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Abstract

The main idea of this thesis is to define and formulate the role of bias estimation

in multitarget–multisensor scenarios as a general framework for various measurement

types. After a brief introduction of the work that has been done in this thesis, three

main contributions are explained in detail, which exercise the novel ideas.

Starting with radar measurements, a new bias estimation method that can es-

timate offset and scaling biases in large network of radars is proposed. Further,

Cramér–Rao Lower Bound is calculated for the bias estimation algorithm to show

the theoretical accuracy that can be achieved by the proposed method. In practice,

communication loss is also part of the distributed systems, which sometimes can not

be avoided. A novel technique is also developed to accompany the proposed bias

estimation method in this thesis to compensate for communication loss at different

rates by the use of tracklets.

Next, bearing–only measurements are considered. Biases in this type of measure-

ment can be difficult to tackle because the measurement noise and systematic biases

are normally larger than in radar measurements. In addition, target observability

is sensitive to sensor–target alignment and can vary over time. In a multitarget–

multisensor bearing–only scenario with biases, a new model is proposed for the biases
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that is decoupled form the bearing–only measurements. These decoupled bias mea-

surements then are used in a maximum likelihood batch estimator to estimate the

biases and then be used for compensation.

The thesis is then expanded by applying bias estimation algorithms into video

sensor measurements. Video sensor measurements are increasingly implemented in

distributed systems because of their economical benefits. However, geo–location and

geo–registration of the targets must be considered in such systems. In last part of

the thesis, a new approach proposed for modeling and estimation of biases in a two

video sensor platform which can be used as a standalone algorithm. The proposed

algorithm can estimate the gimbal elevation and azimuth biases effectively.

It is worth noting that in all parts of the thesis, simulation results of various

scenarios with different parameter settings are presented to support the ideas, the

accuracy, mathematical modelings and proposed algorithms. These results show that

the bias estimation methods that have been conducted in this thesis are viable and

can handle larger biases and measurement errors than previously proposed meth-

ods. Finally, the thesis conclude with suggestions for future research in three main

directions.
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Chapter 1

Introduction

1.1 Bias modeling and estimation: A brief review

Any system that processes sensory data deals with errors generated by the sensor.

There are different types of errors, such as residual error, offset and scaling biases,

clock bias and uncertainties in the sensor positions to name a few. This thesis, focuses

on the modeling and estimation of offset and scaling biases in different distributed

systems.

Because of the huge impact of biases in the final output of the measurements, bias

modeling, estimation and compensation are essential steps in distributed tracking

systems. The main goal of this thesis is to model offset and scale biases in radar [2],

bearing–only [1] and video [4] measurements for a general multisensor–multitarget

scenario [3]. Bias modeling is a fundamental step in defining a generalized method

for estimating biases of different sensory data and further compensate for the biases.

Previously proposed methods for radar bias estimation did not address the mul-

tisensor problem and mostly were fixed to work with two sensors only [8, 10, 9]. In
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addition, traditional methods involve measurement parameters rather than the tracks

only.

In Chapter 2, a unified algorithm that not only can estimate the offset and scaling

biases of multiple radar sensors and targets and handle low communication rates by

using tracklets [6, 5], but also only requires tracks that have been sent back to the

fusion center is proposed. After reconstructing the biased measurements from tracks,

the main idea behind the method is to first try decoupling the biases from radar

measurements in the same way as it is done in [9], but with no limitation on the

number of sensors, targets or communication rates.

This is followed by methods to fuse all the information from decoupled bias mea-

surements in order to efficiently estimate the biases. This is the core block of this

thesis, to exercise decoupling the bias errors form the measurements of any measure-

ment type and then treat them as new measurements, here pseudo–measurements,

and estimate the biases separately. For radar measurements, it has been shown,

through mathematical models, that both offset and scaling biases can be estimated

with reasonable accuracy, comparable with the Cramér–Rao Lower Bounds (CRLB),

and then correct the tracks, accordingly.

In order to examine the idea of generalizing the bias modeling and estimation

via decoupling in Chapter 2, distributed systems with bearing–only measurements

are considered as the next system in Chapter 3. Bearing–only measurements have

many interesting characteristics such as larger residual noise that can scale up when

triangulating [7] to measure the position of the targets, severe problem of observabil-

ity according to their relative alignments and larger offset biases. These issues are

considered in Chapter 3 for a multisensor–multitarget case with access to associated

3



Ph.D. Thesis - E. Taghavi McMaster - Computational Science and Engineering

measurement reports, local bearing–only tracks or bearing–only measurements.

The start point to understand how the biases alter the bearing–only measurements

is to understand how a position estimate can be configured when different number

of bearing–only sensors are available in a surveillance region. In Chapter 3, three

and four sensor cases have been considered to show how the proposed method can

work when there are odd and even number of sensors. After triangulation, it is tried

to model the effect of biases and through reasonable approximations, decouple them

from the position measurements. Next, a likelihood function of the bias measurements

is formed to use in the bias estimation step. It has been shown both mathematically

and through simulations in Chapter 3, that the proposed method can estimate the

biases, correct the measurements and gives significantly better tracking results.

Video sensors are now more commonly used in different distributed systems. This

is the reason behind including the geo–registration modeling of video sensors as the

last bit of this thesis. Modeling and estimating the biases for a video sensor helps

defining a general approach to bias modeling and estimation by giving not only the

results for different sensors, but the methodology behind modeling of the biases by

exercising through different sensor models.

Video sensors collect target information in a totally different measurement space

from radar and bearing–only. Pixel representation of the targets, however informative,

cannot be of direct use for target tracking. It is the geo–location of the targets that

is valuable to distributed systems. Calculating the geo–location of the targets based

on their pixel positions come at the cost of including various types of residual and

systematic errors. Residual errors can be filtered out by convenient methods but the

systematic errors must be taken care of with different methodology.
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In Chapter 4, based on the video measurement modeling of Unmanned Air Vehicles

(UAVs) in [4], a model is suggested for decoupling the measurements from biases. The

mathematical procedure to formulate such a model is given in detail in Chapter 4. The

main idea behind bias modeling is to consider the two most affected parameters in the

video measurements by biases, namely, gimbal azimuth and gimbal elevation biases,

and try to separate their bias effect from other parameters. Through reasonable

approximation, the effect of biases can be decoupled form video geo–locations, hence,

a pseudo–measurement can be defined to be used for bias estimation. As final step,

it has been shown through simulation results with comparisons to lower bounds that

the proposed method can effectively estimate the biases and degrade the effect of

biases in the corrected geo–locations.

The idea of bias estimation have been considered in the literature from different

perspectives [3, 11]. In this thesis a more unified methodology for bias estimation

and sensor registration is presented. In the three articles presented here, the author

formulates the biases in different distributed systems based on the core concept of

decoupling the biases from sensor measurements in multisensor–multitarget scenarios.

This is followed by the correction of the tracks and/or measurements based on the ap-

plication of the measurements. Finally, for all the methods and applications proposed

in this thesis, simulation results have been conducted to support the mathematical

models defined in the articles.

1.2 Theme and Objectives of Dissertation

In compliance with the terms and regulations of McMaster University, this disser-

tation has been assembled into a sandwich thesis format comprised of three journal
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articles. These articles represent the independent work of the author of this disserta-

tion, Ehsan Taghavi, henceforth referred to as “the author”.

The articles in the dissertation follow a cohesive theme with a flow aimed at

defining and expanding upon the current knowledge of multisensor–multitarget bias

estimation and its practical applications. The general theme is based on the following:

i) To provide an overview of multisensor–multitarget bias estimation with radar

and bearing–only measurements (Papers I and II).

ii) To introduce basic concepts and a rationale definition of radar and bearing–only

biases, which matches practical needs (Papers I and II).

iii) To mathematically formulate the algorithmic processes of multisensor–multitarget

bias estimation with desirable practical properties (Papers I and II).

iv) To formulate the biases in target geo–locations reported from processed image

frames (Paper III).

v) To efficiently implement the proposed method for geo–registration and compar-

isons with benchmarks (Paper III).

1.3 Summary of Enclosed Articles

The papers enclosed in this thesis are listed as follows:

1.3.1 Paper I (Chapter II)

Ehsan Taghavi, R. Tharmarasa and T. Kirubarajan, Yaakov Bar-Shalom, Mike Mc-

Donald

6
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A Practical Bias Estimation Algorithm for Multisensor–Multitarget Tracking, IEEE

Transactions on Aerospace and Electronics Systems, To be appear in vol. 51, no. 4,

October 2015.

Preface: This paper expands on the definition of multisensor–multitarget bias es-

timation by the use of local tracks, solely. In previously proposed algorithms, the

estimators rely on local measurements in centralized systems or tracks in distributed

systems, along with additional information like covariances, filter gains or targets of

opportunity at every sampling time. From practical point of view, it is only the local

track that is reported to the fusion center and not at every sampling time. These

issues are considered in this paper and a practical algorithm proposed with sufficient

mathematical background to support the efficiency of the algorithm that can esti-

mate the biases in a computationally efficient manner for a multisensor–multitarget

scenario.

1.3.2 Paper II (Chapter III)

Ehsan Taghavi, R. Tharmarasa and T. Kirubarajan, Mike McDonald

Multisensor–Multitarget Bearing–Only Sensor Registration, IEEE Transactions on

Aerospace and Electronics Systems, To be appear in vol. 52, no. 4, August 2016.

Preface: This paper expands on limiting the measurements to bearing–only mea-

surement and formulates a pseudo–measurement that can observe the biases in the

measurements. If multisensor scenarios considered, the observability issue can be

handled and biases can be estimated with the modeled proposed in this paper. The

efficiency of the the algorithm tested over many simulation scenarios prove the effi-

ciency and show that the algorithm can perform well in different practical situations.
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Moreover, CRLB results show that the gain from correcting the biases in the original

measurements is meaningful and can be considered as effective.

1.3.3 Paper III (Chapter IV)

Ehsan Taghavi, R. Tharmarasa and T. Kirubarajan, Mike McDonald

Geo–registration and Geo–location Using Two Airborne Video Sensors, To be Sub-

mitted to IEEE Transactions on Aerospace and Electronics Systems, April 2016.

Preface: This paper expands on the idea of bringing the bias estimation techniques to

image geo–location and geo–registration. This starts with modeling the geo–location

process as an algorithm with all the bias parameters included. Modeling the biases

follows the introduction of a method for geo–registration, which includes, first, esti-

mating the biases and then correcting the geo–location of the targets based on the

biases. In order to model the biases, there must be at least two cameras available to

record the field of interests from different angles. If this data is available the biases

can be estimated with the proposed method. Finally, comparisons to lower bounds,

which are presented in the simulation results, show that the estimated biases can

effectively reduce the error when used for bias compensation.
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Chapter 2

A Practical Bias Estimation

Algorithm for

Multisensor–Multitarget Tracking

2.1 Abstract

Bias estimation or sensor registration is an essential step in ensuring the accuracy

of global tracks in multisensor-multitarget tracking. Most previously proposed al-

gorithms for bias estimation rely on local measurements in centralized systems or

tracks in distributed systems, along with additional information like covariances, fil-

ter gains or targets of opportunity. In addition, it is generally assumed that such

data are made available to the fusion center at every sampling time. In practical

distributed multisensor tracking systems, where each platform sends local tracks to

the fusion center, only state estimates and, perhaps, their covariances are sent to

the fusion center at non-consecutive sampling instants or scans. That is, not all the
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information required for exact bias estimation at the fusion center is available in prac-

tical distributed tracking systems. In this paper, a new algorithm that is capable of

accurately estimating the biases even in the absence of filter gain information from

local platforms is proposed for distributed tracking systems with intermittent track

transmission. Through the calculation of the Posterior Cramér–Rao lower bound and

various simulation results, it is shown that the performance of the new algorithm,

which uses the tracklet idea and does not require track transmission at every sam-

pling time or exchange of filter gains, can approach the performance of the exact bias

estimation algorithm that requires local filter gains.

2.2 Introduction

Bias estimation and compensation are essential steps in distributed tracking systems.

The objective of sensor registration is to estimate the biases in sensor measurements,

such as scaling and offset biases in range and azimuth measurements of a radar, clock

bias and/or uncertainties in sensor positions [5]. In a distributed multisensor tracking

scenario, each local tracker provides its own estimates of target states for fusion. Lo-

cal filters can be, e.g., Kalman filters or Interacting Multiple Model (IMM) estimators

with different motion models. These local tracks, i.e., state estimate vectors and asso-

ciated covariance matrices, are sent to the fusion center for further processing. Next,

the fusion center carries out track–to–track fusion. The fusion is done sequentially

subsequent to the estimation of biases based on common targets that are tracked by

various sensors in different locations.

Usually, bias estimation is considered as a two–sensor problem [13, 8] where a

stacked vector is assumed with all unknown biases and states target. A drawback of
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this approach is the computational burden due to increased dimension of the stacked

vector. In addition, most of the algorithms proposed for estimating the biases operate

on the measurements directly [23]. That is, such methods perform filtering on the

measurements received from sensors, which also include the biases. In many practical

tracking systems, access to measurements before tracking at the sensor level is not

always feasible. That is, sensors may provide only processed tracks to the user for

further processing [5]. Thus, methods that can simultaneously handle track–to–track

fusion and bias estimation are needed.

Although there are many different methods in the literature for bias estimation

and compensation, there is still a need for a method that requires only the local

track estimates and associated covariance matrices for bias estimation. In [25] and

[24] a joint track-to-track bias estimation and fusion algorithm based on equivalent

measurements of the local tracks was proposed. In [16], another approach based on

pseudo-measurement along with the Expectation-Maximization (EM) algorithm to

perform joint fusion and registration was proposed. A different method that uses a

multistart local search to handle the joint track-to-track association and bias estima-

tion problem was introduced in [26]. The concept of pseudo-measurement was used

in [20] for exact bias estimation with further extensions in [19] and [21]. In order

to achieve exact bias estimation, the algorithms in [20, 19, 21] require the Kalman

gains from local trackers, which are not normally sent to the fusion center in practical

systems [11]. Moreover, the previously mentioned algorithms assumed that the fusion

center receives the local tracks from all sensors at every time step, which is not re-

alistic in systems with bandwidth limitations [7]. In addition, these methods require

perfect knowledge about each local filter and its dynamic model. Also, as the number
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of sensors increases, the bias estimation problem suffers from the curse of dimension-

ality because of the commonly used stacked bias vector implementation [13]. Finally,

as the number of sensors changes over time, the algorithms in [20, 19, 21] require

appropriate pseudo–measurement to be defined for the specific number of sensors.

In this paper, these issues are addressed and a practical solution, which is math-

ematically sound and computationally feasible, is presented. The new approach is

based on reconstructing the Kalman gains of the local trackers at the fusion center.

In this approach, the tracklet method [11, 9, 10] along with sequential update as a

fusion method is used to provide a low computational cost algorithm for bias esti-

mation. Also, some of the constraints that were discussed above are relaxed in the

proposed algorithm. The main contributions of the new algorithm are: a) reconstruc-

tion of Kalman gains at the fusion center, b) relaxing the constraints on receiving

local tracks at every time step, c) correcting local tracks at the fusion center and d)

providing a fused track with low computational cost.

The paper is structured as follows: The bias model and the assumptions for bias

estimation are discussed in Section 2.3. In Section 2.4, a review of the exact bias

estimation method [20, 19, 21] is given. The new approach and its mathematical

developments are given in Section 2.5. Section 2.6 presents the calculation of the

Cramér–Rao Lower Bound (CRLB) for proposed algorithm. Section 2.7 demonstrates

the performance of the new algorithm for synchronous sensors and compares it with

that of the method in [20] and shows comparisons with the CRLB. Conclusions are

discussed in Section 2.8.
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2.3 Problem Formulation

Assume that there are M sensors reporting range and azimuth measurements1 in

polar coordinates of N targets in the common surveillance region. Note that N is

not exactly known to the algorithm and that it could be time varying. That is, bias

estimation is carried out based on time–varying and possibly erroneous numbers of

tracks reported by the local trackers. The model for the measurements originating

from a target with biases at time k in polar coordinates (denoted by superscript p)

for sensor s is [20, 19, 21]

zps (k) =

 rps(k)

θps(k)

 =

 [1 + ϵrs(k)] rs(k) + brs(k) + wrs(k)[
1 + ϵθs(k)

]
θs(k) + bθs(k) + wθs(k)

 s = 1, . . . ,M (2.1)

where rs(k) and θs(k) are the true range and azimuth, respectively, brs(k) and b
θ
s(k)

are the offset biases in the range and azimuth, respectively, ϵrs(k) and ϵθs(k) are the

scale biases in the range and azimuth, respectively. The measurement noises wrs(k)

and wθs(k) in range and bearing are zero-mean with corresponding variances σ2
r and

σ2
θ , respectively, and are assumed mutually independent.

The bias vector βs(k) =

[
brs(k) bθs(k) ϵrs(k) ϵθs(k)

]T
can be modeled as an

unknown constant over a certain window of scans (non–random variable). Conse-

quently, the maximum likelihood (ML) estimator [2] or the weighted least squares

(LS) estimator [1] can be used for bias estimation. On the other hand, a Gauss-

Markov random model [27] can also be used, in which case a Kalman filter can be

1While this assumes 2–D radars, the extension to 3–D radars is straightforward.
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adopted for bias estimation. We model the measurement as

zps (k) =

 rs(k)

θs(k)

+ Cs(k)βs(k) +

 wrs(k)

wθs(k)

 (2.2)

where

Cs(k)
△
=

 1 0 rs(k) 0

0 1 0 θs(k)

 (2.3)

Here, the measured azimuth θms (k) and range rms (k) can be utilized in (2.3) without

any significant loss of performance [20, 19, 21].

