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Abstract 
The objectives of this thesis were the validation of G4STORK to use it for the 

investigation of the SCWR lattice cell. MCNP6 was chosen as the program that the 

methodology of G4STORK would be validated against. Over multiple steps, the 

methodology of G4STORK was matched to that of MCNP6 (described here, 3.4). After 

each step, the output of the two programs were compared, allowing us to pinpoint why 

and where discrepancies came about. At the end of this process, we were able to show 

that when G4STORK used the same assumptions as MCNP6, it produced similar results 

(shown here, 4.1.4). The results of G4STORK simulating the SCWR lattice cell, using its 

more accurate default methodology, was then compared to those of MCNP6 (shown here, 

4.2.1). Large differences in the results were seen to occur, because of the inaccurate 

assumptions used by MCNP6, during transient cases. We concluded that despite the 

existence of minor discrepancies between the results of MCNP and G4STORK for some 

cases, G4STORK is still the theoretically more accurate method for simulating lattice cell 

cases such as these, due to MCNP’s use of the generational method. 
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Glossary 
CNL: Stands for Canadian Nuclear Laboratories, is Canada’s primary nuclear research 

institution. Was formerly known as Atomic Energy Canada Limited (AECL). 

SCWR: Stands for Super Critical Water Reactor, is fourth generation pressurized heavy 

water nuclear reactor design created by CNL. For further information, refer to section 1.2. 

GEANT4: Stands GEometry ANd Tracking, it is toolkit for creating programs that track 

particles through time and matter. 

G4STORK: Stands for GEANT4 Stochastic Reactor Kinetics, is an open source program 

built off GEANT4 for simulating nuclear reactor physics. For more information, refer to 

section 2.6.8. 

MCNP: Stands for Monte Carlo N-Particle code, it is a program that tracks particles 

through time and matter (often used in the field of nuclear reactor physics). For more 

information, refer to section 2.6.7 
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NeutronHP: Stands for the Neutron High Precision model, it is an empirical model used 

to describe then neutron interactions between the 10-5eV to 20MeV incoming neutron 

energy range. For more information, refer to section 2.6.5. 

G4NDL: Stands for Geant4 Neutron Data Library, it is the empirical dataset used by the 

NeutronHP model in GEANT4. 

Keff: is the ratio of the rate of neutron production, to the rate of neutron loss, within a 

reactor. For more information, refer to section 2.4. 

Kgen: is the ratio of the number of neutrons produced by the current fission generation, to 

the number of neutrons produced by the previous fission generation. For more 

information, refer to section 2.6.1.2. 

Kdyn: is the ratio of the number of neutrons produced, to the number of neutrons lost, over 

a set time interval. For more information, refer to section 2.6.1.1. 

Flooring: the process of converting a real number to an integer by removing the decimal 

component of the number 

 

 Introduction 

1.1 Nuclear Technology 
Nuclear power is one of the most economical sources of non-carbon emitting power 

(second only to hydroelectric dams). However, there is a lot of fear about the use of 

nuclear power from the public, due to the perceived severity of nuclear accidents when 

they occur (the danger of radiation has been somewhat inflated by modern culture). This 

fear has driven many countries to choose more expensive non-carbon emitting energy 

sources and has made the nuclear industry obsessed with safety. Even though nuclear 

reactor research has received lots of funding from the government and from industry in 

the past, it is still one of the slowest changing technologies. This is because nuclear 

technology is held to far higher standard of safety than just about any other technology. 

Therefore, any changes in the design of a nuclear reactor, no matter how small, must be 

rigorously validated before they are allowed to become a reality. In the past this meant 

constructing very expensive experiments and prototype plants, putting a heavy economic 

burden on the nuclear industry.  

With the advancement of computer technology, more and more of these experiments can 

be simulated on a computer for a fraction of the cost [1]. Computer simulations often only 

take minutes or hours to set up and run, whereas physical experiments often take days to 

setup and run. Additionally, many different computer simulations can be run at the same 

time by different researchers, whereas with physical experiments, multiple researchers 
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often share the same experimental facility. Both of these advantages allow computer 

simulations to streamline much of the design process. Another key advantage of using 

computer simulations is that they can simulate scenarios that would be nearly impossible 

to replicate experimentally. This in turn allows researchers to improve the overall safety 

of the design. Finally, computer simulations can be run safely by anyone, whereas 

running experiments puts expensive equipment and researchers at risk. 

The more complicated transients that occur in a nuclear reactor (such as accident 

scenarios) can be very difficult and time consuming to model accurately using a computer 

simulation. Historically this is why computational models are usually limited to 

simulating static cases (non-transient), or semi static cases (such as full power criticality 

or fuel depletion). With recent improvements in computing power however, time 

dependent nuclear physics models have become more popular for studying transient cases 

in nuclear reactor research. Deterministic models (codes that try to directly solve the 

neutron transport equation) are popular choices in industry because of the speed at which 

they can obtain results. However, the accuracy of these simulations is limited by the 

approximations that the programs make in order to solve the neutron transport equation. 

Even the more complicated space-energy dependent three dimensional codes suffer from 

inaccuracies caused by the necessary discretization of space and energy.  

Monte Carlo simulations follow neutrons through space, energy and time in a given 

reactor geometry, without the need for discretization and the other approximations 

required by a deterministic approach. The only factors that limit the accuracy of a Monte 

Carlo model is the nuclear data set used to sample what processes will occur and how 

they will occur, and the statistical uncertainty caused by the random sampling of events 

(dependent on the number of neutrons simulated). As newer computing technology lets 

researchers use higher precision data sets and simulate more neutrons, these sources of 

inaccuracy continue to become less significant.  

Unfortunately, the added accuracy that the Monte Carlo method offers comes at a cost of 

speed. Monte Carlo codes run far slower than many deterministic codes, making them 

unsuitable replacements for static, near static, or long duration experiments (testing 

refueling schemes). In these cases, the small gain in accuracy is not worth the extra run 

time. However, accident scenarios, during which the properties of the neutron population 

are changing rapidly over time, often require a high degree of accuracy, but do not require 

a lot of simulation time, and are thus particularly suited to the Monte Carlo method. As 

mentioned before, safety is paramount when it comes to nuclear technology and thus 

refining the methods that researchers use to assess the safety of a nuclear reactor is very 

important. Improving the accuracy with which we can assess the safety of the reactor 

does not only serve to assure the regulators and the public, it also opens the possibility of 

allowing operators to adjust the safety margins (ex: the regulated power threshold) and 

thus increase the potential revenue of the reactor.  
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1.2 Canadian Super Critical Water Reactor 
The current Canadian SCWR concept is meant to combine the advantages of heavy water 

reactors, boiling water reactors and supercritical water fossil-fired plants. The main 

design goal of the SCWR is the improvement of the thermodynamic efficiency over 

current Canadian CANDU reactors, and take advantage of the superior heat transfer 

properties of supercritical water [2]. The use of supercritical water coolant allows the 

SCWR design to achieve a thermodynamic efficiency of 45-50%, which is greatly 

improved from the typical 33% of the CANDU6. Since the supercritical water coolant 

remains in a single state throughout its journey through the core, a simpler 

thermodynamic cycle can be used (since there is no need for evaporators or condensers), 

lowering the capital cost of the reactor [3]. Being in a super critical state, the coolant is 

unable boil along the fuel channels, which means that dryout (a prominent safety concern 

in most nuclear reactors) cannot occur as long as operational coolant pressures are 

maintained. The near elimination of dryout as a concern is a major safety advantage of the 

SCWR design that sets it apart from the majority of operating nuclear reactors. Finally, 

the use of light water coolant instead of the heavy water coolant (which is worth roughly 

$100,000 a barrel) used by the CANDU6, helps to reduce the upfront cost of the SCWR 

reactor relative to CANDU6.  

In the CANDU, pressure tubes are used in the SCWR design to keep the high pressure 

coolant separate from the low pressure moderator. This is in contrast to most LWR 

designs (light water reactors), which use a single high pressure reactor vessel to contain 

the coolant and the moderator. The use of pressure tubes greatly lessens the volume of 

water that needs to be maintained at a high pressure, eliminating the need for pressure 

vessels that are difficult to manufacture (reducing the cost of the design). It also allows 

moderator to be different from the coolant, which is a requirement of the SCWR design. 

Unlike a CANDU, the pressure tubes in a SCWR reactor are vertically aligned. This 

allows natural convection to assist the coolant flow through the core and fixes the flow 

direction during an accident scenario. As expected from a Canadian design, the SCWR 

uses heavy water as moderator, which costs significantly more than light water, but 

should allow the SCWR to achieve better burnup (fuel economy) then similar LWRs. The 

use of a heavy water moderator should also significantly increase the reactor time period 

(the time it takes for changes in the reactor to affect the neutron population), making the 

reactor inherently more stable, and easier to control than an LWR. The current SCWR 

concept does not allow for online refueling, instead it uses batch refueling with 1/3 of the 

core being replaced every time it is refueled. 

Another key aspect of the Canadian SCWR design is the use of MOX fuel made up of 

plutonium and thorium. The main advantages of using thorium are twofold: it is 

completely safe to handle before entering the core and it is more abundant than uranium, 

greatly extending the potential life span of nuclear power based on our current reserves 

[4]. The advantage of using plutonium over uranium is the potential to utilize plutonium 
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from the spent fuel of CANDU, LWRs, or from nuclear weapon reserves. The use of 

plutonium extracted from spent fuel would allow for better fuel economy and less 

expensive storage of the final waste (due to the lower potential energy left in the fuel). 

Burning the plutonium present in nuclear weapon reserves reduces the threat of the 

proliferation of weapons grade plutonium. 

Since the SCWR design is very different from the current Canadian reactor fleet, 

determining its safety and performance will rely heavily on accurate computational 

modes. This is outlined by the following quote from CNL. 

“The SCWR, as a synthesis of HWR, BWR, SCW-FFP and new innovations, presents 

challenges to current physics analysis and modeling methods that have evolved to suit the 

conditions that typify conventional reactor systems. Since there exists little or no 

experimental data available to test the application of current physics methods to SCWR 

operating conditions, modeling errors and uncertainties must be estimated via 

comparisons among various codes and methods. Such comparisons will aid in the 

development of these methods to provide supporting calculations for the SCWR concept.” 

CNL SCWR report [2]. 

Some of the key parameters of the SCWR design can be seen below in Table 1.1. 

Thermal Power 2540 MW 

Electric Power 1200 MW 

Inlet / Outlet temperatures 350ºC / 625ºC 

Inlet / Outlet pressures 26 MPa / 25 MPa 

Channels 336 

Lattice Pitch 25 cm 

Core Radius 355 cm 

Core Height 650 cm 

Upper axial reflector thickness 75 cm 

Lower axial reflector thickness 75 cm 

Fuel Assembly Length 500 cm 

Fuel batches 3 

Target exit burnup 40 MWd / kg 
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Target CVR < 0 

Table 1.1: Key characteristics of the SCWR design 

1.3 Objectives 
Since G4STORK (Geant4 STocastic Reactor Kinetics) is a Monte Carlo code that uses 

minimal assumptions when determining the neutron distribution in a geometry, it was an 

ideal candidate for being part of the SCWR simulation comparison study [1]. The part of 

the SCWR geometry that CNL wanted to be investigated was a single fuel assembly in 

the reactor divided into 10 axial segments [2]. Each axial segment was treated as a lattice 

cell (by applying the periodic boundary condition at all boundaries), with temperatures 

and densities being assumed to be homogenous within the same materials. Since the fuel 

cells are rotationally symmetric around the z axis a single quarter of the geometry could 

be used to represent the whole fuel cell. This effectively increased the neutron density in 

the geometry four fold for the same computation time, improving the accuracy of the 

results. The simulated reactor geometry can be seen below in Figure 3.1.  

 

Figure 1.1: Shows an axonometric view of the SCWR quarter lattice cell geometry 

In the comparison, both short duration reactivity calculations and long term fuel depletion 

calculations were asked for; however, at present G4STORK cannot perform depletion 

calculations, so only reactivity calculations were executed using G4STORK. The four 

reactivity cases that were under investigation were the fully cooled case, the voiding of 

the inner coolant, the voiding of the outer coolant, and the voiding of all the coolant, all of 
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which used fresh fuel at full power. The reason why these cases were of particular interest 

is that one of the major design requirement of the SCWR concept was to have a negative 

coolant void reactivity (CVR); the neutron population should decrease in the event that 

there is a loss of coolant. This is meant to improve the safety of the reactor, but more 

importantly would allow the design to sell in USA, (probably the primary target 

customers for this design given the use of enriched plutonium in the fuel) where a 

negative CVR is required by the local nuclear reactor regulators. 

The initial results produced by G4STORK were significantly different from the other 

codes used in the comparison [5]. Given that different codes use of different datasets and 

different assumptions about the physics involved, some differences were expected. The 

other codes involved in the comparison had already been benchmarked against each other 

in a large international benchmark, so the fact that they agreed within the bounds that they 

did was not surprising [6]. However, the results produced using G4STORK were clearly 

the outsider of the comparison, as can be seen in Table 1.2. This suggested that there were 

flaws with G4STORK, flaws shared by the other software in the comparison, or both. 

Since the primary purpose of the code comparison was to estimate the margin of 

uncertainty for the reactor design, the reason behind what was causing this particular 

discrepancy was important. To identify the cause of the discrepancy, a detailed 

comparison of the neutron physics (more importantly the algorithms) used by G4STORK, 

and those of another code in the comparison, had to be undertaken. MCNP6 was chosen 

for this task due to its similar methodology and its international reputation in the field of 

nuclear physics. This comparison would not only serve to improve the understanding and 

assist the advancement of the SCWR design, but would also provide a great opportunity 

to validate a relatively young piece of software against a trusted veteran.  

 

Kinf Cases Fully Cooled Void Inner 

Coolant 

Void Outer 

Coolant 

Void All 

Coolant 

G4STORK 1.253±0.0006 1.206±0.0002 1.258±0.0006 1.215±0.0004 

MCNP6.1 1.2863±0.0001 1.2497±0.0003 1.2984±0.0003 1.2666±0.0002 

DrIAEA 1.27559 1.247399 1.284174 1.259823 

Dr7.1 1.28387 1.254724 1.292628 1.267557 

KENO238 1.28629 1.255601 1.296471 1.269283 

KENOCE 1.28735 1.25917 1.296439 1.27279 

TRITON 1.286854 1.25781 1.29675 1.268812 



Page 19 of 113 

 

Table 1.2: Shows the Kinf for the SCWR lattice cell at 1.75m from the bottom of the core for four reactivity 

cases. Ask Jason for raw data, (MCNP data is our own data produced using Michel’s geometry) [5]. 

 Background and Theory 
In this section of the report, we will discuss the fundamentals of nuclear reactor theory, 

and advanced topics that are relevant to the physics being examined in this thesis. In 

particular, we will cover how nuclear power works, what are the neutron involved 

interactions, how we measure reactor behavior, how we model it using computational 

methods, and how we analyzed the results. 

2.1 Liquid Drop Model 
It is possible for an object in a high energy state (a ball on top of a skyscraper) to 

transition to a lower energy state (ball falls to the ground). However, according to 

quantum mechanics, it is far less probable for an object to transition to a higher energy of 

its own accord (ball jumps into the air). Thus all things (including nuclei) move towards, 

the lowest energy state that they can exist in. As a result of the extremely attractive strong 

force, nucleons can exist in a lower energy state when bound together then they can apart 

[7]. The difference in energy between a group of nucleons freely roaming and the 

equivalent nucleons in a bound configuration is referred to as the binding energy. The 

higher the binding energy (the lower the energy state of the nucleus is relative to free 

particles), the more stable the nucleus becomes, because more energy would be required 

to separate the particles. The liquid drop model is a semi-empirical model that predicts 

the binding energy of a nucleus for different nucleon configurations. The equation 

describing the liquid drop model is shown below in Equation 2.1. 

𝐸𝑏 = 𝑎𝑉 × 𝐴 − 𝑎𝑆 × 𝐴
2
3 − 𝑎𝐶 ×

𝑍2

𝐴
1
3

− 𝑎𝐴 ×
(𝐴 − 2𝑍)2

𝐴
+ 𝛿(𝐴, 𝑍) 

Equation 2.1: Shows the relation between the binding energy (Eb), the total number of nucleons (A), and the 

number of protons (Z) 

The first term in Equation 2.1 is called the volume term, and it accounts for the increase 

in binding energy as the number of nucleons bound together increases. The second term is 

the surface term; it accounts for the nucleons at the surface having fewer bonds and thus a 

lower binding energy (this is why most nuclei are spherical to maximize the volume to 

surface area ratio). The third term is the coulomb term; it accounts for the loss of binding 

energy due to the electric field repulsion of the protons. The fourth term is the asymmetry 

term; it accounts for the loss of binding energy as result of having a non-ideal (1:1) ratio 

of neutrons and protons (this is a quantum mechanical effect). The final term is the parity 

term and it accounts for the gain or loss of binding energy by having even or odd numbers 

of neutron and protons (this is a quantum mechanics effect). Minimizing the negative 

effects of the last three terms, the dependence of the binding energy on the number of 

nucleons can be seen below in Figure 2.1. 
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Figure 2.1: shows the binding energy per number of nucleons as a function of the number of nucleons when 

the last three terms of the liquid drop model are minimized [8].  

We can see that the maximum binding energy occurs at iron-56, and that isotopes that are 

much heavier or lighter than iron-56, have significantly less binding energy (require more 

stored energy to hold them together). Thus by breaking apart (fissioning) a heavy isotope 

(such as uranium-235) we would create two nuclei that have significantly higher total 

binding energy than the original isotope. This means that during the transition there 

would be a release of potential energy that was stored in the original isotope. It is this 

released potential energy that we take advantage of in a nuclear reactor to produce 

electricity. 

2.2 Cross-section 
Consider a beam of neutrons traveling in the same direction through a material made of a 

single nuclide. It would be natural to assume that the rate at which the incident neutrons 

will undergo a reaction is dependent on the flow rate (number density multiplied by 

average speed) of the neutrons through the material, and the probability of a neutron 

undergoing a reaction (which we expect to be dependent on the energy of the incident 

neutron) per distance traversed in the material [7].  
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∭ 𝑅(𝐸, 𝑟) 𝑑𝑉 = Σ(𝐸) × ∭ 𝐽(𝑟) 𝑑𝑉 → 𝑅(𝐸, 𝑟) = Σ(𝐸) × 𝐽(𝑟)  

Equation 2.2: Shows the relation between the reaction rate density (𝑅(𝐸, 𝑟)), neutron flow rate density (J), 

and the probability of interaction per distance (𝛴 (E)). The position is described by 𝑟 =(x,y,z), and the 

energy of the incoming neutron is set by E. 

If we allow the neutrons to flow in all directions, the J term in Equation 2.2 above 

becomes the neutron flux. By realizing that Σ (E) will depend on the number density of 

atoms (N) in the material the neutrons are transversing we get. 

𝑅(𝐸, 𝑟) = Σ(𝐸) × ∅(𝑟) = 𝑁 × 𝜎(𝐸) × ∅(𝑟) 

Equation 2.3: Shows the relation between the reaction rate density (𝑅(𝐸, 𝑟)), neutron flux (∅(𝑟)), 

macroscopic cross-section (𝛴 (E)), number density of atoms (N), and the microscopic cross-section (𝜎(𝐸)). 

Σ (E) is commonly referred to as the macroscopic cross-section, and 𝜎(𝐸) is commonly 

refered to as the microscopic cross-section. Since the microscopic cross-section is 

independent of the density of the material, which can fluctuate with temperature and 

pressure, it is the most commonly used cross-section. For the sake of this report, mentions 

of ‘the cross-section’ will refer to the microscopic cross-section, unless it is explicitly 

stated otherwise. The microscopic cross-section has units of cm2 (more commonly quoted 

in barns 10-24 cm2), and is officially defined as “the effective cross-sectional area per 

nucleus seen by the neutron”. The microscopic cross-section is a function of the kinetic 

energy of the incoming neutron relative to the nucleus. 

2.2.1 Mean free path 

The mean free path is the average distance that a neutron with a particular energy will go 

before undergoing an interaction in a uniform and infinite material. It can be derived 

using the classic integrated average equation [7]. 

