il-Cr1'1(1·1,J•Jl 

1 7 COiH I f1.JLJE 



c 
c 
c 
c 
c 
c 
c 

c 
\ 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
r 
'-

c 

18 

19 

20 
,::'.l 

THE C:LE,V\EfH STIFFNESS 1Vif-ITFUCES Al-<I:.. Tl-<f\1\ISFU1<,.1JElJ TO 
GLOoAL I-IX t.'.:>. FUI-\ TH l LI-\.'.:> T l~Ul.JL uF TH l:. LA:::. T TfU i\l~G L c: 
T H C: I~ 0 T /\ T I 0 N A L IJ t G R E I:.. S 0 F F r-< E E:. IJ 0, ii 1-1 1-\ [ i-\ f.:. T A frj E lJ 
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ABOUT THC: LOCAL AXES. THI:.. ELEMENT MATRICES ARE GRUUPlu 
T 0 ot.H A Ir~ THE F IfM L ST I F f- NE SS HA T iU X ( C r~. J Fu I< T H l P LA TE • 

CALL TRNSFR (ALMQ,EK,F,ll 
I F ( L • E Q • NT c J Cf:, LL LAST ( I\ L 1vi D , EK , F , 1 J 
C/\LL Gl-WUP (I ,J,r:...,L,fHEd8,l::.l<,Ck,F,P,ll 
R C: W lf\:l.J 1 
REh1 IND 3 

THE MATRIX CK (STIFTnE.'.:.iS /il/\H\IX - cu~n;nuGAL ,'iASS 
MATRIX) IS INVC:RTED, USI~~G LIUl-\1-\l\Y SUbl':UUTiik liWSY1·1• 

.IF THE INVERSION FAILS THE f~l-\Oui-\Ai•,f!IE STUPS. T1--!E 
I NV E 1-n l D i-1!1T1::; I X I S S TCH~ l:. u UN T f~ P l 2 , S I X C 0 L LI ,v1 I'~ S 
AT A Tl 1viE. 

CALL INVSYM(CK,NDF,IC:RRl 
I F ( r E R r-.: • N c: • u l 11~ I-\ I T E ( 6 , 1 i I L 1~ 1::; 
IFIIERR.Nl:...ulSTOP 
IT = (NJF+l l /6 
DO 21 1"-.=ldT 
1V1 = U 
Ii<= l<.~.<-6 

I 1\11 = I K-5 
IFIK.EO.ITlII< = IK-1 
lJO t!. u I = I l"i , 1 k 
M = M+l 
DO 20 J=l,NDF 
IF(IBGE:..JlL=l*(I-ll/2+J 
IF(IeLT.JlL=J*(J-ll/2+I 
TY ( J, f'.1 l = C"- ( L l 
wl-\ITE12l ( ITY(i'"l'~l ,f\J=l,6l ,1,1=1,f~l.JFl 
1-<Ei,vIND 2 

THE 1'1ASS i'i/\HUX OF Hit:. PLATL IS ut:.TU.;;•1Ih.i:.l.J. THi::. 
ACTUAL MAS~ ~ATRIX IS Tlii::. MATRIX lK CALCULATI::.~ HCRL 
/ViULTIPLll::lJ UY (l\llO-i<-T1"ikXJo 1:.:.110 lS Tlit::. l'ik.::iS Pt.:.i< ul~IT 

VCJLUhC: .L.Nl.J Hil-\X lS Tflt. ;vir1XlHUl'1 T1ilCi<.1k.::iS. 

DO 22 L= l ,fJ\IJ 
.CK ( L l = u. 

22 COrHINUE. 
DO 23 L=l,NTE 



c 
c THc Ii·J-PL/\fff i\,~L· Tr-it_ i__;C.l.Jl,11',l:J 11i\S'.:i :1;c,T1-<Cl:::i rul< 1-1/~ 
c C:L[/1U!T .Al<C: Ul~T1:l~;;i,J1•Jc:L10 Hli:.St /\1-<I:::. cu,,::·,11;c:L1 T1i GIVE 
c c () :-1 p L ET I::. f /\ s s '', !\ n: I x F ll ·< /~ i I [ u~ un " 
c 

c 
c 
(~ 

c 
c 
c 
r \ __ 

c 
r 
'·-

c 
c 
c 

c 

L3 

CALL PL MH:.. ( X )\ , Y Y , C 1 , C 2 , C 3 , u ::.i , l 1, ~) J 
CJ\ LL f:'. E 1'\! U f\, ( C 1 , C 2 , C 3 , /\ , L1 u , t. I< t:. i 
C1~LL SHC:LL (E!<P,t1<t,,l:::.l~,1.::p,1.:c:!,F,li 

THI::. [Ll:::.1·1t1·~T 1',i\'.:J'.:J l·1i\Tl<ll.cS f-\l'(C Tr<111•LSru1-,,•1t.LJ Tu lJU..1u/-IL 

t-1Xt:::i. 1-'UI~ THL U-1..::,1 l·;UL.-L Ur T11c Lh,::iT LLL,·1C::1·iT r11L 

rw T A T I U:·J A L [) I s p U1 c t. l''I t=: I'll s ;:, 1-.~ l::_ i-< L T i-d 1.Jl:. L! ~; u u T HI t: 
LUC/\l AXcS. Hit:: LLEl•':liH 1•it-1H<ICLS 1-11-;t u1,:uUPLcJ T:j 

U b T A I f~ T H E F I Ii /1 L fvi /\ S ~ i 1 J\ T J.; I X ( C I', J t (J I-< T H L 1---' U1 T t • 

CALL Tl..Zi'JSFI-< (11L1•1u,E1(,F,li 
IF(L.Etj./JTt::lC1';LL LAST (AL,1D,C:1--.,F,li 
LAL L GI-< u UP ( I , J "" L , '" l I::. , l b , Lr._, 1.__ ,, , !-' , f-l , 1 J 

f~l::.\•!Il\JIJ 1 

THE 1'1P,SS M/ITl-<IX (0~) I':> STUl-\t.u 01J TAi-Jl 1, SIX CliltJ1•,,•JS 
AT A TI 1v; E. 