Estimating the bias vector βs(k) for all the sensors is the main objective of this

paper. After bias estimation, all the biases can be compensated for in the state

estimates at the fusion center.

Since target motion is better modeled and most trackers operate in Cartesian

coordinates, the polar measurements are converted into Cartesian coordinates. It is

assumed that this does not introduce biases [4]; this is verified in the simulations.

Then, sensor s has the measurement equation (with the same Hs(k) = H(k) for all

s)

zs(k) = H(k)x(k) +Bs(k)Cs(k)βs(k) + ws(k) (2.4)
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where the state vector x(k) =

[
x(k) ẋ(k) y(k) ẏ(k)

]T
and H(k) is the measure-

ment matrix given by

H(k) =

 1 0 0 0

0 0 1 0

 △
= H (2.5)

Since distributed tracking systems may cover a large geographical area, the earth can

no longer be assumed to be flat and coordinate transformations need to include an

earth curvature model like WGS-84 [18, 32].

The matrix Bs(k) is a nonlinear function with the true range and azimuth as

its arguments. A constant Bs(k)Cs(k) also results in incomplete observability as

discussed in [21]. Using the measured azimuth θms (k) and range rms (k) from sensor s,

Bs(k) can be written as [4]

Bs(k) =

 cos θms (k) −rms (k) sin θms (k)

sin θms (k) rms (k) cos θ
m
s (k)

 (2.6)

Finally, the new covariance matrix of the measurement in Cartesian coordinates

(omitting index k in the measurements for clarity) is given by

Rs(k) =

 r2sσ
2
θ sin

2 θs + σ2
r cos

2 θs (σ2
r − r2sσ

2
θ) sin θs cos θs

(σ2
r − r2sσ

2
θ) sin θs cos θs r2sσ

2
θ cos

2 θs + σ2
r sin

2 θs

 (2.7)

where one can use the observed range and azimuth as well.
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2.4 Review of Synchronous Sensor Registration

In this section, the bias estimation method introduced in [20, 21, 19] for synchronous

sensors with known sensor locations is reviewed. Further, the methods in our previous

work [29] are examined in more detail and are extended in this paper with various

simulations and the calculation of the lower bounds for bias estimation in multisensor–

multitarget scenarios.

Consider a multisensor tracking system with the decentralized architecture [5].

In this case, each local tracker runs its own filtering algorithm and obtains a local

state estimate using only its own measurements. Then, all local trackers send their

estimates to the fusion center where bias estimation is addressed. Only after bias

estimation can the fusion center fuse local estimates correctly to obtain accurate

global estimates.

The dynamic equation for the target state is

x(k + 1) = F (k)x(k) + v(k) (2.8)

where F (k) is the transition matrix, and v(k) is a zero-mean additive white Gaussian

noise with covariance Q(k).

Because the local trackers are not able to estimate the biases on their own, they

yield inaccurate estimates of tracks by assuming no bias in their measurements.

Hence, the state space model considered by local trackers for a specific target t and
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sensor s is

xt(k + 1) = F (k)xt(k) + v(k) (2.9)

zts(k) = H(k)xt(k) + ws(k) (2.10)

The difference between (2.1) and (2.10) is that the latter has no bias term and, as a

result, the local tracks are bias-ignorant [20, 21, 19]. Note that this mismatch should

be compensated for.

2.4.1 The pseudo-measurement of the bias vector

In this subsection, a brief discussion on how to find an informative pseudo-measurement

by using the local tracks for the case M = 2 synchronized sensors is presented, based

on the method given in [20, 21, 19]. As in these previous works, it is assumed that

the local platforms run a Kalman filter-based tracker, although this assumption may

not always be valid. However, as shown in the sequel, multiple-model based trackers

can be handled within the proposed framework with some extensions.

In [20, 21, 19] it was assumed that one has access to the filter gain W1(k+1) and

the residual ν1(k + 1) from the Kalman filter of local tracker 1 [31]. Then, one can
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write

x̂1(k + 1 | k + 1) = F (k)x̂1(k | k) +W1(k + 1)ν1(k + 1)

= F (k)x̂1(k | k) +W1(k + 1)
[
z1(k + 1)− ẑ01(k + 1 | k)

]
= [I −W1(k + 1)H(k + 1)]F (k)x̂1(k | k) +W1(k + 1) [H(k + 1)

F (k)x1(k) +H(k + 1)v(k) +B1(k + 1)C1(k + 1)β1(k + 1)

+w1(k + 1)] (2.11)

Note that the predicted measurement ẑ01(k + 1 | k) is based on the measurement

in which no bias is assumed by local tracker 1, i.e., tracker 1 used a bias-ignorant

measurement model. Therefore, there is no term related to biases in the predicted

measurement.

Hence, if the local state estimate is moved to the left–hand side of (2.11), and

left-multiplied by the left pseudo-inverse [15] of the gain, one has

z1b (k + 1) , W †
1 (k + 1) [x̂1(k + 1 | k + 1)− (I −W1(k + 1)H(k + 1))F (k)x̂1(k | k)]

= H(k + 1)F (k)x(k) +H(k + 1)v(k) + B1(k + 1)C1(k + 1)β1(k + 1)

+w1(k + 1) (2.12)

where the pseudo-inverse of the gain is

W †
s ,

(
WT
s Ws

)−1
WT
s (2.13)
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Similarly, one can define

z2b (k + 1) , W †
2 (k + 1) [x̂2(k + 1 | k + 1) − (I −W2(k + 1)H(k + 1))F (k)x̂2(k | k)]

= H(k + 1)F (k)x(k) +H(k + 1)v(k) + B2(k + 1)C2(k + 1)β2(k + 1)

+w2(k + 1) (2.14)

It is worth mentioning that x(k) and v(k) in (2.12) and (2.14) are the same. Thus, a

pseudo-measurement of the bias vector, as in [20, 21, 19], can be defined as follows:

zb(k + 1) , z1b (k + 1)− z2b (k + 1) (2.15)

for the case of using similar sensors. Then,

zb(k + 1) = B1(k + 1)C1(k + 1)β1(k + 1)−B2(k + 1)C2(k + 1)β2(k + 1)

+w1(k + 1)− w2(k + 1) (2.16)

That is, one has the pseudo-measurement of the bias vector

zb(k + 1) = H(k + 1)b(k + 1) + w̃(k + 1) (2.17)

where the pseudo-measurement matrix H, the bias parameter vector b and the

pseudo-measurement noise w̃(k + 1) are defined as

H(k + 1) , [B1(k + 1)C1(k + 1), −B2(k + 1)C2(k + 1)] (2.18)
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b(k + 1) ,

 β1(k + 1)

β2(k + 1)

 (2.19)

and

w̃(k + 1) , w1(k + 1)− w2(k + 1)

(2.20)

The bias pseudo-measurement noises w̃ are additive white Gaussian with zero–mean,

and their covariance is

R(k + 1) = R1(k + 1) +R2(k + 1) (2.21)

The main property of (2.20) is its whiteness, which results in a bias estimate that

is exact [20, 21, 19]. In this approach, there is no approximation in deriving (2.17)–

(2.21) unlike the methods previously proposed in [17, 28, 30]. This was one of the

main contributions of [20].

When the measurement matrices Hs(k) are the same for different local trackers,

but only the second sensor has a bias, the following simplifications result:

zb(k + 1) = z1b (k + 1)− z2b (k + 1) (2.22)

b(k + 1) = β2(k + 1) (2.23)

H(k + 1) = −B2(k + 1)C2(k + 1) (2.24)

w̃(k + 1) = w1(k + 1)− w2(k + 1) (2.25)

R(k + 1) = R1(k + 1) +R2(k + 1). (2.26)
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2.4.2 The recursive least square bias estimator

If the biases are constant over a certain window of scans, one can construct a Recur-

sive Least Square (RLS) estimator by using the pseudo-measurement equation (2.17)

[20]. The recursion of the RLS estimator has two stages: the first is to update the

bias estimate recursively for different targets and the second is to update it through

different time scans.

Assume that at time k, one has access to the estimate of the bias vector and its

associated covariance matrix up to time k as b̂t−1(k) and Σt−1(k), form on the first

t − 1 targets and all previously updated estimates. Now, the RLS method can be

carried out as in Figure 2.1 to update the bias estimation at time k for all targets

[20, 21, 19].

Note that the covariance update equation in line 5 of Figure 2.1 may cause Σt(k) to

lose positive definiteness due to numerical errors. To avoid this problem, the Joseph’s

form of the covariance update is used [4] as

Σt(k) = [I −Gt(k)Ht(k)] Σt−1(k) [I −Gt(k)Ht(k)]
T +Gt(k)Gt(k)

T (2.27)

2.4.3 Time-varying bias estimation: The optimal MMSE es-

timator

In the case of time-varying biases with the standard linear white–Gaussian assump-

tions one can implement the optimal MMSE estimator based on the pseudo-measurement

equation (2.17) and the dynamic model of the bias [20]. f For the stacked bias vector,

the dynamics model can be defines as
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Input: b̂0(k), Σ0(k), z
1
b,t(k), z

2
b,t(k)

Output: b̂0(k + 1), Σ0(k + 1)
1: At time k
2: for t = 1, ..., N do
3: Get the new pseudo-measurement using

zb,t(k) , z1b,t(k)−H(k)H†(k)z2b,t(k)

4: Compute the bias update gain and the residual

Gt(k) = Σt−1(k)Ht(k)
T
[
Ht(k)Σt−1(k)Ht(k)

T Rt(k)]
−1

rt(k) = zb,t(k)−Ht(k)b̂t−1(k + 1)

5: Update the bias estimate and covariance

b̂t(k) = b̂t−1(k + 1) +Gt(k)rt(k)

Σt(k) = Σt−1(k)− Σt−1(k)Ht(k)
T)T [Ht(k) Σt−1(k)Ht(k)

T +Rt(k)
]−1

×Ht(k)Σt−1(k)

6: end for
7: return

b̂0(k + 1) , b̂N(k)

Σ0(k + 1) , ΣN(k)

Figure 2.1: The Recursive Least Square Bias Estimation (RLSBE) algorithm [20].

b(k + 1) = Fb(k)b(k) + vb(k) (2.28)

in which Fb(k) is the transition matrix of the stacked bias vector b, and vb(k) is the

stacked process noise of the bias vector, zero-mean white with covariance Qb(k).

Assume that at time k one has access to the estimate of the bias vector and its
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associated covariance matrix up to time k as b̂t−1(k | k) and Σt−1(k | k), respectively.

Now, a Kalman filter can be used as in Figure 2.2 to update the bias estimates at

time k for all targets [20, 21, 19].

2.5 The new bias estimation algorithm

The algorithms given in Section 2.4, i.e., Recursive Least Square Bias Estimation

(RLSBE, Figure 2.1) and Optimal MMSE Bias Estimation (OMBE, Figure 2.2), are

dependent on the Kalman gains provided by the local trackers, in addition to the

state estimates and the associated covariance matrices at every time step. Moreover,

as the number of the sensors increases, the above algorithms face an increase in

computational requirements cubic in M . This is because a stacked vector of bias

parameters is used. In addition, for M > 2, it is challenging to extend (2.15) and

(2.17). The extension of (2.15) and (2.17) can be done as in [3] by taking M − 1

differences. Moreover, these approaches do not address the joint fusion problem as

well. With this motivation, in this section, a new approach to relax the requirement

of the Kalman gain matrices availability from the local trackers is given. In addition,

the new algorithm alleviates the problem of the dimensionality by taking advantage

of (2.22)–(2.26) for a multisensor–multitarget scenario, and by solving the fusion

problem as well. Finally, the algorithm is able to function properly with asynchronous

local track updates.

In order to obtain the new algorithm, first, a simple approach to calculate tracklets

based on [11] is discussed. This approach makes it possible to obtain approximate

equivalent measurements of the local tracks directly and efficiently without any fur-

ther processing and it supports updating the bias estimates whenever a new local
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Input: b̂0(k | k), Σ0(k | k), z1b,t(k), z2b,t(k)
Output: b̂0(k + 1 | k + 1), Σ0(k + 1 | k + 1)

1: At time k
2: for t = 1, ..., N do
3: Get the new pseudo-measurement using

zb,t(k) , z1b,t(k)−H(k)H†(k)z2b,t(k)

4: Compute the bias update gain and the residual

Gt(k) = Σt−1(k | k)Ht(k)
T [Ht(k)Σt−1(k | k)

Ht(k)
T + Rt(k)]

−1

rt(k) = zb,t(k)−Ht(k)b̂t−1(k | k)

5: Update the bias estimate and covariance

b̂t(k | k) = b̂t−1(k | k) +Gt(k)rt(k)

Σt(k | k) = Σt−1(k | k)− Σt−1(k | k)Ht(k)
T[

Ht(k)Σt−1(k | k)Ht(k)
T +Rt(k)]

−1Ht(k)Σt−1(k | k)

6: end for
7: Update the bias estimate according to the model

b̂(k + 1 | k) , Fb(k)b̂N(k | k)
Σ(k + 1 | k) , Fb(k)ΣN(k | k)Fb(k)T +Qb(k)

8: return

b̂0(k + 1 | k + 1) = b̂(k + 1 | k)
Σ0(k + 1 | k + 1) = Σ(k + 1 | k)

Figure 2.2: The optimal MMSE bias estimation algorithm [20] (OMBE).
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track is available at the fusion center. In addition, it can handle asynchronous up-

dates from different local trackers and map them to a common time [11, 10]. Then,

a sequential update algorithm is proposed for the fusion step. Although it is not

an optimal approach for fusing the local tracks, it is computationally cheaper than

parallel update [5]. Finally, the complete algorithm based on these two approaches

with additional steps is presented.

2.5.1 Equivalent measurement computation using the inverse

Kalman filter method based tracklet

The main goal in this subsection is to construct a set of approximately uncorrelated

equivalent measurements (“tracklets”) from the local tracks and the associated co-

variance matrices for sequential update in the fusion step and also to reconstruct the

local Kalman gains at the fusion center. It also relaxes the requirements of receiv-

ing the local tracks at every time step. To do so, the “inverse Kalman filter based”

tracklet method from [11] is used (for a clear derivation and the reason for its sub–

optimality, see [5, p. 577]). Based on this method, the equations relating to the

equivalent measurement vector, us(k, k
′), for a local track from platform s at time

frame k, given that the track data was previously sent to the global tracker for time

frame k′ < k, are as follows:

us(k, k
′) = x̂s(k | k′) +As(k | k′) [x̂s(k | k)− x̂s(k | k′)] (2.29)
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where

us(k, k
′) = x(k) + ũs(k | k) (2.30)

E
[
ũs(k, k

′) | Zk′
]

= 0 (2.31)

As(k, k
′) = Ps(k | k′) [Ds(k, k

′)]
−1

(2.32)

Ds(k, k
′) = Ps(k | k′)−Ps(k | k) (2.33)

where Zk
′
s =

{
z1s, ..., z

k′
s

}
, and

Us(k, k
′) = E

[
ũs(k, k

′) (ũs(k, k)
′)
T | Zk′s

]
= As(k, k

′)Ps(k | k)

= [As(k, k
′)− I]Ps(k | k′) (2.34)

The information that the global tracker or the fusion center uses consists of the

calculated equivalent measurement vector us(k, k
′) and its error covariance matrix

Us(k, k
′). Note that in order to calculate x̂s(k | k′) and Ps(k | k′) one needs the

estimated target state x̂s(k
′ | k′) and its covariance matrix Ps(k

′ | k′), in addition to

the dynamic models the local trackers used for filtering. Then one needs to compute

L = k − k′ prediction steps without any new measurement data to find x̂s(k | k′)

and Ps(k | k′). Here, it is necessary to consider the L-step prediction of transition

and process noise covariance matrices as F (k, k′) and Q(k, k′), respectively. One can

use the concept of missing observations in Kalman filter to find F (k, k′) and Q(k, k′)

as in [12, pp. 110]. It should be mentioned that all these computations require that

Ps(k
′ | k′), Ps(k | k′) and [Ps(k | k)−1 −Ps(k | k′)−1] be non-singular. This method
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was previously used in [24] for k′ = k − 1 (for which the non-singularity requirement

does not hold in general) and with a different approach for sensor registration. For

the proof of (2.34) see Appendix A.

2.5.2 Sequential update as fusion method

After calculating the equivalent measurements of the state for each local track at the

fusion center, they can be used as new measurements for the estimation of fused state

and its covariance matrix. To do this recursively, it should be assumed that the fused

state estimate and its covariance matrix at time k′ as xf (k
′ | k′) and Pf (k

′ | k′),

respectively, are already computed. For k′ = 1, the parameters xf (k
′ | k′) and

Pf (k
′ | k′) are initialized with x(k′ | k′) and P(k′ | k′), respectively. Then these two

can be updated by following the steps in Figure 2.3. Although the sequential update is

sub-optimal [5], it has the advantage of being computationally efficient to implement

and, in addition, it is not dependent on the previous equivalent measurements at time

k′.

2.5.3 Multisensor fusion and track-to-track bias estimation

The first step for implementing a general bias estimation algorithm for radar systems

is to find the Kalman gains of each local track at the fusion center, by only using

the state estimates and the associated covariance matrices. To do so, first, one must

calculate the equivalent measurement and its covariance matrix as in (2.29) and (2.34)

for sensor s, and at time frame k (the target index is omitted for simplicity). Since
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Input: xf (k
′ | k′) and Pf (k

′ | k′), ys,k and Rs,k for s = 1, ...,M
Output: xf (k | k) and Pf (k | k)

1: Compute xf (k | k′) and Pf (k | k′) according to their dynamic model (prediction
step)

2: Assign:

xtemp = xf (k | k′)
Ptemp = Pf (k | k′).

