REDETEPMTMTATON OF THE STRUCTURE OF $\mathrm{K}_{2} \mathrm{SNBx}_{6}$ AT ROOM TEMPERATURE

by
S. NARASINGA RAO, M.SC.

A Thesis
Submitted to the Faculty of Greduate studies in Paxtial Fulfilment of the Requixements For the Degree 3 Master of Science

MASTER OF SCIENCE (1969) (Physics)

MCMASTER UNIVERSITY Hamilton. Ontario

TITLE: Redetermination of the Structure of $\mathrm{K}_{2} \mathrm{SnBr}_{6}$ ot room temperature.

AUTHOR: S. Narasinge Rao. B.Sc. (Madras)
M.Sc. (Madras)

SUPERVISOR: Dr. I. B. Brown
NUMBER OF PAGES: vi. 68
SCOPE AND CONTENTS:
The crystal structure of $K_{2} S n B r$ has been rein vestigated using single crystal xoray difiraction techniques. Three dimensional intensity data obtained photographicaliy have been used to refine the structure, by the least square analysis. The structure is found to be slightly distorted from the regular cubic $\mathrm{K}_{2} \mathrm{PtCl}_{6}$ structure in a manner similar to $\mathrm{K}_{2} \mathrm{TeBr}_{6}$. The SnmBr bond is found to be $2.601 \AA_{\text {. }}$.

The structure of $K_{2} \operatorname{SnBr}_{6}$ is found to be monoclinic with spage group $P 2_{a} / n$ and $a=9.435 \pm 0.017 \AA_{a} b=7.437$ $\pm 0.017 \mathrm{~A}$, and $\mathrm{c}=10.568 \pm 0.006 \mathrm{~A}$.

A review of other cxystals with similar structure is included in this thesis and the theory of xaray diferaction and crystal structuse as applicable to the present problem is discussed briefly.

REDETERMINATION OF THE STRUCTURE OF $\mathrm{K}_{2} \mathrm{SnBr}_{6}$

AT ROOM TEMPERATURE
by
S. NARASINGA RAO M.SC.

REDETERMINATION OF THE STRUCTURE OF $K_{2} S_{1 a} E_{6}$ AT ROOM TEMPERATURE

ACKNOWLEDGEMENTS

I should like to express my sincere appreciation and gratitude to Dr. I. D. Brom for his encouragement and Guidowce throughout the course of this work.

Thanks are due to Dr. C. Calvo and to all my friends and colleagues in the group for suggestions, assistance and helprul discussions at various stages of this work.

Thanks are also due to the Notional Research Council of Canada for supporting this work and to the MoMaster University for a graduate scholarship.

My thanks are due to the Madres Christian College Council for granting me study leave for this period.

Table of Contents

Chapter 1: INTRODUCTION
Chapter 2: DEVELOPMENT OF X \quad RAY DIFFRACTION METHODS
Chapter 3: THEORY OF STRUCTURE DETERMINATION
3.1 Fundamentals of crystalloge raphy
3.2 Theory of Xoray diffraction by crystals
3.3 Intensities of reflections
3.4 Extinction
3.5 Absorption
3.6 Structure factor
3.7 Atomic scattering factor
3.8 Temperature factor
Chaptex 4: EXPERTMENTAL PROCEDURES
4.1 Measurement or Intensity
4.2 Method of least squares
Chepter 5: EXPERIMENTAL WORK
Chapter 6: DESCRIPTION OF THE STRUCTURE
BIBLIOGRAPHY

- LIST OF DIAGBAMS

FIGURE

1 The Unit Cell of $\mathrm{K}_{2} \mathrm{PtCl}_{6}$
2 Scattering of xereys by scatterexs situated at two lattic points
. 3 Reletionship between tho vectors s. so and S
4. Eweld's construction of reciprocal lattice
5. Some typical densitometer traces
6. The arrangement of cations and anions in $\mathrm{K}_{2} \mathrm{PtCl} 6^{\circ}$ $\mathrm{K}_{2} \mathrm{TeBr}_{6}$ and $\mathrm{K}_{2} \mathrm{SnBr}_{6}$
7. The stereotraphic projections of the environnent of K atom.

LIST OF TABLES

Table
A. Structures of Some $R_{2} M_{6}$ type exystals

B Atomic Parameters derived frou the final least squares refinement

C The observed and calculated structure factors
D. The Tnteratomic distances and angles

E The temperature fectors
$F \quad$ Environment of K atoms
$G \quad$ Comparison of environment of K atom in $K_{2} \mathrm{TeBr}_{6}$ and $\mathrm{K}_{2} \mathrm{SnBr}_{6}$

H Crystal deta of $\mathrm{K}_{2} \mathrm{SnBr}_{6}$

Chapter 1

INTRODUCTTON

The struotures of a laxge number of erystels having the general formula $R_{2} N_{6}$ where R is an alkali metal. M is a four valent metal and X is a halogen have been solved using xaray diffraction techniques, mostly the powder method. ${ }^{\text {lo } 6}$ Most of these crystals are found to crystallise in the cubic potassium hexachloroplatinate ($\mathrm{K}_{2} \mathrm{PtCl} \mathrm{F}_{6}$) struco ture ${ }^{1}$. space group Fram (05) 。The $\mathrm{K}_{2} \mathrm{PtCl}_{6}$ structure is basically an antifluorite structure in which the regulax octahedral anions ($\mathrm{PtCl}_{6}{ }^{2 \pi}$) are arranged on a face centered cubic lattice while each cation (K^{\dagger}) occuples the tetrac hedral interstices formed by neighbouring ions (See Fig. 1). The platinumchlorine bonds lie along the principal axes of the cuble unit cell. Each K^{*} ion in this structure is surrounded by twelve chlorine atoms at the same distance from it.

However, a fev of these structures have been found to distort slightiy from the regular $\mathrm{K}_{2} \mathrm{PtCl}_{6}$ structure. Brown has reported such a distortion in $\mathrm{K}_{2}{ }^{\mathrm{TeBx}} 6$ while Brown and Lim ${ }^{8}$ have obsexved a similar distortion in $\mathrm{K}_{2} \mathrm{PbCl}_{6}$. Ketallar, Rietdijk and van Staveren ${ }^{9}$ and Maxkstein

Fig. I. The unit cell of potessium hexachloroplatinate; $\mathrm{K}_{2} \mathrm{PtCl}_{6}$
and Nowotny ${ }^{10}$, using single crystals, have studied the symmetry of $K_{2} \mathrm{SnBr}_{6}$. According to Ketallar ot al. $\mathrm{K}_{2} \mathrm{SnBr}_{6}$ is cubic and has the $\mathrm{K}_{2} \mathrm{PtCl}_{6}$ structure with. $\underline{a}=\underline{b}=\underline{c}=10.48 \hat{A}$. According to Markstein and Nowotny. it is tetragonal. pseudombuble, Space group C42 2 with a slightly distorted $\mathrm{K}_{2} \mathrm{Ptal}_{6}$ structure and with $\mathrm{a}=\mathrm{b}=10.51 \mathrm{~A}$. The primitive tetragonal cell has space group $842_{1} 2$ with the dimensions $\underline{a}=7.43 \AA$ and $\underline{C}=10.61 \AA$ 。 Gallon. De Benyacar and De Abeledo ${ }^{11}$. using powder photographs, have found that the cell. tetragonal at room temperature becomes cubic at $126.5^{\circ} \mathrm{C}$ with $\underline{a}=10.61$ at 130°.

The study of Nuclear Quadrupole Resonances and the thermal behaviour of some of these complexes has also led to the observation that similar distortions do exist in many of 12-16 them. Nakamura et al have used the quadrupole resonance of halogens to examine the hexahalogenete anions of a number of metals such as pt(IV): $\mathrm{Sn}(\mathrm{IV})$. Te(IV) and $\mathrm{Be}(\mathrm{IV})$ 。 In many cases. they have reported the splitting of the resonance signals which indicates the presence of nonequivalent halogen atoms in these structures. Such structures must, therefore, have symmetries lower then cubic. In particular. they ${ }^{17}$ observed the pare quadrupole resonance of bromine in potash situ hera bromostanate. The bromine nuclear quadrupole rem sonance line is split into a triplet. indicating the prom sense of at least three kinds of nonequivalent bromine atoms in the crystal suggesting that the true symmetry is

Lower than tetragonal.
Morfee, Staveley, Walters and Wigley ${ }^{18}$ have cartied out the measurements of heat capacties of complexes $\left(\mathrm{NH}_{4}\right){ }_{2} \mathrm{SnCl}_{6}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SnBr}_{6}$ at low temperatures. Both these axe found to have the $\mathrm{K}_{2} \mathrm{PtCl}_{6}$ structure at room temperature, but exhibit specific heat anomalies between $100^{\circ} \mathrm{K}$ and $300^{\circ} \mathrm{K}$. The euthors have suggested that some distortions might occur in these compounds. The anomely in $\left(\mathrm{NH}_{4}\right) \mathrm{SnCl}_{6}$ is small and occurs between $235^{\circ} \mathrm{K}$ and $245^{\circ} \mathrm{K}$ and it is unlikely that a change in structuxe is involved. But the contrary is the case for $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SnBr}_{6}$. where the anomaly is large. Busey; Dearman and Bevan Jx. ${ }^{19}$ have noticed the anomalies in specific heat in $\mathrm{K}_{2} \mathrm{ReCl}_{6}$ at $76 \mathrm{C}_{0}^{\circ}$ $103^{\circ} \mathrm{c}$ and 111cand they suggest that these axe due to some distortions in the structure of this compound. Furthemore. the neutron diffraction study of $K_{2}{ }^{\text {ReCl }} 6$ by Smith and Becon ${ }^{20}$ has confixmed the change in the symmetry from the space group Fm3n at room temperature to a spece group of lower symmetry Pn3 or $\mathrm{Pn}_{\mathrm{n}} 3 \mathrm{~m}$. even though it still remains cubic below $77^{\circ} \mathrm{C}$. Busey and his comorkers ${ }^{21}$ have also reported the specific heat anomalies in $\mathrm{K}_{2} \mathrm{ReBr}_{6}$ at $225^{\circ} \mathrm{K}$ and $245^{\circ} \mathrm{K}$. Templeton and Dauben ${ }^{6}$ have found this compound to have the $K_{2}{ }^{P t C I} 6$ structure'at room temperature. Ikeda. Nakanura and Kubo ${ }^{22-23}$ have found fron nuclear quadrupole resonance that it undergoes three close transitions below $270^{\circ} \mathrm{K}$. Brown ${ }^{7}$ has proposed an explanation for such distorm
tions. He suggests that if the cation is very much smaller then the cavity into which it fits. the anions will xem orient themselves in such a way as to reduce the efrective cavity size and thus lock the cathon in place. Moxrree. Staveley. Walters and Wigley ${ }^{18}$ have also made a similar suggestion to account for the specific heat anomaly in $\left(\mathrm{NH}_{4}\right)_{2}{ }^{\mathrm{SnBr}} 6$ at low temperature. Brown has further given a criterion to decide whethex any given structure is expected to be distorted from the regular $\mathrm{K}_{2} \mathrm{PeCl}_{6}$ structure or not. This criterion is based on the "radius ratio" which is dew fined as the ratio of the cation radius to the radius of the cavity fomed by twelve halogen atoms sumyounding it. He has observed that.

