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SCOPE AND CONTENTS: 

An investigation of the microwave reflections from the 

surface of a medium with complex permittivity at the open end 

of a rectangular waveguide has been made and a convenient method 

of measuring the microwave conductivity and dielectric constant 

of semiconductors is described. 

The theory of operation of a microwave reflection bridge 

together with a method for the correction of the measurement 

error is·presented. 

In addition, a study has been made of the anisotropy of 

the small-signal microwave conductivity of n-t.ype germanium 

in the presence of a high electric field. 
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ABSTRACT 

An investigation has been made of the microwave 

reflections from the surface of a semiconducting medium 

with complex permittivity (~ = E E -j~) at the open end of r o w 

an empty rectangular waveguide. The approximate and exact 

solutions of the reflection coefficients at the surfaces of 

both finite and semi-infinite media have been found as a 

--function of the complex permittivity of the medium. The 

computations of the reflection coefficients are made at the 

10 and 35 GHz ranges. Measurements, which confirm these 

calculations, have.been performed with n-type germanium, 

selectron and air at the open end of a rectangular waveguide 
/ 

using a reflection type microwave bridge. The investigation 

has shown that it is possible to devise a convenient method 

of measuring the conductivity and dielectric constant of 

semiconductors. 

The theory of operation of the microwave reflection 

bridge together with the setting-up (matching) procedure of 

a practical form of the bridge has been presented. A method 

is also described for the correction of the measurement 

error which arises from the scattering coefficients at the 

input ports of the precision attenuator. 

A theoretical and experimental study has also been 

made of the smaLL- signal microv;ave conductivity of n-type 

germanium at room tempera-ture in the presence of a high 

electric field, directed at an angle 8 to the microwave 

(iiS.) 



field. The study has shown that at frequencies such as 

10 GHz, the microwave conductivity becomes anisotropic with 

respect to the direction of the d.c. field vector. Measurements 

are made on an 11.4 ohm em, n-type germanium sample at 9.381 

GHz with applied electric fields up to 1.8 KV/cm for 0 = 0°, 

0 0 
40 

1
and 90 • The ''open-end-waveguide measuring technique", 

which allows the angle between the microwave and d.c. field 

vectors to be varied, was employed to measure the microwave 

conductivity. The results of measurements which agree with 

predictions, confirm the feasibility of operation of a new 

microwave device based on the anisotropic effect. 
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CHAPTER I 

INTRODUCTION 

The properties of semiconductors such as relative 

permittivity E and conductivity a- play an important role 
r . 

in the design and operation of semiconductor devices. Ever 

since Bardeen and Brattain(!) discovered the transistor in 

1948, great interest has been shown in the study of the 

properties of semiconductors. With their evergrowing 

importance in the field of practical science, semiconductors 

of different materials are being investigated carefully to 

discover their properties for use in newer branches of 

technology. 

The investigation of the microwave properties of 

semiconductors is a relatively recent development, having 

begun only about a decade ago< 2-l?). Within this period, 

the measurement of semiconductor properties by microwave 

methods has proved to be advantageous over the d.c. methods· 

Moreover, in recent years, the semiconductor devices have 

found important applications at microwave frequencies. The 

gradual displacement of the microwave power tubes by solid 

state devices is an example(lB). 

The problem of microwave propagation through 

semiconductors in the presence of a high d.c. electric field 

. (19-34) 
1s another recent development . From a study of the 

1 



microwave conductivity data at high electric fields one can 

infer the variation of relaxation time with electric fields 

and hence the nature of the scattering processes. Also, the 

microwave conductivity at high electric field levels becomes 

anisotropic with respect to the direction of the d.c. and 

microwave field vectors. This effect can be useful in the 

design of microwave devices( 25-26. 56~57). 

The objectives of this thesis are three-fold, as 

follows: 

(i) Since a microwave reflection bridge is suitable for the 

measurement of the electrical properties of semiconductors, 

its practical setting-up (matching) procedure, giving the 

most accurate results, has been desired for some time. The 

measurement accuracy in such a bridge depends mainly on the 

matching of the input ports of the 'hybrid tee', a basic 

unit of the reflection bridge. Also a significant error 

arises from the scatt:ering coefficients at the input ports 

2 

of the rotary-vane precision attenuator, the standard component 

of the bridge. Although a theory of this bridgJ13)is availabl~ 

its practical setting-up procedure and a method for correcting 

these errors have not been reported in the literature. 

This thesis describes a theory together with the 

practical setting-up procedure of a reflection type bridge 

and a method for correcting the measurement error which arises 

from the scattering coefficients at the input-_ ports·0 .f the 

precision attenuater. This bridge to be discussed in 



chapter II, has been used to confirm the theories developed 

in this thesis. 

(ii) The second objective is the study of microwave 

reflections from the surface of a bulk semiconductor. This 

study was motivated in part by a need to devise a method of 

measuring the microwave properties of semiconductors. A 

number of techniques for measuring microwave conductivity 

and dielectric constant has been reported in the literature 

(2-7, 10-17) The well-known techniques involve the 

measurement of VSWR(S-G), transmission coefficient(lO) and 

refiection f
. . (13) . . . 

coef 1c1ent · at the a1r-sarnple 1nterface 1n 

a completely filled waveguide which require the samples to 
I 

be cut to the cross-section of the waveguide. Of these, 

the accuracy of the reflection method of measurement is 

comparatively good when the resis·tivity of the semiconductor 

is relatively high. At .low resistivities the unavoidable 

gap present between the semiconductor and the walls of the 

waveguide introduces error in the results of measurement(l 2). 

Resonant cavity perturbation techniques have been 

used for measuring the properties of low resistivity 

semiconductors(ll). The lossy wall(l 4 ) and partially filled 

. ( 15) gu1de have been developed very recently. The former 

technique is suitable for measurement when a = w E E o r 

while the latter for low resistivity measurement. 

Besides the above mentioned techniques a number of 

authors( 2 , 7 > measured resistivity by pressing a thin slab 

3 



of semiconductor~ backed by a short-circuit plate at the open 

end of a reptangular waveguide. This is a convenient phy~ical 

arrangement for measuremnt. Ho'r.·leve:r;, the accuracy of the 

4 

method is affected by the unde_sir,ed radiation which propagates 

through the semiconductor parallel to the short-circuit plate. 

The intensity of this radiation depends on the dimensions .and the 

resistivity of the semiconductor_sample. Moreover the 

measuring method was based on the use of aslotted- line which 

lacks precision at high frequencies because of the perturbing 

influence of the slot and probe on the fields and because 

of the mechanical inaccuracies. 

None of the techniques mentioned above provides an 

accurate means of measuring E r and a a·t the high end of the 

resistivitiy range. Not ohly ~hat, but different techniques 

of measurement are required, depending on the resistivity 

of the semiconductor. Thus the development of a new method 

that could provide an accurate means of measuring sr and a 

over the entire range of resistivity is desirable: Such a method 

based on the reflections of microwaves from a piece of 

semiconductor placed at the end of a rectangular waveguide, 

has been described. 

Chapters III to V of this thesis are devoted to the 

theory of microwave reflections giving experimental verifications 

wherever possible. To be specific, the theoretical solutions 

of the reflection coefficient of a semiconductor block at the 

end of a rectangular waveguide are developed. The follm·Jing 

waveguide configurations were considered for the analysis: 



5 

(a) A semiconductor slab placed inside a rectangular 

waveguide and terminated by a short-circuit plate (Fig. 1.1); 

(b) ~ semiconductor slab pressed at the end of a rectangular 

waveguide opening onto a metal flange and terminated 

by a short-circuit plate (Fig. 1.2) i 

(e) A semiconductor slab placed at the end of a rectangular 

waveguide opening onto a metal flange and followed by 

free space (Fig. 1.3). 

The approximate solutions of the reflection coefficient at 

plane z=O of these configurations for a finite semiconductor 

medium are developed in Chapter III. The exact solutions 

of the reflection coefficient for a semi-infinite and finite 
~ 

medium at plane z=O of the configurations {b) and (c) are 

developed in Chapters IV and V, respectively. Numerical 

computations for each case were made at the 10 and 35 GHz ranges 

and confirmed experimentally for n-type germanium, selectron 

and air. 

The result of this analysis has been utilised to 

devise a method of measurement which involves the placement 

of a semiconductor sample at the open end of a rectangular 

waveguide. This method which has been termed the "open-end-

waveguide measuring technique" is not only suitable for the 

normal measurement of the microwave properties of semiconductors 

but it is also advantageous for high-field measurements. 

The principal advantages of this method over the previous 

ones are that the samples are not required to be cut to the 
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cross-section of the waveguide, the measurement accuracy is 

fairly high in the entire range of resistivity and th~ rotation 

of the sample position with respect to the microwave field 

vector in high-field measurements is easy. 

(iii) The last objective of this thesis is the study and 

measurement of the anisotropy of the microwave conductivity 

in n-type germanium subjected to a high d.c. electric field. 

Gunn( 2 S) has stated from physical reasoning that the small-

signal microwave conductivity of a semiconductor sample for 

parallel d.c. and microwave fields is given by the incremental 

d . . ()J h h d . . f h 1 con uct1v1ty aF vl ereas t e con uct1v1ty o t e same samp e 

for perpendicular fields is given by the d.c. conductivity 

J p• Although a theory and the experimental verifications of 

the parallel conductivity have been described by a number ·of 

authors(l 9- 29 ), a satisfactory theory together with experimental 

confirmations for the perpendicular case has not been reported 

in literature. In particular, a confirmation of the dependence 

of the microwave conductivity on the angle between microwave 

and d.c. field vectors has remained an unsolved problem. 

Moreover, a definite conclusion of the existence of this 

anisotropy would confirm the feasibility of operation of a 

nev1 microwave device, namely "the hot electron microwave 

rotator". The theoretical performance of such a rotator has 

been investigated elsewhere by the author(S?) • 

This thesis gives a simple derivation. of the small

signal microwave conductivity of semiconductors, in terms of 



. 
parallel and perpendicular conductivities and the angle 

between the microwave and d.c. field vectors. An analysis 

has also been made of the parallel and perpendicular 

conductivities of n-type germanium by solving the Boltzmann 

equation in the same manner as used by Nag and Das< 23 ). 

Numerical calculations have been made of the microwave 

conductivity and the angle of rotation of the microwave 

7 

current vector for an n-type germanium sam~le at 9.381 GHz. To 

confirm these calculations, measurements have been made of 

the conductance as a function of the electric field intensity 

in the same gennanium sample at d.c. and 9.381 GHz. A new 

method of measuring microwave conductivity in high electric 

fiel~s, which allows the angle between the microwave and d.c. 

field vectors to be varied, has been devised. The results 

of measurement agree with those calculated by the theory. 



y RECTANGULAR 
WAVEGUIDE SEi'HCONDUCTOR 

b -TE10 3 

--~-----------------L~~~~ X 
Z=O Z=~ 0 

a 
SHORT-CIRCUIT METAL PLATE 

8 

FIGURE 1.1: A Semiconductor Sample Placed inside a Rectangular 

Waveguide and Terminated by a Short-Circuit Metal 

Plate. 

FINITE 

SHORT-CIRCUIT METAL PLATE 

Z=O Z=P.. 

FIGURE 1.2: A Semiconductor Sample Placed across the End 

cif a Rectangular Waveguide Opening onto a Metal 

Flan•::fE3 and Terminated by a Short-circuit Metal 

Plate. 
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FINITE 
WAVEGUIDE FLANGE----~ 

3 

AIR 

Z=O Z=Q. 

FIGURE 1. 3: A Semiconductor Sample Placed across tli·e End 

of a Rectangular Waveguide Opening onto a 

Metal Flange and Followed by Air. 



CHAPTER II 

THE MICROWAVE REFLECTION BRIDGE 

2.1 Introduction 

. fl . b'd (13,35) A m~crowave re ect~on r~ ge is most 

suitable for accurate measurements of the electrical 

properties of semiconductors (cr, Er) in the microwave frequency 

range. Such measurements normally involve the precise 

determination of the reflection coefficient of a waveguide 

filled or partially filled with semiconductors and for this 

the bridge has some advantages over a slotted line. At 

the higher end of the microwave frequency range, slotted lines 

become subject to errors because of the difficulty of 

maintaining the required mechanical tolerances. 

A basic unit of a microwave reflection bridge is a 

hybr~d tee and in section 2.2.1, the properties of the 

'hybrid tee•, 'symmetric tee',and •magic tee' are described. 

The magic tee with it's terminal conditions is also discussed 

in Section 2.2.l,and in section 2.2.2, a theory of operation 

of a reflection bridge is presented. In Section 2.2.3, a 

method is described for the correction of the measurement 

error. Finally, in Section 2.3, the details of the setting-up 

procedure of a practical form of a reflection bridge are 

discussed. 

10 
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2.2 Theory 

A microwave junction with four ports as shown in 

Fig. 2.1 is defined as a hybrid tee. A tee that appears 

matched looking into each arm 
Plane of Symmetry 

in turn with matched terminations 

on the other arms is called a 

'matched tee'. A matched 

tee may or may not be 

symmetric and when compensated 

for asymmetry is called a 

'magic tee'. 

2.2.1 The Microwave Tees 

H-arm 

Figure 2.1: The three Dimensional 

View of a Hybrid Tee 

(a) The Hybrid T: The essential properties of a hybrid tee 

are expressed in the form of a scattering matrix [8]. With 

reference to ports 1, 2, 3,and 4 in Fig. 2.1 the scattering 

matrix of a hybrid tee is defined as 

[b] = [8] (a] 

where a is the incident wave and b is the scattered wave. 

or, 

bl S:ll 812 813 814 al 

b2 821 822 823 824 a2 
= 

b3 831 832 833 834 a3 

b4 841 842 843 844 a4 



When the propagation medium is air, 

8 12 = 8 21 

813 = 8 31 

8 34 = 8 43 etc. so that 

bl 811 8 12 8 13 8 14 al 

b2 8 12 8 22 8 23 8 24 a2, 
{2 .1) = 

b3 813 8 23 8 33 8 34 a3 

b4 8 14 8 24 8 34 8 44 a4 

{b) The Symmetric T: A hybrid tee becomes a symmetric tee 

if it has a symmetrical structure with reference planes 

placed symmetrically and at equal distances from the plane 

of symmetry. Further, a symmetric tee has the following 

additional characteristics. 

8 34 = 0 

8 43 = 0 

813 = 8 23 

811 = 8 22 

8 14 = -s24 

If the reference planes in the side arms are not 

equidistant from the plane of symmetry, then 

where 

= 

~ = difference in electrical phase change 

over the lengths of the side arms. 

12 



(c) The Hagic T: A symmetric tee becomes a magic tee 

when ports 3 and 4 are matched i.e. s 33 = s44 = 0. The 

matching of ports 3 and 4 ensures 

and I s13 1
2 = I s14 1

2 = 1/2 / automatically, provided 

the following condition ~s satisfied: 

~ . The walls are perfect conductors or approxlmately so; 
If/ 

for long side arms, this condition may not be satisfied(36) • 

The magic tee has, therefore, the following additional 

characteristics to the symmetric tee: 

= = 0 

= = = 0 

If a-TE10 wave E3 ~
0 is incident 

on port 3 of a magic tee while all 

other ports are terminated in 

loads having reflection coefficents 

13 

R
1

, R
2

, and R
4 

at reference ports,· 

the output waves at these ports are 

expressed respectively as( 36 ) 

Figure 2.2: A Magic Tee with 

E~ - f2 (l-R2R4) E3 ~ 
2 - R4 (R1 + R2) 

Unmatched Terminal Loads z1 , 

z2 and z4 . 

(2.la) 
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(l-R1 R4 ) 0 
I 

12" 
E3 ·.~ 

E2 = (2 .lb) 
2 - R4 (Rl + R2) 

.. (Rl 2 Rl R2R4) 
0 

+ R2 - EJL9_ , 
E3 = ( 2 .lc) 

2 - R4 (Rl + R2) 

(R - R2) E I 00 
I 1· 3--· 

E4 = --- (2.ld) 
2 - R4 (Rl + R2) 

These equations give the following important conditions: 

(i) If R4 = 0 and Rl =1- R2 I. 

E' = (Rl - R2) E31_2 1 4 
E/ = E' = E3//2 1 2 

i.e. the power outputs are equal in side arms with an 

output port 4 and 

i.e. the power is reflected ihto port 3. 

(ii) If R4 f. 0 or R4 = 0 and Rl = R2' 

E" = 0 4 

E" = E' = E3/~-1 2 

-i.e. the power outputs are equalin side arms with zero output 

in port 4 and 

E~ = R1E3 

i.e. for a short circuit (R1 = -1) 1 all the power is reflected 

into arm 3. Thus for a magic tee when the bridge is 

balanced R1 = R2whether or not R4 = 0 and the poweroutputs 

are equal in the side arms. 



2.2.2 The Reflection Bridge 

The schematic diagram of a reflection bridge circuit 

is shown in Fig. 2.3. The bridge element can be a 'hybrid 

tee', a 'symmetric tee' or a 'magic tee'. The ports 1 and 2 

of the bridge element lie in the reference and sample arms, 

while ports 3 and 4 lie in the H and E arrns,respectively. 

z
1 

is the reference load and z
2 

is the unknown load, the 

reflection coefficient of which is to be determined. 

(a) The Bridge with a Hybrid Tee: 

With a 'hybrid tee' in Fig. 2.3 the scattering matrix 

with reference to ports 1 1 2 1 3 and 4 is given by equation 

(2.1). Also, at reference ports 1 and 2, 

al 
R == 

1 bl 
(2. 2) 

( 2. 3) 

where R
1 

and R2 are reflection coefficients at ports 1 and 

2
1
respectively. Noting that a 4 = b 4 = 0 for a null condition, 

R2 can be obtained from equations (2.1) 1 (2.2) and (2.3) and 

is given by(l 3 ) 
1 

where 

a R
1 

- o 
R2 == y R

1 
- 1 

( 2. 4) 

(2.5a) 
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and 

\ 

(b) 

and 

0 = ~ 
8

3
4 8 22 8 34 - 8 23 8 24 

(2. Sb) 

[ <sn 8 22 -
2 

- 8 23 811> 8 24 y = 8 12> 8 34 + <813 812 
8 22 8 34 - 8 23 8 24 

(S12 8 23 - 8 13 
8 22> 8

14 J (2. Sc) 
8 22 8 34 - 8 23 8 24 

The Bridge with a Symmetric Tee: 

the 

When the'hybrid tee' is symmetric, 

8 34 = 0 

8
43 = 0 

8 11 = 8 22 

8 13 = 8 23 

8 24 = -s14 

8 12 = 8 21 etc. 

equations ( 2. 4) and ( 2. 5) give 

y 

= -1 

= 0 

= <813 812 - 8 23 8 11> 8 24+ <812 8 23 - 8138 22> 814 

- 8 23 8 24 

= 0 

(2. 6) 

16 

+ 
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(c) The Bridge with a Matched Tee: 

When the input ports of the 'hybrid tee' are 

matched, 

511 = 5 22 = 512 = 0 

5 34 = 543 :/ 0 

which give from equation ( 2. Sc) 

y = 0 

R2 = -R a + 0 1 ( 2. 7) 

(d) The Bridge with a Magic Tee: 

When the 'hybrid tee' is m?-gic, 

5 34 = 5 43 = 0 

511 = 522 = 512 = 0 

s13 = 5 23 

which give 

= -1 

0 = 0 

y = 0 

. 
R2 = R1 (2. 8) . • 

which is the same as obtained in the symmetric bridge (Equation 

2.6) 



(e) The Bridge with either a Symmetric or a Magic Tee: 

Consider the bridge circuit of Fig. 2.3 with the 

tuning stub removed from the slotted section for the balanced 

condition in which the reflection coefficient R
1 

at the 

plane 1 is made equal to R2 at the plane 2, by suitable 

adjustment of the standard rotary vane attenuator and short-

circuit. For a given attenuator setting (Ai}, R1 can be 

. ( 36) 
wr1.tten 

(2. 9} 

on the reasonable assumption that s 66 (A1 } R6 <<1. The 

' ff' ' ( 3?) K e-Al h th t t scatter1ng coe 1c1ent S = A w ere e cons an 16 . 

