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SCOPE AND CONTENTS:

A theoretical and a practical study is presented of guided
 wave propagation through rectangular waveguide completely filled with
‘a n-type germanium sample of condyétivity 4.50 mho/meter subjected to
an external transverse magﬁetic field of 10 Kilogauss.

o Measurements of the reflection co efficients at the air-

semiconductor interface for different values of the applied magnetic

field were carried out at a frequency of 9.46 GHz.
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ABSTRACT

A detailed theoretical analysis of the propagation constant
and the field components 1in rectangular waveguide completely filled
with a semicondugtorAsubjected to an external transverse applied
magnetic.field, has been carried out.- A numerical solution of the
transcendental equation for the propagation constant has been obtained‘
for the n-type germanium samples with different conductivities and
maénetic fields. i

An experimental verification of this theoretical analysis has
been made with a 22.2 ohm-cm, n-type germanium sample at 9.46 GHz.
The applied transverse magnetic field was varied from 0 to 10 Kilogauss.
Measurements of the reflection co efficients at the air-semiconductor
interface for different values of the applied magnetic field have been

made with a high precision microwave reflection bridge. The

experimental results agree well with the theoretical results.
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CHAPTER 1

1.1 INTRODUCTION

. In recent years, in the microwave field, considerable attention
is being paid to the problem of pronagation of electromagnetic waves
through semi-condictor subjected to an external sFeady maghetic field.

In the presence of an external magnet%z f%eld, the semi-conductor,

when pfopagating an e]ectromagnetic_wave'shows suchAinteresting rhenomena
as Hall effect, Faraday rotation and magneto-resistance which have

drawn the attention of many investigators.

Ever since C. L. Hogan(]) and D. Po]der(z) indicated that certain
media with a complex tensor permeability have important applications at
microwave frequencies, extensive investigations into the propagation
of electromagnetic waves in anisotropic materials, barticularly
férrites, have been carried out. As a result of these investigations,

a large number of practical devices employing ferrites have been
invented. Electromagnetic wave prépagation in rectangular wave guides
completely filled with magnetized ferrites, have been e*tensive]y
studied and a thorough analysis is found in the literature. Ferrites
become anisotropic when placed in a magnetostatic field and have a
permeability which is a tensor quantity. The modes of propagation in
these magnetized ferrites are found to have features which are quite
distinct from those found in the case of isotropic media. In addition

to the normal TE modes, anomalous gyromagnetic modes are known to exist



in these cases.

In much the same way, the behaviour of semi-conductors, when
subjected to an externally applied magnetic field, may be described in
terms of a complex tensor permittivity. Thus, a semi-conductor placed
in a magnetostatic field becomes anisotrbpic and is known as a gyroelectric

medium, whereas it is essentially an isotropic medium in the absence of

-
T

an external applied magnetic field.

When a steady magnetic field is applied to é semi-conductor filled
wave guide, the propagating electric fields perpendicular to the applied
magnetic field become coupied; Hence the characteristics of the wave
guide modes are changed, as in the analogous case of magnetized ferrites
where the microwave magnetic fields pefpendicular to the steady magneti-
zation are coupled. However, since the electric and magnetic fields are
required to satisfy different conditions at the boundaries of the wave
guide, the exact characteristics of the modes are likely to be different
in the two cases. |

A considerab]e number of papers dealing with the case when applied
steady-magnetic field is in the direction of the propagation of the
electromagnetic wave, are available. However, relatively few paners
concerning the'electromagnetic wave propagation through a semf-conductor
filled rectangular wave guide, in the preéence of a steady transverse
external magnetic field, have been pub]iShed. In recent years, Hirota$3’4)
M. Toda,(s’s) Nag and Enqineer,(7) Gabriel and Brodwin(g) have dealt
with the effect of the transverse external magnetic field on the wave
propagation through semi-conductor in rectangular wave gquides.

Nag and Enqineer(g) in one of their puﬁ]ished papers have formulated

a special form of Hall field expression which leads to a complex permittivity



tensor for a semi—cohductor in a transverse magnetic.fie1do They have
also analyzed theoretically thg characteristics of electromagnetic
waves propagating in a semi~conductof filled rectangular wave ghide in
the presence of a transverse magnetic field. An analysis of the same
problem is presented in this thesissAtogether with experimental results
and a-modification of Nég's theoretical analysis has been made.
FoT10Qinq Mag and Engineer‘sléuggestion of the special form of
fhe'Hall field, an expressiqn for the compiexupermittivity tensor has
been derived which agrees with their expression. Using Maxwell's |
, eqdations and the appropri;té boundary conditioﬁs, a rigorous and
'exactvsolution of the field components has been made in a different
way, using a differéntrprocedure. In the analysis, it is shown that in
thé present'case,'no TM modes or TE modes other than those of the type
TEOn may be excitgd. Inraddition, anomalous mode waves having all six
E and H field components are shown to exist. Also it has been found
that TEOn modes do not depend on the magnetostatic field. Hence in
~gyroelectric wave guide, TE modeé hold no interest. |
. In‘practice, the wave within the fi]]ed'ﬁave quide is launched
from an empty section supporting the dominant TE]O mode and the problem
Consists of determining the behaviour of thfs mode as it passes through
the media. In gyroelectric media in the wave guide,if the wave is to
depend on the magnetostatic fie]d, all six components of the field are
necessary and these must depénd on both transvgrSe co~ord1nates; Since

the TE]G mode is not admissible in the magnetized medium, it excites a

mode which dependson both co-ordinates.  Thus in a gyroelectric wave
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guide, there exists the TE]0 mode iﬁ the absence of an external magnetic
fiéld B and an anomalous mode in the presence of B. In the analysis |
it has been found that the propégation characteristic is in general
reciprocal.

In their theoretical analysis, Nag and Engineer assumed a
~ sinusoidal field intensity variation in the direction of the magnetic
field and then solved for the specific field components. However, in -
the present work, no such assumption has been made and the sinusoidal
field intensity ypriation in the direcfion of the magnetic field has
beeh'proved mathematically by employing a.special‘method of the sepakation
of variab]ed?O)Proceeding in this completely different way, a resultant
transcendental equation for the propagation constant has been obtained
which agrees with the transcendental equation of the propggation constant,
as obtained by Nag and Engineer.

This transcendental equation'has4been solved numerically by
employing the Newton-Raphson method, and the variation of the attenuation
constant and the phase constant with the applied magnetic field B, has
been obtained.

An experimental verification of the theoretical analysis was
performed on a 22.2 ohm-cm, n-type germanium sample at 9.46 GHz using a
ref1ection’tyﬁe microwave bridgé.‘ A theoretical expression for the
reflection coefficient at the semiconduétor-air interface in the wave-guide

was obtained and numerical values of the reflection co efficient as a



function of the ekterna] magnetic field were calculated and plotted. The
reflection bridge measurement employed the new technique for precision
reflection bridge measurements'suggested by Champlin, Holm and Armstrong(]o).
The theoretical and experimentaT values of the reflection co efficients
were in excellent agreement for Tower values of the magnetic field.

However, for highgr values slight discrepancies exist and possible

reasons for these discrepancies are discussed,



1.2 LITERATURE SURVEY

The propagation characteristics of electromagnetic waves in
rectanguTar wave-guides loaded with magnetized ferrites have been
extensively studied and are well discussed in the book written by Lax
and Button(]1). Also a general modal solution for electromagnetic
wave propagation through»a rectanguTanLguide completely filled with

(12)

transversely magnetized ferrite has been carried out by Mikaelian
seide1(13) and Barzitai and Gerosalt®), '

h A considerable number-of papers dea]ing.with the guided wave
propagation through semiconductor when the applied magnetic field is
along the direction of the propagation of the electromagnetic wave are
available. However, the following papers deal with guided wave propagation
through semiconductor material subjected to a transverse magnetic field
- which is the subject of this thesis.
kThe Hall effect in semicqnductors at microwave frequencies has

(15,16) and several

béen extensively studied by Prof. H: E. M. Barlow
other workers. 1In 1963, an.experiﬁental investigation into microwave
proﬁégétion at 10 GHz through a rectangular waveguide partially

filled by a thin semiconducting plate under a steady transverse magnetic
field, was: performed by Prof. Barlow and Koike(17). The applied
transverse steady magnetic field was found to produce a change in the
conductivity of the plate and a corresponding effect on the microwave
propagation along the guide., Non-reciprocal transmission arising from
asymmetry of the semiconductor over the cross section of the guide was

also observed.



(5)

Microwave propagation at 24 GHz has been observed by M. Toda
in a wave-guide filled by InSb at 77°K, in a transverse magnetic field.
A transverse magnetic field in excess of 5 KOe was used and the
transmitted power increased exponentially with increasing magnetic field
intensity. The transmission showed a strong non-reciprocal character.
Measurements of the phase shift in the InSb showed that the wave is
transmitted only along 6ne side of tﬂé dee-guidé determined by the
directions of magnetic field and of the’power~f1ow;

. A theoretical analysis of the electromagnetic wave propagation
through an n or p type semf-conductor with metal plated surfaces in a
transverse magnetic field has been performed by Ryogo Hirota(s). This
theoretical analysis was in good agreement with the experimental results
of M. Toda(s).

The high frequency transport properties of semi-conductors under
a transverse magnetic field have been analyzed theoretically by several

(18) (19)

workers such as Y. Itikawa » H. Fujisada

Propagation of.waves-in bdunded solid state plasma in transverse
magnetic fields have also been analyzed by Ryogo Hirota and K. Suzuki(4).
In their paper it has been reported that a new type of solid state plasma
wave-guide has been constructed using n-type InSb and an insulator of
similar dielectric constant, Cu0. Its properties were measured in a
transverse magnetic field. When all except the input and output surfaces
of the plasma wave-guide weré metal plated, for one direction of magnetic
field, fhe m%crowave power was transmitted through the InSb with a

transmission loss of about 20 'db. For the reversed directed bf the

magnetic field, the microwave power was transmitted through the Cu0 with



a transmission loss of about 5 db. When one surface of the plasma
wave-guide was not metal plated, a stroné magneto-plasma resonance
at the frequency wy = wpzlmc was observed for one direction of the
external magnetic field, the transmission loss being about 38 db at
the maximum. For the reversed direction of the magnetic field no
resonance QasAobserved. |

(6)

Microwave fie]d'distributionélwefe measured by M. Toda'~’, when
a thin plate of n-type InSb was placed verticai]y at the centre of a K-\
band wave-guide and also when the wave-guide was filled with n-type
InSb. The field distribué%oas were asymmetrically deformed in the
applied magnetic fields and the propagation properties were demonstrated
to be non-reciprocal.

The characteristics of electromagnetic waves propagating in a
semi-conductor fi]]ed rectangular wave-guide in the presence of a
transverse magnetic field have been theoretically analyzed by Nag &

(7).

Engineer It has been shown that only TE mode waves having y-
independent field components (y-being the direction of the steady magnetic
figld) and anomalous modes having all six field components can propagate.
* A perturbation analysis of rectangular waveguide containing
transversely magnetized semiconductor has been made by G. Gabriel and

(8)

M. Brodwin The solution by first order theory is compared to the
results of an experiment in which surface currents in the guide wall

-due to perturbed and unpertufbed TE]0 wave in n-type silicon are sampled
and segregated. Theoretical and‘experimenta] results were found to be |
in reasonable agreement. Distinctions between the gyroe]éctfic and

gyromagnetic media in rectangular waveguide have been clearly analyzed



by Gabriel and Brodwin(zo).

The solution of guided waves in. Inhomogenous anistropic
media by perturbation and variational methods have also been performed
by Gabriel and Brodwin(21).
- Electromagnetic wave propagation in a plasma with non-linear

(22),

electrical conductivity has been studied by Melvin Epstein An

ana]ysfs of reflection and transmission of electromagnetic waves
(23)

-

from a non-linear anistropic slab has Been made by P. K. Kaw

Starting from the general wave.equaffon, Kaw has written
appropriate non-linear equations describing éhe growth of the two
modes of propagation of an electromagnetic wave in a non-linear medium.
The applied magnetic field is taken in the direction of the propagation
of the wave. The equations have been sb]vedvby a perturbation

technique and the solutions have been used to obtain expressions for

. the Tinear and non-linear components of the reflected and transmitted

parts'of the electromagnetic wave. The paper was not directly
épp]icab]e to the problem discussea here but the paper appears to be
the only one available which deals with reflections from a non-linear

anisotropic media.
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1.3 MATERIALS EXHIBITING MAGNETO-RESISTANCE EFFECTS

When a magnetic field isAapp1ied transversely to an electric
current in a semiconductor, containing both holes and electrons, a change
in the conductivity of the semiconductor is observed. This fractional
change in conductivity will be different for different types of the
semiconductors, a; it depends upon thg electriéa} properties of the semi-
conducfors. The choice of materials in which the change in conductivity
wi]T be most pronounced is discussed in thisiéection. Attention is
given mainly to the semicdnduetors'at room tempefature.

A semiconductor with spherical constant-energy surfaces should
show no transverse magheto-resiktancé when relaxation time constant
is constant and only one type of carrier is preseht. This is no
longer true when a semiconductor has more than one type of carrier.

For electrons, we have the fo]]owing relations when an electric field

is applied\in x-y plane and magnetic field in z—direction(zq)ﬁra
o AeEx - BeEy ; . (1.1)
- Jey = BEx + AeEy~ - (1.2)
4 2 T o ,
A = ne* e = oe (1.3)
€ Mg ]+wec2Te“ Huesz
ne’ “ec Te2 °oe"eB | |
T T Bl e ()
e ec ‘e . Me "

Where Jéx and %ﬂ' are x and y components of current density due to-

electrons respectively, Ex and Ey are x and y components of electric

field respectively, n is the electron density, e is the electronic
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charge, mz is the effective mass of electrons, Wac is the cyc]otfon

angular frequency of electrons, o . is the conductivity due to electrons

oe

only for B=0, o is the mobility of electrons, { is the relaxation time

e
of electrons and B is the magnetic flux density.

For holes, similarly, fep]acing the subscript e by h we have,

‘qhx =_Ah Ex - By Ey | (1.5)
Iy = By EX + Ay Ey . . (1.6)
? .
pe T %oh .
B O Sy T 3 | a7
. h "Oheth, . P
T ® 1w 202 14y 282 | ' '
h hc “h- "h |

where p is the hole density. When both electrons and holes are present,

we must add their contributions to the total current

9y = dex + gy = (A *+ Ap) Ex - (B, + B )Ey (1.9)
Jy = oy * Jhy = (Bé + Bh)fEx + (Ae + Ah)Ey (1.10)
when
.~ Jy = 0, we have
Ey = - Be * Bn) | | (1.11)
(Ae + Ap)

From equations (1.9) and (1.11) we have

(B, + 8,)°

h
Ae * Ah

, J.. -
o =% = (A +A)+ (1.12)

Ex

Using equations (1.3), (1.4}, (1.7), (1.8) and (1.12) we have,



2
1+ Yue

o= ' o

0
1+ (X+Y) 2 2

where,
_ _c(1#b)?

