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The crystal structure of K s~~r has been rein­
vestigated using single crystal x-¥ay d~ffraction techniquese 
Three dimensional intensity data obtained photographically 
have been used to refine the structure~ by the least squAre 
a.nalysiso The structure is fou:tld to be slightly distorted 
from the regular cubic K2PtCl6 structure in a manner similar 
to K2TeBr6o The Sn-Br bond is found to be 2e60l Xe 

The structure of K2SnBr6 is found to be monoclinic 
With spaQe group P2~/n and a = 7o43.5 ± Oo017 ~ 0 b: 7e437 
± 0.017 A, and c = lOeS68 ± o~oo6 X. . 

A revie"Vr of other crystals with similar structure is 
included in this thesis ruLd the theory of x-ray diffraction 
and crystal structure as applicable to the present problem 
is discussed brieflyo 
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. Chapter 1 

INTRODUCTION 

The structures of a large number of cl.~ys"tetls having 

the general f: ormula R2MX. 6 l'lhere R 1 s a.n alkali metal fl 1r1 i ·s 

a four valent metal and X is a halogen have been solved 

using x-ray diffraction techniques·~ mostly the po1-1der 
1-6 

method~- Most of these crystals are found to crystallise 

in the cubic potassimn hexachloroplat111ate (K
2
PtC16) struc­

ture\ space group Fm:)m ( o~· ) • The K2Pt<!l6 structure is 

basically an antifluor1 te stru.c"ture in which the regular 
2~ 

octahedral anions (Ptcl6 . ) are arranged on a face centered 

cubic lattice while each cation (K+) occupies the tetra= 

hedral interstices formed by neighbouring ions (See Fige 1). 

The platinumchlorine bonds lie along the principal axes of 

the cubic v.nit cell\) Each K4 ion in this structure is 

surrounded by twelve chlorine atoms at the same distance 

from ite 

However, a few of these structures have been found 

to distort slightly from the regular K2PtC16 structureo 

Brown? has reported such a distorti~n in K2TeBr6 lrhile 

Brown and Lim8 have observed a similar distortion in K2PbC16e 

. 9 
Ketalls.rp Rietdijk and van Staveren and I·iarlrsteln 
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Fige ·1, The unit cell of Potass1u_-rfi hexa.chloroplat1nate~ 
K2PtC16 . 



10 and Nowotny f; using single crystals~ have studied the 

. symmetry of K2SnBr 6 e Accordi:ng to Ketallar et · al11 

K
2
SnBr6 is oubio and has the K2Ptc16 structure with 

3 

~ = b = c = lOo48Ao According to Markstein and Nowotnyp 

it is tetragonal 9 pseudo-cubic~ Space group C4212 with a 
.. 

sli~~tly distorted K2Ptcl6 structure and with ~ = ~ = 1Po51 A~ 

The primitive tetragonal cell has space group Pl!~212 with the 
D 4) 

dimensions a = 7el.!<3 A s.nd o = lOe6l A0 Galloni, De Benyacar 
' - -. . . 11 

ancl De Abeledo 9 using pov1der photographs, have found that 

the cellD tetragonal at room temp~rature becomes cubic at 

126$5°C with a= 10o61 A at l)Oee - . 

The study of Nuclear Qus~drupole Resonances and the 

the1~al behaviour of some of these complexes has also led to 

the observation that similar distort:tons do exist in many of 
12-16 

them0 Nakamura et al have used the q~~drupole resonance 

of halogens. to examine the hexahalogenate anions of a number 

of metals su.ch as Pt( IV)'{;" Sn( IV) 9 Te (IV) and Re( IV) o In 

many cases, they have reported.the splitting of the resonance 

signals which indicates the presence of nonequ1valent halogen 

atoms in these structures~ Such structures must$ therefore~ 

have symmetries lov~er than cubic0 In particularf) they
17 

observed the pure quadrupole resonance of bromine in potas-

sium hexa bromosta1~atee The bromine nuo1ear quadrupole re-

sonance line is split into a triplet 9 indicating the pre= 

sence of at least three ~inds of non-equivalent bromine 

ator.o.s in the crystal suggesting that the tr1;1e symmetry is 
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lo1frer ths,n tetragonal e 

. 18 
Morfee~ Staveley ~ ~-/alters and \iigley have cai~ried 

out the measurements of heat capacities of complexes 

{NH4) 2snc16 and (NH4 ) 2snBt .. 6,· at 101·1 temperatureso Both 

these are fotmd to have the K2PtC16 structure at room 

temperature~. but exhibit specific heat anomalies between 

·iooaK and 300"K0 Theauthors have suggested that some 

distortions might occu:t:" in these compounds o The a.nome~lY · 

in (NH4)2SnC16 is small and occurs between 235
6

K and 245°K 

and it is unlikely that a change in structure is involved~:~ 

But the contrary is the case for (NH4)2snBr69 where·the 

anomaly is large~· Busey~ Dearman and Bevan Jro 19 have 

·notioed the anomalies in specific heat in K
2
ReC16 at 76cv 

. 0 0 
10.3 c and lllCe.nd they suggest tlw:c these are due to some 

distortions in the structure of this compounde Furthermore~ 

· z·o 
the neutron diffraction study of K2Recl6 by Smith and Bacon 

has oonfi rm.ed the change in the :· symm~try from the space group 

Fm3m at room temperature to a spac·e group of lol·;er symmetry 

Pn3 or Pn3mt~ even though it still remain~ cubic below 77 41
Co 

21 Busey and his co=workers have also reported the specific 

heat anomalies in K2ReBr6 at 225nK and 245.Ko ~empleton 

and Dauben6 have found this compound to have the K
2
Ptcl6 

structure'at room temperature" Ikedav Nakamura and 
22-23 . . . 

Kubo have found from nuclear quadrupole resonance that 

it undergoes thr~e close transitions below 270~Ka 

Brown? has proposed an exp1anation for sueh distor-
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tionso He suggests that if the cation is very·much smaller 

than the cavity into which it fitsp the anions will re­

orient themselves in such a way as to reduce the effective 

cavity size and thus lock the cation in placee Morfree 0 

Stave ley 9 1·1alters and Wig1ey18 have also made a. similar 

suggestion to accou.nt for the specific heat. anomaly in 

{NH4) 2snBr6 at low temperature" Brown has fur-ther given 8 .. 

c:ri terion to decide l~he.ther BJ.'ly g1 ven structure 1s expected 

to. be distorted from the r~gular K2PtC16 structure or note 

This criterion is based on the uradius ratio''· ·which is de-

fined as the ratio of the cation radius to the radius of 

the cavity formed by twelve halogen atoms surrounding ite 

He has observed thatv 

io Crystals with a radius ratio of less than about 

Oc89 are distorted from the cubic structure at room tem= 

pera. ture; · 

1ie Crystals 'N·i th a radius ratio between Oc89 and 

Oc98 are cubic at room tempexature but distort at lower 

temperature; 

iii~ Crystals with a radius ratio greater than 

Oo98 are not distorted from the cubic structure at any 

temperatures 

The structt~es of some crystals of the type 

RZMX69 arrenged in the order of 1~dius ratio are listed in 

Table A.:· 
This thesis describes the refinement of the crystal 



TABLE A 

Structures of Some n2r.1x 6 type crystals 

Radius 
Ratio 

· Method 
X-RAY -NQ~R,;;;;.==s~p"""'e=c""""i=-f""""i"""'c-Compound Structure 

hee.t 

1. Crystals ~h!ch are distorted from cubi9 at room tempera~ 

K2TeBr6 

.K2snBr6 

o.8J 

0.86 

Monoclinic at 293~K ? 

Tetragonal at 293eK, 10o25 
Cubic above 400aK~ Mono= 24 

6 
clinic at 293 K 

OQ8~ Tetragonal at 293·K, 
Cubic above 328~Ko 

~ 

M_onocllr.d. c e. t 29 3 K 
0 

Monoclinic at 300 K. 
Cubic above 33)Ke 

2 

8 

13 

14 

16 

13 

18 

2. Crystals which are cubic at room temperature but distorted 
~ture 

Rb2Sni6 Oo88 
( 
.(NH4)2TeBr6 0.90 

K2ReBr6 Oo91 

K2snc16 0.92 

K2SeBr6 0.93 

(NH4) 2SnBr6 Oe93 

~NH4)2Tec16 Oo96 

• 
Cubic at 293 K 

Cubic above 168~K 

Cubic above 245·~ 

Cubic above 262° K 

Cubic above 240eK 

"' Cubic at 293 K 

~ 

Cubic above 77 K 

27,28 

6~29 

2 

3 

10 

)0 

29,31 

). Crlstals ~hich ar~cubie at all temperatures 

K2Ptc1
6 

Cs
2
Ter6. 

CsireBr6 

Oe98 Cubic 

l.oo· Cubic 

le07 Cubic 

1 

32 

28,5 

13 

22,23 21 

18 

15 

4 18 

13 

22,23 19 

12 

13 

13 
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structure of potassiwu hexabromostarffiate (K2snBr6) at 

room temp'era:ture" using single crystal X=:t.?<ay diffraction 

tecl~iquese With a radius ratio of Oe86p the structure 

falls about midway between that of K2TeBr6 (radius ratio = 
Oe83) and lindistorted K2Ptcl6 structure (radius ratio = 

O(i)89) "', Brcrvm7 shows that the distortion proposed by 

· ~larkstein and Nowotny in the case of K2SnB:r
6 

is of the· same 

type_as that in K2TeBr6 but is only about half as greato 

The present work was undertaken to refine the structure 

and study the na ~ure . of distortion in K2sn:sr 6 at 

room temperaturee In the present study~ the single· crys­

tal intensity data have been used to determine the posi­

·tional ru~d thermal parameters of atoms in the crystalo 

·In refining the s·tructure of K2SnBJtl'6 at room tem= 

perat'll.rep we ha.ve found that it 1s monoclinic with the space 

group P2~/n 9 thus having a symmetry lower than tetragonal 

and thus satisfying the Nuclear Qua~~pole Resonance resultt 

Further, w~ have found that the snsr6= ion has the con­

figuration of a regular octahedron and there is no signi= 

ficroLt difference in the three non-equivalent Sn=Br 
0 

distances and the angles do not vary significantly from 90 o 

The distortion in K2SnBr 6 is found to be simils,r to that 

in K2TeBr6 as suspected~ 



Chapter 2 

DEVELOPl•1ENT OF X-RAY DIFFRACTION HETHODS 

The use of x-rays for investigating the structure 
J of matter began with Von Lau~s discovery of the diffrac.=-

tion of x-rays by cr~tals in 1912o A crystal co~sists of 

a basic unit of structure .repeated :regularly in a three 

dimensional array and it acts e.s a_th:ree dimensi-onal grat= 

~ng with respeet to x-raysQ X~ray diffractiong therefores 

led to the possibility of studying the arrangement of atrnns 

inside a crystalo Consequentlyp several important fields 

of investigation opened upe 

During the early stages of the development of x-ray 

crystallography, mostly inorganic substances were inves= 

tigated because of the simplicity of their chemical com= 

positiono These included the structures of diamond _and 

graphitef) whose atomic arrangements were later found to be 

of fundamental importance to organic chemistry() Interest 

in more and m.ore complex structures grew and the techniques· 

gradually advanced. Iri 1915ii rT. Ho Bragg pointed out that 

as the density of scattering matter. in a crystal is periodic 

in three dimensions, it should be eA~ressible as a swrunation 

of a three dime11siona.l Fourier series, the terms of lvhich 

8 
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are de:ri vable ·from th.e diffra.oti on intens1t1 es .from the 

