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PREFACE

The question which prompted this dissertation is
the following: "How unique is a direct sum decomposition
of a given R-module?" The classical result in this direc-
tion is the so-called Krull-Schmidt-Azumaya Theorem, proved
by Gor8 Azumava in [1]. It gives an answer to the question
in the case that the given R-module is a direct sum of sub-
modules with local endomorophism rinag. It is generalizations
and extensions of this theorem that this paper is concerned
with. The results of this thesis are stated and proved
in a more general categorical setting than mod-R. Moreover,
we do not resort to the embedding theorem, with the idea
in mind that further generalizations in those categories
we are considering and simiiar results in other sorts of

categories may be suggested.

Chapter I lays some necessary categorical ground-
work. In Chaoter 2 we combine results of S. B. Conlon [2]
and S. Elliger [4] within our cateqorical setting to obtain
a generalization of the Xrull-Schmidt-Azumava Theorem. We
consider representations of an object as an essential exten-

sion of a direct sum of summands (rather than simply direct
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sum decompositions), and we allow certain summands other
than those with local endomorphism ring. Chapter 3,
following [10], (which was in turn applying the results
of [3]) extends the concept of "local endomorphism ring"
to the concent of "the exchange property" and produces
certain coproduct uniqueness theorems. Finally, in
Chapter 4, we consider decompnosition of injectives and we
see that certain problems involviﬁq coproduct decomposi-
tions can be eliminated in the case where the objects
concerned are injective. We present a uniqueness theorem
due to‘R. B. Warfield [1@] and draw conclusions from this
with the aid of the "spectral category" (which will be

defined and examined).
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NOTATION

We will, in general, represent the objects of a
category bv capital latin letters (A, B, C, ...) and the
morphisms by small Greek letters (o, 8, ¥, ...). For
certain categorical notions where ambiquity arises as to
whether an obiject or a morphism is referred to, (for
instance the image of a morphism) we adopt the following
convention: If an object is being referred to we capitalize
the initial letter of label (for this notion). Thus
Im ¢« and Ker o are objects while im a and ker a

are the corresvondina morrhisms.

A <Bop.1
@ A, = the coprpdﬁct of objects Ai (ie 1)
! in an abelian category.
AgB, B>A p. 12
|I] = the cardinalitv of the set I.
endo (A) = the ring of endomornhisms of the object A.
E, (Ii: Ty, I') p. 24
E(A) = the inijective hull of the object A.
G<A, B> = the set of morphisms in the category

G whose domain is A and whose co-

domain is B,
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Chapter 1

Introduction

§1, Some Basic Notions.

In this chapter we will develop some elementary
properties of coproducts in Grothendieck categories,
those properties which we will find useful in describing
uniqueness properties of certain coproducts. First

however, some comments on notation seem necessary.

Given objects A and B in an arbitrary category,
we will wfite A < B if there is a monomorphism with domain
A and codomain B, When we wish to distinguish one such
monomorphism, unless stated otherwise, this distinguished

monomorphisms will be labelled or simply o i1¢

OAB’ A
the codomain is evident from the context. Thus, we will
write C = A(:)B (in an abelian category) to mean A < C,

B < C and

is a coproduct diagram. Similarly, if A < C and B

IA
Q



we write D = A[]B to mean
B A e
i / :
mg %sc
is a pullback diagram.

If A<B and B < C, then obviously A < C, and

OAB' GBC and

then, unless we state otherwise, they will be chosen

if we have distinguished monomorvohisms

Oac’

so that 5AC = °BC°AB'

Definition 1.1: A Grothendieck categoryv is an abelian

category which is cocomplete, well powered, and which
satisfies the Grothendieck condition, which we give in the
following form: If Ay < C 1is an upwards directed family
of objects (i€1I), (i.e. if the distinguished monomorphisms

Op . : Ai+C form an upwards directed family), and if B < C,

h 8
then (UapNs = U a,l».
i I

Note that we do not require the existence of a gen-
erator in a Grothendieck category. For a treatment of such
categories, and of category theory in genefal, the reader
is referred to Pareigis [8]. We will assume for the remainder

of this dissertation that all objects and morphisms are the



objects and morphisms of a Grothendieck category, unless

otherwise stated.

It should be noted that an example of a Grothendieck
category is the category of (left) modules over a ring
with identity. The principal application of the theory
developed in the following chapters is to precisely such

categories.

