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PREFACE 

The question which prompted this dissertation is 

the following: "How unique is a direct sum decomposition 

of a given R-module?" The classical result in this direc-

tion is the so-called Krull-Schmidt-Azumaya Theorem, proved 

by Gor$ Azumaya in [1]. It qives an answer to the question 

in the case that the given R-module is a direct sum of sub-

modules with local endomorphism ring. It is generalizations 

and ext~nsions of this theorem that this paper is concerned 

with. The results of this thesis are stated and proved 

in a more general categorical setting than rnod-R. Moreover, 

we do not resort to the embedding theorem, with the idea 

in mind that further generalizations in those categories 

we are considering and similar results in other sorts of 

categories may be suggested. 

Chapter I lays some necessary categorical ground

work. In Chapter 2 we combine results of s. B. Conlon [2] 
and S. Elliqer [4] within our categorical setting to obtain 

a generalization of the Krull-Schmidt-Azumaya Theorem. We 

consider representations of an object as an essential exten-

sion of a direct sum of summands (rather than simply direct 
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sum decompositions), and we allow certain summands other 

than those with local endomorohism ring. Chapter 3, 

following [io], (which was in turn applying the results 

of [3]) extends the concept of "local endomorphism ring" 

to the concept of "the exchange property" and produces 

certain coproduct uniqueness theorems. Finally, in 

Chapter 4, we consider decomposition of injectives and we 

see that certain problems involving coproduct decomposi

tions can be eliminated in the case where the objects 

concerned are injective. We present a uniqueness theorem 

due to R. B. Warfield ~~ and draw conclusions from this 

with the aid of the "spectral category" (which will be 

defined and examined) • 
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NOTATION 

We will, in general, represent the objects of a 

category by capital latin letters (A, B, C, •.• ) and the 

morphisms by small Greek letters (a, B, y, ••• ). For 

certain categorical notions where ambiquity arises as to 

whether an object or a morphism is referred to, (for 

instance the imaqe of a morphism) we adopt the followinq 

convention: If an object is being referred to we capitalize 

the initial letter of label (for this notion). Thus 

Im a and Ker a are ohjects while im a and ker a 

are the corresnon<lina mornhisms. 

A < B p. 1 

(±) A. = the coproduct of ohjects 
I i 

in an abelian category. 

A<JB, Rl>A :O· 12 

III =the cardinality of the set I. 

A. (iG. I) 
1 

endo (A) = the ring of endomornhisms of the object A. 

EA ( \ i: I, I I ) p. 2 4 

E(A) = the iniective hull of the object A. 

G<A, B> = the set of morphisms in the category 

G whose domain is A and whose co-

domain is B. 

S (<;) n. 73 
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Chapter 1 

Introduction 

§1. Some Basic Notions. 

In this chapter we will develop some elementary 

properties of coproducts in Grothendieck categories, 

those properties which we will find useful in describing 

uniqueness properties of certain coproducts. First 

however, some comments on notation seem necessary. 

Given objects A and B in an arbitrary category, 

we will write A < B if there is a monomorphism with domain 

A and codomain B. When we wish to distinguish one such 

monomorphism, unless stated otherwise, this distinguished 

monomorphisms will be labelled crAB' or simply crA if 

the codomain is evident from the context. Thus, we will 

write C = A(±)B (in an abelian category) to mean A< C, 

B < C and 

B 

is a coproduct diagram. Similarly, if A < C and B < C, 
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we write D = A nB to mean 

is a pullback diagram. 

If A < B and B < C, then obviously A < C, and 

if we have distinguished monomornhisms crAB' crBC and 

crAC' then, unless we state otherwise, they will be chosen 

so that aAC = crBCaAB. 

Definition 1.1: A Grothendieck cateqorv is an abelian 

category which is cocomplete, well powered, and which 

satisfies the Grothendieck condition, which we give in the 

following form: If A. < C 
1 -

is an upwards directed family 

of objects (i EI), (i.e. if the distinguished monomorphisms 

form an upwards directed family) , and if B < C, 

u 
I 

(A.nB). 
1 

Note that we do not require the existence of a gen-

erator in a Grothendieck cateqory. For a treatment of such 

categories, and of category theory in general, the reader 

is referred to Pareigis [s]. We will assume for the remainder 

of this dissertation that all objects and morphisms are the 
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objects and morphisms of a Grothendieck category, unless 

otherwise stated. 

It should be noted that an example of a Grothendieck 

category is the category of (left) modules over a ring 

with identity. The principal application of the theory 

developed in the following chapters is to precisely such 

categories. 

Finite products and arbitrary coproducts exist in a 

Grothendieck category and finite products and coproducts 

can be identified~ that is, there are finite biproducts. 

We will write A =G)A. 
I i 

if A is the coproduct of the 

A. (i( I), 
1 

and we will say that A is the direct sum of 

A. (iE I). It is well known that an obiect c in a Grothen-
1 

dieck (or even any additive) category is the coproduct of 

objects A and B if and only if there exist "injections" 

crA: A+C and crB: B+C (which are monomorphisms) and 

"projections" rrA: C+A and rrB: C+B (which are epimor

phisms) such that ~AcrA = lA, rrBcrB = lB, rrBcrA = O, 

rrAcrB = 0 and crArrA + crBrrB = le. These results are to be 

found in [8] (paqes 167-168). It is evident that all these 

conditions are not needed. For the purposes of this 

dissertation we will often find the following characteriza-

tion of the coproduct useful: 
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~oposition 1.2: r .. et A< C and B < C. Then 

c = A e B if and only if there are morphisms 'IT A: C+A 

and 1T B: C+B such that '!TBO A= 0' 'IT Ao B = 0 and 

OA'ffA + o B'!T B = le· 

Proof: That- these conditions are necessary is 

obvious by the preceeding remark. 

Their sufficiency follows since le = o A'" A + o BTf B 

implies that (J = 
A (0 ATf A + 0 BTf B)o A = 0 ATf Ao A so 1 = A '!T"AOA' 

and similarly lB = Tf Bo B • (This further implies that 

'IT A and 'l!'B are epimorphic.) Thus e = A G) B by the 

preceeding remark. I 
We should also note that if C = A (±) B, then 

Lemma 1.3. Let A~ B ~ C be objects such that 

A is a direct summand of C. Then A is a direct summand 

of B. 

Proof: Suppose C = A G X with projections 

and We use the convention that 

(and so on) are the distinguished monomorphisms with 

codomain c. We will show that B =A~ (B()x). 
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since 

Hence the diagram 

commutes. 

Let Y = Bnx. Then there is a unique iry.: B-+Y such that 

commutes. 

Now, define 1TA' •• B~A by · ir' = 1T cr 
A A B

0 Then 

= 1TXC1A 

= o, 



and 

= o. 

Also 

= crBcr AB 'IT A O'B + 0 x(J'YX'ITY 

= crBcrAB'ITA + crxcrYXirY 

= er Ber AB 'IT A + "BcrYB'ITY 

::: er B (a AB 'IT A + crYB'ITY) 

Hence, by Proposition 1.2, B = A G Y. I 
We remark that i t. i s also true that if A < B < C 

where A is a direct summand of B and B is a direct 

summand of c, then A is a direct summand of c. The 

proof of this is trivial. 

6 

Lemma 1 • 4 : Let D = .A (!) C = B @ X with 

projections 'ITA' 'ITB and 'ITC to A, B and C respectively. 
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Then D = B G) C if and only if ifAcrB is an isomorphism. 

Proof: (a) Assume ifAcrB is an isomorphism. Let 

P - ifAcrB. Thus we obtain 

and hence there is a unique T: D~D such that Tcrc = crc 

and 

It follows that 

(by the universality of the coproduct). 

-1 
Tcrcnc = acne and TcrAifA = crBp nA and 

hence 

<PT = 0 

But then 

Hence 

Now T is an isomorphism: 

(i) T is an epimorphism: If we suppose that 

for some 

0 = <PT = 

<P , then cpcr -c - <PTC1 -c -
-1 

0 cnc> <P (crB o if A + so 

= o. 

0 so cpcrcifc = o. 
-1 

<PcrBp ifA = O. 



Ther e f ore ¢crArrA = O and ¢crBrrB = O so ¢ = O. Hence 

T is epimorphic. 

(ii) T is a monomorphism: If we suppose that 

T$ = 0 for some $, then 

'ITA$ 
-1 

'"A$ = pp 

'IT A <crcrrc 
-1 

= + crBp rrA)$ 

= o. 

Hence T is monomorphic. 

Thus is an isomorphism and -1 
1" 

We define 

Hence 'IT'cr B C = O. 

Also 

and 

= o. 

rr I c 

exists. 

Then 

8 
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= 0 

= '['[ -1 

Thus, by Proposition 1.2, D = B G c. 

(b) Assume B 8 c = D = A 0 c and let 

ir n, 1f I c be the projection s . onto B and c respectively, 

resulting from the direct sum D = B G c. Then we know 

C1 ~ + a ~ = 1
0 

= a ir' + a ir' A11 A c"c B B c c· 

Hence 

= irAoBirB which is therefore epimorphic. 

Thus irAoB is epimorphic. 



Also, if for some ¢, ~AaB¢ = 0 then 

= o. 

Hence ~AaB 

isomorphism. § 
is monomorphic. Therefore is an 

Lemma 1.5: Suppose ¢: A+B and w: B+A are 

morphisms such that W~ is an automorphism of A. Then 

B = Im ¢ (±) Ker w • '"" 

Proof: Let ~¢ = (w¢)-
1

w. Also, let a$ = ker w. 
Since wClB - ¢(W¢)-lW) = O, there is a unique morphism, 

say ~w: B+Ker $ such that 

Further, ~$~ = 0 since 

aw~w¢ = ¢ - ¢($¢)-1$¢ 

= 0 

10 



and ~~crw is a monomorphism~ and ~~cr~ = ($~)- 1wcr~ = O 

since crW = ker W· Thus, by Proposition 1.2, 

B = Im ~ G Ker w (i.e. B = A G) Ker ~ where 

~: A-+B is the injection) • 0 
We note that the proiection onto A in the direct 

sum B = A Q Ker w in the above lemma is given by 

<w~>- 1w. 

Lemma 1.6: If B < C, G)A. < C 
-- I l. 

and BnG A. ':/ 0 
I l. 

11 

then there is a finite subset ,T S:I such that B n G A. ~ 0. 
J l. 

Proof: Let L be the collection of finite subsets 

of I and let AJ =(±) i\. for each JEL. 
/- J l. 

{AJ: J EL} is a directed set in G A. and 
I l. 

Now 
0 J, Bn© A. = nn(ltAJ) .,. 

l. 
I 

= U (BnAJ) 
L , 

by the Grothendieck property. Hence, there 

JEL such that BnAJ ':/ 0. That is, there 

Jf;I such that Bn© Ai -:j o. i 
J 

Then 

u A.=© 
L J I 

is some 

is a finite 

A.• 
l. 



§2. Essential Monomorphisrns and Iniectives 

Definition 1.7: A monomorphism a is called 

essential if whenever ~a is a monomorphism then ¢ is 

a monomorphism. If cr: A+R is an essential monomorphism, 

then we say A is essential in B and B is an essen-

tial extension of A, and we write A<fB and Bt>A. 

Proposition 1.8: a: A+B is an essential mono-

morphism it' and only if, whenever X < B, X ~ O, then 

Proof: (a) Assume a is essential and X < R 

with xnA = O. Then A sz_ B ~ B/X (where \l = cok crX) 

is a monomorphism, since An x = O. This implies that 

\l is monomorphic and thus X = Ker \l = O. 

(b) Assume, that for any x < B, x ~ 0 it follows -

12 

that Anx ~ o, and that we are given ¢a monomorphic for 

some ¢: B-+C. Then AnKer ¢ = 0 since An Ker ¢+A-E.> ~>C 

is the 0 morphism. Hence Ker ¢ = 0 so ¢ is 

moncmorphic. I 

We conclude this chapter with two lemmas of 

R. B. wa rfield ( [10] , p. 265-266). The first shows that 



in a Grothendieck category, a subobject of an injective 

object has an injective hull. It is well known C(B], 
p. 199-201) that every object will have an injective hull 

if we equip our category with a generator. 

