PART OF THE CANADIAN SHIELD

.

AN ESTIMATE OF THE COMPOSITION OF

AN ESTIMATE OF THE COMPOSITION OF PART OF THE

CANADIAN SHIELD IN NORTHWESTERN

ONTARIO

Ву

GEORGE ALEXANDER REILLY, B.Sc.

A Thesis

Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

May, 1965

MASTER OF SCIENCE (1965) (Geology)

TITLE: An Estimate of the Composition of Part of the Canadian Shield in Northwestern Ontario

AUTHOR: George Alexander Reilly, B.Sc. (University of Western Ontario) SUPERVISOR: Professor D.M. Shaw *

NUMBER OF PAGES: x. 91.

SCOPE AND CONTENTS:

An attempt has been made to estimate the abundance of trace and major constituents in the Precambrian rocks in a large part (43,000 square miles) of the Red Lake - Lansdowne House area in northwestern Ontario. The area has an average composition which is close to that of granodiorite, more silicic than most estimates of crustal abundance, close to other estimates for continental shield areas, but possibly deficient in K_2O . The rocks of this area appear to be low in Be, Ti, V, Cu, Y, Sc and Zr, and high in Sr. Analysis of variance techniques have detected significant regional variations of Cr, Mn, Sr and Ba. Significant variation exists between rock types for all trace elements analyzed except Cu.

ii

ACKNOWLEDGMENTS

The writer wishes to express his gratitude to Dr. D.M. Shaw for his assistance and supervision during the course of this research. I wish to thank Dr. R.H.C. Holman of the Geological Survey of Canada for his aid in the preliminary stages of this work. I am indebted to G.E. Pattenden for his assistance in respect to the spectrochemical procedures, and to J. Muysson for his work on the major element analyses.

Scholarships and assistantships from the Department of Geology, McMaster University, are gratefully acknowledged. The National Research Council of Canada helped support this research from grants under the Upper Mantle Project.

I particularly wish to thank the employees of the Geological Survey of Canada, both permanent staff and summer students, who painstakingly collected the samples on which this thesis is based.

i,

ABSTRACT

An attempt has been made to estimate the abundance of trace and major constituents in the Precambrian surficial rocks in a large part (43,000 square miles) of the Red Lake - Lansdowne House area in northwestern Ontario. The area has an average composition which is close to that of granodiorite, more silicic than most estimates of crustal abundance, close to other estimates for continental shield areas, but possibly deficient in K_2O relative to Poldervaart's (1955) estimate. The rocks of this area appear to be low in Be, Ti, V, Cu, Y, Sc and Zr, and high in Sr, relative to crustal abundances based on the proportion of exposed rocks on the surface of the continents (Turekian and Wedepohl, 1961). Analysis of variance techniques have detected significant regional variations of Cr, Mn, Sr and Ba. Significant variation exists between rock types for all trace elements analyzed except Cu.

TABLE OF CONTENTS

×

		Page
	Acknowledgements	iii
	Abstract	iv
I.	Introduction	1
	General	l
	Red Lake - Lansdowne House Area	2
	Location and Description	2
	Previous Work	3
II.	Experimental Design	5
	General	5
	Map Areas	6
	Rock Types	6
	Representativeness of Sampling	7
	Stability	8
III.	Methods	10
	Crushing of Primary Samples	10
	Preparation of Composite Samples	10
	Composite Samples	11
	Composites of Composite Samples	12
	Major Element Analysis	12

TABLE OF CONTENTS (Continued)	Page
Spectrographic Methods	12
General	12
Procedure	13
Computation	14
Working Curves	14
Precision and Accuracy of Spectrographic Methods	15
Precision	15
Accuracy	17
Two-Way Analysis of Variance	17
General	17
Computation	18
Statistical Model	18
Statistical Tests	19
Calculation of Weighted Averages	21
IV. Discussion of Results	23
Major Elements	23
Trace Elements	24
Averages	24
Significance of Variation	25
Comparisons	26
Suggestions for Further Work	29
References	30
Appendices	

vi

. Nga

LIST OF TABLES

		Page
I.	Description of Rock Types	35
II.	Outcrop for Each Rock Type in Each Map Area as a Per Cent of Total Outcrop for Each Rock Type	36
III.	Outcrop for Each Rock Type in Each Map Area as a Per Cent of Total Outcrop for Each Map Area	37
IV.	Comparison of Number of Primary Samples with Per Cent Outcrop for Each Rock Type	38
V.	Approximate Percentages of Granitic and Pre-existing Rocks Exposed in the Superior-Wyoming-Slave Province of North America	39
VI.	Major Constituents in Composites of Composite Samples for Each Rock Type	40
VII.	Major Constituents in the Interlaboratory Standards G-1, W-1, T-1 and GR	4 <u>1</u>
VIII.	Details of Spectrographic Method	42
IX.	Data for Analysis Lines	43
X.	Compositions of Synthetic Matrices	44
XI.	Comparison of Trace Element Values for G-1 and W-1 with Recommended Values	45
XII.	Trace Element Correction Factors Based on Values for G-l and W-l	46
XIII.	Analysis of Variance Table	47
XIV.	Significance of Effects for the Two-Way Analysis of Variance of Trace Elements in Rock Types 2,3,4, 5,6,7 and 8 for All Map Areas	48
XV.	Significance of Effects for the Two-Way Analysis of Variance of Trace Elements in Rock Types 2,3,4, and 5 for All Map Areas	49

i.

LIST OF TABLES (Continued)	Page
XVI. Significance of Effects for the Two-Way Analysis of Variance of Trace Elements in Rock Types 6,7 and 8 for All Map Areas	50
XVII. Weighted Major Element Averages for the Whole Area	51
XVIII.Weighted Major Element Averages for the Whole Area Compared with Estimates of Crustal Abundance	52
XIX. Weighted Trace Element Averages for Each Map Area and for the Whole Area	54
XX. Weighted Trace Element Averages for Each Rock Type	55
XXI. Comparison of Weighted Trace Element Averages for the Whole Area	56
XXII. Comparison of Weighted Trace Element Averages for the Whole Area, Corrected to Agree with Preferred Values for W-1	57
XXIII.Summary of Significant Variations	58
XXIV. Comparison of Trace Element Averages for the Whole Area with Estimates of Crustal Abundance	59
XXV. Comparison of Trace Element Averages for Felsic Rock Types	60
XXVI. Comparison of Trace Element Averages for Mafic Rock Types	61
XXVII.Comparison of Trace Element Averages for Sedi- mentary Rock Type	62

viii

27

,

LIST OF FIGURES

1.	Location of Area	63

i.

2. Key to Location of Map Sheets

64

Page

LIST OF APPENDICES

٠

I.	Number of Primary Samples for Each Rock Type and Map Area	65
II.	Number of Primary Samples as a Percentage of the Grand Total for All Map Areas and Rock Types	66
III.	Percentages of Total Number of Primary Samples for Each Rock Type in Each Map Area	67
IV.	Percentages of Total Number of Primary Samples for Each Map Area in Each Rock Type	68
v.	Number of Primary Individuals Used to Make Each Composite	69
VI.	Duplicate Major Element Analyses of Composites of Composite Samples (CC-1 to CC-8)	70
VII.	Trace Element Analyses for Composite Samples	71
VIII.	Trace Element Analyses for Composites of Composite Samples (CC-1 to CC-8)	77
IX.	Results for the Two-Way Analysis of Variance of Trace Elements in Rock Types 2,3,4,5,6,7 and 8 for All Map Areas	79
Χ.	Results for the Two-Way Analysis of Variance of Trace Elements in Rock Types 2,3,4 and 5 for All Map Areas	81
XI.	Results for the Two-Way Analysis of Variance of Trace Elements in Rock Types 6,7 and 8 for All Map Areas	84
XII.	Results for the Two-Way Analysis of Variance of Sc in Rock Types 6 and 8 for All Map Areas	87
XIII.	Trace Element Averages for Pairs of Composite Samples Listed in Order of Rock Type	88

-

Chapter I

INTRODUCTION

General

The aim of this thesis is to estimate the abundance of certain trace and major elements in a large area of the Superior Province of the Canadian Shield. The justification for this research is twofold. Firstly, there is a lack of information as to the abundance of major elements and particularly trace elements in the Canadian Shield. Secondly, estimates of abundance for both the Canadian Shield and other shield areas have been based mainly on the results of specialized geological studies, abundance figures being a by-product of these studies. Averages have been obtained by grouping together analyses of comparable rock types, from several different sources in the literature, with little regard to the suitability of the data. Geographic and geological variations have usually not been considered.

Only one other estimate of the composition of the Canadian Shield is known to the author. Grout (1938) calculated major element averages by collecting analyses of rocks of the Shield and weighting them in proportion to their relative exposure. Unfortunately, only a few scattered analyses were available at that time and no attempt was made to sample systematically.

During the field seasons of 1960 and 1961, about 10,000 bedrock samples were collected by officers of the Geological Survey of Canada in the Red Lake-Lansdowne House area of northwestern Ontario. These samples were originally collected for use in a regional geochemical reconnaissance of copper and zinc in bedrock, conducted by Dr. R.H.C. Holman of the Geological Survey of Canada. Composites have been made from the major part of these samples. Analyses of these composites for both major and trace elements, along with the relative proportions of outcrop for the different rock types in the area. form the basic data used in this study.

Red Lake-Lansdowne House Area

Location and Description

The area is located in the Canadian Shield in northwestern Ontario (Figure 1) and lies between longitudes 86 and 94 degrees, and latitudes 51 and 53 degrees. It is about 43,000 square miles in area and is contained entirely within the Superior Province, except for a small strip on the eastern edge of the area which is overlain by Palaeozoic sediments (Ordovician and Silurian) of the Hudson Bay Lowlands.

Holman (1963h, p. 30) describes the general geology of the area as follows:

"The most common rocks of this segment of the Precambrian Shield are granodiorites that exhibit varying degrees of foliation. The granodiorites are interrupted by discontinuous belts and irregularly shaped bodies of massive granite. These granites are usually pink but, in the southeast corner of the region, white varieties are common. Porphyritic granitic rocks are extensively developed in the western half of the area. Infolded masses of mixed volcanic rocks (basalts, andesites, rhyolites and tuffs) with minor associated sedimentary rocks extend throughout the region, often as long, narrow and curving belts. Basic (intrusive) rocks are comparatively uncommon."

The region has been extensively glaciated. Glacial deposits and muskeg obscure large portions of bedrock. Exposure of the bedrock varies from 50 per cent in the northwest corner of the area to l per cent in the east. Average exposure of bedrock is about 30 per cent.

Previous Work

For purposes of geological mapping, the area was divided into seven map areas of equal size. Each map area is two degrees of longitude by one degree of latitude, including about 6,000 square miles. The key to the location and identification of each map area is given in Figure 2.

Preliminary geological maps (Bostock, 1962; Carruthers, 1961; Donaldson, 1959, 1960; Emslie, 1960, 1962; Jackson, 1961, 1962) have been published on the scale of one inch to four miles. This information has been compiled by Duffel (1963) on the scale of one inch to eight miles.

An investigation of the surficial geology of the whole area was carried out by Prest (1963a). Maps of the surficial geology (Prest, 1963b) and bedrock-drift distribution (Prest and Donaldson, 1963) have been published on a scale of one inch to eight miles.

During the course of geological mapping, in the field seasons of 1960 and 1961, traversing parties collected representative specimens of exposed bedrock at intervals of about one mile. Each specimen was described in the field and its location was recorded. The average density of sampling is one specimen for every three to four square miles. Coverage varies widely depending on extent of exposure of bedrock. Density of sampling is highest in the northwest part of the area and lowest in the eastern part due to very sparse outcrop.

Some 10,000 bedrock samples were collected, each of which was analyzed for Cu and Zn. Determinations of As were also made on a few samples. The data for Cu in bedrock have been published by Holman (1963a,b,c,d,e,f, and g) in the form of a series of preliminary geochemical maps on the scale of one inch to four miles. Also, a preliminary paper by Holman (1963h) summarizes initial results for Cu and Zn in four of the map areas.

An aeromagnetic survey of the area was carried out during 1959 and 1960, and a geological interpretation of this data was made by MacLaren (1962), on the scale of one inch to eight miles. In addition, the magnetic susceptibility and specific gravity of each geochemical sample were determined, in an attempt to facilitate the interpretation of the aeromagnetic survey and of future gravity surveys in the Precambrian of northern Ontario.

Geological, geochemical and geophysical results have been summarized in a preliminary report by Duffel, MacLaren and Holman (1963).

Chapter II

EXPERIMENTAL DESIGN

General

The best, but not the most efficient, method of estimating geochemical abundances in the area would be to analyze all 10,000 individual samples of bedrock. This approach is desirable in some respects. It provides information which can be related more directly to the geology of the area. Variations from rock type to rock type, and from area to area, would be more amenable to examination and explanation. Anomalous values could be identified and their causes examined. However, the analytical and statistical work involved would be truly formidable, in the absence of supporting personnel.

Estimates of abundance were obtained in a more efficient manner. Instead of analyzing each individual separately, the samples of bedrock were grouped together as composites. Duplicate composite samples were made to represent each rock type in each map area. Replication of composite samples is necessary in order to provide information as to the stability of any averages derived from the analyses of the composites. Averages were obtained by weighting the analytical results in proportion to the outcrop (estimated by map units) for each rock type.

In this chapter, discussion is limited to trace elements, unless otherwise indicated.

5 🦕

Map Areas

The area was divided into seven map areas (Figure 2) of equal size (about 6,000 square miles) for purposes of geological reconnaissance. This division has been preserved in this study for two reasons: (a) Such a division is necessary in order to interpret the geochemical results in relation to the geological information which is available at this time; (2) The seven map areas constitute large, separate samples of this section of the Canadian Shield.

i.

Rock Types

During the reconnaissance, geological mapping of the area, fourteen rock types were recognized. Because of differences in geology and of subjective interpretation of the geology from map area to map area, this number had to be condensed to eight units so that comparisons could be made within the area and with other shield areas. These eight rock types are briefly described in Table I.

Each rock type occurs in each map area, with the exception of rock type 1. Rock type 1 (leucocratic granite) is abundant in map areas 1 and 2, but is very minor or absent in the rest. Composites for rock type 1 have been made only for map areas 1 and 2.

The proportion of outcrop for each rock type was determined by Holman (1963a, b, c, d, e, f, and g) by planimetering the reconnaissance geological map for each map area. This information, as it applies to this research is given in Tables II and III.

Representativeness of Sampling

In this study the target population (Krumbein, 1960) consists of the exposed surface rocks of the area. This target population may itself be a biased sample of the crust. Variations with depth may be different in kind from variations over the surface. Only exposed parts of the crust in this area are accessible to sampling. This may introduce bias because of differential erosion and variation in extent of glacial deposits and other debris.