Finite products and arbitrary coproducts exist in a
Grothendieck category and finite products and coproducts
can be identified; that is, there are finite biproducts.
We will write A =(:)Ai if A is the coproduct of the
A, (i€ 1), and we éill say that A is the direct sum of

Ai (i€ I). It is well known that an object C in a Grothen-

dieck (or even any additive) category is the coproduct of
objects A and B if and only if there exist "injections"

Opt A+C and Opt B+C (which are monomorphisms) and

"projections" Tt C+A and Tpi CoB (which are epimor-
phisms) such that Ta0p = 1A' TaOp = lB’ TaOp = 0,
AR OpTp + OpTg = lc.

found in [8] (pages 167-168)., It is evident that all these

= 0 and These results are to be
conditions are not needed. For the purposes of this
dissertation we will often find the following characteriza-

tion of the coproduct useful:



Proposition 1.2: Let A < C and B < C. Then

C=A (:) B if and only if there are morphisms Tat C+A
and Tyt C+B such that T = 0, TO0p = 0 and

oA'rrA + O‘BTTB = 1C’

Proof: That these conditions are necessary is

obvious by the breceedihq remark.

Their sufficiency follows since lC = OAFA + 0Ty
;mplles that cA = (GAWA + GB"B)OA = 0pTA0p SO lA = “AGA’
and similarly 15 = T 0, (This further implies that

T, and T, are epimorphic.) Thus C = A (:) B by the

preceeding remark. E

We should also note that if C = A (¥ B, then

A[]B = o.

Lemma 1.3, Let A < B < C be objects such that
A 1is a direct summand of C. Then A is a direct summand

of B.

Proof: Suppose C = A (:) X with projections

and We use the convention that ¢

Ta Ty A* 987 Ox
(and_so on) are the distinguished monomorphisms with

codomain C. We will show that B = A (:) (B(\X).

Define £: B»B by ¢ = lB = OppTA%R" Then



Opt = Op = Op%apTa%g

= (lC - UBUABﬁA)GB
= (1o - 0a"y)0p
= UX“XGB since 1C = UA“A + Uxﬁx.

Hence the diagram

commutes.

\/

=
iy o8

Let Y = Bf]x. Then there is a unique ﬂé: B+Y such that

Ay
Cc
& commutes.
YX
T, O V o
X'B X X
3 [ [ LI
Now, define TA' B+A Dby TA TA0p- Then
. _ .
ﬂYOAB = 0, since
: L]
Oyx"yAB
= Tx98%nB
= %%



and
A%y = "a%8%vB

= Ta%%x%vyx

Also

[ i
a a
Q a
2 2
+ +
a Q
Q Q
=

]
Q

- ] { ]
o) lB‘- cAB"A + GYBﬂY‘

Hence, by Proposition 1.2, B = A (:) ¥ g

We remark that it is also true that if A < B < C
where A is a direct summand of B and B is a direct
summand of C, then A is a direct summand of C. The

proof of this is trivial.

Lemma 1.4: Let D=2 (3)) ¢ =B (¥ X with

projections T and to A, B and C respectively.

A" B €



Then D = B (:) C if and only if .o

A"B

Proof: (a) Assume Ta%n is an isomorphism. Let

p = WAGB. Thus we obtain

&

and hence there is a unique 7T1: D+D such that 0, = Op
and TOp = oBo- (by the universality of the coproduct).

& _ -1
It follows that T0LTe = OpTe and TOATA = 0P "My and
hence '

T = r(koA + ccnc) -
=o.p tr + oM.,

Now T is an isomorphism:

(i) t is an epimorphism: If we suppose that

¢t = 0 for some ¢, then ¢0C = ¢TOC = 0 so ¢ocwc = 0.
1 1

But then 0 = ¢1 = ¢(on Ta + Gcﬂc) so ¢on T = 0.
Hence
_ -1
¢OB S ¢0Bp 0
_ -1
= 0P "Ta0p

= 0.

is an isomorphism.



Therefore ¢°A“A = 0 and ¢0BﬁB =0 so ¢ = 0. Hence

T 1is epimorphic.

(ii) T is a monomorphism: If we suppose that

Ty = 0 for some Y, then

nAw

Il
he)
°
3
»
=

]
=3
>
)
Q
Q
=3
@}
+
Q
w
f o)
=)
yv
<

= 0.

Hence T is monomorphic.

. ; . -1 ;
Thus 1t 1is an isomorphism and = exists,

We define mj = p-lﬂAT_l and w} = ncr-l. Then
Ta0aTe = p-lwAraloch
= p-lonCnC since to, = 0,
=.0.
Hence ﬂéoc = 0.



