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SCOPE AND CONTENTS: 

The two-pion exchange three-body nuclear force is 

discussed, and an effective two-body interaction derived 

which is capable of reproducing approximately its effect 

in nuclear matter. Treating the three-body interaction as 

a perturbation, the first order contribution to the binding 

energy of nuclear matter is derived using the actual three-

body interaction, the effective interaction, and a recently 

suggested method in which the three-body effects are taken 

approximately into account by modifying the pion mass in 

the one-pion exchange potential. Although the latter method 

leads to a simple prescription for calculating the three­

body effects when no nucleon-nucleon cut-off is applied, 

the calculation is shown to be considerably more difficult 

for the realistic case when a cut-off is introduced, and the 

modified pion mass is momentum dependent. 

On the other hand, the effective interaction is 

found to reproduce quite well the actual three-body effects 
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in first order. This fact is used as a basis for calculating 

the second order contribution using the effective interaction, 

and so an estimate of the three-body effects in nuclear matter 

is obtained. For a reasonable value of nucleon-nucleon 

cut-off, the three-body forces are shown to contribute 

approximately 6 MeV additional binding to nuclear matter. 
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CHAPTER 1 

INTRODUCTION 

The study of the two nucleon interaction has been a 

fundamental problem in nuclear physics, and although the 

processes involved are not yet completely understood, enough 

experimental data has been accumulated so that accurate 

phenomenological(l) or semi-theoretical( 2 ) potentials can be 

constructed. These two-body potentials have then been applied 

in calculations involving many-body systems, on the assumption 

that many-body interactions are negligible. However, from a 

meson-theoretical point of view, many-body forces may well be 

important, and in particular the three-body force may play a 

significant role in determing the binding energy of a many-

nucleon system. 

The possibility of three-body forces in many-nucleon 

systems has been discussed for some time( 3 , 4 ), and the effects 

due to both two-pion and three-pion exchange processes in some 

many-body systems have been considered. Bhaduri, Loiseau and 

Nogami(S, 6 ) (to be referred to as BLN) have pointed out that 

for the case of hypernuclei the three-body two-pion exchange 

process may be expected to play an important role and have 

calculated the effects of such a force to first order in 

nuclear matter. 
( 7) 

More recently, Brown and Green (to be 
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referred to as BG) have examined the NNN interaction in 

nuclear matter, and have shown that, under certain assumptions, 

the three-body interaction due to the two-pion exchange (TPE) 

process may be considered as an effective two-body interaction, 

similar in form to the one-pion-exchange potential (OPEP) , 

but with a modified pion mass. By using this method, BG do 

not need to find the effective interaction in coordinate space, 

and so the perturbation calculation is simple, at least for 

the case in which no nucleon-nucleon cut-off is introduced. 

As will be shown later, the prescription is not as simple 

when an NN cut-off is applied and the modified pion mass is 

momentum dependent. 

In this work, the effective interaction due to the 

three-body force will be derived in coordinate space, and 

the contribution of this interaction to the binding energy of 

nuclear matter will be calculated to second order. Consider-

-able attention will be devoted to the first order calculation, 

where it will be shown how this interaction is related to 

the more conventional three-body interaction of BLN, and to 

the effective mass approach of BG. Although the primary 

process to be considered is the TPE, some higher order effects 

will be taken into account through the introduction of pionic 

form factors(B, 9 ). It will be seen that these form factors 

tend to suppress the high momentum components_ of the potential, 

so that even though the effective interaction derived here 

and the potential of BLN differ in some singular contact terms 
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characteristic of high momentum components, for realistic form 

factors the two give very similar results when calculated to 

first order. 

As will be shown in Chapter II, the perturbation series 

will require a knowledge of the two-body as well as the three­

body force in order to obtain the total second order contribu­

tion. In principle, one of the two-body interactions mentioned 

earlier which fit all the available two-nucleon scattering 

data could be used. Instead, the tail of the OPEP will be 

used, in the spirit of the M::>szkowski-Scott separation 

method(lO). Two reasons motivate this choice. Firstly, it 

is well known that for large distances (r>2F) the OPEP 

approximates quite well the actual nucleon-nucleon interaction. 

Secondly, by using the OPEP with a cut-off at small distances, 

analytic evaluation of most of the required results will be 

possible, a situation which would not normally prevail with 

a more complicated NN interaction. For comparison purposes, 

the OPEP contribution to nuclear matter will also be calcu-

lated. This will permit on accurate estimation of the 

relative importance of the three-body interaction, both in 

first and second order. 

In Chapter II the Rayleigh-Schrodinger perturbation 

series to second order will be discussed briefly, and the 

single exchange terms separated out for special consideration. 

In Chapter III the three-body interaction for the TPE process 
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will be discussed, and from it the effective two-body interac­

tion, which is to be used in the remaining calculations, will 

be derived. The first order effects of the BLN potential, 

the BG potential, and the effective interaction expressed in 

coordinate space will be discussed in detail, and differences 

and similarities pointed out. The second order calculation 

for the effective interaction will be derived in Chapter V, 

and numerical results given in Chapter VI. Finally, the 

importance of the three-body interaction will be discussed, 

and some of the remaining difficulties and ambiguities 

mentioned. 



CHAPTER II 

PERTURBATION SERIES TO SECOND ORDER 

Nuclear matter, although a theoretical construct, 

has been a useful many-body system for testing the effects 

of an assumed nuclear force. It consists of an infinite 

array of equal numbers of protons and neutrons, uniformly 

distributed in space, but with the Coulomb interaction between 

the protons inoperative. This means that the only inter­

action between the nucleons is due to the nuclear force, and 

because the system is infinite in extent, surface effects 

do not complicate the analysis. The main interest here will 

not be in constructing a combined two and three-body inter­

action which can reproduce the expected binding energy per 

particle at the equilibrium density, but rather in determining 

the relative importance of the three-body as compared to the 

two-body force. 

The approximate effect of the TPE three-body force 

to nuclear matter will be estimated using the Rayleigh­

Schrodinger perturbation series to second order. The system 

Hamiltonian will be written as 

(1) 

where H0 is the unperturbed Hamiltonian, consisting of any 

5 
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effective one-body potential generated by the system of 

nucleons, anq H is the perturbation which in this case will 

consist of the sum of a two and three-body interaction. 

Because of the translational invariance of nuclear matter, 

any effective one-body interaction must be independent of 

the position variable, and so the unperturbed system wave 

functions, 1¢ >(n=0,1,2 .•. ),must be Slater determinants of 
n 

plane waves. These single particle wave functions will be 

assumed to satisfy periodic boundary conditions in a large 

but finite volume n, which will eventually be allowed to 

approach infinity. 

The interaction term H may be written as 

H = V + W 

where V and W are given by 

1 
V = 2 E 

i,j 
v (r. , r.) and W 

--1 -J 
1 

= -2 E w ( r . , r . ; rk) 
.. k ...,..1 -J .;,y. 1,J, 

(2) 

(3) 

with v and w being respectively the OPEP, and the three-body 

potential to be derived in the following chapter. The 

v~riable r is the position vector of the particle in the 
-v 

th v state, and the sums are over all occupied single particle 

states. To second order, the energy shift ~E due to the 

perturbation H is given by 

(4) 
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where 

1 
= 

b 

with E0 being the unperturbed ground state energy. The terms 

containing only the two-body interaction are 

(5) 

and 

(6) 

The standard reduction of these expressions in terms of plane 

wave states gives 

llE ( 
1

) ( OPEP) = ~ L: < i j Iv I i j-j i > , 
i,j 

and 

~E ( 2 ) (OPEP) = 1 L: L: 
2 ... , ., 

1,J 1 ,J 

<ijlvli'j'><i'j' lvlij-ji> , 
e:.+e:.-e:!-e:~ 

1 J 1 J 

(7) 

(8) 

where £v is the energy of the particle in the state v. The 

state labels i and j contain all the quantum numbers necessary 

to specify the single particle states, and the sums over i 

and j are to be taken over all occupied levels, while the 

corresponding sums over i' and j' are over all unoccupied 

levels. The diagramatic representation of these two-body 

contributions is given in figure 1, where the wavy line 

denotes the interaction v. (For simplicity, all the terms 

of the perturbation series will be represented by open­

ended, rather than closed-loop, diagrams). 
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Figure 1. Schematic of the first and second order two-body 

contributions to nuclear matter. a) and b) are the 

first order, c) and d) the second order direct 

and exchange contributions. The wavy line denotes 

the two-body interaction. 

k· I k· J k· J k· I k· J k· I 

K· .... I l<. 
J K· I l<:. 

