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CHAPTER 1.

Introduction.

An adaptive control system is basically a feedback
control system that achieves a desired response in the
presence of extreme changes in the controlled system's
parameters, and major external disturbances by adjusting
the parameters of a controller. Adaptive control systems
are usually characterized by devices which automatically
measure the dynamics of the controlled system and other
devices (usually called controllers) which are adjusted on
the basis of a comparison between these measurements and

some optimum figure of merit [1].

Conventional control systems do compensate for
small variations in the parameters of the controlled system
and other disturbances by using negative feedback. However,
the reason why the control engineer resorts to an adaptive
control system is that a conventional feedback control
system is not capable of high performance in the presence
of large changes in the controlled system's parameters and
large external distﬁrbances. For example, a large change
in the feedback element of a conventional feedback control

system will easily degrade the performénce of the system;

el



on the other hand, an adaptive control system will be able

to cope with such a change and hence keep the system's
performance at an optimum level. Further, a conventional
feedback control system designed to respond in an optimum
manner to simple inputs may not respond to these signals if
they are contaminated with noilse or other disturbances.

On the other hand, an adaptive control system can be designed
to overcome these limitations of conventional feedback

control systems.

In this thesis an adaptive control system will be
taken to mean one which is a self-optimizing control system.
This will often require that past data be stored and used

for a learning and adapting scheme.

Two ideas form the basis of modern adaptive control
techniques. One is to identify the system to be controlled
and the changes that have taken place in it before calculat-
ing the new optimal values of the controller parameters.
This method is usually called adaptive control "with iden-
tification". The other idea is based on the fact that com-
plete knowledge of a plant 1s not necessary in order to
control it. It is therefore referred to as adaptive control
"without identification". For example,ba human being dces
not have to know the laws of static and dynamic equilibrium
before he learns to stand, walk or run. Here, the person

learns the correct (optimum) way of distributing weight on



his two legs and the angle at which his body should 1lie,

depending on whether he is standing, walking or running.

Adaptive control without identification attempts
very much to imitate man and his process of learning and
adapting. Storing data from past experience is another
way in which adaptive control systems can improve their
performance faster - the analogy again to the human brain
that can store a vast amount of information. Computers
are usually used to store past data for control systems,
and this data is later used in conjunction with adaptive
control techniques in order to make the system respond in
a more efficient manner and faster as more and more infor-
mation is acquired about the system. Of course, the human
brain is a master computer, and no adaptive control system
will ever have such a learning and adapting ability. But
computers can be programmed to do a specific job and,
because of their speed and reliability, will do them better
and faster than a man can. The major promise of the adap-
tive concept lies in the possibility of introducing a
simple learning mechanism within the adaptive part of the
system. Once learning is combined with adaptivity, the
control system approaches the flexibility and capabilities

of human controllers in more significant jobs.

With the advent of the electronic digital computer,

engineering approach fo control problems has changed



considerably. Tasks which took days or weeks to perform
can now be done in a few seconds on a computer. Conse-
quently, adabtive control strategies, which previously
could not have been justified because of the time factor
involved, are now within reach of any control engineer.
Very few modern adaptive control techniques can be used
efficiently without taking advantage of computer techniques.
Reduction in size and weight of present day computers
together with increase in speed of operation resulting

from the use of integrated circuits and micro—electronics,
have extended their application to forming an integral part

of aircrafts, space vehicles and other similar systems.

In the present thesis, a digital-computer-controlled
adaptive control technique is considered, namely the Vector
Cost Function algorithm. This technique has been recently
proposed [7] and here its merits and drawbacks are invest-
igated. Chapter Two 1s a review of some of the modern
adaptive control methods (without identification) using
digital computers. In Chapter Three the theoretical back-
ground of the Vector Cost Function is presented together
with some illustrative examples. Chapter Four.deals with
the implementation of the actual systems used, and Chapter
Five gives the.results obtained together with partial con-
clusions. Chapter Six presents the particular‘and general

conclusions drawn and is followed by the appendices.



CHAPTER 2

Adaptive Control Techniques Based on Hill-Climbing

2.1 Introduction:

Economic considerations often motivate the engineer
to design and operate a system in the best possible fashion
i.e. he tries to optimize the performance and to minimize
the overall cost. It is in connection with the performance
optimization that adaptive control plays a very important
role. Usually, the success of the overall system, rather
than assuring that each part functions i1tself in an optimum

fashion, is the primary objective.

The thought that it may be advuatageous to the
system to alter the control characteristics during the
operation to adapt to various changes in different parts
of the overall system has resulted in the increasingly
extensive use of adaptive control techniques.‘ The control
parameters are changed in accordance with other changes

in the system to dimprove the performance.

There are two basic philosophles in adaptive con-
trol. One attempts to identify the system and the changes

which have taken place in it in order that new values of
- 5



the control parameters be calculated, and the parameters
changed accordingly, so as to cancel out these changes.
The other makes no attempt to identify the system (also
referred to later as "plant"), but causes it to measure
its own performance against a figure of merit and uses
this information to reach an optimum. The latter method

will be the one dealt with in the remainder of the thesis.

Adaptive control without identificaﬁion haé the
advantage that an optimum can be reached though the changes
in the system's parameters or the external disturbances
are not known, and that sufficient data about the system
is not available. Indeed, the use of feedback is often
motivated by this very ignorance or lack of data. Also,
one of the major challenges in adaptive control is to~
design systems which perform satisfactorily using the
information available, however inadequate it may be
[2]. The index of performance, or cost function as it is
also known, is determined eilther by measurement or com-
putation, and the control variables are then operated in
such a way or with such settings as to yleld an extremum
value of this cost function. It must be noted here that
the cost function is chosen by the designer, and conse-
quently the final response of the system can be no better
than the criterion chosen. Depending on the criteridn,
different emphasis is placed on various parts of the ré—

sponse, and the most suitable one to choose is only the



designer's choice.

Modern control systems are bullt around computers,
and‘all the adaptive control techniques mentioned in this
'iﬁhépter-make use of computers in some way or other. Today's
engineering projects tend to be of such magnitude and scale
that the use'of computers 1is not only justifiable, it is
essential and economical to accomplish the job in the time
allowed and with the performance desired. Computers,
especlally digital computers, have made possible the solu-
tion of problems which were previously almost impossible
using analytical techniques; 1linear, non-linear and time
varying equations are handled with nearly equal facility
since they are treated in much the same way. The use of
computing for on-line process contrdl is to provide timely
signals to a process to enhance the value of 1ts outputs.
The computer is in fact an intimate part of.the process ;
it receives inputs from the process and in turn its outputs
may serve as inputs to the process. Indeed, without a
computer, changes in adaptive control systems could only
be made very infrequently, and probably the use of adap-
tive control would not be justified then. In fact, one of
the major requirements is that the adaptive controller's
ability to alter its parameters be relatively fast compared

to the time rate of change of the cost function surface.

There are several techniques of adaptive control



without identification which extremalize an assigned index
of performance, perhaps with constraints, using automatic
iterative procedures. A few of the most recently developed

ones are given in the sections following.

2.2 Steepest Descent Methods.

What 1s sought in this method is an extremum value
on a hyper-surface in the presence or absence of constraints¥.
Steepest-descent methods provide a set of algorithms or
control laws which usually lead to the desiréd solution
eventually [2]. As in the case of other optimization
methods, there is always the difficulty of determining a

global, rather than a local, extremum point.

In discrete optimization methods using.steepest
desceht (or ascent depending on the goél to be reached),
the slopes in different directions of the hypersurface are
assessed and steps of carefully chosen lengths taken in
the steepest direction of the hypersurface. Even though
- the problem space may not be discrete, these_méthods are
of value because of the speed of digital computers.
Gradient methods may be used to optimize non-linear systems
of equations and non-linear cost functions either alone or
in conjunction with statistical methods when knowledge

A constraint is a limit which exists on one quantity that
prevents a better value of another from being obtained.



acquired previously from the system is.uged teo calculate
the future steps to be takeﬁ. The problem may be‘formu—
lated as follows: given the cost function and the con-
straint functions, it 1s required to find the values of
the variables - system or controllér-variables - which

extremalize the cost function within the constraints.

The cost function may be represented in three-
dimensional space by a hill having arbitrary contours.
The constraints form curved boundaries on the hill and
define the region within which the parameters (variables)
may be adjusﬁed. Figure (2.2.a) shows an example of a
two-dimensional space with constraint boundaries. The
parameters X1 and x2 can only take on those values which

lie inside the unshaded region.

Gradient methods are well suited for the solution
of non-linear problems because they car be easily program-
med for digital computations. For example, if maximization
of'the cost function is required, then equation (2.2.1)
must be satiéfied.

Z(z)p+l > Z(x)p ............................... (Pa2e1)

where Z()_()p is the response for values of the variables after
the pth step. In order to achleve this, all methods use the

recurrence formula (2.2.2).

Bpel T Bp F Ap Qo eeciiiiiiiiiiiiiiisinsatas (2.2:2)
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where X is the magnitude of the step size, and 4
is thé direction vector which establishes the extent in

terms of the various x's to which the step size, A, is

apportioned.

Figure (2.2.b) shows a hill climbing procedure for

extremalizing the cost function Z(x).

. Z(K)p+l

£p Ep+1

FIGURE (2.2.b)

The difference between the various optimization methods,
i.e. gradient methods, depends upon the choice of the
step size-and the direction vector d. The latter is

given by equation (2.2.3).

10
1l

vz

1l
1

az dz,2 (=1/2
e Ll TOR B, . o {2:2:3)

All these methods require that the starting point

be selected in a manner that satisfies all the constraints



which may be imposed on the problem of extremalizing the
function Z(x). This implies that the control engineer
must be in a position to assign initial values to all

the parameters x in the problem. This requirement is

in fact one of the limitations connected with the use of
gradient methods. Depending upon the complexity of the
system, it 1s not always possible to ascertain whether

or not the starting point chosen will lead to an extremum
value of the cost function. Whenever this is not possible,
preliminary investigation must be made to ensure that such

a starting point is found.

The method of Steepest Descent determines success-

ive steps of X541 using equation (2.2.4).

The choice of whether the extremum is a minimum
(descent) or a maximum (ascent) is merely a question of
choice 6f sign. The step size can be made arbitrary, but
equation (2.2.1) will not always be satisfied. Usually
xp is made variable and after a new point is computed,
i.e. Xp41, the validity of equation (2.2.1) is checked.
If this equation is not satisfied, it is necessary to
reduce Ap and recompute §p+l until the equation is satis-
fied. Figure (2.2.c) shows a flow chart of a possible

steepest gradient algorithm to ensure that an extremum of

the cost function is found. LEach step calls for the

124



1.3

A Basic Strategy

Initiate.

Evaluate gradient.
Compute a step.
" Test constraints.

4
Take a step.

Is response improved?

Yes. No\

Compute another step. Retract half a step.

1 Test constraints.

Y

Yes.
i ?
Take a step. Is response improved?
No.
\ W
No. g
. Are minimum steps used?
Is response improved?
\ Yes. No. (Yes.
Adjust step size. ' Terminate.
Compute a step.
Test constraints.
Stop.
Take a step.
y
Yes. K
= Is response improved?
B, Return to last

position.

PIGURE (2.2.¢)

Flow Chart of a Possible Steepest-Descent Algorithm.[lo]
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evaluation of the gradient at a new point and a repetition

of the procedure until the extremum point is reached.