1. Crystals with a radius ratio of less than about 0.89 are distored from the cubic structure at room term perature:

1i. Crystals with a radius ratio between 0.89 and 0.98 are cubic at room temperature but distort at lowex temperature:
111. Crystals with a radius ratio greatex than 0.98 are not distorted from the cubic structure at any temperature.

The structures of some exystels of the type $\mathrm{R}_{2} \mathrm{MX}_{6}$, arranged in the order of radius ratio are listed in Table A.

This thesis describes the refinement of the exystal

TABLE A
Structures of some $\mathrm{R}_{2} \mathrm{MX}_{6}$ type crystals

| Compound | Radius
 Ratio | Structure |
| :---: | :---: | :---: | | Nethod |
| :---: |

1. Crystals which are distorted from cubie at room temperature
$\mathrm{K}_{2} \mathrm{TeBr}_{6} \quad 0.83 \quad$ Monoclinic at $293^{\circ} \mathrm{K} \quad 7 \quad 13$

| $\mathrm{K}_{2} \mathrm{SnBr}_{6}$ | $0.86 \quad$Tetragonal at $293^{\circ} \mathrm{K}_{8} \quad 10,25$ 14$\quad 18$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Cubic above $400^{\circ} \mathrm{K}_{0}$ Monom 24 | |

$\mathrm{Bb}_{2} \mathrm{TeI}_{6} \quad 0.86 \quad$| Tetragonel at $293^{\circ} \mathrm{K}$ |
| :--- |
| Cubic above $328^{\circ} \mathrm{K}^{\circ}$ |$\quad 16$

$\mathrm{K}_{2} \mathrm{TeCl}_{6} \quad 0.89 \quad$ Monoclunceat $293^{\circ} \mathrm{K} \quad 2 \quad 13$
$\mathrm{K}_{2} \mathrm{PbCl} 6 \quad 0.91 \quad \begin{aligned} & \text { Monoclinic at } 300^{\circ} \mathrm{K} \\ & \text { Cubic above } 333^{\circ} \mathrm{K} .\end{aligned}$
8 Cubic above $333^{\circ} \mathrm{K}$.
2. Crystals which are cubic at room temperature but distorted et 10 tu temperative

$\mathrm{Rb}_{2} \mathrm{SnI}_{6}$	0.88	Cubic at $293^{\circ} \mathrm{K}$	26		
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{TeBr}_{6}$	0.90	Cubic above $168^{\circ} \mathrm{K}$	27.28	13	
$\mathrm{~K}_{2} \mathrm{ReBr}_{6}$	0.91	Cubic above $245^{\circ} \mathrm{K}$	6.29	22.23	21
$\mathrm{~K}_{2} \mathrm{SnCl}$		0.92	Cubic above $262^{\circ} \mathrm{K}$	2	
$\mathrm{~K}_{2} \mathrm{SeBr}_{6}$	0.93	Cubic above $240^{\circ} \mathrm{K}$	3	18	
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SnBr}_{6}$	0.93	Cubic at $293^{\circ} \mathrm{K}$	10	4	18
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{TeCl}_{6}$	0.96	Cubic above $77^{\circ} \mathrm{K}$	30	13	
$\mathrm{~K}_{2} \mathrm{ReCl}_{6}$	0.97	Cubic above $111^{\circ} \mathrm{K}$	29.31	22.23	19

3. Civstals which are cubie at all temperatures

$\mathrm{K}_{2} \mathrm{PtCl}_{6}$	0.98	Cubic	1	12
$\mathrm{Cs}_{2} \mathrm{TeI}_{6}$	1.00	Cubic	32	13
$\mathrm{Cs}_{2} \mathrm{TeBx}_{6}$	1.07	Cubic	28.5	13

structure of potassium hexabromostamate $\left(\mathrm{K}_{2} \mathrm{SnBr}_{6}\right)$ at room temperature, using single exystal xaray direraction techniques. With a radius ratio of 0.86 , the structure falls about midway between that of $\mathrm{K}_{2} \mathrm{TeBr}_{6}$ (radius ratio $=$ 0.83) and undistorted $\left.K_{2}{ }^{P t C l}\right]_{6}$ structure (radius ratio $=$ 0.89): Brom' shows that the distortion proposed by Markstein and Nowotny in the case of $\mathrm{K}_{2} \operatorname{SnB} r_{6}$ is of the same type as that in $\mathrm{K}_{2} \mathrm{TeBr}_{6}$ but is only about hall as great. The present work was undertaken to refine the structure and stuay the nature of distortion in $K_{2} \mathrm{SnBr}_{6}$ at room temperature. In the present study the single cryse tal intensity data have been used to determine the posia tional and thexmal parameters of atoms in the crystal.

In refining the structure of $\mathrm{K}_{2} \operatorname{SnBr}_{6}$ at room teme perature, we have found that it is monoclinic with the space group $P{ }^{1} 1 / \mathrm{n}$. thus having a symmetry lower than tetragonal and thus satisfying the Nucleax Quadrupole Resonance result. Further, we have found that the $\mathrm{SnBr}_{6}=$ Ion has the cone figuration of a regular octahedron and there is no significant difference in the three non-equivalent $S_{n-B r}$ distances and the angles do not vary signiricantly from 90°. The distoxtion in $\mathrm{K}_{2} \mathrm{SnBr}_{6}$ is found to be similar to that in $K_{2}{ }^{T e B x} 6$ as suspected:

Chapter 2

DEVELOPMENT OF X RAY DIFFRACTION METHODS

The use of xarays for investigating the structure of matter began with Von Lauls discovery of the diffracm tion of xerays by crystals in 1912. A crystal consists of a basic unit of structure repeated regulariy in a three dimensional array and it acts as a three dimensional gratm ing with respect to x-rays. Xway difrraction. therefore. led to the possibility of studying the arsangement of atoms inside a crystal. Consequently, several important fields of investigation opened up.

During the eariy stages of the development of x-ray cxystallography, yostly inorganic substances were inveso tigated because of the simplicity of their chemical come position. These included the structures of diamond and graphite, whose atomic arrangements were later found to be of fundamental importance to organic chemistry. Interest in more and more complex structures grew and the techniques gradually advanced. In 1915, W. H. Brags pointed out that as the density of scattering matter in a crystal is periodic in three dimensions, it should be expressible as a sumation of a three dimensional Fourier series, the terms of which
are derivable from the difiraction intensities from the various possible reflecting planes in the crystal. The main problem, therefore, was to measure the intensities of all possible reflections, so as to miss asfew of the terms as possible in the summation and to determine the phases of the terms, the magnitude alone being given by the dife fraction intensities. Therefore the attention of the crystallographers was directed towards improved methods of recording and interpreting Xay diffraction photographs. In 1924, Weissenberg introduced the idea of employing move ing film methods of recording and indexing the diffraction patferm. In 1y27. Bernal put forward the simplified method of interpreting rotation photographs based on Ewald's conm cept of reciprocel lattice. The determination of the phases of reflections remained a greet hurdle in solving complex crystal structures. Usually, this is achieved by the well known txial and error method. However, valuable information can often be obtained from the available opticel and magnetic data.

In 1934. Patterson showed that there exists a relam tionship between the interatomic vector distances and the intensity of the x-ray reflections. Instead of structure factors, he used the squares of structure amplitudes as Fourier coefficents and the resulting synthesis was related in a simple way to the crystal structure.

In recent times, with the developnent of computer
technology, there has been a great progress in the detero mination of cxystal structures. As a result of the work of Astbury, Bemal. Perutw and many others, it has been possible to determine the structures of a laxge number of molecules of biological interest. Many such complicated structures have already been reported by different workers -e.g. DNA by Hatson and Crick (1951). ribonuclease by Harker and Kartha (1967). myogiobin by Kendrew et al (1958) and haemoglobin mainly by Perute and his coworkers. Crystallographers have also been trying to study the structures of small molecules in greater details. These include the detemination of the exact mean positions of all atoms, a stuay of electron distribution of atoms in a state of rest and a knowledge of zerompoint motion and thexmal Vibration of atoms.

Chaptex 3

THEORY OF STRUCTURE DETERMINATIOR

3.1 Fundementels of Crystallography

A systematic seience of exystallography has been developed which serves as the basis for the rational intere pretation of the xay difixaction data. The steps in the development of this information may be sumaxized as follows:
(a) A crystal has planar bounding faces and symmetry. It is essential to choose a system of coordinates in order to express the positions of these planes. relative to one another. in space. The planes are then indexed in terms of their intercepts upon the axes of a system of com ordinates. An immense amount of experimentation has proved that all angle measurements and indexing of plane faces can be accounted for by seven systems of coordinates. In other words. there are seven crystal systerns.
(b) As a result of furthex experience it is now certain that the indices of all the plane faces of the crystal are always small whole nunbers.
(c) The symetry of an object is an expression of the fact that the object has equal properties in different directions. The following symuetry operations are pero
formed to bring equivalent directions in space into coin cidence.

Axes of symetry: Points in cxystal may have oneo. twow, threew four or six-fold axes. This means that equie valent points may be brought into coincidence by a rotation of $360,180,120,90$ or 60 degrees.

Plane of symmetry (mirror operation): in which points on one side of a plane are mixror images of points on the other.

Centre of symmetry or combined $2 \sim$ fold rotation and reflection across a plane perpendicular to the axis.

When these symmetry operations axe combined in every possible way, using the seven crystal classes. it can be show that there are 32 point groups which define 32 classes in terms of point symmetry. There are also "screw" axes of symmetry involving rotations about and transiation along an axis and "glide" planes of symetry in which a figure is brought into coincidence by reflection in a plane combined with translation of adefinite length and direction in the plane. When these are combined with translational symmetry. the result is a total of 230 combinations of space groups. whe definition of the symetry or a exystal by its space group is unique.

3.2 Theory of x-ray diffraction by ceystals

Like visible light. x-xays may be considered as an
electromagnetic wave. The wavelengths of x mays used in the determination of crystal structures vary between 0.5 and 3 A . Any electron in the path of an Pray scatters it. An atom consists of electrons around a positively charged nucleus. The nucleus. because of its large mass, can be neglected when we consider the scattering of x-rays. Each electron in the atom scatters X-rays. Therefore the atom as a whole scatters x-rays to an extent dependent on the number of electrons in the atom. i.e. dependent on the atomic number. Because of the regular arrangement of atoms in the crystal the scattered xarays interfere to form a diffraction pattern.