DC 25 i<.=l, l T 
1VI = U 

I I( = 1(-X6 

I i'i = I ~>-:- 5 
IF(K.EO.ITIIK = IK-1 
DO 2 i'.J- I= IM, I K 
;\1 = i,1+1 

DO 26, J=l ,rWF 
IF( I.Gl:::.J!L=I·k( I-l)/2+J 
I~(leLTeJiL=J*(J-1)/L+l 

2.lf T Y ( J , f~ l = CI<. ( L ) 
2 5 '., /-\ I T t. ( 1 ) ( ( TY ( fi1 , N ) , i\l = 1 , 6 i , 1•1 = 1 , ;~ l.J F J 

r,;nJIND 1 

r -----------------------------------------------------
( HIE PLAT f:' U I :'! E 1\J S 1 U !'~ S /11-\ I::. S HJ I'~ I::. LJ li i I T f-\ 11 t. 3 • TH t 
c FIC<ST Pf-11\St: UF 1111::. Pl-<Ulfr<A1•1,v'1t t_j\)U'.:ie 

c -----------------------------------------------------
\'/ 1< I T t: ( 3 i fli-< 'uu v LI< T ' 1 .'J l .::> T ' I< u v c I~ L 'T 1-1 LT /-'i • I'\ u TI._ 'b c T /--'\ l 'l\J L 'j ,, '-' ' 

1 I ! lJ F , V , T L , T b , IJ l~ I G c f\: 

F~ El.·JI f'.lD 3 
END 

64L!U r-::f'.m RECOl-\D 
D/\ T.l\ 

6 4 U U EN U U F I\ t CC!~ U 



c 
c 
c 
(_ 

c 
c 
c 
c 
c 
(_ 

c 

200 

Pr~1JGl<1\1~ T ST ( I1,iPUT ,()LJTPL!T ,TAi-:''c':J==I1~PIJT ,T;\PL6=C.)ljff'UT' 
1 TAPE l,TAPl 2,TAP~ 3J 

1 

1 

l..J I ivi ENS I U l\I (I( I·, ( 1 6 l ' 16 -/ ) ' 1--' ( 16 7 ) ' lJ I SP ( 1 b 7 ) ' S ( ~ (j ) 

THC. S[CUi'HJ 1--'llfl,SL uf THc l-'i<uli1<A1•11,t STM1\T~ ·.·JlTri F1,t::Sd 
i'1 it11 1Ui-<Y. Fl-Wl'i1 The f-Il~ST i--'HASt Hil 1---uLLU';;lr<G Ii·Jl--ul~11ATIU1~ 

IS AVAILAbL[ UI~ HiE Tf1PC::So 
MASS MATRIX/(RHO*TMAXl ON TAPE 1 
lNVcRSl OF STIFFNt:.SS ~ATRIX*f--LEXUkAL klGiulTY 0N TAPt 2 
f--'LATl UI.'-iENSIONS Oi-~ T/\Pl 3. 
1'1ii!I. T I-< I C E S 0 ~~ T /\ P E S 1 AN LJ 2 /'.\I-< l 11 UL T I P LI U:i Tu U b T Pd N 
i\IATr:;:rx CK1v1 .. 

r< t::.1-1 u ( 3 i 1\ r-< , u u v u-< T , T •"! i ~' r , i-< u v u< L , r ,-1 L T I-\ , ; w T c , u c T ;:,, 1 , 1 \j L , , ~ 0 

,NDF,V,TL,T~,NEIGEN 

1-<Eltl If~D 3 
IT = (1\JlJF+ll/6 
DO 2 l<.=l,IT 
LM = 6 
IF ( 1--:.. C.U. IT J Li'i= '.:! 

1'"11"\ = NUF-5 
I F ( K. LT • 3 ) I-< I:_/\ L) ( 1 ) ( ( U'--.1•1 ( ) I '1\J ) 'l\J = 1'-11-..'. 'I ·l u f J 'I 'I= l 'I" u F ) 
IF ( K .. G c., 3 J I< t 1-'ILJ ( 1 l ( ( C r-.r•: ( H, Ill i , IF I , L.'. i , 1·i = 1 , i'l U F l 
DO 1 J=l,IT 
Lf\I = 6 
IF(J.EQ.ITlLN = 5 
lf(J.EQ.llREWIND 2 
f•ll-< = NDF-11 
Kl-< = i'JDF-6 
I F ( r<. • L T • 3 1 R l::Jd.J ( 2 i ' ( u:__ I' 1 ( 1" , 1 .J i , ; ~ = 1 I :.:;: , I\.. i-< i F, = 1 , 1'-l u F ) 
I F ( K 0 G E 0 3 ) f\ U\lJ ( 2 ) ( ( U<. f!i ( ; 'I ' i ~ I ' i\J = l ' u ) ' I := l ' i\ iJ F ) 
IK == CK-1)1<-6 
DO 1 I=l,L 
I I( = I I<+ 1 
IJ = (J-1)-li-6 
DO 1 f\!=l ,U1 
lJ = IJ+l 
CK i"i ( I J , 1 i<. ) = o. 
LJ(l 1 M=l,NDF 
I r= ( I'~ • L T • 3 ) O:. i· 1 ( I J , I :< ) 
Cf;,, r'1 ( l•i , M R + ? + I l 
I F ( k. GE • 3 J c K 111 ( r J , 1 r<. l = c 1<.1 1 ( l J , 11~ J +ck 11 1 ( 1· ·1 , 1'1 i o: c~ 1 " ( i ·1 , 6 +I J 

1 C01'H I NUE 
IF ( 1, •cu. l i v'!I--<. IT t_ ( 3 l ( ( U~l"i ( 1•;, i1 i , :"l= 1, o l , 1·1= l, r-;uF l 
I F ( K • EU • 2 i iJ I-\ I T t ( 5 J ( ( Cf( 1•1 ( : -1 , ;1J J , I J = 7 , 1 2 l , 1 1 = 1 d'' U F J 

2 CONTI MUI::. 
1-<E:.Vi I i'-lD 3 
R t:: A u ( 3 ) ( ( c k f/, ( i 1 ' r ~ ) ' r~ = 1 ' 6 ) ' = 1 ' N u F ) 
r.,: EA D ( 3 l ( ( C I< ;1·1 ( Iv~ , 1\J ) , ~J = 7 , 1 2 l , l"i = 1 , l'J u F l 



c -----------------------------------------------------
( EIGEi'JV,:'.\LUES OF 1:1\Tl::;I>< Ci~;. l"<E L;:::rt::i-~.-:rr:i.:_u Al'J~ EXP1ZEssu, 
c /.\S NOMJiilE1•:sror,:AL UUAl<T~TILS l'.tfr,,, Tl,L: llud~VALUtS 

C AND EIG~NVECTORS ARE WRITTE~ GUT• 
c -----------------------------------------------------

c 

U\LL Pul·vE1:.;((k1-1,1wF,JJtlul::.1.,s,1 .. L-Lf,l67,P,ulSPl 
I.JO 3 J=l,ffflGi::.i'~ 

S(J) = AR**Z/SuRT(S(JIJ 
3 coin r r·~uE 

vii-< I TE ( 6 ' Lt- ) M< ' lAJ v u-n ' T l s T ' v ' 1-W \! i::_ 1--< L ' TI i LT;:., ' I\ u T ( ' ;___)LT h 1 ' 
1 f\!L,i'W,TL,TB 