KA represents the constant insertion loss and phase shift 

in the attenuator. Also the reflection coefficient 

. 213 .Q, 
R

6 
= K

8 
e-J 1 where Ks is the complex constant containing 

the fixed loss in the short circuit and 13 is the phase 

constant in the empty waveguide. The readings of the 

precision rotary vane attenuator and the precision short 

circuit are taken as A
1 

and \ respectively, thus 

(2.10} 

18 

If the unknown impedence is replaced by a short circuit, then 

R2 = -1 and anull balance will be obtained with the attenuator 

and short circuit settings A and 1 respectively. This gives 
0 0 
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the equation 

(2.11) 

Equations (2.10) and (2.11) then give for a null balance with 

the unknown impedence at plane 2 

R2 = Rl 

=r [ 1 + sll <Ao> J - (A+ j¢)+S 
e 11 (Al) 

-e (A + j ¢) 
+ 511 (Al) (2.12) 

In a preci~ion attenuator, due to the finite thickness of 

the absorbing vane s 11 is not zero but it is small. Under 

conditions of measurement in which the term s
11 

(A
1

) is 

significant, the usual prac~~ce of neg~ecting it by some 

microwave engineers may resultin a serious error. In the 

measurement of a large reflection coefficient, however, 

I e (A + j ¢) I >> I I s11 (A1 ) so that 

R ..:. - (A+j¢) 
2 -:- -e 

(2.13) 

" 

For the purposes of measurement, particularly with 

materials of low reflection coefficient, the equation (2.12) 

was used in conjunction with a calibrated tuner in the 

reference arm to tune out s11 (A1 ) to zero. This ultimately 

made it possible to use the much simpler equation (2.13). 

Accurate results can also be obtained with equation 

(2.12) only if the magnitude and phase of s11 are known. 

20 
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Unfortunately it is very difficult to measure precisely both 

phase and magnitude of such a small scattering coefficient 

by a conventional slotted line technique. In the following 

section a method has been described for such measurement 

using the bridge circuit of Fig. 2.3. 

2.2.3 The Measurement Errors 

The accuracy of the reflection bridge measurements 

depends to a large extent on the quality of the variable 

impendance standard arm components, which comprise a precision 

rotary vane attenuator and a precision variable short-circuit. 

One source of error in such measurements results from the 

scattering coefficients at the input ports of the attenuator 

and the magnitude of this error is a function of the attenuator 

setting. This error becomes significant in measurements of 

low reflection coefficients which require an attenuator 

setting greater than a few qB, for example the measurement 

of the reflection coefficient at the open end of a rectangular 

waveguide. 
. (38) 

Holm
1
et.al. have derived an expression for the 

associated scattering matrix of a rotary-vane attenuator 

which is useful for the calculation of the scattering 

coefficient. For the attenuator - stub tuner combination 

shown in Fig. 2.3 with the tuning stub removed from the 

slotted section of guide, their expression for the scattering 

coefficient s11 at the measuring plane 1 is 

(2.14) 
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The vane angle 8 is related to the attenuator setting in 

2 dB by the expression dB = -20 log
10 

(Cos 8) and A
11

, B
11 

and c11 are complex constants. The authors verified Eq. (2.14) 

by using the reflectometer technique of Engen and Beatty< 39 ) 

which measures the magnitude but not the phase of s
11

• The 

constants in 'Eq. (2.14) were determined, after assuming A
11 

real, from measurements of the magnitude of s11 at five 

values of attenuator setting. 

We wish to describe a procedure of eliminating errors 

due to s11 by using a calibrated sliding stub tuner at the 

input port of the rotary-vane attenuator. The method also 

gives a means of measuring not only the magnitude but also 

the phase of s11 as a function of attenuator setting. The 

determination of the constants A11 , B11 , and c11 has also 

been simplified as measurements of both phase and magnitude 

of s11 at three attenuator settings only are required. 

Consider now the case of the Fig. 2.3 in which a 

tuning stub is introduced into the slotted section of the 

guide between planes 1 and 5. For any given setting of the 

attenuator, this tuner can be adjusted to make s11 (A1 ) = 0. 

For the same unknown impedance, this matched condition of 

the attenuator will result in ne\.7 readings Aut and <Pro instead 

of the A and ¢ in Eq. (2.12). The scattering coefficient 

s 11 CA
1

) can then be obtained from the equation 

( 2 .15) 



' 

Measurements have been made of s11 (A1 ) for several 

commercially available X band (lOGHz) rotary vane attenuators, 

using the bridge circuit of Figure 2.3. For the preliminary 

measurements, matched loads were placed at planes 6 and 2 

and the calibrated sliding stub tuner was adjusted to give 

a null output for different settings of the attenuator. 

These calibrated readings then allowed s11 (A
1

) to be made 

zero as required in the subsequent measurements. 

The reflection coefficient of a variable unknown 

impedance at plane 2, comprising a variable attenuator and 

variable short circuit, was then measured with and without 

the tuning stub, that is for the conditions s11 (A
1

) = 0, 

s11 (A1 } t 0. These measurements gave the scattering 

coefficient s11 (A
1

} as a function of attenuation, through 

equation(2.15} .Measurements with the rotary vane attenuator 

at three angles (8} enabled the constants A11 , B11 ,and c11 

in equation (2.14} to be calculated. 

Measured values of the magnitude and phase of S 
11 

for the two rotary vane attenuators are given in Figure 2.5 

(H.P. x 382A} and Figure 2.6 (Elliott Al67/44}. Calculated 

curves from equation (2.14} based on the experimentally 

determined constants, can be seen to be in good agreement 

with the measured values. Relative errors in measured 

magnitudes of the reflection coefficient due to s11 are 

indicated in Figure 2.4. 
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2.3 The Practical Reflection· Bridge 

The performance of a reflection bridge depends also 

on the bridge element, which can either be a 'hybrid tee' 

or a 'magic tee'. The bridge with a hybrid tee described 

in Section 2.2.2 requires three preliminary calibration 

readings, two with short-circuits and one with a matched 

termination. This is to be compared to the one short 

reading for a symmetric tee or a magic tee for measurement. 

The use of a hybrid tee involves not only the time 

consuming calibration procedure, but also the calculation of 

the reflection coefficient, which is usually cumbersome. 

This difficulty is avoided by using a magic tee, which gives 

26 

an expression for the required reflection coefficient in a 

much simpler formlcf. ·Eqs.· 2.4 and 2.8). The magic tee is also 

perferred to a symmetric tee for the following reasons: 

(a) A symmetric tee is very difficult to obtain in practice 

due its unequal side arm lengths, dimensions and losses in 

side arms; 

(b) The equality of both magnitudes and phases of s13 , s 23 

and s11 , s 22 , which are required properties of the symmetric 

tee, is difficult to achieve in practice. 

The magnitudes of these coefficients, however, in a 'practical 

magic tee' approach zero, so that the equality of the phases 

does not become so important. Since it is practically impossible 

to obtain either an ideal symmetric or magic tee, it is best 

to make a tee symmetric as well as matched as far as possible, 

in order to approach the ideal case. 



27 

The schematic diagram of a practical form of a r8flection 

bridge is shown in Figure 2.7. The side arms of the 

'original tee' are not often convenient for measurement 

purposes andadditional waveguide sections are added to one 

side arm. This results in the 'modified tee' shown in the 

figure. The modified tee is first changed into a magic tee 

by matching theE and Harms with two slide screw or E-H; 

tuners in E andH arms and then compensating the asymmetry, 

if any, with a tuner in one of the side arms. The precision 

attenuator and precision short which provide the 'reference 

arm' are coupled to port 1. A calibrated tuner is used in 

the reference arm to cancel out the attenuator reflection. 

Details of the Setting-up Procedure 2.3.1 

(A) MATCHING THE INPUT PORTS OF THE 'MODIFIED HYBRID TEE' 

The input ports of the modified hybrid tee are 

matched with screw tuners in E and H arms at the frequency 

of operation. The matching procedure is as follows: 

A tuner and a matched detector are coupled into the 

E and H arms respectively, while the side arms are terminated 

in matched loads. The tuner in the E arm in conjunction 

with a slotted line is adjusted to obtain maximum output in 

the matched detector. The VSWR at port 4 is minimum under 

this condition and can be made less than 1.02. This 

corresponds to a magnitude of the reflection coefficient 

looking into E arm of js 44 1 ~ .01. This completes the 

matching procedure of E arm. 
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FIGURE 2.7: A Practical Microwave Reflection Bridge Circuit. 



Similarly, the H arm is matched by adjusting a 

tuner in H arm and observing the maximum output in E arm 

while the side arms are terminated in matched loads. The 

magnitude of the reflection coefficient looking into H arm 

js33 j, can also be made< .01. 

If the tee is symmetric and lossless 1 the above 

procedure automatically ensures that side arm ports 1 and 2 

are matched also. 

(B) COMPENSATING FOR ASYMMETRY IN THE TEE 

Cross coupling can exist between the H and E arms 

even when the side arms are terminated in matched loads 

because of the asymmetry in the construction of the tee., 

For such a condition an input to the H arm will give an 

output in the E arm varying from a few tens of microvolts 

to a few millivolts, depending on the quality of the tee 

and power input to H arm (about 30 to 40 dB isolation). 

This T-asymmetry results from a number of factors such as 

unequal electrical lengths of the side arms from.the plane 

of symmetry, incorrect waveguide width and unequal losses 

in the side arms. The power output in E arm due to these 

features can be minimised by adjusting a screw tuner in 

one of the side arms, which are terminated in matched loads. 

The vector diagram( 4 0) of the output Eml at the 

detector in E arm is shown in Figure 2.8 where Eml and Em
2 
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are the reflected waves from the imperfect matched terminations 

in ports 1 and 2 respectively, Et is the reflected wave from 
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the tuner in the side arm 2, Er is the resultant of Et and 

E and E is the transmitted wave from port 3 to port 4 
m~ a 

due to asymmetry of the tee. If the bridge is compensated 

for asymmetry, Ea cancels Er and the null output, caused 

from the sliding matched load reflection Eml' does not change 

with the position of the matched load, since Eml is variable 

in phase but not in magnitude. If the bridge is not 

compensated, the output Eml will vary with the position; since 

Eml will now add to or subtract from the unbalanced signal. 

For the waveguide systems used, the magnitudes of 

the transmission coefficient from ports 3 to 4, the reflection 

coefficients at ports 1 and 2 and the cross coupling 

coefficient from ports 1 to 2 were measured and found to 

' be js43 1 = js34 1 =0.0000023, js1il = js22 1 =0.01, and 

js12 1 = 1s21 1 =0.03. A compromise between js12 1 and ls44 1 

could, however, be made by decreasing js12 1 from0.03 to 

0.01 on adjusting the tuner in the E arm at the expense of 

an increased ls44 1 fromO.Ol to0.025. 

(C) MATCHING THE PRECISION ATTENUATOR 

This has been desGribed in Section 2.2.3. The 

reflection from the attenuator due to the finite thickness 

of.the absorbing vane, as me~tione~ earlier, varies with 

the attenuator settings. A calibrated tuner was, therefore, 

required to cancel out the attenuator reflection for any 

given attenuator setting~ The calibration was performed 

by noting the position and penetration of the screw tuner 
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with increasing attenuator setti~gs required to give 

minimum output in the E arm with ports 2 and 6 terminated 

in matched loads. 

2.4 Discussion 

The waveguide sections which have been 

included in one side arm of the bridge as sho~m in FigUre 2.7 

should be lossless or approximately so, to satisfy the 

conditions of a matched and symmetric tee !s11 1 = !s22 1 = 

ls12 1 + 6 (Section 2.2.1). It has, however, been found 

that a lossy waveguide section is necessary in the sample 

arm particularly for the preliminary measurement with a 

short-circuit in order to balance the insertion loss of 

the precision attenuator in the reference arm. This 

unavoidable loss in the sample arm should be as small as 

possible. 

The tee chosen for use in the bridge should not be 

highly non-symmetric. If it is so, the required depth of 

penetration of the tuner in one of the side arms to compensate 

asymmetry may destroy the matching looking into.the side 

arms i.e. !s11 ! i !s22 1 f 0. care should,therefore,be taken 

in choosing the tee and the microwave components for the 

side arms, which are not too lossy and have a minimt~ number 

of bends with consequent small reflections. 

The waveguide component flanges must be accurately 

aligned and the waveguide connections must be tight to avoid 

unwanted reflections. Particular care is required in the 
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connections to the side arms which should be firm and 

aligned to avoid large errors. 

2. 5 Photogr-a-phs of the· Mic·rowave· Refl'ec·t'i.on· Bridge 

The set-ups of the microwave reflection bridge which 

were used to confirm the theories developed in this thesis 

are shown in Figures 2.9 through 2.12. Figures 2.9 and 

2.10 show the set-ups used to verify the theoretical 

predictions of Section 4.2 at 35' and 10 GHz 1 respectively. 

Figure 2.11 is the part of an x-band reflection bridge used 

to verify the theoretical predictions of Section S.~while 

Figure 2.12 shows the complete apparatus used for measuring 

the microwave conductivity of a germanium sample subjected 

to a high d.c. electric field. 
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FIGURE 2. 9: Rear View of t h e 35 GHz Set-up of the Mj,crowave Reflect i on Bridge showing the Measurement 
of the Reflec ·tion Coe f ficient of a Block' of German ium in One Side Arm of the Bridge. c..: 



FI GURE 2 .10 : Re ar View of the 10 GHz Set-up o f the Microwave Reflection Bridge .showing t h e Measurement 
of t h e Refle ction Coefficient of a Piece of Selectron in One S i de Arm of t he Bridge . 



.~1 1111 

FIGURE 2.11: Front View of the 10 GHz Set-up of t_ _e .Hicrownve Reflection Bridge showing the 
Sample Ho lder containing a Slat of Germa niwn be t ween the Waveguide Fla nge and the 
Precision Short-Circuit Fla~e. 



FIGURE 2.12~ Genera l View of the Compiete Apparatus f or measuring the Microwave Conductivity 
of an 11.4 ohm em N-type Germanium Sample s ub jected to a High D.C. Electric Field. 



CHAPTER III 

MICROWAVE REFLECTIONS FROM THE SURFACE OF A FINITE 
SEMICONDUCTOR MEDIUM (APPROXIMATE SOLUTIONS) 

3.1 Introduction 

This chapter contains a theoretical analysis of the 

wave reflections together with the development of the 

approximate solutions for the input impedance and the 

reflection coefficient at the surface of a finite block of 

semiconductor. 

The reflection coefficient at the plane z = 0 of 

a finite block of semiconductor placed in a rectangular 

waveguide as shown in Figure 1.1 can be calculated exactly 

and the appropriate equations are derived in Section 3.2. 

The reflection coefficients at the surface of a finite 

block of semiconductor placed at the open end of a rectangular 

waveguide as shown in Figures-1. 2 and 1. 3 are also calculated 

on the assumption of a z-directed TEM wave 

in the semiconductor region. The solution is approximate, as 

the radiative propagating wave in the semiconductor region 

is neither a complete TE10 wave nor a 'I'EM wave. The 

appropriate equations are derived in Sections 3.3 and 3.4. 

3.2 The Reflection Coefficient of a Finite Semiconductor 
Block Inside A Rectangular Waveguide 

The input impedance at the air-semiconductor 

interface plane z = 0 of a rectangular waveguide of Figure 1.1 

can be expressed as( 4l) 
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z. 
l.n 

= z
2 

z3 + z2 tanh y2 1 

z
2 

+ z
3 

tanh y
2

1 ( 3 .1) 

where z
2 

= the wave impedance of the semiconductor loaded 

waveguide i.e. of region 2; z
3 

= the wave impedance of the 

material terminating the waveguide i.e. of region 3; 

1 = the length of the semiconductor sample in axial direction 

and Y2 = the propagation coefficient of the semiconductor 

loaded waveguide. If the waveguide is terminated by a 

short-circuit metal plate, z
3 

= 0 and the input impedance 

simplifies to the following form 

( 3. 2) 

The reflection coefficient R at the air-sample interface may 

therefore be written as 

R = 
z2 tanh y21 - z1 
z2 tanh y 2 1 + z1 

( 3. 3) 

where z1 = the wave impedance of the empty waveguide, i.e. 

of region 1. If we assume that the TE10 wave propagates in 

regions 1 and 2 of the structure of Figure 1.1, the 

propagation coefficients and the wave impedances of the empty 
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guide and semiconductor loaded guide are given by the following 
.!. 

expressions: 1 

t The conductivity is assumed to follow the field at 10 and 

35 GHz . At higher 

"' (w) = a 
a 1 + w2 <T~ 

frequencies, a should be replaced by< 42 l 
. a <T> 

-JW where Tisrelaxation time 
1 + w2 

<T> 2 

of carriers and w is the radian frequency of the microwave field. 



yl = [<~> 2 2 ]1/2 
w w:: 0 (3.4) 

y2 = [<~> 2 2 - w l-IE: + r/2 
jWl-10 ( 3. 5) 

j Wll 
z 

zl 
0 = = 

yl r- r/2 (fc/f)2 
(3. 6) 

z 
jWll 0 

and z2 = = 
y2 [;r - -· 1/2 

(f /f) 2 
c 

(3.7) 

where fc = cut off frequency of the TE10 mode, a = width 

of the waveguide, 

Thus equation (3.3) can be rewritten as 

1 -

1/2 
A 2 
E: - ( f /f) r c coth y 2 .Q. 
1 - (f /f) 2 

c 
R = 

[ 

£ - < f /f) 
2l112 

1 + . r c 2 coth y2.Q. 
1 - (f /f) 

c 

( 3. 8) 

It is noted that e,quation ( 3. 3) can be transformed to the 

following form: 

R = 
(Z2 - Zl) I (Z2 + Zl) - e 

1 - ( z 2 - Z 1 ) I ( z 2 + z 1> e 
-2y .Q, 

2 
( 3. 9) 
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which is the same as derived by Lindmayer and Kutsko (?). 

3. 3 The Reflection Coefficient of a Finite Semiconductor
Metal Block at the Open End of a Rectangular Waveguide 

If the semiconductor block is placed at the end of 

the guide instead of inside as followed by Lindmayer and 

Kutsko (Figure 1.2), the incident TE10 wave is transformed 

into a radiated propagating wave in the semiconductor region, 

which is neither a completely TE10 wave nor a TEM wave. An 

approximate solution can be obtained which is based on the 

assumption · of either of the two modes of propagation. 

If the TE10 wave is assumed, the results of equation 

(3.8) are obtained. However, if the TEM wave that propagates 

only in the z-direction (~o transverse propagation!) is 

assumed, the propagation coefficient in the semiconductor · 

region differs from equation (3.5) by the following 

expression: 

= (3.10) 

The error introduced by this assumption is large for 

semiconductors with high resistivity and low dielectric 

constants. With this value of the propagation coefficient 

in equation (3.3) the reflection coefficient can be written 

as 

1 - [ 

·R= 

1 + 

1 -

1 -(f /f) 2 
c 

1/2 (3.11) 
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The equations (3.8) and (3.11) are identical for the 

conditio~ E >>(f· j£) 2 which is, in fact, true forGe and Si. r c 
When the length of the lossy material is large compared to 

the skin depth o, the backing of the sample with a short-

circuit has little effect. If i>So; coth y 2 i~l.O. Thus 

equation (3.11) reduces to the expression 

·This reflection coefficient R cart be corlsidered as that of a 

semi-infinite medium and may be measured with a microwave 

reflection bridge. With a magic tee in such a bridge, the 

reflection coefficient may be written from the equation 

(2.13) as 

R = -(A+ j¢) -e 

in neper; ¢ = 2·S < i - i > 1 0 

(3.13) 

in radian; 

A
1

, i 1 .are readings of the precision attenuator and precision 

short, respectively with the sample in the sample arm and 

A , i are similar readings with fixed short in the sample 
0 0 

arm. Equating the real and imaginary parts of the identity 

formed from equations (3.12) and (3.13)., it can be shown that 

(Appendix A) 
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[1 - (fc/f) 21 ·GcoshA + ~~~~ .... e:r = ,coshA 

[ -1 sin~ J cos 2 tan §inhA 
(3.14a) 

a = [1 - (fc/f) 2] [coshA + cos~J ... 
<:oshA - cos¢ 

• [2 -1 sin~ J s1n tan --- we: sinhA o (3.14b) 

Thus a measurement of A, cp, and f enables the v.alues of e:r 

and a to be determined. 

3.4 The Reflection Coefficient of a Finite Semiconductor 
IDR)ck at the Open End of a Rectangular waveguide 

. '· ' 

If the semiconductor block is followed by 

air as shown in Figure 1.3, 

=~ 
J~ 

0 

z. = z2 1n 

(3.15) 

(3.16) 

Substituting equations (3.10) and (3.7) for y 2 and z
2 

respectively, the reflection coefficient at the plane z = 0 

can be written as 

R = zin· - zl 
z. + z

1 1n 
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·~ A l .. E-. . 1/2 1 + IE. tanhy 2 t r :X: 
1 -

. <.fc/f) 2. . . . ... I~+ tany 2 .R. 

= {3.17) 

[1- r/2 1 + 
e: r. 1 + If;~; tanhy 2 £ 

{fc/f)2 ffr+ tanhy
2

.R. 

where equation {3.6) has been used for z1 • As expected, 

this equation reduces to equation {3.12) for .R.?; ,5, o ie. when 

tanhy2 .R.~l. 