% = %0e * %on 3 b= "y s ¢ ="p

R
03P T3 and 80 = p -p,

2
2 .2 c(1+b 2 .2
o . XVe B ‘br‘fbc)'?“e B

we get, —
0 128l |, (1-c)? 2.2
(1+bc)2 '€

Puiting Py = ]/o

c(14p)2u,? B2 € (140)2 u 282
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(1.13)

(1.14)

(1.15)

| -
_©

bi (1+bc)? + (1~c)2 2 2 } - [E]+bc) + (1 c)z 2p 2:}

e vp) (D a8y uez 52
He U

i Ve 2 ne . 2.2
+ (=) (0 + (1 - = :]
A (“h) ("/p)3© + ( ID) "B
A similar expression has been used by Barlow and Koike(25)

Cvp) Gy (187 n” 82

2 2
) e

Gp O
B-"0

-

o He n,2 n
B (1 + H;-B» + (1- /p

as follows:
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_ Ap Op-0
Let X= -— = = BO 0
Po B
: (145 u, B2 np (1+6)% 3 7 8
(1+b%)2 + (1_%)2 2 g2 b[(p+nb) + (pif u 2 2]

For a n-type material, n >> p and approximating the above
equation under this condition
oo ()Rt pten)® 2 g2
Xz 2, 7 g § 2
b[: b2 +n B J nb (b° + ug2 82)

' 2 2
- 1+ 2y
=B.(b) ) _b .
n n
(b3 + LS 2 2b)

For different values of B, rénging from .2 Wb/m2 to 1.00 Wb/mz,
calculations of the values of D for different n-type materials can now
be made using the values of thé mobilities as shown in Table 1.
Calculated va]ues'of D are tabulated in Table 2.

Since X = (%)-D, the ratio:(p/n) must be large in order to make
X large. However, it must .be noted that we can not change n arbitrarily,
as_the mobility varies with the resistivity. For resistivities above
12-cm (Ge) and 100-cm(Si), mobility is practically independent of
resistivity. Below 1 ohm-cm fof Ge, 10 ohm-cm for Si, the impurities
begin to interfere with the carrier motion and the mobility drops with
decreasing resistivity. This shows that higher resistivity material
should be selected but at'thé same time it must remain n-type and not

become intrinsic as the expression is only valid for n-type material.
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Germanium
% n; (300°K) = 2.4 x 10'3/cm®
Let us suppose n = ]0?4/cm3 RS resistiﬁity = 20Q=-cm
_ n.2 3
p=i=5.76x 10%cm
o (B) = 5.76 x 1072
Silicon

0y (300°K) = 1.5 x 1010/cm®

Let us suppose n = 1.5 x 1~0n»/cm3 resistivity’z 2.98 x 10+4 =-cm

-2
op=1.5x10° and (B) = 10

InSb A
ny (300°K) = 1.35 x 1016/¢m3
Let us consider n = 1.35 x 10V/ resistivity = 7.7 x 1074 0 -em
~op=1.35x 10en® o B=1072
InAs

n, (300°K) = 1.97 x 10'°/cm3
Let n = _10]6/cm3 resistivity = .021g-cm
p=23.86 x 10%emd .. P/y = 3.86 x 1072

~ For a parifcu]ar P/n ratio in n-type material it can be seen
from table 2 that the effect is most pronounced in InSb. The next
preferable material is Ge.The order of these matéria]s in terms of their
magneto-resistance effect is as follows:- |
(1) InSb (2) Ge (3) InAs (4) GaSb
(5) GaAs  (6) " Si (7) InP  (8) AsSb
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An n-type Ge sample with a resistivity of 22.2 ohm-cm has been chosen for
the experimental purpose in this thesis.

The Hal1'c0-efficient-i§ inverse]y proportional to the carriér
concentration and the relative change'in resistivity Ap/po is found
from the expression to contain terms %n qu?.' Therefore, in order to
have a pronounced_effect of transverse magnetic field on the resistivity
or thg conductivity d’a’SemicondUctof}carrier mobility must be high and
the carrier concentration low. The geometrical magnetOHFesistance '
effects are large whén the deviation of the carriers in the magnetic
fiéid is large and for this too a high mobiiity is needed. The mobility
of a semiconductor is highest when all impurities have been removed,
but unfortuantely, in this pure condition the carrier concentration
is strongly temperature dependent. Doping, the intentional addition
- of impurities, will reduce the mobility but it also stabilizes the
carrier concentration.

The element semiconductors do not generally have as high an
electron mobility as the compounds studied,' Also the hole mobility for
the/fqmpounds is quite Tow, so that if the materials have to be doped'
‘toléive-tehperatUre stabi]jtys they are normally made n-type and the

magneto resistance effect is then determined by the electron mobility.

~



TABLE 1

MATERTAL Mg A oy b = le
(290°K) (290°K) Mp (290°K)
- cmzl\l—s ec cm2/V=sec
Ge 3.8x10° | 1.8x103 2.11
si 1.45x10° | 5x10° 2.9
InSb 70x10° | oo |70
InAs 30 x 103 25103 | 120
) Inp 3.4%103 .05x10° 68
Gasb 5 x 10% 1 x 103 5
Gahs 7 x 103 4x10% 17.5
AbSb .2x103 .2x103 ]

ELECTRON AND HOLE MOBILITIE‘S AND THEIR RATIO FOR DIFFERENT

TYPES OF MATERIALS




2

NET VARIATION

- 1+5)2u 2
z o = (HD)%H INTHE 2o AS
&5 b3+n 282 . . THE MAG.P0
= 0 e FIELD VARIES
B=0. B=0.3 B=0.4 B=0.5 B=0. B=0.7 | B=0.8 B=0.g | B=1.go|FROM 0.2 70
Wb/m Wb/m2 Wb/m?2 Wb/m? Wb/m Wb/m2 | Wb/m? Wb/mé | Wp/me |1.00 Wb/m
Ge |.60x1072 |1.33x1072 |.2.37x10°2 | 3.69x10~2| 5.29x1072|7.17x10-2 | 9.32x1072 11.7x10-2|14.4x1072| 2(13.8x107%)
si' |516x1073 |1.16x1073 | 2.06x10°3 | 3.23x1073 | 4.64x10736.32x1073 | 8.25x1073 [10.4x1073 |12.9x1073] P(1.24x107?)
InSb |2.88x10°2 6.48x1072 N1.5x10°2 | 18 x 1072 |25.8x1072 |35.1x1072 | 45.8x1072 |57.9x1072|71.3x1072| P(68.42x10"2)
InAs |.305x1072 |.686x1072 | 1.22x1072 | 1.91x1072 | 2.74x1072|3.74x1072 | 4.88x1072 6.17x1072 |7.62x1072 2(7.315x1077)
P | .7x107% [1.58x1074 | 2.8x1074 [4.38x107%| 6.3x107% |8.58x7074 [11.2x107% 14.2x1074 17.5x1074| P(.168x1072)
Gasb| .288xI0°2 |.647x1072 | 1.16x10-2 [ 1.8x1072 | 2.58x10"2|3.51x102 | 4.58x10~3 /5.79x1072{7.13x1072| B(6.84x107%)
GaAs | 1.25x107302.82x1073 | 5.01x1073 | 7.82x1073 11.3x707 15.3x10"3 | 201073 25.3x1073 |31.2x1073| P(2.995x1072)
ABsb| .64x1074 1.44x107% | 2.56x10™% |4x107% | 5.76x107%|7.84x107% jlo.2x107% 13x107%  |16x1074 %(.1536)(10'2)
, A
TABLE 2

VARIATION OF 22

Po

WITH MAGNETIC FIELD FOR DIFFERENT SEMICONDUCTOR MATERiALS.

L1
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CHAPTER 11
THE COMPLEX TENSOR PERMITTIVITY OF A SEMICONDUCTOR

IN A MAGNETIC FIELD

2.1 ROLE OF HALL FIELD IN MAXMWELL'S EQUATIONS

The propaéétion characteristics qf the electromagnétic waves in
semiconductors, when an ekternal steady-magnetic field is applied in the
direction of the propagation of the wavé,havé”been analyzed by Rau
and Caspari(ZG), and H. E~M: Bar1ow(16). MaéWe]]'s equations as

written by these authors are given below-

AUTHOR , MAXWELL'S EQUATIONS

RAU & CASPARI O WxH = J UK(EHE,) = -y, (g%)

3=3+e(Myy) (B4Ey)
J. = of 3 Ey =R, BXJ,
H. E. M. BARLOW , xH = J 5 VxE = -y (2B
. 0 "3t
. =0 +Jy; |
Je = o(E4E) 5 Jy = e(33) (E*E)
Ey =R, BxJ, + (£”§°) R B x Jy

where, E, is the Hall field vector
Re = Hall coefficient for conduction current
Rq = Hall coefficient for dielectric current

The other symbols have their usual}meanings.

18
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As a result of the differences in the role given to Hall field in
Maxwell's equations, the exprgssions derived by the above authors for
the propagation constants of circularly polarized waves were very
ditfferent. Rau and Caspari's analysis predicts a Faraday rotation
which does not agree with Barlow's analysis even when the dielectric
current Hall coefficient Rd is assumed to be zero. Nag and Engineer(g)
in theirkanalysis of Fafaday rotatiod‘in'artjfic%a] dielectric have
suggested a new role of the Hall fieid,~EH, in Maxwell's equations by
considering the motion of free carriers in the~presénce of a magnetic
field. Thekfollowing der{baéion is based on the Nag and Engineer's
suggestion for the proper form of the Hall field in Maxwell's equations.

Consider a semiconductor sample to which an electric field is
.applied in the x and y-direction and a magnetic field is applied in the
z-direction. Assuming that the effect of the momentum relaxation time
is negligible, the average velocities of the carriers v, and vy in the

x and y directions respectively are given by

vx = ulEx + () vy B (2.1)
P vy = ulEy - (ﬁﬂ) Vy B] (2.2)

yhere pu is the conductivity mobility and My is the Hall mobility. The
above assumption is substantially correct even at microwave frequencies
for conductors. If however, the effect of relaxation time is considerable
in a particular sample one has only to substitute for , and py the complex
values appropriate for the signal frequency(g). |

| Now the expression for the current components dJoy and.%y are

given by



20

Jo = olEx * R Joy B] . (2.3)
Jey * o[E, - R dcx Bl L (2.4)
When the electric field is applied in one direction only,one evaluates
the Hall field from the above two equations by equating the current in
the’other direction to zero. But when electric fields are applied in
two directions, one can not dissociate the Hall field by equatiné the
transverse current to zero. I ] |
It therefore, appears that the current equations in Maxwell's

equation should be written directly from (2.3) and (2.4). But from
ané]ogy with the expressidﬁ %or the Hall field when the applied
electric field is in one direction, one may call Ey the equivalent Hall
field as written below.

-> > >

Ey = Re B X J¢ ~(2.5)
Using eduationé (2.3), (2.4), (2.5), one may thus write

Jc = ofE - Ey) (2.6)
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2.2 PERMITTIVITY OF ANISOTROPIC MATERIAL

The electric flux density D is génera]]y broken into two parts,
the first related to the electric field intensity'E by the free space
permittivity, eo and the second called the polarization vector‘;.

That is, )
B=cgf+ b - (2.7)

The polarization vector P arises from a distribution of electric
dipoles in the material. For linear materials, ; is related to the \
electric Tield intensity E by

- s - -

P =eoxg E (2.8)
where, PRE the electric sus;eptibility and Xe = (eg-1).
- In semiconductors &R, the.relative permittivity or dielectric constant
is in general complex g = eR. - jeR" in order to account for loss and
phase shift in the material.

. For isotropic materials, the polarization is parallel with the
applied fields and is independent of the direction of the fields. For
anisotropic materials, this is notkthe case. A helpful analogy is afforded
by Ehe strain in a solid body resulting from applied forces. Consider
a rectangular solid having unequal edge lengths with a co-ordinate system
oriented at an arbitrary angle as shown in Figure (2.1). If a force is
applied along any one co-ordinate, éfréins result in all threé direétions
with different magnitudes in each direction. _

In the same way, an é]ectric field applied to an anisotropic
material along an axis of an arbitrarily oriented co-ordinate system

leads to po]arization.which has components along each of the co-ordinate

2 ] . .> >
directions. If E = ay Ex, then
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> _ N ' - >
P = Eo(axxe'n Ex + ay )(e-lz EX + azxe]SEX) (2.9)
where Xe is the electric susceptibility and the added subscripts refer
> > i >
to x, y and z components of P and E respectively. Then if E has all
three components E,. Eya E, then
Px = g, (Xelj Ex + X190 BY # x¢13 E2)

Py = €5 (xep1 EX + xepp EY * xgp3 E2) (2.10)
PZ s Eo ()(e3'! Ex + Xe32 Ey .'?" Xe33 EZ)

Using the relation (2.7) we may obtain from (2.10)

Dx = E-rl Ex -+‘€]2 Ey + 613 Ez
Dy = E9] Ex + €29 by + ep3 Ez (2.11)
Dz = €371 Ex + e32 By + €33 Ez

where e = e, (T*xe11)s €72 = eoXel2» etc.
It is convenient to write the gquatidns (2.11) as an array in matrix form

as follows

S Dx €11 €12 €13 Ex

o
<
n

€] €22 €23 Ey (2.12)

Dz €3] €32 €3 E_
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2.3 DERIVATION OF THE COMPLEX TENSOR PERMITTIVITY

A rectangular waveguide is assumed to be completely filled with
a semiconductor. In the presénce of an electromagnetic wave in the guide;
; dielectric and also a conduction current flows inthe semiconductor.

"~ The dielectric curreni Jd is given by

BERTERS (2.13)
where ¢ is the permittivity of the semiconductor ‘and E is the electric
field vector. -

Professor H.VE. M. Barlow in a paper(ls) suggested that the
diéTectric current may be Ehénged when a magnetic field is app}ied.
However, this effect has not been experimentaliy observed and even if
it exists, it would be small. Therefore, it is assumed that the dielectric

current is unaffected by the magnetic field.

2.3.1 MODIFICATION OF THE CONDUCTION CURRENT BY EXTERNAL MAGNETIC FIELD

The condyction current inm the absence of a magnetic field is oF,
and if the signal frequency_is assumed to be much less than the scattering

, frequgnqy,o is equal to the d. c¢. conductivity of the semiconductor.

-

-¥hen a magnetic field is applied, the conduction current is
modified by the Hall effect. In the case of a semiconductor with

-3
spherical energy surfaces, the Haill field EH is given by (2.5)
> A _

-+ EN
E, = Re By X JcH . (2.14)

H
where Re is the Hall coefficient and B, is the steady magnetic field.
The. steady magnetic field is applied in the x direction as shown in
Figure (2.2). The modified conduction current is thus,

- > > ,
JCH = g(E - EH) (2.15)
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Assuming the time dependence of the electromagnetic fields to be

eJwt
permittivity tensor can be

>

Total current Jd

But from equation (2.14) the

» an expression for the total current J in terms of a complex

written in the following way.

> >
Jd + Jcy

o T
Eg€'+ 0(; f EH)

> e
JweE + o (E-EH)

three components of the.Ha11 field, ie

Epy s EHy’ EHz in X; Y, Z djr?ction are given By

Epe = 0
EHy = - Re By Jdepz
Eyz = Re By JeHy
where x, y, z components of J}, are denoted by Jcpy» JcHy’ JeHz

respectively.

