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SCOPE AND CONTENTS: 

The theoretical and experimental investigations 

presented in this work are primarily related to the 

dynamic response of simple portal frames. The theoretical 

results obtained using beam elements with consistent 

mass matrix, are compared with experimental results. 

The interaction of the components in modes of the combined 

structure is investigated. 
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CHAPTER I 

INTRODUCTION 

1.1 General 

Transverse vibration of sjmple beams have been 

widely discussed and well documented in the literature1 ' 2 ' 3*. 

It appears, from the literature available to date, that 

the out-of-plane vibration of simple framed structures 

have not drawn the same degree of attention of researchers. 

To gain some more knowledge in this field, it is desirable 

to investigate the dynamic response of simple frames sub

jected to base motion. Such investigation is necessary 

for the better understanding of the dynamic behaviour of 

structures, especially the tower type of structure, balcony 

supported structures and also in connection with the 

vibration of framework of machines. 

A number of methods,based on simplifying assump

tions have been devised to conduct the dynamic analysis 

of complex structural systems. At the present time, the basic 

need is not the development of additional similar computational 

* Numbers refer to the bibliography listings. 
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techniques, but is for more knowledge of the actual behaviour 

of real structural systems. Such knowledge will help to 

determine the validity of the assumptions made in the mathematical 

models used in the dynamic analysis. 

The object of the present investigation is to apply 

both theoretical and experimental approaches to study the 

dynamic response of simple portal frames, beams and columns 

subjected to transverse base motion. 

1.2 Historical Review 

Extensive work has been done on the transverse vibration 

of simple beams. For other than simple loading and boundary 

conditions, the methods based on the exact differential 

equations are extremely tedious and inordinately involved. The 

advent of high speed digital computer has boosted the efforts of 

many researchers to develop various methods for studying in 

greater detail the dynamic behaviour of complex structural 

systems. 

The energy method proposed by Rayleigh1 has been 

extensively applied to laterally vibrating structures. Its' 

usefulness is somewhat limited to relatively simple problems. 

Although it is possible to apply it to members of variable 

stiffness, statically indeterminate members of more than 

one span are not susceptible to an easy solution by this method. 
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Stodola2 has proposed an interative method for ob-

taining the normal modes of vibration. This method requires a 

trial eigenfunction in the computation of the eigenvalue. 

The convergence will be faster if the chosen original trial

eigenfunction is a good approximation to the exact fundamental 

eigenfunction. This approach can be extended to get the 

higher eigenfunctions and eigenvalues by using the property 

of orthogonality of normal modes. In the case of problems of 

complex nature, it will be difficult to choose a trial eigen

function that is close to the exact fundamental eigenfunction 

and hence this method is not well suited for the analysis of 

complex structural systems. 

Pestal 4 et al have generalized the well known methods 

of Holzer, Myklestad and Thompson and the method is described 

as the method of Transfer Matrices. A lumped-mass idealiza-

tion is used in this approach and the computations require 

the trial value of frequency in the transfer matrices. Though 

this method, in principle, permits the analysis of all types 

of frame works, it has been reported in the literature5 that 

this method takes a considerable amount of computer time when 

the number of lumped masses becomes large and when many fre-

quencies are required. 

The discrete-element stiffness matrix technique for 

static and dynamic problems has been widely discussed and 
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well documented in the literature6 ' 7 ' 8 ' 9 • This approach has 

proved advantageous in obtaining approximate analyses of 

complex structural configuration that are difficult to handle 

by exact mathematical formulation. 

The lack of a practical theoretical treatment consis-

tent with the direct stiffness matrix approach has resulted in 

the use of gross lumping technique by many researchers with 

1 . . . 10' 11 . th 1 t. resu ting inaccuracies in e so u ion. In an attempt 

to improve the accuracy of the dynamic analysis as it is af-

fected by the mass matrix, a consistent mass-matrix construction 

similar to standard stiffness matrix synthesis technique is 

investigated by Archer11 , 12 which accounts for the actual 

distribution of mass throughout the structure. This approach 

is used by the above author in the dynamic analysis of simple 

beams and it is shown that the results obtained by the use 

of consistent mass matrix are upper bounds to the exact 

solution. 

The consistent mass matrix construction investigated 

by Archer is limited to simple beam elements subjected to 

only inplane bending and hence the technique is extended, 

b Z . k. . 13 t 1 t 1 t y ien iewicz e a , o space e emen s. A general mass-

matrix construction for various elements is presented in 

reference 8. 
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1.3 Present Work 

The analytical and experimental investigations pre

sented in this disseration are primarily related to the dynamic 

response of simple portal frames, columns and beam respectively 

subjected to dynamic base motion. The main purpose of the 

investigation is to determine both theoretically and experi

mentally the natural frequencies and the relative displacements 

of the structural system. In addition, the present investi

gation also includes the study of inter-action of components, 

namely, beam and column in modes of the combined structure 

(portal frame) • 

The physical models used in the theoretical and 

experimental investigations are des·cribed in Chapter II. 

The theoretical analysis of a simple frame is briefly 

outlined in Chapter III. The equation of motion used for the 

dynamic analysis is also presented in this chapter. The 

analysis is carried out for the following cases: 

(i) Response of the structure to free vibration. 

(a) Treating the joints as rigid. 

(b) Treating the joints as non-rigid • 

(ii) Response of the structure to sinusoidal base motion. 

The experimental investigation on the physical models 

is described in Chapter IV. The object of the investigation 

is to compare the experimentally obtained results with those 

obtained analytically. The natural frequencies obtained by 
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the analytical method are compared with those observed experi

mentally. The joint test procedure for the evaluation of the 

rotational stiffness of the connections is also discussed in 

this chapter. 

In Chapter V, comparison of the analytical and 

experimental results are presented and discussed. The inter

action of components in modes of combined structure is also 

discussed in this chapter. 



CHAPTER II 

PHYSICAL MODEL 

For the experimental verification of the theoretical 

results, it was decided to conduct dynamic tests on simple 

portal frames, beams and columns. Aluminium members were used 

in the fabrication of the models. This was done because the 

wide flange sections used for columns and beams were rolled 

from the same aluminium alloy thus ensuring a reasonable 

degree of homogeneity of the material. Column to beam and 

column to base connections were fabricated by using structural 

steel sections. This was done to ensure that both the above 

connections behave as rigid joints. Figures 2-1, 2-2 and 2-3 

show the front-elevation of the physical models used in the 

investigations. It was decided to test the portal frame and 

column for three different heights (viz) 80", 60" and 40". 

First the model was fabricated with a height of 80" and the 

same model was used in the dynamic tests with heights of 60" 

and 40" respectively after cutting the columns to the required 

heights. As the present investigation is restricted to the 

elastic range, the use of the same model after cutting the 

columns should not significantly affect the results. After 

completing all the dynamic tests for the three levels, the 

7 
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columns were cut at 5" from bottom and the beam was fixed to 

the columns. This model was used for the beam test. After 

completing the dynamic test on this beam, it was used for the 

joint tests, so that the moment-rotation properties of the 

joints could be evaluated. The details of the column to the 

base and the beam to the column connections are respectively 

shown in Figures 2-4 and 2-5. 

The stress-strain curve of the aluminium shown in 

Fig. 2-6 is taken from the reference 14. As the sections 

used in the present investigation and the ones used in the above 

reference are from the same batch of aluminum alloy, the stress

strain properties taken from this curve should be valid for 

the material used in this investigation. 
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CHAPTER III 

THEORETICAL ANALYSIS 

A method describing the dynamic analysis of simple 

beams is given by Archer11 . The consistent matrix formulation 

using finite element technique is the basis for this type of 

analysis. In the present investigation, the above method is 

extended to compute the dynamic response of simple space 

frames. 

3.1 Basic Assumptions 

The following assumptions are made in the dynamic 

analysis of frames: 

(i) The effect of axial strain is neglected. This has 

been assumed for the sake of simplicity, by various 

authors in this field. Based on experience, it has 

been reported in the literature15 that if the height 

to width ratio of the frame is no larger than five, 

axial strains in columns may be neglected without 

appreciably affecting the dynamic response of structures. 

