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SCOPE AND CONTENTS: 

A phenomenological scheme for ionic diffusion in 

multicomponent silicates based on self diffusion data and the 

Nernst-Planck equation has been formulated which is capable 

of predicting the concentration profiles of mobile ions in 

a diffusion couple with or wit~out a fixed silicate anion 

step discontinuity at the boundary. It is demonstrated 

that the diffusion potential appearing within this formalism 

is due entirely to a distribution of self-generated dipol9s 

and equivalently, that the well-known contradiction between 

the electroneutrality constraint on real charges and the 

non-zero field predicted within the phenomenological 

formalism vanishes when it is recognized that the charge to 

be entered into Poisson's equation is the dipole charge. 

The reported experimental diffusion profiles in 

K20-SrO-Sio 2 and Na2o-Ca0-Sio 2 glass couples have been 

compared with the predictions of the model and the agreement 

(ii) 



has been found to be good. Diffusion couples in the 

K20-Ca0-Sio 2 system were investigated by microprobe analysis 

and the resulting concentration profiles were also found to 

be in good agreement with predictions. It has been 

demonstrated that while the quasi-binary (i.e., immobile 

silicate anions) approximation is satisfactory for the 

K20-SrO-Si0 2 system at low temperatures, it is unsatisfactory 

for all other systems considered at low and high temperatures. 

An extensio n of the phenomenological scheme to glass­

metal diffusion couples with interfacial electrochemical 

reactions is given in Appendix A. 
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CHAPTER I 

INTRODUCTION 

This study of silicate glasses was undertaken to 

increase our understanding of the diffusion interactions and 

mechanisms, the structure of silicates and the control of 

technologically interesting processes such as slag-metal 

reactions, glass-metal junctions and ion-exchangers. 

Despite their great theoretical and technological 

importance, studies of diffusion in silicates have not been 

as extensive nor as precise as those in metallic systems. 

While there exists a considerable amount of data on self or 

tracer diffusion in glasses for the ions H, Li, Na, K, Rb, 

Cs, Sr, Ca, 0, Si, Pb and Al, these have not yet been widely 

used in the analysis of diffusion in multicomponent 

silicates. We note, however, that Cooper (la) has pioneered 

in this direction by developing a phenomenological scheme 

("the mobility model") in which the coefficients of the 

equations for multicomponent silicate diffusion are expressed 

in terms of the independently measured tracer diffusion 

coefficients of the mobile species. This model has been 

further developed by Varshneya and Cooper (lb) Lu and 

Jin ( 2 ) have used similar equations from irreversible 

1 



2 

thermodynamics to analyze a particular example of diffusion 

in glasses. 

It was anticipated that an extension of this 

approach would lead to better understanding of the diffusion 

potential and of the electrical coupling between the 

diffusive fluxes in a silicate system. From such understanding 

of diffusion processes in silicates, and with the considerable 

wealth of knowledge already existing in the literature on 

diffusion processes in metallic systems and on reaction 

kinetics, we predict that early inroads will be made into 

the complex and important problem of analysis of the kinetics 

of slag-metal and glass-metal systems. 



CHAPTER II 

THE STRUCTURE OF SILICATE MELTS - A LITERATURE REVIEW 

2.1 Vitreous Silica 

The study of the structure of vitreous silica, Sio2 , 

is fundamental to the understanding of silicates since Sio
2 

is the basic constituent of the multicomponent silicates. 

The starting point in this study can be traced to 

Zachariasen's ( 3 ) postulate of a continuous random three­

dimensional network of Sio
4 

tetrahedra formed by union of 

these tetrahedra at their corners. 

Each tetrahedron (Fig. 1) has four oxygen atoms at 

the corners covalently bonded to silicon at the centre. 

Each oxygen is thus on the average shared by two tetrahedra, 

with large interstices between networks. Bond energies 

(energies required for dissociation) of the Si-0 bonds are 

about 105 k.cal/mole ( 4 ) so that there are very few 

thermally ac ·tivated bond ruptures. A structure with such 

rigid bonds is consistent with high viscosities of silica 

melts, the enormous increase in the viscosities of silica 

melts during cooling and the difficulty of achieving 

crystallization at normal cooling rates. 

3 



·,;. Si atom 

Q 0 atom 

Fig. 1: Two SiO 
4 

tetrahedra \'Ji th a common oxygen bond 

4 
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This random network model of fused silica has been 

supported by X-ray studies, notably those of Warren and 

Loring (Sa), Warren (Sb), Biscoe and Warren (Sc) and 

Mackenzie and White (Ga) These studies yield the following 

interatomic distances: 

Si-0 = 1.60 ± 0.05 A0 

Si-Si = 3.0 ± 0.05 A0 Mackenzie and White ( 6a) 

0-Q = 2.65 ± 0.05 A0 

with a distribution of the Si-0-Si bond angle between 120° 

and 180° and a maximum of the distribution at about 144°. 

Many properties of vitreous silica calculated from 

the random network model are in agreement with experiment. 

For example, Bell and Dean (?) have shown that the spectrum 

of atomic vibrations as measured by infrared absorption, 

Raman emission and inelastic neutron scattering is 

consistent with the random network model. However, it has 

been suggested that rather than a completely random 

distribution of the tetrahedra, there may be some short 

range order over a few tetrahedra. This short range order 

is the basis of the "crystallite theory" {B) of silica in 

which very small crys ·talline regions are supposed to be 

connected by disordered materials. However, experiments 

imply that such ordered regions are not very large (generally 

less than 100 A 0 long) so the l~andom network model of vitreous 

silica has been accepted by most workers in this field. 
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2.2 Silicate Melts 

2. 2.1 Comments on the various models 

The Zachariasen random network model (3 ) of vitreous 

silica is fundamental to nearly all the models of silicate 

structure; indeed all these models consider the effect of 

metal oxide addition on the silica structure. Although 

there are inumerable theories and models of the silicate 

structure, we shall review only those that have been 

instrumental in furthering our understanding. 

Nearly all the models are qualitative, and the few 

that attempt to be quantitative are based on weak 

assumptions which limit their applicability to narrow ranges 

{17) (21). of composi·tion (e.g., Toop and Samis · , and Masson J • 

All the models are speculative and no direct confirmation 

has been obtained with such techniques as X-ray diffraction 

and/or chromatography. 'rhe only supporting evidence is, 

therefore, indirect. The one feature of these melts which 

has been firmly established is their ionic nature. This has 

been achieved through measurements of electrical 

conductivity (9) 

2.2.2 The random network model (3 , 4 ,Gb) 

Starting from the Zachariasen random nebmrk model 

of fused silica, the approach to silicate structure has been 



to consider the chemical effect of addition of a metal 

oxide. The addition of certain metal oxides (network 

modifiers) such as Na 2o to the fused pure silica is 

conjectured to result in a break-up (depolymerisation) of 

the 3-dimensional network by a bond rupture of the type: 

I I I I I I I I Na+ I 
-si-o-si-o-si- + Na 2o + -si-o-si-o 

I I I I I I I I 
+o -si-

Na I 

{see also Fig. 2) with the metal ions located in the 

7 

interstices of the network near the ionized (non-bridging) 

oxygen, forming dipoles (Na+ 0-) whose moments depend on the 

cation radius. Myuller (lO) postulates that the interaction 

of the M+O- dipoles thus formed leads to the formation of 

quadrupoles (Fig. 3) and structural groups of the form 

The bond strengths between the dipoles, i.e., 

between the modifying cation and its associated oxygen 

{non-bridging oxygen) are much lower than between the Si and 

0, the bond between the former being ionic whereas the 

latter is mainly covalent. 

Zachariasen {3 , 4 , 6b) divided all cations that 

participate in glass formation into three groups: 

(1) Network formers, such as Si, B and P. These have 

coordination numbers 3 or 4. 

(2) Network modifiers, such as Na, K, Li, Sr, Cs, Ca and 

Ba which have coordination numbers of 6. 
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0 

Rest of chain 
~ 

Rest of chain 
,.,................ .............. . 

.... ........,. ' ........,.. 

Fig. 2: The oxygen-transfer reaction leading to a 

rupture between the Sio4 tetrahedra 

: I I I r-----' a L-----, 

---~ M+ -o-si-o- +M ~---n-
L ____ , I r ____ j I 

- o- +M ~---o---~ M+ -o- si-
' I i ____ j · I a .._ ____ i I 

----l M+ -u- Si-0- +M t----0-
:_ ____ , I ·----: I 

I I . 
- o- +~ r----o----1 M+ -u- SJ• 

~---~ I b ~----~ I 
----l M+ -o-Si- o- + M t----0-

1 c I I I r I I 
I I I I 
I +M I o I M + -o s· - o- t---- ----i -. ,. 

~----1 I ~---.J I 

Fig. 3: Schem~tic depiction of a covalently bonded chain 

(--Sio 412o;12--)n ... , cross-linked with neigh­

bouring chains by associated dipoles M+o~12 , in 

alkali silicate glasses. The dashed lines outline 

the structural units. (a) 
+ -(b) [Sio

412
J; (c) [H 2o

212
J 

+ - . 
[M202/2Sl04/2]; 1 . 
(after Myuller ( O)) 
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(3) Intermediates, such as Al, Pb, Fe, Ti, Mg and Zn with 

coordination numbers of 4 to 6. These can act in the 

same way as (1) or (2) depending on their concentration 

in the glass. 

It has been shown by Ermolenko (ll) that a rigid 

classification of cations into network formers and modifiers 

is not possible since certain metals generally regarded as 

network modifiers (e.g., Ca, Ba and Cr) at low concentrations 

become network formers at high concentrations. We note also 

that H+ also acts as a network modifier so that in fused 

silica containing H2o (water) impurities depolymerisation 

reactions lead to the formation of (OH) anions. 

The random network model assumes that the network 

splitting and the incorporation of the modifier cations into 

the interstices of the network take place in a completely 

random manner (Fig. 4). Thus as the metal oxide content of 

the silicate melt is increased the bond rupture continues 

statistically until at the orthosilicate composition, 

corresponding to 66 mole% metal oxide, the network is 

completely broken down and discrete sio:- anions exist with 

few free oxygen ions. This manifests itself as a lowering 

of the viscosity as the metal oxide content of the melt 

increases. Above 66 mole% metal oxide, the network concept 

loses its meaning since no network exists in the system; 

only the metal cations and the sio:- and o 2- anions can be 

imagined to exist. 
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Fig. 4: Randomly distributed modifier cations in a 

random 3- Dimensional network of an oxide glas s 
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The entities existing at different metal oxide 

contents of the melt are summarized as follows: 

Pure silica 

0-33 mole% metal oxide: 

33 mole% metal oxide: 

33-50 mole% metal oxide: 

50 mole% metal oxide: 

50-60 mole% metal oxide: 

66 mole% metal oxide: 

Continuous 3-D network of Sio 4 

tetrahedra with a small degree o f 

thermal bond-breaking. 

Essentially a 3-D network of 

Sio
4 

tetrahedra with the number 

of broken bonds equal to the 

number of added 0 atoms from M2o; 

end of 3-D boundary at 33%. 

"Infinite" 2-D sheets of Sio4 
+ tetrahedra; M ions and 0 ions 

between sheets. 

Region of sheets and some chains 

of tetrahedra. 

Chains of infinite length. 

Chains of decreasing length. 

. 4-
Sl04 • 

The structural changes envisaged above by this model 

are not all compatible with experimental results. For 

example, on the basis of this model, one would expect very 

large changes in the heat of activation for viscous flow in 

the composition range of 33 to 66 mole% metal oxide since 

the size and shape of the kinetic unit (the jumping entities) 
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is supposed to undergo a radical change - sheets are broken 

into chains and discrete ions. Yet the observed change (12) 

in the heat of activation over this range is only 25%. On 

the other hand while the observed change in the energy of 

activation between the composition 0-10% metal oxide is very 

dramatiC (a Change Of abOUt 200%) 1 With an abrupt Change 

around the 10% metal oxide (Fig. 5), the network model fails 

to predict such changes. Similar changes were also observed 

in other physical properties of binary silicate melts such 

as density and thermal expansi vi ty ( 13 ' 14 ) (Fig. 6) . Thus 

it appears that the random network theory, while providing a 

good basis for an understanding of the fused silica structure, 

is only extendable to binary silicates containing less than 

about 10 mole% metal oxide. 

The fact that one can visualise an infinite number 

of ways of linking together Sio4 tetrahedra has led to a 

number of alternate models for the binary silicate melts. 

In most of these models the central theme concerns the 

arrangements of the Sio4 tetrahedra which give predictions 

consistent with experimental results. 
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Fig. 5: The variation of the energy of activation for 

viscous flow in a binary Na 2o-sio
2 

melt as a 

function of the mole% Na 2o (after Bockris et al. (l 2 )) 
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2.2.3 Discrete polyanion models 

2.2.3.1 The Bockris, Mackenzie and Kitchener model <4 , 6b,l2) 

To explain the abrupt changes of the physical 

properties of silicates in the composition interval of 

10-20 mole% metal oxide, Bockris et al. (4 , 6b,l2 ) postulated 

the presence of discrete polyions such as (Si
3

o
9

) 6- and 

(Si 4o 12 >
8- in silicate melts in place of the 3-D network 

and infinite chains of the random network model. The 

existence of these anions was suggested by the fact that 

certain minerals such as wollastonite,CaSio3 and pyrophyllite, 

Al 2si 4o 10 (0H) 2 are known to contain si 6o~- and si 4o~;. 
Starting from the orthosilicate composition (66 mole% 

metal oxide), it is conjectured in this model that the 

reduction of the metal oxide content of the binary silicate 

melt leads to a series of polyrnerisations of the tetrahedral 

4- 6-Si04 monomers. For example, the dimer si 2o 7 will be 

obtained by: 

As the metal oxide content is progressively reduced, the next 

silicate entity after the dimer will be the trimer 

0 

3- I 3- 2-o si-o-si-o-sio + o 
3 I 3 

0 



and so on, with polymers of the general formula Si o( 2n+ 2 ) 
n 3n+l 

appearing. This general formula for linear chains was 

noted to be inapplicable near 50 mole% metal oxide and 

below, since the formula diverges: 

0 
Si = 3 when 

i.e., when 

3n+l 
n 

n -+ oo 

= 3 

15 

which implies infinite chains at the exact composition, and 

becomes meaningless for <50 mole % metal oxide (i . e., 

3n+l < 3 n 

for n an integer) . 

On the basis of experimental results, Bockris et al. 

conjectured that ring anion$ would be formed at about 

50 mole% metal oxide by a linking up of network anion chains. 

Further structural changes between 50 and 30 mole% metal 

6-oxide could then be understood on the basis of these si 3o9 

and si 4o~; ring 

6-polymers si
6
o

15 

systems. At 33 mole% metal oxide composition 

8-and Si 8o
20

, postulated as arising from 

dimerisation of the ring a~ions Si 3o~- and si 4o~;, were 

conjectured to exist. As the metal oxide content is the n 

continuously reduced, further polymerisation of the rings is 



16 

presumed; thus at 25 mole% metal oxide, the six-membered 

ring, having the formula Si 9o~~ and consisting of three rings 

polymerized together is generated. 

Ring stability was expected to decrease with the 

increase of size corresponding to the increasing proportion 

of Sio2 . The silicate polyanions which correspond to 

compositions near the 10 mole% composition are so large that 

they become unstable and rearrangement to the random 3-D 

network of silica occurs with the physical properties of 

silicate melts undergoing abrupt changes. 

The various silicate entities postulated by the model 

at different silicate compositions are illustrated in Fig. 7, 

and summarised as follows: 

Pure silica 

0-10 mole% metal oxide 

10-33 mole% metal oxide 

Continuous 3-D networks of Sio4 

tetrahedra with some thermal bond-

breaking and a fraction of Sio2 

molecules. 

A Sio
4 

network with the number of 

broken bonds approximately equal 

to number of added 0 atoms (from 

the metal oxide) , having a frac-

tion of Sio 4 entities and radicals 

. . M+ conta1.n1ng • 

Discrete silicate polyanions 

based on a six-membered ring 

6-
Si60ls· 



Si3 o;-toN 
(a) 

Silicon 0 Oxygen 

Si9 o;,-tON 
(e) 

Si8 o:; ION 
(d) 

Fig. 7: Example s of discrete silicate anions postulated 

in ·high silica silicate melts (a f ter Bockris et 

al. (12)) 

17 
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33-55 mole% metal oxide A mixture of discrete polyanions 

55-66 mole% metal oxide 

66-100 mole% metal oxide: 

6- 6-based on si
3

o 9 and si
6

o
15 

or 

8- 8-
Si4012 and si8o 20 . 

Chains of general form Si o{ 2n+ 2) 
n 3n+l 

6-such as si2o 7 . 

4- 2-
Si04 and 0 anions. 

Although this model can rationalise the abrupt 

changes in the physical properties of silicate melts at 

10 mole% metal oxide composition there is no known 

theoretical reason why a particular anion entity must exist 

4-at any composition (except perhaps the sio4 at the 

orthosilicate composition). Furthermore, the model cannot 

account for such phenomena as phase separation or the 

results of electron microscope studies (l 5 ) of the pores 

and extracts obtained by acid leaching* of alkali silicate 

glasses which showed extens i ve microheterogeneity of 

structure. 'I'he size of regions of he-cerogenei ty ranged from 

10 to over 1000 A0
, and was found to depend on (1) heat 

* The leachi ng process is essentially an ion-exchange 
process, and involves the exchange of the alkali-metal 
ion by u+, thus: 

I - + 
-Si-{) Na 

I 
Thus sodium disilicate for example goes to disilicic acid 
H

2
Si2o

5
• 
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treatment, (2) concentration of metal oxide, (3) field 

strength of the modifier cation, and (4) method of glass 

preparation. 

Despite its weakness, the discrete-polyanion model 

of Bockris and co-workers was a major advance over the 

network model in providing a more consistent qualitative 

account of the observed changes in the physical properties 

of silicate melts; and indeed the silicate entities 

suggested are based on the results of the structural analyses 

of certain mineral silicates. 

2.2.3.2 The Bockris, Tomlinson and White model - the ''iceberg" 

d 1 
(4,6b,l4) mo e 

To account for the microheterogeneity of structure 

and phase separation, Bockris et al. ( 4 , 6b,l 4 ) proposed that 

in the region of 12-33 mole% metal oxide, the discrete 

silicat.e polyanions based on· a six-membered ring Si 6o~~ 
should predominate (as postulated in the discrete polyanion 

model of Bockris, Mackenzie and Kitchener) but with some 

frozen-in 3-D random network structure in the form of 

"icebergs" or "islets" with the composition of fused silica. 

The "icebergs" were thought to be similar to clusters 

that occur in liquid water, and the submicroscopic networks 

were pictured as continually breaking down and reforming. 

Microphase regions (with the structure corresponding to that 
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of 33 mole% metal oxide silicate melt) occur in the form of 

thin films s eparating the silica-rich icebergs, thus allowing 

for the possibility of phase separation of the liquid into 

two phases - one rich in Sio
2 

and the other in the metal 

oxide. 

This proposed model seems to be in line with 

Myuller's(lO,l 6 ) postulate that glass formation is analogous 

to ·the processes taking place when polar substances dissolve 

in nonpolar solvents: dipoles are drawn together by 

electrostatic forces and tend to unite with the formation of 

associated polar groups in a nonpolar medium, especially in 

the concentration range corresponding to 10-33 mole% metal 

oxide as considered by t hi s ~odel. 

From 33 mole% metal oxide and above, the iceberg 

model becomes e s sentially identical with the model of 

Bockris, Mackenzie a nd Kitchener discussed earlier. 

2.2.3.3 . (17a 17b) The Toop and Sam.~s model ' 

Toop and Sarnis (l?) made an attempt to determine the 

most prob able n umber o f discrete silicate anions in any 

binary s i l icat:e composition in terms of an equilibrium 

constant i nv olving various forms of oxygen (singly bonded, 

doubly bonded and free oxygen) in the melt. 

The basic a ssumpt ion made by the authors was that 

any equilibrium polymerisation scheme should not involve 
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specific silicate ions, since the reaction via which 

equilibrium is established should be the same for all binary 

silicate compositions. They proposed that the equivalent 

reaction between all three f orms of oxygen in the melt, i.e., 

bridging oxygen o0 , non-bridging oxygen 0 , and free oxygen 

ions o2-, given by Fincham and Richardson (lS) as: 

( 2. 1) 

was the overall equivalent equilibrium reaction occuring when 

any silicate anions polymerise to form higher polymers plus 

oxygen ions. Therefore, according to them, the degree of 

polymerisation in silicate melts would be given by the 

equilibrium constant k for t he reaction (2.1). 

The equilibrium constant k from Eq. (2.1) was 

written as 

k ·- ( 2. 2) 

and was shown to be characterized only by the cations present 

in the melt at a given temperature and to be a measure of the 

extent of polymerisation in a silicate melt. Table I gives 

the k values obtained for a nurober of binary melts. 

From material and charge balances; (0 2-), (0-) and 

(0°) were expressed in terms of moles of silica, N8 i
02

, and 

since for a given k Eq. (2.2) could be solved yielding the 



'l'ABLE I 

VALUES OF EQUILIBRIUM POLYMERISATION 

CONSTANT k FOR VARIOUS BINARY 

SILICATES (AFTER TOOP AND SAMIS (17 )) 

SYSTEM 

Cu 20-Sio2 

FeO-Si0
2 

ZnO-Si0 2 

PbO-Si0
2 

CaO-Si02 

k 

0.35 

0.17 

0.06 

0.04 

0.0017 

TEMPERATURE 

OF MELT 

22 
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2-number of free oxygen ions (0 ) , doubly bonded oxygen atoms 

(0°) and singly bonded oxygen atoms (0 per mole of binary 

silicate melts as a function of N8 i
02

, it was argued that 

the discrete silicate anions were not needed. 

The reaction between silica and metal oxide in 

Eq. (2.1) can be rewritten as 

0 and the free energy change ~G as 

~GO = - RT In ~ = RT In k 

Since the actual number of moles of oxygen ions 

(2.3) 

(2.4) 

which have reacted in the melt is 1/2 (0-), the free energy 

change per mole of liquid silicate formed in Eq. (2.3) is, 

in fact, 

6Gmix = (O;) RT In k (2.5) 

Toop and Samis also derived the integral free energies of 

mixing from the Gibbs-Duhem equation and by fitting the 

calculated free energy curves to the experimentally determined 

curves, the values of k were obtained for a number of binary 

silicate melts. 
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From a knowledge of (0°), (0-), (0 2-) and k, and 

using ternary phase diagrams, they arranged silicate anions 

in a complex polymerisation pattern ass~~ing that Si is 

tetrahedrally coordinated with four oxygen atoms. Figure 8 

gives their plot of the proportion of 0 in the most probable 

silicate anions present in a binary melt. The following 

example based on Fig. 8 was given for a binary silicate melt 

(k = 0.005) containing 0.63 moles of Sio2 . The silicate 

anions present were proposed as consisting of double-ring 

anions containing 8 to 10 silicon atoms per ion, i.e., 

Si 8o~~ or Si 10o~~- with some single-ring anions, possibly 

S . 06- ~. 10- d . 1 . . h 
1 3 9 or ~1 5015 an some tr1p e-r1ng an1ons sue as 

8- 10-Sil2028 to Si15o 35 • The probable number of these silicate 

anions present was given as 0.07 mole/mole of slag. 

The problem with this model is that it is essentially 

a curve fitting scheme, and its basic assumption that 

equilibrium reactions should be the same over the entire 

binary silicate compositions is hard to justify. However, 

it was one of the first attempts at predicting the fraction 

of the discrete anions in binary silicate melts. 

2.2.3.4 The Flood and Knapp model (lg) 

In considering the usual depolymerisation reaction 

resulting from the addition of alkali oxides to s i lica, 

Flood and Knapp (lg) s howed that t he activity data for PbO 
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and k (after Toop a nd Samis ) 
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determined by Richardson and Webb ( 2 0) would agree with 

their calculated values for the activity of PbO if the 

Pb0-Sio2 melts behave as ideal mixtures of certain specific 

2- 4- 6- 6-anionic species such as 0 , Sio4 , (Si0
3

) 3 , (Sio 2 • 5 ) 6 . 

The relative amounts of these anions were determined by 

considering the equilibria: 

( 2. 6) 

Unlike Toop and Samis (l?), Flood and Knapp assumed 

that the equilibrium constant would be a function of 

concentration and so proposed three equilibrium constants, 

one for each of the composition ranges considered. In each 

of these composition ranges certain anions were assumed to 

predominate viz: 

0-20 mole% Si02 : The predominant anions are supposed to be 

0 and 4-SiO 4 . 