Now, from equation (2.15)
s

Therefore, from (2

JeHx = olEx -
ey = olfy -
ez = olEz -

From equation (2.20)

From equation (2.21)

o R, By Joy

.17)aand (2.18)

EHX] = GEX
EHy] = o[Ey + R, Bo JeHz )
EHz] = U[EZ‘“ Re Bo JcHy]
2 2p 2
o° R By Ey + oR.“ B2 Jop,
=of, - JCHZ

(2.16)

(2.17)

> > > - > -
JeH = olayEx + ayEy f'azEz - axEpx - ayEHy - ayEH ] (2.18)

(2.19)

- (2.20)

(2.21)

(2.22)

(2.23)
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' Subtracting (2.23) and (2.22)

.2 2 n 252 |
0=o0 RCBoEyacEZ+(02Rc B,S + 1)

25

cHz
: 2
b o R.B
A I g E,e ——O (2.24)
H 2 z y Az
2 (1447R 28,2 (1467 7B,2)
From (2.20) and (2.24) .
- . 3p¥p 2 2 |
: o RQB0 o RQB ;
ety = (0 - 55— LBV — 75 E2
140%R %8 , 1+02R 2B,
. o R B .
. o 1wR B2 1+0%R 2B,
2.3.2 THE MATRIX ELEMENTS OF THE COMPLEX PERMITTIVITY TENSOR
' From equation (2.16)
+ -+
= gwek + gy
S Ix = weEx + Jopy = JweEx + oEx  (From (2.19))
= (o + jwe) Ex = jue(1 - 12) Ex
- We - ) .
= £ ijx' (2.26)
Using equation (2.25) and (2.16)
" Ey + J E d o hele
“dy = jweEy + = Wby + ——— Ey + — 555 Ez’
Y Yo ey Ve 28,2 Y 146%R 28 2
jo 4 R.B 02
© = gwe [1 - 1E, + —C2 E,

we(1+6°R28,2) © Y 148 28,22
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. 2
1 3o JuE Hchor SWE
Ve (]+RC280202) y W(1+Rc280202) Z
= ey JuEy - e3iuk, (2.27)
Jz = Jwe Bz + oy,
| . o o2R B
= jWE EZ + i 7 = .EZ = 2 2 2 E.y
1+ 0°R¢ Bo2 . T+ "R, By
= Jjwe - E, - E
“ 2 2 Zz 2 Y
[: we (14R 2B o ;l 1+0°R 2B,
- © SR_B.o2
JG . JR BOG
=¢efl -~ JwE, + c o iwE
[: w5(1+Rc28~202) :] z w(1+Rc280502) Ity
= €o jWEZ + 53‘ jWEy (2.28)
Let, J = [e] %%
Therefore
[ 3, r“?n €12 €13 JwEy
Jy | =lca1 <22 23 JuEy
| Iz | €31 €32 €33 JuE;

\

b
€12
©13

Comparing with equations (2.26), (2.27)

e(1 - 1)
We

and (2.28) it is seen that



Therefore, when a magnetic field is applied in the x-direction, the

€33

Jo

= £, = '|..

2 EZ{ [ }

we (VR 2B, %o?)
=—e3
= 0
3R Byo?

= g, =

3
2 w(]+RCZBozq?) ‘
=Ez

total current density in a” sémiconductor can be written as

J = [e]
and thus
written as
[e]l =
where €}
. )
€3

13
st

the elements of the complex permittivity tensor can be

"

jo

e{l - :
we(1+4R 28, 202)

chBocz
w(1+RC280202)

. 2
JRCBOO

w {1+(R Boo)?}

} =€E-

J'G

we {1+(R_Byo)?)

]

27

(2.29)
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CHAPTER 111

THEQRETICAL ANALYSIS OF THE ELECTROMAGNETIC FIELD COMPOMENTS

3.1 GENERAL CONSIDERATION

A rectangular waveguide as shown in Figure (3.1) is completely
filled with a semiconductor. The coa;diﬁate'system to be used in this
~analysis is shown in this figure. A stéady transverse magnetic field
Bofis applied in the x-direction. '

From equation (2.29)1n section 2.3.2, the total current density

in the semiconductor having a complex permittivity tensor can be written

as
= oE
J = [€] -é-t— | : (3.1)
where,
[e]l = _81 0 0 |
0 82 "‘83 !
T
- = . 399
and | e] = € E WE]
ep=e |1~ — Jo 5 (3.2)
- | we{1+(R_B0)"}
3 2
J RCBOG
37 Z,
MH1+(RCBOGI }

28
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FIGURE 3.1 RECTANGULAR WAVEGUIDE COMPLETELY FILLED
WITH SEMICONDUCTOR
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Maxwell's curl equations in the case of the media having a

complex permittivity tensor are _ .
M o | (3.3)

vV = -
o VREE-wg
., vxH=[]3E (3.4)

The time dependence of the electromagnetic fields is considered

to be eJWt and the z-dependence of the fields is assumed to be e 12

" where I' = propagation constant
i =a+jB8
a = attenuation constant (nepers/heter)
8 = phase constant (radians/meter)

Equations (3.3) and (3.4) are written in the following form to show

the tensor. permittivity.

9
0 r ay | Ex Hx
. P . ‘
-1" - 2 - .
-0 o Ey . Jwu Hy (3.5)
3 3
- 0 E H
) ° 2 Z
[ %Y 9% _ ] ]
B 9 7] [Ty " 1T e 5
0 r -3—3’- Hx €] 0 0 Ex
- A . |
-r 0 - % = Jwv 0 €2 Teg Ey (3.6)
TN 0 | 0 €3 e? LEZ.
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From (3.5) and (3.6) the following six equations can be written as
3H,

rHy + ;;_.= AL Ex (3.7)
-tHy - 2 H, = jw ey Ey - W e3 E, (3.8)
- oX ' .
BT I T (3.9)

ay ax 37y z

3, ..
rEy 5§~ = - juwu Hy - ) (3.10)
3E, . _
S T - R gty —_— (3.11)

. s .

- -——E + = E == H 3.]2

ay x Ty By S v - 3.12)

From equations (3.7), (3.11) E, can be expressed in terms of E,

and Hz’ as
] oE oH
Ex = 5 -T —Z jle —Z (3.]3)
(rHueq) Iy dy
Using equations (3.8), (3.10), Ey can be expressed in terms of E,
and H; as ;
| a1 (wl2u83 Cr ) E, 4w oz | (3.4)
- y (F2+W2p€2) 3y’ Z ax

From equations (3.10) and (3.14) Hx can be written as

1
. 3 °
[ Jw (I'e3 + €y '57) EZ‘.‘ r E;HZ:I (3.15)

Xk ( I'2+W2u 62 )

From equations {3.11), (3.13) Hy can be written in terms of E, and H, as

e H ‘
Hy = - ——%r-*———- jWe] —£ 4 g (3.16)
(ré+wlye;), 9x dy



31

Putting the values of E_, Ey, Hy» H y in equations (3. 9) and (3.12), the

fb]low1ng partial differential equations in E and H are obtained,

] 32 €2 32 {P €9 u(ez e3 )}
i 2 i 2 + WE ‘ + 2 o i
(rZluep) ax?  (rZwlie,) g% (rue,]
| T(ey-¢ ' N i &fn," .
+ Juf — (e 2; 23 AT (3.7)
(r +wl az)(f' W UE]) 2y A"'Wuez)_J 3x_ _
- i (52 s]) 2 . 53 BEZ
(F2+W us1) (r +w2uezl oy (r +W uez) 3x
1 32 1 32 ] ( )
+ ~ : + - +1| H =0 3.18
(r2+w2uezl X’ (F2+W2us]) ay° 1 ?

- 3.1.1 ANALYSIS OF TE MODE PROPAGATION

If TE modes are ponsidered, then by putting Ez = 0, equations

(3.17) and (3.18) reduce to

- - 9
_I:.(l_ez)_ ._.3_ + € &. = 0
2 2 3 .
(r™+w ue]) dy - aX
_ 2 2
L2 4, 13 4| =0 (3.19)
( I'2+W uEZ) BXZ (I‘szz-ue] I 3y2

“The above two equations can not be simultaneously satisfied by the same

3 , . _
value of T unless o 0 or H, v— 0, even if €] = €p-.

, -
.Hhen Fraa 0 ,



ine equations (3.19) reduce to

2 .
I:L-I- (If2+w2ue-l)i] HZ' = 0
, 2 1
oy

The solution of this equation is

H, = C' cos (r2+w2us])]/zy tc'! sin (I‘2+w2xis-,)1/2y

where, c' and ¢'' are arbitrary constants.

. a[—[
Boundary conditions are at y = O, —£=0, y =0,
. ’ oy
Hence, : - - |
aH
S ¥ . L
—Z= - (I'2+W2].IE])2 ¢! sin (I‘2+W2pe])2y
oy
- L : . 1
+c' (1‘2+W2ue])2' cos (P2+W2uc])2.y
R ¥
0=c" (I'2+w2u€1)2
. c''=0
: L
H, = c' cos (F2+w2us1)3y
 Aty=b, —=0
P
L %
S 0= - C'(I‘Z'E‘que-l)z sin (P2+W2us-l)2b
S %
or sin(r2+w2u¢1)zb =0
A 2.2 s
Therefore, (r +W‘u€]) = ng
b
where n is an integer, HZ = ¢' cos ﬂ%—y
22
. 2, 2 Ny
. T tW ueq =
v 1 b2
2 _n%i2 2
orr = a g - W Heq

32
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Since the above expression for € does not dontain any term B
(the applied magnetic field) the wave numbers and the associated fields
do not depend on the magnetostatic field. Therefore, it 1s seen that
only those TE modes which have x~independent field components can
propagate in the semiconductor filled guide in the presence of an external
magnetic field. )

" From equations (3 13), (3. 14) 1t can be found that the TE
modes which can propagate through the waveguide are characterized by
having only the component of the electric field along the x direction, E, .
Since the external magnetic field {s applied in the same direction, there
wi]l not be a Hall field produced and the characteristics of these modes
should evidently remain unaltered by the application of the external
magnetic field. Hence it can be concluded that TEon modes hold no

interest in this analysis.

3.1.2 ANALYSIS OF TM MODE PROPAGATION
TM modes can be investigat?d by putting H, = 0 in equations

(3. 17) and (3.18), which then reduce to the f0110w1ng two equations.
€ 2 €2 {r g uley 4y

1 P
I (r2+w2ﬁa]) 3x (r2+w2ﬁsz) y2 (r +W2usz)

;__(_2_2-1)__ —B—'l‘g _S_E_Z.zo
(P2+W2u€]) 3y ) X

The above two equations can not be simultaneously satisfied for the same

+

=0

2 Z,

(3.20).

. _ 5 _ .
value of I, even if €] T & unle;s i 0 or EZ = 0. However, if

'Ez must vanish everywhere since it must vanish at the boundaries.

9 _
ax - 0
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Therefore, it {s seen that in a rectangular waveguide filled
with semiconductor, in the presence of an external steady transverse

magnetic field, TM modes can not proﬁagate.

3.1.3 ANALYSIS OF ANOMALOUS'MODE'PROPAGATION

‘The equations (3.17) and (3.18) however can be solved by theb
same value of f’i% Ez # 0 and HZ # 0.- Hence, in-addition to x-
independent TEon modes, the so called anomalous modes having all the
six field components are possible. Thereforé;Aif the wave is to depend
on the external applied magnetic field, all six components of the

field are necessary, and these must depend on both transverse coordinates.



35

...................

A rigorous general solution of the field components has been
made by employing a special form of the separation of the variables method.

To separate the variables, let

E, = u(x} ely)
H, = v(x] h(y) S .
Substituting these in equations (3.17)and (3.18) the following two

equations are obtained,

J : 2
- : €] . R =Y) o ~{P252+W2u(522+e3 )
,——z—?e—~u e + R ue + 55 ue
(r™w ue]) (r“+w ueZ) (r“+w usg)
+ Jwy F(E]’Ez) ' jWhe3
72 7 V'h + ———=—— v'h| =0 (3.21)
(p“w pez)(F W ue]) (r“+w uez)
'jW(sz‘e])F Let .jW€3 | .
2.2 2 2 & - T2, 2 , Uue
r tw ue])(P tw usz) ,(T W uez)
- 1 1
. + 55 v''h + —5———vh'' + vh =0 (3.22)
(r™+wue,). (r™+wue,)

where primes denote the differentiation.
After dividing equation (3.21) by v'e and the equation (3.22)
by u'h the following two equations are obtained.

€1 u,.,+_., €y u e'! '{P252+w2u(522+e32)}g_

F(x,y) =

- — gt e
(p2+w2pe]) v! (PZ’I‘WZ]JSZ)V' e (I‘Z"'Wdusz) v'
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. ijF(e]*ez) - --h‘ JWue3 h -
(P +W ue])(F2+wzu€2) e (F +W uez) e
jw(e,-e, )T Jjwe
G(x,y) = ]2 -e-Lw——*J—-———e
(o ue1)(F W uez) h (F H uez) h
1 vl' 1 e ‘

I _i_bii+__]=o

(r +W uez) u' (r+w"ue;) u'  h u'

bS

The key to the separation of the variables is that the variations
of F and G with respect to x and y must vanish. This follows from the

fact that F and G are themselves zero for all values of x and y.

2 2 '
Hence, 3F_ =0 = 2£22 U
axay (re+wfuey)  axdy v e
2 [}
or 3 __ (u_, & =0

%_.= constant

v (x) = - ctulx)



Simil

ar]ys ° .-: 0 = a____ v h_t_l..
: axdy axd u' ° h
PR A B
ax |_u' | 3y h =0
or ? Vy o
™ Gn =0
oo oV
T constant " .
“ors u'(x) = cv(x)

Therefore, the vanishing variations constrain u and v to the relations

where

Again

PR

From

or,

(3.23)
(3.24)

v'(x) wc'u(;)h

u'(x)

i

cv(x)

¢ and ¢' are separation constants.

The appropriate boundary conditions are
E,=0atx=0,x=a

z
u=0atx=0,x=a

oy
ax = 0atx=20, x.g a
S vl =0 at x = 0,a
equations (3.23) and (3.24)
2
%;%-+‘c¢’u,= 0

u=Acosax + B sine X

m m
where oy = (r;:c')l’2
u=0, at x = O makes A =0

u=_8 s1namx

37
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Againu =0, x = a
< 0=Bsimga

R
Similarly putting the boundary conditions on the solutions of v'' = -c'cv
gives v = cos gl‘x.
Thgrefore; the sofutions of (3.23) andg(3,24) give solutions u and v
of the following form

u = sinamx and v = cosa, X N (3.25)
: where o = c =c' = 23- '

With the help of equations((3.23) and (3.24) and (3.25) u, and

v can be eliminated from equations (3.21) and (3.22) to obtain the

following two equations for e and h.

g
a'l ——2-"’ b'l e -
L dy |
— d
— ~ d e +
L zdy 2_
wheye
[
2
Qe S —
! (F2+W2uez)
. n
jur(eq-ep)a"
“

(r2+W2ve2)(r2+W2ue})

d
¢y —+d
-1dy 1_
— d2 I—
an — + b
|22 2

by

], b], C1> d], and a,, b2’ ¢, and dz are given below.