During the primary sampling no attempt was made to use random This may have introduced some bias. sampling techniques. For instance, one rock type may have been more intensely sampled than another (i.e. a greater proportion of individuals for one rock type than is warranted on the basis of the amount of outcrop for that rock Table IV is a comparison of the percentage of exposed bedtype). rock for each rock type with the percentage of all primary individuals for each rock type. (Details of the distribution of primary individuals are given in Appendices I. II. III and IV.) This table indicates that each rock type is represented in the whole group of primary individual samples in proportion to its exposure in the area. Rock type 6 (basic intrusive) is the only exception and it has been greatly In addition, the reconnaissance geochemical maps for over-sampled. Cu in bedrock (Holman 1963a b.c.d.e.f. and g) show that the primary individuals are evenly distributed throughout the areas of exposed We may conclude that the primary sampling is not seriously bedrock. biased and that it affords a satisfactory probability sample of the exposed bedrock of the area.

Since it was impracticable to analyze every individual, composites were prepared. These provide an unbiased and efficient representation of the area, since they were made from all of the primary individuals available. The composites contain all of the information that could be derived from the individual primary samples, with the exception of information as to the variation within a rock type for a certain map area.

Engel (1963) determined the approximate percentages of granitic and pre-existing rocks exposed in the geological provinces of North America by point counting geological maps. His values for the relative proportions of different rocks in the Superior-Wyoming-Slave province of North America are shown in Table V. A comparison of Table V with the information contained in Tables III and IV reveals a remarkable similarity between the relative proportions of different rock types in the Red Lake-Lansdowne House area and in the Superior-Wyoming-Slave province of North America. This may mean that the Red Lake-Lansdowne House area could be considered to be a typical segment of this province.

Stability

In order to assess the validity of trace element averages, it is necessary to determine whether or not the area constitutes a statistically homogeneous unit. This can be done by testing the significance of regional variations (variations from map area to map area) by the use of analysis of variance techniques.

If, for a certain element, there is no statistically significant regional variation, then any averages derived for the whole area, for that element, can be considered to be "stable". That is, the whole area may be considered to be essentially a homogeneous unit, each map area being a representative sample of the whole. If there is statistically significant regional variation, averages can still be calculated but their meaning is open to question. Significant regional variation may indicate that the experimental design, for that one element, is not suitable for an accurate estimate of a true average because sampling may not have been carried out within a uniform population.

Chapter III

METHODS

Crushing of Primary Samples

All primary individuals were crushed in the laboratories of the Geological Survey of Canada. Each individual sample of bedrock (weighing two to three pounds) was split. A chip was retained and the remainder was reduced to gravel size (one-quarter inch) by means of a Chipmunk jaw crusher. Then the sample was ground to about -80 mesh with a Braun rotating-disk pulveriser, fitted with ceramic plates. Fifteen to twenty grams of this powder were ground to -200 mesh by mechanical agitation in small ceramic ball mills on a paint shaking machine. All crushing equipment was thoroughly cleaned between samples, so that contamination from sample to sample would be negligible.

Preparation of Composite Samples

8,076 of the 10,000 primary samples of bedrock were used in making the composite samples for this study. About 2,000 of the primary samples were collected during a detailed sampling of some greenstone belts in the Lake St. Joseph map area (map area 3). Most of these were not used because their inclusion would over-emphasize the importance of certain small areas of greenstone in the Lake St. Joseph area.

The composites are of two types. The first type was made to represent each rock type in each map area, in duplicate. These have been called "composite samples". The second type was made to represent each rock type in the whole area, for purposes of major element analysis. These have been termed "composites of composite samples".

Composite Samples

All primary individuals for each rock type in each map area were randomly divided into two separate groups. Composites were made from each of these groups by weighing out equal portions of the -200 mesh powder for each of the primary samples. Thus, duplicate composite samples exist for each rock type in each map area, with the exception of rock type 1 in map areas 3 through 7, where leucocratic granite is very minor or absent. The total number of composite samples is 102.

Each composite sample is identified as to rock type, map area and duplicate by a sample number. This number is prefixed by the letter "C" and consists of three digits. The first digit indicates the map area; the second, the rock type; the third, the duplicate. For example, C361 refers to the first of the duplicates representing rock type 6 (basic intrusive) in map area 3 (Lake St. Joseph). This scheme has been used whenever reference is made to a specific composite sample.

Appendix V shows the number of primary individuals used in making each composite sample. Each number reflects the amount of outcrop available for sampling as well as the intensity of sampling.

1.

Composite of Composite Samples

Eight composites of composite samples were prepared for each rock type in the whole area, by weighing out equal portions of powder from each composite representing the rock type. These are identified by the rock type number prefixed by the letters "CC". For example, CC6 refers to the composite of all composite samples representing rock type 6 (basic intrusive).

Major Element Analysis

Major element analysis was carried out, in duplicate, on CCl to CC8 by J. Muysson of the Rock Analysis Laboratory, Department of Geology, McMaster University. Rapid silicate analysis methods, similar to those described by Vincent (1960), were employed. The results of these duplicate analyses are given in Appendix VI. Averages of pairs of duplicate analyses are shown in Table VI.

The standard samples G-1, W-1, T-1 and GR were also analyzed to provide a check on the accuracy of the analytical procedures. The results of these analyses are compared with the preferred values for each of the standard samples in Table VII. A close examination of this table indicates that no serious errors exist in the analysis of any of the major constituents with the possible exception of SiO₂ and Al_2O_3 in basic rocks.

Spectrographic Methods

General

102 composite samples and CCl to CC8 were analyzed quantitatively using emission spectrographic techniques similar to the general quan-

i.

titative schemes described by Ahrens and Taylor (1961, Ch. 13), and Shaw (1960). The method employs Pd as an internal standard. The elements which are sought include Be, Ti, Cr, V, Ni, Co, Cu, Mn, Sc, Zr, Sr, and Ba. Y was usually detectable but not measurable. Each analysis was carried out in triplicate. The trace element data for the composite samples are shown in Appendices VII and VIII. Each value is the geometric mean of triplicate analyses.

Procedure

The powders to be analyzed were arranged in random order, using a table of random numbers, in order to nullify any possible effects of systematic variations during the course of analysis. An aliquot of powder for each composite was mixed in the ratio 1:1 with graphite containing 0.025% PdCl₂. The charge was moistened with acetone and mixed in an agate mortar for five minutes to ensure uniformity.

Burns were made in triplicate under conditions which are described in detail in Table VIII. Each of the triplicate burns was recorded on a different set of spectrographic plates, eight sets to a plate.

Each analysis line, along with its corresponding internal standard line and sensitivity in p.p.m., is listed in Table IX. In cases where an element was not detected (n.d.) or was present in detectable but not measurable amounts (tr.), the values used for statistical purposes were assumed to be one-tenth and one-half, respectively, of the sensitivity limit for that element.

Computation

Transmission readings were taken on three steps (log intensity ratio of 0.2) of the analysis line and the internal standard line, as well as readings of background on the most intense of the three steps for each. This allows computation to be carried out by a self-calibrating procedure (Ahrens and Taylor, 1961, p. 159) through which background corrections can be applied.

Computation was carried out by the use of a program written by D.M. Shaw for a Bendix G-15 digital computer. This program converts transmission readings to Seidel values $\sqrt{S} = \log_{10}(100/T - 1)$, where T = transmission reading in $\frac{5}{2}$ and then proceeds to calculate an intensity ratio (dY) by solving quadratic polynomials. dY is the \log_{10} of the ratio of the intensity of the analysis line to the intensity of the internal standard line, each corrected for background.

In a few cases, particularly when the analysis line was unusually light, the computer was unable to complete the calculation because of imaginary roots in the quadratic polynomial. Computation was then done graphically on a Seidel calculating board.

Working Curves

In order to construct working curves, two different synthetic matrices were prepared, from Johnson-Matthey "Specpure" chemicals. They were made to approximate the composition of a granodiorite and a gabbro (Table X).

Two different sets of standards, having a concentration range of 0.316 to 3160 p.p.m., were prepared with these matrices. These standards were arced under the same conditions as those described

above. Two sets of working curves, relating dY to p.p.m., were plotted on semi-log graph paper. These curves served to convert values of dY to p.p.m. graphically. The "granodiorite" set of working curves was used for the acidic and intermediate rock types, whereas the "gabbro" set was used for the basic rock types. This was necessary in order to reduce matrix effects as much as possible.

The working curve for Ti was prepared in a different manner, so that a larger concentration range could be covered. A series of silicate rocks, having a large range in Ti concentration was selected. These rocks, which had been previously analyzed for Ti by means of wet chemical methods, were arced under the same conditions as those described above. The working curve was constructed by plotting values of dY versus the known concentrations of Ti as given by wet chemical methods. The curve was used for both acidic and basic rock types.

Precision and Accuracy of Spectrographic Methods

Precision

Precision has been calculated using the logarithms of all analytical results for each element in a single classification analysis of variance (Dixon and Massey, 1957, Ch. 10). The logarithmic transformation was necessary because the absolute deviation in p.p.m. varies directly with the level of concentration and serves to homogenize the variances.

By means of a single classification analysis of variance, the within - triplicates (within - cells) mean square is determined. This is the best available estimate of the within - triplicates variance (s_p^2) , the pooled variance). The standard deviation (S) is found by the relationship:

$$s = (s_p^2/3)^{\frac{1}{2}}$$

The best estimate of the concentration of an element is \bar{k}_{\star} where

$$\bar{\mathbf{k}} = \operatorname{antilog}_{\mathbf{0}}(\bar{\mathbf{x}})$$

and \bar{x} is the mean of the triplicate analysis in log p.p.m. The interpretation of the standard error S of the mean \bar{x} is

U = upper limit =
$$\operatorname{antilog}_{10}(\bar{x} + S)$$

L = lower limit = $\operatorname{antilog}_{10}(\bar{x} - S)$

Thus, approximately two-thirds of the analyses of a sample, with a true value of \bar{k} p.p.m. of an element, should fall between the values of U and L. Precision is expressed as the coefficient of variation (C) in per cent.

$$C(\%) = \frac{(U - L)}{\frac{1}{2}(U + L)} \times 100$$

The values of the coefficient of variation for each element gives an estimate of the relative error for triplicate analysis, and were obtained using a program, prepared by D.M. Shaw and the writer, for an I.B.M. 7040 digital computer. Values of C are included in Table IX.

Precision seems to be satisfactory for all elements, with the possible exceptions of Cu and Zr. The lower precision of Zr (11.7%) may be due to the refractory nature of Zr. The low precision for Cu (17.2%) may be caused by the effects of contamination, particularly at low concentrations of Cu. Cu contamination has been found to be a continuing problem and its elimination is virtually impossible.

Accuracy

In order to estimate the accuracy of the spectrographic method, both G-1 and W-1 were analyzed. The results of these analyses are compared, in Table XI, with recommended values for G-1 and W-1 as reported by Fleischer and Stevens (1962). This comparison indicates that there are serious deviations of Ba and Zr from the recommended values for G-1, and of Cr. Ni and Sr from the recommended values for W-1. Values for Be in basic rock types may be too high due to a suspected interference between the spectral lines Be 3130.416 Å and V 3130.267 Å at concentrations of V greater than 50 p.p.m.

The trace element data can be adjusted for inaccuracies by applying correction factors. Table XII lists correction factors based on the recommended values for G-1 and W-1. The use of correction factors may not be justified, since it involves, in effect, a shifting of the working curve for each element, to agree with the recommended values for G-1 or W-1. Some of the data presented below has been tabulated in both the corrected and uncorrected forms. Unless stated otherwise, the data is uncorrected.

Two-Way Analysis of Variance

General

Analysis of variance has been employed to determine the statistical significance of variations of each trace element between map areas (regional variation) and between rock types. This is, in effect, testing hypotheses of equal means. In addition, the significance of interactions between map areas and rock types (i.e. any variation not explained solely by the two-fold classification) has been tested. Tests were carried out on arithmetic data. No transformations were employed.

Analyses of variance for the trace element data (Appendices IX, X, XI, and XII) were carried out in four ways, which are:

- (1) rock types 2, 3, 4, 5, 6, 7, and 8 for all map areas. Rock type 1 has been excluded since it occurs in only two map areas in significant amounts.
- (2) rock types 2, 3, 4, and 5 (felsic varieties) for all map areas.
- (3) rock types 6, 7, and 8 (basic and sedimentary varieties) for all map areas.
- (4) Sc in rock types 6 and 8 for all map areas. This was done because Sc was found, in significant amounts, only in rock types 6 and 8.

These four categories were adopted in order to test for significance of variations for all rock types, for the felsic varieties, and for the basic and sedimentary varieties.

Computation

Computational formulae for this type of analysis of variance are given by Bennett and Franklin (1954, Ch. 7), and by Miller and Kahn (1962, Ch. 7). Calculations were carried out using a program prepared by the writer for an I.B.M. 7040 digital computer.

Statistical Model

The statistical model used in this study is a two-way crossed analysis of variance. with replication. The model is described by Bennett and Franklin (1954, Ch. 7), Dixon and Massey (1957, Ch. 10), and Miller and Kahn (1962, Ch. 7). The model may be written:

$$x_{ijk} = u * y_i * z_j * w_{ij} * e_{ijk}$$

 x_{ijk} represents a single trace element value for a composite sample. u is a constant and is the true population mean. The value of x_{ijk} depends on u and is affected by contributions from map areas (y_i) and rock types (z_j) . w_{ij} is the effect of interaction (the effect of y_i and z_j taken together, which is not accounted for by their effects taken separately). e_{ijk} is the random error occurring between duplicate composite samples. A complete analysis of variance table for this model is given in Table XIII.

Assumptions for this model are the following:

- (1) Observations are random with respect to any conditions not systematically varied.
- (2) Means and variances are additive.
- (3) u, y_i, z_j, and w_{ij} are constants. That is, the model
 presumes fixed effects.
- (4) The errors e_{ijk} are independent, random and normally distributed, with an expected mean of zero and common variance 6^2 .

Statistical Tests

The F ratios, shown in Table XIII, were calculated and compared with the appropriate critical values of the F distribution. Two significance levels (5% and 1%) were employed. An effect is termed "significant" if the corresponding F ratio is greater than the critical value of F at the 5% significance level and "very significant" if the F ratio is greater than the critical value of F at the 1% level. The interaction and within-duplicates sums of squares were pooled, when the interaction effect was found to be nonsignificant, to obtain a pooled error estimate of 6^2 . Summaries of the results of these tests are given in Tables XIV. XV. and XVI.