20-40 mole% Si0
2

: Anions are 
2-

0 ' 
6-Si

3
o

9 
, 

4-
Si04 . 

- 6- 6- ti-
40-60 mole% Si0

2
: Anions are 0 ' Si

3
o

9 
, Si6015 and SiO,i . 

They concluded, however, that the agreement obtained with 

activity data was only circumstantial proof of the silicate 

anions present. 

This model is again a curve fitting scheme. 
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2.2.3.5 The Masson model ( 2 l) 

Masson ( 2 l) considered a binary silicate melt of the 

type MO-Sio 2 in which the ratio of metallic oxide MO to 

silica is sufficiently high that depolymerisation may be 

regarded as complete and the silica is present exclusiv ely 

as the simple tetrahedral Sio:- monomers. With increase in 

silica content of the melt, a series of polymerisation 

reactions may be envisaged in which sio:- ions at first 

dimerise and then react further with higher members of the 

series thus formed to yield linear and branched polyionic 

chains with the elimination of oxygen at each step. Thus: 

sio!- sio:- 6- 2-
kl,l ( 2. 7 a) + = Si

2
o

7 + 0 ••• 

sio:- 6- 8- 2-
kl,2 (2.7b) + Si 2o 7 

= Si3010 + 0 . . . 

sio!-
. 8- 10- 2-

kl,3 (2.7c) + 813010 = Si4013 + 0 . . . 

etc. 

Each polymerisation stage is characterized by an 

equilibrium constant kl,l' k 1 , 2 , k 1 , 3 , ... , k 1n. Using ion 

fractions as approximations for activities the ion fraction 

of each series is expressed in terms of those of the lower 

nurnbers, viz: 
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N . 

N . 0 = kll 

Sl0
4 

NSio
4 

( 2. 8) 
Sl2 7 N 2-

0 

NSi3010 kl2 

NSio
4 

NSi207 
( 2. 9) = N 2-

0 

NSi4013 
= kl3 

NSi0
4 N . (2.10) 

N 2- Sl3010 
0 

etc. 

Masson then assumed (with Toop and Samis (l 7 )) that 

all the equi librium constants are equal, i.e., 

= k (2.11) 

This sweeping assumption was justified by Masson from 

experience gained in the studies of polymerisation processes 

generally. 

From these sets of equations Masson writes the sum 

of the ion fractions of silicate anions as 

L: N = NSi0
4 

+ Ns. o + Ns. o + ... silicate l2 7 l3 10 

Nsio
4 

+ k 
NSio

4 
(NSiO 

4 
+ Ns. o + ... ) = 

N 2- l2 7 
0 

NSio
4 

+ k 
Nsio

4 L: N (2.12) = silicate . N 2-0 



Hence 

2:: N .
1

. 
s1. 1.cate 

== 
NSio

4 1 - k 
N 2-

0 
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(2.12a) 

Assuming that silicate and oxygen are the only anionic species 

in the melt, and adopting Temkin's definition of ion fraction, 

then 

2:: Nsilicate == 1 - N 2-
0 

so that from (2.12) and (2.13) 

1 - N 
2

_ 
0 

(2.13) 

(2.14) 

the value of k is giving NSi0
4 

as a function of N
02

_ if 

. 4-known for the system. For k=O, 81.0 4 
is the only silicate 

species in the melt, and as k increases NSi0
4 

decreases (if 

N 
2

_ is constant) . 
0 

From ( 2 . 14) , ( 2 . 8) , ( 2 • 9) and ( 2 • 10) , the ion 

fractions of the other silicate anions can be evaluated as 

functions of N 
2

_ if k is known. With k=l, Masson calculated 
0 

the distributions for a number of silicate anionic species as 

shown in Fig. 9. 

To apply the scheme outlined above, Masson sought to 

express the mole fraction of silica in terms of the ion 
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fractions of the individual constituents as follows: 

= 

moles Sio2 from silicates 

(moles MO + moles MO from silicates 
+ moles of Sio2 from silicates) 

Nsio
4 

+ 2N8 . 
~2°7 

+ 3Ns. o 
~3 10 

+ ... 
N 2- + 3NSi04 + 5Ns . o + ... 

0 ~2 7 

From (2.8), (2.9), (2.10) and (2.11) 

N 2-
0 

[ 3 - k + ~1---l:":'~--
02-

1 

k (k - 1) + --:-;-'--------
N 2-

0 ) 
N 2-

0 

+ k 

From Ten~in's equation for the activity 

~0 = N 2+N 2-
M 0 

and for a binary system (N 2+- 1), Eq. {2.16) becomes 
l-1 

1 

31 

(2.15) 

(2.16) 

(2.17) 

- 1 - NMO = 
'1-10 + - + 

1 - a:t-10 
[3 - k k flr-1 ' 

~=''--=....L.._/ ---] 
a 

( MO ) 
1- ~0 

+ k 

( 2. 18} 
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so that values of N
02

_ can be translated to N
8

i
02

. In 

addition k could be evaluated if the activity aMO were known 

experimentally. Thus Masson obtained k values for a number 

of systems (Table IIa) . 

From experimental activities of FeO in the range 

NFeO ~ 0.55 in the system Fe0-Sio 2 , Masson calculated the 

ion fractions of various silicate entities in the melt as 

plotted in Fig. 10. He notes that k determines the tendency 

towards polymerisation in binary silicate melts in line with 

the conclusions of Toop and Samis. Thus it was expected 

that the average chain length would be determined by the 

magnitudes of both the cation-silicate ion and cation-oxygen 

ion attractions. 

The following limitations to the above model were 

outlined by Masson: 

(a) It is applicable only to binary silicates. Temkin's 

equation would be less applicable for ternaries where 

competition for different cations between oxygen and 

silicate anions will become significant. 

{b) Ring formation was not considered. It is thought that 

this will be especially favoured in systems with low k 

values where cation-silicate interaction is high and 

coiling of the polyanions may occur due to effective 

neutralization of the charged groups on the polymeric 

chains. For systems with a high value of k, the charged 



TABLE IIa 

VALUES OF k FOR VARIOUS BINARY SILICATE MELTS 

(AFTER MASSON {21 )) 

SYSTEM k 

FeO-Si0
2 1.4 

Mn0-Si0
2 0.75 

PbO-Si0
2 0.2 

CaO-Si02 0.003 

TABLE IIb 

VARIATION OF k. ln WITH n FOR VARIOUS BINARY SILICATE 

MELTS {AFTER MASSON ET AL. { 21) ) 

SYSTEM k11 kl2 k13 kl4 k1oo 

Sio2-Ca0 0.0016 0.0021 0.0024 0.0026 0.0036 

Si02-PbO 0.196 0.261 0.299 0.324 0.441 

Sio
2

-Mn0 0.25 0.33 0.38 0.41 0.56 

Si02-FeO 0.70 0.93 1. 07 1.16 1. 575 

Si02-CoO 2.0 2.7 3.1 3.3 4.5 

Sio2-sno 2.55 3.40 3.89 4.22 5.74 

33 
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gr~ups will exert a mutually repulsive effect, leading 

to a stiffening of the chains with a consequent lower 

probability of ring closure. 

(c) The scheme is limited to the highly basic silicate 

melts (< 40 mole% Si0
2
). 

The most serious simplifying assumption in the above 

scheme is that of equal equilibrium constant (Eq. (2.11)). 

This sweeping assumption has now been removed by Masson and 

co-workers ( 2 lb, 2lc). Using multi-chain polymer theory 

they evaluated the "ideal" ionic distribution in binary 

silicate melts taking into account the variation of the 

equilibrium constant k. with the chain length n. Noting 1n 

that the calculation of "how k. varies with n is equivalent 1n 

to calculating the configurational aspect of the molecular 

size distribution in polyfunctional condensation", the authors 

obtained the following relation for k. 1n 

k. 
1n 

kll 
= (3n+l) (3n+2) 

2 (2n+3) (n+l) (2.19) 

enabling kin to be calculated for any value of n if k 11 is 

known. Values of k. for some experimental systems as 1n 

obtained by Masson et al. are given in Table lib. 

Masson's model is thought to represent the most 

comprehensive attempt at computing anion distributions in 

binary silicate melts. 
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2.2.3.6 The structure of super-cooled silicate melts 

Mackenzie (22 ) considered two structures that could 

result on cooling a silicate melt to glass: 

(1) The melt could undergo a rather sudden polyrnerisation 

and rearrangement to give a random network structure. 

(2) Alternatively, the anions could be envisaged as 

"frozen-in" to preserve the melt structure in the solid 

state. 

From kinetic considerations, Mackenzie argues, in 

(23) 
agreement with the conclusions of McKinnis and Sut.:ton 

that the anions present: in the equilibrated melt \olill be 

preserved in t.he silicate glass so that ( 2) is favoured. 

Therefore, although lacking direct or indirect 

evidence about the structure of silicate glasses, ..._,Je will 

assume that the structur:e of molten silicates will be 

preserved on cooling to the :rigid sta·te. 

2.3 Conclusions a bout Silicate Struct ure of Relevance to 

the Diffusion Process 

The conclusions to be drawn about the structure of 

silicates with relevance to diffusion studies are (i) the 

concentrations of silir;ate anions are dependent on the 

concentration and chemical properties of the metal oxides 

in the glass. Thus, bm glasses with different metal oxide 
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concentrations in general have different anion concentrations 

or anion charge densities; (ii) by virtue of its size, the 

silicate anion will be nearly irmnobile relative to the 

cations, especially in the high silica range (> 66 mole% Sio
2 

content) where structures consisting of large rings and long 

chains are expected; (iii) since the size and nature of the 

interstices or holes in the silicate structure are concentra-

tion dependent, the diffusion rate of the modifier cations 

(which are supposed to migrate via these interstices) will be 

concentration dependent. Self diffusivity data confirm this 

conclusion (see Chapter 3.2); (iv) the number of free oxygen 

ions o 2- in the system will depend on the concentration of 

metal oxide in the glass, the temperature, and the prior 

history of the glass, and so will the diffusivity of the o 2-

ions; and (v) the number of (OH) anions will depend on the 

water content of the glass. 

Factors (i) and (ii) will be major sources of 

diffusion interactions in system with concentration gradients 

such as diffusion couples or in two-phase systems such as 

metal/silicate systems, glass electrodes and silicate ion-

exchangers. 



CHAPTER III 

A REVIEW OF IONIC DIFFUSION IN SILICATES 

3.1 Introduction 

Ionic migration under a driving force (such as the 

gradient of the electrochemical potential), is generally 

accepted to be constituted by a series of ion jumps. Each 

ion is imagined to vibrate at its equilibrium position until 

upon acquiring the energy sufficient to surmount the barrier 

separating sites, it jumps into a neighbouring site. The 

various mechanisms whereby this j~~p process are accomplished 

in ionic crystals is described by a number of authors (see, 

for example, Manning ( 24 ) or Shewmon (25 >). Ion jumps can 

be achieved by either: 

(1) place exchange, i.e., an ion exchanges place directly 

(or via a ring mechanism) with its nearby neighbour; 

(2) some intrinsic-type defect in the system, e.g., Schottky 

defects (equal number of vacant anion and vacant cation 

lattice points, generally dominant in alkali halides) 

or Frenkel defects (interstitial ions with accompanying 

vacant sites, common in AgCl crystals); or 

(3) extrinsic vacancies, as in impure crystals of the type 

Cdcl 2 + AgCl where each divalent Cd++ impurity ion 

37 
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replaces two univalent Ag+ ions in the lattice in order 

to maintain electrical neutrality, so that there is a 

vacant Ag+ lattice (cation vacancy with an effective 

negative charge). As a result of coulombic interactions, 

some of these vacancies are attracted to the divalent 

cations to form complexes. 

Analyses of diffusion studies in ionic crystals and 

considerations of the activation energies required for ion 

jumps have led to the conclusion that vacancies (single 

vacancies, complexes and pairs) and interstitials (direct a nd 

indirect) are most likely involved in diffusion in ionic 

systems . The indirect interstitial (or the interstitialcy) 

occurs when one ion pushes a nearby ion into an interstitial 

position and takes occupancy of the vacated site. 

In general it is found that ionic diffusion proceeds 

in such a way that the system remains electrically neutral. 



3.2 s J lf-diffusivity Data for Silicates 

Self diffusion is by definition diffusion in a 

chernica~ ly homogeneous material. This term has come to be 
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applied to any diffusion measured with a radioactive tracer 

since the amount of main solute is generally so small that 

the composition change can be ignored. Self-diffusion 

coefficf ents are usually measured by placing an isotope on 

or in a \ chemically homogeneous material and subsequently 

analysi?g sections from the specimen after a diffusion­

anneal ~nd comparing with the .appropriate solution ( 2S) of 

Pick's ~ econd equation to evaluate D. (the self-diffusion 
I 1 
I 

coefficient) . 

There is a large amount of data in the literature 

for the self-diffusion coefficients of the ions Na, K, Li, 

H, 0, Ca and Sr. Doremus ~ 28 ) has reviewed most of the data 

prior to and including 1962, and more recent material is 

available in Diffusion Data publications ( 29 ). The data 

show th~ t the self-diffusion coefficients are very strongly 

( 30) d concentration dependent. For example, Evstropev , an 

Evstropdv and Pavlovskii (3 l) have measured DNa' DK and DRb 

in a series of binary silicate and germinate glasses and 

found that the values increase as the mole% Na 2o, K2o and 

Rb 2o, respectively. The composition dependencies of DNa 

and DK i~ the system Na 2o-sio2 and K20-Sio2 , respectively, 

are shown in Figs. lla and llb. As can be seen the 
I 
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dependencies are logarithmic within the range (0-30 mole % 

alkali oxide) investigated. It has also been established 

that the self-diffusion coefficient of an alkali is lowered 

by the addition of another alkali oxide to the glass. An 

empirical equation relating the self-diffusivity D. to 
l 

concentration in ternary silicates based on such data is 

developed in Appendix B. 

Thus it appears that the concentration dependence of 

D. is much stronger in silicates than in metals, a fact 
l 

which may be directly connected with the opening up of the 

structures of silicate systems by the addition of alkali 

oxides. 
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3.3 Prop os e d Mechanisms for Ionic Diffusion in Silicate 

Glasses 

Diffusion in and through a system is intimately 

connected with the structure and defects of the system and 

with the nature of the diffusing species and other 

constituents. Because of the non-crystalline nature of 

silicate glasses and the dependence of the structure on 

concentration, it has not been easy to pinpoint the exact 

mechanism of ionic diffusion as has been the case in 

crystalline materials. Where there is general agreement 

that diffusion is by some type of defect, experimental 

results have not been unequivocal in support of one 

mechanism or the other. 

At the outset we note that the introduction of the 

crystal concepts of Frenkel defects, vacancies, interstitials, 

etc., into amorphous systems such as silicate glasses is 

somewhat arbitrary but permissible as long as the meaning 

is clear. 

Frischat (32 a) investigated the diffusion of Na 22 

in a commercial silica glass with a hydroxyl content of 

4 x 10-4 mole/litre prepared by fusion of natural quartz 

+ crystals and suggested that Na diffuses via an interstitialcy 

(indirect interstitial) mechanism. In another study involving 

measurement of DNa in the ~a2o-K 20-Al 2o 3 -sio 2 system, 

Frischat (32b) inferred from his results that analogously to 



44 

the Frenkel pairs in the Ag+ sublattice of AgBr, Na+ ions 

near [Sio
412

J tetrahedra must occupy energetically suitable 

sites in the glass. Complexes like Na+sio
412 

and Sio
312

o 

were considered as "interstitial" and "vacancy" sites. 

These complexes were considered ·to form by a dissociation 

process in the glass structure. By comparing the size of 

the correlation factor and sign of the entropy .factor with 

those of crystalline materials, Frischat concluded that the 

interstitialcy is more probable than a vacancy mechanism. 

Barr et al. (34 ) were also quoted by Frischat as reaching 

the same conclusion from measurements of the isotope effect 

of Na diffusion in glass. 

Terai and Kitaoka (3 S) measured the self diffusion 

of Na in the Na
2
o-sio2 system containing a variety of other 

oxides and showed that DNa decreases as the effective radius 

of the added cation modifier increases. They found the 

results consistent with either a vacancy or an interstitialcy 

mechanism and noted that the mechanism was not influenced 

by the kind of divalent cation added. 

Charles (36 ) in treating self diffusion in silicate 

glasses in terms of formation, migration and ultimate 

annihilation of defects, postulated that there are a number 

of equivalent equilibrium positions (separated by energy 

barriers) for an alkali cation around each non-bridging 

oxygen ion. He considered the migration of an alkali ion 

through the glass to involve a reorientation around a 
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non-bridging oxygen ion. This reorientation was considered 

to be accomplished by means of either a direct or an 

indirect rotation (see Fig. 12). A direct rotation involves 

a direct jump of an ion from one equivalent equilibrium site 

to another around a given oxygen ion; indirect rotation 

occurs when an alkali ion leaves an equivalent site of one 

oxygen ion to occupy a site of another, leaving behind two 

vacant equivalent sites (a defect) on the original oxygen 

ion, which a migrating ion may fill (an annihilation of 

defect) . Thus ionic self diffusion was described as a series 

of polarisation events. The model was shown to be consistent 

with the conductivity data of soda-lime glass. 

Charles' model appears to be the most comprehensive 

to date in that he considered the detailed migration process 

in the silicate structure, and was able to relate the ionic 

diffusion to the conductivity as well as relaxation processes 

in silicate glasses. However, it was outlined only in terms 

of the self diffusion process. The relation between the 

postulated orientational polarisation and interdiffusion in 

multicomponent systems was not pursued. In a later section, 

an attempt will be made to extend Charles' model with 

diffusion polarisation in self diffusion to interdiffusion 

in multicomponent silicate systems. 
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Fig. 12: Hypothetical conduction and polarisation events 

in an alkali silicate glass (after Charles (36 )) 



3.4 Observations of Diffusion in Multico~ent Silicate 

Glasses 

Cooper and Varshneya (44 ) have investigated 

interdiffusion in the system K2o-s.to-sio2 at 750°C in a 

couple \vith roughly equal Sio
2 

concentrations on the two 

sides. Their observed concentration profiles represent 

normal counter-current flow of K and Sr. From these 

profiles, they calculated the interdiffusion coefficients 

for K and Sr. 
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In a later paper, Varshneya and Cooper (l) measured 

the concentration profiles in glass diffusion couples of the 

system K2o-sro-·sio2 , scme of which had substantial 

differences of Sio2 concentration on the two sides. A 

typical observa:!:ion is shown in Fiy. 13 and demonstra tes a 

form of up- hill diffusion. A large part of our contribution 

has to do with the inter pretation of such phenomena. 

Borom and Pask (4S) have studied the kinetics of 

interfacial reaction and di f fusion processes in the iron-

s odium d.isil.i.cate system in t:he 900-l lOOr-c tempera·ture 

range and have C(m c luded tha t the process is limited by the 

interfacial reaction bet r.-1een .iron and glass. The iron is 

. " . . d t:h 1 "' . F 2+ ~ ~ncorpora·tec :Lns .t e .~ e g . ass as :r: e r rous 1ron e ana 

d . ~f b . . . h ··- + . . t t . 'l . 1~ usE~s y excnange w.t ·c Na ~1. ons .1.n a cons ar. s1 1. c a 

framework. An activat:Lon ener':.3Y f or interdiffusion of 

26.7 kcal. wa.s cbtained. Suct.)V and Go:::::nan <46 ) h;'ive 
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Fig. 13: Concentration profiles of K2o and SrO in 

K20-Sr0-Sio2 glass couple showing uphill 

diffusion of Sr at the interface due to 

discontinuity in the nearly immobile anion 

concentration (result from Varshneya and 

Cooper <44 )) 
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investigated the interdiffusion of Na and Ca in Na 20-Ca0-Sio 2 

system in the range 880-1308°C, and concluded that with a 

nearly uniform Na 2o concentration, both the Na and Si are 

stationary while Ca diffuses with singly-bonded oxygens 0 

to maintain electrical neutrality in the system. 

The data of Cooper and Varshneya, Varshneya and 

Cooper and of Sucov and Gorman will be subjected to detailed 

analysis in a later section. 



CHAPTER IV 

PHENOMENOLOGICAL THEORY FOR DIFFUSION IN IONIC SYSTEMS 

4.1 Introduction 

The phenomenological basis for multicomponent 

diffusion was defined by Onsager <37 ) using irreversible 

thermodynamics. Onsager showed that for near equilibrium 

situations, there is a linear dependence between the forces 

·and fluxes viz: 

J. = 
~ 

n 
E 

j=l 
L .. X. 
~J "" 

i = 1, 2, 3, ••• , n 

where J., x., L .. are the fluxes (diffusion, electrical 
~ ~ ~J 

conduction, heat transport: chemical reaction, etc.), the 

driving force and the phenomenological coefficients 

respectively; and for independent fluxes and forces which 

generate the bilinear form of the entropy production rate 

per unit volu.rne 

Tcr = 
n 
E 

i=l. 
J.x. 
~ ~ 

50 

( 4 .1) 

( 4. 2) 



reciprocal relations hold between the phenomenological 

coefficients, viz, 

L .. = IJ .. 
1] ]1 
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( 4. 3) 

From the second law of thermodynamics, which requires that 

the entropy production rate be positive, it follows that 

ma·trix L .. must be positive definite, i.e., 
1] 

L .. > 0 
11 

L .. L .. - L .. L .. > 0 
11 J J 1] J 1 

etc. ( 4. 4) 

For chemical diffusion of neutral components where 

n in Eq. (4.1) is the number of such components, the X. are 
1 

not independent, being related via the Gibbs-Duhem equation 

n 
2: 

i=l 
N.X. 

1 1 
= 0 

and accordingly the reciprocal relations, (4.3), need not 

apply. 

For the interpretation of chemical diffusion 

experiments the fluxes must be defined with respect to a 

( 4. 5) 

suitable frame of reference, of which the four most common 

ones are (1) solvent-fixed, (2) volume-fixed, (3) lattice-

fixed, and (4) laboratory-fixed. The solvent-fixed frame 

is that relative to which the solvent flux is zero, i.e., 
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Jsolvent = 0 ( 4 • 6) 

Similarly the volume-fixed frame is that moving locally so 

that no net flow of volume occurs, i.e., 

n 
L: 

i=l 
J.V. 

]_ ]_ 
= 0 

where the V. are the partial molar volumes 
]_ 

v. = ( ~v ) 
1 oN. T,P,n., .•• 

]_ J 

( 4. 7) 

, (4.8) 

_(3) and (4) are similar ly defined. Any convenient reference 

frame can be chosen and a trans formation exists for passing 

from one frame to another ( 3 8) 

For diffusion in an n-component non-ionic system it 

has been shown (33 ) that 

Tcr = 

If we define our frame of reference as in (4.7) then this 

can be reduced to 

Tcr --
n-1 

E 
i=l 

J. 
]_ 

a (~. 
]_ 

ax 

( 4. 9) 

(4.10) 
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which now has a bilinear form in terms of independent fluxes 

J . and forces 
1 

X. = 1 

a (~. 1 

v. 1 
~n) 

Vn 
ax (4.11) 

The ~n's can, of course, be eliminated via the Gibbs-Duhem 

equation. The relation between the fluxes and forces will 

have the form 

J. = 
1 

with the Onsager reciprocal relations (4.3) now valid. 

The validity of the Onsager reciprocal relations 

( 4 .12) 

( 4. 3) 

has been extensively investigated experimentally by Gosting 

d h . ( 3 9) · w· · · 1· 'd 1 ~ an 1s group 1n 1scons1n us1ng 1qu1 e ectro~ytes. 

Kirkaldy and his group ( 40) at McMaster have amplified the 

physical basis of this relationship in multicomponent liquid 

electrolytes and metallic crystalline systems. 

The phenomenological description of diffusion 

implied by Eq. (4.12) fully takes into account the cross 

effects of all other constituents of the system on the flux 

of any one species. Thus, the diffusion process in any 

multicomponent system, no matter how complex, can be 
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completely characterised once the phenomenological 

coefficients are known as functions of temperature, 

concentration and pressure. Thus such phenomena as up-hill 

diffusion, i.e., diffusion of one component against its own 

concentration gradient or under a zero concentration 

gradient are natural outcomes dependent upon the magnitudes 

and signs of the L .. 's. 
1] 

The understanding of diffusion in ionic systems is 

complicated by the fact that the diffusing species are 

charged and there exist associations between species (i.e., 

complexes, pairs, etc.). Furthermore, analysis is inhibited 

by a lack of accurate thermodynamic data. It is, therefore, 

not surprising that work on these systems has not been as 

extensive as in non-ionic systems. Nonetheless, important 

simplifications have been recognised. The first of these 

derives from the fact that diffusion generally proceeds 

under the zero net electrical current condition, viz, 

r z.J. = 0 
1 1 

The second simplification, according to Schmalzried and 

(4.13) 

Holt ( 4l), arises from the fact that if the anion sublattice 

is fixed (and this is more or less the rule because of the 

large ionic sizes) then there will be no Kirkendall effect. 