4 I- () 1~ i i A T ( 1 H l , 3 X , ·)< !1 S P E C T I-~ A T I :J = 7<- , l o X , F- l U • it , I , 4 X , 

5 

6 

7 

8 
lj 

lu 

1 -~ 01-u:: 1\ L> TH I Tl 11 o~. /\ T 0 f-< ll..J I i-l = -)~ ' 8 x ' f-' l CJ • 4 ' I 'L1- x ' 
2 ~TOTAL PRETWIST(L>EGl=*,llX,Fluo4,/,4X, 
:::; 

4 
5 
6 
7 
8 
9 
x 

1 

-;~ P iJ I ~ Su 1 ·~ .S i-\. /-\ T I u = -l<- , 1 6 )\ , f l U • Li- , I , 4 X , -;;- 1--< /\ u 1 Li ~) / LL 1 •, G T H = -;;- , 
17X,Fl0c4,/,4X,*SETTING ANGL[IDEGJ=*,1ZX,Fl0o4,/,4X, 
-J<-R 0 T s p Et l) IF u l1J l) F r:n::: l~ = -)(- ' 11 x ' f- l i.) • 4 ' I ' 4 x ' 
-J'.· ;,10 f'J I-\ 0 Ti\ T I f·J G FU I J [) FF~ l::. U ( ;:_, l::. T !-\ l J = 0<- , 1 X , F 1 : 1 o Lt , I , 4 ;< , 
-;i- LENG Tl I VJ I St: S !J Li L> 1 V I S I 0 i'-l S = -l< , 6 X , 1 2 , I , Lt X , 
*~REAUTHWlSt. SU~01VISIUNS=*,6X,12.,/,4x, 

*LENGTHWISE TAPLR FACTOk=*,7X,Fl~.4,/,4X, 
-><-L:l F~ l::. !-\ i.J Ti i '•JI SL T i'.-1 P LI~ f- 1-1 CT u I<=;: , 6 X , F 1 0 • 4 l 
VJ!·; I T t ( 6 , S l f~ LI u UJ 
F 0 F< 1 ·~AT (! I ,l 0 X , 6 HF I RS T ,I 2 d 7 H lI u c r~ VAL U t: S 1\ i--<l:: , I J 
vJ F< I T t ( 6 , 6 J I S ( I l , I = 1 , N l I l=< LI'~ 1 

F 0 I~ i ~ /\ T ( 5 :J X , E 1 5 • 6 l 
DO 8 I=l,f\iEIGFi\I 
'1J 1:.,: I T I:: ( 6 , 7 l I 
F 0R1-'i AT ( I , 5 X , 16 HE I Gt: N VE CT U i-< 1'0 • , 1 :< , I 2. , l >'. , 2 rl I S , I l 
Vif-<ITE(6'1ul 
\J 1;; I T t ( b ' ':.! I ( c I\.. I\ I ( j ' l i ' j = l ' I~ lJ F ) 
FOF1_;·1AT(7(SX,6El6.6,/l) 
FUR~AT(l2X,*U*,15X,*V*'l5X,*~*,12.X,*THtTA X*,llX, 
*THETA Y*,llX,*T~ETA Z*l 
STOP 
Eh\D 

64UU l::ND OF 1--<ECOl;:LJ 
64Uu ENU FILL 

SUol-\OUT I f\lE PL/'liiG, (XI(, YY, T,·iAX, V ,Cl ,c:: ,C3 ,t.kP J 

c -----------------------------------------------------
( Th I S SU o I-\ u UT I 1\J t F I r; ~ S Ti-1 l::. If~ I-' U\ i J t. S T I F I- 1.: E S S r 1 ;1 T 1-: I X 
(. Uf i--11-J l::.Ll:.:1l::.1'H• Tril i.LTLi1-'IL li'·lPL•-'11-JL STIFt-1,LS.'..; :,r<,Th.lX 
C I S TH E 11 i A Hd X U~ P 0 b Ti\ I : fr u li'J TH I S SU b i-: u LI T I i d:. , 
C i·IULTIJ::>LIEu oY THI:: FU::xu,-\AL 1=;IldUlTY t\S lJE::.FLH:.iJ uY 
C l::LlUATIOf'J 5.2 

c -----------------------------------------------------



( ULSCl-\1 PT I OfJ CF 1--' i\i~J1,,il::. T ti, S 

c 
C XX, YY LOCAL (()CJ~'.i.Jl f\ji\TL5 GF Till ;,ji__JULS 
C Ti\1AX f"iAX I 1

1,LJH T11 I Ci~iJl:SS UF THE:: Pl!-\ Tt. 
C V POISSONS RATI~ 
C Cl,C.2,C3 AS U~l-INtU bY t.LlUATION 3el9 
C l::i~P 11~PLA1,d: . .STil-f-1 1Jt_~_::, 1J-1TidX/fLU'.Ul-\i---1L 1-:ILilulTY 
(. 

c 
[) I fv·1 E /\JS I 0 f\J 8 fJ ( 3 , 6 l , XX ( 3 l , Y Y ( 3 J , u !~ I J , 3 J , 1 I/; ( .3 , b J , E f::.. P ( b , 6 J 

DO l I=l,3 
DO l J=l,6 

l ob(l,j) = u. 
~U(l,ll = YYl21-YY(3l 
8B(l,3l = YY(31 
otl(l,sl = -YY12l 
Gl:I ( 2, 2 l 
68(2,Lf) 
bl::i ( 3' l) 
bf3(3,2J 
[:j[j(J,j) 

Lo(:'.h4l 

= 
= 

= 
= 
= 
= 

XX13l 
-XX(3l 
XX(3l 
YY12l-YY(3l 
-XX(5l 
YY(3l 

ul.5(3,61 = -YY(2l 
lJO 2 I = l , 3 
lJO 2 J=l,G 

2 bo(l,Jl =-Ub(I,Jl/(:\X(J)>(YYl2ll 
DA(l,l) = l.C 
DA ( l, 2 l = V 
uA ' l , 3 J = u Du 
DA ( 2 , l l = v 
uA I 2 , 2 ) = 1. () 
DA I 2 '3 l = u.u 
DA(3,ll = ,, . ·~ 
[)A I 3 , 2 l = (). 0 
UA I 3 , 3 l = 11.u-vl;2.u 
CALL MULTP (DA,bb,HA,3,6,3,o,3,3,Jl 
CALL fl1ULTP (bthrin,U~P,1:n6,3d,J,3,ol 

Cll = XX(3l*YY(2l/2• 
ClL = XX(Jl*YY(2l*(YY(~1+yy(JI l/bo 

C21 = XX(3l*XX(3l*YY(2l/6. 
A =- 12 • -)i I C 1 -:i- C 2 l + C 2 -i;- C 12 + C _::, -l'' C 11 J I I Th r-1 X -lH~ 2 J 