3: for s = 1, ...,M do
4: Update xtemp and Ptemp with new measurement and its covariance matrix,

i.e., ys,k and Rs,k according to

xtemp = xtemp +Wtempỹ

Wtemp = PtempH
T
(
HPtempH

T +Rs,k

)−1

ỹ = ys,k −Hxtemp

Ptemp = (I −WtempH)Ptemp

H =

[
1 0 0 0
0 0 1 0

]
5: end for
6: return

xf (k | k) = xtemp

Pf (k | k) = Ptemp

Figure 2.3: The Sequential Fusion Algorithm (SFA) with equivalent measurements
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the measurement model here is linear, one has

Rs,k = H(k)Us(k, k
′)H(k)T (2.35)

Ws,k = Ps(k | k′)H(k)T
[
H(k)Ps(k | k′)H(k)T +Rs,k]

−1 (2.36)

ys,k = H(k)us(k, k
′) (2.37)

Note that the reason to keep the position information only is that further in the new

bias estimation algorithm we use the corrected positions as new measurements for

sequential fusion. Because the equivalent measurements are used for the fused track,

the Kalman gain for it (denoted by subscript f) at time frame k can be recovered as

Rf,k = H(k)

[
M∑
i=1

(Ui(k, k
′))

−1

]−1

H(k)T (2.38)

Wf,k = Pf (k | k′)H(k)T
[
H(k)Pf (k | k′)H(k)T +Rf,k]

−1 (2.39)

Note that the noises/errors in the equivalent measurements are not white so using

a Kalman filter is not optimal. This amounts to the same approximation as in [5,

p. 563]. Also in (2.39), a common coordinate system is used for equivalent mea-

surements. As a result, the use of a common measurement matrix H(k) for all the

equivalent measurements is feasible.

The sensor registration method proposed here uses the simplified formulas, i.e.,

(2.22)–(2.26). To use these formulas, an approximately bias-compensated2 fused track

needs to be found at the fusion center for the set {S} \ s, where S = 1, 2, ...,M . The

notation {S} \ s stands for the set that contains all those elements of S excluding

2Here, bias-compensated means a fused track, in which the bias-corrected equivalent measure-
ments by using the latest estimated biases are used for fusion.
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element s. Then, the bias estimation problem can be reduced to the case of two sen-

sors. The first one is an equivalent sensor with fusion of bias-corrected measurements

of the set {S} \ s, and the second is sensor s which has bias. Then the bias in sensor

s can be found with either the RLSBE (see Figure 2.1) or OMBE (see Figure 2.2)

algorithm.

The next step in this approach is to correct the biases in the measurement domain

of the sensors (except for sensor s) and then fuse them together. This can be done

by going from the Cartesian coordinate of equivalent measurements to the polar

coordinate of the radar and correct with the previously estimated biases. Then by

correcting the covariance matrix of the new bias compensated measurements, they

can be fused by sequentially updating the fused track (excluding the track from sensor

s) by using the Sequential Fusion Algorithm (SFA). Then, the Kalman gain for the

fused and the now-corrected track can be calculated using (2.39).

For the equivalent measurement, define

us ,
[
ux u̇x uy u̇y

]T
(2.40)

where time and target indexes are omitted for simplicity. Then, to correct the biases

in the measurement domain, assuming that the latest–estimated biases are ϵ̂θ, ϵ̂r, b̂θ

and b̂r, one has3

θb-cs =
arctan

(
uy
ux

)
− b̂θ

(1 + ϵ̂θ)
(2.41)

rb-cs =

√
(ux)

2 + (uy)
2 − b̂r

(1 + ϵ̂r)
(2.42)

3Here, the superscript “b-c” is used to denote the bias-corrected bearing and range.
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Now that the scale and offset biases are compensated for, one can go back to Cartesian

coordinates as follows:

ub-cx = λθr
b-c
s cos

(
θb-cs

)
(2.43)

ub-cy = λθr
b-c
s sin

(
θb-cs

)
(2.44)

Yb-c =

[
ub-cx ub-cy

]T
(2.45)

where

λθ = exp

(
−σ

2
θ

2

)
(2.46)

is the compensation factor for the bias in coordinate conversion from polar to Carte-

sian [22]. The method from [22] is used here because of the fact that bias correction

and compensation along with the changes in the covariance matrices and uncertain-

ties may violate the assumptions made for the debaised conversion in Section 2.3.

The next step is to update the covariance matrix of the corrected equivalent mea-

surements. In addition to the term (2.35), the additional uncertainty in the bias

estimates, i.e., their associated covariance matrix and the uncertainty in the model of

the radar, both in Cartesian coordinates, must be accounted for. The final formula

for the covariance matrix with proper conversion from polar to Cartesian coordinate

is

Rb-c
s = H(k)Us(k | k)H(k)T +Bb-c

s (k)

 σ2
r 0

0 σ2
θ

Bb-c
s (k)T

+Kb-c
s (k)Pb,s(k | k)Kb-c

s (k)T (2.47)
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where

Kb-c
s (k) = Bb-c

s (k)Cb-c
s (k) (2.48)

and Pb,s(k | k) is the latest-updated bias covariance matrix at time k and for sensor s.

Now that all the required formulations and variables are available, the new algorithm

to find the bias estimates for all the sensors is given in Figure 2.4.

Input: inputs of SFA and RLSBE (defined within the corresponding algorithms).
Output: bs(k) and Σs(k) for s = 1, ...,M .

1: At time k
2: for s = 1, ...,M do
3: Compute Ws,k as in (2.36) and
4:

zsb,t(k) , W †
s,k [x̂(k | k)− (I −Ws,kHs(k))F (k, k − L)x̂(k − L | k − L)]

5: s̄ ∈ {1, ...,M}\s
6: Call SFA with inputs xsf (k

′ | k′) and Ps
f (k

′ | k′), Yb-c
s̄ (k | k) and Rb-c

s̄ (k | k).
7: Compute W s

f,k as in (2.39) and

zsb,f (k) ,
(
W s
f,k

)† [
x̂sf (k | k)− (I −W s

f,kHf (k))F (k, k − L)x̂sf (k − L | k − L)
]

8: Call RLSBE with inputs zsb,t(k), z
s
b,f (k) and the last update of the estimated

biases and their associated covariance matrix.
9: return bs(k) and Σs(k)
10: end for

Figure 2.4: The Fused Bias Estimation algorithm (FBEA)

As shown in Figure 2.4, one only needs to call SFA and RLSBE with new input

parameters. One of the advantages of this approach is that in each “for loop” only

a low dimensional Kalman filter that is independent of the size of the stacked bias

vector and number of the sensors is needed. In addition, the fusion of local tracks can

be done by only adding one sequential update for the latest corrected measurement
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of sensor s to the previously fused track. It is also important to note that the there

is no constraint on the rate of receiving local tracks from the individual sensors.

To show how well this new algorithm performs, in the next section, the simulation

results on two different scenarios are used to compare its performance with those of

the previously proposed algorithm in [20, 19, 21] for synchronous sensors.

To better illustrate how the new bias estimation algorithm (FBEA) works, a block–

diagram representation of the method is shown in Figure 2.5 for a single time step

estimation of the biases for the first sensor. In Figure 2.5, by receiving the local track

estimates from all available sensors at time step k, the first step is to calculate the

tracklet for all of them using (2.29)–(2.34). Then, the equivalent measurement of the

first sensor is sent for Kalman gain recovery using (2.35) and (2.36). At the same time,

the equivalent measurements of all other sensors are sent to bias correction to first

remove the bias from the equivalent measurements by using the previously estimated

biases at time step k − 1 using (2.41)–(2.45) and the Kalman gain recovery in (2.38)

and (2.39). The next step is to fuse the tracks by using SFA algorithm. Then, the

fused and corrected estimate is sent to the pseudo–measurement calculation block for

each individual sensor. At this point one has a two–sensor problem with only one

sensor having biases in the measurement. The output is now sent to the RLSBE

algorithm along with the previously estimated biases for the first sensor so that the

bias estimates can be updated at time step k before proceeding to the next time step.
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Figure 2.5: Block diagram of the new offset and scaling bias estimation algorithm.
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2.6 Cramér-Rao Lower Bound for Sensor Regis-

tration

In this section, a step-by-step procedure is given for calculating the CRLB for sensor

registration algorithms as the benchmark. Rewriting (2.4) for the case of two similar

sensors, one has

z1(k)−H(k)x(k) = B1(k)β1(k) + w1(k) (2.49)

and

z2(k)−H(k)x(k) = B2(k)β2(k) + w2(k) (2.50)

If no biases exist, the sensors must point to the same position of the observed target.

Consequently, one has

z1(k)−B1(k)β1(k)− w1(k) = z2(k)−B2(k)β2(k)− w2(k) (2.51)

and by reordering the measurement terms and using the matrix form, one can rewrite

it as

[z1(k)− z2(k)] =

[
B1(k) −B2(k)

] β1(k)

β2(k)

+ w1,2(k) (2.52)

Further, for future use, one can denote the terms in (2.52) as

Y (k) = B(k)b(k) + w1,2(k) (2.53)
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where

Y (k) = [z1(k)− z2(k)] (2.54)

B(k) =

[
B1(k) −B2(k)

]
(2.55)

b(k) =

 β1(k)

β2(k)

 (2.56)

and w1,2(k) is additive white Gaussian noise with covariance matrix equal to R1(k)+

R2(k)

2.6.1 Calculation of the CRLB

In the case of having two sensors and multiple targets, the CRLB can be calculated

as a batch process. Taking all the (linearly independent) K pairs of measurements

for N targets in the surveillance region, one can write the measurement equation as

Y = gb+ u (2.57)

where Y, g and u are stacked vectors given by

Y =

[
(Y 1(1))

T · · ·
(
Y N(1)

)T · · · (Y 1(K))
T · · ·

(
Y N(K)

)T ]T
(2.58)

g =

[
(B1(1))

T · · ·
(
BN(1)

)T · · · (B1(K))
T · · ·

(
BN(K)

)T ]T
(2.59)
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and

u =

[ (
w1

1,2(1)
)T · · ·

(
wN1,2(1)

)T · · ·
(
w1

1,2(K)
)T · · ·

(
wN1,2(K)

)T ]T
(2.60)

Further, the covariance matrix of the noise vector u is

R = diag

([
R1(1) · · · RN(1) · · · R1(K) · · · RN(K)

])
(2.61)

whereRi(k) = Ri
1(k)+R

i
2(k) and the lower index indicates a specific sensor. As stated

in [4], the covariance matrix of an unbiased estimator b̂ is bounded from below as

E
{(

b̂− b
)(

b̂− b
)T

}
≥ J−1 (2.62)

In the above, J is the Fisher Information Matrix (FIM) given by

J = E
{
[∇b ln p(Y | b)] [∇b ln p(Y | b)]T

}
|b=btrue

= E
{
[∇bλ] [∇bλ]

T
}
|b=btrue (2.63)

where btrue is the true value of the bias vector b, p(Y | b) is the likelihood function

of b, λ = − ln p(Y | b) and ∇ is gradient operator. From (2.57), one has

p(Y | b) = 1

(2π)K
√
|R|

exp

{
−1

2
[Y − gb]TR−1 [Y − gb]

}
(2.64)

and therefore

λ = Const.+
1

2
[Y − gb]TR−1 [Y − gb] (2.65)
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Using the results from [14] to simplify the differentiations, ∇bλ can be written as

∇bλ = gTR−1 (Y − gb) (2.66)

which yields

J = gTR−1g (2.67)

Finally, when calculating the FIM, CRLB of desired elements (here the diagonal) will

be

CRLB {[b]i} =
[
J−1

]
ii

(2.68)

for i = 1, 2, 3, 4.

2.6.2 Multitarget–multisensor CRLB

When number of the targets is greater than two, the same procedure as the proposed

bias estimation algorithm to calculate the CRLB can be used. In this case, one

should fuse all the measurements, except for sensor “i” to create a single pseudo-

measurement for this “combined” sensor and then treat the problem as a two–sensor

problem. Starting with the calculation of the combined measurement and covariance

matrix of the set Sı as in [5] yields

Zcomb = Rcomb

 ∑
j∈{S}\i

(Rj)
−1 zj

 (2.69)
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and

Rcomb =

 ∑
j∈{S}\i

R−1
j

−1

(2.70)

As in the bias estimation algorithm, it is assumed that only sensor “i” has bias. This

means that in the calculation of CRLB one should have access to the measurements

both with and without bias. The next is to calculate Bcomb(k). Similar to the bias

estimation algorithm, one should define H(k) = −Bcomb(k) and use the combined

covariance and measurement matrices as a bias free measurement to find the CRLB

of the bias estimation for sensor “i”. Finally, R(k) can be calculated as

R(k) = Rcomb(k) +Ri(k) (2.71)

By using (2.69), (2.70) and (2.71), the formulas for two sensors and multiple tar-

gets can be modified to calculate the CRLB for the case of multisensor–multitarget

scenario.

2.7 Simulation results

2.7.1 Motion dynamics and measurement parameters

Here, a distributed tracking scenario with five sensors and sixteen targets is considered

as shown in Figure 2.6. It is assumed that all sensors are synchronized. Without loss

of generality and to easily compare the results of bias estimation for different sensors,
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Figure 2.6: Initial locations of the targets and sensors
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all the biases are assumed as

βs = [ 20m 1mrad ]T (2.72)

The standard deviations of measurement noises are σr = 10 m and σθ = 1 mrad for

target range and azimuth measurements, respectively. In this problem r ≃ 20000.

According to [4],
rσ2

θ

σr
= 2×104×10−6

10
= 2× 10−3 ≪ 0.4 which is the threshold for polar

to Cartesian conversion to be unbiased. Note that this condition holds for r ≃ 200km

as well.

Scaling biases can be handled by the proposed method as well but ignored for sim-

plicity. The true dynamics of the targets are modeled using the Discretized Contin-

uous White Noise Acceleration (DCWNA) or nearly constant velocity (NCV) model

with qx = qy = 0.1m2

s3
and constant turn rate model with rate ω = 0.1deg

s
. As for

the filtering in local trackers, DCWNA and Continuous Wiener Process Acceleration

(CWPA) are used with various settings to be able to create different scenarios for the

simulation (for detail see [4, p. 268 and p. 467]).

2.7.2 A two-sensor problem

To compare the results of the new approach with those of the previously proposed

algorithm [20, 19, 21], the case of two sensors (placed at (0m, 0m) and (5000m, 0m)

in Cartesian coordinates) is considered with the same kinematics and filter settings

as in [20]. The new algorithm that uses the reconstructed Kalman gains detailed in

(2.35) and (2.36) is denoted as EXL while the previous algorithm in [20, 19, 21] is

denoted as EX. Note that there is no fusion step in this case and the two methods
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only differ in the Kalman gain calculation, which in the EXL 4 case is reconstructed

approximately.

The settings of the variables are as follows. To handle the L = 1 and non–

singularity problem, the “tracklet with decorrelated state estimate” 5 that can be used

with only one measurement in the tracklet interval [11] must be selected instead of

“tracklet computed using inverse Kalman filter” . The sampling intervals are T = 1s.

The lag between each update at the fusion center is L = k − k′ = 1. The initial

state estimates are the converted measurements from polar coordinate to Cartesian

coordinate with zero velocity and covariance matrix [20, 19, 21]

Ps(0 | 0) = diag

[
(200m)2 (20m/s2)

2
(200m)2 (20m/s2)

2

]
(2.73)

Finally, the initial bias parameter estimate of all the sensors are zero with initial bias

covariance

Σs(0 | 0) = diag

[
(20m)2 (1mrad)2

]
s = 1, 2 (2.74)

In the simulations, 100 Monte Carlo runs are used over 20 frames. The results of

the Root Mean Squared Error (RMSE) in logarithmic scale for offset bias estimates

are shown in Figures 2.7 and 2.8. From Figures 2.7 and 2.8, it can be seen that the

performance of the EXL method, which recovers the Kalman gain at the fusion center

by taking advantage of tracklet calculation, is very close to the accuracy of the EX

method. The small variations in the results are due to the fact that the logarithmic

4The EXL algorithm has the luxury of operating without the local Kalman gains.
5This is equivalent to the information matrix fusion method, which, for L = 1, is algebraically

equivalent to the Kalman filter (see [5, eq. (8.4.1-14)]).
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scale is used to show the convergence rates clearly.

The CPU time for one iteration of bias estimation for a single target is 4.84×10−4

s for the EX method and 6.02× 10−4 s for the EXL method, which represents a 20%

increase in CPU time for the Kalman gain reconstruction. The CPU time over all

iterations and targets for bias estimation with the above methods are 0.1526 and

0.1877 s, respectively. All simulations are done on a computer with Intel R⃝ Core
TM

i7-3720Qm 2.60GHz processor and 8GB RAM.
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Figure 2.7: RMSE of the bias parameter br for sensors 1 and 2 in logarithmic scale
(comparison between the previous (EX) and the proposed (EXL) algorithm)

5 10 15 20

10
0

10
1

Time k

R
M

S
E

 (
m

)

Sensor #1

5 10 15 20

10
0

10
1

Time k

R
M

S
E

 (
m

)

Sensor #2

 

 

5 10 15 20

10
−4

10
−3

10
−2

Time k

R
M

S
E

 (
ra

d)

Sensor #1

 

 

5 10 15 20

10
−4

10
−3

10
−2

Time k

R
M

S
E

 (
ra

d)

Sensor #2

 

 
EXL
EX

EXL
EX

Figure 2.8: RMSE of the bias parameter bθ for sensors 1 and 2 in logarithmic scale
(comparison between the previous (EX) and the proposed (EXL) algorithm))
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2.7.3 A five–sensor problem with nearly constant velocity

(NCV) Kalman filter as local tracker

In the second case, a scenario with five sensors with the same sixteen targets, L =

k − k′ = 10 and k = 1, ..., 100 is simulated. The motivation for using 100 time steps

is to have enough update steps to demonstrate the convergence results in terms of

RMSE. Here the Fused Bias Estimation Algorithm (FBEA, Figure 2.4) is used to

estimate the biases at the fusion center. The results of this simulation are shown in

Figure 2.9.

