
Modelling Concurrent Systems with Object-Oriented

Coloured Petri nets

Modelling Concurrent Systems with
Object-Oriented Coloured Petri nets

By

Angela Wu

A thesis

submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Dregree

Master of Science

McMaster University

©Copyright by Angela Wu

MASTER OF SCIENCE (2003)

COMPUTING & SOFTWARE

McMaster university

Hamilton Ontario

TITLE: Modelling Concurrent Systems with Object-Oriented Coloured Petri nets

AUTHOR: Angela Wu

SUPERVISOR: Dr. Ryszard Janicki

NUMBER OF PAGES: xi, 105

11

Abstract

This thesis presents a new modelling technique for the complex current system. It

integrates object-oriented methodology into Petri Nets formalism.

Petri Nets are used for modelling concurrent systems. They have natural graphical

representation as well as formal specifications. They have been successfully used in

various industrial applications. But with the development of distributed and network

systems, their traditional weakness, namely their inadequate support for composition

ality, is a big obstacle to their practical use for large, complex systems. To address this

problem, we introduce the Object-Oriented Coloured Petri Nets (00-CPN), which

integrates the powerful modularity of an object-oriented paradigm into Petri Nets

formalism. 00-CPN is based on Coloured Petri Nets and supports the concepts of

object, class, inheritance and polymorphism.

lll

Acknowledgments

I would like to express my sincere thanks to Dr. Ryszard Janicki, my supervisor,

for his invaluable and patient guidance, critical insight, and constant inspiration and

support.

I am grateful to Dr. Ridha Khedri and Dr.Michael Soltys for their careful review

of this thesis and their many valuable comments.

I would like to express my appreciation to Lin He, who proposed the basic idea

behind 00-CPN.

Finally, I would like to acknowledge the financial support of the Ministry of Train

ing, Colleges and Universities of Canada.

iv

Contents

Abstract

Acknowledgments

Notations

List of Figures

1 Introduction

1.1 Background

1.2 Purpose

1.3 Outline .

Preface

2 Object Orientation and Concurrency

2.1 Object Orientation

v

iii

IV

viii

Vlll

1

1

6

8

1

11

11

2.2

2.3

Concurrent System

Object-Oriented Concurrent Programming

3 Coloured Petri Nets

3.1

3.2

Informal Introduction to Coloured Petri Nets .

Formal Definition of the Coloured Petri Nets .

4 Informal Introduction to 00-CPN

4.1

4.2

4.3

Objects and Petri Nets

Class Diagram

4.2.1

4.2.2

Textual Expressions

Class Net

Inheritance . . .

4.3.1

4.3.2

Inheritance Structural

Inheritance Anomaly

4.4 Polymorphism

4.5 Communication Channel

4.6 Example of 00-CPN: Reader and Writer .

5 Formal Definition of 00-CPN

5.1 Structure of 00-CPN

5.2 Behaviour of Object Oriented Coloured Petri Nets .

vi

14

15

17

17

25

33

34

35

35

36

37

37

39

51

53

54

61

62

68

5.3 Example . 69

6 Example of the Distributed Program Execution

6.1 Introduction to Distributed Program Execution

6.2 Introduction to Distributed Program Execution

6.3 Conclusion

7 Conclusions and Future Work

7.1 Contribution

7.1.1

7.1.2

Proposing a new hierarchy construct

Defining the class diagram

79

80

82

95

97

97

98

99

7.1.3 Proposing a new solution to the inheritance anomaly problem 99

7.1.4 Defing the Polymorphism

7.2 Future Work

vii

100

101

viii

List of Figures

3.1 The states of the processes in the resource allocation system .

3.2 The actions of the processes in the resource allocation system

3.3 The PT-net describing the resource allocation system (initial marking

MO) · · · · · · · · · · ·

3.4 The marking M1 (reachable from MO by T1q)

3.5 The marking M2 (reachable from MO by T2p)

3.6 The CP-net describing the resource allocation system (initial marking

MO) · · · · · · · · · · · · · · · · ·

3.7 The marking M1 (reachable from MO by (T2,(x=p,i=O)))

3.8 The marking M2 (reachable from MO by (T1,(x=q,i=O)))

4.1 Multiple inheritance in Jurassic Park

4.2 A Bounded Buffer Object

4.3 A CP-net describing the bounded buffer problem

4.4 Conceptual Illustration of the State Partitioning Anomaly

ix

18

19

19

21

21

22

24

24

39

40

41

42

4.5

4.6

A CP-net describing the Partitioning Anomaly

A CP-net describing the history-only sensitiveness Anomaly

4. 7 Conceptual Illustration of the State Modification Anomaly

4.8 A CP-net describing the State Modification Anomaly

4.9 The base-class: buf

4.10 The sub-class buf2

4.11 The sub-class gBuf

4.12 The sub-class lBuf

4.13 Communication Channel in 00-CPN

4.14 OOCPN for read and write system

4.15 Class of Read .

4.16 Class of Reader

4.17 Class of Marker

4.18 Class of Write .

4.19 Class of Writer

4.20 Class of Checker.

4.21 Class of lock ...

4.22 Class of diagram

6.1

6.2

Example of a remote object invocation

Example of a remote object invocation

X

43

44

45

46

49

49

50

51

54

55

56

56

57

57

58

58

59

59

81

83

603 Example of a remote object invocation 83

6.4 Class of Ensemble 0 84

605 Class of Ensemble 0 85

606 Class of Shell 86

607 Class of Shell 87

608 Class of Rpc 0 88

609 Class of Thread 89

6010 Class of Thread 90

6011 Class of Main 0 91

6012 Class of Worker 92

6013 Class of User 93

6014 Class of User 94

Xl

Chapter 1

Introduction

This chapter provides a brief introduction to Petri Nets, and the background, purpose

and outline of this thesis.

1.1 Background

Petri Nets were introduced by C. A. Petri in the early 1960s [C.A62] as mathemati

cal tools for modelling distributed systems that incorporate, in particular, notions of

concurrency, non-determinism, communication and synchronization. Now, Petri Nets

have been successfully used for concurrent and parallel systems modelling and anal

ysis, communication protocols, performance evaluation and fault-tolerant systems.

There are various kinds of Petri Nets and computer tools for using them, which

differ quite a lot in their expressive power, legibility of models and analytical cap a-

1

2 CHAPTER 1. INTRODUCTION

bilities.

The Place/Transition Nets (PT-nets) [Jen97], are low-level Petri Nets. They pos

sess the appealing features of the Petri Nets, such as intuitive understanding, graph

ical representation, simplicity and formality. However, they are not adequate to de

scribe a large system, since large systems often contain many parts that are similar,

but not identical. When using PT-nets, these parts must be represented by disjointed

subnets with nearly identical structures. Thus the total PT-net becomes very large

and it becomes difficult to see the similarities and differences between the individual

subnets representing similar parts. This phenomenon is known as the State Explosion

problem.

Coloured Petri Nets (CPNs) [Jen97] extend PT-nets by adding colours (i.e. data

elements) to tokens and using expressions to work with them. The introduction

of colours significantly reduces the sizes of models, thus increasing their legibility.

Nevertheless, this is still not enough and we still need better structuring techniques

to describe the system in a more compact form.

Hierarchical Coloured Petri Nets (HCPNs) [Jen97] use the techniques of substi

tution of transitions and fusions to construct a large description from smaller units

that can be investigated more or less independently of one another. HCPNs make it

possible to relate a number of individual CPNs to each other in a formal way.

Object-Oriented Petri Nets try to achieve a complete integration of object orien-

1.1. BACKGROUND 3

tation into Petri Net formalism. Petri Nets have a natural graphical representation,

which aids in the understanding of the formal specifications, together with a range

of automated and semi-automated analysis techniques. Object-oriented technology

provides powerful structuring facilities that stress encapsulation and promote soft

ware reuse. This addresses a traditional weakness of Petri Net formalisms, namely

the inadequate support for compositionality. OOPNs combine these two paradigms

to support both features.

OOPNs are one of the most sophisticated Petri Nets, since combination of object

orientation and Petri Net formalism requires complex design and may lead to some

problems. In recent years, a number of proposals have been made in this field, focusing

on different aspects of OOPN s and solving some of their problems. But these methods

still have their weak points. Below I will briefly review them.

Object Petri Nets (OPNs) [LakOl] support an integration of object-oriented con

cepts into Petri Nets, including inheritance and the associated polymorphism and dy

namic binding. They have a single class hierarchy that includes both token types and

subnet types, thereby allowing multiple levels of activity in the net. OPNs support

synchronization constraints using method guards, but method guards are deficient

for history-sensitive synchronization, as indicated by Satoshi Matsuoka and Akinori

Yonezawa [MY93].

OB(PN) 2 [LilOl] is an object-based Petri Net programming notation. It lays the

4 CHAPTER 1. INTRODUCTION

foundations for the development of automatic verification methods for concurrent pro

grams written in object-oriented languages, and it can be seen as a set of rules for the

translation of object-oriented specifications written in an object-oriented specification

formalism into Petri-Nets formalism. The translation relies on the CCS-like compo

sition operators defined forM-nets [BFH+98]. Each program construct is translated

into a box (a special kind of net) or an operation for combining boxes [EMO 1].

The current version of 0 B (P N) 2 does not provide synchronization constraints on

the methods of the object, nor does it provide inheritance, because the combination

of these two features may create the problem of "inheritance anomaly" which I will

specify in the following chapters.

Concurrent Object-Oriented Petri Nets (CO-OPN/2) [BDOl] was devised for the

specification of large concurrent systems. The new version, called CO-OPN/2, is

based on two underlying formalism approaches: order-sorted algebra, and algebraic

net. In CO-OPN/2, classes are object templates described by a special kind of alge

braic net, while objects are net instances of these classes. Interaction between objects

is realized by using "synchronization expressions", which are more general than the

classic transition fusion of Petri Nets. At the semantics level, transition systems are

used to express the true concurrency of the object behaviours.

CO-OPN /2 provides an Inherit section followed by the class modules that the

current class inherits as the mechanism of inheritance. In this section three fields can

1.1. BACKGROUND 5

be specified:

• The Rename field allows us to rename some inherited identifiers;

• The Redefine field groups the components whose the properties are redefined

in the inheriting class;

• The U ndefine field groups the components that have to be eliminated in the

inheriting class.

This mechanism requires total knowledge of and access to the ancestor classes. In

this way, the encapsulation of class implementation is broken with respect to syn

chronization constraints.

Class Orientation With Nets (CLOWN) [BCCOl] is an object-oriented concurrent

specification language. The main building block of a CLOWN specification is the

elementary class. The semantics of a class are given by a corresponding OBJSA ele

mentary component. Every object, instance of a class, is represented by a structured

token flowing in the associated OBJSA elementary component. The communication

between objects is managed by the mutually synchronous execution of correspond

ing methods. Each object may impose some synchronization constraints, which are

specified in the class interface, to guarantee that object synchronization can operate

correctly.

The inheritance in CLOWN is that each class can extend the parents' specifica-

6 CHAPTER 1. INTRODUCTION

tions and specialize in a restricted domain. CLOWN separates the sequential code

from the synchronization code in order to prevent the harmful effect of the inheritance

anomaly.

Object Coloured Petri Nets (OCP-nets) [CMOl] are an extension of Coloured Petri

Nets (CPN). OCP-nets are divided into two parts: the static structure and the dy

namic structure. The static structure is made up of a set of class nets. Each class

net offers one or more services (methods). The dynamic structure consists of object

nets, which are instances of class nets. Object nets communicate through the ex

change of tokens. This can be done asynchronously via communication fusion places

or synchronously through a modified version of synchronous channels.

Lin He [HeOl] proposed Object-Oriented Coloured Petri Nets (00-CPN). 00-CPN

is based on Hierarchical Coloured Petri Nets and supports the concepts of object, class

and inheritance. In 00-CPN, objects communicate through communication channels

and concurrency issues are declaratively abstracted by temporal constraints among

events.

1.2 Purpose

Lin He proposed several good ideas in the 00-CPN design. 00-CPN not only pro

vides an easy-to-use graphical description tool as well as formal semantics to model

concurrency, but also introduces object-oriented concepts into 00-CPN to support

1.2. PURPOSE 7

software reuse and maintenance. 00-CPN integrates Coloured Petri Nets and object

oriented methodology in a natural way that the user can grasp quickly. Lin He's work

is a good start, and can be extended in the following aspects.

The class declarations in the 00-CPN are clear but too simple to cover complete

aspect of the classes. In addition, 00-CPN does not support polymorphism, which is

an important characteristic of object orientation to build the hierarchical structure.

Therefore, 00-CPN can be improved to fully support object orientation.