𝑥(𝐸)̅̅ ̅̅ ̅̅ =  ∫ 𝑥 × 𝑑𝑃(𝐸, 𝑥)
∞

0

= ∫ 𝑥 ×
𝑑P(𝐸, 𝑥)

𝑑𝑥
× 𝑑𝑥

∞

0

=
∫ 𝑥 × 𝑁 × 𝜎(𝐸) × ∅(𝐸, 𝑥) × 𝑑𝑥

∞

0

∅0
 

Equation 2.4: Shows the relation between the mean free path ( 𝑥(𝐸)̅̅ ̅̅ ̅̅ ), the distance traveled (r), the atomic 

density (N), the microscopic cross-section (𝜎(𝐸) ), the uncollided flux ( ∅(𝐸, 𝑥⃗)), and the starting 

uncollided flux (∅0). 

The uncollided flux can be derived in this equation by realizing that the reaction rate 

described in Equation 2.3 will be equal to the negative derivative of the uncollided 

population. 

𝑑∅(𝐸, 𝑥)

𝑑𝑥
=  −𝑁 × 𝜎(𝐸) × ∅(𝐸, 𝑥) → ∅(𝐸, 𝑥) = ∅0𝑒−𝑁×𝜎(𝐸)×𝑥 

Equation 2.5: Shows the relation between the uncollided flux ( ∅(𝐸, 𝑥⃗)), the distance traveled (r), the 

atomic density (N), and the microscopic cross-section (𝜎(𝐸)). 
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Substituting Equation 2.5 into Equation 2.4, we get that the mean free path is equal to the 

following. 

𝑥(𝐸)̅̅ ̅̅ ̅̅ = ∫ 𝑥 × 𝑁 × 𝜎(𝐸) × 𝑒−𝑁×𝜎(𝐸)×𝑥 × 𝑑𝑥
∞

0

=
1

𝑁 × 𝜎(𝐸)
=

1

Σ(𝐸)
 

Equation 2.6: shows the relationship between the mean free path (𝑥(𝐸)̅̅ ̅̅ ̅̅ ), the atomic density (N), and the 

microscopic cross-section (𝜎(𝐸)). 

2.2.2 Resonance 

When a neutron is absorbed by an atom, it combines with it to create an excited state. 

Quantum mechanics tells us that these excited state only occur at fixed energies (which 

are dependent on the atom), and thus the only way these excited states can be formed is 

by incoming neutrons with fixed energies (with a little bit of wiggle room due to the 

probabilistic nature of quantum mechanics) [7]. Thus the cross-section (probability) of an 

absorption reaction will sharply increase and decrease around the neutron energies needed 

to form an excited state, creating what is known as resonant peaks. As the nucleus gets 

larger there are more available spaces for the incoming neutron to fill and thus there are 

more resonant peaks in the cross-section. Likewise, as the excitation energy of the atom 

increases, the number of available excitation energy states increase, and so does the 

frequency of cross-sectional resonant peaks. Eventually the peaks become so close 

together that they cannot be told apart (due to the limitations of current measurement 

equipment), and the cross-section is just measured as a flattened line. These effects can be 

seen below in Figure 2.2. 
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Figure 2.2: Shows the radiative capture cross-section data for uranium-238 to illustrate the dependence of 

resonance on incoming neutron energy 

 

2.2.3 Doppler Broadening 

Temperature is a macroscopic measure of the average kinetic energy of particles within a 

material; the larger the temperature, the stronger the vibrations of the particles [1]. In a 

free gas, the speed of the atoms relative to the lab frame can be described using the 

Maxwell-Boltzmann distribution, shown below. 

𝑓(𝐸) = √
𝑚

2𝑘𝑇
𝑒−

𝐸
𝑘𝑇 

Equation 2.7: The Maxwell Boltzmann distribution, m=mass, E=kinetic energy, k is the Boltzmann 

constant, T=temperature, and f is probability [7] 

For solid and liquid materials, the Maxwell-Boltzmann distribution is often used as an 

approximate method of determining the movement of the atoms. Thus when a neutron is 

traveling towards a material of high temperature, the incoming velocity of the neutron 

relative to the nucleus randomly varies around the value of the neutron’s velocity in the 

lab frame with the addition of the velocity of the nucleus. Since the cross-section is a 

function of the incoming kinetic energy, the blurring of the incoming kinetic energy 

https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj5rPvmqtrLAhUjs4MKHQXSDUQQjRwIBw&url=http://www.nuclear-power.net/nuclear-power/reactor-physics/atomic-nuclear-physics/fundamental-particles/neutron/interactions-neutrons-matter/&bvm=bv.117604692,d.amc&psig=AFQjCNFcWL08BvL8mQOgCdplbF6Lepip-Q&ust=1458943634565867
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causes the cross-section to become blurred (a random sampling of those around it) as 

well. This effect primarily affects resonant peaks, causing them to become flatter and 

wider. This is why the effect is known as Doppler broadening, Doppler because this effect 

is caused by the relative movement of the source (neutron) and the observer (nucleus), 

and broadening because it has the effect of broadening (flattening) peaks in the cross-

section. A visualization of what the cross-section data looks like after being broadened 

can be seen below in Figure 2.3. 

 

Figure 2.3: Cross-section data files of 94-239 at 0k and at 1420k for the fission process. 

As the resonant peaks become smaller, self-shielding becomes less and less important, 

which mean that Doppler broadening causes the probability of absorption (particularly 

neutron capture) to increase. As the temperature of the fuel goes up, neutron absorption 

increases as well, causing the reactor power to decrease, and the fuel temperature to 

decline. This negative temperature feedback mechanism is an important safety component 

of any nuclear reactor. 

 

2.3 Neutron Interactions 
There are four interactions that neutrons can undergo with a nucleus while transiting a 

geometry: elastic, inelastic (here we are including all non-fission, and non-elastic neutron 

producing reactions), fission, and neutron capture (here we are including any reaction 

with an incident neutron that does not produce neutrons) [9]. The balancing of these four 

interactions (particularly fission and capture) is what allows a nuclear reactor to sustain a 
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steady neutron population and produce power. It is possible to derive exact theoretical 

descriptions for each of these interactions using the principals of quantum mechanics.  

However, as the size of the atom becomes larger, the difficulty of finding a solution 

increases rapidly. Eventually finding a solution becomes impossible using current 

computing technology. Instead scientists develop distributions to match empirical data 

collected from high precision experiments and use these to describe the more complex 

interactions. This means that there are many different distributions that are meant to 

model the same interaction and the burden is left on the software developer to select 

which one better meets their needs. This usually involves compromising between speed 

and accuracy. While determining which algorithm is faster is usually obvious and easy 

work, determining which distribution represents the empirical data the best is much more 

difficult, and is dependent on the situation that the data will be used in (the energy range 

of the neutrons, which materials are being used, and at what temperatures). 

2.3.1 Elastic Scattering 

In this case both the momentum and the kinetic energy of the particles involved are 

conserved by the reaction, as a result no new particles are created. This often results in the 

neutron losing kinetic energy and changing direction but it can result in the neutron 

gaining kinetic energy (this commonly occurs when a high temperature material is being 

transverse by thermal neutrons). Elastic scattering can occur at any incoming neutron 

kinetic energy since the nucleus does not need to absorb the neutron and form a 

compound state and thus there is no threshold energy.  

2.3.2 Inelastic Scattering 

In the case of inelastic scattering the momentum of the system is conserved but the 

kinetic energy is not. The incoming neutron is temporarily absorbed by the nucleus, 

creating an unstable compound state [7]. A neutron then exits the nucleus, with less 

kinetic energy than the incoming neutron, putting the nucleus in an excited state. The 

nucleus then de-excites by emitting photons with energy equal to the difference of the 

initial neutron and the out-going neutron.  

There are distinct incoming neutrons energies needed to create an excited state. These 

energies are blurred by the vibration of the target nucleus relative to the neutron (as 

described here 2.2.3). The probability of this interaction occurring is dependent on the 

number of excited states available for the incoming neutron to create with the target 

nucleus. From our earlier discussion about resonance we know that the number of excited 

states generally increases with the size of the nucleus and with incoming neutron kinetic 

energy, which means that the probability of the inelastic scattering occurring also 

increases with these two parameters. Subsequently we can also determine that the lower 

threshold energy at which this reaction will occur is slightly greater than the energy 

required by the lowest excited energy state of the nucleus (lower for larger atoms). 
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However, there are more factors to consider then just the number of excited states, when 

determining the probability of an interaction occurring. 

In the field on of computational nuclear physics it is common to specify any reaction that 

produces neutrons, and is not fission or elastic, as inelastic scattering. Even though many 

of the included reaction do not exactly match the above description exactly, they have 

similar enough properties and effects that it is simpler to treat them this way. 

2.3.3 Neutron Capture 

Neutron capture is very similar to inelastic scattering, (an incoming neutron is absorbed 

by a target nucleus, the target nucleus de-excites by emitting particles) except that neutron 

capture does not emit any neutrons. In fact, it is the only interaction which does not emit a 

neutron and is thus vital for controlling the chain reaction of neutrons. Due to the 

similarity of neutron capture to inelastic scattering, the actual separation point is 

somewhat ambiguous in nuclear literature (the G4NDL library classifies many 

interactions that do not emit neutrons as inelastic for instance) but for the purpose of this 

report the above definition is what will be used. 

2.3.4 Fission 

As described in the previous section about the 2.1, as nucleus becomes larger it has a 

harder time holding itself together due to the increasing internal columbic repulsive force. 

At some point, either due to the random movement of the neutrons and protons within the 

nucleus, or because of the absorption of an incoming particle (in our case a neutron) the 

nucleus is spatially deformed to such a state that the coulombic force over whelms the 

strong force and the nucleus splits apart. This causes two smaller nuclei to be produced 

along with multiple prompt (immediately released) neutrons, photons, and neutrinos. The 

bulk of the energy is in the fission fragment kinetic energy (which usually deposit their 

energy fairly close to the site of the fission), heating up the fuel, and allowing us to 

harvest the energy using a thermodynamic cycle. Unlike inelastic scattering and neutron 

capture, fission can occur spontaneously without an incoming neutron. While most 

isotopes can undergo inelastic scattering and neutron capture, fission is only possible in 

very large and unstable nuclei. Isotopes capable of undergoing fission are called 

fissionable while isotopes capable of undergoing fission from neutrons at thermal 

energies (the vast majority of neutrons in a thermal reactor) are called fissile. 

2.4 Criticality 
Each reactor has a maximum power limit at which it can safely transfer heat from the fuel 

to the coolant. If a reactor is allowed to go far beyond this point it can lead to severe 

damage to the core, and potentially reactor meltdown. The amount of power the reactor 

produces is also directly linked to the amount of revenue it brings in, so that there is also 

a minimum power level that it must operate at in order for the operation to be economical. 

The power of a reactor is primarily dependent on the rate at which fission is occurring 
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within it, which we can see from Equation 2.3 is linearly dependent on the neutron flux 

(assuming the energy and spatial distribution of the flux don’t change). Thus both the 

safety and performance of any nuclear reactor is highly dependent on controlling the 

neutron population. Because of this, many important measures have been devised to 

describe how the neutron population is changing and at what rate. One of the most 

important parameters for measuring the rate at which the neutron population is increasing 

or decreasing is Keff (described in Equation 2.8) [7]. 

𝐾𝑒𝑓𝑓 =
𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

̇

𝑁𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛
̇

,   𝑁 = 𝑛𝑒𝑢𝑡𝑟𝑜𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

Equation 2.8: Shows the relationship between Keff, the rate of neutron production, and the rate of neutron 

absorption. 

The neutron multiplication factor (also called the Keff) is used to determine the degree to 

which the neutron population is growing (Keff>1, supercritical), declining (Keff<1, 

subcritical), or is stable (Keff=1, critical). If the average neutron life time is known, it can 

be used to determine the exact ratio of the current population compared to a previous 

population (Krun) over a given time step, using Equation 2.9. 

𝐾𝑟𝑢𝑛 =
∫ 𝐾𝑒𝑓𝑓(𝑡) × 𝑑𝑡

𝑡1

𝑡0

𝑇𝑙𝑖𝑓𝑒
 

Equation 2.9: shows the relationship between Krun, Keff, time (t), and the average neutron life time (𝑇𝑙𝑖𝑓𝑒). 

Another parameter that is related to Keff is reactivity (ρ), described by Equation 2.10 

below. 

𝜌 =
𝐾𝑒𝑓𝑓 − 1

𝐾𝑒𝑓𝑓
 

Equation 2.10: shows the relationship between reactivity (ρ), and Keff 

Reactivity is used to describe how offset the system is from a critical state; the reactor is 

supercritical when ρ >0, subcritical when ρ <0, and critical when ρ=0. 

2.5 Delayed neutrons 
The fission fragments are born in an excited state and will eventually decay to produce 

delayed (because they are created hundreds of milliseconds to minutes after the fission 

process has occurred) neutrons and photons [7]. The prompt and delayed neutrons then go 

on to induce more fissions elsewhere, continuing the chain reaction. Although delayed 

neutrons only make up a small percentage of the yield (0.64% in uranium-235) they are 

essential for controlling the chain reaction. Any changes in the reactor causing variations 

in the probability of neutrons inducing fission will be reflected in the next generation of 

neutrons produced by fission (daughter neutrons). Starting from birth, prompt neutrons 
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only take microseconds (tens of microseconds in CANDU) to be absorbed somewhere 

else in the core (inducing fission or neutron capture). Thus, if the neutron population was 

only made up of prompt neutrons, the neutron population would be multiplied by Keff 

every few microseconds (the average fission generation time of the neutrons), making the 

neutron population impossible to control. However, if the delayed neutrons make up 

~0.6% of the neutron population then the average neutron generation time = 0.994*(~10-

6s) + 0.006*(~1.0s) = .006s and thus neutron population will be multiplied by Keff at a 

much more manageable frequency. If Keff increases beyond the point where the prompt 

neutrons are able to sustain their own population (this point is called prompt critical), the 

number of prompt neutrons will be multiplied every few microseconds causing the 

delayed neutrons to become a very insignificant percentage of the total neutron 

population, and the average neutron generation time to drop to the prompt neutron 

generation time. 

2.6 Computational Nuclear Physics 
In this section of the report, we will cover computational nuclear physics theory relevant 

to this thesis. In particular, we will cover methods of calculating criticality, on the fly 

Doppler broadening, Shannon Entropy, the ENDF datasets, the high precision neutron 

interaction model (NeutronHP), MCNP6.1, and G4STORK. 

2.6.1 Methods of Calculating Criticality 

As we can see from Equation 2.8, Keff is the ratio of the rate of neutron production to the 

rate of neutron loss. 

2.6.1.1 Dynamic Criticality Method 

The dynamic criticality method works by measuring the ratio of the average rate of 

neutron production to the average rate of neutron loss over a step in time (as is shown 

below in Equation 2.11) [1]. Thus, the dynamic criticality method assumes that the Keff is 

constant over the time step, which is true if the reactor geometry does not change 

significantly during the time step. The shorter the time interval the more accurate this 

approach becomes. However, the shorter the time interval, the larger the neutron flux will 

have to be, to ensure that enough neutron productions and losses will happen within that 

time interval, for Keff to be statistically significant. 

𝐾𝑑𝑦𝑛 =
𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑇1)

𝑁𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛(𝑇1)
=

𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
̇

𝑁𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛
̇

×
∆𝑇

∆𝑇
 

Equation 2.11: shows the dynamic criticality method that G4STORK uses to calculate Keff 

2.6.1.2 Generational Criticality Method 

The generational criticality method approximates Keff by taking the ratio of the number of 

neutrons produced at the end of one fission generation to the number of neutrons present 

at the start of the neutron fission generation (this is shown below in Equation 2.12) [1]. 
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𝐾𝑔𝑒𝑛 =
𝑁𝑒𝑢𝑡𝑟𝑜𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖 + 1

𝑁𝑒𝑢𝑡𝑟𝑜𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖
 

Equation 2.12: shows the generational criticality method that MCNP uses to calculate Keff 

The neutron lifetime can vary greatly within a reactor. So pretending that the counting of 

surviving neutrons after a fission generation is equivalent to counting of surviving 

neutrons in steps of time, is only accurate when the neutron population is nearly 

independent of time (Keff~1). One can easily prove this, by pretending that the neutron 

population within a reactor is split into two energy groups. We expect each energy group 

to have its own neutron production rate, loss rate, and average life time within the reactor. 

By subbing these criteria into Equation 2.12, we get Equation 2.13 shown below. 

𝐾𝑔𝑒𝑛 =
(𝑃1 × 𝑇1 + 𝑃2 × 𝑇2)

(𝐿1 × 𝑇1 + 𝐿2 × 𝑇2)
 

Equation 2.13: shows the generational criticality method when there are only two neutron energy 

groups in the reactor. Pi is rate of neutron production for group i, Li is rate of neutron loss for group i, 

and Pi is the average neutron lifetime for group i. 

The only ways that Equation 2.13 can be equivalent to Equation 2.11 are if T1=T2 or if 

𝑃1/L1=P2/L2. Thus we can determine that in order for Kgen to be equivalent to Kdyn, all the 

different neutron groups (we could have divided the neutrons based off position as well) 

would either have to have the same average life time (this does not occur in nature), or 

have the same neutron multiplicity (which can only occur when Keff=1 if the average 

neutron life times are different). By closely studying Equation 2.13, one will notice that 

the importance of the neutron multiplicity for each neutron group will be weighted by 

their average lifetime. The neutrons groups that take a longer time to be absorbed 

(typically the thermal neutrons) will influence Keff more than they should. This makes the 

generational criticality method a far less suitable candidate then the dynamic criticality 

method, for simulating very sub or supercritical cases (such as reactor shutdown or 

startup). An illustration of the difference between the dynamic criticality method and the 

generational criticality method can be seen below in Figure 2.4. The generational 

criticality method is often used in reactor kinetic codes because it allows the calculation 

of Keff without the need for keeping track of the time the neutrons have spent in the 

reactor.  
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Figure 2.4: Illustrates the difference between the dynamic criticality and generational criticality method [1] 

2.6.2 On the Fly Doppler Broadening 

From our discussion of Doppler broadening (here, 2.2.3), we know that the temperature 

of the material has a significant effect on the cross-section of the isotopes. To take this 

into account, many codes including G4STORK use an on the fly Doppler broadening 

algorithm, which works as follows [1]. The velocity of the nuclei relative to the material 

is determined by randomly sampling over a Gaussian distribution, centered on zero, with 

a width that is proportional to the temperature of the material (this is equivalent to using a 

Maxwell-Boltzmann distribution). Then, the kinetic energy of the neutron relative to a 

nucleus is determined, the corresponding cross-section is located and corrected for the 

relative speed of the neutron (since neutrons travelling faster relative to the nuclei will 

encounter more nuclei and thus have a higher chance of interacting). In order for the 

sampled nuclei velocity to be representative of all the isotopes in the material, the nuclei 

velocity is sampled many times until the variance in the resulting cross-sections is within 

a small percentage of the mean value. This is a very time-consuming process which is 

exacerbated if the temperatures used in the user defined reactor geometry are high (since 

more samples will have to be taken to cover the wider Gaussian distribution).  

2.6.3 Shannon Entropy 

Shannon entropy is a measure of the minimum amount of information (number of 

symbols) needed to express each unique element in a given data set, on average [10]. The 

equation used to calculate Shannon entropy is shown below in Equation 2.14. 

