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CHAPTER I

INTRODUCTION

1.1l General

Transverse vibration of simple beams have been
widely discussed and well documented in the literaturel’2’3*.
It appears, from the literature available to date, that
the out-of-plane vibration of simple framed structures
have not drawn the same degree of attention of researchers.

To gain some more knowledge in this field, it is desirable
to investigate the dynamic response of simple frames sub-
jected to base motion. Such investigation is necessary

for the better understanding of the dynamic behaviour of
structures, especially the tower type of structure, balcony
supported structures and also in connection with the
vibration of framework of machines,

A number of methods,based on simplifying assump-
tions have been devised to conduct the dYnamic analysis

of complex structural systems. At the present time, the basic

need is not the development of additional similar computational

*
Numbers refer to the bibliography listings.



techniques, but is for more knowiedge of the actual behaviour
of real structural systems. Such knowledge will help to
determine the validity of the assumptions made in the mathematical
models used in the dynamic analysis. |

The object of the present investigation is to apply
both theoretical and experimental approaches to study the
dynamic response of simple portal frames, beams and columns

subjected to transverse base motion.

1.2 Historical Review

Extensive work has been done on the transverse vibration
of simple beams. For other than simple loading and boundary
conditions, the methods based on the exact differential
equations are extremely tedious and inordinately involved. The
advent of high speed digital computer has boosted the efforts of
many researchers to develop various methods for studying in
greater detail the dynamic behaviour of complex structural
systems.

The energy method proposed by Rayleighl has been
extensively applied to laterally vibrating structures. Its'
usefulness is somewhat limited to relatively simple problems.
Although it is possible to apply it to members of variable
stiffness, statically indeterminate members of more than

one span are not susceptible to an easy solution by this method.
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Stodola2 has proposed an interative method for ob-
taining the normal modes of vibration. This method requires a
trial eigenfunction in the computation of the eigenvalue.

The convergence will be faster if the chosen original trial-
eigenfunction is a good approximation to the exact fundamental
eigenfunction. This approach can be extended to get the
higher eigenfunctions and eigenvalues by using the property

of orthogonality of normal modes. In the case of problems of
complex nature, it will be difficult to choose a trial eigen-
function that is close to the exact fundamental eigenfunction
and hence this method isrnot well suited for the analysis of
complex structural systems.

Pestal4 et al have generalized the well known methods
of Holzer, Myklestad and Thompson and the method is described
as the method of Transfer Matrices. A lumped-mass idealiza-
tion is used in £his approach and the computations require
the trial value of frequency in the transfer matrices. Though
this method, in principle, permits the analysis of all types
of frame works, it has been reported in the literature5 that
this method takes a considerable amount of computer time when
the number of lumped masses becomes large and when many fre-
guencies are required.

The discrete-element stiffness matrix technique for

static and dynamic problems has been widely discussed and



well documented in the literature6'7’8’9. This approach has

proved advantageous in obtaining approximate analyses of
complex structural configuration that are difficult to handle
by exact mathematical formulation.

The lack of a practical theoretical treatment consis-
tent with the direct stiffness matrix approach has resulted in
the use of gross lumping technique by many researchers with

0,11 in the solution. In an attempt

resulting inaccuracies1
to improve the accuracy of the dynamic analysis as it is af-
fected by the mass matrix, a consistent mass-matrix construction
similar to standard stiffness matrix synthesis technique is

11,12 which accounts for the actual

investigated by Archer
distribution of mass throughout the structure. This approach
is used by the above author in the dynamic énalysis of simple
beams and it is shown that the results obtained by the use

of consistent mass matrix are upper bounds to the exact
solution.

The consistent mass matrix construction investigated
by Archer is limited to simple beam elements subjected to
only inplane bending and hence the technique is extended,
by Zienkiewicz13 et al, to space elements. A general mass-

matrix construction for variocus elements is presented in

reference 8.



1.3 Present Work

The analytical and experimental investigations pre-
sented in this disseration are primarily related to the dynamic
response of simple portal frames, columns and beam respectively
subjected to dynamic base motion. The main purpose of the
investigation is to determine both theoretically and experi-
mentally the natural frequencies and the relative displacements
of the structural system. In addition, the present investi-
gation also includes the study of inter-action of components,
namely, beam and column in modes of the combined structure
(portal frame).

The physical models used in the theoretical and
~experimental investigations are described in Chapter II.

The theoretical analysis of a simple frame is briefly
outlined in Chapter III. The equation of motion used for the
dynamic analysis is also presented in this chapter. The
analysis is carried out for the following cases:

(1) Response of the structure to free vibration.
(a) Treating the joints as rigid.
(b) Treating the joints as non-rigid .
(ii) Response of the structure to sinusoidal base motion.

The experimental investigation on the physical models
is described in Chapter IV. The object of the investigation
is to compare the experimentally obtained results with those

obtained analytically. The natural frequencies obtained by



the analytical method are compared with those observed experi-
mentally. The joint test procedure for the evaluation of the
rotational stiffness of the connections is also discussed in
this chapter.

In Chapter V, comparison of the analytical and
experimental results are presented and discussed. The inter-
action of components in modes of combined sfructure is also

discussed in this chapter.



CHAPTER II

PHYSICAL MODEL

For the experimental verification of the theoretical
results, it was decided to conduct dynamic tests on simple
portal frames, beams and columns. Aluminium members were used
in the fabrication of the models. This was done because the
wide flange sections used for columns and beams were rolledv
from the same aluminium alloy thus ensuring a reasonable
degree of homogeneity of the material. Column to beam and
column to base connections were fabricated by using structural
steel sections. This was done to ensure that both the above
connections behave as rigid joints. Figures 2-1, 2-2 and 2-3
show the front-elevation of the physical models used in the
investigations. It was decided to test the portal frame and
column for three different heights (viz) 80", 60" and 40",
First the model was fabricated with a height of 80" and the
same model was used in the dynamic tests with heights of 60"
and 40" respectively after cutting the columns to the required
heights. As the present investigation is restricted to the
elastic range, the use of the same model after cutting the
columns should not significantly affect the results. After

completing all the dynamic tests for the three levels, the

7



columns were cut at 5" from bottom and the beam was fixgd to
the columns. This model was used for the beam test. After
completing the dynamic test on this beam, it was used for the
joint tests, so that the moment-rotation properties of the
joints could be evaluated. The details of the~column to the
base and the beam to the column connections are respectively
shown in Figures 2-4 and 2-5.

The stress-strain curve of the aluminium shown in
Fig. 2-6 is taken from the reference 14, As the sections
used in the present investigation and the ones used in the above
reference are from the same batch of aluminum alloy, the stress-
strain properties taken from this curve should be wvalid for

the material used in this investigation.
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CHAPTER III

THEORETICAL ANALYSIS

A method describing the dynamic analysis of simple

beams is given by Archerll. The consistent matrix formulation

using finite element technique is the basis for this type of

analysis. In the present investigation, the above method is

extended to compute the dynamic response of simple space

frames.

3.1 Basic Assumptions

The following assumptions are made in the dynamic

analysis of frames:

(1)

(i1}

The effect of axial strain is neglected. This has

been assumed for the sake of simplicity, by various
authors in this field. Based on experience, it has

been reported in the literature15 that if the height

to width ratio of the frame is no“larger than five,

axial strains in columns may be neglected without
appreciably affecting the dynamic response of structures.
The effect of shear deformation is neglected. This
assumption is justified as the column lengths of a
normally proportioned frame are approximately ten times

larger than their depth or longer. Shear deformation

15
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can become appreciable when the length to depth ratio
of member is small.