If an hypothesis, that the means for different map areas are not significantly different, is accepted, variation between map areas can be considered to be random. In other words, no significant regional variation exists. However, if the hypothesis is rejected, significant differences are indicated among the means and a regional trend, independent of variations between rock types, is probably present. In a similar fashion, the significance of differences between mean values for the various rock types is assessed, independent of variations between map areas.

The explanation of significant interactions is more difficult. Four explanations are offered by Dixon and Massey (1957). These are:

- (1) They are the result of random fluctuations, with probability α (0.05 or 0.01).
- (2) The two variables are not independent. Particular combinations of the variables give rise to effects greater than the combination of their separate effects.
- (3) Apparent interactions may result when important variables are left out of the analysis.
- (4) The sampling was not random within each group.

All of these statements of significance are subject to error. A true hypothesis is likely to be rejected, by chance, in 5% or 1% of the cases, depending on which level of significance is used.

Calculation of Weighted Averages

All averages derived from the major and trace element data have been weighted according to the proportion of outcrop (Tables II and III) for each rock type. The reasoning behind this procedure is as follows. In order to use all of the primary individuals available and to get an accurate estimate of the composition of each rock type, regardless of its abundance, composites were made to represent each rock type in each map area (except rock type 1). If unweighted averages were calculated, the values for relatively minor rock types (e.g. basic intrusive rocks) would be greatly overemphasized.

Major element averages for the whole area (Tables XVII and XVIII) were calculated by weighting the major element data (Table VI) in proportion to the outcrop for each rock type (Table III).

Trace element averages were calculated for the following:

- (1) each rock type in each map area (unweighted) (Appendix XIII).
- (2) each map area (Table XIX), weighted according to the proportion of outcrop for each rock type in each map area relative to the total outcrop for each map area (Table III).
- (3) each rock type in the whole area (Table XX), weighted in proportion to the outcrop in each map area for each rock type relative to the total outcrop for each rock

type (Table II).

(4) the whole area (Tables XXI and XXII).

i.

Chapter IV

DISCUSSION OF RESULTS

Major Elements

The results of major element analysis of CCl to CC8 are given in Table VI. Table XVII shows the major element averages for the whole area, weighted in proportion to the outcrop for each rock type in the whole area (Table III). These figures indicate that the average composition of surficial rocks in this area is very close to that of granodiorite (Barth, 1952, p. 69).

In Table XVIII, these weighted averages are compared with various estimates of crustal abundance and with an estimate of the composition of the continental, crystalline, surface, shield rocks (Poldervaart, 1955). A comparison of this type is difficult since each estimate involves a variety of assumptions. However, the following conclusions may be drawn.

- (1) The average composition of this section of the Canadian Shield agrees very well with Poldervaart's (1955) average composition of the continental, crystalline, surface, shield rocks. However, K₂O in the Red Lake-Lansdowne House area (2.25%) is low relative to Poldervaart's figure (3.3%).
- (2) Comparisons with the estimates of crustal abundance, given by Vinogradov (1962). Turekian and Wedepohl (1961), and

- (a) more SiO₂, Na₂O and K₂O(?)
- (b) less TiO₂, total Fe, MnO, MgO, CaO, P_2O_5 and S(?).

Trace Elements

Averages

Trace element averages are presented in four forms, which are: (1) averages for each rock type in each map area (averages for

pairs of duplicate composite samples, in Appendix XIII)

(2) weighted averages for each map area (Table XIX)

(3) weighted averages for each rock type (Table XX)

- (4) weighted averages for the whole area:
 - (a) derived from the 102 composite samples (Table XIX)
 - (b) derived from the 8 composites of composite samples representing each rock type in the whole area

(Appendix VIII)

These last two sets of averages (Table XXI) agree closely except for Be, V and Ba. The averages derived from the 102 composite samples are preferable since they are the result of a number of independent observations for each rock type and are therefore less subject to the effects of analytical error. Both sets of averages have been corrected to agree with preferred values for W-l in order to facilitate their interpretation (Table XXII). The correction factors based on G-1 (Table XII) could not be applied, in conjunction with those based on W-1, since some of them are missing.

Significance of Variation

The analysis of variance techniques described in Chapter III have been employed to detect regional variations and variations between rock types. The tests were carried out on three different groupings of rock types. These are:

(1) all rock types (except rock type 1)

(2) felsic rock types

(3) basic and sedimentary rock types.

Table XXIII lists trace elements which vary significantly within these three groupings.

All trace elements, except Cu, vary significantly between rock types (Table XXIII) when all rock types or only the basic and sedimentary rock types are considered. However, in the felsic group, significant variation exists between rock types for the elements Cr, V, Ni, Co, Mn, Sr and Ba. These results are not surprising. They simply reflect known variations in composition (Table VI).

The significant regional variations indicate that the Red Lake-Lansdowne House area cannot be considered to be homogeneous for certain trace elements, and that this heterogeneity varies depending upon which major group of rock types (felsic or basic) is considered. These variations suggest that the map areas cannot be regarded as equivalent samples. For example, the rock types may not be exactly equivalent
from map area to map area. This is supported by the fact that regional variations are almost always accompanied by significant interactions between map areas and rock types (Tables XIV, XV, and XVI). In order to establish more accurate averages, particularly for Cr, Mn, Sr and Ba, an expanded experimental design, with much more well defined rock types, is necessary.

÷

It is interesting to note that Cu is the only trace element which shows no significant variation of any kind, either regional or between rock types, despite the fact that Holman (1963h) found a maximum range of less than 5 to 700 p.p.m. Cu for this area. Holman's weighted averages for the map areas are uniform, with a range of about 14 to 22 p.p.m. Cu.

The significance of variations of Sc in basic intrusive and basic volcanic rock types (6 and 8) was tested separately (Appendix XII). No significant variation is indicated.

Comparisons

Trace element averages for the whole area (Table XXIV) are compared with estimates of crustal abundance given by Turekian and Wedepohl (1961), Vinogradov (1962), and Shaw (1964). These estimates are based on many different sources of data and on different assumptions. Nonetheless, some general conclusions may be drawn. The surface rocks of the Red Lake-Lansdowne House area are:

(1) low in Be, Ti, V, Ni, Co, Cu, Y, Mn, Sc, and Zr
(2) high in Sr and Ba.

One would think that the trace element averages for this area should agree closely with the crustal abundances based on the proportion of igneous rocks exposed on the surface of the continents (Turekian and Wedepohl, 1961, Model I). An examination of these two sets of data suggests that this area may be:

(1) low in Be. Ti. V. Cu. Y. Sc. and Zr

(2) high in Sr.

The low concentration of Cu has been confirmed by the work of Holman (1963h). He quotes an average of 15 to 20 p.p.m. Cu. This agrees very well with the average of 17 p.p.m. Cu given here.

In interpreting the significance of these deviations from crustal abundance, variations of the major constituents must be taken into account. Marked differences were noted above between the major element composition of this area and various estimates of crustal abundance. However, the composition of the surficial rocks in this area is quite similar to the estimates of major element abundance for continental, igneous terrains (Table XVIII) given by Poldervaart (1955), and Turekian and Wedepohl (1961, Model I). Therefore, deviations from the trace element crustal abundances, given by Turekian and Wedepohl (1961, Model I) (Table XXIV) are probably significant, since the comparisons are virtually free from the influence of fluctuations of the major constituents. Thus, the Red Lake-Lansdowne House area may be considered to be low in Be, Ti, V, Cu, Y, Sc and Zr, and high in Sr.

It is instructive to compare trace element averages, for the different rock types in this area, with other averages for similar rock

types. Comparisons are made for the felsic rock types (Table XXV, uncorrected and corrected for G-1), the basic rock types (Table XXVI, uncorrected and corrected for W-1), and for the sedimentary rock type (Table XXVII).

Examination of Table XXV indicates that, even when corrected for G-1, Sr is high and Zr is low in the felsic rocks of this area relative to the other estimates. The other trace elements agree as to the order of magnitude, but the obvious variability from one estimate to another rules out any definite conclusions.

Fair agreement seems to exist between the trace element averages (Table XXVI) for the basic intrusive and basic volcanic rock types (6 and 8) and the other estimates for basic rocks. Some differences are outstanding. Ti, Cu, Sc and Zr appear to be low, even when corrected for W-1. Taking into account that the spectrographic method greatly underestimates Sr. it is high relative to the other estimates.

The sedimentary unit (mainly slate, argillite, quartzite, greywacke, conglomerate and their metamorphic equivalents) can be compared directly with the work of MacPherson (1958) on Canadian Precambrian greywackes, argillites and low grade schists, and of Herz and Dutra (1960) on Precambrian metasedimentary rocks in a part of the Brazilian Shield (Table XXVII). Agreement is not good and the content of trace elements in the Precambrian sediments of the Red Lake-Lansdowne House area is generally low, except for Mn, which is about twice the value given by MacPherson.

í.

Suggestions for Further Work

No accurate information is available as to the mineralogical variations among the composite samples used in this study. The distribution of the more common mineral species could possibly be determined by means of infrared spectroscopy (Abbey, 1964). The use of activation analysis and more specialized spectrographic methods could provide information as to the abundance and distribution of elements, such as Au, Ag, the platinum group and the rarer alkalis, which have not been considered in this study.

REFERENCES

- Abbey, S., (1964), The mineralogical analysis of rocks a possible application of infrared spectroscopy: Canadian Spectroscopy, vol. 9, no. 4, p. 62-65.
- Ahrens, L.H. and Taylor, S.R., (1961), Spectrochemical analysis, second edition: Addison-Wesley Publishing Co., Inc.
- Barth, T.F.W., (1952), Theoretical petrology: John Wiley and Sons, Inc., New York, 387 p.
- Bennett, C.A. and Franklin, N.L., (1954), Statistical analysis in chemistry and the chemical industry: John Wiley and Sons, Inc., New York.
- Bostock, H.H., (1962), Lansdowne House, Ontario, (geology): Geological Survey of Canada, Map 4-1962, 1 inch = 4 miles.

Carruthers, C.A., (1961), North Caribou Lake, Ontario, (geology): Geological Survey of Canada, Map 18-1961, 1 inch = 4 miles.

- Dixon, W.J. and Massey, F.J., (1957), Introduction to statistical analysis: McGraw-Hill Book Co., Inc., New York.
- Donaldson, J.A., (1959), Trout Lake, Ontario, (geology): Geological Survey of Canada, Map 58-1959, 1 inch = 4 miles.
- _____ (1960), North Spirit Lake, Ontario, (geology): Geological Survey of Canada, Map 50-1960, 1 inch = 4 miles.
- Duffel, S., (1963), Geology, Red Lake-Lansdowne House area, Ontario: Geological Survey of Canada, Map 2-1963, 1 inch = 8 miles.

- Duffel, S., MacLaren, A.S. and Holman, R.H.C., (1963), Red Lake-Lansdowne House area, northwestern Ontario (bedrock geology, geophysical and geochemical investigations): Geological Survey of Canada, Paper 63-5.
- Emslie, R.F., (1960), Lake St. Joseph, Ontario, (geology): Geological Survey of Canada, Map 51-1960, 1 inch = 4 miles.
- _____, (1962), Wunnummin Lake, Ontario, (geology): Geological Survey of Canada, Map 1-1962, 1 inch = 4 miles.
- Engel, A.E.J., (1963), Geologic evolution of North America: Science, vol. 140, no. 3563, p. 143-152.
- Fleischer, M. and Stevens, R.E., (1962), Summary of new data on rock samples G-1 and W-1: Geochim. et Cosmochim. Acta, vol. 26, p. 525-543.
- Grout, F.F., (1938), Petrographic and chemical data on the Canadian Shield: Jour. Geol., vol. 46, p. 486-504.
- Harrison, G.R., (1939), M.I.T. wavelength tables: John Wiley and Sons, Inc. New York. 429 p.
- Herz, N. and Dutra, C.V., (1960), Minor element abundance in a part of the Brazilian shield: Geochim. et Cosmochim. Acta, vol. 21, p. 81-98.
- Holman, R.H.C., (1963a), Lake St. Joseph, Ontario, geochemistry (Cu in bedrock): Geological Survey of Canada, Map 50-1963, 1 inch = 4 miles.
- _____, (1963b), North Spirit Lake, Ontario, geochemistry (Cu in bedrock): Geological Survey of Canada, Map 51-1963, 1 inch = 4 miles.

- Holman, R.H.C., (1963c), North Caribou Lake, Ontario, geochemistry (Cu in bedrock): Geological Survey of Canada, Map 52-1963, 1 inch = 4 miles.
- (1963d), Wunnummin Lake, Ontario, geochemistry (Cu in bedrock):
 Geological Survey of Canada, Map 53-1963, 1 inch = 4 miles.
 (1963e), Miminiska, Ontario, geochemistry (Cu in bedrock):
 Geological Survey of Canada, Map 54-1963, 1 inch = 4 miles.
 (1963f), Lansdowne House, Ontario, geochemistry (Cu in bedrock):
 Geological Survey of Canada, Map 55-1963, 1 inch = 4 miles.
 (1963g), Fort Hope, Ontario, geochemistry (Cu in bedrock):
 Geological Survey of Canada, Map 56-1963, 1 inch = 4 miles.
 (1963g), Fort Hope, Ontario, geochemistry (Cu in bedrock):
 Geological Survey of Canada, Map 56-1963, 1 inch = 4 miles.
 (1963h), A regional geochemical reconnaissance of bedrock in the Red Lake-Lansdowne House area of Ontario; <u>in</u> Eight papers on regional geochemistry in Canada: Geological Survey of Canada: Paper 63-23, p. 28-39.
- Ingamells, C.O. and Suhr, N.H., (1963), Chemical and spectrochemical analysis of standard silicate samples: Geochim. et Cosmochim. Acta. vol. 27, p. 897-910.
- Jackson, G.D., (1961), Miminiska, Ontario, (geology): Geological Survey of Canada, Map 8-1961, 1 inch = 4 miles.
- _____, (1962), Fort Hope, Ontario, (geology): Geological Survey of Canada, Map 6-1962, 1 inch = 4 miles.
- Kroonen, J. and Vader, D., (1963), Line interference in emission spectrographic analysis: Elsevier Publishing Co., New York.

Krumbein, W.C., (1960), The "geological population" as a framework for analyzing numerical data in geology: Liverpool and Manchester Geological Journal, vol. 2, part 3, p. 341-368.

i.