(ii) The effect of shear deformation is neglected. This 

assumption is justified as the column lengths of a 

normally proportioned frame are approximately ten times 

larger than their depth or longer. Shear deformation 

15 
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can become appreciable when the length to depth ratio 

of member is small. 

(iii) The dynamic analyses of building frames usually involve 

the assumption of rigid joints, but in many cases the 

connections are actually rather flexible. Both rigid 

.and non-rigid connections are considered in the present 

investigation. Recently a method of analysis has been 

formulated to consider the non-rigidity of the connec-

tions in the dynamic analysis of inelastic multi-story 

16 building frames • 

3.2 Basis of Analysis 

The theoretical analysis, based on the above assump-

tions is carried out using the discrete element technique, in 

which a stiffness matrix defines the elastic characteristics 

and a consistent mass matrix, which accounts for the actual 

distribution of mass throughout the element, defines the iner-

tial characteristics. This method is most general and one of 

the most powerful tools for the analysis of problems of complex 

nature. 

Based on structural rather than mathematical approxi-

mations, the finite element method essentially seeks to idealize 

the structure into an assembly of a finite number of discrete 

elements connected at a finite number of points, and then 

proceeds to solve for the system's response on an exact mathe-
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matical basis. 

The method of obtaining the element stiffness and 

consistent mass matrices is discussed in references 8,9. 

The basic steps may be described as follows. 

i) A function (or functions) is chosen to uniquely 

define the displacement distribution inside each element 

in terms of the nodal displacements. 

{u} = [a] {U} (3-1) 

where 

{u} = displacement of point inside the element 

{U} = nodal displacements of the element 

[a] = a function of the co-ordinate of the point 

and the assumed displacement function. 

ii) The strain field can be obtained from the displacements. 

{e} = [B] {U} (3-2) 

where 

[BJ= [B(x,y,z)). 

iii) The element mass and stiffness matrices can be ob-

tained by equating external and internal virtual work. 

ImJ 
J 

T dv (3-3) = p IaJ Ia] 

v 

[KJ = J [BJ T rxJ [BJ dv (3-4) 

v (0'1 

where 

p :;: density of the material 

CxJ = matrix of linear elastic coefficients in the 
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relation between the stress and strain. 

[m) = element mass matrix 

[k) = element stiffness matrix. 

3.3 The Consistent Mass Matrix 

The simplest form of mathematical model for inertia 

properties of structural elements is the lumped-mass represen

tation. In this idealization the mass of the element is lumped 

at nodes in the direction of the assumed element degrees of 

freedom. The resulting mass matrix is diagonal and leads to 

a simple formulation and solution. However, the computed 

natural frequencies and mode shapes may differ considerably 

from the exact values. To improve the accuracy of the dynamic 

analysis as it is affected by the mass matrix, a consistent 

mass matrix construction which accounts for the actual distri-

bution of mass throughout the element was investigated by 

Archer11 for simple beams subjected to bending and the method 

was generalized for the space elements by Zienkiewicz and Cheung. 

The name of 'consistent mass matrix' has been coined for this 

distributed mass element matrix and may be obtained from 

the expression 3.3. 

Frequently the static displacement distributions are 

assumed to determine [a] as it is difficult to determine the 

same for structural systems subjected to a general dynamic 

loading. Thus the mass matrix obtained by this procedure will 

be an approximate one, however, when the discrete elements 
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selected are small, the accuracy of such mass representation 

may be adequate for practical purposes. 

3.4 Assembly of the Overall Matrix 

The element mass and stiffness matrices are assembled 

to get the overall mass and stiffness matrices of the entire 

structure, based on the condition of equilibrium. 

Each component of the external forces {R.} acting at 
1 

a node must be equal to the sum of the component forces in 

the same direction shared by elements joining at that node. 

(3-5) 

the summation being taken over all the elements connected at 

node i, substituting for F. I 
J. 

n N 
{R.} = l: l: ([m. Jq{u }+[k. lq{u }) (3-6) 

l. p=l q=l ip p 1p p 

in the absence of initial strains, and 

n = number of nodes 

N = number of elements in the structure. 

The inside summation is taken over all the elements of the 

structure. 

If a particular element is not connected to node i, 

it will not contain submatrices with an i suffix. Hence the 

submatrices [M. ] and [K. ] of the assembled mass and stiffness ip ip 

matrices are 

[M. ] = 
ip 

n N 
E E 

p=l q=l 
[m. ] q 

ip 
(3-7) 



[K. ] = 1p 

n N 
l: l: 

p=l q=l 

20 

(3-8) 

where the superscript q refers to the element number. 

3.5 Equation of Motion £or the Entire system 

The equation of motions which are derived from the 

similar equations formulated for each one of the elements 

separately appears as follows in matrix form, for a viscously 

damped system. 
.. 

[M] {U} + [C] {U} + [K] {U} = {F (t)} (3-9) 

where 

[M) is a square syrrunetrix matrix of masses in global co-

ordinate system. 

[K) is a square symmetric matrix of stiffness in global 

co-ordinate system. 

[C] is a square damping matrix. 
.. 

{U} is a column matrix of acceleration in global system. 

' {U} is a column matrix of velocity in global co-ordinate 

system 

{U} is a column matrix of displacement in global system. 

{F(t)} column matrix of applied dynamic load. 

3.6 Analytical Predictions 

The prediction of the dynamic characteristics of the 

structural system used for the experimental investigations was 

done by using the methods described in Section 3.2. The 

properties of sections and the material prope rti e s were taken 
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17 from the properties of Alcan Extruded Shapes • All the 

computations were done, at the McMaster University Data Pro-

cessing and Computing Centre on a CDC6400 computer. The com-

puter programme written for this purpose is given in the 

Appendix I. 

The quantities predicted for comparison with those 

obtained experimentally (details follow in Chapter IV) are 

the following. 

(a) the natural frequencies (for a limited number of modes) 

(b) the relative displacements in each mode for which a 

frequency is computed. 

3.6.1 Response of the structural system to free-vibration 

The following assumptions were made to compute theo-

retically the natural frequencies and mode shapes. 

(i) damping is absent 

(ii) the amplitudes of transverse vibrations are small 

(iii) the structure remains elastic. 

Based on the above assumptions, the free vibration 

analysis is carried out by treating the joints as rigid and as 

well as non-rigid. The properties of the elements with rigid 

and non-rigid connections are taken respectively from the 

references 8,18 and the over-all stiffness matrix for the 

complete structure is obtained by using the direct assembly techniquE 

The natural frequencies and the corresponding mode shapes 

were computed using the standard procedures available in struc-

t 1 d . 6117 d . . bl 3 1 3 7 f ura ynamics an are given in Ta es . to . , or 

the various structural systems considered. 
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3.6.2 Response of the structural system to sinusoidal base 
motion 

The elastic response of the structures was predicted 

17 by using the method outlined in the reference • A single 

sinusoidal pulse having a frequency equal to the first natural 

frequency was used as the excitation frequency to predict the 

response of the system. In all the predictions a damping value 

of 0.6% of the critical viscous type of damping was used. 

This value of damping was determined from the decay of amplitude 

under free-vibration. 

The predicted relative displacements for the various 

structural systems are given in Table 3.8. 

3.7 Convergence of Results 

The most important items that govern the accuracy of 

the solutions are the physical approximation or idealization 

into a finite-element system and the manner in which the dis-

placement patterns inside the elements are defined. In the 

present investigation only the beam elements are used for which 

the deflection's distributions are well documented in the 

literature. It is of interest to investigate the convergence 

of the results obtained by using these element properties. 

To obtain convergence to the true results, it is 

necessary to increase the number of elements. The size of the 

elements or the number of nodal points necessary to get 
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reasonably good approximation is not obvious. There are no 

fixed guide-lines to find out the size of the elements required. 

But an inference can be drawn by studying the convergence of 

the results. The variation of the results obtained for 

successively refined elements gives an indication as to the 

correctness of the results. 