J K· I k. 
J 

ki kk k. k. kk k. k. kk k. 
J I J I J 

a b c 
Figure 2. Schematic of the three-body cross term contributions, 

<V l/b W>, to nuclear matter. a) ahd b) represents 

the direct and single exchange contributions, 

while c) is. one of two double exchange contributions. 
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Consider next the cross term involving both V and W, 

given by 

<2 > I I ~E (C.T.) = <¢ 0 V l/b W ¢ 0> , (9) 

where the abbreviation C.T. stands for "cross term". Because 

of the presence of the two-body operator, any intermediate 

states can differ in at most two single particle excitations 

from the ground state. Since single particle excitations are 

not permitted because of the requirement of the conservation 

of linear momentum, only two particle excitations are possible, 

and these give rise to several diagrams, some of which are 

shown in figure 2. The assumption will now be made that the 

major contribution of the three-body force comes from the 

single exchange terms, so that diagrams such as figure 2c may 

be neglected. The validity of this assumption will be 

discussed later, but accepting it for the time being permits 

~E( 2 ) (C.T.) to be written as 

bE ( 2 ) ( C. T. ) = l Z: Z: 
2 • • k •I •I l,J, l ,J 

<ijkJvli'j'k><i'j'klwlijk-jik> 
£.+£.-£!-£~ • 

l J l J 
(10} 

Because of the Hermitian nature of V and W, 

(11} 

and so the total contribution to the second order energy due 

to the cross terms is 2 ~E( 2 ) (C.T.). 

Finally, there are the terms involving only three-
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body interactions, given by 

6E (l) (T. B. l = <$
0 

lwl $
0

> , (12) 

6E <2 > (T.B. > = <$ 0 lw l/b wl $ 0 > , (13) 

where the abbreviation T.B. stands for "three body". Again 

assuming that the major contribution to 6E(l) (T.B.) and 

~E( 2 ) (T.B.) is given by single exchange terms, these expressions 

simplify to 

6E ( l ) T • B • ) = 

and 

1 
2 <ijklwlijk-jik> I (14) 

i,j,k 

~E( 2 ) (T.B.) = 1 E E <ijklwli'j'k><i'j'£1wlijk-ji£> 
2. • k 1'',3'•,o e;.+e:.-e:!-e:! 

11]1 :Iv 1 J 1 J 

(15) 

The diagramatic representation of these contributions is 

given in figures 3 and 4. 

As can be seen from figures 2 through 4, if only 

single exchange terms are considered, the nucleon in the kth 

(or Q,th) state is always a spectator. This fact permits the 

derivation of an effective interaction, for on inspecting 

equations (10), (14), and (15), it will be seen that a term of 

the form <klwlk> (or <ilwl,Q,>) can be immediately evaluated, 

and the sum over k (or £) performed to give N, the number of 

nucleons present. This integration over rk gives u(r.,r.), 
Wit. ,.W.l ·~J 

the effective interaction due to the three-body force. Then 

1 
U = "2 E 

i,j 
u(r. ,r.) , 

W"l ill/\] 
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a b 
Figure 3. Schematic of the first order contribution of the 

three-body force to nuclear matter. a) is the 

direct contribution, b) the single exchange 

contribution. 
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a 
Figure 4. Schematic of the second order three-body contri-

bution, <U l/b U>, to nuclear matter. a) is the 

direct contribution, b) the single exchange 

contribution. 



with 

u(r.,r.) 
•""']_ IM'J 

dr_k w ( r . , r . ; rk) 
~·· """']_ -"'J -

and equations (10), (14), and (15) become 

6E( 2 ) (C.T.) = ~ l: l: 
i,j i' ,j' 

<ijlvli'j'><i'j' !ulij-ji> 
£ . +t: . -s ~ -s '. 

]_ J ]_ J 

6E(l) (T.B.) 1 
l: <ij jujij-ji> = 2 I 

i,j 

and 

6E ( 2 ) ( T. B. ) 1 
l: l: <ijjuji'ji><i'j' !ulij-ji> = 2 s.+s.-s~-s~ i,j ' I 'I 

]_ I J ]_ J ]_ J 
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(16) 

(17) 

(18) 

(19) 

In the following chapter the form of u, based on the 

definition given in equation (16) will be found, and in 

Chapters IV and V explicit expressions for the first and 

second order contributions of v and u will be derived. It is 

worth noting that similar expressions hold for a A-particle 

embedded in nuclear matter, the only difference being in the 

form of u. In this case, the perturbation expansion to 

second order given above is exact, with the kth nucleon state 

being replaced by that of the A-particle, for the A-particle 

is of necessity a spectator, and so only single exchange 

terms can contribute. 



CHAPTER III 

THE THREE-BODY POTENTIAL 

Quantum field theory attributes the nuclear force 

to the exchange of virtual mesons between the interacting 

nucleons. Besides being an intutively satisfactory des-

cription of the interaction mechanism, this method of analysis 

permits the nuclear force to be described in terms of a 

series of processes, the importance of which depends mainly 

on the nucleon separation. Hence at large distances, the 

one-pion exchange process is believed to be the main contri-

butor to the two-nucleon force, while at smaller distances, 

higher order processes, such as the exchange of more than 

one meson, or the exchange of heavier mesons, become important. 

In a similar way, the three-body force can be described in 

terms of meson exchange, and the lowest order process which 

contributes is the two-pion exchange depicted in figure Sa. 

Although the TPE is the fundamental process to be 

considered, it is nevertheless possible to include in an 

approximate way higher order effects, such as those depicted 

in figure Sb, through the use of picnic form factors(?). 

Their effect is similar to that obtained by introducing an 

NN cut-off when considering the two-nucleon interaction, in 

that they suppress the effects of the short range part of the 

13 
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a 

0 

c 

Figure 5. The process which gives rise to the TPE three-body 

force is shown in a), where the blob on the N3 

line represents the N* resonance. In c) the 

geometry of the situation is sketched, while b) is 

a schematic of some higher order processes which 

are included in the form factors. 
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potential, although the suppression is less severe than 

with a cut-off. The functional dependence of the form factors 

has considerable theoretical and experimental basis(B, 9 ), and 

the following form will be assumed: 

K2 (q2) K' (q2) 

q2 + µ2 

where K and K' are the vertex and propagator form factors 

( 2 0) 

respectively, µ is the pion mass, and the spectral function, 

a(m2 ), will be assumed to have the form 

2 2 2 2 2 a(m) = 8(m -~) - (1-() 8(m -n ) , (21) 

where ( and n are constants which can be partially fixed by 

experiment. Different values of ( and n give rise to different 

form factors, and calculations will be performed with two sets 

of reasonable values. 

The three-body interaction due to figure Sa will be 

derived in the static approximation in which the assumption 

is made that the three nucleons are at rest, and that the 

energy of the exchanged pions approaches zero. For the 

single exchange terms, the nucleon labelled N3 in figure Sa 

always appears as a spectator particle, and so the S-matrix 

for this process is identical to that for the ANN case given 

in reference S, where N3 takes the place of the A particle. 

Then in units of~ = c = 1, 
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x (22) 

where f~ is the pseudovector fl'N coupling constant, .,s1 and ,£..2 

are the momenta of the exchanged pions, and~1 and,J\2 are the 

coordinates of the nucleons N1 and N2 • ..(ll and ~2 are the 

Pauli spin matrices for the two nucleons, while"'11 and J.2 

are the corresponding isospin matrices. The scattering matrix, 

I (3)1 (3) 
~l STIN ~2 >, for a zero-energy pion is given by 

<j1ls;~>1~> = 2Tii o(O) K(qf> K(q~){(A+B)[(~3·~>~3·21> 

i ~l -.i2) ·£3 
e ' (23) 

where A, B, and D are constants in the nonrelativistic 

approximation, with (A+B) being related to the p-wave TIN 

scattering, while D is related to the s-wave scattering. 

Since experimentally the TIN s-wave scattering is known to be 

very small(ll), D will be taken to be zero. When equation (23) 

is substituted in equation (22), the S matrix takes the form 

S = -2Tii o(O)w , (24) 
wh.ere 

(25) 

w is a function of the three nucleon coordinates, r
1

, r
2 

and 
. -~ -.w. 
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.!J, and is interpreted as the three-body. interaction. From 

this expression it will be shown how the potential of BLN, 

the modified pion mass approach of BG, and the effective 

interactionin coordinate space may be derived. 