𝐻 = − ∑ 𝑃𝑖 × log𝑏 𝑃𝑖

𝑁

𝑖=1

 

Equation 2.14: Shows the relationship between the Shannon entropy (H), the number of unique elements in 

the dataset (N), the abundance of element i in the dataset (Pi), and the number of unique symbols that can 

be used to represent the element (b) (ex: b=2 if a binary number is being used) 

Shannon entropy is most commonly used by computer scientists to quantitatively assess 

the performance of lossless data compression algorithms. However, the datasets used for 

Shannon entropy calculations, do not have to be limited to characters and numbers. For 

instance, let us assume that each element in a dataset represents a unique region space, 

and that Pi is the probability of a neutron being present in region ‘i’. When we take the 

Shannon entropy of this data set, we are measuring how spread out the neutron population 

is in the geometry. Thus, if the spatial distribution of the neutrons has converged (i.e. not 

shifting between run iterations), then the Shannon entropy will be constant between 

iterations. By assuming that the previous statement is true in reverse (which is nearly 

always the case), the spatial convergence of the neutron population can be said to occur 

when the Shannon entropy is nearly constant between run iterations. 
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2.6.4  Evaluated Nuclear Data Files 

The evaluated nuclear data files (ENDF) contain experimental data describing the 

properties of selected neutron interactions. ENDF was created by a group of U.S and 

Canadian nuclear laboratories, called the Cross-section Evaluation Working Group 

(CSEWG) in the 1960s [11]. The purpose of ENDF was to supply a flexible formatting 

standard to be adopted by the many preexisting nuclear sets. This would allow for easier 

comparisons between nuclear datasets, and better simulation reproducibility. It also made 

it easier for nuclear reactor physics programmers to create an interface capable of 

accepting many different nuclear data sets. Most importantly it allowed laboratories to 

pool their experimental data, and come up with a much more complete description of the 

physics involved. The raw ENDF data has far more information than is wanted by most 

nuclear reactor physics simulations. So instead of using the ENDF data directly, 

preprocessing codes are used to thin out the ENDF data to a given accuracy, and put it in 

a more useful format for the given nuclear reactor physics simulation.  

2.6.5 The High Precision Neutron Interaction Model 

The high precision neutron interaction model (called the NeutronHP model in GEANT4, 

and will be referred to as such for the rest of the thesis) is built off the ENDF data, and 

data libraries like it. By interpolating empirical data tables or sampling distributions fitted 

to laboratory measurements, the NeutronHP model is able to accurately reproduce 

experimental results, over the 10-5eV to 20MeV energy regime. Since neutron energies 

within a nuclear reactor typically fit well within this energy range, it can be accurately 

assumed that the NeutronHP model contains all of the physics relevant to nuclear reactor 

research. As discussed in the previous section (2.6.4), before the ENDF data can used in a 

nuclear reactor physics program, it must be converted into a neutron interaction library. 

During this preprocessing of the data, different representations (types of distributions) of 

the same raw data, are often selected by different programs. Even when the same type of 

representation is chosen, differing formats and levels of data precision are often used 

between libraries. This leads to each nuclear reactor physics program having a unique 

neutron interaction library. Subsequently, since the NeutronHP models are built around 

these libraries, they are also unique for each reactor physics program.  

2.6.6 Thermal Scattering 

In the previous section when we talked about neutron interactions (here, Neutron 

Interactions), we neglected to talk about the effect the surrounding atoms have on the 

nucleus undergoing the process. We did this because at incoming neutron energies above 

4eV, the bonding effects of the surrounding atoms becomes negligible [12]. However, for 

energies less than 4eV, the effect of the intramolecular bonds on the interaction cross-

section, and the outgoing particle energy and angular distribution becomes significant. In 

nuclear reactor physics we only really care about how the out-going neutrons are affected, 

so we ignore the intramolecular effects for neutron capture (since no neutrons are 

produced). After fission has occurred, the produced neutrons have kinetic energies of 
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~2MeV. Thus, the effects of the intermolecular bonds on the outgoing fission neutron 

energy and angular distribution are insignificant. So, we are only really interested in the 

intramolecular effects on the elastic and inelastic scattering interactions. In order to take 

these effects into account we use what is called a thermal scattering model (thermal 

because it is only used for thermal incoming neutrons, and scattering because it only 

affects the scattering interactions). Laboratory measurements of the outcome of scattering 

interactions occurring, for many different target isotope and material combinations, are 

stored in libraries as the functions of energy transferred and momentum transferred. 

During a nuclear reactor physics simulation, these data sets are sampled by the thermal 

scattering model to determine the result of a scattering interaction. 

2.6.7 MCNP6.1 

2.6.7.1 Summary 

MCNP (Monte Carlo N-Particle transport code) is a widely used and respected code in 

the field of nuclear reactor physics. Since its creation in 1977, from the merger of MCNG 

and MCP [13], MCNP has become a stable, efficient, and feature rich code. Like most 

particle physics codes, the user specifies what they want MCNP to simulate by creating 

an ASCII text file in a format specified by MCNP. This input file contains everything 

about the simulation, the geometry, which physics to use, which libraries to use, and what 

results to store. At the start of an MCNP simulation, the code reads in the selected input 

file and uses it to gather the necessary data and set up the simulation. At the beginning of 

a criticality simulation, MCNP creates neutrons at positions in the fuel specified by the 

user with energies sampled from a generic Watt thermal fission distribution by default. 

Each neutron is then followed through the geometry until it has been absorbed (not 

including absorptions due to inelastic scattering). Once all the starting neutrons have been 

absorbed, the next generation of neutrons is created from the fission daughter neutrons, 

and the cycle is repeated. After every generation the Keff is calculated using the 

generational criticality method described here 2.6.1.2.   

Every time a neutron enters a new material, the total cross-section (the summed cross-

section of any relevant neutron interaction occurring) is looked up and used to sample the 

distance at which an interaction will occur. If this distance is less than the distance the 

particle will need to travel to exit the material, then an interaction occurs. Following this, 

the cross-section for each relevant neutron process is looked up and used to sample which 

interaction will occur. Then, the selected interaction is applied to the neutron in the way 

described by the user selected neutron data libraries, and simulation information 

(including tallies) are updated. In order to stop the neutron population from increasing or 

decreasing exponentially, the fission neutron yield is divided by the Kgen calculated from 

the previous run.  
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2.6.7.2 Convergence 

Although MCNP does calculate the Shannon entropy of the neutron population after 

every generation, it does not use it to determine when convergence has occurred during a 

criticality simulation. Instead the user must specify how many neutron generations must 

pass until the neutron population can be said to be converged, beginning the collection of 

important data. Although this gives the user full control over when data will start to be 

collected, it can result in data being collected too early compromising the results, or too 

late, resulting in the needless waste of computational time. 

2.6.7.3 Assumptions 

MCNP6.1 uses several assumptions and simplifications to in order to improve its 

performance. In this section, the most important simplifications that are relevant to this 

project will be discussed. 

2.6.7.3.1 Variance Reduction Techniques 

By default, MCNP uses variance reduction techniques to reduce the simulation time and 

the statistical variance between results. 

2.6.7.3.1.1 Fission Yield Sampling 

One of the most impactful variance reduction techniques used by MCNP, is the lack of 

fission yield sampling. What MCNP does instead is, every time there is an interaction, the 

average fission yield is looked up, multiplied by the probability of the interaction being 

fission, and then added on to a sum. At the end of each time step, this sum is used as the 

total number of daughters. Although this greatly reduces the statistical variance in the 

results caused by sampling the neutron yield, it also makes it impossible for MCNP to 

account for the effect of different neutron yields creating different energy distributions. 

2.6.7.3.1.2 Implicit Absorption 

Another important variation reduction technique used by MCNP is implicit absorption. 

Implicit absorption works by multiplying the weight (importance) of the particle by the 

cross-section of absorption occurring divided by the summed cross-section of all the 

possible interactions every time an interaction occurs (as is shown in Equation 2.15).  

𝑊𝑛𝑒𝑤 = (1 −
𝜎𝑎

𝜎𝑇
) × 𝑊𝑜𝑙𝑑 

Equation 2.15: Shows how the weight of particles in MCNP are adjusted by implicit capture 

When the weight of the particle drops below the cutoff weight set by the user, MCNP 

rolls to determine whether the particle will be killed. Although this method works as a 

variance reduction technique it also can cause biasing in the number of absorptions 

depending on what the weight cut off is set to (if the cutoff is very high then the neutrons 

will be assumed to be absorbed more often than they should.This is not a problem when 

the default settings are used) [1]. 
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2.6.7.3.2 Neutron Physics Simplifications 

As another way of improving the efficiency of the code, MCNP also makes some 

simplifications to the physics. 

2.6.7.3.2.1 No Enforcement of the Conservation Laws 

Conservation of energy and momentum are not enforced by MCNP. Instead it is assumed 

that the average results achieved from sampling the neutron data libraries many times will 

be in line with these laws. 

2.6.7.3.2.2 Instantaneous Delayed Neutron Creation 

In MCNP, delayed neutrons are created immediately following fission (like a prompt 

neutron) by default. This essentially assumes that the neutron population is independent 

of time and limits the ability of MCNP to simulate truly transient cases. The main reason 

MCNP uses this assumption is the enormous amount of simulation time it would take to 

build up a stable delayed neutron population. However, even if this was not a factor, 

MCNP would still have to make this assumption, since MCNP does not accurately keep 

track of time when performing a criticality calculation (making it impossible to know 

when to insert a delayed neutron). 

2.6.7.3.2.3 Classical Relativity 

MCNP uses Galilean relativity rather than special relativity when transferring data 

between different reference frames. This assumes that the neutrons are not traveling at 

speed near that of light, making Galilean relativity and special relativity essentially 

equivalent. 

2.6.7.3.2.4 Quasi Criticality 

Since MCNP uses the fission generational criticality method for determining Keff, it is 

also making the assumption that the neutron population is independent of time (as 

described here, 2.6.1.2). This is probably the most limiting assumption that MCNP 

makes, since it ensures that the results of MCNP will only be accurate for simulating 

cases near critical. 

2.6.7.4  NeutronHP Model 

In this section we will describe the different distributions used by the NeutronHP model 

(described here, 2.6.5) of MCNP6.1, to sample the outgoing neutron energy, and angle, 

for each neutron interaction. The neutron capture reaction is ignored since it only 

produces particles other than neutrons, which are not of interest for this project. Except 

for a few exceptions, each of these distributions work by first calculating the differential 

cross-sections (probability of occurrence), for each of the possible incoming and outgoing 

neutron combination. Then, one of the possible combinations is randomly chosen, with 

more probable combinations being chosen proportionately more often. Since the last step 

of this process is the same for all of the distributions, only the calculation of the 

differential cross-section will be discussed. The preprocessed ENDF files used by the 
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NeutronHP model in MCNP6.1 are stored in the XSDIR set by the user. For a full 

description about how the final state data is stored in the MCNP6.1 library, refer to 

volume three of MCNP’s user manual [13].  

2.6.7.4.1 Elastic Scattering 

There are two different representations used by MCNP6.1 to determine the outcome of 

elastic scattering [13]. Both of the representations describe the relationship between the 

differential cross-section (probability of occurrence) and the deflection angle. The energy 

of the outgoing neutron is obtained from the laws of conservation after the deflection 

angle has been sampled.  

The first representation is the tabular distribution. In this case the differential cross-

section is interpolated from a two dimensional table, indexed by the incoming neutron 

energy and the cosine of the deflection angle (described here, Equation 2.16). 

𝑑𝜎

𝑑𝜃
 =

𝑑𝜎

𝑑𝜃
 (𝐸, 𝑐𝑜𝑠𝜃) 

Equation 2.16: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝜃
), the cosine of the 

scattering angle (𝑐𝑜𝑠𝜃), and the incoming neutron energy (E) for the tabular distribution. 

The second representation is the equiprobable bin distribution. For this type of 

distribution, the differential cross-section is dependent on incoming energy and the 

outgoing neutron angle region (or bin). For each incoming neutron energy, the differential 

cross-sections are set for each region of the outgoing angular spectrum, such that the 

integrated probability for each region is uniform (described by Equation 2.17).  

𝐶𝑜𝑛𝑠𝑡 = ∫
𝑑𝜎

𝑑𝜃
 (𝐸, 𝑖) 𝑑𝜃

𝜃𝑖

𝜃𝑖−1

=
𝑑𝜎

𝑑𝜃
 (𝐸, 𝑖) × (𝜃𝑖 − 𝜃𝑖−1) 

Equation 2.17: Shows the algorithm used to determine the differential cross-section (
𝑑𝜎

𝑑𝜃
 (𝐸, 𝑖)), using the 

upper and lower angular boundary (𝜃𝑖  𝑎𝑛𝑑 𝜃𝑖−1) of region ‘i’, Note: E is the incoming neutron energy. 

The differential cross-section can then be interpolated from the two dimensional table 

indexed by the incoming neutron energy and the outgoing neutron angular region 

(described here Equation 2.18). 

𝑑𝜎

𝑑𝜃
 =

𝑑𝜎

𝑑𝜃
 (𝐸, 𝑖) 

Equation 2.18: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝜃
), the incoming neutron 

energy (E), and the outgoing angular region (i) for the equiprobable bin distribution. 
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2.6.7.4.2 Fission 

For the fission process, three different representations are used to describe the outgoing 

neutron angular distribution, and nine different representations used to describe the 

outgoing neutron energy distribution [13].  

2.6.7.4.2.1 Outgoing Angular Representations 

The first representation of the outgoing neutron angular distribution, is the tabular 

distribution. In this case the differential cross-section is interpolated from a two 

dimensional table, indexed by the incoming neutron energy, and the cosine of the 

outgoing neutron angle (described here, Equation 2.19). 

𝑑𝜎

𝑑𝜃
 =

𝑑𝜎

𝑑𝜃
 (𝐸, 𝑐𝑜𝑠𝜃) 

Equation 2.19: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝜃
), the cosine of the 

scattering angle (𝑐𝑜𝑠𝜃), and the incoming neutron energy (E) for the tabular distribution. 

The second representation is the equiprobable bin distribution. For this type of 

distribution, the differential cross-section is dependent on incoming energy and the 

outgoing neutron angle region (or bin). For each incoming neutron energy, the differential 

cross-sections are set for each region of the outgoing angular spectrum, such that the 

integrated probability for each region is uniform (described by Equation 2.20).  

𝐶𝑜𝑛𝑠𝑡 = ∫
𝑑𝜎

𝑑𝜃
 (𝐸, 𝑖) 𝑑𝜃

𝜃𝑖

𝜃𝑖−1

=
𝑑𝜎

𝑑𝜃
 (𝐸, 𝑖) × (𝜃𝑖 − 𝜃𝑖−1) 

Equation 2.20: Shows the algorithm used to determine the differential cross-section (
𝑑𝜎

𝑑𝜃
 (𝐸, 𝑖)), using the 

upper and lower angular boundary (𝜃𝑖  𝑎𝑛𝑑 𝜃𝑖−1) of region ‘i’, Note: E is the incoming neutron energy. 

The differential cross-section can then be interpolated from the two dimensional table 

indexed by the incoming neutron energy and the outgoing neutron angular region 

(described here Equation 2.21). 

𝑑𝜎

𝑑𝜃
 =

𝑑𝜎

𝑑𝜃
 (𝐸, 𝑖) 

Equation 2.21: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝜃
), the incoming neutron 

energy (E), and the outgoing angular region (i) for the equiprobable bin distribution. 

 The third representation of the outgoing neutron angular distribution, is an isotropic 

distribution. As can be seen in Equation 2.22, every possible outgoing neutron angle in 

the center of mass reference, is given an equal probability, and thus is equally likely to 

occur. 
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𝑑𝜎

𝑑𝜃
 = 𝐶𝑜𝑛𝑠𝑡 

Equation 2.22: Shows how the differential cross-section (
𝑑𝜎

𝑑𝜃
) is calculated for an isotropic distribution. 

2.6.7.4.2.2 Outgoing Energy Representations 

The first representation is the equiprobable bin distribution. For this type of distribution, 

the differential cross-section is dependent on incoming energy and the outgoing neutron 

energy region (or bin). For each incoming neutron energy, the differential cross-sections 

are set for each region of the outgoing energy spectrum, such that the integrated 

probability for each region is uniform (described by Equation 2.23).  

𝐶𝑜𝑛𝑠𝑡 = ∫
𝑑𝜎

𝑑𝐸′
 (𝐸, 𝑖) 𝑑𝜃

𝜃𝑖

𝜃𝑖−1

=
𝑑𝜎

𝑑𝐸′
 (𝐸, 𝑖) × (𝐸′𝑖 − 𝐸′𝑖−1) 

Equation 2.23: Shows the algorithm used to determine the differential cross-section (
𝑑𝜎

𝑑𝐸′
 (𝐸, 𝑖)), using the 

upper and lower energy boundary (𝐸′𝑖  𝑎𝑛𝑑 𝐸′𝑖−1) of region ‘i’, Note: E is the incoming neutron energy. 

The differential cross-section can then be interpolated from the two dimensional table 

indexed by the incoming neutron energy and the outgoing neutron energy region 

(described here Equation 2.24). 

𝑑𝜎

𝑑𝐸′
 =

𝑑𝜎

𝑑𝐸′
 (𝐸, 𝑖) 

Equation 2.24: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝜃
), the incoming neutron 

energy (E), and the outgoing angular region (i) for the equiprobable bin distribution. 

The second representation of the outgoing neutron energy distribution, is level scattering. 

In this case the outgoing neutron energy is not sampled. Instead it is calculated from a 

linear transformation of the incoming neutron energy (shown here, Equation 2.25). The 

parameters C1 and C2 are constants that are unique to this particular distribution. 

𝐸′ = 𝐶2(𝐸 − 𝐶1) 

Equation 2.25: Shows the relationship between the outgoing neutron energy (E’), the incoming neutron 

energy (E), parameter 1 (C1), and parameter 2 (C2) for the level scattering. 

The third representation of the outgoing neutron energy distribution, is the tabular 

distribution. In this case the differential cross-section (
𝑑𝜎

𝑑𝐸′
) is interpolated from a two 

dimensional table, indexed by the incoming neutron energy, and the outgoing neutron 

energy (described here, Equation 2.26). 
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𝑑𝜎

𝑑𝐸′
 =

𝑑𝜎

𝑑𝐸′
 (𝐸, 𝐸′) 

Equation 2.26: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝐸′
), the incoming neutron 

energy (E), and the outgoing neutron energy (𝐸′) for the tabular distribution. 

The fourth representation of the outgoing neutron energy distribution, is the general 

evaporation spectrum shown in Equation 2.27. The multiplier (X(ε)) shown in Equation 

2.27, is randomly sampled from a multiplier probability distribution (X(x), defined in the 

high precision dataset). This X(x) distribution is what defines the shape of the outgoing 

neutron energy distribution at every incoming energy. The T(E) variable shown in 

Equation 2.27, is interpolated from a one dimensional table, indexed by the incoming 

neutron energy. 

𝐸′ = X(ε) × T(E) 

Equation 2.27: Shows the relationship between the outgoing neutron energy, the sampled outgoing neutron 

energy multiplier (𝑋(𝜀)), and the interpolated outgoing neutron energy multiplier (𝑇(𝐸)). 

The fifth representation of the outgoing neutron energy distribution, is the Maxwell 

fission spectrum shown in Equation 2.28. This representation is derived in the framework 

of quantum mechanics, by treating the constituents of the nucleus as particles in a free gas 

[14]. The average kinetic energy of the constituents is determined by the effective 

temperature of the nucleus (the same way the kinetic energy of molecules in a material 

are determined using the materials temperature). The effective temperature (𝛩(𝐸)) used 

in Equation 2.28, is interpolated from a one dimensional table indexed by the incoming 

neutron energy. 

𝑑𝜎

𝑑𝐸′
 ∝  √𝐸′𝑒𝐸′/𝛩(𝐸)  

Equation 2.28: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝐸′
), the effective 

temperature (𝛩(𝐸)), the incoming neutron energy (E), and the outgoing neutron energy (𝐸′) for the 

Maxwell fission spectrum. 

Additionally, a restriction energy (U) is used to limit the maximum outgoing neutron 

energy possible (see Equation 2.29). 

𝐸′𝑚𝑎𝑥 = 𝐸 − 𝑈 

Equation 2.29: Shows the relationship between the maximum outgoing energy possible (E’max), the 

restriction energy (U), and the incoming neutron energy (E). 

The sixth representation of the outgoing neutron energy distribution, is the evaporation 

spectrum shown in Equation 2.30. This representation was also derived by treating the 

constituents of the nucleus as particles in a free gas, but it uses a different fitting function 

around the exponent to better match different experimental data [15]. The effective 
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temperature (𝛩(𝐸)) used in Equation 2.30, is interpolated from a one dimensional table 

indexed by the incoming neutron energy. 