The portal-frame considered for illustration is shown 

in Fig. 2.1. The values of the first five frequencies obtained 

for four different idealizations, with respectively 2, 5, 11 and 

13 nodal points (Fig. 3.la,b,c,d) are tabulated in Table 3.9. 

A plot of (w /w b t) vs number of nodes is shown in n n es 

Fig. 3.2. The plot indicates that the convergence of the 

results is excellent even with 13 nodal points and hence 

further refinements of the elements is not required. 



Mode 

Number 

1 

2 

3 

4 

5 

Frequency in C.P.S. % Difference between 
Rigid joint Non-rigid Experimental experimental and 
Analysis joint values theoretical 'frequencies 

analysis Rigid case Non-rigid 
case 

8.2 8.2 7.5 +9.3 +9.3 

9.7 9.7 8.9 +9.0 +9.0 

42.9 42.2 I 42.3 +1.4 -0.2 

60.8 59.6 65.4 -8.5 -8.9 

71. 3 70.6 79.0 -9.7 -10.l 

Table 3.1 Comparison of theoretical and experimental 
frequencies of portal frame 
Height: 80" 

t-.> 

""' 



Mode 

Number 

1 

2 

3 

4 

Frequency in C.P.S. % Difference between 
Rigid joint Non-rigid· Experimental experimental and 
Analysis joint Values theoretical frequencies 

analysis Rigid Non-rigid 

13.5 13.5 12.4 +8.9 +8.9 

16.8 16.7 16.0 +4.9 +4.4 

50.2 49.6 48.5 +3.6 +2.3 

103.6 100 .• .3 .. .1.07 .1 .. .. :....3 • .3 ..... . ..... :....6. 3 ... 

Table 3. 2 Comparison of theoretical and experimental 
frequencies of portal frame 
Height: 60" 

to.J 
U1 



Mode 

Number 

1 

2 

3 

Frequenc_y in C.P.S. % Difference between 
Rigia Joint Non-rigia Experimental experimental and 
Analysis joint values theoretical frequencies 

analysis . Rigid ... 1 Non-rigid 

24.8 24.6 23.1 +7.3 +6.5 

' 
35.4 35.3 32.8 +8.0 +7.6 

61. 7 61.2 58.1 +6.2 +5.3 

Table 3.3 Comparison of theoretical and experimental 
frequencies of portal frame 
Height: 40" 
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FREQUENCV C.P.S. 
Added wl w2 % Dif- % Dif-

S.NO. weigh f erence f erence Finite Conven- Expcri- between Finite Conven- Experi- between lbs. element tional mental experi- element tional mental experi-method method values 
mental method method values mental 
& theo- & theo-
re ti cal re ti cal 
values values 

I 

1 0 ·10.s 10.4* 110.4 +2.22 66.3 65.1* 64.3 +3.22 

I 

2.5t 
i 

2 8.1 8.1** I 7.9 +2.02 55.4 56.1 +1.25 
. l 

* Continuous analysis (reference 19) 

** Approximate analysis (reference 20) 

t Weight added to the column top to simulate portal frame conditions. 

Table 3.4 Natural frequencies of column 
Height: 80" 

I 

N 
-..J 



Added ' 
FREQUENCY C.P.S. 

S. NO. weight wl % Dif- (J,)2 

1 

2 

* 

** 

t 

lbs. Finite .f Conven- Experi- f erence 
Finite Conven- Experi-between element

1
tional mental 

experi- element ti on al mental 
method ' method values method method values mental 

& theo-
retical 
values 

0 18.8 18.5* 18.4 2.2 118.4 115.8* 117.3 

2.5t 
1 

13.4 13.4** 12.9 3.8 95.97 - 99.7 
I 
4 

Continuous analysis (reference 19) 

Approximate analysis (reference 20) 

Weight added to the column top to simulate portal frame conditions 

Table 3.5 Natural frequencies of column 
Height: 60" 

% Dif-
f erence 
between 
experi-
mental 
& theo-
re ti cal 
values 

0.9 

3.7 

I\) 

00 



Added . . FREQUENCY C. • .p .• S ·. · 

S.NO. weight wl 1% Dif-

Finite Conven- Experi-lbs. element tional mental 
!method method values 

1 0 41. 7 41. 6* 41.3 

2 2.5t 26. 8 27.0** 27.2 

* Continuous analysis (reference 19) 

** Approximate analysis (reference 20) 

fer.ence 
between 
experi-
mental 
& theor 
re ti cal 
values 

+0.9 

- 1.5 

I W2 

Finite °Conven-
element tional 
method method 

261.3 260.5* 

206.0 -

1% Dif-
E . jference xperi-

t 1 between men a . 
values experi-

!mental 
& theo-
re ti cal 
values 

- -

- -

t Weight added to the column top to simulate portal frame conditions. 

Table 3.6 Natural frequencies of column 
Height: 40" 

N 
\.0 



Mode FREQUENCY IN C.P.S. 

No. Fixed-Fixed Beam Hinged-Hinged Beam 

Finite Conven- % Dif- Finite Conven- % Dif-
element tional f erence element tional f erence 
method method * method method * 

1 90.1 88.5 +1.8 39.9 39.0 +2.5 

--
2 248.9 243.9 +2.1 159.7 156.1 +2.3 

3 490.1 359.5 
. 

4 819.1 639.5 

5 1229.0 925.1 

*Conventional method (reference 19) 

-Table 3.7 Natural frequencies of fixed-fixed and hinged-hinged beams w 
Length of beam: 60" o 



' Relativ e modal displacement I 

Height ! 
(at to.E.. of columnl 

Mode 

80 II 

60 II 

40 II 

Number Portal Frame Column 

1 +0.42 +0.66 

2 ±0.03 -0.20 

3 +0.01 -0.066 

1 +0.36 +0.55 
-

2 ±0.024 -0.13 

3 +0.05 +0.04 

1 +0.23 +0.44 

2 ±0.015 -0.066 

3 +0.11 +0.02 
l 

Table 3.8 Relative modal displacements 
at the top of the column 

w 
...... 



NO. OF ELEMENTS 
Frequen~ 

3 . 6 . 12 . 14 cy No. Fig. 7-a Fig. 7-b Fig. 7-c Fig. 7-d 
C.P.S. C.P.S. C.P.S. C.P.S. 

wl 8.2 8.2 8.2 8.2 

w2 9.7 9.8 9.7 9.7 

W3 44.5 43.l 42.9 42.9 

W4 112.5 61. 2 60.8 60.8 
_...s-j 

ws 71. 7 71.3 71.3 

Table 3.9 Natural frequency of portal frame 
corresponding to the number of elements 
considered. 
Height: 80" 
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l 2 

0 

a) Number o f n odes 2 
Numbe r o f e lements 3 

4 5 6 -7 8 

3 9 

2 10 

1 11 

0 0 

c) Number o f nodes 1 1 
Number o f e l ements 12 

FIG. 3. 1 FINITE-ELEMENT 
BRIGHT:_ 80 II 

l 

0 

5 

0 

a) No. of nodes 5 
No. of elements 6 

4 5 6 7 8 9 10 

3 11 

2 12 

l 1 3 

0 0 

d) Number of nodes 13 
Number of e l ements 
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IDEALIZATIONS OF PORTAL FRAME 
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CHAPTER IV 

EXPERIMENTAL PROGRAM 

The main purpose of the experimental investigation 

is to determine experimentally the dynamic characteristics of 

the physical models. The determination of dynamic characteris

tics includes the determination of damping factor, the natural 

frequencies of the system, and the mode shapes associated with 

these frequencies. After the dynamic properties are determined 

experimentally, the experimental results can be compared with 

those predicted theoretically. Such a comparison wil l help to 

verify the validity of the theoretical approach used to pre

dict the dynamic characteristics of the systems. 

4.1 Experimental System for Dynamic Test 

The experimental system consists of a shake table 

6.5 ft wide and 7.0 ft long in plan dimension and having a live 

weight capacity of 3000 lbs. during dynamic loading. It is 

excited by a servo-controlled actuator which can apply base 

accelerations of lg to the shaking table (with maximum live 

weight attached) at frequencies which may exceed 100 cycles per 

sec. 