Further si~plification is made possible through the often 
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valid assumption that the Onsager cross terms Lij (ifj) are 

small relative to the diagonal terms L ... 
ll 

Through kinetic arguments, Lane and Kirkaldy ( 40g), 

Howard and Lidiard ( 42 ) and a number of other authors ( 43 ) 

have related the coefficients L .. to measurable parameters 
lJ 

(such as activities, jump frequencies, and lattice spacings) 

in metallic and ionic crystals, thus making it possible to 

characterize the system. 



56 

4. 2 __ ~J"!C:I~omenolog .:i. c a. l r.rh~ory of Ionic Diffusion: The 

Nerrtst-Planck Eq uation 

For an n-component isothermal ionic system, Eq. (4.9) 

generalizes to (33) 

Tcr = 
n + 

L: JJ. ·{grad(~J.)-zJ.E} - p ~~ · (E -E) 
j=l eq 

( 4 • 14) 

+ + 
where E is the electric field, P is the polarisation (dipole 

moment per unit volume), pis density, (mass per unit volume), 

t is time and E is defined by ( 33 ) 
eq 

where K is the electric susceptibility. If the dipoles 

+ + -1 :± 
in equilibrium with the field E (E = K ¥) 

-~ + 
E = E eq 

then 

( 4. 15) 

are 

(4.16) 

and the contribution of dipole relaxation to a vanishes. This 

limit also justifies omitting such terms from the flux-force 

+ + 
relation since the relaxation force is E - E. We can, eq 

therefore, write a flux-force relation of the form 

J. -
l 

n 
1.: 

i=l 

+ 
L .. (grad(~.)- z.E) 

lJ J J 
(4.17) 
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A rigorous treatment of this relation based on the Onsager 

reciprocal relations and leading to the definition of a 

diffusion potential is to be found in DeGroot and Mazur (33 ) 

(p. 367 ff). We proceed here with sufficient knowledge of 

the mechanism to obviate a detailed calculation. 

With Lane and Kirkaldy ( 40g), LeClaire ( 2?b) and Ziebold 

and Cooper (gl) we recognise that for condensed phases 

there exists a frame of reference for J. in which all cross 
1 

terms in the L .. matrix are approximately zero. For 
1) 

substitutional metals, this has been recognized as the 

Kirkendall frame and for ionic liquid solutions the frame 

depends on relative ionic radii (or molar densities). 

Cooper has applied the same ideas to glasses as considered 

here, representing the fluxes in the laboratory frame by 

relations like 

l. =- L .. (grad(~.)-z.JE) + p.~ 
1 11 1 1 1 

(4.18) 

+ 
where u is a drift velocity depending on volume changes of 

mixing. 

Although we recognise that the drift term ~, may be 

important in certain systems with large composition 

differences we do not regard it as significant to the 

analysis of the data treated herein. Accordingly we proceed 

with the simple relation in one dimensional form 
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· (x-coordinate) : 

J. = - L .. (grad ll· - zi'1E) 1. 1.1. 1. 
(4.19) 

RT 
ac. atny. 

~ !t) 1. l = - L .. <ax- + c. + z.c. 
1.1. c. 1. ax 1. 1. RT ax 

1. 
(4.19a) 

where y., z . ,Jf, and¢ are the activity coefficient, valence, 
1. 1. 

the Faraday constant and the electrostatic potential, 

respectively, and the electric field E is given by the 

electrostatic potential gradient, viz: 

E = a¢ - ax (4.20) 

Following Darken (SO) and others, the mobilities Lii 

can be related to the tracer diffusion coefficients Di by 

L., = 
1.1. 

D.C. 
1. 1. 
RT 

a R.ny. 
1. 

( l + N i aN. ) 
1. E=O 

or in Einstein's approximation 

L .. = 
1.1. 

D.C. 
~ 1. 
RT 

(4.21) 

(4.22) 

where Ci are the ion concentrations, and R and T are the gas 

constant and absolute temperature, respectively. The 

approximation from Eqs. (4.21) to (4.22) implies that the 
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activity coefficients y. vary slowly with N .. In the same 
l l 

approximation and with D. assumed independent of the field 
l 

-+ E, then 

J. = -D. 
l l 

ac. z .jc. ~,!, 
[ l + ~ l ..:'...:t..] ax RT Clx (4.23) 

which is the well-known Nernst-Planck equation. All our 

subsequent analyses will be based on Eq. (4.23) for the fluxes 

of the mobile ions. 
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~3 ~~he Syste~ of Coup led Diffusion Eq uations 

4.3.1 Quasi-binary Ionic Systems (Fixed Anion Solvent) 

For a system of n ionic species, the flux of each 

diffusing species is described by Eq. (4.23). To eliminate 

the as yet unknown quantity 8¢/ax (= - E) from (4.23), we 

must introduce a final assumption viz, that the net real 

electrical current in the system is zero, i.e., 

n 
L: 

i=l 
z.J. = - J :t 0 

1 1 r 
(4.24) 

This assumption which for an initially neutral system implies 

electrical neutrality at all times, has become traditional 

for ionic diffusion and has generally been borne out by 

experimental results. One may consider it to be the result 

of the system's "tendency to instantaneously minimize the 

electrostatic energy through minimization of the net 

accumulation of charge ( 4?) ... It is sufficient that 

be small relative to each of the lz.J. I. 
l l 

IJ I r 

Applying this condition to the flux equations (4.23), 

n 
L: 

i=l 
z.D. 

l l 

a c . z . Jc . "' ,~, 
( __ 2:_ + l· 1 _o _'t' ) = O 
ax RT ax 

we obtain the electric field E (the so-called diffusion-

potential) as 

(4.24a) 
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n ac. 
r D.z. _l 

a · RT j=l J J ax 
_p_ = E = (4.25) ax :s n 

2 
l: D. z .C. 

j=l J J J 

Substituting (4.25) in (4.23) we obtain the following coupled 

diffusion equations: 

n 2 2 n 
-( L: D.C.z.)-D.C.z. ac l: 

= - j=l J J J l. l. l. ___l_ + j ~i 
D.D.z.z.c. '"'C l.Jl.Jl.o. 

_J_ Ji --n------------- Di ax ~--n---------

r D.C.z~ l: D.C.z~ 
j=l J J J j=l J J J 

ax . (4.26) 

For a quasi-binary system with two mobile ions l and 

2 in a fixed anion solvent (a special case of ternary system) , 

the flux equations from the general expression (4.26) are 

Jl - 0 11 
ac 1 

- 0 12 
ac 2 = ax ax 

(4.27) 

J2 - 0 21 
ac 1 

- D22 
ac 2 = ax ax 

where 

2 

0 11 
DlD2z2C2 

0 12 
z2 

= = -- D 2 2 z 1 22 
Dlz1Cl+D2z2C2 

(4. 2 8) 
2 

0 22 
DlD2zlcl 

0 21 
zl 

= -- - . - D 2 2 z 2 11 
Dlz1Cl+D2z2C2 
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and the internal electric field is 

E = RT 

J 
(4.29) 

A set of coupled diffusion equations analogous to 

Eq. (4.27) has also been formulated by Dorward ( 5l), and by 

Hu and Schmidt (52) for application to diffusion of two 

species in semiconductors, and also by Cooper (la) and 

Varshneya and Cooper(lb) for application to glasses. The 

latter's equations are more general than those developed 

here, as noted previously. 

The combination of (4.27) with the law of conservation 

of mass in the following expressions: 

ac. aJ. 
1+--1=0 
~ CJX 

(4.30) 

i = 1, 2, ... , n 

yield the Fick-type non-linear partial differential 

equations: 

ac
1 a 

(Dll 
ac 1 a 

(Dl2 
ac 2 

~ = ax ax-> + -- ax-> ax 
(4.3la) 

ac 2 a 
(D21 

ac1 a 
(D22 

ac 2 
at = ax ax-> + ax ax-> ( 4. 3lb) 



63 

which can be uniquely solved numerically subject to the 

appropriate initial and boundary conditions on c1 and c2 , 

e.g., 

(4.32) 

and provided we know the values of the self-diffusion 

coefficients D1 and n2 . Thus n1 and D2 are the only two 

independent parameters required for describing the diffusion 

process. 

4.3.2 Comparison with Helfferich's Formulation 

It is important to note that the application of the 

zero net electrical current 'condition to an initially neutral 

system must imply a zero net real charge density for all 

times. That is to say 

n 
L 

i=l 
z.c. = 0 

1 1 
(4.33) 

We specify real charges as distinct from polarisation charges 

which arise from permanent or induced dipoles. 
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In formulating the equations for ionic diffusion in 

quasi-binary systems, previous workers have usuall~ applied 

both forms of the electroneutrality condition in Eqs. (4.24) 

and (4.33). In applying (4.33) the anion concentration is 

assumed constant everywhere so that the first derivative of 

(4.33) becomes 

(4.34) 

Equation (4.34) is then used to simplify the flux equations 

( 4. 2 7) to 

Jl (Dll + D22) 
ac

1 = - ax 
(4.35) 

J2 (Dll + D22) 
ac 2 = - ax 

and the internal field in (4.29) as 

E' == RT 
_j 

(4.36) 

Equations (4.35) and (4.36) are due to Helfferich (S 3). 

It is evident that our present formulation in Eqs. 

(4.27) is more general for it does not require the anion 

concentration to be constant everywhere. As has been 

discussed at length in reference (47) the first derivative 

of Eq. (4.33) for a quasi-binary system is 
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(4.37) 

which for the case where the anion concentration contains a 

step at the origin of value 6C , becomes a 

where o(x) is the Dirac o function. In such a case, Eqs. 

(4.38) 

(4.35) are not valid at the origin, whereas (4.27) are valid 

everywhere including the origin. We emphasize that for some 

special systems, e.g., infinite diffusion couples with a 

uniform anion conce ntration throughout, or semi-infinite 

systems where the concentrations are fixed at one surface 

(e.g., glass/salt solution, ion-exchangers) Helfferich 1 s 

equations (4.35) are quite valid. This indeed has been 

verified by a number of workers in ion-exchange kinetics. 

4.3.3 Ternary Ionic Systems (Mobile Anion Solvent) 

For a ternary ionic system in which the two solutes 

1 and 2 as well as the anion solvent a are diffusing, the 

flux equations from the general expression (4.26) are 

2 2 ac 1 ac 2 aca 
= -(DlD2z2C2+DlDazaCa)ax- + DlD2zlz2Cl ax + DlDazlzaCl ax-

(4.39a) 
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ac 1 2 2 ac 2 aca 
-DlD2zlz2C2 ax-- (DlD2zlCl+D2DazaCa)ax- + D2Daz2zaC2 ax-

(4.39b) 

(4.39c) 

and the internal electric field is 

E = RT 

J 
(4.40) 

Since we no longer have a step discontinuity of the 

st anion concentration at the interface, we can apply the 1 

derivative of the neutrality condition of zero real charge 

in the form of Eq. (4.37) to the flux equations (4.39) and 

eliminate aca;ax thus reducing the 3x3 matrix to the 

following 2x2 matrix: 

Jl - 0 i1 
ac 1 

- 0 i2 
ac 2 - ax- ax-

J2 - D' 
ac 1 0 22 

ac 2 = ax:- -
ax-21 

and similarly the field can be expressed as 

E = 
RT [ ( D 1-D a ) z 1 

3 (D 1 zic1 

(4.41) 

(4.42) 



where 

0 21 = 

0 22 = 

(D2Da 
2 

(Dl zlcl + 

2 
(DlD2zl cl 

2 + o1D z C ) a a a 

- DlD2)zlz2C2 
2 2 

D2z2C2 + DazaCa) 

2 2 
+ D2Daz2C2 + D2D z C ) a a a 

2 2 D z 2c ) (Dlzlcl + D2z2C2 + a a a 

Notice that the determinant of the jnj matrix is non-

zero. Note also, that with Da = 0, the above set of 

equations (4.41) - (4.43) reduce to those for the quasi-

binary systems (4.27) - (4.29). 

The combination of (4.41) with the law of 
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(4.43a) 

(4.43b) 

(4.43c) 

(4.43d) 

conservation of mass (4.30) yields the Fick-type non-linear 

partial differential equations: 

ac1 a 
(Dil 

ac1 d 
(Di2 

ac 2 
at = ax ax-> +- ax-> ax (4.44a) 

ac
2 d 

(D21 
ac1 a 

(D22 
ac 2 = ax ax-> +- ax-> at ax (4.44b) 
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A major practical difficulty in accounting for the 

anion motion is the fact that there are different forms of 

anionic species: 2- . 4- . 6- . 8-0H , 0 , Sl04 , Sl 2o7 , Sl 8o20 , etc. (as 

discussed in Chapter II) , each with its own diffusion 

coefficient. Thus although we know the total anion charge 

density zaca, frorn (4.33), we do not know the individual 

concentrations nor their distribution probabilities to 

enable us to calculate their diffusion fluxes. As a first 

approximation, we assume t.hat one anionic species predominates 

and that it has the same charge as oxygen, i.e., z = -2. a 

As a matter of fact, the choice of za value is not critical 

as can be seen from the manner it enters into the diffusion 

equations (za goes into the Eqs. 2 (4.43) as a product D z C , a a a 

where the anion diffusion coefficient D is generally such a 

that n1 >> n2 >> Da). Implicit in this is the admission 

that the theory as formulated is not sensitive enough to 

enable a determination of the particular anionic species 

diffusing. 



4.4 The Analytic (Approximate) Solution of the Coupled 

Diffusion Equations (4.31) 

For infinite and semi-infinite systems we can 
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transform Eqs. (4.31) (or (4.44)) from partial to ordinary 

dif f erential equations by the substitutions 

C. =C. (A) 
1 1 

A = x/t1/ 2 (4.45) 

to obtain 

1 d 2c d 
dc

1 d dC 2 !.. 1 
(Dll (Dl2 - 2 

dA 2 = dA cu-> + df- df- ) 

d 2c 
(4.46) 

1 d dc1 d dc 2 A 2 
(D21 (D22 

dA 2 = df cu-> + dA cu-> 2 

and since the initial and boundary conditions (4.32) can be 

expr essed in terms of!-, i.e., 

C. (A = +oo) = c~ 
1 1 

(4.32a) 

C. (A = -oo) = cl 
1 2 

the parametric solutions are unique ( 4 Oa) 

Analytic solutions of (4.46) for the case where the 

Dij are constants have been independently worked out by 

Fujita and Gosting <39b) and by Kirkaldy (S 4 ) In the 
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present case, however, the Dij by definition (4.28) or (4.43) 

are strong functions of c. so that (4.46) are non-linear and 
~ 

we must in general seek numerical solutions. 

Before undertaking numerical solution it is 

worthwhile to gain some insight into the nature of Eqs. 

(4.46) by linearising them through use of average values of 

the D .. and seeking analytic solutions. We expect that for 
~J 

systems lying within a not too large composition range, the 

use of average values of Dij will lead to good approximate 

solutions. The analytic solutions of (4.46) with constant 

D . . ' s are (39b,54) 
~J 

' A 
cl = a erf( i;2> + :0 erf ( 

172
) + g 

2u 2v 

,.. d A erf( :\ ) + f '"'2 = erf <----pz> + e 1/2 
2u ' 2v 

where the eigenvalues a~e 

Frora the definitions of D .. for the case of quasi-binary 
~J 

systems {4.28) 

o1 ,o 2~- o 1 2n ~ , = o 
... " - "-

{4.47a) 

(4.47b) 

(4.48) 

( 4.49 ) 



71 

and, therefore, 

v = 0 (4.48a) 

and the coefficients in (4.47) are found to be 

a = (4.50) 

2-
z 1 z 2 <\ < c 2 o -c 21 ) 2 1C1 (C10-C11) + 

b = ( 4. 51) 2- 2-;;::;- ) 2(z1c 1 + 2 21....2 

cl 
1 

(ClO + ell) (4.52) g = = 
2 

(4.53) 

e = (4.54) 

(4.55) 
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4.5 Discontinuity of Concentration Profiles at the Interface 

The vanishing of the D matrix (Eq. (4.49)) implies 

that the concentration profiles of c1 and c2 will in general 

have step discontinuities at the origin of magnitudes 2b and 

2e, respectively. These discontinuities arise solely from 

the fixed anion step discontinuity and the necessity of 

maintaining neutrality of real charges throughout the system. 

If the anion moves appreciably, the system must be 

treated as a ternary and the ionic diffusion of the species 

are described by Eqs. (4.41) - (4.44). From the definitions 

of D .. 'sin Eqs. 
l.J 

(4.43), 

'I 0 

(4.56) 

(4.56) 

which is clearly not zero and hence the eigenvalues, u and 

v, by definition (4.48) are both non-zero, i.e., u 'I 0, 

v 'I 0. This implies a relaxation of the discontinuities in 



c
1 

and c
2

, which is expected since the anion step 

discontinuity relaxes through the anion motion. 

73 



74 

4.6 Rela~ive Directionality of the Diffusion Fluxes 

The flux equations (4.27) can be written in the form 

(4.57) 

J2 
DlD2zl 

{z2C2 
ac 1 ac 2 = ax - zlcl a;c} 2 2 

(Dlzlcl + D2z2C2) 
(4.58) 

zl 
= -- J z 2 1 

{4.58a) 

From the analytic solutions presented earlier, (4.47) - (4.55), 

the fluxes (4.57) and (4.58) above can be written as 

(4.59) 

{4.60) 

where A is a positive coefficient. In this form, it is clear 

that the relative directionality of counter-ion flow is 

independent of the relative magnitude of the diffusion 

coefficients of the ions, and is thus strictly controllable 

through control of the initial conditions on the system. 

This fact is quite contrary to earlier concepts <44 ) that 

the counter-ion flow direction is determined by the most 
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Fig. 14a: Predicted diffusion directions in a glass couple 
with initial conditions c1 0=36.0, C2o=l5.0 , 
C11=30 . 0 , C21=9 . 0 and system parameters z1=l , 
z 2=2, n1=1Q - 5 cm2 sec-1, n2=l o-8 cm2 sec-1 
~----------------~--------------------~17 

36 

- - - - ~-c2 
34 

.-
u 
~ 32 ~ 
~ ~ 0 
E 0 

11 E 
30 

- 9 
28 

-·06 - ·04 - ·02 0 
Distance( em. ) 

06 

Fig. 14b: Predicted reversal of the diffusion directions 
i~ glass coupl e o f Fig. 14a following a c hange 
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c11=28.o, c21=9.o 
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mobile ion. Thus with the appropriate choice of c1 , c
2

, 

(c10-c11>, (c 20-c 21 ) and the valences z1 and z 2 (independent 

of the knowledge of the self diffusivities) we can control 

the flow directions. The reversal of flow directions by 

alteration in the magnitudes of the above parameters are 

shown in Figs. 14a and 14b for a hypothetical system. This 

control over flow directions of the ions has potential 

technological applications, such as in ion-exchangers. 
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4.7 The State J 1 = J 2 ~ 0 (Transient Equilibrium) 

The flux equations for quasi-binary systems (4.27) 

predict that for finite systems, the cation distributions 

approach stationary profiles with respect to the sustained 

anion profile defined by (Fig. 15) 

= 0 

From (4.57) or (4.58) this becomes 

and upon integration to the final (f) state yields 

f 
c21 

zl Q.n (-f-) 

c2o 

Alternatively (4.62) can be approximated directly to 

(4.61) 

(4.62) 

(4.63) 

(4.64) 

Thus the state defined by (4.61) is described by (4.63) or 

(4.64) along with the constraints (mass and charge 

conservations) : 

(4.65) 
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Fig . 15: Transient equilibrium in a hypothetical silicate 

-5 2 -1 
glass couple with n1 = 10 em sec , n2 = 10.7 

2 -1 em s ec , z
1 

= 1, z
2 

= 2, from initial concentra-

aO aO bO tions : c 1 = 24.0, c 2 = 9.0, c 1 = 36.0, 

c~0 = 15.0, to the transient state: c~f = 25.53, 

c~f = 8.23, c~f = 34.42, c~f = 15.79 
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(4.66) 

(4.67) 

Alternatively the state J. = 0 could have been prepared from 
1 

time zero (compare Eqs. (4.59) and (4.64)) by judicious 

choice of concentrations. 

This state for glass-like materials, defined by a 

stationary unbalanced anion distribution and a resulting 

vanishing of the cation fluxes, is analogous to that observed 

b · k ld d d ( 4 0e) · 11' d y K1r a y an Pur y 1n meta 1c systems, an 

identified by them as a "transient11 equilibrium. We note 

that in this "transient equilibrium" state for ionic 

materials such as glasses, the gradien~ of the electrochemical 

potential vanishes while ·the chemical potential gradient 

remains non-zero. The latter quantity is balanced by the 

internal field due to the stationary unbalanced anion 

distribution. That is to say 

au. 
' 1 

ax 

while 

a].l. 
1 = (ax- - zi E) = 0 (4.68) 

(4.69) 



80 

The final stable equilibrium state is only realised with 

the vanishing of the electrochemical potential gradient, 

chemical potential gradient, and the internal field, i.e., 

(4.70) 



CHAPTER V 

NATURE OF THE DIFFUSION POTENTIAL* 

5.1 Introduction 

Numerous authors (SG, 5?) have commented upon the 

contradiction between the existence of a diffusion 

potential (4.25) and the assumed condition that a diffusing 

system is everywhere neutral (zero net electrical current, 

Eq. (4.24), implies zero net charge density (4.33)) and yet 

has no applied external field. This seems to follow from 

Poisson's equation for a neutral system: 

div E = ~ = 0 Eo 

where in mks units, the permittivity of free space 

-12 
£ 0 = 8.85 x 10 farad/m, p is the charge density in 

(5.1) 

coulombs/m3 and the field E has the dimension volts/m. For 

an infinite diffusion couple, Eq. (5.1) has the solution: 

+ 
E = 0 (5.2) 

* Paraphrased from an unpublished manuscript due to 

Professor J. S. Kirkaldy. · 
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Actually, there is no contradiction as has been noted 

recently ( 4?), since the charge which is properly entered 

into the Poisson's equation must include both the real charge 

(p = E ziCi) as well as the dipole charge p' 
(55) , i.e., 

+ div E (5.3) 

(5.3a) 

when p = 0. That is to say, the diffusion potential must be 

associated with a distr ibution of dipoles in the diffusion 

zone, and keeping in mind that 

+ 
p' = - div P (5.4) 

the polarisation P (dipole moment per unit volume) must be 

given by 

+ 
- £ E 

0 
( 5. 5) 

We can say alternatively that under these diffusion 

conditions the electric displacement 

( 5. 6) 
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If the charge on each of the dipoles is q, with displacement 

a (a vector, pointing along the direction of the dipole 

moment) between the equal and opposite charges, the 

polarisation P is by definition 

± N + 
p = v qd 

or alternatively as 

P = N aE v 

where N/V is the number of dipoles (effective or quasi-

particles) per unit volume and a is the polarisability of 

(5.7) 

(5.7a) 

the quasi-particles. Since from (5.7a) the polarisability 

of the quasi-particles is negative, we conclude that a 

quasi-particle interpretation of the diffusion polarisation 

may not be too fruitful. 



84 

5.2 Interpre tation of the Diffusion Potential 

We here seek a physical interpretation of the 

polarisation within the solutions of the diffusion equations. 

For simplicity, we consider an infinite diffusion couple for 

which the anion concentration is uniform (Section 4.3.2). 

