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of semiconductors is described.
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ABSTRACT

An investigation has been made of the microwave
reflections from the surface of a semiconducting médium
with complex pérmittivity (E = ered—j%) at the open end of
‘an empty rectangular waveguide. The approximate and exact
solutions of the reflection coefficients at the surfaces of
both finite and semi-infinite media have been found as a
“function of the complex permittivity of the medium. The
computations of the reflection coefficients are made at the
10 and 35 GHz ranges. Measurements, which confirm these
calculations, have been performed with n-type germanium,
selectron/and air at the open end of a rectangular waveguide
using a reflection type microwave bridge. The investigation
has shown that it is possible to devisg a convenient method
of measuring the conductivity and dielectric constant of
semiconductors.

The fheory‘of operation of the microwave reflection
bridge together with the setting-up (matching) procedure of
a practical form of the bridge has been presented. A method
~is also described for the correction of the measurement
error which arises froﬁ the scattering coefficients at the
input ports of the precision attenuator.

A theoretical and experimental study has also been
made of the small-signal microwave conductiviiy of n-type
germanium at room temperature in the presence of a high

electric field, directed at an angle € to the microwave
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field. The study has shown that at frequehcies such as

10 GHz, the microwave conductivity becomes anisotropic with
respect to the direction of the d.c. field vector. Measurements
are madeon an 11.4 ohm cm, n-type germanium sample at 9.381

GHz with applied electric fields up to 1.8 KV/cm for 0 = 0°,
400Iand 90°, The "open-end-waveguide measuring technique",
which allows the angle between the microwave and d.c. field
vectors to be varied, was employed to measure the microwave
conductivity. The results of measurements which égree with

prédictions, confirm the feasibility of operation of a new

microwave device based on the anisotropic effect.
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CHAPTER I

INTRODUCTION

The properties of semiconductors such as relative
permittivity €. and conductivity o play an important role
in the design and operation of semiconductor devices. Ever

(1)

since Bardeen and Brattain discovered the transistor in
1948, great interest has been shown in the study of the
properties of semiconductors. With their evergrowing
importance in the field of practical science, semiconductors
of different materials are being investigated carefully to
discover their properties for use in newer branches of
technology.

The investigation of the microwave properties of
semiconductors is a relatively recent development, having
begun only about a decade ago(2—17). Within this'period,
the measurement of semiconductor properties by microwave
methods has proved to be advantageous over thé d.c. methods-
Moreover, in recent years, the semiconductor devices have
found important applications at microwave frequencies. The
gradual displacement of the microwave power tubes by solid
state devices is an example(lg).

The problem of microwave propagation through
semiconductors in the presence of a high d.c. electric field

is another recent development(19~34). From a study of the



microwave conductivity data at high electric fields one can
infer the variation of relaxation time with electric fields
and hence the nature of the scattering processes. Also, the
microwave conductivity at high electric field levels becomes
- anisotropic with respect to the direction of the d.c. and
microwave field vectors. This effect can be useful in the
deéign of microwave devices 25726+ 56=57)

The objectives of this thesis are three-fold, as
follows:
(i) Since a microwave reflection bridge is suitable for the
measurement of the electrical properties of semiconductors,
its practical setting-up (matching) procedure, giving the
most accurate results, has been desired for some time. The
measurement accuracy in such a bridge depends mainly on the
matching of the input ports of the ‘'hybrid tee', a basic
unit of the reflection bridge. Also a significant error
arises from the scattering coefficients at the input ports
of the rotary -vane precision attenuator, the standard component
of the bridge. Although a theory of this bridgél3)is available;
its practical setting-up procedure and a method for correcting
these errors have not been reported in the literature.

This thesis describes a theory together with the
practical setting-up procedure of a reflection type bridge
and a method for correcting the measurement error which arises
from the scattering coefficients at the input poxtgcf:ithe

precision attenuater. This bridge to be discussed in



chapter II, has been used to confirm the theories developed
in this thesis.

(ii) The secdnd objective is the study of microwave
reflections from the surface of a bulk semiconducth. This
study was motivated in part by a need to devise a method of
measuring the microwave properties of semiconductors. A
number of technigques for measuring microwave conductivity
and dielectric constant has been reported in the literature

(2-7, 10~l7). The well-known techniques involve the

measurement of VSWR(S—G), transmission coefficient(lo)

3)

S e o 1 . . .
reflection coeff1c1ent( * at the air-sample interface in

and

a completely filled aneguidelwhich require the samples to
be cut to the cross-section of the waveguide. Of these,
the accuracy of the reflection method of measurement is
comparatively good when the resistivity of the semiconductor
is relatively high. At low resistivities the unavoidable
gap present between the semiconductor ahd the walls of the
waveguide introduces error in the results of measurement(lz).
Resonant cavity perturbation techniques have been
used for measuring the properties of iow resistivity

(11) (14)

semiconductors The lossy wall and partially filled

guide(ls) have been developed very recently. The former

technique is suitable for measurement when ¢ = w €4 €y

while the latter for low resistivity measurement.

Besides the above mentioned techniques a number of

(2, 7)

authors measured resistivity by pressing a thin slab



of semiconductors backed by a short-circuit plate at the open
end of a rectangular waveguide. ‘This is a convenient physical
arrangement for meashremnt. However, the accuracy of the
method is affected by the undesirgd radiation which propagates
through the semiconductor parallel to the shorxrt-circuit plate.
The intensity of this radiation depends on the dimensions .and the
reéistivity of the semiconductor sample. Morebver the
measuring method was based on the use of a slotted line which
lacks precision at high frequencies because of the perturbing
influence of the slot and probe on the fields and because

of the mechanical inaccuracies.

None of the technigues mentioned above provides an
accurate means of’measuring €, and ¢ at the high end of the -
resistivitiy range. Not ohly that, but different techniques
of measurement are required, depending on the resistivity
of the semiconductor. Thus the development of a new method
that could provide an accurate means ofvmeasuring e, and o
over the entire range of resistivity is desirable. Such a method
based on the reflections of microwaves frdm a piece of
semiconductor placed at the end of a rectangular waveguide,
has been described.

Chapters III to V of this thesis are devoted to the
theory of microwave reflections giving experimental verifications
wherever poséible. To be spécific, the theoretical solutions
of the reflection coefficient of a semiconductor block at the
end of a rectangular waveguide are developed. The following-

waveguide configurations were considered for the analysis:



(a) A semiconductor slab placed inside a réctangular

waveguide and terminated by a short-circuit plate (Fig. 1.1);
(b) A semiconductor slab pressed at the end of a rectangular

waveguide opening onto a metal flange and terminated

by a short-circuit plate (Fig. 1.2);
(e) A semiconductor slab placed at the end of a rectangular

| waveguide opening Qnto a metal flange‘and followed by

free space (Fig. 1.3).
The approximate sdlutions of‘the reflection coefficient at
plane z=0 of these configurations for a finite semiconductor
medium are developed in Chapter IITI. The exact solutions
of the reflection coefficient for a semi-infinite and finite
medium at plane z=0 of the configdrations‘(b) and (c) are
developed in Chapters IV and V, respectively. Numerical
computations for each case were made at the 10 and 35 GHz ianges
and confirmed expérimenﬁally for n-type germanium, selectron
and air.

The result of this analysis has beén utilised to

devise a method of measurement which involves the placement
of a semiconductor sample at the openvend of a rectangular
wavéguide. This method which has been termed the “open—end-
waveguide measuring technique" is not only suitable for the
normal measurement of the microwave properties of semiconductors
but it is aléo advantageous for high-field measurements.
The principal advantages of this method over the previous

ones are that the samples are not required to be cut to the



cross-section of the waveguide, the measurement accuracy is
fairly high in the entire range of resistivity and the rétation
of the sample position with respect to the microwave field
vector in high-field measurements is easy.

(iidi) Thé last objective of this thesis is the study and
measurement of the anisotropy of the microwave conductivity

in n-type germanium subjected to a high'd;c- electric field.
Gunn(25) has stated from physical reasoning that the small-
signal microwave conductivity of a semiconductor sample for
parailel d.c. and microwave fields is given by the incremental
conductivity %%-whereas the conductivity of the same sample

for perpendicular fields is given by the d.c. condﬁctivity

J

7 Although a theory and the experimental verifications of

the parallel conductivity have been described by a number of

authors(lg_zg)

, a satisfactory theory together with experimental
confirmations for the perpendicular case has not been reported
in literature. In particular, a confirmation of the dependence
of the microwave conductivity on the angle between microwave

and d.c. field vectors has remained an unsolved problem.
Moreover, a definite conclusion of the existence of this
anisotropy would confirm the feasibility of operation of a

new microwave device, namely "the hot electron microwave

. rotator". The theoretical performance of such a rotator has
been investigated elsewhere by the author(57).

This thesis gives a simple derivation .of the small-

signal microwave conductivity of semiconductors, in terms of



parallel and perpendicular conductivities and the angle
between the microwave and d.c. field vectors. An analysis
haé also been made of the parallel and perpendicular
conductivities of n-type germanium by solving the Boltzmann
equation in the same manner as used by Nag and Das(23).
Numerical calculations have been made of the microwave
conductivity and the angle of rotation of the microwave
current vector for an n-type germanium sample at 9.381 GHz. To
confirm these calculations, measurements have been made of

the conductance as a function of the electric field intensity
in the same germanium sample at d.c. and 9.381 GHz. A new
method of measuring microwave conductivity in high electric
fields, which allows the angle between the microwave and d.c.

field vectors to be varied, has been devised. The results

of measurement agree with those calculated by the theory.
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.CHAPTER II
THE MICROWAVE REFLECTION BRIDGE

2.1 Introduction

(13, 35) is most

A microwave reflection bridge

suitable for accurate measurements of the electrical
properties of semiconductors (o, €,) in the microwave frequency
range. Such measurements normally involve the precise
determination of the reflection coefficient of a waveguide
filled or partially filled with semiconductors and for this
the bridge has some advantages over a slotted line. At
the higher end of the microwave frequency range, slotted lines
become subject to errors because of the difficulty of
maintaining the required mechanical tolerances.

| A basic unit of-a microwave reflection bridge is a
hybrid‘tee and in Section 2.2.1, the properties of the
'hybrid tee', 'symmetric tee',and 'magic tee' are described.
The magic tee with it's terminal conditions is also discussed
in Section 2.2;l,and in gsection 2.2.2, a theory of operation
of a reflection bridge is presented. In Section 2.2.3, a
method is described for the correction of the measurement
error. Finally, in Section 2.3, the details of the setting-up

procedure of a practical form of a reflection bridge are

discussed.

10
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2.2 Theory

A microwave junction with four ports as shown in
Fig. 2.1 is defined as a hybrid tee. A tee that appears

matched looking into each arm
Plane of Symmetry

in turn with matched texrminations
on the other arms is calied a
'matched tee'. A matched

tee may or may not be

symmetric and when compensated
for ésymﬁetry is called a

‘magic tee'. Figure 2.1: The three Dimensional

View of a Hybrid Tee
2.,2.1 The Microwave Tees

(a) The Hybrid T: The essential properties of a hybrid tee
‘are expressed in the form of a scattering matrix [S]. With
reference to ports 1, 2, 3,and 4 in Fig. 2.1 the scattering
matrix of a hybrid tee is defined as

[b] = [s] [a]

where a is the incident wave and b is the scattered wave.

or,
= ] . 7 I I

by S11 512 33 Syy ay

Pal _ 1521 S22 S23 S 2

by 831 S3p  S33 S3y a3

by Sp1 Sgn Sp3 Sy ay
L L I




12

When the propagation medium is airx,

S = S

12 21
S13 = 833
SB4 = S43 etc. so that
by 511 S12 S33 Sy4 a)
b S S S S a
2| _ {512 S22 S23 Sag 2 (2.1)
byl {813 Sz3 833 S34 ag
b, S14 Sy4 S34 Syy ay
L. L — S

(b) The Symmetric T: A hybrid tee becomes a symmetric tee
if it has a symmetrical structure with reference planes
placed symmetrically and at equal distances from the plane
of symmetry. Further,a symmetric tee has the following

additional characteristics.

Sy, = O
Sy3 = O
S13 T Sz3
S11 T S22
S1a T "So4

If the reference planes in the side arms are not

equidistant from the plane of symmetry, then

Sy3 T Sy3 IV

I

where Y difference in electrical phase change

over the lengths of the side arms.
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(c) The Magic T: A symmetric tee becomes a magic tee

when ports 3 and 4 are matched i.e. 533 = 844 = 0. The

matching of pérts 3 and 4 ensures

S11 T 89p T 8, =0

2 2 . .
and |Sl3| |Sl4| = 1/2 , automatically, provided
the following condition is satisfied:

“Phe walls are perfect conductors or approximately so;
, y

for long side arms, this condition may not be satisfiea(36)7,

The magic tee has, therefore, the following additional
characteristics to the symmetric tee:
33 a4
11 22 12

3 0° is incident

on port 3 of a magic tee while all

If a~TE10 wave E

other ports are terminated in

loads having reflection coefficents

Rl’ R2, and R4 at reference ports, - - Figure 2.2: A Magic Tee with
the output waves at these Ports are Unmatched Terminal Loads Zl'
expressed respectively as(36) 22 and Z4,

(@]

r (L-R,R,) E, |0 . .
E, = V2 274 3 (2.1a)
2 - R, (Rl.+ R,)
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_ (1-R.R,) E .yoo
E; = /2 L4 3 (2.1b)
, (R, + R, - 2 ROR_R,) E,|0°
B - 1 2 172! BalY (2.1¢)
(R, - R,)) E,|0°
Ey = 1 23— (2.1d)
2 - R, (R} + R))

These equations give the following important conditions:

(i) If Ry = 0 and Ry # Ry,
/
By = (Ry = Ry) E5/2,
/7 _ ’
E{ = E, = Ey/V2

i.e. the power outputs = are equal in side arms with an

output Eé in port 4 and
/
E3

i.e. the power is reflected into port 3.

(Rl + R2) E3/2

(ii) If'R4 # 0 or R4 = 0 and Rl = Rz,‘
EZ = 0
Y 4
E; = E, = E3//§

i.e. the power outputs - are equal in side arms with zero output

in port 4 and

E3 = RyE;

i.e. for a short circuit (Rl = -1), all the power is reflected

into arm 3. Thus for a magic tee when the bridge is

balanced Ry = szhether or not R, = 0 and the power outputs

are equal in the side arms.
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2.2.2 The Reflection Bridge

The schematic diagram of a reflection bridge circuit
is shown in Fig. 2.3. The bridge element can be a 'hybrid
tee', a 'symmetric tee' or a 'magic tee'. The ports 1 and 2
of the bridge element lie in the réference and sample arms,
while ports 3 and 4 lie in the H and E arms,respectively.

7. is the reference load and Z is the unknown load, the

1
reflection coefficient of which is to be determined.

(a) The Bridge with a Hybrid Tee:
- With a ‘hybrid tee' in Fig. 2.3 the scattering matrix
‘with reference to ports 1, 2, 3 and 4 is given by equation

(2.1). Also, at reference ports 1 and 2,

R =L (2.2)
1 by
R - o2 (2.3)
2 b2
where Rl and R2 are reflection coefficients at ports 1 and
2, respectively. Noting that a, = b4 = 0 for a null condition,
R2 can be obtained from equations (2.1), (2.2) and (2.3) and
is given by(l3),
R T (2.4)
2 Yy R, -1

where

S S - 8 S ’
o = {jsll 34_ 13 Y14 , (2.5a)



S

° T S S _33 S (2.5b)
22 534 23 524
| (.. 8.. -s%.) s, + (S.. S.. - S.. S..) S
and y = 11 S22 12) S34 13 512 23 S11) So4
S22 S34 7 833 Sy
(S5, Sp3 = Sy3 Sy,) Syy (2.5¢)
522 534 7 S23 524
(b) The Bridge with a Symmetric Tee:
When the 'hybrid tee’ is symmetric,
S34 = O
S43 = 0
S11 T S
S13 T Sy3
S0 = “S14
S12 = S21 etc.
and the equations (2.4) and (2.5) give
e = |27 513 514
= g
0 - 8,3 5,5,
—
§ = 0
y = (813 815 = 833 8S33) Syt (85 Sy3 = 8135,)) Sy
= Sy3 Sy4
= 0
.. R. = R - (2.6)



(c)/ The Bridge with a Matched Tee:

When the input ports of the 'hybrid tee' are

matched,

S

11 = 833 T 815, =0

S3q = S43 7 0

which give from equation (2.5c)
.« . R2 = --Rl o f )

(d) The Bridge with a Magic Tee:

Wheén the 'hybrid tee' is magic,

834 = 543 =0
811 T 832 T 81,70
S13 = 5,3
514 7 Sp4
which give
s = 2”513 514
0 = 8,3 Sy,
= -1
§ = 0
Yy = 0
.-R2=Rl

(2.7)

(2.8)

17

which is the same as obtained in the symmetric bridge (Equation

2.6)
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(e) The Bridge with either a Symmetric or a Magic Tee:
Consider the bridge circuit of Fig. 2.3 with the
tuning stub removed from the slotted section for the balanced

condition in which the reflection coefficient Rl at the

plane 1 is made equal to R, at the plane 2, by suitable
adjustment of the standard rotary vane attenuator and short-

circuit. For a given attenuator setting (Ai), R. can be

1
. (36)
written

2
S16 (B)) Ry

R, = S (A,) + .
11 By .
1 - Sge (A1) Rg

2

16 (2.9)

1 (Al) + S (Al) R

Sy 6
on the reasonable assumption that 866 (Al) R6 <<1l. The

(37)

-A
scattering coefficient Si16 = K,e "1 where the constant

KA represents the constant insertion loss and phase shift

in the attenuator. Also the reflection coefficient

R6 = KS e_JZBQl where K is the complex constant containing

the fixed loss in the short circuit and B is the phase
constant in the empty waveguide. The readings of the
precision rotary vane attenuator and the precision short

circuit are taken as Ay and_Yi respectively, thus

C - 1R 2
2 e 2(Al +38 l)

1 (Al) + Ky K (2.10)

=5

If the unknown impedence is replaced by a short circuit, then

R2 = -1 and anull balance will be obtained with the attenuator

and short circuit settings AO and 26 respectively. This gives
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FIGURE 2.3: A Microwave Reflection Bridge Circuit.
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the equation

L 2 ~2 (A +3B %) (2.11)
1l = Sll (AO) + KA KS e 0 0 ,

Equations (2.10) and (2.11) then give for a null balance with

the unknown impedence at plane 2

Ry = Ry
R by (A + j¢)
L - & (A + j¢) ’ :
¥ - e + 5y5 (Al) | (2.12)
where A=2 (Al'— A, &= 2B (& - JLO) and 511 (AO)' <<1.

In a precision attenuator, due to the finite thickness of

the absorbing vane S is not zero but it is small. Under

11
conditions of measurement in which the term Sll (Al) is
significant. the usual practice of neglecting it by some

microwave engineers may resultin a serious error. . In the
measurement of a large reflection coefficient, however,

| s (A7 j¢)| >> | s,,(a;)]| so that
R, = v..'e' (A+]¢) (2.13)

For the purposes of measurement, particularly with

materials of low reflection coefficient, the equation (2.12)

was used in conjunction with a calibrated tuner in the

reference arm to tune out S (Al) to zero. This ultimately

11
made it possible to use the much simpler equation (2.13).

Accurate results can also be obtained with equation

are known.
11

(2.12) only if the magnitude and phase of S

20
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Unfortunately it is very difficult to measure precisely both
phase and magnitude of such a small scattering coefficient |
by a conventional slotted line techhique. In the following
section a method has been described for such meaéurement
using the bridge circuit of Fig. 2.3.

2.2.3 The Measurement Errors

The accuracy of the reflection bridge meaéurements
depends to a large extent on the quality of the variable
impendance standard arm components, which éomprise a precision
rotary vane attenuator and a precision variable short-circuit.
One source of error in such measurements results from the
scattering coeffiéients at the input ports of the attenuator
and the magnitude of this error is a function of the attenuator
setting. This error becomes significant in measurements of
low reflection coefficients which require an attenuator
setting greater than a few dB, for example the measurement
of the reflection coefficient at the opén end of a rectangular
waveguide.