- MacLaren, A.S., (1962), Aeromagnetic-geological interpretation, Red Lake-Lansdowne House area, Ontario: Geological Survey of Canada, Map 3-1963, 1 inch = 8 miles.
- Macpherson, H.G., (1958), A chemical and petrographic study of Precambrian sediments: Geochim. et Cosmochim. Acta, vol. 14, p. 73-92.
- Miller, R.L. and Kahn, J.S., (1962), Statistical analysis in the geological sciences: John Wiley and Sons, Inc., New York.
 Poldervaart, A., (1955), Chemistry of the earth's crust; <u>in</u> Crust of
 - the earth: Geological Society of America, Special Paper 62, p. 119-144.
- Poldervaart, A. and Green, J., (1959), Data sheet no. 12: Geotimes, vol. 3. no. 8.
- Prest, V.K., (1963a), Red Lake-Lansdowne House area, northwestern Ontario (surficial geology): Geological Survey of Canada, Paper 63-6.
- _____, (1963b), Surficial geology, Red Lake-Lansdowne House area, Ontario: Geological Survey of Canada, Map 5-1963, 1 inch = 8 miles.
- Prest, V.K. and Donaldson, J.A., (1963), Bedrock-drift distribution, Red Lake-Lansdowne House area, Ontario: Geological Survey of Canada, Map 4-1963, 1 inch = 8 miles.

Shaw, D.M. (1960), Spectrochemical analysis of silicates using the Stallwood jet: Canadian Mineralogist, vol. 6, p. 467.

(1964), Interprétation géochimique des éléments en traces

dans les roches cristallines: Masson et Cie, Paris, 237 p.

- Turekian, K.K. and Wedepohl, K.H., (1961), Distribution of the elements in some major units of the earth's crust: Geological Society of America Bulletin, vol. 72, p. 175.
- Vincent, E.A., (1960), Analysis by gravimetric and volumetric methods, flame photometry, colorimetry, and related techniques; <u>in</u> Smales, A.A. and Wager, L.R., (1960), Methods in geochemistry: Interscience Publishers, Ltd., New York, Ch. 3.
- Vinogradov., A.P., (1962), Average contents of the chemical elements in the principal types of igneous rocks of the earth's crust: Geochemistry, 1962, part 7, p. 641-664.

TABLE I

Description of Rock Types

Rock Type	Symbol
1.Leucocratic, pink and white, massive granite	LGR
2.Massive to slightly foliated granite. Includes un-	,
divided granitic rocks.	MGR
3. Massive porphyritic granite. Phenocrysts are potash	
feldspar.	PGR
4.Foliated granodiorite.	GD
5.Paragneiss, lit-par-lit gneiss, migmatite, mixed rocks,	
hybrid granitic rocks with abundant amphibolitic inclu-	GN
sions.	
6.Basic to ultramafic intrusive rocks. Comprised of	
diorite, quartz diorite, gabbro, olivine gabbro,	GAB
anorthositic gabbro, pyroxenite and minor melano-	
cratic granodiorite.	
7.Metasedimentary rocks composed mainly of slate,	
argillite, quartzite, greywacke, conglomerate and	SED
metamorphic equivalents. Also includes minor iron	
formation.	
8.Meta-basalt and meta-andesite, with minor acidic	
flows, tuff, breccia and agglomerate.	VOL
(Sequence of rock types is believed to be chronological,	

4

oldest at the base.)

TABLE II

Outcrop for Each Rock Type in Each Map Area as a Percent of Total Outcrop for Each Rock Type

Pools	(Trans	Map Sheet							Matol
AOCK	туре	1	2	3	4	5	6	7	IOCAĻ
1	LGR	66	34	-	-	-		-	100
2	MGR	16	17	15	11	13	14	14	100
3	PGR	15	24	46		2	4	9	100
4	GD	8	-	15	20	16	24	17	100
5	GN	-	33	-	12	30	14	11	100
6	GAB	-	-	-	31	-	63	6	100
7	SED	10	10	8	22	15	5	30	100
8	VOL	8	11	16	`21	22	4	18	100

÷

TABLE III

Outcrop for Each Rock Type in Each Map Area as a Percent

	Marea a	Map Sheet							% of Outcrop for		
KOCK	туре	1	2	3	4	5	6	7	Whole Area		
1	LGR	31	16	-	-	-	. •		7		
2	MGR	38	40	35	26	29	33	32	33		
3	PGR	7	11	21	-	1	2	4	7		
4	GD	13		26	34	27	41	28	24		
5	GN	· 🕳	19	-	7	17	8	6	8		
6	GAB		-	-	5	-	10	1	2		
7	SED	4	4	3	9	6	2	12	6		
8	VOL	7	10	15	19	20	4	17	13		
T	JTAL	100	100	100	100	100	100	100	100		

of Total Outcrop for Each Map Area

After Holman (1963a, b, c, d, e, f, and g).

Felsic rocks = 79% of total outcrop Basic rocks = 15% of total outcrop Sedimentary rocks = 6% of total outcrop

TABLE IV

Comparison of Number of Primary Samples with

Per Cent Outcrop for Each Rock Type

Rock Type	Number of Primary Samples *	% of Total Number of Primary Samples	% of Total Outcrop for <u>All Map Areas</u>
1 LGR	456	5•7	7
2 MGR	2603	32.2	33
3 PGR	614	7.6	7
4 GD	1808	22.4	24
5 GN	707	8.7	8
6 GAB	417	5.2	2
7 SED	464	5.7	6
8 VOL	1007	12.5	13
Total	8076	100.0	100

* These figures were derived from data on the distribution of primary samples given in Appendices I, II, III and IV.

TABLE V

Approximate Percentages of Granitic and Pre-existing Rocks Exposed in the Superior - Wyoming - Slave Province of North America¹

Rock Type	2
Granitic rock ²	76
Peridotite ³	0.1
Diorite and Quartz Diorite	2
Sedimentary rocks	5
Basic volcanics	12
Felsic volcanics	0.1
Other	4

1: After Engel(1963).

2: Includes quartz-monzonite, granodiorite, quartz porphyry and gneisses pervasively veined by granite.

3: Island - arc (Alpine) type.

TABLE VI

4

Major Constituents in Composites of Composite Samples for Each Rock Type

		(wt.	per cent	of oxid	le)			
	IGR CC-1	MGR CC-2	PGR CC-3	GD CC-4	GN CC-5	GAB CC-6	SED CC-7	VOL CC-8
SiO2	72.12	69.85	67.97	68.41	66.73	52.77	63.07	, 52.63
TiO	0.21	0.29	0.44	0.37	0,52	0.88	0.54	0.88
Alooz	14.78	15.67	15.57	15.75	15.83	14.73	14.52	14.33
Feoog	0.76	0.90	1.14	1.06	1.25	2.40	2.10	2.30
FeO	0.99	1.42	1.63	1.99	2.97	7.16	4.95	8.04
MnO	0.03	0.03	0.05	0.05	0.07	0,15	0.11	0.18
MgO	0.55	0.95	1.07	1.41	1.86	6.86	2.82	6.41
CaO	1.84	2.67	2.95	3•44	3.63	8.81	4.62	9.14
Na ₂ 0	3.89	4.28	4.09	4.38	3.84	2.66	2.92	2.44
ĸo	3.79	2.78	3.65	1.96	1.75	0.82	1.65	0.68
P_05	0.08	0.12	0.24	0.11	0.16	0.18	0.14	0.12
H_0+110°C	0.51	0.50	0.43	0.65	0.80	1.78	1.36	1.83
H_0-110°C	0.08	0.07	0.06	0.05	0.06	0.06	0.08	0.07
cō	0.04	0.06	0.07	0.07	0.06	0.22	0.27	0.58
Ign	(0.64)	(0.73)	(0.71)	(0.76)	(0.99)	(2.01)	(1.73)	(2.36)
F	0.02	0.03	0.05	0.03	0.03	0.03	0.04	0.03
Cl	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01
S	n.d.	n.d.	n.d.	n.d.	0.05	0.06	0.25	0.08
so ₃	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Sum	99.72	99.65	99.45	99.77	99.63	99.60	99.48	99.78
O = F	0.01	0.01	0.02	0.01	0.03	0.03	0.11	0.04
Total	99.71	99.64	99.43	99.76	99.60	99•57	99•37	99.74

All values for SiO₂, TiO₂, Al₂O₃, Fe₂O₃, FeO, MnO, MgO, CaO, Na₂O, K₂O, P_2O_5 and H_2O^+ are averages of duplicate analyses (see Appendix VI).

Analyst: J. Muysson

				(weight % oxi	de)				
	G	-1	W	-1	I	<u>'-1</u>	GR		
	This Paper ^a	Preferred Value ^b	This Paper ^a	Preferred Value ^b	This Paper ^a	Preferred Value ^C	This Paper ^a	Preferred Value ^C	
sio2	72.47	72.41	52.27	52.46	62.80	63.08	6 5.61	65.85	
Tio	0.26	0.26	1.10	1.07	0.56	0.56	0.65	0.62	
Alooz	14.26	14.27	14.87	15.03	16.36	16.31	14.92	14.54	
Fe ₂ O ₃	0.78	0.87	1.44	1.41	2.58	2.73	1.71	1.68	
FeO	0.96	0.98	8.75	8.74	2.93	2.82	2.07	2,12	
MnO	0.03	0.03	0.17	0.16	0.11	0.10	0.06	0.06	
MgO	0.34	0.41	6.65	6.62	1.82	1.82	2.31	* 2.34	
CaO	1.33	1.39	10.89	10.96	5.06	5.12	2.49	2.47	
Na ₂ 0	3.34	3.32	2.19	2.07	4.39	4.32	3.76	3.73	
ко	5.42	5.45	0.60	0.64	1.19	1.23	4.50	4.50	
P_0_	0.09	0.09	0.14	0.14	0.18	0.17	0.34	0.34	
HO	0.48	0.40	0.75	0.69	1.50	1.31	0.94	0.87	
cō,	0.08	0.08	0.06	0.05	0.06	0.08	0.14	0.37 ^d	
F	0.06	0.07		-	-	-	-	-	
O = F	0.03	0.03	-	-	-	-	-	-	
Total	99.87	100.00	99.88	100.04	99.54	99.65	9 9•50	99.49	

Major Constituents in the Interlaboratory Standards G-1 W-1 T-1 and GR

TABLE VII

Analyst: J. Muysson a

b Fleischer and Stevens (1962). The preferred value for SiO, in W-1 may be 52.63%, but this has not been firmly established. After a revision in techniques, J. Muysson obtains 52.63% SiO, in W-1 (pers. commn., J. Muysson).

С Ingamells and Suhr (1963).

d Total carbon by combustion, calculated as CO2, not acid soluble CO2. £

TABLE VIII

Details of Spectrographic Method

Spectrograph:	Jarrell-Ash 21 ft. grating, Wagsworth mount, first order dispersion of 5.2 A/mm.
Condensing optics:	25 cm. focal length cylindrical lens (horizontal axes) at the slit; 6.7 cm. focal length cylindri- cal lens (vertical axes) at 16.1 cm. from the slit; 5 mm. diaphragm at 27.5 cm. from the slit; arc 72.5 cm. from slit.
Arc gap:	4 mm.
Slit width:	30 microns
Slit length:	8 mm.
Intensity reduction:	7 step rotating sector (log intensity ratio of 0.2) at the slit. One wire-mesh screen at the diaphragm. No filter.
Voltage:	220 volts D.C. open circuit.
Current:	6.5 amps.
Exposure:	to completion, approximately 110 seconds.
Electrodes:	National Carbon Co. 'special' grade 1/8" graphite rod cathode. United Carbon Products ultrapurity preformed 1/8" graphite anode, 1/16" x 3/8" plain crater.
Charge:	l part sample to 1 part graphite containing 0.025 % PdCl ₂ and 0.125% In ₂ 0 ₃ .
Gas jet:	Stallwood jet with 80% argon - 20% oxygen mix- ture (supplied in mixed tank by Canadian Liquid Air Co.) at flow of 18 s.c.f.h.
Photographic Plates:	Eastman Kodak Type SAl (2200-3500Å) Eastman Kodak Type IIIF (3500-4800Å)
Processing:	3 minutes in Kodak D-19 developer at 20°C, 30 second stop bath of 3% acetic acid, 4 minutes in acid fix ('Amfix' fixer), 1 hour water wash.
Photometry:	Jarrell-Ash microphotometer, background correction applied.

TABLE IX

Data for Analysis Lines

Element	Analysis Line (Å)	Internal Standard Line (Å)	Sensitivity (p.p.m.)	Precision (%)
Be	3130.416	Pd 3242.703	0.1	6.4
v	3183.982	Pd 3242.703	10	5.8
Cu	3273.962	Pd 3242.703	1	17.2
Y	3327.875	Pd 3242.703	30	-
Zr	3391.975	Pd 3242.703	10	11.7
Ni	3414.765	Pd 3242.703	3	0 5
Ni	3414.765	Pd 3421.240	Ŧ	9.2
Co	3453.505	Pd 3242.703		0 <i>C</i>
Co	3453.505	Pd 3421.240	T	0.0
Mn	4034.490	Pd 3609.548	10	4.9
Sc	4246.829	Pd 3609.548	8	7.1
Cr	4254.346	Pd 3609.548	4	7.8
Ti	4305.916	Pd 3609.548	100	5.5
Ba	4554.042	Pd 3609.548	10	6.3
Sr	4607.331	Pa 3609.548	10	7.2

Wavelengths were taken from Harrison (1939).

Precision is expressed as the coefficient of variation in percent (see text)

TABLE X

Compositions of Synthetic Matrices

(weight %)

	Granodiorite Matrix	Gabbro Matrix
Si0 ₂	55	43
Al ₂ 03	15	15
Fe203	6	10
MgO	6	6
CaCO3	6	16
NaCl	6	7
KCL	6	3
	100	100

TABLE XI

Comparison	of	Trace	Element	Values	for G-	l and W	-1 with	Recommended	Values
			a 11 100 100 100 100		and the second se				and the second se

	This Paper ^a	Recommended Value ^b
Be	3.1	3.3
Ti	1160	1500
Cu	10	13
Mn	240	210
Zr	101	210
Sr	280	280
Ba	1850	1220

	This Paper ^{a W-1}	Recommended Value ^b
Be	1.5	0.8
Ti	6200	6400
Cr	76	120
v	213	240
Ni	51	80
Co	41	52
Cu	124	110
Mn	1540	1300
Sc	36	33
Zr	93	100
Sr	85	220
Ba	229	225

All values are in p.p.m.

^a Each value is the arithmetic mean of a triplicate analysis.

^b After Fleischer and Stevens (1962).