𝑑𝜎

𝑑𝐸′
 ∝  𝐸′𝑒𝐸′/𝛩(𝐸)  

Equation 2.30: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝐸′
), the effective 

temperature (𝛩(𝐸)), the incoming neutron energy (E), and the outgoing neutron energy (𝐸′) for the 

evaporation spectrum. 

Additionally, a restriction energy (U) is used to limit the maximum outgoing neutron 

energy possible (see Equation 2.31). 

𝐸′𝑚𝑎𝑥 = 𝐸 − 𝑈 

Equation 2.31: Shows the relationship between the maximum outgoing energy possible (E’max), the 

restriction energy (U), and the incoming neutron energy (E). 

The seventh representation of the outgoing neutron energy distribution, is the energy 

dependent Watt spectrum shown in Equation 2.32. This representation was also derived 

by treating the constituents of the nucleus as particles in a free gas. Except it uses 

different fitting function around the exponent to better match different experimental data 

[15]. The parameters a(E) and b(E) used in Equation 2.32, are interpolated from separate 

one dimensional tables indexed by the incoming neutron energy. 

𝑑𝜎

𝑑𝐸′
 ∝  𝐸′𝑒−𝐸′/𝑎(𝐸) sinh √𝑏(𝐸)𝐸′ 

Equation 2.32: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝐸′
), parameter 𝑎(𝐸) , 

parameter 𝑏(𝐸), the incoming neutron energy (E), and the outgoing neutron energy (𝐸′) for the energy 

dependent Watt spectrum. 

Additionally, a restriction energy (U) is used to limit the maximum outgoing neutron 

energy possible (see Equation 2.33). 

𝐸′𝑚𝑎𝑥 = 𝐸 − 𝑈 

Equation 2.33: Shows the relationship between the maximum outgoing energy possible (E’max), the 

restriction energy (U), and the incoming neutron energy (E). 

The eighth representation of the outgoing neutron energy distribution, is the tabular linear 

functions distribution. Each incoming neutron energy points to a list of linear functions 

with corresponding probabilities of being selected. Every time this representation is 

called, a linear function is sampled from the list corresponding to the current incoming 

neutron energy. The sampled linear function is then applied to the incoming neutron 

energy to determine the outgoing neutron energy (described by Equation 2.34) 
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𝐸′ = 𝐶2(𝐸, 𝜀)(𝐸 − 𝐶1(𝐸, 𝜀)) 

Equation 2.34: Shows the relationship between the outgoing neutron energy (E’), the incoming neutron 

energy (E), the sampled parameter 1 𝐶2(𝐸, 𝜀), and the sampled parameter 2 (𝐶1(𝐸, 𝜀)) for the tabular 

linear functions distribution. Note 𝜀 is a randomly sampled number used to determine which linear function 

will be used.  

The ninth representation of the outgoing neutron energy distribution, is the modified 

tabular linear functions distribution. Each incoming neutron energy points to a list of 

linear functions with corresponding probabilities of being selected. Every time this 

representation is called, a linear function is sampled from the list corresponding to the 

current incoming neutron energy. The sampled linear function is then applied to the 

incoming neutron energy to determine the outgoing neutron energy (described by 

Equation 2.35) 

𝐸′ = 𝐶2(𝐸, 𝜀) × 𝐸 

Equation 2.35: Shows the relationship between the outgoing neutron energy (E’), the incoming neutron 

energy (E), and the sampled parameter 1 𝐶2(𝐸, 𝜀) for the modified tabular linear functions distribution. 

Note 𝜀 is a randomly sampled number used to determine which linear function will be used. 

 

2.6.7.4.3 Inelastic Scattering 

For the inelastic process the same angular representations and energy representations can 

be used as the fission process shown above 2.6.7.4.2 [13]. However, there are also four 

combined angular and energy representations. 

The first representation of the combined outgoing neutron angular and energy 

distribution, is the Kalbach-87 formalism. First the differential cross-section of the 

outgoing energy spectrum (
𝑑𝜎

𝑑𝐸′), is interpolated from a two dimensional table, indexed by 

the incoming neutron energy, and the outgoing neutron energy (described here, Equation 

2.36). 

𝑑𝜎

𝑑𝐸′
 =

𝑑𝜎

𝑑𝐸′
 (𝐸, 𝐸′) 

Equation 2.36: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝐸′
), the incoming neutron 

energy (E), and the outgoing neutron energy (𝐸′) for the center of mass 3D tabular distribution. 

Next the differential cross-section of the outgoing angular spectrum (
𝑑𝜎

𝑑𝜃
), is sampled 

from a Kalbach distribution shown here, Equation 2.37. The angular distribution slope 

(A) and the precompound fraction (R), are interpolated from two dimensional tables, 

indexed by the incoming neutron energy, and the outgoing neutron energy. 
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𝑑𝜎

𝑑𝜃
 (𝐸, 𝐸′, 𝜃) =

1

2

𝐴(𝐸, 𝐸′)

sinh(𝐴(𝐸, 𝐸′))
(cosh(𝐴(𝐸, 𝐸′)𝜃) + 𝑅(𝐸, 𝐸′) sinh(𝐴(𝐸, 𝐸′)𝜃)) 

Equation 2.37: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝜃
), the angular distribution 

slope (A), the precompound fraction (R), the incoming neutron energy (E), the outgoing neutron energy 

(𝐸′), and the outgoing neutron angle (𝜃) for the center of mass 3D tabular distribution. 

The second representation of the combined outgoing neutron angular and energy 

distribution, is the center of mass three dimensional tabular distribution. In this case the 

differential cross-section (
𝑑𝜎

𝑑𝐸′𝑑𝜃
), is interpolated from a three dimensional table, indexed 

by the incoming neutron energy, the outgoing neutron energy, and the outgoing neutron 

angle, in the center of mass frame (described here, Equation 2.38). 

𝑑𝜎

𝑑𝐸′𝑑𝜃
 =

𝑑𝜎

𝑑𝐸′𝑑𝜃
 (𝐸, 𝐸′, 𝜃) 

Equation 2.38: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝐸′
), the incoming neutron 

energy (E), the outgoing neutron energy (𝐸′), and the outgoing neutron angle (𝜃) for the center of mass 3D 

tabular distribution. 

The third representation of the combined outgoing neutron angular and energy 

distribution, is the N-body phase-space distribution. The outgoing neutron energy 

multiplier is sampled from the probability distribution described in Equation 2.39. The 

maximum outgoing neutron energy (𝐸𝑚𝑎𝑥) is determined using the number of outgoing 

products, the total mass of the outgoing products, Qvalue of the reaction, and the 

conservation laws.  

𝑃(𝑇) = 𝐶(𝑛)√𝑇 (𝐸′𝑚𝑎𝑥 − 𝑇)
3𝑛
2

−4
 

Equation 2.39: Shows the relationship between the probability of this outgoing energy multiplier (𝑃(𝑇)), 

the outgoing energy multiplier (T), the maximum outgoing neutron energy (𝐸′𝑚𝑎𝑥), parameter (𝐶(𝑛)), and 

the number of products (n) for the N-body phase-space distribution. 

The outgoing neutron energy is then calculated by multiply the maximum possible 

outgoing neutron energy by the sampled outgoing neutron energy multiplier (described by 

Equation 2.40) 

𝐸′ = 𝑇 × 𝐸′𝑚𝑎𝑥 

Equation 2.40: Shows the relationship between the outgoing neutron energy (E’), the incoming neutron 

energy (E), the outgoing energy multiplier (T), and the maximum outgoing neutron energy (𝐸′𝑚𝑎𝑥) for the 

tabular linear functions distribution. 

The outgoing neutron angle is sampled from an isotropic distribution (described by 

Equation 2.41). 
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𝑑𝜎

𝑑𝜃
 = 𝐶𝑜𝑛𝑠𝑡 

Equation 2.41: Shows how the differential cross-section (
𝑑𝜎

𝑑𝜃
) is calculated for an isotropic emission 

distribution. 

The final representation of the combined outgoing neutron angular and energy 

distribution, is the laboratory three dimensional tabular distribution. In this case the 

differential cross-section (
𝑑𝜎

𝑑𝐸′𝑑𝜃
), is interpolated from a three dimensional table, indexed 

by the incoming neutron energy, the outgoing neutron angle, and the outgoing neutron 

energy, in the laboratory frame (described here, Equation 2.42). 

𝑑𝜎

𝑑𝐸′𝑑𝜃
 =

𝑑𝜎

𝑑𝐸′𝑑𝜃
 (𝐸, 𝜃, 𝐸′) 

Equation 2.42: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝐸′
), the incoming neutron 

energy (E), the outgoing neutron angle, and the outgoing neutron energy (𝐸′) for the laboratory 3D tabular 

distribution. 

 

2.6.8 G4STORK 

2.6.8.1 Summary 

G4STORK, which stands for Geant4 Stochastic Reactor Kinetics, was initially created by 

Liam Russell, under the supervision of Dr. Adriaan Buijs at McMaster University [1]. 

The purpose of G4STORK was to create a truly time dependent Monte Carlo reactor 

physics code, using minimal assumptions. This would allow G4STORK to model rapid 

transients (such as accident scenarios) with as much accuracy as possible, which for 

reasons described in the previous subchapter 1.1, is greatly needed by the nuclear 

industry. G4STORK and GEANT4 are both open source projects, allowing researchers to 

easily acquire them for free and make changes to the code as they see fit. Both GEANT4 

and G4STORK have been created using a strict hierarchy structure to make it easier for 

developers to insert their own code so that they can both be adapted to a wide range of 

situations with minimal effort. 

Starting with an initial guess as to what the equilibrium neutron position, and energy 

distribution will look like, the G4STORK code works by tracking individual neutrons 

through a geometry provided by the user in steps of time. At each time step, the important 

parameters such as Keff (calculated using the dynamic criticality method shown in 

Equation 2.11) and Shannon entropy are determined and the neutron population is 

renormalized to the initial number of neutrons. These important parameters are not 

recorded into the final results until the spatial distribution of the neutrons has converged. 

Since G4STORK is a stochastic simulation, the processes that the neutrons undergo as 

they move throughout the geometry are randomly selected from a list of potential 

processes that are weighted based on their cross-section. This is dependent on the isotopic 
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composition of the material that the neutron is currently traversing and the kinetic energy 

of the neutron relative to the nuclei in its path. While the composition of the material is 

defined in the geometry by the user, the relative kinetic energy of the neutron to the 

nuclei is determined by the on the fly Doppler broadening algorithm described in 2.6.2.  

2.6.8.2  Convergence 

As discussed in 2.6.3, the neutron population is often assumed to be converged, when the 

Shannon entropy of the neutron spatial distribution is constant between simulation 

iterations. In G4STORK the Shannon entropy is said to be constant when the Shannon 

entropies of each of the last 25 time steps do not deviate from the mean Shannon entropy 

(taken from the last 25 time steps) beyond a set limit (by default the limit is 2%). As 

mentioned in the summary, G4STORK does not begin collecting results until the neutron 

population has been flagged as converged. The larger the difference between the initial 

neutron population and the converged neutron population, the longer it will take for 

convergence to occur. Thus, for the sake of code performance, it is important that the user 

choose an initial neutron population that is as close to the converged neutron population 

as possible. 

2.6.8.3 Assumptions 

2.6.8.3.1 Unresolved Resonance Regime 

When the width of the resonant peaks in the cross-section data become too thin to be 

measured precisely, G4STORK uses the average cross-section instead. This is a fairly 

minor assumption for nuclear reactor research, since this effect occurs at energies much 

larger than the usual neutron energy within a nuclear reactor. 

2.6.8.3.2 Discretization of Time 

While some event can occur continuously with time in G4STORK, such as particle 

creation, changes to the geometry can only occur in between time steps. Thus during a 

time step, important feedback effects such as changes in fuel temperature or composition 

cannot occur. The inaccuracy of this assumption becomes negligible, if the time step used 

is significantly smaller than the period of time needed for the effect (heating, burn up, …) 

to significantly impact the results. 

2.6.8.4 The NeutronHP Model of GEANT4 

In this section we will describe the different distributions used by the NeutronHP model 

(described here, 2.6.5) of GEANT4, to sample the outgoing neutron energy, and angle, 

for each neutron interaction. The neutron capture reaction is ignored since it only 

produces particles other than neutrons, which are not of interest for this project. In 

general, each of these distributions work by first calculating the differential cross-sections 

(probability of occurrence), for each of the possible incoming and outgoing neutron 

combination. Then, one of the possible combinations is randomly chosen, with more 

probable combinations being chosen proportionately more often. Since the last step of 
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this process is the same for all of the distributions, only the calculation of the differential 

cross-section will be discussed. The preprocessed ENDF files used by the NeutronHP 

model in GEANT4 are stored in the G4NDL library. For a full description about how the 

final state data is stored in the G4NDL library, refer to our manual about the decryption 

of G4NDL [16].  

2.6.8.4.1 Elastic Scattering 

There are two different representations used by GEANT4 to determine the outcome of 

elastic scattering [17]. Both of the representations describe the relationship between the 

differential cross-section (probability of occurrence) and the deflection angle. The energy 

of the outgoing neutron is obtained from the laws of conservation after the deflection 

angle has been sampled.  

The first of representation is the tabular distribution. In this case the differential cross-

section is interpolated from a two dimensional table, indexed by the incoming neutron 

energy and the cosine of the deflection angle (described here, Equation 2.43). 

𝑑𝜎

𝑑𝜃
 =

𝑑𝜎

𝑑𝜃
 (𝐸, 𝑐𝑜𝑠𝜃) 

Equation 2.43: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝜃
), the cosine of the 

scattering angle (𝑐𝑜𝑠𝜃), and the incoming neutron energy (E) for the tabular distribution. 

The second representation used is a series of Legendre polynomials, shown below in 

Equation 2.44. This representation comes from the derivation of neutron scattering using 

the partial waves method in the framework of quantum mechanics [18]. The Legendre 

polynomial coefficients (𝑎𝑙(𝐸)) used in Equation 2.44, are interpolated from a one 

dimensional table indexed by the incoming neutron energy. 

2𝜋

𝜎(𝐸)
×

𝑑𝜎

𝑑𝜃
  (𝐸, 𝑐𝑜𝑠𝜃) = ∑

2𝑙 +  1

2

𝑛

𝑙=0

𝑎𝑙(𝐸)𝑃𝑙(𝑐𝑜𝑠𝜃) 

Equation 2.44: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝜃
), the cosine of the 

scattering angle (𝑐𝑜𝑠𝜃), and the incoming neutron energy (E) for the Legendre polynomial series 

representation. Note: l represents the order of the Legendre polynomial, n represents the number of 

Legendre polynomials, al represents the coefficient of the lth Legendre polynomial, and Pl is the lth 

Legendre polynomial. 

2.6.8.4.2 Fission 

For the fission process, three different representations are used to describe the outgoing 

neutron angular distribution, and six different representations used to describe the 

outgoing neutron energy distribution [17].  
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2.6.8.4.2.1 Outgoing Angular Representations 

The first representation of the outgoing neutron angular distribution, is the tabular 

distribution. In this case the differential cross-section is interpolated from a two 

dimensional table, indexed by the incoming neutron energy, and the cosine of the 

outgoing neutron angle (described here, Equation 2.45). 

𝑑𝜎

𝑑𝜃
 =

𝑑𝜎

𝑑𝜃
 (𝐸, 𝑐𝑜𝑠𝜃) 

Equation 2.45: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝜃
), the cosine of the 

scattering angle (𝑐𝑜𝑠𝜃), and the incoming neutron energy (E) for the tabular distribution. 

The second representation of the outgoing neutron angular distribution, is a series of 

Legendre polynomials, shown below in Equation 2.46. This representation comes from 

the derivation of neutron scattering using the partial waves method in the framework of 

quantum mechanics [18]. The Legendre polynomial coefficients (𝑎𝑙(𝐸)) used in Equation 

2.46, are interpolated from a one dimensional table indexed by the incoming neutron 

energy. 

2𝜋

𝜎(𝐸)
×

𝑑𝜎

𝑑𝜃
  (𝐸, 𝑐𝑜𝑠𝜃) = ∑

2𝑙 +  1

2

𝑛

𝑙=0

𝑎𝑙(𝐸)𝑃𝑙(𝑐𝑜𝑠𝜃) 

Equation 2.46: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝜃
), the cosine of the 

scattering angle (𝑐𝑜𝑠𝜃), and the incoming neutron energy (E) for the Legendre polynomial series 

representation. Note: l represents the order of the Legendre polynomial, n represents the number of 

Legendre polynomials, al represents the coefficient of the lth Legendre polynomial, and Pl is the lth 

Legendre polynomial. 

The third representation of the outgoing neutron angular distribution, is an isotropic 

distribution. As can be seen in Equation 2.47, every possible outgoing neutron angle in 

the center of mass reference, is given an equal probability, and thus is equally likely to 

occur. 

𝑑𝜎

𝑑𝜃
 = 𝐶𝑜𝑛𝑠𝑡 

Equation 2.47: Shows how the differential cross-section (
𝑑𝜎

𝑑𝜃
) is calculated for an isotropic distribution. 

2.6.8.4.2.2 Outgoing Energy Representations 

The first representation of the outgoing neutron energy distribution, is the tabular 

distribution. In this case the differential cross-section (
𝑑𝜎

𝑑𝐸′
) is interpolated from a two 

dimensional table, indexed by the incoming neutron energy, and the outgoing neutron 

energy (described here, Equation 2.48). 
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𝑑𝜎

𝑑𝐸′
 =

𝑑𝜎

𝑑𝐸′
 (𝐸, 𝐸′) 

Equation 2.48: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝐸′
), the incoming neutron 

energy (E), and the outgoing neutron energy (𝐸′) for the tabular distribution. 

The second representation of the outgoing neutron energy distribution, is the general 

evaporation spectrum shown in Equation 2.49. The multiplier (X(ε)) shown in Equation 

2.49, is randomly sampled from a multiplier probability distribution (X(x), which is 

defined in the G4NDL data file). This X(x) distribution is what defines the shape of the 

outgoing neutron energy distribution at every incoming energy. The T(E) variable shown 

in Equation 2.49, is interpolated from a one dimensional table, indexed by the incoming 

neutron energy. 

𝐸′ = X(ε) × T(E) 

Equation 2.49: Shows the relationship between the outgoing neutron energy, the sampled outgoing neutron 

energy multiplier (𝑋(𝜀)), and the interpolated outgoing neutron energy multiplier (𝑇(𝐸)). 

The third representation of the outgoing neutron energy distribution, is the Maxwell 

fission spectrum shown in Equation 2.50. This representation is derived in the framework 

of quantum mechanics, by treating the constituents of the nucleus as particles in a free gas 

[14]. The average kinetic energy of the constituents is determined by the effective 

temperature of the nucleus (the same way the kinetic energy of molecules in a material 

are determined using the materials temperature). The effective temperature (𝛩(𝐸)) used 

in Equation 2.50, is interpolated from a one dimensional table indexed by the incoming 

neutron energy. 

𝑑𝜎

𝑑𝐸′
 ∝  √𝐸′𝑒𝐸′/𝛩(𝐸)  

Equation 2.50: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝐸′
), the effective 

temperature (𝛩(𝐸)), the incoming neutron energy (E), and the outgoing neutron energy (𝐸′) for the 

Maxwell fission spectrum. 

The fourth representation of the outgoing neutron energy distribution, is the evaporation 

spectrum shown in Equation 2.51. This representation was also derived by treating the 

constituents of the nucleus as particles in a free gas. Except it uses different fitting 

function around the exponent to better match different experimental data [15]. The 

effective temperature (𝛩(𝐸)) used in Equation 2.51, is interpolated from a one 

dimensional table indexed by the incoming neutron energy. 
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𝑑𝜎

𝑑𝐸′
 ∝  𝐸′𝑒𝐸′/𝛩(𝐸)  

Equation 2.51: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝐸′
), the effective 

temperature (𝛩(𝐸)), the incoming neutron energy (E), and the outgoing neutron energy (𝐸′) for the 

evaporation spectrum. 