IJO 3 I= 1 , 6 
uo 3 J=l,6 

3 EKP(I,Jl = EKP(I,Jl*A 
1-<ETURN 
EfllD 



c 
c 

SJ C 1:;; 0 UT I f.d::: LU I· i P ( /1 r:~ , TL , T ::. , T fc , 1-;; i\ L.1 l 1_,::; , T /, I .'~ T •Tri t:. T .:"; , :'JI_ , f'! ,J ~ 
1 SPD,PJ 

c -----------------------------------------------------
( THIS SUul~0UTI1,t:_ Fii'JlJ.'.:i Tlk Vt.lTUi-< uF i'JUlJi\L ru1\'-c::, 
c (__ lJ f\ I~ E s p u /\j [j I I •

1 u T u T H t u I s T Id ~) u T LL.I \._ L I H 1-d F u Li/-\ L f- (,1 f~( c l:..) 
C CiIVEI~ '.:'.Y l:.UUATIOI\ 40JL1, USI/\lC1 LU1il_)l:.u U_ 1 1~lJ ,•1t.T:-IUL1 115 

c ILUJ::,nv~Tl:.U I/\ F-l(1lWt 15. THE ilCTui~L Vl::CTUR UF 1\J(_}l)/1L 
C FORCES IS THf VECTOR P O~TAlNl:.U IN THIS SUbROUTI~E 
C I I UL T I PL I C: U o Y F-- Ll::: :X: UP 1\ L I< 1 i.:i I u I TY l U I~ i~~ t~ SP U j\J u I /'! 1.:i Tu 
c :V1/\XIMUH HIIC<rkss .. 

c -----------------------------------------------------c 
c 
c '..JCscr.; Ip TI Uf'i OF PAl-U11'1l:. TL:: l\S 
c 
( 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 

AR 
TL 

Ti:J 

n:;; 
RADIUS 
r v1 rs T 
THETA 
NL 
N 1:3 
SPD 

p 

!\.SPECT Ri\TIO 
LEf'JGT/f\1JI.SE li'.\P[h'. /--,c\(TUl<eT.-1ll f!tSS Ar 
(L,u,cl/THICKNESS AT 10,0, ) 
dl~i:.i~UTHVJlSl:. Ti\Ptl-\ f-111....Tul~. Tr-IIC1 .. ,jt:_5_~ 11T 
(Q,b/2,ul/TNICK1~E~~ MT 1~,0,ul 

TH I Cr~f~ESS /\ T ( u '(J 'u I /ii /IX L'1U1'1 Tri l C1,1•Jl:.SS 
D I S C R :\ D I U S 

TOTAL PRETWlST IUl:.GRtESl 
SETTING ANGLc (UclJRllSI 
LU\]GTHl.1/ISc SUbUlVISIU1·1s 
l::l r-; [Au TH Vi 1 s E s u t::l L' r v I .s i u 1 ~ .<:> 

( u t:. i'<J .S I T Y J -I<- ( I\ u T • ,'::JP t:: i::. u-ic -;,, 2 i ·k ( 1·, f\ X. ... T 11 I 1,_ r, 1 J t:. S :.:i J I 
(i'-LlXU/.;;;\L 1<ilJlUlTyJ, l·l·---dUi Is Sl\1•1c n~) 
(RUTC*Ut::TEAll**2/AR**~ 
Vl:.CTOI-<: GF l~Uu/\L l-u;-\U:..::_,/Flt:::.XUl-<1-\l 1-<ILiluITY 

Dif'U·lSI01\J fJ(l) 

Ul = TR*(TL-1.J/AR 
b2 = 2. -;qp-i:- ( TU-1. I 
lB = TR 
Ai'~L = i'<J L 
/\NC = ~rn 
i•J ~·~ = l·J L -!(- ( /\~ 1:-; + 1 J 

I I .= NL-l<-iff'. 
T = f'.!L><-;.Jf'.Oi-4 
NR = NL*(Nl::l+ll*6-l 
DO 1 I=l,1\JI\ 
P(IJ = U. 
COf\JT I NUE 
UO 6 I=l,Nf\! 
IF(I.LL.f•JLJ/U =I 
IF(l.GT.IIJAJ = 1-II 



''-
( 

c 
c 
c 
c 
c 
c 
c 
c 

IF ( I • L ["':" 0i L ) YU = - , 1 • r:, 

IF(I.GT.IIIYU = u.~, 

Ir~(NbeLT .. 2lGU TCl '.:l 
lJ(j 2 \·:.= 2 'l\ll'1 
l t- ( i o Ci T • ( i(-1 ) -:<-, j L .. r1 i'! iJ • l o Lt- • !--. "l\1 i_ J h .J = l - ( ,._ - .L J -;;- ,.,1 L 

/\i< =I< 
2 I f-- ( I • GT • ( 1·:_ - 1 ) -H- I'~ L • /'I ;\I LJ • l o L ~ Q i--- -lei.,, L I YU = - (; • ':i + ( k 1-. - l • J I /'I i'i. tl 

3 X= AR*AJ/A~L 
A I· 1 = /\ F-~ -:< 4 • .;;- ( I:~ l -><- X + i:j 2 * Y U + t. 3 i I T 
I F ( I •GT • I I J !\ 1< = rd-\->< 2 "-'-<- ( bl'"- X + b 2 .;;- ( Yu- u • i '.J I .t\ 1.,l t> J + c:. 3 i IT 
I F ( I • EU. i\J I'~ ) i\ 1·1 = !\ r, -l(- ( Li 1 -l(- ( x- ::-i • 2 5 ';;-/\I-( I/\ i•; L ) + t-3 2-lc ( y u- \). 2 5 I/\ I J b ) + l:i.) j IT 
I f ( l • t 1_, ., 1\J L 1 I\ I''. = A I-< "/r ( o 1 -J( ( X - U • L ::i -:;- 1-1 r\ I 1-'11 ~ L I + t' 2 .:;c ( Yu+ 1J • i ? I A 1\1 D I + t.i j I I T 
I f- ( I .. L T • i j L i /1 I'. = 1-'1 l~i. -le 2 • -1(- ( L' 1 '' X + r· 2 -;.- ( f U + O " C. '.) I A 1~ L, ) + t'.• 3 i I T 
IF(NU.LT.2lGO TO ~ 

DO L, 1: = 2 'i\I t3 
IF(I.EO.K*NLlA1: = AR*2o*IGl*(X-/\k*Joi5/ANL'+J2*YU+bJl/T 

Li- (IJi'H I ~JUE 
5 /\1-JC)LE = HJ1sr-:<-x-J(·j.,lL12/ (/11<-l(-HiO· i 

Y = YU*CUS(ANGLEl 
Z = YU*SIN(ANbLEI 
SN = S1N(THETA*3ol42/lou.J 
CS = COS(Tl-iETf,-l<-3.lL;-2/lo:J. i 
p ( 6 -;q - 5 ) = '"'I ! -lf- ( x +I <I\ u I u ,':J J 