The structures loading system (M.T.S 903.03) supplied 

by the M.T.S. Corporation is used to excite the table and dis-

35 
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placement is the control parameter. The prograrruning section 

of the loading system is capable of accepting program inputs 

having velocity or acceleration dimensions and applying these 

inputs to the control portion of the system in corresponding 

displacement dimensions. This is accomplished by accepting 

velocity or acceleration input and integrating or double 

integrating the input as required to develop a displacement 

command for the control portion of the system. 

The motion of the shake table is controlled by a 

servo-controlled loading feed-back system. The principle 

behind this system is the comparison of the shaking table dis

placement with the actual displacement of the shaking table 

at any instant of time. If any difference is detected between 

these two, a correction signal is sent to the servo-valve which 

adjusts the flow of hydraulic fluid into the actuator to 

eliminate the detected difference of the desired and existing 

displacements. 

Strain Gauges 

The strain gauges are mounted at the base and top of 

the columns and at intervals along the length of the beam. 

These gauges were of high elongation type H.E.141-B as manu

factured by the Budd Company, Phoe nixville, Pa. The resistance 

and the gauge factor of the gauges were 120 ±0.2 ohms and 

2.05 ±0.5 % respectively~ These we re specified to be suitable 
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for use up to a temperature of +200°F. 

The strain gauges were connected to a direct writing 

type R Dynograph (Beckman Instruments, Inc., Offner Division, 

Schiller Park, Ill.). 

Accelerometers 

Two accelerometers were mounted, respectively, one 

near the top of the column and the other at the centre of the 

beam. One accelerometer was also mounted on the shake table 

to record the base acceleration applied to the experimental 

structure. 

The . accelerometer mounted on the shake table was a 

Universal Servo Accelerometer Model 305A, S/N 2477. Its 

sensitivity is 0.2 ma/g, 0.100 v/g. The output from this 

accelerometer was recorded on the type R Dynograph Direct 

Writing Recorder. The accelerometers mounted on the frame 

were Endevco Series 2200 Accelerometers. The accelerometers 

used on the column and at the centre of the beam were models 

2221C Serial ED60 and 2221C serial EC54 respectively. The 

operating acceleration range varies from O.OOlg to 10,000 g's. 

The Endevco Accelerometer mounted on the column was connected 

to the Dynograph Direct Writing Recorder. 

The output from the Endevco Accelerometer mounted 

at the centre of the beam was amplified by a Laboratory 

Amplifier model 2616B. The resulting output was fed to Model 
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CEC1-165D.C Amplifier. The output signal thus obtained was 

fed to the Direct Writing Oscillograph Recorder type RG32.12/15 

This recorder uses an ultra-violet light source using pencil 

type mirror galvonometers focussed onto ultra-violet sensitive 

recording paper. 

4.2 Damping 

To determine .the damping factor, the frame was given 

a push by hand and the strain responses were recorded. The 

strain response was plotted (Fig. 4.1) on a semi-logarithmic 

scale to find the damping factor. It may be seen that this 

plot is a straight line whcih indicates that the dmaping is 

constant and is of viscous type. 

The value of the logarithmic decrement 6 is given by 

o = in (x . /x.)/(j-i) 
l J 

(4-1) 

in which x. and x. are the ma ximum amplitudes of free vibrations 
l J 

in ith and jth cycles (j>i). From the plot shown in Fig. 4.1 

t n(x./x1) = 0.693 for j-i = 17.8. Thus the logarithmic decrement 
l J-

o is given by 

0 = 0.693 
17.8 = 0 . 0385. 

Therefore the damping factor s is given by 

s = = 0.0385 = 0.006 
2 7T 

= 0.6% of critical damping. 
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FIG. 4.1 LOGARITHMIC DECREMENT OF STRAIN 

RESPONSE MEASURED AT THE BASE OF THE COLUMN 
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4.3 Dynamic Test 

The natural frequency of the various systems were 

determined by giving the base of the structure a sinusoidal dis

placement and varying the frequency. For convenience in obser

ving the magnification of the response, the signal from an 

accelerometer mounted near the top of the column was fed to an 

oscilloscope. The amplitude of the base displacement was 

kept at ±0.0 05 in, in order to keep the response of the structure 

well within the elastic range. As soon as the natural frequency 

was reached while increasing the base frequency, a spontaneous 

amplification of amplitude was observed. It was decided not 

to keep the structure in resonance condition for a longer time 

to avoid any possibilities of damage resulting from resonance 

condition. This procedure was repeated several times to verify 

whether or not the frequency thus obtained remains stationary. 

It was observed that this remains reasonably constant. The 

natural frequencies thus observed are given in Tables 3.1 to 3.7. 

4.4 Calibration 

Beckman Oscillograph 

A cantilever beam was used in the calibration test. 

Strain gauge form the cantilever beam was connected to one 

channel on the Beckman oscillograph. A known static load was 

applied at the tip of the beam and the strain recordings at 

all the gauges were recorded by the recorder. The strains were 
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also measured with the help of strain indicator. On this 

basis a calibration table was prepared. 

bar. 

cell. 

Load Cell 

A load cell was constructed, using 3/4" diameter steel 

Strain gauges were fixed on the circumference of the load 

The load cell was given a number of load cycles from 

0 to 8000 lbs on a Tinius-Olsen testing machine. This was 

done in order to reach a stage where the load-deformation 

characteristics did not change appreciably. The load cell 

was used in the joint test. 

4. 5 · Evaluation of Rotational Stiffness of Connections 

The prediction of elastic response of non-rigid frame 

requires the knowledge of rotational stiffness of the connec

tions. The rotational stiffness of the connection can be 

determined from the moment-rotation relationship of the connec-

tion. As the deformations in a dynamic process are likely 

to be cyclic, it is realized that the determination of the 

rotational stiffness of the connections should be done by the 

application of dynamic loading. However, it is of interest to 

investigate whether or not the rotational-stiffness of connec

tions determined under static conditions and subsequently used 

to predict the dynamic properties of the fr ame gives a satis

factory correlation with the results observed experimentally. 
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Such a study is of interest as the rotational stiffness of 

the connections can be determined more easily under static 

loading rather than under dynamic loading. 

Fig. 2.3 shows the experimental structure for the beam 

column joint test. The height of the column was about 5" and 

the full length of beam was used in the test. The load was 

applied through a load-cell and acting at the centre of the 

beam. The displacement gauges were mounted to measure hori

zontal rotation of the joints. 

The moment-rotation characteristics determined from 

the column-beam joint test is shown in Fig. 4.2. Based on 

tangent modulus technique, the computed rotational stiffness 

is 12.24 xlo
5 

in lbs per radian. This value is used to predict 

the dynamic properties of the frames with non-rigid connections, 

in Chapter III. 
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CHAPTER V 

DISCUSSION OF RESULTS 

5.1 Comparison of Analytical and Experimental Results. 

Natural frequencies. 

The comparison of the computed and experimentally ob-

served results for the various structural systems are given in 

Tables 3.1 to 3.7. 

The observation of the frequencies of the portal 

frames computed by treating the connections as rigid and as 

non-rigid indicates they are nearly the same. 

A comparison of the frequencies of the portal frames 

computed by finite element method with the experimentally ob-

served values indicated that they are in good agreement. The 

difference between the actual and predicted natural frequencies 

is less than 10%. 

The frequencies of the columns computed by finite 

19 20 . element method and conventional methods ' are in good agree-

ment. The predicted values for the various cases are in good 

agreement with those observed experimentally. 

The comparison of the frequencies of the beam computed 

by finite element method and conventional method shows that 

they are in good agreement. As the experimental structure (Fig. 

2.3} used for the beam test behaved more like a portal frame 

rather than like fi x ed-fixed beam, the compute~ results of fixed-

fixed beam could not be compared with the expe rimental results. 

44 
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The first three mode shapes of the portal frames de-

termined based on the strain response, agree with those computed 

theoretically. In the case of portal frame with a height of 

60", the visually observed second mode shape agrees with the 

theoretically computed one. 