13 

Lemma 1.9. ( [10] , Lemma 3) : Let D be an injective 

object and let A < D. Then there is an injective E < D 

such that E is an essential extension of A. 

Proof: By Zorn's Lemma (on the partially ordered 

set of subobjects of D) we can find E < D such that E 

is a maximal essential extension of A in D (up to 

isomorphism). We can apply Zorn's Lemma since the union 

of any chain of essential extensions of A is also an 

essential extension. Also by Zorn's Lemma, we can find 

X < D maximal (up to isomorphism) with respect to A(lx = o. 

Let v = cok crx· Then vcrA: A+D/X is a monomer-

phism: suppose 'JO' A <f> = o. Then crA<f> factors uniquely 

over Ker 'I) = x, i.e. crA <f> = crxip for some 1jl • But then 

<f> and 1" factor over Anx = 0. Thus <f> = 0 so 'JOA 

is monomorphic. 

But and crAE: A+E is essential so 

vaE is monomorphic. Hence, since D is injective, there 

is a crE: D/X+D which extends crE to D/X. That is 



0 E" 0 E = crE. 

Thus E .::_ Im crE. Also, let z be the inverse 

image of x under crE "• That is, the diagram 

is a pullback. Then znA = zn E = 0 and X < Z so by 

the maximality of X we can assume Z = X. But then 

·Im crEnx = 0 since Im crE" = lm crE. This implies E is 

essential in Im crE: If there is Y < I .m crE 

xn y = 0 so (X G Y) .::. D 

such that 

and YnE = o then 

(X 0 Y)nA = 0 contradicting the maximality of X, 

unless Y = O. 

Therefore E 2 Im "OE and A is essential in 

Im crE' and hence, by the maximality of E, E = Im crE. 

(That is crE and im CfE represent the sam~ subobject). 

crE coim aF. 
Now E~->D~>D/X '>Im crE = E is an automorphism, 

so E is a summand of D by Lemma 1.5. Hence E is 

injective. 

We have therefore found E, an in;ective which 

is a maximal essential extension of A in D. That is, 

E is the injective hull of A in D. 

14 



15 

We note at this point that any two injective hulls 

of an object are isomorphic. 

Lemma 1.10. ( [lo) , Lemma 1 ) : Let A =0 A., 
I 1 

and X < A. Then X is essential in A . if and only if 

is essential in 

Proof: That the 

A. 
1 

for all 

condition 

i 6 I. 

is necessary is trivial. 

To prove its sufficiency we assume that xnAi is essential 

in A. for all iE I. Let B < A, B :f o. Then, by 
1 -

Lemma 1.6 there is a finite J~ I such that 

Hence, we need only show that if B <Cf('!\.., 
- 1 

. ' 

J finite, then Anx :f o. But then we need only consider 

the case !JI = 2, for the others will follow inductively. 

Thus we may state what we must prove as follows: 

Let A' =Al 8 A2 , B <A' (B :f O) with X' 2_ A', X'nAi 

essential in A. for i = 1, 2. Then we want to show that 
J. 

Let cr 1: .7\1 +A I and cr 2 : A +A' 
2 be the injections 

and let '!Tl' 'IT 2 be the corresponding projections. If 

'IT 1 crB = 0 then B < A2 so Bnx· :; 0. Hence assume 

nlcrB t- o. Then Im 'TT 1aBnx't o. 

Let B' be the inverse image of A1n x' under 
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A nx• 

/ 

1 
"" i. t' . ~n1ec ion 

B' Al 

~B/,~B 
is a pullback. B' ':/ O since 7TlcrB ':/ O. 

If 7T2crB' = 0, then B' 2. Al so 0 -I B'nx·~ Bnx·. 

Hence we assume 7T2crB' ':/ 0 and we let B II be the inverse 

image of A2nx· under 7T2crB'. That is 

is a pullback. Then 7T 2°B" ':/ 0 • 

Hence crB" -F o and crB" factors over ax, , since 

aB" factors over A1n X' and A2n X' • Therefore Bnx· -F o. I 



Chapter 2 

A Generalization of the Kr ull-Schmidt-Azumaya Theorem 

§1. Local Endomorphism Ri ngs and Idempotents 

In this chapter we will prove a generalization of 

the classical Krull-Schmidt-Azumaya Theorem for an arbitrary 

Grothendieck category. We will examine representations of 

an object as essential extensions of direct sums of its 

summands, and determine their uniqueness properties. Speci-

fically we show that if Cl> G) I .m l . 

IUI' 1 

and c l> (£) I m K • 

JLJ,T' J 

where {l i € endo (C) : iE I U I'} and {K • E endo (C): j E JLJJ'} 
) 

are sets of orthogonal idempotents, Im t. and 
1 

Im K. 
J 

have local endomorphism rings for iEI, jEJ and 

Im t i, Im K j have no summands with local endomorphism ring 

for i E I ' , j E-J' , then ©I m \ . = 
I 1 

(±) 
J 

Im K. and the 
J 

summands of these two direct sums are pairwise isomorphic. 

This easily seen to be a generalization of the 

usual Krull-Schmidt-Azumaya Theorem for Grothendieck cate

gories as in [8] (p. 193-195) where only direct sum decomposi-

tions (and not essential extensions of direct sums) are 

considered, and where all summands have local endomorphism 

- 17 -
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rings. Further, this result contains results of Conlon [2], 

and S. Elliger ( [ 4] ,Satz 6 .1) ; the former allowing summands 

other than those with local endomorphism ring, the latter 

considering decompositions as essential extensions of 

direct sums of summands (arising from sets of orthogonal 

idempotents in the endomorphism ring) . In both these 

papers,the theorems are stated for decomposition of R

modules, however their extension to more general Grothendieck 

categories is quite elementary. Both Elliger and R. B. 

Warfield ([lo] , p. 264-272) have also considered the case 

where all the objects involved are injective and have 

derived some even stronger uniqueness oroperties in this 

case. These we will examine in Chapter 4. 

We first note that the endomornhisms of an object 

in a Grothendieck category form a unitary ring, where the 

addition is defined by the additive structure of the mor

phisms, and the multiplication is given by the composition 

of morphisms. 

Definition 2.1: A unitary ring is called local 

if the set of non-units is additively closed. It is easy 

to check that this is equivalent to saying that the ring 

has a unique maximal left ideal (which is also a unique 

maximal right ideal). 
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We see then that if endo (A) is a local ring, 

an automorphism of A can never be the sum of non-automorphi s ms. 

Proposition 2.2: If A is an object with endo (A) 

local, then A is direct sum indecomposible. 

Proof: Assume endo (A) is local and 

A= A1 G A2 with A1 , A2 "I- O. Let cr1 : A1-+A, cr 2 : A2-+A 

be the injections and rr 1 : A-+A1 and rr 2 : A-+A2 be the pro

jections. Then rr2 o1 !Tl = 0 and 'TTl cr2 ir2 = 0 so o1 !Tl 

and o
2 

'TT
2 

are non-uni ts in endo (A) • But lA = o
1 

'!il + o2 ir2 , 

a unit. This is a contradiction, s ince endo (A) is local, so 

either A - O or A2 = O • ~ 1 -

Lemma 2.3. ( [2] , Lemma 2): Let C = A Q) B where 

endo (A) is a local ring. Let '!TA: C-+A be the projection 

and, as usual, O'A the iniection. Then, for any ¢: C-+C, 

either ¢crA or (le - ¢)oA is a monomorphism, and, if we 

call this monomorphism O', C = Im O' 8 B. Further, 

rrAcr is an automorphism of A. 

a unit in endo (A). As endo (A) is local, we must have 



either 'ITA¢crA or irA(lc - ¢)crA is an automorphism of A. 

Hence, either ¢aA or (le ~ ¢)crA is a monomorphism. 

Call this monomorphism a. Then 'ITAcr is an automorphism 

of A and by Lemma 1.5 

C = Im a G) Ker 'IT A 

= Im a (£) B. I 

20 

Proposition 2.4: If t Eendo (A) is an idempotent 

then Im \ is a direct summand of A with projection 

'IT= coim t. Conversely, if B is a direct summand of A, 

then there is an idempotent tEendo (A) such that 

B = Im t and 'IT = coim t is the projection onto B. 

Proof: If t Eendo (A} is an idempotent, take 

'IT• coim t, a= im t so t = a'IT. Then 'lfcr = 1 since 

aira'IT = a'IT. It follows from Lemma 1.5 that 'IT is a pro-

jection onto Im t •• 
l. 

Conversely, if 'IT is a projection, with correspond- . 

ing injection a ' then 

Proposition 2.5-_: 

O'lf is an idempotent and 

If { t. E. endo (A) : i E I} 
]. 

Im (ail') = I m 

is 

1T. I 

a set of non-trivial orthogonal idempotents, then G) Im l. < A. 
I J. 

Proof: We can easily see that G Im ti -
I I 

Irn(i: \.) 
I I ]. 
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for each finite I'c:. I. (Thus G Im \ . < A for each 
I' 1 

finite I'~I.) Let L be the collection of all finite 

subsets of I and A = G) I.m \ . = I .m o: \ . ) 
J J 1 J 1 

for each 

JE L. Then {AJ: JE L} is an upwards directed set. It 

follows from the Grothendieck property that qi Im ti = LJ AJ < A. ~ 
_L 

Lemma 2.6. ( [2] , Lemma 4) : Let A be an object, 

{ \ .. € endo (A) : i E: I U I'} a set of orthogonal idempotents 
1 

such that endo (I.m t . ) 
1 

is local for iE I and I.m \ . 
1 

has 

no direct summands with local endomorphism ring for iE.. I'. 

Assume further that (f) I.m \,, is essential in A. Let 
I lJI I 1 

K € endo (A) be any idempotent such that endo (Im K) is 

local. Then there is at least one and at most finitely many 

i £I such that 

C1 = im K and 

Proof: 

Im K nee 
I UI' 

p\ • (1 
1 

is an automorphism of Im K , where 

p = coim K. For any such \ . , Im \ . K = I .m \ .. 
1 1 1 

Since © Im t . is essential in A, 
ILJI' 1 

Im t • ) 'I" o. Hence, by Lemma 1.6 there is 
1 

a finite J~I and as finite Lr•C I' such that 

Irn Kn( E) Im\.) 'I" 0. 
JUJ' i 

If 

i 0E JUJ'. 

cr • : rm Kn< G 
Lr LJJ' 

is to be an automorphism, then necessarily 

were not in JLJJ', letting 

Im \ . } -+A 
1 

he the injection, then 
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But a' ~ o. Also a' factors over a. Hence p\. a 1o is 

not an automorphism of Im K. It follows that if P\iO' 

is an automorphism then i(; JUJ' and hence there are at 

most finitely many ieI U I' such that p.\. (J 
1 

is an automorphism 

of Im K. 

Let t = r \ .. Since Im K is a summand of 
JUJ' 1 

A, and endo (Im K) is local, by Lemma 2.3 either 

\a or (1 -A \) O' is a monomorphism. Now, again with 

K. n CB Im \.->A the injection, K(J t = (J' and 
JUJ' 1 

a' : I.m 

\ (J' = (J' • If (1 -A 
\) (J were monomorphic, then (1 -A 

would also be monomorphic~ but 

(lA - \)a' =a' - \a' 

= o. 

Therefore \O' is monomorphic. 