In order to derive the three-body potential of BLN, 

consider initially the case in which 

Because the integrals over ~l and ..i2 in equation (25) are 

divergent, it is necessary to remove the singular terms 

(26) 

appearing in w(r1 ,r2 ;r3) due to these divergences, and the 
Wit 'JN- Wil 

standard procedure is to replace 

cr.q by - a.v 
""" WI- - -r 

(27) 

where the coordinate variable r corresponds to the momentum 
.\/IN 

variable q, and remove it from the integral. The integrations 
WN 

-over q 1 and q') may now be done using equation A2, and after 
,..,.. .... 'W'L-

applying the gradient operators using equation A7, the 

following expression for w is obtained: 

w(x,y) y]J (y)' 

( 28) 

where x = r 1-r3 , y = r 2-r3 , and {A,B}+ =AB +BA. The 
NA W. ~ vw. l/W'- . W-.. 

functions appearing in equation (28) are defined as follows: 

/\ I\ "' S nm ( r ) = 3 ( a n • r ) ( a • r ) - a 0 • a , 
7v '""'4.N 'itf\ffi ~7v '~ 



T (r) = 1 + 3 + µ µr 

-µr Y (r) = e /µr , 
µ 

3 
2 ' (µr) 

with cp given by< 12 ) 

µ 4 f~(A+B) 
47f 

4 2 Joo = µ fN G33(p)dp 

9 2 2+ 2 ' 7f p µ 
0 

18 

( 29) 

* where a 33 (p) is the cross section in the TI+N-+N reaction. 

The anticommutator in equation (28) may be expanded to give 

more explicitly 

I\ " " " I\ /\ + [ 18 ~l . y) ~ 2 . x) ( x . y) - 2s12 ( x) - 2s12 ( y) 

- 2cr
1

• a
2 

T (x) T (y)]} Y (x) y (y) • 
~"""" µ µ µ µ 

(30) 

Consider now the case when form factors are included. 

The only difference is that 

e -i~l •1$. J Joo 
+ dql 2 2 WM 

ql + µ 0 

-iq.x 
e """'..., = 

J

oo 
2 2 2TI ma (m ) 

0 

2 Y (x)dm , m 

( 31) 

where the explicit form for the form factors has been substi-

tuted from equation (20). If the gradient operators are now 

applied to both sides of the correspondence given in e~uation 

(3li the following relations may easily be obtained: 

3 µ Y (x) 
µ 

2 
Y (x)d:m . 

m 
( 3 2) 
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and 

(33} 

In the next chapter, the first order effects of w(x,y) in _..,.,,,,. 
nuclear matter will be derived, but the important point to 

note now is that in deriving equation (30}, the singular 

contact interaction terms with respect to the variables.~ 

and v have been explicitly removed from w(x,y). 
Wllv- """" -

The modified pion mass approach of BG is based on 

the definition of the effective interaction given in equation 

(16). An examination of equation (25} shows that if w is 

substituted in equation (16) the~3 integration may immedi­

ately be done to give (2TI) 3 6(~1-~). The ~l integration 

may then be done, so that 

dq ( 01. q} ( 0 2. q} 
"""""" WI> .,,,.. w.. 

-io.r 
e ~ wo. ' 

where 

and p = N/~, the density of nuclear matter. Now if 

loµ2l<<µ2+q2, 

1 
- [ 2 -2 

q +µ 

1 
2 2] 

q +µ 

Where µ-
2 -- µ 2 + s:µ 2 . If t' (36) ' b t't t d' u equa ion is su s i u e in 

equation (34)
1 

u(,;:_) becomes 

( 34} 

(3 6} 
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1 
2 2] 

q +µ 

-iq.r 
e WI< WA 

• 
(37) 

ffQW@ver, the OPEP (without form factors) is given by(ll) 

(38) 

H~nc~ the effective interaction u(r) may be viewed as 
"""' 