. various possible l~eflecting ·plan:es in the crystal" The 

main problem 0 therefore 9 was to measure the intensities of 

all possible reflections~ so as to miss asfew of the terms 

as possible in the summation and to determine the phases 

of the terms~ the magnitude alone being given by the dif~ 

fraction intensitiese Therefore the attention of the 

crystallographers was directed towards improved methods of 

recording eind interpreting x-ray diffraction photographso 

In 1924, l~eissenberg introduced the idea of employing mov­

ing film methods of recording and indexing the diffraction 

pattern0 In 19279 Bernal put forward the simplified method 

of interpreting rotation photogr&~.phs ba,.sed on Ewald 9 s con­

cept of reciprocal latticee The determination of the phases 

of reflections remained a great hurdle in solving complex 

crystal str:uctureso Usually~ this is achieved by the well 

k:nO't-\'11 trial and error methode Howeve:rp valuable 1nformatiol'l 

can often be. obtained from the'available optical and magnetic 

data. a 

In 1934, Patterson showed that there exists a rela~ 

tionship between the inter-atomic vector distances· and the 

intensity of the x-ray reflectionso Instead of structure 

factors$ he·· 1.-1sed the squares of structure amplitudes as 

Fourier coefficents and the resulting synthesis was related 

m a simple way to the crystal structure~ 

In recent times f) l'li th the development of computer 
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technology~ there has been a great progress in the deter .... 

mins:bion of crystal structureso As a. result of the "£•Jork of 

Astbury~ Bernalp Perutz and many othersp it has been 

P.Ossible to determine the str~ctures of a large number of 

molecules of biological interesto Many such complicated 

structures have already been reported by different workers 

·eogo' DNA by Watson and Crick (1951) 9 ribonuclease by Harker 

and Kartha (1967)~ myog1qbin by Kendrew et al (1958) and 

haemoglobin mainly by Perutz and his coworkers() 

Crystal1ographers have also been. trying to study the 

structures of small molecules in greater details$ ~hese 

include the dete~~1nation of the exact mean positions of all 

·atomsf a study of electron distribution of atoms in a state 

·of r.est. and a knowledge of zeroaopoint motion and thermal 

vibration of atomso 



Chapt~er 3 

THEORY OF STRUCTURE DETERMINA~ION 

3el Fundamentals of Cr~?tallograRh~ 

A systematic seience of crystallography has been 

developed which se1~es as the basis for the rational inter~ 

pretation of the x-ray diffraction da:tae The steps in the 

development of this information may be summarized as follows: 

(a) A crystal has planaQr bounding faces .and 

symmetryo It is essential to choose a system of coordinates 

in order to express the positions of these planesD relative 

to one anotheri in spaceo · The planes are then indexed in 

terms of their intercepts upon the axes of a system of co= 

ordinates€> An immense amount of experimentation has proved 

that all angle measurements and indexing of plane faces can 

be accounted for by seven systems of ooordinateso In other 

words;· there are seven crystal sys·tems (I 

(b) As a result of fu.rther experience it is now· 

certain that the indices of all the plruLe faces of the crystal 

are all..Yays small whole numbers e 

(c) The symmetry of an object is an expression of 

the fact that the object has equa~ properties in different 

directionse· The following symiD.etry operations E>4re per= 

11 
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formed to bring equivalent dire·ctions in space into coin­

cidelloeol> 

Axes of symmetry: Points in crystal may have one-~ 

two-~ three-, four- or six-fold axes~ This means tr~t equi­

·valent points may be brought into coincidence by a rotation 

or 360~ 180~ 120, 90 or 60 degrease 

Plane of symmetry (mirror operation): in which 

points on one side of a plane are mirror images of points 

on the othere 

Centre of symmetry or combined 2~fold rotation and 

reflection across a plane perpendicular to the axis0 

Uhen these symmetry operati011.S are combined in every 

possible "VTayi) u.sitlg the seven crystal classes 9 it can be 

sho1m that there are 32 poi11t groups 1\rhich define 32 classes 

in terms of point symmetry.- There are also 11 scre-v1" axes of 

symm.et;ry involving rotations about a.11d translation along 

an axis and 11 glide" planes of symmetry in l'thich a figure is 

brought into coincidence by reflection ·in a plane combined 

with trans+at;1 on of a definite length e .. nd direction in the 

plane e \'[hen these are combined with translational symmetry 0 

the result is a total of 230 combinations of space groupso 

~i!he definition of the ~::t"Jymmetry of a crystal by 1 ts space 

group is unique. 

3.2 Theorx of x~raY- diffractiJID by crystals 

Like visible lightp x~rays may be considered as an 
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electro.., .. magnetic wave0 The wavelengths of x-rays used in the 

dete:1""111ination of crystal structures vary between 005 and 3 A. 

Any electron in the path of an x-ray scatters lt0 An atom 

consists of electrons around a positively charged nucleuso 

The nucl.eus e beo8.use of 1 ts large mass~ can be neglected 

when we consider the scattering of x-rayso· Each electron in 

the atom scatters xeoorays 0 Therefore iii the a·com as a '·1hole 

scatters x~rays to an extent dependent on the number of 

electrons in the atomt~ i&eo-p depende~t on the atomic numbers 

Because of the r~gular ar1~$ngement of atoms in the crystal 

the scattered x-rays interfere to form a diffraction patterne 

Laue diffract~on equations illustrate· effectively 

the conditions for the formation of a diffracted 'beame P1 
and P 

2 
e.re t1-10 lattice points separated by a vector !: 

(See Figo 2)~ ~ is the unit incident wsdve vector and e. is 

the unit scattered wave vectoro P2A and P1B are the pro= 

jections of ~ on the incident and scattered wave directionse 

The path difference between the two scattered waves from P1 
and P

2 
is 

PzA = P1B = ~e!g = ~o~ 

=.!: 0 (~ ""' ~) 

= ~ c ~- where S = !2 - ~ 
If 29 is the angle that !l meJres with ~$! then f ~ -= ~/= 

2 sinO) since~ and~ are unit vectors (S~e FigG 3)e 

difference f) 

The phase difference f is (~) times the path 
A 

Therefore 
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Fig~ 2() Scattering of x..;,.rays by Scatterers situated at two 
lattice pointsQ 
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Fige 3~ Relationship bet111een the veotors !oo §, and S 



The amplitude 

= Z.li (,! 0 §) 
1\ 

of the scattered '\'lave is a. maximum 

16 

in a direction such that the contribution from each lattice 

point diffe~~s in phase only by an integral multiple of 27\ e 

Therefore 9 for diffraction maxima~ 

<p = 2iT (z: o §) = 27\n 

" where n is an integer 

If ~9 !?, 9 .2, are the ·primitive translatiol'l vectors, 

the vector !: can be· specified as 

!, ~ m1a ~to mzE, + mft-· 
where m1 {I m2 and m3 are integers o Thus 

!>~ = ml~o§.. + mz}2cS + mft~~~ = n A 
Since m

1
a m2 and m

3 
are independent, each of them must be 

equal to an· integero That is~ 

§!e§, := h" 
be§ = k A 
..Q.oS := 1 ), 

where h9 k~ 1 are integers~- These are the LAUE EQUATIONSa 

If tl. \1 @ v 1' e~re the direction cosines of §. with 

respect of ~~ ~~ ~' then 

~fl§. = h" = 2a.O\ sin.& 

gfl§. = k ;\ = 2b~ sine 

_g,(l2 = 1 )\ := 2c 1 sin e 
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The vector ~ has got a Epecial significanceo ~ is 

perpendicular to the crystal planes of which hfi k 9 ft,: are 
\· 

Miller 1ndiceso 

If d(hkt) is the spacing between two adjacent planes 

. of a set (hkt.) ~ the 

d(hkt) = ~ = b@ = c 1 = /\ 0 

h k T 2Sine 

Therefore" 2d sine= A~ 

It is also implicit that bo~h !Q arid ~make an angle 

with this planeo 

The equations 2dsin f7 =I'' is nothing but the well kno:;-n1. 

Bragg law, which states that diffracted beams are found only 

for special cases satisfying the above condition~ This re­

sults from the fm1.damental periodicity of the structure and 

does not refer to the actual arrangement of atoms in the 

latticeo An important co11sequenoe of the la1-1 is that the 

wave leng·ths must be less tha11. 2d if Bragg reflection is 

to occuro 

The conditions for an x-ray beam to be diffracted 

may be expressed with the help of ~he reciprocal lattice 

which is widely used in crystallography~ 

a* b* = 9 """" fJ 

The reciprocal lattice primitive translation vectors 

.2,·:r are defined by 

(!!,* e b) = (.@:* o~) := 0 

{~*·£) =(b*e~) = 0 



18 

The recip.rocal latt.ioe has e. defi11.i.te orients~tion 

re1ative to the crystal latticeQ Every point in the recip~ 

rocal lattice corresponds to a possible reflection from the 

crystal lattioe9 

The Bragg equations has a simple geometrical signi­

.ficance in reoiprocal latticee AO is a vector of length 

·c 1/~ ) in the dir·ection of in_cident radiation (see Figo 4) c 

terminating at the origin of reciprocal lattice~· If ~re 

draw a sphere of radius ( 1/ )l ) with A as centre t~ then the 

possible directions of the diffracted r.e4ys·for this in~ 

cident ray are determined by the intersections of the sphere· 

with the points of the reciprocal latticee ··-The direction AB 

. is a direction of a diffraction maximum and B is a point of 

the reciprocal le~ tti ce 0 This is-, Ewald v s construction o 

vle can now· prove the Ewa.ll. constructions o Let ~ = 
~* + !!!:!2:* + n£* 11 lthere j, m. and n are any tnon-integral) 

numbers having dimensions of leng~h (since ~ is dimension~ 

less)" 

Then the Laue equations reduce 

f!e jf!~f + a~·mb* + ~en£:~ = h" 
goj~* + bom}2* + )2on51* = k;\ 

Co'je.* + .Q omb&:l- + ~ onc-tf' = 1/\ -· -. 

i .eo jg_m§j;,*. = h A 

m2tl1!* = k" 
n,.qo~* = 1 i\ 

to 
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0 

of r~ci'p~oco\ 
t~t-tic.e 

Figo 4. Ewaldes construction of reciprocal lattice 



or j = hA 
m = k i\ 

n = tP.· 
Thereforev ~ = h)~* + kA£* + t~£* 

orX §. = h£!* + k£* + .&_g,* 

In Fige 4, B is a lattice point in reciprocal spaceo 

OB = ha* + kb-l: + ie* - - -
=lS = 2sin 9 il 

~- ). 
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But OB = 2AO sin e ' where ~ 1 is the angle sho'tm as 9 in Fig fl 4. 

Therefore, 
I 

OB = 2AO sin 9 = 2sin Q 1 

1\ 
'l'hus e' = e 

3.3 Intensities of reflections 

The intensities of reflections are used to determine 

the positions of a. toms l'Ji thin the unit cell. The structure 

factor F(hkt) of a refleoti 01'1 is gi veil by the Fourier trari.s.., 

form of t~e electron density ~(xyz) within the cell ~s33 
1 

F(hk:e) =VHJ f(xyz) exp[2x 1 (hx+ky+tz}xdydz 

·xyz:=.O 

wher·e V denotes the volume of the unit cellp and xp y and 

z are the fractional coordinates of the volume element 

(! dxdydz) considered. 