Lave diffraction equations illustrate effectively the conditions for the formation of a diffracted beam. P_{1} and P_{2} are two lattice points separated by a vector x (See Fig. 2) s_{0} is the unit incident wave vector and s is the unit scattered wave vector 。 $P_{2} A$ and $P_{1} B$ are the prom jections of x on the incident and scattered wave directions. The path difference between the two scattered waves from P_{1} and P_{2} is

$$
\begin{aligned}
P_{2} A-P_{1} B & =I_{0} S_{0}-I_{0} \\
& =r \cdot\left(S_{0}-s\right) \\
& =\Psi \cdot S \text { where } S=s_{0}-S
\end{aligned}
$$

If 2θ is the angle that s makes with so then $\left|s_{0}-s\right|=$ $2 \sin 0$) since s_{0} and s are unit vectors (See Fig。3).

The phase difference φ is $\left(\frac{2 \pi}{\lambda}\right)$ times the path difference. Therefore

Fig. 2. Scattexing of xirays by Scatterers situated at tivo lattice points.

Fig. 3. Relationship between the vectors $S_{0} s_{s}$ and S

$$
\varphi=\frac{2 \pi}{\lambda}(\underline{x} \cdot \underline{S})
$$

The amplitude of the scattered wave is a maximum in a direction such that the contribution from each lattice point differs in phase only by an integral multiple of 2π. Therefore, for diffraction maxima.

$$
\varphi=\frac{2 \pi}{\lambda}(\underline{y} \cdot \underline{S})=2 \pi n
$$

where n is an integer

$$
\therefore \quad r \cdot S=n \lambda
$$

If a. b. © are the primitive translation vectors.
the vector x can be specified as

$$
m_{m}=m_{1} a+m_{2} b+m_{3} c
$$

where m_{1}, \mathbb{m}_{2} and m_{3} are integers. Thus

$$
r_{0} \cdot S=m_{1} Q_{0} \cdot S+m_{2} \underline{b} \cdot S+m_{3} c \cdot S=n \lambda
$$

Since m_{1}, m_{2} and m_{3} are independent, each of them must be equal to an integer. That is.

$$
\begin{aligned}
& \mathrm{g} \cdot \mathrm{~S}=\mathrm{n} \lambda \\
& \mathrm{~b} \cdot \mathrm{~S}=\mathrm{k} \lambda \\
& \mathrm{c} \cdot \mathrm{~S}=1 \lambda
\end{aligned}
$$

where $h_{0} k_{0}$ I are integers These are the LAUE EQUATIONS. If α, β, γ are the direction cosines of S with respect of $2, b, c$, then

$$
\begin{aligned}
& \text { guS }=h \lambda=2 a \alpha \sin \theta \\
& \underline{b} \cdot \underline{S}=k \lambda=2 b \beta \sin \theta \\
& \underline{c} S=1 \lambda=2 c \gamma \sin \theta
\end{aligned}
$$

The vector S has got a special significance. S is perpendicular to the crystal planes of which h, k, are Miller indices.

If $d(h k b)$ is the spacing between two adjacent planes of a set (hre). the

$$
\alpha(h k l)=\frac{a \alpha}{h}=\frac{b \beta}{k}=\frac{c \gamma}{\ell}=\frac{\lambda}{2 \sin \theta}{ }^{\circ}
$$

Therefore, $2 d \sin \theta=\lambda$ 。
It is also implicit that both so axid make an angle with this plane.

The equations $2 d \sin \theta=\lambda$ is nothing but the well known Bregg law which states that diffracted beams axe found only for special cases satisiying the above condition: This rem sults from the fundamental periodicity of the structure and does not refer to the actual arrangement of atoms in the lattice. An important consequence of the law is that the wave lengths must be less than 2 d if Bragg reflection is to occur.

The conditions for an x-ray bean to be diffracted may be expressed with the help of the reciprocal lattice which is widely used in crystallography.

The reciprocal lattice primitive translation vectors a^{*}. b^{*} 。 c^{*} are defined by

$$
\underline{a}^{*} \cdot \underset{d}{a}=b^{*} \cdot \underline{b}=c^{*} \cdot c=1
$$

$$
\left(a^{*} \cdot \underline{b}\right)=\left(a^{*} \cdot c\right)=0
$$

$$
(b * \cdot c)=(b * \cdot a)=0
$$

$$
\left(\underline{c}^{*} \cdot \underline{a}\right)^{0}=\left(\underline{c}^{*} \cdot \underline{b}\right)=0
$$

The reciprocal lattice has a derinite orientation relative to the cxystal lattice. Every point in the recipm rocal lattice corresponds to a possible reflection from the cxystal lattice.

The Bragg equations has a simple geometrical signim Picance in reciprocal lattice. AO is a vector of length (I/ λ) in the direction of incident radiation (see Fig. 4). terminating at the origin of reciprocal lattice. If we draw a sphere of radius ($1 / \lambda$) with A as centre, then the possible directions of the diffracted rays for this in cident ray are determined by the intersections of the sphere with the points of the reciprocal lattice. The direction $A B$ Is a direction of a diffraction maximum and B is a point of the reciprocal lattice. This is Ewald's construction.

We can now prove the Ewaid constructions. Let $S=$ $\mathrm{ja}^{*}+\mathrm{mb}^{*}+\mathrm{nc}^{*}$. Where j, m and n are any (non-integral) numbers having dimensions of length (since S is dimensionless).

Then the Lave equations reduce to

$$
\begin{aligned}
& \text { b. } j a_{a}^{*}+\underline{b} \cdot m b *+b_{o} n c^{*}=k \lambda \\
& \text { c. } 5 Q^{*}+c \cdot m b^{*}+c \cdot n c^{*}=1 \lambda \\
& \text { i.e. } \quad \text { ja. } e^{*}=h \lambda \\
& \mathrm{mb} \mathrm{~b}^{*}=\mathrm{k} \lambda \\
& n c \cdot \mathrm{c}^{*}=i \lambda
\end{aligned}
$$

Fig. 4. Ewaldis construction of reciprocal lattice
or

$$
\begin{aligned}
& j=h \lambda \\
& \mathrm{~m}=\mathrm{k} \lambda \\
& n=\lambda \\
& \text { Therefore. } S=h \lambda Q^{*}+k \lambda b^{*}+\theta \lambda C^{*} \\
& \operatorname{or} \frac{1}{\lambda} \mathrm{~S}=\mathrm{ha} \mathrm{a}^{*}+\mathrm{kb} *+\mathrm{Ra}^{*}
\end{aligned}
$$

In Fig. 4. B is a lattice point in reciprocal space.

$$
\begin{aligned}
O B & =h a^{*}+k b^{*}+9 c^{*} \\
& =\frac{1 S}{\lambda}=\frac{2 \sin \theta}{\lambda}
\end{aligned}
$$

But $O B=2 A O \sin \theta^{\prime}$ where θ^{\prime} is the angle show as θ in Fig. 4. Therefore 。

$$
O B=2 A O \sin \theta^{\prime}=\frac{2 \sin \theta^{\prime}}{\lambda}
$$

Thus $\theta^{\prime}=\theta$

3.3 Intensities of reflections

The intensities of reflections are used to determine the positions of atoms within the unit cell. The structure factor $F(h k f)$ of a reflection is given by the Fourier trans form of the electron density $\rho(x y z)$ within the cell as 33

$$
F(h k l)=V \iint_{y}^{I} \int_{z=0} \rho(x y z) \exp [2 \pi 1(h x+k y+\ell z)] x x d y d z
$$

where V denotes the volume of the unit cell, and x, y and z are the fractional coordinates of the volume element (V dxdydz) considered.
$F(h k l)$, as will be seen in the next chapter, is a complex quantity and is related to the observed intensity

I of the diffracted beam by the expression $\left.I X F(h k I)\right|^{2}$. Thus from the measurement of intensities. the moduli of the structure factors can be evaluated and these can be used in the determination of the crystal structure.

The pattern which results from the diffraction of a crystal is normally recorded on films. The diffraction maxima appear as spots of varying intensity on the film. However, one is faced with certain difficulties in the measurement of these intensities. Corrections have to be made for variation in the size and shape of the spots. nonouniform distribution of intensity over the spots and the presence of different background around the spots found in different areas on the film.

In a real crystal. due to impersection adjacent volume units are not exactly parallel. Therefore, the crystal must be turned slighty in order to bring each unit into the Bragg condition for reflections to occur. This results in the spreading of the spot over a small range. Thus the peak intensity of a reflection does not necessarily give a reliable measure of the structure amplitude. A better measure can be obtained by suming the energy reflected by a set of planes as the sample is rotated through small angles close to the Bragg angle, i.e. by integrating the intensities. James ${ }^{34}$ has deduced an expression for the integrated intensity. The crystal is assumed so small that the absorption within it may be neglected. It is assumed to rotate

With uniform angular velocity is about an axis paraliel to a set of planes and through a range of angles. The energy E reflected by the crystal is proportional to the volume Δv of the crystal. For the case of unpol. arised incident radiation

$$
\frac{E M}{I_{0}}=Q \Delta V
$$

where I_{0} is the energy incident per unit area in the beam and

$$
Q=\frac{N^{2} A^{3}}{\sin 2 \theta}|F|^{2}\left(\frac{\mathrm{e}^{2}}{m C^{2}}\right)^{2} \frac{1+\cos ^{2} 2 \theta}{2}
$$

where $|F|$ is the structure amplitude, θ is the Bragg angle and N is the number of unit cells in the volume of the crystal. The quantity (Eedolo is called "Integrated refo leetion" from the orystal element.

The factor $\frac{1+\cos ^{2} 2 \theta}{2}$ is called the "Polarisation factor $p^{\prime \prime}$. which is the amount by which the intensity of the diffracted beam is reduced owing to partial polarisation on diffraction. The factor $(1 / \sin 2 \theta)$ is known as the "Lorentz factor" which is proportional to the time the exystal takes to pass through a reflecting position. This factor varies both with the Bragg angle and with the particular arrangement by which the diffraction pattern is recorded. The correction for Lorentz and polarisation effects is usually applied in the combined form. The observed structure ampli. tude $|F|$ of a reflection is evaluated from 1 ts measured intensity I using the relation

$$
|\mathrm{F}|=\mathrm{K}\left(\frac{I}{\mathrm{Lp}}\right)^{\frac{1}{2}}
$$

where K is a constent dependent on the wavelength and cryse tal size and is initially taken axbitraxily as one.

3.4 Extinction

This is one of a number of physical factors affecting the intensities, others being absorption and tempera ture motion of the atoms." In general. it is not uncommon to assume that some of these effects are so small that they can be neglected.

In deriving the relation between the intensity and square of scattering amplitude, it is assumed that the cryse tal consists of a small volume element. This eliminates any concern for absorption and "extinction". Extinction is a phenomenon which results in the attenuation of the primary beam of x-rays when the crystal is in a diffracto ing position. Therefore it reduces the intensity of the diffracted beam particularly for strong reflections. This effect is vexy difficult to correct for experimentally bew cause it depends on the physical perfection of the crystal. For this reason, it is ordinarily ignored in many crystal structure analyses.