2.3 Method of Conjugate Gradients.

Practical implementation of a system using a steep-
. est-descent adaptive controller requires extensive hardware,
particularly if several parameters are to be adjusted. This
results from the method itself which calls for the evalua-
tion of the gradient at each step. For this reason, mod-
ifications have been suggested and one of them is the method
of Conjugate Gradients. Equations (2.3.1) and (2.3.2)

~define the conjugate gradient iterative procedure.

t
_ Bi+1 Bi+1
S - (2.3.1)
Bf By  reeesesssceseaan 3.
di41 = “8i41 t OBi df e, (2.5.8)
Xi41 Xi A3 di e (2.3:3)
where,
X5 = arbitrary starting point
2o = 5(50)’ represents the gradient at x..
do = - gy 1s the initial direction.
Xi41 = position of the extremum of Z(x) on the
line through gi in the direction of dj.
8:+1 = &(Xj471) is the gradient at xj,,.
B = welilghting factor for the previous direction.
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FIGURE (2.3.a)

Conjugate Gradient method for two-parameter Optimization.
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In this method, the initial starting direction is
determined by the gradient. However, aftef tﬁe position
of the extremum on this line has been obtained, the next
step 1s taken in a direction which is a linear combination
of tﬁe gradient at this point and the previous one. When
B4 = 0, the method of conjugate gradients reduces to that
of the steepest-descent method. Figure (2.3.a) shows a
two-parameter optimization procedure using the method of

conjugate gradients.

2.4 Method of Parallel Tangents.

This method is based on certain global properties
of ellipsoids. For cost functions with concentric
ellipsoidal contours, the method of parallel tangents will
locate the extremum exactly after a fixed, small number of
steps. But even when the contours are not elliptical, this

technique has desirable features [3].

Suppose that Z(xy, x,) 1s the cost function whose
extremal point is required. TFrom any point P, in the para-
meter space, proceed in a certain direction until an extremum
is found at a point P2. At Pg, progress in a direction
parallel to the tangent at PO until an extremum point P3
is again reached. From P3 proceed along the line P, P3
until an extremum is found at Py. From Py move in a dir-.

ection parallel to the tangent at P3, and repeat the procedure
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until the true extremum point of Z(xq, x2) is found.

Figure (2.4.a) illustrates the above technique.

Thére are a number of variations of the method of
parallel tangents [9], one of the most well known is

described below.

Steepest Descent Partan

From any point PO proceed along a polygonal line,
Py Py Py Py vevnnns » for which Py is the minimum of Z on
the extended line joining it to the preceeding point, Py_;.
At even-numbered points proceed in the direction of steepest
descent. At odd-numbered points, P2k+l’ proceed in the di-
rection determined by the line joining Poyp_o» and P2k+l'
Steepest descent PARTAN (PARrallel TANgents) is in fact an
n-dimensional generalization of the two-dimensional pro-
cedure of two steepest descents followed by an acceleration

step.

2.5, Discussion.

The method of parallel tangents locates the extre-
mum point of a surface with elliptical contours in at most
n steps, where n is the dimension of the parameter space.
In practice, very few functions have elliptical contours,
and further there are always experimental errors present.
So, the method is iterative rather than n-step, and this

is true of all the other methods also. The number of



FIGURE (2.4.a)

Two-parameter optimization using the

method of ParallelkTangents.
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iterations required by the various methods to locate the
- extremum point of the cost function varies and depends

very much' on the shape of the contours [4], [5].

Certain practical response surface characteristics,
such as ridges and valleys, often cause inefficient response
patterns. Consequently, adaptive strategies must be chosen
then to cope with such conditions. Often, the choice of
the starting point plays an important role in avoiding such

situations where progress is slow.

The methods so far developed for adaptive control
without identification are far from being perfect. They
all suffer from the drawback that they have no means of
determining whether the extremum point reached is a local
or a global one, unless the whole parameter space were
searched. Search techniques are usually lengthy and time
consuming. Further, because they tend .uv make little use
of & priori data, the results obtained are often influenced
by the laws of chance and probability. Also, duevto the
amount of time involved to search through the parameter
space - a method that cannot alwéys be applied to practicai
processes - they are seldom of value to practical adaptive
control systems where adaptive steps usually have to be

made fairly fast in order to achieve better performance.

The problem of locating an extremum point in the

parameter space is analogous to that of a man searching for

19



the bottom of a gently sloping valley in a dense fog, the
searcher héving at his disposal an altimeter and a compass
only. The earth's surface would be analogous to the cost
function surface, and the man's coordinates would corres-
pond to a two-dimensional parameter vector x. Suppose

that xl is-assigned as north, and Xzas east in order to
provide reference coordinates. One possible solution to
his problem would be to measure the change in altitude for
a five-step excursion north from his present position, then
the change for a five-step excursion east. This would es-
tablish vZ and the direction of travel rquired to minimize
altitude, Z, most rapidly for a given distance moved. The

searcher might then proceed in that direction a number of

steps proportional to ||VZ|| before repeating the entire
process. The above technique would be that of steepest-
descent. The difficulties which the searcher might encounter
in his adventure would be similar to thnse Which would be
encountered in computational solutions of practical problems.
Obviously, the searcher might reach the wrong minimum alti-
tude (a local extremum) and not realize it, since he can only
see the surface at his feet. If he moves too far on the
basis of each measurement, he may wander aimlessiy back and
forth across the valley without reaching a lower altitude

at any test point owing to an excessively large excursion.

The conditions imposed by contraints are similar to those

he would face if an unsurmountable wall suddenly blocked his



path in the fog.

The methods of reaching an extremum point on a
hypersurface in computer-automated systems are similar
to those the searcher would use in the above example to
reach the lowest point in the Valieyi His problem could
also have been. to reach the highest point of a region.
The goal in adaptive control systems can be either to
reach a maximum or a minimum of a certain function i.e.

an extremum point in general.

The remainder of this thesis is devoted to the
investigation of another adaptive control technique, the
Vector Cost Function algorithm, which aims at extremaliz-

ing a prescribed cost function.

2l.



CHAPTER 3

The Vector Cost Function Algorithm

The mathematical formulation of the Vector Cost
Function will be developed in this chapter, and a simple
example will be given to illustrate how this algorithm

can be implemented on a practical system.

3.1 Cost Functions

To evaluate the performance of a system (an indus-
trial plant, an aeroplane, a nuclear reactor...... ete.)
an Index of Performance - Cost Function as it is also
known - is generally used. Usually this function is of
an integral type which yields a scalar quantity J after a
~time interval T, the time over which the integration was
performed, has elapsed. The most well known cost functions
are the ISE (integral of squared error), the ITAE (integral
of time and absolute error) and the ITSE (integral of time
and squared error). A variety of other functions can also

be used depending on the goal to be reached [6].

Figure (3.1l.a) illustrates how the ITSE cost function

can be obtained from a system. In such a system the cost

= 22 -



r(t) y(t)

.——-————7 System

' i o | S

e(t) _ e?(t) X eft).t
Squarer Multiplier Integrator
+ 5

where r(t) system input

y(t) = system output
d(t) = desired system output
e(t) = error

J = ITSE cost function

FIGURE (3.1.a)

'€2
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could be measured over intervals of time T, arid hence it
would be possible to determine the variation in cost with
time. The value of T would usually be made a few times

larger than the "time constant"¥of the system itself.

The main drawbacks of such cost functions is that
a scalar quantity J is obtained after a fairly long time
has elapsed - any value of time comparable to the system's
time constant is considered here as a long time - and
further they do not yield information as to how the system's

parameters should be changed in order to minimize J.

Figures (3.1.b), (3.1.c) and (3.1.d) show three con-
figurations (open loop, forward path and feedback path con-
figurations) which can be used for adaptive control of a
plant. In the three cases fi would be the controller para-
meters which would be modified in view of minimizing J. In

general, the cost function can be expressed as in equation

' 7 Iy 8
tf
J =7 Blre 7o B BYBE Fnpes < malh Boue s (3.1.1)
to
where, r(t) = input vector.
y(t) = plant output vector.
d(t) = desired plant output vector
t = time
z(t) = plant input vector

¢ a scalar function of r(t). y(t), g(t) and t.

¥ Here "time constant" i1s taken to mean the largest time
constant.
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The objec£ is to modify fi, the controller para-
meters, so that the cost function J is extremized. Be-
cause of the inherent delay present between measuring J
and changing f, the system might become unstable as a

result.

A better cost function would be one.of the vector
type having as many dimensions as there are controllable
gquantities in ¢, the integrand of equation (3.3.1). For
example, if a cost function were defined by equation
(3-1:2)

J(t) = (1IP[12 = 2| (81183 @ seinvindnsnsy (¥.1783

cF = ¢t

(0]

where r is an m-dimensional input vector, and e an n-
dimensional error vector, then, the vector cost function

should be an (m+n)-dimensional vector.

Note that in equation (3.1.2) the cost is measured
continuously. If J(t) is extremized at fixed intervals of

time, the resultant J would also be an extremum one.

3.2 The Vector Cost Function.

The inner product of two vectors U and V is defined

as
g n
<g.¥y> = ¢ Uy Vi e (3.2.1)

where U and V are both n-dimensional vectors.
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Using equation (3.2.1), define a vector H whose
inner product with itselfl varics monotonically and i¥ one-—
to-one with ¢(r,y,d,t), the integrand of equation (3.1.1).
Frequently, <H.H> would be numerically equal to ¢. For
example, if equation (3.1.2) defines a particular cost

function, then H can be chosen as

r 7
d = 1 v
P where r and e are m
'Ael and n vectors respectively.
re
n

Minimizing H at constant time intervals is equiva-

lent to minimizing J at the same time intervals [T7].

Define H'as being the global ontimum path of H
(with all constraints taken into account) which yields a

global optimum value J' of the cost function J.
Further, define vy = H - H ...ceteeeeeenns {8.2,2)

In other words, y gives a measure of the proximity
of the system to the global optimum. Hence, minimizing the
norm of H - equivalent to minimizing J - ensures that the
system is driven to a local optimum. On the other hand,

if the norm of Yy is minimized, the system reaches the global
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optimum i.e. provided that H' can be found. It is not
always possibile to determinc lH'. Tor example, consider the

two different cost functions given by equations (3.2.3)

and (3.2.4) - the symbol meanings are those of equation
(3.1.1).
t
J = J <H H >dt ciissivenvennnenes an w0 Fu 20 3)
0 t 1 1
o
t
J. w JF <H B 385 7 wiewoemon won i s wieloe e s (B.2.8]
2 & 2 2
o
where H = z PR = [d - y]
1 A(d-y) . -

ﬁz is in fact the error between the plant output
and the desired plant output. In this case, E; is obviously
zero. But, it 1s not possible to find H; since the optimum

Z 1is not generally known.

However, in cases where H' cannot be found, one
seeks to minimize <H.H> instead of <y .y >, and the system
will be driven to a local optimum value of the cost function.
It must be pointed out here that all methods of adaptive
control without identification of the system do suffer from
the above drawbéck in that one does not know whether the
optimum reached is a local one or a global one. The vector
cost function as defined by equation (3.2.2) does, however,
yield information about the nature of the optimum, as men-

tioned above.
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Consider the expansion of y into a Taylor Series

in the time domain, equation (3.2.4).

y(that) = ()4 GE.E8 + oin 4 Ay (BE)R 4 i,

Define yN = an-1y, (at)n-1
QEE*Ly (Hel )l  covcsesanssansoisde e e £3.2.5)

(e}
1}
—~
w
no
N
~—

-------------------

where G 1s an n-dimensional vector.

To minimize G a controller with n parameters 1is
required in order to be able to control independently the

n components of G.

3.3 The General Adaptor Equation and Parameter Variations.

Consider the general control system of Figure

(3.3.a); where:

¢ = forward path controller parameter vector.
f = feedback path controller parameter vector.
g:

plant parameter vector.
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The general vector cost function can be written

as follows:

g = Q<r, Ys d, t, ¢, s

Expanding G into a Taylor series, equation (3.3.1)

is obtained.