From Figure 2.9, it can be seen that the proposed algorithm works well in a

scenario with five sensors and with tracklet update at every L = 10 steps. Note that

the FBEA is using only a two-dimensional state space for the bias estimation step

for each sensor. For the same scenario, the previous EX algorithm would required

a ten dimensional state space model. At its core, FBEA is a recursive least square

(RLS) estimator. The computational complexity of RLS is of the order of O(n2),

where n is number of parameters to be estimated. With n = 10 in the simulation,

the computational complexity of the EX algorithm will be substantially higher.

To show the performance of the new algorithm in the fusion step, the results in

terms of RMSE of the local track estimates for a specific sensor (sensor 1) and the

fused estimates are presented in Figure 2.10 in logarithmic scale. To compare the

results, the RMSE values of the local tracks and fused tracks with no biases are also

included.

Figure 2.10 shows that the sequential fusion step used in the proposed bias estima-

tion algorithm (FBEA) is a viable solution to the fusion problem. Clearly, the RMSE

of the fused track with corrected measurements is between those of the local track
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and the fused track of measurements with no biases. This observation indicates that

the bias correction and fusion steps work well, which is another feature in the new

algorithm, as this correction is done at the fusion center and not at the local trackers.

In this case, there is no need for a feedback channel. This reduces the communication

requirements.

In order to further evaluate the performance of the proposed algorithm, one can

assume that all sensors have scaling and offset biases. Let the value of biases be

βs = [ 20m 1mrad 0.001 0.001 ]T (2.75)

The results in terms of the RMSE of the local track estimates for a specific sensor

(sensor 1) and the fused estimates are shown in Figure 2.11 in logarithmic scale.

Figure 2.11 shows that the proposed algorithm can handle offset and scaling biases

at the same time and fuse the corrected tracks in order to achieve better estimates of

the targets’ state.

2.7.4 A five–sensor problem with a two–NCV IMM as local

estimator

Previously, the noise levels of local tracker filters were assumed to be known. To

demonstrate how well the proposed algorithm works when this information is not

available, the IMM estimator is used in the next two examples as local tracker filters.

To start with, an IMM estimator with two nearly constant velocity (NCV) or DCWNA

Kalman filters with different noise intensities are used. The first filter uses qx = qy =

10m2

s3
while the second one uses qx = qy = 2m2

s3
as intensities in the east and north
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directions, respectively. Note that the noise intensity parameters qx and qy have

the same meaning as in [19], i.e., power spectral densities. To ensure accurate bias

estimation, parameters of the RLSBE algorithm should be changed to handle the

mismatch in the models between local trackers and fusion center which uses only

an NCV model for data processing. Although there is no systematic way to select

the intensities for the NCV model at the fusion center, q should be the value of the

higher intensity in each coordinate. Figure 2.12 shows the RMSE results for the bias

parameters that are estimated in the case of having NCV–NCV IMM estimators as

local trackers and only one NCV model at the fusion center with inflated intensity

level.

Figure 2.12 shows how well the bias estimation can be handled by EXL even

when it is not possible to recover the exact Kalman gains that are used the at local

trackers. The difference in convergence between the previous example (Figure 2.9)

and Figure 2.12 is negligible, which shows the effectiveness of the new algorithm in

different situations.

2.7.5 A five–sensor problem with nearly constant acceleration–

nearly constant velocity (NCA–NCV) IMM as local es-

timators

Next, we demonstrate the effectiveness of the new algorithm in recovering the Kalman

gain and estimating the biases and show how well the new algorithm works in the case

of mismatch in the models at the fusion center and local trackers. In this example it

is assumed that local trackers are using an IMM estimator with one nearly constant

acceleration (NCA) and one NCV Kalman filter with qx = qy = 10m2

s3
for the NCA
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model and qx = qy = 2m2

s3
for the NCV model. The issue in this case is that the

local trackers send only the combined output from the IMM estimator without any

information about the acceleration. Figure 2.13 shows the results on the scenario of

this subsection with qx = qy = 200m2

s3
at the fusion center.

Simulation results show convergence as in the previous examples (Figures 2.9 and

2.12). This demonstrates the robustness of the new algorithm even in the presence

of uncertainty about the local trackers.

2.7.6 Lower bound and convergence results

The calculation of the CRLB was discussed in Section 2.6. Three different exam-

ples are used to demonstrate the performance of the proposed algorithm with respect

to the CRLB. The first example is the scenario implemented in Subsection 2.7.3.

The comparison is between the square root of the diagonal elements of the CRLB

(
√

CRLB {[b]i}) , the square root of the diagonal elements of bias estimation covari-

ance matrix (
√
Σii) and the RMSE of the estimated biases.

Figure 2.14 shows that both
√
Σii and the RMSE follow the

√
CRLB {[b]i}. The

results for the examples in Subsections 2.7.4 and 2.7.5 are shown in Figure 2.15 and

Figure 2.16, respectively. These are approximately within the 95% probability region

around the CRLB [6]. Once again, the figures show that the estimation errors follow

the CRLB.

2.7.7 Consistency of bias estimation algorithms

In this section, a brief analysis of consistency of the proposed bias estimation al-

gorithms is given. The analysis is based on Normalized Estimation Error Squared
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Table 2.1: Offset bias br1related RMSE,
√

CRLB {[b]i} and
√
Σii at final time-step

for three different local filters
Kalman filter NCV–NCV NCA–NCV

RMSE 0.7621 1.002 1.105√
Σii 1.018 1.025 1.029√

CRLB {[b]i} 0.8795 0.9122 0.9350
Upper 95% confidence interval 1.055 1.106 1.220
Lower 95% confidence interval 0.7036 0.7666 0.7481

(NEES) [4]. First, the results for EXL algorithm are shown in Figure 2.17 for 100

Monte–Carlo runs. The bounds are for the 95% probability interval which shows that

the EXL algorithm is consistent at each time step.

To further examine the consistency of the proposed algorithm, the NEES for

FBEA are computed and shown in Figure 2.18 for three different types of local es-

timators, i.e., Kalman filter, NCV–NCV IMM and NCA–NCV IMM for 100 Monte–

Carlo runs. Here we used one–sided 95% probability interval. The results show that

FBEA is a pessimistic filtering approach. This is mostly due to the fact that the use

of the pseudo–measurement in a Kalman filter fashion is an approximation because

its error and the state prediction error at the fusion center are correlated because of

the common process noise.

Finally, in Tables 2.1 and 2.2 the RMSE,
√
CRLB {[b]i} and

√
Σii are compared

for both offset bias parameters at their last update for sensor 1. As can be seen from

Tables 2.1 and 2.2, both RMSE and
√
Σii are within the 95% confidence region of√

CRLB {[b]i}, which indicates that the parameter estimates are unbiased.
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Table 2.2: Offset bias bθ1related RMSE,
√

CRLB {[b]i} and
√
Σii at final time-step

for three different local filters
Kalman filter NCV–NCV NCA–NCV

RMSE 9.266× 10−5 7.950× 10−5 9.197× 10−5

√
Σii 9.322× 10−5 9.434× 10−5 9.198× 10−5√

CRLB {[b]i} 9.826× 10−5 9.714× 10−5 10.090× 10−5

Upper 95% confidence interval 11.79× 10−5 11.66× 10−5 12.10× 10−5

Lower 95% confidence interval 7.861× 10−5 7.771× 10−5 8.069× 10−5

2.8 Conclusions

In this paper, a new bias estimation algorithm that works with only the state estimates

and their associated covariance matrices from synchronized local trackers at varying

reporting rates was presented. The algorithm does not require the stacking of the

bias vectors of all the sensors together, which is a problem for previous algorithms

with a large number of sensors in the surveillance area. Also, the new algorithm

works without the local filter gains, which are not available at the fusion center in

practical systems. In addition, it gives a solution to the problem of joint fusion and

bias estimation. The results from simulations show that the algorithm works reliably

in different scenarios with various numbers of sensors. Furthermore, this algorithm

can work with low data rates between the sensors and the data fusion center. Finally,

the CRLB for multisensor–multitarget scenarios with bias estimation was presented

and the RMSE results matched well with the CRLB. This demonstrates the statistical

efficiency and the versatility of the new algorithm.
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Figure 2.9: RMSE of the bias parameter br (left column) and bθ (right column) for
all 5 sensors from sensor 1 (top) to sensor 5 (bottom) in logarithmic scale. Note that
residual bias RMSE is an order of magnitude below the measurement noise standard
deviations, i.e., it becomes negligible.
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Figure 2.10: RMSE of local track (sensor 1) and the output of the fusion algorithm
including offset biases for all sensors in logarithmic scale
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Figure 2.11: RMSE of local track (sensor 1) and the output of the fusion algorithm
including scaling and offset biases for all sensors in logarithmic scale
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Figure 2.12: RMSE of the bias parameter br (left column) and bθ (right column) for
all 5 sensors from sensor 1 (top) to sensor 5 (bottom) in logarithmic scale. The local
trackers use IMM estimators with NCV–NCV models.
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Figure 2.13: RMSE of the bias parameter br (left column) and bθ (right column) for
all 5 sensors from sensor 1 (top) to sensor 5 (bottom) in logarithmic scale. The local
trackers use IMM estimators with NCA–NCV models.
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Figure 2.14: Comparison between the square root of diagonal elements of CRLB
(
√

CRLB {[b]i}), square root of diagonal elements of the covariance matrix of bias
estimation algorithm (

√
Σii) and RMSE of the bias estimation for the case of 5 sensors

with Kalman filter as local trackers (only the results for the first sensor are shown).
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Figure 2.15: Comparison between the square root of diagonal elements of CRLB
(
√

CRLB {[b]i}), square root of diagonal elements of the covariance matrix of bias
estimation algorithm (

√
Σii) and RMSE of the bias estimation for the case of 5 sensors

with NCV–NCV IMM estimator as local trackers (only the results for the first sensor
are shown).
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Figure 2.16: Comparison between the square root of diagonal elements of CRLB
(
√

CRLB {[b]i}), square root of diagonal elements of the covariance matrix of bias
estimation algorithm (

√
Σii) and RMSE of the bias estimation for the case of 5 sensors

with NCA–NCV IMM estimator as local trackers (only the results for the first sensor
are shown).
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Figure 2.17: NEES for EXL algorithm with Kalman gain recovery instead of using
original Kalman gains.
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Figure 2.18: NEES for FBEA and three different local tracker estimators (Kalman
filter, NCV–NCV IMM and NCA–NCV IMM) for sensor 1 (top) to sensor 5 (bottom)
compared to the upper–bound of 95% probability interval.
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Appendix A

Derivation of the equivalent

measurement covariance (2.34)

Using the properties

E
[
ũs

(
k, k′

)
| Zk′s

]
= 0 (A.76)

E
[
ũs

(
k, k′

)
| Zks

]
̸= 0 (A.77)

and

E
[
x̃ (k | k) x̃

(
k | k′

)T | Zk′s
]

= E [E [[xs(k)− x̂s (k | k)][
xs(k)− x̂s (k | k) + x̂s (k | k)− x̂s

(
k | k′

)]T | Zks
]
| Zk′s

]
(A.78)

= E
[
E
[
[xs(k)− x̂s (k | k)] [xs(k)− x̂s (k | k)]T | Zks

]
| Zk′s

]
+E

E [
[xs(k)− x̂s (k | k)] | Zks

]
︸ ︷︷ ︸

=0

[
x̂s (k | k)− x̂s

(
k | k′

)]T | Zk′s


= Ps (k | k) (A.79)
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Us (k, k
′) can be expanded as

Us

(
k, k′

)
= E

[
ũs

(
k, k′

)
ũs

(
k, k′

)T | Zk′s
]

= AsPs (k | k)AT
s + [As − I]Ps

(
k | k′

)
[As − I]T

−AsPs (k | k) [As − I]T − [As − I]Ps (k | k)As

= [As − I]Ps

(
k | k′

)
[As − I]T −AsPs (k | k)AT

s +AsPs (k | k)

+Ps (k | k)AT
s

(A.80)

where the arguments of As(k, k
′) are dropped for clarity. By using the property

[As − I]Ps

(
k | k′

)
=

[
Ps

(
k | k′

) [
Ps

(
k | k′

)
−Ps (k | k)

]−1 − I
]
Ps

(
k | k′

)
= Ps

(
k | k′

) [[
Ps

(
k | k′

)
−Ps (k | k)

]−1 −Ps

(
k | k′

)−1
]
Ps

(
k | k′

)
= Ps

(
k | k′

) [
Ps

(
k | k′

)
−Ps (k | k)

]−1[
I −

[
Ps

(
k | k′

)
−Ps (k | k)

]
Ps

(
k | k′

)−1
]
Ps

(
k | k′

)
= As

[
I − I +Ps (k | k)Ps

(
k | k′

)−1
]
Ps

(
k | k′

)
= AsPs (k | k) (A.81)

Us (k, k
′) can be further simplified as

Us

(
k, k′

)
= AsPs (k | k) [As − I]T −AsPs (k | k)AT

s +AsPs (k | k) +Ps (k | k)AT
s

= AsPs (k | k)AT
s −AsPs (k | k)−AsPs (k | k)AT

s +AsPs (k | k)

+Ps (k | k)AT
s

= Ps (k | k)AT
s (A.82)
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which yields (2.34). Note that (A.81) and (A.82) are transpose of each other, but,

since Us (k, k
′) is symmetric, they are equal to each other.
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Chapter 3

Multisensor–Multitarget

Bearing–Only Sensor Registration

3.1 Abstract

Bearing–only estimation is one of the fundamental and challenging problems in target

tracking. As in the case of radar tracking, the presence of offset or position biases

can exacerbate the challenges in bearing–only estimation. Modeling various sensor

biases is not a trivial task and not much has been done in the literature specifically

for bearing–only tracking. This paper addresses the modeling of offset biases in

bearing–only sensors and the ensuing multitarget tracking with bias compensation.

Bias estimation is handled at the fusion node to which individual sensors report

their local tracks in the form of associated measurement reports (AMR) or angle-

only tracks. The modeling is based on a multisensor approach that can effectively

handle a time–varying number of targets in the surveillance region. The proposed
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algorithm leads to a maximum likelihood bias estimator. The corresponding Cramér–

Rao Lower Bound to quantify the theoretical accuracy that can be achieved by the

proposed method or any other algorithm is also derived. Finally, simulation results on

different distributed tracking scenarios are presented to demonstrate the capabilities

of the proposed approach. In order to show that the proposed method can work even

with false alarms and missed detections, simulation results on a centralized tracking

scenario where the local sensors send all their measurements (not AMRs or local

tracks) are also presented.

3.2 Introduction

Multisensor–multitarget bearing–only tracking is a challenging problem with many

applications [4, 5, 27, 13]. Some applications of bearing–only tracking are in maritime

surveillance using sonobuoys, underwater target tracking using sonar and passive

ground target tracking using Electronic Support Measures (ESM) or Infra–red Search

and Track (IRST) sensors. In such applications, it is of interest to find the target

position as well as any biases that may affect estimation performance. From the early

works in [1, 2, 36] to the more recent works in [29] and the references therein, the

focus has been only on tracking the targets based on measurements from a bearing–

only sensor. However, due to the limitations of single sensor bearing–only tracking,

i.e., due to the need for own–ship maneuvers for the observability of state parameters

[28], the issue of biases in passive single sensor tracking has not been addressed in

the literature. The main focus of this paper is multisensor bearing–only tracking

in the presence of biases. In multisensor bearing-only tracking, observability is no

longer a major issue. However, in the case of port–starboard ambiguity, the problem
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of observability was discussed in detail in [10]. Besides, the presence of sensor biases

that are often unaccounted for can degrade the estimation results significantly. Most

of the works on bias estimation have been about radar tracking (see [42, 43, 20]

and the references therein) or using other measurements besides bearing information

[6, 7]. For example, when the elevation information is available, one can estimate the

offset biases as in [7, 14].

With the objective of providing a combined bias estimation and target tracking

algorithm that is both theoretically sound and practical, the problem of multisensor

bearing-only multitarget tracking is considered in this paper. Having more than

one passive sensor in the surveillance region ensures the observability of the state

parameters, i.e., position and velocity of the target, without the need for maneuvers

[33, 44, 35]. One of the issues that can complicate bearing–only tracking is the bias in

the sensors. For example, in maritime surveillance using sonobuoys, which are usually

dropped from an aircraft or thrown from a ship close to an area of interest, the exact

locations of the sonobuoys are not known. This leads to position biases [25]. This is

also an isuue in modern systems such as autonomous underwater vehicles (AUV) [9].

In addition, the impact with the water surface and the waves can result in systemic

offset biases [6]. In wide area surveillance using airborne IRST sensors, uncertain

platform motion can contribute to biases as well. Offset bias can be modeled as an

additive constant term affecting the measurement equation and the sensor position

uncertainty can be modeled using a random walk [31].