3.5 Absorption

X-rays are absorbed by matter. The extent to which
this occurs in the tiny crystals used in structure analysis is normally great and therefore, the effects of absorption cannot be neglected in acourate work. The amount of abo sorption in the crystal is difricult to calculate as it depends on the shape of the sample and also on the rela. tion of the direct and the diffracted beams to this shape. It is always possible to approximate the allowance.

If we consider an infinite plate shaped crystal of uniform thickness t mounted on a precession camera such that the x-ray beam is incident on the laxgest face of the crystal. the absorption factor A for zeromayer reflections is given by

$$
A=\frac{I}{I_{0}}=\exp \cdot(-\mu t \sec \bar{\mu})
$$

where P is the precession angle andpu is the absorption coefricient ${ }^{35}$ For small plate shaped crystals immersed in the incident beam the path lengths of the rays are all equal except for the rays incident on the region close to the edges of the crystal. Thus the absorption can be considered uniform for all reflections on the same layer, if the edge effect is neglected. For relatively thicker plate shaped crystals, the edge effect is significant as the abo sorption can be considered uniform only over a small region near the centre. For cube shaped exystals which can be approximated by a sphere, edge efrect is important. For a spherical crystal, the absorption correction varies with
the Brags ongle. ${ }^{36}$ For crystals with $\mu \mathrm{R}<2$, the ratio of the absorption factor A for $\theta=0^{\circ}$ to that for $\theta=30^{\circ}$ is less than 1.5 .

3.6 Structure factor

A crystal can be represented by placing a certain arrangement of atoms within each unit cell of the lattice. If the unit cell of a crystal contains \mathbb{N} atoms at points $\mathrm{X}_{\mathrm{h}}, \mathrm{Y}_{\mathrm{n}}, \mathrm{z}_{\mathrm{n}}$ which can be considered as the coordinates with respect to the axes of the lattice, then the position of the nth atom in the unit cell can be represented by

$$
x_{n}=x_{n} \frac{a}{n}+y_{n} b+z_{n} c
$$

The path difference between the waves scattered by these atoms and those that would be scattered by a set of atoms at the points of the lattice that define the origins
 plete wave scattered by the nth lattice contains a term

$$
\begin{aligned}
& \left.f_{n} \exp \left[\frac{(2 \pi i)}{\lambda}\right) n_{n} \cdot s\right] \\
& \text { or } \quad f_{n} \exp \left[\begin{array}{ll}
2 \pi i & r_{n} \cdot s \\
\lambda
\end{array}\right]
\end{aligned}
$$

where f_{n} is the scattering factor of nth atom. Thus the expression for the complete wave scattered by the cxystal is

$$
\begin{aligned}
F^{\prime} & =\sum_{n=1}^{N} f_{n} \exp \cdot[2 \pi i \\
& \left.\frac{x_{n} \cdot s}{\lambda}\right] \\
& =\sum_{n=1}^{N} f_{n} \exp \cdot[2 \pi i
\end{aligned}
$$

We have ass $=h /$ (from Laue equations).
Therefore 。

$$
\begin{aligned}
& x \frac{\text { avs }}{\lambda}=h x \\
& y \frac{\underline{b} \cdot \frac{s}{x}}{\lambda}=k y \\
& z \frac{c_{0}}{\lambda}=4
\end{aligned}
$$

Thus.

$$
F=\sum_{n=1}^{N} f_{n} \exp \cdot 2 \pi i\left(n x_{n}+k y_{b}+I z_{n}\right)
$$

The expression for the structure factor as written above is a complex quantity. This means that the phase of the scattered wave is not simply related to that of the incident wave. The phase is not an observable quantity. The only quantity that is observable is the intensity which is proportional to the square of the scattering amplitude. If $F=A+i B$ where

$$
\begin{aligned}
& A=\sum_{n} f_{n} \cos 2 \pi\left(h x_{n}+k y_{n}+d z_{n}\right) \\
& B=\sum_{n}^{d} f_{n} \sin 2 \pi\left(h x_{n}+k y_{n}+i z_{n}\right)
\end{aligned}
$$

where f is the scattering factor for the nth atom, then $F^{2}=A^{2}+B^{2}$. These are the equations that are used in practice.

If the structure is centrossymetric, then for each atom at ($x_{0} y_{0} z$) in the unit cell, there is a correspond e ing atom at ($x_{0}, y_{i} z$). Then the contribution of this pair
to F is given by.
$\hat{f}[\cos 2 \pi(h x+k y+l z)+i \sin 2 \pi(h x+k y+l z)+\cos 2 \pi(h x+k y+l z)$.
$-i \sin 2 \pi(h x+i y+1 z)]=2 x \cos 2 \pi(h x+k y+1 z)$.
Hence:

$$
F=2 \sum_{n=1}^{(N / 2)} f_{n} \cos 2 \pi\left(h x_{n}+k y_{n}+l z_{n}\right)
$$

where the sumation is carried out only over nalf the number of atoms in the unit cell. In this case, the structure facm tor is real and the phase is reduced to the two possibilities thet F is positive or negative.

3.7 Atonic scattering factor

So far the electrons in the atoms have been assumed to be the scattering units. If there are Z electrons in an atom, then the amplitude of the beam scattered by the atom is Z times the amplitude of the beam scattered by an individual electron. The linear dimensions of the electrons have so far been neglected in comparison with the space lattice dimensions and also with the wavelengths of x-rays. In atoms, the electrons occupy a finite volume. The phase differences between rays scattered from different points have to be taken into account. These phase differences ara small for small angles of diffraction but become larger for greater angles of diffraction.

For small angles, the amplitude of scattering
by an atom can be considered as the sum of amplitudes of soattering by individual electrons. For large angles. the phase difference is laxge and the scattexed beam becomes weaker, i.e. the factor becomes less than Z. This factor is called the "Atomic Scattering Factor f " and values based on various methods or calculation are tabulated in the Intemational Tables:

3.8 Temperature factor

At any temperature, the atoms oscillate with a fingte amplitude. The frequeney of this oscillation (about 10^{13} per second) is much smaller then the frequency of xurays (10^{18} per second). Therefore, to a beam of Xways, the atoms would appear to be stationary but slightly displaced from their mean positions. Thus. atoms in the neighbouring cells, which should scatter in phase will scatter slightly out of phase. The total effect of this will be to reduce the scattering factor of the atom.

If ε_{0} is the scattering factor of an atom at rest. then the scattering factor that is used in practice is

$$
f_{0} \exp \frac{-B \sin ^{2} B}{\lambda^{2}}
$$

where 0 is the Bragg angle and B is a constant called the Debyemaller Temperature factor. The value of B can be evaluated in terms of the Debye characteristic temperature

$$
B=\frac{6 h^{2} T}{m k R^{2}}-\left(\frac{8}{T}\right)
$$

where m: mass of the atom
h : Planck's constant
k : Boltemann constant
T : Absolute temperature
θ : Debye characteristic temperature
and $Q(\theta / T)$ is a quantization factor which has been tabulated and does not differ appreciably from unity unless $(\theta / T)<I$ 。

In general, the vibrations of the atoms will be anisotropic and of different amplitudes in different direco tions. The effective scattering factor can then be given by

$$
\begin{aligned}
r= & f_{0} \exp 0\left(\beta_{11} h^{2}+\beta_{22^{k^{2}}+\beta_{33^{1}}+2 \beta_{12^{h k}}+2 \beta_{23^{k I}}}\right. \\
& \left.+2 \beta_{13^{h I}}\right)
\end{aligned}
$$

where f_{0} is the scattering factor of the atom at rest and β^{8} s are the coefficients of the anisotropic temperature factor.

Chapter 4

EXPERTMENTAL PROCEDURES

4.1 Measurement of Intensity

To estimate the intensity of a reflection spot on the IIm visually, one carries out a comparison of the spot With one of a series of spots prepared by photographing one particular reflection at diferent knom exposure times. The peak intensity of a reflection is measured in this way. In visual estimation of intensities it is assumed that the peak intensity is proportional to the integrated intensity. In fact, this is not so frequently because of the nonmunim formity in the size of the spots.

To integrate the intensities, the cross sections of the reflections should be taken into account, since one has to sum the intensity from all parts of the spot. This is achieved by recording the reflection on a film which is moved over a sertes of regular small intervals so that the density of blackening at the centre of the spot on the film attains a constont value which measures the integrated in tensity of a reflection. 35

A mechanical device for recording the integrated
intensity on the Buerger Precession Camera has been deso cribed by Nordman et al. ${ }^{38}$ A microdensitometer can be used to measure the integrated intensities of reflections. The densitometer traces of the spots will show plateau like profiles whose heights, corrected for the background. are proportional to the integrated intensities.

From the measuxed intensities. the structure amplie tudes can be evaluated and these can be used to determine a trial model for the structure using either the Patterson function or the somealled direct methods. Altematively a trial model may be proposed from chemical or packing cono densations.

4.2 Refinement

Once a model of the structure has been proposed. it is necessary to improve the preliminary coordinates by a process of refinement. The structure amplitudes can be evaluated from the observed intensities. The necessary condition for a proposed structure to be correct is that the caleulated structure factors should agree well with the observed structure factors. It is common to measure this agreement by a "Residual" of the form

$$
\mathrm{R}=\frac{\sum\left|\mathrm{F}_{\mathrm{O}}\right|-\left|\mathrm{F}_{\mathrm{C}}\right|}{\sum_{\mathrm{C}}\left|\mathrm{~F}_{\mathrm{C}}\right|}
$$

where the numerator is the sum of all the differences between the observed and calculated structure factors and
the denominator is the sum of all the observed structure factors. Thus R is a measure of the relative diso crepancies of the structure factors for the model. The value of B is a comparatively small fraction when the structure is correct. Correct structures usually have R<0.25 and very well refined structures may have R in the neighbourhood of 0.05 .

The value of R deduced for any model depends on how the observed structure amplitudes with very small values are treated. On a photographic film, there is a lower limit below which $\left|F_{o}\right|$ camot be observed. For such unobserved reflections, the value of the least observed intensity with a large error is assigned.

With modern computing facilities, the structure con be refined by the method of least squares described below. By this method. it is possible to rerine simulteneousiy all the parameters of the atoms in the asymmetric unit using three dimensional intensity data.