GlEHAE) gty + §0. 88 Fisvvansos (higher order terms)
ot
BRAY L pvegnen o
or
LT e, SRR £
od
3G.Ac + : °
Ic
BEAL # cxesvmas "
of
B bg. v "
da

Truncating equation (3.3.1) after the first partial

derivative, the Taylor series expansion can be written as

G(t+at) = G(t) + 3G.At + 3Q.Ar + 3G.Ad + 3G.Ac
it dr ad dc
+ 3G.Af + 3G.Aa
of B " = ups awdl daong 3 £3,3.2)

Also, G(t+At) = G(t) + AG.



Note that 3G, 3G, 3G, 939G and 3G are sensitivity
dr o8d 9g af da

matrices with respect to the parameters pr, d, ¢, £ and o
respectively. The object of. the vector cost function is

to make G(t+At) = @, where @ is the null vector. In other

words, the adaptation problem is to set A¢c and Af (and Ar

in some cases¥*) to values which will cancel out the changes

in Ag, Ad and t (and Ar) [8]. This requires the solution

of equation (3.3.3):

In order to calculate the required changes Af, Ac

(and/or Ar) in the control parameter vectors f and ¢

respectively, the following steps are needed:

1. Measurement of G(t)
2. Calculation of 3G.At and 3G.Ad from the
ot od
arbitrarily_defined functions G and d

respectively.

)

12

3. Knowledge of 3G, 3G (and/or 3
' of d¢c ' »

|

4., Estimation of 3G.Aqa

@
1R

¥ TIf r is known, then oG and Ar are calculated. If how-
ever r is not known,ar G and Ar have to be calculated
and measured. p can or also be used as a control
variable in the system. ' '

2.



Step 1: G(t) can easily be found since it only involves
the quantities r, y, d¥ and t which can either

be measured or calculated.

Step 2: This step follows from the fact that G and d

were initially arbitrarily chosen.

Step 3: The sensitivity matrices 3G and 3G cén only be
of dcC
learned as the adaptation proceeds. 1Initially,
they have to be arbitrarily assumed and later

improved by updating.

Step 4: The only possible way of obtaining the value of
9G.Aa is to estimate it since no attempt is made
2% this algorithm to identify the plant. Know-
ledge of the plant behaviour to parameter changes

can only be acquired as time elapses.

Define, b = 38.Aa (3.3.1)
. da

The General Adaptor Equation for the vector cost

function algorithm can therefore be written as follows:

G(t+at) = G(t) + 3G.At + 3G.Af + 3G.Ac + 3G.Ar + 3G.Ad +
ot 3

=
o
=
o

¥ The Vector Cost Function assumes that the desired out-

put is known at all instants of time.



Equation (3.3.5) will in fact be seen to be the
heart of this algorithm, and will be used for predicting
the changes in the controller parameters and in learning

the sensitivity matrices.

3.4 Learning and Updating.

The basic idea underlying this part of the algo-

3k,

rithm is to make calculated changes in one of the controller

parameters available, and to note the resultant change in
G i.e. AG. Then, the column of the sensitivity matrix
which depends on that parameter can be updated. For ex-
ample, 1f the change were made in £y, then the column

updated would be that of the 5G matrix
of

i.e. an where 3G is an nxn matrix, and

afy aE

j=1, ...n . ;
e f an n-dimer~-ional vector.

The controller parameters can be changed one by
one at time intervals At apart, and after each change the

appropriate column of the sensitivity matrix updated.

Suppose that in the general control system of

Figure (3.3.f) the input vector r(t) is varying with time

in an unknown fashion. What is required then is .to adjust

f and ¢ so as to optimize G, the vector cost function.
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Figure (3.4.a) shows two possible adaptation
schemes which differ in the frequencies at which adapta-

tion of the two controller parameters is performed.

Scheme (i) adapts fy, updates 3G, learns 3G;

of or
, learns 3G and starts again.

(&}

then adapts Cj’ updates 3

l

39

10

or

]

Scheme . (ii) adapts f;, updates 3G, adapts f, learns

. af
3G then adapts Cj’ updates 3G, adapts c and starts over
ar 8:C

again.

These two schemes are not unique and .the particular
way in which the "Learn and Adapt" steps are performed
depends entirely upon the designer's choice. Thus, a great
deal of freedom exists in the particular order and way
that the controller parameters may be changed and the sens-

itivity matrices updated.

3.5 Example

pl3
}—b
(1N
1<

Controller Plant

FIGURE (3.5.a) (Open Loop Controller.)
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(1) At t = t_, solve for Af using equation (3.5.1)

. below:

(75 I

@(t,) + 3Q.Af + 3G.4d + 8Q.4¢ + 3G.4r +b = @ ...(3.5.1)
of od ot or

where © is the null vector, and all matrices are n X n

37.

and all vectors n-dimensional. n is the order of adaptation.

Then, change Af; keeping the (n-1) remaining com-

ponents of Af to zero.

@)

(i1) At t = t_ + At, measure g(to+At) and hence calculate

Then, update the ith column of the sensitivity

matrix 33 using equation (3.5.2).

|

o f
n
_%i Afy = MO - %%j.At - by - kil(ggi ad, + giJ Ary
for J =1 g m . Aessapewas (3.5.2)

There are n elements to be updated in the ith

column of the matrix, and so j takes successive values

9G
of
of 1 to n.

The next step after estimating b could be to change

the (i + 1)th element of f and update the (i + 1)th row of

the sensitivity matrix at an interval of time At later.

Q.

all the elements of f could be changed simultaneously after
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the updating phase ih order to make better use of the
recent updating; then, go on to change the (i+l1l)th elément
of f and updaté the (i+1l)th row of the sensitivity matrix,
and stért all over again. The first method of adaptation
would resemble scheme (i) (Figure 3.4.1) and the second

scheme (ii).

In the example, the above schemes are probably the
only two suitabie ones to use. Any others would be a com-
bination of these two and would probabl& be not as efficient
since there is only one controller in the system and r has

been assumed fixed.



CHAPTER 4

The Vector Cost Function Implementation

This chapter considers the implementation of the
Vector Cost Function algorithm upon three different con-
figurations, and the methods of prediction and updating
which were used. The complete systems were simulated on
digital computers (IBM 7040 and CDC 6400) using the

Fortran IV compiler.

Three different system configurations were in-

vestigated which had:

(a) a feedback path controller.
(b) a forward path controller.

(¢) an open loop controller.

These general configurations were tgsted slinece -
the Vector Cost Function method makes no mention of the
type of configuration and the particular controller which
should be used. Theoretically, any configuration using
any controller should lead to an adaptive system which
would yield an optimum value of the cost function, either

a local optimum or a global one depending on whether H or

- 39 -



y was used. It will be seen later in chapter five that
this is not always the case since stability and other

factors have to be taken into account.

4.1 Feedback Path Controller System

This configuration appears to be an‘éttréctivc
one, for the properties of feedback have long been estab-
lished. But, it must be remembered that feedback intro-
duces another loop in the system on top of the adaptive
loop itself. The system, apart from being more sensitive
to changes in the parameters of the feedback loop, could
become more oscillatory or even totally unstable as a

result.

Figure (4.1.a) shows the feedback configuration
which was used here. The state-space formulation of the

plant is given by equation (4.1.1.) below:
N 0 il y + | 0|[z]
y -2 -0.5 y 2 P & % W )

where y1 and y2 represent the system's state-
variables. The feedback-path controller output is given

by equation (4.1.2).

I
1l
[eF
|
e

4o.
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Feedback Path Controller System

r = system input
z = plant input

x = controller output

¥-= plant output

d = desired plant output
e = error

f = controller parameter

G = vector cost function
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The quantities r, z and x are scalars and d, y,
f and ¢ are two-dimensional vectors. The initial condi-

tions imposed on the. system were the following:

0 0 1

f = s Yy = e and r = 1.
0 i 0 0

r and d were kept at their initial values
throughout the response, and so the system had therefore
to respond to a unit step input. The value of the sens-

itivity matrix was arbitrarily chosen to be:

G . 1 0
E 0 1

The value of the prediction vector b was initially
taken to be zero. This was probably the best choice that
could be made considering the fact that no knowledge of

the plant should be available initially.

Adaptive changes were made at every 0.0l-second
time intervals though values of G were measured at every
0.001 seconds. This will be more thoroughly explained

later in section (4.4) of this chapter.

The vector cost function was selected as shown
by equation (4.1.4). This cost function is basically

equivalent to the ISE index of performance. Other indices

of performance could also have been chosen. This part-
icular one places more emphasis on large errors than on

small ones. On the other hand, had the ITAE criterion
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been chosen, more emphasis would have been placed on

long duration errors and transients.

H = d-y (1)
Hence H' = o (11)
G = H-H' = d-y AIALY "  sevnsure sweun (4.1.4)

The ISE criterion was selected because it was the sim-
plest one to handle. Further H' in that case was easily
found. Had the ITAE criterion or any other criterion
involving a time weighting factor been selected, another
term in the Adaptor Equation would have resulted, i.e.
3G.At. Also, less emphasis would have been placed on

ige initial error. Consequently, the system would have
taken longer to adapt to the desired output had the
system been driven initially by the controllers along

a trajectory which would have increased the initial error.
Because of thé initial arbitrariness of the choice of the
parameters, what is required is a cost function which will
drive the system in the right direction in a fairly short
time. The ISE criterion does provide the system with

such a means and was therefore judged useful here.

With the set of parameters chosen and the con-

troller used, the Adaptor Equation reduces to equation



(B, 1.5),

N PN A (4.1.5)

G(t +at) = G(t) +

[o>4
G2

2

9

I+

Note that here the vector b is still used though
the plant does not contain variable parameters. This will
be discussed later in section (4.4) of this chapter. Also
note that the.controller sensitivity matrix g% 1s of

e & : 5

dimension 2 x 2 because the controller parameter vector f

is two-=-dimensional.

4.2 Forward Path Controller System

In this configuration, the controller is inserted
in the forward path of thensystem and in series with the
plant. Its output is used as the forcing function to the
plant to be controlled. Usually the feedback signal is
either the plant output itself or the error between the
desired plant output and the actual plant output. Of
course, any other signal can also be used but the above

two are the most common ones.

Once again, the 1lnput to the controller does not
need to be of a specific nature and the system should be
driven towards an optimdm of the cost function whatever
the input function. But, as will be pointed out later, it
was found from the work carried out that this is not

always the case, for the present form of the Vector Cost

by,
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Function technique does not take into account the major

problem of stability.

The feedback signal chosen for this system was
the plant output itself because the other types were
found less satisfactory and more prone to instability.
The forward path‘cohtroller system used is shown ih
Figure (4.2.a). The state-space formulation of the
plant is given by equation (4.2.1), and that of the con-

troller by equation (U4.2.2).

y 0 1 y 0|[z]
1 1
= +
N -8 rel B y it (4.2.1)
2 2
B 2 PP - cesvessnnissiis s and s (4.2.2)
g =i =B T aiuanbe s hreas gy pen (4.2.3)

The initial conditions imposed upon the system
are given below

0 il P & it

y = PR s r = and: =
.- 0 0 0 1
.......... (4.2.4)

The sensitivity matrix chosen is given by equation
(4.2.5) and the initial value of b was again taken to be

Z€ro.

@
162

@
L}

The cost function used was again the ISE criterion
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and reduces to equation.(4.2.6) below which is identical

to equation (4.1.4) previously obtained in section (4.1).