Hierarchical structure is a good way to solve the State Explosion problem. It

includes two techniques: substitution of transitions and fusion. But object-oriented

mechanisms can describe the system in a more compact form, and they are easy to

understand. We can use the object-oriented approach to substitute the hierarchical

constructs.

In Lin He's thesis [HeOl], a method for solving the inheritance anomaly problem is

proposed. But this method cannot solve certain kinds of anomalies, such as history

only sensitiveness. In addition, Lin He did not describe how this problem affects Petri

Nets.

This thesis proposes an improved 00-CPN. The new 00-CPN will be based on

the goals of "simplicity, object orientation, and familiarity".

Simplicity The improved 00-CPN combines the object-oriented concepts with Coloured

Petri Nets methodology without adding complex structures and algorithms.

8 CHAPTER 1. INTRODUCTION

This makes it easy to understand and grasp.

Object Orientation The improved 00-CPN fully supports object-oriented con

cepts.

Familiarity The improved 00-CPN is based on Coloured Petri Nets. The object

oriented features are added to CPN without changing the main frame of the

CPN.

In conclusion, the improved 00-CPN can provide more compact system design,

as well as support software reuse and maintenance.

1.3 Outline

Chapter 2 serves as a survey of the main concepts of object orientation. Also, it

introduces object-oriented concurrent programming and its problems.

Chapter 3 introduces Coloured Petri Nets, including notation, graphic represen

tation and formal definitions.

Chapter 4 provides an informal introduction to 00-CPN. It describes the main

construction of 00-CPN and proposes a new solution to the inheritance anomaly

problem. It concludes by modelling a Reader and Writer system using all of the

methodologies introduced previoursly.

1.3. OUTLINE 9

Chapter 5 formally definitions 00-CPN and gives an example of the Reader and

Writer system.

Chapter 6 uses an example of Distributed Program Execution to illustrate the

characteristics of 00-CPN.

Chapter 7 makes a conclusion, discusses the contribution of this thesis, and sug

gests future work in this area.

Chapters 2 and 3 discuss the existing literature, while chapters 4-7 are the author's

contributions to the topic.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Object Orientation and

Concurrency

The main purpose of this thesis is to apply object-oriented methodology to concurrent

system design. This chapter will briefly describe these two paradigms.

Section 2.1 introduces the concepts of object orientation. Section 2.2 briefly de

scribes the concurrent system. Section 2.3 discusses the problems that exist in object

oriented concurrent programming.

2.1 Object Orientation

Object-oriented programming (OOP) divides a problem into its constituent parts

- objects. Each component becomes a self-contained object that contains its own

11

12 CHAPTER 2. OBJECT ORIENTATION AND CONCURRENCY

instructions and data that relate to that object. In this way, complexity is reduced

and the programmer can manage large programs.

All OOP languages share three defining traits: encapsulation, inheritance and

polymorphism [Sch98].

Encapsulation Encapsulation is the mechanism that binds together code and the

data it manipulates, keeping both safe from outside interference and misuse.

Here, an object serves as a self-contained "black box" that links code and data

together. Within an object, code, data, or both may be private to that object

or public. Private code or data cannot be accessed by any part of the program

that exists outside of the object. When code or data is public, other parts of

program can access it even though it is defined within an object. For all intents

and purposes, an object is a variable of a user-defined type, class, which is an

Abstract Data Type. Abstract Data Type is a data type whose representa

tion is hidden in the implementation. It can decompose large programs into

smaller pieces, provide a way of substituting alternate solutions, and separate

compilation. In conclusion, it is a convenient way to organize large programs.

Inheritance Inheritance is the primary feature of object-oriented technology. It

is the process by which one object acquires the properties of another. More

specifically, an object can not only inherit a general set of properties, but also

it add those features that are specific only to itself. Inheritance is important in

2.1. OBJECT ORIENTATION 13

object-oriented design because it allows an object to support hierarchical clas

sification. Most information is made manageable by hierarchical classification.

For example, think about the description of a car. A car is part of the general

class called vehicle, which is part of the even more general class of transporta

tion tools. In each case, the child class inherits all those qualities associated

with the parent and adds to them its own defining characteristics. Through

inheritance, it is possible to describe an object by stating what general class (or

classes) it belongs to, along with those specific traits that make it unique.

Polymorphism Polymorphism (from the Greek, meaning "many forms") is the abil

ity to take on assign a different meanings or usages in different contexts - specif

ically, to allow an entity to have more than one form. For example, given a base

class shape, polymorphism enables the derived classes, such as circles, rectangles

and triangles, to have different implementation of circumference methods. No

matter what shape an object is, applying the circumference method to it will

return the correct results. Polymorphism models something quite important

about the real world: different things behave differently.

14 CHAPTER 2. OBJECT ORIENTATION AND CONCURRENCY

2.2 Concurrent System

A concurrent system has multiple components of control, allowing it to perform mul

tiple tasks in parallel and to control multiple activities that occur at the same time.

Concurrent programs have characteristics that distinguish them from sequential

programs.

• When more than one activity can occur at one time, program execution is

usually nondeterministic.

• Code may execute in surprising orders: any order that is not explicitly ruled out

is allowed, e.g. a field set to one value in one line of code may have a different

value before the next line of code is executed.

Therefore, concurrent programming requires more rigour on the part of the program-

mer.

There are two main ways to implement concurrency:

Shared Memory The concurrent processes will access a shared memory - the pro

cesses communicate by reading and writing in shared memory locations.

Message Passing The concurrent processes communicate by message passing.

2.3. OBJECT-ORIENTED CONCURRENT PROGRAMMING 15

2.3 Object-Oriented Concurrent Programming

Object-oriented mechanisms, such as classes and inheritance, and concurrency mech

anisms, such as threads and locks, provide two separate software structuring dimen

sions. The development of an object-oriented concurrent software model integrates

object-oriented features with concurrent execution and synchronization, eliminating

the need to consider two separate dimensions when developing object-oriented con

current software. When we try to integrate these two paradigms, we need to consider

the following issues:

Object Coordination In a concurrent object-oriented program, the coordination

between cooperating objects should be carefully considered. The main motiva

tion behind the work on object coordination is to allow coordination patterns

among several objects to be specified separately from the implementation of

individual objects. The benefit of such an approach is that it is possible to

coordinate objects in ways that were not anticipated when the objects were im

plemented, and that it allows the reuse of the coordination patterns themselves.

Dynamic Reconfigurability The programming model must deal with the creation

of new objects in the evolution of the system. In particular, to accommodate

the creation of new objects, there must be a mechanism for communicating the

existence of such new objects to the already existing ones.

16 CHAPTER 2. OBJECT ORIENTATION AND CONCURRENCY

Inherent Concurrency In a concurrent program, objects are shared by concurrent

threads. The execution of their methods needs to be synchronized in order to

provide mutually exclusive access to the objects' states as well as to coordinate

the use of an object by concurrent threads. When a synchronization scheme is

inherited, there will be substantial rewriting of the inherited code in the subclass

to accommodate the new synchronization constraints. This problem is called

the inheritance anomaly.

Conceptually, the combination of object-oriented methodology with concurrent

system design is attractive, but is not easy to make these two techniques work together

effectively. I will try to explain the detail in the following chapters.

Chapter 3

Coloured Petri Nets

The main frame of 00-CPN is based on Coloured Petri Nets (CP-nets). This chapter

introduces the notations and definitions of CP-nets. This chapter is based on [Jen97].

Section 3.1 serves as an informal introduction to Colored Petri Nets. Section 3.2

gives the formal definition of CP-nets and their behaviour.

3.1 Informal Introduction to Coloured Petri Nets

Coloured Petri Nets (CP-nets) were developed in the late 1970s. CP-nets use tokens

to represent object (e.g. resources, goods, humans) in the modelled system. Each

token has a value often referred to as a 'colour'. The colour represents the attributes

of the object. Transitions use the values of the consumed tokens to determine the

values of the produced tokens.

17

18 CHAPTER 3. COLOURED PETRI NETS

In order to make explanation easy to understand, this section introduces Coloured

Petri Nets by means of an example.

Assume there are a set of processes, which share a common pool of resources.

The system is comprised of two p-processes, three q-processes, one r-resource, three

s-resources and two t-resources. Each process is cyclic, and during the individual

parts of its cycle, the process needs to have exclusive access to a varying amount of

the resources. The demands of the processes are specified in Figure 3.1 and Figure

3.2.

Figure 3.1 specifies the demands of the processes by describing the possible states.

P-processes have four different states. In the upper state, no resources are needed. In

the second state, two s-resources are needed, and so on. Similarly, q-processes have

five different states, and for each of these states the required amount of resources is

specified.

-----~--

three q-processes ====¢>

<===two p-processes

Resources:
oner

threes
twot

-----~--

Figure 3.1: The states of the processes in the resource allocation system

3.1. INFORMAL INTRODUCTION TO COLOURED PETRI NETS 19

Figure 3.2 shows the demands of the processes by describing the possible actions.

The two white arrows indicate that all processes start by executing the two actions

at the top of the diagram.

Resources:
oner

threes
twot

Figure 3.2: The actions of the processes in the resource allocation system

Figure 3.3 gives a Petri Net specification of the resource allocation system.

Figure 3.3: The PT-net describing the resource allocation system (initial marking

MO)

20 CHAPTER 3. COLOURED PETRI NETS

A Petri Net (PT-net) includes descriptions for both states and actions. In the

above diagram, the states of the resource allocation system are indicated by means

of ellipses, which are called places. Each place may contain a dynamically varying

number of small black dots, which are called tokens. An arbitrary distribution of

tokens in the places is called a marking. The actions of the resource allocation system

are indicated by means of rectangles, which are called transitions. The places and

transitions are collectively referred to as the nodes. The PT-net also contains a

set of arrows, which are called arcs. Each arc connects a place with a transition or

transition with a place-but never two nodes of the same kind. Each arc may have an

expression attached to it. This called an arc expression. A node x is called an input

node of another node y, if and only if there exists a directed arc from x to y; y is

called the output node. We shall also talk about input places, output places,

input transitions, output transitions, input arcs and output arcs.

Above is the description of the syntax of the PT-net; now let us consider the

behaviour. APT-net can be considered as a game board where the tokens are markers.

A move is possible if and only if each place contains at least the number of tokens

prescribed by the arc expression of the corresponding input arc. We say that such

a transition is enabled. When the move take place, we say that the transition

occurs. Figure 3.4 describes the transition T2p transforming MO into the marking

Ml. Figure 3.5 describes the transition Tlq transforming MO into the marking M2.

3.1. INFORMAL INTRODUCTION TO COLOURED PETRI NETS 21

From the diagrams we can see that both markings Ml and M2 are directly reachable

from MO. Thus we say that T2p and Tlq are concurrently enabled in MO. This

means that two transitions may occur in parallel. We also say that the step Sl={T2p,

Tlq} is enabled in MO.

Figure 3.4: The marking Ml (reachable from MO by Tlq)

Figure 3.5: The marking M2 (reachable from MO by T2p)

Above is the PT-net description of the resource allocation system. It represents

22 CHAPTER 3. COLOURED PETRI NETS

the two kinds of processes by two separated subnets, even though the processes use

the resources in a similar way. The following is the Coloured Petri Net (CP-net)

description of the system.

:colorU =with pI q; :
:color I = int; :
~color P =product U * I; ~
; colorE = with e; :
;fun Fl(x) =case x orp=>2'e I q=>l'e; :
:run F2(x) = irx=q then l'e slse empty; :
:run F3(x) = irx=p then l'e else empty; :
:varx: U; ·

~-~~!.!:}~ ...

2'e

Fl(x)

irx=q
then l'(q,i+l)
else empty

irx=q
then l'(q,i+l)
else empty

Figure 3.6: The CP-net describing the resource allocation system (initial marking

MO)

CP-net attaches a colour to each token and a colour set to each place, allows us

to use fewer places than would be needed in a PT-net. Figure 3.6 shows the initial

state of the system. There are three (q,O)-tokens in A and two (p,O)-tokens in B,

3.1. INFORMAL INTRODUCTION TO COLOURED PETRI NETS 23

while C, D and E have no tokens. Moreover, R has one e-token, S has three e-tokens,

and T has two e-tokens. The marking of each place is a multi-set over the colour set

attached to that place.