(iii) The dynamic analyses of building frames usually involve
the assumption of rigid joints, but in many cases the
connections are actually rather flexible. Both rigid
and non-rigid connections are considered in the present
investigation. Recently a method of analysis has been
formulated to consider the non-rigidity of the connec-
tions in the dynamic analysis of inelastic multi-story

building frameslG.

3.2 Basis of Analysis

The theoretical analysis, based on the above assump-
tions is carried out using the discrete element technique, in
which a stiffness matrix defines the elastic characteristics
and a consistent mass matrix, which accounts for the actual
distribution of mass throughout the element, defines the iner-
tial characteristics. This method is most general and one of
the most powerful tools for the analysis of problems of complex
nature, \

Based on structural rather than mathematical approxi-
mations, the finite element method essentially seeks to idealize
the structure into an assembly of a finite number of discrete
elements connected at a finite number of points, and then

proceeds to solve for the system's response on an exact mathe-



17

matical basis.
The method of obtaining the element stiffness and
consistent mass matrices is discussed in references 8,9.
The basic steps may be described as follows.
i) A function (or functions) is chosen to uniquely
define the displacement distribution inside each element

in terms of the nodal displacements.

{u} = [a] {U} (3-1)
where
{u} = displacement of point inside the element
{U} = nodal displacements of the element
[al] = é function of the co-ordinate of the point

and the assumed displacement function.
ii) The strain field can be obtained from the displacements.
{e} = [B] {U} (3-2)
where
[B] = [B(x,y,2)].
iii) The element mass and stiffness matrices can be ob-

tained by equating external and internal virtual work.,

Im] = p J faifial av (3-3)
v
[K] = J (817 [x][B] dv (3-4)
Y (b
where
p = density of the material

It

[x]

matrix of linear elastic coefficients in the
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relation between the stress and strain.

element mass matrix

[m]
[k]

element stiffness matrix.

n

3.3 The Consistent Mass Matrix

The simplest form of mathematical model for inertia
properties of structural elements is the lumped-mass represen-
tation. In this idealization the mass of the element is lumped
at nodes in the direction of the assumed element degrees of
freedom. The resulting mass matrix is diagonal and leads to
a simple formulation and solution. However, the computed
natural frequencies and mode shapes may differ considerably
from the exact values. To improve the accuracy of the dynamic
analysis as it is affected by the mass matrix, a consistent
mass matrix construction which accounts for the actual distri-
bution of mass throughout the element was investigated by
Archerll for simple beams subjected to bending and the method
was generalized for the space elements by Zienkiewicz and Cheung.
The name of 'consistent mass matrix' has been coined for this
distributed mass element matrix and may be obtained from
the expression 3.3.

Frequently the static displacement distributions are
assumed to determine [al as it is difficult to determine the
same for structural systems subjected to a general dynamic
loading. Thus the mass matrix obtained by this procedure will

be an approximate one, however, when the discrete elements
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selected are small, the accuracy of such mass representation

may be adequate for practical purposes.

3.4 Assembly of the Overall Matrix

The element mass and stiffness matrices ére assembled
to get the overall mass and stiffness matrices of the entire
structure, based on the condition of equilibrium.

Each component of the external forces {Ri} acting at
a node must be equal to the sum of the component forces in
the same direction shared by elements joining at that node.

Ry} = z{F }. (3-5)
the summation being taken over all the elements connected at

node i, substituting for F.o»

n N
{R;} = 2 & (o, 190 ik, 19U 1 (3-6)
T 051 g1 ip® “Tp’ ipt TP
in the absence of initial strains, and

number of nodes

n

N number of elements in the structure,
The inside summation is taken over all the elements of the
structure.

If a particular element is not connected to node i,
it will not contain submatrices with an i suffix. Hence the
submatrices [Mip] and [Kip] of the assembled mass and stiffness

matrices are

M, 1= 5 £ I[m, 19 (3-7)
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n N g
[Kip] — pzl qzl [kip] (3-8)

where the superscript g refers to the element number.

3.5 Equation of Motion for the Entire System

The equation of motions which are derived from the
similar equations formulated for each one of the elements
separately appears as follows in matrix form, for a viscously
dampad system.

] {U} + [c] {0} + [K] {U} = {F&)} (3-9)
where

[M] is a square symmetrix matrix of masses in global co-
ordinate system.

[K] is a square symmetric matrix of stiffness in global
co-ordinate system.

[C] is a square damping matrix.

{ﬁ} is a column matrix of acceleration in global system.

{U} is a column matrix of velocity in global co-ordinate
system

{U} is a column matrix of displacement in global system.

{F(t)} column matrix of applied dynamic load.

3.6 Analytical Predictions

The prediction of the dynamic characteristics of the
structural system used for the experimental investigations was
done by using the methods described in Section 3.2. The

properties of sections and the material properties were taken
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from the properties of Alcan Extruded Shapesl7. All the

computations were done, at the McMaster University Data Pro-
cessing and Computing Centre on a CDC6400 computer. The com-
puter programme written for this purpose is given in the
Appendix I.

The quantities predicted for comparison with those
obtained experimentally (details follow in Chapter IV) are
the following.

(a) the natural frequencies (for a limited number of modes)
(b) the relative displacements in each mode for which a
frequency is computed.

3.6.1 Response of the structural system to free-vibration

The following assumptions were made to compute theo-

retically the natural frequencies and mode shapes.

(i) damping is absent
(ii) the amplitudes of transverse vibrations are small
(iii) +the structure remains elastic.

Based on the above assumptions, the free vibration
analysis is carried out by treating the joints as rigid and as
well as non-rigid. The properties of the elements with rigid
and non-rigid connections are taken respectively from the
references 8,18 and the over-all stiffness matrix for the
complete structure is obtained by using the direct assembly technigque
The natural frequencies and the corresponding mode shapes
were computed using the standard procedures available in struc-
tural dynamics6’17 and are given in Tables 3.1 to 3.7, for

the various structural systems considered.
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3.6.2 Response of the structural system to sinusoidal base
motion

The elastic response of the structures was predicted
by using the method outlined in the referencel7. A single
sinusoidal pulse having a frequency equal to the first natural
frequency was used as the excitation frequency to predict the
response of the system. In all the predictions a damping value
of 0.6% of the critical viscous type of damping was used.

This value of damping was determined from the decay of amplitude
under free-vibration.

The predicted relative displacements for the various

structural systems are given in Table 3.8.

3.7 Convergence of Results

The most important items that govern the accuracy of
the solutions are the physical approximation or idealization
into a finite-element system and the manner in which the dis-
placement patterns inside the elements are defined. 1In the
present investigation only the beam elements are used for which
the deflection's distributions are well documented in the
literature. It is of interest to investigate the convergence
of the results obtained by using these element properties.

To obtain convergence to the true results, it is
necessary to increase the number of elements. The size of the

elements or the number of nodal points necessary to get
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reasonably good approximation is not obvious. There are no
fixed guide-lines to find out the size of the elements required.
But an inference can be drawn by studying the convergence of

the results. The variation of the results obtained for
successively refined elements gives an indication as to the
correctness of the results.

The portal—frame.considered for illustration is shown
in Fig. 2.1. The values of the first five frequencies obtained
for four different idealizations, with respectively 2, 5, 11 and
13 nodal points (Fig. 3.la,b,c,d) are tabulated in Table 3.9.

A plot of (wn/w } vs number of nodes is shown in

nbest
Fig. 3.2. The plot indicates that the convergence of the
results is excellent even with 13 nodal points and hence

further refinements of the elements is not reguired.