H=4d -y (1)
H' = 0 EEEY =@ T il fes el b (4.2.6)
G =H - H'= d-y (iii)

The system input vector r ahd the desired plant
output vector d were kept unchanged during the response
at their initial values given above. Once more, the
Adaptor equation reduced to equation (4.1.5) of section
(M.i). Adaptation was carried out at 0.0l-second tiﬁe

intervals and again G was measured at every 0.001 seconds.

4.3 Open Loop Controller System

The last one of the three configurations con-
sidered was of the open loop controller type. Here, the
controller is placed in series with the plant and pre-
ceeding it. As in the case of the forwérd paﬁh controller

system (Figure (4.2.a) ), fhe output of the controller, is
the forcing function to the plant but in this case the
controllef input is a constant function instead of being
‘a variable one. Figure (4.3.a) illustrates this type of

adaptive control configuration.

This configuration has long been used in connec-
tion with adaptive control systems and offefs the advantage
that it is relatively simple to analyze, i.e. the effect

of the controller on the plant can be directly assessed.
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In the case of the other systems, the effect. of feedback

usually makes the analysis more complex.

The state-space representation of the plant to

be controlled is given by equation (4.3.1) below.

N ' 0 il y 0 [z]

The controller output which is also the forcing

function to the plant is represénted by equation (4.3.2)

fr+ x (1)
1

N
1l

where, X -f x + flr (i1)
2
In the above case x, r and z are scalar quantities
and f, G and y are two-dimensional veciours. The initial

values of the parameters of the system are as given by

equations (4.3.3) and (4.3.4)

0 1 1
y = , 4= g D= and r = 1 ...... (4.3.3)
0 0 0
3G - -1 0
T B R T T el (4.3.4)
0 1

The initial estimate of the vector b was again

taken to be zero as explained earlier in section (4.1).
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Adaptive steps were made at every 0.00l-second time
intervals, and ten measurements of G were taken between

each adaptive step.

As for the other systems, the cost function was

selected to be the ISE criterion, i.e. equation (4.3.5)

(1)
CA4 3. . sawdesva (h.3.5)

H-H =d-y (1i1)

=
] 1
1©
I
I<

162
I

The input r to the system and the desired plant
output vector were kept constant throughout the response
which meant that the system had in fact to respond to a
step input. So, the adaptor equation once more reduced

to equation (4.3.6);
G(t + At). = G(E) # 20 AF +' P iusvssosionss (4.3.6)

The results obtained for the systems of sections (4.1),
(4.2) and (4.3) are presented in the next chapter and the

values of the graphs plotted are given in Appendix (II).

4,4 The Prediction Term

[A] The vector b forms part of the adaptor equation
(section (3.3), equ: (3.3.5) ) and its estimated values
are used at time intervals At apart. Careful choice of the

method used to estimate b from past data gathered is required
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and this choice would usually be dictated by the type of
statistics that o is 1likely to obey, the storage space
available in the computer used in the adaptive loop, and

SO on.

An arbitrary value is initially chosen for b and
afterwards better estimates are made as more is learnt
about the system. In the adaptor equation, the calculation
of the controller parameter change Af requires a value of
b, and this same value is used at a time intérval At later
fo update the controller sensitivity matrix, as explained
in chapter three (sections (3.4) and (3.5) ). Hence, this
vector plays an important role in calculating the required
~changes in the controller parameters, and in updating the

controller sensitivity matrix.

For the adaptive systems considered in this
thesis (Figures (U4.1.a), (4.2.a) and (".3.a) ), the vector

b was divided into two parts according to equation (4.4.1).

Here the vector b'represents the estimated future
state of the system at the next adaptive time interval
At, and is calculated from past data stored in the computer
memory. The vector b" is used to take into account unfor-
seen plant parameter changes and any errors arising from

the calculations.
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A diagram illustrating the meaning of the

vector b is given in Figure (4.4.a).

Changes in the controller parameters were made
at time intervals At apart in the adaptive systems invest-
igated. To obtain a better estimate of b', the cost
function vector G was measured at every 0.1At interval.
Consequently, between any two adaptive steps, ten values
of ngere obtained and from them the vector b' was
estimated. No bther past values of G or b' were stored
and used for the calculation since these were judged
adequate. Further, because of the time interval between
adéptive steps was small, no significant error was made by

estimating the value of the vector b" as zero.

[B] Evaluation of b'

From the values of G obtained between successive

adaptive stepé, the gradient of G, i.e. dG, was calculated
at

for each 0.1At time interval. The point s_. of Figure

a
(4.4.p) was obtained by linear extrapolation from the
initial slope s1 to the final slope Slo' Again by extra-
polating the final slbpe SlO and the one 0.1At before,
l.e. B, the point sy - which is At away from SlO - was
obtained.

Sc, the predicted slope at a time interval At

away from 5., Was obtained from equation (4.4.2).

23
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S = 8p - (sa—sb) ..................... (h.4.;2)
= + = 18 Ml e £ es bl s B4R e e o B e g o
Sa s10 (s10 Sl) (4.4.3)
By~ ® B + (s — B 0 e s s " (4, 4,4)
10 10 9
0.1At

The vectdr b', the estimated state of the system,
was then calculated by assuming that the gradient of G

varied linearly from the point s10 to the point s,.

For on-line systems, the shorter the computation
time of the operations on the computer, the larger is the
maximum possible frequency of adaptation. Here there has
to be a compromise between adaptation speed and maximum
error which can be tolerated. The slower the speed of
~adaptation, the larger the adaptive time-lag, 1i.e. inform-
ation gathered at time t  is only used at time tO+At, and

hence the time lag is always At in this system.

More sophisticated methods¥* of estimating the.
future state of the system could have been used, but the
one described was found accurate enough for this type of
response¥*¥, It must be remembered that adaptation to any
sudden input must be made fairly rapidly in practice if
an improved response is to be obtained. On the other hand,
for systems with slowly varying inputs or parameters, less

* The Lagrange interpolation and extrapolatlon method
is one of them.

¥% see appendix (11T}
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frequent adaptation and greater accuracy of prediction
are required. There is also more time available to

perform thé computétion because of the slower adaptive
rate,‘and so sophisticated and accurate methods can be
used to a great advantage. For a step input resbonse,
transients often hide the true nature of the response,
and so more accurate methods would not in general mean

great improvement in the system's performance.

4.5 Learning and Updating

The highest frequency at which one can update
the controller sensitivity matrix is determined by At,
the time interval between adaptive steps. One such method
could be to change each controller parameter in turn, and
after each adaptive step update the appropriate column of
the matrix. In other words, the whole matrix can be up-
dated in not less than nAt, where n represents the dimen-
sion of the controller pafameter vector. This: holds, of
course, if there is only one controller in the system. If
not, it will take longer than nAt to completely update it,
and the frequency of updating will depend on how many more
adaptive steps are required to learn and updafe the remain-
der of the sehsitivity matrices.

The confroller sensitivity matrix 3G was updated

of
every 2At interval of time because of the adaptive scheme



chosen¥* for the systems considered. The method used is

given by equation (4.5.1).%#%

123Gy = 3Gy | x(1-W) + 3Gyl x W
9fy afy o f5 : '
N 0 C.«i8.5.1}
(] = Lo vhsti)
where i = ith column of 3G
: of
J = jth row of 3G
of

arbitrary weighting coefficient.

=
1]

Each column of the matrix was updated according
to that equation. The particular way in which the up-
dating takes place is completely arbitrary, as pointed
out earlier in chapter three (section 3.4). Equation
(4.5.1) is a simple method of updating by which more or
less emphasis can be placed on the newly calculated
values of the sensitivity coefficients depending on the
value of W. This parametef had the following wvalues for

the systems considered.

Feedback path controller system: W =1
Forward path controller system: W=10.4
Opén Loop controller system: W = 0.2

¥ see section (4.7)

¥*¥ The subscripts N, O and C refer to the New, 01d
and Calculated values of ggd respectively.
afs
i

57.
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From equation (4.5.1) it is apparent that if the
calculated values of the matrix elements are identical to
the old ones, then there is no change in the sensitivity
matrix; The response can be changed depending on the

method used in updating , but this aspect was not in-

3G
of

vestigated here.

4.6 Constraints Imposed.

In all practical systems, there is a limit to the
valués that certain parameters - gain, speed, curreht....
etc. - can have. These 1limits are usually dictated by the
geometry and design requirements of the system. On the
other hand, simulated systems can assume almost any para-
meter values (as large-as the computer can handlé) without
disastrous consequences such as breakdown in a practical
system. Because of this very fact, constraints must be
imposed on the maximum and/or minimum values that certain
variables of simulated systems can have so that the results
obtained do bear a practical and physical meaning, which

is, of course; the aim of simulation work.

In all the systems considered, it was found
necessary and desirable to impose‘constraints on the
maximum and/or minimum values that certain system para-
meters could take. The purpose of this was two-fold;

fifstly, the results obtained would be of practical
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significance, and secondly, it was found necessary to
impose these constraints in order that the resulting
systems be stable. The latter is discussed thoroughly

in the next chapter.

Limits were therefore placed on the maximum
absolute value that fi, the controller parameters, could
assume. Also, the maximum and minimum permissible
changes in fi, i.e. Af5y, were set. The former was to
avold too large transients to occur in the system, and
the latter to prevent the elements of the controller
sensitivity matrix, g%, to become very iarge or even

9

infinite as the case would be if Afi were very small or

zero upon updating that matrix.

The values of these constraints for the three
system configurations investigated are given in table

(4.6.1) below.

|f1 max. | |fy max. | |y min|
Feedback Path Controller system 10 Bl 10-8
Open Loop Controller system 5 0.1 10-8
Forward Path Controller system 10 o | 1G==

For a practical system, there would have to be other
constraints such as the maximum permissible input to the
plant, the maximum fate of change of the plant_output and
so on. Here these were not considered necessary because

the unconstrained variables did not exceed any reasonable



60.

values.

4.7 Adaptive Scheme

In chapter three (section 3.4) it was shown that
various schemes of adaptation could be chosen, and that
this was entirely at the designer's choice. The three
adaptive configurations considered here used the same
scheme for the order of adaptation, updating and predic-
tion. Figure (4.7.a) illustrates the scheme adopted.
Second order adaptation.was selected for the systems, and
so the cycle time required to completely update the con-
troller sensitivity matrix was 4Aat. This follows from the

adaptive scheme of Figure (4.7.a).

Here one controller parameter was changed, i.e.

f., and at a time At later the ith column of the control-

13
ler sensitivity matrix updated. Then, in order to make
full use of the recent updating, both controller parameters

were changed, and the process was repeated again.

Note that the vector b 1is estimated at every At
time interval irrespective of whether it was f or f5; which
was altered. Had the vector b" been taken into account,
then it could have been estimated just after f was changed
by Substituting all the values of the dther parameters in
the adaptor equation. For adaptive systems with fairly
low frequencies of adaptation, it is advisable to estimate

b" along with b' also.



N.

B

Measure G

Predict

1c

w.

Calculate Afi
& adapt fy

Measure

162

Learn & update
ith column of

>

&l
@
IC2

3

i

Predict

lox

Calculate Af
and adapt f

v

FIGURE (4.7.a)

(Adaptive Scheme)

Measurements of G are spaced at time intervals
At apart. The cycle time to go through the
steps shown above is therefore 2At.
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CHAPTER 5

The Vector Cost Function Results

Chapter five contains the results obtained for
the systems investigated, and also partial conclusions
regarding the effectiveness of the algorithm chosen. The
graphs plotted are: output vs. time, phase-plane diagram,
cost function vs. time. A comparison of the results ob-
tained with different controller configurations is shown

in appendix (IV).