Now, let us consider the action of the CP-net. The transition T2 has two variables

(x and i). Before we can consider an occurrence of the transition these variables have

to be bound to colours of corresponding types. From Figure 3. 7 we get the binding

b = (x = p, i = 0). Since the two input arc expressions evaluate to (p,O) and 2'e,

binding b is enabled, because each of the input places contains at least the tokens

to which the corresponding arc expression evaluates (one (p,O)-token on B and two

e-tokens on S). When a transition is enabled (for a certain binding) it then removes

tokens from its input places and adds tokens to its output places. A pair (t,b), where t

is a transition and b a binding fort, is called a binding element. The binding element

(T2, b) is enabled in the initial marking MO and it transforms MO into the marking

Ml, shown in Figure 3. 7. Similarly, the binding element (Tl, (x = q, i = 0)) is enabled

in MO and it transforms MO into the marking M2, shown in Figure 3.8. In addition,

the transition Tl has a guard: x=q. The guard is a boolean expression and it may

have variables in exactly the same way that the arc expression has. The purpose

of the guard is to define an additional constraint that must be fulfilled before the

transition is enabled. In this case the guard tell us that it is only tokens representing

q-processes that can move from A to B.

24

f:J:p~~-;~iilP"I():___ ···········:
jcolor P =product U *I; i
:colorE= withe; :
:runFI(x)=casexofp=>2' elq=>l' e;

i ~~ ~&} ~ :~ ~~~ :::~ :: : !~!~ :~~~~~
1 va~!;_l;

3'

CHAPTER 3. COLOURED PETRI NETS

3' (q,O)

ifx=q
[x=q] then I' (q,i+)

else empty

I' (p,O)

ifx=q
then I' (q,i+l)
else empty

(p,O)

Figure 3.7: The marking Ml (reachable from MO by (T2,(x=p,i=O)))

i~~:~~p ~=:;:thp-!q:···
; color P =product U • I;
:color E = withe;
:runFI(x)=casexofp:>2' elq=>l' e;
:fun F2(x) = if x=q then I' e s\se empty~
: ~~~ ~:3~):: if x:p then I' e else empty;

:.':'~!:!:.~; __

2' (q,O)

ifx=q
then I' (q,i+)
else empty

2' (p,O)+ I' (q,O)

ifx=q
then I' (q,i+l)
else empty

Figure 3.8: The marking M2 (reachable from MO by (Tl,(x=q,i=O)))

3.2. FORMAL DEFINITION OF THE COLOURED PETRI NETS 25

Two transitions can also be concurrently enabled in a CP-net. For example, the

marking MO can have an enabled step, which looks like follows: Sl = l'(Tl, (x =

q,i = 0)) + l'(T2, (x = p,i = 0)). This means that occurrence of 81 moves a (q,O)

token from A to B, moves a (p,O)-token from B to C, and removes an e-token from

R and three e-tokens from S. The effect of this step is the sum of the effects of the

individual binding elements.

From the above example, we can see that Coloured Petri Net representation is

more compact than ordinary Petri Net representation.

3.2 Formal Definition of the Coloured Petri Nets

This section gives the formal definition of the Coloured Petri Nets. Before giving the

abstract definition, followings are assumed to be well-defined:

• The set of all elements in type T is denoted by the type name T itself.

• The type of a variable v, denoted by Type(v).

• The type of an expression expr, denoted by Type(expr).

• The set of variables in an expression expr, denoted by Var(expr).

• A binding of a set of variables V, associating with each variable b(v) E

Type(v).

26 CHAPTER 3. COLOURED PETRI NETS

• The value obtained by evaluating an expression expr in a binding b,

is denoted by expr(b). Var(expr) must be a subset of the variables of b, and

the evaluation is performed by substituting for each variable v E V ar(expr) the

value b(v) E Type(v) determined by the binding.

• A closed expression is an expression without variables. It can be evaluated in

all bindings, and all evaluation give the same value which we denote as "expr".

• B was used to denote boolean type which containing the elements {false, true}.

• When Vars is a set of variables, we use Type(Vars) to denote the set of types

{Type(v)lv E Vars}.

Definition 3.1. A non-hierarchical CP-net is a tuple CPN = (:E, P, T, A, N, C, G, E, I)

satisfying the requirements below:

1. :E is a finite set of non-empty types, called colour sets.

2. P is a finite set of places.

3. Tis a finite set of transitions.

4. A is a finite set of arcs such that: P n T = P n A = T n A = 0

5. N is a node function. It is defined from A into P x T U T x P

6. C is a colour function. It is defined from P into :E.

3.2. FORMAL DEFINITION OF THE COLOURED PETRI NETS 27

7. G is a guard function. It is defined from T into expressions such that: Vt E

T: [Type(G(t)) = B 1\ Type(Var(G(t))) ~ ~]

8. E is an arc expression function. It is defined from A into expressions such

that: \fa E A: [Type(E(a)) = C(p(a))Ms 1\ Type(Var(E(a))) ~~]where p(a)

is the place of N(a).

9. I is an initialization function. It is defined from P into closed expressions

such that: Vp E P: [Type(I(p)) = C(p)Ms]

Use above definition, the CP-net can be defined as following:

• ~ = {U,I, P, E}.

• P = {A,B,C,D,R,S,T}.

• T = {Tl, T2, T3, T4, T5}.

• A= {AtoTl, TltoB, BtoT2, T2toC, CtoT3, T3toD, DtoT4, T4toE, EtoT5,}

{T5toA, T5toB, RtoTl, StoTl, StoT2, TtoT3, TtoT4, T3toR, T5toS, T5toT}.

• N(a) = (SOURCE,DEST) if a is in the form SOURCEtoDEST.

• C(p) = { P, ifP E ~A,B,C,D,E};
E, otherwise .

• G(t) = { X= q, if t=Tl;
true, otherwise.

28

• E(a) =

• I(p) =

CHAPTER 3. COLOURED PETRI NETS

e,

2'e,

casexofp---+ 2'elq---+ l'e,

ifx = qthenl'eelseempty,

ifx = pthenl'eelseempty,

ifx = qthenl'(q, i + l)elseempty,

ifx = pthenl'(p, i + l)elseempty,

(x, i),

3'(q, 0), if p=A;

2'(p, 0), if p=B;

l'e, if P=R;

3'e, if P=S;

2'e, if P=T;

0, otherwise.

ifa E {RtoTl, StoTl, TtoT4};

if a=T5toS;

ifa E {StoT2, T5toT};

if a=T3toR;

if a=TtoT3;

if a=T5toA;

if a=T5toB;

otherwise.

Having defined the structure of the CP-nets we are ready to define their behavior.

First, we shall introduce some notations in the following:

• Vt E T: Var(t) = {vlv E Var(G(t)) V :Ja E A(t) : v E Var(E(a))} Var(t) is

called the set of variables of t. All elements in this set are either variables in

guard function oft or variables in arc expression function oft .

•
V(x1 , x 2) E (P x T) U (T x P) : E(x1 , x 2) = L E(a)

aEA(x1,x2)

E(x1 , x 2) is called the expression of (x1 , x2). The expression of node function is

the addition of arc expressions of the source node and destination node.

Definition 3.2. A binding of a transition tis a function b defined on Var(t), such

that:

3.2. FORMAL DEFINITION OF THE COLOURED PETRI NETS 29

1. Vv E Var(t): b(v) E Type(v).

2. G(t)(b).

By B(t) we denote the set of all bindings fort.

Note: A binding of a transition t is a substitution that replaces each variable of

t with a colour. It is required that each colour is of correct type. G(t)(b) denotes the

evaluation of the guard expression G(t) in the binding b.

Definition 3.3. A token element is a pair (p,c) where p E P and c E C(p), while

a binding element is a pair (t,b) where t E T and bE B(t). The set of all token

elements is denoted by T E while the set of all binding elements is denoted by BE.

A marking is a multi-set over T E while a step is non-empty and finite multi-set

over BE. The initial marking M0 is the marking which is obtained by evaluating

the initialization expressions: V(p,c) E TE: M0 (p,c) = (I(p))(c). The sets of all

markings and steps are denoted by M andY, respectively.

Note: Usually, we represent markings as functions defined on P such that: Vp E

P, Vc E C(p) : M(p) E C(p)Ms

Definition 3.4. A step Y is enabled in a marking M iff the following property is

satisfied:

Vp E p: L E(p, t)(b) :::; M(p)
(t,b)EY

30 CHAPTER 3. COLOURED PETRI NETS

. Let the step Y be enabled in the marking M. When (t, b) E Y, we say that t is
•

enabled in M for the binding b. We also say that (t, b) is enabled in M, and so is

are concurrently enabled, and so are h and b When IY(t)l ~ 2 we say that tis

concurrently enabled with itself. When Y(t, b) ~ 2 we say that (t, b) is concurrently

enabled with itself.

Note: The expression evaluation E(p, t)(b) yields the multi-set of token colours,

which are removed from p when t occurs with the binding b. By taking the sum over

all binding elements (t, b) E Y we get all the tokens that are removed from p when

Y occurs. this multi-set is required to be less than or equal to the marking of P. It

means that each binding element (t, b) E Y must be able to get the tokens specified by

E(p, t) < b >, without having to share these tokens with each other binding elements

ofY.

Definition 3.5. When a step Y is enabled in a marking M 1 it may occur, changing

the marking M 1 to another marking M 2 , defined by:

Vp E p: M2(P) = (Ml(P)- L E(p, t)(b)) + L E(t,p)(b)
(t,b)EY (t,b)EY

The first sum is called the removed tokens while the second is called the added tokens.

Note: When a step Y is enabled it may occur that tokens are removed from the

input places and added to the output places of the occurring transitions. The number

3.2. FORMAL DEFINITION OF THE COLOURED PETRI NETS 31

and colours of the tokens are determined by the arc expressions evaluated for the

occurring bindings.

32 CHAPTER 3. COLOURED PETRI NETS

Chapter 4

Informal Introduction to 00-CPN

This chapter contains an informal introduction to 00-CPN.

The chapter is organized into the following parts: Section 4.1 introduces the ap

proach used to integrate properties of CP-nets with the concepts of object orientation.

Section 4.2 illustrates the structure of the class diagram. This is the main building

block of the 00-CPN. Section 4.3 explains how inheritance is used in the 00-CPN,

then discusses the problem of the inheritance anomaly in the 00-CPN, finally pro

poses a new method to solve the problem of the inheritance anomaly. Section 4.4

defines polymorphism in the 00-CPN. Section 4.5 introduces the communication

channel in the 00-CPN. Section 4.6 contains an example of an 00-CPN.

33

34 CHAPTER 4. INFORMAL INTRODUCTION TO 00-CPN

4.1 Objects and Petri Nets

There are two approaches to integrating the concepts of the Object Orientation and

the Petri Net: one is to place objects inside Petri Net, the other is to place Petri Net

inside objects. The first way treats the tokens as objects, while the second one uses

the nets to model the inner behaviour of the objects [Bas95].

This thesis uses the first approach to model the control structure of the system.

Objects are treated as tokens. Transitions will call methods on objects. A transition

moves objects from one place to another, and objects can be dynamically created and

destroyed during the life of the system.

The second approach is used to model the inner behaviour of objects. Every

class has a class net, which is a small 00-CPN. This small 00-CPN describes the

behaviour of instances of the class.

In this way, the whole system is divided into several objects. Each object is

relatively independent. There may be the several objects activate concurrently, which

can communicate by communication channels. Object can contain objects. This

feature is used to construct the system instead of hierarchical structure.

4.2. CLASS DIAGRAM 35

4.2 Class Diagram

The main building block of 00-CPN is the object. An object is the instance of a

class. This mechanism provides the most important feature of object-oriented design:

encapsulation. A class templates is composed of two main parts: a set of textual

expressions and a class net. (This idea was borrowed from CLOWN [BCCOl]. The

structure of the main frame is similar to that of CLOWN, but the content is different.)

The following is a detailed explanation of the structures of these two parts.

4.2.1 Textual Expressions

Textual expressions provide the textual description for the class.

Class: The class identifier.

Inherits: The inheritance clause describes the relation between the class and all its

parents.

Colour: Abstract data type, which is defined from the elementary data type and

user-defined data type.

Const: These are typed entities. Their values are fixed at instance creation and

never change afterwards.

Var: These are typed entities. Their values can be modified during transactions.

36 CHAPTER 4. INFORMAL INTRODUCTION TO 00-CPN

State: Specifies the states an object has during its lifetime.

Transition: Specifies transitions an object goes through during its lifetime. In or

der to prevent the inheritance anomaly, the constraints are separated from the

transition. In this way, the subclass may only need to modify the part of the

constraint and does not touch the internal structure of the action. This part of

the constraint includes:

Pre: Specifies the precondition.

Post: Specifies the postcondition.

There are three kinds of specifiers for const, var, state and transitions:

Public: Public member can be accessed by everybody in this system.

Private: Private member can only be accessed in this class.

Default: If there is no specifier provided, we treat this member as default. It can be

accessed in this class and in its child classes.

4.2.2 Class Net

Class Net models the inner behaviour of objects. The current marking of the net

models the inner state of an object, and transitions in the net may be used to model

the execution of a method by this object.