The fifth representation of the outgoing neutron energy distribution, is the energy 

dependent Watt spectrum shown in Equation 2.52. This representation was also derived 

by treating the constituents of the nucleus as particles in a free gas. Except it uses 

different fitting function around the exponent to better match different experimental data 

[15]. The parameters a(E) and b(E) used in Equation 2.52, are interpolated from separate 

one dimensional tables indexed by the incoming neutron energy. 

𝑑𝜎

𝑑𝐸′
 ∝  𝐸′𝑒−𝐸′/𝑎(𝐸) sinh √𝑏(𝐸)𝐸′ 

Equation 2.52: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝐸′
), parameter 𝑎(𝐸) , 

parameter 𝑏(𝐸), the incoming neutron energy (E), and the outgoing neutron energy (𝐸′) for the energy 

dependent Watt spectrum. 

The final representation of the outgoing neutron energy distribution, is the Madland Nix 

spectrum shown in Equation 2.53. This representation is derived by treating the 

constituents of the nucleus as particles in a free gas, and by taking the different sizes of 

the fission products into account [15]. The heavy and light fragment kinetic energies (𝐾𝑙 

and 𝐾𝐻) used in Equation 2.53, are assumed to be independent of the incoming neutron 

energy. The effective temperature (𝛩(𝐸)) used in Equation 2.53, is interpolated from a 

one dimensional table indexed by the incoming neutron energy. 

𝑑𝜎

𝑑𝐸′
=

1

2
(𝑔(𝐸′, 𝐾𝑙) +  𝑔(𝐸′, 𝐾𝐻)) 

𝑔(𝐸′, 𝐾) =
1

3√𝐾𝛩
(𝑢 2

3
2 𝐸1(𝑢2) − 𝑢 1

3
2 𝐸1(𝑢1) +  𝛾 (

3

2
, 𝑢2) − 𝛾 (

3

2
, 𝑢1)) 

 𝑢1(𝐸′, 𝐾)  =
(√𝐸′ − √𝐾)

2

𝛩
 

𝑢2(𝐸′, 𝐾)  =
(√𝐸′ + √𝐾)

2

𝛩
 

Equation 2.53: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝐸′
), the kinetic energy of the 

light fission fragment (Kl), the kinetic energy of the heavy fission fragment (KH), The effective temperature 

(𝛩(𝐸)), the incoming neutron energy (E), and the outgoing neutron energy (𝐸′) for the energy dependent 

Watt spectrum. Note E1(x) is the exponential integral function, and 𝛾(x) is the incomplete gamma function. 
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2.6.8.4.3 Inelastic Scattering 

For the inelastic process the same angular representations and energy representations can 

be used as the fission process shown above 2.6.8.4.2 [17]. However, there are also five 

combined angular and energy representations. 

The first representation of the combined outgoing neutron angular and energy 

distribution, is the isotropic emission distribution. As can be seen in Equation 2.54, every 

possible outgoing neutron angle in the center of mass reference, is given an equal 

probability, and thus is equally likely to occur. The outgoing neutron energy is then 

determined using the Qvalue of the reaction and the conservation laws. 

𝑑𝜎

𝑑𝜃
 = 𝐶𝑜𝑛𝑠𝑡 

Equation 2.54: Shows how the differential cross-section (
𝑑𝜎

𝑑𝜃
) is calculated for an isotropic emission 

distribution. 

The second representation of the combined outgoing neutron angular and energy 

distribution, is the discrete two-body kinematics distribution. As can be seen in Equation 

2.55, the outgoing angle probability is determined using a series of Legendre 

polynomials. This representation comes from the derivation of neutron scattering, using 

the partial waves method, in the framework of quantum mechanics [18].The outgoing 

neutron energy is then determined using the Qvalue of the reaction and the conservation 

laws. 

2𝜋

𝜎(𝐸)
×

𝑑𝜎

𝑑𝜃
  (𝐸, 𝑐𝑜𝑠𝜃) = ∑

2𝑙 +  1

2

𝑛

𝑙=0

𝑎𝑙(𝐸)𝑃𝑙(𝑐𝑜𝑠𝜃) 

Equation 2.55: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝜃
), the cosine of the 

scattering angle (𝑐𝑜𝑠𝜃), and the incoming neutron energy (E) for the discrete two-body kinematics 

representation. Note: l represents the order of the Legendre polynomial, n represents the number of 

Legendre polynomials, al represents the coefficient of the lth Legendre polynomial, and Pl is the lth 

Legendre polynomial. 

The third representation of the combined outgoing neutron angular and energy 

distribution, is the N-body phase-space distribution. The outgoing neutron energy is 

sampled from the probability distribution described in Equation 2.56. The maximum 

outgoing neutron energy (𝐸𝑚𝑎𝑥) is determined using the number of outgoing products, the 

total mass of the outgoing products, Qvalue of the reaction, and the conservation laws. 

The outgoing neutron angle is sampled from an isotropic distribution (see Equation 2.54). 

𝑑𝜎

𝑑𝐸′
 (𝐸′) = √𝐸 (𝐸𝑚𝑎𝑥 − 𝐸)

3𝑛
2

−4
 



Page 50 of 113 

 

Equation 2.56: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝐸′), the incoming neutron 

energy (E), the maximum outgoing neutron energy (𝐸𝑚𝑎𝑥), the number of products (n), and the outgoing 

neutron energy (𝐸′) for the N-body phase-space distribution. 

The fourth representation of the combined outgoing neutron angular and energy 

distribution, is the center of mass three dimensional tabular distribution. In this case the 

differential cross-section (
𝑑𝜎

𝑑𝐸′𝑑𝜃
), is interpolated from a three dimensional table, indexed 

by the incoming neutron energy, the outgoing neutron energy, and the outgoing neutron 

angle, in the center of the mass frame (described here, Equation 2.57). 

𝑑𝜎

𝑑𝐸′𝑑𝜃
 =

𝑑𝜎

𝑑𝐸′𝑑𝜃
 (𝐸, 𝐸′, 𝜃) 

Equation 2.57: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝐸′
), the incoming neutron 

energy (E), the outgoing neutron energy (𝐸′), and the outgoing neutron angle for the center of mass 3D 

tabular distribution. 

The final representation of the combined outgoing neutron angular and energy 

distribution, is the laboratory three dimensional tabular distribution. In this case the 

differential cross-section (
𝑑𝜎

𝑑𝐸′𝑑𝜃
), is interpolated from a three dimensional table, indexed 

by the incoming neutron energy, the outgoing neutron angle, and the outgoing neutron 

energy, in the laboratory frame (described here, Equation 2.58). 

𝑑𝜎

𝑑𝐸′𝑑𝜃
 =

𝑑𝜎

𝑑𝐸′𝑑𝜃
 (𝐸, 𝜃, 𝐸′) 

Equation 2.58: Shows the relationship between the differential cross-section (
𝑑𝜎

𝑑𝐸′
), the incoming neutron 

energy (E), the outgoing neutron angle, and the outgoing neutron energy (𝐸′) for the laboratory 3D tabular 

distribution. 

2.7 Why Validate G4STORK? 
G4STORK is still a relatively young code and thus does not have the decades of case by 

case validation that MCNP has. So even though G4STORK has the potential to become a 

valuable tool for modeling accident scenarios and other transient case, it will not be used 

by researchers unless they trust the results it produces. So the validation of G4STORK is 

top priority for the advancement of the code. The goal of validating G4STORK wasn’t 

just to ensure that using the same assumptions that G4STORK would produce the same 

answers as a trusted code, we also wanted to show that using better assumptions 

(G4STORK’s default minimal assumptions) G4STORK would be able to produce more 

accurate results.  

The SCWR was chosen as the model that would be used to benchmark G4STORK. Part 

of the reason that the SCWR was selected was simply because our research group was 

being funded on the condition that we investigate it. However, that was not the only 
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reason. The high Keff of the SCWR lattice cell, made it ideal for testing the cost in 

accuracy of using the generational criticality method instead of the dynamic criticality 

method. Another reason that the SCWR was selected, was because of the large amount of 

results available for us to compare those produced by G4STORK against (due to the 

benchmark paid for by CNL). 

Since there was only enough time for G4STORK to be benchmarked against one code in 

such a detailed fashion, selecting the appropriate code was crucial. In order for a 

comparison of the methodology to be possible, the selected software had to be Monte 

Carlo. Since at the end of this comparison, the validity of G4STORK would depend on 

the reputation of the code chosen, the second most important trait of the candidate 

software was its notoriety (how trusted and popular is it in the scientific community). The 

third most important characteristic of the chosen software would be its similarity to 

G4STORK (similarity of its assumptions and methodology). The more in common the 

two codes had the less adjustments that would have to be made to G4STORK to make it 

so. MCNP6 was judged as the code that filled these requirements the best. While some of 

its methodology does differ from that of G4STORK, most notably the calculation of Keff, 

MCNP6 is one of the most widely used and respected codes in the nuclear physics 

community. Both MCNP and G4STORK primarily use the ENDF libraries, which limits 

any differences between the physics methodology of both codes, and allows the data sets 

to be manipulated and converted. 

2.8 Methods for Comparing Physics Models 
In order to compare G4STORK to MCNP6.1, we needed a method for analyzing the 

difference between the NeutronHP models of the two programs. 

2.8.1 Results Storage Format 

However, before a scheme for analyzing the results of the two different NeutronHP 

models could be determined, a storage format had to be chosen for the results. The main 

criterion for choosing the format are as follows. The chosen format of the results had to 

be optimized for the speed at which it could be analyzed by the computer, but still have 

obvious physical meaning to the reader. The chosen format also had to be capable of 

accurately representing the energy, and multiplicity of the outgoing neutrons as functions 

of incoming neutron energy (since this was of particular interest to us). The chosen 

format had to allow for easy visual comparisons between different isotopes and reactions 

for the same outgoing neutron property. 

Based off this criterion, it was decided that the outgoing neutrons (the results) would be 

recorded into two dimensional histograms, indexed by the incoming neutron energy, and 

an outgoing neutron property. The bin widths for the outgoing neutron properties were 

kept constant for all isotopes and reactions to allow for faster analysis of the data and 

simpler visual comparisons. The total number of bins used in each histogram was also 
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kept constant to ensure that the resolution of the resulting images would be suitable for 

viewing. This type of representation of the results is in line with what other researchers 

(including SLAC [19]) have used to validate or compare the NeutronHP model of 

GEANT4.  

2.8.2 Methods for Measuring the Statistical Distance 

The primary purpose of analyzing the results was to quantify the differences in the 

outgoing neutron property distributions created by the different NeutronHP models, when 

the same target isotope, neutron interaction, and incoming neutron energy were used. To 

do this, a method for quantifying the statistical distance between the outgoing neutron 

property distributions (stored in each row (incoming neutron energy) of the recorded two 

dimensional histograms) had to be chosen. Two statistical methods commonly used for 

this purpose are the Pearson's chi-squared test, and the two-sample Kolmogorov–Smirnov 

test. The first step for all three of these test is to generate a number (we will refer to as Y) 

that represents the difference between the two distributions. Then Y is passed into the 

relevant cumulative probability distribution function, along with the number of data 

points (bins), to determine the probability of the difference between the two datasets 

being less than Y (this is equal to one minus the p-value). 

2.8.2.1 Pearson's Chi-Squared Test 

The Pearson's chi-squared test quantitatively assess the difference of two distributions 

using Equation 2.59. 

𝑥2 = ∑(𝑂𝑖 − 𝐸𝑖)2/𝐸𝑖 

𝑛

𝑖=1

 

Equation 2.59: Shows the relationship between the generated difference (𝑥2), the observed dataset (𝑂𝑖), 

and the expected dataset (𝐸𝑖). Note: ‘n’ is equal to the number of points in both datasets.  

The cumulative distribution function used to determine the probability of the difference 

being less than 𝑥2 for this method, is shown in Equation 2.60. 

𝐹(𝑥, 𝑘) =
𝛾 (

𝑘
2 ,

𝑥
2)

ᴦ (
𝑘
2)

 

Equation 2.60: Shows the relationship between the probability of the difference being less than 

𝑥2 (𝐹(𝑥, 𝑘)), the square root of the generated difference (x), and the degrees of freedom (k=n-1). Note: 

𝛾 (
𝑘

2
,

𝑥

2
) is the lower incomplete gamma function, and ᴦ (

𝑘

2
) is the upper incomplete gamma function. 

By squaring the difference of the bin values, Pearson's chi-squared test gives more weight 

to large differences in a few bins then small differences in many bins. This behavior is 

important because, it minimizes the effect of small variations in the data caused by 

random sampling. Since the squared difference is divided by the expected value, the 

https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Cumulative_distribution_function
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expected dataset cannot contain any zeros. Unfortunately, since the bin widths of the 

outgoing neutron properties are fixed for all incoming neutron energies; we cannot 

enforce that there will not be bins containing zeros in the expected dataset. Thus Pearson's 

chi-squared test is unsuitable for our purposes. 

2.8.2.2 The Kolmogorov–Smirnov Test 

The Kolmogorov–Smirnov test calculates the difference of two distributions using 

Equation 2.61. 

𝐷 = sup(|𝑂𝑖 − 𝐸𝑖|) 

Equation 2.61: Shows the relationship between the generated difference (𝐷), the observed dataset (𝑂𝑖), and 

the expected dataset (𝐸𝑖). Note: sup() is the supremum function which essentially finds the maximum value 

in the inputted dataset.. 

The cumulative distribution function used to determine the probability of the difference 

being less than 𝐷 for this method, is shown in Equation 2.62. 

𝐹(𝑥 = 𝐷 × √𝑛) =
√2𝜋

𝑥
∑ 𝑒−(2𝑖−1)2𝜋2/(8𝑥2)

∞

𝑖=1

 

Equation 2.62: Shows the relationship between the probability of the difference being less than 𝐷 (𝐹(𝑥)), 

the generated difference (D), and the number of bins (n). 

By simply taking the difference of the two datasets, the Kolmogorov–Smirnov test avoids 

errors caused by dividing by zero, and is efficient to calculate. However, the 

Kolmogorov–Smirnov test only takes the maximum difference between any two bins in 

the entire distribution into account. Which means in our case that it unfairly weights large 

but rare discrepancies caused by physical effects (such as energy boundaries) or numeric 

imprecision. Thus Pearson's chi-squared test is unsuitable for our purposes. 

2.8.2.3 Frobenius Normalization Method 

Instead a less commonly used method of taking the Frobenius norm of the difference 

matrix (described by Equation 2.63) was implemented. Note, that each row of both the 

observed dataset (Oij), and the expected dataset (Eij), are normalized to one. 

𝐷 =
√∑ ∑ (𝑂𝑖𝑗 − 𝐸𝑖𝑗)

2𝑚
𝑗=1

𝑛
𝑖=1

𝑛
 

Equation 2.63: Shows the relationship between the generated difference D, the observed dataset (𝑂𝑖𝑗), and 

the expected dataset (𝐸𝑖𝑗). Note: ‘n’ is equal to the number of rows (incoming neutron energies) in both 

datasets.  

This method has similar properties as Pearson's chi-squared test discussed earlier, where 

large differences are weighted more than small differences. Like the Kolmogorov–

https://en.wikipedia.org/wiki/Cumulative_distribution_function
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Smirnov test, it is capable of handling datasets with zeros in it. It also quantifies the 

difference of the entire two dimensional histograms, instead each row individually like 

the previous methods. The main drawback of this approach was that it does not provide 

any criteria that would allow us to quantitatively determine whether the two distributions 

are the same. To compensate for this, visualizations of the histograms that were 

determined to differ the most were created, allowing the user to visually assess whether 

the distributions differed beyond a reasonable limit. The effect of minor discrepancies in 

the shape of the outgoing neutron property distributions, was found to have an 

insignificant effect on the reactor coefficients being compared. The absence of having a 

mathematical framework to explicitly prove whether two datasets came from the same 

distribution was deemed acceptable for the purposes of this thesis. 

 Contribution and Methodology 
In this section of the report, we will cover the methodology used to validate G4STORK, 

and model the SCWR reactor. In particular, we will cover the software created to meet 

the goals of this project, how the SCWR was modelled, and how G4STORK was 

validated. 

3.1  Improving the Capabilities of G4STORK 
Several extensions had to be programmed into G4STORK, in order for us to model the 

SCWR reactor, and validate G4STORK. In this section we will discuss the most 

important extensions made to G4STORK for this project. 

3.1.1 Custom Boundary Conditions 

The SCWR lattice cell model relies upon quarter symmetry as a way of improving the 

efficiency. For this to be physically accurate, a periodic boundary condition which rotates 

the position and velocity of the neutron, or a reflective boundary condition was needed. 

G4STORK only allowed for all boundaries to be either, a zero boundary condition (all 

particles that reach this boundary are killed) or a periodic boundary condition, which 

moved neutrons from one boundary to the opposite boundary. In order to allow 

G4STORK meet the needs of a larger variety of models, new boundary conditions were 

implemented along with a new structure for implementing new boundary conditions. The 

previous periodic boundary was updated so that the user could specify which boundaries 

would be linked together (how the neutron position and velocity will be transformed), and 

a new reflective boundary condition was implemented in G4STORK as well. G4STORK 

was also modified so that the user can select which surfaces followed which boundary 

conditions (some surfaces could be periodic, some could be reflective and some could be 

a zero boundary condition). Finally, if the above options were not sufficient to cover the 

needs of the user, by simply adding the 3D transform matrix required by the user into the 

provided template class, the user can easily implement a custom boundary condition. 
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3.1.2 Uniform Source Distribution 

G4STORK does not start collecting results until the neutron population has met the 

convergence criteria. This means that the faster the neutron population meets this 

criterion the faster the user is able to get results. To make the neutron population 

converge as fast as possible the user must define an initial neutron population that is close 

to that of the converged population. While G4STORK already has some techniques for 

expediting this process (using the converged source distribution from a previous 

simulation), the user was only allowed to select a point source or a uniform spatial 

distribution throughout the entire geometry. In order to improve the performance of the 

SCWR model, the uniform source distribution was updated so that the user can specify 

the region over which the uniform source distribution will occur.  

3.1.3 Criticality Calculation Options 

While G4STORK uses the dynamic criticality method to calculate criticality, many other 

codes use the generational or the alpha eigenvalue criticality method [1]. For instance, 

MCNP, the code against which we wish to validate G4STORK, uses the generational 

criticality method. The generational criticality method is only accurate (equivalent to the 

dynamic criticality method) when Keff is near one (as explained here, 2.6.1.2). Since this 

is not the case in a lattice cell calculation, the generational criticality method had to be 

added to G4STORK in order for the comparison between the two codes to proceed.  

3.1.4 Pre-Doppler Broadening 

By default, G4STORK uses an on the fly Doppler broadening algorithm (explained here, 

2.6.2). Unfortunately, the SCWR design uses very high temperatures, which means that a 

lot of the simulation time is spent in the on the fly Doppler broadening algorithm. To fix 

this problem, an interface was created with in G4STORK that would allow the use of 

cross-section data at temperatures higher than 0K (the default G4NDL temperature). By 

using temperatures equal to (or close to) those of the materials used in the SCWR 

geometry, the on the fly Doppler broadening algorithm could be avoided, dramatically 

improving the speed of G4STORK. To create these higher temperature cross-section data 

files, a program called dopplerbroadpara (described in 3.2.3) was used.  

3.2 Extending the Softwarre Complement of G4STORK 
In order for us to model the SCWR reactor, and validate G4STORK, many new programs 

had to be created. In this section we will discuss the most important programs created for 

the purpose of this project. 

3.2.1  Comparing Geometries 

During the creation of a new geometry in G4STORK, much of the coder’s time is spent 

creating the material list and ensuring that it is correct. This is a very tedious and error 

prone process which limits the speed at which new cases can be modelled in G4STORK. 

To help speed up this process, the ExtractMaterialComposition program was created. This 

program works by reading in a geometry source and header file in the GEANT4 format 
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(same as G4STORK), extracting all of the relevant material data, and writing the 

extracted data to a text file. Using the created text file allows the user to ignore 

unnecessary data, and specify the data formats (ex: weight% vs abundance). This makes it 

easier for the user to compare the material information contained by the geometry file, to 

that of the reference manual which the geometry was built from. 