\ ) Q' I 

It now follows by Lemma 2.3 that p\a is an auto-

morphism of Im K. But then P\ a = r (p\ .a> 
JU J' 1 

a unit, 

and since endo (Im K) is local, there is some i 0 EJLJJ' 

such that is an automorphism of Im K. Hence, by 

Lemma 1.3 Im \ . K is a direct summand of Im \ . 
10 10 

Now, because 

is a monomorphism, so 

is an automorphism, \. a: Im K~A 
10 

cr ~ Im K. Thus endo (Im \ . cr) 
10 
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. 
is local. But we have just shown that Im l • <1 is a 

10 
direct summand of Im l,. • Hence we reject the 

10 

io€ J' and obtain Im l • K = Im \ . for some 
10 10 

case that 

i 0c r. U 
It should be reiterated that the above lemma tells 

us that any summand of A with local endomorphism ring 

is isomorphic to one of the summands in the given represen-

tation. 



§2. A Krull-Schrnidt-Azumaya Theorem 

Definition 2.7: Let A [> (±) I.m t . where 
I LJI' 1 

{\ . E endo (A): i E I Ur'} is a . set of orthogonal idempotents 
1 

such that endo (Im t i) is local for i E I and Im t . 
1 

has no summands with local endomorphism ring for i€ I'. 

Then we call ('±) Im t • a Krull-Schmidt decomposition 
IU I I 1 

of A, and write A= EA(ti: I, I'). 

This definition is somewhat more general than the 

definition of a Krull-Schmidt decomposition in [2]. This 

is also a generalization of what is called in [4] the inter-

direct sum of direct summands. Since the decomposition is 

defined relative to A it seems necessary to include A 

in the notation. Further, it is important to distinguish 

I and I'. For these reasons, the notation EA(ti: I, I'), 

though cumbersome, carries the required information. 

The following Lemma and Theorem are generalizations 

of a Lemma and Theorem of Conlon C(2), p. 111-112), and 

we follow generally his methods of proof. 
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Lemma 2.8: Let 

A = EA (t i: I, I I) 

= EA (K j: J, JI) 

and let J 
0
c ,J be finite. Then there exists r

0
c:. I, 

Im'\. 
1 

(£) Im (lA - 1: K.) = A. 
Jo J 

Proof: Let 'lfi' p, be the projection~ arising 

from '\ . and K.. respectively (i €I U I', j <;: J UJ') 
1 J 

and let be the corresponding injections. Assume 

J 0 = {l, 2, ••. , n} for notational convenience. 

Applyinq Lemma 2.6 for Im Kl' we can find 

i 1 EI (say '\ . = '\ 1) such that pl\ 1°i is an automor-
11 

phism of Im Kl' and such that Im '\ lK 1 = I.m t l" 

It follows that t> 1 cr1 : I.m '\ 1 -+r m K 1 is an isomor

phism: It is clearly epimorphic. To prove it is a mono-

morphism, assume that for some ¢, p1 cr1¢ = O. Then 

where 
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is a pullback. But Im ~1 =Im 11 =Im t1 K1 so, taking 

cf>", $" such that 

26 

is a pullback, we obtain w is epimorphic (since ~ 1 Kl is). 

Thus we have 

But p1 \ cri 
~1<P'w = o, 

~ K <f>" 1 1 and hence 

is an automorphism so 

which implies ~ cf>' = 0 1 

P1¢" = O. Therefore 

since $ is epimorphic. 

Hence cf> = ~<P' = O. Thus is monomorPhic and hence 

isomorphic. 

It now follows by Lemma 1.4 that 

Im \ G 
n n 

( 0 Im K. ) G Im ( 1 A - r fl;. ) = A. 
j=2 J j•l J 

We proceed inductively. Suppose 



27 

Let 

p' k be the projection onto Im ~k in this decomposition. 

Then, by Lemma 2.6 there is a ik€. I (say \ . = \k) such 
1k 

that ' t ' pk kO'k is an automorphism of Im Kk and such that 

pk ti= O for i = 1, 2, .•• , k - 1, so 

k¢Io,k-l. Also pkcrk: Im tk-+Im t<:k is an isomorphism, so, 

k n n 
again by Lemma 1.4 we obtain 0 Im \. . © { (+) Im t<: • ) 0 Im ( lA- L K • ) =A 

i=l 1 i~+l J j=l J 

The result follows bv induction. B 
Theorem 2.9: Let 

A = EA (ti : I , I ' ) 

let B be any object such that endo (B) is local and 

let IB ={if.I: Im ti= B}, ,JB = {jE.,J: Im Kj = B}. Then 

IIBI = IJBI. 

Proof: If JB is finite, then by Lemma 2.8 

IJBI < I IB I • Assume JB - is infinite. Then, by Lemma 2.8 

IB is necessarily infinite. 

Factor t . and K. into injections . O'. , O' ~ and 1 1 1 J 



projections ~., p. for 
l. J 

j 0E JB we obtain i 0€ I such that p. \ . cr ! 
10 1 0 Jo 

28 

Given 

is an 

automorphism of I.m K. and such that Im \ . K. = Im \ .• 
Jo 1 0 Jo 1 0 

Also, as in the proof of the previous lermna, it follows 

that p. cr. : Im\. +Imp. is an isomorphism. Thus 
Jo 1 0 1 0 Jo 

i 0£ IB. Hence, given an element of JB we have established 

a process to find a corresponding element of IB. 

But i 0E IB can be generated from at most finitely 

many j 0 €JB in the above fashion, since if ; 0 yields i 0 

then p. \. cr! is an automorphism, 
1 o 1 0 Jo 

so p. \, (1~ p. C1. 

p. (J. 

Jo 1 0 
is an isomorphism. Hence 

an isomorphism 

Jo 1 0 Jo Jo 1 0 
is an isomorphism (since \, =a. ~. 

1 o 1 0 1 0 
and 

K. =C1! p. ). 
Jo Jo Jo 

Thus ~i K. C1. is an isornorohism. 
o 1 o 1 0 

But, 

by Lermna 2.6, for this i 0 there can be only finitely many 

such j 0 which make an isomorphism. This means 

that each i 0E I can be produced by means of our given pro

cedure, from only finitely many ; 0E J. 

We have therefore shown that for each jE JB we can 

find i € IB , and that each i E IB can be produced by only 

finitely many j E JB in this way. Since JB was assumed 

infinite, this implies IJBl2 IIBI. We have already seen 

that this inequality holds in the finite case. By symmetry, 

it follows that lrBI = IJBI. I 
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Theorem 2.10: If 

A = EA ( \ i: I, I I ) 

then there is a set bijection f: I~J such that 

and hence G Im t. ~©Im ~ .. 
I 1 J 1 

Proof: By Theorem 2.9 we obtain a set bijection 

of the indices of each isotype of summands. These bijections 

combine to give a bijection f: I~J which yields the 

required result. I 
We notice that if A = © A. = 8 B . where 

I 1 J J 

endo (Ai) and 

if l. (iEI) 
1 

potents, then 

endo (B.) are local for i € I, j E ,J and 
J 

and Kj (j E ~T) are the corresponding idem-

and Theorem 2.10 for these decompositions yields the · 

classical Krull-Schmidt-Azumaya Theorem. 

Proposition 2.11: Let 

A = EA ( \ i: I, I I ) 
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such that I is finite (and hence J is finite). Then there 

are idempotents t ,K E endo (A) such that 

A = CV Im ti © Im t 
I 

-, 0 
J 

Im K. G) 
J 

Im K 

Im \ l> G) Im t • , Im K I> © Im K • , Im \ ~ Im K and Im \ , 
I' 1. JI :i 

Im K have no direct summands with local endomorohism ring. 

Proof: 

so A = 0 · rm \ . 
I 1. 

since, if x < Im 

X n G) Im \ = 0 
I ur I i 

Put t = 1 - L t. I K 
A 1. 

I 

G Im \ = G Im K, G 
J J 

\ I with xn©rm \ . = 
I I 

1. 

so- x = o. Similarly 

= 1 - L K • 
A J ~ 

Im K. Im \ 1>G) 
I' 

0 then 

Im K I> e Im K •• 
J' J 

Further, Im t (and Im K) can have no direct 

summands with local endomorphism ring: Assume there is an 

idempotent \ I in en do (A) such that 

summand of Im \ , and en do ( Im \ I ) is 

Lemma 2.6 there is an iEI such that 

contradicting that Im 1 ' C:. Im \ . 

Thus 

A = G) Im \ i G Im \ 
I 

= G) Im K • 0 Im K 
J J 

Im \ I is a direct 

local. Then, by 

Im \ . \ ' = Im \ . 
1. 1. 

Im \ . 
1. 



are Krull-Schmidt decompositions of A, and we can apply 

Lemma 2.8 to obtain A= G Im K, e Im \. Hence 
J 1 
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Im l ~ Cok cr ~ !m K where cr:@ 
J 

Im K,-+A 
J 

is the injection. ft 

Then 

and 

Pronosition 2.12. ( [2] , Proposition 12 ): Let 

G Im '·n© 
I 1 J' 

Im K, 
1 = 0 

J 

Proof: As usual we let 

Im K.n0 I m ' · 
1 I I 1 

cr., cr~ 
1 ) 

be the injections 

the projections arisina. from \. 
1 

and K, 
J 

respectively for i€ILJI', jEJLJ:r'. Consider . any iEI, 

let J I {' ' } f J' 
0 = J l' • • • ' 1n ;::: and let K' = L K,. 

J J 
0 

Then 

by Lemma 2.3, either K'cri or (lA - K')cri is a monomorphism. 

But K'cr. cannot be a monomorphism, for if it were then 
1 

Im K' cr. = Im K' \, would be a summand of lm K' by Lemma 1. 4, 
1 1 

a contradiction since Im K' cr. ';;t Im \, has local endomorphism 
1 1 

ring. 

iEI 

Hence ( lA - L K • ) O' • 
J' J 1 

0 

and all finite J 'CJ' o- . 

is a monomorphism for all 

Also by Lemma 2.3 we obtain 



that we can substitute Im(lA - K' ) cr. for Im \ . 
io io 

G Im \ i. 
I 

Assume G Im \.ne Im K, ~ o. Then there 
I 1 J' J 

a finite ,J0 c J' and a finite r 0c:;r such that 

B =@ 
I . 

0 

~ o. 

Im K. 
J 

Then for K' = lA - E K. , and for crB: B+A and 
J

I J . 
\ 0 

Q" I • B+G) Im \ . monomorphisms we have (lA - K 1 
) 0" B' 

IO 
1 = B 
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in 

is 

o. 

But (lA - K' ) cr · is monomorphic for i EI, so (1 - K 1 
) 0" 

l. A 

is monomorphic where 

Then 

Im 1. +A 
l. 

is the injection. 

Q = (1 - K 1 ) 0" 
A B 

which implies cr' = o. B Hence CV Im \ . n G Im K • = 0. 
I l. J' J 

G Im K • n G Im \ . = 0 
J J I' l. 

by $Wnrnetry. I 
This Proposition, together with Theorem 2.10, yields 

the Krull-Schrnidt-Azumaya Theorem as it is found in [1]. 



That is, if A = (±) A., endo (Ai) local (iE I) 
I l. 

and 

A = e B., B. indecomposible Ci E J) , then these two 
J J J 

decom?ositions of A are isomorphic. 
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Chapter 3 

The Exchanqe Property 

§1. Some Examples and Basic Notions 

In this chapter, we will follow the results of 

R. B. Warfield ( [10] , § 3, p. 272-276) , adding a slight 

generalization. Warfield was, in turn, applying certain 

proofs of P. Crawley and B. J6nsson [3] to the kind of 

categories that we are dealing with. We define a class 

of objects in a Grothendieck category which have a certain 

property, the exchange property; we show that this class 

is sufficiently large to be of interest (containing for 

example injective objects and objects with local endomor

phism ring) ~ and we prove some theorems concerning the 

uniqueness of certain direct sums with such objects as 

summands. 

Definition 3.1: An object A in a Grothendieck 

category has the exchange property if, given any 

B = A @ A' 

= G) B. 
I i 

- 34 -
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there exist B! < B. 
1 1 

for i EI ·such that B = A {±JC @ B ! ) • 
I 1 

We say that A has the finite exchange property if this 

holds whenever the index set I is finite. 