Ttr, o= m

]
TcogP Ta ct %P Ta
= Te9aPP  Tp
=0
] -
so ﬂCOB = 0., Further,
-1 -1 -1
1 1 -
o™ + 0o = OpP "Mt + OaTAT
_ -1 -1
= (on Ta + UCﬂC)T
= 7L
= 1D‘

Thus, by Proposition 1.2, D =B (:) Cs

(b) Assume B (:) C=0D A (:) C and let

ﬂé, wé be the projections onto B and C respectively,
resulting from the direct sum D = B (:) C. Then we know

= - U 1
koA + Ocﬂc = 1D oBvB + ocﬂc.

Hence

- L]
ﬂA = wA(onB + OaT

1
C)
- “Aoné which is therefore epimorphic.

Thus TAOp 1S epimorphic.



Also, if for some ¢, ﬂAoB¢ = 0 then

¢ = "B°B¢
= ﬂB(cAwA + och)UB¢

= ﬂBOAﬂAGB¢ + "BOC"C°B¢

= 0.

is monomorphic. Therefore n.,0 is an

Hence NG

"a%8
isomorphism. g

Lemma 1.5: Suppose ¢: A+B and ¢: B+*A are
morphisms such that J¢ is an automorphism of A. Then

B = Im ¢ & Ker y. -

1

Proof: Let m, = (p¢) "y. Also, let o, = ker V.

)
Since w(lB - ¢(w¢)-l¢)

Y

0, there is a unique morphism,

say ﬂw: B+Ker ¥y such that

-1
oyTy = 1 = 6 (be) ™y

= 1B - ¢n¢.
That is 1. = o, 7, + ¢w¢.

B vy

Further, ww¢ = 0 since

o - & (o) Tue
0

Owﬂw¢

10
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and T.0 is a monomorphism; and "¢°lp = (w(b)-l'(llc'w = 0

¢-Y

since o

P
B = Im ¢ @Kerw (i.e.B=A@Kerw where

= ker Y. Thus, by Proposition 1.2,

$: A+B 1is the injection). ﬂ

We note that the projection onto A in the direct
sum B = A @ Ker y in the above lemma is given by

-1
(Wé) .
Lemma 1.6: If B < C,G—)Ai < C and Bﬂ@ A, # 0
i I
then there is a finite subset J&I such that Bﬂ@ Ai # 0.
J

Proof: Let L be the collection of finite subsets

of I and let Ay =(3 A; for each JE€L. Then
= T

{AJ: JEL} is a directed set in C;) Ai and E) Aj =@ Ai.

Now

0 # Bﬂ@ A ARV

LLJ LILSY

]

by the Grothendieck property. Hence, there is some

JEL such that BﬂAJ # 0. That is, there is a finite

JESI such that Rﬂ@ A # 0,
J
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§2, Essential Monomorphisms and Inijectives

Definition 1.7: A monomorphism o is called

essential if whenever ¢0 is a monomorphism then ¢ is
a monomorphism. If o: A+R 1is an essential monomorphism,
then we say A 1is essential in B and B is an essen-

tial extension of A, and we write A<B and BPA.

Proposition 1.8: o0: A»B 1is an essential mono-

morphism if and only if, whenever X < B, X # 0, then

Aflx # 0.

-

Proof: (a) Assume o is essential and X < B
with X[)A = 0. Then A $ B ¥ B/X (where v = cok Oy
is a monomorphism, since A(]X = 0. This implies that

v is monomorphic and thus X = Ker v = 0.

(b) Assume, that for any X < B, X # 0 it follows
that A()X # 0, and that we are given ¢o’ monomorphic for
some ¢: B>C. Then Al)Xer ¢ = 0 since A()Ker ¢+A—E>B—2>C
is the 0 morphism. Hence Ker ¢ = 0 so ¢ is

moncmorphic. E

We conclude this chapter with two lemmas of

R. B. Warfield ([10] , p. 265-266). The first shows that
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in a Grothendieck category, a subobiject of an injective
object has an injective hull. It is well known ([8],
p. 199~201) that every object will have an injective hull

if we equip our category with a generator.

Lemma 1.9. ([id], Lemma 3): Let D be an injective
object and let A < D. Then there is an injective E < D

such that E is an essential extension of A.

Proof: By Zorn's Lemma (on the partially ordered
set of subobjects of D) we can find E < D such that E
.is a maximal essential extension of A in D (up to
isomorphism). We can apply Zorn's Lemma since the union
of any chain of essential extensions of A is also an
essential extension. Also by Zorn's Lemma, we can find

X < D maximal (up to isomorphism) with respect to Af]x = 0,

Let v = cok ox. Then vo

= 0, Then o

Al A+D/X 1is a monomor-

phism: suppose vo factors uniquely

A¢ A¢
over Ker v = X, i.e. 0,6 = o,4 for some "Y. But then

¢ and Y factor over A(]X = 0. Thus ¢ = 0 so VO

is monomorphic.