P ( 6 oc I - 4 ) = /\ i ·, ~- ( Y -le C S -l< C S - Z -l<- S :\>~- C S J 

[-> ( 6 -1(- I - 3 ) = f< 1-l'.- ( - y -;<- s Ii->'.- c::, + z_.;~ s !'.i 0<- 5 11l i 
6 corn I NUE 

DO 7 I=l,~U-:: 

P ( I l = P ( I i 00 S P U 
7 CUNTINUE 

F~ETURi1J 

Ef•JD 

0 U b 1-\ 0 UT I i'J I:. P L /\ i J t H ( >·, X , Y Y , \... 1 • C ~ , \... .:.i , u u , l:. r: P J 

THIS SU::..Sl~;GUTI/'.:t:: Fll\ILiS T11t I/·:-PL1-·,i;t=: ,·1r'.-ISS : L1H<I;< FUi:.Z 
AJ.J t.LE1-Ei'JT.THt t'~.CfU/\l 1if·\SS •il\T1..;1x Is Hk 1•ic'ITi-\lX l:.Ki) 
0 UT I\ I 1\j EU I 1\1 TH I S 5 U t:; I-< U lJ T l 1·! 1::. 11 1 ULT l PL I t. l.i i::· Y r-:· h CT \J 1;; 
[QLJAL TO Tr-IE Pl·\OLJUCT or~ Ui:.:JLSITY /\id) i-'1?.Xl:111J.: HII(.1,1.JtSS 
( f-:HO-l:-fr':AX J 

C IJ ES C R I P T I 0 ~·" 0 F P /~ F: A, 11 c T t :~ S 
c 
c xx,yy LOG\L CUIJRUil'J/\H:.'-:> UF /·;~JUl::.S 

C C 1 , C~ , C 3 ;.:,, S [1 [ F I N I::. U t; Y L ,_.) U /i T I u :'J 3 • l 'J 



c 
c 
c 
c 
c 
c 

c 

U;) 

l::i:J . .l 

i·.1~1Tl·dX (JF UuUULI. l:·Jl ClJl\f,L'.:,o::..Ll:>1t.1lT ( 1 ,JJ 
Cr THIS lif\Tr<.l/, Is Tltc. VhLUl ur~ 11~Ti::.l;1i\,~l 

OF XX**II-ll~yY**IJ-ll 
l j\J - fJ L M-J L I : As 5 I : i\T I< I x I ( !'.Hu 'q I h x ) 

I) I I J.:: 1\J s I (; f'.l xx ( 3 ) ' y y ( 3 I ' Li iJ ( ') ' 9 i • L ,<,I_, ( 0 ' 0 I ' A ( b ' 6 ) ' 1.J ( C.) ' () ; ' 1\1 ( Cl i 
DO l I=l,6 
DO 1 J=l,6 
l\(I,Jl = u. 
l:::<PII,Jl = ''• 

1 COf\iTH-IUE 

C lJETERi:IiJii•JCj 1V1Tl<.IX .6.. COl\f-d:':Si-'Ui·1UI1!lj Tll 111\TF::IX 1-" 
l_ UC"F-If\IEt-' 1:.y lc:CJUATION 3.L~.2 /.NU Il-!Vi--JHI!·JG IT 
c 

c 

A I 1 ,1 l = 1 s 

/~(2,Li-) = l .. 
/\(3,l) = 1 .. 
1'\ ( 4' t'.j.) = 1" 
P, I 5 ,1 l = l .. 
Al6,4l = 1 .. 
A ( 3 ,3) = '('((2) 

Al LH6) = YY(2l 
A I 5, 2 l = x /( ( 3) 

A(6,5l = XI'. ( 3 I 
A IS ,3 l L YY(3l 
J\ ( 6 '6 ) = YY(Jl 
c AL L I N v ,· i AT ( /\ ' 6 ~ 6 ' l • f_ - Ci ' I LI\ 1--: 'I j 1 ) 
I F ( I ER f~ • NE ., l.1 l VI R I T [ I 6 , 2 i I 1.::Y R 

2 FOl<i'ii\T(5X,5HIUU\=,I3i 
IF( IERl-\.f'IEoC)JSTOP 

C LiE::Tt.i..:1"lli\Jl1,1G THc. li'J-1--'Ll\l'H:.. 11/1,::,::, 1 1f1T;-;IX 

c 
lJO 3 I=ld 
DO 3 J=l,3 
tl ( I ' J ) = c 1 ~(· lj [) ( 1 + l ' J I + ( 2 -if- [.J u ( I ' j + l ) + ( 3 -if- u lJ ( I ' j ) 

3 C0/1iTif..JUE:: 
E I~ P ( 1 , 1 l = B ( l , l l 
EKP(l,2l = b(2,ll 
l::KP(l,3) = 1::3 ( l '2) 
[l<P ( 2, l) = ti ( 2 ' 1 ) 
l:.KP ( 2, 2 l = Jj ( j d) 

El<P(2,3l = 8(2,2) 
Ef<.P(3,ll = f:l(l,2) 
El<P(3,2l = B12,2l 
Ei<.P ( 3, 3) = B ( l '3 l 



c 

Du L, I = 1 , J 
uu 4 J=l,J 
U,P(l+ .. :;,J+J) = t::.i,f.-'(1,JJ 

4 CO;"H I f'Wl::. 
c i1 L L I· I u L T p ( E:: k p ' I\ ' t..J ' 6 ' 6 ' u ' lj ' G ' G ' 6 ) 
C 1, LL ii,U LT P ( /\ , o , C. •<I-' , 6 , 6 , 6 , l , 6 , 6 , 6 ) 

I~ [TU 1-\J\J 
l l\l IJ 

c -----------------------------------------------------
(._ THIS SLJi:..,1-WUTii'k LU1•;t,,l1n..~ T1ii::. l1J-PLl-l1k f-»1H.i hit. Ul::_,.JL_.,l,Jli 

I... 1·;1\Ti-\lCc::i TG ulVL Ti-IL LU1·,PLLTL 1•111TidX ~uf.: TrlL Llu1t..:..i'T• 
(.. I F Hi l:. F l) 1-\ U:_ v L c T 0 1;; s /-\ I-< l:. /-', L s u T u b c. cu i I L I I -i I:. [_) I v L c 1 s 
c n:PuT ;:,.:.:, zt::1:;:0., 

c -------------------------------~-~-~-------~---------
c 
c 
C IJ[SCl--Ur:'LOIJ OF P/\IU1;-1L::TL:.f<S 
c 
(.. 

c 
c 
( 

c 
c 
c 
c 
(. 