3.5 Numerical Results For Germanium and Their Intre~retaticns 

Equation (3.12) has been evaluated numerically on 

a CDC 6400 Digital Computer. Numerical computations were 

obtained for germanium for the following two cases: 

(a) a = 2.286cm, b = 1.016 em, f = 9.522 GHz 

{b) a = 0. 712 em , b = 0. 3 5 6 em , f = 3 4 • 5 G Hz 

The results of these calculations are shown in Table 4.1 

for comparison. Inspection of the table shows that equation 

{3.12) gives an error in the phase of R for high resistivity 

semiconductors {o< 2WEQ e:r' above 1.60hm em at 34.5 G~z). 

The o and e: have also been calculated from the 
r 

measured values of A and¢ using equation (3.14). The 

results show that this equation gives reasonable accuracy 
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of the resistivity measurement at the low end of the resistivity range 

and that of the dielectric constant measurement at the high 

end. However, the accuracy of E measurement at low range 
r 

and that of resistivity measurement at high range are found 

to be inaccurate. This is because of the nature of the 

equation (3.14) and the breakdown of its validity in the high 



resistivity range where equation (3.12) introduces a 

large phase error, as mentioned earlier. 
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CHAPTER IV 

MICROWAVE REFLECTIONS FROM THE SURFACE OF 
A SEMI-INFINITE MEDIUM (EXACT SOLUTIONS) • 

4.1 Introduction 

The exact solutions for the input admittance and 

the reflection coefficient of an infinite block of semi-

conductor are developed in this Chapter for the following 

waveguide configurations: 

(a) the rectangular waveguide in an infinite ground plane 

(Figure 4 .1~:; 

(b) the rectangular waveguide in bounded ground planes 

(Figure 4. 2) ; 

(c) the parallel-plate waveguide in bounded ground planes 

(Figure 4.3). 

The original formulation by Lewin( 43 )for the 

admittance of a rectangular waveguide in an infinite ground 

plane radiating into a lossless half-space has been modified 

for the case of a lossy semi-infinite medium. The admittance 

for the configurations (b) and (c) are then deduced from 

the new formulation as special cases. 

Numerical calculations are made and discussed. 

Measurements which confirm the theory have been carried out 

with a microwave reflection bridge at 9.522 and 34.5 GHz. 

The results of measurements with n-type germanium and also 

with air and selectron at the end of a rectangular waveguide 
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opening onto a metal flange, are given. 

4. 2 The Reflection Coefficient of a Semi-Infinite· Block of 
Semiconductor at the End of a Rectangular Waveguide 
Opening onto an Infinite Ground Plane 

In the structure of Figure 4.la the region 1 is 

the interior of the air filled guide and region 2 is the 

semi-infinite half-space filled with a material of complex 

permittivity €. If a TE10 mode is excited in region 1 of 

such a structure, the energy is radiated from the guide into 

half space~> 0). Since the ground metal flange is taken 

to be infinite, radiation is confined to the half-space 

~ > ~- We wish to determine the electric and magnetic fields 

in regions 1 and 2. 

In a source free homogeneous medium such as region 

1 or 2, the electric and magnetic fields are satisfied by 

the following equations< 44 ) 

and 

E = V(V.A) - jw~A - V x F 
jw€ 

H = V(V.F) - jw€F + V x A 
jw~ 

( 4. la) 

( 4 .lb) 

where ~ is the permeability of the medium, € is the complex 

permittivity of the medit® and the quantity F is called an 

electric vector potential in analogy to the magnetic vector 

potential A. The electric and magnetic fieids can also be 

described in terms of either A or F, regardless of its actual 

source. There is a great deal of arbitrariness in the choice 

of the vector potential. If we choose A = 0, the equations 

(4.la) and (4.lb) may be written as 
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INFINITE 
METAL FLANGE 

--fr----------~-v 

-7-=-~E~- 1~o£o 

RECTANGULAR 
WAVEGUIDE 

Z=O 

(?) 

(b) 

Ha lf-Spdce (2> o) 

FIGURE 4.la: A Semi-infinite Block of Semiconductar or 

Dielectric Sample at the End of a Rectangular 
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Waveguide Opening onto an Infinite Metal Flange 

FIGURE 4.lb: The Electrical Equivalent Circuit of the 

- Above l'laveguide Syst;em, 



E = - 'Vx F ( 4 • 2a) 

H 1 
[ 'V('V.F) + k2 

F J ( 4. 2b) = j W]J 

"'2 
where k =- 2it.A W Eo 

If F is taken to have only a single component F , we obtain 
X 

a field with no electric field in the x-direction. This is 

otherwise known as the TE to X mode or TE mode. Thus the 
X 

field components are 

E 0 (a) Hx 
1 ~2 + k~ F (d) = = jw]J X ax2 X 

()Fx 1 
d2 F 

E (b) Hy 
X (c) ( 4. 3) = ·-- = j W]J y az ax ay 

()F a2 F 
E +~ (c) H 1 X (f) = = jw]J z ay z ax pZ 

Equating the y-components of the electric fields in the two 

regions at the aperture z = o, 

E y(l) = E y (2) ( 4. 4) 

z=O z=O 

There will be an incident wave plus a reflected wave plus the 

higher order modes in region 1 and a radiated wave in region 

2., For z<O, we have for dominant modet 

= [ -jk1z e +jk1 zj 
e + . R sin 1TX 

a 
( 4. 5) 

t Page 542, Reference 41. 
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where k1 is the propagation coefficient in r~gion 1 and is given 

by · k 1 -- [ k
0

2 - ( 7f) 2 J 112 
k · th t · ff · · t ~ , 

0 
1s e propaga 1on coe 1c1en 

in free space and ,R is the voltage reflection coefficient. 

By equations (4.3b) and (4.5), 

F - foz E 
dz 

x(l) = y (1) 

1 [ -jkl z jk1z J 
sin (g) ( 4. 6) = - jkl -e + R e a 

The vector potential F can be rewritten for region 1 with 
X 

the addition of higher order modes. Thus 

cos (n~y)e 
y z 

ron ( 4. 7) 

where A = a constant, Y = [ (m7f) 
2 

+ (mr) 
2 

k2l 

112 

and 
... · ron ron a b ol 

~ denotes the term m = 1, n = 0 is omitted from the 

double series as it is already included in the first term. 

E (1) 
¥ 

= _ ()Fx(l) 
az 

z=O z=O 

= ( 1 + R) . (7fX) s1n --a 

00 00 

\ \~ 
LL 

1 0 A ron Ymn sin(:7f x)cos(~7f y) 

( 4. 8) 
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The field in region 2 corresponds to a field radiated outwards 

from the plane z = 0. Thus 

rr e-jkr 
E(x' 1 y') 

r 
dx' dy' ( 4 • 9) 

0 0 

where x' andy' denote the coordinates in the aperture; r, 

the distance between a point at z = 0 plane and a fixed point 

at (x, Z) 1 i.e. [ (x 
2 (y y') 2 z2] 

1/2 
Yl r = - X') + - + 

A 

E (x' 1 y') the aperture field; k the wave vector in region 2 

and the factor 1/2 7T has been included for convenience only. 

The boundary conditions for the electric fields at z = 0 are 

such that they are zero at the metal flange and continuous 

and equal to E(x, y) in the aperture. Thus from equaticm 

( 4. 4) 

E (X I y) = Ey ( 1) I = E ( 2 ) 
z=O Y 

(4.10) 

and from equation (4.8) 
00 co 

E(x 1 y) = (1 + R) . (nx) _ "L \~A . (ron ) · (nn y) s1n -- L ron y s1n -- x cos ·b--a 1 0 ron a 

which, in terms of aperture coordinates, assumes the form 
co co 

nx' ' _, . ron nn E(x' ,y') = (1 + R) sin(--)- L ......, A Y s1n( x')cos( y') a L-mnmn a:- b 1 0 

(4.11) 

The coefficients (1 + R) and -Amn Ymn of this Fourier Series 

can be found in terms of the aperture field 

fo
a J b

0 

1 + R - 2 E (x' , y') - ab • (7T ') d ' d ' Sln -- X X y a 

( 4 .12) 



and 

-Y A ron ron 

a b 

E(x 1
1 y 1 ) sin ·(:m1r x 1 )cos(h7T y 1 )dx 1 dy' 

a b . 

(4.13) 

where the integration has been taken over the aperture and 

Emn is 1 unless n = O, when it equals 1/2. 

The remaining boundary condition to be satisfied is 

the continuity of the x-component of the magnetic field in 

the two regions at the aperture z = 0. 

Hx(l) lz=O 
= Hx ( 2) I z=O 

or 

z=O 

(4.14) 

An expression for 1 - R can be obtained by substituting 

equations (4.7) 1 (4.9) and (4.13) in equation (4.14) and 

using equation (4.12) for 1 + R 1 the normalized waveguide 

admittance Y 
11 

at plane z = 0 1 can be shovm to 

be equal to (Appendix B) 

y 
n = 

= 

1 - R 
1 + R 

• (TIX) ( 1 1) s1n - E x 1 y ···· a 

G(x 1 y, X 1 
1 y 1 )dxdydx 1 dy 1 (4.15) 
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where 

Dl = foa Job 

and 

.E(x', y') sin.(!!:.jc')dx'dy' 
a 

. 2(TIX)d d s~n - x y a 

(4.16) 

(4.17) 

"' 00 00, 

e._-_j_k_r + I [ '!__ Emn ( L 
r 1 0 ab Ymn ax2 G(x,y,x' ,y') 

sin(~TI x') cos(ETI y') sin(:TI x) cos(~TI y) 

(4.18) 

The aperture field as described by the equation (4.11) 

contains higher order modes excited by the discontinuity at 

z = 0. The amplitudes of these higher order modes may be 

assumed small compared to that of the dominant mode and the 

aperture field can thus be equal to the field of the dominant 

incident mode. Thus if 

TIX 1 

E(x', y') =sin(---) 
a 

(4.19) 

then o
1 

= o
2 

= ab/2 and all terms of the double series in G 

of equation (4.15) integrate out to zero since 

rrx' rrx' sin.(--) sin (m--) dx' = 0. 
a ,a 

This allows one to write 

equation (4.15) as 

a a b b 
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y = 
n 

j -jkr e 
r 

dxdx'dydy' 

(4.20) 



This is a quadruple integral that can be transformed into 

a double integral by the change of variables as described 

in Appendix C. Thus 
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y 
n 

_!i 
abA. g 

ru=O 1 v=O (b - v) [(a - u) cos(i u) 

+ ~ sin(: u} 

(4.21} 

If the region 2 contains air (£ = 1} instead of a semiconductor 
r 

or dielectric material, the above equation simplifies to an 

expression analogous to that described by Lewin( 43}. 

To facilitate numerical integration, equation (4.21} 

has been simplified to the following form: 

a [£ - U25/{~) 2] b 
[(a-u) cos(~ u) 

j4<t? a 
y. r (b-v} = 

I u=O I v=O 

n a 2b 
[1 2] 

1/2 
- o. 25/ <ar 

), 

4 (a}2 " 

:] 
-j27T a /[. [u2 + v2] 1/2 

£ + e - ( --) 
a sin(~ u} 2.: r a A. . r 

+ -
4 <x> 2 [ 2 it2 dudv 

Tf " £ -r u + v 

( 4. 22} 

The voltage reflection coefficient of the waveguide structure 

at the plane z = 0 can be written as 

1 - y 

R = 1 + J 
n 

n 

(4.23} 



The solution presented above is not completely an exact 

solution and has been obtained on the basis of an assumption 

that the aperture field is equal to the field of the 

dominant incident mode. The possible generation of higher 

modes excited by the discontinuity at z = 0 has not been 

taken into account in the theoretical solution. 

4. 3 THE REFLECTION COEFFICIENT OF A SEI,~'I--INFINITK BLOCK OF 
SEMICONDUCTOR AT THE END OF A RECTANGULAR WAVEGUIDE 
OPENii\fG ONTO BOUNDED G·R?1u:NJ5 PLANES 

The geometry of the problem is given in Figure 4.2. 

The equation (4.21), after some algebra, gives 

¥. = y y 
1n n o 

b 

f 
v=O 

a u 7f - -) cos(-a a (b-v) { 

(~) 21 
A 

1 • ( 7f k2 + -jk ./u2+v2 e du} dv ·+ - s1n a u} 
( 7f) 2 7f "'2 ./u2+v2 k + a 

(4.24) 

For the configuration of Figure 4.2 we assume that the 

U). 

x-directed wave propagation at z>O is negligible. Since 'a' 
• 

becomes infinite at z>O and the variable u is small in 

comparison with a, the terms involving ~ in equation (4.24) . a 

approach zero. 

With this assumption, 
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SEMICONDUCTOR FILLED 
BOUNDED HALF-SPACE 

BOUNDED METAL 
FLANGE 

y 

RECTANGULAR WAVEGUIDE 

FIGURE 4.2: A Semi-Infinite Block of Semiconductor 

at the End of a Rectangular Waveguide 

in Boundeq Grpund.Planes. 

y 

PARALLEL-PLATE WAVEGUIDE 

Z=O 

FIGURE 4.3: A Parallel-Plate Waveguide in Bounded 

Ground Planes ·coyered by a Semi-Infinite 

Block of Semiconductor. 

FLANGE 

'-



[£r - (fc/f) 2] t 
co A 

Y. 2TI (b-v) ".?_j_ f 
e -jk/ u2+v2 

= b/.. l.n 7f I 2+ 2 fiG v=O u=O u v 

0 (4.25) 

The integral (4S) in the parenthesis of equation (4.25) is 

to H:
0

(
2) d~v) so that 

[£ - (fc/f) 2] 'b . ( 2) A 

Y. r 2TI 
Jo 

(b-v) Ho (kv) dv (4.26) = b). l.n 

fl: 
which becomes, after normalising with respect to the 

I l-(fc/f)2J 1/2 ' characteristic admittance Y
0 

= _ 

y 
·n = 2TI 

b>..g' 

b 

f 0 

fl o 
£ 

0 

'(b-v) H· ( 2 ) 
0 

(kv)dv (4.27) 
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du dv 

equal 

To check the validity of cequation (4.27), the admittance can be 

simplified for air at the end of the guide for which case 

£r = 1, k = k
0 

so that 

This agrees with the result given by Lewin( 43 ). 

(4.28) 



4.3.1 An Alternative Solution of the Admittance for the 
§ystem of Figure 4.2 

If we assume that the total electric field in the 

aperture z=O is that of the dominant TE10 mode, then 

and 

. E _ lab . t'{2 
Y I z=O -· o 

E 
X 

z=O 

= 0 

'IT X Cos a IYI < 

IYI > 

b/2 (4.29) 

b/2 

(4.30) 

The latter equation gives us tranverse electric to x mode 
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i.e. TE mode. For this mode, the x-component of the magnetic 
X 

field in region 1 is given byt 

H 
1 [ k2 - kx2] 14J = 

X jw~ 

k2 - (7r/a)2 
= E 

jw~ 'k y J z 

The transform of this field at z=O plane may be written as 

where kl 
z=O 

= - E y 
z=O 

A 

= k - w/0€ 

"2 2 k -('IT/a)· 

w~ kz 
( 4. 31) 

z=O 

and kz is the z-directed wave vector 

at z>O for the structure of Figure 4.2 which can be written 
) 

approximately as 

K = lk2-k 2 2 
z -k 

X y 
~ lk2-k 2 (4.3la) 

y 

t Page 181, Reference 44 



with kz is chosen so that 

Re [k ] >0 1 Im[k ] <0 ' ; z ' z ( 4 • 32) 

The transform of the electric field Ey at z=O plane is 

expressed ast 

E y = r 
) 

z=O --oo 

dy 

-oo 

-jk y e-jk x E (x,y,O) e . y ·-x y 
(4.33) 

Since the x-directed wave propagation is assumed to be 

negligible at z>O, equation (4.33) can be rewritten ast 

E y 
z=O 

00 

-oo 

-jk y 
Ey(x,y,O) e y dy 

which becomes on substituting equation (4.29) 

E y 
z=O 

cos 

b/2 

1Ti f 
-b/2 

TIX 2 
cos- -a k 

y 

-jk y e y dy 

sin (k b/2) y 

The complex power leaving a region is defined as 

p· = §j) E x H *. dS 

t Page 181, Reference 44 

(4.34) 

(4.35) 

(4.36) 
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The z-component of the complex power transmitted at the z=O 

plane of the waveguide system as shown in Figure 4.2 can 

be written as 

a/2 co ax a· az 

f f 
y 

p = dx dy 
0 E E 

-a/2 y z -co 

H* H* H* 
X y z 

a/2 co 

=-f dx f E H* dy (4.37) y X 

-a/2 -co z=O 

To evaluate this complex pov.rer, we shall make use of the 

integral form of the Parseval's theoremt, which is 

co co 

J f < x > g < x > * dx = ~ 7T J :r < k) g: * < k) dk (4.38) 

-co -co 

Application of this theorem on equation (4.37) yields 

a/2 co 

p 1 

J 
dx J E H* lz~O dky = -27T y X 

(4.39) 

-a/2 -co 

The complex c<?n:Jugatc power can be written as 

a/2 co 

1 ( 

J 
-* P* = -2TI J dx E H dky y X 

(4. 40) 

-a/2 z=O -co 

t Page 458, Reference 44 



Substituti~g equations (4.31) and (4.35) for Hx and Ey 

respectively, we obtain 

4 P* = 
"'2 2 
k - (rr/a) 

W]l 

a/2 

J 
-a/2 

2 TI:X d J:" . 2 (k b/2) cos --- x s~n Y a - .. 
- 2 

-= ky kz 

4 
"2 2 
k - (TI/a) 

W]l 

00 . 2 (k b/2) 
s~n . y , 

2 
ky kz 

(4.41) = rrb J 
0 

The waveguide admittance at the plane z=O is defined as 

y = ·P* 
lvl2 

(4.42) 

where lVI is the magnitude of the aperture voltage and can 

be found as follows 

b/2 a/2 
v = J-b/2 Ey 

dy I E . dx 
y 

z=O a/2 z=O 

b/2 a/2 
2 

J 
dy J 

2 rr.x 
dx 1 (4.43) = ab cos = 

a 
-b/2 -a/2 

With I vi is unity in equation ( 4 • 4 2·.) 1 

00 

(k b/2) 
4 [k2 (TI/a) 2 ] 

J 
sin 

2 - y dk ( 4. 44) y = rrb k 
2 

k Wll y 
0 y z 

It is convenient at this point to normalize equation (4.44) 
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with respect to the characteristic admittance of the waveguide, 

which is 



Thus 

y 
n 

y 
0 

= 

2 1/2 
.[1 - .. (fc/f) .. ] . 

~ 0 

[~ -r 

[ 1 -

. 2 (k b/2) s1n J __ ·_. _ 
? k ·~ k 

y z 

(4.45) 

dk y 

(4.46) 

For a lossy medium, k has an imaginary part so that 

k 2 
y 

which satisfies equation (4.32). 

(4.47) 

For a lossless 

medium, however, proper values of kz must be chosen with 

f = k. Thus 

k = lk2- 2 lkyl < k z ky 

(4.48) 

k = - j t~k 2 - k2 lk I > k z y ·y 

With these values of k , the admittance for a lossless medium z 

becomes 

y 
n = 8 

b/... 

[£ -
r 

[ 1 

dk" y (4.49) 
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If a metal plate is placed at distance 1 from the z=O plane, 

equation (4.46) assumes the followi~g form: 

~ 

8 
[E -

Y 
. r 

n = -b 
A. [ 1 -

.. 2 (ky. 
s1n . , 

b/2) 

k 2 ,,.,.::.-=2--
k -.Y 

dky 
k 2 y 

(4.50) 

which simplifies to the original equation (4.46) for the case 

1=00 • To simplify further, equation (4.46) can be written 

as 

y 
n 

where f
1 

(k ) 
·y = 

= 

1 

1 
2TI 

/k2 - k 2 
y 

.. 2 (k b/2) 
s1n y · ·. 

k• .2 ---

y 

f 1 (k: ) f 2 (~ ) dk 
y . y y 

Taking the transforms of f 1 (ky·) and f 2 (ky·), 

Fl (y) 

F2 (y) 

= 1 f 00 

2TI 
-oo 

-jk y 
e Y dk 
1"2 2 y 
. k - ky 

= 1 H (2) (k y) 
2 0 

1 J: 1 
sin

2
(ky = 2TI' k 2 

y 

'1 
y) IYI b 

·{ ~ (b -
.$ 

IYI > b 

b/2) -jk y e y 

(4.51) 

(4.52) 

(4.53) 

(4.54) 

dk · ... Y 

(4.55) 
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Using ~~rseval's theorem, equation (4.5l).becomes 

y 
n 

(f /f) 2 ] 00 

c 2 1/2 J Fl (y) F2 (y) dy 
(f /f) ] 

C -oo 

(4.56) 

Substitution of equations (4.54) and (4.55) in (4.56) gives 

y 
n = 2'IT 

bl. 
g 

[€ -r (b-y) H
0 

<2 > (k y) dy 
[ 1 -

(4.57) 

which agrees with equation (4.27) as expected. 