F(hkl), as will be seen in the next chapter, is a 

co~plex quantity and is related to the observed intensity 
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I of the diffr~ct:.ed beam by the expression I oc fF(hkl) J 
2 

0 

Thus from the measurement of intensi-ties.. the moduli of the 

structure factors can be evaluated e.nd these can be used iri 

the determination of the crystal struoturee 

The patter~ which results from the diffraction of 

a. crystal is normally recorded on.films~ The diffracti.on 

. ·maxima appear as spots of varying in te11.si ty on the fi 1m o 

Howeverp one is faced with certain difficulties in the measure= 

ment of these intensitieso Corrections have to be made for 

variation in the size and shape of the spotsil non-uniform 

di s-'cri buti ern. of intensity over the spots and the p~esence 

of different background around the spots found in different 

. areas on the film~ 

. In a real crystal() du.e to imperfection 9 Etdjacent 

volume units are not exactly parallelo Thereforev the 

crystal must be turned slightly in order to bring each unit 

into the Bragg condition for reflections to occuro This 

results in the spreading of the spot over a small rangeo 

Thus the peak intensity of a reflection does not necessarily 

give a reliable measure of the structure amplitudee A better 

measure can be obtained by summing the energy reflected by 

a set of planes as the sample is rotated through small angles 

close to.the Bragg angle 9 i~eo by integrating the intensities0 

James34 he.s deduced~ e .. n expression for the integrated 

intensitye The crystal is assumed so small that the absorp= 

tion l'rithin it may be neglectedo . It is assumed to rotate 



with uniform angular velocity ti) abput an axis parallel 

to a set of pla:q.es and through a range of angles G The 

energy E reflected by the crystal is proportional to 

the volume Av of the crystalf) For the case of unpolc:::o 

·arised incident radiation 

Ew = Q ~v 
Io 
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where I
0 

is the energy incident per unit a.rea. in the beam 

and 

Q = N2 )t,3 IFI 2 (e2 )
2 

l+oos229 
sin26 . mc2 2 

where (Fij is the structure amplitudep 9 is the Bragg angle 

and N is the number of unit cells in the volume of the 

crystalo The quantity (E~I 0) is called urntegrated ref­

lection" from the crystal elemento 

The factor l+cos~26 is called the 11Polarisation 
2 

factor pu, which is the amoun·t by which the intensity of the 

diffracted beam is reduced owing to partial polarisation ou 

diffractiono The factor ( l/sin29) is known as the uLorel'ltz 

factor" which is proportional to the time the crystal takes 

to pass through a reflecting.positione This factor varies 

-both ~ri th the Bra:g~: angle and with the particular arrange~ 

ment.by which the diffraction pattern is reoordedo The 

correction for Lorentz and polarisation effects is usually 

applied in the combined for.mo The observed structure ampli­

tude IF\ of a reflection is evaluated from its measured 

intensity I using the relation 



2.3 
l. 

lF( = K(L) 2 

Lp. 

where K is a constant dependent on the we..velength and crys-= 

tal size and is initially taken arbitrarily as oneo 

3e4 Extinction 

This is one of a number.of physical factors atfect­

·ing the intensities, others being absorption and tempera= 

ture motion of the atoms: In general, it is not uncommon 

to assume that some of these effects are so small that they 

can be neglectede 

In deriving the relaion between the intensity a:nd 

square of scattering amplitude, it is assumed that the crys­

tal consists of a small volmne element. This eliminates 

any concern for a.bsorption and 11 extinction11 • Extinction 

is a phenome11on 1i'lhich results in the a.ttenu_ation of the 

primary beam of x~rays when the crystal is in a diffract­

ing positiono Therefore it reduces the intensity of the 

diffracted .beam particularly for strong reflections., This 

effect is very difficult to correct for experimentally be­

cause it depends on the·· physical perfection of the crystal. 

·For this reason, it is ordinarily ignored in many crystal 

structure analyses., 

3.5 Absorptiop 

X-rays are absorbed by matter. The extent to which 
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this occurs in ·the tiny crystals used in structure analysis 

is normally great and therefore~ the effects of absorption 

cannot be neglected in accurate l'Jorko The amount of ab­

sorption in the crystal is difficu1t to calculate as it 

·depends on the shape of the sample and also on the rela~ 

tion of the direct and the diffracted beams to this shape~ 

It is all1ays possible to approximate the allowance~ 

If we consider an infinite plate shaped crystal of 

uniform thickness t, mounted on a precession camera such 

that the x=ray beam is incident on the largest face of ·the 

crystal 9 the absorption· factor A for zero-layer reflections 

is given by 

A= I :::exp0 (-p.t sec.~) 
Io 

where F is the precession· angle and~JA· is the absorption 

coefficient?5 For small plate shaped crystals i~mersed in 

the incident beam the path lengths of the rays are all 

equal except for the rays incident on the region close to 

the edges of the crystal" Thus the absorption can be con­

sidered uniform for all reflections on the same layer, if 

the edge effect is negleotede For relatively thicker plate 

shaped crystals 9· ·tn.e edge effect is significant as the ab­

sorption can be considered unifoxm only over a small region 

near the centreo For cube shaped crystals which can be 
. 

approximated by a sphere~ edge effect is importanto For a 

spherical crystal~ the absorption correction varies with 



For crystals with IJR <. 2, the ratio 

of the absorption factor A for 9 = o' to that for (1 = 30" 

is less than 1050 

3e6 Structure factor 
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A cryst;al c-an be represented by plaeing a certain 

·arrangement of atoms within each tmit cell of the lattice~ 

If the unit cell of a crystal contains N atoms at points 

Xi1~ 'Yn, Zn which can be considered as the coordinates l'Ti th 

respect to the axes of the latt1oe 8 then the position of the 

nth atom in the unit cell can be represented by 

~n = Xn~ + Y~~ + zn . .2. 

The path difference between the waves scattered by 

these atoms and those "'chat 1-rould be scatt;ered by a set of 

atoms at the points of the lattice that define the origins 

of unit cells is ~noSe Then·the expression for the com~ 

plete 1-mve scat·tered by the nth lattice contains a term 

fn exp[{z1 i) l:n•§.J 
or f n exp [ 2 11: i . .!'.n • S J 

1\ ~ 
where fn is the scattering factor of nth atoma Thus the 

expression for the complete wave scattered by the crystal 

is 
N [2A1 F' = 2! fn expe :!n .§.] 
l.i:;=l 

l -
Ni 

.fn expe [2A1 Yn:£•§.. + z c~S] =~ xr&~.§. + n .... _. 
n=l ·~ }\ T .... 



~Ie have ~l'JEi· = hA (from Laue equations) e 

Thereforei) 

Thus9 

X £!c§. = hx 

T 
y' }2c£ := ky 

T 
z CoS = -ft:z 

- =-

i\ 

F "'~ fn exp~' 2.1\i (hxn + "kyb + lzn)• 

n=l 
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The expression for the structure factor as written 

above is a complex quantityo This means thatfue.phase of. 

the scattered wave is not simply reiated to that of the 

incident vraveo The phase _is not an observable quanti tyo 

The only quantity that is· observable is the intensity -vrhich 

is proportional to the square of the scattering amplitudeo 

If F = A +iB l'there 

A=~ f cos z1r <hxn + kyn + ..fzn) 
n n 

B =~" f sin 27\ (hxn + ky + fz ) 
n n n n 

where f is the scattering factor for the nth atom, then 
n 

F2 = A2 + B2
o These are the equations that are used in 

pract1ceo 

If the structure is centro=symmetrie~ then for each 

atom at (x9 y; z) in the unit cell, there is a correspond~ 

ing atom at (.x~ ytl z)fl Then the contribution of this pair 
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to F is given byt 

f Gos 2it (hx+ky+lz) + 1 sin 2A (hx+lry+lz) + cos 2.7\ (hx+ky+lz). 

~ i sin 2 i\ (hx+ky+lz)J ::: 2f cos 2A (hx+ky+lz). 

Hence; 
(N/2) 

F = 2 .2! 
n=l 

where the summation is carried out only over half the number 

of atoms in the unit cello In this case 9 the-fstructure fao= 

tor is real and the phase is reduced to the two pG~ssibilities 

, that F is positive or negative., 

·3e-7 Atomic scattrring factor 

So far the electrons in the atoms have been assumed 

to be the scatteri~ unitso If there are Z electrons in 

an atom~r· then the amplitude of _the· bes.m scattered by the 

atom is Z times the amplitude of the beam scattered by an 

individual electrono The linear dimensions of the electrons 

have so far·been neglected in comparison with the space 

lattice dimensions Etnd also 1-ti th the Yravelengths of. x~ra.ys0 

In atoms~ the electrons occupy a finite volume~ The phase 

differences between rays scattered from different points 

have to be tru{en into accountv These phase differences are 

small for small a11gles of diffraction but become larger for 

greater angles of diffractiono 

For small angles9 the amplitude of scattering 
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.by an a:tom can be considered as ·the sum of amplitudes 

of s,catterlng by· indi viCtual electrons o For large angles s 

the phase differenoe is large and the scattered beam becomes 

weaker~ ieee the factor becomes less than Ze This factor 

is called the 11Atom1c Scattering Factor rn and values 

based on various methods of calculatlon are tabulated 

in the International Tables; 

3.8 ~emper~ure facto~ 

At any tempera.turep the a·toms oscillate -v1i th a 

finite amplitudee The frequency of this oscillation (about 
lJ 

10 per second) is much smaller than the frequency of x~rays 

(1018 per second)~ Thereforep to a beam of x-rays~ the 

atoms would appear to be stationary but slightly displaced 

frolil their mean pos1 tions·o Thus 0 atoms in the neighbouring 

cells P which should scatter in phase wil_l scatter slightly 

out of phaseo The total effect of this -v1ill be to reduce 

the scattering factor of the atomo 

If' f
0 

is the scattering factor of an atom at rest~ 

then the scattering factor that is used in practice is 

f'
0 

exp -Bs~n2 9 A2 bF"» 

where G is the Bragg angle and B is a constant called the 

Debye-irlaller Temperature factoro The value of B can be 

evaluated in terms of the Debye characteristic temperature 

B = ~:2--~~) 
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where m mass of the atom 

h Planck's con:star1t 

k B 'ol tzmann cons ta11. t 

T 0 Absolute temperature 0 

e 0 Debye characteristic temperature e 

and Q( 9 /T) is a quantization factor which has been t&tbuls.ted 

and does not differ appreciably from unity unless ( 8 /T) 4!.. lo 

In general, the vibrations of the atoms will be 

anisotropic and.of different amplitudes in different direc= 

tionso The effective scattering factor oa..n then be given 

by 

f "' r 0 exp. -(~11h2 + ~ 22k2 + ~3312 + 2 ~12h.k + 2~23kl 
+ 2 ~13hl) ~ 

where f 0 is the scattering factor 'of the atom at rest and. 

G11 s are the coefficient$ of the anisotropic temperature 
\ 

factoro 



Chapter 4 

EXPERIMENTAL PROCEDURES 

-4~1 Measurement of Intensity 

To estimate the intensity of a reflection spot on 

the film vlsuallytt one carries out .a comparison of the spot 

with one of a series of spots prepared l'Y :photogr.a.phing 

one particular reflection at different kno~n1 exposure timesG 

The peak intensity of a reflection is measured in this way<!) 