eont~ining two parts, one the usual OPEP with pion mass µ, 

the oth~r an OPEP with a modified pion mass µ. This is the 

~~~§eription used by BG to calculate the three-body effects, 

and its first order contribution will be discussed in the 

f§llowing chapter. Note however, that because of the 

integration over r
3

, u(r) contains contact terms with respect 
- """" ,.,...,. 

t{;> the variables ..r 1 -.~ 3 and _J 2 -.;3 , and so for this reason 

it i~ @.x:pected that the effects of u (
4
;:_) will be somewhat 

.{litferent from those of w (x ,y) . 
..,.,. \W\ 

The alternative method to introducing the modified 

pion mass, and as will be seen in the next chapter the more 

desi~able one, is to integrate equation (34) with respect to 

q an~ so find u(r) in coordinate space. Removing the singular 
oWI ""' 

contact terms according to the prescription given in equation 

(27), ano substituting for the form factors from equation 

(20} gives 

4Cpp J 2 1 {i-t,:} 2 -ia.r u ( :r:) ;:;;: · --- - ( T • T } (a • V} (a • '\/} dq q { -
2 2 } e -~ "'* . 

W. 6 .w-1 W/'2 .w-1 Wt& ~2 M- WA 2+ 2 TIµ. q µ q +n 
( 39} 
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The integrals are evaluated in Appendix A and the operator 

(cr 1 .V) Ccr 2 .v) applied. The final result is - -- ..... 

u (r) 
',/'N\ 

where 

c = 
4TipC 

p 

3µ3 

gc(r) = c 1 Yµ(r) + c 2Eµ(r) + c 3 
Y (r) + c

4
E (r) , 

n n 

( 40) 

c 5T
11

(r) Y (r)+c 2 (E (r)+Y (r))+c
6

T (r)Y (r)+c 4 (E (r)+Y (r)), 
'"" l-1 l-1 l-1 n n n n 

-mr = e 

and the constants c 1 through c 6 are given by equation (A.10). 

For comparison purposes and later use note that the OPEP is 

given by 

v (Ji..) = BJ 1 .J:2 [g1 • .z 2 f c (r) + s12 (r) ft (r)] , ( 41) 

where B 

Using the form factors given in Table I and the 

constants given in Table II, the central and tensor parts, 

Cgc(r) and Cgt(r), of u(£) are plotted in figures 6 and 7, 

and compared with the central and tensor parts, Bf (r) and c 

Bft(r), of OPEP. The introduction of form factors modifies 

the short range part of the interaction, and in the case of 

form factor III introduces an extreme suppression in the 

tensor part of u(r). Since the major contribution to the 

binding energy comes from the tensor part of the interaction, 
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8.0 

4.0 

o.oL ___ __J_ ___ -=~===~~~j 
0.5 1.5 2.5 

r(F) 
3.5 

Figure 6. The central part of the OPEP, B.fc(r), and the 

central part of the effective interaction, C.g (r), c 

for the form factors I, II, and III, plotted 

against r. 
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Figure 7. The tensor part of the OPEP, B.ft(r), and the 

tensor part of the effective interaction C.gt(r), 

for the form factors I, II, and III, plotted 

against r. 

3.5 
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it is this suppression at short distances which characterizes 

the main effect of the form factors. 



CHAPTER IV 

THE FIRST ORDER CONTRIBUTIONS OF W AND U 

Three different ways of describing the NNN inter-

action have been introduced in the previous chapter, and it 

is now desirable to understand what the important diff erencs 

between these prescriptions are when each is applied to the 

calculation of the three-body effect in nuclear matter. The 

fact that the effective interaction u(r) contains some 
- 'I.IV. 

singular contact terms which are absent in w(x,y) has already 

YI" -
been pointed out, and these are expected to lead to differ-

ences in the contributions of u(r) and w(x,y). In this 
W* 'W<' -

chapter, the first order contribution of the NNN interaction 

will be examined in detail, and the differences obtained 

_when it is calculated according to each of the above 

prescriptions discussed. In order to obtain the effects of 

the contact terms in u(r), and to understand the modifications 
"""" 

introduced by the form factors, the first order contribution 

of both w and u will first be calculated with a, the NN cut-

off, taken to be zero. The results will then be generalized 

to the more realistic case in which d is non-zero, and the 

contributions of w and u will be compared using the form 

£actors given in Table I. The difficulty with the modified 

pion mass approach of BG when an NN cut-off is introduced will 

25 
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~ n Comments 

1.0 (arbitrary) Corresponds to no form factor 

0.28 1.676 ref. 8 

0.0 2.214 ref. 9. Eq. 56 is satisfied 

Table I. Parameters for use in the spectral function given 

by equation (21). Each row corresponds to a different pionic 

form factor. 

Parameter Value Comments 

.fie 197.32 MeV-F 

kF 1. 36 F -1 ref. 20 

p 0.170 F- 3 ref. 20 

..ri2 /M 41.5 MeV-F -2 ref. 20 

f 2 
N 0.0800 ref. 21 

-1 0 + -µ 0.700 F Average of µ , µ , and µ 

c 0.460 p MeV ref. 21 

B 3.68 MeV ref. 22 

c 0.955 MeV 

Table II. Numerical values for constants used in calculating 

the first and second order contributions. 



27 

be discussed, and finally, the first order contribution of u, 

given by equation (40}, will be obtained. 

The prescription for introducing form factors into 

w(x,y) has already been obtained (equations (32) and (33)), 
*"' Wdo 

_ and so <W>/N may first be calculated without form factors, 

and their effect introduced when the calculation is complete. 

BLN(G) have calculated the first order effect for A-particle 

in nuclear matter, and their result can be carried over 

unaltered to the NNN case, with one exception. If the total 

isospin I, and its 3-component, r 3 , are denoted by (I, r 3}, 

then for the nN system the i-spin is (1/2, r 3 ) or (3/2, r 3 ), 

* while for N it is (3/2, I3) . Hence for the reaction 

* 'll'+N,,..N , only four of the six initial states are coupled to 

the final state. On the other hand, for the TIA system, I=l 

only, and so all initial states are coupled to the final state. 

This leads to the relation 

Using equations (4) and (5) of reference (6), 

<W> 
N = 

<W>NN 
N 

D2 (kF!x-y!){l+ (3 cos 2 e -1) T (x) 
Wt. ""' xy µ 

X T (y)} Y (x) Y (y)dx dy, 
µ µ .µ .w- OW\ 

(42) 

(43) 

where D(kFr) = 3j 1 (kFr)/kFr' cos 8xy = ~-x/xy {the geometry 

is shown in figure Sc), and jl is a spherical Bessel function 



of order one. Now define 

F(q) 
= I '!! 

so that 

F (q)e\~·£._ dq ...... 

Writing 

I = µ
6 J n2

CkF!x-y!) Y (x) Y (y)dx dy c ~- µ µ VI>/\ fJi'( 

it is shown in Appendix B that by using equation (45), Ic 

may be reduced to 

Similarly, if 

28 

(44) 

( 4 5) 

(46) 

It= µ 6Jn2
(kFlx-y!) (3cos

2e -l)Y (x)T (x)Y (y)T (y)dx dv, 
iw fY'i\ xy µ µ µ µ #M vw.. 

It may be written in q-space as 

It= 16 Jooo dq q6 F(q) 
(q2+µ2)2 . 

On collecting terms, 

2C p 
2 

[µ4 r dq + 2 r dq 
<W> 2 F (q) - p q N 6 (q2+µ2)2 µ 

0 0 

Consider now the prescription given 

(47) 

6 F(g) ] q 
(q2+µ2)2 

(48) 

in equations ( 3 2) 
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and (33) for introducing form factors. Multiplying equation 

(32) by x 2 j
0

(qx), integrating over all x, and making use of 

equation (Dl) gives 

(49) 

Similarly, on multiplying equation (33) by x 2 j 2 (qx), inte­

grating over all x, and using equation (D2), the following 

correspondence is obtained: 

1 ~ r dm2 

0 

2 a(m ) 
2 2 • 

q + P'1 

(SO) 

Then when the effects of form factors are included, <W>/N 

becomes 

<W> 
Ir 

2 2 
m a(m >,2+ 

2 2 
q +I".\ 

2 2 
dm a (m ) ) 2] 

2 2 . 
q + rn 

This expression may be rearranged slightly to give 

<W> 
Ir 

2C p2Joo 
= ~ dq q2 

µ 0 

2 2· 
a(m )dm )2] 

2 2 • 
q + m 

( 51) 

The first order contribution of u(r) is less compli-
.vw. 

cated to derive. From equation (Cl) only the exchange term 
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of equation (18) contributes, and upon doing the i-spin and 

spin sums using equations (C2) and (C4) <U>/N becomes 

where 

<U> 
N 

= <k. k. lu' (r) !k. k.> 
1 J ~ J 1 

J 

1:' 2 2 -ia. r 
U I (.~) = ~q l.J lJ q e ll<IA l'M 

..... ..w (q2+µ2) 2 

Replacing the sums over k. and k. by integrals, and using 
1 J 

the relation 

equation 52 becomes 

<U> 
N = 

ik.r e rH- w. = 4
'1T k 3 D(kFr) , 
3 F 

of u' (r), equation (53) gives 
W>/t>. 

<U> 
tr 

(52) 

(53) 

(54) 

Substituting for 6µ 2 from equation (35), this expression may 

be rewritten as 

<U> 
N = r dq q6(Joo dm2 

0 0 

a(m
2

) )2 F(q) . 
2 2 

q + I'1 

(55) 
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Comparing <U>/N with <W>/N give~ by equation (51), the two 

are seen to agree only if 

(56) 

Thus, provided that the spectral function, a(m2 ), is chosen 

in such a way that equation (56) is satisfied, the contact 

terms appearing in <U>/N will be of no importance. If the 

spectral function given in equation (21) is substituted in 

equation (56), the condition ~=O is obtained. For one of 

the form factors used in later calculations, this condition 

will be satisfied, while for the other ~=0.28. 

In order to ascertain how sensitive the difference 

between <W>/N and <U>/N is to the value of ~' both quantities 

were calculated for the more realistic case of non-zero d. 

When a cut-off is introduced, the expression corresponding 

- -·to -equation ( 51) may be found by subs ti tu ting for n2 (kFr) the 