Holm,et.al.(38)

have derived an expression for‘the
associated scattering matrix of a rotary-vane‘attenuator

- which is useful for the calculation of the scattering
coefficient. For the attenuator - stub tuner combination
shown in Fig. 2.3 with the tuning stub removed frém the

slotted section of guide, their expression for the scattering

coefficient Sll at the measuring plane 1 is

_ . 2 . :
Sll = All + Bll sin“6 + Cll sin 20 (2.14)
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The vane angle 6 is related to the attenuator setting in

. _ 2
dB by the expression dB = -20 loglo (Cos™ 6) and All' Bll

and C are complex constants. The authors verified Eq. (2.14)

11
by using the reflectometer technique of Engen and Beatty(39)

11° The

constants in ‘Eqg. (2.14) were determined, after assuming A

which measures the magnitude but not the phase of S

11
real, from measurements of the magnitude of Sll at five
values of attenuvator setting.

We wish to describe a procedﬁre of eliminating errors
due to Sll by using a calibrated sliding stub tuner at the
input port of the rotary-vane attenuator. The method also
gives a means of measuring not only the magnitude but also

the phase of S as a function of attenuator setting. The

11

determination of the constants A and C has also

117 Buar 11
been simplified as measurements of both phase and magnitude
of Sll at three attenuator settings only are required.
Consider now the case of the Fié. 2.3 in which a
tuning stub is introduced into the slotted section of the
guide between planes 1 and 5. For any given setting of the
attenuator, this tuner can be adjusted to make Sll (Al) = 0.
For the same unknown impedance, this matched condition of
the attenuator will result in new readings A, and ¢m‘instead

of the A and ¢ in Eg. (2.12). The scattering coefficient

Sll(Al) can then be obtained from the equation

s, (a) = -8 Pn ¥ 3ty g (B30 (2.15)
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Measurements have been made of Sll (Al) for several
commercially available X band (10GHz) rotary vane attenuators,
using the bridge circuit of Figure 2.3. For the preliminary
measurements, matched loads were placed at planes 6 and 2
and the calibrated sliding stub tuner was adjustea to give
a null output for different settings of the attenuator.
These calibrated readings then allowed Sll (Al) to be made
zero as required in the subsequent measurements.

The reflection coefficient of a Vériable unknown
impedance at plane 2, comprising a variable attenuator and
variable short circuit, was then measured with and without
the tuning stub, that is for the conditions Sll (Al) = 0,
Sll (Al) # 0. These measurements gave the scattering
coefficient Sll (Al) as a function of attenuation, throggﬁ
equation (2,15) .Measurements with the rotary vane attenuator
at three angles (8) enabled the constants All’ Bll,and Cll
in equation (2.14) to be calculated.

Measured values of the magnitude and phase of Sl
for the two rotary vane attenuators are given in Figure 2.5
(H.P. x 382A) and Figure 2.6 (Elliott Al67/44). Calculated
cufves from equation (2.14) based on the experimentally
ldetermined constants, can be seen to be in good agreement
with the measured values. Relative errors in measured
magnitudes of the reflection coefficient due to Sll are

indicated in Figure 2.4.
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The performance of a reflection bridge dépends also
on the bridge element, which can either be a 'hybrid tee'
or a 'magic tee'. The bridge with a hybrid tee described
in Section 2.2.2 requires three preliminary calibration
readings, two with short—cirquits and one with a matched
termination. This is to be compared to the one short
reading for a symmetric tee or a magic tee for measurement.

The use of a hybrid tee involves not only the time
consuming calibration procedure; but also the calculation of
the reflection coefficient, which is usually cumbersome.
This difficulty is avoided'by using a magic tee, which gives
an expression for the required reflection coefficient in a
much simpler form(Cf;'EqS; 2.4 and’2.8f. The magic tee is also
perferred to a stmétric tee for the following reasons: ‘

(a) A symmetric tee is very difficult to obtain in practice
due its unequal side arm léngths, dimensions and losses_in
side arms;

137 523

S,,, which are required properties of the symmetric
22 _

(b) The equality of both magnitudes and phases of S
and Sll’
tee, is difficult to achieve in practice.

AThe magnitudes of these coefficients, however,jp; a ‘'practical
magic tee' approach zero, so that the equality cﬁfthe phases

does not become so important. Since it is practicélly impossiblé
to obtain either an ideal symmetric or magic tee, it is best

to make a tee symmetric as well as matched as far as possible,

in order to approach the ideal case.
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The schematic diagram of a practical form of a reflection
bridge is shown in Figure 2.7. The side arms of the
'original tee' are not often convenient for measurement
purposes andadditional waveguide sections are added to one

'side arm. This results in the 'modified tee' shown in the
figure. The modified tee is first changed into a magic tee
by matching the E and H arms with two slide screw or E-H!
tuners in E and H arms and then compensating the asymmetry,
if any, with a tuner in one of the side arms. The precision
attenuator and precision short which provide the 'reference
arm' are coupled to port 1. A calibrated tuner is used in

the reference arm to cancel out the attenuator reflection.

2.3.1 Details of the Setting-up Procedure
(&) "MATCHING THE INPUT PORTS OF THE 'MODIFIED HYBRID TEE'
The input ports of the modified hybrid tee are

matched with screw tuners in E and H arms at,the frequency
of operation. The matching procedure is as follows:

A tuner and a matched detector are coupled into the
E and H arms respectively, while the side arms are terminated
in matched loads. The tuner in the E arm in conjunction
with a slotted line is adjusted to obtain maximum output iﬁ
the matched detector. The VSWR at port 4 is minimum under
this condition and can be made less than 1.02. This
corresponds to a magnitude of the reflection coefficient
looking into E arm of |S441 < .01. This éomplefes the

matching procedure of E arm.
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Similarly, the H arm.is matched by adjusting a
-tuner in H arm and observing the maximum output in ﬁ{arm
while the side arms are terminaﬁed in matched loads. The
magnitude of the reflection coefficient looking into H arm
|S33|, can also be made < .01,

If the tee is symmetric and lossless , the above
procedure automatically ensures that side arm ports 1 and 2
are matched also. |
(B) COMPENSATING FOR ASYMMETRY IN THE TEE

Cross coupling can exist between the H and E arms
even when the side arms are terminated in matched loads
because of the asymmetry in the construction of the tee..
For such a condition an input to the H arm will give an
output in the E arm varying from a few tens of microvolts
to a few millivolts, depending on the quality of the tee
and power input to H arm (about 30 to 40 dB isolation).
This T-asymmetry results from a number of factors such as
unequal electrical lengths of the side arms from.the plane
of symmetry, incorrect waveguide width and unequal losses
in the side arms. The power output in E arm due to these
features can be minimised by adjusting a screw tuner in
one of the side arms, which are terminated in matched loads.

(40)

The vector diagram of the output E1 at the

detector in E arm is shown in Figure 2.8 where Em and Em

1 2

are the reflected waves from the imperfect matched terminations

in ports 1 and 2 respectively, E, is the reflected wave fromn
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the tuner in the side arm'2, Er is the resultant of Et and

Ema' and Ea is the transmitted wave from port 3 to port 4

due to asymmetry of the tee. If the bridge is compensated
for asymmétry, Ea cancels Er and the null output, caused

from the sliding matched load reflection E does not change

ll

with the position of the matched load, since En is variable

in phase but not in magnitude. If the bridge is not

compensated, the output Em will vary with the @ositioﬁ;.since

1

Bl will now add to or subtract from the unbalanced signal.

For the waveguide systems used, the magnitudes of
the transmission coefficient from ports 3 to 4, the reflection
coefficients at ports 1 and 2 and the cross coupling
coefficient from ports 1 tb 2 were measured and found to

be |S |s =0,0000023, |51i| = |s,,| =0.01, and

23| = 18341

|s;51 = Is,;] =0.03. A compromise between |S and

12! 18441
from0,03 to

_ 12!
0.01 on adjusting the tuner in the E arm at the expense of

could, however, be made by decreasing |S

an increased |S,,| from0.01 to0.025.
(Ct)' " MATCHING THE PRECISION ATTENUATOR

This has been described in Section 2.2.3. The
reflection from the attenuator due to the finite thickness
of .the absorbing vane; a% mehtiqned eatlier, varies with
the attenuator settings. A calibrated tuner was, therefore,
required to cancel out the attenuator reflection for any

given attenuator setting. The calibration was performed

by noting the position and penetration of the screw tuner
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with increasing attenuator settings required to give
minimum output in the E arm with ports 2 and 6 terminated
in matched loads.

2.4 Discussion

The waveguide sections which have been
included in one side arm of the dbridge as shown in Figure 2.7
should be lossless ' or apprbkimately so, to satisfy the

conditions of a matched and symmetric tee = |s

15141 221 =
ISlzl + 0 (Section 2.2.1). It has, however, been found
that a lossy waveguide section is necessary in the sample
arm particularly for the preliminary measurement with a
short-circuit in order to balance the insertion loss of
the precision attenuator in the reference arm. This
unavoidable loss in the sample arm should be as small as
possible.

The tee chosen for use in the bridge should not bé
highly non-symmetric. If it is so, the'required'depth of
penetration of the tuner in one of the side arms to compensate
asymmetry may destroy the matching looking into the side
arms i.e. |S,]| # |822| # 0. Care should, therefore, be taken
in choosing the tee and the microwave components for the
side arms, which are not too lossy and have a minimum number
of bends with consequent small reflections.

| The waveguide component flanges must be accuraﬁely
aligned and the waveguide connections must be tight to avoid

unwanted reflections. Particular care is reguired in the
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connections to the side arms which should be firm and

aligned to avoid large errors.

The ‘set-ups of the microwave reflection bridgé which
were used to confirm the theories developed in this thesis
are shown in Figures 2.9 through 2.12. Figures 2.9 and
2.10 show the set;ups used to verify the theoretical
predictions of Section 4.2 at 355and 10 GHz,respectively.
Figure 2.11 is the part of an x-band reflection bridge used
to verify the theoretical predictions of Section 5.3/while
Figure 2.12 shows the complete apparatus used for measuring
the microwave conductivity of a germanium sample subjected

to a high d.c. electric field.



FIGURE 2.9: Rear View of the 35 GHz Set=up of the Microwave Reflection Bridge showing the Measurement
of the Reflection Coefficient of a Block of Germanium in One Side Arm of the Eridge. w
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FIGURE 2.10: Rear View of the 10 GHz Set-up of the Microwave Reflection Bridge showing the Measurement
of the Reflection Coefficient of a Piecce of Selectron in One Side Arm of the Bridge.
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FIGURE 2,11

iy

Front View of the 10 GHz Set-up of the Microwave Reflection Bridge showing the
Sample Holder containing a Slak of Germanium between the Waveguide Flange and the

Precision Short-Circuit Plate.
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FIGURE 2,12%

\

General View of the Complete Apparatus for measuring the Microwave Conductivity
of an 11.4 ohm cm N-type Germanium Sample subjected to a High D.C. Electric Field.
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CHAPTER III

,MICROWAVE REFLECTIONS FROM THE SURFACE OF A FINITE
SEMICONDUCTOR MEDIUM (APPROXIMATE SOLUTIONS)

‘3,1 Introduction’

- This chapter contains a theoretical analysis of the
wave reflections together with the development of the
approximate solutions for the input impedance and the
reflection coefficient at the surface of a finite block of
semiconductor.

The reflection coefficient at the plane z = 0 of
a finite block of semiconductor placed in a rectangular
.waveguide as shown in Figure 1.1 can be calculated exactly
and the appropriate equations are derived in Section 3.2,
The reflection coefficients at the surface of a finite
block of semiconductor placed at the open end of a rectangular
waveguide as shown in Figures 1,2 and 1.3 are also calculated
on the assumption of a z-directed TEM wave T
in the semiconductér region. The solution is approximate, as
the radiati&e propagating wave in the semiconductor region

is neither a complete TE wave nor a. TEM wave. The

10

appropriate equations are derived in Sections 3.3 and 3.4.

3.2 The Reflection Coefficient of a Finite Semiconductor
Block Inside A Rectangular Waveguide

The input impedance at the air-semiconductor

interface plane z = 0 of a rectangular waveguide of Figure 1.1

can be expressed as(4l)

38
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Z3 +‘Z2 tanh Yz%

22 + Z3 tanh YZQ

(3.1)

where Z2 = the wave impedance of the semiconductor loaded

waveguide i.,e. of region 2; Z3 = the wave impedance of the .

material terminating the waveguide i.e. of region 3;

2 = the length of the‘semiconductor sample in axial direction
énd Y2 = the propagation coefficient of‘the semiconductor
loaded waveguide. If the wavegquide is terminated by a

short-circuit metal plate, Z, = 0 and the input impedance

3
simplifies to the following form

Zin = Z2 tanh yzz (3.2)

The reflection coefficient R at the air-sample interxface mayh

therefore be written as

-y
2 Y2 1

where 2, = the wave impedance of the empty waveguide, i.e.

of region 1., If we assume thatvthe TElQ wave propagates in
_regions 1 and 2 of the structure of Figure 1.1, the

propagation coefficients and the wave impedances of the empty
guide and semiconductor loaded guide are given by the following

oo
expressions:

+ The conductivity is assumed to follow the field at 10 and

35GHz . At higher frequencies, o should be replaced,by(42)
A ‘ : . <T> : : . ,
: () = g - jw g Tz 5 where Tis relaxation time
1l o+ ow <T§ 1+ 0° <1>7

of carriers and w is the radian frequency of the microwave field.



— 1/2
_ T2 2 : '
Yy T () W UEO:\ (3.4)
- 1/2 ‘
Y, = (-Tal)2 - wzue + jwu%] (3.5)
_
Jwu %o
LTy T 172 (3.6)
1 2
1 - (£ /%)
c
-
] Z o .
and Z2 Y, - é. 172 (3.7)
e. = (£/1)

where fc = cut off frequency of the TE mode, a = width

10

of the waveguide,

N

2 = T Te, € = - e -4 9
ZO = “o eo, € = eoer, and Er = er ] weo . /
Thus equation (3.3) can berrewritten as

~ 5 1/2
e. = (£/1) :

1l - 5 coth YZQ
1 - (fc/f)

e, - (£./1)
1 +¢= 5 coth"yzl
1 - (fc/f)

It is noted_that.equation (3.3) can be transformed to the
following form:

2Y2£
(z., - 2.) / (2, + 72,) - e
R = 2 1 2 1 (3.9)
—2Y22
1 - (Z2 - Zl) / (22 + Zl) e
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(7)

- which is the same as derived by Lindmayer and Kutsko .

3.3 The Reflection Coefficient of a Finite Semiconductor-
Metal Block at the Open End of a Rectangular Waveguide

If the semiconductor block is placed at the end of
the guide instead of inside as followed by Lindmayer and

Kutsko (Figure 1.2), the incident TE wave is transformed

10

into a radiated propagating wave in the semiconductor region,

which is neither a completely TE wave nor a TEM wave. An

10
approximate solution can be obtained which is based on the
assumption " of * either of the two modes of propagation,

If the TE,, wave is assumed, the results of equation

10
(3.8) are obtained. Aﬁowever, if the TEM wave that propagates
only in the z-direction (no transverée propagation!) is
assumed, the propagation coefficient in the semiconductor -
regibn differs from equation (3.5) by the foliowing |

expression:

1/2°

Y, = -wzue + jwuo (3.10)

The error introduced by this assumption is large for
semiconductors with hiéh resistivity and low dielectric
constants. With this value of the propagation coefficient

in equation (3.3) the reflection coefficient can be written

as . -~ 1/2
£
1 - £ 5 coth yzz
1l - (fc/f) |
+ R = — — 1/2 (3-11)
€r
1 + 5 coth yzz
1 -(£ /%) :
c
L .
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The equations (3.8) and (3.11) are identical for the
condition"€r>>(f‘c/f)2 which is, in fact, true for Ge and Si.
When the length of the lossy materiai is large compared to

- the skin depth S, the backing of the sample with a short-
circuit has little effect. If 2>53, coth Y,%=1.0. Thus

equation (3.11) reduces to the expression

1/2
€
1 - L
1 - (£ /0)°
R = - - 11/2 (3.12)
€
1+ r .
1 - (£,/9)

‘This reflection coefficient R can be corisidered as that of a
semi-infinite medium and may be measured with a microwave
reflection bridge. With a magic tee in such a bridge, the
reflection coefficient may be written from the equation
(2.13) as

R = -e(B+39) (3.13)

where A = 2(Al - Ao) in neper; ¢ = 26(21 - 20) in radian;

Al, 21~are readings of the precision attenuator and precision
short, respectlvely with the sample in the sample arm and
Ao, 20 are similar readings with flxed short in the sample
arm. Equating the real and imaginary parts of the identity
formed from equations (3.12) and (3:13), it can be shown that

(Appendix A)



_ _ 2 [cosha + cos¢
r T [# (fc/f).1 [;oshA ~ cos¢
-1 sin¢ (3.14a)
cos [? tan éinhAJ '
6 = [1 - (fc/f)z‘l coshA + cosé|
- coshA - cos¢|
T -1 sin¢
g£in [% tan Einhé}weo (3.14b)
Thus a measurement of A, ¢, and f enables the wvalues of €
and ¢ to be determined.
3.4 The Reflection Coefficient of a Finité Semiconductor
Block at the Open End of a Rectangular Waveguide
If the semiconductor block is followed by
air as shown in Figure 1.3,
’ _ ES | (3.15)
3 € ‘
o
so that equation (3.1) becomes
uo + Z., tanhy,%
= 2 2
Zin = 2, 0 (3.16)
Z2 + .22 tanhy22
€o
Substituting equations (3.10) and (3.7) for Y, and Z2
respectively, the reflection coefficient at the plane i‘=

can be written as

R =2%in "%
.+
Zln Zl

0
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'i";";i“' —.1/2 1 + /g;tanhyzz -
T 2 (23N | Tt tanyy
i T e, 271/2 L et (3.17)
_}_(%/ﬂ i e+ tanhy, % .

where equation (3.6) has been used for Z As expected,

l.
this equation reduces to equation (3.12) for 2>,5¢6 ie. when

tanhyzzzl.

~

3.5 Numerical Results For Germanium and Their Intrepretaticns

Equation (3.12) has been evaluated numerically on
a CDC 6400 Digital Computer. Numerical computations were
obtained for germanium for the following two cases:

(a) a = 2.286cm, b = 1.016 cm, f = 9.522 GHz

(b) a =0712 cm, b =0.356 cm, f = 34.5 GHz

The results of these calculations are shown in Table 4.1

for comparison. inspection of fhe table shows that equation
(3.12) gives an error in the phase of R for high resistivity
semiconductors (o< 2uwg, €Lv above 1.60hm cm at 34.5 GHz) .

The O apd €y have also been calculated from the
measured values of A and ¢ using equation (3.14). The
results show that this equation gives reasonable accuracy
of the resistivity measurement at the low end of the resistivity range)
and that of the dielectric constant measurement at the high
end. However, the accuracy of Er measurement at low range
and that of resistivity measurement at high range are found
to be inaccurate. This is because of the nature of the

equation (3.14) and the breakdown of its validity in the high



resistivity range where equation (3.12) introduces a

large phase error, as mentioned earlier.
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CHAPTER IV

MICROWAVE REFLECTIONS FROM THE SURFACE OF
A SEMI-INFINITE MEDIUM (EXACT SOLUTIONS).

4.1 Introduction

The exact solutions for the input admittance and
the reflection coefficient of an infinite block of semi-
conductor are developed in this Chapter for the following
waveguide configurations:

(a) Aéhe rectangular waveguide in an infinite ground plane
(Figure 4.1);

(b) ghe rectangular waveguide in bounded ground'planes
(Figurer4.2);

(c) ﬁhe parallel-plate waveguide in bounded ground planes
(Figure 4.3). '

The original formulation by Lewin(43)for the
admittance of a rectangular waveguide in an infinite ground
plane radiating into a lossless half-space has been modified
for the case of a lossy semi-infinite medium. The admittance
for the configurations (b) and (c) are then deduced from
the new formulation as special cases.