We note that the exchange property is preserved 

by isomorphism. Also, if A has the exchange property 

and 

then there exist 

such that B = A 

and A~<±) B~'. 
I i 

B =A G) A' 

B~' < B. 
1 1 

as well as B!<B. (iEI) 
]. - 1 

C(f) B!), B. 
I 1 1 

= Bj_ G Bi (i E'. I) 

This follows from Lemma 1.3. 

Lemma 3.2. ([3], Lemma 5.1): If an indecomposable 

object A has the finite exchange property, then it has 

the exchange property. 

Proof: Suppose A ~ 0 has the finite exchange 

property, and suppose 

B = A (t} A' 

= 8 B. • 
r· 1 

By LeIT\TI\a 1.6, there is a finite IOCI such that 

An 8 B. 'r4 O. Let x = © R.' so B = G B. © x. 
IO 

1 I-I0 
1 

IO 
1 



We can now apply the finite exchange property for 

A to obtain Bf., B'.' < B. 
l. - l. 

for iE: IO and x' , X" < x 

such that B = A ©<0 Bi_> G)x•, B. = B! e B~' for 
IO 

l. l. l. 

iE,I0 , x = X' <!), X"' and A~ G) B" © x". ~ . 
Io 

l. 

But A is indecomposable, so only one of these 

summands can be non-zero. If we assume B" - 0 i - for all 

i E. I 0 we obtain a contradiction, for in this case 
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B! = B. 
l. 1 

for and hence An(±) B. = An G) B! = o, 
I 1 I 1 

0 0 

contrary to our definition of IO. Hence X" = o, X' = x 

and 
B = A 0 <G B ! ) © x 

IO 
l. 

= A © ( G) B!) © { e B.). 
I 1 I-I 1 

0 0 

Thus A has the exchange property. I 
This lemma enables us to show that any object 

with local endomorphism ring has the exchange property. 

Proposition 3.3: C[9], Proposition 1): An indecom

posable object has the exchange property if and only if it 

has local rinq of endomorphisms. 

Proof: {a) Assume endo(A) is local. Then 

A is indecomposable by Proposition 2.2. We need only 

show that A has the finite exchange property, and that 



it ha~; the exchange :property will follow by Lemma 3. 2. 

Suppose 

B =A G A' 

= 0 B. 
I 1 

where I is finite. Let 'IT • : 1 

1r l>.: B-+-A be the projections and 

aA: A-+B be the injections. 

Now lA = r 'ITAOi'ITiO'A. 
I 

B-+B, (i EI) and '1 

a.: B.-+B (iEI) 
1 1 

But endo(A) is 

so there is an i 0 E I such that '!TAO. 'JT, crA is 
10 10 

and 

local, 

an auto-

37 

morphism of A. Then, by Lemma 1.5, B. = A G Ker 'ITAO. 
10 10 

with injection 

with injection 

'l'ri vially 

and projection 

Therefore 

and projection 

B-+A. 

so by Lemma 1.4, 

B.) with injection 
1 

Thus A has the finite 

exchange property, and by Lemma 3.2 A has the exchange 

property. 



(b) Suppose A is indecomposable and endo(A) 

is not local. Then we will show that A does not have 

the exchange property. 

As endo(A) is not local, there exist non-units 

a, BE endo (A) such that lA = a - e. Let B =A G A 

with injections 01 and 0 2 and projections '!fl and 

'IT 2 • We embed A in B in two ways: by 

0 = (lA' lA) = 01 + 02 and by n = (a, B) = o1a + o 2B. 

It is easy to see that o is monomorphic, and n is 

monomorphic since, if Co1a + o2B)¢ = 0 then a¢ = 0 = B¢ 

so ¢ = (a - 8)¢ = O. 

We will show B = Im n 0 Im 0 (i.e. B = A G A 

with injections n and 0) • Let '!To = '!Tl - a ('TT 1 - 'If 2) • 

38 

(We note that since 'If 1 - 'IT = (a - B) ('lfl - 'Tl' 2), therefore 2 

'IT -1 

Also let 'ITn = 'lfl - 'IT2· 

Then o;r 0 + nTrn = [<cr1 + o2> ('11'1 - a ('!Tl - '11' 2 ) >] 

+ [< o 1 a + o 2 B ) C 'IT 1 - Tr 2 ) ] 

= [011T1 + 02'IT1 - 01a"11'1 

- 0 2a'lfl + 01a'lf 2 + 0 2a'IT2] 



Also 

and 

2 = a - a + aB 

+ [a1n~l + a2B~1 - aln~2 

- a2B~2] 

= n(lA - (a - B)) 

= 0 

= 0 
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Therefore, by Proposition 1.2, B = Im o (±)Im n. 

(B = A @A with injections o and n) • 

We will now assume that A has the exchange 

40 

property and obtain a contradiction. If A has the exchange 

property, then there exist 

such that B = Im n 0 Al 

with injections 

Ai, A" 2 < A where A = Al 

A /:::1 A' - 1 G A2· But· A is 

Al 

0 

0 

< Im 1T 1 and A2 ~ Im ir 2 

A2 • That is B = A 

and cr A
2

: A:f._B 

Hence we can find 

Ai = A2 G A' 2 and 

G Al 

where 

indecomposable, so either 

0 

A' 1 = 0 or A' 2 = o. Thus B ::: Im n G Al or B = Im n {±)A2. 

In the first case, bv Lemma 1.4, ir 2n is an isomorphism so 

B is an automorphism, a contradiction. Similarly we obtain 

a contradiction in the second case. 

Thus A cannot have the exchanqe property and our 

result is proved. a 
We can now show that A = G) A. has no summands 

I 1 

with local endomorphism ring if and only if A. 
1 

has none 

for all i EI. The necessity of this condition is obvious. 

To show the sufficiency we note that if A has a summand 

B, endo(B) local, then by the exchange property B ;;t © A! 
I 

1 

for some A! < A. (i € I). 
1 1 

But then B ~A! for some 
10 

i 0 e I since B is indecomposable. Therefore B = o. 

A2 
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Proposition 3.3 tells us that having the exchange 

property is a generalization of having local endomorphism 

ring. We will now show that another large class of objects, 

namely injectives, have the exchange prooerty. From this 

and Proposition 3.3 we see that any indecomposable injective 

has a local ring of endomorphisms. 

Proposition 3.4. ([10], Lerruna 2): An injective 

object has the exchange property. 

Proof: Let D be an injective and suppose 

We must construct 

A = D {±) ( © A!)• 
I l. 

A= D (±) X 

= G) A •• 
I l. 

A! < A. (iE: I) 
l. l. 

such that 

Consider R < A maximal with respect to 

B = G (BnAi) and nnn = o. We can find such a B, 
I 

up to isomorphism, by Zorn's Lerruna (ap?lied to the partially 

ordered set of subobjects.) 

Then we have A/B = G 
I 

\) = cok OBA. Since BnD = o, 

is a monomorphism: If 
"

0 nA<f> = 
uniquely over Ker \) = B. That 

(Ai/ (BnAi)) • 

it follows that 

0 then 0 oA <P 

is crDA cp = crBA tjJ 

r .. et 

vcrDA 

factors 

for some t)J. 



But then ~ = 0 since n()B = O. 

Hence Im vcrDA is injective. Also vcrDA is 

an essential monomorphism. To show this, by Lemma 1.10 

we need only show that Im vcr0 A{)CAi/CB(')Ai)) is essen-

tial in for all i EI. Say A.= A./(BnA.) 
1 1 1 

for iE I and assume there is an "A: < A. (A: :/ O) 
10 - 1o 1o 

for some i 0E I such that A! n Im vcrDA = o. Let 
10 

A! be such that 
10 

is a pullback.where the morphism is coim vcr. • 
10 

Then A! :/ 0 since A! ~ 0 and the canonical morphism 
10 10 

is epimorphic. Also and 

where the associated monomorphism is not an isomorphism 

since Then B' = (+) <BnA., G 
I-Ti } 1 

0 

contradicts the maximality of B. 

Thus vcr0 A is an essential monomorphism and 

Im vcr
0

A is injective. Hence 

vcr0 A is an isomorphism, so 

phism and hence 

Im vaDA = A/B. That is 

-1 vcrDA(vcr0 A) is an isomor-

42 
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A Im -1 G) Ker " = O'DA ("O'DA) 

= D G B 

= D e < © (BnA. » . 
I l. 

Therefore D has the exchange property. I 
We now prove some elementary properties of objects · 

with the exchange property. 

Lemma 3.5: Assume 

= G) B. @ X 
I l. . 

where A0 has the exchange property. Then there exist 

Bi' < B. 
- l. 

where 

for iE. I such that A = A
0 

(±} ( {±) B ! ) G) X. 
I l. 

Proof: Consider 

A/X = Im VO'A G Im VO'A 
0 1 

B.-+A 
]. 

= G) Im VO'. 
I l. 

is the injection. 

A/X = AO G Ai 

= 0 B. 
I 1 

(That is 

with injections \)O' A • VO'A and VO', ' for i EI). For 
0 1 l. 



the sake of notation let us say 

-and B. = 
1 

Im \)CJ • 
1 

for i E: I. 

Now 'A0 has the exchange property, so there 

exist 

Let B! 
1 

B! < B. (iE I) 
1 - 1 

such that 

be defined, for iEI 

A/x = "A0 G G) 
I 

such that 

B!. 
1 

is a pullback where the. morphism B.+B. 
1 1 

is the canonical 

morphism and the morphism B!+B. 
1 1 

the embedding. 

show that A = A0 G) <G Bj_> G x. 
I 

Let 

OB': B 1+A. 

BI = Ao e ( © B ! ) 
I 1 

Then A/X =Im vcrB,. 

A= B' e X 

with injection 

Also n•nx = 0 

= Ao e ( © Bj_> G x. 
I 

We will 

so 
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Lemma 3. 6. ( [3] , Theorem 3 .10) : Let A = A0 E) A1 • 

Then A has the exchange property if and only if A
0 

and A1 have the exchange property. 

Proof: (a) Assume A0 and A
1 

have the exchanqe 

property and suppose 



B =A e X 

= G B •• 
I 1 

By the exchange property for we can find B! < B. 
1 - 1 

for iE I such that ((±> B!). But we know 
I 1 

so by the exchange property for 

and Lemma 3.5 there exist B~' < B! 
1 1 

such that 

B = Ao G Al G < <p Bi> 

= A 8 ( G B'.'). 
I 1 

Hence A has the exchange property. 

(b) Assume A has the exchange property. Let 

B = A0 G x = ~ Bi and consider 

=A 0 X 

= Al G) CG) B.) • 
I 1 

We apply the exchange property for A to obtain 

B! < B. (i E I) such that c = A G A' G<G l. 1 1 
I 

But, noting that our monomorphism of A into c 

unchanqed we see A(}Ai = 
Thus C = A G ( 8 B ! ) • 

I 1 

A' 1 so necessarily 

A' 
1 ~Al' 

B ! ) • 
1 

remains 
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But also C = A G) x. If 'ITX: C+X is the 

projection and a': Q 
I 

B!+C 
1 

the injection, then by 

Lemma 1.4 'IT'cr' x is an isomorphism. But a' = a a BC where 

a: G) B!-+B and 
I 1 

crBC: B+C are injections: and 

where ... • C+B "B. and are the projec-

tions. Therefore 'IT X 'IT Ba BC a = 'ITXO' is an isomorphism and 

by Lemma 1.4 B = AO 0 <© B ! ) • 
I 1 

D exchange prooerty. 

Thus A0 has the 

Corollary 3.7. If endo(A) is a semi-perfect 

ring then A has the exchanqe property. 

Proof: One characterization of a semi-perfect 

ring is that it contains a finite set of local orthoqonal 
k 

idempotents {ii: i = 1, 2, ••• ,k} such that 1 = r 1 •• 
i=l 1 

k 
But this means that A= W1 Im \ . and endo(Irn \.) is 

1 1 

local for i €I. Hence Im l. has the exchange property 
1 

I and thus so does A, by Le nun a 3.6. 