U,P 
El<. F'. 
l::.I( 
FP 
Fo 
1--

I VEC 

11,l--'LAl<L >'1ATl-\IX 

8 [ND I ~~ G :•UH 1::; I X 
C Ci ::1 b I NE IJ I' i A T I-~ I X 
I r·~ - P L ArH~ Fu I\ C C. Vi:. C Tu l< 
b t:i'J U I f'< G 1-- 0 F~ C I::.. Vt. C Tor;~ 
(..CJ,·ibl1~/::.U FG1-<Ct::.. Vl::.CTui< 

[_; I I i l::. N s I u 1: t.. k p ( 6 ' 6 ) ' l:. k u ( (j ' 9 J ' L I< ( l 0 ' l (j J ' t F' ( b ) ' F Li ( ') ) ' 1-: ( l b ) 
DO l I=ldG 
DU 1 J=ldS 
E I< ( I , J l = U • 

1 lr(IVEC.EQ.1_.H~(Jl = u. 
DU 2 I=l,2 
DO 2 J=l,2 
uu 2 r~=l '3 
lli= ( f~-1) -i(6 

f1! = ( ~(- l ) ~c 2 
!Ju 2 L=l,3 
Mf,1 = ( L-1 l -lc6 
f~ 1'! = ( L-1 l ',<- 2 
E::K ( '1+101·, J+1°iiv1 l = E r-~P ( I +i~, J~l-1\Jl·~ J 

2 Ir( lVtC.t:.(~ .. \..lF (J+111i1·il = rP(J-r/~i\JJ 

Liu :; 1=1,3 
uo J J=l,s 
!JO 3 1<=1'3 



c 
( 

c 
( 

c 
c 
c 
l. 

c 
c 
c 
c 
I -,_ 
c 
c 
c 
r 
'--

c 
c 
c 
(. 

( -, .. ·-
(= 

c 
l. 
c 
c 
c 

1 

: I= ( i' - 1 ) ot (:, + ;:' 
1 •l = ( :::_ - l p :) 
L,U 3 L = 1, 3 
1 : ·, = ( L -1 Hf 6 + 2 
f·'. 1\: = ( L - 1 l O:· ? 
t:f'.,( l+:<,J+i·:i') = L,~L,( 1+1\1,J+,,,;.Ji 

3 lf(IVEC.r=:u.,)l~(J+i''l>ll = f-l(J+l\t~i 
l~[TURf\I 

l 

cNU 

s IJ u ::;; D IJ T I N L (_ u: T i ( c 1 ' (_ 2 ' (_ _j ' x / ' '( '( H-\ L . : c) ' T ri 1: T /\ ' -~ p l.J ' I..) ' p ) 

IHI.'.:Y Sl.JL:Jl;:n1JTI1\t F'I!\IU~ Tr1t:. Ct:.1'1T1-<Ir"IJ\..JL,l if\2iS :·i1\T1-<IX FrJi-< 
Al\ LU::. E:.1H.T1ll. nl.TUi1L LUnl-\lHA•i\L 1':!1S:::. 1.r-1n.:1x l~-, TH::. 
I· I/-\ T 1-< l x p u t.J l 11 l /\ l::. u f h: \._, 1·1 i 1· i 1 ::, ::, u u I< ~Jl.1 T l I H:. i · 11..J L I 1 rl L 1 L L.J c) y 
FLCXUIV-1L 1-<H:ilUITY (1._,l-:i<~Sf-u1,1L-l•lu Tu ,,;\Xl1.U.1 Triil.l-.11t:.SS 

c1,c2,c3 
xx,yy 
/1 Ll,icJ 

Tf If:::. T /\ 
SPD 

u 

p 

AS ULF If~ t-=.J t .. ·Y t- UU/-\ T 1 Ul·J 3 .1 ":-1 

LU(r'I L (UUl-i u I hr-1 TL S ul· 1~u [_, L. 0 
h/1T1-~lX L1:\i'·1U;\ uF uHd::.l.TlU1~ l.l,Sl:JLS .'""\:::, 
u r~ F I l'H :J 1 ·. y c u lrn T I 0 I\] .J • 3 2 
::_,t::TTif\IG l"d.:LiLt 
( Ll [ I ; S I TY ' * ( i~; (1 T • S 1::• E [[)·:He 2 ) ·fr ( /.\ )( • HI I Ci< 1 j t: SS 1 I 

( FLEXLlf?t\L Ii I C1 J Lil TY 1 , \'.'ii I C1i IS S1\i-1t~ AS 
(RUTC*ci[TEA11**2/A~**4 
j'.,;\Ti-<lX UI- uUUcll~. 11'Hc:u1-<i,L.'.::ioLLL1'iL1,1T( 1,JJ 
OF TH I::.:, 11v, TI< 1 X l ~ T11L 'J ioLUi_ UI- 1 i, I L:.',Jl"<.hl 

Uf XX**(l-li*YY**(J-1' 
(l_/'.jTf~IrU1~1.'\L 1'1/12>S l'1i~Tl<IX/1C'Lt~xu1<1~L l<It:,IuITY 

Uif.:El'l.'.:ilOf\'. XX(3) ,yy(3J ,;1L,1L 1 (':.\,:',J ,ucJ(",'J) ,p(1e,1u)' 
U ( l ':.l , 1 '.:; l , I i l ( 1 5 ) , ·i-". ( l :i , l :; J , u ( '-" ' ) i 

1-:;\Ti'<.L< u l.Ul\l\t2il-'L>l\ul1,u ·ll..1 :,t-1!1<lX fJJ. 1JF 1.:.uU1".flU1~ '+.Lfo 
1::1 CALCUU1T[L_, i1IL I11JVU-<TLcj• lr T11L I1,;V1.:.:-<.::ilu:-' r11lL'.::i 

THE PROGl-V:..,, t. S TUI-'::;. 

DO 1 I= 1 , J 5 
DO 1 J=l'15 
() ( I ' J l = ~· • 
nt1,1J = l. 



c 

I~' {? 'Le ) = 1 .. 
U( 3 ,7 ) = 1 " 
C)( Lj.' 9 ) = l 0 

C) { 5 '8 ) = -1. 
(2(6 ' 1 ) = 1. 
(i ( 6 ' 3 ) = yy ( 2 ) 

() ( 7 ' 4 ) = 1 
l. • 

U(7 ,6 ) = '('( ( " ) t'. 