In this case the approximate solution (constant D .. ) giving 
~J 

the concentration c1 is obtained from Eqs. (4.47) - (4.55) 

as 

c
1 

= a erf 

where 

X + g 
2/ut 

( 5. 8) 

u = Dll + D22 {4.48a) 

and a and g are given by (4.50) and (4.52). ~ince from 

{ 4 • 2 0) and ( 4 • 3 6) , 

li- E = RT 
ax 3= 

it follows on integration of (5.9) (introducing average 

values of c
1 

and c2 in the denominator) that 

{ 5. 9) 

{5.10) 
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where 

( 5 .11) 

and k 2 is an arbitrary constant of integration. Furthermore, 

in view of this (5.10), and of Eqs. (5.4), (5.5) and (5.8), 

we can easily prove that¢, E, P and p' as well as c1 all 

satisfy Pick's second equation, viz, 

a < 
at 

and corresponding to the solutions of (5.12) we have from 

( 5 • 8) and ( 5. 9) 

p = - £ E 
0 

and from (5.4) 

2 
X 

a - 4ut 
exp 

ITiut 

(5.12) 

( 5 .13) 

p' = • (5.14) 

It is particularly to be noted that P and p' depend not on 

the dielectric properties of the medium (£ 0 is the value for 

free space) but on its diffusive properties. Figures 16 (a, 

b, c, and d) show schematic representations of the solutions 

for c1 , ¢, P and p' for time t > 0. 
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X ) 
• ... 0 X > 

(a) Concentration profi l e of c1 (b) 
in an infinite g lass d i ffus ion 
couple at t > 0 

Schematic repres e ntation 
of the e l ectrostatic 
potenti a l distribution in 
an infinite glass di f fusion 
couple at t > 0 

p 
X > 

(c) Schematic representation 
of the Polari sation (dipole 
moment per unit volume ) in 
an infinite glass diffusion 
couple at t > 0 

Figure 16 

(d) ' Schemat ic representat ion 
of the dipol e charge 
density in an infinite 
glass dif f usion couple 
at t > 0 
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While c
1 

and ¢ have derived from initial conditions 

which are step functions, P derives from an initial condition 

which is proportional to a Dirac 8-function and 8' derives 

from an initial condition which is proportional to the 

derivative of 8, 8'. Recognising the limit of the continuum 

description at the order of one lattice parameter, the initial 

condition p' a: 8' must have a finite representation as in 

Fig. 17a and P a: 8 must have the representation as in Fig. 

17b. That is to say, the initial condition for p' must be a 

simple dipole with a displacement roughly equal to the lattice 

parameter d, and an initial dipole moment per unit volume (P) 

corresponding to this dipole. Making this attribution we can 

write 

qd = - A J Pdx (5.15) 

where the q is the charge and A the interface area of the 

diffusion couple, and the polarisation P is given by (5.13). 

Noting that the Dirac 8-function 

8(x) =lim 
t+O 

2 
X 

1 4ut exp 
2./Tiut 

we obtain the initial charge per unit area (from the 

integration* of (5.15) at t + 0), as 

* Since J f(x)8(x)dx = f(O) 

(5.16) 



(a) Schemat ic representation of the 
initial dipole charge at the 
interface of a diffusion coup le 
arising from charge separation 
due to unequal mobilities of the 
diffu s ing ions 

(a') The interface can 
b'e ·considered a 
charged parallel 
plate condenser of 
charge density p 1 

P(t=O) 

I 
0 X 

(b) Schematic representation of the initial dipole moment per 
unit volume at the interface of a diffusion couple 

Figure 17 



From the definition of a in Eq. (4.50), we have 

where 

9. = 2RT 
A j" d 

= 

89 

(5.17) 

(5.18) 

(5.18a) 

F = • (5.19) 

The maximum value of IF! will be obtained when n1 >> n2 (or 

vice versa), z 1 = 1 and z 2c20 = 0 = z 1c11 leading to 

IFI < 1 , (5.20) 

The maximum initial charge per unit area, therefore, is 

(5.21) 

The origin of this initial dipole is not hard to 

fathom. Consider the moment of contact of a couple for which 

n1 >> n2 . Because of its high mobility, cation component 1 
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will at the instant of contact penetrate the junction towards 

the left at a much higher rate than component 2 will penetrate 

towards the right, thus producing an initial dipole on the 

time average which is represented by Fig. 17a. Consequently 

at t ~ 0, the system can be considered equivalent to a charged 

parallel plate condenser. Now the zero net real electric 

current condition does not allow this initial charge separa­

tion to become cumulative beyond one lattice parameter, which 

is to say that cations 1 will not have completed a permanent 

jump until appropriate numbers of cations 2 have done so as 

well. Yet the time average positioning of the two charges 

during this interchange represents a dipole with a moment of 

unique sign. 

Upon careful reflection it is apparent that the same 

argument holds for motion in a non-infinite gradient (t > 0) 

as well as for the step-function (t = 0) under the zero net 

real electric current condition, and that the total dipole 

strength (effective number of dipoles) must be independent 

of the concentration distribution (i.e., of time). That is 

to say, it does not matter whether the concentration 

difference is sharp or distributed for a couple distribution 

can always be thought of as an infinite series of thin 

couples each with a small step. This conservation law for 

total dipoles is clearly exhibited in the fact that both 

the polarisation P and the dipole charge satisfy Pick's 

second equation (5.12). That is, both the dipole moment per 



unit volume and the number of initial dipoles diffuse a s 

though conserved (c.f. relations (5.13) and (5.14), and 

Figs. 16c and 16d). 

This argument could be rephrased in terms of 

diffusion models such as described by Charles (36 ) in 
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Fig. 13. Dipole configurations as in Fig. 13 due, for 

example, to cations 2 jumping to the right will have mirror 

image configurations due to cations 1 jumping to the left. 

However, because of different jump rates of 1 and 2, the 

concentrations of the two configurations will on the time 

average be different thus generating a dipole moment. 

An estimate of the maximum value of the initial 

dipole charges associated with the diffusion potential is 

given in the following section. 
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5.3 The Effect of a Discontinuity in Anion Concentration 

The generalization of the discussion to systems with 

anion concentration discontinuities at the interface 

(b,e i 0 in Eq. (4.47)) is trivial, for the discontinuities 

in cl and c2 so generated, lead through (4.29) and (5.1) to 

the superposition of a stationary 6-function on P and a 

stationary 6'-function on p' which can represent nothing 

more nor less than a superposed permanent dipole at the 

initial interface. Of course, if the anion were to diffuse 

as considered in Chapter 4.3.3, leading to the field in 

(4.42), this dipole would also migrate in a conservative 

manner. 

With an anion concentration discontinuity at the 

interface, the extra term in E, over and above the value 

given by (5.9) or (5.13), which we shall call E1 , is 

obtained from (4.29) and (4.27) as 

2 
X ---

4vt} exp 

Since v-+ 0 for all t (Eq. (4.48)) 

(5.22) 



D2 (z 2d+z 1a) 
{---""-----

/mit 

2 
X 

- 4ut 
e x p 

From the definitions of a, b, d, and e in Eqs. (4.50) to 

( 4 .54) 

and 

so that E
1 

becomes 
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(5.23) 

(5.24) 

(5 . 25) 

(5.26) 

which as expected is independent of the kinetic parameters 

of the system. 

The superimposed permanent polarisation P1 implied 

by ( 5 . 2 6) and ( 5 . 5) is 

(5.27) 



and the corresponding dipole charge density (p')
1 

is 

(pI ) 
1 
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(5.28) 

If we attribute this to a dipole with a negative displacement 

equal in magnitude to one lattice parameter d, then the charge 

per unit area at t + 0 will be given from (5.15) and (5.27) by 

(5.29) 

2RT EO 
= j: d Fl (5.30) 

where 

(5.31) 

jF1 1 as defined by (5.31) will generally lie between 0 and 

unity, its maximum possible value of unity depends on an 

initial state of the system which has pure silica (Sio 2), on 

one side. 

Comparison of relations (5.19) and (5.31) shows that 

the maximum attainable magnitude of the initial dipole charge 

due to the diffusion potential is equal to the maximum 

attainable magnitude of the permanent interface dipole charge 

associated with an anion discontinuity. 
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Of course, the two maximum values do not occur for 

the same boundary and initial conditions. Indeed the two 

maxima are mutually exclusive, for when there is a maximum 

in the initial dipole charge due to the diffusion potential 

there can be no anion discontinuity and its associated dipole 

charge is zero. On the other hand, when the dipole charge 

associated with an anion discontinuity has its maximum value, 

there can be no diffusion of cations (since c11 = c 21 = 0 

and z 1 = z 2 = 1 in (5.31)) and the kinetic dipoles do not 

appear. We conjecture, therefore, that the total initial 

dipole charge for all initial conditions must have a charge 

(5.32) 

Assuming the extremes of IF! = 1 or !F1 1 = 1, we now 

seek an order of magnitude estimate for the maximum possible 

dipole charge associated with either the initial dipole due 

to the diffusion potential or with the permanent dipole 

associated with an anion discontinuity. Consider a typical 

soda-lime glass at 727°C: 

2RT = 4000 k cal/mole = 4000 X 4.18 joules/mole 

-12 8.85 -14 
£0 = 8.85 X 10 Farads/m = X 10 Farads/em 

~ = 96,500 coulombs/mole 
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Taking d to be the average separation of non-bridging 

oxygen atoms and adopting the value of 5.5 A0 given by 

Charles ( 36 ), we have 

s. = 
A 

2 X 4000 X 4.18 X 8.85 X 10-14 

76,500 X 5.5 X 10- 8 

-7 2 
- 5.6 x 10 coulombs/em (5.33) 

If we were to attribute these dipoles to particles with one 

electronic charge, e = 1.6 x lo- 19 coulombs, then the 

effective number of particles n per unit area involved in 

the polarisation will be 

n __ 5.6 x 10- 7 ~ 12 
4 x 10 particles 

A 1.6 X lo-19 ~ 

With a lattice parameter of 5.5 A0
, the total number of 

particles contained on a unit area is 

1 

Thus the fraction of interface sites contributing to the 

polarisation is about 1/100 or 1%. Of course, this is the 

maximum possible value, the practical value being in general 

much less than this. 

We have already noted that the dipole configurations 

at the instant of contact of the two halves of the couple 



give the interface the essential characteristics of a 

charged parallel plate condenser. Thus from Gauss' 

theorem (58 ), the field E between the plates is 

E -- volts/em 

and from (5.33) at the instant of contact it is 

E = 5 ·6 x 10-
7 ~ 6 x 10 6 volts/em 

8.85 X 10-14 

Furthermore the potential difference 

V = - Jd Edx 

0 

volts = 0.3 volt 
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(5.34) 

(5.35) 

This value is of the same order of magnitude as the 0.06 volt 

obtained by Hafemann ( 5 G) for liquid junction potentials. 

We would emphasize that the principles expounded in 

this section are applicable to diffusion processes in all 

ionic systems for which the zero net electrical current 

condition is valid, e.g., ionic crystals, glasses, zeolites, 

ion exchange resins and many semiconductor arrangements. 

The diffusion potential, or its associated field is to be 

uniquely associated with a self-generated distribution of 

electric dipoles, given to a first approximation by solutions 

of the Nernst-Planck equation under the zero net electric 

current condition. This interpretation removes the apparent 
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contradiction between the existence of a diffusion potential 

and the electroneutrality condition as applied to the real 

charges. 



CHAPTER VI 

EXPERIMENTAL TEST OF THE PHENOMENOLOGICAL SCHEME 

6.1 Introduction 

Two sets of coupled diffusion equations have been 

formulated in Chapter IV; one for a quasi-binary system 

(fixed anion solvent), Eq. (4.27), and the other for true 

ternary systems (all 3 components diffusing), Eq. (4.41). 

We note that the que~tion as to whether a system can be 

approximated as a quasi-binary will depend on the relative 

magnitudes of the cationic diffusion coefficients n1 and n2 

wit..~ respect to that of the anion. For systems in which 

we antici pate that the quasi-binary approximation will 

satisfactorily d~scribe the diffusion configuration. However , 

when (6.1) is not true, as would for example be the case at 

high t emperatures (when depolymerisation of the silicate 

anions leading to smaller and more mobile silicate anion 

uni ts (Chapter II ) becomes appreciable) and all ion::; have 

comparable D.r the system must be considered as a ternary 
]. 

and t h e more general formulation applied. Systems in which 

one of ·t h E= cat ions (cation 2 for example) has a diffusion 

coeffit::ient nearly comparable to the anion value, i.e., 

99 
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(6.2) 

must similarly be treated as a ternary. 

We can firmly entrench our formulation by successfully 

testing it against e xperiments. The published works of 

Cooper and Varshneya ( 44a), Varshneya and Cooper ( 44 b) and 

Sucov and Gorman ( 4S) provide us with the appropriate data. 
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6.2 Numerical Solution of the Coupled Diffusion Equations 

As remarked earlier, the approximate analytic 

solutions obtained by using average D .. in the flux 
1] 

equa'i:.ions (4.31) or (4.44), are only valid for systems 

lying within a narrow composition range. For more precise 

solutions to (4.31) or (4.44) we must use numerical 

( 26) techniques 

We note that the boundary conditions in Eq. (4.32) 

imply 

ac. 
l. 

lim ax = 0 
x-+oo 

Thus we solve (4.31) or {4.44) numerically subject to 

(6.3) 

approp~ria t. ·~ i::1.i t .ial condi ticms and boundary conditions ( 6. 3) 

when ,.,.e have an infinite system. For finite systems, (6.3) 

can be simply modified to 

ac. 
1 ax-= 0 at 

where x 0 is the coordinate of the boundaries. 

( 6. 4) 

An outline of the computer program together with a 

listing of the program is given in Appendix C. 
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6.3 Choice of Concentration Units 

The concentration units used in the diffusion 

equations must be in amount per unit volume. Thus 

compositions given in molar or weight percentages (as given 

by the microprobe) must be transformed to moles or weight 

per unit volume. Glass densities as a function of 

composition (needed for the conversion) are, however, not 

generally known. In the absence of such data we must seek 

an approximation . If the range of composition within any 

one diffusion couple is relatively small then we invoke the 

assumption that the silica (Sio 2 ) lattice is volume 

invariant with respect to basic oxide additions and 

introduce the units of mole% cations/mole% Sio2 into our 

diffusion equations. This is equivalent to using total 

ion fraction (number of ionic species i/total number of 

ions in the system) and assuming that the total number of 

ions per molar volume is invariant. 
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6.4 A£plication to the Published Data 

6.4.1 The K20-SrO-Si02 system 

Varshneya and Cooper (S 9 ) have determined the self 

diffusion coefficients of K and Sr in the sys·tem 

K 2o-sro-sio2 over ·the temperature range 530 to 830°C and 

obtained the following rate equations for DK and o
5
r: 

DK = 36.5 exp[- (48,000 ± 2,400)/RT] 

D S r = 0 • 17 exp [ -· ( 4 2 , 7 0 0 ± 2 , 4 0 0) /RT] 

When required D was estimated by trial and inspection of a 

the experimental curves near the origin. 

( 6. 5) 

( 6. 6) 

Cooper and Varshneya <44 a) measured the distribution 

profiles of K+ and sr2+ (as K
2
o and SrO) in a glass couple 

of the initial composition given in Table III after a 

diffusion anneal of 8 . 37 h rs at 750°C. Using the values of 

DK and Dsr obtained by Varshneya and Cooper (S 9 >, Eqs. (6.5) 

and (6.6), we have predicted the concentration profiles of 

K2o and SrO in this glass couple for (1) the quasi-binary 

a~proxima ·tion and ( 2) the complete ternary formulation, 

Eqs. (4.31) and (4.44), respectively , following the 

computation procedure described in Appendix C. 'Ihe predicted 

t.":Oncentration profiles and ·the experimental results of Cooper: 

and Varshneya are compared in Figs. l8a and l8b. 
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TABLE III 

TERNINAL CHEMICAL COMPOSITION OF THE 

GLASS COUPLE STUDIED BY COOPER AND 

AND VARSHNEYA ( 44a) 

OXIDE WT% MOLE% 

K20 19.7 23.1 14.9 17.3 

SrO 20.0 15.5 13.7 10.6 

Sio2 60.3 61.4 71.4 71.7 

TABLE IV 

TERMINAL CHEMICAl, COMPOSITIONS OF THE GLASS COUPLES 

STUDIED BY VARSHNEYA AND COOPER (44b) 

COUPLE OXIDE WT% MOLE% 

K20 22.8 19.8 17.1 14.9 

A SrO 15.6 20.0 10.7 13.7 

Sio2 61.3 60.5 72.2 71.4 

K20 20.1 23.0 15.0 17.5 

B SrO 17.0 18.4 11.5 12.7 

Sio2 63.1 58.5 73.6 69.8 

K20 22.8 18.15 17.1 13.5 

c SrO 15.6 18.0 10.7 12.1 

Si0 2 61.3 64.1 72.2 74.4 
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In a second and more extensive investigation of cation 

(lb) diffusion ih K20-SiO-Sio 2 glasses, Varshneya and Cooper 

-have- measured the concentration profiles of K and Sr in glass 

couples A, B and C (Table IV) subjected to the following heat 

treatments: 3.7 hours at 737°C, 7.9 hours at 708°C and 

4.55 hours at 798°C respectively. The recorded K2o and SrO 

concentrations were subject to analytical errors of 

±0.1 wt% and ±0.2 wt%, respectively. 

Using the values of DK and n8 r calculated at the 

test temperatures from Eqs. (6.5) and (6.6), (and the 

indicated estimate for Da for the full ternary calculation) 

the concentration profiles for each of the couples have been 

computed. The predicted profiles are plotted in Figs. 19, 

20 and 21 together with the experimental results of 

Varshneya and Cooper. 

6.4.2 Na
2
o-caO-Sio

2 
system 

Self-diffusion coefficients for Na have been 

extensively measured and reported ( 29 ) From a survey of 

these, the values of DNa in Table V have been adopted for 

this system. The values for Dca on the other hand are not 

accurately known for the temperature range of interest in 

this system. From the limited data ( 29 ) we have adopted 

the values shown in Table V as reasonable estimates for Dca 

at the experimental temperatures of interest. 



TABLE V 

+ 2+ DIFFUSIVITY DATA FOR Na , C~. AND ANION 

ION 

Anion 

Anion 

Anion 

Na+ 

ca2+ 

Anion 

2 

5 

1 

IN SILICATE GLA.SS 

SELF-DIFFUSION COEFFICIENT 

X 10-13 2 -·1 
(705°C) em· sec· 

X 10-13 2 -1 
750°C em· sec-

X 10-12 2 -1 
800°C em· sec. 

1308°C 

5 X 10-5 2 -1 
Cffi• sec· 

7 10-a 2 --1 
X Cffi• sec. 

1 10-9 2 -1 
X em· sec-

TABLE VI 

TERMINAL CHEMICAL COMPOSITION OF THE SODA-LIME GLASS 

USED BY SUCOV AND GORMAN ( 46 ) 

OXIDE MOLE% 

15.3 15.2 

CaO 14.9 12.0 

69.8 72.8 
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Sucov and Gorman <46 ) investigated the interdiffusion 

of ca2+ and Na+ in a soda-lime glass couple (Table VI) after 

a 90 min diffusion-anneal at 1308°C. The two sides of their 

couple had nearly the same Na 2o, but a substantial difference 

in CaO. The authors measured only the Ca concentration since 

their microprobe was not capable of analyzing for Na. 

Using the adopted values of DN , DC and D we have a a a 

predicted the concentration profiles for Ca and Na and 

compared them with the data in Figs. 22a and 22b. 
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6.5 Discussion 

The agreement between the predicted and experimental 

values for the K2o-sro-sio2 system at 708°C, 737°C and 750°C 

are seen in Figs. 18-20 to be quite good. As anticipated, 

because of the relative magnitudes of DK' o5 r and Da at 

these moderately low temperatures, the quasi-binary 

approximation and the full ternary treatment lead to similar 

predictions. It is apparent that within the usual analytical 

errors the quasi-binary approximation is an adequate predic-

tion. The agreement between the predicted and experimental 

values for the K20-SiO-Sio 2 system at 798°C is reasonable in 

·the quasi-binary approximation, Fig. 2la, but is appreciably 

better in the ternary formulation. In the Na2o-Ca0-Sio 2 

system at 1308°C, the quasi-binary approximation fails 

badly while the agreement between the ternary prediction and 

experiment is good. At this high temperature, it is apparent 

that the quasi-binary ass~~ption is ~nreasonable both from 

structural and kinetic considerations, and D is no longer a 

negligible. 



CHAPTER VII 

EXPERIMENTAL TECHNIQUES AND PROCEDURES FOR THE 

K20-Ca0-Sio 2 SYSTEM 

7.1 Couple Design 

In designing (i.e., choosing the various 

compositions) of our diffusion couples the following factors 

were taken into account: 

(a) The softening point of silicate glasses decreases (in 

general) with the Si02 content. 

(b) It was desirable to carry out the diffusion anneal for 

the couples in the rigid state (to avoid any 

uncertainties with the location of the interface), and 

yet work at not too low temperatures (relatively short 

annealing times). 

(c) The assumption that 'the structure of silicate glasses 

is the "frozen-in" structure of the melt' is more valid 

in the high Sio2 range because the large silicate 

anions (and the corresponding high viscosity of the 

melt) make polymerisation on cooling unlikely. 

(d) The approximate analytical solutions to the diffusion 

equations given in Chapter 4.3 are more correct the 

smaller the composition range involved. 
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Thus we chose our glass compositions in the high 

Sio2 range (at least 65 mole% Sio2), and within a 

composition range of about ±10 mole% for the oxides in the 

glass. Furthermore, since the major source of interaction 

is expected to be from the discontinuity in the anion 

concentration (resulting from different Si02 content of the 

two halves of the couple) we chose seven glass compositions, 

three of which were separated by 10 mole% step in Sio2 

content at 5 mole % intervals, with two pairs having the same 

Sio
2 

content. The metal oxide contents of the glasses were 

then varied so that uphill as well as downhill interdiffusion 

profiles would be exhibited. 

The system Na 2o-K 20-Sio2 was originally to be 

investigated because more information is available for the 

diffusion coefficients of Na and K, but since the Cameca 

probe at McMaster was not equipped to detect Na, this system 

was discarded; Ca was substituted for Na and the system 

K20-Ca0-Sio 2 studied. 
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7.2 Materials and Reagents 

The K2o and CaO were added in the form of carbonates. 

~'he carbonates K2co 3 and Caco 3 powder were Fisher certified 

grade. The lot analyses reported on the label of each 

reagent are given in Appendix t The Sio2 also supplied by 

Fisher was in the form of floated Sio2 powder (of about 

240 mesh) . The analysis of this silica powder could not be 

obtained from Fisher but it was expected that major 

impurities would be Al, Mg, Ca, Fe and possibly Na and K. 

Chemical analyses of the glasses (Appendix E) showed these 

impurities to be at negligibly low concentrations. 
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7. 3 Appara_tus 

7.3.1 Glass Me lting Furnace 

A Harrop muffle furnace heated by means of 4 pairs 

of silicon carbide resistors, and having a maximum 

temperature capability o f about 1550°C, was used for the 

glass melting. A 3/4 11 diameter hole was drilled through the 

furnace roof via which a stirring rod could be lowered into 

the melt. The stirring rod consisted of a 0.2" diameter by 

4" solid Pt-40% Rh rod attached to the end of a 1/4 11 I.D. 

x 27" mullite tube. The mullite end of the rod was screwed 

on to a pulley system with a differential gear which was 

coupled to a motor, thus allowing the stirring speed to be 

varied if desired. This stirring arrangement was mounted 

vertically on the insulated furnace roof. 

7.3.2 Furnace for Stress-relieving of the Prepared Glasses 

A horizontally mounted Kanthal wound, resistance 

furnace was used for stress-relieving of the prepared glasses. 

A mullite tube 2 1/2" O.D. x 2 1/4" I.D. x 30" long open at 

both ends was wound over a length of 12" with Kanthal wire. 

The tube was aligned centrally within a bank of insulating 

bricks. A pair of polaroid lenses were positioned (held with 

clamps and support) at the two open ends of the furnace tube 

(one lens at each end), and a 40 watt light bulb was 
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positioned about 3" from one of the polaroid lenses. This 

arrangement was used to test for internal stresses. 

7.3.3 Furnace for the Diffusion-anneal 

A vertically mounted Kanthal REH tube element 

furnace was used for the diffusion runs. The tube element, 

REH 7-60 type capable of up to 2100 watts, measuring 

3.85" O.D. x 2.76" I.D. x 19.70" long, supplied by Ferro 

Enamels Ltd. of Oakville, was inserted in a protecting 

ceramic tube. The insid8 diameter of the protecting tube 

was about 0.5" less than that of the outside diameter of the 

tube el.ement, and the space inbetween was filled with coarse 

grained Al
2
o

3 
powder as recommended by the suppliers to 

allow for the expansion and contraction of the strip element 

and to ensure that neither the strip nor the ceramic 

insulating parts were exposed to mechanical stresses. The 

encased tube element was then centred in a brick-lined 

furnace of casing measuring 13" x 13'' base and 21" high. 