(3.26)

(rZ40Pueq)ir % g% (e pPe 3?1 - (r 2 uez)_?“ £l

(r +w uez) (F2+w2ps])

: nm
JWues ~g

(r%e )
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1 | ' (I' +u? uez - “”'2_)
a, = ————— b. =
2 2 . 2
0'+w%m]) g U¢+w%m2
.jW(e]"ez)I‘ 'n'g‘ : jwa3 L3
C2 = . d = a

(P2+W2u81)(rz+wzu€2) ’ ) (F2+w2u62)

Equations‘(3.26) are two second order linear differential

equations in'e and h.The determinantal equation for these two equations

is 5
‘ 4 2 ~lre
LA -95-+ C =0 (3.27)
dy4 dy h ‘
where B = alb2 + azb.I + c1cy
ajaz
2 2,
r'ep +w u(ez teg Ts]ez) - (€]+€2)
€2
andc = 21%2 7 4%
aja, ‘
n2al 44
. . - nTw
= '(I‘é'*‘wzue]){F252+"’2u.(522+e32)}'(I‘2 W ugz)‘-z“‘ S S

€2

2l
- La‘%‘“‘ €2 (I‘2+w2ue-|)

Multiplying both sides by €0 the equation (3.27) can also be written

in the following form



' e
[P §%+Q§.2_2_.+R:|{h} = , (3.28)
y

where P = €9

o
1]

» .
172 (aiféiz)

r 26 2+W2u (8 22+€ 32+8 18 2) - n2
' a

I'4“:2 #1? {qu(€22+€32"'€1€2) - nr?

=~
L]

f 4 2 -
pd +Q§_+R]e=o
I:W dy?

Now, the auxiliary equation of the above differential equation is
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)

Mikaelian(12) and H. Seide‘l(13 have shown that the boundary conditions
at y =0 and y = b can not be satisfied'by either of the two independent

birefringent modes corresponding to the four roots £ m 9 but that a

1,
linear combination of these must be used. '
,' _ . - -

Thus, e(y) = A e™Y + Be™Y + ™2 + pe 2y - (3.30)
Therefore,

Cem moy -« . -~ ’ jwi- Y
E, = (Aem?y + Be vy Ce 2y 5 De 2y)'S'in Dgé- e(JWt Pz) (3.31)

where A, B, C, D are four arbitrary constants

-~

The co-efficients of equation (3.28) do not contain any term
containing odd powers of .I'; so that propagation in general will be of a
reciprocal nature. Also from equation (3.2) the diagohé] elements of
thé complex bermittivity_tensor are found to be éqUa] if the value of By
is éuch that (RcBoo)2<<1, In the present analysis, the maximum value
of (RcBo°)2 is approximately 0;15 and therefore, the assumption (RcBoo)2<<1
is quite reasonable. This makes ey = €, and this assumption will be
used to obtain the expressions for the>fie1d components. This simplifies
theNEXpressiOns of the field components and with thié assumptionQ the
expfeséions for m, and m, from equations (3.29) reduce to the following
forms.

2 2 | 2 2 Weiieal 2 2 220,

2 _ny 2 _ .2 Woue3 1 We3 _ €3 p“x°) 2

m© = = Woey = T - . + 540 ) 4w2u-_-.-—7r{}
£2

. e 2 .2 , 2 2 2 1
mn < = nzﬂz _ w2us2 -l . Wue3 3_{}w2us32) - 4yl 832 n“g°l %
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2
1 2 €3
Let a3 = 5 W ée
R 1
b, = 4 W2ye32Y e f§§. nZ2 | "
3 2\ ey 42
2 %y 2
m = 32 Wiue, - r- - ag + b3
2 2
2 _ nnw 2
M. = Tz Wwepm T - a3 - by

Now, substituting the expression of e(y) from (3.30) in equationsv

(3.26) and solving for the expression of h(y),the following expression

for h(y) is obtained -

n(y) = —2— (2 {Alagtbg)e™ + Blagtbgle

que3 N

..om «
+ C(a3~b3)e 2y, D(a3—b3)e 2y }

Therefore, the expression for HZ is given by

y

__ %2 2y [» My -y moy
HZ = (—) {A(a3+b3)e + B(asfb3)e + C(a3—b3)e

que3 Ny

. -m St
+ D(ag-byle 2y } cos X o (dwt-r,)
) a
Now substituting the expfessions for EZ and HZ in equations (3.13),
(3.14), (3.15) and (3.16) the expressions for Eys Ey, Hy s Hy can be
obtained. The expressions for all the six field components are written

below.
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E = (2 A ath.) + —3 Nw
0 Lk M niegsy) 21

- - F22 ¢
+Be ]y{-m] (agtby) + ﬂ-“—-z— .i}
2

a €
m 22¢
A +Ce2}i{m2(a3-b3)+r"“2_§_f
: | e )
- 2 2¢ . ;
m -
+De & {—mz(a3—b3) + 0 “2 i} cos D-:—X— o (Jwt-rz) (3.33) .
| a” €,
o -| - m]y{~ 2-, }
E = —s——m—| A-e W -T'm
Y (rPniye,) [ S0
+ B e—’m1y 2 + l" (a +b3)
(3.34)

m €
+ Ce zy{wgu% - rm2 - e——z- (a3—b3)}
3

-m 7 -
+De 2y{w2m:3 + rm2 (a )}] S1n";1TX o (wt-12)

E, =. (A" + Be ™Y + ce"?Y + pe™2) Sin g:_x elIWt-rz) (3.35)
Te
_ 2 'y 2
H = Ael{_mwua3 - a,+b, }
X juneg(r2ulue,) [ ! T 373 .
| -myy, . mlwzu€3 |
+Be { - agtby ) (3.36)
2
m,y Wne3
oy

2 —

CemLy Wone (dwt-rz

+De 2 m, 3. a3-b3}J S1n-—-?ie )
o 4
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' 2
T'e m W
- ( 2 2 ].y ue3
"y (n"){' 22 }{Ae n‘""z) - m (aztbs) } |

Jwueg (rtwpe,) T

. 2
v {W at (_m?) tmylagrby)) (3.37)

2
: my », W 2 2
2 €3
.+ Ce { 11 (n g ) - mg(a3=b3) }.

. ) I\ a e Lt

2 : .
-m, Y7 Woye 2 2 . (jwt-r2)
+De 2 3 (°17) + moy(ag-by)f| Cos M™% e

2 2 3 .

r a '
_ . M,y
Ho=__2  (_2) | A(a,*b,)e 7 4 B(asths)e
Z : 3'"73 AE3TV3
Jweg N7

-=my

M,y -m,.y (jwt-Tz)
+ C(az-b3)e g D(a3-b3)e 2 ] Cos ™™ ¢ (3.38)



.CHAPTER TV

THEORETICAL AND NUMERICAL SOLUTION FOR THE PROPAGATION CONSTANT

4.1 THEORETICAL SOLUTION

Sincenthetexpressions for alT_the six electric and magnetic field
components have been derived in the p%%viéQs chapter, a transcendental
equafion for the propagation constant can be obtained by implementing the
four boundary conditions on ﬁhese field components. The four boundary
coﬁditiohs in a rectangular waveguide completely filled with a semi-

senductor for the electric field are given below.

E, =0 aty=0, and alsoaty=5»0

Ex

b

0 aty =0, and also at y

Introducing the above four boundary conditions in equations(3.35)
and (3.33) the following four linear homogeneous equations in A, B,
C, and D are obtained.

[A+B+C+D]

- m] b -m] m,b "mzb

.[Ae + Be +Ce'2" + De 1=0 ‘

Te3 p2ql n2. 2
E3n“}+B{m(a3+b3)+r_._lL_e3}

€2

2, 12,2
+ € {my(ag-bg) + T 3-3-_-"2—} 4D {-mp(az- b3) + T —% u }] =0
€2 af a

45
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m.b -m.b
1 Te n2ﬂ2 1 . Te3 n2ﬂ2
Ae {}H(a3+b3) + iy + Be m](a3+b3) =0

a €2 a
m,b 2 -m,b 2.2
2 I €3 na 2 JE3 ny -
' (4.1)

For the'nonetrivial case, the determinant of the co-efficients

of the above set of equations must vanish.

Thus, 1 1 1 1
| m. b -m,b m,b -m,b
i e ! e 1 e 2 e 2
=0 (4.2)
W Wy Wy Wy
m.b -myb m,.b ~-m,b
] 1 2
w]e wze w3e 2 w4e
where,
5 _ T € n2.n.2
Wy = mlagthy) + 7 o
. - re3 nlr2
wz m.l (33+b3)+ -5-2— 5
a
. (4.2a)
v =il o 153 2.2
3 =mplagby) + I "5
2.2
W, = -m,(aq-by) +T E3 n°x
4 2193703 7T O

The above determinantal equation (4.2) can also be written in the

following form.
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=m+b m b m,b m b -M,b m.b
e L - e ! e 2 -e Lk h e 2 - e 1
w2 - W.I w3 - w] Wy »:w] = (
- «~myb m.b mob m.b ~Mob mb
1 1 2 1 2 1
Nze - w]e w3e - Wle w4e - W]e (4.3)

Expansion of the above determinantal equation.]eads to the following

equation.

_mgb  mb m b =myb
[}»2 Sinh m1b {= 2 W3k, Sinh myb + Wqlly (e -e )+ w1w4(e -e )}

. mb  mob N _ m]b' -m,b -myb  -m;b
+ (e - € ) {" 2 Nﬂ*lz Sinh m]b + 1’J1W4(e - )+N4Nz(e -€ )}
-mzb m]b m2b =M b) m-b m-b
+ (e -e ){.szg(e —e UL 24, Sinhmb + WM (e -e? )
4 172 1 173
=0 (4.4)

which on simplifying after elaborate algebraic manipulations, reduces

to the fo]lowing form

4(HH, +'w3w4) Sinh mb Sinh myb + 2(Wy Wy + WyW,) Cosh(m;b-myb)
= 20yl + lgllz) Cosh(mgb + mpb) = 2(kyiy = lylly#igy = igh) = 0

or,
2(H;H, + HgW,) Sinh myb Sinh mb + (Hyty + WoM,) Cosh (mib - myb)

= (il + Ughs) Coshlmb + myb) + (Wyhy + phlz) = (Hyhiy + ) = 0
or,
[2(4; 4, Mo, ) Sinh myb Sinhmyb + (HyHy*Hoh,) {Cosh mb Cosh myb

- Sinh mb Sinh myb }
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b Sinh mob }

- (HyHy + Wp¥z) {Cosh mb Cosh mpb + Sinh m,

+ (Wlg + Vokg) - (g + wzw4)] =0 (4.5)
or,
[(Smh m]b Sinh mzb) {Z(N]NZ +AN3N4) - (N]W3 + W2w4) - (W]WQ + WzW3) }
Tt (CO‘Sh m‘lb Cosh mzb) {(W]NB '§"w2w4) - (N1N4 + WZW3)}

£ {(Wly + Wllg) = (WM +“w2w4)§] =0 (4.6)
However, from equation (4.2a), ’
) = 2532 n44“ 2 2- 2 _ 2
(w]wz + w3w4) 2rc =2 W m, (a3+b3) m, (a3 b3)
o at
_ 2 _ 2 253244
(w]w3 + w2w4) = 2m]m2(a3 by ) +2r ;_?.ﬂ;§# (4.7)
2
2 .4 4
: = 2.1.2 2 €83 n'w
(N]w4 + w2w3) = -2m1m2(a3 -b3®) + 2r ;;7- a4

Substitution of these expressions into the determinantal equation (4.5)
gives the following equation,

. . 2 2 2
(Sinh m.b Sinh mzb) [EZ{m] (a3+b3) +‘m22(a3-b3) i]

. 1

-

2
+ (Cosh m]b Cosh mzb) {4m1m2(a3 -b32)}

+ {-4m]m2(a32—b32)} = 0 (4.8)
or, |
42 . .
- {mlz(a3+b3)2 + m22(a3-b3) } (Sinh mb Sinh m,b)

+ 2m1m2(a32-b32){ Cosh m b Coshm,b - 1} =0

i 2
or,
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| 2
2m]m2(a32—b32) (1-Cosh myb Cosh mzb) = - {mlz(a3+b3)2 + m22(a3-b3) }

(Sinh m b Sinh mzb) (4.9)

i

4.2 NUMERICAL SOLUTION
The solution of the transcendental equation (4.9) gives the
required value of the propagation constént. The co-efficients B, C,

and D can be evaluated in terms of Arusihg equation (4.1) as follows,

. . b N _ »
, ZmIeml - (m]+m29em2b + (WZ-ml)e mab

B=A
A
(mo-m )em1b + (motmy)e™MP = 2n ¢ M2b
_ (mprmy 2 2
C=A - (4.10)
- mib -mb msb
D =A (m1+m2)e 1° - (mz-m‘)e 1° 4 2m,e 2
A m,b

‘ -m1b 2 ~myb
where, A= - Zm]e m® 4 (m]—mz)g -+ (m2+m])el 2

Equation (4.9) is a. transcendental equation in T and its
'solgpion gives the possible values of I'. Knowing the value of T, the
roots my and m, can be evaluated from equation (3.32). As the
coefficients B, C, and D have been obtained in terms of A, all the
field compdnenis can be expressed in terms of the excitation représented
by A. Since these expressions are very complicated and since solutions
of equation (4.9) may be obféined only numevrically, it is difficult to
examine thé characteristics of the field diétribution in the general

case.
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4.2.1 THE PRACTICAL WAVEGUIDE SYSTEM

A numerical solution of the tran§cendenta] equation (4.9) has been
obta{ned for a practical system as shown in fig. (4.a). A rectangular
waveguide of internal dimensions a = .0228 meter and b = .01015 meter is
completely filled with an n-type germanium sample with thickness d =
.00188 meter. The calculations were made at a frequency of 9.46 GHz, the
experimenfal frequency.‘ The conducf}vity of the sample was varied
from 4 mho/meter to 4.65 mho/meter and the magnetic field was varied
frqm 0 to 10 K gauss, in steps of 1 K gauss. -The other values of the
parameters used in the cal;u{ations are

e = 8-854 x 10712 Farad/meter, €. = 16.
Ro=AH = .426 n’/volt-secl?]

)

| The solution of the transcendental equation gives the value of
the propagation constant, the real and imaginary parts of which give
the attenuation and phase constant respectively. The variation of the
attenuation constant and the phase constant with the applied external

magnetic field is given in Figure 4.b and 4.c.

1

~~
.

4.2.2 NUMERICAL METHOD OF SOLUTION

The numerical solution of equation (4.9) was obtained with the
Newton-Raphson iteration technique. To apply this technique the equation
(4.9) may be put in the following form,

= 2., 2 2 2

F(r) = Zm]mz(a3 -b3“) (1-Cosh mb Cosh mzb) + {m, (agtbg)

2 Y cs . -
+ m,%(a -by) J(s-mh mb Sinh mb) = 0 (4.11)
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} T WAVEGUIDE WALLS
% SHORT CIRCUITED
‘T’SEMICONDUCTOR ‘ . END PLATE
b% . ‘ ' V
o ' a =X | o d z
' 'frequency = 9,46 GHz
a = .0228 meter-
b = .01015 meter
d = ,00188 meter
o = 4.50 mho/metef
Rco = .426 mz/v—sec.
€ = 16

n-type Germanium sample

FIGURE 4.a A PRACTICAL SYSTEM
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where m, and m, are functions of I and their expressions are given in
equation (3.32)

F(r) when expressed in terms of I' becomes,
B 1 3 0 L 3
F(r) = ((-1%46) *(-r2+H) %) {1-Cosh (-r%+6)7b Cosh(-F2+H)7b )

+ {(-r?46) ¢, + (-r24H)C,) Sinh (-r24G)%b Sinh (-r2+H)%

- .