4.3. INHERITANCE 37

In this approach, the whole system is divided into several objects. These objects

can communicate through communication channels. Objects are instances of classes,

and the relationship between classes is the inheritance.

4.3 Inheritance

Inheritance plays a very important role in object-oriented technology. It can not only

provide component reuse, but also manage the system in a hierarchical structure.

4.3.1 Inheritance Structural

There are two terms commonly used when discussing inheritance.

Base class: When one class is inherited by another, the class that is inherited is

called the base class.

Derived class: When one class is inherited by another, the inheriting class is called

the derived class.

There are three kinds of way for subclass inheriting from superclass: public,

private and default. In 00-CPN, to make things simple, only public inheritance is

supported. Therefore, in the derived classes, both public and default members can be

inherited, but the private members cannot be inherited. Also, in public inheritance

there is no change to the specifiers of the inherited members of the derived classes.

38 CHAPTER 4. INFORMAL INTRODUCTION TO 00-CPN

When one class inherits another, it uses this general form:

class derived-class-name: base-class-name { ... }

There two kinds of inheritance: single inheritance, and multiple inheritance. 00-

CPN only support the single inheritance. The reasons for omitting multiple inheri

tance stem mostly from the"simplicity, object orientation, and familiarity" goals that

were stated in Chapterl. As a simple modelling tool, 00-CPN should be as similar

to Coloured Petri Nets as possible (familiarity) without carrying over unnecessary

complexity (simplicity).

In most designers' opinions, multiple inheritance causes more problems and con

fusion than it solves. One justification of this opinion is a traditional multiple in

heritance problem: the diamond problem. The diamond problem is an ambiguity

that can occur when a class multiply inherits from two classes that both descend

from a common superclass. For example, in Michael Crichton's novel Jurassic Park,

scientists combine dinosaur DNA with DNA from modern frogs to get an animal that

resembled a dinosaur but in some ways acted like a frog.

This Jurassic Park scenario could be represented by the following inheritance

hierarchy in Figure 4.1

4.3. INHERITANCE 39

Figure 4.1: Multiple inheritance in Jurassic Park

The diamond problem can arise in inheritance hierarchies like the one shown in

Figure 4.1. In fact, the diamond problem gets its name from the diamond shape

of such an inheritance hierarchy. One way the diamond problem can arise in the

Jurassic Park hierarchy is if both Dinosaur and Frog, but not Frogosaur, override the

behaviour talk, declared in Animal. The frog says: "Ribbit, ribbit.". The dinosaur

says: "Oh, I'm a dinosaur and I'm OK. .. . ·: The diamond problem would arise if we

look at the behaviour talk of the Frogosaur. Will a Frogosaur croak"Ribbit, Ribbit"

or sing "Oh, I'm a dinosaur and I'm okay ... "?

Therefore, 00-CPN adopts single inheritance to prevent the ambiguities caused

by the diamond problem.

4.3.2 Inheritance Anomaly

Inheritance plays an important role in sequential object-oriented programming. It

provides the functionality of code reuse. But this feature seems to generate problems

40 CHAPTER 4. INFORMAL INTRODUCTION TO 00-CPN

in concurrent object-oriented design , since the combination of inheritance and concur-

rency sometimes leads to heavy breakage of encapsulation. For example, consider a

first-in, first-out bounded buffer as illustrated in Figure 4.2. It has two public meth-

ods, get() and put(), where get() removes an item from the buffer and put() adds an

item to the buffer. The synchronization constraint is that when the buffer is empty,

we cannot get() from the buffer, and when the state of the buffer is full, we cannot

put() into the buffer.

A Bounded-ButTer Object

:::~) = = -.r T r J L 1 I .
----------------------~

Figure 4.2: A Bounded Buffer Object

First, we define a base class buf with two methods: get() and put(). Then we

define a sub-class pbuf, which adds a new method called gput(). The gput() adds an

item to the buffer, and should be called immediately after get(). In this situation, we

need to modify both put() and get() , since they cannot be called after get(). Thus

the encapsulation of put() and get() in the base class is broken. This phenomenon is

called inheritance anomaly.

In Petri Nets , the problem is considered to be closely connected to the concept

4.3. INHERITANCE 41

of synchronization of concurrent objects. When a concurrent object is in a certain

state, it can accept only a subset of its entire messages according to its restriction.

The restriction imposed on the set of acceptable messages is called synchronization

constraint. Usually, in Petri Nets we use states to control object behaviour with

respect to synchronization constraints. In the bounded buffer example, we set up

three states: empty, partial, and full. Upon creation, the buffer is in the empty state,

and the only message acceptable is put(); arriving messages get() are not accepted.

When a put() message is processed, the buffer is no longer empty and can accept both

put() and get() messages, reaching a partial (non-empty and non-full) state. When

the buffer is full, it can only accept get(), and after processing the get() message, it

becomes partial again. Figure 4.3 shows how Petri Nets model the bounded buffer.

Figure 4.3: A CP-net describing the bounded buffer problem

Unfortunately, sometimes this synchronization scheme cannot be efficiently inher-

42 CHAPTER 4. INFORMAL INTRODUCTION TO 00-CPN

ited without non-trivial class re-definitions. This will lead to inheritance anomaly.

There are three reasons why inheritance anomalies occur [MY93]:

(1) Partitioning of Acceptable States

An object has a set of states. This set can be partitioned into disjoint subsets accord-

ing to the synchronization constraint of the object. When a new method is added

to the definition of the subclass, the partitioning of the set of states in the parent

class may need to be further partitioned in the subclass, since the synchronization

constraint of the new method may not be properly be accounted for in the partition-

ing of the parent class. In the bounded buffer example, when we want to add a new

transaction get2 that removes two items from the buffer in the subclass, a partitioning

of partial into one and partial is necessary in order to distinguish the state in which

one element is in the buffer. In this way, we have to add another state, one, as well

as redefine the state partial and set of arcs in the subclass, as in Figure 4.4.

Set of
possible

states
for

super-class

full

partial

empty

~
[---

~

~
1'-

full

partial
Set of

possible
states

for
sub-class

one

empty

Figure 4.4: Conceptual Illustration of the State Partitioning Anomaly

4.3. INHERITANCE 43

Figure 4.5 presents this problem in CP-net.

empty

one

Figure 4.5: A CP-net describing the Partitioning Anomaly

(2) History-only Sensitiveness of Acceptable States

There are two different views in modelling the state of objects. One is the external

view, in which the state is captured indirectly by the external, observable behaviour of

the object. The equivalence of two objects is determined solely by how they respond

to external experiments, not by how their internal structures are composed. The

other is the internal view, in which the state is captured by the evaluation of the

state variables in the implementation of the object. These two views on state are

not identical. There are sets of states with elements that can be distinguished using

the external view, but are indistinguishable in the internal view. In the bounded

44 CHAPTER 4. INFORMAL INTRODUCTION TO 00-CPN

buffer example, if we add a new transaction gget to the subclass, we can see such

distinction. The behaviour of gget is almost identical to the transaction get, with

the sole exception that it cannot be accepted immediately after the transaction put.

From the external view, the set of states for the buffer is {empty, partial, full}. But

from the internal view, in order to implement gget, we need to add a state variable

after-put to distinguish the state that has already processed the transaction put

from at has not yet processed it. Therefore, the state of the object in internal view

must be redefined in order to match the state in the external view. For this purpose,

the states in a parent class must be modified as in Figure 4.6. Thus, the state of the

object is history-only sensitive with respect to the internal view.

gget

Figure 4.6: A CP-net describing the history-only sensitiveness Anomaly

4.3. INHERITANCE 45

(3) Modification of Acceptable States

When a set of states is inherited from the parent, according to the new synchronization

constraint the condition of these states has to be modified. For instance, in the

bounded buffer example, when we add a mix-in class Lock to the b-buf to create

the class lb-buf, we would assume that it would not affect the definition of other

methods, since the state of the object with respect to lock and unlock is totally

orthogonal to the effect of other messages. However, this is not the case: the result

of mixing-in of Lock modifies the set of states in lb-buf in which the transitions

inherited from b-buf could be executed. Figure 4.7 shows this problem.

= get acceptable

full
full

lock
(unlock)

Set of Set of
Possible

states partial - partial
lock

(unlock)
Possible

states
for super- for sub-class

class

empty
empty

lock
(unlock)

Figure 4.7: Conceptual Illustration of the State Modification Anomaly

46 CHAPTER 4. INFORMAL INTRODUCTION TO 00-CPN

Figure 4.8 describes this problem by using CPN.

Figure 4.8: A CP-net describing the State Modification Anomaly

Recently, there have been many research proposals on how to minimize the effect

of the inheritance anomaly. The following is brief review of them:

One kind of methods is to localize the anomaly in a concurrent object. An example

of this is the use of the method guard. This scheme attaches a predicate to each

method as a guard, thus making each object a conditional critical region. This method

tries to localize the method redefinition in some cases. However, this method cannot

solve the problems of history-only sensitiveness of acceptable states and modification

of acceptable states.

Another kind of techniques involves synchronization schemes. Shibayaba [Shi90]

proposes a method based on inheritance of synchronization schemes, so that the

amount of code needing to be redefined can be minimized. Shibayaba categorizes

these schemes into primary, constraint and transition methods. Each of them can

be separately defined, inherited and overridden. The categorization of methods is as

4.3. INHERITANCE 47

follows:

• A primary method is responsible for the tasks other than object-wise synchro-

nization.

• A constraint method needs to be overridden in the event that the method guards

of parent class must be changed; the corresponding primary methods are unaf

fected.

• A transition method determines how the messages are delegated. Its redefinition

allows dynamic modification of the delegation path.

By separating the synchronization code from other parts of method definition, the

amount of redefinition is minimized.

A third way to solve the inheritance anomaly is to completely eliminate the syn

chronization code. Meseguer introduced his rewriting logic in [Mes90]. He considers

the inheritance anomaly a problem caused by the presence of synchronization code.

Thus, he completely eliminates synchronization code by using order-sorted rewriting

logic. With this rewriting logic, all kinds of information about legal messages, state

switches and so on are implicitly contained in the rewriting rules; explicit synchro

nization code is no longer needed. In this way, the conditions placed on the rewrite

rules can serve as a guard; thus, the state partitioning anomaly does not arise. In

addition, rewrite rules can be very flexible, since they operate on the term structures

48 CHAPTER 4. INFORMAL INTRODUCTION TO 00-CPN

as first class values. Therefore, history information can be encoded within the term

structure in a straightforward way. Meseguer's proposal possesses the flexibility to

provide a clean solution for the inheritance anomaly. However, there is still work to

be done.

In 00-CPN, the solution for the avoiding inheritance anomaly in Petri Nets is to

localize the anomaly in a concurrent object, then separate the synchronization con

straints from the actions. In every class definition, there is a special part defined for

constraints. This part is divided into two sections: pre for preconditions, and post for

post conditions. In this way, when the inheriting class introduces new synchroniza

tion constraints, we only need to modify this part without accessing the transaction

part. This method not only prevents encapsulation breakage but also minimizes the

redefinition. Furthermore, since the constraint part is divided into two sections, both

section do not need to be changed simultaneously. This also minimizes redefinition.

The following is a detailed description of how this scheme solves the three kinds of

inheritance anomaly. (Figure 4.9 shows the super class: buf)

(1) Partitioning of Acceptable States

From Figure 4.10 we can see that we do not need to add another state one to dis

tinguish the state in which one element is in the buffer. What we should do is to

write a proper precondition for the get2 method, then simply add get2 to the class

4.3. INHERITANCE 49

net without modification to the methods put and get in the super class. This protects

the encapsulation.