Mode Frequency in C.P.S. % Difference between
Rigid joint| Non-rigid Experimental experimental and
Number| Analysis joint values theoretical frequencies
analysis Rigid case [Non-rigid
case
1 8.2 8.2 7.5 k +9.3 +9.3
2 97 9.7 849 +9 .0 +9.0
3 42.9 | 42.2 42.3 +1.4 0.2
4 60.8 59,6 65.4 =845 ~8.5
5 Td.3 70.6 79,0 -9.7 -10,31

Table 3.1 Comparison of theoretical and experimental
frequencies of portal frame
Height: 80"

144



Mode

Frequency in C.P.S. % Difference between
Rigid joint| Non-rigid |Experimental experimental and

Number Analysis joint Values theoretical frequencies
analysis Rigid Non-rigid

1 13.5 13.5 12.4 +8.9 +8.9

2 16.8 16.7 16.0 +4.9 +4.4

3 50.2 49.6 48.5 +3.6 +2.3
4 ... 103.6 .| .. 100.3 .. 107.1 ... . | . -3.300 -6.3 ...

Table 3.2 Comparison of theoretical and experimental
frequencies of portal frame

Height:

60“

x4



Mode

Frequency in C.P.S.

% Difference between

Rigid joint| Non-rigid| Experimental experimental and
Number Analysis joint values theoretical freguencies
canalysis | ... . Rigid . . . .. Non-rigid
1 24.8 24.6 23.1 +7.3 +6.5
2 35.4 35.3 32.8 +8.0 +7.6
3 61.7 61.2 58.1 +6.2 +5.3
Table 3.3 Comparison of theoretical and experimental

frequencies of portal frame

Height: 40"

9¢



FREQUENCY C.P.,S.
Added © ) w0 )
S . NO  ohd 1 % Dif- -2 % Dif-
.NO. | weight
d Finite |Conven- |Experi- g:iig:i Finite | Conven-|Experi- iZiiggi
1bs. |element [tional |mental experi-| Slement| tional Imental | -0 o
Mmethod method values mental method | method |values mental
& theo- & theo-
retical retical
values values
1 0 "10.5 10.4% 10.4 +2.22 66.3 65.1% 64.3 +3.22
2 2.57| 8.1 g.1%* | 7.9 +2.02 | 55.4 56.1 | +1.25
* Continuous analysis (reference 19)
*%

Approximate analysis (reference 20)

+ Weight added to the column top to simulate portal frame conditions.

Table 3.4 Natural

Height:

frequencies of column

80"

Lz



Added FREQUENCY C.P.S.

S. NO.| weight wq % Dif- Wa % Dif-
lbs. |Finite {Conven- |Experi- geience Finite |Conven-| Experi- ierence
element!tional mental eipZiif element| tional mental ei;:i?f

method imethod values et method |method values mental
& theo- & theo-
retical retical

values values

1 0 18.8 18.5% 18.4 2:2 118.4 115.8* 117.3 0.9

.f.
2 2.5 13.4 13.4**% | 12.9 3.8 95,97 - 99.7 3.7

* Continuous analysis (reference 19)

* %

+ Weight added to the column top to simulate portal frame conditions

Approximate analysis (reference 20)

Table 3.5 Natural frequencies of column

Height:

60"

82



Added FREQUENCY C.P.S.
S-NO- | yeight 1 |$ Dif- | N2 |$ Dif-
1ps. |[Finite [Conven- |Experi- gefence Finite |Conven- |Experi- Eerence
* lelement|tional imental eiLZiEE element|tional |mental etwegf
method |method |values P method |method |values [SAPSI2
mental mental
& theor & theo-
retical retical
values values
il 0 41,7 41.6%* 41.3 +0.9 2613 260.5% - =
2 |2.5T | 26.8 | 27.0%* | 27.2 |-1.5 | 206.0 = - -

* Continuous analysis (reference 19)

+% Approximate analysis (reference 20)

+ Weight added to the column top to simulate portal frame conditions.

Table 3.6

40"

Natural frequencies of column
Height:

6¢C



Mode FREQUENCY IN C.P.S.

No. Fixed-Fixed Beam Hinged-Hinged Beam
Finite Conven- % Dif- Finite 1 Conven- $ Dif-
element jtional ference element tional ference
method method method method

1 920.1 . 88.5 +1.8 39.9 39.0 +2.5
2 248.9 243.9 +2.1 159.7 156.1 +2.3
3 490.1 359.5
4 819.1 _ 639.5
5 1229.0 925.1

*Conventional method (reference 19)

- Table 3.7 Natural frequencies of fixed-fixed and hinged-hinged beams |,
Length of beam: 60" o



! Relative modal displacement
| (at top of column)
Height | Mode
Number Portal Frame Column
1 +0.42 +0.66
g8o" 2 20.03 -0.20
3 +0,01 -0.066
1 +0.36 +0.55
60" ] 2 +0.024 =0.13
3 +0.05 +0.04
1 +0.23 +0.44
40" 2 +0.015 -0.066
3 +0.11 +0.02

Table 3.8 Relative modal displacements
at the top of the column

>



NO. OF ELEMENTS
Frequen
3 6 1 14
¢y No. |pig. 7-a | Fig. 7-b |Fig. 7- Fig. 7-d
C.P.S. C.P.S. c .S. C.P.S.
wy 8.2 8.2 8.2 8.2
W, 9.7 9.8 9.7 9.7
Wy 44.5 43.1 42.9 42.9
w, 112.5 61,2 60.8 60.8
»
we 71.7 - 71.3 71.3

Table 3.9 Natural frequency of portal frame
corresponding to the number of elements
considered.

Height: 80"
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a) Number of nodes 2
Number of elements 3
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2 10
1l¢ 11
Q_ ; _dO

c) Number of nodes 11
Number of elements 12
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CHAPTER IV

EXPERIMENTAL PROGRAM

The main purpose of the experimental investigation
is to determine experimentally the dynamic characteristics of
the physical models. The determination of dynamic characteris-
tics includes the determination of damping factor, the natural
frequencies of the system, and the mode shapes associated with
these frequencies. After the dynamic properties are determined
experimentally, the experimental results can be compared with
those predicted theoretically. Such a comparison will help to
verify the validity of the theoretical approach used to pre-

dict the dynamic characteristics of the systems.

4.1 Experimental System for Dynamic Test

The experimental system consists of a shake table
6.5 ft wide and 7.0 ft long in plan dimension and having a live
weight capacity of 3000 lbs. during dynamic loading. It is
excited by a servo-controlled actuator which can apply base
accelerations of 1lg to the shaking table (with maximum live
weight attached) at frequencies which may exceed 100 cycles per
sec.

The structures loading system (M.T.S 903.03) supplied

by the M.T.S. Corporation is used to excite the table and dis-

35
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placement is the control parameter. The programming section
of the loading system is capable of accepting program inputs
having velocity or acceleration dimensions and applying these
inputs to the control portion of the system in cofresponding
displacement dimensions. This is accomplished by accepting
velocity or acceleration input and integrating or double
integrating the input as required to develop a displacement
command for the control portion of the system.

The motion of the shake table is controlled by a
servo-controlled loading feed-back system. The principle
behind this system is the comparison of the shaking table dis-
placement wifh the actual displacement of the shaking table
at any instant of time. If any difference is detected between
these two, a correction signal is sent to the servo-valve which
adjusts the flow of hydraulic fluid into the actuator to
eliminate the detected difference of the desired and existing

displacements.