But VO, = VOL0,p and Oap* A+E 1is essential so
VoL is monomorphic. Hence, since D 1is injective, there
is a 0.: D/X+D which extends o to D/X. That is

E E



14

Thus E < Im 0 " Also, let 2 be the inverse

E.
image of X under 0_vs. That is, the diagram

E
T
Z\/D
X Oy
is a pullback. Then Z[)A =2[]E =0 and X < 2 so by
the maximality of X we can assume Z = X. But then
-Im'Eﬁ(\X =0 since ImG,v = Im7o,. This implies E is

E E

essential in Im'EE: If there is Y < Im 6% such that

Y(JE=0 then X[J¥ =0 so (x () ¥Y) <D and
(X (:) Y)(?A = 0 contradicting the maximality of X,

unless Y = 0,

Therefore E < Im 3% and A 1is essential in

Im G,., and hence, by the maximality of E, E =Im 70

e

(That is o, and im G, represent the same subobject).
Op " coim FF _

Now EBeeSDoS5D /R Im Op = E is an automorphism,

so E 1is a summand of D by Lemma 1.5. Hence E is

injective.

We have therefore found E, an injective which

is a maximal essential extension of A in D. That is,

ey

E 1is the injective hull of A in D, %
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We note at this point that any two injective hulls

of an object are isomorphic.

Lemma 1.10. ([10] , Lemma 1): Let A =@ A,
1

and X < A. Then X is essential in A if and only if

XﬂAi is essential in A, for all iEX.

Proof: That the condition is necessary is trivial.
To prove its sufficiency we assume that X(}Ai is essential
in A, for all i€I. Let B <A, B# 0. Then, by
Lemma 1.6 there is a finite J<& I such that

B()(;) Ai # 0. Hence, we need only show that if B < Ai’

[N

J finite, then A(]X # 0. But then we need only consider

the case |J] = 2, for the others will follow inductively.

Thus we mav state what we must prove as follows:

- 3 1]
tet A' =2, (® Ay, B <A (B#0) with x' <a, x[)a,

essential in Ai for i =1, 2. Then we want to show that

B)x' # o.

Let 0y AI*A' and Oyt A2+A' be the injections

and let Tye T be the corresponding projections. If

-

=0 then B < Az SO B(\X' # 0. Hence assume

T,0g
1]
T 0p # 0. Then Im nloBr]x # 0.

Let B' be the inverse image of Alr)x' under



o That is

'rrl B*

A X'

N
e

is a pullback. B' # 0 since T8 # 0.

njection

1f = 0, then B' <A

Moy
Hence we assume To0pt # 0 and we let B" be the inverse

image of Azf]x' under That is

o

B" A

ToOpee

AJWX'

is a pullback. Then ToOgn # 0.

Hence Tpn #0 and o factors over o since

B" xl ’

GB "

16

1 so 0# B'ﬂx'f_ Bﬂx'.

factors over Alr)X' and Azf)x'. Therefore Bf)X' # 0.

i
;

!v‘



Chapter 2

A Generalization of the Krull-Schmidt-Azumaya Theorem

§1. Local Endomorphism Rings and Idempotents

In this chanter we will prove a generalization of
the classical Krull-Schmidt-Azumaya Theorem for an arbitrary
Grothendieck category. We will examine revoresentations of
an object as essential extensions of direct sums of its
summands, and determine their unigueness properties. Speci-

fically we show that if CcD>® Im:1 i and C D & ImkK,
IyI' gga
where {1 €endo (C): i€ IYI'} and {, € endo (C):3i€ gl ji 3

are sets of orthogonal idempotents, Im 1, and
i

Im Ki have local endomorphism rings for i€ I, j€EJ and
Im 1 Im Kj have no summands with local endomorphism ring

for i€ I', §€J', then BDIm ;= ® Im k., and the
, T 5 J
summands of these two direct sums are pairwise isomorphic.

This easily seen to be a generalization of the
usual Krull-Schmidt-Azumaya Theorem for Grothendieck cate-
gories as in [8] (p. 193-195) where only direct sum decomposi-
tions (and not essential extensions of direct sums) are

considered, and where all summands have local endomorphism

- 1T -



18

rings. Further, this result contains results of Conlon [2],
and S. Elliger ([4],Satz 6.1);the former allowing summands
other than those with local endomorphism ring, the latter
considering decompositions as essential extensions of
direct sums of summands (arising from sets of orthogonal
idempotents in the endomorphism ring). In both these
papers,the theorems are stated for decomposition of R-
modules, however their extension to more general Grothendieck
categories is quite elementary. Both Elliger and R. B.
Wwarfield ([10], p. 264-272) have also considered the case
where all the objects involved are injective and have
derived some even stronager uniqueness properties in this

case. These we will examine in Chapter 4.