5.1 Feedback Path Controller System

The results plotted here are those of the system
described in section (ﬂ.l), and where Lue plant output
vector is required to move from state Zt = [0, 0] to
state zt = [1, 0] so0 as to minimize J, the integral cost

function.

The adapted and unadapted plant responses are
shown in Figure (5.1.a) on the next page. It is immediately
obvious from these responses that the algorithm adapts
well, and in a fairly short time too. The response of the
unadapted system is very underdamped and has a first over-
shoot of 56.8 per cent, and then lies within five per cent

- 63 <
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of the final value after 11.71 seconds. On the other
'hand, the adapted system's response shows no overshoot
and has a settling time of only 2.71 seconds. Further,
after 7.00 séconds the system has adapted to an error

of less than four parts in ten thousand, whereas the
unadapted system hés not reachéd such a value after 25.0-

seconds.

This is a very good result considering the fact
that adaptation to a step function is required and that
the algorithm had no knowledge of the plant before hand.
Also,bthe initial values of the pérameters were completely
arbitrary, and not optimum by any means. Figure (5.1l.a)
shows conclusively that the system did learn fairly ‘
quickly the effect of the controller parameter éhanges,
and did change them in the right direction in spite of
all transients present and especially those after diécrete

adaptive steps.

On éonsidering the phase-plane diagrams, Figure
(5.1.b), for both systems, it is to be noted that the adap-
ted system's output speed does nqt exceed that of the
unadapted one. This 1is due tova number of reasons. Firstly,
equal weight was assigned to the output and its time der-
ivative in so far as adaptive changes were concerned.

This meant that the output position and its time derivative
were considered equally important. Secondly, the maximum

controller parameter magnitude was limited - here it was



10 - and so the controller output, once the parameters
had reached their maximum values, depended entirely upon
the forcing function to the controller. -Thirdly, the
controller input was the error between the desired and
thé actual plant oﬁtput55 and this was a time decreasing
function with a final value of zero. Consequently, since
both the forcing function and the controller parameters
were bounded, the output of that unit was bounded too.
This implies that the plant output speed could not rise
above a certalin limit, unless the plant were itself
extremely non-linear. It will be pointed out later that

such effects are, in fact, desifeble,

During the response the cost was measured, and
Figure (5.1.c) shows the variation in cost with time for
both adapted and unadapted systems¥®. As is expected in
this case, both curves tend to a constant value and the
.cost of the adapted system has a final value of 0.501
and that of the unadapted system is 1.12. This is a 55.3
per cent improvement in cost which is fairly good in view
of the fact that no knowledge of the plaﬁt was assumed;
partial knowledge is acquired as time proceeds, and this
is later used to greater efficiency in calculatiné the
adaptive changés necessary, but initially the plant
appears as a black box to the controller.

¥ Values of all graphs shown in this thesis are found
in appendix (II).

66.



COST FUNCTION

1.0 -

Unadapted Response

Adapted Response

.4

FIGURE (5.1.c¢)

Feeldback Path Controller System

TIME (SECS

2 0



68.

In the later sections of this chapter [(5.4),
(5.5) and (5.6) ] some important aspects of the Vector Cost
Function are investigated using the above feedback con-

figuration.

5.2 Forward Path Controller sttem

These results are those obtained from the

system of section (4.2). This configuratioh is the one
which yielded the least satisfactory results since they
cannot be considered truly adaptive. The reason is that
the input vector value is';t = [1.1,0] and the maximum
controller parameter magnitude is 10.0. Hencé; in the
final steady-state, the value of z, the controller in-
put vector function, is given by gt = [0.1,0], because

of the configuration chosen. Therefore, fl has to assume
its maximum value in order that the plant output reaches

the desired output value.

Figure (5.2.a) shows the response of the plant in
the adapted and unadapted modes. It was found necessary
to set the controller parameter 1limit to 10.0 in order
that the system's response be a stable one. In view of
the constraints imposed, this system cannot be considered
as being totally adaptive. But, on the other hand, it
does show the property of being able to change the con-
troller parameters in the right direction so as to ﬁinimize

G, the vector cost function, and hence drive the-system
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towards the desired value. This iﬁ é very limportant
property which cannot be overlooked especially in the
vector cost function algorithm, for it reflects the
ability of the algorithm to learn the sensitivity of
the plant to controller parameter changes and hence to
minimize G. In other words, it is the criteridn'
which determines whether the system is adaptive at all.
These results have been given here since they do show

this very property of the vector cost function.

The phase-plane diagram of Figure (5.2.b) in-
dicates an interesting feature of the adaptive system.
In the last chapter, it was pointed out that the methods
of estimating the future state of the system, 1.e.
estimating b', and of learning and updating the matrices,
here gg,were.arbitrary and depended upon the control eng-
ineer?g choice. The valley occuring in the adapted
system's phase-plane diagram between the output values of
0.1 and 0.2 is a consequence of this arbitrariness in
choice. It occurs because of the specific prediction and
updating schemes used were simple and did not involve the
storage of numerous past values in order to calculate the
- new oneé. In other words, this basically means that the
system, though it had been adapting the plant towards the
desired output, had no real means of knowing this fact
had it not been for the controller sensitivity matrix.

But, after slowing down, it does readjust itself and
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drives the output towards the desired value.

It cannot be guaranteed that another method for
estimating the future state of the system and updating
the controller sensitivity matrices would result in the
system being driven smoothly and more efficiently towards
the desired state. In fact, it will be seen in the next
section that the same scheme used gives a different type
of response for the open loop configuration. The best
methods can only be deduced 1f some knowledge of the plant
is available or arrived at by previous runs using the

adaptation scheme.

Finally, Figure (5.2.c) shows the difference in
cost resulting from both the adapted and unadapted
systems. The final value of the cost 1is 0.538 for the
adapted plant and this is a 58.2 per cent improvement from

that of the unadapted plant.

5.3 Open Loop Controller System

The results presented in this section are those
.of the system of section (U4.3). Again here the system had
to respond to a step input i.e. move from state yt = [0,0]

to state yt = [1,0].

1t isAfairly common to find adaptive control

systems of this type in which the controller is placed
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in series with the plant and preceeding it. This
configuration is attractive in the sense that it is
simpler than the feedback one. As can be seen from
Figure (5.3.a), it yielded a very good result. After
0.934 seconds the plant output has settled to within

five pér cent of the final value, and after 1.49 seconds
the error between the plant oﬁtput and fhe desired out-
put is less than four parts in ten thousand. Contrary

to the response of the other two systems, the open loop
configuration yielded a single overshoot of nine per cent

before quickly settling to the desired state.

" The unadapted plant response is very overdémped
and takes about 5.5 seconds to be within five per cent of
the final value and 17.4 seconds to be within an error of
four parts in ten thousand. Of the configurations con-
sidered, the open loop controller was the one which drove
the plant the fastest to the desired output state. This
is attributed to the fact that the controller input was
a constant for this system, whereas those of the forward
path and feedback path controller systems were the errors
arising from the difference between the desired output state
and the plant output state, and consequently in the latter
case these functions were decreasing functions of time.
With a constant forcing function to the open loop control-
ler, the controller output reaches a larger value which is

maintained at this point if necessary. Since the other
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two systems had time.decreasing controller forcing
functions aﬁd since the maximum permissible changes in
the controller parameters were limited, it seems that
the increments in the contfoller parameters coﬁld not
compensate sufficiently for the decreasing input in |
order to maintéin the controller output at a Steady level.
The result was that the controllers in the feedback
systems had less influence upon the systems with such
forcing functions as the plant output approached the
desired state. This is evident from the fact that when
the error is zero for these configurations, the control-
ler output is zero whatever the values of the controller
parameters. AOf course, this is only true for the con-
trollers chosen and their respective forcing functions.
Had an integrator been used in the controller, then the

above would not hold.

Figure (5.3.b) shows the phase-plane traject-
ories obtained for the open loop adaptive system and
the unadapted plant résponse. The latter is a well
khown type of phase-plane trajectory, whereas the former
is rather unusual. The methods used for estimating the
vector b' and updating the sensitivity matrix had prob-
aﬂly important foles to play here. The estimation of
b' was made on the last ten measurements of G, but more

important was the updating probably. The greater the
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number of stored values of 3G , the more accurate is
: of

the estimation of the sensitivity coefficients with

respect to the controller parameters and the less

fluctuations there should be in them.

The phase-plane diagram of the adapted response
indicates that as the system moved from state Yo (wﬁere
Xg = [0,0] ) to state yp (where X; = [1,0] ), the ﬁp—
dating was taking place in such a way as to speed up
the plant output towards the final desired state.

Then céme a certain rate of output change which was

too large for equal weighting of the output and its
time derivative - equal weighting was assigned to the
output and its time derivative in the open loop system.
Updating then took place in such a manner as to prevent
the system from speeding too much. Between the initial
acceleration and the final deceleratien, there is a
region where the speed fluctuates about a more or less
constant value. The constant speed level results from
the equal weighting of the state variables, but the fluctua-
tions are probably due to the arbitrary prediction and

updating methods selected.

This means that two conflicting efforts were
taking place at the same time: the output attempting

to reach the desired value of 1.0, whilce the rate of
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change of the output was trying to stay at zero or
neér it. Hence, when the outpﬁt and its time deriva-
tive have about equal weight, small fluctuations
result. In the end, when the final output state has
been nearly approached, the system decelerates until
it finally reaches the desired.value. It. is to be
noted also that the same phenomenon occurs after the
maximum ovérshoot has.taken place and the system is
trying once,moré'to reach the desired output state.
Near the desired state there are some more speed fluc-
tuations, but these could be due to the fact that G
is very small then and thatverrors could consequently

have a dominating effect.

The resulting improvement in the cost for
the open loop system 1s apparent from the Output vs.
Time response, and Figure (5.3.c) confirms this fact.
The final value of the cost function for the adapted
system is three to four times less than that of the
unadapted plant response. This is indeed a very good

result.
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5.4 Iifreet of Constralnts on the Controller Parametcers

The following sections show the effects of the
arbitrary initial parameters upon the adapted response of
the plant, and also the effect of some other parameters
of the vector cost function. The feedback path controller
;ystem as described in section (4.1) was the configuration
used for the investigatibn.

(A) Effect of |[f: max. |

The effect of varying the maximum allowable
controller parameter magnitude was investigated using the
feedback controller system described in section (4.1). The
initial.conditions imposed upon the system were identical
to those described in that section except for Ifi max. |

which was made to take up different values.

Figure (5.4.a) shows the responses obtained for
values of |f; max.| equal to 100 and 1000, and also that
of the unadapted plant. The response due to the larger
value of the maximum controller parameter magnitude shows
that the system is being driven more quickly to the
desired state.. This is to be expected since a large
|f; max| allows a larger controller output. Hence, the
plant input can in turn be made larger so that the system

can speed up faster to the desired state.

But, the controller parameter magnitude cannot
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be Ilncreased Indefinitely, for eventudlly the resulting
system would become unstable. Here too, stability is of
prime importance and the |f; max.| that can be used would

depend on the plant which is being adapted.

(B) Effect of |{Af; max. |

There are numerous ways in which constraints can
be imposed upon the changes made in f, the dontroller
parameter vector. In chapter four a limit was placed
'upon the maximum and minimum changes which could be made
in f4y. Here, the effect of placing a different constraint

on |Af; max| was investigated.

The change applied to the controller parameters
was made to be two per cent of the calculated changes,
and any change smaller in magnitude than 10-8 was not

made.

Afi = 2 Af
100 :
(applied) (calculated)

i

and, if Af; < 10-8 ; af; = 0.