The reflection coefficient of the waveguide system at plane 

z=O can be expressed in terms of Y • n 

R = 
1 - y 

n 

1 + y 
n 

(4.58) 

4. 4 THE REFLECTION COEFFICIENT OF. A SEMI-INFINITE BLOCK OF 
SEMICONDUCTOR AT THE END OF A PARALLEL-PLATE V.JAVEGUIDR 
OPENING ONTO BOUNDED GROUND PLANES -

When 'a' in Figure 4.la approaches infinity, the 

rectangular waveguide degenerates into a parallel-plate system 

with infinite fla:nges (Fig.4.3).With fc = 0 and A =A, for . g 

this configuration, the admittance can be written from 

equation (4.27) as 

y 
n = 2'IT 

bA € r J: · (b-v) H
0 

12l (kv) dv (4.59) 
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To check the validity of this equation, the admittance can 

be calculated for air at the end of a parallel-plate system 

for which case f = 1, k = k so that r o 

y 
n = 27T 

b>.. Jb (b-v) H ( 2 ) 
0 0 

(k
0

v) dv 

a result that agrees with Lewin( 43 ) as expected. 

(4.60) 

An alternative solution to this problem is also 

possible in the same manner as in Section 4. 3 .1. 

4.5 Numerical Calculations 

Equations (4.22) and (4.23) have been evaluated 

numerically on a CDC 6400 Digital Computer, to calculate 

the normalized waveguide admittance and the reflection 

coefficient at the z=O plane of the structure of Ficju_re 4 .la. 

The nt~erical integration of equation (4.22) was performed 

by Simpson's rule( 46 ). For higher accuracy, small increment.3 

(value of h in Simpson's rule) were used near the regions of 

the singularities (u = 0 1 v = 0) where the integral changes 

very rapidly to infinity. 

Numerical calculations were made for the following 

two cases: 

(a) a= 2.286cm, b = 1.016 em, f = 9.522 GHz 

(b) a =0.712 em, b =0.356 em, f = 34.5 GHz 

The results of these calculations are given in Figures 4.4 

through 4.7 and in Tables 4.1 through 4.4. The structure 

of Figure 4.la can be represented by an equivalent circuit 
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consisting of a conductance and a susceptance as shown in 

Figure 4.lb. Figures 4.4 and 4.5 show the cha~ges in such 

parameters as functions of resistivity and dielectric constant. 

Figures 4.6 and 4.7 show the plots of the reflection coefficients 

as functions of resistivity and dielectric constant for 34.5 

and 9.Si2 GHz, respectively. 

Finally, as a check on numerical results, the integral 

Y in equation (4.21) has been evaluated approximately, for 
n 

A A 

the case where k has a large complex value. If k has a 

large negative imaginary part (i.e. in low resistivity 

materials), the contribution to the integral in equation (4.21) 

is significant only near the region u = 0 arid v = 0. Thus 

for a>>u and b>>u, the equation (4.21) becomes: 

y = 
n 

[£ -
r 

[ 1 - (f /f) 2 ] c 

4j 
abA.g 

A 

-jk/ 2+ 2 e u v 

/u2+v2 
dUdy 

(4.61) 

The limits of integration can be extended to infinity without 

changing the value of the integral significantly. Thus 

y = 
n 

[£ -
r 

[ 1 - ( f /f) 2 ] . 
c 

A 

- j k lr--=-2-+--=-2 
e u v du]dy 

/u2+v2 
,. 

(4.62) 

The integral in the parenthesis is given by( 45 ) rr
2

. H (2 ) (:kv) 
J 0 

and the resulting integral_ is given byt 

t In formula (143) of Reference 45, when b->-0, J:H
0 

(
2 ) (zx) dx=l/z 



1T 

2j 

00 A 

J H ( 2 ) (kv) dv =· ·;J. 
v=O 0 

1 
-;;:: 

k 
(4.63) 

H 
( 2) where is the Hankel function of the second order. 

0 

Thus 

yn ~ t--£-:_f_c_/_f_) =2 J 1/2 ( 4. 64) 

on the reasonable assumption that Re [£ ]>> (f /f) 2 for G . r c e 

-[i € r/2 
(f:/f)2 1 

R 
er 11/2 (4.65) 

1 +[1 (f /f)2 
c -

which agrees with the approximate· equation (3.12). 

Equation (4.46) was also evaluated numerically in 

the case o.f germanium fille~ half-space for a rectangular 

waveguide with a=2.286:cm, b=l,Ol6 em and f=9.522 GHz. The 

results of these calculations were found to be similar to 

those of Figure 4.4. 

4.6 Experimental Techniques 

The principal objective of the experimental programme 

was to obtain data on the behaviour of the reflection 

coefficient of a sewi-infinite medium, in order to confirm 

the theoretical predictions of section 4.2. 
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( ~) SAMPLE PREPARATION: 

Large blocks of n-type germanium samples were 

obtained to cover the cross-sections of X-and Q-band 

waveguides. The reflecting surfaces were prepared by 

lapping wi·th a very fine silicon carbide paper. The lengths 

of the samples were large compared to the skin depth o, 
which is found to be given by 

1T -tan -J ·ih: 
J 

-1 

cos 2 (4.66) 

This equation was evaluated numerically for g·ermanium at 

9. 522 and 34.5 GHz. The results are shmvn in F.igure 4. 8. 

"Selectron '; which is.· a trade name for a particular 

kind of lossless plastic (Er = 2.85), was also used for 

measuremen·t. The dimensions of the piece, in the form of 

a triangular prism, were: sides: 13" x 13" x 18.5~ height: 

19.5". 

{B) MICROWAVE MEASUREMENTS 

Measurements of the reflection coefficients were 

made using the microwave bridge circuit of Figure 2. 7. The 

theory of operation and the practical setting-up procedure 

of such a bridge circuit have been discussed in detail 

in Chapter II. Photographs of the experimental set-up at 

34.5 a.nd 9.522 GHz are as shown infigures 2.9 and 2.10. 

The sample holder as shown in Figure 2. g is a 
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Dl007 waveguide section with a high-precision 90° flange. 

This section was connected to one side arm of the reflection 

bridge. The semiconductor sample is allowed to rest on the 

flange. In the measurement with selectron and air, the 

horizontal configuration of Figure 2.10 was used. ~ 

Measurements were made with n-type germanium of 

various resisitivity (0.1, 1, 5, 10, 25, 50 ohm em), 
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selectron and air at the end of a rectangular waveguide opening 

onto a metal flange at 9.522 and 34.5 GHz. Equation (2.12) 

was used to calculate the reflection coefficients. 

( (j D.C. MEASUREMENTS: 

Measurements were also made of the d.c. resistivity 

of each sample of semiconductor with a high quality 4-pro~e 

tester. 

4.7 Results 

The results of the reflection coefficient measurements 

for the case of n-type germani~®, selectron, and air are 

given in ~igures 4.6 and 4.7. The microwave resistivity 

and dielectric constant were determined from these figures by 

comparing the magnitude and phase of the reflection coefficient 

with those obtained from calculations. The values of the 

resistivity and dielectric constant determined in this way 

are shown in Tables 4.2 and 4.3 together with the values 

obtained from d.c. measurements. The measured values of the 

reflection coefficient are also shown in the above-mentioned 

tables. 
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4.8 Discussion 

Table 4.1 which shows a comparison of the approximate 

and exact solutions of the reflection coefficients for Ge 

indicates t:hat the approximate equation (3.12)_ gives an error 

in the phase of the calculated reflection coefficient for the 

condition o<2ws s , as pointed out in Section 3.5. o r 
The theoretical values of the reflection coefficients 

as shown in Tables 4.2 and 4.3 are calculated from equation 

(4.23) using the nominal resistivities of Ge. A comparison 

of the tables shows that over the resistivity range 5<p<25 

nero and dielectric constant range l<s <2.85, the calculated 
r 

values of the reflection coefficient are in good agreement 

with the measured values at 34.5 GHz, compared to the corres-

ponding values at 9.522' GHz. Since 0.1, 1 and 50 nero samples 

had resistivities significantly different from their nominal 

values (cf. D.C. r-r easurements in Table 4.2), the calculated 

reflection coefficients of these samples at 9.522 GHz did 

not agree well with the measured values This necessitated 

the reflection coefficients to be computed on the resistivities 

obtained by d.c. measurements and the results are given in 

Table 4.4. 

Inspection of this table shows that over the range 

0.26<p<45.76 nero, the calculated reflection coefficients agree 

with the measured values at 34.5 GHz. However at 9.522 GHz, 

these values and in particular, the phases of R, did not 

agree well. The possible reason for this is the small size 



of the samples used, particularly the 0.26 and 45.76 Qcm 

ones which were inadequate to satisfy the condition of a 

semi-infinite medium assumed in the theory. This was 

detected by introducing a metal plate in the half-space 

around the sample and observing the change in the detector 

reading of the microwave bridge circuit. The minimum size 

of a sample should be equal to or greater than (a+lOo) x 

(b+lOo) x So to satisfy the condition of a semi-infinite 

medium where o = skin depth and a, b = dimensions of the 

guide. The other reasons for disagreement at both X- and 

Q-band are the finite size of the flange and the 

approximation made in equation (4.23) by neglecting higher 

order modes. 

The reflection coefficient measured on selectron 

is found to be in good agreement with the calculated value 
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at 34.5 GHz compared to those at 9.522 GHz. This is expected 

since at X-band, a.la~ger size of selectron is required to 

approximate the semi-infinite medium assumed in the theory. 

With air, however, ·the agreement is good at both these 

frequencies, because air in the half-space fulfils the 

condition of a semi-infinite medium in both these cases. The 

experimental set-up with the sample holder in the vertical 

position ( F·igure 2. 9) was found to give better results than the 

horizontal set-up (Figure 2.10) in the case of measurement 

of air. 

A. comparison of the microwave and d.c. measurements 



of resistivity in Tables 4.2 and 4.3 indicates that the 

microwave measurements at 34.5 GHz. give the correct values 

of resistivity and dielectric constant. However at 9.522 

GHz measurements, the dielectric constants for 0.26 and 

0.76 ohm em samples and resistivity for 45.76 ohm em sample 

are found to be in error. This is due to the disagreement 

of the measured and calculated values of the reflection 

coefficients of these samples as mentioned earlier. Also 

since the phase variations of the reflection coefficient 

with E and p at the low and high ends of the resistivity 
r 

range are small, a small error in the phase measurement of 

R can cause a large error in the E and p measurement. The 
r 

phase error is largely caused by the finite size of the 

sample and the flange and also by the unmatched condition 

of the tee of the microwave bridge. 
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Numerical calculations with experimental verifications 

have not been carried out for the parallel-plate waveguidesyste~. 

For future work it would be interesting to see how the 

reflection coefficient of this structure behaves as a function 

of the el,ectrical constants of the medium. 
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Resistivity 
(nominal) 

Dcm 

0.1 

1.0 

5.0 

10.0 

25.0 

50.0 

TABLE 4.1 

COMPARISON OF THE APPROXIMATE.AND EXACT SOLUTIONS 
. OF THE REFLECTION ·~OEFFICIENTS FOR Ge 

R ( 9. 522 GHz ) R (34.5 

Approx. Eq. (3.12) 
I 
Exact Eq. ( 4. ~3) Approx. Eq. (3.12) 

0.977 L11a~:7. 0.976 1178. 7 0.951 \177.3 

0.922 1175.7_ 0.919 1175.9 0.834 ]172.5 

0.826 l172.B 0.818 1173.0, 0.704 \174.0 

0.766 ]172.9 o;755 1173.5 0.680 1176.4. 

0.712 ll75.6. 0.702 1176.9 0.671 1178.5 

0.699 \177.6 0.690 1179.3 0.670 1179.2 

GHz) 

Exact Eq. (4.23) 

0.950 1177.2 

0.827 [172.5 

0.694 \174.8··. 

0.673 \177.8 

0.669 1179.8 

0.670 1180.6 



Samples 

. 

Germanium 
(n-type) 

Air 

Selectron 

TABLE 4.2 

COMPARISON OF THE MICROWAVE AND D.C. MEASUREMENTS OF THE 
RESISTIVITY AND DIELECTRIC CONSTANT TOGETHER WITH THE 

CALCULATED AND MEASURED VALUES OF THE REFLECTION COEFFICIENT 
AT THE AIR-SAMPLE INTERFACE OF FIGURE 4.la FOR 34.5 GHz 

Resistivity Calculated Measured Microwave f D.C. 
(nominal) R R Measurements 1 Measurements 

p e:r I 
Equation (4.23) ... 

Q em Q em n em . 
0.1 .0.950 1.177.2. 0.916 1175.7 0.27 18 0.26 

1.0 0.827 [172.5. 0.838 1173.5 0.9 16.5 0.76 

5.0 0.694 1174.8 0.691 1175.0 .. 5.1 16 4.96 

10.0 0.673 1177.8 0.678 1178.0 11.0 16 10.3 

25.0 0.669 .rl79.8 0.6775 1179.7 24.0 16 24.3 

50.0 0.670 1180.6. 0.678 1180.7 51.0 16 45.8 

Dielectric 
constant 
(nominal) 

~ 

1.0 0.214 l-86.2. 0.214 l-85.9. - 1.0 -
2.85 0.372 1189.3 0.360 1190.5 - 2.8 -



Samples 

Germanium 
(n-type) 

. 

Air 

Selectron 

. TABLE- 4 ."3 

COMPARISON OF THE MICROWAVE AND D.C. MEASUREMENTS OF THE 
RESISTIVITY AND DIELECTRIC CONSTANT TOGETHER WITH THE 

CALCULATED AND MEASURED VALUES OF THE REFLECTION COEFFICIENT 
. AT THE AIR-SAMPLE INTERFACE OF FIGURE 4.la FOR 9.522 GHz 

Resistivity Calculated R Measured R Microwave 
(nominal)· Measurements 

Equation (4.23) p E r 

n em n em 
' 

0.1 o. 976 [178.:] 0.960 1.178. 9 0.25 100 

1.0 0.919 [175.9 0.930 [177.8_ 0.75 55 

5.0 0.818 ll7 3 ·.£:.. 0.831 !}73.8. 4.8 17 

-· 10.0 0.755· [173.5 0.748 ll74.s 11.5 16.5 

25.0 0.702 _[}.76.9 0.697 [177.8 27.0 16 

50.0 0.690 [179.3 0.693 [180.6 65.0 16 

Dielectric 
constant 

(nominal) 

1.0 0.263 l-74.5 0.260 I [-74.3 " - 1.0 

2.85 0.417 ll96.4 0.364 [198.01 - 2.6 

D.C. 
Measurements 

n em . 
0.26 

0.76 

4.~6 

10.3" 

24.3 

45.8 

-
-

00 
0 



D.C. 
Resistivity 

(Qcm) 

0.26 

0.76 

4.96 

10.3 

24.30 

45.8 

TABLE 4.4 

COMPARISON OF THE CALCULATED AND MEASURED VALUES OF THE 
REFLECTION COEFFICIENTS FORGe IN THE STRUCTURE OF FIGURE 4.1(a) 

l . 9.522 GHz 34.5 GHz 
1 

Calculated R 

I 
Measured R Calculated R '" Measured R 

I Equation (4.23) Equation (4.23) 

I 

0.962 1177.8 0.960 1178.9. 0.918 1175 . .6' 0.916 1175.?-

0.933 ll76.4 0.930 1177.8 0.858 jl73.2 0.838 1173.5 

0.821 1173.1 0.831 1173.8 0.695 1174.7. 0.691 1175.0 -

0.753 1173.5 0.748 117'4. 5 0.673 !177~7 0.678 1178.0' 

0.702 1176.8~ 0.697 jl77. 8. 0.669 1179.8 0.6775 1179.7 

0.690 jl79.0 0.693 Jl80.6 0.670 1180.5 0.678 ·'1180.7 , 



CHAPTER V 

NICID\vAVE REFLECI'IONS FROM THE St.JRFACE 

"OF A FINITE l1EDIU-1 (EXACT SOLUTIONS) 

5.1 Introduction 

The admittance of a rectangular 'l:laveguide systen radiating into 

a finite mediun, folleJ,<7ed by free space can be calculated exactly. The 

appropriate equations are derived in Section 5. 2. The reflection co-

efficient of a rectangular waveguide system radiating into a semiconductor 

slab follc::Med by a conducting plate is also derived. The solution is 

presented in Section 5. 3. 'l'he adni ttance of a rectangular waveguide 
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system radiating into a loss less pla_c:;ma layer is fonnulated in Section 5. 4. 

Finally, nunerical co:rrputations are made. The results of 

calculations are given for Ge and plasma cases and have been compared 

with those given by previous authors • l\l3asurerrents which confixm the · 

theory are rrade on getrr.ani urn at 9. 35 GHz . 

5. 2 The 1\.drni ttance of a Pectangular lvaveguide System Radiating Into 
a Finite Hedi un Follo.ved ?Y Free Space. 

The exact solutions for an infinite medium as developed in the 

last chapter are useful for the detennination of semiconductor properties 

such as o and £ • Unless a semiconductor sample has a length t ~ 5o, it r 

cannot be assuned to represent a semi-infinite mediun (Section 4·.8). 

Since 6 increases v;ith resistivity, an increasingly large sample length 

(for example, t = 6 em for~50~ em saT.ple) is required for high resistivity 

semiconductors to achieve agreement between theory and e~riment. The 



availability of such large and costly semiconductor samples is a practical 

problem. Thus the developnent of the exact solutions for a finite semi-

conductor slab is desirable. 

The expression for the adni ttance of a rectangular waveguide 

radiating into a finite slab of semiconductor is derived in this section. 

The tedmique is the same as used by Canpton (4?) and Crosswell
1
et al (48). 

The geometry of the problem is given in Figure 5 .1. It is to 

be noted that the system of coordinates is different fran those u.sed 
I . 

previously. The theory of the fields present in such a system may be 

obtained fran the solutions of the equations 4.2a and 4.2b. Unlike the 

previous case for an infinite medium," the electric vector potential is 

assumed _to have bvo canponents. One fOSSible choice for F is 

-+ -+" -+ 
F = ~<P + ayljl (5.1) 

Thus ·the field caup:ments are t 

Ex=~ (a) Hx = ...!... [{a2o + a2;, l + k2•J. (dl 
az jw~ ax2 axay 

Ey =- ~ (b) lly = ...!... [~~ + a2;,j + k2;,J (e) (5.2) 
az jw~- axay ay2 . 

alJJ acp (c) . 1 l a2• a2;, J (f) Ez =-[---] Hz=- --+--
ax ay jw~ · axaz ayaz · 

In reg:ion 2, the solutions for 1JJ and ¢ may be constructed with an 

'incident' and a 'reflected' canponent: 
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(5 ,• 3) 

t x, y and z shall be read as the subscripts of E and H in Chapter V. 
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l J~ J 00 -jk Z jk Z -jk X -jk y 
<!>2 (x,y,z) = -- [I<I>e z +R<I>e z ] e x e · T dkxdk 

(21T)2 -co -~ Y 

and in region 0 ·with a 'transmitted' ccmponent only, 

1 J oo Jro -jkz0 z -jkxx -jkyY 
t1J (x, y, z) = T e e e dk dk 

O (21T)2 -ro -ro W X Y 

cp (x,y,z) 
0 

1 ICIO ICIO -jk z -jk X -jk v 
= (

2
1T)2 T<l>e zo e x e Y'" dk dk 

-oo -oo . X Y 

where the z-direction propagation constants1 

kz = h2 - k 2 - k 2 
X y 

are chosen so that 

Re(kz)' Re(k ) ~ 0 zo 

Im(kz), Im(k ) ~ 0 • zo 

(5. 4) 

(5. 5) 

(5. 6) 

(5. 7) 

(5. 8) 

(5.10) 

The electric and magnetic fields in region 2 can be found fran equa·tion 

5.2. 

Ey2 (x,y,z) = 

Hx2 (x,y,z) = 1 

(21T) 2 

---------- (5.11) 

---------- (5.12) 

-jk X -jk y . 
e xe Ydkdk 

X y 
(5 .13) 
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Hy2 (x,y,z) = 1 

(21r) 2 

and in region 0, 

Ex (x,y,z) = 
0 

1 

(5.14) 

(5 .15) 

'k ZO X y-dk· dk Ey (x,v,z) = 
0 - J

oo Joo -jk Z -jk X -jk~y 
J Tcpe · e e · 

(2n)2 -oo -oo ZO X Y 
(5 .16) 

Hx (x,y ,·z) = 
0 

Hy
0

(x,y,z) = 

1 

(2n) 2 

1 

(2n) 2 

0 X T - ~ T e ZO e X e y c1k dk 
J

oo Ioo~k 2
-k 

2 
k k J -jk Z -jk X -jk y 

-oo .oo jw~ cp jw~ ~ . ~ X y 
. (5.17) 

J
oo J"" [k~ -ki 
-oo _.., JW~ 

k k J -jk Z -jk X -jk y . X y ZO X y· T--T e e e dkdk 
ljJ • . cp X y 

JWjJ 

(5.18) 

where. k , k are v1ave nunbers of 'free space' and 'the canplex medium', 
. 0 

respectively. Assulling that the total electric field in the a};Brttrre 

is that of the daninant TE01 mode, the i~verse transfonn of equations 

5.11 and 5.12 at z = 0 plane gives, 

. . 