We first note that the endomorohisms of an object
in a Grothendieck category form a unitary ring, where the
addition is defined by the additive structure of the mor-
phisms, and the multiplication is given by the composition

of morphisms.

Definition 2.1: A unitarv ring is called local

if the set of non-units is additively closed. It is easy
to check that this is equivalent to saving that the ring
has a unique maximal left ideal (which is also a unique

maximal right ideal).
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We see then that if endo (A) is a local ring,

an automorphism of A can never be the sum of non-automorphisms.

Proposition 2.2: If A 1is an object with endo (A)

local, then A is direct sum indecomposible.

Proof: Assume endo (A) 1is local and

A=A ©) A, with A, A, # 0. Let 0,: Aj»A, 0yt A,»A

be the injections and Ty ARy and Ty: AXA, be the pro-
jections. Then TyOy My = 0 and T Oy Ty = 0 so 0y ™

and 02"2 are non-units in endo (A). But 1A = olvl + O Mo s

a unit. This is a contradiction, since endo (A) 1is local, so

either Al =0 or A2 = 0, B

Lemma 2.3. ([2], Lemma 2): ILet C =A (¥ B where

endo (A) 1is a local ring. Let Tt C+A be the projection
and, as usual, Oa the injection. Then, for any ¢: C+C,

either ¢0, or (1, -'¢)0A is a monomorphism, and, if we
call this monomorphism o, C = Im o (:) BR. Further,

LI is an automorphism of A.

Proof: We know onA = 1A and so

[
Il

A '"A[‘b +(1e - ¢)]GA
= nA¢cA + wA(lC - ¢)0A ’

a unit in endo (A). As endo (A) 1is local, we must have
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either TA®0, OF (1., - ¢)oA is an automorphism of A,

Talte
Hence, either ¢0A or (lC - ¢)0A is a monomorphism.
Call this monomorphism o¢. Then MpO is an automorphism

of A and by Lemma 1.5
C‘=Im0 @ Ker ﬂA

mo @ 5. B

Proposition 2.4: If 1 Eendo (A) is an idempotent

then Im1t is a direct summand of A with projection
T = coim 1. Conversely, if B is a direct summand of A,
then there is an idempotent 1€endo (A) such that

B=Im1 and m = coim 1 is the projection onto B.

Proof: If 1€endo (A) 1is an idempotent, take
™ =coim 1, 0 = im 1 so 1 = or. Then 7o =1 since
omom = on. It follows from Lemma 1.5 that % is a pro-

jection onto Im FE
Conversely, if 7 is a projection, with correspond-

ing injection o, then om 4is an idempotent and Im(om) = Im n.g

Proposition 2.5: If {1i<£ endo (A): ic I} is

a set of non-trivial orthogonal idempotents, then (:) Im li < A,

Proof: We can easily see that (¥) Im 1, = Im(Z 1,)
' 1!
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for each finite I'S I. (Thus (&) Im 1; <A for each
I’ -
finite I'C1I.) ILet L be the collection of all finite

subsets of I and A =® Imi1, = Im(Z 1,) for each
J T 1 3 1

JE L. Then {AJ: JE L} is an upwards directed set. It

follows from the Grothendieck property that @Im 1y = UAJ < A.Ej
I L

Lemma 2.6. ([2], Lemma 4): Let A be an object,
{1i€ endo (A): i€ IUI'} a set of orthogonal idempotents
such that endo (Im 1i) is local for i&€I and Im ‘i has
no direct summands with local endomorphism ring for iE1I'.
Assume further that @' Im 1, is essential in A. Let
k € endo (A) be any icgrftpotent such that endo (Im k) is
local. Then there is at least one and at most finitely many

iEI such that p1 ;0 is an automorphism of Im k, where

0 = imk and p = coim k. For any such Ly Im 1i|<=Im 1y

Proof: Since @ Im g is essential in A,

I

Imk m( @ Im 1i) # 0. Hence, by Lemma 1.6 there is

a finite J<I and as finite J'SI' such that

1f Py is to be an automorphism, then necessarily

i€ gUg'. 1f i, were not in JUJJ', letting

o':Im Kﬂ( @ Im 1,)>A be the injection, then 11, o' = 0.
TR + 15
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But o' # 0. Also o' factors over o. Hence p1; © is
' : 0
not an automorphism of Im «. It follows that if pL;0

is an automorphism then i€ JUJ' and hence there are at
most finitely many i€I|JI' such that pr;0 is an automorphism

of Im k.