Strain Gauges

The strain gauges are mounted at the base and top of
the columns and at intervals along the length of the beam.
These gauges were of high elongation type H.E.141-B as manu-
factured by the Budd Company, Phoenixville, Pa. The resistance
and the gauge factor of the gauges were 120+0.2 ohms and

2.05+0.5 % respectively. These were specified to be suitable
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for use up to a temperature of +200°F.
The strain gauges were connected to a direct writing
type R Dynograph (Beckman Instruments, Inc., Offner Division,

Schiller Park, Ill.).

Accelerometors

Two accelerometers were mounted, respectively, one
near the top of the column and the other at the centre of the
beam. One accelerometer was also mounted on the shake table
to record the base acceleration applied to the experimental
structure.

The accelerometer mounted on the shake table was a
Universal Servo Accelerometer Model 305A, S/N 2477. Its
sensitivity is 0.2 ma/g, 0.100 v/g. The output from this
accelerometer was recorded on the type R Dynograph Direct
Writing Recorder. The accelerometers mounted on the frame
were Endevco Series 2200 Accelerometers. The accelerometers
used on the column and at the centre of the beam were models
2221C Serial ED60 and 2221C serial EC54 respectively. The
operating acceleration range varies from 0.001g to 10,000 g's.
The Endevco Accelerometer mounted on the column was connected
to the Dynograph Direct Writing Recorder.

The output from the Endevco Accelerometer mounted
at the centre of the beam was amplified by a Laboratory

Amplifier model 2616B. The resulting output was fed to Model
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CEC1-165D.C Amplifier. The output signal thus obtained was

fed to the Direct Writing Oscillograph Recorder type RG32.12/15
This recorder uses an ultra-violet light source using pencil
type mirror galvonometers focussed onto ultra-violet sensitive

recording paper.

4.2 Damping

To determine the damping factor, the frame was given
a push by hand and the strain responses were recorded. The
strain response was plotted (Fig. 4.1l) on a semi-logarithmic
scale to find the damping factor. It may be seen that this
plot is a straight line whcih indicates that the dmaping is
constant and is of viscous type.

The value of the logarithmic decrement § is given by
8 = In (>'ci/>“<j>/(j—i> (4-1)

in which ii and §j are the maximum amplitudes of free vibrations
in ith and jth cycles (j>i). From the plot shown in Fig. 4.1
Qn(ii/gi) = 0,693 for j-i = 17.8. Thus the logarithmic decrement

§ is given by

= 0.0385.

Therefore the damping factor ¢ is given by

_ 0.0385 = 0.006
2T

N
|

N] ool

3

0.6% of critical damping.
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4.3 Dynamic Test

The natural frequency of the various systems were
determined by giving the base of the structure a sinusoidal dis-
placement and varying the frequency. For convenience in obser-
ving the magnification of the response, the signal from an
accelerometer mounted near the top of the column was fed to an
oscilloscope. The amplitude of the base displacement was
kept at #0.005 in, in order to keep the response of the structure
well within the elastic range. As soon as the natural frequency
was reached while increasing the base frequency, a spontaneous
amplification of amplitude was observed. It was decided not
to keep the structure in resonance condition for a longer time
to avoid any possibilities of damage resulting from resonance
condition. This procedure was repeated several times to verify
whether or not the frequency thus obtained remains stationary.
It was observed that this remains reasonably constant. The

natural frequencies thus observed are given in Tables 3.1 to 3.7.

4.4 Calibration

Beckman Oscillograph

A cantilever beam was used in the calibration test.
Strain gauge form the cantilever beam was connected to one
channel on the Beckman oscillograph. A known static load was
applied at the tip of the beam and the strain recordings at

all the gauges were recorded by the recorder. The strains were
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also measured with the help of strain indicator. On this

basis a calibration table was prepared.

Load Cell

A load cell was constructed, using 3/4" diameter steel
bar. Strain gauges were fixed on the circumference of the load
cell.

The load cell was given a number of load cycles from
0 to 8000 lbs on a Tinius-Olsen testing machine. This was
done in order to reach a stage where the load-deformation
characteristics did not change appreciably. The load cell

was used in the joint test.

4.5  Evaluation of Rotational Stiffness of Connections

The prediction of elastic response of non-rigid frame
requires the knowledge of rotational stiffness of the connec-
tions. The rotational stiffness of the connection can be
determined from the moment-rotation relationship of the connec-
tion. As the deformations in a dynamic process are likely
to be cyclic, it is realized that the determination of the
rotational stiffness of the connections should be done by the
application of dynamic loading. However, it is of interest to
investigate whether or not the rotational-stiffness of connec-
tions determined under static conditions and subsequently used
to predict the dynamic properties of the frame gives a satis-

factory correlation with the results observed experimentally.
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Such a study is of interest as the rotational stiffness of
the connections can be determined more easily under static
loading rather than under dynamic loading.

Fig. 2.3 shows the experimental structure for the beam
column joipt test. The height of the column was about 5" and
the full length of beam was used in the test. The load was
applied through a load-cell and acting at fhe centre of the
beam. The displacement gauges were mounted to measure hori-
zontal rotation of the joints.

The moment-rotation characteristics determined from
the column-beam joint test is shown in Fig. 4.2. Based on
tangent modulus technique, the computed rotational stiffness
is 12.24X105 in 1lbs per radian. This value is used to predict
the dynamic properties of the frames with non-rigid connections,

in Chapter III.
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CHAPTER V

DISCUSSION OF RESULTS

5.1 Comparison of Analytical and Experimental Results.

Natural frequencies.

The comparison of the computed and experimentally ob-
served results for the various structural systems are given in
Tables 3.1 to 3.7.

The observation of the frequencies of the portal
frames computed by treating the connections as rigid and as
non-rigid indicates they are nearly the same.

A comparison of the frequencies of the portal frames
computed by finite element method with the experimentally ob-
served values indicated that they are in good agreement. The
difference between the actual and predicted natural frequencies
is less than 10%.

The frequencies of the columns computed by finite

element method and conventional methodslg'20

are in good agree-
ment. The predicted values for the various cases are in good
agreement with those observed experimentally.

The comparison of the frequencies of the beam computed
by finite element method and conventional method shows that
they are in good agreement. As the experimental structure (Fig.
2.3) used for the beam test behaved more like a portal frame

rather than like fixed-fixed beam, the computeﬁ results of fjixed-

fixed beam could not be compared with the experimental results.
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The first three mode shapes of the portal frames de-
termined based on the strain response, agree with those computed
theoretically. In the case of portal frame with a height of
60", the visually observed second mode shape agrees with the
theoretically computed one.

5.2 Effect of Added Mass on Top of the Column

To investigate the effect of added mass on top of the
column, the frequencies are computed for the various cases of
added masses on the top of column. The computations of frequen-
cies are also carried out for the three different column heights,
namely, 80", 60" and 40". The added mass is varied from (.0
lbs to 100 lbs. and the theoretically predicted frequencies are
given in Tables 5-1, 5-2, and 5-3 respectively for the heights
of éO", 60" and 40". The observation of the frequencies cor-
responding to various added masses indicates that the added
mass has an appreciable effect on the first natural frequency
compared to the higher frequencies. The different added masses
results in an entirely different dynamical system with al-
together different dynamic properties. Hence, it will be
desirable to make proper estimation of the mass of the system

preceding the analysis and design.

5.3 Interaction of the Components in Modes of the Combined

sttem

The main purpose of this particular study is to

investigate the interaction of the component structures, namely,
column and beam, in modes of the combined structure .