A mullite tube 2 1/2" O.D. x 2 1/4" I.D. x 30" long 

was used as the working tube of the furnace, and was placed 

inside and concentric with the tube element so that about 

4 1/2" length of the mullite tube was exposed at each end 

of the insulating box. The windings of the tube elements 

were led via a pair of reinforced Kanthal strips on the 
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furnace top to a 220 volt A.C. main supply through a 

powerstat, a Wheelco on-off temperature controller (with a 

120 volt A.C. main supply) connected to a relay (mercury 

plunger type) and an ammeter. 

The furnace tube was fitted at each end with water­

cooled brass caps. The lower brass cap had a centrally 

located opening with swagelock 1/4" diameter to allow a 

thermocouple protection sheath carrying the thermocouple 

for monitoring the specimen temperature, into the working 

area of the furnace. 

A temperature control thermocouple (Chromel-Alumel) 

was inserted to come to rest at the side of the tube element 

through a hole drilled through the insulating box, bricks 

and ceramic protecting tube. 

7.3.4 Crucible Assembly 

A Pt-10% Rh dish measuring 1 11/16" base diameter to 

2" diameter at the open top, and 3/4" deep was used to hold 

the diffusion-couples during diffusion anneals. The inside 

of the Pt-dish was divided into 4 compartments using thin 

platinum foils so that up to 4 diffusion couples could be 

done in one single run. Three Pt wires were attached to the 

dish through three small holes drilled concentrically at the 

mid-side, thereby enabling the dish to be raised or lowered 

into the furnace by means of the wires. The Pt-10% Rh dish 
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was positioned in the furnace on a mullite tube (1 1/2" O.D. 

by 18" long) which rested inside the lower water-cooled brass 
. 

cap. The thermocouple sheath containing the thermocouple 

for monitoring the specimen temperature was introduced into 

the furnace through the central opening in the lower water-

cooled brass cap, and was positioned such that its upper end 

comes to rest at the base of the platinum dish. 

7.3.5 Temperature Measurement and Control 

All the temperature monitoring and control were by 

means of Chromel-Alumel thermocouples. The temperature 

control thermocouple positioned as described in 7.3.3 was 

connected to the on-off Wheelco controller. From the 

thermocouple for monitoring the specimen temperature, 

readings at regular intervals showed that the furnace 

temperatures were controlled to within ±2°C in the range 

700 - 750°C. The temperature profile of the furnace was 

determined at 700°C and is shown in Fig. 28. The hot zone 

of the furnace extended over a length of about 3" and it is 

located at a distance of about 17" to 20" from the lower end 

of the furnace. Since the platinum dish was short (7.3.4) 

and the temperature profile provided a hot zone of about 

3" length (Section 7.3.6), it is inferred that the quoted 

specimen temperatures are accurate to with ±2°C. 
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7.4 Procedure 

7.4.1 Glass Melting 

For each glass composition in Table VII, measured 

amounts of K2co 3 , caco3 and Sio2 powder, calculated to give 

the desired nominal composition and totalling approximately 

500 gm mix ture, were weighed out into a plastic bottle. 

This was put into the ball mill and left to homogenize for 

about 6 hours. The mixture was then ready for melting. A 

200 c.c. capacity Pt-10% Rh crucible was used for the glass 

melting. Each glass composition was melted twice, first at 

1450°C and then at 1490°C. No special furnace atmosphere 

was needed since glasses are relatively inert at ordinary 

furnace atmosphE:!res. 

The 500 gm mixture was divided into four approximately 

equal portions. The melting was carried out in stages (at 

1450°C): the first portion was melted, then the next 

portion was added into the molten pool and put back into the 

furnace to melt before the next portion was added, and so on 

until all the 500 gm mixture was molten in the crucible. 

The molten glass was then held in the furnace for 4 hours at 

1450°C. A glass disc 1" diameter by 1/4" thick was cast 

from the melt and the rest of the melt quenched by pouring 

it inside a cold graphite mould and directing a jet of cold 

air blast onto it causing the glass to shatter. 

The pieces of the shattered glass were crushed 

overnight in the ball mill using 3/4" high purity high 



TABLE VII 

NOMINAL AND ANALYSED CHEMICAL COMPOSITIONS OF THE SILICATE GLASSES STUDIED 

GLASS NOMINAL COMPOSITION ANALYSED COMPOSITION 

MOLE% WT% MOLE% WT% 

Sio2 K20 CaO Sio
2 

K20 CaO Si02 K20 CaO Si02 K20 

21.e 
A 75 15 10 69.5 -2·-rl.:-B 8.7 74.56 15.40 10.07 69.0 22.3 

B 70 15 15 65.1 21.9 13.0 70.00 15.02 14.98 65.1 21.9 

c 67 20 13 60.6 28.4 11.0 66.49 20.57 12.94 60.0 29.1 

D 74 17 9 67.9 24.4 7.7 73.84 17.04 9.12 66.7 24.5 

E 70 20 10 63.2 28.3 8.4 69.20 20.69 10.12 62.3 29.2 

F 70 16 14 64.7 23.2 12.1 70.00 15.71 14.25 64.8 22.8 

G 67 21 12 60.3 29.7 10.1 66.5 21.26 12.29 59.8 30.0 

cao 

8.7 

13.0 

10.9 

7.8 

8.5 

12.3 

10.3 

....... 
N 
' J 



density Al~nina grinding balls in a 0.30 gallon capacity 

procelain jar. 
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The melting sequence was again repeated (in order to 

ensure homogeneity of the finished glass), this time at 1490°C, 

and the melt was stirred intermittently for 20 minutes in every 

hour using the stirring rod described in Chapter 7.3.1, for 

a total of 8 hours. The glass melt was then cast into two 

preheated (500°C) graphite moulds; one measuring 7 em x 6 em 

x 3 em and the other 2.5 em diameter by 1 em deep, and 

imrnedia·tely put into a small muffle furnace at 550°C. The 

furnace was then turned off and allowed to cool down to room 

temperature. The temperature of 550°C \'las determined as 

described in 7.4.2 to be the annealing temperature of the 

glasses. 

This melting sequence was adopted for all the seven 

glass compositions prepared. 

7. 4. 2 Determina·tion of the Annealing Temperatures of the 

Glasses 

The small pre-cast glass discs were used for 

determining the annealing ·i:ernp~ratures of the glasses. 't'h0 

furnace assembly desct·ibecl in Chapter 7. 3. 2 was used. 

The light source was switched on, and with the 

polaroid lens nearest to the light source fixed and clamped 
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in position, the polaroid lens at the far end of the furnace 

was rotated till all the transmitted light was cut off. The 

lenses are now in crossed positions, and the second lens was 

clamped. The glass disc was mounted in a small graphite 

holder and pushed into the hot zone of the furnace. Because 

of the stresses in the glass disc, some light was transmitted 

through the second lens. By varying the furnace temperature 

and heating the disc for some time at each temperature, the 

annealing temperature was determined as that at which all 

transmitted light was cut off. The annealing temperature 

for all the glasses was determined to be about 550°C. 

7.4.3 Chemical Analyses of the Prepared Glasses 

Using the diamond wheel, 1/8" thick slices were cut 

off from all the six sides of the glass blocks, to eliminate 

any possible differences in composition between ·the glass 

surface and the bulk. Small pieces were sectioned from the 

block and crushed for chemical analyses. 

The wet gravimetric technique was used for Sio2 while 

Atomic Absorption spectrophotometry was used for K20 and CaO 

and other trace elements such as Al, Mg, Na, Fe, Ti, Sr and 

Ni. Details of the analytical procedures are outlined in 

Appendix E. 

The resulting analyses (see Table VII) were in each 

case quite close to the nominal measured composition, which 
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implied that the losses due to evaporation during melting 

were small. The low level of the trace elements (in wt%: 

0.15% Al, 0.08% Na, <0.08% Mg, <0.05% Fe, Ni, Ti and Sr) 

indicated that there was very little pick-up of these elements 

during the melting and crushing stages, and also that the 

Sio2 powder whose analyses was not supplied by Fisher was of 

high purity. 

7.4.4 Couple Preparation 

The glass blocks were cut into small pieces 

1/2" x 1/4" x 1/4", and the mating surfaces polished down 

from coarse SiC grit to 0.05~ on Linde y-alumina, thoroughly 

washed with acetone and dried. Two such prepared glass 

pieces of the desired compositions formed a couple. Each 

couple was formed by placing one prepared glass piece on top 

of the other with the two polished surfaces, and clamping 

them together with a Pt wire to ensure that they remained in 

contact while being lowered into the furnace for diffusion­

anneal. 

It was established that when such a prepared couple 

was put into a furnace at 725°C, diffusion-welding was achieved 

in under 10 minutes. This was not surprising since the 

softening temperature of these glasses is in this t .emperature 

range, and the glass surfaces were probably smooth. 

Accordingly, for the diffusion runs of 200 - 300 hours, the 



time errors due to welding, start-up and shut-down were 

negligible. 

7.4.5 Diffusion Anneal 
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The couples were placed in the Pt-dish (two couples 

in the dish for each run) and lowered into the furnace for 

the diffusion-anneal (Section 7.3.3). The dish was 

positioned on the mullite stool (Section 7.3.4) and the 

diffusion-annealing was timed from this moment. Temperature 

readings were taken every l1alf hour, and the variations were 

within ±2°C. After annealing for the desired time, the 

Pt-dish was lowered to the base end of the furnace by 

opening the brass cap at the lower end of the furnace 

working tube and withdrawing the mullite stool on which the 

Pt-dish sat. This base end of the furnace was at about 

100°C. The Pt-dish was left in this cold zone for about 

15 minutes before it was taken out of the furnace and allowed 

to cool to room temperature. This procedure was necessary in 

order to avoid subjecting the glass couples to excessive 

thermal shocks. 

The softening temperature of these glasses, ~750°C, 

put an upper limit on the temperatures for the diffusion­

anneal. A lower limit was set by the low diffusivity of Ca. 

Prior tests and rough theoretical calculations indicated 



that carryir.g the diffusion-anneals at temperatures of 

600°C and lower would require periods of over 6 weeks to 

yield measurable penetration depths. Consequently 

temperatures for diffusion-anneals were confined to the 

narrow range of 700 - 750°C at intervals of approximately 

25°C, viz: 702°C, 723°C, and 749°C. 

7.4.6 Sample Preparations for Microprobe Analyses 
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On cooling down, the diffusion couples were each 

mounted in a 1" diameter cold mounting resin. After 

hardening, they were ground on SiC abrasives (grinding off 

at least 1/10" to ensure the elimination of any surface 

curvatures on the previous polished . surfaces) and polished 

down to 0.0511 using Linde y-alumina, washed profusely with 

alcohol and dried. 

Knoop microhardness indentations were made on the 

diffusion interface of each couple to ensure easy location 

of the interface during microprobe analysis. Colour 

differences between the two halves of the couple and the 

presence in some couples of air bubbles at the interface 

aided in locating the interface during the indentation. 

A fairly thick (~300 A0
) conducting layer of carbon 

was deposited on the surface of the polished couples. Th~ 

couples were then stored in a dessicator ready for the 

microprobe analyses. 



7.4.7 Microprobe Analyses 

7.4.7.1 Introduction- special problems with microprobe 

analyses of alkali silicate glasses 
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The electron microprobe analysis of alkali silicate 

glasses calls for special techniques and critical settings 

of the operating parameters, because (1) the specimens are 

poor conductors and (2) with spot beams, the resultant 

characteristic intensities of the elements are generally 

time-dependent - a phenomenon usually referred to as the 

Lineweaver effect ( 82 ) The details of this phenomenon are 

briefly described in Appendix F. These problems are overcome 

by (i) coating the specimen surface with a conducting 

material, (ii) working -with relatively low beam voltages 

~15 kV, low specimen currents ~0.02 ~A, and (iii) using line 

scans to obtain beams about 100 to 150 ~m long so that the 

spot beam does not impinge on one spot for too long a time. 

7.4.7.2 Microprobe analyses with the Cameca microprobe 

The initial part of the microprobe analyses was 

carried out on an Acton (CAMECA MS-64) microprobe. This 

instrument has 4 spectrometers with a take-off angle of 18°. 

Three of these spectrometers (no. I with Quartz loio, no. II 

with Quartz lOll, and no. III with Mica, crystals) are 

currently in use and thus K, Ca and Si intensities could be 

measured simultaneously with spectrometers I, II and III. 
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With this microprobe it was established that using a beam 

voltage of 15 kV and sample currents of ~ 0.02 ~A, no 

Lineweaver effect would be observed on specimens that have 

been coated with films of Al or C, provided the microprobe 

was operated on a line mode at 60 cps in order to obtain 

effectively a line beam about 100 ~m long. However, because 

of the low take-off angle of this microprobe (which implied 

severe absorption for the detected X-rays) the X-ray 

intensities obtained with such small specimen currents were 

very weak. Consequently the count statistics were poor, and 

the resulting data showed very wide scatter (Figs. 23). 

Counting for longer times (> 200 sees) in order to accumulate 

more counts was net possible because of the Lineweaver effect. 

It was realised that some increase in counts could 

be achieved by changing the crystals, e.g., replacing the 

two quartz crystals with LiF crystals, and rep:acing Mica 

with ADP. On the other hand, a much greater improvement 

could be obtained by increasing the take-off angle of the 

spectrometers. Therefore, the use of this microprobe was 

abandoned and subse_quent analyses were carried out using an 

~~ microprobe in the Geology Department, University of 

Toronto. 



7.4.7.3 Microprobe analyses of the couples on the ARL 

microprobe 
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The ARL microprobe has 3 fully focusing 

monochromators, with take-off angle of 52.5°, and a choice 

of two crystals for each spectrometer, making it possible to 

measure the X-ray intensities of the three elements K, Ca 

and Si, simultaneously. 

A beam voltage of 15 kV and a specimen current of 

.02 ~A, using a line scan to obtain a beam measuring 

approximately 150 ~m long and 2 ~m wide ensured counting 

times of over 50 sees without any Lineweaver effect 

(7.4.7.1). The scalers were automatically controlled via a 

current digitizer and control scaler (rather than via the 

timer) which automatically stopped the scalers after a 

preset charge (electron current) had passed down the column. 

The preset current operating condition corrects for any 

small drifts due to beam current or lens instability. Preset 

charge was always chosen so that the counting times were 

generally about 50 sees. 

The ends of the diffusion couples were used as 

standards. In each case the specimen was oriented so that 

the lin~ beam was parallel to the diffusion interface and 

counts were taken on one end (designated X) of the couple, 

then point-counting in steps of 10 ~m (using a motor) over 

the diffusion zone. Counts were then taken at the end of 
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the couple (designated Y) as a second standard. The 

standardization was repeated on a fresh area on end X, giving 

a second calibration at this end, and thus affording another 

means of checking for pronounced drift. Starting from a 

fresh zone, a second scan across the diffusion zone was 

carried out with standardization at the ends. 

Digital outputs of the X-ray intensities in terms of 

counts were automatically printed as well as punched on 

cards using a typewriter and cardpuncher coupled to the 

scaler. 

A total of 6 diffusion couples (Table VIII) were 

analysed. 

7.4.8 Corrections to the Microprobe Data 

A computer programme, the EMPADR VII, developed by 

J. Rucklidge and E. L. Gasparirini ( 88) for microprobe data 

correction was used for reducing the microprobe data to 

concentrations. The EMPADR, designed mainly for oxides and 

silicates, is based on the correction procedure recommended 

by Sweatman and Long (89 ). 

Microprobe data for the peak and background counts 

of the standards and specimens are supplied to the programme 

in the same form and order that they are generated from the 

microprobe read-out and the programme corrects for 
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backgrounds, Atomic number factor, Absorption factor and 

characteristic fluorescence factor. Details of the 

EMPADR VII and the correction procedure can be found in the 

references given. The basic equation for data correction is 

w 

True 
concentration 

= UIN 

Measured 
concentration 

X 
f(x>o 
f<x> 1 

Absorption 
factor 

X 

X 

Generation 
Atomic no. 

factor 

Characteristic 
fluorescence 

factor 

where the subscripts refer to standard and sample, 

respectively. UIN is the measured concentration given by 

the ratio of the counts on the sample and standard after 

( 7. 1) 

dead time correction and background subtraction. All other 

parameters are fully defined in the references and will not 

be reproduced here. 

Concentrations in wt% are printed out for the 

elements K, Ca and Si as well as for their stochiometric 

oxides. In most cases the total oxide wt% was always within 

100 ± 0.7%. Any set outside this range (an indication of 

considerable drift) was discarded. 
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Independent of this EMPADR VII computer correction 

procedure, conversion from X-ray counts to concentrations 

was made by making only background corrections and assuming 

linearity between the X-ray counts and concentrations, that 

is, neglecting the three correction factors in Eq. (7.1) 

since we are only working over a fairly narrow concentration 

range. There was close agreement between the two approaches, 

with appreciably less scatter in curves obtained by the 

linear interpolation approach. This latter was accepted 

because of the uncertainties in the correction factors in 

the former. Linear interpolation has also been adopted by 

Cooper and Varshneya {44 ) and by Varshneya and Cooper (lb ) 



8.1 Experime ntal 

CHAPTER VIII 

RESULTS 

The resulting experimental concentration profiles 

of K2o and CaO in each of the couples examined are given 

in Figs. 23 to 27. In some cases, profiles of inde pendent 

analy~es of a couple have been plotted (Figs. 24a and 24b, 

25a and- 25b, and 26a and 26b), giving an indication of the 

reproducibility of the results. Figures 23a and 23b 

represent some early results obtained with the Cameca 

microprobe. The low count rates on this microprobe are 

reflected by the wide range of scatter in the results. The 

standard deviations in this case were ±4%, ±4% and ±2% for 

K2o, CaO and SiO concentrations respectively. 

Figures 24 to 27 represent the data obtained with 

the ARL microprobe. Standard deviations in these are 

±0.50% for K2o, ±1.5% for CaO and ±0.60% for Sio2 . 
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8.2 Prediction of the Results 

From the self-diffusion coefficients reported by 

Varshneya and Cooper (sg) and Tochon ( 6 0) good interpolations 

for DK at 705°C and 723°C have been made (Table IX). 

Similarly, from Frischat ( 6l), King and Koros <62 ) and 

Towers and Chipman (63 ) the estimates of DCa given in 

Table IX have been adopted. These self-diffusion 

coefficients DK, Dca and those of the anion Da' specified 

on the figures were used to predict the concentration 

profiles following the computation procedure previously 

outlined. Computations were carried out for each of the 

diffusion couples using {1) the quasi-binary approximation 

(Section 4.3.1) and (2) ternary formulation (Section 4.3.3). 

The results are shown in Figs. 23 to 27 for comparison with 

experiment. 

For couple A/C (Fig. 26) we note first that this 

couple has a rather large concentration difference between 

the two halves ~10 mole% difference in metal oxide. Now it 

was noted in Section 3.2 that the diffusion coefficients of 

the modifier cations, especially Na and K, are very sensitive 

to alkali oxide concentration, exhibiting an exponential 

dependence on the oxide concentration. Similarly, the self 

diffusion data for Ca obtained by Frischat ( 6l) demonstrated 

this sensitivity to the CaO concentration. This suggests 

that the diffusion coefficients used in the flux equations 



TABLE IX 

DIFFUSIVITY DATA FOR K, Ca AND ANION IN SILICATE GLASSES 

COUPLE 

B/C 

A/D 

A/C 

B/D 

F/G 

SELF-DIFFUSION COEFFICIENT 

CMf SEC;- 1 

D a 

TEMP. 
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(4.23) should contain this dependence whenever we are 

working over a rather wide range of concentration (say 

> 6 mole%). Accordingly we have evaluated the profiles 

for couple A/C using different values of the self-

diffusivities for each half of the couple. For the right 

hand side of the couple an upward adjustment of the values 

of DK and Dca were made (DK = 8 x 10-8 emf sec~ 1 and 

Dca = 2 x l0- 11 em~ sec~ 1 ) to obtain a satisfactorily good 

fit to the experimental data as shown in Fig. 26d. These 

increases in DK and D~ are consistent with the increases 
~a 

expected from the empirical equation given in Appendix B 

relating D. to concentration. 
1 
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Fig. 23a: Observed and predicted concentration profiles 

of K and Ca in a K
2
0-CaO-Sio 2 glass couple, 

F/G, after 300 hr at 705°C (prediction based 

on quasi-binary approximation) 
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of K and Ca in a K20-Ca0-Sio 2 glass couple, 

B/D, after 200 hr at 723°C (prediction based 

on quasi - binary approxima tion) 
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Fig. 25a: Observed and predicted concentration profiles 

of K and Ca in a K2o-cao-sio2 glass couple, 

B/C, after 300 hr at 702°C {prediction based 

on quasi-binary approximation) 
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CHAPTER IX 

CONCLUDING REMARKS 

The zero net real current condition is the major 

assumption behind the theory used herein. This assumption, 

. . ( 6 4) wh1ch can be traced back to Planck , enabled us to 

eliminate the diffusion potential from the Nernst-Planck 

equation to produce a soluble diffusion equation. We have 

noted that the imposition of this condition on an initially 

electrically neutral system of necessity ensures that the 

system remains electrically neutral with no real charge 

accumulation, i.e., E ziJi = 0 implies E ziCi = 0. An 

argument for the existence of electrical neutrality was 

advanced by Guggenheim (G 5 ) who examined the consequence of 

a very slight departure from neutrality. He considered a 

sphere of radius 1 em in vacuo with an excess of l0-10 moles 

of an ionic species (far too small to be detected 

chemically) with valence +1 accumulated at the surface of 

the system, and showed the electrical potential to be about 

10 7 volts - a potential that would result in a high voltage 

breakdown of the system! Such considerations and the results 

of many experiments strongly support the zero current 

assumption. 

It is apparent from the above considerations that the 

strongest diffusion interactions which occur in the ionic 

157 
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systems under consideration must be intimately connected 

with the necessity that diffusing ions of unequal mobilities 

migrate to sustain the electrical neutrality. This was the 

basis on which we neglected all the Onsager cross 

coefficients, drift velocities and variations of activity 

coefficients. The satisfactory agreement between our theory 

and the experiments validates such a formulation for small 

concentration differences. 

The salient features of this electrical interaction 

or coupling among the diffusive fluxes as embodied in the 

theory have been sufficiently demonstrated, and we now 

recapitulate these. Fixed silicate anion step discontin-

uities, or more generally a very slow silicate anion 

penetration, results in a large uphill diffusion of cations 

(whose step is proportional to the anion concentration 

difference between the two halves of the couple) of the type 

shown in Figs. 18, 21, 23, 24 and 25. This interaction is 

of electrical origin and arises from the need for the 

system to maintain neutrality. 

For finite systems, with a relatively immobile 

silicate anion concentration discontinuity at the interface, 

a metastable state characterised by J. ~ 0, a~.;ax = 0, with 
1. l 

a~./ax = z, E f 0, Eqs. (4.68) and (4.69) is approached. 
]_ l 

This is not a true equilibrium state, and with Kirkaldy and 

Purdy (40e) we label it as "transient equilibrium". True 
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equilibrium is only approached as the anion migrates towards 

uniformity, leading finally to a~.jax = z. E = 0. 
~ ~ 

The relative directionality of the diffusion fluxes 

depends only upon the initial conditions as demonstrated in 

Chapter 4.6, and is independent of the relative magnitudes 

of the self diffusion coefficients of the ions. It is 

envisaged that knowledge of this fact could aid in the 

control of some technologically interesting processes such 

as ion-exchangers. 

The nature of the diffusion potential, which has been 

discussed at length by many workers in this field, has been 

shown to be associated with a distribution of dipoles within 

the diffusion zone. Recognition of this dipole characteristic 

of the diffusion potential and the fact that it is the 

associated dipole charge which must be entered into Poisson's 

equation to generate the diffusion potential, removes an 

apparent classical contradiction. 

Figures 23a, 24a, 24b, 25a, 25b, 26a, 26b and 27a 

show for the K20-Ca0-Sio 2 system, the comparison between 

experiments and predictions based on the quasi-binary 

approximation. Comparisons with the ternary formulation are 

given in Figs. 23b, 24c, 25c, 26c, 26d and 27b. 

The figures show that the quasi-binary approximation 

is barely adequate for a system in which Da is not negligible 

compared to DC (DC /D ~ 10) . On the other hand, the a a a 
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agreement between experiments and the predictions based on 

the ternary formulation is good except for Fig. 26c in which 

constant self diffusivities were assumed for couple A/C with 

large concentration difference on both halves of the couple. 

Good agreement is obtained for this couple by using different 

self diffusivities for the two halves of the couple as is 

shown in Fig. 26d. 