Class buf

colour l=int

var ~r:it~~.
size: i

state
~~~g}ig~;<,wpty 
(publidpartial 

transition 
(public)put. . 

pre: tn<out+stze; 
post: in=in+l 

(public)get . 
pre: tn>out+l 
post: out=out+ 1 

Figure 4.9: The base-class: buf 

Class buf2: buf 

transition 

(public )get2 
pre: in>out+2 
post: out=out+2 

class net: 

y 

(empty 

• • • I y 

( full ) (partial 

y y 

get2 

Figure 4.10: The sub-class buf2 



50 CHAPTER 4. INFORMAL INTRODUCTION TO 00-CPN 

(2) History-only Sensitiveness of Acceptable States 

In Figure 4.11, another variable, after-put, is added, and then the postcondition of 

put and get are modified. Similarly, we need not add another state after-put; we 

simply write the proper precondition for the gget method, then add it to the class 

net. In this case, we modify the constraint parts of the methods in the super class, 

but do not redefine the states and set of arcs in the super class. This avoids heavy 

encapsulation breakage. 

Class g-buf : buf 

colour B=with true I false 

var after_put: B 

state 
(public )empty 
(public )full 
(public )partial 

transition 
(public)put 

post: in=in+l; 
after_put=true 

(public)get 
post: out=out+l; 

after_put=false; 
(public)gget 

class net: 

pre: in>out+l and after_put=false 
post: out=out+l; 

Figure 4.11: The sub-class gBuf 



4.4. POLYMORPHISM 51 

(3) Modification of Acceptable States 

Figure 4.12 shows that with the m1x-m class lock, all we need to do is change the 

precondition for put and get. We do not need to change the class net here. This 

minimizes the redefinition. 

4.4 

Class Lock: ACTOR 
colour LOCK=with true I false 

var lock : LOCK 

state 
(public )locked 
(public )unlocked 

transition 
(public )lock 

pre: lock=false 
post: lock=true 

(public)unlock 
pre: lock=true 
post: lock=false 

class net 

unlocked 

I 
I lock 

Class buf. lock(mix-in) 

transition 
(public)put 

unlock I 

1 
locked 

pre: in<out+size and lock=false; 

(public)get 
pre: in>out+ 1 and Iock=false 

Figure 4.12: The sub-class lBuf 

Polymorphism 

Polymorphism allows the programmer to handle great complexity by allowing the 

creation of a standard interface for related activities. 



52 CHAPTER 4. INFORMAL INTRODUCTION TO 00-CPN 

There are two kinds of polymorphism: 

overloading A named function can vary depending on the parameters it is given. For 

example, we define a function that finds information about a certain employee. 

If given a variable that is an integer, the function would seek a match against 

a list of employee numbers; if the variable is a string, it would seek a match 

against a list of names. In either case, both functions would be known by the 

same name. This type of polymorphism is known as overloading. 

overriding Given a class hierarchy, a sub-class will inherit the methods in the super

class. However, if the sub-class includes a method with the same"signature" as 

a method in the super-class, the super-class will not be inherited. We say that 

the sub-class method "overrides" the super-class method. 

In 00-CPN, both overloading and overriding are defined. Overriding enables the 

transition in the sub-class to replace the transition in the super-class in three ways: it 

can replace only the body, it can replace the constraints, it can replace both of them. 

For overloading, transitions will behave differently according to the messages they 

receive. The abstract transition in 00-CPN is a type of overloading. In the super

class, these abstract transitions will declare a certain kind of behaviour, but they 

will not define how objects will behave. The child classes of this class will specify 

more detailed behaviour of these transitions. For example, we declare an abstract 

transition, move, in the animal class. There are two subclasses of animal class: one 



4.5. COMMUNICATION CHANNEL 53 

is dog, the other is bird. Then, for dog, we define move as run; for bird, the move is 

defined as fly. In the net description, abstract transitions are represented by dashed 

rectangles. 

Polymorphism plays an important role in object-oriented design. It allows us to 

design software with great generality. In 00-CPN, by using this feature we can over

ride the constraints of the super-class. This helps prevent the inheritance anomaly. 

4.5 Communication Channel 

In 00-CPN, objects communicate through the communication channel, which was 

proposed in Lin He's Master's thesis [HeOl]. The channel is a one-way channel. 

Objects communicate through it by token exchange. 

00-CPN adopts CSP notation to describe the token exchange. When an object 

sends a token v through the channel c, we denote it as c!v. When an object receives 

a token v through the channel c, we denote it as c?v. If the event c!v triggers a 

transition, we call this transition !v-transition. If the event c?v triggers a transition, 

we call this transition ?v-transition. A communication between two transitions is 

enabled only if one of the transition is !v-transition and the other is ?v-transition. 



54 CHAPTER 4. INFORMAL INTRODUCTION TO 00-CPN 

Figure 4.13: Communication Channel in 00-CPN 

4.6 Example of 00-CPN: Reader and Writer 

To illustrate the structure and behaviour of 00-CPN, this section gives a simple 

example using 00-CPN. The formal definition will be in the next chapter. 

This system contains four roles: reader, writer, checker and marker. The reader 

reads files from the buffer, and the writer writes files to the buffer. The marker reads 

files from the buffer; if he or she finds some mistakes, he or she will make mark on the 

files. The checker reads these marks, then makes corrections according to the rules. 

There are a few constraints for these roles. When one writer is writing a file, no one 

else can read, write, check or make the mark on this file. When one marker is working 

on a file, no one else can write or check this file. When one checker is checking a file, 

no one else can write, check or make the mark on this file. 

Figure 4.14 describes the whole system. 

Figures 4.15 to 4.21 depict the classes for the read and write system. 

Figure 6.2 shows the class diagram that describes the relationship between classes. 



4.6. EXAMPLE OF 00-CPN: READER AND WRITER 

color READER=with class Reader 
color WRITER=with class Writer 
color MARKER=with class Marker 
color CHECKER=with class Checker 
color LOCK=with class Lock 

var r: READER; 
w:WRITER; 
c: CHECKER; 
m:MARKER; 
WL, ML, CL: LOCK 

r 

Figure 4.14: OOCPN for read and write system 

55 



56 CHAPTER 4. INFORMAL INTRODUCTION TO 00-CPN 

Class Read 

state 
unborn 
initial 
(abstract)working 
complete 

transition 
(public )creal 
(abstract)readFile 
(abstract )finish 
(public )destroy 

class net: 

- - - - - -, ... - - - - "" I - - - - ~ 

~ ~e:d:il: _ ~ .. ~~rk!n~ _ ,........,L. ~~is~ _ : 

Figure 4.15: Class of Read 

Class Reader: Read 

state 
reading( working) 

transition 
(public )read(readFile) 

pre: WL is unlocked 
finishR(finish) 

class net: 

-
- --

~ co~letv-
f; L. ----- . -_L 

read ~ reading '----., finishR 1 

I ' "' I --- ---- L..----

Figure 4.16: Class of Reader 



4.6. EXAMPLE OF 00-CPN: READER AND WRITER 

Class Marker: Read 

state 
marking( working) 

transition 
(public )mark(readFile) 

pre: WL is unlocked and CL is unlocked 
post: ML is locked 

finishM(finish) 
post: ML is unlocked 

class net: 

~ ~~~> I . . . . . .L 1 I - - , I I 

~ -~ar~ _ ;, ~~r~~g ... r:_ ~n~s~~ ~ 

Figure 4.17: Class of Marker 

Class Write 

state 
unborn 
initial 
(abstract )working 
complete 

transition 
(public )creat 
(abstract)writeFile 
(abstract)finish 
(public )destroy 

class net: 

-- I ,.. .., 

writeFile ,___., working ~ finish 1 
!.., _____ , ... _____ , '-----· 

Figure 4.18: Class of Write 

57 



58 CHAPTER 4. INFORMAL INTRODUCTION TO 00-CPN 

Class Writer: Write 

state 
writing( working) 

transition 
(public )write(writeFile) 

pre: WL is unlocked and CL is unlocked and ML is unlocked 
post: WL is locked 

finishW(finish) 
post: WL is unlocked 

class net: 

~ collet€)-

j__ --- __ 1 __ 
write ~ ... writing ... ~ finishW : 
---· '----" -----~ 

Figure 4.19: Class of Writer 

Classer Checker: Write 

state 
checking( working) 

transition 
(public )check(writeFile) 

pre: WL is unlocked and CL is unlocked and ML is unlocked 
post: CL is locked 

finishC(finish) 
post: CL is unlocked 

class net: 

~ (=},<•=> 
1----· ---- _}_, I ... , I 

1 check ~ checking r-+o finishC 1 

'-----· ... _____ '-----· 

Figure 4.20: Class of Checker 



4.6. EXAMPLE OF 00-CPN: READER AND WRITER 

Class Lock 
state 

(public )locked 
(public )unlocked 

transition 
(public )lock 
(public )unlock 

class net 

Figure 4.21: Class of lock 

Read 

/~" 
/ ~ 

Reader Marker 

Write 

Writer 

Figure 4.22: Class of diagram 

59 

Checker 



60 CHAPTER 4. INFORMAL INTRODUCTION TO 00-CPN 



Chapter 5 

Formal Definition of 00-CPN 

This chapter contains the formal definitions of Object-Oriented Coloured Petri Nets 

and their behaviour. An Object-Oriented Coloured Petri Net is formally defined as 

a tuple. This tuple form is suitable for formulating general definitions and proving 

theorems which apply to 00-CPN. Any concrete net, created by a modeler, will 

always be specified in terms of an 00-CPN diagram. 

Section 5.1 defines the structure of improved Object-Oriented Coloured Petri Nets. 

Section 5.2 defines the behaviour of improved 00-CPN. Section 5.3 gives the formal 

specification for the reader-writer system which is stated in the previous chapter. 

61 



62 CHAPTER 5. FORMAL DEFINITION OF 00-CPN 

5.1 Structure of 00-CPN 

This section gives the formal definition of the Object-Oriented Coloured Petri Nets. 

Before giving the abstract definition, let's first introduce some notations. 

• Notation [x ---+ y] means a map x into y. This is many-to-one correspondence 

between set x and set y. 

Definition 5.1. An OOCP-net is a pair OOCPN = (Net, CLASS) 

Definition 5.2. Net is a tuple 

Net= (E, P, T, OBJ, CH, A, N, C, G, E, I) 

satisfying the requirements below: 

1. E is finite set of non-empty types, called colour sets. 

2. P is a finite set of places. 

3. T is a finite set of transitions. 

4. A is a finite set of arcs such that: P n T = P n A = T n A = 0. 

5. OBJ is a finite set of objects, each object in this set is a tuple OBJ 

( 0 I D, C I D, C RE, DEL) satisfying the following requirements: 

(a) OJ Dis a set of object identifier with Vi, j E OJ D: i # j :=:}> ( OBJ(i) # 

OBJ(j)) :=:}> (~ U7i UAi) n (PJ UTJ UAJ) = 0 



5.1. STRUCTURE OF 00-CPN 63 

(b) CI Dis a set of class identifier with 'Vobj E OBJ: [Type(obj) E CI D] 

(c) C RE is an initialization function denoting the creation of an object. C RE E 

[P---+ OID] 

(d) DEL is a function denoting the deletion of an object. DELE [P---+ OID] 

6. N is a node function. N E [A---+ (P x T) U (T x P) U (T x OBJ)]. 

7. Cis a colour function. C E [P---+ ~]. 

8. G is a guard function. It is defined from T into expressions such that: Vt E 

T: [Type(G(t)) = B 1\ Type(Var(G(t))) ~ ~]. 

9. E is an arc expression function. It is defined from A into expressions such 

that: 'Va E A: [Type(E(a)) = C(p(a))Ms 1\ Type(Var(E(a))) ~ ~] where P(a) 

is the place of N(a). 

10. I is an initialization function. It is defined from P into closed expressions such 

that: 'Vp E P: [Type(I(p)) = C(p)Ms]. 

11. CHis a finite set of channels, each channel is a tuple CH = (CHID, Team, Ecam) 

satisfying the following requirements: 

• CHID is a channel identifier with: (PoocPN U ToocPN U AoocPN) n 

CHID= 0 



64 CHAPTER 5. FORMAL DEFINITION OF 00-CPN 

• Team is a finite set of communication transition along the channel. Team s;;; T 

• Eeam is an expression function for communication transition along the 

channel. It is defined from T com into expressions. An expression for com

munication transition has the form: (expr, (send, rec)), with expr being 

Notes: 

an expression, 

(Vt E Team, send(t) E OJ D, rec(t) E OJ D, Eeam(t) -/= 0 I 

V(expr, (send,rec)) E Eeam(t): [Type(Var(expr)) s;;; L;) 

• 1. The set of colour sets determines the types, operations and functions that 

can be used in the net inscriptions. 