The system investigated was that of section (4.1)
with identical initial conditions to those described in
that section. Figure (5.4.b) shows the adapted and un-
adapted responses obtained. On comparing this adapted

plant response to the one of Figure (5.1.3), it is obvious
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that here too the adapted response can be altered by vary-
ing the way in which changes are made to the controller
parameter vector f. In fact, the response of Figure (5.4.b)
is seen to reach the desired state faster than the one of
Figure (5.1.a), and further it has an overshoot. This
improvement is due to the larger applied changes which

were initially made in the confroller parameters by the
above technique. Henhce, the systemis forced to move faster
through the larger plant input which results, and, after

an overshoot of about six per cent, it finally settles to
the deéired plant output state. Figure (5.4.c) shows the

resulting value of the cost obtained.

This particular way of applying changes in f is
probably better than the one described earlier in this
chapter, since the applied change bears a direct relation
to the one calculated from the adaptor equation. In fact
the controller sensitivity matrix was found to be more
accurate than that obtained using the other set of con-
straints, and consequently the responée was improved.
Other types of constraints can also be imposed on Af de-

pending on the goal to be reached.

5.5 Effect of initial controller matrix.

In order to use the Vector Cost Function algorithm
to control the response of an unidentified plant, one has

to assume arbitrarily the values of certain parameters of
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the Adaptor Equation. Then, as the system evaluates the
effect of the controller parameters upon- the plant response,
these initial values are modified using the 'learning pro-
cess described in chapter three. One of the important
parameters initially assumed is the controller sensitivity.

matrix.

As the response proceeds, the controller para-
meters are altered and so is the sensitivity matrix. The
appropriate weighting is given to each controller para-
meter, and the calculated changes in the parameters become

more accurate as the number of adaptive steps increase.

The system used to investigate the effect of the
initial controller.sensitivity matrix was the one described
in section (4.1). The values of the initial parameters
were identiéal to those described except for 3G and W.

9
The applied change in f was made as described in section

(5.4), (B).

L]

Figure (5.5.a) shows how the response of the plant
is affected using two different initial controller sensit-
ivity matrices, A and B.
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Though there is a difference resultiﬁg from the
initial arbitrariness in both responses, the final value
of the cost function is still better than that of the
unadapted plant. Figure (5.5.b) shows the resulting
variation in cost. The final value of the cost function
of the unadapted plant is 1.12 as compared to 0.452 and
0.663 for the adapted systems using the matrices A and B

. respectively.

There exists an optimum controliler sensitivity
matrix for this system, but in order to evaluate it,
full knowledge of the plant must be acquired. Then, work-
ing backwards from the final desired state to the initial
state, one would eventualiy be able to evaluate it. But
no such method can be used here since the whole purpose of
the algorithm is to adapt the plant without having to

identify it. .

_As a résult, there are a large number of respon-
ses that can be obtained using various initial arbitrary
matrices. The final value of the controller sensitivity
matrix is not the optimum initial value of that matrix
for the system. This is because here adaptation to a
transient is required i.e. a step. In this case, the
value of the matrix sensitivity coefficients are continu-
ally being chaﬁged in order to bring the system to the

desired state. The weighting given to the various con-
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troller parameters during the initial part of the.response;
when the system is required to speed up to the desired
state, is not the same as thaﬁ in the final part of the
response when the system mﬁst slow down to the final
desired state. Figure (5.5.c) illustrates this point.

To speed up the system initially, positive feedback is
applied and later to slow it down negative feedback is
applied - matrix B was used as theiinitial valge of the

controller sensitivity matrix.

The next section 1s a discussion of the.various
points investigated in this chapter, and also some other

factors by which the adapted response could be modified.

5.6 Discussion

(a) There are numerous ways by which the adapted
response of a system using the Vector Mnst Function algori-
thm could be modified.‘ Also, there are many techniques
which can be used to update the controller matrices and
to estimate the vector b. This is indeed a great freedom
which the eontrol engineer can take advantage of. On the
other hand, the performance of the system depehds to a
great extent on the choice made. In this thesis, the
objective was not to find the methods which could be used

to obtain the best possible response, but rather to inves-

tigate the various aspects of the above mentioned algorithm.
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As mentloned in section (5.5), the initial value
of the controller sensitivity matrix is one 6f the factors
which affect the transient fesponse of the adapted plant.
For such responses, the.controller matrix is in fact a
trajectofy in parameter space originating from the initial
arbitrary value to a final point. There is an infinite
variety of starting points because of the inherent initial
arbitrariness of the algorithm, and all the tréjectories
later converge to the same point in space. In practice;
because of errors in measurements and the limited accuracy
obtainable, the final value of the matrix would be a set

of poinfs rather than a single one.

In the case of adaptation to plant parameter
variations and external disturbances, the final value of
the controller sensitivity matrix would be>the optimum
starting value. The problem in this case is to find the
appropriate value of the controller parameter vector at
eaéh time interval At which will compensate for the
-variations occuring within the system. This reasoning
assumes that the properties of the disturbances do not
change drastically with time, but are stationary or slowly

varying.

Another factor which affects the response is
the initial choice of the controller parameters. Here

again the engineer can improve the system's performance

93.
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by using knowledge acquired from previous runs, or by
using initial values which are most suitable if no
knowiedge of the plant is yet available. For example,

a desired choice for the initial values of the feedback
path controller parameters is zero. In this case, the
arbitrariness‘in choice of these parameters does not
affect the system's response initially since the feedback
signal would then be zero; 1later, better starting values

can be used based on the experience acquired previously.

The constraints imposed upon the controller para-
meter vector f and the applied Af also alter the system's
performance as previously discussed ih section (5.4).

Here the choice of these constraints has to be made in the
iight of stability considerations. The initial choice

should be made so as to minimize the risk of the system
running away to infinity. Afterwards they can be relaxed and

improved as more knowledge of the system is acquired.

In the present form of the Vector Cost Function,
the values of the controller parameters are calculated by
predicting the value of G at the next adaptive step to be
e, fhe null vector. By predicting G(t + At) to be a frac-
tion of é(t), it would thus be possible to apply smaller
changes in the controller parameters if these had previously

been found to be too large.
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G(t '+ At) = EG(E) ...0n Sk w3 A & (5.:6:1)
where, & = fraction of G(t) predicted for G(t + At)

In the proposed form of the algorithm, the value
of & is zero. An extra design parameter canvtherefore be

used by making & greater than zero.

(b) The last point worth mentiéning concerns the
values of the coefficients of the controller sensitivity
matrix. The Adaptor Equation for the systems considered
is given by equation (4.1.5) in section (4.1). Thus at a
time At after a single controller parameter has been
changed, one.colgmn of the sensitivity matrix can be
learnt. Then, the updated value of the matrix can be
used to calculate the required changes in the coﬁtroller

parameters.

Appendix (III) contains some .ypical values as
calculated from the algorithm for the systems described in
sections (ﬂ.l),‘(4.2) and (4.3), also some other values for

the systems described in sections [5.4 (B) ] and (5.5).

It is apparent that the vaiﬁes of Af calculated
from the adaptor equation are too large. Hence, the use
of constraints previously described. If such changes were
made in the system, instability would resﬁlt. The large

values of the calculated controller parameter changes are



in fact due to the small values of the controller matrix
sensitivity coefficients which evaluate the system to be
less sensitive to the controller parameters thaﬁ it

actually is.

But, it must be pointed out that the constraint
on f which is described in section [(5.4), (B)] enables
the system to calculate the sensitivity matrix more acurat-
ely than the other one [described in section (4.6)] does.
Stability i1s an important factorvwhich cannot be overlooked
when using the Vector Cost Function algorithm. A criterion
which would guarantee the system's stability at each
adaptive step would be of tremendous help in overcoming
some of the problems assoclated with this technique;
unfortﬁnately, the preéent stability criteria available
cannot be used to guarantee the stability of an adaptive

system "without identification".
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CHAPTER 6

Conclusions

The conclusions presented here are both of a
general and of a particular nature, but they do reflect
upon some of the important deductions which were arrived
at pertaining to adaptive control strategies using the

Vector Cost Function method.

The adaptor equation cannot be applied as it
stands in its present form to adapt systems to given
transient inputs without the use of constraints, for
the resulting systemswould almost invariably be unstable.
The calculated changes in the control parameters are
too large, and unrealistic values of the parameters are
soon arrived at. It is therefore necessary to impose
constraints on both Afi, the change in the controller .
parameters, and f;, the value of the controller para-
meters. In cases where Afy is_very small or zero, it is
necessary to avoid updating the system then. Otherwise,
the elements of the sensitivity matrix will suddenly
become very large or even infinite. The above also
implies that when the error betweeﬁ the actual

plant output and the desired plant output does not exceed
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a certain minimum value, adaptation can still be carried
out but not updating since Af; will again be fairly

small.

A very important feature of the algorithm is
that if Y can be found (see section 3.2), the system
will then be definitély driven to a global extremum
instead of a possible local one by minimizing <yy>
in lieu of <H.H> . Other algorithms used for self-
optimizing control systems do not have this means of
distinguishing between a global and a iocal extremum.
On the other hand, it is not always possible to deter-
mine H', the optimum trajectory of the system; but, by
suitable choice of the cost function,H' can be found or
deduced usually. A cost function which will always yield
H' is the ISE (integral of squared error) criterion;

here, it is obvious that H' is always zero.

Another advantage of this algorithm is that it
is relatively simple ‘to implemeﬁt. The most time consum-
ing operations are those of estimating b, updating the
controller senéitivity matrices and solving the adaptor
equation. These can easily be programmed, and a‘special
purpose digital computef used instead of a general purpose
one if necessary. The amount of computer memory needed
will largely depend on the storage space used in storing
past data values, especially those of the vector b and of

the sensitivity matrices. Also, it will depend on the
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order of the controller i.e. the number of parameters

which have to be changed in the system.

The vector cost function method does change the
parameters of the controller iﬁ such a manner as to
dptimize the performance of the plant. This may appear
to be a trivial statement, but it must be remembered
that the initial values of the controller parameters are
completely arbitrary. In other words, it may happen that
the Valges choseh for the controller will'drive the
system initially in such a manner that would increase G.
But, the algorithm does correct for this as soon as it
starts learning about the system and in fact changes the
matrix sensitivity coeéfficients to the correct sign, and
finally drives the_system towards an extremum value of
the cost function. In the case of other adaptive control
algorithms without identification, this problem does not
exist since the gradient of the cost function is first ev-
aluated and the parameters then changed according to the
gradient of the cost function surface; finally, an extremum is
arrived at in an iterative fashion. The vector cost function
method does not evaluate the gradient directly at the
start, but rather, it learns about it as further adaptive
steps are taken. So, as can be deduced, if learning
methods provide the algorithm with the wrong information,

the system would not extremalize the cost function.
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This algorithm also attempts to approximate a
bang—bang controller for the systems investigated. What
was desired was that the systems move from one point in
the state space to another one in such a way as to mini-
mize G. it is well known that a bang-bang controller is
the one which will minimize the cost function best in
this case. The controllers used in the systems - though
they were not of the bang-bang type and were also each
different in nature - did perform in a similar fashion
[ see Figure (5.5.c)]. Of course, much of their perform-
ance would depend on how far from optimal were the
initiai values selected. One would expect that the closer
to the optimal are the initial parameter values, the
closer to a bang-bang system will the adaptive response

be.

The stability and response of the overall system
are affected by such factors as the weighting of the past
valués of parameters with respect to the latest ones.