Additionally, the program GEANT4MCNPMatComp was created to automatically 

compare the material composition of a GEANT4 geometry file to a geometry contained in 

an MCNP input file. The user must first generate a material composition file from the 

G4STORK geometry file using ExtractMaterialComposition, and another from the 

MCNP input file using ExtractMCNPMaterialComp. Then the user passes these two files 

to GEANT4MCNPMatComp program. GEANT4MCNPMatComp compares the material 

data contained by the two files, and then writes the data from both files, along with the 

differences between them, to a text file. This program further streamlined the process of 

validating G4STORK against MCNP. 

3.2.2 Converting Neutron Data Libraries 

One of the most commonly blamed sources for discrepancy between codes is the different 

neutron interaction libraries used. Even if the data libraries are based off the same data, as 

is the case with GEANT4 and MCNP, differences can still occur. This is largely due to 

the differing format and precision with which each library represents the original 

experimental data. In order to alleviate this as a concern when comparing G4STORK to 

MCNP, a program called ConvertMCNPToG4NDL was created to convert the MCNP 

libraries into the GEANT4 format. The output of ConvertMCNPToG4NDL is a series of 

temperature directories each of them containing directories for every neutron interaction 

with all the relevant isotope cross-section data and final state data (distributions of the 

out-going neutrons properties) files inside. Since GEANT4 was only set up to extract the 

G4NDL library from a particular directory, a new interface had to be created in 

G4STORK, to allow the user to select the directory containing the final state data (i.e. 

G4NDL or the converted data) that they wanted G4STORK to use. 

 

3.2.3 Creating Higher Temperature Cross-section Data 

3.2.3.1 dopplerbroadpara  

dopplerbroadpara was created to pre-Doppler broaden the cross-section data to the 

material temperatures that are used in the simulation. This allows the simulation to retain 

the accuracy of using Doppler broadened cross-section data, without the overhead 

incurred by an on the fly Doppler broadening algorithm. The program works by first 

extracting a list of the isotope names and temperatures, used in the geometry to be 

simulated. Then, it takes in this list of isotopes and temperatures, and iteratively assigns 

the task of broadening the specified isotope data to each of the available processor cores. 

The algorithm used to broaden the data is the same as the on the fly Doppler broadening 



Page 57 of 113 

 

algorithm described in 2.6.2. The broadened data is then stored in directories named after 

the temperature of the data so that G4STORK can figure out which data to use. 

3.2.3.2 InterpCSData 

MCNP offers the neutron cross-section data at 293.6K, 600K, 900K, 1200K, 2500K. In 

order to achieve temperatures in between these values, it was common practice to linearly 

interpolate the cross-section distribution from the two cross-section files with the closest 

temperature. In order for G4STORK to better match the methodology of MCNP 

simulations using this technique, the program InterpCSData was created. InterCSData 

works the exact same way as dopplerbroadpara (described here 3.2.3.1), except that new 

cross-section data is interpreted from the two cross-section files with the closest 

temperatures. 

3.3 Modelling the SCWR in G4STORK 
In this section we will outline all of the simplifications and assumptions, necessary for 

modeling the SCWR. 

3.3.1 Geometry Simplifications 

The point of the SCWR model, was to measure changes in the reactivity, along a central 

fuel channel, for various coolant cases. By choosing a fuel channel near the center of the 

core, periodic boundary conditions (zero neutrons escaping the core) could be assumed, 

simplifying the problem geometry to just one fuel channel. Fluctuations in the reactivity 

along the fuel assembly were expected, because of the changing temperature and density 

of the fuel channel components with height. Unfortunately, most reactor physics software 

require that materials have uniform properties. To accommodate this issue, the fuel 

channel was split up into 50cm chunks (lattice cells) along the z-axis, with each material 

being given its average temperature and density within the chunk, as a constant property. 

By taking advantage of the rotational symmetry of the SCWR lattice cells, a fraction of 

the lattice cell could be used to represent the whole cell, and in the case of G4STORK 

only ¼ of each lattice cell was simulated as can be seen in Figure 3.1. For the purpose of 

the validation of G4STORK against MCNP, only the lattice cell at 1.75m from the bottom 

of the fuel assembly was considered. 
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Figure 3.1: Shows the quarter lattice cell simulated using G4STORK 

3.3.2 Material Composition Check 

Small deviations in the isotopic composition of materials between model implementations 

is a common source for discrepancies between simulations. This can be caused by 

differing level of data input precision by the user, the lack of certain isotopes for certain 

codes, differing definitions of natural abundance, or isotope mass internal to the code. To 

ensure that this was not the case for the comparison of MCNP6 and G4STORK, the 

GEANT4MCNPMatComp program (described in 3.2.1) was used to pinpoint any 

differences between isotopic composition of the MCNP and G4STORK geometries so 

that they could be corrected.  

3.3.3 Removal of Doppler Broadening 

Since the SCWR uses materials with very large temperatures, on the fly Doppler 

broadening takes up a large percentage of the simulation time. Using the 

dopplerbroadpara code (described in 3.2.3.1) high temperature cross-section data files 

were created for each unique isotope and temperature combination in the reactor. By 

passing these files in through the newly created interface (described in 3.1.4), we were 

able to achieve a 10 times speed up with the code. This step was essential for us to be able 

to run the SCWR model with the required accuracy, in the available time frame. 

3.3.4 Simulation Parameters 

Whenever a new model is created within G4STORK, various simulation settings have to 

be adjusted, for the user to get the best compromise of speed and accuracy. The 

simulation parameters used for the initial modelling of the SCWR lattice cell are shown in 

Table 3.1. 

Moderator 

Pressure Tube 

Outer Liner 

Insulator 

Inner Liner 

Coolant 

Cladding 

Outer Fuel 

Inner Fuel 

Central Flow Tube 

Central Coolant 
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Simulation Parameters Value 

Lattice Cell Height 1.75m 

Keff calculation method dynamic criticality method 

# of time steps 100 

Minimum convergence steps 25 

Time step duration 100μs 

# of neutrons per time step 300000 

Initial neutron source position Uniform through outer coolant and fuel 

Initial neutron energy 

distribution 

Gaussian distribution centered on 2.0MeV, with a 

standard deviation of 0.5MeV 

Delayed neutron creation Instantaneous (created with the prompt neutrons) 

Boundary conditions Reflective (equivalent to a rotational periodic 

condition) 

Neutron reaction library G4NDL (the GEANT4 default mainly built off 

ENDF)GEANT4MCNP 

Cross-section file library User generated high temperature files 

Table 3.1: Lists the run parameters used for the initial simulation of the SCWR lattice cell 

The initial source distribution was chosen to be representative of a new fission generation 

to reduce the number of time steps needed for the neutron population to converge. The 

delayed neutrons were set to be created immediately following the fission process with 

the prompt neutrons. This approximation significantly reduced the amount of simulation 

time by eliminating the time required to build up a stable precursor population. It also 

ensures that the delayed neutron population will remain a fixed percentage of the total 

neutron population (~0.64% in U-235). However, since the cases being simulated are well 

beyond prompt critical, the delayed neutron population would in reality become a very 

insignificant proportion of the total neutron population. Thus this is very inaccurate 

assumption to make for the cases being considered. This approximation is also used by 

default in MCNP, thus by making it we better matching the methodology of the two 

codes.  

As described earlier (in 3.3.1 and 3.3.3), periodic boundary conditions and pre-Doppler 

broadened cross-section data were used to significantly reduce the simulation time. In the 

case of this lattice cell, the Keff is much greater than 1, and the fission generation lifetime 
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will be equivalent to the prompt neutron lifetime (on the order of microseconds). Thus the 

time step had to be limited to 100μs to keep the neutron population from exploding. 

Finally, in order to achieve a Keff with a statistical uncertainty less than 0.5mk, 100 times 

steps with 300000 neutrons per time step, had to be used. 

3.4 Validating the G4STORK Model 
The initial results of G4STORK were outliers compared to the results of the other codes 

used in the benchmark study (described here, 1.3). This is partly what gave rise to the 

need to validate G4STORK. For reasons described in, 2.7, MCNP6 was chosen as the 

program that G4STORK would be validated against. The neutron high precision model 

(NeutronHP, empirical model based off ENDF data), implemented in both G4STORK 

and MCNP (although it is not named in MCNP), covers the energy range of 10-5eV to 

2.0x107eV. Neutrons within a nuclear reactor rarely exceed the boundaries of this energy 

range, so it is fairly accurate to assume that all of the important physics is contained 

within the NeutronHP model. The thermal scattering model (described here, 2.6.6) is also 

contained within this energy regime with an energy range of 10-5eV to 4eV, however its 

effects on the neutron population are far less significant than the NeutronHP model. For 

the purpose of this validation, only the NeutronHP model will be compared and validated. 

3.4.1 Matching the Simulation Settings 

3.4.1.1 Modifying the Settings of G4STORK 

The first step in the process of removing the methodological differences between MCNP 

and G4STORK, was to ensure that the same method to calculate Keff, and the same 

empirical neutron physics models were being used. G4STORK determines Keff by using 

the dynamic criticality method (described here, 2.6.8.1). This is the most accurate way of 

determining the Keff, since it only assumes that the geometry does not change 

significantly during a time step. MCNP determines Keff by using the generational 

criticality method described here, 2.6.1. By using the generational criticality method, 

MCNP is making the same assumption as G4STORK, and is also assuming that the 

neutron population is nearly independent of time (Keff~1). In a lattice cell calculation such 

as this, the assumption made by the generational criticality method that the neutron 

population is near constant with time is very inaccurate. In fact, it was found to be 

responsible for the majority of the difference between the results produced by G4STORK 

and MCNP6.1 (compare Table 4.1 to Table 4.2). In order to continue looking for what 

was causing the remaining discrepancy, between the results of the two codes, the 

generational criticality method was implemented in G4STORK. Since we wanted to focus 

our efforts on comparing the NeutronHP model, the high energy (>20MeV) neutron 

models were turned off in G4STORK. 

3.4.1.2 Modifying the Settings of MCNP6 

For incoming neutrons with really low kinetic energy, < 1eV, the electromagnetic forces 

felt by the target nucleus from the surrounding atoms in a molecule, cannot be ignored. 
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To take this effect into account, thermal scattering data (described here 2.6.6) must be 

used. However, our goal is to compare the NeutronHP model by itself (as stated here, 

3.4), so the thermal scattering model was taken out of MCNP. For the same reasons, the 

high energy (>20MeV) neutron models were turned off in MCNP as well. By default, 

MCNP uses implicit absorption (described here Equation 2.15) instead of analogue 

absorption. GEANT4 does not implement implicit absorption, because of the cost of 

accuracy to the result. Consequently, MCNP was set to use analogue absorption. Finally, 

since GEANT4 does not implement any special treatment for the unresolved resonance 

regime, such treatments had to be turned off in MCNP. Of all the adjustments to the 

MCNP simulation listed in this paragraph, the removal of the thermal scattering data was 

the only modification that significantly affected the Keff. 

3.4.2 Matching Neutron Interaction Libraries 

The second step was to use the MCNP cross-section and final state data in place of the 

GEANT4 data, when running G4STORK. In order to convert the data from the MCNP 

format into the GEANT4 format, the program ConvertMCNPToG4NDL (described here, 

3.2.2) was used. Once the MCNP data was converted into the GEANT4 format, the cross-

section data files were Doppler broadened to the temperatures used in the SCWR 

geometry using the dopplerbroadpara program (described here, 3.2.3.1). While the cross-

section data was relatively easy to transfer, the final state data was organized in a much 

more complex format. Often distributions and functions implemented in one code would 

not be present or compatible with the existing distributions in the other code. This can be 

seen by comparing the distributions used by MCNP6.1 (described here, 2.6.7.4) to those 

used by the NeutronHP model of GEANT4 (described here, 2.6.8.4). In order to fix these 

incompatibilities, the source code of GEANT4’s NeutronHP had to be modified.  

The combination of modifying the source code of GEANT4, along with the large 

probability of bugs due to the size and complexity of the conversion program, meant that 

the generated final state files had to be verified. The ValidateFSData program was created 

to go through all the possible neutron interaction for each isotope, and calculate the 

results of each isotope/neutron interaction pair, for a fixed incoming neutron energy 

distribution. The angle, energy, and yield of the outgoing neutrons and photons were 

stored in separate 2D histograms. The x-axis and y-axis of each histogram, corresponded 

to the incoming neutron energy, and an outgoing particle property respectively. The count 

for each bin in the histogram, was normalized by the sum of the counts of the entire row. 

Two sets of these histograms were produced by ValidateFSData. One was created using 

the original GEANT4 FS data (G4NDL), and the second from the converted MCNP data. 

The results obtained using the two data sets were compared, and then stored into text files 

for post-processing. During the comparison, the difference between histograms produced 

using G4NDL, and the converted MCNP data, was measured by taking the Frobenius 

norm of the absolute difference of the two matrices (described here 2.8). The values 

calculated using the Frobenius norm, were used to rank which isotopes and which 
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physical properties required the user’s attention the most. After ValidateFSData had 

finished running, an Octave script was used to take in the generated text files, and create 

2D histogram plots showing the measured GEANT4, MCNP, and calculated difference 

data. Some of the images can be viewed here, 6.1. 

Since both the GEANT4 and MCNP data sets are based off the same ENDF version, any 

major discrepancy in the results should have been due to an error in the conversion of the 

MCNP data. Although this was true most of the time, this was not always the case. 

Several bugs were identified in the GEANT4 NeutronHP model, and several other major 

discrepancies in the results were caused by the different data storage formats used by 

MCNP and GEANT4 (i.e. polynomial versus a few linear regions). A list of the most 

significant bugs found in the GEANT4 NeutronHP model, is shown below in Table 3.2.  

 

Location Bugs 

G4NeutronHPContAngular

Par.cc:262 

When only one photon energy is given by the neutron dataset a 

bad extraction error occurs. Ensure you provide more than one 

energy 

G4NeutronHPPhotonDist.cc

:392 

Error in the setting of the photon data, count is not incremented 

so only the first photon receives a kinetic energy. Add count++ 

at line 393, and move count++ at line 418 to 417 to fix the 

error. 

G4NeutronHPMadlandNixS

pectrum.cc 

The Madland Nix spectrum is not implemented correctly; it 

does not give the same shape as the tabular MCNP data. By 

multiplying the temperature values by 10, a similar mean 

outgoing energy was achieved however the shape remained 

discrepant. MCNP 

G4NDL Elastic data for yttrium-90 is missing so an isotropic 

distribution is used which does not match with MCNP/theory at 

high energies. This was fixed by using the converted data 

instead of the G4NDL data. MCNPG4NDL 

G4NeutronHPVector::Merg

e() 

Merge() copies x=0 from both of the vectors being merged, 

which can cause serious errors. To fix this, Merge() had to be 

rewritten. 

G4NeutronHPPartial::GetY(

) 

GetY() does not properly merge the selected distributions, 

resulting in the duplication of zeros and other errors. To fix this, 

GetY() had to be rewritten. 

G4NeutronHPLabAngularE

nergy:: Sample() 

The methodology used by Sample() is incorrect, because it does 

not take into account, that a shorter (fewer points) normalized 

probability vector, will have higher y-values than an equivalent 

longer probability vector. Thus, when a longer and shorter 
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vector are mixed, the shorter vector will be unintentionally 

given a larger significance. To fix this, Sample() had to be 

rewritten. 

G4NeutronHPProduct.cc:48 The yield is floored when it should be sampled. Fixed this by 

randomly sampling the yield between the two surrounding 

integers, with the closest integer getting picked proportionately 

more often.Flooring 

G4NeutronHPEnAngCorrel

ation.cc:101 

When the energy ranges of different distributions overlap, the 

neutron yield is unintentionally multiplied. This can be fixed by 

ensuring the energy ranges don’t overlap or by forcing 

GEANT4 to pick a distribution. GEANT4 

Table 3.2: Displays bugs found in the high precision neutron physics model during the validation of the 

converted dataset 

 

It should be noted that newer versions of GEANT4 now exist and that some of these 

issues may no longer exist. Using the converted MCNP cross-section and final state data, 

the results of the G4STORK simulation became a little bit closer to those of MCNP. 

There was still some discrepancy between the results, as can be seen by comparing Table 

4.2 to Table 4.3. 

3.4.3 Matching the Neutron Physics Methodology 

The third step was to compare the methodology used in the physics engine of each code, 

and determine whether there were any discrepancies. To do this two programs were 

created, the first program was a modified version of MCNP6 called MCNP6PV, and the 

second was a modified version of ValidateFSData called ValidateMCNPPhysics. 

MCNP6PV works the same as ValidateFSData (described here, 3.4.2), except it only 

produces one set of histograms, using the MCNP physics engine, with the original MCNP 

data. ValidateMCNPPhysics is then used to take in the results of MCNP6PV, and 

compare them to those produced by the GEANT4 physics engine, using the converted 

MCNP data. As before, the two sets of histograms were compared, by taking the 

Frobenius norm of the absolute difference between equivalent histograms produced by 

the two different programs (described here 2.8). Once the results had been compared and 

outputted, an Octave script was used to create visualizations of the results with the 

greatest discrepancy. Some of these visualizations are shown in, 6.2. The most important 

differences in the physics methodology between the two codes, that were observed during 

the comparison, are shown below in Table 3.3. 

 

Physics Affected How the Physics is Affected 
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Neutron Yield and 

Energy 

GEANT4 uses a Poisson distribution to sample the prompt, 

and delayed neutron yield for the fission process. MCNP 

samples between the two closest integers to the mean yield 

when creating the daughter neutrons (MCNP uses a separate 

algorithm when determining the number of neutron daughters 

for Keff, described in 2.6.7.3.1.1). The average number of 

neutrons produced by the two different methods will be 

roughly the same. However, the energy spectrum will be 

different, since the law of conservation of energy demands that 

a larger yield of neutrons must have a lower average energy.  

Neutron Energy and 

Angle 

GEANT4 strictly enforces that the outcome of any reaction 

abides by the laws of conservation of energy and momentum, 

MCNP does not.  

Neutron Yield MCNP floors the neutron yield for inelastic processes, 

ensuring that the yield is at least one. GEANT4 also floors the 

yield but it does not ensure that the yield is at least one. Both 

of these approaches are incorrect, since a non-integer yield 

indicates that it should be sampled not floored. 

FlooringFlooring 

Cross-section MCNP modifies the elastic cross section in function 

neutron_elastic_xsec, if the incoming neutron energy is within 

a thermal boundary threshold of the target isotope. GEANT4 

does not. 

Neutron Energy An error was found in the implementation of energy 

distribution laws 4, 44, and 61 in MCNP. The outgoing 

neutron energy was not properly sampled from the low 

incoming neutron energy spectrum.MCNP 

Table 3.3: Shows what part of the physics was affected by the differences in methodology between MCNP 

and G4STORK, and how it is affected 

 

After adjusting the GEANT4 physics engine to match the MCNP physics engine, 

G4STORK produced the results show in Table 4.4. 

3.4.4 Examining the Remaining Sources of Discrepancy 

3.4.4.1 Examining the Source Code 

Up to this point we have assured that MCNP and G4STORK are using the same 

geometry, simulation settings, neutron interaction models, and neutron interaction data. 

So if the rest of both programs has been written correctly, then we would expect them to 
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produce the same results after the previous step. This can clearly be seen to not be true 

when one analyzes Table 4.4. Thus the final step of the validation, was to systematically 

examine the methodology surrounding the NeutronHP model in both programs, and 

identify flaws/differences that could cause the observed discrepancy in the results. First 

the NeutronHP algorithms, written in the source code of G4STORK and MCNP, were 

examined. During this process, a few differences in the methodology between G4STORK 

and MCNP were discovered. Most of the differing MCNP methodology could not be 

easily implemented in GEANT4. Instead, the GEANT4 methodology was implemented in 

MCNP6 (which we were trying to avoid doing). A list of all the issues that were 

identified, along with which code was modified to match the other, is shown below in 

Table 3.4. 

Physics 

Affected 

How the Physics is Affected Changed 

Code 

Cross-

section 

MCNP ignores certain inelastic reactions when it 

takes in the neutron interaction data for oxygen-16, 

GEANT4 does not.  