“Numerical calculations are made and discussed.
Measurements which confirmvthe theory have been carried out
with a microwave reflection bridge at 9.522 and 34.5 GHz.
The results of measurements with n-type germanium_and also

with air and selectron at the end of a rectangular waveguide
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opening onto a metal flange, are given.

4.2 The Reflection Coefficient of a Semi-Infinite Rlock of

In the structure of Figure 4.la the region 1 is
the interior of the air filled guide and region 2 is the
semi-infinite half-space filled with a material of complex
permittivity €. If a TElO mode is excited in region 1 of
such a structure, the ehergy is radiated from the guide into
half space (z > 0). Since the ground metal flange is taken
to be infinite, radiation is confined to the half-space
@_> 0). We wish to determine the electric and magnetic fields
in regions 1 and 2.

In a source free homogeneous medium such as region

1 or 2, the electric and magnetic fields are satisfied by

the following equations(44)
E vv.a) _ jwpA - V x F (4.1a)
Jwé
and  H YOV-F) _ Suer + V x A (4.1b)
jou

where p is the permeability of the médium, € is the compléx,
permittivity of the medium and the guantity F is called an
electric vector potential in analogy to the magnetic vector
potential A. The électric and maghetic fields can also be
described in terms of either A or F, regardless of its actual
source. .There is a great deal of arbitrariness in the choice
of the vector pptential. If we choose A = 0, the equations

(4.1a) and (4.1b) may be written as
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FIGURE 4.1b: The Electrical Equivalent Circﬁit of the
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E = - VX PF : (4.2a)

1 ~2
H =. S QF + k F .
| o [v(v ) ] (4.2b)
"2 20

where k™ = w lE.

If F is-taken to have only a single component Fx, we obtain
a field with no‘electric field in the x-direction. ‘This is
otherwise known as the TE to x mode oxr TEx mode. Thus the

field components are

2. A~
_ 1 ) : 2
EX =0 (a) H = Ton [%;2 + k-} FX (a)
2
oF 37 F
= - X = 1 x
.02
B -+ X (o) H, = “x (£)
z 3y z Jjwy 93X 9z

Equating the y-components of the electric fields in the two

regions at the aperture z = 0,

Bo(1) = Ey2) (4.4)

z=0 z=0
There will be an incident wave plus a reflected wave plus the
higher order modes in region 1 and a radiated wave in region
2., For z<0, we have for dominant modet

_ -jk.z +jk. z
By (1) [e v me 1} sin IX (4.3)

1+ Page 542, Reference 41.
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where kl is the propagation coefficient in region i_and"isvgiven

1/2 .
by-kl = [:kz - & ] , kK is the propagation coefficient
o a o -
in free space and R is the voltage reflection coefficient.
By equafions‘(4.3b) and (4.5))
dz
Ey(l)

7 -jk z jk. =z |
3 [le 1 + R e i —] sin (Eé) (4.6)
1 - .

Fx(l)

H

'
IH o
N

-

The vector potential F  can be rewritten for region 1 with

the addition of higher order modes. Thus

' ~3jk. 2z gk, z
_ 1 S 1 . TMX
Fr(l) —~§EI [;e Re :J sin(37)

CO » ® , .
_+§: ;E: mm. Yiun?
1 o

A Sln(———) cos (2T y)e

n (4.7)

5 1/2
_ - _ nmw 2 a
where A n a constant, Ymn = [‘( )+ (_S) - k;] an

Zgj denotes the termm = 1, n = 0 is omitted from the

double series as it is already included in the first term.

- X V7
(1 + R) sin (%)- 2L
1 0

. T nw
Amn Ymn 51n(ge x)cos(5~ v)

(4.8)
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The field in region 2 corresponds to a field radiated outwards

from the plane z = 0. Thus

x(2) - 27 1Y r Y ¥
° o

where x' and y' denote the coordinates in the aperture; r,
the distance between a point at z = 0 plane and a fixed point

- at (x, y, 2), i.e. r = [(X - xl)z + (y - y|)2 + 221 1/2 ;

E(x', y') the aperture field; k the wave ﬁector in region 2
and the factor 1/2 m has been included for convenience only.
The boundary conditions for the electric fields at z = 0 are

such that they are zero at the metal flange and continuous

- and equal to E(x, y) in the aperture. Thus from equation-

(4.4)

.E(x, y) = Ey(l) o = Ey(2) o (4.10)
and from equation (4.8) .
E(x, y) = (1 + R) sin(Z) - ? %’ A Yo, sin(3- x)cos(ET y)

which, in terms of aperture coordinates, assumes the form
oo oo

1 — .
E(x',y') = (1 + R) sin("2-)- f‘i: > Ann Yn sin(2Tx") cos (Ely")

(4.11)

The coefficients (1 + R) and —Amn Ymn of this Fourier Series '

can be found in terms of the aperture field
2 a (b i
1 +R = ™) [ j E(x' , v") sin(g x') dx' dy'
o O
(4.12)



a
;_4 Smn
mn mn ab J

b : :
J E(X',_y') sinl(gE x‘)cosf%l y')dx'dy!
o’ o ‘
(4.13)
where the integration has been taken over the aperture and
€n is 1 unless n = 0, when it equals 1/2.

The remaining boundary condition to be satisfied is

the continuity of the x-component of the magnetic field in

the twovregions at the aperture z = 0.

H = H
/ X(l) 2=0 . X(2) 7=0
or

92 92 A

, 2 2

5.2 7 Kol Fx() 3.2 YR T2

X X

z=0 z=0
(4.14)

An expression for 1 - R can be obtained by substituting
equations (4.7), (4.9) and (4.13) in equation (4.14) and
using equation (4.12) for 1 + R, the normalized waveguide
admittance Yn‘at plane z = 0, can be shown to

be equal to (Appendix B)

1 -R
Y, = 1 +R
. a b a b
- _ 3 ab e TX ' 'y ..
= ZlelDl | [ J J 31n(a ) E(x', ¥v")
0°"0°"0°0

G(x, y, x', y')dxdydx'dy' (4.15)
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where
a b -
Dl = J J E(x', y') sin(=t')dx'dy' (4.106)
0 ‘0
a (b
D, = J J s1n2(E§)dxdy (4.17)
0 0 )
and ~ | ® © ’
2 ~ ~jkr < € 2
G(x,y,x',y') = %E %—5 + kz = 7 + L zjgg on 3—5 + kg oo
X 1 0 mn { 9x
mr ny i (AT nn
51n( x") c?s(b v') 51n(a X) cos(b v)

(4.18)
The aperture field as described by the equation (4.11)
contains higher order modes excited by the discontinuity at
z = 0., The amplitudes of these higher order modes may be
assumed small compared to that of the dominant mode and the
aperture field can thus be equal to the field of the dominant

incident mode. Thus if

1

T
E(x', y') = sin(ﬂg—) (4.19)
then Dl = D2 = ab/2 and all terms of the double series in G

of equation (4.15) integrate out to zero since
' ' 1
Ja sin(£§~)sin(m3§—)dx' = 0. This allows one to write
X .

equation (4.15) as

. b b 2 . "j}/;r
Y\ = T f [ J J Sln("")51n(“ 9 oy kY
0°0°0-°0

dxdx'dydy"
0x

(4.20)
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This is a quadruple integral that can be transformed into
a double integral by the change of variables as described

in Appendix C. Thus

N : 2 a | b

n 2 abA J J
[1- (£,/%) 1 o ) hm0 ) ve

(b - v)}[}a'~ u) cos(g u)
0

N 2
2 ™ A, V 1/2

k™ + () -jk [uz + v2 ] _

a .. _,m e
+ = sin(= u) dudv

ﬂ a ~o . 2 5 2 1/2

-G ] e ? ]

(4.21)

If the region 2 contains air (ér = 1) instead of a semiconductor
or dielectric material, the above equation simplifies to an
expression analogous to that described by Lewin(43).

To facilitate numerical integration, equation (4.21)

has been simplified to ithe following fbrm:‘

_ a, [~ _q a, 2|
Y. - j4(7? [;r 025/(%) J ‘ 2 > (b-v) | (a-u)cos (¥ u)
n_ 2 24 1/2 sl ¢
a’b [1 —0.25/(2)']
SAT u=0 7 v=0
2. A -2 2 21 1/2
LA g 4 g +1 ejal(i‘-)./gr[u +v]/
T s1n(g u) 5 177 dudv
4‘(1‘) € - 1 [u_z + Vz]

(4.22)
The voltage reflection coefficient of the waveguide structure

at the plane z = 0 can be written as
. 1l - Yn _ -
R=’]'_'—_;_'~T . (4.23)
n
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The solution presented above is not completely an exact
solution and has been obtained on the basis of an assumption
that the aperture field is equal‘to the field of the
dominant incident mode. The pogsible_generation'of higher
modes excited by>the discontinuity at z = 0 has not been

taken into account in the theoretical solution.

4.3 THE REFLECTION COEFFICIENT OF A SEMI-INFINITE BLOCK OF
SEMICONDUCTOR AT THE END OF. A RECTANGULAR WAVEGUIDE
OPENING ONIO BOUNDED CGROUND PLANES

The geometry of the problem is given in Figure 4.2.

The equation (4.21), after some algebra, gives

Y. =Y ¥
in o
21| b a p
g - (£ _/f . u T - ,
=[€r —i.c/ ) ] %% J (b-V){ (1 -~ g)cos(g u)
_U_o :0 =0
v € | o
ry o (M2 Lk /T2
1l . kT + ‘a e u +v
+ F,51n(5 u ) du } av
k% + (3 w2 v
(4.24)

For the configuration of Figure 4.2 we assume that the
x-directed wave propagation at z>0 is négligible. Since 'a'
becomes infinite at z>0 and the vafiable u is small in
comparison with a, the‘terms involving g in equation (4.24)
approach zero.

~ With this assumption,
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The integral in the

to HD(Z)(ﬁv) so that

Y, = [ér —.(fc/f)zj 2n

e
€
(o]

(b-v) | 23 f

i
=0 u=0

_.Vefjkfu2+vz

v, 2, 2

u +v

(4.25)

du
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dv

parenthesis of equation (4.25) is equal

|

b

O

(b-v) %) (kv) dv

(4.26)

which becomes, after normalising with respect to the

characteristic admittance Y0

Y = [ér " (fc/f)?] 2m
'nv l:l_ (fc/f)z:l b)\g

b

_ [ l—(fC/f)zl 1/2

Vﬁzo
. = [0}

J (-v) 8.2 xvrav
o

(4.27)

To check the validity of .equation (4.27), the admittance can be

simplified for air at the end of the guidevfor which case

€. = l, k = ko

so that

27

- _ (2)
Xn = BT— f) (b=v) H (kov) dv

g o

This agrees with the result given by Lewin

(43)

(4.28)



58

4.3.1 An Alternative'Solution'of the Admittance for the
System of Figure 4.2

If we assume that the total electric field in the

aperture z=0 is that of the dominant TE mode, then

10
jz_ cos =X |y| < b/2 (4.29)
Jab
- E
Y |z=0 o ly| > b/2
and E = 0 , (4.30)
X
z=0

The latter equation gives us tranverse electric to x mode
i.e. TE mode. For this mode, the x~component of the magnetic

field in region 1 is given byT

\ 2 2
eo= [ -l
x juwu -
k2 - ('rr/a)2

= E : ;
y Juw Jk,

The transform of this field at z=0 plane may be written as

~2 2
= = - k™ - (n/a) (4.31)
X » y wH kz
z=0 z=0
where k = k = w/pé€ and kz is the z-directed wave vector
z=0

at z>0 for the structure of Figure 4.2)which can be written

approximately as

z = Tx%ok 2. 2
x Y

K

il

R
N
s}

(4.31a)

T Page 181, Reference 44



with kZ is chosen so thét
‘Re [k,] >0, Im[k,] <0 | (4.32)

The transform of the electric field Ey at z=0 plane is

expressed ast

= ‘r dy ‘r dx Ey(x,y,o) e“JkyY "Ik (4.33)

z2=( -0 -0

E
Y

Since the x-directed wave propagation is assumed to be

negligible at z>0, equation (4.33) can be rewritten as+

= .I Ey(x,y,O) eﬁjkyy dy ' (4.34)

which becomes on substituting equation (4.29)

 p/2
= 7 X -ik,y
Ey = /;b cos —. J e “y* dy
z=0 ~b/2
= [ cos ™ ]%-; sin (cb/2) (4.35)

The complex power leaving a région is defined as

p=(D ®xmnas | (4.36)

+ Page 181, Reference 44
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The z-component of the complex power transmitted at the z=0
plane of the waveguide system as shown in Figure 4.2 can

be written as

a/2 o ay ay ag
P = dx J dy

o] E E

-a/2 —oo y z

» H* H* H*

X y Z

a/2 ©

= e *
J dx J Ey Hx dy (4.37)
-a/2 —o 2=0

To evaluate this complex power, we shall make use of the

integral form of the Parseval's theoremt, which is

oo

J F(kx) g* (x) dk (4.38)

o

N =
=3

J f(x) g(x)* dx =

Application of this theorem on equation- (4.37) yields

-a/2 ©
dk (4.39)

-a/2 —o

The complex conjugate power can be written as

dky (4.40)

-a/2 -

+ Page 458, Reference 44
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Substituting equations (4.31) and (4.35) for ﬁ% and E&

respectively, we obtain

a/2

02 2 L ©
P* = %F k ; (n/a) %E J cos? gﬁ dx J sin® (kY;b/z?
u - 7
-a/2 -0 Yy 2
4 K2 - (w/m? ° sin? Ky R/ ..
T Tb Wl J 2 dkys (4.4D)
kS ok,

O

The waveguide admittance at the plane z=0 is defined as

Y = ‘P*2 - (4.42)
|v]

where |V| is the magnitude of the aperture voltage and can

be found as foilows

b/2 , - a/2
vV = J E dy [ E, dx
-b/2 z=0 a/2 z=0
b/2 a/2
_ 2 2 X 4. o
=% J dy cos 3 dx =1 (4.43)
-b/2 -a/2

With |V| is unity in equation (4.42),

Ct2 2, (. . 2 (k_ b/2)
y = 2 Ik (r/a) "] J sin Y ax (4.44)
Tbh Wi k‘2 k y
o y oz

It is convenient at this point to normalize equation (4.44)

with respect to the characteristic admittance of the waveguide,

which is

61
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.[l.e‘(fc/fyzll/2~
v = - (4.45)
| Vi7e,
Thus 2 K ‘
_Y _ 8 [, - (£/8)7] sin? {Ey b/2)
n T Yo PY 1 s 20 x % x Wy
c ‘ vy Tz
(4.46)

A

For a lossy medium, k has an imaginary part so that

k, =+ /72 _ 5 2 (4.47)
Y
which satisfiés equation (4.32). For a lossless

medium, however, proper values of kz must be chosen with

K = k. Thus

k, = Vi 2_ kyz |ky| <k
, (4.48)
k, = -3 /;;i’:‘;z ]ky| > k

62

With these values of kz’ the admittance for a lossless medium

becomes
2 N e
g le, - (£./0)7] ko gin? By p/g) ”
c o Ty k“ - ky‘
sin® ¥ dky; (4.49)

+ jJ . -
k k2 /32 2
Y 'k, -k
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If a metal plate is placed at distance £ from the z=0 plane,

equation (4.46) assumes the following form:

2 2 - . )
I gﬁr - (fc/f) 1 "1'+'e'12kz2-'sin2‘(}y b/2)
Yn T b 2435{ 32%_%| | 2 dky
AL L - (£/6)° T 1 -e 3524 x ¢ Sz T2
. o } y k¥ -k
o - . Yy
(4.50)

which simplifies to the original equation (4.46) for the case

f=w, To simplify further, equation (4.46) can be written

as
, .
¢ o 8n o ” B0 1 .J°° £ (k) g5 (k Jak  (4.51)
n_ b 2,1/2 21 | .
[ 1= (£/0°17 .
where fl (k) = ——ro (4.52)
y o2 _ g 2
Ty
£ ok - sin’ (ky B/2) (4.53)
2 Vy K 2
y

- Taking the transforms of fl(gy) and f2 (ky),

- 1 (®  TIkyY
'Fl(Y) = ﬁf e~y dk
e Yy g 2
Y
1 (2 2 |
L1 o 1 . 2 -jk.y
F, (y) = 5 J-m 2 sin (ky b/2) e y q#y

y
{%(b-y) Iyl < b

0 ' Iyl > v

(4.55)
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Using Rarseval's theorem,,equationv(4.51).becomes

2
e [E - (£./8)7] w©
8t r c
Y = o+ = F.(y) F (y) dy (4.56)
A [ 1 - (fc/f)Z]l/Z J 1 2

Laad >

Substitution of equations (4.54) and (4.55) in (4.56) gives

oe  IE_ - (£/0)%1 b 2) -

= J (b-y) By (k y) ay
O

In = by
(4.57)

2
g [1-(£/0%

which agrees with equation (4.27) as expected.
The reflection coefficient of the waveguide system at plane
z=0 can be expressed in terms of Y.
1 -Y
n

R= — : (4.58)
1+Y
‘ n

4.4 THE REFLECTION COEFFICIENT' OF A SEMIA-INFIN’ITE BLOCK OF
SEMICONDUCTOR AT THE END OF A PARALLEL-PLATE WAVEGUIDI
OPENING ONTO BOUNDED . GROUND PLANES

When 'a' in Figure 4.la approaches infinity, the
rectangular waveguide degenerates into a parallel-plate system
with infinite Tlanges (Fig.4.3)With £, 6= 0 and‘kg‘=‘l, for
this configuration, the admittance can be wfitten from

equation (4.27) as

| b . |
v =20 ¢ J ' (b=v) Ho(z) (kv) dv (4.59)



To check the validity of this equation, the admittance can
be calculated for air at the end of a parallel—plate.system
for which.case €r =1, k = ko so that

on (P (2)
Y = &— I (b-v) HO (kov) av (4.60)

n b
o

(43)

a result that agrees with Lewin as expected.
An alternative solution to this problem is also
possible in the same manner as in Section 4.3.1.

4.5 Numerical Calculations

Equations (4.22) and (4.23) have been evaluated
numeriéally on a CDC 6400 Digital Computer, to calculate
the normalized waveguide admittance and the reflection
coefficient at the z=0 plane of the structure of Figure 4.1a.
The numerical integration of equation (4.22) was performed
(46)

by Simpson's rule . For higher accuracy, small increments:
Y P g

(value of h in Simpson's rule) were used near the regions of

the singularities (u = 0, v = 0) where theintégralf“changes»

very rapidly to infinity.
Numerical calculations were made for the following
two cases:

1.016 cm, £ 9.522 GHz

2.28cm, b

1l
It

(a) a

i
i

(b) a =0712 cm, b =0356 cm, £ 34.5 GHz
The results of these calculations are given in Figures 4.4
through 4.7 and in Tables 4.1 through 4.4. The structure

of Figure 4.la can be represented by an equivalent circuit
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.

consisting of a conductance and a susceptance as shown in
Figure 4,1b. Figures 4.4 and 4.5 show the changes in such
parameters as functions of resistivity and dielectric constant.
Figures 4.6 and 4.7 show the plots of the reflection coefficients
as functions of resistivity and dielectric constant for 34,5
and 9,522 GEz, respectively.

Finally, as a check on numerical results, the integral
Yn in equation (4.21) has been evaluated approximately, for
the case where ﬂ has a large complex value. If £ has a
large negative imaginary part (i.e. in low resistivity
materials), the contribution to the integral in equation (4.21)

is significant only near the region u = 0 and v = 0. Thus

for a>>u and b>>u, the equation (4.21) becomes:

A 2 LD
¢ - [sr (fc/f) ] 45 a b e—jk/u2+v2 a
n - 2 abA _ _ ab /—'2“——— V
[1- (£ /0)7] g ‘u=0’v=0 iyl -
(4.61)

The limits of integration can be extended to infinity without

changing the value of the integral significantly. Thus

A 2 . . oy —
_ [er (fc/f) ] 45 e Jk u2+v2
h = 2. A [ an]dy
[1-(£/8)7]1 "g ‘v=0 ‘u=0 V242 .,
(4.62)
The integral in the parenthesis is given by(45) %3 Ho(z)(kv)

and the resulting integral is given byt

+ In formula (143) of Reference 45, when b-0, J HO(Z)(zx) dx=1/z
o
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N

: w . . .
- J Ho(z) (kv) av = Io X (4.63)
J =0 J x
where HO(Z) is the Hankel function of the second order.
Thus
| .. A | é\r 1/2 ~
Yn = 5 ‘ (4.64)
- (£,/5)

on the reasonable assumption that Re [ér]>> (fc/f)2 for G-

r
1 - 2
- (£ /)%

. R = : (4.65)
- E—?r Wl/2 ‘

1 +[ ;
1- (£ /607

which agrees with the approximate equation (3.12).