We have now shown that objects with the exchange 

property form a large class of obiects in a Grothendieck 

category, includinq all objects with local endomorphism 

ring, all iniectives and all finite direct sums of these. 
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§2. Un,iqueness of Certain Direct Sum Decomnositions 

We will now prove a theorem, essentially due to 

Crawley and Jonsson [3] which illustrates the value of 

the exchange propertv with respect to uniqueness of 

direct sum decomnositions. The theorem of Crawley and 

J6nsson is strengthened sliqhtly here to allow summands 

in the decompositions other than those with the exchange 

property. Specifically, in addition to summands in our 

decomposition with the exchange property we allow a summand 

which has itself no summands with the exchange property. 

That we need only allow a single summand with this property, 

instead of many, in our statement of the following theorem 

stems from the followinq fact: A = Q A. has no summands 
I l. 

with the exchange property if and only if A. 
l. 

has none 

for al 1 i t I • (If A had a summand with the exchange 

property, say A', then A' is isomorphic to a direct 

sum of summands of the A. , i EI. But then each of these 
l. 

summands has the exchange property so some A. 
l. 

has a 

summand with the exchange property. The converse is trivial.) 

Theorem 3.8. ( [3], Theorem 4 • 2) : Let 
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A= G A. G x 
I 1 

= G) B. G Y, 
.r J 

where I and J are countable, A. and B. have the 
1 J 

exchanqe property for iE I and j ~.l and x and y 

have no direct summands with the exchange property. 

Then {±) A. ~ G) B. and these direct sums have isomor
I i J J 

phic refinements. 

Proof: Since I and J are countable we can 

consider them to be the set of natural numbers. That is 

00 

0 A = ~o A. x 
1 

00 

G = ~ B. Y. 
J 

Ao has the exchange property, so we can find 

BO ., B' < B.' (j = o, 1, 2, ••• ) 1 and y It Y" < y 
,J 0., j - J 

where B. = BO . © BO , (j = o, 1, ••• ) , y = Y' 0 Y"' J ,J ,J 
00 

<G B' .>G) Y' 
i=O 0,1 

and 

But then Y" is isomorphic to a summand of AO' so has 

the exchange property. Hence Y" = 0, Y' = y and 
00 00 

A= AO 0<0 BO . ) 0 y and AO ~0 BO .• 
i=O 

,, 
i=O ,J 

Now BO,O' being a summand of B0 , has the 
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exchange property so we can find, by Lemma 3.5, 

A. 0 , A! 0 < A. , ( i = 1, 2, ••• ) , such that 
1, 1, - 1 

A. 0 1, Q A! 0 1, 

A =Ao 0 Bc),o G (~l Aj_,o> G x and 
00 

BO,O 
';/ 

~l A. o· 1, 

(X will remain unchanqed under application of the exchange 

property for BO,O by the same argument we used for Y.) 

Again, has the exchange property so, con-
00 

sidering the decomposition <G Bb .) 8 Y, 
j=O ,J 

we can find· B1 ., B1
1 

• < B 0
1 

• (j = 1, 2, ••• ) with ,J ,J ,J 

Bl . G B' - B' 1 . - 0 . ,J , J , J 

such that A = AO 8 
00 

and Ai, 0 ~ © B1 .• 
j=l ,J 

(so 

BO 0 , 

B. = BO , G Bl . 0 Bi .) 
J ,J , J ,J 

00 

G Ai,o 0 <8 Bl .) 
j=l ,J 

Q)Y 

We continue inductively to obtain A. . , A! . < A. 
1,J 1,J 1 

for 0 ~ j < i and B .. , B! . < B. 
1,J 1,J J 

satisfying: 

and 

(1) A. 
1 

A •• 
1,J 

B .. 
1,1 

00 

0 

(3) A! . l ~ Q B .. 
1,1- j~ 1,J 

(4) B! . ~ 
JrJ 

00 

© 
i=j+l 

A. . • 1,1 

A! . l 1,1-

B ! . 
JrJ 

for 0 < i < j 

= A.' 1 
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We know so we can find summands 

AO . ~ AO with AO . ~ BO . (j = o, 1, ... ) such that 
,J 

00 
,] ,J 

Ao = Wo A 
0' j. Similarly, from (3) we can find summands 

A. • l.,J 
of A! . 1 l.,l.-

for a given i and for j > 0 such that 

A .• ~ B .. 
l.,J l.,J 

and 
00 

A! . l = G) A. . • 
1,1- • . l.,J 

J=l. 

this in (1) we obtain A. . • 
l. 'J 

If we substitute 

Similarly we find 

00 

B •. ~A. I 

l.,J l.,J 
for O < j < i with B. = G B .•• 

J i=O l.,J 
Hence 

we have found B .. 
l. 'J 

and 

such that A .. "'B .. , 
l.,J~ l.,J 

co 00 

A. 
l. 

A •• 
l.,J 

for i, j = 0, 1, 2, . .. 
00 

=0 
j=O 

A •• 
l.' J 

and B. . • 
l. 'J 

Thus G) A. ~ © B. and we have constructed the required 
• 0 l. . 0 J l.= J= 

isomorphic refinements. I 
Proposition 3.9: Let 

A = © A. G x 
I l. 

= G B. 0 y 
J J 

where I is finite, A.' B. have the exchange property 
l. J 

for i€ I, j E' J' and x and y have no direct summands 

with the exchange property. Then X ~ Y. 
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Proof: Since I is finite, G A. has the 
I 

1 

exchange property. Hence there exist B! < B. for jEJ 
J J 

such that A= © A. 0 <8 B ! ) G> Y. But then 
I 1 J J 

I x 
,., G B! G y G B! 0 and x ~ Y. = so = 

lT J J J 

A definite weakness of Theorem 3.8 is the countability 

restriction on the index set of the summands. This restric-

tion is difficult, if not impossible, to eliminate. However, 

it is possible to replace it by a countability restriction 

on each of the summands. The obvious choice is to require 

the summands to be countably generated, and to allow arbi-

trarily large indexing sets. This will work, but we can 

do somewhat better. 

Definition 3.10: An object A is small if, for 

any object B = G) B. with projections 
I 1 

(iE I), and for any morphism cf>: A-+B, 

'IT. : B-+B. , 
1 1 

then 'Jl',cp = 0 
1 

for all but finitely many iE I. A is countably small 

if 'IT i <!> = 0 for all but countably many i E I. 

Definition 3.11. A is a-small if there exist 

s. < A (i = o, 1, 2 ••• ) , so ~ sl < . . . , s. small for 
1 - 1 

all i = o, 1, 2 . . . and A = 
i90 

s .. 
1 

Proposition 3.12: If A is a-small then A is 



countably small. 

Proof: If A is cr-small then there exist small 

Si <A (i = O, 1, ••• ) where Si ~ si+l and A= 0 S .• 
i=O 1 

Assume B = Q B. and <P : A+C, and let if • : B+B. 
J J J J 

(j € J) be the projections. Then Im (;r . <f>) = 0 Im ( ;r . <P C1 • ) 
J i=O J l. 

where C1 • : 
l. 

S.+A 
l. 

is the injection. Now ;r,<f>a. ':/- 0 for 
J l. 

only finitely many jE J so 'lfj<f> ':/- 0 for only countably 

many j € J. Thus A I . countably small. l.S 

Obviously if A is finitely generated then A 

is small and if A is countably generated than A is 

a-small. Tom Head C[SJ, p. 235-237) gives an example of 

an R-module which is small but is not finitely (or even 

countably) generated. This is then also an example of an 

R-module which is a-small but not countably generated. 

Thus our concepts of small and cr-small (countably small) 

are proper generalizations of the concepts of finitely 

generated and countably generated. 

where 

Lemma 3.13. ( (6] , Theorem 1) : 

A. 
1 

is countably small CiE I) 

Let A= (±) A. 
I l. 

and suppose 

A = B @ X. Then B is a direct sum of countably small 

objects. 
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Proof: We will construct an ascending chain 

C. < A (j < M 
J 

for some ordinal M) such that 

c0 = 0, A = LJ C and such that the following properties 
j<M j 

are satisfied: 
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(1) If k < M is a limit ordinal then ck = u c .• 
'<k 1 J 

(2) Cj+l/Cj is countably small for 0 < j < M. 

(3) c. = G A. where I. C:. I for 0 < j < M. 
J I. 

]. J-
J 

and ( 4) c. = B. G x. where B. = c.nB and 
J J 1 J 1 

x. ::: c.nx for 0 < j < M. 
1 ) -

If we have constructed such C. (j < M) then we 
1 

can show inductively that B is a direct sum of countably 

small subobjects. B0 = 0 is countably small: assume 

B . is a direct sum of countably small objects for j < k. 
J 

If k is a limit ordinal then the result is clear by 

property (1). Hence assume k is not a limit ordinal. 

We know B. is a summand of B.+l since it is a summand 
J J 

of A. Similarly x. 
J 

there exist 

::: B. 8 
J 

B! < B.+l 
J - J 

B! G x. 
J J 

is a summand of 

and X! < X. l 
J J+ . 

0 X! 
J 

x ! . 
J 

Therefore 

such that 



54 

Hence B' G> X! <;! G A. ~ C '+l/C .• Thus B! is j 
J Ij+l-Ij 1 J J J 

countably small and Bj+l = B. 8 B! is a direct sum of 
J J 

countably small objects for all ; < k. In particular 

Bk is a direct sum of countably small objects. Therefore, 

by induction, B. is a direct sum of countably small 
J 

objects for all j < M. Hence B = LJ B. is a direct 
j<M J 

sum of countably small objects. 

We must therefore construct c. satisfying 
J 

(1) - (4) and the required result will follow. Now c0 = 0 

and we apply the following recursive proceedure, assuming 

we have already constructed c. 
J 

for i < k (k < M) : 

If k is a limit ordinal, let ck= LJc .. 
. j<k 1 

If k is not a limit ordinal, choose i 0¢ Ik-l" Let 

and CJB: B+A and the injections. Since 

is countably small, 'TT.CB 'TTBCJ. = O and 
1 1 f) 

""· cx""xa · 1 10 
= 0 for all but countably many i ES I. Let 

IB,l = {iE I: 

and let kil = 

I = {i€I: B,n 

'TfiO'B'TfBC1io ~ O} and IX,l = {iEI: 'TfiO'X'TfXO'io~ O} 

IB,llJrX,l" Recursively we let 

and 

IX,n = {iE I: 'TfiC1XTI"Xcrh ~ O, h Ekin-l} for each natural 

number n, and let kin= IB,nlJrx,n· Obviously kin is 



00 

is countable for all n. Let I I = u kin and k n=O 

Ik = IkUik-1" It is easy to see that G) A. is 
I I 

1 

k 

countably small, since I I 

k is countable. 

We now let A. 
1 

and this satisfies 

properties (1)-(4). (1)-(3) are trivial and (4) holds 

because ck = (ckn B) G cckn x> since 

we have the required result. 

{ i € I: 7T i crxk ':! o l G Ik • 

I 
. { i € I : 7T • cr B ':J 0} £ Ik and 

. 1 k 

Lemma 3.14. ( [10], Lemma 5): Let 

A = © A. 
I 1 

= e B. 
J J 

where A. and B. are countably small for iE I 
1 J 

and 

Thus 

jEJ. Then there exist partitions of I and of J into 

countable disjoint subsets I m and J m for m < M 

(M an ordinal) such that G A. ;;: G B. for all 
Im 

1 
J J 
m 

m < M. 