Negligible biases can be treated as residual errors. This residual error can be

used in the form of additional uncertainty in the measurements later in the filtering

step. However, if offset biases are larger than the noise standard deviation of the
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bearing–only measurements, a mirror of the target’s bearing is sent to fusion center

instead of its actual value, which will result in totally erroneous estimates. Further,

these erroneous measurements can worsen state estimation results when fused with

measurements from similarly biased sensors. In order to benefit from the information

available from multiple bearing–only sensors with offset bias, one needs to model,

estimate and then correct the biases. This is precisely the motivation for this paper.

The focus of this paper is offset bias estimation. In order to model offset biases,

one can transform the measurement space of sensor data to Cartesian coordinates

followed by covariance matrix transformation. This transformation will make it pos-

sible to find an exact model for the biases that can be used in bias estimation and

correction. However, the full position information is not available in a single bearing–

only measurement. The process of measurement transformation is done by paring

measurements from different sensors in the surveillance region. That is, this trans-

formation is done through triangulation [21]. With the new pseudo–measurement

in Cartesian coordinates, position and velocity of the targets can be estimated over

time as new measurements are generated from paired sensors at subsequent times

[35, 19, 3, 24]. Assuming that these state estimates also carry the effects of offset

biases, it is possible to find such biases, if any, and correct them. In the case of

bistatic passive sensors, one can use the methods in [44, 37]. However, previous work

on multisensor bearing–only bias estimation is still limited. The method presented

here gives a comprehensive analysis of offset bias modeling in multisensor passive

bearing–only sensors.

The proposed method gives an exact model for bearing–only biases in Cartesian

coordinates. In addition, the formulation of an appropriate likelihood function enables
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the use of maximum likelihood estimators to find the biases. Also, the proposed model

is robust against large sensor noise standard deviation. Finally, as shown through

simulation results, large bearing biases can be estimated accurately, which leads to

correspondingly accurate target state estimation results.

The goal of this paper is to present a step–by–step approach for designing a

multisensor–multitarget tracking system based on biased bearing–only measurements

and give a practical solution to the problem of bias estimation. In Section 3.3, a

detailed model of the multisensor bearing–only estimation problem with bias is given.

Section 3.4 is devoted to modeling the offset biases in Cartesian coordinates. In

Section 3.5, a practical solution for bias estimation is proposed. Section 3.6 presents

the derivation of Cramér–Rao lower bounds. Simulation results are shown in Section

3.7 along with discussions on different scenarios. Finally, Section 3.8 ends the paper

with conclusions.

3.3 Bearing–Only Estimation Problem

Bearing–only sensors with operating ranges of hundreds of meters to a few kilometers

are one of the most crucial sensors in maritime or ground surveillance applications.

These sensors can actively or passively detect the directions of arrival of signals emit-

ted by the targets of interest. While underwater surveillance is the common applica-

tion of bearing–only tracking, it is also used in surface and air target tracking. For

example, ESM and IRST sensors also use bearing–only sensors for tracking. As shown

in Figure 3.1, bearing–only sensors can be on the own–ship or deployed separately

in the surveillance region. Moreover, they can operate under different environmental

conditions as shown in Figure 3.1 [8, 26].
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Figure 3.1: Bearing–only sensors and signal propagation types [26]

The bearing–only measurement from passive sensors is written as

zs(k) = θs(k) + bs + ws(k), (3.1)

where zs(k) is the direction of arrival at sensor s, θs is the true bearing of the target, bs

is the constant bias in the measurements of sensor s and ws is an additive zero–mean

white Gaussian noise with variance σ2
θ . It is assumed that there are S bearing–only

sensors in the surveillance region at positions (xs, ys) for s = 1, 2, ..., S, and, they

record targets’ bearings at time instants k = 1, ..., K. Note that there is no index to

denote target ID, but wherever such clarification is needed, it will be included.

In this paper, bias estimation is handled at the fusion node to which individual

sensors report their local tracks in the form of associated measurement reports (AMR)

[46, 16] or angle-only tracks. That is, a distributed tracking system is considered as

in the case of [31, 32, 42]. However, the difference is that in these earlier works local

full-state tracks were sent to the fusion node for bias estimation whereas AMRs or
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bearing-only tracks are sent in the present case where the local sensors do not have

full observability due to bearing-only measurements. As in [31, 32, 42], working with

tracks or AMRs obviates the need at the fusion center to address false alarms and

missed detections that are inevitable at the local sensors although ghost tracks may be

present among local tracks. However, in order to show that the proposed method can

work even with false alarms and missed detections in a centralized tracking system,

in one experiment in Section 3.7 we assume that the local sensors send all their

measurements (including false alarms and missed detections instead of AMRs or local

bearing-only tracks) and evaluate the performance of the proposed method. In [37]

and [44], where bias estimation at measurement level (rather than at track level as in

[31, 32, 42]) is considered, false alarms and missed detections are not addressed at all.

In [30], a joint data association and bias estimation method was proposed for linear

measurement models, which is not applicable for bearing-only systems. A general

case of multistatic passive radar system with false alarms and missed detections was

considered in [17] and [15], but, the bias problem was not addressed.

The goal of bearing–only tracking is to find the bias in each sensor and estimate

each target’s position as accurately as possible based on the model given in (3.1),

either as decoupled parameters or jointly [11, 45]. Due to the computational burdens

of joint tracking and parameter estimation methods [22], a decoupled bias and state

estimation is presented in this paper.

It is assumed that each target is following the Discretized Continuous White Noise

Acceleration (DCWNA) or the nearly constant velocity (NCV) model [5]. As a result,
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a target’s state vector in 2D Cartesian coordinate is given by

x (k) =

[
x(k) vx(k) y(k) vy(k)

]T
(3.2)

with (x(k), y(k)) being the position and (vx(k), vy(k)) being the velocity. The motion

model can further be defined as

x (k + 1) = F (k)x (k) + ν(k) (3.3)

where the state transition matrix is

F (k) ,



1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1


(3.4)

and the covariance matrix of ν(k) which is an additive zero–mean white Gaussian

noise vector is

Q =

 Qx 0

0 Qy

 (3.5)
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in which Qx and Qy are defined as

Qx =

 1
3
T 3 1

2
T 2

1
2
T 2 T

 q̄x (3.6)

Qy =

 1
3
T 3 1

2
T 2

1
2
T 2 T

 q̄y (3.7)

where q̄x and q̄y are noise intensities with dimension m2/s3 [4].

In order to transform the measurements from polar to Cartesian coordinates, it

is initially assumed that S is even and that the sensors are paired into S
2
one–to–one

pairs. Note that this constraint is relaxed in Section 3.5. For a pair of sensors with

a single target in the common field of view, the best estimate for the location of the

target, independent of its previous location, can be obtained through triangulation

[14, 38, 21]. The triangulated estimates of the target position at time k using sensor

pair (i, j), ignoring measurement noise, are given by

x̂ij(k) =
yj − yi + xi tan (θi(k) + bi)

tan (θi(k) + bi)− tan (θj(k) + bj)

− xj tan (θj(k) + bj)

tan (θi(k) + bi)− tan (θj(k) + bj)
(3.8)

ŷij(k) =
yj tan (θi(k) + bi)− yi tan (θj(k) + bj)

tan (θi(k) + bi)− tan (θj(k) + bj)

+
(xi − xj) tan (θi(k) + bi) tan (θj(k) + bj)

tan (θi(k) + bi)− tan (θj(k) + bj)
(3.9)

where x̂ij(k) and ŷij(k) are the X and Y Cartesian estimates, respectively.
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In addition, by defining the stacked covariance matrix in the bearing–only coor-

dinate for the stacked measurement

[
θi(k) θj(k)

]T
as

Rij(k) =

 σ2
θi(k)

0

0 σ2
θj(k)

 (3.10)

one can calculate the covariance matrix of the transformed vector

[
xij(k) yij(k)

]T
as

Rxy
ij (k) =

(
J(k)T (Rij(k))

−1 J(k)
)−1

(3.11)

where J(k) is the Jacobian matrix with respect to

[
xij(k) yij(k)

]T
and

J(k) =

[
Ji(k) Jj(k)

]T
(3.12)

Further, the elements of J(k) can be written as

Ji(k) =

[
− (yij(k)− yi)

(xij(k)− xi)
2 + (yij(k)− yi)

2 ,
(xij(k)− xi)

(xij(k)− xi)
2 + (yij(k)− yi)

2

]
(3.13)

and

Jj(k) =

[
− (yij(k)− yj)

(xij(k)− xj)
2 + (yij(k)− yj)

2 ,
(xij(k)− xj)

(xij(k)− xj)
2 + (yij(k)− yj)

2

]
(3.14)
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If no bias estimation is needed, these pseudo–measurements in Cartesian coordinates

can be used in a Kalman filter with their associated covariance matrices to recursively

estimate the target’s position [12].

3.4 Bias Modeling in Cartesian Coordinates

As discussed in Section 3.3, bearing–only biases are in the form of the additive

constants. Although additive constant biases have already been dealt with in the

case of radar measurements [42] and [43], it is not possible to generate similar

pseudo–measurements with bearing–only data directly. One way to formulate pseudo–

measurements with biases is to model in Cartesian coordinates. In this section, a

step–by–step procedure to model the biases and to separate them from original track

positions in Cartesian coordinates is given. In Section 3.5, the pseudo–measurement

generation is discussed in detail.

In Section 3.3, the process of mapping from bearing–only measurements to Carte-

sian was given. In order to model the biases, one can start with separating the bias

terms in (3.8) and (3.9) from the original track position in Cartesian coordinates.

This separation of bias terms provides the necessary information to create a pseudo–

measurement that properly addresses the biases as in the case of radar measurements.

Once the pseudo–measurements are generated, it is possible to estimate the biases

and remove them. The process of finding the bias terms that contribute to (3.8) and

(3.9) starts with expanding the tan (·) function as

tan (α + β) =
tan (α) + tan (β)

1− tan (α) tan (β)
(3.15)
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Applying (3.15) to (3.8) and (3.9), and separating the terms related to the bias from

those related to the target position will give a new set of equations to define the

position of the target in Cartesian coordinates. To make the parameter separation

easier to follow, the common terms are defined and named first. For the common

terms in x̂ij(k) and ŷij(k), one can define

D = tan (θi(k))− tan (θj(k)) (3.16)

B = 1 + tan (θi(k)) tan (θj(k)) (3.17)

Further, define the following for the terms in x̂ij(k):

Dx = xi tan (θi(k))− xj tan (θj(k)) + (yj − yi) (3.18)

Bi
x = − (yj − yi) tan (θi(k)) + xj tan (θi(k)) tan (θj(k)) + xi (3.19)

Bj
x = − (yj − yi) tan (θj(k))− xi tan (θi(k)) tan (θj(k)) + xj (3.20)

Bij
x = xj tan (θi(k))− xi tan (θj(k)) + (yj − yi) tan (θi(k)) tan (θj(k)) (3.21)

Similarly, for the terms in ŷij(k), define

Dy = yj tan (θi(k))− yi tan (θj(k)) + (xj − xi) tan (θi(k)) tan (θj(k)) (3.22)

Bi
y = (xj − xi) tan (θj(k)) + yi tan (θi(k)) tan (θj(k)) + yj (3.23)

Bj
y = (xj − xi) tan (θi(k))− yj tan (θi(k)) tan (θj(k))− yi (3.24)

Bij
y = yi tan (θi(k))− yj tan (θj(k)) + (xj − xi) (3.25)

With these factorizations, bias terms can be separated from the target state values
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in Cartesian coordinates. It can be seen that the vector

[
x̂ij(k) ŷij(k)

]T
can be

written as1  x̂ij(k)

ŷij(k)

 =

 xuij(k) + βx (θi(k), θj(k), bi, bj)

yuij(k) + βy (θi(k), θj(k), bi, bj)


(3.26)

where

xuij(k) =
Dx

D
(3.27)

yuij(k) =
Dy

D
(3.28)

and the bias terms can be written in as

βx (θi(k), θj(k), bi, bj) =
Bi
x tan (bi) +Bj

x tan (bj) +Bij
x tan (bi) tan (bj)

D +D tan (bi) +B tan (bj) +D tan (bi) tan (bj)

− DxB tan (bi)−DxB tan (bj) +DxD tan (bi) tan (bj)

D2 +BD tan (bi)−BD tan (bj) +D2 tan (bi) tan (bj)

(3.29)

βy (θi(k), θj(k), bi, bj) =
Bi
y tan (bi) +Bj

y tan (bj) +Bij
y tan (bi) tan (bj)

D +D tan (bi) + B tan (bj) +D tan (bi) tan (bj)

− DyB tan (bi)−DyB tan (bj) +DyD tan (bi) tan (bj)

D2 +BD tan (bi)−BD tan (bj) +D2 tan (bi) tan (bj)

(3.30)

1The superscript “u” indicates that the parameter is unbiased.
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Note that in the above formulations it is assumed that the biases and the true bearings

are available. In practice, only the noisy or estimated values are available. Assuming

small values for the bias and noise terms, one can use the above formulation without

significant loss in accuracy. Similar assumptions has been made in the previous works

on bias estimation [42, 31, 32]. A technical discussion on the range of bias and noise

values for which the above formulation is valid is given in Section 3.7.

3.5 Bearing–Only Tracking and Registration

Bearing–only sensor registration is a challenging problem in target tracking that has

been addressed in [41, 34, 37]. In order to find the biases and correct the measure-

ments, one should first look into the observability of the bias variables. Note that in

(3.26), provided that the target is not on the line that connects the two sensors used

in the triangulation or in the vicinity of one of the sensors, the state parameters are

observable [4]. In addition, if there are two pairs of sensors tracking the same target,

the biases become observable as it is shown in 3.5.1. To estimate the biases decou-

pled from the state vector, a pseudo–measurement that can address the bias vector

directly must be defined. In this section, a new formulation is proposed to create a

pseudo–measurement that can be used for bias estimation with bearing–only data.

The key requirement of this method in order to ensure observability of all parameters

is to have at least two sensor pairs in the surveillance region. In the following, two

practical scenarios that can be expanded to a more general formulation to handle

varying number of sensors and targets are discussed in detail.
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3.5.1 Pseudo–measurement of bearing–only measurements

To handle practical bearing–only scenarios, two different cases are analyzed here. In

each case, a separate pseudo–measurement model is proposed along with its associated

covariance matrix. The main idea is to use two different position approximations to

create a pseudo–measurement as discussed below.

Four–sensor (or any even number of sensors) case

Assuming that there are two pairs of sensors in the surveillance region, a vector of

nonlinear pseudo–measurements can be defined by subtracting the target positions

based on the pairs (i, j) and (m,n) as

zb(k) =

 x̂ij(k)− x̂mn(k)

ŷij(k)− ŷmn(k)

+ w(k) (3.31)

where w(k) is the additive zero–mean white Gaussian noise associated with the

pseudo–measurement and its covariance matrix is defined as

Rw(k) = Rxy
ij (k) +Rxy

mn(k) (3.32)

Using the fact that in the absence of bias and noise terms, measurements from any

two sensors point to the same target location regardless of the sensor locations, the

pseudo–measurement zb(k) can be written as

zb(k) =

 βx (bi, bj)− βx (bm, bn)

βy (bi, bj)− βx (bm, bn)

+ w(k) (3.33)
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for two uncorrelated pairs of sensors. This can be applied to any even number of

sensors.

Three–sensor (or any odd number of sensors) case

In this case, one must create two position approximations from triangulation to be

able to create a pseudo–measurement for biases. Since there are only three sensors,

the possible pairs are (i, j) and (i,m). Then, the pseudo–measurement can be ap-

proximated by

zb(k) =

 x̂ij(k)− x̂im(k)

ŷij(k)− ŷim(k)

+ w(k) (3.34)

where w(k) is approximately additive zero–mean white Gaussian noise associated

with the pseudo–measurement and its covariance matrix is defined as

Rw(k) = Rxy
ij (k) +Rxy

im(k) (3.35)

Because of the correlation between the two tracks from three sensors in Cartesian

coordinates, the noise is not white anymore and this formulation is only an approxi-

mation.

As in the case for four sensors, the pseudo–measurement zb(k) can be written as

zb(k) =

 βx (bi, bj)− βx (bi, bm)

βy (bi, bj)− βx (bi, bm)

+ w(k) (3.36)

Note that for simplicity, the arguments θi(k), θj(k), θm(k) and θn(k) have been
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dropped from (3.33) and (3.36). With an arbitrary odd number of sensors, one sensor

need to be paired with two other, resulting in in a similar approximation. As for the

more general case of n arbitrary sensors, methods similar to [42] can be adopted to

handle the situation.

3.5.2 Batch maximum–likelihood estimator

To apply a batch estimator for bias estimation, one needs to form a likelihood function.

Following (3.35) and (3.33), and assuming that the noise is white, zero–mean and

Gaussian, the likelihood function of the bias parameters given two pairs of sensors is

p (zb(k) | b) =
1

2π |Rw(k)|−
1
2

exp

(
−1

2

[
zb(k)− h(b)T

]
(Rw(k))

−1 [zb(k)− h(b)]
)

(3.37)

where the nonlinear function h(b) of the bias vector is given by

h(b) =

 βx (bi, bj)− βx (bm, bn)

βy (bi, bj)− βx (bm, bn)

 (3.38)

Assuming independence over time, one can write the likelihood function over k =

1, ..., K as

p (Zb | b) =
K∏
k=1

p (zb(k) | b) (3.39)
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where

Zb = {zb(1), zb(2), . . . , zb(K)} (3.40)

Finally, the vector b̂ that maximizes the likelihood function can be written as

b̂ = arg max
b

p (Zb | b) (3.41)

The above assumes that there is only one target, but it can be extended to the

multitarget case using the stacked parameter estimator.