Equation (4.46) was also evaluated numerically in
the case of germanium filled half-space for a rectangular
waveguide with a=2.286:cm, b=1,016 cm and £=9.522 GHz. The
results of these calculations were found to be simiiar to
those of Figure 4.4.

4.6 Experimental Techniques

The principal objective of the experimental programme
was to obtain data on the behaviour of the reflection
coefficient of a semi—infinite medium, in order to confirm

the theoretical predictions of gection 4.2,



(N)>SAMPLE PREPARATION:

Largé blocks of n-type germanium samples were
obtained tobcover the cross-sections of X-and Q-band
waveguides. The reflecting surfaces were prepared by
lapping with a very fine silicon carbide paper. The lengths
of the samples were large compared to the skin depth ¢,
which is found to be given by

-1

m—tan 1O
§ = { (mzus)2 + (wuo)2 }1/4 cos ———~—§—9§- (4.66)

This equation was evaluated numerically for germanium at
9.522 and 34.5 GHz. The results are shown inFigare 4.8,

"Selectron” which is a trade name for a particular .
kind of lossless plastic (er = 2.85), was also used for
measurement. The dimensions of the piece, in the form of
a triangular prism, were: vsides: 13" x 13" x 18.5% height:
19.5".

(B) MICROWAVE MEASUREMENTS

Measuréments of the reflection coefficients were
made ﬁsing the microwave bridge circuit'ofFigu?e 2.7. The
theory of operation and the practical setting¥up procedure
of such a bridge circuit have been discussed in detail
in Chapter IIXI. Photographs of the experimental set-up at
34,5 and 9.522 GHz are as shown in Figures 2.9 and 2.10.

The sample holder as shown in Figure 2,9 is g
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- D1007 waveguide section with a high-precision 90° flange.

This section was connected to one side arm of the reflection

bridge. The semiconductor sample is allowed to rest on the

flange. In the measurement with selectron and air, the

horizontal configuration ofAFigure 2.10 was used. .
Measurements were made with n-type germaﬁium of

various resisitivity (0.1, 1, 5, 10, 25, 50 ohm cm), o

selectron and air at the end of a rectangular waveguide opening

onto a metal flange at 9.522 and 34.5 GHz. Equation(Z.lZ)

was used to calculate the reflection coefficients.

(©0 D.C. MEASUREMENTS:

Measurements were also made of the d.c. resistivity
of each sample of semiconductor with a high quality 4-probe
tester.
4.7 Results

The resulfs of the reflection coefficient measurements
for the case of n-type germanium, selectroﬁ, and air are
given in,Figures 4.6 and 4.7. The microwa&e resistivity
and dielectric constant were determined from thgse figures by
comparing the magnitude and phase of the reflection coefficient
-with those obtained from calculations. The values of the
resistivity and dielectric constan£ aetermined in this way
are shown in Tables 4.2 and 4.3 together with the values
obtained from d.c. measurements. The measured values of the
reflection coefficient are also shown in the above-mentioned

tables.



4.8 Discussion

Table 4.1 which shows a’comparison of the approximéte
and exact solutions of the fefléction éoefficients for Ge
indicates that the approximate equation (3.12) gives an error
in the phase of the calculated refiection coefficient for the
condition o<2weoer, as pointed out in.Section 3,5.

The theoretical values of the reflection coefficients
as shown in Tables 4.2 and 4.3 are calculated from equation
(4.23) using the nominal resistivities of Ge. A comparison
of the tables.shows that over the resistivity range 5<p<25
Qcm and dielectric constant range l<€r<2.85, the calculated
values of'the reflection coefficient are in good agreement
with the measured values at 34.5 GHz, compared to the corres-
ponding values at 9.52Z GHz. Since O.i, 1 and 50 Qcm samples
had resistivities significantly different from their nominal
values (cf. D.C.M easurements in Table 4.2), the calculated
reflection coefficients of these samples at 9.522 GHz did
not agree well with the measured values . This necessitayed
'the'reflection coefficients tc be computed on the resistivitie
obtained by d.c. measurements and the results are given in
Table 4.4.

| Inspection of this table shows that over.the range
0.26<p<45.76 Qcm, the calculated reflection coefficients agree
with the measured values at 34.5 GHz. However at 9.522 GHz,
these values and in particular, the phases of R, did not

agree well. The possible reason for this is the small size

70

s



71

of the samples used, particularly the 0.26 and 45.76 Qcm

ones which were inadequate to satisfy the condition:of a
sémi—infinite medium assumed in the theory. This was
detected by iﬁtroducing a metal plate in the half-space
around the sample and observing the change.in the detector
reading of the microwave bridge circuit. The minimum size

of a sample éhould be equal to or greater than (a+106) x
(b+108) x 58 to satisfy the condition of a semi-infinite
medium where § = skiﬁ depth and a, b = dimensions of the
guide. The other réasons for disagreement at both X- and
Q-band are the finiﬁe,> size of the flange and the
approximation»made in equation (4.23) by neglecting higher
order modes.

" The reflection coefficient measured on selectron

is found to be in good agreement with the calculated value

at 34.5 GHz compared to thosé at 9.522 GHz. This is_expected’
-since at X-band, a.larger size of selectron is required to
approximate the semi-infinite medium assumed in the theory.
With air, however, ‘the agreement is good at both these
frequencies, because air in the half—space‘fulfils the
condition of avsemi—infinite medium in both these cases. The
experimental set-up with the sémple holder in the vertical
position ( Figure 2.9) was found to give better results than the
horizontal set-up {(Figure 2.10) in the case of measurement
of air. |

A comparison of the microwave and d.c. measurements
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of resistivity in Tables 4.2 and 4.3 indidates that the
microwave measurements at 34.5 GHz give the correct values
of resistivity and dielectric constant. However at 9.522
GHz measurements, the dielectric constants for 0.26 and
"0.76 ohm cm samples and resistivity for 45.76 ohm cm sample
are found to be in error. This is due to the disagreement
. of the measured and calculated values of the reflection
coefficients of these samples as mentioned earlier. Also
since the phase variations of the reflection coefficient
with'er and p at the low and high ends of the resistivity
range are‘small, a small error in the phase measurement of
R can éause a large error in the €, and p measurement. The
phase error is'largely caused by the finite size of the
sample and the flange and also by the unmatched condifion
of the tee of the microwave bridge.

-Numerical calculations with experimental verifications
have not been carried out for the parallel-plate waveguidesysteﬁ.
For future work it would be interesting to see how the
reflection coefficient of this strﬁcture behaves as a function

of the electrical constants of the medium.
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FIGURE 4.4:

Theoretically Predicted Variations of the Conductance. and
Susceptance of the Germanium-filled waveguide Structure
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COMPARISON OF TEE APPROXIMATE AND EXACT SOLUTIONS

OF THE REFLECTION -COEFFICIENTS FOR Ge

Resistivity R (9.522 GHz) R (34.5 GHz)

{(nominal) : - :
fem Approx. Eq. (3.12) |Exact Eg. (4.23) Approx. Ed. (3.12)| Exact Eg. (4.23) .
0.1 0.977 |178L5‘ 0.976 |178.7 - 0.951 [177.3 0.950 |177.2
1.0 0.922 |175.7 0.919 |175.9 0.834 |172.5 0.827 |172.5
5.0 0.826 [172.8 0.818 |[173.0. 0.704 |174.0 0.694 |174.8°
10.0 0.766 |172.9 0.755 |173.5 0.680 |176.4. 0.673 |177.8
25.0 0.712 [175.6. 0.702 |176.9 0.671 |178.5. 0.669 |179.8
50.0 0.699 |177.6 0.690 |179.3 0.670 |179.2 0.670 [180.6

8L



COMPARISON OF THE MICROWAVE AND D.C. MEASUREMENTS OF THE
RESISTIVITY AND DIELECTRIC CONSTANT TOGETHER WITH THE

CALCULATED AND MEASURED VALUES OF THE REFLECTION COEFFICIENT

AT THE AIR-SAMPLE INTERFACE OF FIGURE 4.la FOR 34.5 GHz

Samples " Resistivity Calculated Measured Microwave D.C.
(nominal) R R Measurements Measurements
8 .
Equation (4.23) P r
2 cm Q cm Q cm
0.1 .0.950 '|l77.2_' 0.916 175.7 .| 0.27 18 0.26
1.0 0.827 |172.5. 0.838 1173.5 | 0.9 16.5 0.76
Germanium 5.0 0.694 [174.8 0.691 [175.0 | 5.1 16 4.96
(n-type) ' _
10.0 0.673 |177.8 0.678 1178.0 {11.0 16 10.3
25.0 0.669 frl79.8 0.6775 !l79;7, 24,0 16 24.3
50.0 O.670_f|180.6_ 0.678 |180.7 -|51.0 16 45.8
Dielectric
constant
(nominal)
Air 1.0 0.214 |-86.2. 0.214  |-85.9.1 - 1.0 -
Selectron 2.85 0.372 [189.3 0.360  [{190.5 | - 2.8 -

6L



" TABLE - 4.3

COMPARISON OF THE MICROWAVE AND D.C. MEASUREMENTS OF THE
RESISTIVITY AND DIELECTRIC CONSTANT TOGETHER WITH THE
CALCULATED AND MEASURED VALUES OF THE REFLECTION COEFFICIENT

AT THE AIR-SAMPLE INTERFACE OF FIGURE 4.la FOR 9.522 GHz

Samples Resistivity Calculated R Measured R Microwave D.C.
(nominal)’ Measurements Measurements
Equation (4.23) o) €.
Q cm  cm 2 cm
0.1 0.976 178..7 0.960 178.9 0.25 100 0.26
1.0 0.919 |175.9 0.930 |177.8 0.75 55 0.76
Germanium 5.0 0.818 |173.0. | 0.831 [173.8. 4.8 17 4.96
(n-type) .
10.0 0.755- |173.5 0.748 |174.5 11.5 16.5 10.3
25.0 0.702 L}76.9. 0.697 |177.8 27.0 16 24,3
50.0 0.690 ]l79.3 0.693 [180.6 65.0 16 45.8
Dielectric
constant
(nominal) .
Air 1.0 0.263 |-74.5 0.260 " |-74.3 >| - 1.0 -
Selectron 2.85 0.417 \196.4 0.364 |198.01 - 2.6 -

08



TABLE 4.4

COMPARISON OF THE CALCULATED AND MEASURED VALUES OF THE
REFLECTION COEFFICIENTS FOR Ge IN THE STRUCTURE OF FIGURE 4.1(a)

D.C.
Resistivity

(Qcm)

9.522 GHz

34.5 GHz

Calculated R
Equation (4.23)

Measured R

Calculated R
Equation (4.23)

Measured R

10.

w

24.30

45.8

0.962 |[177.8
0.933 |176.4
0.821 [173.1
0.753 |173.5
0.702 [176.8f
0.690 |179.0

0.960 |178.9.

0.930 [177.8

0.831 |173.8

0.748 |174.5

0.697 ]l77.8 .

0.693 |180.6

0.918 |175.6
0.858 |173.2

0.695 |174.7.

0.673 [177;7 

0.669 |[179.8

0.670 |180.5

0.916 |175.7

0.838 [173.5

0.691 [175.0
0.678 |178.0
0.6775 [179.7

0.678 - |180.7 -

18



82

CHAPTER V

MICROWAVE REFLECTIONS FRCM THE SURFACE -
"OF A FINITE MEDIUGM (EXACT SOLUTIONS)

5.1 Introduction

The admittance of a rectangular waveguide system radiating into
a finite medium, followed by free space can be calculated exactly. The
appropriate equations are derived in Section 5.2. The reflection co-
efficient of a rectangular waveguide systeﬁ radiating into a semiconductor
slab followed by a conduéting plate is also derived. The solution is
presentéd in Section 5.3. The admittance of a‘rectangular waveguide
systém radiating into a lossless plasma layer is formulated in Section 5.4.

Finally, numerical computations are made. The results of |
calculations are given for Ge and plasma cases and have been campared
with those given by previous authors., Measuremrents which confixm the -
'theofy are made on germanium at 9,35 GHz.

5.2 The Admittance of a Rectangular Waveguide System Radiating Into
a Finite Medium Followed by Free Space

The exact solutions for an infinite mgdium as developed in the
last chapter are useful for the determinétion of semiconductor properties
such as o and € e Unless a semiconductor sample has a length 2 > 5§, it
cannot be assumed to represent a semi-infinite medium (Section 4.8).

Since § increases with resistivity, an increasingiy large sample length
(for example, £ = 6 cm fora502 cm sample) is required for high resisti§ity

semiconductors to achieve agreement between theory and experiment. The



availability of such large and costly semiconductor samples is a .practical
problem. Thus f.he develomment of the exact solutions for a finite semi-
conductor slab is desirable. |

The expressibn for the admittance of a rectangular waveguide
radiating into a finite slab of semiconductor is derived in this section.

(47) and Crosswell,et al(48) .

The technique is the same as used by Compton

The geometry of the problem is given in Figure 5.1. It is to
lbe noted that the system of coordinates is different from those used
previously. The theory of the fields present in such a system may be
obtained fram the solutions of the equations 4.2a and 4.2b. Unlike the
previous case for an infinitev medium, the electric vector potential is
assumed to have’ two canponents.‘ One possible choice for F is |

F o= 36+ dp ’ | (5.1)

Thus ‘the field canponents aif_e T

M a2 2 :
px = 2 (a) B = 2 |24 20y 4 k24| (q)
3z : o _ Jwu | ax2  axdy
' ' [ 82 2y T
By = - % (b) =~ Hy = 1 {a o 4 2% k2y| (e) (5.2)
92 : jou- | sxdy  ay? i

x Y - Jwp | 8x3z  3ysz

In region 2, the solutions for y and ¢ inay be constructed with an |

'incident' and a 'reflected' component:

] (,,ylz) =
2% . (2m)2

T x, y and z shall be read as the subscripts of E and H in Chapter V.
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A Rectangular Waveguide in a Ground

Plane Covered by a Lossy Medium.
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: o o -k, 2z jk_z =ik x -jk vy
¢, (x,y,2) = 1 I f 2 z Xe Y

(21[)2 . ¢ ¢ ] X'y

and in region 0 "with a 'transmitted' camponent only,

' ® (w -jk_z =jk x =ik
v (x,y,2) = 1 [ [ Te % o X ¥ dk, dk (5.5)
| (2m)2 ) ) Y
1 o (o -jk_z -jkx -jk v
_ Zo b e (5.6)
¢>O(x,y,z) = (21)2 Lw J-mche e e | Q){xdky
vhere the z-direction propagation constants,
k, = [z - k2 - k2 - (5.7)
- 2 1 2 % 2 ' '
s / k2 - k2 k2 | (5.8)
are chosen so that
Re(k,), Re(k ) 2 0 ' (5.9)
Im(k,), Im(k, ) <O . | (5.10)

The electric and magnetic fields in region 2 can be found fram equation

5.2.
- o o0 —jk VA jk Z "jk X "jk
Exz(x,y,z) = 2 J j jk_[-I e ZtrRe 2 Je Xe yyc.Jlkxdky
: (271)2 Jmoo oo z- Y Y
e (5.11)
o oo -jk_z - Jjk_z| -jk x -k
1 . ¥ Z X yy
’ = )4 -R dk _dk
By, &,y,2) (2m)2 f_w L} z[If‘ 9° }e e 7 dkdky
-------- (5.12)
A oo o }:‘,2-]( 2 V —jk VA ij
B, (x,y,2) = — f J E (e Pare %)
(27)2 Vo S| oy
Kk -3k x =3k v

-ij2 jk_z : .
-ZX2Y 1e +R e )| e e Yk dk (5.13)
Jou Y v :
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i ik ik
o o - -J}K VA "J Z
Hy, (x,y,2) = f J — (1e “are %)
(21) 2 ~w oo | yp
kK k =ik, 2z jk_z -jk X Jk -
- .x Y (I¢e 2 +R¢e z )J e vydkxdky (5.14)
Jou . .
and in region 0,
0 coo -jk_ z -jk x -jk
o ' Jkpo? Ik ~Iky
Exo(x,er) = o2 J_m Lm 51308 Twe e e dkxdky (5.15)
© (e -jk__z -jk x -jk
-~ 1 . J z0 Pt I yy
By (x,v,2) = on? J_w J_w kg T e e e dkxdky (5.16)
© o[k 2-k 2 k_k -jk_ z -jk x -jk.y
on(x,y,‘z) = 2 J J o_X T¢— XY T\p e “0 o e Y‘dkxdk
: (21)2 /== Lo Fuu Jou S Yy
(5.17)
' w (o [k2 -2 k k -jk_z -jk x -jky -
Hy (x,y,2) I I I L X g EVqple e ¥ Y s e
(2m)2 Vo) —o| o Jau ¢ Y
(5.18)

~

where, ko' k are wave nurbers of free space' and 'the canplex medium',
respectively. Assuming that the total electric field in the aperture
is that of the dominant TEO

0 plane gives,

©  coo | jkxx jk. v
J J Ex(x,y,0)e e ¥ ady

-0

1 mode, the inverse transform of equations

5.11 and 5.12 at z

I

i

3k, (I, + R)

a/2 b/2. ik x 3k
[ [

ab 'y =-3/2 ‘x = -pb/2

— sin(k_b/2) cos(k a/2) :
4n22 X2 T = F (5.19)
kx[n - (kya) "]
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R) = 0
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(5.20)

and ]kz(I¢ - Ry
Equating the electric and magnetic fields at z = £,
-5k, 3k 2 -3k, 2
—szlwe + jszwe = -jkonwe (5.21)
' —jk22 . jkzﬁ . -jkzol
—]kzI¢e - ijR¢e = +jkon¢e (5.22)
" s -3k_% koo -ik_2 ik 2
k% -k ) [1,e Z 4 R,& 2 Ik, [Te Z 4 R e 1
k 2 k 2 —ijO k k -ijOl
= - - T
( » )T¢e Ky ©
(5.23)
- -jk_¢ jk_2 -jk_2 jk_2
k2 - k2) [Te 24 Re 2 1- kK, [I,e 2y R,e 2
X ) -jkzoz —jkzoz
= (k & - ky»)fwe - }xky1¢e 520
5.24
Equations 5.19 and 5.21 give,
jkzl
ZkzIw sin kzl - Fe
T, = = (5.25)
v e 20
P20
and from equations 5.20 and 5.22,
2k I sin k_ 2
- z ¢ Z
T¢ = ‘ jkzol (5.26)
jkzo e

Finally, the solution of equations 5.23 through 5.26 gives two equations

and I ,

involving I
involving s v
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2 h vk e 2 - 2 - '
I¢[(K kx )kzo cos kzz + j(ko kx )kZ sin kzﬁl ]

+ik, [k +k,

+ I [-jk kk_ sink 2 -k kk cosk 2] =-kke jF

¥ Xy 2 2z X'y 2o Z X'y 2k

: z
(5.27)
I ¢[_kakykz sin k% - kxkykzo cos kzz]
~2. 2 ] 9 2 .