The better the estimation of a variable at a future time,
the gfeater the number of its past values which are
required. Further, greater accuracy of prediction
impiies longer computational time. Accuracy of predic-
tion and speed of adaptation are therefore conflicting
requirements. Also, for a better estimate more computer
memory is required due to the amount of data which has

to be stored. But, as in any other field, here too there

McMASTER UNIVERSITY, LIBRARY



1s a compromise which has to be feached. In the present
work 1t was found that prediction of the future state of
the system to ﬁhree or four significant figures was
sufficient. In practice it is very rare to be able to
work to higher accuracies than that, because of errors
in measurement. At each adaptive step; the éhange in
the output state was noticed in the second sigﬁificant
figure usually, and so predicting to four significant

figures was considered adequate.

Since real time simulation was not used in this
work, the length of the computational operations between
successive adaptive steps could take as long as required.
In practice, the compromise between computational time
and frequency of adaptation must always be kept in mind

when designing an on-line adaptive control system.

Some of the difficulties of the vector cost func-

tion method can be partially overcome by a proper choice
of the initial parameter values. Some knowledge of the

plant is always available in practice and this can be

used to advantage in choosing the initial conditions which

have to be set arbitrarily. Moreover, once these values
are learnt for a given plant, they can be used profitably

in future.

The algorithm is well suited for on-line optimiza-

tion of plants. Unlike other methods of adaptive control
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"withoﬁt identification" where small changes in the con-
troller parameters have to bé made individually in order

to calculate fhe gradient of the cost function surface at

a particular point, the values of the parameters in the
case of the vector cost function are found by measurements
while the system is operating and without having to intro-
duce small parameter disturbances. Further, for adaptation
to transient response, this method is expected to perform
better than others because of its inherent speed and ease

of computation.

A great deal of freedom exists in cﬁoosing the
methods which are to be used to update and learn the con-
troller sensitivity matrices, and in choosing the system
configuration; Further, the particular way and order in
which the controllers are changed, the plant.paraméter
variations learnt, the controller matrices updated and so
on, are entirely at the control engineer's choice. No
method working satisfactorily for one plant can be guaran-
teed to work as efficiently for another, but here.too-the

final decision remains with the designer.

Of the three types of configurations investigated,
the feedback path controller system was found to be the
most satisfactory, though the minimum cost was obtained
with the open loop controller system. The forward path
controller and the open loop controller systems were

found to be more prone to instabiiity than was the feed-

302 .
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back path controller system. The best results with the
latter system were obtained when the controlier input was
the error between the desired and the actual plant outputs
i.e. a time decreasing function. In such a case, the
"controller output was zero when the plant was in the de-
sired state, and so the effect of the errors which were
made by the arbitrary predicting and updating schemes

used was consequently minimized.

The vector cost function offers a new approach to
the field of adaptive control without identification. A
learning mechanism is used to update the matrices of the
system and which in turn are reépoﬁsible.for driving the
system to an extremum value of the cost function. Hence,
the learning methods used have to be sufficienfly accurate

to provide these matrices correctly.

Finally, stability is one of .iie serious problems
encountered with this algorithm. But, by proper choice of
the controller configuration, the initial parameter values
and the constraints imposed, the adapted response can be
made to remain in a stable space. Using a time decreasing
input to the controller in the feedback path may not drive
the system as fast as another input to its deéired final
state, but it Will certainly ensure a greater stability
and évoid such oscillations as were encountered with the

.open loop controller system.
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The following suggestions concerning further work

can be made:

s Investigation of the efficiency of this
method to problems concerning plantsop-
erafing in their steady state, and where
large parameter variations and/or external
disturbances occur which affect the

desired performance.

20 Implementation of a stability algorithm
which would guarantee the final stability

of the overall system.

3 Comparison of this method with other
methods of adaptive control "without

identification".
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a scalar quantity

the absolute value of m

a vector u

the norm of u

the inner product of v with u
the 1th element of ¢

the transpose of y

the partial derivative of x with
respect to v

a matrix A

the Vector Cost Functicn

time

dc , the derivative of c
dt

with respect to t
the gradient of Z
X greater than y

m less than n

a finite increment in p
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General program outline chart.

START

Draw configuration
used

Read initial values

Write initial
values

Compute the outputs

Measure G, AG etc.

IT =0

N\
dl—b

Predict Db

LE

li
H
—
4=
[

solve for -Af

Y
®




A 4

Test Constraints

l

Change f(II)

-ICompute the Outputs

—

Measure G, AG etc.

Update II1th of
matrix

Predict b

Solve for Af

Test Constraints

Change f

Compute the Outputs

IF(II .EQ. N)II=0

Y

1310.
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TABLE OF VALUES FOR GRAPHS PLOTTED

Feedback Path Controller System

[Fig. (5.1.a)]

(1) OQutput vs. Time
Unadapted Plant Adapted Plant
Time (secs) Output [y(1)] Time (secs) Output [y(1)]

0. 0. 0. 0.

0.5 0:221) 0.5 0.3871
1.0 0.7238 1.0 | 0.6527
ls5 1.2325 1.5 0.8032
2.0 1.5300 2.0 0.8885
245 1.5368 2.5 0.9368
3.0 1.3144 3.0 0.9642
3.5 1.0078 345 0.9797
4.0 0.7657 4.0 0.9885
4.5 0.6765 4.5 0.9935
5.0 0.7444 540 0.9963
5.5 0.9057 5.5 0.9979
5.0 1.0713 6.0 0.9988
645 1. 3700 6.5 0.9993
7.0 1.1748 7.0 0.9996
T.5 1.1043

8.0 1.0052

8.5 0.9258



Time (secs)

Output [y(1)]

Time (secs)
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Output [y(1)]

9.
.
-10.
10.
113
12.
15,
18.

20

$5 g,

0

(o S 1

o Ul

0.

0

O‘

8954

.9161

9679

.0218
.0545
.0346
.0066
.9891
.0056

Phase-Plane

Diagram

LPig. (5

w1 )]

Unadapted Plant

y(1)
0.

L

O.

.0036
0191
.1013
.2376
.5066
.7238
.0040
. 3505
.5688
.3543

y(2)

0.
0.
.2687
.5866
.8355
D555

. 2012

0

1180

0511
7114
.0034
.5565

Adapted Plant

y(1)

0.

0.
g,

0022

0103

.0382
L1114
.2046
. 3513
.5005
.7004
.9016
.9806

y(2)

0.2572
§.5317"
0.8216
0.9528
0.8957
0.7367
0.5675

1 0.3404
0.1118

0.0220



Unadapted Plant

y{1) y(2)
1.1552 ~0.6263
0.7460 -0.3076
0.6771 ~0.0287
0.6851 0.1021
0.7393 0.2499
0.9128 0.3562
1.1300 0.2034
1.1711 0.1003
1.1676 -0.1020
1.0510 ~0.2026
1.0014 -0.1098
1.0006 0.1078
IITI = Cost Function vs.

[Fig.(5.1.¢)]

Time (sec;) Cost

O 8:

0.2 0.1945
0.3 0.2824
0.4 0.3604
0.5 0.4267
1.0 0.5803
2.0 0.6780
2.0 0.9308
4.0 0.9578

Adapted Plant

y(1)
0.9988

0.9996

Time (secs)

y(2)
0.0013

© 0.0004

Cost

0.0966
0.LT0T
0.2437
0.2960
0:i337¢
0.4185
0.4487
0.4843
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Unadapted Plant

‘Time (secs)

100
12.0

205

i

Cost

.0465
.0646
.1019
L1141
1179
« 1200

Adapted Plant

Time (secs)

Cost

0.5000
0.5011
05031

0.5011
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Forward Path Controller System

[Figure (5.2.a)]

Adapted System*

(I)

Output vs.

Time

Time (secs)

O.
0.03

o
o ~.- W

[}
O AR

W e ~3. o W Tl W e
o

=
(@]
o

12.9

The unadapted plant values for the output,
phase-plane diagram and the cost function

Output [y(1)]

-

0.

0016

1205
.3608
L4907
.6378
7948
.8837
.9627
.9880
.9961
.9987
.9996
.9998
.9999
.0000
.0000

are identical to those of (I),

(III) respectively for the feedback path

controller system.

(II) and

6.



(L)

Phase-Plane Diagram.

[Figure (5.2.b)]

y(1)

0.

0.

0

0016

.0056
.0127
.0454
.0763
« 1021
13780
+ 1525
2013
. 4029
. 6655
.8500
.9526
Q9%
.9999
.0000

@ O o O . O

o

o

(&

o

o

o

x(2)

.1308
L2744
. 4328
.8U469
.8632
.9575
.7898
«T123
.8413
L6779
.3800
.1000
.0538
.0054
.0000
.0000

L7
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(III) Cost Function vs. Time

[Figure (5.2.c)]

Time (secs) 99§§!
0. ‘ 0.
0.1 0.0992
0.3 D 2555
0.6 0.3950
1.0 0.4805
2:0 05322
3.0 0.5%75
4.0 0.5381
5+0 0.5381
6.0 0.5381

10.0 0.5381
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Open Loop Controller System

[Figure (5.3.a)]

(1) Qutput vs. Time.

Unadapted System Adapted System -

Time (seecs) Output [y(1)] Time (secs)  Output [y(1)]

0. - 0. B al, 0.
0.5 0.1369 0.1 _ 0.0332
1.0 0.3347 | .y 0.1707
1.5 0.4999 0.3 4 0.3588
2.0 0.6262 0.4 0.5515
3.0 0.7918 0.5 0.7548
4.0  0.8841 0.6 0.9544
5.0 0.9355 0.7 1.0715
7.0 0.9800 0.76 1.0916
10.0 0.9965 g _ 1.0342
15,8 0.9998 1.2 1.007T
20.0 0.9999 1.5 1.0004
i (e Phase-Plane Diagram

[Figure (5.3.b)]

Unadapted System . Adapted System
y(1) w2 y(1) y(2).
0% A 0% ; 0. ' 0-
' 0.0033 0.1066 .. 0.0012 . 0.1086

0.0143 © 0.2016 ' 0.0032 0.2011



Unadapted System Adapted.System
y(1) y(2) g1y y(2)
0 0652 0.3443 0.0140 0.5080
0.1171 0.3911 0.0496 1.0097
0.1895 0.4066 0.1001 1. 145814
0.2932 0.3859 0.2119 1.9940
0.3568 0.3610 0.4598 1.9240
0.5027 0.2879 0.5595 2.0030
0.6494 0.2049 0.6500 2.0261
0.7713 0.1339 0.7632 ~ 2.1081
0.8867 0.0663 10.9986 1.3875
0.9800 0.0117  °  1.064k 0.7625
0.9952 0.0028 1.0916  -0.0003
‘ 1.0668 .  -0.2L29
(ELT) Cost Function vs. Time

[Figure (5.3.c)]

Time (secs) Cost Time (secs) Cost
'O.. 0. : U 0.
0.5 0.4481 0.1 0.0981
1.0 0.7391 R 0.1806 -
1.5 0.9070 0.3 .. 0.2348
2.0 1.0013 0.4 0.2648
4.0 1.1086 Bl _0.2794
6.0 1.1189 0.9 0.2809
9.0 ! i.l200 - Ao 3 0.2812

10.0 : 1.1200 1% 0.2812

1205
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Feedback Path Controller System

[Figure (5.4.b)]

Adapted System® with Af; (applied) = 2% of Af3y (calculated)

Output vs. Time

Time (secs) Outpﬁt [y(1)].

0. 0.
0.3 0.0918
0.5 0.2771
0.7 0.4998
0.9 0.6397
1.1 0.7410
i B, 0.8822
2.0 0.9879
3.0 1.0570
b.o | 1.6051
5.0 1.0004
6.0 1.0001
7.0 1.0000

* The values of the unadapted system are

those of table (I) for the previous
feedback path controller system.