3.6 Cramér–Rao Lower bound for Bearing only

bias estimation

This section is devoted to the calculation of the Cramér–Rao Lower Bound (CRLB)

on the estimation accuracy of bias parameters by using the pseudo–measurements

introduced in Subsection 3.5.1. Note that based on (3.38), the measurement equation

for target t at time k is

htb(k) =

 βtx (bi, bj)− βtx (bm, bn)

βty (bi, bj)− βtx (bm, bn)

+ wt(k) (3.42)

Assuming that there are N targets in the surveillance region and that the bias pa-

rameters are constant over time k = 1, ...K, the stacked measurement vector can be
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written as

Z = h(b) +w (3.43)

where

Z =

[
z1b (1)

T · · · zNb (1)
T · · · z1b (K)T · · · zNb (K)T

]T
(3.44)

h(b) =

[
h1b(1)

T · · · hNb (1)
T · · · h1b(K)T · · · hNb (K)T

]T
(3.45)

w =

[
w1(1)T · · · wN(1)T · · · w1(K)T · · · wN(K)T

]T
(3.46)

Further, the covariance matrix of the noise vector w is

R = diag

([
R1(1) · · · RN(1) · · · R1(K) · · · RN(K)

])
(3.47)

The covariance matrix of an unbiased estimator b̂ is bounded from below by [4]

E
{(

b̂− b
)(

b̂− b
)T

}
≥ J−1 (3.48)

where J is the Fisher Information Matrix (FIM) given by

J = E
{
[∇b log p(Y | b)] [∇b log p(Y | b)]T

}
|b=b̃

= E
{
[∇bλ] [∇bλ]

T
}
|b=b̃ (3.49)

in which b̃ is the true value of the bias vector b, p(Z | b) is the likelihood function of

b, λ = − ln p(Y | b) and ∇ is gradient operator. Based on the model for the stacked
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measurement vector in (3.43), one can define the Jacobian matrix of htb(k) evaluated

at the true value b [39] as

H̃ t
b(k) =

[
▽bh

t
b(k)

T
]T

(3.50)

Then, defining

H̃b =

[
H̃1

b(1)
T · · · H̃N

b (1)T · · · H̃1
b(K)T · · · H̃N

b (K)T
]T

(3.51)

one can write

J = E
{
H̃T

bR
−1H̃b

}
(3.52)

3.7 Simulation Results

To evaluate how the proposed method performs in practical scenarios, a series of

simulations is presented in this section. The implementation details on bias estima-

tion, filtering and fusion are also discussed. Simulation results on different scenarios

are given with discussions on the advantages and disadvantages of the proposed bias

estimator.

3.7.1 Motion models and measurement generation

A tracking scenario with four bearing–only sensors and sixteen targets is considered as

shown in Figure 3.2. It is assumed that all sensors are synchronized and that the bias

ranges are between −0.05 rad and 0.05 rad. The standard deviation of measurement
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noise is σθ = 0.0261 rad = 1.5◦ for target bearing measurements, which is higher than

what was previously assumed in the literature [6]. The true motion of the targets is

0 0.5 1 1.5 2

x 10
4

−2000

0

2000

4000

6000
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10000
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y 
(m

)

 

 

Target locations
Sensor locations

Figure 3.2: Initial locations of the targets and sensors

modeled using the DCWNA or the NCV model [4] with qx = qy = 0.001m2/s3. In the

local trackers, DCWNA and Continuous Wiener Process Acceleration (CWPA) are

used with qx = qy = 0.1m2/s3 to create different scenarios for the simulation. In all

scenarios, the sampling time is T = 1s. To validate the proposed bias model and to

quantify its performance at different bias values, the biases are set to both positive

and negative values in different ranges as follows:

btest1 =

[
0.04 rad −0.02 rad 0.03 rad −0.02 rad

]T
(3.53)

btest2 =

[
−0.04 rad −0.02 rad −0.03 rad −0.02 rad

]T
(3.54)

btest3 =

[
0.04 rad 0.02 rad 0.03 rad 0.02 rad

]T
(3.55)
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Table 3.1: Parameter settings for the Genetic Algorithm
Parameter Value

Lower bound −0.05 rad
Upper bound 0.05 rad

Number of generations 100
Tolerance value 1× 10−15

3.7.2 Bias estimation and the Genetic Algorithm

In this paper, the Genetic Algorithm (GA) [18] is used to solve the optimization

problem in (3.41). The Genetic Algorithm is an efficient optimization algorithm for

highly nonlinear objective functions [40] that is widely used in different applications

[18]. Note that although the GA is a batch ML estimator, the length of the window

can be varied depending on user criteria to meet the real–time requirements. The

parameters used in the simulations are shown in Table 3.1. The algorithms were

implemented on a computer with Intel R⃝ Core
TM

i7-3720Qm 2.60GHz processor and

8GB RAM.

3.7.3 Bias estimation: Four–sensor distributed problem

In this scenario, all four sensors defined earlier are used to implement the GA. Four

out of sixteen targets are used for performance evaluation. AMRs or local bearing–

only tracks are collected over 100 time steps and the GA is applied to the whole data

in batch mode. The GA is run with the settings in Table 3.1 and the final results

are gathered after the termination of the GA. Then, the estimated bias vector is used

over 100 Monte Carlo runs to calculate the Root Mean Square Error (RMSE) for

comparison. As the benchmark, the CRLB is also calculated based on the derivations

in Section 3.6. The RMSE values and
√

CRLB {[b]i} of the ML estimates with the
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Table 3.2: Comparison of
√

CRLB {[b]i} and RMSE of GA output for bias estimation
of btest1 in a distributed system

Bias parameter
√

CRLB {[b]i} (rad) RMSE (rad) of the GA bias estimate

bi 0.071× 10−3 3.32× 10−3

bj 0.071× 10−3 3.28× 10−3

bm 0.537× 10−3 3.92× 10−3

bn 0.462× 10−3 1.45× 10−3

Table 3.3: Comparison of
√
CRLB {[b]i} and RMSE of the GA output for bias esti-

mation of btest2 in a distributed system

Bias parameter
√

CRLB {[b]i} (rad) RMSE (rad) of the GA bias estimate

bi 0.0904× 10−3 1.72× 10−3

bj 0.0941× 10−3 1.81× 10−3

bm 0.4243× 10−3 2.95× 10−3

bn 0.3787× 10−3 1.73× 10−3

three different sets of bias parameters are shown in Tables 3.2, 3.3 and 3.4.

Although there is a difference between the RMSE and
√

CRLB {[b]i}, the RMSE

results are nearly an order of magnitude smaller than the bias values, which indi-

cates that any correction made based on the estimated biases will result in better

position estimates. Note that the CRLB in bearing–only tracking problems can be

overly optimistic and may even approach zero (i.e., perfect estimates) in a network

of bearing–only sensors [23]. Thus, the difference between the theoretical CRLB and

Table 3.4: Comparison of
√

CRLB {[b]i} and RMSE of GA output for bias estimation
of btest3 in a distributed system

Bias parameter
√

CRLB {[b]i} (rad) RMSE (rad) of the GA bias estimate

bi 0.0973× 10−3 2.73× 10−3

bj 0.0954× 10−3 3.75× 10−3

bm 0.5347× 10−3 2.43× 10−3

bn 0.4880× 10−3 2.66× 10−3
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the empirical RMSE is not of major concern.

To show how much the proposed bias estimation method can help in correcting

the target tracks, another simulation is conducted. In this simulation, it is assumed

that the tracker has access to the final estimated bias vector (output of the GA) and

then a Kalman filter is run with the bias estimates in hand. To use the estimated

bias parameters, one should, first, correct the bearing–only measurements with the

estimated values. The correction must be done both in the measurement vector and

its associated covariance matrix. Since the estimated biases do not have the covariance

information, a scaled version of the the calculated CRLB of the bias parameters is

used instead. The scaling factor can be determined through experiments. Then, the

tracker can be run with these corrected measurements to find the position and velocity

estimates of all targets in the surveillance region. The position RMSE of the original

tracks before correction, the RMSE of the corrected estimates and the Cramér–Rao

lower bounds are shown in Figures 3.3 and 3.4.

As shown in Figures 3.3 and 3.4, for case 1, Figures 3.5 and 3.6 for case 2 and

Figures 3.7 and 3.8 for case 3, the position error is reduced significantly in terms of

the position RMSE. This demonstrates the effectiveness of the bias model proposed

and the ML estimation algorithm, i.e., the GA, that is applied to the data. Although,

according to the results, the correction factor varies based on the sensor–target orien-

tation, the corrected track and its associated covariance do follow the bias–free values

accurately, which demonstrates the capability of the proposed algorithm in estimat-

ing the biases. To process a batch of data with K = 100, the computational time is

44.1s in MATLAB.
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Figure 3.3: Position RMSE with distributed tracking for corrected and original tracks
of target 2 (set 1)
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Figure 3.4: Position RMSE with distributed tracking for corrected and original tracks
of target 3 (set 1)
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Figure 3.5: Position RMSE with distributed tracking for corrected and original tracks
of target 2 (set 2)
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Figure 3.6: Position RMSE with distributed tracking for corrected and original tracks
of target 3 (set 2)
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Figure 3.7: Position RMSE with distributed tracking for corrected and original tracks
of target 2 (set 3)
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Figure 3.8: Position RMSE with distributed tracking for corrected and original tracks
of target 3 (set 3)
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3.7.4 Bias estimation: Three–sensor distributed problem

To show the accuracy of bias estimation when there are only three sensors in the

surveillance region, the same Genetic Algorithm is used to solve the ML problem in

(3.41). The primary issue with three sensors is that one of them, here sensor i, is used

to pair with both sensors j and m. This leads to correlation between the two tracks

over time. Assuming that the correlation is negligible, the same method is applied to

estimate the biases. Further, for the case of three sensors, the bias values are set to

btest =

[
0.04 rad 0.02 rad 0.03 rad

]T
(3.56)

to be able to distinguish between the original and corrected tracks. The constraints

on the lower and upper bounds of the optimization algorithm are set to −0.05 rad

and 0.05 rad, respectively. The tolerance value for the GA is also set to 1 × 10−15.

Figures 3.9 and 3.10 show the result for position estimates in Cartesian coordinates.

The corrected tracks are sill better in terms of RMSE, which means that the

estimated biases are accurate enough in spite of the correlation.

3.7.5 Real–time window–based Genetic Algorithm

It is important for the proposed method to be able to work in real–time. For this

purpose, the GA can be set to run, in each iteration, for a specific window size or

duration. The settings of the GA for real time scenarios are given in Table 3.5.

The final estimates and the population matrix in one window can be used as the

initial conditions for the next window. Thus, the estimates of the biases can be used

to correct the measurements at the end of processing each window of data. The
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Figure 3.9: Position RMSE of corrected and original tracks for the three–sensor dis-
tributed tracking case (Target 2)
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Figure 3.10: Position RMSE of corrected and original tracks for the three–sensor
distributed tracking case (Target 3)
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Table 3.5: Parameter settings for real time genetic algorithm
Parameter name Value

Lower bound −0.05 rad
Upper bound 0.05 rad

Number of generations 50
Tolerance value 1× 10−15

Window size 10

results of the simulations using this approach for the case of four sensors (test 1) are

given in Figures 3.11 and 3.12.

20 40 60 80 100
10

1

10
2

10
3

Po
si

tio
n 

R
M

SE
 (

m
)

Time Step k

 

 
RMSEOriginal

RMSECorrected
RMSEBiasfree
√

ΣOriginal
√

ΣCorrected
√

ΣBiasfree

Figure 3.11: Position RMSE for corrected and original tracks for the four–sensor
distributed tracking case and window size of 10 (Target 2)

As shown in Figures 3.11 and 3.12, the GA is still able to find the biases with a

smaller window size and fewer generations. Note that updating the biases with smaller

window sizes enables the use of methods similar to [43, 42] for arbitrary number of

sensors in the surveillance region. With this setting, biases can be updated every

9.25 s in MATLAB. This simple example shows that even when the processing time
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Figure 3.12: Position RMSE for corrected and original tracks for the four–sensor
distributed tracking case and window size of 10 (Target 3)

is a crucial parameter in the design, one can still handle bias estimation in real–time

using the proposed method.

3.7.6 Bias estimation with false measurements: Four–sensor

centralized problem

To demonstrate how the proposed method performs in the presence of false alarms

and missed associations in a centralized fusion framework where local sensors send all

their measurements instead of AMRs or bearing–only tracks, a simulation is presented

in this section. The probability mass function of the number of false alarms or clutter

points in surveillance volume V as a function of their spatial density λ is defined as

µFA (m) = e−λV
(λV )m

m!
(3.57)
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where m is the number of false alarms [5]. With bearing–only measurements, the

volume is V = 2π (rad). It is assumed that the average number of false alarms per

unit volume in a scan, i.e., λ, is 0.5. Also, it is assumed that PD = 0.7 for each

sensor. Note that in this centralized case, the local sensors send all measurements

(rather than AMRs or local bearing–only tracks) to the fusion node. Because the

proposed method is a batch estimator and uses measurements from both sensor pairs

to create a pseudo–measurement for bias estimation, false tracks are often removed

prior to generating the pseudo–measurement vector, which then is sent to the bias

estimator. Typically, false tracks do not exist for more than a few time steps as they

are dependent on all four sensors creating false alarms at the same time steps, in the

same region, and for a reasonably long interval of time.

To show the accuracy of bias estimation in a centralized system, the same Ge-

netic Algorithm is used to solve the ML problem in (3.41). The RMSE values and√
CRLB {[b]i} of the ML estimates with the bias parameters as defined in (3.53)

are shown in Table 3.6. Note that the CRLB values are optimistic because they do

not factor in the false alarms or the missed detections and that the ML estimator

does not factor in the false alarms or the missed detections explicitly. A comprehen-

sive centralized bias estimator is under development. The focus of this paper is the

decentralized one.

Table 3.6: Comparison of CRLB and GA output for bias estimation of btest1with
measurement origin uncertainty in a centralized system (λ = 0.5 and PD = 0.7)

Bias parameter CRLB GA bias estimate

bi 0.2123× 10−3 7.419× 10−3

bj 0.2123× 10−3 12.85× 10−3

bm 0.7674× 10−3 6.143× 10−3

bn 0.5779× 10−3 4.352× 10−3
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3.8 Conclusions

In this paper, a new mathematical model for bearing–only bias estimation in dis-

tributed tracking systems was proposed. This model was based on triangulation

using the associated measurement reports or local bearing–only tracks from different

sensor pairs. It was shown that the proposed bias model has the advantage of being

practical in scenarios with multiple sensors. In particular, the proposed algorithm is

effective when the sensor noise level and bias values are high. In addition, previously

proposed algorithms were dependent on target–sensor maneuvers and/or limited to

certain noise levels. The new bias model can handle any type of target–sensor mo-

tion and it is effective against 5◦ of offset bias in each sensor and uncertainty levels

up to 1.5◦ of noise standard deviation, which is higher than what was assumed in

the literature previously. Also, the proposed method can handle false alarms and

missed detections in a centralized architecture. That is, the proposed algorithm is

practical in scenarios with realistic sensor parameter values. Finally, a batch ML

estimator was proposed to solve the bias estimation problem along with simulation

results. A comprehensive centralized bias estimation algorithm with data association

for bearing–only sensors is in progress.
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Chapter 4

Geo–registration and Geo–location

Using Two Airborne Video Sensors

4.1 Abstract

Geo–registration and geo–location of data collected by video sensors such as electro–

optical and infrared cameras are two fundamental steps in the airborne surveillance of

ground targets. With the availability of high resolution imaging sensors and detailed

mapping or terrain data sources, video data plays an increasingly important role in

modern surveillance platforms like unmanned aerial vehicles and airborne, ground or

maritime surveillance systems. Surveillance systems without any compensation for

the inevitable sensor registration errors, i.e., biases, may make geo–location erroneous

and renders the surveillance platform less effective for precision targeting. This paper

deals with the modeling of sensor biases in geo–location and proposes a method

to estimate them. The proposed method leads to a minimization problem with a

nonlinear cost function. Detailed derivation of the bias model is given along with
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an algorithm to find the bias parameters. The achievable lower–bounds for debiased

geo–location are provided and simulations are used to demonstrate the validity of the

proposed method.

4.2 Introduction

The process of assessing a target’s location in world coordinates [10], i.e., geo–location,

has many real–world applications. Airborne surveillance platforms, e.g., unmanned

aerial vehicles (UAV), are commonly used to locate ground or maritime targets. Such

platforms are used for mapping, intelligence gathering and reconnaissance [4, 21,

13, 25]. The effectiveness of these tasks depends on the accuracy of the location

estimates of ground–based objects. These systems use aerial images from one or

more video sensors mounted on one or more airborne platforms to find the locations

of the targets of interest. Some of the algorithms used in airborne video surveillance

solve a localization problem with imaging data from a stationary platform, e.g., a

blimp or rotorcraft [6, 29]. Gimbaled cameras on–board a small, fixed–wing UAV are

commonly used to locate ground targets and determine their locations in the world

or inertial frame [2]. Tracking in world frame of reference facilitates the tracking of

multiple targets distributed over a large area using sensors that are widely separated.

Most previous works in the literature on target geo–location involve unmanned

ground vehicles and controlled laboratory settings [29, 23] or stationary air vehicles

[6, 29]. In order to have a precise geo–location of a target, geo–registration must also

be addressed. Geo–registration corresponds to identifying systematic errors in the

measurements and removing them from the measurements for further processing to

improve geo–location. Geo–registration methods that use pre–existing geo–referenced
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imagery for geo–registration are proposed in [14, 15]. In [18], cross-modality of mul-

tiple images is used fro geo–registration. In [2], a minimum variance approach is used

to address the problem of geo–registration. Creating a geo–referenced mosaic from

aerial videos is considered in [24] with rather stringent assumptions such as highly

accurate Inertial Measurement Unit (IMU) data.