+ Ill’ k - v )}‘zo cos kzz + j(ko - kY )kz sin kzz]

1l jkzl 2 2 12 2 kZO . 28
—-é-e I:(ko ""ky)-l'(k -ky)‘}';;—"]jf‘ (5.28)
In determinant form, I‘b and ch are found to be given by,

A B
A B
IIP = 12 2 (5.29)
M1 By
Bia By
By B
B A :
1= 2 (5. 30)
A1 P
A By
- 2 -1 2y i ce 2 o 2 :
where All . (k }‘x )}\ZO cos kzl + J(ko kX )kZ sin k22
Ay = —kxky [kzO cos kzz + sz sin kzz]
= 2 1 2 e 2 - 2% e
Asy (k ky )kzo cos kzz + j(ko ky )kz sin kzz
(5.31)
jk_1t kz + k o
B, = -k k_ e jF
Y 2k
_ zZ
R B Cr2) izl g
2 2 : o y ; e k, | ]



Also, from equations 5.19 and 5.20 R, and R, are given by,

s 4
R, = i + I,

Jk, N
Ry = Iy .

The equations 5.11 and 5.14 ﬁay be rewritten as,

oo co -k % "jk J
1 Py y3
Ex 0) = G, &k ,k e e dk _dk
2 (X Iy I ) (2") 2 J*&, [—w l ( X y) z=0 pe y
| - (o | =jkox ~3k.y
1 Py Vel
Hy., (x,vy,0) = G,k _,k e e dk_dk
}2( L ) (2_")2 J_w J_m 2( x’ y) 2=0 X'y
vhere
<k = jk_[-I, +
G; (k, ky) o ik, [ I Rw]
K2 - k_2 kX
G, (k_,k ) =X [1I, +R] ~ =L [I +R].
27Xy g s v ¢ e
= Joug Juwug

The aperture admittance may now be calculated as

a/2

v Jb/z

J ﬁ*(x,y,O) X ﬁ(x,y,O)dxdy
X =-=pb/2 'y = -a/2 .

a/2

Jb/Z

J Ex; (x,y,0) Hy,(x,y,0)dxdy -
X =-b/2 'y = -a/2 :

(5.32)

© (5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.385

Applying Rarseval's theorem to equation 5.38 (the limits of integration

may be extended to infinity because E(x,y,0) is zero outside the aperture)

and substituting equations 5.36 and 5.37, we obtain

-89
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® t
*
Y = J_m J G, (kx,ky) G, (kx,ky)dkxdky

1
(2m)2

1

_ o o ' - % '\2 _ )
Lm Lw {jkz[ IN’J + RlP]} : [k ky) (Iw + R‘P)
Jou

K k(I +R)]} dk . ’ .39
(T, + RO dk dk | (5.39)
With equations 5.32 and 5.33, this may be written as,

y =1 J J P [®2 -k 2)@r, -35) -k k 21.]dk dk
(2m)2 /=0 o Gy y Yok Xy "¢ xy
° z (5.40)

Normalising this admittance with respect to the characteristic admittance

of the waveguide Y, = 1 - (fc/f)]l/2 /,/uo/eo , we obtain

X o o N .
e - q 2 _ k 2 2 — .lE -
Yn J (2m) 3 f;-oo [.—oo FL Yy s I‘l’ k ) kxky 2149]dede (5.41)
Z .

To facilitate numerical evaluation of the admittance, the following

change of variable is macde:

+  For the Fourier transform pair,

‘ o o —jk_x -k
glx,y) = 1 f I Gk _,k e Xe yy dk_dk
@n)2 oo S XY | * Y
© oo jk x jk
G(kx'ky) = I f glx,y)e *e dexdy

J

Parseval's theorem is:

1
(27) 2

{va) o0 ) * o " *
f_m J_m gl(XIY) 92 (XIY)OXOY = J—m f_w Gl (kx'ky)GZ (kx,ky)dkxdky
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k}'{ = B COs o v : (5.42)
k, = 8sina - o 5
dkxdky = dg x(Bda) . (5.44)
so that
bt 27 j)\ A '
Y = J J - =8 P'[(k? - B2sin?a) (2I¢ -3 E )
B=0 ‘a=0 (27} 3 k8
- 282 cos asin aI(s]dBd-a (5.45)
When b a
55 sin(3 5 cosa) cos(B 5 sina)
CF' = 4 . (5.46)

cosa[n? - (Ba sin a)?]

and IIP' I¢ are redefined in equation 5.31 with kx = B8 cos a and ky =8 sin a.

Also, k= Jk2 - g2 (5.47)

Z

L3 \/kg ~ g2 (5.48)

are chosen so that equations 5.9 and 5.10 are satisfied.

i

Choosing proper roots of kz and kzo’ the admittance can be rewritten as,

27 kb X " -
n = J {J -9 (K2 - g2sirf) (21, - -
a=0 ‘g=0  (2n)3 Yok
2n .
™ {Ja j}\g N

8=ko (2m) 3_

2
—ZSCOSaSinaI]dﬁ}doﬁ-J
¢ =0

Nl syt ‘ 2
F'[ (k2 - g2sin2a) (2I, - Ay 28" cos o sina T 168} da
v k.g ¢
z

2T 27
= [ Il (a)do + f Iz(a)dg (5.48a)
a=0 o=0 '
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where kz = \/ k? - g2
in the integral I, (a)
= 2 _ g2 ‘
kzo - / ko 8

and | k, =,/];2-62

- _-'/ 2 1 2
kvzo I8 ko
The reflection ccefficient at plane z = 0 is given by,

1-v |
R = 2 (5.48b)
1+Y |
n

in the integral I, (a).

The derivation up to this point is similar to that of Ocmpton(47) and

Crosswell et.al. (48) .

5.3 The Admittance of a Rectangular Wavequide System Radiating into

a Semiconducting Slab Followed by a Conducting Plate
(16)

Heaton and Pal , in one of their recent publications,
derived an expression for the reflection coefficient of a semiconductor
slab placed across the open end of a rectangular waveguide. Their theory,
which is not essentially different from that of Lindmayer and Kutsko(7) '
is based on an wbounded wave propagating in an axial direction. They
assune that the z-directed propagation constant in the semiconductor
region is of the form Y, = jkz = jm/;:'. This is not fuliy justified, and in
particular for semiconductor samples having low ér' when the wave may
propagate in the transverse directions as well.

A more general expression fof the reflection coefficient of a
semiconductor slab wi‘éh canplex pexrmittivity held against the waveguide
flange and followed by a short circuit, is derived in this section. The

‘solution is based on the assunption of a TE,, field incident at the

0l



aperture and is obtained by extending the results derived in the last
section. Numerical camputations are presented for Ge ‘slab case for

varying values of resistivity and thickness. A camparison shows that the

(16)

results given by the cited authors are justified for low resistivity

samples and are approximate for high resistivity ones (Fig. 5.5).
The geometry of the pfoblem is described in Figure 5.3. A

rectangular waveguide excited by the daminant TE., mode opening onto

0l

an infinite metal flange which is ocovered by a semiconductor slab of

thickness % and camplex relative permittivity ;r. It is assumed that no
higher order modes are excited at the aperture and the fields everywhere
vary in time as e']wt. For the structure of Figure 5.3, the electric

fields in equations 5.11 and 5.12 disappear at the semiconductor-metal

boundary (z = 2), which give the following eguations:

. jzkzz
Iw = _Rwe _ : (5.49)
: j2kzz | '
1¢ = R¢e o (5.50)

Equations 5.50 and 5.33 give,

I, = R =0 'h 5.51
o " _ , | ( )
Equations 5.49 and 5,32 give, ‘ . .
1 =& 1 - ‘ (5.52)
z [1-e ]

With equations 5.51 and 5.52 in 5.39,

~

k2 -k 2 ~j2k_2

00 7 o0 * .
y = —2% I P Y T (l+e  Z)dkdk
21)2 Jew Joo ijo 1] Xy
1 © (e F2 (k% - k_2) .
= J Y dk Ak (5.53)
(21r)2 —00 J—0co wH kz tanh(jkzl) Y
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FIGURE 5.3: A Rectangular Waveguide in a Ground Plane

Covered by a Semiconductor-Metal Sandwich.
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which becomes after normalisation,

X s (o F(K2 -k 2v), "
vy = —— J J b4 ik, dk (5.54)
(21)% Jow Jew ko tanh (k2 Y

In order to facilitate the numerical evaluation of the admittance, the

following change of variables is made,

k. = B cosa
X
ky = B sina , so that
o 2m A F'z(k2 - 82 gir? a)
Y =J [ g ao |as (5.55)
"0 [ Ja=0 (2n)® Bk tanh(kg)
where b a
53 sin (B 5 COS a) cos (8 % sin a) :
F' = 4n [~ (5.56)
b cos a[r? - 82a? sir? o]
and k. =/x2 - 82, (5.57)"

The reflection coefficient at the plane z = 0 is given by,

1-Y , .
R = n ’ (5.58)
1+ Yn

5.4 The Admittance of a Rectangular Waveguide System Radiating

. Into a Plasma Layer

The admittance of a waveguide system radiating into a homo-
geneous medium has become a matter of some concern to microwave antenna

. . (49-53)
enginesrs in recent years

. The presence of a medium at the aperture
of a waveguide determines the input admittance of the waveguide.
Knovledge of the variation of the input admittance and the changes in

radiated signal level with electrical constants of the medium, is important
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for the design of microwave antennas, such as the rectangular or parallel-
plate aperture types, in a ground plane. Besides the change in radiated
signal level, the reflected wave which fesults from antenna mismatch, may
adversely affect the operation of the transmitter. The re-entry of high
speed space vehicles into earth;s atmosphere, which consists of plasma

- -lavers, creates problems in maintaining radio communications between the
(49)

- space ships and the ground: . The measurement of the admittance of a

waveguide may also be employed to infer plasma properties. The dielectric

ne?

constant of a plasma layer can be expressed as €p = 1- and
me_w?
o
. . . ne?
ranges fram zero to unity. For zero dielectric constant, mp =
o

--wnich is known as the plasma frequency.

‘The solutions to the admittance of a waveguide under a plasma
slab reguire extensive computer programmes for the numerical calculations
due to the two dimensional nature of the integral and its infinite limit.

(47)

The solution to the same problem under a lossy medium by Compton has
same camputational advantages over the previous solutions, since it con-
tains only one infinite integral, instead of two. In this Section, the
original formulation by Compton for the rectangular waveguide under a
lossy slab is modified for the case of a lossless plasma layer. Canputa-
tions utilizing the new formulation are presented for varying values of
thickness and dielectric constant of the plasma layer. The results
obtained are found to agree with those given by the other authors(49—51).
The éeomeﬁry of the problem is given in Figure 5.1 except that

the slab is replaced by a lossless plasma layer (er < 1). The admittance

is similar to equation 5.45 in which k, andezo assume different roots
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with increasing B. Choosing proper roots of kz and kzo , the admittance

may be written as,

2'|T }: J)x ‘Fl
Y = J {J - —9_pF' [(k2 - 82 sin? &) (2T, - +— )-2B2%cos ‘asin oI, ]dB}da
a=0 Jg=0  (2m)3 Yok | ¢

= 2'" }5 jA (Xl
+ J {J O- 9 P2 - 82 sin? o) (21 - 3E ) _282cos asin oI ]d8}da
kK  (2m)? Vo8 ¢

27 o JA -
+ J { J - F'[(k? - 82 sinZq) (ZIw - 2 )-282c0s asin aI¢]dB}da

- 3
a=0 ko (2m) sz
27 2% 27
= I, (a)da + I,(a)da + I.,(a)do (5.59)
1 A2 3
Za=0 -7 o=0 a=0
where
kz = ’kZ - 82
— (5.60)
he 2 _ a2
kzo = ko B
in the first integral Il(a) ’
kz - ..j 182 - k2
(5.61)
- 2 . p2
kzo - ‘/ k 8
in_ the second integral Iz(a) and
= 2?2 -2 *
k., JyB k L
J (5.62)
—_ /2 o1 2
kzo = "3J8 ]‘o

in the thixd integral I3(a) .



To facilitate numerical calculations, the ihtegrals Il(a), Iz(a), and
“I3(a) are simplified with the change of variables o = E-, W = ——,

w2 = g2 - koz, respectively.

1 JA ,
I (@) = J — I p'R2[(1 ~ w?sin2a) (2T, - LR ZwZCOSaSlnaI ]kdw
0 (@m?3 Voo uk

(5.63)

k1 - o2 o _ (5.64)
-2 .
ko ko./l wle (5.65)

and F', Iw and I¢ are redefined with B = &k in equations 5.46, 5.29, and

5.30 respectively.

where k

1 g |
I,(a) = I - ———»—-F‘Poz[(e - w2sinZa) (21, 2—--—-) -2w?cos o sin o I ]k dw
Ve emd M
(5.66)
where k., = -jk_ fu? -¢ » - (5.67)
V-4 o] X
k,, = ko\/l - w2 (5.68)

and F', Iw and I¢

5.30 respectively.

are redefined with B = wko in equations 5.46, 5.29, and

oo o jF'
I () = J ———9—- F'[{k? - (0? + k2 )sina}{21 3
0 (21r)3 ‘P k (w2 + k 2) /
Z O
-2 2 + k2 in o1 ] —Y90 5.69)
(m_ o )cosasin o ¢] o k2]1/2 ( )
O

where k= ~jfu? + k2 - k2 | (5.70)
ko= -ju (5.71)
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and F', I, and I, are redefined with B = [w? + koz.]l/2 in equations 5.46,

v ¢
5.29 and 5.30 respectively.

5.4.1 The Admittance of a Wavequide System Radiating Into a
Semi--Infinite Mediun

Equation 5.39 can be simplified to the admittance of a semi-
infinite medium as obtained in Section 4.2. When the length of the slab

in Fgure 5.1 becames infinite, R and R, are zero. Thus equation 5.39

v [
becanes after normalisation,
A o0 o A_
Y o= d I I &, (k? -k I 2 dk dk . (5.72)
(27) 3 oo oo y v b _
Using the relation I v = - , this becomes
jk '
pA
A L F2(k2 -k 2)
Yn = -3 Y dkxdk
(2“)3 00 | =0 k y
pA
2 A
21 (@ A F' (k2 - g2sin2a)
= J - f T e dadp | (5.73)
a=0 B=0 (2“) B/}zz - 82 .

where the following change of variables has been made:

kx= g Ccos «
k =Bsiria.,
Y

It is noted that equation 5.73 is equivalent to equation 4.21 . For a

lossless plasma medium k = k so that
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2
f2n Jk A F' (k2 - g2 sin? a)
L.

! S a8 | do

e=0 | /=0 (2r)3 B8 K2 - g2

21T k A ,22__2 2
3[ Jo g F' (k B¢ sin® a) as|da

3
Uk et e

. 27 ® A ,2 2 _ a2 )
+jJ J g F' (k 82 sin? «) as!| da
U':OL

o=

3
kO (27\') B 82 - k2
27 2% 27 ,
= I,(a)da + 3 I, (a)da + j I, (a)da. (5.74)
a1 2 a3
a=0 a=0 a=0 A
The integrals Il ' 12, I 3 are transformed with the following change of
variables,
w = % ' w = ]% ;o w? o= 62 - ko2 respectively.
Thus,
1 T Sy
I, () = J g P k- v sin® @) g, (5.75)

3 .
0 (211) U)jl - wz

where I' is redefined with 8 = wk in equation 5.46.

e

2 .
1) = J/sr g F' k(1 - ©? sin?q) o (5.76)
1 en3 oo
wrw

where F' is same as in equation 5.75.

o A _F'z[k2 ~ (w2 + k_2)sin?q]
9 o

I3(a) = I
0 (2n)3

T wdw (5.77)

2 2 2 c 2 o w217
[0? + k2] [w? + k2 = k2]

1/2

where F' is redefined with g = [w? + k_?] in equation 5.46.

McMASTER UNIVERSILY. LIBRARY.

100



101

5.5 MNumerical Results and Their Interpretations

(a) The approximate equation 3.17 has been evaluated numerically on

a CDC 6400 Digital Computer to determine roughly the effect of the slab
thickness on the reflection coefficients. The exact solution is represented
by equation 5.48b, which requires extensive computer programming for
evaluation. Figure 5.4 exhibits such effecté in Ge for the case

a=0.712 cm, b = 0.356 cm, and f = 34.5 GHz.

(b) Equation 5.55 has béen evaluated numerically on a CDC 6400

Digital Computer by Simpson's rule. The integration on o is carried out
first while that on g is carried out over a finite range. The upper

limit of 8 is chosen in such a way that the range of integration includes
all the values of B for which the integrand has a significant value. To
reduce the computation time, the integration-on o from 0 to 27 may be
computed by means of Gauss' quadrature fbrmula(54). The range of integration
can be taken as 0 to /2 for accuracy and the integrand is muitiplied by

" four to obtain the final value.

Numerical calculations were obtained for the following two

cases:
(a) a=2.28m, b=1.0l6cn, f = 9.35CGHz
b) a=

0.722 an , b =10.356 cm , £ = 34.5 GHz

The results of this calculation are shown in Eﬁguréé 5.5 through 5.8.
Figures5.5 and 5.6 show the VSWR and the reflection coefficient as
functions of resistivity and thickﬁess of semiconductor slabs for the
case a = 2,286 cm, b = 1.016 cm and f = 9.35 GHz. Figures 5.7 and 5.8
show the VSWR and reflection coefficient as functions of resistivity and

thickness, for the case a = 0.712 am, b = 0.356 and £ = 34.5 GHz.



Finally, as a check on numerical results, the integral Yn may

be evaluated approximately for the case where k has a large (complex)

value. When k is large in equation 5.54,

z y

With these simplifications, equation 5.54 becomes

8 [++] 00
= = 1 1 J J F2dk dk
1- (f./f)2 tanh(y,2) (27)2 Jew Jew Y
c
where

sin{k b/2) cos(k a/2
. - 43/%% in(k, b/2) cos( v /2)

k_[n? - (ky a)?]

k. = /EZ—};XZ-kZ'—“k‘ and 122-ky23}§2.

X
Y, =
Also,

L j J F2dk, dk
2m2 oo Jew Y

‘02 ‘ 2
« sin® (k_ b/2) »  cos?(k_a/2)
- 8 [ X A, | Y dk,
b - k 2 — [nz - (k a)2]2 Y
' v

(5.78)

(5.79)

(5.80)

(5.81)

With .the change of variable kX b/2 = x, the first integral is reduced to,

= b &
= by

Jw sin? x élx b
2 3
0

%2

and with ky a/2 = w, the second integral is reduced to

0O

.i.

= o2 w 2. _1 cos? 11
a2 =7, O =7z 7
~o [72 ~ (2w)2]2 0 [(n/2F - w?P
+ Problem 4-39, Refercnce 44.
® 1+ eij ® 2 cos? u 2
o [(n/2)2 - w2]2 0 [(n/2)2 - uw2]2 T

(5.82)

(5.83)
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With these simplifications, equation 5.81 becomes unity so that equation

5.78 may be written as
« 1/2
 r ’ 1 '
Yn = | —_—————— s (5.84)
1l - (fc/f) tanh (y,2)

The reflection coefficient at the z = 0 plane is therefore given by

: Er 1/2
S TSy o ot
R = e = ;o (5.85)
€. 1/2
14 |—tey coth v,2
1 - (£ /6) ]

a simplified result that agrees with the approximate equation 3.11 as
expected.
(c) Equation 5.59 hés alsQ béeﬁ.evaluated numericallyr
for a rectangular waveguide system with a = 2.286, b = 1.016 and
f = 10.524 GHz, for several values of €y and 2. The computation of the
. integrals Il' 12, I3 was done first with the aid Qf the Gaussian
Quadrature Formula, with a held.constant at a number of equidistant
points in the fange 0 - 2w, at an interval of 0.105. These values, which
form the integrand for the o-integral, are then summed by Simpson's rule
to evaluate the a-integral. |

The results of this calculation are shown in Figures 5.9 through
5.13. Figures 5.9, 5.10 and 5.11 show the normalised conductance and
susceptance as functions of dielectric constant and layer thickness.
Figures 5.12 and 5.13 show the magnitude and phase of the reflection co-
efficient aé functions of dielectric constant and layer thickness. The

results are found to agree with those giwven by other authors(49—51).
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In future work, the waveguide admittance of the structure of
_Figure 4.2 wder a plasma layer can be obtained. This structure will have
some computational advantages over the previous solutions as it provides

'only one integral instead of two.