To aid in the understanding of the interaction effect, the



Added

Frequency in ¢.p.s.

wt.

Mode lng‘ 0 10 20 30 40 50 60 70 80 90 100

NO. ¥ - 1bs lbs lbs 1lbs 1lbs lbs lbs lbs lbs lbs
1 10.5 5.3 4.0 3.4 3.0 2.7 2.4 2.3 2.1 2.0 1.92
2 66.3 | 49.8 48.2 47.7] 47.a 47.2 47.1 47.0 | 46.9 46.9 46.8
3 185.9 |154.3 | 152.5| 151.9| 151.6 | 151.4| 151.2 | 151.1 |151.1 |151.0 |151.0
4 364.9 [318.4 | 316.5| 315.9| 315.5 | 315.3| 315.2 | 315.0 |315.0 |315.0 |314.9
5 605.4 [543.4 | 541.6| 540.9| 540.6 | 540.4 | 540.2 | 540.1 |540.1 |540.0 |540.0

Table 5.1 Computed frequencies of column

Height: 80"

9%
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Wt.agiedL Frequency in c.p.s.
ﬁod; lgs 0 10 20 30 40 50 60 70 80 90 100
HReLy 1bs 1bs lbs 1bs 1bs 1bs 1bs 1bs 1bs 1bs
1 18.8 8.5 Bl 5.3 4.6 4.1 3.8 3.5 Jand 3ed 3.0
2 118.4] 87.2 85.0 84.2 83.8 83.6 83.3 83.3 83.2 83.1 8351
3 330.91272.8 270.3| 269.4| 269.0 268.7 26B.5 268.4 268.3 268.2 268.2
4 651.5/564.4 561.8/ 561.0; 560.5 56p.2 560.0 5599 559.8 559.7 559.7
5 1086.1/964.6 961.9| 961.1; 960.6 960.3 960.2 | 960.0 959.9 959.8 959.8
Table 5.2 Computed frequencies of column

Height: 60"

Ly



\_Wt.added

Frequency in c.p.s.

in
Mode 0 10 20 30 40 50 60 70 80 90 100
Number+ lbs lbs lbs 1bs 1bs 1bs 1bs 1bs lbs lbs 1bs
d 41.7 16.1 1l -8 9.8 8.5 Tuid 7.0 6,5 P 5.8 55
2 261.3] 193.0( 189.5 188.3 | 187.7 1873 187.0 186.9 186.7 186.6 186.5
3 732.2| 610.0| 606.1} 604.8 | 604.1 603.7 603.4 603.2 603.0 602 .9 602.8
4 1437.1{1264.8{1260.91259.5 [1258.8 1258.4 |1258.1 |1257.9 | 1257.8 | 1257.7 |1257.6
5 2384.0] 2160.2{2156.22154.8 R154.1 2153.7 121534 |2153.3 | 2153.1 | 2152.9 |2152.9
Table 5.3 Computed frequencies of column

Height:

40"

8¥
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investigation is carried out for the various combinations of
the column-beam stiffnesses. Such investigation will help
to understand the effect of the variations of stiffnesses
of the component structures on the behaviour of the combined
structure.

To investigate the interaction effect, the frequencies
and mode shapes of the structural systems were computed for‘

the following combinations of column-beam frequencies,

i column frequency << beam frequency
13 column frequency < beam frequency
iii column frequency ~ beam frequency
iv ‘column frequency . beam frequency
\% column frequency >> beam frequency.

The computed frequencies for the various combinations
considered are given in Tables 5-4 to 5-9. The mode shapes
of the combined systems were plotted with reference to the
member axes (Figs. 5-1 to 5-6) so that these can be
easily compared with those of the component systems (Figs.v

5«7 to 5=14) .

5.4.1 Column frequency << Beam frequency

Observation of the first mode of the combined system
(Fig. 5-la) indicates that this mode is primarily first mode
column deformation deforming in the same direction with very

little beam deformation. This indicates that the first mode
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FREQUENCY C.P.S.
S.No. DESCRIPTION
1 3 3 4 5
1 8.2 9.7 42.9 60.8 71.3 2
2.5
1bs
2 8.1 | 55.4 162.2 327.5 553.3 80"
B 90.1 |248.9 490.1 819.2 1229.0 f—iﬁL—f
4 87.8 | 247.2 489.1 | 808.5 1198.7
5 39.9 |159.7 359.5 639.5 925.1 ﬁgiﬂL—z»
Table 5.4 Column frequency << beam frequency

MCMASTER UNIVERSITY LIBRARY
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g FREQUENQY C.P:8. DESCRIPTION
HOD 5 2 3 4 5
| 40’
1 | 24.7 35.4 61.6 |167.1 238.6 l
2.5
lb’s
2 | 26.8 |205.9 , 40
3 | 90.1 | 248.9 490.0 | 819.1 1229.0 4—060 4
4 | 87.8 | 247.2 489.1 | 808.5 1198.7 1000 &
60”
5 | 39.9 | 159.7 359.55 | 639.5 925.1 ...,
Table 5.5 Column frequency < beam frequency




52

S FREQUENCY C.P.S.
NO. DESCRIPTION
1 2 3 4 5
60"
l ! 20
1 38.7 | 110.7 | 145.61 |212.4 399.5
2.5 1bs
v
2 85.4 | 796.3 I,ZO
3 90.5 | 251.3 | 496.1 |826.7 1237.5 #—060
4 87.8 | 247.2 | 489.1 |808.5 1198.7 1080
60"
5 39.9 | 159.7 | 359.5 |639.5 925.1 )

Table 5.6 Column frequency % beam frequency (fixed-fixed)
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FREQUENCY C.P.S.
S. DESCRIPTION
NO.
1 2 5 4 5
_6_ ” 5
l 30
1 32.7 59.0 81.0 | 182.6 356.6
iz.s
1b
2 43.8 | 370.3 s0*
- 60
3 90.5 | 251.3 | 496.1 |826.7 [1237.5 ¥
4 %>£¥ZA%
87.8 | 247.2 | 489.1 | 808.5 |1198.7
60° ]
5 39.9 | 159.7 | 359.5 |639.5 925.1 %
Table 5.7 Column frequency v beam frequency (hinged-hinged)
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’ FREQUENCY C.P.S.
NO. DESCRIPTION
] 2 3 4 5
2 " '
30
;! 18,1 35.4 56.8 70.5 106.7
5 1lbs
izo"
2 33.9 348.7
3 22.5 62.0 | 121.7 201.4 | 301.4 chdi p
: 120"
4 9 39.9 89.8 159.8 250.1 S
Table 5.8 Column frequency > beam frequency



1]

S. FREQUENCY C.P.S. i
NO. DESCRIPTION .
1 2 3 4 5
- 0,’
e ¥
1 44.9 | 164.4 361.7 | 634.2 924.6
2.5 1bs
2 757.9 12130.3 5
3 90.5 [251.3 496.1 |824.7 1237.5 —060_ 4
4 87.8 | 247.2 | 489.1 |808.5 [1198.7
s —— n
5 39. . 359, 639.5 925, 60
9.9 1159.7 5 1 ‘.

Table 5.9 Column frequency >> beam frequency
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of the combined system is similar to the first mode of the
column.

The second mode of the combined system (Fig. 5-1b)
is again essentially the first mode of the columns, but
this time deforming in the opposite directions with zero beam
deformation. |

The first and the second natural frequencies of this
combined structure is nearly equal to the first ffequency
of the column.

Fig. 5.1lc shows the third mode of the combined system.
This mode is primarily horizontal beam deformation with a
relatively small amount of column deformation. Because
of this reason the third frequency of the combiﬁed system is
similar to the first frequency of the hinged-hinged beam.