5.2 Effect of Added Mass on Top of the Column 

To investigate the effect of added mass on top of the 

column, the frequencies are computed for the various cases of 

added masses on the top of column. The computations of frequen-

cies are also carried out for the three different column heights, 

namely, 80 11
, 60" and 40 11

• The added mass is varied from O.O 

lbs to 100 lbs. and the theoretically predicted frequencies are 

given in Tables 5-1, 5-2, and 5-3 respectively for the heights 

of 80 11
, 60" and 40". The observation of the frequencies cor-

responding to various added masses indicates that the added 

mass has an appreciable effect on the first natural freque ncy 

compared to the higher frequencies. · The different added masses 

results in an entirely different dynamical system with al-

together different dynamic properties. Hence, it will be 

desirable to make proper estimation of the mass of the system 

preceding the analysis and design. 

5.~ Interaction of the Comp onents in Modes of the Combined 
System 

The main purpose of this particular study is to 

investigate the interaction of the component structures, namely, 

column and beam, in modes of the combined structure . 

To a id in the understanding of the intera ction effect, the 



~ . 
. 

b 0 10 
-+ lbs 

1 10.5 5.3 

2 66.3 49.8 

.. 

3 185.9 154.3 

4 364.9 318.4 

~- -----~ 

5 605.4 5 43.4 

Frequency ,in c. p. s . 

20 30 40 50 60 70 
lbs lbs lbs lbs lbs lbs 

4.0 3.4 3.0 2 .7 2.4 2.3 

48.2 47.7 47.4 47.2 47.1 47.0 

152.5 151.9 151.6 151. 4 151. 2 151.1 

316.5 315.9 315.5 315.3 315.2 315.0 

541. 6 540.9 540.6 540.4 540.2 540.1 

-

Table 5.1 Computed frequencies of column 
Height: 80" 

80 90 
lbs lbs 

2.1 2.0 

46.9 46.9 

151.1 151.0 

315.0 315.0 

540.1 540.0 

100 
lbs 

1. 92 

46.8 

151. 0 
-~- ... 

314.9 

540.0 

~ 

°' 



in 
F:r;~uen~n c. 

Mode lbs 0 10 20 30 40 50 
Number+ -+ lbs lbs lbs lbs lbs 

1 18.8 8.5 I 6.3 5.3 4.6 4 .1 

. s . 

60 70 80 
lbs lbs lbs 

3.8 3.5 3.3 

l 90 
lbs 

3.1 

I 100 
lbs 

3.0 

.;:.. 
-.J 



r~ in 
Mode lbs 0 10 

+ 
Number + lbs lbs 

1 41. 7 16.1 

2 261.3 193.0 

3 732.2 610.0 

4 1437.1 1264.8 

5 2384.0 2160.2 

Frequency in c.p.s. 

20 30 40 50 60 70 

lbs lbs lbs lbs lbs lbs 

11.8 9.8 8.5 7.7 7.0 6.5 

189.5 188.3 187 .• 7 187.3 187.0 186.9 

606.1 604.8 604.1 603.7 603.4 603.2 

1260.9 11259.5 1258.8 1258.4 1258.l 1257.9 

2156.2 2154.8 ~154 .1 2153.7 2153.4 2153.3 

Table 5.3 Computed frequencies of column 
Height: 40" 

80 90 
lbs lbs 

6.1 5.8 

186.7 186.6 

603.0 602.9 

1257.8 1257.7 

2153.1 2152.9 

100 
lbs 

5.5 

186.5 

602.8 

1257.6 

2152.9 

~ 
(X) 
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investigation is carried out for the various combinations of 

the column-beam stiffnesses. Such investigation will help 

to understand the effect of the variations of stiffnesses 

of the component structures on the behaviour of the combined 

structure. 

To investigate the interaction effect, the frequencies 

and mode shapes of the structural systems were computed for 

the following combinations of column-beam frequencies, 

i column frequency << beam frequency 

ii column frequency < beam frequency 

iii column frequency '\, beam frequency 

iv ·column frequency > beam frequency 

v column freque ncy >> beam frequency. 

The computed frequencies for the various combinations 

considered are given in Tables 5-4 to 5-9. The mode shapes 

of the combined systems were plotted with reference to the 

member axes (Figs. 5-1 to 5-6) so that these can be 

easily compared with those of the component systems (Figs. 

5-7 to 5-14). 

5.4.1 Column frequ e ncy < < Beam frequency 

Observation of the first mode of the combined system 

(Fig. 5-la) indicates that this mode is primarily first mode 

column deformation deforming in the same direction with very 

little beam deformation. This indicates that the first mode 
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FREQUENCY C.P.S. 
S.No. DESCRIPTION 

1 2 3 4 5 
- _b__il_ ' 

" 
1 8.2 9.7 42.9 60.8 71. 3 

80 

llir ~ 

2.5 
lbs 

_2 8.1 · 55.4 162.2 327.5 553.3 ad' 

~ 

,, 
3 90.1 248.9 490.1 819.2 1229.0 I 

60 r; 

~ 
60'' 

4 87.8 247.2 489.l 808.5 1198.7 ~ 

,, 
5 39.9 159.7 359.5 639.5 925.1 60 -;;p,.. ~ 

Table 5.4 Column fr e quency << beam fr e quency 

McMASTER UNIVER:i11Y LIBRAR'I 
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s FREQUENCY C.P.S. DESCRIPTION 
NO 1 2 3 4 5 

n " 40 
1 24.7 35.4 61. 6 167.1 238.6 

l 
2.5 
lbs 

2 26.8 205.9 40
11 

ti 

3 90.1 248.9 490.0 819.1 1229.0 ~~ 

,, 
4 87.8 247.2 489.1 808.5 1198.7 ~ 

" 
5 39.9 159.7 359.55 639.5 925.1 60 

.a; A 

I 

Table 5.5 Column frequency < beam frequency 
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s FREQUENCY C.P.S. 
NO. DESCRIPTION 

1 2 3 4 5 
60'' 

J J20
1 

1 38.7 110.7 145.61 212.4 392.5 

2.5 lbs 

2 85.4 796.3 ! 20
11 

" 3 90.5 251.3 496.1 826.7 1237.5 JI 60 !! 

II 

4 87.8 247.2 4 ff9~ . I 808.5 1198.7 ~ 

I/ 

5 39.9 159.7 359.5 639.5 
60 

925.l ..$; ""' 
-+- .. 

Table 5.6 Column frequency ~beam frequency (fixed-fixed) 
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FREQUENCY C.P.S. 
s. DESCRIPTION 
NO. 

1 2 3 4 5 

1 32.7 59.0 81.0 182.6 356.6 
1130 

12 .5 

2 43.8 370.3 
lbs 
30" 

,, 
3 90.5 251.3 496.1 826.7 1237.5 i 

60 
~ 

-

4 87. ,g 247.2 489.1 80 8 .5 1198.7 
6 o'/ 
~ 

60 
i;----

5 39.9 159.7 359.5 639.5 925.1 ,,!;;; A-

Table 5.7 Column frequency~ beam frequency (hinged-hinged) 
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s. FREQUENCY C.P.S. 

NO. DESCRIPTION 

1 2 3 4 5 
I 

1--

ri_~ 
1 10.1 35.4 56.B 70.5 106.7 

ls lhs 
30" 

2 33.9 348.7 

··-
It 

3 22.5 62.0 121. 7 201.4 301.4 ~ 
12 0 

~ 

-· 
120

11 

4 9.9 39.9 89.8 159.8 250.1 r-"' ,,,,, 

Table 5.8 Column frequency > beam frequency 
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' 

s. FREQUENCY 
I 

C.P.S. I 
NO. (DESCRIPTION ' 

1 2 3 4 5 

If 

~-0---;;i,, 5" 

1 44.9 164.4 361.7 634.2 924.6 

2.5 lbs 
2 757.9 ~2130.3 .J:,; 5 II 

II 

3 90.5 251. 3 496.1 824.7 ~237.5 \1 60 ti, 

60 11 

4 87.8 247.2 489.1 808.5 11198.7 
~ +Jt 

-
5 39.9 159.7 359.5 639.5 925.1 6 o" 

,,JF k 
I 

Table 5.9 Column frequency >> beam frequency 
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of the combined system is similar to the first mode of the 

column. 