In visual estimation of intensities 0 it is assumed that the 

peak intensity is proportional to the integrated intensity~ 

In fact\) this ~s not so frequently because of the non=uni­

formity in the size of the spotso 

TO·> integrate the intensities~ the cross sections 

of the reflections should be taken into ~ccount, since one 

has to sum the intensity from all parts of the spotQ This 

is achieved by recording the reflection on a fi~a which is 

moved over a series of regular small intervals -so that the 

density of blackening at the cent:ee of the spot on the film 

attains a constant value v-rhich measures the integrated in-
. . 35. 

tensity of a reflectione 

A mechanical device for recording the integrated 

30 
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intensity on the Buerger Precession came1~ has been des-

38 cribed by Nordman et ale · . A microd.ens1 tometer· can be 

used to measure the integrated intensities of reflections" 

The densitometer traces of the spots will show plateau 

·like profiles whose heigh-'csp corrected for the background!) 

are proportional to the integrated intensitieso 

From the measured intensitie:Jsf/ the structure ampll.,., 

tudes can be evaluated and these can be used to determine 

a trial model for the structure using either the Patterson 

funotiol1. or the so-called direct meth6dso Alternatively a 

trial model may be proposed from chemical or packing con-

densationso 

Once a model of the structure has been proposed~ it 

is necessary to.improve the preliminary coordinates by a 

process of ref1nemente The structure amplitudes can be 

evaluated from the observed intensitieso The necessary 

condition for a proposed structure to be correct is that the 

calculated structure factors should agree well with the 

observed structure factors0 It is common to measure this 

eJgreement by a "Residue..ln of the form 

R = :£ jF_o 1 - J Fe f 
Z.'lFa\ 

where the numerator is the sum of all the differences 

between the observed a11d calculated structure factors and 



the denominator is the su.m. of a:.Ll the observed structure 

factorsc Thus ~ is a measure of the relative dis= 

crepancies of the st~~cture factors for ·the modele The 

value of R is a comparatively small fraction when the 

'structure is correcte Correct structures usually have 

J2 

R~Oill25 and very well refined structures may have R in the 

neighbourhood of Oe05o 

The value of R deduced for any model depends on how 

the observed structure amplitudes with very small values 

are treatedo On-a photographio filmD there is a lower limit 

be1~1r>1 which I F 0 I caru!ot· be observed., For such unobserved 

reflections, the value of the least observed intensity with 

a large error is assignedo 

With modern computing facilitiesp the structu~e can 

be refined by the method.of least squares described belowo 

By this method~ ·1 t is possible to refine simultaneously all 

the parameters of the atoms in the asymmetric unit using 

three dimensional intensity datao 

4.3 Method of Least Sguares 

The observed structure factors are subject to errors 

of observation so that the refinement oonsi.sts in finding 

the model which yields the most acceptable fit between the 

calculated structture factors and the observed structure 

factorse Legendre proposed that the most acceptable values 

of variables were such as to make the sum of the squares of 
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the errors a minimume 

Suppose ~n observable quantity q 1s a linear 

function of set of variables Xp Yo z 

(1) 

Suppose there are different errors of observation 

E associated with each qc. 

Therefore~ q + E =ax+ by+ cz +oeo~ (2) 

The error in each observation E = ax + by + cz + o "e 0 = qo 

. 2 
According to the Legendre . principle 9· ~ E j should be made 

j' 

a miniml:llll 11 where j runs from 1 to m where m is the number of 

ol:5servationso 
<..'\. 2 
~ Ej = 
j 

( 3) 

is a minimum when its partial derivatives with respect to 

;..: ~ y.., z o o fJ o vani sh > i · e · . 

etcel 

OfEj~ = 2f (ajx + bjy + c 3z+ ... ~qj) aj = o 

ox 
o"Z! E 

2 

.1 . j 

()y 

.. 
These can be written as 

( ~ a/)x + ( ~ajbj)y + ••• =Zajqj 

( tbjaj)x + ( i bl) y + • .. = 

(4) 

<5> 
These equationstllmo\•m as HNormal· Equations" are n equations 
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in n unlmownstl where n is the number of variableso From 

these,values of Xv y v z o o o l'rhich best satisfy I,egendre 

principle can be determined@ 

In making observations like (1), some observations 

may be considered more:tr.ustworthy than othersc The various 

_observations q j may· be assigned weights wj t} which indicate 

.relative estimates of their reliabilitieso Therefore both 

sides of (2) are multiplied by wje When followed through~ 

this replaces eaoh quantity in (5) byits product with wjo 

This method can be applied to flnd the values of 

the coordinates of the atoms in the structure l'Jhich best 

fit the observed structure factorso Each structure factor 

is computed_ from 

F c "' ~ f r exp. [ 2 7i i ( hxr + ky r + tzr)] 

Here the variables are the e~onential in Xo y and z and 

are not in the form of the desired linear equationso 

Linear relations{/ however, can be.devised by using the 

first two terms in Taylor's serieso In this application 9 

the above functj_on f is treated as followse 

If each of the parameters x~ y, z de~ining the pro= 

posed st1.~cture is assumed to hE.tVe an error ~io. fyr: .Ez 0 then~ 

f (x + Ex~ y + Eyi) z + fz) = f(xyz) + ~x ()t{xyz) + 

+ € y. Of ( xyz) . + ~·Z=»" f ( :&;.~Z) a X 

3lfj ilz 
If f{x + £.x,· y + f.y~ z + fz) = F 0 

f(xyz) 
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then /).F = Fo = F0 and from Taylor expansi-on 

LlF =Fe +i (Exr 0Fc + ~yr ~(). + f zr dFc)_ Fe 
r o:x:r 0 yr d zr · 

= z: 
r (6) 

This summation extends over all the atoms· in the structuree 

.For each observed reflection there exists such an equationo 

When the observational errorl) E\/ is added to each equations 

like ( 6) 0 the set of equations can be-recast in the form 

E j = ~jx + bjy + cjz + I) 0 I& 0 -: qj_9 

from which· the normal equations like (5) can be derivede 

The solutions reduce to 
m wi ((Jpi) ~: AF 

Exr = 1 = l , 0 X r 
·-

m 

): z: wi (dFi 
1 = 1 dx 

Where w1 1~ a weighting factor and m is the total nlli~ber of 

reflections(> 

When a weighting functiono Wp is usedp the least 

_squares refinement minimizes ~W( fF
0

1 ~ IF
0

1} 2
Q Each 

weight w is taken as the inverse of the square of the stan­

dard deviation of.the cor:responcl.:lpg observationf) 



Chapter 5 

EXPERII\1ENTAL lrlORK 

Potassium hexabromostannate -(K2SnBr6) was prepared 

by adding potassimfi bromide to the solution of tin (IV) 

tetrabromide in hydrob:comie acid conte~ining a small amount 

of bromlneo39 The crystals thus prepared were recrystallised 

from the mixture of dilute hydrobromic acid a:nd a small 

quantity of bromineo 

These crystals l-vere found to decompose in very humid 

air and therefore they had to be sealed in dry capillary 

tubes during the experimentso 

The density of the crystal was c-alculated using the 

·formula 

Density {gm/om3 == Z~XFormula \·leigJlt (amuLx le66o x 10"'"'24 

Volume of unit cell (!3) x 10 =24 

Knowing the density, the linear ·absorption ooefficientjh 

both for C.Ut, Kc~. ai1.d. l\10 Kot radiation could be ca.lculatedp 

from the mass absorption coefficients listed in the Inter= 

national Tables.36 

For single crystal-x-ray dffraction work~ the major. 

consideration which limits the size of the crystal is the 
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absorption of ·:x:-rays by the crystalo If the absorption 

. coefficient is largef the relatio~ F2 = KI/LP breaks do1-m 

and this limits the size of the crystalQ 

In order to avoid the absorption correction, the 

size of the crystal to be used for x~ray diffraction work 

was calculated 9 assuming the crystal to be spherical in 

shape, taking }JR Nl" t<Jhere R is the radius of the sphereo 

... T~e :raiues of p. calculated are as follows: 

C~ K~ radie .. ti.on 4·97 tj 3 cm-1 

Mo K~ radiation 240o4 em-1 

The maximum sizes of the crystal permissible r-;er.e ~ 

ClL K~ radiation 

Mo K~ radiation 

Otl02 mm radius 

Oo04 mm radius 

Because of lo11 absorption of l•lo Kot radiation as 

compared to the Cu..Kolradiation~ HO radiation is· preferredo 

Its smaller wavelength allov1s a greater number of reflec-= 

tions to be recordedo This becomes particularly important 

when the d_a.ta are being collec-ted on a precession camera 

which only records the diffraction. pattern out to a.Bragg 
IJ 

angle of 30 o 

Several crystals 1-11ere picked from the sample and 

examined under a polarising microscope to check whether 

they were single crystals or not. Then a crystal which 

appeared to have well developed faces~and also which seemed 

to be a single crysts.l; was sealed in· a dry capillary tube 

and mou:nted on a goniometer head~ The crystal chosen he~d 
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the dimensions: Oe021 x 0~011 x 0.005 em. 

The crystal along wi_th the goniometer head was 

mounted on a Supper Integrated Precession Camera with the 

face {112) of the crystal along the goniometer axis per- . 

pendicular to the direction of the incident beam. The un­

integrated photograph of zero layer was first taken. 

The cell dimensions were measured from the films 

making use of high angle reflections and were found to be: 
2lo 

a = 7.435 ± 0.017 A 
(j 

b = 73437 ± 0.017 A 

o = 10.568 ± o~oo6 A. 
Those of Markstein and Nowotny10 for the pseud(p.cub1c cell 

were a = 7e43 A and o = 10.61 A and those of Gallon! et a111 
""""' -

for the tetragonal 

= lo$624 .A. 

$ 

cell were ~ = ~ = 10a520 A and ~ 

The films were studied carefully. Initially a 

tetragonal space group P4212 was assigned. This needs 

certain atoms to be placed in special positions. When this 

is done~ it gives rise to two possibilities viz either the 

octahedron is not regular or the space group may be wrong. 

Since there was no reason to believe that the octahedro.n 
I 

is 1rregular 9 another space group was tried. Further, as 

mentioned earlier, the NQR splitting of resonance lines 

indicated that the true symmetry is lower than tetragonal. 

Therefore a monoclinic space group P21/n was assigned from 

the study of systematic absenceso The systematic absences 
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TABLE H 

1-lal .. kstein Galloni Present 
& 

Nowot11.y et al vJork 

System Tetragonal Tetragonal I1onoolini c 

Space Group p42 2 1 . p4212 P2 /n . 1 

e> 0 

Cell Constants a= 7~430 A ? .:430 A ?e435 ± Oo017 

b = ?o430 
t> 

7o441 A ?e437 ± Oc0l7 A 

10t)61 
Ll 

'lOe624 A 10e568 ± Oe006 c = A 

~= 90" 90"' 89(J 50 8 + l~- ~ 
-=-
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were: 

ho'~J h+t = 2n+l 

oko k = 2n+l 

Integrated photographs were ~aken for zero layer and 

three parallel 1ayers and also for the zero layer perpendic~ 

ular to these. Each layer was photographed with three 

different exposU1~es: 2x, 6x and 18x the integrating cycles 

of~ 2 hours and 2L~ minutes" These photographs were indexed 

and. "che integrated intenstties were measured using an auto= 

,matic recording microdensitometer model MK IIIc of Joycev 

Loebl and Coo 

The standard errors in the observed structure ampli­

tudes were calculated from an estimate ·which had been made 

of the standard err.ors of intensities Q . In assigning the 

errors to the measured intensitiesp due care was taken to 

see that ee:ch spot was treated according to its merit" For 

the unobserved reflections 9 the value of the intensity g5.ven 

was the least observed value on the film but a large standard 

error Has assigned" 

Then the observed intensities of the reflections 1·rere 

corrected for the Lorentz and Polarisation effects using 

PRELP - a program on CDC·-6~LOQ ltri tten for this purpose o 

This was used to obtain the observed structure amplitudes 

from the measured intensitieso 

Since the structure of K2s~r6 was suspected of 

being similar to that of KzTeBr6 11 the latter was taken 
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as a trial structure. The position~ of the atoms for this 

model were: Sn at (0, Ofl 0); the three bromine atoms at 

(0.0555, Oo0022~ ~oQ2473); (0.2875t -0.2082P 0.0321); 

(0.2057, 0.2889, 0.0252); respectively and Kat (O.Ol2fl 

·-0.457p 0.250). At first only the isotropic temperature 

factor was assigned and the trial parameters were refined 

by a full matrix least square analysis of the three dimen= 

sional intensity data using the IBM~?040 program ~~CLS 

written in this laboratory by Stephens~ This program makes 

use of a special sub-routine which calculates the structure 

·factors and their derivatives for the particular space 

group or the problem for which it is being used. 