Observation of the fourth mode indicates that this
mode is essentially the second mode column deformation,
deforming in the opposite directions with very little beam
deformation. It is for this reason that this frequency
is similar to the second frequency of the column.

The fifth mode of the combined structure (Fig. 5.1le)
is the combination of the second mode of the columns, defor-
ming in the same direction with first mode of the beam. Since
the frequency of the combined structure depends on the

coupling of the components, the fifth frequency of the combined
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structure is greater than the frequency of the component

modes.

5.4.2 Column frequency < beam freguency

Fig. 5.2a shows the first mode of the combined
structure. This is the combination of the first mode of
the columns deforming in the same direction and the first
mode of the beam. In this case the first frequency of the
combined structure is nearly equal to the first frequency
of the column.

The second mode of the combined structure (Fig. 5.2b)
is the first mode of columns deforming in opposite directions
with zero beam deformation. The second frequency of the
combined structure is greater than that of the first frequency
of the columns. This indicates that the coupling effect
is more predominant in this case than in the previous case
(5:4.1) .

The observation of the third mode in Fig. 5.2c
indicates that this is the combination of the first mode
of the columns deforming in the same direction and the first
mode of the beam. The frequency of the combined structure
depends on the coupling of the components. The third frequency
of the combined structure of this particular case, is
comparable to the sum of the first frequency of column and

the first frequency of beam.
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The fourth mode of the combined structure is
primarily the second mode deformation of the beam with very
little column deformation., Consequijtly the fourth frequency
of the combined structure is1ggiii§} to the second frequency
of the beam.

The fifth mode of the combined structure is the
combination of the second mode of the columns deforming
in the same direction and the first mode of the beam. The
sum of the second freguency of the column and the first
frequency of the beam is comparable with the fifth frequency
of the combined structure. This need not always be true,

as the frequency of the combined structure depends on the

coupling of the components.

5.4.3 Column frequency ~ beam frequency (fixed-fixed)

Fig. 5.3a shows the first mode of the combined
structure. This mode is primarily the first mode of the
hinged~-hinged beam with very little column deformation.

Hence the first frequency of the combined structure is
nearly the same as the first frequency of the hinged-hinged
beam,

The second mode of the combined structure is similar
to the first mode of columns deforming in the opposite
directions with small amount of second mode deformation of
the beam. In this case, the second frequency of the combined

structure is greater than the frequency of the component modes.
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The third mode of the combined structure is the
combination of the first mode of the columns deforming
in the same direction and the first mode of the beam. The
sum of the frequencies of the corresponding modes of the
components is less than the frequency of the combined
structure. This is probably due to the effect of the
coupling of the components. |

The fourth mode is the combination of the first
mode of the columns deforming in opposite directions and
the second mode of the beam. The fourth frequency is less
than the sum of the frequencies of the corresponding
modes of the component.

Fig. 5.3e shows the fifth mode of the combined
structure. This mode is essentially the third mode of
the beam with first mode of columns deforming in the
same direction. The frequency of the combined structure is
different from that of the frequencies of the component

modes .

. 5.4.4 Column fregquency % beam frequenéy (hinged-hinged)

The first mode of the combined structure (Fig. 5.4a)
is primarily the first mode deformation of the beam with
litfle column deformation. The frequency of the combined
structure is less than that of the frequency of the

component modes (Table 5.7).
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Fig. 5.4b shows the second mode of the combined
structure. This is essentially the first mode of the
columns deforming in opposite directions with very 1little
beam deformation. The frequency of it is higher than the
component frequency.

Observation of the third mode (Fig. 5.4c) indicates
that this is essentially the combination of the first mode
of the columns deforming in the same direction and the
first mode of the beam. In this case, the sum of the cor-
responding frequencies of the components is nearly equal
to the third frequency of the combined structure.

The fourth mode (Fig. 5.4d) is primarily the second
mode deformation of the beam with first mode of the columns
deforming in opposite directions. This frequency is less
than the sum of the corresponding frequenqies of the component
modes. |

Observation of the fifth mode (Fig. 5.4e) indicates
that this is essentially the third mode of the beam with very
little column deformation. The fifth frequency is similar

to the third frequency of the beam.

5.4.5 Column frequency > beam frequency

The first mode of the combined structure is essen-
tially the first mode beam deformation with very little

c¢olumn deformation. The frequency of the combined structure
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is close to the first frequency of the hinged-hinged beam.

Fig. 5.5b shows the second mode of the combined
structure. This is the combination of the first mode of
the columns deforming in opposite directions and the
second mode of the beam. In this case, the second
frequency of the combined structure lies between the first
frequency of the column and the second frequency of the
beam.

The third mode is the combination of the first
mode of the columns deforming in the same direction and
the first mode of the beam. This frequency is greater than
the sum of the corresponding frequencies of the component

The fourth mode is the combination of the first
mode of the columns deforming in opposite directions and
the second mode of the beam. In this case the sum of
the corresponding frequencies of the components is comparable
to the frequency of the combined structure.

Fig. 5.5e shows the fifth mode of the combined
structure. This is essentially the combination of the first
mode of the columns deforming in the same direction and
the third mode of the beam. The fifth frequency of the
combined structure is different from that of frequencies

of the component modes.
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5.4.6 Column frequency >> beam frequency

The first five modes of the combined structure
are given in Figs. 5.6a to 5.6e with reference to the
member X axis.

The observation of the mode shapes indicates that
they are essentially the beam modes with very small amount
of column deformation. The frequencies of the combined
structure, in this case, are nearly equal to the frequencies
of the hinged-hinged beam. This shows that when the fre-
quency of the column is far greater than that of the
beam, the frequencies of the combined structure is

close to that of the hinged-hinged beam,
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FIG. 5.9 MODE SHAPE OF COLUMN (HEIGHT=80")
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CHAPTER VI

CONCLUSIONS

The following conclusions are arrived at, based

on the theoretical and experimental investigations,

l.

The comparison of the natural frequencies of the portal
frames determined by finite element method and experi-
ment indicates good agreement between the two sets.
Hence it is concluded that the theoretical approach
used is reasonably accurate for practical purposes.

The theoretical analysis by treating the structural
connections as rigid gives reasonably accurate results
in the working range.

The comparison of the frequencies computed by the finite
element method and the conventional method indicates
good agreement for both beam and column. Therefore

the finite element method can be used to predict the
dynamic properties of structural systems.

The effect of added mass on the top of the columns is
found to have more influence on the fundamental fre-
quency rather than on the higher frequencies. The
different added masses result in different dynamical

systems with different dynamic properties. This
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indicates that the proper estimation of the mass

of the structural system is important preceding the
analysis and design.

When the column frequency is very small (Table 5.4)
compared to the beam frequency, the first and second
frequencies of the corresponding combined structure
are nearly equal to the first frequency of the column.
When the column frequency is very large (Table 5.9)
compared to that of the beam, the observation of the
frequencies of the corresponding combined structure
indicates that they are very close to the hinged-

hinged beam frequencies.
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APPENDIX I

COMPUTER PROGRAM OUTLINE

A computer program was written to analyse a simple
portal frame, by direct assembly technique. This program

can be used for frames with rigid and non-rigid connections.

DATA INPUT:

The following data are needed in the analysis:
a) Total number of nodes and total number of elements.
b) Number of degrees of freedom for each element.
c) Material properties: Young's modulus of elasticity, etc.
d) Transformation matrix for each element.