TABLE XII

Trace Element Correction Factors Based on Values for G-1 and W-1

ļ

Flomont	Correction	Factors
ET emente	Based on G-1	Based on W-1
Be	1: 06452	0 53333'
20	1.00472	
Ti	1.29310	1.03226
Cr	-	1.57895
V	-	1.12676
Ni	· 	1.56863
Co	-	1.26829
Cu	1.30000	0.88710
Mn	0.87500	0.84415
Sc	-	0.91667
Zr	2.07921	1.07527
Sr	1.00000	2.58823
Ba	0.65946	0.98253

TABLE XIII

	Analysis	of Va	riance	Table	
Two	Classifica	ations	with	Replica	tion

Source of Variation	D.F.	Sums of Squares	Mean Squares	To Test Hypothesis:	Statistic (F)
Map Areas	p-l	$s_i^2 = nq\Sigma (\bar{x}_{i} - \bar{x})^2$ i	$s_{i}^{2} = s_{i}^{2}/(p-1)$	y ₁ =y ₂ = = y _p	s ² ,/s ²
Rock Types	q-l	$s_j^2 = np \sum_j (\bar{x}_j - \bar{x})^2$	s ² j = S ² j/(q-1)	^z 1 ^{=z} 2 ⁼ = ^z q	₅² _j ∕₅²
Interaction	(p-1)(q-1)	$s_{ij}^{2} = n \sum_{i,j} (\bar{x}_{ij} - \bar{x}_{i,j} - \bar{x}_{$	s ² ij ⁼ S ² ij/(p-1)(q-1)	€ ² [*] 0	s ² /s ²
Duplicates	pq(n-l)	$s_{k(ij)}^{2} = \sum_{i,j,k} (x_{ijk} - x_{ij,k})^{2}$ $\bar{x}_{ij.}^{2}$	$s^{2} = S_{k(ij)}^{2} / pq(n-1)$		
Total	npq-l	$s_{T}^{2} = \sum_{i,j,k} (x_{ijk} - \bar{x})^{2}$	$MS_{T} = S_{T}^{2} / (npq-1)$		

Model: $x_{jk} = u + y_{j} + z_{j} + w_{ij} + e_{ijk}$

After Miller and Kahn (1962)

.

TABLE XIV

	Significance	of	Effects	for	the	Two-Way	Analys	<u>is of</u>	Variance	
of	Trace Elements	s ir	Rock T	rpes	2.3	4.5.6.7	and 8	for I	All Map Ar	eas

	Between Map Areas	Between Rock Types	Interaction
Be	-	**	_ ·
Ti	-	**	-
Cr	**	<i>₩</i>	*
V	-	**	
Ni	-	**	-
Co	-	**	-
Cu	-	-	-
Mn	*	**	-
Zr	-	* *	-
Sr	**	**	**
Ba	**	**	**

- = not significant at the 5% level

* = significant at the 5% level

** = very significant = significant at the 1% level

TABLE XV

Significance of Effects for the Two-Way Analysis of Variance of Trace Elements in Rock Types 2.3.4. and 5 for All Map Areas

	Between Map Areas	Between Rock Types	Interaction
		·	s.
De	-	-	- .
Ti	-	-	-
Cr	**	**	**
v	**	**	**
Ni	**	**	**
Co	**	**	**
Cu	-	-	_
Mn	-	**	-
Zr	-	-	-
Sr	**	**	•
Ba	**	**	**

- = not significant at the 5% level

* = significant at the 5% level

** = very significant = significant at the 1% level

TABLE XVI

Significance of Effects for the Two-Way Analysis of Variance of Trace Elements in Rock Types 6.7. and 8 for All Map Areas

<u></u>	Between Map Areas	Between Rock Types	Interaction
Be	_	*	
Ti	-	**	*
Cr	•	**	-
v	-	**	-
Ni	-	**	-
Co	-	**	-
Cu	-	-	-
Mn	-	**	-
Zr	*	*	** **
Sr	•	*	*
Ba	**	**	**

- = not significant at the 5% level

* = significant at the 5% level

** = very significant = significant at the 1% level

TABLE XVII

Weighted Major Element Averages for the Whole Area

(weight % oxide)

Weighted Average

S	i0 ₂		66.30	
T	10 ₂		0.47	
A:	1 ₂ 0 ₃		15.37	
F	e2 ⁰ 3		1.26 ^a	
F	eO		2.85	
M	nO	*	0.07	a Total Fe
M	gO		2.05	as Fe ₂ 0 is 4.43%
C	aO		3 . 97	
N	a ₂ 0		3.87	
ĸ	2 ⁰		2.25	
P	2 ⁰ 5		0.13	1
H	20+		0.81	
н	2 ⁰⁻		0.06	
C	02	<i>.</i>	0.15	
F	,		0.03	
C:	1		0.01	
S			0.03	
S	°3		-	
0:	=F (0.01	
T	OTAL		99.67	

These averages were derived from major element analyses (Table VI) of 8 composites (CCl to CC8) of the 102 composite samples. The averages were obtained by weighting the data in proportion to the outcrop for each rock type in the whole area (Table III).

Weighted Major Element Averages for the Whole Area Compared with Estimates of Crustal Abundance (weight % oxide) Poldervaart^b Vinogradov^C (1962) Turekian & Wedepohl(1961)^d Model I Model II This Paper Poldervaart (1955) and Green 66.30 66.4 63.11 66.74 59.04 0.47 0.6 0.75 0.68 1.30 . 1.7

	15.37	15.5	15.21	14.49	14.74	15.3	
Fe ₂ O ₃	1.26 ^e	1.8 ^f	6.65 ⁸	5.00 ⁸	8.58 ^g	2.9	
FeO	2.85	2.8	— .	-	-	5.8	
MnO	0.07	0.1	0.13	0.08	0.13	0.3	
MgO	2.05	2.0	3.10	1.97	3.93	5.1	
CaO	3.97	3.8	4.14	6.13	6.94	8.4	
Na ₂ 0	3.87	3.5	3.37	3.26	2.47	3.0	
ко	2,25	3.3	3.01	3.52	1.93	1.9	
P_0_	0.13	0.2	0.21	0.18	0.22	0.2	
н_0+	0.81	-	-	-	-	-	
н_0-	0.06	-	-	- .	-	-	
cō	0.15	-	0.08	-	-	0.4	
F	0.03	-	0.07	0.06	0.05	-	
СІ	0.01	-	0.02	0.01	0.01	-	
S	0.03	-	0.05	0.10	0.15	-	
so3	-	-	-	. –	-	-	
0=F	0.01		0.05	0.06	0.07		
TOTAL	99.67	100.0	99.85	102,16	99.42	100.2	

i.

TABLE XVIII

sio2

TiO2

(1959)

55.2

TABLE XVIII Continued

- ^a These averages were derived from major element analyses of 8 composites (CCl to CC8) of the 102 composite samples. The averages were obtained by weighting the data in proportion to the outcrop for each rock type in the whole area.
- b Average composition of continental shield crystalline surface rocks.
- c Crustal abundance obtained by assuming that the crust is composed of two parts of granite and one part of basalt.
 - Model I: Crustal abundance based on the proportion of exposed igneous rocks on the surface of the continents.

Model II: Crustal abundance based on the assumption of a crust composed primarily of equal parts of high-calcium granitic rocks and basaltic rocks.

e Total Fe as Fe₂0₃ is 4.43%.

f Total Fe as Fe_2O_3 is 4.9%.

g Total Fe as Fe₂O₂.

d

TABLE XIX

Weighted Trace Element Averages for Each Map Area and for Whole Area

					Weighted Averages			
	1	2	3	4	5	6	7	for Whole Areaa
Be	1.01	1.13	1.23	0.98	1.04	0.89	1.27	1.08
Ti	2210	2300	2610	3130	2490	2760	2900	2630
Cr	47	44	39	93	60	40	54	54
v	52	54	61	88	80	62	81	68
Ni	16	15	16	34	24	20	26	22
Co	7.2	10	11	15	14	10	15	12
Cu	11	14	14	21	21	17	24	17
Y	2 30	< 30	< 30	<u> </u>	< 30	<u> </u>	< 30	く 30
Mn	600	614	686	974	881	672	921	764
Sc	< 8	<8	< 8	<8	ू <8	< 8	< 8	∠8
Zr	64	47	53	67	56	60	62	58
Sr	532	450	668	445	437	636	436	515
Ba	793	611	824	538	451	910	415	649

All values are in p.p.m.

Weighting factors in Table III

^a Average of columns 1 to 7

				Rock 1	lype				
	l (LGR)	2 (MGR)	3 (PGR)	4 (GD)	5 (GN)	6 (gab)	7 (SED)	8 (VOL)	-
Be	1.07	1.04	1.00	0.99	0.95	1.25	1.20	1.39	
Ti	1350	1870	2320	2510	2850	4580	3250	4800	
Cr	< 4	6.0	6.0	16	36	279	122	239	
v	19	28	37	47	70	179	98	215	
Ni	3.3	3.5	5.0	8.7	14	115	38	91	
Co	< 1	4.2	5.3	5.2	9.4	37	16	47	
Cu	4.0	8.5	10	13	22	43	22	48	
Y	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30	
Mn	358	402	481	508	718	1740	1270	2140	
Sc	< 8	< 8	< 8	< 8	< 8	16	<8	19	
Zr	49	48	52	57	62	68	93	80	
Sr	459	539	788	645	.464	363	342	234	
Ba	858	771	1200	606	510	358	394	272	

TABLE XX

Weighted Trace Element Averages for Each Rock Type (uncorrected)

All values are in p.p.m.

Derived from the 102 composite samples

ጠለገ	יסד דם	VVT
TVI	يتبده	VVT

	for the Whole Area (uncorrected)					
	Composite Samples ^a	Composites of Composite Samples				
Be	1.08	0.64				
Ti	2630	2590				
Cr	54	63				
V	68	82				
Ni	22	23				
Co	12	11				
Cu	17	13				
Y	< 30	< 30				
Mn	764	735				
Sc	< 8	< 8				
Zr	58	44				
Sr	515	549				
Ba	649	494				

All values are in p.p.m.

^a These averages were derived from trace element data for 102 composite samples (from Table XIX).

^b These averages were derived from trace element data for 8 composites (CCl to CC8) of the 102 composite samples (from Table III and Appendix VIII).

Area	Corrected to Agree with Pref.	erred Values for W-1
	Composite Samples ^a	Composites of Composite Samples
Be	0.58	0.34
Ti	2710	2670
Cr	85	99
v	77	92
Ni	35	36
Co	15	14
Cu	15	12
Y	< 30	<u>ح 3</u> 0
Mn	645	620
Sc	< 8	< 8
$\mathbf{Z}\mathbf{r}$	° 62	47
Sr	1330	1420
Ba	638	485

Comparison of Weighted Trace Element Averages for the Whole

TABLE XXII

All values are in p.p.m.

^a These averages were derived from trace element data for 102 composite samples.

^b These averages were derived from trace element data for 8 composites (CCl to CC8) of the 102 composite samples.

TABLE XXIII

Summary of Significant Variations

Significant Regional Variations

All Rock Types	Felsic Rock Types	Basic and Sedimentary Rock Types
Cr	Cr	Cr
Mn	v	Zr
Sr	Ni	Sr
Ba	Co	Ba
/	Sr	
	Ba	

Significant Variations Between Rock Types

All F	Rock Types	Felsic Rock Type	es Basic and Sedimentary Rock Types
	Be	Cr	Be
	Ti	V	Ti
	Cr	Ni	Cr
	v	Co	v
	Ni	Mn	Ni
	Co	Sr	Co
	Mn	Ba	Mn
	Zr		Zr
	Sr		Sr
	Ba		Ba

Cu shows no significant variations of any kind.

é

	Comparison of Trace Element Averages for Whole Area with							
		E	stimates of	Crusta	l Abundance			
	This A	Paper ^a B	<u>Turekian &</u> Model I	Wedep	ohl(1961) ^b Model II	Vinogradov ^C (1962)	Shaw ^d (1964)	
Be	1.08	0.58	2.2	4	1.5	3.8	2	
Ti	2630	2710	4100		7800	4500		
Cr	54	85	65		111	83	90 -	
V	68	77	99		169	90	100	
Ni	22	35	37		75	58	80	
Co	12	15	12		28	18	27	
Cu	17	15	35		64	47	70	
Y	< 30	< 30	34		28	29	40	
Mn	764	645	650		970	1000	1000	
Sc	. < 8	< 8	14		22	10	15	
Zr	58	62	160		130	170	156	
Sr	515	1330	300		450	340	450	
Ba	649	638	611		377	650	250	

TABLE XXIV

All values are in p.p.m.

- A: Weighted trace element averages for the whole area, derived from data for 102 composite samples.
 - B: Weighted trace element averages for the whole area, derived from data for 102 composite samples and corrected to agree with preferred values for W-1.

^b Model I: Crustal abundance based on the proportion of exposed igneous rocks on the surface of the continents. Model II: Crustal abundance based on the assumption of a crust composed primarily of equal parts of high-calcium granitic rocks and basaltic rocks.

^C Crustal abundance obtained by assuming that the crust is composed of two parts of granite and one part of basalt.

d Estimates of crustal abundance taken from various sources in the literature.

		Felsic Rock Types							
	This A	Paper ^a B	Turekian & W A	ledepohl(1961) ^b B	Vinogradov ^C (1962)	Herz & Dutra ^d (1960)	Shaw ^e (1964)		
	1.02	1.09	2	3	5.5	4.1	3.2		
	2150	2780	3400	1200	2300		d m		
•	12	-	52	26	25	7.7	2		
	38	-	88	44	40	29	(67)?		
	6.2	-	15	4.5	8	8.3	5.8		
	4.8	-	7	1	5	3.8	3.0		
	8.9	12	40 40	10	20	11	16		
	<30	-	35	40	34	82	~68		
	469	410	540	390	600	-	390		
	< 8	-	14	7	- 3	6.5	11		
	63	131	140	175	200	220	140-175		
	579	579	440	100	450	160	440-1000		
	742	489	420	840	800	860	430		

Comparison of Trace Element Averages for

All values are in p.p.m.

Be Ti Cr V Ni Co Cu Y Mn Sc Zr d's " \mathbf{Sr} Ba

> a A: Trace element averages for felsic rock types (rock types 1,2,3,4, and 5) weighted in proportion to their relative outcrop in the whole area. These values have not been corrected to agree with G-1.

B: Same as A but corrected to agree with preferred values for G-1 (Table XII).

b A: High - calcium granitic rocks.

B: Low - calcium granitic rocks.

c Felsic rocks (granites, granodiorites, etc.).

d Granitic rocks in a part of the Brazilian Shield.

e Averages for felsic rocks, derived from various sources in the literature.