For the K20-Sr0-Sio 2 system in which the anion self 

diffusivity, D is negligible compared to those of the cations a 

K and Sr at low temperatures, 

D8 /D > 10 3 ) at temperatures below 750°C, the quasi-binary r a 

approximation, D ~ 0 (Eqs. (4.27) - (4.31}} is satisfactory. a 

However, at high temperatures where D becomes large and all a 

the diffusivities approach to within two orders of magnitude 

of each other, the system must be considered as a true 

ternary as described by Eqs. (4.39) to (4.44). This is 

demonstrated by the K20-SrO-Sio 2 system at 798°C and the 

Na2o-cao-sio2 system investigated by Sucov and Gorman at 

1308°C. 

In considering the complete ternary formulation it 

was noted that since Da is the smallest self diffusion 

coefficient, the form of the Dij's in the coupled flux 

equations ensured that any errors arising from an improper 

choice of the diffusing anion would be well within the usual 

microprobe errors. This was also the basis for admitting 
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that the present experimental techniques are incapable of 

identifying the actual diffusing anions. 

Diffusivity data for OH- and o2- anions are known, 

and kinetic considerations indicate that 

DOH> DO> DSi04 > DSi207 > .•. etc. 

It is conceivable that a comparison between 

accurately measured diffusion profiles and predictions 

based on the values of DOH' D0 and Dsilicate anion in turn 

could be carried out to identify the most mobile anion. It 

is likely, however, that more than one anion will be 

diffusing significantly so diffusion experiments alone 

would not be definitive. 
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TABLE VIII 

#206 COUPLE A/C 

(i) (ii) DISTANCE 
CaO K20 CaO K20 

INTERFACE 
IN WT% IN WT% IN WT% IN WT% (MICRONS) 

10.99 29.45 10.9 29.11 130 

10.77 29.17 11.02 29.36 120 

10.64 29.01 11.05 29.21 110 

10.90 29.12 11.13 28.91 100 

10.95 28.83 10.9 28.81 90 

10.73 28.74 10.8 28.52 80 

11.18 28.60 11.24 28.41 70 

11.30 28.60 11.05 28.20 60 

11.32 28.20 11.24 28.00 50 

10.84 27.81 11.15 27.76 40 

10.96 28.14 11.43 27.54 30 

10.53 27.95 10.8 27.34 20 

9.92 27.90 10.2 27.28 10 

8.79 27.59 9.23 26.86 0 

7.79 25.95 8.18 25.75 -10 

7.83 24.94 7.72 24.34 -20 

8.37 23.48 8.28 22.84 -30 

8.69 22.93 8.65 22.67 -40 
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TABLE VIII - continued 

#206 COUPLE A/C 

(i) ( ii) DISTANCE 
CaO K20 CaO K2o FROM 

INTERFACE 
IN WT% IN WT% IN WT % IN WT% (MICRONS) 

8.75 22.66 8.82 22.67 -so 
8.86 22.26 8.85 22.60 -60 

8.65 22.41 8.39 22.50 -70 

8.48 22.46 8.39 22.54 -80 

8.80 22.34 8.50 22.54 -90 

8.75 22.34 8.65 22.45 -100 

8.69 22.21 8.60 22.40 -110 

8.76 22.21 8.67 22.30 -120 

8.62 22.24 -130 
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TABLE VIII - continued 

#403 COUPLE B/D 

(i) ( ii) DIS'l'F.NCE 
CaO K20 CaO K2o FROM 

INTERFACE 
IN WT% IN WT% IN WT% IN WT% (MICRONS) 

7.75 24.5 ' 7.8 24.5 -120 

7.84 24.5 7.8 24.5 -110 

7.75 24.6 7.69 24.56 -100 

7.92 24.4 7.89 24.43 -90 

7.67 24.5 7.84 24.27 -80 

8.15 24.5 7.57 24.35 -70 

8.12 24.36 7.61 24.28 -60 

7.96 24.14 7.66 24.20 -50 

8.20 24.32 7.87 24.10 -40 

7.98 24.27 8.29 24.03 -30 

8.49 24.29 9.38 23.28 -20 

9.47 24.03 10.69 23.0 -10 

10.64 23.66 12.24 22.93 0 

11.93 23.03 12.83 22.81 10 

12.71 22.67 12.93 22.35 20 

12.78 22.41 12.89 22.42 30 

12.90 22.36 13.14 22.32 40 

13.0 22.15 12.93 22.29 50 



165 

TABLE VIII - continued 

#403 COUPLE B/D 

(i) ( ii) DISTANCE 
CaO K2o Co.O K 0 FROM 2 INTERFACE 

IN WT% IN WT% IN WT% IN WT% (MICRONS) 

13.0 22.20 12.93 22.29 60 

13.0 22.09 13.18 22.07 70 

13.09 21.82 12.98 22.07 80 

13.01 21.82 12.98 21.91 90 

13.05 22.0 13.20 21.9 100 

13.07 21.9 13.24 21.91 110 

13.00 21.78 12.84 21.94 120 

13.04 21.9 12.93 21.9 130 



TABLE VIII - continued 

#205 A/D #203 B/C 

(i) ( ii) DISTANCE 
CaO K20 CaO K20 CaO . K

2
0 FROM 

INTERFACE 
IN WT% IN WT% IN WT% IN WT% IN WT% IN WT% (MICRONS) 

7.7 24.5 10.9 28.97 -115 

7.73 24.5 10.86 29.19 -105 

7.66 24.54 11.0 29.35 10.95 29.1 -95 

7.89 24.55 11.0 29.23 10.97 29.25 -85 

7.65 24.36 11.08 28.84 10.95 28.91 -75 

7.81 24.25 11.17 28.96 11.14 28.93 -65 

7.82 24.44 11.0 28.68 11.21 28.69 -55 

7.84 24.15 11.2 28.60 11.31 28.43 -45 

7.94 23.97 11.0 28.53 11.22 28.34 -35 

7.85 23.90 11.2 28.20 11.22 28.11 -25 

8.17 23.68 11.41 28.13 11.34 27.97 -15 

8 .19 23.32 11.63 27.93 11.52 27.15 -5 
!-' 

8. : ~ 8 23.08 11.54 27.51 11.85 27.23 5 0'1 
0) 



TABLE VIII - continued 

#205 A/D #203 B/C 

( i} ( ii) DISTANCE 
CaO K20 CaO K20 CaO K20 FROM 

INTERFACE 
IN WT% IN WT% IN WT% IN WT% IN WT% IN WT% (MICRONS} 

8.64 22.93 11.39 27.02 11.85 26.98 15 

8.54 22.93 11.51 26.40 11.35 26.38 25 

8.92 22.92 11.61 25.15 11.70 24.84 35 

8.60 22.67 11.57 24.24 11.87 24.04 45 

8.82 22.51 11.78 23.64 12.11 23.08 55 

8.72 22.52 12.52 22.67 12.59 22.40 65 

8.66 22.41 12.84 22.15 13.14 21.86 75 

9.0 22.25 13.33 22.12 12.82 21.86 85 

8.7 22.34 13.03 21.88 13.16 21.81 95 

8.73 22.48 13.0 21.8 13.06 22.08 105 

8.7 22.22 12.84 22.05 12.79 21.98 115 

8.75 22.22 13.28 22.0 12.79 22.13 125 
1-' 
0'\ 

8.6 22.23 12.83 22.10 13.16 22.0 135 -...] 

8.7 22.38 13.0 21.9 13.0 21.9 145 
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APPENDIX A 

COUPLED DIFFUSION AND REACTION IN 

METALLIC-IONIC COUPLES (SYSTEMS) 

A.l Introduction 

Ionic-metallic systems such as glass-metal joints, 

slag-metal and alloy-salt systems, etc., are of great 

interest to scientists and engineers. For example, process 

metallurgists are interested in smelting and refining 

processes involving slag-metal syste~s, while the physical 

chemists are sometimes interested in salt processing for the 

removal of fission products from liquid metal fuels (66 ) 

These ionic-me~allic systems consist of two 

immiscible phases with the possibility of a third phase (gas 

phase) if gaseous products are formed from the reactions, 

e.g., CO, co2 or so 2 in slag-metal systems. Being 

immiscible, and since no species can exist in the same 

molecular form in both phases, all reactions occur at the 

boundary between the two phases. The processes occurring 

in the system can, therefore, be considered to consist of 

the following sequential steps: (1) mass transport in the 

metal phase to or from the phase boundary, (2) mass transport 

in the slag phase to or from the phase boundary and (3) a 

number of parallel coupled anodic and cathodic reactions of 

the type 

171 



z. 
Mi t Mi 1. + z i e 

at the boundary. 

The mass transport generally consists of atomic 

diffusion and convection (natural and forced) so that the 

mass transport equation must be written to account for 

atomic diffusion as well as convective mass transport in 

the form (G 7 ) 

J. 
1 

172 

(A .1} 

(A. 2) 

where the first, second and third terms in Eq. (A.2) are for 

atomic diffusion, convective flow and eddy diffusion, 

respectively. v is the x-component of the convective flow 
X 

velocity, and E is the coefficient of eddy diffusion. The 

relative importance of the last two terms in comparison with 

atomic diffusion will depend on the fluid mechanical 

properties of the system. In most systems, mechanical 

stirring would eliminate any concentration gradient in the 

bulk, while maintaining some concentration gradient near 

the interface provided the interface remains undisturbed. 

Consequently atomic diffusion is generally thought to be 

always operative within the so-called "boundary layer" (G 7 , 68 ) 

The ~boundary layer" refers to the film of liquid near the 

interface, estimated to vary from 0.005 - 0.03 em (depending 

of the fluid mechanical state of the system} , in which 



.... 

I 
'·. ·' 

u 

0 
Distance, x > 

Fig. 29: Concentration profile in the boundary layer next 

to the slag-metal interface. The effective 

thickness of the boundary layer is marked out as 

6 . 
)-
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concentration gradients are considered to exist but beyond 

which a uniform bulk composition is maintained by turbulent 

or convective flow (see Fig. 29). The thickness of the 

boundary layer is defined by (67 > · 

where the interface is at x = 0. 

(A. 3) 

At low temperatures in glass-metal systems when both 

phases are rigid, all mass transport will generally be by 

atomic diffusion. In any ionic-metallic system under 

consideration, however, proper analysis requires a good 

knowledge of the transport processes as well as the chemical 

kinetics of the interfacial reactions. 

Because of the immiscibility of the two phases and 

from the sequential steps outlined above, the entire process 

in the system could be cons~dered as a problem of transport 

within two phases, with one of the boundary conditions 

determined by the chemical reaction rate at the interface. 

This viewpoint will be adopted in the following theoretical 

consideration of the problem. Indeed, the important point 

to note is that these ionic-metallic systems are generally 

multicomponent with 2, 3 or more processes occurring 

simultaneously, each of which consists of at least three of 

the sequential steps outlined above and with all the chemical 

reactions coupled through the electrical term. This implies 
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that the exact form of coupling must be understood in order 

that experiments be properly designed and resulting data be 

meaningfully interpreted. 



A.2 Literature Review 

To date we are not aware of any quantitative work 

[except the brief work of Borom and Pask (4 S) already 

discussed in Chapter 3.4] on the overall (diffusion+ 
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chemical reaction) kinetics of glass-metal systems. We note 

that in the related area of slag-metal kinetics, some work 

has been carried out in one form or another. In most of the 

experimental work on slag-metal kinetics only individual 

reactions, especially those of S, P, C or Si, have been 

studied while the accompanying side reactions are usually 

neglected. In a few of them, however, the effect of the 

side reactions, i.e., the coupling between the side reactions 

and those under investigation, have been studied but a 

convincing interpretation of the data has been lacking. For 

example, it has been reported (74 , 80 , 81 ) that phosphorous 

removal from molten iron is aided by high slag basicity and 

high oxygen content of the metal while sulphur removal is 

aided by high slag basicity and low oxygen content of the 

metal, generally achieved by the addition of deoxidizing 

agents, e.g., Si, Mn, Aland Ti. A good account and 

references to all these works can be found in The Making, 

Shaping and Treating of Steel by United States Steel (69 ) 

and The Physical Chemistry of Steelmaking (?Oa) • 

Using an induction-heated carbon crucible containing 

calcium-alumino-silicate slag and carbon saturated iron 
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brough·t ·together in the liquid state and stirred by rotation 

of the crucible against a stationary paddle, Ramachandran, 

King and Gran t ( 7S) have shown that sulphur transfer in 

slag-metal systems proceeds in such a way that the system 

remains electrically neutral, i.e., the net current is zero. 

They obtained the rate of sulphur transfer in terms of other 

elements from metal to slag as 

(A. 4) 

where the rate of transfer of each species is given in 

n. moles/sec. The sign of n is positive for transfer from 
l. 

metal to slag, and negative for slag to metal. Equation 

(A.4) indicate~ that these slag-metal reactions are coupled, 

but owing to the apparent complexity of the system the 

coupling between simultaneous reactions could not be 

formulated by any simple explicit expression. King and 

Ramachandran( 7 S) later showed that sulphur transfer in 

slag-metal systems is electrochemical in nature rather than 

occurring by direct collisions among reactants. 

Derge and Birchenall (73 ) studied the equilibrium 

l f d . . . 55 b . exc1ange rate o · ra 1.oact1.ve tracer 1.ron Fe , etween 1.ron 

and iron-silicate slag. They noted that first order kinetics 

formulation for homogeneous systems was adequate and obtained 

at 1600°C the value of the specific rate constant k, for the 
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exchange as 0.006, which was expressed so as to be independent 

of the units used. This contribution of Derge and Birchenall 

is the only work that we are aware of on the determination of 

this very important parameter. 

In one of the first thorough analyses of the kinetics 

(70b' of slag-metal systems, Wagner 1 has considered the slag-

metal phase boundary reactions to consist of simultaneous 

anodic and cathodic reactions occurring randomly over the 

interface in a manner very similar to the corrosion of a 

homogeneous surface. The main difference between the latter 

and a slag-metal system is that two liquid phases are involved 

so that sites of anodic and cathodic reaction fluctuate with 

time and location. Wagner expressed the reaction rate in a 

Butler-Valmer type expression (76 ) for current density giv ing 

the current carried by a species in terms of the potential 

difference across the slag-metal interface, viz: 

- k!C!* exp[-a..z . EF/RT] 
~ ~ ~ ~ 

(A. 5} 

where E is the electropotential difference across the inter-

face, k. and k! are the rate constants for anodic and 
~ ~ 

cathodic processes respectively for component i, C! and Cj_ * 

are the interfacial concentrations of compone.Et i i n metal to 

be oxidi zed anod i cally and that of ions to be reduced 
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cathodically, a. is the charge ·transfer coefficient whose value 
~ 

lies be·tween zero and unity. With this equation, Wagner 

con-sidered a number of specific reactions occurring in 

steelmaking systems - such as sulphur transfer, silica 

reduction and CO evolution. 

Lu (77 ) has applied the irreversible thermodynamic 

approach to slag-metal reactions to examine the coupling 

between simultaneous reactions. He showed that the 

resulting kinetic equations in which the reaction rate of 

each species is expressed in terms of the electrochemical 

affinity is equivalent to the Butler- Volmer type expression 

used by Wa.gner.. The theoretical implications of Lu's 

analysis appear consistent with the experimental results of 

Ramachandran et. al. (7S) and Ka>vai (?l). However, the theory 

was not quantified due to t he complicated natu1:e of the 

computation involved. 

No attempt has yet been made to quantitatively 

analyse ·the overa11 rate pr~cesses occurring in these 

sys·te.'!ls, i.e~ 1 to ·treat the three sequential steps 

{diffusion-reclction- diffusion) as a combined process. 
' 
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A.3 Phenomenological Rate Equations for Coupled Reactions 

at Glass-Metal Interface 

A.3.1 The Scheme and Fundamental Assumptions 

In thermodynamic and kinetic studies of metallic 

phases, adequate representations of these systems are 

achieved by considering them to consist of neutral atoms. 

On the other hand, glasses, slags or molten salts must be 

treated as consisting of ions. Therefore, the interfacial 

reactions between a truly metallic phase and a truly ionic 

phase must be of the form 

z. 
M. t M.~ + z . e 
~ ~ ~ 

(A.l) 

z. 
where Mi are the atomic species in the metallic phase, Mi~ 

are the ions in the ionic phase having valence z, and e is 
~ 

the electronic charge. 

With respect to the glass-metal system under 

consideration we, therefore, make the following assumptions: 

(1) The glass is truly ionic with no electronic conduction 

[all the electrons as written in Eq. (A.l) exist only in 

the metal] , and similarly the metal or alloy phase is 

completely metallic . 

(2) Followir.g from (1) , therefore, all reactions take p l ace 

only at the gl~ss-rnetal interface. 

(3) The interf ac i al reactions proceed in such a way that t he 
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net electric current is zero. This is an experimentally 

verified fact (? 5). 

(4) All the reactions as written in (A.l) are of first order. 

(5) We neglect any charge separation at time t = 0. That is, 

we assume t.hat the system is initially neutral everywhere 

including the interface which from basic electrochemistry 

is known to contain dipole layers. 

(6) Although we are not aware of any equilibrium studies of 

glass-metal systems, we assume that glass-metal 

equilibria exist. This assumption is also implicit in 

the work of Borom and Pask <45 ) 

A.3.2 Formulation of the Reaction Rate Expressions 

A.3.2.1 The linear flux-force expression for reactions 

F 11 . w (?Ob) . t . t d th t o ow~ng agner , ~ ~s now accep e a 

slag-metal displacement, oxidation and reduction reactions* 

occur by a combination of electrochemical cathodic and anodic 

reactions of the form 

* Displacement or exchange reaction for the case 

z z 
[Ml] + (M21) t (Mll) + [M2] 

Oxidation and reduction reaction for the case z1 + z 2 = 0 

giving 
z 

[Ml] + [M2] ! (Mll) + 



z. 
M -+ M. 1 + z e i + 1 i 

i=l,2, ••• ,n 
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(A.l) 

Based on the mass action law, the reaction rates for 

(A.l) are: 

w. = k.a. 
1 1 M.. 

1 

z. 
- k!a a 1 

1 z. e 
M.1 

1 

(A. 6) 

where a.'s are the activities or the effective concentrations 
1 

in the reaction zone at the phase boundary, and we note that 

these interfacial quantities cannot be measured directly. 

k. and k! are the individual forward and backward rate 
1 1. 

constants respectively. These rate constants are analogous 

to the self diffusion coefficients encountered in diffusion 

studies, and can be determined by means of exchange reactions 

involving radioactive isotopes as was attemp·t:.ed by Derge and 

Birchenall <73 ) 

We now put Eq. (A.6) in an alternative fonn as 

w. = k.aM (1 
J. 1 .•. 

J. 

z. 
k!a a 1 

1 z. e 
M.1 

1 

k . aM :1. ! • 
1 

-~) 

(froln now on we represen·t 
z. 

rv1. -~ 
]. 

by M!). 
J. 

(A. 7) 
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By definition, the equilibrium constant K is given e 