quantity D2 (kFr) 8(r-d), so that F(q) is replaced byF(q), where 

~ 2 

J
d 

F(q) = F(q) - 4rr 0 D (kFr) j (qr) r 2dr 
0 

(57) 

Details of the evaluation of <W>/N are given in Appendix F, 

and the results are compared with the contribution of <U>/N 

in Table III. For form factor III the results are identical, 

as equation (56) would predict. Perhaps more important is 

the fact that the results are very nearly the same for form 



N 
M 

Form Factor I II III 

d(F) 0.8 1. 0 1. 2 0.8 1. 0 1.2 0. 8 1.0 1.2 

<W>/N -1. 77 -1.30 -0.906 0.316 0.088 -0.049 1. 05 0.491 0.117 

<U>/N -3.17 -2.40 -1.72 0.378 0.088 -0.082 1. 05 0.491 0.117 

<U-W>/N -1. 40 -1.10 -0.81 0.062 0.000 -:-0.033 o.oo 0.000 0.000 

Table III. Comparison of the first order contributions of the three-body interaction 

W, and the effective interaction u. All energies are in MeV. 
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factor II, where ~=0.28. This result will lend support to 

the assumption that even for form factor II the delta-

functions in u give a negligible contribution, and so u may 

be used to calculate the second order three-body contribution 

to nuclear matter. 

BG calculate the first order contribution of u by 

making use of equation (37), according to which 

<U> 
~ = <V ( )l= iJ) > 

N 
<V ( µ= \l > 

N 
( 5 8) 

However, on c omp aring equations (34) and (38), the OPEP is 

seen to be relate d to u(r) through the correspondence 
'-WA 

->- - 1 
2 2 , 

q +µ 

which when sub s t i tuted in equation (54) gives 

2 
dq 9.. F(q) 
- 2+ 2 q )l 

(59) 

Then if no NN cut-off is introduced, the three-body effects 

can be obtaine d by modify ing the pion mass in the OPEP 

contribution as e quation (58) indicates, and this is the 

prescrip tion give n by BG. However, when an NN cut-off is 

introduced, the re s ult is more complicated b e cause of the q 

dependence of µ. 
2 -2 BG make the error of r e placing l/(q +µ ) 

by the Fouri e r trans f orm of the cut-off Yukawa, and so in 

effect have negle cted the mome ntum d ependence of µ. Instead, 
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what should be done is to find the potential corresponding to 

l/(q2+µ 2 ) in coordinate space, cut it off at r=d, and then 

find the Fourier transform of this cutoff potential. However, 

because of mathematical difficulties in carrying out this 

procedure, and because the simple result given by equation (58) 

will no longer hold, it does not seem useful to pursue this 

method any further. 

Consider now the first order contribution of the 

effective interaction, u(r\, given by equation (40). Because 
~\¥/. 

of equation (Cl) only the central part contributes, and 

using techniques exactly similar to those u sed in obtaining 

equation (54), <U>/N becomes 

where 

<U> 
N 

9 c p I = -- - g (q ) 4 Tr c 
2 F(q)q dq , 

2 
j

0
(qr) gc(r)r dr 

(60) 

There is howeve r, one important difference between equations 

(54) and (60) which should be note d at this point. In 

deriving the effective interaction in coordinate space, the 

contact terms with respect to the variable r have been 
Ill'>'\ 

explicitly removed, while in equation (54) the contribution 

of such contact terms still r emain. Of course, if an NN 

cut-off is introduced, equations (54) and (60) will give 

indentical results, and for convenience equation (60) will 
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be used throughout in the first order calculation of u. The 

contribution of v is given by a similar expression which can 

be found by setting C to B and g (r) to f (r) in equation (60), c c 

and when equation (Fl) for F(q) is subsituted in equation (60), 

the integral may be done numerically to obtain both <U>/N 

and <V>/N. 

The examination in this chapter of the first order 

contribution of the three-body force to nuclear matter has 

indicated that the effective interaction, u(r), describes 

quite adequately the first order three-body effects involving 

the single exchange terms, and on this basis u will be used 

in the following chapter to calculate the second order three-

body effects. 



CHAPTER V 

THE SECOND ORDER CONTRIBUTION OF U 

In the previous chapter, the first order contribu-

tions of w and u were compared, in order to see how the form 

factors modify the short range part of the interaction. The 

conclusion was reached that provided the form factors at 

least approximately satisfied equation (56), the effect of 

the spruious contact terms in u would be negligible. The 

same conclusion will be assumed to hold for the second order 

calculation, and so u rather than w may be used to calculate 

the second order contribution of the three-body interaction. 

Because of the similarity in form between u and v, the 

equations obtained for the calculation of u may easily be 

modified to permit a second order calculation of the OPEP 

contribution, and so the two and three-body results may easily 

be compared. To show how the calculation proceeds, the 

contribution of the cross term, <U l/b V~ will be calculated, 

and the method of obtaining the OPEP contribution, <V l/b V>, 

and the pure three-body term, <U l/b U>, from this result 

will be given. 

F-rom equation (17) the direct contribution of <U l/b V> is 

tiE ( 2 ) 
d 

--N--(C.T.) = 1 l: l: 
2N ... I • I 

1,J 1 ,J 

< i j I v I i I j '> < i I j I I u I i j > 

e:. +e: .-e: !-e: ~ 
1 J 1. J 

36 

( 61) 
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The single particle energies, £y' will be taken to be the free 

particle kinetic energy, .fi 2 k~/2M, where M is the nucleon 

mass. Then 

Momentum conservation in nuclear matter requires that 

so that equation (62) simplifies to 

£.+£.-£!-£~ 
1 J 1 J 

h2 
= ---M q. (q+k.-k.) . 

.......... liW' ...-1 YIM/'"] 

(62) 

(63) 

(64) 

Because of the condition given by equation (63), the four sums 

over momenta appearing in equation (61) reduces to three sums 

over the variables k., k. and q, where the sums are 
....,.,..1 --J -

restricted so that 

!k.!<kF' 
\W\1 I k. I <kF ' 

""""] 
( 65) 

lq+k.j>kF' 
"""~1 

jk.-qj>kF . 
-J""" 

According to equations (Cl3) and (Cl4) any terms 

linear in s 12 (~) cannot contribute to LEJ 2 ) (C.T.)/N, and so 

equation (61) reduces to two terms, one involving only the 

central parts of v and u, the other involving only the tensor 

parts. According to the results given in Appendix C, the 

i-spin and spin sums for the central contribution will give 

a factor of 12xl2, while the i-spin and spin sums of the 

tensor contribution will give a factor of 12x24. With these 
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substitutions equation (61) may be written as 

L\E ( 2) 
d 
N (C. T. ) = 

[144fc(q)gc(q)+288ft(q)gt(q)] 

q . ( q+ k . - k . ) 
"""' '* J'l'\l. /NI\ J 

( 66) 

where the j 0 and j 2 transforms have be~n defined and 

evaluated in Appendix D. Using the relations 

r ~ n 3 J d~ , as n + 00 , 

k ( 2TI) 
(67) 

and 

J 

dk. dk. 4TI 2k~ 
..W.1. """"] - p (q/2kF) I 

q. (q+k.-k.) - 15q 
VIM- """ ...,..J..: \W> J 

( 6 8) 

discussed in Appendix E, equation (66) simplifies to 

L\E ( 2) 
d 
N (C.T.) = 18 M 2 Joo 

-~2 ~B.C.kF dqq P(q/2kF) [fc(q)gc(q)+2ft(q)gt(q)], 
5TI -11 

0 
( 69) 

where the constants B and C have been defined by equations 

(40) and (41). Since the function Pis known analytically 

(equation (E2)) this integral may be evaluated numerically, 

and a value for 6Ed 2 ) (C.T.)/N may be obtained. 

The direct OPEP contribution, 6EJ 2 ) (OPEP)/N, may now 

easily be found by setting C to B, gc to fc' and gt to ft in 

equation (69). Hence 

6E ( 2 ) 
d 
N 

(OPEP) 
2 - 2 

qP (q/2kF) [f c (q) + 2ft (q)]. 

(7 0) 
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(2) Similarly, the pure three-body contribution, 6Ed (T.B.)/N, 

may be found by setting B to C, fc to gc' and ft to gt to 

obtain 

6E ( 2 ) 
d 
N 

(T.B.) 

The exchange contribution of <U l/b V> is 

6E (2 ) 
ex 
N 

(C.T.) = 1 
2N L: 

i,j 
L: 

i I I j I 

<ijlvli'j'><i'j' lulji> 
£ . + £ . - £ ! - £'. • 

J_ J J_ J 

(71) 

(72) 

Making use of the spin sums given in Appendix C, evaluation 

proceeds as for the direct term, so that 

6E( 2 ) 
ex 
N (C.T.) = 

[36f (q)g {s)-144P2 (cose )ft(q)gt(s)] c c sq 
q • ( q+ k . - k . ) I 
~ """ ·,wl WV'] 

wheres= q+k.-k .. Replacing the sums by integrals using 
''""' ..,.,.. -1 -J 

(7 3) 

equation (67), and using the generalized Euler functions G
0 

an_d G2 , discussed in Appendix E and tabulated in reference (13) , 

equation (73) becomes 

6E( 2 ) 
ex 
N 

(7 4) 

where q runs from 0 to oo, and v runs from max(O,q-2kF) to 
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The same correspondence as was used with the direct 

contribution may be used to find ~E( 2 ) (OPEP)/N and 
ex 

~E( 2 ) (T.B.)/N, with the results 
ex 

~E(2) 
ex (OPEP) = 
N 

and 

.6E ( 2) 
ex 
N (T.B.) = 21 c2 __!:! 

2"1> -112 
Jqaqf sds[G0gc(q)gc(s)-4G2gt(q)gt(s)J , 

(76) 

where it is understood that G0 and G2 have the same arguments 

as in equation (74). 

All the required first and second order results have 

now been obtained. In Appendix F some of the details 