Proof: The result is obtained through transfinite 

induction. We first show that there exist countable 
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G A.= 0 
Io i Jo 

B. • 
J 

We take an arbitrary i 0E,.I, and for the sake of 

notation we will say Ao = A. • Let 1r.: A~A. (i €I) 
10 1 1 

be the projections and er i: Ai +A (i €I) 

and er'· B.+A (j€J') j. J the injections. Since A
0 

is countably 

small, pjcr 
0 

= O for all but coun·tably many 

J 0 , 0 = {jEJ': p.cr 0 ~ O} is countable. Now 
1 

is countably small since Jo,o is countable, 

(if C1 ' • o,o· B.+A 
J 

is the in;ection), 

iE J. That is 

Q IL 
\;v 1 

'1 o, o 
and so 

I 0 , 1 = {iEI: TricrO,O ~ O} is countable. Continuing 

inductively, if we have J' countable with O,n 

er' • (!) B.+A the injection, then we let O,n· J J 
O,n 

I 

I = {i€ I: 'IT. C10 ~ O}; O,n+l 1 ,n and if we have I O,n with 

injection O' 0 : © A.+A, we let Jo = { j €.J: p.cro ,n I 1 ,n J ,n 
O,n 

~ 

Obviously Io,n+l and J'O,n are countable for n = 0, 1, ••• 

co 

0 Now let IO =U I and Jo = Jo • IO and Jo 
n=l O,n n=O ,n 

are countable, and G A. = ~Bj since 
IO 

1 
0 

{jt:J': p.cr. ~ o, 
J 1 

i EI 0} = Jo and {iE'.I: Tl' • O' ! ~ O,j EJ0} = 
1 J 

We now make the following induction hypothesis: 

o}. 

IO. 
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Assume, for an ordinal k < M that for all h < k and for 

all m < h there exist countable I Cr and J C!J 
m m-

where the I (m < 
m 

h) and J (m < m h) are disjoint, 

such that Q <G A.) = (±) <© JL) • 
m<h Im 

l. m<h Jm 
J 

We want to show that there exist such Im and 

Jm for all m < k. If k is a limit ordinal then the 

result is trivial. Thus assume k is not a limit ordinal. 

Then k = h + 1 for some h, and we are to construct 

Ih and Jh countable, such that G <©A.) 
I 1 

=G <G B.) • 
J m<k m<k ,Tm m 

Let I' = I -u I and J'' = J -u J and choose h m<h m h m<h m 

ihE: Ih. By the same construction we used for i 0 we 

obtain countable IhSI and J"CJ h- such that 

0 A. = GJ B. • Let Ih = I' nr 11 and Jh = JhnJh. I II 
l. J" J h h 

h h 

Then G <CV A.) =G <0 B,) since 
m<k Im 

1 m<k Jm J 

{j E:J: p. C1. '# o, it u Im} = u Jm and 
J 1 m<k m<k 

{i €I: '11'.0! '# o, jE u J } = u I m· 1 J m<k m m<k 

If the ordinal M is chosen sufficiently large, 

the above induction will produce a partition of I into 

countable disjoint subsets Im (m<M), and hence a partition 

of J into countable disjoint subsets Jm (m < M)'. 



Now for a given k < M, the partitions have 

been constructed so that 

. and G <© Ai) = 0 
m<k Im m<k 

for all k < M. I 

8 
m<k+l 

<0 
Jm 

B.) • 
J 

A.)= {;) <0 
1 m¥+1 J m 

Hence A. 
1 

The preceeding lemma allows us to apply Theorem 

3.8 to the case where the summands of our decomposition 

B.) 
J 

B. 
J 
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are countably small and the index set is arbitrarily large, 

for we can consider countable isomorphic subsums. 

A= G 
I 

where 

and x 

Theorem 3.15. 

A. 
1 

where 

A 

A. 
1 

= 

= 

( [1 o] I Theorem 6) : Suppose 

is countably small, and also that 

© B. e x 
J J 

G) ck G y 
K 

B. I ck have the exchange property (j £JI k €..K) 
J 
and y have no direct summands with the exchange 

property. Then 8 B. 
J 

,.., (±) ck and these sums have 
J K 

isomorphic refinements. 

Proof: By Lemma 3.13 any direct sum decomposition 

of A refines to one with countably small summands, 

and by Lemma 3.6 any direct summand of an object with the 



exchange property has the exchange property. Thus 

A= G> BJ! G 
J' 

<G 
J" 

<GI 
K" 

x.) 
J 

where e B! is a refinement of (±) B,' Q C' k is 
J' J J J K' 

a refinement of @ Ck_, x = Q x. and y = G Yk, 
K J" J K" 

and such that each of the summands B ! ' ck, x. and yk 
J J 

is countably small, and B! and C' have the exchange 
J k 

property for '€. J' J and k€ K'. 

By Lemma 3.14 there exist partitions of J', K', 

J" and K" into countable disjoint subsets J' K' m' m' 

J" and K" respectively for m < M (for some ordinal m m 

M)' such that © B! 0 
J' J m 

( (±) X . ) ';f © Ck_ 0 ( 0 yk) • 
J" 1 K' K" 

m m m 

We can now apply Theorem 3.8 for each index m < M to 

obtain G 
T' 'm 

B! ~ 
J 0 

K' 
JT\ 

refinements. Thus G) 
J 

i$omorphic refinements. 

Lemma 3.16: If 

A. 
1 

a-small (i E I) , and 

a-small. 

C' 
k and these sums have isomorphic 

B. ~ 
J 

I 
A= 

if 

e 
I 

A= 

and there exist 

Ai' I countable and 

B G) x Then B is 
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Proof: Say I= {O, 1, 2, ••• }. A. is cr-small 
1 

for i = O, 1, 2 so there exist small s .. 
1,1 < A.' 

- 1 
00 

j = o, 1, 2 . . . , with S . . < S . . +l and A . = 1,J - 1,J 1 U s .. 
j=O 1,J 

k k" 
for each iE I. Let sk = G G s . . , <k = o, 

j=O i=O 1
' 1 

1, 2 ••• ). 

Then sk is small, and if ~B: A+B is the projection and 

crk_: Ck+A are the injections fork= o, 1, 2, ••• , then 

Im nacrk is small and 

B = Q Im nBcrk. Hence 
k=O 

Im nBcrk <Im nBak+l" 

B is cr-small. J 
Also 

Theorem 3.17. (Crawley, J6nsson,[10], Theorem 7): 

Let A = G) A. where Ai is a-small and has the 
I 1 

exchange property for i ~ I. Then any two direct sum 

decompositions of A have isomorphic refinerr.ents. 

Proof: A is a-small so A is countably small 

and by Theorem l.15 it suffices to prove that any direct 

summand of A is a direct sum of objects with the exchange 

property, (for then any decomposition can be refined to 

one whose summands have the exchange property.) 

Assume then that A = B © X and then we are to 

find ck Ck e K) 

B = G) Ck. 
K 

with the exchange property such that 

By Lemma 3.13 there exist and 

Xj (j E J') countably small such that 

Bj (j E. J) 

B = {£) B. 
J J 

and 

x = G xj. 
J'-

Thus we have A= GA. 
I 1 

( © XJ.) 
J' 



where each of the summands is countably small. Applying 

Lemma 3.14 we can partition I, J and J' into countable 

disjoint subsets I , J and J' respectively for m m m 

m < M (for some ordinal M), such that 

B. © <© 
J J' 

m 

x.) 
J 

for all m < M. Thus 
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we need only show that if B' is a summand of © 
I' 

A. 
l. 

= A' 

where I' is countable, then B' = Q Ck where Ck 
K 

(kc; K) has the exchange property. 

But in this case A' is cr-small, so by Lemma 

3.16 B' is cr-small. Hence there exist s. < B' 
1 -

(i = 0, 1, 2, ~ .. ) , s. small, s. < s. 1 and B' = 1 1 - 1+ 

00 

h!o 
Assume, without loss of generality, that so - o. We will 

recursively construct ck , direct summands of A' with 
n 

the exchange property such that s n ~e ck < B' for 

each natural number 
00 

then B' = 0 Ck 
k=O 

k:=O 

n. If we have such Ck (k = O, 

and we have the required result. 

1 ••• ) 

Let c0 = 0 and assume there exist Ck with the 

exchange property for k ~ n (n a natural number), such 

that is a summand of A' and such that 

n 
S < f+\ C < B'. 

n - k'-;;!a k 
Now has the exchange property 

s .. 
1 



since each ck does, so there exist A! < A. (i~ I I) 
1 1 

n 
such that A' = 8 ck G) 

k=O 
small, there is a finite 

<G 
I I 

A!). 
1 

I"S I I such 

Since sn+l 

that 

is 

A!) 
1 

and suppose A'= B' ~ X'. Then C has the exchange 

property so we can find B' B" _< B', X' X" < X' n' n n' n -

B~ (!) B~ = B' , x~ G) x~ = x' and A' = c © B~ 

Let Bn = B I n (C G x~) • 

with 

17\ X' 
~ n· 
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We see that 5n+l < BJ and 5n+l <S so 5n+l < Bn. 

n 
Also 0 Ck< B so B = 0. ck © cn+l for some 

k:=l . - n n k:=l 

cn+l < Bn. Now B' = B G B' so n n 

A' = B' Q X' 

= B G> B' © X' n n 

== cn+l 0 (~ Ck) B B' 
k=O n 

© x~ G X" n· 

But also A' = cG) B' 0 X' n n 

n 
<0 G = ©ck ® A!) G B' X' 

k=O I" 1 n n· 

Therefore cn+l 0 X" ~ 8 A .• Hence cn+l has the n I" 1 



exchange property. That is, we have constructed Cn+l 

with the required properties. 

By induction, therefore, B' is the direct sum 

of objects with the exchange property. Thus any direct 

sum decomposition of A refines to one with cr-small 

summands which have the exchange property. The result 

then follows from Theorem 3.15. I 
Corollary 3.18: If A=© 

I 
A. 

]. 
where endo (A.) 

]. 

is local and A. 
]. 

is countably generated, then any other 

direct sum decomposition of A refines to one isomorphic 

to the given decomoosition. 

Proof: This is a direct consequence of Theorem 

3.17. I 
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Chapter 4 

Decom~ositions of Iniectives 

§1. A Uniqueness Theorem 

In this chapter we will examine direct sum decom

positions of injectives in a Grothendieck category. As 

we have already seen, injectives have the exchange prop

erty and indecomposable injectives have local endomorphism 

ring. Hence, ·noting that any direct summand of an injective 

is injective, we see that the results of Chapters 2 and 3 

lend themselves naturally to the study of decompositions 

of injectives. By Theorem 2.10, any two direct sum decom

positions of an injective into indecomposables are iso

morphic, and by Theorem 3.8, any two countable direct 

sum decompositions of an injective have isomorphic refine

ments. Also, by Theorem 3.17, if an injective has a 

decomposition into countably generated summands, then any 

two direct sum decompositions have isomorphic refinements. 

However, when we are dealing with injectives these count

ability hypotheses can be removed. The following results 

are due to R. B. Warfield [10] • 
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Lemma 4.1: Let D be iniective, 

D = A © c = B © C' with AnB essential in A and 

. B. Then D B G c. in = 

Proof: As usual we let 'I!' A: D+A be the projec-

ti on and O' A: A+D and O'B: B+D the injections. Let 

x = AnB with injections 0 xA: X+A, O'XB: X+B and 

ax: X+D where O'BO'XB = O'X = O'A crXA • Then 

= O'XA" 

Now crXB is essential and 7TAaBcrXB = crXA' a monomorphisrn, 

so 7TAO'B is monornorphic. 

A~ B since both are injective hulls of X: 

say cp: B+A is an isomorphism. Then, since 7TAcrB is 

monomorphic and A is injective, ~ can be extended to 

~·: A+A so that ~ 1 7TAcrB = ~. But then 

Now crXA is essential and ¢'crxA = ¢crXB is monomorphic 

so ¢' is rnonomorphic. Also ¢' is epimorphic since ¢ 
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is. Hence ~· is an isomorphism. Therefore ~AcrB = (~')-l~ 
is an isomorphism so by Lenuna 1. 4, D = B © C. I 

Theorem 4.2. ( [10] , Theorem 1) : Let D be an 

injective object. Then any two direct sum decompositions 

of D have isomorphic refinements. 