5.6 Experimental Confimmation

The principal objective of the experimental programme was to
obtain data on the behaviour of the reflection coefficients of finite
germanium slabs in order to confirm the theoretical predictions of section
5.3. |

The sarples of gemanium with the dimensions 3 x 2.5 x 0.1 am

» and 3 x 2.5 x 0.2 cn were cut from a large block of 10 and 50 ohm cm n-
type gemmanium crystaliby means of a ZO—mi.l . diamond-head wheel cutter.
Reflecting surfaces were polished with a fine emery paper.

Measurements of the reflection coefficients were made on theée
samples at 9.35 GHz. The slabs were backed by a hiéh conductivity short-
circuit plate and the measuring procedure was the same as described in Section
4.6. The photograph of the sample holder is shown in Fiqure 2.11.

Measurements were also made of the d.c. resistivity of each

| sample of semiconductor with a high quality 4-probe tester.

5.7 Results and Discussion

The results of the reflection coefficient measuremeﬁts on
samples of n-type germaﬁiwn are given in “lqu:res 5.5 and 5.6. The
measured values of the reflection coefficient and VSWR were found to
agree with the calculated valves. The VSWR values calculated from the

(16) ‘

theoxry of Heaton and Pal are found to disagrec with the measured values

as shown in Figure 5.5. A comparison of the micravave reasurements with



105

d.c. measurements of the resistivity, which is shown in Table 5.1,
indicates that the microwave measwemenfs agree reasonably with d.c.
measurements. Since this method of measurement involves the placement of
a slab of semiconductor at the open end of a waveguide, it has been termed

the "open—end-waveguide measuring technique”.

Table 5.1

A Comparison of the Microwave andD.C. Measurements

of the Resistivity of n-type Ge Samples

Nominal Slab Microwave
Resistivity Thickness Measurements D.C. Measurements
(ogzer:l am) (cm) (ohm cm) (ohm cm)
10 : 0.1 11.4 11.0
10 0.2 | 11.7 11.6
50 0.1 35.0 45,6
50 0.2 40.0 46.0
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CHAPTER VI

ANISOTROPY OF THE MICROWAVE CONDUCTIVITY
OF SEMICONDUCTORS IN THE PRESENCE OF A HIGH ELECTRIC FIELD

6.1 Introduction

It has been known for some time that the application
of a pulsed d.c. electric field to a semiconductor sample
caﬁses a considerable reduction in the conductivity of the
saﬁple. This effect, as first pointed ouf by Shockley(55),
arises from an increase in the average energy or the
temperature of the carriers. During the application of the
field the lattice temperature is kept constant by making
the pulses short and of low repetition rate. Thus the d.c.
conductivity of semiconductors depends on the intensity ‘
of the electric field, the lattice temperature, the carrier
concentration,and the direction of the d.c. field with respect
to the crystal orientation.

Whén a small- signal microwave field is superimposed
on the d.c.‘field, there are other effects of intérest. In
addition to the above mentioned parameters, the small-signal
microwave conductivity depends on (a) the orientation of the

26),and

microwave field with respect to the d.c. field(zs'
(b) the frequency of the microwave signal(zo).

The microwave conductivity for parallel orientation
has been studied theoretically by a number of authors(zo_zs’ 27, 23)

For germanium, the theoretical calculation agrees with

lle6



(20, 24, 28)

experimental results . For the perpendicular

conductivity case, however, a satisfactory theory has not
- been reported, but some preliminary measurements have

(25)

been made by Gunn which indicate that the perpendicular

.conductivity is nearly the same as the d.c. conductivity.

Greshenzen,et.al.(zs)

,also reported similar measurements on
p-type germanium in the 8mm band and found the expected
anisotropy between the microwave conductivities for fields

parallel and perpendicular to the d.c. field. The existence

117

of this anisotropic conductivity in parallel and perpendicular

directions led to the prospect of a new microwave device,

namely, the "hot electron rotator" (25726, 56-57)

. 'Hoﬁever'a
definite theory with experimental confirmation of this
anisotropic effect,.which would confirm the feasibility of
operation of such a device, has remained an unsolved problem.
This Chapter deéls with the investigation of the
anisotropy of the small-signal microwave conductivity of
n-type germanium in the praesence of a high electric field

directed at an angle to the microwave field. In gection

6.2, an expression for the microwave conductivity of a

semiconductor sample is derived in terms of the parallel and

perpendicular conductivities and the angle between the
microwave and d.c. field vectors. A theory of the parallei
and perpendicular conductivify is presented in Section 6.3.
The angular and frequency dependence of the microwave

conductivity is also developed from the hot electron theory
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and the solution is presented in Section 6.4. Fihally,
measurements which confirm the theory have been carried out
onanll.4 ohm.cm, n-type germanium sample at 9.381 GHz.

6.2 The Small-Signal Microwave Conductivity of Semiconductors

in the Presence of a High D.C. Electric Field Directed
at an Angle to the Microwave Field

From physical reasoning Gunn(zs) has argued
that the small-signal microwave conductivity of an isotropic
semiconductor sample in the presence of a strong d.c. field
becomes anisotropic in the sense that it depends on the mutual
orientation of the d.c. and microwéve field vectors. He
states that the parallel microwave conductivity (oll) of a
semiconductor sample, when subjected to a large d.c..electric

field and a small parallel microwave field, is given by the

8
3F v

same sample (o,) subjected to the same fields, this time in

incremental conductivity hereas the conductivity of the

a mutually perpendicular direction, is given by the d.c.

conductivity %. Thus referring to Figure 6.1,

_ _
o
6, = o, = < (6.2)
a F F=F
o)

where o5 is the incremental conductivity and Oy is the d.c.
conductivity.
Congider an electromagnetic wave Fl incident on a

semiconductor sample, which is subjected to a very strong

d.c. field F in the x-direction at an angle O between the



FIGURE 6.1:
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FIGURE 6.2: (a) A Semiconductor Sample with a Microwave Field Fl'
~directed at an angle © to the D.C. Field F_.
FIGURE 6.2: (b) Relationship between the Angles 0 and ¢.
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d.c. and microwave field vectors(Figure 6.2a).. We assume
that

wT << 1 (6.3)

which removes the frequency dependence

t

of the conductivity and ensures 037 = 94 (Since in the limit

of very high freguencies when wt >>1, the anisotropy(zo)

vanishes and 041 = qL). Under this assumption, it is
appropriate to apply Gunn's model for the calculation of
the microwave conductivity. |

In the semiconductor sample, a microwave current

31 flows in addition to the d.c. current J_. Due to the

- anisotropic conductivity, F. will not be parallel to the

1

microwave field Fl' This has been proved in Section 6.4..

Let us assume that 3l,makes an angle ¢ with the y-axis. The

X~ and y- components of the microwave current are,

Jl cosp = Oll-Fl cos® ' (6.4a)
J1 $1n¢ = Ol Fl sin® | (§.4b)
O
which give tan¢ = 5 tand . (6.5)

11
The angle of rotation of the microwave current vector from

the microwave field vector is defined as

7 ¢ -0
-1 %1
= - tan [E— tanf] - 0O (6.6)
11 .
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which shows that, for isotropic effect, ¢ = 0. The
components of the microwave field from equationg (6.4a) and

(6.4b) may be written as

. _ chos¢ (6 7
1x 971 *
Jlsin¢
Fly = T (6.8)
which may be added along 31 direction,
F._ = ilfifif + flfifff. . (6.9)
1J 04 oy *

: J
Denoting a microwave conductivity+ G¢ = fl to be measured
1J
along 31, we obtain

. 2
4+ Ssin 0] N

¢ Gll 0'_1_

2
%._.= SQ_S___Q (6.10)

Equation (6.5) gives the relationship between ¢ and © from

Figure 6.2(b). Thys
o
cos¢ = 11 (6.11)
v 2 2 2
cll + o, tan™0
sing = o, tand (6.12)
v 2 2 2
Oll + o, tan® 0
so that ollzcosze + qlz sin2@
Od) = ° (6.13)

0171 cosze + 0y sin2@

T Page 98, Reference 42
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Thus a knowledge of 914 and ol_enables one to calculate
the microwave conductivity at an angle.

The equation (6.13) may also be obtained from the
consideration of the absorptibn of microwave power by the

"hot" carriers in parallel and perpendicular directions.

The microwavepower absorbed by a semiconductor sample is
(58)

given by

J o (F/VD)° av  (6.14)

Psample =

where o is the microwave conductivity and V is the volume

of the sample. Assuming an uniform field in the sampie,

this may be written as(59)
F12 .

The powervabsorption by the components of the microwave
field as given by equations (6.7) and (6.8) may be written

respectively as

. Fl v
P = g X
11 11 2
2
J .
= —%— L8 8 y (6.16)
11 '
~and 2
J1  sin o) B
P.l. = ——2—— UJ_ Va (6.17)

The total power absorbed is therefore given by
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P = P. + P

11l 1
2
2 . 2 J.V
[cgs 4 4 Slg;Q] % o (6.18)
11 1

Denoting a conductivity 0¢ again in the direction of Iy

we obtain

(6.19)

which agrees with the equation (6.10) and may be simplified
to the.equation (6.13).

To check the validity of the equation (6.13), we

calculate 0¢ for special cases of ©, Thus for 0 = 0° and
90° respectively,
Oy =033 (6.20)
c¢ =0y - ‘ (6.21)

as expected,

6.3 Theory of the Microwave Conductivity of N-type
Germanium for Parallel and Perpendicular Field
Orientations

This section contains the aevelopment of the
theoretical expressions for the parallel and perpendicular
conductivity of n-type germanium. The technigque is similar
to that of Nag and Das(23) for the calculétion of the parallel
conductivity. An approximate solution of the problem may be
obtained by solving the appropriate Boltzmann equation; taking

into account the effect of acoustic and optical phonon scattering
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and assuming isotropic effective mass. The effect of the e-e
scattering has been neglected as in the method of Yamashita,
et.al. (60), and Stratton(bl) '

6.3.1 The Enérgy Distribution Function for the Carriers
and the Boltzmann Equation

To determine the approximate energy distribution function

for the electrons in n- type germanium, we assume a model with

sphbrlcal_engery surfaces* as in the methods of Nag and Das(23)

fhé occuéancy fﬁnction for the carriers,'under"the“'
influence of an electric field, is disturbed from its
equilibrium.,. Such a non-equilibrium distribution function
for‘thegcarriers having the'wéve vector k for the case"

_df‘n-type‘gérmanium may be written as (Appendix D)

£ = £(8) + k g(E) + Xk, h(E) (6.22)

wbere kX and ky are the components of the wave Vectors in

the x and y directions,reépectively; g(B) and h(E) are

the perturbed values of the distribution function in the
x—-and y-directions, respectively; f(E) is thé isotropic part
and kx g(E) and ky'h(E) are the anisotropic parts of the
distribution function; E represents the energy of the carrier.

The total rate of change of the distribution function

may be written in the form*
DECK) _ af(h), af®) T ardh My, ae® 2 oo

Dt ot ok dt ok dt ok dt -

X ) Y Z
dkX eF : '

Writing aT = " E we may rewrite this equation as
DE(R) _ 3f(k) _ e (3£(k) , , 3E(k)  , 3E(K)

Dt ot £ Bk, X ok, ¥ 3k, 'z

- T Page 153, This Thesis.
¥ Page 109, Reference 42, .
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where FX, Fy,and Fz are the applied electric fields in the
x-, y-,and z-directions, respectively. Since FZ =0

(Figure 6.2), we may write this as

DE(R) _ af(K) _ e

S £ (K) 3£ (K)
Dt ot A Fx *

- F s
‘ka X Bky Yy

[

(6.24)

This equation gives the variation of £(X) caused by the
fields. There is also in operation a mechanism which tends
to restore £(kK) to its equilibrium value, namely the collisions

of electrons with imperfections. The rate of change of £(E)

>
due to collisions is denoted by agék) . Thus we write
coll
the Boltzmann equation as
3 f (X) _e [afR) o o, 3£(R) o _ 3£ (%)
ot Field U akx x aky YIrield ot Coll
(6.25)

Since the applied electric field varies as a function of

time, we write the following equations using equation (6.22),

3f (k) 3f (E) 3g (E) 3h(E)
. = 2z ) 4o 2drn) o 2R (6.26)
ot Field ot X Jt y ot
3£(kK) _ 9f(E) d d
= = + { k g(E)} + = { k h(E)}
3kx akx akx X ka y
_ 3f(E) 4E . 9g(E) dE 2K oh(E) dE |
=9 ax, ¢ (E) + k55 ax, " h(Bl.tky 3 &k,
(6.27)

‘Choosing one of the energy minima of the conduction band in
germanium which are iocated at the zone edge along [11ll] axes

as the'origin/wé obtain

e _ 4 X 2 2 2
EEX - Ak, Ugme (e ky Tk
ﬁZ .
= ___*_ kx (6-28)

m



where m* is the effective mass of electrons and h is the

reduced Plank's constant., Thus

2 2, 2
> "k k - dk
df(K) _ K%k s£(m) x_ 3g(E) y
5%, - wm* g T 9Bt —m— S 0t h(E) gg
p'e _ X
2
5K anE)
i 5 (6.29)
2. 2
herical ‘ £ k. = =k R
For spherical energy surfaces ( < = ky = Z), —
may be shown to be equal to %E. Thus, with h(E) = 0, as
in the case of parallel fields, equation (6.27) gives
(23)

equation (6) of Nag and Das ,as expected. Similarly,

2, 2

| -2
af(k) . k5y af(E) LX an(m) oky
5k ©  Tm¥ 5~ ¢ R(E) ¥ —m— Sy Y 9(B)gg
Ty | y
+2 59 (E)
+ P x x 29iE - ’ (6.30)

m¥ X'y OE

Neglecting the impurity and e-e scattering, the collision

term.may be written as

’

f ()
ot

af (k)

af (k)
3L

ot

+
ac

(6.31)

coll op

where the first and the second terms on the right represent
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the change in the ‘distribution function due to the interaction

of electrons with acoustic and optical modes of lattice

vibrations, respectively. The  rate of change of the

distribution function due to the acoustic and optical phonon

scattering has been studied extensively by Yamashita,et}al.(éo).



A careful analysis of their results has shown, in the

present case, that the acoustic term is given by

: 2 2 - s
9f (K) _ A 2 37£(E) E” 9£®, 2EEL (E)
3T = =3y [B" g * Gzt 2B) 55 % ~x7
ac E ) ‘
B K
-k g(E) - k h(E)] (6.32)
x 2&%2 Y ZﬁEZ

where the first four terms on the right are contributed by
the symmetric part of the distfibution function and the
remaining quantities are due to the asymmétric (oxr
directional) parts of the distribution function. Similarly,

the optical term may be written as

-> 2 :
9 f (k) B s ATE(RE) 3f (E)
= e [R (eT+1) (B + )
ot op ﬁonl/z OE2 oE
s 9f (E) _ E ', s
+ 2(e”+1) (E R f f(E)) kX Ea; (e™+1) g(E)
C kB (eS+1) n(m) (6.33)
Y Wi,
\ ' ,
,wheré23A = 8ecz/3(1r}<'I")l/2 Wy 8 = ﬁwo/kT,
B = 9/16 (AD%/c?) (#2¢%/2mkT) (1/e5-1), c= velocity
of sound in the semiconductor. Inserting equations (6.26),

(6.29), (6.30), (6.32) and (6.33) in (6.25) and equating the
terms of the same angular dependence (i.e. kX and ky terms) ,

we obtain the pair of equations:
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3g(E) _ eh 3£(E) . _ _ A E_ B 1/2, s
- &n F = - 2_ g(E) - ———— E/“(e"+1) g(E)
ot m* J3E X E1/2 25%2 (ﬁwo)z ;
 (6.34)
E) _eh M@ p o2 ohm - B 51?5 nm
o Y E™ " 2mc (hwo)
which become after some rearrangement,
(E) = 2mc’ 1 ek . Of(E) _ 3g(E) (6.36)
g S Tan 8% WE Fx 5 T e e
x 2
h(g) = 2mc” 1 ek df(E) _ 9h(E)
an B2 lmF Ty 5B T ot | (6.37)
Cx2
where § = 1 + & 2HC (e5 + 1). (6.38)
N 2
Chog)

The components of the total electric field in the x- and y-
directions may be written as

= Jwt
FX Fo + Re Fl coso e

= F_ [1+ Red el% - (6.39)
F = 0+ Re F., sin® ejwt
vy 1

i

F, [0 + Re X eI¥ty (6.40)



where the quantitieslkx and.Ay are given by

Flcos®
AL = —— <<.1
b4 Fo

Flsine
A= << 1,
Yy Fq

(6.41)

(6.42)

The presence of the microwave field will perturb the

disﬁ}ibutionfunction(i.e.;the guantities £(E), g(E), and

h(E)) by a small amount about its

equilibrium values.

Assuming that the amount of perturbation is proportional to

the microwave field strength, the x- and y- directed

perturbations may be written as

£(E)

= £_(E) + Re A £, (E)
g(E) = g_(E) + Re A g, (E)
and '
E(E) = £,(E) + Re Ay £)(B)
h(E) = h_(E) + Re :xy h, (E)

ejwt

ejwt

jwt

16)

ejmt

(6.43)

(6.44)

Since we wish to determine 011 and o, , the parameters of

interest are g, and h17

the x- and y- directions, respectively.

which give the microwave currents in

For the calculation

of 9, (i.e.,parallel current), we substitute equation (6.43)

in equation (6.36), which yields
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jot

9o(E) + Re A, g, (E) e
- X2 .

_ 2mcl/2 [sﬁ F, (1 + Re xx ejwt)
AQE '

X gﬁ { £ (E) + Re A_ £, (B) eIVt f.%E'{-gO(E) + Re A g, (E) eJuty

(6.45)
o X2 . o0f (E) :
.+ 2mc eh Jut o
- AQE1/2-[m* Fo 1+ Re-)‘x € ) oE
of. (E) . .
eh 1 jwt _ . jot
+ —% F, Re A 5E e Re A, g, (E) ju e ](6 26)

on negecting higher order terms. Eguating the a.c.

quantities, we obtain

2m*c2 eh F {afo(E) N afl(E)vH
AQE 1/2 m* - JE °F .
91 (6.47)
1 + jw Zﬂéﬁ
et/ 2

which'agrees with the corresponding result given by Nag and
as(23) (c.f. Equation 15). Similarly, substituting equation
(6.44) in equation (6.37) for the calculations of hl

(i.e. perpendicular current), we obtain,

| Jut
h(E) + Re A, h)(F) e
* 2 . 9f (E) .
- 2ric + . Juk o) _ . Jut
= AQEl/z [m* FO (0 Relky e ) —5F Re.)\y hl(E) jwe ].