=0 (4.12)
where
o nz 2 2 . T,
6= =% - We q = d3*hs
a
2.2
=N 2
H = a; - Wuey - 33-b3
_ a3*h3 | »
cl cTTT T (4.13)
2(a3=b3)
, Cz = a3-b3
2(a3+b3)
2
a, = l qu f—?’—-
3.2 &
. : —
- _1 2 €322 2 ¢32 n2112] &
b3 2 L(W ) 4w H -—‘-‘—-—-'2—

1 a

If Ty is an approximation to a root of a function F(r) = 0,
a better approximation is given by

Tiq = F(r;)

i+l i’ F(—r:)_— (4.14)

where the prime denotes the derivative. The expression for F'(r) is

‘as.follows.
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[ (-r246)(1-C)) = (-r2H)C, | o
F'(r) = - =t Ib Cosh(-T+G)*b Sinh (-r+H)%b
[ (%) (1-C,)-(-20)C 2,02 2
+ rb Sinh{-r%+G)*b Cosh(-r“+H)?b
(-r2Hiye -

' {(-r2+G) + (~f2+H)
+T :

ek f"} Cosh (~£24G)%b Cosh(-r2+H)?b
~T .'LG)‘L(,I‘ +HY2 .

- 2T (C,*Cp) Sinh(-r26)%b Sinh(-r2+H)?b
(-1 246) + (-rP+H) }

T4 1
(-r2+6)% (-rP+H)s ]

where the expressions for Cy, Cy, G, H are given in equation (4.13).

Using the relation (4:14), the, numerical solution for the
propagation constant has been made with an IBM 7040 computer and the
computer programme for the solution of (4.9) is given at the end of

the thesis.

4.2.3 NUMERICAL RESULTS.

g

The variations of the attenuation constant and the phase
constant with the variations of the external applied transverse magnetic
field obtained from the'ca1cu1ations are shown in figure (4.b) and
figufe (4.¢). The magnetic field was varied from 0 to 10 Kilogauss in
steps of 1 Kgauss+

It was found fhat the phase constant decreases with increasing

applied magnetic field. The attenuation constant also decreases with
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increasing magnetic field. The effect of the conductivity of the

sample on the propagation constant was also calculated. The attenuation
constant and the phase constant for different values of conductivity are
also plotted in figure (4.d) and (4.e), as a function of the applied

magnetic field.
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CHAPTER V
THEORY OF MEASUREMENT

5.1  THEORY OF THE REFLECTION BRIDGE

The schematic diagram of a high precision reflection bridge
for directly measuring the magnitude and phase of reflection co efficient
{r} and @ respectively is shown in %{éﬁre 5A. ’The sample is coupled to
- one side arm and the precision short and attenuator in the other are
adjusted until the output is.minimized. . A

The hybrid "tee" is converted into a magic "tee" by introducing
slide screw tuners in the E and H arms and also in the side arms to
compensate for asymmetry. The magic tee has the property that when the
reflection co efficients at reference planes in thé side arms are equal,
the power fed to the detector in the E arm is zero.

Ina practical system it is required to find the reflection

co.efficient ry, at a particular measuring plane of the colinear arm of

the hybrid tee which contains the ﬁemicbnductor sample. This reflection

co efficient ry = 1o e2'sls - . (5.1)
where ry = reflection co efficient at port 2

Yg = propagation constant in the sample arm

ls = distance between port 2 and the measuring plane

54
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5.1.1 DERIVATION OF BALANCE EQUATION"

In general the inputAand outpué'felations of any passive four
port (the hybrid tee) can be described by the equation
b=sa (5.2)
where a and b are column matrices representing incident and scattered
waves respectively and s is the scattering matrix given by

-

1 %12 %13 S

-

S12 S22 S23 Su

I
"

: 513 523 ~ 533 S34
14 S2a S3a Saq

: 8
a
The reflection co efficients ry = Bl
1
and rp = 3 (5.3)
by
The null condition is ag = ;b4 =0 }

Using equations (5.2) and {5.3) the following sets of equations

are_obtained.

by = s;yry by sy byt sz ag )

by = S1p Ty by 555 1y by + 555 25 |
(5.4)

by = S33 Fy by +. 553 1y by + 533 25

4= S14 Ty by tsyryby tsypagy
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The above four equations can be written in the unknowns b], bz, b3, as

as

!
o o o o .

(539 7y = 1) by #5515 by + 593 23
S12 11 by * sy rp = 1) by +sp5 a3 =
S13 M by ¥ 5p3 1 by ¥ 533 23 - by
- S14. 17 By ¥ Spq Y by + 834 33
The firét, second and the fourth equatién form thezhomogeneous set

0

(537 = 1) by *+ 512 g by + 535
- STy byt (spp 1) by ¥ sp3 097 0
S14 1 by * Sy Tp by * 534 23 =0

which has a unique solution if the determinant of the co:efficients

is zero. Equating the determinant to zero gives

(533 =1 sy 1y 513
S14. Saa T2 - S3

and after some algebraic manipulation of this determinantal equation,

the relationships between r and r, can be obtained and is given below

511 534 ~ 513 S14 S34
r']-

e, = “22 53¢~ 523 24 | S22 534 7 %23 54

{:(511522 " 512705347 (512513 - 11523504 * (512523 513522)S1f]r1 ,

$90534 = S23524
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But Py =Ty ezk515 .
‘ a r1 - b ‘
Therefore, ry = ——— : (5.6)
: cry- 1

where, {js]ls34 - 513314:} 27,1,

a = e

$p2534 ~ s23 24
- 5 2r]
b= [ 1ess : (5.6a)
534 - 523524-1 '
o[ iiser - 1280530 * (S1a813 - S11523)%aa * (S12%23 S13%22)514 |

; STt 522534 7 Sp35 24

The reflection co efficient'r1 of the réference arm has been
shown by Champlin,K. S. and et. alo(iO) to be equal to
e = K e=2(Ar +d Bp 1) , 4 | (5.7)
where,
- K2 Ks
Ky = complex constant containiﬁg the residual attenuation and
(fixed) phase shift of the attenuator

Kg = complex constant containing the zero setting and (fixed)

loss of the short circuit.

-
[

reading of the precision attenuator in nepers

reading of the precision short in radians (measured from
* some arbitrary reference)
Substituting the above equation (5.7) in the expression for r, in

equation (5.6) gives the following equation



58

A e‘z[Ar+JBr1r] )

o= : S o (5.8)
X ¢ e-Z[Ar+q3r1r] -1

where A = aK, B=b, C=ckK

Thus, under very general conditions the bridge is completely described

- by the three co-efficients A, B, C. Determination of these co efficients
by meané.of pre]i&fnarylmeasurements Epnsﬁitﬁtes calibration of the

bridge.

5.1.2 BRIDGE CALIBRATION

(i)  The Matched and Symmetric Bridge: 7'

When the bridge is matched and compensated for asymmetry, the

following symmetry conditions are satisfied,

S11 7 S22
S13 © S23
S14 % =S4

From these conditions and from the‘fatt that the scattering matrix of
the hybrid tee is unitary, one canw show that the shuntiseries arms are
comg]etely isolated. |
| i.e.‘ S3q = S43 T 0
Substituting these conditions in thé expressions for b and ¢ in equation
(5.6a), it is found that | |
B=0
C=20

~ Therefore, equation (5.8) reduces to



 [A+dsd 7
T, =-Ae (At 8y f]
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(5.9)

The reflection co efficient v, at the air-semiconductor interface is

shown in Tig. 5A.

The coefficient A can be determined experimentally by balancing

the bridge with a_fixed-short circuit terminating the sample arm.

When a precision short cirucit is placed at dps -

d

. or =1 = Y&'e?YS?1E
«2v.d
or v, =-e 2Ys¢s

From equation (5.9)
25l . e—ZLAr{s])+J3r1r(s])]
where A.(sy) = attenuator reading with a fixed short
1r(51) = precision short reading with a fixed short
Therefore, ’
e~2vsdy-
e"ZU-\r,(S-I )+d3rl;(5-ﬂ I

.
- -~ .

Hence from equation (5.9)

I e“ZE{Ar‘Ar(Sl)} + 38 {1p=1,(59)+dy}]

- (A+J0)
e

(5.10)
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where A=A, - Ar(s])} nepers

(5.10a)

=
I

= Zgr,{]f - Tp(sy) + dq} radians

Equation (5.10)has been used for the practical measurement of the
magnitude and phase of reflection co efficient at the air-semiconductor

interface.

(ii) The Matched and Unsymmetric Bgﬁdqe:

When the input ports of hybrid tee are matched and the bridge is

not compensated for asymmetry, then

S]1 = S22 =0
S]2 =Sp1 =0 ata single freguency

and from equation(5.6a), c = 0.

Therefore, .
-2(A_+Jg..1
ry = - A AB) (5.11)
With a precision short circuit termination at the sample arm,
-2ygd ~2[Ap(s7)H8,1 (57)]
- s 1 = - A e r ] rr ] + B (5.]2)
With a matched termination Z,at the sample arm
-2[A (Z,)+dg,.1 (23] '
0o=-Ae " ° rirlZ +B (5.13)

Solving equations (5.12) and (5.13) for A and B, and substituting in

equation (5.11), the expression for ¢y becomes

-2[Ap-AL(s7)]
Py = - [e T T 1

- Yj(z ) ,

(S ) ¥ (Z5)

v + 38 [1 -1.(s;)] - ——n
rre TPV Y](S])
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where  vi(Z)) e”Z[Ar(Zo)+J8r]r(Zo)J

vilsy)  -2[A(sq)v0e 1, (sq)]
e
The right hand side of the above equation contains known quantities

and thus v, can be evaluated.

(i1i) The General Bridge:

For a general bridge, equation (5.8) gives the expression for
thé reflection co efficieqp yhich is comp]étely_described by the three
co efficients A, B, and C. These co efficients A, B, and C can be
determined by calibrating the bridge wifh two shorts at two different
distances d., d2 from measuring plane and with one matched termination

1
Z0 at the sample arm.

5.2 - THEORETICAL CALCULATION OF THE REFLECTION CO EFFICIENT

©5.2.1 GENERAL SOLUTION.

An expression is derived for the reflection co efficient at
thé air-semiconductor interface of the rectangular wave guide system
shown in figure 5.2A.

The transverse field components E_ and Hy in air (medium 1)

_ y
at a distance' Z from the air-semiconductor interface is given by
Ey1 = Ai1 e + Ar] e
— <T:Z A, Tq2 '
=A'i]Le L (5.2a)
As ,

b
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CONDUCTING
PLATE,

. &,
APPLIED

MAGNETIC FIELD,

n-type Ge sample

a= .0228 meteﬁ'
b = .01015 meter
d = .00188 meter

frequency = 9.46 GHz

FIGURE 5.2A

" semiconductor in a waveguide
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Where ™ is the propagation constant in the air filled section of the

‘waveguide i.e. in medium (1). - A;, and Arl are the'amplitudes of the

iy
incident and reflected waves at the air-semiconductor interface i.e.
at the'plane Z=0.

The reflection coefficient is given by the ratio

-2p | .
e e o (5.2b)
As Jo A

1
! |v] e

where g =u+jv

Arl -;14

)

which characterizes the terminating waveguide section containing the
semiconducting medium 2.

Therefore, the equation (5.2a) can be written as

Ey] = Ai] [ e +pe ] | | (5.2c)
H¥1 = Hi] e + Hr] e
Aj r A IRV A
= ._1]_ E- ]Z _ _..r.‘l e 1
VAl 4
- A]-l -r.Z P]Z ’
=—[e ! -pe ] (5.2d)
Z] .
where 7 = -Jwy , ' (5.2€e)
I'] ’ '

The wave impedance Z(o) given by the ratio of the transverse |
electric and magnetic field intensities at the air-semiconductor interface

in medium 1, i.e.

Ey. (0) - o
Y =1 (/) = Zl-i———_—z—g = Z-' Cothg (5.27)
-e .

2o) = (o) L

X
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In the semiconductor region, that is in medium (2)

-rpZ Iyl
= A, +
E‘y2 A12 e Aﬂ.ip2 e
-r.Z Ar r,z
=Ai e 2 +—2 o2 ] | (5.29) .
2 Ay : ‘
2.
~T,Z roz
. 2 2
_sz - H12:9 * HPZ €
. » A -
(Mg ror Ty rat
22+ 2”

A, Iy - ] .
= Le = e ¢ ] (5.2h)
22+ Aiz T;:
As
where 22+ = i;3-= characteristic impedance for the +vely travelling wave
12 :
A .
22»‘= 2. characteristic impedance for the -vely travelling wave
H
r2

r, = propagation constant in medium (2).
At Z=d the waveguide is terminated by a metal plate. Introducing

this” boundary condition equation (5.2g) becomes

-T,d  Apy Ty
0= Ai [e 27y Egg e 2 ]
2 12
or, Prz oS
Rip

Therefore, the wave impedance at the air-semiconductor interface is

given by
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(1+_F2 Tyt )
E. (o) A, €
2(0) = yz( - Zy A‘Z
H,. (o
X ro L,+
2 (1+ 4220
12 2
-2r.d
(1-e 2) .
=1} (5.2i)
2 “2rd
Co0-e T2y
2 -

5.2.2 FIRST ORDER APPROXIMATE SOLUTION bF THE REFLECTION CO EFFICIENT.
. With the application.of the external ﬁégnetic field, the medium

(2) shown in figure 5.2A has a complex tensor permittivity and in the

analysis of the field componenfs in Chapter 3 it has been shown that

the medium (2) has all the six field components. However, to simplify

the analysis only the Ey ahd Hy components of the electromagnetic

wave will be considered here and a first order.expansion of Zyt, the

characteristic impedance for the wave travelling in the +ve direction

will be taken into consideration. It is seen that L+ ¢ :ggu‘, but
_jw : ’
o _ €3 2, ? + .
where,
. m]y 'm]y mzy 'mzy
+ {m]Ae - m]Be + mZCe - sze, }
F = :

my

2 1 Y
[;rz(a3'b3)+w ugBm]} Ae

*{P2(33‘b3)*wzue3m]}36

Hr, (a,%b, Y wluem 1Ce 2 + tby)-wueam e 2
4{r2 ag 3') W uegm, }Ce {rz(a3 3)»w uegmy e
where, the co efficients A, B, C and D are expressed in terms of A in

equation (4.10)
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Expanding F* into the Maclauwin% Series and taking only the

first term

F'+(0_)_ y2';| l+(0)
Ff = Ff(0) + y + v
1. 2.

+ e e

Then, F* & F¥(0)
| my(A-B) + my(C-D)

where F¥(0) = - 5
rz(m] -, ) (C4+D) + w ués{m](AcB)fmé(C-D)}

7

Similarly, for the wave travelling in the -ve z-direction
E

L =y ..
B3
. € .
and zy = I o (r,2 + whue,) F - (5.2K)
2
where, . :
myy -m.y moy. -mzy
{m.Ae " -m.Be ! +m.Ce ¢ -m_De }
£ 1 1 A 2

1 1Y

. 2 my 2 -m
E‘I‘z(a3“b3 Y ue3My YAe T H{ -I‘z(a3=b3)=w ue My }Be

moy o “mgy
+ {=r2(a3+b3)+w2ue3m2}Ce 2 +{—r2(a3+b3)=w2ue3m2}ne L :]
Considering the first tevm of the series expansion of F~, it is

found that ‘
m](A~B) + mz(C-D)

F" 4 F7(0) = —
| -1y(my2-my2) (C+D) + wyeglmy (A-B)ém,(C-D))

where the co efficients A, B, C and D are expreésed in terms of A in.