• (2)+(3)+(4) The places, transitions and arcs are described by three sets P, 

T, and A which are required to be finite and pairwise disjoint. 

• 5. OBJ is a finite set of objects, each object in this set is a tuple OBJ = 

(OlD, CRE, DEL) satisfying the following requirements: 

1. The places, transitions and arcs of different objects are disjointed. 

2. All objects have types that belongs to the set of classes. 

3. The initialization function CRE maps each place, P, to an object iden

tifier. This means that each object on P corresponds to an unique object 

identifier. 



5.1. STRUCTURE OF 00-CPN 65 

4. The function DEL maps each place, P, to an object identifier.This means 

that each object on P corresponds to an unique object identifier. 

• 6. The node function maps each arc into a pair where the first element is the 

source node and the second the destination node. The two nodes have to be of 

different kind(i.e., one must be a place while the other is a transition). 

• 7. The colour function C maps each place, P, to I:. This means that each 

token on P must have a token colour that belongs to I:. 

• 8. The guard function G maps each transition, t, to an expression of type 

boolean, i.e., a predicate. Moreover, all variables in G(t) must have types that 

belong to I:. 

• 9. The arc expression function E maps each arc, a, into an expression which 

must be of type C(p(a))MS· (Here, MS is the notation for the multi-set.) This 

means that each evaluation of the arc expression must yield a multiset over the 

colour set that is attached to the corresponding place. 

• 10. The initialization function I maps each place, P, into a closed expression 

which must be of type C(p)Ms, i.e., a multiset over C(p). 

• 11. CHis a finite set of channels, each channel is a tuple CH = (CHID, Team, Ecam) 

satisfying following requirements: 



66 CHAPTER 5. FORMAL DEFINITION OF 00-CPN 

- The set of channel identifiers must be disjointed with the place, transition, 

and arc sets. 

- The communication transition T com is a subtype of transition. 

- The expression function for communication transition Ecam includes ex

pression function, sender's ID and receiver's ID. The type of the variables 

used must be included in :E. 

Definition 5.3. A class is a tuple CLASS= (CID, :E, CONST, V AR, S, TRAN, class

net) 

1. C I D is a class identifier such that C I D ~ :E 

2. :E is a finite set of non-empty types, called colour sets. 

3. CONST is a finite set of constant values such that 

Vc E CONST: Type(c) ~ :E 

4. V AR is a finite set of variables such that Vv E V AR : Type( v) ~ :E 

5. S is a finite set of states. 

6. T RAN is a finite set of transitions such that: SnT RAN= 0. Every transition 

is a tuple T RAN = (Tran, PRE, POST) 

• Tran is a transaction. 



5.1. STRUCTURE OF 00-CPN 67 

• PRE is a guard function which specifies the precondition that Vt E T : 

[Type(PRE(t)) = B /\ Type(Var(PRE(t))) s;;; I:] 

• POST is a guard function which specifies the postcondition of a transition. 

It is defined from T into expressions such that Vt E T : [Type(V ar( PRE( t))) s;;; 

E] 

7. The classnet is a Net. 

Notes: All the elements in the tuple have three access method: public, private 

and default as defined in the last section. 

• 1. The set of colour sets determine the types that used in the class inscriptions. 

• 2. The set of class identifier is types of object. It is subtype of the colour 

sets. 

• (3)+(4)+(5)+(6)The constants, variable, states and transitions are described by 

sets CONST, VAR, Sand TRAN. These four sets are required to be finite, and 

S and TRAN are pairwise disjoint. Every transition have two guard functions: 

- The guard function PRE maps each transition, TRAN, to an expression 

of type boolean, i.e., a predicate. Moreover, all variables in PRE(t) must 

have types that belong to I:. 



68 CHAPTER 5. FORMAL DEFINITION OF 00-CPN 

- The guard function POST maps each transition, TRAN, to an expression. 

Also, all variables in POST(t) must have types that belong to I;. 

• 7. The class-net is a Net. 

5.2 Behaviour of Object Oriented Coloured Petri 

Nets 

After defining the structure of OOCPN, let's consider their behaviour now. 

Definition 5.4. An object token element is a pair (p,c) where pEP and c E CI D, 

while a binding element is a pair (t,b) where t E T and bE B(t). The set of all 

object token elements is denoted by OTE while the set of all object binding elements 

is denoted by OBE. 

An object creating C0 is a multi-set over OTE while a step is non-empty and 

finite multi-set over OBE. It is obtained by evaluating the CRE function: V(p, c) E 

OTE: C0 (p,c) = (CRE(p))(c). 

Note: The object creation is represented as function defined on P. 

Definition 5.5. When a step Y which is destroy an object is enabled in a marking 

M1 it may occur , changing the marking M1 to another marking M2, defined by: 

Vp E p: M2(P) = Ml(P)- L E(p, t)(b) 
(t,b)EY 



5.3. EXAMPLE 69 

where V v E Var(t): b(v) E CID. 

Note: By executing step Y, an object is removed from the P. 

5.3 Example 

To illustrate the formal definition of OOCPN, the reader and writer problem stated 

in last chapter was used to show how the net can be represented as a many-tuple. 

• E ={READER, WRITER,MARKER,CHECKER,LOCK} 

• P = {initialR, initialW, initialC, initialM, reading, writing, checking, marking, 

unbornR, unbornW, unbornC, unbornM} 

• T = { createR, createW, createC, createM, read, write, check, mark, finishR, 

finish W, finish C, finishM} 

• A = { createRTOinitialR, initialRToread, readTOreading, readingTOdestroyR, 

destroy RTOunbornR, unbornRTOcreateR, createCTOinitial C, initialCTocheck, 

checkTOchecking, checkingTOdestroyC, destroyCTOunbornC, unbornCTOcre

ateC, createMTOinitialM, initialMTomark, markTOmarking, markingTOde

stroyM, destroyMTOunbornM, unbornMTOcreateM, createWTOinitialW, ini

tialWTowrite, writeTOwritinging, writingTOdestroyW, destroyWTOunbornW, 

unborn WTOcreate W,} 



70 CHAPTER 5. FORMAL DEFINITION OF 00-CPN 

• N(a) = (SOURCE, DEST) if a in the form SOURCEtoDEST. 

• C(p) = 

READER, 

WRITER, 

CHECKER, 

MARKER, 

if p E {initialR, reading}; 

if p E {initialW, writing}; 

if p E {initialC, checking 

if p E {initialM, marking}. 

• G(t) =true; 

• E(a) = 

• I(p) = 

ML, 

CL, 

WL, 

(correctPck, (c, buffer)), 

(readPck, (buffer, c)), 
(writePck, (w, buffer)), 

(getPck, (buffer, w)), 

(markPack, m, buffer)), 

(readPck, (buffer, m)), 

(readPck, (buffer, r)), 

r, if p=initialR; 

w, if p=initialW; 

c, if p=initialC; 

m, if p=initialM. 

l'Lock, if p=ML. 

1' Lock, if p=CL. 

l'Lock, if p=WL. 

• OBJS = {r, w, c, m, wl, cl, ml} with 

if a E {MLTOcheck, MLTOwrite, 

chekingTOML, writingTOML }; 

if a E { CLTOcheck, CLTOwrite, 

CLTOmark,checkingTOCL, 

writingTOCl, markingTOCL }; 

if a E {WLTOcheck, WLTOwrite, 

WLTOmark, WlTOread, 

checkingTOWL, writingTOWL, 

markingTOWL, readingTOWL }; 

if a=checkTObuffer; 

if a=bufferTOcheck; 

if a=writeTObuffer; 

if a=bufferTOwrite; 

if a=markTObuffer; 

if a=bufferTOmark; 

if a=bufferTOread. 



5.3. EXAMPLE 

r: Type(r)E READER, 

CRE:r(initialR,Reader )=( CRE(initialR)) (Reader) 

w: Type(w) E WRITER, 

CRE: w(initialW, Writer)= (CRE(initialW))(Writer) 

c: Type(c)E CHECKER, 

CRE:c(initialC,Checker )=( CRE(initialC)) (Checker) 

m: Type(m)E MARKER, 

CRE:m(initialM,Marker )=( CRE(initialM)) (Marker) 

wl: Type(wl)E LOCK, 

CRE:wl(initialWL,Lock)=(CRE(initialWL))(Lock) 

cl: Type(cl)E LOCK, 

CRE:cl(initialCL,Lock)=( CRE(initialCL)) (Lock) 

ml: Type(ml)E LOCK, 

CRE:ml(initialML,Lock)=( CRE(initialML)) (Lock) 

71 

• CHS = {bufCheckChannel, checkBufChannel, bufWriteChannel, writeBufChan

nel, bufMarkChannel, markBufChannel, bufReadChannel} 

- bufCheckChannel: 

* Tcom(bufCheckChannel) = c?readPck 

* CHE(bufCheckChannel) = (readPck, (buffer,c)). 



72 CHAPTER 5. FORMAL DEFINITION OF 00-CPN 

- checkBufChannel: 

* Tcam(checkBufChannel) = c!correctPck 

* CHE(checkBufChannel) = (correctPck, (c,buffer)). 

- bufWriteChannel: 

* Tcam(bufWriteChannel) = w?getPck 

* CHE(bufWriteChannel) = (getPck, (buffer,w)). 

- writeBufChannel: 

* Tcam(writeBufChannel) = w!writePck 

* CHE(writeBufChannel) = (writePck, (w,buffer)). 

- bufMarkChannel: 

* Tcam(bufMarkChannel) = m?readPck 

* CHE(bufMarkChannel) = (readPck, (buffer,m)). 

- mar kBufChannel: 

* Tcam(markBufChannel) = m!markPck 

* CHE(markBufChannel) = (markPck, (m,buffer)). 

- bufReadChannel: 

* Tcam(bufreadChannel) = r?readPck 

* CHE(bufReadChannel) = (readPck, (buffer,r)). 



5.3. EXAMPLE 

Class Read: 

• CID =Read 

•I:=0 

• CONST = 0 

• VAR = 0 

• P = {unborn, initial, working, complete} 

• T ={ creat, readFileabstract, fi.nishabstract, destroy} 

• classnet: 

I;= 0; 
P = {unborn, initial, working, complete}; 

T = { creat, readFile, finish, destroy}; 

A = { unbornTOcreat, creatTOinitial, initialTOreadFile, 

readFileTOworking, workingTOfinish, finishTOcomplete, 

completeTOdestroy, completeTOread, destroyTOunborn}; 

N(a) = (SOURCE, DEST) if a in the form SOURCEtoDEST; 

C(p) =Read; 

G(t) =true; 

E(a) = 0; 
I(p) =0; 
OBJ = 0. 

Class Reader:Read 

• CID = Reader 

• P = {reading(working)} 

73 



74 CHAPTER 5. FORMAL DEFINITION OF 00-CPN 

• T={ read(readFile) : (PRE: WL is unlocked); 

finish 

• classnet: 

L: = 0; 
P = {wait, reading, complete}; 

T = {read, finishR,}; 

A = { waitTOread, readTOreading, readingTOfinishR, 

finshRTOwait, finishRTOcompletRe, completeRTOread}; 

E(a) = 0. 

Class Marker:Read 

• CID = Marker 

• P = {marking(working)} 

mark(readFile), Pre:WL is unlocked and CL is unlocked. 

Post:ML is locked ; 

finishM(finish), Post: ML is unlocked . 

• classnet: 

Class Write: 

• CID =write 

•1:=0 

• CONST = 0 

P = {wait, marking, complete}; 

T = {read, finishM,}; 

A = { waitTOmark, markTOmarking, markingTOfinishM, 

finshMTOwait, finishMTOcompleteM, completeMTomark}; 

E(a) =0. 



5.3. EXAMPLE 

• VAR = 0 

• P = {unborn, initial, working, complete} 

• T ={ creat, writeFileabstract' finishabstract, destroy} 

• classnet: 

I:= 0; 
P = {unborn, initial, working, complete}; 

T = { creat, writeFile, finish, destroy}; 

A = { unbornTOcreat, creatTOinitial, initialTOwriteFile, 

writeFileTOworking, workingTOfinish, finishTOcomplete, 

completeTOdestroy, completeTOwriteFile, destroyTOunborn }; 

N(a) =(SOURCE, DEST) if a in the form SOURCEtoDEST; 

C(p) = Write; 

G(t) =true; 

E(a) = 0; 
I(p) = 0; 
OBJ = 0. 

Class Writer:Write 

• CID = Writer 

• P = {writing( working)} 

write, 

•T= 

Pre: WL is unlocked and CL is unlocked 

and ML is unlocked 

Post: WL is locked ; 

finishW, Post: WL is unlocked. 

• classnet: 

I:= 0; 
P = {wait, writing, complete}; 

T = {write, finish W,}; 

A = { waitTOwrite, writeTOwriting, writingTOfinish W, 

finsh WTOwait, finish WTOcompleteW, completeWTOwrite }; 

E(a) = 0. 

75 



76 CHAPTER 5. FORMAL DEFINITION OF 00-CPN 

Class Checker: Write 

• CID = Checker 

• P = {checking( working)} 

check(readFile), Pre: WL is unlocked and CL is unlocked 

and ML is unlocked 

Post: CL is locked ; 

finishC(JinishC), Post: CL is unlocked . 

• classnet: 

Class Lock: 

• CID =Lock 

•'E=0 

• CONST = 0 

• VAR = 0 

'E = 0; 
P = {wait, checking, complete}; 

T = {mark, finishC,}; 

A = { waitTOcheck, checkTOing, checkingTOfinishC, 

finshCTOwait, waitTOcompleteC, completeCTOcheck }; 

E(a) = 0. 

• P = {locked, unlocked} 

• T ={lock, unlock} 



5.3. EXAMPLE 

• classnet: 

E = 0; 
P = {locked, unlocked}; 

T = {lock, unlock}; 

A = {unlocked TO lock, lockTOlocked, lockedTOunlock, 

unlockTOunlocked}; 

N(a) = (SOURCE, DEST) if a in the form SOURCEtoDEST; 

C(p) =Lock; 

G(t) =true; 

E(a) =0; 
I(p) = 0; 
OBJ = 0. 

77 



78 CHAPTER 5. FORMAL DEFINITION OF 00-CPN 



Chapter 6 

Example of the Distributed 

Program Execution 

This chapter models a distributed system specified in [JM96J using 00-CPN. 

Section 6.1 introduces distributed program execution and the protocol used to 

implement remote object invocations. Section 6.2 presents the 00-CPN model of the 

protocol. Section 6.3 makes a conclusion for this example. 

79 



80CHAPTER 6. EXAMPLE OF THE DISTRIBUTED PROGRAM EXECUTION 