TABLE XXVI

	This Paper ^a				Vinogradov ^b	Turekian and ^C	 Shaw ^d	
	Rock Type 6 (GAB)		6 Rock Type 8 (VOL)		(1962)	Wedepohl(1961)	(1964)	
	A	В	A	В				
Be	1.25	0.67	1.39	0.74	0.4	l	1.0 .	
Ti	4580	4730	4800	4960	9000	12200	-	
Cr	279	441	239	378	200	170	340	
V	179	202	215	242	200	250	220	
Ni	115	180	91	143	160	130	97	
Co	37	47	47	60	45	48	32	
Cu	43	38	48	43	100	87	149	
Y	< 30	-	< 30	-	20	21	~ 40	
Mn	1740	1470	2140	1810	2000	1390	1160	
Sc	16	15	19	17	24	30	37	
\mathbf{Zr}	68	73	80	86	100	110	110	
Sr	363	940	234	606	440	465	465	
Ba	358	352	272	267	300	333	280	

Comparison of Trace Element Averages for Mafic Rock Types

All values are in p.p.m.

- a A: Weighted trace element averages for each of the mafic rock types. These values have not been corrected to agree with preferred values for W-1.
 - B: Same as A for corrected to agree with W-1 (Table XII).
- b Mafic rocks (basalts, gabbros, etc.).
- c Basaltic rocks.
- d Averages for basic rocks derived from various sources in the literature.
TABLE XXVII

	Comparison	of Trace Element Ave	rages for
		Sedimentary Rock Typ	<u>e</u>
	This Paper a Rock Type 7	MacPherson ^b (1958)	Herz and Dutra ^C (1960)
Be	1.20	• x	1
Ti	3250	-	-
Cr	122	212	300
V	98	175	200
Ni	38	108	100
Co	16	-	9
Cu	22	47	20
Y	<3 0	-	30
Mn	1270	626	-
Sc	< 8	-	9
Zr	93	-	200
Sr	342	-	400
Ba	394	441	900

All values are in p.p.m.

- ^a Weighted trace element averages for the sedimentary unit. These values have not been corrected to agree with preferred values for W-1.
- b Averages for Canadian Pre-Cambrian greywackes, argillites and low grade schists.
- ^C Averages for Pre-Cambrian metasedimentary rocks in a part of the Brazilian Shield.

Figure 1

Location of Area

Scale: 1 inch to 400 miles

Figure 2

Key to Location of Map Sheets

APPENDICES

J.

					Rock	. Type				
		1 1	2	3	4	5	6	7	8	Total
	1	297	480	90	251	4	51	93	89	1355
	2	159	326	49	13	245	29	29	106	956
Area	3	-	662	364	390	2	40	87	251	1796
	4	-	183	11	400	130	61	52	140	977
Map	5	-	216	28	234	160	37	100	160	935
	6	-	272	22	223	39	71	12	35	674
	7	-	464	50	297	127	128	91	226	1383
То	tal	456	2603	614	1808	707	417	464	1007	8076

APPENDIX I

Number of Primary Samples for Each Rock Type and Map Area

đ,

APPENDIX II

	1	1			Rock Ty	pe			
		1	2	3	4	5	6	7	88
	l	3.678	5•943	1.114	3.108	0.049	0.631	1.152	1.102
	2	1.969	4.037	0.607	0.161	3 .03 4	0.359	0.359	1.312
Map Area	3	-	8.197	4.507	4.829	0.025	0.495	1.077	3.108
	4	-	2.266	0.136	4.953	1.610	0.755	0.644	1.733
	5	-	2.675	0.347	2.897	1.981	0.458	1.238	1.981
	6	-	3.368	0.272	2.761	0.483	0.879	0.149	0.433
	7	-	5.745	0.619	3.678	1.573	1.585	1.127	2.798

Number of Primary Samples as Percentage of the Grand Total for All Map Areas and Rock Types

Grand Total is 8076 (100.000%)

66

÷.,

APPENDIX III

					Rock	Туре			
		1	2	3	4	5	6	7	8
	1	65.13	18.44	14.66	13.88	0.57	12.23	20.04	8.84
	2	34.87	12.52	7.98	0.72	34.65	6.95	6.25	10.53
Area	3	-	25.43	59.28	21.57	0.28	9.59	18.75	24.93
	4	-	7.03	1.79	22,12	18.39	14.63	11.21	13.90
Map	5	-	8.30	4.56	12.94	22.63	8.87	21.55	15.89
	6	-	10.45	3.58	12.33	5.52	17.03	2.59	3.48
	7	-	17.83	8.14	16.43	17.96	30.69	19.61	22.44
To	tal	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Percentages of Total Number of Primary Samples for Each Rock Type in Each Map Area

%

67

APPENDIX :	IV	
------------	----	--

Percentages of Total Number of Primary Samples for Each Map Area in Each Rock Type

	Rock Type													
		1	2	3	4	5	6	7	8	Total				
Map Area	1	21.92	35.42	6.64	18.52	0.29	3.76	6.86	6.57	100.00				
	2	16.63	34.10	5.13	1.36	25.63	3.03	3.03	11.09	100.00				
	3	-	36.86	20.27	21.71	0.11	2.23	4.84	13.97	100.00				
	4	' _	18.73	1.13	40.94	13.31	6.24	5.32	14.33	100.00				
	5°	-	23.10	2.99	25.03	17.11	3.96	10.69	17.11	100.00				
	6	and the	40.36	3.26	33.09	5.79	10,53	1.78	5.19	100.00				
	7	-	33.55	3.61	21.47	9.18	9.25	6.58	16.34	100.00				

68

 \leq

APPENDIX V

C111149C442199C112148C45169C121240C45269C122240C46131C13145C46230C13245C46230	9 5 1 2 3 3 3 3
C112148C45169C121240C45269C122240C46131C13145C46230C13245C46230	5 5 1 2 3 5 5 5 5 5 5 5 5 5 5 5
C121240C45269C122240C46131C13145C46230C13245C47136	5 1' 5 6 7 7 7 3
C122 240 C461 31 C131 45 C462 30 C132 45 C471 34	1 0 6 5 0 0 3
C131 45 C462 34	0 6 0 0 3
	6 6 0 0 3
	6 0 0 3
C141 126 C472 26	2 2 3
C142 125 C481 70	5 3
C_{151} 2 C_{482} 70	3
C_{152} C_{521} C_{5	
$C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 $	8
C_{162} C_{531} C_{531} C_{531} C_{531} C_{531}	L
	• L
	7 7
	י ס
	\sim
CIO2 44 C771 CA	2
	2
$\frac{1}{1}$	1 0
105 = 105 = 105 = 1000 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100	5
	5
C231 25 C572 50)
	5
C241 7 C582 80)
C242 6 C621 130	5
C251 123 C622 130	5
C252 122 C631 11	L
C261 15 C632 11	L _{4,7}
C262 14 C641 112	273
C271 15 C642 111	L P
C272 14 C651 20	ک
C281 53 C652 19	Ð
C282 53 C661 36	5
C321 331 C662 35	5
C322 331 C671 6	6
C331 182 C672 6	6
C332 182 C681 18	8
C341 195 C682 17	7
C342 195 C721 232	2
C351 1 C722 232	2
C 352 1 C 7 31 26	5
C361 20 C732 2 ¹	4
C 362 20 C 741 150	5
C371 44 C742 147	7
C 372 43 C751 64	4
C381 126 C752 6	3
C382 125 C761 64	4
C421 93 C762 61	4
C422 90 C771 L4	Ś
	5
CL432 5 C/72 -	~ Z
C441 201 C782 117	3

Number of Primary Individuals used to <u>Make Each Composite</u>

APPENDIX VI

	CC-	.1	CC	-2	CC	-3	CC	_4	CO	-5	CC-	6	cc-	7	CC-	8
	(IGF	2)	(MG	R)	(PG	R)	(G	D)	(G	N)	(GAB)	(SE	D)	(VOL)
SiO TiO ² Al O Fe ² O ³ Fe ⁰ MnO MgO CaO	71.96 0.21 14.81 0.78 0.99 0.03 0.56 1.82	72.28 0.22 14.76 0.75 0.99 0.03 0.54 1.86	69.80 0.29 15.70 0.90 1.43 0.03 0.95 2.67	69.90 0.29 15.64 0.91 1.42 0.04 0.95 2.68	67.91 0.44 15.49 1.16 1.64 0.06 1.06 2.96	68.03 0.44 15.66 1.12 1.63 0.05 1.08 2.95	68.42 0.37 15.80 1.05 1.99 0.05 1.35 3.45	68.41 0.37 15.70 1.08 1.99 0.05 1.47 3.44	66.79 0.52 15.89 1.25 2.97 0.07 1.86 3.61	66.67 0.53 15.77 1.25 2.97 0.07 1.86 3.66	52.74 0.88 14.78 2.38 7.18 0.15 6.87 8.77	52.80 0.88 14.68 2.42 7.14 0.15 6.85 8.86	63.02 0.54 14.48 2.06 4.99 0.11 2.84 4.62	63.12 0.54 14.57 2.15 4.91 0.11 2.81 4.62	52.69 0.88 14.32 2.33 8.02 0.18 6.38 9.16	52.57 0.88 14.34 2.28 8.06 0.18 6.45 9.13
Na_O K_O P_O H_O+110°C	3.90 3.81 0.08 0.57	3.89 3.78 0.08 0.45	4.27 2.77 0.12 0.49	4.29 2.79 0.12 0.51	4.08 3.68 0.24 0.45	4.11 3.63 0.24 0.42	4.40 2.00 0.11 0.61	4.37 1.93 0.12 0.70	3.83 1.73 0.16 0.74	3.86 1.77 0.16 0.86	2.64 0.81 0.17 1.78	2.68 0.84 0.19 1.78	2.94 1.64 0.14 1.32	2.91 1.67 0.14 1.41	2.47 0.67 0.12 1.81	2.42 0.69 0.13 1.86
H-20-110°C Co, Ign F	0.08 0.04 (0.64) 0.02		0.07 0.06 (0.73) 0.03		0.06 0.07 (0.71) 0.05		0. 0. (0. 0.	05 07 76) 03	0. 0. (0. 0.	06 06 99) 03	0. 0. (2. 0.	06 22 01) 03	0. 0.26 (1. 0.	08 0.28 73) 04	0. 0.58 (2. 0.	07 0.59 36) 03
s s0 ₃	n. n.	01 .d. .d.	0. n. n.	01 d. d.	0. n. n.	01 d. d.	0. n. n.	01 d. d.	0. 0. n.	01 05 d.	0. 0. n.	02 06 d.	0. 0. n.	01 25 d.	0. 0. n.	01 08 d.
Sum O=F	99.67 0.01	99.78 0.01	99 .59 0.01	99.71 0.01	99•36 0•02	99•55 0•02	99.76 0.01	99•79 0.01	99.63 0.03	99.64 0.03	99.54	99.66	99•34 0.11	99.62	99 . 80 0.04	99•77
Total	99.66	99.77	99.58	99.70	99.34	99.53	99.75	99.78	99.60	99.61	99.51	99.63	99.23	99.51	99.76	99.73
Total Fe as Fe ₂ 0 ₃	1.88	1.85	2.49	2.49	2.98	2.93	3.26	3.29	4.55	4.55	10.33	10.39	7.61	7.61	11.24	11.24

Duplicate Major Element Analyses of Composites of Composite Samples (CC-1 to CC-8) (weight % of oxide)

H₂O-, CO₂, Ign, F, Cl, S, and SO₂ were not analyzed in duplicate except for CO₂ in CC-7 and CC-8.

Analyst: J. Muysson

APPENDIX VII

Trace Element Analyses for Composite Samples

Sample	Be	Ti	Cr	v	Ni	Co	Cu	¥	Mn	Sc	Zr	Sr	Ba
C 111	0.93	1190	tr	18	tr	tr	2.9	n.d.	295	n.d.	51	340	954
C112	0.71	1310	tr	23	3.3	tr	3.5	tr	429	n.d.	54	592	896
C121	1.08	2400	7.4	40	2.4	3.5	9.0	n.d.	440	n.d.	64	592	761
C12 2	1.17	2550	8.2	48	6.1	tr	12	tr	474	n.d.	72	646	803
C1 31	1.02	2080	tr	36	tr	tr	4.6	n.d.	518	n.d.	77	563	1090
C1 32	0.85	3090	4.3	52	5.0	7.0	4.0	n.d.	680	n.d.	65	806	1100
C141	1.19	2300	13	48	10	5.4	14	tr	546	n.d.	48	631	863
C142	0.85	2540	7.3	47	5•3	6.3	9.9	tr	563	n.d.	81	638	682
C151	1.24	5350	97	136*	19	27	6.4	tr	1120	tr	38	204	140
C152	0.75	6170	102	129	19	26	2.8	n.d.	1390	n.d.	52	227	147
C1 61	1.19	6570	269	143	123	36	19	tr	1220	11	122	617	648
C16 2	1.50	6030	173	181	45	35	28	tr	1520	15	130	569	804
C171	0.94	2460	241	103	70	20	32	n.d.	1350	18	69	133	289
C 172	1.27	3490	276	152	56	23	25	tr	1320	tr	70	272	317
C181	1.19	3480	453	187	147	52	53	tr	2120	15	63	196	246
C18 2	1.31	4250	467	216	139	50	40	tr	2090	19	105	195	340
C211	2.17	1520	n.d.	14	4.3	tr	5.4	n.d.	364	n.d.	47	444	792
C212	0.93	1560	n.d.	13	2.0	tr	5.6	tr	337	n.d.	33	446	661

4

	•				••••								
Sample	Be	Ti	Cr	v	Ni	Co	Cu	Y	Mn	Sc	Zr	Sr	Ba
C221	0.67	1970	7.5	28	5.3	6.5	9.8	n.d.	377	n.đ.	48	309	634
C222	1.43	1960	tr	22	2.9	tr	9.5	n.d.	443	n.d.	35	592	657
C231	1.02	3040	tr	50	3.8	6.7	18	tr	496	n.d.	44	779	1060
C232	0.91	1910	4.7	30	2.3	3.5	5.3	tr	413	n.d.	43	682	993
C241	0.68	1660	n.d.	22	n.d.	n.d.	6.4	n.d.	367	n.d.	34	670	7 03
C242	1.02	1920	tr	29	6.4	7.7	10	tr	451	n.d.	46	328	327
C251	0.97	2330	12	55	7.3	tr	10	tr	495	n.d.	49	436	453
C252	0.71	2370	25	62	. 10	8.2	15	n.d.	655	n.d.	58	473	443
C261	1.26	4800	255	219	73	40	27	tr	1580	17	114	288	505
C262	1.10	3560	619	152	261	40	25	n.d.	1290	17	51	106	193
C271	0.70	2870	409	101	101	21	22	n.d.	1080	9.9	64	136	176
C272	1.07	3070	100	118	30	11	23	tr	1110	7.4	42	341	434
C281	1.57	4240	181	210	65	42	44	tr	1990	15	49	242	285
C282	1.71	4360	353	227	105	51	47	tr	1840	19	75	196	218
C321	0.91	1770	tr	25	1.8	2.3	4.5	tr	310	n.d.	52	631	809
C322	1.59	1790	tr	17	tr	tr	4.3	n.d.	363	n.d.	44	646	955
C331	0.94	2150	6.6	37	3.9	5.6	11	n.d.	447	n.d.	45	750	1150
C332	1.20	2310	tr	37	8.5	tr	9.8	n.d.	497	n.d.	57	1020	1580

APPENDIX VII (Continued)

72

.