(; J

a/2 Jb/2· rr jkxx jk __ y 
= - cos~ e e y-dxdy . a 

ab y = -a/2 x = -b/2 . 

~- sin(k b/2) cos(k a/2) 
- 4TT.J?: --~- ' y = F 

k [n2 - (k a)2] 
X y 

(5.19) 

.. 

86 



(5.20} 

Equating the electric and magnetic fields at z = t, 

-jk R, 
-·k T e zo 

J zo tjJ 
(5. 21) 

(5.22) 

-jk i -jk R, 
= (k 2 - k 2 )T e zo - k k T e zo 

o x $ xytjJ 

(5. 23) 

-J·k R, -J·k R, 

- (k 2 - k 2 }T e zo - k Y. T~e zo 
0 y tjJ X y 'I' 

Equations 5 .19 and 5. 21 give, 

.k R, 
J z 

2k I,,, sin k i - Fe z 'I' z 
TtjJ = -jk t 

.k zo 
J zo e 

and frau equations 5. 20 and 5. 22, 

2k I~ sin k t z 'I' z 
T~ = .k . t 

'I' • J zo 
Jkzo e 

(5. 24) 

(5. 25) 

(5.26) 

Finally, the solution of equations 5.23 through 5.26 gives b.vo equations 

involving I$ and ItjJ. 
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I ((k2 - k 2)k cos k £ + j(k 2 - k 2)k sink£] 
~ X ZO Z 0 X Z Z 

+jk £ tk +k J + I,,,[-jk k k sin k £ - k k k cos k £] = - k k e z z zo jF 
~ X y Z Z X y ZO Z X Y 2k 

z 
(5. 27) 

I"' [ -jk k k sin k £ - k k k cos k £] 
~ X y Z Z X y ZO Z 

A2 2 
+ I,,, [(k - k ) k cos k £ + j (k 2 - k 2) k sin k £] 

~ y zo z 0 y z z 
jk £[ A k ] = .!. e z (k 2 - k 2) + (k2 - k 2) ..E: ·p 

2 0 y y k J 
z 

(5. 28) 

In detenninant fonu, I and I are found to be given by, 
1jJ ~ 

All Bl 

I = 
1jJ 

Al2 B2 
(5.29) 

All Al2 

Al2 ~2 

Bl '1.21 

B2 A221 

All Al2 
I = 
~ 

(5. 30) 

Al2 ~2 
A 

where A11 = (k2 - k 2)k cos k i + j(k 2 - k 2)k sink £ 
X ZO Z 0 X Z Z 

= -k k [k cos k £ + jk sin k £] 
X y ZO Z Z Z 

A 

(k2- k 2)k cos k £ + j(k 2- k 2)k sink£ y zo z 0 y z z 

(5. 31) 

1 jk2 £ [ A k .
1 = -2 e (ko2 - ky2) + (k2 - ky2) zo jF 

kz J 



Also, from equations 5.19 and 5.20 Rlj! and Rep are given by, 

R = ijJ 
(5. 32) 

Rep = \ (5. 33) 
... 

The equations 5.11 and 5.14 may be rewritten as, 

l Jco Joo -jkxx -jkyY 
Ex2 (x 1y,O) = -- G1 (k 1k ) e e dk dk 

(2n) 2 -b -co X Y z=O X Y 
(5. 34) 

1 
I

co Jco. -jk X -jk y 
H ( 0) G2 

(k lk ) e x e y- dk dk y2 x,y, = --
(2n) 2 -co -co X Y z=O X Y 

(5. 35) 

¥.rhere 

G1 (kx,ky) = jk [-I + R ] 
z=O z 1jJ ijJ 

(5. 36) 

A 

k2 - k 2 k k 
G

2 
(k 1k ) = y [I,,, + R,,,] - _2!_X [I + R ] 

x Y z--0 · '~' '~' · cp cp 
Jw~o Jw~o 

(5. 37) 

' 
The aperture adni ttance may n011 be calculated as 

-

J
b/2 Ja/2 

Y·= · E*(x 1y 1 0) x H(x 1y,O)dxdy 
x = -b/2 y = -a/2 

J
b/2 . Ja/2 - · 

= EJI;; (x 1 y 1 0) Hy 2 (x 1 y, 0) cJxdy • 
x = -b/2 y = -a/2 

(5. 38) 

Applying P.arseval 's theorem to e:;Iuation 5. 38 (the limits of integration 

may be extended to infinity because E (x 1 y, 0) is zero outside the aperture) 

and substituting equations 5. 36 and 5. 37 1 we obtain 
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Y= 

= 1 

(2Tr) 2 

t 
(k ,k ) G2 (k ,k )dk dk 

X y X y X y 

-
1
- [ (k2 - k 2) (I + R ) 

jw~ y ~ ~ 
0 

-kk'(I,~,+R)]}dkdk. 
X y 'I' 'I' X y 

With equations 5.32 and 5.33, this may be written as, 

Y = l Joo Joo ~ [(k2 - k 2 ) (2I, - lK) - kxk 2I ]dkxdk 
(21T} 2 -oo -co jw]J Y 1j.l k Y cp · Y 

0 z 

(5. 39) 

(5. 40) 

Normalising this admittance with resr,:ect to the characteristic admittance 

of the waveguide Y = [1 - (f /f) ]112 I J 11 IE , we obtain 
0 c d 0 

To facilitate nunerical evaluation of the admittance, the folla:.;ing 

change of variable is made : 

t Fbr the Fourier transform pair, 

g(x,y) = 
l fro fro -jkxx -jkyY 

G (k ,k ) e e dk dk 
(2Tr)2 -co -ro X Y X Y 

p arseval' s theorell is: 
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k = 8 cos a. 
X 

(5.42) 

k = 8 sin a. y 
(5. 43) 

dkdk 
X y = dS X (Sda.) (5. 44) 

so that 

J
oo J21f 

y = 
n S=O a.=O 

(5.45} 

when 
~ sin(B b2 cosa.) cos(8 -2a sina.} 

F' = 4n jt! 
cosa.[n2 - (Sa sin a) 2] 

(5. 46) 

and I,,, 1 I,~, are redefined in equation 5. 31 with k = 8 cos a and k = 8 sin a. 
'I' 'I' . X y 

Also 1 k = /;;.2- 82 
z 

k = /k2 - s2 
zo I 0 

(5. 48) 

are chosen so that equations 5. 9 and 5.10 are satisfied. 

Choosing proper roots of k and k 1 the admittance can be rewritten as 1 z zo 

Y = J2TI {Jk0 

n a.=O S=O 

jA A 'pl 
--:.q.._ F' [ (k2 - s2sirta) (2I - 2 ........ > 
(2n) 3 1/J k S 

z 

- 2 p}- cos a sin a I<l>]c1S} det+ J2
TT {fa 

o.=O S=k 

jAg 

(2TT) 3 
0 

X 

'F' 2 
F' [ (k2 - s2sin2a) (2! - _J- )- 28 cos a. sin a. IJd8} da 

1/J k 8 'I' z 

= .f21f 
a.=O 

(5. 48a) 



k = };;.2 - s2 
z where 

k = /ko2 - s2 
zo 

in the integral r
1 

(a) 

and k = /k2- s2 
z in the integral r2 (a). 

k zo = -j}s2 - ko2 

The reflection cceffici~1t at plane z = 0 is given by, 

1- y 
R = n 

1 + y n 

(5.48b) 

The derivation up to this point is similar to that of Gampton( 4?) and 

Cross~~ll et.al. (48). 

5. 3 The Admittance o.t__~_?mgular \\Taveguide Sys-t:-em Radiating into 

a Semiconducting Slab Follov.;ed by a Conducting Plate 

Heaton and Pal (lG) , in one of their recent publications, 

derived an expression for the reflection coefficient of a semiconductor 

slab placed across the or_:::en end of a rectangular \vaveguide. Their theory 1 

which is not essentially different from that of Lindmayer and Kutsko{?) 1 

is based on an tmbounded wave propagating in an axial direction. They 

assune that the z-directed propagation oonstant in the semiconductor 
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region is of the form y = jk = jw/1,1~. This is not fully justified, and in z z 
particular for semiconductor samples having lo.-J 

propagate in the transverse directions as well. 

€. ' r 
when tl-.te wave may 

A more general expression for the reflection coefficient of a 

semiconductor slab with couple."< pennit·tivity held against the v1aveguide 

flange and follo.ved by a short circuit, is derived in this section. The 

solution is based on the assunption of a TE01 field incident at the 



aperture and is obtained by extending the results derived in the last 

$ection. Nunerical canputations are presented for Ge 'slab case for 

varying values of resistivity and thickness. A canparison shows that t.l)e 

results given by the cited a'IJ,thors (lG) are justified for lON resistivity 

samples and are approximate for high resistivity ones (Fig. 5.5). 

The geometry of the problem is described in Figure 5. 3. A 

rectangular waveguide eXcited by the do.11inant 'IE01 mode opening onto 

an infinite metal flange v1hich is covered by a semiconductor slab of 

"" thickness .t and cauplex relative permittivity e:r. It is assuned that no 

higher order mo::les are excited at the aperture and the fields everyv.rhere 

. t' · jwt vary 1n lffie as e • Fbr the structure of Figure 5. 3, the electric 

fields in equations 5 .11 and 5 .12 disap~ar at the semiconductor-metal 

boundary (z = .t), which give the follcwing equations: 

Equations 5. 50 and 5. 33 give, 

I = R = 0 
<fl <fl 

Equations 5.49 and 5.32 give, 

;F 
I = ..t.:::... 

1jJ 

1 

With equations 5.51 and 5.52 in 5.39, 

1 
J:oo J:oo 

k2 - k 2 
* y Y= F Iljl(l 

(21T) 2 jwJJ 
0 

1 
J:oo J:oo 

p2(k2- k 2) 

= 
(21T) 2 WJ.l k tanh (jk R,) 

0 z z 

-j2k R, 

+ e z )d~ dk 
X y 

elk dlc 
X y 

(5. 49) 

(5.50) 

(5. 51) 

(5.52) 

(5. 53) 
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which becomes after norwalisation, 

). J.,., I"' # (1(2 _ k 2 ) 
y =-g- y 

n . (2n) 3 - 00 -ro k tanh (jk £,} 
z z 

dkdk 
X y (5. 54) 

In order to facilitate the nunerical evaluation of the admittance, t.~e 

follo.ving d1ange of variables is made, 

k = B cos a. 
X 

k = e sin a. , so that 
y 

"' 

Ioo [J:~ 
>. F I 2 (J.2. - B2 sin2 a.) da]de y - g 

n 6=0 (2n ) 3 Bk ta'1h (jk £) z z 

where 

F' = 

and 

The reflection coefficient at the plane z = 0 is given by, 

R = 
1-Y n 

l+Y 
n 

5.4 The Admittance of a ~ecta~g~lar Waveguide System Radiating 

Into a Pla~~ Layer 

(5. 55) 

(5.56) 

(5.57). 

(5. 58) 

The admittance of a \vaveguide system radiating into a homo-

geneous medi u:n has becxxne a matter of some concern to micra,vav"B antenna 

. . (49-53) Th f eli h rt engJ.neers J.n recent years • e presence o a me urn at tl e ape ure 

of a waveguide detennines the input acrrnittance of the waveguide. 

Kno.vledge of the variation of t.'"le input admittance and the changes in 

radiated signal level wit.h electrical constants of the m_-::.diun, is important 

95 



for the design of micro.:Jave antennas, such as the rectangular or parallel-

plate aperture b.JP8S, in a ground plane. Besides the change in radiated 

signal level, the reflected wave which results fran antenna mismatch, may 

adversely affect the op:;;ration of the transmitter. The re-entry of high 

s,t:eed space vehicles into earth's atmosphere, \vhich consists of plasma 

- -layers, creates problems in maintaining radio (X)!T[UUnications between the 

· space ships and the ground( 49
}. The measurement of the admittance of a 

waveguide may also be eT!\.')loyed to infer plasma properties. Tl1e dielectric 

ne2 
constant of a plasma layer can be expressed as £ = 1 - ---

r me: w2 
0 

and 

ranges fran zero to unity. For zero dielectric constant, w -Jne
2 

p - me:o ' 

'--which is kno.vn as the plasma freqmncy. 

The solutions to tl1e admittance of a waveguide under a plasma 

slab require extensive c:n'1lputer prcgranmes for the numerical calculations 

due to the tivo dimensional nature of the integral and its infinite limit. 

The solution to tile same problem under a lossy mediun by Compton ( 4 
?) has 

sane a:::rnputational advantages over the previous solutions, since it con-

tains only one infinite integral, instead of hJo. In this Section, the 

original formtuation by Compton for tl1e rectangular waveguide under a 

lossy slab is modified for tl1e case of a lossless pla&-na layer. Ccmputa-

tions utilizing the ned formulation are presented for varying values of 

thicJr-.ness and dielectric constant of the plasma layer. The results 

obtained are found to agree \<.':i..tll tllose given by the otller authors <49- 51). 

The geoiT'.etry of the problem is given in Figure 5 .1 except tllat 

the slab is replaced by a lossless plasma layer (e: < 1}. 'l'he ac1mittal1ce r 

is similar to equation 5. 45 in vJhich k and k asst:rne different roots z zo 
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with increasing B. Choosing prop2r roots of k and k , the admittance z zo 
may be written as, 

2TT fk jX "F' 
Y = f { -__ g_ F' [ (k2 - 82 sin2 a) (2I - 2- )-2s2cos asin aiJdS}da 
n a=O S=O (2TT) 3 ~ k 8 ~ 

z 

J
2TT Jk j).. "F' + { 0 

- g F' [ (k2 - s2 sin2 a) (2I - _J -) -2B2cos asin aiJdS}da 
a=O k {2TT) 3 ~ k B ~ 

z 

2 ").. 
+ f TT { Joo J g F' [ (k2 - 82 sin2 a) (2I~ - kjFB' )-2B 2cos asin aiq,]dS}da 

a=O k- (2rr) 3 
0 z 

{5 .59) 

where 

} (5. 60) 

in the first integral r
1 

(a) , 

k = jk z - sz zo 0 

} (5 .61) 

in the second integral r 2 {a) and 

= -jJsz - k z 
0 

} (5.62) 

in the third integral r
3

(a.). 



To facilitate numerical Calculations, the integrals Il (a) I I2(a) I and 

· r 3 (a) are simplified with the change of variables w = ~ , w = ~ 
0 

w2 = 82 - k 2 , respectively. 
0 

where 

k zo 

(5 .63) 

(5.64) 

(5 .65) 

and F', Ilji and I<P are redefined with 8 = Wk in equations 5.46, 5.29, and 

5.30 respectively. 
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1 jA ·p• 
r

2 
(a).= J - _ _3_ F'k 2 [ (c - w2sin2 c:~.) (2I,,, - -~ ) -2w2cos a sin a I.~-]k0dw !£; (2TI) 3 o r "' kzwko "' 

(5. 66) 

where k = -jk }w2 
- £ .. (5. 67) 

z .0 r 

k h- w2 k = (5. 68) 
zo o~ 

and F 1
, Ilji and I<P are redefined with 8 = wk

0 
in equations 5.46, 5.29, ru1d 

5. 30 respectively. 

where 

k = -jw zo 

(5.69~ 

(5.70) 

(5. 71) 



and F', I~ and I~ are redefined with B 

5.29 and 5.30 .J;espectively. 

[w2 + ko2]1/2 . t' 5 46 = lll o::xua .1ons • , 

5. 4.1 The Admittance of a Waveguide System Radiating Into a 

Semi--Infinite Hediuu 

Equation 5. 39 can be simplified to the admittance of a semi-

infinite mediuu as obtained in Section 4.2. ~Vhen the length of the slab 

in . I1gure 5 .1 beo:::mes infinite, R~ and R ~ are zero. Thus equation 5. 39 

becomes after normalisation, 

y = 
n 

A g 

(2n) 3 

Using the relation I~ 

A 
g 

(2n} 3 

F 
=- -- , this becorres 

dk dk 
X y 

where the folla·1ing change of variables ha.s been made: 

kx = B cos a 

k = B sin a y " 

(5. 72} 

(5. 73} 

It is noted that equation 5. 73 is equivalent to equation 4.21. • For a 

lossless plasma medium k = k so that 
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2 

d~Jda 2• [ k A F' (k2 - 82 sin2 a) 

yn = Ja=O JB=O 
g 

(2n) 3 s /Jc2 - s2 

+ {:o[ J:o 
A 2 

ae]da g F' (k2 - s2 sin2 a) 

(2n) 3 s /f32 - k2 

+ {~[ I:o 
A 2 

as] g F' (k2 - S2 sin2 a) da 
( 2n) 3 s /s2 - k2 

J2n J2n J2n = r1 (a)da + j I 2 (a)da + j r 3 (a)da. (5. 74) 
a=O a=O a=O 

The integrals r
1

, r2, r
3 

are transformed \-lith the follo.'ling change of 

variables, 

W = ~ I respectively. 

Thus, 

Ag 

(2n) 3 

2 
F' k{l-- w2 sin2 a) 
----------- cluJ 

w/1 - w2 

where F' is redefined with S = wk in equation 5.46. 

1 

I (a) = f!£;; 
2 1 

~L.. F' 
2
k (1 - w2 sin2 a) 

(2n)3 I 
wlw2 - 1 

where F' is same as in equation 5.75. 
2 

.F' [k2 - (w2 + k
0 

2) sin2 a] 

1 
(2n)

3 
[w2 + k 2][w2 + k 2 _ k2]7 

0 0 

wc"lw 

where F' is redefined Hith 13 = [w2 + k 2] 1/ 2 in equation 5.46. 
0 

(5. 75) 

(5. 76) 

(5. 77) 

McMASTER UNIYERSil't LIBRA~ 
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5. 5 Numerical Results and 'l'heir Interpretations 

(a) The approximate equation 3.1,7 has been evaluated m.rnerically on 

a COC 6400 Digital Computer to detennine roughly the effect of the slab 

thickness on t.~e reflection coefficients. The exact solution is represented 

by equation 5. 48b, which requires extensive computer programning for 

evaluation. Figure 5.4 exhibits such effects in Ge for the case 

a = 0. 712 an, b = 0. 356 an, and f""' 34.5 GHz. 

(b) Equation 5.55 has been evaluated numerically on a CJDC 6400 

Digital Computer by Simpson's rule. The integration on a is carried out 

first \vhile that on S is carried out over a finite range. The upper 

limit of f3 is chosen in such a \vay that the range of integration includes 

all the values of 8 for which the integrand has a significant value. To 

reduce the conputation time, the integration on a from 0 to 2n may be 

computed by means of Gauss' quadrature fonnula (S4) • The range of integration 

can be taken as 0 to n/2 for accuracy and the integrand is multiplied by 

four to obtain the final value. 

Nurrerical calculations were obtained for the folla-1ing bvo 

cases: 

(a) a= 2.28~am , b = 1.016 am , f = 9.35 GHz 

(b) a= 0.712 am, b = 0.356 am f = 34.5 GHz 

The results of this calculation are shown in Figures 5. 5 through 5. 8. 

Figures5.5 and 5.6 show the VS1iVR and the reflection coefficient as 

functions of resistivity and thickness of semiconductor slabs for the 

case a= 2.286 an, b = 1.016 an and f = 9.35 GHz. Figures 5.7 and 5.8 

sho;'l the VSivR and reflection coefficient as functions of resistivity and 

thickness, for ti1e case a= 0.712 em, b = 0.356 and f = 34.5 GHz. 



Finally, as a check on nunerical results, the integral Yn may 
A 

be evaluated approximately for the case where k has a large (complex) 
A 

value. When k is large in equation 5.54, 

k = /k.2 - k 2 - k 2 :':: k 
Z X y 

With these simplifications, equation 5. 54 beo::mes 

. F2dk dk 
J

oo Joo 
-co -oo X Y 

~ sin(k b/2) cos(k a/2) 
F = 4nt-"b x Y 

k [n2 - (k a)2] 
X y 

y2 = jk 

Also, 

1 

(21T) 2 

= 

p2CJk elk J
oo Joo 
-oo -oo X Y 

8a 

b 

cos2 (k a/2) y 
dk y 

(5. 78) 

(5. 79) 

(5. 80) 

(5. 81) 

vli th the change of variable k b/2 = x, the first integral is reduced to, 
X 

f
oo sin2 X c1 X 

2- ·£=b!. 
0 x2 2 2 

and with k a/2 = w, the second integral is reduced to t 
y 

COs2 w 1 1 ----- o.w = - -
[(n/2f -w2]2 4an 

t Problem 4-39, Reference 44. 