6.1 Introduction to Distributed Program Execu-

tion 

BETA is a modern object-oriented language that has been developed at Aarhus Uni

versity over the last 20 years. An introduction to the BETA language can be found 

in [MBMP93]. Basic BETA has the construct to deal with concurrency issues. Re

cently, BETA has been extended to cope with distributed specifics. It allows objects 

to reside on different computers. Such objects may interact by means of remote ob

ject invocation, which in many respects is similar to remote procedure calls (RPC). 

Remote object invocation is implemented by means of a protocol contained in an 

application framework called DistBeta. The structure of distBeta is composed of as 

the following: 

• Ensemble: An ensemble is the operating system, which is on a concrete com

puter in a network. 

• Shell: A shell is a process that resides in a specific ensemble. A shell may 

communicate with other shells, which are in a remote ensemble or in their own 

ensembles. Moreover, a shell may communicate directly with its own ensemble. 

• Thread: Each shell may contains a set of threads (lightweight processes). The 

number of threads may vary dynamically. However, each shell always has: 



6.1. INTRODUCTION TO DISTRIBUTED PROGRAM EXECUTION 81 

- at least one main thread executing the main program of the shell. 

- exactly one RPC handler taking care of messages passing along the net-

work and serialization, and unserialization of parameters. 

• Identifier: Inside a shell, each object has a local identifier. However, each object 

also has a unique global object identifier, OlD, which can be used in the entire 

system. Each shell keeps two tables that are used to map local identifiers into 

global identifiers and vice versa. One of the tables is for local objects while the 

other is for remote objects. 

Network 

I I 
HOI H02 

c:EJ···· ·····eJ 

Figure 6.1: Example of a remote object invocation 

Figure 6.1 shows an object OBI (in a shell SHI in a host HOI) invoking a remote 

object OB2 (in a shell SH2 in a host H02 ). The protocol for the remote object 

invocation involves the following sequence of actions: 

1. OBI determines the OlD of OB2 by looking up the global object identifier table. 

The parameters are serialized. OBI uses a method from the RPC handler of 

SHI to start the remote object invocation. 



82CHAPTER 6. EXAMPLE OF THE DISTRIBUTED PROGRAM EXECUTION 

2. A request message is sent from H01 to H02 . The message contains OIDs of 

both the sender and the receiver. OB1is blocked. 

3. The RPC handler in SH2 receives the incoming request. The parameters are 

unserialized. A worker thread is allocated. The local identifier of OB2 is deter

mined from the OlD using a table in SH2 . 

4. The object OB2 is invoked. 

5. The worker thread receives the result. The result is serialized. Control is 

returned to the RPC handler in SH2 • The worker thread is released. 

6. The message package is sent from H02 to H01 . 

7. The result is received by the RPC handler of SH1 , The result is unserialized. 

6.2 Introduction to Distributed Program Execu

tion 

The 00-CPN model emphasizes describing the basic flow of control, the sharing of 

resources and the competition for access to critical sections. 

There are seven classes in this system: Ensemble, Shell, Thread, Main, User, 

Worker and RPC. Figure 6.2 shows the relationship between them. 

Figure 6.3 shows the 00-CPN of DistBeta at the system level. 



6.2. INTRODUCTION TO DISTRIBUTED PROGRAM EXECUTION 83 

c 

i 

Figure 6.2: Example of a remote object invocation 

Colour ENSEMBLE=with class Ensemble 

Var x: Ensemble 

Figure 6.3: Example of a remote object invocation 

The EB in the net represents the addition of a new object to the system. The 8 

represents deletion of an object from the system. When the transition communicate 

occurs, a new packet is added to the output queue for the corresponding shell or a 



84CHAPTER 6. EXAMPLE OF THE DISTRIBUTED PROGRAM EXECUTION 

packet is removed from the head of the input queue. In the net, (pckList 1\ 1\[pck], 

(sendiD, reciD)) represents sending a packet to net, where/\/\ operator adds a new 

packet to the packet list. (pckList::[pck], (sendiD, reciD)) represents receiving a 

packet from the net, where :: operator takes a packet from the packet list. 

Figures 6.4 to Figures 6.14 show the classes of Ensemble, Shell, RPC, Thread, 

Main, Worker and User, where Thread is the parent of Main, User and Worker. 

Class Ensemble: 

Colour SHELL= with class Shell; 
I= int 

Const ensiD: I/* The ID of the current ensemble*/ 
#ens: I/* The ID of the ensemble with which current ensemble 

communicate*/ 

Var x: SHELL; 

State 
unborn: Not been created. 
bom: A new ensemble is created. 
active: The ensemble is active. 
work: The ensemble is communicating. 
idle: The ensemble is inactivate. 

Transition 
(public) ensemble(): create an ensemble. 

post: ensembleNumber = ensembleNumber + 1 
getiD: The ensemble is assigned an ID. 

post: ensiD is attached to current ensemble. 
(public) activate: activate current ensemble. 

pre: The state of ensemble is idle. 
post: The state of ensemble is activate. 

(public) sleep: The ensemble sleeps 
pre: The state of ensemble is activate. 
post: The state of ensemble is idle. 

(public)communicate: The ensemble communicates with network. 
pre: ensiD and #ens are valid 

(public)-ensemble(): Destroy the ensemble. 
post: ensembleNumber = ensembleNumber- 1 

Figure 6.4: Class of Ensemble 



6.2. INTRODUCTION TO DISTRIBUTED PROGRAM EXECUTION 85 

Class net: 

....i. 
<unborn:::> 

""T 
I ensemble() I 

J. 
< _born :::> 

""T 
I e:etiD I 

.l. 
Cinactive:;, 

H 
I activate I 

_1 
( active:::> 

T 
( shell x) 

G+ 
X 

( x.activate J 
~ 

< x.active:;, 

l.1 . (pckListAA[pck], (#ens,ensiD)) ................. 
( x.commumcate ·:.Network :.' 

(pckList::pck], (ensiD,#ens)) ................ 

G.worlC> 

'Jfx 
( x.sleeo ) 

..1!. 
X ( x.idle ::::> rrx 
( -shell(x) J 

~ 
I sleep I 

.l. c idle ::::> 
rr 

I -ensemble() I 

Figure 6.5: Class of Ensemble 



86CHAPTER 6. EXAMPLE OF THE DISTRIBUTED PROGRAM EXECUTION 

Class Shell: 

Colour RPC = with class Rpc 
MAIN = with class Main 
USER = with class User 
WORKER= with class Worker 
I= int 

Const sheliD: I/* The ID of the current shell*/ 
#shel: I /* The ID of the shell with which current ensemble 

communicate *I 

Varr: RPC; 
m:MAIN; 
obj: USER; 
w:WORKER; 

State 
unborn: Not been created. 
born: A new shell is created. 
inactive: The shell is inactive. 
active: The shell is active. 
idle: The shell is inactivate. 

Transition 
(public) shell(): create an ensemble. 

post: shellNumber = shellNumber + 1 
getiD: The shell is assigned an ID. 

post: sheliD is attached to current shell. 
(public) activate: activate current shell 

pre: The state of shell is idle. 
post: The state of shell is activate. 

(public) sleep: The shell sleeps. 
pre: The state of shell is activate. 
post: The state of shell is idle. 

(public) send: The shell sents message to network. 
pre: sheliD and #shel are valid && r is available 

(public) receive: The shell gets message from the network. 
pre: sheliD and #shel are valid && r is available && w is allocated 

(public)-shell(): Destroy the shell. 
post: shellNumber = shellNumber- 1 

Figure 6.6: Class of Shell 



6.2. INTRODUCTION TO DISTRIBUTED PROGRAM EXECUTION 87 

Class Net: 

i 
unborn > 

l 
I shell() I 

+ 
< born :> 

~ 
getl 

j_ 
< mactive > 

------. ! 
activate 

1 PRC c:: active 

~ -----.! 
main m 

~ 
-PRC 

® 
m.run 

1 I 1 
<:.nJ .workin_p worker w user x 

1 ~ ~ ( m.sleep ) 

1 
~-workerw x.activate 

® ...:l 
< m.idle ::::> r< x.active ~ 

1 (pckList""[pck], l reteive 

I 
serd I (pckList""[pck], 

-main m 
•:::;E~~~B:~I:::(#shel,sheliD)) x.receive x.send (sheliD,#sheii>-::::~f.?.~~j::~:::· 

~ 
~~ 

.workii!D -.-
x.sleep 

sleep i 
j._ x.idle > 

'---< idle + 
L ( -user(x) ) 

4> ---; -shell() I 

Figure 6. 7: Class of Shell 



88CHAPTER 6. EXAMPLE OF THE DISTRIBUTED PROGRAM EXECUTION 

Class Rpc 

State: 
unborn: Not been created. 
active: The RPC is active. 

Transition: 
(public) RPC(): Creat a object RPC. 

Pre: RPCNumber = 0 
Post: RPCNumber = 1 

(private) serialize: Serialize the parameters. 
(public) send: Send the message to Network. 
(public) receive: Get the message from the Network. 
(private) unserialize: Unserialize the parameters. 
(public) -RPC(): Destroy the RPC. 

Class net: 

Pre: RPCNumber = l 
Post: RPCNumber = 0 

--"-
c unborn 

! 
I RPC() 

l 

f active 

I serialize I I 

:::::> 

I 

1 
receive 

j. 
<: _getMES 

I 

((Pck"[pck]), 
(#ens,#shl,#OID, ! 

I unserialize 
ensiD,shliD,OID )) ~-----------------

:::.f.!:?.~-~~(:) 

I 
y 

-RPC() 

Figure 6.8: Class of Rpc 



6.2. INTRODUCTION TO DISTRIBUTED PROGRAM EXECUTION 

Class Thread: 

Colour: (public)SEMAPHONE =with 0 I 1; 
(public)!= with int 

Variable (public)s:SEMAPHONE; 
(public)threadNumber: I 

State: 
(public)unbom: Not been created. 
(public)born: A new thread is created. 
(public)readyForLocaliD: Enter the critical section and can get the ID. 
(public)getGlobaliD: The thread is assigned a global ID. 
(public)inacive: The thread is not activated. 
(public)idle: The thread is not activated. 
(public)activate: The thread is activated. 
(public)working: The thread is working. 

Transition: 
(public) thread(): Creat a thread. 

Post: threadNumber = threadNumber + 1 and s = 0 
(private) P(s): Enter the critical section. 

pre: s = 0 
post: s = 1 

(private) cacheiD: Get ID from global catche. 
(private) V(s): Exit from the critical section. 

pre: s = 1 
post: s = 0 

(public) activate: The thread is activated. 
pre: The state of the thread is inactivated. 
pre: The state of the thread is activated. 

(abstract)(public) work: The thread is working. 
pre: The state of the thread is active. 

(public) sleep: The thread goes to sleep. 
pre: The state of the thread is active. 
post: The state of the thread is idle. 

(public) -thread(): Destroy the thread. 
post: threadNumber = threadNumber -1 

Figure 6.9: Class of Thread 

89 



90CHAPTER 6. EXAMPLE OF THE DISTRIBUTED PROGRAM EXECUTION 

Class net: 

:~:::::::~~~r=~:::::::~~~ 
i work i 
i ... -------------- --------------- --~ 

Figure 6.10: Class of Thread 



6.2. INTRODUCTION TO DISTRIBUTED PROGRAM EXECUTION 

Class Main: p ublic Thread 

State: 
(private)working: The thread is working with the request. 

Transition: 
(public )run: The main thread runs . 

pre: The state of the thread is active. 
(public)forkRPC: The main creates the object RPC. 

pre: RPCNumber = 0 
post: RPCNumber = 1 

(public)forkThread: The main forks a new thread. 

(public)destroyRPC: The main destroies the RPC. 
(public)destroyThread: The main destroies the thread. 

Class net: 

• 

I 

- - - - - - - - - - - - - - - - - - - - - - -• 

. 
• 

Figure 6.11: Class of Main 

91 



92CHAPTER 6. EXAMPLE OF THE DISTRIBUTED PROGRAM EXECUTION 

Class Worker: public Thread 

State: 
(private)working: The thread is working with the request. 
(private)readyForiD: In the critical section. 
(private)getLocaliD: Gets the local ID for the callee thread. 
(private)readyToWork: The thread is ready to work .. 
(private)wait: Wait for the result. 
(private)getResult: Gets the result. 
(private)finish: finish work. 

Transition: 
(private)P(s): Enter the critical section. 

pre: s = 0; 
post:s=l; 

(private)getiD: Get the local ID of the callee thread. 
(private)V(s): Exit the critical section. 

pre: s= 1; 
post: s = 0; 

(public)invoke: Invokes the callee thread. 
(public)getRes: Gets results from the callee thread. 
(public)sendRes. Sends the results to the caller thread. 

Class net: 
post: Pck = Pck AA [pck] 

• 

. 
• 

Figure 6.12: Class of Worker 



6.2. INTRODUCTION TO DISTRIBUTED PROGRAM EXECUTION 

Class User: public Thread 

Colour: (public)SEMAPHONE =with 0 I 1; 

Variable (public)s:SEMAPHONE; 

State: 
(private)readyForiD: Enter the critical section and can get the ID. 
(private)getiD: The thread assigns the local ID for the receiver. 
(private)readySend: The thread is ready to send message. 
(private)invoked: The thread is invoked to do certain work. 