4.3 Method of Least Squares

The observed structure factors are subject to errors of observation so that the refinement consists in finding the model which yields the most acceptable fit between the calculated structuxe factors and the observed structure factors. Legendre proposed that the most acceptable values of variables were such as to make the sum of the squares of
the errors a minimum.
Suppose an observable quantity q is a linear
function of set of variables $x_{0} y_{0} z$

$$
\begin{equation*}
\text { i.e. } q=a x+b y+c z+\ldots \tag{1}
\end{equation*}
$$

Suppose there axe different errors of observation E associated with each q.

$$
\begin{equation*}
\text { Therefore, } q+E=a x+b y+c z+\ldots \tag{2}
\end{equation*}
$$

The error in each observation $E=a x+b y+c z+\ldots \ldots-q$. According to the Legendre principle, $\sum_{j} E_{j}^{2}$ should be made a minimum, where g runs from 1 to m where m is the number of observations.

$$
\begin{equation*}
\sum_{j} E_{j}^{2}=\sum_{j}\left(a_{j} x+b_{j} y+c_{j} z+\ldots . q_{j}\right)^{2} . \tag{3}
\end{equation*}
$$

is a minimum when its partial derivatives with respect to $x, y \circ z \ldots$ vanish, $i \cdot e$.

$$
\begin{aligned}
& \frac{\partial \sum_{j} E_{j}^{2}}{\partial x}=2 \sum_{j}\left(a_{j} x+b_{j} y+c_{j} 2+\ldots-q_{j}\right) a_{j}=0 \\
& \frac{\partial \sum_{j} E_{j}^{2}}{}=2 \sum_{j}^{1}\left(a_{j} x+b_{j} y+c_{j} z+\ldots-q_{j}\right) b_{j}=0
\end{aligned}
$$

etc.
These can be written as

$$
\begin{aligned}
& \left(\sum_{j}^{1} a_{j}{ }^{2}\right) x+\left(\sum_{1}^{1} a_{j} b_{j}\right) y+\ldots=\sum_{i}^{1} a_{j} a_{j} \\
& \left(\sum_{j}^{1} b_{j} a_{j}\right) x+\left(\sum_{j}^{1} b_{j}{ }^{2}\right) y+\ldots=\sum_{i}^{\prime} b_{j} a_{j}
\end{aligned}
$$

etc.
These equations know as "normal Equations" are n equations
in n unknows, where n is the number of variables. From these, values of $x_{0} y_{0} z \ldots$ which best satisfy Iegendre principle can be determined.

In making observations like (1). some observations may be considered more trustworthy than others. The various observations q_{j} may be assigned weights w_{j} which indicate relative estimates of their reliabilities. Thexefore both sides of (2) are multiplied by w_{j}. When followed through. this replaces each quantity in (5) by its product with w_{j}. This method can be applied to find the values of the coordinates of the atoms in the structure which best fit the observed structure factors. Each structure factor is computed from

$$
F_{c}=\sum_{X_{r}}^{4} x_{r} \exp \cdot\left[2 \pi i\left(h x_{r}+k y_{r}+h z_{X}\right)\right]
$$

Here the variables are the exponential in x, y and z and are not in the form of the desired linear equations.

Linear relations, however, can be devised by using the first two terms in Tayloris series. In this application. the above punction is treated as follows.

If each of the parameters $x_{0} y_{0}, z$ defining the prow posed structure is assumed to have an exror $\dot{\varepsilon}_{\dot{x}}, \varepsilon_{y}, \varepsilon_{z}$, theno $f\left(x+\varepsilon_{x^{0}} y+\varepsilon_{y^{0}} z+\varepsilon_{z}\right)=f(x y z)+\varepsilon_{x} \frac{\partial f(x y z)}{\partial x}+$

$$
+\varepsilon_{y} \frac{\partial f(x y z)}{\partial y}+\varepsilon_{z} \frac{\partial f(x y z)}{\partial z}
$$

$$
\text { If } f\left(x+\varepsilon_{x} \cdot y+\varepsilon_{y \cdot} z+\varepsilon_{z}\right)=F_{0}
$$

$$
f(x y z) \quad=F_{C_{0}}
$$

then $\quad \Delta F=F_{0} \rightarrow F_{C}$ and from Taylor expansion

$$
\begin{align*}
\Delta F & =F_{c}+\sum_{r}^{1}\left(\varepsilon_{x r} \frac{\partial F_{\mathrm{c}}}{\partial x r}+\varepsilon_{y x} \frac{\partial F_{\mathrm{c}}}{\partial y r}+\varepsilon_{z r} \frac{\partial F_{\mathrm{c}}}{\partial z r}\right)-F_{\mathrm{c}} \\
& =\sum_{r}^{1} \varepsilon_{x r} \frac{\partial F_{\mathrm{c}}}{\partial x r}+\varepsilon_{y x} \frac{\partial F_{\mathrm{c}}}{\partial y r}+\varepsilon_{z r} \frac{\partial F_{\mathrm{c}}}{\partial z r} \tag{6}
\end{align*}
$$

This summation extends over all the atoms in the structure. For each observed reflection there exists such an equation. When the observational error. E_{0} is added to each equations like (6) , the set of equations can be recast in the form

$$
E_{j}=a_{j} x+b_{j} y+c_{j} 2+\ldots \infty q_{j}
$$

from which the normal equations like (5) can be derived.
The solutions reduce to

$$
\varepsilon_{x r}=\frac{\sum_{i=1}^{m}{ }_{i=1}^{w_{i}\left(\frac{\partial F_{i}}{\partial x}\right)_{r} \Delta F} \sum_{i=1}^{m} w_{i}\left(\frac{\partial F_{i}}{\partial x_{x}}\right)_{r}^{2}}{m}
$$

Where w_{1} is a weighting factor and m is the total number of reflections.

When a weighting function, w, is used, the least squares refinement minimizes $\sum W\left(\left|F_{o}\right|-\left|F_{d}\right|\right)^{2}$. Each weight w is taken as the inverse of the square of the stan dard deviation of the corresponding observation.

The weighted Refactor is given by
$\mathrm{R}_{2}=\left\{\frac{\left.\sum_{1}^{i} W_{i}\left(\left|\mathrm{~F}_{\mathrm{o}}\right|-\mid \mathrm{F}_{\mathrm{d}}\right)_{i}^{2}\right]^{1 W_{i}}\left(\left|\mathrm{~F}_{\mathrm{o}}\right|\right)^{1 / 2}}{}\right.$.

EXPERIMENTAD WORK

Potassium hexabromostannate $\left(\mathrm{K}_{2} \mathrm{SnBr}_{6}\right)$ was prepared by adding potassium bromide to the solution of tin (IV) tetrabromide in hydrobromic acid containing a small amount of bromine. 39 The crystals thus prepared were recrystallised from the mixture of dilute hydrobromic acid and a small quantity of bromine.

These crystals were found to decompose in very humid air and therefore they had to be sealed in dry capillary tubes during the experiments.

The density of the crystal was calculated using the formula
Density $\left(\mathrm{gm} / \mathrm{cm}^{3}=\frac{\text { ZxFomula Weight (amu) } \times 1.660 \times 10^{-24}}{\text { Volume of unit cell }\left(\mathbb{R}^{3}\right) \times 10^{-24}}\right.$
Knowing the density, the linear absorption coefricient μ both for $\mathrm{Cu}_{\mathrm{d}} \mathrm{K}_{d}$ and Mo K_{d} radiation could be calculated. from the mass absorption coefficients listed in the Interm national Tables. 36

For single cxystal xaxay defraction work the major. consideration which limits the size of the crystal is the
absorption of xurays by the crystal. If the absorption coefficient is large, the relation $F^{2}=K I / L_{p}$ breaks down and this limits the size of the erystal.

In order to avoid the absorption correction, the size of the crystal to be used for xaray diffraction work was calculated, assuming the crystal to be spherical in shape, taking $\mu \mathrm{R} \sim I$, where R is the radius of the sphere.

The values of μ calculated are as follows:
$\mathrm{Cus}_{\mathrm{a}} \mathrm{K}_{\alpha}$ radiation : $497.3 \mathrm{~cm}^{-1}$
Mo K_{α} radiation : $240.4 \mathrm{em}^{-1}$
The maximum sizes of the crystal permissible were:
$\mathrm{C} \mu \mathrm{K}_{\alpha}$ radiation : 0.02 mm radius
Mo K_{0} radiation: 0.04 mm radius
Because of Ion absorption of Mo K_{α} radiation as compared to the Cu K_{α} radiation. MO radiation is preferred. Its smaller wavelength allows a greater number of reflece tions to be recorded. This becomes particularly important when the data are being collected on a precession camera which only records the diffraction pattem out to a Bragg angle of 30°.

Several crystals were picked from the sample and examined under a polarising microscope to check whether they were single crystals or not. Then a cxystal which appeared to have well developed faces and also which seemed to be a single erystal. was sealed in a dry capillary cube and mounted on a goniometer head. The crystal chosen had
the dimensions: $0.021 \times 0.011 \times 0.005 \mathrm{~cm}$.
The crystal along with the goniometer head was mounted on a Supper Integrated Precession Camera with the face (112) of the crystal along the goniometer axis per- . pendicular to the direction of the incident beam. The unintegrated photograph of zero layer was first taken.

The cell dimensions were measured from the films making use of high angle reflections and were found to be:

$$
\begin{aligned}
& \underline{a}=7.435 \pm 0.017 \AA \\
& \underline{b}=7.437 \pm 0.017 \AA \\
& \underline{c}=10.568 \pm 0.006 \AA .
\end{aligned}
$$

Those of Markstein and Nowotny ${ }^{10}$ for the pseudomeubic cell were $a=7.43 \AA$ and $c=10.61 \AA$ and those or Galloni et al ${ }^{11}$ for the tetregonal cell were $\underline{a}=\underline{b}=10.520 \AA$ and \underline{c} $=10.624 \mathrm{~A}$.

The films were studied carefully. Initially a tetragonal space group $\mathrm{PH}_{1} 2$ was assigned. This needs certain atoms to be placed in special positions. When this is done, it gives rise to two possibilities viz either the octahedron is not regular or the space group may be wrong. Since there was no reason to belleve that the octahedron is irregular, another space group was tried. Further, as mentioned earlier, the NQR splitting of resonance lines indicated that the true symmetry is lower than tetragonal. Therefore a monoclinic space group $P 2_{1} / n$ was assigned from the study of systematic absences. The systematic absences

TABIE H

Crystal data for $\mathrm{K}_{2} \mathrm{SnBx}_{6}$

Maxkstein	Galloni	Bresent
Nowotny	et 81	Work

System

Space Group
Cell Constants

$a=$	$7.430 \AA$	$7.430 \AA$	7.433 ± 0.017
$b=$	$7.430 \AA$	$7.441 \AA$	7.437 ± 0.017
$c=$	$10.61 \AA$	$10.624 \AA$	10.568 ± 0.006
$\beta=$	90°	90°	$89^{\circ} 50^{\circ} \pm 48$

were:

$$
\begin{aligned}
& \text { nom: } n+1=2 n+1 \\
& \text { oro }: \quad k=2 n+1
\end{aligned}
$$

Integrated photographs were taken for zero layer and three parallel layers and also for the zero layer pexpendicm ular to these. Each layer was photographed with three difierent exposures: $2 x, 6 x$ and $18 x$ the integrating oycies or 2 hours and 24 minutes. These photographs were indered and the integrated intensities were measured using an sutom natic recording miccodensitometer model MK IIIc of Joyce. Loebl and Co.

The standard errors in the observed structure amplitudes were calculated from an estimate which had been made of the standard erroxs of intensities. In assigning the errors to the measured intensities, due care was taken to see that each spot was treated according to its merjt. For the unobserved reflections. the value of the intensity given was the least observed value on the film but a large standard error was assigned.