Let 1 = I 1,. Since Im x 1is a summand of
JUJ*
A, and endo (Im k) is local, by Lemma 2.3 either

t¢ or (1, - 1)o 1is a monomorphism. Now, again with

A

o': Im K.ﬂ (® 1Im 1,—>A the injection, ko' = ¢' and
JUJI! 1

1g' = ¢', If (lA - 1)0 were monomorphic, then (1A -1)o!

would also be monomorphic; but

(lA - 1)0' = ¢g' - 10"
= 0,

Therefore 110 1is monomorphic.

It now follows by Lemma 2.3 that opl1c is an auto-

morphism of Im «. But then p10 = I (ot ics) a unit,
JUYyJ’

and since endo (Im«k) is local, there is some 1i,€ Jya

such that Py o is an automorphism of Im k. Hence, by
0

Lemma 1.3 Imti1, 0 =Im1l1, ¢ is a direct summand of Im 11, .
1o 10 1o

Now, because Py o is an automorphism, 1, o Im kA
0 ’ 0
is a monomorphism, so Im1i; o© ¥ Tm K. Thus endo (Im:1t 4.0
0 0.
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is local. But we have just shown that Im li o is a

. 0
direct summand of Im Ly Hence we reject the case that
0
i, € J' and obtain Im1l, K =1Im1t, for some i € I. g
0 i, i, 0

It should be reiterated that the above lemma tells
us that any summand of A with local endomorphism ring

is isomorphic to one of the summands in the given represen-

tation.



§2, A Krull-Schmidt-Azumaya Theorem

Definition 2.7: Let AD> (® Im 1, where
Iyr’

{lié endo (A): i€ TUI'} 4is a set of orthogonal idempotents

such that endo (Im Ii) is local for i€I and Im Ii

has no summands with local endomorphism ring for i€ I'.

Then we call C) In\li a Krull-Schmidt decomposition

T
of A, and write A = EA(xi: 1:; ')

This definition is somewhat more general than the
definition of a Krull-Schmidt decomposition in [2]. This
is also a.generalization of what is called in [4] the inter-
direct sum of direct summands. Since the decomposition is
defined relative to A it seems necessary to include A
in the notation. Further, it is important to distinguish
I and 1I'. For these reasons, the notation EA(li: T, I'y,

though cumbersome, carries the required information.

The following Lemma and Theorem are generalizations
of a Lemma and Theorem of Conlon ([2], p. 111-112), and

we follow generally his methods of proof.

- D4 =
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Lemma 2.8: Let

A=E : I, I')

alty

. - ]
= EA(Kj. J, J")

and let JOGEJ' be flnlte. Then there exists IOQEI,

IJOI, such that () Im vy (:) Im (1, - 2 K, ) = A,
Io Jo
Proof: Let Tsr Oy be the projections arising

ol

from vy and Kj respectively (i€1UI1', 5€¢3Ua")
and let Oss 03 be the corresponding injections. Assume

Jo = {1, 2, ..., n} for notational convenience.

Applying Lemma 2.6 for Im Kyr we can find

. _ o )
11€fI (say 1i1 =1,) such that p;1,0; is an automor

phism of Im Kyr and such that Im 14y = Im ly-

It follows that : Im1tl,-Im Kl is an isomor-

P19y Im 1y

phism: It is clearly epimorphic. To prove it is a mono-

morphism, assume that for some ¢, plol¢ = 0. Then
0 = pyo,00

PyOyTyd’

pl Il¢l

where
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. ,/f//)z \\\<i\s
1)
\ %
is a pullback. But Im Ty, = Im y = Im 1% SO, taking

¢", ¥ such that

is a pullback, we obtain v is epimorphic (since lel is).
Thus we have nl¢'$'= ™) k6" and hence
0 = plolnl¢'$

= PO Ty K 6"

= Py 1101007
But pllloi is an automorphism so pl¢" = 0. Therefore
wl¢'W = 0, which implies ﬂl¢' = 0 since ¥ is epimorphic,
Hence ¢ = 7¢' = 0. Thus P01 is monomorphic and hence

isomorphic.

It now follows by Lemma 1.4 that

We proceed inductively. Suppose



k=1 n
g Im 1, @ (j@kIm K‘j.) @ (Im 1, -

pi be the projection onto Im Kk in this decomposition.