In this paper, the geo–registration problem is addressed in a systematic manner

similar to those approaches typically used in radar and bearing–only sensor regis-

tration [26, 27]. Starting with target geo–location, a matrix based formulation is

proposed in this paper to derive a novel geo–registration algorithm. Although similar

matrix based formulations were attempted in [2, 8, 11, 30] for geo–location, neither

the problem of geo–registration was not addressed and no particular model was given

for the source of the error in geo–registration. That is, biases contributing to the

errors in geo–location were not addressed properly. The primary focus of this paper

is to explicitly model the biases and decouple them from the (ideal) bias–free geo–

location model in a scenario with two video sensors that surveil common targets in

their respective fields of view.

To model the biases, first, a mathematical representation of target geo–location is

provided to incorporate the effect of bias parameters. Next, using some approxima-

tions that are valid in real scenarios, the biases are decoupled from the true target geo–

location. This is a crucial step in estimating biases from geo–registration. Unless the

biases are decoupled from other parameters, a stacked vector consisting of target geo–

location parameters and bias must be considered, which increases computational com-

plexity. After decoupling, the next step is to create a pseudo–measurement to combine
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the information from the two video sensors and reconstruct the biases. Using the in-

formation from the common targets in both image planes, a new pseudo–measurement

that is mathematically sound and practically implementable is proposed. The pro-

posed method can estimate the biases directly from pseudo–measurements without

the need to estimate the parameters in the geo–location formulation. The new method

is more efficient in the sense that it estimates the actual values of the biases in a de-

coupled manner rather than minimizing the error in the final target geo–location in a

stacked vector formulation. The decoupled formulation is also more computationally

efficient.

The proposed approach provides a comprehensive geo–registration and geo–location

solution with all the details necessary to implement it in a real airborne surveillance

system. Further, through various simulations, it is shown that the proposed method

can handle large biases regardless of bias parameter intensity. Moreover, the debi-

ased geo–locations obtained with the proposed method are shown to be as good as

bias–free target geo–locations in terms of distance errors.

The paper is organized as follows: The problem of target geo–location for a single

target is defined in Section 4.3 along with discussions on different coordinate frames

that are used in the paper. Section 4.4 is devoted to modeling the biases and de-

coupling from target geo–location. In Section 4.5, a new method is proposed for

geo–registration based on the models given in Section 4.4. Simulation results are

presented in Section 4.6. Conclusions are discussed in Section 4.7.
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4.3 Basics of Geo–location

To locate a target in world coordinates (i.e., to geo–locate) and to estimate and correct

the biases (i.e., to geo–register), one needs to transform the pixels on the image plane

to positions in world coordinates and vice versa. The approach presented in [2]

is discussed in detail as the necessary background to propose the geo–registration

method. Starting with a discussion on the orientation of an airborne platform, this

section is devoted to defining the transformations used in the formulation of the new

geo–location algorithm.

4.3.1 Coordinate Systems

Assuming that the position of the airborne platform is defined as

[
xUAV yUAV zUAV

]T
in inertial frame (XI , YI , ZI), in which XI points to the North, YI points to the East,

and ZI points to the center of the earth, other related coordinates can be defined as

follows and are shown in Figures 4.1 and 4.2:

Figure 4.1: Lateral view of coordinate frames [2]
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Figure 4.2: Longitudinal view of coordinate frames [2]

• Vehicle frame (Xv, Yv, Zv): originates at the platform’s center of mass with

the same orientation as the inertial frame.

• Body frame (Xb, Yb, Zb): originates at the platform’s center of mass with Xb

directed toward the nose, Yb directed out the right wing and Zb directed towards

the body of the platform.

• Gimbal frame (Xg, Yg, Zg): originates at the gimbal’s rotation center with

Xg pointing along the optical axis, Zg pointing down in image plane and Yg

pointing right in the image plane.

• Camera frame (Xc, Yc, Zc): originates at the camera’s optical center with Xc

pointing up in the image, Yc pointing right in the image plane and Zc being

directed along the optical axis.
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4.3.2 Homogeneous Transformation

To address translational and rotational transformations from one frame to another,

a unified mathematical framework is needed. Translational transformation [1] can be

described by a homogeneous transformation matrix H as

H =



1 0 0 a

0 1 0 b

0 0 1 c

0 0 0 1


(4.1)

so that the final transformed vector v, which is a translational displacement of vector

q by a distance vector d, is obtained as

v =



1 0 0 a

0 1 0 b

0 0 1 c

0 0 0 1





x

y

z

1


=



x+ a

y + b

z + c

1


(4.2)

where q =

[
x y z 1

]T
and d =

[
a b c

]
. To define the rotational displace-

ment in a right–handed rectangular coordinate frame, one can split the transformation

into R(x, α), R(y, β) and R(z, γ), where R(·, ·) is a homogeneous transformation. Fur-

ther, the first argument of R(·, ·) refers to the axis while the second one refers to the

angle of rotation around the axis in the first argument, respectively (see Figure 4.3).

Defining the matrices such that the first three rows of the transformation matrix

correspond to x, y and z axes of the reference frame, respectively, and that the
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ݔ ݕ

ݖ ܴሺݖǡ ሻߛ
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ߚ
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ݕ

Figure 4.3: Rotational transformations

first three columns refer to x′, y′ and z′ axes of the rotated frame, respectively, the

transformation matrices can be defined as

R(x, α) =



cos (0) cos
(
π
2

)
cos

(
π
2

)
0

cos
(
π
2

)
cos (α) cos

(
π
2
+ α

)
0

cos
(
π
2

)
cos

(
π
2
− α

)
cos (α) 0

0 0 0 1



=



1 0 0 0

0 cos (α) − sin (α) 0

0 sin (α) cos (α) 0

0 0 0 1


(4.3)
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R(y, β) =



cos (β) 0 sin (β) 0

0 1 0 0

− sin (β) 0 cos (β) 0

0 0 0 1


(4.4)

and

R(z, γ) =



cos (γ) − sin (γ) 0 0

sin (γ) cos (γ) 0 0

0 0 1 0

0 0 0 1


(4.5)

Finally, one can write the transformation matrix T ji as

T ji =

 Rj
i −dji

0 1

 (4.6)

where 0 ∈ R3 is a row vector of zeros, dji is the displacement vector resolved in the

jth coordinate and

Rj
i = Rj

i (x, α)R
j
i (y, β)R

j
i (z, γ) (4.7)

where Rj
i (·, ·) is the 3× 3 upper–left matrix in R(·, ·). The inverse transformation is
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then given by

T ij
△
=

(
T ji

)−1
=

 (
Rj
i

)T (
Rj
i

)T
dji

0 1

 (4.8)

Now that a well–defined transformation is in hand, one can write the frame to

frame transformations as follows:

Inertial to vehicle frame transformation

The transformation from the inertial frame to the vehicle frame is only a translational

one from the origin of the inertial frame to the new frame of the vehicle. Thus, T vI

can be defined as

T vI =

 I3×3 −dvI

0 1

 (4.9)

where In×n is an n by n identity matrix and

dvI =

[
xp yp −hp

]T
(4.10)

Note that xp and yp represent the North and East location of the platform that

come from a Global Positioning System (GPS) [19] sensor on the vehicle, and hp is

the platform’s altitude that can be measured by a barometric pressure sensor or an

altimeter radar. Note that GPS and altitude measurements are perturbed by sensor

noise.
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Vehicle to body frame transformation

Since the origins of the vehicle frame and body frame are the same, this is only a ro-

tational transformation based on the measured Euler angles. Representing platform’s

roll, pitch and heading angles as ϕ, θ and ψ, respectively, the vehicle to body frame

transformation can be defined as

T bv =

 Rb
v 0

0 1

 (4.11)

where

Rb
v =


cos(θ) cos(ψ) cos(θ) sin(ψ)

sin(ϕ) sin(θ) cos(ψ)− cos(ϕ) sin(ψ) sin(ϕ) sin(θ) sin(ψ) + cos(ϕ) cos(ψ)

cos(ϕ) sin(θ) cos(ψ) + sin(ϕ) sin(ψ) cos(ϕ) sin(θ) sin(ψ)− sin(ϕ) cos(ψ)

− sin(θ)

sin(ϕ) cos(θ)

cos(ϕ)cos(θ)

 (4.12)

The Euler angles can be estimated by a two–stage Kalman filter [9, 2] using rate gyros

for the propagation model and accelerometers for the measurement update.

Body to gimbal frame transformation

In order to go from body to gimbal frame, both translational and rotational dis-

placements should be considered. The translational displacement, which is resolved

in gimbal frame, is dependent on the location of the platform’s center of mass with

respect to gimbal’s rotation center and is denoted by dgb . The rotational displacement
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is denoted by Rg
b . To model Rg

b correctly, the azimuth and elevation measurements of

the camera are needed. Let αaz denote the azimuth angle of the rotation about Zg,

and αel the elevation angle of rotation about Yg after the former rotation of αel. The

transformation is given by

T gb =

 Rg
b −dgb

0 1

 (4.13)

where

Rg
b = Rg

b (y, αel)R
g
b (x, αaz)

=


cos(αel) 0 sin(αel)

0 1 0

− sin(αel) 0 cos(αel)




cos(αaz) sin(αaz) 0

− sin(αaz) cos(αaz) 0

0 0 1



=


cos(αel) cos(αaz) cos(αel) sin(αaz) sin(αel)

− sin(αel) cos(αaz) 0

− sin(αel) cos(αaz) − sin(αel) sin(αaz) cos(αel)

 (4.14)

Gimbal to camera frame transformation

Going from gimbal to camera frame depends on the translational displacement dcg,

which describes the location of the gimbal’s rotation center relative to the camera’s

optical center and is resolved in the camera’s coordinate frame. Moreover, the trans-

formation is dependent on rotational displacement Rc
g, which aligns the camera’s

coordinate frame with that of the gimbal. Note that in the coordinate frames intro-

duced in Section 4.3.1, Xc = −Zg and Zc = Xg. As result, the transformation can be
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defined as

T cg =

 Rc
g −dcg

0 1

 (4.15)

where

Rc
g =


0 0 −1

0 1 0

1 0 0

 (4.16)

4.3.3 Camera model

To better understand how a camera works in the framework given in this work,

a simple camera projection model is shown in Figure 4.4, where the origin of the

coordinate frame (Xc, Yc, Zc) is set at the camera center with elements measure in

meters. Furthermore, the frame (Xim, Yim, Zc − f) which its units are in meters, is

set at the image plane center. Finally, the frame (Xip, Yip) which is a coordinate in

pixel unit, has its origin at the upper–left hand corner of the image.

ܺ௖

௖ܻ
ܼ௖

௜ܺ௣ ௜ܻ௣௜ܺ௠

௜ܻ௠

ݍ୭ୠ୨௖݌
݂ܱ
ߣ

Figure 4.4: Camera image plane and its associated parameters [2]
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Starting with defining point q =

[
xip yip 1 1

]T
as the homogeneous projec-

tion of point pcobj =

[
px py pz 1

]T
onto the image plane in pixels, one can go

from pixels to meters in the image plane as [28]

xim = (−yip +Oy)Sy (4.17)

yim = (xip −Ox)Sx (4.18)

where the units of the pairs (xip, yip) and (xim, yim) are pixels and meters, respectively.

The offsets to the center of the frame are measured by Ox and Oy for x and y,

respectively and, Sx and Sy denote the corresponding conversion factors from pixels

to meters, respectively. Using the similar triangles in Figure 4.4, the relationship

between pcobj and (xim, yim) is given by

xim
f

=
px
pz

(4.19)

yim
f

=
py
pz

(4.20)

where f is the focal length of the camera. The relationship between pcobj and q in

(Xc, Yc, Zc) and (Xip, Yip) frames is given by

Λq = Cpcobj (4.21)
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where the calibration matrix C is

C =



0 fx Ox 0

−fy 0 Oy 0

0 0 1 0

0 0 0 1


(4.22)

and matrix Λ is defined as

Λ =

 λI3×3 0

0 1

 (4.23)

while the remainder of the parameters in (4.22) and (4.23) are defined as

fx
△
=

f

Sx
(4.24)

fy
△
=

f

Sy
(4.25)

λ
△
= pz (4.26)

4.3.4 Image depth

To use (4.21) and calculate the geo–location of the target, a method to calculate the

image depth λ which refers to the distance along the camera’s optical axis to the

object of interest in the image was suggested in [17] and [2]. Note that a similar

technique can be derived if terrain data is available to the user. In the case of having

a non–flat earth, target’s latitude and longitude can be obtained using the algorithm

in [30, 8]. By using the latitude and longitude of the target, target altitude can be
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calculated using the terrain data. Then, platform’s altitude above target can be found

and image depth can be obtained using this information. Note that if terrain data is

not available, the length of target can be used to obtain the platform’s altitude above

target [31].

Figure 4.5: Camera image plane and related parameters (Xip, Yip)

Assume pcc is the location of the camera’s optical center. Further, if pcc is resolved

in the camera frame, one has

pccc =

[
0 0 0 1

]T
(4.27)

Thus, resolving pccc in the inertial frame gives

pIcc =



xIcc

yIcc

zIcc

1


=

(
T cgT

g
b T

b
vT

v
I

)−1



0

0

0

1


(4.28)
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Based on flat earth model and the assumption of using homogeneous transformations

(Figure 4.5), qIobj and p
I
cc are related by their z–components as

0 = zIcc + λ
(
zIobj − zIcc

)
(4.29)

In the case of using high–altitude airborne platforms or satellite SAR imagery [16],

one should consider the standards related to modeling curvature of the earth such

as WGS–84 [32]. Note that from Figures 4.4 and 4.5, based on the homogeneous

transformation assumption, the projection of
(
qIobj − pIcc

)
onto

(
−ZI ,

(
XI , Y I

))
plane

is equal to the unit vector.

4.3.5 Target location

In the final step of transforming a point on the image plane to its real location on

the inertial frame (geo–location), one can write

Λq = Cpcobj = CT cgT
g
b T

b
vT

v
I p

I
obj (4.30)

Solving (4.30) for pIobj gives

pIobj =
(
CT cgT

g
b T

b
vT

v
I

)−1
Λq

= T Iv T
v
b T

b
gT

g
c C

−1Λq (4.31)

In a more computationally efficient form, (4.31) can be written as

p̄Iobj = p̄Icc + λ
(
q̄Iobj − p̄Icc

)
(4.32)
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where p̄ represents the first three elements of p.

With above equations, it is possible to estimate the geo–location of the desired

target if the user receives telemetry information from the platform. However, this

is only possible when there is no noise or bias in measuring the parameters such as

the Euler angles and gimbal azimuth and elevation. This paper primarily focuses

on estimating the constant biases in azimuth and elevation of the platform and on

correcting them in the original measurements to be able to locate the targets more

accurately.

4.4 Bias Modeling of Video Sensor Measurements

Zero–mean noise and constant biases can result from sensor noise and geometric un-

certainties. As discussed in [2], Recursive Least Square (RLS) methods can effectively

remove the zero–mean noise. However, biases cannot be removed with RLS methods.

As such, a separate algorithm must be adopted to estimate and correct the effect of

biases in platform measurements.

According to (4.31), the bias parameters vector is given by

b =

[
ᾱaz ᾱel ϕ̄ θ̄ ψ̄ z̄

]T
(4.33)

where ᾱaz, ᾱel, ϕ̄, θ̄, ψ̄, and z̄ are the biases associated with the measurements of

gimbal azimuth, gimbal elevation, roll, pitch, yaw and altitude, respectively.