concerned with the numerical evaluation of these contributions 

has been discussed, and in the following chapter the various 

results given in Tables IV and V will be.discussed, with a 

view to determining the importance of the three-body force in 

nuclear matter. 



CHAPTER VI 

DISCUSSION OF RESULTS 

In Chapter IV the first order contributions of w and 

u were considered in detail, and the effects of the form 

factors on the short-range part of the effective interaction, 

u, discussed. Assuming that the three-body interaction could 

accurately be described by u(r), the second order contribu­
~ 

tions were derived in Chapter V. Using the parameters given 

in Table II and the integration methods discussed in 

Appendix F, the first and second order contributions of the 

OPEP, v, and the effective interaction, u, have been calcu-

lated and tabulated in Tables IV and V. The contributions 

for various values of the cut-off have been given, although 

the most realistic value is probably for d=lF, and in the 

following discussion all results taken from Table IV and V 

will refer to the column in which d=lF. 

Although the two-body contributions given in Table IV 

are not of primary importance here, a brief discussion of 

these results will point out several facts which also hold 

for the three-body contributions. The first order contribution, 

-8E(l){GPEP)/N, is seen-to be small -- about 3 MeV attraction, 

while the second order contribution is almost 20 MeV 

attraction. This would seem to indicate that the perturbation 

41 
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Cut-off (F) 0.8 1.0 1.2 

~E(l) (OPEP)/N -4.04 -3.16 -2.35 

~E( 2 ) (OPEP)/N 
d -28.0 -15.7 -8.94 

~E ( 2 ) (OPEP) /N 
ex -7.9(4) -3.7(8) -1.7(7) 

~E ( 2 ) ( OPEP) /N -35.9 -19.5 -10.7 

~E ( 2 ) I 6E ( 2 ) ( % ) 
ex d 28.4 24.1 19.8 

~E ( 1 ) I 6E ( 2 ) ( % ) 11.3 16.2 22.0 

6E(v)/N - 39.9 -22.7 -13.1 

Table IV. First and second o r d e r OPEP contributions. The 

direct and e x c han g e contrib utions are shown separ ately , and 

the total contribution, 6E(v)/N is given. All energies are 

in MeV. 
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series is not converging, and that higher order terms should 

be considered. However, as was pointed out in Chapter IV 

only the central part of the OPEP contributes is first 

order, while the tensor part gives a large contribution in 

second order, and so it is possible that by the third order 

the contributions will have become small. Third order 

calculations have been performed using the OPEP and this 

possibility has been confirmed. (l6 ) 

The total OPEP contribution, 6E(v)/N, is seen to be 

about 23 MeV attraction, which when combined with the average 

kinetic energy per particle of 23 MeV gives a net binding 

energy per particle of approximately zero. However, at 

d=0.8F, the potential energy contribution is now sufficient 

to give a binding energy of approximately 17 MeV per particle, 

and so the contribution is very sensitive to the value of 

the NN cut-off. The result will also be seen to hold for 

the contribution of the effective interac"tion, and BLN, in 

their consideration of the first order contribution of w, 

have reached a similar conclusion. 

Turning now to the effective interaction contributions 

given in. Table V it is seen that for a realistic form factor 

(either II or III) the first order contribution of u ranges 

from 0.1 MeV to 0.5 MeV repulsion. BG in using their modi­

fied pion mass approach concluded that the first order 

contribution of the effective interaction is approximately 

1.2 MeV repulsion. The reason for this disagreement can be 



'<:JI 
'<:JI 

Form Factor I II III 

put-off (F) 0.8 1.0 1.2 0.8 1.0 1. 2 0.8 1.0 1.2 

~E ( l) ( T. B. ) /N -3.17 -2.40 -1.72 0.379 0.088 0.082 1.05 0.491 0.117 

~ E ~ 2 ) ( C . T . ) /N -25.6 -13.8 -7.50 -7.32 -4.74 -3.04 -6.44 -4.66 -3.22 

~E ( 2 ) ( C . T . ) /N 
ex -7.2(8) -3.3 (4) -1.4(9) -1.9 (9) -1.0 (9) -0.57 (6) -1.6 (8) -1.0(4) -0.59(4) 

~ E ~ 2 ) ( T . B . ) /N -5.89 -3.06 -1.60 -0.521 -0.378 -0.267 -0.483 -0.398 -0.313 

~E ( 2 ) ( T. B. ) /N 
ex -1.6(9) -0.74(8) -0.32(3) -0.12(6) -0.08(0) -0.04(7) -0.09(2) -0.07(3) -0.05(0) 

~E( 2 )/N(Total) -40.5 -20.9 -10.9 -9.96 -6.28 -3.93 -8.70 -6.17 -4.18 

~E (l) /6E (2 ) (%) 7.82 11. 5 15.8 3.80 1. 40 2.10 12.1 7.95 2.79 

~E(u)/N -43.7 -23.3 -12.6 -9.58 -6.19 -3.84 -7.65 -5.68 -4. 06 

~E(u)/6E(v) (%) 110. 103. 96.2 24.0 27.3 29.3 19.2 25.0 31. 0 

tr_able V. First and second order contributions of the effective interaction u. The total contribution, 

~E(u)/N, is given, as well as the ratio, ~E(u)/~E(v), of the three-body and two-body contributions. All 

~nergies are in MeV. 
i 



45 

traced to the error in BG's method of imposing on NN cut-off, 

already discussed in Chapter IV. In second order, the total 

contribution of u is approximately 6 MeV additional attrac-

tion, so that altogether the total three-body con~ribution, 

~E(u)/N, would appear to be approximately 5.5 to 6 MeV of 

additional binding to nuclear matter. When compared with 

the OPEP value of 23 MeV, the three-body force is seen to 

contribute 20% to 25% of the two-body contribution to the 

potential energy per particle. 

From equation (42), a partial estimation of the 

contribution of the three-body ANN interaction to the binding 

energy of a A-particle in nuclear matter can be obtained, 

using the results given in Table V. The first order contri­

bution, ~E(l) (ANN), can be unambiguously determined, and is 

given in the first row of Table VI. In second order, the 

term <UANN l/b UANN>' where the subscripts indicate explicitly 

the origin of the effective interaction, will give no contri-

bution, since for a A-particle it will proportional to l/N. 

However, the term <VNN l/b UANN> will contribute, and its 

contribution is given in Table VI as ~E( 2 ) (ANN). The total 

contribution, ~E(ANN), is seen to be unrealistically large, 

for the binding energy of a A-particle in nuclear matter is 

believed to be approximately 30 Mev( 6 ) (note that for a A-

particle in nuclear matter the kinetic energy is zero) , and 

so this result would indicate that the three-body force gives 

rise to almost all of the binding energy. However, it is 



l.O 
~ 

Form Factor 

cut-off (F) 

tiE (l) (J\NN) 

6E ( 2 ) ( J\NN) 

tiE(J\NN) 

6E (l) /6E (2 ) (%) 

0.8 

-15.1 

-193. 

-208. 

7.82 

I 

1. 0 1. 2 

-11. 4 -8.19 

-99.5 -51. 9 

-111. -60.1 

11.5 15.8 

II III 

0.8 1.0 1.2 0.8 1.0 1.2 

1. 80 0.424 0.390 5.00 2.34 0.557 

-47.4 -29.9 -18.7 -41. 4 -29.4 -19.9 

-45.6 -29.5 -18.3 -36.4 -27.1 -19.3 

3.80 1. 40 2.10 12.1 7.-95 2.79 

Table VI. First and second order contributions of the three-body J\NN force to A-particle binding in 

nuclear matter. All energies are in MeV. 

. 
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well known that the two-body AN forces alone tend to give an 

overestimate of the A-particle binding, and in fact the 

three-body forces were originally introduced as a possible 

mechanism to suppress the two-body effects. 

The reasons for the unrealistically large values of 

~E(ANN) are not clear. One possibility is that the second 

order term given by <VAN l/b WANN> may give a sizeable 

contribution and so perhaps cdncel some or all of the contri-

bution due to <VNN l/b WANN>. This term cannot be calculated 

as readily as the other second order terms, since the A-

particle will no longer be a spectator, and so an effective 

interaction cannot be determined. Another alternative is 

that the two-pion exchange process may not be the only one 

which gives a sizeable contribution to the three-body force, 

and for example the double exchange of the a-meson has been 

suggested as a possible contributor(2 3). 

- -There is also some question as to whether .the use of 

form factors as cpposed to the introduction of explicit cut-

offs in the variables ~ and ;t gives a realistic method for 

calculating the contributions of the three-body force. When 

the first order contributions given in Table VI are compared 

with those given by BLN in reference 6, the agreement is only 

qualitative in nature. Both methods of calculation predict 

that in first order the three-body force gives rise to a slight 

repulsion which is very· sensitive to the NN cut-off, but the 

quantitative agreement is very poor. This indicates that 

the method of calculation used here is quite ambiguous, and 
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that if explicit cut-offs had been introduced in the variables 

x and y, a very different second order contribution might - """"" 
have been obtained. 

No further examination of these questions will be 

undertaken here. However, the several ambiguities in the 

calculation of the three-body contributions both to nuclear 

matter and to A-particle binding should be noted, and all 

numerical values should be regarded with suspicion until 

more detailed calculations can be performed. 

In conclusion, a brief discussion of the main 

assumptions which have gone into the calculations of the 

results summarized in Tables IV through VI will be given. 