(5. 82) 

(5. 83) 
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With these simplifications, equation 5. 81 becomes unity so that equation 

5. 78 nay be written as 

r .. 11/2 

Yn = ll -E~fc'fl2J . 
1 (5.84) 

The reflection ooefficient at the z = 0 plane is therefore given by 

R = ±.~slfi2 y/2 roth y2t 

1 + [;-_ ~: c/f) 2 r/2 coth y 2' 
(5. 85) 

a simplified result that agrees with the approximate equation 3.11 as 

eXfBcted. 

(c) Equation 5. 59 has also been evaluatal numericall::tT 

for a rectangular waveguide system vli th a == 2. 2 86 1 b == 1. 016 and 

f = 10.524 GHz 1 for several values of £r and £. The computation of the 

integrals I 11 r
2 1 I 

3 
was done first with the aid of the Gaussian 

Quadrature Fbnuula 1 with a held constant at a nunber of equidistant 

I_X>ints in the range 0 - 27T 1 at an interval of 0 .105. These values 1 'tlhich 

form the integrand for the a-integral 1 are then sunmed by Sirrpson' s rule 

to evaluate the a-integral. 

The results of this calculation are shovm in Figures 5. 9 through 

5.13. Figures 5.9 1 5.10 and 5.11 shov1 the nonualiss>d conductance and 

susceptance as functions of· dielectric constant and layer thicJr.ness. 

Figures 5.12 and 5.13 shad the magnitude and phase of the reflection co-

efficient as ful!ctions of dielectric constant and layer t,~icJr..ness. The 

results are found to agree \vith those giV811 by other authors <49- 51). 
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In future v.rork, the waveguide admittance of the structure of 

j Figure 4. 2 under a plasma layer can be obtained. 'Ihis structure \vill have 

same computational advantages over the previous solutions as it provides 

only one integral instead of bvo. 

5. 6 ExJ?erirrental Confirmation 

The principal objective of the exr:erirrental programne was to 

obtain data on the behaviour of the reflection coefficients of finite 

gennaniun slabs in order to confirm the theoretical predictions of section 

5. 3. 

The samples of gennani un wi t.."1 b~e dimensions 3 x 2. 5 x 0 .1 an 

and 3 x 2. 5 x 0. 2 au were cut frcrn a large block of 10 and 50 ohm ern n

type genuaniun crystahby means of a 20-mil . diamond-head wheel cutter. 

Reflecting surfaces were polished v·1i th a fine emery paper. 

M.easureruents of the reflection coefficients .vere made on these 
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samples at 9. 35 GHz. The slabs were backed by a high conductivity short

circuit plate and the rreasuring procedure v.;as the same as described in Section 

4. 6. The photograph of the sanple holder is shotm in .Figure 2 .11. 

Heasurernents were also made of the d. c. resistivity of each 

sample of semiconductor with a high quality 4-probe tester. 

5.7 Results and Discussion 

The results of t.."1e reflection coefficient measurements on 

samples of n-type gerr.anium are given in Figures 5.5 and 5.6. The 

measured values of the reflection coefficient and VShTR were fmmd to 

agree with the calculated values. The vm·m values calculated from the 

theory of Heaton and Pal (lG) are found to disagree with the meztsured values 

as shown in Figure 5. 5. A comparison of the micro.·1ave rceasureil!ents \·lith 



d.c. measurements of the resistivity, \<lhich is sho.vn in Table 5.1, 

indicates that the micro.,7ave measure.rnents agree reasonably with d.c. 

measurerrents. Since this method of measurerrent involves the placement of 

a slab of semioonductor at the open end of a waveguide, it ha.S been tenned 

the "opcm-end-vmveguide measuring teclmique". 

Table 5.1 

A canparison of the Micro.vave and D . C • Neasurements 

of the Resistivity of n-type Ge Sa~ples 

Naninal Slab Micro.vave 
Resistivity Thickness Measurements D.C. rvt..easurements 

Ge 
_(ohrn an} (an} (ohm em) (ohm an) 

10 0.1 11.4 11.0 

10 0.2 11.7 11.6 

50 0.1 35.0 45.6 

50 0.2 40.0 46.0 
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CHAPTER VI 

ANISOTROPY OF THE MICROWAVE CONDUCTIVITY 
OF SEMICONDUCTORS IN THE PRESENCE OF A HIGH ELECTRIC FIELD 

-6.1 Introduction 

It has been known for some time that the application 

of a pulsed d.c. electric field to a semiconductor sample 

causes a considerable reduction in the conductivity of the 

sample. This effect, as first pointed out by Shockley(SS)' 

arises from an increase in the average energy or the 

temperature of the carriers. During the application of the 

field the lattice temperature is kept constant by making 

the pulses short and of low repetition rate. Thus the d.c. 

conductivity of semiconductors depends on the intensity 

of the electric field, the lattice temperature, the carrier 

concentration,and the direction of the d.c. field with respect 

to the crystal orientation. 

When a small- signal microwave field is superimposed 

on the d.c. field, there are other effects of interest. In 

addition to the above mentioned parameters, the small-signal 

microwave conductivity depends on (a) the orientation of the 

microv1ave field with respect to the d.c. field( 2 S, 26 ) ,and 

(b) the frequency of the microwave signal( 2 0). 

The microwave conductivity for parallel orientation 

h b 
, , (20-23, 271 29) as een studled theoretlcally by a number of authors 

For germanium, the theoretical calculation agrees with 

116 



experimental results( 20, 24 ' 28 ). For the perpendicular 

conductivity case, however, a satisfactory theory has not 

been reported_1 but some preliminary measurements have 

been made by Gunn( 25 ) which indicate that the perpendicular 

.conductivity is nearly the same as the d.c. conductivity. 

Greshenzen,et.al. ( 2 S) ,also reported similar measurements on 

p-type germanium in the 8mm band and found the expected 

anisotropy between the microwave conductivities for fields 

parallel and perpendicular to the d.c. field. The existence 
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of this anisotropic conductivity in parallel and perpendicular 

directions led to the prospect of a new microwave device, 

namely, the "hot electron rotator" <25 - 26 ' 56 - 5 7) • However a , 
definite theory with experimental confirmation of this 

anisotropic effect, which would confirm the feasibility of 

operation of such a device, has remained an unsolved problem. 

This Chapter deals with the investigation of the 

anisotropy of the small-signal microwave conductivity of 

n-type germanium in the presence of a high electric field 

directed at an angle to the microwave field. In Section 

6.2, an expression for the microwave conductivity of a 

semiconductor sample is derived in terms of the parallel and 

perp~ndicular conductivities and the angle between the 

microwave and d.c. field vectors. A theory of the parallel 

and perpendicular conductivity is presented in Section 6.3. 

The angular and frequency dependence of the microwave 

conductivity is also developed from the hot electron theory 
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and the solution is presented in Section 6.4. Finally, 

measurements which confirm the theory have been carried out 

on an 11.4 ohm em, n-type germanium sample at 9. 381 GHz. 

6.2 The Small-Signal Microwave Conductivity of Semiconductors 
in the Presence of a High n:c. Electric Field Directed 
at an Angle to the Microwave Field 

From physical reasoning Gunn( 2S) has argued 

that the small-signal microwave conductivity of an isotropic 

semiconductor sample in the presence of a strong d.c. field 

becomes anisotropic in the sense that it depends on the mutual 

orientation of the d.c. and microwave field vectors. He 

states that the parallel microwave conductivity (a
11

) of a 

semiconductor sample, when subjected to a large d.c. electric 

field and a small parallel microwave field, is given by the 

. t 1 d . . t ()J h h d t. . t f th" 1ncremen a con uct1v1 y ()F' w ereas t e con uc 1v1 y o e 

same sample (a~) subjected to the same fields, this time in 

a mutually perpendicular direction, is given by the d.c. 

d . 't J con uct1v1 y F 

O'.t ·-

Thus referring to Figure 6 .1, 

a. 
1 

= 

= 

()J 
6F 

J 
F 

F=F 
0 

F=F 
0 

( 6 .1) 

(6.2) 

where ai is the incremental conductivity and ad is the d. c. 

conductivity. 

Consider an electromagnetic wave F
1 

incident on a 

semiconductor sample, which is subje~ted to a very strong 

d.c. field F
0 

in the x-direction at an angle 8 between the 
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FIGURE 6. 2: (a) A Semiconductor Sample with a r-Hcrowave Field F 1 , 

directed at an angle 8 to the D.C. Field F • 
0 

FIGURE 6.2: (b) Relationship between the Angles 8 and ¢. 
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d.c. and microwave field vectors(Figure 6.2a) •. We assume 

that 

WT <<· 1 (6.3) 

which removes the frequency depe~dence 

of the conductivity and ensures oll = a. (Since in the limit 
1 

of very high frequencies 'l.~rhen wT >>1, the anisotropy ( 2 0) 

vanishes and o11 = a~). Under this assumption, it is 

appropriate to apply Gunn's model for the calculation of 

the microwave conductivity. 

In the semiconductor sample, a microwave current 

+ 
J

1 
flows in addition to the d.c. current J

0
• Due to the 

anisotropic conductivity, j 1 will not be parallel to the 

microwave field F1 • This has been proved in _section 6.4 •. 

Let us assume that J 1 ma~es an· angle ¢ with the ~-axis. The 

x- and y- components of the microwave current are, 

(6.4a) 

Jl sin¢ = o.l Fl sinG ( 6. 4b) 

which give 
o.l. 

tan¢ = - tanG . 
0 11 

( 6. 5) 

The angle of rotation of the microwave current vector from 

the microwave field vector is defined as 

ljJ= ¢ -G 

1 OJ. 
= · tan- [- tanG] - G 

0 11 
( 6. 6) 



which shows that, for isotropic effect, ~ = G. The 

components of the microwave field from equations (6.4a} and 

(6.4b) may be written as 

= 

= 

J1cos~ 
0 11 

which may be added along j 1 direction, 

+ 

... . . d . 't t wenotlng a mlcrowave con uctlVl y o\ = 
Cfl 

+ . 
along J 1 , we obtaln 

1 

0~ 
+ 

. 2,~.. Sln "¥ 

0..1.. 

( 6 0 7) 

(6.8) 

(6.9) 

Jl 
to be measured 

FlJ 

(6.10) 

Equation (6.5) gives the relationship between ¢ and G from 

Figure 6.2(b). Thus 

cos~ 
0 11 

= (6.11) 

' 2 0 11 + 2 tan2G o..L 

sin~ OJ._ tanG = (6.12) 

I 2 2 2 
0 11 + o..L tan 8 

so that 2 2 2 . 28 0 11 cos 8 + o.L Sln -

0~ = .. 
cos2 G + . 28 0 11 o..L Sln -

(6.13) 

t Page 98, Reference 42 
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Thus a knowledge of cr11 and cr~ enables one to calculate 

the microwave conductivity at an angle. 

The equation (6.13) may also be obtained from the 

consideration of the absorption of microwave power by the 

"hot" carriers in parallel and perpendicular directions. 

Tqe microwavepower absorbed by a semiconductor sample is 

given by (SS) 

P = f cr (F1 //2) 2 
dV sample 

( 6. 14) 

where cr is the microwave conductivity and V is the volume 

of the sample. Assuming an uniform field in the sample, 

this may be written as< 59 ) 

F 2 
P 1 = cr _!_2 v. samp e ( 6 .15) 

The power absorption by the components of the microwave 

field as given by equations (6.7) and (6.8) may be written 

respectively as 

Flx 
2 v 

pll = 0 11 2 

J 2 
cos

2
¢ 1 v = -2- 0 11 

(6.16) 

and 2 
Jl . 2¢ 

p.L 
s1n v. = -2- cr.L 

(6.17) 

The total power absorbed is therefore given by 
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p = pll + p.L 

2 . 2 J 2v 
[cos . ¢ + s1n <p ) 1 (6.18) = --· 0 11 o.l. 2 

Denoting a conductivity o¢ again in the direction of J 1 , 

we obtain 

. 2 tf, s1n '~" 

o..L 
(6.19) 

which agrees with the equation (6.10) and may be simplified 

to the equation (6.13). 

To check the validity of the equation (6.13), we 

calculate o¢ for special cases of e. Thus for 8 = 0° and 

90° respectively, 

orp = oll 

o¢ = o.L 

as expected. 

(6.20) 

(6.21) 

6.3 Theory of the Microwave Conductivity of N-type 
Germanium for Parallel and Perpendicular Field 
Orientations 

This section contains the development of the 

theoretical expressions for the parallel and perpendicular 

conductivity of n-type germanium. The technique is similar 

124 

to that of Nag and Das( 23 ) for the calculation of the parallel 

conductivity. An approximate solution of the problem may be 

obtained by solving the appropriate Boltzmann equation, taking 

into account the effect of acoustic and o~tical phonon scattering 



and assuming isotropic effective mass. The effect of the e-e 

scattering has been neglected as in the method of Yamashita, 
(60) (61) et.al. , and Stratton . 

6.3.1 The Energy Distribution Function for the Carriers 
and the Boltzmann Equation 
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To determine the approximate energy distribution function 

for the electrons in n-type germanium, we assume a model with 

spherical engery surfaces+ as in the methods of Nag and D~s <23 ). 

The occupancy function for the carriers, undE!!r· the·· · 

influence of an electric field, is disturbed from its 

equilibrium •. , Such a non-equiiibrium distribution function 

for the-carriers having the wave vecto~ ~for the case 

of n-typegermanium may be written as (Appendix D) 

-+ 
f(k) = f(E) + kx g(E) + ky h(E) (6.22) 

where kx and ky are the components of the wave vectors in 

the x andy directions, respectively; g(E) and h(E) are 

the perturbed values of the distribution function in the 

x-and y-directions, respectively; f(E) is the isotropic part 

and k g(E) and k 'h(E) are the anisotropic parts of the 
X y 

distribution function;·E represents the energy of the carrier. 

The total rate of change of the distribution function 

may be written in the formt 

Df (k) ()f(k)' 2f (k) cl.kx 
+ 

()f (k) dky 
+ 

()f(k) dk
2 (6.23) = --- + dt dt Dt ()t ()kx ()ky dt ()k 

z 
dk eFX 

Writing X rewrite this equation as dt = - T' we may 

!?f (k) ()f(k) e [()f(k) F + ()f (k) 
F + 

() f (k) 
F z] == Dt at- ~ ()~X X ()k y ()k 

y z 

t Page 153, This Thesis. 
t Page 109, Referen9e 42. 



where Fx' Fy 1and F
2 

are the applied electric fields in the 

x- 1 y-
1

and z-directions, respectively. Since F = 0 z 

(.Figure 6 • 2) 1 we may write this as 

Df (k) 2f(k) e [a f (k) F + E f (k) F ].,. (6.24) = 
~ Dt at ak X ak · y X y 

This equation gives the variation of f(k) caused by the 

fields. There is also in operation a mechanism which tends 
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to restore f(k) to its equilibrium value, namely the collisions 

~ 

of electrons with imperfections. The rate of change of f(k) 

a f Ot> due to collisions is denoted by at 

the Boltzmann equation as 
coll 

Thus we write 

Coll 

(6.25) 

Since the applied electric field varies as a function of 

time, we write the following equations using equation (6.22), 

a f (k) = 
at - Field 

af(E) ag(E) + k ah(E) 
at + kx · at y ~-

af(E)_ + a { k (E)} 
akx akx xg 

+ a 
akx 

{ k h(E)} y 

(6.26) 

= af (E) dE + g (E) + k ~g (E) dE + h(E~'' k ah(EL 
- a E dkX X a E dk OKx + y a E 

. X (6.27) 
~hoosing one of the energy minima of the conduction band in 

dE 
dk 

X 

germanium which are iocated at the zone edge along [111] axes 

as the origin we obtain 
I 

dE = d {~ (k 2 + k 2 + k 2) 
dkx dkx { 2m* x y z } 

== 
t2 
* m 

(6.28) 

.. 



where m* is the effective mass of electrons ~nd h is the 

reduced Plank's constant. Thus 

_L2k .t..2k 2 
~f(~k) = ~ X ~f(E) ~ X 0

ak ~ ~3E + g(E) + m* 
X 

2k k -\\_ y X 

+ * m 
ah(E) 

aE ., 

ag(E) + h(E) ~ 
aE akx 

(6.29) 

1kx2 
For spherical energy surfaces (k = k = k ) , m* 

X y Z 
2 may be shown to be equal to 
3
E. Thus, with h(E) = 0 1 as 

in the case of parallel fields, equation (6.27) gives 

equation (6) of Nag and Das( 23 ) /as expected. Similarly, 

af (k) = 
ak 
. y 

-i\,2 
+m* 

2k 2 
af(E) + h(E) + ~ ¥ 

aE m* 

k k 
X y 

ag (E) • 
aE 

ah(E) akx 
aE + g(E)ai( 

y 

(6.30) 

Neglecting the impurity and e-e scattering, the collision 

term may be written as 

coll ac 

affk.) 
+ at 

op 
( 6. 31) 

where the first and the second terms on the right represent 
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the change in the:distribution function due to the interaction 

of electrons with acoustic and optical modes of lattice 

vibrations, respectively. The- rate of change of the 

distribution function.due to the acoustic and optical ph~~on 

. . ( 6 0) 
scattering has been studied extensively by Yamash1ta,et.al. • 



A careful analysis of their results has shown, in the 

present case, that the acoustic term is given by 

af (k) A [E2 a
2

f(E) + E2 
2E) a f(E)+ _?Ef (E) = (-· + 

at El/2 a E 2 kT aE kT 
ac 

- k E g(E) - k E h(E)] (6.32) 
X 2nfc2 y ;*2 me 

where the first four terms on the right are contributed by 

the symmetric part of the distribution function and the 

remaining quantities are due to the asymmetric (or 

directional) parts of the distribution function. Similarly, 

the optical term may be written as 

2 . 
(Ea f (E) + a f (E)) 

aE2 aE op 

- k ~ (es+l) h(E)] 
Y -hWo 

Where(23J = 8 2; ( k I) 1/2 j_ /k A ec 3 n T 11 a' s = .,.w
0 

T, 

(6.33) 

of sound in the semiconductor. Inserting equations (6.26), 

(6.29), (6.30), (6.32) and (6.33) in (6.25) and equating the 

terms of the same angular dependence (i.e. k and k terms), 
X y 

we obtain the pair of equations: 
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ag(E) et a f (E) A E 
- m* F = - E1/2 -"*2 g(E) at aE X 2mc 

ah(E) e~ af(E) 
F 

A E h(E) - m* = - E1/2 2nfc2 at aE y 

which become after some rearrangement, 

g(E) 

h(E) 

2 *2 = me 
A"Q 

2 ~ 2 = me 
An 

1 
-k E2 

1 
-!,: 
E 2 

[el\ F a f (E) 
m* X aE 

[e-}\ F af (E) 
m* y - aE 

ag{E)) 
at 

ah(E)) 
at 

where n 2 
~2 = 1 + B me 

A ("hwo)2 
(es + 1). 

B E1/2 (es+1) 
(t!Jlo) 2 

(6.34) 

B E1/2 (es+1) -
("fiwo) 2 

( 6. 35) 

(6.36) 
l 

(6.37) 

(6.38) 

The components of the total electric field in the x- and y-

directions may be written as 

F = F 
X 0 

+ .Re F1 cosG e jwt 

= F [1 + .Re A. ejwt1 
0 X 

jwt F y = 0 + Re F 1 sinG e 

= F ' [ 0 + Re A: e j wt) 
0 . y 

(6.39) 

(6.40) 
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g (E) 

h (E) 



where the quantities Ax and. Ay are given by 

A 
F1cos0 

<<1 = 
X Fo 

(6. 41) 

A 
F1sin0 

<< 1. = y Fo 
(6.42) 

The presence of the microwave field will perturb the 

distributionfunction(i.e. 1 the quantities f(E) 1 g(E) 1 and 

h(E}) by a small amount about its equilibrium values. 

Assuming that the amount of perturbation is proportional to 

the microwave field strength, the x- and y- directed 

perturbations may be written as 

f(E) = f
0 

(E) + Re ), f 1 (E) jwt e 
X 

(6.43) 

g(E) = go(E) + Re A gl(E) 
jwt e 

X 

and 

f(E) = f
0

(E) + Re A fl (E) 
jwt e y 

(6.44) 

h(E) z::: h (E) + Re A h1 (E) jwt 
e • 

0 y 

Since we wish to determine a 11 and a1 , the parameters of 

interest are g 1 and h17which give the microwave currents in 

the x- and y- directions, respectively. For the calculation 

of g 1 (i.e.
1

parallel current), we substitute equation (6.43) 

in equation (6.36), which yields 
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go(E) + Re A.x· g 1 (E) e jwt 

2ntb2 
[e-h F (1 + Re Ax ejwt) = 

AQEl/2 m* 0 

=.· 2nt'c2 e t\ ejwt) a fo (E) 
--1/2 [~ F (l + Re Ax aE AQE . m o 

+ el\ F Re Ax 
m* o 
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(6.45) 

on negecting higher order terms. Equating the a.c. 

quantities, we obtain 

2 * 2 af
0

(E) af1 (E) 
m c [ e "Vi F { }] 

AQEl/2 m* o aE + aE . 
(6.47) 

which agrees with the .corresponding result given by Nag and 

Das< 23 ) (c.f. Equation 15). Similarly, substituting equation 

(6.44) in equation (6.37) for the calculations of h
1 

(i~e. perpendicular current), we obtain, 

h(E) + Re A h
1

(E) jwt e y 

. 2nfc 2 
[~-n F (0 + Re A ejwk.) 

a ~o (E) 
- Re Ay h 1 (E) . jwt

1 
AQEl/2 m* 0 y aE JWe • 

(6.48) 

... 