					APP	ENDIX VI	I (Conti	nued)					
Sample	Be	Ti	Cr	v	Ni	Co	Cu	Y	Mn	Sc	Zr	Sr	Ba
C341	1.01	2610	10	49	7.5	6.0	11	n.d.	513	n.d.	57	646	541
C342	1.46	2310	11	43	7.6	tr	17	n.d.	580	n.d.	39	869	749
C351	0.73	3320	20	65	13	11	13	n.d.	580	tr	89	374	802
C352	0.93	4200	29	88	19	16	11	tr	645	tr	113	728	727
C361	1.16	4600	1193	155	97	29	29	n.d.	1300	16	66	159	365
C362	1.77	4280	321	170	102	50	55	n.d.	2180	22	48	249	219
C371	1.09	2670	68	7 9	35	14	15	tr	818	n.d.	81	465	426
C372	1.35	4080	86	126	30	21	28	tr	991	tr	96	612	569
C381	1.43	5090	199	193	71	47	-37	tr	2180	18	63	361	402
C38 2	1.39	5240	219	216	74	44	38	tr	1810	24	80	237	197
C421	0.87	2200	7.4	35	3.1	3.5	12	tr	453	n.d.	49	700	857
C422	0.76	1610	7.0	32	4.8	6.2	8.5	n.d.	373	n.d.	63	390	761
C431	1.39	15800	n.d.	95	4.5	7.6	102	37	1500	n.d.	287	2270	458
C432	0.56	3020	4.3	20	4.3	6.1	17	tr	476	n.d.	55	1300	442
C441	0.94	2400	tr	50	7.7	tr	13	tr	503	n.d.	48	546	506
C442	0.86	2450	12	37	7.7	tr	12	tr	440	n.d.	72	476	4 7 2
C451	0.54	3300	47	61	13	8.1	22	n.d.	802	n.d.	80	577	730
C452	0.65	2180	17	55	9.9	9.0	19	n.d.	628	n.d.	49	482	509

73

ć.,

Sample	Be	Ti	Cr	V	Ni	Co	Cu	Y	Mn	Sc	\mathbf{Zr}	Sr	Ba
C461	1.02	4620	355	171	124	37	57	n.d.	2860	17	54	280	398
C 462	1.14	5070	569	145	264	43	51	n.d.	1840	23	69	141	209
C471	1.75	4050	165	108	42	19	17	n.d.	1390	tr	80	374	465
C472	0.71	4630	101	115	31	16	15	n.d.	1420	tr	87	446	515
C481	1.49	5130	222	216	75	57	42	tr	2270	17	100	235	360
C482	1.23	5270	303	225	103	40	44	tr	2070	16	78	242	253
C521	0.71	1020	tr	17	1.6	2.5	3.2	n.d.	416	n.d.	29	481	570
C522	0.91	1130	n.d.	13	2.6	tr	8.2	tr	419	n.d.	30	456	533
C531	0.79	1290	9.1	26	5.7	n.d.	7.9	n.d.	293	n.d.	. 40	496	1230
C 532	1.02	1950	9.7	28	4.2	tr	18	tr	447	n.d.	67	527	572
C541	0.99	2150	24	48	9.9	6.0	11	tr	453	n.d.	48	663	530
C542	0.85	2030	6.7	36	5.6	6.6	10	n.d.	436	n.d.	52	633	548
C551	1.25	2960	63	98	21	12	32	tr	652	tr	82	372	400
C 552	1.01	3100	62	82	22	11	28	n.d.	648	tr	60	362	378
C561	1.27	4490	194	182	61	42	82	tr	1750	21	53	268	268
C56 2	1.25	5080	207	175	83	42	43	tr	2150	20	68	256	232
C571	1.56	2920	99	93	29	15	19	tr	793	tr	123	247	275
C572	1.50	2730	101	83	26	12	15	tr	993	n.d.	99	280	378

APPENDIX VII (Continued)

					APPE	NDIX VII	(Contir	ued)					
Sample	Be	Ti	Cr	v	Ni	Co	Cu	Y	Mn	Sc	Zr	Sr	Ba
C581	1.45	4430	208	219	80	55	51	tr	2640	18	78	274	255
C58 2	1.20	4660	176	215	79	36	50	n.d.	2080	22	71	150	253
C621	0.74	1570	5.8	24	4.6	5.0	10	n.d.	354	n.d.	53	420	1270
C622	0.51	2100	8.8	30	3.6	tr	10	n.d.	423	n.d.	50	768	1280
C631	1.05	1940	n.d.	27	tr	tr	5.8	n.d.	442	n.d.	53	596	1350
C632	0.99	3400	tr	32	1.5	tr	20	tr	426	n.d.	75	1250	2120
C641	0.95	2470	7.6	37	4.3	4.4	14	tr	496	n.d.	52	682	679
C642	1.03	2990	9.8	54	7.6	6.8	15	tr	577	n.d.	70	810	886
C651	0.65	2740	19	55	10	7.4	10	n.d.	846	n.d.	56	655	888
C652	0.73	3560	19	70	10	6.8	19	n.d.	807	n.d.	59	573	655
C661	1.41	4310	162	192	71	39	28	tr	1430	tr	80	613	424
C66 2	1.23	4310	225	178	86	32	51	n.d.	1480	14	60	298	375
C671	0.80	4590	106	72	23	7.8	4.0	tr	763	13	133	283	829
C672	0.90	3530	47	65	20	8.8	11	tr	913	n.d.	149	625	791
C681	1.28	6830	387	229	294	40	96	n.d.	2280	21	68	288	424
C68 2	1.38	4140	214	203	81	49	42	tr	2060	16	56	286	263
C721	1.87	1850	9.6	27	5.2	4.9	6.7	n.d.	380	n.d.	35	418	459
C722	1.25	2000	tr	37	5.5	tr	10	tr	3 96	n.d.	38	488	449

75

.

.

	APPENDIX VII (Continued)												
Sample	Be	Ti	Cr	v	Ni	Co	Cu	Y	Mn	Sc	Zr	Sr	Ba
C731	0.62	2200	15	34	4.1	6.2	10	n.d.	483	n.d.	45	729	940
C 732	0.82	1710	6.8	22	2.1	3.6	8.6	n.d.	415	n.d.	33	496	763
C741	0.99	2790	30	57	14	7.1	17	tr	523	tr	65	607	453
C742	0.86	2780	45	60	17	8.7	15	tr	506	tr	50	521	436
C751	0.64	4200	41	79	17	11	40	n.d.	1710	n.d.	68	468	522
C75 2	2.42	2950	57	64	20	9.0	43	n.d.	685	tr	50	509	615
C761	1.39	6630	184	190	88	38	>1000	tr	1570	29	82	141	211
C762	1.26	5430	260	258	89	42	28	tr	1610	16	90	201	164
C771	1.28	2440	49	86	29	20	34	tr	1170	tr	104	318	279
C 772	1.09	2940	64	77	31	15	24	n.d.	1990	tr	104	365	358
C781	1.57	5240	176	225	86	51	54	n.d.	2310	27	112	214	232
C78 2	1.25	4520	154	206	78	48	62	tr	1890	16	76	209	200

All values are the geometric means of triplicate analyses and are listed in p.p.m.

n.d. = not detected

tr. = trace

			Tra	ice Eleme	nt Analy	ses for	Composit	es of Co	mposite	Samples	(CC-1 to	<u>cc-8)</u>		
	Sample	Be	Ti	Cr	V	Ni	Co	Cu	Y	Mn	Sc	Zr	Sr	Ba
	CC1	0.53	1340	n.d.	28	3.6	n.d.	5.4	n.đ.	380	n.d.	39	510	580
	CC2	0.53	1870	tr	39	6.1	tr	6.8	n.d.	460	n.d.	33	590	480
	CC3	0.61	2700	tr	45	5.0	6.4	9.3	tr	540	n.d.	61	1240	1640
	CC4	0.54	2270	17	50	8.6	9.2	8.3	n.d.	570	n.d.	35	620	450
	CC5	0.57	3300	49	93	25	15	14	n.d.	790	n.d.	44	400	350
	CC6	1.11	4500	360	241	95	41	29	tr	1610	17	76	310	245
	CC7	0.65	3200	150	119	43	20	18	tr	1110	tr	70	330	285
	. CC8	1.16	4600	290	254	89	41	35	tr	1690	20	65	194	173
											:	t /~		
Weighte for Who	d Averag le Area	^e 0.64	2590	63	82	23	11	13	<30	735	<8	44	549	4 94

APPENDIX VIII

All values are the arithmetic means of triplicate analyses and are listed as p.p.m.

n.d. = not detected

tr. = trace

77

- 4

APPENDIX IX

Wanant	Degrade of Freedom	Suma of Cauchas	Magn Saugnas	E Dotio	<u>Ci ani fi como c</u>
Be	6 6 36 49 97	0.846368 (Between Map Areas) 2.62697 (Between Rock Types) 2.87830 (Interaction) 4.39369 (Between Duplicates) 10.7453 (Total)	0.141061 0.437828 0.0799527 0.0896670	1.65 5.11 0.89	NS VS NS
Ti	6 6 36 49 97	24,295,400 109,979,000 100,285,000 95,274,900 329,834,000	4,049,240 18,329,900 2,785,690 1,944,390	1.76 7.96 1.43	ns Vs Ns
Cr	6 6 36 49 97	84,182.6 1,277,950 288,150 194,896 1,845,179	14,030.4 212,992 8,004.16 3,997.48	3.53 53.55 2.01	VS VS S
V	6 6 36 49 97	3,152.85 444,228 20,583.7 14,259.5 482,224	525.475 74,038.1 571.770 291.010	1.81 254.42 1.96	NS VS S

Results for the Two-Way Analysis of Variance of Trace Elements in Rock Types 2,3,4,5,6,7 and 8 for All Map Areas

78

Element	Degrees of Freedom	Sums of Squares	Mean Squares	F Ratio	Significance
Ni	6 6 36 49 97	5,051.64 192,518 49,490.5 57,731.8 304,792	841.940 32,086.4 1,374.74 1,178.20	0.67 25.45 1.17	NS VS NS
Со	6 6 36 49 97	289.954 27,585.7 922.446 965.763 29,763.9	48.3257 4,597.62 25.6235 19.7094	2.17 207.01 1.30	ns Vs Ns
Cu	6 6 36 49 97	66,221.7 105,550 329,018 479,469 980,259	11,037.0 17,591.7 9,139.40 9,785.08	1.16 1.85 0.93	ns NS NS
Mn	6 6 36 49 97	1,101,610 36,249,600 3,192,580 2,981,330 43,525,100	183,601 6,041,600 88,682.8 60,843.4	2.53 83.18 1.46	S VS NS

APPENDIX IX (Continued)

62

٤.

APPENDIX IX (Continued)

Element	Degrees of Freedom	Sums of Squares	Mean Squares	F Ratio	Significance
Zr	6 6 36 49 97	7,432.06 19,779.1 43,332.7 36,437.5 106,981	1,238.68 3,296.5 1,203.7 743.622	1.32 3.51 1.62	ns Vs Ns
Sr	6 6 36 49 97	732,161 4,055,780 2,385,740 1,307,150 8,480,830	122,027 675,963 66,270.7 26,676.4	4.57 25.34 2.48	VS VS VS
Ba	6 6 36 49 97	2,025,160 6,014,160 2,455,350 1,023,270 11,517,900	337,526 1,002,360 68,204.1 20,883.1	16.16 48.00 3.27	VS VS VS

NS = not significant at 5% level S = significant at 5% level VS = very significant = significant at 1% level Critical values of the F-distribution (Dixon and Massey, 1957) for this table are:

$$F_{6,49,0.99} = 3.29$$
 $F_{6,49,0.95} = 2.34$ $F_{36,49,0.99} = 2.11$ $F_{36,49,0.95} = 1.69$
 $F_{6,85,0.99} = 3.12$ $F_{6,85,0.95} = 2.25$

APPENDIX X

Element	Degrees of Freedom	Sums of Squares	Mean Squares	F Ratio	Significance
Be	6 3 18 28 55	0.864043 (Between Map Sheets) 0.0770340 (Between Rock Types) 1.85473 (Interaction) 3.25334 (Between Duplicates) 6.04915 (Total)	0.144007 0.0256780 0.103040 0.116191	1.30 0.25 0.89	ns NS NS
Ti	6 3 18 28 55	26,151,900 24,528,900 81,006,100 86,679,400 218,366,000	4,358,660 8,176,290 4,500,340 3,095,690	1.20 2.24 1.45	ns NS NS
Cr	6 3 18 28 55	4,055.98 14,378.9 8,296.75 1,185.89 27,917.5	675.997 4,792.97 460.930 42.3531	15.96 113.17 10.88	VS VS VS
V	6 3 18 28 55	4,374.43 20,196.3 7,617.29 4,422.50 36,610.6	729.071 6,732.11 423.183 157.946	4.62 42.62 2.68	VS VS VS

Results for the Two-Way Analysis of Variance of Trace Elements in Rock Types 2.3.4, and 5 for All Map Areas

ഋ

APPENDIX X (Continued)

Element	Degrees of Freedom	Sums of Squares	Mean Squares	F Ratio	Significance
Ni	6 3 18 28 55	216.194 1,246.84 312.261 124.175 1,899.48	36.0324 415.615 17.3478 4.43481	8.12 93.72 3.91	VS VS VS
Со	6 3 18 28 55	187.134 660.863 679.978 157.625 1,685.60	31.1889 220.288 37.7765 5.62946	5.54 39.13 6.71	VS VS VS
Cu	6 3 18 28 55	1,799.38 1,002.51 4,549.84 4,026.93 11,378.7	299.897 334.172 252.769 143.819	1.61 1.79 1.76	ns NS NS
Mn	6 3 18 28 55	481,532 1,458,640 1,053,280 1,171,310 4,164,760	80,255.4 486,214 58,515.3 41,832.4	1.66 10.05 1.40	NS VS NS

<u>ر ،</u>

Element	Degrees of Freedom	Sums of Squares	Mean Squares	F Ratio	Significance
Zr	6 3 18 28 55	9,953.93 4,464.34 21,909.8 30,655.5 66,983.6	1,658.99 1,488.11 1,217.21 1,094.84	1.45 1.30 1.11	ns NS NS
Sr	6 3 18 28 55	833,589 1,370,310 1,769,720 1,103,560 5,077,180	138,932 456,771 98,317.6 39,412.9	3.52 11.59 2.49	VS VS S
Ba	6 3 18 28 55	2,148,600 2,351,090 1,525,160 829,792 6,854,640	358,100 783,696 84,730.9 29,635.4	12.08 26.44 2.86	VS VS VS