A special sub~routine was prepared for the space 

group PZl/n• The scattering curves required for this prog~ 

rain were taken from the International Tables of x-ray 

Crystallography.36 The variable parameters included in 

this program were the scale constants applied to the observed 

structure factors from layers photographed separ~tely, the 

positional coordinates and the temperature factor of each 

atom., 

Then the isotropic temperature factors 'tArere con-

verted into anisotropic temperature factors a.nd the refine-

ment continued for four cycles after which no significant 

changes in the variable parameters were observedc In try-

ing to refine the anisotropic temperature factors, the co­

efficients ~12 and (323 for the tin atornmd to be left eq'l~~l to ze 
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since attempts to refine these two Qomponents gave ridic~ 

ulously large n~berso The tin atom is in a centrosym.metrlc 

·position and as such there should not be any restrictions 

on any of the components of the thermal ellipsoid for this 

atomo If a tetragmLal space group had been assignedp then 

both r12 and @23 would have been identically equal to 

zeroo As '\'18 have seen, the deviation from the tetragonal 

structure is not largee Therefore probably as far as tin 

is concerned~ the structure is tetragonal and this accounts 

for the tNo coefficients (3 12 and (?
23 

to be me .. de zeroo 

The agreementp between the observed and calculated 

structure factors were checked after each cycle of refine­

ment from the R-valueo The final R factor was o:116o The 

atomic parameters derived from the final cycle of refine= 

ment are listed in the Table Bo The observed and cal-

culated structure factors are given in T·al?le C" 

The interatomic distances and bond angles w·ere 

calculated making use of a program ~10LG w-ritten for IBI\1-

7040 by Br.own and Holder of this laboratory" This program 

diagonalises the thermal vibrat~on tensor to give the BMS 

displacements of .a~oms along the three principal vibration 

axeso It also prints the direction cosines and angles mad_e 

by these axes with the real and reciprocal crystal axesG 

It further calculates interatomic distances from each atom 

to any neighbouring atom out to a specified distanceG 



Atom 

Sn 

Br(l) 

Br(2) 

·Br( 3) 

K 

TABLE B 

Atomic parameters derived from the final least squares 

Refinement 

Position Coordinates Standard Temperature Factor 

x;a 
Error fll ~22 P33 r12 Y/b z/c l 

0 0 0 = Oo42 Oo44 Oo27 0 

0~042.5 -0~0207 -0.2413 1.62 0.79 0@28 0~29 

0.2774 -0.2085 0.0251 0.001 o~sz 0.77 0.85 Oe32 

0.2083 0.2791 0.,0203 lol4 Oe82 Oe63 -0.48 

0.011.5 -0.5283 0.2444 OeOJ 1.89 2.03 +1.06 -0.50 

r13 Pz3 
-0.0) 0 

0.11 -Oe09 

-Ool) Oe02 

-0.01 -Oel2 

-0.19 ·-o.o1 

The temperature factors enter the structure factor calculation through the following expression~ 

-2 ~ 2 2 .. 2 s p_ 16 exp. (-10 <,-11h + p22k + ~ 
33

1 + 2112hk + 2113h1 + 2123kl) 

-t:" 
..{::" 
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TABLE c 

The Observed and Calculated Structure Factors 
-- ~ -- --- ·--- .. --··- -- --- .. ~- -----. --- -- ----------- ----- -- -~ .. - ... 

- -~-- .. - . - ·--- . ·-- ____ ... -- ---- .. 

<\ ... •••• 

H K L KLUE F(0BS) F (CALC l SIGHA 
1 -7 -2 -9 0 35079 41.76 Lg. o 3 0 
2 -6 -3 -9 0 24o09 25o55 3. 61 
3 -5 -It -9 0 41~ 14 42.20 5col5 
4 -4 -5 -9 0 17.39 19.56 1. 1ft 
5 -3 -6 -9 0 35c.73 4lo08 4o87 
6 -8 -0 -8 1 27$ 3 't 10~07 9.11 
1 -1 -1 -8 0 . 30., 31 20o48 10.10 

' 8 -6 -2 -8 0 31.14 38"''t7 5.19 
9 -5 -3 -8 0 48.67 52 ... 50 4.,73 

10 -4 --lr -8 0 69o35 69 ... 98 7.23 
}nl -3 -5 -8 0 68 .. 83 71.13 1017 
12 - -2 -6 -8 0 59 0 6't 6.6·-. 88 lto89· 
13 -1 -1 -8 0 30.31 54 • .'t5 10 ... 10 
14 -0 -8 -8 0 27. 3'+ 39..:.'t3 9.11 
15 -8 1 -·7 1 29 .. 51 14.09 9e 8 1t 
16 -1 -0 -7 1 31. 2't 21 .. 57 l0ft42 
17 -6 -1 -7 1 31.40 19.55 l0c46 
18 -5 -2 -7 0 31.,28 . 27 ... 51 l0o42 
19 -4 -3 -7 0 3lol8 3ft- c 6''t 10 c.lt 0 
20 -3 -4 -7 0 31.18 3't• H3 lO>~>'tO 
21 -2 -5 -.1 0 31.28 43 6 or, 10~42 
22 -1 -6 -7 0 31 e40 33~57 . 10~46 
23 -0 -7 -1 0 31..,24 36.08 10 0 4·2 ·• 24 1 -8 -7 .. ~ 29o5l 2 6. 3't 9o8ft 
25 -9 3 -6 58.,08 56(1>64 6.,.83 
26 -B 2 -6 0 49.76 49. 6!{ 6.,22 
21·· -1 1 -6 0 74.,20 74o56 5 .. 82 
28 -6 0 --6 0 40.:o 15 33.?.0 4~83 
29 -5 -1 -6 0 49o 14 47o7l 56 05 
30 -4 -2 -6 0 36.39 2lo88 It c- 97 
31 -3 -3 -6 1 28. 7 '-1· 1 ~ 4 7 9o·57 
32 -2 -4 -6 .. 0 49o08 1t5e. 51 6.,14 
33 -1 -5 -6 1 30 e 4 J 8. 1 1t 10.:.16 
3'-s· -o -6 ~6 1 3lol0 10&65 1 0 ... 36 
35 1 -7 -6 l 3le55 19~ 0 1i· l0e52 
36 -8 3 -5 0 ''49~ 76 55~42 6.3 8 
37 -1 2 ~5 0 5'1· .. 29 53.20 6 .. 16 
38 -6 1 -5 0 90.35 90~46 12~16 
39 -5 -0 -5 0 76eOZ 71 .. 56 7~59 
40 -4 -1 -5 0 113.46 106~93 11~45 
41 -3 -2 -5 0 70o 4·6 67c29 7 .. 05 
42 -2 -3 -5 0 97.26 87 .. 29 12&10 
43 -1 -Lt -5 0 4't ... 13 42 ... 53 ·4,..91 
4'• -o -5 -5 0 66o 71 59 ... 30 6~50 
45 1 -6 -5 0 30.70 23e05 l0co24 
46 2 -7 -5 2 3lo69 43e33 5o29 
47 -7 3 -4 0 26e05 '27o93 3 .. 90 
48 -6 2 -4 0 64 .Ji4 694>62 8<)18 
49 -5 1 -4 1 28~58 8 .. 23 9o53 
50 -4· -0 -4 0 177"' 'tO 183 .. 59 29 .. 83 
51 -3 -1 -4 0 101..-50 lOOG>OO 13.07 
52 -2 -2 -4 0 213630 .. 280~23 35 .. 14 
53 ·-:-1 -3 -4· 0 136olt2 142ell· 16 .. 20 
5ll -0 -4 -It 0 ·207 (/>53 219&44 34<>78 

KLUE: 0: means 11 observedn 

1: means "unobservedu 

2: means "unreliable" 
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: 
H K L KLUE F(¢BS) C(C.ALC) ·5_5 ____ 
1 -5 - ~4--- -·-o- 88o21. 84.43 ~~~~A--

56 2 -6 -4 0 103~87 98o03 8.95 
57 -3 7 4 1 31 .. 91 22<)13 1 o .. 6l.-
58 -4 8 4 0 25ill0 29v96 3e 78 
59 -6 ·3 -3 1 30()70 5Gl5 10o24 
60 -5 2 -3 1 28.23 19.35 9 e ft-l 
61 -4 1 -3 1 25 .. 65 8 ... 53 8 .. 5ft 
62 -3 -0 -3 0 . 56e01t 46.:.65 5<1159 
63 -2 -1 -3 1 22o36 13 .. 16 7 .. 45 

.. - 64 -1 -2 -3 0 93o 61 96o49 7.11 
65 -0 -3 -3 0 60ol6 49.25 4o60. 
66 1 -4 -3 0 ll6o63 ll't~23 lZtol2 
67 2 -5 -3 2 81 ~.tt 7 lt5o 61 13 ... 03 
68 3 -6 -3 0 86.e84 924>04 8.68 
69 -4 7 3 l 32~19 23c87 lO.o72 
10 -5 8 3 0 72o 70 58o56 9 .. 29 
11 -1 5 -2 0 118.00 110 .. 45 14 0 7lt 
712 -6 4 -2 1 31 .. 30 13.1 g 4.18 
13 -5 3 -2 0 133.07 l35o9B 16~3 8 

. : 14 -4 2 -2 0 78 ... 24 76.a9l 6o85 
75 -3 1 -2 0 89el8 90o55 9.11 

; 76 -2 -0 -2 2 129.21 251.06 15.93 
11 1 -3 -2 0 ·4s~oo 36 0 2't 1t. 13 
78 2 -4 -2 0 1004'94 99.33 7c.43 
79 3 -5 -2 0 82.86 84c62 6()·58 
80 -5 7 2 0 83.,4-3 83.61 10 .Jt 2 
81 ·-4 6 2 l 31~30 -- 6.65 10 c·4 1t 
82 -7 6 -1 0 77o5l 61 c. Lr7 <j .. 90 
83 -6 5 -1 0 .58o55 48o55 7<1)61 
84 -5 't -1 0 108c-B3 99o70 10 Q 12 .. 
85 -4 3 -l 0 99-s.30 l 02 to 05 7 .. 33 
86 -3 2 -1 0 125 c>£1-9 128o72 15E>63 
87 -2 1 -1 0 118 .. 93 llt2o89 19 .. 55 
88 1 -2 -1 0 27.59 26e25 3e4-5 
89 2 -3 -1 2 54 .. 83 54e.ll 4 .. 46 
90 4 -5 -1 0 ·. 60G63 .46 .. 25 1 ... 69 
91 3 -I-t -1 1. 26.11 11 e It 7 8.,70 
92 -1 l 0 2. 195 0 12 138.83 1841166 
93 -2 2 0 2 215.65 379eC)0 25o 53 
94 -3 3 0 1 23~73 ·21 .. 03 7 ... 92 
95 -4 4 0 0 1A9c77 150 .. 45 19o 61 
96 .-5 5 0 1 30e90 36$86 1 o. 3 0 
97 -6 6 0 0 59e35 53e56 -10 71 
98 0 0 2 0 135.-4 6 144~69 l7o03 
99 0 0 4 2 2104>22 399., l;-3 26o30 