(I1)

Time

Cost Function vs. Time

[Figure (5.4.c)]

(secs)

o Ul W

=}: O A &= W

Cost

.0919
.2809
.Q175
.5086
.5364
.5580
.5601
.5619
.5629
.5629
.5629
.5629
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(a)

Time (secs)

Feedback Path Controller System

System using matrix A

0.

0

O.

=

[lve]

«31
41
.55
.69
.87
<01
51
.05
.09

[Figure (5.5.a)]

Qutput vs.

Time

Output'
Ol

0

- 1377
0.

2450

4387
.6378
.8220
.9048
.9922
.9999
.0000

Time (secs)

0.01 |

0.

0

N U = EFE W

.33
.59
.01

.69
.01
.09
.55
.55
.45

output
0

O

0.

(b) System using matrix B

1151
3198

5874
.8011
19506
.9852
.9913
L9973
.9990

123,



Cost Funection vs.

Time

[Figure (5.5.b)]

(a) System using matrix A (b) System using matrix B

Time (secs)

0.

0

L%
29
.53
.95
Sy
77

Qutput vs. Time

Cost

0.

.1087
.2183
. 4009
. 4506
L4521
L4521

[Figure L5.5,8) ]
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Time (secs) -Qggg
0. 0.
0.11 0.1089
0.33 0.3043
0;65 0.4894
1.01 0.5849
1.55 0.6380
3.0% 0.6620
5.99 0.6630

The values of the plant response are those of Figuré

(5.5.a) for the system using the initial matrix B.

The values of the feedback path controller output for

this system are given below

Time.

0.

0

L0
o LT
«23
«33
-39

Controller OQutput.

O .

-0

-0.

.1396
1970
.1800
1241

+J013



Time

0.73
0.99
1.35
1,75
2 12
2.59
3.33

Controller Output

0.3292
0.6558
0.8231
0.6475
0.3923
0.2397
0.1461
0.0989
0.0456
0.0186
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TYPICAL VECTOR COST FUNCTION VALUES

(a) Open Loop Controller System
= 05183 - 5
-1.70976 x 10-3
Predicted b =
+=1,03122 x 10—2
i 43
8.6171 x-10
Measured G = o
-1.7142
- [ -1.7091 x i0-3
Measured AG =
| -1.0111 x 10-2 £
C _3.004 x 10-5 .879 x 10-6
g - 3 5.879
of -1.999 x 10-3 §.673 x 10-5
4,50
i =
L4.60
L
-4,.864 x 103
Calculated Af change =
. -1.714 x 10°
= 1.0 x 10-!

Afz change applied

I
o

Afi change applied

t = 0.184

~1.71976 x 10=3

Predicted b
~1,01161 x 10-2

i 8.5999 x 10-! 7

Measured G

|-1.7243
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-1.71920 x 10-3
- Measured AG =
-1.,01158 x ‘10=*

3G
Z
'Y (learnt) = 5.562 x 10-6
. A
G
2
;;— (learnt) = 2.810 x 10-°©
7
-3.004 x 10-5 5.816 x 10-6
Updated 3G =
~ of -1.999 x 10-3 3.795 x 10-5
-4.069 x 103
Calculated Af =
, -1.685 x 10°
-1.0 x 10-1

Af Change applied =
-1.0 x 10-!
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(b) Feedback Path Controller System of

Section [(5.4),(B)].

Some typical values of the controller sensitivity

matrix:

N 0.1444  -110.4
of -0.2403 198.9 |
[_0.0064 10.42 |
t'= 2,40, 3G = |
of =0.06347 6.396 |
R TR L 0.0065
of 21.96 ~0.0142
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Comparison of different configurations of

adaptive systems

Settling Time Percentage
Configuration (secs) Final Cost Overshoot

(a) Feedback path
Controller
System :
(section 4.1) 7.00 0.501 0:

(b) Forward path
Controller _ _
System 9.00 0.538 0.

(¢) Open Loop
Controller
System 1.49 f.281 9.16

(d) Feedback path
Controller
System '
(section(5.4),B) 4.98 0.563 5.82

(e) Feedback path
Controller
System
(section 5.5), ' »
(Matrix A) 2.57 0.452 0.

(f) Feedback path
Controller
System
(section 5.5), ;
(Matrix B) ' 9.07 0.663 0.



	Rey_Alain_J-C_1969_03_master0001
	Rey_Alain_J-C_1969_03_master0002
	Rey_Alain_J-C_1969_03_master0003
	Rey_Alain_J-C_1969_03_master0004
	Rey_Alain_J-C_1969_03_master0005
	Rey_Alain_J-C_1969_03_master0006
	Rey_Alain_J-C_1969_03_master0007
	Rey_Alain_J-C_1969_03_master0008
	Rey_Alain_J-C_1969_03_master0009
	Rey_Alain_J-C_1969_03_master0010
	Rey_Alain_J-C_1969_03_master0011
	Rey_Alain_J-C_1969_03_master0012
	Rey_Alain_J-C_1969_03_master0013
	Rey_Alain_J-C_1969_03_master0014
	Rey_Alain_J-C_1969_03_master0015
	Rey_Alain_J-C_1969_03_master0016
	Rey_Alain_J-C_1969_03_master0017
	Rey_Alain_J-C_1969_03_master0018
	Rey_Alain_J-C_1969_03_master0019
	Rey_Alain_J-C_1969_03_master0020
	Rey_Alain_J-C_1969_03_master0021
	Rey_Alain_J-C_1969_03_master0022
	Rey_Alain_J-C_1969_03_master0023
	Rey_Alain_J-C_1969_03_master0024
	Rey_Alain_J-C_1969_03_master0025
	Rey_Alain_J-C_1969_03_master0026
	Rey_Alain_J-C_1969_03_master0027
	Rey_Alain_J-C_1969_03_master0028
	Rey_Alain_J-C_1969_03_master0029
	Rey_Alain_J-C_1969_03_master0030
	Rey_Alain_J-C_1969_03_master0031
	Rey_Alain_J-C_1969_03_master0032
	Rey_Alain_J-C_1969_03_master0033
	Rey_Alain_J-C_1969_03_master0034
	Rey_Alain_J-C_1969_03_master0035
	Rey_Alain_J-C_1969_03_master0036
	Rey_Alain_J-C_1969_03_master0037
	Rey_Alain_J-C_1969_03_master0038
	Rey_Alain_J-C_1969_03_master0039
	Rey_Alain_J-C_1969_03_master0040
	Rey_Alain_J-C_1969_03_master0041
	Rey_Alain_J-C_1969_03_master0042
	Rey_Alain_J-C_1969_03_master0043
	Rey_Alain_J-C_1969_03_master0044
	Rey_Alain_J-C_1969_03_master0045
	Rey_Alain_J-C_1969_03_master0046
	Rey_Alain_J-C_1969_03_master0047
	Rey_Alain_J-C_1969_03_master0048
	Rey_Alain_J-C_1969_03_master0049
	Rey_Alain_J-C_1969_03_master0050
	Rey_Alain_J-C_1969_03_master0051
	Rey_Alain_J-C_1969_03_master0052
	Rey_Alain_J-C_1969_03_master0053
	Rey_Alain_J-C_1969_03_master0054
	Rey_Alain_J-C_1969_03_master0055
	Rey_Alain_J-C_1969_03_master0056
	Rey_Alain_J-C_1969_03_master0057
	Rey_Alain_J-C_1969_03_master0058
	Rey_Alain_J-C_1969_03_master0059
	Rey_Alain_J-C_1969_03_master0060
	Rey_Alain_J-C_1969_03_master0061
	Rey_Alain_J-C_1969_03_master0062
	Rey_Alain_J-C_1969_03_master0063
	Rey_Alain_J-C_1969_03_master0064
	Rey_Alain_J-C_1969_03_master0065
	Rey_Alain_J-C_1969_03_master0066
	Rey_Alain_J-C_1969_03_master0067
	Rey_Alain_J-C_1969_03_master0068
	Rey_Alain_J-C_1969_03_master0069
	Rey_Alain_J-C_1969_03_master0070
	Rey_Alain_J-C_1969_03_master0071
	Rey_Alain_J-C_1969_03_master0072
	Rey_Alain_J-C_1969_03_master0073
	Rey_Alain_J-C_1969_03_master0074
	Rey_Alain_J-C_1969_03_master0075
	Rey_Alain_J-C_1969_03_master0076
	Rey_Alain_J-C_1969_03_master0077
	Rey_Alain_J-C_1969_03_master0078
	Rey_Alain_J-C_1969_03_master0079
	Rey_Alain_J-C_1969_03_master0080
	Rey_Alain_J-C_1969_03_master0081
	Rey_Alain_J-C_1969_03_master0082
	Rey_Alain_J-C_1969_03_master0083
	Rey_Alain_J-C_1969_03_master0084
	Rey_Alain_J-C_1969_03_master0085
	Rey_Alain_J-C_1969_03_master0086
	Rey_Alain_J-C_1969_03_master0087
	Rey_Alain_J-C_1969_03_master0088
	Rey_Alain_J-C_1969_03_master0089
	Rey_Alain_J-C_1969_03_master0090
	Rey_Alain_J-C_1969_03_master0091
	Rey_Alain_J-C_1969_03_master0092
	Rey_Alain_J-C_1969_03_master0093
	Rey_Alain_J-C_1969_03_master0094
	Rey_Alain_J-C_1969_03_master0095
	Rey_Alain_J-C_1969_03_master0096
	Rey_Alain_J-C_1969_03_master0097
	Rey_Alain_J-C_1969_03_master0098
	Rey_Alain_J-C_1969_03_master0099
	Rey_Alain_J-C_1969_03_master0100
	Rey_Alain_J-C_1969_03_master0101
	Rey_Alain_J-C_1969_03_master0102
	Rey_Alain_J-C_1969_03_master0103
	Rey_Alain_J-C_1969_03_master0104
	Rey_Alain_J-C_1969_03_master0105
	Rey_Alain_J-C_1969_03_master0106
	Rey_Alain_J-C_1969_03_master0107
	Rey_Alain_J-C_1969_03_master0108
	Rey_Alain_J-C_1969_03_master0109
	Rey_Alain_J-C_1969_03_master0110
	Rey_Alain_J-C_1969_03_master0111
	Rey_Alain_J-C_1969_03_master0112
	Rey_Alain_J-C_1969_03_master0113
	Rey_Alain_J-C_1969_03_master0114
	Rey_Alain_J-C_1969_03_master0115
	Rey_Alain_J-C_1969_03_master0116
	Rey_Alain_J-C_1969_03_master0117
	Rey_Alain_J-C_1969_03_master0118
	Rey_Alain_J-C_1969_03_master0119
	Rey_Alain_J-C_1969_03_master0120
	Rey_Alain_J-C_1969_03_master0121
	Rey_Alain_J-C_1969_03_master0122
	Rey_Alain_J-C_1969_03_master0123
	Rey_Alain_J-C_1969_03_master0124
	Rey_Alain_J-C_1969_03_master0125
	Rey_Alain_J-C_1969_03_master0126
	Rey_Alain_J-C_1969_03_master0127
	Rey_Alain_J-C_1969_03_master0128
	Rey_Alain_J-C_1969_03_master0129
	Rey_Alain_J-C_1969_03_master0130
	Rey_Alain_J-C_1969_03_master0131
	Rey_Alain_J-C_1969_03_master0132
	Rey_Alain_J-C_1969_03_master0133
	Rey_Alain_J-C_1969_03_master0134
	Rey_Alain_J-C_1969_03_master0135
	Rey_Alain_J-C_1969_03_master0136
	Rey_Alain_J-C_1969_03_master0137
	Rey_Alain_J-C_1969_03_master0138
	Rey_Alain_J-C_1969_03_master0139