(6.48)
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Equating the a.c.’ -~ quantities, we finally obtain,
e ? [ eh F ?fo(E) ]
o AQE1/2 m* (o} oE
h. (E) = . (6.49)
1 2 x 2
1 + jw mcl 2 "
: AQE_/

Equations (6.47) and (6.49) do not'agrée with the results of

Staecker and Das(26)

;, who showed that-gl(E) and hl(E) are
functions of ©. From hot electron theory, it will
be shown that the parallel and perpendicular conductivities

are indépendent of 0.t

6.3.2 The Microwave Conductivity and The Change in Dielectric

Constant
It has been shown by Nag and Das(23) that fl(E)
consists of both realAand‘imaginary parts,
fl(E) = flr(E) +.jfli(E) (6.50)

Expanding the denominator of equation (6.47) in the
binomial form and retaining only the first order terms, we

may write,

: . * it ' ) .
o (5) = Sﬁ 2m Foc : BfO(E) . aflr(E) . 5 Bfli(E)][l - W, ,

1 m¥ AQEl/Z oE _ 9E 3E (E/kT)l/2

(6.51)
2mc? : | |
wheretT_ = ——ES—-i/z. Assuming that Wt << 1, g, may be
AQ(kT) " : c
rewritten as ' ,
2
2hc"F &  J3f (E) f. _(E) 3f. . (E)

g,(E) % O o T 4 L v 2Ly, (6.52)

1 AQE1/2 ok oE oE :

T Equations 6.78 and 6.79 of This Thesis.
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The x- component of the microwave current is given by

o "~ Jut e_Jf_\, 2
Iy, = Fy cos0 e" N = J k, g)(B) dk, dk, dk,  (6.53)

2

where N, is the normalisation constant of the distribution
function in the absence of a microwave field. Substituting

equation (6.52) for,gl(E)

. N ek. , 2ehc’F “df _(E)
J = F. cos® ejwt { o )I( o) —2 X
lg 1 -V m* AQE1/2 , 9FE
of. (E) 23f (E) of. . (E) 3f (E)
ir o) . 1i o) 2
[ 1+ —5% /—s5— * I 55— Xy dk, dk dk,
(6.54)
which may be written as
jwt oMy "y
Jlx = Fl cos0 e ‘O‘dC [ 1 + I'ﬁ“o— + J IE)' ] (6-55)

where 04c is the field dependent d.c. conductivity and the

parameters m s M and m. are defined by Nég and Das.

r
Similary, hl(E) from equation (6.49) may be approximately

written as

Y Zehszo 3f_(E) _ , :
E) = [- 1- T © (6.56
1 e 5E | F )

. The y-component of the microwave current may be written as

(o}
i

F. sind ¥t (ﬁQES h, (E) k. % dk_ dk_ dk
1 SinEee m* ° { 71 Yy X y Z

. v 2 )
E, sino e* (Nf;fh) J (2e)ﬁcl§§> afg’;E)
. ME

2 . -
k,© @k, dk, dk,  (6.57)

it

= F, si Jwt : (6.58)
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Equation (6.55) gives the parallel chductivity and the
change in dielectric constant, while equation (6.58) gives

the perpendicular conductivity. Thus

. m '
o4, = Ogq . L1+ EE]‘ 16.59)
. o o
c, = Gd.c. , (6.60)
O . m. ,
pe = -S:8e L | (6.61)
We m
- o r .
where o may be easily seen in equation (6.57) and
mo = J El/2 __é_E——— kX dkx dky dkz ’
3, _(E) '
_ 1 1r 2
7 mr = J E—l/2 T kX de dky dkz ’
' 9f. . (E)
- 1 _ 13 2
m, = I El/2 kX ﬂkx dky dkz.
oE
ny
The ratio of T has been evaluated numerically by Nag and
o

Das. Considering only the optical phonon scattering, the
~value obtained is -.24 which indicates that 01150, - Further,
it is seen that the equations (6.59) and (6.60) correspond to
the equations (6.1) and (6.2), respectively.

6.4 The Microwave Conductivity of Semiconductors from the
Hot Electron Theory

It is known from the hot electron theory that the
field dependent cﬁrrent density 30 at medium field sttengtﬁs
is descfibed by

Cd, =0, - BFZ] T | (6.62)
where Oo is the low-field ohmic: conductivity, Fo is the
magnitude of the electric field where the conductivity is

measured, and B is a constant which, in general, depends on
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the carrier temperature T and the crystallographic

directions of the applied electric field. It has been

shown by Schmidt4Teidmann‘21) that
—a _ x(T)
By10 = B100(™ 2
- _ 2
By11 = B1go(™ - 3¥ (T (6.63)

B1o0 = B100(™
’where the subscripts denote the direction of the applied

field and y is another constant, and is given by

2
= 3(k-1)
Y = constant x ORI (6.64)
my _
where k = oo For isotropic effective mass, y = 0.
t

The d.c. conductivity in different crystallographic
directions has been determined experimentally by a number

of authors(62)

» who observed that the anisotropy is small

at room temperature. However, at low temperature, this

has been found to be quite significant; The crystallographic
anisotropy of the microwave conductivity has been studied

(29) who indicate that like

theoret;cally by Guha and Nag
d.c. conductivity, the anisotropy of microwave conductivity
is very small at room temperature. Noting their observation
as true, we take the éarameter B to be isotropic at room
.temperafure where microwave conductivity is to be determined.

We shall write B isotropic as B for the sake Qf'simplicity.

When a microwave field is applied at an angle to the d.c. field,
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> -+ > . : L
ﬁ:~ Eo + Fl 51nwtv . (6.65)

a microwave current 31 flows in addition to the d.c. current

30. We rewrite equation (6.62), in a more general form, as

> ; > ’
J=o0, (1L-8lRlA % (6.66)

where [E| is the magnitude of the total electric field.
Since the electric field is composed of a d.c. component as

well as an a.c. component, it is appropriate to write the

current density on averaging]Ec[2 over the allowed values

of electron energy E. Thus

2 >
g = o, [1 = B<|R|>.] F, (6.67)

Equation (6.65) may be written as

T =31 F, + F

. > . .
E < cosO sinwt] + ay [F; sin® sinwt] (6.68)

1

whose modulus becomes

'|2= FO2 + 2F_ Fy cosO® sinwt + F 2 sin 2wt (6.69)

1 1

Substituting this in equation (6.67), we obtain,

<sin2wt> 1
E

cosO < sinwt >_ + F

1 E 1

o 2
Et- oo [ 1 - 8 {F," + 2F_ F

X (?O + fl sinpt)

. | 2 .2
cos® <sinpt > 5 + Fl <sin wt>E} ] ¥

1

= : - 2
= 04 11 8 {FO + 2F _F

cos® <sinwt >_ + F 2 <sin2wt>E} ]f

2
+ ¢ [ 1 -8 {Fo + ZFOFl E 1

o 1

(6.70)

3

O

sinwt-




w

Considering only the current components which are vibrating
at an angular frequency w, the microwave current can be

written as

. > ' 2, = .
cos0 <51nwt>E] Fo + O [1 BFO ] Fl sinwt

(6.71)

31 = o, [-28F_F,

It can be shown that the average value of sinwt over the

electron energy E is

. _ 1l .
<51nmt>E = 1507 sinwt . (6.72)
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where T is the relaxation time of carriers. So that equation

(6.71) becomes

(2
Il

sinwt

o, [-28F _F, coso sinwt, 3

2. >
1 o 1 130t Yo ¥ % [1-pF "] F

1
(6.73)

where the first term is a component of the microwave current
flowing in the opposite direction to the d.c. field and is
caused by the cross-modulation due to the microwave field.

The second term is the F -directed microwave current which

1

has two components:

00 (l—BFoz)Fl cos® sinwt in the x-direction and

00 (1-BF02)F1 sin® sinwt in the y-direction. s

The x-component of the microwave current is attenuated by the

cross-modulation. As a result, JF. is not parallel to F

1 1°

Let J, makes an angle ¢ to the x-axis (Figure 6.2). The

1

components of the current in the Jl—direction from equation

(6.73) may then be written as
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()4
i

[-28F_F, cos® sinwt, F_ cos¢ + o [l—gFi]EFinwt cos ( $-0)

1 % 1 1+jwt

5 ZBFozcos@cos¢
0o L=BF) = {13557 o5 (3=0)

It

o Fl cos(¢$-0) sinwt

ZBFOZ cosOcosd

=0 [1- ] F, cos (¢-0) sinwt
de (1-8F_°) (1+jut) cos(¢-0) ©
(6.74)
The microwave cbnductivity in the direction of Jl may be
~written as » - E R
26}3‘02 cosOcosd
0¢ = %4c [1- 2 ]
: (l—BFo ) (L+jwt) cos(¢-9)
| 20F 2
= Gdc [ 1 - N (6.75)

(1-8F %) (1+jor) (1 + 2 tan?0)

11
which shows that the microwave conductivity is dependent on

©, wt, F_, 911 and o0, . It is to be noted that wr dependence

O

of 0 is the result of averaging IEE{zover the electron-energy.
‘The microwave conductivity may therefore be calculated from
the perpendicular and parallel conductivities.

Further, the real part of the microwéVe conductivity,

is given by,
28F 2

(o]
1 =0 1 - 1
¢ de 2 2 2 Oy 2
(1-8F ") (1+ w™t") (1+ — tan™0)
© 911

Relo

(6.76)

while the change in dielectric constant, is given by
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2
Ae =’Odc ZBFO WwT o ‘ _
wE : o, (6.77)
o (l—BFOZ)(l+w2T2)(l+ — tan20)
911

Specialising for @=oo and 900, we obtain

2
ZBFO

0., = 0© [ 1 - 1 (6.78)

11 de¢

(1-gF ) (L+o°1?)
O-L= Od,c. . (6079)
Equation (6.59) corresponds to equation (6.78) under

conditions of medium field strengths.

6.5 Numerical Computations

Equations (6-6),ané (6.13) have been
evaluated numerically on the ¢pC 6400 Computer. The
microwave conductivity and the angle of rotation of the
microwave current vector from the microwave field vector are

calculated- using the values of ¢ and o; deduced graphicaliy

11

from the J -F curve. The results of these calculations are
¢ o0 :

shown inFigures6.3 through 6.5.

6.6 Experimental Technigues

The principal objective of the experimental
programme was to obtain suitable data on the behaviour of
microwave conducﬁivity of an 11.4 ohm cm, n-type germanium
in the presence of a high'electric field, in order to confirm
- the theoretical predictions deécribed iﬁ Section 6.2,
Measurements were made at a frequency of 10 GHz and at room

temperature. One of the considerations that led to the
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selection Qf 10 GHz or more precisely 9,381 GHZ asAthe

experimental frequency is that the value of wt is small at

this frequeﬁcf (wt = 0.25). This ensures the observation

of only the angular dependence of thé real part of the

microwave conduétivity and allows us to neglect the imaginary

part of the microwave conductivity. The reasons for choosing

11.4 ohm-cm, n-type germénium are that it shows hot electron

.effects and it has low joule heating for the large samples

required for 10 GHz measurements. The experimental programme

of this section consists of the foilowing jobs:

(a) the construction of non-injecting contacts ;

(bj fhe measurement of the d.c. current-voltage characteristcs
in an 11,4 ohm-cm, n-type germanium sample ;

(c) the measurement of the small-signal microwavé conductivity
in the same sample as a function of the angle between the
microwave and d.c. field vectors.

One of the important considerations in the design

of the sample is that the same sample be used for all measurements.

This eﬁsurés that the sample has the same electrical properties |

with respect to the crystallographic direction. The sémples

of Ge with dimensions 3 x 2.5 x 02 cm were cut in a plane

perpendicular to <111> from{a large block of n-type germanium

crystal by means Qf a 20-mil diamond-head wheel cutter. Figure

5.6 was used to determine the thickness of the sample. This

figure shows that the deviation of the magnitude of the

reflection coefficient by the pulsed field is maximum in
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0.2 cm thick sample. The sides of the samples were determined
to cover the cross-section of the waveguide at various angles
between the d.c. and microwave field vectors.

6.6.1 The Construction of Non-Injecting Contacts

One of the main diffi¢ultieé in the measurement of
the conductivity of semiconductors at high electric fields
is the preparation of non-injecting contacts. An injecting
contact modulates the conductivity of a semiconductor‘sample
by way of injecting minority carriers and cause a deviation
in the high field conductivity effect. Before taking
measurements, one should therefore ensure that the contacts
are non-injecting.

Injection is usually eliminated by preparing a
sample in the dumbbell form so that any minority carriers
‘that may be injected may not reach the main filament during
the pulse period. The qonstruction’of non-injecting contacts
in a rectangular sample, as required in the microwave
measurements, has been found to be a major problem.

A number of authors(63_64) described a method of
preparing non-injecting contacts byAmeans of electroplating
a éolution of gold on a Ge-sample (plafing solution: 1.2 gm
KAu(CNz), 1 gm k(CN) per 100 ml, distilled water) and soldering
to‘the gold surfaces with a hot soldering iron. A similar
but a slightly different technique has been adopted in the
present work. The procedure is as folloWs:

All faces of the samples were poliéhed with a fine

SiC emery paper and cleaned for a few seconds in warm



chloréform,alcohol, and distilled water, respeétively. The
edges of the samples were then wetted with HF. Contacts to
thé Ge-slabs were made by first depositing a few microns‘
(5-6u) of gold mixed with traces of antimonybon the sample
edge by the vacuum deposition technique and then soldering
tin-antimony solder to the gold surfaces using a polyflux.

An Edward's Model 12E3 Vacuum-coating unit was employed for
the deposition of gold. The unit has a four-position filamen
‘holder to allow successive evaporations without disturbing
the vacuum. Molybdenum boats were used as filaments for the
evaporation of gold. Ge samples were hung in the vacuum
chamber with wires. The surfaces of the samples were covered
with a cleaned tape where depoéition was hot wanted.

Some contacts were also made in an alloying furnace,
after the usual cleaning procedure. A 0.010 inch strip of
tin-antimony solder was sandwiched between one sample edge
and a nickel strip, and the combination was joined in an
alloying furnace in the presence of pure hydrogen. Best
results were, however, obtained‘by the vacuum deposition
tecdhnique.

Gold was chosen because of its high resistance to

oxidation and low electrical contact resistance. Care was
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taken to ensure that the gold did not melt during the soldering

operation.
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The current-voltage cha;écteristics of an n-type
germanium sample was measured using the experimental
arrangement of Figure 6,6, The room temperature d.c.
resistivity of the sample was found to be 11;4 ohm cm by
4-point probe method. To avoid joule heating in the sample;
pulsed electric fields of 0.5_useq. duration were empioyed,
with repetition rates of 1 p/s. The sample was first matched
to the pulse generator by means of a parallel chain 6f
resistors, to ensure a single well-shaped rectangular pulse.
The current through the specimen was determined by measuring
the voltage across a 2 ohm resistor. The voltage
across the specimen was measured independently. Both current
and voltage measurements were taken with the aid of a
Tektronix type 585 oscilloscope.

6.6.3 Microwave Measurements

A photograph of the eéuipment used for the measurement
of £he change invthe reflection coefficients during the period-
of the pulse field is as éhown in PFigure 2.12. The sample
holder was connected to one side arm of the reflection bridge
in vertical position. The sample was allowed to rest between
the flange and a high-precision short—circuit plate [Fig. 6.7). To
apply pulsed d.c. fields, the sample was insulated carefglly
from the waveguide circuitsrwith thin polyethelene films.

The big advantage of this holder is the ease of rotation of

the sample with respect to the microwave field vectors.
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The I.F. amplifier used was a widewband amplifier
centered at 30 Mc/s. The difference frequency of 30 Mc/s
from two X-13 Klystwons was amplified and displayed on a
wide-band Tektronix tjpe 585 oscilloscope. |

The roflection coefficient of the sample was
measured with the microwave bridge discussed in Chapter II.
'At first, no d.c. pulse was applied and the real part of the
microwave conductivity was deduced from the reflection
coefficiént measured, using Figure b5.5. Then pulses were
applied resulting in a change of reflection coefficient
that caused an a.c; output in the E-arm of the bridge. A
previoué adjustment was made in the bridge for a zero output
level. The a.c. output was then amplified during the period
of tﬁe pulse by the I.F. amplifier and was displayed on the
oscilloscope. The sketch of such an I.F. amplification
system is éhown in Figure 6.8. The precision attenuator and
the precision short circuit were next édjusted to bring the
I.F. output level of the pulse period to the zero position.
Initially a 0.5 psec pulse was found to be inadequate for
the response of the I.F. amplifier. Measurements were
finally made with 2 usec. pulse.

The noise pick-up from the discharge of the thyratron
as observed on the scope was found to be of constant magnitude
at a fixed pulse field level. This.constant noise level was
made negligible (1-2%) compared to the I.F. output ievel by

maximizing the output of the I.F. amplifier on tuning the local
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oscillator. The a.c. output level during the pulse period
was found easier to balance than a corresponding d.c. level.
A linear, gain of the amplifier at input levels, ‘caused by
the pulsed field and the absence of the injection of the
minority carriers are required for accurate measurements.

Measurements were made for the conditions when
O=OO, 400; and 90°. The principal consideration of selecting
0=40° as one experimental angle between the microwave and |
d.c. field vectors is that the theoretical conductivity at
this éngle was found intermediate between the parallel and
perpendicular conductivity.

It willibe noted that the presence of insulation
changes the resisﬁivity from the absolute value, 11.4 ohm cm.
Héwever, the absolute values of fesistivity are not required
as the comparison between theory and experiment is made on

the basis of relative changes in the sample conductivity.

6.7 . Results and Discussion

The results of high field measurements at room
temperatufe are given in Figures 6.9 and 6.10. D.C. data
is plotted in Figure 6.9, which shows the current density in
én 11,4 ohm cm, n-type Ge sample as a ﬁunction of electric
field intensity. Microwave data (marked 0, x’,@)‘ié’presented
in Figure 6.10 where ail quantities are,normalised to their
corresponding values at zero d.c. field. The real part of

the small-signal microwave conductivity calculated from theory

(curves a,b,c) is also presented in Figure 6.10. The curves



T T T T ! ' '
300} ]
N-TYPE GERMANIUM
(na Lcm)
250 - i
N’\
.. 2001 }
3
<
=
. 150 ohnmic Variation i
- /O/
100} ]
T = 300°K
50— /O/ )
o] .
0 i } 1 1 ‘1 1 1
0 0.5 1 1.5 2 2.5 .3
Fo (KV/cm)

FIGURE 6.9: D.C. Current Density versus Electric Field Strength in an” 11:4 ohm cm

n-type Germanium Sample.

CTIST



4 LI i ¥ ] 1 1 T ) T

Theory

-x=-0-¢ Experimental
Points

1.0 | '
%\ a Perpendicular

0

2
'9'0.6_ -

e}
0.41 ‘ Paraitel ]
0.2F | T = 300°K . A

0 1 i 1 1 ! ! ‘c ! L L
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Eto (KV/cm)

FIGURE 6.10: Microwave Conductivities of an 11.4 ohm cm n-type Germaﬁium Sample
N at 9.381 GHz for parallel, perpendicular and 40° Field Orientations.
a dl/qo‘ ‘deduced from 300°k d.c. data
‘ 1 1 1
0@=400/0O calculated from equation 6.13

c Ull/oo ' deduced from 300°%k d.c. data

ZS1



153

a and c¢, which represent perpendicular and parallel
conductivity, respectively are deduced from room temperature
d.c. data (Figure 6.9), while the curve '¢!' is calculated
from equation 6.13. The experimental results-are found to
be in fair agreement with the theoretical values.

The measurements of the microwave conductivity were
limited to 1.8 kv/cm because of the large sample length
required to cover the cross-section of the waveguide, and
because of the consequent sparking and surface breakdown
problems encountered.

It is to be noted that this measurement for the
conditions of the d.c. field vector directéd at an angle
to the microwave field vector is a unique one. It would be
worthwhile also to take measurements in other materials

(33,

such as InSb, in which the anisotropic effect 34) has

been reported to be strong at low fields ( 120V/cm) at 77%.

Consequently the problem of injection at high fields will

be minimised.

+ The electrons in germanium has four equivalent minima in

k space along [11l1l] directions, where the constant energy
surfaces are ellipsoids. For the applied electric fields

in the [100] direction, the effective mass is the same in

each valley. For other directions of the field, the situations
is more complicated and particularly at low temperature.
However, at room temperature the current densities as a
function of .electric field for various orientation differ by
less than 5% (20,29 . Thus, it appears that the assumption

of spherical energy surfaces is a good approximation for
electrons. This footnote has been mentioned on page 125.



" CHAPTER VII

CONCLUSIONS |
7.1  General
| A method for the measurement of the microwave
conductivity of a semiconductor sample subjected to a high
d.c. electric field has been described; which provides for
varying the angles between.the microwave and applied d.c.
electric field vectors. The method depeﬁds on the placement
of a semiconductor sample at the open end of a rectangular
waveguide ; the conductivity of the sample is inferred
from the measurements of the reflection coefficient at the
air-semiconductor interface. The measuring system developed
is not only suitable for high-field measurements but it ié
also advantageous for the normal measurements of the
conductivity and dielectric constant of semiconductors at
microwave frequencies;

The objectives of this thesis were to study and-
measure the microwave conductivity of semiconductors in the
presence of a high electfic field and in particular, the
dependence of the microwave conductivity on the angle between
the microwave and d.c; field vectors. For the parallel field
case, a theory;as well as a measuring systém,hés been
reported in the literature(zo' 24). The measuring system

consists of a ‘transmission bridge' for the measurement of

, 154
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the prbpagation constant of a rectangular waveguide,
partially filled with a semiconductor sample. The principal
disadvantages of such a system are:

“(a) The propagation constanf of the partially filled waveguide
does not have a simple relationship with the conductivity

© of the sample.
':(5) The desirable variation of the angle between the
microwave and d.c. fieid vectors cannot be achieved.