Equating the a. c. quantities, we finally obtain, 

2 * 2 e-f\ df (E) 
me F 0 ] 

AstE 1/ 2 m* -
dE 0 

h
1 

(E) = • (6.49) 
2m*c 2 

1 + jw 
MGEl/2 

Equations (6.47) and (6.49) do not agree with the results of 

Staecker and Das( 26 ), who showed that g
1

(E) and h
1

(E) are 

functions of e. From hot electron theory, .it will 

be shown that the parallel and perpendicular conductivities 

are independent of e.t 
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6.3.2 The Microwave Conductivity and The Change in Dielectric 
Constant 

It has been shown by Nag and Das( 23 ) that f
1

(E) 

consists of both real and imaginary parts, 

(6.50) 

Expanding the denominator of equation (6.47) in the 

binomial form and retaining only t.he first order terms, we 

may write, 

e~ 
2m*F c.'l. df

0
{E) df1 r(E} df1 i<E> W''t 

gl (E) 
0 [ j - j m l = m* + dE + dE ] [ l 

AstE 1 / 2 dE (E/kT}l/2 

(6.51} 
2 "1- 2 

where't me Assuming that << .1, g
1 

may be = 
Ast(kT}l/2 " 

W't m m 

rewritten as 

211c2
F e 

gl(E) ~ 1/~ [ 
AQE 

T Equations 6.78 and 6.79 of This Thesis. 



The x- component of the microwave current is given by 

(6.53) 

where N
0 

is the normalisation constant of the distribution 

function in the absence of a microwave field. Substituting 

equation (6.52) for g
1

(E) 

which may be written as 

a£ (E) 
0 

-.,-dE~- X 

m · m. 
J = F1 cosG lx 

jwt e crdc [ 1 + r + j 1 
mo mo 

(6.54) 

(6.55) 

where crd is the field dependent d.c. conductivity and the . c 

Parameters m , m and m. are defined by Nag and Das. o r 1 · 

Similary, h 1 (E) from equation (6.49) may be approximately 

written as 

The 

Jly 

2 
.2 e-f\c F 

0 

A~m ;L/2 

y-component of 

= Fl sinG e 
jwt 

= El sinG e jwt 

= Fl sin G jwt e. 

. a f (E) 
[• 0 ] 

()E • 

the microwave current 

N ell J k 2 ( ~* ) . hl (E) dkx y 

N e 11 2e1ic2F ()f 
o I o (-~) ( 1/2) 

· AnE 

a 
' d. c. 

. (6.56) 

may be written as 

dk dk 
y z 

(E) 
k 2 0 dk dk dk 

dE y X y 

(6.58) 
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z (6.57) 
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Equation (6.55) gives the parallel conductivity and the 

change in dielectric constant, while equation (6.58) gives 

the perpendicular conductivity. Thus 
m 

-. (J [ 1 + :_E] 0 l1 d. c. m 

= 

= 

(J 
d.c. 

cr . .=~ .. u.c. 
W£ 

0 

0 

(6.60) 

( 6. 61) 

where cr d.c. 
may be easily seen in equation (6.57) and 

m 
r 

m. 
~ 

f -
11/2 afo(E) 2 

= E oE kx dkx dky dkz 

= J 

mr 
The ratio of has been evaluated numerically by Nag and 

m 
0 

Das. Considering only the optical phonon scattering, the 

value obtained is -.24 which indicates that cr 11 <cr..l. Further, 

it is seen that the equations (6.59) and (6.60) correspond to 

the equations (6.1) and (6.2), respectively. 

6.4 The Microwave Conductivity of Semiconductors from the 
Hot Electron Theory 

It is known from the hot electron theory that the 

-+ 
field dependent current density J

0 
at medium field strengths 

is described by 

(6.62) 

where cr is the low-field ohmic conducti"~Jity, F is the 
0 0 

magnitude of the electric field where the conductivity is 

measured, and S is a constant which, in general, depends on 



the carrier temperature T and the crystallographic 

directions of the applied electric field. It has been 

shown by Schmidt~Teidmann( 2 l) that 

(6.63) 

where the subscripts denote the direction of the applied 

field and y is another constant, and is given by 

y = 
m~ 

where k = 
rot 

3(k-1) 2 
constant x (2k+l) (6.64) 

For isotropic effective mass, y = 0. 

The d.c. conductivity in different crystallographic 

directions has been determined experimentally by a number 

of authors( 62 ), who observed that the anisotropy 'is small 

at room temperature.· However, at low temperature, this 

has been found to be quite significant. The crystallographic 

anisotropy of the microwave conductivity has been studied 

theoretically by Guha and Nag< 29 ) who indicate that like 

d.c~ donductivity, the anisotropy of microwave conductivity 

is very small at room temperature. Noting their observation 

as true, we take the parameter S to be isotropic at room 

. temperature \vhere microwave conductivity is to be determined. 

We shall write S isotropic as S for the sake of simplicity. 
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When a microwave field is applied at an angle to the d.c. field, 



(6.65) 

+ 
a microwave current J 1 flows in addition to the d.c. current 

+ 
J

0
• We rewrite equation (6.62) 1 in a more general form, as 

(6.66) 

where jFtl is the magnitude of the total electric field. 

Since the electric fi~Jd is composed of a d.c. component as 

well as an a.c. component, it is appropriate to write the 

current density on averaging I Ft f2 over· the allowed values 

of electron energy E. Thus 

(6.67) 

Equation (6.65) may be written as 

Ft = ax [ F 0 + F 1 cos8 sinwt] + ~y [F 1 sinG sinwt] ( 6. 68) 

whose modulus-becomes 

IE ·1 2 -- F 2 + 2F F 8 . t F 2 . 2 t t 
0 

O l COS- SlnW + l Sln W , {6.69) 

Substituting this in equation {6.67), we obtain, 

{6.70) 
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Considering only the current components which are vibrating 

at an angular frequency w, the microwave current can be 

written as 

l 1 = a
0 

[-2SF
0

F1 cos8 <sinwt>E] f
0 

+ a
0 

[l-SF
0

2 ] f 1 sinwt• 

(6.71) 

It can be shown that the average value of sinwt over the 

electron energy E is 

. t 1 <s1nw > = 
1 

. E +JWT 
sinwt (6.72) 

where T is the relaxation time of carriers. So that equation 

(6.71) becomes 

~ 

Jl = a 0 
[-2SF

0
F

1 
cose sinwt] F + a [1-SF 2 1 F

1 
sinwt 

l+jwT o o o 

(6.73) 

where the first term is a component of the microwave current 

flowing in the opposite direction to the d.c. field and is 

caused by the cross-modulation due to the microwave field. 

The second term is the F1 -directed microwave current which 

has .two components: 

a
0 

(l-SF
0

2 )F1 cos8 sinwt in the x-direction and 

a (l-SF. 2 )F
1 

sinG sinwt in they-direction. '; 
0 0 -
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The x-component of the microwave current is attenuated by the 

cross-modulation. 
~ ~ 

As a result, J 1 is not parallel to F1 • 

Let J
1 

makes an angle¢ to the x-axis (Figure 6.2). The 

components cf the current in the J 1-direction from equation 

(6.73) may then be written as 



2 2SF cos0cos¢ 
0 

1l+jwL) cos(¢-0 ~ F1 cos(¢-0) sinwt 

2 2SF
0 

cos0cos¢ 
= ode [ 1 - 2 1 

(1-SF 
0 

) (l+jWL) cos (¢-0) 
F1 cos (¢-0) sinwt 

(6.74) 

The microwave conductivity in the direction of J 1 may be 

written a~ 

2SF 2 cos0cos¢ 
0¢ = 0 [ 1 -

0 1 
de (l-SF

0

2 ) (l+jwL) cos(¢-0) 

2SF 2 

= a [ 1 -
0 

de (l-SF
0

2 ) (l+jwL) (1 + O..L tan20) 
0 11 

(6.75) 

which shows that the micrmvave conductivity is dependent on 

0 1 WL 1 F
0

, Oll and 0~. It is to be noted that WL dependence 
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I r 2 
of a is the result of averaging Fti over the electron energy. 

The microwave conductivity may therefore be calculated from 

the perpendicular and parallel conductivities. 

Further, the real part of the microwave conductivity, 

is given by 1 

2SF 2 
0 

Re[cr¢] = 0 dc [1 - ] (6.76) 

(1-SF 2
> ( 1+ w2 L2 ) (1+ 

0.1- 2 
0 11 

tan 0) 
0 

while the change in dielectric constant, is given by 



!J.E 
r 

2SF 
2 

WT 
0 

Specialising for G=o 0 and 90°, we obtain 

oll = od [ 1 -c 

o_L == o d.c. 

2SF 
2 

0 ] 

(1-SF 2 ) (l+w 2
T

2 ) 
0 

(6.77) 

(6.78) 

(6.79) 

Equation (6.59) corresponds to equation (6.78) under 

conditions .of medium field strengths. 

6.5 Numerical Computations 

Equations (6.6) and (6.13) have been 

evaluated numerically on the CDC 6400 Computer. The 

m1crowave conductivity and the angle of rotation of the 

microwave current vector from the ~icrowave field vector are 

calculated- using the values of o11 and 0~ deduced graphically 

from the J -F curve. The results of these calculations are 
. 6 0 

shown in Figures 6. 3 through 6. 5. 

6.6 Experimental Techniques 

The principal objective of the experimental 

programme was to obtain suitable data on the behaviour of 

microwave conductivity of an 11.4 ohm em, n-type germanium 

in the presence of a high electric field, in order to confirm 

the theoretical predictions described in Section 6.2. 

Measurements were made at a frequency of 10 GHz and at room 

temperature. One of the considerations that led to the 
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selection of 10 GHz or more precisely 9.381 GHz as the 

experimental frequency is that the value of WT is small at 

this frequency (wT ~ 0.25). This ensures the observation 

of only the angular dependence of the real part of the 

microwave conductivity and allows us to neglect the imaginary 

part of the microwave conductivity. The reasons for choosing 

11.4 ohm-em, n-type germanium are that it shows hot electron 

effects and it has low joule heating for the large samples 

required for 10 GHz measurements. The experimental programme 

of this section consists of the following jobs: 

(~ th~ construction of non-injecting contacts 
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(b) the measurement of the d.c. current-voltage characteristcs 

in an 11.4 ohm-em, n-type germanium sample; 

(c) the measurement of the small-signal microwave conductivity 

in' the same sample as a function of the angle between the 

microwave and d.c. field vectors. 

One of the important considerations in the design 

of the sample is that the same sample be used for all measurements. 

This ensures that the sample has the same electrical properties 

with respect to the crystallographic direction. The samples 

of Ge with dimensions 3 x 2.5 x n2· em were cut in a plane 

perpendicular to <111> from a large block of n-type germanium 

crystal by means of a 20-mil diamond-head wheel cutter. 

5.6 was used to determine the thickness of the sample. 

figure shows that the deviation of the magnitude of the 

reflection coefficient by the pulsed· field is maximUtll in 

Figure 

This 
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0.2 em thick sample. The sides of the samples were determined 

to cover the cross-section of the waveguide at various angles 

between the d.c. and microwave field vectors. 

6.6.1 The Construction of Non-Injecting Contacts 

One of the main difficulties in the measurement of 

the conductivity of semiconductors at high electric fields 

is the preparation of non-injecting contacts. An injecting 

contact modulates the conductivity of a semiconductor sample 

by way of injecting minority carriers and cause a deviation 

in the high field conductivity effect. Before taking 

measurements, one should therefore ensure that the contacts 

are non-injecting. 

Injection is usually eliminated by preparing a 

sample in the dumbbell form so that any minority carriers 

that may be injected may not reach the main filament during 

the pulse period. The construction of non-injecting contacts 

in a rectangular sample, as required in the microwave 

measurements, has been found to be a major problem. 

A number of authors( 63 - 64 ) described a method of 

preparing non-injecting contacts by means of electroplating 

a solution of gold on a Ge-sample (plating solution: 1.2 gm 

KAu(cN2), 1 gm k(CN) per 100 ml. distilled water) and soldering 

to the gold surfaces with a hot sold~ring iron. A similar 

but a slightly different technique has been adopted in the 

present work. The procedure is as follows: 

All faces of the samples were polished with a fine 

SiC ffinery paper and cleaned for a few seconds in warm 



chloroform,alcohol, and distilled water, respectively. The 

edges of the samples were then wetted with HF. Contacts to 

the Ge-slabs were made by first depositing a few microns 

(5-6~) of gold mixed with traces of antimony on the sample 

edge by the vacuum deposition technique and then soldering 

tin-antimony solder to the gold surfaces using a polyflux. 
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An Edward's Model 12E3 Vacuum-coating unit was employed for 

the deposition of gold. The unit has a four-position filament 

_holder to allow successive evaporations without disturbing 

the vacuum. Molybdenum boats were used as filaments for the 

evaporation of gold. Ge samples \<!ere hung in the vacuum 

chamber with wires. The surfaces of the samples were covered 

with a cleaned tape where deposition was not wanted~ 

Some contacts were also made in an alloying furnace, 

after the usual cleaning procedure. A 0.010 inch strip_ of 

tin-antimony solder was sandwiched between one sample edge 

and a nickel strip, and the combination was joined in an 

alloying furnace in the presence of pure hydrogen. Best 

results were, however, obtained by the vacuum deposition 

tedhnique. 

Gold was chosen because of its high resistance to 

oxidation and low electrical contact resistance. Care was 

taken to ensure that the gold did not melt during the soldering 

operation. 
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6. 6. 2 D.c. Measurements of the Curren·t·-vol·tage Characteristics 

The current-voltage characteristics of an n-type 

germanium sample was measured using the experimental 

arrangement of Fi~ure 6.6. The room temperature d.c. 

resistivity of the sample was found to be 11.4 ohm em by 

4-point probe method. To avoid joule heating in the sample, 

pulsed electric fields of 0.5 ~sec. duration were employed, 

with repetition rates of 1 p/s. The sample was first matched 

to the pulse g~nerator by means of a parallel chain of 

resistors, to ensure a single well-shaped rectangular pulse. 

The current through the specimen was determined by measuring 

the voltage across a 2 ohm resistor. The voltage 

across the specimen was measured independently. Both current 

and vol·tage measurements were taken with the aid of a 

Tektronix type 585 oscilloscope. 

6.6.3 Microwave Measurements 

A photograph of the equipment used for the measurement 

of the change in the reflection coefficients during the period 

of the pulse field is as shown in Figure 2.12. The sample 

holder was connected to one side arm of the reflection bridge 

in vertical position. The sample was allowed to rest between 

the flange and a high-precision short-circuit plate lFig. 6.7). To 

apply pulsed d.c. fields, the sample was insulated carefully 

from the \vaveguide circuits with thin polyethelene films. 

The big advantage of this holder is the ease of rotation of 

the sample with respect to the microwave field vectors. 
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The I.F. amplifier used was a wide-band amplifier 

centered at 30 Mc/s. The difference frequency of 30 Mc/s 

from two X-13 Klystl;ons was amplified and displayed on a 

wide-band Tektronix type 585 oscilloscope. 

The reflection coefficient of the sample was 

measured with the microwave bridge discussed in Chapter II. 

At first, ·no d.c. pulse was applied and the real part of the 

microwave conductivity was deduced from the reflection 

coefficient measured, using Figure 5.5. Then pulses were 

applied resulting in a change of reflection coefficient 

that caused an a.c. output in the E-arm of the bridge. A 

previous adjustment was made in the bridge for a zero output 

level. The a.c. output was then amplified during the p8riod 

of the pulse by the I.F. amplifier and was displayed on the 

oscilloscope. The sketch of such an I.F. amplification 

system is shown in ,Figure 6.8. The precision attenuator and 

the precision short circuit were ·next adjusted to bring the 

I.F. output level of the pulse period to the zero position. 

Initially a 0.5 ~sec pulse was found to be inadequate for 

the response of the I.F. amplifier. Measurements were 

finally made with 2 ~sec. pulse. 
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The noise pick-up from the discharge of the thyratron 

as observed on the scope was found to be of constant magnitude 

at a fixed pulse field level. This constant noise level was 

made negligible (1-2%) compared to thei;F. output level by 

maximizing the output of the I.F. amplifier on tuning the local 



HIGH CONDUCTIVITY 149 
SHORT-CIRCUIT PLM'E~ . 

/111/!LLL.LiLLLLLLlL/_.f_l LLL Ill L Ill L I L ----c ---*"rPOLYETHELENE 

HIGH ~gL;~~iCb.c. ~,....U_L_S_E_R_"" __ f-:-.. --:,- · -~-~~---. _:::c ___ -1 FILM 

WAVEGUIDE 
FLANGE ~---X-BAND WAVEGUIDE 

.FIGURE 6.7: The Sample Holder for the Hicrowave Measurements. 

~---30 HC/S I.F. OUTPUT 
· ZERO LEVEL 

(c) 
r 211sec --j 

---r 
I 
I 

ZERO LEVEL r1 ----------~ 
I 
I 

-- _j 

(b) 

FIGURE 6.8: (a) The 30 HC/S I.F. Output caused by the Pulsed D.C. Field. 

(b) The Same I.F. Output after Adjusting the Bridge to a 

Null Balance. 



osctllator. The a.c. output level during the pulse period 

was found easier to balance than a corresponding d.c~ level. 

A linear: gain· of the amplifier at input levels, caused by 

the pulsed field and the absence of the injection of the 

minority carriers are required for accurate measurements. 

Measurements were made for the conditions when 

0 0 0 8=0 , 40 , and 90 • The principal consideration of selecting 

0 8=40 as one experimental angle between the microwave and 

d.c. field vectors is that the theoretical conductivity at 

this angle was found intermediate between the parallel and 

perpendicular conductivity. 

It will be noted that the presence of insulation 

changes the resistivity from the absolute value, 11.4 ohm em. 

However, the absolute values of resistivity are not required 

as the comparison between theory and experiment is made on 

the basis of relative ci:anges in the sample conductivity. 

6.7. Results and Discussion 

The results of high field measurements at room 

temperature are given in Figures 6. 9 and 6 .10. D.C. data 

is plotted in Figure 6. 9, which shows the current density in 

an 11.4 ohm em, n-type Ge sample as a function of electric 
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field intensity. Microwave data (marked 0, x·, o·) ·is presented 

in .Figure 6.10 where all quantities are normalised to their 

corresponding values at zero d.c. field. The real part of 

the small-signal microwave conductivity calculated from theory 

(curves a,b,c) is also prE:sented in P,igure 6.10. The curves 
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a and c, which represent perpendicular and parallel 

conductivity, respectively are deduced from room temperature 

d.c. data (Figure 6.9), while the curve 'c' is calculated 

from equation 6.13. The experimental results·are found to 

be in fair agreement with the theoretical values. 

The measurements of the microwave conductivity were 

limited to 1.8 kv/cm because of the large sample length 

required to cover the cross-section of the waveguide, and 

because of the consequent sparking and surface breakdown 

problems encountered. 

It is to be noted that this measurement for the 

conditions of the d.c. field vector directed at an· angle 

to the microwave field vector is a unique one. It would be 

worthwhile also to take measurements in other materials 

such as InSb, in which the anisotropic effect< 33 ' 34 ) has 

been reported to be strong at low fields ( 120V/cm) at 77°k. 

Consequently the problem of injection at high fields will. 

be minimised. 

t The electrons in germanium has four equivalent minima in 
k space along [111] directions, where the constant energy 
surfaces are ellipsoids. For the applied electric fields 
in the [100] direction, the effective mass is the same in 
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each valley. For other directions of the field, the situations 
is more complicated and particularly at low temperature. 
However, at room temperature the current densities as a 
function of.~Jectric field for various orientation differ by 
less than 5% ( 20, 2 9) .Thus, it appears that the assumption 
of spherical energy surfaces is a good approximation for 
electrons. This footnote has been mentioned on page 125. 