by the ratio of the forward and backward rate constants, i.e., 

Also, 

where 

k. 
K 1 = kT e 

1 

fql~ 
tn K 

1 = RT e 

~~~ = E ~o - E ~o 
1 r p 

(A. 8) 

(A. 9) 

is the difference in the standard state chemical potentials 

between the reactants and products. 

The affinity (? 8) A, of a reaction is defined as the 

difference between the chemical potentials of the reactants 

and products, so the electrochemical affinity A is 

A = E ~reactants - E ~products 

where the electrochemical potential ~· is defined as 
1 

~· = ~~ + RT tna. + z. ¢ 
1 1 1 1 

so that 

(A.lO) 

(A.ll) 



k! 
1 

k. 
1 

z. 
1 

aM,a . e 
1 

A. 
1 = exp(- RT) 
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(A.l2) 

therefore, the reaction rate w. in (A.7) can be written as 
1 

(A.l3) 

i = 1, 2, .•. , n 

Lu (77 > has shown that Eqs. (A.l3) are equivalent to 

the Butler-Volmer expressions (A.S) for the current density. 

Both equations, however, have very little practical use for 

the study of multicomponent systems because of the complex 

mathematical relations among the simultaneous rate 

expressions. The simplified forms of (A.S) and (A.l3) 

obtained by linearization of the exponential terms have been 

examined by Lu <77 ) who concluded that although both 

expressions are equivalent in the exact forms, only (A.l3) 

retains the essential characteristics of the reaction on 

linearization. 

The condition for simplifying (A.l3) by linearization 

is that the system is not too far from equilibrium, i.e., 

that 

A. 
1 

RT << 1 (A.l4) 



From a Taylor series expansion 

X. 
exp(- R~) = 

so that for (A.l4) 

A. 
l 

exp(- RT) ~ 

and (A.l3) becomes 

w. 
l. 

A. 1 A. 2 
1 l (..2:.) 

- RT + 2f RT 

A. 
l 

l - RT 

1 A. 3 
( ...2:.) - TI RT 

To be consistent with assumption (A.l4), aM. in the above 
l. 
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(A .15) 

(A .16) 

(A .17) 

expression (A.l7) may be replaced by the equilibrium value 

e 
in the final state. Therefore, Eq. (A .17) be aM., may 

l. 

written as 

A. 
e l. (A.l8) w. = k.aM 

l. l. . RT 
l. 

i.e., 

A. 
w<? l. (A .19) w. = RT · J. l. 

where w<? may be identified as the equilibrium exchange rate. 
l. 

Defining a phenomenological constant £. given by 
1 



R,. = 
1 

w~ 
1 

RT = 

e 
k.aM 

1 . 
1 

RT 

we can in general write our rate expressions as 

w. = LA. 
1 1 1 

a special form of a linear flux-force relation of Onsager 

with all the cross coefficients ignored. The inequality 
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(A. 20) 

(A. 21) 

(A.l4) seems at first sight to be a very serious limitation 

oti the applicability of the linear phenomenological 

equation (A.l9). However, when the affinity of a given 

chemical reaction is large, so that (A.l4) is not satisfied, 

the reaction may often be split into a certain number of 

elementary steps each having an affinity sufficiently small 

to justify the application of the linear phenomenological 

laws (?g) 

A. = 
1 

For example, if 

l: A .. 
j 1J 

(A. 22) 

where the index j indicates the individual elementary steps 

in the ith reaction, the new condition for the validity of 

the linear phenomenological equation will be 

lA. ·I 
1J << 1 

RT 

even though 

for all j's (A. 23) 
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lA· I 1 RT"" >> 1 (A. 24) 

In cases where both (A.23) as well as (A.24) are satisfied, 

Eq. (A.l7) rather than (A.l8) should be used. 

It should be remembered that Eq. (A.23) is the 

central restriction on the applicability of the present work. 

We are reminded, however, that there always exists a regi on 

near equilibrium where the linear relationship represents a 

good approx imation. 

We nm., apply (A.21) to a number of systems. 

A.3.2.2 Coupled rate expressions for binary systems 

For binary systems with the following two electrodic 

reactions: 

Ml + zl 
+ -<- Ml z 1e (A.25a) 

M2 
+ z2 

+ + M2 z 2e (A.25b) 

The reaction rates are: 

(A.26a) 

(A.26b) 



From the definition of affinity in (A.lO), 

where 

~1 = ~o - ~Mo' - z ~ M1 1 1 e 

and 6¢(¢s - ¢m) is the potential difference between metal 

and slag. 
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(A.27) 

(A. 28) 

Since slag-metal reactions maintain zero net electric 

current condition, we can eliminate 6¢ in (A.27) by 

constraining (A.26) appropriately via the zero net current 

condition, 

i.e., 

so that 

N 
~ 

i=l 
z.w. = 0 

1 1 

- z 6¢] = 0 2 

(A.29) 

(A. 30) 
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Putting (A.31) into (A.26a) and {A.26b) gives 

i.e., (A.32) 

(A.33) 

From (A.9) and definition of ~i in (A.28) 

(A. 3 4) 

with 

(A. 35) 

where K12 is the equilibrium constar.t for the net reaction 

(from (A.25a) and (A.25b)): 

(A. 36) 
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and is defined by 

(A. 3 7) 

and B12 in (A . 3 4) is given by 

e e 
z2klk2aM aM 

B12 
1 2 = 2 e 2 e 

zlklaM + z2k2aM 
1 2 

(A. 3 8) 

Notice that t he chemical potential of the electrons has 

cancelled out. This follows from the neutrality condition of 

zero net current which leads to the overall reaction as given 

in (A.36). 

A.3.2.3 Coupled rate expressions for ternary systems 

Followi ng similar steps as in the derivation of 

(A.34), the general rate expressions for an n-reaction system 

may be derived as, 

w. = 
1 

where 

B .. = 
1] 

N 
l: 

j=l 
B .. [ -Q.nK .. + 

1] 1] 

aM aM, . z. . z. 
Q.n(--2) J (-J) 1] 

aM! aM. 
(A. 39) 

1 J 

(A. 40) 
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with 

B.. B .. 
_2:]_ = ~ 
z. z. (A. 41) 

J l 

and K . . are the equilibrium constants for the pair-reactions: 
l.J 

z.M! + z.M. + z.M! + z.M. 
Jl l.J lJ Jl 

(A. 4 2) 

and represent an aspect of pair correlations in these 

electrochemical reactions. These pair equilibrium constants 

are defined by 

with 

RT ~nK . . = - ( z . s . - z · s · ) 
lJ J l l J 

~nK .. = - ~nK .. 
lJ Jl 

From Eq. (A.39), it is clear that since B .. 's are 
lJ 

(A. 43) 

(A. 4 4) 

positive quantities, the sign and magnitudes of each w. will 
l 

depend not only on its own driving force but also on the 

relative magnitudes of all the terms in the brackets in 

this equation, i.e., on the affinities of all the reactions. 

This is one important aspect of coupling and derives from 

the electrochemical nature of the system. 
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For a 3-reaction system involving 3 simultaneous 

half-cell reactions: 

Ml + 
zl 

+ + Ml z1e 

M2 + 
z2 

+ z 2e + M2 (A. 4 5) 

M3 
+ z3 

+ + M3 z 3e 

[We define an n-reaction system as that in which there are 

reactions involving n-species.] The reactions are: 

(A. 4 6) 

(A. 4 7) 

(A.48) 

where B12 , B21 , B13 , B23 , B31 and B32 are as defined in 

(A.40). The pair equilibrium constants K12 , K21 , K13 , K23 

and K32 are as defined in (A.43) and (A.44) above, and Q12 , 

Q21' Ql3' Q31 , Q23 and Q32 are given by 

a aM' M. z. . z. 
Q .. = (-1) J (-J) 1 

1J aM! aM. 
(A. 4 9) 

1 J 
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and 

~nQ .. = - ~nQ .. 
1] ]1 

(A. 50) 

Notice that rate expressions (A. 4 6) - (A. 4 8) satisfy 

the neutrality condition of zero net current. Also, from 

the definitions of B .. , K .. and Q .. , we can rewrite (A. 46) 
1] 1] 1] 

- (A. 4 8) as 

wl = Bl2[- ~nK12/0 12] + Bl3[- ~nK13/Ql3] (A. 51) 

w2 = 
zl 
z

2 
Bl2[~nK12/Ql2] + B23[- ~nK23/Q23] (A. 52) 

zl z2 
(A. 53) w3 = z

3 
Bl3[~nK13/Ql3] + ~ B23[~nK23/Q23] 

A.3.3 Analysis of the Reaction Rate Expressions 

A.3.3.1 Parameters required to·describe the rate processes 

in a system 

From the rate expressions (A.39), it is clear that 

all t.l}e rates are uniquely defined, and no adjustable 

parameters need to be introduced. All that are required are 

the individual forward reaction rate constants ki and the 

equilibrium concentrations C~ or activities a~, in other 
1 1 

words, the forward (or backward) reaction rate at 
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equilibrium, as well as the pair equilibrium constants K ..• 
l.J 

The equilibrium constant K .. and the rate constants k
1
. can 

l.J 

·be -measured by means of isotope exchange techniques. The 

values of C~ or a~ will depend on the system so the need for 

this parameter to predict the process might prove awkward, 

unless equilibration experiments were carried out beforehand. 

However, it must be recalled that the instantaneous activities 

were replaced by the equilibrium values during the linearisa-

tion of the rate expressions in Section A.3.2.1 on the 

assumption that the state under consideration is near 

equilibrium. Consequently if the equilibrium concentrations 

or activity values are not readily available, it seems 

e 
reasonable to replace aM. by aM .• 

l. 1 

Since the rate expressions are unique, one requires 

knowledge of the independently measurable individual rate 

constants ki and the pair equilibrium constants Kij only. 

A.3.3.2 Reversal of a chemical reaction 

Lu <77 > has defined the reversal of a chemical 

reaction as the change in sign of w. from positive to 
1 

negative or vice-versa. The necessary (but not sufficient) 

condition for this is that wi vanish. The necessary and 

sufficient conditions for this phenomenon are that (1) w. 
1 

vanish, and (2) w. (i ~ j) remain finite. Note that a 2-
J 

reaction system (by virtue of the neutrality condition) 
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cannot aatisfy ·the above conditions, and hence the rev•~rsal 

phenomenon cannot take place in these systems. 

We now investigate the possibility of having a 

reversal of the c~1emical reactions in a 3-reaction system. 

Let us suppose that w1 vanishes and investigate whether w2 

and w3 can still remain finite. From Eq. (i.46) and the 

simplifying assumption 

{lL 54) 

which is not very crucial to our p :::-esent investigation, we 

obtain the follmving cases: 

(i) = 0 as a result of: 

and K C 13 = !1? 
• . ,J 

(A. 55) 

By definitions (A.43) and (A.54) 

(A. 56} 

Also from (A.49) and (A.54) 

(A. 57) 

Hence, 



It follows, therefore, from the rate expressions, 

that w2 and w3 must also vanish, i.e., 

for the case stated in (A.55). 

(ii) w = 0 as a result of: 
1 

From (A.47), (A.56) and (A.57) we have 

Substituting (A.60) for £nK12;o12 in (A.6la), we have 

Since in general, 

and 

196 

(A. 58) 

(A. 59) 

(A. 60) 

(A. 61) 

(A.6la) 

(A. 62) 
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we see that even if w1 vanishes via condition (ii), w
2 

(and hence w3 ) will remain non-zero as long as the quantities 

in the brackets of (A.62) do not sum to zero. That this sum 

is non-zero at least for the particular case z
1 

= z
2 

= z
3 

under consideration, follows from the definition of the 

B .. 's. 
1] 

Thus we expect that reversal of a chemical reaction 

will in general take place if and only if the system does 

not reach the state 

K . . jQ .. = 1 
1] 1] 

i,j = 1, 2, .•. , n 

(A. 63) 

\ve note that Lu <77 ) has shown for an n-reaction of 

finite size, that every reaction could reverse its direction 

as many as n-1 times before its completion. In addition, he 

has predicted that with an arbitrary initial non-equilibrium 

state, the concentrations of reactants and products do not 

change monotonously towards the final state but oscillate 

about the final state \vi th decreasing amplitude. 
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A.4 Analysis of Glass-Metal Kinetics 

A.4.1 Basic Equations 

The equation describing the kinetics of glass-metal 

(or slag-metal) systems are (1) the flux equations for 

diffusion in the glass phase, (2) the reaction flux at the 

interface and (3) the flux equations for diffusion in the 

metal phase. 

To illustrate the analysis of the kinetics of glass-

metal systems we consider a quasi-binary silicate glass in 

contact with a binary metal alloy. The equations describing 

diffusion in the glass phase and those for reactions at the 

interface have already been formulated in Chapter 4 and in 

Section A.3 respectively. For diffusion in the metal phase 

we have the usual Pick's law. Since we are dealing with a 

two phase system we use the simple Helfferich formulation 

(Section 4.3.2) in which the zero net charge condition is 

explicitly applied. For a ~uasi-binary silicate glass 

containing two mobile cations 1 and 2 and a fixed anion 3, 

the flux equations for the cations are given as in (4.35) 

(superscript s is used to denote the glass phase) , i.e., 

ac 5 acs 
·Js (Dll + 0 22) 

1 
- 0 

1 (4.35a) == - ax = ax 1 

acs s 
Js 2 - ac 2 = - (Dll + 0 22) ax = - 0 ax ( 4. 3 Sb) 2 



s where c. are defined in amount/unit volume and the mass 
l 

balances give 

acs a acs 
1 (D 1 

ax- = ax ax-) 
I 

acs a acs 
2 {n _2) ax- = ax ax 

From the neutrality condition: 

Z Cs + ,.,s = 
1 1 2 2'''2 = constant 

For the metal phase with species 1 and 2, we have 

a em 
J m = D 1 

1 - ax 

where D is the chemical diffusion coefficient defined by 

(Darken (go)) 
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(A. 64a) 

(A.64b) 

(A. 65) 

(A. 66) 

(A. 67) 

where n1 and n2 are the self diffusivities of 1 and 2, 

respectively and N1 and N2 are the atom or mole fractions. 

The Pick's second equation from mass balance is 

(A. 68) 
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If we assume that the molar volume of the metal alloy is 

essentially independent of concentration in the range under 

consideration, then 

em + em = constant 
1 2 

where e~ is in moles by unit volume. 

(A. 69) 

To describe the kinetics, we solve Eqs. (A.64) and 

(A.65) for the glass phase, and Eqs. (A.68) and (A.69) for 

the metal phase subject to the following boundary conditions: 

at the interface, we have continuity of flux, since there are 

no sources or sinks, i.e., 

(A. 70a) 

(A. 70b) 

which represents two independent relations, 

Jm = wl 1 

(A. 71) 

Js = Jm 
1 1 

since 

("4.24) 
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and in the number fixed frame: 

(A. 7 2) 

Equations (A.65) and (A.69) also apply at the interface which 

with (A.71) uniquely determine the interface concentrations. 

At the metal end of an infinite couple we could have 

= -oo or some finite location and at the glass 

s s end, c. = c . 0 at x = +oo or some finite location. Thus one 
l. l. 

can completely solve Eqs. (.A.64) and (A.65) for the glass 

phase, and (A.68) and (A.69) for the metal phase, subject to 

the continuity relations (A.71) and appropriate boundary 

conditions. 

For consistency, both flux expressions for diffusion 

and for reaction in the continuity expressions (A.7l) must be 

expressed in the same concentration units. The correct con-

centration units in the diffusion formalism are amount/unit 

volume whereas those for activities are mol. fraction. 

Therefore, care Inust be exercised to ensure that the same 

concentrations used in an expression are reduced to the same 

units. It is apparent that from the concentration units 

indicated, the densities of both phases will enter into the 

continuity expressions. 
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A.4.2 Limiting Cases 

For finite systems such as are encountered in process 

metallurgy (steelmaking, non-ferrous refining, etc.), 

considerable simplification can be introduced into the 

problem of solving the equations if either diffusion or 

reaction is very fast relative to the other. In such a case, 

it is assumed that the slow step is the rate-determining one 

and that all other steps are virtually at equilibrium. 

Wagner (?lb) has treated at some length the two possible 

limiting cases: (1) transport-control, and (2) reaction-

control! 

Transport-control is that limiting case where the 

reactions at the interface are proceeding so fast relative 

to transport of species in the bulk that the interface is 

considered to be virtually at equilibrium, and the rate of 

the process is determined by the transport of one or more 

of the reacting species to and from the interface. A naive 

way of looking at, or of picturing this situation is to 

imagine the reaction as being so fast that as soon as any 

reacting species is brought to the interface, it is 

immediately reacted, and so for all intents and purposes, 

the interface can be considered to be at equilibrium. 

Strictly speaking, however, we must note that the interface 

is never truly at the equilibrium concentration except when 

the system is at equilibrium (at t + oo) • 
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Under conditions prevailing in steelmaking systems, 

the temperatures are sufficiently high that interfacial 

chemical reactions are rapid enough that the overall rate 

of a reaction is not governed by chemical kinetics, but by 

how rapidly the participating species can be brought 

together. Consequently steelmaking kinetics are usually 

considered as transport- controlled processes. Empirically, 

it is well known that stirring or increased turbulence in 

steelmaking systems greatly speed up the kinetics. 

Chemical-reaction control is referred to as that 

limiting case in which the transport of species in the bulk 

is very fast relative to the chemical reaction rate. I n 

this case the concent r a tion gradients in bulk phases of 

finite exte nt are i n significant and t~e overall rate of the 

process is d etE:J::mined e s sent ially by the rate of the phase­

boundary reaction. 

A.4.3 Solut ions of the Rate Expressions for Glass-Metal 

Binary Systems 

The continuity expressions at the glass-metal 

interface (Eq. (A.71)) can be written fully as 



where B12 is defined in (A.38). A key problem in the 

numerical solution of the rate expressions has to do with 

204 

(A. 7la,) 

the choice of concentration units. The concentration units 

in B12 and Q12 are in mole fractions whereas those in C~ 

and Cs are in moles/unit volume. For practical purposes it 
1 

may be more convenient to express them all in mole fractions 

and so write (A.7la) as 

(A. 7lb) 

where p and p are the molar densities of metal and glass m s 

phase respectively and c~ and C~ are now in mole (or atom) 

fractions. For present purpose, we take ps = Pro· 

Values of the specific rate constants k 1 and k 2 and 

the interfacial equilibrium activities a~ and a~ are still 

unavailable for any interesting system. Therefore, for the 

purpose of solving the overall kinetic expressions (A.64), 

(A.68) and (A.71), we lump all these quantities in the 

single coefficient B12 . We thus consider B12 as a "lumped" 

rate constant analogous to the chemical diffusion coefficient 
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definea by Darken in (A.67), and solve the kinetic expressions 

for different values of B12 • 

Because of the non-linear nature of the diffusion 

equations (A.64) and (A.68) and the time-dependent form of 

the interface boundary conditions, analytic solutions do not 

exist. Therefore, we seek numerical solutions and as before 

we use the finite difference method. The boundary conditions 

at the ends of the system are similar to those defined in 

Eq. ( 6. 4) • 

An outline of the computer program is given in 

Appendix G. 

Solutions were sought for glass-metal systems A, B, 

C and D with the following initial state: glass phase 

concentration; C~ 
s z 3c3 = - 0.60 and 

s = 0.35, c 2 = 0.25 

t 1 h em --me a p ase; 1 

with z 1 = z 2 = 1, and 

m 0.70, c 2 = 0.30 and 

equilibrium constant K12 = .40, having different values of 

m m s s self diffusion coefficients . D1 , n2 , o1 and D2 and "lumped" 

rate constant B12 as indicated in Table A.I. 



SYSTEM 

A 

B 

c 

D 

Dm 
1 

CM~ SEc:1 

10-5 

10-7 

10-6 

10-5 

TABLE A.I 

Dm 
2 

CM~ SEc:-1 

10-5 

10-7 

10-6 

10-5 

Ds 
1 

CMf SEc.:-1 

10-5 

10-7 

10-8 

10-5 

Ds 
2 

CM~ SEc:-1 

10-5 

10-7 

10-8 

10-5 

B12/Pm 

CMy'SEC· 

10-4 

10-4 

10-5 

10-7 

!\.) 

0 
0\ 
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A.5 Results 

The concentration profiles generated by Eqs. (A.64) 

and (A.69) with (A.71) for system A (Table X), after the 

following reactions times: 10 sec, 20 sec, 40 sec and 

60 sec, are given in Figs. 30a-d. The thickness of the 

system (consisting of equal glass and metal thicknesses) 

was 0.04 em. The concentration quotients Q12 (Eq. (A.49)) 

obtained at each time interval were as follows: 0.6779, 

0.5834, 0.4886 and 0.4407, respectively. 

Profiles for system B of thickness ±0.01 em are 

plotted in Figs. 3la and 3lb, for 30 sec and 5 min reaction 

times, respectively. The following concentration quotients 

o12 were ob·tained in this system at the corresponding time 

intervals: 

(i) 30 sec, 012 = 0.4149; 

(ii) 1 min 012 = 0.4109; 

(iii) 2 min Ql2 = 0.4076; 

(iv) 4 min Ql2 -- 0.4036. 

The profiles for system c are plotted in Fig. 32, 

and the series for system D are shown in Figs. 33a-f. Ql2 

for system D were as follO'V7S: 

(i) 15 min, Ql2 = 1.6096; 

(i.i) 30 min, Ql2 = 1.554; 

(iii) 1 hr , Ql2 = 1.467; 
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(iv) 2 hr 012 = 1.321; 

(v) 4 hr 012 = 1.083; 

(vi) 8 hr ' 012 = 0.8045. 
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A.6 Discussion 

The profiles (Figs. 30 - 33) illustrate the various 

forms of concentration profiles encountered in two-phase 

kinetics which were briefly discussed in Section A.4.2, viz; 

mixed control, diffusion control and reaction control. The 

concentration profiles for system A, Fig. 30, suggest a 

mixed control kinetics. The system goes toward equilibrium 

as can be inferred from the o12 values at different times. 

This is the more common kinetic behaviour of many systems at 

moderate temperatures where the reaction rates and the 

diffusion kinetics are of the same order of magnitude and 

neither exhibits a controlling influence on the overall 

process. 

System B on the other hand, shows clearly a diffusion 

control process. Within the first 30 sec, the interface is 

virtually at equilibrium: o12 = 0.415, K = 0.4; while the 

diffusion rate is so slow that the bulk phases are still at 

the initial state. Note that as indicated earlier, the 

interface will be at complete equilibrium when the whole 

system approaches to equilibrium. For all intents and 

practical purposes the interface can be considered to be at 

a local equilibrium from the onset of reaction. One may not 

distinguish 0 12 = .415 and o12 = 0.40 = K, by noticing the 

difference in actual observation. 

System C (Fig. 32) exhibits diffusion control in the 

• glass. vfuile diffusion in the metal phase can keep pace T.Nith 
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the fast reaction rate with local equilibrium at interface as 

before, the glass phase diffusion is very slow and hence 

controls the overall kinetics. 

Reaction control is demonstrated by system D (Fig. 

33) • The diffusion rate is relatively fast compared to the 

reaction rate, leading to a practically zero concentration 

gradient in the bulk. 

These concentration profiles, Figs. 30 - 33, 

illustrating t he various rate controlling limits (diffusion, 

reaction and mi xed) hav e been intuitively known by workers 

in heterogeneous chemical kinetics for some tiine now, but 

have never been formulated on the basis of one single set of 

equations for glass~metal or slag-metal systems. The ability 

of our formulation to generate these different controllir.g 

cases, depending only on the relative magnitudes of the 

kinetic parameters Di and ki (in the present case Di and 

B .. ) is extremely gratifying. And indeed this is indicative 
1] 

of not only the consistency of our formulation but also of 

its potential utility. Again we may draw attention to the 