U(S,7) = l. 
O(U,'::Jl = YY(2l 
Ll(J,121 = YY(L'.)-:Ht-2 

QIU,15l = YY12l**j 
Ul9,9) = 1. 
019,12) = 2. 0t-Y'1(2l 
0(0,151 = 3e*YY(2)**2 
O{l•J,Sl = -1. 
Q(lJ,lll = -YY(2l 
U(lldl = 
(J(ll,;'l = 
u ( ]_ 1'3) = 
U(l2,4) = 
0(12,5) = 
0(12,6) = 
u113,7J = 
(_) ( 13 '8) = 
u113,9J = 
U(lJ,l\:) 
C(l3,Ill 
0113,12) 
Ull3dJl 
()(13,JLt) 

.:)(13,15) 

l. 
XXl3l 
YYl3) 
l • 
~< x ( 'j ) 

YY(') 
1 • 
:< ;( ( ? ) 
YY(3l 

= xx1:.J->H'.<' 
= XX13H·yy1.:il 
= YY(Jl->H!;:' 
= X X I 3 ) -lH(- j 

= XX I 3 l -:~--:<>1t-yy ( 3 J 

= YY ( ?·) -lH*-:?· 

0114,9) = lo 
~114'11) = XX(3) 
Ulllf912) = 2 • .,:-yy(_:)) 
UllL+,llil = XXIJ)-l~-)(-2 

Qll4,l~l = 3.*YYl3l**2 
011::1,8) = -J. 
0115,10) = -2.*XX(3l 
0115,11) = -YY13l 
ull~,13) = -3.*XXl3l**i 
Ull5,14l = -2.*XXl3l*YY(3J 
U1 LL 1 i·J V 111, A 1 ( u , l '.J , 1 j , i c '- - (l , l tYY. , I'> l i 
l ~ ( I E:. R 1-< .. /\J t • u l \·:I< l T L ( b , 2 i I 1_:_ I~ 1~; 

2 FOR;:,l',T(5X,'.'·11Ifl-".P=,I3J 
IF I IE RF;• f•! E • 1_; ) ST CJ P 

c t:u::1r::rns o~ THI:. l·iJ'.TidX (T11t:Tf12J L.:t:.rli\L:.L) t:.Y t.UUl.\TlUIJ 
c L1..Lfi1. /~i\t. IJ[Tt:1-(/1I1~[Ue Slr,Cr::. r11_ 111\T1~:Ix ls SY. 1 1•1l~Tl-dC 

c u i•J L v TH [ u 1..J P c:: r~ nn ,!\ :\: 1.J u u-1 .-< ,; '' 1,, T I s Ct-1 L "-- 1_ 1 L /-\ T 1:. L> 

2 9L+ 



c 

/\IJ1:_jli:: = THi:::TA,'<-::. ... lc.i-/ loUo 
::) f\1 = S I I~ ( A I'< G L 1:. ) 

CS = CUS ( /\f~GL::: l 
A 1 = /IL i 11 D ( 1 ' 1 ) -;<- -;:- 2 + /\ L' i [) ( l ' 2 ) -ii--;;- 2 -;:-cs-::<- 2 +/\LI . u ( l ' 3 ) -;:- :'.- 2 -> 

l SI< -iH- 2 - 2 • -:<- /'I L H [; ( l , 2 i 0<- A L U ( 1 , 3 J -:< S r i "" C .::; 
Ac_ = /IL i'i ::J ( l , l J -;; f\ L 1 ·, i) ( 2 , l ! + :'., L h U ( 1 , 2 J -><-A L, , U ( i , 2 ! -if C 5 ?He 2 + 

2 /~LHU ( l, j) -);-AL1·1:u ( 2' j j *S/,;-iHiL- ( ,L,L1·iu ( .::'. 'i.) ;; f-IL1-1U ( l '3) + 
::.· A U•i L) ( 2 ' 3 i -:i- Au I J ( l ' 2 ) ) -ii-:=:, I~-;:- c.:.:, 

A 3 = f~ L 1i1 l.J ( l ' l ) -:; M Li1' l) ( :) ' l ) + A u I lJ ( 1 ' ,::'. J -;(- fl LI · 1 l.J ( ~l ' .:::_ ) -:;- V-:i -H<- 2 + 
Li- f'.\ U;i l) ( 1 ' 3 ) -l'.- ,L\ u; J ( J ' 3 ) -;:- s i-! -;d:- 2 - ( /\LI ilJ ( l ' 2 ) -ii !-\ L l.J ( 3 ' 3 ) + 
5 AL1"1D ( 3, 2) -i<-Au:u ( 1, 3 l ) : 1'Si~-:'.-CS 

N+ = I'- urn ( 2 , 1 J ;: -:: 2 +I\ L , , u ' 2 , 2 J -;:- -::- 2 -:< c s -::- 1c 2 + ,c, u . u ( 2 , 3 J ; ,:~ 2 -:<-

6 S f'~ ->H~ 2 - 2 • -;: A L I ; [) ( 2 , 2 ) 1;-f\ L ; i iJ ( 2 , 3 J -ii- S I 'i :f C S 
A 5 = f\ L I' i 0 ( 2 ' 1 ) ;, A U-'1 u ( 3 ' l ) + k u i Li ( 2 ' ,:_ ) -i~ / \ L : I [_, ( 3 ' 2 ) :i- (_ s ?'. 0' 2 + 

7 ,'.-\ L i·11 u ( 2 ' 3 ) -;;- AU· 1 u ( 3 ' 3 ) -:i- s /''J ;Hi 2 - ( A LI i L) ( 2 ' 2 ) -;: i'I L i •I u ( 3 ' j j + 
0 A UVJ u ( 3 ' 2 ) -;:- /\ LI ' J ( 2 ' 3 ) ) ;;- :::if~ -)f ( :::, 

/16 = A L I 1 IJ ( 3 ' 1 ) :Hf 2 +A L ,/1 [) ( 3 ' 2 ; -;;- " 2 -;: cs -iH:- 2 + /\ Li ' L) ( 3 ' 3 ) ;; -;:- L -ii 
CJ S i'-! -:Hf 2 - 2 e -'fc. A U ilJ ( =• ' L ) ~i- A l :· ; U ( _;;. ' 3 ) -;: '._;I ~ ;; C :._, 

c Mi'\Tl"i.IX p CURf~cSPhuiiJG TU 1-:1'.H~l,X F'2 01=- EJUl\T_;_G[l l:-.':;3 
C IS CALCULATED 
c 

uu 3 I=l,o 
uU 3 J=l,8 

_:, lJ lJ ( I , J J = l l o(- lJ ( I + i , J 1 + L 2 -;, u ( 1 , J + l J + C 3 -::- u ( I , J i 

DO 4 J=l'3 

N = 0 
I r ( J • E Q • 2 ) :'ii = l 
IF(J.EU.3lN=l 
P(l,Jl = Al*lJL)(l+M,l+Nl 
P(2,JI = Al*DD(Z+M,l+Nl 
P(3,JJ = Al-l~DDll+,\1,2-HJl 
P(4,JJ = AZ*DlJ(l+~,l+~l 
P ( '.S , J ) = A 2 ::- D l) ( 2 H : , 1 + i'l J 