7.1 General 

CHAPTER VII 

CONCLUSIONS 

A method for the measurement of the microwave 

conductivity of a semiconductor sample subjected to a high 

d.c. electric field has been described, which provides for 

varying the angles between the microwave and applied d.c. 

electric field vectors. The method depends on the placement 

of a semiconductor sample at the open end of a rectangular 

waveguide; the conductivity of the sample is inferred 

from the measurements of the reflection coefficient at the 

air-semiconductor interface. The measuring system developed 

is not only suitable for high-field measurements1 but it is 

also advantageous for the normal measurements of the 

conductivity and dielectric constant of semiconductors at 

microwave frequencies. 

The objectives of this thesis were to study and 

measure the microwave conductivity of semiconductors in the 

presence of a high electric field and in particular, the 

dependence of the microwave conductivity on the angle between 

the microwave and d.c. field vectors. For the parallel field 

case, a theory,as well as a measuring system,has been 

reported in the literature( 2 0, 24 ). The measuring system 

consists of a 'transmission bridge' for the measurement of 
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the propagation constant of a recta?gular waveguide, 

partially filled with a semiconductor sample. The principal 

disadvantages of such a system are: 

·(a) The propagation constant of the partially filled waveguide 

does not have a simple relationship with the conductivity 

of the sample. 

Cb) Tbe desirable variation of the angle between the 

microwave and d.c. field vectors cannot be achieved. 

(c) The mounting of the sample in the waveguide, as well as 

insulating the sample from the waveguide circuit, is a 

difficult process to achieve. 

The development of a measuring system that could be suitable 

for high-field measurements was, therefore, required. 

Chapters II to V, which cover a major portion of 
l 

this thesis, are devoted to the deveJ.9pment of 

such a measuring system, consisting of a microwave reflection

type bridge(l 3), while Chapter VI is devoted to the 

investigation of the small-signal anisotropic conductivity 

of n-type germanium in the presence of a high electric field. 

7.2 The Microwave Reflection Bridge 

The theory of operation of a reflection-type bridge, 
I 

together with its practical setting-up procedure~has been 

presented in Chapter II. A method is also described for the 

correction of the measurement error, which arises from the 

scattering coefficients at the input ports of the precision 

attenuator (one of the standard components of the bridge) • 
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Experiments have been carried out to measure the scattering 

coefficients of two commercially available rotary-vane 

precision attenuators. Measured values of the magnitude 

and phase of these scattering coefficients, which are 

summarised in Figures 2.5 and 2.6, have been found to be in 

good agreement with the calculated values. The relative 

error in the measured magnitudes of the reflection coefficients 

due to s11 , which . is indicated in Figure 2.4, is found to 

be a function of the magnitude of the measured reflection 

coefficient. 

7.3 Microwave Reflections from the Surface of a Block of 
Semiconductor 

A theoretical analysis has been made of the 

microwave reflections from the surface of a block of 

semiconductor placed at the end of a rectangular waveguide. 

The following waveguide configurations were considered for 

the purpose of analysis: 

(a) a semiconductor slab placed inside a rectangular 

waveguide and terminated by a short-circuit metal 

plate (Figure 1.1); 

(b) asemiconductor slab pressed at the end of a 

rectangular waveguide opening onto a metal flange and 

terminated by a short-cir(.!Ui t metal plate (Figure 1. 2). 
I 

(c) . a semiconductor slab placed at the end of a rectangular 

waveguide and followed by free space (Figure 1.3). 

The approximate and exact solutions of the reflection 
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coefficients at the plane z=O of these conf~gurations are 

presented, together with experimental verifications wherever 

possible. During the analysis a new method of measurement, 

involving the placement of a semiconductor sample at the 

open end of a rectangular waveguide, is developed. The 

method has been termed the "open-end-waveguide measuring 

technique". 

7.3.1 The Approximate Solution of the Reflection Coefficient 
for a Finite Semiconductor Medium 

The approximate solution for the reflection coefficients 

at the plane z=O of Figures 1.2 and 1.3 for a finite medium 

is developed in Chapter III. This solution, which has been 

based on the assumption of a z-directed TEM wave propagating 

in the semiconductor region, is derived from the consideration 

of the input impedance at the air-semiconductor interface 

plane. The appropriate expressions for the microwave 

conductivity and dielectric constant are also derived in 

terms of the measurable quantities A and~ (Equation 3.14). 

The assumption that the electromagnetic wave in the 

semiconductor region is a TEM wave, is approximately justified. 

It is because of this reason that the solutions are approximate. 

Numerical computions, as related to operation at 

9.522 and 34.5 GHz, show that these approximate solutions 

apply only to semiconductors of low resistivity (cr>2w£
0
£r). 



7. 3. 2 The Exact Solution of the Reflect'i·on· Coef'ficient· for 
· ·a Semi-Tnfini te Medium 

The exact solution of the reflection coefficient at 

the plane z=O of Figure 4.l(a) for a semi-infinite medium 

with complex permittivity is developed in Chapter IV. This 

solution, which has been based on a radiative propagating 

wave in the half-space z>O is arrived at by modifying the 

original formulation by Lewin< 43 ) in the case of a lossless 

medium (air). This solution has been extended to the case 
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of rectangular and parallel-plate waveguides with boundedground 

planes (Figures 4.2 and 4.3). An alternative solution to 

the rectangular waveguide with bounded planes, based on the 

conservation of power similar to that of Harrington( 44 ), is 

also presented. Further, it is noted that the solutions 

which are presented ar.e not completely exactand have 

been obtained on the assumption of an aperture field (field 

at z=O) equal to that of the dominant incident mode. 

NUmerical computations, as related to operation at 

9.522 and 34.5 GHz are made for the reflection coefficient of the 

waveguide structure of Figure 4.l(a) with germanium, selectron/ 

and air in the half-space .• The results are given in Figures 

4.4 through 4.7. 

Experimental verifications of the theoretical analysis 

have been made with n-type germanium of various resistivity 

(0.1, 1, 5, 10, 25, 50 ohm em), selectron and air at the 
I 

end of the waveguide system of Figure 4.l(a), using a microwave 

reflection-type bridge discussed in Chapter II. 



The results of the reflection coefficient measurements, 

which are summarised in Figures 4.6 and 4.7, are found to 

agree with those obtained from calculations. 

The values of resistivity as measured by microwave 

methods at 34.5 GHz show good agreement with those measured 

by the d.c. 4 probe method. At 9.522 GHz measurements, 

however, the agreement is not very good. This comparison 

is shown in Tables 4.2 and 4.3. The possible reason for 

the discrepancy at X-band is the finite size of the samples 

used, particularly the 0.26 and 45.76 ohm em ones, which 

is insufficient to satisfy the condition of a semi-infinite 

medium assumed in the theory. At Q-band, the same samples 

may satisfy the co~dition of a semi-infinite medium because 

of the smaller skin depth. The other reasons for the 

discrepancy have been discussed in Section 4.8. 

7.3.3 The Exact Solution of the Reflection Coefficient 
For a Finite Medium 

( 16) . -
Heaton and Pal , 1n a recently published paper 

derived an expression-for the reflection coefficient of a 

I 
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semiconductor slab placed across the open end of a rectangular 

waveguide. Their theory, which is not essentially different 

from that of Lindmayer and Kutsko( 7 ), has been based on an 

unbounded wave propagating in the axial direction in the 

semiconductor slab. They assume that the z-directed propagation 

constant in the semiconductor region is of the form 

y = jw 1"0e:: ~ • This is not completely justified
1 

par-ticularly z o r 



for semiconductor samples with low e , when the wave may 
r 

propagate in the transverse directions as well. 
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A more general solution of the reflection coefficient 

of a slab with complex permittivity, held against the wav~guide 

flange and followed by a short circuit conductivity plate, is 

developed in the same manner as used by Compton< 47 > and 

Crosswell( 4 B) and _is given in Chapter V. This technique 

has also been applied to the admittance of a rectang·ular 

waveguide system radiating into a lossless plasma layer. 

Nwnerical computations are made forthe Ge slab case 

for varying values of resistivity and thickness at 9.53 GHz 

and 34~5 GHz. 

Experiments which confirm the theory_ have been 

performed at 9.53 GHz. The results, which are shown in 

Figure 5.5/indicate that the solution given by the cited 

authors(l 6 ) is approximately correct for low resistivity 

samp·les and is incorrect for high resistivity ones (cr<2ws
0
sr). 

Numerical calculations are also made for a plasma 

layer case. The results of these calculations, which agree 

with those given by the other authors< 49 - 51 ) are presented 
l 

in Figures 5.9 through 5.13. 

Finally, we must point out that the important results 

of the microwave reflections have been summarised in Figures 

4.6, 4.7, 5.5~nd 5.6. The "open-end-wav~guide measuring 

technique'~ as mentioned earlier, utilizes these design curves 

for the determination of the microwave conductivity and the 

dielectric constant. 



7. 4 Anisotropy of the Small-Signal Microwave· Coh(:uctivi ty 
of N-Type Germanium in the Presence o·f a High Electric 
Field 

A simple theory of the small-s~gnal microwave 

conductivity of a semiconductor in the presence of a high 

electric field directed at an angle 8 to the microwave 

field ve~tor, is developed. The conductivity is found to 

depend on the parallel and perpendicular conductivities and 

also on the angle between the microwave and d.c. field 

vectors (Equation 6.13). A theoretical analysis has also 

been made of the ~arallel and perpendicular conductivities 

of n-type germanium in the same manner as used by Nag and 

. ( 2 3) 
Das . for the calculation of the parallel conductivity 

(Section 6.3). The solution to the problem is obtained by 

solving the appropriate Boltzmann equation, taking into 

account the effect of both acoustic and optical phonon 

scattering, and assuming an isotropic effective mass as in 

the analysis of Nag and Das( 23 ). 
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Numerical calculations have been made of the microwave 

conductivity and the angle of rotation of the microwave current 

vector for an 11.4 ohm em n-type germanium sample at 9.381 

GHz as related to experiments. These calculations, which 

are plotted in Figures 6.3 through 6.5, show that the microwave 

conductivity increases with 8 and becomes maximum when 8=90° 

(Figure 6.3), where ·as the angle of rotation of the microwave 

current vector first increases with 8, then becomes maximum 

when 8=40° and finally decreases to zero when 8=90° (Figure 6.4}. 



To obtain data to con£ irm the tl-!eory, 

measurements have been made of the conductance as a function 

of the electric field intensity in the same germanium 
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sample (11. 4 ohm em) at d. c. and 9. 381 GHz. The reasons for 

choosing 11.4 ohm em, n-type germanium are that it shows hot 

electron effects and it has low joule heating for the large 

samples required for 10 GHz measurements. D.c. measurements 

which are summarised in Figure 6.9 have been used for the 

determination of d.c. conductivity J/F and differential 

conductivity 8J/8F. These results are given in Figure 6.10 

and provide a basis for comparison with the microwave 

measurements. The reflection coefficient bridge was used to 

determine the microwave conductivity as a function of the 

amplitude of the electric field, applied in the form .pf short 

pulses. The method of measurement was the 11 open-end-waveguide 

measuring technique", which allowed the angle between the 

microwave and d.c. field vectors to be varied. The 

microwave measurements were made at 8=0°, 40° and 90° with 

applied electric fields up to 1.8 KV/cm. The design charts 

of Figures 5.5 and 5.6 were used to relate the VSWR or 

reflection coefficients to the conductivity of the sample. 

The results of microwave measurements which are 

summarised in Figure 6.10, are f~und to agree with the 

calculated values. The microwave conductivity for 0=40° 

was evaluated from -equation 6 .13. These results confirm that 

the microwave conductivity in the presence of a high electric 



field is indeed dependent on the angle between the microwave 

and d.c. field vectors. It is to be noted that this 

measurement for the conditions of the d.c. field vector 

directed at an angle to the microwave field vector is a 

unique one. 

For future investigation it is recommended that 
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measurements should be made in other materials, such as InSb, 

in which the anisotropic effect( 34 ' 63 ) has been reported to 

be strong at low fields (120 V/cm) and at 77°K. Consequently, 

the problems of injection of the minority carriers during 

measurements at high electric fields will not arise. 

Finally, we conclude by saying that the results of 

this investigation, which confirm the existence of the 

anisotropic effect in n-type germanium, prove the feasibility 

of operation of a new microwave device, namely "the hot 

electron micrmvave rotator". The theoretical performance of 

such a rotator has been investigated elsewhere by the author(S?). 
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. APPENDIX-A 

DERIVATION OF THE EQUATIONS ( 3.14a) . AND { 3 .14b). 

Equations (3.12) and (3.J3) yield the following 

equation 

2 

It may be shown that< 65 ) 1 

~~ + e- (A + j $ lj 
-(A + j ¢) 

- e 

[cosh A + cos$j 
1/2 

where jYnl = cosh A - coscp· 

and 0 - tan -1 [ sin$~ = sinh A 

Substituting equation (A-2) in equation (A-1), 

{A-1) 

{A-2) 

(A-3) 

(A-4) 

sin 29 J • 
(A-5) 

Equations (3.14a) and (3.14b) may now be obtained by equating 

the real and the imaginary parts of (A-5) and subsequently 

using equation (A-3) and (A-4). 
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APPENDIX-B 

DERIVATION OF THE ADMITTANCE EQUATION. (4 .15) 

Substitution of equations (4.7) and (4.9) in 

equation (4.14) yields the following identity, 

00 

1TX 
(-" + k21 ?:_~mn [..,..!._ (1-R) I . (m1T ) ,n1T sin(-) + Sln -- X COS·\b 

ax2 0 Jkl a l 0 a 

"' -jkr 1 I: J: ~_:_ + k2] E(x', y') e dx' dy' = 21T ax 2 r 

(B-1) 

where 

r\ -
z=O 

[ J 
1/2 

(x- x')2 + (y- y')2 (B-2) 

Differentiating the first term in the parenthesis of equation 

(B-1) on the l.h.s. and substituting the equation (4.13) for 

A , we obtain ron 

{

()2 
a2 + 

X 

-jkr e --· --r 

. ( 1TX) s1n-a 

dx' dy' + 

. . [ ~n J: J: E (x' , y') 

00 

L 
1 

00 

.L'L 
0 ab (~ + k2)·"' ~ 2 0 ,X 
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y)] 

. fa Jb 
0 0 E (x' ' y') sin(~n ; ) cos(~n y') dx' dy' sin(~"x> cos(~n y)J 

(B-3) 

Application of equations (B-3) and (4.12) results 
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1-R jkl 
ab [ 1 J: J: E (x 1 , y I) ~·2 '1 l+R = 9x2 + k .... 

{k2 - <:> 2} . ( 1TX) 
2Dl 21T 

s1n-
·0 a 

"' -jkr· 00 00 

£mn . ( i_ + k2) J: J: E(x', 
e dx 1 dyl + \ "\ 4 y I) L L ab r 1 0 Ymn ax2 o 

sin (~n x') cos (~n y') dx' dy' sin (~n X) cos<~" y) J (B-4) 

where n
1 -- J·ao Jbo E(x', y') sin(~· x') dx' dy' • (B-5) 

Multiplication of the numerator and denominator of equation 

(B-4) by Ja Jb sin(1Tx)dxdy gives the desired equation (4.15). 
x=O .Y=O a 



APPENDIX-C 

THE TRANSFORMATION OF THE QUADRUPLE INTEGRAL 
EQUATION (4.20) INTO THE DOUBLE INTEGRAL EQUATION (4.21) 

With the change of variables 

x + x 1 = a + u x - x 1 = u 

y + y = b + n y - yl = v 

we obtain 

• (if ) • (if 1) 1 Sln - X Sln - X = a a 2 [cos~(x - x 1
) - cos~(x + x 1 >J 

1 = 2 [cos(~ u) +cos(~ u)] 

= cos~(x - I) cos(X 1 
- I) (C-1) 

a a and replacing --- by - ---- , 
ax2 axax 1 

which is permissible as r is 

a function of x - x 1 we obtain 

(
"'2 a2 ~\.. if 
k + --- ·.· Sin (- X) Sin ( :!!_ X 1 

) 

ax2/ a a 

"2 2 = k cos:!!.(x - ~) cos:!!.(x 1 
- ~) - (!) sin:!!.(x - a) sinif(x 1 

- ~) a 2 a 2 a a 2 a 2 

= k~ [cos~ (x - x') + cos~(x + x' - a] . -~(~f [cos~ (x-x') 

cos~ (x+x' -a)] 
1 

= 2 ~2 ~ 
k2 + (:!!.) 2 

cos(~ u) + -"-
2
-----a-=2 

k - (:!!.) 
a 

if cos(a u) l . 
ic-2) 
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Thus equation (4.20) becomes 

2 
D'2 7f 2] "'2 ·n 

. k - (-:) r r rrr.· · .k..+. .<.a-> cos(~ u}·· y . a 
0 . 0 . 0 . 0 cos(; u) + = J n 2n ab kl "2 2 

k - (7f) 

-jkr 
e 

r 
dxdx 1 dydy 1 

• 

a 

(C-3) 

The change of axes and ranges of integration are shown in 

Figure C-1. Furthert, replacing dxdx 1 by~ dudu and dydy 1 

by ~ dvdn and multiplying the result by 4 as the total 
L. 

integration is 4 times the integration in the first quadrant, 

one obtains 

I: I: 1 f J dudu 
fa fa-u dxdx 1 = 2 = 2 dudu (C-4) 

0 0 

and similarly 

Jb fb dydyl 1 

f f Jb Jb-v = 2 dvdn = 2 
0 0 

dvdn • (C-5) 
0 0 . 

Substituting equations (C-4) and (C-5) in equation (C-3} , 

y 
n = 

[k2 - (~)2] j4 

2n ab k 1 

J: J:-uJ: J:-vfcos(~ u) + _kk:-:_+ __ <!f_a_>-=-: cos(~ J 
[ - (i> j 

-jkr 
e dududvdn 

r 
(C-6) 

which can be reduced to equation (4.21}. 

t Page 92, Reference 43. 





171 

/ 

APPENDIX-D 

THE ENERGY DISTRIBUTION FUNCTION FOR TH.E CARRIERS 

A non-equilibrium distribution function for the 

-+ 
carriers having the wave vector k can be represented by 

spherical harmonics of degree ~, which is of this type( 66 ) 1 

f(k) = I k~ { a~ P~ (cos8 1) + ~ [a~ cosm¢ 1 + b~ sinm¢ 1] .... 
~=0 m=l 

Pm 
~ 

(cos8 1) } (D-1) 

where P ~ ( cos8 1) is the Legendre Polynomial and is given by 

p~ (cos8 1) = (-l}~k~+l a~ ( !_) 
. ~! Clk~ k 

z 

Po (cos8 1) = 1 

pl (cos8 1) = cos 81 

·cos8 1 kx/k and k2. 
kx 

2 + k 
2 + k 

2 
= = y z 

and the assoc.iated Legendre function, 

P~ (cos8 1) = (1 - co~ 2 8 1 )m/ 2 dm 
{ P (cos8 1)} 

dk m -~ J 

X (D-2) 

where 8 1 is the angle between the wave vector k and kx-axis, 

~~ is the angle between the projection of the wave vector 

on the k k plane and the k -axis; a, b are constants and y z z 

~, m are integers. 



The function may be approximately written as 

00 '> . { ki 1 i I "-- ai Pi (cosG ) + k hi sin¢ 
£=0 

00 

P' (cosG') 
i 

(D-3) 

00 
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. ko a p (cosG') + I ki ai pi (cosG') + I~ llki 
b • I Slnqi .... .i 0 0 i=l 

R-~0 
I i I 

(cosG')] pi (cosG') + k ai cos.¢' pi 

~ f
0

(E) + f 1 {E) cosG' + f 2 (E) sin¢' sinG'+ f 3 (E) cos¢' sinG' 

(D-4) 

which is the same as described by Moll(G?). The magnitudes 

of the coefficients £ 1 , f 2 and f 3 give the currents in the x, 

y, and z directions, respectivelyw 

A detailed analysis by Reik and Risken(GS) for the 

case of n-type germanium shows that the distribution function 

can be given by the approximate expansion of the first term 

in equation (D-3) for the current flow in the x-direction 

only. Since an x-directed d.c. field at an angle G to the 

microwave field produces a compone~t of the current in the 

y-direction also, it is appropriate to include the second 

term in equation (D-3) • Thus for the wave vector k lying 

on the kx ky plane, ¢'=90° and the distribution function for 

the carriers becomes 



I 

P 9. ( cose 1
) ~in ¢ 1 

I 

a
0 

P
0 

(cos8 1
) + k a 1 P1 (cos8 1

) + k \ P1 (cos8') 

= a
0 

+ k a 1 cos8' + k a 2 sinG' 

= (D-5) 

This may be finally written as 

+ 0 

f(k) = f(E) + kx g(E) + ky h(E) (D-6) 

where kx and ky are the components of the wave vectors in 

x and y directions, respectively; g(E) and h(E) are the 

purturbed values of the distribution functions in the x-

and y-directions, respectively; f(E) is the isotropic part 

of the distribution function and kx g(E) and ky h(E) are the 

anisotropic parts of the distribution function. When the 
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external field is removed, the distribution function restores 

to the equilibrium, i.e. f(k) = f(E). 
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