Proof: Consider 

D = © A. 
i<N 1 

= 0 B 
j<M _; 

where M and N are ordinal numbers. (We well order 

the sununands in the direct sums to enable us to use trans-

finite induction) • We will construct c .. < D for 
1J -

j < M such that D = G 0 c .. , A. ~ 0 c .. and 
i<N j<M 1J 1 j<M 1] 

B. ::f (V C. . • These will be constructed recursively 
J i<N 11 

i 

with respect to the following conditions on n < N and 

m < N: For all i < n there exist A. < A. 

i < n, j < m there exist c .. 
1J 

(1) CV A. = 
i<n 1 <0 A. ) e <0 

i<n 1m 1<n 

1m 1 

such that: 

8 c .. ) 
j<m 1J 

(2) 8 B. n G) 0 C.. is essential in both 
j<m 1 i<n j<m 11 

<© B.)n(0 A.) . J . 1 1<m - 1<n 
and in GG 

i<n j<m 
c ... 

1J 

and for 

and 

< N, 



If we have these conditions satisfied for all 

n < N, m < M then by ( 1) n = G A.~· 0 ( Q G) c .. ) 
i<N L·i i<N j<M 1 1 

and by (2) Q G) C. . is essential in D, so 
i<N j<M 1 J 

and 

G 
i<n 

for all i < N and D = © © 
i<N j<M 

Further, by (1) for any n < N, 

A. 
1 = © AiM 0 ( 0 © C ·) 

i<n i<n i<M 1 

= .G 0 c .. 
i<n j<M 11 

c ... 
11 

0 A. = G 0 c .. so A ';!Qc. 
i<n+l 1 i<n+l j<M 1J n j<M nJ 

for all 

n < N. Also, for all m < M, <0 B.)n<e G C .. ) is 
i<m 1 i<N j<m 1 J 

essential in both ( © B.) n ( e A.) = G B. and in 
j <m J i <N 1 i <m 1 
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© G c ... 
• N . 1J 1< J<m ·· 

Hence, by Lemma 4.1, D = ® G c. ·©<0 B.). 
i<N j<m 1 J j~m J 

Similarly D = 0 © C .. 0 ( 0 B.) • 
i<N j<m+l 1 J j>m+l J ·-

Therefore 

B fl! 0 C. for all m < M. 
m i<N 1m 

Thus if C. . ( i < N, j < M) 
11 

and A .. (i < N, i 2 M) are constructed such that (1) 
1] 

and (2) are satisfied for all n < N and m < M we will 

have the required isomorphic refinements. 

We proceed inductively. The conditions hold 

trivially for n = O. 



(a) For n = 1, m = 1 we take c
010 

to be the 

injective hull of A0nB0 (which exists by Lemma 1.9). 

Then c
010 

is a direct summand of 

_ A0 , 1 < A0 such that A0 = A0 , 1 G 

Assume we have c. 0' J. , A. 1 
J. ' 

n < h < N for some h. If h is 

A
0 

so we define 

for i < n where 

a limit ordinal then 
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clearly 0 A. = GA. 1 G <8 c. o> • Since ascending 
i<h J. i<h J., J., i<h 

unions preserve essentiality by the Grothendieck property, 

(2) holds as well. If h is not a limit ordinal, then 

h = k + 1. Choose A. 
J. 

maximal with respect to: 

( i) Ck O n ( 0 A . ) = 0 and 
, i<k J. 

(ii) e C. 0nBo is essential in 8 c. o· 
i<k 

1
' i<k 1

' 

ck,O exists (up to isomorphism), by Zorn's Lemma. 

m Ci,Of)B0 is essential in ill_ Ai()B0 since, 

for any X ::_~ Ain B0 with X ni~ Ci, on B0 = 0, then 

x n < G c. o> = o 
i<k J., 

by (ii). This means that c I = x f.j:\ ck 0 k,O \...'../ , 

has properties (i) and (ii), contradicting the maximality 

of so 

essentiality of 

x = o. 

0k J.< 

has property (i) by the 

in © A.() B and property 
i<k J. 
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(ii) since is essential in Q c. oGx ~k 1, 1< 

by Lemma 1.10). Also Ck,O is iniective, for otherwise 

its iniective ~ull satisfies {i) and (ii) and contradicts 

the maximality of ck,O" Thus ck,O is a direct summand 

of D and hence has the exchange property. 

Now Q A. 1 G <G c. o> ~ 1, i<k 1, 
is injective so 

~ Ai = ~ Ai,l (!) <_ill ci,O) G C', for some C' < D. 

But 0 A. 
1 = 0 A. 1 0<0 C. 0) © Ak. 

i<k 1
' i<k 1

' 

By the exchange 
i<k 

property for Ck,O' we can find A <A n,l - n such that 

© A. = e A. 1 "+' <G c. o>. Thus, we construct by 
i<k 1 i<k 1

' Q i<k 1
' 

C. 
0 , A. 

1 
for 

1, 1, 
i < N such that transfinite recursion 

(1) and (2) hold for m = 1, n < N. 

(b) Assume we have constructed A. '+l' C .. 1,J 1,1 
for 

all i < N, j < m (where m < M). 

If m is not a limit ordinal, then we choose, by 

Zorn's Lemma, co < AO maximal with respect to: ,m 

(i) co,mn~ co . = 0 and 
J m , J 

(ii) G co .ncv B. is essential in G co .. 
j<m+l 'J j <m J j<m+l , J 

Then, by the same argument we used in part (a) we obtain 



Ao,m+l such that c O ,m and Ao ,m+l have the required 

properties. 

Now assume we have C. , A. +l (i < n) for all l.,m l.,m 

n < h where h < N. If h is a limit ordinal then, 

as in (a), we are done. 

If h is not a limit ordinal, then h = k + 1 

for some k and we choose ck < ~k Ai maximal with 
,m l.< 

respect to: 

(i) c n[e A. CD <G c ·~ = 0 
k,m i<k l.,m j<m n, 1 

and (ii) <G e c .. >n 0 B. is essential in 
i<k i <m+l l.J i <m+l 1 

c ... 
l. J 

Then, as before we see that ce 0 c .. )n( cv B.) 
i<k j<m+l l.J j<m+l J 

<0 A.)n( 8 B.) 
i~k 1 j<m+l J 

is essential in and c 
km 

injective, so by the exchange property we obtain 

and the required result. 

Assume rn is a limit ordinal. We know 

is 

A n,m+l 
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0 Ai= 0 A.k © <© G C .. ) and G B.n0 © c .. 
l.<n l.<n 1 . . k l.J j<k J i<n j<k l.J i<m 1 < ~ · 

is essential in both G G c .. and G A.ncv B. for 
i<n i <k 11 i<n 1 j<k J 

any k < m and for all n < N. In particular 



c(+) B.>n<G 0. c .. ) 
:l<'k J i<N J<k iJ 

is essential in both G 8 c .. 
i<N j<k iJ 

and in (£) B • • By ( l) , 
j<k J 

G) © C. . is a direct summand 
i<N i<k iJ 

of D and so by Lemma 4.1, since D = 0 B. cv cG B.) 
j<k J j~k J 

we obtain D = G © c .. G (8 R.). Similarly 
i<N i<k 11 j~k J 

C •. 6 <0 B.). 
1J J>k J 

Therefore Bk gt © c
1
• k 

i<N 

for all k < m. Thus, for all i < N and j < m, C .. 
1J 

is isomorphic to a direct summand of B,, and hence 
J 

(£} C.. is isomorphic to a direct summand of D and so 
• 1] J<m -
is injective and has the exchange property. 

By (1) for n < N and k < m we-have 

0 A. = G Aik 0 <© © c .. ) and similarly 
i<n 1 i<n i<n j<k 1) 

© A. = 0 A.k © c© G c .. >. Then 0 c. is 
i<n 1 . 1 i2_n j<k 1 J j<k ni i<n 

isomorphic to a summand of ~ for all n < N and for 
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all k < m. Therefore © c nj is isomorphic to a summand 
j<m 

of A (since 
Wm 

c .. < A and is injective). n 1J n 

Hence e ~ c .. is isomorphic to a summand of 
i<n 1J 

D, and hence has the exchange property. Therefore we can 

find A. < A. im - 1 
for i < n < N 

D =GA. 
i<n im 

© <© 0 C .. ). 
i<n i<m 11 

such that 

This is property (1). 
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Property (2) holds because G © c .. ne B. 
i<n j<m 1 1 j<m J 

is essen-

tial in 00 
i<n j<m 

c .. 
1J 

since if xn0 0 
i<n 1<m 

x n G 8 c .. = o 
i<n j<k 1 J 

by Lemma 1.10, and in 0 A.n@ B. 
i<n 1 j<m J 

c .. = 0, 
1J 

for all 

(X _::. 0 Ain0 B.) 
i<n J <m J 

k < m which implies 

then 

x = 0 

(by the Grothendieck property). I 



§2. The Spectral Cateqory 

We shall now see how Theorem 4.2 yields a nice 

result concerning decompositions of injectives as the 

injective hull of a direct sum of direct summands. More 

specifically, we will obtain a generalization of Theorem 

2.10 for injectives. 

Definition 4.3: Let G be any complete Grothen

dieck category. Then the spectral categorv of G, written 

S(G), is defined by: 

ob S(G) is the class of injective objects of G 

S(G)<h, B> =~<A, B>/K where K is the group 

of morphisms whose kernel is essential in A. 

This definition is a qeneralization of the defini

tion of spectral category in [10] (P. 269-270), where only 

the specific category mod-~ is considered. 

If G is a complete Grothendieck category, and 

A is an injective object in £, then we will write the 

corresponding object in S(G) As A. Similarly if 

a: A~B is a morohism in G, where A and B are injec

tive, then we will write the corresponding morphism in 
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S(G) as &: A~B. 

Obviously S(G) is a category and if ~ is a 

monomorphism (epimorphism) between iniectives in G, 

then a· is a monomorphism (epimorphism) in S(G). 

As we have seen in Chapter 1, if an object can 
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be embedded in an injective, then it has an injective 

hull, and this injective hull is unique up to isomorphism. 

(We will write the injective hull of an object A as 

E (A)) • 

Now any direct sum of injectives in a complete 

Grothendieck category has an injective hull, since it can 

be embedded in the corresponding product, which is injective. 

(That a coproduct can be embedded in the corresponding 

product is proved in [7], (p. 83, Corollary 1.3).) For 

this reason we have limited ourselves to complete Grothen

dieck categories in this section. We note that a Grothen

dieck category with a generator is complete (B. Mitchell 

[71 p. 142). Thus our results will be valid for Grothendieck 

categories with generators. 

Also, it should be noted that an intersection of 

injectives in G has an injective hull, as does a union 

of an upward directed set of subobjects of an injective. 



Proposition 4. 4. ( [10] , Theorem 4} : For any 

complete Grothendieck category G: 
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(1) S (G) is a Grothendieck category and G) A. = 
I i 

EC@ A.) 
I i 

for any injectives A. 
]. 

in G (i E I} • 

(2} Every object of S(G) is injective. 

(3) A ~ B in G if and only if - ,-J -A = B in 

injectives A and B in G. -
Proof: S(G) has a zero object and 

S (G) , for 

n 
©A. 
i=I 1 

for injectives A. 
]. 

in G, (i = 1, 2, •.• , n). Also, 

S(G)<A, B> is an additive abelian group. 

Now, if <P E~<A, B> where A and B are injective, 

then Ker(~) = F. (Ker <P) so S(G) has kernels. Let us say 

E is the injective hull of Ker <P • Then A= E 0 F, 

for some F, since E is injective. If 'IT F': A_.,F is 

the projection and crF: F_.,A the injection, we obtain 

<P' = <PcrF: F_.,B. Then ~ = 'P -IT (since <P and <P 1 'IT agree F F 
on F and on Ker <P which is essential in E.) 