The derivation of the three-body force has been 

carried out in the static limit, and although the exchanged 

pions cannot strictly be of zero energy, the main contribution 

-1 to the first order energy comes from a region near q=lF , 

while in second order the corresponding value is q=2F -1 

Because the main contribution comes from such small q values, 

the assumption of the static limit would appear justified. 

However, unless a more precise three-body interaction is 

derived, and the calculation repeated with it, no definite 

conclusion can be reached. 

A second assumption concerned with the three-body 

force is that the TPE process is the main contributor to the 

three-body interaction. Higher order processes, such as 

the exchange of more than two, or of heavier mesons can be 
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expected to be of some importance, and some such processes 

have been considered by other workersnw. However, in the 

same way that the OPEP tail can reproduce approximately the 

effects of the two-nucleon force, it is perhaps reasonable to 

suppose that the tail of the effective interaction due to 

the TPE process can reproduce reasonably well the three-body 

effects. 

In connection with the perturbation expansion, two 

basic assumptions have been made. In the first place, the 

series has been truncated after second order, on the assump-

tion that higher order terms are not important. Because 

the tensor contribution in second order has led to a value 

very much larger than the first order contribution, this 

-assumption would seem to be quite unjustified. However, as 

has already been mentioned, the effects of the third order 

terms have been calculated for the OPEP, and the conclusion 

-·-was reached that third and -higher order terms are indeed 

quite small. Because the effective interaction is weaker 

than the OPEP (figures 6 and 7) a similar convergence can 

be expected for this case as well. 

The second assumption concerned with the perturbation 

series, and one which is less easily justified, is that only 

single exchange terms contribute. The double exchange terms 

have been calculated in first order for the three-body 

interaction w~ 9>, and found to be approximately 12 % of the 

single exchange term. In the results presented in Table V, 
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the assumption has been made that the single exchange terms 

also dominate the second order contribution, although it 

would appear possible that the great number of double exchange 

terms which contribute in second order may combine to give 

a contribution comparable in size to that of the single 

exchange terms. It is worth noting, however, that for the 

ANN interaction, the first order term and any second order 

terms involving VNN can only have contributions from the 

single-exchange terms, because in these cases the A-particle 

is always a spectator. 

The results of the calculations presented here 

indicate that the three-body force can contribute approximately 

6 MeV additional attraction in nuclear matter. This number 

is not meant to be a precise estimation of the three-body 

effects, for many ambiguities still remain in the calculation. 

In particular t h e results are sensitive to the form of the 

--two-body inte raction, and clearly a more realistic form of 

the two-nucleon force could be used. Also, the NN cut-off 

is a very important, but quite arbitrary parameter, and a 

calculation which avoided the introduction of a cut-off 

would be desirable. However, this would require a detailed 

knowledge of not only the two-body, but also the three-body 

force for arbitrarly small distances. Such a detailed 

description of the three-body force is not available at this 

time, either from a theoretical or experimental point of view . 

.._. _ .... ,.... ..... ,.._ ....... ,..,... ................ ,... ....... ~ ... 



APPENDIX A 

.SOME RESULTS REQUIRED IN THE EVALUATION OF W AND U 

The following integrals will be of use in calculating 

the effective interaction in coordinate space: 

2 2 I 
µ - n 

(Al) 

where use has been made of no.5 p.63 and no. 25 p.66 of the 

Bateman tables(l 4
). On setting n=O the Fourier transform of 

the Yukawa function is obtained: 

SJ, e ~ .,.,,. = 
j 

d -ia.r 

q2 + µ2 
2 2TI µY (r) . 

µ 
(A2) 

Using no. 39 p.68 of reference (14) the following result may 

easily be obtained: 

-r J

oo 

4 7T 

0 
(A3) 

Finally, the following two integrals will be required in 

evaluating the first order contribution of W: 

(A4) 
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using no. 39 p. 68 of the Bateman tables, · and 

using no. 25 p.66. 

The effect of the operator (a, .V) (0 2 .V) on an 
./111-..J.. .,.,,.. .....,. """ 

arbitrary function of r, say f(r), will be required. Now 

and making use of the relations J.. (2'- 2 \~) = ~ 2 and 

vcl df) = r[l_ d2f 
w.• r dr w.-. 2 d 2 r r 

this expression gives 

If f (r) = Y (r), equation (A6) gives 
µ 

while for f(r) = E (r), 
µ 

- · - - -(a • -V) (a • V) E ( r) 
,w. l IW IW' 2 V>M ll 

1 df] 
r3 dr 

From equation (39) the effective interaction is given by 

u (r) 
.vM 

2 1 
dq q [ 2 2 2 

Wi'\ (q +µ ) 
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(AS) 

(A6) 

-(-A8) 



2(1~~) + (1-~) 2 ] 
(q2+µ2) (q2+n 2) (q2+n 2) 2 

-ia.r e i.Wi .-
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(A9) 

Using equations (Al) and (A3) the integrals may be done to give 

Applying equations (A7) and (AB) u(r) may be written as in 
""""' 

equation (40), with c 1 through c
6 

given by 

c2 = -1 ' 

4 (1-0 2 Cn/µ) 
3 2 3 2 2 

C3 = + 4 (1-~) n Cn/µ) I(µ -n > ' 

C4 = - (1-0 2 Cn/µ) 3 

C5 = 2 - 4 (1-0 2 2 2 
µ /(µ -n > 



APPENDIX B 

SOME RESULTS REQUIRED IN OBTAINING <W>/N 

-On substituting for D2 (kF!x-yj) in terms of F(q) 
~"""" 

in Ic one obtains 

But 

where f (q) is given by equation (Dl) , and so c -

I = 8µ4 r dq 
q2F(g) 

c ( 2+ 2,2 
. 

0 
q µ 

(Bl) 

~'"Silrlilarly, -when D2 is replaced by its Fourier transform in 

It one obtains 

Now 

and 

µ
6

3
Jdq F(q)Jdxdy ei~. (~~i) (3cos 2e -l)y (x)T (x)Y (y)T (y). 

( 2 TI ) ,...,.. W" vw. XY µ µ µ µ 

iq.x 4 e """ w 11 = TI 
,£ /\ /\ 

l: i Yin ( q) Y £ n ( x) j £ ( qx) , 
£,n 
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(B2) 

(B3) 

(B4) 



55 

-iq.v with a similar expression for e .,.,,. ~. When equations (B3) 

and (B4) are substituted in equation (B2), the angular 

integrations over x, y and q may be done, so that 
•(Wo. """'' \{VII\. 

·2 2 
j 2 ( qx ) T µ ( x) Y µ ( x ) x dx ) . ( B 5 ) 

Substituting for the integral over x from equation (D2), It 

becomes 

It = 16 r dq 
0 

(B6) 



APPENDIX C 

EVALUATION OF THE FIRST AND SECOND ORDER SPIN SUMS 

I. First Order 

The matrix elements for the central contribution are 

of the form <ij I ~"1 ·..J,_2 ) (z_1 ·,2J.) k (r) I ij> and <ij I ~._; 1 -~ 2 ) (,21 -~ 2 ) 

k(r) jji>, while for the tensor contribution they are 
A A 

<ijj ~1-.l2) sl2(r) k(r) jij>and <ijl (~l\~2) sl2(r) k(r) lji>, 

where k(r) stands for any of the radial functions appearing 

in the OPEP or the effective interaction. The state labels 

i and j include all the quantum numbers necessary to specify 

the single particle states, so that, for example, Ii>= jT.m . k. > i i i 

where T. is the 3-component of the i-spin, m. the z-component 
i i 

of the spin, and k. the linear momentum, all with reference 
i 

to the i.th state. ·Th f' t d t 'b t' · e irs or er con ri u ion requires a 

sum over all occupied states, and because of the nature of the 

matrix elements, the i-spin and spin sums may be separated 

from the sum over momentum, and done individually . 

The direct i-spin sum is 

L: 
T. , T. 

i J 

<T . T. j2P
1
T

2
-lj-r.T.> , 

i J i J 

where PT is the i-spin exchange operatorO..s). The sum is now 

easily evaluated to give 

2 L: = 0 . (Cl) 
T. T. 1 T. 

i i J 
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A similar result holds for the direct soin sum. The exchange 

i-spin sum is 

"[ • I"[ ' 
1 J 

'( 
<"[."[, l2P12-llT."[.> = 6 I 

1 J . J 1 

- wi-th a similar result for the exchange spin sum. 

For the tensor contribution, the spin sum may be 

(C2) 

separated from the radial part by taking r as the quantization 

axis to give 

m. ,m. 
1 J 

(C3) 

Similarly the exchange spin sum gives zero, so that to first 

order only t h e central part of the potential contributes. 

Finally, the evaluation of the first order contri-

bution of u as given by equation (52) requires the following 

relation: 

m. ,m. 
l J 

<m . m . I ( a , . q ) ( a 
2 

• q) I m . m . > = 2 q 2 
1 J v\/\o'-1. ;/Ill/' W.\ ...... J 1 

(C4) 

/\ 
This may be proven by taking q as the quantization axis to 

give 

~ 
m.m. 

l J 

I (1) (2) <m.m. a a lm.m . > . 
l J z z J l 

The sums are now easily performed to give equation (C4). 



II. Second Order 

The i-spin sum for the central direct contribution_ 

is 

r r 
T.,T. T!,T! 

l. J l. J 

<'r.-r ·I C-r 1 .-r 2 ) 1-r~T~><-r!-r! I (T 1 .T 2 ) IT T > 
l. J .,,,,. wr- J. J 1 J ... vw. • • • 

1 J 

Closure may be used to reduce this sum to 

1: 
T. T. 

l. J 

<T. T .1 (2P
1
T

2
-l) 2 jT. T .> = 12 • 