The second mode of the combined system (Fig. 5-lb) 

is again essentially the first mode of the columns, but 

this time deforming in the opposite directions with zero beam 

deformation. 

The first and the second natural frequencies of this 

combined structure is nearly equal to the first frequency 

of the column. 

Fig. 5.lc shows the third mode of the combined system. 

This mode is pr i marily horizontal beam deforma tion with a 

r e lative ly small amount of column de f ormati on. Because 

of this reason the third frequency of the combined system is 

similar to the first frequency of the hinge d-hinged beam. 

Observation of the fourth mode indl cates that this 

mode is essentially the second mode column deformation, 

deforming in the opposite directions with very little beam 

deformation. It is for this reason that this frequency 

is similar to the second frequency of the column. 

The fifth mode of the combined structure (Fig . 5.le) 

is the combination of the second mode of the columns, defor

ming in the same direction with firs t mode of the beam. Since 

the frequ e ncy of the combined structur e depends on the 

coup ling of the components, the fifth frequency of the combined 



structure is greater than the frequency of the component 

modes. 

5.4.2 Column frequency < beam frequency 

57 

Fig. 5.2a shows the first mode of the combined 

structure. This is the combination of the first mode of 

the columns deforming in the same direction and the first 

mode of the beam. In this case the first frequency of the 

combined structure is nearly equal to the first frequency 

of the column. 

The second mode of the combined structure (Fig. 5.2b) 

is the first mode of columns deforming in opposite directions 

with zero beam deformation. The second frequency of the 

combined structure is greater than that of the first frequency 

of the columns. This indicates that the coupling effect 

is more predomina nt in this case than in the previous case 

(5.4.1). 

The observation of the third mode in Fig . 5.2c 

indicates that this is the combination of the first mode 

of the columns deforming in the same direction and the first 

mode of the beam. The frequency of the combine d structure 

depends on the coupling of the components. The third frequency 

of the combined structure of this particular case, is 

comparable to the sum of the first frequency of column and 

the first frequency of beam. 
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The fourth mode of the combined structure is 

primarily the second mode deformation of the beam with very 

little column deformation. Conseque9tly the fourth frequency 
ve~·'1 <:>t·-~ 

of the combined structure is similar to the second frequency 

of the beam. 

The fifth mode of the combined structure is the 

combination of the second mode of the columns deforming 

in the same direction and the first mode of the beam. The 

sum of the second frequency of the column and the first 

frequency of the beam is comparable with the fifth frequency 

of the combined structure. This need not always be true, 

as the frequency of the combined structure depends on the 

coupling of the components. 

5.4.3 Column frequency '\.i beam frequency (fixed-fixed) 

Fig. 5.3a shows the first mode of the combined 

structure. This mode is primarily the first mode of the 

hinged-hinged beam with very little column deformation. 

Hence the first frequency of the combined structure is 

nearly the same as the first frequency of the hinged-hinged 

beam. 

The second mode of the combined structure is similar 

to the first mode of columns deforming in the opposite 

directions with small amount of second mode deformation of 

the beam. In this case, the second frequency of the combined 

structure is greater than the frequency of the component modes. 



The third mode of the combined structure is the 

combination of the first mode of the columns deforming 
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in the same direction and the first mode of the beam. The 

sum of the frequencies of the corresponding modes of the 

components is less ~han the frequency of the combined 

structure. This is probably due to the effect of the 

coupling of the components. 

The fourth mode is the combination of the first 

mode of the columns deforming in opposite directions and 

the second mode of the beam. The fourth frequency is less 

than the sum of the frequencies of the corresponding 

modes of the component. 

Fig. 5.3e shows the fifth mode of the combined 

structure. This mode is essentially the third mode of 

the beam with first mode of columns deforming in the 

same direction. The frequency of the combined structure is 

different from that of the frequencies of the component 

modes. 

5. 4. 4 Co.lumn frequency ~ beam frequency (hinged-hinged) 

The first mode of the combined structure (Fig. 5.4a) 

is primarily the first mode deformation of the beam with 

little column deformation. The frequency of the combined 

structure is less than that of the frequency of the 

component modes (Table 5.7). 
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Fig. S.4b shows the second mode of the combined 

structure. This is essentially the first mode of the 

columns deforming in opposite directions with very little 

beam deformation. The frequency of it is higher than the 

component frequency; 

Observation of the third mode (Fig. S.4c) indicates 

that this is essentially the combination of the first mode 

of the columns deforming in the same direction and the 

first mode of the beam. In this case, the sum of the cor

responding frequencies of the components is nearly equal 

to the third frequency of the combined structure. 

The fourth mode (Fig. 5.4d) is primarily the second 

mode deformation of the beam with first mode of the columns 

deforming in opposite directions. This frequency is less 

than the sum of the corresponding frequencies of the component 

modes. 

Observation of the fifth mode (Fig. 5.4e) indicates 

that this is essentially the third mode of the beam with very 

little column deformation. The fifth frequency is similar 

to the third frequency of the beam. 

5.4.5 Column frequency > beam frequency 

The first mode of the combined structure is essen

tially the first mode beam deformation with very little 

column deformation. The frequency of the combined structure 
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is close to the first frequency of the hinged-hinged beam. 

Fig. 5.Sb shows the second mode of the combined 

structure. This is the combination of the first mode of 

the columns deforming in opposite directions and the 

second mode of the beam. In this case, the second 

frequency of the combined structure lies between the first 

frequency of the column and the second frequency of the 

beam. 

The third mode is the combination of the first 

mode of the columns deforming in the same direction and 

the first mode of the beam. This frequency is greater than 

the sum of the corresponding frequencies of the component 

The fourth mode is the combination of the first 

mode of the columns deforming in opposite directions and 

the second mode of the beam. In this case the sum of 

the corresponding frequencies of the components is comparable 

to the frequency of the combined structure. 

Fig. 5.Se shows the fifth mode of the combined 

structure. This is essentially the combination of the first 

mode of the columns deforming in the same direction and 

the third mode of the beam. The fifth frequency of the 

combined structure is different from that of frequencies 

of the component modes. 



5.4.6 Column frequency >> beam frequency 

The first five modes of the combined structure 

are given in Figs. 5.6a to 5 . 6e with reference to the 

member x axis~ 
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The observation of the mode shapes indicates that 

they are essentially the beam modes with very small amount 

of column deformation. The frequencies of the combined 

structure, in this case, are nearly equal to the frequencies 

of the hinged-hinged beam. This shows that when the fre

quency of the column is far greater than that of the 

beam, the frequencies of the combined structure is 

close to that of the hinged-hinged beam. 
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CHAPTER VI 

CONCLUSIONS 

The following conclusions are arrived at, based 

on the theoretical and experimental investigations. 

1. The comparison of the natural frequencies of the portal 

frames determined by finite element method and experi

ment indicates good agreement between the two sets. 

Hence it is concluded that the theoretical approach 

used i~ reasonably accurate for practical purposes. 

2. The theoretical analysis by treating the structural 

connections as rigid gives reasonably accurate results 

in the working range. 

3. The comparison of the frequencies computed by the finite 

element method and the conventional method indicates 

good agreement for both beam and column. Therefore 

the finite element method can be u~ed to predict the 

dynamic properties of structural systems. 

4. The effect of added mass on the top of the columns is 

found to have more influence on the fundamental fre

quency rather than on the higher frequencies. The 

different added masses result in different dynamical 

systems with different dynamic properties. This 

82 



indicates that the proper estimation of the mass 

of the structural system is important preceding the 

analysis and design. 
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5. When the column frequency is very small (Table 5.4) 

compared to the beam frequency, the first and second 

frequencies of the corresponding combined structure 

are nearly equal to the first frequency of the column. 

6. When the column frequency is very large (Table 5.9) 

compared to that of the beam, the observation of the 

frequencies of the corresponding combined structure 

indicates that they are very close to the hinged

hinged beam frequencies. 
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APPENDIX I 

COMPUTER PROGRAM OUTLINE 
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A computer program was written to analyse a simple 

portal frame, by direct assembly technique. This program 

can be used for frames with rigid and non-rigid connections. 