-equations (4.10)
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Equating equations (5.21) and (5.2f) for Z(0) in the two regions,

91v¢§ Z+ (] zrzd)
Z] Coth § =
(1 - e o2¢ _23)

But from equations (5.2j) and (5.2k)-

* e3 2 ' -
_Z_Z___: [1“:@‘(?2+WHEZ)F] K]
; €3 (1 2 S
2 [n- & (l‘2 W usz) F] 2
A:.Q A _ €3
where K, = [1 - = (T, 2o uez) F* (01
= - ..E_g. 2 =
K= 11 - 8 (r,20fiey) Fo(0)]
From equation (5.21)
=9 - d
Coth § = —‘;ﬂ‘iK_ (1-e”2F2%)
S D)
. —
1 K,
-oT
I'] K'l ('l-e Zd)
P i Ky =-2rpd
- r, (el e %)
| 2r 5d
Thyp gy Ky (1 -e )
or =
‘ ’ ]”? K] -2P2d
Tz (.H'k— :
2
-Zr d
56 dgy K (1-e )=r2(1+—‘—e
oryElvle = -2T»d 2I"
igy Kq(1-e 2)+ (H-‘ 2%)

(5.21)

(S.Zm)
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This approximate equation is -~ pldtted in figure (7.24w8as a function

of applied magnetic field.

5.2.3 SIMPLE TE-MODE SOLUTION.

For the TE mode Z; = ='22 = gﬁband equation (5.21) becomes
+ ~2ryd 2
) 22.(1=e ) .
‘Z(O) = — “2r 54 = ZZ tanh rod (5.2n)
( -B + e ~ .‘& - ’ ‘

Equating equations (5.2n) and (5.2f) gives

o+
. Z] Coth § = 22 taphtrzd

» +
or Coth @ Lt tanh T,d
_ Z;
-Jwy .
o X —51—-tanh Tzd
2 -jwy

(5.20)

a tanh rd
r2, 2
Normally, the attenuation in the air Tilled part of the guide
can be néglected and the propagétfbn constant reduces to I'y =’jBI
where'B] is thé phase constant. |
Therefore, the equatidn (5.20) can be written as -
T 38 tanh ryd
-4 r .
i _ Jgy tanh Tpd ~ 1y

or v lyle (5.2p)

jB] tanh Pzd + T,
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B Since the prbpagation constant in:medium‘(z),-rz, corresponding
to the different values of the, applied magnetic field is known (figure
4Ldj, 4(e)) and also since By and d are known quantities, the right hand
side of the equation (5.21) is a known quantity. Calculated values of
y = ly«lczajQ for the system of figure (5.2a) for different values of the

applied magnetic field are given in figure 7.2(A), 7.2(B).

. .-
~



CHAPTER VI
EXPERIMENTAL PROCEDURES

6.1  PREPARATION OF THE SAMPLES

The samples of germanium were cut from a large block of 22.2
ohm-cm n—type'Ge érystal <111> axial orientation of trapezoida] shape,
by means of a diamond wheg1 cutter 0.020 inches thick. The samples were
cut slightly larger than the waveguide cross section and reduced to the
desired size by lapping on” silicon carbide paper by hand. Great care
was taken to insure that the X, y and z edges were perpendicular to each

other and that the faces ét z = 0 and z'= L are parallel.

The sample length T was chosen to be approximately one quarter

wavelength calculated from

g=2 .2 x
4 4 2

The phase constant (g) was obtained from the expression for the
propagation constant T = q+jg= [(252 - wz“oeo (er-jﬁgao]% for»the Case
of a-waveguide completely filled with semiconductor, with‘no magnetic
field épp]ied. The calculated value of £ was .07675" inch for a 22.2
ohmwcm.germanium sample at a frequency of 9.46 GHz. ‘Selection of £ to be
equal to one quarter wavelength or in general an odd number of guarter
wavelengths in the material gives maximumAexpérimenta] accuracy(28>,
- Prior to measurement the faces of the sample at planés z =10

and z = ¥ were ground on emefy paper and washed with tap water. The

dimensions of the sample used for the measurement were .893" x .397" x

69
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.074" and gave an excellent fit to the waveguide section 0.900" x

0.400".

6;2 CALIBRATION OF THE ELECTROMAGNET. _

The electromagnet used for the experiments was a "Spectromagnetic
Industries" model 1019 which has 4" diameter adjustab]e poles. This
mégnet is designea to be used with igﬁiagsociated 1 Kilowatt power
supply (ﬁode] 6021}). | |

"The electromagnet was calibrated witﬁ”a precision Gauss meter
for a pole gap distance of-3-cm. The ca]ibraéfon curve relating magnet

curréntto magnetic field produced is shown in Figure 6.1.

6.2.1 RESULTS OF CALIBRATION OF MAGHET.

The experimental readings for the magnetization curve of a 4"
adjustable gap electromagnet with cylindrical pole geometry for a gap
distance of 3 cm. is given in Table 6.1 below and the curve is plotted

in Figure 6.1.



TABLE 6.1

EXPERIMENTAL VALUES OF THE MAGNETIZIATION CURVE

NO. OF MAGNETIZING MAGNETIC FIELD
READINGS CURRENT IN THE GAP
Amps Kilogauss
1 1 B .37
2 3 1.14
3 6 2.35
4 | 9 3.5
5 10 3.9
6 12 4.65
7 14 5.45
8 15 5.75
9 17 6.5
10 18 6.9
11 20 7.5
- 12 21 7.8
13 24 8.6
14 25 8.9
15 27 9.36

71
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MAGNETIZATION CURVE

GAP DISTANCE = 3 CENTIMETERS

4" Diameter Cylindrical Pole

Geometry Adjustable Gap Electromagnet

6 -8 10 12 14 16 18 20 22 24 26
— == ENERGIZING CURRENT

(IN AMPERES)

FIGURE 6.1  EXPERIMENTAL MAGNETIZATION CURVE OF THE

ELECTROMAGNET
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6.3 DESCRIPTION OF APPARATUS.

A schematic diagram of a reflection bridge for the precision
measurement of the magnitude and the phase of the reflection co»efficient
‘at the air-semicohductor interface is shown in Figure 6.2. The equipment
used is as follows:

(i) Kixstron. -

The Klystron used as a high f;ééuency éignal source is a reflex.
type, X-13 of varian Associates of Canada Ltd. Its frequency is
mechanically tunable over. the range 8.2 to Ié;4 GHz with its maximum
power output for optimum load of 350 m watts. A frequency of 9.46 GHz
was used for the experiments.

(ii) Klystron Power Supply.

The poWer to tﬁe Klystron was supplied from the P.R.D. power
supply, type 890A. The reflector voltage can be modulated either from
an exferna] source or an internally produced square and sawtooth
waves. . -

(i1i) Ferrite Isolator.

-

- This is an unidirectiona? é]ement used to isolate the Klystron
from the rest of the circuit as far as the reflected waves are concerned.
Waves pass practically unattenuated in the direction of transmission

of the isolator but in the opposite direction'it has approximateiy 30db
attenuation. Thus any change in the load will not affect the Klystron
-output power and frequency. Isolators manufactufed by P.R.D. were

used in the reflection bridge assembly.



SHORT CIRCUITED

2. Klystron

3. 11. _Isolatoré

4. Attenuator
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12, CrySta] Detector
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Precision Rotary Attenuator

Sample Holder
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FIGURE 6.2 AN EXPERIMENTAL SET UP OF A REFLECTION BRIDGE



{(iv) Wave Meter.

The wave meter used was a Micro-line, Model 138A. This meter
w111 read the frequency of the waves in the guide and its range is from
8430 to 9660 MC/S.

(v) . Variable Attenuator.

This is used to adjust the power input to the circuit to a
su1tab1e va]ue and the unit manufactured by P.R.D. was used in the brzdge.

(vi) D1rect1ona1 Coupler

This is a device'consisting of two transmission lines coupled
tégethef in such a way thétﬂa wave travelling in one line in one
~direction excites a wave in the other guide ideally in one direction
only. The normal attenuation in this process is 10-20 db.

(v11) Standing Wave Indicator.

The standing wave 1nd1cator is a model B433 (1637) of Elliott
Brothers (London) Lid. and is a high precision instrument. This has
been used for the measurement of V.S.W.R. during the matching of the
' hybr1d tee ports by means of the tuners

(v117) Precision Attenuator, Precision Short and Hybr1d Tee.

-

High quality equipments are needed for these componentso Elliott
instruments are used for the rotary vane attenuator type A1617/44 and
the‘precision short. The hybrid tee was manufactured by Deﬁornay
Borandi.

(ix) Electromagnet.

The Spectromagnetic Industries' Model 1019 is a 4" diameter

pole adjustable gap laboratory electromagnet. It may be operated
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continuously with currents up to 20 ampere§ to givé 9.5 K gauss with pole
gap of 3 cm. The poles, which ére adjustable and reversible, are
brecision ground to enhance field homogeneity. The poles are chrohe _
plated to resist wear and corrosion. Each pole has 4" diameter leindrical
pole geometry on one end and f-1/2" diameter tapered pole geometry on

the other. In aﬂditidn, 6" variable flux rings may be attached to the

4" diameter ¢y1indrica1 ends to increase field uniformity.

(x) Regulated Power Supply for the Electromagnet.

' The model 6021 Spectromagnetic Industries' precision maghet

‘ péwer supply provides aﬁ Ex%feme1y stable, accurate current regulated
~current. The output current is continuously adjustable over the

entire range 0.1 to 30 Amps with a 10 turn potentiometer.’

6.4 MEASURING PROCEDURE.

6.4.1 TUNING OF A HYBRID TEE.

The ports (1), (2) ‘and (4) of the hybrid tee shown in Figure (5A)
were terminated in matched loadsfand S33 Was made zero by using the
tuner in the arm {3). In practice a VSWR of about 1.02 was obtained.
Similarly, 344 was made zero by the tuner in arm 4, with other ports
terminated in matched loads. Then S34 has checked by measuring the
output in the E-arm while feeding the H-arm with terminations placed
on'arms}(]) and (2). If s3, fs not zero, it can be feduced to a
minimum by adjusting the tuner in arm (1). This adjustment slightly
disturbs fhe tuning of E and H arms so these wére again tuned and

the process repeated till the effect of the side arm tuner on s33 and
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Sgq 1S negligible. Since the hybrid tee used was a high quality magic

tee, only slight adjustments were needed for tuning the hybrid tee.

6.4.2 Measurement of Reflection Coefficient.

.'The sample arm was first shorted by a Short circuitlmeta1
plate and the precision attenuator and the precision short in the
referenhe arm were then adjusted‘forumiﬁimum output. Their readings
Ar(s]) ahd lr(s1) were recorded. Thé—éefmanium sample was then
placed in the waveguide ih front of the.shori'circuit plate. Again,
the precision atteriuator and_thg precision shbkt were adjusted for
minimum output and their readings Ar and 1y were noted. Care was
~ taken to position the sample faces normal to the axis of the guide
and the back face was.completely in cohtact with the metal plate.

The external magnetic field B was then applied in a direction

transverse to the direction of fhe wave propagation in the
waveguﬁden The external magnétic field was varied by varying the
~ magnetizing current from 0 to 27 aﬁp in steps of 3 amps and the
readings of the precision éttenua%or and the preéision short A, and
‘]ﬁ"véﬁpectively for minimum output were recorded for each stép. The
direction of the magnetic field was then reversed and the entire
procedure was repeated. Care was also taken to note that the temperature
of the sample was not affected by the temperature rise of the electro-

magnet during the measurement.
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6.4.3 MEASUREMENT OF THE D.C. RESISTIVITY OF THE SEMICONDUCTOR.

The conductivity of the semicénductor was measured by the
four pdint probe method which has the advantage that it does not require
any specific shépe of the sample.

In this method, four probes are placed on the flat surface
of the sample and the curvent I is passed through the outer probes and
the voltége V is measured between thé-inher probés. If s],'sz,

$3 are the probe spacings then the conductivity ¢ is given by(zg)

PSS S ) SR IR - (6.1)
2V [s; sy (s]+sz) (sy*s3)

. ‘When the probe spacings are equal, the resistivity p of the Sampie is

given by

Q |=—

o = =2ws(¥—) | o - (6.2)

The equation 6.2 was used in calculating the d.c. resistivity
of thé sample and the resistiQity of the'sampie was found to be
; 22.2_ohm=cm° When the qimensions!6f the sample are small ;ompared to
probe spacing, the correcfions shown in figure (6;3) must be applied.
: Tﬁé'édge of the sample must bé at least a distance 3s away from the

probe. .
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FIGURE 6.3 FOUR PROBE RESISTIVITY CORRECTION CURVE
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CHAPTER VII
RESULTS

7.1 THEORETICAL RESULTS
7.1.1 VARIATIONS IN PROPAGATION CONSTANT AND THE MATRIX ELEMENTS OF

THE COMPLEX TENSOR PERMITTIVITYlWITH ugn
The calculated variations in the values of the attenuation
constant and the phase constant of the electromagnetic wave with the
variation of the applied ma;nétic field as calculated from numerical
solution of equation (4.9) are shown in tables 7.1(A), 7.1(B), 7.1(C),
7.1(D) and 7.1(E) for different values of the conductivity of the
material. These tables are given in graphical form in figures‘4_d;>

A T

and 4.e: .
' :Tﬁe calculated variations in the values of the matrix elements
of the complex permittivity tensor using equation (3.2 ) with the
Variations of the applied magnetic field are also given in tables 7.1(A)
to Z:](E) and these variations have been plotted in the graph shown in

figure 7.1 and 7.2.
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TABLE 7. 1A

. €5 AND €5

THEORETICAL VARIATIONS IN PROPAGATION CONSTANT €
| v WITH MAGNETIC FIELD
Frequency 9.46 GHz '
Conductivity = 4.0mho/meter
n-type Ge sample
MAGNETIC | PROPAGATION CONSTANT "I"=q+i8
FIELD |Attenuation |Phase Constant £ €y €
B Constant "" " 3
Wb/m2 neper/meter | radian/meter farad/meter farad/meter farad/meter
- ’ . - .
0.0 186.01 803.8 (1.417-3.672)x10"10 | '(1.417-3.672)x10""° 0
0. 185.68 803.75 " (1.4]7-j.670)x10-]0 5 2.86x10712
0.2 184.69 803.59 " (1.417-3. 667)x10 -10 j 5.69x10712
0.3 183.06 803.31 l (1.417-j. 661)x10 -10 j 8.45x10712
0.4 | 180.84 802.94 " (1.417-3.653)x107°0 | j 1m0
0.5 178.06 802.48 " (1.417-5.643)x107'0 | j 1.37x107 "]
0.6 174.78 801.93 " (1.417-5.631)x10"10 i 1.61x10° 1
0.7 171.07 801.31 L (1.417-5.617)x10" 10 i 1.84x10")]
0.8 166.99 800.64 z (1.417-5.602)x10" 10 j 2.05x107 1!
0.9 162.59 799.92 s (1.417-3.586)x1071C j 2.25x10° 1]
1.00 166.76 782.34 " (1.417-5.569)x10~10 j 2.43x10" "

8L



TABLE 7.1B

VARIATiONS INT, €95 €5 AND e3 WITH MAGNETIC FIELD

Frequency 9.46 GHz
n-type Ge sample

Conductivity = 4.3 mho/meter

MAGNETIC | PROPAGATION CONSTANT "' = g+jg .
FIELD | Attenuation |[Phase Constant € €n ‘ )
B Constant "o "g"