fact that systems are all upiquely defined by our model, only 

the kinetic parameters Di and ki are required to completely 

characterise a system, and no adjustable parameters are 

required. 

Finally we may again point out the following serious 

limitations of the model: 
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(1} Assumption (5} in Section A.l, which neglects any 

charge separation at the glass-metal interface at time 

t = 0, could be open to dispute since it is well known 

from electrochemistry (though not in any simple 

quantitative way) that this may not indeed be the case; 

and 

(2) the linearisation (A.23} of the exponential term in 

Eq. (A.l3) restricts the applicability of the above 

formulation to the linear range. At the same time, we 

note that nearly all practical phenomenological laws, 

Fick's law for diffusion, Ohm's law for electricity, 

etc., are all of this form. 



APPENDIX B 

AN EMPIRICAL EQUATION RELATING ALKALI ION SELF 

DIFFUSIVITY TO COMPOSITION IN SILICATE GLASSES 

Cation self diffusivities D. in glasses have been 
1 

shown to be very sensitive to the composition of silicates. 

Figures lla and llb drawn from the data of Evstropev (3 0), 

and Evstropev and Pavlovskii (3 l) show that DK and DNa 

increase exponentially with mole% K
2

0 and mole% Na
2
o, 

respectively, in the range 10 - 30 mole%. 

More recently Terai et al. (3 S) have carried out 

comprehensive experiments on the variation of DNa for the 

addition of a number of alkali oxides in soda-silica based 

glass using radioactive tracer techniques. They showed 

that DNa increased exponentially as the mole% of Na 2o 

increased, but decreased on the introduction of Li 2o, K20, 

CaO, ZnO, BaO, SrO or CdO into the binary silicate glass. 

The decrease in DNa was related to the effective radius and 

the polarising power of the additional divalent cation. 

From the data of the above groups of workers, we 

have deduced the following empirical relation for the 

concentration dependence of the self diffusivity DM of a 

cation in a silicate glass containing MO and other oxides: 
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(B .1) 

where a is the slope of the plot of the self diffusivity of 

ion M against MO in binary silicate such as in Figs. 11. A 

is a temperature de pendent parameter and 

Ceff = MO (1 -

is the effective concentration of MO, the summation being 

taken over all the oxides NRO, other than MO and silica, 

(the absolute value in (B.2) ensures a non-negative 

concentration) ; f is a measure of the retardation of the 

(B. 2) 

motion of ion M by the presence of other ions NR, and depends 

on the field strengths*, i.e., the polarising powers of NR. 

* A measure of the field strength is the force needed 

to separate the displace a cation of radius rR, valence zR 

from its non-bridging oxygen, and as a first approximation, 

fR per mole is given by 

where N
0 

is the Avogadro's number, e the electronic charge, 

the subscripts R and 0 refer to cation and oxygen, 

respectively. 



The following values of fR have been empirically 

deduced from data of Terai et al. (35 ), Evstropev and 

Pavlovskii (3 l) and Towers and Chipman (G 3): 
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~ 'V f 'V 1/3 ,· .I-Na rv K rv 

cations f ~ 1. 

fca ~ fsr ~ 2/3; for most other divalent 

There is an uncertainty about the value of 

fAl; it varies from 4 to 1 depending on the Al 2o3 content of 

the glass, and this seems to be related to the "intermediate" 

role of Al in the silicate structure (see Chapter 2.2.2). 

If D~ and D~ represent the self diffusivities of 

cation M in glass compositions (a) and (b), respectively, 

then from Eq. (B.l) we can write 

Da A exp(2.3 r a = 20 ceff) M 

Db A exp(2.3 r b = 20 ceff) M 

Da Db exp[2.3 r a b = 20 (Ceff - C eff) ] M M 

Therefore, if D~ is known from some previous independent 

(B. 3) 

(B. 4) 

(B. 5) 

a 
measurement, DM can be calculated from relation (B.5). Using 

Eq. (B.5) and the values of fR given above, we were able to 

correlate the data by Terai et al. in the ternary soda-

silicate glass with those of Evstropev in binary silicate 

(see Fig. 34). 

Although the equation correlates the cation self 

diffusivities reasonably well for the systems tested, 
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attention must be drawn to its limitations: 

(1) The empirical fit was based on a rather limited set of 

data. 

(2) The necessary introduction of an absolute value into 

the expression for the effective concentration Ceff 

to avoid negative concentration values suggests that 

the expression needs modification. 

(3) The thermodynamic meaning of Ceff is not clear. 



APPENDIX C 

NUI~RICAL SOLUTION OF THE DIFFUSION 

EQUATIONS BY FINITE DIFFERENCE METHOD 

To solve Eqs. (4.31) by the finite difference method 

we divide the range in x and t into intervals 6x and 6t, 

respectively, and denote by C(I,J-1), C(I,J), C(I,J+l) the 

concentrations at time I6t at the points (J-1)6x, J6x, 

(J+l)6x, respectively, and by C(I+l,J) the concentration at 

time (I+l)6t and point J6x. We then replace all the 

derivatives in (4.31) by finite difference approximations 

using a Taylor series expansion so that (4.3la) becomes: 

c1 (I+l,J) 

'~ 4 

6t 
= Cl (I ,J) + (6x) 2 { (Dll (J+l) - Dll (J)) 

1- A 
x (c1 (I,J+l) - c1 (I,J) > + D11 (J) 

(C .1) 
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The equation for c2 is obtained by e xchanging 

subscripts. This will be designated as Eq. (C.2). 

By Taylor expansion at the boundaries about the 

intervals ~x, 2~x, condition (6.4) becomes: 

c1 (I+l,M) = ~Cl(I+l,M-1) - Cl(I+l,M-2v/3 

c2 (r+l,M) = (:c2 (r+l,M-l) - c2 (I+l,M-2V/3 
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(C.3) 

For inf i nite systems, M is chosen large enough that 

diffusion doe s not reach points ±M~x during time t. For 

finite couples, points ±r1~x = x 0 are the actual ends of the 

couple. 

Using (C.l), (C.2) and (C.3) the computations were 

carried out at intervals of ~x over the range of given x and 

this was repeat ed in s teps of ~t to the given t. Before each 

step of ~t, o11 and o22 are first calculated from previous 

concentrations obtained at time I. To minimize errors 

entering into the approximations above and to obtain 

accurate results, proper choices of magnitudes for ~x and ~t 

are required, particularly at the early stages of the 

diffusion when a discontinuity exists at the interface. All 
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our solutions for infinite couples rapidly converged to a 

parabolic penetration behavior, thus establishing the 

stability of the finite difference methodology. Their 

stability was established via successively finer subdivisions 

and checking the convergence using the h 2-extrapolation ( 26 ) 

All calculations were carried out on a CDC 6400 

model digital computer at the McMaster University Data 

Processing and Computation Center. A listing of the 

programme is given below. 



HWLD, PiOO. 
FTN. 

t.GO . 
A400 FND OF RFCORD 

PRnr..Pf\M T:ST ( TNPlJT,nlJTPl.IT,TllPE')=t"JPUT,TllPI="A=nlJTDlJTl 
227 

C NUMFP TCAL S0LUTJnN nF T~lF OUASI-RINARY D I FF US IO N F OUA~IONS RY FI NITF DIFFRNC 
C EXPERI~ ENTAL DATA F OR COUPLE B/C AT 7 00 .C 

( 

c 

10 

1 l 
1? 

98 

?00 

99 

70 0 

f ,OO 

[) I M I=" r.1 S T n N C 1 ( 2 ' ? 4 0 ) ' C 7 ( 7 ' 2 4 0 ) ' X ( 7 4 0 l , [) 1 l ( 7 4 0 l ' D 7 7 ( 7 4 0 ) t 

1 C 1 ( 7 ' ?, 1 0 l ' W! ( 7 , ?, 1 0 l ' \IJ 7 ( 7 ' 11 0 l ' SUM vi ( 3 1 0 l , I S T ( 3 l ' D F L D ( 1 1 0 l 
READ COMMON PARA MF TFRS 
RFA D ( 5 ,1 0 1 C1Pt C2Pt ClN• C2N 
RFAD(5~ 11 l Z l t Z?, Dl• D2 
RFAO (1:),1~) K• "hMtLP..qT, DFLT, OFlX 

FORMAT ( 4 ~="1 0 .4 ) 
FOR~A T ( 2F4 . 0 , 2F 1 ? .3 
F ORMAT ( 4Tl0, Fl O.l, F l0 .4) 
STATE TH E INITIAL CONDITIONS FOR THE COUPLF 
KN =~: - 1 

I(P=I(+l 
DO 2 00 J=l•KN,l 
C1(1,Jl==C1N 
C2(J,Jl=C?N 
CO NTINUF 
C1(1,Kl = ((JP + ClNl/2. 
C?( 1 ,Kl = ! C2 P + C2Nl/2. 
DO 700 .J= KP,'.tl,] 
Cl(l, J l =ClP 
G'(l,Jl =C?P 
(/'"\~ T I "Jl J1=" 
X(l) = 0 . 

DO 600 J=2•"" 
X( Jl =DFLX * FLOAT(J-11 

ISTfiP T = ?00 
IDELT = ;:>00 
CONST = DELT /!DFLX *DELX l 
ZZ7 = Z? /Zl 
ZZl = 7.1/72 
001 = Ol*Zl*Z1 
r)r);:? = O?*Z~*Z2 
DNl = Dl*D?* Z2 *Z2 
DN2 = Dl*D?*Zl*Z1 

900 DO ] 000 I=T S TARTt LIMIT• IDELT 
T= FL OA T!Tl 
DO Hl2 J=l , ~A 
CK = OD1*C1<1,Jl + DD2*C2(J,Jl 
DlJ(Jl = rJN1*C7(l,Jl /CK 
022<Jl = DN?*Cl<J.,Jl /CK 

10? cnr..,JTTN UF 
100 on 101 J=2• N 

C 1 ( 2 , J l = C 1 ( 1 t J l + ( CON S T l * ( ( D 11 ( J + 1 l - D 1 1 I J l l * ( C 1 ( 1 ' J + 1 l 
1 -C 1 ( 1, J l l +[) 11 < J l * ( C 1 < 1 , J+ 1 l-?. *C 1 < 1 , J l +C 1 < 1 , J-1 l l 
7 -( ZZ? l*«D 2? CJ+1l - D?2 CJll ·* <C? !l,J+ll -C 2 (J,Jlll 
':2. -( ZZ? l*fD??.(Jll*<C ?. (l,J+ll -2.*(?(1,Jl+C?(1,J-lll l 
(7{?,Jl=C?(1 ,J)+( cor--1ST PH (D??(J+1 J-D??( Jl l*!C?Il •J+ll 

1 -C?C 1 ,JJ l+f'l??!Jl * (C?( 1 ,J+l l-7.*C2( 1 ,JJ+C:?I 1 ,J-ll l 
? -( ZZl l*«Dll(J+ll-D11!Jll*!Cl! l tJ+lJ-Cl(J,J)ll 
1 -( ZZl l*(C1l(Jl l*IC1!l,J+1J-2.*Clll•Jl+C1!1,J-lll l 

101 CONTINU E 
C STATF TH f ROUNDARY CONDITIONS FOR THE COUPLF 



C1<?•1 l=(~.*Cl ( ? , ?l-C1 ( ?,~l ll~. 

(? ( ? •1 1= ( 6 . *\?(;:> , ?)-{?(? , 1))11 . 
C 1 ( ? , M l = ( 4 • * C 1 ( 'Z , M -1 1 - Cl. ( 2 ' fA- 2 l l I '3 • 
C? ( ? , rv' 1 = ( 4. * C? I 2, 1"' - 1 l - C? ( 2 , M-- 2 l l I 3 • 

110 DO 10~ J=),M 
Cl (l,Jl =CJ (2,Jl 
C2(l,Jl=C2(2,Jl 

10'3 CONTII\IUF 
1000 CONTTNLJF 

no 604 J = l,M 
C1 (?,Jl = 10 0 . - C? (?,Jl-Cl (?,Jll?. 

n04 CONTINUF.: 
MJ =94.2 
M2 = 56.08 
~3 = 60 . 0R 
DO 60') J=1,M 
SlJM\A/ ( J l = ( CJ ( ? ,Jl*"-1 1 ll 2 . +C ? (?,Jl*M?+C 3 (?,JJ*M3 

f,Oc:; (O~!T T ~J LJF 

DO 606 J =l,M 
WJ(;:>,Jl = ( (1 (?, J).J:·MJ li(;:>.*SU MV.J (J)l 

606 cnr-H I NUE 
DO 607 J=l , M 
W?( ?,JJ= ( C2 (?,Jl*M2 liSU MW IJ1 

A 0 7 C n 1\1 T I ~I U F 

228 

C CALCliLATION OF TH~ TNTFRNAL FIELD FROM TH E DIFFU S ION POT EN TIAL EXPRESSION 
DO 7? J = 2,1\1 
Pl = Z1*fJ1*1 Cl( ?d+ l l- Cl(2,J-1JJI(?..*f!FLXJ 
P? = Z?*f!2* ( C?(?,J+ll-C?(2,J-1JJI(2. -*f!ELXJ 
P3 = Z1 *Zl*Dl*Cl(2,Jl 
P4 = Z2*Z?*D?*C7.(2,JJ 
DFLf!(J) = - 0 . 08S * ( Pl + P2 l I ( P3 + P4 J 

7? (01\!T T ~l l JF 
c:;OO vJPITF (6, 2 0 2 l T 
;:>0;:> FORM AT (1Hl , 10H TIMF = ' F8.0 ' 6H SEC. I 

1 R~H CJ ( ?,J J C2(?,JJ DISTANCEICMl DFLD(Jl 
2 011 (JJ D22(JJ 

DO ?.04 J= 2'N 
WRIT E (f,,~ Oc:; J Cl(?,JJ, C?(2,JJ, X(JJ, DFLD(J)' Dl1(JJ, D?2(J) 

;:>04 CONT T r~UF 
f)() AOR J = ;:> , 1\1 
WRITF (f, ,uO')l WJ (;:>,Jl ,\A/2 (?,JJ, XIJJ, DFLD{J}, Dl1(JJ, D?21Jl 

n08 CONTTNUF 
405 FORMAT ClH- , 4Fl2.4 , 2El7.9 l 

JJ = JJ +1 
1001 STOP 

END 
6400 FND OF PFCORD 

10.04 14.9R 41.14 . 12 .94 
1. 2. 3.E-8 2.E-12 

61 1 ?0 1?1 10 8000 0 200. cs.E-4 
END OF FILE 

CD TOT 0110 



APPENDIX D 

LOT ANALYSES OF REAGENTS USED IN GLASS MAKING 

K2co 3 Anhydrous powder (Fisher Certified) 

Lot Analysis Reported on Label 

Insoluble Matter 

Loss on Heating (285°C) 

Chloride (Cl) 

Nitrogen Compounds (as N) 

Phosphate (PO 4) 

Silica (Si0 2 ) 

Sulphur Compounds (as so4) 

Ammonium Hydroxide ppt 

Calcoim and Magnesium ppt 

Arsenic 

Heavy Metals (Pb) 

Fe 

Na 

(Limit about 

Caco
3 

powder (Fisher Certified) 

Lot Analysis Reported on Label 

0.010 % 

1.0 % 

0.003 %) 

0.001 % 

0.001 % 

0.005 % 

0.004 % 

0.010 % 

0.010 % 

0.0001% 

0.0005% 

0.0005% 

0.020 % 

0.010 % 

0.010 % 

Insoluble in Dilute HCl 

Ammonium, Hydroxide ppt 

Alkalinity Pass Test 
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Chloride (Cl) 

Oxidizing Subs (as N0
3

) 

Sulphate (so
4

) 

NH 4 

Ba 

Heavy Metals (as Pb) 

Fe 

Mg 

K 

Na 

Sr 

Sio2 supplied by Fisher 

Lot No. 710344 

Floated Sio 2 powder (~ 240 mesh) 

0.001 % 

0.005 % 

0.010 % 

0.003 % 

0.005 % 

0.001 % 

0.002 % 

0.02 % 

0.01 % 

0.10 % 

0.10 % 

Analyses could not be obtained from Fisher. 
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APPENDIX E 

ANALYSES OF SILICATE GLASSES FOR Si02 , K20, AND CaO 

AND SOME TRACE ELEMENTS 

I GRAVIMETRIC ANALYSES FOR Si0
2 

About 0.25 gm glass powder (~ 200 mesh) was very 

accurately weighed (to the 5th decimal place) in a platinum 

crucible, and approximately 4 gm of Na 2co3 was added to the 

powder. The mixture was intimately mixed inside the 

crucible using a glass rod; and then fused on a Bunsen flame 

for about 1/2 hour. On cooling, the platinum containing 

the fused glass cake was immersed in a beaker containing 

200 ml of 50% HCl. The cake dissolved in the acid, and 

after about 10 minutes the crucible was rinsed thoroughly. 

The contents of the beaker were evaporated to dryness 

overnight on a warm hot plate. Then the residue in the 

beaker was dissolved in 200 ml of 50% HCl and filtered 

through a 544 paper (Hardened Ashless paper) . The residue 

on the filter paper contained the Si02 • The dehydration 

and filtration process was repeated once again on the 

filtrate, and the two residues (now containing almost all 

the Si02 ) were combined, ignited in a platinum crucible and 

weighed. This weighed residue was then treated with HF, 

evaporated to dryness and reweighed. The difference in 

weight gave the weight of Sio2 . 
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The final crust left on the platinum crucible was 

dissolved in 50% HCl and added to the filtrate obtained 

232 

after the second dehydration process. This filtrate was used 

for the analyses of K, Ca and traces of Si and other 

important trace elements using the Atomic Absorption 

Analyser. 

II ANALYSES OF K, Ca AND Si USING ATOMIC ABSORPTION 

The filtrate obtained after the Sio 2 analyses was 

poured into a 500 ml volumetric flask and the flask filled 

up with deionised distilled water. The flask was shaken to 

ensure homogeneity. The solution was then diluted to 

5000 ml by pipetting 10 ml from the 500 ml flask and 

diluting to 100 ml with deionised distilled water. 

To take account of absorption and interference 

effects which Ca may have on K and vice versa, standards 

were made by mixing K, and Ca standards prepared from ultra 

high purity KCl and caco3 , respectively. These standards 

were made from 2 . 5 ppm to 10 ppm (of K, and Ca), at 

intervals of 2.5 ppm. 

Using these standards, calibration curves were drawn 

for both elements, and used to determine the K and Ca 

contents of the sample solution. 

Blanks were carried in each case and the results 

obtained corrected accordingly. Analysis for each glass 
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sample was repeated four times and the averages taken. It 

was found that the Atomic Absorption was not sensitive 

enough to p i ck up Si from the filtrate which may have held 

up to 2% Sio2 . 

The range of errors for each element were 

Si02 ± 1% 

In addition to Ca, K and Si, a number of trace 

elements Fe, Al, Na, Mg, Ti, Ni and Sr were checked for. 

The concentrations of the latter were found to be quite low; 

typically 0.15 wt% Al, 0.08 wt% Na, Mg and Fe and< 0.05 wt% 

Ti, Ni and Sr. 



APPENDIX F 

LINEWEAVER PHENOMENON AND THE INSTABILITY OF ALKALI 

SILICATE GLASSES UNDER ELECTRON BOMBARDMENT 

Lineweaver (B 2 ) first observed that electron 

bombardment of alkali silicate glasses (in the 10 - 27 kV 

range) caused evolution of oxygen from the glasses. The 

out gassing from most glasses fitted the empirical 

. ( 82) equat1on 

Q = Q
00
[l- exp(-t/K)] (F .1) 

where Q is the sum of oxygen evolved in time t, and Q the 
00 

maximum amount of oxygen expected from a sample bombardment 

for long times. The oxygen release mechanism was proposed 

by Lineweaver as follows: The high energy electrons entering 

the glass dissipate their energy by ionization and excitation 

of the atoms of the glass structure and finally come to rest 

at some depth (proportional to their energy, e.g., 2.7 ~at 

20 keV for Corning 7740) within the glass producing a net 

negative space charge. The resulting electrostatic field 

inside the glass layer moves the alkali ions towards the 

negative charge, and the non-bridging oxygens away from this 

layer of negative charge towards the surface. With electron 
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bombardment, therefore, there is a net diffusion of alkali 

ions from the surface layers towards the interior of the 

glass specimen and of oxygen ions towards the conductive 

surface coatings to which they lose their electrons and 

evaporate into the vacuum system as o 2 molecules. The loss 

of oxygen leads to a measurable shrinkage of the glass in 

the bombarded area, and the mass of glass affected, M, by 

1 t b b d A 2 . . b e ec ron om ar ment on an area em 1s g1ven y 

where V is the electron energy (in volts) after passing 
p 

(F. 2) 

through the conductive coating on the glass surface, and B 

is a constant describing the absorption of electrons by the 

material. For pyrex glass B was found to be 

6.2 x lo-11 v 2 g-1cm2 . 

Varshneya, Cooper and Cable ( 83 ) observed that the 

characteristic intensities in a K20-SrO-Sio 2 glass were time 

dependent; Sr counts remained fairly constant while Si counts 

increased and K decreased. This phenomenon was explained in 

terms of the Lineweaver mechanism outlined above. Borom and 

Hanneman <84 > have come to similar conclusions noting that 

the compositional changes during electron bombardment on 

glass surfaces are accompanied by severe electron-beam 

induced cratering damage. The importance of heat flow 

problems involved in these low thermal conductivity samples 
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(even with conducting coatings) have been noted by a number 

of workers <85 , 86 , 87 ) 

Implicit in the Lineweaver mechanism is the existence 

of an "incubation period" or "delay time" from the start of 

electron bombardment before the onset of out gassing and the 

migration of cations away from the bombarded zone, as was 

later observed by Vassamillet and Caldwell ( 87 ). The authors 

proposed that ion movement in glasses during electron 

bombardment must depend on the temperature of the volume 

irradiated, and that there exists a critical temperature 

(which depends on the glass composition) for an alkali ion 

diffusion from the irradiated zone. The length of the 

incubation time and the rate of decay of the X-ray 

intensities are now known to depend strongly on the beam 

voltage, curre nt, beam size and the thickness of the 

conducting coating on the glass surface. 



APPENDIX G 

NUMERICAL SOLUTION OF THE GLASS-METAL KINETICS 

BY FINITE DIFFERENCE METHOD 

The procedure is similar to that adopted in the 

solution of diffusion equations for glass diffusion couples. 

The partial differential equations (A.64) and (A.68) and the 

continuity equations (A.71) defining the interface 

concentration were replaced by the finite difference 

approximations as described in Appendix C so that the 

continuity expression of Eq. (A.7la) becomes 

m B·llx = c1 (I,L-l) + 
Dm 

1 

x [- inK + z2 R.n 

+ zl R.n 

m c1 (I,L) 

' N c
1

(I,L) 

(G .1) 

Similarly for the (A.7lb) which we designate as Eq. (G.2). 

The finite difference forms of Eqs. (A.68) and (A.64) 

describing diffusion in the metal and slag phase respectively 

are given in the program listing attached below. 

In solving the above equations, we first establish 

the interface concentrations at time I+llt using (G.l) before 
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solving t .he diffusion expressions for both phases; and t .hen 

repeating the process till the end of the diffusion period. 

In this solution, 6x and 6t have to be chosen so as 

to ensure two stability conditions: first 6x is taken 

sufficiently s mall that Eq. (G.l) does not lead to a 

negative concentration (or a concentration greater than 

unity) . From experience it was found that 

B • 6x < 10-2 
D 

ensured stability. This is stability condition no. 1. 

Secondly, 6x and 6t have to be chosen as described in 

Appendix F for the diffusion equations. Explicitly this 

condition is such that (see Crank) 

{G. 3) 

(G. 4) 

For systems with very fast reactions and low diffusivities 

(limiting case of diffusion-control), condition (G.3) 

generally leads to a very small 6x, and thus a very small 6t. 

In these cases, long computing times are involved. 



H vl Uh T 1 0 0 0 • 
FTN. 
LGO. 

6400 END OF RECORD 
PROGPA~ TST ITNPUT,nUTPUT,TAPF5=TNPUT,TAPE6=0UTPUTl 
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C NUMERICAL SOLUTIO~ OF QTFFUSTON FQUATIONS FOR a GLASS/METAL COUPLE BY FNIT D 
I) T ~~ F N S T n r,l C 1 M ( '? , '? ? 0 I , r 7 M I '? , ? '2 0 I , C 1 N ( ? , 2 ? n l , C 2 N I '?. , ? ? 0 l , X X I 'i 0 0 ) , 

c 
c 

1 DDMI?20J,DNNI?201 
READ IN SYSTFM PARAMETERS 

?01 400 401 600000 
C 1• 1• 1.E-6 l.E-6 1.E-8 

l.E-~ 

l.E-8 
s.E-s 

l·E-5 .4 
-.60 c .70 .30 .70 .30 .35 .25 .35 .25 

READIS,l?l L,N~NN,LIMIT,DELT,DELX 

READ(S,lll Zl,Z2, D1M •D2M~rlN•D?N,ORTK,F0K 
R F A f) I c:. ' 1 0 I C v 1 M ' C M ? ~.A ' C 1 ~~ I 1 , L I ' C 2 M I 1 ' L l , C N 1 N , C N ? N , C 1 N I 1 , L I , C ? ~l I 1 , L l 

1 ,zc~ 

12 FORMAT 1411 0 ,[10.4,[ 10 .4 l 
11 FORMAT !2F4.0, SFI0.3 , FlOeS I 
10 FOR1~ATI2Fl0.4,2F5.4•2Fl0.4,2F5.4,Fl0.4 

C STATE INITIAL CONDITIONS FOR THE SYSTEM 
LM = L-1 
LN = L+l 
DO 20 J = l•LM 
C 1 ~1 ( 1 , J I = C M 1 M 
C2MC1,Jl = CM2M 

20 CONTINUE 
DO 21 J = LN,NN 
C1N(1,Jl = CNlN 
C2N(l,Jl = CN2N 

21 CONTI NUE 
XX(ll = 0., 
DO 22 J = 2, ~lN 

22 XXIJ) = DELX*FLOAT(J-11 
MP = 500 
!START = 1 
TDELT = 1 
CONST = DELT/IDELX*DELX) 
ZZ1 = Zl*Z1 
ZZ2 = Z?*Z2 
DN = D1N*D2N 
DZl = D1N*Zl 
DZ 2 = D2N.J(.Z2 

C WE NOW START COMPUTING THE CONCENTRATION DISTRIBUTION FOR BOTH PHASES 
24 DO 1000 II = !START , LI~IT , IDELT 

T = FLOATIIIl 
DO 31 J = l•L 
DDMIJJ = DlM*C2MI1,Jl+ D2M*ClMI1,Jl 

31 cor-.!T T NUE 
DO 51 J = L•NN 
DNNIJJ=DN*IZZ1*CJN(1,Jl+ZZ?*C2NIJ,Jl l/IDZ1*C1Nil,Jl+DZ2*C2Nil,Jll 

51 CONTINUE 
BM = ORTK*DELX/DDMILl 
BN = ORTK*DELX/DNNILl 
ClMI2•Ll = ClMil,L-11 - RM*I-ALOGIEOKl + Z2*ALOGIC1Mil,Ll/ 

1 ClN(1,Lll + Z1*ALOGIC2Nil,LJ/C?Mil,LJll 
C2MI2•Ll = 1.0- ClMI?,Ll 
ClN(?,Ll = C1N(1,L+1 l + RN*I-ALOGIEOKI + Z2*ALOGIC1M(1,Ll/ 

1 C1N(l,LJJ + Zl*ALOGIC?t'l(l,Ll/C2M(l,Llll 
C2N(2,LJ =- IZC3 + Z1*ClNC2,Lll/Z2 



ClMil•LI = ClM(2,LI 
C2M!l,LI = C2M(2,LI 240 
ClN(l,LI = C1N(2,LI 
C?N(l,LI = C?N (?,LI 

C COMPUTE METAL PHASE CONCENTRATION DISTRIBUTION 
DO 30 J=2 ,u-1 
ClM(2,JI = ClM(],JI + CONST*IIDDMCJ+11 - DDM(JJ J*IC1M(l,J+ll -

1 ClM(l,JII+ DDMIJI*IClM(l,J+ll -2.*ClM(J,JI + C1M(l,J-III) 
30 CONTINUE 

C COMPUTE CONCENTRATIONS AT THE METAL END OF THE SYSTEMI.E AT J=1 USNG DC/DX=O 
C1MI?•ll = (4.*C1MI?•?I-C1~(2,~ll/3. 

D 0 3 2 J = 1 ' L 1\1 
C2M(2,JI = 1.0- C1M(2,Jl 

32 CONTINUE 
C COMPUTE GLASS PHASE CONCENTRATION DISTRIBUTION 

DO 50 J=LN,N 
CJN(?,JI = CJI'I(l,JI + CONST*IIDNNCJ+ll- DNN!J))*IClN(t,J+l l­

? ClN(l,Jll + DNNIJJ*IClN(l,J+ll - 2.*C1N!l,Jl+ C1N(J,J-lll l 
50 CONTINUE 

C COMPUTE CONCF~ITRATIO~.J AT GLASS END OF THE SYSTFM USING DC/DX=O• 
CJN(?,NNJ = 14.*C1NC2,NN-11 - ClNI2•NN-2JI/':l.. 

C CALCULATE THE CON CEN TRATION VALUES OF THE SECOND COMPONENT IN THE GLSS PHASE 
DO 52 J=LN, N"l 
C2NI2•JI =-IZC3 + Z1*CINC2,Jl I/Z2 

52 CONTINUE 
DO 60 J = 1, U~ 
CJM(l ,JI = C1M(2,JI 
C2M(J,JI = C2M(2,JI 

60 CONTINUE 
DO 61 J = LN•NN 
ClN(l,Jl = ClNI?,JI 
C2NI1•Jl = C2N!2,JI 

61 CONTINUE 
IF (IT .NE. MP l GO TO 1000 

90 WRITE 16•911 T 
91 FORMAT (1H1 , ]0H TIME = ' FB.0•6H SFC. I 

1 4?H C1(2,Jl C2(2,JI DISTANCEICMI 
DO 100 J = 1•L 
WRITE (6,3001 C1M(2,Jl , C2M(2,JI , XXIJJ 

300 FORMAT llH- , 3F12.8l 
100 CONTINUE 

WRITE (6,9?1 
92 FORMAT (JH- ' ?8H C1N(2,JI C2N(2,Jl 

D0 ?00 J = L•NN 
WRITE (6,?001 C1N(2,J), C2N(2,Jl 'XX!Jl 

200 CONTINUE 
MP = ~-1P + 500 

1000 CONTINUE 
1001 STOP 

END 
6400 END OF RFCORO 

201 400 401 
1. 1. l.E-6 1.[-6 

.70 .30 .70 .30 
END OF FILE 

l.E-~ 5.E-5 600000 
].E-8 l.E-8 l·E-5 .4 

.35 ·25 .35 .25 -·60 

CD TOT 0114 
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