APPENDIX X (Continued)

NS = not significant at 5% level S = significant at 5% level VS = very significant = significant at 1% level Critical values of the F-distribution (Dixon and Massey, 1957) for this table are:

 $F_{6,28,0.99} = 3.47$ $F_{3,28,0.99} = 4.51$ $F_{18,28,0.99} = 2.55$ $F_{6,46,0.99} = 3.29$ $F_{3,46,0.99} = 4.31$ $F_{6,28,0.95} = 2.42$ $F_{3,28,0.95} = 2.92$ $F_{18,28,0.95} = 1.93$ $F_{6,46,0.95} = 2.34$ $F_{3,46,0.95} = 2.84$

APPENDIX XI

TO an and	Demos C President	Company of Company	Norma Commence	TF D. Ada	
Element	Degrees of Freedom	Sums of Squares	Mean Squares	r Ratio	Significance
Be	6 2 12 21 41	0.216668 (Between Map Sheets) 0.424935 (Between Rock Types) 0.789229 (Interaction) 1.14035 (Between Duplicates) 2.57118 (Total)	0.0361114 0.212468 0.0657691 0.0543023	0.62 3.63 1.21	NS S NS
Ti	6 2 12 21 41	4,055,340 23,022,700 13,366,900 8,595,550 49,040,500	675,891 11,511,300 1,113,910 409,312	1.65 28.12 2.72	NS VS S
Cr	6 2 12 21 41	198,538 180,926 161,442 193,711 734,616	33,090 90,463 13,453 9,224.3	3.08 8.41 1.46	s Vs Ns
V	6 2 12 21 41	1,591.91 97,598.7 10,153.0 9,837.00 119,181	265.318 48,799.4 846.079 468.429	0.44 80.53 1.81	ns Vs Ns

Results for the Two-Way Analysis of Variance of Trace Elements in Rock Types 6, 7, and 8 for all Map Areas

84

APPENDIX XI (Continued)

Element	Degrees of Freedom	Sums of Squares	Mean Squares	F Ratio	Significance
Ni	6 2 12 21 41	14,541 44,963 39,472 57,608 156,585	2,423.57 22,481.7 3,289.36 2,743.22	0.82 7.66 1.20	NS VS NS
Co	6 2 12 21 41	169.984 7,351.80 175.308 808.139 8,505.23	28.3307 3,675.90 14.6090 38.4828	0.95 123.35 0.38	ns Vs Ns
Cu	6 2 12 21 41	139,306 55,874,5 249,585 475,442 920,207	23,217.7 27,937.2 20,798.7 22,640.1	1.06 1.27 0.92	ns NS NS
Mn	6 2 12 21 41	1,143,090 6,571,090 1,594,820 1,836,500 11,145,500	190,516 3,285,550 132,901 87,452.2	1.83 31.59 1.52	ns VS NS

<u></u>

APPENDIX XI (Continued)

Element	Degrees of Freedom	Sums of Squares	Mean Squares	F Ratio	Significance
Zr	6 2 12 21 41	4,413.95 2,321.29 14,487.0 5,782.00 27,004.3	735.659 1,160.64 1,207.25 275.333	2.67 4.22 4.38	S S VS
Sr	6 2 12 21 41	156,155 88,524,4 358,444 203,583 806,706	26,025.8 44,262.2 29,870.3 9,694.43	2.68 4.57 3.08	S S S
Ba	6 2 12 21 41	335,621 168,640 471,126 193,481 1,168,870	55,936.9 84,320.2 39,260.5 9,213.4	6.07 9.15 4.26	VS VS VS VS

NS = not significant at 5% level S = significant at 5% level VS = very significant = significant at 1% level Critical values of the F-distribution (Dixon and Massey, 1957) for this table are:

 $F_{6,21,0.99} = 3.81$ $F_{2,21,0.99} = 5.78$ $F_{12,21,0.99} = 3.17$ $F_{6,33,0.99} = 3.47$ $F_{2,33,0.99} = 5.39$ $F_{6,21,0.95} = 2.57$ $F_{2,21,0.95} = 3.47$ $F_{12,21,0.95} = 2.25$ $F_{6,33,0.95} = 2.42$ $F_{2,33,0.95} = 3.32$

APPENDIX XII

Degrees of Freedom	Sums of Squares	Mean Squares	F Ratio	Significance
6 1 6 14 27	<pre>148.429 (Between Map Sheets) 4.32143 (Between Rock Types) 49.4286 (Interaction) 244.500 (Between Duplicates) 446.679 (Total)</pre>	24.7381 4.32143 8.23810 17.4643	1.68 0.29 0.47	NS NS NS

Results for the Two-Way Analysis of Variance of Sc in Rock Types 6 and 8 for All Map Areas

NS = not significant at 5% level

* Critical values of the F-distribution (Dixon and Massey, 1957) for this table are:

 $F_{6,20,0.99} = 3.87$ $F_{6,14,0.99} = 4.46$ $F_{1,20,0.99} = 8.10$ $F_{6,20,0.95} = 2.60$ $F_{6,14,0.95} = 2.85$ $F_{1,20,0.95} = 4.35$

APPENDIX XIII

Trace Element Averages for Pairs of Composite Samples Listed in Order of

Rock Type

Rock Type 1 (LGR)

Map Area	Be	Ti	Cr	V	Ni	Co	Cu	Y	Mn	Sc	Zr	Sr	Ba
1	0.82	1250	tr	21	3.3	tr	3.2	tr	362	n.d.	53	466	925
2	1.55	1540	n.d.	14	3.2	tr	5.5	tr	351	n.d.	40	445	727

Rock Type 2 (MGR)

Map Area	Be	Ti	Cr	V	Ni	Co	Cu	Y	Mn	Sc	Zr	Sr	Ba
1	1.12	2470	7.8	44	4.2	3.5	11	tr	457	n.d.	68	619	782
2	1.05	1960	7.5	25	3.4	6.5	9.6	n.d.	410	n.d.	42	451	646
3	1.25	1780	tr	21	1.8	2.3	4.4	tr	337	n.d.	48	639	882
4	0.81	1910	7.2	34	3.9	4.8	10	tr	413	n.d.	56	545	809
5	0.81	1080	tr	15	2.1	2.5	5.7	tr	418	n.d.	30	469	552
6	0.62	1840	5.6	27	4.1	5.0	10	n.d.	389	n.d.	52	594	1280
7	1.56	1920	9.6	32	5.3	4.9	8.4	tr	388	n.d.	37	453	454
			l	l I				1			1		

All values are in p.p.m.

APPENDIX XIII (Continued)

Rock Type 3 (PGR)

Map Area	Be	Ti	Cr	V	Ni	Co	Cu	Y	Mn	Sc	Zr	Sr	Ba
1	0.93	2580	4.3	44	5.0	7.0	4.3	n.d.	599	n.d.	71	685	1090
2	0.96	2480	4.7	40	3.1	5.1	12	tr	455	n.d.	44	731	1030
3	1.07	2230	6.6	37	6.6	5.6	11	n.d.	472	n.d.	51	885	1370
4	0.98	9390	4.3	58	4.4	- 6.9	60	37	988	n.d.	171	1790	450
5	0.90	1620	6.4	27	4.9	tr	13	tr	370	n.d.	54	512	902
6	1.02	2670	tr	30	1.5	tr	13	tr	434	n.d.	64	924	1730
7	0,72	1960	11	28	3.1	4.9	9.4	n.d.	449	n.d.	39	613	852

Rock Type 4 (GD)

Map Area	Be	Ti	Cr	V	Ni	Со	Cu	Y	Mn	Sc	Zr	Sr	Ba
1	1.02	2420	10	48	7.7	5.8	12	tr	555	n.d.	65	635	773
2	0.85	1790	tr	26	6.4	7.7	8.3	tr	409	n.d.	40	499	515
3	1.23	2460	11	46	7.6	6.0	14	n.d.	547	n.d.	48	758	645
4	0.90	2420	12	44	7.7	tr	13	tr	472	n.d.	60	511	489
5	0.92	2090	15	42	7.7	6.3	11	tr	445	n.d.	50	648	539
6	0.99	2730	8.7	46	5.9	5.6	14	tr	537	n.d.	61	746	783
7	0.92	2790	37	59	16	7.9	16	tr	515	tr	58	564	445
· · · · · · · · · · · · · · · · · · ·	<u> </u>			[i	1	Í		i	I		1	

80

APPENDIX XIII (Continued)

Rock Type 5 (GN)

Be	Ti	Cr	V	Ni	Co	Cu	Y	Mn	Sc	Zr	Sr	Ba
0.99	5760	99	133	19	26	4.6	tr	1260	tr	45	216	144
0.84	2350	18	59	8.7	8.2	13	tr	575	n.d.	54	455	448
0.83	3760	24	77	16	14	12	tr	613	tr	101	551	765
0.59	2740	32	58	11	8.5	20	n.d.	715	n.d.	65	530	620
1.13	3030	62	90	22	12	30	tr	650	tr	71	367	389
0.69	3150	19	63	10	7.1	14	n.d.	827	n.d.	58	61.4	772
1.53	3570	49	72	18	10	42	n.d.	1200	tr	59	489	569
	Be 0.99 0.84 0.83 0.59 1.13 0.69 1.53	Be Ti 0.99 5760 0.84 2350 0.83 3760 0.59 2740 1.13 3030 0.69 3150 1.53 3570	BeTiCr0.995760990.842350180.833760240.592740321.133030620.693150191.53357049	Be Ti Cr V 0.99 5760 99 133 0.84 2350 18 59 0.83 3760 24 77 0.59 2740 32 58 1.13 3030 62 90 0.69 3150 19 63 1.53 3570 49 72	Be Ti Cr V Ni 0.99 5760 99 133 19 0.84 2350 18 59 8.7 0.83 3760 24 77 16 0.59 2740 32 58 11 1.13 3030 62 90 22 0.69 3150 19 63 10 1.53 3570 49 72 18	Be Ti Cr V Ni Co 0.99 5760 99 133 19 26 0.84 2350 18 59 8.7 8.2 0.83 3760 24 77 16 14 0.59 2740 32 58 11 8.5 1.13 3030 62 90 22 12 0.69 3150 19 63 10 7.1 1.53 3570 49 72 18 10	BeTiCrVNiCoCu 0.99 57609913319264.6 0.84 235018598.78.213 0.83 37602477161412 0.59 27403258118.520 1.13 30306290221230 0.69 31501963107.114 1.53 35704972181042	BeTiCrVNiCoCuY 0.99 57609913319264.6tr 0.84 235018598.78.213tr 0.83 37602477161412tr 0.59 27403258118.520n.d. 1.13 30306290221230tr 0.69 31501963107.114n.d. 1.53 35704972181042n.d.	BeTiCrVNiCoCuYMn0.9957609913319264.6tr12600.84235018598.78.213tr5750.8337602477161412tr6130.5927403258118.520n.d.7151.1330306290221230tr6500.6931501963107.114n.d.8271.5335704972181042n.d.1200	BeTiCrVNiCoCuYMnSc 0.99 57609913319264.6tr1260tr 0.84 235018598.78.213tr575n.d. 0.83 37602477161412tr613tr 0.59 27403258118.520n.d.715n.d. 1.13 30306290221230tr650tr 0.69 31501963107.114n.d.827n.d. 1.53 35704972181042n.d.1200tr	BeTiCrVNiCoCuYMnScZr 0.99 57609913319264.6tr1260tr45 0.84 235018598.78.213tr575n.d.54 0.83 37602477161412tr613tr101 0.59 27403258118.520n.d.715n.d.65 1.13 30306290221230tr650tr71 0.69 31501963107.114n.d.827n.d.58 1.53 35704972181042n.d.1200tr59	BeTiCrVNiCoCuYMnScZrSr 0.99 57609913319264.6tr1260tr455216 0.84 235018598.78.213tr575n.d.54455 0.83 37602477161412tr613tr101551 0.59 27403258118.520n.d.715n.d.65530 1.13 30306290221230tr650tr71367 0.69 31501963107.114n.d.827n.d.58614 1.53 35704972181042n.d.1200tr59489

Rock Type 6 (GAB)

\$~:

Map Area	Be	Ti	Cr	V	Ni	Со	Cu	Y	Mn	Sc	Zr	Sr	Ba
1	1.34	6300	221	162	84	36	23	tr	1370	13	126	593	726
2	1.18	4180	437	186	167	40	26	tr	1430	17	83	197	349
3	1.46	4440	256	163	99	39	42	n.d.	1740	19	57	204	292
4	1.08	4840	462	158	194	40	54	n.d.	2350	20	62	211	304
5	1.26	4790	201	179	72	42	62	tr	1950	20	61	262	250
6	1.32	4310	194	185	79	36	39	tr	1450	14	70	456	400
7	1.33	6030	222	224	88	40	28	tr	1590	22	86	171	188
	1	I	1	1	(·		i .	1 i					

APPENDIX XIII (Continued)

Rock Type 7 (SED)

Map Area	Be	Ti	Cr	V	Ni	Co	Cu	Y	Mn	Sc	Zr	Sr	Ba
1	1.10	2980	258	128	63	22	29	tr	1330	18	70	203	303
2	0.88	2970	255	110	65	16	23	tr	1100	8.6	53	239	305
-3	1.22	3370	77	103	32	18	21	tr	905	tr	89	539	498
4	1.23	4340	133	112	37	17	16	n.d.	1400	tr	84	410	490
5	1.53	2830	100	88	28	13	17	tr	893	tr	111	264	327
6	0.85	4060	77	69	21	8.3	7.4	tr	838	13	141	454	810
7	1.19	2670	56	82	30	17	29	tr	1580	tr	104	342	319

Rock Type 8 (VOL)

Map Area	Be	Ti	Cr	V	Ni	Co	Cu	Y	Mn	Sc	Zr	Sr	Ba
1	1.25	3870	460	202	143	51	46	tr	2100	17	84	196	293
2	1.64	4300	267	219	85	46	45	tr	1910	17	62	219	252
3	1.41	5170	209	205	72	45	38	tr	2000	21	72	299	300
4	1.36	5200	262	221	89	48	43	tr	2170	16	89	239	307
5	1.33	4540	192	217	79	45	50	tr	2360	20	75	212	254
6	1.33	5490	300	216	188	45	69	tr	2170	18	62	287	344
7	1.41	4880	165	216	82	49	59	tr	2100	21	94	212	216