For the airborne platform model given in this paper, the center of mass and

the gimbal center are located close to each other. Thus, according to Figure 4.1,

the rotation axes for heading, denoted as ψ, and gimbal azimuth angle, denoted as
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αaz, are closely aligned. This alignment between these two parameters makes the

related biases numerically indistinguishable. Assuming that the platform’s path is

in circular shape, the gimbal azimuth angle will be close to 90◦, which makes the

airframe roll axis and the gimbal elevation axis to be nearly aligned. This makes

the biases in ϕ and αel almost indistinguishable. It is worth noting that even when

the flight path is not circular, if the body pitch angle is close to zero, biases in roll

and heading measurements are indistinguishable from biases in gimbal elevation and

azimuth measurement, respectively [2]. Therefore, the bias vector under consideration

can be reduced to

b =

[
ᾱaz ᾱel

]T
(4.34)

To find the above remaining biases, i.e., biases in gimbal azimuth and elevation, with

the assumption of having two platforms looking with overlapping fields of view, a

novel approach is depicted here to decouple the biases from target geo–location as

it is discussed in this section. Starting with the geo–location of a target and the

assumption of having biases in gimbal elevation and azimuth only, one has

pIobj = (T vI )
−1 (T bv)−1

(T gb )
−1 (T cg )−1

C−1Λq

= (T vI )
−1 (T bv)−1 (

T gb,free + T gb,bias
)−1 (

T cg
)−1

C−1Λq (4.35)

where

T gb = T gb,free + T gb,bias (4.36)
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in which T gb,free is the transformation without any contribution from the biases and

T gb,bias is the transformation with contribution only from gimbal azimuth and elevation

biases. Because of the nonlinearity in the contribution of biases in T gb , approxima-

tions must be made in decoupling T gb,free and T gb,bias. Starting from the rotational

transformation from body to gimbal

Rg
b =


cos(αel + ᾱel) cos(αaz + ᾱaz) cos(αel + ᾱel) sin(αaz + ᾱaz)

− sin(αel + ᾱel) cos(αaz + ᾱaz)

− sin(αel + ᾱel) cos(αaz + ᾱaz) − sin(αel + ᾱel) sin(αaz + ᾱaz)

sin(αel + ᾱel)

0

cos(αel + ᾱel)

 (4.37)

one can further expand each term in Rg
b as

Rg
b(1, 1) = sin(αel) sin(αaz) sin(ᾱel) sin(ᾱaz) + cos(αel) cos(αaz) cos(ᾱel) cos(ᾱaz)

− sin(αel) cos(αaz) sin(ᾱel) cos(ᾱaz)− cos(αel) sin(αaz) cos(ᾱel) sin(ᾱaz)

(4.38)

Rg
b(1, 2) = cos(αel) cos(αaz) cos(ᾱel) sin(ᾱaz)− sin(αel) cos(αaz) sin(ᾱel) sin(ᾱaz)

+ cos(αel) sin(αaz) cos(ᾱel) cos(ᾱaz)− sin(αel) sin(αaz) sin(ᾱel) cos(ᾱaz)

(4.39)
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Rg
b(1, 3) = cos(αel) sin(ᾱel) + sin(αel) cos(ᾱel) (4.40)

Rg
b(2, 1) = − cos(αel) sin(ᾱel)− sin(αel) cos(ᾱel) (4.41)

Rg
b(2, 2) = cos(αaz) cos(ᾱaz)− sin(αaz) sin(ᾱaz) (4.42)

Rg
b(3, 1) = − cos(αel) cos(αaz) sin(ᾱel) cos(ᾱaz) + cos(αel) sin(αaz) sin(ᾱel) sin(ᾱaz)

− sin(αel) cos(αaz) cos(ᾱel) cos(ᾱaz) + sin(αel) sin(αaz) cos(ᾱel) sin(ᾱaz)

(4.43)

Rg
b(3, 2) = − cos(αel) cos(αaz) sin(ᾱel) sin(ᾱaz)− cos(αel) sin(αaz) sin(ᾱel) cos(ᾱaz)

− sin(αel) cos(αaz) cos(ᾱel) sin(ᾱaz)− sin(αel) sin(αaz) cos(ᾱel) cos(ᾱaz)

(4.44)

and

Rg
b(3, 3) = cos(αel) cos(ᾱel)− sin(αel) sin(ᾱel) (4.45)

Here, some approximations are applied to (4.38)–(4.45). Assuming the biases in

gimbal azimuth and elevation are distributed near zero, one can apply the following
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approximation:

sin(ᾱel) sin(ᾱaz) ≈ 0 (4.46)

cos(ᾱel) cos(ᾱaz) ≈ 1 (4.47)

cos(ᾱel) ≈ 1 (4.48)

cos(ᾱaz) ≈ 1 (4.49)

With the approximations given in (4.46)–(4.49), one can rewrite the terms in Rg
b as

Rg
b(1, 1) ≈ (cos(αel) cos(αaz))

+ (− sin(αel) cos(αaz) sin(ᾱel)− cos(αel) sin(αaz) sin(ᾱaz)) (4.50)

Rg
b(1, 2) ≈ (cos(αel) sin(αaz))

+ (cos(αel) cos(αaz) sin(ᾱaz)− sin(αel) sin(αaz) sin(ᾱel)) (4.51)

Rg
b(1, 3) ≈ (sin(αel)) + (cos(αel) sin(ᾱel)) (4.52)

Rg
b(2, 1) ≈ (− sin(αel)) + (− cos(αel) sin(ᾱel)) (4.53)

Rg
b(2, 2) ≈ (cos(αaz)) + (− sin(αaz) sin(ᾱaz)) (4.54)
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Rg
b(3, 1) ≈ (− sin(αel) cos(αaz))

+ (− cos(αel) cos(αaz) sin(ᾱel) + sin(αel) sin(αaz) sin(ᾱaz)) (4.55)

Rg
b(3, 2) ≈ (− sin(αel) sin(αaz))

+ (− cos(αel) sin(αaz) sin(ᾱel)− sin(αel) cos(αaz) sin(ᾱaz)) (4.56)

and

Rg
b(3, 3) ≈ (cos(αel)) + (− sin(αel) sin(ᾱel)) (4.57)

In (4.50)–(4.57), the first expression inside the parentheses quantifies the contribution

of T gb,free while that inside the second parentheses quantifies the contribution of T gb,bias,

respectively. Thus, the contribution of the biases can be decoupled from bias–free

part as

Rg
b = Rg

b,free +Rg
b,bias (4.58)

Using (4.58), one can reform the transformation matrix T gb as

T gb =

 Rg
b,free −dgb

0 1

+

 Rg
b,bias (0)T

0 0

 (4.59)

Assuming
(
T gb,free + T gb,bias

)
and T gb,free are both invertible and T gb,bias has rank 0 < r < 4,
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if one let

T gb,bias = T gb,bias,1 + · · ·+ T gb,bias,r (4.60)

where T gb,bias,i has rank 1, and each of

D−1
k+1 = D−1

k − gkD
−1
k T gb,bias,kD

−1
k (4.61)

is non singular, then by starting with D1 = T gb,free, one has [12]

(
T gb,free + T gb,bias

)−1
= D−1

r − grD
−1
r T gb,bias,rD

−1
r (4.62)

where

gk =
1

1 + trace
(
D−1
k T gb,bias,k

) (4.63)

Finally, the decoupled geo–location measurement can be written as

pIobj = (T vI )
−1 (T bv)−1 (

D−1
r − grD

−1
r T gb,bias,rD

−1
r

) (
T cg

)−1
C−1Λq

=
[
(T vI )

−1 (T bv)−1 (
D−1
r

) (
T cg

)−1
C−1Λq

]
−
[
(T vI )

−1 (T bv)−1 (
grD

−1
r T gb,bias,rD

−1
r

) (
T cg

)−1
C−1Λq

]
(4.64)

in which the first term in the brackets on the right–hand side is solely the contribution

from the bias–free measurements and the rest is a function of gimbal elevation and

azimuth biases. This gives the opportunity to propose a method to only estimate the

biases and then use it to correct the measurement.
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4.5 Geo–registration of Two Video Sensors

Starting with the geo–location of multiple targets at one time instant or a single

target over a period of time from two video sensors, one can write

pIobj,i =
(
CiT

c
g,iT

g
b,iT

b
v,iT

v
I,i

)−1
Λiqi i = 1, 2 (4.65)

where extra index i is for video sensor number. If both video sensors point to the

same targets in a single frame or a specific target over a period of time, one can,

derive a pseudo–measurement that can address the effect of biases as

zb(k) = pIobj,1(k)− pIobj,2(k) (4.66)

where

zb(k) =
(
T vI,2

)−1 (
T bv,2

)−1 (
gr,2D

−1
r,2T

g
b,bias,r,2D

−1
r,2

) (
T cg,2

)−1
C−1

2 Λ2q2

−
(
T vI,1

)−1 (
T bv,1

)−1 (
gr,1D

−1
r,1T

g
b,bias,r,1D

−1
r,1

) (
T cg,1

)−1
C−1

1 Λ1q1 (4.67)

in which the contribution of the zero–mean noises are neglected and time index is

omitted for simplicity.

To estimate the biases, one needs to form a cost function for a batch estimator. By

neglecting the covariance of the pseudo–measurements due to its severe non–linearity,

the Euclidean norm can be used to form a cost function as

Zb(k) = ∥ zb(k)− h(k,b) ∥ (4.68)
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where

h(k,b) = pIobj,1(k, ᾱaz, ᾱel)− pIobj,2(k, ᾱaz, ᾱel) (4.69)

The Euclidean norm is a non–negative cost function with O (K) that is widely used

as a model fit problem to non–linear functions to adjust the desired parameters, here

b, so that the model fits the pseudo–measurement [3, 5, 22].

Assuming that there are k = 1, ..., K independent measurements, the cost function

can be modified as

Zb =
K∑
k=1

Zb(k) (4.70)

Finally, the vector b̂ that minimizes the function Zb can be written as

b̂ = arg min
b

Zb (4.71)

4.6 Simulation Results

To evaluate the performance of the proposed method, a series of simulations are

presented in this section. The targets in the fields of view of the two sensors are on

the surface of the Earth (inertial frame) and measurements corresponding to video

detections are generated assuming that the center of the target is detected by an

image processing algorithm. Results on real data are not possible since video data

from multiple airborne platforms are not available in the open literature. Note that

the proposed approach can be applied to multiple frames from one target over a
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certain amount of time.

The assumption here is that residual errors and biases are present in all the pa-

rameters in addition to gimbal elevation and azimuth. Although the biases in the

Euler angles and altitude are not observable, including them makes the simulations

more realistic. The cameras’ intrinsic parameters, their extrinsic parameters and as-

sociated noise standard deviations are given in Tables 4.1, 4.2 and 4.3, respectively.

Table 4.1: The camera’s intrinsic parameters
Parameter Camera 1 Camera 2

fx 548 548
fy 556 556
Ox 316.4 520
Oy 223.0 498

Table 4.2: The camera’s extrinsic parameters
Parameter Camera 1 Camera 2

xUAV −50m 100m
yUAV −100m 25m
hUAV 350m 350m
θ 4◦ 3◦

ψ 2◦ 3◦

ϕ 3◦ 3◦

αaz 81◦ 79◦

αel 85◦ 82◦

dgb(x) 0.05m 0.05m
dgb(y) 0.05m 0.05m
dgb(z) 0.02m 0.02m
dcg(x) 0.01m 0.01m

dcg(y) −0.01m −0.01m

dcg(z) −0.05m −0.05m

For the unobservable biases, that are related to the Euler angles, it is assumed
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Table 4.3: The camera parameters’ standard deviations
Standard deviation Camera 1 Camera 2

σxUAV
2m 2m

σyUAV
2m 2m

σhUAV
2m 2m

σθ 0.1◦ 0.1◦

σψ 0.1◦ 0.1◦

σϕ 0.1◦ 0.1◦

σαaz 1◦ 1◦

σαel
1◦ 1◦

that the bias in each parameter is 0.5◦ for both sensors. The bias in the altitude

measurement, z̄, is omitted in the simulations. It is worth noting that however in the

simulations it is assumed that cameras are mounted on two different platforms, the

proposed method is not constrained to this setting and same results can be found by

mounting both cameras on a single platform.

There are four parameters that need to be estimated with the proposed method,

namely,

b =

[
ᾱaz,1 ᾱel,1 ᾱaz,2 ᾱel,2

]
(4.72)

where the second indices correspond the sensor number. To evaluate the performance

of the proposed method, a wide range of values (eight sets) for b, as listed in Table 4.4,

are used in the simulations. First, an optimization algorithm is applied to solve (4.71)

for eight sets of parameter given in Table 4.4 over 100 Monte Carlo runs. Further, the

Root Mean Squared Errors (RMSE) are calculated for the bias parameter estimates

to show how accurate the estimation is based on the models given in Section 4.5.

In this paper, the Genetic Algorithm (GA) [7, 20] is used to solve the optimization
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Table 4.4: Test sets for gimbal azimuth and elevation biases
Test set ᾱaz,1 ᾱel,1 ᾱaz,2 ᾱel,2

1 −2◦ 4.5◦ 2◦ −3◦

2 −3◦ −3◦ −3◦ −3◦

3 3◦ 3◦ 3◦ 3◦

4 0◦ 0◦ 0◦ 0◦

5 4◦ 0◦ 0◦ 0◦

6 0◦ 4◦ 0◦ 0◦

7 0◦ 0◦ 4◦ 0◦

8 0◦ 0◦ 0◦ 4◦

Table 4.5: Parameters for the Genetic Algorithm
Parameter Value

Lower bound −5◦

Upper bound 5◦

Number of generations 100
Tolerance value 1× 10−15

problem in (4.71). Note that, although the GA is a batch ML estimator, the length

of the window can be varied to meet the real–time requirements. The parameters

used in the simulations are given in Table 4.5.

The RMSE of the estimated biases for the eight test sets are given in Table 4.6.

Table 4.6: RMSE of gimbal azimuth and elevation bias estimates
Test set RMSEᾱaz,1 RMSEᾱel,1

RMSEᾱaz,2 RMSEᾱel,2

1 0.32◦ 0.71◦ 0.24◦ 0.50◦

2 0.81◦ 0.72◦ 0.62◦ 0.62◦

3 0.76◦ 0.67◦ 0.51◦ 0.66◦

4 0.71◦ 0.63◦ 0.56◦ 0.52◦

5 0.73◦ 0.94◦ 0.67◦ 0.89◦

6 0.48◦ 0.76◦ 0.33◦ 0.72◦

7 0.99◦ 0.65◦ 0.65◦ 0.56◦

8 0.98◦ 0.74◦ 0.73◦ 0.67◦

As the numbers in Table 4.6 suggest, for a wide range of biases in gimbal azimuth
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and elevation, the proposed method can estimate the parameters accurately. To

demonstrate the significance of the proposed method and its ability to handle bias

estimation, the estimated biases are used to correct the target geo–location. Then, the

corrected (debiased) target geo–locations are compared with the biased geo–locations

as well as the absolute lower bound that can be achieved, i.e., the geo–location with

the perfect knowledge of gimbal azimuth and elevation biases but not that of the

Euler angle biases. Figures 4.6 and 4.7 show the geo–location errors for test sets 1

and 2 for biased, debiased and ideal bias–free measurements.
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Figure 4.6: RMSE of geo–location estimates of common targets in test set 1 (Ci:
Camera i)

Figures 4.6 and 4.7 show the improvement in target geo–location that can be

achieved by debiasing. It is worth noting that, the debiased geo–locations match the

ideal bias–free geo–locations and do not have the large ripples in RMSE that are

observed when biased geo–locations are used. The results show significant advantage

of using debiased target geo–locations obtained using the proposed method over biased
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Figure 4.7: RMSE of geo–location estimates of common targets in test set 2 (Ci:
Camera i)

ones. The advantage will be even more significant when debiased measurements from

multiple sensors are used.

Finally, to better understand the effects of correction in all the test sets, the

average RMSE for all the common targets are shown in Tables 4.7 and 4.8 for biased,

debiased and ideal bias–free geo–locations. Tables 4.7 and 4.8 show that for all

common targets on the image plane, the results of the debiased geo–location estimates

are similar to the idea bias–free ones in terms of RMSE, which indicates bias correction

has a positive and significant effect on the final geo–location estimates.

4.7 Conclusions

Modeling of biases in data collected from video sensors, especially those on airborne

platforms, and compensating them is crucial for accurate geo–location. In this paper,
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Table 4.7: Average RMSE of biased, udebiased and bias–free geo–location estimates
for Camera 1

Test sets Biased Debiased Bias–free

1 33.50m 11.39m 9.20m
2 20.82m 9.82m 9.13m
3 24.45m 10.10m 8.98m
4 9.21m 10.58m 9.36m
5 14.32m 10.35m 9.52m
6 30.16m 11.42m 9.15m
7 9.31m 11.10m 9.03m
8 8.86m 11.05m 8.82m

Table 4.8: Average RMSE of biased, udebiased and bias–free geo–location estimates
for Camera 2

Test sets Biased Debaised Bias–free

1 17.01m 11.84m 10.21m
2 25.27m 10.26m 10.25m
3 33.74m 10.25m 10.16m
4 10.33m 10.79m 10.25m
5 10.27m 10.78m 10.18m
6 10.20m 12.34m 10.33m
7 20.26m 10.91m 10.51m
8 20.17m 11.12m 10.23m
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a comprehensive algorithm for modeling the biases in the Euler angles, altitude,

and gimbal azimuth and elevation and removing them was presented. Further, the

effects of gimbal azimuth and elevation biases was discussed along with the modeling

and decoupling of the biases from geo–location formulation for two video sensors.

A minimization problem was used to estimate the biases for practical scenarios in

Section 4.6 and the results were compared with ideal bias–free results to demonstrate

the accuracy of the proposed method. The nature of the presented algorithms lends

itself for computationally efficient parallel implementations using graphics processing

units (GPU).
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Chapter 5

Conclusion

5.1 Research Summary

5.1.1 List of contributions

The contributions of this thesis are listed as follows:

1. Developing a computationally efficient multisensor–multitarget bias estimation

algorithm for radar measurements.

2. Developing a method that can handle large network of sensors as well as com-

munication loss with different rates by the use of tracklet methodology.

3. Mathematically formulating the pseudo–measurement for biases in bearing–only

sensors and designing a batch estimator to estimate the biases.

4. Calculating the CRLB for both radar and bearing–only bias estimation algo-

rithms.
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5. Formulating a multisensor video registration problem.

6. Formulating the decoupled bias effect for video sensor geo–location report and

calculating the pseudo–measurement that addresses the biases directly.

7. Developing an algorithm to solve the unknown parameters in the geo–registration

measurements.

8. Delivering object–oriented code, with proper design for further research and

industrial developments.

5.2 Future Research

There are few open problems that can be considered for future research as extension

to the work that has been done in this thesis. Most related to the articles presented

here, motion compensation and tracking for ships can be considered as the next step.

Furthermore, there are two interesting problem that were raised in geo–registration

of video sensors. First, calculation of covariance matrix for the geo–location esti-

mates can be considered as a separate topic. Only after calculating the covariance

matrix can once design an optimal estimator based on the biased measurements.

Finally, computational aspects of implementing the geo–registration algorithm that

was proposed in Chapter 4 can be investigated in more detail with an aim for parallel

implementation.
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