G4STORK 

Neutron 

Energy 

Unlike GEANT4, for KCODE simulations (MCNP), 

the type of fission reaction is not sampled. Instead 

the fission reaction with the lowest MT that is 

present (18 or 19) is always used. MCNP 

MCNP 

Keff During a KCODE calculation, the sampled yield is 

not used for calculating Keff. Instead, the average 

fission yield is multiplied by the fission cross-

section, divided by the total cross-section, and then 

added to the survivor sum every time any interaction 

occurs (even if it is not fission). This works as an 

effective variance reduction technique for Keff, but it 

also ensures that the generational criticality method 

must be used.  

MCNP 

Neutron 

Energy and 

Yield 

MCNP only samples the target velocity for elastic 

and inelastic scattering interactions. 

MCNP 

Table 3.4: Lists the differences in the physics methodology between G4STORK and MCNP, identified by 

reading through the source code of both programs 

3.4.4.2 Toggling the Methodology 

After addressing all of these potential causes of discrepancies, the results shown in Table 

4.5 were produced. Since the results of MCNP and G4STORK were still clearly not 
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within statistical uncertainty, we had to continue checking the remaining methodology for 

suspect algorithms. Both MCNP and G4STORK are far too big to be analysed in the same 

way that the transportation and NeutronHP algorithms had been. Instead a coarser method 

of turning sections of the methodology/code in both programs on and off, and then 

examining how the results (Keff) were affected, was used. The results of this toggling of 

the methodology can be seen below in Table 3.5. Large differences between the results of 

G4STORK and MCNP can be seen to occur when the stored cross-section data is used 

rather than an arbitrary fixed value, and when more than one material is used. Thus the 

most likely causes for the discrepancy observed in Table 3.5, are differences in the 

neutron energy distributions, and/or discrepancies in the cross-section distributions. 

Processes, Energy 

Spectrum 

Modified Methodology G4STORK MCNP 

Fission; fixed 

2.0MeV1 

Capture; turned off 

Inelastic; turned off 

Elastic; turned off 

 2.896±0.001 2.8967±0.0005 

Fission; fixed 

2.0MeV 

Capture; 

Inelastic; fixed 

2.0MeV 

Elastic; fixed 

2.0MeV 

with isotope speed sampling turned 

off 

2.049±0.008 2.048±0.002 

Fission; 

Capture; 

Inelastic; 

Elastic; 

with everything made of inner fuel 

with the cross-sections set to a 

constant 

with all materials set to 293.606K 

0.590±0.002 0.5893±0.0005 

Fission; 

Capture; 

with all materials set to 293.606K 

with isotope speed sampling turned 

0.7629+0.0004 0.7710+0.0006 
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Inelastic; 

Elastic; 

off 

Fission; 

Capture; 

Inelastic; 

Elastic; 

with all materials set to 293.606K 1.296±0.002 

 

1.302±0.001 

Fission; 

Capture; 

Inelastic; 

Elastic; 

 1.264±0.003 1.2702±0.0003 

Table 3.5: Shows the Keff produced by G4STORK and MCNP, for the SCWR CVR case, as parts of the 

methodology are turned on and off. Note 1: the output neutron energy of this process is fixed to 2.0MeV. 

Note 2: the output neutron energy is randomly selected from 1.0eV to 1.0MeV. 

3.4.4.3 Examining the Outgoing Neutron Energy Distribution 

The NeutronHP models had been adjusted to produce the same results when used outside 

of the G4STORK and MCNP programs (discussed here, 3.4.3). However, there was still 

the possibility that during an actual simulation, parts of the NeutronHP model might 

behave differently. To test this, incoming and outgoing neutron energy histograms were 

collected for each isotope and neutron process (elastic, fission, and inelastic), while the 

G4STORK and MCNP simulations were running. The divergence between the outgoing 

energy spectra, was then measured by taking the Frobenius norm of the absolute 

difference between equivalent histograms. Note that all of the individual fission and 

inelastic interactions had to be lumped into a fission and an inelastic process in order to 

have enough total samples for each energy distribution to be statistically significant. This 

also served to focus the observer’s attention on the interactions that were dominating a 

process (being called the most). Unfortunately, this also allowed the cross-section data of 

the subprocesses (neutron interactions within fission and inelastic scattering), to affect the 

results as well. The results of this comparison of the outgoing neutron energy spectrums, 

can be seen in section 6.3.1. During the comparison of the outgoing neutron energy 

spectrums, discrepancies were found to occur as a result of differences between the 

thermal isotope speed sampling algorithm. 

3.4.4.4 Examining the Extracted Cross Section Data 

Next we had to look for discrepancies in the cross-section data being used by the two 

programs. By converting the MCNP neutron interaction data into the GEANT4 format, 
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we have already ensured that the cross-section data being passed into the two programs 

was exactly the same. However, the cross-section data had not yet been closely examined, 

after it had been extracted and manipulated by MCNP and G4STORK. So a program 

called CompareCSData was created to compare the original cross-section data (at 

293.606K), to the cross-section data (also at 293.606K) produced by the extraction 

routines of G4STORK and MCNP. When the results of this comparison (shown in, 

section 6.3.2) were analyzed, minor differences in the extracted cross-section data were 

found. 

3.4.4.5 Final Adjustments to the Methodology 

In the previous two steps, we discovered that both the thermal isotope speed sampling 

algorithm, and the cross-section extraction routines were sources for discrepancy between 

the two codes. The problem of the differing thermal isotope speed sampling algorithms 

was rectified by removing the algorithms from both codes. In order to account for the 

discrepancy between the extracted cross-section data, the ConvertMCNPToG4NDL 

program (described here, 3.2.2) was modified. This modification, allowed G4STORK to 

use cross-section data that had already been modified by MCNP’s extraction routine, 

instead of the raw cross-section data. The results of this final step in the validation, can be 

seen in section 4.1.5. 

3.5 Creating the Final Results 
In section 3.4, we validated that using the same methods, G4STORK produces results 

similar to those of MCNP6. Therefore, we expect that when G4STORK uses better 

assumptions, it should give more accurate results. Deciding which neutron physics dataset 

is a more accurate representation of the original ENDF data, would require yet another 

comparison. Although such a comparison would be beneficial for both codes, there was 

simply not enough time left to conduct it. Instead both datasets were separately used to 

simulate the final results, with the methodology tuned to be as accurate as possible for the 

given dataset. The MCNP simulations use the same methodology as the first step of the 

validation (described here, 3.4.1). 

3.5.1 Final Results using G4NDL 

For the final simulation of the SCWR model using the G4NDL data, the following 

methodology was used. First the original simulations settings (described here, 3.3) were 

implemented. Then the thermal scattering model was turned on in G4STORK. Finally, 

the bugs found during this step of the validation, 3.4.2, were fixed. A comparison of the 

results produced by G4STORK using this methodology and those produced by MCNP6 

using its original methodology can be seen below in Table 4.7. 

3.5.2 Final Results using the MCNP Data 

For the final simulation of the SCWR model using the MCNP neutron interaction data, 

the following methodology was used. The original simulations settings (described here, 
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3.3) were implemented. The thermal scattering model was turned off since it seemed to 

conflict with the converted MCNP data, distorting the results. The MCNP energy 

distribution models that were missing in GEANT4 (described here 3.4.2), were 

implemented. Finally, the bugs found in GEANT4, listed in section 3.4.2, were fixed. A 

comparison of the results produced by G4STORK using this methodology and those 

produced by MCNP6 using its original methodology can be seen below in Table 4.8. 

 Results and Analysis 
In this section we will state and analyze the results collected from the validation of 

G4STORK, and the simulation of the SCWR. 

4.1 Validation of the G4STORK Physics Engine 
The initial results produced by the G4STORK and MCNP6 simulations of the SCWR 

lattice cell (using the methodology described here, 3.3), are shown in Table 4.1. The 

results produced by G4STORK can be seen to be both quantitatively and qualitatively 

different from those generated from MCNP6, by comparing the Kinf cases, and the CVR 

respectively. The difference between the results are clearly beyond statistical uncertainty, 

indicating that at least one of the simulations is not accurately representing the physics. 

The following subsections pinpoint exactly what parts of the methodology of each 

program are causing differences in the results, and inaccurate physics. 

Kinf Cases Fully Cooled Void Inner 

Coolant 

Void Outer 

Coolant 

Void All 

Coolant 

CVR (mk) 

G4STORK 1.253±0.0006 1.206±0.0002 1.258±0.0006 1.215±0.0004 -25.0±0.47 

MCNP6.1 1.2863±0.0001 1.2497±0.0003 1.2984±0.0003 1.2666±0.0002 -12.09±0.14 

Table 4.1: Initial simulation results before the adjustments for differing methodology were made 

4.1.1 The Results of Matching the Simulation Settings 

Following the methodology described in 3.4.1, the results displayed in Table 4.2 were 

produced. The use of the generational criticality method in G4STORK can be seen to 

have significantly increased the calculated Keff, for all coolant cases, bringing the results 

of G4STORK into much better quantitative and qualitative alignment with the results of 

MCNP. This was an expected result since the assumptions used by the generational 

criticality method, tend to overweight the thermal neutrons (as explained here 2.6.1.2). 

Which, in the case of the SCWR reactor, have a higher production to loss ratio than faster 

neutrons. 

The results of MCNP can be seen to have changed as well. Although it is not shown in 

Table 4.2, the turning off of the thermal scattering data was the primary cause of the 

change in the MCNP results (all the other changes combined shifted the results by less 

than 1mk). The cases with the most coolant present, were also affected the most by the 
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turning off of the thermal scattering model. This made sense for two reasons. First, the 

thermal scattering model is only used for neutron energies less than 4eV, and the neutron 

energy distribution of the cooled cases is lower, because of the moderating effects of the 

coolant. Second, the thermal scattering model is part of the elastic scattering process, 

which primarily occurs in the coolant. 

 

Kinf Cases Fully Cooled Void inner 

Coolant 

Void Outer 

Coolant 

Void all 

Coolant 

CVR (mk) 

G4STORK 1.305±0.0006 1.2574±0.0006 1.313±0.0004 1.270±0.0006 -21.1±0.51 

MCNP6.1 1.2979±0.0002 1.2562±0.0003 1.3085±0.0002 1.2708±0.0002 -16.4±0.17 

Table 4.2: The generational criticality method has been implemented in G4STORK and in MCNP the 

thermal scattering data, unresolved resonance, and implicit capture models were turned off. 

4.1.2 The Results of Matching Neutron Interaction Libraries 

By converting the MCNP ENDF data into the G4NDL format and performing the 

subsequent steps described here, 3.4.2, the results shown in Table 4.3 were produced. 

When comparing Table 4.2 to Table 4.3, it can be easily seen that the results of 

G4STORK have shifted down by ~7mk, so that the fully cooled case result is in near 

perfect alignment with that of MCNP. Similarly, the once matching results between 

G4STORK and MCNP for the case when all of the coolant is voided are no longer 

aligned. About half of the difference between the results shown in Table 4.2 and Table 

4.3 was caused by errors in the GEANT4 code listed here Table 3.2. Three of the most 

important bugs in the GEANT4 code occurred in G4NeutronHPMadlandNixSpectrum.cc, 

G4NeutronHPLabAngularEnergy:: Sample(), G4NeutronHPEnAngCorrelation.cc:101. 

The first two bugs, caused large shifts in the outgoing neutron energy spectrum, and the 

third bug caused the neutron yield to be unintentionally multiplied for some inelastic 

reactions.  

 

Kinf Cases Fully Cooled Void inner 

Coolant 

Void Outer 

Coolant 

Void all 

Coolant 

CVR (mk) 

G4STORK 1.2978±0.0007 1.2499±0.0007 1.3057±0.0008 1.2639±0.0006 -20.7±0.61 

MCNP6.1 1.2979±0.0002 1.2562±0.0003 1.3085±0.0002 1.2708±0.0002 -16.4±0.17 

Table 4.3: Using the same adjustments described in Table 4.2 as well as having G4STORK use the MCNP 

cross-section and final state data 

The other half of the difference between the results of Table 4.2 and Table 4.3, was 

caused by the different data storage formats used by GEANT4 and MCNP. For example, 

MCNP uses a 2D table of incoming neutron energy and outgoing neutron angle to 

represent elastic scattering, whereas, GEANT4 often uses Legendre polynomials (one 

gets from solving elastic scattering using Quantum Mechanics, described here, 2.6.8.4.1), 
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to represent elastic scattering. Even if the format in which the data is stored were the 

same, the chosen precision (how many data points are used) is often different between 

programs. So despite the fact that both the GEANT4 and MCNP datasets are derived 

primarily from the same ENDF data, large differences in accuracy at which they represent 

the original experimental data exist. Graphical examples of where the data sets differed 

the most are shown in 6.1. 

4.1.3 The Results of Matching the Neutron Physics Methodology 

The physics methodologies of G4STORK and MCNP were matched and validated 

following the steps outlined here, 3.4.3. The physics methodology that differed the most, 

after the adjustments to GEANT4 (listed here Table 3.3) had been made, are shown here, 

6.2. They demonstrate that there are no significant differences in the neutron physics 

methodology remaining between the two programs. Some of the more significant changes 

to the GEANT4 physics methodology was the flooring of the fission neutron yield, when 

no delayed data was present, and the removal of inelastic reactions for particular isotopes. 

The results produced by G4STORK after the modifications had been made are listed 

below in Table 4.4. The changes to the methodology caused the results of G4STORK to 

be quantitatively a worse match for the results of MCNP, but qualitatively a better match. 

The overall shift in the G4STORK results was relatively minor. 

Kinf Cases Fully Cooled Void inner 

Coolant 

Void Outer 

Coolant 

Void all 

Coolant 

CVR (mk) 

G4STORK 1.2964±0.0006 1.2503±0.0004 1.3053±0.0004 1.2636±0.0004 -20.0±0.44 

MCNP6.1 1.2979±0.0002 1.2562±0.0003 1.3085±0.0002 1.2708±0.0002 -16.4±0.17 

Table 4.4: Same adjustments as Table 4.3 except that the high precision neutron data model used in 

G4STORK has been adjusted to more closely match the methodology of MCNP, as described in the last 

paragraph of the methodology 

4.1.4 The Results of the Adjustments Made After Examining the Source Code 

Following the methodology outlined in 3.4.4.1, the results shown in Table 4.5 were 

produced. Although the overall shift in the results is not large, they have come 

quantitatively and qualitatively (difference between CVR) closer together. The majority 

of the shifts in the MCNP results were caused by turning on thermal isotope speed 

sampling for all interactions, instead of just for the elastic and inelastic processes. The 

results for all four coolant cases, can be observed to still differ beyond statistical 

uncertainty. 

Kinf Cases Fully Cooled Void inner 

Coolant 

Void Outer 

Coolant 

Void all 

Coolant 

CVR (mk) 

G4STORK 1.2961±0.0005 1.250±0.0004 1.3054±0.0004 1.2642±0.0004 -19.5±0.35 

MCNP6.1 1.2972±0.0005 1.2556±0.0004 1.3083±0.0004 1.2702±0.0003 -16.4±0.35 
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Table 4.5: Same adjustments as Table 4.4 except both MCNP6 and G4STORK have been adjusted to more 

closely match each other’s methodology 

4.1.5 The Results of the Final Adjustments to the Methodology 

Following the methodology outlined in 3.4.4.5, the results shown in Table 4.6 were 

produced. Significant shifts in the Kinf can be seen to occur; These large shifts are 

primarily due to the removal of the thermal isotope speed sampling algorithms, which 

significantly reduces the relative probability of fission occurring for thermal neutrons. 

More importantly, the results can be seen to be significantly closer together, both 

quantitatively and qualitatively. Except for the fully cooled case, all of the results are 

almost within statistical uncertainty of each other.  

Kinf Cases Fully Cooled Void inner 

Coolant 

Void Outer 

Coolant 

Void all 

Coolant 

CVR (mk) 

G4STORK 0.7132±0.0004 0.7799±0.0004 0.7089±0.0004 0.7722±0.0004 107±1 

MCNP6.1 0.7164±0.0007 0.7813±0.0006 0.7108±0.0006 0.7710±0.0006 99±2 

Table 4.6: Same adjustments as Table 4.5, except that the thermal isotope speed sampling model has been 

removed from G4STORK and MCNP6, and the cross-section extraction routines of the two codes have been 

matched 

4.1.6 Hypothesis for the Remaining Discrepancy Between the Results of MCNP and 

G4STORK 

The remaining discrepancy in the results is likely due to the different mathematical 

models used to describe elastic scattering by the two different codes. The primary 

difference between the models results from G4STORK uses of relativistic transforms to 

transfer between reference frames, instead of the Galilean transforms used by MCNP6. 

Although we had previously matched the neutron property distributions that the neutron 

interactions sample from, the outgoing energy distribution for elastic scatter could not be 

explicitly matched, since it is not sampled (it is calculated as a function of the relative 

incoming neutron energy, the masses of the reactants, and the scattering angle).  

The presence of a discrepancy between the elastic scattering models, would also explain 

why greater discrepancies occur can be seen to occur, in the results of Table 4.6, with 

increasing moderation. The discrepancy between the elastic scattering models is likely 

small, otherwise there would have been a visible difference between the two when we 

compared them in section 6.2. However, since neutrons typically undergo many elastic 

scattering reactions before being absorbed, even small differences between elastic 

scattering models can cascade to have a significant effect. Unfortunately, there was not 

enough time left in this project to test this hypothesis. Thus further work will have to be 

done to complete the validation of G4STORK. 
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4.2 Final SCWR Results 
As discussed in section 3.5, the SCWR was simulated using the G4NDL data, and the 

converted MCNP neutron interaction data, for the final results. In the following sections 

we will describe and analyze each set of results created using the different neutron 

interaction data sets. 

4.2.1 Using G4NDL Data 

Using the methodology described in 3.5.1, the results contained in Table 4.7 were 

produced. The addition of the thermal scattering model, and the fixes to GEANT4’s 

NeutronHP model, can be seen to have had little effect on the results of G4STORK, when 

one compares Table 4.1 to Table 4.7. This observation conflicts with the significant 

change in Keff noticed when the thermal scattering data was turned off in MCNP 

(observed here, 4.1.1). This difference warrants two possible explanations. The first 

explanation is, that the thermal scattering models produce different results between 

programs. Given the large difference of the effects of the different thermal scattering 

models, and the relatively minor role the models play, there would have to be a vast 

discrepancy between the models. While this is possible it is not very likely. The second 

possibility is that the thermal scattering model is significantly affecting the neutron 

lifetime in the reactor. As explained here, 2.6.1.2, this would affect the generational 

criticality method (used by MCNP6) differently than a dynamic criticality method (used 

by G4STORK). This seems like the most plausible explanation for the observed 

discrepancy.  

When examining Table 4.7, a large divergence between the results of MCNP and 

G4STORK is evident. As discussed before, this is largely caused by the inaccuracy of the 

generational criticality method used by MCNP6, when simulating highly sub or 

supercritical cases. The reactivity incurred by the complete voiding of the coolant (the 

CVR), is calculated to be far more negative in the G4STORK simulation than in the 

MCNP6 simulation. G4STORK also predicts a significantly smaller positive reactivity 

increase when the outer coolant of the fuel assembly is voided. In fact, the results of 

G4STORK indicate that the reactor will behave more desirably during any kind of 

coolant voiding accident, than any other code used in the comparison (as can be seen by 

comparing Table 1.2 to Table 4.7). However, all of the other programs in the comparison 

make the same inaccurate assumption that the neutron population is nearly independent of 

time. Which means that we expect the results of G4STORK to be a more accurate 

description of the SCWR lattice than the other codes in the comparison. This is good 

news for the designers, since our results indicate that their design has better safety 

characteristics than they would have been otherwise led to believe. 