Then, by Lemma 2.6 there is a ike_ I (say

that o', 0! 1is an automorphism of Im K
k k7k k

9
Pr i

'y
k

= Ik) such

and such that

\, =0 for i=1,2, ..., k -1,

SO
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] - o N .
k¢Io,k_1° Also ppo,: Im L +Im K is an isomorphism, so,

k

' n
again by Lemma 1.4 we obtain @Im 1.i®( @
j=k+1

i=1
The result follows bv induction. g

Theorem 2,9: Let

A=E,(1,: I, 1I')

A( i

[

'EA(K_j: J, JI"),

let B be any object such that endo (B)

let Ip = {igI: Im 1 = B}, Jg = {3€3: Im Ky = B}.
|15l = 1351
Proof: If J, is finite, then by Lemma 2.8
|35 < [Ig]. Assume Jp 1is infinite. Then, by Lemma 2.8
Iy is necessarily infinite.

Factor 1i and Kj

into injections o,

n
Im K.J.) @Im(lA-.Z

1

’

o—l

is local and

Then

and

j=1

K,)=A
J)
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projections Tss pj for iGTILJI', jE Jl)J'. Given

j.€ J., we obtain i€ I such that .1, o!
JO B 0 p',lo 10 J9
automorphism of Im K, and such that Imt, Kk, =Im,
Jo 10 Jo 1o
Also, as in the proof of the previous lemma, it follows

is an

that p, 0, : Im1, »Im p. is an isomorphism. Thus
Jo Yo 1o Jo

iO€:IB. Hence, given an element of J we have established

B
a process to find a corresponding element of IB.

But ioe I, can be generated from at most finitely

many joéiJB in the above fashion, since if io vields io
then pjoliooéo is an automorphism, pjooio an isomorphism
so ojOIiOoéoijUiO is an isomorphism. Hence ojooioniokjooio
is an isomorphism (since 110 = cionio and

K. = c! o. ). Thus T; Ks O, is an isomormhism. But,
Jo Jn Jo 070 o

by Lemma 2.6, for this i0 there can be only finitely many

such j0 which make an isomorphism. This means

Kl G.
0 Jo Yo
that each i0€ I can be produced by means of our given pro-

cedure, from only finitely many ﬁOG J.

We have therefore shown that for each jE.JB we can
find iEIB , and that each i€ I, can be produced by only
finitely many €Ty in this way. Since Jy was assumed
infinite, this implies |Jpl< |Iz|. We have already seen
that this inequality holds in the finite case. By symmetry,

it follows that |I| = IJBI. ﬂ
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Theorem 2,10: If

o
]

. 1
EA(\i. I IV}

EA(Kj: lT’ \T')

then there is a set bijection f: I+J such that

Im t. © Im «_ ..
b 1

Pad
£(4) and hence C-;)Im \i —@ Im K_.).

Proof: By Theorem 2.9 we obtain a set bijection

of the indices of each isotvpe of summands. These bijections
combhine to give a bijection f: I+J which vyields the
required result. E

We notice that if A = @ Ai = @ Bj where
endo (Ai) and endo (Bi) are local for i€I, j€J and
if 1, (i€ 1) and Ki (§ €J) are the corresponding idem-

i
potents, then

A=E,(1,:I,0) = EA(Kj: J, 0)

and Theorem 2,10 for these decompositions yields the’

classical Krull-Schmidt-Azumaya Theorem.

Proposition 2.11: Let

A

i

° ]
EA(xi. I, I')

= B_(k

A g J, J')

j
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such that I is finite (and hence J is finite). Then there

are idempotents ',k & endo (A) such that

(—?Imli@Iml

A

I
®
g
VAN
.
®
5
A

Imib@®Imt,, Mekp(® Imk, , Im12€Imk and Im1,
1' 1 N 9
Im K have no direct summands with local endomorphism ring.

Proof: Put 1 = 1A - Iy ., k= lA - ZK]
i i J
=Te) A=G—I>Imli®Iml=<\-;)Iij@ImK. Imlb@ Im

since, if X < Im 1, with Xn@ Im Ii = 0 then
Xﬂ@ Im 1i==0 so X = 0, Similarly ImKD@Im Kj.
Jl

Further, Im t (and Im k) can have no direct
summands with local endomorphism ring: Assume there is an
idempotent '' in endo (A) such that Im '' is a direct
summand of Im 1, andA endo (Im 1') is local. Then, by

Lemma 2.6 there is an 1€ I such that Im lil' = Im 1i

contradicting that Im 1 '€ Im 1

Thus
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are Krull-Schmidt decompositions of A, and we can apply