100 0 0 6 0 59C>15 48~93 7 .. 67 
101 0 0 8 0 169 0 't8 18111> 21 2l.ol2 
102 1 1 0 0 l43e56 138e83 17.90 
103 1 l 2 1 64 .. 86 l7o84 8.10 
104 1 1 4 0 106 .. 42 104c.69 16. o-t 

. 105 1 1 6 1 30 .. 59 11 .. 98 5 .. 89 
106 1 1 8 0 82& 7 3 78.37 l0ct2l 
101 1 1 10 l 36o28 l2.o32 6 ... 98 
108 1 l 12 0 50.62 52o5_? 6 .. 07 
l09 . -1 -l 4 0 ll7e23 133.0B 1 7. 6ft 
].10 -1 . -1 8 0 1 Ott &-ItA· - 1'05. 05 l2o95 
].11 -1 . -1 12 0 69 .. 81 68. 't9 9Clll 
11.12 2 2 0 2 21713 89 379<f!90 21. t..~ '~ 



H K L KLUE F( ¢BS} F(CALC) SIGMA 
113 ~z-··--· 2 2. 0 108 .. 27 11 1:-og 13.53 
114 2 2 4 2 205 Q 13 2804>23 25a 7 2 
115 2 2 6 0 72.30 66~03 8.61 
116 "2 2 ·8 0 129.67 135o84 19c27 
117 2 2 10 l 36.71 23~61 7~ 06 
118 2 2 12 0 51.43 51G>84 6o68 
119 -2 -2 2 0 99o;,84 99 ... 54 171031 
120 -2 -2 4 2 2 38o 88 283o99 29o83 
121 -2 -2 8 0 137.92 144~13 20e69 
122 -2 -2 12 0 72~76 63e81 9o47 . 123 3 3 0 2 51 .. 41 21 ... 03 7o5l 
124 3 3 2 l 30.54 22<>52 "5c86 
125 3 •3 4 2 49.86 6.25 ·6.65 
126 3 3 6 1 36ol2 14>47 12.03 
127 -3 -3 2 1 2 8~ 9l;. l7o22 4c.44· 
120 -3 -3 4 0 56~43 60 .. 66 7.06 
129 -3 -3 6 1 't2 40 45 3. 't5 5o05 
130 -3 -3 8 0 70.o l't 75 .. 33 8~58 
131 4 4 0 0 l-itl.86 150 0 '~5 21~27 
132 4 4 2 0 19 .. 87 80~06 l2e2l 
133 It 4 4 0 ll5c48 124 .. 19 llto 55 
134 4 4 6 0 59a05 65.,69 7o82 
135 4 4 8 0 59"58 69.98 .. 7.,90 
136 -4 -4- 2 0 62e25 60 .. 73 6. 78 
137 -4 -·4 4 0 ll8o73 ll9c.73 17 .,14 
138 -4 -It 8 0 70 ... 98 -/0.63 9«>27 
139 5 5 0 0 lt2 0 29 36'1186 5o86 
140 5 5 2 0 ·. 't3.82 30.44 6€>93 
llr 1 5 5 it- 0 43~18 ItO e 23 5o99 
142 6 6 0 0 56o97 53~ 56 7.,36 
1 1t3 6 6 2 0 55o52 60$ ~)0 9 .. 27 
1 1t4 6 6" It 0 53 .. 4't 54·.:. 63 7CI36 
l't5 6 6 6 0 '• 50 .. 98 .. 56 .. 65 6 .. 80 
146 -6 -6 2 0 4lo20 lt4o 48 6~45 
14·? -2 -2. -5 0 5le4l 36o50 8.81 
14-8 -3 -3 -3 1 ·. 52 .. 68 4 .. 12 8 •. 78 
149 -3 -3 -1 0 5't• 48 24~96 l84Jt8 
150 -4 -4 -5 0 42e32 22.,.91 13 .. 91 
151 2 2 9 0 44 ... 93 26c.70 15.7't 
152 3 3 7 0 52~65 24"' 96 18 .. 79 
153 2 2 5 0 ·51. 1tl 36 .. 50. 18.79 
154 . l 1 7 2 66 .. 06 22$81 11 .. 02 
155 ·l 1 3 ·!. 34e50 O .. Lt-7 5 ~ 1 It 
156 -2 -2 9 0 lt6:e6l 41.,55 8 0 lt 8 
157 ~z -2 7 0 38e33 2't ~ '11 : 6~40 
158 ...,..:]··· -.3 -· ~7- ~ 4·7··:29- o.·t-6 =f-.-9-0 
159 -2 -2 5 0 49 .. 20 51.10 8.43 
160 -4 -4 5 0 50 .. 67 4·9c. 52 8.45 
161 -3 -3 3 2 47-.19 12.66 7e87 
162 -2 -2 l 0 26 .. 83 21. .. 11 4 .. 75 
].63 -1 -1 -6 0 75o98 74.56 9o7l 
1l.6't -6 .-2 -6 0 58.22 5 11-o 80 7.83 
].65 -5 -3 -6 0 ll2o46 l06o58 14:. 19 
166 -4 -4 -6 0 73e0l 65 .. 69 9o56 
167 -3 -5 -6 0 91.83 85,.06 llcl2 
168 -8 1 -5 0 45 .. 17 '45o8l 6e02 
169 -7 ·. 0 -5 0 68.72 65o9l 8o37 
170 -6 -1 -5 0 96 tD l't 90.46 11.,86 



--1-71" 
172 
173 
171t 

175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
18B 
1"89 
190 
191 
192 

' 193 
l9lf-
195 
196 
197 
198 
199 
200 
201 
202 
203 
20't 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
"223 
224 
225 
226 
227 
228 

II K L 
-~s - -=2"----=-s 
-4 -3 -5 
-3 -4 -5 
-1 -6 -5 

0 -7 -5 
-2 -4 -4 
-1 -5 -4 

0 -6 -4 
1 -7 -4 
2 -8 -4 
3 -9 -4 

-3 -2 -3 
0 -5 -3 
1 -6 -3 
2 -7 -3 

-6 2 -2 
-5 1 -2 
-1 -3 -2 

0 -4 -2 
-7 4 -1 
-6 3 -1 
-5 2 -1 
-2 -1 -1 

0 -3 -1 
-7 5 -0 
-5 3 -0 

2 -lt -0 
3 -5 -0 

-5 4 1 
-4 3 l 
-3 2 l 

6 -7 1 
-4 ,.. .2 

4 -4 2 
5 -5 2 
6 -6 2 

-4 5 3 
_;3 4 3 
-1 3 ·'t 

3 -1 4 
5 -3 It 

-1 't 5 
0 3 5 

. 4 -1 5 
5 .-2 5 · '·. r ,.:;~ i 
3 1 6 
5 -1 6 
6 -2 6 

-2 8 8 
-1 .7 8 

0 6 8 
1 5 8 
2 4 8 
0 1 9 
1 6 9 

KLUE . F( ¢BS) 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 . 
0 
0 
o· 
0 
0 
0 
0 
0 
0 
0 
0 ·o 
2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

116.30 
126.87 
117.73 

84.15 
51<-78 
52.53 
62'e 78 
7J586 
,18. 93 
6~;.57 

·5'5 ... 72 
33.19 
63.42 
41.85 
71.62 
72.81 
57.90 
74ol5 
.80.36 
41.90 
94.35 

102 .. 80 
51o:Jt4 
61.52 
73~92 

ll2c.04-
43Q04 

112.41 
37e82 
35.61 
64-0 07 
72.09 
57.53 
87.37 
41.90 
61.10 

122.r.66 
50.64 
90.05 

105"'25 
98~04 

104.93 
8"1 0 6 5 

106.61 
95.79 
52.40 
53.34 
77.27 
78.11 
61.27 
57 .. 45 
42.35 
59.98 
65.58 
59.34 
58.77 
47 .. 23 
66 .• 8't 

F(CALC) 
110. 68" 
122.40 
12 L. 60 

75 .. 72 
'• 8 .. 't6 
45~26 
52.33 
12.76 
75.98 
63.31 
52.52 
25.21 
56.39 
3 8 ·'t 1 
7lc27 
68.03 
43.57 
62.33 
67.98-
50.1t0 

101.48 
99 0 't4 

l't2o 89 
61 .. 73 
79 .. 05 

115.66 
50 .. 54 

-l't2., 88 
35.22 
32 ... 75 
60.16 
58 0 ,,. 5 
60.73 
80 ... 86 
30. ltlt 
60o50 

127o90 
't2 .. 89 

12'1 ... 35 
100.00 
98.38 

112.95 
7La-""'63 

l06o93 
110 .. 68 

53.76 
49.78 
66..,03 
714Jt2 
47.71. 
54 .. 80 
~8.31 
57.08 
62. 1t9 
4 CJ c.lt 1 
't3 0 7lt 
43.36 
64.51 

48 
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H K L KLUE F(¢BS) F(CAL) SIGMA 

229 
·-----·- ____ 2 _____ 5 .-9-------- ---0- -8tC~ 93 90 .. -01 l0o92 

230 3 4 9 0 94.03 lOOoJ.8 11.76 
231 4 3 9 0 102o48 101$22 l2o80 
232 5 2 9 0 76 .. 35 83o53 10 .. 01 
233. 6 1 9 0 65c.78 66~33 8 .. 49 
234 -3 -1 -2 0 94 .. 38 90 .. 55 llc.94 
235 -2 ~2 -2 0 ll0o70 117 .. 09 13 .. 77 
236 -4 0 -2 0 112~78 106"'50 - 1301187 
237 .-4 1 -1 0 l't8"14 l47e~47 18.52 
238 -3 0 -1 0 118 ... 08 142.:>42 -llte76 
239 -1 -2 -1 2 91.90 l3"'-o89 llo59 
240 1 -3 -0 0 117.,01 155.-,3 14 0 71 
241 1 -2 1 0 109.,11 134.89 13.65 
242 -2 2 2 0 108 e 8Li 99.54 l3o60 
243 -2 3 3 0 131~87 133o6l 16.49 
24ft. 0 l 3 0 73c40 76o36 9.09 
245 1 0 3 2 56.91 45.,50 7cl8 
2'~~-6 0 2 4 0 70e46 64o24 18.,67 
247 -3 1 -0 0 109o3l 125 •. 93 l3o72 
248 1 1 4 o· 110 .• 03 l01to69 13.,92 
2't9 1 2 5 0 182.,77 194 ... 89 2.2e 9 6 
250 2 1 5 0 14 1-~-.>55 13lo56 .18C>08 
251 3 0 5 -0 169.02 1B5o51 2lel2 
252 -8 --1 -5 0· 46.,26 45c-8l 6o 61 
2-53 -7 -2 -5 0 57.,18 53e 20 ll<>lt3 
25 1t -6 -3 -5 0 6't & 41 53e76 6e5l 
255 -5 -4 -5 0 77o82 67G 16 7~91 
256 -4 -5 -5 0 56.,31 It 7 e 51 64'08 
251 -3 -6 -5 0 6't .. 10 6fta 58 6 .. 54-
'258 . -2 -7 -5 0 39o98 34.,11 5 ... 45 
259 -1 -8 -5. 0 5lo7l 50$20 6.,66 