Wb/m2 neper/meter | radian/meter farad/meter farad/meter farad/meter
0.0 199.19 806.96 (1.417-3.722)x10710 |.(1.417-3.722)x107'° 0
0.1 198.83 806.89 o (1.417-5.721)x10710 j 3.07x10712
0.2 . 197.77 806.70 " (1.417-3.717)x107'® '§ 6.11x10712
0.3 196.03 806.39 . (1.417-3.711)x10710 3 9.00x10712
0.4 193.65 805:96 " (1.817-3.702)x1071° j 1.20x10°M
0.5 190.69 805.43 ! (1.417-5.69)x10710 | 5 1.47x107"!
0.6 187.19 804.80 " 1 (1.817-3.678)x10°10 3 1.73x107 1
0.7 183.23 804.10 o (1.417-3.664)x10710 j 1.98x107 1!
0.8 178.87 803.32 " (1.417-3.647)x10710 j 2.21x10"
0.9 174.19 802.5 " (1.417-3.630)x10"'° j 2.41x10" 1!
1.00 169.24 801.64 " (1.417-j.612)x10-10 j 2.61x10" 1!
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Frequency 9.46 GHz

VARIATIONS IN T, €15 €

TABLE 7.1C

AND €5 WITH MAGNETIC FIELD

\

Conductivity = 4.4 mho/meter

-n-type Ge sample

MAGNETIC | PROPAGATION CONSTANT "I =q+jg
FIELD Attenuation |Phase Constant o e .
B Constant " "g" L 2 3
wb/m2 neper/meter radian/meter farad/meter farad/meter farad/meter
0.0 203.54 808;04 ( .417-j.739)x10']0 *(1.417-3.739)x10™10 0
0.1 203.18 807.98 n (1.417-5.737)x10™10 i 3.14x10712
0.2 202.10 807.78 y (1.417-3.733)x107'° j 6.25x10712
0.3 200.32 807.45 " (1.817-3.727)x1071° j 9.30x10712
0.4 197.89 807. . (1.417-3.718)x10"10 i 1.22x10711
0.5 194.87 806.45 u (1.417-3.707)x10710 i 1.5x10"1
0.6 191.3 805.8 " (1.417-3.694)x1010 i 1.77x10°11
0.7 ©187.25 805.06 " (1.417-j.679)x10_10‘ i 2.02x107"

08



Frequency 9.46 GHz
Conductivity = 4.5 mho/meter
n-type GE sample ~

TABLE 7.1D

VARIATIONS IN T, €y, €, AND eq WITH MAGNETIC FIELD

—

MAGNETIC | PROPAGATION CONSTANT "r" = o+ja
FIELD AtTtenuation | Phase constant € €, " €
B Constant "o" g"- 1 2 3

wb/m2 neper/meter | radian/meter farad/meter farad/meter farad/meter
0.0 207.89 809.15 (1.417-3.756)x107"° | * (1.417-3.756)x10™ 10 0o
0.1 207.51 809.08. " (1.817-3.754)x10710 j 3.21x10712
0.2 206.41 808.87 " (1.417-3.75)x10"10 ' 6:40x10']2
0.3 204. 60 808.53 " (1.417-3.743)x10710 j 9.51x10712
0.4 202.12 808.06 " (1.417-3.735)x10~10 i 1.3x107 1
0.5 199.03 807.48 " (1.4]7ij.723)x]0'30 j 1.54x1071
0.6 195.39 806.8 " (1.417-3.709)x10"'° i 1.81x1071
0.7 191.27 806.03 " (1.417-3.694)x10" 10 j 2.07x107 1]
0.8 - 186.73 805;19 " (].417—j.6775)x107]0 i 2.31x107 1]
0.9 181.85 804.29 " " (1.417-3.659)x10710 j 2.53x107 !
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Frequency. 9.46 GHz .
Conductivity = 4.65 mho/meter
n-type Ge Sample

VARIATIONS IN T, e €

TABLE 7.1E

2

AND eq WITH MAGNETIC FIELD

PROPAGATION CONSTANT "r"=ao+jg

| MAGNETIC
FIELD ﬁf%enuatﬁﬁﬂ; Phasg Eonstant €1 €y e3
B Constant "a 8 _

ﬁb/m? neper/meter radian/meter farad/meter farad/meter farad/meter
0.0 214.37 810.84 (1.417-3.781)x10710 | *(1.417-3.781)x10710 0
0.1 213.98 81076 | " (1.43?-j.780)x10f‘° i 3.32x10712

0.2 212.85 810.54 : (1.417-3.776)x10" 10 j 6.61x10712
0.3 210.98 810.18 " (1.417-3.769)x10710 i 9.82x10712
0.4 208.43 809.68 o (1.417-3.759)x10710 i 1.20x107 11
0.5 205.25 809.07 " (1.417-5.747)x10"'© i 1.50x107 1
0.6 201.50 808. 34 " (1.417-3.733)x10™ 10 i 1.88x10"1]
0.7 197.26 807.53 " (1.41?-3.718)x1o“° i 2.14x107 "
0.8 n
0.9 " (1.417-3.681)x10"10 j 2.61x107 "

28
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7.1.2 CALCULATED VALUES OF THE REFLECTION CO EFFICIENT.

The calculated theoretical values of the magnitude and phase
of the reflection co efficients are shwon in Tables 7.1(F) and 7.1(G)
The frequency used in the cé]culation is 9.46 GHz and the conduétivity of
the germahium sample is 4.5 mho/meter.

The theoretiéa]'va]ues of the magnitude and phase of feflection
co%efficieﬁt have been p?btted in Figdéé'7;2A? and Figure 7.28

~also along with the measured values.



TABLE 7.1(F)

REFLECTION CO: EFFICIENT OBTAINED FROM

SIMPLE TE MODE CONSIDERATION

Frequency 3 9.46 GHz
Conductivity = 4.50 mho/meter
n-type GE sample

84

Dimension = :8933 x .397% x .074" _
| APPLIED MAGHITUDE OF THE PHASE ANGLE OF THE
MAGNETIC REFLECTION CO: EFFICIENT REFLECTION CO-EFFICIENT
FIELD v x 8
5 L.
Wb/ (IN DEGREES)
0.0 0.416 157.58°
0.1 0.415 157.51°
0.2 . 0.413 157.33°
0.3 0.410 157.03°
0.4 0.406 156.59°
0.5 0.400 156.02°
0.6 0.394 155.30°
0.7 0.386 154.43°
0.8 0.378 153.40°
0.9 1 0.370 152.19°
0.95 0.366 151.52°'




TABLE 7.1(6G)

REFLECTION CO--EFFICIENT OBTAINED FROM FIRST ORDER
APPROX. SOLUTION OF THE CHARACTERISTIC IMPEDANCE

Frequency = 9.46 GHz
Conductivity = 4.50 mho/meter

n-type Ge sample

Dimension= .893" x .397" x .074"

85

APPLIED MAGNITUDE OF THE - | PHASE ANGLE OF THE
MAGNETIC' REFLECTION CO-EFFICIENT REFLECTION COEFFICIENT
FIELD Ir| 3 )
8 L
Wb/m? (IN DEGREES)
0.0 0.416 157.58° )
0.1 0.416 157.87°
0.2 0.414 158.03°
0.3 0.412 158.05°
0.4 0.408 157.94°
0.5 0.403 157.70°
0.6 0.397 157.35°
0.7~ 0.390 156.86°
0.8 0.383 156.25°
0.9 0.374 155.50°
0.95 0.369 155.07°
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7.2 . EXPERIMENTAL RESULTS OF THE MAGNITUDE AND PHASE OF THE

REFLECTION CO EFFICIENT.

7.2.1 EXPERIMENTAL VALUES OF THE REFLECTION CO -EFFICIENT.

" The experimental readings for the magnetizing curvent, the
precision atténuator (A,) and the precision short (]r) have bgen |
tabulated in Tables 7.2A & B. The ‘corresponding‘ calculations .of the
magnitudé and phase of fhe reflectioﬁitoyéfficieﬁt from these experimental
readings have also been shown.in the above tables. Two sets of
reaﬁings have been obtained by changing the direction of the applied
magnetic field. o |

' The variations of the magnitude and phase of the reflection
 co efficient with the épp]iéd magnetic field B have been shown in

Figures 7.2(A) and 7.2(B).



TABLE 7.2A

EXPERIMENTAL VALUES OF THE REFLECTION CO .EFFICIENT

Frequency = 9.46 GHz

No sample and wavegu1de terminated by a conducting p]ate

1,(s7) = 5440 x 10-Smeter MAGNETIC FIELD» (+B)
Ap(sy) = 8.8° » 0.21 dB = .02418 nepers .
NO. OF | MAG. CURRENT | B , Ar poep (s7)| ae2pn -a (507 e e
READINGS IN AMPS, Wb/metef egree | Decibels | Nepers rr
1 0 0 37.2° 3.95 455 | .43082 .86164 .423.
2 1 .037 .37.3° 3.97 .4575 .43332 .86664 421
3 3 114 37.4° 4.00 .460 .43582 .87164 419
4 6 .235 37.5° 4.02 .4625 | .43832 .87664 817
5 9 .35 37.7° 4.07 .4675 44332 .88664 413
6 12 .465 38.° 4.14 477 .45282 -90564 .405
7 15 .575 38.3° | 4.21 .484 .45982 .91964 .399
8 18 .69 38.5° 4,26 .490 .46582 .93164 .394
9 21 .78 38.8° 4.33 .498 .47382 .94764. .388
10 24 .86 39.° 4.38 .504 .47982 .95964 .3835 -
1 27 .935 39.2° 4.43 .51 .48582’ .97164 .379 |

48



With no sample and waveguide terminated by a conducting plate

, EXPERIMENTAL VALUES OF THE REFLECTION CO EFFICIENT
Frequency = 9.46 GHz | ‘ :

1.(s7) = 5440 x 1076 meter MAGNETIC FIELD + (-B)
Ap(s7) = 8.8° » 0.21dB = .02418 nepers "
Rggblggs MA?& XﬁgngT Wb/geter2 Degree Deﬁ?be}s_Nepers ,Ar-Ar(s]) A=2[Ar-AV(S])] |r|=e'A
n 0 0 37.2° | 3.95 | .454 | .42982 85964 424
2 1 .037 37.2° | 3.95 | .454 42982 85964 .424
3 3 114 37.25° | 3.96 | .455 43082 {° .86164 423
4 6 .235 37.35 | 3.99 | .458 43382 .86764 2420
5 9 .35 37.55° | 4.03 | .463 ;43882 .87764 .416
6 12 .465 37.75° | 4.08 | .469 84482 88964 A1
7 15 .575 137.9° | 4.12 | .473 44882 .89764 .408
8 18 .69 38.2° | 4.19 | .4825 | .45832 .91664 40
9 21 .78 38.5° | 4.26 | .490 . 46582 .93164 .3945
10 24 .86 38.65° | 4.29 | .494 46982 .93964 .391
n 27 .935 38.85° | 4.34 | .499 .94964 3875

47482
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"

e A(-e30) = Ir|l8
28, {1p-1p(s7)*d1} in radian

TABLE 7.2C

EXPERIMENTAL VALUES OF THE REFLECTION CO EFFICIENT

Bp = 143 radian/meter
Tp(sy) = 5440 x 1076 meter

-dy = 1879.6 x ]0'6 meter

MAGNETIC FIELD » (+B)

Bolls |5 B it | oty | O [ 8- g T8
] 0 0 5005x10°6 | 1444.6x107° 413 23.7° | 156.3°
2 1 .037 5010x1076 1449.6x1070 .85 23.75° | 156.25°
3 3 114 5015x1076 1454.6x107° i‘ .4165 23.9° | 156.1°
4 6 .235 5040x10™0 1479.6x1076 .423 24.3° | 155.7°
5 9 .35 5075x10™5 1514.6x10°° 433 . 24.8° | 155.2°
6 12 465 5125x10~6 1564.6x10™6 4475 25.65° | 154.45°
7 15 .575 5180x10~6 1619.6x1078 .4625 26.5° | 153.5°
8 18 .69 5130x107° 1569.6x1070 .448 25.7° | 154.3° .
9 21 .78 5190x10~6 1629.6x10~6 466 26.7° | 153.3°
10 24 .86 5265x1070 1704.6x1076 .4875 27.9° | 152.1°
n 27 .935 5325x10™° 1764.6x1076 505 28.9° | 151.1°




-
]

ey = |r

EXPERIMENTAL VALUES OF THE REFLECTION CO EFFICIENT .

TABLE 7.2

P = 28,{1~1,(57)+d7} in radian

B = 143 radian/meter

Tr(s7) = 5440 x 107% meter-
dy = 1879.6 x 1070 meter

MAGNETIC FIELD- (-B)

NO. OF | MAG, CURRENT | B in L. [lp-Te(s1)4dy)d | B=28p00p=1p(s1)4d} | B ,
READINGS | IN AMPS | Wb/meter (meter) (meter) (radian) in degrees I}
1 0 0 4900x10~6 | 1339.6x107° 1.383 21.9° 158.1°
2 R .037 4900x1076 | 1339.6x107 ".383 21.9° 158.1°
3 3 114 -4910x1076 | 1349.6x106 .386 22.1° 157.9°
4 6 .235 4925x1076 | 1364.6x1076 .39 22.35° | 157.65°
5 9 .35 4960x1070 | 1399.6x107° .40 22.9° i57.1°
6 12 .465 5000x107° | 1439.6x1076 412 23.6° 156.4°
7 15 575  5050x1076 | 1489.6x107° 426 24.4° 155.6°
8 18 .69 5105x107% | 1544.6x10-6 .442 25.3° 154.7°
9 21 .78 5165x10°6 | 1604.6x10™° .458 26.3° 153.7°
10 24 .86 5220x10"6 | 1659.6x1070 474 27.15° | 152.85°
1 27 .935 5265x107° | 1704.6x107° .4875 27.9° 152.1°

06
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7.3 COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL VALUES OF THE
REFLECTION CO_EFFICIENT |

The experimental and the theoreticai values of the magnitude
of the reflection co efficient have been plotted in Figure 7.2(A).
It is found that the experimental results are in excellent agreement
with the theoreticgl results. . _

The experimental and the theoretica} values of the phase of
“the reflection co efficient have been p1ottedm%n Figure 7.2(B). It is
fourid that the theoretical values of the phase éf the reflection
co- efficient obtained by simple TE mode consideration are in excellent
agreement with the experimental values. The theoretical values of
the phase of the reflection co efficient obtained by first order approx.
solution are in close agreement with the experimental Va]ues'for

lower values of the magnetic field but at higher values of the

magnetic field it differs slightly from the experimental curve.
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CHAPTER VIII

CONCLUSTONS

8.1 THEORETICAL WORK

‘In one of. their published papers, Nag and Engineer(g) have
formulatéd a épecia] form 6f the Hall-field expréésion? EH. When a
magnetic field is applied, the conduction current is modified due to
_ thg Hall effect. Thé Hall effect produces a field, Ey wh{ch in the case
offa semiconductor with sﬁ%e;ica] energy surfaces is given by the
following relations

Ey = ReBg X ch

Jeh = o (E-Ey)
where, R; is the Hall co-efficient, B, is thé steady applied magnetic
field, ¢ is the conductivity of the material and J.y is the modified
“conduction current.

| Foliowing their suggestioné of the Ha]l-fie]d expressions, a
coqg]ex permittivity tensor characterizing the semiconductor in a
transverse magnetic field has been derived. With this complex permittivity
fensor, a detailed theorétical aha]ysiS'of the electromagnetic wave
propagation through a réctangu]ar'waveguide'completely filled with a
5emitonductor subject to a transverse abplied magnetic fie]d has been
carried out. In the analysis it has been clearly shown that no TM
modes or TE modes other than those of the type TEOn can be excited in a

rectangular waveguide completely filled with a semiconductor subjected
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to a transverse steady applied magnetic fié]do In the analysis, it has
also been shown thaf TEon modes do not depeﬁd on‘the magnetostatic
field. Therefore, in this present analysis these modes were not
- considered in any detail. In addition to these TEgn modes, anomalous
“modes having all six E and H field components have been shown to exist.
An investigation of these modes has been made. |

Using Maxwe11’s'équations and “the appropfiate boundary conditions,
2 rigorous and exact solution of all these six fieid cbmponents of the
anomalous modes has been made by'emp]oying a different procedure from
Nag and Engineer. In thei; éheoretica] analysis, a sinusoidal field
intensity variation in the direction of the applied magnetic field was
assumed. However, in the-present work, no such assumpfion has been
made and the sinusoidal field intensity variation in the direction of the
magnetic field has been proved mathematica]ly by emp1oyin§ a special
method of separation of variables. Proceeding in this completely
different way, a resultant transcehdenta] equation for the propagation
: constanf has been obtained which agrees with the transcendental equation
of‘ghe propagation constant, as obtained by Nag and Engineer. It has
been shown that the propagation characteristic is in general reciprocal.