The following computer programmes were used in the
analysis

Subroutine SNARK:

Subroutine SNARK transforms the 3x3 element matrices

from local co-ordinate systems to global co-ordinate system.

Subroutine STIFF:

This subroutine calculates the 6%x6 stiffness matrix

for each element. Expressions for the matrix are taken from
reference 7. The 6x6 matrix is partitioned to 4 submatrices
of sixe 3x3. Each submatrix is transformed from local

co-ordinate system to global coordinate system by calling

the subroutine SNARK. Then the submatrices are assembled to
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get the 6x6 element matrix in global system.

Subroutine AMASS:

Subroutine AMASS calculates the 6x6 mass matrix for
each element, in global coordinate system; consistent mass

matrix is taken from reference 7.

Subroutine INVMAT:

INVMAT is a library subroutine used for the inversion

of the assembled stiffness or mass matrix.

Subroutine EBERVC:

The library subroutine EBERVC calculates the eigen-

values and eigenvectors of an unsymmetric matrix.

Main Program:

The main program utilizes the above programs to

compute eigenvalues and mode shapes, and also displacements,



RUN(5)
LOADER {PPI.OADR)

SETINDF .

REDUCE » ”

LGOe ,

N OONONON

6400 END UF RECORD
PRUGRAM TST (InFPUTsOUTPUT »TAPES=INPUT»TAPES=UUTPUT)
*****-‘k b TR R R A T R R e R R i R o A R R PR o N S e R N I I Y

#* #*
¥* 3
% ‘ *
H¥ANALYSIS OF CUMBINED SYSTowm WITH ROTATIUN SPKRINGS IN BEAY *#
3* ) . *®
#* %
#*

>: 3%

**w*xxwxw'kk%xa-\*i\*un*h‘x%*nﬁ-nrnww;.kn*w*.‘l-n-“»(m’n'x,&kkn [ RR R R XX e L
DIMENSTUN O(353933)s 0(35955)sALPHALZ3) sN(353)
DIMENSION DMAT(33933)
DIMENSTON uAl(33933)9AMA0(3$95§),AFHtu(53)9VAL(J)93§),N‘(Ludi
DIMENSIUN CClou)
DIMENOSIUN RESAM(595) sUMASTS5 95 ) sWiiAT(595) 9 CipAS{H e ) s IRNIZU )
COMMUN/ZBLUNL/ T3 j)/BLvNZ/TT(5oj)/BLUhj/bF(696)/”LU"7/Am(u;oJ
READ (592 )NLLEMNJOIN
2 FORMAT(215) '
JOINT=3%NJCI N
DO 13U I=1suUOINT
DO 130 J=19JOINT
SAM(IsJ)=Ueu
AMAS(T oJ)=Ueu
13C CONTINUE
KOUNT=1
4 READ(D92)XPlseYP1lo XPZ’YP49E9L’Y’YJ9AHEA9AL’lFKUm;l]U
5 FORMAT(4F lVUeld9s2ETel/4F1lle4s21D)
NQITE(O’S)XPlyYPl9XP29YP"t069Y’YJsANtA9AL,IFhUMa[TU
- READ(5+22)RHO
25 FORMAT(Flue4)
READ(De79)((T(IeJd)sJd=1l93)s]l=1e3)
15 FORMAT(ZF1lUe3)
CALL JTIFFF(XPIﬁYPL’XPZ’YHc9L9b’Y9YJ’APtA’AL9NQUV])
CALL AMALL (AL sARKLAsYusRHUSANLWING ) - .

134 IF(1FRUMeEwevIGU TU HUL

DO 13Y 1=1s3

DO 135 J=1s3.

IFROG=1+3%([FROM=1)

JFROG=J+3%* ([ FRUM=1)

ITOAD=1+3%([Tu=-1) .

JTOAD=J+3% ([ TU-1) K

COAMIUIFRUGsJFIRCOYI=SAMT IFRUGIVFIRVG)+SF (1 sJ)

SAMIIFRUGIJTUAD ) =AM I FRUGIJTUALI+SF (Ll sJd+3)

SAMUITCOAD o JFRUG) =SAM{TTUAL s JFRUG)+SF (1439 J)

SAMITITOAD s JTOAD Y =SAM( I TUAD s JTUAD ) +SF (I +39J+3)

AMASTTIFRUGJFRUG) =ARMAS( [FROGS wFRUG)+AM( | oJ )

AMASUIFRUGU TUAD) =ANMASTIFRUGsJTCAL) +ANI( ] y U+

AMALETITUAD s JFRUG) =AMAS (T TUAU sur RuG) +AM (L +59d )

AFMASTTITUAD s JTUAD I =AMAS (L TVAL s TUAD ) +AM( [+ 59 J+3)
135 CONTInUL



NNONNNO N

5¢1

502
15

16V

9

23
698

703

704
721
706
797

708

QU0

911

9ul

GO TO 15

DO 5U2 [=193

DO 502 J=193

ITOAD=I+3%(1T0O-1)

JTUAD=J+3%(]110-1)
bAm(lTOAUoJAqu)-bAﬂ(liuAquIUnu)+aF(l+asJ+3)
AMAS (L ITUOAD s JTUADL ) =AMAS( 1 TUADs v ICADI+AA(T+39J+3)
CONTINUE

IF (KOUNT e ENe NELEM)IGO TT 160
KOUNT=KOUNT+1

GO T0 &4

WRITE(Hs9)0AN.

FORMAT(1Xs9L1lveld)

WRITE(6916) _
FORMAT(LX 9o LYXe*AMALH)

WRITE(Os1U)AMAS

FORMAT(1Xs9t 1ue2)

N=33

CALL INVMAT(AMAS 8339339 1E~u7slIERRNL)
IF(IERReGTev) LO TO 711

DO 23 I=1sN :

DO 23 J=1sN

DMAT(IeJ)=Vevu

DO 23 K=1lsiN

DMATII s J)=DHATII o IV +AMAS( T oK) ¥SAM(KeJ)
CONT 1NUE

DO 7U3 I=1N

DO Tusu=1sN

VAL({IsJ)=Uebl

IF(lebled) VAL LlJ)-L.b

CONTINUE

CALL CDLKVC(bHAngb,l,duv9.uly.uulinUuooJ39V“L'a)
DO 7G4 I=1eN
AFREQ(I)=5QRT(ABS(DMAT(191))) /602832
PRINT 721

FORMAT(1Hu e *EIGEN VALUES IN RAD/OSEC¥s//)
PRINT 7u6 o (AFREQ(I)sI=1en)
FORMAT(1Xslubl2e4/)

PRINT 707

FORMAT(1IHus ¥ETGEN VECTUR®9/)

PRINT 7uBs((VAL(TeJlsI=lon)sd=isn)
FORMAT(IHUSL1E12e49/)

CALL INVMAT(AMAS93393391E-U7sIEXRONI)
DO 9uu [=1lsNiN

DO Julu JU=lseiN

ALPHA({] )=uvev

BllsJd)l=vev

D(lsd)=Lew

DO 9uuw K=1sN
b(X’J)-o(IoJ)+VAL(nvI)‘ADAb(k9J)
PRINT Yailetd

FURMAT (1XsLlEL12eb49/)

DO 9vl I=1sN

DO 9G1 JU=1lsN
ALPHA(I)Y=ALPHA(TL ) +u(leJ)