. 260 -1 -1 -4 0 53cl0 3'-t 0 52 l3o70 
261 -6 -2 -4 0 76o9l 69 0 6'2. 9 ... 60 
262 -5 -3 -4 0 '95o79 98.38 llo55 
263 ~'t. -It --4 0 119.,67 124.,19 l5e29 
264 ~3 -5 -4 0 122 .. 37 l26o 02· 15 .. 24 
265 -2 -6 -4· 0 lllml8 103o78 l3o82 
266 -1 -7 -4 0 87.,71 83c48 9 ... 07 
267 0 -8 -4 0 43.26 44.,00 5o:~84 
268 1 -9 -4 0 42 e 1~ 1-t 32o23 5e55 
269 -2 --s -3 0 31~88 28o73 4.56 
270 -1 -6 -3 0 35 .. 96 3(h 36 4.49 
271 0 -1 -3 0 4li .. 08 40c.83 5e52 
272 1 -8 -3 0 45 .. 41 39 .. 38 6o05 
273 2 -9 ...... 3 0 43 ... 05 35c.35 5.38 
274 -9 3 -2 0 60o68 72.66 12.78 
2?5 -8 2 -2 0 47 .. 15 51 .. 85 941>98 

. 276 -7 1 -2 0 9l.o02 88c5B 9 .. 41 
277 -6 0 -2 l 27o73 13 .. 59 10 .. 39 
278 -5 -1 -2 0 51 .. 27 43o57 7 .. 02 
279 -4 -2 -2 2 7CJolO 76.91 l o.., 15 
280 -3 -3 -2 1 33o28 22., 52 4 .. 63 
281 -2 -It -2 2 106676 lOO • .'t3 10.66 
282 -1 -5 -2 1 25o30 16 .. 59 9.48 
283 0 -6 -2 0 35 .. 33 26o99 5 .Jt 3 
284 1 -.1 -2 0 32.,94 32:CJ9 ito 34 
285 -7 2 -1 0 60 ... 05 64 c. 81t l6o7B 
286 -6 1 -1 0 66..,5't '961) 39 17.56 

I 

l 
l-
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H K L KLUE F(¢BS) F(CALC) SIGl1A . 
··ztfl -5 0 -1 ---0 80 .. 36 109.1'+ 20.69 
288 -4 -1 -1 0 106cll llt7 ... 47 27.88 
289 -3 -2 -1 0 l35o80 128~72 22~62 
290 -2 -3 -1 0 141.66 133.,.89 23461 
291 -1 -4 -1 0 95 .. 31 83.,69 11 0 9 1t 

292 0 -5 -1 0 75.,56 73.75 9.62 
293 -7 3 -0 0 30.36 26o28 3 .. 79 
294 -6 2 -0 0 96.51 91 ... 72 l2e~03 
295 -5 1 -0 l 66.30 21 .. 30 8e49 
296 -4 0 -0 0 184c. 39 247 .. 20 30 ... 75 
297 1 -5 -0 2 60.92 . 69.15 9.79 

:298 2 -6 -0 0 116.-80 ll8ol0 144)59 
.299 3 -1 -0 1 30.36 0901 11.38 
:300 4 -8 -o 0 41.34 38'976 5 .. 16 
301 1 -4 1 2 84o33 83~69 10.51 
302 2 -5 1 2 72o 71 76.'t9 9 ... 19 

.303 3 -6 1 2 74.06 89e25 12<:>49 
304 -7 5 2 0 78.;86 91 ... 18 9.98 
305 -6 4 2 l ·'29 .. 35 15.43 11.02 
306 -5 3 2 0 95.98 105c.92 9o62 
307 -4 2 2 0 83.51 81 ... 57 8.30 
308 -3 1 2 0 48.23 63.01 6.03 
309 2 -4 2 0 98.03 l00o43' CJ.,11 
310 3 -5 2 0 89.,35 112&35 9o00 
"31.1 5 -7 2 0 98.13 101 .. 5li 9$7J 
312 -7 6 3 0 73.99 64 0 7't 9.26 
313 -5 4 3 0 104-e 59 -- 113 .. 6 7 13.31 
314 -4 3 3 0.· 62., 73 64.34- 7.36 
315 -3 2 3 0 152.92 17L .. B5 25 .. 52 
316 -4 4· 4 0 112 .. '} 3 .119.73 134s99 
317 -3 3 4 0 59 .. 18 60'066 7.,31 
318 '• -4 4 0 122 .. 20 l2lto 19 15 .Jt6 
319 5 -5 4 0 37 .. 21 . 4-0., 23 lt-r~ 65 
320 6 -6 4 0 55.97 5lt 0 6 3 7 «.' 6't-
321 -6 7 5 0 lt5 Cl 51 50.11 6 .. 99 
322 -5 6 5 1.· 33e 0 It 9.98 12. 'tO 
323 -4 5 5 0 59c-45 57.82 7o55 
324 -3 4 5 0 32 .. 87 26.53 8e20 
325 -2 3 5 0 65 .. 04- 61601 8~03 
326 3 -2 5 0 -,3 .. 55 67»>29 9o2l 
327 4 -3 5 0 120o00 122 .. 40 l4·e 90 
328 .· 5 -4 5 0 67.57 67.16 9 .. 14 
329 6 -5 5 0 66.-08 75 .. 22 8.25 
330 '2 -1 5 0 1334>03 131-.56 44c-33 
331 0 1 5 0 117.59 90.49 39.26 
332 -5 7 6 0 t,.6 .. 64 43c-74 8 .. 32 
333 -4 6 6 1 32.85 16.0"7 12 .. 32 
334 -3 5 6 0 37.07 34 .. 28 6.17 
335 -2 It 6 0 49.08 lt6o 66 8.83 
336 3 -1 6 0 78 .. 19 71-o 42 CJ.24· 
337 5 -3 6 0 10lc82 106o58 13u51. 
338 7 -5 6 0 . 77 0 46 85.69 l0o03 
339 0 2 6 0 113.81 120~59 14 ... 23 
340 2 0 6 0 112.60 105 .. 23 14~ 0 H 
341 

# -3 6 1 0 59.50 69.11 6~95 
342 -2 5 7 1 31.21 '•31. 52 11.70 
343 -1, 4 1 0 92 olt4 93~98 11.70 
344 0 3 1 0 47.68 31 .. 86 6.10 

-. 

·. 
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H K L KLUE F(¢BS) F(CALC) SIGMA 
.. ---·3-ti-.5 - - ... 

'l 
----

2 
----- ---1 0 90.12 

-~~· ~ ·- -----
9lo0l 

.. 
"11 .. 58 

346 1 1 1 2 82e36 22e8l 13o75 
347 -3 -:-1 8 0 38.59 35c.95 6 .. 10 
348 -2 6 8 0 66.44 65.41 8.68 
349 -1 5 8 0 77.37 73ol3 9.43 
350 0 4 8 0 123 .. 93 120 .. 04 15.92 
351 1 3 8 0 92 .. 87 93.,52 11 .. 33 
352 2 2 8 0 137 .. 27 135.84 17.12 
353 3 1 8 0 65.62 610 3ft 8 ... 03 
354 L• 0 8 0 82.53 89 .. 0B lOo 4-7 
355 6 -2 8 0 41 .. 62 '38.47 .5 f) 21 
356 0 5 9 0 45.15 4·0e92 '~-· 85 
357 1 . It 9 1 59 .. 88 30.11 5o84 
358 2 3 9 0 -60.03 53,41 11 e ~~-3 
359 3 2 9 0 it9o 8 0 't3e OB 5.50 
360 4 1 9 0 76 .. 06 68.51 1lro 71 
361 5 0 9 0 51.34 50e73 5.67 
362 6 -1 9 0 63.43 66.33 6e03 
363 -9 -3 -6 0 ·b 3., Lt3 56o64 7 .. 93 
36't . -8 -4 -6 0 42.23 39.29 5o86 
365 -1 -5 -6 0 86.27 85 .. 69 11 Cl 3 1t 

366 -6 -6 -6 0 65 .. 50 56 .. 65 8 .. 20 
367 -1 -·5 -6 0 71 .. 36 85 .. 69 9q,61 
368 -8 -3 -5 0 52.45 55.LI-2 7o00 
369 -1 -4 -5 0 51 o62 lt9o 78 6.,B8 
370 -6 -5 -5 0 85.58 75.22 11. .• 20 
371 -5 -6 -5 0 54"Lt5 .-:-57(> 13 7 .. 20 
372 -It -7 -5 0 62.53 73 .. 93 7o8l 
373 -9 1 -2 0 It 54> 9 6 lj.o ... 69 6 .. 20 
37't -8 0 -2 0 37 .. 55 31 ... 62 4.68·' 
375 -7 -1 -2 0 90 .. 10 88o58 9o L;-2 

376 -6 -2 -2 0 73 .... 65 68~03 9 .. 10 
377 -5 -3 -2 0 122 ... 89 135 .. 98 l2o 3lt 

378 -It -4 -2 0 87 .. 4-6 80 .. 86 8G83 
379 -3 -5 -2 0 llle88 112 ... 35 l1el5 
380 -2 -6 -2 0 4~-. 26 ~0 .. 16 4 .. 66 
381 -1 -7 -2 0 39 .. 69 ft 2. Lt6 4 .. 59 
382 -9 2 -1 2 35 e 81 47 ... 61 4 ... lt6 

383 -8 1 -1 0 61 .. 36 65ol7 15$32 
381t -7 0 -1 0 711- .. 82 78 .. 18 7 .. 37 
385 -6 -1 -1 0 97.,32 96 ... 39 9 .. 81 
386 . .-s -2 -1 0 96o95 99 • .'1-4 9 .. 91 
387 -4 -3 -1 . 0. 123 ... 35 102.05 26.,.37 
388 -4 -3 -1 0. 123.28 102..,05 20 .. 64 
389 -3 -4 -1 .o· 109 .. 66 95o26 18 ... 27 
390 -2 -5 -1 0 91.17 76 ... 49 9 .. 12 
391 -l -6 -1 0 70o68 63 .. 6q 7.37' 
392 0 -1 -1 0 34.81 4't.l2 7.,90 
393 -9 3 -0 0 4't .23 41.82 4.61 
394 -8 2 -0 0 41., 6 1t 36 .. 56 4.00 

-395 -1 1 -0 o· 43 .. 62 43 .. 37 It.., 85 
396 -6 0 -0 0 42.57 35 ... 26 4. 6l~ 
397 0 -6 -0 0 79~68 75.77 7.90 
398 1 -7 ·:...o 2 99.29 91CI l 1t 15 .. 98 
399 .. 2 -n -0 0 58.92 6't., 55 6.81 
400 3 -9 -0 0 66.36 6'2., 70 7.,37 
401 -1 .. _;5 0 2 109ol5 69 .. 15 18 ... 3 0 
'•02 l -6 1 0 71.19 63.69 7.22 

.... 
- • • ·•· r·- ~ • • •• • - -·-- .... .. -
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Chapter 6 

DESCRIPTION OF THE STRUCTURE 

The final parameters of the refinement sh01·J that 

= the SnBr6 ion in K2SnBr6 has ~he configuration of a regular· 

octahedron. There is no_-::significant difference in the three 

non-equivalent Sn-Br distances and the angles between them 

do not vary significantly from 90& (Table D)o The mean 
40 

·length of the Sn-Br bond is 2.601 ± 0.011 A. Cruickshank 

· has pointed out that the measured bond lengths are usually 

· shorter· than the correct lengths& Since the atoms constltut-

ing the bonds are alNays in thermal motion, the positions 

of maxima in the electron density distribution do not rep-

resent the correct positions of atoms and so the measured 

bm~d le11gtns should be corrected for the thermal motion of 

atoms constituting the bonds. 
41 

In 1964, Busing and Levy proposed a method for 

correcting the bond distances based on one of the follollring 

assumptions regarding the combined electron density distri~ 

bution of'two atoms forming the bond. 