A numerical'solution of.thiS'tfanscendentaI equation.has been
made by employing the Newton-Raphson method. To the knéw]edge of the
:author, the numerical solution of this complicated transcendehtaT
equation has never been carried out before. The attenuation constant
and the phase constant of the electromagnetic wave as a function of

the applied magnetic field B which varies from 0 to 10 Kilogauss"’
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have been obtained numerically for n-type germanium with conductivity
Qarying from 4 mho/meter to 4.65 mho/metér.
In this range of the magnetic field, both the attenuation

» constant and the phase constant are found to decrease with the incréase_
of the applied transverse steady mégnetic field. As thé conductivity _
of the sample is dincreased the values of the attenuation constant and the
phase constant are incréased for a pé#tiduiar va{ue of the magnetic field.
- Referring to figure (4.d) it is seen that as the magnetic field is
increased from 0 to 0.9 wp!m?, the attenuation constant o decreases from
186.01 neper/méter to 162.5 neper/meter for the material having
conductivity 4 mho/metef.i For materials having conductivity 4.3
mho/meter the attenuation constant o decreases from 199.19 neper/meter
to 174.19 neper/meter, in the same range of the magnetic field. The
attenuation constant for materia]s‘of conductivity 4.5 mho/meter
~ decreases from 207.89 neper/meter to 181.85 neper/meter as the magnetic
- field is increésed from 0 to 0.9 Wb/mz. This shows that with the
incfeasé of the conductivity of the sample the net change in the attenuation
constant increases. |

" As the magnetic field is increased from 0 to 0.9 Weber/m2
the phase constant B decreases frqm4803.8 rad/m to 799.9 rad/m for
-materials having conductivity 4 mho/m; fkom 806.96 fad/m to 802.5 rad/m
vfor materia]s'héving conductivity 4.3 mho/meter and‘from 809.15 rad/m
to 804.29 rad/m for materials having conductivity 4.5 mho/meter.
Similarly, thé net change in the phase constaﬁt is foﬁnd to increase

with the increase of the conductivity of the sample.
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8.2  EXPERIMENTAL WORK

The experimental verification of the theoretical ana}ysis'was
made on a 22.2 ohm-cm n-type germanium sample at 9.46 GHz using a . '
reflection type microwave bridge( The d.c;‘fesistithy of the sample
was. measured with a four point probe.).To the knowledge of the'autﬁor,
no experimental work employing this technique at this frequency range
has been repbrted prevfously. The rg?Tebtion br}dge measurement
technique followed that suggested by Champlin, Holm and Armstrong(]o).
This gave the magnitude apd.phase‘of the ref}éctioh co -efficient for
dffferent values of the app]fed magnetic field which are plotted as a

function of the magnetic field in figures 7.2(A) and 7.2(B).

8.3 COMPARISON OF THEORETICAL AND EXPERIMENTAL WORK

The measured values of the reflection co efficient at the air
semiconductor interface were compared with the theoretical values of the
reflection co efficient. As shown in figures?.Z(A) and 7.2(B) the
agreement of the theoretical and ‘the practical values of the reflection
co-efficient was excellent in bqth magnitude and phase.

Two expressions for the theoretical reflection co efficient
have been derived. One expression is based on the simple TE mode
analysis. The other expression‘is based on the considerations of Ey
'and Hy components of the electromagnetic field in the anisotropic material
and on the first order approximation of the characteristic impedance
in this material. The magnitudes of the reflection co efficient

obtained theoretically by the above two ekpressions agree well with the
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‘measured magnitudes of the reflection co officient. However, it is
found that at higher magnetic fields the tﬁeoretical reflection
co-efficient magnitude, based on the first order approximation, is
closer to the experimental curve than thoﬁe based on the simple TE
mode analysis.

‘For the phase of the reflection cb >fficient the simple TE

mode analysis gives thebretica1 va]uéE which a1mést coincide wiih the
experimental vé?ues. However, the theoretical va]ﬁes of the phase of
thg reflection co-efficient based on. the first order approximation,
depart from the experimenté?Avaiues for'higher magnetic fie1d.

The ca]cd]ation of‘reflection and transmission co efficients

6f an e]ectrohagnetic wave from an anisotropic medium such as in this
case with.ali the six anomalous field-components, is quite complicated.
To the knowledge of the author an explicit expression for the reflection
co efficient from such a surface has not yet been published. The
‘analysis Tor the reflection cofeffjcient which has been presented does
‘not in general completely desgribe thé behaviour of the practical
s;y;s;tém.T | |

The ana]ysjs presented in this thesis for a compietely filled
guide can in principle be extended to the case of a waveguide'partia]1y

"fiﬂled with semiconductor subjected to a steady trénsverse magnetic

'field. A theoretical analysis would be very}complicatéd but the analysis
would be worthwhile, because-of the practical imbortance of tﬁe partially

-filled structure.



APPENDIX

- (COMPUTER PROGRAMMES)
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“INR
IR NN
TRETC
C
C
C

1

16

"

10
11

FENTRY
$IRSYS

CWATFOR 003515 apge 100 01r 030 g

NODECK

MICROWAVE PROPAGATICN THRO G CEMTCONDUCTOR FILLFND waAVEA[or
UNDER TRANSVERSE EXTERNAL MAGMET IC FIELD ’
FREQUENCY 9446 GHZ sN-TYPE GERFANTUM SAMPLE .

COMPLEX FEPS) YEPS2:EPS3503503,( P23 FMs e RAMMA L AL 411y $ 20,0
ROOT?sEH]HsDIsEN?HsD?eP,CaRoSsV=WéTsDBsFGMsDFGsGAVNEf o
B=Oa6 A '

SIGMA=4,5

RB2=Rxx) .

FPS]=CNPLX(1-4]66AE-109~0.IGRE-IO%SIGHA)
EP52=CMPLX(1=A1664£-10,~n.163E~10*SIGMA/(1.o+ﬁ.181%H2)J
EP53=CMPLX(O.097.16E~12*R*51GMA/(1.O+0.181*82))
WRITElé,16)B,SIGMA,EP51,Epsstpsa

FORMAT(2F 562 46E1546)

A3=24225E15% (EPS*%) ) /EPSD
B3=CSQRT (A3%%2-3,78E4%A2) .

C1=0e5%(A3+B3)/(A3-B3)
C2=0625%(10/C1)

C3=C1+C2 ,
FM=1489E4~(4.45E15%EPS2)~A3
G=FM+B3

H=F1i~B3 s

GAMMAzCMﬁLX(O.1990305E+03s0.80748365+02)

Al =G~ (GAMMA%%2)

Ba=H~(GAMMA**2)

ROOT1=CSQRT(A4)

ROOT2=CSQRT (B4}

EM18=CEXP(ROOT1*0.01015)

Dl=1.0/EM18B

EM28=CEXP(ROOT2*0.0]015)

D2=1.0/EM28

P=O.5*{EM18+DIJ

N=0.5%{EM1B=D])

R=0.5% (EM2B+D2)

S=0.5%(EM2B=-D2) :
V=CA4%(1.0—C1)~84*C2)/ROOT1
w=(84*(1.0—C2)—A4*C1YVROOTZ
TsGAMMA*(A4+BQ)/(ROOT1*ROOTZ)
DB=GAMMA%O-01015 : )
FGM:((ROOTl*ROOTz%(1.o-p%R))+((A4*C])+(n4*cg))%o*5)
DFG:((Dg*P%S%V)+(Dg*O*R%w)+(T*P*R)—(2.0%GAMMA%C3*Q*S)~T1
GAMNEWzGAMMA~(FGM/DFG) ’
X1=ABS(REAL(GAMMA~GAMNEW))»
X2=ABS(AIMAG(GAMMA—GAMNEH))
IF(Xl.LT.lE—l.AND.XZ-LT.lE-l) GO TO 10
GAMMA=GAMNEW

GO TO 9

WRITE(6:11) Rs GAMNEW

FORMAT(lFS.?;?E]ﬁ.?)

“:f:“i"OnOS .

IF(BelE.1.0) GO T0 8

STopP

END
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SJIOR T WATEOR 0095165 AT ' AN G0 nan

$IBJOR : MODFCK ' :

FIRFTC ' - o :

C REFLECTION COFFFICIFNT CORRFSPOMDIMG TO THFE CHANGE 1

C PROPAGATION CONSTANT)

C REFLECTION CO-UFFICIENT AT THE SEMI=CONDUCTOR=AL® JHTEEFACE
C (INCA RECTANGULAR WAVE GUIDLE UNDER A TRANSVERSE MAGRETIC Fird
C FREQUENCY 9446 AC/Cs N-TYPE GE SAMPLEs RFSISTIVITY 7 G =ik

COMPLEX GAMMAsAsBsVsPsOaR
, REAL ABSVAL sPHASEs D
16 READ(S5517)GAMMA
17 FORMAT(2E1647) _
T A=CMPLX{0e0s143. )
D=1.8796E~3
B=2.0 #GAMMA %D
V=(CEXP{R)=1.0)/(CEXP(B)+]. 0)

Pz (A¥V=GAMMA ) )
Q= (A*V+GAMMA ) . .
R=P/0 ‘ B '
ABSVAL=CABS(R)

PHASE=57,29578+ ATANZ(AINAG(R),REAL(R))
WRITE(6+22) ABSVAL sPHASE s GAMMA
22 FORMAT(4E16.7) ’

0.2021207£+03
0.1990305E+03

* 25 GO TO 16 ~
27 STOP

: END

SENTRY
0.2078852E+03 0.8091483E+03
0.2075141E+0C3 0.8090784E+03
0.2064098E+03 0.3088704E+03
0.2045983E+03 - 0.,8085294E+03

0.8080636FE+0673
O0«RO074836F+073

0.1953898E403 0.8068020E4-03 p
0.1912663E+073 0.R060328F+03
0.1867307E+03 0.8051912E+03
0.1818537E+G3 0.8042929FE+03
041793089E+03 0.8038274E+03
$IBSYS ’
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SHOR CWATFOR  CO3515 ANID 1.00. 010 (1721

PInJOnR NODECK ’

SIRFTC ‘ | :

C REFLECTION COCFFICIINT AT SPMICOND-ALR IMTERFACE T v cT At
C UNDER TRAMSVERSE FXTERNAL MAGMITIC FIfLD -

C CTAKING INTO COMSIDEEATIAN Of THE FIRST TERPM OF THIT Tavnbrn

C SFRIES EXPANSIOM OF THE CORRECTION TERM T.

COMPLEX GAMNAsEP&?sFPS3sM1,N2aA]rAZ,AB,ﬂlsﬂZsHBsC?sWeCHPsﬂV]s
1BMZeX1sX25Y1sY2sN1sN2 s N3y N4 9F09P3HETA9RsF'()Da!(Ze()lfflfﬁs'\/l s V202
2KGsK545sNUMDEN ’

- REAL ABSVALSsPHASEsD1sBsPRSsSIGMA
16 READ(53517)83,sGAMMA
17 FORMAT(1F5.252E1607)
) BS=R#¥%2
SIGMA=4,5 ' o
EP52=CMPLX(194166AE—109(—O.I68E~1O)%SIGMA/(100+0.]8]*93))
_EPS3=CMPLX(0.0,(7elﬁE—l?)*B*SIGMA/(l.O+Oe181*85)) '
A3=2.225E15%(EPS3%%2) /EPS2 .
B3=CSQRT((A3#%2)=(A3%3,78E4))
C3=1¢89E4~{4o45E15%EPS2 )= (GAMMAX %2 ) ~A3
M1=CSQRT(C3+R3) : .
M2=CSQRTI(C3-1B3)
BM1=M1%1,015E-2
N BM2=M2%1.015E-2~ -~
Al1=CEXP(BMI)
Bl=1.0/(A1)
A2=CEXP(fRM2)
R2=1.0/(A2)
X1=0e5%{A1+R1)
X2=0s5%(A2+32)
Y1=0:5%(A1-B1)
Y2=0.5%(A2-B2)
N1=(X2-X1) .
N2=GAMMA* (M2%Y2-M1%Y1)
"N3=4,45E15%EPS3%N1
FO=N1/(N2+N3)
“FOD=N1/(N3~N2) : :
VNdz((GAMMA**2)+4.45E15*FP52)*(EPSB/EPS?)
P=(1.0-{N&®FO})) | e
BETA=CMPLX(0e0s143, )
. D1=1.8796E-3
: GD2=2 . 0*GAMMAXD1
D=CEXP(GD2)
PDMIN=1.0/D
. K2=(1e0=-(N4*FOD) )
V1={(1.0~DMIN)
V2=BETA#P*V1
K3=P/K2
K&=K3#DMIN
KS={1e0+K&)
S=GAMMA*KS5
NUM=V2-5
DEN=V2+S
R=NUM/DEN
ABSVAL=CABS(R) :
PHASE=57429578%ATAN2 (AIMAG(R) sREAL (R) )
WRITE(6522) ABSVAL s PHASE s GAMMA
22 FORMAT (4E16.7)
25 GO TO 154

*

MILLS MEMORIAL LIBRARY
McMASTER UNIVERSITY




G

27

CSENTRY
.10
GonG
Qo730
Q.00
(50
Q.60
0e70
0.,8C
0.90
0.95
0.00

FIRSYS

- S5T0OR
END

Ge2V75141F+073
Co2 UGHDORE+03
0e2045082E+37
0.2021207E+03
0, 1000205F +07
C.1953898F+03
0.,1912663F+013

- 01867307F+273

V,1818537E+03
De1793089E+03
0.2078852E+03

3. R0ODTELE+TT
0eQUARRTUHEFD?
NeQ0BR204E+03
0.8CROATAE+03
Qe BNT4RAAFH07
080680207 +072
0.R06N3PRE+03
Ge3051912E+07
Q080470295403
CeRC38274F+03
0.8091483E+03
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PHOTOGRAPH 1: The Experimental set up of the Microwave Reflection Bridge

VIOT



PHOTOGRAPH

Rear View of the Microwave Reflection Bridge Showing the Electro Magnet

and the Current Regulated Power Supply
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