l. J 1 J 

The central exchange i-spin sum is 

r 
T. 1 T. 

l. J 

<T. T . I ( 2PlT2-l) 
2

1 ·r. T. > = -6 . 
1 J J 1 

(CS) 

(C6) 

Similar results hold for the direct and exchange spin sums. 

The spin sums involving the operator s
12

(r) may best 

be evaluated by first expressing s
12 

in q-space and then 

performing the summations. A typical matrix-element appearing 

in the second order contribution can be expressed as follows: 

where q is given by equation {63) •. Using equation (B4) and --·the - relation(l3) 

{C8) 
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where 'f2 is a second rank tensor involving only the spin -µ 

variables, equation (C7) becomes, on performing the angular 

integration over r, 
~ 

A 

<ki kj I 812 (r) k (r) I ki.kj > = 

where 

(C9) 

(ClO) 

A similar expression holds for the exchange matrix element, 

with q replaced everywhere bys= q+k.-k .. 
o/>M .,.,.,.. I/WI. Wo/\l ~~J 

Consider now the direct spin sum given by 

E 
m.,m. 

l J 

where closure has been used. On writing 812 (q) as in 

equation (C3) the sums may readily be performed to give 

E 
m.,m. 

l J 

2 A 

<m . m . I 8 12 ( q ) I m . m . > = 2 4 • 
l J 1 J 

The exchange sum is given by 

}: 

m.,m. 
l J 

A A 

<mimj I 8 12 (q) 8 12 (s) lmjmi> . 

This expression is slightly more difficult to evaluate 
A A 

because of the appearance of both s and q in the matrix 

(Cll) 



60 

elements. However, by again taking q as the quantization -A A 

axisk and expressing ~1 .s) ~2 .s) in terms of it, the sum 

may be evaluated in a straightforward but tedious manner 

to give 

E 
m. ,m. 

l. J 

A A 

<mimjls12(q) sl2(x) lmjmi> = 

A final result which will prove useful is 

" 

m. ,m. 
l. J 

<m . m . I S 12 ( q ) (a 1 . a ., ) I m . m .> = O • 
l. J WI-- Wl'L l. J 

(Cl2) 

(Cl3) 

This may be proven by taking q as the quantization axis, and 
""""' a replacing ~1 -~2 by 2P 12-l to obtain 

I 
(1> c2>

1 
I c1> (2>

1 3 E {2<m.m. a a m.m.>-<m.m. a a m.m.}-12 . 
l. J z z J 1 1 J z z 1 J m. ,m. 

l. J 

The sums are easily performed to give the required result. 

Similarly it may be proven that for the exchange term, 

E 
m. ,m. 

l. J 

" 
<m . m . I S 12 ( q) ( a 1 . a ., ) I m . m . > = 0 • 

1 J ..v... ~ J 1 
(Cl4) 



APPENDIX D 

EVALUATION OF SOME INTEGRAL TRANSFORM~ 

The j 0 transform of fc(r) is given by 

-µr e 
µr 

2 r dr . 

This integral is easily evaluated to give 

The j 2 transform of ft(r) is 

(Dl) 

where h 2 (iµr) = Tµ(r) Yµ(r) is a spherical Honkel function of 

second order. This integral has been done in reference (16), 

and the result is 

-µd 
= e [3jl (qd) cl;µd) 

µq µ d 
µ sin qd + q cos qd] . (D 2 ) 

µ2 + q2 

For the effective interaction, the required j 0 

transform is 

2 j 0 (qr) g(r)r dr , 
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Now 

-µd 2µ
2 

fc(q) __ e __ sin qd + 
= µd fc(q) q µ2·+ q2 µ2 + q2 

and introducing the notation f~µ) (q) and f1n) (q), gc becomes 

-µd e - --q 

2µ 2 f (µ) (q) 
sin qd + c 
µ 2 + q2 _µ_2_+_q_2-] 

(n) --
e-nd sin qd 

+ c [ndf (q) - + 
4 c q n2 + q2 

The j 2 transform of gt(r) is given by 

gt(q) [ j 2 (qr) Tµ(r) 
2 = cs Y (r)r dr µ 

+ c2 [ j 2 (qr) [Eµ (r) + Y (r)]r2dr µ 

+ c6 [ j 2 (qr) Tn(r) 
2 Y (r)r dr 

n 

(D3) 
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The first and third integrals are just 

so it is only necessary to evaluate J
00 

. d 

f~µ) (q) and f~n) (q), 

j 2 (qr)[E (r) +Y (r)]r 2dr. 
lJ J.l 

This integral may be evaluated by writing E (r) + Y (r) = 
J.l J.l 

-iµr h 1 (iµr), and intragrating by parts. The final result is 

Then 

where the values for the constants c 1 through c 6 are the 

same as given in equation (AlO). 

(D4) 

(DS) 



APPENDIX E 

THE EULER FUNCTIONS P, G
0

, AND G
2 

The direct contribution to the second order energy 

involves an integral over the variables k. and k. which is 
W<'l --J 

independent of the form of the two-body interaction. This 

integral was first evaluated analytically by Euler(l?) and 

the result 
. ( 18) 
lS 

I 
dk. dk. 

\l\Y.. l vw-J 
q. (q+k.-k.) 

WV- Wo. vv.• l ...... J 
(El) 

where 

40u2 i n 2 for u<l 

= (4-20u 2-2ou3+4u5 )in(l+u) + 4u 3 + 22u + (-4+20u 2-2ou3 

5 3 5 + 4u )in(u-1) + (40u -Bu )in u for u>l . 

It may easily be shown that 

lin P(u) = 26-32 tn 2 . 
u+l 

(E2) 

The use of this function greatly simplifies the second order 

calculation, for it reduces the direct contribution to a 
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single integration over q. 

Because of the appearance of the variable s in the 
</\M. 

exchange contribution (equation (73)), the integrations can 

no longer be expressed in terms of P. However, the integra-

tions appearing in the exchange contribution which are 

independent of the potential have been done numerically and 

tabulated by Sprung(l 3 ). The correspondence between his 

generalized Euler functions, G0 arnd G2 , and the integra"is 

appearing in the exchange contribution may be seen as follows: 

According to equation (73) the central ex~hance 

contribution is proportional to the following integral: 

(central) Cl 

f 

dk . dk. dq 
Mi l. """ ] ~y (q,s) 

q.s 
-- WI-

(E3) 

where y(q,s) is a product of j 0 transforms. Introduce the 

f9llowing change of variables: 

k. = k! - s 
"'" J iw-1. """ 
k. = k! - z 

lf.N'-1. ,.,..._}. IW' 

q = z . (E4) 
V~.._ 

.. , ... u .... 

The Jacobian for this transformation may b e shown to be unity, 

so that equation (E3) becomes 

L1E ( 2) 
ex 
N 

(central) a j 
I 

dk. ds dq 
""" i """ ..,.;·;, Y ( q ' s· ) 

q.s 
"""' """''-

(ES) 

where the proportionality constant is the same as in equation 
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(E3). In equation (ES), the portion of the integral which 

is independent of q or s is 

(E6) 

where G0 has been tabulated by Sprung in steps of q/kF = 

s/kF = 0.1. In on exactly similar manner, the tensor exchange 

contribution may be expressed in terms of G2 , and so the 

exchange contribution is reduced to a two-dimensional integral 

over the variable q and s. 



APPENDIX F 

NOTE ON THE NUMERICAL EVALUATION OF THE FIRST 

AND SECOND ORDER CONTRIBUTIONS 

The exact values to be taken for the parameters 

-appearing in the potentials v and u are in some cases rather 

arbitrary, either because of a lack of a unique definition 

(as for µ) or because the quantity is not well known experi-

2 -mentally (as for fN). In Table II a consistent set of values 

for the required parameters are given, all assumed to be 

accurate to three significant figures. 

The most difficult first orde r integration to perform 

is that for determining <W>/N in the case of non-zero d. If 
'\, 

F(q) is replaced by F(q) in equation (51), and the q integra-

tion attempted directly, the integrand will be found to 

oscillate, and fall off very slowly. The alternate method 

is to subsitute for F(q), and then reverse the order of the 

r and the q integration. The q integration can be done 

exactly, and there remains an integral over the finite 

interval, o to d, involving r. The final result is 

<W> 
·- --·-(dlO) 

N 
= <W>(d=O) 

N 

2c P2 Jd 
p { -
6 

µ 0 
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where 

All the first order integrations were done by dividing 

the interval of integration into an arbitrary number of 

subdivisions (five was found to be sufficient) and applying 

a ten-point Gauss quadrature routine in each subdivision. 

The first order contribution of <U>/N was obtained using 

equation (60) rathe r than equation (55), the two results 

being indentical provided that d is non-zero. 

The evaluation of the first order contributions 

requires an explicit form for F(q). This may be obtained in 

a straightforward but tedious manner from equation (44), and 

the final result is 

F(q) (Fl) 

where 8(x) is zero for x<O, and is unity otherwise. 

Since the second order contribution involves integrals 

over infinite domains, a check is necessary to determine at 

what point the integration may be truncated. For the direct 
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contributions, the same method of integration as was used 

in the first order calculation was applied, and it was found 

that carrying the integration out to q=30F-l was sufficient 

to guarantee three figure accuracy, with the major contribu-

t . . f . 2 -l ion coming rom a region near q= F 

Because of the manner in which the functions G0 and 

G2 were tabulated by Sprung, a Simpson's rule integration 

routine was used in the calculation of the exchange contri-

butions. The generalized Euler functions have been tabulated 

only as far as q/kF = 5.9, with asymptotic expansions given 

for larger q values. The calculation of the direct contri-

bution would indicate that q values to at least q/kF = 10 

are important, and so the asymptotic forms were used to extend 

the tables. However, since these expansions have an accuracy 

of approximately 1%, the third figure of the exchange 

contributions may be inaccurate. For this reason the last 

digit in the exchange contributions is enclosed in brackets 

in Tables IV and V. 
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