PRINT 912



912 FORMAT(1Xe*ALPEA 15%9/)
PRINT QuU2s(ALFHA(T)sI=1sN)
QU2 FORMAT(1Xslutl3ess/)
DO YU3 [=1is
oo 2032 J=1eN
QU4 wllsd)=UelL
DO 904 I=1sM
DO 904 J=1sN
9U4 B(IsJ)=VAL(LIsv)¥*¥ALPHA(L)
PRINT 9U5s0 i
9u5 FORMAT(1IXsllbEl2eb% /)
DO Yub J=19iN
906 CN(J)=Ueu
BETA=ULLUO
XS02=Ue5/1luvev
Wl=AFREG(21)
DO 9G7 J=1seN
W2=AFREQ(J) ‘
XXX=0WRT((leu=wWlk®2/wW2#%2) #2444 U%(LETARWLI/WZ) *%)
CR(J)=X502% (leu/XKX=1eU) :
9U7 CONTINUL
PRINT 9U89(CN(J)eu=1sN)
QU8 FORMAT(1XsllE1l2e3s/)
DO 9u9 I=1eN
DO 9U9 J=1sN
QU9 DI(TsJ)=b(lsU)*CKNIJ)
PRINT Qlu o ((D(Isudsl=LsiN)su=1sN)
910 FORFAT(IH1e/(11lELZ2eb4s/))
711 PRINT 712sIERR
712 FORMAT(LID)
STUP
END



SULROUTIRE SIIFFF({X1sY1loacaY2sc9GsVeYusARsALYKI)
COMAUN/ZBLONIZT(393)/BLORZ2/T1(593)/BLOR3/SF(696)/8LUNT/AM(Or0)
DIMENSTION Xa(333)95K(393)e'xli(393)9sUK(393)
WRITE(6+25)T
25 FORMAT(1Xe3E1le4)
DO 7 I=1+3
DO 7 J=193
RK{IsJ)=ueu
SK(I’J):‘UOU-
GK(IsJ)=Ueu
UK(T1sJ)=0eu
-7 CONTINUE
JF(KNT eEQe H)0GC TO 6UL
IF(ANT oEWe 1UIGU TO 0792
RK(lsl)=12eux*Ex*Y/AL/AL/AL
RK(Ls3)=6eUkE*Y/AL/AL
RK(2s2)=G*YJ/AL
RK(3s1)=RK(1s3)
RK(3s3)=40%E*Y /AL
SK(1le1)==RK(1s1)
SK(193)=RK(1s3)
SK(Z2e2)==RK(zs2)
SK(3e1)==RK(391)
SK(393)=Ueb¥RK(393)
QK(191)=5K(1ls1l)
QK (193)=SK(341)
QK(2s2)=5K(2+2)
OK(Ls1)=SK(1s3)
QK(3+3)=3tZ290)
UN(1lsl)=xK(1lsl)
UK(1e3)=0Kk(sel)
UK(Z232)=Rinlzsd)
UK(2s1)=0K(2s1)
UK(333)=RK(2+93)
Co Tu 100
Y E=ExY/(AL¥AKL)
EJ=L##Y/ (AL¥AK])
Al=lau+EJ
A21=)ed+leukcll
A3l=1eU+be s¥J
AN22=1e0
Ad2=160
AA=1.U+4.U*;J
GO TO 623
602 EX=CxY/(AL¥Ar2)
EK=E*Y/ (AL¥AK. )
Al=1eU+EK
All=1leu
A3l=1ev _
A22=1e0+2eu*tEK
A32=1eU+3U¥EK
AA=]1 e U+b o C*EK
6U3 RK(Llei)=(l2eu¥E=*Y/AL®**3 )% (AL/AA)
RK(1s3)=(beuXERY/ALK¥ )X (ALL/AA)

[



luv

20

(39l )=Rn(le3)
WK{292)=06¥YJ/AL
RK(3e3)=(Goeust#tY/AL)*(A3L/AA)
SK(1l91)=-RK(1sl)
SK(ie3)=RK(391)%#(A22/A21)
SK(292)=~RK(2+2)
SK(39i)==RK(391)
SK(393)=2eu*c*Y/{AL*AA)
WK(lel)=0R{1isl)
GK(1l93)==-rR&(391)
GK(292)=551L9<)
WK(291)=0K{293)
QK(393)=0r13932)
UK{le1)=R(1s1)
UK(1s3)==5K(1s3)
UK(2s2)=RK(csd)
UK(osl)==0K(1sa)
URN(Z90)=(LeUHEXRY/AL)XLASL/AA)
DO 8 I=le3

O 8 J=1l+3
TT(Jsl)=T(1IsJ)

CONTINUE

CALL SNARK(RKslsl)

CALL SNARK(OKelsel)

CALL SNARK(WKelsel)

CALL ONARK(UKselel)

VO 20 =193

DO 2u J=193
SF(IsJ)=RK(IsJ)
SF(lsJ+3)1=5K(1sJ)
SFl+2s0)=QK1ieJ)
SF(I+3sJ+2)=uN(1sJ)
CONT i NUE '
RETURN

END



6V

SUBROUTINE AMALSS(ALsARsYJsRFOIKNT)
COMMION/ZBLORLZ1(3e3)/7BLUKZ2/T1(3553)
COMMOII/BLOKIZAM(6en)

DIMENSION AX (393 s0R{283)9CK(303)oLnt393)
DO 7 I=193

DO 7 J=1+3

AK(T9J)=Cel

T BK(I19d)=0led

CR(IsJ)=Ued

OKtlsu)l=Uueu

CONTINUE
B=RHO¥AL*¥AR/ (4206 vu¥386eV)

‘AK(191)=156e0%B

AK(1s3)=22e UXAL¥*B
AK(292)=140e UXYJIXE/AR
AK(391)=22e v xAL¥*D
AK(393)=4eUk*AL®ALID
BK{1ls1)=bbeusy
BK(le3)==13eU¥AL*L
BK(2s2)=TUeux*YJ¥U3/AR
BK(391)==8K(1+3)
BK(393)==3eUxAL¥ALXY
CK(ls1)=8K({1lsl)
CR(193)=8K(2+1)
CK(2e2)=BK(232)
CK(39s1)=K(193)
C¥(2e3)=BR{593)
DK(lsl)=AK(1is1)
DK(1ls3)==AK{1s3)
DK(262)=AK(242)
DK(3s1)==naK{3s1)
DK(3s3)=aK(3+3)
CALL SNARK(AKs1s1)
CALL ONARK(LAN91lsl)
CALL ONARBR(Cnslsei)
CALL SNARK(DKelsel)
LO 2u [=1+3

DO 2uU J=1s3
AM(1lseJ)=Ak(1sJ)
AM(T o Jd+3)=8BK(1eJ)
AM(TI+39J)=CR (] sJ)
AM(L+3eJ+2)=U(]9J)
CONTINUL

RETURN

cND



le

14

16

17

SUBROUTINLZ OnARN(AsILsJUl)
COMMOI/LLCKT/ZAM(E S

COMMON/ZLLLERLI/T(393)/BLUKZ/TTIV393)7bLLUAR3/S51(650)

DIMENSION Al393)988(393)s0D(393)
DO 12 1=193

DO 12 J=1ls>

B(I’J)=Uob

D(IsJ)=Ue"s

CONTINUE

DO 14 I=1s>

DO 14 JU=1le3

DO 14 K=1+93
B(Ied)=B(IsJ)+A(TK)*T(NsJ)
CONTINUE

DO 16 1=193

DO 16 J=1+3

DO L6 K=1ls>
DIIsJ)=D(Ted)+TT{leR)®3(xsJ)
CONT INUE

DO 17 I=1s3

DC 17 J=1+3

AT ed)=D(1eJ)

Cumvi [
RETURN
END
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