P(6,JI = A2*DD(l+M,2+Nl 
P(7,J) = A3*DD(l+~,l+Nl 
P(B,J) = A3*DU(2+~,l+Nl 
P(Y,JJ = A3*Uu(l+M,2+NJ 
PClu,JJ = A3~<-DlJ(3+M,l+J~J 

P(ll,J) = AJ><UcJ(2+h,2+1\J 
P(l2,Jl = A3*0D(l+~,3+NJ 
P113,J) = A3*D~(4+~,l+Ni 
Pll4,JI = A3*D0(3+~,2+NI 

lf P ( 1 5 , J I = A 3 o:- DU ( 1 + i ~ , 4 Hl l 
DO 5 J=t+,6 
1·>11 = u 

f\J = u 
I F ( J • Eu .. 5 J i •i = 1 
ff(J.,ECl.,6lN=l 



P(LHJl = A4-;<-::)u(l+i·1,l+f\)J 
Pts,JJ = ALi--J;-uJ(.2+;,,,1+r.iJ 
r-1(6,Jl = ALJ.-1<uU(l+1-i,2+riJ 
p ( 7 ' j ) = A 5 '~ u l.J ( l + I I ' l + JJ ) 
P ( 8 , J l = t1 5 -;:- U D ( 2 + i' , l + 1\i J 
P(9,JJ = A5*DU(l+M,2+Nl 
P(lJ,J) = A5*DD(3+~,l+Ni 
P(ll,JJ = A5*DUl2+M,2+Nl 
P(l2,Jl = A5*DD(l+~,3+Nl 
P(l3,Jl = 1\5-l~UU(4+i·-,,1+1\Jl 

P(l4,JI = A5*0u(J+~,i+NJ 
5 P(l5,JI = A5*UU1l+M,4+~J 

uo 6 J=7,9 
M=C.' 
N=O 
IF(J.,ECJ.,8li:=l 
Ir(JoEu.9)/\J=l 
P(7,J) = AD-kDU(l;+1,l+Nl 
p ( 8 ' j ) = Ab ><- u u ( 2 + i· I ' l +r~ J 
P(9,Jl = A6*DU(l+M,2+Nl 
PllO,Jl = A6';HJU(3+Md+f~J 
P(ll,Jl = Ab~UU(2+M,2.+NI 
P(l2,Jl = AG-;;-l.)fJ(lH1,3+1\J) 
P(l3,Jl = A6*DD(4+M,l+Nl 
P(l4,Jl = A6*DD(3+M,2+Nl 

6 p ( l 5 ' j ) = /\ 6 -)(- u [) ( l +: 11 ' 4 + f'j J 
P(l0,101 = A6*DU(5,ll 
Pll!,10) = A6*UU(4,2i 
PllZ,lul = AD*Uu(~,JJ 
Pll3,lu) = A6*UU(6,li 
P(l4,1Ul = A6*D0(5,2l 
P(l5,10J = A6*DD(3,4J 
P(ll,11) = A6*DD(3,3J 
P(12,lll = A6*0U(2,4i 
Ptl3,lll = A6*UD(5,2' 
Pll4,lll = A6*UU(4,3i 
P(l5,lll = Ab*DU(2.,~l 
P(l2,12l = A6*DD(l,Sl 
P(lJ,12) = A6*UU(4,3l 
P(l4,12l = A6*UU(J,41 
P(l5,12l = A6*DD(l,6i 
P(l3,l31 = A6*UU(7,li 
P(l4,l3l = A6*UD(6,2l 
P(l5,131 = A6*UD(4,4l 
Ptl4,141 = A6~DU(5,3l 
Ptl5,14l = A6*DD(3,5l 
P115,15l = A6*UDt1,1J 
DO 7 I=ld5 
DO 7 J=I '15 

f P(l,JJ = P(J,I) 

2. 0 6 



c 

L:1U d I= 1 , 1 5 
f::C ~i J=l,l:J 

8 ~) ( I , J l = ~ ( I , J l ': S P l! 
(_ f~ L L ''1 u L T p ( p ' ,_,) ' 1..; ' 1 5 ' 1 ':> ' l '.::! ' I • ' J. j ' l '.:-· ' i '.:; ) 
C /\ L L /\~ U L T P ( CJ , I-~ , P • 1 5 , 1 5 , 1 '.::> ~ l , J ) ~ 1 '.J , 1 ,__, ) 

c :·iATl·nx I) Is i'IU J·tUUli- li::.u eo.CCiJ1\LJlilu TU I 1JLJJ'.T ll;i',S 
:... <1.55 ;~f\JU Lf.56 TU btCU,·1l T11l Ct.1n1<11.:.UuAL 1•1!-1'.)S 11.~,T1;L\~ 

c 
UO 9 I= 1, 15 
P < I , 18 l = r1 • 

DO 9 I<= 1, 5 
J=la-~:, 

9 P(I,JJ = P(I,~1-2) 

UU lL· I=ld'.J 
P ( I , 12 ) = r1. 
UU lU 1<.=1,5 
J=l2-I< 

10 P(l"Jl = r'(I,J-ll 
DO 11 I= 1,15 
P(I,6l = u. 

11 CO\lT U!UE 
DO 12 J=l'18 
P(l8,J) = Ci~ 

00 12 1<.=l,5 
1=18-K 

12 P(I,Jl = P(J-2,Jl 
DO 13 J=ld8 
P(l2,JJ = o .. 
DO 13 K=l,5 
I=l2-K 

13 P(I,Jl = P<I-1,Jl 
DO 14 J=l'18 
P(6,J) = o., 

14 COf\!T HWE 
RETURl\I 
Ef\JD 

s u tHW u T r ,,~ E s Tl~ E s s < ;( x , Y Y , A Li· 1 u , v , r o , fr1 Ax , s n~ .:is i 

c 
c -----------------------------------------------------
( TH I S SU 13 r-w UT I N t:.:. F HJ tJ S TH t. S Tr\ t. SS l S If•J THE i 1 I U u LE 
C SURFACE OF AN t.LEMENT UUl TU CtNTRIFUGAL FURCt:.:.s. 
C TH i:. ACTUAL ST f-\ t:: SS [ S f:lf·\l-:. TI 1 C:: SH< l:::,.:::, LS CJ b TA l i~ L l./ l 1 ~ Th I '.:J 
C SUl::)f-\UUTI1\1E i'iULTIPLil.:.U LiY Trit: rlt:XJ1-<1-1L h:li..JlulTY 
c c u I~ 1-Z E s p 0 l•l IJ I 1'~ G T l) 1\ I A x I 1'- I u h T H I c i( I ' [ s s " 
c ---------------------------~-~-----------------------



c 
c 
c 
c 
\_ 

c 
c 
c 
c 

.. 
( 
~ 

c 
c 
-(_ 

c 
,-
c 

1 
c 
c 
c 

c 

!'.X 'yy 
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