(c) The mounting of the sample in the wéveguide) as well as
insulating the sample from the waveguide circuit, is a
difficult process to achieve.

The develoément of a measuring system that could be suitable
for high-field measurements was, therefore, required.

Chapters II to V, which cover a major portion of '
this thesis, are devoted to the develgpmeht of

such a measuring system, consisting of a microwave reflection-

type bridge(l3),

while Chapter VI is devoted to the
investigation of the small-signal anisotropic conductivity
of n-type germanium in the presence of a high electric field.

7.2 The Microwave Reflection Bridge

The theory of operatibn of a reflection-type bridge,
together with its praétical setting-up procedure, has been
presented in Chapter II. A methéd ié also described for the
correction of the measurement error, which arises from the
scattering coefficients at the input ports of the precision

attenﬁator' (one of the standard components of the bridge).
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®

Expeiiments have been carried qut to measure the scattering
coefficients of two commercially avéilable rotary-vane
precision atteﬁuators. Measured values of the magnitude

‘and phase of these scattering coefficients, which are

summarised in Figures 2.5 and 2.6, have been found to be in
-gobd agreement with the calculated values. The relative

error in the measured magnitudes of the reflection coefficients
due té Sll' which . is indicated in Figure 2.4, is  found to

be a function of the magnitude of the measured reflection
coefficient.

7.3 Microwave Reflections from the Surface of a Block of
Semiconductor

A theoretical analysis has been made of the
microwave reflections from the surface of a block of
semiconductor placed at the end of a rectangular waveguide.
The following waveguide configurations were considered for
the purpose of analysis:

(a) a semiconductor slab placed inside a rectangular
waveguide and tefminatéd by a short-circuit metal
plate (Figure 1.1); |

(b) a semiconductor slab pressed at the end of a
rec£angular waveguide.opening onto a-metal flange and

»terminated by a short-circuit metal plate (Figure 1.2);

(c) . a semiconductor slab placed-at the end of a rectangular

waveguide and followed by free space (Figure 1.3).

The approximate and exact solutions of the reflection
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coefficients at the plane z=0 of these configurations are
presented, thethér with experimental verifications wherever
possible. During the analysis a new method of measurement,
involving the placement of a semiconductor sample at the
open end of a rectangular waveguide, is developed. The
method has been termed the "open—end—waveguide measuring
technique".

7.3.1 The Approximate Solution of the Reflection Coefficient
for a Finite Semiconductor Medium

The ap?roximate solution for the reflection coefficients
at the plane z=0 of Figures 1.2 and 1.3 for a finite medium
'is developed in Chapter III. This solution, which has been
based on the assumpﬁion of a z-directed TEM wave propagating
in the semiconductor region, is derived from the consideration
of the input impedance at the air-semiconductor interface ,
plane. The appropriate expressions for the microwave
conductivity and dielectric constant are also derived in
"terms of the measurable quantities A and ¢ (Equation 3.14).

The assumption that the electromagnetic wave in the
semiconductor region is a TEM wave, is approximately justified.
It is because of this reason that the solutions are approximate.

Numerical computions, as related to operation at
9.522 and 34.5 GHz, show that these approximate solutions

apply only to semiconductors of low resistivity (0>2wsoer).



158

7.3.2  The Exact Solution of theﬂReflection'Coefficient'for
“a Semi-Infinite Medium

The exact solution of the reflection coefficient at
the plane z=0 of Figure 4.l(a) for é semi~infinite medium
with complex permittivity is developed in Chapter IV. This
solution, which has been based on a radiative propagating
wave in the half—space z>0 is arrived at by modifying the

original formulation by Lewin(43)

in the case of a lossless
medium (air). This solution has been extended to the case
of rectangular and parallel-plate waveguides with boundedground
planes (Figures 4.2 and 4.3). An alternative solution to
the rectangular waveguide with bounded planes, based on the
conservation of power similar to that of Harrington(44), is
also pfesented. Further, it is noted that the solutions;
which are presented are not completely exactand have
been obtaiﬁed on the assumption of an aperture field (field
at z=0) equal to that of the dominant incident mode.

Numerical computations, as related to operation at
9.522 and 34.5 GHz are made for the reflection coefficient of the
waveguide sgructure of Figure 4.1(a) with germanium, selectron,
and air in the half-space. The results are given in Figures
4.4 through 4.7.

Experimental verifications of the theoretical analysis
héve been made with n-type germanium of various resistivity
(0.1, 1, 5, 10, 25, 50 ohm cm),‘selectron/and air at the

end of the waveguide system of Figure 4.1(a), using a microwave

reflection-type bridge discussed in Chapter II.
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The results of the_reflection coefficient measurements,
which are summarised in Figures 4.6 and 4.7, are found to
agree withvthbse obtaiﬁed from célculations.

The values of resistivity as measured by microwave
methods at 34.5 GHz show good agreement with those measured
by the d.c. 4 probe method. At 9.522 GHz measurements,
however, the agreement is not very good. This comparison
is shown in Tables 4.2 and 4.3. The possible reason for
the discrepancy at X-band is the finite size of the samples
used, particularly the 0.26 and 45.76 ohm cm ones, which
is insufficient to satisfy the condition of a semi-infinite
medium assumed in the theory. At Q-band, the same samples
may satisfy the condition of a semi-infinite medium because
of the smaller skin depth. The other reasons for thé
discrepancy have been discussed in Section 4.8.

7.3.3 The Exact Solution of the Reflection Coefficient
For a Finite Medium

L (16)

‘Heaton and Pa ; in a recentiy published paper,
derived an expression - -for the reflection coefficient of a
semiconductor slab placed across the open end of'a rectangular
waveguide."Their theory, which is not essentially different
from that of Lindmayer and Kutsko(7), has been based on an
‘vunbounded wave propagating.in the axial direction in the
semic9nductor slab. They assume that the z-directed propagation

constant in the semiconductor region is of the form

Y, = jw /ueosr . This is not completely justifiedyparticularly



160

a

for semiconductqr samples with low sr,_when the wave may
pfopagate_in the transverse directions as well.

A moré_general solution of the reflection coefficient
of a slab with complex permittivity, held against the waveguide
flange and followed by a short circuit conductivity plate, is

(47) and

developed in the same manner as‘used by Compton
Crosswell(48) and .is given in Chapter V. This technique
has also been applied to the admittance of a rectangular
waveguide system radiating into a lossless plasma layer.

Nwierical computations are.made for the Ge slab case
for varying values of resistivity and thickness at 9.53 GHz
and 34.5 GHz.

Experiments whiéh confirm the theory have been
pérformed at 9.53 GHz. The resuits, which are shown in
_Figure 5.§’indicate that the solution given by the cited

(16)

authors is approximately correct for low resistivity

samples and is incorrect for high resistivity ones (o<2weosr).
Numerical calculations are also made for a plasma

layer case. The results of these calculations, which agree

(49-51)
7

with those given by the other authors are presented
in Figures 5.9 through 5.13.

Finally, we must point out that the iﬁportant results
of the microwave reflections have been summarised in Figures
4,6, 4.7, 5.5 ,and 5.6. The "open-end-waveguide measuring

technique", as mentioned earlier, utilizes these design curves

for the determination of the microwave conductivity and the

dielectric constant.
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7.4 Anisotropy of the Small-Signal Microwave Conductivity

‘Eiglé

A simple theory of the small—signal microwave
conductivity of a semiconductor in the presence of a high
electric field directed at an angle 0 to the microwave
field vector, 'is developed. fhe conductivity is found to
depend on the parallel and perpendicular conductivities and
also on the angle between the microwave and d.c. field
vectors (Eguatioﬁ 6.13). A‘theoretical analysis has also
been made of the barallel and perpendicular conductivities
of n-type gefmanium in the same manner as used by Nag and
'Das(23) for the dalculation of the parallel conductivity

(Section 6.3). The solution to the problem is obtained by
sélving the appropriate Boltzmann equation, taking into
account the effect of both acoustic and optical phonon
»scattering, and assumiﬁg an isotropic effective mass as in
the analysis of Nag and pas (23)

Numerical calculatiéns'have been made of the microwave
conductivity and the aﬁglé of rotation of the microwave current
vector for an 11.4 ohm cm n—-type dgermanjium sample at 9.381
GHz as related to expefiments. These calculations, whiqh
are plotted in Figures 6.3 through 6.5, show that the microwave
conductivity increases with 0 and becomes maximum when 6=90°
(Figure 6.3), where ‘as the angle of rotation of the microwave
current vector first increases with 0, fheﬁ becomes maximum

when 0=40° and finally decreases to zero when 0=90° (Figure 6.4).
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To obtain data to confirm the theory,
measurements have been made of the conductaﬁce as a function
of the electric field intensity in the same germanium
sample (l1l.4 ohm cm) at d.c. and 9.381 GHz. The reasons for
choosing 11.4 ohm cm, n—type_germanium are that it shows hot
electron effects and it has low joule heating for the large
samples required for 10 GHz meaSufements. D.c. measurements
which are summarised in Figure 6.9 héve been used for the
determination of d.c; conductivity J/F and differential
conductivity 3J/3F. These results are given in Figure 6.10
and provide a basis for comparison with the microwave
.measurements. The feflection coefficient bridge was used to
dgtermine the microwave conductivity as a funcﬁidn of the
amplitude of thé electric field, applied in the form:of short
pulses. The method of measurement was the "open-end%waveguide
measuriﬁg technique", which ailowed the angle between the
microwave and d.c. field vectors to be varied. The

© and 90° with

miciowave measurements were made at G=0°, 40
applied electric fields up to 1.8 KV/cm. The design charts
of Figures 5.5 and 5.6 were used to relate the VSWR or
refleétion coefficients to fhe conductivity of the sample.k
The results.of microwave measurements which are
summarised in Figure 6.10, are found to agree with the‘
calculated values. The microwave conductivity fér ®=4OO

was evaluated from"equatiqn 5.13. These results confirm that

the microwave conductivity in the presence of a high electric
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field is indeed dependent on the angle between the microwave
and d.c. field vectors. It is to be noted that this
measurement for the conditions of the d.c. field vector
directed at an angle to the microwave field vector is a
unique one. |

For future investigation it is recommended that
measurements should be made in other materials, such as InSb,

(34, 63) has been reported to

in which the anisétrdpic effect
be strong at low fields (120 V/cm) and at 77°K. Consequently,
thg problems of injection of the minority carriers auring
measuremeﬁts at high electric fields will not arise.

Finally, we conclude by saying that the results of
this investigation, which confirm the existence of the
anisotropic effect in n-type germanium, prove the feasibility
of operation of a new microwave devicé, namely "the hot
electron microwave rotator". The theoretical performance of

such a rotator has been investigated elsewhere by the Author(57).
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" APPENDIX-A

DERIVATION OF THE EQUATIONS (3.14a) AND (3.14b)

- Equations (3.;2) and (3.13) yield the following

‘equation
_ . 2
. -(a + 3¢)
- —e 2 1l + e , _
It may be shown that(65),
-(a + 39) .
l + e 30
. : = Y A-2
] - e 2
1/2 '
_ jcosh A + cos¢ -
where lYnl - [;osh A - cOs%} (A=3)
and 6 = - tan”t Eﬁ%%%%% . (A-4)

‘Substituting equation (A-2) in equation (A-1),

-

_ . 2 . .
€. = [} - (f /f).] [—lY l cos 20 + j lYn| sin 20
(A-5)
Equations (3.14a) and (3.14b) may now be obtained by equating
the real and the imaginary parts of (A-5) and subsequently

using equation (A-3) and (A-4).
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APPENDIX-B

DERIVATION OF THE ADMITTANCE EQUATION'(4.15)
Substitution of equations (4.7) and (4.9) in

equation (4.14) yields the following identity,

d 2 1 _ . TX AN E?) 1 onm
— + k {%EI (1-R) 51n(a )+ %; 0‘?Amn s1n(g x) cos(3 y%]

A

a b 2 A -jkr
.__];___ ' [ §____ 2 = 1 []
= 5= J J E(x', y ) [. 5+ k:} = dx' dy

(B-1)

where
2 5 1/2
- [(x “x2 4y -y ] , (B-2)

z=0

Differentiating the first term in the parenthesis of equation
(B-1) on the l.h.s. and substituting the equation (4.13) for

‘A__, we obtain
mn -

jk. : a (b
1 -R = 1 -:-I:—- E(x', y")
2 T2 - 2t Jo Jo
ko - (-5) s1n(—a—)
2 n ~3kr o o e 2
9 2 e ' 4 mn 9 2
7 * k9 S——ax' ay' + 12 %55 mn 9 g

- (a (b ‘
[ J "E(x', ¥v") sin(%ﬂ x’) cos(%ﬂ y') dx' dy'! sin(glx) cos(%ﬂ y{}-
(B-3)

Application of equations (B-3) and (4.12) results
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1-R .<jkl ab 1 a (b B y 2 N £2
R (, 2D, | 27 X0 ¥ A2
{k (n)z} sin(TXy 01 0o x
- O a a
-jkr ®© o € 2 a (b
= axt ay' + 2 2 = &4 k2 J J E(x', y")
r : 1 0o @ Ymn Ox © 070

fn (O DT 1) ax' dy' sin (2T nw i,
51n(a x") cos(b y ) dx' dy 31n(a X) cos(b y)}(B 4y .

f' a (b
where Dl = J J CE(x', yv") sin(g~x‘) dx' dy"' . (B-5)
070

Multiplication of the numerator and denominator of equation

a b :
(B-4) by Jx=0 Jy=0 sin(gﬁ)dxdy gives the desired equation (4.15).
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APPENDIX-C

THE TRANSFORMATION OF THE QUADRUPLE INTEGRAL
EQUATION (4.20) INTO THE DOUBLE INTEGRAL EQUATION (4.21)

With the change of variables
x+x' =a+wv x -x' = u
y+y =b+n y-y' = v

we obtain

N

sin(g x) sin(g x') = [}osg(x,— x') - cosg(xr+ x')]

= % [bos(g u) + cos(g u) ]

_ Tu + v T,u —- Uy
= cosa(——§—~) cosa( 5 )

= cosg(x - %) cos(x' - %) {(C-1)

; which is permissible as r is

and replacing —25 by -
9x axaxf
a function of x -~ x' we obtain

k% + ] sin(I x) sin(Z x')
T2 T a ) a i 2 il a T a
= k cosg(x - f) cosg(x' - f) - (g) s1ng(x - 5) 51n5(x' -5
£2 : L ' il 1 ﬂz il
= —5 [%osa(x - x') + cosa(x + x' - a{} _5(5) [%osa(x—x')

- cosg(x+x'—a%]

. A2 ,n.2 .
N AL 2| T + F I
= 3 ) cos (7 u) —————5 cos(z ) ,
k2 - (L)

)
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Thus equation (4.20) becomes

2

[R? - @ R i %2 (D) L
Yn = j —_— I J I J COS(E U.) + —-———-——-——-—2— cos(.a_ U) erve
2m ab k 0’07070 A2 o
1 k- (3
a
e—jkr
dxdx'dydy' (c-3)

The change of axes and ranges of integration are shown in
Figure C-1. FurtherT, replacing dxdx' by % duau and dydy'

by % dvdn and multiplying the result by 4 as the total
integration is 4 times the integration in the first quadrant,

one obtains

e -} [ [

and similarly

b (b ' (b (b-v
J I dydy' J J dvdn 2 J' J dvdn ¢« (C-5)
0’0 - 0’0

Substituting equations (C-4) and (C-5) in equation (C-3),

Sm—
]
Ny
V]
(o))
b
[oN)
e
|
N}
i
]
—
[WV]
—
&Y
1
c
o
c
o
C
a
1
19

N
Nl b

[kz - (E)%] j4 (a ra-urb (b-v k% + (12 .
a il a T
Yn = J J J J cos(g<u) + — cos(g v) P
2m ab k 0’0 00 ~2 T
1 kW= 3
e—jkr

dudvdvdn (C-6)

which can be reduced to equation (4.21).

T Page 92, Reference 43.
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v
x! f X
: p 4
\ a 7
\¥=a+7///\\g=(a—u)
rd
N\ V4
{ A ’,
dxdx? Y A7 dvdu
i
d 1 a U

v=-(a+u)

\\\///Jv=—(a—u)

FIGURE C-1: The Change of Axes and the Ranges of .Integration.

8

Kz

FIGURE D-1:

The Wave Vector for the Carriers.
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"APPENDIX-D

THE ENERGY_DISTRIBUTION FUNCTION FOR THE CARRIERS
A non-equilibrium distribution function for the
carriers having the wave vector X can be represented by
sphefical harmonics of degree £, which is of this type(66),
> < g % |
f(k) = z k" { a, P, (cosO") + Z [am cosmp' + o sinm¢p*] -+
- L TR — L L
=0 m=1
P? (cos6') } , (p-1) -

where Pz(cose') is the Legendre Polynomial and is given by

L L
P (coso') = DAL 371,
% - T2 2 'k
» ! ok
Z
' —_—
'PO (cosB') 1
P1 (cos@') = cos 0O ,
o _ ‘ 2. .2, . 2 2
cos@' = kx/k and k™' = k " + Ly + k,

‘and . the assoqiatéd Legendre function .

_ , m
Pz (cos@') = (1 - cosze')m/2 —975
: dkx

(o

>, (cose')}

(D-2)
where 0' is the angle between the wave vector k and kx—axis,
%' is the angle befween the projection of the wave vectbr
on the kékz plane and the kz—éxis; a, b are constaﬁts and

2, m are integers.
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The function may be approximately written as

o
f(ﬁ)% 27 { kz a, Pz (cos0') + kz by sin¢’ Pi (cos0')
2=0
+ x* 'p. (cos0') - (D-3)
ay cos¢'P, (c }
. 10 . < ) , S T .
=k a P_ (cos6') + k¥ a, P, (cosO@') + zj k™ b, sing'....
o O — 2 72 -~ L
=1 2=1
_ 2#£0
Pl (cos0') + x4 cos¢’ Pl (cos@'f]
2 R 2 -

i

fo(E) + fl(E) cos0' + fz(E) sin¢' sin0' + f3(E) cos¢' sinO’
| (D-4)

which is the same as described by Moll(67). The magnitudes

17 f2 and f3 give the currents in the x,

y, and z directions, respectively.

of the coefficients f

(68) for the

A detailed analysis by Reik and Risken
case of n—tYpe germanium shows that the distribution function
can be given by the approximate expansion of the first term
in equation (D-3) for the current flow in the_x—direction
only. Since an x-directed d.c. field at an angle 0 to the
microwave field produces a component of the current in the
y-direction also, it is appropriate to include the second
term in equation (D-3). Thus for the wave vector K lying

on the kx ky plane, ¢'=90° and the distribution function for

the carriers becomes
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=3 o .

f(ﬁ)% Z_ k a, Py (cos@') + E: kz bg Py (cos0') sin ¢’
2=0 2#0
: {=1

]
- X T 1 T
£ a PO (cosQ') + k a; Pl (cosO') + k %- Pl (cos0?')

a + k a, cos®' + k a, sin0’
o 1 2

= a_ + k_ a, + k_a

o x “1 y ‘2 ¢ (D-5)
This may be finally written as
£(k) = £(E) + k, 9(E) + k h(E) (D-6)

where kx and k_ -are the components of the wave vectors in.

x and y directions, respectively;'g(E) and h(E) are the
purturbed values of the distribution functions in the x-

and y—directions,respectively; £f(E) is the isotropic part

of the distribution function and kx g (E) and ky h(E) are the
anisotropic parts of the distributibn function. When the
external field is removed, the distribution function restores

to the equilibrium, i.e. £(K) = £(E).
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