(private)finish: The thread finishes the work. 
(private)working: The thread is working with the request. 

Transition: 
(private)P(s): Enter the critical section. 

pre: s = 0 
post: s = 1 

(private)getLocaliD: Get local ID of the receiver from the ID table. 
(private)V(s): Exit from the critical section. 

pre: s = 1 
post: s = 0 

(public)send: The thread sends the message. 
pre: OlD and #OlD are valid. 
pre: Pck "" [pck]. 

(public)receive: The thread receives the message. 
pre: OlD and #OlD are valid. 
post: Pck:: [pck]. 

(public)invoke: The thread is invoked to do some work. 
pre: The state of the thread is active. 
post: The state of the thread is idle. 

(public)doingJob: The thread is working on the task. 

Figure 6.13: Class of User 

93 



94CHAPTER 6. EXAMPLE OF THE DISTRIBUTED PROGRAM EXECUTION 

Class net: 

• • 

• • • 

Figure 6.14: Class of User 



6.3. CONCLUSION 95 

6.3 Conclusion 

In this example, a protocol for remote object invocation in BETA language was 

modelled using 00-CPN methodologies. The whole system was divided into several 

objects, an objects communicate through the communication channel. This example 

shows the object-oriented characteristics of 00-CPN. 

Encapsulation In the design above, when a new object is created, only the public 

transition can be accessed by another object. Private transition cannot be ac

cessed by a part of system that exists outside the object. Usually, the public 

parts of an object are used to provide the functions of the object; the detail 

flow control is defined as private part. This mechanism provide the informa

tion hiding which makes it easy to change the behaviour of the object without 

modifying the whole system structure. 

Inheritance Inheritance enables us to extend or change the already existing "parent" 

class, and make a "child class" that stays linked with its parent class. This is the 

key for reusability. In the above example, inheritance provides the way to model 

the system in a hierarchical structure. This makes whole system manageable 

and reusable. 

Polymorphism In the above example, one use of polymorphism is to allow the 

parent class "thread" to specify the general behaviour of the threads, and the 



96CHAPTER 6. EXAMPLE OF THE DISTRIBUTED PROGRAM EXECUTION 

child class of "thread" can dynamically have more specific behaviour. This 

reduces the complexity of the system, and models the whole system in a clear, 

structured way. 

In conclusion, 00-CPN combines the characteristics of both object-oriented de

sign and Petri Nets methodology. The object-oriented features provide the way to 

model a system in a structured and manageable way. The Petri Nets methodology 

provides a graphical design that is easy to understand. 



Chapter 7 

Conclusions and Future Work 

The work presented in the preceding sections provides a way to model and specify a 

system using Petri Nets in an object-oriented approach. This chapter concludes the 

thesis and suggests future work. 

Section 7.1 examines the contribution of this new Petri Nets model. Section 7.2 

gives some suggestions for future work. 

7.1 Contribution 

The 00-CPN introduced in the preceding sections allows the modelling complex sys

tems and data flows. Its most distinctive feature is the object-oriented structural 

design combined with Coloured Petri Nets formalism. CP-nets provide graphical rep

resentation with well-defined semantics. Graphical representation describes the sys-

97 



98 CHAPTER 7. CONCLUSIONS AND FUTURE WORK 

tern in a very vivid and straightforward way. This makes CP-nets easy to understand. 

The well-defined semantics unambiguously define the behaviour of each CP-net. They 

make it possible to implement simulations for CP-nets, and also form the foundation 

for formal analysis methods. However, Petri Nets lack thorough modularization tech

niques. The result of any Petri Net model is one overall net. During the execution of 

the modelled software system, the Petri Net cannot copy with the addition of new, 

previously unknown models, and a minor change may lead to modification of the 

whole system. This is a big obstacle for their practical use in advanced distributed 

and network software systems. The object-oriented mechanism can make up for this 

defect. The encapsulation characteristic of object-oriented technique isolates the be

haviours that belong to different categories. This enables changes in requirements to 

be accommodated without affecting the entire system. The inheritance characteristic 

enables reuseing parts that have been already created. Therefore, 00-CPN combines 

the characteristics of these two paradigms. It improves traditional CP-nets in the 

following ways. 

7 .1.1 Proposing a new hierarchy construct 

Hierarchical Coloured Petri Nets include three hierarchy constructs: substitution 

places, invocation transitions, and fusion transitions. These constrcts enable the 

construction of a larger CP-net by combining a number of smaller nets. This improves 



7.1. CONTRIBUTION 99 

the compositionality of CP-nets. 00-CPN merges basic ideas behind these hierarchy 

constructs into a single new construct: object. The whole system is composed of 

several objects. These objects are independent of each other. This not only makes it 

possible to construct a large description from smaller units that can be investigated 

independently, but also allows the change of one object without affecting whole system 

design. 

7 .1.2 Defining the class diagram 

The main building block of 00-CPN is the object. An object is an instance of a 

specific class. The class description can be divided into two parts: 

Textual Expressions: Describing the structure of the class. 

Class net: Showing the behaviour of objects that are instances of this class. 

The relationship between two classes is inheritance. This not only provides the design 

parts reuse but also supports the hierarchical classification. 

7 .1.3 Proposing a new solution to the inheritance anomaly 

problem 

CP-nets are suitable for modelling concurrent systems. But the combination of in

heritance and concurrency sometimes leads to heavy encapsulation breakage. This 



100 CHAPTER 7. CONCLUSIONS AND FUTURE WORK 

phenomenon is called an inheritance anomaly. Usually the problem is caused by a 

synchronization scheme that cannot be efficiently inherited without non-trivial class 

redefinitions. In 00-CPN there is one unique part defined for synchronization con

straints, thereby separating the synchronization constraints from the action part. In 

this way, if there are any new synchronization constraints defined in the inheriting 

class, only this part needs to be changed. In addition, the action part is divided 

into two sections, which do not need to be changed simultaneously. Both of these 

mechanisms not only minimize redefinition but they also keep the behaviour of the 

object independent of further modification. 

7.1.4 Defing the Polymorphism 

00-CPN supports two methods of polymorphism: overriding and overloading. By 

using overriding, we can redefine more proper characters and behaviours in sub

classes. Overloading enables us to define more specific behaviours in sub-classes. 

This mechanism is necessary in the hierarchical structure, since sub-classes usually 

behave differently from the super-class. 

In conclusion, 00-CPN integrates object orientation into Coloured Petri Net for

malism, thereby reaping the complementary benefits of these two paradigms. 



7.2. FUTURE WORK 101 

7.2 Future Work 

The work presented in this thesis provides the concepts and construction of the 00-

CPN. The practical use of 00-CPN is highly dependent upon the existence of ade

quate computer tools. These tools may help their user in various ways: 

Graphical Editor This helps the user to construct, modify and check the syntax of 

00-CPN. It offers with a precision and quality that exceed the normal manual 

drawing capabilities of human beings. 

Simulator The simulator traces the different occurrence sequences in an 00-CPN. 

Between each step, the user can see the enabled transitions and choose between 

them to investigate different occurrence sequences. It allows the user to make an 

interactive investigation of a complex occurrence graph using a special purpose 

search system. 

Token Game Animation This automatically traces the flow of tokens in the 00-

CPN. 

Analysis Tool Includes Structural Analysis and Performance Analysis. It allows 

use to apply complicated analysis methods without having detailed knowledge 

of the underlying mathematics. 

In conclusion, 00-CPN tools can make system construction faster and more accu

rate. Moreover, they can provide interactive presentations of analyses by hiding the 



102 CHAPTER 7. CONCLUSIONS AND FUTURE WORK 

technical aspects of 00-CPN theory inside the tools. These tools are necessary for the 

real industrial applications. Therefore future work in this area would be significant 

in order to produce such tools. 



Bibliography 

[Bas95] 

[BCCOl] 

[BDOl] 

Remi Bastide. Approaches in unifying petri nets and the object-oriented 

approach. page 6. 16th International Conference on Applications and 

Theory of Petri Nets, 1995. 

E. Battiston, A. Chizzoni, and F. D. Cindio. CLOWN as a testbed for 

concurrent object-oriented concepts. Lecture Notes in Computer Science: 

Concurrent Object-Oriented Programming and Petri Nets, Advances in 

Petri Nets, 1:131-163, 2001. 

Oliver Biberstein, Didier Buchs and Nicolas Duelfi. Object-oriented 

nets with algebraic specifications: The CO-CPN /2 formalism. Lecture 

Notes in Computer Science: Concurrent Object-Oriented Programming 

and Petri Nets, Advances in Petri Nets, 2001:73-130, 2001. 

[BFH+98] E. Best, W. Frl}czak, R.P. Hopkins, H. Klaudel, and E. Pelz. M-nets: an 

algebra of high level petri nets, with an application to the semantics of 

103 



104 

[C.A62] 

[CMOl] 

[EMOl] 

[HeOl] 

[Jen97] 

[JM96] 

BIBLIOGRAPHY 

concurrent programming languages. Acta Informatica, 35:813-857, 1998. 

C.A.Petri. Kommunikation mit Automaten. PhD thesis, University of 

Bonn, 1962. 

Daniel Moldt Christoph Maier. Object coloured petri nets - a formal 

technique for object oriented modelling. In Concurrent Object-Oriented 

Programming Petri Nets, pages 406-427, University of Hamburg, Com

puter Science Department, 2001. Springer-Verlag Berlin Heidelberg. 

R.Devillers E.Best and M.Koutny. Petri Net Algebra. Springer Verlag, 

2001. 

Lin He. Object oriented concurrent system. Master's thesis, McMaster 

University, January 2001. 

Kurt Jensen. Coloured Petri Nets (Basic Concepts, Analysis Methods and 

Practical Use), volume 1. Springer, Februry 1997. 

Jens Beak Jorgensen and Kjeld Hoyer Mortensen. Modelling and analy

sis of distributed program execution in beta using coloured petri nets. 

In Lecture Notes in Computer Science, volume 1091, pages 249-268. 

17th International Conference in Application and Theory of Petri Nets 

(ICATPN'96), Springer-Verlag, 1996. 



BIBLIOGRAPHY 105 

[LakOl] 

[Lil01] 

Charles Lakos. Object oriented modelling with object petri nets. Lecture 

Notes in Computer Science: Concurrent Object-Oriented Programming 

and Petri Nets, Advances in Petri Nets, 2001:1-37, 2001. 

Johan Lilius. An object based petri net programming notation. Lecture 

Notes in Computer Science: Concurrent Object-Oriented Programming 

and Petri Nets, Advances in Petri Nets, 1:247-275, 2001. 

[MBMP93] 0.1. Madsen and K. Nygaard B. Moller-Pedersen. Object-Oriented Pro

gramming in the Beta Programming Language. Addidon Wesley, 1993. 

[Mes90] 

[MY93] 

[Sch98] 

[Shi90] 

Jose Meseguer. A logical theory of concurrent objects. ACM SIGPLAN 

Notices, 25:101-115, 1990. 

S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object

oriented concurrent programming languages. In Research Directions in 

Concurrent Object- Oriented Programming, pages 107-150. MIT Press, 

1993. 

Herbert Schildt. Teach Yourself C++. Osborne/McGraw-Hill, third edi

tion edition, 1998. 

Etsuya Shibayama. Reuse of concurrent object descriptions. Proceedings 

of TOOLS 3, pages 254-266, 1990. 