Then the observed intensities of the reflections were corrected for the Lorentz and Polarisation effects using PRELP - a program on CDC.. 6400 written for this puxpose. This was used to obtain the observed structure amplitudes from the measured intensities.

Since the structure of $\mathrm{K}_{2} \mathrm{SnBr}_{6}$ was suspected of being similar to that of $\mathrm{K}_{2} \mathrm{TeBr}_{6}$, the latter was taken

as a trial structure. The positions of the atoms for this model were: Sn at $(0,0,0)$; the three bromine atoms at ($0.0555 .0 .0022,=0.2473$) ; ($0.2875,-0.2082,0.0321$); (0.2057. 0.2889. 0.0252); respectively and K at (0.012. $-0.457,0.250$). At first only the isotropic temperature factor was assigned and the trial parameters were refined by a full matrix least square anolysis of the three dimen sional intensity data using the IBM-7040 program MACLS written in this laboratory by Stephens. This program makes use of a special submroutine which calculates the structure factors and their derivatives for the particular space group or the problem for which it is being used.

A special suberoutine was prepared for the space group $P 2_{1} / \mathrm{n}$. The scattering curves required for this prog. ram were taken from the Intemational Tables of xaray Crystallography. ${ }^{36}$ The variable parameters included in this program were the scale constants applied to the observed structure factors from layers photographed separately, the positional coordinates and the temperature factor of each atom.

Then the isotropic temperature factors were converted into anisotropic temperature factors and the refinew ment continued for four cycles after which no significant changes in the variable parameters were observed. In try. ing to refine the anisotropic temperature factors, the cow efficients β_{12} and β_{23} for the tin atomhad to be left equal to ze
since attempts to refine these two components gave ridico ulously large numbers. The tin atom is in a centrosymetric position and as such there should not be any restrictions on any of the components of the thermal ellipsoid for this atom. If a tetragonal space group had been assigned. then both β_{12} and β_{23} would have been identically equal to zero. As we have seen, the deviation from the tetragonal structure is not large. Therefore probably as far as tin is concerned. the structure is tetragonal and this accounts for the two coefficients β_{12} and β_{23} to be made zero. The agreement, between the observed and calculated structure factors were checked after each cycle of refinem. ment from the R-value. The final R factor was 0.116 . The atome parameters derived from the final cycle of refinem ment are listed in the Table B. The observed and cald culated structure factors are given in Table C.

The interatomic distances and bond angles were calculated making use of a progran MOLG wxitten for IBM 7040 by Brown and Holder of this laboratory. This program diagonalises the thermal vibration tensor to give the BMS displecements of atoms along the three principal vibration axes. It also prints the direction cosines and angles made by these axes with the real and reciprocal crystal axes. It further calculates interatomic distances from each atom to any neighbouring atom out to a specified distance.

TABLE B
Atomic parameters derived from the inal least squares
Refinement

Atom	Position Coordinates			$\begin{aligned} & \text { Standard } \\ & \text { Error } \\ & \AA \end{aligned}$	Temperature Factor					
	$x / 2$	7/b	z/0		β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Sn	0	0	0	\bigcirc	0.42	0.44	0.27	0	-0.03	0
$\operatorname{Br}(1)$	0.0425	-0.0207	-0.2413		1.62	0.79	0.28	0.29	0.21	-0.09
$\mathrm{Br}(2)$	0.2774	-0.2085	0.0251	0.001	0.82	0.77	0.85	0.32	-0.13	0.02
$B r(3)$	0.2083	0.2791	0.0203		1.24	0.82	0.63	-0.48	-0.01	-0.12
K	0.0115	-0.5283	0.2444	0.03	1.89	2.03	$+1.06$	-0.50	-0.19	-0.01

The temperature factors enter the structure factor calculation through the following expression: $\exp \cdot\left(-10^{-2}\left(\beta_{11^{n}} n^{2}+\beta_{22^{k^{2}}}+\beta_{33^{1}}+2 \beta_{\left.12^{n k}+2 \beta_{13} n 1+2 \beta_{23^{2}} k I\right)}\right.\right.$

KLUE
$F(085)$
35.79
24.09
41.14
17.39
35.73
27.34
30.31
31.14
48.67
69.35
68.83
59.64
30.31
27.34
29.51
31.24
31.40
$31: 28$
31.18
31.18
32.28
31.40
31.24
29.51
58.08
49.76
74.20
40.15
49.14
36.39
28.74
49.08
30.47
31.10
31.55
49.76
54.29
90.35
76.02
113.46
70.46
97.26
44.13
66.71
30.70
31.69
26.05
64.44
28.58
177.40
101.50
213.30
136.42
207.53
F(CALC)
41.76
25.55
42.20
19.56
41.08
10.07
200.48
38.47
52.50
69.98
71.13
6.6 .88
54.45
39.43
14.09
21.57
19.53
27.57
34.64
34.83
43.04
33.57
36.08
26.34
56.64
49.64
74.56
33.20
47.71
21.88
1
SIGMA
4.
3.
5.
$1:$
4.
9.
10.
4.30
3.61
5.15
1.74
4.87
9.1
5.19
4.73
7.23
7.17
4.89

1
9.10
9.11
10.42
10.46
10.42
10.40
10.42
10.46
1.
9.84
6.83
6.83
6.22
5.82
5.8
4.8
5.05
4.97
9.97
10.1
10.36
10.52
6.16
12.
11.
7.45
12.10
4.91
6.50
10.24
5.29
3.90
0.10
8.18
9.53
29.83
13.07
13.07
35.14
16.20
16.20
34.78

KXUE: 0: means "observed"
1: means "unobserved"
2: means "unceliable"

	H	K	L	KLUE	$F(\$ B S)$	C (CALC)	SIGMA
55	1	-5	-4	0	88.21	84.43	9.25
56	2	-6	-4	0	103.87	98.03	8.95
57	-3	7	4	1	31.91	22.13	10.64
58	-4	8	4	0	25.10	29.96	3.78
59	-6	3	-3	1	30.70	5.15	10.24
60	-5	2	-3	$\frac{1}{1}$	28.23	19.35	9.41
61	-4	1	-3	1	25.65	8.53	8.514
62	-3	-0	-3	0	56.04	46.65	5.59
63	-2	-1	-3	1	22.36	13.16	7.45
64	-1	-2	-3	0	93.61	96.49	7.11
65	-0	-3	-3	0	60.16	49.25	4.60
66	1	-4	-3	0	116.63	114.23	14.12
		-5	-3	2	81.47	45.61	13.03
68	3	-6	-3	0	86.84	92.04	8.68
69	-4	7	3	1	32.19	23.87	10.72
70	-5	8	3	0	. 72.70	58.56	9.29
71	-7	5	-2	0	118.00	110.45	14.74
72	-6 -5	4	-2	1	31.30 133.07	133.199	4.18 16.38
84	-4	3	-2	0	138.07	135.98 76.91	16.38 6.85
75	-3	1	-2	0	89.18	90.55	9.11
: 76	-2	-0	-2	2	129.21	251.06	15.93
77	1	-3	-2	0	48.00	36.24	4.73
78	2	-4	-2	0	100.94	99.33	7.43
79	3	-5	-2	0	82.86	84.62	6.58
80	- 5	7	2	0	83.43	83.61	10.42
81	- 4	6		1	31.30		10.44
82	-7	6	-1	0	77.51	-61.47	9.90
83	-6	5	-1	0	58.55	48.55	7.61
84	-5	4	-1	0	108.83	99.70	10.72
85	-4	3	-1	0	199.30	102.05	1.33
86	-3	2	-1	0	125.49	128.72	15.63
87	-2	1	-1	0	118.93	142.89	19.55
88	1	-2	-1	0	27.59	26.25	3.45
89	2	-5	-1	2	54.83	44.211	4.46
90	3	-5	-1	0	60.63	11.4. 4	8.69 8.70
92	-1	1	0	2	145.12	138.83	18.66
93	-2	2	0	2	215.65	379.90	25.53
94	-3	3	0	1	23.73	21.03	19.92
95	. -4	4	0	0	149.77	150.45	19.61
96	$\therefore-5$	5	0	1	30.90	36.86	10.30
97	-6	6	0	0	139.35	53.56	17.71
98	0	0	2	0	135.46 210.22	144.69	1.7 .03
99	0 0	0 0	4 6	2	210.22 59.15	399.43 48.93	26.30 7.67
101	0	0	8	0	169.48	181.21	21.12
102	1	1	0	0	143.56	138.83	17.90
103	1	1	2	1	64.86	17.84	8. 10
104	1	1	4	0	106.42	104.69	16.07
105	1	1	6	1	30.59	11.98	5.89
106	1	1	8	0	82.73	78.37	10.21
1.07	1	1	10	1	36.28	12.32	6.98
108		1	12	0	50.62	52.55	6.07
109	-1	-1	4	0	117.23	133.08	17.64
110	-1	-1	$1{ }^{8}$	0 0	$\begin{array}{r} 104 \cdot 44 \\ 69.81 \end{array}$	$\begin{array}{r} 105.05 \\ 68.49 \end{array}$	
1112	- 2	-1	12	0	699.81	68.49 379.90	$27.4 \frac{11}{4}$

UNNNNNNNNNNNNNNNNNNNNNNNNNNNNWDに,

$F(C A L C)$	SIGMA
110.68	14.29
122.40	15.85
121.60	14.71
75.72	10.70
48.46	6.17
45.26	6.34
52.33	8.05
72.76	9.91
75.98	10.05
63.31	8.47
25:21	4.43
56.39	7.75
38.41	4.93
71.27	9.16
68.03	9.61
43.57	7.06
62.33	18.67
67.98.	10.35
50.40	5.99
101.48	11.94
99.44	12.06
142.89	6.56
61.73	7.60
79.05	9.01
115.66	13.99
150.54	5.75
142.88	13.97
35.22	5.05
32.75	4.95
60.16	8.20
58.45	9.21
60.73	7.38
80.86	22.31
30.44	5.23
60.50	7.63
127.90	15.43
42.89	6.34
124.35	11.37
100.00	30.96
98.38	12.26
112.95	13.22
14.63	19.86
106.93	13.42
110.68	11.84
53.76	6.84
49.78	6.34
66.03	9.66
71.42	9.76
47.71	8.10
54.80	7.45
48.31	4.88
57.08	8.07
62.49	8.20
49.41	7.70
48.74	7.63
43.36	5.89
64.51	8.35

$F(C A L)$ SIGMA

90.01	10.92
100.18	11.76
101.22	12.80
83.53	10.01
66.33	8.49
90.55	11.94
117.09	13.77
106.50	13.87
147.47	18.52
142.42	14.76
134.89	11.59
155.73	14.71
134.89	13.65
99.54	13.60
133.61	16.49
76.36	9.09
45.50	7.18
64.24	18.67
125.93	13.72
104.69	13.92
194.89	22.96
131.56	18.08
185.51	21.12
45.81	6.61
53.20	11.43
53.76	6.51
67.16	7.91
47.51	6.08
64.58	6.54
34.11	5.45
50.20	6.66
34.52	13.70
69.62	9.60
98.38	11.55
124.19	15529
126.02	15.24
103.78	13.82
83.48	9.07
44.00	5.84
32.23	5.55
28.73	4.56
36.36	4.49
40.83	5.52
39.38	6.05
35.35	5.38
72.66	12.78
51.85	9.98
88.58	9.41
13.59	10.39
43.57	7.02
76.91	10.15
22.52	4.63
100.43	10.66
16.59	95.48
26.99	5.43
32.99	4.34
64.84	
96.39	16.78
	17.56

SIGMA.