Also, <P' is monomorphic, so Im <P' is injective, 

and hence B/Im <P' is injective and B/Im <P' is a 

cokernel for ~- This is so, since if v: B_.,B/Im <P' is 

the canonical morphism, then Vl = v<P 1 'IT F = "O. If also 

n<P = 0 then n<P = 0 so n~' = 0 on an object essential 
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in F. But cf>' is monomorphic so Ti restricted to F 

is O. Hence n factors over v. Thus ~ has kernels 

and cokernels. 

If Cf is a monomorphism and ~ an epimorphism 

then we see that cok(ker ~) = n and ker(cok a) =a. 
Hence S(G) is an abelian category. 

Trivially S (G) is well pm·1ered. Also we obtain 

arbitrary coproducts as follows (so S(G) is cocomplete): 

Assume Ai' i€ I, is a set of injectives in G. Let E 

be the injective hull of their direct sum in G and let 

A.-+E 
1 

and a.i: A.-+(±) A. 
1 I 1 

be the injections for 

Suppose 8 i: Ai-+B for i € I. Then there exists 

cf> : G) A.-+B in G such that <f>a.. = 8 .• Now if 
I 1 1 1 

O': © A.-+E is the injection then 
1 

I fL 
1 

Ai E B 

~la/. 
(±)A. 
I i 

iE: I. 

commutes in G. By injectivity, <I> extends to <f>': E-+B 

such that 

wcr. = 8. 
1 1 

cf>'cr. = s .. 
1 1 

If there is some 1": E-+B with 

then <f>'cra.. = ipaa.. 
1 1 

so Cf) A. < Ker(<f>' - lJJ); 
I 1 



thus Ti = ~- Hence E = (±) A. in S ( G) , 
I 1 

E(r+) A.)=© A .• 
I 1 I 1 
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that is 

The Grothendieck property holds since LJA. = E ( LJ A.) 
I 1 I i 

and :Ani3 = E (AnB>. Then, if {Ai: i€ I} is an upward 

directed family of injectives in G, Ai < D (i €I) and 

if B < D we have 

< LJ X.>n"B = E ( 0 Ai)nB 
I 1 I 

= E (E ( LJ A.) n B) 
I l. 

= E(( u Ai) n R) 
I 

= E( LJ (Ain B)) 
I 

= u 
I 

= u 
I 

which is the Grothendieck property in S(G). 

(2) Trivially every obiect in S(G) is injective. 

(3) If - ,y -A = B in S (G) then there exist 

~: A+B and ~: B+A such that ¢~ = lB and "W~ = lA. 

Hence ~$ is an essential monornorphisrn. By injectivity 

there is a s: A+A such that s~~ = lA and by the 



essentiality of $¢, ~ is monomorphic as well as epimor-

phic. That is $¢ is an automorphism of A. Similarly 

¢$ is an automorphism of B. Hence ¢ is an isomorphism 

and A ~ B in G. 

If A and 

trivially - ,.., -A = B. 

B are iniectives in 

D. 

. N 
G, A = B, then 
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Corollary 4.5: In a complete Grothendieck category 

G, assume D is an injective object such that 

D = EC@ A.) 
I 1 

= ECG) B.) 
J J 

where A. and B. 
1 J 

are injective Ci£ I , j € J) • Then 

there exist injectives A .• < A. and B. • < B. for 
1J 1 11 - J 

i€ I, jEJ such that A. = EC@ A •. ) CiE.I), B. = ECG) 1 1J J 

Cj c J) , and A •• 
1J 

Proof: In 

so, by Theorem 4.2 

(iE:I, j€ ,T) such 

B. = (±) 
J I 

-B •• 
1J 

for 

~r 

~ B .. (i€ I, i EJ). 
1J 

S CG) , 

i5 G) -= A. 
I 1 

= G B. 
J J 

exist -there A .. < A.' 
1J - 1 

- AJ - -that A •• = B •• ' A. = 
1) 1J 1 

B .. < B. 
1J J 

G) A •• and 
J 1J 

iEI, j€J. That is, in ~, by 

I 
B •• ) 

1J 



79 

Proposition 4.4, A. = EC(±) A .. ) for ie I, 
]. 

J 
]. J 

B. = EC(!) B •. ) for ;c- .1, and A •• ~B •• for it I 
J I l.J l.J l.J 

and j c J. I 
Proposition 4.6: Let D be an injective object 

in a complete Grothendieck category G. Then there exists 

a representation D = EC(±) A. 0 .A') where 
I l. 

A. is 
l. 

injective and indecomposable Ci€ I) and A' is injective 

and has no indecomposable summands. If D = EC G B. G 
J J 

is any other such representation then © A. ~0 B.' 
I 

]. 
J J 

the A. and B. are pairwise isomorphic and A' ~ B'. 
l. J 

Proof: Consider the sets of the form 

{A. < D: i€' I} where A. is an indecomposable injective 
l. - ]. 

(i€ I) and ~ Ai < D. The set of all such sets is 

inductive, so has a maximal element by Zorn's Lemma. Say 

{A. : i E I} is the maximal such set. Then 
]. 

D = ECG) Ai) G A' for some A' < D. That is 
I 

D = E ( © Ai © A' ) , and A' has no indecomposable 
I 

summands by the maximality of {A.: iE.I}. 
]. 

If D = EC© B. 0 B') is any other such repre
J J 

BI) 

sentation, then in S CG) , (.BA. Q°A• 
I l. \.:J 

= D = G) Bj 0 B'. 
J 

-
\ 
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By Theorem 4.2, these two direct sums have isomorphic 

refinements. But A. and B. are indecomposable 
J. J 

(i E: I, j E J) and A' and B' have no indecomposable. 

summands, 0 A. 
,.., C±)"B. and the A. and B. so = are 

I 
J. J J J. J 

pairwise isomorphic (and thus er A. "' 0 B.) • Therefore 
J. J J 

also -A I £' B' :hence A' ~ BI. D 

This is then a qeneralization of Theorem 2.10 in 

the case where all the objects involved are injective. 



References 

[1] Azumaya, G., Corrections and supplimentaries to my 

paper concerning Krull-Remark-Schmidt's theorem, 

Nagoya Math. J., 1 (1950), 117-124. 

[2] Conlon, s. B., An extension of the Krull-Schmidt 

Theorem, Bull. Austral. Math. Soc.~l (1969), 109-

114. 

[3] Crawley, P., and Jonsson, B., Refinements for infinite 

direct decompositions of algebraic systems, Pacific 

J. Math.?14 (1964), 797-855. 

[4] Elliger, s., Interdirekt Summen von Moduln, J. Algebra, 

18 (1971) , 271-303. 

[s] Head, T., Preservation of coproducts by HomR(M,_), 

Rocky Mountain J. Math., 2 (1972), 235-237. 

[6] Kaplansky, I., Projective Modules , Ann. Math., 68 

(1958)' 373-377. 

[1) Mitchell, B., Theory of Categories, Academic Press, 1965. 

[0] Pareigis, B., Categories and Functors, Academic Press, 1970. 

- 81 -



[9] Warfield, R. B., A Krull-Schmidt Theorem for infinite 

sums of modules, Proc. AMS, 22 (1969), 460-465. 

~o] Warfield, R. B., Decompositions of injective modules, 

Pacific J. Math., 31 (1969), 263-276. 

82 


	Richards_Ronald_W_1973_04_master0001
	Richards_Ronald_W_1973_04_master0002
	Richards_Ronald_W_1973_04_master0003
	Richards_Ronald_W_1973_04_master0004
	Richards_Ronald_W_1973_04_master0005
	Richards_Ronald_W_1973_04_master0006
	Richards_Ronald_W_1973_04_master0007
	Richards_Ronald_W_1973_04_master0008
	Richards_Ronald_W_1973_04_master0009
	Richards_Ronald_W_1973_04_master0010
	Richards_Ronald_W_1973_04_master0011
	Richards_Ronald_W_1973_04_master0012
	Richards_Ronald_W_1973_04_master0013
	Richards_Ronald_W_1973_04_master0014
	Richards_Ronald_W_1973_04_master0015
	Richards_Ronald_W_1973_04_master0016
	Richards_Ronald_W_1973_04_master0017
	Richards_Ronald_W_1973_04_master0018
	Richards_Ronald_W_1973_04_master0019
	Richards_Ronald_W_1973_04_master0020
	Richards_Ronald_W_1973_04_master0021
	Richards_Ronald_W_1973_04_master0022
	Richards_Ronald_W_1973_04_master0023
	Richards_Ronald_W_1973_04_master0024
	Richards_Ronald_W_1973_04_master0025
	Richards_Ronald_W_1973_04_master0026
	Richards_Ronald_W_1973_04_master0027
	Richards_Ronald_W_1973_04_master0028
	Richards_Ronald_W_1973_04_master0029
	Richards_Ronald_W_1973_04_master0030
	Richards_Ronald_W_1973_04_master0031
	Richards_Ronald_W_1973_04_master0032
	Richards_Ronald_W_1973_04_master0033
	Richards_Ronald_W_1973_04_master0034
	Richards_Ronald_W_1973_04_master0035
	Richards_Ronald_W_1973_04_master0036
	Richards_Ronald_W_1973_04_master0037
	Richards_Ronald_W_1973_04_master0038
	Richards_Ronald_W_1973_04_master0039
	Richards_Ronald_W_1973_04_master0040
	Richards_Ronald_W_1973_04_master0041
	Richards_Ronald_W_1973_04_master0042
	Richards_Ronald_W_1973_04_master0043
	Richards_Ronald_W_1973_04_master0044
	Richards_Ronald_W_1973_04_master0045
	Richards_Ronald_W_1973_04_master0046
	Richards_Ronald_W_1973_04_master0047
	Richards_Ronald_W_1973_04_master0048
	Richards_Ronald_W_1973_04_master0049
	Richards_Ronald_W_1973_04_master0050
	Richards_Ronald_W_1973_04_master0051
	Richards_Ronald_W_1973_04_master0052
	Richards_Ronald_W_1973_04_master0053
	Richards_Ronald_W_1973_04_master0054
	Richards_Ronald_W_1973_04_master0055
	Richards_Ronald_W_1973_04_master0056
	Richards_Ronald_W_1973_04_master0057
	Richards_Ronald_W_1973_04_master0058
	Richards_Ronald_W_1973_04_master0059
	Richards_Ronald_W_1973_04_master0060
	Richards_Ronald_W_1973_04_master0061
	Richards_Ronald_W_1973_04_master0062
	Richards_Ronald_W_1973_04_master0063
	Richards_Ronald_W_1973_04_master0064
	Richards_Ronald_W_1973_04_master0065
	Richards_Ronald_W_1973_04_master0066
	Richards_Ronald_W_1973_04_master0067
	Richards_Ronald_W_1973_04_master0068
	Richards_Ronald_W_1973_04_master0069
	Richards_Ronald_W_1973_04_master0070
	Richards_Ronald_W_1973_04_master0071
	Richards_Ronald_W_1973_04_master0072
	Richards_Ronald_W_1973_04_master0073
	Richards_Ronald_W_1973_04_master0074
	Richards_Ronald_W_1973_04_master0075
	Richards_Ronald_W_1973_04_master0076
	Richards_Ronald_W_1973_04_master0077
	Richards_Ronald_W_1973_04_master0078
	Richards_Ronald_W_1973_04_master0079
	Richards_Ronald_W_1973_04_master0080
	Richards_Ronald_W_1973_04_master0081
	Richards_Ronald_W_1973_04_master0082
	Richards_Ronald_W_1973_04_master0083
	Richards_Ronald_W_1973_04_master0084
	Richards_Ronald_W_1973_04_master0085
	Richards_Ronald_W_1973_04_master0086
	Richards_Ronald_W_1973_04_master0087
	Richards_Ronald_W_1973_04_master0088
	Richards_Ronald_W_1973_04_master0089
	Richards_Ronald_W_1973_04_master0090
	Richards_Ronald_W_1973_04_master0091