Lemma 2.8 to obtain A = (3 Im Ry ® Im . Hence
J

Im 1 = Cok 0 ® Im K where O’:@ Im Kj+A is the injection.
Propositionlz.lz. ([2] , Proposition 12 ): Let
A=E (4: I, I
= EA(K sJ, J¥).
Then @ Im xlﬂ@ im K, = @ Im ¥ ﬂ(?' Im 1y
= 0.
Proof: As usual we let Oy cj'., be the inijections
and T p. the projections arisina. from 1, and x;

i’ 73 . & 3

respectively for i€ IUI', jéJUJ'. Consider any 1i€I,

K
0

1] - s ) o C % ' ' = )
let Jg {jl, 35w _‘Jn} C J' and let K § 3 Then
by Lemma 2.3, either K'O‘i or (1A
But K'ci cannot be a monomorphism, for if it were then

- K')O’i is a monomorphism.

Im K'ci = Im k' 1i would be a summand of Im K' by Lemma 1.4,
a contradiction since Im K'oi Y Inm Ii has lccal endomorphism

ring.

Hence (lA - T K.)Oi is a monomorphism for all
Jl

0

i€I and all finite J(')(.:_;J' . Also by Lemma 2.3 we obtain
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that we can substitute Im(lA - K")O’i for Im 1, in

0 1o
(}D Im 1i.

Assume @ Im Iiﬂ@ Im B # 0. Then there is
h J!

a finite J(')_C;J' and a finite IO_C,:I such that

B = @ Imxiﬂ@' Im Ky
To 0

# 0.
Then for «' = 1A - L k. , and for o_: B+A and
703 B
l.o
o', i - $ =
B’ B+C}-> Im 1y monomorphisms we have (lA K )('JB 0.
0
But (lA - K')O‘i is monomorvhic for i&I, so (1A - k"o

is monomorphic where o: @ Im 1i+A is the injection.
To
Then

0 = (1, - k')o

A B

= (1, - k")oo!

A B

. 3 3 ' — =
which implies o = 0. Hence @ Im 1iﬂ (\;3' Im Kj = 0.

@Im ij@' Im g = 0 by symmetry. @

This proposition, together with Theorem 2.10, yields

the Krull-Schmidt-Azumava Theorem as it is found in [1]



That is, if A = @ A, endo(Ai) local (i€ I) and

I

A =(:) Bj' Bj indecomposible (5¢ J),

decompositions of A

are isomorphic.

then these two
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Chapter 3

The Exchange Property

§1, Some Examples and Basic Notions

In this chapﬁer, we will follow the results of
R. B. Warfield ([10], §3, p. 272-276), adding a slight
generalization. Warfield was, in turn, applying certain
proofs of P. Crawley and B. J8nsson [3] to the kind of |
categories that we are dealinq_with. We define a class
of objects in a Grothendieck category which have a certain
property, the exchange property; we show that this class
is sufficiently large to be of interest (containing for
example injective objects and objects with local endomor-
phism ring): and we prove some theorems concerning the
uniqueness of certain direct sums with such objects as

summands.,

Definition 3.1: An object A 1in a Grothendieck

category has the exchange property if, given any
B=2A (&) A'
® s,
i

I

- 34 -
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there exist Bi < Bi

We say that A has the finite exchange property if this

holds whenever the index set I is finite.

We note that the exchange property is preserved
by isomorphism., Also, if A has the exchange property

and
B=A (» a'
-® »,
i
I
then there exist B:'.L' < Bi as well as B:!L < Bi (i€1)
- 1 - ] " 2
such that B = A (3 ((;] B{), B; = B} (3) B} (i€1)

1

and A Y (¥ B{. This follows from Lemma 1.3.
I

for i1i&E€TI 'such that B =A@(®BJ!_)
I

35

Lemma 3.2. ([3], Lemma 5.1): If an indecomposable

object A has the finite exchange property, then it has

the exchange property.

Proof: Suppose A # 0 has the finite exchange
property, and suppose

B .

A ® a
= @ B;.
1 :

By Lemma 1.6, there is a finite IOQI such that

I-I I

0 0

Af) ® By #0. Let x=(#) B, so B= (3 Bi@x.
i
0



We can now apply the finite exchange property for
: [] " ° 1 "
A to obtain Bis Bi < Bi for 1€ I0 and X', X" <X

such that B = A @((}D B/) ®x', B; = B! (® B} for
0
i€I,, x =x' (¥ x", and A ¥ GI) By ® x".
0

But A 1is indecomposable, so only one of these
summands can be non-zero. If we assume B;{ = 0 for all

i€ IO we obtain a contradiction, for in this case

BJ!_=B:.L for iEIo and hence Aﬂ(}) Bi=AﬂC}-) B]!_=
' ‘ 0 0

contrary to our definition of I Henc