(1) the motions of atoms are either in phase or out 

of phase with one_ another. 

(ii) The motion of the heavier atom is c_ompletely 
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TABLE D 

Interatomic distances and angles 

Interatomic distance A 

Atoms 

SnBr6 = ion 

le Sn~Br(l) 
2o ..,Br(2) 
;)., ~Br( 3) 
4., Br(l)-Br(2) 

~Br(3) 
-Br( 2) 
~Br( 3) 

Bo Br(2)-Br(3) 
=Br( 3) 

Uncorrected 

2e579 + Oe017 
2o59J + Oe008 
2El60l + 0.-008 
3e612 + Oo02Q 
3o754 + Oo023 
3o?02 + Oo018 
)o569 + Oe021 
3e665 + Oc012 
3o679_± OoOlJ 

Br(l)~Sn-Br(2) 88e58 ± Oe50 
Br(l)=Sn=Br(2) 9lo42 ± Oo60 

· Br{1)=Sn~Br(3) 92o90 + 0~70 
Br(l)=Sn=Br(3) 87$10 + Oo59 
Br(l)-Sn-Br(2)t 9lc42 ± Oo60 
Br(l)-Sn-Br(2)t 88o58 ± Oo50 
Br(l)~Sn=Br(3)t 87ol0 ± 0()59 
Br(l)~Sn-Br(3)t 92e90 ± Oe70 
Br(2)-Sn-Br(3} 89o78 ± 0~46 
Br(2)-Sn-Br(3) 90o22 + Oo42 
Br(2)-Sn-Br(3)t 90o22 ± Oe42 
Br(3)-Sn-Br(3)t 89()78 ± Oo46 

Corrected for 
thermal motion 
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l'lean Corrected 
Value 

0 

2o60l 

0 0 
The Br~Sn=Br angles lie within 209 of 90 and 

are not significantly different from it~ 

The errors quoted are those calculated from the 
standard errors for the cell constants and the least 
squares refinement~ 

· t Those marked with a dagger are related by 
inversion ~hrough the origino · 
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independent of the motion of the lighter one~ but the 

lighter atom is supposed to'!ride 11 on the heavier atom" 

{iii) There is no correlation between the motions 

of the atomse 

The first assumption gives the two extreme limits 

of the bond length, but the other two represent more 
. 

physically likely situationsc It is hard to distinguish 

betl'1een them unless detailed information about the motion 

of atoms is lmo-vm" To convert isotropic tJJ anisotropic 

motion of the atoms, the following relation.is used 

Bij = l!flij/ ai * • ~ 
cohere ~s are the temperature coefficientsp and B is the 

isotropic temperature factor·C> 

· The temperature factors (Table E) of the bromine 

atoms sho'~:\1" a marked a.nisotrop.y indicating that their root 

mean square displacement perpendicular to the Sn~Br bonds 

is larger than that along the bonds.. A rig'-d SnBr6= ion 

~iberating about the tin atom wouid give rise to anisotropy 

of this sort and if this were the case 9 .the sn~Br bond 

length corrected for temperature effects would be 2e60 Ao 

Howeveri it is possible that there is no correlation betTt-reen 

the motions of tin and bromine atomse The thermal anisotropy 

of bromir~e atoms can be explained in this caseS} if we con= 

sider that the bending modes of vibration of the Sn-Br bond 

have ~arger amplitudes than the stretching modese The mean 
oC!I 

corrected Sn-Br distance is then ·2o6) A@ It is not possible 



TABLE .E . 

Principal Components of Temperature Factors 

Atom BMS(A) Direction Cosines with 
respect to 

a b c 

Sn Oel25 OeOOO OoOOO OeOOO 

Ooll) OoOOO leOOO 0.000 

0.,106 OoOOO OoOOO OoOOO 
•:.· 

BR(l) Oo22J Oo894 Oo448 0$015 

0.174 ~0~~382 Oo780 =0e495 

01)106 0 0 233.: -Oo437 '""'Oo869 

BB( 2) Oc222 .,0~219 -Oc043 • Oo975 

0.176 o€)698 0.691 0.188 

0.112 o:oQ 0 681 . Oe722 -Ool22 

BR( 3) Oe207 -0.754 Oe~573 .,.,0~322 

Oel92 o. 357 ~0.054 =0e9JJ 

0®112 Oe551 Oo818 Of)l64 

K Oe26,5 0.597 -0.501 <=Oo627 

0.239 '"'"Oe284 0.599 -Oo749 

0&200 Oo751 Oo625 Oe215 
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to distinguish between these t~o cases and the true situa­

tion probably lies somew·here between the tw·o extremes" 

It is interesting to note that the positions of the 

S1'1Br6 ions in the crystal are the same as thosaof PtC16 

. ions in the K2Ptcl6 structure and TeBr6- ions in the 
. 

K2TeBr6 structure "'co \>J"hich K2SnBr6 is closely relatedo The 

large octahedral ions lie on a face centered latti oe '\'fi th 

alkali metal ions occupying the tetrahedral cav~ties between· 

theme In K
2
Ptcl

6 
the ·Ptc16 ~. ions ~re all equivalent and_ 

are arranged with the Pt=Cl bonds along the prinoipal axes 

.of the cubic m1it cella The K2SnBr6 structure is obtained 

. from this by a reorientation of the SnBr6 :;:;;: octahedra as 

in the case of K2TeBr6 o 

The K2PtC16 strucr'cure may be described as an approx= 

1mately close packed array of chlorine and potassium atoms 

with platinum a~oms occupying octahedral holeso The 

chlorine and potassium atoms are arranged with the array so 

that every potassium atom has twelve nearest neighbour 

chlorine atoms and every chlorine ~tom is surrounded by four 

potassium atomsg four chlorine atqms belonging to its o1m 

PtCl 
6 
= 

ion and four chlorine atoms belonging to different 

ionso In K2TeBr69 as-reported by Brown 11 the environ=> 

ment of the halogen atom is only slightly altered but the 
. ' 

envir~nment of potassium atom is markedly differente The 

same is found to be the ca~e for K2SnBr6 (Table F)o It is 

possible to pick out twelve nearest neighbours for the pot-
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TABLE F 

Environment of K Atom 

Atoms· Interat·om1c distance A 
Uncorrected Corrected for Mean Corrected 

The~al Motion Value 

I(.,.,Br(:3) 3.132 ± Ot)032 Jcl)9 J.l?6 

K.,..Br( 2) )e204 ± 0~031 )o2lJ 

K-Br(i) 30395 ± O.a050 Je404 34>462 

K-Br(l) 31\510 ± Oo024 )e520 
·-· 

K-B:o( 3) )e736 ± 0 p0J3 )e 741.,~ 

K=Br( 2) )o868 ± OeOJJ )o8?6 :-3o870 

K_~~r( 2) 3o880 ± Oe0)3 )c886 

K-Br(1) 3o965 ± Or.024 3.974 

K~Br( 3) 3o98J ± Oe0)3 )o992 

K-Br( 2) 4.070 ± Of)032 4.078 4o077 

K=-Br(l) 4e083 ± Oe050 4o089 

Keo.Br( 3) 4el41 + Oo032 4ol48 . """" 



. TABLE G 

Comparison of environment of K atom ' 
in K

2
TeBr6 and K2SnBr6 

K2TeBr6 K2SnBr6 
- -.-

Interatomic distance A Interatomic distance A 
Mean ~'Iea.n 
Corrected Corrected 

Atoms Uncorrected Corrected Value Atoms Uncorrected Corrected Value 

K-Br(2) Jo37 3e40 K-Br()) )el32 ±.Oe032 · )el)9 ).,176. 

K-Br( 3) 3.41 ;.44 ).46 K-Br( 2) ).,20* ..fF Of)031 
~ 

).213 

K-Br(l) ).45 Je48 K-Br( 1) ).)9.5 ± 0.,050 )e404 ).,462 

K-Br(l) ).,48 ).51 K-Br( 1) 3&510 ± 0.024 Je520 

K-Br( 3) ).61 ;.64 K-Br( 3) )e7)6 ± Q.,Q)) ).744 VJ 
w e 
• ........, 
CD \.!\ 

K-Br(_2) 3.68 ).71 ).69 :.{.:.- K-Br( 2) ).868 + 0.033 ).8?6 ). 870 \.n. -
K-Br( 2) ).6.5 )e68 · K-Br( 2) 3~880 ± 0.033 ).886 

K-Br( 3) )o71 3.74 K-Br( 1) 3.965 ± o.o"24 3.,974 

K=Br( 1) l..t-.10 4.1) K-Br( 3) 3~983 ± 0.03:3 3·992 

K-Br(l) 4.16 . 4.19 4.16 K-Br( 2) 4o070 +"Oc0)2 4e078 4.077 
"""" 

K-Br( 3) 4e5l 4.,54 K-Br(l) 4.083 ± 0.050 4.089 

K-Br( 2) 4 • .55 4.,58 K-Br( 3) 4eJ.41 ± 0.,0)2 4.148 \.1'\ 
'-.[) 
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assium atoms but they·are no longer equally distanto 

There are two bromine atoms at e_ distance of 3 ... 176 ± Oo031A, 

then t't'TO at a distance of )ol!·62 + Ou037Afour .atoms at a 
..,.. ' 

a1stance or Jo a·7o ± o., o31Aand the next rour at a distance 

of 4c077 ± Oo037AoThese bromine atoms are arranged such 

that the mean distance between any one bromine atom and 

the four potassium atoms with which it is associated is 

3"-755 ± Oo034A (}The correction 1mich should be applied to 

these lengths for thenaal motion is about + OoOB !c if it 

is assumed that there is no correlation between the motions 

of potassium and bromine atomse The comparison ·of the en= 

v1ronment of the potassium ion in K2TeBr6 and K2SnBr6 is 

presented in Table Go 

The distortion in K2SnBr6 is a result of packing 

large anions with small cationso The anions fol~ a face 

centered array and are or~ented such that each halogen is 

in contact with four halogens on neighbouring anionso This 

leaves cavit.ies in the structure into which the cations fite 

Each cavity is formed by twelve halogen atoms 9 three from 

each of the four anions which surround the oavityo The 

cations are usually much smaller than the halogen atoms 

Thereforet the size of the cavity will be determined by the 

halogen-halogen contacts between anions rather than the 

halogen-cation contactso If the cation is very much 

smaller than the cavity into which it ·fitst it 1·rill be free 

to move inside the cavity unless the anions reorient them-
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such as to reduce the effective size of the cavity and thus 

lock the cation into placee 

The arrangement of cations (open circ~es) and 

anions (octahedra) in (i) K2Ptcl6 (ii) K
2
TeBr6 and (iii) 

KzSnBr
6 

as vie1-1ed do1>m the C-=axis is dra~m in Figure 6o 

The stereographio projec·cions of K atom e .. re dra:tm 
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Fig. 6a. The arrangement of cations {open circles) and 
anions (octahedra) in K2PtC16 as viel'led do1~m the 
C axis., 
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Fig. 6b. The arrangement of cations (open circles) and 
anions (octahedra) in K2TeBr6 as viewed dolin the 
C axise 
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' 

Figo 6Cc The arrangement of cations (open circles) e .. nd 
anions (octahedra) in K2SnBr6 as viewed down 
the ~-axis. 
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Fig~ 7. The Btereographio 
o-r K atom. of the environment 
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