DATA INPUT: 

The following data are needed in the analysis: 

a) Total number of nodes and total number of elements. 

b) Number of degrees of freedom for each element. 

c) Material properties: Young's modulus of elasticity, etc. 

d) Transformation matrix for each element. 

The following computer programmes were used in the 

analysis 

Subroutine SNARK: 

Subroutine SNARK transforms the 3 x 3 element matrices 

from local co-ordinate systems to global co-ordinate system. 

Subroutine STIFF: 

This subroutine calculates the 6 x 6 stiffness matrix 

for each element. Expressions for the matrix are taken from 

reference 7. The 6 x 6 matrix is partitioned to 4 submatrices 

of sixe 3 x 3. Each submatrix is transformed from local 

co-ordinate system to global coordinate system by calling 

the subroutine SNARK. Then the submatrices are assembled to 



get the 6x6 element matrix in 9lobal system. 

Subroutine AMASS: 
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Subroutine AMASS calculates the 6x6 mass matrix for 

each element, in global coordinate system; consistent mass 

matrix is taken from reference 7. 

Subroutine INVMAT: 

INVMAT is a library subroutine used for the inversion 

of the assembled stiffness or mass matrix. 

Subroutine EBERVC: 

The library subroutine EBERVC calculates the eigen

values and eigenvectors of an unsymmetric matrix. 

Main Program: 

The main program utilizes the above programs to 

compute eigenvalues and mode shapes, and also displacements. 
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/\t•1A':>I lFl-<.1..1GtJTGAl>l=J\i"•iA.'.)( lF1\v(it.Jl~Avl+/\1'1( l ,J+.>l 
A•"'•A ~, ( I T UAL>• J F 1< vu l = /\1'11\.!:i ( l T vi\ U, ...ii· r\ 0(; l +A,•, ( l + j , J 
AMA~(lTUAUt~l0AUl=AMA~( l IUAUt~fuAul+A~(l+JtJ+~) 

1J5 CONTlrWt 



c 
c 
c 
c 
c 
c 

GO TO 15 
5~1 DO 5J2 I=ltj 

502 
15 

16U 
<) 

16 

10 
160 

DO 502 J=l•3 
ITOAO=I+3*<1TO-ll 
JT0AO=J+3*(1TU-l) 
!:>Al'•i fl T OAu, J 1 0A[)) = ~,\ :v; ( l 1 u/\v, JI U1w l +..>F ( l +:,,' .J+ 3 J 
Ai·lA ;., ( I TUAl),J TUA O l =A1v1A~ ( l ·1 vAL>t ...1 t OAL>) +A.-1 (I+~' J+_j) 
cornr NUE 
IFC KOU NT.E~.N E LEM l~O TC lb0 
KOUNT=KOUNT+l 
GO TO 4 
l•.JH I I t. ( o '9 > ~'"'i". 
FOR~AT(1Xt9Elv.2l 

\-J R I f E C 6 , 16 l 
FUk~ATClXtl~Xt*AMA~*) 
WRI Tt. <6tlvlt\i•,A.5 
FORMAT<1Xt9El0.2l 
N=3 3 
CAL L INV~AT<AMASt33t33tlE-u7tlEkKtNl> 
I~< lEkk.GT.vl ~o Tu 711 
DO 2 3 I=ltN 
DO l ~ J=ltN 
l.) iviA 1 ( I , J > = u. v 

DO 23 K=lt1\J 
UMAT ( I ,Jl =L>1•iAT {I ,J>+Ai•iA:, ( I ,i<.)* 5 A1•dKtJl 

2 3 <.ON l i i~U t: 

698 DO 7U3 I:lt~ 

{)0 7V3 .J=ltN 
VAL< I ,Jl =U e L
lF(J .tU .JJVAL( i 1.Jl=l•'"' 

703 CONTl~Ut: ' · 
CALL tb ~ R VC(UHAJ,3j, l ,lu ~,.0 1,.u0lt l U~u•t~3,V ~L•l) 
DO 70 4 I=lt N 

7u4 AFR E~ (Il = ~~RTCA8~(D~AT(ltl l ll/6.2d3l 
PRI NT 72 1 

721 FORMAT ClH ~ t*E I G EN VALU ES I~ kA O /~~C* tl/l 
PRI NT 7u6 tCAF ~~U {lltl=lt N l 

706 FO RhA1 <1X tlvll2.4/) 
PRii'H 7iJ7 

7~7 FORMA T<l H vt * ~l G E N VECT0K* tll 
PR I i>J T 7 v 8 t ( ( VJ\ L ( I ' J l t I = 1 ' 1" l 'J = l t N ) 

708 FORMAT C1 Hu tll E12 .4t/l 
CALL l NV 1' i f\ T < 1\ • "•A~ t 3 3 ' j J t l E - U 7 ' 11:. r< R ' N l ) 
DO 9v u l=lti'l 
L> 0 '-) v \) ..J = l ' f~ 
ALr H ,~ ( I)= •j • v 

tJ(lt J ): 1.1 e V 
I>( I , J ) =\,. -..· 
DO 9Ju K=ltN 

9 0 () b { I , .J l = ) < I , J l+ V A L ( "' , I ) ·:i- Ah A.'.:> C K ' J l 
P l-{l Nl <,;.._ltb 

911 f 0KMAT ( l X,l lll 2. 4t/l 
0 0 9v 1 I = 1 ' I\ 

DO 9 0 1 J=l tN 
9Ul Al i->!-IA ( I l= 1\LPHA( l )+ tj{ l tJl 

PRI NT 912 



912 FOr<i'•1AT ( lXt*ALI'~ ;~ lS*d l 
PIUNT 9uz,(~\LPHA(Jld=lti\ll 

9U2 FORMATClXtlulli.~t/l 
DO 9u3 l=.i..'" 
!:':' ~~~ J=.1. ,N 

.9u ·_; u(l,J)=u.c 
uO 9 0 4 I = 1 t ~! 
DO 9G4 .J=ltN 

904 B(J,Jl=VAL(ltJ)*ALPH~<~l 
PRINT 9G:ltl3 

9J5 FOl<i.,d\f(1Xtllt:l2e4•1l 
DO 9 0 b J = l, i'i 

l)U6 CNLJ)=u.u 
Gt: T J.\=u.vU6 
XS02=C.'i/lvu.v 
~J l = I\ Fl' E C.i ( 2 l l 
DO 9G7 J=lti'i 
W2=AFf..ZEQ< J l 
XXX=~~RT( <l.v-~l**i/~2**2l**2+4.0*(~ETA~Wl/~2l**~l 
CNCJl=XS02*(1.0/XXX-l.Ul 

9U7 CONTINUL 
PRINT 90dtCC~(J),~=ltNl 

· 906 FOk MAT<lXtllEl2.3t/l 
DO 9u<J I=ltf'r 
IJO 9U9 J= l ti~ 

909 D(J,Jl=b(l,~l*CN (Jl 

PRINT 9lu ,( ID(l,~ltl=lt~),J=l•Nl 
91 ll F Ol< r·iA T ( l H l , I U 1t:12 • 4' /l l 
711 PRINT 71 2 ,IEkR 
712 FOR ,·:,M f ( l ~ l 

:TCP 
E :~D 



SJLi~0i.JTINE .::.ii !Ft-F<XltYltr..~tY2.H.,(;,\,)..;,Ah:,ALt"'-•~i') 
c0t .. 1•i01\J/t:3LOt'1 n (:; '3) /t:3L<J"'l-/ TI ( ~ '3) /13l.C"'-3 I ~F ( 6 t6) /JU.iK 7 I A1' 1 ( 6, u) 

DI~-ENSION ~~(~,3),~K(3,3),~~(3,3),U~(J,j) 

WrHTEC6t25lT 
2 5 F OFc~';A T ( l X , 3 E 1 .~ • 4 l 

DO 7 l=lt3 
DO ·1 .J = 1 , 3 
t<K(l,.J)=v.v 
SK<I,Jl=u.u· 
OK(J,.J>=v.v 
UK( J .,.J)=0.0 