 4
-5
-
a

OOOOODOOOOONOODOOOOONOOOONNOOOOOOONOOONOOOONOOOOOOOOONOO L

$F(\emptyset \mathrm{BS})$	$F(C A L C)$	SIGMA
62.82	60.51	6.86
35.30	41.25	3.93
118.79	73.75	19.76
42.33	40.10	5.29
66.82	60.14	8.34
31.59	34.66	3.51
66.70	74.24	14.83
45.67	43.25	5.71
110.37	125.53	11.12
61.36	58.82	6.15
81.14	90.37	7.95
57.09	58.77	5.86
109.05	126.02	18.13
70.21	83.31	9.56
42.47	37.78	4.90
42.86	43.27	5.05
40.82	38.48	3.88
105.52	121.60	17.69
42.86	47.51	5.05
55.23	57.13	5.66
106.56	106.87	17.79
143.74 56.43	87.29	23.88
56.43	65.69	5.64
90.49	66.03	14.74
62.50	69.68	5.95
38.01	34.87	4.22
104.51	101.69	10.32
81.53	85.62	8.03
44.01	49.06	7.37
51.65	32.97	8.42
109.71	88.78	18.30
57.09	53.73	5.71
79.02	70.28	8.05
84.09	84.32	17.37
82.80	90.81	8.15
92.44	86.42	15.59
70.99	78.37	11.91
59.55	58.99	10.20
69.87	61.34	6.68
39.79	31.09	7.66
50.48	52.50	5.61
77.61	91.97	8.00
66.46 137.35	71.32	13.27
137.35	153.20	17.37
107.88	100.46	13.81
78.78	68.51	10.51
83.83	83.53	10.95
55.19	40.31	14.74
66.55	45.32	8.32
42.28	42.84	5.88
39.62	40.78	4.95
64.53	56.33	8.08
64.55	60.98	16.15
70.70	60.59	8.83
43.28	49.16	6.00
43.18	39:47	6.00

Chapter 6

DESCRTPTION OF THE STRUCTURE

The final parameters of the refinement show that the $\operatorname{srabr}_{6}=$ ion in $\mathrm{K}_{2} \mathrm{SnBr}_{6}$ has the configuration of a reguler octahedron. There is nosignificant difference in the three non-equivalent $\mathrm{Sn}=\mathrm{Br}$ distances and the angles between them do not vary significantly from 90° (Table D). The mean length of the $S n-B r$ bond is $2.601 \pm 0.011 \dot{A}$. Cruickshank ${ }^{40}$ has pointed out that the measured bond lengths are usually shorter than the correct lengths. Since the atoms constitutw ing the bonds are always in thermal motion the positions of maxima in the electron density distribution do not repo resent the correct positions of atoms and so the measured bond lengths should be corrected for the thermal motion of atoms constituting the bonds.

In 1964. Busing and Levy ${ }^{41}$ proposed a method for correcting the bond distances based on one of the following assumptions regarding the combined electron density distrim bution of two atoms forming the bond.
(i) the motions of atoms are either in phase or out of phase with one another.
(ii) The motion of the heaviex atom is completely

TABLE D
Interatomic distances and angles
Interatomic distance A

Atoms	Uncorrected	Corrected for themel motion	Mean Co Valu
$\mathrm{SnBr}_{6}=10 \mathrm{n}$			
1. $\operatorname{Sn=Br}(1)$	$2.579+0.017$	2.590	2.601
2. $-\operatorname{Br}(2)$	2.593 ± 0.008	2.603	
3. \quad - $\mathrm{Br}^{(3)}$	$2.601+0.008$	2.611	
4. $\operatorname{Br}(1)=\operatorname{Br}(2)$	3.612 ± 0.020	3.612	3.665
$-\mathrm{Br}(3)$	3.754 ± 0.023	3.755	
$-\mathrm{Br}(2)$	3.702 ± 0.018	3.704	
-Br (3)	3.569 ± 0.021	3.570	
8. $\operatorname{Br}(2)-\operatorname{Br}(3)$	3.665 ± 0.012	3.666	
$-\mathrm{Br}(3)$	3.679 ± 0.013	3.680	
$\mathrm{Br}(1) \mathrm{Sn} \omega \mathrm{Br}(2)$	88.58 ± 0.50		
$\mathrm{Br}(1)=\mathrm{Sn}-\mathrm{Br}(2)$	91.42 ± 0.60		
$\operatorname{Br}(1)=\operatorname{Sn}-\operatorname{Br}(3)$	92.90 ± 0.70		
$\mathrm{Br}(1)=5 n-B r(3)$	87.10 ± 0.59		
$\mathrm{Bx}(1)=\operatorname{Sn}-\mathrm{Br}(2)+$	+91.42 ± 0.60		
$\mathrm{BI}(1)=\operatorname{Sn}-\mathrm{Br}(2)+$	88.58 ± 0.50		
$\operatorname{Br}(1)=5 n c B r(3)+$	-87.10 ± 0.59		
$\mathrm{Br}(1) \mathrm{Sn} \times \mathrm{Br} \times$ (3) +	92.90 +0.70		
$\operatorname{Br}(2)=5 n m b r(3)$	89.78 ± 0.46		
$\mathrm{Bx}(2)-5 n-\operatorname{Bx}(3)$	90.22 ± 0.42		
$\operatorname{Br}(2)=S n-B r(3)+$	90.22 ± 0.42		
$\operatorname{Br}(3)=\operatorname{snmPr}(3)+$	89.78 ± 0.46		

The BraSnmbr angles lie within 2.9° of 90° and are not significantly diferent from it.

The exrors quoted are those calculated from the standard errors for the cell constents and the least squares refinement.
\dagger Those marked with a dagger are related by inversion through the origin.
independent of the motion of the lighter one, but the lighter atom is supposed to lride" on the heavier atom.
(iii) There is no correlation between the motions of the atoms.

The first assumption gives the two extreme limits of the bond length, but the other two represent more physically likely situations. It is hard to distinguish between them unless detailed information about the motion of atoms is known. To convert isotropic to anisotropic motion of the atoms, the following relation is used

$$
B_{i j}=4 i j / a_{j}^{*} \cdot a_{j}^{*}
$$

cohere β° s are the temperature coefficients, and B is the isotropic temperature factor.

The temperature factors (Table E) of the bromine atoms show a marked anisotropy indicating that their root mean square displacement perpendicular to the $\mathrm{Sn}-\mathrm{Br}$ bonds is larger than that along the bonds. A rigid $\mathrm{SnBr}_{6}{ }^{=}$ion liberating about the tin atom would give rise to anisotropy of this sort and if this were the case, the $\mathrm{Sn}-\mathrm{Br}$ bond Iength corrected for temperature effects would be 2.60 A. However, it is possible that there is no correlation between the motions of tin and bromine atoms. The thermal anisotropy of bromine atoms can be explained in this case, if we conc sider that the bending modes of Vibration of the $S n m x$ bond have larger amplitudes than the stretching modes. The mean corrected SnoBr distance is then 2.63%. It is not possible

TABLE E

Principal Components of Temperature Factors

Atom	$\operatorname{RMS}(A)$	Direction Cosines with respect to		
		a	b	c
Sn	0.125	0.000	0.000	0.000
.	0.113	0.000	1.000	0.000
	0.206	0.000	0.000	0.000
$B R(1)$	0.223	0.894	0.448	0.015
	0.174	$=0.382$	0.780	00.495
	0.106	0.233	-0.437	00.869
$B R(2)$	0.222	-0.219	-0.043	. 0.975
	0.176	0.698	0.691	0.188
	0.112	$\infty 0.681$	0.722	-0.122
$\mathrm{BR}(3)$	0.207	-0.754	0.573	00.322
	0.192	0.357	00.054	$\infty 0.933$
	0.112	0.551	0.818	0.164
K	0.265	0.597	0.501	-0.627
	0.239	00.284	0.599	$\infty 0.749$
	0.200	0.751	0.625	0.215

to distinguish between these two cases and the true situa, tion probably lies somewhere between the two extremes.

It is interesting to note that the positions of the $\mathrm{SnBr}_{6}=$ ions in the crystal are the same as those of ptCl 6 ions in the $\mathrm{K}_{2} \mathrm{PtCl}_{6}$ structure and $\mathrm{TeBr}_{6}{ }^{=}$ions in the $\mathrm{K}_{2} \mathrm{TeBr}_{6}$ structure to which $\mathrm{K}_{2} \mathrm{SnBr}_{6}$ is closely related. The large octahedral ions lie on a face centered lattice with alkali metal ions occupying the tetrahedral cavities between them. In $\mathrm{K}_{2} \mathrm{PtCl}_{6}$ the $\mathrm{PtCl}_{6}=$. ions are all equivalent and are arranged with the ptocl bonds along the principal axes of the cubic unit cell. The $\mathrm{K}_{2} \mathrm{SnBr}_{6}$ structure is obtained from this by a reorientation of the $\mathrm{SnBr}_{6}=$ octahedra as in the case of $\mathrm{K}_{2} \mathrm{TeBr}_{6}{ }^{\circ}$

The $\mathrm{K}_{2} \mathrm{PtCl}_{6}$ structure may be described as an approx imately close packed arcay of chlorine and potassium atoms with platinum atoms occupying octahedral holes. The chlorine and potassium atoms are arranged with the array so that every potassium atom has twelve nearest neighbour chlorine atoms and every chlorine atom is surrounded by four potassium atoms. four chlorine atoms belonging to its own $\mathrm{PtCl}_{6}=$ ion and sour chlorine atoms belonging to different $\mathrm{PeCl}_{6}=$ ions. In $\mathrm{K}_{2} \mathrm{TeBr}_{6}$ as reported by Brown the environ ment of the halogen atom is only slightly altered but the enviroment of potassium atom is markedy different. The same is found to be the case for $\mathrm{K}_{2} \mathrm{SnBr}_{6}$ (Table F). It is possible to pick out twelve nearest neighbours for the potem