Kinf Cases Fully Cooled Void Inner 

Coolant 

Void Outer 

Coolant 

Void All 

Coolant 

CVR (mk) 
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G4STORK 1.252±0.0006 1.207±0.0008 1.259±0.0006 1.216±0.0004 -23.6±0.47 

MCNP6.1 1.2863±0.0001 1.2497±0.0003 1.2984±0.0003 1.2666±0.0002 -

12.09±0.14 

Table 4.7: Compares the most accurate results achievable with G4STORK and MCNP, when G4STORK is 

using the G4NDL data 

4.2.2 Using Converted MCNP6 Neutron Interaction Data 

Using the methodology described in 3.5.2, the results contained by Table 4.8 were 

produced. The same large discrepancies between the results of G4STORK and MCNP6.1, 

observed in section 4.2.1, can be seen to exist in Table 4.8 (refer to section 4.2.1, for 

further explanation about this phenomenon). However, a significant change in the results 

can be observed when one compares Table 4.7 to Table 4.8. A systematic drop in the Keff 

by ~4.5mk for all four reactivity cases can be seen. The CVR stays almost exactly the 

same indicating that the shift was purely quantitative. 

Kinf Cases Fully Cooled Void Inner 

Coolant 

Void Outer 

Coolant 

Void All 

Coolant 

CVR (mk) 

G4STORK 1.247±0.0006 1.202±0.0006 1.255±0.0006 1.212±0.0006 -23.2±0.56 

MCNP6.1 1.2863±0.0001 1.2497±0.0003 1.2984±0.0003 1.2666±0.0002 -

12.09±0.14 

Table 4.8: Compares the most accurate results achievable with G4STORK and MCNP, when G4STORK is 

using the Converted MCNP data 

4.2.3  Possible Method for Analyzing Reactor Uncertainty 

In section 4.2.1, we showed that the thermal scattering data had an insignificant effect on 

the results of the SCWR simulation, when the dynamic criticality method is being used. 

Thus, the difference between the results of Table 4.7 and Table 4.8, must be due to the 

use of the converted MCNP data with additional energy distributions (mentioned here, 

3.4.3), instead of the default G4NDL data. This result is expected, since as we discussed 

here 3.4.2, the two data sets use different types of distributions to represent the data, and 

different levels of precision. Since neither one of the datasets has been proven to be more 

accurate than the other in all possible situations, both of them are equally valid to use. 

Thus, the difference between the results achieved using the two different datasets is a 

measure of the level of uncertainty that we must expect when modeling the SCWR in this 

situation.  

By continuing to compare the results produced using the two different datasets for many 

different cases, a generic estimate of what the uncertainty of modeling the SCWR design 

could be calculated. The generic uncertainty calculated using this method, would not be 

affected by the differing methodology (physics, assumptions, bugs) present between 

differing programs. The generic uncertainty would also not be biased by the inaccurate 

assumptions of the generational criticality method used by the other nuclear reactor 
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physics programs, in the comparison of the SCWR. By using the suggested method, the 

only factors that would affect the calculated generic uncertainty would be the reactor 

design, the statistical uncertainty, and the effects of the different neutron interaction 

datasets. The effect of statistical uncertainty on the results, will always be present due to 

the random nature of Monte Carlo programs. The effect of the different neutron 

interaction datasets will also be an unavoidable factor (because they are all equally valid 

to use), until one dataset has been proven to be more accurate than the others in every 

possible situation. Since none of these sources of uncertainty can be eliminated, the 

generic uncertainty calculated from them would represent the minimum uncertainty 

achievable by the user when modelling a particular nuclear reactor. 

Understanding what the minimum uncertainty is for modelling particular cases using the 

computational method, could help researchers decide which cases need to be measured 

experimentally, and which cases don’t. Considering that determining the uncertainty 

involved in modelling the SCWR was CNL’s main purpose for funding this cross nuclear 

reactor physics program comparison, we believe this conclusion to be an important result 

that warrants further investigation. 

 Conclusions 
The intentions of this project were to validate the accuracy of G4STORK and compare its 

results to other codes used to investigate the SCWR lattice cell. By matching the 

assumptions of G4STORK and MCNP6, we were able to achieve close agreement 

between results of the two programs when simulating the SCWR lattice cell (shown here, 

4.1.4). However, the final results were not quite within statistical uncertainty of each 

other, so the validation is not complete. It was hypothesized that the remaining 

discrepancy could be caused by differences in the elastic scattering models between 

G4STORK and MCNP6.  

After implementing its more accurate default methodology, G4STORK was used to 

simulate the SCWR lattice cell using the G4NDL data and the converted MCNP data. 

When the results of G4STORK were compared to those of MCNP6, large differences 

were observed (shown here, 4.2). This difference was proven to be caused by MCNP’s 

inaccurate use of the generational criticality method to model such a highly supercritical 

system. Based on these findings we conclude that, not only are the results of G4STORK 

accurate, they can be more accurate than those produced by many of the more commonly 

used programs for transient cases. 

During the comparison of the results obtained when G4STORK is using the G4NDL 

dataset, and MCNP’s neutron interaction library (4.2.2), a new method for estimating the 

uncertainty of modeling the SCWR was devised. The new method would determine the 

minimum uncertainty that CNL can achieve when modeling the SCWR using a particular 

code. This method could help researchers better understand how much uncertainty is 
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inherent (unavoidable) to their model, and would be less dependent on the specific 

implementation.  

5.1 Future Work 
There are still many important tasks that must be done before the G4STORK code will be 

able to meet its original goal (of being a minimal assumption tool for modeling transient 

scenarios). Some of the most important tasks are listed below. 

5.1.1 Completing the Validation 

Before researchers will trust and hopefully start using the G4STORK code, the validation 

of G4STORK must be finished. In order for the validation of G4STORK to be complete, 

the remaining discrepancy between the results of G4STORK and MCNP (when they are 

using the same methodology) must be eliminated. To do this, the transportation 

algorithms of MCNP and G4STORK should be compared since this is the most likely 

cause for the difference. 

5.1.2 Heat Transfer Model 

Although G4STORK allows for the temperature and density of a material to change in 

steps of time, there is currently no heat transfer model that dictates how it should do so. 

This stops G4STORK from being able to accurately account for temperature and density 

feedback during accident scenarios. To solve these inaccuracies, two different approaches 

for adding a heat transfer model should be taken. The first approach would be to 

implement a generic framework in G4STORK that the user can build their own heat 

transfer model from, specifically for the case they are studying. This would allow the user 

to determine the necessary accuracy of the heat transfer model and optimize the 

performance of the G4STORK code. The second approach would be to create a generic 

interface in G4STORK, through which external heat transfer programs could receive and 

send data (coupling the two programs together). This would allow the user to more 

accurately model heat transfer within their geometry than the previous approach and 

require less effort from the user. 

5.1.3 GPU Acceleration 

Currently G4STORK is only able to simulate cases that take place on the order of one 

tenth of a second in a reasonable timeframe. However, many important physical effects, 

such as the appearance of delayed neutrons, can take minutes to occur. Thus, for most 

accident scenarios we would like to study the reactor’s behavior over a similar time 

period. In order for G4STORK to be able to able to simulate cases on the order of 

minutes, a massive speed up of the code is required. This kind of speed up is possible 

through the use of GPU parallelism. A high end CPU contains eight processors and runs 

at ~3.5GHz, a high end GPU contains ~3600 processors and runs at ~1.5GHz. There are 

certain issues with GPU computing that limit its performance, most notably that every 

processor within each 32 processor block must be following the same algorithm (but on 
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different data). Another limitation on GPU performance is the latency incurred by 

sending data back and forth between the CPU and the GPU. This was most noticed when 

a group of undergraduate students tried to port frequently used functions within GEANT4 

to the GPU. This resulted in GEANT4 running slower due the GPU to CPU latency being 

larger than the time required to perform the functions on the CPU. If each group of 32 

processors was independently responsible for tracking a group of neutrons, only two 

messages between the GPU and the CPU would be required per time step. Thus the few 

milliseconds taken up by GPU-CPU latency would be insignificant compared to the 

minutes to hours taken up by each time step. Since the section of the G4STORK code that 

would run on the GPU scales very efficiently with an increasing number of processes, a 

code speed up of roughly 30-80 would be expected with GPU acceleration. 

 Appendix 
In this section, we will the results obtained from the comparison of the neutron interaction 

data sets and from the comparison NeutronHP models. 

6.1 Comparison of the Converted MCNP6 Nuclear Data and the G4NDL Data 
The figures below were produced to validate the converted MCNP neutron interaction 

data against G4NDL (during this step of the methodology, 3.4.2). They show measured 

properties of the out-going neutrons as functions of incoming neutron energy, for each 

isotope and process. For each distribution, the results collected using the G4NDL data, 

the converted MCNP data, are shown separately along with a visualization of the squared 

difference between the two. In the cases where there is no visible, difference between the 

two distributions, the difference plot is not shown. One dimensional histograms showing 

the point (incoming neutron energy) where the outgoing neutron energy distributions 

differed the most between datasets, are also shown for all process except for elastic 

scattering. The three sets of images show the distributions that differed the most between 

codes for the three most important reactions, elastic, fission (combined), and inelastic 

MT=4 (capture was not included since it doesn’t produce any neutrons).  

6.1.1 Elastic Scattering Comparison 

It is easy to see from Figure 6.1 and Figure 6.3, that there is virtually no difference 

between the shown out-going energy distributions. Since these results were measured to 

be the most discrepant for the elastic scattering process, we can state that there are no 

major discrepancies between the G4NDL data, and the converted MCNP neutron 

interaction data, for this process. 
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Figure 6.1: The squared difference between the outgoing neutron energy for the elastic scattering of 

beryllium-9 

 

Figure 6.2: The G4NDL outgoing neutron energy for the elastic scattering of beryllium-9 
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Figure 6.3: The converted MCNP data outgoing neutron energy for the elastic scattering of beryllium-9 

6.1.2 Fission Comparison 

By examining Figure 6.4 to Figure 6.13, we can see that the only significant difference 

for this process between the G4NDL data and the converted MCNP data occurs in the 

outgoing neutron energy distribution. While small differences in the yield distributions 

can be seen, these are primarily caused by statistical uncertainty, and not by differing 

methodology. The observed discrepancies between the energy distributions, is a result of 

the different types of representations being used by the two data sets, and is not a flaw in 

the conversion. 
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Figure 6.4: The squared difference between the outgoing neutron energy for the combined fission process 

of americium-241.  
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Figure 6.5: The most discrepant outgoing neutron energy distributions for a fixed incoming neutron energy 

(column) of the combined fission process of americium-241.  

 

Figure 6.6: The G4NDL outgoing neutron energy for the combined fission process of americium-241 

Comparing the Secondary Neutron Kinetic Energy for the Combined 

Fission of Americium-241 at 1.1572MeV 

Absolute Difference Between the Histograms 
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Figure 6.7: The converted MCNP data outgoing neutron energy for the combined fission process of 

americium-241 
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Figure 6.8: The squared difference between the prompt neutron yield for the combined fission process of 

americium-241 

 

Figure 6.9: The G4NDL prompt neutron yield for the combined fission process of americium-241 
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Figure 6.10: The converted MCNP data prompt neutron yield for the combined fission process of 

americium-241 

 

Figure 6.11: The squared difference between the delayed neutron yield for the combined fission process of 

americium-241 
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Figure 6.12: The G4NDL delayed neutron yield for the combined fission process of americium-241 

 

Figure 6.13: The converted MCNP data delayed neutron yield for the combined fission process of 

americium-241 
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6.1.3 Inelastic MT=4 Comparison 

By examining Figure 6.14 to Figure 6.17, we can see that the only difference for this 

process, between the G4NDL data and the converted MCNP data, occurs in the outgoing 

neutron energy distribution. Again, the observed discrepancies between the energy 

distributions, is a result of the different datasets and types of representations being used 

by the two data sets, and is not a flaw in the conversion.  

 

Figure 6.14: The squared difference between the outgoing neutron energy for the MT=4 inelastic process of 

natural carbon 
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Figure 6.15: The most discrepant outgoing neutron energy distributions for a fixed incoming neutron 

energy (column) of the MT=4 inelastic process of natural carbon 

 

Figure 6.16: The G4NDL outgoing neutron energy for the MT=4 inelastic process of natural carbon 

Comparing the Secondary Neutron Kinetic Energy for the MT=4 

Inelastic Scattering of Natural Carbon at 4.8121MeV 

Absolute Difference Between the Histograms 
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Figure 6.17: The converted MCNP data outgoing neutron energy for the MT=4 inelastic process of natural 

carbon 

6.2 Comparison of the MCNP6 and GEANT4 Physics Engines 
The figures shown below were produced to determine whether the methodology of the 

NeutronHP model, was the same between MCNP and G4STORK (explained here, 3.4.3). 

Measured properties of the out-going neutrons are shown as functions of incoming 

neutron energy, for each isotope and process. For each distribution the data collected 

from G4STORK, MCNP and the squared difference between the two are shown 

separately. In the cases where there is no visible difference between the two distributions, 

the difference plot is not shown. One-dimensional histograms showing the point 

(incoming neutron energy) where the outgoing neutron energy distributions differed the 

most between datasets, are also shown for all processes except for elastic scattering. The 

first three sets of images show the distributions that differed the most between codes for 

the three most significant reactions: elastic, fission (combined), and inelastic MT=4 

(capture was not included since it does not produce any neutrons). The last set of data 

shows the isotope distributions that differed the most out of any of the possible processes. 

6.2.1 Elastic Scattering Comparison 

It is easy to see that there is almost no difference between the G4STORK and MCNP 

results shown in Figure 6.18 and Figure 6.19. Since these results were measured to be the 

most discrepant for the elastic process, we can state that there are no major discrepancies 

between the physics methodologies for elastic scattering. 
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Figure 6.18: The G4STORK outgoing neutron energy for the elastic scattering of plutonium-242 

 

Figure 6.19: The MCNP6 outgoing neutron energy for the elastic scattering of plutonium-242 
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6.2.2 Fission Comparison 

By examining Figure 6.20 to Figure 6.29, we can see that no significant differences exist 

between the physics methodology of G4STORK and MCNP, for the fission process. The 

small differences in the outgoing neutron energy spectrum will not significantly impact 

the results of SCWR simulation. While small differences in the yield distributions can be 

seen as well, these are primarily caused by statistical uncertainty, and not by differing 

methodology. 

 

Figure 6.20: The squared difference between the outgoing neutron energy for the fission of thorium-232 
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Figure 6.21: The most discrepant outgoing neutron energy distributions for a fixed incoming neutron 

energy (column) of the fission of thorium-232  

 

Figure 6.22: The G4STORK outgoing neutron energy for the fission of thorium-232 

Comparing the Secondary Neutron Kinetic Energy for the Combined 

Fission of Thorium-232 at 0.9817MeV 

Absolute Difference Between the Histograms 
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Figure 6.23: The MCNP6 outgoing neutron energy for the fission of thorium-232 

 

Figure 6.24: The squared difference between the prompt neutron yield for the fission of thorium-232 
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Figure 6.25: The G4STORK prompt neutron yield for the fission of thorium-232 

 

Figure 6.26: The MCNP6 prompt neutron yield for the fission of thorium-232 
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Figure 6.27: The squared difference between the delayed neutron yield for the fission of thorium-232 

 

Figure 6.28: The G4STORK delayed neutron yield for the fission of thorium-232 
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Figure 6.29: The MCNP6 delayed neutron yield for the fission of thorium-232 

6.2.3 Inelastic MT=4 Comparison 

By examining Figure 6.30 to Figure 6.32, we can see that no significant differences exist 

between the physics methodology of G4STORK and MCNP, for the inelastic MT=4 

process. 
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Figure 6.30: The most discrepant outgoing neutron energy distributions for a fixed incoming neutron 

energy (column) of the inelastic MT=4 process of plutonium-239 

 

Figure 6.31: The G4STORK outgoing neutron energy for inelastic MT=4 process of plutonium-239 

Comparing the Secondary Neutron Kinetic Energy for the MT=4 

Inelastic Scattering of 94_239_Plutonium at 20MeV 

Absolute Difference Between the Histograms 
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Figure 6.32: The MCNP6 outgoing neutron energy for inelastic MT=4 process of plutonium-239 

6.2.4 Comparison of the Most Discrepant Data 

The data that was found to differ the most for any process/isotope combination was the 

inelastic MT=22 data for europium-154. Images comparing the outgoing neutron energy 

distribution (We do not show the other properties since they matched perfectly) are 

shown below in Figure 6.33 to Figure 6.35. The data can be seen to differ significantly 

quantitatively when one compares the outgoing energy distributions at an incoming 

neutron energy where the two datasets were measured to differ the most (Figure 6.33). 

However, the data is still qualitatively quite similar, with peak values that are close 

enough to each other for this discrepancy to have an insignificant effect on the results of 

the SCWR simulation. 
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Figure 6.33: The most discrepant outgoing neutron energy distributions for a fixed incoming neutron 

energy (column) of the inelastic MT=22 process of europium-154 

 

Figure 6.34: The G4STORK outgoing neutron energy for inelastic MT=22 process of europium-154 

Comparing the Secondary Neutron Kinetic Energy for the MT=22 

Inelastic Scattering of Europium-154 at 1.9638MeV 

Absolute Difference Between the Histograms 
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Figure 6.35: The MCNP6 outgoing neutron energy for inelastic MT=22 process of europium-154 

6.3 The Results from Examining the Cause of the Remaining Discrepancy 
In an attempt to determine where the remaining discrepancies between the G4STORK 

and MCNP were coming from, the source code of MCNP and G4STORK was further 

analyzed (described here, 3.4.4.2). During this process it was determined that the 

discrepancy was probably being caused by differing outgoing neutron energy 

distributions, differing cross-section data extraction algorithms, or differing transportation 

algorithms. The results collected from testing each of these possible causes, are analyzed 

in the following subsections. 

6.3.1 The Results from Examining the Out-going Neutron Energy Distribution 

By following the methodology described in section 3.4.4.3, the outgoing neutron energy 

distributions produced by MCNP and G4STORK were compared. The energy 

distributions that were measured to differ the most between codes are shown in Figure 

6.36 to Figure 6.41 below. Note, if there is a significant (visible) difference between the 

MCNP and G4STORK histograms, a third image of the squared difference between the 

two will be shown. The difference between these energy distributions can clearly be seen 

to be insignificant. This means that differences in the outgoing neutron energy 

distributions are probably not the cause for the discrepancy between the results of 

G4STORK and MCNP.  
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6.3.1.1 Elastic Scattering 

 

Figure 6.36: The G4STORK outgoing neutron energy for the elastic scattering of zirconium-100 
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Figure 6.37: The MCNP6 outgoing neutron energy for the elastic scattering of zirconium-100 
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6.3.1.2 Fission 

 

Figure 6.38: The G4STORK outgoing neutron energy for the fission of plutonium-240 
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Figure 6.39: The MCNP outgoing neutron energy for the fission of plutonium-240 
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6.3.1.3 Inelastic Scattering 

 

Figure 6.40: The G4STORK outgoing neutron energy for the inelastic scattering of zirconium-100 
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Figure 6.41: The MCNP outgoing neutron energy for the inelastic scattering of zirconium-100 

 

6.3.2 The Results from Examining the Extracted Cross Section Data 

By following the methodology described in section 3.4.4.4, the cross-section data 

modified by the extraction routine of G4STORK, and the cross-section data modified by 

the extraction routine of MCNP were compared to the original cross-section data. The 

cross-section data modified by G4STORK was found to line up perfectly with the original 

data. This wasn’t a surprising result since GEANT4 only applies a 2% precision cutoff on 

the cross-section data. The cross-section data modified by MCNP was found to differ 

slightly from the original data. Some of the cross-section data modified by MCNP that 

were measured to differ the most, are shown in Figure 6.42 to Figure 6.45 below. 

Significant differences in the cross-section data can be seen to only occur in energy 

regimes not commonly reached by neutrons in a reactor. Thus the differing cross-section 

extraction routines are probably not the cause of the discrepancy between the results of 

G4STORK and MCNP.  
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Figure 6.42: compares the cross-section data of the original ENDF data and the extracted MCNP data for 

the elastic scattering process of phosphorus-31. 
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Figure 6.43: compares the cross-section data of the original ENDF data and the extracted MCNP data for 

the capture process of plutonium-240. 



Page 108 of 113 

 

 

Figure 6.44: compares the cross-section data of the original ENDF data and the extracted MCNP data for 

the combined fission process of thorium-232. 
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Figure 6.45: compares the cross-section data of the original ENDF data and the extracted MCNP data for 

the inelastic scattering MT=4 process of iron-57 
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