7 CONTINUE 
JF(KNT .~Q. 51~0 TO 601 
IF<~NT .Eu. lvlG0 TO 002 
Ri<..(l.,11=12.v*E*Y/AL/AL/AL 
RK(lt3l=6.U*t*Y/AL/AL 
RK(Z,Zl=G*YJ/AL 
RK ( 3, 1 l =f-(K ( 1, 3 l 
RK(3.,3)=4.0*E*Y/AL 
SK< 1, 1 I =- i~K ( 1' 1 l 
SK ( l t 3 l =l<K ( 1, 3 l 
SK ( 2, 2) =-1-<K ( L '2 l 
SK ( 3, l l =-h:i<.. ( 3, l l 
~K(3,3)=u.~*RK(3t5l 

UK ( l t 1 l =SK ( l ' l l 
QK(l,3l=S K <3tll 
UK(2t2l=SK(2t2l 
C.J K. < .J , l l =SK ( 1 ' j l 
Q I( ( 3 ' 3 ) = ::; :~ \ '.:: ' ;) ) 
u K ( 1 , 1 l = 1·d''.. ( l , l l 
U:<.. ( l, 3) =:::if... ( .>, i l 
u .<.. < c. , 2 1 -= r < ,, c ;:. , c.. 1 
U K ( 3 , l l ::: ..) ~~ C ~ , l I 
ui<C3t3)=RKC3t3l 
GO Tv 1uo 

6 '· ~ EJ=E--;~) I (AL*flKl l 
EJ=[ .:< Y I ( l\L *~Kl l 
f, .:. = 1 • -.. + E J 
/121=l•0+2.. 0-1:· ..;..J 
A31= 1 .u+j. 1*C..J 
A22= 1 .0 
"'-{2 = l. 0 
AA= 1. 0+4. t; -:i-...:..; 

GO TO 6 ·J3 
602 EK= [ *Y/CAL*A~2l 

EK=E-:f Y/ (AL*Af. t..) 
Al=l.V+ f. r~ 

/,t!_ l = l • u 
J\31=1.:; 
A22=1. 0+2.u*[K 
1\32=1.U+-3.U-ll[K 
AA=l.J+4.V-i-EK 

603 ~K(l, l l~(l2.v*E*Y/AL* * 3l * (Al/AAl 
~~(l, 3 l=<6.v*E*Y/AL* * Ll*CA2l/AAl 



c 

,, "' ( 3 ' l ) = ,, ,, ( l ' 3 )· 
hKC~t2l=u*YJ/AL 
~K(3tJl=(4eu*L*Y/AL>*CA3~/AA) 
Sr( l l, 1 l = -KK ( l t l l 
SKClt3l=RKC3tl>*<A22/A2ll 
SK ( 2, 2 l =-1-<K ( 2 t 2 l 
SK(3,ll=-RK(3,ll 
5K(3,3}=2.J*~~Y/(~L*AA) 
UK ( l, l) :;_,;~ ( 1 t l) 
t.iK ( l, 3) =-K·'- f 3t1 l 
(.JKC.2,0:: )=5:\.l2 '~) 
UKC3tl)=:..,t....( ... ,j) 

Q K ( 3 ' J ) = ~ '" I .) ' 3 l 
Ui( ( l t 1) =!~1'.. ( l, 1) 
UK ( l t 3) ;.;-~»K ( l t .3 l 
UK ( 2., i.) =!~I... ( .... , ~) 
UK ( ..>, l l =-JK ( 1 t .;I) 

U~(~t~l=(~.~*(~)/ALl~,Aj~/AAl 

l \) v iJ (" 8 l = l ' 3 
Go 8 J=ltj 
TTCJ,ll=TlltJl 

8 CONTINUE 
CALL SNARKCRKtltll 
CALL SNAi\K(SKtl,ll 
CALL S~AR~l~K,1,ll 

CALL ~NARKCUKtltll 

uO 2i.J I=lt3 
DO ;2u J=lt3 
SF ( I , J l = f\ K ( I 'J l 
SF(!,J+3l=SK(l,Jl 
5Fl1+~,~l=QK1l,Jl 

~FCI+3,J+3l=u~(l,Jl 

20 CONT~NUl 
KETUKi"l 
ENL> 



SUUkUUTIN~ A~A~~(A~,M~tYJtR~Ut~~TJ 
C01v.t•i J1~/bL01<.. l I l \.;, 3) /ULIJ~L IT 1 ( 3, J) 

COi"11-iOd/bLuK l I A1' , ( 6, t-1) 

UlMlN~I~~ h~l3tJ'•o~{Jt3ltl~l3•~>·~~1~tj) 

IJO 7 I=1t3 
DO 7 J=lt'3 
AKlltJl=v•C. 
Gld I ,J)=v.J 
CK(I,Jl=V.J 
:)Kllt..Jl=v.u 

7 lCNTINUE 
B=RHU*AL*AR/C4~v.J*386.u> 

AK<ltll=l56.J-* B 
AK<lt3l=22.u ~AL*ti 

AK(2,2l=l40.U*YJ*e/~k 

AKC3tll=22.v~AL*U 

A(l3t31=4.u*AL*AL~ci 

t:jK<lt.il=!:A.u*U 
UK(l,3l=-13.u*AL*L 
BK ( 2, 2) = 7u. \.i-:<y J*:J/ A i ~ 

6 K ( 3 tl l = -bK. ( l t 3 l 
BK(3t3l=-3.u*AL*~L*d 
CK< 1, l l =oK ( 1 t l l 
CK(lt3l=t>i<.C3tll 
CK(2,2l=UKl2t2l 
CK(3,ll =i:.lK(.i.t31 
CKC3,3l=b"(j,3) 
l.)K ( l t l l =AK ( l 'l l 
DK(l,3l=-AK(lt3) 
DKUt2l=AKC..'.•Ll 
OK ( 3, l l =-'"'K ( . .:it l l 
D I( ( 3 , 3 l = ,;., K ( 3 ' 3 l 

6J CALL S f\l/\ ,\K(AKtltll 
CALL :,, N;, ,<f,(L;, 1-,. ,ltll 
CALL .:.) i'. ;, , ~ t- ( C r-- ' l t l l 
CALL SN;'...F:f. (UK, l tl l 
1)0 2 0 l=lt3 
DO 20 .J=lt3 
Ai'v1 ( l 'J l =Ai<.. ( l , J l 
AM(J,J+ 3 l~ LiK(l,Jl 

AMlI+3tJl=CK(I,Jl 
AM(l+3tJ+~l=U~(ltJ) 

2~; CONT I NUL 
[-\!.: TUFU~ 

i:::ND 



!:> U 13 r< Cl u r I N .;. :::, 1 •A I~ t~ ( 1\ , l l , J l l 
co;v1o'-101 I I ...,LC I<. 7 I Ai'•1 ( t, A 1 
co;-111:,o ... 1L1...c"11T < 3, 3 > /clLuj(..~/ r r' 3 d l' bL '-'"3/ .5i· ( 6 ,b > 

DI M!:1\I ~ hl1-. A ( 3, J l , o < 3, 3 l , u f 3 , 3 > 

DO 12 I:: l '3 
('10 i 2 j:: 1 '~ 
U(ltJl=v.L 
I)< I , J l = u • ', 

l '" '-\.Ir~ f I i~ U E. 
DO ::.4 I=lt.:> 
DO 14 J=lt3 
DO 14 K=lt3 
3( I tJl=l3C I tJl+A( I .:<.)*TCt>..tJ) 

14 CONTINUE 
DO 16 I= 1, 3 

. DO 16 J=lt3 
IJO 16 :<.= 1, j . · 

l) C I 'J l =D < l t .J l +TT ( I , K l*.) ( r-... t J l 
16 <.ONTI Nut. 

DO 1 7 I= l t 3 
00 17 J=lt3 

· A( l tJl= U( I t.Jl 
17 1_ •• m1!1~lio.:. 

RETUi~N 
ENl; 
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