TABLE F

Environment of K Atom

Atoms	Interatomic Uncorrected	distance A Corrected for Thermal Motion	$\begin{gathered} \text { Mean Corrected } \\ \text { Value } \end{gathered}$
$\dot{K}-\operatorname{Br}(3)$	3.132 ± 0.032	3.139	3.176
$\mathrm{K}-\mathrm{Bx} \times(2)$	3.204 ± 0.031	3.213	
$\mathrm{K} \sim \mathrm{Br}(1)$	3.395 ± 0.050	3.404	3.462
$\mathrm{K}-\mathrm{Br}(1)$	3.510 ± 0.024	3.520	
$\mathrm{K} \sim \mathrm{Bro}$ (3)	3.736 ± 0.033	3.744	
$\mathrm{K}=\mathrm{Br} \times(2)$	3.868 ± 0.033	3.875	3.870
$\mathrm{K}-\mathrm{Br}(2)$	3.880 ± 0.033	3.886	
$\mathrm{K}-\mathrm{Br}(1)$	3.965 ± 0.024	3.974	
$\mathrm{K}=\mathrm{Br}(3)$	3.983 ± 0.033	3.992	
$\mathrm{K} \sim \mathrm{Br}(2)$	4.070 ± 0.032	4.078	4.077
$\mathrm{K} \sim \mathrm{Br}$ (1)	4.083 ± 0.050	4.089	
$\mathrm{K} \rightarrow B r$ (3)	4.141 ± 0.032	4.148	

TABLE G
Comparison of environment of K atom
$\ln \mathrm{K}_{2} \mathrm{TeBr}_{6}$ and $\mathrm{K}_{2} \mathrm{SnBr}_{6}$

$\mathrm{K}_{2} \mathrm{TeBr}_{6}$						$\mathrm{K}_{2} \mathrm{SnBr}_{6}$	
Atoms	Interatomic Uncorrected	istance A Corrected	Mean Corrected Value	Atoms	Interatomic Uncorrected	stance A Corrected	$\begin{aligned} & \text { Mean } \\ & \text { Corrected } \end{aligned}$ Value
$\mathrm{K} \sim \mathrm{Br}(2)$	3.37	3.40		$\mathrm{K}-\mathrm{Br}(3)$	3.132 ± 0.032	3.139	3.176
$\mathrm{K}-\mathrm{Br}(3)$	3.41	3.44	3.46	$\mathrm{K}-\mathrm{Br}(2)$	3.204 ± 0.031	3.213	
$\mathrm{K}-\mathrm{Br}(1)$	3.45	3.48		$\mathrm{K} \sim \mathrm{Br}(\mathrm{I})$	3.395 ± 0.050	3.404	3.462
$\mathrm{K}-\mathrm{Br}(\mathrm{I})$	3.48	3.51		$\mathrm{K}-\mathrm{Br}(1)$	3.510 ± 0.024	3.520	
$\mathrm{K}-\mathrm{Br}(3)$	3.61	3.64	$\underline{\omega}$	$\mathrm{K}-\mathrm{Br}$ (3)	3.736 ± 0.033	3.744	
$\mathrm{K}-\mathrm{Br}(2)$	3.68	3.71	3.69 안	$\mathrm{K}-\mathrm{Br}(2)$	3.868 ± 0.033	3.876	$3.870{ }^{\text {v }}$
$\mathrm{K}-\mathrm{Br}(2)$	3.65	3.68		$\mathrm{K}-\mathrm{Br}(2)$	3.880 ± 0.033	3.886	
$\mathrm{K}-\mathrm{Br}(3)$	3.71	3.74		$\mathrm{K}-\mathrm{Br}(1)$	3.965 ± 0.024	3.974	
$\mathrm{K}=\mathrm{Br}(1)$	4.10	4.13		$\mathrm{K}-\mathrm{Br}(3)$	3.983 ± 0.033	3.992	
$\mathrm{K}-\mathrm{Br}(1)$	4.16	4.19	4.16	$\mathrm{K}-\mathrm{Br}(2)$	4.070 ± 0.032	4.078	4.077
$\mathrm{K}-\mathrm{Br}(3)$	4.51	4.54		$\mathrm{K}-\mathrm{Br}(1)$	4.083 ± 0.050	4.089	
$K=B x(2)$	4.55	4.58		$\mathrm{K}-\mathrm{Br}(3)$	4.141 ± 0.032	4.148	vor

assium atoms but they are no longer equally distant. There axe two bromine atoms at a distance of 3.176 ± 0.031 A, then two at a distance of $3.462 \pm 0.037 \AA \AA^{\circ}$ our atoms at a distance of 3.870 ± 0.031 Aand the next four at a distance of $4.077 \pm 0.037 \AA$. These bromine atoms are arranged such that the mean distance between any one bromine atom and the four potassium atoms with which it is associated is 3.755 ± 0.034. The correction which should be applied to these lengths for themal motion is about $+0.08 \AA$ if it is assumed that there is no correlation between the motions of potassium and bromine atoms. The comparison of the en Vironment of the potassium ion in $\mathrm{K}_{2} \mathrm{TeBr}_{6}$ and $\mathrm{K}_{2} \mathrm{SnBr}_{6}$ is presented in Table G 。

The distortion in $\mathrm{K}_{2} \mathrm{SnBr}_{6}$ is a result of packing large anions with small cations. The anions form a face centered axray and are oriented such that each halogen is in contact with four halogens on neighbouxing anions. This leaves cavities in the structure into which the cations fit. Each cavity is formed by twelve halogen atoms, three from each of the four anions which surround the cavity. The cations are usually much smaller than the halogen atoms Therefore, the size of the cavity will be determined by the halogen-halogen contacts between anions rather than the halogen-cation contacts. If the cation is very much smaller than the cavity into which it fits, it will be free to move inside the cavity unless the anions reorient them-
such as to reduce the erfective size of the cavity and thus lock the cation into place.

The arrangement of cations (open circles) and
anions (octahedra) in (s.) $\mathrm{K}_{2} \mathrm{PtCl}_{6}$ (ii) $\mathrm{K}_{2} \mathrm{TeBr}_{6}$ and (iii)
$\mathrm{K}_{2} \mathrm{SnBr}_{6}$ as viewed dow the C-axis is drawn in Figure 6 。
The stereographic projections of K atom are drawn

in Figuxe 7.

Fig. 6a. The arrangement of cations (open circles) and anions (octahedra) in $\mathrm{K}_{2} \mathrm{PCCl}_{6}$ as viewed down the C axis.

Fig. 6b. The arrangement of cations (open circles) and anions (octehedra) in $\mathrm{K}_{2} \mathrm{TeBr}_{6}$ as viewed down the C axis.

Fig. 6C. The arrangement of cations (open circles) and the cons (octahedra) in $\mathrm{K}_{2} \mathrm{SnBr}_{6}$ as yiewed down
σ

BIBLIOGRAPHY

1. Eving, F. J. and Parling, L. (1928). Z. Kxist. 68, 223.
2. Engel. G. (1935. Z. Krist. A 20. 341.
3. Hoaxd, J. L. and Dickinson. B. N. (1933). Z. Krist. 84. 436.
4. Sieg. L. (1932). Z. anorg. chem. 207. 93.
5. Bagnall, K. W. DiEye. $\mathrm{R}_{\mathrm{o}} \mathrm{W}_{\mathrm{W}}$. M. and Freeman. J. H. (1955). J. chem. Soc. 3963.
6. Templeton, D. H. and Dauben. C. H. (1951). J. Ara. Cherio Soc. 23. 4492.
7. Brown, Io D. (1964). Can. J. Chem. 44. 2758.
8. Brown I. D. and Lim. M. M. (1967). Can. J. Chem. 45.678.
9. Ketaliar. J. A. A., Rietdijk. A. A. and ven Staveren. C. H. (1937). Rec. Trev. chim. 56907.
10. Markstein. G. and Nowotny. W. (1939). Z. Krist, 100. 265.
11. Galloni. E.E. De Benyacar.M. R_{E} (1961). Anel. Acad. Nac. cien. ciordoba (R.A.). 42, 241.
12. Nakanure, D. Kurite, Y.. Ito, K, and Kubo, M. (1960). J. All. Chem. Soc. 82. 5783.
13. Nakamura, Dos Ito, K, and Kroo, M. (1962a). J. Ame Chem. Soc. 84. 163.
14. Nakamura, Do. Ito, K. and Kubo, M. (1962b). Inorg. Chem. ${ }^{1}$: 592.
15. Nakamura, D. Ito, $^{2} \mathrm{~K}_{\mathrm{e}}$ and Kubo, M. (1963). Inorg. Chem. 2. 61.
16. Nakemura. D. and Kubo, M. (1964). J. Phys. Chen. 68. 2986.
17. Nakanura, D. Ito, K. and Kubo, M. (1961). Inorg. Chem. Vol. I, No. 3. 592.
18. Moriee. R. G. S. Staveley, L. A. K. Walters, S. T. and Wigley, D. L. (1960). J. Phys. Chem. Solids. 13. 152.
 (1962). J. Phys. C'izem. 66, 82.
19. Smith, H. G. and Bacon. G.E. (1963). Acta. ryst. 16. A187.
20. Busey, $\mathrm{H}_{\mathrm{o}} \mathrm{Ho}_{\mathrm{g}}$ Bevan, Jr., R , B, and Gilbert, ${ }^{\text {. }}$. A. (1965). J. Phys.Chem. 69. 3471.
21. Ikeda. Bo Nakemura, D. and Kubo, M. (1963). Bull. chem. Soc. Japan. 36. 1056.
22. Ikeda, Ro, Nakamura, D. and Kubo, M. (1965). J. Phys. chem. 69. 2101.
23. Present work.
24. Gailoni et al (1962). Z. Rrist. 117. 407.
25. Werker (1939). Rec. Trav. chem. 58. 257.
26. Manjlovio' (1957). Bull. Inst. Nucl. Sei. "Boris Kidrich" Belgrade. 7. 79.
27. Das and Brow (1965). Can. J. chem. 44. 939.
28. Schwochau (1964). Z. Naturrorsch. 192. 1237.
29. Hasell (1966). Acta. chem. Scand. 20, 165.
30. Aminofi (1936). Z. Krist. 24, 246.
31. Manjlovie' (1956). Bull. Inst. Nuel. Sci. "Boris Kidxich". Belgrade. 6. 149.
32. Lipson, H. and Coohran, W. (1953). The determination of crystal structure. G. Bell and Sons, London. England. p. 11.
33. James. R. W. (1962). The optical principles of the Diffraction of x-rays. G. Bell and Sons, London England. p. 41.
34. Buerger. $\dot{\text {. }}$.J. (1964). The precession method in xaray erystallography. J_{0} Wiley and Sons. Inc. New York, London. Sydney. p. 224.
35. International Tables for x-ray crystallography (1962). Vol. II. p. 302.
36. Buerger. M. J. (1960). Cxystal structure analysis. J. Wiley and Sons Inc. New York. p. 103.
37. Nordman. C.E., Patterson. A. L. Weldon, A. S. and Supper. C.E. (1955). Rev. Sci. Instr. 26. 690.
38. Melior. J. Wo "A comprehensive Treatise on Inorganic and Theoretical Chemistry". Vol. 7 (1940), p. 456; B. Rayman and K. Preis: Ann. chem. 223. 326(1884).
39. Cruickshank, D.W.J. (1956). Acta. Cryst. 2. 757.
40. Busing, W. B_{o} and Levy, H. A. (1964) Acta. Cryst. 17. 142.
